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The Acoustical Society of America

On 27 December 1928 a group of scientists and engineers met at Bell Telephone
Laboratories in New York City to discuss organizing a society dedicated to the field
of acoustics. Plans developed rapidly and the Acoustical Society of America (ASA)
held its first meeting on 10-11 May 1929 with a charter membership of about 450.
Today ASA has a worldwide membership of 7000.

The scope of this new society incorporated a broad range of technical areas that
continues to be reflected in ASA’s present-day endeavors. Today, ASA serves the
interests of its members and the acoustics community in all branches of acoustics,
both theoretical and applied. To achieve this goal, ASA has established technical
committees charged with keeping abreast of the developments and needs of
membership in specialized fields as well as identifying new ones as they develop.

The Technical Committees include acoustical oceanography, animal bioacous-
tics, architectural acoustics, biomedical acoustics, engineering acoustics, musical
acoustics, noise, physical acoustics, psychological and physiological acoustics,
signal processing in acoustics, speech communication, structural acoustics and
vibration, and underwater acoustics. This diversity is one of the Society’s unique
and strongest assets since it so strongly fosters and encourages cross-disciplinary
learning, collaboration, and interactions.

ASA publications and meetings incorporate the diversity of these Technical
Committees. In particular, publications play a major role in the Society. The Journal
of the Acoustical Society of America (JASA) includes contributed papers and
patent reviews. JASA Express Letters (JASA-EL) and Proceedings of Meetings on
Acoustics (POMA) are online, open-access publications, offering rapid publication.
Acoustics Today, published quarterly, is a popular open-access magazine. Other key
features of ASA’s publishing program include books, reprints of classic acoustics
texts, and videos.

ASA’s biannual meetings offer opportunities for attendees to share information,
with strong support throughout the career continuum, from students to retirees.
Meetings incorporate many opportunities for professional and social interactions
and attendees find the personal contacts a rewarding experience. These experiences
result in building a robust network of fellow scientists and engineers, many of whom
became lifelong friends and colleagues.

From the Society’s inception, members recognized the importance of developing
acoustical standards with a focus on terminology, measurement procedures, and
criteria for determining the effects of noise and vibration. TheASAStandards
Program serves as the Secretariat for four American National Standards Institute
Committees and provides administrative support for several international standards
committees.

Throughout its history to present day, ASA’s strength resides in attracting the
interest and commitment of scholars devoted to promoting the knowledge and
practical applications of acoustics.The unselfish activity of these individuals in the
development of the Society is largely responsible for ASA’s growth and present
stature.
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Chapter 1
Fundamentals of Nonlinear Acoustical
Techniques and Sideband Peak Count

Tribikram Kundu, Jesús N. Eiras, Weibin Li, Peipei Liu, Hoon Sohn,
and Jordi Payá

1.1 Introduction

Nonlinear acoustical techniques are useful for detecting very small defects that
often remain hidden to linear techniques. If the nonlinear acoustical techniques use
acoustic signals in the ultrasonic range (above 20 kHz), then these techniques are
called nonlinear ultrasonic techniques. Therefore, nonlinear ultrasonic techniques
can be considered as a subset of nonlinear acoustical techniques. Before discussing
nonlinear techniques let us first briefly talk about the conventional linear acoustical
techniques.

For many years the integrity of a specimen has been checked by striking
the specimen with a hammer and listening to the sound it generates. Since
undamaged and damaged specimens have different natural frequencies they produce
different sounds from their vibrations. The attenuation pattern of the generated
sound has also been used for inspecting a specimen. Damaged specimens show
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different sound absorption characteristics than pristine specimens. These two
acoustic parameters—resonance frequency and attenuation coefficient or quality
factor (inverse of attenuation)— are the two most popular linear acoustic parameters
that have been used for damage detection in materials. Linear acoustic analysis
is sufficient for relating the resonance frequency and attenuation coefficient of an
object to its elastic constants (stiffness) and damping coefficient. For this reason,
resonance frequency and quality factor are called linear acoustic parameters. Large
defects in a specimen significantly affect these linear parameters and therefore,
relatively large defects can be detected by monitoring the change in these linear
parameters. However, very small defects may not affect the linear parameters. Later
it will be shown that nonlinear acoustic parameters are affected significantly more
by very small defects and therefore the nonlinear parameters should be considered
to detect those defects.

Since dominant resonance frequencies of most specimens are generally well
below the ultrasonic range the resonance frequency and attenuation coefficients
obtained from the vibrational analysis are called acoustic parameters instead of
ultrasonic parameters. Two common ultrasonic parameters that are used for internal
defect detection are ultrasonic wave speed and its attenuation. Ultrasonic waves
are reflected and scattered by internal cracks. Reflection, refraction, and scattering
of ultrasonic waves by internal cracks can be analyzed from the linear analysis
of the interaction between the material defects and the propagating elastic waves.
Internal damage can affect the velocity and attenuation of elastic waves in the
material. Thus by monitoring the ultrasonic wave speed and its attenuation, and/or
analyzing the scattering pattern of the propagating ultrasonic waves, internal
damages can be detected and characterized. Since the linear analysis is sufficient
for relating the crack geometry to the wave scattering pattern and wave velocity
or attenuation this is also called linear acoustical technique (or linear ultrasonic
technique if the frequency is greater than 20 kHz). Similar to the vibration-based
linear acoustical techniques the wave propagation-based linear ultrasonic techniques
also fail to detect very small defects. It will be shown in this chapter as well as in
subsequent chapters that nonlinear acoustical/ultrasonic techniques can detect very
small defects, such as micro-cracks at the grain boundaries that are much smaller
than the wavelength of the interrogating ultrasonic signal.

Nonlinear acoustical techniques assume nonlinear stress–strain relation while
linear techniques are based on linear stress–strain relation. Nonlinearity in stress–
strain relation can be due to many reasons—one popular belief is that as waves
propagate through the damaged material crack surfaces near the crack tips open and
close causing variations in stiffness of the material in that region.

When waves of two different frequency propagate through a linear material their
frequencies do not change. However, if the material is nonlinear, then the interaction
between these two waves having frequencies f1 and f2 produces waves of many other
frequencies (mf1 ± nf2) where m and n are integer values. Waves having these new
frequency values can be analyzed for detecting very small defects. This technique
is known as the Nonlinear Wave Modulation Spectroscopy (NWMS) technique.
Even when a wave of single frequency propagates through a nonlinear material
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new waves of higher and lower frequency can be generated in the material. Higher
frequency waves must have frequencies that are integer multipliers of the input wave
frequency, these waves are known as higher harmonics. Under certain conditions the
generated wave frequency can be half of the input wave frequency which is called
subharmonics. Higher harmonic, subharmonic, and modulated waves can be effec-
tively used for detecting very small defects. Various nonlinear ultrasonic techniques
have been developed for internal defect detection by efficiently using these new
waves commonly known as higher harmonic, subharmonic, and modulated waves.

Similar to the wave propagation-based techniques the vibration-based nonlinear
techniques are also more sensitive to small defects than linear acoustical techniques.
Linear acoustical techniques measure the resonance frequency and attenuation. In a
linear system this resonance frequency and attenuation coefficient do not change
with the intensity of excitation. However, in a nonlinear system both resonance
frequency and attenuation coefficient change with the vibration amplitude. The
nonlinear acoustical technique monitors this change with the intensity of excitation.
This technique is known as the Nonlinear Impact Resonant Acoustic Spectroscopy
or NIRAS. It has been shown by different investigators that NIRAS and its several
variations are much more effective in detecting small defects in comparison to the
linear parameters like resonance frequency and attenuation coefficient.

In summary, it can be stated that the linear acoustic parameters (or features) are
not sensitive enough for the evaluation of the degradation of material properties
and detection of microscopic defects. However, even tiny discontinuities in a
material can produce detectable acoustic nonlinearity that is orders of magnitude
higher than the intrinsic nonlinearity of the intact material. Thus, micro-defects that
are too small to be detected by linear ultrasonic techniques are ideal candidates
for inspection by nonlinear acoustical techniques. The use of nonlinear acoustics
has been shown to be one of the most promising techniques for nondestructive
evaluation (NDE) needed to assess the damage at its early stage in many structural
components. It should be noted that the linear ultrasonic NDE techniques only
deal with the frequencies of the input signals, while the nonlinear ultrasonic
NDE techniques are interested in detecting and measuring acoustic signals whose
frequencies are different from those of the input signals.

The experimental evidence of nonlinear behavior due to micro-cracks in dam-
aged materials can be found in static stress–strain behavior and dynamic nonlinear
wave interaction. Due to material nonlinearity a wave can distort creating accom-
panying harmonics and interaction of waves of different frequency. Nonlinearity
causes changes in resonance frequency as a function of excitation amplitude. The
level of nonlinearity in materials containing structural damage is generally far
greater than in materials with no structural damage.

There are several approaches for damage detection by nonlinear acoustical and
ultrasonic techniques. These techniques are briefly introduced in this chapter and
then discussed in detail in subsequent chapters. The fundamental mechanics behind
the nonlinear acoustic/ultrasonic behavior is presented first. A newly developed non-
linear technique based on the sideband peak counts (SPCs) is also discussed in this
chapter. The authors of other chapters describe in detail their developed techniques.
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1.2 Mechanics of Higher Harmonic Generation for Bulk
Waves

Ultrasonic wave of one frequency when propagates through a nonlinear material
generates ultrasonic waves of higher frequency that are n times the original
frequency (where n = 2, 3, 4, . . . .) due to the material nonlinearity. These are
commonly known as higher harmonics. This acoustic nonlinear response which is
caused by the material nonlinearity can be characterized by a nonlinear parameter
β. The parameter β determines the degree of distortion of the ultrasonic waveform
as it travels through the material. Analytical expression for β in terms of the
amplitudes of the original monochromatic wave of frequency f and the second
harmonic or the generated wave of frequency 2f is derived in the following section.
By measuring the changes in β, the degree of nonlinearity which is related to the
damage accumulation can be estimated.

1.2.1 Nonlinear Wave Equations

We start with some of the fundamental equations of elasticity in elastostatics and
elastodynamics. Interested readers are referred to Kundu [1] for derivations of these
equations. In any orthogonal coordinate system the traction–stress relation is given
by

Ti = σjinj = σijnj (1.1)

where σ ij is the stress tensor, nj is the unit vector in the direction of the normal to
the surface on which the traction vector is defined. Index notation (also known as
tensorial notation) is used in Eq. (1.1) and in subsequent equations. Free index i can
take values 1, 2, and 3 to define traction components in x1, x2, and x3 directions,
respectively, in Cartesian coordinate system (or in r, θ , φ directions in spherical
coordinate system, or in r, θ , z directions in cylindrical coordinate system). Repeated
index j is called dummy index and must be summed as shown below.

Ti = σi1n1 + σi2n2 + σi3n3 (1.2)

Using the above traction–stress relation and applying Newton’s first and second
laws on an elemental volume the following equilibrium equation (Eq. 1.3) for the
elastostatic case and governing equation of motion (Eq. 1.4) for the elastodynamic
case can be obtained [1]:

∂σij

∂xj
+ fi = σij,j + fi = 0 (1.3)
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∂σij

∂xj
+ fi = σij,j + fi = ρüi (1.4)

where the body force fi is defined as the force per unit volume. In index notation the
comma (,) followed by index j denotes the derivative with respect to xj while double
dots (..) above ui denotes double derivative of ui with respect to time.

Ignoring the body force, in the Lagrangian coordinate system the equation of
motion (Eq. 1.4), which is also known as the linear momentum equation, can be
written as

ρ
∂2u

∂t2
= ∇P = ∇σ (1.5)

where P is the Lagrangian stress tensor, same as σ used in Eqs. (1.1) through (1.4).
For convenience both symbols P and σ are used to represent stress. Displacement
gradients ui, j include higher-order elastic constants in a nonlinear isotropic solid.
These expressions can be derived from the strain energy function as given by Landau
and Lifschitz [2] in the following form:

W = 1

2
λI 2
E + μIIE + 1

3
AIIIE + BIEIIE + 1

3
CI 3

E (1.6)

where IE, IIE, and IIIE are three strain invariants: IE = εii, IIE = εijεji, and
IIIE = εijεjkεki. λ and μ are Lame’s constants which are second-order elastic
constants. A, B, and C are third-order elastic constants (Murnaghan constants). The
Lagrangian strain tensor is given by

εij = 1

2

(
ui,j + uj,i + ui,kuk,j

)
(1.7)

σLij = ∂W

∂ui,j
(1.8)

σij = σLij + σNLij (1.9a)

where σLij is the linear term σLij = λδij εkk + 2μεij and σNLij is the nonlinear term,
it can be expressed as:

σNLij =
(
μ+ A

4

){
ul,iul,j + uj,lui,l + ul,j ui,l

}

+ 1

2
(λ − μ+ B) {ul,mul,mδij + 2ui,j ul,l

}

+ A
4
uj,lul,i + B

2

{
ul,mum,lδij + 2uj,iul,l

}+ Cul,luk,kδij

(1.9b)



6 T. Kundu et al.

From Eqs. (1.5) through (1.9a and 1.9b), we get the nonlinear wave equation:

(λ+ μ) uj,ji + μui,jj − ρ0
∂2ui

∂t2
= fi, (1.10)

where f is the nonlinear term given by,

fi =
(
μ+ A

4

)
(
ul.iul.jj + 2ul.j ui.lj + ul.jj ui.l

)

+
(
λ+ 1

4
A+ B

) (
ul.ij ul.j + uj.j lui.l

)+ (λ− μ+ B) ui.jj ul.l (1.11)

+
(
A

4
+ B

) (
uj.lj ul.i + ul.ij uj.l

)+ (B + 2C) uj.j iul.l

Let us now consider one-dimensional nonlinear wave propagation in x1 direction.
For simplicity, coordinate directions x1, x2, and x3 are replaced by x, y, and z,
respectively, while u, v, and w denote three displacement components u1, u2, and
u3, respectively. For one-dimensional wave propagation analysis, the displacements
are functions of x and t; then, the nonlinear plane wave equations are simplified to
[3, 4]

utt = c2
l uxx + (3c2

l + C111/ρ
)
uxuxx + (c2

l + C166/ρ
)
(vxvxx + wxwxx)

vtt = c2
t vxx + (c2

l + C166/ρ
)
(uxvxx + vxuxx)

wtt = c2
t wxx + (c2

l + C166/ρ
)
(uxwxx + wxuxx)

(1.12)

where C111 = 2A + 6B + 2C, C166 = 1
2A + B, ρ is the density. x is the wave

propagation direction, derivatives of u with respect to t and x are denoted as, utt =
∂2u
∂t2

, ux = ∂u
∂x

, and uxx = ∂2u
∂x2 ; similar notations are used for derivatives of v and w

with respect to x and t.cland ct are the propagation speeds of linear longitudinal and
transverse waves, respectively:

cl =
√
λ+ 2μ

ρ
, ct =

√
μ

ρ
(1.13)

Perturbation method can be used to solve these nonlinear wave equations. First,
we expand the solution of the nonlinear wave equations to second order as given
below:

u = u(1) + u(2)
v = v(1) + v(2)
w = w(1) + w(2)

where
u(1) >> u(2)

v(1) >> v(2)

w(1) >> w(2)
(1.14)
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where u(1), v(1)
, and w(1) are the first-order primary wave solutions, while u(2), v(2)

,
and w(2) are the second-order solutions. Equation (1.12) can be expanded as:

u(1)tt − c2
l u
(1)
xx = 0

v(1)tt − c2
t v
(1)
xx = 0

w(1)tt − c2
t w
(1)
xx = 0

(1.15)

and

u(2)tt − c2
l u
(2)
xx = (3c2

l + C111/ρ
)
u(1)xu

(1)
xx

+ (c2
l + C166/ρ

) (
v(1)xv

(1)
xx + w(1)xw(1)xx

)

v(2)tt − c2
t v
(2)
xx = (c2

l + C166/ρ
) (
u(1)xv

(1)
xx + v(1)xu(1)xx

)

w(2)tt − c2
t w
(2)
xx = (c2

l + C166/ρ
) (
u(1)xw

(1)
xx + w(1)xu(1)xx

)
(1.16)

1.2.2 Acoustic Nonlinear Parameters for Longitudinal Waves

For the case when there is only one purely longitudinal wave mode propagating in
the solid having weak nonlinearity, so that only longitudinal displacement exists in
Eq. (1.12), then this equation is reduced to,

utt = c2
l uxx +

(
3c2
l + C111/ρ

)
uxuxx (1.17)

In Eq. (1.13) one can see that the longitudinal wave speed is a function of Lame’s
constants and density for an elastic medium. Substituting Eq. (1.13) into Eq. (1.17)
one gets,

ρutt = (λ+ 2μ) uxx + (3 (λ+ 2μ)+ C111) uxuxx (1.18)

The above one-dimensional equations (1.17 and 1.18) can be transformed into
nonlinear longitudinal wave equation by introducing the coefficient of nonlinearity,

βl = −
(

3 + C111

ρc2
l

)

(1.19)

Substituting Eq. (1.19) into Eq. (1.17) we get,

utt = c2
l uxx − βlc2

l uxuxx (1.20)

Since the amplitude of the second harmonic wave is much less than that of the
fundamental primary wave, the perturbation method can be applied to solve this
nonlinear governing equation. The displacement u is assumed to have the following
form:

u = u1 + u2 (1.21)
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The nonlinear wave Eq. (1.20) can be decomposed into two linear wave
equations,

∂2u1

∂t2
= c2

l

∂2u1

∂x2 (1.22)

and

∂2u2

∂t2
= c2

l

∂2u2

∂x2 − c2
l βl
∂u1

∂x

∂2u1

∂x2 (1.23)

where u1 is the primary wave with fundamental frequency, while u2 is the second
harmonic wave with double frequency. The general solution for u1 of the wave Eq.
(1.22) can be expressed as,

u1 = A1 sin (kx − ωt) (1.24)

Thus, Eq. (1.23) can be represented as

∂2u2

∂t2
= c2

l

∂2u2

∂x2
+ 1

2
c2
l βlk

3 sin (2kx − 2ωt) (1.25)

Assume u2 = xg
(
x
cl

− t
)

, and substitute it into Eq. (1.25). Thus, u2 can be solved
as,

u2 = 1

8
A2

1k
2βlx cos 2 (kx − ωt) (1.26)

Therefore, the amplitude of the propagating second harmonic wave whose
frequency is twice the frequency of the fundamental wave is given by,

A2 = A2
1k

2βlx/8 (1.27)

where A1 is the amplitude of the fundamental wave, and A2 is the amplitude of the
second harmonic. In Eq. (1.27) k is the wave number. The material nonlinearity
can be quantified by the acoustic nonlinear parameter β, which is related to
the amplitude of the second harmonic and the square of the fundamental wave
amplitude,

βl = 8A2

A1
2k2x

(1.28)

Thus, the material nonlinearity can be evaluated by measuring the fundamental
wave amplitude and the second harmonic wave amplitude from an ultrasonic test.

Another interesting property of the nonlinear parameter β for the longitudinal
wave is that, for a given specimen, if the frequency of the wave is kept constant then
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Fig. 1.1 Variation of the
second harmonic wave
amplitude [A2] for constant
amplitude of the
monochromatic exciting wave
[A1], or in other words
variation of A2/(A1)2 with
transmitter–receiver distance

the measured second harmonic amplitude linearly increases with x. This is known
as the accumulative or cumulative effect of the second harmonic. The cumulative
effect of the second harmonic amplitude has a major advantage for experimental
measurement of the nonlinear effect. It can improve the signal-to-noise ratio simply
by letting the wave propagate a longer distance as evident from Eq. (1.29).

From Eq. (1.28),

A2

A2
1

∝ βlx (1.29)

Thus, the material nonlinearity can be evaluated by measuring the ratio of the
second harmonic wave amplitude to the square of the fundamental wave amplitude
as a function of the distance between the transmitter and the receiver, as shown in
Fig. 1.1.

1.2.3 Acoustic Nonlinear Parameter for Transverse Waves

For the case of a purely transverse wave propagating in the x direction in a solid with
weak nonlinearity, only transverse displacement exists in Eqs. (1.15) and (1.16), and
therefore, they can be simplified to,

∂2v1

∂t2
= c2

t

∂2v1

∂x2
(1.30)

∂2u2

∂t2
= c2

l

∂2u2

∂x2
+
(
c2
l + C166/ρ

) ∂v1

∂x

∂2v1

∂x2
(1.31)

where v1 and u2 are linear (or first order) transverse displacement and nonlinear
(or second order) longitudinal displacement components, respectively. It shows
that the first-order transverse wave component generates second-order longitudinal
wave components, and wave mixing occurs. Solution of Eqs. (1.30) and (1.31) by
perturbation methods shows that a first-order transverse component generates no
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second-order transverse component. The nonlinear parameter for one-dimensional
transverse wave propagation can be defined as,

βt = −
(

1 + C166

ρc2
l

)

(1.32)

Then Eq. (1.31) is simplified to

∂2u2

∂t2
= c2

l

∂2u2

∂x2 − c2
l βt
∂v1

∂x

∂2v1

∂x2 (1.33)

where v1 is the primary wave with fundamental frequency, while u2 is the second
harmonic wave with double frequency. The general solution for v1 shown in Eq.
(1.30) is given by,

v1 = A1 exp[i (ktx − ωt)] (1.34)

Substituting Eq. (1.34) into Eq. (1.33) gives rise to,

∂2u2

∂t2
= c2

l

∂2u2

∂x2
+ ic2

l βt k
3
t A1

2 exp[i2 (ktx − ωt)] (1.35)

The solution of this linear non-homogenous partial differential equation can be
expressed as the sum of particular integral and homogenous solution,

u2 = up2 + uh2 (1.36)

where up2 , u
h
2 are particular integral and homogenous solution, respectively. It can

be assumed that the particular solution of this equation is,

u
p

2 = M exp i2 (ktx − ωt) (1.37)

Substituting the particular solution into Eq. (1.35) we obtain,

u
p

2 = −iβt k3
t A1

2

4
(
k2
t − k2

l

) exp[i2 (ktx − ωt)] (1.38)

where kl = ω
cl
, kt = ω

ct
.

The homogenous solution can be expressed as,

uh2 = N exp[i2 (klx − ωt)] (1.39)
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For pure shear wave excitation at x = 0 only the transverse motion exists; there-
fore, the boundary condition on u2 is u2 = 0 at x = 0. Substituting the homogenous
solution in the total solution and taking into consideration the boundary condition,
the final homogeneous solution is obtained as,

uh2 = iβt k
3
t A1

2

4
(
k2
t − k2

l

) exp[i2 (klx − ωt)] (1.40)

Thus, the complete solution of Eq. (1.35) can be written as

u2 = -βtk3
t A1

2

2
(
k2
t − k2

l

) sin [(kt − kl) x] exp[i [(kl + kt ) x − 2ωt]] (1.41)

Therefore, the amplitude of the second-order solution is

A2 = -βtk3
t A1

2

2
(
k2
t − k2

l

) sin [(kt − kl) x] (1.42)

From Eq. (1.42) the material nonlinearity can be expressed as the acoustic
nonlinear parameter, which is related to the amplitudes of the second harmonic and
the square of the fundamental wave amplitude as,

βt = A2

A1
2

-2
(
k2
t − k2

l

)

k3
t sin [(kt − kl) x]

(1.43)

As shown in Fig. 1.2, the amplitude of the second harmonic wave becomes
zero at certain propagation distances. Since the amplitude of the second harmonic
waves does not grow with propagation distance one can say that the second-order
longitudinal component generated by the primary transverse wave does not have the
cumulative effect.

Fig. 1.2 Non-cumulative
effect of the second harmonic
longitudinal wave amplitude
generated by the transverse
wave
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1.2.4 Use of Nonlinear Bulk Waves for Nondestructive
Evaluation

As mentioned above, the cumulative effect on the amplitude of the second har-
monic for longitudinal wave propagation in a nonlinear material is important for
experimental detection of material nonlinearity with improved signal-to-noise ratio.
Therefore, the second harmonic generated by propagating longitudinal waves is
widely used to evaluate material nonlinearity. In this section, an example of the use
of nonlinear longitudinal ultrasonic waves for nondestructive evaluation of material
microstructural change is provided.

It has been reported in the literature [5–9] that microscopic defects such as lattice
deformation or dislocations are the main sources of material nonlinearity. Material
properties are highly dependent on the material microstructure. The microstructure
can be changed through heat treatment process. Generally, slip homogenization and
restriction of localized plastic deformation parallel to the boundaries caused by heat
treatment gives better material properties. The objective of the investigation reported
here is to study the correlation between heat treatment and material nonlinearity and
evaluate the material nonlinearity change with improved material properties using
nonlinear ultrasonic technique. The proposed procedure can be used to evaluate
the heat treatment effects nondestructively, and to optimize the heat treatment
parameters.

1.2.4.1 Nonlinear Acoustic Parameter Measurement

The material nonlinearity is monitored through generation and measurements of
higher harmonics. The measurement of higher harmonic amplitude is needed for
determining the value of the nonlinear acoustic parameter β. From Eq. (1.28) one
can see that the nonlinear parameter is related to the amplitudes of the fundamental
wave and the second harmonic in the following manner:

β = 8A2

A1
2k2x

(1.44)

where A1 is the amplitude of fundamental wave, A2 is that of the second harmonic
wave, k is the wave number, and x is the wave propagation distance. During
experiments, the value of β̂ is calculated from the following relation:

β̂ = A2

A2
1

∝ β (1.45)

This ratio can be obtained experimentally. Thus, the material nonlinearity can be
evaluated from the amplitudes of the fundamental and the second harmonic waves.
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Table 1.1 Percentage of chemical components of Inconel X-750

Al C Cr Copper Iron Mn Ni Nm Si Sr Ti

0.4–1 0.08 Max 14–17 0.5 Max 5–9 1 Max – 0.7–1.2 0.5 Max 0.01 Min 2.25–2.5

Quenched time and temperature
a

b

1h 2h 1h

1038°C

850°C 850°C

Tempered time and temperature Tempered time and temperature Tempered time and temperature

704°C

20h 1h

Heat treatment A Heat treatment B Heat treatment C

1h 1h 1h1h8h 8h 18h

704°C 704°C
732°C 732°C 732°C 732°C

621°C 621°C

Fig. 1.3 Heat treatment process details: (a) Same quenching stage but (b) different tempering
stages for the three specimens (from [10])

1.2.4.2 Specimens and Experimental Setup

The specimens considered for this investigation are rectangular plates [8, 9]. The
dimensions of the specimens are 30 × 200 × 5 mm. The chemical compositions
of the tested specimens are given in Table 1.1. One of these specimens is kept as
the original untreated specimen, while the other three went through various levels
of heat treatment. The heat treatment processes included quenching and tempering
at various stages. Tempering involves reheating the quenched alloy to a temperature
below the eutectoid temperature and then cooling it. The temperatures and times are
the same during the quenching stage but different in the tempering stage, as shown
in Fig. 1.3. During this process, the alloy is heated to dissolve and distribute alloying
elements uniformly.

A piezoelectric transducer (made of PZT—lead-zirconate-titanate crystal) with
central frequency of 5 MHz was used to generate the signal. The transducer
generated signal first went through an attenuator to lower the noise level. The center
frequency of the receiving transducer was set at 10 MHz for detecting primarily
the second harmonic waves generated by the 5 MHz transducer. An amplifier was
employed to increase the amplitude of the received second harmonic waves. Two
transducers were placed carefully on opposite sides of the specimen as shown in
Fig. 1.4a with holders designed to ensure uniform coupling condition. Before the
signal processing, a Hanning window was used to modulate the received signal.

http://en.wikipedia.org/wiki/Eutectoid
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Fig. 1.4 (a) Ultrasonic nonlinearity measurement system, (b) time-domain signal, and (c) fre-
quency spectrum (FFT) of the signal (from [10])

Fast Fourier transform (FFT) was then applied to the modulated signal to obtain
amplitude A1 of the fundamental frequency and A2 of the second harmonic (double
frequency). Figure 1.4b, c shows a typical time history and its FFT plot after the
ultrasonic signal has propagated through the specimen.

One can see from Eq. (1.45) that the nonlinear parameter for the longitudinal
wave propagation can be expressed as the ratio of the second harmonic amplitude
(A2) and the square of the fundamental wave amplitude

(
A2

1

)
for a fixed wave

number and propagation distance. This value helps us to correlate the acoustic
nonlinearity with the material nonlinearity of the specimens for different heat
treatment conditions. The measured parameters are normalized with respect to their
initial values to show relative changes.

The variation of the nonlinear acoustic parameter for the specimens with different
heat treatment conditions is shown in Fig. 1.5. Compared to the pristine specimen
that did not go through any heat treatment, the three heat treated specimens showed
distinctly lower nonlinear acoustic parameter value. Figure 1.3b illustrates the heat
treatment conditions A, B, and C.
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Fig. 1.5 Variation of relative
acoustic nonlinearity in
specimens after different heat
treatments (from [10])
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Fig. 1.6 Variations of linear and nonlinear acoustic parameters as the specimens underwent three
different heat treatments—(a–c). All values were normalized with respect to their pristine values
obtained before heat treatment βRaw = 3 × 10−3, CRaw = 5.92 km/s and αRaw = 0.246 dB/mm
(from [10])

Figure 1.6 shows the sensitivities of different linear and nonlinear acoustic
parameters to heat treatment conditions. All acoustic parameters in the heat treated
specimens have been normalized with respect to their initial values for the pristine
material, to show the relative changes for each parameter. The experimental results
show that the maximum change of wave velocity after heat treatment C is about
0.8% while the maximum change for the acoustic attenuation coefficient is 16%.
However, the acoustic nonlinearity parameter shows most noticeable change with
a variation of over 70% after heat treatment C. In Figs. 1.5 and 1.6 the nonlinear
acoustic parameter value shows a 40% drop after heat treatment A and over 70%
drop after heat treatment C [10].
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Figure 1.6 clearly shows that compared to linear parameters nonlinear acoustic
parameter is much more sensitive to the variations of the material properties caused
by heat treatments. Thus variations of nonlinear parameters can be efficiently used
for monitoring material degradation as well as enhancement.

1.3 Higher Harmonic Generation for Guided Waves

Ultrasonic guided waves such as Lamb waves can propagate over considerable
distance exciting the entire thickness of the waveguide (such as plates and pipes).
Therefore, guided waves can be used to find the surface defects as well as internal
defects in plate, rod, and pipe-like structures. Low energy consumption and cost-
effectiveness are two main advantages of guided wave-based damage detection
techniques. Because of the high sensitivity of the nonlinear ultrasonic parameters
to material damage and advantages of guided wave techniques for inspecting
large structures, the nonlinear guided wave techniques have drawn considerable
attention. Although guided wave nonlinearity is affected by the material nonlinearity
the second harmonic generation is much more difficult for the guided wave due
to its dispersive nature and multi-mode propagation characteristics. The multi-
mode feature of guided waves makes it difficult to generate single pure mode
experimentally. The investigation of second harmonic generation for guided waves
in isotropic plate is presented in this section. To measure the nonlinear effect
with sufficient signal-to-noise ratio one needs the second harmonic generation with
cumulative effect. The key concept is to use those modes with a good “phase
matching” so that significant energy transmission from the fundamental wave mode
to the second harmonic mode occurs. The phase matching condition becomes
important for the nonlinear guided wave NDE for having cumulative effect of
the second harmonic while a nonlinear bulk wave technique does not require
such precise frequency tuning. For this purpose, a new definition of guided wave
nonlinear parameter is derived with some modifications of the conventional bulk
wave nonlinearity. This section analyzes the second harmonic generation for guided
waves in an isotropic plate. It discusses nonlinear features of both Rayleigh surface
waves and Lamb waves.

1.3.1 Acoustic Nonlinear Parameter for Surface Wave
Propagation

Particle displacements for surface waves, travelling along a free surface of an
elastic half-space, decay exponentially with depth. Thus the energy of surface waves
is concentrated near the surface. Surface waves can be efficiently used for the
nondestructive evaluation of defects located on or near the surface. Advantages
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Fig. 1.7 Surface wave
propagation in x direction

of surface wave-based NDE include longer propagation distance than conventional
bulk waves to interrogate regions that are not suitable for visual inspection in large,
complex structural components.

Let us consider a half-space with Rayleigh surface waves propagating in positive
x direction, while z axis is pointing into the half-space as shown in Fig. 1.7. The
displacement field associated with the Rayleigh surface wave propagating in an
isotropic half-space with traction-free boundary conditions can be given as [1, 11].

u = ∂φ

∂x
− ∂ψ
∂z

(1.46)

w = ∂φ

∂z
+ ∂ψ
∂x
, (1.47)

The longitudinal and shear wave potentials that describe Rayleigh wave propa-
gation are,

φ = A

ik
e−pzei(kx−ωt), (1.48)

ψ = B

ik
e−qzei(kx−ωt), (1.49)

where p =
√
k2 − k2

l and q =
√
k2 − k2

t . Three wave numbers for the longitudinal
wave, transverse wave, and surface wave in the material are kl, kt, and k, respectively.
ω is the angular frequency. The boundary stresses σ zz and σ xz are zero on the
surface (z = 0) because of the traction-free boundary conditions. Satisfying these
boundary conditions the relationship between the constants A and B is obtained in
the following form:

B = −iA 2kp

k2 + q2 . (1.50)
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Using partial wave technique, the surface wave can be decomposed into the
cross-interaction and self-interaction of longitudinal and shear wave components
on the surface. Thus, the partial displacement components of primary wave at the
fundamental frequency and second harmonic waves at double frequency can be
expressed as

u(f ) = A
(
e−pz − 2pq

k2 + q2 e
−qz
)
ei(kx−ωt) (1.51)

w(f ) = iAp
k

(
e−pz − 2k2

k2 + q2 e
−qz
)
ei(kx−ωt) (1.52)

u(2f ) = D
(
e−2pz − 2pq

k2 + q2 e
−2qz

)
e−i2ωt (1.53)

w(2f ) = iDp
k

(
e−2pz − 2k2

k2 + q2 e
−2qz

)
e−i2ωt (1.54)

Using normal modal expansion method, the relation between the amplitudes
of fundamental wave and second harmonic wave generated displacements can be
expressed as [12–14].

D =
3∑

n=1

C(n)eik
(n)x (1.55)

where

C(1) = −
(

3ρc2
l + C111

8ρc2
l

)

k2
l A

2x, k(1) = 2kl, (1.56)

C(2) = −
(
ρc2
l + C166

4ρc2
l

)
k3
t A

2
(
k2
t − k2

l

) sin [(kt − kl) x] , k(2) = kl + kt . (1.57)

C(3) = −
(
ρc2
l + C166

ρc2
t

) (
klk

2
t + ktk2

l

)
A2

(kl + kt )2 − 4k2
t

sin

[(
kt − kl

2

)
x

]
, k(3) = 3kt + kl

2
.

(1.58)

It is found that C(2) and C(3) oscillate and vanish at certain propagation distances,
which means these two components have no cumulative contributions to the second
harmonic Rayleigh surface wave field. However, C(1) increases with propagation
distance x. Therefore, when the wave propagation distance is sufficiently large, C(1)
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mostly contributes to the second harmonic field. From the above analysis, it is found
that the relationship between D and A on the surface can be expressed as

D = βk2
l A

2x

8
ei2kx (1.59)

where β = − 3ρc2
l +C111

ρc2
l

is the acoustic nonlinearity parameter for the surface wave; x

is the wave propagation distance. Generally, the displacement component w is easier
to detect experimentally, so in the following, w is used to calculate the nonlinear
parameter of the surface wave. After substituting Eq. (1.59) into Eq. (1.54), the
nonlinear parameter is expressed in terms of the vertical displacement amplitude w
on the surface (z = 0) as

β = w(2f )

w2(f )

8i

k2
l x

p

k

(
1 − 2k2

k2 + q2

)
(1.60)

If attenuation is taken into consideration, then the acoustic nonlinear parameter
is modified by the attenuation correlation factor as [12]

Dα =
(

m

1 − e−m
)
, m = (α2 − 2α1) x (1.61)

where α1 is the attenuation coefficient of the fundamental wave and α2 is that for
the second harmonic wave. Thus, the nonlinear parameter of the surface wave is
modified as [12, 15]

β = A2

A2
1

8i

k2
l x

p

k

(
1 − 2k2

k2 + q2

)
Dα (1.62)

where A1 and A2 are the out-of-plane displacement amplitudes of the fundamental
and the second harmonic wave, respectively, shown by the two peaks at 1 and 2
MHz frequencies in Fig. 1.8.

1.3.2 NDE Application Potential of Nonlinear Surface Waves

In this example, the frequency spectrum analysis to filter out undesirable frequency
components is first conducted.

During nonlinear guided wave tests, nonlinear responses due to instruments,
coupling media, and ambient noise are inevitable. However, amplitude of the
higher harmonic induced by the material nonlinearity of the specimen is a function
of the wave propagation distance as shown in Eq. (1.62), but the nonlinearity
coming from the other sources listed above is independent of the wave path length.
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Fig. 1.8 Typical received signal: (a) time-domain signal, (b) frequency spectrum showing the
strong fundamental frequency peak at 1 MHz and a relatively weak but noticeable second harmonic
peak at 2 MHz (from [12])

Therefore, when the guided wave propagation distance increases, the amplitude of
the second harmonic generated by the experimental setup or ambient noise remains
same and only the second harmonic amplitude generated by the nonlinearity of
the specimen increases. Thus the cumulative effect or the growth of the second
harmonic amplitude with the propagation distance is very useful for distinguishing
material nonlinearity from other sources of nonlinearity. To ensure that what is
measured is due to the material nonlinearity induced by the micro-damages in the
specimen and not arising from the measurement system one needs to demonstrate
this cumulative effect.

To ensure that the experimental measurements of the nonlinear parameter are
due to acoustic nonlinearity effect, the experiments were conducted for different
propagation distances [12]. Wave propagation distance was varied from 50 to
250 mm with 25 mm interval. Note that the nonlinear parameter of Rayleigh surface
waves is also a function of material properties and frequency. Since the same surface
wave mode and frequency were chosen in this investigation to detect the acoustic
nonlinearity in the specimens made of the same material, no correction for material
or frequency variations was needed to study the nonlinear response. As shown in
Fig. 1.9 it is found that the relative nonlinear parameter grows with the propagation
distance because of the cumulative effect. The increase in the nonlinear parameter
value is observed up to a certain distance (about 200 mm) after which it does not
grow because then the material attenuation effect becomes more dominant.
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Fig. 1.9 Cumulative effect is
responsible for the growth of
the nonlinear parameter with
propagation distance (from
[12])

50

0.0

0.4

0.8

1.2

1.6

100 150 200 250
Wave propagation distance (mm)

R
el

at
iv

e 
no

nl
in

ea
r 

re
sp

on
se

 (
A

2/
A

12 )

1.3.3 Nonlinear Lamb Waves

Compared to the Rayleigh surface waves, second harmonic generation for Lamb
waves is much more difficult because of dispersion and multi-mode nature of Lamb
waves. In general, the second harmonic wave amplitude is very small and can
be easily overlooked due to the dispersive nature of Lamb waves. Consequently,
proper mode tuning is absolutely necessary for nonlinear Lamb wave generation and
reception. For this reason conducting nonlinear Lamb wave experiment can be quite
challenging. Second harmonic generation of Lamb waves in an isotropic plate has
been theoretically investigated using perturbation method and normal modal anal-
ysis technique. If the two conditions—phase matching and nonzero power transfer
from the fundamental to the second harmonic mode—are satisfied, then the second
harmonic mode shows a cumulative effect for nonlinear Lamb wave propagation.
Group velocity of the primary wave mode and the higher harmonic wave mode
should also be equal to achieve cumulative harmonic generation; however, this idea
is still in dispute. For experimental investigation, it is necessary to have the second
harmonic generation with cumulative effect to enable measurements of the nonlinear
effects with sufficient signal-to-noise ratio.

We start with the nonlinear version of the Navier’s equation for solving the Lamb
wave propagation problem,

(λ+ 2μ)∇ (∇ · u)− μ∇ × (∇ × u)+ f = ρ0
∂2u
∂t2

(1.63)

where, as before, u is the displacement, λ and μ are the elastic constants, ρ0 is the
material density, and f is the nonlinear term as defined in Landau and Lifshitz [2].
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The body force is neglected in this wave equation. The nonlinear wave equation
is solved by the perturbation method, by decomposing the total displacement field
into two components—displacement component u1 from the primary wave and
component u2 from the second harmonic:

u = u1 + u2 (1.64)

where u2 is assumed to be much smaller than u1, and the primary wave with
frequency-wave number (ω, k) is written as follows:

u1 = u(z)ei(kx−ωt) (1.65)

Constructing the second-order solution using modal expansion, the total second
harmonic field can be written as [16–19].

u2 = 1

2

∑∞
m=1
Am(x)u2(z)e

−i2ωt , (1.66)

where u2 is the displacement field. As shown in Fig. 1.10, x is the wave propagation
direction. Am(x) is the expansion coefficient to be determined for the second-order
modal amplitude and 2h is the thickness of the waveguide. The multiplier 1/2 in
this equation is needed to have the final results in real quantities. The Am(x) is the
solution of the following ordinary differential equation:

4pmn

(
d

dx
+ ik∗n

)
Am(x) =

(
f surf
n + f vol

n

)
ei2kx, (1.67)

where

pmn = −1

4

∫

�

(
v∗

n · sm + vm · s∗
n
) · nxd�, (1.68)

f surf
n (x) =

∫

�

v∗
n · s2ω · nxd�, (1.69)

Fig. 1.10 Schematic of a
plate with two traction-free
boundary surfaces
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f vol
n (x) =

∫

�

v∗
n · f2ωd�, (1.70)

� is the waveguide’s cross-sectional area and � is the curve enclosing � per unit
length along the y axis. The terms f surf

n and f vol
n represent the complex external

power related to the surface traction s2ω and body force f2ω, respectively. The
condition u2 = 0 at x = 0 is satisfied when solving the equation to obtain Am(x):

Am = Am(x)ei2kx − Am(0)e−ik∗nx, (1.71)

Am(x) = i
(
f surf
n + f vol

n

)

4pmn
(
k∗n − 2k

) , k∗n �= 2k, (1.72)

Am(x) =
(
f surf
n + f vol

n

)

4pmn
x, k∗n = 2k. (1.73)

1.3.3.1 Phase Matched Lamb Wave Modes

Considering that single primary mode propagation in the waveguide generates
multiple secondary modes, the second harmonic field of Lamb wave propagation
could be assumed as superpositions of a series of double frequency Lamb wave
components. However, only the component whose phase velocity is same as that
of the fundamental wave mode is of our interest, because this mode having proper
phase matching can get energy from the primary wave mode as it propagates with
the primary mode. All other modes decay due to destructive interference with one
another. For this reason, the cumulative effect of this double frequency component
dominates the second harmonic field, up to a point, then it starts to decay due to the
material attenuation. The contributions of other wave modes to the second harmonic
field are negligible if they have different phase velocity than that of the fundamental
mode. This is because they become out-of-phase with the fundamental mode after
some propagation distance. Thus the energy transfer from the fundamental to an
out-of-phase higher harmonic mode does not occur. For this reason the primary and
the second harmonic Lamb wave modes whose phase and group velocities match
are considered as the perfect mode pair. Some primary Lamb wave modes which
satisfy the phase matching condition are shown in Fig. 1.11.

It has been shown in Eq. (1.73) that the amplitude of the higher harmonic wave
grows with the propagation distance when the conditions of k∗n = 2k (synchronism)
and f surf

n + f vol
n �= 0 (nonzero power flux) are satisfied [17–19]. Thus, although

several second harmonic Lamb wave modes at double frequency can be generated
by the primary or fundamental Lamb wave mode in a nonlinear material, only the
second harmonic component that has cumulative effect is of our interest. The second
harmonic that has cumulative effect eventually dominates the generated group of
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Fig. 1.11 Some phase matching guided wave modes that can serve as fundamental and higher
harmonic modes in a plate are shown by different marker pairs on the dispersion curve plots

second harmonic waves after a certain propagation distance. From the dispersion
curve plots, the phase matched guided wave modes can be found. The fundamental
Lamb modes and double frequency second harmonic Lamb modes should have the
same phase velocity for efficient generation of higher harmonic modes. All modes
marked in Fig. 1.11 satisfy the phase matching conditions and have potential to
generate cumulative second harmonic waves.

1.3.4 NDE Applications of Nonlinear Lamb Waves

1.3.4.1 Example 1: Detection of Thermal Fatigue in Composites
by Second Harmonic Lamb Waves

All experiments were conducted on unidirectional carbon/epoxy composite lami-
nates. The 400 × 400 mm square specimens with 1.0 mm thickness were made of
6 plies [0]6 [8, 9]. All specimens had the same dimensions and provided by the
same supplier. Material properties of the specimens are listed in Table 1.2. Thermal
fatigue was imposed on the specimens to cause thermal degradation. The upper and
lower limits of the temperature for the thermal fatigue cycle were 70 and −55 ◦C,
respectively. Heating and cooling times of a thermal cycle were kept constant at
15 min, as shown in Fig. 1.12. The nonlinearity parameter in the specimens was
measured before applying any thermal fatigue, and after applying 100, 200, and
1000 thermal fatigue cycles.

The S1 mode at frequency 2.25 MHz with phase velocity 9.6 km/s was chosen
as the fundamental mode, because this mode satisfied the phase matching condition
with S2 mode at 4.5 MHz (see Fig. 1.13). Under this condition, a double frequency
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Table 1.2 Density and elastic stiffness coefficients of carbon/epoxy composites

ρ

(kgm−3)
C11
(GPa)

C12
(GPa)

C13
(GPa)

C22
(GPa)

C23
(GPa)

C33
(GPa)

C44
(GPa)

C55
(GPa)

C66
(GPa)

1.5 146 5.81 5.81 11.07 6 11.07 2.55 3.82 4

110100

1 cycle
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(15 min dwell)
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Fig. 1.12 Thermal fatigue cycle (from [8, 9])

Lamb mode (S2 mode) is likely to be generated due to the cumulative effect. Figure
1.13a, b shows that the “phase velocity matching” and “group velocity matching”
conditions are satisfied between the fundamental S1 mode and double frequency
second harmonic Lamb wave mode S2.

Experimentally, when the S1 mode is generated, it is inevitable that A1 mode is
also generated since they are very close to each other in the phase velocity dispersion
curve plot. Because of the difference in group velocities of S1 and A1 modes, wave-
packets formed by S1 and A1 modes separate after a certain propagation distance.
However, as shown in Fig. 1.13b, the group velocity of the S1 mode is different
from that of the A1 mode, it is faster than A1 mode. Therefore, after the multi-
mode signal propagates a certain distance, the wave-packages containing the S1
mode and A1 mode separate because of their different group velocities. Figure
1.14 shows how these two modes separate as the propagation distance increases.
If the propagation distance is short, as shown in Fig. 1.14a, then multi-modes do
not properly separate. As the propagation distance increases to 12 and 16 cm (see
Fig. 1.14b, c), the mode separation becomes visible, since the gap in the time of
flight due to the group velocity difference becomes noticeable. Since S2 mode has
the same group velocity as the S1 mode the generated higher harmonic (S2) stay
together with the fundamental mode (S1) but separate away from the A1 mode as
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Fig. 1.13 Dispersion curves for Lamb wave propagation in the fiber direction of a composite plate
specimen—(a) Phase velocity and (b) group velocity curves (from [8, 9])
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Fig. 1.14 The multi-mode separation process—time-domain signals at (a) 4 cm, (b) 12 cm, and
(c) 16 cm propagation distances (from [8, 9])
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shown in Fig. 1.14. Thus, it is possible to filter away A1 mode from S1 and S2
modes as shown in Fig. 1.14.

The S1–S2 mode pair was well separated from the A1 mode after 15 cm
propagation distance. Then, a time gate was used to record only the S1 mode wave-
packet avoiding A1 and other wave modes to accurately analyze the frequency
spectrum of the second harmonic Lamb wave due to S1 mode only. Then, the
frequency spectrum analysis to separate the second harmonic signal was conducted
by placing the time gate over the S1–S2 wave-packet, at a propagation distance of
15 cm to avoid the influence of A1 and other modes. The measured time-domain
signal was then processed by fast Fourier transform (FFT) to get the frequency
spectrogram. From this spectral plot, the amplitude (A1) of the fundamental S1
Lamb mode and the amplitude (A2) of the double frequency second harmonic S2
mode were measured.

As shown in the above section, the acoustic nonlinear parameter β is a function of
the ratio of the second harmonic amplitude and the square of the fundamental wave
amplitude

(
A2/A

2
1

)
, and the wave propagation distance x. For a given wave number

k and nonlinearity feature function f, the normalized second harmonic amplitude can
be expressed as:

β = A2

A2
1

∝ βx (1.74)

As mentioned before, the normalized second harmonic amplitude grows with
the propagation distance because of the cumulative effect up to certain distance,
then it stops growing when the material attenuation becomes the dominating
factor. To ensure that the measured nonlinearity is arising from the damages in
specimens and not due to the measurement system’s nonlinearity the demonstration
of this cumulative effect is essential. The normalized second harmonic amplitudes(
A2/A

2
1

)
have been measured at several distances as illustrated in Fig. 1.15.

The composite laminates are damaged due to the coefficient of thermal expansion
(CTE) mismatch between the fibers and the matrix when the specimens are
subjected to thermal fatigue. The appearance of transverse matrix micro-cracks
and micro-debondings in composites are mainly caused by the thermal cycle
induced thermal stresses. If the cyclic temperature variations occur in an oxidative
environment, matrix oxidation appears in composites. It results in reduction in
volume due to the resin induced shrinkage of the matrix relative to fibers. Scanning
electron microscope (SEM) images of tested specimens shown in Fig. 1.16 confirms
the existence of micro-damages in composites after thermal fatigue. The appearance
of micro-damage, delamination, and fiber/matrix debonding caused by thermal
fatigue can be seen in the right image of Fig. 1.16. These distributed micro-defects in
composites are the main reason for the nonlinear behavior of the damaged composite
laminates.

As shown in Eq. (1.74), the wave propagation distance affects the normalized
second harmonic amplitude. It increases with the propagation distance. Therefore,
at two different propagation distances, x1 and x2 two different values of the
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Fig. 1.15 Variation of the
normalized second harmonic
amplitude as a function of
propagation distance of the
Lamb wave (from [8, 9])
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Fig. 1.16 SEM micrographs of specimens (a) without thermal loading, (b) after 1050 cycles of
thermal fatigue loading (from [8, 9])

normalized second harmonic amplitude are obtained due to this cumulative effect—
β1 = (

A2/A
2
1

)
1 ∝ βx1 and β2 = (

A2/A
2
1

)
2 ∝ βx2. Then, the relative acoustic

nonlinearity is defined from the slope of the line obtained from the two points of
data acquisition. It is defined in this manner to extract a term which is dependent
only on the material damage and not on the propagation distance as shown in Eq.
(1.75),

β̃ =
(
β2 − β1

)

(x2 − x1)
, (1.75)
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Fig. 1.17 Relative acoustic nonlinearity (β̃, see Eq. (1.75)) as a function of thermal cycles (from
[8, 9])

The relative acoustic nonlinearity parameter defined in Eq. (1.75) should be
nonzero only when the cumulative effect is present. In this way, the nonlinearity
arising from other sources like couplant or instruments can be eliminated from
the measurement since those nonlinearities do not have cumulative effect. The
variation of relative acoustic nonlinearity in the specimens for different thermal
fatigue cycles is shown in Fig. 1.17. One can see that the acoustic nonlinearity
changes significantly as the number of thermal cycles increases.

The sensitivities of the linear acoustic parameters—the wave velocity and the
attenuation coefficient—to the thermal cycles are also investigated for comparison.
Figure 1.18 shows the variations of linear and nonlinear acoustic parameters in
four specimens subjected to different levels of thermal cyclic loadings. One can
see in this figure that there is a slight decrease of wave speed in the specimen with
the increasing number of thermal cycles, while the attenuation coefficient and the
nonlinearity parameter increase with thermal cycles. It clearly shows that the change
of the linear parameters is not as noticeable as that for the nonlinear parameter. For
example, after 100 cycles of thermal fatigue the micro-damage accumulated in the
specimen almost does not change the linear parameters (velocity and attenuation)
but shows a significant change in the nonlinear parameter (over 50%). To show
only the relative changes of acoustic parameters in specimens with and without
thermal loadings, all recorded values have been normalized with respect to the
values of the undamaged pristine (or raw) specimen. This experimental investigation
demonstrates that nonlinear Lamb waves can effectively detect micro-damages at
their early stages.
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Fig. 1.18 Relative changes of linear parameters (group velocity and attenuation coefficient) and
nonlinear acoustic parameters for a composite specimen subjected to different thermal fatigue
loading cycles. All values are normalized with respect to the corresponding values of the
undamaged specimen before it was subjected to the thermal fatigue loading. These values are
(Cg. Raw = 9.36768km/s), (αRaw = 0.079651dB · cm−1), (βRaw = 0.39157) (from [8, 9])

1.3.4.2 Example 2: Assessment of Thermal Fatigue in Pipes by Nonlinear
Guided Waves

To analyze nonlinear cylindrical guided wave propagation in a pipe having a
constant cross-section, the total acoustic field can be decomposed into two parts,
the primary waves (containing fundamental frequency components) and the second
harmonic waves (containing double frequency components). Both waves satisfy the
boundary conditions and the second harmonic waves show cumulative effect [20].
The nonlinear wave equation is solved by the perturbation method. The approximate
solution of the wave equation can be expressed as the sum of the primary wave u1
and its second harmonic u2:

u = u1 + u2 (1.76)

It is assumed that u2 is much smaller than u1, where the primary wave u1 with
frequency-wave number (ω, k) can be written as:

u1 = u(r)ei(kz−ωt) (1.77)
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Constructing the second-order solution using modal expansion, the total second
harmonic field can be written as

u2 = 1

2

∞∑

m=1

Am(z)u(2,m)(r)e
−i2ωt (1.78)

v2 = 1

2

∞∑

m=1

Am(z)v(2,m)(r)e
−i2ωt (1.79)

s2 = 1

2

∞∑

m=1

Am(z)s(2,m)(r)e
−i2ωt (1.80)

where u(2, m) is the displacement field function for the mth double frequency
component; the particle velocity (v = ∂u/∂t) is denoted as v(2, m) and the stress
tensor as s(2, m). The second-order modal amplitude Am(z) is the corresponding
expansion coefficient and is to be determined, multiplier 1/2 is necessary to ensure
real quantities. Am(z) is the solution of the following ordinary differential equation
[17–19, 21, 22]:

4pmn

(
d

dz
-ik∗n

)
Am(z) =

(
f surf
n + f vol

n

)
ei2kz (1.81)

where

pmn = −1

4

∫

�

(
v∗
n · sm + vm · s∗n

) · nzd� (1.82)

f surf
n (z) =

∫

�

v∗
n · s2ω · nzd� (1.83)

f vol
n (z) =

∫

�

v∗
n · f 2ωd� (1.84)

where � denotes the waveguide’s cross-sectional area and � is the curve that
encloses �. Terms f surf

n and f vol
n define the complex external power corresponding

to the surface traction s2ω and the body force f2ω, respectively. Equation (1.81) is
solved for the condition u2 = 0 at z = 0 to obtain,

Am = Am(z)ei2kz − Am(0)eik∗nz (1.85)
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Fig. 1.19 Cylindrical shell

where

Am(z) = i
(
f surf
n + f vol

n

)

4pmn
(
k∗n − 2k

) , k∗n �= 2k (1.86)

Am(z) =
(
f surf
n + f vol

n

)

4pmn
z, k∗n = 2k (1.87)

It is found that the second harmonic amplitude is proportional to the propagation
distance when k∗n = 2k (synchronism) and f surf

n +f vol
n �= 0 (nonzero power flux). If

the wave mode chosen satisfies these two conditions, then the generated second
harmonic shows cumulative effect. As mentioned before the second harmonic
generation with cumulative effect is essential for reliable experimental investigation.

Therefore, for a pipe with constant cross-sectional area as shown in Fig. 1.19,
from the above analysis the expressions of pmn, f surf

n , and f vol
n are given as,

pmn = − 1

16

∫ 2π

0

∫ b

a

[
v∗
m (r, θ) · sn (r, θ)+ vn (r, θ) · s∗m (r, θ)

] · nzrdrdθ (1.88)

f surf
n = 1

2
b

∫ 2π

0
v∗
n (b, θ) · s2ω (b, θ) · nzdθ − 1

2
a

∫ 2π

0
v∗
n (a, θ) · s2ω (a, θ) · nzdθ

(1.89)

f vol
n = 1

2

∫ b

a

∫ 2π

0
v∗
n (r, θ) · f 2ω (r, θ) · rdrdθ (1.90)

The assumed primary wave field of particle displacement components has the
form:

ur1 = ur(r) cos (nθ) ei(kz−ωt) (1.91)

uθ1 = uθ (r) sin (nθ) ei(kz−ωt) (1.92)
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uz1 = uz(r) cos (nθ) ei(kz−ωt) (1.93)

where the circumferential order is n = 0, 1, 2, . . . . . . . For axi-symmetric modes
n = 0. It is found that f surf

n + f vol
n �= 0 (nonzero power flux) condition will always

be satisfied if we substitute the axi-symmetric condition (n = 0) into the above
equations.

As mentioned before, to generate cumulative second harmonic waves in a tube-
like structure, certain conditions need to be satisfied: (1) nonzero power flux from
the primary wave to the secondary wave field

(
f surf
n + f vol

n �= 0
)
. The analysis has

shown that all axi-symmetric modes, both longitudinal and torsional modes in pipes,
satisfy this condition; (2) synchronism

(
k∗n = 2k

)
condition implies that the phase

velocity of the secondary wave at double frequency is equal to that of the primary
wave at fundamental frequency. This synchronism condition can physically explain
the phenomenon that the second harmonic wave grows linearly with propagation
distance because the energy is transferred continuously from the primary wave to the
second harmonic wave as they propagate together satisfying the “phase matching”
condition.

Acoustic field for the second harmonic guided wave propagation can be decom-
posed into several guided wave components at double frequency but having different
phase velocities. However, the contribution of every double frequency guided
wave component to the generated second harmonic field is not the same. Which
component contributes how much depends on how close the phase and group
velocities of the fundamental wave mode are with those of the double frequency
wave modes. In this investigation, the second harmonic wave mode whose phase
velocity is equal to that of the fundamental wave mode is of our interest, since only
this mode satisfying the phase matching condition can grow with the propagation
distance due to energy transfer from the fundamental mode while all other modes
that do not satisfy phase matching condition decay due to material attenuation and
destructive interference with other modes. The primary guided wave mode and
phase matched secondary wave mode are a perfect mode pair for nonlinear guided
wave-based inspection.

As shown in Fig. 1.20, L(0, 6) and L(0, 10) are a mode pair that satisfies phase
matching condition since both phase velocity and group velocity of this mode pair
are equal to each other. Therefore, for this mode pair the second harmonic waves
at double frequency exhibit cumulative effect with the propagation distance for the
longitudinal axi-symmetric mode L(0, 6) at fD = 5.05 MHz-mm.

It is important to note that when one generates the L(0, 6) mode at
fD = 5.05 MHz-mm, it is inevitable to generate L(0, 5) mode also, however, since
the group velocities of these two modes are different they move away from each
other after some propagation distance. The second harmonic guided wave mode
L(0, 10) generated by the fundamental mode L(0, 6) has phase and group velocities
same as those for the fundamental mode, so they can propagate together.

As mentioned before the measurement of the second harmonic amplitude is
necessary for characterization of material nonlinearity. The nonlinear parameter is
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Fig. 1.20 Dispersion curves of an aluminum pipe: (a) phase velocity versus frequency; (b) group
velocity versus frequency (from [8, 9])

related to the amplitudes of second harmonic and fundamental waves. The acoustic
nonlinear parameter for the guided wave propagation is defined as,

β = 8

k2x

A2

A2
1

F (1.94)

where F is the feature function and x is the wave propagation distance. The nonlinear
parameter of guided waves is a function of the frequency, mode type, material
properties, and thickness of the waveguide. In this example, since the wave mode,
frequency, and thickness of the waveguide do not change F is a constant. In the
experimental investigation, the relative parameter β is used to represent the relative
acoustic nonlinearity which is defined as β = A2/A

2
1, from Eq. (1.94),

β ∝ β/x (1.95)

It is found that for the cylindrical guided wave also the ratio of the amplitude of
the second harmonic and the fundamental wave grows with the propagation distance
because of the cumulative effect. The amplitude grows up to a certain distance after
which the material attenuation effect dominates and it starts to go down. Amplitudes
of the higher harmonic waves induced by the material nonlinearity are functions of
wave propagation distance as indicated in Eq. (1.95), but the harmonics induced
by the instrumental nonlinearity are not. So, if we keep the experimental setup and
conditions same, as the guided wave propagation distance increases, the strength
of the second harmonic wave generated by the nonlinearity in the experimental
setup or ambient noise will not change, but that generated by the nonlinearity of the
specimen will increase due to the cumulative effect. To ensure that what is measured
from the specimens are truly due to the damage induced nonlinearity rather than the
nonlinearity in the measurement system, demonstration of this cumulative effect is
necessary.
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Aluminum pipes having outer diameter 20 mm, length 400 mm, and wall
thickness 3 mm were inspected. In order to induce thermal fatigue in the specimen,
the temperature and time of thermal fatigue were strictly controlled, especially in
its early stage. The specimen was subjected to 5 and 10 cycles of thermal fatigue
loading. In one thermal-loading cycle, the pipe specimen was heated at 204 ◦C for
30 min, and then for another 30 min it was kept at room temperature 20 ◦C.

In this study, the flexible PVDF sensor was used to generate and detect the
guided wave modes in a pipe. The mode L(0, 6) at fD = 5.05 MHz-mm was excited
by adjusting the wavelength of the flexible PVDF sensor generated wave. The
wavelength of L(0, 6) mode is given by:

λ = cph

f
(1.96)

where λ is the wavelength; cph = 8.2km/s is the phase velocity shown in the
dispersion curve plot (Fig. 1.20a); f is frequency.

Equation (1.96) can be also written as:

λ

D
= cph

fD
(1.97)

where D is the wall thickness of the pipe. For a given pipe, a specific wave mode
can be excited and detected by using a special transducer called comb transducer
which is designed for a fixed wavelength controlled by the electrode finger spacing
[23]. The spacing between successive fingers and the width of one finger determines
the wavelength of the generated signal as shown in Fig. 1.21. In this study, the
wavelength of L(0, 6) was about 5 mm for fD = 5.05 MHz-mm and phase velocity
8.2 km/s.

λ = cph

f
= 8.2

1.68
mm ≈ 5mm (1.98)

Figure 1.21 shows the experimental setup and the comb transducer. A high
voltage sinusoidal tone burst signal of 15 cycles at a frequency of 1.68 MHz was
generated. An internal trigger generator, an internal waveform generator, and a high
power gated RF amplifier were used to generate the signal. The attenuator and
receiver unit were equipped with an amplifier connected to the transducers. Spacing
of electrode fingers in flexible PVDF comb transducers controls the generated wave
length. Axi-symmetric modes were generated in the pipe by wrapping the designed
transducers around the pipe specimen. Specific holders were designed and placed
on the transmitter and receiver to ensure uniform coupling condition. To increase
the signal-to-noise ratio (SNR), time-domain signals were recorded and averaged
1000 times. On the steady state part of the signal a 256 point Hanning window was
applied. To obtain the amplitudes A1 of the fundamental wave and A2 of the higher
harmonic, the fast Fourier transform (FFT) of the measured time-domain signals
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Fig. 1.21 Block diagram of nonlinear ultrasonic measurement system on the left and typical
PVDF transducer for pipe inspection on the right (from [20])

was obtained. To detect the corresponding double frequency components, the width
of the electrode fingers of the receiver (PVDF) was set equal to the half of that of
the generator.

Generating the suitable wave mode is critical for finding the cumulative second
harmonic wave. For guided wave test, one needs to verify that the mode chosen
is indeed the mode generated experimentally. To this aim the group velocity of
the generated wave mode and its frequency are measured and compared with
the theoretical values shown in the dispersion curves. The group velocity can be
calculated by measuring the time difference of wave signals propagating certain
distance. As shown in Fig. 1.20, the group velocity of the propagating wave signal
was 3.53 km/s, and the fundamental frequency was 1.68 MHz for waveguide
thickness of 3 mm. By comparing this experimental signal with the theoretical value
shown in Fig. 1.20b, it was concluded that this value was close to the theoretical
value; therefore, the propagation signal was indeed the expected wave mode.

The L(0, 6) mode at fD = 5.05 MHz mm was selected as the primary mode.
Experimentally, when the L(0, 6) mode was generated, L(0, 5) mode was also
generated since they are very close in the phase velocity dispersion curve plot (Fig.
1.20a). However, as shown in Fig. 1.20b, the group velocities of L(0, 6) and L(0, 5)
modes are different. However, L(0, 6) mode has the same group velocity as that of
the double frequency L(0, 10) mode.

If the propagation distance is short, multiple modes having different group
velocities do not separate properly. However, as the propagation distance increases,
the modes with different group velocities separate more and become distinct. As
a result, it is possible to selectively choose only the wave-packet of L(0, 6) and



1 Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count 37

210
20

P
ro

pa
ga

tio
n 

di
st

an
ce

 (
m

m
)

30 40

cg =

50

Δt = 11.3µs

60 70

3.53 k m / s

80 90 100

Time (ms)

200

190

180

170

160

150

Δs
Δt

= ≈40 mm
11.3ms

0 2

0.06

0.05

0.04

0.03

0.02

0.01

0.00

-0.01
4 6

Second harmonic
frequency (3.36MHz)

Fundamental
frequency (1.68MHz)

Frequency (MHz)

A
m

pl
itu

de

8 10 12

Fig. 1.22 Verification of L(0, 6) mode by (a) group velocity, (b) frequency [20]

130
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

mean value

140 150

Propagation distance (mm)

R
el

at
iv

e 
no

nl
in

ea
r 

pa
ra

m
et

er
s 

(A
2/

A
12 )

160 170

Fig. 1.23 Relative nonlinear parameter β versus propagation distance (from [20])

L(0, 10) after certain propagation distance. The L(0, 6) − L(0, 10) wave-packet
is well separated from the L(0, 5) mode after 130 mm propagation. The second
harmonic mode was separated by applying FFT to the part of the signal within the
time gate placed over the L(0, 6) − L(0, 10) wave-packet, at a propagation distance
of 150 mm to minimize the influence of L(0, 5) and other modes. Figure 1.22
shows a typical waveform of a received signal and its spectrum. In the spectral plot
the fundamental wave amplitude A1 and the higher harmonic mode amplitude A2
were obtained at the fundamental frequency (1.68 MHz) and the second harmonic
frequency (3.36 MHz), respectively.

The plot in Fig. 1.23 shows the average data with error bars from three
measurements. The increase of the nonlinear parameter values with propagation
distance confirms cumulative effect in the second harmonic generation.
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Fig. 1.24 Variations of relative nonlinear parameter with propagation distance for three specimens
subjected to three different numbers of thermal fatigue cycles [20]

Second harmonic fields in a waveguide can be decomposed into a series of double
frequency guided wave modes. However, during the above discussed experimental
investigation, only a synchronous longitudinal mode pair was selected, whose
wave velocities were the same. For this reason, the cumulative effect of this
double frequency component dominated the second harmonic field, after the wave-
packet propagated certain distance. The cumulative effect of the second harmonic
amplitude helped to increase the signal-to-noise ratio, and it was concluded that
under certain conditions, acoustic nonlinearity of the ultrasonic guided wave could
be used for tracking micro-damages in pipe.

Figure 1.24 shows how the measured acoustic nonlinearity parameter of the
specimen varies for different heat-loading cycles. The slope of the plotted curves
increases with increasing number of heating–cooling cycles. These results demon-
strated that nonlinear ultrasonic guided wave technique is a promising tool for
detecting the thermal fatigue damage in their early stages in pipe and tube-like
structures. Note that this technique of comparing slopes of the plotted curves can be
used as a qualitative monitoring tool. In this investigation the correlation between
the ultrasonic nonlinearity parameter and the damage level is made in a relative
manner.
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1.4 Higher Harmonic Generation by Different Types
of Material Nonlinearity

Materials presented in Sects. 1.2 and 1.3 can be summarized in the following
manner. Frequency (ω) of a propagating monochromatic acoustic wave remains
unchanged during its propagation in a linear material. Its amplitude (A1) can
be reduced, owing to dissipation and diffraction in the linear material. However,
in a nonlinear material the propagating wave is distorted resulting in higher
harmonic generation. The amplitudes of generated higher harmonics give insight
in the nonlinear mechanism. Figure 1.25 shows input and output waveforms for
three representative cases: linear elastic, classical nonlinear elastic, and nonlinear
hysteretic (non-classical) cases. The classical nonlinear elastic case for nonlinear
quadratic stress–strain relation has been discussed in detail in Sects. 1.2 and 1.3.
The process of higher harmonic generation for non-classical nonlinear response is
more complex and is to be modeled by considering a nonlinear hysteretic stress–
strain relationship in the wave equation. In this more general nonlinear model
linear and classical nonlinear elastic cases can be considered as a special case [24].
The displacement amplitudes of the higher harmonics are directly related to the
nonlinear mechanisms contributing to the wave distortion.

The nonlinear classical stress–strain relation can be expressed as a polynomial
expansion of any order of our choice as [25],

σ = K0 ·
(
ε + βε2 + δε3 + . . .

)
(1.99)

where K0 is the linear elastic modulus, β and δ are higher-order elastic coefficients.
One-dimensional wave propagation along coordinate x (ρ · ∂2u/∂t2 = ∂σ /∂x,

where ρ is the material density) through a rod whose stress–strain relationship
obeys Eq. (1.99) leads to a nonlinear equation of motion. As mentioned before the
solution of the displacement u is normally obtained through the perturbation theory,
where the zero-order solution assumes a single frequency wave, u0 = A1cos(kx-
ωt). The first- and second-order perturbation solutions predict an increase of the
spectral frequency content at twice (2ω) and thrice (3ω) the frequency of the initial
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Fig. 1.25 Relationship between input and output signals for wave propagation through (a) a linear
medium, (b) a nonlinear classical medium, and (c) a nonlinear hysteretic medium
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monochromatic wave. The displacement amplitudes A2 and A3 corresponding to
the second and third harmonics, respectively, are thus related to the higher-order
parameters (β and δ). The higher-order elastic constants can be obtained as (see Eq.
1.28 for β),

β = − 8 · A2 · c2
0

A2
1 · ω2 · x (1.100)

and

δ = −48 · A3 · c3
0

A3
1 · ω3 · x (1.101)

where x is the propagation distance, and c0 is the phase velocity. An example of
attenuation corrections for second and third harmonics can be found in [26]. In any
event, the second and third harmonic amplitudes are proportional to A1

2 and A1
3,

respectively. The relation between third harmonic amplitude and β is approximately
obtained as [27]

A3 ≈ β2 · A3
1 · ω4 · x2

32 · c4
0

. (1.102)

The deviation from such relation in the harmonic response of a material may
indicate that higher-order elastic terms must be considered, or that hysteresis is
contributing to the material nonlinearity [27]. A hysteretic equation of state can
be considered as

σ = K0 · ε + U (ε, ε̇) (1.103)

whereU (ε, ε̇) is a function that adds a hysteretic departure from the linear behavior.
The hysteretic behavior was considered to be elastic [28] and anelastic [24] in the
wave equation. For both these cases, the second harmonic is not generated and A3
is proportional to A1

3. These conclusions also apply for higher harmonic generation
in nonlinear acoustic resonance experiments—see Sect. 1.6 Nonlinear resonance
techniques.

In other instances, the material nonlinearity stems from moving surfaces and
interfaces within the material, such as a clapping crack being the most representative
case. This is known as the contact acoustics nonlinearity (CAN). The generation
of harmonics arises from the relative opening and closing of an interface (kissing
bonds, delamination, cracks and/or crack tips, etc.). Even a perfect isotropic material
can generate higher harmonics because of a structural inhomogeneity [29]. The
material nonlinearity can be modeled from the nonlinear characteristics of the inter-
face contact [30]. This is generally achieved considering a nonlinear spring model
to describe the nonlinear stiffness of the contacting interface. Figure 1.26 illustrates
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Fig. 1.26 Various nonlinear spring models

different nonlinear spring models used to describe the contact acoustic nonlinearity
[31]. The propagation of a monochromatic wave through the contacting interface
gives rise to considerable wave distortion which manifests as an enrichment of the
frequency spectra with higher harmonics. These type of models have been applied
and validated for specific cases involving contact acoustics nonlinearity in steel and
polymeric materials [32–34].

In addition to the few examples discussed in Sects. 1.2 and 1.3 the higher
harmonic methods have been used to characterize the material nonlinearity of
various other metals [26, 35], rocks [36], and concrete [37, 38]. Second and third
harmonics have been found to be sensitive to fatigue induced damage in differ-
ent materials [5, 39–41]. Most common test configurations for higher harmonic
detection use longitudinal waves in transmission mode; however, higher harmonics
have been used in reflection mode as well [42]. As stated earlier besides bulk
waves Rayleigh [13, 43] and Lamb waves [44] have also been used successfully
for nonlinear ultrasonic NDE using higher harmonics. An extensive review of test
configurations has been given by Zheng et al. [29]. Figure 1.27a illustrates the
test configuration in transmission mode. It shows a single frequency burst with a
preset number of cycles entering the nonlinear system. The distorted output signal
contains the fundamental frequency and higher harmonics. Figure 1.27b shows
typical transmitted and received signals. Spectral plots of the received signal shows
peaks at the fundamental frequency and at double and triple frequencies.

The signal processing is normally conducted in the frequency domain through the
fast Fourier transform, or bispectral analysis [7, 45]. These analyses allow a quantifi-
cation of the amplitudes of the higher harmonics while other nonlinear mechanisms
such as nonlinear attenuation or amplitude dependent effects are overlooked. In



42 T. Kundu et al.

INPUT OUTPUT

ω1 Emi�er Receiver
ω1, 2ω1 , 3ω1 ,…

Nonlinear 
system

Frequency

F, A1

2F, A2

3F, A3
Received wave

Transmi�ed wave

Time

Am
pl

itu
de

a

b

Fig. 1.27 (a) Schematic test configuration for higher harmonic generation—the transmission of
a pure tone burst signal through a nonlinear system results in higher harmonic generation; (b)
Representative transmitted and received signals and analysis of the received signal in frequency
domain. Adapted from [7]

addition, the results may be affected by the signal processing parameters, such
as windowing, zero-padding, and band-pass filtering. Bruno and coworkers [46]
pointed out these disadvantages, and proposed a time-domain feature extraction
method called scaling subtraction method (SSM). It requires subtracting a linear
reference synthetic signal from the received signal. The resulted residuals contain
the nonlinear contributions of the signal, which in turn can reveal the dominant
mechanisms in the material nonlinearity—phase shift, nonlinear attenuation, and
higher harmonic generation [46]. The SSM has been satisfactorily applied in the
assessment of different damage mechanisms in concrete [47, 48], bricks [49], and
steel [50].

1.5 Acoustoelastic Technique

The nonlinear mechanical behavior of materials has been traditionally tested by
applying a stress or confining pressure onto the material under inspection and
measuring changes in the wave speed due to applied stress [51]. This effect is known
as acoustoelastic effect. The wave speed in a material stressed beyond the linear
elastic regime can be expressed as a polynomial expansion of the applied strain—or
alternately stress—as [52]



1 Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count 43

c (ε) = c0 + c1 · ε + c2 · ε2 + . . . (1.104)

where c0 is the velocity in the unstressed material, and cn is the n-th order
acoustoelastic coefficient. The relative velocity variations may thus be related to
either higher-order Murnaghan’s [53] or Landau’s [25] elastic coefficients. This
method has been applied to characterize the nonlinear mechanical properties of
steel [54], rock [55, 56], wood [57], and concrete [58]. The ultrasonic attenuation
is also affected by the applied stress, as the crack type defects are closed and
opened under compression and tension loadings, respectively [59]. Analogous to the
strain dependent wave speed (Eq. 1.104), the acoustoelastic effect on the attenuation
properties can be also expressed as [6]

ξ (ε) = ξ0 + ξ1 · ε + ξ2 · ε2 + . . . (1.105)

where ξ0 is the attenuation in the unstressed material, and ξn is the nth order
acoustoelastic attenuation coefficient. A modified version of the acoustoelastic
technique investigates the acoustoelastic effects under low-cycle dynamic loading
conditions—frequency up to 10 Hz, and strain amplitude 10−4 to 10−3 [6, 60].
The dynamic loading conditions allow reducing creep effects in the material, and
improve the accuracy of the measured acoustoelastic coefficients when compared
with static measurements [60]. Such a test configuration was used to assess the
fatigue strength of polymeric materials and aluminum alloys [6]. The experimental
results demonstrated that second-order acoustoelastic coefficients (c2 and ξ2)
show enhanced sensitivity to fatigue damage when compared with the zero-order
coefficients (c0 and ξ0)—those corresponding to the unstressed material.

Besides fatigue strength, and higher-order constant characterization, the acous-
toelastic tests have been adapted to monitor damage and stress condition of
infrastructure materials, using test configurations that allow one-sided measure-
ments. This condition is sought by many researchers, since often the inspection of
in-service structural components does not give access to two facing sides. Shokouhi
et al. [61] used Rayleigh waves to monitor the stress-dependent velocity in concrete
samples subjected to uniaxial compressive stress. Fröjd and Ulriksen [62] used a
continuous sine wave excitation on the bottom side of a reinforced concrete slab
subjected to static three-point bending loading condition. The variations in phase
and amplitude of the received continuous wave signal exhibited similar variations as
pulse transmission measurements subjected to increasing load. The authors pointed
out that continuous wave excitation shows promise for structural health monitoring
applications. This is because the continuous excitation can propagate with higher
energy than ultrasonic pulses, and hence allowing inspection of large structures.
The acoustoelastic experimental configurations are summarized in Fig. 1.28.

Testing the acoustoelastic effects in heterogeneous materials such as concrete
is indeed more challenging because of scattering and dissipation [58]. Recently,
different studies leveraged the enhanced sensitivity of multiple scattered waves
in heterogeneous media to investigate the relative variations of wave velocity
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Fig. 1.29 Typical recorded signals in coda wave interferometry experiments. Insets show the time
shift produced in the coda wave after loading the concrete samples

when subjected to compressive loading. This technique is referred as coda wave
interferometry [63]. The test employs high-frequency ultrasonic pulses where
multiple scattering effects are expected. At such frequencies, the received wave
exhibits long-lasting waves (coda wave) that have been scattered multiple times by
different heterogeneities within the material. Figure 1.29 shows a typical recorded
signal. Different signals are recorded at different load steps. The variations of wave
velocity are obtained by cross-correlating the coda wave in the received signal with
the unstressed coda wave. Larose and Hall [64] used high-frequency ultrasonic
pulses at 500 kHz in concrete, where multiple scattering effects are expected. The
acoustoelastic effect was investigated under compressive load, from the time shift
produced in the coda wave with respect to the reference signal. The authors argued
that the test configuration might be used for in situ determination of the first-
order acoustoelastic coefficient in concrete structures. Using similar experimental
configuration and signal analysis, Payan et al. [58] derived the Murnaghan’s
constants in concrete. This procedure has also been used for assessing distributed
anomalies, as produced by a thermal shock in concrete [65].
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1.6 Nonlinear Resonance Techniques

Nonlinear resonance techniques monitor the resonance frequency shift and atten-
uation variations with increasing amplitude of excitation. For different excitation
levels the resonance frequency and attenuation are determined. The material
nonlinearity is manifested as a downward resonance peak shift, and decrease of
quality factor (Q)—inverse of attenuation—with increasing excitation amplitude.
Figure 1.30 shows the schematic diagram of a nonlinear resonance experiment. The
test configuration consists of a sweeping frequency excitation over a range to match
the resonance frequency of interest. Alternately, the resonance frequencies can be
determined by hitting the specimen by an impactor. Multiple resonance spectra

Fig. 1.30 (a) Schematic test configuration for nonlinear resonance acoustic spectroscopy, (b)
typical resonance frequency shift observed in nonlinear resonance experiments, and evaluation
of the hysteretic parameters—amplitude dependent resonance frequency and attenuation; (c)
resonance frequency shift regimes (adapted from [84]), and (d) resonance frequency relaxation
with time produced after an excitation in the non-equilibrium regime
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are recorded by continuously increasing the excitation amplitude in consecutive
experiments. This technique is referred as Nonlinear Impact Resonance Acoustic
Spectroscopy or NIRAS [66, 67]. Figure 1.30b shows representative frequency
spectra obtained in a nonlinear resonance experiment and the evaluation of the
amplitude dependent frequency and quality factor (Q). The magnitudes of both
shifts are related to the degree of damage.

The consideration of higher-order terms in the stress–strain relation leads to the
generation of higher harmonics. From the acceleration amplitude corresponding to
the fundamental resonance peak (A1) and the higher harmonic amplitudes (A2 and
A3) at twice and thrice the fundamental resonance frequency, the quadratic and cubic
elastic constants can be obtained as [55, 56]

β = −A2 · ω2
0 · L

A2
1

. (1.106)

and

δ = −A3 · ω4
0 · L2

A3
1

(1.107)

where L and ω0 are specimen dimension and fundamental frequency, respectively.
Usually, the average strain over one strain cycle is zero; thus, the quadratic term β
is eliminated [55, 56]. Therefore, from the downward resonance frequency shift, the
third-order elastic nonlinear term can be obtained as

f − fo
fo

≈ δ

2
· ε2 (1.108)

where ε is strain, fo is the resonance frequency in the linear strain range. In practice,
fo is the resonance frequency for the lowest excitation level. Determination of
the third-order elastic nonlinearity has been the objective of many researchers, as
it provides insight into the ultimate stress in brittle materials such as concrete,
and the yield stress for ductile materials [68]. However, experimental evidences
in polycrystalline solids and rocks revealed a linear dependence of the resonance
frequency and attenuation shifts with strain amplitude, along with an unexpectedly
high third harmonic amplitudes [55, 56, 69–71]. These observations do not comply
with the classical nonlinear behavior, and were associated with hysteresis in
the stress–strain relationship. Such behavior was found to be the characteristic
of materials with defects at the mesoscale level: rocks, concrete, soil, cracked
materials, etc., which are collectively termed nonlinear mesoscopic elastic materials,
NMEM [69]. By including hysteresis in modeling resonance experiments [72–74],
it was demonstrated that the resonance frequency shift is proportional to the strain
amplitude (Δε), so that
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�f

fo
= αf ·�ε (1.109)

along with a linear decrease of attenuation as

1

Q
− 1

Qo
= αQ ·�ε (1.110)

where Q is the quality factor (inverse of attenuation) and Qo is the quality factor
obtained in linear strain regime. These dependences (Eqs. 1.109 and 1.110) may be
of higher order for different hysteretic stress-strain relations [75]. The parameters
αf and αQ quantify the extent of hysteresis, and are presumed to have the same
physical origins [76–78]. Such behavior was demonstrated to ensue from the bond
and relative contact between grains [79]. These effects are regarded as fast dynamic
effects [76] or amplitude dependent internal friction (ADIF) effects [80].

Along with hysteresis, NMEM exhibits a “creep-like” behavior upon dynamic
excitation. It manifests in dynamic experiments as a progressive softening of the
material towards a new equilibrium state while the material is under dynamic exci-
tation (material conditioning). Once the excitation ceases, the material experiences
a relaxation process whereby the material temporarily memorizes the attained strain
amplitude, and progressively recovers the resonance frequency obtained at linear
strain regime. Such a relaxation process may take hours and is referred as slow
dynamics or SD [69].

SD based nondestructive testing monitors changes in the thermodynamic state
of the material. This may be done, for example, by recording the change in the
resonance frequency of the specimen for a specific resonance mode and change in
its acoustic wave speed. The change in resonance frequency can be recorded by
probing the specimen with a low amplitude acoustical wave before and after the
disturbance.

A single frequency wave that monitors the frequency of a resonance mode can
be used for SD experiment. Mechanical tapping or change in ambient temperature
and pressure can disturb the thermodynamic equilibrium state. In the presence of
damage the resonance frequency decreases. After several minutes or hours the
resonance frequency returns to its equilibrium state. The return time depends on
the type of material, severity of damage, and sensitivity of measurement. Since the
return time is generally much longer than the time the specimen takes to stop its
vibratory motion after the tapping it is known as the slow dynamics. SD can be used
as a fast NDT technique. For example, the amplitude of a specific frequency (such
as a resonance frequency) of the equilibrium state of the material is first measured
and then after a disturbance like tapping it is again measured. A big change in that
amplitude would indicate the presence of damage.

Slow dynamics is modeled in a phenomenological way by using rheological
models [80–82]. However, although the nonlinear hysteresis and relaxation can be
fairly well represented by rheological models, the underlying mechanisms may be
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different in different materials [80]. Indeed, the physical origins of slow dynamics
are still not very well understood [83].

On the other hand, there seems to exist a strain amplitude threshold, from
which fast and slow dynamic effects are triggered [84]. Figure 1.30c illustrates the
nonlinear regimes observed in resonance experiments on NMEM. At low strain
amplitudes, say below 10−7, the material exhibits nonlinear classical behavior.
Beyond this threshold amplitude, hysteresis is activated which is accompanied
by a slow dynamic recovery; that is non-equilibrium or non-classical regime.
The recovery process is illustrated in Fig. 1.30d. After a resonance experiment
driven at excitation amplitudes within the non-equilibrium regime, the recovery
can be probed by monitoring the resonance frequency with time at low strain
amplitude (linear regime). The strain threshold value is not a characteristic property
of the material but it seems to depend on the stress rate [85]. Indeed, the size
of the hysteresis loop depends on the strain rate excitation as revealed through
dynamic acoustoelastic tests [86]. Therefore, the strain amplitude value from which
hysteresis is activated depends on frequency.

Since the fast and slow dynamic effects appear to be related to the damage
features such as micro-cracking, different resonance-based techniques have been
developed to assess the mechanical integrity of various materials [77, 78]. The fast
dynamic effect has been used to discern damage in polymer composites [77, 78],
fatigued steel [72], and concrete [87]. The less sophisticated nonlinear resonance
test using an impactor was used to qualitatively assess alkali–silica reaction [88],
fire damage [89], and freezing–thawing damage [90, 91] in concrete-like materials.
Fast and slow dynamic effects coexist during dynamic excitation [76], so that the
measurement of the hysteretic parameters may be affected by slow dynamic effect.
Such an effect can be minimized by increasing the time lapse between consecutive
acquisitions.

Other resonance test configurations do not differ from the basic test configuration
equipment, but they differ in the signal processing and testing protocols. Novak
and colleagues [92] used a nonlinear convolution signal processing for identifying
higher harmonics in damaged polymer composites. Interestingly, it was found that
higher harmonics exhibit considerably larger shifts compared to the fundamental
mode of vibration. These observations suggest a dispersive behavior of the nonlinear
parameters as postulated by Gusev et al. [93]. On the other hand, Van Den Abeele et
al. [94] used a pure tone burst excitation close to the resonance frequency of a plate-
like sample. The resonance frequency tests were performed in a fully noncontact
manner by using a loudspeaker as the emitter and a laser vibrometer as the sensor.
The pure tone burst was generated at different amplitudes and the signal was
analyzed during the ring down once the monochromatic excitation was switched off.
The frequency and attenuation variations were observed during the ring down of the
signal. It was found that both frequency shift and amplitude dependency investigated
during the ring down differed from the observation of the amplitude dependent
frequency and attenuation from consecutive experiments. Such a discrepancy is
owed to the slow dynamic effect, which is present during the signal ring down.
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Similar effects were observed by Eiras et al. [90, 91], Van Damme and Van Den
Abeele [95], and Dahlen et al. [96].

1.7 Pump Wave and Probe Wave-Based Techniques

A number of nonlinear techniques require exciting the specimen simultaneously
at two different frequencies—a pump frequency and a probe frequency. Different
variations of these techniques are discussed in this section.

1.7.1 Nonlinear Wave Modulation Spectroscopy (NWMS)

Nonlinear wave modulation spectroscopy (NWMS) is a widely used technique and
was conceptually introduced in the 1960s. The technique utilizes a continuous
high-frequency probe wave (at frequency fprobe), and a low-frequency vibration or
pump wave (at frequency fpump). The pump wave is generally a given resonance
mode of the tested sample. The pump vibration aims to induce stresses within the
sample, while the probe wave senses the variation of modulus produced by the
pump vibration. If the material under inspection behaves linearly, the frequency
of the probe wave does not depend on the stresses induced by the pump wave
excitation. However, in a nonlinear material the frequency of the probe wave is
modulated by the pump wave excitation. The interaction of both waves—with
frequencies fprobe and fpump—manifests as sideband components in the frequency
spectra of the received signal. This process is commonly illustrated through the
nonlinear behavior ensued by the existence of a crack in a sample [97]; the probe
wave propagates through the crack surfaces, while the pump vibration makes the
contact area between the crack surfaces to increase in compression and decrease in
tension. By this process, amplitude and phase of the received wave are modulated,
according to the frequency of the pump vibration. The frequency domain plots of the
received signal exhibit higher harmonics and modulated frequencies. This process
is schematically shown in Fig. 1.31. Indeed, vibro-acoustic modulation techniques
were formerly conceived to detect localized defects such as cracks in structural parts
[98, 99].

As in nonlinear resonance and finite-amplitude techniques, the scaling relations
between strain amplitude corresponding to every harmonic are affected by the type
of nonlinearity: classical or non-classical hysteretic [66, 67]. In the case of quadratic
nonlinearity, first-order sidebands fprobe ± fpump are produced, with amplitude
proportional to β*Apump*Aprobe. In the case of cubic nonlinearity, second-order side-
bands fprobe ± 2*fpump are produced, with amplitude proportional to Cβδ*(Aprobe)2,
where Cβδ is related to β and δ. In case of non-classical hysteretic behavior, second-
order sidebands fprobe ± 2*fpump are proportional to α·Aprobe·Apump where α is the
hysteretic parameter. In case of localized defects such as cracks, the modulation
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Fig. 1.31 Left figure: Schematic representation of the acoustic modulation process, Right figure:
resulted spectra for an undamaged sample (top right) and for a cracked sample (bottom right).
Adapted from [31]

arises from the nonlinear stiffness that ensues from the interfacial contact. In this
case the behavior can be even chaotic [100].

Compared to the higher harmonic generation technique the modulation tech-
nique offers some advantages [101]. First, higher harmonic generation requires a
homogeneous travelling path to take advantage of the cumulative effect; thus, this
is difficult to fulfill in the presence of reflecting boundaries and other structural
inhomogeneities. Second, high voltages are needed which frequently add some
nonlinear background signal, which may affect the sensitivity of the technique.

1.7.1.1 Mathematical Proof of the Side Band Generation

How are these modulated frequencies and sidebands generated by the nonlinear
material? This question can be answered from the following simple mathematical
analysis.

The displacement field for a harmonic wave generated by the pumping frequency
f1 can be expressed as

u1 (x, t) = A1 (x) sin (ω1t)+ B1 (x) cos (ω1t) (1.111)

where ω1 = 2π f1. Similarly, the displacement field in the material for the probing
wave of frequency f2 is given by
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u2 (x, t) = A2 (x) sin (ω2t)+ B2 (x) cos (ω2t) (1.112)

Therefore, the total displacement field is

u (x, t) = u1 (x, t)+ u2 (x, t) = A1 (x) sin (ω1t)+ B1 (x) cos (ω1t)

+ A2 (x) sin (ω2t)+ B2 (x) cos (ω2t)
(1.113)

The strain field for one-dimensional problem is given by,

ε (x, t) = ∂u (x, t)
∂x

= A1
′ (x) sin (ω1t)+ B1

′ (x) cos (ω1t)

+ A2
′ (x) sin (ω2t)+ B2

′ (x) cos (ω2t)

(1.114)

where A1
′(x) denotes derivative of A1(x). For classical nonlinear quadratic stress –

strain relation

σ (x, t) = Eε (x, t) = [E0 + E1 (ε)] ε (x, t) = E0ε (x, t)+ E1 ε2 (x, t) (1.115)

Then the total harmonic stress field can be expressed as,

σ (x, t) =E0ε (x, t)+ E1 ε2 (x, t)

=E0
[
A1

′ (x) sin (ω1t)+ B1
′ (x) cos (ω1t)+ A2

′ (x) sin (ω2t)

+B2
′ (x) cos (ω2t)

]+E1

[
M1sin2 (ω1t)+M2 cos2 (ω1t)+M3 sin2 (ω2t)

+M4cos2 (ω2t)+M5 sin (ω1t) cos (ω1t)+M6 sin (ω1t) sin (ω2t)

+M7 sin (ω1t) cos (ω2t)+M8 sin (ω2t) cos (ω1t)

+M9 cos (ω1t) cos (ω2t)+M10 sin (ω2t) cos (ω2t)
]

(1.116)

Or,

σ (x, t) =E0
[
A1

′ (x) sin (ω1t)+ B1
′ (x) cos (ω1t)+ A2

′ (x) sin (ω2t)

+B2
′ (x) cos (ω2t)

]+ E1 [N1 cos (2ω1t)+N2 cos (2ω2t) (ω1t)

+N3 cos (ω1 + ω2) t +N4 cos (ω1 − ω2) t +N5 sin (2ω1t)

+N6 sin (2ω2t) (ω1t)+N7 sin (ω1 + ω2) t +N8 sin (ω1 − ω2) t]
(1.117)
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In the above equations multiplying factors M1, M2, M3, . . . N1, N2, N3, . . . for
different trigonometric terms are functions of A1

′
(x), B1

′
(x), A2

′
(x), and B2

′
(x).

For example,

M1 = [A1
′ (x)

]2 (1.118)

M2 = [B1
′ (x)

]2 (1.119)

M5 = 2A1
′ (x) B1

′ (x) (1.120)

M7 = 2A1
′ (x) B2

′ (x) (1.121)

In Eq. (1.117) one can clearly see that the linear term which is multiplied by
E0 only produces waves of angular frequency ω1 and ω2 while the nonlinear term
generates waves with frequencies 2ω1 and 2ω2 (higher harmonic waves) as well
as ω1 ± ω2 (modulated waves). If cubic terms are also kept in the stress–strain
relation, then one can show in the same manner that waves with frequencies 3ω1,
3ω2, ω1 ± 2ω2, and 2ω1 ± ω2 are also generated, thus producing more higher
harmonics and sidebands.

1.7.1.2 Experimental Configuration

Two most popular test configurations that are frequently discussed in the literature
are shown in Fig. 1.32. These two testing techniques are referred as vibro-acoustic
modulation and impact induced modulation techniques. The former consists of a
continuous harmonic excitation with a weak probing frequency while the resonant
vibration is produced by an electromagnetic shaker. The technique requires careful
coupling between the shaker rig and the sample, otherwise additional contact
nonlinearities may arise [102]. On the other hand, impact modulation techniques
use a shock vibration to excite the resonance modes. One major advantage of the
impact modulation technique is the absence of nonlinear contacts for the source of
excitation. However, its drawback is that it is impossible to have the same impact
force for all experiments [102, 103]. In general the impact induced modulation
shows improved sensitivity compared to the vibro-acoustic modulation technique
[104, 105].

The damage severity is generally evaluated through damage parameters that
relate the intensity of the spectral sideband with respect to the amplitude of the
probing wave. Donskoy et al. [106] proposed a modulation index (MI) as
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Fig. 1.32 Schematic of
nonlinear wave modulation
spectroscopy
experiments—(a)
vibro-acoustic modulation,
(b) impact induced
modulation
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MI =
M∑

m=1

Am±n
Am · An , (1.122)

where Am ± n are the spectral magnitudes at the sideband frequencies fm ± n, Am is
the spectral magnitude at the probe frequency, and An is the spectral magnitude at
the pump frequency. Distributed damages do not always produce clear sidebands to
measure their amplitudes. An alternative modulation index from the energy of the
sideband spectrum (Em ± n), pump signal (En), and probe signal (Em) has also been
defined for better accuracy [66, 67].

MI = Em±n
EmEn

(1.123)

1.7.2 Dynamic Acoustoelastic Test (DAET)

The dynamic acoustoelastic test (DAET) consists of monitoring the variations of
modulus while the inspected sample is subjected to dynamic loading conditions.
Nagy et al. [60] used DAET to evaluate the adhesive joints in composite materials
under superimposed dynamic shear stress loading. The test configuration and signal
analysis conducted therein allowed relating the average variations of wave velocity
to the attained shear stress produced upon dynamic loading. Therefore, the analysis



54 T. Kundu et al.

was based on “classical” higher-order expansion of wave velocity as a function of
stress (see Eq. 1.104).

Unlike the approach presented by Nagy et al. [60], Renaud et al. [107] presented
a test configuration that allowed extracting the variations of modulus across different
stress levels imparted during dynamic loading. In this case, the test allowed not only
the description of higher-order terms, but also hysteresis and relaxation of elastic
and attenuation properties [108]. Figure 1.33a shows a schematic representation of
a basic DAET configuration. Normally, the test consists of a long low-frequency
burst that matches a fundamental resonance mode (pump wave), while repeated
ultrasonic pulses (probe wave) sense the variation of modulus across different strain
values of the pump excitation. The received ultrasonic pulses are modulated in phase
and amplitude, as in vibro-acoustic modulation discussed in the previous section.
However, the analysis is focused on the instantaneous variations of modulus and
attenuation properties, rather than on sideband spectral components, which may
arise from the same physical effects. Figure 1.33b shows typical recorded signals
in a DAET experiment.

Considering that the variations of the wave speed (Δc) with respect to the wave
speed in the linear elastic range (c0) are very small one can state that c ≈ c0—and
hence, c2 − c2

0 ≈ 2c0 (c − c0), the corresponding relative variations of time of flight
(Δt/to) can be approximately related to the material nonlinearity as

�M

Mo
− 2 · �t

to
≈ CE (�ε)+ βε + δε2 + · · · +HE (ε, ε̇) (1.124)

where, in addition to the quadratic and cubic nonlinear classical parameters (β and
δ), the ad hoc function CE(Δε) is introduced to describe the material conditioning
effect: the offset between the relative variation of modulus and the strain. In
addition, during low-frequency burst excitations the material attenuation variations
can be obtained from the ultrasonic pulse amplitudes as

�ξ ≈ − ln

(
1 + �A

Ao

)/
d ≈ CD (�ε)+ βDε + δDε2 + · · · +HD (ε, ε̇)

(1.125)

Similarly, the same terms can be defined for the variation of the attenuation
properties, which are denoted herein with subscript D. These tests allowed revealing
also dispersive behavior of the nonlinear mechanisms.

Dynamic acoustoelastic experiments have been successfully used for the assess-
ment of trabecular bone [107], rocks [109], and fatigued metallic samples [110],
under controlled laboratory conditions. The test configurations for such studies
are not very convenient for field applications. Yet some field application attempts
have been made. Renaud et al. [111] performed in situ DAET to measure the
elastic properties of soil. The tests were performed by using a thumper truck as
pump wave source, and a buried system consisting of high-frequency generation
and sensing. In other instances, the ultrasonic pulses were modulated by using a
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Fig. 1.33 (a) Schematic diagram representing a dynamic acoustoelastic test, (b) typical recorded
signals in a DAET experiment, (c) resulted variation of modulus, and (d) attenuation properties,
after processing the received signals
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shock load. Such an approach aims on field monitoring of concrete structures by
using a hammer blow [112], or passive structural health monitoring applications, for
instance, by using traffic loads on bridges [113, 114]. The signal analysis conducted
in such studies is based on the simultaneous comparison between a number of time
segments of the received ultrasonic pulses, before and after shock wave perturbation,
through the cross-correlation technique. The summation of the time shift obtained
in every time segment is used as a quantification of the material nonlinearity. The
approaches proposed in Bui et al. [112] and Moradi-Marani et al. [114] do not allow
description of the strain dependent nonlinear elastic and dissipative characteristics,
but a quantification of the material nonlinearity as a sole parameter. Moreover, such
studies pointed out that the major contribution to the cumulative time shift primarily
comes from the late coda wave segments [112, 114]. These results further confirm
the sensitivity of the coda wave to detect induced subtle microstructural changes
[63]. Indeed, the analyses of the coda wave have been leveraged to diagnose the
material nonlinearity after a pump wave excitation. This approach is described in
the following subsection on Pump wave after-effect monitoring through coda wave
interferometry.

1.7.3 Pump Wave After-Effect Monitoring Through Coda
Wave Interferometry

Coda wave refers to the tail of an ultrasonic signal that has gone through multiple
scattering within the internal microstructure of the material. Therefore, the coda
wave travels longer paths and is capable of detecting small changes in the
microstructure. The analysis is normally performed through the cross-correlation
function between a reference and a stressed waveform. From this analysis the
relative variations of velocity produced in the heterogeneous material as a result
of loading or temperature changes can be obtained. Coda wave interferometry
technique has been used to monitor the variations of velocity produced after a pump
excitation. Tremblay et al. [115] monitored the modulus recovery after an impact by
analyzing consecutive ultrasonic pulses after dropping a ball in a concrete sample.
Such a test configuration was used to assess mechanical and thermally damaged
concrete [116]. Hilloulin et al. [117] used coda wave interferometry to discern the
material nonlinearity as produced by a localized crack in concrete samples. In this
case, the pump wave was provided by a short low-frequency sweep over a range of
frequencies.
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1.8 Subharmonic Phased Array for Crack Evaluation
(SPACE)

To enhance the selectivity in nonlinear ultrasonic response induced by micro-
cracks, recently, some researchers developed the nonlinear ultrasonic phased array
technique. It combines the sensitivity of nonlinear ultrasonics and high power input
of phased array technique. SPACE or the subharmonic phased array for crack
evaluation was proposed by Ohara et al. [118] for closed-crack imaging. They used
phased array subharmonic generation by short burst and frequency filtering.

Figure 1.34 shows a typical experimental setup for SPACE. An intense ultrasonic
field was generated by a LiNbO3 single-crystal transmitter with a wedge. The
received signals were measured by a phased array sensor system, thus focusing
on reception. As the high energy ultrasonic wave propagates through the specimen
with defects, the interactions between ultrasonic waves and closed cracks cause
clapping effect, thus the subharmonic waves are generated. The scattered waves
were digitally filtered at fundamental and subharmonic frequencies, after those
waves were received by the sensor array and converted to digital signals. The
recorded signals were added after their phase shift following the delay law. The
intensity at a focal point was obtained by calculating the root-mean-square value
corresponding to that point. The image of a scan area was created by repeating
the process described above over that area with incremental steps. The open and

Fig. 1.34 Experimental configuration of SPACE (from [118])
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closed parts of the cracks can be distinguished by comparing the fundamental and
subharmonic wave generated images.

Researchers used the SPACE technique to evaluate the closed fatigue cracks and
stress corrosion cracks. The measurement accuracy of SPACE for such micro-cracks
is yet to be determined. It has been demonstrated that SPACE is very useful for
correcting the underestimation of crack depths.

1.9 Collinear and Non–Collinear Wave Mixing Techniques

The major difficulty with the popular nonlinear NDT techniques based on higher
harmonic generation lies in isolating the causes of nonlinearity. Specifically, ampli-
fiers, transducers, and coupling mechanisms all can contribute to the generation of
higher harmonic signals; their contributions can be even greater than that of the
material nonlinearity. Determining whether the measured nonlinearity is caused
by the instrument or the material is a difficult task. Wave mixing technique can
overcome some of these difficulties as described below.

1.9.1 Collinear Wave Mixing Technique

Researchers used collinear wave mixing technique to evaluate the material non-
linearity in various solids. Two plane waves propagating collinearly in opposite
directions in a nonlinear elastic medium generate a new wave. The resonance
wave that is generated by mixing two bulk waves is studied and used to evaluate
the material nonlinearity. The schematic of the nonlinear collinear beam-mixing
measurement setup is shown in Fig. 1.35 [119].

Figure 1.35 shows two source waves propagating through the material to intersect
and interact with each other in a comparatively large region or zone. The new
shear wave generated from this interaction is received by the shear wave transducer
and digitized. The digitized time-domain signal is then sent to the computer for
post processing. In this experiment a broadband piezoelectric (PZT) shear wave
transducer with a center frequency of 5 MHz was used as both transmitter and
receiver. Another broadband PZT longitudinal transducer with a center frequency
of 10 MHz was used to generate the longitudinal wave. Excitation signals for both
input transducers were 30-cycles tone bursts at 500 Volts. Measurements were made
at fixed shear wave frequency and variable longitudinal wave frequency to generate
both resonance and non-resonance conditions, and to obtain the bandwidth of the
generated resonance. To isolate the wave generated from the interaction of two
primary incident waves, time-domain signals of the two primary waves generated
separately were recorded and subtracted from the total signal. The total signal
was recorded by the shear wave transducer when both transducers were exciting
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Fig. 1.35 Experimental setup for collinear wave mixing technique (from [119])

the specimen simultaneously. The resulting signal was then transformed into the
frequency domain by the fast Fourier transform.

The collinear wave mixing method has the potential to measure the acoustic
nonlinearity parameter without many of the experimental difficulties inherent in
some of the existing second harmonic methods. Chief among them is the ability
to select the resonance frequency that does not coincide with those associated with
typical measurement systems. Thus, the collinear mixing technique shows higher
sensitivity in measuring the acoustic nonlinearity parameter.

1.9.2 Non-Collinear Wave Mixing Technique

Non-collinear wave mixing technique has been used for the evaluation of plasticity,
fatigue, and aging of PVC. Figure 1.36 shows an experimental arrangement for
non-collinear wave mixing [120, 121]. Longitudinal wave transducers of frequency
5 MHz mounted on 60◦ Perspex wedges were used to generate two shear waves.
These two intersecting shear waves generate a third longitudinal wave due to
nonlinear interaction of the two waves. Once generated, this wave propagates
through the material in a conventional manner and is detected by the receiver.
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Fig. 1.36 Experimental setup for non-collinear wave mixing technique [120]

There are several advantages of the non-collinear wave mixing technique
when compared with the conventional nonlinear ultrasonic harmonic generation
technique. First, non-collinear wave mixing technique can limit the region where
nonlinear interaction of the incident beams occurs. It is only the interaction region
of the two beams. This capability of spatial selectivity makes this technique less
sensitive to system nonlinearities. Another advantage of non-collinear wave mixing
technique is modal selectivity which means the generated signal can be a different
wave mode from the incident wave modes. The third advantage is the frequency
selectivity, meaning frequency of the generated signal can be different from that
of the incident ones or their higher harmonics when the frequencies of the two
driving signals are not the same. The fourth advantage is the directional selectivity—
meaning propagation direction of the generated signal can be different from the
incident signals. The non-collinear wave mixing technique can isolate the nonlinear
response of the material from the nonlinearities of the measuring instruments. Such
separation is necessary for materials with weak nonlinearity.

1.10 Recent Advances of Wave Modulation Techniques

Higher harmonic generation and nonlinear wave modulation spectroscopy are
probably two most popular nonlinear ultrasonic techniques. Section 9 discusses
some of the limitations of the higher harmonic generation technique and how to
overcome those limitations by collinear and non-collinear wave mixing techniques.



1 Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count 61

Wave modulation techniques are also difficult to use for monitoring plate type
structures. This section discusses some new developments to overcome those
limitations. Experimental evidence is provided to show the advantages of these new
techniques.

1.10.1 Finding Optimal Combinations of Probing
and Pumping Frequencies

Figure 1.13 shows phase velocity and group velocity dispersion curves for Lamb
wave propagation in a plate. For generating sidebands and higher harmonics the
frequency, phase velocity, and group velocity of the input waves should be such
that there exist other wave modes of desired frequencies. Frequencies of these
other modes should match with the expected sideband frequencies (for sideband
generation) or that of the higher harmonic (for higher harmonic generation). The
other wave preferably should have the same phase and group velocities as those
of the input wave modes. Then without knowing the material properties of the
plate how can one select the input excitations? Since all excitation frequencies
cannot satisfy the conditions required for generating sidebands in a plate the
question remains how to select the probing and pumping frequencies for NWMS
experiments when the material properties of the plate are unknown. In other words,
what combination of these two frequencies should be most sensitive to material
nonlinearity?

Yoder and Adams [122] kept the pumping signal fixed and swept the probing
signal to find the right combinations of these two signal frequencies to maximize
the modulation level. Their results are shown in Fig. 1.37. Then Sohn et al. [123]
created the sideband spectrogram by sweeping both pumping and probing signals
over specified frequency ranges to study the effectiveness of pumping and probing
waves in sensing material nonlinearity at different frequencies. Figure 1.38 shows
their results.

Another shortcoming of NWMS for plate inspection is that for optimal gen-
eration of sidebands the pumping and probing frequencies need to be precisely
controlled. Therefore, they must be generated by narrow band surface-mounted PZT
ultrasonic transducers, accelerometers, piezoelectric stack actuators, or mechanical
shakers in direct contact with the specimen, to excite the target structure and
get the response (see Fig. 1.39) [123–126]. Noncontact excitation and detection
arrangement as shown in Fig. 1.40 does not have restriction of requiring narrowband
excitation. This figure shows laser beam induced acoustic excitation and detection of
the propagating Lamb wave by a laser vibrometer. A new technique called sideband
peak count (SPC) has been recently developed that does not require narrow band
excitation and is ideal for noncontact monitoring of structures. This technique is
described in the following section.
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Fig. 1.37 The response of a nonlinear system for 150 Hz pumping signal and probing signal
sweeping from 20 to 40 kHz, plotted in (a) frequency and (b) time–frequency domains. (c) The
spectrogram obtained from the Hilbert envelope shows amplitude modulation [122]
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Fig. 1.38 The sideband spectrogram obtained by sweeping both the pumping frequency (from 10
to 20 kHz with a 500 Hz increment) and the probing frequency (from 80 to 110 kHz) for (a) intact
and (b) damaged dog bone specimens (after [123])
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Fig. 1.39 Contact-type experimental setup using surface-mounted PZTs [123]

1.10.2 Sideband Peak Count (SPC) Technique

Instead of generating sidebands by nonlinear interaction between a pump wave and
a probe wave, in SPC technique interaction between different Lamb wave modes
is monitored. If the Lamb wave is generated by a broadband excitation (such as a
laser beam striking a plate), then multiple Lamb modes are generated in the plate
over a wide frequency range. If the plate material is nonlinear, then the interaction
between these various Lamb modes can generate multiple sidebands. Instead of
measuring the amplitudes of these sidebands, in SPC technique the number of peaks
of the sidebands above a threshold value is counted. The SPC technique was first
introduced in Eiras et al. [127]. In a plate with unknown material properties since it
is not known a priori which Lamb mode peaks appear at what frequencies the only
way to distinguish between sidebands and main Lamb modes is to examine their
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Fig. 1.40 Noncontact excitation and sensing arrangement for plate inspection

amplitudes. Generally sideband amplitudes are much smaller than the Lamb mode
amplitudes.

The SPC technique is illustrated in Fig. 1.41. If waves of multiple frequency
pass through a linear material, then their frequency values do not change. The
top left spectral plot of Fig. 1.41 shows multiple peaks that can represent multiple
Lamb modes propagating in a plate or multiple body waves of different frequency
passing through a bulk material. On the receiving side for a linear material peaks
appear at the same frequencies. However, peak amplitudes generally vary on the
sending and receiving sides due to material attenuation and scattering. In a nonlinear
material interactions between these waves of different frequency produce additional
peaks due to frequency modulation effect as shown in the top-right spectral plot
of Fig. 1.41. These minor peaks generated due to frequency modulation effect are
generally much smaller than the highest peak value, typically less than 10%, and
often even less than 1%. Therefore, all peaks in these spectral plots above the dotted
line can be considered as main peaks and below this line are the modulated peaks
or sideband peaks. If a threshold line is moved from 0 to 20% (or 10%) of the
highest peak value and all peaks that are above this threshold line but below the
20% (or 10%) line are counted and plotted against the moving threshold value, then
that graph is called SPC plot. The SPC plot is sensitive to the degree of material
nonlinearity; higher value of SPC is obtained for a nonlinear material compared to
a linear material. Hafezi et al. [128] have shown theoretically using peri-ultrasound
modeling technique based on peridynamics principle that SPC plot for a structure
containing a thin crack is much greater than that containing a thick crack or no crack
when elastic waves propagate through the structure, as shown in the bottom plot of
Fig. 1.41. This result is expected because thin crack surfaces come in contact more
often causing nonlinearity in the material as the elastic wave passes through it. For
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Fig. 1.41 Illustration of sideband peak count (SPC) technique (From [128])

a thick crack maybe only the region near the crack tip can come in contact and
contribute to nonlinearity as the wave passes through and a linear elastic material
having no crack shows no nonlinearity. Thus the correlation between the material
nonlinearity and SPC has been demonstrated both theoretically by Hafezi et al. [128]
and experimentally by Eiras et al. [127] and Liu et al. [129, 130].

The SPC technique has been successfully used to detect material nonlinearity
variation in glass–fiber reinforced cement (GRC), cement composites subjected to
accelerated aging process [127], and in aluminum plates and aircraft fitting-lugs
with complex geometries containing fatigue cracks [129, 130].

For noncontact monitoring of the degree of nonlinearity in the plate material,
ultrasonic waves were generated by shooting a pulse laser beam on the target sur-
face, and a laser Doppler vibrometer (LDV) was used to measure the corresponding
ultrasonic responses [129, 130]. This complete noncontact system setup allows this
technique to scan a large inspection area with high spatial resolution.
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Fig. 1.42 Schematic diagram of the noncontact laser ultrasonic system

The use of contact transducers for structural monitoring has several shortcom-
ings: (1) high spatial resolution is difficult to achieve for small incipient defect
detection due to the installation issue of contact transducers, (2) imperfect contact
interface between the transducers and the sample surface can introduce additional
nonlinearity that can hide the material nonlinearity that we are interested in, (3) it
is quite labor-intensive and expensive to install a large number of transducers, (4)
transducers and cables are vulnerable to damage in harsh environments, potentially
degrading the system reliability and increasing the maintenance cost, and (5) contact
transducers attached on the target structure may alter its dynamic characteristics in
certain situations [131].

To overcome these shortcomings, noncontact laser technique has been introduced
as an alternative technique. Ultrasonic excitation has been successfully generated
using noncontact pulse lasers [131, 132] and continuous lasers [133]. Ultra-
sonic sensing has been performed using laser interferometry [134]. The collected
responses are processed to detect various types of defects in metal and composite
structures [134, 135].

The noncontact system is composed of an excitation unit, a sensing unit, and
a control unit, as shown in Fig. 1.42. When the material surface is illuminated by
a pulse laser beam, a localized heating will cause thermal expansion and generate
ultrasonic waves in the material [136]. To avoid laser caused surface damage (e.g.,
ablation), parameters for the pulse laser excitation should be carefully monitored for
the laser peak power, pulse duration, and laser beam size.
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It should be noted that the nonlinear ultrasonic modulation does not always occur
even when the material shows some nonlinear behavior due to crack existing in the
structure. It occurs only if several binding conditions are satisfied, which can be
briefly summarized as [104, 122, 136]: (1) Crack perturbation condition: The strain
(displacement) at the crack location should be oscillated by both of the two input
excitations. In vibrations, this condition can be interpreted as nonlinear modulation
components are not generated when the crack is located at the nodes of the vibration
modes; (2) Mode matching condition: One of the inputs should be modulated at
the crack location by the crack motion induced by the other input. Hence, the
modulation generation significantly relies on the choice of two input frequencies
and can be easily altered by crack configurations and even by environmental and
operational conditions (e.g., temperature and loading) of the target structure.

It is difficult to find the optimal input frequencies satisfying all binding con-
ditions. To tackle this issue in a robust manner Eiras et al. [127] proposed a
broadband excitation of the plate specimen instead of frequency sweeping for
probe and pump waves. Broadband excitation of the plate generates multiple Lamb
modes and interaction between several of these modes can generate a number of
sidebands in nonlinear materials. As the material nonlinearity increases the number
of measurable sideband peaks above the threshold value increases. Thus from the
sideband peak counts (SPCs) the degree of material nonlinearity can be estimated.

Figures 1.42, 1.43, 1.44, and 1.45 help the readers to understand how SPC
technique should be used in laboratory and field environments. Figures 1.40 and
1.42 show a specimen is struck by a laser beam. Laser pulse excitation generates
broad band Lamb wave in the plate. Generated Lamb wave propagates through
the plate and is detected by a laser vibrometer in a noncontact manner. When the
frequency spectrum is calculated from the recorded time history then the spectrum
shows multiple peaks as shown in Fig. 1.43. These peaks correspond to different
Lamb modes propagating through an intact plate. For a damaged plate due to the
nonlinearity introduced in the plate by internal damages multiple sidebands are
generated near the main peaks as shown in Fig. 1.43. If the number of peaks
above a threshold value (see Fig. 1.44) is counted, then this number should be
higher for a nonlinear material as long as the threshold value is small enough
to count the sideband peaks. If the SPC values are plotted as a function of the
threshold value, then they continuously decrease as shown in Fig. 1.44. This figure
shows how the SPC decreases with the threshold value for three different plate
specimens made of glass–fiber reinforced cement (GRC) composite before and after
aging. These specimens were aged artificially by soaking them in hot water for
several hours [127]. Note that in spite of experimental variations from specimen
to specimen the SPC values clearly show a noticeable decrease as the specimens
were aged. Mechanical destructive tests and NIRAS tests confirmed that with aging
these samples became more brittle and weaker but their stress–strain behavior
became more linear. Similarities between the experimental results of Fig. 1.44 and
theoretical plots of Fig. 1.41 should be noted.

One question that needs to be answered is whether multiple sideband peaks
observed in the nonlinear material are due to nonlinear wave modulation phe-
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Fig. 1.43 Illustration of the SPC technique—spectral plots in the right column show more
sideband peaks generated by the nonlinear material [129, 130]

nomenon between various Lamb modes or because of some other mechanisms. For
classical NWMS high amplitude pump wave is needed to magnify the nonlinear
effect. However, Van Den Abeele et al. [66, 67] investigated the effect of the strength
of the pumping signal on the modulation energy, and showed that the nonlinear
modulation in a structure with nonlinearity remains significant and measurable even
when the strength of the pumping signal is almost zero. Sohn et al. [123] also
succeeded in applying low strength input for both pumping and probing signals
to detect the nonlinear modulation. Therefore, even when the energy level for
each frequency component caused by a pulse laser excitation is relatively low, the
nonlinear behavior of a damaged structure can still be detected using the pulse input.

The SPC technique proposed by Eiras et al. [127] kept track of the relatively
weak spectral peaks, rather than the dominant peaks, generated due to material
nonlinearity or the damage induced nonlinearity. Eiras et al. used two PZT
transducers for excitation and sensing to monitor the aging process of GRC and
investigated the variation of the sideband peak count results with the aging process.
They observed that the number of minor peaks increased as the material nonlinearity
increased.

Liu et al. [129, 130] redefined SPC as the ratio of the frequency peak number (Np)
above a moving threshold (T) to the total number of peaks (Nt) within a specified
frequency range, as shown in Fig. 1.45a:

SPC(T ) = Np(T )

Nt
(1.126)

Note that when the dominant peak number is much smaller than the number of
weaker sideband peaks, then it is not necessary to separate the dominant peaks from
the sideband peaks while counting the peaks. If the defect size is small enough to



1 Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count 69

80

70

60

50

40

30

20

N
or

m
al

iz
ed

 a
m

pl
itu

de

10

0
0.1 0.2 0.3 0.4 0.5 0.6

Threshold

Threshold

Unaged
Aged

N
um

be
r 

of
 p

ea
ks

0.7

0
0

0.2

0.4

0.6

0.8

1

50 100
Frequency, kHz

150 200 250

0.8 0.9 1

Fig. 1.44 SPC technique applied to glass–fiber reinforced cement (GRC) composite specimens—
number of peaks above a preset normalized threshold value decreases as the normalized threshold
value increases. For a specific value of the threshold the peak count is higher for the unaged
material indicating the unaged material is more nonlinear than the aged material. Destructive test
confirmed this observation. Three curves for aged and unaged samples were obtained from three
different specimens [127]

Fig. 1.45 Illustration of sideband peak count (SPC): (a) SPC here is counted as the ratio of the
frequency peak number above a moving threshold to the total number of peaks within a specified
frequency range; (b) Example of the SPC difference showing more peaks for the damaged case
especially with a low threshold value [129, 130]
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cause nonlinear effect (Fig. 1.41 shows how the defect size affects the degree of
nonlinearity), then more sideband peaks appear in the spectrum and the amplitudes
of the sideband peaks increase. Therefore, a damaged specimen should have larger
SPC values than an intact specimen, especially for a low threshold value.

Figure 1.45b presents a typical test result of the SPC difference. The definition
of the SPC difference is the difference of the SPC values between the current stage
and an initial stage. In Fig. 1.45b, one can see that the SPC difference becomes
positive for the damaged material, and for a low threshold value (around 1.5% of
the largest spectral peak in Fig. 1.45b) the maximum SPC difference is observed.
The maximum SPC difference is then defined as the damage index (DI) and used in
the following experiments.

Though a pulse excitation can generate both symmetric and anti-symmetric wave
modes in a plate-like structure, LDV mainly measures the anti-symmetric wave
modes with predominant out-of-plane displacement. Therefore, the best condition
for the phase and group velocities of the anti-symmetric wave modes for propagation
is that they should be nondispersive in the selected optimal frequency band, as
shown in Fig. 1.46a, b. It has also been reported that once the modulation frequen-
cies coincide with the resonance frequencies of the target structure, the amplitude
of the modulation components can be further amplified [122]. Furthermore, as

Fig. 1.46 Frequency band selection for SPC analysis: note that (a) phase and (b) group velocities
of the anti-symmetric wave modes are almost nondispersive within the selected frequency band,
(c) several strong resonance peaks should also be present in the selected frequency band [129, 130]



1 Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count 71

Fig. 1.47 Geometric dimensions of the specimen and its excitation and sensing points [129, 130]

shown in Fig. 1.46c, the selected frequency band should also include several strong
resonance peaks. For some complex target structures, however, it is advised that the
SPC analysis be conducted over the entire spectrum.

1.10.2.1 Crack Detection in Aluminum Plate Specimens

Experimental Setup

Three identical aluminum plate specimens with a notch on one side were fabricated
using 6061-T6 aluminum alloy [129, 130]. The geometric dimensions of these plate
specimens are shown in Fig. 1.47. Every specimen has a fatigue crack that was
introduced by cyclic loading tests with a 10 Hz cyclic loading rate and a maximum
load of 25 kN. As shown in Fig. 1.48, the introduced fatigue cracks have a length
less than 6 mm and a width less than 10 μm. Traditional ultrasonic techniques based
on linear analysis often miss these cracks.

Pairs of excitation and sensing laser beam locations are selected as shown in
Fig. 1.47 to examine how the locations of the excitation/sensing pairs relative to
the fatigue crack position affect the sensitivity of the proposed SPC technique.
Excitation/sensing pair I A–D implies that along path I the excitation and sensing
laser beams are aimed at points A and D, respectively. Other excitation/sensing
pairs are defined in a similar manner. The previously described noncontact laser
ultrasonic system was adopted in this experiment (see Fig. 1.49). The peak power
of the Nd:YAG excitation laser was set at 0.4 MW, and the generated pulse laser
was shot at the target points on the target surface using a galvanometer. A 12.8 ms
ultrasonic response was measured by LDV from every target sensing point with a
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Fig. 1.48 Microscopic images of the fatigue cracks in three identical aluminum specimens: (a)
specimen I, (b) specimen II, and (c) specimen III [129, 130]

Fig. 1.49 Experimental setup for crack detection using noncontact laser ultrasonic system [129,
130]
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sampling rate of 5.12 MHz. All responses were measured after averaging 100 time-
domain signals to improve the signal-to-noise ratio.

For all excitation/sensing pair combinations in every specimen, the responses
were measured two times before introducing any crack. The first measurement was
used as the reference signal. After recording the reference signal the system was
reset by removing the intact specimen from its holder, turning off the lasers and
then putting the specimen back into the holder and turning on the lasers. The second
measurement after resetting the intact specimen is denoted as the response signal
for the intact case. After the fatigue loading had been applied to create the fatigue
crack the responses were measured again for the damaged specimen.

Experimental Results

Figure 1.50 shows some representative responses and their frequency spectra col-
lected from pair I A–D. Although the spectra in Fig. 1.50 are plotted in logarithmic
scale, the SPC analysis is conducted in a linear scale. The entire response signal
(12.8 ms) was used in the spectral analysis with a spectral resolution around 80 Hz.
In Fig. 1.50, it is not easy to differentiate the signals or identify their distinctive
features. Some variations were speculated to be caused by the system re-setup and
the measurement noises. The root-mean-square-error (RMSE) of the damage and
intact signals were calculated with respect to the reference signal in the frequency
domain. The RMSE values from pair I A–D and pair IV A–D are summarized in
Table 1.3. It clearly shows that the RMSE (a linear feature) cannot reliably detect
the fatigue crack regardless of the location of the excitation/sensing pairs.

In this experiment, the SPC analysis was conducted within a frequency band
50–250 kHz. Figure 1.51a, b shows the SPC difference results obtained from pair
I A–D and pair IV A–D, respectively. It was observed that the fatigue crack can
be successfully detected using the SPC difference whose value was much larger for
the damaged case in comparison to that in the intact case, especially for a relatively
low threshold value (around 0.8% of the largest spectral peak value for pair I A–
D and 1% for pair IV A–D). Figure 1.51 thus demonstrates that the existence of
fatigue crack can be detected by the maximum SPC difference which can also be
considered as a damage index or DI value. It does not matter whether the direct
wave propagation path for the excitation/sensing pair goes through the crack or not,
in both cases the DI value indicates the presence of a fatigue crack when there is
one.

Then, DI values calculated from all excitation/sensing pairs were plotted in
Fig. 1.52. For all three specimens, significantly larger DI values were obtained
for the damaged case while for the intact case most DI values were below 5%.
System re-setup and the measurement noises could be the main cause for obtaining
nonzero DI values for the intact case. Note that some DI values obtained for a few
damaged cases are not significantly higher than the intact cases. Since DI is not
zero but a small value for the intact case and it is slightly or significantly greater
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Fig. 1.50 Representative response signals (left column) and the corresponding normalized fre-
quency spectra (right column) acquired from pair I A–D in specimen I: (a) reference, (b) intact
and (c) damage signals [129, 130]

Table 1.3 Results of the root-mean-square-error (RMSE) [129, 130]

Excitation/sensing pair Specimen I Specimen II Specimen III
Intact Damage Intact Damage Intact Damage

I A–D 0.0058 0.0052 0.0061 0.0068 0.0042 0.0054
IV A–D 0.0069 0.0043 0.0054 0.0059 0.0051 0.0057
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Fig. 1.51 SPC difference plots for intact case (left column) and damaged case (right column) in
three specimens: (a) for sensor pair I A-D; (b) for sensor pair IV A–D [129, 130]

for the damaged case, some criteria need to be established to identify the damaged
specimen as described below.

Let us assume that the specimen is damaged only when the DI value is twice or
larger than that for the intact case. After all excitation/sensing pairs were considered
for all specimens, the resulting diagnosis success rate was listed in Table 1.4. This
table shows that the success rate of the SPC technique for micro-crack detection
was very high. It should also be noted that for this experimental arrangement the DI
value did not show any clear correlation with the location of the fatigue crack and
the excitation/sensing pair.

1.10.2.2 Crack Detection in Aircraft Fitting-Lugs

Experimental Setup

As shown in Fig. 1.53, two mock-up 6061-T6 aluminum specimens were prepared.
The specimens represent fitting-lugs used to connect an aircraft wing with the main
fuselage frame [129, 130]. A fatigue crack was introduced to one specimen by cyclic
loading test. This cyclic loading test is equivalent to a real operational loading over
1000 h of flight time. The detailed information can be found in [123]. For each
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Fig. 1.52 DI values from all excitation/sensing pairs: (a) specimen I; (b) specimen II; and (c)
specimen III (six bars from left to right in the bar diagrams represent sensor pairs A–D, B–D,
C–D, A–E, B–E, and C–E)

Table 1.4 Diagnosis success
rate for the three specimens
considering multiple
diagnosis excitation/sensing
pairs [129, 130]

Success rate (%)

Specimen I 100
Specimen II 100
Specimen III 94.4

specimen, one excitation point (Act) and one sensing point (Sen2) were located
40 mm away from each other on the same surface. A second sensing point (Sen1)
was placed on another surface with a distance of approximately 40 mm from point
Act. Here, only the excitation/sensing pair Act-Sen1 goes directly through the crack.
The rest of the experimental setup is identical to that in the previous experiment.
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Fig. 1.53 A mock-up aluminum fitting-lug with fatigue crack, and the arrangement of the
excitation (Act) and sensing points (Sen1 and Sen2) [129, 130]

Experimental Results

Figure 1.54a, b compares the intact and damaged frequency spectra obtained
from sensor pairs Act-Sen1 and Act-Sen2, respectively. Here, the SPC analysis is
conducted over the entire frequency band (0–600 kHz) since the waves propagating
in such a specimen behave like nondispersive Rayleigh waves. Figure 1.54c plots
the SPC difference results, by treating the response signals obtained from the intact
specimen as the reference signal. It is observed that the SPC difference results from
pairs Act-Sen1 and Act-Sen2 show the same trend as the previous experiment. The
maximum SPC difference (DI) value is obtained for a relatively low threshold even
for the pair Act-Sen2 for which the wave path does not directly pass through the
fatigue crack.

1.10.2.3 Crack Localization in Aluminum Plate Specimens

Experimental Setup

Two identical 6061-T6 aluminum plate specimens were fabricated with a notch
located in the middle of one side of the plate, as shown in Fig. 1.55 [10]. 15 mm
long fatigue cracks were formed in each specimen by fatigue loadings. As shown in
Fig. 1.56, the crack widths are generally less than 10 μm, and it is less than 5 μm
near the crack tips. These cracks are difficult to detect using conventional linear
ultrasonic techniques.

In this experiment, the same noncontact laser ultrasonic system described above
was adopted but the power level was kept below 0.2 MW for generating the laser
beam. Low power excitation was done to make sure that the crack opening and
closing occur only when the laser beam generated ultrasonic wave passes through
the crack but not when the path is bypassing the crack. A 12.8 ms ultrasonic
response is measured by LDV from the desired sensing point with a sampling rate
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Fig. 1.54 Fatigue crack detection results from the mock-up aluminum fitting-lugs: normalized
frequency spectra from (a) sensor pair Act-Sen1 and (b) sensor pair Act-Sen2; (c) SPC difference
results for the two sensor pairs [129, 130].

of 5.12 MHz. All responses are recorded after averaging 100 time-domain signals
to improve the signal-to-noise ratio.

Figure 1.55 shows six pairs of excitation and sensing points for the laser beam for
examining the capability of SPC technique to localize damage. For each specimen,
ultrasonic responses were measured three times for each path in the intact condition.
Among the three measured responses, one was treated as the reference signal and
the other two as the signals collected for the intact specimen. After the fatigue test,
ultrasonic responses were recorded again for the damaged case. The system was also
reset in between collecting various responses for the intact case to take into account
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Fig. 1.55 Specimen dimensions, crack location, and excitation/sensing points [129, 130]

Fig. 1.56 Microscopic images of fatigue cracks in aluminum specimens: (a) specimen I, (b)
specimen II [129, 130]

the potential variations in the ultrasonic responses for the damaged case caused by
resetting of the measurement system and specimens.

Experimental Results

Figure 1.57 shows some representative SPC values and their differences obtained
in the frequency range 20–400 kHz. As path 2 passes through the crack tip, SPC
difference can be clearly observed between the intact and damaged cases for this
path, as shown in Fig. 1.57a. When the threshold is relatively low, the maximum
SPC difference (the DI) value becomes greater than 0.15 for the damaged case. For
path 3 that does not go through the crack, the SPC values and their differences are
plotted in Fig. 1.57b. Comparison of Fig. 1.57a, b shows that when the generated
ultrasonic waves propagate directly through the crack tip, a higher SPC difference
value is obtained for the damaged case than the intact case. Furthermore, the fatigue
crack tip can be localized by comparing the SPC difference values along different
paths.
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Fig. 1.57 Plots of SPC and SPC-difference variations with threshold value in specimen I along
two different paths—(a) Path 2 and (b) Path 3 [129, 130]

The DI values for all six paths in the two specimens are calculated and plotted
in Fig. 1.58. It shows that the DI value is much higher for the path passing through
the crack, especially through the crack tip. DI values obtained for the paths that do
not go through the cracks are probably caused by the measurement noises due to
the measurement system reconfiguration after every fatigue test. Note that, in the
previous experiments, the DI value was significantly high even when the path did
not pass through the crack. This is because in those experiments the power level
of the laser excitation was much higher (0.4 MW peak power) and all signals that
were analyzed contained reflected and scattered signals from the plate boundaries,
crack and the crack tip. The power level of the excitation laser beam for the crack
localization experiment was kept below 0.2 MW so that it can cause crack opening
and closing only when the generated ultrasonic waves pass directly through the
crack. Figure 1.58 also shows that the crack tip region has the highest nonlinearity
since the crack width there is minimum and the crack opening and closing is most
prominent at the crack tip. These experimental results are in good agreement with
the modeling results presented in Fig. 1.41 where it was shown that a thin crack
produces higher nonlinearity than a thick crack.

In order to prove the cause of this difference, the same experiment was repeated
with a higher power laser excitation (0.4 MW peak power, same as the earlier
experiments) and the obtained results are shown in Fig. 1.59. In this figure the
DI values for all six paths are much higher for the damaged case than the intact
case. Clearly, the high power laser excitation fails to localize the fatigue crack
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Fig. 1.58 DI values obtained using 0.2 MW peak power laser pulse excitation: (a) specimen I, (b)
specimen II—only the two paths going through the crack indicate the presence of a crack in the
damaged specimen in contrast to what is shown in Fig. 1.59 [129, 130]

Fig. 1.59 DI values obtained using 0.4 MW peak power laser pulse excitation: (a) specimen I, (b)
specimen II—all six paths indicate the presence of the fatigue crack in the damaged specimen—in
contrast to what is shown in Fig. 1.58 [129, 130]

tip. Therefore, ideally, a high powered laser excitation can be initially used to
identify the existence of damage, and then a lower power laser can be applied
for the damage localization. Taking advantage of the laser scanning techniques, the
proposed approach has the potential to be used as a noncontact technique for fatigue
crack detection and localization.

1.11 Concluding Remarks

Nonlinear acoustical/ultrasonic technique for damage detection simply means
sensing and recording the damage induced material nonlinearity by appropriate
use of acoustic/ultrasonic waves. Ultrasonic waves generally produce very small
stress in a material. Minute and almost negligible nonlinearity induced in the
material by such small stress field is difficult to detect by traditional mechanics of
materials approach. To investigate if a material is behaving linearly or nonlinearly
in traditional mechanics of materials approach the material is loaded to check if the
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stress–strain relation is linear or nonlinear. Many materials, such as metals, behave
linearly at low stress levels but nonlinearly under high stress. Some people may
argue that a metal when loaded by a low amplitude ultrasonic wave should exhibit
linear response since the induced stress by low amplitude ultrasonic waves is very
small. Therefore, one may think that there is no need to discuss nonlinear ultrasonic
techniques for low amplitude ultrasonic waves.

However, it should be noted that a stress–strain curve that looks linear may not
be linear. It may be a nonlinear curve that has a very large radius of curvature. Such
nonlinearity cannot be detected from simple stress–strain plot since over a small
segment it always looks like a straight line. In such a material even a small amplitude
wave can cause very small nonlinear response of the material. This nonlinearity
can be detected by appropriate techniques, such as higher harmonic, subharmonic,
frequency modulation, sideband peak count, resonance acoustic spectroscopy,
and various other techniques that are briefly discussed in this chapter. Detailed
descriptions of these techniques are given in the following chapters by the experts on
those techniques. One recently developed new technique discussed in this chapter
is called sideband peak count or SPC technique. This new technique is described in
detail in Sect. 1.10.2, in such a manner that it can be read and understood without
reading the rest of the chapter.
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Chapter 2
Nonlinear Resonant Ultrasound
Spectroscopy: Assessing Global Damage

James A. TenCate and Paul A. Johnson

2.1 Introduction and Motivation

This chapter begins with a broad question, why is (linear) acoustic resonance
spectroscopy useful for damage detection? After all, standard acoustic techniques
are quite good at locating flaws and damage; industrial ultrasonic imaging and
inspection are well-established techniques for non-destructive evaluation (NDE).
For example, full and complete robotic scans of critical large aerospace components
are routinely done. What does a resonance technique offer for NDE? Perhaps the
biggest advantages of resonance techniques are speed and the concomitant ability
to quickly sort a large number of parts. In addition, it is an excellent way to detect
differences in parts, e.g., [1]. For example, plinking a dozen coffee cups with a finger
and listening to the sounds each make is a very easy way to find a damaged cup [2].
Standards for resonance inspection exist, e.g., ASTM E2001-8 “Standard Guide
for Resonant Ultrasound for Defect Detection in Both Metallic and Non-Metallic
Parts.” In addition there are companies that will do this service as well, e.g., MTS
Systems (http://www.modalshop.com/ndt.asp).

At Los Alamos National Laboratory, resonance techniques have been used for a
wide variety of non-standard applications too. Some examples are to (1) quantify
differences in aging plastic bonded explosives, (2) assess fatigue cracking in special
parts, (3) track accumulating radiation damage to parts in inaccessible places,
and (3) assess growing damage in waste-storage-vault concrete from repeated
freeze/thaw cycles, etc. However, most of the research and development of reso-
nance techniques has been on reservoir rocks, for oil and gas exploration, monitoring
water resources, and predicting efficacy of carbon sequestration and storage.

J. A. TenCate (�) · P. A. Johnson
Geophysics Group, Earth and Environmental Sciences, Los Alamos National Laboratory,
Los Alamos, NM, USA
e-mail: tencate@lanl.gov; paj@lanl.gov

© Springer Nature Switzerland AG 2019
T. Kundu (ed.), Nonlinear Ultrasonic and Vibro-Acoustical Techniques
for Nondestructive Evaluation, https://doi.org/10.1007/978-3-319-94476-0_2

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94476-0_2&domain=pdf
http://www.modalshop.com/ndt.asp
mailto:tencate@lanl.gov
mailto:paj@lanl.gov
https://doi.org/10.1007/978-3-319-94476-0_2


90 J. A. TenCate and P. A. Johnson

Perhaps thinking of a rock as a damaged (inhomogeneous) material is unusual. Yet
the “damage” (inhomogeneity) in a rock is its porosity and permeability—directly
related to the frack structure at many scales—and it is global and extensive. Rocks,
in fact, are a perfect “poster child” for the study of fatigued, cracked, and damaged
engineered parts encountered in many NDE applications.

So why resonance spectroscopy? For standard resonance inspection techniques,
an entire suite of resonance modes is used as a template for correlation or as a
standard to compare against; hence measuring a wide spectrum of resonances is
best. It is the differences between parts that matter in this case. However, it is often
advantageous to focus on one or a small handful of modes instead of a complete set
of spectral lines, concentrating on a few frequencies of particular interest. Often, for
bulk characterization, just a single acoustic mode will best interrogate an item of
interest. For determining global damage throughout a part, lower order (frequency)
modes are best suited to quantify differences. However, for particular shapes (e.g.,
fatigue cracks at a bend in a tube), modes that “sample” a specific region might be
better choices. For example, one of the lower frequency eigenmodes of a long thin
core, the compressional (Young’s) mode, works well for characterizing damage of
a core sample taken from an oil and gas wellbore. Rocks are made up of cemented
grains, and often poorly cemented, full of “cracks.” So, our discussion will now
focus on what we can learn from the “global” damage found in rocks knowing that
much of what we describe also applies to general NDE, especially fatigue damage.

What modal frequencies are used? The answer, as you might guess, depends on
feature size and the size of the part under examination. For example, in most oil
and gas bearing sandstones the quartz grains are on the order of 100 microns, so
frequencies and wavelengths are chosen where the details of the individual features
don’t matter and the overall average global behavior is sampled. For a standard
sandstone rock core (2–3 cm diam and 20–30 cm long), resonance frequencies
around a few kHz are often used. For detecting fatigue or stress-corrosion cracking
on the radius of a pipe in a nuclear power plant on the other hand, the feature sizes
are much smaller and higher frequencies are necessary.

2.2 Nonlinearity in General: Background

So why is nonlinear resonant ultrasound spectroscopy (NRUS) useful? Rocks
and many other fatigued parts are nonlinear [3] and measuring nonlinearity as an
additional variable adds an entirely new and valuable dimension to characterizing
damage in a sample. For example, take a right circular cylinder sample of rock
and put it in a load frame and make a quasi-static stress-strain curve on it—staying
well below the region where any damage starts to occur. If the sample is linear,
the stress-strain curve is a straight line—or very nearly so, sample dimensions do
matter somewhat. However, the reality is that as the rock is compressed, cracks
close up and the rock gets much stiffer; for a material like concrete shown here,
the stress-strain curve is not a straight line (see Fig. 2.1). Reword the highlighted
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Fig. 2.1 Repeated loading and unloading stress-strain curves for a right circular cylinder of
concrete. Note the banana-shape characteristic of hysteresis curves

sentence to read as follows: The amount of nonlinearity measured depends not only
on the density of cracks but also some average details of how the cracks close up.
The simplest way to model such a rock, for example, is with an ensemble of cracks
with some distribution of sizes and spring constants; these cracks turn into very stiff
springs when the cracks close [4]. But it’s hard to tease out specific knowledge of
the crack size distributions or the extent of the fracture networks or to even assess
global damage from a simple stress-strain curve. In addition, obtaining or preparing
a sample for a quasi-static stress-strain experiment is not always practical for NDE.
Furthermore, most rocks like the concrete sample shown and some fatigued metals
have some hysteresis as well, i.e., up and down curves are different, depending on
the rate. The focus of this chapter is on how Resonant Ultrasound Spectroscopy
(RUS) can be used to extract nonlinearity.

Large-amplitude waves interacting in various sorts of nonlinear media have
been extensively studied. In most fluids a large (or finite) amplitude wave will
form a shock (e.g., harmonic distortion and sonic booms). Two waves of different
frequencies interacting in a nonlinear medium will produce nonlinear sum and
difference frequency waves (e.g., intermodulation distortion, modulation of sound
by sound [5]). The physics of nonlinearity and wave interactions in fluids has, in
fact, been extensively studied starting back to the development of jet engines [6]
to the present [7]. On the other hand, the physics of the nonlinearity and its effect
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on wave propagation in (homogeneous and isotropic) solids is more complicated
than in fluids but also well studied, an excellent summary can be found in [8]. The
physics of nonlinearity in a material like a rock, however, is not well understood.
A rock is a complicated, imperfect assemblage of various solids often filled with
different fluids too; how to model a rock is the subject of a great deal of research
even today. A particular experiment of relevance to the relevance of cracks in rocks
illustrates this point well.

A square slab of sandstone filled with cracks oriented mostly in one direction was
used in a nonlinear two-wave interaction experiment [9] similar to the modulation
of sound by sound experiment mentioned above. A low-frequency large-amplitude
shear (S) wave was launched across the sample at the same time a short small-
amplitude compressional (P) wave was launched perpendicularly. The time of flight
of the short P wave across the slab was very carefully measured as a function of
different launch times. Depending on which part of the shear wave it encountered
in its travels through the sample, the compressional wave sped up or slowed
down, depending on when it was launched. Notably, this speeding up or slowing
down not only depended on launch time but was also different depending on
slab/crack orientation. Rotating the sample so the cracks were oriented vertically
or horizontally gave different results (Fig. 2.2) shows the overall propagation time
delay across the slab for the two different orientations described (as a function of
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Fig. 2.2 Effects of crack orientation in a sample of Crab Orchard sandstone. A low frequency large
amplitude shear wave affects the speed at which a short high frequency compressional wave travels
across the sample. The propagation delay due to the shear wave differs depending on (1) which part
of the shear wave the compressional wave travels through, (2) the overall softening provided by
the shear wave’s passage and (3) the sample orientation, parallel to the cracks or perpendicular to
them (black and red data, respectively)
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P wave launch time). For this experiment, cracks and their orientation matter! A
theory of nonlinear wave interaction in a “simple” solid without cracks would have
a very difficult time predicting these results, the cracks are an important part of the
behavior of this rock.

In a bit of foreshadowing towards discussion further along in this chapter and
elsewhere in this book, it’s worth noting here that nonlinear measurements based
on wave interactions within many solids are also rate dependent. Like the quasi-
static stress-strain measurements already discussed, the loading stress-strain curve
yields a different nonlinearity than the unloading curve. Even though the experiment
is slow enough to be “quasi-static,” the rate that data is taken matters. Indeed,
[10] reports on results where nonlinearity obtained quasi-statically (“DC”) yields
different values than nonlinear wave (dynamic, “AC”) interaction experiments.
Similar conclusions are reported in [11], etc. and described in more detail in Chap.
13 of this book. Time dependent effects cannot be ignored in many cases; care is
needed in making any nonlinear measurement, a point which will be expanded upon
later in this chapter: a rock (or fatigued material for that matter) does not respond
instantaneously to the insult of being measured.

2.3 Nonlinear Resonance Techniques: History

So, knowing the advantages and limitations of quasi-static and wave mixing
measurements for determining nonlinearity, we now focus on a third, simpler
measurement. In so doing, we explore some of the history of how the technique
of nonlinear resonance ultrasound spectroscopy—the subject of this chapter—
came about. As mentioned before, it has been found that measuring the resonance
frequency curve of just one low frequency mode is a very good way to determine
bulk nonlinearity and to infer the related bulk damage of a sample. These classic
nonlinear spring-mass systems are often described by a Duffing equation [12] with
a softening or hardening resonance peak shift with increase of driving amplitude.
Sweeping through the lowest resonance frequency of a long thin rock core at
successively increasing amplitudes leads to an intriguing result, the resonance
frequency depends on driving amplitude and there is a noticeable drop in resonance
frequency with increasing amplitude. Most rocks, concretes, even many fatigued
parts all show this resonance frequency decrease with increasing drive amplitude,
a softening nonlinearity in terms of the Duffing equation model [3]. The physics
of the processes at work is likely different for different samples, many mechanisms
have been proposed and perhaps more than one process is at play. For example,
larger drive amplitudes may be “felt” by more of the rock’s interior (e.g., more and
more force chains come into play) or perhaps some grain-to-grain bond chemistry
is activated by the driving excitation. Large amplitude sound in turn frees up cracks
previously bound tightly together and results in a softer rock, at least until those
bonds reform or heal. The exact physics of this softening and healing process is, in
most cases, still a mystery.

http://dx.doi.org/10.1007/978-3-319-94476-0_13
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Fig. 2.3 A family of resonance curves for a long thin bar of Fontainebleau sandstone done at a
series of increasing drive levels. Sweeps were done upward in frequency (red dashed lines) and then
downward in frequency (black lines). The resonance frequency of the sample before these curves
were made at around 1405 Hz was the initial resonance frequency of the sample. The downward
shift is characteristic of most all rocks

Earlier work by Winkler [13] using single-mode resonance measurements was
expanded in a collaborative effort between the Institut Français du Pétrole and Los
Alamos National Laboratory and reported in [14]. The samples were all thin-rod
geometries, long (>30 cm) and thin (25 mm diam) bars of a variety of rocks, all
showed an easy-to-measure softening nonlinearity with increasing amplitude. As an
example, an imperfectly-cemented Fontainebleau sandstone sample produced the
very striking resonance curve family shown here, adapted from the curves shown in
the paper (see Fig. 2.3). Initial attempts were made to quantify the frequency shift
as a function of increasing amplitude for many different rock samples and then use
that as a new-at-the-time way to characterize damage. Considerable work was done
around that time, there was even a patent granted [15] with these ideas, namely to
quantify nonlinearity with a resonant bar method. The chief advantage of the NRUS
measurement was that it was repeatable, relatively insensitive to changes in room
conditions, easy to perform, and it appeared to hold great promise for a wide variety
of NDE applications.

2.3.1 Complication: Rate Dependence

All is not so easy however. In [14], after presenting families of nonlinear resonance
curves for several different rocks, the Discussion section has a paragraph titled
“Sweep Rate and Relaxation Effects” where the issue of measurement rate is
mentioned. “We have noted that it make take tens of seconds or up to several minutes
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Fig. 2.4 Jumps and drops during 30 s interrupted sweeps for a resonance frequency measurement.
Red curve was made sweeping up in frequency, past the peak at 3850 Hz and then stopping at
3900 Hz for 30 s and then continuing. Black curve was made sweeping down in frequency, past
the peak and then stopping at 3825 for 30 s and then continuing. Noticeable jumps and drops are
visible, demonstrating the resonance frequency of the rock moving around based on its acoustic
excitation

for a rock to return to an original “linear” elastic state after a large-amplitude
frequency sweep.” That rate dependence was then studied extensively in [16]. They
observed and reported on many different rate effects. Sweeping frequency upward
in a resonance measurement yields a different curve than sweeping downward
through the resonance frequency. Stopping partway during a resonance sweep and
then continuing leads to a jump in the curve, and the initial resonance curve has
a very different shape all following repeating curves (Fig. 2.4). Moreover, very-
long-sweep resonance curves look very different than short duration sweeps. Many
of these observations are reminiscent of pre-conditioning seen in standard stress-
strain measurements and thus the terms conditioning and recovery of a rock were
adopted to describe this rate behavior in rocks. All these rate effects together were
dubbed Slow Dynamics and describe changes in the rock that take tens of minutes to
sometimes hours to stabilize to a new “state” after a perturbation. Measuring slow
dynamics has, in fact, been proposed as yet another useful nonlinear measurement
in itself and will be discussed elsewhere in this book.

Both rate effects and nonlinearity are easily observed in resonance experiments
and in fact, the rate effects are often more of a curse than anything. Can rate effects
and nonlinearity be decoupled from one another? If not, using NRUS as a technique
to quantify damaged materials is no longer the easy measurement once envisioned.
To answer this question [17], made a series of careful resonance experiments at very
low strains, trying to precisely see where rate effects start to play a significant role in
resonance measurements. What they found (for representative cores of sandstone)
is that below source strains of around 5 × 10−7 the samples could be very well
described with a simple Duffing equation, i.e., a nonlinear spring and mass system.
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Above that strain level rate effects started to become noticeable and really began to
dominate at strains of around 10−6 for these samples. This result would come as no
surprise to [13], where the authors looked at several resonant bars of various rock
samples for changes of resonance Q (inverse attenuation) and velocity as a function
of amplitude. They too chose 10−6 to be the strain where “nonlinearity” began to
dominate in reservoir rocks. While the change in the apparent width of the resonance
curve (Q) or attenuation at higher amplitudes is due to rate effects and the rate of the
sweep measurement—Winkler et al. attributed these effects to Coulomb frictional
heating—their results almost exactly match those of [18].

This is important and we summarize its relevance here. The amount of frequency
shift as a function of amplitude depends on the rate at which the measurement is
made. What this means is that an NRUS measurement is an excellent example of
the Observer Effect. The very act of making a resonance measurement alters the
state of the rock. As the rock approaches its resonance frequency, it experiences
higher and higher strains which, in turn, successively softens the rock and drives the
resonance frequency down more and more.

To demonstrate how important rate can be, two experiments were performed on
the same long bar of sandstone. The first experiment was a sweep done in such a way
as to minimally affect the sample; the sweep was done with very short excitation-
ON steps with a long wait between steps to allow the sample to “recover” from
the acoustic probing. The second experiment was done on the same sample except
this time using a very long sweep rate, allowing the state of the sample to fully
“equilibrate” (soften) at each new frequency step. The results are shown in Fig. 2.5;
at this drive level, the resonance peak frequency varies by 10 Hz; the effects vary
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Fig. 2.5 Attempts to eliminate the Observer Effect by altering the way the resonance measurement
is made. Leftmost resonance peak data were taken very slowly, dwelling at each datapoint for
several hours to allow the rock to fully equilibrate before the next data point. Rightmost resonance
peak data were taken quickly, the rock was “pinged” just long along to get a measurement and then
allowed to rest for several hours before the next measurement. Upward and downward data (circles
and pluses) in both cases are essentially identical given varying room environment conditions over
the experiment
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but are even more pronounced at higher strains and with different samples. NRUS
measurements must therefore be made slowly and carefully to avoid the Observer
Effect.

2.3.2 Complication: Hysteresis

There is another physics complication that can occur in an NRUS measurement.
Quasi-static stress-strain curves for many materials with bulk damage exhibit
hysteresis. As already noted, their stress-strain loops are also rate dependent—but
the effect is less pronounced than in resonance measurements. Most stress-strain
measurements show hysteresis “banana-shaped” curves and are generally repeatable
for most practical time scales for most rocks. However, for very long, extended
stress-strain measurements, the banana shape thins out and eventually the up and
down curves merge and follow the same path [19]. The effect is called elastic
aftereffect and was seen as early as 1900 by [20] and first discussed carefully in
[21] and again by [22]. While hysteresis and elastic aftereffect manifest themselves
at strains almost three orders of magnitude higher than an NRUS measurement,
hysteresis can still be a concern.

For example, a significant measurement of hysteresis in rocks that is not often
noted is reported in [23]. The authors saw evidence of hysteresis (cusping) at strains
typical of NRUS measurements, even with a sinusoidal excitation. Cusping simply
is not possible with standard models of attenuation/damping with sinusoidal driving,
hysteresis must be present, even at the low strains used in their experiments and in
a typical NRUS measurement. While the frequencies in their research were also
very low, e.g., “seismic” frequencies (tenths of Hz), there has been evidence of
cusping in [24] at higher frequencies (1000s of Hz) as well. Some DAE results also
suggest cusping may be evident at the ends of the “butterfly” loops typical of those
measurements [25]. The exact effect hysteresis has on a typical NRUS measurement
is currently part of an ongoing discussion; the effect is mentioned and modeled in
[26]. Exactly how hysteresis affects NRUS measurements remains an active area of
research.

2.4 Demonstration: Nonlinearity Correlates with Damage

Now that the details—and the pitfalls—of NRUS measurements have been carefully
laid out, a demonstration of the value of an NRUS style measurement is in order.
Rocks can be thought of as highly globally damaged systems. Concrete too, as it
cures and ages, also becomes globally damaged. However, modern NDE problems
these days are more likely to encounter damage in, say, Carbon Fiber Reinforced
Plastics (CFRP), which frequently delaminate with fatigue or heat cycling. To
this end we conclude by reporting on an excellent study by [27] which measured
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measured in these samples. Taken and adapted from [27]
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the nonlinearity of several heat-damaged CFRP plates to see how the nonlinearity
correlates with the actual amount of damage.

For this research, the authors used a variation of NRUS they dubbed nonlinear
reverberation spectroscopy (NRS). The equivalence of an NRUS technique and NRS
is demonstrated in the paper. Several (21) samples of CFRP underwent carefully
controlled heat cycling protocols and then each was measured with linear methods
(stiffness and quality factory) and compared with NRS. One such result (Fig.
2.6) demonstrates how much more sensitive the nonlinear parameters are than
classic acoustic measures like stiffness or quality factor. The samples were then
destructively cut apart and an optical imaging technique was used to count crack
density. The nonlinear results were plotted as a function of exposure time and
temperature and actual crack density. The correlation is excellent and shown in Fig.
8 of that paper. This result was one of the first conclusive results which shows how
nonlinearity directly correlates with crack density.

2.5 Conclusions

NRUS is a promising technique for determining the nonlinearity of a sample and
in some cases, a direct correlation between nonlinearity and a desired measurable
(crack density) has been demonstrated. There seems to be recent renewed interest
in NRUS. In [28] the authors seek to apply NRUS to materials where rate effects
and hysteresis are negligible. In [26] the authors have modelled everything seen in
an experiment, “classical” as well as “nonclassical” nonlinearities. In fact, the new
and highly effective approach of dynamic acousto-elasticity [29] is an outgrowth
of these resonance measurements (see Chap. 13). Rate effects were once a cause
of great concern but there is now much better understanding of how they affect
nonlinear measurements. Why has NRUS not been more widely adopted to date?
We think that the early patent filed handcuffed a lot of development research at the
time and in retrospect was probably a bad idea. In addition rate effects were poorly
understood at the time. We feel that now is the time for a closer look at what can be
learned from this technique.
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Chapter 3
Modeling and Numerical Simulations
in Nonlinear Acoustics Used for Damage
Detection

Pawel Packo, Rafal Radecki, Michael J. Leamy, Tadeusz Uhl,
and Wieslaw J. Staszewski

3.1 Introduction

Structural damage detection is frequently accomplished by interrogation with
elastic waves [1, 2]. A wave is introduced to the structure by means of a bonded
or contact-less source, e.g. a piezoelectric transducer, MEMS device, laser, air-
coupled actuator, or other. Along the propagation path the wave interacts with the
structure and its features, namely external boundaries, internal material interfaces,
defects—e.g., voids, cracks, delaminations—and the medium itself. Consequently,
the acquired response carries information on the propagation path that can poten-
tially be extracted for damage detection and localization. As detection of a defect at
its early stage is of primary interest, subtle waveform features are sought as damage
indicators. This in turn requires high frequency waves and short wavelengths, as the
resolution of a damage detection method relates to the ratio of the characteristic
damage size to the wavelength. For widely employed wave propagation-based
damage detection techniques linearity of the wavefield is assumed and wave–
structure interaction phenomena, such as reflection, refraction, and diffraction,
are studied to correlate specific signal features with possible defects. Recently,
nonlinear properties of wavefields have been intensively studied for their potential
use in NDT/SHM. Nonlinear systems break the superposition principle, thus result
in more complex wave interaction phenomena. This includes wave–wave and wave–
damage nonlinear interactions, internal resonances, generation of higher harmonics,
and others [3–11]. Also, in nonlinear systems, it is known that spectral properties
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depend on the propagating wave’s amplitude, resulting in an even more complex
picture of the wavefield. In nonlinear systems the energy is re-distributed in the
frequency domain giving rise to additional waves, possibly at different frequencies
and wavenumbers, propagating in the structure. Typically, these are shorter waves
of higher frequencies that are appealing as a tool for structural health evaluation due
to increased spatial resolution and sensitivity to damage.

Complex dynamic transient phenomena need to be investigated and thoroughly
understood for their application in damage detection and structural state evaluation.
Due to the nature of the nonlinear wavefields, it is impractical or impossible to
analyze engineering problems through analytical studies. When complex geometries
are considered, even linear elastic wave propagation cases cannot be solved or even
described analytically. Experimental testing, on the other hand, is also difficult—
without prior theoretical studies—since many other sources of nonlinearities can
superimpose and contribute to the response. Hence, it is a common practice to
employ numerical simulations for studying underlying wave interactions, perform
parameter search, and to design and develop new inspection techniques [12, 13].

The spatial and temporal character of wave propagation, namely wave speeds and
wavelengths, determine the spatio-temporal requirements for a numerical method.
These two aspects for a modeling method translate into large model sizes and long
analysis time that must be handled for effective and reliable simulations. Also, when
dealing with wave propagation problems, one need to obviously consider time-
dependent problems and numerical time integration methods, in addition to spatial
discretization schemes.

Among all time integration schemes, namely implicit and explicit techniques,
the latter has been widely adopted and employed for wave propagation problems.
The solution procedure based on the explicit time integration requires operations
on the mass matrix only. Further, if the mass lumping is employed—as it is
frequently the case for wave propagation—the mass matrix inversion reduces to
independent inversion operations on the elements of the diagonal, hence decoupling
the solution from other DOFs at the same time step. Although not perfectly
accurate and conditionally stable, the explicit time integration combined with
the mass lumping procedure is widely used due to the following reasons. First,
decoupling DOFs makes the operations independent when advancing the solution.
As a consequence, extremely efficient massively parallel processing procedures
can be adopted for simulations [14, 15]. Second, the solution procedure does not
require actual matrix inversion (no stiffness matrix inversion) since the mass-
related operations can be carried out element-wise. Next, high wave propagation
speeds need dense time stepping, hence the time step limitation due to the stability
condition is not a serious drawback. As wave propagation simulations involve a
number of time steps, the efficiency becomes critical and the number of operations
performed per time step should be limited and simplified. This becomes even more
important for nonlinear problems where special procedures are required for implicit
advancing in time, while the explicit approach retains certain degree of its original
simplicity. Nevertheless, despite computational effort, the implicit time integration
is occasionally considered for wave propagation as it possesses favorable numerical
properties [16, 17].
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There is a wide selection of numerical procedures that can be employed for
space discretization in wave propagation problems. Historically first, and one of
the most widely utilized, are methods based on finite differences (FD) [18]. In
the FD approach the governing PDEs are transformed into a set of algebraic
equations by approximating partial derivatives with the finite difference formulas.
FDs are among the most effective and simple methods, however their solutions
may suffer from energy conversation violation, difficulties in representing complex
geometries through regular grid of points and other. An improvement over classical
FDs was with the velocity–stress finite differences [19] where the staggered grid
concept was combined with a mixed variable (stresses and velocities) approach.
A similar concept of separation of variables has been employed in [20] where the
elastodynamic finite integration technique (EFIT) was proposed. The EFIT belongs
to the finite volume methods and improves over the standard FDs. Specifically, the
integration over the control volume helps in the energy conservation of a scheme.
As a drawback the fact that velocities and stresses are defined in different spatial
locations, making the boundary conditions definition cumbersome, can be men-
tioned. Another spin–off of the finite difference approach was the local interaction
simulation approach (LISA) [14, 21]. The LISA employs a special procedure for
interface treatment through the stress continuity imposition, improving modeling
of wave propagation and interaction with interfaces of two media with drastically
different material properties. As LISA departs from the governing PDEs and
introduces the discretization procedure to arrive at the iteration equations defining
the local interactions, the method can be seen as a top-down methodology. An
opposite approach, termed the bottom-up strategy, yields when local rules, applied
to an elementary unit (point, element, cell etc.), build up and lead to the global
structural response [22]. Such a method was employed in [23, 24] as the cellular
automata for elastodynamics (CAFE) method. In CAFE, the wave propagation
problem is seen from the cellular automaton perspective and the state transition rules
are constructed through neighboring cells and fundamental principles of mechanics.

Most frequently, the above-outlined approaches for elastic waves propagation
simulations involve only closest vicinity, i.e. nearest neighboring, of points or cells,
to construct approximation. Hence, those can be seen as the local computational
models [25]. Another important group of methods, that under certain conditions
can be formulated as local ones, are finite element (FE) based approaches [26,
27]. Apart from the classical FE formulations for wave propagation, employing
the explicit time integration procedure, a number of other concepts have been
developed. Combining the FE spatial discretization and interpolation techniques
with the fundamental solutions, boundary element method has been proposed [28].
Boundary elements reduce the problem dimensionality by one, hence are attractive
for wave propagation simulation. However, when the volume to surface ratio
becomes small and nonlinear problems are considered, the BEM performance drops
significantly. Well suited for numerical studies of elastic waves propagation are
spectral element methods. There are two substantially different approaches to the
spectral formulation for FE as outlined in [29] and [30]. As the first method involves
special derivation of shape functions and resembles the classical FE, it is frequently
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termed a higher order FE technique. The latter [30] employs Fourier transform of a
problem into the spectral domain and constructs dynamic shape functions dependent
on wavenumbers. The spectral element method formulated in [30] has been shown
effective for linear 1-D and 2-D systems. For complex domains and nonlinear
problems spectral formulations applicability requires further developments [31].

Numerical models are discrete systems where one wants to obtain approximation
to wave propagation in continuous media. Precisely, starting from a set of PDEs,
subsequent transformations are applied in order to arrive at an algebraic formulation,
convenient for computer implementation. This fundamental difference is reflected in
model response in the form of spurious oscillations, wave velocity and wavelength
errors, artificial modes, and other [18, 23, 32]. Those errors are further amplified
when nonlinear systems are considered. Spectral properties of numerical models—
dispersion and excitability properties—clearly differ from exact solutions [32, 33],
hence detailed analysis of numerical spectral properties and their nonlinear influence
on the results is of particular interest.

Besides the general numerical procedures adopted for continua, various tech-
niques have been proposed for damage modeling. In general, the physical under-
standing of nonlinear mechanisms involved in classical and non-classical methods
used for damage detection is very important to separate reliably damage-related
nonlinearities from other nonlinear effects (e.g., material nonlinearity, measurement
chain). Therefore modeling of damage is very important but not easy. The major
difficulty relates to the facts that similar nonlinear effects exhibited by damage can
be manifested by different physical mechanism and vice versa. For example, energy
dissipation may result from frictional, hysteretic, or non-classical LG phenomena.
Hysteresis in turn involves both elasticity and dissipation, and could be linear or
nonlinear. In addition, various nonlinear effects can be observed experimentally
when nonlinear ultrasonic/acoustic methods are used for damage detection, as illus-
trated in [10]. Physical mechanisms behind nonlinear ultrasonic/acoustic damage–
wave interactions are scale-dependent, strain-dependent and involve different types
of elastic and dissipative effects, as explained in [34]. Research studies of classical
and non-classical phenomena in solids have a long history and involved various
physical models of damage, as reviewed in [34]. Altogether, these models can be
classified into five major groups: (1) classical nonlinear elasticity; (2) classical
nonlinear crack and crack-wave models; (3) hysteretic models; (4) classical contact
models; (5) non-classical dissipation. A summary of these models is given in
Table 3.1.

As one can notice, there are a number of approaches to model analytically
the damage behavior and its interaction with the propagating wave. Moreover,
there exist methods predicting damage initiation and propagation in various mate-
rials [52], however their discussion is beyond the scope of this chapter. In the
following, only numerical methods related to wave–damage interactions will be
outlined. The main focus is directed to the damage models implemented in two
major numerical frameworks—i.e., FE and FD. Such approaches are considered
as, penalty method, stick-slip contact or element activation/deactivation in order to
imitate the clapping or breathing behavior of the damage surfaces.
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From the numerical viewpoint the two distinct types of nonlinearities, namely
distributed and localized, require different treatment. The distributed nonlinearities
affect the governing PDEs, and consequently the iteration equations of a model,
in the global sense. Localized nonlinear wave interactions, typically related to
damage, are reflected through additional or modified equations in a predefined part
of the model. These two approaches have direct consequences to the implementation
strategy of a numerical scheme.

In this chapter the discussion of modeling and numerical simulations for
nonlinear acoustics will be separated into two main parts. First, the general theory
for waves in nonlinear media will be presented, followed by the discussion of widely
used methods for wave propagation. Besides the finite element method, recalled
for completeness, the local computational approach for constructing approximate
solutions will be briefly discussed. This will contribute to the idea of distributed
nonlinearities that are of interest in nonlinear wave propagation. Next, the localized
sources of nonlinear effects will be addressed. These are typically related to defects
that interact nonlinearly with the wavefield through contact and friction, such as
kissing bonds and breathing cracks. Local sources of nonlinear interactions deform
elastic waves signals differently than the distributed sources.

3.2 Nonlinear Elastic Wave Propagation Problem
Formulation

This section outlines the fundamental equations relevant to the nonlinear elastic
wave propagation problem in continuous media. The following equations set serves
as a basis for subsequent discretization and leads to various numerical models.
Extensive discussions and theoretical derivations for nonlinearly elastic dynamical
problems can be found in literature, see, e.g., [3, 35, 53–55].

In the following, two fundamental descriptions of the problem will be intro-
duced, namely seen from the Eulerian—where the equilibrium is most generally
formulated—and Lagrangian—which is the most convenient for the numerical
implementation. Hence, two coordinate frames are distinguished. The deformed
material configuration is described by the current coordinates x while the original,
undeformed state by X. The deformation of a solid is therefore described by a
displacement field U(X, t) relating the undeformed material point X with its new,
deformed state x through the relation x = X + U(X, t). The two states, namely
deformed and undeformed, are related through the deformation gradient tensor
F = ∂x

∂X
= I + ∂U

∂X
.

For the most general description, the Cauchy stress tensor—denoted by σ and
describing the force acting on unit area in the deformed configuration—will be
employed. Please note that other stress measures, combining forces in the deformed
configuration and the undeformed unit area (the first Piola-Kirchoff stress tensor,
P ) and forces in the undeformed configuration acting on the undeformed unit area
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(the second Piola-Kirchoff stress tensor, �) can be employed in the description of
the equilibrium of a solid. From Eulerian perspective, the elastodynamic equation
of an infinitesimal volumetric element yields

ρ
Dẋ

Dt
= ∇ · σ (3.1)

where ρ is the density in the deformed configuration, ẋ = ẋ(x, t) denotes the
particle velocity as a function of Eulerian coordinates and time, and ∇ introduces
differentiation with respect to the deformed coordinates x, i.e. ∇ = ∂

∂x
. In Eq. (3.1),

D()
Dt

is used for the material (substantial or convective) derivative.
In solid mechanics, however, the Lagrangian description—referring to fixed

material rather than fixed spatial points—is preferred. In order to re-formulate
Eq. (3.1) in the Lagrangian framework, the following observations are made. First,
note that the velocity ẋ = ∂U(X,t)

∂t
, according to the specified form of the

deformation. Next, the material derivative in Eq. (3.1) can be written as

Dẋ(x, t)

Dt
= ∂2U(X, t)

∂t2
(3.2)

where the convective part of the material derivative is zero due to the assumed form
of deformation that does not depend on the deformed coordinates x.

The right-hand side of Eq. (3.1) can be expressed in terms of the undeformed
configuration through either the first or second Piola–Kirchoff stress tensor, P or
�, respectively. Despite the first Piola–Kirchoff stress is employed [3, 56] more
frequently, P is a non-symmetric tensor. Hence, for convenience of numerical
implementation, the general formulation through the second Piola–Kirchoff stress,
�, will be given for completeness. The stress tensors σ , P , and � are related by

σ = ρ

ρX
PFT = ρ

ρX
F�FT (3.3)

where ρX is the material density in the undeformed configuration. Using Eqs. (3.2)
and (3.3) in Eq. (3.1) gives

ρX
∂2U

∂t2
= ∇X · P (3.4)

or, equivalently

ρX
∂2U

∂t2
= ∇X · (F · �

)
(3.5)

In Eqs. (3.4) and (3.5) spatial derivatives are taken with respect to the undeformed
coordinates X. Please note that the only difference between Eqs. (3.4) and (3.5) is
in the stress definition. Both stress measures, P and �, refer to the undeformed
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configuration, however the former takes the force in the deformed state, while the
latter in the undeformed configuration.

In addition to the elastodynamic equation, Eq. (3.4) or (3.5), the constitutive
equation—relating stresses and strains, and the geometrical relation between strains
and displacements are required for a complete wave propagation problem definition.
When wave propagation in nonlinear media is considered, it is convenient to adopt
the hyper-elastic framework—allowing for large strains and large displacements—
and further introduce certain simplifications in order to develop efficient and reliable
numerical models.

For a nonlinearly elastic problem, the strain is taken in the most general form of
the Green–Lagrange tensor

E = 1

2

(
FT · F − I

)
(3.6)

or, in the component form

Eij = 1

2

(
∂Ui

∂Xj
+ ∂Uj
∂Xi

+ ∂Uk
∂Xi

∂Uk

∂Xj

)
(3.7)

accounting for large displacements and rotations, and being suitable for nonlinear
strain–stress relationships. More important, however, from the nonlinear wave
propagation point of view—the quadratic terms in Eq. (3.6) need to be retained for
consistency with the higher order terms in the constitutive equation.

The constitutive relationship—for path-independent deformations—is conve-
niently derived from the strain energy density function W written as a function of
the Green–Lagrange strain tensor or the deformation gradient tensor components,
W = W(E) or W = W(F ), where the two forms are related by Eq. (3.6). The
strain energy density is written up to the desired order of expansion in strains (or
deformation gradient components) and—for the case of retaining elastic constants
up to fourth order—is given by [7, 35]

W = λ

2
I 2

1 + μI2 + A
3
I3 + BI1I2 + C

3
I 3

1 + EI1I3 + FI 2
1 I2 +GI 2

2 +HI 4
1 (3.8)

where I1, I2, and I3 denote the strain tensor invariants, λ and μ the Lamé constants,
and A − H denote higher order elastic constants. By substituting strain invariant
expressions in Eq. (3.8), the strain energy density formula is given in terms of
deformation gradient tensor components,W = W(F ).

Please note that the strain energy density given by Eq. (3.8) retains the fourth
order terms in displacements (and higher). Hence, employing the general for-
mula for the strain, Eq. (3.6), where quadratic terms are included, is necessary
for consistency—despite small but finite strains and displacements analyzed in
nonlinear wave propagation problems.
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The constitutive relation for a general nonlinear material is then obtained by
differentiating the strain energy density function with respect to the strain tensor
components ∂W(E)

∂E
and for a 2-D space yields

�11 = (λ+ 2μ)E11 + λE22

+ (A+ 3B + C)E2
11 + (B + C)E2

22 + (A+ 2B)E2
12 + 2(B + C)E11E22

+ 4(E + F +G+H)E3
11 + (E + 2F + 4H)

(
E3

22 + 3E2
11E22

)

+ 4(F +G+ 3H)E11E
2
22 + [(6E + 4F + 8G)E11 + (4F + 6E)E22

]
E2

12

(3.9)

�22 = (λ+ 2μ)E22 + λE11

+ (A+ 3B + C)E2
22 + (B + C)E2

11 + (A+ 2B)E2
12 + 2(B + C)E11E22

+ 4(E + F +G+H)E3
22 + (E + 2F + 4H)

(
E3

11 + 3E11E
2
22

)

+ 4(F +G+ 3H)E2
11E22 + [(6E + 4F)E11 + (6E + 4F + 8G)E22

]
E2

12

(3.10)

�12 = 2μE12 + (A+ 2B)(E11 + E22)E12

+ (3E + 2F + 4G)
(
E2

11 + E2
22

)
E12 + (6E + 4F)E11E22E12 + 8GE3

12

(3.11)

and �21 = �12 due to the symmetry of �. Please note that Eqs. (3.9)–(3.11)
give the second Piola–Kirchoff stress tensor components, since � and E are a
work-conjugate pair. Analogously, for the first Piola-Kirchoff stress tensor and the
deformation gradient tensor, P and F , the stresses are calculated from ∂W(F )

∂F
and

for a 2-D medium read

P11 = (λ+ 2μ)
∂U1

∂X1
+ λ∂U2

∂X2
+
(

3

2
λ+ 3μ+ A+ 3B + C

)(
∂U1

∂X1

)2

+
(

1

2
λ+ B + C

)(
∂U2

∂X2

)2

+
(

1

2
λ+ μ+ 1

4
A+ 1

2
B

)[(
∂U2

∂X1

)2

+
(
∂U1

∂X2

)2]

+
(
μ+ 1

2
A+ B

)
∂U1

∂X2

∂U2

∂X1
+ (λ+ 2B + 2C)

∂U1

∂X1

∂U2

∂X2
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+
(

1

2
λ+ μ+ 2A+ 6B + 2C + 4E + 4F + 4G+ 4H

)(
∂U1

∂X1

)3

+ (B + C + E + 2F + 4H)

(
∂U2

∂X2

)3

+
(

1

2
λ+ μ+ 5

4
A+ 7

2
B + C + 3

2
E + F + 2G

)

× ∂U1

∂X1

[(
∂U2

∂X1

)2

+
(
∂U1

∂X2

)2]

+
(

1

2
A+ 2B + C + 3

2
E + F

)
∂U2

∂X2

[(
∂U2

∂X1

)2

+
(
∂U1

∂X2

)2]

+ (μ+ A+ 2B + 3E + 2F)
∂U1

∂X2

∂U2

∂X1

∂U2

∂X2

+
(

3

2
A+ 3B + 3E + 2F + 4G

)
∂U1

∂X1

∂U1

∂X2

∂U2

∂X1

+
(

1

2
λ+ 2B + 2C + 4F + 4G+ 12H

)
∂U1

∂X1

(
∂U2

∂X2

)2

+ (3B + 3C + 3E + 6F + 12H)
∂U2

∂X2

(
∂U1

∂X1

)2

(3.12)

P22 = (λ+ 2μ)
∂U2

∂X2
+ λ∂U1

∂X1
+
(

1

2
λ+ B + C

)(
∂U1

∂X1

)2

+
(

1

2
λ+ μ+ 1

4
A+ 1

2
B

)[(
∂U1

∂X2

)2

+
(
∂U2

∂X1

)2]

+ (λ+ 2B + 2C)
∂U1

∂X1

∂U2

∂X2

+
(

3

2
λ+ 3μ+ A+ 3B + C

)(
∂U2

∂X2

)2

+
(
μ+ 1

2
A+ B

)
∂U1

∂X2

∂U2

∂X1

+
(

1

2
λ+ μ+ 2A+ 6B + 2C + 4E + 4F + 4G+ 4H

)(
∂U2

∂X2

)3

+ (B + C + E + 2F + 4H)

(
∂U1

∂X1

)3

+
(

1

2
λ+ 2B + 2C + 4F + 4G+ 12H

)(
∂U1

∂X1

)2
∂U2

∂X2
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+
(

1

2
A+ 2B + C + 3

2
E + F

)
∂U1

∂X1

[(
∂U1

∂X2

)2

+
(
∂U2

∂X1

)2]

+ (μ+ A+ 2B + 3E + 2F)
∂U1

∂X1

∂U1

∂X2

∂U2

∂X1

+
(

3

2
A+ 3B + 3E + 2F + 4G

)
∂U1

∂X2

∂U2

∂X1

∂U2

∂X2

+ (3B + 3C + 3E + 6F + 12H)
∂U1

∂X1

(
∂U2

∂X2

)2

+
(

1

2
λ+ μ+ 5

4
A

+7

2
B + C + 3

2
E + F + 2G

)[(
∂U1

∂X2

)2

+
(
∂U2

∂X1

)2]
∂U2

∂X2
(3.13)

P12 = μ
(
∂U2

∂X1
+ ∂U1

∂X2

)
+
(
μ+ 1

2
A+ B

)(
∂U2

∂X1

∂U2

∂X2
+ ∂U1

∂X1

∂U2

∂X1

)

+
(
λ+ 2μ+ 1

2
A+ B

)(
∂U1

∂X2

∂U2

∂X2
+ ∂U1

∂X1

∂U1

∂X2

)

+
(

1

4
A+ 1

2
B +G

)(
∂U2

∂X1

)3

+
(

1

2
λ+ μ+ 5

4
A+ 7

2
B + C + 3

2
E + F + 2G

)

× ∂U1

∂X2

[(
∂U1

∂X1

)2

+
(
∂U2

∂X2

)2]

+
(

3
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(3.15)

Substituting Eqs. (3.12)–(3.15) into Eq. (3.4) gives the elastodynamic equation
for wave propagation in nonlinear, hyper-elastic media, in terms of displacements.
Analogously, using Eq. (3.6) in Eqs. (3.9)–(3.11), and the results in Eq. (3.5), yields
nonlinear wave propagation problem expressed in terms of the second Piola–
Kirchoff stress.

For guided wave propagation in bounded media, the elastodynamic equation is
supplemented by a set of boundary conditions. In general, two types of boundary
conditions (and their combinations) are met, namely, natural and essential boundary
conditions. For mechanical problems, these types of boundary conditions refer to
prescribed tractions and prescribed displacements, i.e.

σ · n = t̂, on �t and x = x̂, on �x (3.16)

For the particular case of Lamb waves—of wide practical importance—and 2-
dimensional media, stress-free boundary conditions for two parallel surfaces are
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considered such that

σijnj = 0, at y = ±h, i, j = 1, 2; (3.17)

where n = [0, ±1]T is the horizontal surface outward pointing normal and the
layer enclosed by the two surfaces has thickness 2h.

3.3 Numerical Models for Wave Propagation in Nonlinear
Media

Numerical modeling of dynamic transient phenomena, such as wave propagation,
is inherently related to time-dependency. The left-hand side of the elastodynamic
equation, Eq. (3.4) or (3.5), contains the second derivative of particle displacements
with respect to time and need to be resolved for advancing the solution in the time
domain. For general time-dependent problems, two groups of solution methods
exist, namely direct time integration and modal superposition [57]. In the first
approach the solution is evaluated for discrete time steps, while in the second a
transformation of governing equations of motion is performed, decomposing the
system into a set of simple systems which are then integrated in time. The solution
in the original domain is obtained by an inverse transform.

The direct time integration techniques group can be further subdivided into two
categories: explicit and implicit time integration. Each time integration procedure is
suitable for a particular class of problems and displays different properties in terms
of mathematical formulation. As a consequence, time-domain solution methods
are suitable for different classes of structural mechanics problems. For details, the
reader should refer to [26, 57]. For wave propagation problems, the explicit time
integration techniques are most frequently used, and therefore will be outlined in
more detail.

Regardless—for the moment—of the space discretization, i.e. the discretized
form of the right-hand side of Eq. (3.4) or (3.5), the time derivatives are substituted
by formal expressions that approximate the time evolution of the system. The finite
difference formulas are used for this purpose. Particular selection of FD formulas
depends on many aspects and determines the efficiency and robustness of a solution
technique. In the explicit time integration approach, the elastodynamic equation
(Eq. (3.4) or (3.5)) is rewritten for the current time step t , while the solution is sought
in the next time step t +�t . Subsequently, the approximation for time derivatives is
introduced. For wave propagation, an advantageous choice is the central difference
method. Employing the central difference scheme for a grid point (or, equivalently,
nodal point or cell) denoted by (i, j) for a 2-D domain, the LHS of Eq. (3.4) or (3.5)
yields

ρX
∂2U

∂t2
≈ ρX U

i,j,t+�t − 2Ui,j,t + Ui,j,t−�t
�t2

(3.18)
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where Ui,j,t denotes a grid point (node or cell) (i, j) displacement at time instance
t and �t is the time step. Using Eq. (3.18) with the space-discretized version of
Eq. (3.4) or (3.5) leads to the set of algebraic equations governing the numerical
model response. The solution for Ui,j,t+�t requires only the inversion of the mass
matrix (see ρX in Eq. (3.18)) with no operations on the stiffness components. The
solution procedure is effective if the inversion can be achieved without significant
computational burden. When the mass matrix is diagonal, the inversion reduces
to the inversion of its diagonal elements, hence the common choice of local
computational strategies and/or lumping procedure for the mass matrix in wave
propagation simulations. The remaining part of the solution consists of operations
on matrix components and may be processed relatively fast. Please also note that
regardless of the form of the right-hand side of Eq. (3.4) or (3.5), the solution
procedure does not change—also when the RHS contains nonlinear terms.

The main disadvantage of the explicit schemes is the conditional stability.
Namely, time step need to be smaller than the critical time step, �t ≤ �tcr in
order to ensure stability. The critical time step can be calculated from the Courant–
Friedrichs–Lewy condition [58] and combines space discretization parameters and
numerical properties of the model. Practically,�tcr is related to the highest possible
wave velocity expected in the model. Despite the conditional stability, explicit
time integration is widely employed for wave propagation due to its computational
efficiency. High temporal resolution of the model, i.e. short time steps, as required
by the stability criterion, is favorable due to high frequencies and velocities of elastic
waves than need to be captured in the numerical simulation.

Similarly to the distinction made in Sect. 3.1 numerical models for the two types
of nonlinear response sources, namely distributed and localized, can be constructed.
Continuum mechanics-based numerical schemes consider—by definition—a con-
tinuous piece of material. Consequently, no discontinuities in the field variables are
allowed without special treatment. For wave propagation, elastodynamic equations
(Eqs. (3.4) and (3.5))—governing particle motion in an unbounded, continuous
space—are transformed into algebraic form by employing a specific numerical
procedure (e.g., FE, FD, SE, FV, LISA, CAFE, etc.). Please note that only
distributed-type nonlinearities, e.g. geometric, quadratic, cubic nonlinearity, or
hysteresis, etc., may be accounted for in these equations. Discontinuities, typically
related to localized damage, require special analytical and numerical treatment.
Internal boundaries due to crack or delamination faces are frequently modeled as
stress-free boundaries. From numerical perspective duplicated nodes of the FE mesh
[59], specific FD equations for boundary nodes [11], free faces of cellular automata
[25], or other mechanisms are frequently employed. If an interaction between the
crack or delamination faces exists, nonlinearity in the wavefield is introduced. The
interaction is typically due to mechanical contact phenomena and friction.

In the following sections, numerical modeling strategies for the two types
of nonlinearities—relevant from wave propagation perspective—are addressed,
namely distributed and localized nonlinearities.
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3.3.1 Nonlinear Media Models

This section outlines numerical strategies for wave propagation in nonlinear media.
Specifically, the case of distributed nonlinearities will be addressed, leaving damage
models for the next section. Technically, the current section considers various
approaches to the space discretization, i.e. converting the RHS of Eq. (3.4) or (3.5)
into algebraic form. Numerical model assumptions and simplifications will be
discussed first, before presenting the details of discretization procedures.

The wave propagation problem in nonlinear media is fully described by Eq. (3.4)
or (3.5) (elastodynamic equations), Eq. (3.6) (the geometric relation) and Eqs. (3.9)–
(3.11) or (3.12)–(3.15) (the constitutive relationship). Recalled equations involve
a number of variables that need to be analyzed in detail, before formulating a
numerical model. In the following several simplifications are made leading to an
effective numerical modeling strategy for wave propagation. The major assumptions
on physical quantities used in the model are as follows.

Deformations It should be realized that in wave propagation problems, typi-
cally encountered in mechanical engineering, small—but finite—amplitude waves
(approximately ∼10−6 to ∼10−3 mm) are considered. As a result, small dis-
placements conditions are assumed. Therefore, differences in orientations of line
segments between the deformed and undeformed configurations can be neglected.
Mathematically, this means F = ∂x

∂X
= I . Please note, however, that this assump-

tion relates to this particular point in derivation of the numerical model and cannot
be generalized to simplify other quantities. A significant practical consequence of
not distinguishing between the original, X, and current, x, configurations is that
the model geometry does not need to be updated. A direct impact on the solution
efficiency can be observed, as for the FE method the assembly of the stiffness and
mass matrices in each iteration are avoided. For local computational strategies, this
assumption is critical as the finite difference formalisms can be evaluated in the
standard way. Also, no iteration formulas updates are required during the solution
process. Accuracy of this simplification can be verified by comparing differently
formulated numerical models. Figure 3.1 shows frequency spectra of the responses
from an FD-based nonlinear local interaction simulation and an FE model [11].
In both models, the same numerical parameters have been used, with the only
difference in the model geometry update. It can be seen that the differences are
negligible even for high frequencies.

Strains Despite the above and the assumption of small displacements, the
nonlinear geometric relation in the form of the Green–Lagrange strain is invoked
(Eq. (3.6)). The quadratic terms in the strain-displacement relation are required
for consistency with the order of expansion of the strain energy density function
(Eq. (3.8)).

Stresses The hyper-elastic stress formulas including higher order terms, accord-
ing to Eqs. (3.9)–(3.11) or (3.12)–(3.15) are adopted. Please note that due to the
assumption on deformations, all stress measures are equal.
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Fig. 3.1 Frequency spectra of time signals recorded from two numerical models of a plate: the
LISA and FE models. For the FE model, in contrast to the LISA case, the geometry was updated
every time step of the simulation [11]

Based on the above assumptions on deformations, strains and stresses, numerical
models for wave propagation in nonlinear media are constructed. In the following
three numerical techniques will be briefly outlined. First, the FE method will be
shortly recalled. Next, the Local Interaction Simulation Approach (LISA) will be
addressed.

3.3.1.1 The Finite Element Method for Wave Propagation in Nonlinear
Media

The finite element method is probably the most widely used numerical procedure
for solving mechanical engineering and other disciplines problems. It is therefore
instructive to briefly address the wave propagation simulation in FE when nonlinear
media are considered. The FE method departs from an alternative description of the
equilibrium and boundary conditions from those described in Eqs. (3.1) and (3.16),
namely the weak form.

The weak form can be obtained by multiplying the formulas in Eqs. (3.1) and
(3.16) by an arbitrary continuous function of displacements δU (that is zero at and
corresponding to the prescribed displacements). In the following it was assumed,
however, that the natural boundary conditions are zero. The integration of the
resulting formulas over the volume, for a selected time instant, and employing the
divergence theorem, leads to

∫

V t
σ · δεdV t =

∫

V t
ρÜδUdV t (3.19)
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where ε is the (virtual) strain tensor (corresponding to the virtual displacements;
δ denotes the variation in strains due to the variation in displacements), σ is the
Cauchy stress tensor, V is the volume and the right-hand side corresponds to the
inertial contribution. Please note that other alternative descriptions yield the same
description for mechanical systems [26, 27]. In Eq. (3.19) all quantities are taken at
the same time instant t and calculated with respect to the current coordinate x. In
general it is difficult to work with Eq. (3.19) since the equilibrium is referenced with
respect to the already deformed state (given by coordinates x).

In order to transform Eq. (3.19) into a form suitable for the solution proper stress
and strain measures need to be introduced. Instead of the Cauchy stress tensor σ ,
the second Piola–Kirchoff stress tensor �—relating the force and the area in the
undeformed state—will be used. Similarly, instead of the strain given by ε, the
Green–Lagrange strain E is employed. Both � and E are defined with respect to
the undeformed coordinates X. With these quantities, the left-hand side of Eq. (3.19)
can be re-written as

∫

V t
σ · δεdV t =

∫

V 0
� · δEdV 0 (3.20)

and, analogously the inertial term reads

∫

V t
ρÜδUdV t =

∫

V 0
ρXÜδUdV 0 (3.21)

where the mass conservation relation ρdV = ρXdV 0 has been used. The superscript
0 refers to the initial, undeformed configuration. The equation of motion, Eq. (3.19)
can be therefore re-written as

∫

V 0
� · δEdV 0 =

∫

V 0
ρXÜδUdV 0 (3.22)

Please note the quantities in Eq. (3.22) are taken at time instant t and with respect
to the undeformed state. Equation (3.22) describes the elastodynamic problem with
the reference to the known original (undeformed) configuration.

The solution of a nonlinearly elastic problem cannot be carried out in a single
step, as it is the case for static linear elastic problem. There are many types of
nonlinearities, hence there exist no general algorithms for solving a set of nonlinear
equations. Therefore, in the FE formulation, approaches based on incremental
solutions are frequently adopted. Two main solution strategies to nonlinear problems
can be distinguished when considering the approximate solution with the finite
element method, namely the total Lagrangian (TL) and updated Lagrangian (UL).
When considering wave propagation (small deformations, small but finite strains
and explicit time integration) the TL formulation is adopted. The solution for
displacements is typically carried out incrementally by applying the decompositions
for stresses, strains, and displacements. We note, however, that for wave propagation
problems explicit time integration is employed, hence no equilibrium iterations are
required.
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After defining the integral form of the equilibrium, the finite element equations
are derived as follows. First, interpolation scheme and functions (i.e., the type of
an element) are assumed U = NŪ , where N is the shape functions matrix and
Ū stores nodal displacements. For wave propagation problems solved through the
explicit time integration, the finite element interpolation formula is applied directly
to Eq. (3.22). The following relations are used to convert Eq. (3.22) into the FE
(matrix) equation of motion

∫

V 0
ρXÜδUdV 0 ≈ M ¨̄U =

(∫

V 0
ρXNTNdV 0

)
¨̄U (3.23)

∫

V 0
� · δEdV 0 ≈ FNL =

∫

V 0
BT �̂dV 0 (3.24)

where

• M is the mass matrix; frequently a mass lumping procedure is employed resulting
in a diagonal matrix

• N is the matrix of shape functions
• FNL is the general nonlinear loading vector depending on stresses and strains at

time t ; please note that FNL depends on �, E and, consequently, Ū , and involves
the constitutive relationship

• � and E are the second Piola–Kirchoff and the Green–Lagrange strain, respec-
tively

• �̂ is a vector collecting the second Piola–Kirchoff stress components
• B is the linear strain-displacement matrix

Finally, the finite element equation of motion, corresponding to Eq. (3.22), in the
matrix form—in the absence of volumetric and surface loads—yields

FNL = M ¨̄U (3.25)

where all quantities are taken at time t . If the explicit time integration scheme is

employed, the acceleration vector ¨̄U in Eq. (3.25) is approximated by the second

order central difference formula ¨̄U = (
Ū
t+1 − 2Ū

t + Ū
t−1)

/�t2. Subsequently,

Eq. (3.25) can be solved for Ū
t+1

without additional iterations

Ū
t+1 = M−1�t2FNL

(
Ū
t)+ 2Ū

t − Ū
t−1

(3.26)

where it can be seen that the solution requires calculation of internal stresses and
the inversion of the mass matrix M .

The nonlinear constitutive relation � = f (E), where f is a general nonlinear
function of strains E, is employed in the solution process during: (a) evaluation
of stresses in FNL and (b) evaluation of the tangent stiffness matrix (when
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incremental solution process is adopted). Technically, the evaluation of the nonlinear
stresses required in FNL depends on the solution strategy (implicit or explicit) and
specific software implementation. In general, most of the FE packages require an
additional subroutine to be implemented, in order to simulate the wave propagation
in nonlinear media.

3.3.1.2 The Local Interaction Simulation Approach for Wave Propagation
in Nonlinear Media

The Local Interaction Simulation Approach is a well-established FD-based method
for simulating wave propagation. The original method was proposed in [21, 60] and
later developed in [61, 62] for wave propagation in complex heterogeneous media
with sharp impedance changes. The LISA follows a particular application of finite
difference (FD) formulas for space and explicit central difference approach for the
time domain. It is therefore well suited for parallel processing. Derivation details
are beyond the scope of this chapter and can be found in [21, 62]. In general, the
LISA scheme can be employed various types of PDEs involving arbitrarily complex
heterogeneous, anisotropic, and nonlinear materials. This section briefly outlines the
LISA-based treatment of arbitrarily nonlinear media.

For a 2-D medium, the LISA discretizes the structure under investigation into a
regular grid of rectangular cells. The material properties are assumed to be constant
within each cell but may differ between cells. The LISA iteration equations are
derived for a grid point—located at the intersection of four adjacent material cells
as shown in Fig. 3.2a—from the elastodynamic wave equation, Eq. (3.4) or (3.5).
Initially, each cell is treated as discontinuous and displacement and stress continuity
conditions are applied to derive the LISA iteration equation. First, the elastodynamic
equation is evaluated for each cell I–IV at points P1–P4 located close to point
0 based on the stress components distribution as shown in Fig. 3.2b. The four
equations yield

2��(i)11

�x
+ 2��(i)12

�y
≈ ρ(i)ü (3.27)

2��(i)12

�x
+ 2��(i)22

�y
≈ ρ(i)v̈ (3.28)

where the superscripts (i) refer to the cell number, i = {I, II, III, IV }, and��(i)kl
defines a finite difference derivative of kl stress component in ith cell. The stress
formulas,��(i)kl , are evaluated from displacement components in respective (i) cell
nodes only, according to Eqs. (3.9)–(3.11).

Due to material properties discontinuity across the cells, some of the spatial
derivatives appearing in the stress expressions cannot be evaluated and remain
unknown. The set of equations needs therefore to be supplemented by enforcing
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stress continuity between the adjacent cells. Effectively, this procedure leads to the
reduction of stress tensor components involved in the matching conditions between
adjacent cells, collapsing to a unique stress tensor at the grid point of interest.
Finally, the stress-based iteration equations can be written as

�
(I)
11 −�(II)11 −�(III)11 +�(IV )11

�x
2

+ �
(I)
12 +�(II)12 −�(III)12 −�(IV )12

�y
2

=
∑

i

ρü

(3.29)

�
(I)
12 −�(II)12 −�(III)12 +�(IV )12

�x
2

+ �
(I)
22 +�(II)22 −�(III)22 −�(IV )22

�y
2

=
∑

i

ρv̈

(3.30)
where the summation is carried over the four cells.

Please note that the LISA derivation procedure relies on evaluating the elastody-
namic equation and imposing continuity of selected stress tensor components across
the cell interfaces. As a consequence, the procedure can be carried out regardless of
the form of the constitutive relation and the geometrical relation. Please also note
that due to the explicit time integration procedure for advancing the solution in
the time domain, the nonlinear contributions are accounted for through additional
forcing terms in the iteration equation and no changes to the solution procedure
are required. A similar procedure is invoked for the inertial part of Eq. (3.4) or (3.5).
Namely, it is assumed that the second time derivatives across the four cells, at points
P1–P4, converge towards a common value.

3.3.2 Nonlinear Damage Models

The approaches of modeling the local type of the structures’ nonlinearity, namely
the nonlinear crack induced through the fatigue of the monitored material, are of
particular interest in the following section.

In general there are a number of techniques to exhibit the presence of the fatigue
crack in the obtained ultrasonic respond. In particular, one can find it through
such means as higher- [63–65] or sub- [66] harmonics generation, mixed frequency
responses [67] (e.g., nonlinear wave modulation spectroscopy), shift of resonance
frequency [8] (e.g., nonlinear resonant ultrasound spectroscopy), nonlinear surface
waves [68, 69], or dual frequency mixing [70]. All the above-mentioned methods
are surveyed comprehensively in [6]. However, among all the above-mentioned
techniques the higher- and sub-harmonics generation are in the advantageous
position, where the specific behavior of the crack interfaces upon the interaction
with the propagating ultrasonic wave can be observed. Solodov et al. [42] presented
an analytical description of the crack–wave interaction characteristics exhibited
on the generated higher-order harmonics. Two types of the cracks movement, i.e.
the breathing (clapping) of the crack interfaces and the shear transverse between
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Fig. 3.3 Schematic of a breathing crack phenomenon (a) along with the displacement signal
representations for ideal cases with and without the crack in the: (b) time domain; and (c) frequency
domain (adopted from [11])

the interfaces with the exhibited friction were investigated. The concept of these
phenomena is also presented in the following part of this section.

The breathing crack phenomenon described the movement of crack interfaces
forced by a propagating ultrasonic wave with large enough amplitude. In the results
a contact between the faces of the crack can be observed through the opening and
closing of the gap. A graphical presentation of the breathing pattern of the fatigue
crack is illustrated in Fig. 3.3a. The crack closes because of the compressional part
of the propagating wave, which reaches its interface. While the crack is closed, the
wave penetrates through it undisturbed and propagates further into the structure. The
tensile part causes the crack to open, resulting in the partial wave reflection.

The result of this phenomenon can be observed in the deformation of the
time signal and moreover, the generation of all higher-order harmonics in the
frequency domain (time and frequency visualization are shown in Fig. 3.3b and c,
respectively).

The second case of the crack faces movement is focused on the shear component
forced by the propagating ultrasonic wave. Due to the shear drive of the propagating
wave the faces of the crack are mechanically connected by the friction force
resulting through the interaction between the asperities (see Fig. 3.4) [42]. However,
if the amplitude of the shear component in the propagating wave is greater than the
contact static friction, the transverse motion (sliding) between the crack interfaces
with asperities is obtained.

In the result, the propagating shear wave is characterized by the cyclic transition
between the static and kinematic friction (known as the stick-and-slip interface
motion). Additionally, such a behavior leads the contact stress–strain relation to
follow a hysteric loop. The contact tangential stiffness is independent of the
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Fig. 3.4 Crack rough
interface in shear traction
(adopted from [42])

Crack interface

Shear wave

direction of the shear motion and causes stiffness variation twice for the input strain
signal period. A symmetrical nonlinearity is introduce by such a restraint and only
odd higher-order harmonics are to be expected in the structures respond.

3.3.3 Models Implemented Within the Finite Element Method
Framework

In the most recent years there are two approaches with which the modeling of the
crack-wave interaction is performed within the framework of the Finite Element
Methods (FEM). Namely, (1) the activation/deactivation of the crack element and
(2) the contact definition within the FEM solver based on the penalty method.

3.3.3.1 Activation/Deactivation Method

The former method is focused on activating or deactivating the chosen elements
depending on the settled criteria. In order to deactivate the elements, their stiffness
matrices are multiplied by the so-called reduction parameter, where the mass,
damping, loads, and other such effects are set to zero. Therefore, as a result of the
deactivation of the element the stiffness, mass matrices, and associated load will no
longer contribute to the assembled global matrices. It should be emphasized that
this approach does not remove the elements from the model, but keeps them instead
in the position with greatly reduced properties. Furthermore, upon the reactivation
of the elements, no new elements are added to the model, but instead the properties
of the elements are resumed to the original values. The assembled original global
equation will take the following form
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where with the deactivated elements, the global equation takes form as
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(3.32)
TheMe, Ce, Ke, andQe are the mass, damping, stiffness matrices, and external

load of the chosen elements, which undergoes the activation/deactivation process.
The η symbol is the reduction parameter, which can be set to a very small value
(usually η < 1e−6 [71]). And finally, � is a zero matrix or vector. Through the
analysis of Eqs. (3.31) and (3.32) it can be noticed, that the nonlinear effect is
impose by the periodical change of matricesM , K and C.

The conditions for opening/closing the gap were presented by Shen in [71],
where the status of the stress within the thin layer of elements simulating the
crack (whether it is a compressional or tensional stress) is taken into account.
Following the approach presented in the previous section, the tension imposed on
the elements leads to the opening of the crack (deactivation of the elements), where
the compression forces the crack to close (activation of the elements). Moreover, the
condition to initiate such a behavior takes form as [71]

(U2 − U1 < 0) ∩
(
ε =

∑n
1 εn

n
< 0

)
(3.33)

where U2 and U1 are the nodes displacements in the direction of the cracks opening,
located at the opposite edges of the chosen element. The ε is the average strain (also
in the direction of the opening) of the elements within the thin layer of the crack. In
Fig. 3.5 a depiction of the methods concept is presented. In Fig. 3.5a the closed state
of the crack is shown, where the elements of the crack layer have the same material
properties as the rest of the model, i.e. these elements are activated. In Fig. 3.5b the
opened state of the crack is exhibited through the deactivated elements specified by
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Fig. 3.5 Schematic of a breathing crack phenomenon using the deactivation/activation method:
(a) crack closed (elements activated); (b) crack opened (elements deactivated)

the user, i.e. the stiffness of these elements is reduced by factor η and the remaining
properties are set to zero.

3.3.3.2 Penalty Method

The next method which can be utilized to model the contact phenomenon within
the FEM framework is the penalty method. In general, this was explored to find the
solution to the constrained optimization problems and on the way of doing so, it was
applied to simulate the contact problems within the FEM framework as one of the
primary approaches.

In the physical world no penetration between the contact surfaces can be
observed. However, in the case of the FEM, such an event can occur in order
to ensure the equilibrium. Figure 3.6 illustrates the interaction between the two
surfaces simulated with the penalty method. When the node from the slave surface
penetrates the other fixed surface (i.e., master surface) during the ith step of the
simulation, an interface spring is enforced during the i+1th step between the slave
mode and the master surface to minimize the contact penetration.

Forces correlated to the interface spring is equal to the spring stiffness (knormal ,
kslip) multiplied by the distance of the penetration (�N , �T ). The import part of
the contact analysis is the choice of the stiffness parameter of the interface spring,
due to the fact that it has a big influence on both accuracy and convergence of
the solution. Through the analysis of the contact problem, it was shown in [71]
that a small amount of penetration can lead to more accurate solution. Therefore,
a large contact stiffness should be chosen. However, such a choice may lead to
ill-conditioning of the global stiffness matrix resulting with convergence problems.
Another choice may lead to decision of setting a lower stiffness value, which will
lead to a certain amount of the penetration and/or slip. As a result, the solution
is easier to converge, but also it will become less accurate. Thus, a compromise
has to be found for the value of the stiffness parameter in order for the penetration
and/or slip be to small enough giving accurate results and also for the solution to
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Fig. 3.6 Schematic of a penalty method: (a) before the penetration between contact surfaces; (b)
during the penetration between contact surfaces exhibiting contact tractions (adopted from [72])

be convergent. A common approach is to first chose the lower value of the stiffness
parameter which leads to a convergent solution and then examine if the penetration
of the contact surfaces is acceptable. Then one can increase the stiffness value to
the point where penetration distance is reasonable and the solutions between two
respective penalty coefficients do not change.

3.3.4 Models Within the Local Interaction Simulation
Approach Framework

As it was mentioned in the introduction of this chapter, the Local Interaction Sim-
ulation Approach (LISA) is receiving a burgeoning attention within the last decade
due to its attractive computational cost-effectiveness [59, 61, 62, 73]. Moreover, in
the most recent years LISA is also used to model the nonlinear behavior of the
damage. Several approaches to model such phenomenon were used within LISA
environment such as the activation/deactivation of elements [74] (whose working
concept is similar to the one presented for the FEM), spring model [11, 75] or the
penalty method [59]. Moreover, in [59] the Coulomb friction model between the
crack interfaces was introduced.

In the following part of this section the spring model and the Coulomb friction
model are reviewed.

3.3.4.1 Spring Model

The spring model was first introduced in [75] and as the name suggests, the
propagation of the ultrasonic pulse or wave in the structure is substituted by the
movement of the equivalent set of excited tensorial springs. The discretization
scheme and material definition in SM follow those of LISA. The major difference
between the two methods is found in the nodal displacement analysis. In a two-



3 Modeling and Numerical Simulations in Nonlinear Acoustics Used for. . . 129

Y

X

Y

X

i-1

2

7 5

43 8

h

P

P1

P1

P2 P2

P3

P3

P4

P4

66 1

2

7 5

43 8

6 1

j-1

j

j +

F

f

i +

j -

i -

Œ

Œ

Œ

Œ

i+1

j+1

(j+1) -

(i+1) -

(j-1) +

(i-1) +i

r4, l4, m4, ...

r4, l4, m4, ...

r3, l3, m3, ...

r3, l3, m3, ...

r2, l2, m2, ...

r2, l2, m2, ...

r1, l1, m1, ...

r1, l1, m1, ...

(a) (b)

Fig. 3.7 Discretization of the model using: (a) LISA (adopted from [21]); and (b) SM (adopted
from [75])

dimensional case in LISA, each nodal point belongs to four cells; while in SM,
each nodal point is divided into four sub-nodal points, each of which belongs to
a cell. Then, the relations between the sub-nodes are defined via tensorial springs
and used for force representation. Forces between the sub-nodes within one cell are
named external forces F and forces between the cells, introduced in order to keep
the continuity of the structure, are named internal forces f. A graphical comparison
of discretization between both methods is shown in Fig. 3.7.

Although the procedure of receiving the final iteration equations in the SM
method differs from the one of the LISA method, the same result can be achieved
for both methods, assuming that there is a perfect contact between the cells of the
structure. It will have a form of

wt+1 = 2w − wt−1 + (�t)
2

ρε2

4∑

k=1

F̄ k, (3.34)

where wt+1, w, wt−1 are the respective iteratives of displacement in time, �t is the
time discretization step, ρ is the sum of the densities of the cells around the node
for which the displacement values are calculated, ε is the size of the element, and∑4
k=1 F̄

k is the sum of the resultant forces from the four cells (k is the cell number)
surrounding the analyzed node. In that case, the structure taken into account is the
one presented in Fig. 3.7a and the displacements are calculated for node P in each
time step.

In order to introduce to the model an imperfect contact between the cells
interfaces, node P from Fig. 3.7a needs to be divided in two-dimensional case into
four sub-nodes P 1 − 4 as it is shown in Fig. 3.7b. This approach redefines the final
iteration equations into four independent ones, each for one sub-node in the form as
follows:
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w
(k)
t+1 = 2w(k) − w(k)t−1 + (�t)

2

ρε2

⎛

⎝F̄ k +
∑

l �=k
f̄
(pc)
kl

⎞

⎠ ,

(k, l = 1, . . . , 4) ,

(3.35)

where in order to maintain the continuity of the structure, the internal forces f̄ (pc)kl

for perfect contact are introduced in the form

f̄
(pc)
kl = ρkF̄l − ρlF̄k

ρ
, (3.36)

where ρk and ρl are the densities of the cells between which the internal force
is determined. F̄k and F̄l are the respective external forces of each cell. This
component allows to extend the model to use the imperfect contact between the
interfaces. It can be done by introducing a contact quality factor Qkl for each sub-
node through the relationship

f̄kl = Qklf̄ (pc)kl . (3.37)

TheQkl factor may vary between 0 and 1, which gives the possibility of modeling
different types of imperfections in the structure. The contact quality factor may
differ from one sub-node to the other and moreover, different values can be defined
for the x and y components of the internal forces.

In the earlier works, in order to model the nonlinear contact between the crack
interfaces, the changing state of the factor Qkl was defined by monitoring the sub-
nodes displacement in the horizontal direction (for the two-dimensional case)[75,
76]. The conditions are as follows:

u+
i − u−

i ≤ 0 Qkl = 1,

u+
i − u−

i > 0 Qkl = 0.
(3.38)

However, most recently a new way of defining the contact between the interfaces
was stated [11], where the normal stress component in the direction of the wave
propagation. Through such action the position of the sub-node in both direction (for
two-dimensional case) is taken into consideration. The opening/closing condition
takes form as

σxx ≤ 0 Qkl = 1,

σxx > 0 Qkl = 0.
(3.39)

Nonetheless, in both approaches the state of theQkl factor is calculated at every
simulation time step. Furthermore, when the compressional part of the propagating
stress wave reaches the crack surfaces, the perfect contact is imposed by settingQkl
as 1 where for the tensile part of the wave it is set to 0. Thus, through such an action
the nonlinearities are imposed into the propagating ultrasonic wave.
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Fig. 3.8 Stick-slip contact
condition based on the
Coulomb friction model
(adopted from [59])

Stick contact Slip contact

F s slip = mDFN

Fs max = msFN

Shear violation δs

Shear force F s

Finally, the contact quality factorQkl may vary between the nodes, which means
that the condition of opening and closing is considered separately and independently
for each node. This gives a flexibility for the crack interfaces to adjust to more
complex mode shapes of the propagating guided ultrasonic waves.

3.3.4.2 Coulomb Friction Model

The modeling approach allowing to imitate the slip motion between the crack
interface is reviewed in this section. The Coulomb friction model is implemented in
the framework of LISA, which was first done and presented in [59]. The condition
of enabling the Coulomb friction is illustrated in Fig. 3.8.

When the tangential force at the interfaces is below the critical value FSmax , the
crack interfaces follow the breathing motion, which was described in the previous
section. Moreover, through the process of varying contact, the tangential force will
linearly increase with the tangential violation δ2. In the result it will exceed the
critical value and a relative slip motion will be imposed into the model.

In order to simulate the slip motion within the LISA framework, an additional
term is added to the iterative Eq. (3.35) and the changed form is as follows:

w
(k)
t+1 = 2w(k) − w(k)t−1 + (�t)

2

ρε2

⎛

⎝F̄ k +
∑

l �=k
f̄
(pc)
kl + Fslip

⎞

⎠ ,

(k, l = 1, . . . , 4) ,

(3.40)

where

Fslip = QklQslipF̄slip. (3.41)

In Eq. (3.41) the Qkl is the contact quality factor introduced in the previous
section. It varies between 0 and 1 using the conditions shown in Eqs. (3.38) or (3.39).
Furthermore, theQslip is the friction quality factor which defines the presence of the
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slip motion between the interfaces. As in the case of the contact quality factor, the
friction quality factor also varies between 0 and 1. The condition to state its value
for the two-dimensional case is as follows:

FS > μSF
N Qslip = 1,

F S ≤ μSFN Qslip = 0.
(3.42)

The FS and FN are the tangential and normal forces at the crack interfaces, and
the μS is the static friction coefficient of the material.

Finally, it should be emphasized that the material properties of the cells remain
unchanged. Moreover, in the presented case the linear elastic relation is assumed and
the breathing crack with the slip friction motion is the only source of nonlinearity
imposed into the propagating ultrasonic wave. However, the nonlinear material
definition was introduced in the LISA framework [11, 22, 77, 78] which leads to
further investigation on the influence of the respective sources on the generated
nonlinearity exposed in the structure response signal.

3.4 Discussion and Conclusions

In this chapter selected aspects of numerical modeling of wave propagation in
nonlinear media have been outlined. The sources of nonlinearities were classified
into two groups, namely distributed and localized ones. In the former, geometrical
and material-related nonlinearities were considered, while in the latter damage-
related localized nonlinear sources were addressed. Theoretical background and
numerical modeling techniques have been summarized for the most frequently
considered types of nonlinear wave interactions.

Numerical models for nonlinear acoustics, as those given in this chapter, serve
as tools for predicting complex wavefields and studying wave propagation and
interaction with defects in complex structural components. For completeness,
however, guidelines for their application and parameters selection, allowing for
accurate results, should be given.

The time step size selection is determined by the time integration procedure
through the stability condition, as discussed in Sect. 3.3. The time step is therefore a
parameter that depends on material properties of the medium and space discretiza-
tion constants. For the latter, it is widely accepted that wavelength-based criteria
are adopted for adjusting characteristic element sizes. For bulk wave propagation
it is straightforward to determine the anticipated wavelengths at the fundamental,
higher harmonics and potential modulated frequencies. In real practical problems,
however, guided (opposed to bulk) wave propagation conditions prevail. For those
complex wavefield patterns, spectral characteristics should be used to evaluate
model accuracy.
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Fig. 3.9 Dispersion curves for a 2 mm copper plate for the hybrid and FE methods for�x = �y =
0.5 mm, superimposed with the exact solution [22, 33]

Figure 3.9 [22, 33] shows spectral characteristics, i.e. dispersion and excitability
curves, for a 2 mm copper plate. In the plots the exact (analytical) solution is
superimposed on the numerical spectral characteristics for a given discretization
of the model. Several important factors should be addressed here in the context
of nonlinear wave propagation. First, significant qualitative discrepancies can be
seen. Numerical dispersion curves, Fig. 3.9a, display periodicity in the wavenumber
domain. At the Nyquist wavenumber, the so-called Brillouin zone [33] exists, where
all guided wave modes group velocity vanishes. At the same time, significantly
increased amplitude response is observed in these frequency bands (Fig. 3.9b),
resulting in potential artifacts in numerical model responses. Also, negative group
velocities and other distortions can be observed. Subsequently, it can be noted that
the wavelength-based (or, equivalently, wavenumber-based) criterion is difficult to
use without a priori analyzing the dispersion curves. As the wavenumber-based
accuracy condition limits the vertical axis only, it can be seen that higher order wave
modes exist at high frequencies and propagate with significant errors. Specifically,
for nonlinear wave propagation higher harmonic waves can be excited as those
higher order modes. Dashed horizontal lines were plotted in Fig. 3.9a for the cases
of 5, 10, and 20 elements per wavelength. Auxiliary conditions should be therefore
employed to limit the effective frequency range for model application.

Waves propagating in nonlinear media give rise to the secondary wavefields
(higher harmonics, modulations, etc.). From perturbation solutions for those prob-
lems [9, 78, 79] it can be seen that the higher order forcing terms strongly
depend on wave amplitudes in the preceding orders of expansion. It is therefore
critical to predict wave amplitudes precisely, not only wave speeds. Amplitude-
frequency characteristics, known as excitability curves for the exact and numerical
solutions are shown in Fig. 3.9b. Clearly, much higher discrepancies are observed in
amplitudes than wavenumbers for the same excitation frequencies, suggesting that
much finer discretizations are required for accuracy for nonlinear wave propagation
numerical models.
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Chapter 4
Structural Damage Detection Based
on Nonlinear Acoustics: Application
Examples

Andrzej Klepka, Lukasz Pieczonka, Kajetan Dziedziech,
Wieslaw J. Staszewski, Francesco Aymerich, and Tadeusz Uhl

4.1 Introduction

Integrity of structural components is one of the most important problems in
engineering applications. The delicate link between performance and safety—that
cannot be compromised—is not easy to maintain in practice. This problem relates
not only to existing but also to newly developed structures. Existing and ageing
structures need to be maintained and inspected to guarantee safe operation. New
structures are often designed to include monitoring systems that can do the same
job. Whatever the scenario, maintenance has a major impact on safe operation of
structures and structural components. Effective maintenance procedures often offer
additional advantages, leading to minimized operational/repair costs.

There exist a number of different techniques that are being used for struc-
tural damage detection and material testing. Methods based on nonlinear vibra-
tion/acoustic phenomena are of special interest, gaining an increasing attention in
the scientific and engineering communities. The reason for this is that nonlinear
damage detection methods are usually more sensitive and are able to detect defects
earlier than methods based on linear properties of structures. These methods can
therefore complement the commonly used linear techniques.

Vibration, ultrasonic and acoustic nonlinear phenomena have been used for many
years to detect material defects and structural damage. A fatigue crack that opens
and closes under dynamic loading and alters natural frequencies is probably the
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best-known example of nonlinear vibration phenomenon. Vibration-based damage
detection methods are relatively well understood, but used mainly for global
detection of large damage severities. In contrast, physical understanding of many
ultrasonic and acoustic nonlinear phenomena is still not clear but their application
for local damage detection has been gaining a fast growing interest for the last two
decades. This is mainly due to the fact that relatively small defects exhibit strong
nonlinearities resulting from relatively small strain amplitudes in these applications.

The following sections discuss the theoretical background and more importantly
practical aspects of the nonlinear acoustic techniques that can be used for damage
detection in engineering materials. The major focus is on the nonlinear vibro-
acoustic modulation (VAM) technique.

4.2 Theoretical Background

Nonlinear ultrasonic and acoustic phenomena involve various classical and non-
classical effects. Classical nonlinear effects in ultrasonic wave propagation have
been investigated for decades [1–3] and also explored for damage detection [4,
5]. Classical effects are related to various material imperfections (e.g. intrin-
sic nonlinearities due to anharmonicity or imperfections in atomic lattices) and
contribute to accumulated distortion of propagating waves, leading to higher
harmonic generation. This effect is enhanced when additional imperfections—such
as localized fatigue cracks or distributed microcracks—are present in material.
Research work in this area also involves higher harmonic generation of Lamb waves
used for the detection of material nonlinearity [6] and damage [7]. Recent years
have demonstrated a growing interest of theoretical and applied research related
to various non-classical effects in ultrasonic wave propagation [8–20]. The non-
classical nonlinearities can be manifested in different ways. The scientific literature
reports many different effects such as: higher harmonics generation with amplitude
decay different than classical case, sinc modulation of spectral harmonic amplitudes,
frequency mixing, subharmonic generation or chaotic dynamics. These effects
result from various physical mechanisms including: the stress–strain hysteresis,
amplitude-dependent non-classical (i.e. non-frictional and non-hysteretic) dissipa-
tion, acoustic equivalent of the Luxemburg–Gorky (LG) effect, the contact acoustic
nonlinearity (CAN) and other phenomena that are often not easy to investigate and
explain [10, 13, 21–26]. All these nonlinear effects are remarkably enhanced in the
presence of contact-type and small-severity defects in materials.

There are many possible experimental arrangements that can be used to analyse
various non-classical nonlinearities. The majority of these arrangements are based
on the so-called pump-probe techniques that have been successfully used in
nonlinear acoustics [27–29]. The ‘pump-probe’ idea involves two simultaneously
applied dynamic fields. The ‘pump’ wave generates an intensive, high-amplitude
field in order to perturb material defects and the ‘probe’ wave is used monitor
changes induced in local elasticity.
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Fig. 4.1 Schematic presentation of the vibro-acoustic modulation (VAM) technique. Response
spectrum of: (a) undamaged structure, and (b) damaged structure

The nonlinear Vibro-Acoustic wave Modulation technique (VAM) that is fre-
quently used for damage detection belongs to this category. In most applications,
the weak high-frequency (HF) ultrasonic wave is used as the ‘probe’ wave whereas
the ‘pump’ wave involves the application of a strong, low-frequency (LF) excitation.
The frequency of the LF wave usually corresponds to modal structural resonances.
These two waves are simultaneously introduced to monitored structure, as illustrated
in Fig. 4.1. For an ideal/linear (undamaged) structure, the spectrum of the response
signal exhibits only two frequency components, i.e. frequencies of the LF pump and
HF probe waves, as shown schematically in Fig. 4.1a. When structures are nonlinear
(e.g. due to damage), the response spectrum reveals extra frequency components
such as higher harmonics and modulation sidebands around the HF component (Fig.
4.1b).

The measure of nonlinearity of the monitored system—that can be attributed
to the severity of damage—is often expressed in terms of modulation intensity.
The intensity of modulation R can be calculated as the sum of theAi

LSB and Ai
RSB

amplitudes of the i-th pair of left (LSB) and right (RSB) sidebands over the high-
frequency component amplitude AHF:

R =
∑n
i=1

(
AiLSB + AiRSB

)

AHF
(4.1)

This parameter is often used to discern damaged and undamaged samples and to
assess damage severity.



142 A. Klepka et al.

Other excitation scenarios in the VAM technique are also possible, including
impulse excitation to provide a broadband LF pump, or frequency sweep signals
instead of mono-harmonic signals for only the HF or both LF and HF signals [12,
30–33]. Structural response signals acquired during VAM experiments have to be
processed to extract damage-related features. Various signal processing workflows
and damage indicators have been used in practice and are reported in the literature.
The vast majority of these approaches analyses response signals in the frequency
domain, but some methods also focus on the instantaneous characteristics of the
response. The latter involves the application of the Hilbert or Hilbert–Huang
transforms [34]. The experimental examples described in the successive sections
will discuss some of these different approaches.

Finally, it is important to note that in the scientific literature the vibro-acoustic
wave modulation technique is also referred to as nonlinear wave modulation spec-
troscopy (NWMS) [10], the combination-frequency method or nonlinear acoustic
modulation (NAM) method.

The cross-modulation damage detection technique is one of the non-classical,
nonlinear acoustic methods. This technique is based on the acoustic equivalent
of the Luxemburg–Gorky (L–G) effect [35]. The L–G effect was first observed
in the early 1930s as an interaction between one radio station in Luxemburg and
another Swiss radio station in Beromunster [36]. The observation was that the
transmissions of the Swiss radio, received in Holland, appeared to be modulated
in the ionosphere by the radiation from the powerful Luxemburg station. The
same phenomenon was observed in the city of Gorky, where powerful Moscow
stations could be heard during the reception of radio stations located to the west
of Moscow. The phenomenon was related to radio waves propagation in upper
layers of the atmosphere, leading to the modulation transfer between a strong
amplitude-modulated wave and another weaker wave. It is assumed that the transfer
of modulation was caused by variable absorption of the ionosphere inducted by the
amplitude-modulated stronger wave [37, 38]. Later, very similar effects have been
also observed in damaged solids and granular media [13, 39].

When the structure with damage is excited simultaneously by two waves—i.e. the
‘pump’ and ‘probe’ wave (Fig. 4.2)—at the response spectrum, the sidebands around
the frequency related to the ‘pump’ wave can be observed in the response spectrum
together with sidebands coming from the modulation transfer. For linear/intact
structures, the component related to the ‘pump’ wave and the mono-harmonic wave
can be observed.

The mechanisms of the modulation transfer in this case are different from the
classical nonlinear effects and they are related to the inelastic part of the stress–
strain characteristic. Some studies [13, 39, 40] show also that the L–G effect could
be connected with the acoustic absorption due to thermo-elastic properties of a
crack. The acoustic absorption model is based on contact phenomena produced by
the pumping wave and properties of nonlinear medium. Strong interactions of the
acoustic wave and the crack are generated in the stress field of the contact area. This
results in thermal gradients. When the ‘pump’ wave (ω1 ± ωm) is introduced, the
area of contact interactions changes, leading to a change in the acoustic absorption.
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Fig. 4.2 The principle of Luxemburg–Gorky effect: (a) undamaged structure, and (b) damaged
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During this action, the response of the structure is temporally averaged over the
period of pumping wave carrier and causes the modulation processes. As a result, a
new signal with the frequency corresponding to

(ω1 − (ω1 ± ωm)) = ±ωm (4.2)

is generated and the ‘probe’ wave with the frequency ω2 is modulated with
the frequency ωm, coming from changes in the absorption. The physics staying
behind this modulation transfer has not been fully explained yet but there is some
experimental evidence showing amplitude-dependent, non-hysteretic dissipation
nonlinear mechanism related to the L–G effect [41, 42].
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4.3 Experimental Examples

This chapter demonstrates selected application examples in which nonlinear acous-
tics was successfully used for damage detection. After a general overview of appli-
cation areas and different experimental arrangements, case studies are described in
more detail. The reported examples reflect mostly the experiences of the authors,
gathered over many years of working with nonlinear acoustics, and by no means
cover all possible applications in this multidisciplinary, exciting field of research.
Wherever possible, the readers are directed to the relevant literature, where more
information and other applications can be found.

4.3.1 Overview

A general scheme for the experimental arrangements used in VAM testing is shown
in Fig. 4.3. The common components present in these experimental configurations
include: Data Management System (typically a personal computer with appropriate
software procedures to communicate with peripherals, orchestrate the measurement,
acquire, store and process measurement data); Signal Generator and Signal Ampli-
fier to drive the actuators. More differences can be found in the way the test sample
is excited and vibration responses are acquired.

On the excitation side, there are several possibilities ranging from impulse
excitation with an impact hammer through various contact transducers attached
to the test samples (including piezoceramics and electrodynamic shakers), to non-
contact excitation with lasers, speakers and air-coupled ultrasonic transducers.
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Fig. 4.3 General experimental set-up used for VAM testing
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Fig. 4.4 Excitation methods used for damage detection based on non-classical nonlinear acous-
tics. The solid box frames indicate contact techniques while dashed box frames indicate non-
contact techniques

Different possibilities are summarized in Fig. 4.4. Thus, the ‘LF actuator’ and ‘HF
actuator’, in Fig. 4.3, correspond to different excitation sources reported in Fig. 4.4.

On the measurement side, the most frequently used solutions to acquire vibro-
acoustic responses include: contact piezoceramic transducers and non-contact
measurements with laser Doppler vibrometers (LDVs) or scanning laser Doppler
vibrometers (SLDVs). These are included in the general scheme of the experimental
set-up, shown in Fig. 4.3, as the ‘Contact sensor’ or the ‘Non-contact sensor’.
Laser vibrometers offer many advantages. These lasers are broadband and allow
for flexible choice of measurement locations. This is very important when spatial
mapping of signal modulations for damage localization is needed. LDVs and
SLDVs are useful for laboratory experiments, where measurement capabilities and
flexibility outweigh costs of the system, whereas contact transducers are more useful
for field tests and real engineering applications, where less measurement flexibility
is necessary and costs need to be optimized.

It appears that nonlinear acoustics has been applied to damage detection for many
types of structures, materials and geometries. The scientific literature on this topic
is very extensive. It is virtually impossible to provide a comprehensive overview
of all these developments. Although the vast majority of applications, that can be
found in the scientific literature, are related to crack detection in metallic structures,
some attempts have been made to detect damage in other materials, e.g. composites,
concrete and bones. It appears that damage detection applications are scattered
and demonstrated by the Nondestructive Testing, Structural Health Monitoring,
Geophysics and Applied Physics research communities. Very few publications
discuss monitoring strategies with respect to excitation frequencies, sensor location
and damage severities [43, 44]. Table 4.1 refers to example references in this field.

The following sections discuss in more detail selected application examples, in
order to illustrate the experimental/modelling effort undertaken, signal processing
used and more importantly to demonstrate the potential of the method for structural
damage detection.
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Table 4.1 Application examples of non-classical nonlinear ultrasonic/acoustic methods for
structural damage detection

Type of damage Examples of references

Cracks in steel [35, 45]
Cracks in aluminium [14, 19, 46]
Delamination in composites [15, 17, 18, 20, 47, 48]
Debonding and kissing bonds [49, 50]
Impact damage in sandwich structures [15, 51, 52]
Cracks in glass [53]
Cracks in concrete, ceramics [11, 35]
Cracks in bones [54, 55]

Fig. 4.5 Crack detection based on non-classical nonlinear acoustics in a glass plate: (a) glass plate
instrumented with low-profile, surface-bonded piezoceramic transducers; and (b) power spectrum
revealing nonlinear VAM sidebands [53]

4.3.2 Glass

Soda lime glass material is commonly used in many industrial applications (e.g.
mirrors, optical windows or filters). Detection for manufacturing/operational crack
defects in such applications is an important issue. This example involves the
application of the VAM technique to a cracked glass plate.

The 150 × 375 × 6-mm glass plate was used in these investigations (Fig. 4.5a).
The Vickers indenter was used to introduce a crack in the middle of the glass plate.
Firstly, a 5-mm scratch line was made on the plate surface. Next, to prevent chipping
a 3 × 5-mm rectangular steel plate was put between the glass plate and cone-
shaped indenter tool. The sample was provided with surface-bonded piezoceramic
transducers; one stack actuator PI Ceramics PL-055.31 (5 × 5 × 2 mm) and two
round PI Ceramics PIC155 transducers (with diameter 10 mm and thickness 1 mm).

The glass sample was suspended to provide free–free boundary conditions. Next,
the ultrasonic wave with frequency 90 kHz was introduced to the structure using
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one of the PI Ceramics transducers. Simultaneously, the plate was excited using
the stack actuator. The LF excitation frequency was set as 380 Hz. This value
corresponds to one of the structural resonances. Signals used for excitation were
generated by a two-channel TTi-TGA 1242, 40-MHz arbitrary waveform generator
and next amplified by PI E-505 LVPZT piezo-amplifier. The amplitudes of low-
and high-frequency excitations were equal to 100 and 10 V, respectively. The
third piezoceramic transducer was used to measure vibro-acoustic responses of the
structure. The responses were acquired with a four-channel LeCroy Waverunner
LT264, 350 MHz, 1 GS/s digital oscilloscope.

Figure 4.5b shows a clear pattern of VAM sidebands produced by a nonlinear
crack wave. The normalized amplitude of these sidebands can be used to estimate
the modulation intensity and severity of damage investigated.

4.3.3 Aluminium

The following example involves the application of the VAM technique to a simple
cracked plate. The plate was made of aluminium 2024, i.e. the aluminium alloy
that includes copper as a primary alloying element. The most important mechanical
properties of this material are as follows: Young’s modulus—72400 MPa, Poisson
ratio—0.33 and mass density—2780 kg/m3. The 2024 aluminium is isotropic and
homogeneous. The experiments were performed using a flat plate of the size
equal to 150 × 400 × 2 mm. Firstly, the intact plate was investigated. Then,
the fatigue crack was introduced to this plate. The final length of the crack
reached 73 mm. The cracked specimen was freely suspended using elastic cords
to avoid nonlinearities from boundary conditions. Modal testing together with the
Crack Divergence Analysis was performed initially. The latter numerical modelling
analysis is intended to identify three basic crack modes:

• Crack mode-I—crack surfaces move directly from each other (the so-called
opening–closing mode);

• Crack mode-II—crack surfaces slide on each other; the direction of movement is
perpendicular to the leading edge of the crack (the so-called sliding mode);

• Crack mode-III—crack surfaces move relative to each other; the direction of
movement is parallel to the leading edge of the crack (the so-called tearing
mode).

Following this analysis, the crack modes were correlated with the corresponding
experimental mode shapes. Figure 4.6 illustrates three selected mode shapes that
exhibit three different dominant crack modes. Natural frequencies corresponding to
these mode shapes were selected as LF excitation frequencies.

When the VAM test was performed, the plate was excited at one of these
identified resonant frequencies (LF excitation) using an electromagnetic shaker.
Mono-harmonic excitation was used with the frequencies selected in the first step of
analysis. Amplitude levels for the LF mono-harmonic excitation ranged from 0.25
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Fig. 4.6 Three vibration modes selected for experimental analysis of VAMs [19]

Fig. 4.7 Crack detection in an aluminium plate using the VAM technique: (a) example of power
spectrum exhibiting nonlinear VAMs resulting from damage, and (b) modulation intensity for
selected vibration modes and different levels of the LF excitation [19]

to 10 V. Simultaneously, a 60-kHz constant amplitude sine wave (HF excitation) was
introduced to the plate using PI Ceramics PIC155 transducers. Figure 4.7a presents
an example of the response power spectrum. Figure 4.7b gives the modulation
intensity parameter R—as defined by Eq. (4.1)—for three selected vibration modes.

The results in Fig. 4.7 show that nonlinear modulation sidebands—due to
damage—can be observed in the response spectrum. However, different vibra-
tion (or crack) modes produce different modulation intensity. Additional tests
and analyses were performed in order to explain possible physical mechanisms
behind these results. The next test was performed to investigate the link between
the closing–opening action of the crack and the modulation intensity. A Leica
MVD1024E-40-CL camera was used in this test. The camera operating mode was
set to a ‘lock-in’ option to observe the crack closing–opening action [19]. The study
revealed that the crack started to open when the amplitude of excitation reached
about 6 V. The maximum opening distance of the crack faces was equal to 5 μm.
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Fig. 4.8 The experimental evidence illustrating the coupling between the thermal and strain fields:
(a) temperature vs. time, and (b) modulation intensity vs. time [19]

For the amplitudes lower than 6 V, the relative motion between crack edges was not
observed. When these findings are confronted with Fig. 4.6b, one can see that the
slope of the modulation intensity for the Mode I of the crack changes slightly in
the excitation range between 6 and 7 V. This behaviour corresponds to the opening
action of the crack. However, the modulation intensity R increases also for the lower
amplitude levels of the LF excitation. In conclusion, the modulations are stronger
when the closing–opening action takes place but the closing–opening action is
clearly not required to generate VAMs. Further experimental tests were performed to
analyse the temperature field in the vicinity of the crack when the VAM technique
was used for damage detection. A photon detector thermographic camera Cedip
Silver 420M was applied in this experiment. Constant amplitude mono-harmonic
LF and HF excitations signals were introduced to the plate for a total duration of
600 s. Temperature changes around the crack area and modulation intensity R were
monitored simultaneously in this test. The results are presented in Fig. 4.8.

The results illustrate that the modulation intensity increases when the temper-
ature near the crack increases for one of the analysed vibration (or crack) modes
that involves interaction between crack faces. The coupling between the strain
(modulated) field and the thermal field is clear, indicating that a dissipative nonlinear
mechanisms are important in the VAM technique to reveal damage. For more details,
the readers are referred to [19].

The cross-modulation technique, based on the acoustic equivalent of the LG
effect, has been applied on the same aluminium samples. In this case, two piezo-
ceramic transducers were attached to excite the plate. An Agilent DSO-X 3024a
oscilloscope was used as a pumping wave generator. The built-in Polytec PSV-400
generator was used to generate the ‘probe’ wave. The excitation frequencies ω1, ω2
and the modulation frequency ωn were selected following the initial experimental
modal analysis test. The high-voltage PAQ-G amplifier was applied to amplify
input signals. The Polytec PSV-400 laser vibrometer was used to acquire the vibro-
acoustic responses.
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Fig. 4.9 Examples of ultrasonic response power spectra from the cross-modulation technique used
for damage detection: (a) spectrum zoomed around the ‘pump’ wave for the undamaged plate, (b)
spectrum zoomed around the ‘probe’ wave for the undamaged plate, (c) spectrum zoomed around
the ‘pump’ wave for the damaged plate and (d) spectrum zoomed around the ‘probe’ wave for the
damaged plate [56]

A series of tests were performed to detect fatigue damage. Both plates were
simultaneously excited with the ‘pump’ and ‘probe’ waves. The modulation fre-
quency of the ‘pump’ wave was chosen arbitrarily as fmod = 15 Hz. The ‘probe’
wave amplitude was set up as constant and equal to 24 V. The ‘probe’ wave
amplitude ranged from 5 to 50 V, with the step of 5 V applied.

Selected examples of the response spectra are presented in Fig. 4.9a, b for the
undamaged plate and in Fig. 4.9c, d for damaged plate. The results clearly show that
when the plate is undamaged the ‘pump’ wave exhibits modulation sidebands (Fig.
4.9a), as expected. However, there is no modulation transfer between the ‘pump’
and ‘probe’ waves. In contrast, when the damaged structure is investigated a set of
modulation sidebands can be observed (Fig. 4.9d) around the main HF component
of the ‘probe’ wave. In this case, the modulation transfer from the ‘pump’ to the
‘probe’ wave is clearly visible.

The modulation transfer mechanism for the damaged plate can be also confirmed
when the modulation transfer index is investigated in Fig. 4.10. The results show
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Fig. 4.10 Modulation intensity vs. excitation amplitude for the ‘pump’ wave resonance frequency
equal to: (a) 1242 Hz, (b) 1464 Hz and (c) 3882 Hz

that the R parameter increases monotonically with the excitation amplitude for the
damaged plate. In contrast, the relevant parameter remains relatively unchanged for
the undamaged specimen when the excitation amplitude increases. When the highest
excitation level is used, the modulation intensity is about five times larger for the
damaged plate than for the undamaged plate. Similar qualitative and quantitative
results can be obtained for other excitation/modulation frequencies used in this test
(Fig. 4.10).

This study demonstrates that the modulation transfer, observed previously in
cracked glass and granular materials, can be also found in cracked aluminium
samples. The potential for structural damage detection applications is clear.

The VAM-based techniques are very efficient and can be used for different
types of structures. However, two major observations can be made from all these
investigations. Firstly, different vibration modes selected for the VAM test can
potentially lead to different damage detection results with respect to damage
sensitivity. The method works better for some values of the LF excitation frequency
(or mode shapes) and does not work properly for other LF excitation frequencies
(or mode shapes). Secondly, the proper frequency selection of the HF excitation is
also important and can significantly enhance or amplify damage-related nonlinear
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effects. The difficulties related with the selection of excitation frequencies in the
nonlinear VAM technique can be overcome when broadband excitation is used
simultaneously for the LF and HF excitation. It is well known that the chirp
excitation frequency varies as a function of time. Thus, when chirp LF and HF
excitations are used, time-varying vibro-acoustics responses are obtained. Then,
the classical Fourier analysis cannot be used to extract modulation sidebands. The
adaptive resampling procedure was proposed in [33] to transfer the vibro-acoustic
response from the time domain to the angle domain. In this method, the signal is
sampled with the angular sampling rate Fs = 1

�θ
, where �θ is the angular spacing.

When the signal with N samples is transformed, the order spacing is equal to

�O = 1

N�θ
. (4.3)

The adaptive resampling procedure guarantees that time-varying data are resam-
pled uniformly following equal angle spacing rather than equal time spacing. Details
of this procedure are explained in [33].

The proposed adaptive resampling procedure can be demonstrated using a
simple experimental example. Two linear LF and HF chirp excitation signals were
introduced to a cracked beam. The LF modulating wave was a linear chirp signal
with the frequency content ranging from 500 to 2000 Hz. The HF modulated chirp
was a linear chirp signal with frequencies changing from 60 to 240 kHz. The
duration time t for both signals was equal to 10 s. The ratio between LF/HF = 1/120
was constant over the whole observation period. Figure 4.11 presents schematically
the experimental set-up used for the crack detection experiment. Figure 4.12a shows
the vibro-acoustic response of the structure in the time domain. This response was
acquired with a LDV. The relevant amplitude spectrum—given in Fig. 4.12b—
demonstrates that nonlinear modulation sidebands cannot be extracted reliably from
this spectrum.

Therefore, the original response data was processed using the proposed adaptive
resampling procedure. The resulting order spectrum—presented in Fig. 4.13—
displays a clear pattern of sidebands around the carrier frequency component. After
the adaptive resampling procedure, the LF and HF swept sine chirp excitation leads
to the spectrum that clearly shows regular and strong modulation sidebands for the
cracked specimen. The response resulting from the combined LF and HF swept sine
chirp excitation can be directly transformed to the angle domain and then the Fourier
order spectrum of this signal can be used to detect damage.

In order to demonstrate the potential of this technique for damage detection,
the method was also applied to an intact (or undamaged) beam for comparison.
The experiment was performed for different levels of LF excitation signals ranging
from 0 to 0.7 V (the input voltage to the electrodynamic shaker driving the
beam). Then, the Fourier order spectra were estimated for all signals. Finally,
the modulation intensity R parameters were calculated. Figure 4.14 presents the
modulation intensity parameter R calculated for the intact and cracked beams, for
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Fig. 4.11 Experimental set-up used for crack detection based on the combined broadband LF and
HF excitation
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Fig. 4.12 Vibro-acoustic responses for the cracked beam: (a) time-domain data, and (b) amplitude
spectrum

Fig. 4.13 Order domain
amplitude spectrum for the
vibro-acoustic response given
in Fig. 4.12a, after the
adaptive resampling
procedure
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Fig. 4.14 Modulation
indices for the intact and
crack beams for various
amplitude levels of swept sine
chirp LF excitation

different driving amplitude levels. The results show that nonlinear modulations
increase with the excitation level for both specimens. However, the values of R
parameter are always significantly larger (about 10 dB for low-amplitude levels and
about 25 dB for high-amplitude levels of excitation) for the cracked beam. The two
plots are clearly separated and could be used for damage detection purposes.

In summary, the experimental approach, based on the proposed resampling
procedure, removes all the hassles related with the selection of the excitation
frequency and amplitude. No a priori knowledge on modal structural behaviour is
needed. The procedure is simple, does not require any initial experimental modal
testing and works relatively well for all amplitudes of excitation. A major step
towards simplicity and robustness is the advantage of the proposed approach. This
is exactly what would be needed when the method was used for damage detection
in engineering applications.

4.3.4 Composite Laminates

Applications of the nonlinear VAM technique have been also demonstrated in
materials with much more complex microstructure and mechanical properties.
Composite laminates are an example of layered, anisotropic and inhomogeneous
media that are not particularly easy to inspect for damage. The following paragraphs
discuss selected application cases where the VAM technique was used to detect
damage.

Firstly, a composite 420 × 120 × 2-mm plate, made of Seal Texipreg
®

HS160/REM carbon/epoxy prepreg layers and laminated with a [0/±45]2s layup,
was examined. The composite plate was monitored for damage of different sever-
ities, as introduced through low-velocity impacts with energies up to about 10 J.
The resulting damage (Fig. 4.15) ranged from barely visible damage, introduced
by an impact energy of 2.0 J (damage area = 104 mm2; residual indentation
depth = 0.08 mm), to near penetration, achieved by an impact energy of 10.1 J
(damage area = 558 mm2; residual indentation depth = 0.85 mm).
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Fig. 4.15 X-radiographs of impact damage for 2.04 J and 10.1 J impacts

Fig. 4.16 Schematics of the composite sample (left) and experimental clamping arrangement
(right)

The plate was instrumented with two PI Ceramic PIC 151 low-profile piezoce-
ramic transducers bonded at opposite sides of the damage area, as shown in Fig.
4.16. During the experiments, the composite plate was clamped at one end between
two steel plates by a 5-kN servoelectric testing machine, which allowed to monitor
and control the applied clamping force.

Preliminary tests were carried out on the intact plate to identify modal and
ultrasonic structural resonance frequencies that exhibited sufficiently high signal-to-
noise ratio responses for subsequent use in the VAM technique. Resonance modal
frequencies (LF) of 77,262 and 2934 Hz and acoustic frequencies (HF) of 17.63 and
98.04 kHz were finally selected as pumping and probing frequencies for the damage
detection tests.
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Fig. 4.17 Power spectra of signals acquired with 262 Hz pumping excitation and 17.63 kHz
probing excitation: (a) undamaged laminate; (b) laminate damaged with 2.04 J impact energy;
(c) laminate damaged with 10.12 J impact energy

Vibro-acoustic modulation tests were first carried out on the undamaged plate
and then on the plates as damaged by impact at increasing energy levels. In all tests,
the ‘pump’ wave was introduced to the plate at location B using an electromagnetic
shaker, while the ‘probe’ wave was introduced to the piezo actuator at location
A (Fig. 4.16). Sine waves were used for probing excitation, while either pure or
amplitude-modulated sinusoidal signals were used as probing waves; the response
signal was acquired from the piezoceramic transducer at position C.

Figure 4.17 gives examples of power spectra for a vibro-acoustic excitation
characterized by 262 Hz pumping frequency and 17.63 kHz probing frequency. The
graphs in Fig. 4.17 show that a pattern of sidebands appears around the probing
excitation frequency and that the amplitude of sidebands increases with increasing
damage severity. A significant drop in the amplitude of the acoustic excitation
frequency is also observed for the plate damaged by the 10 J impact with respect to
the intact plate. Similar trends were observed when exciting the plate with the other
pumping and probing frequencies selected was the preliminary phase, as well as
when an amplitude-modulated sinusoidal signal is used for pumping excitation. In
all testing configurations, the experimental results show that nonlinear modulation
effects are generated in the presence of damage and that the intensity of modulation
generally increases with the extent of damage. As an example, the graph of Fig. 4.18
plots the damage index DI, as obtained through an amplitude-modulated pumping
excitation, versus impact damage area; the DI is defined here as

DI (dB) = ∣∣Af0 − Asb
∣
∣
undamaged − ∣∣Af0 − Asb

∣
∣
damaged (4.4)

where Af0 is the amplitude (in dB) of the fundamental frequency of the probing
wave and Asb is the average amplitude (in dB) of the first pair of sidebands.

As visible in Fig. 4.17, sidebands around the probing frequency could be
observed even in the response of the plate in the undamaged state. The presence of
these sidebands may be related to intrinsic material nonlinearities or to contact type
phenomena, such as those associated to the specific boundary or support conditions
of the structure.
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Fig. 4.18 Damage index DI
vs projected delamination
area. An
amplitude-modulated sine
wave was used for pumping
excitation

The influence of the boundary conditions as a source of nonlinearity was
investigated by analysing the results of vibro-acoustic experiments carried out on
the composite plate when subjected to an increasing clamping force. The graphs of
Fig. 4.19 show that the amplitude of the first sidebands decreases and the amplitude
of the probing frequency increases with the clamping force for the undamaged
plate. On the other hand, opposite trends were observed for the damaged plate
thus suggesting possible differences in the nonlinear mechanisms activated by the
boundary contact phenomena with respect to those induced by the waves-damage
interaction.

4.3.4.1 Local Defect Resonance

The concept of the local defect resonance (LDR) is based on local stiffness loss due
to damage and the fact that every localized damage in a material will have a resonant
frequency that can be utilized for damage detection [57]. The problem of the LDR
frequency in application to the VAM technique is presented in this subsection.

As an example, two composite plates manufactured from carbon/epoxy system
(Seal HS160/REM) with dimension 150 × 300 × 2 mm were investigated. Firstly,
the specimens were ultrasonically C-scanned to exclude any manufacturing defects.
Next, a drop-weight testing machine was used to introduce impact damage. After
impact, the structure was ultrasonically C-scanned once again to illustrate the
severity of damage. The calculated hidden damage area was 326 mm2; no visible
evidence of damage was observed on plate’s surfaces.

Simultaneously, the Finite Element (FE) model of the damaged plate was
developed using the MSC Patran preprocessor in order to estimate modal properties
of the plate and perform delamination divergence analysis [20], to find the possible
scenarios of relative movement between delamination plies. In theory, two possible
scenarios are assumed: (1) out-of-plane motion when two delaminated surfaces
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Fig. 4.19 Effect of clamping force on the amplitude of the fundamental frequency of the probing
wave and of the first sidebands for the undamaged and damaged (10.1 J impact energy) plate.
Pumping frequency = 77 Hz; probing frequency = 17.63 kHz

move creating the gap (Fig. 4.20a); (2) in-plane motion when delaminated surfaces
are in contact and move relative to each other (Fig. 4.20b). In practice, both
movements are mixed; however, in this case the dominant type of motion for a given
mode shape was investigated.

The second task of numerical modelling was to find the frequency which
corresponds to resonance of damage (LDR). For this reason, the frequency range
of simulation was extended to 50 kHz, and geometry of the defect was introduced
to the numerical model. The results of the analysis are presented in Fig. 4.21c.

Following these results, two mode shapes were selected for further analysis,
i.e. the 5th vibration mode (325 Hz) displaying the dominant out-of-plane motion
and 7th vibration mode (460) Hz displaying the dominant in-plane motion. The
LDR frequency—estimated numerically as 29, 852 Hz—was selected as the HF
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Fig. 4.20 Delamination motion scenarios: (a) out-of-plane motion, and (b) in-plane motion

Fig. 4.21 Contribution of two distinct delamination behaviour scenarios for the first seven
vibration mode shapes: (a) dominant opening and closing action (“breathing”) for the 5th vibration
(325 Hz), (b) dominant in-plane sliding action (frictional motion) for the 7th vibration mode
(460 Hz) and (c) the 364th vibration mode (29,852 Hz) exhibiting the LDR behaviour

frequency. Next, the experimental validation was performed to verify the proposed
model. Comparison of the numerical and experimental results is presented in
Fig. 4.22.

The frequencies of the modes selected numerically and validated experimentally
were chosen for further analysis. Once the VAM test was performed for the
undamaged and damaged composite plate, power spectra were estimated for the
vibro-acoustic acoustic response signals in order to reveal the possible modulation
sidebands. Figure 4.23 presents examples of power spectra zoomed around the HF
excitation frequency.

Finally, the R parameter representing the intensity of modulation was calculated
for different levels of excitation amplitudes. The results are shown in Fig. 4.24.
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Fig. 4.22 Comparison of numerically predicted (a–c) and experimentally estimated (d–f) mode
shapes of the investigated laminate damaged plate

Fig. 4.23 Examples of zoomed vibro-acoustic response power spectra for: (a) undamaged plate,
and (b) damaged plate

The presented results show that for the fifth vibration mode (Fig. 4.24a, c) the
difference in intensity of modulation between undamaged and damaged sample is
still significant for both HF excitation frequencies. However, for larger excitation
amplitudes the R parameter starts increasing more sharply when the HF frequency
does not correspond to the LDR (Fig. 4.23a). It is also clearly visible that for the
HF = 30,095 Hz ultrasonic excitation—corresponding to the LDR—the modulation
intensity parameter is about five times larger than when the 43 kHz HF excitation
(selected a priori) is used. Two main conclusions can be made when the results
are analysed. Firstly, the out-of-plane movement of delaminated area produces
higher modulation than the in-plane movement in the case investigated. Secondly,
the intensity of modulation is significantly amplified when the LDR frequency is
applied for ultrasonic excitation.



4 Structural Damage Detection Based on Nonlinear Acoustics: Application Examples 161

Fig. 4.24 Intensity of modulation vs. low-frequency excitation amplitude level: (a) 5th vibration
mode used for the LF excitation and HF = 43 kHz, (b) 7th vibration mode used for the LF
excitation and HF = 43 kHz, (c) 5th vibration mode used for the LF excitation and the LDR
frequency used for the HF excitation and (d) 7th vibration mode used for the LF excitation and the
LDR frequency used for the HF excitation

4.3.4.2 Vibro-Acoustic Modulation-Based Damage Imaging

The application examples presented in the previous sections demonstrated so far
the presence of damage (damage detection). The following paragraphs present an
approach that can be used to localize or “image” damage. The standard VAM
technique is used in this approach. In principle, the proposed technique is similar to
the previously used spatial mapping-based methods [58–60]. However, in contrast
to higher harmonics and subharmonics analysis, the nonlinear modulation sidebands
are used for damage localization.

It is well known that nonlinear higher harmonic generation is highly localized
and particularly strong in the vicinity of damage, as has been documented in the
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literature [58–61]. More recently, it has been also demonstrated that nonlinear
modulation sidebands exhibit the same localization property. Therefore, sideband
imaging—rather than higher harmonic imaging—can be used to localize damage
without the need to increase the measurement bandwidth to the higher harmonics
regime [62]. The procedure proposed for damage localization is similar to the
procedures based on higher harmonics imaging known from the literature. That is,
surface-bonded piezoceramic transducers are used for the LF and HF excitation and
a laser vibrometer is used for response measurements. However, in contrast to the
typical damage detection test, responses are acquired for locations at a predefined
grid on the entire surface of monitored specimens using the scanning capability of
laser vibrometer. Power spectra from measured responses are calculated to reveal
modulation sidebands at frequencies equal to HF ± n·LF components, where n is a
positive integer. The modulation intensity—based on the amplitude of sidebands—
is then analysed for all scanned points to reveal areas of large modulation intensities
due to structural damage. In the proposed case, the modulation intensity defined by
the mean value of the first modulation sidebands amplitudes is mapped.

Experimental example presented in this chapter involved the same composite
specimen as described in the preceding paragraphs. The frequency of the LF
excitation was equal to 491 Hz and the frequency of the HF excitation was equal
to 50 kHz. The results of the imaging procedure can be seen in Fig. 4.25.

Fig. 4.25 Comparison of power spectra measured at two different and indicated locations on the
plate for excitation frequencies equal to LF = 491 Hz and HF = 50 kHz [62]



4 Structural Damage Detection Based on Nonlinear Acoustics: Application Examples 163

Figure 4.25 shows the comparison of two power spectra measured at two
different locations on the plate for excitation frequencies equal to LF = 491 Hz
and HF = 50 kHz. The results show that the level of modulation sidebands is much
higher around the damage location if compared with the healthy (undamaged) area
of the plate. Firstly, the potential for damage imaging is evident from this example.
Secondly, the results clearly indicate that a proper choice of the measurement point
for the classical nonlinear VAM testing is very important. Although the modulation
sidebands can be seen in all measurement points across the plate, the amplitude level
of sideband components is significantly different depending on the location on the
plate. As a consequence, an inappropriate choice of measurement location may lead
to false-negative damage detection.

4.3.4.3 Triple Correlation for Damage Detection in Composite Structures

First investigations of the triple correlation (TC) were made in the early 1960s for
examining non-Gaussian random processes. The main applications of the technique
mainly concern statistical observation of ocean waves and laser spectroscopy. From
mathematical point of view, the auto-triple correlation can be defined as [63]:

c (τ1, τ2) =
∫
x(t)x (t + τ1) x (t + τ2) dt (4.5)

where x(t) is time-domain signal and τ 1 and τ 2 are time delay intervals. When τ 1
and τ 2 are zeros, the triple correlation remains in proportion to the autocorrelation
function. It means that information on amplitude and phase of the signal is still
available. It is important that the time delay intervals τ 1 and τ 2 should correspond
to frequency values in the spectral domain. Then, the Fourier transform of the auto-
triple correlation becomes the bispectrum and can be written as

B (f1 + f2) = X∗ (f1 + f2) X (f1) X (f2) (4.6)

where X(•) means the Fourier transform of x(•) and symbol “*” indicates the
complex conjugate value. This function is very often used to find nonlinear
interactions in signals due to quadratic phase coupling.

This signal processing method was used to analyse response signals recorded
during the VAM test. In this case, only harmonics of the low frequency were
analysed. Firstly, the delamination divergence numerical test was performed to
characterize relative motion of delaminated plies. Based on Finite Element (FE)
model, the relative displacement in-plane and out-of-plane were investigated. Next,
the experimental modal test was performed. For further testing, the mode shapes
fulfilling the following condition were investigated:
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Fig. 4.26 Investigated mode shapes; (a) 1st—79 Hz, (b) 4th—334 Hz, (c) 5th—365 Hz and (d)
8th—736 Hz

• Should exhibit strong out-of-plane movement of delamination,
• Should exhibit strong in-plane movement of delamination,
• Should exhibit weak (i.e. very little movement) of delamination.

The modes 1st, 4th, 5th and 8th—presented in Fig. 4.26 were selected for VAM
test.

In the last stage of testing, the triple correlation coefficients were calculated and
the results are presented in Fig. 4.27.

For Mode 1 (Fig. 4.27a), where the relative movement between delamination
interfaces is minimal, the TC coefficient has very low values and increases
insignificantly with excitation amplitude. The small difference is observed after the
excitation amplitude reaches 50 V. For Mode 4 (Fig. 4.27b), difference between
damaged and undamaged plate in TC values is also small. In both above cases,
the out-of-plane motion was dominant. The coefficients are almost constant for
all excitation amplitude levels but generally for the damaged plate the TC values
are larger. This indicates that weak nonlinearities in the analysed responses are
rather not related to damage since the relevant nonlinear parameters do not increase
significantly with excitation amplitude levels and a similar behaviour occurs for
both, i.e. damaged and undamaged, plates. Here, material nonlinearities could be
involved. The results for Mode 5 (Fig. 4.27c) show that the TC coefficient increases
monotonically until the 50 V excitation amplitude level is reached in the case
of damaged specimen. In contrast, the relevant parameter remains almost at the
same level for the undamaged plate. The relevant characteristics for the undamaged
and damaged specimens are also well separated. Large values of triple correlation
coefficient indicate that there is a strong correlation between the fundamental
frequency and its higher harmonics. Here, higher harmonics are clearly related to
damage. When the plates are excited with the frequency of Mode 8 (Fig. 4.27d),
the analysed characteristics for the undamaged and damaged plates are also well
separated for all excitation amplitude levels. The above-presented results show
that:

• The nonlinear effects are mainly related to delamination movements. This
behaviour is particularly observed when weaker vibration modes (selected on
the basis of delamination divergence analysis) and low-excitation level is used.
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Fig. 4.27 Triple correlation coefficients for damaged and undamaged plates: (a) 1st vibration
mode; (b) 4th vibration mode, (c) 5th vibration mode and (d) 8th vibration mode [63]

• The in-plane motion of the delaminated plies produces the most significant
nonlinear effects. In the case of out-of-plane motion (or very low relative motion
between delamination surfaces), nonlinear effects are much weaker. Thus, the
mechanism of higher harmonics generation is related to dissipation (friction
and/or hysteresis) rather than to elasticity.

• For higher amplitude levels of excitation, the stronger nonlinear effects are
produced but unfortunately these excitation levels may also lead to intrinsic
nonlinear effects that are not related to damage.

4.3.5 Composite Sandwich Panels

4.3.5.1 Chiral Core Sandwich Panel

The chiral composites are the new type of structures that could be used for many
potential engineering applications. In these structures, the chirality is used to obtain
auxetic cores with negative Poisson’s ratio.
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Fig. 4.28 Chiral sandwich composite panel: (a) general view with the location of piezoceramic
transducer used for high-frequency ultrasonic excitation, (b) vires of anti-tetrachiral core joined to
composite plates and (c) geometry of anti-tetrachiral topology [51]

The investigated chiral composite sandwich panel (Fig. 4.28) was manufactured
using a truss-core with an anti-tetrachiral configuration (Fig. 4.28b). The skin was
made with two quasi-isotropic composite plates. The aspect ratio α of the cells was 6
and relative thickness β is 0.4. The size of the unit cell L was 25.4 mm, with a gauge
thickness of 25 mm. The parameters of the anti-tetrachiral topology are presented
in Fig. 4.28c. The honeycomb panel was made of 5 × 3 unit cells. The PI Ceramics
PIC155 transducers were fixed to the skin of the structure, as shown in Fig. 4.28a.

The method based on nonlinear vibro-acoustic wave modulations is used in this
case for damage detection. The low- and high-frequency excitations are introduced
to the chiral structures simultaneously. Experimental modal testing was performed
initially to obtain modal properties of the chiral panel and select values of LF
excitation used in nonlinear acoustic tests [51]. The frequencies of three vibration
modes (Fig. 4.29b), i.e. 1512 Hz, 2363 Hz and 3801 Hz, were selected for damage
detection application in these tests. The first frequency was related to global torsion,
the second frequency led to flexural deflection and the third frequency exhibited a
combined torsional and flexural movement.

Drop-weight impact tests were carried out to introduce impact-type damage to
the composite structure. Three impacts with energy 2, 9 and 30 J were performed to
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Fig. 4.29 Experimental modal analysis results for the composite chiral sandwich panel: (a)
frequency response function magnitude, and (b) selected vibration modes

introduce damage in the middle of the top composite skin. After every impact, the
modal analysis and the VAM technique were performed.

A series of VAM tests were carried out to analyse the intensity of modulation
for various LF excitation amplitude levels. The HF excitation amplitude was kept
constant during these tests. Finally, the modulation intensity was estimated using
the R parameter, as defined by Eq. (4.1).

The results presented in Fig. 4.30 give the R parameter for three selected
vibration modes. The results show that for the undamaged panel the intensity of
modulation does not increase when the excitation amplitude increases. Similar
behaviour can be observed for the third vibration mode and all impact energies
investigated (Fig. 4.30c). For the first vibration mode, intensity of modulation
increases significantly but only for the damaged chiral panel after the 30 J impact
(Fig. 4.30a). When the second vibration mode is analysed, the modulation intensity
increases with the excitation amplitude level for all impacts (damages) investigated.
The weakest growth can be observed for the 2 J impact. For the 9 J impact, the
R parameter increases significantly when excitation amplitude reaches 17 V. For
the 30 J impact, the R parameter increases rapidly even for very low-excitation
amplitude levels.
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Fig. 4.30 Intensity of modulation vs. low-frequency excitation: (a) 1st vibration mode, (b) 2nd
vibration mode and (c) 3rd vibration mode

In summary, the results show that it is possible to detect damage in complex
chiral structures when the nonlinear VAM technique is used. However, the proper
selection of excitation parameters is the key element in these investigations. The
results are satisfactory only for the second vibration mode. For this mode, even after
the relatively small 2 J impact the modulation intensity increases monotonically
with the excitation amplitude level.

4.3.5.2 Foam Core Sandwich Panel

Another type of composite sandwich panels that were investigated with VAM
contained a foam core. Closed-cell rigid foams allow to produce comparatively
low-priced high-integral sandwich components having a complex geometry in
terms of a curved and a variable lateral cut. The dimensions of the samples
were 400 × 120 × 13.2 mm. The external panels were made of Seal Texipreg
HS300/ET223 prepreg system. Ply stacking sequence was [0/903/0]. The thickness
of the face laminate was 1.6 mm. The core of the panel was a closed-cell polyvinyl
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Fig. 4.31 Composite sandwich panel investigated with the VAM technique: (a) top view, and (b)
details of the sandwich structure [52]

chloride (PVC) foam DIAB Divinycell HP60. The total thickness of the core was
10 mm. Figure 4.31 presents the panel.

For one of the panels, the impact test with the energy of 9.8 J was performed
to produce a barely visible impact damage (BVID). The area of the damage was
estimated as 640 mm2. The VAM tests were performed on both, i.e. damaged
and healthy/reference, panels using the same experimental set-up. The LF and HF
excitations were introduced using the PI Ceramic PL055.30 piezoelectric stack
actuator and PI Ceramic 15 × 1-mm piezoelectric disc, respectively. The excitation
signals were generated by an Agilent 33522A signal generator and amplified by an
EC Systems PAQG amplifier. Structural responses were measured using a Polytec
PSV400 SLDV. The value of the selected LF excitation corresponded to the first
bending mode of the sample (approximately 700 Hz). The HF excitation was
arbitrarily selected as 40 kHz. The LF excitation amplitude was monotonically
increased in the range from 10 to 70 Vp-p with step 10 Vp-p.

The results of the experimental works are presented in Fig. 4.32. The calculated
response power spectrum for the undamaged sample (Fig. 4.32a) shows no mod-
ulation sidebands around the high-frequency component. In contrast, the spectrum
in Fig. 4.32b—calculated for the damaged panel—exhibits modulation sidebands
around the HF component. Figure 4.32c shows the intensity of modulation parame-
ter R (calculated from Eq. (4.1)) for the undamaged and damaged panels and various
LF excitation amplitudes. The results show that the damaged and undamaged condi-
tions can be easy distinguished. The presented method has one more advantage, as
already mentioned in the introduction to this chapter. For industrial applications, the
experimental set-up can be easily simplified. The expensive SLDV can be replaced
by a piezo-ceramic transducer, to obtain an effective health monitoring system. The
presented example shows that the application of VAM technique is easy to use and
does not need highly specialized equipment or/and signal processing techniques.
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a) b) c)

Fig. 4.32 Results of the VAM technique used for a composite sandwich panel: (a) response power
spectrum for the undamaged panel, (b) response power spectrum for the damaged panel and (c)
modulation intensity for different LF excitation amplitudes; the results are given for the undamaged
(solid line) and damaged (dashed line) panels [52]

4.4 Final Remarks

Recent years have demonstrated the growing interest in the application of classical
and non-classical nonlinear techniques for damage detection. The scientific liter-
ature related to this topic is voluminous. This chapter presented an overview of
applications related to non-classical nonlinear acoustic phenomena used for damage
detection and localization. The major focus was on the application of VAM. These
applications were demonstrated for different materials, structural components and
types of damage.

In particular, the VAM technique was discussed in detail. The technique provides
the first level of SHM capability and allows obtaining global information about
the presence of damage in the structure. Some of the VAM techniques also allow
damage localization and estimation damage size. This means that the technique
can detect damage in the structure and can be also used for continuous structural
monitoring. Additionally, experimental set-up and hardware necessary to implement
VAM techniques is fairly simple. It needs only three piezo-ceramic transducers: one
for low-frequency excitation, one for high-frequency excitation and one for signal
acquisition. These three transducers can be fixed to the structure or also integrated
in a single VAM sensor. Over the last 20 years, a lot of progress has been done in the
transducer development field, signal processing techniques and theory related to the
VAM phenomena. We also demonstrated that the VAM technique can be extended
to provide damage localization using sidebands imaging. Despite the advantages,
the technique still faces challenges. One of the most important is to separate the
intrinsic nonlinearities from that observed in nonlinear responses. These problems
have been discussed many times in the literature but still a lot of research work is
necessary to introduce VAM techniques to practical engineering applications.

The examples presented lead to the following conclusions:

• Damage detection methods based on nonlinear acoustics (ultrasonic wave prop-
agation and wave interaction with damage) have been successfully used to reveal
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different types of structural damage in different materials. However, the vast
majority of these applications relates to laboratory demonstrations rather than
to real field tests and engineering applications.

• The results presented illustrate that the proper selection of parameters in nonlin-
ear acoustic tests is essential for reliable damage detection. Unfortunately, very
little studies have been performed to establish reliable monitoring strategies with
respect to excitation frequencies/amplitudes, sensor location, signal processing
or uncertainty analysis. It is clear that major research effect is also required
to distinguish between damage-related and non-damage-related (or intrinsic)
nonlinear effects in order to avoid false-positive and false-negative damage
detection.

• Non-contact excitation/measurement, damage visualization and hybrid
approaches (i.e. approaches that combine different nonlinear techniques) are
the major recent trends in structural damage detection applications based on
nonlinear acoustics.

• The potential of nonlinear acoustics for nondestructive evaluation is very large.
The presented examples together with provided references indicate that signifi-
cant progress has been achieved so far in this field. This progress gives hope that
the application of nonlinear acoustic methods for structural damage detection
and nondestructive testing is closer than ever and will be possible in the near
future.
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Chapter 5
Nonlinear and Hysteretic Constitutive
Models for Wave Propagation in Solid
Media with Cracks and Contacts

V. V. Aleshin, S. Delrue, O. Bou Matar, and K. Van Den Abeele

5.1 Introduction

Only a tiny part of the materials produced, treated, or used by mankind are free
from any type of damage, defects, or internal structural features. Defects are
often categorized into three types: 1D dislocations (e.g., irregularities, impurities,
etc.), 2D internal contacts (e.g., cracks, delaminations, etc.), and 3D defects (e.g.,
pores, voids, etc.). All these defects particularly influence mechanical and physical
properties of a material. However, internal contacts impact materials performance
in the most crucial way. The reason lies in the inherent instability of the process of
cracking which can be illustrated using the following considerations. Suppose that
an elastic continuum contains a circular crack of zero thickness, and that a uniform
tensile stress σ is applied to each face of the crack. Then the critical stress σ 0 at
which the crack starts growing equals

σ 2
0 = πEG

2R
(
1 − ν2

) , (5.1)
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where G is the surface energy (i.e., the energy needed to form a unit area of free
surface), and E andν are, respectively, Young’s modulus and Poisson’s ratio of
the material [1]. The instability effect is explained by the inverse proportionality
to the crack radius R. Indeed, if the applied stress reaches σ 0, the crack radius
increases, and the new critical stress becomes even less than the applied one, so
that the cracking process continues until the whole sample fails. For this reason, it is
extremely important to develop realistic models that allow the mechanical behavior
of solids with internal contacts to be accurately described.

The presence of internal contacts in a material is the reason for contact acoustic
nonlinearity that appears at both normal and tangential (relative to the crack faces)
loading of the crack. During normal straining the elastic reaction of an open and
closed crack is different. The tangential loading engenders friction and associated
hysteretic effects. In addition, friction described via the Coulomb friction law
couples normal and tangential behavior. A successful theory for contact acoustic
nonlinearity should appropriately deal with those issues.

Theoretical and numerical modeling approaches for elasticity in materials with
internal contacts address at least two situations: distributed damage or localized
damage. In the first case, the solid contains a large number of cracks whose exact
positions are not known and not important. Typical examples of this class are geo-
materials or construction materials consisting of consolidated grains with imperfect
bounds between them, or fatigued metals. In this case, contact nonlinearity shows
up as nonlinear or, frequently, hysteretic stress–strain relationships that results from
a cumulative influence of the crack ensemble or crack network. Materials belonging
to the second class contain only a few cracks whose positions are important. Since
the internal contacts represent unique or rare “events” in the material, a statistical
analysis is not suitable in that case. The response strongly depends on the geometry
and locations of the cracks so that numerical models of finite element type (or
similar based on a detailed meshing of the sample) are most appropriate. An internal
contact constitutes an additional boundary at which proper boundary conditions
should be defined. In a general case, these boundary conditions are neither of
the first type (known displacement) nor of the second type (known stress, with a
particular exception of open cracks when stress-free boundaries can be assumed),
but of the third type, representing a link between contact displacements and stresses.
Therefore, in this situation, contact acoustic nonlinearity originates from nonlinear
load–displacement relationships at contact faces.

The modeling approach described in this chapter is related to the second
class of materials (i.e., materials with internal contacts). To adequately reflect
the physical nature of contact interactions, the model should take into account
friction. Nowadays, there is a large and growing number of numerical contact
mechanical models [2, 3] capable of solving frictional contact problems in a
variety of situations, including shift, rolling, and torsion movement types. Usually
they are applicable to general (non-plane) contact geometries and require detailed
meshing of the contact zone. At the same time, the case of wave propagation in
materials with localized damage-induced contacts has two essential features. Firstly,
contact surfaces obtained by cracking are typically rough which means that the
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microscopic details of the contact geometry are not known and are too complex
to be fully represented. Secondly, common acoustical signals, such as sweeps and
wave packages, can include high-frequency components and therefore require a
huge number of time discretization points.

These arguments motivated the development of an alternative approach based
on a multiscale consideration and semi-analytical contact mechanical solutions
sketched in the next section.

5.2 Multiscale Approach and Three Contact Regimes

The numerical tool elaborated in this chapter consists of two parts: the contact model
and the solid mechanics unit. The solid mechanics unit is created using available
finite element software (COMSOL in our study). The contact model, which has to
provide appropriate boundary conditions for the solid mechanics unit, is described
in Sects. 5.4–5.7 of this chapter.

The account for interface roughness is essential for the proposed approach, as it
leads to a different formulation of the problem when compared to the case of ideally
flat crack surfaces that are subject to the Coulomb friction law. In the latter case,
depending on the loading conditions, one of the three following cases can occur
at each pair of close points located at opposite faces. First, if contact between the
surfaces is lost, the local normal (σ ) and tangential (τ ) stresses both equal zero,
while local normal and tangential displacements between this pair of points are
defined by external conditions and not by the crack model itself. Second, in the case
where |τ | < μσ (μ is the coefficient of friction), the normal displacement equals
zero and the tangential one does not change, i.e., the stick event occurs. Finally,
when |τ | = μσ the event of slip takes place. In that situation, some tangential
displacement is developed which depends on external conditions, whereas the
normal displacement still equals zero. It is important to note that the case |τ | > μσ
is prohibited by the Coulomb friction law. In addition, the normal displacement
can be negative (corresponding to a locally open interface) or equal zero (in the
presence of contact), but is never positive since ideally flat surfaces do not have any
asperities receding under load (here and in what follows we assume positive normal
characteristics in compression). Thus, the Coulomb friction law for flat contact faces
does not provide an explicit load–displacement relationship that could be used as the
boundary condition by the solid mechanics part.

The fact that displacements cannot be calculated directly from loads in the
framework of the traditional flat-surface approach suggests the idea of flipping the
arguments and calculating loads for given displacements. As we will see, this is
possible when the faces are not flat, but have some nontrivial surface relief. In this
case a pair of close macroscopic points is replaced by a mesoscopic cell (see Fig.
5.1a, b) which should be, on the one hand, small enough to assume macroscopic
elastic fields to be uniform within each cell and, on the other hand, sufficiently large
to contain a lot of microscopic geometric features (asperities). In each mesoscopic
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Fig. 5.1 Illustration of the proposed multiscale contact model. (a) Macro-level of the sample. (b)
Mesoscopic cell in which contact forces and displacements are defined. (c–e) Contact regimes
illustrated at the microscopic level (asperities): (c) contact loss, (d) partial slip, (e) total sliding

cell, a vector loading force and vector displacement is defined. The force has normal
and tangential components, N and T in the considered 2D case, which correspond
to macroscopic normal and shear stress, respectively. In the proposed model, the
time-independent Coulomb friction law is postulated and the inertial reaction of
asperities and surrounding material layers is neglected. In this quasi-static situation,
the external force is equilibrated by the contact force, i.e., N and T also have the
sense of the contact force components. The normal and tangential displacements
(Fig. 5.1b) are denoted a and b, respectively, and are related to bulk parts of each
body, so that the total displacements equal 2a and 2b. In order to construct a valid
contact model, the forces N and T have to be calculated for arbitrary displacements
a and b. As friction produces memory effects, the forces will also depend on the
history of the displacement components.

We assume that the normal components are linked by a biunique function
N = N(a) which, in particular, means that adhesion, plasticity as well as dissimilar-
ity effects (when normal action alone produces slip) are neglected. Moreover, it is
supposed that the function N = N(a) does not depend on any tangential interactions,
which is true when all normals to all microcontacts are aligned and stay aligned
during loading. The link N = N(a) is given by a normal loading model for nominally
flat surfaces with roughness (Sect. 5.4).

The account for frictional tangential contact interaction is more complex. Besides
the case of contact loss with N = T = 0 (Fig. 5.1c), two other regimes can be
recognized: partial slip and total sliding (Fig. 5.1d, e). The regime of partial slip
appears due to the presence of roughness, for ideally flat infinite surfaces it does
not exist. The reason is that asperities recede not only under normal load but
under tangential load as well. This process of local deformation of asperities and
neighboring material layers (shown highly exaggerated in Fig. 5.1d) is accompanied
by the development of slip that starts at the periphery of each microcontact and
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propagates towards its center, defined as a local minimum of a random gap z
between the profiles. The central zones, however, remain stuck. The corresponding
tangential displacement of the bulk area is denoted here b̃. Then, if the tangential
action exceeds the Coulomb threshold, the slip zone reaches the center of each
microcontact. In this regime of total sliding (Fig. 5.1e), a new displacement com-
ponent b0 appears that corresponds to the mismatch between centers of contacting
asperities (the same for all of them). The sum of both components equals the total
displacement considered as a drive parameter of the contact model (see Sect. 5.7 for
more details).

The solution in the total sliding regime is trivial: N = N(a), T = ± μN. The only
remaining question is how to calculate the tangential force in the case of partial
slip. Such solutions are known for many years for particular loading histories of
two spheres (Hertz-Mindlin problem [4], also called Cattaneo-Mindlin problem [5]).
This situation is addressed by the recent method of dimensionality reduction [6].
Here we propose to use a similar semi-analytical approach especially suitable for
complex acoustical signal, including random ones.

The method is based on the recent theorem in contact mechanics that allows one
to replace contact between rough surfaces by an equivalent axisymmetric contact
geometry. The contact problem is then reduced to a sort of generalized Hertz-
Mindlin problem for which the exact solutions for particular loading histories are
known. Finally, for an arbitrarily complex excitation protocol, the full memory-
dependent load–displacement relationship can be built up as a superposition of
the particular solutions. The process of combining the particular solutions with
appropriate parameters is automated with the help of the original method of memory
diagrams (MMD, Sect. 5.6) that allows one to represent all memory information in
the contact system as an internal functional dependency (memory diagram).

Finally, in Sect. 5.8 we integrate the developed contact model into the solid
mechanics unit programmed in COMSOL. To illustrate the functionality of the
created numerical toolbox we consider examples of wave propagation in a sample
containing a frictional crack of a given configuration. It is shown in detail how
the crack, excited by an elastic wave, generates nonlinear elastic field components
radiated into the surrounding material.

5.3 Brief History of the Mechanical Contact Problem

The history of the contact problem started in 1880s when H. Hertz (see [7])
published the classical solution for two elastic spheres compressed by a normal
force. In the absence of adhesion and plasticity, this solution is fully reversible.
However, the addition of a tangential force and friction [4, 5] makes the problem
hysteretic and memory-dependent. It was noted that even a small tangential force
acting on two pre-compressed spheres results in appearance of a slip annulus at the
periphery of the contact circle where the surfaces are compressed weakly. The coex-
istence of the stick (central) and slip (peripheral) zones actually means mixed-type
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boundary conditions that correspond to zero local tangential displacement in the
central region and, in the slip annulus, to the Coulomb friction law written for
local tangential and normal stresses, τ = μσ . The increase in the tangential force
results in slip propagation towards the contact center. If, eventually, the tangential
force starts decreasing, a new slip annulus develops at the contact periphery in
which τ = − μσ . Hence, the same values of the normal and tangential forces can
correspond to different distributions of stresses and displacements in the contact
zone. This fact explains a complex hysteretic character of the solution.

Allowing the normal force to evolve [4] adds a new complexity factor to the
problem. The reason is that the slip zone always arises at the contact border
where σ = 0 and propagates inward, but, if the normal force increases, the
contact border itself propagates outward. The result depends on the value of the
derivative dN/dT.

Finally, the introduction of a general contact geometry instead of spherical
profiles introduces even more complexity in the description. Indeed, for two rough
surfaces, the contact zone consists of a multitude of contact spots having random
geometry. For changing normal force, those contact spots can merge or split. Fur-
ther, each of them supports slip and stick zones, and traction distribution in the stick
zones can contain residual stresses left from the previous moments of evolution.
With continuously varying normal and tangential loading, this complicated picture
continuously evolves.

The first step to solve the problem of contact between rough surfaces with friction
would be to establish the load–displacement relationship in case of pure normal
compression. The modeling of a force–displacement relationship corresponding to
normal loading of contacts with rough surfaces is an extensive research topic since
1950–1970s. In particular, in the model proposed by Whitehouse and Archard [8],
the concept of asperities is explicitly introduced and a distribution of asperities over
heights and radii is deduced. The assumption that all asperities have equal radii
but different heights produced the classical model by Greenwood and Willianson
[9]. In our approach, we try to avoid using the concept of asperity and preserve the
continuous character of roughness. The derivation of the model load–displacement
relationship for normal compression is discussed in the next section.

5.4 Normal Load–Displacement Relationship for Contact
Between Rough Surfaces

Contact of rough surfaces can be described using three different parameters related
to the contact area: the nominal contact area An defined by replacing rough surfaces
by ideally plane ones, the real (atomic) contact area A, and the geometric (truncated)
contact area Ag obtained in a virtual situation when rough profiles can freely
penetrate into each other or, equivalently, when all roughness elements of each
surface located higher than a certain height are virtually cut off. Two of these contact



5 Nonlinear and Hysteretic Constitutive Models for Wave Propagation. . . 181

Fig. 5.2 Illustration of the nominal contact area An and the real contact area A

areas are also illustrated in Fig. 5.2. As can be observed, the real atomic contact
area A between two bodies with rough surfaces is only a small part of the nominal
area An.

The proportionality A∼N was proposed by Bowden and Tabor in 1939 [10]; a
more recent discussion on the proportionality can be found in [11]. Both empirical
and theoretical arguments suggest that

A = 2κ
(
1 − ν2

)

Eh′ N, (5.2)

with h′ equal to the root mean square of the random surface slope, and κ ≈ 2 (see
[12] and references therein for experiments, [13] for theory, [14] for the discussion
on the coefficient κ , [15] for theoretical and numerical examples).

Further, we introduce the random gap ξ between the surfaces (2ξ is the full gap,
ξ is related to one body) and denote ϕ(z) as its distribution. Then it is easy to express
the ratio Ag/An from purely geometric consideration as

Ag

An
=

a∫

0

ϕ(z)dz. (5.3)

Finally, the real and geometric contact areas can be linked by a model relation-
ship. In particular, if all microcontact spots are approximated by strained spheres, a
simple relation

A

Ag
= υ = 1

2
(5.4)
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follows from the Hertz theory [7] (see also Eq. (5.14) below). For non-spherical
shapes of asperities, the value of υ can deviate from 1/2. Combining Eqs. (5.2),
(5.3), and (5.4) we obtain an analytical expression linking N and a,

N(a) = υh′E
2κ
(
1 − ν2

)

a∫

0

ϕ(z)dz, a ≥ 0. (5.5)

In case of negative normal displacement a, we set N equal to zero which actually
corresponds to the absence of adhesion. Equation (5.5) means that the normal
reaction of a crack section is determined by the gap (aperture) distribution which,
in turn, depends on the nature of a crack. Since typical acoustical excitations can
always be considered as small perturbations, the normal reaction in the acoustical
strain range will mainly depend on the tangent to the curve ϕ(z) at z = 0 (i.e., the
first-order Taylor series approximation). As such, three cases can be distinguished: a
vertical tangent, a horizontal one, or a tangent with inclination angle between 0 and
π /2. A vertical tangent implies that even for a small compressive displacement a, a
non-zero contact area will be immediately formed. In practice, this refers to highly
conforming surfaces at the atomic level. Secondly, a horizontal tangent refers to an
essentially open crack in which points in atomic contact practically do not appear.
Finally, an intermediate tangent inclination coefficient k (0 < k < ∞) results in the
approximation ϕ(z) ≈ kz which yields the following result:

N(a) = υh′Ek
4κ
(
1 − ν2

)a2, a ≥ 0 (5.6)

The same second-order dependency (N(a) ∼ a2) has been introduced by Biwa et
al. [16] based on existing experimental data for aluminum–aluminum contact and
was already used by Yuan et al. [17] for modeling the nonlinear interaction of a
compressive wave with a contact interface between two solid blocks of aluminum.
This suggests that the quadratic dependency is a possible approximation for two
globally plane surfaces with uncorrelated roughness brought into contact. As an
extension we assume that Eq. (5.6) is also approximately valid for fatigue cracks
since the internal stresses released during cracking and the associated microscopic
displacements result in a similar loss of conformity at the atomic scale. Microscale
composite roughness that mainly contributes to the acoustical response can thus be
considered as uncorrelated.

The quadratic approximation is not the only possible form for modeling the
normal load–displacement relationship. In [18, 19] it is shown that rough surfaces
with various fractal dimensions correspond to different powers in approximation of
the kind of Eq. (5.6). Nevertheless, based on experiments [16], we here accept Eq.
(5.6) as a model equation for the normal reaction curve keeping in mind that, for the
proposed theory, the specific form of N(a) is not essential.
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Certainly, a tangential excitation may considerably displace the contacting
asperities in the lateral direction and therefore alter the normal reaction curve N(a).
However, this effect can be neglected if we assume that the random gap between the
crack surfaces is a stationary process whose characteristics h′ and ϕ(z) do not depend
on the tangential shift. Therefore, N(a) is supposed to be a portrait of the system
which is not affected by any other interactions, and incorporates all geometric
information about the rough surfaces in contact.

Concluding this section it is appropriate to cite the existing solution for two equal
axisymmetric bodies for comparison [20–22]:

N = 2E

1 − ν2

⎛

⎝ca −
c∫

0

ρz (ρ)
√
c2 − ρ2

dρ

⎞

⎠ , (5.7)

a =
c∫

0

cz′ (ρ)
√
c2 − ρ2

dρ, (5.8)

σ (ρ) = E

π
(
1 − ν2

)

c∫

ρ

⎛

⎝
r∫

0

z′(p)+ pz′′(p)
√
r2 − p2

dp

⎞

⎠ dr
√
r2 − ρ2

, (5.9)

where ρ is the radial coordinate, c is the contact radius, z(ρ) is a function describing
the gap between the two bodies in the unstrained state (the total gap equals 2 z(ρ)),
and z′(ρ) and z′′(ρ) are its first and second derivatives, respectively. Equations (5.7)
and (5.8) produce an implicit form of the normal force–displacement relationship
N = N(a).

It is straightforward to verify that Eqs. (5.7), (5.8), and (5.9) yield the classical
Hertz solution [7] for two equal spheres when

z (ρ) = R −
√
R2 − ρ2 (5.10)

is assumed, with R the radius of the spheres. In this derivation, only the lowest term
in the expansion over the small parameter c/R is kept. In particular, the normal load
for spheres

N(a) = 4

3

ER1/2
(
1 − ν2

)a3/2 (5.11)

depends on a as a3/2 and not a2 as in the accepted model Eq. (5.6) for rough surfaces.
In a similar way, the normal stress distribution σ a(ρ) corresponding to normal

displacement a is obtained from Eq. (5.9):
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σa (ρ) =
{

2E
πR(1−ν2)

√
c2 − ρ2, ρ ≤ c

0, c < ρ
. (5.12)

The distribution of local normal displacement ua(ρ) is also known [6]:

u (ρ) =
{

2c2−ρ2

2R , ρ ≤ c
1
πR

(
arcsin

(
c
ρ

) (
2c2 − ρ2

)+ c√ρ2 − c2
)
, c < ρ

(5.13)

with

c2 = Ra. (5.14)

These solutions will be used below to illustrate contact between two spheres as a
case where all analytical dependencies can be easily calculated.

5.5 Reduced Elastic Friction Principle

As it was mentioned, application of a tangential force or displacement makes the
problem hysteretic; its solution becomes memory-dependent. Prior to automating
the account for memory effects, it is necessary to formulate the solution for some
basic loading protocols. The simplest of them is constant loading when application
of a constant normal displacement a is followed by addition of a constant tangential
displacement b.

A successful representation of the constant-loading situation is given using a
modern theorem of contact mechanics called the Reduced Elastic Friction Principle
(REFP, see [20, 23] or sometimes the Ciavarella-Jäger theorem [24, 25]). The
theorem states that, for constant loading and for a wide range of contact geometries,
the tangential force and displacement can be expressed through the normal force and
displacement. This principle is illustrated in Fig. 5.3 for axisymmetric bodies (two
upper sets). Consider two situations: the first one where the system is loaded only by
normal displacement q (left upper set), and the second one where both displacement
components, a and b, are applied (a > q). In the second case (right upper set),
an annulus of slip surrounds the central stick zone. The normal displacement q
is chosen in such a way that the stick zone in the second case coincides with the
contact zone in the first case. Then the tangential force and displacement in the
second situation are given by

{
T = μ (N(a)− N(a)|a=q

)

b = θμ (a − q) , (5.15)
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where the dependency of the normal force on the normal displacement N = N(a) is
considered as known, and θ is a material constant that depends only on Poisson’s
ratio ν,

θ = 2 − ν
2 (1 − ν) . (5.16)

Equation (5.15) is written here for the displacement-driven system and can be
easily reformulated in the case when the drive parameters are forces. Here and in
Sect. 5.6 related to the partial slip regime description, for brevity we omit tilde
in the notation b̃ introduced for the partial slip displacement. In other words, we
consider the case when the Coulomb friction threshold is not achieved (|T| < μN),
and therefore b̃ = b.

Another, more detailed form of the REFP suitable for arbitrarily shaped plane
contact with possible multiple contact spots is written for the shear stress distribu-
tion τ

(−→
r
)

and local tangential displacement distribution w
(−→
r
)
:

τ
(−→
r
) = τqa

(−→
r
) ≡ μ (σa

(−→
r
)− σq

(−→
r
))
, (5.17)

w
(−→
r
) = wqa

(−→
r
) ≡ θμ (ua

(−→
r
)− uq

(−→
r
))
, (5.18)

where −→
r is the coordinate in the global contact plane, σa

(−→
r
)

and ua
(−→
r
)

are
distributions of normal stress and of local normal displacement corresponding to
the normal displacement a while in σq

(−→
r
)

and uq
(−→
r
)

the normal displacement is
substituted by parameter q.

In the purpose of creation of a contact model for an arbitrary contact geometry,
it is appropriate to introduce the notation C

a1
a2 for the contact area obtained under

compression determined by displacement a2 minus the contact area obtained under
compression determined by displacement a1 (a1 ≤ a2). Several examples of area
configurations denoted by C

•• with various subscripts and superscripts are illustrated
in Fig. 5.3 (two lower sets). In particular, normal compression characterized by
displacement a produces contact area C

0
a , smaller displacement q creates contact

configuration C
0
q which probably contains more contact spots since they can split

when releasing compression. Similarly, Cqa is the slip area produced by normal
displacement a and tangential shift b. Further, the contact boundary is denoted C

a
a ,

the boundary between stick and slip zones Cqq , etc.
Note that τ

(−→
r
)

is affected by both distributions σa
(−→
r
)

and σq
(−→
r
)

in the stick
zone C

0
q , equals μσa

(−→
r
)

in the slip zone C
q
a as it is required by the Coulomb

friction law, and is zero outside of the contact (in C
a∞). The properties of the local

tangential displacement w
(−→
r
)

are different. Since ua
(−→
r
)
> 0 everywherein C

0∞
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Normal displacement q,
no tangential displacement

slip area

contact area

contact area:

Normal displacement a>q,
tangential displacement b

stick area 

Axisymmetric
contact

Arbitrary plane contact

(including rough surfaces)

C
0
q

C
0
qC

0
q

C
0
q

C
0
q

C
q
a

C
q
a

C
q
a

= +C
0
a

Fig. 5.3 Illustration of the reduced elastic friction principle. Left: contact created by normal
displacement q; right: contact created by normal displacement a > q and tangential displacement
b. Two upper sets correspond to contact between axisymmetric bodies, two lower ones illustrate
arbitrary plane contact including rough surfaces with multiple contact spots. Areas C0

q , Cqa , and C
0
a

from Eqs. (5.17) and (5.18) are also shown. Note that areas C0
q at the right and at the left coincide

in contrast to σa
(−→
r
)

which equals 0 outside of the contact, the distribution w
(−→
r
)

is everywhere affected by both ua
(−→
r
)

and uq
(−→
r
)
. Moreover, inside the stick

zone C
0
q

w
(−→
r
)∣∣−→
r ∈C0

q
= θμ[ua

(−→
r
)− uq

(−→
r
)]

−→
r ∈C0

q
= const (−→r ) ≡ b (5.19)
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Fig. 5.4 The REFP solution for spheres satisfies the Coulomb friction law: (a) τ = μσ in the slip
zone, (b) local tangential displacement w(ρ) = b = const(ρ) in the stick zone

in accordance to the definition of stick. In other words, since in the zone C
0
q slip

is absent, all points in that zone should displace equally, as a rigid body, i.e.,
independent of a current coordinate −→

r . This property guarantees the fulfillment
of the Coulomb boundary condition in the stick zone.

The compliance with the Coulomb friction law is illustrated in Fig. 5.4 where
normal and tangential stress and displacement distributions are calculated for
spheres using the known Hertz solution [7] and Eqs. (5.17) and (5.18). In these
figures, the radial coordinate ρ replaces −→

r , s is the radius of the boundary between
the stick zone {0 < ρ < s} = C

0
q and the slip zone {s < ρ < c} = C

q
a , c is the

contact radius, with a simple link between parameters: c2 = Ra, s2 = Rq. The curves
are obtained using Eqs. (5.12), (5.13), and (5.14).

The detailed REFP formulation in Eqs. (5.17) and (5.18) corresponds to the short
form Eq. (5.15) for forces and displacements. Indeed, by setting −→

r = 0 in Eqs.
(5.18) and (5.19) and noticing that ua(0) = a and uq(0) = q we retrieve the second
Eq. (5.15). The first Eq. (5.15) is obtained by integration of Eq. (5.17) over the
contact area C

0
a .

The use of the REFP in the form of Eq. (5.15) as well as of Eqs. (5.17) and (5.18)
requires some further explanation.

1. Contact theories of the considered kind use the following assumptions: All
deformations are elastic, the normal vectors to all individual contacts are aligned
and stay aligned during loading, the Coulomb’s law is postulated at the level of
local contact stresses, and torsion and rolling are absent.

2. The REFP is valid only for elastically similar materials with Dundur’s constant

β = G2 (κ1 − 1)−G1 (κ2 − 1)

G2 (κ1 + 1)+G1 (κ2 + 1)
(5.20)
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equal to 0. Here G1,2 are shear moduli, κ1, 2 = 3 − 4ν1, 2, and ν1,2 are Poisson’s
ratios of the materials (see, for instance, [25]). In the latter paper, ν1,2 = 0 is required
in addition. The elastic similarity means that normal and tangential interactions are
uncoupled in some sense. In contrast, for dissimilar bodies, normal loading alone
generates partial slip since the bodies deform in the lateral direction differently.
In many practical cases, even if the above conditions of elastic similarity are not
exactly fulfilled, the dissimilarity effects are found to be small [20, 23, 26, 27].

3. Strictly speaking, the REFP with θ given by Eq. (5.16) is valid for axisymmetric
profiles only (including surfaces with exactly axisymmetric asperities). For other
contact shapes, the value of θ can slightly deviate from Eq. (5.16). It was
numerically demonstrated [28] that the precision of the REFP becomes worse
in the case of a very strong asymmetry in the contact shape, i.e., the situation
where one dimension (say, x) considerably exceeds another one (y). For shifting
along x the effective θ will deviate from the effective θ for movements along the
y-axis. However, for surfaces with isotropic random roughness this effect does
not appear.

An important feature of Eq. (5.15) is that it does not contain explicitly any
geometry-related characteristics. All geometric information is contained in the
dependency N = N(a) linking the normal force with the normal displacement.
Thus, a simple consequence of the REFP is a statement that, for two contact
systems with the same normal response, the tangential responses are also identical.
Consequently, a contact between isotropic rough surfaces can be replaced by an
equivalent axisymmetric contact geometry. The related restrictions that limit the
class of the considered contact types are discussed in [20, 23–25].

The REPF in the form of Eqs. (5.15), (5.17), and (5.18) is formulated for a
contact system driven by displacements. The force-driven counterpart is described
in a similar way:

{
T = μ (N −Q)
b = θμ (a(N)− a(N)|N=Q

) ,

τ
(−→
r
) = τQN

(−→
r
) ≡ μ (σN

(−→
r
)− σQ

(−→
r
))
,

w
(−→
r
) = wQN

(−→
r
) ≡ θμ (uN

(−→
r
)− uQ

(−→
r
))
.

5.6 Method of Memory Diagrams for Partial Slip

The REFP allows one to obtain the load–displacement relationship in the partial
slip regime, for a particular case where the contact system is loaded in the normal
direction and then a constant tangential load is added. For arbitrary loading histories,
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the solution can be searched in the form of a superposition of constant-loading
solutions with proper parameters. An automatic calculation of these parameters
is arranged in the method of memory diagrams (MMD, see [29]) discussed in
this section. The method is valid for arbitrary loading histories and provides, in
2D, a two-parametric output for a two-parametric input, i.e., (a, b) ⇒ (N, T) for a
displacement-driven and (N, T) ⇒ (a, b) for a force-driven system. 3D extensions
are also possible but are not discussed here. A memory diagram is an internal
functional dependency that replaces complex distributions of shear stress and local
tangential displacement but contains at the same time the equivalent amount of
information.

5.6.1 Case of Constant Compression

A memory diagram (or memory function) D(α) for the constant-loading case can be
formally introduced by rewriting Eq. (5.12) in the form:

⎧
⎪⎪⎨

⎪⎪⎩

b/ (θμ) =
a∫

0
D (α) dα

T/μ =
a∫

0
D (α) dN

da

∣∣
a=αdα

, (5.21)

where D(α) is defined as

D (α) =
{

0, 0 ≤ α < q
1, q ≤ α ≤ a . (5.22)

The ends of the interval q ≤ α ≤ a on which the memory function equals 1 fully
determine the solutions Eqs. (5.14) and (5.15) for distributions of stresses and local
displacements. These distributions have the following property: in the slip zone C

q
a

τ
(−→
r
) = μσa

(−→
r
)
, in the stick zone C

0
q w

(−→
r
) = const , and τ

(−→
r
)

and w
(−→
r
)

are solutions to the equations of solid mechanics. Note that all results obtained so
far are applicable for positive direction of slip, otherwise the minus sign should be
added in the expressions for T, b, τ

(−→
r
)
, andw

(−→
r
)
. An example of the shear stress

distribution for two spheres and the corresponding memory diagram Eq. (5.22) are
shown in Fig. 5.5a, b.

Suppose now that at some moment the drive parameter b starts decreasing. In
this situation, we first assume that slip starts propagating anew from the contact
boundary C

a
a with a different sign, and then we show that by a proper choice

of parameters the conditions of the contact problem can be satisfied. To do that,

we denote the new boundary between stick and slip zones C
q ′
q ′ where q ′ is close

to a. Then the new solution for stress and displacement distributions (τ ′ (−→r ) and
w′ (−→r ), respectively) is obtained in the form
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τ ′ (−→r ) = τ (−→r )− τq ′
a

(−→
r
)− τq ′

a

(−→
r
)
,

w′ (−→r ) = w (−→r )− wq ′
a

(−→
r
)− wq ′

a

(−→
r
)
,

where τ
(−→
r
)

and w
(−→
r
)

are given by Eqs. (5.14) and (5.15). Here subtraction

−τq ′
a

(−→
r
)

removes any shear stress in the zone C
q ′
a and the second subtraction

−τq ′
a

(−→
r
)

sets the shear stress equal to τ
(−→
r
) = −μσa

(−→
r
)
, as it is easy to see

from the definitions of notation τ ••
(−→
r
)

given in Eq. (5.17). At the same time, adding

−2wq
′
a

(−→
r
)

results in the creation of a constant additional displacement in the stick
zone C

0
q ′ , i.e., does not violate with the stick condition. For contact between two

spheres, the shear stress distribution τ ′ (−→r ) is easy to calculate using Eq. (5.12)
(see Fig. 5.5c). The two above equations produce expressions for the tangential
displacement and force

b′ = b − 2θμ
(
a − q ′)

T ′ = T − 2μ
(
N(a)−N (a = q ′)) .

Taking into account Eq. (5.21), it is straightforward to check that these expres-
sions correspond to the memory function D(α) shown in Fig. 5.5d. Again, calculat-
ing this solution we comply with the Coulomb friction conditions in the stick and
slip zones and operate only with stresses and displacement satisfying the equations
of solid mechanics.

5.6.2 Case of Overloading

The above example shows how the contact system evolves under fixed compression.
Suppose now that the normal displacement a varies. Continuously changing inputs
can be accounted for by considering infinitely small increments �a and �b as it
was proposed for the first time in [4]. If �a is positive, its application creates an
additional contact zone C

a
a+�a which can support additional shear stress necessary

to satisfy the slip condition. If�a is negative mechanical contact in the zone Ca+�aa

disappears; therefore prior to application of �a it is necessary to remove any pre-
existing shear stress in that zone.

Increasing compression can produce a specific slip-free behavior referred to
as “overloading” or “quick” enlargement of the contact zone in [30, 31], or
“complete overlapping” by Jäger [23]. Assume a small increment�a that creates an
additional contact zone C

a
a+�a and introduce a small increment �b that produces
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Fig. 5.5 Examples of the shear stress distributions (at the left) and corresponding memory
diagrams (at the right) for the following situations. (a, b) Constant-loading case where application
of positive a is followed by an application of positive b. (c, d) Same as (a, b) but followed by
subsequent decreasing tangential displacement to a lower value. (e, f) Displacements a and b
change simultaneously so that the condition Eq. (5.24) is satisfied (case of overloading)

slip characterized by the parameter q. Then if the slip zone C
q
a+�a lies within

C
a
a+�a , i.e., a ≤ q ≤ a + �a no slip actually occurs. Applying increments to Eq.

(5.15) we obtain
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{
�T/μ = dN

da
�a − dN

da

∣∣
a=q�q ≈ dN

da
(�a −�q)

�b/ (θμ) = �a −�q ,

where the small increment of parameter q equals �q = q − a. The above equations
provide the tangential load–displacement relationship in the incremental form:

�T

�b
= 1

θ

dN

da
. (5.23)

Besides, the condition representing the absence of slip a ≤ q ≤ a + �a
corresponds to the validity condition

|�b/�a| / (θμ) < 1, �a > 0 (5.24)

for this solution.
It is also straightforward to get the following expressions for incremental shears

stress and local tangential displacement:

�τ
(−→
r
) = 1

θ

∂σa
(−→
r
)

∂a
�b,

�w
(−→
r
) = ∂ua

(−→
r
)

∂a
�b.

Since we always operate with tangential solutions keeping identical local
displacements for each point in the stick zone (see Eq. (5.19)), the latter equation
actually means that

�w
(−→
r
) = ∂ua

(−→
r
)

∂a
�b = ∂a

∂a
�b = �b = const (−→r ) .

Finally, in the overloading regime, the incremental local fields are given by

{
�τ
(−→
r
) = 1

θ

∂σa(
−→
r )

∂a
�b

�w
(−→
r
) = �b (5.25)

everywhere in the contact zone C
0
a . Slip in this regime is absent. An illustration for

contact between two spheres is presented in Fig. 5.5e in which small increments are
highly exaggerated.

In defining the related memory diagram, our intention is to keep the link Eq.
(5.21) for any loading history. The result is shown in Fig. 5.5f where the curvilinear
piece of the memory function is given by
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D (α) = 1

θμ

db

da

∣∣∣∣
a=α
. (5.26)

The absolute value of the memory function on the new segment a < α < a + �a
is less than 1 which follows from Eq. (5.24) indicating the absence of slip in the
considered case (see also Fig. 5.5e where the shear stress does not exceed the
Coulomb threshold). The “overloading” solution holds also in the situation when
before application of the increments the area C

0
a already supported some residual

shear stress distribution. Indeed, the above derivations apply independently of the
residual stress presence.

5.6.3 Memory Diagrams for Arbitrary Loading Histories

The two considered examples show how to extend our reasoning to arbitrary loading
histories. First of all, we check whether the condition of overloading Eq. (5.24) is
satisfied or not. If the solution is slip-free, i.e., is given by Eqs. (5.23) and (5.25),
then the memory diagram should be updated according to Eq. (5.26) in a new contact
zone C

a
a+�a . If it is not, a two-stage procedure involving slip should be applied. At

the first stage, all residual shear stress in a guessed slip zone should be removed.
Then the slip solution of the kind Eqs. (5.15), (5.17), and (5.18) should be added.
In other words, the procedure consists in the proper selection of a superposition
of known elementary solutions to the solid mechanics equations such that both
stick (rigid-body displacement) and slip (tangential stress equals normal one times
μ) conditions are satisfied. Each time when a shear stress component is added or
subtracted, the corresponding amount of local tangential displacement should be
added or subtracted. Note that the latter does not violate the stick condition since
the corresponding tangential displacement fields are constant in the stick zone.

The usefulness of the memory diagram is related to the fact that “cleaning up”
some part of the contact zone and the subsequent application of the slip solution
consists in updating the memory diagram only in that zone. In contrast to memory
diagrams, distributions of the shear stress and local tangential displacement do not
have this property. Application of infinitely small displacement increments modifies
τ
(−→
r
)

and w
(−→
r
)

everywhere in the contact zone whereas the memory diagrams
are updated only locally. In that sense, the memory diagram represents an economic
and efficient way of storing memory information physically kept in the residual parts
of distributions τ

(−→
r
)

and w
(−→
r
)
.

The parameter q of the slip zone (if slip takes place) is determined by the drive
parameter b of the system. The corresponding output parameter T is calculated by
the MMD algorithm illustrated in Figs. 5.6 and 5.7 and explained below in detail.

The MMD aims at calculating parameters at the next step (subscript “n”) using
parameters at the previous step (subscript “p”); the increments are denoted as �
(e.g., �a = an − ap, �b = bn − bp, etc.). Since the normal solution to the contact
problem is known, the normal displacement increment
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Fig. 5.6 Complete algorithm of the method of memory diagrams. The equations displayed in the
boxes correspond to Eqs. (5.27), (5.28), (5.29), (5.30), (5.31), (5.32), (5.33), (5.34), (5.35), (5.36),
(5.37), (5.38), (5.39), (5.40), (5.41), (5.42), and (5.43)

�N = N (an)−N
(
ap
)

(5.27)

can be immediately calculated, while �T has to be determined as the result of the
MMD procedure. The algorithm involves only two binary choices and thus consists
of three cases in which the calculations differ. As illustrated in Fig. 5.6, we have
called these cases YY, YN, and N. In all illustrations, the values of “small force
increments” are exaggerated.

5.6.3.1 Case YY

As it was mentioned, the calculation is different for increasing and decreasing a. If
a increases (�a > 0, Fig. 5.7a–c), a new segment ap < α < an = ap + �a should be
added to the diagram as shown in Fig. 5.7a which means that an additional contact
area C

ap
an is created. Then the condition Eq. (5.24) of overloading should be checked.
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Fig. 5.7 Illustrations of the evolution algorithm. (a) Original memory diagram (gray), a increases
from ap to an. (b) Case YY, i.e., |�b/�a|/(θμ) < 1, �a > 0; the displacement increment �b can
be equilibrated by the proper choice of D(α) on the new interval ap < α < an. (c) Case YN, i.e.,
|�b/�a|/(θμ) ≥ 1, �a > 0; the increment �b is too large to be equilibrated by setting D(α) = 1
only on the new interval αp < α < αn, therefore the slip zone C

q
an with D(α) = 1 penetrates closer

to the contact center C0
0. (d) Original memory diagram (gray), a decreases from ap to an releasing

displacement �b1. (e) The remaining displacement increment �b2 = �b-�b1 is equilibrated by
slip propagation

Suppose it is verified (situation marked YY in Fig. 5.6). It is exactly the case where
the slip-free solution Eqs. (5.23) and (5.25) is applicable. Thus on a new segment
Eq. (5.26) should be required which means that

an∫

ap

Dn (α) dα = �b/ (θμ) , (5.28)

or, for small increments (see case YY in Figs. 5.6 and 5.7b),

Dn
(
ap
)+Dn (an)

2
�a = �b/ (θμ) . (5.29)
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Here Dn(ap) = Dp(ap) since we modify the memory function only on the new
interval, leaving it unchanged on the old one (compare thick gray line in Fig. 5.7a
for the old diagram Dp(α) with the thick black line in Fig. 5.7b for the new one,
Dn(α)). Correspondingly, Eq. (5.29) determines the updated value Dn(an).

It can be easily shown using the overloading condition Eq. (5.24) that if
|Dn(ap)| ≤ 1 then |Dn(an)| < 1. Hence, it can be concluded that the slip-free regime
corresponds to the memory diagram that ends with a value D(a) such that |D(a)| < 1.

5.6.3.2 Case YN

Suppose now that the normal displacement increases,�a > 0, but |�b/�a|/(θμ) ≥ 1.
As in the previous case, an additional contact zone C

ap
an is created. However, since

the condition Eq. (5.24) of the slip-free solution is not fulfilled, slip develops
starting from the contact border Canan and occupies some slip zone Cqan with q a priori
unknown. In order to fix q, we can gradually decrease it by infinitesimally small
steps starting from an and apply the two-stage procedure that consists in (1) setting
the memory diagram to 0 at each small interval an − (i + 1)�a ≤ α ≤ an − i�a
(i = 0, 1, . . . , and �a is small) and (2) applying the slip solution in the zones
C
an−(i+1)�a
an with the sign sgn(�b) corresponding to the direction of slip. In other

words, the new value of the memory function is

Dn (α) = sgn (�b) , q < α < an. (5.30)

For the newly created interval ap ≤ α ≤ an on which D(α) ≡ 0, the first stage
of the procedure is not necessary. Setting new Dn(α) on that interval corresponds to
the tangential displacement

�b1 = sgn (�b) θμ�a. (5.31)

while the remaining part

�b2 = �b −�b1. (5.32)

This means that for compliance with the first MMD equation (Eq. 5.21),

b/ (θμ) =
a∫

0

D (α) dα,

the following relationship should be required:

ap∫

q

�Ddα = �b2/ (θμ) , (5.33)
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where �D(α) = Dn(α) − Dp(α). Here we assume that at the previous moment of
time the MMD equations (Eq. (5.21)) were fulfilled.

The situation is illustrated in Fig. 5.7c where the case of positive slip with
D = + 1 is shown for definiteness, while in a general case D should be set to
sgn(�b2) = sgn(�b). Firstly, the memory function D(α) has been set to sgn(�b)
on the interval ap < α < an, thereby equilibrating the partial displacement increment
�b1 = θμ�a. Subsequently, the remaining part�b2 =�b–�b1 is compensated for
by setting Dn(α) = 1 in the contact zone adjacent to the new segment ap < α < an.
In other words, we have to shift point A in Fig. 5.7c starting from position A’ and
setting the memory function to sgn(�b) on the interval AA’ until the desired value
�b2/(θμ) is reached. Then the new parameter q of the slip zone C

q
an is determined

via Eq. (5.33).
Once �b1,2 and q are determined, the solution for the force increment corre-

sponding to �b1 easily follows from Eq. (5.31) and reads

�T1 = sgn (�b)μ�N, (5.34)

while the remaining part �T2 is given by

�T2 = μ
ap∫

q

�D (α)
dN

da

∣∣∣∣
a=α
dα (5.35)

where q is known. Finally, it suffices to sum both contributions to obtain the total
force increment:

�T = �T1 +�T2. (5.36)

These equations are reproduced in Fig. 5.6 (set “YN”).
While shifting q towards α = 0 some elements of the previously saved memory

diagram can be erased. Point q can even attain α = 0 reaching the threshold of
the partial slip regime. Erasing previously saved structure elements correspond
to subtraction of proper residual shear stress distributions; rectangular segments
correspond to slip solution while curvilinear ones mark the overloading regime
(see Fig. 5.7). The validity of the procedure is guaranteed by the fact that the
final superposition of particular solutions satisfies both slip and stick Coulomb
conditions.

5.6.3.3 Case N

We now consider the situation in which the normal displacement is constant or
decreasing, �a ≤ 0. In this case, the memory diagram should shrink to the
new size an, and therefore release some tangential displacement �b1, as shown
in Fig. 5.7d:
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�b1 = θμ
an∫

ap

Dp (α) dα (5.37)

(�b1 = 0 in a particular case �a = 0). In order to achieve the force equilibrium,
i.e., satisfy the second Eq. (5.21), we have to account only for the partial displace-
ment increment

�b2 = �b −�b1. (5.38)

As previously, there is no other option than to allow slip to penetrate closer to
the contact center C0

0 (except in a particular case when �b2 coincidentally equals
0). This means that we have to shift point A, starting from position A’ (Fig. 5.7e),
while setting

Dn (α) = sgn (�b2) (5.39)

on interval AA’, until the condition

�b2 = θμ
an∫

q

�D (α) dα (5.40)

is satisfied. As previously mentioned, various slip scenarios are possible depending
on the structure of the memory function on the segment 0 < α < an.

Once the values of �b1 and �b2 are determined for this case, the related T-
increments then read

�T1 = μ
an∫

ap

Dp (α)
dN

da

∣∣
∣∣
a=α
dα, (5.41)

�T2 = μ
ap∫

q

�D (α)
dN

da

∣
∣∣∣
a=α
dα, (5.42)

with the total

�T = �T1 +�T2. (5.43)

Equations (5.37), (5.38), (5.39), (5.40), (5.41), (5.42), and (5.43) then represent
the full solution to the problem in case N; they are cited in the proper set in Fig. 5.6.

The solutions that correspond to slip (cases YN and N) have an interesting
feature. In the case YN where the normal displacement increases, the maximal
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setting |D(α)| = 1 in the new segment is not enough for equilibrating the tangential
force, so that we have to engage other segments. As �b1 and �b2 have the same
sign (which also equals the sign of �b), the direction of slip always coincides with
the direction of the tangential displacement increment. However, in the case N,
corresponding to normal unloading, this is not always true. Decreasing the normal
displacement releases some amount �b1 whose value and sign are defined by the
system’s history and therefore are completely independent on the increment �b. In
the situation presented in Fig. 5.7e, the direction of slip is positive since Dn(α) = + 1
at the end of the new diagram, but the released area�b1/(θμ) is larger than the area
�b2/(θμ) generated by slip. This implies that the sum�b =�b1 +�b2 is negative,
and the slip direction is opposite to the direction of the tangential displacement
change.

The strength of the proposed approach lies in the fact that the memory effects
are automatically accounted for. Indeed, the fulfillment of the principal MMD Eq.
(5.21) by the application of the algorithm in Fig. 5.7 automatically complies with
the force balance, without specifying or classifying all structural changes that can
potentially occur to the memory diagram.

5.6.4 Retrieving Physical Characteristics from Memory
Diagram

As it was mentioned, the memory diagram represents a compact way of storing
information on physical quantities characterizing the current state of contact, such
as tangential displacement b, tangential force T, and distributions of shear stress
τ
(−→
r
)

and of local tangential displacement w
(−→
r
)
. As an example, we show how

to retrieve these quantities from the memory diagram shown in Fig. 5.8a. For that, it
is sufficient to specify one particular loading history that results in the given memory
diagram. This loading history can be as follows:

1. Start with the contact zone C
0
α3

and apply positive slip in the zone C
α1
α3 keeping

constant compression.
2. Apply negative slip in the zone C

α2
α3 keeping the constant compression.

3. Increase contact zone to C
0
α4

using the slip-free (overloading) regime.
4. Extend contact zone till C0

α5
simultaneously creating positive slip in C

α4
α5 .

5. Extend contact zone till C0
α6

simultaneously creating negative slip in C
α5
α6 .

6. Extend contact zone till C0
a simultaneously creating positive slip in C

α6
a .

Correspondingly, the final solutions read

b = θμ (α3 − α1)− 2θμ (α3 − α2)+
α4∫

α3

db

da
da

+ θμ (α5 − α4)− θμ (α6 − α5)+ θμ (a − α6) , (5.44)
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Fig. 5.8 Exemplar memory
diagram (a) and
corresponding traction
distribution (b) for contact of
two identical spheres. The
scale transformation is given
by ρ = (Rα)1/2, equation
immediately following from
the Hertz theory
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D(α)(a)

aα1

τ (ρ)

α2 α3 α4 α5 α6

(b)

ρ

cρ1 ρ3ρ2 ρ4 ρ5 ρ6

T = μ (N (α3)−N (α1))− 2μ (N (α3)−N (α2))+ 1

θ

α4∫

α3

dN

da

db

da
da

+μ (N (α5)−N (α4))−μ (N (α6)−N (α5))+μ (N(a)−N (α6)) , (5.45)

w
(−→
r
) = wα1

α3

(−→
r
)− 2wα2

α3

(−→
r
)+

α4∫

α3

db

da
da + wα4

α5

(−→
r
)− wα5

α6

(−→
r
)+ wα6

a

(−→
r
)
,

(5.46)

τ
(−→
r
) = τα1

α3

(−→
r
)− 2τα2

α3

(−→
r
)+ 1

θ

α4∫

α3

∂σa
(−→
r
)

∂a

db

da
da

+ τα4
α5

(−→
r
)− τα5

α6

(−→
r
)+ τα6

a

(−→
r
)
, (5.47)

with notations w••
(−→
r
)

and τ ••
(−→
r
)

which have been introduced in Eqs. (5.17) and
(5.18). Here the derivative db/da during the slip-free process is known. The radial
shear stress distribution for contact of two spheres when all solutions are given
analytically Eqs. (5.11), (5.12), (5.13), and (5.14) is presented in Fig. 5.8b. In this
case, the link between radial coordinate ρ and the parameter α (argument of memory
functions) is provided by the relationship ρ = (Rα)1/2, equation corresponding to the
Hertzian link c = (Ra)1/2 between contact radius and normal displacement.
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Whereas the physical solution corresponding to a given memory diagram is
unique, the loading history that engenders the given memory diagram is not. For
instance, points (1) and (2) in the above loading history could be replaced by the
following ones:

(1′) Start with the contact zone C
0
α2

and apply positive slip in the zone C
α1
α2

keeping constant compression.
(2′) Extend contact zone till C0

α3
simultaneously creating negative slip in C

α2
α3 .

The first two terms in the new expression of b will produce the same result as
previously in Eq. (5.44):

θμ (α2 − α1)− θμ (α3 − α2) ≡ θμ (α3 − α1)− 2θμ (α3 − α2) ,

as well as for other physical quantities in Eqs. (5.45), (5.46), and (5.47).
Another example is the simplest memory diagram (Eq. 5.22):

D (α) =
{

0, 0 ≤ α < q
1, q ≤ α ≤ a .

It can be created by a process that consists of any arbitrary transformation in the
zone q < α < a, concluded by application of b = θμ(a − q) at constant normal
displacement a. Slip created in the zone C

q
a will erase the entire previously saved

structure in that zone.

5.6.5 Numerical Implementation and Examples

The MMD formulation discussed in the previous paragraphs does not impose any
requirements with respect to the numerical implementation procedure; the only
assumption used concerns the linear interpolation in Eq. (5.29). The simplest
numerical implementation can consist of introducing a fixed-point grid αj on
the α-axis and in defining the corresponding function values D(αj) on that grid.
However, this method is time consuming, inaccurate, and generally not suitable for
ultrasound excitations with millions of oscillations. The use of adaptive grids is
more relevant in this case. One “adaptive” feature consists in setting grid points αj

at the points ai = a(ti) of the loading history. More precisely, increasing compression
results in adding new α-points coinciding with points ai = a(ti), while decreasing
compression down to some value a means deleting all α-points exceeding a and
adding an additional α-point equal to a. Another opportunity of increasing the
calculations performance is to use the fact that the memory function is constant on
certain intervals and thus can be represented only by the pairs of the two boundary
values of α defining the intervals. For curvilinear sections, not only the interval
boundaries but all intermediate points α = a(ti) are to be memorized. Thus, in
general, function D(α) can be defined on a non-equidistant and adaptive grid. In
those cases where the memory function has to be determined in between two points
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Fig. 5.9 Adaptive grid for
representing a memory
diagram. Black points mark
ends of constant sections.
Gray points are placed on
curvilinear segments; the
linear interpolation is used in
between them

D(α)

α

+1

-1

a
0

of a curvilinear section, we use linear interpolation (see Fig. 5.9). As a result,
the complexity of this numerical code exceeds only slightly the complexity of the
method itself (see Fig. 5.7).

A simple example illustrating all three cases (or regimes) YY, YN, and N is
shown in Fig. 5.10 for a monotonous time dependence of the tangential displace-
ment b(t) (see the inset in Fig. 5.10a), the response T(b) (main Fig. 5.10a) is
monotonous as well. However, the normal displacement a(t) in Fig. 5.10a is not
monotonous which makes it possible to see various regimes in the corresponding
memory diagrams (see Fig. 5.10b–e), corresponding to moments in time t = 5000,
8000, 9000, 19,000 in arbitrary units, marked by dotted lines in Fig. 5.10a. The curve
a(t) begins with an increasing segment on which the condition Eq. (5.27) is fulfilled
(case YY, thick gray lines in Fig. 5.10a). According to the given explanation, a
curvilinear segment appears in the memory diagram (Fig. 5.10b). Further, a(t)
still increases but the condition Eq. (5.27) is not satisfied anymore resulting in
appearance of the regime YN (thick black line in Fig. 5.10a). A typical behavior
is shown in Fig. 5.10c; a straight-line segment q < α < a on which D(α) = 1
corresponds to slip. Slip propagates inward (i.e., to the left in the figures) erasing
the previously saved curvilinear segment (Fig. 5.10d). At the moment t = 10,000
the normal force starts decreasing, therefore the total length of the memory diagram
shrinks (future evolution of the memory diagrams is shown with arrows in all sets
(b–e)), and the system runs in the regime N. Further, point q shifts closer to the
left end of the memory diagram α = 0 (Fig. 5.10e); at the moment t = 20,000 q
reaches 0 which means that partial slip transforms into total sliding when T = μ N
and b = θμa.

Fig. 5.10 (a, main figure) also illustrates the situation discussed in Sect. 5.6.3
(after Eq. (5.43)) where decreasing normal compression releases some preciously
saved tangential stress in the vicinity of the contact boundary. In this case, the signs
of increments �b and �T can be different as it occurs at the concluding part of the
curve T(b).

Two more general cases of the MMD application are presented in Fig. 5.11. Set
(a) illustrates the particular situation where the two displacement arguments, a and
b, are linked by a functional relationship, a = a(b), so that there actually is only
one independent argument, but it evolves in a nontrivial manner. The resulting curve
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Fig. 5.10 Tangential force displacement relationship in which cases YY, YN, and N of the MMD
algorithm (Figs. 5.6 and 5.7) are identified (gray, thick black, and thin black lines, respectively).
In the inset: loading history, i.e., time dependencies of normal and tangential displacements; the
regimes are marked as in the main figure. Four moments in time are selected; memory diagrams
at these moments are shown in sets (b–e). In all plots, a0 is a characteristic value of the normal
displacement; N0 = N(a0)

T(b) shown in Fig. 5.11a is typical for one-parametric hysteresis response; it exhibits
closed loops for periodic b(t), partial increase in the argument b on a globally
decreasing branch results in the creation of an inner loop, and each completed inner
loop has the property of end-point memory, where the curve exits the outer loop
with the same tangent as just before entering it, etc.

In the more general case of two independent arguments, a and b without
functional link, the hysteretic behavior differs considerably. Since variations in a
are independent on the b(t)-protocol, it occurs that, even for a periodic b(t) loading
history, the “loops” are not closed. Indeed, as illustrated in Fig. 5.11b, the same
b(t)-history as used in Fig. 5.11a produces a curve in which all monotonous parts
are displaced, deformed, etc. It is important to emphasize that the generation of such
curves via the direct analysis of the traction and without the use of an algorithm of
the MMD type is an extremely cumbersome task. The formulation in terms of the
MMD drastically reduces the complexity.

Finally, it can be analytically verified that all classical results, e.g., those
discussed in [4] for spheres loaded by an oblique force, follow in a simple and
straightforward manner from the MMD equations.
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Fig. 5.11 Tangential force–displacement curves for some particular loading histories as shown in
the insets. (a) One-parametric hysteresis, in which a and b are linked via a functional dependence.
(b) Two-parametric hysteresis in which a and b are independent. In all plots, a0 is a characteristic
value of the normal displacement; N0 = N(a0)

5.6.6 Summary of the Method of Memory Diagrams

As it was mentioned in Sect. 5.2, in order to create a displacement-driven contact
model providing an explicit relationship between contact displacements and forces,
an algorithm for the description of hysteretic friction-induced behavior in the partial
slip case is necessary. This algorithm is presented by the MMD that links forces and
displacements via simple integral expressions (Eq. 5.21):

⎧
⎪⎪⎨

⎪⎪⎩

b = θμ
a∫

0
D (α) dα

T = μ
a∫

0
D (α) dN

da

∣∣
a=αdα

written for the displacement-driven system. Although it is not required in the
framework of the general description, the partial slip theory can be developed in the
case where the drive parameters are loads instead of displacements. The principal
MMD equations for the load-driven system are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T = μ
N∫

0
D (η) dη

b = θμ
N∫

0
D (η) da

dN

∣∣
N=ηdη

, (5.48)



5 Nonlinear and Hysteretic Constitutive Models for Wave Propagation. . . 205

where η is the argument of the memory function having the dimension of force.
Finally, replacing contact of rough surfaces by an equivalent axisymmetric contact
system (see Sect. 5.5) makes it possible to use the symmetric representation with
radial coordinate ρ:

⎧
⎪⎪⎨

⎪⎪⎩

T = μ
c∫

0
D (ρ) dN

dc

∣∣
c=ρdρ

b = θμ
c∫

0
D (ρ) da

dc

∣∣
c=ρdρ

, (5.49)

where N(c) and a(c) are the known solutions linking normal force and displacement
with the contact radius c in the equivalent axisymmetric system. With Eqs. (5.48)
and (5.49), the rest of the MMD equations have to be modified accordingly.

The MMD Eq. (5.21) is analytical, but in order to update the memory diagram
D(α) following to the evolution of displacement b, an algorithm based on two binary
choices (see cases YY, YN, and N above) and small increments is needed. Therefore
the obtained solutions can be considered semi-analytical.

The MMD is not equivalent to a detailed numerical contact modeling (such as
[2, 3]) and uses a number of assumptions:

1. Loading is in one plane only (i.e., in 2D); 3D extensions are discussed in [32].
2. Only shift is considered; torsion and rolling are ignored.
3. The Coulomb friction law with friction coefficient μ is postulated for contact

stress fields.
4. The model is quasi-static: differences between static and dynamic friction are

not considered, inertial behavior in the material in the vicinity of the contact
zone is neglected.

5. Only partial slip is considered, i.e., the condition |b|<θμa has to be fulfilled.
6. Plasticity and adhesion are ignored.
7. All individual contact spots are aligned (i.e., they have the same normal

directions) and stay aligned during loading.
8. The normal solution is a known biunique function N = N(a) independent of the

tangential loading.
9. Dissimilarity effects are neglected.

10. The reduced elastic friction principle is valid for the considered geometry (it is
a good approximation for isotropic rough surfaces).

The method is equivalent to another known semi-analytical solution known
as the method of dimensionality reduction (MDR, [6]) which is also based on
the axisymmetric solution Eqs. (5.7), (5.8), and (5.9). The MDR interprets an
axisymmetric contact as the deformation of a half-space filled with infinitesimally
spaced elastic springs against a rigid axisymmetric indentor. The only substantial
difference is in the numerical implementation; in our case, we use adaptive grids
which correspond to the MDR springs “moving” in accordance to the loading
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history in the purpose of reducing their number. The adaptive-grid implementation
is especially useful for acoustical and random signals.

It is important to mention that the MMD has no hidden parameters; the tangential
load is calculated from the tangential displacement using the normal reaction curve
N(a) only. Therefore, it makes sense to denote the MMD result as

T = MMD(b), (5.50)

having in mind that T can be calculated from b and its history, with any desired
precision.

5.7 Complete Contact Model Accounting for Three Contact
Regimes

As we have mentioned in Sect. 5.2, the Coulomb friction law for flat contact faces
does not provide an explicit load–displacement relationship. We have avoided this
difficulty by introducing crack face roughness and the corresponding partial slip
regime addressed via the MMD. The next step is to complete the description and
to show how to calculate the load–displacement response in all cases that can occur
for arbitrary contact excitations.

5.7.1 Partial Slip and Total Sliding Displacement Components

In order to complete the description, we split the total tangential displacement into
two parts: one part, b0, corresponding to total sliding and the other one, b̃, to partial
slip (Fig. 5.1d, e):

b = b0 + b̃, (5.51)

The idea [33] behind this separation can be illustrated as follows. Suppose
the tangential loading increases under a fixed normal compression N = N(a),
corresponding to a certain normal displacement a. Asperities recede under load
in both normal and tangential direction. In addition, the tangential receding b̃, in
contrast to the normal one, a, is accompanied by partial slip. According to the MMD
based on the Coulomb friction law, b̃ is not allowed to grow infinitely. Once the
maximum value b̃max = θμa is achieved, the asperities cannot deform anymore and
a total sliding process develops when the very last stick point C0

0 belonging to one
face separates from its neighbor at the opposite one. The tangential displacement
between those points is denoted b0 and corresponds to the contribution from total
sliding. In other words, b0 is a reference point mismatch, in some sense.
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Fig. 5.12 Three possible contact states in the model of cracks with rough surfaces. For each
case, the following information is supplied: conditions under which the case occurs, solutions for
components b0 and b̃, solutions for forces N and T, and memory diagrams

In case where the normal compression is also allowed to vary, the maximum
value b̃max = θμa changes too. In addition, the contact in a particular mesoscopic
cell can be lost at some moment in time so that both stick and slip zones disappear.
Figure 5.12 provides an overview of the full concept in case both normal and
tangential displacements a and b evolve in an arbitrary manner. The scheme explains
how to calculate the forces N and T for any given value of displacements a and b. In
order to do so, the tangential displacement components b0 and b̃ together with the
corresponding memory diagram should be updated. The updating operation for the
tangential displacement components is denoted using the assignment operator “:=”,
which means that values obtained at the previous time step are overwritten by new
ones.

The full model [33] for cracks with rough faces assumes three possible contact
states: contact loss when there is no contact between any two corresponding points
from opposite crack faces, total sliding when slip occurs at each contact point and
|T| = ± μN according to the Coulomb friction law, and partial slip when both stick
and slip areas are present in the contact zone. Below we consider these three cases
in more detail:

5.7.1.1 Contact Loss

If a < 0, the contact is lost which obviously means that N = T = 0. In this case, the
repartition in Eq. (5.51), as well as the memory diagram, has no sense. However,
it is useful to formally define these characteristics even in the absence of contact,
having in mind that at the next time step contact can be reestablished. If so, the
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process should start with a “virgin” memory diagram D(α) = 0, since the contact
zone contains no residual tangential stress. The asperities are not strained at this
moment, meaning that b̃ := 0, and hence b0 = b. Accepting these modifications
will guarantee the correct evolution representation once the crack faces will ever get
in contact.

5.7.1.2 Total Sliding

Suppose now that a ≥ 0 and that the old (i.e., obtained at the previous time step)

value of b̃ is such that
∣∣∣b̃
∣∣∣ ≥ θμa, with a, the newly calculated normal displacement.

In this case, the new value of b̃ should obviously be corrected, since the maximum
tangential displacement corresponding to the elastic deformation of asperities can
only be b̃max = θμa, and any attempt to further increase the tangential action
will result in total sliding. We therefore have to set the new b̃ := ±θμa, with the
sign corresponding to the direction of sliding. The remaining part of the tangential
displacement corresponds to the total sliding contribution, b0 := b − b̃. In other
words, the reference point for measuring the tangential deformation of asperities is
shifted. In accordance to the Coulomb friction law, T = ± μN and D(α) = ± 1,
with the sign again corresponding to the sliding direction. The magnitude of the
normal force N = N(a) is calculated using the known normal reaction curve.

5.7.1.3 Partial Slip

Assume now that a ≥ 0 and the old value of b̃ is such that
∣∣∣b̃
∣∣∣ < θμa. In this

situation, some points of the contact zone stick, and slip, if it occurs at all, can
only be partial. The reference value b0 corresponding to total sliding is therefore
not affected, which is symbolically expressed by assigning b0 := b0. Obviously,
the remaining part of the tangential displacement corresponds to the partial slip
contribution, b̃ := b − b0. In this regime, the MMD algorithm should be executed

using b̃ as an argument, i.e., T = MMD
(
b̃
)

. The magnitude of the normal force

N = N(a) is again calculated using the known normal reaction curve. Note that for

this partial slip case, there is, however, the risk that the new
∣∣∣b̃
∣∣∣ will exceed θμa,

even though the old
∣∣∣b̃
∣∣∣ does not. Such a situation should be additionally checked

for, and if this happens, the appropriate solution should be taken as discussed in the
total sliding regime.

The algorithm in Fig. 5.12 completes the description of the contact model. The
result is the possibility to calculate contact forces per unit area, N and T, for any
normal and tangential displacement, a and b, i.e.:

N = N(a), T = T (b, a) . (5.52)
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This is the main difference of the proposed approach when compared to the
simple flat crack model. The introduction of roughness on internal contacting
surfaces and the account for partial slip allowed us to organize and perform
calculations in an explicit manner. The advancement of this approach is related to
the fact that accounting for roughness, or an equivalent axisymmetric contact shape,

produces the Coulomb sliding condition for displacements, in the form
∣∣∣b̃
∣∣∣ = θμa,

instead of the traditional form |T| = μN, written for forces.
The notations N and T used in this chapter were introduced for contact forces.

The reason is the consideration of contact between two axisymmetric bodies
replacing the actual randomly rough surface topography. However, for mesoscopic
cells containing the nominal area An of a crack, it is less convenient since the actual
small value of An is not important. Therefore, in what follows, we normalize the
forces on the nominal contact area,

N → N/An, T → T/An. (5.53)

As a result, the new variables N and T have the sense of average stresses
(remember that the normal stress is -N) applied at crack faces due to contact
interactions, i.e., stresses defined at the level of the mesoscopic cell (Fig. 5.1b).
They are not to be confused with microscopic stress fields σa

(−→
r
)

and τ
(−→
r
)

which
result from the presence of loaded asperities.

5.7.2 Numerical Example

In order to illustrate how the full crack model algorithm works, we study the
following numerical example. Suppose a contact system is fed by time-dependent
displacement protocols a and b, depicted in Fig. 5.13a. Both protocols consist of
three sine waves with different frequencies and amplitudes. Each curve contains
about ten local extrema, and therefore the contact system experiences a lot of
“switching” events when either the normal or the tangential loading is reverted.
In view of practical applications, one should think of the exemplary protocols as
short fragments of a real ultrasonic signal coming from the direct propagation,
possible reverberations, mode conversions, etc. Time in Fig. 5.13 is represented in
time steps of the algorithm. The actual time interval corresponding to these steps is
not essential since our contact model is quasi-static.

An intermediate result of the protocol execution is the repartitioning of the
tangential displacement b in the components b0 and b̃ related to respectively the
total sliding shift and the partial slip accompanied by deformation of asperities
relative to this shift. Both components are shown in Fig. 5.13b. The final outcome
of the algorithm, i.e., the calculated normal and tangential forces as functions of
time, is shown in Fig. 5.13c in which, for the tangential force, the absolute value
is plotted. A closer look at Fig. 5.13 allows us to easily identify the three evolution
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Fig. 5.13 (a) Excitation
protocol in the considered
example: normalized normal
and tangential displacements,
a and b, as a function of time.
(b) Calculated components b0
and b̃ in the considered
numerical example. (c) The
appropriate forces N and T
calculated in our contact
model
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regimes. The total sliding regime occurs when |T| = μN (Fig. 5.13c). In this case,
the component b0 evolves since the reference points at both faces shift (Fig. 5.13b).
The other component b̃ changes as long as a is not constant, since the maximum
tangential deformation of asperities depends on the normal compression. In the case
marked as “total sliding” in Fig. 5.13, the normal displacement a decreases, and
therefore b̃ diminishes as well. The regime of contact loss is also easy to identify.
When a becomes negative (Fig. 5.13a), b̃ is set to zero since no asperity deformation
is possible (Fig. 5.13b), and the normal force equals zero too (Fig. 5.13c). There are
two different identification criteria for the partial slip regime: (1) b0 does not change
as the reference points do not shift, and (2) |T| is less than μN. In Fig. 5.13, only one
instance for each regime is shown, however, using the above criteria, it is possible
to identify the regime at each time instance during the protocol.

The calculations have been performed assuming the normal contact reaction in
the form

N(a) = C2a2, (5.54)

where C = 6 × 1010 Pa1/2 m−1, corresponding to the value obtained by matching
the experimental relation between the contact pressure and the gap distance, as
exemplified by Biwa et al. [16] and used in the numerical study of contact between
two solid blocks of aluminum by Yuan et al. [17] (see discussion in Sect. 5.4).

Finally, using the parametric representations b(t) and T(t), the desired depen-
dency of the tangential force T on the displacement b is plotted in Fig. 5.14. The
code allows one to rapidly generate such responses for any excitation protocol.
Clearly, this would be extremely difficult without an automated accounting of the
memory-dependent processes.

Note that in Figs. 5.13 and 5.14, the forces and displacements are normalized
on values N0 and a0, respectively. Here, N0 is a typical stress magnitude of elastic

Fig. 5.14 The tangential
load–displacement curve
calculated for the
displacement protocol from
Fig. 5.13
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waves propagating in the system (remember that in accordance to Eq. (5.53) N and T
denote stresses now). The link between normalization constants N0 and a0 is given
by the quadratic dependency N0 = C2a2

0 corresponding to Eq. (5.54).
In the next section, we present some numerical examples of wave propagation in

a 2D aluminum bar containing a crack.

5.8 Finite Element Simulations Using the Developed Contact
Model

5.8.1 General Remarks

Modeling of elastic wave propagation in cracked samples requires two different
components, the first of which is needed to describe the microscopic normal and
tangential behavior of the crack walls, whereas the second describes the wave
propagation itself. In this study, the Structural Mechanics Module [34] of the finite
element-based, software package COMSOL Multiphysics is used. On the one hand,
this specific module has been particularly designed to solve elastic wave propagation
problems, while, on the other hand, it contains sufficient tools to incorporate external
user-supplied contact models. These contact models do not necessarily have to be
implemented as closed form equations in the software itself, but can also be written
as external functions in MATLAB which can be easily introduced in COMSOL
using the LiveLink for MATLAB [35]. Using this approach, the more complex
contact model described in Sects. 5.4–5.7 can be directly linked to COMSOL, and
hence, allows the time-dependent interaction of an elastic wave with a frictional
crack to be studied as follows [36, 37]:

(a) Calculation of displacements in Structural Mechanics Module of COMSOL.

At each particular time step of the procedure, relative normal and tangential
displacements �un and �ut are calculated at the discretization points on the crack
interface and transferred to the displacement-driven crack model implemented in
MATLAB.

(b) Calculation of contact stresses in MATLAB.

From the relative normal and tangential displacement values, the contact model
in MATLAB allows to directly and explicitly calculate normal and tangential contact
stresses (-N and T), which are then considered as an input in COMSOL to update
the boundary conditions at the crack interface.

(c) Repeated calculations of displacements and contact stresses.

Steps (a) and (b) are repeated for the next time step, until the desired calculation
time is reached.
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The above-mentioned approach allows the problem of wave propagation in a
sample containing a crack with rough surfaces to be numerically solved in a simple
and straightforward way. Since roughness is only considered at the microscopic
level, crack faces at the mesoscopic level can be modeled as flat in the Structural
Mechanics Module of COMSOL.

5.8.2 Numerical Implementation of the Constitutive Crack
Model

Cracks are introduced as internal boundaries using the “thin elastic layer” feature
[34] that allows one to implement user-defined boundary conditions. These condi-
tions are defined on discretization points located at the same positions but related
to different sides of a crack. In other words, the actual number of nodes is doubled.
Relative movement of both sides occurs due to the action of forces denoted by Fn

for the normal component and Ft for the tangential component (here forces per
unit area are meant). The relative normal and tangential displacements between
the crack faces are here denoted by �un and �ut, respectively. The appropriate
choice of boundary conditions makes it possible to separately model various contact
phenomena, e.g., to avoid crack faces to freely penetrate into each other or to use
the normal reaction curve of the kind of Eqs. (5.6) or (5.54), to “switch” on and off
friction, etc.

Technically, in theoretical contact mechanics and in the Structural Mechanics
Module of COMSOL different notations are used. To help the reader identify the
correct forces and displacements which are necessary to introduce into COMSOL,
we provide here the explicit link:

�un = −2a, �ut = 2b, (5.55)

Fn = −N(a)+ F0, Ft = T (b, a) . (5.56)

The terms N(a) ≡ N and T(b, a) ≡ T are solutions of Eq. (5.52) for the contact
forces per unit area provided by the constitutive contact model. The mean normal
and shear or tangential contact stresses at the mesoscopic level equal

−N = Fn − F0, T = Ft
respectively. They are created by the contact interactions at the internal boundaries
and can be calculated for any value of normal and tangential displacements �un

and �ut depending on the current contact state (contact loss, total sliding, or partial
slip). The term F0 (F0 ≥ 0) is introduced to account for a possible pre-stress created
as a result of another physical process such as plasticity, fatigue, thermal changes,
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and irregularities of molecular structure. When differing from zero, the pre-stress
induces both positive a and N(a) in a situation where any external excitation, such
as an acoustical wave, is absent.

5.8.3 Test Sample Geometry and Physical Parameters

In order to illustrate the potential of the proposed model, two instructive examples of
a shear wave propagating in a 2D rectangular aluminum sample of 50 mm width and
100 mm height containing a crack are studied. The aluminum sample has a density
ρ = 2700 kg/m3, Young’s modulus E = 70 GPa, and Poisson’s ratio ν = 0.33.
A crack with a length of 20 mm is positioned in the center of the sample. In the
first example, the crack orientation is horizontal, whereas in the second example the
crack is inclined at 20◦, as illustrated in Fig. 5.15. In both examples, a continuous
shear wave excitation with a frequency of 100 kHz and tangential displacement
amplitude of 100 nm is defined on the top boundary of the sample. At the side and
bottom boundaries of the sample, non-reflecting boundary conditions were applied
in order not to mask the crack-wave interactions by parasite reflections. At the
internal crack boundaries, a thin elastic layer boundary condition is specified as
described in Sect. 5.8.2. The friction coefficient value μ = 1 was used, which is
close to known data for aluminum on aluminum [38].

As illustrated in Fig. 5.15, the full geometry is meshed using triangular elements
with a maximum size of approximately 2.6 mm (i.e., 12 second-order mesh elements

50 mm

20°
20 mm

x
y

x
y

n

10
0

m
m

10
0

m
m

50 mm

A
lu

m
in

iu
m

 s
am

pl
e

A
lu

m
in

iu
m

 s
am

pl
e

20 mm

→

t
→

n
→

t
→

Fig. 5.15 Illustration of two geometries implemented in COMSOL, together with the mesh
generated for one of the geometries. The samples represent 2D rectangles of aluminum with cracks
(horizontal and inclined at 20◦) of finite length positioned in the center domain. Both geometries
are meshed with triangular mesh elements, with a higher mesh density in the region of the crack
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per wavelength). At the internal crack boundary, however, a fixed number of 150
mesh elements (i.e., element size of approximately 0.13 mm) was used. By choosing
such small elements, the macroscopic elastic fields used in the MMD algorithm can
be considered uniform enough within each mesh cell. The solution to the problem is
calculated using the implicit generalized alpha time-dependent solver typically used
for structural mechanics problems in COMSOL. Accurate solutions are obtained
using a time step �t = 25 ns, corresponding to 400 time steps per wave cycle.

5.8.4 Nonlinear Hysteretic Tangential Behavior of Horizontal
Crack

In the first example, the interaction of the excited shear wave, propagating in the
vertical direction, with a horizontal crack is considered, with a particular focus on
the influence of pre-stress on wave propagation. At weak pre-stress, a sufficiently
high wave amplitude may engender total sliding, while strong compression can only
induce partial slip. To avoid the influence of the clapping effect (repeated opening
and closing of crack faces) and concentrate on tangential interactions only, the weak
pre-stress should be still large enough to keep the crack faces always in contact.

In this study, we consider two pre-loading magnitudes, F0 = 0.36 MPa and
F0 = 0.09 MPa, satisfying those criterion for the chosen shear wave excitation
with tangential displacement amplitude of 100 nm. Figure 5.16 shows snapshots
of the calculated total displacement in the cracked aluminum sample illustrating
the interaction of the ultrasonic shear wave with the crack. In set (a), a snapshot at
t = 10 μs is shown. In this case, the wave has not yet reached the crack. In figures
(b) and (c), snapshot at t = 18 μs is presented for both pre-loading magnitudes. The

Fig. 5.16 Snapshots of the calculated total displacement in the cracked aluminum sample. (a)
t = 10 μs: shear wave has not reached the crack yet. (b) t = 18 μs and F0 = 0.36 MPa: shear wave
propagation is practically not influenced by the crack. (c) t = 18 μs and F0 = 0.09 MPa: shear
wave propagation is highly influenced by the crack
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Fig. 5.17 Calculated normal and tangential relative displacements �un and �ut (upper set), and
mean contact stresses -N and T (lower set) at the central point on the crack interface in case of a
shear wave excitation at 100 kHz with amplitude of A100 nm, and a pre-loading F0 = 0.36 MPa.
The curves for both -N and N are included to show that shear stress T always lies in between them
(μ = 1 in our examples)

2D color plots illustrate the situation in general; fine nonlinear effects are not visible
in this representation. However, the difference between the two cases is clearly seen.
Partial slip plastically does not modify the linear propagation (Fig. 5.16b), whereas
total sliding domination results in strong refection (Fig. 5.16c).

Two other pictures, Figs. 5.17 and 5.18, justify our choice of the pre-stress
magnitudes. The figures display contact displacements �un = −2a and �ut = 2b
as well as the mean contact stresses -N and T at the center of the crack, for
F0 = 0.36 MPa and F0 = 0.09 MPa, respectively. In both situations, application
of the normal pre-loading closes the crack, resulting in the appearance of a negative
normal displacement �un due to the fact that asperities in contact can recede under
load. The normal displacement �un increases with increasing pre-load F0. Figure
5.17 illustrates the case with the largest pre-loading which forces the crack to stay
in the state of partial slip. Indeed, the condition |T| < μN is satisfied everywhere
(except at one short instant in time). It can be verified (not shown here) that this will
also be the case for other positions on the crack. In the case of weaker pre-loading
(Fig. 5.18), |T| often equals μN, i.e., the contact state frequently switches between
partial slip and total sliding. In this case as well, it can be verified (not shown here)
that at other positions on the crack the stresses behave in the same way.
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Fig. 5.18 Calculated normal and tangential relative displacements �un and �ut (upper set), and
mean contact stresses -N and T (lower set) at the central point on the crack interface in case of a
shear wave excitation at 100 kHz with amplitude of A 100 nm, and a pre-loading F0 = 0.09 MPa.
The curves for both -N and N are included to show that shear stress T always lies in between them
(μ = 1 in our examples)

The hysteretic tangential load–displacement curves corresponding to the shear
wave excitation are shown in Fig. 5.19 for both considered pre-stress values. The
partial slip and total sliding regime are indicated with different colors. Again, the
total sliding regime frequently appears for the weaker pre-stress (bottom figure)
whereas stronger pre-compression (top figure) disables this regime. Correspond-
ingly, contact acoustic nonlinearity is much stronger in the weak pre-compression
case. However, it is clearly discernible for the higher pre-stress as well, as hysteresis
in the upper set of Fig. 5.19 is still strongly pronounced. The same effect can be seen
in Fig. 5.17, in which the shape of the stress and displacement signals are visibly
different. This confirms the fact that contact acoustic nonlinearity remains relatively
strong, even in situations of high pre-loading due to the partial slip effects and highly
nonlinear normal reaction.
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Fig. 5.19 Tangential reaction curves at the central point on the crack interface in case of a shear
wave excitation at 100 kHz with a tangential displacement amplitude of 100 nm. (a) Hysteretic
curve in case of partial slip (pre-load F0 = 0.36 MPa), (b) Hysteretic curve in case of partial slip
and total sliding (pre-load F0 = 0.09 MPa)

5.8.5 Nonlinear Normal and Tangential Behavior of Inclined
Crack

The second example illustrates the interaction of the excited shear wave with an
inclined crack. No pre-loading has been introduced in this example. Due to crack’s
inclination, both clapping (i.e., opening and closing) and friction at the crack
interface are efficiently excited.

In Fig. 5.20, relative normal and tangential displacements and mean contact
stresses are plotted as functions of time. The normal displacement time curve is
highly asymmetric as negative excursions of�un meet much higher counter-action.
Indeed, negative normal displacements engender both the straining of surrounding
material layers and the resistance of the deformed asperities. In contrast, positive
excursions (contact loss regime) only strain the surrounding material; the reaction
of asperities is not activated. Moments of contact and contact loss in the upper figure
can be identified in the contact stress curves at the bottom. When contact is lost both
normal and tangential contact stresses equal zero. The absolute value of the negative
(in compression) normal stress is plotted in order to show that the Coulomb friction
law is fulfilled; the tangential stress can only reach the Coulomb threshold but never
exceeds it.
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Fig. 5.20 Calculated relative displacements �un and �ut (upper set) and mean contact stresses
-N and T (lower set) at the central point on the crack interface in case of a shear wave excitation at
100 kHz with amplitude of 100 nm, and no pre-loading. The curves for both -N and N are included
to show that shear stress T always lies in between them (μ = 1 in our examples)

Figure 5.21 shows the normal and tangential reaction curves calculated at the
central point on the inclined crack. According to Eqs. (5.52) and (5.54), the mean
normal stress -N differs from zero only in case of contact (i.e., a > 0 or �un < 0).
This can be observed in Fig. 5.21 (upper set). Moreover, in accordance to the
accepted assumptions, the normal reaction curve is fully reversible. On the other
hand, the tangential reaction curve (lower set) is hysteretic. Depending on loading
conditions, all three contact regimes appear which is shown in the lower set with
different colors.

Mechanical contact interactions are highly nonlinear due to the nonlinear normal
reaction curve, as well as due to hysteretic friction effects. Therefore, the crack
behaves as a source of secondary nonlinear waves. Figure 5.22 provides an overview
of both linear and nonlinear wave dynamics. In particular, the top figures show the
time evolution of the normal and shear contact stresses (-N and T) at all positions
along the crack interface in the sample excited by the shear wave at 100 kHz with an
amplitude of 100 nm. The figures clearly demonstrate the dynamic switching that
occurs between the non-contact (N = T = 0) and contact states (N > 0, T �= 0),
with different behavior for different positions on the crack. The set of figures in the
second row shows snapshots of the displacement component ux in the aluminum
sample at four instances in time, thus illustrating the propagation of the incident
wave. The considered time instances are also indicated by the vertical white lines in
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Fig. 5.21 Normal (upper set) and tangential (lower set) reaction curves at the central point on
the crack interface in case of a shear wave excitation at 100 kHz with a tangential displacement
amplitude of 100 nm

the top figures. The third row and bottom set of figures illustrate the nonlinear wave
propagation. To evaluate the nonlinear wave components, the Scaling Subtraction
Method (SSM) [39] has been used. This method exploits the distorted scaling of
the received signals with increasing excitation amplitude due to nonlinearity. To
use SSM, a sample has to be excited twice, once at a low excitation amplitude
Alow, and once at a high excitation amplitude Ahigh = n Alow, where n denotes
the scaling factor. By subtracting the properly scaled relative displacement signals
obtained using the low excitation amplitude from the ones obtained using the high
excitation amplitude, all linear contributions in the signals will be eliminated and
the nonlinearities will be enhanced. Here, two simulations were performed, one
at a low excitation amplitude Alow = 10 nm, and another one at a high excitation
amplitude Ahigh = 100 nm. Hence, snapshots of respectively the scale subtracted
normal and tangential displacement signals, un and ut, at four instances in time
(same as the ones used before) can be shown. The color scale in each set of snapshot
figures runs from blue (most negative displacement value over time) over green
(zero displacement) to yellow (most positive displacement value over time). At the
first time instant (t = 15 μs), there is no sign of nonlinearities at all. This is due
to the fact that it takes the excited shear wave approximately 16 μs to travel from
the top boundary to the crack (shear wave velocity vS = 3122 m/s). Once the first
part of the shear wave has reached the crack, the dynamic wave-crack interaction
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Fig. 5.22 First row: color coded plots illustrating the time evolution of the normal (-N) and shear
(T) contact stresses at the crack interface in case of a shear wave excitation at 100 kHz with a
tangential displacement amplitude of 100 nm; contact is lost when both contact stresses equal
zero. Second row: snapshots of the displacement component ux in the aluminum sample at four
different moments in time. Third and fourth row: snapshots of respectively the scale subtracted
normal and tangential displacements un and ut at four different moments in time. The four time
instances are marked by white vertical lines in the top figures

starts, resulting in the generation of both normal and tangential nonlinearities at
the crack interface, as illustrated by the snapshots at t = 18 μs, for un and for ut,
respectively. The contact stress evolution (top figures) shows that around t ≈ 20 μs
the entire crack is again in an open state. In this case, the crack faces temporarily do
not interact, and there will be no activation of contact nonlinearities, which can, for
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instance, be seen in the snapshots at time t = 22.5 μs. Yet, at that particular time, the
previously generated nonlinear wave components have propagated some distance
in the sample, while generation of new nonlinear components is not detected. As
the energy of a quasi-point source is redistributed circularly for 2D cases, the
amplitude quickly diminishes. At t ≈ 25 μs, the contact between crack faces is
reestablished, inducing again the nonlinear ultrasound generation at the crack faces,
clearly observed at the snapshot at time t = 27 μs. The performed time evolution
study of the nonlinear content in the wave propagation confirms that a crack starts
to behave as a nonlinear source when triggered by a wave-crack interaction. The
signals excited by this nonlinear source and detected at the surface of the object can
in turn be used for defect detection, localization, and/or characterization, provided
the recorded amplitudes are measurable.

5.9 Conclusions

In this chapter, we developed a theoretical and numerical approach to model elastic
wave propagation in solid structures containing cracks at known positions. The
key component of the created numerical toolbox is a contact model accounting
for friction and roughness of crack faces. The model allows to calculate the
load–displacement relationships in three different contact states: contact loss, total
sliding, and partial slip. The first one occurs when there is no contact between every
two corresponding points from opposite crack faces. Total sliding occurs when
both crack faces are sliding against each other. The last case corresponds to the
situation when both stick and slip areas are present in the contact zone and appears
due to surface roughness. The load–displacement relationship in the partial slip
regime is obtained with the help of the method of memory diagrams that allows one
to automate the account for friction-induced hysteresis by introducing an internal
functional dependency responsible for all memory effects in the contact system.

The load–displacement relationship represents a boundary condition that has to
be defined at internal boundaries, such as cracks. To do this, the constitutive model
has been combined with an elastic wave propagation model of final element type.
We have used the Structural Mechanics Module of the commercially available finite
element-based software package COMSOL Multiphysics. Using the LiveLink for
MATLAB feature, the crack model, implemented in MATLAB, was incorporated
into COMSOL in a simple and straightforward way.

The working principle of the numerical toolbox is illustrated by means of two
instructive examples of shear wave propagation in a 2D rectangular aluminum
sample containing a crack with rough surfaces, oriented either horizontally or
inclined at 20 degrees. Calculations of all elastic fields in the sample allow one
to check the fulfillment of the postulated friction laws, to identify the three contact
regimes, to separate the linear and nonlinear components of the waves, to detect
several nonlinear signatures including those that can be experimentally measured,
etc.
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The created numerical toolbox drastically increases visibility of all wave or
vibration processes used in experimental nondestructive testing methods for defect
detection and imaging. One of its final objectives is to estimate physical and
geometric parameters of defects which is only possible once a relevant nonlinear
wave propagation model is implemented.
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Chapter 6
Nonlinear Ultrasonic Techniques for
Material Characterization

J.-Y. Kim, L. Jacobs, and J. Qu

6.1 Time Harmonic Wave Motion in Elastic Solids
with Quadratic Nonlinearity

6.1.1 Governing Equations

The three-dimensional equations of motion for waves propagating in an elastic
medium with quadratic nonlinearity will be derived in this section. The derivation
follows closely the approach used in [1].

First, to describe the wave motion, we affix a Cartesian coordinate xi (i = 1, 2, 3)
to the continuum elastic body of interest, where the coordinate xi is also used to label
the material particle that was located at xi in the initial (undeformed) configuration.
This way of describing the wave motion is called the Lagrangian description and
xi is called the Lagrangian coordinate. At any given time t, the displacement of the
particle xi from its initial location is denoted by ui = ui(x, t). The deformation of the
continuum can then be described by the Lagrangian strain

εij = 1

2

(
ui,j + uj,i + uk,iuk,j

)
, (6.1)

where, and in the rest of this paper, the summation convention has been adopted.
Next, let the continuum medium be a hyperelastic body [2] with quadratic

nonlinearity, i.e.,

J.-Y. Kim · L. Jacobs
Georgia Institute of Technology, Atlanta, GA, USA

J. Qu (�)
Tufts University, Medford, MA, USA
e-mail: Jianmin.Qu@Tufts.edu

© Springer Nature Switzerland AG 2019
T. Kundu (ed.), Nonlinear Ultrasonic and Vibro-Acoustical Techniques
for Nondestructive Evaluation, https://doi.org/10.1007/978-3-319-94476-0_6

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94476-0_6&domain=pdf
mailto:Jianmin.Qu@Tufts.edu
https://doi.org/10.1007/978-3-319-94476-0_6


226 J.-Y. Kim et al.

σij = Cijkluk,l + 1

2

(
Dijklmn + Cijklmn

)
uk,lum.n + · · · , (6.2)

where σ ij is the first Piola-Kirchhoff stress, Cijkl and Cijklmn are the second and third
order elastic constants of the hyperelastic body, and

Dijklmn = Cijlnδkm + Cjlmnδik + Cjnklδim, (6.3)

with δij being the Kronecker delta.
Finally, consider the equations of motion

∂σij

∂xj
= ρ ∂

2ui

∂t2
, (6.4)

where ρ is the mass density of the undeformed body. Substituting (6.2) into (6.4)
leads to the displacement of equation of motion

ρ
∂2ui

∂t2
− Cijkl ∂

2uk

∂xj ∂xl
= (Dijklmn + Cijklmn

) ∂um
∂xn

∂2uk

∂xj ∂xl
+ 1

2

∂Cijklmn

∂xj

∂uk

∂xl

∂um

∂xn
.

(6.5)

Furthermore, we will limit ourselves to isotropic materials only. Under these
assumptions, the elastic constants can be simplified to [1],

Cijkl = λδij δkl + 2μIijkl, (6.6)

Cijklmn = (2l − 2m+ n) Iijklmn + (2m− n) (Jijklmn + Jklmnij + Jmnijkl
)

+n
2

(
Jikj lmn + Jiljkmn + Jjkilmn + Jjlikmn

)
, (6.7)

Dijklmn = λ (Iij lnkm + Ijlmnik + Ijnklim
)+ 2μ

(
Jkmijln + Jikj lmn + Jimjnkl

)
,

(6.8)

where λ and μ are the Lamé constants, and l, m, and n are the Murnaghan third
order elastic constants [1], and

Iijklmn = δij δklδmn, Jijklmn = 1

2

(
Iijkmln + Iijknlm

) = 1

2

(
δij δkmδln + δij δknδlm

)
.

(6.9)

Making use of (6.6) and (6.7) in (6.5) yields

1

c2
L

∂2ui

∂t2
−
(

1 − 1

κ2

)
∂2uj

∂xj ∂xi
− 1

κ2

∂2ui

∂xj ∂xj
= fi + gi, (6.10)
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where κ = cL/cT , and cL = √
(λ+ 2μ) /ρ and cT = √

μ/ρ are the longitudinal and
transverse phase velocities, respectively. The right-hand side of (6.10) is given by

fi = Cijklmn

λ+ 2μ

∂um

∂xn

∂2uk

∂xj ∂xl
+ 1

2

∂Cijklmn

∂xj

∂uk

∂xl

∂um

∂xn
, gi = Dijklmn

λ+ 2μ

∂um

∂xn

∂2uk

∂xj ∂xl
,

(6.11)

Clearly, fi arises from the material nonlinearity and gi comes from the geometrical
nonlinearity. It can be easily shown that gi vanishes if small strain assumption, i.e.,

εij = 1

2

(
ui,j + uj,i

)
(6.12)

is made.
In the foregoing derivations, we had implicitly assumed that Cijklmn is spatially

dependent so that ∂Cijklmn/∂xj �= 0. In the rest of this paper, we will assume that
Cijklmn is uniform throughout the body so that ∂Cijklmn/∂xj = 0.

We now define boundary value problems for the wave propagation in a weakly
nonlinear bounded elastic medium. In such a medium, the displacement field can be
written as the sum of the primary field, u(1)i and the secondary field, u(2)i as the first
correction term to the primary field:

ui = u(1)i + u(2)i . (6.13)

with
∣∣∣u(2)i

∣∣∣ <<
∣∣∣u(1)i

∣∣∣ . (6.14)

Experimental results on numerous engineering materials including pure metals
and metallic alloys show that the amplitude of the secondary wave displacement
(the second harmonic) is typically 10−3 to 10−2 times smaller than the amplitude
of the primary wave displacement (the first harmonic). Therefore, the perturbation
condition, Eq. (6.14), is well supported by experimental results. By this condition,
it follows

∣∣∣u(2)i u
(2)
j

∣∣∣ <<
∣∣∣u(1)i u

(2)
j

∣∣∣ <<
∣∣∣u(1)i u

(1)
j

∣∣∣ . (6.15)

Substituting (6.13) into (6.5) and then applying (6.15), one obtains the equations
of motion for the primary and secondary fields as follows:

ρ
∂2u

(1)
i

∂t2
− Cijkl ∂

2u
(1)
k

∂xj ∂xl
= 0, (6.16)
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ρ
∂2u

(2)
i

∂t2
− Cijkl ∂

2u
(2)
k

∂xj ∂xl
= f̂i . (6.17)

where

f̂i = (Dijklmn + Cijklmn
) ∂u(1)m
∂xn

∂2u
(1)
k

∂xj ∂xl
. (6.18)

It is seen in (6.17) that the secondary field is excited by the interaction of the
primary field and this excitation appears as the body force term

(
f̂i
)

in (6.17).
Now consider the boundary conditions. First, for the stress-free boundary, the

condition for the primary and secondary fields is written

σ
(L)
ij

(
u
(1)
i

)
nj = 0, (6.19)

σ
(L)
ij

(
u
(2)
i

)
nj = −σ (NL)ij

(
u
(1)
i

)
nj , (6.20)

where σ (L)ij is the linear stress, the first term on the right-hand side of (6.2); σ (NL)ij is
the nonlinear portion of the first Piola-Kirchhoff stress, the second and third terms
on the right-hand side of (6.2); nj is the surface normal vector. The nonlinear stress in
(6.20) is quadratic in the primary displacement and higher order terms are neglected.
Eq. (6.20) states that the primary field also produces sources of the secondary field,
the nonlinear tractions, on the boundary.

The conditions for a rigid (no displacement or velocity) boundary for the primary
and secondary fields are

u
(1)
i = 0, (6.21)

u
(2)
i = 0. (6.22)

Unlike in the stress-free boundary, the condition for the secondary field at the
rigid boundary is linear and no sources are generated by the action of the primary
at the boundary. In summary, Eqs. (6.16), (6.17), (6.18), (6.19), and (6.20) define
the nonlinear boundary value problems with the stress-free boundary condition, and
Eqs. (6.16), (6.17), and (6.21) define those with the rigid boundary condition, both
in the framework of the perturbation approach. Using the relationships in Eqs. (6.6),
(6.7), and (6.8), the explicit expressions for f̂i and σ (NL)ij for an isotropic solid are
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f̂i =
(
μ+ n

4

)(∂2u
(1)
l

∂x2
k

∂u
(1)
l

∂xi
+ ∂

2u
(1)
l

∂x2
k

∂u
(1)
i

∂xl
+ 2

∂2u
(1)
i

∂xl∂xk

∂u
(1)
l

∂xk

)

+
(
λ+ μ+m− n

4

)
(
∂2u

(1)
i

∂xl∂xk

∂u
(1)
l

∂xk
+ ∂2u

(1)
k

∂xl∂xk

∂u
(1)
i

∂xl

)

+
(
λ+m− n

2

) ∂2u
(1)
i

∂x2
k

∂u
(1)
l

∂xl
+
(

2l −m+ n
2

) ∂2u
(1)
k

∂xi∂xk

∂u
(1)
l

∂xl

+
(
m− n

4

) ( ∂2u
(1)
k

∂xl∂xk

∂u
(1)
l

∂xi
+ ∂2u

(1)
l

∂xi∂xk

∂u
(1)
k

∂xl

)

, (6.23)

σ
(NL)
ij =

{(
λ

2
+m

2
−n

4

)
∂u
(1)
k

∂xl

∂u
(1)
k

∂xl
+
(
l−m+n

2

) ∂u(1)k
∂xk

∂u
(1)
l

∂xl

+
(m

2
−n

4

) ∂u(1)k
∂xl

∂u
(1)
l

∂xk

}

δij +
(
m− n

2

) ∂u(1)k
∂xk

∂u
(1)
i

∂xj

+n
4

∂u
(1)
i

∂xk

∂u
(1)
k

∂xj
+
(
λ+m− n

2

) ∂u(1)k
∂xk

∂u
(1)
j

∂xi

+
(
μ+ n

4

)(∂u(1)i
∂xk

∂u
(1)
j

∂xk
+ ∂u

(1)
k

∂xi

∂u
(1)
k

∂xj
+ ∂u

(1)
j

∂xk

∂u
(1)
k

∂xi

)

(6.24)

If the domain is infinite, instead of these boundary conditions, the radiation
condition should be used. The fact that the secondary waves are generated by the
primary waves implies that there is a power flow from the primary to secondary
waves. For the total energy in the domain to be conserved, the amplitude of the
primary wave should decrease as the secondary wave is generated. However, this is
not taken into account in this perturbation approach, but the relative error should be

on the order of
∣∣∣u(2)i

∣∣∣ /
∣∣∣u(1)i

∣∣∣, which we assumed to be much smaller than unity.

6.1.2 One-Dimensional Wave Propagation

To simplify the algebra, we consider the wave field in the form of

u1 = u1 (x1, t) , u2 = u2 (x1, t) , u3 = 0, (6.25)

In this case, only two of the equations of motion (6.10) are non-trivial. They are

L [u1; cL] ≡ ∂2u1

∂t2
− c2

L

∂2u1

∂x2
1

= βLc2
L

∂u1

∂x1

∂2u1

∂x2
1

+ βT c2
T

∂u2

∂x1

∂2u2

∂x2
1

, (6.26)
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L [u2; cT ] ≡ ∂2u2

∂t2
− c2

T

∂2u2

∂x2
1

= βT c2
T

(
∂2u1

∂x2
1

∂u2

∂x1
+ ∂u1

∂x1

∂2u2

∂x2
1

)

, (6.27)

where

βL = 3 + ηL, βT = κ2 + ηT (6.28)

are called, respectively, the longitudinal and transverse acoustic nonlinearity param-
eters. In the above, κ = cL/cT , and

ηL = 2 (l + 2m)

λ+ 2μ
, ηT = m

μ
(6.29)

represent the material nonlinearity. Clearly, the acoustic nonlinearity parameters
account for both geometrical and material nonlinearities. Note that the βL defined
in (6.28) differs in sign from some of the acoustic nonlinearity parameter β used in
some publications, i.e., βL = − β.

The corresponding stresses follow from (6.2)

σ11 = ρc2
L

[
∂u1

∂x1
+ βL

2

(
∂u1

∂x1

)2

+ βT

2κ2

(
∂u2

∂x1

)2
]

, (6.30)

σ22 = ρc2
T

[(
κ2−2

) ∂u1

∂x1
+
[
κ2
(

1+βL
2

)
−2βT−1

](
∂u1

∂x1

)2

+βT
2

(
∂u2

∂x1

)2
]

,

(6.31)

σ12 = ρc2
T

[
∂u2

∂x1
+
(

1 − κ2 + βT
) ∂u1

∂x1

∂u2

∂x1

]
. (6.32)

Next, we consider a half-space defined by x1 ≥ 0. Let the boundary of the half-
space be subjected to prescribed displacement condition

u1 (0, t) = U sin (ωt) , u2 (0, t) = 0, (6.33)

where ω = kLcL is the circular frequency and kL is the wavenumber for the longi-
tudinal propagating wave. It can be easily shown by a straightforward perturbation
technique that, for

∣
∣βLUk2

Lx1
∣
∣ � 1, the solution to the boundary value problem

defined by (6.26) and (6.33) can be written as [3],

u1

U
= sin

[
ω

(
t − x1

cL

)]
− βLUk

2
Lx1

8

(
A+ cos

[
2ω

(
t − x1

cL

)])
, (6.34)
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σ11

ρc2
L

= −UkL cos

[
ω

(
t − x1

cL

)]
(6.35)

+βLU
2k2
L

8

[
A+ cos

[
2ω

(
t − x1

cL

)]
− 2kx1 sin

[
2ω

(
t − x1

cL

)]]
,

where A is an arbitrary constant. Note that, unlike the corresponding linear problem
where A must be zero because the solution must be bounded as x → ∞, the constant
A in (6.34) does not have to be zero because (6.34) is valid only for finite x. To
uniquely determine this constant, we use the following consistency condition

∂u1

∂t
= − 2cL

3βL

[(
1 + βL ∂u1

∂x1

)3/2

− 1

]

. (6.36)

This is valid for any βL and is independent of the boundary conditions. It can be
easily shown that in the limit of βL → 0, the above reduces to the well-known Eq.
(6.37),

∂u1

∂t
= −cL ∂u1

∂x1
. (6.37)

The consistency condition (6.36) provides an additional equation to uniquely
determine the constant A. By substituting (6.34) into (6.36), we arrive at A = 1.
Thus, the solution becomes

u1

U
= sin

[
ω

(
t − x1

cL

)]
− βLUk

2
Lx1

8

(
1 + cos

[
2ω

(
t − x1

cL

)])
, (6.38)

σ11

ρc2
L

= −UkL cos

[
ω

(
t − x1

cL

)]
(6.39)

+βLU
2k2
L

8

[
1 + cos

[
2ω

(
t − x1

cL

)]
− 2kx1 sin

[
2ω

(
t − x1

cL

)]]
.

The above solutions satisfy (6.26) and (6.33) up to the order of βLU2k2
L.

Note that A1 = U represents the amplitude of the fundamental frequency, and
A2 = −βLA2

1k
2
Lx/8 is the amplitude of the second harmonic. If the time-domain

signal is recorded in an ultrasonic test, both A1 and A2 can be obtained by taking
the Fourier transform of the time-domain signal. Once A1 and A2 are known, the
acoustic nonlinearity parameter can be obtained as βL = −8A2/

(
A2

1k
2
Lx1
)
. This

is the fundamental principle used in many NLU methods to measure the acoustic
nonlinearity parameter.
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6.1.3 Nonlinear Wave Mixing

We consider the mixing of two primary plane waves in the x1x2-plane,

u
(0)
i = U1d

(1)
i sin

(
ω1t − k1p

(1)
j xj

)
+ U2d

(2)
i sin

(
ω2t − k2p

(2)
j xj

)
, u
(0)
3 = 0

(6.40)

where d(m)i and p(m)i , (m = 1, 2) are the displacement and propagation vectors,
respectively, for the two primary waves.

If the medium is linear elastic, it is well known that the two primary waves
would simply propagate on their own without interfering each other. However, in
a nonlinear medium, not only each wave will generate its own higher harmonics as
discussed in the previous section, the two waves would also interact and generate
an additional wave field. In this section, we will focus on this additional wave field
generated by the interactions between two primary plane waves.

Substituting (6.40) into the right-hand side of (6.10) for isotropic material with
spatially uniform elastic constants and retaining only the cross terms between the
two waves due to nonlinear interactions lead to

fi + gi = U1U2

[
b+i sin

(
ω+t − k+j xj

)
+ b−i sin

(
ω−t − k−j xj

)]
+ U2

1A+ U2
2B,

(6.41)
where

ω± = ω1 ± ω2, k
±
j = k1p

(1)
j ± k2p

(2)
j (6.42)

and b± = (
b±1 , b

±
2

)T
are known functions of the materials and frequencies, which

have been derived previously in [6]. The symbols A and B are used to indicate
higher harmonics of ω1 and ω2, respectively. We note that (6.10) is a linear
system of equations. Thus, its solution can be obtained by superimposing solutions
corresponding to the different terms in (6.41). The solutions that correspond to
U2

1 and U2
2 are given in the previous section. Here, our interest is the nonlinear

interaction, so we will neglect terms associated with U2
1 and U2

2 , i.e., we will
consider only the solution to the following:

1

c2
L

∂2u
(1)
i

∂t2
−
(

1 − 1

κ2

)
∂2u

(1)
j

∂xj ∂xi
− 1

κ2

∂2u
(1)
i

∂xj ∂xj
(6.43)

= U1U2

[
b+i sin

(
ω+t − k+j xj

)
+ b−i sin

(
ω−t − k−j xj

)]
.

It can be seen that a possible solution to (6.44) might be written as

u
(1)
i = a+

i sin
(
ω+t − k+j xj

)
+ a−

i sin
(
ω−t − k−j xj

)
, (6.44)
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where a± = (
a±

1 , a
±
2

)T
are constants to be determined. Substituting (6.44) into

(6.43) yields a system of four algebraic equations for a±,

A±a± = U1U2b±, (6.45)

where

A± =
[
h±

1 s
±

s± h±
2

]
(6.46)

and

h±
1 = 1

κ2c2
L

[
c2
L

[(
k±2
)2 + κ2(k±1

)2]− κ2ω2±
]
,

h±
2 = 1

κ2c2
L

[
c2
L

[(
k±1
)2 + κ2(k±2

)2]− κ2ω2±
]
, (6.47)

s± = κ2 − 1

κ2
k±1 k

±
2 . (6.48)

The determinants of A± are given by

D± = det
(
A±) = 1

κ2

(

k±j k
±
j − ω

2±
c2
L

)(

k±j k
±
j − ω

2±
c2
T

)

. (6.49)

If D+D− �= 0, Eq. (6.45) will have a unique solution given by

a± = U1U2
(
A±)−1b±. (6.50)

Substituting (6.49) into (6.44) yields the solution to the wave fields generated by
the nonlinear interactions between the two primary waves. It is seen that such waves
propagate with constant amplitude and frequencies that are the sum and difference
of the frequencies of the two primary waves. In fact, even when D+D− = 0, a unique
solution to a± may still exit if

rank
(
A±|b±) = rank

(
A±) , (6.51)

where (A±| b±) is to donate the augmented matrix, i.e., a matrix obtained by
appending the columns of b± to A±.

For convenience, we call (6.44) with a± being given by (6.50) the mixing wave
field induced by the nonlinear interactions between the two primary waves. It is
seen that such mixing wave field generally consists of two propagating waves in the
directions of k+ and k−, respectively.
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A more interesting, and practically useful case is when D+D− = 0, i.e.,

(

k+j k
+
j − ω

2+
c2
L

)(

k+j k
+
j − ω

2+
c2
T

)(

k−j k
−
j − ω

2−
c2
L

)(

k−j k
−
j − ω

2−
c2
T

)

= 0, (6.52)

and either rank(A+| b+) �= rank(A+) or rank(A−| b−) �= rank(A−). In these cases,
one or both of the sinusoidal functions in (6.44) become the eigenfunctions of the
homogeneous equation of (6.43). Thus, the solution to (6.43) is no longer in the
form of (6.44). In fact, the solution to (6.43) in these cases will grow linearly
with the propagation distance. This phenomenon is called resonance. The waves
generated by the nonlinear interaction under such resonant conditions will be called
the resonant waves. In what follows, we will discuss several special cases.

6.1.3.1 Mixing of Two Collinear Longitudinal Plane Waves

Without loss of generality, we consider the mixing of the following two collinear
longitudinal waves:

p1 = p2 = d1 = d2 = (1, 0)T . (6.53)

Clearly, use of (6.53) in (6.52) leads to D+D− = 0. Furthermore, one can show
that

A± =
⎡

⎣
0 0

0 −
(
c2
L−c2

T

)
ω2±

c4
L

⎤

⎦ ,b± = βL

2cL
k1k2

[
ω±
0

]
. (6.54)

It is easy to see that rank(A±| b±) �= rank(A±), which means that (6.44) is no
longer the solution to (6.43). In other words, the mixing of two collinear longitudinal
waves will generate a resonant wave. One can show that this resonant wave is a
longitudinal wave given by

us1 = −βL
4
k1k2U1U2x1

[
cos

[
ω+
(
t − x1

cL

)]
+ cos

[
ω−
(
t − x1

cL

)]]
, us2 = 0.

(6.55)

We see that indeed the mixing wave grows with propagating distance x1.
Interestingly, it can be shown that in the limit of ω1 → ω1 = ω and

U2 → U1 = U, (6.55) reduces to

us1 = −βL
4
k2
LU

2x1

[
1 + cos

[
2ω

(
t − x1

cL

)]]
. (6.56)
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This is the same as to the generation of second harmonic given in (6.38). In fact,
by including the terms generated by U2

1 and U2
2 , the total solution now becomes

u1 = 2U sin

[
ω

(
t − x1

cL

)]
− βLU

2k2
Lx1

2

(
1 + cos

[
2ω

(
t − x1

cL

)])
. (6.57)

This is identical to (6.38) if the amplitude of the primary wave is 2 U in (6.38).
In other words, the generation of second harmonic by a longitudinal wave is really
the result of “self-mixing” of the longitudinal wave with itself.

6.1.3.2 Mixing of Two Collinear Transverse Plane Waves

Again, without loss of generality, we consider the mixing of the following two
collinear transverse waves:

p1 = p2 = (1, 0)T ,d1 = d2 = (0, 1)T . (6.58)

Clearly, this also satisfies D+D− = 0. However, we also have

A± =
⎡

⎣

(
κ2−1

)
ω2±

c2
L

0

0 0

⎤

⎦ ,b± = βT

2cT
k1k2

[
ω±
0

]
, (6.59)

i.e., rank(A±| b±) = rank(A±) = 1. Thus, there is still a unique solution to (6.45),
which is given by

us1=
βT κ

2ω1ω2U1U2

2cT
(
κ2−1

)
[

1

ω−
sin

[
ω−
(
t− x1

cT

)]
+ 1

ω+
sin

[
ω+
(
t− x1

cT

)]]
, us2 = 0.

(6.60)

We see that the mixing wave field generated by two collinear transverse share
waves consists of two longitudinal waves of constant amplitude with frequencies
ω− and ω+, respectively. However, they are not resonant waves as they do
not accumulate in amplitude with as they propagate through the mixing zone.
Interestingly, the velocity of these longitudinal waves is cT instead of cL. This is
possible only as mixing wave in the presence of the two primary shear waves. Such
a mixing wave cannot propagate outside the mixing zone.

6.1.3.3 Mixing of Collinear Longitudinal and Transverse Plane Waves

Let us first consider the case when the two waves propagate in the same direction,
i.e.,

p1 = p2 = (1, 0)T ,d1 = p1,d2 = (0, 1)T . (6.61)
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It can be shown that D+D− = 0 when either ω2/ω1 = (κ + 1)/(2κ), or
ω2/ω1 = 2/(κ + 1). However, only the former leads to rank(A±| b±) �= rank(A±).
That is, only when ω2/ω1 = (κ + 1)/(2κ), a resonant wave occurs, which is given by

us1 = 0, us2 = βT ω
2
1U1U2

2c2
T (κ + 1)

x1 cos

(
ω−
(
t + x1

cT

))
. (6.62)

Clearly, this resonant wave is a pure shear wave propagating in the opposite
direction as that of the two primary waves. Its phase velocity is the shear wave
phase velocity, and its frequency is ω− = ω1 − ω2.

Next, consider the case when the two waves propagate in the opposite directions,
i.e.,

p1 = −p2 = (−1, 0)T ,d1 = p1,d2 = (0, 1)T . (6.63)

This leads to

A± = −κ + 1

c2
T κ

4

[
κ2ω1 (ω1 − κω1 ± 2ω2) 0

0 ω2 (−ω2 + κω2 ± 2κω1)

]
, (6.64)

b± = βT ω1ω2

2c3
T κ

4

[
0

ω2 ∓ κω1

]
. (6.65)

It can be shown that D+D− = 0 has two physically meaningful roots,
ω2/ω1 = 2κ/(κ − 1) and ω2/ω1 = (κ − 1)/2. Only the former leads to
rank(A−| b−) �= rank(A−). That is, only when ω2/ω1 = 2κ/(κ − 1), does a
resonant wave occurs, which is given by

us1 = 0, us2 = − βT ω
2
1U1U2

2c2
T (κ − 1)

x1 cos

[
ω−
(
t + x1

cT

)]
(6.66)

It is seen that the resonant wave is a shear wave of frequency ω− = ω1 − ω2
propagating in the direction opposite to that of the primary transverse wave.

6.1.4 Rayleigh Surface Waves

Consider a half-space defined by x2 ≥ 0. A Rayleigh wave propagating in the
positive x1-direction along the free surface x2 = 0 can be described by a two-
dimensional displacement field,

uα (x1, x2, t) = u(1)α (x1, x2, t)+ u(2)α (x1, x2, t) , α = 1, 2. (6.67)
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where
∣∣∣u(1)α (x1, x2, t)

∣∣∣ �
∣∣∣u(2)α (x1, x2, t)

∣∣∣. Making use of such displacements in

(6.10) leads to

1

c2
L

∂2u
(1)
α

∂t2
−
(

1 − 1

κ2

)
∂2u

(1)
β

∂xβ∂xα
− 1

κ2

∂2u
(1)
α

∂xβ∂xβ
= 0, (6.68)

1

c2
L

∂2u
(2)
α

∂t2
−
(

1 − 1

κ2

)
∂2u

(2)
β

∂xβ∂xα
− 1

κ2

∂2u
(2)
α

∂xβ∂xβ
= ∂Hαβ

∂xβ
, (6.69)

where

H11 = βL

2

(
∂u
(1)
1

∂x1

)2

+ c2 ∂u
(1)
2

∂x2

(

2
∂u
(1)
1

∂x1
+ ∂u

(1)
2

∂x2

)

+c3 ∂u
(1)
1

∂x2

∂u
(1)
2

∂x1
+ βT

2

⎡

⎣

(
∂u
(1)
1

∂x2

)2

+
(
∂u
(1)
2

∂x1

)2
⎤

⎦ , (6.70)

H22 = βL

2

(
∂u
(1)
2

∂x2

)2

+ c2 ∂u
(1)
1

∂x1

(

2
∂u
(1)
2

∂x2
+ ∂u

(1)
1

∂x1

)

+c3 ∂u
(1)
1

∂x2

∂u
(1)
2

∂x1
+ βT

2

⎡

⎣
(
∂u
(1)
1

∂x2

)2

+
(
∂u
(1)
2

∂x1

)2
⎤

⎦ , (6.71)

H12 =
(

c3
∂u
(1)
2

∂x1
+ βT ∂u

(1)
1

∂x2

)(
∂u
(1)
1

∂x1
+ ∂u

(1)
2

∂x2

)

,

H21 =
(

c3
∂u
(1)
1

∂x2
+ βT ∂u

(1)
2

∂x1

)(
∂u
(1)
1

∂x1
+ ∂u

(1)
2

∂x2

)

, (6.72)

and

c2 = 1 − 1

κ2 + βL
2

− 2βT , c3 = −1 + 1

κ2 + βT

The corresponding stresses follow from (6.24)

σ12 = ρc2
T

(
∂u1

∂x2
+ ∂u2

∂x1
+ κ2H12

)
, σ22 = ρc2

L

(
∂u2

∂x2
+
(

1 − 2

κ2

)
∂u1

∂x1
+H22

)
.

(6.73)
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On the free surface (x2 = 0), traction must vanish, i.e.,

∂u
(1)
1

∂x2
+ ∂u

(1)
2

∂x1
= 0,

∂u
(1)
2

∂x2
+
(

1 − 2

κ2

)
∂u
(1)
1

∂x1
= 0 at x2 = 0. (6.74)

∂u
(2)
1

∂x2
+ ∂u

(2)
2

∂x1
= −κ2H12,

∂u
(2)
2

∂x2
+
(

1 − 2

κ2

)
∂u
(2)
1

∂x1
= −H22 at x2 = 0. (6.75)

The first order solution can be obtained from standard textbooks, e.g., [5],

u
(1)
1 (x1, 0, t) = U√b1b2 exp

(
iω

(
t − x1

cR

))
, u
(1)
2 (x1, 0, t)

= iUb1 exp

[
iω

(
t − x1

cR

)]
. (6.76)

where cR is the Rayleigh wave velocity that satisfies the Rayleigh equation

(
2 − c2

r

)2 − 4b1b2 = 0, (6.77)

and

b1 =
√

1 − c2
r

κ2 , b2 =
√

1 − c2
r , cr = cR

cT
. (6.78)

Finding the second order solution is rather difficult and the solutions are fairly
complex. Different authors have presented various types of solutions [7–21]. For
many engineering applications, the quantity of most interest is the ratio of the second
order and first order out-of-plane displacements on the surface, which was derived
in [22],

u
(2)
2 (x1, 0, t)

[
u
(1)
2 (x1, 0, t)

]2
= βLk

2
Lx1

8ib1
[
1 − 2/

(
1 − b2

2

)] . (6.79)

Consequently,

βL = 8ib1
[
1 − 2/

(
1 − b2

2

)]

k2
Lx1

u
(2)
2 (x1, 0, t)

[
u
(1)
2 (x1, 0, t)

]2
. (6.80)
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Once u(2)2 (x1, 0, t) /
[
u
(1)
2 (x1, 0, t)

]2
is measured experimentally, the longitudi-

nal acoustic nonlinearity parameter βL can be obtained from the above. This is used
later in Sect. 6.2.3 to characterize fatigue damage in metallic materials.

6.1.5 Lamb Waves

6.1.5.1 Solution for the Secondary Field

Consider a flat, stress-free, lossless, elastic plate with a thickness 2 h as shown in
Fig. 6.1. The z axis coincides with the direction of propagation while the y axis is
normal to the thickness. Therefore, all wave motions occur in y-z plane, implying
ux ≡ 0 and ∂F/∂x ≡ 0 for any field variable F. The boundary value problems
relevant to the weakly nonlinear wave motion in this plate have been defined by
(6.16), (6.17), (6.18), (6.19), and (6.20). The derivation of the primary field solution
to (6.16) with the boundary condition (6.19), that is, the linear Lamb waves, can
be found in many textbooks, e.g., [5], so it is not repeated here. The two essential
steps in the analysis of the secondary field are, first to calculate the body force term
f̂i (or f̂) in (6.18) and the boundary traction term σ (NL)ij nj (or n · σ(NL)) in (6.20),

both in a quadratic function of the known primary displacement field u(1)i (or u(1)),
and then to solve the resulting linear differential Eq. (6.17) with the body force
term and the prescribed traction term at boundary. The vector (dyadic) notation will
be used for brevity of expressions hereafter. Obtaining f̂ and σ(NL) in terms of u(1)

involves tedious manipulations of products of the trigonometric functions, and the
expressions are quite lengthy and thus are omitted here. It is assumed that we have
obtained f̂ and σ(NL), and have expressed them as follows:

f̂ = f̃(y)e2i(κz−ωt) + const. (6.81)

σ(NL) = σ̃(NL)(y)e2i(κz−ωt) + const. (6.82)

where the “tilde” denotes the amplitude of the harmonic fields, the “const.” stands
for a real constant representing a static (DC) deformation or stress in the plate. This
is closely related to the interesting phenomenon of the radiation stress and strain [4,
23]. Our analysis focuses on the phenomenon of the second harmonic generation.
Thus, these constants will be neglected.

An efficient way to solve the forced guided wave problem is the method based
on the elastodynamic reciprocity principle [24]. The general framework presented
below was originally developed by Auld [25] for a linear anisotropic piezoelectric
waveguide problem, and then was extended by de Lima [26] to the nonlinear Lamb
wave problem.
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Fig. 6.1 Coordinate system of the infinite plate

Consider two situations in which body forces f̂k , k = 1, 2 produce wave fields
{vk, σk}, where v denotes the particle velocity, i.e., v = u̇. The elastodynamic
reciprocity principle stipulates that,

∇ · (v∗
2 · σ1 + v1 · σ∗

2

) = −v∗
2 · f̂1 − v1 · f̂∗2. (6.83)

where “*” denotes the complex conjugate. If any two plate modes m and n with the
same time dependence eiωt are taken as the two wave fields in (6.83), the traction-
free boundary conditions on the plate surfaces mean f̂1 = f̂2 = 0. Thus, (6.83)
leads to

Pmn =
{

− 1
2 Re

∫ h
−hṽ∗

n · σ̃n · nzdy
0

if n = m
if n �= m (6.84)

Inspection of the integrand in (6.84) reveals that Pmm is the power flow density
in the z direction carried by the mode m, and there is no power flow between two
different modes because of their orthogonality.

Having introduced these concepts, we are ready to solve (6.17) with (6.20) for
the secondary field {v(2), σ(2)} under the action of the body force f̂

(
u(1)
)

in the bulk
and the traction σ(NL)(u(1)) · n on the surfaces of the plate. Now consider an arbitrary
known free mode {vn, σn} under zero body force (bn = 0) at the second harmonic
frequency,

vn = ṽn(y)ei(κnz−2ωt),σn = σ̃n(y)e
i(κnz−2ωt). (6.85)

where κn is the propagation constant of mode n. If this free mode and the unknown
secondary solution are taken as the two wave fields in the reciprocity Eq. (6.83), one
obtains

− ∂

∂z

{(
ṽ∗
n · σ(2) + v(2) · σ̃∗

n

)
e−iκ∗

nz
}

· nz − ∂

∂y

{(
ṽ∗
n · σ(2) + v(2) · σ̃∗

n

)
e−iκ∗

nz
}

·

ny = ṽ∗
n · f̂e−iκ∗

nz. (6.86)
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The secondary field is now expressed in a series expansion of the normal modes
at the second harmonic frequency:

u(2) =
∑∞

m=0
Am(z)ũ(2)m (y)e

−2iωt (6.87)

v(2) =
∑∞

m=0
Am(z)ṽ(2)m (y)e

−2iωt (6.88)

σ(2) =
∑∞

m=0
Am(z)σ̃

(2)
m (y)e

−2iωt (6.89)

Note that in (6.87), (6.88), and (6.89), Am(z) is introduced to reflect any variation
of the secondary field amplitude in the z direction due to the nonlinearities. This
is motivated by the linear increase of the secondary field in the one-dimensional
longitudinal waves, see, Sect. 6.1.2. Substituting (6.88) and (6.89) into (6.86) and
integrating the resulted equation over the thickness of the plate, one obtains

− ∂

∂z

∫ h

−h

{∑∞
m=0
Am(z)

(
ṽ∗
n · σ̃(2)m + v(2)m · σ̃∗

n

)
ei(ωt−κ∗

nz)
}

· nzdy

−
(

ṽ∗
n · σ(2) + v(2) · σ̃∗

n

)
· ny
∣∣∣
h

−he
−iκ∗

nz =
∫ h

−h
ṽ∗
n · f̂dye−iκ∗

nz. (6.90)

Because of the traction-free boundary condition on the plate surfaces, σ̃n (±h) =
0, and the orthogonality in (6.84), Eq. (6.85) is written as

4Pnn
d

dz

{
An(z)e

i(ωt−κ∗
nz)
}

− ṽ∗
n · σ(2) · ny

∣∣∣
h

−he
−iκ∗

nz =
∫ h

−h
ṽ∗
n · f̂dye−iκ∗

nz.

(6.91)

Note that the partial differentiation in the first term on the left-hand side
has changed to the ordinary differentiation since the y dependences were
absorbed in Pnn upon integration. Finally, applying the boundary condition (6.20),
σ(2) = σ(L)(u(2)) = − σ(NL)(u(1)) and inserting (6.81) and (6.82) into (6.91), one
arrives at an ordinary differential equation for the modal amplitude of the secondary
field An(z):

4Pnn

(
d

dz
− iκ∗

n

)
An(z) =

(
f vol
n + f surf

n

)
e2iκz, (6.92)
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where the two modal driving forces are defined as

f vol
n =

∫ h

−h
ṽ∗
n · f̂dy, (6.93)

f surf
n = − ṽ∗

n · σ̃(NL) · ny
∣∣∣
h

−h, (6.94)

Since the secondary field is produced by the primary field during propagation,
the condition at z = 0 may be written as,

u(2) = v(2) = 0, at z = 0. (6.95)

Due to the orthogonality of normal modes, the modal amplitude should vanish
independently, that is,

An(0) = 0, n = 0, 1, 2, . . . , (6.96)

Solving (6.92) with the initial condition (6.96), one obtains the modal amplitude
of the secondary field

An(z) = f vol
n + f surf

n

4Pnn

{
i

κ∗
n−2κ

(
e2iκz − eiκ∗

nz
)

ze2iκz

if κ∗
n �= 2κ

if κ∗
n = 2κ

. (6.97)

Since the plate is assumed to be lossless, the propagation constants of the
propagating modes are real and thus κ∗

n = κn.

6.1.5.2 Some Properties of the Secondary Lamb Wave Modes

1. Equation (6.97) shows that when the propagation constant of the secondary
wave mode (κn) coincides with twice the propagation constant of the primary
wave (2κ), the amplitude of mode n will increase linearly with the propagation
distance. This is another case of the “internal resonance” of the self-interacted
primary field. The condition κn = 2κ is equivalent to cp(ω) = cp(2ω), that is,
the phase velocity matching. This is analogous to the resonance in the forced
vibration of a simple oscillator: When the excitation (the primary wave) and
the response (the secondary wave) have a certain phase relationship (the phase
velocity matching), the resonance occurs (the amplitude grows linearly). When
this condition is not met, the modal amplitude is spatially oscillatory as (e2iκz −
eiκ

∗
nz) in (6.97) suggests. In the experiment, detection of the second harmonic
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wave is very difficult for its small amplitude. Therefore, it is important to select a
pair of modes (fundamental and second harmonic) that satisfy the phase velocity
matching condition. The unbounded linear growth of the secondary field in (6.97)
violates the perturbation condition in (6.14). When the secondary wave amplitude
grows similar in magnitude to the primary wave amplitude, the waveform distorts
significantly. The initially sinusoidal shape is changed to be more and more like
a saw-tooth shape and finally discontinuity (the separation of continuum) occurs
at the crest of the saw-tooth wave, forming a shock by which accumulated energy
is discharged.

2. It is noticed that f vol
n + f surf

n in (6.97) has the dimension of “power per unit
distance.” Physically, this is the amount of power leaks out of the primary to
secondary field through the bulk and surfaces of the plate. Furthermore, these
two terms should not vanish simultaneously for the second harmonic mode to be
excited. It has been found that this power has the dependence on the kind of the
mode of the primary field, [26–29]. Since f vol

n and f surf
n in (6.97) are the driving

forces of the modal amplitude An(z), it is worthwhile to examine the properties of
these driving forces and their dependences on the primary mode. It can be shown
that regardless of the symmetry of the primary wave mode the nonlinear body
force and surface stress are in the following forms:

f̃ =
(
A(y)

S(y)

)
, (6.98)

σ̃(NL) =
(
S(y) A(y)

A(y) S(y)

)
. (6.99)

where A(y) and S(y) are generic functions which are antisymmetric and symmet-
ric, respectively, with respect to the y = 0 axis. The proof of it is tedious but
straightforward. For example, take the first term on the right-hand side in (6.24)
and assume a primary symmetric mode, then we have

∂u
(1)
k

∂xl

∂u
(1)
k

∂xl
= ∂u

(1)
y

∂y

∂u
(1)
y

∂y
+ ∂u

(1)
y

∂z

∂u
(1)
y

∂z
+ ∂u

(1)
z

∂y

∂u
(1)
z

∂y
+ ∂u

(1)
z

∂z

∂u
(1)
z

∂z

= S2(y)+ A2(y)+ A2(y)+ S2(y) = S(y)+ S(y)+ S(y)+ S(y)
= S(y) (6.100)

Performing the same algebra for all terms in (6.23) and (6.24), one arrives at
the above conclusions, (6.98) and (6.99). Now, the velocity vector of a symmetric
secondary mode can be written as

ṽsym =
(
A(y)

S(y)

)
, (6.101)
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and ny = (1, 0). Then, the modal driving forces in (6.93) and (6.94) become

f vol
n =

∫ h

−h

(
A(y)

S(y)

)T
·
(
A(y)

S(y)

)
dy =

∫ h

−h
S(y)dy �= 0, (6.102)

f surf
n = −

(
A(y)

S(y)

)T
·
(
S(y) A(y)

A(y) S(y)

)
·
(

1
0

)∣∣∣
∣∣

y=h

y=−h
= A(y)|y=hy=−h �= 0.

(6.103)

In other words, the driving forces and thus the power flow from a symmetric or
antisymmetric primary mode to a symmetric secondary mode is nonzero. Similar
algebra for an antisymmetric secondary mode reveals that f vol

n = f surf
n = 0,

i.e., an antisymmetric secondary mode cannot be excited since the driving forces
cancel out by themselves.

3. One of the assumptions made in the aforementioned analysis is that the waves
are time harmonic, i.e., waves are infinitely long in time and space, while in
the real-world experiments, tone burst signals with a finite numbers cycles are
used. In this case, one more condition in addition to the phase velocity matching
is required for the cumulative growth of the secondary field, namely the group
velocity of the secondary wave should match or at least be very close to that of the
primary wave. The reason is quite obvious. As shown in the above, the primary
field continuously gives its energy out to the secondary field. But this energy will
be accumulated in the secondary wave only when the secondary wave travels at
the same speed with the primary wave.

4. The analysis in [30] shows that certain types of Lamb modes satisfy the
conditions for both excitability (nonzero power flow) and cumulative growth
(phase and group velocity matching). Two different mode pairs have been
successfully used in the experiments. First, the symmetric primary modes whose
phase velocity coincides with the bulk longitudinal wave speed cL. The lowest
two pairs, (S1, S2) and (S2, S4) have been used in the experiments [31, 32].
Experimental aspects of using these mode pairs are discussed in the next section.
In the regime cph > cL, it is possible that the phase velocity dispersion curves of
a symmetric mode and an antisymmetric mode have crossovers. Furthermore,
it can be shown that this crossing occurs periodically as can be seen in the
phase velocity dispersion curves. Pairs of a symmetric primary mode and
the corresponding antisymmetric secondary mode along this line satisfy all
necessary conditions for the excitability and cumulative growth. Deng et al. [33]
have used some of these modes.
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6.2 Measurement Techniques for Nonlinear Ultrasound
and Their Applications

6.2.1 Through-Transmission of Bulk Waves

A number of investigators have applied nonlinear ultrasonic techniques to assess
fatigue damage in different materials under a variety of laboratory conditions.
Yost and Cantrell [34] and Cantrell and Yost [35] have conducted extensive
experimental studies on different structural alloys to investigate the correlation
between fatigue induced microstructural changes such as dislocation dipoles and
slip bands and the acoustic nonlinearity parameter. Frouin et al. [36] performed
in situ nonlinear ultrasonic measurements during fatigue test on Ti-6-4 alloy,
and related the measured increase in the acoustic nonlinearity parameter—in the
vicinity of the fracture surface—to an increase in the dislocation density. Among
these studies, only Frouin et al. [36] reported using nonlinear ultrasonic results
to track fatigue damage throughout the entire fatigue life of a specimen. Moreau
[37] and Hurley and Fortunko [38] used a laser interferometer to measure the
second order harmonic in through-transmitted longitudinal waves. Recently Kim
et al. [39] developed a robust experimental procedure to track the evolution of
fatigue damage in a nickel-base superalloy (IN 100) with the acoustic nonlinearity
parameter, β, and demonstrate its effectiveness by making repeatable measurements
of β in multiple specimens, subjected to both high- and low-cycle fatigue. The
measurement procedure developed in this research is robust in that it is based on
conventional piezoelectric contact transducers, which are readily available off the
shelf, and it offers the potential for field applications. In addition, the measurement
procedure enables the user to isolate sample nonlinearity from measurement system
nonlinearity. The experimental results show that there is a significant increase in β

which is linked to the high plasticity of low-cycle fatigue, and illustrate how these
nonlinear ultrasonic measurements quantitatively characterize the damage state of a
specimen in the early stages of fatigue. One application of these results is to serve
as a master curve for life prediction based on nonlinear ultrasonic measurements.

The measurement of nonlinear longitudinal waves with contact piezoelectric
transducers is fairly straightforward, and a typical schematic is shown in Fig. 6.2. A
tone burst signal determined by the specimen thickness is generated by a function
generator and is fed into a high-power gated amplifier to simulate a propagating
wave in a single direction, the number of cycles of the tone burst is selected as the
number of cycles that fits in twice the thickness of the specimen. Both the transmitter
and receiver are commercial narrow-band PZT (Lead Zirconate Titanate) based
transducers. Light lubrication oil is used to couple the transducers to the specimen.
A special fixture is used to keep both the transmitting and receiving transducers
aligned on the same centerline axis, and to also allow for the removal of either
transducer (transmitter or receiver) without disturbing the coupling (and position)
of the other; this capacity is critical for the calibration procedure described next.
The receiver is terminated with a 50 � passive load to have the same terminal load
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Fig. 6.2 Schematic of experimental setup for through transmission

in the calibration. Both voltage and current signals of the transmitted ultrasonic
waves are recorded and time averaged with an oscilloscope, and then transferred to
a computer for further signal processing. Then, diffraction corrections are made
to the measured fundamental and the second-harmonic signal amplitudes. The
calibration procedure for the piezoelectric receiving transducer is based on the
principle of self-reciprocity [40] and is employed in order to obtain a conversion
transfer function from the measured electrical signal to the absolute amplitude of the
particle displacement, and to compensate for any small variations in the coupling
of the receiving transducer. Note that this calibration is performed prior to every
nonlinear measurement, with the transmitter transducer removed. The current and
voltage signals of the incident and the reflected pulse from the bottom surface of
the specimen that is kept stress-free (when the transmitter is removed) are measured
and used to calculate a transfer function that converts the measured current signal to
the particle displacement of the incident wave at the receiver.

One clever way to improve SNR is through the pulse-inversion technique to
accentuate the contribution of the even, second harmonic signal, while reducing
the dominance of the fundamental contribution. The pulse-inversion technique is
employed to extract the second-harmonic amplitude by canceling out any odd
harmonics; the even harmonic signal is extracted by adding two 180◦ out-of-phase
input signals.
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6.2.2 Collinear Wave Mixing

The method of second harmonic generation discussed in the previous section usually
measures the average β in the volume of material between the transmitter and the
receiver. It is thus difficult to measure the spatial distribution of β which is crucial
in monitoring fatigue damage. Nonlinear wave mixing techniques [41–47] offer the
advantage of finding localized damage in the material. These techniques are based
on the mixing of two propagating waves. When the frequencies and polarization of
these two propagating waves satisfy certain resonant or phase-matching conditions,
a third propagating wave is generated at a frequency different from those of primary
waves. This generated third propagating wave is called the resonant wave. Its
amplitude is proportional to the size of the mixing zone and the acoustic nonlinearity
parameter of the material in the mixing zone [6]. By measuring the amplitude of the
resonant wave, the acoustic nonlinearity parameter of the material in the mixing
zone can be obtained. Since the measured β is only associated with the acoustic
nonlinearity within the mixing zone. This spatial selectivity provides a tool to obtain
the spatial distribution of β.

As a feasibility study of the scanning capability of mixing waves, Tang, et al. [47]
conducted experimental measurements on circular cross-section bars with localized
plastic zone in known locations. Their experimental setup [46] is schematically
shown in Fig. 6.3.

The test samples are circular cross-section bars with localized plastic zone [47].
On the left end of the bar, a shear wave transducer is attached that sends a 5-cycle
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Fig. 6.3 Schematic of experimental setup for the collinear wave mixing method
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Fig. 6.4 (a) Resonant wave received by the shear wave transducer (red solid line) and the same
signal after applying a Hann window (blue dashed line), (b) Frequency spectrum of the resonant
wave after applying a Hann window

tone burst (6.3 mm spatially) with frequency ωT = 2.5 MHz. On the right end of the
sample, a longitudinal wave transducer is attached that sends a nine-cycle tone burst
(5.9 mm spatially) with frequency ωL = 9.65 MHz. These two frequencies satisfy
the resonant condition given by (6.61) and (6.62). By adjusting the delay times of
the two transducers, the two input wave-pulses can be mixed at any desired location
along the bar. The resonant wave generated by such mixing is a shear wave that
will propagate towards the left end of the bar. This resonant wave can be recorded
by the shear wave transducer attached at the left end. Amplitude of this resonant
shear wave is proportional to the acoustic nonlinearity parameter βT at the location
of mixing zone. By moving the mixing zone from the left to the right, one can then
obtain the spatial distribution of βT along the bar sample.

A typical time-domain resonant wave signal received by the shear wave trans-
ducer is shown in Fig. 6.4a and its frequency spectrum is shown in Fig. 6.4b. The
solid red line in Fig. 6.4a shows the resonant wave received by the shear wave
transducer, while the dashed blue line is the signal after applying a Hann window to
the original time-domain signal to help smooth the frequency-domain signal shown
in Fig. 6.4b. We will use A(x) to donate the amplitude of the resonant shear wave
when the center of the mixing zone is located at a distance x away from the left end
of the bar. For Sample 0, which has no localized plastic zone, showing in Fig. 6.5 is
the normalized amplitude A(x) = A(x)/A (x0), where x0 is the location of the first
measurement point. In this case, x0 = 37.9 mm.

According to the results derived in (6.66) for plane waves in a lossless medium,
the amplitude A(x) should be independent of the location of the mixing zone if the
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Fig. 6.5 Normalized amplitude of the resonant shear wave as a function of location x in a uniform
bar sample

sample is uniform, i.e., the acoustic nonlinearity parameter is a constant throughout
the sample. However, in the bar, the waves generated by the transducers are no
longer plane waves. They are beams of finite diameter, and the material has loss.
Thus, wave amplitude will decay due to beam divergence and material loss. In
other words, the amplitudes of the incident waves, as well as the amplitude of the
resonant waves, are all functions of locations, even though the acoustic nonlinearity
parameter βT is a constant throughout the sample.

Without carrying out detailed analysis of the effects of beam divergence and
material loss, we opted for using a curve fitting technique to account for these
effects. Based on the experimental data shown in Fig. 6.5, it seems that the five-
parameter logistic (5PL) function [48] provides a good fit. Thus, the 5PL function
is used as a baseline for A(x). Any deviation of A(x) from the 5PL function would
indicate a non-uniform spatial distribution of βT . Symbolically, one may re-write

A(x) = βT (x)f (x), (6.104)

where x indicates the location of mixing zone and f (x) is a 5PL function as shown
in Fig. 6.5. It then follows that the normalized acoustic nonlinearity parameter is
given by

βT (x) = βT (x)

βT (x0)
= A(x)

f (x)
, (6.105)

where A(x) = A(x)/A (x0) and f (x) = f (x)/f (x0) with x0 being the location
of the first measurement point. It is now clear from (6.105) that if A(x) ∝ f (x),
then βT will be independent of x. Vice versa, if A(x) deviates from a 5PL function,
βT (x) will depend on x.
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Fig. 6.6 Normalized amplitude of the resonant shear wave A(x). (a) from Sample 1 (center of
plastic zone is at x = 85 mm), (b) from Sample 1 (center of plastic zone is at x = 104 mm), (c)
from Sample 2 (center of plastic zone is at x = 94 mm), and (d) from Sample 3 (center of plastic
zone is at x = 86 mm)

Similar tests were carried out on Samples 1, 2, and 3. Shown in Fig. 6.6 is the
amplitude A(x) from these samples plotted as a function of x. Figure 6.6a is from
Sample 1. Figure 6.6b is also from Sample 1, but the positions of the shear wave and
longitudinal wave transducers are switched such that the distance between the shear
wave transducer (receiver) and the location of the plastic zone is different between
Fig. 6.6a, b. In obtaining Fig. 6.6a, the center of the plastic zone is 85 mm from
the shear wave transducer and 104 mm away from the longitudinal wave transducer.
In obtaining Fig. 6.6b, the center of plastic zone is 104 mm from the shear wave
transducer and 85 mm away from the longitudinal wave transducer. Figure 6.6c, d
are from Samples 2 and 3, respectively.

In all these figures, the dots are experimental data points, and the solid lines are
the 5PL function best-fitted to the experimental data outside the notched region. All
experimental data are an average of three sets of tests. The location of the plastic
zone center is indicated by the vertical dash-lines in these figures. Data from Fig.
6.6 shows that for the samples with a localized plastic zone, the amplitude of the
resonant shear wave no longer follows a 5PL function of x. The region over which
A(x) deviates from the 5PL function coincides exactly with the location of the
plastic zone, indicating that the acoustic nonlinearity βT in the plastic zone is higher
its values than elsewhere in the sample.
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These results demonstrated the feasibility of using co-linear wave mixing
techniques to map spatial distribution of plastic strain along a slender bar. In other
words, nonlinear wave mixing has the potential for imaging spatial distribution of
damage in structural components.

6.2.3 Rayleigh Surface Waves

Rayleigh surface waves have also been used to characterize fatigue damage and
material nonlinearity. Barnard et al. [49] and Blackshire et al. [50] used Rayleigh
surface waves to evaluate the fatigue damage in high temperature alloys. Blackshire
et al. [50] employed a scanning heterodyne interferometer for detecting the Rayleigh
waves. Herrmann et al. [22] developed a technique to measure the second order
harmonic amplitude of a Rayleigh surface wave propagating in metallic specimens,
using a wedge transducer and a laser interferometer. This system is used to measure
the fundamental and second harmonic components in Rayleigh surface waves, and
these results are interpreted in terms of the nonlinearity parameter derived in terms
of the measured out-of-plane displacement of the Rayleigh surface waves. The
proposed measurement technique is used to assess damage in nickel-base high
temperature alloy specimens where the evolution of material nonlinearity under
various loading conditions is measured in terms of the increasing amplitude of
the second order harmonic. These results show that there is a large increase in
the acoustic nonlinearity parameter at monotonic tensile loads above the material’s
yield stress, and that during low-cycle fatigue tests, the increase in the second
order harmonic amplitude is considerable. The results from this study show that
accumulated plasticity plays the major role in the increase in material nonlinearity,
and demonstrate the effectiveness of the proposed experimental procedure to track
damage in high temperature alloys.

The experimental setup for the generation and detection of nonlinear Rayleigh
waves is similar to the procedure described in 2.1 for bulk waves. The main
difference is that a wedge is needed to generate and detect the Rayleigh waves.
The wedge angle is selected so the projection of the longitudinal wave in the wedge
matches the wavelength of the Rayleigh wave in the specimen.

One advantage of using Rayleigh waves in the generation of higher harmonics is
that the value of the measured material nonlinearity should increase with increasing
propagation distance. This is not the case for instrumentation nonlinearity, which
should remain a constant as a function of increasing propagation distance. It is
important to note that it is difficult, if not impossible, to increase the propagation
distance of a longitudinal wave in a specimen since the specimen thickness is a fixed
constant. Consider the results in Fig. 6.7, which show how the measured nonlinearity
in an A-36 steel plate increases with increasing propagation distance. The two sets
of data shown in this figure correspond to the nonlinearities measured with Rayleigh
waves before fatigue and after 88 cycles. The maximum load level in the fatigue is
110% of the yield stress and R ratio is 0. This figure shows an increasing slope with
the number fatigue cycles.
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As an example, consider a set of both nonlinear longitudinal and Rayleigh wave
measurements in low-cycle fatigue damaged IN100 specimens. Figure 6.8 shows a
rapid increase in the measured material nonlinearity (up to 30%) during the first 40%
of fatigue life. This behavior demonstrates that NLU can be used to quantitatively
characterize the damage state in this material in the early stages of fatigue life.
There is also excellent agreement in the material nonlinearity measured with either
Rayleigh or longitudinal waves.

There are a few different ways to experimentally realize the nonlinear Rayleigh
wave measurement. Techniques that adopt the pulsed laser, laser interferometer,
electromagnetic acoustic transducer (EMAT), ultrasonic wedge transducer, and
air-coupled ultrasonic transducer as excitation and detection methods have been
proposed [22, 51–54]. A fully non-contact method would be most desirable but
a critical issue in selecting a combination of excitation and detection methods is
the capability of getting signals with sufficiently high signal-to-noise ratio (SNR).
Thiele et al. [46] proposed recently a technique that uses an air-coupled transducer
for detection and a wedge transducer for excitation. This technique has been
successfully applied to the evaluation of microstructural damage in materials [55,
56]. Figure 6.9a shows the measurement setup. An air-coupled transducer, with
its reception angle adjusted at the Rayleigh critical angle, detects the sound wave
radiated from the propagating Rayleigh wave. It can be shown that the leaked
sound wave preserves the information on harmonics contents that are carried by the
Rayleigh wave propagating in the solid. This is because the impedance mismatch
at the solid–air interface is so high that the amplitude of the leaked sound wave is
reduced to be in the linear acoustics regime and thus the radiation from solid into
air can be regarded as a linear process. In other words, the propagation through the
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Fig. 6.8 Normalized acoustic nonlinearity as a function of fatigue life

air does not cause any additional nonlinearity. Since the leaked sound is due to the
surface normal displacement, the air-coupled detection measures the nonlinearity of
the surface normal displacement component of the Rayleigh wave. Compared to the
detections based on the laser interferometry and EMAT, this method is much more
sensitive and reliable. With the setup shown in Fig. 6.9a, it is possible to obtain
excellent-shaped signals with amplitude 100 mV and SNR higher than 50 dB.

Among numerous applications of this technique, two interesting cases are
discussed. In the first case [55], dislocations and precipitates evolve simultaneously
during thermal aging such that a non-monotonic behavior is seen in the measured
material nonlinearity. In the second case [56], a single mechanism of the grain
boundary precipitation is dominant. Marino et al. [55] investigated thermal aging
at 650 ◦C of modified 9%-Cr ferritic-martensitic steel, a high temperature material
that is often used in thermal and nuclear power plants. This material experiences
significant changes in its microstructure and deterioration in mechanical properties
when aged at a temperature 600 ◦C and higher. Exposure to heat causes two
microstructural changes to occur simultaneously: the formation of various kinds
of precipitates and change in the dislocation density. These microstructural changes
influence the long term thermo-mechanical properties of the material and also the
measured nonlinearity parameter. Two different groups of precipitates evolve during
tempering and post thermal aging in this material: First, M23C6, MX, and M2X
precipitates during tempering and the Laves phase and Z-phase during thermal
aging. Previous investigations [55 and the references therein] report that: (1) the
M23C6 and MX particles are relatively stable against coarsening and grow little
at 650 ◦C; (2) Laves phase does not nucleate during tempering like the other
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Fig. 6.9 (a) Experimental setup using non-contact air-coupled receiver; (b) Time-domain signals
obtained at propagation distances, x = 30 mm and 78 mm from the source (Al 7075 specimen)

precipitates but starts to precipitate during thermal aging and rapidly grows up to
a size of about 400 nm in the first 1000–10,000 h; (3) Z-phase precipitates during
thermal aging only for longer holding times. Not only the precipitates but also the
dislocations evolve during tempering and aging. The initial dislocation density after
normalizing at 19 × 1014 m2 steadily decreases to 6.1 × 1014 m2 after tempering
and 1.6 × 1014 m2 immediately after aging [55].

Nonlinear ultrasonic measurements are performed using the setup shown in Fig.
6.9a intermittently during aging up to 3000 h. In addition, hardness, longitudinal
wave speed, and attenuation are measured. Figure 6.10a shows the trend of material
nonlinearity with aging time. Based on the above-mentioned microstructure changes
during aging, the initial sharp drop is due to the decreased dislocation density for the
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Fig. 6.10 Change of the material nonlinearity parameter in 9%Cr ferritic-martensitic steel aged at
650 ◦C

first 500 h and the following gradual rise is because of the increased number density
and size of the Laves precipitates. The changes in the nonlinearity are significant as
compared to the wave speed and attenuation which change less than a few percent.
These results are confirmed with SEM microscopy and hardness results [55] and
demonstrate that the measured material nonlinearity is well correlated with the
microstructure evolution during the thermal again in this material.

Doerr et al. [56] investigated the sensitization phenomenon in austenite 304 and
304 L stainless steels using nonlinear Rayleigh waves. These austenite stainless
steels contain about 18% of chromium and this chromium content (>12%) makes
these stainless steels corrosion resistant. Sensitization is a result of the chromium
carbide (Cr23C6) precipitation along the grain boundaries, causing the formation
of a chromium depletion zone around the grain boundary which is susceptible to
intergranular stress corrosion cracking (IGSCC). Note that IGSCC is the major
corrosion problem, for example, in boiling water nuclear reactors. Sensitization
occurs when a stainless steel is exposed to a certain range of high temperature,
such as during welding. For this reason, the detection of sensitization as a precursor
of IGSCC is of great importance to prevent failure of the components in 304 and
304 L stainless steels due to IGSCC. The annealed 304 and 304 L stainless steel
samples are exposed at temperature 675 ◦C and nonlinear ultrasonic measurements
are performed at different exposure times. The electrochemical potentiodynamic
reactivation (EPR) test which is a direct laboratory measurement of degree of
sensitization (DOS) and optical microscopy are used to monitor the progress of
sensitization.
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Fig. 6.11 Changes of the material nonlinearity parameter and DOS in annealed 304 stainless steel
aged at 675 ◦C. The micrographs at different aging times are shown together

Figure 6.11 shows changes in the material nonlinearity parameter and DOS as
a function of exposure time. Both parameters increase and then saturate and their
trends are very well correlated. In other words, from the measured nonlinearity one
can estimate how much sensitization has occurred in this material. The accompanied
micrographs taken at different moments exhibit the progress of sensitization; the
black lines indicate the chromium deplete zones. Saturation of DOS means all grain
boundaries are sensitized. Figure 6.12 shows those results for 304 L material. Note
that 304 L has reduced amount of carbon content (<0.02 wt.% versus 0.05 wt.% in
304) with intention to minimize the sensitization. The trends in 304 L are similar
to those in 304 and the trends of the material nonlinearity parameter and DOS
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Fig. 6.12 Changes of the material nonlinearity parameter and DOS in annealed 304 stainless steel
aged at 675 ◦C

in this material also are very close to each other. However, the whole process of
sensitization is retarded, more than five times slower than in 304, possibly due to
the lower carbon content. Note that the same saturation occurs in this material,
meaning that the reduced carbon content is still more than enough to sensitize
all grain boundaries in this material. The phenomenon of sensitization in 304 and
304 L stainless steels is investigated using nonlinear Rayleigh wave as a practical
application of the developed measurement setup in Fig. 6.9. The good correlation
between the measured material nonlinearity parameter and DOS suggests the
feasibility of taking the nonlinear ultrasonic technique to field applications. Also
interesting is that the grain boundary precipitation is a new mechanism of generating
material nonlinearity that has not been observed in the literature so far. A theoretical
description of the nonlinearity generation from grain boundary precipitates is the
topic to be explored.

6.2.4 Lamb Waves

Techniques based on guided waves including Lamb waves have advantages over
other NDE techniques based on bulk ultrasonic waves. These guided-wave-based
techniques can interrogate large areas and inaccessible parts of a structure, and
have been successful in evaluating discontinuity type defects such as cracks in
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metallic plates and delamination/debonding in laminate composite materials. Most
of the existing guided wave techniques are based on linear ultrasound. It is therefore
desirable to combine the long-range coverage capability of guided waves with the
higher sensitivity of nonlinear ultrasound to material damage. This combination
may render a unique opportunity to develop an NDE technique which can inspect
fast and quantitatively microstructural damage in plate-like structural components.
Unfortunately an experimental realization of Lamb wave propagation in the nonlin-
ear regime [26, 27, 57] is quite difficult because of the dispersive and multi-mode
nature of these guided waves. Nonlinear Lamb wave measurements in aluminum
specimens subjected to cyclic fatigue have been conducted by Deng and Pei [33].
They introduced a parameter called stress wave factor that is defined as the absolute
magnitude of the second harmonic wave integrated over the excitation frequency
range and is taken an acoustic nonlinearity parameter. An experimental procedure
for characterizing fatigue damage in metallic plates using nonlinear Lamb waves has
been developed by Pruell et al. [31] and Bermes et al. [58]. They first considered
conditions for efficient second harmonic generation in propagating nonlinear Lamb
waves, and then performed measurements for S1-S2 mode pair and showed the
expected linear increase of the second-harmonic amplitude. It was concluded that
not only the phase velocity matching but also the group velocity matching is
essential for the practical generation of nonlinear guided elastic waves where tone
burst input signals with limited number of cycles are used. The acoustic nonlinearity
parameter of aluminum specimens under low-cycle fatigue measured with Lamb
waves showed a direct correlation with fatigue damage which was represented by
the cumulative plastic strain. A similar correlation of the acoustic nonlinearity to
fatigue damage has been observed in nonlinear longitudinal and Rayleigh waves.
This result demonstrates that Lamb waves can be used to quantitatively assess
fatigue damage using established higher harmonic generation measurement concept.

6.3 Summary

This chapter summarizes the potential of using nonlinear ultrasonic techniques to
characterize material state and to develop the framework for accurate life prediction
of components under mechanical and thermo-mechanical loading. These nonlinear
ultrasonic measurements are done at the material level, before macroscopic damage
appears. Starting from mechanics fundamentals, we first developed the theoretical
equations of wave motion in an elastic solid with quadratic nonlinearity, covering
bulk, surface, and guided waves. The final section considers measurement tech-
niques for nonlinear ultrasonic measurements, including examples of the assessment
of fatigue and thermal damage in metals with nonlinear ultrasounds.
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Chapter 7
Second-Harmonic Generation
at Contacting Interfaces

Shiro Biwa

7.1 Nonlinear Spring-Type Interface Model for Contacting
Rough Surfaces

Real surfaces of solid bodies possess roughness to some extent. Therefore, when
two solid bodies with nominally flat surfaces are in contact with each other
under compressive loading, the load is supported by a distribution of asperities
on the surfaces. When the load, or the nominal contact pressure, is increased, the
supporting asperities undergo further flattening while other asperities newly come
into contact. This leads to the increase of the true area of contact and the reduction
of the gap distance between the surfaces (the distance between the nominal planes of
average height of both surfaces). The resulting relation between the nominal contact
pressure and the gap distance of contacting surfaces is schematically shown in
Fig. 7.1.

The contact between rough surfaces has been extensively studied as it is related to
some important physical characteristics of the interface such as friction, and thermal
and electrical conductance [1, 2]. Elastic or ultrasonic waves have been utilized
to characterize contacting interfaces between solid bodies for a long time, based
on the linear wave characteristics such as the reflection/transmission [3–6] and the
wave-guiding properties [7]. Recently, nonlinear ultrasonic responses of contacting
interfaces have attracted much attention in the field of nondestructive evaluation
as a sensitive measure of the presence of closed defects and weakly bonded
interfaces [8–13]. Granular media and other micro-inhomogeneous materials also
show highly nonlinear responses to acoustic waves due to weak contacts between
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Fig. 7.1 Schematic of the
pressure–gap distance
relation of contacting surfaces
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the grains or other micro-constituents [14]. In order to facilitate nonlinear ultrasonic
characterization of materials and structural components, it is of fundamental interest
to understand nonlinear responses of contacting interfaces to ultrasonic waves from
a theoretical point of view.

As shown in Fig. 7.1, the nominal contact pressure p is a nonlinear function of
the gap distance h. Many authors attempted to construct the pressure–gap relation
of contacting rough surfaces based on micromechanical modeling of asperity
deformation and statistical modeling of geometrical features of surfaces, e.g.,
Baltazar et al. [15]. From a macroscopic point of view, the mechanical response of
contacting rough surfaces can be expressed as a relation between the surface traction
and the relative displacement of the two surfaces, i.e., change of gap distance h in
the normal direction and sliding displacement s in the tangential direction. When the
roughness features are independent of the orientation in the plane of interface, the
nominal shear stress is expected to be parallel with the sliding displacement. Then,
the nominal normal stress σ = − p and the nominal shear stress τ can be described
as functions of h and s,

σ = n · Tn = σ (h, s) , τ = t · Tn = τ (h, s) , (7.1)

where T is the stress tensor, n is the outward unit normal to the surface, and t is the
unit vector in the direction of shear stress. Furthermore, when the surface features
are orientation-independent, it is natural to assume that σ is an even function of s,
while τ is an odd function of s. Let the gap distance of the interface at equilibrium
be denoted by h0, and assume that the Taylor expansions of Eq. (7.1) exist at h = h0
and s = 0. Then σ and τ can be approximated by

σ = −p0 +KN (h− h0)−KNN(h− h0)
2 −KTTs

2, (7.2a)

τ = KTs −KNT (h− h0) s, (7.2b)

up to the second order in h and s, where p0 = −σ(h0, 0) is the static pressure at
equilibrium, and
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KN = ∂σ

∂h
(h0, 0) , KNN = −1

2

∂2σ

∂h2 (h0, 0) ,

KTT = −1

2

∂2σ

∂s2 (h0, 0) , KT = ∂τ

∂s
(h0, 0) ,

KNT = − ∂2τ

∂h∂s
(h0, 0) . (7.3)

Neglecting the second-order terms in the above expression gives the celebrated
linear spring-type interface model;

σ = −p0 +KN (h− h0) , τ = KTs. (7.4)

The parameters KN and KT are the interfacial normal and tangential stiffnesses,
respectively. The other parameters in Eq. (7.3) characterize the quadratic nonlinear
response of the contacting interface.

Nonlinear ultrasonic responses of contacting interfaces have been discussed in
the literature using different models of the relation between the surface traction and
the relative surface displacement. The simplest is the one used by Richardson [16]
for the analysis of the longitudinal wave at normal incidence on the interface, which
requires that either one of the following two sets of conditions is met, i.e.,

h > 0 and σ = 0 (perfect opening) , (7.5a)

h = 0 and σ < 0 (perfect closure) . (7.5b)

In this model the two surfaces are either traction-free (perfect opening) or moving
without relative displacements (perfect closure). This model has been used in a
number of subsequent investigations, e.g., Hirose and Achenbach [17]. A piecewise
linear spring-type interface model with two constants K+

N and K−
N ,

σ = K+
N (h− h0) , σ ≥ 0, (7.6a)

σ = K−
N (h− h0) , σ < 0 (7.6b)

was used by Shui et al. [18], which accompanies switching of the interfacial
stiffness when the normal stress changes between tension and compression. Another
piecewise linear spring-type interface model incorporating perfect closure and
perfect opening was used by Wu [19].

With the above models, however, it is not possible to describe the pressure-
dependent reflection/transmission characteristics of contacting interfaces commonly
observed experimentally. Based on the Hertz contact of asperities with the statistical



266 S. Biwa

distribution of the radius of curvature and height, Pecorari [20] proposed the
following boundary conditions at a contacting interface:

p − p0 = −KN (h− h0)+KNN(h− h0)
2, (7.7a)

τ = KTs −KNT (h− h0) s − 1

2
K ′

T

{(
s2 − s2

max

)
sgn (∂s/∂t)+ smaxs

}
, (7.7b)

where K ′
T is a constant of the interface and smax is the maximum positive sliding

displacement during the loading cycle. The function sgn(∂s/∂t) is defined to be 1
(or − 1) when ∂s/∂t is positive (or negative). Equation (7.7a) can be obtained from
Eq. (7.2a) when the term with the constant KTT is dropped. On the other hand,
Eq. (7.7b) contains an additional term with the constant K ′

T, which represents a
hysteretic response of the interface for sliding displacements. As shown by Pecorari
[20], this additional term affects the nonlinear ultrasonic response of the contacting
interface by giving the generation of the third and higher odd-order harmonics. The
relation given by Eq. (7.7a) has been used by several authors [21–24] to analyze
the nonlinear response of a contacting interface subjected to normal incidence of
longitudinal waves. Furthermore, the effect of adhesive force has been considered
by Gusev et al. [25] and Gusev [26] using a bistable interface model, which leads to
certain hysteretic responses to acoustic waves.

In this chapter, the interaction of ultrasonic waves with contacting interfaces
modeled by Eqs. (7.2a) and (7.2b) is considered. To this purpose, it is assumed
that Eqs. (7.2a) and (7.2b) hold not only in the case of static loading of contacting
bodies but also in the case of dynamic loading by incident waves. Hysteresis and
adhesion are thus not accounted for in the analysis. It is noted that in order to justify
the use of the model without hysteresis, the supporting asperities should be already
flattened in the previous loading history and show elastic responses with minimal
elasto-plastic or frictional effects.

Suppose that two solid bodies in contact are in static equilibrium with the
nominal contact pressure p= −σ =p0 and the vanishing shear stress τ = 0. At
this equilibrium, the gap distance is h0 and the relative sliding displacement is
set as s = 0. An elastic wave impinging on the contacting interface brings about
time-dependent change of the gap distance and sliding, i.e., h(t) and s(t), which
are related to the normal stress σ (t) and the shear stress τ (t) on the contacting
surfaces given by Eqs. (7.2a) and (7.2b). In this chapter, the contacting bodies
are assumed to be the same homogeneous, isotropic, and linear elastic half-
spaces. Therefore, the motions in the contacting bodies are governed by linear
elastodynamic field equations: the nonlinearity only lies in the boundary conditions
at the interface, Eqs. (7.2a) and (7.2b). In the following sections, some representative
cases of the interaction of elastic waves with the nonlinear spring-type interface are
considered.
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7.2 Second-Harmonic Generation by Plane Longitudinal
Wave at Normal Incidence

7.2.1 Time-Domain Formulation

The one-dimensional problem of normal incidence of time-harmonic longitudinal
wave on the nonlinear spring-type interface between two identical elastic bodies
(density ρ and longitudinal wave speed cL) is first considered. The following
formulation basically follows the approach presented by Biwa et al. [21], but similar
problems are also analyzed by, e.g., Pecorari [20], Gusev et al. [25], Kim and Lee
[23]. As shown in Fig. 7.2, the x-axis is taken along the propagation direction and
the interface is located at x = 0. The governing equation is given by the following
uniaxial stress–strain relation and the equation of motion in the absence of body
force,

σ = −p0 + ρcL2 ∂u

∂x
, ρ

∂2u

∂t2
= ∂σ

∂x
, (7.8)

where u(x, t) is the longitudinal displacement of the wave and σ (x, t) is the sum
of the constant static pressure p0 and the normal stress associated with the wave.
Combining the two equations gives the linear wave equation,

∂2u

∂t2
= cL2 ∂

2u

∂x2 . (7.9)

The incident wave propagating in the positive direction of x-axis is a solu-
tion of the above equation and can be expressed as uinc(x, t) = F(x − cLt) in
d’Alembert’s form. Its interaction with the interface gives rise to the reflected wave
uref(x, t) = G(x + cLt) and the transmitted wave utra(x, t) = H(x − cLt), respectively.
The displacement and stress fields are then given by

u (x, t) =
{
F (x − cLt)+G(x + cLt) ,

H (x − cLt) ,
x < 0,
x > 0,

(7.10)

Fig. 7.2 Reflection and
transmission of longitudinal
wave at a spring-type
interface

xx = 0
Spring-type interface

utra(x, t)
uinc(x, t)

uref(x, t)
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σ (x, t) =
{−p0 + ρcL2

{
F ′ (x − cLt)+G′ (x + cLt)

}
,

− p0 + ρcL2H ′ (x − cLt) ,
x < 0,
x > 0,

(7.11)

where the superscript ( )
′

denotes differentiation of a function with respect to its
argument.

The wave motion causes dynamic variation of the gap distance h(t) accompanied
by the change in the normal stress, but no relative slip displacement, i.e., s = 0 and
τ = 0 in Eqs. (7.2a) and (7.2b). The boundary conditions at x = 0 are given by

σ
(
0+, t

) = σ (0−, t
) = −p0 +KNξ(t)−KNNξ(t)

2, (7.12)

from Eq. (7.8), where

ξ(t) = h(t)− h0 = u (0+, t
)− u (0−, t

)
(7.13)

is the time-dependent change of gap distance. Combining Eq. (7.11) and (7.12)1
gives

F ′ (−cLt)+G′ (cLt) = H ′ (−cLt) . (7.14)

Substituting Eq. (7.10) in Eq. (7.13), differentiating with respect to t, and using
Eq. (7.14) gives

dξ

dt
= 2cL

{
F ′ (−cLt)−H ′ (−cLt)

}
. (7.15)

Substitution of the last expression in Eq. (7.12)2 gives the following nonlinear
first-order ordinary differential equation for ξ (t),

dξ

dt
= 2cLF

′ (−cLt)− 2

ρcL

{
KNξ(t)−KNNξ(t)

2
}
, (7.16)

when the incident waveform is given explicitly. If once ξ (t) is determined, the
reflected and transmitted waves are given by

uref (x, t) = G(x + cLt) = −1

2
ξ (t + x/cL) , (7.17a)

utra (x, t) = H (x − cLt) = F (x − cLt)+ 1

2
ξ (t − x/cL) , (7.17b)

respectively, where the integration constants are arbitrarily set as zero.
In the following, the incident wave is assumed to be time-harmonic and

characterized by the amplitude A0 and the angular frequency ω0,
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uinc (x, t) = A0 cos {ω0 (x − cLt) /cL} . (7.18)

Then, Eq. (7.16) is reduced to

dξ

dt
= 2ω0

[
A0 sinω0t − κN

{
ξ(t)− βξ(t)2

}]
, (7.19)

where the constants κN and β are defined by

κN = KN

ρcLω0
, β = KNN

KN
. (7.20)

7.2.2 Perturbation Analysis

In order to carry out a perturbation analysis of the nonlinear equation in Eq. (7.19),
the following non-dimensional variables are introduced,

ξ̃ = ξ

A0
, t̃ = ω0t, ε = A0β, (7.21)

and the parameter ε is assumed to be a sufficiently small quantity. Using these non-
dimensional variables, Eq. (7.19) is rewritten as

dξ̃

dt̃
= 2 sin t̃ − 2κN

{
1 − ε ξ̃ (t̃)

}
ξ̃
(
t̃
)
. (7.22)

Now the following power expansion is assumed for ξ̃
(
t̃
)
,

ξ̃
(
t̃
) = ξ̃1

(
t̃
)+ ε ξ̃2

(
t̃
)+ ε2 ξ̃3

(
t̃
)+ · · · . (7.23)

Equation (7.23) is substituted in Eq. (7.22) and the terms are arranged in the same
order in ε to yield

ε0; dξ̃1
dt̃

+ 2κNξ̃1 = 2 sin t̃ , (7.24)

ε1; dξ̃2
dt̃

+ 2κNξ̃2 = 2κNξ̃
2
1 , (7.25)

ε2; dξ̃3
dt̃

+ 2κNξ̃3 = 4κNξ̃1ξ̃2, (7.26)
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and so on. Then, each function ξ̃m(t) in Eq. (7.23) can be obtained by solving Eqs.
(7.24) and the others one by one from the lowest order in ε. In dimensional variables,
Eq. (7.23) gives

ξ = A0ξ̃1 + βA0
2ξ̃2 + β2A0

3ξ̃3 + · · · , (7.27)

which indicates that ξ1(t) = A0ξ̃1 (ω0t) represents the linear response whose ampli-
tude is proportional to the incident wave amplitude A0, and ξ2(t) = βA0

2ξ̃2 (ω0t)

represents the quadratic nonlinear response in proportion to A0
2 which contains the

effect of the contact nonlinearity.
The solution to Eq. (7.24) is given by

ξ̃1 = − 2
√

1 + 4κN
2

cos
(
t̃ + α1

)
,

cosα1 = 1
√

1 + 4κN
2
, sinα1 = 2κN√

1 + 4κN
2
, (7.28)

or

ξ1(t) = − 2A0√
1 + 4κN

2
cos (ω0t + α1) (7.29)

in dimensional variables, which depends only on the linear property of the interface.
The quadratic nonlinear response is obtained from Eq. (7.25) which reduces to

dξ̃2
dt̃

+ 2κNξ̃2 = 8κN

1 + 4κN
2 cos2 (t̃ + α1

)
, (7.30)

The solution is given by

ξ̃2 = 2

1 + 4κN
2 + 2κN

(
1 + 4κN

2
)√

1 + κN
2

cos
(
2t̃ + 2α1 − α2

)
,

cosα2 = κN√
1 + κN

2
, sinα2 = 1

√
1 + κN

2
, (7.31)

or, in dimensional variables,

ξ2(t) = 2βA0
2

1 + 4κN
2 + 2βκNA0

2

(
1 + 4κN

2
)√

1 + κN
2

cos (2ω0t + 2α1 − α2) . (7.32)

This expression shows that the quadratic nonlinear response of the interface
contains the stationary (DC) term (ω = 0) and the second-harmonic (ω = 2ω0)
of the incident wave. As a result,
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ξ(t) = ξ1(t)+ ξ2(t) = A0ξ̃1 (ω0t)+ βA0
2ξ̃2 (ω0t) (7.33)

gives the gap opening of the interface in the approximation up to the second order
in the small parameter ε.

In dimensional variables, the reflected and transmitted waves are given by

uref (x, t) = − βA0
2

1 + 4κN
2

+ A0√
1 + 4κN

2
cos (ω0x/cL + ω0t + α1)

− βκNA0
2

(
1 + 4κN

2
)√

1 + κN
2

cos (2ω0x/cL + 2ω0t + 2α1 − α2)

(7.34a)

utra (x, t) = βA0
2

1 + 4κN
2 − 2A0κN√

1 + 4κN
2

sin (ω0x/cL − ω0t − α1)

+ βκNA0
2

(
1 + 4κN

2
)√

1 + κN
2

cos (2ω0x/cL − 2ω0t − 2α1 + α2)

(7.34b)

up to the second order in the parameter ε (these expressions are equivalent to Eqs.
(7.17a) and (7.17b) of Biwa et al. [21] when X+ = X− = 0 therein). From these
expressions, the fundamental amplitudes in the reflected and transmitted waves are
given by

Aref
1 = A0√

1 + 4κN
2
, Atra

1 = 2A0κN√
1 + 4κN

2
. (7.35)

The second-harmonic components in the reflected and transmitted waves have
the following amplitudes

Aref
2 = Atra

2 = βκNA0
2

(
1 + 4κN

2
)√

1 + κN
2
, (7.36)

For practical applications, the ratio of the second-harmonic amplitude to
the square of the fundamental amplitude is often used as an effective measure
of harmonic generation. For the reflected and transmitted waves, this ratio is
given by

Aref
2

(
Aref

1

)2 = βκN√
1 + κN

2
,

Atra
2(

Atra
1

)2 = β

4κN

√
1 + κN

2
, (7.37)
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whose right-hand sides are independent of the amplitude of the incident wave. In
Sect. 7.5, the validity of the above expressions is examined from an experimental
point of view.

7.2.3 Frequency-Domain Analysis

The results in the previous section for the incidence of time-harmonic waves can
also be derived by formulating the problem in the frequency domain. This type of
formulation can be more convenient for the problems of oblique incidence on the
interface considered below, and multilayered structures with nonlinear spring-type
interfaces [27].

The governing equations for the interaction of a normally incident longitudinal
wave with a nonlinear spring-type interface between identical elastic media are
summarized as

∂2u

∂t2
= cL2 ∂

2u

∂x2 , (7.38a)

ρcL
2 ∂u

∂x

(
0+, t

) = ρcL2 ∂u

∂x

(
0−, t

) = KNξ(t)−KNNξ(t)
2, (7.38b)

ξ(t) = u (0+, t
)− u (0−, t

)
. (7.38c)

According to the perturbation analysis presented in the previous section,
the displacement field can be decomposed as the sum of two solutions
u(x, t) = u1(x, t) + u2(x, t) up to the second order of small parameter ε. The linear
response is characterized by u1(x, t), which is governed by

∂2u1

∂t2
= cL2 ∂

2u1

∂x2
, (7.39a)

ρcL
2 ∂u1

∂x

(
0+, t

) = ρcL2 ∂u1

∂x

(
0−, t

) = KNξ1(t), (7.39b)

ξ1(t) = u1
(
0+, t

)− u1
(
0−, t

)
, (7.39c)

and the incident wave of the form given by Eq. (7.18). The quadratic nonlinear
response is given by u2(x, t), which is governed by

∂2u2

∂t2
= cL2 ∂

2u2

∂x2 , (7.40a)
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ρcL
2 ∂u2

∂x

(
0+, t

) = ρcL2 ∂u2

∂x

(
0−, t

) = KNξ2(t)−KNNξ1(t)
2, (7.40b)

ξ2(t) = u2
(
0+, t

)− u2
(
0−, t

)
. (7.40c)

The first problem given by Eqs. (7.39a), (7.39b), and (7.39c) can be converted to
the frequency domain by introducing the following complex-value representation

u1 (x, t) = Re
[
U1(x) exp (−iω0t)

]
, (7.41a)

ξ1(t) = Re
[
�1 exp (−iω0t)

]
, (7.41b)

where i denotes the imaginary unit. Then the frequency-domain displacement field
U1(x) is governed by

d2U1

dx2 + ω0
2

cL2 U1 = 0, (7.42a)

ρcL
2 dU1

dx

(
0+) = ρcL2 dU1

dx

(
0−) = KN�1, (7.42b)

�1 = U1
(
0+)− U1

(
0−) , (7.42c)

with the incident wave

U1
inc(x) = A0 exp (iω0x/cL) . (7.43)

The displacement field U1(x) is given by the sum of the forward-propagating
wave U1F(x) ∝ exp (iω0x/cL) and the backward-propagating wave U1B(x) ∝ exp
(−iω0x/cL), i.e.,

U1(x) = U1F(x)+ U1B(x). (7.44)

The boundary condition of Eq. (7.42b) is rewritten as

i
{
U1F

(
0+)− U1B

(
0+)} = i

{
U1F

(
0−)− U1B

(
0−)}

= κN
{
U1F

(
0+)+ U1B

(
0+)− U1F

(
0−)− U1B

(
0−)} , (7.45)

where κN is defined in Eq. (7.20). The above two equations can be rearranged to
yield
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(
U1F

(
0+)

U1B
(
0+)

)
=
[

1 + 1
2 i/κN − 1

2 i/κN
1
2 i/κN 1 − 1

2 i/κN

] (
U1F

(
0−)

U1B
(
0−)

)
, (7.46)

in a matrix form.
The forward and backward waves can be assumed to have the following forms

(see Fig. 7.3a):

U1F(x) =
{
U−

1F(x) = A0 exp (iω0x/cL) , x < 0
U+

1F(x) = TLA0 exp (iω0x/cL) , x > 0
(7.47)

U1B(x) =
{
U−

1B(x) = RLA0 exp (−iω0x/cL) , x < 0
0, x > 0

(7.48)

where RL and TL are the complex reflection and transmission coefficients, respec-
tively. Then Eq. (7.46) reduces to

xx = 0
Spring-type interface

U1F
+ (x)

U1F
− (x)

U1B
− (x)

(a)

xx = 0
Spring-type interface

U22F
+ (x)U22B

− (x)

(b)

Fig. 7.3 (a) The fundamental and (b) the second-harmonic components associated with the
interaction of normal-incidence longitudinal wave with the nonlinear spring-type interface
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(
TLA0

0

)
=
[

1 + 1
2 i/κN − 1

2 i/κN
1
2 i/κN 1 − 1

2 i/κN

] (
A0

RLA0

)
, (7.49)

which immediately yields

RL = 1

1 + 2iκN
, TL = 2iκN

1 + 2iκN
. (7.50)

These results are equivalent to Eq. (7.35).
From the above solution, the gap change is given by

�1 = {TL − (1 + RL)}A0 = − 2A0

1 + 2iκN
= − 2A0√

1 + 4κN
2

exp (−iα1) , (7.51)

in the frequency domain and by

ξ1(t) = − 2A0√
1 + 4κN

2
cos (ω0t + α1) , (7.52)

in the time domain, where α1 is defined by Eq. (7.28). Its square appearing in Eq.
(7.40b) yields

ξ1(t)
2 = 4A0

2

1 + 4κN
2 cos2 (ω0t + α1) = 2A0

2

1 + 4κN
2

{1 + cos (2ω0t + 2α1)} . (7.53)

Therefore, the driving force for the secondary wave contains the stationary term
(ω = 0) and the second-harmonic term (ω = 2ω0). The problem of Eqs. (7.40a),
(7.40b), and (7.40c) further reduces to the following two problems for ω = 0 and
ω = 2ω0.

The stationary component U21(x) is governed by

d2U21

dx2
= 0, (7.54a)

ρcL
2 dU21

dx

(
0+) = ρcL2 dU21

dx

(
0−) = KN�21 − 2KNNA0

2

1 + 4κN
2
, (7.54b)

�21 = U21
(
0+)− U21

(
0−) . (7.54c)

From Eq. (7.54a) and for the boundedness of the solution, U21(x) is constant for
each of x < 0 and x > 0. Then Eq. (7.54b) gives

�21 = 2βA0
2

1 + 4κN
2 , (7.55)
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which corresponds to the stationary opening of the interface, in consistency with the
first term on the right-hand side of Eq. (7.32).

The second-harmonic component U22(x) is governed by

d2U22

dx2 + (2ω0)
2

cL2 U22 = 0, (7.56a)

ρcL
2 dU22

dx

(
0+) = ρcL2 dU22

dx

(
0−) = KN�22 − 2KNNA0

2

1 + 4κN
2

exp (−2iα1) ,

(7.56b)

�22 = U22
(
0+)− U22

(
0−) . (7.56c)

Again, the second-harmonic wave field U22(x) can be expressed as the sum of
the forward and the backward waves, U22(x) = U22F(x) + U22B(x), and Eq. (7.56b)
is rewritten as

2iρcLω0
{
U22F

(
0+)− U22B

(
0+)} = 2iρcLω0

{
U22F

(
0−)− U22B

(
0−)}

= KN
{
U22F

(
0+)+ U22B

(
0+)− U22F

(
0−)− U22B

(
0−)}

−2KNNA0
2

1 + 4κN
2 exp (−2iα1) . (7.57)

These equations can be cast in the following matrix form:

(
U22F

(
0+)

U22B
(
0+)
)

=
[

1 + i/κN −i/κN

i/κN 1 − i/κN

] (
U22F

(
0−)

U22B
(
0−)
)

+ βA0
2

1 + 4κN
2 exp (−2iα1)

(
1

1

)
,

(7.58)

The second-harmonic component is generated at the interface, and radiated into
both directions (see Fig. 7.3b). The physically reasonable form for the second-
harmonic field satisfies U22F(0−) = 0 and U22B(0+) = 0. Substituting these into
Eq. (7.58) directly leads to

U22B
(
0−) = − βκNA0

2

(
1 + 4κN

2
)√

1 + κN
2

exp {−i (2α1 − α2)} , (7.59a)

U22F
(
0+) = βκNA0

2

(
1 + 4κN

2
)√

1 + κN
2

exp {−i (2α1 − α2)} , (7.59b)

where α2 is defined in Eq. (7.31). The second-harmonic field is given by
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U22F(x) =
{

0, x < 0
U+

22F(x) = U22F
(
0+) exp (2iω0x/cL) , x > 0

, (7.60a)

U22B(x) =
{
U−

22B(x) = U22B
(
0−) exp (−2iω0x/cL) , x < 0

0, x > 0
(7.60b)

As a consequence, the time-domain displacement field in this approximation is
given by

u (x, t) = U21(x)+ Re
[
U1(x) exp (−iω0t)+ U22(x) exp (−2iω0t)

]
, (7.61)

which coincides with the results Eqs. (7.34a) and (7.34b) derived in the time-domain
formulation.

7.2.4 Note on the Power-Law Stiffness–Pressure Relation

The interfacial stiffness KN defined in Eq. (7.3) is a function of the interface gap
h0, or equivalently, a function of the applied pressure p0. The contact-pressure
dependence of the interfacial stiffness has been studied by many investigators [3,
5, 15, 22, 28–30]. The experimental data show that the interfacial normal stiffness
is an increasing function of the applied pressure. As one of the simplest forms to
meet this property, a power-law pressure dependence of the stiffness is tentatively
considered here, i.e.,

KN = Cp0
m, (7.62)

where C and m are constants characteristic of the interface. A functional form of
σ (h, s) which is compatible with Eq. (7.62) is given by

σ (h, s) =
{

−{p0
1−m − (1 −m)C (h− h0)

}1/(1−m) + g(s), m �= 1,
− p0 exp {−C (h− h0)} + g(s), m = 1,

(7.63)

where g(s) is an even function of s with the property g(0) = g
′
(0) = 0. It should be

noted that this relation is valid for the following range of h:

h < h0 + p0
1−m

(1 −m)C , if m < 1, (7.64a)

h > h0 − p0
1−m

(m− 1) C
, if m > 1. (7.64b)
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Fig. 7.4 Pressure–gap
distance relation with
power-law
pressure-dependence of the
interfacial stiffness

In Fig. 7.4, the relation of Eq. (7.63) when s = 0 is shown for different values of
the parameter m.

The relation of Eq. (7.63) gives the nonlinear stiffness parameter KNN as

KNN = 1

2
mC2p0

2m−1. (7.65)

Then, for relatively weak contact when κN � 1, Eq. (7.37)2 reduces to

Atra
2(

Atra
1

)2 ≈ mρcLω0

8p0
, (7.66)

which predicts the inverse dependence on the applied static pressure, irrespective
of the power-law exponent m. As shown in the analysis by Biwa et al. [21], the
experimental data by Buck et al. [31] for contacting interfaces of aluminum blocks
are in conformity with this inverse pressure dependence.

7.3 Second-Harmonic Generation by Plane Shear Wave
at Normal Incidence

When a plane, time-harmonic transverse (shear) wave is incident on the interface
in the normal direction, it gives rise to relative tangential motion s(t). This motion
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accompanies not only the shear stress but also the normal stress as implied by the
boundary conditions in Eqs. (7.2a) and (7.2b), so the incident shear wave can couple
with the longitudinal wave as an outcome of the nonlinear interaction. With the
spirit of perturbation analysis similar to the previous section, the linear response is
described by the following set of equations for the transverse displacement v1(x, t).

∂2v1

∂t2
= cT2 ∂

2v1

∂x2 , (7.67a)

ρcT
2 ∂v1

∂x

(
0+, t

) = ρcT2 ∂v1

∂x

(
0−, t

) = KTs1(t), (7.67b)

s1(t) = v1
(
0+, t

)− v1
(
0−, t

)
, (7.67c)

where cT is the shear wave speed. The time-harmonic incident wave is assumed to
have the form

vinc (x, t) = B0 cos {ω0 (x − cTt) /cT} , (7.68)

where B0 is its amplitude. In the frequency domain, the solution is given as the sum
of the forward and backward waves V1(x) = V1F(x) + V1B(x) with

V1F(x) =
{
V −

1F(x) = B0 exp (iω0x/cT) , x < 0,
V +

1F(x) = TTB0 exp (iω0x/cT) , x > 0,
(7.69a)

V1B(x) =
{
V −

1B(x) = RTB0 exp (−iω0x/cT) , x < 0,
0, x > 0,

(7.69b)

in analogy with the analysis in Sect. 7.2.3, where RT and TT are the complex
reflection and transmission coefficients of the shear wave, respectively (see Fig.
7.5a). With the boundary conditions in Eq. (7.67b), these coefficients are given by

RT = 1

1 + 2iκT
, TT = 2iκT

1 + 2iκT
, (7.70)

where

κT = KT

ρcTω0
. (7.71)

The quadratic nonlinear response is given by the longitudinal displacement
u2(x, t), which is governed by
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Fig. 7.5 (a) The fundamental
and (b) the second-harmonic
components associated with
the interaction of
normal-incidence shear wave
with the nonlinear
spring-type interface

∂2u2

∂t2
= cL2 ∂

2u2

∂x2
, (7.72a)

ρcL
2 ∂u2

∂x

(
0+, t

) = ρcL2 ∂u2

∂x

(
0−, t

) = KNξ2(t)−KTTs1(t)
2, (7.72b)

ξ2(t) = u2
(
0+, t

)− u2
(
0−, t

)
. (7.72c)

Following the approach in Sect. 7.2.3, the frequency-domain solution for u2(x, t)
is given by

U2(x) = U21(x)+ U22(x), (7.73)

with the constant stationary displacement satisfying

U21
(
0+)− U21

(
0−) = 2γB0

2

1 + 4κT
2
, (7.74)

where

γ = KTT

KN
(7.75)

and the second-harmonic longitudinal displacement field
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U22(x) =
⎧
⎨

⎩

U−
22B(x) = − γ κNB0

2

(1+4κT
2)

√
1+κN

2
exp {−i (2δ1 − α2)} exp (−2iω0x/cL) , x < 0,

U+
22F(x) = γ κNB0

2

(1+4κT
2)

√
1+κN

2
exp {−i (2δ1 − α2)} exp (2iω0x/cL) , x > 0.

(7.76)

where

cos δ1 = 1
√

1 + 4κT
2
, sin δ1 = 2κT√

1 + 4κT
2
. (7.77)

The displacement fields are given by

v (x, t) = Re
[
V1(x) exp (−iω0t)

]
, (7.78a)

u (x, t) = U21(x)+ Re
[
U22(x) exp (−2iω0t)

]
. (7.78b)

Namely, the interaction of a time-harmonic shear wave with the interface
results in the fundamental reflected and transmitted shear waves, together with the
stationary opening and the second-harmonic longitudinal waves radiated from the
interface (see Fig. 7.5b).

The harmonic generation for the normal incidence of shear wave has been
analyzed by Pecorari [20] using the model given by Eqs. (7.7a) and (7.7b). Due to
the absence of the term with the coefficient KTT, the model by Eqs. (7.7a) and (7.7b)
does not predict the generation of the second-harmonic longitudinal waves. Instead,
the hysteretic term in Eq. (7.7b) gives the occurrence of the odd-order harmonic
shear waves.

7.4 Second-Harmonic Generation by Plane Longitudinal
Wave at Oblique Incidence

7.4.1 Formulation

In this section, the interaction of plane time-harmonic elastic waves with the
nonlinear spring-type interface is considered in the two-dimensional framework.
Two identical semi-infinite isotropic, linear elastic solids are in contact at x = 0 as
shown in Fig. 7.6. The governing equations are Navier’s equations without body
forces

∂2u

∂t2
=
(
cL

2 − cT2
) ∂
∂x

(
∂u

∂x
+ ∂v
∂y

)
+ cT2

(
∂2

∂x2 + ∂2

∂y2

)
u, (7.79a)
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Fig. 7.6 Oblique incidence
of plane longitudinal wave on
a spring-type interface

x

x = 0
Spring-type interface

uIL (x,y,t)

y

θ0
L

∂2v

∂t2
=
(
cL

2 − cT2
) ∂
∂y

(
∂u

∂x
+ ∂v
∂y

)
+ cT2

(
∂2

∂x2 + ∂2

∂y2

)
v, (7.79b)

for the displacement fields u(x, y, t) and v(x, y, t).
The incident wave is assumed to be a plane time-harmonic longitudinal wave of

amplitude A0 and angular frequency ω0, whose displacement is written as

uIL (x, y, t) =
(
uIL (x, y, t)

vIL (x, y, t)

)
= A0

(
nx

ny

)
cos
{
ω0
(
nxx + nyy − cLt

)
/cL
}
,

(7.80)

where (nx, ny)T is a unit vector in the incident direction and related to the angle of
incidence θL

0 as

nx = cos θL
0 , ny = sin θL

0 . (7.81)

The case of the incidence of a plane shear wave can be considered likewise,
except that it needs to be taken into account that the mode-converted longitudinal
waves become evanescent for the shear wave with the incident angle greater than
the critical one.

The boundary conditions at x = 0 are, from Eqs. (7.2a) and (7.2b),

ρcL
2 ∂u

∂x

(
0+, y, t

)+ ρ
(
cL

2 − 2cT
2
) ∂v
∂y

(
0+, y, t

)

= ρcL2 ∂u

∂x

(
0−, y, t

)+ ρ
(
cL

2 − 2cT
2
) ∂v
∂y

(
0−, y, t

)

= KN ξ (y, t)−KNN ξ(y, t)
2 −KTT s(y, t)

2, (7.82a)
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ρcT
2
{
∂u

∂y

(
0+, y, t

)+ ∂v

∂x

(
0+, y, t

)
}

= ρcT2
{
∂u

∂y

(
0−, y, t

)+ ∂v

∂x

(
0−, y, t

)} = KT s (y, t)−KNT ξ (y, t) s (y, t) ,

(7.82b)

where

ξ (y, t) = u (0+, y, t
)− u (0−, y, t

)
, s (y, t) = v (0+, y, t

)− v (0−, y, t
)
.

(7.83)

The perturbation approach presented in Sect. 7.2 is applied to decompose
the displacement field u(x, y, t)= (u(x, y, t), v(x, y, t)))T into the linear
part u1(x, y, t)= (u1(x, y, t), v1(x, y, t)))

T and the quadratic nonlinear part
u2(x, y, t)= (u2(x, y, t), v2(x, y, t)))

T, i.e.,

u (x, y, t) = u1 (x, y, t)+ u2 (x, y, t) , v (x, y, t) = v1 (x, y, t)+ v2 (x, y, t) .

(7.84)

and likewise for the interfacial displacements,

ξ (y, t) = ξ1 (y, t)+ ξ2 (y, t) , s (y, t) = s1 (y, t)+ s2 (y, t) . (7.85)

7.4.2 Linear Response

The linear response u1(x, y, t) is governed by the following equations:

∂2u1

∂t2
=
(
cL

2 − cT2
) ∂
∂x

(
∂u1

∂x
+ ∂v1

∂y

)
+ cT2

(
∂2

∂x2 + ∂2

∂y2

)
u1, (7.86a)

∂2v1

∂t2
=
(
cL

2 − cT2
) ∂
∂y

(
∂u1

∂x
+ ∂v1

∂y

)
+ cT2

(
∂2

∂x2 + ∂2

∂y2

)
v1, (7.86b)

ρcL
2 ∂u1

∂x

(
0+, y, t

)+ ρ
(
cL

2 − 2cT
2
) ∂v1

∂y

(
0+, y, t

)

= ρcL2 ∂u1

∂x

(
0−, y, t

)+ ρ
(
cL

2 − 2cT
2
) ∂v1

∂y

(
0−, y, t

) = KN ξ1 (y, t) ,

(7.86c)
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ρcT
2
{
∂u1

∂y

(
0+, y, t

)+ ∂v1

∂x

(
0+, y, t

)
}

= ρcT2
{
∂u1

∂y

(
0−, y, t

)+ ∂v1

∂x

(
0−, y, t

)} = KT s1 (y, t) ,

(7.86d)

ξ1 (y, t) = u1
(
0+, y, t

)− u1
(
0−, y, t

)
, s1 (y, t) = v1

(
0+, y, t

)− v1
(
0−, y, t

)
,

(7.86e)

with the incident wave given by Eq. (7.80). In the frequency domain, the displace-
ment U1(x, y) = (U1(x, y), V1(x, y))T obeys

(
cL

2−cT2
) ∂
∂x

(
∂U1

∂x
+∂V1

∂y

)
+cT2

(
∂2

∂x2
+ ∂2

∂y2

)
U1+ω0

2U1=0, (7.87a)

(
cL

2−cT2
) ∂
∂y

(
∂U1

∂x
+∂V1

∂y

)
+cT2

(
∂2

∂x2
+ ∂2

∂y2

)
V1+ω0

2V1=0, (7.87b)

ρcL
2 ∂U1

∂x

(
0+, y

)+ ρ
(
cL

2 − 2cT
2
) ∂V1

∂y

(
0+, y

)

= ρcL2 ∂U1

∂x

(
0−, y

)+ ρ
(
cL

2−2cT
2
) ∂V1

∂y

(
0−, y

)=KN �1(y), (7.87c)

ρcT
2
{
∂U1

∂y

(
0+, y

)+ ∂V1

∂x

(
0+, y

)} = ρcT2
{
∂U1

∂y

(
0−, y

)+ ∂V1

∂x

(
0−, y

)}

= KT S1(y), (7.87d)

�1(y) = U1
(
0+, y

)− U1
(
0−, y

)
, S1(y) = V1

(
0+, y

)− V1
(
0−, y

)
, (7.87e)

with the incident wave

UIL
1 (x, y) =

(
U IL

1 (x, y)

V IL
1 (x, y)

)
= A0

(
nx

ny

)
exp

{
iω0
(
nxx + nyy

)
/cL
}
. (7.88)

Since two semi-infinite media are the same isotropic elastic solid, the propagation
angles of the reflected longitudinal (RL), reflected transverse (RT), transmitted
longitudinal (TL), and transmitted transverse (TT) waves are given by
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θRL = θTL = θL
0 , θRT = θTT = θT

0 ,
sin θT

0

cT
= sin θL

0

cL
, (7.89)

according to Snell’s law. The reflected and transmitted wave fields can be assumed
to have the following forms:

URL
1 (x, y) =

(
URL

1 (x, y)

V RL
1 (x, y)

)
= RLA0

(−nx
ny

)
exp

{
iω0
(−nxx + nyy

)
/cL
}
,

(7.90a)

URT
1 (x, y) =

(
URT

1 (x, y)

V RT
1 (x, y)

)
= RTA0

(
ly

lx

)
exp

{
iω0
(−lxx + lyy

)
/cT
}
,

(7.90b)

UTL
1 (x, y) =

(
UTL

1 (x, y)

V TL
1 (x, y)

)
= TLA0

(
nx

ny

)
exp

{
iω0
(
nxx + nyy

)
/cL
}
,

(7.90c)

UTT
1 (x, y) =

(
UTT

1 (x, y)

V TT
1 (x, y)

)
= TTA0

(−ly
lx

)
exp

{
iω0
(
lxx + lyy

)
/cT
}
,

(7.90d)

where

lx = cos θT
0 , ly = sin θT

0 , (7.91)

and RL, RT, TL, and TT are the complex reflection and transmission coefficients
of longitudinal and transverse waves, respectively (see Fig. 7.7a). By applying the
boundary conditions in Eqs. (7.87c) and (7.87d), these coefficients are determined
by the following set of equations:

⎡

⎢⎢
⎣

nx −ly nx − i
(
1 − 2η2ny

2
)
/κN −ly + 2iηlxly/κN

− ny −lx ny − 2iηnxny/κT lx + i
(
ly

2 − lx2
)
/κT

1 − 2η2ny
2 −2ηlxly −1 + 2η2ny

2 2ηlxly
2ηnxny lx

2 − ly2 2ηnxny lx
2 − ly2

⎤

⎥⎥
⎦

⎛

⎜⎜
⎝

RL

RT

TL

TT

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

nx

ny

− 1 + 2η2ny
2

2ηnxny

⎞

⎟⎟
⎠ , (7.92)

where
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Fig. 7.7 (a) The fundamental
and (b) the second-harmonic
components associated with
the interaction of
oblique-incidence
longitudinal wave with the
nonlinear spring-type
interface

η = cT

cL
(7.93)

is the ratio of wave speeds and κN and κT are the normalized interfacial stiffnesses
defined in Eqs. (7.20) and (7.71). Once these coefficients are obtained, the interfacial
displacements are given by

�1(y) = A0M1 exp
(
iω0nyy/cL

)
, (7.94a)

S1(y) = A0N1 exp
(
iω0nyy/cL

)
, (7.94b)

where the complex constants M1 and N1 are defined by

M1 =| M1 | exp (iϕ1) = −nx + nxRL − lyRT + nxTL − lyTT, (7.95a)

N1 =| N1 | exp (iψ1) = −ny − nyRL − lxRT + nyTL + lxTT, (7.95b)

where ϕ1 and ψ1 are the phases of M1 and N1, respectively.
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7.4.3 Quadratic Nonlinear Response

The quadratic nonlinear response u2(x, y, t) is governed by

∂2u2

∂t2
=
(
cL

2 − cT2
) ∂
∂x

(
∂u2

∂x
+ ∂v2

∂y

)
+ cT2

(
∂2

∂x2
+ ∂2

∂y2

)
u2, (7.96a)

∂2v2

∂t2
=
(
cL

2 − cT2
) ∂
∂y

(
∂u2

∂x
+ ∂v2

∂y

)
+ cT2

(
∂2

∂x2
+ ∂2

∂y2

)
v2, (7.96b)

ρcL
2 ∂u2

∂x

(
0+, y, t

)+ ρ
(
cL

2 − 2cT
2
) ∂v2

∂y

(
0+, y, t

)

= ρcL2 ∂u2

∂x

(
0−, y, t

)+ ρ
(
cL

2 − 2cT
2
) ∂v2

∂y

(
0−, y, t

)

= KN ξ2 (y, t)−KNN ξ1(y, t)
2 −KTT s1(y, t)

2, (7.96c)

ρcT
2
{
∂u2
∂y

(
0+, y, t

)+ ∂v2
∂x

(
0+, y, t

)}
= ρcT2

{
∂u2
∂y

(
0−, y, t

)+ ∂v2
∂x

(
0−, y, t

)}

= KT s2 (y, t)−KNT ξ1 (y, t) s1 (y, t) ,

(7.96d)

ξ2 (y, t) = u2
(
0+, y, t

)− u2
(
0−, y, t

)
, s2 (y, t) = v2

(
0+, y, t

)− v2
(
0−, y, t

)
.

(7.96e)

The driving force terms in Eqs. (7.96c) and (7.96d) can be evaluated from Eqs.
(7.94a) and (7.94b) and using the following relations:

ξ1(y, t)
2 = {Re

[
�1(y) exp (−iω0t)

]}2

= 1

2
A0

2|M1|2
[
1 + cos

{
2ω0

(
t − nyy/cL

)− 2ϕ1
}]
, (7.97a)

s1(y, t)
2 = {Re

[
S1(y) exp (−iω0t)

]}2

= 1

2
A0

2|N1|2
[
1 + cos

{
2ω0

(
t − nyy/cL

)− 2ψ1
}]
, (7.97b)

ξ1 (y, t) s1 (y, t) = Re
[
�1(y) exp (−iω0t)

]
Re
[
S1(y) exp (−iω0t)

]
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= 1

2
A0

2 |M1| |N1|
[
cos (ϕ1 − ψ1)+ cos

{
2ω0

(
t − nyy/cL

)− ϕ1 − ψ1
}]
,

(7.97c)

which consist of the stationary (ω = 0) and the second-harmonic (ω = 2ω0) compo-
nents. As a consequence, the quadratic nonlinear response
U2(x, y) = (U2(x, y), V2(x, y))T can then be decomposed into the station-
ary part U21(x, y) = (U21(x, y), V21(x, y))T and the second-harmonic part
U22(x, y) = (U22(x, y), V22(x, y))T.

The stationary field U21(x, y) is governed by

(
cL

2 − cT2
) ∂
∂x

(
∂U21

∂x
+ ∂V21

∂y

)
+ cT2

(
∂2

∂x2 + ∂2

∂y2

)
U21 = 0, (7.98a)

(
cL

2 − cT2
) ∂
∂y

(
∂U21

∂x
+ ∂V21

∂y

)
+ cT2

(
∂2

∂x2 + ∂2

∂y2

)
V21 = 0, (7.98b)

ρcL
2 ∂U21

∂x

(
0+, y

)+ ρ
(
cL

2 − 2cT
2
) ∂V21

∂y

(
0+, y

)

= ρcL2 ∂U21

∂x

(
0−, y

)+ ρ
(
cL

2 − 2cT
2
) ∂V21

∂y

(
0−, y

)

= KN �21(y)− 1

2
A0

2KNN|M1|2 − 1

2
A0

2KTT|N1|2, (7.98c)

ρcT
2
{
∂U21

∂y

(
0+, y

)+ ∂V21

∂x

(
0+, y

)}

= ρcT2
{
∂U21

∂y

(
0−, y

)+ ∂V21

∂x

(
0−, y

)}

= KT S21(y)− 1

2
A0

2KNT |M1| |N1| cos (ϕ1 − ψ1) , (7.98d)

�21(y) = U21
(
0+, y

)− U21
(
0−, y

)
, S21(y) = V21

(
0+, y

)− V21
(
0−, y

)
.

(7.98e)

The solution to the above set of equations is given by the strain-free field with
the constant interfacial displacements

�21(y) = 1

2
A0

2β|M1|2 + 1

2
A0

2γ |N1|2,

S21(y) = 1

2
A0

2χ |M1| |N1| cos (ϕ1 − ψ1) , (7.99)
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where

χ = KNT

KT
. (7.100)

The second-harmonic field U22(x, y) is governed by

(
cL

2 − cT2
) ∂
∂x

(
∂U22

∂x
+ ∂V22

∂y

)
+ cT2

(
∂2

∂x2
+ ∂2

∂y2

)
U22 + (2ω0)

2U22 = 0,

(7.101a)

(
cL

2 − cT2
) ∂
∂y

(
∂U22

∂x
+ ∂V22

∂y

)
+ cT2

(
∂2

∂x2
+ ∂2

∂y2

)
V22 + (2ω0)

2V22 = 0,

(7.101b)

ρcL
2 ∂U22

∂x

(
0+, y

)+ ρ
(
cL

2 − 2cT
2
) ∂V22

∂y

(
0+, y

)

= ρcL2 ∂U22

∂x

(
0−, y

)+ ρ
(
cL

2 − 2cT
2
) ∂V22

∂y

(
0−, y

)

= KN

[
�22(y)− βA0

2WN exp
(
2iω0nyy/cL

)]
, (7.101c)

ρcT
2
{
∂U22

∂y

(
0+, y

)+ ∂V22

∂x

(
0+, y

)}

= ρcT2
{
∂U22

∂y

(
0−, y

)+ ∂V22

∂x

(
0−, y

)}

= KT

[
S22(y)− βA0

2WT exp
(
2iω0nyy/cL

)]
, (7.101d)

�22(y) = U22
(
0+, y

)− U22
(
0−, y

)
, S22(y) = V22

(
0+, y

)− V22
(
0−, y

)
,

(7.101e)

where the complex constants WN and WT are given by

WN = 1

2
M1

2 + γ

2β
N1

2, (7.102a)

WT = χ

2β
M1N1. (7.102b)

The solution to the above problem is assumed to have the following forms:
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URL
22 (x, y) =

(
URL

22 (x, y)

V RL
22 (x, y)

)
= βA0

2wRL
(−nx
ny

)
exp

{
2iω0

(−nxx + nyy
)
/cL
}
,

(7.103a)

URT
22 (x, y) =

(
URT

22 (x, y)

V RT
22 (x, y)

)
= βA0

2wRT
(
ly

lx

)
exp

{
2iω0

(−lxx + lyy
)
/cT
}
,

(7.103b)

UTL
22 (x, y) =

(
UTL

22 (x, y)

V TL
22 (x, y)

)
= βA0

2wTL
(
nx

ny

)
exp

{
2iω0

(
nxx + nyy

)
/cL
}
,

(7.103c)

UTT
22 (x, y) =

(
UTT

22 (x, y)

V TT
22 (x, y)

)
= βA0

2wTT
(−ly
lx

)
exp

{
2iω0

(
lxx + lyy

)
/cT
}
,

(7.103d)

where wRL, wRT, wTL, and wTT are complex coefficients related to the amplitude
of the second harmonics. These forms represent the second-harmonic fields of
longitudinal and transverse waves radiating into the negative and positive directions
(Fig. 7.7b). They satisfy Eqs. (7.101a), (7.101b), (7.101c), (7.101d), and (7.101e)
when these coefficients are determined from
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⎠ . (7.104)

From the above solution, it is seen that the second-harmonic component prop-
agates in the same directions with the reflected longitudinal, reflected transverse,
transmitted longitudinal, and transmitted transverse components of the fundamental
wave.

It is noted that the three parameters describing the interfacial nonlinearity,
KNN, KTT, and KNT, need to be specified in order to obtain the second-harmonic
amplitudes based on the above theory. Establishing an effective method to quantify
these parameters for actual contacting interfaces requires further investigations.
Some numerical results of the nonlinear interaction of obliquely incident plane
waves with a contacting interface are presented by Pecorari [20] for the model
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given by Eqs. (7.7a) and (7.7b). Nam et al. [32] show experimental data for the
harmonic generation at a contacting interface at oblique incidence of longitudinal
wave, together with some theoretical results to interpret the experimental results.

7.5 Experimental Aspects

7.5.1 Quantitative Evaluation of the Second-Harmonic
Amplitude

In this section, the second-harmonic generation at a contacting interface is examined
from an experimental point of view based on the work by Biwa et al. [33]. As shown
in Fig. 7.8, two cubic aluminum alloy blocks with side length 30 mm were mated
together under compressive loading of different levels. The measured load was
divided by the nominal area of contact (30 × 30 mm) to give the nominal contact
pressure. A ten-cycle longitudinal tone-burst wave of the center frequency 1 MHz
was emitted from the end of one block by aid of a piezoelectric transducer (nominal
center frequency 1 MHz). The transmitted wave was detected at the other end by
another piezoelectric transducer (nominal center frequency 2.25 MHz) and recorded
in a personal computer. The recorded transmission waveforms were analyzed in
the frequency domain by the fast Fourier transform (FFT) technique to obtain
the amplitudes of the fundamental (1 MHz) and the second-harmonic (2 MHz)
components. At each contact pressure, the emitting transducer was also excited
by a spike pulse to send an ultrasonic wave pulse to the contacting interface, and
the reflection waveform was measured by the same transducer. This measurement
enabled the identification of the amplitude reflection coefficient and the interfacial
normal stiffness KN of the contacting interface as a function of the applied pressure.

The measured transmission waveforms are shown in Fig. 7.9 at different contact
pressures in a loading/unloading cycle. It can be observed that the waveforms
at relatively low contact pressures are distorted significantly from the original
sinusoidal shape. On the other hand, the waveforms at higher pressures retain the
sinusoidal shape of the emitted wave signal. These transmission waveforms were
analyzed by the FFT to obtain the amplitudes of the fundamental (1 MHz) and
the second-harmonic (2 MHz) components. These amplitudes, obtained from the
voltage signal detected by the receiving piezoelectric transducer, are denoted by
A1V and A2V, respectively. It should be noted that the relative magnitudes of these
amplitudes are affected by the frequency characteristics of the receiving transducer,
which makes direct comparison of these amplitudes or their ratio with the theoretical
prediction, Eqs. (7.35), (7.36), and (7.37), less meaningful. Therefore, in order to
evaluate the fundamental and the second-harmonic amplitudes in a quantitative
manner, the frequency characteristics of the receiving transducer was compensated
in the following manner.
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Fig. 7.8 Schematic of the experimental setup for the transmission of longitudinal tone-burst wave
through a contacting interface

Fig. 7.9 Transmission
waveforms through the
contacting interface at
different contact pressures

As shown in Fig. 7.10a, the longitudinal tone-burst waves with center frequencies
1 MHz, 2 MHz, and 3 MHz were emitted to the aluminum alloy block (the same
block as used in the above measurements) from the bottom surface. The transmitted
waveforms on the upper surface were measured by using the same receiving
transducer (nominal center frequency 2.25 MHz). The FFT of the sinusoidal part
of each transmission waveform was calculated, and the inverse FFT of its value at
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Fig. 7.10 (a) Schematic of
the calibration of the
frequency characteristics of
the receiving transducer by a
laser Doppler vibrometer, (b)
the relation between the
output of the receiving
transducer and the
displacement amplitude
obtained by the laser Doppler
vibrometer for different
frequencies (reproduced from
Biwa et al. [33] with the
permission of AIP
Publishing)

the center frequency was regarded as the voltage output at this frequency. Next,
instead of the piezoelectric transducer, a laser Doppler vibrometer was used to
measure the particle velocity of the upper surface accompanying the arrival of the
ultrasonic wave. This enabled the determination of the velocity amplitude of the
sinusoidal tone burst, which can then be converted to its displacement amplitude
by dividing it by the angular frequency. Since the laser vibrometry was applied to
the free surface of the block, the displacement amplitude of the tone-burst wave
propagating in the block is the half of the so-determined displacement amplitude.
The relations between the displacement amplitudes obtained by the laser Doppler
vibrometer and the output voltage amplitudes obtained by the receiving transducer
are shown in Fig. 7.10b for the frequencies 1, 2, and 3 MHz. The results show that
there is good linearity between them. The least-square fits (shown in Fig. 7.10b)
to the experimental results can be used to convert the output voltage amplitude
of the receiving transducer to the displacement amplitude, provided that the same
specimen and the transducer are used.

Using the above calibration method, the fundamental as well as the second-
harmonic displacement amplitudes, denoted by A1 and A2, were obtained. The ratio
A2/A1 is plotted in Fig. 7.11 together with A2V/A1V. It is found that the calibrated
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Fig. 7.11 Contact-pressure dependence of the relative second-harmonic amplitude (reproduced
from Biwa et al. [33] with the permission of AIP Publishing, with additional data)

ratios are smaller than the corresponding raw data given by the transducer voltage.
This can be understood naturally since the receiving transducer had the nominal
frequency of 2.25 MHz and should detect the second-harmonic component (2 MHz)
with greater sensitivity than the fundamental component (1 MHz).

When evaluating the second-harmonic generation at contacting interfaces, atten-
tion should be paid to the fact that the contact nonlinearity is not the only source
of the second-harmonic component. Other sources include the transient excitation
signal to the transducer which involves high-frequency components, nonlinearity
of the equipment hardware, material nonlinearity of the specimen, and so on. To
estimate their overall effect, an aluminum block of the length 60 mm (but with
the same lateral dimensions as the contacting blocks used in the measurement)
was used to perform the same tone-burst transmission measurement under com-
pressive loading as described above. For this reference block, the relative second-
harmonic amplitudes in the transmission waveform are denoted by (A2V/A1V)REF
and (A2/A1)REF before and after the calibration for the frequency characteristics of
the receiving transducer, respectively. In Fig. 7.11, these relative second-harmonic
amplitudes keep constant levels irrespective of the contact pressure, and are shown
to be an order of magnitude smaller than those measured for the contacting
blocks.
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7.5.2 Comparison with the Prediction Based on the Nonlinear
Spring-Type Interface Model

In the above measurement, the pulse reflection waveform from the contacting
interface was also measured at each contact pressure. From the FFT of the reflection
waveform, the amplitude reflection coefficient was obtained as a function of the
applied pressure. Based on Eqs. (7.35) or (7.50), the interfacial normal stiffness was
determined by

KN = ρcLω0

√
1 − |RL|2

2 | RL | . (7.105)

The results are shown in Fig. 7.12, where the interfacial stiffness increases
monotonically with the contact pressure during the loading, and decreases with
slight hysteresis at the unloading. Instead of the power-law form discussed in Sect.
7.2.4, the following simple logarithmic form was found to fit the measurements
reasonably well:

KN (p0) = a lnp0 + b, (7.106)

with a = 2.40 × 10−2 (MPa/nm), b = 7.16 × 10−2 (MPa/nm) for the loading, and
a = 1.88 × 10−2 (MPa/nm), b = 7.94 × 10−2 (MPa/nm) for the unloading.

Fig. 7.12 Contact-pressure dependence of the reflection coefficient and the interfacial normal
stiffness
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From the above results, the nonlinear interfacial parameter KNN was estimated
in the following way. The relation in Eq. (7.1)1 was restricted to the pressure-gap
distance relation

p = p(h), (7.107)

by neglecting the effect of the tangential sliding s. The derivative dp/dh is a function
of the gap distance h or a function of the pressure p through the inverse relation of
Eq. (7.107). Now the functional form of dp/dh as a function of p is identified with
−KN(p0) in Eq. (7.106), i.e.,

dp

dh
= −K̃(p), K̃(p) ≡ a lnp + b. (7.108)

This identification amounts to assuming that the variation of the interfacial
normal stiffness for dynamic pressure variation is identical with the variation for
static change of pressure. Based on this assumption, the second-order derivative of
p(h) is given by

d2p

dh2 = − d

dh
K̃(p) = −dp

dh

dK̃(p)

dp
= K̃(p)dK̃(p)

dp
. (7.109)

Therefore, the nonlinear interfacial parameter KNN at the contact pressure p0 is
given by, from Eq. (7.3),

KNN = 1

2

d2p

dh2

∣∣∣∣
p=p0

= a KN (p0)

2p0
(7.110)

and the parameter β is given by

β = KNN

KN
= a

2p0
. (7.111)

Based on the above estimation of KNN and β for each of the loading and the
unloading results, the ratio of the second-harmonic amplitude to the square of the
fundamental amplitude in the transmitted wave was estimated by Eq. (7.37). With
the parameters for aluminum alloy (ρ = 2700 kg/m3, cL = 6400 m/s) and ω0 = 2π

(MHz), the results are shown in Fig. 7.13 together with the experimental data, where
Atra

2 /
(
Atra

1

)2 is simply denoted by A2/A1
2. It is noted that the calibration of the

receiver frequency characteristics has enabled direct and quantitative comparison
between the theory and the experimental data. In Fig. 7.13, the results based on
the nonlinear spring-type interface model are in reasonable agreement with the
experimental data as far as the order of magnitude is concerned. The discrepancy
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Fig. 7.13 Comparison between theory and experiment for the ratio of the second-harmonic
amplitude to the square of the fundamental amplitude

between the theory and the experiment at relatively high pressures is likely due
mainly to the effect of other sources of second-harmonics than the contacting
interface, as it is of comparable magnitude to the results for the single reference
block.

7.5.3 Other Experimental Investigations

Since the pioneering experiments by Buck et al. [31] on a contacting interface
and a fatigue crack, many investigators have studied the harmonic generation at
contacting interfaces from the viewpoints of fundamental experimental study as
well as application to nondestructive evaluation. Theoretical discussions of the
experimental results, including those based on the nonlinear spring-type interface
model described here, can also be found in the works by, e.g., Barnard et al.
[8], Wu [19], Kim et al. [22], Chen et al. [34], Biwa et al. [29, 35], Kim
and Lee [23], Guo et al. [36], and Nam et al. [32]. The harmonic generation
at a kissing bond at an adhesive interface has been studied by Yan et al. [13,
37] from a theoretical point of view based on a nonlinear spring-type interface
model.



298 S. Biwa

Acknowledgments The experimental results presented in Sect. 7.5 were obtained during 2006–
2008 in collaboration with Mr. Shigeru Yamaji, a graduate student of Kyoto University, and Prof.
Eiji Matsumoto. The writing of this chapter has been conducted partly for the basis of the author’s
current research project sponsored by the JSPS KAKENHI Grant Number JP16H04235.

References

1. G.W. Stachowiak, A.W. Batchelor, Engineering Tribology (Elsevier, Amsterdam, 1993)
2. T. R. Thomas (ed.), Rough Surfaces (Longman, London, 1982)
3. B.W. Drinkwater, R.S. Dwyer-Joyce, P. Cawley, A study of the interaction between ultrasound

and a partially contacting solid-solid interface. Proc. R. Soc. Lond. A 452, 2613–2628 (1996)
4. R.S. Dwyer-Joyce, The application of ultrasonic NDT techniques in tribology. Proc. IMechE

J. J. Eng. Trib. 219, 347–366 (2005)
5. K. Kendall, D. Tabor, An ultrasonic study of the area of contact between stationary and sliding

surfaces. Proc. R. Soc. Lond. A 323, 321–340 (1971)
6. P.B. Nagy, Ultrasonic classification of imperfect interfaces. J. Nondestruct. Eval. 11, 127–139

(1992)
7. B. Gu, K.T. Nihei, L.R. Myer, L.J. Pyrak-Nolte, Fracture interface waves. J. Geophys. Res.

101, 827–835 (1996)
8. D.J. Barnard, G.E. Dace, D.K. Rehbein, O. Buck, Acoustic harmonic generation at diffusion

bonds. J. Nondestruct. Eval. 16, 77–89 (1997)
9. I.Y. Solodov, Ultrasonics of non-linear contacts: Propagation, reflection and NDE-applications.

Ultrasonics 36, 383–390 (1998)
10. A.M. Sutin, V.E. Nazarov, Nonlinear acoustic methods of crack diagnosis. Radiophys. Quant.

El. 38, 109–120 (1995)
11. I.Y. Solodov, CAN: An example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40,

621–625 (2002)
12. R. Yamada, K. Kawashima, M. Murase, Application of nonlinear ultrasonic measurement

for quality assurance of diffusion bonds of gamma titanium aluminum alloy and steel. Res.
Nondestruct. Eval. 17, 223–239 (2006)

13. D. Yan, B.W. Drinkwater, S.A. Neild, Measurement of the ultrasonic nonlinearity of kissing
bonds in adhesive joints. NDT&E Int. 42, 459–466 (2009)

14. O.V. Rudenko, Giant nonlinearities in structurally inhomogeneous media and the fundamentals
of nonlinear acoustic diagnostic techniques. Phys. Usp. 49, 69–87 (2006)

15. A. Baltazar, S.I. Rokhlin, C. Pecorari, On the relationship between ultrasonic and microme-
chanical properties of contacting rough surfaces. J. Mech. Phys. Solids 50, 1397–1416 (2002)

16. J.M. Richardson, Harmonic generation at an unbonded interface-I. Planar interface between
semi-infinite elastic media. Int. J. Eng. Sci. 17, 73–85 (1979)

17. S. Hirose, J.D. Achenbach, Higher harmonics in the far field due to dynamic crack-free
contacting. J. Acoust. Soc. Am. 93, 142–147 (1993)

18. G. Shui, Y. Wang, J. Qu, A theoretical model for nondestructive evaluation of damage of
adhesive joints. Key Eng. Mater. 324–325, 339–342 (2006)

19. P. Wu, Nonlinear interaction of ultrasound with an unbounded rough interface. in: 2005 IEEE
Ultrasonics Symposium, 2005, pp. 289–292

20. C. Pecorari, Nonlinear interaction of plane ultrasonic waves with an interface between rough
surfaces in contact. J. Acoust. Soc. Am. 113, 3065–3072 (2003)

21. S. Biwa, S. Nakajima, N. Ohno, On the acoustic nonlinearity of solid-solid contact with
pressure-dependent interface stiffness. ASME J. Appl. Mech. 71, 508–515 (2004)

22. J.Y. Kim, A. Baltazar, J.W. Hu, S.I. Rokhlin, Hysteretic linear and nonlinear acoustic responses
from pressed interfaces. Int. J. Solids Struct. 43, 6436–6452 (2006)



7 Second-Harmonic Generation at Contacting Interfaces 299

23. J.Y. Kim, J.S. Lee, A micromechanical model for nonlinear acoustic properties of interfaces
between solids. J. Appl. Phys. 101, 043501 (2007)

24. O.V. Rudenko, C.A. Vu, Nonlinear acoustic properties of a rough surface contact and
acoustodiagnostics of a roughness height distribution. Acoust. Phys. 40, 593–596 (1994)

25. V. Gusev, B. Castagnède, A. Moussatov, Hysteresis in response of nonlinear bistable interface
to continuously varying acoustic loading. Ultrasonics 41, 643–654 (2003)

26. V. Gusev, Frequency dependence of dynamic hysteresis in the interaction of acoustic wave with
interface. J. Acoust. Soc. Am. 115, 1044–1048 (2004)

27. S. Biwa, Y. Ishii, Second-harmonic generation in an infinite layered structure with nonlinear
spring-type interfaces. Wave Motion 63, 55–67 (2016)

28. S. Biwa, S. Hiraiwa, E. Matsumoto, Stiffness evaluation of contacting surfaces by bulk and
interface waves. Ultrasonics 47, 123–129 (2007)

29. S. Biwa, S. Hiraiwa, E. Matsumoto, Pressure-dependent stiffnesses and nonlinear ultrasonic
response of contacting surfaces. J. Solid Mech. Mater. Eng. 3, 10–21 (2009)

30. S. Biwa, A. Suzuki, N. Ohno, Evaluation of interface wave velocity, reflection coefficients and
interfacial stiffnesses of contacting surfaces. Ultrasonics 43, 495–502 (2005)

31. O. Buck, W.L. Morris, J.M. Richardson, Acoustic harmonic generation at unbonded interfaces
and fatigue cracks. Appl. Phys. Lett. 33, 371–373 (1978)

32. T. Nam, T. Lee, C. Kim, K.Y. Jhang, N. Kim, Harmonic generation of an obliquely incident
ultrasonic wave in solid-solid contact interfaces. Ultrasonics 52, 778–783 (2012)

33. S. Biwa, S. Yamaji, E. Matsumoto, in Nonlinear Acoustics – Fundamentals and Applications,
CP 1022, ed. by B. O. Enflo, C. M. Hedberg, L. Kari. Quantitative Evaluation of Harmonic
Generation at Contacting Interface (AIP, New York, 2008), pp. 505–508

34. J. Chen, D. Zhang, Y. Mao, J. Cheng, Contact acoustic nonlinearity in a bonded solid-solid
interface. Ultrasonics 44, e1355–e1358 (2006)

35. S. Biwa, S. Hiraiwa, E. Matsumoto, Experimental and theoretical study of harmonic generation
at contacting interface. Ultrasonics 44, e1319–e1322 (2006)

36. X. Guo, D. Zhang, J. Wu, Quantitative evaluation of contact stiffness between pressed solid
surfaces using dual-frequency ultrasound. J. Appl. Phys. 108, 034902 (2010)

37. D. Yan, S.A. Neild, B.W. Drinkwater, Modelling and measurement of the nonlinear behaviour
of kissing bonds in adhesive joints. NDT&E Int. 47, 18–25 (2012)



Chapter 8
Nonlinear Acoustic Response of Damage
Applied for Diagnostic Imaging

Igor Solodov

8.1 Introduction

The concept of using acoustic nonlinear response for material characterization stems
from the first experimental observations of the second harmonic generation in solids
in the early 1960s by Vladimir Krasilnikov in Russia and Mack Breazeale in the
USA [1, 2]. The second (and the higher harmonic (HH)) generation implies that the
stiffness of a nonlinear material is a function of strain that results in a local variation
of acoustic wave velocity and the waveform distortion. In crystalline (flawless)
materials, acoustic nonlinearity reveals a weak nonlinear behavior of inter-atomic
forces so that even at high ultrasonic strains ≈10−4 in homogeneous and free from
defects materials, the amplitude-dependent stiffness variation is usually below 10−3.
As a result, noticeable nonlinear effects are measured due to the HH accumulation
along the propagation distance, and reasonable generation efficiency is observed
only for the second harmonic signal.

Further experiments revealed a substantial increase of nonlinearity in materials
with localized imperfections: a dramatic enhancement of the second harmonic
signal was measured in a high-purity aluminum single crystal with dislocations
induced by mechanical stress [3]. An important role of internal boundaries in
acoustic nonlinearity of imperfect materials was then experimentally confirmed for
dislocations in fatigued materials [4] and matrix–precipitate interfaces in alloys [5].

A further enhancement of nonlinear response was traced for the defects with
a higher severity: anomalously efficient HH generation was measured for weakly
bonded contacts of cracked defects (cracks, delaminations, impacts, etc.) due to spe-
cific Contact Acoustic Nonlinearity (CAN) [6]. Besides the much higher efficiency
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of the higher-order harmonic generation, the CAN-based nonlinear effects included
qualitatively different “non-classical” acoustical phenomena, like frequency down
conversion (subharmonics), hysteresis, instabilities, chaotic dynamics, etc. [7, 8]
that are well known in other branches of nonlinear physics. These localized effects
can be identified as nonlinear “tags” of the damage and applied to its recognition
and imaging [9].

Unlike conventional (linear) nondestructive evaluation (NDE), which uses the
amplitude and phase variation (primary effects) induced in the probing wave
reflection/transmission/scattering by the defect, the nonlinear approach is based on
the frequency variation as a result of the wave-defect interaction. In this regard,
the nonlinear defect response can be referred as a derivative effect in the wave-
defect interaction produced due to activating derivative material properties by an
acoustic wave (nonlinear, thermal, acousto-optic responses, etc.). These secondary
effects are generally the higher-order nonlinear functions of the acoustic wave
amplitude and therefore relatively inefficient so that corresponding NDE and defect
imaging techniques require an elevated acoustic power and specific instrumentation
particularly adapted to high-power ultrasonics.

Another way to increase the vibration amplitude is to excite the specimen at
one of its natural frequencies. This approach widely used in ultrasonic NDE has
an obvious drawback of “missing” the defect due to the presence of nodal lines
in a standing wave pattern [10, 11]. A more rational way to activate a defect
has been found in driving the specimen at a natural frequency of the damaged
area to result in the so-called Local Defect Resonance (LDR) [12]. Unlike the
resonance vibration of the whole specimen, the LDR addresses the impact of the
defect severity to its own resonance response, which is far stronger and is closely
confined in the damaged area. It identifies the damage by its resonant response
clearly distinguished and independent of the rest (intact) part of the specimen.
The increase in local vibration of the damage results in enhanced efficiency and
sensitivity of the derivative effects in acoustic wave-defect encounter. They include
LDR activated nonlinear, thermosonic, and shearosonic responses demonstrated to
be beneficial for NDE and imaging of damage [13].

This chapter starts with a brief summary of basic mechanisms of CAN and
phenomenology of local frequency conversion scenarios under assumption of the
damaged area to combine both resonance and nonlinear properties (Sect. 8.1).
In Sect. 8.2, the methodologies of scanning laser vibrometry and Nonlinear Air-
Coupled Emission (NACE) will be applied to nonlinear defect-selective imaging
at different spectral components of local nonlinear spectra for various defects. The
concept of LDR will be presented in Sect. 8.3 along with experimental evidence and
characteristics of the damage mechanical resonance. A combined effect of LDR-
CAN and new “nonclassical” features characteristic of nonlinear and parametric
resonances are considered in Sect. 8.4, followed by the case studies of highly
efficient and sensitive resonant nonlinear acoustic imaging and NDE of damage in
composite materials and components (Sect. 8.5).
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8.2 CAN Mechanisms and Nonlinear Vibration Spectra
of Fractured Defects

According to the Introduction, the strength of contact bonding is a crucial factor
for the build-up of nonlinearity in damaged areas. A weakly bonded interface
of a cracked defect driven by intense in-plane or out-of-plane tractions exhibits
nonlinear dynamics of an intermittent contact associated with either symmetrical
or asymmetrical stiffness variation.

The asymmetrical modulation of the local stiffness (C0) is, apparently, char-
acteristic of the compression-tension contact vibration of the defect elements:
it is higher for compression (+�C) and lower (−�C) for the contact tension.
Such “bi-modular” behavior (clapping) of a pre-stressed contact interface can be
approximated as a piece-wise stress (σ )–strain (ε) relation by using the Heaviside
function H(ε) [14]:

σ = C0

[
1 −H

(
ε − ε0

)
�C/C0

]
ε, (8.1)

where �C/C0 is the modulation depth of the compressed (ε0 is the pre-strain)
contact stiffness that, generally, can be as high as ∼1, i.e., about three orders of
magnitude higher than that in the classical (flawless) case. The clapping contact,
therefore, acts as a mechanical diode (Fig. 8.1) and results in an unusual rectified
nonlinear waveform distortion. As soon as ε > ε0, the Fourier series expansion of the
nonlinear term in (8.1) indicates the generation of multiple both odd and even HH
produced locally in the defect area. The clapping model entails a pulse-type stiffness
variation so that the envelope of the HH amplitudes features the modulation by sinc
function (Fig. 8.2).

Fig. 8.1 Mechanical diode
model of clapping CAN
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Fig. 8.2 HH spectrum modulation for clapping CAN

Fig. 8.3 Mechanical diode
mode for micro-slip
mechanism of CAN
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For an in-plane drive (shear wave excitation), mechanical coupling of the contact
interface is provided by the friction force caused by the interaction between
asperities (micro-slip). This interaction constrains the in-plane vibration of the
contact (in-plane clapping) and leads to a step-wise variation in tangential contact
stiffness (Fig. 8.3):

σ =
{

C0 −
[
H
(
ε + ε0

)
−H

(
ε − ε0

)]
�C
}
ε (8.2)
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Fig. 8.4 Odd HH spectrum for micro-slip mechanism of CAN

For a harmonic excitation, the stiffness modulation is independent of the
direction of in-plane motion (symmetrical nonlinearity) and provides only odd
higher harmonic generation. Similar to the above, the step-wise stiffness variation
manifests itself in sinc-modulation of the higher harmonic amplitudes (Fig. 8.4).

In realistic fractured damage, both CAN mechanisms are activated and result in
an efficient generation of the nonlinear spectra that contain dozens of the higher-
order HH. Provided the damage vibrates at local resonance (will be discussed in
detail below) the HH is being confined inside the defect area that sets up the
background for defect-selective nonlinear imaging of fractured flaws. Fortunately,
this group of flaws includes the most typical defects in composite materials: micro-
and macro-cracks, delaminations, disbonds, impact damages, etc., which will be
discussed within the scope of this chapter.

The HH spectra analyzed above is not the only possible scenario of nonlinear
defect vibrations. Inclusion of a cracked defect leads to a local decrease in stiffness
of a certain mass of the damaged material, which should manifest in a particular
characteristic frequency (ω0) and therefore identified as a nonlinear oscillator (see
Sect. 8.3). The contact nonlinearity can be introduced in the equation of forced
vibrations of the oscillator as displacement (X) dependent nonlinear force FNL(X).
For a harmonic driving forcef (t) = F0 cos νt, the driven vibrations of the nonlinear
oscillator are found as a solution to the nonlinear equation:

Ẍ + ω2
0X = f (t)+ FNL(X). (8.3)
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In the second order of the perturbation approach, the nonlinear force in (8.3)
accounts for the interaction between driving and natural frequency vibrations, so
that FNL∼ cos (ν − ω0)t.

Therefore, if the driving frequency is chosen as ν − ω0 ≈ ω0, the nonlin-
earity leads to a resonance increase in the output at ω0 ≈ ν/2 (subharmonic
(SB) resonance). Taking into account the higher-order nonlinearity one obtains
FNL(X)∼mν − nω0 and the frequency matching relation mν − nω0 ≈ ω0 provides
resonance output at ω0 ≈ mν/(n + 1). For n = 1, the nonlinear spectrum acquires
ultra-subharmonics (USB) of the second order mν/2, while the higher values of n
bring about the USB of the higher orders.

In reality, a damaged area has a complicated mechanical structure that can be
conceived as a set of coupled nonlinear oscillators with different natural frequencies
[8]. If the defect is introduced as a pair of oscillators with normal frequencies ωα , ωβ
and the driving frequency is chosen as: ν ≈ ωα + ωβ , the second-order nonlinearity
generates the difference frequency components ν − ωα ≈ ωβ and ν − ωβ ≈ ωα ,
which provide simultaneous excitation of the both coupled oscillators. The two
resonant spectral lines ωα , ωβ in the nonlinear vibration spectrum are centered
around the subharmonic positionωα ≈ ν/2 + δ,ωβ ≈ ν/2 − δ and called a frequency
pair (FP).

After taking into account the Nth-order nonlinear terms in the driving force, the
spectrum acquires the following frequency components:

FNL (ω) ∼
∑

m,n,p
Fmnp

(
nν +mωα + pωβ

)
. (8.4)

Besides the higher harmonics nν, nonlinear spectrum (8.4) comprises the ultra-
frequency pairs (UFP) (nν + mωα + pωβ ) and (nν + pωα + mωβ ). They are
separated by |m − p|� (� = ωβ − ωα), centered around [nν + (m + p)ν/2]
frequencies and structured into two sets around higher harmonics ((m + p) even)
and USB ((m + p) odd). These features are illustrated in Fig. 8.5, where the results
of calculations based on (8.4) are shown for the normalized amplitudes Fmnp = 1
and N = 8. The experimental results on the nonlinear spectra of local vibrations of
damage and their applications for defect-selective imaging will be given in the next
section.

8.3 Nonlinear Spectra of Damage and Defect–Selective
Imaging

To observe the vibration spectra of damage the laser scanning vibrometry was
adapted for nonlinear measurements (nonlinear scanning laser vibrometry (NSLV)).
A continuous wave high-power Branson PG generator was used for excitation of
flexural ultrasonic waves (frequencies 20, 40 kHz, strain amplitudes up to ∼10−3)
by means of the piezo-stack transducers attached to plate-like composite specimens.
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Fig. 8.5 Section of
calculated UFP spectrum:
ν = 20 kHz; ωα = 9 kHz;
ωβ = 11 kHz; N = 8
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Fig. 8.6 Vibration spectra
measured outside (top) and
inside (bottom) damaged area
in CFRP specimen. Excitation
frequency is 20 kHz
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The out-of-plane particle vibration velocity induces a frequency modulation of
the laser light reflected from the surface of the specimen. After demodulation
in the controller OFV 3001S of Polytec scanning vibrometer PSV 300 and A/D
conversion, the spectrum of the vibrations is obtained at any point of the specimen
surface over 1 MHz bandwidth by Digital Fourier Transform (DFT) in the PC-unit.

Figure 8.6 shows typical vibration spectra measured in a cracked carbon fiber-
reinforced plastic (CFRP) specimen. In the intact region, the driving frequency
(20 kHz) dominates in the vibration spectrum while the second harmonic content
amounts to a few percent with a minor indication of the higher-order harmonics (Fig.
8.6, top). In the damaged area (Fig. 8.6, bottom), the spectrum reveals extremely
efficient generation of multiple HH: their amplitudes are comparable to that of the
driving frequency with evident indication of the sinc-modulation envisaged in Sect.
8.1.

The micro-slip mechanism of CAN, which according to Sect. 8.1 provides only
odd higher harmonics, was found to prevail in wood, which is a natural fiber-
reinforced composite. In an intact specimen, the HH spectrum shows an evident odd
harmonic domination (Fig. 8.7). Then the specimen was damaged and the spectrum
measured in the crack area acquired even-order higher harmonics generated due to
contact clapping in the crack.
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Fig. 8.7 Odd harmonic
generation in intact wood;
specimen driven at 20 kHz
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Fig. 8.8 Bifurcation of the
higher harmonic spectrum
(top) into USB (bottom) in
damaged CFRP specimen

Vi
br

at
io

n 
ve

lo
ci

ty
, m

m
/s

0.02
0.04
0.06
0.08

10
20

30

0 200 40 60
Frequency, kHz

0

0

0.1

Figure 8.8 shows the USB-spectra measured in a cracked area of a CFRP rod
(8 × 25 × 350 mm3) driven by 40 kHz excitation. For a low-amplitude drive,
the nonlinear spectrum consists of only HH of the driving frequency (top). As the
driving amplitude grows beyond a certain threshold value, the HH pattern changes
abruptly for the USB spectrum (period doubling bifurcation). The resonance
enhancement of the USB components by orders of magnitude (compare the scales
in Fig. 8.8) demonstrates the nonlinear instability, which switches the HH spectrum
to multiple USB instantly (bottom)). The “wavy” amplitude modulation of the USB
spectral components indicates involvement of the CAN clapping mechanisms in the
USB generation.

As it was mentioned in Sect. 8.1, a realistic damage has a complicated mechan-
ical structure and might display multi-frequency nonlinear resonances leading to
the UFP generation. Such behavior is experimentally illustrated in Fig. 8.9, which
shows a part of the UFP spectrum measured in the impact damage area of a glass
fiber-reinforced composite (GFRP) for a 20-kHz excitation. The higher frequency
section of the spectrum in the figure includes the second (40 kHz) and third (60 kHz)
HH as well as ultra-subharmonics (50 and 70 kHz). The UFP lines are centered
around the USB positions and distanced from them by �/2∼=0.6 kHz. As expected,
the UFP around higher harmonics reveal twice larger shift �≈ 1.2 kHz. Overall
agreement between the theory and the experiment becomes evident by comparing
Figs. 8.9 and 8.5.
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Fig. 8.9 Section of UFP
spectrum in impact damage
area of GFRP specimen;
excitation frequency is
20 kHz. See Fig. 8.5 for
comparison with theoretical
results
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Fig. 8.10 USB-UFP
bifurcation in delamination
area of C/C-SiC-composite
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Similar to the USB dynamics, the avalanche-like growth of the UFP components
is observed when the input excitation exceeds a certain threshold level and is caused
by the amplitude instability. The instable behavior of the UFP is demonstrated
in Fig. 8.10 by spectral conversion beyond the subharmonic threshold. As the
amplitude of the driving 20-kHz vibration is above the subharmonic threshold
(≈0.5 μm in Fig. 8.10), another instability threshold gives rise to a bifurcation into
the UFP spectrum (at ≈1 μm-drive). The oscilloscope inset in Fig. 8.10 also shows
the amplitude modulation (self-modulation) of the output signal in the USB-UFP
transition due to emerging low-frequency side-lobes. A further growth of the driving
amplitude results in broadening of the UFP lines into noise-like quasi-continuous
frequency bands, which are the forerunners of the transition to chaos (Fig. 8.11).
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Fig. 8.11 Transition of UFP
to noise-like spectrum in C/C
SiC damaged composite.
Driving frequency is 20 kHz
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8.3.1 Nonlinear Imaging Via Laser Scanning Vibrometry

The nonlinear spectral components shown above are generated locally in the
damaged area, while an intact part of material vibrates linearly, i.e., without
frequency variation in the vibration spectrum. The emergence of the nonlinear
spectral components is, therefore, a defect-selective indicator of damage presence
and development. The localization of the nonlinear vibrations around the origin (in
the damaged area) is a basis for nonlinear imaging of damage. To this end in the
NSLV methodology, after a C-scan of the specimen surface any nonlinear spectral
line is selected from the total spectrum detected by the laser vibrometer, and the
distribution of this component over the specimen surface is presented as a color-
coded image. Since normally (see the experimental data above) the total spectrum
contains multiple nonlinear spectral components for a fixed input frequency, a single
C-scan yields a number of images of the defect corresponding to various nonlinearly
generated frequencies. Usually these nonlinear images are similar but not identical
because the optimal conditions for generation of different nonlinear components
depend on the input amplitude and also vary over the damaged area. In the images
below, the selection of particular frequencies for nonlinear imaging is based on the
best signal-to-noise ratio (SNR) to provide at least (10–20) dB difference between
the nonlinear response of the damage and the outside (intact) background.

The defect-selective character of the nonlinear imaging is demonstrated by the
example shown in Fig. 8.12. A linear (fundamental frequency 20 kHz) image
of the damaged fabric carbon-kevlar fiber-reinforced composite (left) reveals a
pronounced standing wave pattern in the specimen without any indication of
damage. The HH images (Fig. 8.12, center and right) selectively indicate the point
impact damages. The SNR (against background standing wave) of the 3d harmonic
nonlinear image is about 20 dB in Fig. 8.12. The measured SNR usually increases
for the higher-order HH since their level is lower in the excitation signal.

The two examples in Figs. 8.13 and 8.14 demonstrate the capability of the higher-
order USB imaging. The image of a crack in polymethyl methacrylate (PMMA)
specimen excited at 1.75 kHz (Fig. 8.13) is obtained at as high as the 33d USB
of the excitation frequency (28.9 kHz). The maxima in the USB amplitude indicate
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Fig. 8.12 Linear (left), second (center), and third harmonic (right) NSLV-images of a point impact
damage in carbon-kevlar composite

Fig. 8.13 33d USB image of
a crack in Perspex specimen

particularly close contact areas between the crack faces. The photo in Fig. 8.14 (top)
shows a hairline fatigue crack produced by cyclic loading in Ni-base super-alloy.
The crack of less than 2 mm length, with average distance between the edges of
only ≈5μm, is clearly detected in the 70 kHz USB (7ν/2) image (Fig. 8.14, bottom),
whereas traditional linear NDE by using slanted ultrasonic reflection failed to work
with such tiny cracks.

The benefit of the UFP-imaging is demonstrated in Figs. 8.15 for the 14-ply
epoxy-based GFRP specimen with a 9.5 J-impact damage (a). The linear image
taken at the driving frequency of 20 kHz reveals only a well-developed standing
wave pattern over the whole sample (b), whereas the image at the first UFP-side-lobe
of the 10th HH of the driving frequency (198.8 kHz) reveals a very clear indication
of the damage in the central area (c).

The example of the UFP nonlinear imaging of extended damaged areas
in constructional materials is shown in Fig. 8.16 for a slab of GFR-concrete
(15 × 30 × 1.5 cm3) (a). For intense 20 kHz excitation, the image at 30.5 kHz
UFP around the third USB clearly indicates the large delamination areas (b, dark
color).
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Fig. 8.14 Ultra-subharmonic
(70 kHz) image (bottom) of a
fatigue crack Ni-base
super-alloy (top) driven by
20 kHz input

Fig. 8.15 Nonlinear imaging of an impact damaged area in the GFR-composite plate. (a, b) Linear
image (20 kHz); (c) UFP-side-lobe image around 10th HH (198.8 kHz)

Fig. 8.16 UFP imaging of delamination areas (b) in GFR-concrete plate (a)

8.3.2 Nonlinear Air-Coupled Emission (NACE)

Our experiments [15] also showed that fractured defects as localized sources of
nonlinear vibrations efficiently radiate nonlinear airborne ultrasound. Such Non-
linear Air-Coupled Emission (NACE) was proposed as an alternative methodology
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Fig. 8.17 NACE radiation patterns for various higher harmonics from a delamination in GFRP
specimen driven by 50 kHz excitation

to NSLV to locate and visualize the defects. To experimentally evidence this effect,
the air-coupled laser vibrometry was used [16] to visualize and quantify the airborne
radiation of defects. Figure 8.17 shows a few HH NACE patterns for a delamination
in GFRP specimen that reveals two main symmetrical side-lobes with frequency
dependent radiation angles.

The directivity of airborne radiation assessed by calculation of a spatial Fourier
transform of the vibration velocity distribution in the source area. If a defect (delam-
ination) provides a homogeneous distribution of nonlinear (n-th order harmonic)
velocity over length D along the x-axis, then the envelope of the nonlinear radiation
source is:

wn = w0 (x/D) exp (jnωt) , (8.5)

where the rectangle function  (x/D) = 1 for |x| < D/2 and zero otherwise.
The HH vibrations are activated by the standing wave pattern (i.e., by the oppo-

sitely propagating waves in the specimen (velocity c)) which introduce progressive
time delay ±x/c in subsequent excitation of the HH sources so that t → t ± x/c in
(8.5). After this change, the Fourier transform of (8.5) is found as follows:

Wn (θ) = w0D sinc
[
(nKD/2)

)
(sin θ ± sin θ0)

]
, (8.6)

where K = ω/c, sinθ0 = cair/c/.
The first conclusion inferred from this equation is that the radiation pattern

(8.6) includes two main side-lobes steered symmetrically to ±θ0 determined by
the well-known Cherenkov’s radiation condition. Secondly, the angular width of
the side-lobes (determined by nKD factor) reduces for the higher-order harmonic
NACE. Both conclusions are traced in the images shown in Fig. 8.17. The two
symmetrical main side-lobes are clearly observed for all higher harmonics while the
second harmonic NACE field exhibits maximum angular width of the side-lobes.
The images in Fig. 8.17 also demonstrate that the radiation angle θ0 reduces as the
harmonic number increases, which is attributed to frequency dependent increase in
flexural wave velocity (c) at HH frequencies.

An experimental setup of the NACE imaging system includes a high-frequency
focused air-coupled (ACU) transducer as a scanning receiver of the nonlinear
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Fig. 8.18 Experimental
setup for imaging of defects
via NACE
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Fig. 8.19 Nonlinear imaging of multiple impact-induced damage in multi-ply (+450; −450)
CFRP-plate: laser vibrometry (second harmonic image, left); NACE (9–11th) higher harmonic
image (right)

airborne ultrasound activated by a low-frequency excitation of the specimen. Similar
to the NSLV, after a C-scan the output signal of the receiver is Fast Fourier
Transformed (FFT) and a color-coded image of the amplitude distribution of any
nonlinear frequency component over the specimen surface is obtained (Fig. 8.18).

In the experiments, a piezo-stack transducer and high-power supply (Branson
Ultrasonics) were applied for low-frequency (around 20 and 40 kHz) excitation
with ≥10−6 strain amplitude in the source. A focused (focus spot ∼2–3 mm,
focus distance 40 mm) ACU-transducer with frequency responses centered at
∼450 kHz was used as a receiver in the C-scan mode. By changing the angle
of inclination of the receiver one of the side-lobes of the NACE radiation pattern
was selected. The transducer high frequency band-pass response (3 dB-bandwidth
of the receiver ∼20 kHz) combined with a high-pass filtering circuit provided a
complete rejection of the low-frequency excitation signal. The nonlinear frequency
components received (higher-order harmonics of the low-frequency vibration) are
used as an input to acquisition unit of commercial air-coupled scanning system for
computer imaging of NACE amplitude distribution over a specimen surface.

In Fig. 8.19, the NACE C-scan imaging results are compared with NSLV for
multiple impact damage on a reverse side of a multi-ply (+450; −450) CFRP
composite plate (175 × 100 × 1 mm3). Both techniques reliably visualize the
defects with similar sensitivity.

A high NACE sensitivity to surface fractured defects is illustrated in Fig. 8.20 for
μm-wide inter-ply delamination in a massive C/C/SiC-ceramic specimen (left). The
NACE image (right) reproduces a discrete structure of cracking and demonstrates a
good (mm-scale) lateral resolution along the crack.
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Fig. 8.20 NACE HH imaging (right) of inter-ply cracking (left) in a C/C/Si composite

Fig. 8.21 A linear ACU-transmission (left) and NACE (right) images of a cold work strip
(70 × 30 mm2) in a steel plate

For weakly focused ACU-transducers with cm-range focus depth, the NACE
was found to be insensitive to medium scale variations of the surface profile. Our
experiments showed that the NACE operates well in various constructional materials
(wood, concrete, and metals) with raw surfaces and rugged defects in components.

A very high sensitivity of NACE to micro-damage induced by plastic deforma-
tion was observed in metals. Figure 8.21 compares the linear ACU transmission
(top) and the NACE (bottom) images of a cold work area in steel plate produced by
hammer peening. An evident advantage in contrast to the NACE imaging over its
linear counterpart is clearly seen.

The analysis of NACE angular patterns presented above is 2D, i.e., it describes
the radiated field in the plane (xz) normal to the specimen surface. The defect is
assumed to be infinite along the surface direction (y) normal to the wave propagation
and the wave pattern is independent of y. In this case, for small D, nKD < < 1 in
(8.6), and the in-plane radiation is omni-directional, so that for the defect extended
along the y-direction NACE produces a 2D-cylindrical wave in the xz-plane without
radiation along they-axis. Therefore, to detect such a cylindrical wave produced by
the folded structure of the laser weld line in Fig. 8.22 (left), the ACU-transducer
(tuned at 11th higher harmonic of the driving frequency 40 kHz) was aligned at an
inclination angle in the xz-plane to result in the image of the line shown in Fig. 8.22
(center).

For a point-like nonlinear flaw in the center of the laser weld line (Fig. 8.22,
center), the radiation pattern will apparently change for a 3D-spherical wave with
NACE in both x- and y-directions. The defect size-dependent difference in the
NACE radiation patterns enables to extract particular features in the images of
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Fig. 8.22 3D-NACE imaging of the welding line with a point-like defect (left): NACE image for
transducer orientation in the xz-plane (center) and in the yz-plane (right)

complex defects, as illustrated in Fig. 8.22 for a point-like extra-defect in the center
part of the weld line. To visualize this point-like feature of the weld line image (Fig.
8.22, right), the orientation of the scanning ACU-receiver had to be changed for the
yz-plane.

8.4 Local Defect Resonance: Concept, Simulations,
and Experimental Evidence

The scenarios of local frequency conversion by nonlinear defects considered in the
previous sections were based on the phenomenology of a resonant nonlinear defect
(nonlinear oscillator) which was introduced in order to explain the manifestations
of “nonclassical” nonlinear features and vibration spectra of damage (thresholds,
instability, subharmonics, frequency pairs, etc.) observed in our early experiments
[7–9]. A realistic concept and experimental evidence for the resonance in the
damage vibrations were shaped up later and worked out in a series of our recent
papers [12, 13, 17].

The resonance approach to “amplify” acoustical contribution of small inclusions
has been introduced in ultrasonics of bubble liquids where a natural frequency of
a bubble is used as a factor to increase an ultrasonic response of insonified μm-
size spheres [18]. Further evidence of a strong enhancement of nonlinear acoustic
response of the contrast agents due to resonance vibrations of incorporated gel
bubbles made a breakthrough in ultrasonic medical diagnostics [19]. In solids,
an opportunity of a resonance interaction of ultrasound with delaminations in
composites was theoretically analyzed in [20] for plate waves. The nonlinear
seismo-acoustic land mine detection methodology developed in [21] was also
based on the model of a resonance inclusion in soil. Numerical simulations and
shearographic imaging demonstrated a modal structure of resonant vibrations for
delaminations [22] and flat-bottom holes [23] in composites.
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8.4.1 LDR Concept and FEM Simulation

The concept of Local Defect Resonance (LDR) is based on the fact that inclusion
of a defect leads to a local decrease in stiffness for a certain mass of the material
around, which should manifest in a particular characteristic frequency (f0) of the
defect vibrations. The reduction in local stiffness is clearly seen for deformation of
the defect modeled as a spherical cavity. A local stiffness (EL) of such a defect for a
stress normal to the cavity surface is given by [24]:

EL = 2 (1 − 2σ)

3 (1 − σ) EI ≈ 0.3EI . (8.7)

From (8.7), the stiffness of the intact material (EI) reduces about three times
for materials with Poisson’s ratio σ ≈ 0.3. For a disk-like crack of elliptical cross-
section with semi-axes R (radius of the disk) and d (half of maximal opening), a
local Young’s modulus is [24]: EL ≈ (d/R)EI . Provided that for realistic cracks
R∼(10−3 − 10−2)m and d∼10−6m, a drop in local stiffness is very substantial:
EL/EI∼(10−3 − 10−4).

We proceed with interpretation of the LDR concept for the defects presented as
flat-bottomed holes (FBH), which simulate closely vibrations of such typical defects
in composite plates as delaminations. The LDR frequency can be introduced as a
natural frequency of the defect with an effective rigidity Keff and mass Meff:f0 =

1
2π

√
Keff/Meff. To derive the expressions for Keff and Meff we use the equations of

the potential and kinetic vibration energy of the defect [25]. The parameters obtained
for a circular FBH (radius R, thickness of residual material h) are:

Keff = 192πD/R2;Meff = 1.8m, (8.8)

while for a square FBH with side a and thickness h:

Keff = 32π4D/a2; Meff = 2.25m, (8.9)

where D = Eh3/12(1 − ν2) is the bending stiffness, E is Young’s modulus, ν is
Poisson’s ratio, and m is the masses of the rest of plate with density ρ below the
defect.

Equations (8.8) and (8.9) are then combined to yield the LDR frequencies for the
defects in question:

f0 = 10h

3πR2

√
E

5ρ
(
1 − ν2

) . (8.10)

f0 = 4πh

3a2

√
E

6ρ
(
1 − ν2

) . (8.11)
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Fig. 8.23 FEM mesh (a) and fundamental LDR vibration pattern at f0 = 8255 Hz (b) for 2 × 2 cm2

square FBH in a PMMA plate

Fig. 8.24 A fundamental LDR (10.4 kHz) (a) and higher-order LDR (23.25 kHz) (b) for a FBH
(radius 1 cm, depth 2 mm) in a PMMA plate (thickness 3 mm)

Equations (8.10) and (8.11) are also applicable to evaluation of the fundamental
resonance frequencies of the defects, like laminar defects in rolled sheet metals
and delaminations in composites. By using (8.11) for a square FBH in PMMA
(h = 1.2 mm; a = 2 cm) we obtain: f0 = (7.2/9.4) kHz for Young’s modulus values
in the range (1.8/3.1) GPa given in the literature.

The problem of practical application of the analytical approach developed
above is concerned with uncertainty in the boundary conditions for FBH of
various geometries. Instead, the software COMSOL MULTIPHYSICS was used for
analyzing the vibration characteristics of plates with FBH defects and estimating
their LDR frequencies. By using eigen-frequency analysis package all possible
resonances in the plate can be found and the vibration patterns plotted. Figure 8.23
shows a vibration pattern of a square FBH (h = 1.2 mm; a = 2 cm) in a PMMA
plate at frequency 8255 Hz, which is readily identified as a fundamental LDR. A
similar “bell-like” vibration pattern reveals a fundamental LDR in a circular FBH
at 10.4 kHz (Fig. 8.24a), followed by the higher-order LDR at the higher driving
frequency of 23.25 kHz (Fig. 8.24b). It is worth noting that the values of f0 obtained
are well within the frequency range covered by Eqs. (8.10) and (8.11).
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8.4.2 LDR Experimental Evidence and Study

A direct way to experimentally reveal a Local Defect Resonance is to measure
an individual contribution of each point of the specimen in its overall vibration
frequency response in a wide frequency range. In the experiment, the specimen
vibrations were activated with a wideband (400 Hz–100 kHz) piezoelectric trans-
ducer while a scanning laser vibrometer (Polytec 300) was used for interrogation of
the specimen frequency response. The scanning mode enables to probe and indicate
all possible resonances in the vibration spectrum for every point of the specimen.
The spectrum obtained includes the resonance peaks corresponding to the natural
frequencies of the specimen as well the LDR spectral lines. The task becomes
simpler if a location of the defect is known: in this case the laser beam probing
the defect area delivers the vibration spectrum dominated by the resonance peaks at
a fundamental and the higher-order LDR frequencies.

An example of application of such an approach is shown in Fig. 8.25 for the
circular FBH in PMMA plate used for FEM simulation in the preceding section.
The origin of each maximum in Fig. 8.25 was verified by imaging the vibration
pattern in the specimen at the corresponding frequency. The insets in Fig. 8.25
illustrate that the low-frequency resonant peak at about 8 kHz corresponds to one
of the natural frequencies of the whole specimen. The main peak at ≈11 kHz is
apparently a fundamental LDR (compare with simulation in Fig. 8.24a) followed by
multiple higher-order LDR at higher frequencies. As it is seen from Fig. 8.25, both
the fundamental and the higher-order LDR are caused by mechanical resonances
(standing waves) within an area of reduced stiffness (a circular plate of residual
material for a circular FBH defect). It is instructive noting that the LDR vibration
patterns are similar to transverse modes of a cylindrical laser resonator (TEMnm
modes) [26] that points out the generality of resonant phenomena for different types
of waves. The same notations are therefore also applied to the LDR vibration modes:
n is the number of nodal rings and m denotes the number of nodal diameters in
the images. The LDR vibration modes measured with laser vibrometry correspond
to the extremes of out-of-plane vibration velocity (or displacement) whereas the
patterns of nodal lines are identical to historical Chladni sand figures for a circular
drum (Fig. 8.26).

As seen from Figs. 8.25 and 8.26, LDR is a clear “tag” of the defect location and
a simple means for imaging of damage. The role of the high-order LDR is illustrated
in Fig. 8.27 for imaging of a square insert (2.5 × 2.5 cm2) in a (300 × 300 × 5 mm3)
CFRP specimen: Unlike vibration pattern of the fundamental LDR, which visualizes
mainly the central part of the defect, the higher-order resonances also support
vibrations at the periphery of the defect and thus contribute to imaging of its
actual shape. Provided the frequencies of the higher-order resonances are within
the wideband driving acoustic spectrum these resonances are excited along with the
fundamental LDR and result in full scale imaging both shape and size of the defect
(Fig. 8.27d).
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Fig. 8.25 Amplitude spectrum and vibration patterns at resonance peaks for the circular FBH in
PMMA plate shown in Fig. 8.24

Fig. 8.26 Vibration patterns for various order LDR (n, m) in a circular FBH (top) and correspond-
ing historical pictures of Chladni sand figures (from E.F.F. Chladni, Entdeckungen über die Theorie
des Klanges, Beichmanns & Reich, 1787) (bottom)

Fig. 8.27 Effect of the higher-order LDR: image of a square insert in CFRP plate at fundamental
LDR (8980 Hz) (a), higher-order LDR (15600 Hz (b)), (27250 Hz (c)), and in a wideband (1–
100 kHz) excitation mode (d)

Figure 8.28 demonstrates LDR frequency responses and the vibration patterns
measured for a simulated (circular FBH in PMMA plate) and a realistic defect
(impact damage in CFRP). Both LDR feature a classical resonance behavior and
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Fig. 8.28 LDR frequency responses and vibration patterns for a circular flat-bottomed hole (radius
a = 1 cm; h = 0.8 mm) in PMMA plate (200 × 30 × 3 mm3) (a, b) and impact damage in CFRP
plate (c, d)

show a strong rise of the vibration amplitude confined strictly inside the defect areas
with high-Q factors (Q ≈ 75 for FBH and Q ≈ 85 for the impact damage).

Similar to a conventional resonance, the value of Q factor determines the
“amplification” of local vibrations due to LDR and is an important parameter in
temporal development of the defect resonance. To illustrate this fact, the solution to
the equation of forced defect vibrations in the presence of damping:

ẍ + 2λẋ + ω2
0x = F0 cos νt (8.12)

is sought as a sum of the free and forced terms which for zero initial conditions and
for takes the form of the transient vibration:

x = x0 (1 − exp (−λt)) cos νt (8.13)

with the steady-state amplitude x0 ≈ F0/2λω0 = (
F0/ω

2
0

)
Q . This amplitude is

Q = ω0/2λ times higher than the vibration amplitude outside the resonance. By
introducing Q value in (8.13) the exponential term takes the form exp(−(π /QT))
so that Q periods of the driving signal Tare required to reach the steady-state
“amplification” of vibrations.

To verify the LDR “amplification” process, the CFRP impact damaged specimen
(LDR frequency response shown in Fig. 8.28c) was excited with an ultrasonic
burst while the transient development of vibration was monitored with the laser
vibrometer. The results in Fig. 8.29 illustrate a good agreement between the
experiment and the calculations based on the above relations. The values of Q
factors measured for damage in various materials ranged from ∼ 10 to 100 and
provided LDR induced amplification of local vibrations as high as ∼20 to 40 dB.
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Fig. 8.29 LDR time response of an impact damage in CFRP to an 85 period burst signal at LDR
frequency 5180 Hz

8.5 Resonant Nonlinearity of Defects

8.5.1 LDR: Enhanced “Classical” Nonlinear Effects

The high amplification of local damage vibration via LDR would contribute
appreciably to defect nonlinearity. Due to LDR-induced enhancement of vibration
amplitude by orders of magnitude, an efficient nonlinear frequency conversion is
expected to develop at much lower acoustic inputs. In all the experiments below,
acoustic powers for defect activation were in the mW range; with 20–30 dB
transducer insertion losses it requires electrical inputs in the range of W, i.e., orders
of magnitude lower that in the case of “classical” nonlinear acoustical NDE.

An extremely high resonant nonlinearity of a delamination in GFRP plate is seen
in Fig. 8.30: the vibration spectrum of the damage acquires multiple HH even at a
moderate input voltage of a few volts. A crucial contribution of LDR to the damage
nonlinearity is illustrated in Fig. 8.31 for a crack in a unidirectional (UD-) CFRP
rod. A strong enhancement of the HH amplitudes generated locally in the defect area
is observed only as the driving frequency matches the LDR frequency (19.5 kHz).

The LDR-induced increase in nonlinearity can also be applied for efficiency
enhancement of another “classical” nonlinear effect of frequency mixing. The
method is based on the nonlinear interaction of ultrasonic waves of different
frequencies (f1, f2) that results in a mixed frequency output: f± = f1 ± f2. For
nonlinear experiments in “classical” materials, the efficiency of the interaction is
highly critical to the geometry of the wave propagation and is generally rather
low: the amplitude ratio U±/U1, 2 is normally below 10−3 − 10−2. A high-Q LDR
can enhance the output signal by matching either a combination frequency or the
frequencies of the interacting waves to the LDR frequency response.
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Fig. 8.30 HH spectrum for delamination in GFRP specimen driven at LDR frequency 20900 Hz.
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Fig. 8.31 HH LDR frequency response of a crack in CFRP rod (LDR frequency 19.5 kHz)

The “interacting wave amplifier” mode is demonstrated in Figs. 8.33 and 8.34
for a CFRP plate (280 × 40 × 1 mm3) with an impact-induced damage area
(∼5 × 5 mm2). A linear LDR frequency response of the defect manifests a well-
defined double-maxima peak in (100–115) kHz frequency band with a high Q≈100
(Fig. 8.32).

In the experiment, the frequency of one of the waves (f1=111500 kHz) is fixed
to be matched to the LDR band while the frequency of the second wave (f2)
is swept within 80–130 kHz bandwidth. The nonlinear spectrum measured with
laser vibrometer (Fig. 8.33) appears to be highly sensitive to the frequency match
between f2 and LDR: Only as soon as both frequencies are inside the damage
resonance band and activate LDR, the interacting waves interact efficiently and
combination frequency vibrations are generated in the damaged area (Fig. 8.34).
Unlike the classical case, the nonlinear spectrum contains far greater number
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Fig. 8.32 LDR frequency response for an impact-induced damage in a CFRP plate
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of mixed frequency components well described by mf1 ± nf2 combination that
indicates manifestation of the high order ((m + n)−) nonlinearity typical for CAN.
The multiple side-lobe pattern in Fig. 8.33 reveals that the nonlinear interactions up
to the 10th-order are developed by combining CAN and LDR.

The results in Figs. 8.30, 8.31, 8.32, 8.33, and 8.34 confirm that the activation
of LDR enhances appreciably the nonlinearity of defects via local “amplification”
of vibrations even at moderate input signals. It raises dramatically the efficiency
of “conventional” nonlinear effects, like HH generation and frequency mixing.
However, the classical nonlinear effects is not the only dynamic scenario of
nonlinearity development and manifestation in resonant defects. At higher vibration
level, a combined effect of resonance and nonlinearity results in qualitatively new
“non-classical” acoustical phenomena characteristic of nonlinear and parametric
resonances.

8.5.2 Superharmonic Resonances

To clarify the effect of nonlinearity on resonant higher level vibrations the higher
order (second and third-) nonlinear terms are to be taken into account in the equation
of forced vibrations of an oscillator with natural frequency ω0 [27]:

ẍ + 2λẋ + ω2
0x + αx2 + βx3 = F0 cos νt, (8.14)

where λ is the dissipation factor, αand β are the second and the third-order
parameters of nonlinearity.

The superharmonic resonance is activated at integer multiples of the driving
frequency so that if the input frequency is taken as ≈ω0/n it is converted into
ω0 via the nth-order nonlinearity of the oscillator. The example analyzed below
corresponds to n = 2 and uses the perturbation approach for obtaining solutions to
Eq. (8.14).

The solution of the first approximation for the driving frequency ν = (ω0/2) + ε
and small λ is a non-resonant linear driven vibration:

x1 = 4F0

3ω2
0

cos [ (ω0/2)+ ε) t] (8.15)

The resonance driving force is developed by means of the second-order nonlin-
earity, so that by inserting (8.15) in (8.14) and keeping only resonant terms in the
right-hand side, one obtains in the second approximation:

ẍ2 + 2λẋ2 + ω2
0x2 + αx2

2 + βx3
2 = −αx2

1 cos (ω0 + 2ε) (8.16)
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A solution to (8.16) could be readily found if one neglects the nonlinear terms in
the left-hand side:

x2ω
2 = 4αF 2

0

9ω5
0

√
4ε2 + λ2

cos [(ω0 + 2ε) t] (8.17)

A similar procedure for the input ν = (ω0/3) + ε leads to the solution for the
resonant third HH vibration:

x3ω
2 = β

(
x0

1

)3

8ω0
√

9ε2 + λ2
cos [(ω0 + 3ε) t] , (8.18)

where x0
1 = 9F0/8ω2

0.
Equations (8.17) and (8.18) demonstrate the resonant generation of the sec-

ond and third HH vibrations for a fundamental frequency input (superharmonic
resonances). The maximum amplitudes of the superharmonic resonant vibrations
depend on the values of the high-order nonlinearity parameters resonances and
the nonlinear driving force

(∼ Fn0
)
, which usually reduces strongly with increase

of n. However, in the case of CAN a step-wise stiffness modulation triggers its
higher-order nonlinearity, which does not necessarily decrease with n monotonically
(see Sect. 8.1), so that one can expect a strong development of the superharmonic
vibrations due to damage resonance.

In Figs. 8.35 and 8.36, the experimental evidence for superharmonic resonances
in fractured defects is demonstrated for the third-order resonance in impact damaged
CFRP specimen with LDR around 5140 Hz.

One-third of the LDR frequency (1714 Hz) was therefore selected for the
excitation while the input voltage was increased up to 80 V. The temporal pattern
of the vibrations in the damage area, however, indicates an exclusive presence of
a “clean” third harmonic vibration (period ∼0.19 ms in Fig. 8.36). The damage
vibration spectrum (Fig. 8.35) confirms the domination of the third harmonic
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Fig. 8.35 Spectrum of the third-order superharmonic LDR in impact damaged CFRP plate
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Fig. 8.36 Vibration pattern
of the third-order
superharmonic LDR in
impact damaged CFRP plate
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vibration: It is 25 dB higher than the fundamental in Fig. 8.35. Due to a high-Q of
the fundamental LDR (Q ≈ 85, Fig. 8.28c), the superharmonic resonance required
quite precise placing of the input (within 100 Hz) as one-third of the LDR frequency.

8.5.3 Combination Frequency Resonance

A high-Q LDR also modifies strongly the mixed frequency mode of nonlinear
NDE. For a bi-frequency (ν1, ν2) excitation of a nonlinear defect, the equation of
motion is:

ẍ + 2λẋ + ω2
0x + αx2 + βx3 = F1 cos ν1t + F2 cos ν2t, (8.19)

with the first-order (linear) solution:

x1 = xν1
1 cos ν1t + xν2

1 cos ν2t (8.20)

where x
ν1,2
1,2 = F1,2

ν2
1,2

[(
ω2

0/ν
2
1,2

)
−1
) .

The second-order term in (8.19) yields the driving force:

−αx2
1 = −αxν1

1 x
ν2
2 [cos (ν1 + ν2)+ cos (ν1 − ν2)] , (8.21)

which under the frequency match condition ν1 ± ν2 = ω0 + ε results in the resonant
solution at the combination frequency:

x±
2 = − αx

ν1
1 x

ν2
1

2ω0
√
ε2 + λ2

cos [(ω0 + ε) t] . (8.22)

An application of LDR as a “combination frequency resonator” was tested for
an impact-induced circular damage in a CFRP plate with LDR frequency response
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Fig. 8.37 LDR induced
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around 110 kHz shown in Fig. 8.32. The frequency of one of the interacting flexural
waves was f1=77.5 kHz while the other was swept from f2=28.5 to 37.5 kHz to
provide the sum frequency variation in the LDR bandwidth of the defect.

A laser scanning vibrometer in the vibration velocity mode was used for measure-
ments of the vibration velocity amplitudes at f1, f2, and f+ in the defect area. Figure
8.37 shows how the normalized velocity amplitude at sum frequency f+ varied as
the frequency f2 changed over the sweeping range indicated above. Comparison of
the results in this figure with the frequency response in Fig. 8.32 clearly indicates
more than 20 dB increase in the output due to the combination frequency resonance
activated when the combination frequency matches the frequency of LDR.

8.5.4 Parametric and Subharmonic Resonances

Resonant vibrations in a parametric system are triggered by varying a certain
parameter at a frequency different from the natural frequency of the system.
The parametric resonance of a mechanical system is different from conventional
resonance because it exhibits the phenomenon of amplitude instability accompanied
by an avalanche-like growth of the nonlinear vibration amplitude. This feature is
obviously beneficial for boosting the nonlinear output in engineering applications.
In resonant nonlinear defects, the activation of parametric effects is assumed to be
due to the amplitude-dependent shift (modulation) of LDR frequency induced by the
driving signal. The evidence for parametric resonance in realistic damage suggests
a new extremely efficient and sensitive mode of nonlinear NDE and imaging of
defects.

To analyze the opportunity of parametric resonance effects we apply again
the perturbation method to Eq. (8.14). In the first approximation, for the driving
frequency close to the resonance ν = ω0 + ε, one obtains conventional linear
vibration:

x1 = F0

2ω0
√
ε2 + λ2

cos νt. (8.23)
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In the next approximation, the quadratic nonlinearity in (8.14) produces the third-
order interaction term in the form ∼2αx1x2. By using (8.23) and taking into account
this term only, one obtains:

ẍ2 + 2λẋ2 + ω2
0

[

1 + αF0

ω3
0

√
ε2 + λ2

cos νt

]

x2 = 0. (8.24)

Equation (8.24) is a Mathieu’s-type equation of a general form:

ẍ + ω2
0 (1 + h cos γ t) x = 0 (8.25)

that reveals parametric resonance and instability phenomena [28, 29].
Equation (8.24) is obtained for ν ≈ ω0 and corresponds to the second-order

parametric resonance. The solutions of this equation include unstable HH of the
input signal: ω = nν (n = 1, 2, 3, . . . ) [29], whose amplitudes grow in time
exponentially above the input threshold (instability).

For ν ≈ 2ω0 input, the second approximation in (8.14) yields [27]:

ẍ2 + 2λẋ2 + ω2
0

[

1 − 2αF0

3ω4
0

cos (2ω0 + ε) t
]

x2 = 0, (8.26)

the equation for a fundamental parametric (subharmonic) resonance. In this case,
the solutions to (8.26) yield unstable USB-vibrations: ω = mν/2(m = 1, 2, 3, . . . )
[29].

Unlike conventional (linear) resonance, in a certain range of detuning ε the
parametric resonances provide an exponential growth of the vibration in time even
in the presence of damping. The instability develops in a step-wise manner is above
as soon as the frequency modulation index I (input energy) is above a threshold
level determined by the energy dissipated in the system. The critical values of I
are the functions of ε (and vice versa): the higher modulation is generally required
for larger frequency mismatch thus producing divergent boundaries of the V-shaped
I(ε)curves for parametric resonances (Fig. 8.38) [30]. Thus, for the high excitation
levels, the parametric resonances can be developed for driving frequencies outside
the defect resonance. This explains that the parametric phenomena (thresholds,
subharmonics, frequency pairs, etc.) were observed in Sect. 8.2 for the high input
strain amplitudes (up to ∼10−3) even without precise frequency matching for the
input frequencies 20 and 40 kHz. However, a “clever” frequency selection with an
account of LDR enables to activate the resonance nonlinearity for 1–2 orders of
magnitude lower inputs, i.e., to increase dramatically the efficiency of nonlinear
NDE and defect imaging.

The experimental evidence for unstable parametric dynamics of the HH gener-
ation at the second-order parametric resonance is given in Fig. 8.39 for the impact
damage (LDR at 5140 Hz, Fig. 8.28c) in CFRP sample. The parametric regime of
the HH instability is activated beyond the threshold at ∼30 V for the input at the
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Fig. 8.39 Bifurcation nonlinear dynamics of resonant HH generation for an impact damage in a
CFRP plate

LDR frequency (Fig. 8.39). It results in a strong nonlinear distortion of vibrations in
the damage area with highly nonlinear spectrum of HH (Fig. 8.40). The fundamental
vibration is depleted due to the energy outflow and heavily distorted (Fig. 8.40a) via
frequency conversion to HH, whose amplitudes are comparable to the fundamental
frequency vibration (Fig. 8.40b). The generation of the unstable HH vibrations is
an expected result of the second-order parametric resonance that is activated for the
input frequency equal to the LDR frequency of damage (ν ≈ ω0 in (8.24).

According to (8.26), the fundamental parametric (subharmonic) resonance
requires the input at the second harmonic frequency. In the experiment, the
excitation frequency was then changed to the second harmonic of the fundamental
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Fig. 8.40 Vibration pattern (a) and HH spectrum (b) beyond threshold for an impact damage in
CFRP plate

LDR (10280 Hz) and the input voltage at the piezo-actuator increased further.
The threshold for the instability was found to be ≈50 V (Fig. 8.41a); below the
threshold (input 45 V) the vibration pattern of the damage follows closely the
driving frequency 10280 Hz (Fig. 8.42, top). As the input passes the threshold, the
subharmonic bifurcation develops: the vibration frequency turns into subharmonic
(Fig. 8.42, (bottom), 55 V input), its amplitude bursts (compare the scales in Fig.
8.42a, b) due to parametric instability. According to Fig. 8.41b, the subharmonic
component dominates in the damage vibration (velocity) spectrum beyond the
threshold: Vω/2/Vω ≈ 30 dB. At 10280 Hz input beyond the threshold, the temporal
vibration pattern in the impact area is a pure sinusoidal subharmonic vibration of
5140 Hz (Fig. 8.42, bottom). Similar to the superharmonic case, the input frequency
range for matching to the subharmonic resonance was measured to be within
∼100–200 Hz that corresponds to a high-Q factor of the LDR for this defect.

8.6 Resonant Nonlinear Defect-Selective Imaging

8.6.1 Contact Activation of Damage

In Sect. 8.4, diverse resonant nonlinear modes of defects vibrations have been shown
to exist in various types of damage in composite materials. These resonant modes
provide new options in developing nonlinear NDE and defect imaging applications
based on either frequency selective nonlinear resonances (sub- and superhar-
monic resonance, combination frequency resonance) or simultaneous generation
of multiple nonlinear frequencies (higher harmonics, various order combination
frequencies). Due to the resonance, all these nonlinear frequency components are
generated highly efficiently so that the input power can be reduced substantially.
Therefore, the concept of LDR suggests a solution (applicable to NDE of localized
damage) to a long-term bottleneck problem of a low efficiency of conversion from
fundamental frequency to nonlinear frequency components in nonlinear ultrasonic
applications in NDE&T.
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Fig. 8.41 Threshold
dynamics (a) and vibration
spectrum beyond the
threshold (b) for fundamental
parametric resonance in
impact damage in CFRP
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This modifies and simplifies considerably the experimental methodologies for
laboratory investigations and NDE applications of the resonant nonlinear modes.
Unlike specific equipment used in classical nonlinear studies, the LDR-based
techniques admit using general purpose ultrasonic transducers, moderate-power and
klirr-factor generators, avoid signal filtering, etc. In the experiments and applications
below, the input electric power is usually well below 1 W; commercial off-the-
shelf (Conrad Elektronik GmbH) piezo-ceramic transducers are used for ultrasonic
excitation without any particular filtering of the input signals. Besides, due to LDR
the nonlinear vibrations are being strictly confined inside the defect area. This
makes LDR nonlinearity inherently defect-selective and provides the background
for sensitive defect-selective nonlinear imaging of fractured flaws.

As it was shown in Sect. 8.3, a linear LDR also provides high-quality imaging of
defects so that the benefits of nonlinear imaging have to be proved by comparison
with its linear “competitor.” An example of such a comparison is illustrated in Fig.
8.43 for the HH LDR imaging of a 10 × 20 mm2 delamination with fundamental
LDR frequency 36.77 kHz in 1 mm GFRP plate. The second harmonic LDR
image (at 73.53 kHz) demonstrates a substantial improvement of the image quality:
the signal-to-noise ratio (SNR) of the nonlinear image in Fig. 8.43b is ∼24 dB,
while ∼12 dB was measured for the fundamental frequency LDR (a). A similar
improvement in nonlinear image quality of ∼20 mm long impact-induced fiber loss
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Fig. 8.42 Dynamic subharmonic bifurcation in impact damage in CFRP: Vibration pattern at
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Fig. 8.43 LDR nonlinear imaging of defects: fundamental frequency (a) and the second harmonic
LDR (b) images of ∼ 10 × 20 mm2 delamination in GFRP plate

damage in CFRP plate is readily seen in Fig. 8.44 by comparing the linear LDR
(3.66 kHz) (Fig. 8.44) and the second harmonic images (Fig. 8.44).

A substantial enhancement in SNR is also seen in Fig. 8.45 for the second
harmonic of a high-velocity point impact in 5 mm thick CFRP window cut-out of a
commercial airplane.

As shown in Sect. 8.4, the efficient mixing frequency mode is observed when
both frequencies of the probing waves are within the range of the damage LDR
frequency response. The test in Fig. 8.46 is concerned with a crack in a CFRP
plate (top), whose LDR frequency is in the range of 37.5 ± 2.5 kHz. The defect



334 I. Solodov

Fig. 8.44 Fundamental frequency (a) and the second harmonic (b) LDR images of impact-induced
fiber loss in CFRP plate

Fig. 8.45 A point impact damage in CFRP cut-out of aircraft window (in a white circle (a), LDR
frequency 43.78 kHz), its fundamental LDR images (b, c) and the second harmonic (87.6 kHz)
image (d)

is insonified with two oppositely propagating guided waves of the frequencies
f1=36 kHz and f2=38 kHz. LDR amplified nonlinear interaction results in efficient
generation of combination frequencies mf1 ± nf2 in the defect area (Fig. 8.46,
center) which produce multiple images of the defect (bottom). The SNR of the
images is found to depend on the order of interactions (m, n) with maximum values
≈25 dB.

As it was suggested in Sect. 8.4, another opportunity of the frequency mixing is
concerned with a combination frequency resonance, which amplifies selectively a
single combination frequency component at LDR frequency. Such an image of the
impact in a CFRP plate obtained via the combination frequency resonance (LDR
frequency of the defect ∼107 kHz, see Fig. 8.32) by mixing two flexural waves of
frequencies 77 and 30 kHz is shown in Fig. 8.47 and demonstrates a reasonable
SNR (∼15 dB).

Other examples of the nonlinear and parametric resonance imaging are given in
Figs. 8.48 and 8.49. Figure 8.48 illustrates a drastic increase of the SNR for the
third-order superharmonic resonance in a CFRP specimen with an impact damage
(fundamental LDR frequency 5145 Hz): the excitation frequency at 1715 Hz (one-
third of the LDR frequency) obviously does not match the resonance conditions so
that no image of damage is observed at this frequency (a), while the third HH output
does and leads to ∼17 dB SNR in the superharmonic resonance image (b).
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Fig. 8.46 Frequency mixing imaging of a crack in CFRP plate (top): Multiple frequency nonlinear
spectrum (center) and a few combination frequency images (bottom)
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Fig. 8.47 Combination frequency resonance imaging: Sum-frequency image of the impact-
induced damage (∼5 × 5 mm2) in a CFRP plate
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Fig. 8.48 Third-order superharmonic imaging of impact damage in CFRP: fundamental frequency
(1715 Hz) image (a), the third HH (5145 Hz) image (b)
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Fig. 8.49 Subharmonic LDR imaging of impact damage in a CFRP plate: Input 10250 Hz; output
5125 Hz

Figure 8.49 illustrates an application of a subharmonic resonance for imaging
of the impact damage in the same CFRP specimen. In this case, the excitation fre-
quency 10250 Hz is twice as the LDR fundamental frequency and the subharmonic
image is visualized at LDR frequency 5125 Hz with an excellent SNR ≥35 dB.

8.6.2 Noncontact Nonlinear Imaging of Damage

To efficiently transmit the probing ultrasonic wave in conventional NDE methods,
the ultrasonic transducer must usually be attached to the testing material via
either solid (“permanent” bonding) or liquid (gel, water) couplants. In many cases,
however, the contact to the component is not desirable (material deterioration) or
possible (non-planar surface) and permitted (testing in production).
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Development of remote techniques for elastic wave generation/detection enables
to remove these limitations and to provide a great deal of flexibility in various
NDT applications. The electromagnetic acoustic transducer (EMAT) is a well-
known technology to be applied in ultrasonic frequency range (up to a few MHz)
to conductive/ferromagnetic materials [31]. In laser ultrasonic testing [32], usually
high-frequency (up to GHz range) ultrasonic pulses are generated remotely due to
material thermal expansion/ablation caused by short laser pulses. The widely used
air-coupled ultrasonics employs specially designed piezo-transducers to efficiently
generate and transmit ultrasonic energy in air to be applied for noncontact testing in
the frequency range about 50 kHz−1 MHz [33].

However, in the fiber-reinforced composite materials the high frequency ultra-
sound (MHz range) is not always applicable due to substantial damping. The low-
frequency ultrasonic sensors (kHz range) are more adapted to inspection of large
components in industrial environment, however, suffer from low scattering (and
hence sensitivity) even for cm-size defects. For such defects (impacts, disbonds, and
delaminations) in polymer composite materials, the LDR frequencies are in a low-
kHz range that implies an opportunity of sonic NDE. Since the LDR vibrations are
constrained exclusively in the defect area, the resonant techniques are not affected
by diffraction, so that the lateral resolution of the resonant sonic imaging must be
high despite the lower frequencies used.

Besides, the resonant response of the defect also entails a strong enhancement
in sensitivity: the acoustic power required to activate the defects scales down
to mW–μW range [34] and opens up an opportunity for remote airborne sonic
testing. For this purpose, there exists a multitude of a high-quality commercial
equipment (dynamic, piezoelectric, plasma-arc-, parametric speakers) to provide
airborne sound intensities as high as 1 W/m2 (120 dB) in m-distance ranges. The
airborne sound sources can simultaneously insonify large areas and be applied for
remote sonic testing of different materials and various scale components.

In the experiments below, two types of loudspeakers were applied for sonic
activation of defects:

1. Commercial dynamic loudspeakers JBL Control One with RMS power of 150 W
provided airborne excitation in the frequency range 2–19 kHz with sound
intensity 85–100 dB.

2. Piezoelectric loudspeakers CTS 232 with maximal frequency response between
3 and 20 kHz and maximum sound intensity within 100–120 dB range.

To probe and quantify the radiated sound field, the air-coupled vibrometry
technique [16] was used, which relates the laser vibrometer readings of “virtual”
Doppler velocity V with the amplitude of vibration velocity�V∼ in the sound field:

�V∼ ≈ 3.5 · 103(KL)−1V, (8.27)

where K is the sound wave number and L is the sound field aperture.
Equation (8.27) was used to evaluate the vibration velocity �V∼ at the “output”

(at 1–2 cm distance) from the sound source where the beam diffraction is not
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Fig. 8.50 Impact-induced damage in CFRP specimen used for noncontact nonlinear laser vibrom-
etry (a); HH spectrum in the defect area (b)

developed and L≈ diameter of the loudspeaker. In the case studies given below, the
sound intensities used for noncontact nonlinear imaging were in the range of 100–
110 dB derived from �V∼values at this measurement position. The speakers were
positioned at a distance of 30–150 cm from either the front or reverse surface of the
specimens. Both normal and slanted incidence setups were tested; in the latter case,
the angle of sound incidence on the specimen surface was in the range of 30–45◦.

In Fig. 8.50, the slanted setup is applied for a noncontact sonic activation of an
impact damage with LDR frequency response within the range of 4700–4900 Hz
in CFRP plate (270 × 40 × 1 mm3, a). The dynamic speaker was positioned
at a distance of 20–30 cm from the specimen surface. For the radiated sound
intensities 85–100 dB, the amplitude of the plate wave generated in the CFRP plate
measured with a laser vibrometer ranged from 10−9 to 5 × 10−8 m. Due to LDR
“amplification” of 25 dB a local vibration amplitude in the damage area increased
strongly (from 5 × 10−8 m to 0.85 μm) that was sufficient for triggering defect
nonlinearity.

As a result, the nonlinear vibration spectrum recorded in the defect area (Fig.
8.50b) demonstrates a strong nonlinearity: more than 40 HH is generated in the
noncontact nonlinear mode. A single C-scan of the specimen surface is then applied
for mapping the distribution of HH amplitudes and delivers a number of HH defect
images (Fig. 8.51). The multitude of the nonlinear images for a single measurement
enables to select the images with the highest SNR. Figure 8.51 confirms a good
repeatability of the image position for different HH; this feature of the nonlinear
imaging increases the probability of defect detection.

The frequency mixing mode is considered as one of the most prospective for
NDE applications due to the minimum number of spurious signals. According
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Fig. 8.51 Noncontact resonant imaging of the defect in Fig. 8.50 (a) at various higher harmonics
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Fig. 8.52 Noncontact frequency mixing spectrum in impact damage area for input frequencies
f1 = 4450 Hz and f2 = 5000 Hz

to Sect. 8.4, one of the highly efficient LDR versions of this mode requires the
excitation frequencies to be positioned around the LDR bandwidth to make use
of resonant amplification of interacting waves. A noncontact version of this mode
was tested in the experiment for impact damage (LDR frequency around 5 kHz)
in a CFRP plate. The specimen was insonified with sound waves radiated by two
loudspeakers at frequencies f1 = 4450 Hz and f2 = 5000 Hz in the LDR bandwidth.
The spectrum of damage vibrations (Fig. 8.52) demonstrates that similar to the
contact excitation case (Fig. 8.30) the higher-order nonlinearity can be activated
in a noncontact mode. Multiple mixed frequency components generated are also
well described by mf1 ± nf2 combination produced by the higher (m + n)-order
of nonlinear interaction. Each of the nonlinear frequency components in Fig. 8.52
indicates the damage presence and its position as seen from Fig. 8.53 where a few
examples of the noncontact higher-order mixing frequency images are given.

The opportunities for a noncontact excitation of the parametric resonances
in the defect vibrations are illustrated in Fig. 8.54a, b for the impact damaged
CFRP discussed above. To overcome the parametric threshold, the piezoelectric
loudspeakers were used to provide the higher sound intensity ∼110 dB. To detect a
subharmonic resonance the driving frequency is chosen as a fraction of the damage
resonance frequency while the defect responds at its LDR frequency. The spectrum
in Fig. 8.54a is measured for the damage activation at the input frequency of
f0 = 1600 Hz (one-third of the fundamental LDR), however, the defect nonlinear
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response peaks overwhelmingly at f0 = 4800 Hz that indicates an extremely efficient
development of the third-order superharmonic resonance in the defect area (similar
to the contact excitation case). If, on the contrary, the excitation is switched to the
double LDR frequency (f ≈2f0=9800 Hz) an efficient (and unstable) subharmonic
output at f0 = f /2 = 4900 Hz and the integer multiples of the LDR frequency
(Fig. 8.54b) validate the feasibility of the noncontact mode of subharmonic (ultra-
subharmonic) resonance.

Similar to all nonlinear vibration modes, the parametric resonance frequency
components are also generated locally within the damage area and, therefore, are
readily applied for noncontact nonlinear imaging of defects. This opportunity is
demonstrated in Fig. 8.55a, b for input frequency f = 9800 Hz in the impact
damaged CFRP discussed above. Both the third subharmonic (at 3f /2 = 14700 Hz
(a)) and the second harmonic resonance images (2f =19600 Hz (b)) demonstrate a
good reproducibility in visualizing the damage.
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Input 9800 Hz, Output 14700 Hz Input 9800 Hz; Output 19600 Hz 

a) b) 

Fig. 8.55 Noncontact resonant imaging of the impact damage at the third subharmonic (a) and the
second harmonic/fourth subharmonic (b) frequencies. The scanning area is 45 × 30 mm2

8.7 Conclusions

A long-term bottleneck problem of nonlinear acoustical applications in NDE is con-
cerned with a low efficiency of conversion from fundamental frequency to nonlinear
components. The results presented in this chapter show that the nonlinear efficiency
enhances dramatically in the localized damaged areas due to a combination of
contact nonlinearity and mechanical resonance. A frequency match between the
driving acoustic wave and the characteristic frequency of the damage activates its
local resonance and provides an efficient energy transfer from the wave directly to
the defect. Even at a moderate excitation level, the resonance “amplification” of
damage vibrations results in a strong nonlinear response with efficient generation
of the higher harmonics and combination frequency components. For the higher
input, the damage nonlinear vibration dynamics acquires qualitatively new features
characteristic of nonlinear and parametric resonances. The resonance-induced
nonlinear dynamics should be seen not as exceptional or anomalous but rather
conventional and peculiar to majority of fractured defects.

The experiments confirm unconventional nonlinear dynamics of realistic defects
subject to resonant instability and highly efficient nonlinear frequency conver-
sion. The nonlinear components like higher harmonics, mixed frequencies, and
subharmonics may dominate in the vibration spectrum of resonant damage. This
proposes nonlinear resonant modes as an extremely efficient approach for nonlinear
NDE and diagnostic imaging. The nonlinear vibrations of all resonant modes are
strongly confined in the defect area that brings about an opportunity for highly
sensitive defect-selective imaging. Since the resonant vibrations are trapped in the
damage area, the resonant techniques are not affected by diffraction so that the
lateral resolution of the resonant acoustic imaging is high despite the lower (sonic)
frequencies used. The resonant nonlinear modes require substantially lower acoustic
power to energize the defects which modifies and simplifies the experimental
methodologies for NDE applications and enables to realize for the first time
noncontact nonlinear imaging via airborne sonic activation.
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Chapter 9
Nonlinear Guided Waves and Thermal
Stresses

Francesco Lanza di Scalea, Ankit Srivastava, and Claudio Nucera

9.1 Nonlinear Guided Waves in Isotropic Plates and Rods
(Analytical Method)

9.1.1 Introduction

The study of nonlinear elastic wave propagation has been of considerable interest for
the last four decades primarily due to the higher sensitivity of nonlinear parameters
to structural defects. Therefore, the application of guided waves to nondestructive
evaluation and structural health monitoring has also drawn considerable research
interest given that guided waves combine the nonlinear parametric sensitivities with
large inspection ranges.

Problems of nonlinear acoustics have been studied since the eighteenth century
[1] but few studies existed of guided nonlinear elastic waves. The mathematical
complexity results from the fact that Navier equations themselves become nonlinear
and is further complicated by the geometrical constraints essential to the generation
and sustenance of guided waves. Thin nonlinear waveguides, under long wavelength
assumption, have been studied using approximate 1-D theories [2–4] and the system
is shown to accept solitary wave solutions.
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The first steps in regard to treating nonlinear Lamb waves (up to the second
harmonic) were taken by Deng [5–7], who represented the primary and secondary
fields by pairs of plane waves and stress-free boundary conditions on the surfaces.
One of the main conclusions of the papers was that antisymmetric Lamb waves are
not possible at the double harmonic. The problem was subsequently analyzed by de
Lima and Hamilton [8] and Deng [9]. These authors built on Auld [10] in techniques
of normal mode decomposition combined with forced response. They explained the
generation of the double-harmonic guided mode and the cumulative growth of a
synchronous higher harmonic. The study was further extended to include nonlinear
guided waves in waveguides of arbitrary cross-section by De Lima and Hamilton
[11] with specific application to the problem of double-harmonic generation in rods
and shells. Deng [12] applied these findings for nonlinear ultrasonic experimental
tests to detect fatigue damage in plates. Subsequently, researchers at UC San Diego
[13–15] extended these ideas to explain certain additional aspects of nonlinear
guided wave propagation in plates, rods, and waveguides of arbitrary cross-sections.
For Lamb waves, they established the existence conditions on higher-harmonic
antisymmetric and symmetric modes based upon their modeshape symmetries.
Similarly, they established existence conditions for rod waves which were based
on power flux considerations.

Authors at Georgia Tech also conducted parallel studies on nonlinear Lamb
waves, from both a theoretical viewpoint [16] and an experimental viewpoint for
both detection of fatigue damage and verification of theoretical nonlinear resonance
conditions in plates [17–19].

Other work in theoretical methods to predict favorable nonlinear higher-
harmonic generation conditions in Lamb waves was performed by a research group
at Penn State University [19–21]. This work was also extended to guided waves in
rods [22] and pipes [23]. Researchers in Japan have also conducted extensive studies
of nonlinear Lamb waves [18, 24]. Researchers from Poland have also conducted
theoretical studies [25] and experimental studies [26] on nonlinear Lamb waves.
An excellent recent review of nonlinear guided waves was provided by Chillara and
Lissenden [27].

Most authors agree that the existence and nonexistence conditions for higher-
harmonic guided wave modes are based upon the following three conditions: (a)
phase velocity matching between the primary mode and the higher-harmonic mode;
(b) group velocity matching, although Deng et al. [28] showed that group velocity
matching can be relaxed in the practical case of toneburst excitations of finite
duration, and (c) nonzero power flow through the surface and through the volume
from the primary mode to the higher-harmonic mode.

In this section, we present the essential founding ideas which have contributed
to a significant portion of these developments. We note that the results presented
here pertaining to nonlinear antisymmetric Lamb modes and first-order flexural rod
modes are analogous to classical results by Goldberg [29] on transverse plane waves
in unconstrained isotropic media.
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9.1.2 Nonlinear Strain Energy Expression

Well-established models of nonlinear elasticity exist in classical references [30–32].
Some fundamental viewpoints of these references will be repeated here as the basis
of the general nonlinear guided wave problem.

Among the possible sources of nonlinearity, the so-called geometrical and
physical sources are considered. Geometrical nonlinearity is described by the
following exact expression of the strain tensor [33]:

ε = 1

2

{
∇u + (∇u)T + ∇u · (∇u)T

}
(9.1)

which reduces to the linear strain expression when small deformations are consid-
ered. The finite deformation tensor is written in terms of the vector gradient ∇u
and its transpose (∇u)T of the displacement vector u = {ui}. The above definition
includes considerations for possibly large geometrical variations of the initial
configuration of an elastic solid. This constitutes a possible source of nonlinearity
as it emerges from non-infinitesimal deformations.

Another possible source of nonlinearity is through the material constitutive
relations. Murnaghan [34] proposed strain energy as a power series in the three
invariants of the strain tensor:

 = λ+ 2μ

2
I 2

1 − 2μI2 + l + 2m

3
I 3

1 − 2mI 1I2 + nI 3 (9.2)

where Ik, k = 1, 2, 3, are the invariants of the strain tensor:

I1 (ε) = trε, I2 (ε) =
[
(trε)2 − trε2

]
/2, I3 (ε) = det ε (9.3)

The first two terms in Eq. (9.2) account for linear elasticity in the case of small
deformations. Other terms account for material nonlinearity of the first order by
using the third-order elastic constants (l, m, n). Geometrical nonlinearity arises
from terms in ε proportional to ∇u·(∇u)T , whereas physical nonlinearity is caused
by all terms in  except the first two. It must be noted that both physical and
geometrical nonlinearities are to be taken into consideration simultaneously, i.e.,
square and higher-order terms with respect to ∇u in ε. Murnaghan further suggested
that in order to account for still higher orders of nonlinearity, a more general energy
expression may be used:

 = φ2 + φ3 + φ4 . . . (9.4)

where φ3 corresponds to the linear regime and consists of terms I 2
1 , I2, φ3 that corre-

spond to the first-order nonlinearity and consists of terms I 3
1 , I1, I2, I3. Similarly, φ4

consists of all terms that can be formed from the different combinations of the three
invariants such that the order of strain in each of them is 4. This can be extended to
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further orders of nonlinearity. Another commonly used power series expansion of
energy for Cartesian geometry was proposed by Landau and Lifshitz [35]. In terms
of the strain components εij, it is written as:

 = με2
ik +

(
1

2
K − 1

3
μ

)
ε2
ll +

1

3
Aεikεilεlk + Bε2

ikεll +
1

3
Cε3
ll (9.5)

where the bulk modulus K and the higher-order moduli (A, B, C) were introduced.
Equation (9.5) can be expressed in terms of displacement differentials. Substituting
Eq. (9.1) in Eq. (9.5) and neglecting terms of order higher than 3, we get the
commonly used energy expression in Cartesian geometry:

 = 1

4
μ
(
ui,k + uk,i

)2 +
(

1

2
K − 1

3
μ

) (
ul,l
)2 +

(
μ+ 1

4
A

) (
ui,kul,iul,k

)

+
(

1

2
K−1

3
μ+1

2
B

)[
ul,l
(
ui,k
)2]+ 1

12
A
(
ui,kuk,lul,i

)

+1

2
B
(
ui,kuk,iul,l

)+ 1

3
C
(
u3
l,l

)
+ . . . (9.6)

All coefficients of one form can be transformed into those of another one and
vice versa. Therefore, it can be shown that the higher-order moduli of Landau
and Lifshitz in Eq. (9.5) can be expressed in terms of the higher-order moduli of
Murnaghan in Eq. (9.2).

9.1.3 Nonlinear Equation of Motion for a Waveguide

The nonlinear equation of motion is given by:

∇ · P = ρ0
∂2u
∂t2

(9.7)

where the displacement vector is constrained to be in the region occupied by the
waveguide, P is the Piola–Kirchhoff tensor, and ρ0 is the initial density. The second
Piola–Kirchhoff tensor is defined as:

P = S + S∇u (9.8)

Now, consider a weakly nonlinear elastic medium for the waveguide for which
the constitutive relation is given by Landau and Lifshitz [35]:

S = λ (trε) I + 2με + I
[
ε(tr (ε))2 + B

(
ε : εT

)]
+ 2B (trε) ε + Aεε

)
(9.9)
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In the above, the second Piola–Kirchhoff tensor is calculated from the tensorial
form of Eq. (9.5) and I is the identity matrix.

Substituting Eq. (9.1) into Eq. (9.9), we have:

S (u) = SL (u)+ SNL (u) (9.10)

where SL(u) and SNL(u) are the linear and nonlinear parts of the stress tensor,
respectively. The linear part, SL(u), is given by the usual isotropic constitutive
relation:

SL (u) = 1

2
λtr
[
∇u + (∇u)T

]
I + μ

(
∇u + (∇u)T

)
(9.11)

Substituting Eqs. (9.8), (9.10), and (9.11) into Eq. (9.7) gives us the nonlinear
Navier equation of motion which governs elastodynamics in the current problem:

(λ+ 2μ)∇ (∇u)− μ∇ × (∇ × u)+ f = ρ0
∂2u
∂t2

(9.12)

In the above, f is a body force which emerges from including all the nonlinear
terms in the equation. Stress-free boundary conditions are assumed on the surface
of the waveguide:

[
SL (u)− S (u)

]
· n = 0 on S (9.13)

The expressions for f and S (u) are given by [8]:

f = ∇ ·
(

SNL + SL∇u + SNL∇u
)

(9.14)

S (u) = SNL + SL∇u + SNL∇u (9.15)

We present the solution of the nonlinear boundary value problem through the
method of perturbation. Here, u is written as the sum of a primary and a secondary
solution:

u = u1 + u2 (9.16)

where |u1| � |u2| is assumed. In the first approximation, we have:

(λ+ 2μ)∇
(
∇u1

)
− μ∇ ×

(
∇ × u1

)
= ρ0

∂2u1

∂t2
(9.17)
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with boundary condition:

S1 · n = 0 on S (9.18)

where S1 = SL(u1) is the first-order approximation of the second Piola–Kirchhoff
tensor. Equations (9.17) and (9.18) constitute a system of unforced linear Navier
equations for a waveguide. Their solutions are the usual eigenvalues and mode
shapes of the waveguide. For the second-order approximation, we have the follow-
ing forced linear partial differential equation system:

(λ+ 2μ)∇
(
∇u2

)
− μ∇ ×

(
∇ × u2

)
+ f1 = ρ0

∂2u2

∂t2
(9.19)

with boundary condition,

S2 · n = −S
1 · n on S (9.20)

where u2 is the secondary solution and S2 = SL(u2) is the second-order approxi-

mation of the second Piola–Kirchhoff tensor. f1 and S
1

are obtained by replacing
u by u1 in the expressions for f and S, respectively and constitute the effect of
nonlinearity.

It should be noted here that an unforced nonlinear partial differential equation
has been reduced to two sets of equations through the use of perturbation. The first
set of linear partial differential equations leads to the dispersion solutions of the
waveguide (the primary solution). The second is a system of forced linear partial
differential equation where the forcing terms emanate from the primary solution.
Another observation about the solution is that since both f and S have terms which
are multiples of displacement u1, a primary solution at a frequency ω results in
stress and body forces at frequency 2ω. This, in turn, gives rise to a part of the
solution at the double harmonic. The effect is general in that a summed frequency
and a subtracted frequency result from the perturbative process. This is seen if one
considers:

u1 = 1

2

[
ua (r) ei(κaz−ωat) + ub (r) ei(κbz−ωbt)

]
+ c.c. (9.21)

Then,

f1 = f± (r, z) ei[(κa±κb)z−ω±t] + c.c. (9.22)

and

S
1 = S

±
(r, z) ei[(κa±κb)z−ω±t] + c.c. (9.23)
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In the above and in the following sections, z is the wave propagation direction,
y is the thickness direction, and c.c. stands for complex conjugate. Normal mode
expansion in terms of the primary solution is used at the double harmonic to
represent the secondary solution. The amplitudes of the constituting modes are
determined by enforcing the stress and body forces. This requires orthogonality
relationships for the modes of the primary solution. The required orthogonality
condition was derived by Auld [10] and is briefly reproduced below for the sake
of completeness.

9.1.4 Waveguide Mode Orthogonality

The complex reciprocity relation between two elastodynamic states (v1,T1,F1) and
(v2,T2,F2) where v is the velocity vector, T is surface traction, and F is the body
force is given by [10]:

∇ · [−v∗
2 · T1 − v1 · T∗

2

] = [v∗
2 · F1 − v1 · F∗

2

]
(9.24)

Wavemode orthogonality is reproduced here for Lamb modes but the essential
form of the final solution holds for arbitrary waveguides. First, body forces (F1, F2)
are neglected since orthogonality is required for free modes. States 1 and 2, in the
reciprocity relation, are now taken to be free modes with propagation factors, κm

and κn, respectively. For the 2-dimensional problem under consideration, we have:

v1 = eiκmzvm(y)
v2 = eiκnzvn(y) (9.25)

Under these conditions, the complex reciprocity relation reduces to:

∇ · {} = ∂

∂z
{} · ẑ+ ∂

∂y
{} · ŷ (9.26)

where

{} = −v∗
2 · T1 − v1 · T∗

2 (9.27)

After substitution, this becomes:

i
(
κm − κ∗

n

) {−v∗
n · Tm − vm · T∗

n
} · ẑe−i(κm−κ∗

n)z

= ∂

∂y

{−v∗
n · Tm − vm · T∗

n
} · ŷe−i(κm−κ∗

n)z (9.28)
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The above equation is integrated with respect to y across the waveguide to give
the global reciprocity relationship. Upon doing so, the right-hand side of the above
equation reduces to the value of {} at the plate edges from Gauss theorem. If there
is either a stress-free or rigid boundary condition at the plate edges, that is:

T · ŷ = 0 or v = 0 at y = 0, b (9.29)

then the right-hand side of Eq. (9.28) is zero. Consequently,

i
(
κm − κ∗

n

)
Pmn = 0 (9.30)

Hence, the orthogonality relation for the waveguide modes is:

Pmn = 0 if κm �= κ∗
n (9.31)

where

Pmm = �e
1

2

∫ {−v∗
m · Tm

} · ẑdy (9.32)

is also the average power flow in the z direction (z component of the Poynting
Vector).

9.1.5 Complex Reciprocity Relation

The required complex reciprocity relation for the second-order problem is [10, 11]:

− ∂

∂z

[(
v∗
n · S2 + v2 · σ ∗

n

)
· nzeiκ

∗
nz
]

− ∇⊥ ·
(

v∗
n · S2 + v · σ ∗

n

)
eiκ

∗
nz = v∗

n · f1eiκ
∗
nz

(9.33)

where vn(r) is the velocity of the nth mode for a stress-free waveguide, σ n(r) the
stress for the mode calculated from vn(r), κn is the mode’s wavenumber, v2 = ∂u2/∂t
is the particle velocity derived from taking the time derivative of the secondary
solution, S2(r) is the stress calculated from u2(r), nz the unit vector in the direction
of propagation, and

∇⊥ = nx
∂

∂x
+ ny

∂

∂y
(9.34)

Expanding v2 and S2·nz in terms of waveguide modes

v2 (r, z, t) = 1

2

∑∞
m=1
Am(z)vm (r) e−iω±t + c.c. (9.35)
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S2 (r, z, t) .nz = 1

2

∑∞
m=1
Am(z)σm (r) · nze−iω±t + c.c. (9.36)

where Am(z) is modal amplitude. Substituting Eqs. (9.35) and (9.36) in Eq. (9.33),
integrating the result over the cross-section of the waveguide, and from the
divergence theorem applied to the left-hand side, we have:

− Pmn ∂
∂z

[
eiκ

∗
nz
∑

m
4Am(z)

]
−eiκ∗

nz

[∫

�

(
v2 · σ ∗

n + v∗
n · S2

)
· nd�

]

= eiκ∗
nz

∫

�

f1 · v∗
nd� (9.37)

where Γ is the surface of Ω , n is the unit vector normal to Γ , and

Pmn = −1

4

∫

�

(
v∗
n · σm + vm · σ ∗

n

) · nzd� (9.38)

In the secondary problem, only traction is prescribed and the modes correspond
to a stress-free waveguide (σ n n = 0). Therefore, (9.37) can be written as:

−Pmn ∂
∂z

[
eiκ

∗
nz
∑

m
4Am(z)

]
− eiκ∗

nz

[∫

�

v∗
n · S

1 · nd�
]

= eiκ∗
nz

∫

�

f1 · v∗
nd�

(9.39)

Now, the orthogonality relation of modes is:

Pmn = 0 if κm �= κ∗
n (9.40)

Therefore, we have:

4Pmn

(
d

dz
+ iκ∗

n

)
Am(z) =

[
f
surf
n (z)+ f voln (z)

]
ei(κa±κb)z (9.41)

where the nth mode is orthogonal to the mth mode, and

f
surf
n (z) =

∫

�

v∗
n · S

± · nd� (9.42)

f voln (z) =
∫

�

f± · v∗
nd� (9.43)

The terms fnsurf (z) and fnvol(z) are the complex external modal power due to the

surface stress S
1 · n and volume force f1. If the source condition is assumed to be
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u2 = 0 at z = 0 (9.44)

The solution to Eq. (9.41) is:

Am(z) = Am(z)ei[(κa±κb)z] − Am(0)e−iκ∗
nz (9.45)

where

Am(z) =
i
(
f
surf
n + f voln

)

4Pmn
[
κ∗
n − (κa ± κb)

] κ∗
n �= (κa ± κb) (9.46)

and

Am(z) =
(
f
surf
n + f voln

)

4Pmn
z κ∗

n = (κa ± κb) (9.47)

9.1.6 Nonlinear Lamb Waves

The general solution process given above is now applied to the case of Lamb waves
in plates.

9.1.6.1 Statement of the Problem

Nonlinear elasticity in a stress-free plate (Fig. 9.1) is governed by the following
equation of motion:

(λ+ 2μ)∇ (∇ · u)− μ∇ × (∇ × u)+ f = ρ0
∂2u
∂t2

(9.48)

with the condition (stress-free boundary):

(
SL − S

)
· ny = 0 on L (9.49)

Fig. 9.1 Schematic of a
stress-free plate

y

h

0

−h

z
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where ny is a unit normal vector to the surface L, SL is the linear part of the Piola–
Kirchhoff stress tensor, and S and f include all nonlinear terms. For Rayleigh–Lamb
modes, ux = 0 and uy,uz �= 0.

Equation (9.7) is used for the energy expression. The nonlinear stress and
volume forces in Eqs. (9.48) and (9.49) can be obtained from the nonlinear energy
expression as [36]:

Sij = ∂ 

∂
(
ui,j
) ; fi = Sij,j (9.50)

9.1.7 Solution to Nonlinear Problem

9.1.7.1 Forced Solution to Guided Waves

Following normal mode expansion from Auld [10], waves in a plate under arbitrary
excitation can be written as:

v (y, z, t) = 1

2

∑∞
m=1
Am(z)vm(y)e−iωt (9.51)

S (y, z, t) · nz = 1

2

∑∞
m=1
Am(z)Sm(y) · nze

−iωt (9.52)

where v = ∂u/∂t, Sm is the stress tensor for the mth mode, vm is the particle velocity
of the mth mode, and Am is the second-order modal amplitude to be determined.
Auld shows how Am can be found from the following differential equation:

4Pmn

(
d

dz
− iκ∗

n

)
Am(z) =

(
f surf
n + f vol

n

)
eiκz ; m = 1, 2, . . . (9.53)

where

Pmn = −1

8

∫ h

−h
(
v∗

n · Sm + vm · S∗
n
) · nzd�, (9.54)

f surf
n = −1

2
v∗

nS · ny

∣∣∣∣

y=h

y=−h
, (9.55)

f vol
n = 1

2

∫ h

−h
f · v∗

ndy (9.56)
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and κn is the wavenumber of the mode which is not orthogonal to the mode with
wavenumber κm. f and S are the body force and surface traction, respectively, from
the primary wave.

9.1.7.2 Perturbation

De Lima and Hamilton [8] used perturbation, to derive the solution to Eqs. (9.48)
and (9.49) as the sum of following two components:

u = u1 + u2 (9.57)

where u2 is the perturbation due to nonlinearity and is assumed to be small in
comparison to u1. u1 is the solution to the following linear problem:

(λ+ 2μ)∇
(
∇ · u1

)
− μ∇ ×

(
∇ × u1

)
− ρ0

∂2u1

∂t2
= 0, (9.58)

SL
(

u1
)

· ny = 0 on L (9.59)

This represents the solution to the classical stress-free boundary plate. u2 can be
found by solving the following forced problem:

(λ+ 2μ)∇
(
∇ · u2

)
− μ∇ ×

(
∇ × u2

)
− ρ0

∂2u2

∂t2
= −f1, (9.60)

SL
(

u2
)

· ny = −S1 · ny on L (9.61)

where S1 and f1 are surface traction and body force as calculated from the primary
solution u1.

9.1.7.3 Solution

Assuming that primary excitation is at ω, energy equation has first-order nonlinear-
ity, and S1 and f1 would be harmonic at 2ω. If the energy equation contains higher
nonlinearities, S1 and f1 would contain appropriate higher-harmonic terms as well.
The solution to the current problem when only the double harmonic is considered
is:

Am(z) = Am(z)ei(2κz) − Am(0)eiκ∗
nz, (9.62)
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where

Am(z) = i
(
f vol
n + f surf

n

)

4Pmn
[
κ∗
n − 2κ

] ; κ∗
n �= 2κ (9.63)

Am(z) =
(
f vol
n + f surf

n

)

4Pmn
z ; κ∗

n = 2κ (9.64)

Am are the κ -2ω amplitudes.

9.1.8 Condition for the Absence of Antisymmetric Modes

If appropriate S and f in Eqs. (9.55) and (9.56) are used in combination with normal
mode expansion, the first-order nonlinear solution in Eq. (9.62) can be extended to
higher orders. This allows us to consider different orders of nonlinearities separate
from each other. Assuming that Eq. (9.5) consists of a single order of nonlinearity,
S and f are due to that particular order of nonlinearity. Going forward, we will have
QAy (QSy) represent that a quantity, Q, is antisymmetric (symmetric) with respect to
the thickness direction (y direction).

Equations (9.63) and (9.64) indicate that a certain higher-harmonic mode will not
be excited if both fnsurf and fnvol are zero. We have the following in our notation:

vny = vSyy ; vnz = vAyz (9.65)

From Eq. (9.55), it can be seen that fnsurf would be zero if the quantity, v, is
symmetric with respect to y. In this case, we find from Eq. (9.65) that S should be
of the following form:

S =
[
S
Sy
yy S

Ay
yz

S
Ay
zy S

Sy
zz

]

(9.66)

The above follows by considering the symmetry behavior of appropriate spatial
derivatives. It is worth noting that a y-derivative turns a symmetric function into an
antisymmetric one and vice versa. A z-derivative does not change the symmetry of
the function (i.e., if QAy, then QSy

,y, etc.). Equation (9.56) also shows that f vol
n is

zero if the quantity, fvn∗ , is antisymmetric with respect to y (due to integration over
the y variable). For it to be true, we find that f should be of the following form:

f =
[
f
Ay
y f

Sy
z

]
(9.67)
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It follows from fi = Sij,j that if S follows Eq. (9.66), then f would follow Eq.
(9.67). The reverse is also true and since one implies the other, it is important to
satisfy only one of the two. From Eq. (9.50), we have the following for a plain
strain, Rayleigh–Lamb mode:

fi =
[
∂E

∂ui,j

]

,j

=
[
∂

∂xl

∂xl

∂ui,j
(E)

]

,j

=
[
E,l

1

ui,j l

]

,j

=
[
E,y

1

ui,yy
+ E,z 1

ui,yz

]

,y

+
[
E,y

1

ui,zy
+ E,z 1

ui,zz

]

,z

(9.68)

From Eq. (9.68), it can be verified that Eqs. (9.66) and (9.67) hold if the following
conditions are satisfied (absence of antisymmetric harmonics):

ESy when uAyy and uSyz (Symmetric Driving Mode)
EAy when uSyy and uAyz (Antisymmetric Driving Mode)

(9.69)

This implies that the symmetry of follows that of ul,l (whether an antisymmet-
ric or a symmetric mode is the primary). A set of conditions necessary and sufficient
for the absence of symmetric motion (vny = vy

Ay, vnz = vz
Sy) can be similarly found:

EAy when uAyy and uSyz (Symmetric Driving Mode)
ESy when uSyy and uAyz (Antisymmetric Driving Mode)

(9.70)

Conditions (9.69) and (9.70) imply that a given harmonic can allow both
symmetric and antisymmetric motions when the following cases are true:

ESy when uAyy and uSyz (Symmetric Driving Mode)
ESy when uSyy and uAyz (Antisymmetric Driving Mode)

(9.71)

or when Π is always symmetric.

9.1.9 Application to First-Order Nonlinearity

It can be seed that the energy relation for first-order nonlinearity from Eq. (9.5),
also considering Eq. (9.1), contains cubic terms. The relation, after some albegra, is
reproduced here for the sake of clarity:

E =E1
(
ui,j uj,kuk,i

)+ E2
(
ui,j uk,iuk,j

)+ E3
(
ui,iuj,kuk,j

)

+ E4

[
ui,i
(
uj,k

)2]+ E5

(
u3
i,i

) (9.72)
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where E1, E2, E3, E4, and E5 are constants. From Eq. (9.69), it is enough to show that
first-order nonlinearity would not support any antisymmetric higher-order modes
if each of the five terms in the above equation follows the symmetry of ul,l. In
other words, if each term in Eq. (9.72) can be written as ul,l × QSy, where QSy

is a symmetric function, then antisymmetric modes will be absent. We first note:

ui,j uj,i = uy,yuy,y + uy,zuz,y + uz,yuy,z + uz,zuz,z (9.73)

The terms in the expansion are all symmetric. Therefore:

Lemma 9.1 All the terms in the expansion of ui,j uj,i are symmetric, hence
[ui,juj,i]Sy.
We also have:

ui,iuj,j = (uy,y + uz,z
)2 (9.74)

Hence.

Lemma 9.2 [ui,iuj,j]Sy.
Further,

ui,j ui,j = (ui,j
)2 (9.75)

Hence,

Lemma 9.3 [ui,jui,j]Sy.
Energy for first-order nonlinearity contains terms of displacement derivatives that
are cubic. Expressing first term in Eq. (9.72) as T = ui,juj,kuk,i, the following cases
can be identified

• i = j = p; T = up,pup,kuk,p, where overbar indicates that the corresponding
index does not follow Einstein convention. From Lemma (9.1), up,kuk,p = QSy .
Hence, T = up,pQSy .

• i �= j; since i, j, and k can assume only y and z, and since i �= j, the third index, k,
must be equal to either i or j. When k = i = p, T = up,juj,pup,p. Conversely,
when k = j = p, T = ui,p¯up,¯ p¯up,i¯. In either case, from Lemma (9.1), it follows
that T = ui,pup,pup,i .
For the second term in Eq. (9.72), T = ui,juk,iuk,j, the following two cases arise:

• i = j = p; T = up,puk,puk,p. From Lemma (9.2), T = up,pQSy .
• i �= j. Since i, j, and k can assume only y and z, and since i �= j, the third index,

k, must be equal to either i or j. When k = i = p, T = up,jup,pup,j . Conversely,
when k = j = p, T = ui,pup,iup,p. In either case, from Lemmas (9.1, 9.3), it
follows that T = up,pQSy .

It can be seen that the other terms in Eq. (9.72) (ui,kuk,iul,l , ul,l
(
ui,k
)2
, u3
l,l ) triv-

ially reduce to T = ui, iQSy from Lemmas (9.1–9.3). Hence, from conditions (9.69),
first-order nonlinearity under hyper-elasticity model cannot support antisymmetric
Rayleigh–Lamb waves.
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Fig. 9.2 SAFE discretization of a plate (reproduced from: Srivastava A, Bartoli I, Salamone S,
and Lanza di Scalea F, Higher harmonic generation in nonlinear waveguides of arbitrary cross-
section. J Acoust Soc Am 127:2790–2796, 2010, with the permission of the Acoustical Society of
America)

Table 9.1 Material properties for the plate

ρ0 (kg/m3) cl (m/s) ct (m/s) λb μb Aa,b Ba,b Ca,b

2727 6381 3150 57 27 −320 −200 −190

9.1.10 A Representative Simulation Confirmation: Nonlinear
SAFE Analysis in Plates

Nonlinear Semi-Analytical Finite Element (SAFE) simulation was done to study
the behavior of the nonlinear power flow at the double harmonic in plates [15].
The geometry of a plate is shown in Fig. 9.2. Since the waveguide is infinitely
extended in the x direction, derivatives with respect to x vanish and the problem
reduces to plain strain. Finite element discretization of the cross-section can be
simply accomplished by a one-dimensional thickness discretization. Fourty, 2-node
linear elements were used. Material properties are given in Table 9.1. Figure 9.2
shows the SAFE results for phase velocity dispersion curve for the Aluminum plate
between 20 kHz and 1 MHz.

Figure 9.3 presents the results from SAFE as phase velocity dispersion curve
for the Aluminum plate (20 kHz−1 MHz). It was discussed that, independently of
the nature of the primary mode, double-harmonic antisymmetric Lamb modes will
not be produced. This is due to the vanishing power transfer from the primary to

the secondary mode
(
f
surf
n + f voln

)
. This, in turn, follows from the specific cross-

sectional profile of the integrands in Eqs. (9.55) and (9.56).
Figure 9.4 shows SAFE results for the thickness profiles of terms v∗

n ·S ·ny and v∗
n ·

f for modes A0 and A1 when the primary generating mode is S0 and A0, respectively.
Irrespective of the primary mode, v∗

n ·S ·ny is symmetric and v∗
n ·f is antisymmetric

for a possible double-harmonic antisymmetric mode generation. A contour integral
of v∗

n ·S ·ny and a thickness integral of v∗
n ·f become zero. Consequently, no power
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Fig. 9.3 Phase velocity
dispersion curve for an
Aluminum plate 2.54 mm
thick

2 4 6 8 10

x 10
5

0

2000

4000

6000

8000

10000

Frequency [Hz]

P
ha

se
 V

el
oc

ity
 [m

/s
ec

]

S0

SH0

A0

SH1

A1

a

b

Fig. 9.4 Thickness profile of power flow. (a) S0 to A0 and A0 to A0 conversion. (b) S0 to A1 and
A0 to A1 conversion (reproduced from: Srivastava A, Bartoli I, Salamone S, and Lanza di Scalea
F, Higher harmonic generation in nonlinear waveguides of arbitrary cross-section. J Acoust Soc
Am 127:2790–2796, 2010, with the permission of the Acoustical Society of America)

transfer occurs between any primary mode and an antisymmetric double-harmonic
mode. The frequencies for the primary excitation were randomly chosen, since the
symmetry attributes of these terms are not expected to change with frequency.
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9.1.11 Application to Higher-Order Harmonics

Subsequent proofs to harmonics of order higher than two will be presented through
mathematical induction.

Theorem 9.4 If En = ul, lQSy, n is even and En + 1 = PSy where P and Q
are symmetric functions. For an nth-order harmonic, all the terms in the energy
expression contain n + 1 powers of strains. En = ul, lQSy implies that any term in the
expansion of En (denoted by Tn) behaves like ul,lQSy. By “any arbitrary term,” we
mean all Tn = Fn + 1(i1,i2,...in + 1) where Fn + 1(i1,i2,...in + 1) represents a function
having n + 1 multiples of strains which depend upon n + 1 indices (i1 to in + 1)
and where every index occurs exactly twice so that Einstein summation convention
applies to all the indices.

Since Tn = ul,lQSy, n is even because if n was odd, at least one term in the
expansion of E would equal (ul,l)n + 1 which is always symmetric. Hence, the
assumption that all Tn = ul,lQSy would become false.

The following two scenarios arise:

Lemma 9.5 If Tn + 1 contains at least one strain term with repeated index, uim,im:

T n+1 = uim,imF n+1 (i1, i2, . . . im−1, im+1, . . . in+2)

= uim,imF n+1
(
i′1, i′2, . . . i′n+1

)

= uim,imT n = uim,imul,lQSy = PSy

Lemma 9.6 If Tn + 1 contains at least one strain term where the two indices assume
equal values, or ij = ik = p(p = y or z):

T n+1 = up,pFn+1
(
i1, i2, . . .

(
ij = p) , . . . (ik = p) , . . . in+2

)

= up,pFn+1
(
i′1, i′2, . . . i′n+1

) (
ij , ik = i′n = p)

= up,pT n = up,pul,lQSy = PSy

The most generic energy term for (n + 1)th-order harmonic is:

T n+1 = ui1,i2Fn+1 (i1, i2, . . . in+2)

The following two cases can be identified:

• i1 = i2 = p: In this case, Tn + 1 = PSy from Lemma (9.6).
• i1 �= i2; since each index from i1 to in + 2 equals either y or z and since i1 �= i2,

each of i3 to in + 2 equals either i1 or i2. Keeping in mind Lemmas (9.5, 9.6),
we are only interested in the nontrivial case where all the terms Tn + 1 have
indices with different value (i.e., every term in Tn + 1 is either ui1,i2, or ui2,i1).
Since (n + 2) is even, we can divide Tn + 1 into (n + 2)/2 multiplied sets of
multiples of two terms each. Each such set is either ui1,i2ui2,i1 or (ui1,i2)

2 or
(ui2,i1)

2. All of these (from Lemmas 9.1–9.3) are symmetric, hence their product
is also symmetric, hence Tn + 1 = PSy.

This completes the proof.
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Theorem 9.7 If the energy relation for an nth-order harmonic, En = QSy, n is
odd and for the next higher order, En + 1 = ul,l PSy where P and Q are symmetric
functions. The fact that all Tn = QSy implies that n is odd since if n was an even
number, at least one term in the expansion of  would equal (ul,l)n + 1, becoming
ul,lQSy. Hence, our initial assumption that all Tn = QSy would become false.

Following two scenarios arise:

Lemma 9.8 If Tn + 1 contains at least one strain term with repeated index, uim,im:

T n+1 = uim,imF n+1 (i1, i2, . . . im−1, im+1, . . . in+2)

= uim,imF n+1
(
i′1, i′2, . . . i′n+1

)

= uim,imT n = uim,imP Sy

Lemma 9.9 If Tn + 1 contains at least one strain term where the two indices assume
equal values, or ij = ik = p(p = y or z):

T n+1 = up,pFn+1
(
i1, i2, . . .

(
ij = p) , . . . (ik = p) , . . . in+2

)

= up,pFn+2
(
i′1, i′2, . . . i′n+1

) (
ij , ik = i′n = p)

= up,pT n = up,pP Sy

Moving forward, the most generic energy term for (n + 1)th-order harmonic can
be expressed as:

T n+1 = ui1,i2Fn+1 (i1, i2, . . . in+2)

The following two cases arise:

• i1 = i2 = p: In this case, T n+1 = up,pP Sy from Lemma (9.9).
• i1 �= i2; since each index from i1 to in + 2 equals either y or z and since i1 �= i2,

each of i3 to in + 2 equals either i1 or i2. Keeping in mind Lemmas (9.8, 9.9), the
interest is to see if it is possible to have Tn + 1 with all the terms having indices
with different values. Since n is odd, the total number of indices n + 2 is also
odd. For a case of no index repetition and where every multiple in Tn + 1 is ui1,i2
or ui2,i1, the number of indices assuming value i1 should be equal to the number
of indices with value i2. Since the total number of indices is odd, the following
sets of indices can exist:

– i′1, i′2, . . . i′(n+1)/2 where each is equal to i1.
– i′′1 , i′′2 , . . . i′′(n+1)/2 where each is equal to i2.
– im equal to either i1 or i2.

It should be seen that the total number of indices in the above expressions is equal
to n + 2. From the first two expressions, n + 1 displacement derivatives producing
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a term in nth-order harmonic Fn+1
(
i′1, . . . i′(n+1)/2, i

′′
1 , . . . i

′′
(n+1)/2

)
is obtained by

using each index exactly twice. The last (n + 2)th term is thus left with one index
since all the other indices have been used twice. Hence, that last term has a form
uim,im. Hence,

T n+1 = uim,imF n+1 (i′′′1 , i
′′′
2 , . . . i

′′′
n+2

)

= uim,imT n = uim,imP Sy = ul,lP Sy

This completes the proof. From Theorems (9.4 and 9.7) and conditions (9.69)
and (9.71), all even harmonics (2ω, 4ω, 6ω, etc.) support only symmetric Lamb
waves. Alternatively, all odd harmonics (3ω, 5ω, 7ω, etc.) support either symmetric
or antisymmetric waves.

9.1.12 Experimental Confirmation

In order to test the theoretical predictions, two nonlinear ultrasonic experiments
were carried out on an Aluminum plate. The plate had a thickness of 2.54 mm and
a Physical Acoustics Corporation Pico transducer with 0.1–1 MHz band and central
frequency 0.543 MHz was used to generate Lamb waves in it. A Pinducer sensor
(Valpey Fisher VP-1093) was used to measure the response of the plate at a distance
of 25 mm from the source. Both the Pico and the Pinducer excite and sense out of
plane displacements; hence, they predominantly generate and receive antisymmetric
motion—Fig. 9.5a. To induce high deformation nonlinearity, we loaded the plate
quasi-statically to a level large enough to induce measurable nonlinearity-driven
higher harmonics of the primary Rayleigh–Lamb mode. The excitation was driven at
a monochromatic frequency of 320 kHz. The frequency content of the measurement
is shown in Fig. 9.5b. As expected, only the odd harmonics are distinguishable in
the figure because the motion is predominantly antisymmetric.

As a further confirmation, we performed joint time–frequency analysis (wavelet
analysis) of the received signal using complex Morlet wavelet having a bandwidth
parameter = 2 and applied a central frequency parameter = 2.5. Figure 9.6b
shows the wavelet scalogram applied to signal shown in Fig. 9.6a and Fig. 9.6c
shows a zoomed view in the range 0.5–1 MHz. The white lines are the expected
arrival times of the relevant modes from Rayleigh–Lamb theory. As shown, strong
antisymmetric mode exists at 320 kHz, and no antisymmetric mode exists at
640 kHz. Alternatively, the antisymmetric mode is present at the triple harmonic
(960 kHz), as predicted by the theory and confirmed in the spectrum of Fig. 9.5.

In the second experiment, excitation and detection were accomplished by utiliz-
ing two Macro-Fiber Composite—MFC transducers (Smart Materials Corporation,
M2814P1). MFCs work by generating and detecting in-plane strains, hence they
are preferentially sensitive to symmetric waves—Fig. 9.7a. Figure 9.7b shows the
frequency content of the received signal.
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Fig. 9.5 (a) Schematic of the experiment for the measurement of nonlinear higher harmonics, and
(b) response spectrum of the signal measured by the Pinducer (Reprinted from Srivastava A and
Lanza di Scalea F, On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher
harmonics. J Sound Vibr 323:932–943, 2009)

The primary generation frequency was, again, 320 kHz. In this experiment,
we expect a substantial sensitivity to symmetric waves and hence the presence
of even harmonics. Figure 9.7b confirms the emergence of the double harmonic
(640 kHz). The large odd harmonic at 960 kHz may be attributed to either (a)
both symmetric and antisymmetric motion (MFC patches are not “pure mode”
transducers), or (b) residual contributions from the undeformed plate. Figure 9.8
compares the frequency content of signals between unloaded plate and loaded plate.
The harmonics present in the unloaded plate are much less significant than those
present in the loaded plate. This confirms that the measured higher harmonics are in
large part due to nonlinear elastic effects.

Figure 9.9 presents the wavelet scalogram of the measurement in the anti-
symmetric experiment, with the theoretical Rayleigh–Lamb curves. Figure 9.9b
shows that under both symmetric and antisymmetric primary excitation (320 KHz),
the energy at the double harmonic (640 KHz) contains only the fundamental
symmetric mode—Fig. 9.9c. The energy at the triple harmonic (960 kHz) consists
of the fundamental antisymmetric, the fundamental symmetric, and the first-order
antisymmetric modes. This is in accordance with the theoretical predictions that
antisymmetric modes are only allowed at odd harmonics, whereas symmetric modes
are allowed at both odd and even harmonics.
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a

c

b

Fig. 9.6 Wavelet analysis of the antisymmetric excitation/detection in the plate: (a) time history,
(b) wavelet scalogram of the measurement in the DC-1 MHz range, and (c) zoomed view of the
wavelet scalogram. The theoretical arrival times from the Rayleigh–Lamb theory are shown as
white lines (reprinted from Srivastava A and Lanza di Scalea F, On the existence of antisymmetric
or symmetric Lamb waves at nonlinear higher harmonics. J Sound Vibr 323:932–943, 2009)

9.1.13 Conclusions

The inability of an even Lamb wave harmonic to support antisymmetric motion
results from symmetry considerations in the corresponding energy equation. These
predict that the double harmonic does not allow antisymmetric Rayleigh–Lamb
waves. Mathematical induction was used to generalize to higher order of harmonics.
The general conclusion is that antisymmetric Rayleigh–Lamb waves exist at odd
harmonics; alternatively symmetric waves exist at either odd or even harmonics.

9.1.14 Nonlinearity in Rods

Consider now the case of nonlinear guided waves in rods. The equation of motion
for nonlinear elasticity in a stress-free rod is given by (Fig. 9.10):
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Fig. 9.7 Measurement of nonlinear higher harmonics: (a) scheme of the experiment, (b) frequency
spetrum of the signal received by the MFC (reprinted from Srivastava A and Lanza di Scalea F, On
the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J Sound
Vibr 323:932–943, 2009)

Fig. 9.8 Frequency content comparison of signals in unloaded and loaded cases (reprinted from
Srivastava A and Lanza di Scalea F, On the existence of antisymmetric or symmetric Lamb waves
at nonlinear higher harmonics. J Sound Vibr 323:932–943, 2009)
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c

a

b

Fig. 9.9 Wavelet analysis of the symmetric excitation and detection in the plate: (a) time history,
(b) wavelet scalogram, and (c) zoomed view of the wavelet scalogram. The theoretical arrival times
from Rayleigh–Lamb theory are shown with white lines (reprinted from Srivastava A and Lanza
di Scalea F, On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher
harmonics. J Sound Vibr 323:932–943, 2009)

Fig. 9.10 Schematic of a
stress-free rod

(λ+ 2μ)∇ (∇ · u)− μ∇ × (∇ × u)+ f = ρ0
∂2u
∂t2

(9.76)

with stress-free boundary conditions on the free surface:

[
SL (u)− S (u)

]
· nr = 0 on � (9.77)

Murnaghan’s approximation is again used for the energy expression, Eq. (9.4).
To consider non-Cartesian geometry, strains are expressed by covariant differentials:
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εij = 1

2

(
ui;j + uj ;i + uk;iuk;j

)
(9.78)

where:

ui;j = ui,j − uk�kij (9.79)

and

ui;j = ui,j + uk�ikj (9.80)

�i
jk are the Christoffel symbols. Stress is expressed by:

σ ij = ∂E

∂εij
(9.81)

and the body force vector is:

f i = σ ij;j (9.82)

9.1.15 Solution to the Nonlinear Problem

Following normal mode expansion and perturbation from Auld [10] and de Lima
and Hamilton [11], the first-order nonlinear solution becomes:

v (r, z, t) = 1

2

∑∞
m=1
Am(z)vm (r) e−i2ωt + c.c. (9.83)

We have the solution:

Am(z) = Am(z)ei(2κz) − Am(0)eiκ∗
nz, (9.84)

where

Am(z) = i
(
f vol
n + f surf

n

)

4Pmn
[
κ∗
n − 2κ

] ; κ∗
n �= 2κ (asynchronous solution) (9.85)

Am(z) =
(
f vol
n + f surf

n

)

4Pmn
z ; κ∗

n = 2κ (synchronous solution) (9.86)

Pmn = −1

4

∫

�

(
v∗

n · Sm + vm · S∗
n
) · nzd�, (9.87)
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f surf
n (z) =

∫

�

v∗
n· S· nr d� (9.88)

f vol
n (z) =

∫

�

v∗
n· f d� (9.89)

κ is the mode wavenumber, κn is the wavenumber of the non-orthogonal mode to
the mth mode at the higher harmonic and κ∗

n is the complex conjugate. Sm is the
stress tensor of the mth mode, and nz is the unit vector in direction z. �, � are the
rod cross-sectional area and the rod surface, respectively (Fig. 9.10).

9.1.16 Analysis of Solution

If appropriate S and f are used in Eqs. (9.88) and (9.89), similarly to Lamb waves,
the first-order nonlinear solution of Eq. (9.84) can be extended to higher orders.
For an (n − 1)th-order nonlinearity, surface stresses and body forces are S

n
and f

n
,

respectively. The subscripts for fsurf and fvol are changed to “l.”
For a cylindrical rod with radius a, flux integrals become:

f surf
l = −a

2

∫ 2π

0
v∗
l (a, θ) · S

n
(a, θ) · nr dθ (9.90)

f vol
l = 1

2

∫ a

0

∫ 2π

0
v∗
l (r, θ) · f

n
(r, θ) r dθ dr (9.91)

where the superscript n refers to the nonlinear effect of the primary excitation (at
frequency nω) and the subscript l is referred to potential higher harmonic. Particle
velocity for the lth Pochhammer Chree wave in rods at frequency nω is [37]:

vr = Vr(r) cos (qθ) ei(κlz−nωt) (9.92)

vθ = Vθ(r) sin (qθ) ei(κlz−nωt) (9.93)

vz = Vz(r) cos (qθ) ei(κlz−nωt) (9.94)

where q = 0 for longitudinal modes, and q ≥ 1 for flexural modes. Substituting the
expressions for flsurf and flvol and ignoring the exponential harmonic term yields:

f surf
l = −a

2

∫ 2π

0

[
VrS

n

rr cos (qθ)+ VθSnθr sin (qθ)+ VzSnzr cos (qθ)
]
dθ (9.95)



9 Nonlinear Guided Waves and Thermal Stresses 371

f voll = 1

2

∫ a

0

∫ 2π

0

[
Vrf

n

r cos (qθ)+ Vθf nθ sin (qθ)+ Vzf nz cos (qθ)
]
rdθ dr

(9.96)

The following identities must be noted for all integers n �= 0:

∫ 2π

0
sin (nθ) dθ = 0 (9.97)

∫ 2π

0
cos (nθ) dθ = 0 (9.98)

From Eqs. (9.85) and (9.86), the lth mode would not be excited if both
flsurf,flvol = 0. This occurs if all terms in Eqs. (9.95) and (9.96) are zero. Hence,
if all the terms in (9.95) and (9.96) can be expressed as one of the two integrals in
(9.97) and (9.98) for an lth mode, that particular higher-harmonic mode will not be
excited.

From De Moivre’s formula, Euler’s formula, and binomial expansion, the
following expansions can be written:

If n is odd:

cosn (θ) =
n−1

2∑

k=0

Ak cos (n− 2k) θ (9.99)

sinn (θ) =
n−1

2∑

k=0

Bk sin (n− 2k) θ (9.100)

where Ak and Bk are only functions of n.
If n is even:

cosn (θ) = X +
n
2 −1∑

k=0

Ck cos (n− 2k) θ (9.101)

sinn (θ) = X +
n
2 −1∑

k=0

Dk cos (n− 2k) θ (9.102)

where X, Ck, and Dk are only functions of n.
For an (n − 1)th-order nonlinearity, Eq. (9.4) will contain terms with (n + 1)

multiples of strains. Therefore, from the velocities in Eqs. (9.92), (9.93), and (9.94),
S

n
and f

n
contain n-strains (Eq. 9.81). Hence, for a (n − 1)th-order nonlinearity, any

term
(

S
n
)

and
(

f
n
)

can be expressed as:
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T n = f (r)sint (pθ) coss (pθ) t + s = n (9.103)

where p identifies the type of primary excitation mode, f (r) is an arbitrary function
of the radius r, and either t or s can be equal to 0.

Equations (9.95) and (9.96) show that each term in the expressions for flsurf and
flvol involves an integral of the type:

In =
∫ 2π

0
F(r)sint (pθ) coss (pθ) sin (lθ) dθ (9.104)

or

In =
∫ 2π

0
F(r)sint (pθ) coss (pθ) cos (lθ) dθ (9.105)

For the ease of analysis, we denote sint(pθ )coss(pθ ) = En.

Case 1: n Is Odd (Odd Harmonics)
Since n is odd and t + s = n, either t is odd or s is odd. If t is odd:

En =
(∑ t−1

2

k1=0
Bk1 sin {(t − 2k1) pθ}

)(
X +

∑ s
2 −1

k2=0
Ck2 cos {(s − 2k2) pθ}

)

= X
∑ t−1

2

k1=0
Bk1 sin {(t − 2k1) pθ} (9.106)

+
∑ t−1

2

k1=0

∑ s
2 −1

k2=0

(
Bk1 sin {(t − 2k1) pθ} Ck2 cos {(s − 2k2) pθ}

)

where X, Bk1, and Ck2 are independent of θ . Further,

S =
∑ t−1

2

k1=0

∑ s
2 −1

k2=0
Bk1 sin {(t − 2k1) pθ} Ck2 cos {(s − 2k2) pθ}

=
∑ t−1

2

k1=0

∑ s
2 −1

k2=0

1

2
Bk1Ck2 (sin {(t + s − 2k1 − 2k2) pθ} (9.107)

+ sin {(t − 2k1 − s + 2k2) pθ})

(t + s − 2k1 − 2k2) assumes all odd values between 3
(
k1 = t−1

2 , k2 = s
2 − 1

)
and

t + s (k1 = k2 = 0). Similarly, (t − 2k1 − s + 2k2) takes only odd values. It takes

a value of −1
(
k1 = t−1

2 , k2 = s
2 − 1

)
which is equivalent to 1. S can be expressed

as:

S =
∑t+s

k=1,3...
Bk sin (kpθ) (9.108)
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where Bk are constants. Substituting this in Eq. (9.106), after some algebraic
manipulations:

En =
∑t

k1=1,3,...
Bk1 sin (k1pθ)+

∑t+s
k2=1,3...

Bk2 sin (k2pθ)

=
∑t+s

k=1,3,...
Ek sin (kpθ) (9.109)

where Ek depend only on k. Similarly, it can be shown that if t is even, we have the
following:

En =
∑t+s

k=1,3...
Ek cos (kpθ) (9.110)

If Eq. (9.69) holds, we have:

In =
∫ 2π

0
F(r)

(∑t+s
k=1,3...

Ek sin (kpθ)
)

sin (lθ) dθ ; t odd (9.111)

or

In =
∫ 2π

0
F(r)

(∑t+s
k=1,3...

Ek cos (kpθ)
)

sin (lθ) dθ ; t even (9.112)

Trigonometric integration is such that the integral in Eq. (9.112) is always 0
whereas the integral in Eq. (9.111) is nonzero iff l = kp for some value of k.
Similarly, it can be shown that even if Eq. (9.105) holds, In is nonzero if l = kp
for some k = 1, 3...n.

Therefore, the families of higher-order modes that can be produced at odd
harmonics are restricted by the specific primary mode. In fact, a primary flexural
mode will not generate a longitudinal mode at an odd higher harmonic. Vice versa,
a primary longitudinal mode cannot generate a flexural mode at an odd higher
harmonic (n odd). In addition, a primary flexural mode will only generate at the
nth harmonic those modes where l = kp where k = 1, 3...n.

Case 2: n Is Even (Even Harmonics)
Since n is even and t + s = n, either both t and s are odd or both are even.

In the case that both t and s are odd, the following expansion holds:

En =
(∑ t−1

2

k1=0
Bk1 sin {(t − 2k1) pθ}

)(∑ s−1
2

k2=0
Ak2 cos {(s − 2k2) pθ}

)

=
∑ t−1

2

k1=0

∑ s−1
2

k2=0
Bk1 sin {(t − 2k1) pθ} Ak2 cos {(s − 2k2) pθ}

)
(9.113)

It can be shown that the above expression reduces to:
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En =
∑t+s

k=2,4,...
Ek sin (kpθ) =

∑t+s
k=0,2,...

Ek sin (kpθ) (9.114)

Similarly, when t and s are even, we have:

En =
(
X +

∑ t
2 −1

k1=0
Dk1 cos {(t−2k1) pθ}

)(
X+
∑ s

2 −1

k2=0
Ck2 cos {(s − 2k2) pθ}

)

= Y +
∑t+s

k=2,4,...
Ek cos (kpθ) =

∑t+s
k=0,2,...

Ek cos (kpθ) (9.115)

where Y contains all terms independent of θ . If Eq. (9.104) holds, we have:

In =
∫ 2π

0
F(r)

(∑t+s
k=0,2...

Ek sin (kpθ)
)

sin (lθ) dθ ; t, s odd (9.116)

or

In =
∫ 2π

0
F(r)

(∑t+s
k=0,2...

Ek cos (kpθ)
)

sin (lθ) dθ ; t, s even (9.117)

The integral in Eq. (9.117) is always 0, whereas the integral in Eq. (9.116) is
nonzero iff l = kp for some value of k �= 0. On the other hand, if Eq. (9.105) holds,
we have:

In =
∫ 2π

0
F(r)

⎛

⎝
t+s∑

k=0,2...

Ek sin (kpθ)

⎞

⎠ cos (lθ) dθ ; t, s odd (9.118)

In =
∫ 2π

0
F(r)

(∑t+s
k=0,2...

Ek cos (kpθ)
)

cos (lθ) dθ ; t, s even (9.119)

The integral in Eq. (9.118) is 0. The integral in (9.119) is nonzero if and only
if l = kp for some value of k. Since fsurf and fvol are a combination of the above
terms, it can be said that a primary mode of order p can generate a higher-order
mode with an angular order l if l = kp for some value of k = 0, 2...n. Even a primary
flexural mode can generate a longitudinal mode at an even higher harmonic. At the
same time, a primary longitudinal mode (p = 0) still cannot produce a flexural mode
(l �= 0) at an even higher harmonic (n even).

9.1.17 Conclusions

In comparison with results from the Lamb wave case earlier, it can be seen that the
flexure modes of angular order 1 in rods behave similarly to antisymmetric Lamb
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modes and longitudinal rod modes behave similarly to symmetric Lamb modes.
The set of first-order flexure modes and the set of antisymmetric Lamb modes are
both absent at even harmonics. They are instead present, along with longitudinal
and symmetric modes, at odd harmonics in rods and plates, respectively. These
conclusions are not surprising, since first-order flexure and longitudinal mode
symmetries in rods are analogous to those of antisymmetric and symmetric Lamb
modes.

9.2 Nonlinear Waves in Waveguides of Arbitrary
Cross-Sections (Semi-Analytical Computational Method)

9.2.1 Introduction

Despite several theoretical investigations pertaining to nonlinear effect in solids
and second-harmonic generation were reported in the past, most studies focus on
simple geometries (plates, rods, and shells) with well-known analytical solutions
for the primary wave field. Nonlinear propagation in homogenous and isotropic
waveguides of arbitrary cross-sections of the type of cylindrical rods and shells can
be analyzed theoretically if the geometry is easily represented analytically [11].
Numerical approaches are needed for more general geometries, anisotropic elastic
properties, or inhomogenous materials (or a combination of these characteristics).
This section summarizes recent work in the numerical modeling of nonlinear wave
in waveguides of arbitrary cross-section and material composition from Nucera
and Lanza di Scalea [38–40] and Srivastava et al. [15]. Some other work in this
area has been performed by Apetre et al. [41] and Radecki et al. [25]. For the
solution of the nonlinear boundary value problem, perturbation theory and modal
expansion from de Lima and Hamilton [8] are used in this section. A semi-analytical
algorithm is presented to study the waveguides of different complexity. Four case
studies are presented, namely a railroad track, a viscoelastic plate, a composite
quasi-isotropic laminate, and a reinforced concrete slab. In each of these complex
waveguides, favorable combinations of primary and resonant secondary modes
(nonlinear resonance conditions) were successfully identified. These predictions
can help designing experimental systems aimed at utilizing nonlinear waves for
structural diagnostics or other purposes.

9.2.2 Waves in Nonlinear Elastic Regime: Internal Resonance

For finite deformations and/or large amplitude waves, nonlinear elasticity constitu-
tive relations must be applied. For a homogeneous, isotropic,and hyperelastic body,
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the second Piola–Kirchhoff stress tensor S can be expressed as a function of strain
energy density ε and the Green–Lagrange strain tensor E:

Sij = ρ0
∂ε

∂Eij
(9.120)

where ρ0 is the initial density.
We are assuming finite strain theory:

Eij = 1

2

(
ui,j + uj,i + uk,iuk,j

)
, ui,j = ∂ui

∂xj
(9.121)

The strain energy can be expressed as:

ε = 1

2
λI1

2 + μI2 + 1

3
CI1

3 + BI 1I2 + 1

3
AI 3 +O

(
Eij

4
)

(9.122)

where I1 = Eii, I2 = EijEji, I3 = EijEjkEki, λ and μ are the Lamé elastic constants,
and A, B, and C are the Landau–Lifshitz third-order elastic constants [35] assuming
first-order nonlinearity. From these relations and retaining the second-order terms,
the nonlinear constitutive relation is:

Sij = λEkkδij + 2μEij + δij (CEkkEll + BEklElk)+ 2BEkkEij + AEjkEki
(9.123)

where δij is the Kronecker delta. If Eq. (9.123) is used in the momentum equation,
the nonlinear wave equation in isotropic homogenous waveguides can be written as
[29]:

ρ0üi − μui,kk − (λ+ μ) ul,li =
(
μ+ A

4

) (
ul,kkul,i + ul,kkui,l + 2ui,lkul,k

)

+ +
(
λ+ μ+ A

4
+ B

) (
ul,ikul,k + uk,lkui,l

)+ (λ+ B) ui,kkul,l (9.124)

+ +
(
A

4
+ B

)
(
uk,lkul,i + ul,ikuk,l

)+ (B + 2C) uk,ikul,l

where ui(xk,t) is the displacement vector in the Lagrange variables and
ui,j = ∂ui/∂xj). By using vector notation, the governing equation of the guided
waves becomes:

(λ+ 2μ)∇ (∇ · u)− μ∇ × (∇ × u)+ f = ρ0
∂2u

∂t2
(9.125)

SL (u) · nr = −S (u) · nr on � (9.126)
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where u is the vector of particle displacements, ρ0, λ, and μ were as defined earlier,
f is the body force containing nonlinear terms, nr is the unit vector perpendicular
to the waveguide’s surface Γ , and SL and S are the linear and nonlinear parts of the
second Piola–Kirchhoff stress tensor. The nonlinear terms are given by:

f i =
(
μ+ A

4

) (
ul,kkul,i + ul,kkui,l + 2ui,lkul,k

)+
(
λ+ μ+ A

4
+ B

)

× (ul,ikul,k + uk,lkui,l
)+ (λ+B) (ui,kkul,l

)+
(
A

4
+B
) (
uk,lkul,i+uk,ikuk,l

)

+ (B + 2C)
(
uk,ikul,l

)+O(Eij
)3 (9.127)

Sij =
(
λ

2
uk,luk,l + Cuk,kul,l

)
δij + Buk,kuj,i + A

4
uj,kuk,i

+B
2

(
uk,luk,l + uk,lul,k

)
δij + (λ+ B) uk,kui,j

+
(
μ+ A

4

) (
ui,kuj,k + uk,iuk,j + ui,kuk,j

)+O(Eij
)3 (9.128)

The terms in Eqs. (9.127) and (9.128) highlight the presence of third-order
displacement gradients. They act as forcing functions of the linearized boundary
value problem, as better described below.

For second-order nonlinearity (Fig. 9.11), the boundary value problem in Eqs.
(9.125) and (9.126) is solved using perturbation theory [8, 10]. Accordingly, the
solution is a combination of two terms, namely u = u(1) + u(2), where u(1) is the
primary solution and u(2) is the secondary solution due to nonlinearity (assumed
small compared to u(1)—perturbation condition). So, two linear boundary value
problems are derived, namely the first-order and second-order approximations. If
ω is the primary frequency, the first-order nonlinear solution at 2ω is calculated
through modal expansion:

v (x, y, z, t) = 1

2

∑∞
m=1
Am(z)vm (x, y) e

−i2ωt + c.c. (9.129)

where c.c. indicates complex conjugates, vm is the vector of particle velocities for
the mth mode at 2ω, z is the direction of wave propagation and Am is the modal
amplitude of the higher-order mode given by:

Am(z) = Am(z)ei(2kz) − Am(0)eikn∗z (9.130)
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Fig. 9.11 Nonlinear
waveguide (finite element
mesh just on the
cross-section) with
second-harmonic generation
mechanism highlighted
(reprinted from Nucera C and
Lanza di Scalea F, Modeling
of nonlinear guided waves
and applications to structural
health monitoring. ASCE J
Comput Civ Eng
29:B40140011–B401400115,
2015, with permission from
ASCE)

Fig. 9.12 Generic eth finite element on the waveguide cross-section for the SAFE modeling
of ultrasonic guided waves (reprinted from Nucera C and Lanza di Scalea F, Modeling of
nonlinear guided waves and applications to structural health monitoring. ASCE J Comput Civ
Eng 29:B40140011–B401400115, 2015, with permission from ASCE)

Two conditions exists, namely an asynchronous (difference of phase velocity)
and a synchronous (equality of phase velocity) condition:

Am(z) = i
(
fn
vol + fnsurf

)

4Pmn
(
kn

∗ − 2k
) if kn

∗ �= 2k ASYNCHRONISM (9.131)
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Am(z) =
(
fn
vol + fnsurf

)

4Pmn
z if kn

∗ = 2k SYNCHRONISM (9.132)

where Pmn is the complex power flow along the direction of wave propagation and
fnvol and fnsurf are the power from surface and volume forces, respectively.

As observed by de Lima and Hamilton [8], in the asynchronous case the
modal amplitude of the generic mth secondary mode oscillates. Alternatively, in
the synchronous case, the nonlinear amplitude increases linearly with propagation
distance z (cumulative behavior). The internal resonance mechanism requires the
simultaneous occurrence of two conditions, namely:

1. Phase matching: kn
* = 2 k.

2. Nonzero power transfer from primary to secondary wave field: fnsurf + fnvol �= 0.

Recent investigations performed by Deng et al. [28] have also considered the
condition of group velocity matching. The authors conclude that the group velocity
matching is not a necessary condition for cumulative higher-harmonic generation
due to the finite time duration of practical wave tonebursts.

In light of these considerations, it is important to develop ways to identify
“favorable” conditions of cumulative higher-harmonic generation in waveguides,
and specifically for waveguides that are complex in terms of either their geometries
or their constituent materials.

9.2.3 Nonlinear Semi-Analytical Algorithm

The Semi-Analytical Finite Element formulation (S.A.F.E.) in its linear fashion was
proposed for the first time four decades ago [42, 43] and has been researched ever
since [44–53]. The S.A.F.E. method has been traditionally limited to the linear
elastic regime. The extension to the nonlinear case is not trivial. The authors of
this chapter have utilized the COMSOL finite element code in conjunction with
an S.A.F.E. analysis (CO.NO.SAFE—COMSOL Nonlinear Semi-Analytical Finite
Element) for the identification of resonant and cumulative high-harmonic generation
in complex waveguides.

The development of the proposed numerical algorithm started from the classical
3D elasticity field equations. Early nonlinear applications of S.A.F.E. were proposed
by Bartoli et al. [51]. Accordingly, the displacement for the generic eth element of
the cross-sectional discretization is:

ue (x, y, z, t) = Ne (x, y) qeei(kz−ωt) (9.133)

where k is the wavenumber, ue is the displacement for the eth element, ω is
frequency, qe is the nodal displacement vector for the eth element, Ne(x, y) is the
shape functions matrix of order (3 x 3n), and n is the number of nodes per element.
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Considering stress-free conditions at the waveguide’s surface, the following
twin-parameter eigenproblem can be formulated:

CijklNj,kl + i
(
Ci3jk + Cikj3

) (
kNj

)
,k

− kCi3j3
(
kNj

)+ ρω2δijNj = 0 in �

(9.134)

CikjlNj,lnk + iCikj3
(
kNj

)
nk = t̂i on �σ (9.135)

where Cijkl is the elasticity tensor,Ω is the waveguide’s volume, Γ σ is the part of the
exterior surface Γ where surface tractions are present, i = 1, 2, 3, and summation is
meant over the indices j, k, and l. The eigensolutions are pairs of k and ω (dispersion
solutions). At each frequency ω, wavenumbers and mode shapes of propagative (real
wavenumber) and non-propagative (complex wavenumber) modes are generated.
However, a relatively complex second-order polynomial eigenvalue problem would
have to be solved at each frequency ω. The second-order eigenproblem is reduced
to a first-order eigensystem by introducing the vector variable v:

M · v = kM · u (9.136)

where M is a diagonal matrix that is arbitrary.
The following set of variables is introduced:

u = [u1 u2 u3 v1 v2 v3]T (9.137)

The SAFE coefficients become:

da =
[

0 D
M 0

]
; α =

[
0 iA
0 0

]
; β =

[
0 −iB
0 0

]
; c =

[
C 0
0 0

]
; a =

[
M 0
0 M

]
;

(9.138)

where:

M =
⎡

⎣
−ρω2 0 0

0 −ρω2 0
0 0 −ρω2

⎤

⎦ ; D =
⎡

⎣
−C55 −C54 −C53

− C45 −C44 −C43

− C35 −C34 −C33

⎤

⎦ ;

A =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

[
C15

C65

] [
C14

C64

] [
C13

C63

]

[
C65

C25

] [
C64

C24

] [
C63

C23

]

[
C55

C45

] [
C54

C44

] [
C53

C43

]

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

; B =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

[
C51

C56

] [
C56

C52

] [
C55

C54

]

[
C41

C46

] [
C46

C42

] [
C45

C44

]

[
C31

C36

] [
C36

C32

] [
C35

C34

]

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

;
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C =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

[
C11 C16

C61 C66

] [
C16 C12

C66 C62

] [
C15 C14

C65 C64

]

[
C61 C66

C21 C26

] [
C66 C62

C26 C22

] [
C65 C64

C25 C24

]

[
C51 C56

C41 C46

] [
C56 C52

C46 C42

] [
C55 C54

C45 C44

]

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

; (9.139)

and ρ is the density, ω is the frequency, and Cij (i,j = 1,...,6) are the stiffness
coefficients (generally complex) expressed in Voigt notation.

2 M is the size of the linearized eigensystem. The 2 M eigenvectors at each
frequency ω are the M forward-propagating and the M backward-propagating
modes.

The flowchart depicted in Fig. 9.13 presents the steps used by the proposed
algorithm for internal resonance analysis of complex nonlinear waveguides. The
first step is to calculate the dispersion solutions in the linear regime. In the second
step, the nonlinear solutions are calculated by mode expansion and perturbation
theory. Finally, the nonlinear generation condition for the various second-harmonic
modes under a given primary excitation is checked for resonance (phase matching)
and cumulative behavior (nonzero power transfer).

9.2.4 Application: Railroad Track

The first case study involves a waveguide with a complex cross-section, namely a
136-lb RE rail. Two cases of higher-harmonic generation are considered, one of
synchronicity but no power transfer with oscillating second-harmonic amplitude
(Eq. (9.131)), and the other one of synchronicity and nonzero power transfer leading
to cumulative generation (Eq. (9.132)).

The material properties considered are given in Table 9.2, where the Landau–
Lifshitz third-order constants from Sekoyan and Eremeev [54] were used.

Figure 9.14a depicts geometry and FE mesh used. The discretization employed
618 cubic Lagrangian triangular isoparametric finite elements [55]. The phase
velocity dispersion curves are presented in Fig. 9.14b in the 0–200-kHz frequency
range. The two selected combinations of primary and secondary modes as represen-
tative cases are shown in this figure.

The results show the multitude of modes that can be propagated in a rail. The
complexities increase with increasing frequency. For a primary excitation frequency
at 80 kHz, 500 propagative modes (real eigenvalues) were extracted at ω (80 kHz)

Table 9.2 Material properties assumed for the railroad track analysis

ρ (kg/m3) λ (GPa) μ (GPa) A (GPa) B (GPa) C (GPa)

7932 116.25 82.754 −760 −250 −90
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Fig. 9.13 CO.NO.SAFE algorithm flowchart (reprinted from Nucera C and Lanza di Scalea F,
Modeling of nonlinear guided waves and applications to structural health monitoring. ASCE J
Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from ASCE)

Fig. 9.14 (a) Geometry and mesh adopted of the railroad track, and (b) dispersion curve of phase
velocity with selected combinations of primary and secondary modes (reprinted from Nucera C
and Lanza di Scalea F, Modeling of nonlinear guided waves and applications to structural health
monitoring. ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from
ASCE)
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Fig. 9.15 Propagative modes in the 80–160-kHz range. (a) Flexural vertical mode (head mode),
(b) flexural horizontal mode (web mode), (c) axial mode, and (d) complex mode (reprinted from
Nucera C and Lanza di Scalea F, Modeling of nonlinear guided waves and applications to structural
health monitoring. ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with permission
from ASCE)

and at 2ω (160 kHz). Figure 9.15 shows some propagative modes identified in this
frequency range. These mode shapes indicate how the wave energy is distributed
across the waveguides. This information is extremely useful to design appropriate
wave transduction means for excitation and detection of these modes, and/or to
focus a guided wave inspection to selected regions of the cross-section, whether
the rail head, the rail web, or the rail base.

9.2.4.1 Nonresonant Combination

A flexural horizontal primary mode was selected as primary input for the
CO.NO.SAFE analysis. The nonlinear analysis identified the presence of a
synchronous secondary mode at 2ω. This mode is of a flexural horizontal type
based on the cross-sectional displacement distribution. However, this mode has a
zero power transfer from the primary mode resulting in a noncumulative behavior
with amplitude oscillating along the propagation direction. At the same time, a
significant power transfer is present between the selected primary mode and some
asynchronous secondary modes; however, these modes are not synchronous with
the primary mode and hence no cumulative behavior occurs.
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Fig. 9.16 (a) Primary mode at 80 kHz, (b) phase-matched (synchronous) but nonresonant
secondary mode at 160 kHz, and (c) modal amplitudes for propagative secondary modes (reprinted
from Nucera C and Lanza di Scalea F, Modeling of nonlinear guided waves and applications to
structural health monitoring. ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with
permission from ASCE)

Figure 9.16a, b illustrates the selected primary and secondary modes, respec-
tively. Figure 9.16c plots the modal amplitude results as calculated from Eqs. (9.131)
and (9.132) for the propagative secondary modes present at 160 kHz.



9 Nonlinear Guided Waves and Thermal Stresses 385

Fig. 9.17 (a) Primary mode at 80 kHz, (b) resonant secondary mode, and (c) modal amplitudes
for secondary propagative modes (reprinted from Nucera C and Lanza di Scalea F, Modeling of
nonlinear guided waves and applications to structural health monitoring. ASCE J Comput Civ Eng
29:B40140011–B401400115, 2015, with permission from ASCE)

9.2.4.2 Resonant Combination

In this case, a flexural vertical mode was selected as primary excitation. The
nonlinear SAFE analysis revealed another flexural vertical mode that satisfies both
synchronicity and power transfer requirements. This secondary mode can then
propagate in a resonant cumulative fashion. Figures 9.16b and 9.17a display the
selected modes, while Fig. 9.17c shows the very high value of modal amplitude
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related to the secondary resonant mode; small amplitude values associated to the
other synchronous modes, for which power transfer is absent, are also shown in the
amplitude plot.

This analysis shows that it is indeed possible to find a combination of primary
and secondary modes that is favorable to the practical utilization of nonlinear wave
propagation for a rail waveguide. Interestingly, the primary mode considered here
could also be easily generated by a piezoelectric transducer.

9.2.5 Application: Viscoelastic Isotropic Plate

The next study considered a viscoelastic isotropic polyethylene (HPPE) plate. Past
investigations of this waveguide were conducted in the linear regime to identify
dispersion curves and mode shapes [51, 56, 57]. This case is now extended to the
nonlinear regime for the identification of favorable combinations of primary and
secondary modes.

Material and geometrical properties for the plate are illustrated in Table 9.3 [56,
57], where ρ is the density, h is the thickness of the plate, cL is the longitudinal bulk
wave velocity, cT is the shear bulk wave velocity, kL is the longitudinal bulk wave
attenuation, and kT is the shear bulk wave attenuation.

A frequency-independent stiffness matrix was considered to account for the
dissipative behavior of the plate via a hysteretic formulation [51]. The resulting
complex Lame’ constants are:

λ̃ = ρc̃2
T

(
3c̃2
L − 4c̃2

T

) (
c̃2
L − 2c̃2

T

)

2
(
c̃2
L − c̃2

T

)2
(

1 − c̃2
L−2c̃2

T

c̃2
L−c̃2

T

)(
1 + c̃2

L−2c̃2
T

2
(
c̃2
L−c̃2

T

)

) = 3.51 + 0.06i GPa (9.140)

μ̃ = ρc̃2
T

(
3c̃2
L − 4c̃2

T

)

2
(
c̃2
L − c̃2

T

) (
1 + c̃2

L−2c̃2
T

2
(
c̃2
L−c̃2

T

)

) = 0.86 − 0.08i GPa (9.141)

In Eqs. (9.140) and (9.141), the complex bulk wave velocities (longitudinal and
transverse) are calculated as:

c̃L,T = cL,T
(

1 + i kL,T
2π

)−1

(9.142)

Table 9.3 HPPE plate material properties

ρ (kg/m3) h (mm) cL (m/s) cT (m/s) kL (Np/wavelength) kT (Np/wavelength)

953 12.7 2344 953 0.055 0.286
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The resultant viscoelastic stiffness matrix, with terms expressed in GPa, is given
by:

C̃=

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

λ̃+2μ̃ λ̃ λ̃ 0 0 0
λ̃ λ̃+ 2μ̃ λ̃ 0 0 0
λ̃ λ̃ λ̃+ 2μ̃ 0 0 0
0 0 0 μ̃ 0 0
0 0 0 0 μ̃ 0
0 0 0 0 0 μ̃

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

5.23−0.09i 3.51+0.06i 3.51+0.06i 0 0 0
3.51+0.06i 5.23−0.09i 3.51+0.06i 0 0 0
3.51+0.06i 3.51+0.06i 5.23−0.09i 0 0 0

0 0 0 0.86−0.08i 0 0
0 0 0 0 0.86−0.08i 0
0 0 0 0 0 0.86−0.08i

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

(9.143)

The complex part of the third-order constants, not available in the literature,
was neglected in the numerical results. This is a reasonable simplification, since
the existence or the absence of resonant conditions primarily depends on general
cross-sectional symmetries of the modes that are not affected in any substantial way
by the material’s third-order constants.

Dispersion curves were obtained adapting the linear SAFE algorithm to imple-
ment periodic boundary conditions (PBC) [58]. According to this approach, the
present plate system was modeled using a mesh of just 60 quadrilateral cubic
Lagrangian elements mapped and deployed in a 3.17 × 12.7-mm periodic cell,
Fig. 9.18a. The dispersion solutions are shown in Fig. 9.18b, c in the 0–500-kHz
frequency range, and show very good agreement with the previous results [59].
White circles are used to indicate the primary and secondary modes considered in
the nonlinear analysis.

Since no reference value was available for the third-order Landau–Lifshitz
elastic constants of the specific HPPE material, these properties were taken from
a very similar plastic polymer (Polystyrene) [60] as A = −10.8, B = −7.85, and
C = −9.81 GPa.

The nonlinear analysis was conducted between 250 kHz (primary mode) and
500 kHz (secondary mode), and by using a 10% threshold between real and
imaginary wavenumber components to separate propagative modes from evanescent
modes. One particular mode (k = 669.62 + 87.56i, cph = 2345.80 m/s at 250 kHz)
was selected as input (primary mode). In Fig. 9.19, most of the double-harmonic
modes have oscillatory amplitude, with one standing out with large amplitude
suggesting cumulative behavior. Figure 9.19 also shows that the selected primary
mode is a complex axial symmetric mode. The mode shape at the double harmonic
is also typical of axial vibrations. The fact that the cross-sectional energy is confined
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Fig. 9.18 (a) Geometry and mesh for the 2D periodic cell of the HPPE plate (dimensions in mm),
(b) dispersion curves of phase velocity in the 0–500-kHz range with primary and secondary modes
for nonlinear analysis indicated (circles), and (c) attenuation curve (dB/m) in the 0–500-kHz range
with primary and secondary modes indicated (circles) (reprinted from Nucera C and Lanza di
Scalea F, Modeling of nonlinear guided waves and applications to structural health monitoring.
ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from ASCE)

to the central area of the waveguide’s cross-section makes this secondary mode at
500 kHz quite suitable for practical structural diagnostics because of the reduced
leakage into the surrounding medium. Furthermore, Fig. 9.18c shows that both
primary and secondary modes have very small attenuation values (especially the
secondary mode at 500 kHz), and hence large inspection ranges could be obtained
by this combination.

9.2.6 Application: Anisotropic Elastic Composite Laminate

The following case study is that of a composite laminate made of T800/924 graphite
epoxy with lay-up of [±45/0/90]S (quasi-isotropic). The same components were
investigated using the software DISPERSE in the linear regime [59]. Each lamina
has a thickness of 0.125 mm for a laminate thickness of 1 mm. The properties
for each single lamina are: ρ = 1500 kg/m3, E11 = 161 GPa, E22 = 9.25 GPa,
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Fig. 9.19 Modal amplitudes for secondary modes with contour plots and 3D views of the selected
primary and secondary modes for the viscoelastic HPPE plate (reprinted from Nucera C and Lanza
di Scalea F, Modeling of nonlinear guided waves and applications to structural health monitoring.
ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from ASCE)

G12 = 6.0 GPa, ν12 = 0.34, and ν23 = 0.41. The stiffness matrix is given by, in
GPa:

C =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

168.4 5.45 5.45 0 0 0
5.45 11.3 4.74 0 0 0
5.45 4.74 11.3 0 0 0

0 0 0 3.28 0 0
0 0 0 0 6.0 0
0 0 0 0 0 6.0

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

(9.144)

The stiffness matrix of each of the transversely isotropic laminae was rotated
opportunely according to the laminate’s lay-up. The nonlinear part of the stiffness
matrix (third-order elastic constants) has been approximated by an isotropic non-
linear matrix, because third-order constants are not available for this material in
the literature. As discussed for the viscoelastic isotropic plate, this approximation
is reasonable because the cross-sectional symmetry of the modes, and hence the
existence or absence of resonant conditions, is not affected by the particular value
of the third-order constants.

The results of this section were obtained for propagation along the fiber direction
1 of the 0◦ ply. A mesh of 48 quadrilateral cubic Lagrangian elements was applied
to a 0.3 × 1-mm rectangular cell with PBC on both sides. Figure 9.20 shows the
geometry of the laminate periodic cell, the finite element mesh, and the resultant
Lamb wave solutions between 50 kHz and 5 MHz. The dispersion results agree
extremely well with the previously published results [51, 59]. The primary and
secondary modes considered for the nonlinear analysis, along with two particular
propagative modes at 3 MHz (labeled as Mode M1 and Mode M2), are highlighted
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Fig. 9.20 (a) Geometry of the 2D periodic cell for the eight-layer quasi-isotropic laminate
(dimensions in mm), (b) finite element mesh with periodic boundary conditions, and (c) dispersion
curves of phase velocity between 50 kHz and 5 MHz with specific modes at 3 MHz, and with
selected primary–secondary nonlinear mode combination (reprinted from Nucera C and Lanza di
Scalea F, Modeling of nonlinear guided waves and applications to structural health monitoring.
ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from ASCE)

in Fig. 9.20c using different symbols. Modes M1 and M2 have complex mode
shapes due to the multilayered assembly, where abrupt changes in properties exist
at the boundaries between two layers.

Correspondingly, sharp changes in slope in the displacement fields can be
observed at the interfaces between adjacent layers, as depicted in Fig. 9.21.
Figure 9.21a, c depicts the out-of-plane displacement field (along the direction of
propagation) as a 3D contour plot for the M1 and M2 modes. Figure 9.21b, d shows
the in-plane displacement field (in the cross-sectional plane) as a vector plot. The
third-order elastic constants assumed for each lamina are: A = 15, B = −33, and
C = −14 GPa [61]. The nonlinear post-processing was carried out between 2.5 MHz
and 5.0 MHz. A complex primary mode that is a combination of axial and flexural
horizontal modes was selected as the input. One of the propagative modes at the
double harmonic (5 MHz) was found in internal resonance.

The modal amplitude plots are shown in Fig. 9.22 together with the mode
shapes of the primary and the secondary modes. This figure shows one predominant
resonant mode at 5 MHz with amplitude much larger than all others. Both primary
and secondary modes concentrate the wave energy in the center of the waveguide.
As remarked for a previous case study considered, this fact makes these modes
attractive in a practical test because of the reduced leakage into the surrounding
media that may be present (e.g., water, paint, ice, etc.).
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Fig. 9.21 Selected modes at 3 MHz for the composite laminate. (a) Contour plot of out-of-plane
displacement field for mode M1, (b) vector plot of in-plane displacement field for mode M1, (c)
contour plot of out-of-plane displacement field for Mode M2, and (d) vector plot of in-plane
displacement field for Mode M2 (reprinted from Nucera C and Lanza di Scalea F, Modeling of
nonlinear guided waves and applications to structural health monitoring. ASCE J Comput Civ Eng
29:B40140011–B401400115, 2015, with permission from ASCE)

9.2.7 Application: Reinforced Concrete Slab

The last case considered is that of a reinforced concrete slab. This is a case of a
heterogeneous structure, made of two very different materials. Predoi et al. [57] have
previously discussed how the reinforcement influences the guided waves dispersion
in the slab. This chapter presents results pertaining to the nonlinear behavior of this
propagation.

A 2D periodic cell (6 cm in width and 8 cm in height) with PBC was modeled.
The steel bars are assumed to be 1.6 cm in diameter. The FE mesh consisted of 528
triangular cubic Lagrangian elements assembled using Delaunay’s algorithm [61].
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Fig. 9.22 Modal amplitude plot for secondary modes with contour plots and 3D views of the
selected primary and secondary modes for the elastic composite laminate (reprinted from Nucera
C and Lanza di Scalea F, Modeling of nonlinear guided waves and applications to structural health
monitoring. ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from
ASCE)

Fig. 9.23 (a) Geometry and finite element mesh for the periodic cell of a reinforced concrete slab
(dimensions in cm), and (b) dispersion curves of phase velocity in the 0–100-kHz range with rele-
vant modes at 40 kHz, along with primary and secondary modes for nonlinear analysis (reprinted
from Nucera C and Lanza di Scalea F, Modeling of nonlinear guided waves and applications to
structural health monitoring. ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with
permission from ASCE)

Material properties for the concrete domain were assumed as: ρ = 2133 kg/m3,
C11 = 33.2 GPa, C66 = 11.8 GPa [63], A = −1813 GPa, B = −1376.5 GPa, and
C = −1630.5 GPa [64]. For the steel bars, values used were: ρ = 7900 kg/m3,
C11 = 280 GPa, C66 = 80 GPa [57], A = −760 GPa, B = −250 GPa, and
C = −90 GPa [54]. Geometry and other details of the FE model are presented
in Fig. 9.23a.
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Fig. 9.24 Representative modes at 40 kHz for the reinforced concrete slab cell. (a) Contour plot
of out-of-plane displacement field for Mode M3, (b) vector plot of in-plane displacement field
for Mode M3, (c) contour plot of out-of-plane displacement field for Mode M4, and (d) vector
plot of in-plane displacement field for Mode M4 (reprinted from Nucera C and Lanza di Scalea
F, Modeling of nonlinear guided waves and applications to structural health monitoring. ASCE J
Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from ASCE)

Since specific material properties were considered separately for the steel FE
domain and the concrete FE domain, the model properly represented the hetero-
geneity of the structure. The analysis carried out for the RC slab fully accounted for
the material inhomogeneity because the model assumes also full bond (continuity)
between rebars and surrounding steel. Since the emphasis of this study is the
identification of nonlinear resonant conditions, neglecting rebar-concrete disbonds
is a reasonable simplification.

Wave dispersion solutions for the reinforced concrete slab were obtained in the
0–100-kHz frequency range and are shown in Fig. 9.23b. Complex mode shapes
are found, as a result of the substantial difference in properties between steel and
concrete, with abrupt variations at the interfaces. Two of the propagative modes at
40 kHz (both highlighted in Fig. 9.23b and labeled as Mode M3 and Mode M4) are
represented in detail in the following Fig. 9.24.
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Fig. 9.25 Modal amplitudes of secondary modes of the reinforced concrete slab with contours
and 3D views of the selected primary and secondary modes (reprinted from Nucera C and Lanza
di Scalea F, Modeling of nonlinear guided waves and applications to structural health monitoring.
ASCE J Comput Civ Eng 29:B40140011–B401400115, 2015, with permission from ASCE)

A flexural horizontal mode at 40 kHz was considered as the primary mode by the
CO.NO.SAFE algorithm. A cell half in width was utilized to speed up the analysis.
The smaller cell was defined by appropriately placing PBCs. The nonlinear results
are shown in Fig. 9.25. This figure shows the presence of few asynchronous modes
with relatively large power transfer (modal amplitude values inside the circle) and
only a single resonant secondary mode that is also synchronous (phase-matching).
The figure also shows the displacement distribution of this favorable primary–
secondary mode combination.

9.2.8 Conclusions

This chapter examined the identification of suitable combinations of primary and
second-harmonic mode that satisfy the resonance and cumulative propagation
conditions in waveguides that are complex in either their geometry or their con-
stituent materials. To model nonlinear propagation in such complex waveguides, the
S.A.F.E. algorithm has been extended to the nonlinear regime and implemented in
the COMSOL multipurpose commercial FEM code. This CO.NO.SAFE framework
is able to first extract the full dispersion solutions for the waveguide and then
identify cumulative resonant secondary modes for a given primary mode. Demon-
strations of this algorithm were given for the following case studies: a railroad track,
a viscoelastic isotropic plate, an anisotropic multilayered composite laminate, and
a heterogeneous reinforced concrete slab. In all these cases, the proposed algorithm
successfully identified appropriate combinations of resonant primary and secondary
waveguide modes that exhibit the desired conditions of synchronicity and large
cross-energy transfer. These combinations should be considered by any practical
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system that aims at utilizing nonlinear wave propagation for structural diagnostics or
other purposes (detect defects, measure quasi-static loads or instability conditions,
and so on).

9.3 Nonlinear Waves in Constrained Solids Under
Temperature Fluctuations (Thermal Stress Case)

9.3.1 Introduction

Much work exists in the literature on the theory of nonlinear thermoelasticy. For
example, the work by Biot [65] considers geometrical nonlinearities, including
isothermal and adiabatic buckling and the related thermoelastic creep buckling,
using variational principles. The work by Dillon [66] identifies higher-order elastic
constants for the case of material nonlinearity. It derives the constitutive equations
to reflect nonlinear thermoelasticity of a solid and examines, in particular, torsional
oscillations in a solid bar subjected to temperature variation. Slemrod [67] studied
the existence of smooth solutions for a nonlinear elastic bar where heat conduction
is a dissipative mechanism. This work also derives nonlinear thermoelasticity
solutions applied to longitudinal motion.

Much less investigated is the case of nonlinearity-driven higher-harmonic wave
generation for the measurement of quasi-static stresses/loads in structures. One
specific application in this area is the measurement of thermal stresses arising from
constrained thermal expansions of solids. A typical application of this problem is
the management of the thermal load in Continuous-Welded Rail (CWR) during
temperature excursion [68–70]. If left unchecked, this issue can lead to thermal
buckling of the rail in hot weather. This section summarizes the work by Nucera
and Lanza di Scalea [39] and Nucera et al. [70] in this area.

9.3.2 Model

The thermal expansion of solids, and the related elastic constants, is a topic that
has been studied extensively in the previous literature. The work by Ledbetter
[71] develops a model to link volumetric thermal expansion to elastic constants
and atomic volume. This reference studies the case of free thermal expansion. The
case at hand in this paper, however, regards the constrained thermal expansion case
that requires a different approach to link wave nonlinearities to thermal stresses, as
explained below.

Nonlinear phenomena arising in wave propagation have been classically treated
using acoustoelasticity [72] or Finite-Amplitude Wave theory (Cantrell [73–75]).
These studies rely on the application of finite strains (or, similarly, finite-amplitude
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waves) as a requirement for the existence of nonlinearity. However, the generation of
nonlinear effects (higher harmonics in particular) in solids that are constrained and
subjected to thermal excursions requires a different theoretical perspective. In fact,
in this case the solid cannot globally deform because of the boundaries. At the same
time, the lattice particles acquire an increased energy of vibration (proportional to
temperature) in agreement with classical material science theories [76]. Since quasi-
static strains in constrained cases can be theoretically zero (fully constrained case),
any nonlinear wave propagation must be explained with causes that are different
from classical sources of nonlinearities.

9.3.2.1 Interatomic Potential

The interatomic potential defines the relationship between elastic potential energy
and deformations at the atomistic level. The general Mie potential, that is commonly
used for solids, can be written as [77]:

VMIE(r) =
(

n

n−m
)( n
m

) m
n−m
w
[(q
r

)n −
(q
r

)m]
(9.145)

where r is the interatomic distance, w is the potential well depth, q is the Van der
Waals radius, and n and m are material coefficient parameters. The Van der Waals
radius represents the interatomic distance at which the interatomic potential is null,
while the potential well depth quantifies the strength of the interaction between the
two atoms. A schematic of this relationship is shown in Fig. 9.26a.

The interatomic force (Fig. 9.27b) is given by the first derivative of the potential,
therefore:
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[
m
( q
r

)m − n( q
r

)n]

r (n−m) (9.146)

Equation (9.145) contains a “repulsive” part that is quite steep (first term in the
square brackets), and an “attractive” part that is much smoother (second term in the
square brackets). The minimum of the potential curve is the equilibrium position of
the atoms, r0, where the repulsive force is equal to the attractive force and the net
force is zero (Fig. 9.26).

Most commonly, the coefficients n and m are taken such that n = 2 m. A specific
form of the interatomic potential most often used for its computational efficiency
was proposed by Lennard-Jones [79–81], where n = 12 and m = 6. From Eq.
(9.145), the Lennard-Jones potential is therefore:

VLJ = 4w

[(q
r

)12 −
(q
r

)6
]

(9.147)
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Fig. 9.26 General form of (a) interatomic potential and (b) interatomic force, as a function of
interatomic distance (reprinted from [78])

9.3.2.2 Potential Energy for Constrained Thermal Expansion

When the temperature increases and the solid is free to expand, the atoms’
equilibrium distance r0 increases, according to the dashed curve in Fig. 9.27, also
known as the Average Bonding Distance (ABD), or the points of equal distance with
the repulsive and attractive branches of the potential. The ABD curve represents
the well-known thermal expansion of the material, which directly results from
the “anharmonicity,” or asymmetry, of the interatomic potential curve. If, in fact,
the potential curve were symmetric around the minimum point at r = r0, the
midpoint distance (ABD curve) would become a vertical straight line and no thermal
expansion of the material would occur.

The ABD curve, rABD(V), can be easily calculated from the Mie potential with
n = 2 m by equating the repulsive force to the attractive force:
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Fig. 9.27 Average Bonding Distance for free expansion and residual potential for perfectly
constrained thermal expansion (boundaries with infinite stiffness) (reprinted from [78])
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Recalling conventional linear thermal expansion theory, the rABD curve can be
also expressed as a function of temperature as:

rABD(T ) = r0 [1 + α (T − T0)] (9.149)

where α is the thermal expansion coefficient of the material, and �T = T-T0 is the
temperature excursion from the initial interatomic distance r0.

If the solid is free to expand (free thermal expansion), the minima of the potential
at the various temperatures lie on the rABD curve, and the potential well depth rises
to reflect the additional kinetic energy imparted by the temperature increase. In this
case, the new positions of the atoms at all temperatures are still at zero net force
(strain without stress).

If, instead, the solid is prevented from expanding due to external constrains, it
is known that it develops thermal stresses. Therefore, the interatomic potential at T
does not have a minimum point (zero force). Rather, it takes a value that corresponds
to the V(r) curve for the original T0 temperature, calculated at the current “free
expansion” position rABD(T) (see Fig. 9.27). For this case of constrained thermal
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expansion, the general form of the current interatomic potential at T can be found
by expanding Eq. (9.145) around the rABD(T) value. Therefore:

V (r, T ) = V (rABD(T ))+ ∂V

∂r

∣∣∣
∣
r=rABD(T )

· (r − rABD(T ))+ 1

2

∂2V

∂r2

∣∣∣
∣
r=rABD(T )

×(r−rABD(T ))2+1

6

∂3V

∂r3

∣∣∣∣
r=rABD(T )

· (r−rABD(T ))3+ . . .=A(T )+B(T ) ·(9.150)

(r − rABD(T ))+ 1

2
C(T ) · (r − rABD(T ))2 + 1

6
D(T ) · (r − rABD(T ))3 + . . .

where A(T) is an initial energy, B(T) = ∂V/∂r, C(T) = ∂2V/∂r2, and
D(T) = ∂3V/∂r3, with the derivatives calculated at r = rABD(T).

The expansion above is only carried out to the cubic order O(r3) to account for
second-harmonic wave generation. If higher harmonics are of interest, the expansion
should be carried out further. The terms C(T) and D (T) are similar to the elastic
constants of classical nonlinear elasticity caused by finite quasi-static deformations
or finite-amplitude waves [73]. For example, the term C is analogous to the second-
order elastic stiffness, and the term D is analogous to the third-order elastic stiffness.
The difference with classical nonlinear elasticity, however, is that the nonlinearity
(arising from the O(r3) term in the potential, or the term D) does not arise from finite
deformations (these are ideally zero for perfectly constrained thermal expansion),
but rather from the “residual” strain energy stored as internal forces.

Equation (9.150) strictly applies to the case of fully constrained solids (infinitely
stiff boundaries), where the entirety of the free thermal expansion is prevented
(zero deformations or strains), and therefore the full “residual” potential V(r,T) is
absorbed in the form of internal thermal forces (or stresses).

For partially constrained solids (boundaries with finite stiffness), the solid will
partially expand under �T, and only the difference between the “free” thermal
expansion and the “actual” thermal expansion will develop internal thermal forces.
As shown in Fig. 9.28, in the partially constrained case, the solid will expand to a
reduced distance, rPC. For symmetric boundaries with spring stiffness kb (Fig. 9.28),
simple equilibrium indicates that the new interatomic distances rPC(T) will be a
function of the “free” expansion distance rABD(T) and the material linear stiffness
S, in the following manner:

rPC(T ) = S · rABD(T )− kb · r0
S − kb (9.151)

For the simple case of a continuum rod of length L and cross-sectional area
A, for example, the term S is the longitudinal rod stiffness EA/L, where E is the
Young’s modulus. For kb → ∞ (infinitely stiff boundaries), Eq. (9.151) retrieves
the fully constrained case, yielding lim

kb→∞rPC(T ) = r0, therefore zero deformation.
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Fig. 9.28 Partially constrained thermal expansion (boundaries with finite stiffness) (reprinted
from [78])

At the other limit, for kb → 0, Eq. (9.151) retrieves the free expansion case, yielding
lim
kb→0

rPC(T ) = rABD(T ).
Equation (9.150) can therefore be simply generalized to the partially constrained

case by expanding V(r) around the points rABD-PC (T) = r0 + (rABD(T)—rPC(T))
shown in Fig. 9.28, which is the portion of the free thermal expansion that is
prevented by the supports:

V (r, T ) = V (rABD−PC(T ))+ ∂V
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This equation can also be expressed in terms of A(T), B(T), C(T), and D(T),
where now the derivatives ∂nV/∂rn for the partial expansion case are calculated
at r = rABD-PC(T) instead of at r = rABD(T) as for the free expansion case. The
rABD-PC(T) positions are easily calculated from Eq. (9.151) based on the stiffness of
the partial constraints and that of the structure at hand. Therefore, for the purposes
of this paper, the only relevant difference between the fully constrained case and the
partially constrained case is a scaling down of the nonlinearity term D(T) to reflect
the reduced thermal forces caused by the partial expansion.

9.3.2.3 Nonlinear Wave Equation for Constrained Thermal Expansion

Once the expression of the elastic potential between two atoms up to cubic order
O(r3) is obtained, the derivation of the nonlinear wave equation can follow classical
equilibrium considerations.

Equation (9.150) can be extended to a 1-D lattice comprising p particles as shown
in Fig. 9.29. Considering an infinitesimal deformation �u from initial equilibrium,
the elastic potential of the p particles can be written as:

V = A(T )+
∑
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B(T ) ·�u+ 1

2

∑

p
C(T ) ·�u2 + 1

6

∑

p

D(T ) ·�u3 + . . .

(9.153)

Applying Newton’s second law to the nth particle, the differential equation
governing its motion reads:

md
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(9.154)

Equation (9.154) can be simplified by making use of the Dirac delta function,
namely:

Fig. 9.29 1D Lattice of
atoms connected by nonlinear
springs before and after an
infinitesimal deformation is
imposed to the system [73]
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∑

p

(
dup+1

dun
− dup
dun

)
= δp+1,n − δp,n = 0 (9.155)

Substituting Eq. (9.155) into Eq. (9.154) brings to:

m
d2un

dt2
= C(T ) · [(un+1 − un)− (un − un−1)]

+1

2
D(T ) ·
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2
]

+ . . . (9.156)

By reformulating Eq. (9.156), one can express the force exerted on the generic
nth particle by adjacent particles n + 1 and n-1:

m
d2un

dt2
= Fn,n+1 − Fn,n−1 (9.157)
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+ . . .

where the term h indicates the original undeformed distance between adjacent
particles.

All the concepts discussed for the 1D lattice of atoms can be easily extended to
the 3D case (Fig. 9.30). In this scenario, everything that was applicable for the nth
particle can be used now for the nth plane. The equation of motion will be derived
for the case of 1D longitudinal bulk waves traveling along direction x1. Introducing
the unit surface S1, perpendicular to axis x1, the equation of motion for the nth plane
is:

m

S1

d2u1,n

dt2
= Fn,n+1

S1
− Fn,n−1

S1

= C(T )h1

S1
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)2
]

+ · · ·

where the term h1 is the original undeformed distance along direction x1 between
adjacent particles. If the term h1 tends to zero in Eq. (9.158), one passes from the
discrete system to the continuum system. From the definition of derivative, in the
continuum limit Eq. (9.158) can be rewritten as:
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Fig. 9.30 3D Lattice of
atoms connected by nonlinear
springs before and after an
infinitesimal deformation is
imposed to the system [73]
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By dividing Eq. (9.159) by h1, letting h1 tend to zero for the continuum limit, and
letting m/(S1h1) = ρ (the mass density of the material in the initial configuration),
one can derive:
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where C2 = C(T ) h1/S1 and C3 = D(T ) h2
1/S1 are new temperature-dependent

elastic coefficients of second-order and third-order, respectively; the terms C2 and
C3 combine the influence of the classical elastic potential with the new nonlinear
effects caused by the prevented thermal expansion.

The closed-form expressions of the terms C(T) and D(T) can be simply obtained
by differentiating the potential, and are given in Eqs. (9.A1), (9.A2), (9.A3), and
(9.A4) of the Appendix.
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Equation (9.160) represents the nonlinear partial differential equation for the
propagation of longitudinal bulk waves in solids subjected to constrained thermal
expansion.

In light of the above result, the two new definitions for longitudinal bulk wave
velocity and nonlinear parameter are:

V1 =
√
C2

ρ
=
√
C(T ) h1

ρS1
LONGITUDINAL WAVE SPEED (9.161)

γ1 = −C3

C2
= −D(T ) h1

C(T )
NONLINEAR PARAMETER (9.162)

A dimensional analysis confirms the nature of these parameters. Since, from Eq.
(9.153), C(T) has units of Joule/m2, and D(T) has units of Joule/m3, Eqs. (9.161)
and (9.162) indicate that V1 has units of velocity (m/sec), and γ1 is dimensionless.

Equation (9.161) shows that the wave speed depends on the quadratic term O(r2)
of the interatomic potential, C(T). This term is associated with the curvature of the
potential that is changing with interatomic distance. According to classical linear
Hooke’s theory, this curvature (hence material stiffness) is approximated constant
through the deformation range, resulting in a constant wave velocity. By considering
the full asymmetric potential as a function of the prevented thermal expansion, the
wave velocity is found to change with thermal stresses. Trends of V1 from Eq.
(9.161) are plotted in Fig. 9.31 assuming a Lennard-Jones interatomic potential
(n = 12, n = 6) and sample values of Van der Waals radius q = 4 Angstroms, and
potential well depth w = 40 kJ/mol. The material density is assumed that of steel,
ρ = 7800 kg/m3. The expression for C(T) given in Eq. (9.A3) of the Appendix was
used.

Specifically, Fig. 9.31a plots the relative change in wave speed[
V1(T )− V1 (T0)

]
/V1 (T0), as a function of interatomic distance r*. The

temperature T0 is the stress-free value (corresponding to equilibrium distance
r0* = 4.489 Angstroms—minimum of the assumed Lennard-Jones potential). The
independent variable r* represents the (prevented) thermal expansion rABD(T) for
the fully constrained case, or the (partially prevented) thermal expansion rABD-PC(T)
for the partially constrained case. The trend in Fig. 9.31a clearly indicates that the
wave speed decreases with increasing (prevented) thermal expansion. This indicates
a “softening” effect, consistently with the decrease in curvature of the interatomic
potential, C(T), when moving slightly to the right of the equilibrium position r0*
(see, for example, Fig. 9.27).

Figure 9.31b plots the same velocity change
[
V1(T )− V1 (T0)

]
/V1 (T0) as a

direct function of the temperature change, �T = T–T0. This plot was obtained
from the previous values in Fig. 9.31a by simply using the linear thermal expansion
relation in Eq. (9.149), and assuming a thermal expansion coefficient for steel of
α = 11 × 10−6/◦C and a fully constrained case. The range of temperature excursion
considered in Fig. 9.31b was arbitrarily chosen as 100 ◦C. For the case considered,
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Fig. 9.31 Relative change in longitudinal wave velocity
[
V 1(T )− V 1 (T0)

]
/V 1 (T0) (a) as a

function of “prevented” thermal expansion of interatomic distance, and (b) as a function of
temperature change from equilibrium (Lennard-Jones potential, n = 12, n = 6, q = 4 Angstroms,
w = 40 kJ/mol, α = 11 × 10−6/◦C, and ρ = 7800 kg/m3) (reprinted from [78])

for example, the longitudinal wave velocity is expected to decrease by about 1% for
a temperature increase of 100 ◦C in the fully constrained solid.

The parameter γ1 of Eq. (9.162) contains the nonlinear portion of the potential
through the cubic term O(r3), D(T). As mentioned above, the difference from
classical nonlinear wave theory is that the cubic O(r3) energy term arises from
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the prevented thermal expansion due to the asymmetry of the interatomic potential,
rather than from applied finite deformations. The nonlinear parameter is discussed
more in depth in the next section.

9.3.2.4 Solution of the Nonlinear Wave Equation: Second-Harmonic
Wave Generation for Constrained Thermal Expansion

Equation (9.160) can be solved by using perturbation analysis [8], thereby decom-
posing the displacement field into the linear portion, u1

(1), and the nonlinear portion,
u1

(2), with u1
(1) < < u1

(2).
The final solution to the nonlinear wave equation can be written in the classical

form as:

u1 = u1
(1) + u1

(2) = A1 cos (kx1 − ωt)− 1

8
γ1k

2A1
2x1 sin 2 (kx1 − ωt) (9.163)

where x1 is the wave propagation distance, and k is the wavenumber k = ω/V1.
The nonlinearity thus generates a second-harmonic contribution at 2ω under a

fundamental excitation at ω. The magnitude of the second-harmonic is proportional
to the nonlinear parameter, γ1 (given in Eq. (9.162)), as well as to the wave
propagation distance, x1 (“cumulative” behavior). As in classical nonlinear wave
theory, Eq. (9.163) only holds for a limited propagation distance that satisfies the
perturbation condition u1

(1) < < u1
(2).

Experimentally, it is customary to directly measure the amplitudes of the
second harmonic, A2, and that of the fundamental frequency, A1. Therefore, an
“experimental” nonlinear parameter can be defined from the “theoretical” nonlinear
parameter in Eq. (9.162) as:

β = |A2|
A1

2 = 1

8
γ1 k

2x1 = π2

2
γ1
f 2

V1
2 x1 EXPER. NONLINEAR PARAMETER

(9.164)

where f is the excitation wave frequency (fundamental), V1 is the longitudinal bulk
wave speed, and x1 is the wave propagation distance. Substituting Eqs. (9.161) and
(9.162) into Eq. (9.164), the experimental nonlinear parameter can be also written
in terms of the second-order and third-order energy terms, C(T) and D(T), as:

β(T )=|A2|
A1

2
=− D(T )

C2(T )

π2ρ S1 x1 f
2

2
EXPER. NONLINEAR PARAMETER

(9.165)
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where C(T) = ∂2V/∂r2, D(T) = ∂3V/∂r3, and the derivatives are calculated at
r = rABD(T) for the fully constrained case, and at r = rABD-PC(T) for the partially
constrained case.

Plots of the nonlinear parameter β from Eq. (9.165) are given in Fig. 9.32
for a Lennard-Jones interatomic potential (n = 12, n = 6) and values of q = 4
Angstroms, and w = 40 kJ/mol, without loss of generality for the nonlinear trends.
The β values in this figure have been normalized to all terms independent of
temperature, to isolate clearly the temperature-dependent terms C(T) and D(T).
Figure 9.32a plots β as a function of interatomic distance r*, where the independent
variable r* represents the (prevented) thermal expansion rABD(T) for the fully
constrained case, or the (partially prevented) thermal expansion rABD-PC(T) for
the partially constrained case. The nonlinear parameter increases with increasing
“prevented” thermal expansion, i.e., increasing thermal stress absorbed by the
constrained solid. This trend is the combined effect of a decreasing curvature of the
interatomic potential, C(T) (that is also responsible for the wave velocity decrease
discussed in the previous section), and an increasing cubic term D(T). Figure
9.32b plots the same nonlinear parameter β as a direct function of the temperature
change, �T = T–T0, from the initial, stress-free temperature T0 (corresponding to
equilibrium distance r0). This plot was obtained directly from the previous values in
Fig. 9.32a by simply using the linear thermal expansion relation in Eq. (9.149) and
assuming, again, α = 11•10−6/◦C (steel) and a fully constrained case. The range of
temperature excursion considered in Fig. 9.32b was arbitrarily chosen as 100 ◦C.
It is clear that the nonlinear parameter monotonically increases with increasing
temperature, as the constrained thermal expansion builds nonlinear effects through
thermal stresses. The slope of the <β vs. T > curve will, of course, depend on the
coefficient of thermal expansion of the material, with larger slopes expected for
larger α’s. This slope will also decrease moving from a fully constrained case to a
partially constrained case, according to Eq. (9.151).

The next section presents an experimental validation on a steel block subjected
to constrained thermal expansion.

9.3.3 Experimental Validation: Nonlinear Waves in a Steel
Block under Constrained Thermal Expansion

A series of experimental tests were performed on a steel block in order to confirm
the existence of nonlinearity-driven higher harmonics in longitudinal bulk waves
in solids where free thermal expansion is prevented. The block (Fig. 9.33) was
wrapped with a high-temperature heating tape (electrical heating) to progressively
increase its temperature from 30 to 80 ◦C. Temperature was measured by a
thermocouple.

As shown in Fig. 9.33, a 2.25-MHz piezoelectric longitudinal transducer was
installed on one side of the block. The wave was detected on the opposite side
by a second piezoelectric transducer centered at 5.00 MHz (for second-harmonic
measurement). High-temperature delay lines were placed between the transducers
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Fig. 9.32 Normalized nonlinear parameter β (a) as a function of “prevented” thermal expansion
of interatomic distance, and (b) as a function of temperature change from stress-free position
(Lennard-Jones potential, n = 12, n = 6, q = 4 Angstroms, w = 40 kJ/mol, and α = 11 × 10−6/◦C)
(reprinted from [78])

and the block to account for the high temperatures. A National Instruments PXI
DAQ unit generated the excitation and received the detection. A frequency sweep
in the 1.5–2.5-MHz range was utilized with a step of 250 kHz. At each temperature
level, the first arrival in the received signals at each frequency was analyzed by a fast
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Fig. 9.33 Experimental setup used for the constrained steel block condition (reprinted from [78])

Fourier transform (FFT) and an experimental nonlinear parameter, β, was evaluated
from the FFT spectra as the ratio between the amplitude of the second harmonic
and the squared amplitude of the fundamental excitation frequency, i.e., A2/A1

2.The
nonlinear parameter was plotted against temperature.

The measurements were performed under two test conditions. In one condition,
the steel block was placed on two rollers and left unconstrained so that it could freely
expand under the temperature increase. In the other condition (Fig. 9.33), the block
was axially constrained using two stiff L-brackets specially designed to prevent the
deformations due to the temperature increase. The two brackets were bolted on the
test table.

A screenshot from an IR camera used to monitor the uniformity of the tempera-
ture distribution when heating is shown in Fig. 9.34.

A typical waveform measured at a 1.75-MHz excitation frequency is shown in
Fig. 9.35, where the first arrival has been highlighted.

The results for both constrained and unconstrained cases are compared in Fig.
9.36 for two representative excitation frequencies, 1.75 MHz (Fig. 9.36a) and
2 MHz (Fig. 9.36b). The absolute values of β are not directly comparable between
the unconstrained and constrained cases since the transducers were repositioned
after the installation of the brackets, resulting in a change in transducer/part
coupling. The trends of <β vs. temperature > are, instead, comparable. The results
show that when the block is free to expand, no clear trend is observed for the <β
vs. temperature> curve. However, in the constrained case, the nonlinear parameter
increases monotonically with temperature (except for the very high temperatures)
as a result of the prevented thermal expansion and the resulting thermal stresses.
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Fig. 9.34 Temperature
distribution in the specimen
assembly from infrared
camera (reprinted from [78])

Fig. 9.35 Time history of received signal with 1.75 MHz as excitation frequency (first arrival is
highlighted) (reprinted from [78])

The same trend is seen for both excitation frequencies of 1.75 and 2 MHz, and it
is consistent with the theoretical predictions presented in the previous section (see
Fig. 9.32).
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Fig. 9.36 Nonlinear parameter β vs. temperature measured for unconstrained and constrained
steel block at two excitation frequencies: 1.75 MHz (a), and 2 MHz (b) (reprinted from [78])

In the constrained case, the slight drop in β at the very high temperatures could
be due to either temperature-dependent wave attenuation effects (not considered in
the theoretical model) or degradation of the transducer/couplant response at the high
temperatures (the delay lines have a finite, although small, thermal conductivity).

The changes in β values between the two excitation frequencies for the con-
strained case can be compared since the transducers were not moved between the
two excitations. It can be seen that, at ambient temperature (T ≈ 30 ◦C), the β
value measured for the 1.75-MHz case is somewhat smaller than the value measured
for the 2-MHz case as expected from the frequency dependence expressed in Eqs.
(9.164) and (9.165). With increasing temperature, the rate of increase of β is very
comparable between the two frequencies. The slight increase in rate of β (T) curve
of the 1.75-MHz excitation frequency versus the 2-MHz frequency could be due
to temperature-dependent and frequency-dependent attenuation effects, again, not
considered in the model.
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9.3.4 Conclusions

This chapter has studied the generation of wave nonlinearities in solids that are
constrained and subjected to temperature excursions, and are therefore subject to
thermal stresses. Among the applications of this study is the monitoring of structures
prone to thermal buckling, such as the continuous-welded rail. In the problem
at hand, the classical assumption of applied finite strain or finite-amplitude wave
used to model wave nonlinearity (e.g., acoustoelasticity) does not hold. Instead,
the source of the nonlinearity is attributed to the anharmonicity of the interatomic
potential and the “residual” energy that is stored in the solid when it is prevented
from expanding. This residual energy corresponds to the full interatomic potential
of the free thermal expansion for a fully constrained solid, and to a smaller potential
for a partially constrained solid (depending on the stiffness of the solid and that of
the boundaries). These considerations result in an interatomic potential expression
that is at least cubic, O(r3), as a function of interatomic distance. This leads to a
nonlinear wave equation that can be readily solved using perturbation techniques.

The model leads to closed-form solutions for the longitudinal wave velocity and
second-harmonic nonlinear parameter that are explicitly dependent on the inter-
atomic potential parameters and on temperature. The theoretical results indicate that
the longitudinal wave speed decreases with increasing temperature for a constrained
solid, as a result of the resulting thermal stresses. This sort of “softening” effect
is attributed to the decrease in curvature of the interatomic potential vs. distance
curve (quadratic term O(r2)) near the equilibrium position. In addition, the theory
concludes that the second-harmonic nonlinear parameter increases with increasing
temperature for the constrained solid. This is, again, the result of the shape of the
interatomic potential (quadratic and cubic terms O(r2) and O(r3)) that is stored in
the material as “residual” energy from the prevented thermal expansion.

The chapter presented experimental testing on a steel block with and without
thermal stresses. The experiments confirmed that bulk wave nonlinearities are
directly related to the thermal stresses and not to the free thermal expansion.

One possibility that arises from this study is the characterization of absolute
values of thermal stresses from measurements of the nonlinear parameter. However,
careful calibration of all material properties involved in Eq. (9.165) would be
required for absolute measurements. This calibration is not an easy task, since
the interatomic potential curve should be known to, at least, a cubic accuracy of
O(r3), for the given test material. In addition, as in any nonlinear ultrasonic test,
the nonlinearity of the instrumentation and that of the transducer/structure coupling
will affect the absolute measurements. Because of these reasons and others, a direct
comparison of the theoretical results with the experimental results on the steel
block shown in this section is not feasible. However, it would be quite possible to
determine the point of zero thermal stress of a solid under a temperature fluctuation,
that corresponds to a minimum of the nonlinear parameter. For example, the zero
thermal stress point is a key factor in the maintenance of continuous-welded rail
tracks (the well-known “neutral temperature” point of rails).
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The proposed model does not include changes of the first-order elastic properties
with temperature (although that could be easily included). The model is also
limited to longitudinal bulk waves and does not include wave attenuation/damping
effects.

A.1 Appendix

The second-order and third-order coefficients of the interatomic potential for
constrained thermal expansion, for the general case of the Mie potential, are
given by the following expressions. These expressions are simply obtained by
differentiating the potential VMIE in Eq. (9.145), and calculating the derivatives at
the temperature-dependent interatomic position r*, where r* = rABD(T) for the fully
constrained case, and r* = rABD-PC(T) for the partially constrained case.

C(T )= ∂
2VMIE

∂r2

∣∣∣∣
r=r·(T )

=
n
(
n
m

) n
n−m

[
n (1 + n)

(
q
r·(T )

)n −m(1 +m)
(

q
r·(T )

)m]
w

(n−m) (r · (T ))2
(9.A1)

and

D(T ) = ∂3VMIE

∂r3

∣∣∣∣
r=r·(T )

(A.2)

=
n
(
n
m

) n
n−m

[
m(1+m) (2+m)

(
q
r·(T )

)m−n (1+n) (2+n)
(

q
r·(T )

)n]
w

(n−m) (r · (T ))3

For the specific case of the Lennard-Jones potential (n = 12, m = 6), these
expressions simplify to:

CLennard−Jones(T ) = 24wq6
[
26q6 − 7(r · (T ))6]

(r · (T ))14 (9.A3)

and

DLennard−Jones(T ) = 672wq6
[−13q6 + 2(r · (T ))6]

(r · (T ))15 (9.A4)
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Chapter 10
Subharmonic Phased Array for Crack
Evaluation (SPACE)

Yoshikazu Ohara, Tsuyoshi Mihara, and Kazushi Yamanaka

10.1 Introduction

Crack depth is one of the important factors determining material strength. Hence,
the accurate measurement of crack depth is essential to ensure the reliability of
aged structures and manufactured products. If cracks are open, crack depth can be
measured by ultrasonics because ultrasound is strongly scattered by the crack tip
(Fig. 10.1a) [1]. However, if cracks are closed because of compression residual
stress [2, 3] and/or oxide debris generated between the crack faces [4], ultrasonic
testing can result in the underestimation (Fig. 10.1b) or nondetection (Fig. 10.1c)
of cracks since ultrasound penetrates through closed cracks. Subharmonic phased
array for crack evaluation (SPACE) is a novel imaging method for measuring
closed-crack depths [5, 6]. SPACE uses the subharmonics generated by short-burst
waves and a phased array algorithm with frequency filtering. It enables the precise
measurement of closed-crack depths. This chapter starts from fundamental aspects
of subharmonic generation at closed cracks. It then describes the principle of SPACE
and its application to several types of closed crack.
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Fig. 10.1 Interaction of ultrasound with different types of crack. (a) Open crack, (b) partially
closed crack, and (c) closed crack
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Fig. 10.2 Nonlinear interaction of intense ultrasound with a closed crack

10.2 Theory of Subharmonic Generation at Closed Cracks

10.2.1 Historical Context

In nonlinear acoustic techniques for detecting and measuring closed cracks, several
types of nonlinear component, such as superharmonics, subharmonics, and side-
bands, generated by the nonlinear interaction between cracks and intense ultrasound
have been extensively studied [7, 8]. Among them, subharmonics has a few unique
characteristics as described later. Subharmonics is a kind of nonlinear waveform
distortion where the amplitudes of adjacent carrier waves become different. This
results in the doubling of the period, which corresponds to the generation of a
frequency of f /2 (Fig. 10.2), where the fundamental frequency is f. Subharmonic
generation at closed cracks has been experimentally observed in many types of
material such as metals [9–16], composites [17], glass [18], and ice [19]. The
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most important advantage of subharmonics for nondestructive evaluation is that it
is generated by closed cracks, although it is well known that superharmonics is
generated not only at closed cracks but also at transducers, liquid couplants, and
electrical circuits [20]. Subharmonic generation has mostly been observed by using
long-burst waves including continuous waves to obtain a high-frequency resolution,
whereas it has been found that subharmonics has a high temporal resolution [14,
15]. These advantages make subharmonics useful for closed-crack imaging with
high selectivity and a high spatial resolution. On the other hand, the mechanism
of subharmonic generation is different from that of superharmonic generation [21,
22]. To explain the mechanism of subharmonic generation, analytical and numerical
theories have been studied, as described in Sects. 10.2.2 and 10.2.3, respectively. On
the basis of fundamental studies, a closed-crack imaging method, SPACE, has been
developed to measure the closed-crack depth, whose principle and applications are
described in Sects. 10.3 and 10.4, respectively.

10.2.2 Analytical Theory [14, 15, 20]

In this section we describe the analytical theory of subharmonic generation using
a simplified model [14, 15]. Superharmonic generation at closed cracks can be
explained by the nonlinearity due to the contact vibration of crack faces [21, 22].
On the other hand, subharmonic generation at closed cracks is related to both
the nonlinearity due to the contact vibration of crack faces and the resonance
phenomenon, which was also confirmed in microbubbles in medical ultrasonics
[23, 24]. As a phenomenon related to subharmonics, a DC response has been
studied [12]. The DC response is a nonlinear rectifying effect resulting in amplitude
demodulation (Fig. 10.2) [25], which was also discovered in the cantilever of an
atomic force microscope [26, 27]. It is also referred to as the mechanical diode
effect [28]. DC and subharmonic responses are common in terms of having a
frequency range lower than that of the incident wave. Hence, these responses can be
analyzed using a unified model. Actually, it was reported that DC and subharmonic
responses are mutually connected by a quantitative relationship in some cases [29];
the subharmonic amplitude is proportional to the square root of the amplitude of the
DC response.

For the analysis of the above effects, the asymmetric stiffness for a given tension
and compression of a closed crack is insufficient; however, an effective mass is
introduced to express inertial effects. Here the output side crack face (crack face B)
cannot follow the vibration of the input side crack face (crack face A). For a high-
frequency limit, the average force per cycle applied to crack face B by crack face
A is balanced by the restoring force of the spring that supports crack face B. This
theory successfully explained the DC effect observed in the interaction between a
tip and a sample in ultrasonic force microscopy (UFM) [26], which is well known
as a useful tool for the nanoscale imaging of subsurface defects.
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Subharmonics generated in closed cracks exhibits the threshold behavior; the
amplitude of subharmonics drastically increases above a certain amplitude of
incident wave. The effect of the adhesion force on the threshold behavior has yet to
be examined, although the analysis of hysteresis involving the threshold behavior
has been reported [30]. However, the threshold behavior observed in UFM was
successfully explained by introducing the adhesion force between the tip and the
sample [31]. Although the analysis of introducing an adhesion force with hysteresis
has been studied [32, 33], the threshold behavior can be explained by a model
without hysteresis [31]. Thus, in a slightly different manner from that in UFM [31],
the adhesion force is introduced in the reported model [14].

Figure 10.3 is a model of a partially closed crack in an elastic medium. Crack face
A is assumed to be vibrated by incident wave. Crack face B has an effective mass of
m that is supported by a spring with a stiffness of k. The parameter xs(t) denotes the
initial displacement of crack face A because of crack closure stress. Crack face B is
displaced by xc from its free position because of a static repulsive force from crack
face A. By solving f (xs − xc) = kxc, the displacement xc is determined. When crack
face A is vibrated following an incident wave (amplitude a, angular frequency ω),
the displacement x of crack face B satisfies

mẍ + γ ẋ + kx = f (xs + a sinωt − x) , (10.1)

where γ is the damping of crack face B and t is time. γ can be estimated in principle
from the width of the resonance. f (�x) is the interaction force, which is a function
of the compression of the crack faces �x.

When ω is even higher than the resonance frequency ω0 = √
k/m of crack

face B, crack face B cannot follow the vibration because of its inertia and the
additional repulsive force is induced by the intermittent contact with crack face
A. The time-averaged displacement of crack face B is changed from xc to x0. At
the high-frequency limit, the vibration of crack face B is completely suppressed
and thereby x0 becomes constant. This phenomenon is essentially the same as
the nonlinear rectifying effect in amplitude demodulation [25], which was also
discovered in the field of atomic force microscopy [26, 27], or the mechanical diode
effect [28]. Following the same analysis in that in [26, 27], we can derive x0 by
solving the integral equation

kx0 = 1

f

∫ T

0
f (xs + a sinωt − x0) dt, (10.2)

where T = 2π /ω is the period of the incident wave. The assumptions to obtain an
analytical solution for the evaluation of the threshold behavior are as follows:

1. The vibration of crack face A corresponding to an incident wave is a triangular
wave instead of a sinusoidal wave [14, 18, 26, 30].

2. During contact, crack faces are fixed by the adhesion force fd as a short-
range force. As shown in Fig. 10.4, the interaction force is expressed as
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Fig. 10.3 Model of nonlinear interaction between crack faces when the frequency of the incident
wave is much higher than the effective resonance frequency of the output crack face. Modified
from [14] (Copyright (2004) The Japan Society of Applied Physics)

Fig. 10.4 Interaction force
between crack faces
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f (�x) = s�x − fd during contact, where s is the contact stiffness of the crack,
while it is 0 during separation.

Under the above assumptions, as shown by the shaded area in Fig. 10.4, the
integral with respect to t in Eq. (10.2) is replaced by an integral with respect to x;
therefore,

kx0 = 1

2a

[ s
2
(xS − x0 + a)2 − fd (xs − x0 + a)

]
. (10.3)

Since s(xS − xc) = kxc, the time-averaged displacement variation xa is obtained
from Eq. (10.3) as

xa = k

s
xc + a

(
1 + 2

k

s

)
− 2

√
k

s
a

(
k

s
+ 1

)
(a + xc)+ f 2

d

4ks
. (10.4)
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Fig. 10.5 Dependence of time-averaged displacement variation xa on initial crack closure dis-
placement xc and adhesion force fd . Taken from [15], with permission from Elsevier

The threshold ath of the incident wave amplitude is derived at xa = 0 in Eq.
(10.4) as

ath = k

s
xc + fd√

ks
(10.5)

It should be noted that this analytical solution is a simple but powerful expression
that clearly shows the effects of both the adhesion force and crack closure stress on
subharmonics generated in closed cracks.

Subsequently, the effect of parameters on the analytical solution was examined.
Figure 10.5 shows the analytical solution of Eq. (10.4) with different fd and xc

plotted against the incident wave amplitude a. As xc increases, xa decreases at
each fd. This is because the preliminary crack closure displacement suppresses
the effective force acting on crack face B from crack face A. As fd increases, the
threshold increases. It should be noted that depending on the presence or absence
of an adhesion force, the shape of the threshold behavior significantly differs. The
relation between xa and a is upward concave for the absence of an adhesion force,
but upward convex for the presence of fd. Also, as fd increases, the slope of xa

against a slightly increases steep.
To verify the aforementioned analytical theories, we carried out an experiment

in a through-transmission configuration on a fatigue crack in an aluminum alloy
(A7075) [15, 20]. The fatigue crack was extended from a starting notch by a three-
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Fig. 10.6 Experimental configuration for through-transmission measurement in a fatigue crack
specimen

point bending fatigue test, where the fatigue conditions were a maximum stress
intensity factor Kmax of 4.3 MPa m1/2 and a minimum stress intensity factor Kmin
of 0.6 MPa m1/2. As shown in Fig. 10.6, we performed the nonlinear ultrasonic
measurement using an oblique-incidence longitudinal wave with a wedge made
of polystyrene. A continuous sine wave with a center frequency of 6.4 MHz was
produced by a signal generator. Subsequently, a gated amplifier was used to amplify
this wave of 20 cycles up to a voltage of 1.2 kV peak to peak (p–p). To confirm that
the incident wave is suited for the nonlinear ultrasonic measurement, we measured
the displacement amplitude of a longitudinal wave at the crack position in a crack-
free sample using a laser vibrometer, as shown in Fig. 10.7a. As a result, it was
larger than 20 nm p–p (Fig. 10.7b). It is clear in Fig. 10.7c that the received
waveform does not include subharmonics around 3.2 MHz, although it includes
some superharmonics around 12.8 MHz generated at the liquid couplant and the
piezoelectric transducer. For detection in the following experiments, however, we
used a broadband piezoelectric transducer with a center frequency of 5 MHz because
of its higher sensitivity and easy handling.

Figure 10.8a shows the transmitted waveforms at an incident wave amplitude
of 10.7 nm for different loads, where the static bending load was applied to
open the closed crack and has been converted to the stress intensity factor K.
By applying a bending load of up to K = 3.6 MPa m1/2, the amplitude of the
transmitted waves decreased. This is because the partially closed crack was opened.
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Fig. 10.7 Incident wave measured at an excitation voltage of 1.2 kVp-p in a crack-free sample
using a laser vibrometer. (a) Experimental configuration, (b) received waveform, and (c) power
spectrum corresponding to (b)

It is noteworthy that the amplitudes of adjacent carriers became clearly different.
This results in subharmonic generation. In the corresponding power spectra in Fig.
10.8b, the subharmonic intensity is comparable to the fundamental intensity at
K = 3.6 MPa m1/2.

At a bending load of 0.6 kN, corresponding to K = 3.6 MPa m1/2, the transmitted
waveforms for different incident wave amplitudes are plotted in Fig. 10.9a. As
the incident wave amplitude increased, the amplitudes of adjacent carriers became
clearly different, resulting in the generation of subharmonics. In the corresponding
power spectra in Fig. 10.9b, the subharmonic intensity was comparable to the
fundamental intensity at an incident wave amplitude of 10.8 nm.

It is noteworthy that the subharmonics was evident even within the first two
carriers in Figs. 10.8a and 10.9a. Although the twenty-cycle burst wave was
employed to obtain a high signal-to-noise ratio (SNR) in spectrum analysis, it is easy
to identify the waveform distortion even in an initial few cycles. This suggests that
temporal resolution can be increased by extracting a clear variation of waveforms.
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Next, we compared the analytical solution with experimental results. Figure
10.10 (vertical axis on left side) shows the subharmonic amplitude A3.2 MHz of the
transmitted waves as a function of the incident wave amplitude a at each K, where
a = 2.75, 4.7, 6.8, and 10.7 nm and the increase in K in the experiment corresponds
to a decrease in the initial crack closure displacement xc in the analysis. To
reproduce the experimental results using the analytical solution, the time-averaged
displacement variation xa calculated based on Eq. (10.4) was drawn as solid lines in
Fig. 10.10, where fd = 3 nN, xc=0.4–2.8 nm, s = k = 1 N/m, and the vertical scale
on the right side was adjusted to fit the experimental results.

At K = 0, the slope of A3.2MHz against a was small below a = 7 nm. Above
a = 7 nm, it markedly increased. Therefore, we evaluated the threshold was
about 7 nm. This is in agreement with the analytical solution at xc=2.8 nm. At
K = 1.2 MPa m1/2, A3.2 MHz was almost zero up to a = 2.7 nm and rapidly increased
at a = 4.7 nm, showing that the threshold existed between a = 2.7 and 4.7 nm. This
is consistent with the analytical solution at xc=0.4 nm. Thus, the experimentally
observed threshold with upward convex curves was reproduced using an analytical
solution. Also, the clear threshold behavior that was reported in some experimental
works [10–12] was reproduced well by the analytical solution. These results support
the validity and usefulness of the proposed model.
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permission from Elsevier
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10.2.3 Numerical Theory [14, 34, 35]

In the previous section, we described an analytical solution that is valid for the
DC effect and approximately explains the subharmonics. However, not only the
intensity but also subharmonic waveforms should be calculated to obtain a precise
understanding of the dynamic behavior of partially closed cracks and the interaction
between crack faces.

To calculate subharmonic waveforms, we directly solve the equations governing
the motion of crack faces. In the literature, a simple case of impact collision has
been studied by performing such calculations [36, 37]. Here we extend Eq. (10.1)
to an elastic-body-oscillator model [34, 35]. The input side is an elastic body where
an incident wave and the reflected wave propagate, and the output side crack face is
still an oscillator to express the resonance phenomenon, which is strongly related
to subharmonic generation. The introduction of an elastic body into the model
[14] follows Richardson’s model [21]. Figure 10.11 shows the model used for the
numerical simulation. Assuming that X− is the position of crack face A and X+ is
the position of crack face B, which corresponds to the mass of the oscillator, the
boundary condition at crack face A and the motion equation of crack face B are,
respectively, given by

−xp(t)+ ρcẊ−(t)− σC = −f (X+ −X−) , (10.6)

mẌ+(t)+ γ Ẋ+(t)+ kX+(t) = f (X+ −X−)− σC, (10.7)

where σC is the crack closure stress, xp is the position of crack face A perturbed
by the incident wave, and X+ − X− is a crack opening displacement. We directly
solve Eqs. (10.6) and (10.7) simultaneously. We also deal with the more realistic
force function of the van der Waals interatomic force, including an extension to the
interaction between larger objects [38],

f (X+ −X−) = −f0

[

κ

(
σ

X+ −X−

)M
−
(

σ

X+ −X−

)N]

, (10.8)

where f0 is the magnitude of the force, κ is the ratio of the attractive to repulsive
force, M is the repulsive force index, N is the attractive force index, and σ is a
characteristic length for crack faces (e.g., interatomic distance, asperity height, or
grain size), which was originally an interatomic distance in the Lennard–Jones-type
atomic force. The parameters M, N, and κ characterize the force function and depend
on the shape of the crack face, as listed in Table 10.1. Here we assume that the crack
faces are a plane and a half space, and thus case (3) in Table 10.1 is employed. xp

essentially follows the motion of the incident wave. To reproduce the experimental
results, an incident waveform with 20 cycles of carriers satisfying the following
equations was used in a calculation:
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Fig. 10.11 Elastic-body-oscillator model used for numerical simulation

Table 10.1 Repulsive and
attractive force indices and
ratio of repulsive to attractive
force

M N κ

(1) Lennard–Jones atomic potential 13 7 2
(2) Sphere–half-space interaction 8 2 1/30
(3) Plane–half-space interaction 9 3 1

Fig. 10.12 Incident
waveform used in the
numerical simulation
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⎛

⎝1 − e
− t
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⎞

⎠ sinωt 0 ≤ t < 20T

ae
− t − 20T

τD sinωt 20T ≤ t,

(10.9)

where τR is the rising time constant and τD is the decaying time constant. τR and τD

were, respectively, specified as 1.60 T and 0.64 T to obtain the best agreement with
the measured waveforms (Fig. 10.7b). The incident waveform used in the numerical
simulations is shown in Fig. 10.12.
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an incident wave amplitude of 10.7 nm. (a) Calculated waveforms, (b) the spectra corresponding
to (a)

The transient solutions of X+ and X− were calculated by solving Eqs. (10.6)
and (10.7) simultaneously with the incident wave of Fig. 10.12, where the other
parameters were selected as follows to simulate the experimental conditions: density
ρ = 2790 kg/m3, elastic modulus λ = 73.83 GPa, f = 6.4 MHz, a = 2.7–
10.8 nm, σC = 1.0–1.9 MPa, m = 1.27 kg/m2, γ = 2.5 × 106 kg/s/m2,
k = 3.4 × 1014 N/m/m2, f0 = 1 kPa, σ = 5 nm. Figures 10.13a and 10.14a
show the waveforms X+ calculated to investigate the σC and a dependences of
subharmonic generation, respectively. When a increased or σC decreased, the
waveform distortion became clear: the amplitudes of adjacent carriers became
clearly different. Note that the waveforms (Figs. 10.13a and 10.14a) calculated
by the numerical simulation are very similar to the experimentally observed ones
(Figs. 10.8a and 10.9a). In the power spectra (Figs. 10.13b and 10.14b), the
peaks at the subharmonic frequency and the threshold behavior were successfully
reproduced. Figures 10.13b and 10.14b also show that second and third harmonics
were generated, irrespective of the value of a or σC. This suggests that the threshold
of superharmonics is lower than that of subharmonics and that subharmonics is
more sensitive to closed cracks than superharmonics. Thus, the numerical model is
useful for reproducing the waveforms of subharmonics and analyzing the behaviors
of subharmonic generation.
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10.3 Principle of SPACE

On the basis of the findings that subharmonics has high selectivity for closed
cracks and a high temporal resolution, a closed-crack imaging method, subharmonic
phased array for crack evaluation (SPACE), was proposed. The first implementation
of SPACE with a transmitter and an array transducer is shown in Fig. 10.15 [5,
6]. A LiNbO3 (LN) single-crystal transmitter with a wedge made of polyimide is
employed to realize large-amplitude incidence required for subharmonic generation.
An array transducer is employed as a receiver to focus on receptions. Note that the
LN transmitter of SPACE can be replaced with a different piezoelectric material
and/or a different structure to generate more intense ultrasound. By inputting
intense ultrasound, the fundamental and subharmonic scatterings take place at the
open and closed parts of cracks, respectively. After the reception of the scattered
waves by the array transducer, the fundamental and subharmonic components
are extracted from the received waves by band-pass filters for fundamental and
subharmonic frequencies, respectively. Subsequently, by focusing on reception in
accordance with the delay law, which is described later, fundamental array (FA) and
subharmonic array (SA) images are created. Note that the schematic configuration in
Fig. 10.15 is similar to that used in the time-of-flight diffraction (TOFD) method [1],
which uses forward-scattering waves, whereas a configuration that uses backward-
scattering waves or both forward- and backward-scattering waves can also be used
in SPACE.
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Fig. 10.15 Schematic of
SPACE with a transmitter and
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Another implementation of SPACE that uses a single array transducer has also
been proposed [4, 39, 40], of which a schematic is illustrated in Fig. 10.16. An array
transducer is employed for both transmission and reception, and this implementation
can thus be applied to a small testing area. The effect of focusing on the transmission
is employed to increase the incident wave amplitude around a focal point. Here we
define the focal point as a transmission focal point (TFP) at angle θ and distance r.
To focus incident waves emitted from the elements of the array transducer on the
TFP, each element is excited in accordance with a delay law, which is described later.
The fundamental and subharmonic scatterings take place at the open and closed
parts of cracks, respectively. After the reception of the scattered waves by the array
transducer, the fundamental and subharmonic components are extracted from the
received waves by band-pass filters for fundamental and subharmonic frequencies,
respectively. Subsequently, by focusing on reception in accordance with the delay
law, FA and SA images are created for the TFP, referred to as single-focus FA and
single-focus SA images, respectively. The effective imaging area is limited to the
region around the TFP because the transmission energy is low in the region away
from the TFP, although a high imaging speed can be achieved.

To create an effective image over a wide area, multiple TFPs can also be
set. By repeating the same imaging process for each TFP and thereafter merging
single-focus FA and single-focus SA images, merged FA and merged SA images
are created. This provides open and closed crack images over a wide area. This
implementation of SPACE is called confocal SPACE [40] because both focusing on
transmission and reception is used.
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Fig. 10.16 Schematic of
confocal SPACE with a single
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As an option of confocal SPACE, a radarlike display was proposed to precisely
observe linear and nonlinear scattering behaviors [40]. This is a display method
that shows FA and SA images for TFPs with different incident angles, where a line
indicating the incident direction is superimposed on the images. Hence, the linear
and nonlinear scattering behaviors can be precisely observed by arranging some still
images or displaying these images successively as a movie-like radar.

The imaging algorithm of SPACE with a transmitter and an array transducer is
formulated as follows. Assuming that uF, n and uS, n are the waves received by the
nth element of the array transducer filtered around the fundamental and subharmonic
components by band-pass filters, respectively, the shift-summation waveforms at a
point r in Fig. 10.15 are expressed as

UF (r, t) = 1

N

∑N

n=1
uF,n (t − tn (r)) , (10.10)

US (r, t) = 1

N

∑N

n=1
uS,n (t − tn (r)) , (10.11)
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where N is the total number of elements of the array transducer and tn(r) is the
propagation time from the transmitter through r to the nth element of the array
transducer and given by

tn (r) = |r − rT | + |rn − r|
cp

+ tW . (10.12)

Here rT is the position vector of the incidence point at the interface between
the wedge and the specimen, rn is the position vector of the nth element of the
array transducer, cp is the longitudinal wave speed in the specimen, and tW is the
propagation time in the wedge. Therefore, the intensities at r in the FA and SA
images are, respectively, expressed as

IF (r) =
√

1

τ

∫ tC+τ

tC

[UF (r, t)]2dt, (10.13)

IS (r) =
√

1

τ

∫ tC+τ

tC

[US (r, t)]2dt, (10.14)

where tC is the correction term, such as the delay due to the trigger, and τ is the
time window for the calculation of root-mean-square (RMS). τ is determined as
the product of the time period of incident wave and the number of cycles, and is
hereinafter referred to as the RMS period.

Likewise, the imaging algorithm of SPACE with a single array transducer is
formulated as follows. The delay time for focusing on transmission is given by

tT ,n
(
rm,k

) =
∣
∣rn − rm,k

∣
∣

cp
, (10.15)

where rm, k is the position vector of the TFP with the mth θ and the kth r. Assuming
that um,kF,n and um,kS,n are the received waveforms of the nth element filtered around
the f and f /2 components by band-pass filters, respectively, the shift-summation
waveforms at r are expressed as

U
m,k
F (r, t) = 1

N

∑N

n=1
u
m,k
F,n (t − tn (r)) , (10.16)

U
m,k
S (r, t) = 1

N

∑N

n=1
u
m,k
S,n (t − tn (r)) , (10.17)

where in this case, tn(r) is the propagation time from the position vector of the array
center rs through r to rn and given by

tn (r) = |rs − r| + |r − rn|
cp

. (10.18)
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Therefore, the intensities at r in the single-focus FA and single-focus SA images
for the TFP are, respectively, expressed as

I
m,k
F (r) =

√
1

τ

∫ tC+τ

tC

[
U
m,k
F (r, t)

]2
dt, (10.19)

I
m,k
S (r) =

√
1

τ

∫ tC+τ

tC

[
U
m,k
S (r, t)

]2
dt. (10.20)

Merged FA and merged SA images are created on the basis of single-focus FA
and single-focus SA images for each TFP, respectively. Here the following equations
were used to select the areas of single-focus FA and single-focus SA images in the
vicinity of the TFP for the merged images.
θ direction:

arg
(
rm,k

)+ arg
(
rm−1,k

)

2
≤ arg (r) <

arg
(
rm+1,k

)+ arg
(
rm,k

)

2
, (10.21)

r direction:
∣∣∣∣
rm,k ± rm,k−1

2

∣∣∣∣ ≤ |r| <
∣∣∣∣
rm,k+1 ± rm,k

2

∣∣∣∣ . (10.22)

10.4 Experiments

10.4.1 Open and Closed Fatigue Cracks [5, 6]

To demonstrate the fundamental performance of SPACE, well-defined closed cracks
were introduced in specimens made of aluminum alloy A7075 by performing
a three-point bending fatigue test [14, 20]. To control the closure stress, the
fatigue conditions were set to Kmax = 5.3 and Kmin = 0.6 MPa·m1/2 for a
high-stress-intensity specimen and Kmax = 4.3 and Kmin = 0.6 MPa m1/2 for
a low-stress-intensity specimen. For the imaging by SPACE, the selection of an
appropriate incident frequency is important to optimize the tradeoff between the
increase in spatial resolution and the decrease in SNR due to attenuation. In addition
to this tradeoff, to generate the large-amplitude short-burst wave required for
subharmonic generation, an input frequency of 7 MHz was selected as appropriate
for the LN transmitter. The input signals were a three-cycle burst with 17 nm p-
p, which was measured by a laser vibrometer in the configuration shown in Fig.
10.7. The experimental configuration is shown in Fig. 10.17. A forward-scattering
configuration with a 32-element PZT array transducer having an element pitch of
0.5 mm and a center frequency of 5 MHz was selected for the measurement. The
distance between the transmitter and the center of the array transducer was 52.5 mm.
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Fig. 10.17 Experimental configuration of SPACE for imaging a closed fatigue crack made of
aluminum alloy A7075

The FA and SA images of fatigue cracks in the aluminum alloy specimens are
shown in Fig. 10.18. In the high-stress-intensity specimen, the crack tip clearly
appeared in the FA image (Fig. 10.18a), whereas it was absent in the SA image (Fig.
10.18b). This result suggests that the crack tip was dominantly open. It was also
confirmed that the crack depth measured in Fig. 10.18a was in good agreement with
the actual one confirmed on the side surface shown in the photograph (Fig. 10.18c).
In contrast, in the low-stress-intensity specimen, the crack tip was not observed
in the FA image (Fig. 10.18d), whereas it clearly appeared in the SA image (Fig.
10.18e). This result suggests that the crack tip was dominantly closed. It was also
confirmed that the crack depth measured in Fig. 10.18e was in good agreement with
the actual one confirmed on the side surface shown in the photograph (Fig. 10.18f).
Thus, it was demonstrated that SA images accurately indicate the depth of closed
cracks.

10.4.2 Dependence of a Fatigue Crack on Crack Closure Stress
[5, 6]

To examine the dependence of SPACE images on crack closure, we formed a
closed fatigue crack in a stainless-steel (SUS316L) specimen with thickness 40 mm,
which is employed for the recirculation pipes of nuclear power plants, so as to
simulate practical field testing. The fatigue conditions were set to Kmax = 18.6 and
Kmin = 0.6 MPa m1/2. The crack depth on the side surface was optically observed
to be approximately 8 mm.

We investigated the change in the FA and SA images while increasing the
nominal bending stress induced by a static load to relieve the crack closure stress.
The experimental configuration is shown in Fig. 10.19 and is similar to that of the
experiment described in Sect. 10.4.1. Here, we used the nominal bending stress as
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Fig. 10.18 Comparison of crack tip images obtained by SPACE for high- and low-stress-intensity
A7075 specimens. (a) FA image, (b) SA image, and (c) photograph of high-stress-intensity
specimen. (d) FA image, (e) SA image, and (f) photograph of low-stress-intensity specimen.
Modified from [5] (Copyright © 2007 American Institute of Physics)

a measure of the stress relieved from the closure stress, although it is difficult to
carry out the rigorous calculation of the closure stress owing to the complicated
stress field around the crack. The nominal bending stress was calculated under the
condition of a crack-free beam based on the applied static load, elastic properties,
geometry, and density. Figure 10.20 shows the FA and SA images obtained at
nominal bending stresses of 19, 84, and 112 MPa and schematic illustrations used
for their interpretation.

At the bending stress of 19 MPa, only the notch part C appeared in the FA image
(Fig. 10.20a). This suggests that C became a distinct linear scattering source at the
boundary between the closed crack and the notch. On the other hand, not only C but
also the crack tip A and the middle part B appeared in the SA image (Fig. 10.20b).
This suggests that A and B were closed. This also shows that the present SPACE is
able to visualize various parts of the crack, including the tip.

At the bending stress of 84 MPa, only the middle part B appeared in the FA
image (Fig. 10.20d). This suggests that B became a distinct linear scattering source
between the open and closed regions. Both A and B appeared in the SA image (Fig.
10.20e), although the intensity at B was less than that in Fig. 10.20b. This shows that
the present SPACE is able to visualize the crack tip, regardless of the crack closure
stress.
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Japan Society of Applied Physics)
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At the bending stress of 112 MPa, no part of the crack appeared in the FA
image (Fig. 10.20g), although a part of the back surface diminished due to the shade
effect of the crack. It is surprising that the response of B observed in Fig. 10.20d
disappeared, although the crack was more open. This can be interpreted by assuming
that B became the ambiguous boundary between the open and closed regions with
the increase in the nominal bending stress. In contrast, A was clearly observed in
the SA image (Fig. 10.20h). This suggests that A was still closed.

Surprisingly, the aforementioned results clarified that the crack was tightly closed
by a markedly high compression residual stress that was partly relieved by applying
the nominal maximum bending stress of more than 100 MPa. Nevertheless, the
change in the crack state was successfully imaged while varying the crack closure
stress. In addition, the SA images always gave an accurate crack depth, although the
FA image caused the underestimation of the crack depth or misdetection. Thus, the
developed SPACE is expected to improve nondestructive inspection techniques.

10.4.3 Fatigue Crack Growth Monitoring [41, 42]

To monitor crack growth by SPACE, a compact tension (CT) specimen of which
the shape was based on ASTM-E399 was selected (Fig. 10.21a). For the use in
ultrasonic testing, the distance between the notch and top surface was 40 mm. The
CT specimen was made of aluminum alloy A7075. The fatigue conditions were
set to Kmax = 9.0 and Kmin = 0.6 MPa m1/2 to form closed cracks. After 48,000
fatigue cycles, the crack had extended to a depth of approximately 5 mm, which
was optically observed. Then the first measurement was carried out using SPACE.
Subsequently, the fatigue test was continued to 87,000 cycles, after which the crack
had extended to depths of 9.6 and 11 mm on the side surfaces, as can be seen in
Fig. 10.21b, c. Then, a second measurement was carried out using SPACE, where
the experimental configuration is shown in Fig. 10.21a. To monitor the distribution
of the crack depths and closure behavior in the length direction, the measurement
was carried out at five positions (a, b, c, d, and e) at 48,000 and 87,000 fatigue
cycles. The incident wave was three-cycle burst with a center frequency of 7 MHz.
Its displacement was measured to be 50 nm with a laser vibrometer. As a receiver,
we employed a PZT 31-element array transducer with an element pitch of 0.5 mm
and a center frequency of 5 MHz to receive both fundamental and subharmonic
components simultaneously. The FA and SA images at 48,000 and 87,000 fatigue
cycles and schematic illustrations used for their interpretation are shown in Figs.
10.22 and 10.23, respectively.

After 48,000 fatigue cycles, the middle part B was observed in the FA images
(Fig. 10.22d, g, j). This suggests that B became a linear scattering source at a
boundary between the open and closed regions. At the measurement positions “a”
and “e,” only the notch part C was observed in the FA images (Fig. 10.22a). This
suggests that C became a linear scattering source at a distinct boundary between
the notch and the closed crack. On the other hand, at all measurement positions,
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Fig. 10.21 Experimental configuration of SPACE for crack growth monitoring and photographs
of side surfaces of specimen. (a) Experimental configuration. (b) and (c) Photographs of crack on
the sides A and B, respectively. Modified from [42] (Copyright (2011) IEICE, 17RA0029)

the crack tip A was observed in the SA images (Fig. 10.22b, e, h, k, j). The depths
measured in the SA images were larger than those measured in the FA images.
These results show that the SA images gave an accurate crack depth irrespective
of the measurement position. Also note that the region with a difference in crack
depths between the FA and SA images indicated the closed region of the crack.

After 87,000 fatigue cycles, the middle part B was observed in the FA images
(Fig. 10.23a, d, g, j). The depth and intensity were greater than those in Fig.
10.22. This suggests that B became a linear scattering source at a distinct boundary
between the open and closed regions. At the measurement position “e,” the FA
image (Fig. 10.23m) gave no indication of any part of the crack. This result
can be understood by assuming that the boundary between the open and closed
regions became ambiguous, and thus the linear scattering source diminished. In
contrast, at all measurement positions, the crack tip A was observed in the SA
images (Fig. 10.23b, e, h, k, j). This shows that the crack tip A was still closed,
which is favorable for subharmonic generation. Importantly, the SA images always
gave an accurate crack depth, irrespective of the number of fatigue cycles and the
measurement position, in contrast to the FA images, from which the crack depth was
underestimated or the crack was overlooked.

To precisely examine the first and second measurement results, the distribution
of crack depths and the closure behavior in the length direction are, respectively,
shown in Figs. 10.24 and 10.25. The cracks at the center were deeper than those at
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Fig. 10.22 Crack images in
the length direction obtained
by SPACE at 48,000 fatigue
cycles. (a) FA and (b) SA
images and (c) schematic
illustration at measurement
position “a”. (d) FA and (e)
SA images and (f) schematic
illustration at measurement
position “b”. (g) FA and (h)
SA images and (i) schematic
illustration at measurement
position “c”. (j) FA and (k)
SA images and (l) schematic
illustration at measurement
position “d”. (m) FA and (n)
SA images and (o) schematic
illustration at measurement
position “e”. A–C denote the
crack tip, middle part, and
notch part, respectively, in (c,
f, i, l, o). Modified from [42]
(Copyright(2011) IEICE,
17RA0029)
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the edge after each number of fatigue cycles. This is because the tensile stress at the
center is larger than that in the vicinity of the edge since the former and the latter are
subjected to the conditions of plane strain and plane stress, respectively [43]. This
also clearly shows that the crack depths measured in the SA images were greater
than those measured in the FA images at each position. Note that the difference was
larger in the vicinity of the side surface than at the center, suggesting that the closed
region was larger in the vicinity of the side surface than at the center. This can be
qualitatively interpreted by the plasticity-induced crack closure proposed by Elber
[2] and its extension [44]. A plastically transformed area is formed at the crack
tip owing to the stress concentration around the crack tip, which leaves a wake of
plastically deformed areas. This causes crack closure, and thus the crack closure
depends on the plastic area formed around the crack tip. This fundamental theory
can explain the reason why the closed region is larger in the vicinity of the edge
than at the center, i.e., the plane stress at the center creates a larger plastic area
than the plane strain in the vicinity of the edge [43]. The most striking finding is
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Fig. 10.23 Crack images in
the length direction obtained
by SPACE at 87,000 fatigue
cycles. (a) FA and (b) SA
images and (c) schematic
illustration at measurement
position “a”. (d) FA and (e)
SA images and (f) schematic
illustration at measurement
position “b”. (g) FA and (h)
SA images and (i) schematic
illustration at measurement
position “c”. (j) FA and (k)
SA images and (l) schematic
illustration at measurement
position “d”. (m) FA and (n)
SA images and (o) schematic
illustration at measurement
position “e”. A–C denote the
crack tip, middle part, and
notch part, respectively, in (c,
f, i, l, o). Modified from [42]
(Copyright(2011) IEICE,
17RA0029)
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that in spite of the same fatigue conditions, the percentage of the closed region was
63% in the vicinity of the side surface at 48,000 fatigue cycles, whereas was only
20% at 87,000 cycles. Thus, it was demonstrated that SPACE is useful for not only
monitoring crack growth but also measuring the three-dimensional distribution of
open and closed parts of cracks.

10.4.4 Closed Cracks Generated in Manufacturing Process
[45]

Closed cracks are also a problem in the field of manufacturing. In this section we
describe the measurement of cracks generated during the manufacturing of round-
bar Ni-Cr-Mo steel. Ni-Cr-Mo steels are widely employed in bearings, shafts, and
gears, which are used under harsh conditions. During the manufacturing process,
nondestructive methods, such as ultrasonic testing and magnetic flux leakage
testing, are generally applied. Nevertheless, some cracks are still difficult to inspect,
probably due to crack closure. Cracks are initiated at the outer surface and then
propagate inside in an oblique direction. This indicates that cracks initiated during
casting or the initial stage of the rolling process are tilted by the rolling process. This
also means that cracks are subjected to compression stress by the rolling process.
This can result in crack closure.
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Fig. 10.24 Distribution of
crack depths measured by
SPACE in the length
direction. Modified from [42]
(Copyright(2011) IEICE,
17RA0029)
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As a fundamental experiment, round-bar Ni-Cr-Mo steel was machined so that
the cracks were positioned at the bottom (Fig. 10.26). Three specimens, C1, C2, and
C3, were prepared. The experimental configuration is shown in Fig. 10.26, where the
backscattering configuration was employed to achieve high sensitivity to such tilted
cracks. An LN transmitter was excited by a three-cycle burst wave with a center
frequency of 7 MHz. A 32-element PZT array transducer with a center frequency
of 5 MHz was employed as a receiver. The distance between the transmitter and the
center of the array transducer was 30 mm to receive the backscattering waves.

Figure 10.27 shows the FA and SA images obtained from the C1 specimen. Two
tilted cracks, A and B, were observed in both images. For crack A, only the root
part was observed in the FA image (Fig. 10.27a), whereas part of the crack tip was
observed in the SA image (Fig. 10.27b). This shows that the crack tip was closed,
which is favorable for subharmonic generation. On the other hand, for crack B, the
crack tip was only imaged in the FA image. This shows that crack B was open.
The crack depth was in agreement with an optical observation (Fig. 10.27c). On
the other hand, only a single crack was observed in the photograph, although the
imaging results show two cracks. This can be understood by assuming that the crack
branched inside the specimen.

Figure 10.28 shows the FA and SA images obtained from the C2 specimen. A
tilted crack appeared in both images. The response of the crack in the SA image
(Fig. 10.28b) was greater than that in the FA image (Fig. 10.28a). This shows that
the crack was mainly closed. The crack depth and shape were in agreement with an
optical observation (Fig. 10.28c).

Figure 10.29 shows the FA and SA images obtained from C3 specimen. In the
FA image (Fig. 10.29a), a tilted crack C was observed. On the other hand, in the
SA image (Fig. 10.29b), two tilted cracks, C and D, were observed in parallel. This
suggests that crack C had open and closed parts because it was observed in both
images. It also suggests that crack D was mainly closed because crack D was only
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Fig. 10.28 Imaging results obtained from specimen C2 by SPACE with backscattering configura-
tion. (a) FA and (b) SA images, and (c) photograph of the side surface

observed in the SA image. It was confirmed that the crack depth and shape including
the branching were similar to those observed in the photographs of the side surface
(Fig. 10.29c).

The imaging results and optical observation (Figs. 10.27, 10.28, and 10.29)
clearly show that the cracks in specimens C1, C2, and C3 are more complicated
than the fatigue cracks described in Sects. 10.4.1, 10.4.2, and 10.4.3. To precisely
image complicated cracks, the spatial resolution of images should be increased. The
lateral resolution �r of images satisfies

�r = λ zd
wa
, (10.23)
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where λ is the wavelength, zd is the depth, and wa is the width of the aperture [46].
From Eq. (10.23), �r is enhanced as wa increases.

To examine the dependence of crack images on the aperture of the array
transducer in SPACE imaging, specimen C2 was imaged using array transducers
with 32 elements and 96 elements. Here the element pitch was fixed to 0.5 mm, and
thus the aperture of 96 elements was three times larger than that of 32 elements. To
focus on reception, a step of 0.1 mm was employed to precisely examine the effect of
the aperture. The imaging results are shown in Fig. 10.30. The crack was observed at
the same position in both images. By increasing the aperture from 32 to 96 elements,
the crack was extended to the left and right (Fig. 10.30b). This result suggests that
the spatial resolution was enhanced and that the 96-element array transducer could
receive scattered waves that were not received by the 32-element array transducer.
Thus, an array transducer with a large aperture is useful in SPACE imaging. On the
other hand, the cost of the array transducer and phased array hardware will increase
with the number of elements. Therefore, appropriate imaging conditions should be
selected depending on the situation.
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Fig. 10.30 Dependence of
crack image (specimen C2)
on the aperture of the array
transducer. (a, b) SA images
obtained with 32-element and
96-element array transducers,
respectively

SA image
[96 elements]

SA image
[32 elements]
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10.4.5 Stress Corrosion Crack (SCC) Extending from a Deep
Fatigue Precrack [47]

The generation of SCCs in nuclear power, thermal power, and chemical plants
has been frequently reported. The accurate measurement of SCCs is a key to
ensuring the safety and reliability of such plants. The generation of SCCs involves
a combination of three factors: the material, the tensile stress, and the corrosivity of
the environment. Deep SCCs with depth exceeding 10 mm can endanger the safety
of plants. It is, however, difficult to form deep SCCs in the laboratory owing to their
low growth rate. Hence, the following method was used to form a deep SCC. The
specimen was made of a sensitized austenitic stainless steel (SUS304 sensitized
at 600 ◦C for 4 h). First, a fatigue precrack with approximately 10 mm deep was
introduced by carrying out a three-point bending fatigue test. The fatigue conditions
were set to Kmax = 28 and Kmin = 0.6 MPa m1/2. Subsequently, using SCC apparatus
(Fig. 10.31), the SCC was extended from the tip of the fatigue precrack. This
apparatus has a cell with a corrosive environment. The entire specimen with a
fatigue precrack was immersed under a static bending load of up to 100 kN, which
is controlled with a hydraulic pump. The temperature of the corrosive environment
is controlled with a thermostat. The growth of the SCC on the side surface of the
specimen can be optically monitored in situ through a window in the cell. Here a
solution of 30 wt.% MgCl2 at 90 ◦C was used as the corrosive environment, and a
nominal bending stress of 124 MPa was applied for 650 h.

Figure 10.32 shows the experimental configuration. To examine the SCC in the
length direction, three positions A, B, and C were selected. An LN transmitter
was excited by a three-cycle burst of a 7 MHz sinusoidal wave. The displacement
amplitude was measured by a laser vibrometer to be 10.3 nm p-p at crack positions
in another specimen cut from the same material. A 64-element PZT array transducer
with a center frequency of 5 MHz was employed as a receiver. To focus on reception,
images were created at 0.1 mm steps. To receive both forward- and backscattered
waves from cracks, the distance between the transmitter and the center of the array
transducer was set to 44.5 mm.
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The FA and SA images obtained at measurement positions A, B, and C are shown
in Fig. 10.33. At each position, various cracks were successfully imaged. The crack
responses in the images appeared not only in the vertical direction but also in the
horizontal direction. This result suggests that the SCC did not linearly extend but
complexly branched and had open and closed parts. We measured the crack depths
from the FA and SA images. It turned out that the crack depths were greater in the
SA images than in the FA images at all positions. This shows that the SCC tips were
closed. By comparing the results of precise optical observation of cross sections
with the imaging results, high measurement accuracy was also confirmed [47].
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10.4.6 SCC Formed in a Weld Under Realistic Conditions [40]

In this section we describe the measurement of a realistic SCC specimen formed in
an environment very similar to that of actual nuclear power plants. In nuclear power
plants, the high-temperature pressurized water (HTPW) at a temperature of around
300 ◦C in pipelines produces an active corrosive environment. As a result, SCCs are
generated even in stainless steels. To simulate an SCC generated in actual nuclear
reactors, similar conditions such as the specimen material, stress, and environment
should be selected. A sensitized stainless steel (SUS304) was used as the material
of the specimen used here. The SCC was introduced in a heat-affected zone (HAZ)
of a welded pipe by a tensile residual stress, where the corrosive environment was
HTPW at 288 ◦C in an autoclave. The pipe specimen was machined to a bar shape
for ultrasonic testing. Note that the specimen had coarse grains, which are linear
scattering sources. The maximum grain size was approximately 200 μm, which is
similar to that for materials used in actual nuclear power plants.

Figure 10.34 shows the experimental configuration. A 32-element PZT array
transducer with a center frequency of 5 MHz was excited by a three-cycle burst
with 7 MHz frequency and a voltage of 150 Vp-p. The position of the transducer
was set to avoid the weld metal with strong anisotropy and high attenuation. Three
hundred TFPs with θ = 12–71◦ (1◦ steps) and r = 12–42 mm (7.5 mm steps) were
employed to image over a wide area.

Radarlike displays of FA and SA images for θ = 36–42◦ are shown in Fig. 10.35,
where the white lines represent incident directions. In the single-focus FA image for
θ = 36◦, many bright points were imaged over a wide area in the single-focus FA
image (Fig. 10.35a), whereas point A was only imaged in the vicinity of the incident
direction in the single-focus SA image (Fig. 10.35d).

191.5
19…

Weld

TFPs

33

75

SCC

[mm]

Array transducer for 
transmission and reception

[32 el, 5 MHz]

SUS304

Fig. 10.34 Experimental configuration for imaging SCC formed in SUS304 in a heat-affected
zone (HAZ) in high-temperature pressurized water (HTPW). Modified from [40] (Copyright
(2015) The Japan Society of Applied Physics)
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Fig. 10.35 Radarlike displays of unmoving crack response. (a–c) Single-focus FA images and
(d–f) single-focus SA images for θ = 36, 39, 42◦, respectively [40]. (Copyright (2015) The Japan
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To discuss the above results, we analyzed an incident sound field using the finite-
difference time-domain (FDTD) method [48]. Here, we define the stress ratio as

β (r, t) = Tc (r, t)
σC

, (10.24)

where r is the position vector, Tc(r, t) is the tensile stress of an incident wave at a
crack, and σ c is the crack closure stress. The maximum of β(r, t) is defined as the
maximum stress ratio, βmax(r).

A snapshot of the tensile stress in the x direction at t = 5.85 μs is shown in
Fig. 10.36a. The maximum stress ratio βmax along the line OR in Fig. 10.36a was
plotted against the angle φ formed by the z-axis and the line OR in Fig. 10.36b. It
was confirmed that an incident wave had a large amplitude in the vicinity of φ = 36◦,
which was due to the effect of beam focusing. In contrast, over a wide area including
the area away from the incident direction, a small-amplitude wave appeared. These
simulation results show that the linear scattering at coarse grains appeared as the
bright points in the FA image. In contrast to the FA image, point A was only imaged
in the vicinity of the incident direction of the large-amplitude wave in the SA image.
This shows that point A was an SCC.

In addition, we analyzed the responses at points D and A in Fig. 10.35. Figure
10.37 shows the shift-summation waveforms for points D and A and the results of
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their frequency analysis. The fundamental component for point D was dominant,
as shown in Fig. 10.37c, showing that linear scattering at coarse grains appeared
at point D. In contrast, the generation of subharmonic waves was clearly observed
for point A, as shown in Fig. 10.37d, suggesting that the closed part of the SCC
appeared at point A. Furthermore, point A did not move upon varying θ from 36 to
42◦, as shown in Fig. 10.35d–f. This behavior can be understood by assuming that
point A was the branched crack tip or a winding point on the crack.

Figure 10.38 shows radarlike display of single-focus FA and SA images for
θ = 50–56◦. For θ = 50◦, point B was imaged in the single-focus SA image (Fig.
10.38d). Figure 10.39a, c shows shift-summation waveform for point B and the
results of the frequency analysis. The generation of subharmonic waves was clearly
observed. This suggests that point B was closed part of the SCC. Moreover, we
found that the depth of point B increased to point C upon varying θ from 50 to 56◦
(Fig. 10.38e, f). For point C, the subharmonic generation was confirmed, as shown
in Fig. 10.39b, d. We call this behavior a moving crack response (MCR). Although
unmoving responses upon varying θ, as shown by point A, have previously been
observed, this MCR upon varying θ, as shown by point B, was observed for the first
time. It is assumed that the MCR is attributed to the change in the crack opening
point (COP), where the tensile stress of an incident wave is equal to the tensile
stress of an incident wave.

To image the closed SCC over a wide area, merged FA and SA images were
created by merging single-focus FA and SA images for multiple TFPs, as shown in
Fig. 10.40a, b, respectively. The merged FA image indicated the linear scattering at
coarse grains over a wide area, similarly to the single-focus FA images. In contrast,
the merged SA image indicated points A, B, and C. This is because large-amplitude
incident waves covered the entire region of interest, as shown in Fig. 10.40c. In the
merged SA image, the crack depth was 19.5 mm. This is comparable to the optically
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measured crack depth of 14.5 mm. Thus, it was demonstrated that confocal SPACE
is useful for measuring closed-crack depths even in coarse-grained stainless steels.

To interpret the observed phenomena and extract useful information from them,
the dependence of the scattering behavior on the incident angle was analyzed by the
FDTD method using a damped double node (DDN) model [49, 50].

The DDN model in the FDTD method was proposed for the two-dimensional
(2D) analysis of subharmonic generation at closed cracks. For the calculation of
particle velocities and stresses by the FDTD method, staggered grids (Fig. 10.41)
are used, as shown in Fig. 10.41, where T1 = σ xx and T3 = σ zz are the tensile
stresses, T5 = σ xz is the shear stress, u̇ and ẇ are the particle velocities in the x-
and z-directions, respectively. Figure 10.41a shows the closed state, where crack
faces are represented by normal nodes. Figure 10.41b shows the open state, where
normal nodes are split into double nodes consisting of the particle velocity u̇− of
the incidence-side crack face and the particle velocity u̇+ of the transmission-side
crack face. As shown by the gray circle in Fig. 10.41b, crack faces with compression
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residual stress were simulated by introducing viscous damping into the double
nodes, which can also suppress the noise. The following criteria define the transition
between the closed and open states.

1. In the closed state, the average tensile stress T1M at the crack is used for the
judgment of criteria. As shown in the following equation, T1M is calculated as
the average of the stresses of the left and right nodes of i − 1 and i.

T1M = 1

2

[
T n1 (i, j)+ T n1 (i − 1, j)

]
, (10.25)

where n is the time step. If T1M ≤ σC, the nodes remain closed, and if T1M > σC,
the nodes are open, where the threshold for the transition is σC.

2. In the open state, it is assumed that the particle velocity nodes u̇+ and u̇− at the
crack are subject to viscous damping proportional to the difference between the
particle velocities u̇+ and u̇, and thus

u̇+n+1
(i, j) = u̇+n (i, j)+ 2VPLT

n
1 (i, j)− γ

[
u̇+n (i, j)− u̇n (i + 1, j)

]
,

(10.26)
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where γ is the damping coefficient and VPL is the Courant factor. Likewise,

u̇−n+1
(i, j)=u̇−n (i, j)+2VPLT

n
1 (i − 1, j)−γ

[
u̇−n (i, j)−u̇n (i − 1, j)

]
.

(10.27)

The crack opening displacement is given by

�un = u+n − u−n, (10.28)

where u+ and u− are the particle displacements on the transmission-side and
incidence-side crack faces, which are calculated by integrating u̇+ and u̇−, respec-
tively. If �u > 0, the crack remains the open state, and if �u ≤ 0, the crack is
transited to the closed state.

A simulation model with a vertical closed crack based on the DDN model is
shown in Fig. 10.42. To simulate the specimen in the experiment, the parameters
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Table 10.2 Parameters used for 2D simulation with DDN model

Discretization
Node interval
(μm)

Time interval
(ns)

Damping
coefficient γ

Density
ρ

(kg/m3)

Elastic
constant ratio
C44/C11

5000 × 1650 13 1.727 0.3 8000 0.296

listed in Table 10.2 were used. Gaussian windowed five-cycle burst waves with a
frequency of 7 MHz were focused at θ = 50 and 56

◦
(r = 27 mm) to reproduce the

scattering behavior observed in the experiment. For θ = 50
◦
, we set βmax = 1.13 at

z = 17.3 mm, where βmax(r) was the maximum at the crack.
Figure 10.43 shows snapshots of the displacement in the x direction for θ = 50

◦
.

The crack was opened at the COP by the incident wave, as shown in Fig. 10.43b.
Subsequently, the incident wave opened the lower part continuously along the crack
face. This behavior continued to the crack closure point (CCP), where the tensile
stress became less than σ c (Fig. 10.43c).
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SA images created on the basis of the received waves in the simulation are shown
in Fig. 10.44a, b. The COP and CCP were clearly observed. It should be noted
that the center of the COP moved from the dashed-dotted line (θ = 50

◦
) to the

dashed-two-dotted line (θ = 56
◦
). Thus, the MCR was successfully reproduced in

the simulation. In snapshots of the displacement in the x direction, the COP and
CCP moved upward from θ = 50

◦
(Fig. 10.44c) to θ = 56

◦
(Fig. 10.44d). This may

be caused by the change in the tensile stress distribution of the incident wave in the
crack with the increase in θ . This shows that the MCR is attributed to the changes
in the COP and CCP.
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10.4.7 SPACE Using Surface Acoustic Wave (SAW) [51, 52]

In this section we describe another type of SPACE that uses a SAW to measure
the crack length. The crack length, which represents the size of a crack in the
direction perpendicular to the crack depth, is also one of the important factors
determining the material strength of structures. For the measurement of crack
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length, the measurement from the side opposite to the crack opening is insufficient
in terms of sensitivity because the depth in the edge of a crack in the length direction
is generally small. To overcome this issue, we have developed SPACE with a SAW
that is a Rayleigh wave.

Figure 10.45 shows the first implementation of SAW SPACE used for contact
testing with a wedge that has a critical angle of the Rayleigh wave. An array
transducer is employed for transmission and reception. Here the array transducer
is placed on the wedge. The array transducer is positioned on the crack opening
side, which is the opposite side to that for SPACE using bulk waves. The Rayleigh
wave is focused at the TFP from the array transducer through a wedge in accordance
with the delay law [52], which is formulated on the basis of Fermat’s principle. By
transmitting a Rayleigh wave to cracks, linear and nonlinear scattering takes place
at the open and closed cracks, respectively. After the scattered waves are received
by the array transducer, they are filtered around fundamental and subharmonic
frequencies. Subsequently, they are delay-and-summed to create single-focus FA
and single-focus SA images. For multiple TFPs, this process is repeated; thereafter,
the images in the vicinity of the TFPs are merged to create an image of the cracks
over the entire region of interest.

In our experiment, a fatigue crack was formed in a specimen made of an
aluminum alloy (A7075) by carrying out a three-point bending fatigue test [5].
The fatigue conditions were set to Kmax = 5.3 and Kmin = 0.6 MPa m1/2.
The experimental configuration is shown in Fig. 10.46. A 32-element PZT array
transducer with a center frequency of 5 MHz and an element pitch of 0.5 mm
was employed. The input signals were a three-cycle burst with a frequency of
2 MHz, where the frequency was selected with consideration of the attenuation of
the longitudinal wave in the acrylic resin wedge, the leaky loss of the Rayleigh wave,
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and the transmission loss of the Rayleigh wave at the edge of the wedge. The wedge
was made of acrylic resin because of its low cost and high workability. The wedge
angle was 64◦, which was the critical angle of the Rayleigh wave. Sixty TFPs with
θ = −29 to 30◦ (1◦ steps) and r = 39.5 mm were selected.

The results of imaging the fatigue crack are shown in Fig. 10.47. The fatigue
crack was clearly observed in both the FA and SA images (Fig. 10.47a, b). The
distributions of the crack responses were similar in both images, whereas the
intensities differed. The crack lengths measured from the FA and SA images were
almost the same as that measured by optical observation (Fig. 10.47c).

Furthermore, the interaction between the SAW and the cracks was directly
observed by measuring the waveforms propagating on the top surface of the speci-
men by mechanically scanning a laser vibrometer (Fig. 10.48). The measurement
area was 10 mm by 10 mm around the fatigue crack tip. Figure 10.49 shows
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snapshots that show the behaviors of Rayleigh wave propagating through the fatigue
crack. At t = 14.8 μs, the Rayleigh wave propagated to the fatigue crack from the
left (Fig. 10.49a). At t = 16.0–16.4 μs, most of the Rayleigh wave was transmitted
through the fatigue crack (Fig. 10.49b, c). At t = 16.8–17.2 μs, a small reflected
wave was observed. This is direct evidence of the closure of the fatigue crack.
Thus, it was demonstrated that the direct observation of a SAW by scanning a laser
vibrometer is a powerful tool for clarifying the nonlinear interaction between a SAW
and cracks and linear/nonlinear scattering behaviors.
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As described above, the fatigue crack was imaged at the correct position by SAW
SPACE with the wedge made of acrylic resin (Fig. 10.47). However, the spatial
resolution was low because of the use of a low frequency (2 MHz). To achieve
a higher resolution, SAW SPACE in water was proposed as shown in Fig. 10.50.
For transmission and reception, a concave array transducer is employed. The array
transducer was set so that the incident angle equals to a critical angle of a Rayleigh
wave. By exciting each element in accordance with the delay law, [52] a SAW is
focused at a TFP on the top surface of specimens. The imaging algorithm is the
same as that for SAW SPACE with the wedge.

In an experiment, the same fatigue crack specimen (A7075) as that of Fig. 10.47
was used. The experimental configuration is shown in Fig. 10.51. A 32-element PZT
array transducer with a center frequency of 15 MHz and an element pitch of 0.5 mm
was selected. Each element of the array transducer was excited by a three-cycle
burst of frequency 10 MHz with a voltage of 150 V. Two hundred and forty TFPs
with θ = −39 to 40◦ (1◦ steps) and r = 33.4–37.4 mm (2 mm steps) were set. To
obtain high-resolution images over a large area, we performed five measurements at
8 mm intervals in the length direction.

The results of imaging the fatigue crack are shown in Fig. 10.52. The fatigue
crack appeared in both FA and SA images (Fig. 10.52a, b). Note that the spatial
resolution in Fig. 10.52 was even higher than that in Fig. 10.47. The distributions
of the crack responses were similar in both images, whereas the intensities differed.
The crack lengths measured from the FA and SA images were almost the same as
that measured by optical observation (Fig. 10.52c).
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Fig. 10.52 Results of imaging a fatigue crack by SAW SPACE in water. (a) FA image, (b) SA
image, (c) photograph of side surface of the specimen. Modified from [52] (Copyright (2015) The
Japan Society of Applied Physics)

In addition, we analyzed the responses with high intensities, which are points A
and B in the FA and SA images (Figs. 10.52a, b), respectively. Figure 10.53 shows
the shift-summation waveforms for points A and B and their wavelet analysis. For
point A (Fig. 10.53c), the fundamental component was dominant, suggesting that
point A in the crack was open. In contrast, for point B (Fig. 10.53d), the generation
of subharmonic waves was observed, suggesting that point B in the crack was
closed.

Thus, it was demonstrated that SAW SPACE is useful in measuring crack lengths.
SAW SPACE with a wedge can be readily applied to structures, whereas SAW
SPACE in water can achieve a high resolution. An appropriate method should be
selected depending on the situation.
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Fig. 10.53 Shift-summation waveforms for points A and B in Fig. 10.52 and their wavelet
analysis. (a) Shift-summation waveform for point A and (b) shift-summation waveform for points
B. (c) Result of wavelet analysis for point A and (d) result of wavelet analysis for point B [52].
(Copyright (2015) The Japan Society of Applied Physics)

10.5 Conclusions

This chapter has presented an overview of the development of an imaging method
for closed cracks, subharmonic phased array for crack evaluation (SPACE), to accu-
rately measure closed-crack depths. It is known that the mechanism of subharmonic
generation is different from that of other nonlinear components. To explain the
mechanism, analytical and numerical solutions for subharmonic generation were
derived. In the analytical theory, a simplified model based on a model developed
in the field of atomic force microscopy (AFM) was introduced. By introducing
an adhesion force into a model comprising an oscillator with a damper, the
threshold behavior of subharmonic generation was reproduced well. The validity of
the simplified model was confirmed by comparison with experimentally observed
subharmonics. In the numerical simulation, an elastic-body-oscillator model was
directly solved to reproduce the subharmonic generation including the waveforms.
The experimentally observed subharmonic waveforms were found to be reproduced
well by the numerical simulation. The dependence of subharmonic generation on
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the crack closure stress and incident wave amplitude was in good agreement with
experimental results. In the theoretical and experimental studies, we found that
subharmonics has high selectivity for closed cracks and a high temporal resolution,
which are useful in increasing the spatial resolution and the selectivity for closed
cracks in ultrasonic imaging.

On the basis of these significant findings, we have developed SPACE, which
uses the subharmonics generated by short-burst waves and a phased array algorithm
with frequency filtering. SPACE provides fundamental array (FA) and subharmonic
array (SA) images that show open and closed cracks, respectively. The principle and
imaging algorithm of SPACE were described. Then we introduced several examples
of its application such as the identification of open and closed cracks, crack-closure-
stress dependence, closed-crack growth monitoring, and the measurement of the
depths of cracks generated in steel manufacturing process and stress corrosion
cracks (SCCs). Thus, the usefulness of SPACE was demonstrated in terms of its
high measurement accuracy of crack depth and high selectivity for closed cracks.
Also the behavior of experimentally observed nonlinear scattering was analyzed by
two-dimensional (2D) simulation using the finite-difference time-domain (FDTD)
method with a damped double node (DDN) model. Furthermore, SPACE with a
surface acoustic wave (SAW) was also described as a means of measuring crack
lengths. The use of both SPACE with bulk waves and SAW can provide the accurate
2D crack shape, which enables the material strength of structures to be estimated
more precisely.

In this chapter we described the fundamental applications of SPACE. On the
other hand, SPACE-related studies have been widely carried out. In the examples
introduced, an array transducer with a piezoelectric material was employed in
SPACE, whereas the scanning of a laser vibrometer can be replaced into a receiver
because it enables a flexible element pitch, a flexible number of elements, and a flat
broadband receiving characteristics [53, 54]. To achieve higher selectivity for closed
cracks, amplitude-difference and load-difference methods can be used [39, 55–57].
SPACE uses subharmonics with lower frequency than the fundamental frequency,
and thus the spatial resolution for subharmonics is lower than that for fundamentals
and superharmonic frequencies. To achieve a higher resolution in SA images, a
combination of SPACE with a signal processing algorithm, such as multiple signal
classification (MUSIC), will be useful [54].

Finally we describe the possible expansion of the range of SPACE applications.
In actual industrial applications such as power plants, most of the cracks have been
accurately measured by conventional ultrasonic methods, meaning that most of them
may be open. However, it is difficult to measure the crack depth even for open
cracks when the scattering noise due to the weld microstructures is greater than
the crack tip echo. In this case, it is impossible to separate the crack tip echo from
the scattering noise by frequency filtering since the scattering noise and the crack
tip echo have the same frequency as the incident wave. For this problem, an even
larger incidence in SPACE may be a solution. In SPACE, an incident amplitude on
the order of tens of nm has been used to image closed cracks. If the amplitude of
incident wave increases to the order of the crack opening displacement (COD) or the
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distance between the asperities on the crack faces, subharmonics can be generated
even at open cracks by the contact vibration of the crack faces. In this case, a crack
tip echo with subharmonic frequency can be separated from the scattering noise by
frequency filtering. In addition, subharmonics is less attenuative than fundamentals
because the subharmonic frequency is half of the fundamental frequency. This
concept can be applied to the inspection of highly attenuative materials such as
concrete structures. The development of a high-output transmitter for SPACE will
be an important research topic in nondestructive evaluation [58].

Acknowledgements It is our great pleasure to thank all those who have collaborated with us in the
development of SPACE. Financial support by Japan Society for the Promotion of Science (JSPS)
KAKENHI (Grants-in-Aid for Scientific Research) and other various projects for part of the work
described in this chapter is gratefully acknowledged.

References

1. J. Blitz, G. Simpson, Ultrasonic Methods of Non-Destructive Testing (Chapman & Hall,
London, 1996)

2. W. Elber, Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2, 37–45 (1970)
3. J.D. Frandsen, R.V. Inman, O. Buck, A comparison of acoustic and strain gauge techniques for

crack closure. Int. J. Fract. 11, 345–348 (1975)
4. S. Horinouchi, M. Ikeuchi, Y. Shintaku, Y. Ohara, K. Yamanaka, Evaluation of closed stress

corrosion cracks in Ni-based alloy weld metal using subharmonic phased array. Jpn. J. Appl.
Phys. 51, 07GB15-1–07GB15-5 (2012)

5. Y. Ohara, T. Mihara, R. Sasaki, T. Ogata, S. Yamamoto, Y. Kisihimoto, K. Yamanaka, Imaging
of closed cracks using nonlinear response of elastic waves at subharmonic frequency. Appl.
Phys. Lett. 90, 011902-1–011902-3 (2007)

6. Y. Ohara, S. Yamamoto, T. Mihara, K. Yamanaka, Ultrasonic evaluation of closed cracks using
subharmonic phased array. Jpn. J. Appl. Phys. 47, 3908–3915 (2008)

7. Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characteriza-
tion: A review. Can. J. Phys. 77, 927–967 (1999)

8. K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage
in material: a review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)

9. I.Y. Solodov, C.A. Vu, Popping nonlinearity and chaos in vibrations of a contact interface
between solids. Acoust. Phys. 39, 476–479 (1993)

10. I.Y. Solodov, Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications.
Ultrasonics 36, 383–390 (1998)

11. I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in
solids. Ultrasonics 40, 621–625 (2002)

12. B.A. Korshak, I.Y. Solodov, E.M. Ballad, DC effects, sub-harmonics, stochasticity and
“memory” for contact acoustic non-linearity. Ultrasonics 40, 707–713 (2002)

13. I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic
acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386–5388
(2004)

14. K. Yamanaka, T. Mihara, T. Tsuji, Evaluation of closed cracks by model analysis of
subharmonic ultrasound. Jpn. J. Appl. Phys. 43, 3082–3087 (2004)

15. Y. Ohara, T. Mihara, K. Yamanaka, Effect of adhesion force between crack planes on
subharmonic and DC responses in nonlinear ultrasound. Ultrasonics 44, 194–199 (2006)



468 Y. Ohara et al.

16. T. Hayashi, S. Biwa, Subharmonic wave generation at interfaces of a thin layer between metal
blocks. Jpn. J. Appl. Phys. 52, 07HC02-1–07HC02-6 (2013)

17. I. Solodov, G. Busse, Nonlinear air-coupled emission: the signature to reveal and image
microdamage in solid materials. Appl. Phys. Lett. 91, 251910-1–251910-3 (2007)

18. A. Moussatov, V. Gusev, B. Castagnede, Self-induced hysteresis for nonlinear acoustic waves
in cracked material. Phys. Rev. Lett. 90(2), 124301-1–124301-4 (2003)

19. A.E. Ekimov, A.V. Lebedev, L.A. Ostrovskii, A.M. Sutin, Nonlinear acoustic effects due to
cracks in ice cover. Acoust. Phys. 42(1), 51–54 (1996)

20. M. Akino, T. Mihara, K. Yamanaka, Fatigue crack closure analysis using nonlinear ultrasound.
AIP Conf. Proc. 700, 1256–1263 (2004)

21. J.M. Richardson, Harmonic generation at an unbonded interface – I. Planar Interface between
semi-infinite elastic media. Int. J. Eng. Sci. 17, 73–85 (1979)

22. B. O’Neill, R.G. Maev, F. Severin, Distortion of shear waves passing through a friction coupled
interface. AIP Conf. Proc. 557, 1261–1267 (2001)

23. P.M. Shankar, P.D. Krishna, V.L. Newhouse, Subharmonic backscattering from ultrasound
contrast agents. J. Acoust. Soc. Am. 106(4), 2104–2110 (1999)

24. P. Palanchon, A. Bouakaz, J. Klein, N.D. Jong, Subharmonic and ultraharmonic emissions for
emboli detection and characterization. Ultrasound Med. Biol. 29(3), 417–425 (2003)

25. F.M. Severin, I.Y. Solodov, Experimental observation of acoustic demodulation in reflection
from a solid-solid interface. Sov. Phys. Acoust. 35(4), 447–448 (1989)

26. K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution
subsurface imaging. Appl. Phys. Lett. 84(2), 178–180 (1994)

27. O. Kolosov, K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic force
microscope. Jpn. J. Appl. Phys. 32, L1095–L1098 (1993)

28. N.A. Burnham, A.J. Kulik, G. Gremaud, P.-J. Gallo, F. Oulevey, Scanning local-acceleration
microscopy. J. Vac. Sci. Technol. B 14(2), 794–799 (1996)

29. E.M. Abdel-Rahman, A.H. Nayfeh, Contact force identification using the subharmonic
resonance of a contact-mode atomic force microscopy. Nanotechnology 16, 199–207 (2005)

30. V. Gusev, B. Castagnede, A. Moussatov, Hysteresis in response of nonlinear bistable interface
to continuously varying acoustic loading. Ultrasonics 41, 643–654 (2003)

31. K. Yamanaka, H. Ogiso, O. Kolosov, Analysis of subsurface imaging and effect of contact
elasticity in the ultrasonic force microscope. Jpn. J. Appl. Phys. 33, 3197–3203 (1994)

32. K. Inagaki, O. Matsuda, O.B. Wright, Hysteresis of the cantilever shift in ultrasonic force
microscopy. Appl. Phys. Lett. 80(13), 2386–2388 (2003)

33. C. Pecorari, Adhesion and nonlinear scattering by rough surfaces in contact: beyond the
phenomenology of the Presisach-Mayergoyz framework. J. Acoust. Soc. Am. 116(4), 1938–
1947 (2004)

34. K. Yamanaka, Y. Ohara, S. Yamamoto, H. Endo, Analysis of subharmonic phased Array for
crack evaluation (SPACE) using elastic-body-oscillator model. AIP Conf. Proc. 1022(577),
577–580 (2008)

35. Y. Ohara, Nondestructive evaluation of closed cracks by nonlinear ultrasound, PhD Thesis,
Tohoku University, Sendai, 2007

36. S.R. Bishop, M.G. Thompson, S. Foale, Prediction of period-1 impacts in a driven beam. Proc.
R. Soc. London Sec. A 452, 2579–2592 (1996)

37. A.B. Pippard, The Physics of Vibrations I (Cambridge University Press, Cambridge, 1978)
38. D. Maugis, Contact, Adhesion and Rupture of Elastic Solid (Springer, Berlin, 1999)
39. Y. Ohara, Y. Shintaku, S. Horinouchi, M. Ikeuchi, K. Yamanaka, Enhancement of selectivity

in nonlinear ultrasonic imaging of closed cracks using amplitude difference phased array. Jpn.
J. Appl. Phys. 51, 07GB18-1–07GB18-6 (2012)

40. A. Sugawara, K. Jinno, Y. Ohara, K. Yamanaka, Closed-crack imaging and scattering behavior
analysis using confocal subharmonic phased array. Jpn. J. Appl. Phys. 54, 07HC08-1–07HC08-
8 (2015)

41. Y. Ohara, H. Endo, M. Hashimoto, Y. Shintaku, K. Yamanaka, Monitoring growth of closed
fatigue crack using subharmonic phased array. AIP Conf. Proc. 1211, 903–909 (2010)



10 Subharmonic Phased Array for Crack Evaluation (SPACE) 469

42. H. Ohara, M. Hashimoto, M. Horinouchi, Y. Shintaku, K. Yamanaka, Closed crack growth
monitoring using nonlinear ultrasonic imaging method. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. J94-A(11), 800–808 (2011)

43. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970)
44. A. Steuwer, M. Rahman, A. Shterenlikht, M.E. Fitzpatrick, L. Edwards, P.J. Withers, The

evolution of crack-tip stresses during a fatigue overload event. Acta Mater. 58, 4039–4052
(2010)

45. Y. Ohara, K. Yamanaka, Measurement of invisible cracks by ultrasonics: development of
subharmonic phased array for crack evaluation (SPACE). Inspect. Eng. 13(5), 8–14 (2008)

46. J.W. Goodman, Introduction to Fourier Optics (Roberts & Co, Englewood, 2004)
47. Y. Ohara, H. Endo, T. Mihara, K. Yamanaka, Ultrasonic measurement of closed stress corrosion

crack depth using subharmonic phased array. Jpn. J. Appl. Phys. 48, 07GD01-1–07GD01-6
(2009)

48. M. Sato, Comparing three methods of free boundary implementation for analyzing elastody-
namics using the finite-difference time-domain formulation. Acoust. Sci. Tech. 28(1), 49–52
(2007)

49. K. Yamanaka, Y. Ohara, M. Oguma, Y. Shintaku, Two-dimensional analyses of subharmonic
generation at closed cracks in nonlinear ultrasonics. Appl. Phys. Express 4, 076601-1–076601-
3 (2011)

50. K. Jinno, A. Sugawara, Y. Ohara, K. Yamanaka, Analysis on nonlinear ultrasonic images of
vertical closed cracks by damped double node model. Mater. Trans. 55(7), 1017–1023 (2014)

51. A. Ouchi, A. Sugawara, Y. Ohara, K. Yamanaka, Subharmonic phased array for crack
evaluation using refraction and/or mode conversion at an interface. Proc. Symp. Ultrason.
Electron. 35, 259–260 (2014)

52. A. Ouchi, A. Sugawara, Y. Ohara, K. Yamanaka, Subharmonic phased Array for crack
evaluation using surface acoustic wave. Jpn. J. Appl. Phys. 54, 07HC05-1–07HC05-6 (2015)

53. S. Yamamoto, Y. Ohara, T. Mihara, K. Yamanaka, Application of laser interferometer to
subharmonic phased array for crack evaluation (SPACE). J. Jpn. Soc. Nondestr. Insp. 57(4),
198–203 (2008)

54. C.-S. Park, J.-W. Kim, S. Cho, D.-C. Seo, A high resolution approach for nonlinear sub-
harmonic imaging. NDT&E Int. 79, 114–122 (2016)

55. M. Ikeuchi, K. Jinno, Y. Ohara, K. Yamanaka, Improvement of closed crack selectivity in
nonlinear ultrasonic imaging using fundamental wave amplitude difference. Jpn. J. Appl. Phys.
52, 07HC08-1–07HC08-6 (2013)

56. Y. Ohara, S. Horinouchi, M. Hashimoto, Y. Shintaku, K. Yamanaka, Nonlinear ultrasonic
imaging method for closed cracks using subtraction of responses at different external loads.
Ultrasonics 51, 661–666 (2011)

57. Y. Ohara, K. Takahashi, S. Murai, K. Yamanaka, High-selectivity imaging of closed cracks
using elastic waves with thermal stress induced by global preheating and local cooling. Appl.
Phys. Lett. 103, 031917-1–031917-5 (2013)

58. T. Mihara, G. Konishi, Y. Miura, H. Ishida, Accurate sizing of closed crack using nonlinear
ultrasound of SPACE with high voltage transformer pulser technique. AIP Conf. Proc. 1581,
727–732 (2014)



Chapter 11
A Unified Treatment of Nonlinear
Viscoelasticity and Non-equilibrium
Dynamics

H. Berjamin, G. Chiavassa, N. Favrie, B. Lombard, and C. Payan

11.1 Introduction

Understanding and modeling the complex coupling between nonlinear elasticity,
non-equilibrium phenomena, and nonlinear attenuation during dynamic solicitation
in geomaterials and consolidated granular media is of great interest in earth science
and civil engineering. These so-called “nonclassical” [1] or “mesocopic” [2] class
of materials exhibit two different, time-dependent, nonlinear mechanisms. The first
is called fast dynamics. It relates the classical Landau and Lifshitz [3] nonlinear
behavior by introducing higher order elastic constants. The latter is called slow
dynamics, it relates the decrease of the elastic properties when subjected to high
amplitude strain vibration (order 10−6) as well as the slow, logarithmic in time,
recovery (order 103 s) of initial properties. In rocks, experimental evidence of such
a class of materials has been reported from decades [4–6]. It has been shown
that all of these mechanisms play a role in understanding earthquake triggering
[7–9], soils characterization [10, 11], and the dynamic response of buildings
during ground motion [12]. The high sensitivity to microstructural changes of the
nonlinear behavior in cement based materials is also of interest for nuclear energy
within the actual context of license renewal [13, 14]. The physical origin of the
nonlinear behavior of such solids is not fully understood yet. Although it has been
established that contacts and soft boundaries between grains at the microstructural
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scale [1] contribute to the overall behavior. At this scale, authors state the role
of thermal mechanisms [15, 16] as well as adhesion forces [16, 17]. Up to date,
to model this complex nonlinear behavior, the literature mainly makes use of the
Preisach–Mayergoyz model issued from electromagnetism [18, 19]. However, even
if this phenomenological description successfully reproduces some experimental
observations, it lacks in providing physical data related to the material. More
physical approaches have been explored to describe slow dynamics [5, 16, 20] or
hysteresis [17, 21] but none of them are able to describe the mutual interaction
between fast and slow dynamics during dynamical loading. An original approach
describing the entire coupling was proposed by Vakhnenko et al. [22, 23] but due
to analytical derivation considerations, the mutual coupling was broken. Moreover,
the attenuation was supposedly linear which is known to be also nonlinear [4].
Recent studies proposed in the literature [24] come back to this model including
nonlinear viscoelasticity, and show its ability to reproduce every nonlinear signature
(harmonic generation, softening, recovery, hysteresis). However, one can show [25]
that several drawbacks such as violation of the second principle of thermodynamics
or difficulty to extend this model to higher dimensions deters its use for practical
applications with low predictive abilities.

Starting from the basic principles of continuum mechanics and thermodynamics,
we present here a generalized model, including nonlinear viscoelasticity as well as a
robust way to solve the entire problem. This model is a general framework allowing
to describe the full nonlinear and non-equilibrium mechanisms as well as their
mutual interactions occurring during dynamic solicitation using a limited number of
physical parameters. It aims to relate the key nonlinear features reported in recent
experimental data recently published in the literature using Dynamic Acousto Elas-
ticity (DAE) [26, 27] or Nonlinear Resonance Ultrasound Spectroscopy (NRUS)
[13, 28].

The chapter is organized as follows. In the first section, the governing equations
are presented. The second section presents a numerical implementation based
on finite-volume methods. In the third section, the numerical method is used to
reproduce DAE and NRUS experiments.

11.2 Physical Modeling

A Cartesian coordinate system (x1x2x3) is used. We consider a continuum in the
Lagrangian representation of motion, whose length L along the x1-axis is very
large compared to its other dimensions. Only longitudinal vibrations are considered.
Thus, we make the approximation of a planar displacement field u, which is
described by its component u1(x1, t) along the x1-axis, oriented by the unit-vector
e1. In the first subsection, 1D nonlinear elastodynamics is presented. Then, internal-
variable modeling of the slow dynamics is achieved in agreement with the 3D model
from [25]. Lastly, viscoelasticity is incorporated in a similar fashion to [24].
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11.2.1 Nonlinear Elastodynamics

If no body force is applied to the material, the equation of motion reduces to
$ü1 = σ11,1, where self-gravitation and heat transfer are neglected. This rewrites
as a differential system of the form

⎧
⎨

⎩

ε̇11 = v1,1 ,

$v̇1 = σ11,1 ,
(11.1)

where σ11 is the stress, ε11 = u1,1 > −1 is the strain, and v1 = u̇1 is the particle
velocity. The mass density in the reference (undeformed) configuration is denoted
by $. The system (11.1) is a system of conservation laws. For details about this kind
of partial differential system, interested readers are referred to [29–31].

An expression of the stress σ11 is required. In the case of hyperelastic materials,
the only variable of state is the (possibly large) strain ε11. Therefore, the internal
energy per unit volume reads U = U0 (ε11), where U0 is the strain energy density
function in J/m3. The stress is a function of the strain, expressed by

σ11 = ∂U

∂ε11
= U ′

0(ε11) . (11.2)

The speed of sound cP deduced from (11.1) satisfies

$cP
2 = ∂σ11

∂ε11
= U ′′

0 (ε11) . (11.3)

Therefore, the speed of sound is a function of the strain. Hyperelastic materials are
elastic, which means that no dissipation occurs for all state and all evolution.

In the case of Landau’s law, the strain energy density function reads

U0 =
(

1

2
− β

3
ε11 − δ

4
ε11

2
)
E ε11

2, (11.4)

where E > 0 is Young’s modulus. Hence, the stress is a cubic function of the strain,
and $cP 2 is a quadratic function of the strain. The parameters β and δ in Landau’s
law are third-order elastic (TOE) constants, which are related to the Murnaghan
parameters [25, 32]. The classical case of linear elasticity corresponds to β = 0 and
δ = 0. As expected, the sound speed in (11.3) then becomes cP = √

E/$.
Possible strain limits are derived from the hyperbolicity condition, i.e. the fact

that the sound speed cP in (11.3) is real, or in other words, the fact that $cP 2 > 0.
In the linear case β = δ = 0, no strain limit is obtained, since

√
E/$ is always real.

This differs from the nonlinear case where δ > 0. Indeed, both lower bound and
upper bound for the strain ε11 are obtained:

1

β −√β2 + 3δ
< ε11 <

1

β +√β2 + 3δ
. (11.5)
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Table 11.1 Physical parameters

$ (kg/m3) E (GPa) β δ Q γ (J/m3) τg (J/m3 s)

2.6 × 103 10 100 107 20 1.0 0.01

Fig. 11.1 Nonlinear
stress–strain relationship
deduced from Landau’s law
(11.4) with the parameters
from Table 11.1. The vertical
dotted lines denote the strain
limits (11.5)
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For nonlinear elasticity in rocks, typical values of β and δ are given in Table 11.1.
Thus, the hyperbolicity condition (11.5) imposes |ε11| < 1.8 × 10−4. The stress-
strain relationship (11.2) deduced from Landau’s law (11.4) is displayed in Fig. 11.1,
where the parameters are taken from Table 11.1. The hyperbolicity limits (11.5)
correspond to the strains where the slope of the curve equals zero.

11.2.2 Internal-Variable Model of Slow Dynamics

Several models of slow dynamics can be found in the literature. The soft-ratchet
model of Vakhnenko et al. introduces a variable g which modifies the elastic mod-
ulus in time when the stress varies [22–24]. This idea has been reconsidered in the
framework of continuum thermodynamics with internal variables [33, 34], resulting
in a new model [25]. The internal-variable g modifies the stress according to

σ11 = ∂U

∂ε11
= (1 − g)U ′

0(ε11) . (11.6)

If g = 0, the expression of the hyperelastic stress (11.2) is recovered. If g = 1, the
stress does not depend on the strain anymore. Therefore, the value g = 1 destroys
the material.

Integrating the constitutive law (11.6) with respect to the strain, the expression of
the internal energy per unit volume U = (1 − g)U0(ε11)+ U1(g) is obtained. The
integration constant U1(g) is called storage energy hereinafter. In [25], an evolution
equation for the internal variable of the form

ġ = − 1

τg

∂U

∂g
= 1

τg

(
U0(ε11)− U ′

1(g)
)

(11.7)
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is proposed, where τg > 0 is proportional to a relaxation time. This evolution
equation is thermodynamically admissible, i.e. the Clausius-Duhem inequality is
satisfied for all state and all evolution. This type of material with internal variable
dissipates energy.

The speed of sound cP deduced from (11.1)–(11.7) satisfies $cP 2 =
(1 − g)U ′′

0 (ε11). If g is bounded by 1 and the hyperbolicity condition (11.5) is
satisfied, then the speed of sound is real. Moreover, if the storage energy satisfies
U ′

1(0) = 0, then the evolution equation guarantees that g is positive. This condition
points to the experimental fact that the sound speed decreases with respect to its
value at equilibrium (softening of the material), when a dynamic loading is applied.
The storage energy

U1(g) = −1

2
γ ln(1 − g2) , (11.8)

where γ > 0 is an energy per unit volume, is designed to ensure that the equilibrium
point ġ = 0 is unique, g = 0 is an equilibrium point, and g is bounded by
1 [25]. Given the expressions of the strain energy density (11.4) and the storage
energy (11.8), the internal energy U is a surface in ε11-g coordinates. This surface
is represented in Fig. 11.2, where the parameters are issued from Table 11.1. One
can notice the presence of an energy barrier (vertical asymptote) at g = 1.

11.2.3 Viscoelasticity

Nonlinear elastodynamics without attenuation poorly represents real media. In the
framework of linear elasticity, many rheological models based on a frequency-
dependent complex wave number can be found in the literature. Among them, the
standard linear solid model, also known as generalized Zener or Maxwell body, is

Fig. 11.2 Sketch of the
internal energy
U = (1 − g)U0(ε11)+U1(g)

of the slow dynamics model
in ε11-g coordinates
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commonly used for the description of seismic wave propagation. It can be shown
that this model adds a set of memory variables—or anelastic functions—to the
variables of elastodynamics, and a set of equations satisfied by these new variables
[35–37].

The generalized Zener body can be extended to hyperelasticity, as described in
[24]. A set of N anelastic functions ξ% is introduced, which modify the equations of
nonlinear elastodynamics (11.1) as follows. The anelastic functions ξ% satisfy

ξ̇% = v1,1 + ε11 − ξ%
τε%

− τε% − τσ%
τε%τσ%

U ′
0(ξ%)

E
, (11.9)

where the parameters τε% and τσ% are the relaxation times involved in the %th Zener
mechanism. The stress is given by the weighted sum

σ11 = Re(F )2
N∑

%=1

τε%

τσ%
U ′

0(ξ%) , (11.10)

where

F =
(

N +
N∑

%=1

iωref (τε% − τσ%)
1 + iωref τσ%

)−1/2

(11.11)

and i denotes the imaginary unit. In the linear case, the normalizing factor Re(F )2

guarantees that the frequency-dependent phase velocity is equal to
√
E/$ at the

angular frequency ωref [37]. Finally, the stress (11.10) is not explicitly expressed in
terms of the strain ε11 anymore, but in terms of the anelastic functions ξ%, whose
evolution equations (11.9) involve the strain.

In practice, the value of the relaxation times τε% and τσ% can be obtained by using
a nonlinear optimization technique [37]. The procedure consists in minimizing the
error between an objective quality factor and the quality factor of the linear Zener
model. A typical value of the objective Q factor is given in Table 11.1. Now, the
choice of the number of relaxation mechanisms N results from a compromise. In
fact, the quality of the optimization increases with N , as well as the computational
costs. Here, N = 5 Zener mechanisms are used. Nonlinear optimization of
the relaxation times τε% and τσ% is performed over the angular frequency range[
0.1ωref , 10ωref

]
, where ωref = 2π × 104 rad/s.

Now, we describe how accounting for the slow dynamics modifies the previous
rheological model. The coupling of the internal-variable model and the generalized
Zener model gives the following set of equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̇11 = v1,1 ,

$v̇1 = σ11,1 ,

ξ̇% = v1,1 + ε11 − ξ%
τε%

− τε% − τσ%
τε%τσ%

U ′
0(ξ%)

E
, 1 ≤ % ≤ n ,

ġ = 1

τg

(

Re(F )2
[
N∑

%=1

τε%

τσ%
U0(ξ%)+ E

2

τε% (ε11 − ξ%)2
τε% − τσ%

]

− U ′
1(g)

)

,

(11.12)

where the stress is

σ11 = (1 − g)Re(F )2
N∑

%=1

τε%

τσ%
U ′

0(ξ%) . (11.13)

The speed of sound cP deduced from this system satisfies

$cP
2 =

N∑

%=1

∂σ11

∂ξ%
= (1 − g)Re(F )2

N∑

%=1

τε%

τσ%
U ′′

0 (ξ%) . (11.14)

A sufficient condition for the sound speed to be real is that g is bounded by 1, and
each relaxation function ξ% satisfies the inequality (11.5) instead of ε11.

In order to close the system, we specify the boundary conditions and initial
conditions. We consider a bounded physical domain of length L, such that 0 < x1 <

L. The setup of DAE and NRUS experiments suggests to impose a time-dependent
displacement ud(t) at the abscissa x1 = 0. At the abscissa x1 = L, a free edge
condition is imposed, which results in zero stress. With the present set of variables,
one has therefore v1 = u̇d at x1 = 0, and ε11 = 0 at x1 = L. By construction of
the rheological model, the same conditions apply to the anelastic functions ξ% as to
the strain ε11. Therefore, one has ξ% = 0 for all % at the abscissa x1 = L. None of
these boundary condition involves g, as if the physical domain was unbounded for
g. Lastly, all the unknowns are initialized to zero over the physical domain at the
time t = 0.

11.3 Numerical Modeling

The system of partial differential equations in space and time (11.12) is a nonlinear
hyperbolic system with relaxation. It rewrites as

U̇ + ∂

∂x1
F(U) = R(U) , (11.15)
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where the unknowns U = (ε11, v1, ξ1 . . . ξN , g) depend on space and time. The
flux function F and the relaxation function R deduced from (11.12) are both
nonlinear with respect to U. Nevertheless, such a differential system can be solved
efficiently by finite-volume methods [30, 31]. The procedure is described in the next
subsections.

11.3.1 Numerical Strategy

The physical domain is discretized using a regular grid in space with step �x1 =
L/Nx . Also, a variable time step �t = tn+1 − tn is introduced. Therefore,
U(i �x1, tn) denotes the solution to (11.15) at the ith grid node, 0 ≤ i ≤ Nx ,
and the time tn. A straightforward strategy consists in discretizing explicitly the
non-homogeneous system (11.15):

Ũ
n+1
i = Ũ

n

i − �t

�x1

(
F̃i+1/2 − F̃i−1/2

)
+�t R(Ũ

n

i ) , (11.16)

where Ũ
n

i � U(i �x1, tn) approximates the solution at the grid nodes, and F̃i+1/2
is the numerical flux of a finite-volume method. According to the time-marching
formula (11.16), a forward Euler method may be used for the relaxation term.

The stability of the numerical method (11.16) is constrained by two upper bounds
on the time step �t . The first one is the Courant-Friedrichs-Lewy (CFL) condition,
which is imposed by the physical sound speed cP . It states that the Courant number
κ = c̃P �t/�x1 must be smaller than 1, where c̃P denotes the maximum sound
speed over the boxes with corners Ũ

n

i and Ũ
n

i+1. The second one relates to the
stiffness of the relaxation term, and states that the time step�t cannot be arbitrarily
larger than the inverse of the spectral radius of the Jacobian matrix ∂R/∂U. If
the material is viscoelastic, then the Jacobian of R can have a very large spectral
radius, which imposes to choose a small time-step�t . In this case, time-marching of
(11.16) is very slow, and the straightforward numerical discretization is inefficient.

A more flexible and efficient numerical strategy results from splitting. This
approach consists in splitting the system (11.15) in a propagative part

U̇ + ∂

∂x1
F(U) = 0 , (11.17)

and a relaxation part

U̇ = R(U) . (11.18)

Numerically, both parts are solved successively at each time step, with a dedicated
numerical method for each part. Here, a second-order accurate Strang splitting
scheme is used [24]. It consists in solving the diffusive part (11.18) over half a time
step, then the propagative part (11.17) over one time step, and again the diffusive
part over half a time step.
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Now, it remains to specify the dedicated methods for the numerical resolution of
each part. In the relaxation part, the evolution equations (11.9) for ξ% are linearized
with respect to ξ%, by using the approximationU ′

0(ξ%)/E � ξ%. Then, time-marching
of the anelastic functions ξ% is performed by using matrix exponentials [24]. Time-
marching of the evolution equation for g is carried out by using an explicit Euler
method. The propagative part (11.17) is solved using a well-suited finite-volume
method, which is described in the next subsection. The resulting numerical method
is stable under the CFL condition, as long as the sound speed cP in (11.14) is real
for the numerical data Ũ

n

i .

11.3.2 Finite-Volume Method

Since the flux function F is nonlinear with respect to U, an initial-value problem
defined by the data U(x1, t = 0) can have several solutions. It is not straightforward
for a numerical method to converge towards the correct solution. In particular, the
numerical fluxes F̃i+1/2 of the finite-volume method must be computed carefully. In
the present case, Roe linearization can be used to construct a finite-volume scheme
of any order of convergence [31, 38].

Based on Roe linearization, we implement the flux-limiter method, as described
in [31, 39]. This method is a bit less than second-order accurate, but is well-suited
to nonlinear flux functions. The numerical flux F̃i+1/2 is computed from a first-
order accurate finite-volume method (Roe’s approximate Riemann solver). Then,
a second-order correction deduced from the Lax-Wendroff method is added. This
correction is penalized by a limiter function, which avoids spurious oscillations to
arise in the numerical solution. Here, the minmod flux limiter is used, which has
shown to be very robust during validation steps, even in the case of nonconvex flux
functions [40, 41].

By construction, the resulting numerical scheme has a five-point stencil. It means
that the five numerical values of U at the grid nodes i − 2 . . . i + 2 are required to
carry out one iteration in time at the ith grid node. Therefore, two “ghost cells” are
added on the left side and on the right side of the numerical domain. Setting the
values of the unknowns U in the ghost cells makes it possible to account for various
boundary conditions. At each time step, the imposed displacement at the abscissa
x1 = 0 is represented by setting the data Un−2 and Un−1 in a similar way to the
“oscillating wall” in [31]. The free edge at the abscissa x1 = L is represented by
setting the data UnNx+1 and UnNx+2 in a similar way to the “solid wall” in [31].

11.4 Numerical Experiments

In this section, two experiments are carried out with the numerical model described
in the previous section. The first experiment reproduces DAE, and the second
experiment reproduces NRUS. In both cases, a sample of length L = 30 cm is used.
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If not specified, the material parameters are issued from Table 11.1. The physical
domain is discretized using Nx = 100 points. To avoid instability, the Courant
number is set to κ = 0.95.

11.4.1 Dynamic Acoustoelasticity

A sinusoidal particle velocity u̇d (t) with amplitude V0 and frequency 1585 Hz is
imposed at the abscissa x1 = 0. This source is turned on from t = 0 to t ≈ 50.4 ms,
which corresponds to a total duration of 80 periods of signal. A receiver records the
numerical solution at the abscissa x1 = 0.1 m, up to t = 80 ms.

Figure 11.3a displays the elastic modulus $cP 2 in (11.14), which is recorded at
the position of the receiver. A slow decrease of the elastic modulus combined with
fast oscillations is observed. The frequency of the fast oscillations is the frequency of
the source signal. When the source is stopped, the amplitude of the fast oscillations
diminishes, and the elastic modulus recovers slowly its initial value. The duration of
the softening is related to the characteristic time τg/γ ≈ 10 ms of slow dynamics.
As observed experimentally, the softening phenomenon is accentuated when the
amplitude of forcing V0 is increased.

Figure 11.3b focuses on the steady-state solution. Here, the last period of signal
before t = 50 ms is used. When the elastic modulus (11.14) is represented with
respect to the strain at the position of the receiver, a hysteresis curve is obtained.
The shape of the hysteresis curve is related to the parameters β and δ of Landau’s
law (11.4), and to the dissipation in the material [25].

11.4.2 Resonance Curves

The imposed velocity u̇d (t) is sinusoidal with amplitude V0. The exciting frequency
is increased every 200 ms, which is long enough to consider that the solution has
reached the steady state. Here, twenty equally spaced frequencies between 1400
and 1700 Hz are chosen. A receiver records the numerical solution at the abscissa
x1 = L.

For linear viscoelastic solids, the frequency response function FRF(ω) of a
sample which vibrates longitudinally at the angular frequency ω = 2πf can be
computed analytically. In the case of a vibrating wall at the abscissa x1 = 0 (input)
and a free edge at the abscissa x1 = L (output), a plane-wave decomposition of the
solution yields

FRF(ω) = 2

exp(i kP (ω)L)+ exp(−i kP (ω)L)
, (11.19)
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Fig. 11.3 Dynamic acoustoelasticity. (a) Softening of the material, as recorded by the receiver at
the abscissa x1 = 0.1 m. (b) Hysteresis curves in steady-state (t ≈ 50 ms)

where kP (ω) denotes the complex wave number

kP (ω) = ω
√
$/E

Re(F )

(

N +
N∑

%=1

iω(τε% − τσ%)
1 + iωτσ%

)−1/2

(11.20)

of the Zener model (11.9)–(11.11).
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Numerically, the value of FRF(ω) is given by the ratio of two coefficients: the
first Fourier coefficients of the output and input velocity signals. In practice, these
coefficients are computed by numerical integration over one period of signal. Since
a sufficiently long time must have elapsed, this computation is performed over the
last period of signal before a higher exciting frequency is used. In Fig. 11.4a, the
modulus of the analytical frequency response (11.19)–(11.20) is compared with the
numerical estimation. The forcing amplitude is V0 = 1.0 mm/s, and the material
parameters satisfy β = 0, δ = 0, and τg → ∞. In the vicinity of the resonance, the
frequency response is slightly underestimated by the numerical method, which can
be resolved by increasing the number of points Nx of the spatial discretization.

In the case of nonlinear constitutive laws, no analytical expression of the
frequency response is known. However, one can still compute numerically the
Fourier coefficients of long-time numerical solutions. Figure 11.4b displays the
results of the previous setup, which has been applied to a nonlinear viscoelastic
solid with slow dynamics. In this figure, the output velocity amplitude is represented
with respect to the frequency, for different forcing amplitudes V0. The velocity
amplitude is defined as twice the modulus of the first Fourier coefficient of the
velocity signal. In the linear viscoelastic case from Fig. 11.4a, the output velocity
amplitude was equal to the input velocity amplitude V0 multiplied by the modulus
of the frequency-response. Here, a frequency shift of the resonance peak is observed
with increasing forcing amplitudes (Fig. 11.4b). The shape of the resonance curves
relates the typical behavior of rocks [6, 28]. It includes stiffening of the curve with
increasing frequency and amplitude. It is worth noticing that present simulations are
carried out increasing the frequency of the exciting signal. Figure 11.5 presents the
relative frequency shift as a function of the strain amplitude. Again, the shape of
the curve is qualitatively comparable to the one reported in rocks [6, 28]. Also, at
low forcing amplitudes, one recognizes the shape of the frequency response from
Fig. 11.4a.

11.5 Conclusion

In this chapter, the main ingredients of a one-dimensional model of continuum
which includes nonlinear elasticity, viscoelastic attenuation, and slow dynamics are
exposed. A well-suited numerical method based on finite volumes is introduced,
so as to solve the equations of motion efficiently. With a particular choice of
parameters, DAE and NRUS experiments are reproduced, and qualitative agreement
is obtained in both cases.

We mention here a few improvements to be introduced. Firstly, a quantitative
experimental validation needs to be carried out, so as to estimate the value of the
parameters for different materials. Secondly, higher-order methods can improve the
accuracy of the computations (see, e.g., [38]), which has been carried out in recent
works [42]. Lastly, frequency-domain approaches would be a more efficient tool
rather than time-domain methods to deduce the resonance curves from long-time
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Fig. 11.4 Resonance curves. (a) Numerical and analytical frequency response of a linear vis-
coelastic solid. (b) Output velocity amplitude of a nonlinear viscoelastic solid with slow dynamics,
at input velocity amplitudes increasing linearly from V0 = 0.05 mm/s (bottom) to V0 = 0.3 mm/s
by steps of 0.05 mm/s, and from V0 = 0.25 mm/s to V0 = 1 mm/s (top) by steps of 0.25 mm/s

periodic solutions. Future work will be devoted to 2D and 3D numerical modeling.
In particular, such tools can be used to implement imaging techniques.
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Fig. 11.5 Relative resonant frequency shift as a function of strain amplitude

References

1. R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of
materials. Phys. Today 52(4), 30–36 (1999)

2. R.A. Guyer, P.A. Johnson, Nonlinear Mescopic Elasticity: The Complex Behaviour of Rocks,
Soil, Concrete (Wiley-VCH, Weinheim, 2009)

3. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics Vol. 7: Theory of Elasticity
(Pergamon Press, London, 1959)

4. K. Winkler, N. Amos, M. Gladwin, Friction and seismic attenuation in rocks. Nature 277,
528–531 (1979)

5. J.A. TenCate, E. Smith, R.A. Guyer, Universal slow dynamics in granular solids. Phys. Rev.
Lett. 85(5), 1020 (2000)

6. J.A. TenCate, D. Pasqualini, H. Salman, K. Heitmann, D. Higdon, P.A. Johnson, Nonlinear and
nonequilibrium dynamics in geomaterials. Phys. Rev. Lett. 93(6), 065501 (2004)

7. J. Gomberg, P.A. Johnson, Seismology: dynamic triggering of earthquakes. Nature 437, 830
(2005)

8. P.A. Johnson, X. Jia, Nonlinear dynamics, granular media and dynamic earthquake triggering.
Nature 437, 871–874 (2005)

9. P.A. Johnson, H. Savage, M. Knuth, J. Gomberg, C. Marone, Effect of acoustic waves on stick–
slip in granular media and implications for earthquakes. Nature 451, 57–60 (2008)

10. P.A. Johnson, P. Bodin, J. Gomberg, F. Pearce, Z. Lawrence, F.-Y. Menq, Inducing in situ,
nonlinear soil response applying an active source. J. Geophys. Res. Solid Earth 114(B5),
B05304 (2009)

11. G. Renaud, J. Rivière, C. Larmat, J.T. Rutledge, R.C. Lee, R.A. Guyer, K. Stokoe, P.A.
Johnson, In situ characterization of shallow elastic nonlinear parameters with dynamic
acoustoelastic testing. J. Geophys. Res. Solid Earth 119(9), 6907–6923 (2014)

12. P. Guéguen, P. Johnson, P. Roux, Nonlinear dynamics induced in a structure by seismic and
environmental loading. J. Acoust. Soc. Am. 140(1), 582–590 (2016)

13. C. Payan, T.J. Ulrich, P.Y. Le Bas, T. Saleh, M. Guimaraes, Quantitative linear and nonlinear
resonance inspection techniques and analysis for material characterization: application to
concrete thermal damage. J. Acoust. Soc. Am. 136(2), 537–546 (2014)



11 A Unified Treatment of Nonlinear Viscoelasticity and Non-equilibrium Dynamics 485

14. C. Payan, T.J. Ulrich, P.Y. Le Bas, M. Griffa, P. Schuetz, M.C. Remillieux, T.A. Saleh, Probing
material nonlinearity at various depths by time reversal mirrors. Appl. Phys. Lett. 104(14),
144102 (2014)

15. V. Zaitsev, V. Gusev, B. Castagnede, Thermoelastic mechanism for logarithmic slow dynamics
and memory in elastic wave interactions with individual cracks. Phys. Rev. Lett. 90(7), 075501
(2003)

16. V.Y. Zaitsev, V.E. Gusev, V. Tournat, P. Richard, Slow relaxation and aging phenomena at the
nanoscale in granular materials. Phys. Rev. Lett. 112(10), 108302 (2014)

17. V. Aleshin, K. Van Den Abeele, Friction in unconforming grain contacts as a mechanism for
tensorial stress–strain hysteresis. J. Mech. Phys. Solids 55(4), 765–787 (2007)

18. P. Antonaci, C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, Evolution of damage-induced
nonlinearity in proximity of discontinuities in concrete. Int. J. Solids Struct. 47(11–12), 1603–
1610 (2010)

19. R.A. Guyer, K.R. McCall, G.N. Boitnott, Hysteresis, discrete memory, and nonlinear wave
propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995)

20. A.V. Lebedev, L.A. Ostrovsky, A unified model of hysteresis and long-time relaxation in
heterogeneous materials. Acoust. Phys. 60(5), 555–561 (2014)

21. C. Pecorari, A constitutive relationship for mechanical hysteresis of sandstone materials. Proc.
R. Soc. A 471(2184), 20150369 (2015)

22. O.O. Vakhnenko, V.O. Vakhnenko, T.J. Shankland, J.A. Ten Cate, Strain-induced kinetics of
intergrain defects as the mechanism of slow dynamics in the nonlinear resonant response of
humid sandstone bars. Phys. Rev. E 70(1), 015602 (2004)

23. V.O. Vakhnenko, O.O. Vakhnenko, J.A. TenCate, T.J. Shankland, Modeling of stress-strain
dependences for Berea sandstone under quasistatic loading. Phys. Rev. B 76(18), 184108
(2007)

24. N. Favrie, B. Lombard, C. Payan, Fast and slow dynamics in a nonlinear elastic bar excited by
longitudinal vibrations. Wave Motion 56, 221–238 (2015)

25. H. Berjamin, N. Favrie, B. Lombard, G. Chiavassa, Nonlinear waves in solids with slow
dynamics: an internal-variable model. Proc. R. Soc. A 473(2201), 20170024 (2017)

26. G. Renaud, J. Rivière, P.Y. Le Bas, P.A. Johnson, Hysteretic nonlinear elasticity of Berea
sandstone at low-vibrational strain revealed by dynamic acousto-elastic testing. Geophys. Res.
Lett. 40(4), 715–719 (2013)

27. M. Lott, C. Payan, V. Garnier, Q.A. Vu, J. Eiras, M.C. Remillieux, P.Y. Le Bas, T.J. Ulrich,
Three-dimensional treatment of nonequilibrium dynamics and higher order elasticity. Appl.
Phys. Lett. 108(14), 141907 (2016)

28. M.C. Remillieux, R.A. Guyer, C. Payan, T.J. Ulrich, Decoupling nonclassical nonlinear
behavior of elastic wave types. Phys. Rev. Lett. 116(11), 115501 (2016)

29. J. Smoller, Shock Waves and Reaction–Diffusion Equations, 2nd edn. (Springer, New York,
1994)

30. E. Godlewski, P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation
Laws (Springer, New York, 1996)

31. R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems (Cambridge University Press,
Cambridge, 2002)

32. A.N. Norris, Finite-amplitude waves in solids, in Nonlinear Acoustics, ed. by M.F. Hamilton,
D.T. Blackstock (Academic Press, San Diego, 1998), pp. 263–277

33. G.A. Maugin, W. Muschik, Thermodynamics with internal variables. Part I. General concepts.
J. Non-Equilib. Thermodyn. 19(3), 217–249 (1994)

34. G.A. Maugin, The saga of internal variables of state in continuum thermo-mechanics (1893–
2013). Mech. Res. Commun. 69, 79–86 (2015)

35. J.M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous
and Porous Media (Elsevier, Oxford, 2001)

36. P. Moczo, J. Kristek, On the rheological models used for time-domain methods of seismic wave
propagation. Geophys. Res. Lett. 32(1), L01306 (2005)



486 H. Berjamin et al.

37. E. Blanc, D. Komatitsch, E. Chaljub, B. Lombard, Z. Xie, Highly accurate stability-preserving
optimization of the Zener viscoelastic model, with application to wave propagation in the
presence of strong attenuation. Geophys. J. Int. 205(1), 427–439 (2016)

38. C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated
problems. SIAM Rev. 51(1), 82–126 (2009)

39. R. Velasco-Segura, P.L. Rendón, A finite volume approach for the simulation of nonlinear
dissipative acoustic wave propagation. Wave Motion 58, 180–195 (2015)

40. A. Voss, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth
equation of state, Ph.D. thesis, RWTH Aachen, 2005

41. A. Kurganov, G. Petrova, B. Popov, Adaptive semidiscrete central-upwind schemes for
nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)

42. H. Berjamin, B. Lombard, C. Chiavassa, N. Favrie, Modeling longitudinal wave propagation
in nonlinear viscoelastic solids with softening. Int. J. Solids Struct. 141–142, 35–44 (2018)



Chapter 12
Cement-Based Material Characterization
Using Nonlinear Single-Impact Resonant
Acoustic Spectroscopy (NSIRAS)

J. N. Eiras, T. Kundu, J. S. Popovics, and J. Payá

12.1 Introduction

The durability of infrastructure materials, such as concrete, has direct impact
on society because the productivity of many industries and safety of human
beings depend on infrastructure condition, and further because maintenance of the
infrastructure can represent a significant portion of a government’s budget. Thus the
enhancement of concrete durability and improvement of infrastructure condition
monitoring are significant concerns to the scientific community. The resonant
frequency method has been traditionally used to assess the mechanical condition
of concrete. Resonance frequencies of a solid body depend on test sample mass
and dimensions, elastic properties, and boundary conditions. Resonance frequencies
have been used to determine engineering properties such as the elastic moduli and
material damping. The method is useful to assess the performance of materials
within accelerated degradation durability test procedures, and to inspect quality
of the products during manufacturing processes (pass/fail tests). Different testing
standards and recommendations prescribe test configurations, and specific tests
are recommended for different materials. A basic resonant frequency test requires
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Fig. 12.1 (a) Typical time domain acceleration signal obtained in impact vibration resonant tests,
and (b) typical resonant spectrum, from which resonant frequency and quality factor can be
evaluated

a forced vibration system to set up mechanical resonances, and some system to
sense the frequency content from the resonant vibration signals. For concrete-like
materials, these specifications are given by ASTM C215 [1], wherein an impulsive
impact event is applied to the test sample to excite the resonant frequencies and
a small sensor is mounted on the surface of the test sample. From the impulsive
impact vibration signals thus obtained, two standard parameters are usually derived:
(1) the dynamic modulus, which depends on sample dimensions, mass, and the
resonant frequency peak (f ), and (2) the attenuation or damping capacity of the
material. Figure 12.1a, b illustrates typical signals obtained from a single-impact
vibration test, where the spectral (frequency domain) signal is computed from
the time signal using a Fourier transform algorithm. The continuous reduction of
the vibration signal amplitude with time during the signal “ring-down” is seen
in the time domain signal. The resonant frequency and damping characteristics
are extracted from the spectral signal in the region around the resonant frequency
peak. The damping capacity of the material is determined from the quality factor
(Q) (or inverse attenuation), which is defined as the ratio between the resonant
frequency peak (f ) and the bandwidth frequencies corresponding to a 50% reduction
of vibration energy in the power frequency spectrum for a given vibration mode
[2]. Meaningful application of the ASTM C215 test is found within other standard
durability test methods [3, 4].

It is important to note that standardized wave propagation and vibration test
methods, such as ASTM C215, assume that the test material behaves in a linear
elastic fashion, even after the material accumulates damage, and as such these
methods are identified as “linear” test methods. The assumption of linearity
implies, among other things, that the test results are independent of the mechanical
energy level (e.g., maximum strain amplitude of the vibration motion) used in
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the measurement. However, infrastructure materials such as concrete are known to
behave in a nonlinear and hysteretic fashion, especially at higher mechanical energy
levels. It has been shown by many investigators that the nonlinear characteristics
of the vibration signatures are very sensitive to the presence of damage and
other microstructural characteristics within materials [5–8]. Because the nonlinear
behavior is expected to be enhanced by increasing damage, considerable effort
has been dedicated to develop nonlinear vibration techniques for improved dam-
age content measurement. These nonlinear methods provide linear and nonlinear
material characterization parameters. Different measurement modalities can be used
to extract the nonlinear character, such as finite-amplitude and nonlinear wave
mixing techniques [8–10]; some of these techniques are described elsewhere in this
book. In nonlinear resonant frequency tests, the nonlinear and hysteretic behavior
of concrete is exhibited by nonlinear harmonic mode generation and an apparent
softening of the material with increasing vibration strain energy; as a result of the
latter characteristic, the resonant frequency shifts downward and the attenuation
shifts upward with increasing excitation amplitude [11, 12]. The nonlinear nature of
the vibration response can be elicited by repeating the standard resonant frequency
test configuration, but at varying vibration excitation amplitude through multiple
acquisitions. The excitation amplitude can be changed by either changing the energy
of the impulsive impact event or the driving voltage of an ultrasonic transmitter.
Figure 12.2 illustrates the expected evolution of the amplitude dependent vibration
resonant frequency (f ) and attenuation (ξ ) expressed with respect to those values at
very low strain energy (linear) condition: fo and ξo.

These phenomena have been leveraged by several researchers to measure
nonlinear frequency and attenuation variation in a more simple and convenient
manner by making use of the ring-down of a single forced vibration test. These
types of approaches monitor instantaneous phase and attenuation information of
the vibration as the amplitude of the signal naturally decreases during ring-down,
and are referred as ring-down spectroscopies. The test configurations consist of
either a burst excitation, wherein the signal is analyzed after switching off a
monochromatic frequency burst [13], or a more straight-forward option that utilizes
a single controlled impact event applied to the sample [14–16]. The latter approach
enables implementation of standard test configurations and thus is less cumbersome
when compared to other nonlinear measurement techniques, yet provides additional
nonlinear material measurement characterization parameters.

In this chapter, different signal processing techniques that can be applied to
investigate material nonlinearity derived from a single standard impact resonant
frequency test are discussed. In addition, nonlinear multiple- and single-impact test
approaches are compared, and the advantages and disadvantages of these techniques
are discussed. Finally, some of the concerns related to impact resonant frequency
tests, particularly those related to the investigation of the damage in cement-based
materials, are addressed.
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12.2 Background

Material degradation (D) is often defined using the dynamic modulus as

D = 1 − Eo,i

Eo,p
(12.1)

where Eo,p is the modulus of elasticity in the pristine state and Eo,i is the modulus
after an accelerated material degradation treatment. The subscript i may stand for a
value indicating the number of cycles that imparted damage, the time of exposure
in an aggressive environment, or another parameter characterizing the harshness
of the treatment (e.g., the temperature, the concentration of a chemical solution,
etc.). Usually, standard reference durability methods assume that the stress–strain
relationship remains linear upon increasing damage, and hence the evaluation
of damage depends on the variations of the linear resonant frequency. However,
deviation from this assumption increases as the material damage level increases,
and the material then behaves according to a nonlinear and hysteretic stress–strain
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relationship. The resulting nonlinear modulus (E) can be described as

E = Eo +H (ε, ε̇,�ε) , (12.2)

where the function H(ε, ε̇,�ε) describes a nonlinear and hysteretic departure from
the linear elastic behavior, which in general depends on the strain (ε), the strain rate
(ε̇), and the dynamic strain amplitude (Δε). In resonant frequency experiments, this
nonlinear and hysteretic behavior results in harmonic mode generation, increasing
attenuation, and an apparent softening of the material manifested by changing
resonant frequency and attenuation with increasing strain amplitude [17, 18].
The latter effects have been referred as the amplitude dependent internal friction
[19], or the fast dynamic effect [20]. The relationship between frequency and
attenuation shifts with the strain amplitude depends on the type of mechanical
hysteresis involved [18, 21]. However, for most materials the resonant frequency
was found to vary inversely and proportionately to the strain amplitude (Δε), within
a certain level of strain amplitudes {�εth,�εupper} [22, 23] usually above 10−7

[24]. Therefore, the downward frequency shift experienced with respect to the linear
elastic frequency value (fo) is expressed as

�f

fo
= αf ·�ε, and �ε ∈ {�εth,�εupper

}
. (12.3)

The linear elastic frequency value (fo) is obtained for strain amplitude at and
below the threshold value of the strain amplitude (Δεth). The proportionality
constant αf is a measure of the hysteretic behavior. Analogously, the attenuation
properties also become amplitude dependent, so the attenuation shifts from the
attenuation in the linear strain regime (ξo) as

ξ (�ε)− ξ0 = αξ ·�ε, and �ε ∈ {�εth,�εupper
}
, (12.4)

where αξ is the nonlinear attenuation parameter. Whenever a downward frequency
shift is obtained, the attenuation properties are also shifted upward proportionately
[25]. Thus, αf and αξ are proportional, which may indicate that both effects
arise from the same physical mechanisms [8]: internal friction and rough con-
tacts between unbounded interfaces. Furthermore, materials that exhibit amplitude
dependent internal friction effects also reveal a time-dependent creep-like behavior
which is referred as the slow dynamics effect [26]. Upon dynamic excitation, slow
dynamics manifests in the material response as a progressive softening of the elastic
modulus towards a new equilibrium state. Once the dynamic excitation ceases the
material experiences a relaxation process whereby the modulus gradually restores
to its initial value [26]. The two mechanisms (fast and slow dynamics) are thought
to coexist during dynamic excitation, so the material is said to experience material
conditioning [23].

The incorporation of a nonlinear hysteretic modulus into Eq. (12.1)—hence
D(�ε) = 1 − Ei(�ε)/Ep(�ε)—reveals a damage parameter that depends on the
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Fig. 12.3 Conceptual
illustration of the evolution of
linear and nonlinear
parameters with increasing
damage, expressed in
progressive cycles of damage,
in durability tests

strain amplitude. Alternately, the evolution of the nonlinear modulus upon material
changes (i.e., degradation) can be described by including perturbation terms which
reflect the variation of the linear and nonlinear elastic properties from those obtained
in the pristine state (subscript p) as

Ei (ε, ε̇,�ε) = (Eo,p +�Eo
)+ (Hp (ε, ε̇,�ε)+�H (ε, ε̇,�ε)

)
. (12.5)

Every perturbation term can be used in a relative basis for quantifying the
evolution of nonlinear and linear parameters with increasing damage content. This
idea is illustrated in Fig. 12.3, which shows expected evolution of the linear and
nonlinear parameters with increasing damage in durability tests, say with increasing
number of fatigue cycles or cycles of exposure in an aggressive medium. In
most cases, the relative variations of the linear and nonlinear parameters exhibit
a power-law behavior with increasing damage. The nonlinear parameters are able
to detect the damage progression at early states, and vary with greater extent with
increasing damage as compared with linear measurement parameters [6]. But at
the same time, nonlinear parameters also exhibit significantly greater variability,
which is not illustrated in Fig. 12.3. In some cases, the rise of material nonlinearity
with damage can also reverse itself, which may correspond to crossovers between
dominating mechanisms of energy dissipation, for example, viscous vs. dry friction
attenuation. This effect can be especially observed in cases where the mechanism
of degradation involves chemical reactions, for instance, the alkali-silica reaction in
concrete [27]. This effect can also be observed during increase of moisture uptake
during durability tests, see also Sect. 12.5.4. In other instances, a particular material
degradation mechanism may lead to an apparent healing of the material, whereby
the material nonlinearity decreases during accelerated durability tests. These cases
include carbonation [28–30] and the degradation of particular fiber types in fiber
reinforced concrete [31].
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12.3 Signal Processing for Single-Impact Vibration

Signal analysis techniques are used to investigate nonlinear behavior from single-
impact vibration signals by extracting the instantaneous frequency and attenuation
during the signal ring-down period. To achieve this, different time–frequency signal
analysis techniques can be applied. Instead of providing an exhaustive review of
time–frequency representations that are available, here we restrict our discussion
to the Short-Time Fourier Transform, or “sliding window,” method and the time
domain fitting method.

12.3.1 Sliding Window

The Fourier transform of a complete time signal provides a composite (aver-
age) response over the entire duration of the signal and thus does not permit
time–frequency localization for certain time periods within the signal. However,
the Short-Time Fourier Transform (STFT) allows for tracking the instantaneous
frequency and amplitude variations during the signal ring-down using a sliding
widow approach. For a given vibration time signal, the discrete Fourier transform
is performed at overlapped time segments of the signal, which are weighted by
a window function. Figure 12.4 schematically describes the signal processing
technique. In Fig. 12.4b the spectral maxima for each windowed signal illustrates
nonlinear softening (frequency reduction) with increasing vibration amplitude. The
analysis can be stopped when the spectral amplitude at a given window position
reaches a preset low threshold amplitude or a preset number of windows.
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Fig. 12.4 (a) Simulated vibration time signal. First and last positions of the sliding window are
shown, (b) stacked spectra from each window wherein the red points show the maximum amplitude
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The results depend on the signal analysis parameters, such as window length
and window function type. Since the frequency resolution of the discrete Fourier
transform depends on the signal length, there is a direct trade-off between time and
frequency resolutions. Thus, shorter windows provide better time resolution but at
the cost of poor frequency resolution. To improve frequency resolution, each signal
for a given window position can be zero-padded to artificially increase the frequency
step resolution [15]. However, when several modes are present in the signal, the
frequency resolution decreases for higher frequency modes because the window
length is kept constant. This does not pose a problem in standard test configurations
(e.g., ASTM C215) because the test and the analysis of the resonant frequency are
focused on only one resonant frequency mode. However, if the analysis of several
modes is of interest, the resolution issue can be circumvented, for instance, through
a wavelet analysis [32] or an adaptive window length approach [33], so that the
frequency resolution can be kept constant along the time–frequency representation.

12.3.2 Time Domain Fitting

The analysis of single-impact vibration signals can be also conducted in the time
domain. The time domain fitting method was first proposed by Van Den Abeele
and De Visscher [13]. The method consists of fitting an exponentially decaying sine
function

y(t)|τ = Aτ · exp (−qτ · t) · sin (2π · fτ · t + ϕτ ) , (12.6)

to the entire signal using τ overlapped time segments of equal duration; in Eq.
(12.6), Aτ is the signal amplitude, qτ is the decay parameter, fτ is the frequency, and
ϕτ is the phase for each of the τ segments. The analysis then retrieves the values
of A, f, q, and ϕ for each time segment τ , allowing investigation of the amplitude
dependent internal friction effects. The experimental configuration proposed by
Abeele and De Visscher used a loudspeaker to emit a low frequency long sinusoidal
burst that matches the resonant frequency of the sample under investigation. The
analysis of the signal was then performed during the ring-down of the reverberation
signal after the burst excitation had been switched off. Such an experimental
configuration and signal analysis was applied to analyze the material nonlinearity
of concrete [13], titanium alloys [34], and carbon fiber reinforced polymer samples
[35, 36].

In case of a single-impact excitation, it is expected that several vibration modes
of the sample will be excited simultaneously. Hence, the model can be adapted by
considering the superposition of M vibration modes as

y(t)|τ =
M∑

m=1

Am,τ · exp
(−qm,τ · t) · sin

(
2π · fm,τ · t + ϕm,τ

)
(12.7)
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where the subscript m stands for different vibration modes. One of the pitfalls of
this technique is that the amplitude value corresponds to the maximum amplitude
value within the measured time segment, while the frequency and decay parameter
values are averaged (in the sense of least-squares) over the time segment. Also, the
results depend on parameters such as the selected time segment length. Dahlén et
al. [14] pointed out these concerns and proposed to fit the entire vibration signal to
the model,

y(t) =
m=M∑

m=1

Am · exp (θm(t)) · sin (ϕm(t)) , (12.8)

where the functions θm(t) and φm(t) are time-dependent polynomial descriptions of
the phase and attenuation of order Nm, and Km

ϕm(t) =
n=Nm∑

n=0

pn,m · tn, and (12.9)

θm(t) =
k=Km∑

k=1

qk,m· tk, (12.10)

where pn,m and qk,m are the coefficients of the polynomials corresponding to the
vibration mode m. By fitting the entire signal, the instantaneous variations of signal
amplitude can be precisely related to the instantaneous variations of frequency and
attenuation; this approach is also called the global fitting method. It follows that
the amplitude values are independent of the signal processing parameters (window
length, window type, etc.), in contrast to the Fourier-based analysis or windowed
fitting methods. The polynomial orders (Nm and Km) should be selected by finding
an appropriate compromise between the residuals of the fit and the number of
parameters included in the model. This is normally achieved through either the
Akaike’s or the Bayesian Information Criteria. The latter favors the selection
of parsimonious models, hence having lower polynomial orders. Two different
algorithms to find the least-squares solution and polynomial order selection can be
found in [14] and in [37].

The global fitting method becomes especially cumbersome when an increasing
number of vibration modes coexist in the signal. Under certain circumstances, when
the time-varying phase and attenuation exhibit non-monotonic variations with time,
then higher order polynomials for the θm(t) and φm(t) functions are required. For
instance, consider the case when the instantaneous frequency and attenuation appear
to vary periodically. In this case, when the entire vibration signal is analyzed through
a Fourier transform, the main resonant frequency peak may show a double hump
or splitting of the resonant peak; this is further discussed in Sect. 12.5.3. In these
cases, alternate functions θm(t) and φm(t) that are not polynomial in form can be
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considered in order to better describe the nonlinear behavior. Otherwise, a model-
free method is preferred, such as the sliding window analysis described in Sect.
12.3.1.

12.4 Damage Quantification from a Single-Impact Response

Regardless of the feature extraction technique used to investigate the instantaneous
characteristics of a single-impact vibration signal, the material nonlinearity can be
detected by observing relationships between the signal amplitude and instantaneous
frequency or attenuation. Unlike the nonlinear techniques that investigate the ampli-
tude dependent internal friction by varying the excitation amplitude in consecutive
runs, ring-down spectroscopies allow investigation of the material nonlinearity in
a single run. Yet, experimental observations in damaged materials [35, 37] have
revealed that the nonlinear behaviors extracted from single- and multiple-runs are
substantially different, especially with increasing amount of damage within the
sample. Figure 12.5a, b compares nonlinear multiple- and single-impact resonance
results obtained from the same damaged concrete sample. Differences in frequency–
amplitude dependence obtained from the two approaches are apparent by comparing
the solid and dashed lines in Fig. 12.5b. The multiple-impact approach (Fig. 12.5a)
analyzes the downward shift of the resonant frequency with successively increasing
impact force for each event. In this case, the frequency decreases linearly with
increasing spectral amplitude (see inset plot in Fig. 12.5a). The spectral amplitude
is proportional to strain amplitude, but precise quantification of the hysteretic
behavior through the slope of the frequency–amplitude relationship is limited by the
arbitrary units of the spectral amplitude; recall that the Fourier spectral amplitude
and frequency values are averaged over the duration of the ring-down signal. This
is the main downside of the multiple-impact approach: it does not permit physical
quantification, but rather a qualitative comparison between different damage states.

Considering now the single-impact approach, every impact vibration response
from that same data set is analyzed individually, following the global time domain
fitting method—see Sect. 12.3.2 for more detail. In contrast to the multiple-impact
approach, analysis of ring-down of the single-impact signal enables the frequency
shift to be related to signal amplitude using the physical units with which the signal
was measured, thus enabling quantitative evaluation of the nonlinear behavior. The
signal amplitude can then be translated to strain using analytical [38] or numerical
approaches [39]. Moreover, the results shown in Fig. 12.5b demonstrate that the
instantaneous frequency–amplitude dependences for every individual single-impact
vibration signal are nonlinear, and that the response form depends on the impact
force. Yet the frequency obtained at the maximum amplitude of every impact,
indicated by circle symbols, reveals a linear relationship as ascertained from the
Fourier transform of every impact signal (inset in Fig. 12.5a). These results illustrate
the point that the frequency–amplitude dependences from both approaches differ
substantially.
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Fig. 12.5 Investigation of the material nonlinearity of a concrete sample: (a) resonant spectra
corresponding to multiple-impact events each with varying amplitude, where the inset figure shows
the relationship between the relative frequency shift and the spectral amplitude; (b) instantaneous
frequency–amplitude variation obtained during the ring-down of every single-impact event using
the global time domain fitting method (continuous lines) where circle symbols represent the
frequency values corresponding to the maximum amplitude for each individual impact and the
dashed line fit to the maximum amplitude results match the linear trend found in (a)

The dissimilarity between single- and multiple-impact method results can be
attributed principally to the slow dynamics effect. In the multiple-impact method the
slow dynamic effect is less significant assuming that the material is able to recover
the resonant frequency to a reasonable amount between consecutive impacts. If
sufficient recovery between impacts is achieved, then the variability of impact force
on the resonant frequency is well represented by the strain amplitude and does not
depend on the time lapse between consecutive impacts. In contrast, in the single-
impact method, the frequency recovery during the ring-down signal depends not
only on the strain amplitude, but also on the previous history of the dynamic load;
the latter is represented in general form using the subscript “t-1,” to recognize that
frequency shift resulting from the slow dynamics contribution lags with respect
to the instantaneous strain amplitude. Then, the total (measured) frequency shift
experienced during a ring-down signal (fo − f (Δε,Δεt-1)) can be considered as the
superposition of two elastic subsystems: (1) one that depends on the instantaneous
strain amplitude—or fast dynamics (fo − f (Δε))—having no memory of the load
history, and (2) another that depends on the load history—or slow dynamics
(fo − f (Δεmax,Δεt-1)). When expressed as a simple linear combination of effects,
the expression for total frequency shift becomes

f0 − f (�ε,�εt−1)

f0
=
〈
f0 − f (�ε)

f0

〉

fast
+
〈
f0 − f (�εt−1,�εmax)

f0

〉

slow
.

(12.11)
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Experimental observations in concrete suggest that fast and slow dynamics are
coupled during dynamic excitation, as indicated by Eq. (12.11). This coupled effect
has been referred as material conditioning [23, 40]. It follows that in order to
decompose fast and slow dynamic contributions from the total, a priori knowledge is
required about (1) the frequency–amplitude dependence set up by the fast dynamic
behavior, and (2) the linear resonant frequency value fo. Thus, in the case of a linear
relationship between frequency and strain amplitude (e.g., as shown in Fig. 12.5a
for the case of spectral amplitude, which is proportional to the strain amplitude), the
nonlinear hysteretic parameter can be extracted from the maximum value obtained
from a single-impact response as

αf =
(
f0−f�εmax

f0

)

�εmax
. (12.12)

where fΔεmax is the frequency value obtained at the maximum strain amplitude
(Δεmax). In this way, the frequency shift corresponding to the fast dynamic effect
is proportional to the amplitude variation over the signal ring-down, and the slow
dynamics contribution deviates away the proportional frequency shift behavior.
Figure 12.6a, b illustrates conceptually the fast and slow dynamic contributions as a
function of time and as a function of the strain amplitude for a general case where
the frequency–amplitude dependence corresponding to the fast dynamic effect is
assumed to be linear; note, however, that other nonlinear relationships can be also
considered for the fast dynamics effect as the frequency–amplitude relationship
depends on the type of mechanical hysteresis [21]. The linear combination of
fast and slow dynamics expressed in Eq. (12.11) is illustrated in Fig. 12.6b,
illustrating the relationship between frequency and amplitude obtained for both
single- and multiple-runs. Note also that a similar decomposition can be derived for
the amplitude dependent attenuation. The investigation of the nonlinear behavior
through a single-impact approach contains the slow dynamic response (dotted
lines in Fig. 12.6a, b), which in a multiple-impact approach may be avoided with
sufficient material recovery time between impact events. The latter can be achieved
by controlling the time lapse between impacts and by verifying that the resonant
frequency has been restored to the value obtained in the linear strain regime (fo)
between consecutive acquisitions.

12.5 Sources of Variability and Systematic Errors

The measurement of linear and nonlinear elastic properties from resonant frequency
tests is affected by different sources of variability. These sources of measurement
variability are inherent to the specific feature extraction technique employed,
to the particular test configuration employed, or to the ambient environmental
conditions. Some of these effects are disregarded, or only vaguely addressed, in
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a b

Fig. 12.6 Conceptual illustration of the resonant frequency shift during the signal ring-down and
decomposed fast and slow dynamic contributions as a function of (a) time and (b) strain amplitude.
The circular point indicates the maximum strain amplitude

the test standards even though they may significantly affect the results or lead
to misinterpretation of data. A good understanding of the following sources of
variability would further enhance the robustness of linear and nonlinear resonance
frequency evaluation for material characterization.

12.5.1 Errors in Nonlinear Parameter Estimation

The signal processing used to extract and quantify nonlinear behavior from the
raw signal data affects the obtained parameter values and variability. In general,
the signal processing must provide enough frequency resolution to reveal the small
frequency variations that occur with changing excitation amplitude. Therefore, the
smallest hysteretic parameter value that can be ascertained will depend on the
frequency and amplitude resolutions of the signals. However, the accuracy of the
hysteretic parameter depends on the precision with which the defined frequency
in the linear strain regime, fo, is determined. The effects of incorrect selection of
fo on the hysteretic parameter were previously discussed by Johnson et al. [41].
They identified the likely causes leading to incorrect estimation of fo are: (1)
high material attenuation that can hinder the identification of fo, (2) insufficient
frequency step resolution used in the signal analysis, and (3) the effect of material
conditioning, meaning the fo value was not measured in the equilibrium state.
Often, fo and ξo values are assumed to be the value obtained from the lowest
excitation amplitude event, which depends on the sensitivity of the measurement
excitation and sensing systems, rather than being ascertained at the true linear strain
regime. Consideration of a pair Δεth, fo values that are above the true linear strain
regime leads to an overestimation of the hysteretic parameter. Figure 12.7a shows
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synthetic data relating strain amplitude and frequency for αf = 103, Δεth = 10−7,
and fo = 5000 Hz. Figure 12.7b shows the effects on the computation of the
hysteretic parameter αf when slightly high values of Δεth and fo are assigned.
Also, separate discussion is needed to consider the transformation from the dynamic
response of the sample (acceleration, velocity, or displacement) to its internal
dynamic strain amplitude. Although these conversions are appealing because the
nonlinear behavior is defined by strain response (see Eq. (12.2)), the relations to
conduct such a transformation presume linear elastic behavior [38]. With increasing
material damage, these conversions will deviate from the linear elastic assumption;
a comprehensive study addressing this issue is needed.

12.5.2 Effect of Test Configuration

The test configuration that is employed may affect the obtained dynamic response
results because of imperfect sample boundary conditions, varying mode excitation,
or varying dynamic strain rate used in the dynamic excitation. Standard resonant
frequency tests are normally performed on a sample assuming free boundary
conditions. As such, samples are either supported on a foam mat, hung by elastic
wires, supported on rods, or otherwise held at nodal positions. Some studies also
have employed a cantilever configuration, however, non-ideal clamping conditions
at the sample end may obscure the measurement of the material nonlinearity. For
example, new sources of nonlinearity can be introduced to the overall system
because of a loose clamp, while excessive torque on the clamped end can constrain
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the sample, leading to a mitigation of the nonlinear behavior [42]. Also, additional
care must be taken with coupling transducers and excitation sources to the test
sample to avoid nonlinear effects and spurious frequencies that are not inherent
to the mechanical behavior of the material under inspection, but are associated with
the test configuration itself. For example, rattling between transducers, rigs, etc. and
the sample under inspection can lead to such spurious nonlinear system behaviors
[43]. These spurious effects can be avoided, where possible, by the selection of test
configurations that let the sample freely vibrate as much as possible.

Experimental observations have also revealed that different modes of vibration
can exhibit distinct hysteretic behavior [39, 44], and so each may evolve in
different ways with increasing damage. Therefore, a complete characterization of
the nonlinear behavior should consider different vibration mode families (e.g., com-
pressional, flexural, and torsional). Also, the effects of varying test strain rate may
be significant, considering that strain rate does affect the nonlinear and hysteretic
behavior as described in Eq. (12.2). In general, nonlinear and hysteretic behavior is
enhanced with increasing dynamic strain rate [45, 46]. These observations suggest
that shorter samples may enhance the nonlinear effects when compared to longer
ones, as the same vibration mode will subject the shorter sample to a higher strain
rate dynamic loading (higher frequency). To the authors’ knowledge, these issues
have not yet been clearly addressed.

12.5.3 Double-Hump Effect

The resonant spectra of a standard flexural vibration test configuration may display
closely spaced resonant frequencies mostly depending on the sample geometry,
which are normally either prisms or cylinders. For samples that exhibit cross-
sectional geometric symmetry, flexural modes in orthogonal directions appear at
the same frequency value, and are said to be degenerate modes. If this symmetry is
somehow disrupted, for example, because of imperfect geometry or the presence of
an internal localized defect or density variation across the sample, the frequency of
the degenerate modes separates. This effect has been dubbed as signal beating [47],
double-hump effect [48], or splitting of degeneracies [49]. For concrete samples,
in particular for imperfect cross-sectional geometry of the sample, the presence of a
localized crack or honeycomb or chip within the material, non-uniform moisture dis-
tribution, or a density variation across the sample—for instance, because of bleeding
of the concrete batch—may cause peak splitting. Also, in concrete durability tests,
peak splitting effect may be enhanced as damage progresses in asymmetric fashion.
Thus the double-hump effect can be observed upon increasing degradation, for
example, with external chemical attack wherein the inward diffusion of aggressive
chemical species can lead to a density variation across the sample, or in durability
tests that subject the samples to thermal shocks or freezing-thawing cycles. In other
cases, the peak splitting can be interpreted as a periodic variation of sample stiffness
during opening and closing of an internal defect (e.g., a surface-breaking crack)
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upon dynamic motion [50, 51]. In other instances, a double-hump effect can be also
caused by poorly attached sensors on the sample [27].

Figure 12.8a, b shows the vibration response in time and frequency domains
corresponding to the flexural mode of a concrete sample containing a vertical
surface-breaking crack at the mid-span. The presence of the crack disrupts the
continuous amplitude ring-down of the signal (Fig. 12.8a). When the whole
vibration signal is interpreted in the frequency domain, the resonant peak appears
to split (Fig. 12.8b). When the instantaneous frequency is investigated (Fig. 12.8c),
the resonant frequency appears to vary periodically, giving the appearance that the
stiffness of the sample varies with dynamic excitation. Thus peak splitting may be
leveraged to identify defective samples and detect damage where the span of the
frequency split correlates with the size of the defect [49, 52, 53]. However, within
the context of material characterization, where the goal of the resonant frequency
test is to obtain engineering properties (elastic moduli, damping, or the hysteretic
parameter), peak splitting may disrupt the analysis. In this case non-degenerate

a b

c

Fig. 12.8 (a) Vibration signal corresponding to the flexural mode of a concrete sample containing
a surface breathing crack, (b) resulting spectra showing splitting of the resonant peak, and (c) time–
frequency representation; the inset plot shows the stacked spectra obtained through the sliding
window method
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modes (e.g., from the longitudinal and torsional families of modes) should be
selected to characterize the samples.

12.5.4 Environmental Factors: Internal Moisture
and Temperature

The constitutive properties of porous materials such as concrete are affected by
the internal moisture contained within the pore structure. In general, moisture in
the internal pore structure exerts a buildup of internal (hydraulic) pressure, which
results in an alteration of the apparent elastic properties. The way which moisture
affects the linear and nonlinear elastic properties depends on the characteristics
of the pore network [54]. For concrete-like materials, it has been shown that an
increase of the apparent modulus and an increase of the apparent attenuation occur
with increasing moisture content. The extent of variation of the dynamic properties
with internal moisture variations depends, however, on the concrete properties
and composition [55]. The increase of modulus with increasing moisture content
appears to be controlled by capillary-sized porosity, which is usually in the pore
size range of 10–0.01 μm [55, 56]. Loss of internal moisture can also produce
tensile stresses leading to microcracking of brittle porous materials [57]. Hence,
the hysteretic behavior of concrete can be enhanced after drying treatment because
it can lead to shrinkage, cracking, and other microstructural modifications [56].
However, subsequent moisture uptake by the material can alleviate the mechanisms
that give rise to the nonlinear behavior [37, 58]. These observations illustrate
the important effect of moisture because it can obscure the presence of damage
sensed by nonlinear parameters and lead to misinterpretations in durability tests.
The elastic properties of materials depend also on the sample temperature [59].
The elastic modulus of different rock types exhibits hysteretic behavior during
warming and cooling cycles [60]. These results may be also relevant for concrete-
like materials. Environmental conditions (i.e., moisture and temperature) must be
carefully maintained during durability test to avoid such misinterpretations.

12.5.5 Material Conditioning

Because of nonlinear hysteretic behavior exhibited by concrete, a memory effect
may persist whereby the material temporarily “remembers” the previous load
history [61]. As a consequence of this slow dynamics effect, the measured frequency
and attenuation behavior may change if the standard resonant frequency test in
concrete samples is repeated with short periods of rest in between [37, 62]. In
other words, the resonant frequency and attenuation of a test may be affected by
the previous impact test. Figure 12.9a shows the resonant frequency of concrete
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Fig. 12.9 (a) Repeated resonant frequency measurements in concrete samples that underwent
100, 200, and 300 freezing-thawing cycles, and (b) repeated resonant frequency measurements
for varying moisture content in the concrete sample that underwent 300 cycles

samples that underwent 100, 200, and 300 standard freezing-thawing cycles [3] and
thus are expected to exhibit increasing amounts of distributed cracking damage.
The resonant frequency test was repeated at a constant impact rate (1 Hz) and
with a constant impact energy by using an automated impactor device. The results
demonstrate that the resonant frequency decreases with accrued number of impacts
for these types of tests, and that the amount of this change depends on the extent
of internal damage. Yet, the initial resonant frequency can be eventually restored
if enough rest time between subsequent tests is provided for the sample to recover
the initial properties through the slow dynamics process (not shown in these data).
Furthermore, the influence of the slow dynamic effect can be affected by the
internal moisture content of the material. Figure 12.9b shows that the slow dynamic
effect is modified by changing internal moisture content. Thus slow dynamic
behavior arises from significant and separate contributions from internal moisture
and internal damage levels, which can lead to misinterpretation of the obtained
results if sufficient care is not taken. The influence of the slow dynamic effect on
the measurement of the hysteretic parameters can be minimized by increasing the
time lapse between consecutive acquisitions, that is by providing sufficient “rest”
time between measurements by verifying that the elastic modulus has been restored
to that obtained at linear strain amplitude excitation; however, “sufficient” rest time
can require up to ten to thousands of seconds between consecutive acquisitions,
depending on the material and ambient conditions [40].

12.6 Concluding Remarks

This chapter describes the use of nonlinear single-impact resonant acoustic spec-
troscopy (NSIRAS) to quantify nonlinear material behavior of concrete, such as
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amplitude dependent internal friction effects. NSIRAS is a ring-down spectroscopic
method where the data are collected using the standard impact resonant frequency
test configuration (e.g., ASTM C 215). The NSIRAS approach offers a balance
of sensitivity to material damage, when compared with linear vibration methods,
and test simplicity in comparison to other nonlinear test methods such as nonlinear
elastic wave spectroscopy or the dynamic acousto-elasticity test. Several different
signal processing alternatives that extract nonlinear features, which arise from the
nonlinear and hysteretic behavior of concrete, from the measurement signal were
described. Multiple- and single-impact (ring-down spectroscopy) methods were
compared. The single-impact method offers advantages in comparison to multiple-
impact methods. For example, material nonlinearity can be investigated using the
physical units of the signal amplitude, rather than the arbitrary units of spectral
amplitude. Also, the single-impact method reduces the operating time and the
number of impacts needed to carry out the test; multiple repeated impacts could
lead to local damage in concrete samples, especially in durability tests as the
distress progresses in the material. Some of the concerns and limitations related
to impact resonant frequency tests are finally presented, particularly those related to
the investigation of the durability of cement-based materials.
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Chapter 13
Dynamic Acousto-Elastic Testing

Sylvain Haupert, Guillaume Renaud, Jacques Rivière, and Parisa Shokouhi

13.1 Introduction

13.1.1 Inspirations and Principles of Dynamic Acousto-Elastic
Testing

Pioneering measurements of elastic nonlinearity were static methods leading to
the thermodynamic diagram that shows the relations between pressure, volume,
and temperature (p-v-T diagram) [1]. The dependence of the bulk elastic modulus
on the pressure, i.e., a measure of nonlinear elasticity, was deduced from this
diagram. In the beginning of the twentieth century, resonance spectroscopy [2, 3] or
methods based on interferometry [4] were proposed to measure the elastic moduli
as functions of temperature and hydrostatic pressure. Finally, with the possibility
of generating an ultrasonic short pulse [5, 6], acousto-elastic testing became an
alternative way to assess elastic nonlinearity. Acousto-elastic testing consists in
measuring changes of the speed of sound (by the determination of the travel time
of an ultrasonic short pulse) induced by a hydrostatic or uniaxial stress (or strain).
For metals and polymers, the relative variation in ultrasound wave-speed is found
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between 10−5 and 10−4 per MPa of the applied stress. In cracked or granular media,
contacts between the two lips of cracks or contacts between grains can greatly
increase the variation in ultrasound wave-speed up to about 10−2 per MPa of applied
stress, i.e., orders of magnitude larger than in metals and polymers [7].

A conventional acousto-elastic experiment is quasi-static; the applied stress is
varied in discrete steps and the ultrasonic wave-speed is measured for each level
of the applied stress [8–10]. While early conventional experiments applied a static
stress up to 1 GPa [6, 11], recent studies have applied less than 10 MPa [12].
There exist several ways to monitor the change of wave-speed induced by the
quasi-static loading. It can rely on an elastic wave (propagating short ultrasonic
burst or resonance technique) or on a hybrid optical and ultrasonic approach using
diffraction of light by standing elastic wave [13] or Brillouin spectroscopy [14].

In the past three decades, alternative ways to measure the acousto-elastic effect
were proposed. A slowly varying sinusoidal loading was proposed instead of a
quasi-static stress that is varied in discrete steps [15]. Methods based on the
interaction of two bulk elastic waves [16] or surface waves [17, 18] were introduced,
including a technique termed Dynamic Acousto-Elastic Testing (DAET) [19, 20].
DAET is the dynamic analog of a conventional experiment of acousto-elasticity,
though with significant differences. Firstly, the applied stress is not produced by
a universal testing machine in discrete steps but induced by an elastic wave.
The elastic wave has typically a frequency of a few kHz in a lab experiment.
Consequently the elastic constants at stake are all adiabatic elastic constants. On
the contrary both adiabatic and isothermal elastic constants are involved in a quasi-
static conventional acousto-elastic experiment (since a quasi-static deformation
is considered to be an isothermal process). Secondly, a low vibrational strain is
applied, typically 10–6, while conventional quasi-static experiments operate with
an applied strain exceeding 10–4. Finally DAET explores the dynamic elastic
behavior of a material about its equilibrium state. Unlike conventional quasi-static
experiments where a compressive stress only (or tensile stress only) is applied, both
tensile and compressive behaviors are investigated in DAET.

In a typical DAET lab experiment, the sample is dynamically excited by an
acoustic/elastic wave whose wavelength is larger than the size of the sample
(frequency is typically a few kHz if the sample size is several centimeters). This
wave is called the “pump” wave. A sequence of identical ultrasonic short bursts
(with a typical center frequency of 1 MHz) is simultaneously applied to measure the
dynamic change of elasticity induced by this pump wave. The ultrasonic short bursts
are called the “probe” wave, since they are broadcasted to capture the dynamic
variation in material elasticity induced by the pump wave (see Fig. 13.1). The
repetition rate of these ultrasonic short bursts is chosen to adequately sample the
changes of elasticity produced at a rate imposed by the temporal frequency of the
pump wave. Typically the pump wave produces a dynamic acoustic displacement
of the order of 1 micrometer while the ultrasonic probe induces a dynamic acoustic
displacement of the order of 1 nm. Therefore, the theory of acousto-elasticity as
described in [7] can be applied to DAET.
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Fig. 13.1 Principles of DAET. Top: schematic representation of the pump wave and the probe
wave. The very first ultrasonic pulse is used as a reference. Bottom: enlargement showing that the
travel time of an ultrasonic pulse is much smaller than the temporal period of the pump wave

In order to apply the theory of acousto-elasticity [7], the strain field (produced by
the pump wave) traversed by the ultrasonic pulses must be quasi-homogeneous and
quasi-static with respect to the ultrasonic travel time in the sample. The geometry
of the sample and/or the position of the ultrasound transducers that transmit and
receive the ultrasonic pulses are then selected so that the travel time of the probe
wave (ultrasonic pulses) is much smaller than the temporal period of the pump wave.
Each ultrasonic pulse traverses the material as it experiences a different strain level
and the large number of ultrasonic pulses in the sequence (typically 1000–10,000).
This provides a dense sampling of the relation between the ultrasonic wave-speed
measured by the probe wave and the applied strain (produced by the pump wave).
The change of ultrasonic wave-speed is calculated from the change of travel time
of the probe wave, since the length of the propagation path is known. The change
of travel time can be precisely determined from a comparison of a given ultrasonic
pulse in the sequence with the very first ultrasonic pulse that serves as a reference
(see Fig. 13.1). Techniques to achieve this will be detailed later in this chapter. For
each ultrasonic pulse, the strain level is taken as the spatial and temporal average
of the strain experienced by the ultrasonic pulse during its propagation through
the sample. Techniques to calculate the strain value associated with each ultrasonic
pulse will also be explained later in this chapter.
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13.1.2 Comparison with Other Methods

DAET belongs to the family of “pump-probe” methods that have existed in
nonlinear acoustics from the 1950s [21, 22]. It involves two dynamic fields: one
perturbs the material elasticity (the pump) and one measures the induced elastic
changes (the probe). Experiments of this type are also termed nonlinear wave
mixing. In such measurements, one is interested in the resulting effects of the
nonlinear interaction after a propagation distance (i.e., length of interaction) that is
much larger than both the pump wavelength and the probe wavelength (see Chaps.
1 and 6 in this book). In contrast, in DAET, we are interested in the nonlinear
interaction between the pump wave and the probe wave over a distance that is
much smaller than the pump wavelength. This situation is therefore more similar
to a conventional quasi-static acousto-elastic experiment than an experiment of
nonlinear wave mixing.

Nonlinear resonance ultrasound spectroscopy (NRUS, see Chaps. 2 and 12 in
this book) measures a variation in the material elasticity (as the driving amplitude
is increased) that is time-averaged over an acoustic period. In contrast DAET
allows one to “read” the instantaneous variations in the elastic modulus during
an entire acoustic cycle of the pump wave. In this respect, DAET provides more
detailed insight into the dynamic elastic nonlinearity of a material than NRUS.
Moreover nonlinear resonance ultrasound spectroscopy measures the global elastic
nonlinearity of the entire sample. In contrast DAET provides a local measurement
of elastic nonlinearity. The investigated region of the sample is the volume of the
sample that is traversed by the ultrasonic short bursts (probe wave).

13.2 Experimental Setups

Dynamic acousto-elastic testing (DAET) was originally developed to evaluate
microdamage in trabecular (spongious) bone [19, 23]. In this first configuration,
the bone sample was immersed in a water tank. It was later shown that small
modifications of this experimental setup allow one to investigate any material
immersed in a coupling fluid, such as a plain block of a given solid material, water-
saturated glass beads [24], gels or creams [25], or a suspension of particles [25,
26]. Meanwhile, DAET method was also extended to experimentations in contact
(without the need of immersing the sample in a water tank) to study materials such
as rocks [27, 28], concrete [29, 30], or metals with cracks [31, 32] under room-dry
conditions.

http://dx.doi.org/10.1007/978-3-319-94476-0_1
http://dx.doi.org/10.1007/978-3-319-94476-0_6
http://dx.doi.org/10.1007/978-3-319-94476-0_2
http://dx.doi.org/10.1007/978-3-319-94476-0_12
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13.2.1 Low-Frequency Pump Wave: Quasi-Homogeneous
and Quasi-Static Requirements

Whether DAET is done in immersion or in contact, both setups are similar and
consist in broadcasting a low-frequency (LF) pump wave and measuring changes
of wave-speed experienced by an ultrasonic (US) probe wave that traverses the
LF pressure/strain field generated in the probed volume. The analysis of the
measurements is straightforward if two requirements are respected: the LF pressure
field must be (1) quasi-homogeneous in the volume probed by the US probe wave
and (2) quasi-static with regard to the travel time of the US probe wave. In these
conditions, it is analogous to conventional quasi-static acousto-elastic testing.

It has been shown experimentally and validated by simulation [33] that the
pressure/strain field seen by the US probe is quasi-homogeneous when the distance
dprobe traveled by the US probe is at least 10 times smaller than the LF pump
wavelength λpump, while the quasi-static requirement is reached when the US time
of flight (TOF) propagation is at least 10 times smaller than the LF pump period
Tpump. The two requirements are related via the wave-speed c since dprobe = c*TOF
and λpump = c*Tpump. In practice, the LF pump wave is either a standing wave (e.g.,
first compressional mode of a bar) [27, 34] or a propagative wave [20, 26, 35] (Fig.
13.2). Both configurations will be explained in detail in Sects. 13.2.4 and 13.2.5.

Fig. 13.2 Examples of different low-frequency (LF) pump wave configurations. For bars or
cylinders, the LF pump wave can be a standing wave matching either the 1st compressional mode
(a–c) or the 1st bending mode (d). The LF pump can also be multi-modal when using a hammer as
exciter (e). Various boundary conditions and emitter/receiver types can be used depending on the
application. For a (semi-)infinite solid (f) or fluid (g) sample, the pump can be a propagative wave
induced by a LF transducer
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13.2.2 Ultrasonic Probe Wave: Type, Amplitude, Position,
and Orientation

A US probe wave is required to read the instantaneous change of phase velocity
at different strain levels. While it is possible to use any kind of ultrasonic waves,
bulk compressional wave is involved in most of the studies, while bulk shear wave
[29, 36], or surface wave such as direct or head wave [27, 37], or Raleigh wave [29,
30] remain anecdotic. The only requirement is to be able to measure the TOF of
the probe wave and its variation (induced by the pump wave, see Sect. 13.3) along
a known propagation path for different strain levels. The propagation path of the
probe wave is also needed to evaluate the pump strain experienced by the probe
wave.

In practice, this can be done with two US transducers in direct or indirect
transmission configuration or with one transducer in pulse-echo configuration (Fig.
13.3). The choice of configuration depends on the experimental conditions such
as the workable surface of the sample, the material access, the attenuation in the
material, or the orientation between the US probe beam and the LF pump wave
(e.g., collinear, orthogonal, or with an arbitrary angle). It also depends on how large
the TOF variation is along the propagation distance in the medium. If the one way
direct transmission path is not enough to accumulate sufficient change in TOF (i.e.,
larger than the phase noise level), the use of multiple reflections (within the sample)
along the same direct transmission path represents a good alternative [32].

In order to determine the propagation path of the US probe wave, a short US pulse
is generally preferred as it is relatively easy to guess the propagation knowing the
nature of the wave (e.g., compression or shear bulk wave, Rayleigh wave or Lamb

Fig. 13.3 Examples of different high-frequency (HF) probe wave configurations: bulk compres-
sion wave or bulk shear wave propagating across the sample in pulse-echo (a) or transmission (b);
direct wave (c) or surface wave (d) propagating at the surface of the sample
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wave). The use of a continuous monochromatic US wave may be used cautiously
as waves may travel in the whole material, with possible multiple reflections and
modes conversion. The probe signal recorded at the receiver contains the direct
propagation signal superimposed with signals produced by reflections and mode
conversion within the sample, which makes the analysis difficult. It is preferable to
use a continuous probe in case of strong attenuation (e.g., due to multiple scattering
and/or absorption) that reduces the amplitude of waves reflected at the sample
boundaries [38].

For very heterogeneous media such as rocks or concrete, the direct or ballistic
US wave is sometimes difficult to disentangle from the later arriving waves, the
so-called coda. The coda is the result of multiple scattering that occurs when the
US wavelength is close to the size of the scatterers and/or when the scattering
efficiency is high (large contrast of mass density and/or compressibility). A coda-
based technique called Coda Wave Interferometry (CWI) can be used to calculate
small variations in wave-speed with a greater accuracy than ballistic wave arrival
times, making it an interesting tool for measuring acousto-elastic effects [39, 40].
The main drawbacks of using coda wave instead of direct wave are (1) the LF strain
field seen by the coda wave is no more quasi-homogeneous nor quasi-static and (2)
the coda wave is a superposition of multiple shear and bulk waves having different
speed of sound and polarization.

In the case of a porous medium like rocks, it is important to add treatment on the
surface of the sample (e.g., polished nail or tape) to prevent coupling ultrasound gel
from penetrating the material.

When a short US pulse is used, the pulse repetition frequency (PRF) is
conditioned by the distance between the US emitter and receiver and by ultrasound
attenuation. Indeed, for proper analysis, two successive US signals (including direct
propagation, (multiple) reflections, guided propagation, and (multiple) scattering)
must not overlap in the time domain. The ratio between the PRF and the frequency of
the LF pump wave must not equal a rational number in order to create a stroboscopic
effect, so that US pulses probe different LF strains during each LF cycle. In this
manner, US pulses are able to probe discrete values well distributed over the entire
LF strain excursion, both in tension and in compression, after several LF periods
(e.g., generally between few tens to few hundreds).

13.2.3 Clock Synchronization and Phase Noise

The DAET measurement protocol involves three distinct phases (Figs. 13.1 and
13.14):

• Pre-pump reference phase—The US probe is turned on, and stays on until the
end of the DAET measurement. During this phase, the reference TOF is measured
while the noise floor (e.g., phase noise) is evaluated by computing the phase-shift
between US signals (i.e., US pulses or US monochromatic continuous wave).
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• Pump phase—The LF pump wave is then turned on. It can be an impact or
continuous monochromatic wave, which lasts as long as it is needed for the US
signal to probe the entire LF strain excursion. In case of standing wave, it is
important to wait for the steady state. The TOF variation is evaluated by assessing
the phase-shift between the instantaneous US signal and the reference US signal
(see Sect. 13.3)

• Post-pump reference phase or recovery phase—The LF pump wave is finally
turned off. In some cases, the phase velocity of the material does not return back
instantaneously to its initial value, leading to a relaxation period, due to the so-
called conditioning (see Sect. 13.4.2.3) that is tracked by the US probe.

The key for effective DAET measurements is to achieve high sensitivity to
small TOF variations. For weakly nonlinear elastic materials, such as PMMA or
duralumin, the maximum TOF variation is close to one nanosecond for a US wave
traveling through a few centimeters if the maximum LF strain level is in the order of
10−5 [27, 41]. Although not straightforward, it is possible to achieve phase noise
as low as 0.1 ns with conventional electronic devices (e.g., function generator,
digitizer) if some essential rules are respected.

The most important rule is to maximize the signal-to-noise ratio of the recorded
probe signal. Another important aspect is synchronization. All the electronic
devices involved in the experimental setup must be synchronized by choosing a
single master clock across all devices. This is generally done by connecting the
10 MHz reference clock from one of the devices (e.g., a function generator) to
other electronic devices (e.g., the other function generators and digitizers). A good
synchronization reduces drastically the electronic time deviation or phase-shift, also
called jitter, which is one of the major sources of phase noise.

Phase noise can also be caused by relative movements of both US transducers due
to low vibrations coming from the environment (e.g., vibration from the building).
The use of the same holder for both US transducers overcomes this problem by
suppressing the relative movements.

A good configuration for the digitizer (i.e., sampling frequency and quantization
bits) is also required to achieve high sensitivity to small TOF variation. High sam-
pling frequency is a necessity, but it does not determine directly the TOF resolution.
Indeed, TOF resolution depends on the sampling frequency (i.e., sampling period)
as well as the numerical tool used to compute the phase-shift between two probe
signals (see Sect. 13.3).

The quantization bits (i.e., the number of vertical bits used for analog-to-digital
conversion) are generally forgotten but this factor is as important as the sampling
frequency. Indeed, the higher the number of quantization bits, the better will be the
TOF resolution. The vertical range (i.e., in voltage) of the digitizer must also be
adapted to the voltage of the US transmitted signal in order to reach at least 80% of
the full range.

In practice, for short US pulses centered at around 2 MHz, a sampling frequency
above 50 MHz (i.e., a sampling period of 20 ns) with a quantization above 14 bits
reduces the phase noise below 0.1 ns.
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Fig. 13.4 Example of a DAET experimental setup with stationary wave (1st compression mode)
as pump wave. The shape of the sample is either a bar or a cylinder

13.2.4 DAET with Stationary Pump Wave

DAET with stationary pump wave is recommended for laboratory measurements on
calibrated samples such as bars, cylinders, or plates because it is possible:

(1) To achieve high strain level, up to 10−4.
(2) To estimate the strain level along the US probe path as the strain distribution is

known for a simple modal shape.

In practice, the first compressional [27] or flexural [30] mode is preferentially
excited with a continuous monochromatic source tuned to match the frequency of
the desired mode. The LF pump wave is broadcasted directly in the sample by means
of a piezoelectric disk glued on the sample [27] or a shaker attached to the sample
[30]. The frequency of the pump wave is chosen to match the fixed-free [27] or the
free-free [42] boundary conditions (Fig. 13.2).

When using the first compressional mode with fixed-free boundary conditions,
the most common configuration for the probe consists of two US transducers in
through-transmission configuration, with a direction of propagation either normal
to the pump stress direction (Fig. 13.4) [43], collinear to the pump stress direction
[27], or at an angle [41]. The pair of US transducers is generally placed where the
LF strain amplitude is the largest, i.e., close to the piezoelectric disk (Fig. 13.4).

Use of the first bending mode is more restrictive because the strain field across
the sample is not uniformed. Nonetheless, along a short portion of the sample, the
strain field can be considered quasi-uniform when the penetration depth (i.e., one
wavelength) of the US beam is smaller than one tenth of the sample thickness.
For this reason, only HF surface waves such as Rayleigh wave [30] or head wave
may be used. In this configuration, the US probe is primarily sensitive to the strain
component parallel to the US wave propagation direction.
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For in situ measurements, when it is not possible/practical to glue or attach a
LF source on the structure, a solution is the use of impact source, such as hammer
(Fig. 13.2e). Indeed, impacting briefly the surface of the structure may select the
resonant modes with the most excitability. The quick change of elasticity following
the impact is either probed with short US bursts [29] or a continuous monochromatic
US wave [38]. The main drawback is the difficulty to characterize the strain field
seen by the US probe as multiple resonance modes are simultaneously excited.

Finally, the measurement of the in-plane or out-of-plane vibration of the sam-
ple is performed by either an accelerometer [27] or a laser vibrometer [34]
(Fig. 13.2a–d). The strain is then derived directly from the particle’s displace-
ment/velocity/acceleration by analytical derivation [27]. Sometimes, when the
boundary conditions are more complex, a numerical simulation is performed to
compute the strain based on the experimentally measured out-of-plane or in-plane
particle’s displacement/velocity/acceleration [44].

13.2.5 DAET with Propagative Pump Wave

In case of in situ measurements (e.g., in soil, large concrete structures or water
tank), propagating pump wave is generally the only option as no standing wave
is feasible. DAET with propagative pump wave consists of a LF pressure wave
that is broadcasted in an infinite medium, i.e., reflections at the boundaries of the
medium are negligible (Fig. 13.5). DAET investigates the volume corresponding to
the volume of interaction of the two acoustic beams (the probe beam and the pump
beam).

When the infinite medium is a fluid, e.g., water, the LF pump wave can be
generated by a circular piston attached to a shaker [19] or by a LF immersion
transducer [26]. The LF hydrostatic pressure is measured with a hydrophone placed
close to the probed volume, in order to evaluate the local pressure. Very different
materials could be positioned at the volume of interaction, including solids (e.g.,
trabecular bone, beads), another fluid (e.g., gel or cream), or micro-particles (e.g.,
ultrasonic contrast agent).

When the infinite medium is a solid, e.g., soil, rock, or large concrete structure,
the LF pump wave is generated at the accessible surface of the structure. In case of
measurements in soil, the LF source can be the common LF source for underground
prospection, such as a mobile hydraulic shaker [45]. The LF strain is deduced from
two accelerometers buried in the soil at different depths [45]. These accelerometers
are also used to measure the probe wave.

If one wants to reproduce propagation of seismic waves in the laboratory, a
LF shear or compressional wave can be propagated in a rock [35, 46] while the
LF velocity is measured by a laser vibrometer at the surface of the volume of
interaction.



13 Dynamic Acousto-Elastic Testing 519

Fig. 13.5 Example of a DAET experimental setup with propagative wave as pump wave. The
probed volume corresponds to the volume of interaction of the US beam and the LF beam. The
medium is either a fluid or a solid

13.3 Signal Analysis

13.3.1 Analysis of the Pump: Calculation of Strain/Stress
Produced by the Pump Wave That is Experienced
by the Probe Wave

Most often, it is desired to know the absolute amplitude of the stress or strain
generated by the pump wave. If known, it is possible to compare the elastic
nonlinearity of different materials or to measure the third-order elastic constants
of a material. Nonetheless, if the objective is to monitor relative changes in elastic
nonlinearity of a sample over time (for instance, as a consequence of mechanical or
thermal fatigue), the absolute amplitude of the pump wave is not required. In this
case a non-calibrated transducer can be used to record the pump wave.

In general it is best to record the pump wave as close as possible to the path
of the probe wave in the sample. In a water-borne DAET experiment, the pump
wave is measured with a hydrophone, next to the sample immersed in a water tank
(Fig. 13.5). In a dry DAET experiment, the pump wave is measured either with
an accelerometer or with a laser interferometer or laser Doppler vibrometer (Fig.
13.2). However, the recording of the pump wave is often conducted at a position
next to the path followed by the probe wave. If the absolute amplitude of the
stress or strain generated by the pump wave is required, we need to determine
the absolute amplitude of the pump wave experienced by the probe wave along its



520 S. Haupert et al.

path in the sample. Consequently it is necessary to take into account the differences
of amplitude and phase between the recording position of the pump wave and the
region traversed by the probe wave. To correct these discrepancies, it is usually
necessary to measure or calculate the strain/stress field produced by the pump wave.

Moreover, the strain field produced by the pump wave is not perfectly uniform.
Therefore, the strain/stress level experienced by the probe wave is taken to be the
spatial average of the actual strain/stress field produced by the pump wave. Finally,
even if the travel time of the probe wave is much smaller than the temporal period of
the pump wave, there exists a slight temporal change of the pump amplitude during
the travel time of the probe wave. Thus, for an accurate determination of the absolute
amplitude of the pump wave, the strain/stress level experienced by the probe wave
is taken to be the spatial and temporal average of the pump wave over the region
traversed by the probe and during its travel time, respectively.

13.3.2 Analysis of the Probe: Determination of the Change
of Travel Time of the Probe Wave

The objective of an experiment of acousto-elasticity is to measure the stress-
dependence of the speed of sound. Since the distance of the propagation of the
probe wave in the sample is known, one must determine the change of travel time
of the probe wave induced by the pump wave. There are two ways to determine the
change of travel time:

1. The cross-correlation method
2. The phase analysis in the frequency domain

The cross-correlation method consists in computing the cross-correlation func-
tion between a reference probe signal (the very first ultrasonic pulse of the sequence)
and a second signal that is assumed to be the same waveform as the reference signal
with a certain time lag. The time lag, i.e., the change of travel time, is determined
by searching the time position of the maximum of the cross-correlation function
(Fig. 13.6). It can be positive or negative. Any difference in the waveform that is
not a simple difference of amplitude may cause a bias in the determination of the
change of travel time. Furthermore a parabolic interpolation around the maximum
of the cross-correlation function provides sub-sample estimation of the time delay
(i.e., the change of travel time). This technique is widely used in medical ultrasound
and is known to be very robust against noise [47]. With an excellent signal-to-noise
ratio and an ultrasound frequency of 1 MHz, this technique is able to determine a
time delay smaller than 0.1 ns.

Another way to determine a change of travel time is the phase analysis in the
Fourier domain. At a given frequency f (within the frequency bandwidth of the
probe wave), a phase lag �ϕ is simply related to a time lag �t by Δϕ = 2π f�t.
After computing the Fourier transform of the reference probe signal (the very first
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Fig. 13.6 Illustration of the cross-correlation method with synthetic signals. The ultrasonic pulse
(probe wave) has a center frequency of 1 MHz and the sampling frequency is 25 MHz. (a)
Recorded reference signal and signal to be analyzed, a time lag of 0.1 μs was introduced. (b)
Cross-correlation function. (c) Enlargement of panel (b) showing the sub-sample determination of
the time lag using a parabolic interpolation of the maximum of the cross-correlation function

ultrasonic pulse of the sequence) and the Fourier transform of one of the following
ultrasonic pulses, the phase of the ratio of the two Fourier transforms gives the
phase lag (Fig. 13.7). The time lag is then readily deduced. This method is less
robust against noise than the cross-correlation technique, but it does not require
that the two signals are identical in shape. Besides the phase method is sometimes
necessary in a material where ultrasonic attenuation is significantly modified by the
pump wave (see later in this chapter).

Once the change of travel time of the probe (dt) is accurately determined, the
change of wave-speed of the probe (dc) can be calculated after evaluating the change
in propagation distance of the probe (dL) induced by the pump strain:
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Fig. 13.7 Illustration of the phase method with the same synthetic signals as in Fig. 13.6.
(a) Unwrapped phase of the two ultrasonic pulses. (b) Phase lag between the two signals. (c)
Calculated time lag

dc

c0
= dL

L0
− dt
t0

The subscript 0 refers to the value at zero pump strain (at equilibrium, in the
absence of pump wave).

If the ultrasonic transducers employed to broadcast the probe and record it are
attached to the sample, then dL is readily estimated knowing L0 and the strain field
produced by the pump wave.

If the ultrasonic transducers are coupled to the sample with water or gel, then the
distance between the two transducers is fixed (not affected by the pump). And the
formula above must be refined to take into account the variation in travel time in the
coupling layer since the thickness of this coupling layer is dynamically modulated
by the pump wave.
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Note also that in materials with high elastic nonlinearity like granular media
(rocks, concrete) the correction of the change of distance of propagation of the probe

may be neglected since
∣∣∣ dtt0

∣∣∣ �
∣∣∣ dLL0

∣∣∣. Nonetheless, in materials with small elastic

nonlinearity like polymers, metals, or non-bubbly fluids, this correction must be

considered since
∣∣∣ dtt0

∣∣∣ and
∣∣∣ dLL0

∣∣∣ have the same order of magnitude.

13.3.3 Investigating the Relation Between the Change
of Wave-Speed of the Probe and the Magnitude
of the Pump Stress/Strain

We have explained how to obtain two time signals:

1. The change of travel time of the probe as a function of time (i.e., for each
ultrasonic pulse of the sequence)

2. The pump strain experienced by the probe as a function of time (i.e., for each
ultrasonic pulse of the sequence)

The magnitude of the change of travel time of the probe generally increases as the
magnitude of the pump stress/strain is increased. Therefore, a typical experimental
protocol includes repeating the measurement while varying the amplitude of the
pump wave. Thus we generally have in hand a set of measurements performed with
different pump amplitudes. At this point, one has two options to study the relation
between the change of wave-speed of the probe and the magnitude of the pump
stress/strain:

1. Plot the peak amplitude of the change of travel time of the probe as a function of
the peak amplitude of the pump strain/stress

2. Plot the instantaneous change of travel time of the probe as a function of the
instantaneous pump strain/stress.

For the first approach, the peak amplitude of the change of travel time of the
probe can be estimated directly in the time domain or in the Fourier domain. If
the repetition rate of the probe is more than twice larger than the frequency of the
pump wave, then a fast Fourier transform can be computed and the amplitude of the
variation evaluated. If the repetition rate of the probe is not sufficient to compute
a fast Fourier transform (Nyquist criterion is not respected), then a Gram–Schmidt
process can be used to decompose the signal, knowing the frequency of the pump
wave [34]. Such an analysis is shown in Figs. 13.16, 13.17, and 13.18.

The second option is only possible if the recordings of the pump and the probe
signals are properly synchronized. This is the method of choice if one is interested
in details of the relation between the change of wave-speed of the probe and the
magnitude of the pump stress/strain. Such an analysis is shown in Figs. 13.8, 13.9,
13.10, 13.11, 13.12, and 13.13 as well as Fig. 13.15.
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a c

b

Fig. 13.8 Dynamic acousto-elastic response of water at 20 ◦C. The experimental setup shown in
Fig. 13.5 was used. (a) Pump pressure as a function of time. (b) Relative change of speed of sound
as a function of time obtained with the cross-correlation method. (c) Relative change of speed of
sound as a function of the pump pressure. The two boxes in panels (a) and (b) show the data points
that were selected to plot panel (c)

13.3.4 Alternative Measures of Acoustic Nonlinearity

Acoustic nonlinearity includes both elastic nonlinearity and dissipative nonlinearity.
In our specific experimental situation, one investigates the effect of a “large-
amplitude” pump wave on the propagation of a “small-amplitude” probe wave. The
elastic nonlinearity of the material causes the acousto-elastic effect. In addition,
in granular media or damaged/cracked media, the pump wave can also induce a
variation in the attenuation experienced by the probe wave (dissipative nonlinearity).

The objective of a DAET measurement may be very practical, for instance,
detecting and monitoring changes in a material like the accumulation of damage.
In this case, the investigation of the change of wave-speed of the probe may not
be the most sensitive parameter. The change of ultrasonic attenuation may be
chosen as an alternative indicator of the level of damage [20, 37]. Such a change
of ultrasonic attenuation can be simply implemented by tracking a change of the
amplitude of the probe signal. Alternatively the cross-correlation method introduced
earlier to estimate a change of travel time of the probe can be further exploited by
tracking a change of the amplitude of the normalized cross-correlation function. If
its amplitude equals 1 it means that the two input signals are identical waveforms
(there may exist a time lag though). If the amplitude of the normalized cross-
correlation function is less than 1, it means that the shape of the probe waveform
has been modified, likely by a change of ultrasonic attenuation.
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a

b

c

Fig. 13.9 Dynamic acousto-elastic response of a suspension of lipid-coated gas microbubbles in
water at 0.5 MHz, i.e., at a frequency well below the resonance frequency of the microbubbles.
The relative volume fraction occupied by microbubbles is 10−6. The experimental setup shown in
Fig. 13.5 was used. (a) Pump pressure as a function of time. (b) Phase velocity at 0.5 MHz as a
function of time obtained with the frequency domain method. (c) Phase velocity at 0.5 MHz as a
function of the pump pressure. The two boxes in panels (a) and (b) show the data points that were
selected to plot panel (c)
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Fig. 13.10 Dynamic acousto-elastic response of (a) water-saturated plain glass beads with a
diameter of 600 μm and (b) water-saturated air-filled hollow glass beads with a diameter of 16 μm.
These measurements were performed with the system developed by RheaWave [25] which uses the
experimental configuration described in Fig. 13.5
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Fig. 13.11 Dynamic acousto-elastic response of PMMA with different orientations and types
of US probe waves [41]. The orientations of the ultrasound transducers are chosen to probe the
effect of a uniaxial strain (or stress) on the propagation velocity of compression bulk waves (cP)
with normal and oblique incidence and vertically polarized shear bulk waves (cSV) with oblique
incidence. The maximum axial strain is 9 × 10−6 while the relative change of wave-speeds varies
between 0.001 and 0.005%

13.4 Observations in Different Materials

In this section, we present applications of dynamic acousto-elastic testing to
different types of materials. This includes results in liquids and solids. We show
how the addition of soft inclusions in a material, namely gas bubbles in a liquid
or cracks in a solid, can dramatically change the dynamic acousto-elastic response
of the material. More specifically, the reader shall appreciate that the addition of
soft inclusions modifies the acousto-elastic effect quantitatively (soft inclusions
enhance the elastic nonlinearity of the material) and qualitatively (hysteresis and
DC component can appear).
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Fig. 13.12 Dynamic acousto-elastic responses measured at different positions along the fatigued
bar of aluminum (i.e., 10, 25, and 35 mm). The slope and the hysteresis of the nonlinear signature
are higher where the level of distributed fatigue damage is expected to be higher. Positive (negative)
strain corresponds to tension (compression) phase of the sample

Fig. 13.13 Dynamic acousto-elastic responses for three characteristics positions along the sample
width: (a) near the notch (b) at the crack tip (c) outside the cracked zone. Positive (negative) strain
corresponds to tension (compression) phase of the sample
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13.4.1 Liquids

13.4.1.1 Non-Bubbly Liquid

A typical experimental setup to apply dynamic acousto-elastic testing in a fluid is
depicted in Fig. 13.5. The pump wave is a 16 kHz pressure wave generated by an
underwater acoustic projector. The probe wave is a short ultrasound burst with a
center frequency of 4 MHz that is generated by an immersion broadband ultrasound
transducer. The ultrasound transducer broadcasts a sequence of short ultrasonic
pulses with a repetition rate of 100 kHz. A plastic block is used as a reflector
placed in front of the ultrasound transducer so that the ultrasound transducer can be
operated in pulse-echo mode to transmit and receive the probe wave. The amplitude
of the pump wave is first measured by a hydrophone that is inserted between the
ultrasound transducer and the reflector, i.e., on the path of the ultrasound pulse
(while the probe is turned off). Then the actual experiment of dynamic acousto-
elasticity is conducted by turning on both the probe wave and the pump wave. The
broadcasting of the pump wave is delayed by 1 ms. This delay is useful to appreciate
the level of noise in the measurement of the change of travel time of the probe wave.
The state-of-the-art equipment typically provides a noise level of 0.1 nanosecond or
less for the measurement of travel time changes of the probe wave (dt).

The change of travel time of the probe wave is calculated using the cross-
correlation method. Figure 13.8a shows the pump pressure experienced by each
probe pulse as a function of time and the panel b depicts the relative change of
speed of sound in water (c − c0)/c0 as a function of time. Finally a plot of the
relative change of speed of sound as a function of the pump pressure is shown in
panel c. There are several points to highlight when analyzing panel c. Firstly the
magnitude of the relative change of wave-speed is small; the change of travel time
of the probe wave is close to 0.1 ns while the total travel time of the probe wave
is 5.8 μs. Secondly panel c shows that the relation between the relative change of
wave-speed and the pump pressure is linear, with no DC offset (the change of wave-
speed is null at zero pump pressure) and no hysteresis. When the pump pressure
is positive (medium compression) the wave-speed increases. Conversely, when the
pump pressure is negative (medium expansion) the wave-speed decreases.

Finally it was shown that DAET allows one to estimate the parameter of nonlin-
earity B/A in fluids [19, 25]. The parameter of nonlinearity B/A is proportional to
the slope coefficient of the linear relation observed in panel c of Fig. 13.8.

13.4.1.2 Liquid with Suspension of Gas MicroBubbles

The experimental setup depicted in Fig. 13.5 can be used to investigate the influence
of the addition of micrometric particles in a fluid. Figure 13.9 shows the acousto-
elastic response of a suspension of lipid-coated gas microbubbles in water. Those
lipid-coated gas microbubbles are used as an ultrasound contrast agent for medical
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ultrasonography. Even if the microbubbles occupy a relative volume fraction of
only 10−6, the acousto-elastic response of the suspension is dramatically changed
compared to that of water only (Fig. 13.8). First the variation in wave-speed is two
orders of magnitude larger. Secondly the compression of the medium imposed by
the pump wave reduces the wave-speed, while an increase is observed in water only
(Fig. 13.8). The suspension of microbubbles has a resonance frequency close to
2 MHz. For a frequency well below this resonance frequency, attenuation is very
small and the wave-speed is determined by the compressibility of the mixture.
Figure 13.9 shows the acousto-elastic response of the suspension at 0.5 MHz, it was
obtained by applying a frequency domain analysis (see Sect. 13.3 of this chapter). At
this frequency, the wave-speed is determined by the compressibility of the medium.
The decrease of wave-speed during medium compression is likely caused by the
reversible buckling of the lipid shell of the microbubbles [26]. When shell buckling
occurs, the stiffness of medium suddenly collapses and the wave-speed decreases.

13.4.1.3 Water-Saturated Glass Beads

The acousto-elastic response of water-saturated plain glass beads was investigated
[24, 25]. Figure 13.10 shows the results in water-saturated plain glass beads with
a diameter of 600 μm and water-saturated air-filled hollow glass beads with a
diameter of 16 μm. The probe signal was a short ultrasound burst with a center
frequency of 0.6 MHz. The frequency of the pump wave was 3.7 kHz. The pump
wave is expected to modulate the contacts between the glass beads. As a result
complicated dynamic changes of the ultrasonic wave-speed are observed, including
expansion-compression asymmetry, hysteresis, and DC offset.

13.4.2 Solids

13.4.2.1 Undamaged Homogeneous Solids

Dynamic acousto-elastic testing has been successfully applied to study the clas-
sical nonlinear elasticity of two isotropic materials—a polymer, the polymethyl
methacrylate (PMMA) and an aluminum alloy [27, 41, 43]. In these studies, both
PMMA and aluminum samples have a cylindrical shape; therefore, the LF pump
wave is tuned to match the frequency (i.e., few kHz) of the first compressional mode
(or first Pochhammer-Chree mode) as explained in Sect. 13.2.4. The LF pump wave
is broadcasted directly in the sample by means of a piezoelectric disk glued on
the sample. The vibration is measured by an accelerometer glued at the top of the
sample. The experimental setup of the LF pump corresponds to the configuration
shown in Figs. 13.2b and 13.4.

A sequence of ultrasonic short bursts (with a typical center frequency of 1 or
2 MHz) is simultaneously applied to measure the dynamic change of elasticity
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induced by the pump wave. The experimental setup corresponds to the typical
configuration shown in Fig. 13.3b but with different angles for the ultrasound
transducers that transmit and receive the probe wave. The orientations of the
ultrasound transducers are chosen to probe the effect of a uniaxial strain (or stress)
on the propagation velocity of compressional bulk waves (cP) with normal and
oblique incidence and with vertically polarized shear bulk waves (cSV) with oblique
incidence. The maximal pump strain experienced by the US probe is close to 10−5.

The changes in travel time of the probe wave (dt) for different strain levels are
calculated using the cross-correlation method. Then, the TOF variation due to the
Poisson effect is subtracted from the total TOF variation in order to retrieve the TOF
variation solely due to the variation in wave-speed (Sect. 13.3).

The results are shown in Fig. 13.11. For undamaged homogeneous solids such as
PMMA and aluminum, the relative variation of wave-speed is very weak (between
0.001 and 0.005%) and exhibits a linear relation with the pump strain. When the
pump strain is negative (axial compression), the wave-speed increases. Conversely,
when the pump strain is positive (axial tension), the wave-speed decreases. Neither
a DC offset nor hysteresis is observed: the change of wave-speed is null when the
pump strain is zero.

In particular, a larger variation of compression bulk wave-speed (cP) is observed
when the direction of propagation has an oblique incidence compared with normal
incidence. Indeed, it is well established that, even though a homogeneous solid
sample exhibits isotropic elastic properties, the effect of a uniaxial strain (or stress)
induces wave-speed anisotropy [7]. The propagation velocity of an elastic wave
depends on the angle between the propagation direction and the axis of the applied
loading [8]. Therefore, the acousto-elastic effect is stronger when the propagation
direction of the probe wave is parallel to the direction of the uniaxial loading
(produced by the pump wave).

Finally, it has been shown that it is possible to estimate the three independent
third-order elastic constants (TOEC) for isotropic materials with DAET, by com-
bining three different carefully chosen configurations for the US probe [41].

13.4.2.2 Damaged Homogeneous Solids

In the past decades, several nonlinear acoustical techniques were proposed for in
situ nondestructive testing (NDT), such as wave frequency mixing or resonance
measurements. Among them, DAET provides a unique way to observe nonlinear
elastic features over an entire dynamic stress cycle while other techniques measure
average bulk variations of modulus versus strain level. DAET also provides a local
measurement of the nonlinear elasticity, which is particularly convenient to localize
and characterize microdamage within a whole solid.

It has been demonstrated that DAET applied to steel and aluminum samples is
sensitive to
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1. Distributed fatigue damage [32] and
2. A localized single micro-crack [31, 32].

The experimental setup involves a stationary pump wave and two compressional
bulk wave transducers in transmission configuration as described in Fig. 13.4.

In case of the fatigue damage protocol [32], two aluminum bars (50 × 4 × 2 mm)
are machined from the same 2 mm thick aluminum plate. The first aluminum
specimen is fatigued while the second one is kept intact and serves as control.
Fatigue damage is induced by cycling 10,000 times within the elastic regime using
a four-point bending configuration. Dislocation density and/or fatigue cracking on
the external surface is suspected to be larger in the center of the bar where the stress
concentration is the maximum, while both ends of the bar remain intact. DAET
measurements have been performed on both aluminum samples (i.e., intact and
damaged) at different positions along the bar (i.e., 10, 25, and 35 mm). For each
position, the relative change of wave-speed is plotted against strain level in Fig.
13.12. Then, the slope is extracted from each acousto-elastic response. Negative
slopes are observed, as expected for most metals, with the highest value obtained in
the center of the specimen, where fatigue damage is expected to be the most severe.
Moreover, a hysteresis is present in the nonlinear signature. For the intact sample,
no hysteresis is observable and the slopes (horizontal red line in Fig. 13.12) remain
constant along the sample with an average value smaller than the slopes measured
in the damage sample.

In case of the localized single micro-crack protocol [31], a closed fatigue crack
has been formed in an aluminum alloy bar (170 × 30 × 40 mm) by a three-point
bending fatigue test. The fatigue crack is extended from a notch placed at mid-
length. The notch is approximately 3 mm deep and the fatigue crack is 17 mm long.
The fatigue crack is invisible to the eye. Twelve DAET measurements have been
performed along the crack (i.e., in the z-direction). Three typical acousto-elastic
responses are shown in Fig. 13.13. No change in wave-speed is observed outside
of the crack (Fig. 13.13c) whereas large changes are observed along the crack (Fig.
13.13a, b). The largest slope and hysteresis are observed close to the crack tip (Fig.
13.13b). At the notch, the crack is expected to be more open than at any other
location. A bi-state behavior is clearly observed near the notch (Fig. 13.13a), with
the presence of a plateau, i.e., no change in velocity during the tension phase when
the crack is opened. Therefore, near the notch, the crack induces elastic nonlinearly
essentially during the compression phase while elasticity is virtually unchanged in
the tension phase. This agrees with a simple model of Contact Acoustic Nonlinearity
[48, 49] that describes asymmetry between compression and tension phases. On the
other hand, at the crack tip, the change of wave-speed is more symmetric and a high
elastic nonlinearity (large slopes in Fig. 13.13b) is observed. Finally the positive
sign of the slope is somewhat surprising as it means that the velocity decreases
during the compression phase, which would imply that asperities at the interface
slow down the direct wave. Further investigation will be needed to understand such
behavior.
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13.4.2.3 Rocks, Cementitious, and Granular Materials

Unlike undamaged or single-cracked materials, poorly consolidated media such
as rocks and concrete exhibit very large nonlinear behaviors [50]. Perhaps the
most striking feature is the appearance of a transient elastic softening, as soon as
the medium is subjected to dynamic strains as low as 10−7 [27, 37]. It is then
followed by a log(t) relaxation back to the original elastic modulus as soon as the
dynamic loading is turned off [51]. This elastic softening is also often referred
to as “conditioning,” or “dynamically induced conditioning” or “DC offset.” In
some poorly consolidated media, the elastic modulus can therefore be transiently
reduced by several percent, depending on the loading amplitude and frequency.
Understanding such behavior is critical to better estimate seismic hazard, for
instance, for civil structures and buildings. One key step towards the development
of robust diagnostic tools is therefore to relate these complex nonlinear responses to
physical, quantitative microstructural features.

Beyond nondestructive evaluation and civil engineering applications, there is
growing evidence that such nonlinear effects are key mechanisms for the under-
standing of earthquake triggering, when a large seismic wave transiently softens the
Earth’s crust and triggers a second earthquake [52]. Current research also focuses
on the link between elastic softening [53] and transient increases in permeability
observed following earthquakes [54]. Such relation with fluid processes is of
particular significance for the understanding of induced seismicity in oil/gas and
geothermal applications.

As shown in Fig. 13.14, the sound speed evolution in highly nonlinear media
such as rock, concrete, and granular media can be decomposed in six consecutive
phases.

The initial phase (Phase I) refers to the beginning of the experiment when the
pump is “off.” In this phase, the unperturbed local wave-speed of the specimen is
registered. Upon turning “on” the pump, the pump strain first rings up towards the
steady state (Phase II). In Phase III, the pump strain has reached a steady state, but
the sound speed continues to drop. Phase IV is the time domain where the medium
is in a non-equilibrium steady state. By analyzing the strain-dependency of sound
speed in this phase, the different nonlinear material properties can be evaluated, as
discussed in the next section (Phase IV: During the Dynamic Loading). In Phase
V, the pump strain rings down towards zero. Finally in Phase VI, the pump strain
is zero, but the sound speed is still recovering. The slow recovery of sound speed
towards the speed of sound at the initial unperturbed state is referred to as “slow
dynamics” and will be further detailed in section “After the Dynamic Loading: Slow
Dynamics (Phase VI)”.
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Fig. 13.14 Typical DAET results in a sample of Berea sandstone [28] using the experimental setup
described in Fig. 13.4. (a) Pump strain as a function of time. (b) Sound speed change as a function
of time. The sound speed changes in response to the pump strain. The evolution of sound speed
can be studied in six time domains (Phases I–VI). Details on the fast (Phase IV) and slow (Phase
VI) dynamics responses are presented in sections “Phase IV: During the Dynamic Loading” and
“After the Dynamic Loading: Slow Dynamics (Phase VI),” respectively

Phase IV: During the Dynamic Loading

Instantaneous Velocity Changes

DAET is often performed at a single large strain amplitude, either to evaluate the
third-order elastic constants in weakly nonlinear elastic materials (Fig. 13.11), to
compare the nonlinear responses at different locations (Figs. 13.12 and 13.13), or to
monitor a sample over time as it undergoes progressive damage. On the other hand,
to further improve the theoretical description of nonlinear elasticity in complex
(either damaged or granular-like) materials, one may want to perform DAET at
multiple peak strain amplitudes, from a weakly nonlinear regime at low strain
(∼10−7) to a highly nonlinear regime at larger strain (∼10−5).

Figure 13.15 shows some typical DAET results in two samples of Berea
sandstone and Berkeley blue granite at room-dry conditions and multiple strain
amplitudes ranging from 10−7 to 10−5, using the experimental setup described in
Fig. 13.4. Both samples exhibit a transient elastic softening that increases with
the pump amplitude, reaching about ∼0.5% at strain εm = 8 × 10−6. Further
observations can be made depending on the strain range. At large strains (∼10−5),
complex loops are observed, with larger (lower) velocity during the compression
(tension) phase, suggesting opening/closing of micro-cracks or grain contacts. This
effect seems particularly strong for the granite sample (Fig. 13.15b). The acousto-
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Fig. 13.15 Relative velocity change �c/c as a function of low-frequency pump strain ε for 10
increasing strain excitations ranging from 10−7 to 10−5. (a) Berea sandstone. (b) Berkeley blue
granite. Plots on the right side provide details on the nonlinear responses for strain amplitudes
lower than 2 × 10−6. Blue triangles (red squares) correspond to increasing (decreasing) strains.
Negative strains correspond to the compression phase (C) whereas positive strains correspond to
the tension phase (T). The black line shows the result of the Fourier analysis (cf. [28] for further
details). On the right side, photomicrographs under plane polarized light. Height of the photo is
2.35 mm for Berea sandstone, 3.85 mm for Berkeley blue granite (Modified from [28])

elastic responses for the two samples differ at intermediate strains (∼10−6); while
the granite sample exhibits a larger velocity at negative pump strain (than at zero
pump strain) and a smaller velocity at positive pump strain, the velocity in Berea
sandstone at negative and positive pump strain maxima is found lower than at zero
pump strain (right plots in Fig. 13.15). No certain evidence exists on a particular
mechanism for such observation. However, the fact that it is observed for all tested
sandstones [28, 43] suggests that it could arise from shearing processes at the
grain boundaries, leading to a lower elastic modulus during maximum tension and
compression, and larger moduli when strain passes through zero. Finally, the large
slope for granite at intermediate and large strains suggests that the opening/closing
mechanism dominates over shearing processes [43].

Amplitude Dependence

The dynamic acousto-elastic response of rocks is far more complicated than that
of homogeneous undamaged solids (like PMMA, Fig. 13.11). While the velocity in
homogeneous undamaged solids is modulated only at the frequency of the pump,
the dynamic change of velocity in rocks exhibits a component at the frequency of
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the pump, at its higher harmonics as well as at zero frequency. To further investigate
the nonlinear elastic responses in rocks, the time series �c/c(t) can be decomposed
using a Fourier analysis in combination with a Gram–Schmidt procedure [34]. The
latter is needed to ensure orthogonality of the sine and cosine functions. From this
analysis we find the amount of �c/c(t) oscillating at the pump frequency �c/c|1ω,
twice the pump frequency�c/c|2ω, as well as the DC offset�c/c|0ω (zero frequency
component). When hysteretic effects are relatively small, as in Fig. 13.15, these
quantities correspond approximately to the slope of the signature, the curvature, and
the DC offset, respectively.

The �c/c|0ω—component is represented in Fig. 13.16 as a function of pump
strain amplitude for both samples. This offset observed with DAET is equivalent
to the frequency shift observed with NRUS (see Chap. 2 in this book) [28]. A
progressive transition from quadratic dependence at low strain (∼10−7) to linear
at large strain (∼10−5) is observed. This result, observed with both DAET [28,
34, 37] and NRUS [55], is typical of poorly cemented rocks. While no current
theoretical model is able to fully capture the complex nonlinear response of rocks,
cementitious, or granular-like materials, it is worth comparing these observations to
some existing theories. One practical approach is to use the following 1D-equation
(assuming material elastic nonlinearity is large and therefore neglecting changes in
mass density):

�M

M
= 2

�c

c
= βε + δε2 + α (εm + sign (ε̇) ε) ,

where �M
M

, �c
c

, ε, ε̇, and εm are, respectively, the relative change in modulus, the
relative change in wave-speed, the pump strain, the strain rate, and the maximum
strain excursion experienced by the material. The maximum strain excursion εm in
our case is the amplitude of the pump strain, assuming ε = εm sin ωt. The terms
β and δ represent the nonlinear quadratic and cubic coefficients, respectively, and
arise from the classical nonlinear theory [7]. In particular, the term β is related
to the third-order elastic coefficients (TOEC) [7]. The last term on the right-hand
side results from the quadratic hysteretic nonlinear theory [50, 56–58]. Following
such description, the quadratic dependence observed at low strain in Fig. 13.16 can

be fitted with the cubic nonlinear parameter δ using �M
M

∣∣∣
0ω

= 2 �c
c

∣∣∣
0ω

= δε2
m

2 ,

whereas the linear dependence observed at large strain can be better fitted with the

hysteretic parameter α using �M
M

∣∣∣
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c
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= αεm. However, it is important to

note that such hysteretic model inherently couples hysteresis with softening which
leads to an overestimation of hysteretic effects [34]. It also does not include the
rate/frequency/relaxation effects that are described later.

Figure 13.17 shows the �c/c|1ω—component as a function of pump strain
amplitude. The linear dependence over the whole strain range can be fitted with

the classical quadratic nonlinear parameter β using �M
M

∣
∣∣
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∣
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= βεm. The
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Fig. 13.16 Strain
dependence for the offset
component �c/c|0ω extracted
from the Fourier analysis
(black curves in Fig. 13.14)
for two rock samples of Berea
sandstone and Berkeley blue
granite. This offset
component corresponds to
transient elastic softening that
reaches about 0.5% at the
maximum strain amplitude.
Note the overall transition
from quadratic to linear
dependence as strain
increases from 10−7 to 10−5
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Fig. 13.17 Strain
dependence for the slope
component �c/c|1ω of Berea
sandstone and Berkeley blue
granite. Note the larger
β value for the granite
sample, as indicated by the
larger slopes in Fig. 13.14
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parameter β is found much larger in the granite sample than in the sandstone, as
indicated by the larger slope observed for granite in Fig. 13.15.

Figure 13.18 shows the �c/c|2ω—component as a function of pump strain
amplitude, related to the curvature shape in Fig. 13.15. As for the offset component,
we observe a scaling change over the strain range considered [45]. It transitions
from quadratic to roughly linear for the Berea sandstone, while the Berkeley blue
granite is roughly linear at low strain and lower than 1 at large strain. The quadratic

dependence at low strain for Berea can be fitted with δ using �M
M

∣∣∣
2ω

= 2 �c
c

∣∣∣
2ω

=
δε2
m

2 . The parameter δ estimated from either the offset in Fig. 13.16 or the curvature
in Fig. 13.18 leads to a value comprised between 108 and 109 for Berea sandstone
(a larger value is found from the offset estimation).

The scaling changes observed for �c/c|0ω and �c/c|2ω occur at strains where
higher order harmonics (in particular, �c/c|4ω and �c/c|6ω) emerge from noise
[28, 34]. Rather than using two models corresponding to two different strain
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Fig. 13.18 Strain
dependence for the curvature
component �c/c|2ω of Berea
sandstone and Berkeley blue
granite. As in Fig. 13.15 for
the offset component, a
progressive change in
amplitude dependence is
observed as strain increases
from 10−7 to 10−5
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ranges, an alternative approach consists in introducing a critical strain level εc

at which the sample transitions from a quadratic to a linear dependence, using
�M
M

∣
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0ω/2ω

= 2 �c
c

∣
∣∣
0ω/2ω

= �εc tanh εm
εc
εm (Guyer, personal note). This critical

strain, a characteristic of the material, could then also be used to describe the
emergence of higher order harmonics.

Finally, a third—more systematic—approach is used in [28] to compare the
responses from 6 different rock samples. Ignoring the changes in scaling, each curve
in Figs. 13.16, 13.17, and 13.18 is fitted over the whole strain range with �c

c

∣∣
nω

=
aενm. The power-law parameter ν is compared for all nonlinear components across
samples. A correlation is found between the offset power-law ν0ω, the curvature ν2ω,
and the hysteresis area of the loops νH , whereas the slope component ν1ω is found
independent. This suggests that nonlinearity arises from two main mechanisms. The
first one associated with the slope component �c/c|1ω can be referred to as the
classical nonlinearity, and as suggested above, is possibly related to opening/closing
of cracks and grain contacts. The second one associated with all other components
can be referred to as non-classical nonlinearity and is possibly related to shearing
mechanisms of grain contacts.

Frequency Dependence: Transition from Static to Dynamic Acousto-Elasticity

One can ask whether the complex nonlinear effects measured at a few kilohertz still
exist at much lower frequency. For instance, do these effects happen when a building
vibrates at a few hertz due to the passage of seismic waves?

Both quasi-static tests and resonance-type experiments (see Chap. 2 in this
book as well as [51, 59, 60]) have shown that rate effects are inherent to the
nonlinear response of poorly cemented materials. For instance, when performing
compressional tests on rocks, the hysteresis observed at typical experimental rate
(∼several minutes to an hour) can completely disappear if one performs the same
test at a much lower rate (∼several hours to a few days) [59]. This observation

http://dx.doi.org/10.1007/978-3-319-94476-0_2
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suggests that the system has enough time to recover from each incremental stress
step when cycled slowly: it remains in its original state and is not brought to a
metastable state. On the other hand at larger rates, the initial increase in stress
brings the sample to a new state and the subsequent decrease in stress does not
follow the same path, leading to hysteresis. Resonance-type tests show similar
behaviors when frequency is incrementally increased and decreased around the
resonance frequency. The two upward and downward curves do not overlap when
the test is performed quite fast, whereas they do overlap when the sweeps are
conducted slowly [51]. To investigate such phenomena with DAET and provide
further insights on the physical mechanisms at play, acousto-elastic measurements
are performed at multiple loading frequencies ranging from quasi-static (∼0.1 Hz)
to dynamic (∼103) regimes [61]. A rod-shaped sample of room-dry Berea sandstone
is jacketed and placed upright in a pressure vessel. A large piezoelectric stack is
forcing the sample to oscillate uniaxially. A small static overburden stress (0.5 MPa)
is previously applied to maintain contact at all phases of the oscillation between the
stack and the sample. Two longitudinal transducers operating at 500 kHz are glued
on the sides of the sample to monitor the ultrasonic velocity before and during the
steady-state oscillations. As for the standard DAET setup described in Fig. 13.4,
the probing direction is normal to the loading direction. The Fourier analysis is
performed on the nonlinear signatures and amplitudes �c/c|nω are reported in Fig.
13.19 for frequencies spanning three orders of magnitude, constant strain amplitude
(ε = 1.4 × 10−5), and constant confining pressure (1 MPa). Interestingly, the
clustering found when studying multiple rocks at various strain amplitudes applies
here too. Indeed, all nonlinear components but the slope (�c/c|1ω) increase with
frequency, suggesting that the mechanism related to �c/c|1ω is rather frequency
independent (for instance, opening/closing of cracks). On the other hand, the
frequency dependence observed for other components reinforces the assumption
of friction/adhesion processes at crack interfaces and/or grain boundaries [62, 63].

The increase in nonlinearity with frequency corroborates former studies based on
quasi-static and resonance tests [51, 59], that is, when dynamic tests are performed
slowly enough, the specimen can continuously recover from the changes in loading
conditions. Interestingly, the nonlinear components shown in Fig. 13.19 increase
only by a factor 2 or 3 over 3 orders of magnitude in frequency, indicating that
observations made at the laboratory scale in the kilohertz range are relevant to
interpret larger scale observations (civil structures, geotechnical engineering, and
seismology).

After the Dynamic Loading: Slow Dynamics (Phase VI)

The term “slow dynamics” was first used by [64] to describe the progressive
recovery of the resonance frequency of rocks subsequent to acoustic straining or
thermal shocking. Dynamic perturbations of sufficiently high amplitude (strain
>10−6) bring mesoscopic nonlinear materials such as rocks and cementitious
materials [50] to a temporary metastable state that manifests itself by a sudden
elastic softening (Phase II in Fig. 13.14). Once the perturbation is terminated,
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Fig. 13.19 Frequency dependence of the nonlinear components for a sample of Berea sandstone.
All nonlinear components increase by a factor 2 or 3 over 3 orders of magnitude increase in
frequency, except �c/c|1ω (slope component) which is frequency independent. Note that these
curves are obtained for a constant dynamic strain amplitude (εm = 1.4 × 10−5) and constant
confining pressure (1 MPa). Similar observations are made at other confining pressures and
oscillation amplitudes [61]

the elastic modulus slowly relaxes back towards its unperturbed equilibrium state
(Phase VI in Fig. 13.14). This gradual transition of state is termed slow dynamics.

Early Time Vs. Late-Time Recovery

Earlier empirical observations have unanimously reported a time-logarithmic recov-
ery at times t > 10 s after terminating the high-amplitude perturbation. The observed
behavior appears to be independent of the test material or method used: resonance
frequency in disparate rocks and concrete [64], Larsen frequency in cement paste
and sandstone [65], and change of velocity in concrete [66]. Consequently, the
handful of phenomenological models that have been developed to describe the
post-perturbation recovery predict a log(t) behavior [67]. Despite the universal
consensus about the time-logarithmic behavior, there is an experimental evidence
for non-logarithmic recovery at earlier times, i.e., t < 10 s. For example, [65] have
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Fig. 13.20 DAET results on a sample of Berea sandstone. Runs 1–9 correspond to different pump
strains: (a) Relative change in sound speed vs. pump strain during the non-equilibrium steady-state
phase (Phase IV); (b) Progressive recovery of sound speed in Phase VI; (c) The corresponding
relaxation spectra show a non-logarithmic recovery behavior at early times (t < 10 s). At later
times, the spectrum is rather flat; the recovery is time-logarithmic, as found in previous studies
[64]

measured faster than log(t) relaxation in cement paste and sandstone at t∼10−3.
The recent model proposed by Snieder et al. [68] describes a multi-scale relaxation
phenomenon that takes place on different temporal and spatial scales.

DAET provides an unprecedented opportunity to investigate the recovery of
mesoscopic nonlinear materials at times as early as t∼10−4 s. Here, we present
the results from a series of DAET experiments on a sample of Berea sandstone
(Shokouhi et al. in preparation, to appear in 2017). The test apparatus, configuration,
and parameters are very similar to those presented in [28] except that the sound
speed is probed for a much longer time (about 30 min) after stopping the pump.
Further, the test is conducted under controlled temperature T(◦C) = 23.0 ± 0.2
and relative humidity RH(%) = 50.0 ± 0.2 conditions. Figure 13.20 presents the
obtained results; the sound speed variations with pump strain at steady state (Fig.
13.20a) and the corresponding recoveries (Fig. 13.20b).
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An examination of the recovery behavior suggests that the material recovers
faster at t > 10−2 s than at later times t > 10 s, after which the recovery appears to
progress time-logarithmically. For a more quantitative representation, the observed
recoveries are described in the form of an exponential series

∑9
i=1Aie

−t/τi , where
relaxation times τ i are equally distributed (in a logarithmic way) over the entire
time range. We find that a summation of nine exponentials is sufficient to fit
the data without over fitting. The contribution of each exponential term to the
recovery (Ai) or the “recovery spectrum” is shown in Fig. 13.20c. The recovery
spectrum is a plot of exponential amplitudes Ai vs. the corresponding relaxation
times τ i.If wave-speeds were recovering time-logarithmically (i.e., linearly with
log10(t)), the spectrum would be flat as was previously observed with resonance-
based studies [64]. Unlike these studies, where later time recoveries were probed
(τ ≥ 10 s), the early time recovery (τ < 10 s) demonstrates preferential recovery time
characteristics; the dominant recovery time for the sample is in the order of 10−1 s.
Interestingly, the relaxation spectra for (τ ≥ 10 s) are almost flat, in close agreement
with the earlier observations. Finally, the level of pump strain does not seem to alter
the overall shape of the relaxation spectra; they all show a dominant recovery time
at about 10−1 s. This latter observation suggests a link between the preferential
recovery time and the rock microstructure. In fact, our recent observations indicate
that the shape of the recovery spectrum is invariant to the changes in relative
humidity of the test medium. While increasing the relative humidity increases the
nonlinearity, it does not affect the multi-scale recovery rates. This latter observation
provides additional evidence for the association of the recovery and microstructure.
Furthermore, damage-induced microstructural changes have shown to alter the
materials slow dynamics behavior. Earlier studies have shown that damage slows
down the late-time recovery of cementitious materials. For example, TenCate et
al. [64] show that damaged concrete recovers much slower than intact concrete.
Tremblay et al. [66] made similar observations when comparing the late-time
recoveries of an intact vs. a stress-damaged concrete sample. The study by Kodjo et
al. [69] suggests that the rate of recovery may be used to differentiate two damage
processes in concrete.

We use DAET to investigate the influence of damage on early and late-time
recoveries [70]. Figure 13.21 compares the recoveries for two concrete samples:
one intact and the other one damaged. Damage is induced by compressing one
specimen to about 70% of its strength. The two specimens are from the same
concrete mixture and visually indistinguishable (no visible surface cracking).
Ultrasonic wave velocities measured (using compressional wave transducers of
center frequency of 150 kHz) at two different locations across the samples are
very similar. The damaged specimen has even a slightly higher linear dynamic
modulus than the intact one: Eintact = 33.1 GPa and Edamaged = 33.3 GPa. Those
moduli are measured by resonance ultrasonic spectroscopy (RUS) testing in the kHz
range [71]. Despite their similar linear acoustic properties, the two samples differ
significantly in terms of nonlinear signatures (Fig. 13.21a). The relaxation spectra
in Fig. 13.21c show that the substantial recovery of the intact sample takes place
for t < 1 s, whereas the damaged sample is still recovering even after 1 s. This



542 S. Haupert et al.

Fig. 13.21 Influence of damage on the DAET response of two concrete samples. (a) Fast dynamics
response of intact and damaged concrete samples (phase IV). (b) Slow dynamics response (phase
VI). (c) Corresponding relaxation spectra. Less than a second is needed for the intact sample to
recover, whereas the damaged sample continues to recover after 1 s

observation suggests that damage-induced microstructural changes alter both fast
and slow dynamics behaviors and that both signatures can be used to infer the state
of damage in materials.

13.5 Conclusions

The objective of Dynamic Acousto-Elastic Testing (DAET) is the measurement of
the dynamic stress (or strain) dependence of the elasticity of a material at the micro-
strain level. In a typical DAET experiment, two elastic waves are simultaneously
generated in a material, a low-frequency pump wave and a sequence of identical
high-frequency probe waves. The sequence of probe waves determines the local
changes of wave-speed induced by the pump wave. These changes can be related to
local changes of elasticity of the material. Unlike methods like nonlinear resonant
ultrasound spectroscopy and nonlinear wave mixing, DAET reveals the details
of the nonlinear elastic behavior over a single wave cycle, including hysteresis
and expansion-compression asymmetry. While non-bubbly fluids or homogeneous
undamaged solids exhibit a weak and simple dynamic acousto-elastic response,
bubbly liquids and damaged or granular solids show large and complicated dynamic
acousto-elastic responses. Thus DAET can be a useful technique for nondestructive
evaluation of materials.
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Chapter 14
Time Reversal Techniques

Brian E. Anderson, Marcel C. Remillieux, Pierre-Yves Le Bas, and T. J. Ulrich

Time reversal is a technique to focus wave energy to a selected point in space and
time, localize and characterize a source of wave propagation, and/or communicate
information between two points. This chapter will introduce the reader to the
concept of time reversal and different implementations of this concept. The focus
will then be directed to non-destructive evaluation applications using nonlinear
elasto-dynamics together with time reversal.

14.1 What Is Time Reversal?

14.1.1 Pebble on a Pond

Imagine a pebble being dropped into a pond (see Fig. 14.1) [1]. Ripples will spread
out circularly from the location at which the pebble enters the water. If we had
recorded video of the dropped pebble and the corresponding ripples, we could play
it backwards and watch the process in reverse. The ripples would collapse at the
location where the pebble broke the surface of the pond.
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Fig. 14.1 Photograph of the ripples spreading outward from the location where a pebble was cast
into a pond

One practical realization of the above experiment could involve transducers
placed on the surface of the pond. These transducers can detect the motion of the
ripples. If the recordings from each of the transducers are all time-aligned, we
can then reverse the recorded wave motions and use the transducers as sources
that broadcast the reversed wave motion that they each originally sensed. These
broadcasts create circular wave fronts emanating from each of the transducers. If
the density of the transducers is sufficient, then an inward traveling circular wave
front would be created (i.e., Huygens’ principle) that would propagate inward to the
drop location and would result in maximal constructive interference at this location
compared to any other location on the pond. In this simple experiment, time reversal
(TR) is akin to a triangulation method in which the propagation delays are recorded
by the transducers. There is no need to determine the optimal propagation delays
that result in maximal constructive interference since the appropriate time delays are
encoded in the original signals recorded by the transducers. The array of transducers
used in this fashion are often referred to as the time reversal mirror (TRM), and the
individual transducers as TRM elements.

14.1.2 Time Reversal in a Bounded Medium

What happens to the procedure outlined in the previous section if there are
boundaries reflecting the ripples? Imagine a bounded solid plate, such as the one
illustrated in Fig. 14.2. Suppose two transducers (A and B) are placed on the
boundaries of this plate. If an impulsive source signal excites transducer A into
motion, a pulse will spread outward in the plate. There will be a direct propagation
of this pulse energy to transducer B, which will be followed by reflected energy from
the walls, as shown in the figure, finally arriving at B. In fact, there are numerous
paths that the pulse energy can travel between A and B. The recording at B is, by
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Fig. 14.2 Illustration of the forward and backward steps of the basic time reversal process

definition, the impulse response signal, often referred to as the transfer function or
Green function. This signal contains the timing of the direct sound and all of the
recorded reflections, within the time window of the recording, of this pulse energy.
This recording of the impulse response is referred to as the forward step.

The impulse response may be reversed in time and used as an input signal to
transducer B, which is now acting as a source rather than as a receiver. The energy
that arrived last in the forward step is now broadcast first and the energy that arrived
first in the forward step is now broadcast last. The energy emitted from B will travel
along the same paths traversed during the forward step. Because the timing of the
direct sound and the reflections is encoded in the impulse response, when it is played
backwards the reflections and the direct sound will all arrive simultaneously at A
to provide a constructive interference at that location. This is typically called the
backward step, retro-focusing, or simply focusing. The focal signal recorded by A
contains an impulse that is a recreation of the reverse of the impulse in the original
source signal. The quality of the recreation depends upon many factors. Some of
these factors were described by Anderson et al. [1]

Assuming that the transducers do not affect the signal for the generation and
emission steps, the recorded signal at B, r(t) (where t is time), in the forward step
is mathematically represented by a convolution of the source signal,s(t), with the
impulse responses of the medium, h(t),

r(t) =
∞∫

−∞
h (τ) s (t − τ) dτ. (14.1)
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In the frequency domain, this is the multiplication of the spectrum of the source
signal,

S(f ) =
∞∫

−∞
s(t)e−i2πf tdt, (14.2)

where i = √−1 and f is the frequency in Hz, with the transfer functions of the
medium,

H(f ) =
∞∫

−∞
h(t)e−i2πf tdt, (14.3)

R(f ) = H(f ) · S(f ), (14.4)

where R(f ) is the spectrum of the received signal r(t). A TR operation is represented
by g(t) → g(−t) or a complex conjugate in the frequency domain G(f ) → G∗ (f ).
The focal signal, y(t), in the backward step is then the convolution of r(−t) with h(t)
(note that the medium’s response from location A to location B is the same as the
medium’s response from location B to location A according to reciprocity),

y(t) =
∞∫

−∞
h (τ) r (−t − τ) dτ. (14.5)

The spectrum of the focus signal, Y(f ), is the multiplication of R∗ (f ) with H(f ),

Y (f ) = H(f ) · R∗(f ) = |H(f )|2S∗(f ). (14.6)

Since the TR process results in a magnitude-squared expression for the medium’s
transfer function, the TR process was originally called matched signal processing
[2–5].

Another way to look at the backward step is to imagine removing the room
boundaries and placing additional sources, termed image sources, at locations
vertically above and below transducer B such that the distance between each image
source and transducer A is the same as the distance traveled along a given reflected
path that was traveled in the forward step. All these sources then emit the same
source signal in the reversed order for the respective times in which they were
received. The emissions from these image sources would arrive simultaneously at
the original source position and constructively interfere at that location. This idea is
conveyed in Fig. 14.3. Note that, in solid media, when a wave encounters a boundary
the wave may partially convert into other types of motion, i.e., a longitudinal wave
may reflect partly as a longitudinal wave and also partly as a shear wave. This effect
is called mode conversion and requires the use of more than one image source to
represent reflections of waves at boundaries.
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Fig. 14.3 Illustration of image sources, one above and one below transducer B, representing the
reflections illustrated in Fig. 14.2

14.1.3 Characteristics of Time Reversal

Along with temporal reconstruction, TR provides a spatial focusing of energy.
As the reversed waves reach the focal position, they interfere in space. If there
are enough of these reversed waves coalescing at the focal position, a spherically
converging wave is created that collapses at the focal position and then diverges out
spherically. Spatial focusing is a linear superposition of these reversed waves, and
thus, the TR process is diffraction limited, meaning that the size of the focusing
cannot be smaller than half of a wavelength. A review of research aimed at
beating the diffraction limit, often referred to as super-resolution, with time reversal
techniques is beyond the scope of this chapter. Anderson et al. provided visual
depictions which demonstrated the connection between temporal reconstruction and
spatial focusing in the TR process [6]. Figure 14.4 provides an illustration of TR
focusing before, during, and after focusing, from an experiment conducted with
ultrasonic waves on the surface of a solid sample, as measured by a scanning laser
Doppler vibrometer (SLDV).

TR is typically used to create impulsive focusing, however, the focusing prop-
erties at different bandwidths have been explored in room acoustics [7] and TR
focusing has been demonstrated in solid media with individual sine waves when a
sufficient number of TRM elements are used [8]. In general, as the bandwidth of the
impulse response becomes narrower, the quality of the TR focusing deteriorates; the
smaller the bandwidth of the impulse response, the weaker the TR focusing.
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Fig. 14.4 Experimental data illustrating the convergence of waves before time reversal focusing,
the coherent, constructive interference at the time of maximal focusing, and the divergence of
waves after time reversal focusing

14.1.4 Methods of Time Reversal

The TR process of sending waves from A to B in the forward step and then sending
waves from B to A in the backward step, as described previously, is referred to as
standard TR [1]. Standard TR does not require any knowledge about the original
source, be it location, temporal structure, radiation pattern, etc.; rather, it only
requires the ability to measure a synchronized response across all elements of the
TRM. As such, it has been used extensively in solid media for source localization
and/or characterization applications, including locating, imaging, and characterizing
large-scale disturbances in the earth as well as small-scale experiments involving
crack motion, the latter having a direct application to non-destructive evaluation
(NDE).

Due to the principle of reciprocity, a signal sent from A to B produces the same
response at B that would be measured at A if the signal was sent from B to A, as
long as the medium is identical between both operations. Thus, rather than using
the standard TR process, one can instead take the signal recorded at B during the
forward step, reverse it, and then broadcast the reversed signal from A. Due to
reciprocity the TR focusing will now occur at B. This TR procedure is referred
to as reciprocal TR [1]. Reciprocal TR is useful to remotely focus high-amplitude
energy to any location B where an impulse response can be measured, or otherwise
extracted, while the source transducer remains at the same location A. In order to
focus energy at various locations of interest, the reciprocal TR process must be
repeated in its entirety; i.e., the forward and backward steps must both be performed
for each desired focal location. Reciprocal TR is the process typically used for NDE
applications as it allows for high-amplitude targeted inspection and easy scanning
of parts without having to move the source—only the receiver has to be moved to
inspect another location.

Both standard and reciprocal TR require that a transfer function be obtained
between the point(s) of the TRM element(s) and the focal location(s). In the above
descriptions of the TR process the most basic response to an impulsive source was
used. As the true impulse response, this is a simple method to obtain a suitable
transfer function, and is thus sometimes referred to as the classic TR method. Due to
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signal-to-noise issues, this classic process may not always be applicable. To obtain
suitable transfer functions two other methods are primarily used: (1) a computed
impulse response method and (2) a deconvolution method.

To conduct the computed impulse response method, a known source signal
having a long duration (e.g., a chirp) is used to excite the system at location A.
The response at location B is recorded, also for a long duration. This chirp response,
r(t), may be used, along with the source chirp signal, s(t), to obtain a band-limited
impulse response, ir(t), through a cross-correlation operation,

ir(t) =
∫

T

s∗ (τ ) r (t + τ) dτ, (14.7)

where the symbol * denotes a complex conjugate (not needed for real signals)
and T is the length of the signals. This cross-correlation operation is a cleaner
method for obtaining an impulse response than the response from broadcasting an
impulsive signal because of the higher signal-to-noise ratio afforded by the chirp
signal. Example signals for s(t), r(t), and ir(t) are displayed in Fig. 14.5.

Fig. 14.5 Example signals illustrating the use of a (a) chirp signal and the corresponding (b) chirp
response to obtain an (c) impulse response through the correlation of a known source
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Alternatively, the deconvolution method can be used to obtain a suitable transfer
function for TR focusing. This process, also known as inverse filtering, begins in the
same manner as the computed impulse response method, i.e., with the broadcast of
a long duration source signal such as a chirp. The measured response to this chirp
source is then deconvolved from the source function. In the frequency domain, this
is simply a division operation, as opposed to the multiplication operation that is a
correlation, and is the origin of the term inverse filter. The explicit details of the
process can be found in Refs. [9–13].

To compare the computed impulse response and deconvolution TR focusing
methods, we refer to Figs. 14.6 and 14.7. The computed impulse response may
simply be reversed and broadcast to produce a TR focus of energy. See Fig.
14.6a, b for examples of a reversed impulse response and a focal signal. The
matched signal nature of the TR process, as shown by the magnitude squaring
of the medium’s impulse response in Eq. (14.6), results in the resonances of the
system (transducers resonances and/or medium resonances) potentially distorting
the temporal reconstruction provided by the TR process. Fortunately, Tanter and
others have shown that the use of inverse filtering, or deconvolution, in conjunction

Fig. 14.6 Example signals illustrating the time reversal process during the backward step in which
(a) a reversed impulse response (IR) is broadcast to create (b) a time reversal focus (TRF); (c) a
reversed, deconvolution (or inverse filter) IR is broadcast to create (d) a corresponding TRF
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Fig. 14.7 Experimental data showing the spatial extent of time reversal focusing with (bottom)
and without (top) the use of inverse filtering. On the left are images representing the temporal focal
signal. On the right are the corresponding images representing the spatial extent of the focusing

with TR removes the effects of the system resonances to provide better temporal
reconstruction and better spatial focusing [9, 11–13]. Inverse filtering attempts to
adjust the amplitudes of the frequency content of the impulse response by reducing
the amplitude at system resonance frequencies and boosting amplitude at non-
resonance frequencies, while avoiding the amplification of noise.

Figure 14.6c, d displays example signals for the inverse-filter process. Figure
14.7 shows a comparison of the spatial mapping of TR focusing on a small
(15.6 cm × 9.4 cm × 0.23 cm) aluminum plate. One can clearly note the
improvement in the spatial focusing and the more impulsive nature of the temporal
focusing. It should also be noted that this improvement in focusing quality is often
obtained at the expense of a reduction in the peak amplitude of the focusing when
using inverse filtering. Here, the reduction in amplitude seen between Fig. 14.6b, d
is only 20% but similar experiments have reported a factor of 3 or more. Ultimately,
the amplitude differences between the two methods are entirely system dependent
and are not well understood.
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The transfer functions obtained in both the computed impulse response and
deconvolution methods are commonly referred to as being band-limited. This refers
to the fact that the only information available in the signals comes from the
bandwidth defined by the original chirp or other source. True impulse responses,
also known as Green functions, have infinite bandwidth, a fact that cannot be
realized experimentally.

A demonstration of the robust ability of TR to focus energy is provided in
an example of reciprocal TR focusing, using the deconvolution method, in an
aluminum plate. The localized high-amplitude focusing provided by TR can be
demonstrated by placing Lego™ minifigures at various locations on the plate. A
laser Doppler vibrometer (LDV) is aimed at the feet of one of the minifigures
to sense the response to the chirp emanating from the single source transducer
throughout the forward step. During the backward step, the vibrations in the plate
are maximal at the location of this minifigure and only at this location. The vibration
amplitude is such that the minifigure is launched into the air, while the other
minifigures on the plate remain undisturbed. Refer to Fig. 14.8 for snapshots of

Fig. 14.8 Successive photographs of a time reversal demonstration in which a Lego™ minifigure,
set up at the focal location, is being launched by the localized high-amplitude vibrations in the plate
while other Lego™ minifigures, placed away from the focal location, remain relatively undisturbed
throughout the process
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the process. Anderson et al. calculated the peak accelerations at the focal location
in a similar experiment to be approximately 250 times that of the acceleration due
to gravity [14]. The ability to create such a high-amplitude localized focus of wave
energy is useful for NDE where the TR focus can be used to interrogate mechanical
properties of a material, in particular the nonlinear elastic parameters, as will be
expounded upon later in Sect. 14.2.

The above example utilized only a single element TRM. Its success in focusing
relied on the large amount of scattering that could be measured due to the multiple
reflections and relatively low attenuation, which may not always be the case. In
general the amplitude and quality of TR focusing requires some combination of
many sources and a lot of reverberation (many reflections) in the impulse response.
In media with high damping, the impulse response does not contain sufficient
reverberation to compensate for the use of few sources. Similarly if a sample is small
there is limited area for sources, such as piezoelectric transducers, to be bonded
onto the sample’s surface, and thus, the reverberation in the sample must be relied
on. One method to overcome these limitations the use of a chaotic cavity (CC), in
conjunction with the sample, has been introduced [15] and applied to NDE applica-
tions [16–18]. Transducers are bonded onto a CC that has low damping, such as a
metallic material, and that may have a chaotic shape. This CC is then attached (i.e.,
bonded) onto the sample under test. During the forward propagation waves travel
chaotically inside the CC and much of this energy is broadcast into the sample under
test over time, providing the reverberation needed to improve the TR focusing. This
idea has been termed a kaleidoscope smart transducer or a CC transducer (though
this transducer may incorporate several physical transducers). The CC transducer
thus provides extra reverberation to enhance TR focusing, with the caveat that this
focusing principally comes from the direction of the CC transducer into the sample
under test, meaning that the TR focal amplitude can be increased but the spatial
extent of the focusing may or may not be confined to a diffraction limited spot.

Applying concepts similar to the idea of the CC transducer led to the develop-
ment of a noncontact source that utilizes TR. Time Reversal Acoustic Non-Contact
Excitation (TRANCE) exploits the reverberation of ultrasonic sound waves in an
air-filled CC to create a TR focus of airborne acoustic waves onto the surface of a
carbon fiber plate sample [19–23]. TRANCE was optimized through the bonding of
piezoelectric transducers onto power-law profile wedges to increase the radiation
of the energy from the piezoelectric transducer into the air-filled CC [24–26].
TRANCE has been shown to be able to image cracking that is perpendicular
to the sample surface and a delamination that is parallel to the sample surface
[27]. Imaging of these defects with TRANCE was accomplished by focusing wave
motion in the plate both in the out-of-plane direction and in the in-plane directions.

In addition to the methods of direct focusing, i.e., focusing to a source/receiver
as described above, several other TR-based methods have been developed to locate
strong scatterers and/or weak sources/foci that may be masked due to the presence of
stronger more dominant sources. These methods are more pertinent to standard TR.

The first uses of TR for NDE were aimed at the localization of linear scatterers
(e.g., holes) in a sample. An array of transducers was used with each element
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actively broadcasting in turn, one at a time, while the other array elements act as
sensors. Once these sets of signals have been detected from each array element
broadcast, a two-dimensional matrix of signals is constructed. A singular value
decomposition procedure is then carried out in which the eigenvalues correspond
to the signals that lead to TR focusing on the strongest scatterers in the medium
(the number of scatterers that may be detected must be equal to or less than the
number of array elements). This procedure is known as the Decomposition of the
Time Reversal Operator (the French spelling leads to the acronym DORT) [28].
DORT was originally developed for underwater acoustics and later applied to NDE
in solid media [29–31].

Depending on the application of TR, sometimes the focusing of waves to one
location can be of sufficient amplitude to mask the presence of smaller amplitude TR
focusing to a different location. Selective Source Reduction (SSR) was developed to
progressively remove large amplitude foci and uncover smaller amplitude foci [32–
34]. If nonlinear frequency content is being focused to locate a crack, a technique
described in more detail in Sect. 14.2, the SSR technique may provide the means of
discovering smaller nonlinear features that are masked by the TR focusing onto the
largest nonlinear feature in a sample.

Time reversal is related to, though distinctly different, other methods, some
of which are relevant to NDE applications. In free space, i.e., a non-scattering,
environment, TR is equivalent to beamforming techniques [35, 36], an example of
which is a phased array. To perform beamforming several transducers are utilized,
each broadcasting/receiving the same signal but each transducer may have unique
initial phases [37]. This allows a beam to be projected (i.e., steered) into a particular
direction from an array of sources, or to determine the angle of incidence of an
incident wave using the phase delays that produce maximal constructive interference
when an array of receiver signals is summed. TR provides the delays for each
transducer by obtaining the impulse responses and reversing them. Beamforming
only attempts to utilize the direct signal and therefore struggles in a bounded
medium with multiple reflections and/or inhomogeneity in the wave speed. On the
contrary, TR utilizes the multiple reflections in a bounded medium to its advantage
as will be discussed later. TR also automatically accounts for any spatial variation in
the wave speed because this information is encoded in the impulse response during
the forward step.

Matched field processing is another technique that is quite similar to TR used
to locate sources [38–41]. In matched field processing, the backward step is done
with a numerical model of the medium. Impulse responses are calculated between
an array of receiving transducers and each suspected source location. When a source
is detected and recorded by the receiver array, matched field processing is the
process of determining which set of calculated impulse responses best matches the
detected source to determine the location of the source. Matched field processing
can be used to locate acoustic emissions in NDE [42], but it would not be useful
to actively interrogate a sample with suspected damage since the backward step is
not done experimentally, whereas TR provides the ability to do the backward step
experimentally.
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Finally, Reverse Time Migration (RTM) has been applied to image linear
scatterers based on a technique that has been around for decades in seismic imaging
applications [43, 44]. RTM involves a forward and a backward step just as in the
TR process but instead of using this procedure for the purpose of creating TR
focusing, RTM involves a comparison of time histories recorded during the forward
and backward steps at several points of interest in which the forward and backward
wave propagation occur. RTM was applied to the imaging of a partially delaminated
object that was bonded onto a plate [45].

14.1.5 Benefits and Limitations of Time Reversal

As mentioned above, TR utilizes multiple reflections to its advantage where
classic beamforming techniques typically struggle. One demonstration of how TR
benefits from multiple reflections (reverberation) was described by Fink [46]. The
experiment utilized standard TR in a water tank with a single transducer at A and an
array of transducers at B. The experiment was initially conducted by transmitting
from the single transducer, detecting with the array, reversing the array signals,
broadcasting the reversed signals from the array, and using the single transducer to
scan the spatial extent of the focusing. Next, a forest of rods was placed between A
and B and the experiment was repeated. The resulting spatial extent of the focusing
was 6 times narrower than for the case without the forest. This result not only
demonstrated the ability of TR to perform robustly in complex media, but it also
showed that multiple scattering improves the spatial focusing of TR.

Multiple transducers in a TRM may be used to record the wave propagation in
the forward step. Each of these impulse responses may be reversed and subsequently
broadcast simultaneously from the respective TRM transducers. The focusing
generated by each transducer adds constructively to increase the focal amplitude.
Thus, the TR focal amplitude may be increased through the use of more image
sources (recording a longer impulse response) and/or more real sources (i.e., the
multiple transducers referred to earlier in this paragraph). The energy that arrives
at the focal location before or after the main coherent focus of energy, called side
lobes, increases with more image sources and/or more real sources. Fortunately, the
focal amplitude increases linearly with the number of TRM elements (N), while
the incoherent side lobes increase in amplitude proportional to

√
N . Ultimately,

this increase in amplitude will be used in Sect. 14.2 to achieve localized excitation
with amplitudes and signal-to-noise sufficiently large for nonlinear elastic-wave
measurements.

For standard TR, it is easy to see how spatial reciprocity, i.e., reciprocity along all
paths between the TRM and the focal location, is involved since the paths traversed
during the forward step are also traversed during the backward step. For simplicity,
nothing should change between the forward and backward steps in order for TR
to provide focusing. Thus, TR is limited in systems or media where mechanical
properties are time dependent (such as a change in wave speed due to a global
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change in temperature). Spatial reciprocity is not broken in systems with dispersion
of velocity, mode conversion (waves changing form at boundaries) [47], multiple
scattering as discussed previously, anisotropy, or refraction. A flowing medium can
be statistically reciprocal as long as the flow does not change the velocity profile,
for example. Propagation attenuation does not break spatial reciprocity unless the
attenuation is a function of amplitude. Nonlinear wave steepening does not affect
the TR process significantly unless a shock wave has been formed [48–50].

It has been recently shown that transducers that are directional in nature should be
aimed away from the target focal location in a reverberant environment [51]. When
a directional transducer is aimed at the focal location then the direct sound arrival
tends to dominate the impulse response relative to the reflected (reverberant) sound
in the impulse response. Prior to the broadcast of a reversed impulse response, this
signal is normalized to take full advantage of the available amplification. Aiming the
directional transducer away from the focal location reduces the direct sound arrival
relative to the numerous reverberant sound arrivals, and thus, the normalization
process essentially amplifies the many reflected arrivals for the TR broadcast. The
result is a large focal amplitude. In a solid media sample, aiming the transducer
directly away from the focal location may not be possible since the transducers are
placed on the boundaries of the sample. Thus it may be best to aim the transducers
away from the focal location(s) as much as possible, such as towards a different
surface than the surface under evaluation.

It is worth mentioning that recordings made by a TRM should be simultaneous
to ensure the proper timing for optimal constructive interference when conducting
the backward propagation step. Additionally, for NDE applications, it is common
to use multiple-channel generation systems to activate the nonlinear response of
defects (typically activated at strain amplitudes ranging from 10−7 to 10−5). As
will be discussed in Sect. 14.2.3, the main advantage of using multiple-channel
systems comes from the ability to generate a low-amplitude wave from each channel
that will eventually coalesce into a high-amplitude wave at the focal point, thus
avoiding the activation of inherent, background nonlinearity of the sample through
the wave propagation from the elements of the TRM to the focal point. Further, when
constructing a numerical model for either the forward or backward propagation
steps, the models must be fairly accurate, though some errors may be tolerated [52,
53].

14.1.6 Applications of Time Reversal

TR has been developed for many applications in acoustics (including elastic
waves in solid media) and also with electromagnetic waves [54, 55]. Within
acoustics applications there are three main purposes for the use of TR focusing: to
communicate information from one location to another, to locate and characterize
a source of energy or a scatterer of energy, or to create a localized high-amplitude
focus of energy.
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The first application of TR was for underwater acoustic communication between
ships [2–5]. In that early work, TR was referred to as matched signal processing
since the focusing of a time reversed impulse response is equivalent to the autocor-
relation of the impulse response. Later, researchers in underwater acoustics referred
to the technique as phase conjugation (a phase conjugation of a complex spectrum
in the frequency domain is equivalent to a TR operation on the corresponding
temporal signal in the time domain), deriving the name from optical research on
phase conjugate mirrors [56–58]. The reversed impulse response used in TR can
be used as the carrier signal to deliver spatially focused communications. TR is
especially useful in complex (multi-layered ocean), reverberant media [59]. There
have been a significant number of published papers on the subject of underwater
acoustic communications using TR. Recently TR was used to demonstrate acoustic
communications through an elastic medium [60].

TR can be used to focus wave energy back to an unknown source location in order
to localize it and the properties of the focused energy may be used to characterize the
source. Tectonic plate earthquakes [61], glacial earthquakes [62], and geophysical
tremor [63] have each been located and characterized with TR [64]. In addition to
locating these seismic events, the TR focusing also enabled some understanding of
the rupture process which may allow characterization of different types of seismic
events. TR has been used in touchpad technology to locate finger taps [65, 66].
Various sources of sounds have been located in fluid media, including aeroacoustic
sources [67–69], gun shots [70, 71], and gas leaks [72]. TR has been shown to
accurately image the spatial extent of sources that are a half wavelength in size or
less [73].

High-amplitude focusing has been used in the biomedical field of acoustics [74],
room acoustics applications [75], and NDE of damage in solid media [76]. High
amplitudes are useful in biomedical applications to destroy tissue without invasive
surgery. Biomedical applications have included the acoustic lithotripsy of kidney
stones [77] and brain tumors [78, 79], the development of a shock wave generator
[80], and imaging of defects in human teeth [81]. Focusing high-amplitude sound
has recently been shown in a reverberation chamber to study nonlinearities in loud,
impulsive sounds, and to possibly simulate the sound of explosives [75]. For NDE
applications in solid media, TR was first used to detect linear scatterer defects (i.e.,
holes) by coupling acoustic energy from an array of transducers into the sample
through water or through the use of a plexiglass wedge [29–31, 82–85]. Later,
high-amplitude TR was applied to find localized nonlinearities that are indicative of
defects, cracks, and/or delaminations. The higher the amplitude, the more sensitive
the TR techniques are to detecting nonlinearities. TR has been used to detect
nonlinearities experimentally, to locate surficial cracks from impact damage [27,
86], surficial cracks from stress fatigue [87], surficial cracks from stress corrosion
cracking [88, 89], near-surficial cracks and delaminations [45, 90], and internal
delaminations [91].

The first experimental demonstrations of TR in solid media to locate linear
scatterers and demonstrate TR focusing in solid media were conducted in the 1990s
[29, 82–85, 92, 93]. In 2001, Guyer [94] proposed the idea of locating a crack
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in solid media with TR and nonlinear techniques. Delsanto et al. then developed
numerical simulations of TR in elastic media [95]. Experimental studies exploring
the use of TR to detect nonlinearities and use TR techniques in granular media were
then conducted by Sutin et al. at Los Alamos National Laboratory using transducers
bonded onto the sample instead of submerging the samples [96, 97]. The first proof
of concept of locating a nonlinear crack was demonstrated by Bou Matar et al. in
2005 using numerical analysis [98]. This was followed by the first experimental
validation of using TR to locate a surficial crack in a solid sample in 2006 by Ulrich
et al. [86]. Some key experiments demonstrating the use of TR for NDE of cracks,
defects, and delaminations have been reviewed in Ref. [76].

14.2 Time Reversal for Locating Damage

14.2.1 Nonlinear Signatures of Defects

Damaged materials have in common the presence of internal defects, of various
sizes and types. These defects include dislocations, micro-cracks, relatively large
cracks, and delaminations, depending not only on the material but also on the
process leading to damage (e.g., impact, exposure to harsh chemical environment,
fatigue, non-optimal settings in the manufacturing process). As an elastic wave
propagates in a solid, it interacts with its constituents, including its defects. It is
not surprising then that elastic waves have been used for decades to characterize
materials and evaluate structural integrity in various fields. Many material defects
lead to nonlinear effects during the propagation of finite-amplitude elastic waves,
manifested as wave distortions in the time domain or generation of harmonics in the
frequency domain [99–101]. Unlike techniques relying on the linear scattering of an
elastic wave by a defect, these effects may be observed even when the wavelength
is much larger (by orders of magnitude) than the defects. This fact is of practical
importance for NDE applications since it may be and has been used for the early
detection of defects in materials. In fact, it has been demonstrated that nonlinear
signatures are far more sensitive to the presence of microscopic-sized defects, which
are precursors to larger defects and eventually system failure, than linear signatures,
including linear scattering, changes in the propagation speed of the elastic waves,
and linear attenuation [100, 101].

The interaction between an elastic wave with sufficiently large amplitude and
a contact interface (e.g., crack, delamination, imperfect bonding) has been studied
and described in depth by Solodov and his collaborators [102–104]. In brief, the
nonlinear dynamic response of the interface may be described by a distributed
nonlinear spring connecting two faces set in motion by an incident elastic wave.
This spring stiffness depends on the stress conditions at the interface, thus leading
to a complex spatio-temporal response. At relatively low amplitudes, this spring
has a constant stiffness and behaves linearly. At larger amplitudes (with a threshold
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determined by the size of the interface, material, roughness, etc.), the spring stiffness
decreases with possibly a complex dependence on stress. Eventually, at much
larger amplitudes, the spring “breaks” with its stiffness going to 0, thus allowing
the two faces of the defect to vibrate independently from one another. When the
amplitude of the incident elastic wave returns to a relatively small value, the spring
regains its original linear stiffness properties and the dynamics of the faces are once
again coupled. Similar approaches have been used in recent attempts to model the
dynamics of cracks and their interactions with elastic waves [105–108].

Practically, an incident elastic wave will be distorted by an imperfect contact
within an interface. For example, an incident monochromatic wave may be clipped
at its peaks due to collisions between the two faces of the defect. The clipped
waveform has the majority of its energy at the fundamental frequency of the incident
wave but it also has a finite amount of energy at odd harmonic multiples of the
fundamental frequency. Collisions that occur at any other time during the cycle of
the fundamental frequency, or occur for anti-symmetric portions of the cycle, will
result in finite amounts of energy at the even harmonic multiples of the fundamental
frequency in addition to the odd harmonics. These effects of nonlinearity on
waveforms and corresponding spectra are shown in Fig. 14.9. Two crack faces that
are in constant contact, e.g., a closed crack, will rub against one another with a
frictional interaction that may distort the incident wave throughout the cycle of
the fundamental frequency [106]. If the interface is driven at two frequencies, f1
and f2, then the nonlinearly generated frequency content will consist of summation
and difference frequency combinations of the two frequencies, nf1 ± mf2 (where n
and m may be any integer values). An experimental example of sum and difference
frequencies will be given in Sect. 14.2.2. In some cases, where there is not enough
energy for one side of a crack to vibrate far enough to contact the other side of the
crack for more than a period of the wave (i.e., trampoline effect), there is a potential
for the creation of sub-harmonics f1/2, f2/2, and linear combinations thereof.

14.2.2 Time Reversal of Nonlinear Features Detected Remotely
(Standard Time Reversal)

As described in the previous section, in an otherwise linear medium, a crack (or
more generally an imperfect interface) may be described as a localized nonlinear
scatterer that distorts an incident elastic wave and generates additional harmonic
content in the frequency domain. If the nonlinear features contained in the signal
that are emitted by the scatterer can propagate away from the scatterer, be detected
by remote sensors (e.g., piezoelectric transducers), isolated, time reversed, and
broadcast into the same medium, then these features should coalesce to the source
region and imaging is possible.

The feasibility of this idea was first demonstrated in a numerical study by Bou
Matar et al. [98]. The first experimental realization of this idea can be found in



564 B. E. Anderson et al.

Fig. 14.9 Time waveforms
and corresponding frequency
spectra of three sample
signals: a sine wave, a clipped
sine wave, and a distorted
peak sine wave

the work of Ulrich et al. [87] where a crack was imaged in a bearing cap. In this
experiment, the modal response of a sample was excited (typically low frequency
resonances are excited) with an impulsive excitation in conjunction with excitation
of the sample with a narrowband high frequency tone burst from a transducer. The
response was recorded by a piezoelectric transducer on the sample and analyzed
to detect the presence of sum and difference frequencies on either side of the
high frequency tone, as shown in Fig. 14.10. The recorded waveform was band-
pass filtered to extract its nonlinear content that was presumably generated by a
crack in the sample. The filtered waveform was then time reversed and broadcast
by the piezoelectric transducer. Finally, a SLDV was used to measure the elastic
response on the surface of the sample and locate positions where the TR focusing
produced the highest amplitudes. Images of the crack detected in this experiment
are shown in Fig. 14.11. Elastic wave energy refocuses at different parts of the
crack at different times because of the complex space-time dependence of the crack
dynamics discussed in the previous section. The time reversal process is able to
capture such dynamics.

Another experimental realization of this concept was reported by Le Bas et al.
to image nonlinearity at the interface between two solids: a glass block and an
aluminum block [91]. A representation of their experimental setup is shown in Fig.
14.12. The optical properties of the two solids (i.e., transparent and opaque) allowed
them to shine the beam of a LDV at the interface of the two solids and monitor
its dynamic response. The rest of the setup consists of piezoelectric transducers
to detect and emit elastic waves. This experiment is more complex than the one
described previously because TR was used twice, for two distinct purposes. TR was
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Fig. 14.11 Spatial maps of the time reversal focusing of energy on the damaged sample at two
different time intervals. The true location of the crack is identified in white to illustrate how the
focusing progresses from the mouth of the crack to the crack tip

used a first time through the time reversal mirror TRM1 (see Fig. 14.12) to stimulate
a number of localized regions over the interface with high-amplitude elastic waves.
More details about the application of this concept for NDE and imaging are given
in the next section (Sect. 14.2.3). When a nonlinear scatterer was present within
the focal region, it responded nonlinearly. The nonlinear features generated by the
scatterer could be detected by the elements of a second time reversal mirror, TRM2.



566 B. E. Anderson et al.

Fig. 14.12 Using time reversal to image nonlinearity at the interface between a glass block and an
aluminum block

Once processed with time reversal and reemitted into the sample, these nonlinear
features would coalesce where imperfections were intentionally introduced when
creating the interface between the blocks, as shown in Fig. 14.12.

These two experiments have been complemented by numerous numerical studies
where ways to optimize this technique were proposed [88, 109, 110]. However,
widespread adoption of this technique by the NDE community may be a challenge
because experimental implementation is not trivial. In addition, there is a caveat
to be aware of. The nonlinear scatterer to be imaged is localized but the material
may have some finite amount of inherent nonlinearity (e.g., micro-cracking from
the damage process) in which case the elastic waves will propagate through this
medium and experience additional distortions. If the nonlinear response emitted
by the localized scatterer is much stronger than the background nonlinearity (i.e.,
that due to the distributed micro-defects in the material) and this background
nonlinearity is quasi-uniform, then imaging of the defect is possible. If not, the
techniques described in the next section can be a powerful alternative.

14.2.3 Focusing Elastic Wave Energy for Localized Nonlinear
Inspection (Reciprocal Time Reversal)

As hinted in the previous section, TR can also be used to focus linear elastic waves
to a region of interest by using the principle of reciprocity and thus be the basis of
localized inspection techniques. The dynamic response within the focal region can
be subsequently used for further processing and analysis, in particular to detect the
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presence of nonlinear features. Relying on the fact that the dynamic response of a
nonlinear scatterer does not scale with amplitude nor phase, the focal signal(s) can
be exploited in multiple ways for imaging, each leading to a new NDE technique.
These techniques are all based on reciprocal TR. While successful experiments have
been conducted with as few as one transducer, using multiple transducers can be
helpful to mitigate the issue of background nonlinearity caused by distributed micro-
defects in the material. Using the principle of reciprocal TR, each transducer can be
used independently to focus wave energy at a desired location. This fact allows for
the use of multiple low-amplitude channels to produce a focused high-amplitude
response at any point in the solid. In the following, some of the key experiments and
signal processing techniques will be presented.

In 2003, Sutin et al. conducted a TR experiment in a cracked block using a
single pair of source-receiver to focus elastic waves on and away from a crack [96].
They repeated the experiment at multiple amplitudes, tracked the harmonic content
of the signals focused on the crack, and noticed that it scaled with amplitude as
it should for a crack in a solid. Following this experiment, Ulrich et al. repeated
the TR process, analyzed the focal signals for a grid of scan points around the
nonlinear scatterers, and created images of these scatterers [86]. In this experiment,
multiple transducers were used for wave focusing and nonlinearity was extracted via
intermodulation distortion. In brief, reciprocal TR was conducted simultaneously at
two different frequencies while the nonlinear scatterers generated difference and
sum frequencies. The frequency components in the focal signals at each focal
position on this experiment are shown in Fig. 14.13. The extent of the nonlinear
features (difference and sum frequencies) is in excellent agreement with the extent
of the actual damaged region bounded by dashed lines in the figure.

Phase inversion or pulse inversion (PI) is another technique used to extract
the nonlinear features of a focal signal in a TR experiment. This technique was
originally developed for medical imaging applications [111] and later applied to the
detection of landmines [112]. In the PI technique the backward step is carried out
twice, once with the reversed impulse response and then a second time with the
reversed impulse response multiplied by −1 (i.e., phase inversion). The two focal
signals, one with a positive phase focusing (0◦) and the other with a negative phase
focusing (180◦), can then be added to one another. If the focusing is purely a linear
process, then the addition of these signals should only consist of any background
noise in both signals. The growth of even and odd harmonics is such that if the
focusing generates any nonlinearities then the addition of the two focal signals will
result in the elimination of all odd harmonics, including the fundamental frequency,
leaving any even harmonics that were generated through nonlinear processes. For
many types of nonlinear processes of interest, the amplitude of the second harmonic
grows as the square of the amplitude of the fundamental frequency. The residual
signal may then be characterized in any number of ways. Some example metrics
that may be used to quantify the nonlinearities in the residue signal include the
peak of the residue signal, the amplitude of the second harmonic extracted from
the spectrum of the residue signal, or a summation of the squared residue signal
(sometimes only centered on the time of peak focusing).
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The PI technique was first combined to TR in experiments by Ulrich et al. [90]
to image nonlinearity over the interface of two metallic disks that are diffusion
bonded to one another. The types of defects found at the interface consist of holes
and disbonded regions (i.e., cracks). The interface was imaged with linear C-scan
at 15 MHz and with TR combined with PI at 200 kHz. The linear (C-scan) and
nonlinear (TR scan) images of the interface are shown in Fig. 14.14. There are
obvious differences between the two images. Each method is able to image different
types of features. The linear C-scan is sensitive to large impedance contrasts, such
as where a void is present or a free surface. The ability of the TR scan to detect
nonlinear frequency content allows it to image defects where two surfaces are in
contact with one another but no adhesion exists between the surfaces, such as with
closed cracks and the edges of delaminations. Thus the methods are complimentary
since the linear method (C-scan) cannot detect the cracks and delaminations whereas
the nonlinear method (TR scan) cannot detect the large voids and free surfaces. The
bonded disks were cut normally to the interface and imaged with a scanning electron
microscope to verify that the C-scan correctly imaged voids in the diffusion bond,
whereas the TR scan correctly imaged disbonding between the metals.

The loss of the odd harmonic energy, at the 3rd and 5th harmonic frequencies,
for example, is one of the drawbacks to the PI technique. To address this issue,
Ciampa and Meo proposed a variation on the PI technique that they termed third-
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Fig. 14.14 Spatial maps imaging defects in the bonded sample. (a) The linear C-scan image on
the left utilized a 15 MHz primary frequency whereas (b) the nonlinear TR scan image on the right
utilized a 200 kHz primary frequency. The brightest white areas in the linear image near the center
of the sample indicate voids. The white areas in the nonlinear image indicate disbonding or cracks

order phase symmetry analysis [113]. With third-order phase symmetry analysis,
three time reversed impulse responses are used to create three different focal signals.
Prior to the broadcast in the backward step, the first reversed impulse response
signal is unchanged, the second reversed impulse response is shifted by 120◦, and
the third reversed impulse response is shifted by 240◦. Ciampa and Meo showed
that these three focal signals could be used to independently extract either the
fundamental frequency content, the second-harmonic frequency content, or the
third-order frequency content. They demonstrated that some systems generate more
third harmonic content than second-harmonic content, and thus, the phase symmetry
analysis they proposed is an improvement upon standard PI techniques, though it
requires three focusing steps rather than just two.

The last technique discussed in this section to extract the nonlinear features of
a signal in the context of TR experiment is the scaling subtraction method (SSM)
[114, 115]. Since, by definition, nonlinear processes are amplitude dependent, if the
focal signal is generated by broadcasting the same impulse response at two different
amplitudes, then any differences in those two signals, when scaled appropriately,
is due to nonlinear effects. For example, one reversed impulse response may be
broadcast with an amplitude A1. The same reversed impulse response may be
broadcast with a larger amplitude of A2. If the TR focusing is a linear process,
then one can multiply the low-amplitude signal by A2/A1 and the two focal signals
should be identical. The SSM specifies that the low-amplitude signal should be
scaled up to match the large amplitude signal (according to the scaling factor
used prior to broadcasting the signals) and then the scaled low-amplitude signal
is subtracted from the large amplitude signal. SSM preserves the even- and odd-
harmonic frequency content. Similar to the phase inversion technique, one is left
with a residue signal. Scalerandi et al. proposed that one could sum the squared
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residual signal (similar to an energy quantity depending on what type of signal is
detected, i.e., squared particle velocity would be proportional to kinetic energy).
Another type of processing of the residual signal involves the subtraction of the
scaled low-amplitude spectrum from the large amplitude spectrum (where the
spectra are the Fourier transforms of the focal signals) [89].

14.2.4 Surficial and Depth Imaging with Time Reversal

When elastic waves are focused via the TR process in a solid sample, one can easily
image the surficial motion of the sample with a laser vibrometer. However, if the
sample has an appreciable thickness, then one would expect that the converging
waves do not solely travel on the surface of the sample but also through its bulk.
Thus, one would expect that surficial TR focusing has a depth dependence to it
besides the surficial spatial extent. Payan et al. probed the depth of bulk nonlinearity
in concrete using this principle [116]. Remillieux et al. used a numerical model
of the TR process to quantify the spatial profile and the depth profile of the TR
focusing in a homogeneous elastic sample by simulating typical NDE sample sizes,
transducers, and frequencies [117]. They found that the surficial extent of the
focusing was half of a Rayleigh wavelength, whereas the depth penetration was
one-third of a shear wavelength (both quantities defined in terms of the full width
at half maximum of the focal amplitude). Recently TR was used to extract some
information about the depth profile of a stress corrosion crack in a thick plate of
stainless steel based on surficial measurements at different frequencies [89]. The
sample is shown in Fig. 14.15. From visual inspection, the crack runs along the
upper edge of the weld. It penetrates into the sample initially downward and then
it curves under the weld such that the crack tip is approximately at a distance of
10 mm from the surface of the sample (see the image on the left in Fig. 14.15).
Experiments were conducted with TR signals centered at 100 and 200 kHz. In
these experiments, the nonlinear signature was extracted by a technique similar to
the scaling subtraction method. Signals were scaled by the excitation amplitudes
but processed in the frequency domain, in a relatively narrow frequency band
centered around the second harmonic. An example of waveforms and corresponding
amplitude spectra acquired at two amplitudes on the crack is shown in Fig. 14.16.
Comparison of the amplitude spectra scaled with respect to the source amplitude
shows a significant increase in second-harmonic amplitude for the high-source level
(i.e., 3 V). Results from the scans are displayed in Fig. 14.17. At 200 kHz, the
theoretical penetration depth is 5 mm, which only probes the portion of the crack
that is perpendicular to the surface of the sample. As a result, the map of nonlinearity
exhibits a strong but narrow contrast zone following the crack line on the surface.
As the center frequency of the TR signal is decreased to 100 kHz, the theoretical
penetration depth is 10 mm. The map of nonlinearity is discontinuous along the
crack line, exhibiting larger contrast zones that appear only below the crack line,
which coincides with the shape and depth of penetration of the crack into the sample.
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Fig. 14.15 Photographs of the sample used in the experiments conducted by Anderson et al. [89]
The solid line box indicates the approximate scan area. The dashed line box (left) shows an edge
view photograph of the side of the sample with a dotted line indicating the extent of a barely visible
crack

Fig. 14.16 Focal signals and corresponding scaled spectra measured on the crack for two
difference source amplitudes, based on a TR signal centered at 100 kHz. In the frequency domain,
the nonlinear response of the crack is well evidenced by the second-harmonic generation as the
source amplitude is increased

14.2.5 Three-Dimensional Time Reversal Focusing

A development of particular interest for NDE is the ability to focus energy in
different Cartesian directions (e.g., x, y, z, or linear combinations of these) using
a scalar source [118, 119]. This property can be used for imaging the orientation of
a crack [120] based on the simple fact that, dynamically, it is easier to activate the
clapping than the friction mechanism at an interface. 3D focusing can be achieved
with any receiver capable of sensing in multiple directions, which is the case of
a 3D SLDV (e.g., 1 out-of-plane component +2 in-plane components). Focusing
in a specific direction is again achieved with reciprocal time reversal where the
direction of sensing will dictate the direction of focusing, regardless of the source
characteristics. Focal signals and wave fields at the focal times for different focusing
directions are shown in Figs. 14.18 and 14.19, respectively (only one in-plane
direction is shown). If the signal recorded by an out-of-plane laser vibrometer



Fig. 14.17 Maps of nonlinearity produced with TR pulses centered at 100 and 200 kHz. The
dotted line indicates the visible, surficial expression of the crack

Fig. 14.18 Example temporal signals illustrating the time reversal focusing only in the direction
in which the impulse response signal is detected during the forward step. These velocity signals
were measured at the same locations. The first row displays the motion in the two directions for
out-of-plane focusing while the second row displays the motion in the two directions for in-plane
focusing
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Fig. 14.19 Example spatial maps illustrating the time reversal focusing only in the direction in
which the impulse response signal is detected during the forward step. These velocity amplitude
maps were measured at the time of peak focusing. The first row displays the map of instantaneous
motion in the two directions for out-of-plane focusing while the second row displays the map of
instantaneous motion in the two directions for in-plane focusing. All color scales are equals on all
images, with darker shades indicating higher amplitude

is used in the TR process, elastic waves will be mostly focused along the out-
of-plane direction. Note that a fraction of the energy will also be visible in the
in-plane directions due to the tensorial nature of elasticity (e.g., Poisson effect in
an isotropic solid). However, the signals in the non-focused directions have such a
small amplitude that they are not expected to interact significantly with the defect.

The ability of TR to image defect orientation was first tested in a sample of
stainless steel with stress corrosion cracks [120, 121]. The sample and chosen
system of coordinates for the analysis are shown in Fig. 14.20. A region was selected
for the scan with TR being conducted at three orientations, x: in-plane normal to the
crack line; y: in-plane in the direction of the crack line; and z: out-of-plane. TR was
conducted successively in the x, y, and z directions. Results from these scans are
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Fig. 14.20 Photographs of the sample used in the experiments to demonstrate the ability of TR to
image defect orientation: (a) top view showing the presence of stress corrosion cracking near the
weld area and outer boundaries, with the scan area displayed by a dashed line box, (b) side view
showing an orientation of the crack of nearly 45◦ into the thickness of the sample

Fig. 14.21 Maps of nonlinearity obtained with TR in three orthogonal directions in the vicinity of
the stress corrosion crack

displayed in Fig. 14.21. A strong nonlinear response (white contrast) is observed
near the crack line in the x- and z-directions only. Since the normal to the crack
surface is in the x–z plane, TR in these directions can induce a clapping mechanism.
On the other hand, in the y-direction (along the crack line), TR tends to induce
a friction mechanism, for which the nonlinear acoustic response is much weaker.
For the same reason, if the crack was running perpendicular to the surface of the
sample into the depth, we would observe little to no contrast by applying TR in the
z-direction.

Another experiment conducted on a composite plate was reported recently by
Le Bas et al. [27]. As a result of impact damage, the plate had two defects: a
crack and a delamination. The two defects were located in the same region but
had different orientations. The principle of time reversal could be used to image
these two defects independently, as shown in Fig. 14.22. Other imaging techniques
(e.g., X-ray, vibrothermography) show a similar extent of the defects but do not
provide information about the orientation. The images shown in Fig. 14.22 were
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Fig. 14.22 Imaging of an impact damage in the composite plate with time reversal and linear
post-processing. Images were obtained by focusing the (a) out-of-plane and (b) in-plane (along the
x-direction) components of the particle velocity at each point of a scanning grid on the surface of
the composite plate. The delamination (or crack) can be imaged when the out-of-plane (or in-plane)
component of the velocity is used in the TR process

obtained using linear processing. Additional complementary images (not shown
here) were also obtained using nonlinear processing. The nonlinear processing tends
to illuminate the boundaries of the delaminations where a “sticky” contact exists
whereas the center of the delamination generates a much smaller nonlinear response,
possibly because the faces of the delamination are not in contact or very weakly so.

14.3 Conclusion

Time reversal may be used to focus energy remotely from a set of sources to any
location on a sample where a receiver may be placed. This allows the surface of a
sample to be interrogated with any number of sources at fixed positions and a mobile
receiver, such as a laser vibrometer may be used to speed up the interrogation of a
sample. The focused energy is large enough in amplitude and spatially confined such
that localized regions of nonlinear elastic response may be excited and imaged. The
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nonlinear signatures are indicative of various types of mechanical damage. Recent
advances include the development of subsurface imaging of defects, 3D TR imaging
in order to image the orientation of defects, and the development of a noncontact
excitation source that can also be used to image defect orientation. The use of TR
for NDE to image nonlinear defects may not be as rapid of a scanning process as
traditional linear NDE techniques but it is far more sensitive to micro-cracking and
allows imaging of the full extent of a crack and the crack’s orientation.
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Chapter 15
Nonlocal and Coda Wave Quantification
of Damage Precursors in Composite
from Nonlinear Ultrasonic Response

Sourav Banerjee and Subir Patra

Materials state awareness using conventional nondestructive evaluation (NDE) at
the early stage of service life is extremely challenging because of the inherent
material nonlinearity that initiates at the lower scales. Conventional NDE methods
are limited by reporting location, size, and shape of the material discontinuities, e.g.,
cracks, voids, delamination, etc. In the past, several nonlinear ultrasonic methods are
developed to detect the small discrete damages, whereas quantification of degraded
material properties and detection of embryonic precursor damage in materials is
currently challenging. Understanding the early stage of precursor damages using
ultrasonic method inherently is to understand the material nonlinearity that arise
from the bottom-up scales, which further requires to evaluate the ultrasonic signals
with subtle nonlinearity in an innovative way that are essentially ignored in
conventional ultrasonic NDE methods. Hence, in this chapter, it is hypothesized
that such nonlinear effects at the early stage of damage at the lower scale are
actually sensed by the ultrasonic NDE probes/sensors and hidden in the ultrasonic
signals. Such hidden features are required to be extracted from the signals using
innovative signal analysis method integrated with the microcontinuum physics.
In this chapter defying the conventional nonlinear ultrasonic techniques, a newly
formulated nonlocal approach is presented to quantify the damage precursor in
materials at its early stage of the service life. Nonlocal parameter that carries
information from the lower scale has a nonlinear dependency on the ultrasonic
wave velocity at any particular frequency, which is assumed to be a constant in
linear ultrasonics and no information could be extracted. Here, it should be noted
that the nonlinear function of nonlocal parameter from a material that can be
extracted from the material degradation state is not necessarily associated with the
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material discontinuities like cracks or delamination at the macroscale but due to
distributed nonlocal effect of lower scale defects and damages. Thus, a new term
called nonlocal damage entropy (NLDE) was coined by the authors in their recent
publications to quantify the multiscale damage state in materials while exploiting
the high-frequency ultrasonic (≥10 MHz) with microcontinuum field theory. In this
chapter, first, a review of different “bottom-up” multiscale modeling approaches is
discussed followed by the need of a “top-down” precursor quantification method is
justified. Further, a review of the existing methods for quantifying damage precursor
is presented followed by a mathematical and experimental derivation of NLDE is
presented. To justify the findings with additional information from different scales,
low-frequency (≤500 kHz) Guided wave ultrasonic NDE was performed. It is
further hypothesized that the lower frequency ultrasonic guided wave signal that
carries the nonlinear effect from the lower scale is essentially manifested but can
only be extracted from the coda part of the signals and thus in this chapter the
coda part of the signals were analyzed. Frequency transformation of the signals
could result very low and almost undetectable higher harmonics due to the very
early stage of damage and may not be useful for precursor quantification. Hence,
a time domain analysis is required to find this information on the nonlinearity
that could be manifested but are buried deep inside the signal. Thus, Guided
coda wave interferometry (CWI) for composite is formulated for the first time
using high-speed Taylor series expansion method. Precursor damage index is then
formulated to quantify the damage state. Precursor damage index from Guided
CWI and high-frequency NLDE are then correlated to evaluate the equivalency of
information. To prove the positive indication of precursor damage from the newly
coined NLDE, a set of benchmark studied are presented using optical microscopy
and scanning electron microscopy (SEM). As metallic structures are well studied by
many researchers, in this chapter the example study of precursor damage is restricted
to the composite specimens under fatigue.

15.1 Introduction

Structure-specific diagnostic and prognostic has become extremely important due
to noticeable variances in real-life performance of the materials. Different batch of
materials, batch of manufacturing, assembly, flight history, operational conditions,
structures operating at various regimes, maintenance portfolios, etc. cause the
variances in materials performance. Thus, structures, structural components, engine
components, and power components will need individual attention in the near future.
Parallel database must be maintained for each component containing the detailed
fleet record, maintenance records, nondestructive test results, real-time sensory data,
etc. for online digital certification. Digital certification has become an important and
necessary step for composite materials.

Carbon fiber composites are widely used as structural material for aerospace
and other mechanical, biomedical applications due to their superior properties
over metals, like higher specific strength, higher specific modulus, etc. [1]. These
superior material properties are engineered by design based on respective structural
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requirements. In composites, after an initial reduction, the global stiffness of the
material remains the same for major fraction of its lifespan, while damage incubates
in a distributed fashion. We call it embryonic precursor damage state of composite
which goes unnoticed, but gradually grows, only to compromise the remaining
strength of the composite near the end of its life span. Therefore, with increasing
demand [2, 3], routine maintenance of these composite parts received greater
attention in the past two decades. The cost of maintenance [4] was proposed to be
minimized by incorporating efficient condition-based maintenance(CBM+) system
which further required implementation of advanced structural health monitoring
(SHM) and/or online NDE [4, 5] of composites.

Unfortunately, early detection and quantification of embryonic precursor damage
is currently challenging due to lack of feasible reliable methods. Typical precursor
damage in the composite develops in the form of matrix cracking, microcracks,
voids, micro-buckling, local fiber breakage, local fiber-matrix deboning, etc. It is
realized that the conventional ultrasonic Guided wave-based SHM (∼100 KHz to
∼500 KHz) is not sensitive to these precursor damages, often demands sophisticated
off-line characterization employing advanced statistical signal processing, which
further results in heavy computational burden. Guided wave signals carrying
fundamental Guided wave modes, for example, symmetric S0, and, antisymmetric
A0 Lamb wave modes that are predominantly analyzed for damage detection, are
not sensitive enough [8, 9] to find the onset of embryonic damage in the materials.
Structure made of composites are designed to experience extreme environments
during its operation, therefore material state awareness for the structure is extremely
important to improve the life management plan. Damage precursor in composites,
like micro-cracks, fiber breakages, and crazing, starts to occur during the first 30%
of the life span of the structure as shown in Fig. 15.1a. Current SHM and online
NDE systems can only detect damages when 80–90% of the composite life is

Fig. 15.1 (a) Condition monitoring of composite structure [4, 6] shows the P point when the early
detection should be started, and (b) fatigue damage evolution in composite material [7] shows no
change in global stiffness for a prolonged period of time when the incubation of embryonic damage
precursor is underway
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over. During the evolution of the fatigue damages, the interaction between the local
damages in the materials and the global damage in the structure (during the 80–
90% of the life span) is very rapid (Fig. 15.1b), and leads to catastrophic failure.
So, it is argued that to avoid impeding failure of the structure, it is important to
detect material damages as early as possible (∼during the first 30% of the life
span of composites). Maintenance cost could be decreased significantly by avoiding
unnecessary maintenance need. Thus, over the last few decades, many researchers
attempted to address this problem with similar philosophy stated above. To secure
the future of composites in structural applications, a reliable digital certification
process for composites is a key step and is appropriately identified by the DoD
and NASA [10, 11]. It is expected that the predictive failure models would be
integrated with the “digital-twin” [10] software (identical twin of a real structure
operates, virtually) where nondestructive evaluation (NDE) data will be integrated
with predictive models as a feedback loop. It is conceptualized that the composites
will be certified using digital failure prediction models based on its operational state.

15.1.1 Bottom-Up Multiscale Predictive Failure Models

Historically, the obvious route to understand the material behavior and unlock the
secret of precursor damage is the “bottom-up” modeling approach. In this category,
the damage modeling in composites can be broadly divided into four approaches:

• Failure criteria approach [12–27],
• Fracture mechanics approach [28–35],
• Plasticity approach [36–38],
• Damage mechanics approach [39–52].

The precursor damage is progressive in nature and thus, the damage mechanics
approach is more suitable over the other approaches [53] in progressive failure
models. Distributed damage may range from accumulated plastic strain, localization
of voids, matrix cracking, fiber-matrix debonding, shearing to local fiber breakage,
and interlaminar shear, etc. In the damage mechanics-based approach, damage
variables are used to degrade material properties [40, 54]. Failure mechanisms
are introduced by relating the damage variable to the strain energy release rate.
Damage development and plasticity development laws depend on a few criteria and
the parameters depend on material characteristics which are heuristically measured
from specimen load test or are assumed. In spite of having significant advancements
in the past decade [39–52], this current approach predicts uncertain behavior [53,
55], means that it reveals only a part of the story, thus, the criteria are still
incomplete. As described to this date, the precursor to damage state evaluation in
composites predominantly relies (theoretically) on “bottom-up” multiscale material
models [56–65] utilizing multiple failure criteria. On the other side, ultrasonic
sensing (NDE) methods [66–75] and/or digital image correlation (DIC) [76–78]
methods are used to understand the material state, experimentally. Many multiscale
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FEM and mesh less methods [79–81] are proposed with various modifications [82]
but still the prediction remains uncertain. However, the possibility of having new
multiscale observables in a “top-down” sense was not explored which could have
reduced the uncertainty in the prediction. There has been a persistent disconnect
between the sensing and modeling efforts.

Currently, it is required to design the composite structures with no growth
criterion for explicit damage morphologies. And, that has become the shortcoming
in the composite damage progression model because the existing NDE methods are
not well equipped to provide certain parameter of interest, for example, degraded
anisotropic material properties of damage variables. Although we have long way to
go, it is identified that a significant opportunity exists to introduce a new multiscale
process for precursor to damage quantification using a new method as presented in
this chapter.

15.1.2 Unifying Bottom-Up and Top-Down Approaches

In material diagnostics, the “bottom-up” approach results in increasing uncertainty
at the larger length and time scales as shown in Fig. 15.2. Diameter of the funnels
at different scales is representative of the quantity of information that can be

Fig. 15.2 A conceptual view of “bottom-up” and “top-down” approach
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Fig. 15.3 Combining high-frequency ultrasonic, advanced signal and image processing, predictive
modeling results state of union, reduced uncertainty

propagated to the subsequent length and time scales. It can be seen that using the
“bottom-up” approach, most of the information can be lost through homogenization
and could increase the uncertainties in the macroscale NDE sensor signals when
simulated. On the other hand, it is possible to obtain information at multiple length
scales by carefully selecting high-frequency ultrasonic methods, advanced signal
processing methods, and unique predictive physics, which essentially conform a
“top-down” approach. As shown in Figs. 15.2 and 15.3, it is not possible to extract
information beyond certain length scales using any “top-down” approach. But, one
could formulate a hybrid technique by fusing the “bottom-up” and “top-down”
approaches by judicially selecting their respective advantages.

It is proposed to bring the modeling and ultrasonic sensing efforts under one
unified umbrella. The most popular, “top-down” approaches in the multiscale
mechanics that utilize the nonlocal behavior are peridynamic theory [83], and micro-
morphic theory [84–89]. They are actually the byproduct of many microcontinuum
theories such as the microstructure theory [90], micropolar theory [85], coupled
stress theory [91], Cosserat theory [92], etc. It has been found [93] that the newly
devised quantitative ultrasonic image correlation (QUIC) is best compatible with
the microcontinuum “top-down” approaches.

In QUIC, it is proposed to use high-frequency (≥10 MHz) ultrasonic NDE
method for this union. To quantify damages in a structure, conventionally, the
signal decay, signal delay, amplitude changes, phase shifts, etc. are the predominant
features that are extracted from the signals from low-frequency (≤5 MHz) ultrasonic
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NDE methods. However, contribution of the precursor damages to these features
might be insignificant or undetectable, whereas these features from high-frequency
(≥25 MHz) ultrasonic NDE could be resonated if judicially transformed into new
features that are entangled with microcontinuum mechanics. Nonlocal mechanics
[89] have been greatly studied for material analysis, but as mentioned before there
has been a persistent disconnect between the sensing and modeling efforts. To devise
QUIC, high-frequency acoustic microscopy [94], which was previously used for
quantifying residual stress [95] and determining the local mechanical properties
[96–98] is used. Wave signals are analyzed in the context of nonlocal mechanics.
QUIC utilizes the ultrasonic data from a bulk experiment in the top-down sense,
and thus reduces the uncertainty in the prediction, unlike top-down models.

15.2 Theoretical Development for Quantitative Ultrasonic
Image Correlation: High-Frequency Method

Quantifying the embryonic precursor damages in composite, by employing nonlocal
continuum approach, was earlier proposed by Banerjee et al. [99]. In precursor dam-
age state of materials, it is assumed that there exists a unique state where long-range
forces influence the high-frequency wave propagation. At that state, the standard
constitutive laws break down and the nonlocal process takes over. A suitable kernel
function can be used to modify the constitutive law. Christofell’s equation is then
modified using the nonlocal constitutive law and the Eigenvalue problem is solved
to obtain the dispersion curves for different wave modes (quasi-longitudinal, quasi-
shear) and nonlocal parameters. Nonlocal parameters are calculated to quantify
the microscale damaged from the macroscale signals. Experimentally measured
wave velocity can be used to calculate the nonlocal parameters from the dispersion
curves. Parametric variation of the nonlocal parameters can be used for damage
quantification process. A detail discussion on this technique for damage state
quantification can be found in the references [100–102]. In the following sections,
the fundamental equations required for the QUIC method are discussed in detail.

15.2.1 Nonlocal Approach and Micromorphic Kernel Function

According to continuum mechanic, the fundamental balance laws are valid at a
discrete point in the body, independently, without considering the influence of
neighboring points. However, in micromorphic theory [84–89], this concept is
argued, and says that the balance laws will be applicable for the entire body but
locally invalid. This is expected if the long-range forces are effective. This means
that a material point in a body is affected by the neighboring points mutually.
These effects can be restricted within a certain zone around the material point or
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can be spanned over the entire body. Diameters of such influence zone around
a particle are conceptually similar to the concept of “horizon” in peridynamic
theory [103–107]. This particular assumption is the basis for multiscale precursor
damage quantification process using high-frequency ultrasonic. In case of high-
frequency wave propagation, it is assumed that the deformable material particles
cannot respond independently, but have to respond as a union. The response of a
material point under external loading is a function of mutual interactions between
neighboring material points with decaying effect at larger distance.

Experimental characterization of materials helped understanding the material
responses obtained at variable length scales. Such responses could provide guide-
lines for the assumption of suitable material-dependent micromorphic (nonlocal)
kernel function. Like the influence zone around a material particle, the material
particle must have an influence function centered at that material point. Besides
material characterization processes, ab initio dynamics studies [57] could also
computationally calculate such influence functions or the kernel functions. After
finding an influence function, a mathematical expression for that function can
be devised and a unique operator can be found for the nonlocal kernel function.
The kernel functions can be assumed as a Green’s function in L2 space [108].
Micromorphic approach includes the effect of long-range interatomic forces and
can be used as a continuum model of the atomic lattice dynamics. Lattices are
the periodic structure. Periodicity exists both in direct lattice and reciprocal lattice
systems. In composites, we consider that at least the periodicity exists at the
fiber dimension and periodicity exists between the layers. Thus, high-frequency
ultrasonic waves are affected by the periodicity. Wave vectors in reciprocal lattice
are the wave propagation vectors in direct lattice of the fiber dimension. Therefore,
the wave frequency is a periodic function of the wave vectors in reciprocal lattice of
wave number. According to the micromorphic description of material, materials are
a cluster of deformable particles [6]. Here, it is assumed that a layer of composite is
cluster of fibers in one direction. The deformable fibers have 9 degrees of freedom.
Their external motion can create acoustic phonons but the internal deformation
creates the optical phonons. With QUIC or any other ultrasonic method, it is not
possible to gauge the optical phonons and hence, ultrasonic method is restricted
to first acoustic branch. So, within the first Brillouin zone [109], our interest is
restricted to the acoustic branch of the dispersion curves in the periodic material
that consists of fibers, locally. Let us assume a position vector of a point in the
fiber lattice R = a1ê1 + a2ê2 + a3ê3 where, ê1, ê2, and ê3 are the basis vectors
for the lattice. The wave potential can be written as φ = A exp {i(k. a − ωt)}.
The function φ is periodic in

−→
k = k1b̂1 + k2b̂2 + k3b̂3, where

−→
k is the wave

vector.
−→
k wave vector is the reciprocal lattice of the special lattice. b̂1, b̂2, b̂3 are the

eigenvectors of the reciprocal system. There is an explicit relation between lattice
vectors in reciprocal and direct lattices

(
êi · b̂k

) = δik , the Kronecker δ. Similar

potential can be written for a wave vector
−→
k

′ = −→
k +−→

g , where −→
g is the translation

vector
(−→
g = ξ1b̂1 + ξ2b̂2 + ξ3b̂3

)
. The frequency (ω) and wave vector k follow a

periodic lattice scale relationship [109]. At the boundaries of the Brillouin zones
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and specifically at the boundaries of the first Brillouin zone, the relation between
the frequency (ω) and wave vector k must be satisfied. A functional relationship
[108, 110, 111] presented by Born–Von Kármán is approximated at fiber scale and
can be viz.

ωi (k)
ci |k| = 1

{
1 + ε2 |k| + λ4|k|2} (15.1)

where the problem of satisfying the boundary conditions at the Brillouin zones is
avoided. Let ε = τ 0% and λ = ν0% be the intrinsic length scale factors, and % be the
length scale, e.g., lattice dimension, the periodicity of fibers in composite. τ 0 and ν0
are nonlocal parameters assumed to take values between 0 and 1. Lazar et al. [108],
proposed a bi-Helmholtz-type operator L and can be viz.

L =
(

1 + τ02%2∇2 + ν0
4%4∇4

)
(15.2)

where ∇2 is a Laplace operator. Using the above operator, the suitable kernel
function κ (which is a Green’s function) can be written as

Lκ = δ (x) (15.3)

A specific length scale that is most influential was not identified. It has been
foreseen that the governing length scale parameter is problem dependent. In this
chapter, the influential length scale is identified for composite as fiber periodicity.
The similar process can be used for identifying the governing intrinsic length scale
for other similar problems.

15.2.2 Fundamental Equation of Motion with Nonlocal
Parameters

As discussed in Chap. 1, let us consider a body � in a three-dimensional Cartesian
coordinate system with boundary �. At any point p(x1, x2, x3) ≡ p(xn) in �, where
n = 1, 2, 3, the stress–strain relation can be written as

σij (p (xn)) = Cijkl (p (xn)) εkl (p (xn)) (15.4)

where Cijkl(p(xn)) is the constitutive matrix that consists of material properties at the
material point p(xn). According to the nonlocal elasticity, the stress at another point
q(xn) of interest can be written as

tij (q (xn)) =
∫

�

Cijkl (p (xn)) κ (|q − p|) εkl (p (xn)) d� (x) (15.5)

http://dx.doi.org/10.1007/978-3-319-94476-0_1
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Further, the integrodifferential equation of motion at the material point q(xn) can
be written as

∫

�

∂

∂xj

(
Cijkl (p (xn)) κ (|q − p|) εkl (p (xn))

)
d� (x)+ Fi (q (xn))

= δikρ (q (xn)) ∂
2

∂t2
uk (15.6)

where κ(|q − p|) is an influence function or a micromorphic kernel function. A
functional form of the kernel was developed from a molecular dynamic study and
was presented by Picu [111]. As appropriate, it is also conceptualized that the kernel
function can be considered as a probability density function in a stochastic media
with random material properties if the kernels satisfy few specific properties [88,
89]. A suitable Gaussian kernel function can be viz. [108]

κ (|q−p|)= 1

4π

1

c2
p−c2

s

1

|(q−p)|
{
exp

(− |(q−p)| /cp
)− exp (− |(q−p)| /cs)

}

(15.7)

where c2
p,s = (τ0%)

2

2

(
1 ±

√
1 − 4 (ν0%)

4

(τ0%)
4

)
.

Eq. (15.6) can be further modified using the operator L written in Eq. (15.2) and
the identity in Eq. (15.3)

Cijkl (p (xn)) εkl (p (xn))− L
(
ρ
(

p (xn)
∂2

∂t2
uk

)
δik = −LFi (p (xn)) (15.8)

where the material points p and q are reciprocal or synonymous in the above
equations.

Homogeneous solution of Eq. (15.8) can be viz.

[
Cijkl (p (xn))

∂2uk (p, t)
∂xj ∂xl

− ρ
(

p (xn) L
(
∂2

∂t2
uk

)
δik

]
= 0 (15.9)

15.2.3 The Eigenvalue Problem

Assuming monochromatic harmonic wave potential for outgoing wave, the displace-
ment potential can be written as uk = Ak exp (ik. x − iωt). Hence, after substituting
this expression in Eq. (15.9), we get

[[
Cijklkj klAke

(ik.x−iωt)−ρ (p)
(

1+ε2∇2
(
Ake

(ik.x−iωt))+λ4∇4
(
Ake

(ik.x−iωt)))

(
−ω2

)
δik

]]
= 0 (15.10)
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Simplifying the above equation, we can write

[[
Cijklkj kl + ρ (p) ω2

(
1 − ε2|k|2 + λ4|k|4

)
δik

]] (
Ake

(ik.x−iωt)) = 0 (15.11)

Nontrivial solution of Eq. (15.11) must satisfy

[[
|k|2 Kik

ρ (x) ω2 +
(

1 − ε2|k|2 + λ4|k|4
)
δik

]]
= 0 (15.12)

where Kik = Cijklnjnl; defining Kik
ρω2 = �ik and |k|2 = (

k2
1 + k2

2 + k2
3

)
, Eq. (15.12)

can be written in the matrix form:
⎡

⎢⎢⎢
⎣

�11−ε2−
(
λ4|k|2− 1

|k|2
)

�12 �13

�21 �22−ε2−
(
λ4|k|2− 1

|k|2
)

�23

�31 �32 �33−ε2−
(
λ4|k|2− 1

|k|2
)

⎤

⎥⎥⎥
⎦

= 0 (15.13)

Therefore, the eigenvalue analysis is performed on the following nonlocal bi-
Helmholtz-type Christoffel equation:

[(
�ij − ε2δij

)
−
(
λ4|k|2 − 1

|k|2
)
δij

]
= 0 (15.14)

To solve for the eigenvalues, the first part of Eq. (15.14) was solved, where no
fourth-order nonlocal parameter is coupled.

[(
�ij −

(
ε2 + |k|2

)
δij

)
−
((
λ4 − 1

)
|k|2 − 1

|k|2
)
δij

]
= 0 (15.15)

After few steps of mathematical simplifications, Eq. (15.15) is obtained from
Eq. (15.13). After the eigenvalues are obtained from (�ij − (ε2 + |k|2)δij) = 0,
it is obvious that the homogeneity of the second part should automatically satisfy.
The second part of Eq. (15.15) contains only the diagonal terms. Hence, λ is an
eigen velocity-dependent parameter but satisfies the first eigen equation. It can be
found that there are few unique value of λ for which all the eigen velocities are
automatically satisfied.

With a different view point, it can be said that Eq. (15.15) has four roots. Only
positive roots are considered. The parameter λ was selected such a way that λ < τ 2.5

{Lazar, 2006 #27}. The iteration of λ is performed for the solution of nonlinear
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equation. In this chapter, however, we assumed three different values of λ for three
nonlocal eigen velocities (quasi longitudinal, quasi shear 1, and quasi shear 2) at
a desired central frequency discussed later. Values of λ = ν0 % may contribute to
the picosecond fluctuation of time of flight (TOF) of wave packets. However, it is
extremely hard to detect using current hardware. The experimental determination
of wave velocities and dispersion relations are discussed in the next section. It
was found that the dispersion relation at macroscale has no influence from the
perturbation parameter λ. It was found that λ is least sensitive and is assumed
constant. The estimated value of ν0 is calculated (using the material properties listed
in the later sections) close to ∼0.0012 for the τ 0 = 0. If the picosecond measurement
technique is evolved in the future and the fluctuation of TOF can be measured
accurately, the λ and the other nonlocal parameters can be measured. It can then
be inferred that these parameters actually play critical roles.

15.3 Damage State Quantification Process

A brief discussion of the mathematical derivation in Sect. 15.2 leads us to realize
that the newly formulated QUIC method requires a suitable nonlocal kernel function
as written in Eq. (15.7), satisfying Eq. (15.3) with a known nonlocal operator
L in Eq. (15.2) or vice versa. If the kernel function is calculated from an ab
initio dynamics study, the function would not be the same as written in Eq.
(15.7). Then, it is required to find a suitable operator L with respective nonlocal
parameters. For most materials, it is too time consuming to calculate a suitable
kernel function or a suitable operator for each study. Hence, using the QUIC process,
the following arguments are presented to take an alternative approach for the
multiscale quantification of precursor damage. The proposed approach may not be
suitable for multiscale material modeling but will certainly be suitable for material
state assessment or precursor damage quantification. Precursor damage quantifi-
cation is essentially the quantification of the incremental change in the material
state.

15.3.1 Incremental Damage State and Its Relation
with Nonlocal Parameters

Please note that it is not easy to calculate the exact nonlocal kernel function which
may manifest an anisotropic nonlocal behavior. As the absolute material state is
unknown and precursor damage state is an incremental measure of differences in
different states, we are only interested in incremental change in nonlocal parameters.
Hence, hypothetically there is no restriction in assuming different sets of isotropic
nonlocal kernel functions by changing its nonlocal parameters τ and ν being their
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shape parameters. The unknown kernel function can be presented as a superposition
of multiple isotropic kernel function with their respective contribution factors. It is
hypothesized that when a material is approaching towards the damage, the precursor
damage prevails and the long-range nonlocal effect must be modified. The modified
nonlocal effect can be simulated by changing the shape parameters of the kernel
functions and their contribution factors. If there is any possibility to obtain the shape
parameters correlated with any other observable physical parameter (e.g., slowness
of the ultrasonic wave velocities at high frequencies), it is possible to quantify the
incremental change in the material state. Thus, it is not necessary to know any
exact expression of a nonlocal kernel function. Hence, we need two approaches,
a theoretical approach discussed in Sect. 15.2, where eigen wave velocities can
be parameterized using nonlocal kernels and an experimental approach, where
slowness of wave velocities can be determined experimentally at multiple high
frequencies (≥25 MHz).

First, it is recognized that there are some difficulties in obtaining the right
dispersion curves for a specific composite material. Primary reason is that the
solution of dispersion curve requires physical values of the material properties
which are sometime wrong or not explicitly known. Say, the given material
properties by the vendor are not accurate or incorrect. Then, the dispersion curves
using the given material properties may not be accurate. Now from experiments,
it is possible to find the pristine state wave velocity which may not match with
the velocities obtained from theoretically calculated dispersion curves. Hence, it
is proposed to account for the discrepancy and compensate the effect through a
separate nonlocal parameter. The proposed process will depend on the ultrasonic
NDE testing methods (e.g., scanning acoustic microscope (SAM)) or the NDE
technique using embedded sensors discussed in Sect. 15.5.4. In the following Sect.
15.3.2, the off-line NDE using SAM is described.

15.3.2 Understanding Material Signature Using Scanning
Acoustic Microscope

A schematic of SAM is shown in Fig. 15.4. A piezoelectric element is activated
with a pulser using a controller which generated ultrasonic stress waves in the lens
rod. The plane waves propagate through the lens rod to the concave lens surface.
Then, the waves are refracted by the concave spherical lens and form a spherical
wave front that focuses the wave at the focal point of the lens. In pulse-echo mode
after pulsing or actuating the piezoelectric element, the circuit switches to the signal
receiver mode. The wave propagating in the forward direction interacts with the
specimen and reflected ultrasonic wave comes back to the lens and are then sensed
by the same piezoelectric element. The ultrasonic signature (US) was then obtained
as A-scan by plotting the voltage fluctuation at the sensing terminal over time. This
A-scan signature is the response from a specific location on the material, we call
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Fig. 15.4 Schematics of scanning acoustic microscopy (SAM) and respective C-scans from a
woven composite specimen with different transducers with different central frequencies

a pixel point, where the lens in focused. The total energy of the reflected transient
signal can be plotted over an entire scanning area as C-scan. Figure 15.4 shows
the C-scan images of a woven composite specimen using ∼25, ∼50, ∼100, and
∼400 MHz transducers with increasing level of details across scales. Similar scans
can be obtained at different depths when the transducer is defocused at each step of
the defocusing distance across the depth along z axis (Fig. 15.4).

An A-scan signal obtained from a SAM experiment is shown for an example (Fig.
15.5a). Similar A-scan signals can be obtained at every incremental depth when the
transducer is moved towards the specimen, which is called defocus distance. At
every �z distance, the fluctuation of voltage in the A-scan signal is summed over
time to calculate the total signal energy. The plot of this total signal energy or the
signal voltage across the depth is called V(z) curve [94, 98] (Fig. 15.5b). As shown
in Fig. 15.5a, a typical A-scan signal can be found with a strong first arrival of the
wave packet from the surface of the specimen and a weak reflected signal from
the back of the specimen. The time difference between these two arrivals of the
wave packets can be marked as TOF. If the thickness of the specimen (Fig. 15.5c) is
known, dividing the thickness of the specimen by the TOF, one could calculate the
wave velocity along the z direction in the specimen. Figure 15.5d shows a typical
quasi-longitudinal wave velocity profile over a sample scanned area.

The ultrasonic signals were summed over time and the values obtained across the
depth z were named V (z). The mathematical expression of V(z) for a point-focused
acoustic beam interacting with composite material is given by [94, 97, 98, 112]:
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Fig. 15.5 (a) A typical A-scan signal from SAM at a pixel point on the material, (b) a computed
typical V(z) curve at a pixel point when the A-scan signals are taken at different depths along
z (Fig. 15.4) by defocusing or moving the transducer towards the specimen, (c) a typical scan
area where SAM was performed on a composite specimen, (d) a typical quasi-longitudinal wave
velocity profile calculated using the TOF assuming constant thickness of the specimen, and (e)
a typical SAW wave velocity profile of a unidirectional composite specimen obtained from V(z)
curves

V (z) =
θm∫

0

P (θ)R (θ) exp (−2ik cos θ) dθ (15.16)

where P(θ ) is the pupil function. For a point-focused transducer, the reflection
coefficient, R(θ , ϕ), depends on the polar angle θ and the sagittal plane of orientation
averaged over azimuth angle ϕ,

R (θ) = 1

2π

2π∫

0

R (θ, ϕ) dϕ (15.17)

k = 2πf
Cf

is wave number, Cf the wave velocity in the coupling medium; excitation
frequency is f and fz is the distance between the lens and sample surface.

Constructive and destructive interference of reflected ultrasonic wave and the
surface acoustic waves creates peaks and dips in the V(z) signal as shown in
a Typical V(z) curve (Fig. 15.5b). Surface acoustic wave velocity is calculated
by using the difference between two consecutive peaks in the V(z) curve. The
mathematical expression for the surface wave velocity is written as [113].
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CSAW = Cf√
Cf

2�zSAWf
−
(

Cf
4�zSAWf

)2
(15.18)

Upon rearrangement of Eq. (15.18), distance between two successive peaks
corresponding to SAW can be obtained by

�zSAW = 1

2f

[
1
Cf

−
(

1
C2
f

− 1
C2
SAW

)1/2
] (15.19)

As this chapter is not dedicated to SAM, detailed discussion on acoustic
microscopy and its application for wave velocity measurement can be found in
reference [113].

15.3.3 Identification of Nonlocal Parameter from Scanning
Acoustic Microscope Data

A typical nonlocal dispersion curve is shown in Fig. 15.6. When the nonlocal
parameter τ = 0, the nonlocal Christoffel solution returns the nondispersive (i.e.,
independent of frequency) bulk wave velocities in the composite material if the
respective material properties are provided in Eq. (15.15). However, for all possible
nonzero values of nonlocal parameter τ , the nonlocal Christoffel solution returns
three dispersive wave velocities, when the actuation frequencies are provided.
Figure 15.6 shows the dispersive quasi-longitudinal wave velocity in a carbon fiber
composite material with material properties (obtained from vendor) written in Table
15.1.
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Table 15.1 Material properties [114]

E11 E22 E33 G12 G13 G23 ν12 ν13 ν23 Density

65 GPa 67 GPa 8.6 GPa 5 GPa 5 GPa 5 GPa 0.09 0.09 0.3 1605 kg/mm3

Fig. 15.7 Nonlinear
variation of the nonlocal
parameter with dispersive
quasi-longitudinal wave
velocity at ∼25 MHz
frequency

The dispersion of wave velocities obtained from the nonlocal Christoffel equation
is the function of frequency and the nonlocal parameter. Now say, for example,
a ∼25-MHz SAM lens was chosen for the precursor damage investigation. The
red line in Fig. 15.6a, b indicates the ∼25-MHz frequency and the curves that are
relevant at that frequency of interest. Figure 15.6b shows a zoomed in version of
the same curve with selected number of dispersion curves from Fig. 15.6a. Next
one would need the nonlocal dispersion curve at a fixed frequency, a curve that
demonstrates the relation between the change in wave velocities with respect to the
nonlocal parameter at a fixed frequency (here, ∼25 MHz). A typical nonlocal wave
velocity plot is presented in Fig. 15.7. Through linear regression, one could obtain
a mathematical equation for the relation between the nonlocal parameter and the
quasi-longitudinal wave velocity in the composite material. Further to calculate the
nonlocal parameter from the equation, it is necessary to experimentally measure
the wave velocities (please refer Fig. 15.5) from the SAM data. As described in
Sect. 15.3.2, the wave velocity can be obtained from TOF calculation and using
the library function suitable nonlocal parameter can be obtained. Further, how this
nonlocal parameter will result the nonlocal damage entropy (NLDE) is discussed in
the following section.
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15.3.4 Nonlocal Damage Entropy: Precursor Quantification
Process Using Scanning Acoustic Microscope
and Quantitative Ultrasonic Image Correlation

Precursor damage is a slow growing process in a distributed fashion. No static test
on composite materials can manifest the slow growth of the distributed damages.
Hence, it is mandatory to perform a detailed fatigue test on the composite specimens
to understand the process and quantify the damage state sequentially over time
represented by the fatigue cycles. A step-by-step damage quantification process
using QUIC is described below. Figure 15.8 shows the quantification process using
a flowchart.

Step 1: A composite material in hand with unknown material properties will
first need an intelligent guess of the material properties or material properties to be
obtained from the vendor. The material properties can be experimentally derived
using ultrasonic immersion testing followed by optimization [115]. In the very
heart of QUIC method, it is assumed that the material properties provided by the
vendor to compute dispersion curve were incorrect, which is not considered in any
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Fig. 15.8 (a) A flow chart showing the process to quantify the Precursor Damage in composites
using nonlocal damage entropy (NLDE), (b) A typical DE curve obtained from an ASTM standard
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other methods. Hence, it is proposed that the estimated nonlocal parameters should
be corrected that will compute the damage entropy. It is obvious that the error
in approximated material properties will affect the interpretation of the precursor
damage state and has been proposed to alleviate the shortcoming by introducing the
nonlocal parameter called material property adjuster.

It is assumed that the wave signals are the true response of the material state.
Step 2: Using the material properties, a library of nonlocal wave velocity curves

is constructed by solving the eigenvalue problem in Eq. (15.15). A library function
is created which takes two inputs (the experimental wave velocity and the center
frequency of scanning using SAM) and returns an output (the nonlocal parameter
τ ).

Step 3: Next, the composite specimen is scanned using broadband ∼25, or ∼50,
or ∼100 MHz transducers based on required influential scale. The transducers
are broad band, for example, a 50-MHz transducer actuates frequencies from ∼5
to ∼75 MHz with maximum amplitude close to ∼50 MHz. Hence, for analysis,
multiple frequencies could be used in the library function at the same time to
retrieve the frequency-dependent nonlocal parameters. The pulse-echo signal from
each pixel point (as discussed in Sect. 15.3.2) on the specimen was recorded for
further analysis.

Step 4: At each pixel point, an A-scan signal is generated and C-scan data is
generated. By moving the transducer towards the material at different depths, Z-
scan data were generated with different defocus distance across the material depth.

Step 5: TOF was measured at every pixel points. Reason for using backside
reflection is that the wave traveled twice through the thickness and is more affected
by the material degradation. Please refer to Figs. 15.4 and 15.5.

Step 6: In this step, the thickness of the specimen was assumed constant during
the QUIC experiments. Next at each pixel, the TOF measured was used to calculate
quasi-longitudinal wave velocity in the composite specimen. This step provides a
matrix composed of wave velocities on a material grid.

Step 7: Next, the nonlocal parameter at each pixel was obtained. The value of
the nonlocal parameter τ was using the library function obtained and discussed
in Sects.15.3.1 and 15.3.2. The wave velocity at each pixel point and the central
frequency of the transducer are the inputs to the function. If one needs to analyze
the data using broadband transducer, multiple frequency could be used as input.
This function constructs multiple two-dimensional (2D) frequency-dependent map
of τ on the specimen or only one 2D map, if only the central frequency is used.
Very unlikely, this map will have all zero values. Some pixel point may not have
any contributions. A surface plot of τ with nonzero values can be achieved and the
mean and standard deviation values of τ can be returned at the pristine state.

Step 8: In the beginning, the specimen is at the pristine state and assumed to
be undamaged and thus it can be assumed that the mean τ is emerging due to
approximated or incorrect material properties. The nonlocal parameter associated
with this error is essential for precursor damage quantification and hence, the
material property adjuster was not ignored.
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Step 9: This is named as “intrinsic material property adjuster” or τ a.
Step 10: Then, the specimens are subjected to the fatigue loading and the process

is repeated. At every interval when the experiments are stopped, SAM scans are
performed and τ are calculated. The parameter is defined as “intrinsic damage state
quantifier” or τ s.

Step 11: Next at the end of every fatigue interval, the “nonlocal damage entropy
(NLDE)” is calculated. Mathematical expression for the “nonlocal damage entropy”
(NLDE) can be written as

NLDE = τa
2 + τs2

2
(
τa2
) (15.20)

Please note that the mean values of the “intrinsic material property adjuster” and
the “intrinsic damage state quantifier” are used to calculate the NLDE.

Step 12: Plot the NLDE over the number of fatigue cycles and analyze the trend.
A typical wave velocity reduction and NLDE curves are presented in Fig. 15.8b.

Please note that the abovementioned process is described for NLDE calculation
using quasi-longitudinal wave velocities. Similar NLDE could be also calculated
using the SAW wave velocity using Eq. (15.18). Here, in this chapter, we will keep
our discussion restricted to the quasi-longitudinal wave velocity only.

15.3.5 Damage State Quantification from Evaluation
of Stiffness Degradation

Another alternative derivative approach from the above data is to calculate material
stiffness along the thickness direction (along direction-3) at every pixel, distributed
over the scanning areas. The stiffness can be obtained at the regular fatigue interval
from the measured quasi-longitudinal wave velocity profile discussed above in
Sect. 15.3.4. Damage tenor can be calculated using stiffness-degradation method
described below [116]:

Dii = 1 − Cii
C0
ii

i = 1, 2, . . . . , 6
(15.21)

Dij = C0
ii−Cij

C0
ij+sign

(
C0
ii−Cij

)
.
√
CiiCij

i �= j
i = 1, 2, . . . . , 6
j = 1, 2, . . . . , 6

(15.22)

where Cij is the stiffness tensor. To calculate damage across the thickness of the
specimen, stiffness component (C33) in Eq. (15.22) can be replaced by the quasi-
longitudinal velocity as follows:
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DN33 = 1 − qL
N
33

qL0
33

(15.23)

where qL0
33 is the quasi-longitudinal wave velocity at the pristine state of the

composite specimen along the direction 3, and qLN
33 is the wave velocity after N-

th fatigue cycle in the same specimen. Then, the cumulative damage growth can be
calculated as:

CDI =
N∑

k=1

Dk33 (15.24)

15.4 Coda Wave Interferometry: Low-Frequency Method

It is our objective to quantify the precursor damage using multiscale approach for
both online and off-line applications. To extract the information from microscale,
we adopted the off-line SAM-based high-frequency QUIC approach to quantify
the damage state in composite materials. On the other hand, we also intent to
implement an online NDE process at lower frequencies (≤500 KHz) using Guided
wave approach that can detect, quantify, and monitor the precursor damage state
in composites in real time, without altering the component materials that constitute
the composites. It was found that the “Coda wave” in the Guided wave signals,
that comes later followed by the symmetric and antisymmetric wave modes,
often ignored in damage detection, carries significant information on the damage
precursor state. The later part of the signal which is called “‘Coda wave” are highly
sensitive to weak changes in the material due to multiple scattering and long travel
path [117–122].

15.4.1 Background

Coda wave interferometry (CWI) technique is a promising nondestructive technique
which was first used by the seismologist to detect slight changes in coda wave
velocity in the earth crust due to earthquakes [117, 122–128]. Later, this technique
was successfully extended to measure relative velocity change in concrete due
to the development of the small-scale (∼mm) damages [119, 121, 129, 130]. To
understand the correlations between ultrasonic amplitude decay and the frequency-
dependent shift in the coda wave velocity, ultrasonic measurements were carried
out between the range ∼150 kHz to ∼1 MHz [121]. Wave velocity change due
to thermal effect was also estimated in Ref. [131]. Larose et al. [119] estimated
relative change in coda wave velocity in concrete in the order of ∇V

V
= 10−4.

With precise measurement of wave velocities, it was found that the CWI was



604 S. Banerjee and S. Patra

always more accurate compared to the conventional TOF measurement from direct
wave at lower frequencies. Commonly, the CWI analysis was performed using two
techniques: (a) doublet [118, 132, 133], and (b) stretching [119, 120, 129, 131,
134]. In the doublet method, several time windows in the coda parts of the signal
were selected and time shift in each window were calculated by cross-correlation
technique. By averaging the time shifts obtained from different time windows, time
shift of the coda wave is obtained and correlated with the relative wave velocity
change. Stretching technique is commonly used in nondestructive testing, time axis
of the perturbed signal is either compressed or stretched, and then cross-correlation
is performed. Stretch parameter that maximizes the cross-correlation is reported
to correlate the relative wave velocity change in the material. Shukui Liu et al.
[135] recently proposed Taylor series expansion technique to calculate the stretch
parameters because the cross-correlation technique is computationally expensive
and power consuming. Although CWI is very promising to detect damages at the
small scales, no attempt has been made so far to extend the technique to detect
micro-cracks in the carbon-fiber composite materials. Composite is a heterogeneous
medium designed to develop damage precursors in a distributed form, which interact
with one another and form a fracture path to fail if further load is applied. Coda wave
is sensitive to these weak changes when interacts with the distributed damages many
times while traveling through the composite specimen. Hence, we identified that the
coda wave has the potential to be a promising online tool for precursor damage
detection if conventional CWI is redefined for composites.

15.4.2 Mathematical Treatment of Coda Wave for Damage
Quantification

Due to heterogeneity in the composite material, coda wave scattered multiple times
in the material medium and made it extremely sensitive to small-scale changes in
the medium. A typical Guided wave signal with its respective coda part is shown in
Fig. 15.9.

15.4.2.1 Stretching Technique with Cross-Correlation

Say, for example, sensor signals are recorded at two different states of material
and two such sample signals are presented in Fig. 15.9. Pristine state and damaged
state signals are designated as h1(t) and hk (t), respectively. Sometimes, the phase
shifts in the Guided wave signals due to the precursor damages are insignificant or
undetectable. However, the phase shifts in the coda wave signals are not ignorable
in composites. Although not ignorable, the phase shifts are not divergent. Hence,
the damage state signal can be equivalent to the time stretch version of the pristine
state signal plus distortion [135].
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Fig. 15.9 Guided wave sensor signals at two consecutive states of material between which a
perturbation of signal stretch is evident in the coda part [136, 137]

hk(t) = h1 (t (1 + α))+ n(t) (15.25)

where α is relative stretch parameter and n(t) is the distortion. Distortion can
be neglected if α is very small. In the stretching method, the time scale of
the perturbed state signal was stretched (+ sign) or compressed (− sign) by a
suitable stretch parameter value, α as tk = t(1-α). A range of α can be selected
[−value ≤ α ≤ value] and cross-correlation can be performed between hk[t(1-α]
and h1(t). α that maximizes the normalized cross-correlation should be considered
the critical stretch parameter (αk) and should be used to measure the relative average
velocity change in the medium [121].

CrCrk (α) =
∫ t+T/2
t−T/2 hk [t (1 − α)]h1(t)dt

∫ t+T/2
t−T/2 h

2
k [t (1 − α)] dt∫ t+T/2t−T/2h

2
1(t)dt

(15.26)

αk = max
α∈� (CrCrk (α)) (15.27)

αk = (Vk − V1) /V1 (15.28)

where T is the time window selected for computation. V1 is velocity at pristine state,
while Vk is the velocity at the perturbed state.



606 S. Banerjee and S. Patra

15.4.2.2 Taylor Series Expansion Theory

By implementing the Taylor series expansion technique, the stretch parameters
can be calculated using Eq. (15.29) [42]. This technique is computationally less
expensive than the cross-correlation technique and useful to calculate the stretch
parameter for long-range signals [135].

αk ≈ 1

n

∑n+1

i=2

2 [hk (ti)− h1 (ti)]

fsti [h1 (ti+1)− h1 (ti−1)]
(15.29)

where n is the total number of data points used in the calculation, ti is the timestamp,
and fs is the sampling frequency.

15.4.2.3 Application of Coda Wave Interferometry for Precursor
Quantification in Composites

It was found that for composites, due to unique oscillating pattern of coda wave
velocities, the stretch parameter is incremental in both positive and negative direc-
tion in time, which particularly holds the key for precursor damage identification in
composite using coda waves. Hence, instead of calculating the stretch parameter
by comparing pristine and damaged state signal for total length of the signal,
an incremental stretch parameter between two consecutive recorded signals is
considered and can be written as follows:

CrCrk (αk) =
∫ t+T/2
t−T/2 hk [t (1 − α)]hk−1(t)dt

∫ t+T/2
t−T/2 h

2
k [t (1 − α)] dt∫ t+T/2t−T/2h

2
k−1(t)dt

(15.30)

αk ≈ 1

n

∑n+1

i=2

2 [hk (ti)− hk−1 (ti)]

fsti [hk−1 (ti+1)− hk−1 (ti−1)]
(15.31)

Overall, the damage growth can be visualized and quantified by presenting the
cumulative sum of the stretch parameter over the fatigue life of the specimen as
follows [136, 137]:

DGN =
∑N

k=1
αk (15.32)

Further, the normalized precursor damage growth can be calculated as:

DGNormN =
∑N
k=1 αk

max
k∈N (DGk)

(15.33)

where N is the number of fatigue loading cycle.
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15.5 Experimental Design

To demonstrate the multiscale precursor damage quantification process using a
practical example, a detailed experimental design is presented in this section.

15.5.1 Materials and Specimen Preparation [136, 137]

In this study, woven carbon-fiber composite material was used with four layers.
Thickness of each lamina was 280 μm. Figure 15.10 shows the schematic of the
specimen, optical image, and a SAM B-scan. Dimensions of the specimen were
according to American Standard for Testing and Material standard, ASTM D 3039
[138]. For manufacturing the tabs, glass-fiber composite was used. Length and
width of the tabs were selected properly based on the experimental requirements.
Chamfer angle at the end of the tab was provided to avoid stress concentration at
the grip. Once the specimens were prepared, next piezoelectric wafer active sensors
(PWAS) from Steminc Steiner & Martins, Inc. were mounted on the specimen using
Hysol 9394. Totally, eleven (11) specimens were prepared. Three (3) specimens (T1-
T3) were tested under pure tensile load to estimate the maximum tensile strength
of the composite, and one (1) specimen (F-L) was tested under fatigue loading

Fig. 15.10 Schematic of specimen geometry and material used for precursor damage experiments
[136, 137]
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with maximum load being the ∼50% of the ultimate strength of the specimen to
estimate the maximum fatigue life. In this precursor study, the fatigue life was
intentionally marked when the first delamination in the specimen was detected and
which was approximately ∼one million cycles. However, the fatigue test on F-L
was continued till the end of two million cycles. The specimen F-L did not fracture
at the end of the test but was significantly damaged as discussed in the following
section. From the remaining seven (7) specimens, each was tested under tensile–
tensile fatigue up to ∼30% of the fatigue life, i.e., up to ∼300,000 cycles. The
avg. length, width, and thickness of the specimens were ∼249.733, ∼24.72, and
∼1.5023 mm. The nomenclature of the specimens are SA, S-B, S-C, S-D, S-E, S-F,
and S-G which were tested under fatigue loading. Please note that S-A, S-B, S-C,
and S-D were used for CWI-based precursor damage quantification but S-E, S-F,
and S-G were used for QUIC-based precursor damage quantification, of which S-A
was decommissioned to perform SEM after 300,000 cycles to prove the existence
of precursor damage in the specimen. Specimen S-E was used for both CWI and
QUIC precursor damage quantification for comparison.

15.5.2 Tensile Test

On two specimens T1 and T3, the tensile tests were performed in order to obtain the
ultimate tensile strength of the composite. For the tensile test, a 5-mm Wire Lead
Strain Gauge with size 9.5 × 3.5 mm was mounted on each tensile specimen Tensile
loading was applied under displacement control mode at the rate of 0.03 cm/min
until the total fracture of the specimen. The average strain rate was 3.25 × 10−5 s−1.
Figure 15.11 shows the stress–strain plot from the experiments and optical images
of the fractured specimens.

Fig. 15.11 Stress–strain curve of the material and failure images from T1 and T3 specimens [136,
137]
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15.5.3 Fatigue Testing

In order to develop progressive damage over time in the composite specimens
(Figure 15.12a), fatigue loading was performed under MTS 810 machine (Figure
15.12b). The experimental means for CWI and QUIC are shown in Figure 15.12c–f.
First to estimate the fatigue life of the material, one specimen (F-L) was subjected to
fatigue loading until two million cycles. The F-L specimen was subjected to tensile–
tensile fatigue loading (f = 10 Hz) with load ratio R = 0.01 (R = Fmin/Fmax).
Approximately, 50% of the tensile strength (∼4100 lbf or ∼17.6 KN) was used as
the maximum load in the fatigue loading to study the precursor. Although significant
damages were observed by the Micro-Optical Microcopy and SAM (Fig. 15.13),
the specimen was not failed. Delamination was first observed close to ∼one million
cycles and we marked the fatigue life. Next, the remaining eight (8) specimens (S-
A, S-B, S-C, S-D, S-E, S-F, and S-G) were subjected to the similar fatigue loading
up to ∼30% of the fatigue life to ∼300,000 cycles, except one, which is S-E for
which fatigue was continued till 500,000 cycle to extract additional information.
The tests were stopped every 5000 cycles for precursor damage investigation using

Fig. 15.12 (a) Composite specimens used for fatigue testing, (b) experimental setup for fatigue
testing, (c) pitch-catch experiments setup, (d) SAM for ultrasonic inspection of the specimen, (e)
digital microcopy for damage inspection, and (f) Gaussian wave signal (tone burst) used for pitch-
catch experiments and its frequency transformation [136, 137]



610 S. Banerjee and S. Patra

Fig. 15.13 Damages in woven composite specimen observed after two million cycles, delamina-
tion started after one million cycles [136, 137]

CWI and QUIC. At every 5000-cycle interval, pitch-catch Guided wave experiments
were performed using PWAS mounted on the specimens. To monitor the material
degradation or to investigate the development of the precursor damage inside the
specimen, QUIC using SAM (as discussed in Sect. 15.3.4 and Fig. 15.8) was
performed at every 5000-cycle interval on the S-E, S-F, and S-G specimens.
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15.5.4 Pitch-Catch Ultrasonic Lamb Wave Experiment

Two high-frequency PWAS were attached to each specimen. A five-count tone
burst signal with central frequency, fc = 324 kHz, was used for actuation of
Guided wave (Fig. 15.12f). The central frequency 324 KHz was selected from
wave tuning experiment on the specimen S-A. Tektronix AFG3021C (25 MHz, 1-
Ch Arbitrary Function Generator) was used to generate the tone burst actuation
at the interval of 1 ms. For actuation, peak-to-peak amplitude of the burst signal
was set to 20 V. Lamb wave generated by the actuator propagated through the
specimen and interacted with the damages which were then sensed by the sensors.
Tektronix MDO3024 (200 MHz, 4-Ch Mixed Domain Oscilloscope) was used to
record the sensor signals. Sensor signals were collected at 50.0 MS/s sampling rate
with 10,000 data points. Signals were saved for further CWI analysis after averaging
512 actuations for noise cancellation at both pristine state and at different loading
cycles.

15.6 Results and Discussion

15.6.1 Probability Distribution of Quasi-Longitudinal Wave
Velocity

First to investigate the effect of damage development on the wave velocity distribu-
tion in a probabilistic sense, quasi-longitudinal wave velocity profile was obtained
from the pristine state specimens from three different locations by following the
process described in sections above. Next, at the end of each fatigue interval, a
probability density function that best explains the distribution of the wave velocities
over the areas Area-A, Area-B, and Area-C was calculated. Although quite small,
the degradation of the mean stiffness in three scan areas, between the pristine
state and the state at the end of the 110,000 cycles of fatigue, was evident
(Fig. 15.14). Possibly, this is the cause of the reduction of the quasi-longitudinal
wave velocities due to the precursor damage developed in the specimen in a
distributed sense. This signifies that the material properties started to compromise
at as early as 10% of the fatigue life of the composite specimens where QUIC
and Optical Microscopy indicated early initiation of damage. Surprisingly, low-
frequency CWI-based quantification method also indicated anomalous behavior just
before 100,000 cycles in all the five specimens (S-A, S-B, S-C, S-D, and S-E). It can
be argued that this evidence is not coincidental but indicative of precursor damage
in the specimens.
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Fig. 15.14 Probability density distribution of wave velocities, (a) pristine state, and (b)
110,000 cycles [136, 137]

15.6.2 Precursor Damage Quantification Using Coda Wave
Interferometry

Precursor damage growth in four composite specimens S-A, S-B, S-C, and S-D
were first quantified using the coda wave method at lower frequencies. Using con-
ventional low-frequency SHM method, it is difficult to get indication of precursor
damage. However, CWI method has potential towards identifying and quantifying
precursor damage. The precursor damage index obtained from CWI analysis
was calculated employing both the cross-correlation and Taylor series expansion
technique as shown in Fig. 15.15. Indication of damage growth obtained from both
the techniques was qualitatively in good agreement. Many peaks and dips were
observed in the damage index from both the methods at certain intervals. It is
argued that these fluctuations are not arbitrary but hold the key to understand the
material behavior. Life span of the specimens under operation simulated by the
number of fatigue cycles associated with these fluctuations is consistent between
two methods of CWI (cross-correlation and Taylor series expansion technique).
These fluctuations are even consistent among all the specimens. It is evident that
CWI analysis has indicated a physical phenomenon which is hypothesized to be
the precursor damage in the specimen. Peaks in the PDI are corresponding to the
decrease in the wave velocity in the coda signal, whereas dips are corresponding
to the increase in the wave velocity in the coda signals. This representation of our
findings helps to state further that the decrease in the wave velocity in the coda
corresponds to local microscale damage that leads to material degradation and local
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Fig. 15.15 Damage growth quantified by coda wave interferometry (CWI) for specimens, (a) S-A,
(b) S-B, (c) S-C, and (d) S-D [136, 137]

stress concentration, whereas decrease in PDI immediately followed by the increase
can be explained by the microstructure reorientation and relaxation of local stress
concentration, which are periodically taking place inside the composite specimens
during the fatigue experiment. To investigate this phenomenon in a great detail, the
peaks from Fig. 15.15 S-A were selected at 75000, 140,000, and 185,000 cycles,
respectively, with their neighboring points. Slopes between the points (1, 2, and 3)
at 70,000, 75,000, and 80,000 cycles, respectively, are shown in Fig. 15.16. Based
on representation in Fig. 15.16, it can be said that the slope of the connecting lines
in the precursor damage index curve between two fatigue intervals could decrease
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Fig. 15.16 Phase shift of the coda wave at the peaks (a–c) for specimen S-A [136, 137]

and/or increase with fatigue cycles. While analyzing the precursor damage index
peak designated as (a) in Fig. 15.16a, it can be found that the slope towards the
P1 is negative, P1-P2 is positive, and P2-P3 is negative. Now, to calculate the
stretch parameter at P1, the coda part of the two consecutive signal after 65,000
and 70,000 cycles are compared as shown in Fig. 15.16 left column. It is observed
from the figure that the phase of the coda part of the signal at the end of 65,000
fatigue cycles leads the phase of the signal at the end of 70,000 fatigue cycles.
This is due to the fact that relative wave velocity was increased towards P1. At
P2, stretch parameter is calculated for the signal at 75000. Phase of the coda wave
after 75,000 cycles leads the phase in the signal after 70,000 cycles; that means
that the average relative velocity of the material is decreased due to new precursor
damage initiation. At P3 (80,000 cycles), relative wave velocity again increased,
because the phase shift is positive between the signals after 75,000 cycles and
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Table 15.2 Percent change
in relative coda wave velocity

Location-1 Location-2 Location-3

Fig 15.15a 0.03% −0.42% 0.29%
Fig 15.15b −0.02% −0.15% 0.17%
Fig 15.15c −0.072% −0.217% 0.219%

80,000 cycles. The stretch parameter at locations P1, P2, and P3 are calculated
as 0.00029, −0.0042, and 0.0029, respectively, which corresponds to 0.029%,
−0.42%, and 0.09% change in average wave velocity between two successive
cycles in the medium. It is also interesting to note that phase difference at P2 is
higher compared to P1 and P3, as evident in Fig. 15.16 left column and which
is in agreement with the calculated stretch parameter. Using the similar process,
percent change in relative wave velocity between two successive fatigue cycles was
calculated at locations (a), (b), and (c) and is listed in the Table 15.2.

It is identified that whenever there has been a change in the sign of the stretch
parameters from positive to negative or from negative to positive followed by
immediate positive stretch or negative stretch, respectively, is the indication of the
precursor damage in the specimen. This statement is next validated and proved by
the results obtained from NLDE using the nonlocal method and presented in the fol-
lowing section. This unique and consistent phenomena will help devise new damage
detection algorithm for online precursor damage detection and quantification.

15.6.3 Precursor Damage Quantification Using
Nonlocal-Continuum Physics

As described in Sect. 15.5, damage development stages in three composite spec-
imens S-E, S-F, and S-G were studied using QUIC employing SAM. Damage
growth was quantified using high-frequency nonlocal ultrasonic technique with
∼25 MHz, ∼50 MHz, and ∼100 MHz confocal transducers for increased reso-
lution. Experimentally, it was observed that matrix-microcracking under dynamic
loading developed across the cross-section and may act as energy barriers. Quasi-
longitudinal wave velocities along the thickness directions were calculated at
the scanning areas Area-A, Area-B, and Area-C, respectively, as shown in Fig.
15.5. Each scanning area was discretized into 125 × 125 pixel points and wave
velocities were calculated at each pixel point. At the pristine state, the average
quasi-longitudinal wave velocities obtained from specimens S-E, S-F, and S-G
were 5056.91 m/s, 5171.39 m/s, and 4959.014 m/s, respectively. However, the
quasi-longitudinal wave velocity calculated after 300,000 cycles were 4950.1 m/s,
4754.06 m/s, and 4795.641 m/s in those specimens, respectively. Damage growth
in the specimens was estimated by plotting the cumulative DE described in Sect.
15.3.4 with the fatigue cycles. Figure 15.17 shows the results obtained from QUIC.
The DE is designated as NLDE in Fig. 15.17. Although the increasing trend of the
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Fig. 15.17 NLDE and cumulative damage index (CDI, Eq. (15.24)) quantified by QUIC using
SAM [136, 137]

DE growth pattern is promising, we focus more on the incremental change in the DE
which was observed consistently in all three specimens near similar fatigue interval.
In fact, the sudden jumps in DE were evident from 10,000 to 15,000 earlier than
the sign fluctuation in the stretch parameter observed in precursor damage index
obtained from the CWI analyses. This is because the DE employs high-frequency
QUIC method which should be more sensitive than the pitch-catch online sensor
signals.

15.6.4 Precursor Damage Indication from SAW Velocity
Profiles

S-E was the only specimen that was continued till 500,000 cycles of fatigue.
Figure 15.18a shows the mean and standard deviation of the SAW velocity obtained
from the SAW profile over the gauge area Area-B from the specimen S-E. As
discussed in Sect. 15.3.2, the SAW velocity calculation requires Z-scans across
the depth of a specimen with different defocus distance of the confocal lens and
hence, it is time consuming. Thus, the SAW velocity profiles were calculated
at every 50,000-cycle interval. It can be seen from the curves that due to the
precursor damage initiation, degradation of material properties caused the overall
decrease in mean SAW velocity, which is also evident from Fig. 15.14. However,
the standard deviation of SAW velocity profiles had unprecedented fluctuations
between 100,000–300,000 cycles, which can be viewed as material settlement
or microstructure reorientation, but overall the standard deviation increased after
500,000 cycle of loading. Figure 15.18b shows the SAW velocity profile at the
pristine state, after 350,000 cycles and 500,000 cycles of fatigue loading on the
specimen S-E.
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Fig. 15.18 (a) Statistical analyses of the SAW velocity profile and variation of Mean and Standard
deviation of SAW with cycles. (b) SAW velocity profile on Area-B at pristine state, after
350,000 cycles and 500,000 cycles

15.6.5 Damage Characterization Using Optical Microcopy:
Verification

Optical microscopy imaging was performed on the composite specimens to examine
the development of micro-cracks inside the specimens as it was hypothesized
many times throughout this chapter. At the pristine state, very few damages were
present in the form of local voids as manufacturing defects in the specimens (max.
Size ∼ ±5 μm). However, it is evident from the microscopy images that the
density of microstructural damages increased due to the fatigue loading. Matrix
cracking, fiber breakage, and localized interlaminar delamination are observed at
the end of ∼160,000 and ∼300,000 cycles. Average size of the matrix-cracks was
observed close to ∼224 μm. Large-scale damages such as edge delamination were
not observed in the specimens. To investigate the development of precursor damages
across the width, at the end of 300,000 cycles specimen S-A was decommissioned
and was cut at three locations (Fig. 15.19), carefully using waterjet machine. Face A,
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Fig. 15.19 (a) Optical microscopy images of the decommissioned specimen S-A at the end
of 300,000 cycles; (b) scanning electron microscopy (SEM) images from the decommissioned
specimen S-A after 300, 000 cycles of fatigue loading [136, 137]

B, and C, then were grinded up to 3 mm by using P1200 sand paper. Afterwards, all
faces were polished with P2400 sandpaper to get a smooth surface. Predelamination,
fiber separation and fiber debond, void growth from fiber slippage, and interlaminar
delamination crack joining two adjacent matrix cracks are evident in specimen S-A
(Fig. 15.19).

15.6.6 Damage Characterization Using Scanning Electron
Microscope (SEM)

Face A, C, and E were further investigated using SEM VEGA3 TESCAN and a
summary of our findings is presented in Fig. 15.19. Multiple sites of void initiation,
fiber breakage, and void growth were identified and they confirm the findings from
the benchmark studies.
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Fig. 15.20 SAM images from the decommissioned specimen S-A after 300,000 cycles of fatigue
loading [136, 137]

15.6.7 Damage Characterization from Scanning Acoustic
Microscopy

Scanning acoustic microscopy (SAM) imaging was performed on the specimen to
investigate the damage developments on the surface as well as inside the specimens
which were not accessible by the optical microscopy. SAM C-scans were performed
using high-resolution ∼100-MHz ultrasonic transducer at three defocused distances
(Fig. 15.20) at three locations identified as Face A, C, and E. Matrix cracking was
clearly visible on the surface of the specimens. Couple of predelamination sites
were observed. Additionally, degraded material properties were observed beneath
the predelamination site. Multiple immature interlaminar delamination track was
observed joining two matrix cracks or matrix fiber debond tracks.

15.7 Conclusions

Objective of this chapter was to present the applicability of a new precursor damage
detection method using both high- and low-frequency ultrasonic methods, which
makes the process multiscale. In high-frequency (∼ > 25 MHz) range, QUIC
is presented using SAM while hybrid with nonlocal mechanics of materials. A
detailed mathematical description and an experimental process is described. To
demonstrate the applicability of the process, SAM was used to measure quasi-
longitudinal (QL) wave velocity on the gage sections of the specimen and nonlocal
parameters were calculated from the dispersion curve obtained from nonlocal
Christoffel equation. Damage growth was quantified by a suitable parameter called
NLDE. Continuum damage index (CDI) across the thickness of the specimen was
also quantified by stiffness-degradation method. Cumulative damage growth was
plotted with the number of fatigue cycle. Quasi-longitudinal wave velocities are
measured on the surface of the specimen at the interval of 10,000 cycles until
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300,000 cycles. Probability distribution of the wave velocities over the specimen
was plotted at pristine state and at the end of ∼110,000 cycles. Significant changes
in the distribution with shift in mean and standard deviation were observed due to
the precursor damage development. In the low-frequency (≤1 MHz) range, Guided
CWI is presented to demonstrate the possibility of detecting precursor damage.
The proposed modified CWI created an opportunity to reliably detect precursor
damage state in the materials, which was validated via multiple other benchmark
studies which shows practical state of the materials through images and quantified
material state data. A detailed study with seven woven fiber composite specimens
that are tested under high-cycle low-load (HCLL) fatigue loading is presented to
study the progressive precursor damage inside the specimen within their 30% of life
calculated to be ∼300,000 cycles. The modified CWI technique based on stretching
method was used for the first time for damage detection and quantification in
composite material under fatigue loading. Damage growth from both CWI- and
SAM-based techniques is correlated further. It was identified that whenever there
has been a change in the sign of the stretch parameters (in the coda wave) from
positive to negative or from negative to positive followed by immediate positive
stretch or negative stretch, respectively, is the indication of the precursor damage
in the specimen. This statement is thoroughly validated and proved by the results
obtained from our other studies like QUIC, and benchmark studies on optical
microscopy and SEM. This unique blend of methods at multiple length scales and
the consistent phenomena that was observed will help devise new damage detection
algorithm for online precursor damage detection and quantification.

Acknowledgments The research was partially funded by NASA, Contract No. NNL15AA16C
and ASPIRE-I grant supported by Office of Vice President of Research at the University of South
Carolina, grant no. 15540-E422. Author thanks the PVATepla, Germany for providing valuable
inputs and know how on the SAM scanning procedures.

References

1. J.-B. Donnet, R.C. Bansal, Carbon Fibers (CRC Press, Boca Raton, 1998)
2. A. Miller, The Boeing 787 Dreamliner, in Keynote Address, 22nd American Society for

Composites Technical Conference (2007)
3. W.G. Roeseler, et al., Composite structures: The first 100 years. in 16th International

Conference on Composite Materials (2007)
4. J. Bell, Condition Based Maintenance Plus DoD Guidebook (DoD, Washington, DC, 2008)
5. A.K. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics

implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510
(2006)

6. A. Hall, I.V. Brennan, A. Ghoshal, et al., in Report for the US Army Research Laboratory.
Damage precursor investigation of fiber-reinforced composite materials under fatigue loads
(US Army Research Laboratory, Aberdeen, 2013)

7. Reifsnider, K.L. and S.W. Case, Damage tolerance and durability of material systems.
Damage Tolerance and Durability of Material Systems, by Kenneth L. Reifsnider, Scott W.
Case, pp. 435. ISBN 0-471-15299-4. Wiley-VCH, Hoboken, 2002



15 Nonlocal and Coda Wave Quantification of Damage Precursors. . . 621

8. S. Banerjee, X.P. Qing, S. Beard, F.K. Chang, Statistical damage estimation at hot spots using
gaussian mixture model. IWSHM (2009)

9. S. Banerjee, Estimation of damage sate in materials using nonlocal perturbation: Application
to active health monitoring. J. Intell. Mater. Syst. Struct. 20(10), 1221–1232 (2009)

10. B. Piascik, J. Vickers, D. Lowry, S. Scotti, J. Stewart, A. Calomino, DRAFT Materials,
Structures, Mechanical Systems, and Manufacturing Roadmap, Technology Area 12, ed. by
N.A.a.S.A. (NASA) (2010)

11. D. Stargel, E. Tueget, Condition based maintenance plus structural integrity, in AFOSR
Structural Health Monitoring Workshop (Covington, KY, 2008)

12. S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater.
5(1), 58–80 (1971)

13. H.T. Hahn, Nonlinear behavior of laminated composites. J. Compos. Mater. 7(2), 257–271
(1973)

14. H.T. Hahn, S.W. Tsai, Nonlinear elastic behavior of unidirectional composite laminae. J.
Compos. Mater. 7(1), 102–118 (1973)

15. Z. Hashin, Failure criteria for unidirectional Fiber composites. J. Appl. Mech. 47(2), 329–334
(1980)

16. J.D. Lee, Three dimensional finite element analysis of layered fiber-reinforced composite
materials. Comput. Struct. 12(3), 319–339 (1980)

17. K.N. Shivakumar, W. Elber, W. Illg, Prediction of low-velocity impact damage in thin circular
laminates. AIAA J. 23(3), 442–449 (1985)

18. F.-K. Chang, K.-Y. Chang, Post-failure analysis of bolted composite joints in tension or shear-
out mode failure. J. Compos. Mater. 21(9), 809–833 (1987)

19. F.-K. Chang, K.-Y. Chang, A progressive damage model for laminated composites containing
stress concentrations. J. Compos. Mater. 21(9), 834–855 (1987)

20. J. Engblom, J.J. Havelka, Transient response predictions for transversely loaded laminated
composite plates. 30th Structures, Structural Dynamics and Materials Conference (American
Institute of Aeronautics and Astronautics, Reston, 1989)

21. H.Y. Choi, H.-Y.T. Wu, F.-K. Chang, A new approach toward understanding damage
mechanisms and mechanics of laminated composites due to low-velocity impact: Part II—
Analysis. J. Compos. Mater. 25(8), 1012–1038 (1991)

22. M.-H.R. Jen, Y.S. Kau, J.M. Hsu, Initiation and propagation of delamination in a centrally
notched composite laminate. J. Compos. Mater. 27(3), 272–302 (1993)

23. S. Liu, Z. Kutlu, F.-K. Chang, Matrix cracking-induced delamination propagation in
graphite/epoxy laminated composites due to a transverse concentrated load. in Comp Mate-
rials: Fatigue and Fracture, Fourth Volume, ed. by W.W. Stinchcomb, N.E. Ashbaugh, vol.
1156 of ASTM STP: pp. 86–101 (American Society for Testing and Materials, Philadelphia,
1993)

24. G.A.O. Davies, X. Zhang, Impact damage prediction in carbon composite structures. Int. J.
Impact Eng. 16(1), 149–170 (1995)

25. R.M. Jones, Mechanics of Composite Materials (CRC Press, Boca Raton, 1999)
26. J.P. Hou, N. Petrinic, C. Ruiz, A delamination criterion for laminated composites under low-

velocity impact. Compos. Sci. Technol. 61(14), 2069–2074 (2001)
27. L. Iannucci, Progressive failure modelling of woven carbon composite under impact. Int. J.

Impact Eng. 32(6), 1013–1043 (2006)
28. Y. Mi, M.A. Crisfield, G.A.O. Davies, H.B. Hellweg, Progressive delamination using interface

elements. J. Compos. Mater. 32(14), 1246–1272 (1998)
29. M. Chen, A.J. Crisfield, E.P. Kinloch, F.L. Busso, Y. Matthews, J. Qiu, Predicting progressive

delamination of composite material specimens via interface elements. Mech. Compos. Mater.
Struct. 6(4), 301–317 (1999)

30. R. Wisnom, R. Michael, F.-K. Chang, Modelling of splitting and delamination in notched
cross-ply laminates. Compos. Sci. Technol. 60(15), 2849–2856 (2000)

31. C. Soutis, P.T. Curtis, A method for predicting the fracture toughness of CFRP laminates
failing by fibre microbuckling. Compos. A: Appl. Sci. Manuf. 31(7), 733–740 (2000)



622 S. Banerjee and S. Patra

32. C. Soutis, F.C. Smith, F.L. Matthews, Predicting the compressive engineering performance of
carbon fibre-reinforced plastics. Compos. A: Appl. Sci. Manuf. 31(6), 531–536 (2000)

33. V.J. Hawyes, P.T. Curtis, C. Soutis, Effect of impact damage on the compressive response of
composite laminates. Compos. A: Appl. Sci. Manuf. 32(9), 1263–1270 (2001)

34. Y. Zhuk, I. Guz, C. Soutis, Compressive behaviour of thin-skin stiffened composite panels
with a stress raiser. Compos. Part B 32, 696–709 (2001)

35. P.P. Camanho, C.G. Davila, Mixed-Mode Decohesion Finite Elements for the Simulation of
Delamination in Composite Materials. NASA/TM-2002-211737 (2002)

36. L.M. Kachanov, Time of the rupture process under creep conditions. Izv. Akad. Nauk. SSR
Otd. Tech. Nauk 8, 26–31 (1958)

37. Y. Rabotnov, Creep rupture. Proceedings of the12th International Congress of Applied
Mechanics (1968)

38. R. Vaziri, M. Olson, D. Anderson, Damage in composites: A plasticity approach. Comput.
Struct. 44, 103–116 (1992)

39. O. Allix, P. Ladevèze, Interlaminar interface modelling for the prediction of delamination.
Compos. Struct. 22(4), 235–242 (1992)

40. P. Ladeveze, E. LeDantec, Damage modelling of the elementary ply for laminated composites.
Compos. Sci. Technol. 43(3), 257–267 (1992)

41. A. Matzenmiller, J. Lubliner, R.L. Taylor, A constitutive model for anisotropic damage in
fiber-composites. Mech. Mater. 20(2), 125–152 (1995)

42. A.F. Johnson, Modelling fabric reinforced composites under impact loads. Compos. A: Appl.
Sci. Manuf. 32(9), 1197–1206 (2001)

43. A.F. Johnson, A.K. Pickett, P. Rozycki, Computational methods for predicting impact damage
in composite structures. Compos. Sci. Technol. 61(15), 2183–2192 (2001)

44. K.V. Williams, R. Vaziri, Application of a damage mechanics model for predicting the impact
response of composite materials. Comput. Struct. 79(10), 997–1011 (2001)

45. P.P. Camanho, C.G. Davila, Physically Based Failure Criteria for FRP Laminates in Plane
Stress. NASA-TM (2003)

46. P. Ladevèze, G. Lubineau, On a damage mesomodel for laminates: Micromechanics basis and
improvement. Mech. Mater. 35(8), 763–775 (2003)

47. P. Ladevèze, G. Lubineau, in Science and Technology of the Fatigue Response of Fibre-
Reinforced Plastics. Section a Computational Meso-Damage Model for Life Prediction
for Laminates, ed. by B. Harris. Fatigue in composites (Woodhead Publishing/CRC Press,
Sawston\Boca Raton, 2003)

48. K.V. Williams, R. Vaziri, A. Poursartip, A physically based continuum damage mechanics
model for thin laminated composite structures. Int. J. Solids Struct. 40(9), 2267–2300 (2003)

49. J. Lemaitre, R. Desmorat, Engineering Damage Mechanics, Ductile, Creep, Fatigue and
Brittle Failures (Springer, The Netherlands, 2005)

50. S.T. Pinho, L. Iannucci, P. Robinson, Physically-based failure models and criteria for
laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development.
Compos. A: Appl. Sci. Manuf. 37(1), 63–73 (2006)

51. S.T. Pinho, L. Iannucci, P. Robinson, Physically based failure models and criteria for lami-
nated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation.
Compos. A: Appl. Sci. Manuf. 37(5), 766–777 (2006)

52. M.V. Donadon, L. Iannucci, B.G. Falzon, J.M. Hodgkinson, S.F.M. de Almeida, A progressive
failure model for composite laminates subjected to low velocity impact damage. Comput.
Struct. 86(11–12), 1232–1252 (2008)

53. M.V. Donadon, S.F.M. De Almeida, M.A. Arbelo, A.R. de Faria, A Three-dimensional ply
failure model for composite structures. Int. J. Aerosp. Eng. 2009, 22 (2009)

54. P. Ladevèze, G. Lubineau, On a damage mesomodel for laminates: Micro–meso relationships,
possibilities and limits. Compos. Sci. Technol. 61(15), 2149–2158 (2001)

55. P. Ladevèze, A. Nouy, On a multiscale computational strategy with time and space
homogenization for structural mechanics. Comput. Methods Appl. Mech. Eng. 192(28–30),
3061–3087 (2003)



15 Nonlocal and Coda Wave Quantification of Damage Precursors. . . 623

56. D.H. Allen, Damage Evolution in Laminates. ed. By R. Talreja. Damage Mechanics of
Composite Materials (Elsevier: Amsterdam, 1994), pp. 79–114

57. M.L. Phillips, C. Yoon, D.H. Allen, A computational model for predicting damage evolution
in laminated composite plates. J. Eng. Mater. Technol. 21, 436–444 (1999)

58. K.L. Reifsnider, W. Scott, Damage Tolerence and Durability in Material Systems (Wiley-
Interscience, New York, 2002)

59. R.M. Haj-Ali, A.H. Muliana, A multiscale constitutive framework for the nonlinear analysis
of laminated composite materials and structures. Int. J. Solids Struct. 41(3), 3461–3490
(2004)

60. L.N. McCartney, G.A. Schoeppner, in Multiscale Modelling of Composite Material Systems:
The Art of Predictive Damage Modelling, ed. by C. Soutis, P. W. R. Beaumont. Multiscale
predictive modelling of cracking in laminated composites (Woodhead Publishing, Cambridge,
2005), pp. 65–98

61. C. Soutis, P. W. R. Beaumont (eds.), Multiscale Modelling of Composite Material Systems:
The Art of Predictive Damage Modelling (Woodhead Publishing, Cambridge, 2005)

62. P.C. Andia, F. Costanzo, G.L. Gray, A classical mechanics approach to the determination of
the stress-strain response of particle systems. Model. Simul. Mater. Sci. Eng. 14, 741–757
(2006)

63. R. Talreja, Damage analysis for structural integrity and durability of composite materials.
Fatigue Fract. Eng. Mater. Struct. 29, 481–506 (2006)

64. S. Ghosh, in Aduptive concurrent multi-level model for multiscale analysis of composite
materials including damage, eds. By Y.W. Kwon, D.H. Allen, R. Talreja. Multiscale Modeing
and Simulation of Composite Materials and Structures (Springer, New York, 2008)

65. Y. W. Kwon, D. H. Allen, R. Talreja (eds.), Multiscale Modeling and Simulation of Composite
Materials and Structures (Springer, New York, 2008)

66. D.J. Bernard, G. Dace, O. Buck, Acoustic harmonic generation due to thermal Embrittlement
of Inconel 718. J. Nondestruct. Eval. 16, 67–75 (1997)

67. J.L. Blackshire et al., in Nonlinear Laser Ultrasonic Measurements of Localized Fatigue
Damage, eds. By D.O. Thompson, D.E. Chimenti. Review of Progress in QNDE (Quantitative
Nondestructive Evaluation) (Springer, New York, 1998). pp. 1479–1488

68. G.E. Dieter, Mechanical Metallurgy (McGraw Hill, London, 1998)
69. P.B. Nagy, Fatigue damage assessment by nonlinear ultrasonic materials characterization.

Ultrasonics 36(1–5), 375–381 (1998)
70. B. Otto, in Fatigue Damage and its Nondestructive Evaluation: An Overview, eds. By D.O.

Thompson, D.E. Chimenti. Review of Progress in Quantitative Nondestructive Evaluation
(Springer, New York, 1998). p. 1

71. Q.Y. Wang et al., Fatigue Fract. Eng. Mater. Struct. 22, 673 (1999)
72. Y. Zeng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characteriza-

tion: A review. Can. J. Phys. 77, 927–967 (1999)
73. J. Herrmann et al., Assessment of material damage in a Nickel-Base superalloy using

nonlinear Rayleigh surface waves. J. Appl. Phys. 99(12), 124913–124920 (2006)
74. S. Hirsekorn, U. Rabe, W. Arnold, Characterization and evaluation of composite laminates by

nonlinear ultrasonic transmission measurements, in European Conference on Non-destructive
Testing, France, 2006

75. M. Deng, J. Pei, Assessment of accumulated fatigue damage in solid plates using nonlinear
lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)

76. H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters III, Digital image correlation using
Newton-Raphson method of partial differential correction. Exp. Mech. 29(3), 261–267
(1989)

77. T.C. Chu, W.F. Ranson, M.A. Sutton, Applications of digital-image-correlation techniques to
experimental mechanics. Exp. Mech. 25(3), 232–244 (1985)

78. N. McCormick, J. Lord, Digital image correlation. Mater. Today 13(12), 52–54 (2010)
79. S.A. Adelman, J.D. Doll, Generalized Langevin equation approach for atom/solid-surface

scattering: General formulation for classical scattering off harmonic solids. J. Chem. Phys.
64, 2375–2388 (1976)



624 S. Banerjee and S. Patra

80. F.F. Abraham et al., Spanning the continuum to quantum length scales in a dynamic simulation
of brittle fracture. Europhys. Lett. 44(6), 783–787 (1998)

81. F.F. Abraham, H. Gao, How fast can cracks propagate? Phys. Rev. Lett. 84(14), 3113–3116
(2000)

82. T. Belytsckko, S.P. Xiao, Coupling methods for continuum model with molecular model. Int.
J. Multiscale Com. Eng. 1, 115–126 (2003)

83. R.B. Lechoucq, S.A. Silling, Peridynamic theory for solid mechanics. Adv. Appl. Mech. 44,
73–168 (2010)

84. A.C. Egingen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)
85. A.C. Eringen, Developments of Mechanics, vol 3 (Wiley, New York, 1965)
86. A.C. Eringen, Mechanics of Continua (Wiley, Hoboken, 1967)
87. A.C. Eringen, Continuum mechanics at the atomic scale. Crystal Lattice Defects 7, 109–130

(1977)
88. A.C. Eringen, On differential equations of nonlocal elasticity and solution of skew dislocation

and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)
89. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)
90. R.O. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51 (1964)
91. R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385

(1962)
92. E. Cosserat, F. Cosserat, Theories des Corps Deformables (Hermann, Paris, 1909)
93. S. Banerjee, R. Ahmed, Precursor/incubation of damage state quantification using hybrid

microcontinuum approach and high frequency ultrasonic. IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 60(6), 1141–1151 (2013)

94. G.A.D. Briggs, O.V. Kolosov, Acoustic Microscopy, 2nd edn. (Oxford University Press, New
York, 2010)

95. E. Drescher-Krasicka, J.R. Wilis, Mapping stress with ultrasound. Nature 384, 52–55 (1996)
96. T. Kundu, Inversion of acoustic material signature of layered solids. J. Acoustic. Soc. Am.

91(2), 591–600 (1992)
97. M. Nishida, T. Endo, T. Adachi, H. Matsumoto, Measurement of local elastic moduli by

magnitude and phase acoustic microscope. NDT&E Int. 30(5), 271–277 (1997)
98. P. Zinin, W. Weise, in Theory and Applications of Acoustic Microscopy, ed. By T. Kundu.

Ultrasonic Nondestructive Evaluation, Engineering and Biological Material Characteriza-
tion (CRC Press, Boca Raton, 2004)

99. S. Banerjee, R. Ahmed, Precursor/incubation of multi-scale damage state quantification
in composite materials: Using hybrid microcontinuum field theory and high-frequency
ultrasonics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1141–1151 (2013)

100. S. Yadav, S. Banerjee, T. Kundu, On sequencing the feature extraction techniques for online
damage characterization. J. Intell. Mater. Syst. Struct. 24, 473–483 (2013)

101. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw
dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

102. A. Shelke et al., Multi-scale damage state estimation in composites using nonlocal elastic
kernel: An experimental validation. Int. J. Solids Struct. 48(7–8), 1219–1228 (2011)

103. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J.
Mech. Phys. Solids 48(1), 175–209 (2000)

104. Z.P. Bazant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of
progress. J. Eng. Mech. 128(11), 1119–1149 (2002)

105. F. Bobaru, S.A. Silling, Peridynamic 3D models of nanofiber networks and carbon nanotube-
reinforced composites. in Materials Processing and Design: Modeling, Simulation and
Applications-NUMIFORM 2004-Proceedings of the 8th International Conference on Numer-
ical Methods in Industrial Forming Processes (AIP Publishing, Melville, 2004)

106. B. Kilic, A. Agwai, E. Madenci, Peridynamic theory for progressive damage prediction in
center-cracked composite laminates. Compos. Struct. 90(2), 141–151 (2009)

107. B. Kilic, E. Madenci, Structural stability and failure analysis using peridynamic theory. Int. J.
Nonlin. Mech. 44(8), 845–854 (2009)



15 Nonlocal and Coda Wave Quantification of Damage Precursors. . . 625

108. M. Lazar, G.A. Maugin, E.C. Aifantis, On a theory of nonlocal elasticity of bi-Helmholtz type
and some applications. Int. J. Solids Struct. 43(6), 1404–1421 (2006)

109. L. Brillouin, Wave Propagation in Periodic Structures (Dover Publications, USA, 1953)
110. A. Chakraborty, Wave propagation in anisotropic media with non-local elasticity. Int. J. Solids

Struct. 44(17), 5723–5741 (2007)
111. R.C. Picu, On the functional form of non-local elasticity kernels. J. Mech. Phys. Solids 50(9),

1923–1939 (2002)
112. W. Weise, P. Zinin, A. Briggs, T. Wilson, S. Boseck, Examination of the two dimensional

pupil function in coherent scanning microscopes using spherical particles. J. Acoustic. Soc.
Am. 104, 181–191 (1998)

113. T. Kundu, J. Bereiter-Hahn, I. Karl, Cell property determination from the acoustic microscope
generated voltage versus frequency curves. Biophys. J. 78, 2270–2279 (2000)

114. M. Gresil, V. Giurgiutiu, Prediction of attenuated guided waves propagation in carbon fiber
composites using Rayleigh damping model. J. Intell. Mater. Syst. Struct. 26(16), 2151–2169
(2015)

115. B. Hosten, M. Castaings, T. Kundu, in Identification of Viscoelastic Moduli of Composite
Materials from the Plate Transmission Coefficients Review of Progress, eds. By D.E.
Chimenti, D.E. Thompson. Quantitative Nondestructive Evaluation, Vol. 17. (Plenum Press,
New York, 1998)

116. P. Marguères, F. Meraghni, Damage induced anisotropy and stiffness reduction evaluation
in composite materials using ultrasonic wave transmission. Compos. A: Appl. Sci. Manuf.
45(0), 134–144 (2013)

117. R. Snieder, H. Douma, in Coda Wave Interferometry. 2004 McGraw-Hill Yearbook of Science
and Technology, Vol. 54 (McGraw-Hill, New York, 2004)

118. R. Snieder, The theory of coda wave interferometry. Pure Appl. Geophys. 163(2-3), 455–473
(2006)

119. E. Larose, S. Hall, Monitoring stress related velocity variation in concrete with a 2× 10− 5
relative resolution using diffuse ultrasound. J. Acoust. Soc. Am. 125(4), 1853–1856 (2009)

120. D.P. Schurr et al., Damage detection in concrete using coda wave interferometry. NDT&E Int.
44(8), 728–735 (2011)

121. T. Planès, E. Larose, A review of ultrasonic coda wave interferometry in concrete. Cem.
Concr. Res. 53, 248–255 (2013)

122. R. Snieder et al., Coda wave interferometry for estimating nonlinear behavior in seismic
velocity. Science 295(5563), 2253–2255 (2002)

123. M. Fehler, P. Roberts, T. Fairbanks, A temporal change in coda wave attenuation observed
during an eruption of Mount St. Helens. J. Geophys. Res. Solid Earth 93(B5), 4367–4373
(1988)

124. A. Grêt, R. Snieder, U. Özbay, Monitoring in situ stress changes in a mining environment
with coda wave interferometry. Geophys. J. Int. 167(2), 504–508 (2006)

125. D. Pandolfi, C. Bean, G. Saccorotti, Coda wave interferometric detection of seismic velocity
changes associated with the 1999 M= 3.6 event at Mt. Vesuvius. Geophys. Res. Lett. 33(6),
L06306 (2006)

126. C. Sens-Schönfelder, U. Wegler, Passive image interferometry and seasonal variations of
seismic velocities at Merapi volcano, Indonesia. Geophys. Res. Lett. 33(21), L21302 (2006)

127. M.M. Haney et al., Observation and modeling of source effects in coda wave interferometry
at Pavlof volcano. Lead. Edge 28(5), 554–560 (2009)

128. F. Martini et al., Seasonal cycles of seismic velocity variations detected using coda wave
interferometry at Fogo volcano, São Miguel, Azores, during 2003–2004. J. Volcanol.
Geotherm. Res. 181(3), 231–246 (2009)

129. O. Abraham, et al., Monitoring of a large cracked concrete sample with non-linear mixing of
ultrasonic coda waves. in EWSHM-7th European Workshop on Structural Health Monitoring
(2014)

130. E. Niederleithinger, et al., Coda Wave Interferometry used to localize compressional load
effects in a concrete specimen. in EWSHM-7th European Workshop on Structural Health
Monitoring (2014)



626 S. Banerjee and S. Patra

131. Y. Zhang et al., Study of stress-induced velocity variation in concrete under direct tensile
force and monitoring of the damage level by using thermally-compensated coda wave
interferometry. Ultrasonics 52(8), 1038–1045 (2012)

132. G. Poupinet, W. Ellsworth, J. Frechet, Monitoring velocity variations in the crust using
earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res. Solid
Earth 89(B7), 5719–5731 (1984)

133. C. Payan et al., Determination of third order elastic constants in a complex solid applying
coda wave interferometry. Appl. Phys. Lett. 94(1), 011904 (2009)

134. Y. Zhang et al., Diffuse ultrasound monitoring of stress and damage development on a 15-ton
concrete beam. J. Acoust. Soc. Am. 139(4), 1691–1701 (2016)

135. S. Liu et al., A novel coda wave interferometry calculation approach using Taylor series
expansion, in International Workshop on Structural Health Monitoring (Stanford, Palo Alto,
CA 2015)

136. S. Patra, S. Banerjee, Material State Awareness for Composite Part II: Precursor Damage
Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic
Image Correlation (QUIC), Material, Vol. 10(12), pp. 1444 (2017)

137. S. Patra, S. Banerjee, Material State Awareness for Composite Part I: Precursor Damage
Analysis Using Ultrasonic Guided Coda Wave Interferometry (CWI), Material, Vol. 10(12),
pp. 1436 (2017)

138. D. Astm, 3039/D 3039M. Standard Test Method for Tensile Properties of Polymer Matrix
Composite Materials (2000)



Chapter 16
Anharmonic Interactions of Probing
Ultrasonic Waves with Applied Loads
Including Applications Suitable for
Structural Health Monitoring

Julian Grill and Wolfgang Grill

16.1 Introduction

As illustrated by the articles of this book, a substantial fraction of ultrasonic
techniques for NDE or NDT involves the observation of anharmonic effects.
Early developments can already be identified in 1965 [1]. Currently ultrasound at
sufficiently high power levels is usually employed such that frequency doubling or
additive and subtractive wave mixing and in some cases even higher order effects
can be observed and employed [2]. In Table 16.1 this well-established scenario is
demonstrated in a simplified scheme.

Heterodyning of monitored signals at sum and difference frequencies with f1
(Table 16.1, generalized case) can be employed to convert the respective frequencies
to f2. For sufficiently small f2 the obtained frequencies can be near zero. This case
is usually addressed as homodyning where the center frequency for excitation f1 is
used as reference. It is a well-established technique for phase detection including
also quadrature detection that delivers the observed signal near f1 in the complex
plane (for quadrature detection in the GHz-regime with high resolution, see [3, 4]).
The observed phase shifts relate to rather small frequency shifts.

In anharmonic monitoring and more general in four-wave mixing (FWM) it
is often sufficient to use two different input signals. In this case just one of
the input signals needs to have sufficiently high magnitude leading to respective
power density levels needed to obtain the desired mixing at signal levels that
can be securely monitored. The generalized case of FWM is extensively treated
for electromagnetic waves (for novel applications, see [5]). It is fortunately also
employed for acoustics [6].
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Table 16.1 Schematic for monitoring of nonlinear interaction of ultrasonic waves

Nonlinear monitoring

Due to nonlinear response the output signal does not vary in direct proportion to the input
signal
Special (simple) case of nonlinear monitoring

1 frequency for excitation (monochromatic case)
Let be:
Response to signal A at frequency f1 = response (A)
Response to signal B at frequency f1 = response (B)
Observe that:
response (A + B) �= response (A) + response (B)
2nd order responses appear at frequencies:
f1 + f1 = 2f1
and f1 − f1 = DC (frequency is zero)
(and possible higher order effects)
More general nonlinear monitoring (Four-Wave Mixing, FWM)
2 frequencies for excitation
Let be:
Response to signal A at frequency f1 = response (A)
Response to signal B at frequency f2 = response (B)
Observe that:
response (A + B) �= response (A) + response (B)
2nd order responses appear at frequencies:
f1 + f2
and f1 − f2
resulting in two different frequencies (as input frequencies) following nonlinear interaction
(and possible higher order effects)

The monitoring schemes presented here allow ultrasonic monitoring with rela-
tively low power levels of the incoming acoustic waves. This constitutes a general
advantage for many applications involving sensitive specimen like certain aircraft
components that might be damaged by high power ultrasound.

For insight to the scenario of modulation by nonlinear interaction as exemplified
here it might be helpful to realize that some similarities between amplitude,
frequency, and phase modulation become more pronounced for rather small modula-
tions. All three types of modulations lead to sidebands. This has been nicely pointed
out by developers of novel instrumentation for wideband vector detection (note by a
member of Zurich Instruments as listed in [7]). The (quote:) “amplitude and (narrow
band) frequency modulations have equal Fourier power spectral densities: in fact
their Fourier transforms differ by the sign of the sidebands but this disappears when
squaring to obtain the power density.”

Historically phase monitoring of ultrasonic signals was originally used for the
determination of time of flight (TOF) variations with high resolution (for high
resolution monitoring avoiding even resonances of the transducers, see [8]). Phase
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shifts can be caused by velocity changes or distance variations if the frequency (or
in the case of pulsed excitation the spectrum) remains constant. Otherwise similar
phase shifts can also be caused by alteration of the frequency (or center frequency
for pulsed excitation). In all these three cases the detected signal undergoes a
frequency variation, which is necessary to cause any observable phase shift. This
can most easily be realized with continuous narrow band excitation when no
considerable interferences occur along the path from generation to detection of the
propagating acoustic waves including the transducers and the electric transmission
of the signals.

It is important to realize the fundamental similarity of the effects of velocity
changes, path length variations, and frequency alterations on the observable phase
shifts in detected signals. All three types of variations produce frequency shifts as
demonstrated in Table 16.1 for anharmonic effects of interacting acoustic waves by
FWM including the interaction of mechanical excitations involving acoustic waves.
This is especially important for quasi-static modulations with intrinsically small
modulation frequencies as present in some of the applications discussed here.

To extend the scenario of acoustic waves to the quasi-static regime one should
keep in mind that acoustic waves involve time and space dependent variations of the
stress and strain. Also involved are particle velocities, which at fixed magnitudes
of the acoustic waves will diminish when approaching the static scenario. The
interaction of the monitoring acoustic waves and their accompanying stress and
strain variations with quasi-static stress and strain is nevertheless covered by FWM.
The necessity to conserve momentum in FWM is in so far simplified, as the quasi-
static case relates to intrinsically small momenta of the acoustic waves providing
the involved stress and strain. The interaction with the probing ultrasonic waves
will therefore only lead to negligible changes in directionality.

Historically the interactions of stress and strain with propagating acoustic waves
have been addressed as acoustoelastic effect [9]. Early applications involve the
monitoring of tension in bolts as outlined in 1964 by a respective first patent
[10]. The underlying principle of stress detection via acoustic oscillations has
been realized even earlier as demonstrated by a patent submitted already in 1924
[11]. These early patents have been followed by rapidly progressing developments
leading to at least five companies, which currently supply equipment for similar
purposes as mentioned in the first patent for monitoring of stress in bolts.

It needs to be mentioned that the observed effects including the acoustoelastic
effect have so far been either contributed to tension respectively stress, to defor-
mation respectively strain, or even more general simply to load. Within the linear
elastic regime of a materials stress–strain relation may the origin of the observed
effects be practically and interchangeably attributed to either of the linear related
parameters. This is often the case without further consideration. Only recently has
a detailed analysis regarding the individual influences of stress and strain on the
propagation of acoustic waves been started [12]. This is of special interest for the
nonlinear regime of plastic deformation where stress and strain are not simply linear
related and irreversible deformations occur.
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Relations between stress and strain represent one of the most elementary forms
of materials characterization. They are of essential interest to engineers when
evaluating the performance of parts and components under load and during oper-
ation. Materials stress–strain relations are commonly determined with standardized
samples on universal test machines. Using ultrasonic waves to monitor stress–strain
relations of components of machines, cars, aircraft, or other assembled units on the
other hand allows the determination of the actual mechanical status and integrity
of the monitored part while in use. Besides of the general interest in a better
understanding of the underlying physical coupling mechanisms this special goal
of interest to mechanical or civil engineers has been a main driving force behind the
developments reported here.

Concerning the extension of FWM principles to low frequencies it should be kept
in mind that well-established ultrasonic monitoring techniques employed for moni-
toring of slowly varying transport properties of ultrasound as caused by temperature
variations are often based on pulsed excitation and detection with single-ended or
double-ended operation of the involved ultrasound transducers. These techniques
have already been extended to rather high repetition rates as demonstrated by the
monitoring of the modulation of high frequency ultrasound in scanning acoustic
microscopy [3, 13]. There the ultrasound is generated with piezoelectric transducers
by switched sinusoidal electric fields generated by a monochromatic source. The
frequency range is around 1 GHz (0.8–1.2 GHz). Monitoring is conducted with
repetition rates of typically 2 MHz allowing a bandwidth for shifts in frequency,
in phase, and in magnitude from static to 1 MHz. This is performed by vector
detection based on the correlation with sinusoidal functions referenced to the source
by analog electronic signal processing. It demonstrates that at least since 1994
the techniques historically involved in quasi-static monitoring have already been
extended to bandwidths in the regime of ultrasonic frequencies. Such correlation
techniques suitable for high resolution monitoring can therefore be employed to
study nonlinear effects by FWM from static to the range of ultrasonic frequencies
up to at least 1 MHz.

At sufficiently low frequencies the involved interactions can be separated into
contributions originating from stress or strain. Therefore, a theoretical section
starting with a description of quasi-static coupling follows the introduction. This
is ensued by the presentation of monitoring techniques and by the demonstration
of respective experimental results. Finally some more general applications are
presented to inform about the range of applications for the developed monitoring
schemes.

16.2 Basic Theoretical Background and Modeling

The origin of the influence of stress on the propagation of acoustic waves can most
easily be demonstrated by modeling of a one-dimensional atomic chain. This has
been well established by lattice dynamics (for a novel textbook article, see, for
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Fig. 16.1 Two elements of a strictly periodic linear chain of mass points, symbolized by spheres,
with mass m, positioned at a distance a, and connected by mass free springs with spring constant
C or an assumed potential that can also contain higher order terms relating to nonlinear springs

example, [14]). On the other hand, the atomic chain model may also be deemed
as a form of finite element modeling, widely used by engineers.

With regard to the discussed patents and applications, and for the sake of
simplicity and an easier understanding of the underlying physical effects and
coupling mechanism, presentations in this chapter will be strictly confined to the
idealized basic conditions of a homogeneous isotropic material experiencing only
uniaxial and homogeneously distributed stress and strain, both coaligned with the
propagation direction of the probing ultrasound waves.

Treated is a strictly periodic linear chain of mass points connected by mass free
springs (Fig. 16.1), which are characterized by their potentials. The potentials can
be parabolic to model springs following Hooke’s law or they can contain higher
order terms relating to nonlinear springs. Historically relevant potentials describing
the nonlinear interatomic forces are the Lennard-Jones potential [15] and the Morse-
Feshbach potential [16].

The basic features employed in the early patents for the detection of loads in bolts
are based on the propagation characteristics of longitudinal acoustic bulk waves
[10]. Their transport properties under stress or strain can be modeled by extensional
acoustic waves traveling on a chain of point masses also addressed as atomic chain.
Similar basic features of flexural acoustic waves traveling on strings, relating to
transverse polarized bulk waves as also employed for monitoring of loads in bolts
have, for example, been treated by Caamaño-Withall and Krysl [17].

For extensional acoustic waves traveling on a string of point masses with forces
between adjoining masses described by a perfect harmonic potential, which can be
covered by a mass free spring following Hooke’s law with a spring constant C, the
velocity of the acoustic waves can easily be equated (see, for example, [18]). In
the limit of long wavelengths with respect to the distances between mass points the
phase and group velocities are identical. The velocity of extensional acoustic waves
vE is then given by:

vE = a (C/m)1/2

where a is the distance between mass points with mass m and C the spring constant
of the idealized mass free springs following Hooke’s law. From this relation follows
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that for the time ta needed under these conditions for an extensional acoustic wave
to pass from one point mass to the next:

ta = (m/C)1/2

When presuming a harmonic potential C remains constant under extension or
compression. Together with the conservation of mass it follows that ta remains
constant and independent of the length of a. The same holds for the time needed
to pass over any selected fixed number of adjoining unit cells of the chain.

There are many alternating descriptions in early patents covering the coupling
of stress and strain or simply load to propagating longitudinal polarized acoustic
waves employed for monitoring. In view of these patents it is important to realize
that for assumed harmonic interaction between neighboring mass points or atoms
in the material the lengthening of a bolt or screw caused by external forces due to
tightening would not affect the time of flight of longitudinal polarized ultrasound
used for monitoring. Under the normally given experimental conditions with single-
or double-ended monitoring with acoustic waves and glued or otherwise fixated
transducers the velocity of extensional acoustic waves vE will vary under extensional
strain, but this effect is fully compensated for the observed TOF by lengthening of
the path traveled by the waves.

The model of a chain of mass points respectively atoms as presented above
neglects relativistic features. Therefore under elongation or compression the TOF
for transport over a fixed number of unit cells via strictly harmonic interactions
would only vary according to the speed of light. This relativistic effect is neverthe-
less way too small to explain the observed coupling coefficients caused by what is
historically addressed as acoustomechanical coupling (for an example, see [9]).

As well and long known from thermal expansion, it is the influence of anhar-
monic forces between adjoining mass points that leads to nonlinear effects as
exemplified by the Lennard-Jones potential (Fig. 16.2).

Regarding the coupling effects it now becomes clear that strain affecting the
forces between two idealized point masses or atoms in the model via anharmonic
potentials must be what induces a variation of TOF. It is the weakening of these
interatomic forces under elongation, as described by the Lennard-Jones potential
that leads to measurable variations of TOF for longitudinally polarized ultrasonic
waves. This is what allows monitoring of loads on bolts either with double-ended
operation of ultrasonic transducers fixed to both ends or with single-ended operation
of only one transducer observing reflections from the other end.

Besides of the discussed anharmonic potentials affecting the transport properties
of transversely polarized acoustic waves leading to an increased TOF under
elongation there is also a counteracting effect. It is caused by stress induced flexural
rigidity influencing modes with transverse components. This effect is well known
from string instruments, where transverse oscillations relating to standing flexural
guided acoustic waves will increase in frequency under increasing tensional stress,
which is widely used for tuning of musical instruments.
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Fig. 16.2 Lennard-Jones
potential in comparison to a
harmonic potential relating to
Hooke’s law for interatomic
forces with distance
normalized to equilibrium
conditions and potential
normalized to maximum
attraction

An idealized string with zero flexural rigidity under complete absence of
tensional stress and infinite extensional rigidity even under large stress with a mass
density of ρ has a phase velocity of flexural guided acoustic waves vF under an axial
stress of σ of [19]:

vF = (σ/ρ)1/2

An example of this velocity dependence on stress and density is illustrated in
Fig. 16.3 for a string with diminishing flexural stiffness. For the material copper the
yield strength is near 345 MPa but depends on thermal treatment.

The discussed different coupling mechanisms allow simultaneous monitoring of
both stress and strain by observation of the transport properties of acoustic waves.
The influence of strain will predominately affect the propagation of longitudinal
polarized acoustic waves including extensional guided waves. The influence of
stress will predominantly affect the propagation of flexural guided waves for
sufficiently long wavelengths where the influence of rigidity to bending diminishes.
Especially suitable modes for monitoring of stress and strain with guided acoustic
waves are illustrated in Figs. 16.4 and 16.5.

As calculated with the software DISPERSE provided by the Imperial College,
London, the useful range for monitoring of stress and strain is indicated in Fig. 16.5
for the example of a brass rod of 1 mm diameter.

Concerning guided acoustic waves traveling on plates, addressed as Lamb waves,
the scenario is not much different as it is for rods fabricated from the same material
with identical lateral dimensions. This can be compared in Figs. 16.5 and 16.6.

In Fig. 16.6 vL represents the dispersion relation of longitudinal polarized bulk
waves. v2D relates to the velocity of extensional waves determined by a two-
dimensional version of Young’s modulus given by the elastic properties for a
sideways infinitely extended sheet under otherwise similar conditions. vT represents
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Fig. 16.3 Dependence of the velocity v on σ /ρ of flexural guided acoustic waves traveling on a
string with density ρ under tension σ with the upper scale relating to the density of copper

Fig. 16.4 Cross-sectional
view of extensional and
flexural guided waves
traveling on strings or sheets
with amplitudes exaggerated
for demonstration

Fig. 16.5 Dispersion relation
of guided waves traveling on
a 1 mm diameter brass rod for
symmetric modes Si and
antisymmetric modes Ai with
velocities of surface acoustic
waves (SAW; vSAW) and as
given by Young’s modulus E
(vE), both indicated with
lines, representing the
asymptotic properties of the
guided waves of the lowest
branches (i = 0) of the
symmetric and antisymmetric
modes

the dispersion relation of transversely polarized bulk waves and vSAW relates to
surface acoustic waves. All these extra displayed dispersion relations are linear
within the range displayed in the graph.
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Fig. 16.6 Dispersion relation
of guided waves traveling on
a 1 mm sheet of brass with
lines representing the
asymptotic properties of the
guided modes of the lowest
branches

Fig. 16.7 Sketch of the dependence of the acoustoelastic coupling coefficients for extensional and
flexural guided acoustic modes. The high frequency asymptotic value and the frequency for the
zero crossing of the coefficient for the flexural mode are normalized to 1. The negative vertical
axis is also the asymptote of the flexural mode for diminishing frequencies

The expected variations of the coupling coefficients for the lowest modes of
guided waves traveling on sheets (Lamb waves) or on rods are sketched in Fig.
16.7.

The zero crossing of the coupling coefficient for the lowest guided antisymmetric
mode is to be expected in the frequency regime where this mode changes from
the dispersion relation similar to SAW to a parabolic dispersion relation when
approaching low frequencies. For the example of a 1 mm diameter brass rod shown
in Fig. 16.5 this happens near a wave number of 0.5 mm−1. The actual value
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Fig. 16.8 Two-dimensional
mesh of mass points
illustrated by dots connected
with idealized mass free
elastic rods only providing
axial stiffness

should be determined experimentally since sufficient analytical modeling is not yet
available.

To demonstrate that the expected behavior can at least be verified via numeric
modeling, a two-dimensional model with a most simple arrangement of mass points
connected by idealized mass free elastic rods, which only provide axial stiffness as
given by Young’s modulus, is represented in Fig. 16.8. This model was employed
for modeling of the transport properties of flexural waves with particle velocities
in the plane of the image. A chain of mass points as used for demonstration of
the influence of stress or strain on extensional waves cannot provide the flexural
stiffness required for flexural acoustic waves to be able to propagate in the absence
of tensional stress.

The dispersion relations obtained by model calculations for a stress free state and
with axial extensional strain, horizontally oriented in Fig. 16.8, are demonstrated in
Fig. 16.9. In the stress free state the tangent for diminishing frequency is horizontal
indicating a vanishing group velocity. But for long wavelength and propagation
under extensional stress the guided flexural waves still propagate with a finite group
velocity. This is pointed out by the lines in Fig. 16.9. The grey lines indicate the
finite slope in the limit of diminishing frequencies under load in comparison to the
maximum group velocity obtained for higher frequencies, which is represented by
a dotted line.

Besides of evaluating dispersion relations the modeling also delivers the time
dependent distribution of amplitudes for propagating flexural acoustic waves (Fig.
16.10). As it can be deduced from the graphs (Figs. 16.9 and 16.10), extensional
stress accompanied by strain affects the dispersion relation and leads to a remark-
ably increased group velocity of low frequency guided waves traveling on the
mesh of point masses. The general scenario obtained by modeling resembles the
predictions based on elementary properties as discussed first in this section by rather
basic analytic reasoning.

This finalizes the presentation of basic features and modeling for the dependence
of the transport properties of acoustic waves on stress or strain under approximate
steady-state conditions, relating to the low frequency limit of FWM. The obtained
predictions are to be verified by experimental procedures presented next, starting
with the experimental set-ups and followed by the evaluation and discussion of the
results of monitoring.
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Fig. 16.9 Dispersion relation of flexural waves traveling on a two-dimensional mesh of mass
points (Fig. 16.8) in a stress free state (top) and with 10% axial strain (bottom) created by a suitable
axial stress

Fig. 16.10 Amplitude distribution at a fixed time following excitation by a sharp flexural pulse in
the center of the sample
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16.3 Experimental Set-Up and Monitoring Schemes

To demonstrate the possibility to synchronously determine stress and strain solely
by monitoring with acoustic waves, experiments combining acoustic monitoring
with conventional monitoring for the dependence of stress and strain are conducted.
Two methods were realized: Standard samples well introduced for the monitoring
of stress and strain with conventional test equipment were fitted with ultrasonic
transducers (Fig. 16.11). This allows simultaneous monitoring of stress and strain
with acoustic waves while performing standard tensile testing with commercially
available equipment. For the application demonstrated here the dynamic testing
system Zmart.Pro from Zwick GmbH & Co. KG, Ulm, Germany, was kindly
provided by the Institute for Materials Applications in Mechanical Engineering
(IWM) of the RWTH-Aachen. A suitable set-up for the simultaneous comparative
observation of the stress–strain relation in thin wires was also constructed (Fig.
16.12). Both of these set-ups employed dedicated mode selective transducers for
symmetric and antisymmetric waves (Figs. 16.11 and 16.13) as developed earlier
for Lamb waves [20].

The functional principle of the electronic set-up employed for generation and
detection including data storage is presented in Fig. 16.14. The selection of suitable
signals for generation including arbitrary signals, pulsed excitation, and switched
sinusoidal or chirped excitation is supported by dedicated software. The developed
program also provides numerical correlation procedures for real-time processing
and evaluation of stored data. This allows to determine variations of TOF for
selected portions of the recorded signals (for details, see [21]). In Fig. 16.15 the
interface used for operation and data analysis is demonstrated as it was applied in
monitoring of guided acoustic waves under variable load.

Fig. 16.11 Standardized aluminum sheet metal sample (0.8 mm) for stress–strain testing with
mode selective wideband transducers in double-ended arrangement
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Fig. 16.12 Set-up (left: functional sketch; right: actual device) for conventional testing of the
stress–strain relation of wires in combination with monitoring by guided acoustic waves

Fig. 16.13 Transducers, wire sample, and sample holders (black) for mode selective excitation
of guided acoustic waves traveling on wires suitable for synchronous stress–strain testing in
combination with a conventional test device (Fig. 16.12)

Monitoring with chirped wideband signals is well established in radar technology
but unfortunately only rarely used in ultrasonics. In early applications involving
chirped electromagnetic signals dispersive analog devices were used to compress
the chirped signals such that short pulses become visible. This method has some
advantages, which are still of interest even under the impact of quite impressive
modern developments of electronic equipment.

On one hand, a short pulse, mathematically idealized a Dirac pulse also addressed
as δ-function, appears well suited to determine any time of flight (TOF). On the
other hand, it has the disadvantage that the signal power accumulates over a very
short interval (theoretically idealized even infinitely short). As a result the maximum
integrated pulse energy at the output of electronic amplifiers with limited output
voltage is therefore rather limited. Nevertheless the Greens function formalism
for the impulse response is based on δ-functions. For any practical applications



640 J. Grill and W. Grill

Fig. 16.14 Functional sketch
of the electronic devices used
for signal generation and
detection

Fig. 16.15 Example for the displayed interface used for the selection of excitation signals,
data storage, signal and data analysis, and general operation of the electronic equipment with
explanatory inserts

such idealized functions need to be approximated by short pulses. By Fourier
transformation it becomes evident that a δ-function is represented by a white
spectrum with frequency independent intensity and a phase condition identical to
that of cosine functions if the pulse is positioned at zero on the temporal axis.

But a broad spectrum can also be obtained by a chirped signal. Historically this
has first been realized by an approximately linear chirp in frequency over time.
With the aid of a frequency dependent phase shift and corrections for the actual
frequency dependent magnitudes such a signal can be compressed to an approximate
Dirac pulse (for a demonstration, see [22]). In practical applications signals are
bandwidth limited and the compressed pulses will have a finite width determined
by the available bandwidth.
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It should be of interest to realize that the underlying principles, the Greens
function formalism and Fourier transformation, were both originally introduced
to solve differential equations. They also serve surprisingly well in practical
applications as discussed here.

With an analysis based on FFT (fast Fourier transformation) and numerical
data evaluation the pulse compression can be replaced by a correlation to observe
temporal shifts relating to variations of TOF in the applications presented here.
Both principles lead to similar resolutions for TOF variations. In respective patents
[23] pulse compression is employed and even additionally used to correct for the
disturbing influence of coaxial wires with different length involved in the signal
transport [24]. Different to this commercial solution the analysis involved in data
processing presented here is based on correlations.

Many published schemes perform such correlations with idealized programmed
chirp signals which are used as input for conversion to an electrical signal by an
arbitrary function generator driving the transducer generating the ultrasonic waves.
Using a received signal as reference instead has the advantage that the alterations of
the electrical input signal with respect to the received output signal cannot disturb
the correlation procedures. Such alterations can be caused by the resonances in the
transducers [25] and by band gaps possibly present in the transport medium for
the guided acoustic waves. This leads to an improved resolution in the applications
presented here. Depending on the application the reference signal is usually selected
either in the absence of any load or at a given time after which variations of the load
should be observable with high resolution. For recorded data a reference can also be
taken for conditions under which a favorable reference signal has been observed.

For wideband excitation in the regime of dispersion corrections will be needed
prior to correlation procedures. Guided waves traveling on wires or plates (Lamb
waves) can be readily modeled and respective corrections are therefore in these
cases available. On the other hand, the dispersion can be determined from experi-
mental results and can subsequently be employed for corrections whenever needed.
In Fig. 16.16 an example for the determination of the dispersion relations on
the basis of measurements performed with the developed hard and software is
presented to exemplify this possibility. The measurements were conducted with
guided acoustic waves (Lamb waves) propagating on an aluminum sheet metal.
Generation and detection was performed with mode sensitive transducers and
respective signal processing. The tilted axis at the bottom of each graph indicates the
temporal shift caused by the time dependent linear chirp employed for excitation,
which had to be corrected prior to comparison to the modeled dispersion relations.

Compared to the application of chirped signals in radar technology with frequen-
cies even in the GHz-regime, the application of this principle to ultrasonic waves
in the upper kHz- and lower MHz-regime has the advantage that analog signals
employed for generation and the received signals can both be converted from and
to digital data by DA- and AD-conversion. For this frequency regime even 16-bit
converters are readily available. When repetitive pulsed generation is involved these
conversions are performed by arbitrary signal generators and transient recorders as
presented in Fig. 16.14.
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Fig. 16.16 Dispersion relations for symmetric (top) and antisymmetric (bottom) modes as
determined by Fourier analysis of the data obtained by mode selective monitoring with chirped
wideband signals of Lamb waves traveling on aluminum sheet metal (grey scale with white
representing zero magnitude) with modeled dispersion relations indicated as solid lines
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Fig. 16.17 Tail boom of an MI 8 helicopter (top, left) mounted in a vibration test apparatus with
electronic components and the operating experimentalist, accompanied by detailed images of the
mounted transducers (top, center, and right) and the received signals (bottom)

In early radar applications with chirped excitation the received signals were
enhanced in magnitude by pulse compression prior to monitoring. By this they
were raised above noise level prior to monitoring by visual observation on the
radar screen—a cathode ray tube operated in angular coordinates. Different to this
situation, received signals for ultrasonic applications as discussed and presented
here are usually well above noise level. This is demonstrated in Fig. 16.17 for the
transport of guided acoustic waves (Lamb waves) traveling over about 2 m of the
hull of an MI 8 helicopter, manufactured from aluminum sheet metal (for details
and additional results, see [26]). A wideband linear chirp starting at zero time and
ranging from 20 kHz to 1 MHz with peak voltages of 6 V is used for excitation
by a PZT transducer. The signal is delivered by a source with an impedance of
50 �. Under this condition the available electrical peak power for excitation is only
0.72 W. Such low power levels are especially of interest in monitoring of aircraft
to avoid any possible distortion of sensitive components. Detection of the excited
guided acoustic waves is performed under double-ended configuration via a second
PZT transducer.

Under such conditions the received electrical signals can first be digitized
and then compressed or correlated by digital data processing. An already well-
established monitoring scheme also based on digital signal generation and detection
is the application of time reversal techniques for ultrasonics by digital signal
processing [27]. This scenario is quite different to earlier developed high frequency
acoustic echo techniques where direct recording of the time dependent amplitude
is impossible [28]. Therefore, nonlinear transport media were employed, providing
analog signal processing in the path of the acoustic waves, delivering the observed
phonon echoes by FWM.
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The detailed discussion of the conditions favorable for digital signal processing
serves the purpose of clarification under which conditions digital processing can
be used to replace analog signal processing. The reader might nevertheless want
to keep in mind that analog signal processing of electrical signals can often be
performed much faster than digital processing. This is especially valuable for real-
time processing at high repetition rates and for high signal frequencies. In this case
the required amount of real-time signal and data processing may easily exceed the
limitations of the available digital hardware.

If processing is restricted to correlations with monochromatic signals, the earlier
discussed quadrature detection is a well-established alternative method for analog
signal processing, which is still widely in use. In these cases the necessary
multiplications for signal correlations are performed by mixers. In experiments with
repetitively pulsed excitation integration is performed by gated signal averagers
whereas in continuous wave (CW) applications this task is performed by low pass
filters. In applications with sufficiently narrow bandwidth vector detection of the
real and imaginary part of the representation in the complex plain by analog signal
processing can even be used to deliver a Hilbert transformation of the received
signal.

Mixing involved in quadrature detection converts the frequency range used for
excitation to a band around zero frequency. For the relatively low frequencies of the
output signal digital processing is usually readily available and can replace hardware
filters and other wired signal processing units as involved traditionally in analog
multiplication or rectification of electrical signals.

16.4 Monitoring of Stress and Strain with Acoustic Waves

The developed monitoring scheme is first demonstrated for a brass wire, followed
by a copper wire as an example for a rather supple metal. Finally it is applied to a
test sample from aluminum sheet metal as used for airplanes serving as an example
for testing of a material widely used for the construction of aircraft components,
where structural health monitoring is of growing interest.

Figure 16.18 demonstrates the dependence of the directly monitored signals on
the time during forced linear elongation of the 0.8 mm brass wire sample with a
speed of about 0.205 mm/s. The measured force shows a behavior well known from
conventional monitoring and partly reflects the stress over strain dependencies since
the strain forced on the sample rises linear in time for the conducted experiment.

The upper graph in Fig. 16.18 shows the results of conventional monitoring. The
two lower ones demonstrate the observed variations of TOF as observed under
externally forced elongation. Prior to the onset of disintegration at 13.75 s the
extensional guided acoustic mode shows a steady nonlinear rise of the observed
variation of TOF. The flexural mode shows a variation of TOF at the beginning
that is obviously dominated by the tensional stiffening caused by increasing stress
due to the externally forced strain. It shows the reduction in TOF as to be expected
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Fig. 16.18 Presentation of the direct results from monitoring of a 0.8 mm diameter brass rod for
the elongation over time as enforced by the motor drive and the detected resulting force (top)
in comparison to the variation of TOF as determined by the lowest extensional mode of guided
acoustic waves (center) and as determined by the lowest flexural guided acoustic mode (bottom)

for soft enough strings according to the presented models. Finally in the regime of
irreversible plastic deformation the rise of TOF due to lengthening of the specimen
overcomes the influence of tensile stiffening.
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Fig. 16.19 Comparison of
conventionally determined
strain to the strain derived
from monitoring with guided
ultrasonic waves (black) and
the idealized linear
dependence (tilted grey line)

Fig. 16.20 The stress–strain
relation as determined
conventionally (black) and by
ultrasonic monitoring with
guided acoustic waves (red)
with a vertical grey line
indicating the onset of
disintegration and a dotted
grey line indicating the offset
yield strength

The determination of the stress–strain relation just from acoustic monitoring
clearly requires some processing of the raw data presented in Fig. 16.18. This was
achieved by fitting linear combinations of the lowest possible orders of the observed
�TOF. The results are demonstrated in Figs. 16.19 and 16.20. In all graphs the
derived strain relates to the engineering normal strain, also addressed as engineering
strain or nominal strain.

The result presented in Fig. 16.19 fits the ideal relation within a maximum error
of ±0.016% strain prior to the onset of disintegration. It was obtained by a fitting
routine for the ultrasonically determined strain εa by observation of the lowest
guided symmetric and antisymmetric acoustic modes of:

εa = S (�TOFS0 − 1.6�TOFA0)

with the parameter S adjusted to fit with the slope of the conventional determined
strain in the linear elastic regime. �TOFii denotes the observed variations of the
TOF of the respective modes (ii) with respect to the strain and stress free state.

The strain determined by ultrasonic monitoring with the aid of the fitting
parameters serving as calibration for the developed monitoring scheme can now
be used to determine the stress–strain relation solely by monitoring with guided
acoustic waves. The result is presented in Fig. 16.20.
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The acoustically determined stress was fitted by a linear admixture of the results
from the two lowest modes of the guided acoustic waves. Up to slightly above the
yield strength it remains within a maximum error range of +2 MPa to –10 MPa. The
maximum error at a strain of about 0.1% is obviously due to some higher order terms
not embodied by the fitting procedure. At a strain of about 0.6% the acoustically
determined stress markedly deviates from the conventionally observed one. This is
most likely due to a premature mechanical failure of the bond between acoustic
transducer and test specimen and indicates that the chosen transducer design may
require future refinements.

The test of the developed monitoring scheme on brass nonetheless demonstrates
that the relation between stress and strain can be monitored up to about 110% of the
yield strength. In the regime of plastic deformation above that value the results of
acoustic monitoring differ significantly from those of the conventional monitoring.
This may possibly be improved with refined transducer designs. But, on the other
hand, it should also not be too surprising, since guided waves on rods and plates
have a dispersion relation depending on the lateral extension, which begins to vary
significantly in the regime of substantial plastic deformation. In this regime the
guided waves selected for monitoring may even be influenced by band gaps (see, for
example, dispersion relations in Figs. 16.4 and 16.6) or may suffer from substantial
variations of the transport velocities near these gaps.

For structural health monitoring of parts essential for the mechanical stability of
sensitive components, as, for example, sections of the body, wings, or fuselage of
aircraft, the actual goal for the development of the presented monitoring scheme,
the range of reliable monitoring with an upper limit slightly above the yield strength
is sufficient to determine if monitored parts have already suffered from plastic
deformation.

Before proceeding to the test of aluminum sheet metal, as widely used in aircraft,
the test of a copper wire is presented as an example for a rather supple material.
Copper is soft with respect to bending and with respect to axial tension. It is
therefore of interest to study, if acoustic monitoring of the stress–strain relation can
be feasible even under these circumstances.

The wire from high purity DSA (dead soft annealed) copper with 0.8 mm diam-
eter and a length of 300 mm did not transport guided acoustic waves of the lowest
symmetric mode with a quality sufficient enough to allow monitoring with the
necessary resolution. Similarly antisymmetric guided waves with a center frequency
of 5 kHz were not transported well in the absence of stress either. Figure 16.21
presents the direct results of synchronous monitoring with conventional equipment
and by guided acoustic waves. It shows that guided waves with frequencies in the
audible range near 5 kHz can be monitored under stress above 5 MPa and provide
reliable data at and above 40 MPa. Since the strain could not be monitored with
guided acoustic waves of the lowest symmetric mode as originally planned, the
strain in the presented graphs for copper is determined by conventional monitoring
and relates to the chosen speed of the motor drive (0.079 mm/s) forcing extensional
strain on the tested sample.
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Fig. 16.21 Stress–strain
relations determined by
conventional monitoring
(black data points with
connecting lines) and by
observed variation of TOF for
monitoring with guided
acoustic waves of the lowest
antisymmetric modes with a
center frequency of 5.5 kHz
(red data points with
connecting red line) with the
scale for variations of TOF
adjusted to demonstrate
similarities in the observed
dependencies
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Figure 16.21 demonstrates that the observed variation of TOF can be referenced
to stress of over 40 MPa with proper scaling factors. Above this stress the results fit
well with the conventionally monitored stress. This demonstrates the applicability of
the expected effects for the acoustic monitoring of stress by antisymmetric guided
waves even for a rather supple metal. Well covered is the upper half of the linear
range and the entire adjacent regime from the beginning of plastic deformation to
the extension under constant stress. The covered regime is especially valuable for
structural health monitoring. The termination of the measurement at a strain close
to 0.4% was performed to allow additional runs with the same sample. Due to the
resulting pre-stressing the following graphs for experiments on copper therefore
show slight deviations of the conventionally determined stress–strain relation.

In Fig. 16.22 results for monitoring with antisymmetric guided acoustic waves
at a higher frequency are demonstrated. Here quadratic dependencies for a stress
up to 90 MPa are evident. This allows a determination of the stress by respective
correction of the acoustic data in the regime of low stress not well covered by
monitoring at 5 kHz (Fig. 16.21). At higher stress additionally the dependence
on lengthening of the sample becomes progressively evident. This becomes even
clearer for monitoring at higher frequencies. Therefore, the results for monitoring at
a center frequency of 3 MHz are displayed in Fig. 16.23.

Besides of an initial irregular response at very low stress, the monitoring of
variations of TOF at a center frequency of 3 MHz starts out as expected from the
soft string model at low stress with a reduction of TOF. Near a stress of about
40 MPa this changes and is finally dominated by effects caused by lengthening.
In the regime of plastic deformation under nearly constant stress the strain can
therefore be monitored as demonstrated by the fitted red line in Fig. 16.23. The
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Fig. 16.22 Conventionally
determined stress and strain
and observed variation of
TOF for the lowest
antisymmetric mode around
300 kHz for a soft copper
wire (diameter 0.8 mm,
length 300 mm) with two
measurements displayed for
demonstration of repeatability
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Fig. 16.23 Conventionally determined stress and strain (blue) and observed variation of TOF for
the lowest antisymmetric mode around 3 MHz for a soft copper wire (diameter 0.8 mm, length
300 mm) with lines fitted to the asymptotic behavior

deviation from the red line is displayed in Fig. 16.24. It relates to the conventionally
determined stress in good approximation for values above 80 MPa if properly scaled
by a factor and adjusted by an offset.
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Fig. 16.24 Similar to Fig. 16.23 but with the result of the acoustic monitoring (black) corrected
by subtraction of a linear function as displayed in red in Fig. 16.23 and scales for the resulting
compensated variation of TOF adjusted to fit the results of the conventional stress–strain relation
above a strain of about 1.8%

This demonstrates that even for DSA copper and in the absence of sufficiently
sizable signals obtainable with the lowest symmetric mode, the linear elastic regime
of the stress–strain relation can still be covered with monitoring of the stress. For
this regime the strain can be derived from the monitored stress because they are
linear related. In the regime of beginning plastic deformation to excessive plastic
deformation under approximately constant stress, strain and stress can both be
monitored independently. This can be done with the use of low (even audible 5 kHz)
and higher frequency (around 3 MHz) guided antisymmetric acoustic waves. Further
details like actually determined parameters for the fitting are omitted here, since
this is demonstrated in detail for the following final and more practical choice
of aluminum sheet metal for a standard test sample as employed traditionally for
conventional monitoring of the stress–strain relation of metals.

The results of the measurement on the aluminum test sample are displayed in
Fig. 16.25.

The elongation relating to the externally applied strain of the sample with a length
of the probed part of about 100 mm rises linear in the experiment. The best fit of an
acoustically determined elongation Ea to the one applied externally by the dynamic
testing system was obtained with the following summation:

Ea = 49.95 TrA0f mm + 24.98 TrA0s mm + 27.97 TrS0 mm

with Tr representing the relative variation of the monitored TOF:

�TOF/TOF
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Fig. 16.25 Results of synchronous measurement by conventional monitoring and by acoustic
monitoring with lowest symmetric and antisymmetric mode of guided acoustic waves

The additional indices indicate the selected mode. A0s relates to the antisym-
metric mode with a center frequency of 250 kHz, A0f to the same mode but with
a center frequency of 800 kHz, and S0 to the monitored symmetric mode with a
center frequency of 1 MHz.

The results presented in Fig. 16.26 are obtained by conversion to strain based on
the length of the active part of the sample. The absolute deviation of the acoustically
determined strain with respect to ideal monitoring (red line in Fig. 16.26) is always
within ±0.3%.

For many applications monitoring of the strain alone, as demonstrated in Fig.
16.26, may already be sufficient. This could, for example, be used to monitor plastic
deformations resulting from mechanical overloads during operations. In aerospace
applications it should be well suitable for testing critical parts and components of
aircraft during checkups and maintenance procedures on ground.

But the developed acoustic monitoring scheme additionally also allows the
simultaneous determination of actual stresses and with that even allows recording
and analyzing actual load collectives and load spectra during operation. This opens
a wide range of potential applications in the fields of structural health monitoring,
smart structures, reliability and durability analysis, and life-cycle optimization.

The result of a respective fitting procedure based on the observed variations
of TOF for all three monitored guided modes is demonstrated in Fig. 16.27.
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Fig. 16.26 Comparison of
conventionally determined
strain with the strain
determined by monitoring
with guided acoustic waves
for the tested aluminum
sample
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Fig. 16.27 Conventionally determined stress–strain relation of the monitored aluminum sample
in comparison to acoustic monitoring based on a linear superposition of the relative variations of
the observed TOF for the selected modes
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Fig. 16.28 The stress–strain relation of the monitored aluminum sample as determined conven-
tionally in comparison to acoustic monitoring based on a superposition of TOF of the monitored
modes including quadratic terms

To determine the stress ε from the monitoring with guided acoustic waves, the
following equation with an additional fitted proportionality factor was employed:

ε ≈ 1

2
TrA0f + 1

4
TrA0s + 1

4
TrS0

The admixture with prefactors of ½ and ¼ leads to the best fit based on an
approximation by linear superposition of the results of acoustic monitoring (Fig.
16.27).

Up to a strain of almost 4% the fit by linear superposition represents the
conventionally determined stress–strain relation within a maximum error of the
stress of 0.35%. But above a strain of 4% a substantial and increasing deviation
is obvious. In part this can be overcome by a higher order superposition as
demonstrated in Fig. 16.28.

Whereas higher order corrections can extend the fitting to values of a strain
of about 7%, at the onset of plastic deformation the agreement with conventional
monitoring is substantially reduced with respect to the linear fitting procedure (Fig.
16.27). With the performed higher order fitting the error regarding stress rises to
10% and a bad representation of the steps caused by the Portevin-Le Chatelier effect
[29] is obtained. This effect observed for higher order fitting is based on a process of
local deformations in shear bands and still requires further scientific investigation.
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Even though an almost surprisingly close fit could be obtained for the strain
solely based on acoustic monitoring up the point of disintegration (Fig. 16.26) this
is not possible for the stress derived from acoustic monitoring. Above a strain of 7%
fitting procedures become obsolete and a reasonably good fitting is only achieved
for linear interpolation up to a strain of almost 4%. This is most likely due to
anisotropies resulting from excessive irreversible deformation in the plastic regime
as caused by the Portevin-Le Chatelier effect and possibly also by a substantial
variation of the dispersion relations and transport properties of the guided acoustic
waves.

Nevertheless are the demonstrated resolution and the achievable range of up to 8-
times of the elastic limit both well suited for applications involving structural health
monitoring. Following an initial calibration procedure including the determination
of fitting parameters the developed monitoring scheme for the determination of the
stress–strain relation can even be operated in real time solely based on monitoring of
acoustic waves. The procedures needed for evaluation only require a parameterized
addition of the variation of the different times-of-flight observed in monitoring with
the lowest symmetric and antisymmetric guided acoustic modes. The scheme is
especially well suited for sheet materials and rods, where the propagation of guided
waves is rather well defined. Generally any set of modes including bulk modes
with different fractions of transversely and longitudinally polarized components,
including pure transverse or longitudinal polarized modes, will exhibit the basic
features employed here for the demonstrated feasibility of the developed monitoring
scheme.

Since practical applications involving guided acoustic waves will always be influ-
enced by thermal effects the following applications for the developed monitoring
scheme include a demonstration on how an average temperature along the path of
propagation of guided acoustic waves can be determined. The presented applications
include also a demonstration of the alteration of the transport properties of acoustic
waves under strong shaking, as they occur in aircraft during flight.

16.5 Related Applications of the Developed Monitoring
Scheme

A tail boom of an MI 8 helicopter mounted on a shaker (as demonstrated in
Fig. 16.17) has been monitored with different modes of guided ultrasonic waves
for several hours over which the temperature in the room varied. The results are
demonstrated in Fig. 16.29.

The temperature dependence observed for a center frequency of 50 kHz for the
lowest branch of the antisymmetric Lamb waves is (13.8 ± 0.2) ns/K. For a center
frequency of 0.5 MHz the respective value for the lowest branch of symmetric Lamb
waves is (10.7 ± 0.2) ns/K. The temperature resolution achievable for monitoring
with guided acoustic waves is about 0.05 K [26]. In the absence of anomalies as
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Fig. 16.29 Temperature dependence of TOF as difference to the initially observed TOF over
daytime (3 pm to 6 am) in comparison to the temperature of the helicopter tail boom with adjusted
scales to demonstrate the proportionality

caused by phase transitions and if variations are not too large the temperature relates
to a linear average over the traveled path of the acoustic waves. This coincides with
similar experiences in measurements conducted to determine stress and strain with
the presented monitoring scheme. Since the temperature affects TOF due to thermal
expansion, the influence has the same sign for all modes. And because the effects of
stress and strain involve different signs and different sensitivities, the temperature,
stress, and strain can all three be determined with guided acoustic waves. To do this
of course at least 3 or even more suitable modes need to be observed.

For the same set-up the signals have been monitored prior, during and following
the shaking procedures of the helicopter tail boom. An example of the obtained
results is displayed in Fig. 16.30 (for further details, see [26]). During shaking an
increase in TOF is observed, which exponentially returns to a lower value with
a time constant of about 1 min. The identification of the origin of this relaxation
requires further studies since it is close to the expected thermal time constants, but
may also indicate a recovery of the riveted joints from slippage due to shaking.
Following this relaxation a permanent offset of about +5 ns with respect to the
initial value of TOF is observed. This indicates a small loss of mechanical stability
of the riveted helicopter tail boom due to shaking.

The preceding application demonstrates that even very small variations of the
conditions influencing the transport of guided acoustic waves can be monitored
reliably by integral monitoring with the developed monitoring schemes. This is
further demonstrated with an application involving the tail boom of a Eurocopter
(for further details, see [30]). The wall of the tail boom is a sandwich structure
consisting of two fiber-enforced layers with a low-density spacer. The test was
performed to demonstrate the capabilities of integral monitoring of ablation with
suitable guided ultrasonic waves. A half pipe of a Eurocopter tail boom that was
available for the research was not allowed to be damaged by delamination. Because
of this the experiments had to be restricted to studying effects of ablation by
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Fig. 16.30 Variation of TOF observed for the tail boom of a MI 8 helicopter for Lamb waves with
shaker on for the indicated time (marked red) with 10% of the maximum nominal amplitude and
for single shot monitoring (no averaging)

Fig. 16.31 Variation of TOF for selected Lamb wave mode over daytime with removal of tape at
16:19:50 to test the sensitivity for ablation

attaching and removing a suitable test object from the surface of the tail boom. For
this purpose a sticky tape (3M™ Hazard Marking Vinyl Tape 766 black and yellow;
thickness 5.0 mil = 0.125 mm; vinyl backing with a rubber adhesive; 50 mm wide;
with an aerial density of about 1 mg/cm2) was attached to the surface. In Fig. 16.31
the effect of removal of the tape is demonstrated.

The noise equivalent resolution indicated by grey bars in Fig. 16.31 relates to
the removal of about 1 mg material from the surface of the monitored Eurocopter
tail boom. This test demonstrates the high resolution obtainable with the developed
monitoring schemes. But it is also clear that temperature effects have to be compen-
sated to reach the demonstrated resolution in practical applications. The preceding
application demonstrates this possibility. The ablation test furthermore demonstrates
that for applications where stress–strain relations should be monitored effects like
ablation or delamination may interfere with such monitoring. Similar distortions
were already observed previously during stress–strain monitoring experiments with
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aluminum when the Portevin-Le Chatelier effect occurred. Some care has been taken
to demonstrate that such uncertainties can possibly be overcome with an observation
of a sufficient number of modes, each with different sensitivity to parameters like
stress, strain, or temperature.

Nevertheless, the primary goal of the presented developments is integral testing
by guided ultrasonic waves. “Integral” hereby indicates that neither the exact
location or type of a possible flaw nor the exact type of derangement of the
monitored part needs to be determined. For the selected scenario it is sufficient to
reliably determine if excessive loads causing unacceptable plastic deformation or if
other kinds of deterioration have occurred. If this is the case an instant warning can
be triggered. Depending on predetermined limits this may even include a demand
for a replacement of the monitored part or the requirement of a traditional NDT
inspection to determine what repairs are necessary.

The first demonstrated monitoring of stress and strain relates to a basic relation
traditionally used to determine the stability and influence of overload conditions
in engineering. The few selected additional applications were presented to give
some insight to the possibilities for monitoring of additional parameters but also to
demonstrate the necessity to reliably monitor effective temperatures in applications
involving monitoring by acoustic waves whenever they are (at least partially) based
on anharmonic effects. Since anharmonic effects also cause thermal expansion, it is
a usual observation that with an increasing sensitivity for anharmonic monitoring
the sensitivity to temperature influences also rises. As observed in the applications
under practical conditions the influences on the measured TOF are often on similar
scales.

The presented monitoring schemes demonstrate that the influence of temperature
can also be determined with the guided acoustic waves involved in monitoring of
stress and strain. This offers the opportunity to correct for disturbing thermal effects,
which is especially important for monitoring of parts while in use, like applications
for in-flight monitoring of structural aircraft components, for continuous structural
health and load monitoring of civil structures like bridges and towers, and for
applications in the field of reliability and life-cycle optimization of machinery.
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Chapter 17
Noncontact Nonlinear Ultrasonic Wave
Modulation for Fatigue Crack
and Delamination Detection

Hoon Sohn, Peipei Liu, Hyung Jin Lim, and Byeongjin Park

17.1 Introduction

Fatigue crack is a progressive and localized structural damage that occurs when
a structure is subjected to cyclic loading. It is a critical concern for in-service
metallic structural components for the failures caused by fatigue crack, which
constitute nearly 90% of the total failures in metallic structures. Additionally, a
fatigue crack only becomes conspicuous after the crack approaches approximately
80% of the structural fatigue life. For laminated composite structural components,
delamination is a critical failure mechanism in the form of separated layers caused
by cyclic loading or impact because the composite laminates do not provide
reinforcement through the thickness. Damages like fatigue crack and delamination
are often invisible or barely visible but may compromise the integrity of structural
components and cause catastrophic failures.

To detect fatigue crack and delamination, various nondestructive evaluation
(NDE) techniques have been developed such as ultrasonic, acoustic emission,
thermography, eddy current, magnetic particle inspection, and X-ray. Among these
developed NDE techniques, the ultrasonic technique has proven its effectiveness
in achieving a reasonable compromise between the damage sensitivity and the
sensing range. The advantages of ultrasonic-based damage detection include: (1)

H. Sohn (�) · P. Liu · H. J. Lim
Department of Civil and Environmental Engineering, KAIST, Daejeon, Republic of Korea
e-mail: hoonsohn@kaist.ac.kr

B. Park
Korea Institute of Materials Science, Changwon, Gyeongsangnam-do, Republic of Korea

© Springer Nature Switzerland AG 2019
T. Kundu (ed.), Nonlinear Ultrasonic and Vibro-Acoustical Techniques
for Nondestructive Evaluation, https://doi.org/10.1007/978-3-319-94476-0_17

661

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94476-0_17&domain=pdf
mailto:hoonsohn@kaist.ac.kr
https://doi.org/10.1007/978-3-319-94476-0_17


662 H. Sohn et al.

It is sensitive to both surface and subsurface damages; (2) Often only one surface
needs to be accessible; (3) It owns high accuracy in determining damage position
and estimating its size and shape; and (4) It can be made portable and highly
automated operation.

The ultrasonic techniques can be divided into linear and nonlinear ultrasonic
techniques. Linear ultrasonic techniques use linear features of ultrasonic waves,
such as variations of the amplitude, phase, and mode conversion of the transmitted
or reflected ultrasonic waves at structural damage. These linear features have been
widely studied and showed a great potential for various gross structural damage
detection. However, these linear features may lose their sensitivity to early-stage
damages whose dimensions are much smaller than the ultrasonic wavelength.
Furthermore, the interpretation of linear features becomes complex in plate-like
structures due to dispersion and multimode characteristics, and even more chal-
lenging in inhomogeneous materials like composites. On the other hand, nonlinear
ultrasonic techniques mainly focus on nonlinearity induced by structural damage
and investigate the frequency variations of the acquired ultrasonic waves. More
specifically, damage-induced nonlinearity can result in creation of accompanying
harmonics (sub-harmonics), modulations between different frequencies, and change
of resonance frequencies due to amplitude variation of the driving input. These
nonlinear features are observed in the course of structural degradation processes
much sooner than any changes of linear features can be detected, making the
nonlinear ultrasonic features more attractive for early-stage damage detection.

For brief introduction, different nonlinear ultrasonic phenomena are summarized
as follows (Fig. 17.1): (1) Harmonic: When the waveform of the incident wave at
frequency fa is distorted by a nonlinear source, higher harmonic waves are generated
with frequencies at 2fa, 3fa, etc.; (2) Sub-harmonic: Sub-harmonic is a nonlinear
wave distortion resulting in the doubling of the period and frequency of fa/2; (3)
Nonlinear ultrasonic modulation: When two input waves at distinctive frequencies
fa and fb (fa > fb) encounter a nonlinear source, modulated components are generated
at frequencies fa ± fb, fa ± 2fb, 2fa ± fb, etc. Here, when fa is equal to fb, the
corresponding modulation components become harmonics (self-modulation); and
(4) Resonance frequency shift: The presence of a nonlinear source is manifested by
a shift in the resonance frequency, as the amplitude of the driving input changes.

Though all these different nonlinear ultrasonic techniques are able to detect
structural damage at its early stage, the nonlinear ultrasonic modulation technique
offers the following advantages: (1) The nonlinear modulation technique is less
influenced by unwanted nonlinear sources such as transducers, data acquisition
systems, and even the bonding conditions (couplant) of the transducers; (2) Since
the nonlinear components are generated only when some necessary conditions are
satisfied for a damaged structure, it is relatively easier to satisfy the conditions for
modulation generation with two distinct input frequencies at our disposal; and (3) It
is easier to avoid interference with other noise sources.

Besides the nonlinear ultrasonic techniques, another trend in NDE is to adopt
noncontact ultrasonic techniques so that structural components can be inspected
without any contact transducer nor couplants. Moreover, structural damage can
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Fig. 17.1 Illustration of multiple nonlinear ultrasonic phenomena: (a) harmonic, (b) sub-
harmonic, (c) nonlinear ultrasonic modulation, and (d) resonance frequency shift

be located and even visualized through noncontact scanning. Also, noncontact
ultrasonics can facilitate the monitoring of structures or components that roll
continuously on a production line, in extreme environmental conditions, coated,
oxidized, or just difficult to physically access.

This chapter introduces noncontact nonlinear ultrasonic modulation techniques
for fatigue crack and delamination detection. First, overviews of noncontact ultra-
sonic measurement systems using EMAT, ACT, and laser are provided specifically
for generation and sensing of modulation components. Second, the principle of non-
linear ultrasonic modulation and the necessary conditions for nonlinear modulation
generation are also reviewed. Third, representative damage detection algorithms
based on ultrasonic modulation components are introduced. Last, examples of
noncontact nonlinear ultrasonic modulation techniques applied to fatigue crack and
delamination detection are showcased at the end of this chapter.

17.2 Noncontact Ultrasonic Generation and Measurement

For generation and sensing of ultrasonic waves, contact transducers are typically
surface mounted on target structures. The most commonly used contact transducers
are wedge transducer, piezoelectric transducer (PZT), fiber optic sensor, acoustic
emission sensor, etc. These contact transducers have the following limitations: (1)
The couplant layer can be a source of considerable variability in sensitivity and also
in bandwidth (it can also be a source of nonlinearity); (2) High spatial resolution



664 H. Sohn et al.

is hard to achieve using contact transducers; (3) Transducer installation and cabling
are costly and labor-intensive; and (4) For certain applications, there is no access to
attach transducers on the target structure.

In recent years, there has been a growing interest in using noncontact transducers
for field inspection of large scale or moving parts. The noncontact transducers
generate or receive ultrasonic signals to or from the target structure without making
direct or indirect contact. Using noncontact ultrasonic transducers, structures can be
inspected without the fear of contamination from couplants. For noncontact ultra-
sonics, various transducers such as air-coupled transducer (ACT), electromagnetic
acoustic transducer (EMAT), electronic speckle pattern interferometry (ESPI), and
laser are used. Here, explanations will be given for these noncontact ultrasonic
transducers.

17.2.1 Electromagnetic Acoustic Transducer (EMAT)

Electromagnetic acoustic transducer (EMAT) generates and measures ultrasonic
waves using electromagnetic mechanisms. EMAT normally consists of a magnet
and an electric coil as shown in Fig. 17.2. The electric coil driven by an alternating
current (AC) electric signal generates an AC magnetic field, and the magnet
in EMAT produces a bias magnetic field. Through the interaction of these two
magnetic fields, ultrasonic waves can be generated in the test material (e.g.,
conductive and ferromagnetic materials) when the material is placed close to an
EMAT. The biggest advantage of EMAT is its ability to generate a specific ultrasonic
wave mode for structural damage detection, such as shear horizontal (SH) bulk
waves, surface waves, and Lamb waves [1–4]. However, when it comes to real
applications, it becomes challenging to control and maintain the spacing between
the transducer and the structure. Its application is limited to metallic or magnetic
materials, and, to the best of the authors’ knowledge, EMAT has not yet been used
for nonlinear ultrasonic modulation.

17.2.2 Air-Coupled Transducer (ACT)

Air-coupled transducer (ACT) transfers ultrasonic waves to the target structure
through air. However, only small fraction of the sound energy at the source can
be transmitted to the target structure due to large acoustic impedance mismatch
between air and the target material [5]. Methods for minimizing the acoustic
impedance mismatch have been intensively investigated in the past. Electrostatic air-
coupled and piezoelectric air-coupled transducers have constituted the most popular
design, and have been used for many damage detection applications [6, 7].
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Fig. 17.2 Schematic of an electromagnetic acoustic transducer (EMAT)

Fig. 17.3 Piezoelectric ACT composition (left) and the alignment for effective ultrasonic genera-
tion and measurement (right)

As one of the most popularly used ACTs, the piezoelectric ACT is mainly
composed of a piezoelectric disk attached with a thin low impedance layer
(Fig. 17.3). The piezoelectric disk converts a given electrical voltage signal into
mechanical deformation. The thin low impedance layer enhances the efficiency
in deformation transmission from the piezoelectric disk into air, by matching the
acoustic impedance between the piezoelectric disk and the air. In this way, ultrasonic
waves can be efficiently generated in the target structure. For ultrasonic measure-
ment, ultrasonic waves propagating in the target structure successively deform the
air, the thin low impedance layer, and the piezoelectric disk. The deformation in the
piezoelectric disk can be converted back into measurable electrical voltage. The thin
low impedance layer also improves the measurement efficiency.

For effective generation and measurement of ultrasonic waves in the target
structure, proper ACT alignment is always required [5]. Based on Snell’s law, when
waves go through two different media, the relationship between the incidence angle
and the refraction angle can be described as:



666 H. Sohn et al.

sinϕ

sin θ
= cair

cm
(17.1)

where ϕ and θ indicate angles of incidence and refraction, and cair and cm imply the
velocity of the waves in air and the target structure, respectively. When ultrasonic
waves propagate along the surface, θ = 90

◦
as shown in Fig. 17.3, Eq. (17.1) can be

presented as:

sinϕ = cair

cm
, ϕ = sin−1 cair

cm
(17.2)

17.2.3 Laser-Based Ultrasonic Generation

For ultrasonic generation, the laser is a device which amplifies the light intensity
through a quantum process known as stimulated emission. The amplified laser beam
is emitted in a form of a short pulse (from tens of nanoseconds to femtoseconds)
with high peak power. Common lasers used for ultrasonic generation are solid state
Q-switched Nd:YAG lasers and gas lasers (CO2 or Excimers), and they are used
as a transient source of high-power localized heat. A number of different physical
processes take place when a solid surface is illuminated by a laser [8]; however in
this chapter, the discussion is focused on laser power regimes that are suitable for
ultrasonic wave generation. As shown in Fig. 17.4, the surface region of a sample
absorbs the electromagnetic radiation from a laser, causing heating. The received
thermal energy then propagates into the sample in the form of thermal waves.
For typical Q-switched laser pulse duration, the thermal wave field only extends
a few micrometers even in good conductors. The heated region undergoes thermal
expansion, and thermoelastic stresses generate elastic (ultrasonic) waves which
propagate deep within the sample. All types of elastic waves can be generated,
including bulk waves (compression and shear), surface waves (including Rayleigh),
and guided waves (e.g., Lamb waves in plates, extensional and flexural waves in
rods). Note that the thermal expansion level is proportional to the gradient of the
thermal energy, thus, it indicates that a high-power short-pulse laser is suitable for
ultrasonic generation with a high efficiency.

17.2.4 Laser-Based Ultrasonic Measurement

For laser ultrasonic measurement, there are various means such as two-beam
homodyne, two-beam heterodyne, Fabry-Perot, time-delay, multi-beam, dynamic
holographic, fiber interferometry, optical beam deflection, and knife edge detection
[8]. Among them, laser Doppler vibrometer (LDV), one type of the two-beam
heterodyne interferometers, is one of the most widely used by taking advantage
of the Doppler effect.
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Fig. 17.4 Ultrasonic generation by a pulse laser

Fig. 17.5 Schematic of a typical laser Doppler vibrometer based on two-beam heterodyne method

If a laser beam is reflected by a moving object and detected by a measurement
system, the measured Doppler frequency shift fd can be interpreted as [9]:

fd = 2 · v/λ (17.3)

where v is the velocity of the object and λ is the wavelength of the laser beam. To
determine the object’s velocity, the Doppler frequency shift needs to be measured
with a known laser wavelength. This can be realized by using a LDV. LDV is a
two beam laser interferometer that measures the frequency difference between an
internal reference laser beam and a test laser beam. Though there are various types
of laser can be used in LDV (e.g., laser diode, fiber laser, and Nd:YAG laser), the
most commonly used is the helium-neon laser. Commercial LDVs mostly work in
a heterodyne regime with a known frequency shift (typically 30–40 MHz) added to
one of the two laser beams (Fig. 17.5).

The frequency shift should be selected greater than the maximum Doppler
frequency shift, so that the frequency at the detector never falls to zero and thus
sign ambiguity does not arise. A Bragg cell or an acousto-optic modulator is usually
used to produce this frequency shift.
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17.2.5 Laser Ultrasonic Scanning System

A complete noncontact laser ultrasonic scanning system is introduced in this section
[10]. This system consists of an excitation unit, a sensing unit, and a control unit, as
illustrated in Fig. 17.6. The excitation unit is comprised of a Q-switched Nd:YAG
pulse laser, a galvanometer, and a focal lens. The laser source in the excitation unit
has a wavelength of 532 nm and a maximum peak power of 3.7 MW. The Nd:YAG
pulse laser can generate a pulse with 8 ns duration with a 20 Hz repetition rate.
The galvanometer has a maximum rotating speed of 5730◦/s, angular resolution of
6.6 × 10−4 ◦, and an allowable scan angle of ±21.8◦. Through the galvanometer,
the pulse laser can be shot at the desired excitation points. The focal lens installed
in front of the galvanometer adjusts the laser beam size to less than 0.5 mm at the
optical focal length of 2 m for achieving high spatial resolution. For the sensing
unit, a commercial scanning LDV is used. The laser source in the sensing unit is a
helium-neon (He-Ne) laser with a wavelength of 633 nm. The commercial scanning
LDV has a maximum angular scan range of ±20◦ with a scanning speed of 2000◦/s.
Out-of-plane velocity with a range from 0.01 μm/s to 10 m/s can be measured
using this one-dimensional LDV. Here, the system can be extended to conduct 3D
measurement by using properly aligned and synchronized 3 LDVs. The control
unit is composed of a personal computer (PC), controller, velocity decoder, and
a 14-bit digitizer with a maximum sampling frequency of 2.56 MHz. The controller
simultaneously launches the excitation laser beam and starts the data collection. It
is also in control of aiming the excitation and sensing laser beams to desired target
positions.

17.2.6 Different Scanning Strategies

Four different scanning strategies are given and compared [10]. Using this laser
ultrasonic scanning system, two scanning strategies can be realized, that is, fixed
laser excitation and scanning laser sensing (Fig. 17.7a), and scanning laser excita-
tion and fixed laser sensing (Fig. 17.7b). When the laser ultrasonic scanning system
is used together with a surface mounted PZT or a noncontact ACT, we can achieve
two more scanning strategies, namely fixed PZT/ACT excitation and scanning laser
sensing (Fig. 17.7c), and scanning laser excitation and fixed PZT/ACT sensing (Fig.
17.7d). The four scanning strategies have their own advantages and disadvantages,
and suit for different applications. A brief comparison and discussion is given below.

Theoretically, based on the linear reciprocity of ultrasonic waves, the scanning
strategies shown in Fig. 17.6a, b offer the identical scanning results. However, in
practice, the excitation laser is more effective in scanning than the sensing laser.
This is because the target surface irregularity and the incident angle of the laser
beam have little effect on the ultrasonic generation by a Nd:YAG laser, while the
sensitivity of LDV heavily depends on the surface condition of the sensing points
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Fig. 17.6 Schematic diagram of a noncontact laser ultrasonic scanning system [10]

and the incident angle of the sensing laser beam. Often, a retro-reflective tape or
special coating is applied to the sensing surface to improve the LDV sensitivity
by increasing the light intensity of the backscattered laser beam along the incident
angle. Typically, the allowable incident angle for an excitation laser is up to ±70◦
while ±20◦ for a sensing laser [8].

For the scanning strategy shown in Fig. 17.7c, when a fixed PZT or ACT is
used for ultrasonic generation, any arbitrary waveform such as a narrowband tone-
burst signal can be exerted to an excitation point with high energy level. The
desired narrowband excitation and high excitation energy makes the following
signal processing clearer and easier. Also, the high excitation energy may augment
inspection speed by reducing the time averaging for ultrasonic measurement with
LDV. Note that, though the input waveform of a laser excitation is limited to
a wideband pulse in this discussion, there still exist some special techniques to
generate narrowband inputs with laser [11, 12].

A similar wavefield image can be created by the scanning strategy shown in Fig.
17.7d unless the excitation is limited to a pulse input. However, for some specific
applications such as curved surfaces or large scanning areas, the scanning strategy
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Fig. 17.7 Four different scanning strategies: (a) fixed laser excitation and scanning laser sensing,
(b) scanning laser excitation and fixed laser sensing, (c) fixed PZT/ACT excitation and scanning
laser sensing, and (d) scanning laser excitation and fixed PZT/ACT sensing

shown in Fig. 17.7d is more effective than the strategy shown in Fig. 17.7c, because
the surface irregularity and the incident angle of the laser beam have less effect
on the ultrasonic generation by the Nd:YAG laser, comparing with the ultrasonic
sensing by LDV.

17.3 Basic Principle of Nonlinear Ultrasonic Modulation

17.3.1 Nonlinear Ultrasonic Modulation

When two waves a and b at a high frequency (HF) fa and a low frequency (LF) fb
(fa > fb) propagate in the x-direction of a plate-like structure without any nonlinear
source, the induced displacement can be presented as:

u0 = A0 exp (i (κax − 2πfat))+ B0 exp
(
i
(
κbx − 2πf bt

))
(17.4)

where A0, B0 and κa, κb are the amplitudes and wavenumbers for the waves a and
b, respectively.

However, when the waves propagate in a structure with either a localized or
distributed nonlinear source, due to the interaction of the propagating waves with the
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nonlinear source, the induced displacement u1 can be expressed as the summation
of the linear, uL1 , harmonics, uH1 , and modulation, uM1 , components [13, 14]:

u1 = uL1 + uH1 + uM1 (17.5)

where

uL1 = AL1 exp (i (κax − 2πfat))+ BL1 exp (i (κbx − 2πfbt)) (17.6)

uH1 = AH1 exp (2i (κax − 2πfat))+ BH1 exp
(
2i
(
κbx − 2πf bt

))
(17.7)

and

uM1 = AM1 exp (i [(κb ± κa) x − 2π (fa ± fb) t]) (17.8)

where AL1 and BL1 are the amplitudes of the linear components at fa and fb, AH1
and BH1 are the amplitudes of the second harmonics at 2fa and 2fb induced by
the nonlinear source, respectively. AM1 is the amplitude of the first modulations
(sidebands) at fa ± fb induced by the mutual interaction between the input waves
at the nonlinear source. For simplicity, higher-order nonlinear components are
omitted. This phenomenon is called nonlinear ultrasonic modulation or nonlinear
wave modulation. Because this phenomenon occurs only if there are nonlinear
sources, it can be considered a signature of the presence of nonlinearity, and thus
the existence of nonlinear damage, assuming that the inherent material nonlinearity
is weak. Indeed, most structural damage evolves in a nonlinear manner, causing an
intact structure with predominantly linear properties to exhibit nonlinear properties
[15–22].

17.3.2 Necessary Conditions for Nonlinear Ultrasonic
Modulation

Actually, nonlinear wave modulation can be produced by either the distributed
material nonlinearity or a localized damage. Relevant findings are summarized as
follows [23]:

(1) Distributed material nonlinearity: The source of material nonlinearity can be the
crystallographic defect or irregularity within a material, including distributed
dislocation and interatomic potential in the material. Besides, initial micro-
cracks/voids distributed over the entire material can also contribute to the
material nonlinearity. Comparing with the localized nonlinearity caused by
damage such as a fatigue crack, the distributed material nonlinearity is not
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localized (global characteristic) and usually shown to be weak [24, 25]. How-
ever, the distributed material nonlinearity can occasionally give non-negligible
contribution to the measured nonlinear components [14].

(2) Localized damage nonlinearity: Take the crack damage as an example. The
crack surface will alternate between open and closed (contact) conditions when
ultrasonic waves or vibrations are applied to the cracked structure. This is
known as “breathing crack” or “contact acoustic nonlinearity (CAN)” [14, 18,
26, 27]. For cracks with rough surfaces, even when they are not completely
open or closed (“micro-contact”), they are still able to produce localized
nonlinearity [28]. Additionally, it is demonstrated that dissipative mechanisms
(friction) between the crack surfaces can also cause nonlinearity. This localized
nonlinearity caused by crack opening/closing or friction has been shown to be
much stronger compared to the distributed material nonlinearity [24] (Klepka
et al. 2002).

However, there are some conditions need to be satisfied to observe the mod-
ulations with both distributed material nonlinearity and a localized damage. The
necessary conditions for the distributed material nonlinearity in a plate-like structure
can be summarized as below:

(1) Synchronism condition: In the propagating waves, the phase velocities of HF
and LF inputs, fa and fb, should be identical to the phase velocity at fa ± fb [13,
29]. From the viewpoint of vibration, the mode shape of vibration at fa ± fb
should be resulted from the point-wise multiplication of the vibration mode
shapes caused by the HF and LF inputs [30].

(2) Non-zero power flux condition: From the viewpoint of wave propagation, in
order to transmit the energy from the input waves to the nonlinear modulation
waves, the mode types of both the input waves and the modulation waves should
be matched [13, 29]. For a plate-like structure, only the S Lamb wave modes
can produce nonlinear harmonic waves at even order harmonics [31]. Similarly,
when the HF and LF inputs are both A Lamb wave modes, they will not be able
to generate the first nonlinear modulation components (fa ± fb). For vibrations,
in addition to the thickness direction, the mode types (longitudinal or flexural)
should also be matched in the longitudinal direction.

Also, the necessary conditions for localized nonlinearity such as a fatigue crack
in a plate-like structure can be summarized as follows [23]:

(1) Crack perturbation condition: Both the input waves should oscillate the strain
at the crack. In stationary vibrations, the node is defined as a point where
the vibration shows the minimum amplitude (zero strain), whereas the anti-
nodes refer to the maximum amplitude (maximum strain). Thus, the nonlinear
modulation will not be generated when the crack happens to be located at one
of the vibration nodes induced by the inputs. For transient wave propagation,
this condition is unconditionally satisfied since the strain at the crack must be
perturbed during the wave propagation.
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(2) Mode matching condition: One of the input waves should be modulated at the
crack location by the crack motion induced by the other wave. For example,
a HF longitudinal wave and a LF shear horizontal wave are propagating in
the x-direction through a crack. Here, the crack orientation (z-direction) is
perpendicular to the wave propagation direction. Crack motion caused by the
LF shear horizontal wave (crack oscillation/ friction in the y-direction) will not
modulate the HF longitudinal wave because their motions are orthogonal to
each other. Thus, nonlinear modulation will not be produced in this example. A
previous study also demonstrates that large amplitude of nonlinear modulation
can be observed if the ultrasonic signal is modulated by the crack motion
(Klepka et al. 2002).

17.3.3 Controlling of the Inputs for Nonlinear Ultrasonic
Modulation

There are two practical solutions to ensure that the modulation can be generated and
detected from a damaged structure:

(1) The first method is to sweep the input frequencies. That is, a fixed LF and a
sweeping HF signals are used as input or the other way around. Didenkulov
et al. found that cracks in concrete beams generated significant modulation
components when a sweeping LF signal was used [32]. The sweeping of HF
input for the modulation generation was studied by Duffour et al. [27]. This HF
dependence was also noted by Courtney et al. [33]. A fixed LF and a sweeping
HF were used to find an optimal combination that can amplify the modulation
level caused by a crack [30].

Moreover, both the HF and LF inputs can be swept to increase the possibility
to satisfy the necessary conditions for modulation generation. For example, a first
sideband spectrogram is created by sweeping both the LF and HF inputs over
specified frequency ranges to study the effect of input frequency combination on
the modulation amplitude [34]. This experiment was conducted on aluminum plate
specimens with a fatigue crack, and Fig. 17.8 gives an example of the first sideband
spectrogram by sweeping the LF inputs from 10 to 20 kHz and the HF inputs
from 80 to 110 kHz. It can be seen that only for certain HF and LF combinations,
the nonlinear modulation components have higher amplitudes in the presence of a
fatigue crack. Though sweeping of the input frequencies can increase the possibility
of modulation generation for structural damage detection, sweeping over a wide
frequency range takes a long data collection time and can be impractical for field
applications.

(2) The second method is to use a wideband signal as an input. That is, rather
than using two distinctive input frequencies, a single wideband excitation is
used instead [35–37]. When a wideband excitation signal (e.g., a pulse laser)
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Fig. 17.8 The first sideband spectrogram obtained from aluminum specimens by sweeping the HF
inputs from 10 to 20 kHz and the LF inputs from 80 to 110 kHz: (a) intact case, (b) damage case
[34]

Fig. 17.9 Illustration of nonlinear ultrasonic modulation using a wideband input: (a) intact case,
(b) damage case [35–37]

is applied to a structure, different frequency peaks will be generated in the
frequency domain due to different wave modes, such as guided waves (Lamb
waves) propagating in a plate and standing waves of a structure. Nonlinear
ultrasonic modulation can take place among these different frequency peaks
if there is damage in the structure, as shown in Fig. 17.9. In this way, the
wideband input guarantees that the necessary conditions can be satisfied among
at least certain frequency combinations in the generated frequency band. Here,
the test data collection time can be significantly reduced compared with the
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time using frequency sweeping. Because the nonlinear modulation components
and the linear response components may overlap in the frequency domain
using a wideband input, it requires additional damage detection techniques to
investigate the generation of nonlinear modulation components under a damage
condition.

One issue to be concerned is that the energy level for each frequency component
under a wideband input might be much lower than the energy level achieved with
two single distinctive input frequencies. However, the feasibility of nonlinear wave
modulation with a wideband input has been indirectly proven in several studies.
de Lima et al. showed that nonlinear modulation can be produced even at a very
low strain level by the crack-induced dislocation, friction, stress concentration,
or temperature gradient [29]. Van Den Abeele et al. investigated the effect of
the strength of the LF input signal on the modulation energy, and showed that
the nonlinear modulation in a structure with nonlinearity remains significant and
measurable even when the strength of the LF signal is almost zero [28]. Therefore,
even when the energy level at each frequency component caused by a wideband
excitation is relatively low, the nonlinear behavior of a damaged structure can still
be detected using the wideband input. In addition, because multiple frequency peaks
can be generated by a wideband excitation, higher-order nonlinear modulations
(cascade cross modulations) can be generated as well in the presence of damage.

17.4 Damage Detection Techniques Using Noncontact
Nonlinear Ultrasonic Modulation

The majority of existing nonlinear ultrasonic modulation-based damage detection
techniques use two distinct frequencies as inputs. Structural damage is detected by
comparing the nonlinear features (e.g., the nonlinear modulation amplitude or the
nonlinear coefficient) obtained from the current state of structure with the baseline
data obtained from the intact condition. However, there are two major issues need
to be considered: (1) The amplitude of the damage-induced modulation components
is at least one or two orders of magnitude smaller than that of the linear response
components. Test noises, varying with environmental and operational conditions,
can deteriorate the performance of these damage detection techniques; and (2) The
input frequencies need to be carefully selected, because the generation of nonlinear
modulation also depends on the choice of the input frequencies and can also be
easily affected by the configuration of the damage as well as by variations in the
environmental and operational conditions (e.g., temperature and loading) of the
target structure.

This section lists some representative damage detection techniques using non-
contact nonlinear ultrasonic modulation, which can tackle the above-mentioned
issues to a certain extent.
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Fig. 17.10 Illustration of sequential outlier analysis with multiple LF and HF inputs

17.4.1 Sequential Outlier Analysis Technique

The first structural damage detection technique is based on sequential outlier
analysis [38]. As previously discussed, the nonlinear modulation components can be
generated only at some specific input frequency combinations even at the presence
of nonlinear sources, and the optimal input frequency combinations will change
over time for field applications due to operational and environmental variations.
Here, the principle idea is to sweep the input LF and HF signals over a specified
frequency range. A damage index (DI), indicating the nonlinear modulation in the
measured response, is calculated for each LF and HF combination. Since nonlinear
ultrasonic modulation doesn’t occur for all the LF and HF combinations, damage
can be detected without relying on any baseline data through a simple sequential
outlier analysis of all the DIs. The procedure of the sequential outlier analysis can
be summarized as follows (Fig. 17.10) [39]:

(1) All DI values are rearranged in an ascending order.
(2) For the n-1 smallest DI values, a parametric distribution is fitted assuming that

there are no outliers among these n-1 DI values. A threshold is then computed
from this fitted distribution with a user specified confidence level.

(3) If the nth smallest DI value is over the threshold, it indicates the existence of
damage and all the DI values larger than the nth DI value are determined as
outliers, as illustrated in Fig. 17.9. If not, repeat steps (2) and (3) for the next
smallest value n + 1 until the largest DI value is tested.

17.4.2 Spatial Comparison Technique

The second structural damage detection technique is based on spatial comparison
[40]. By taking advantages of a laser ultrasonic scanning system, ultrasonic response
obtained from a specific spatial point can be compared with other responses obtained
from its spatially adjacent points. The basic premise is that, unless there exists
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Fig. 17.11 Illustration of
spatial comparison technique
through laser scanning

anomaly (e.g., damage) among spatially adjacent points, ultrasonic waves from
these points should be similar. Thus, without the baseline data from the intact
condition, damage can still be detected or even visualized by spatial comparison.
The basic procedure can be summarized as follows:

(1) When the sensing/excitation point is fixed on the target structure, the responses
are measured for all the scanning excitation/sensing points within a specified
inspection area as illustrated in Fig. 17.11.

(2) For each spatial point in the inspection area, the response signals obtained from
its adjacent points are used as references. The current response from each spatial
point can be compared with the adjacent references signals, and DI can be
acquired for each spatial point.

(3) All DI values can be visualized for the entire inspection area, and spatial points
with high DI values indicate the existence and the location of the damage.

17.4.3 Sideband Peak Count Technique

This sideband peak count (SPC) technique is for damage detection using nonlinear
ultrasonic modulation with a wideband input. This SPC technique keeps track of
the relatively weak spectral peaks, rather than the dominant peaks, generated due
to the damage-induced nonlinear modulation [35–37, 41]. The procedure for SPC
technique can be summarized as follows [35–37]:

(1) Spectral density distribution Px(f ) of the wideband ultrasonic response sig-
nal x(t) is calculated in the frequency domain:

Px(f ) = E [X(f )X∗(f )
]

(17.9)
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Fig. 17.12 Illustration of sideband peak count (SPC) technique: (a) a moving threshold is set to
count the ratio of the spectral peak number over the threshold to the total peak number, (b) SPC
difference increases in the damage case especially when the threshold is low [35–37]

where X(f ) is the Fourier transform of x(t) and “asterisk” denotes the complex
conjugate. Px(f ) within a specified frequency range is selected and normalized to
fit its values within unity.

(2) The SPC is defined as the ratio of the spectral peak number (Np) over a moving
threshold (T) to the total peak number (Nt) within the specified frequency range,
as shown in Fig. 17.12a. When T moves from 0 to 1, the SPC value varies with
T, and a SPC plot can be achieved:

SPC(T ) = Np(T )

Nt
(17.10)

(3) A SPC difference is calculated between the SPC plots obtained from the current
and reference conditions. As the level of nonlinearity increases, more sideband
peaks show up in the spectrum or the sideband energy grows as a consequence.
Therefore, the SPC plot will show larger values for the damage case than for the
intact case, and the SPC difference becomes positive for the damage case. The
maximum SPC difference (MSPCD) is selected as a nonlinear damage feature
for damage detection:

MSPCD = max(SPCc − SPCr ) (17.11)

where SPCc and SPCr are the SPC plots obtained from the current and reference
conditions, respectively. Figure 17.12b shows a representative plot of SPC differ-
ence obtained from an experiment.

Here, in conjunction with the spatial comparison technique in Sect. 17.4.2, the
SPC can becalculated for all spatial points within the scanning area. For each spatial
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point, the MSPCD is then achieved by comparing its SPC plot with other reference
SPC plots obtained from its adjacent points. Slightly different from Eq. (17.3), the
MSPCD here is redefined as:

MSPCDn = max
(∣∣SPCc − SPCr,n

∣∣)

MSPCD = 1

N

∑N

n=1
MSPCDn (17.12)

where SPCr, n is the reference SPC plot from each adjacent point, and N is the
total number of the adjacent points. In this way, damage can be detected and even
visualized by spatial comparison, which frees the SPC technique from the adverse
influence caused by varying operational and environmental conditions of the target
structure.

To further improve the SPC technique, ultrasonic response signals are trans-
formed into a new spectral correlation domain instead of the spectral frequency
domain [42]:

Sx (fa, fb) = E [X (fa)X∗ (fb)
]

(17.13)

when fa = fb = f, Sx(f, f ) equals to its spectral density function Sx(f, f ) = Px(f ) =
E[X(f )X∗(f )]. Here, if the specified range of f varies from f1 to f2, the new SPC oper-
ation is conducted in the corresponding spectral correlation region Sx(fa, fb) (fa > fb),
as shown in Fig. 17.13. The SPC in Eq. (17.10) is redefined as the ratio of the
number of the spectral correlation peaks over a moving threshold plane to the
total peak number within a specified spectral correlation region. Then, we can
calculate the SPC difference and obtain the MSPCD value as defined in Eq. (17.11)
or (17.12). Because of some properties of spectral correlation, compared with the
SPC technique in the spectral frequency domain, this new SPC technique owns the
following advantages: (1) It is more robust against noise interferences; and (2) It
owns a higher sensitivity to damage.

Fig. 17.13 Illustration of
SPC technique in the spectral
correlation domain
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17.4.4 State Space Attractor Technique

The state space attractor technique is another technique to estimate the nonlinearity
within the response to a wideband excitation. Recently, the sensitivity of data-driven
dynamic state space attractors to nonlinear damage has been shown by checking
the geometric variations of the attractors obtained under either deterministic or
stochastic excitations [35–37, 43–45].

Considering the target structure as a dynamical system, and let us assume the
dynamical system can be described by a first-order differential equation:

ẋ = f (x, t) (17.14)

With an initial value x(0) in a state space defined by the system variables x, the
solution to this equation will trace out a trajectory, and this trajectory will approach
a state space attractor of the dynamical system as the transients die out. This state
space attractor is defined as a geometric object to which all trajectories belong
in the state space [44]. In practice, lag copies of a single time series x(n) of the
system response data can be concatenated to qualitatively reconstruct the attractor
according to the mathematical embedding theory proposed by Takens [46]. Here n
(n = 1, 2, . . . , N) is the discrete time index. The reconstructed attractor X at each
discrete time instance can be expressed as:

X(n) = [x(n), x (n+ Tlag
)
, . . . , x

(
n+ (m− 1) Tlag

)]

n = 1, 2, . . . , N − (m− 1) Tlag (17.15)

where Tlag is the time lag and m is the embedding dimension (Fig. 17.14). Only
with proper selection of Tlag and m, the reconstructed state space attractor can
truly preserve the underlying system dynamics. The autocorrelation method and
the average mutual information (AMI) function are commonly used for selection of
Tlag. As for selection of m, two common techniques are the false nearest neighbors
(FNNs) method and the singular system analysis. Readers can find details about
these aforementioned methods in Overbey et al. [45].

In order to quantitatively indicate the geometric variation of the state space
attractors, a statistical distance called Bhattacharyya distance (BD) is introduced
as the nonlinear damage feature [40, 44, 45]. Here, two time series are needed, one
from the current condition of the target structure and the other from a reference
condition. Thus, two attractors can be reconstructed, namely current attractor X
and reference attractor Y, respectively. The procedure for BD extraction can be
summarized as follows (Fig. 17.15):

(1) Q fiducial points Y(i) (1 ≤ i ≤ N − (m − 1)Tlag) are randomly selected from
Y. To make sure the extracted BD feature is not affected by the addition of
successive fiducial points, a convenient rule is to choose the number Q = N/100
[47].
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Fig. 17.14 Illustration of state space attractor reconstruction from a single time series

(2) For each fiducial point Y(i), P nearest neighbors Xci(j) (1 ≤ j ≤ N − (m − 1)Tlag)
are selected from X. An optimal choice is P = N/1000 [48]. The fiducial point
and its neighbors are then time-evolved with a time step L (in most cases, L = 1),
and the mass centroid is computed for the time-evolved neighborhood:

Ŷ c (i + L) = 1

P

∑

1≤j≤N−(m−1)Tlag

Xci (j + L) (17.16)

And the error between the mass centroid and the time-evolved fiducial point:

eci = ∥∥Ŷ c (i + L)− Y (i + L)∥∥ (17.17)

where ‖·‖ presents the Euclidean norm. Next, for each fiducial point, P nearest
neighbors Xri(j) are also selected from the reference attractor itself. Another error
eri can be calculated for each fiducial point using Eqs. (17.16) and (17.17). The total
number of eci or eri is Q.

(3) BD is computed to statistically estimate the difference between eri and eci

obtained from the reference and current attractors:

BD = 1

4

(μc − μr)2
σc2 + σr2 + 1

2
ln

[
σc

2 + σr2

2σcσr

]
(17.18)

where μr, σ r and μc, σ c denote the mean and standard deviation of eri and eci,
respectively. If the current condition of the target structure differs from its reference
condition, there will be a big geometrical variation between the reconstructed
current attractor and the reference attractor, resulting in a large BD value.

Also, in conjunction with the spatial comparison technique in Sect. 17.4.2, the
state space attractor can be reconstructed for all spatial points within the scanning
area, and the BD value can be computed by spatial comparison. For each spatial
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Fig. 17.15 Overview of the BD computation between the current and reference state space
attractors [40]

point, the attractors reconstructed from its adjacent points can be treated as its
reference attractors. In this way, even without the baseline data obtained from the
intact condition, damage can also be detected or visualized.
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Fig. 17.16 Experimental
configuration for nonlinear
ultrasonic modulation using
ACTs [6]

17.5 Applications Using ACT-Based Measurement Systems

17.5.1 Fatigue Crack Detection in Plates

As shown in Fig. 17.16, a pair of focused ACTs was used to generate and receive
high frequency (HF, ω ≈ 450 kHz) longitudinal or flexural waves in plate-like
samples. Low frequency (LF, � ∼ 1–20 kHz) vibrations were excited with a shaker
or a loudspeaker [6]. Here, 2D scanning of the co-axial ACTs over the plate-
like samples was implemented by a stepping motor controlled scanning assembly.
In this experiment, two different acoustic modes of operation were used, namely
normal transmission mode (NTM) and slanted transmission mode (STM). In NTM,
longitudinal waves were generated and transmitted through the sample by aligning
the ACTs normal to the sample surface (θ0 = 0 in Fig. 17.16). In STM, A0 Lamb
wave mode was generated along the sample by adjusting the incidence angle θ0
according to the Snell’s law.

The plate used in experiment was a thin plate of polystyrene with a thickness
of 1.15 mm. A realistic cutting crack was made by an impacting hammering in the
plate. Figure 17.17 shows the NTM linear and sideband (modulation) B-scans of
the impact crack in plate. Both the linear and sideband images clearly discern the
crack by a local increase in a linear transmission or sideband generation. However,
the contrast of the images was measured to be different: ΔV/V ≈ 5 for the linear
image, which is much lower than ΔV/V ≈ 80 at the modulation components. Here,
V is the average value of the intact area, and ΔV is the difference between the
measured value from the crack and V. Figure 17.18 gives the STM mode results for
the impact crack. Firstly, the image at the fundamental frequency drops down at the
crack location because of flexural wave scattering while the sideband images rise
at the crack location due to local nonlinear generation, giving an inverse contrast of
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Fig. 17.17 Crack imaging in NTM: (a) linear image (at fundamental frequency 451.4 kHz), (b)
sideband image (at first difference frequency 449.7 kHz), and (c) sideband image (at first sum
frequency 453.1 kHz) [6]

Fig. 17.18 Crack imaging in STM: (a) linear image (at fundamental frequency 452.7 kHz), (b)
sideband image (at first sum frequency 454.4 kHz), and (c) sideband image (at second sum
frequency 456.1 kHz) [6]

images in Fig. 17.18. Secondly, the contrast of the images also reveals an evident
priority for the sideband images:ΔV/V ≈ − 0.5 for the linear image, which is much
lower than ΔV/V ≈ 10 at the modulation components.

Another experiment was conducted on aluminum plates with fatigue cracks
[19]. Two distinctive frequency input signals were created by two ACTs and the
corresponding ultrasonic responses were scanned using a 3D LDV, as shown in
Fig. 17.19. For each scanning point, the damage index (DI) was defined as the first
sideband components normalized with respect to the multiplication of amplitudes of
LF and HF inputs. After visualizing all the DI values, fatigue crack can be detected
and located, as explained in Sect. 17.4.2. Two aluminum plates were fabricated and
micro-cracks and a macro-crack were introduced to specimen I and II, respectively,
after different cycles of tensile loading. The lengths and widths of micro-cracks near
the center hole of specimen I were less than 60 μm and 1 μm, respectively. For the
macro-crack in specimen II, micro-cracks at the indented point and the crack tip
were also observed.

Considering the conditions for modulation generation, 45 and 160 kHz were
selected for specimen I, and 46 and 156 kHz for specimen II. Figure 17.20 shows
the visualization results for specimens I and II using all the DI values extracted
from the measured in-plane response components. For specimen I, because of the
formation of micro-cracks, high DI values exist near the center hole (Fig. 17.20a).
For specimen II, it is noted that the highest DI values are observed near the
indented point and the crack tip (Fig. 17.20b). This experiment shows that the largest
nonlinear ultrasonic modulation occurred where the crack width is less than 1 μm.
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Fig. 17.19 Experimental
configuration for noncontact
fatigue crack visualization
using ACTs for ultrasonic
generation and LDV for
ultrasonic response scanning
[19]

Fig. 17.20 Visualization results for (a) the micro-crack (specimen I) and (b) macro-crack
(specimen II) [19]

17.5.2 Fatigue Crack Detection in Rotating Shafts

Shafts in drop lifts are very susceptible to fatigue cracks as they are often under
high speed rotation with a repetitive heavy loading. However, it is difficult to
use conventional contact transducers to monitor these shafts because they are
continuously under rotation and hard to access physically.

In the experiment, noncontact ACTs were used for fatigue crack detection in
a scaled steel shaft specimen [49]. As shown in Fig. 17.21a, the scaled shafts are
composed of three parts with different diameters. Through cyclic torsional loading
of 5 kN · m, a fatigue crack was introduced after 15,000 cycles at the connection
area between the leftmost and the center parts. The fatigue crack was then visualized
in a penetrant testing (Fig. 17.21b). Figure 17.22 represents the overall setup for this
experiment. For various input frequency combinations, the LF input was varied from
90 to 135 kHz with 5 kHz increment, and the HF input from 150 to 170 kHz with
10 kHz increment, respectively.

The overview of the experimental procedure is provided here. First, LF and HF
inputs are simultaneously applied through two ACTs, respectively, to the shaft for



686 H. Sohn et al.

Fig. 17.21 (a) Steel shaft specimen with a fatigue crack and (b) close-up image of the fatigue
crack through a penetrant testing [49]

Fig. 17.22 Experimental setup for noncontact fatigue crack detection in a shaft [49]

generating nonlinear ultrasonic modulation. LF and HF inputs are also individually
applied to the shaft for removing the noise effect at the modulation frequencies.
Then, a damage index (DI) is defined as the energy of the first nonlinear modulation
components. Finally, the previous operations are repeated with different HF and LF
input combinations. Fatigue crack is then detected via an outlier analysis of all the
DI values, assuming not all the input frequency combinations satisfy the necessary
conditions for nonlinear ultrasonic modulation, as explained in Sect. 17.4.1.

Figure 17.23 presents the sorted DI values and the threshold values calculated
using the above-mentioned sequential outlier analysis for both intact and damaged
shafts. For the intact shaft (Fig. 17.23a), the DI values from all the input frequency
combinations do not exceed the outlier threshold. But for the damaged shaft (Fig.
17.23b), there are four DI values higher than the outlier threshold, implying the
existence of crack in the shaft. Note that the outlier threshold is automatically
determined for each shaft, without any comparison with reference or baseline data.
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Fig. 17.23 Sorted DI values and the corresponding threshold calculated using a sequential outlier
analysis for (a) an intact shaft and (b) a damaged shaft [49]

17.6 Applications Using Laser-Based Measurement Systems

17.6.1 Fatigue Crack Detection on Plates

The first example used a laser-based monitoring system for crack detection in a
plate of colored glass, as shown in Fig. 17.24. Different from the laser measurement
system introduced in the previous section, this laser system tried to generate LF and
HF input signals by periodically modulating the intensity of continuous wave lasers
[50]. Here, the LF was set as 1 Hz, and the HF as 16 kHz. The HF was chosen to
maximize the amplitude of the detected signal.

This experiment first studied the use of laser-induced heating to tune the crack
locally to its most nonlinear state. As shown in Fig. 17.25a, when LF was set to
0 Hz, the dependence of the acoustic signal on the power of the laser at HF = 16 kHz
was determined. When the laser power increases from 40 to 120 mW, the strongest
dependence of the optoacoustic conversion efficiency on the laser power is found
at approximately 80 mW. This observation can be attributed to heating-induced
transition of the crack from an open to a closed state. Thus, when the laser power
is around 80 mW, the crack will show the most nonlinearity. This was confirmed
by the test results of nonlinear ultrasonic modulation shown in Fig. 17.25b, c.
In Fig. 17.25b, c, the LF was modulated at LF = 1 Hz, and the signals at HF,
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Fig. 17.24 Experimental setup for crack detection in a plate of colored glass [50]

Fig. 17.25 Dependence of the photoacoustic signal amplitude on the heating laser power at
frequencies HF (dotted line), HF+LF (dot-dashed line), and HF-LF (solid line). (a) Unmodulated
laser heating, (b) modulated laser heating, detected by a laser vibrometer, and (c) modulated laser
heating, detected by an in-contact accelerometer. Amplitudes at frequencies HF+LF (dot-dashed
line) and HF-LF (solid line) are multiplied by 4 and 2, respectively, in (b, c) [50]

HF+LF, and HF-LF were detected by a laser vibrometer and by an accelerometer for
comparison, respectively. Here, the maximum signals at the modulation frequencies
were detected at approximately 80 mW average power of the laser.

Figure 17.26 presents the result of one-dimensional scanning image of a crack.
For this result, the test was conducted on a somewhat different sample, and the lasers
were modulated with LF = 2 Hz and HF = 18 kHz. The modulation at HF ± 2LF
was measured. The relative position between the excitation laser beams and the
crack was adjusted progressively by moving the sample in a direction perpendicular
to the crack, with a moving step of 50 μm. From Fig. 17.26, it shows that only the
modulation components provide sufficient contrast for reliable determination of the
position of the crack.

Another experiment was conducted on aluminum plates with fatigue cracks using
the laser measurement system introduced in Sect. 17.2.5 [35–37]. Two identical
aluminum plates were prepared, and a notch was introduced in the middle of
one side of the specimen as shown in Fig. 17.27. Fifteen millimeter long fatigue
cracks were introduced to each specimen through fatigue tests. The crack widths
are generally less than 10 μm and even less than 5 μm around the crack tips.
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Fig. 17.26 Dependence of
the amplitude of the
photoacoustic signal on the
relative position between the
common focus spot of the
laser beams and the crack at
frequencies HF (open
triangle), HF+2LF (squares),
and HF-2LF (circles) [50]

Fig. 17.27 Specimen dimensions, crack location, and laser excitation and sensing arrangement
[35–37]

Figure 17.27 also defines six pairs of excitation and sensing laser beam points for
examining the capability of damage localization based on the nonlinear ultrasonic
modulation technique. For each specimen, ultrasonic responses were measured three
times from every path in the intact condition. Among the three measured responses,
one was treated as the reference signal and the other two as the signals collected for
the intact case. After the fatigue test, ultrasonic responses were recorded once again
for the damage case.

In this experiment, since the input signal is a pulse laser, the sideband peak count
(SPC) technique, which is introduced in Sect. 17.4.3, was adopted to statistically
estimate the crack-induced nonlinear modulation. Figure 17.28 shows the SPC value
and its difference from the reference case obtained for the intact and damage cases
of specimen I. As path 2 passing through the crack tip, difference can be clearly
observed between the intact and damage cases, as shown in Fig. 17.28a. Especially
when the threshold is relatively low, the maximum SPC difference (MSPCD) can be
achieved over 0.15 for the damage case. As for path 3 not passing through the crack,
the corresponding SPC and its difference are plotted in Fig. 17.28b. By comparison,
it can be seen that, when the generated ultrasonic waves propagate directly through
the crack tip, a higher MSPCD value can be obtained in the damage case than in the
intact case.
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Fig. 17.28 SPC and its difference plots obtained from different paths in specimen I: (a) path 2,
(b) path 3 [35–37]

The MSPCD values corresponding to all the six paths in the two specimens
are calculated and summarized in Fig. 17.29. It shows that the MSPCD value is
much higher for the path passing through the crack, especially through the crack
tip. Note, the power level was kept below 0.2 MW for the excitation laser beam
in this experiment, to make sure that it can cause crack opening and closing only
as the generated ultrasonic waves pass directly through the crack. Figure 17.29
also implies that the crack tip shows the highest nonlinearity as the crack width
is minimum and the crack opening and closing is most prominent at the crack tip.

17.6.2 Delamination/Debonding Detection on Wind Turbine
Blades

An actual 10 kW wind turbine blade (Fig. 17.30) was fabricated for additional
validation of the noncontact nonlinear ultrasonic modulation technique. The wind
turbine blade is made of glass fiber reinforced polymer (GFRP) material, consisting
of 6 piles with a layup of [0/±45]s. For the GFRP material, its elastic modulus E1,
shear modulus G12, and poisson ratio ν12 are 24.65 GPa, 8.532 GPa, and 0.476,
respectively [40].
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Fig. 17.29 MSPCD obtained under laser pulse excitation with 0.2 MW peak power: (a) specimen
I, (b) specimen II [35–37]

Fig. 17.30 Dimensions of a full scale wind turbine blade with simulated delamination and
debonding [40]

As shown in Figs. 17.30 and 17.31, two types of typical damages for composite
structures, namely delamination and debonding, were intentionally produced during
the fabrication of the wind turbine blade. To simulate the delamination damage, a
circular Teflon tape with a diameter of 15 mm was inserted between 3rd and 4th
ply during the blade fabrication. As for the debonding damage, a small localized
gap was introduced by removing some glue between the blade skin and a stiffener
adhering to the skin.

This experiment used the laser measurement system introduced in Sect. 17.2.5
and the scanning laser excitation and fixed laser sensing strategy was adopted
for damage detection. As shown in Fig. 17.31, the scanning area was defined as
a 50 × 50 mm square area containing the delamination or debonding damage.
For excitation scanning, 400 (20 × 20) excitation points were defined within the
scanning area with a spatial resolution of 2.5 mm. The distance from the fixed
laser sensing point to the closest excitation point was 20 mm. For each excitation
point, the ultrasonic response was measured for 0.4 ms long with a sampling rate of
2.56 MHz and 100 time averaging to improve its signal to noise ratio.
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Fig. 17.31 Close-up images of the simulated damages and the defined laser scanning region: (a)
delamination, (b) debonding (front view), and (c) debonding (back view) [40]

Fig. 17.32 Parameter selection results using average mutual information (AMI) and false nearest
neighbors (FNNs) functions: (a) time lag Tlag and (b) dimension m [40]

The state space attractor technique, which is introduced in Sect. 17.4.4, was
adopted to detect the damage-induced nonlinear modulation. For proper reconstruct-
ing the state space attractor, relevant parameters need to be first selected, including
the optimal time lag Tlag and the embedding dimension m. Figure 17.32 presents the
selection results for Tlag and m by using the average mutual information (AMI) and
false nearest neighbors (FNNs) functions, respectively. Here, ten randomly selected
ultrasonic responses from the two scanning areas were used as input to the AMI and
FNNs functions. The proper parameters are selected when AMI or FNNs values
decline to almost zero. In this experiment, Tlag = 30 and m = 6 was selected for
attractor reconstruction.

After the attractors were reconstructed using the selected parameters, BD values
were then calculated for all the scanning points and visualized for damage detection
from the two scanning areas, as shown in Fig. 17.33. It can be seen that the BD
values significantly increase at the edge of the damaged area. This is because the
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Fig. 17.33 Damage detection results based on the state space attractor technique: (a) delamination
and (b) debonding [40]

edge of damage in this experiment shows the highest acoustic nonlinearity. As for
the scanning points in the middle of the damaged area, the corresponding BD values
remain low because the scanning points within the damaged area are all affected by
the damage.

17.7 Discussions

ACT and laser, as fully noncontact transducers, can be rapidly deployed and require
less maintenance since no sensors are needed to place on the target structure.
However, both the ACT and laser also have some limitations which need our
attention for future improvement. For ACT, its limitations mainly include: (1) High
transmission power is in requirement due to acoustic impedance mismatch; (2)
Proper ACT alignment demands the pre-knowledge of wave speed in the target
structure; and (3) High spatial resolution is hard to achieve during ACT scanning.
For laser, its limitations include: (1) The laser excitation is limited to pulse form for
effective thermal/ultrasonic wave generation; (2) High spatial resolution for laser
scanning requires long date collection time; (3) The laser test can be affected by the
surface condition of the target structure; and (4) Retinal or skin damage might be
caused when the high-power laser beam is directly or indirectly exposed to eye or
skin.

To tackle these limitations, besides further optimization of the ACT and laser
transducers (allowing a portable instrument of uncompromised performance), there
are some researchers working on the experimental approaches with these noncontact
transducers. For example, to accelerate the scanning procedure, several techniques
have been developed via two-stage scanning [51], or compressed sensing with
binary search [52]. Moreover, multi-channel systems with ACT or laser have
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been developed also allowing rapid inspection of the target structure with high
spatial resolution. However, these improved techniques still need to be explored
for nonlinear ultrasonic modulation-based structural damage detection.

For fatigue crack and delamination detection, the noncontact nonlinear ultrasonic
modulation technique has shown its capability to detect and locate fatigue crack and
delamination at the early stage. Still, there is more work need to be explored, such
as damage quantification using nonlinear features. Moreover, for fatigue crack, a big
challenge is to predict the crack growth based on the noncontact nonlinear ultrasonic
modulation technique. Considering the nonlinear techniques are much more sensi-
tive to micro-crack than the macro one, a promising approach for crack prognosis
is to fuse the nonlinear features with the linear ones. Another challenge for fatigue
crack detection is to detect the closed cracks, which may suppress the modulation
effect to an unmeasurable level. For delamination detection, besides its location, the
depth of the delamination is also very crucial in some applications. On the other
hand, the applications of noncontact nonlinear ultrasonic modulation technique can
be expanded to defect detection on micro structures such as semiconductor chips
and printed circuit boards, where there is no access to attach transducers.

17.8 Conclusions

This chapter explores the applications of the nonlinear ultrasonic modulation tech-
niques in a noncontact manner, which can be realized using air-coupled transducers,
laser, and so forth. The noncontact nonlinear ultrasonic modulation techniques
can provide the following advantages: (1) Spatial resolution much higher than
most conventional discrete sensors can achieve can be easily realized; (2) Small
incipient damages in the range of micro-cracks and millimeter delamination can
be detected; (3) The proposed techniques can be applied to moving targets, micro
systems, and under harsh environmental conditions due to their noncontact nature;
and (4) Damage can be detected or visualized without the baseline data acquired
from the intact condition of the target structure. This chapter explains the basic
principle of nonlinear ultrasonic modulation and lists some corresponding damage
detection techniques. Moreover, several applications using the noncontact nonlinear
ultrasonic modulation techniques are provided for crack detection in plate and
rotating shaft specimens, and delamination and debonding detection on wind turbine
blade made of glass fiber reinforced polymer (GFRP) material.
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Chapter 18
Characterizing Fatigue Cracks Using
Active Sensor Networks

Ming Hong and Zhongqing Su

18.1 Introduction

Engineering structures and systems, such as aircraft, trains, pressure vessels, wind
turbines, and other civil infrastructure, are often operated in adverse working
conditions and are prone to various types of damage that may put their normal
operations at high risk. For metallic structures, which are ubiquitous in engineering
applications, one of the most representative damage types is fatigue accumulation,
which is caused by cyclic loading experienced throughout the entire life of many
structures. Without proactively evaluating or monitoring the health conditions of
these structures when they are in public service, fatigue damage may lead to
catastrophic consequences. For instance, the Eschede train disaster in 1998, which is
the deadliest high-speed train accident hitherto, was due to a single fatigue crack in
the wheel rim caused by repetitive loads [1]. In another instance, the disintegration
and crash of China Airlines Flight 611 in 2002, incurred from a tiny fatigue crack in
the doubler plate that grew substantially amid the harsh flight environment, serves
as another sad example in which all 225 people on board were killed.

In this backdrop, significant research and development efforts have been cast in
the field of nondestructive evaluation (NDE). NDE methods, usually carried out on a
routine schedule, attempt to identify any damage in an engineering structure in order
to prevent critical or catastrophic structural or system failure. Over the years, a wide
range of NDE techniques have been developed, exemplified by visual inspection,
ultrasonic scanning, radioscopy, dye penetrant testing, shearography, magnetic
resonance imagery, acoustical holography, eddy-current, infrared thermography,
laser interferometry, and so on [2–7]. These NDE tools have matured over the years
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and have been implemented successfully to enhance the integrity and reliability
of engineering structures. Generally speaking, it is understood that damage may
alter either local or global material properties of a structure, including its local
effective stiffness, density, thermal properties, electric/magnetic conductivity, strain
energy, and/or electro-mechanical impedance [8]. Using a variety of transducers,
NDE methods try to capture responses acquired from the structure, compare signals
retrieved at different times, and establish certain link between the differences in
signals to dominant features that may possibly identify and characterize damage.

In the context of fatigue damage identification, however, most existing NDE
techniques are inefficient and impractical. As mentioned before, traditional NDE-
based inspections are conducted periodically, disregarding any working condition
change or progressive deterioration of the structure. These intermittent inspections
are usually not robust enough to prevent structural failure that may occur without
any prior warning, such as small-scale fatigue cracks that may be formed and
developed very quickly during the operation of the structure. For example, the fall
of the vertical stabilizer off Flight TS 961 (Airbus A310) in 2005 occurred only
five days after its routine A-check, while the next major C-check was scheduled
for one year later [9]. Meanwhile, many NDE techniques consume a considerable
amount of time, require downtime of inspected structures, and thus incur high cost
in terms of labor and operational disruption. Confronted by these two inherent
bottlenecks, traditional NDE techniques are not well suited for automatic and real-
time evaluation of service conditions of materials and structures that experience
continuous cyclic loading, owing to the point-by-point inspection philosophy and
bulky devices adopted, which are developed to best accommodate offline periodical
maintenance.

Enabled by recent technological advances and breakthroughs in sensor tech-
nology, signal processing, informatics, applied mechanics, and material sciences,
some conventional NDE techniques have evolved to become the building blocks
of what is now known as structural health monitoring (SHM), which aims to
achieve continuous (or real-time), condition-based, and automated surveillance of
the overall integrity of structures during their normal operation. The idea of using
integrated sensor networks, pre-developed theoretical models, and advanced signal
processing and data management techniques has become particularly relevant and
promising for the characterization of early-stage fatigue damage, which have been
a major threat to many engineering structures as discussed earlier.

Among the existing techniques for fatigue damage identification, ultrasonic
guided wave testing (GWT) has emerged as one of the most effective tools,
particularly for plate-like structures where propagating elastic waves are confined
by boundaries and guided by the structure. This active, wave-based approach,
often used in conjunction with active sensor networks, canvasses damage-induced
local abnormalities in captured waves that propagate through the inspection area.
Compared with other techniques that examine diffuse defects and variations in
mechanical properties of materials, GWT-based methods show a prominent capa-
bility of assessing subtle flaws associated with strength variations. Central to the
increasing awareness of the use of GWT are the appealing merits of ultrasonic
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waves, including high sensitivity to structural damage, omnidirectional dissemina-
tion, fast propagation, and strong penetration through thickness, while maintaining
relatively high noise tolerance due to its active nature [10]. It can be implemented
with only a few miniaturized transducers with low energy consumption to scan a
substantial area promptly, with the prospect of being implemented for in situ damage
characterization. Hence, in this chapter, focus is placed exclusively on the modeling
of guided waves and its use in damage identification. In particular, nonlinear guided
wave features, to be introduced in Sect. 18.2, will be modeled theoretically and
numerically, and applied to the characterization of fatigue damage in conjunction
with the use of active sensor networks.

18.2 Guided Waves in Plate-like Structures

To understand how guided waves can be used to identify fatigue damage, particu-
larly early-stage fatigue cracks that are small in scale, it is necessary to first review
some fundamental properties of guided waves, as well as the feature types that can
be extracted from guided wave signals.

Guided waves are elastic waves that propagate in a waveguide such as a plate or
a shell, concentrate their energy near a single boundary or between two boundaries.
One type of guided waves of particular interest, called Lamb waves, is confined
within thin plate- or shell-like structures whose planar dimensions are far greater
than their thickness, which is on the same order of magnitude of the probing
wavelength. Since applications of plate-like structures are ubiquitous in engineering
structures (e.g., airplane wings, control surfaces, solar panels of satellites), using
Lamb waves for damage detection is highly representative of a diversity of guided-
wave-based NDE/SHM techniques. Therefore, in this chapter, discussions of guided
ultrasonic waves are primarily focused on the characteristics and usage of Lamb
waves, in the context of fatigue damage evaluation for thin plate structures.

18.2.1 Fundamentals of Lamb Waves

Since the 1990s, Lamb waves have become increasingly popular in the practices of
NDE and SHM, as people’s understandings in them advance with rapidly increasing
computational capabilities. As briefly mentioned earlier, Lamb waves feature a
range of superb characteristics, including:

• The ability to inspect a large area in a short amount of time, due to their fast wave
propagation and generally low attenuation;

• The capability of evaluating hidden or inaccessible structural components, thanks
to their omnidirectional propagation in the inspected structure;
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• Strong penetration through thickness, hence no need to remove any protective
layer of the structure;

• The superior sensitivity to various types of damage by making use of different
wave modes and diverse signal features;

• Low energy consumption; and
• Great potential for online SHM with cost-effective implementation using sparse

sensor networks.

It is not the authors’ intention to fully recapitulate the theoretical aspects of
Lamb waves, which have been addressed in the literature substantially [5, 8, 11, 12].
Nevertheless, for the application of active Lamb waves in damage characterization,
it is necessary to comprehend its key properties as discussed below.

Consider a thin, isotropic and homogeneous plate, the equation for elastic waves
propagating in such a medium can be described as [11]:

μ · ui,jj + (λL + μ) · uj,ji + ρ · fi = ρ · üi (i, j = 1, 2, 3) . (18.1)

In the above, fi signifies the body force, ui the displacement in the xi direction, ρ
the density, and μ the shear modulus of the plate. λ = 2μν/(1 − 2ν)ν is the Lamé’s
first parameter (ν is the Poisson’s ratio).

An efficient means to solve Eq. (18.1) resides on displacement potentials, which
employs Helmholtz decomposition [11, 12] to split displacement into scalar and
vector potentials. Under the plane strain condition and in the absence of body force,
the above equation can be decomposed into two uncoupled parts, as:
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where Eq. (18.2a) governs the longitudinal wave mode, while Eq. (18.2b) governs
the transverse mode. Here, φ andψ are the scalar and vector potentials, respectively,

and cL =
√
λ+2μ
ρ

is the velocity of the longitudinal mode, and cT =
√
μ
ρ

is the

transverse mode velocity.
Solving Eqs. (18.2a) and (18.2b) with traction-free boundary conditions at both

surfaces, the general description of Lamb waves can be obtained as:
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where p2 = ω2

c2
L

− k2, q2 = ω2

c2
T

− k2, and k = 2π
λw

. Here, h is the half thickness of

the plate. cL and cT are the longitudinal and transverse wave velocities in the plate,
respectively. k, ω, and λw are the wavenumber, circular frequency, and wavelength
of the wave, respectively. As can be seen from Eqs. (18.3a) and (18.3b), Lamb
waves can be decomposed into two types of modes in terms of particle motion
patterns: symmetric modes and antisymmetric modes. Meanwhile, each type of
modes comprises a fundamental mode and higher-order modes. By convention, Si

and Ai (i = 0, 1, 2, 3 . . . ) are used to denote the symmetric and antisymmetric
modes, respectively, with the subscript i being the order of the mode. Predominantly,
symmetric modes have radial in-plane particle displacement, while antisymmetric
feature mostly out-of-place displacement. The distinct particle motion patterns of
the two modes create possibilities of using a specific mode to detect a particular
type of damage in NDE and SHM applications [8].

Equation (3), though formulated rather simply, may only be solved using
numerical methods. At a given angular frequency ω, the wavenumber k can be
determined iteratively, which in turn specifies the wave’s phase and group velocities.
Generically, phase velocity is the propagation velocity of the wave phase at a
specific frequency, while group velocity is the rate at which the wave’s overall
shape/energy/information is propagated. Both of them depend on k (hence on
wavelength λw and frequency ω); for phase velocity, cph = ω

k
, and for group

velocity, cg = ∂ω
∂k

. To illustrate this dependency, the phase velocities and group
velocities of Lamb waves in an A606 steel plate are displayed in Fig. 18.1 as
functions of the frequency-thickness product. It can be observed that both phase
and group velocities of all the wave modes vary with the product of the wave’s
frequency and the thickness of the plate. This nature of Lamb waves (and guided
waves in general) is termed dispersion, and the velocity curves in Fig. 18.1 are
referred to as dispersion curves.

It can also be seen in Fig. 18.1 that, at any frequency-thickness combination,
there are at least two wave modes that coexist and propagate simultaneously.
As the frequency-thickness product increases, more modes are introduced to the
structure gradually. This phenomenon is known as the multimodality of Lamb
waves, which may create significant challenges in interpreting acquired signals in
damage identification problems.

18.2.2 Linear Features of Lamb Waves for Identification
of Gross Damage

In SHM practices, the Lamb-wave-based monitoring principle has been deployed
in a diversity of fashions, striking the balance among resolution, detectability,
practicality, and cost. In the last two decades, the majority of such techniques have
been aimed at exploring changes in damage-scattered waves, which are documented
in the time histories in the form of amplitude alteration and/or phase deviation (in
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Fig. 18.1 Dispersion curves of phase velocities (a) and group velocities (b) in A606 steel

comparison with baseline signals) in most studies. These features are typified by
the delay in the time of flight (ToF) [13–17], wave reflection/transmission [18–21],
energy dissipation [22], as well as mode conversion [23, 24], which usually present,
to some extent, linear relations with damage parameters such as location, and are
therefore colloquially referred to as linear Lamb wave features.

For example, ToF—one widely used and most straightforward linear Lamb wave
feature—refers to the time spent for a particular wave packet to travel a certain
distance. In particular, if the ToF of the damage-scattered wave packet can be found
by comparing the current (damaged) signal with its baseline (healthy) signal, it is
then possible to find the distance of the damage from the sensor provided that the
wave velocity is known beforehand. If there are multiple sensing paths available in
a sensor network, then the damage can be triangulated using ToF information from
signals acquired from different paths.
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Another popular linear Lamb wave feature is the signal energy in the time domain
as manifested by the signal magnitude. Since damage may have different shapes,
severities, orientations, and distances to individual sensors in the sensor network,
these variations may result in distinct magnitudes featured by damage-scattered
waves. Especially when the damage takes a formality of crack with a dominant
dimension in a particular dimension, the intensity of the energy of damage-scattered
waves can be exploited to depict the orientation of the damage [25]. Thus, when
used in conjunction with the ToF feature, wave energy intensity can offer further
insight on the orientation and even shape of the damage, in addition to its location
information determined by ToFs.

Generally speaking, linear Lamb wave features can be employed to evaluate
gross damage with a characteristic size of the same order of magnitude of the prob-
ing wavelength, such as open cracks, voids, delamination, and through-holes [26,
27]. Thus, the sensitivity of linear Lamb wave features is substantially wavelength-
dependent. When used to characterize undersized damage such as barely visible
fatigue cracks, linear feature-based detection may become problematic, because the
small damage whose dimension is smaller than the wavelength of the probing wave
may not induce sufficiently phenomenal wave scattering, failing to change linear
wave features. One can increase excitation frequency of probing waves, however, it
is at the cost of introducing complexity to signal appearance, because waves feature
multiple modes and dispersive properties at higher frequencies.

18.2.3 Nonlinear Features of Lamb Waves for Characterization
of Undersized Damage

Yet, damage in real-world engineering structures often initiates from defects or
degradation at imperceptible levels, which may nevertheless develop to a consid-
erable scale and result in material failure rather quickly, without sufficient warning
in advance. Thus, selecting appropriate Lamb wave features that are sensitive to
small-scale damage is crucial in preventing structural failure. While linear features
usually fail to do so as explained earlier, it has been found that small-scale
damage usually affects the nonlinear material properties significantly, which can be
accordingly documented by some nonlinear features of Lamb waves. Motivated by
this, there have been increasing endeavors in exploiting nonlinear signal features
extracted from Lamb waves to characterize small-scale damage [28–36]. More
specifically, this group of techniques is based on the premise that Lamb waves,
when propagating in an elastic medium, can be distorted by the inherent nonlinearity
of the medium, resulting in an energy shift from the excitation frequency to other
frequency bands and generating nonlinear features discernible in the frequency
domain. When damage emerges in the medium, additional, local nonlinearities
may appear and reinforce the nonlinear features in acquired Lamb wave signals
traversing the damaged region. These localized nonlinearities may come from, but
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are not limited to, damage-driven plasticity, geometric effects, hysteresis, frictional,
and thermal effects. In addition, when Lamb waves traverse crack-like damage, the
“breathing” behavior of the crack interface, under cyclic loads, creates localized
nonlinear behaviors and introduces the so-called contacting acoustic nonlinearity
(CAN) [28]. Nonlinear Lamb wave features that are often exploited in this category
include second [29–31] or sub-harmonics [32], mixed frequency responses [33]
(e.g., nonlinear wave modulation spectroscopy), shift of resonance frequency [34]
(e.g., nonlinear resonant ultrasound spectroscopy), dual frequency mixing [35], to
name a few, as reviewed comprehensively elsewhere [28].

The discussion of using nonlinear features of Lamb waves for fatigue damage
characterization in this chapter will be focused on second harmonics, as this feature
has gained prominence in characterizing undersized damage such as early-stage
fatigue cracks [30, 31]. To exploit second harmonics, the probing Lamb waves
are often excited at a monochromatic frequency (denoted by fE). Since undersized
damage will introduce local nonlinearities to the material, extra components
would appear in signal spectra at twice the excitation frequency, i.e., 2fE. These
components are the second harmonics of the probing waves. The detection making
use of nonlinear features is, in principle, less restricted by the probing wavelength.
In other words, the effectiveness of using nonlinear Lamb wave features in detecting
undersized damage originates from its sensitivity to locally enhanced medium
nonlinearities caused by damage.

18.3 Modeling of Nonlinear Attributes of Lamb Waves

There has been a rich body of literature on the use of nonlinear features of Lamb
waves for damage identification. However, most of the existing research strengths
have been in the nature of experimental observation. There are rather limited studies
devoted to the analytical investigation or numerical simulation of nonlinear Lamb
waves propagating in structures with small-scale damage. Among representative
numerical methods for simulating nonlinearities of the medium and/or damage
are Local Interaction Simulation Approach [37], or LISA, finite element methods
(FEMs) [38, 39], Galerkin FEM [40], etc.

In general, the paramount challenge in analytically or numerically modeling
nonlinear features of guided waves is to include all possible sources of non-
linearities. The possible sources particularly include material nonlinearity of the
medium, the damage, and the modulation of damage on the probing waves. To this
end, this section focuses on the establishment of a dedicated modeling approach
capable of interpreting nonlinearities embodied in captured Lamb wave signals.
Rather using bulky transducers, the approach employs miniaturized piezoelectric
sensors (e.g., PZT wafers) that can be networked and permanently integrated with a
structure under inspection, benefiting the extension of the approach to embeddable
NDE/SHM.
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18.3.1 Modeling Nonlinearities in an Elastic Medium

Consider an isotropic homogeneous solid. Nonlinearities from the medium that can
distort guided ultrasonic waves may originate from various sources, such as the
material, plasticity in damaged area, crack surfaces, surface roughness, hysteresis,
and thermal friction, to name a few. The modeling of nonlinearities in this section
is split into two scenarios: the intact state and fatigue damaged state.

18.3.1.1 Intact Medium

Assume that the discussed medium is free of fatigue damage, and there will be
of two major sources of nonlinearity: the inherent nonlinearity from material and
convective nonlinearity, which can be referred to collectively as the mesoscopic non-
linearities of the material [41]. Specifically, the material nonlinearity comes from
the intrinsic nonlinear elasticity (i.e., the elasticity of lattices). These nonlinearity
effects, though trivial, can be manifested by ultrasonic waves propagated in such a
medium.

With a second-order approximation, the three-dimensional (3-D) stress–strain
correlation of the medium can be defined as [42]

σij = (Cijkl + 1/2Mijklmnεmn
)
εkl . (18.4)

In the above, σ ij denotes the stress tensor; εmn and εkl are the strain tensors.
Cijkl (as well as those in its form) is the second-order elastic (SOE) tensor, to be
defined with Lamé’s parameters λ and μ. Mijklmn is a tensor to be correlated with
the material and convective nonlinearities. The notion of convective nonlinearity
is closely related to the material nonlinearity. Provided the second term in the
parenthesis (i.e., 1/2Mijklmn) neglected, Eq. (18.4) retreats to the 3-D Hooke’s Law
of linear elasticity. Generally, wave equations are expressed in Eulerian coordinates,
while nonlinear elasticity in Lagrangian coordinates. Once material nonlinearity is
taken into account, a descriptive difference would take place from the second-order
term of any physical quantity [43]. This means that the convective nonlinearity is
induced mainly due to the mathematic transformation between the two coordinate
systems. Mijklmn addresses both the material and convective nonlinearities, defined
as [44]

Mijklmn = Cijklmn + Cijlnδkm + Cjnklδim + Cjlmnδik, (18.5)

where

Cijklmn = 1
2A
(
δikIjlmn + δilIjkmn + δjkIilmn + δjlIikmn

)

+ 2B (δij Iklmn + δklImnij + δmnIijkl
)+ 2Cδij δklδmn. (18.6)
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In Eqs. (18.5) and (18.6), δkm and the like with different index orders are the
Kronecker deltas; Ijlmn (as well as those in its form) is the fourth-order identity
tensor, and Cijklmn the third-order elastic (TOE) tensor associated with material
nonlinearity. The last three terms in Eq. (18.5) address the convective nonlinearity.
Cijklmn can be calculated using three TOE constants A, B, and C (due to inherent
properties of the material) that are to be acquired using experimental means [45,
46]. With Voigt notation, Cijklmn reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c111 = 2A + 6B + 2C
c112 = 2B + 2C
c123 = 2C
c144 = 1/2A + B
c155 = B
c456 = 1/4A,

(18.7)

where cIJK = Cijklmn (I, J, K ∈ {1, 2, . . . , 6}).
First consider a 1-D medium (e.g., a rod) governed by the 1-D nonlinear stress–

strain equation as

σ =
(
E + 1

2
E2ε

)
ε, (18.8)

where σ and ε are the stress and strain of the medium, respectively. E and E2 are the
first- and second-order Young’s moduli, respectively, with the former reflecting the
linear properties while the latter introducing nonlinear effects [47] to the medium.
Solving Eqs. (18.4), (18.5), and (18.6) yields

E2 = 3 (λ+ 2μ)+ 2A + 6B + 2C. (18.9)

Further, taking the ratio of the two Young’s moduli leads to

βg = E2

E
= 3 + 2A + 6B + 2C

λ+ 2μ
. (18.10)

In this study, βg defined by Eq. (18.10) is referred to as the global nonlinearity
parameter of the medium in its intact state. It is obvious that βg is dominated by
material properties (e.g., Young’s modulus and TOE constants) in the case that the
medium is free of fatigue damage.

18.3.1.2 Fatigued Medium

Now, extend the preceding discussion to the case of the same medium with fatigue
damage. There are now additional sources of nonlinearities besides βg. In low-cycle



18 Characterizing Fatigue Cracks Using Active Sensor Networks 709

fatigue (LCF), the loading stress is larger than the yield strength of the medium,
and thus, bulk plastic deformation takes place [48]; in high-cycle fatigue (HCF),
localized micro-plastic deformation exists in the region of crack initiation. In both
LCF and HCF, localized plasticity exists near fatigue cracks that distorts guided
waves and induces nonlinear properties in the signals.

To reflect the localized plasticity, a local nonlinearity parameter β l is developed,
on top of βg, to account for local nonlinearities incurred by fatigue damage. One
way to express β l (for the dislocation dipole setting [49]) is

βl = 16π�R2
L−S&hd3(1 − ν)2(λ+ 2μ)2

μ2b
. (18.11)

In the above, � is a factor of convention from dislocation to longitudinal
displacements, and RL–S is another factor of conversion from longitudinal to shear
displacements. & is the dipole dislocation density reflecting the plastic strain in the
medium. hd, ν, and b are the dipole height, Poisson’s ratio, and Burgers vector,
respectively. As recognized [50], the plastic deformation-induced nonlinearity is
more significant, compared with intrinsic material nonlinearity, to distort probing
waves.

With both global and local nonlinearity, a hybrid acoustic nonlinearity parameter
β is defined as

β =
{
βg, Intact state
βg + βl. Damaged state due to local plasticity

(18.12)

Provided localized plasticity is generated in the medium, β is supposed to
increase—that is the cornerstone of characterizing fatigue damage using β.

18.3.1.3 Contact Acoustic Nonlinearity (CAN)

On top of the above β, contact acoustic nonlinearity (CAN) is also expected to
be generated when probing waves are traversing a fatigue crack. To this end, a
“breathing crack model” is [51] developed. In brief, when ultrasonic waves interact
with the two interfaces of a fatigue crack, the “breathing” motion pattern under
cyclic loading closes the gap between two interfaces during wave compression;
when tension opens the crack, propagation of tensile stress is blocked. This jointly
imposes additional localized nonlinearity, CAN, to wave signals [28].
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18.3.2 Modeling Nonlinear Lamb Waves

Using the 1-D medium discussed in the above, now focus on the longitudinal waves
in the medium. Without considering dispersion and attenuation, the equation for
ultrasonic waves in the Lagrangian coordinates is formulated as

ρ
∂2u (x, t)

∂t2
= ∂σ

∂x
. (18.13)

In the above, ρ and u (x, t) signify the density of the medium and the particle
displacement at instant t (abbreviated as u), respectively. Expanding the modeling
earlier, one can depict wave propagation by solving Eqs. (18.8) and (18.13) using

a perturbation method [47]. Specifically, substituting σ =
(
E + 1

2βEε
)
ε into Eq.

(18.13) yields

ρ
∂2u

∂t2
= E∂

2u

∂x2
+ βE ∂u

∂x

∂2u

∂x2
. (18.14)

Using the perturbation method, u can be defined in the form of

u = u0 + u1, (18.15)

where u0 is the incident wave, and u1 is the first-order perturbation reflecting
the nonlinear component of u, which is assumed to be much smaller than u0.
Substituting Eq. (18.15) into Eq. (18.14) gives rise to

ρ
∂2u0

∂t2
− E∂

2u0

∂x2 + ρ ∂
2u1

∂t2
− E∂

2u1

∂x2 − βE ∂ (u0 + u1)

∂x

∂2 (u0 + u1)

∂x2 = 0.

(18.16)

Here, because the nonlinear terms involving the perturbed displacement u1, i.e.,

ρ ∂
2u1
∂t2

−E ∂2u1
∂x2 −βE ∂(u0+u1)

∂x
∂2(u0+u1)

∂x2 , are sufficiently small when compared to the

linear term, ρ ∂
2u0
∂t2

− E ∂2u0
∂x2 , one has

ρ
∂2u0

∂t2
= E∂

2u0

∂x2 (18.17a)

ρ
∂2u1

∂t2
= E∂

2u1

∂x2
+ βE ∂ (u0 + u1)

∂x

∂2 (u0 + u1)

∂x2
. (18.17b)

Again, neglecting u1 in the terms where u0 is present, Eq. (18.17b) retreats to

∂2u1

∂t2
= E

ρ

∂2u1

∂x2 + βE
ρ

∂u0

∂x

∂2u0

∂x2 , (18.18)

where E
ρ

= c is wave velocity.
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Assume u0 to be a harmonic wave that follows

u0 = A1 sin (ωt − kx) . (18.19)

Recall that ω and k are the angular frequency and wavenumber, respectively, and
here A1 represents the magnitude of the fundamental mode. Substituting Eq. (18.19)
into Eq. (18.18) leads to

∂2u1

∂t2
− c2 ∂

2u1

∂x2
= βc2k3A2

1

2
sin (2ωt − 2kx) . (18.20)

Equation (18.20) is an inhomogeneous second-order partial differential equation,
whose typical solution to the perturbation is in the form of [52]

u1 = A2x cos (2ωt − 2kx) , (18.21)

where A2 is the amplitude of the perturbed wave component (the second harmonics)
to be determined. Plugging Eq. (18.21) into Eq. (18.20), it can be found that

A2 = −β
8
A2

1k
2x. (18.22)

The final solution to the particle displacement u hence becomes

u = A1 sin (ωt − kx)+ A2 cos (2ωt − 2kx) . (18.23)

Rearranging Eq. (18.21), β can be obtained as

β = − 8

k2x

A2

A2
1

. (18.24)

At this point, β can be redefined, from the perspective of ultrasonics, as the
acoustic nonlinearity parameter (ANP) associated with the acquired wave, and will
be referred to as such hereafter. In principle, if one has acquired positive values for
A1 and A2, the obtained value of ANP should be negative, which is consistent with
a negative E2 in Eq. (18.10), because a material’s nonlinear stress–strain curve is
generally concave in nature. However, since amplitudes retrieved in practice (such as
from the spectrum) are always positive, ANP is usually defined without the negative
sign, as

ÂNP = 8

k2x

A2

A2
1

. (18.25)

It is noteworthy that the observed value, ÂNP , is not always equal to the
magnitude of modeled β defined by Eq. (18.12), in particular when the medium
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features fatigue damage, because some sorts of nonlinearity sources (e.g., CAN) are
not reflected in the model as discussed in Sect. 18.3.1, which, however, also induce
higher-order harmonics and can be calibrated by ÂNP . The actual change in ÂNP
as a result of local plasticity and microcracks should be larger than the value of β l as
analytically obtained from Eq. (18.11). For evaluating fatigue damage, it might not
be necessary to exactly match the measured value (ÂNP ) to the modeled one (β).
Previous studies [50, 53] have demonstrated that the increase in the nonlinearities
of the material due to plasticity-driven fatigue damage can be timely signaled by the
increase in the measured value.

As implied by Eq. (18.25), the degree of nonlinearities associated with the
material and fatigue damage is linked to magnitudes of both the fundamental and
second harmonic modes. For detection purpose, the change in ÂNP , instead of its
value, is more significant, in which ÂNP can be normalized with regarding to its
initial value in the intact state of the medium, namely a relative acoustic nonlinearity
parameter (RANP), as

RANP = A2

A2
1

. (18.26)

This relatively defined nonlinearity parameter is proportional to ÂNP and
associated with nonlinear properties of waves, conducive to quantitative evaluation
of fatigue damage.

As reviewed in Sect. 18.2, Lamb waves feature dispersive and multimodal prop-
erties. The dispersive natures make extraction of wave nonlinearity a daunting task.
However, there exist certain wave modes excited at prudentially selected frequencies
that can be exploited to generate prominent, cumulative second harmonics with a
reasonable signal-to-noise ratio (SNR). A rich body of research has gone into this
issue and provided criteria for the selection of wave mode and excitation frequency
[31, 54, 55] for metallic plate structures. Finally, it is important to also realize
that damage-induced nonlinearities, such as plasticity and CAN, are very local
phenomena. Thus, the cumulative effect of second harmonics due to these local
nonlinearities is limited.

For illustration, Fig. 18.2 displays the dispersion curves calculated using DIS-
PERSE

®
for Lamb waves in an aluminum (6061-T6) plate from 0 to 10 MHz mm.

Mode pair (S1, S2) is an option that meets the internal resonance requirement,
hence called a synchronized mode pair hereinafter. In this mode pair, S1 is the
first-order symmetric mode at 3.59 MHz mm, and S2 the second-order symmetric
mode at 7.18 MHz mm, both of which have the same phase and group velocities,
respectively. Once S1 is generated and guided by the medium under inspection,
S2 will be produced at twice the excitation frequency as the corresponding second
harmonic of S1. With the same phase velocities, S2 is cumulative along wave
propagation.
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Fig. 18.2 Dispersion curves of phase velocities (a) and group velocities (b) in a 6061-T6
aluminum plate. (S1, S2) is shown as a synchronized mode pair meeting the internal resonance
criterion

Expanding the above modeling from a 1-D rod to a plate-like medium, ANP
for Lamb waves can be defined by multiplying Eq. (18.25) with a scaling factor γ
[36], as

ÂNPL = 8

k2x

A2

A2
1

γ. (18.27)

ÂNPL signifies the measured ANP for Lamb waves. Because γ remains
unchanged regardless of the presence of fatigue damage, it can be eliminated upon
the normalization process of ÂNP . Therefore, the RANP, defined by Eq. (18.26),
is able to evaluate fatigue damage in the plate as well.
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Fig. 18.3 Fatigue crack model in FEM (highlighted region is the crack interface with seam crack
definition and contact-pair properties)

18.3.3 Realization in Finite Element Method

Residing on the above analysis, a dedicated modeling approach is realized
and implemented in conjunction with the use of commercial FEM software
Abaqus

®
/Explicit, including the major sources of nonlinearities as discussed in the

above. A modified nonlinear stress–strain relation is introduced to Abaqus
®

/Explicit
via a user subroutine VUMAT, to model material, convective, and plasticity-driven
nonlinearities. In particular, to model the plasticity-driven nonlinearity, an additional
local nonlinearity parameter is added to the global nonlinearity parameter.

To model a fatigue crack in the medium and depict the “breathing crack model”
when Lamb waves traverse the crack, a seam crack definition is used which imposes
on each surface of the crack, as shown schematically in Fig. 18.3. A contact-pair
interaction is defined on the interface of the crack, to induce CAN when waves
passing the crack. This modeling is illustrated in Fig. 18.4a–d, from which it
can be observed that the stress field induced by traversing waves is continuously
transmitted through the crack when the crack is closed (Fig. 18.4b, c), while on the
contrary an open crack interrupts the transmission process (Fig. 18.4d).

Using the above modeling technique, case studies are performed and analyzed
(to be detailed in Sect. 18.3.4). To briefly illustrate the signal processing technique,
a typical Lamb wave signal captured is shown in Fig. 18.5. For constructing RANP,
a short-time Fourier transform (STFT) analysis is applied on the signal, and the
accordingly obtained spectrogram is displayed in Fig. 18.6. In the spectrogram,
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Fig. 18.4 Generated
wavefields at representative
moments when waves are
traversing breathing crack
with CAN in modeling: (a)
waves approaching the crack;
(b) stress traversing the crack
when the crack is closed; (c)
stress transmitting through
the closed crack; and (d)
stress blocked when the crack
is open

the amplitude profiles can be extracted at the fundamental and second harmonic
frequencies as functions of time. For the model pair (S1 and S2) that is selected
according to the selection criteria, both modes will first be captured by the sensor,
owing to their greatest velocity among all possible modes at these two frequencies.
The first peak value of the amplitude profile at the excitation frequency is denoted as
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Fig. 18.5 A typical Lamb wave signal from simulation
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Fig. 18.6 Time–frequency deployment of the signal in Fig. 18.5 obtained via STFT (integrated
with dispersion curves)

A1 (for S1), and the first peak value of the profile at the double excitation frequency
as A2 (for S2), Fig. 18.7. Based on ascertained A1 and A2, the RANP associated with
this particular signal can be calculated using Eq. (18.26).
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18.3.4 Simulation Results and Experimental Validation

The proposed modeling technique is verified by case studies, followed by experi-
mental validation.

18.3.4.1 RANP vs. Wave Propagation

Based on the above analysis and modeling, it is speculated that, with a selected
mode pair, the constructed RANP is proportional to wave propagation distance
if the medium remains intact. To demonstrate this, a 6061-T6 aluminum plate
(400 × 380 × 4.5 mm3), shown schematically in Fig. 18.8a, is modeled, using
the developed modeling approach. The 3-D nonlinear elastic stress–strain relation
described by Eq. (18.4) is recalled to define material properties through VUMAT,
introducing both the mesoscopic nonlinearities. The SOE constants (Lamé’s param-
eters λ and μ) can be calculated in terms of the material’s Young’s modulus
(68.9 GPa in this case) and Poisson’s ratio (0.33). The TOE constants of the
aluminum are: A = –320 GPa, B = –200 GPa and C = –190 GPa [45]. 3-D eight-
node brick elements in Abaqus

®
are used to mesh the medium. In the mesh, 20

elements are allocated per wavelength of the fundamental wave mode, while nine
elements are assigned along the plate’s thickness, in order to warrant simulation
precision.
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Fig. 18.8 An aluminum plate
with eight sensing paths A –
Si (i = I, II . . . VIII): (a)
schematic diagram
(dimensions displayed in
mm); (b) PZT model for
actuators; and (c) specimen in
the experiment
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Nine circular PZT wafers (· 8 mm; thickness: 0.5 mm each) are collocated
on a side of the aluminum plate. These PZT wafers function, respectively, as a
wave actuator (A) and sensors (SI – SVIII), leading to eight sensing paths. These
eight sensing paths are deliberately configured, to deliver a distance di (i = I,
II . . . VIII) between A and Si ranging from 60 to 200 mm with an increment of
20 mm, illustrated in Fig. 18.8a. Each PZT wafer is modeled by meshing it using
four elements. By imposing uniform in-plane radial displacements on the nodes
along periphery of the PZT wafer, Fig. 18.8b, five-cycle Hann-windowed sinusoidal
tone bursts are excited at 800 kHz. The excitation frequency of 800 kHz enables
the generation of the S1 mode as the fundamental wave mode in accordance with
Fig. 18.2 (plate thickness: 4.5 mm). Wave signals (in-plane elemental strains) are
acquired at locations of eight sensors.

In experimental, the measurement configuration that is the same as that in
simulation is adopted. Nine PZT wafers are surface-mounted on a 6061 aluminum
plate (free of damage), as shown in Fig. 18.8c. These wafers are connected to
a signal generation and acquisition system developed on a VXI platform [25].
The same excitation signal as in the simulation is remained, and probing waves
are generated by an Agilent

®
E1441 arbitrary waveform generator, amplified by a

Ciprian© US-TXP-3 linear power amplifier to 100 Vp-p, and then applied on the PZT

actuator. Signals are acquired with Agilent
®

E1438 signal digitizer at a sampling
rate of 100 MHz.

STFT-based signal processing is applied on all captured signals, to extract
signal features for constructing RANP via each sensing path using Eq. (18.26).
The relationships of RANP versus wave propagation distance obtained from the
simulation and the experiment are displayed in Fig. 18.9a, b, respectively. It is
obvious that both highlight a quasi-linear cumulative increase of RANP over wave
propagation. This has demonstrated that the nonlinearity embodied in captured wave
signals is from the intrinsic nonlinearity of the medium. Good matching between the
two relationships in Fig. 18.9 has validated the developed modeling technique.

18.3.4.2 RANP vs. Sensing Path Offset

Next, Lamb wave propagation in an aluminum plate bearing a fatigue crack is
evaluated using the developed modeling approach and experimental validation, with
an aim to develop a quantitative correlation between RANP of each sensing path and
the offset distance from that sensing path to the fatigue crack site. With the presence
of a fatigue crack, the plasticity-driven nonlinearity and CAN are introduced in the
modeling.

The same aluminum plate (400 × 240 × 4.5 mm3) is modeled, as shown
schematically in Fig. 18.10a. To initiate a fatigue crack, a triangular notch of
15 × 25 mm is presumed at the center of the upper edge, consistent with the
subsequent experiment configuration. A surface crack (approximately 4 mm long
and 2.25 mm deep), running in parallel with the plate width, is modeled. The crack
features a uniform initial clearance of zero between the two crack surfaces. Ten



720 M. Hong and Z. Su

40 60 80 100 120 140 160 180 200 220

3

4

5

6

7

8
RANP measured
Linear fit

Propagation Distance [mm]

40 60 80 100 120 140 160 180 200 220

0.005

0.010

0.015

0.020

0.025

0.030
RANP measured
Linear fit

R
A

N
P 

[V
-1

]

R
A

N
P

a

b

Propagation Distance [mm]

Fig. 18.9 RANP versus wave propagation distance from simulation (a) and from the experiment
(b), respectively

circular PZT wafers (· 5 mm; thickness: 0.5 mm each) are allocated on the plate.
The positions of these PZT wafers result in five sensing paths Ai – Si (i = I, II . . .
V) with each of them being 200 mm long, all perpendicular to the crack. The offset
distance do (defined in Fig. 18.10b) from the middle point of the fatigue crack to
each sensing path is 0, 10, 20, 30, and 40 mm, respectively.

The same simulation procedures, from meshing, material definition, wave exci-
tation, signal acquisition, and dynamic calculation, are recalled. The following
parameters are adopted [56] for estimating the local nonlinearity parameter using
Eq. (18.11):Ω = RL–S = 0.33, b = 0.286 nm,&= 1 × 1015 m−2, and hd = 5.4 nm.



18 Characterizing Fatigue Cracks Using Active Sensor Networks 721
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Fig. 18.10 (a) An aluminum plate bearing a fatigue crack initiator (unit: mm): Ai – Si (i = I, II . . .
V) for initial testing, and additional wafers AA, AB, and Sj (j = VI, VII, VIII, IX) for testing in
Sect. 18.3.4.3; and (b) definition of do (crack length exaggerated)

CAN is taken into account in the model. The tone bursts, modulated by a 16-cycle
Hann window, are excited at 800 kHz. Compared with the five-cycle signal used
earlier, the adoption of the 16-cycle tone bursts is to strike a balance between easy
isolation of different wave packets and explicit recognition of second harmonics.

In experiment, an aluminum plate (6061-T6) of the same dimensions and the
same PZT configuration as in simulation is used. The specimen has undergone a
HCF before signal measurement. After approximately 200,000 cycles (at 5 Hz and
with a magnitude of 10 kN), a barely visible fatigue crack is generated, roughly
4 mm long and half of the plate thickness deep. Ten PZT wafers of 5 mm in diameter
for each are attached to the plate in line with Fig. 18.10a, only after completing
the fatigue testing, in order to avoid possible degradation in adhesive layers during
the fatigue processing. The test is carried out in accordance with the experiment
procedure described in the previous case study (Sect. 18.3.4.1).
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Fig. 18.11 Normalized RANP versus do/λw (normalized offset distance with regard to probing
wavelength λw) from the simulation and experiment

Applied with STFT-based signal processing, RANP is calculated for each sensing
path and then normalized with regarding to that ascertained via AI − SI, as exhibited
in Fig. 18.11, against the offset distance. Note that do is normalized in the figure
with respect to the probing wavelength λw, so that the correlation obtained can be
extended to general cases of arbitrary frequency-thickness products. The two curves
in Fig. 18.11 agree with one another quantitatively, with the greatest error less than
9%, corroborating the effectiveness of the modeling approach.

The relationship of RANP versus do/λw implies that RANP reaches its peak value
when the sensing path right traverses the fatigue crack (i.e., AI − SI). Then, RANP
decreases quickly, as do/λw increases to 1.8 (corresponding to do = 10 mm), and
then the decrease slows down as do/λw reaches 3.6 (corresponding to do = 20 mm).
Beyond this point, RANP decreases gradually to approximately 40% of its largest
magnitude and no considerable change can be observed after do/λw reaches 5.5
(do = 30 mm).

18.3.4.3 Dependence on Angle of Incidence and Wave Propagation
Distance

Note that the relationship of RANP versus do/λw presented in Fig. 18.11 is
ascertained when all the sensing paths are 200 mm in length, and perpendicular
to the crack. To take a step further, RANP is also obtained, using FEM simulation,
when the length of sensing path and angle of incidence of the probing waves vary.
With additional PZT wafers (actuators AA, AB, and sensors SVI, SVII, SVIII, SIX
in Fig. 18.10a), a series of sensing paths of different lengths and different angles of
incidence is formed. The path length varies from 100 to 400 mm in an increment of
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Fig. 18.12 RANP versus do/λw, subjected to angle of incidence (solid lines) and wave propagation
distance (dashed lines)

100 mm, and the angle of incidence from 90◦ (AI – SI) through 84.3◦ (AB – SII)
to 78.7◦ (AA – SIII). Figure 18.12 shows the obtained correlation between RANP
and do/λw, to observe no significant difference in terms of the trend of the curves
when the incident angles are different. All curves indicate a 40–60% drop in RANP
in the region near the crack; the change in RANP is minute when do/λw > 3.6. This
observation has corroborated the statement made earlier that the local nonlinearity
due to fatigue damage (β l) is more significant compared with that due to material
(βg).

Both Figs. 18.11 and 18.12 have demonstrated a reliable relationship between
RANP and the offset distance of sensing paths in a sensor network. With an up to
approximately ±10◦ change from orthogonality in the incidence angle and different
wave propagation distance, RANP is observed to be more dependent on the offset
distance. This observation would be of importance when a dense sensor network is
used to localize fatigue damage.

18.4 System Development for Implementation

The preceding sections have been focused on the theoretical development of a
Lamb-wave-based NDE/SHM approach using nonlinear signal features. From a
practical point of view, the implementation of any NDE/SHM strategy in the real
world requires dedicated hardware and software systems, whose performances are
critical to the success of the developed strategy. Both functionality and practicality
need to be carefully addressed when designing, selecting, and integrating algo-
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rithms, devices, modules, and tools. In prevailing experimental studies, isolated or
incoherent sensing and measurement devices, such as ultrasonic wedge transducers,
function generators, and oscilloscopes, are usually employed for guided wave
generation and acquisition. Applicability of these devices and techniques is often
limited to simple structures examined in well-controlled laboratorial environment.
To develop a robust guided wave SHM strategy for real-world applications, a
modularized system is configured in this study, by virtue of a virtual instrument
technique. This section discusses the sensing technique employed in this system
and the modularized hardware components for in situ deployment.

18.4.1 Decentralized Standard Sensing

A PZT wafer provides substantial weight saving over conventional ultrasonic
transducer, with merits like low-power consumption, negligible footprints, ease of
integration into host structures, high operating frequency, dual roles as an actuator
and a sensor, as well as reasonably low cost. However, a single PZT wafer performs
local acquisition of guided waves, and generally tends to supply inadequate
information for SHM of engineering structures which often serve in harsh working
conditions. This erodes the confidence in the obtained result for damage detection
purposes. Spatially distributed PZT wafers are thus linked to configure a sensor
network. By “communicating” with each other, individual sensors act cooperatively
to allow desirable redundancy and to enhance reliability of guided wave signal
acquisition.

However, for many structures such as high-speed vehicles or satellites, it is often
uneconomic and sometimes infeasible to prudentially allocate every single sensor
in a sensor network towards a cost-effective configuration, due to the complex
and diverse geometries involved. For most field applications, unlike laboratorial
experiments, optimization of sensor placement on a case-by-case basis cannot be
achieved until the actual test has been done. This would require additional access
to the structures in operation in order to modify the current sensor network con-
figuration, which is most likely impossible. Moreover, to manually affix individual
wafers to inspected structures with adhesives, and solder insulated wires on each of
them can unavoidably introduce performance inconsistency from one wafer to one
another, leading to discrepancy and monitoring instability. With such inefficiency
recognized, a sensor networking approach based on the concept of “decentralized
standard sensing” is developed in this study, aimed at an effortless and universal
solution to guided wave excitation and generation in various structures with high
flexibility yet a reduced cost.

Conceptually, “standard sensing” refers to a standardized sensing unit, made up
of a PZT wafer and a self-developed printed circuit board (both embedded in a
polyimide film), as shown in Fig. 18.13. The film not only covers the wafer and the
circuit for protection purposes, but also provides a convenient surface for installation
of the unit on the inspected structure. Thin and flexible, the polyimide film can
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Fig. 18.13 Standard PZT sensing units with a close-up view

deform to adapt to curved surfaces of aerospace structures. Inside the film, the
circuit is connected to the electrodes of a PZT wafer via soldering and/or conductive
adhesives, and a standard microdot connector (see the insert of Fig. 18.13) in the
circuit enables a quick, standardized connection to the controlling hardware through
a shielded cable. Each sensing unit features a thickness of less than 0.2 mm and a
weight less than 3 g, contributing negligible weight and volume penalty to the host
structure. With reversible piezoelectricity, each unit can alternate its role between an
active actuator and a passive sensor through a switch array controller. A multitude
of such units can be flexibly networked to configure a sensor network, which
can be permanently integrated into host structures to accommodate their diverse
geometrical identities and boundary conditions. Notably, the use of the standardized
units can avoid deliberate consideration on positioning of individual sensors, saving
significant efforts when large-scale sensor networks are concerned. To ensure its
functionality in rugged working conditions, each unit is managed to be insulated
from the environment through an epoxy layer once attached to the structure.

In parallel, “decentralization” in the concept signifies the self-contained func-
tionality of individual units in a configured sensor network. Being a standalone
functional unit, a standardized sensing unit can be independently prefabricated,
stored, and integrated into a sensor network. During signal processing, a sensing
unit is independent of other units in the network—an important feature when the
measurement is conducted in harsh conditions. Warranted by high redundancy, such
decentralization effectively de-emphasizes the contribution from individual units,
thus enhancing error-tolerance and resistance to malfunctions of individual sensors
in a large-scale network. This trait can be particularly important for SHM, without
which the erroneous or incomplete perceptions from a few sensors (due to various
factors such as measurement uncertainty) may interfere with useful information
perceived by others in the network, delivering inaccurate monitoring results.
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18.4.2 Development of a Modularized In Situ Diagnostic
System

As mentioned earlier, in conventional laboratorial tests, guided wave generation
and acquisition can be easily achieved with separate measurement devices; for real-
world SHM applications, nevertheless, it is desirable that all the functional units are
well integrated with mutual communication to fulfill the designated SHM task. To
deploy the proposed SHM method, a compact, integrated online diagnosis system is
developed on a PCI eXtensions for Instrumentation (PXI) platform with the virtual
instrument technique. In conjunction with the use of active sensor networks as
discussed in the previous section, the developed system embraces some commercial
technologies, including a sensor network control module, an arbitrary waveform
generation (AWG) module (with amplification), a multi-channel data acquisition
(DAQ) module, and a central control and data processing (CCDP) module. The
schematic diagram of the diagnostic system (with the five pivotal modules) is shown
in Fig. 18.14a, and the actual system is photographed in Fig. 18.14b.

More specifically, the CCDP commands all other functional modules. This mod-
ule integrates all the necessary digital signal processing tools including correlation
calculation, Hilbert transform, and STFT-based analysis. These preprogrammed
algorithms enable the system to analyze and interpret acquired signals in multiple
dimensions (e.g., time domain, frequency domain, and time–frequency domain), in
order to enhance the effectiveness of identification of different types of damage
under a wide range of working conditions. They can also minimize the interference
from measurement noise and uncertainties, enhance the SNR, extract desired signal
features, and consolidate all the information provided by the entire sensor network.
Upon signal processing, damage in the medium, if any, will be presented in
diagnostic images using appropriate imaging algorithms. The software features a
three-layer architecture, as shown in Fig. 18.15. All the modules are integrated on a
PXI bus platform to configure a compact diagnosis system.

18.5 Characterization of Multiple Fatigue Cracks
in Aluminum Plates

While simulation and preliminary experiments have been performed in the previous
sections to study the feasibility of using nonlinear Lamb wave attributes for fatigue
damage identification, the techniques have not been implemented with sensor
networks, which is one of the most crucial concepts for real-time SHM. In this
section, a case study is presented, where nonlinear Lamb wave features extracted
from active sensor networks are employed for locating fatigue damage in plate
structures. More specifically, a RANP estimate is calculated for each sensing path
in the sensor network, and a corresponding damage index is produced through a
frequency domain analysis for damage diagnostic imaging.
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Fig. 18.14 (a) Schematic diagram of the framework of the configured system with five pivotal
modules; and (b) the integrated SHM system
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Fig. 18.15 The three-layer
software architecture of the
configured SHM system

18.5.1 Experimental Investigation

As schematically shown in Fig. 18.16a, the aluminum panel under inspection
measures 380 × 400 × 4.5 mm3 with four through-thickness rivet holes for bond
connections (10 mm in diameter each) in an engineering context. The sample
undergoes a fatigue testing procedure on a digitally controlled MTS

®
testing

platform (858 Mini Bionix), subject to a sinusoidal tensile load of 5 Hz, as
photographed in Fig. 18.16b. A tiny notch with a sharp tip is inscribed at the edge
of each of two randomly chosen rivet holes (Holes 1 and 2), to expediate initiation
and growth of fatigue cracks. After circa 500,000 cycles, two barely visible fatigue
cracks are produced: Crack 1 is about 5 mm long, initiated from Hole 1 as displayed
in Fig. 18.16c, and Crack 2 is about 3 mm long at Hole 2. Eight PZT wafers
(diameter: 5 mm, thickness: 0.5 mm each), denoted by Ti (i = 1, 2 . . . 8) with
respective coordinates shown in Fig. 18.16a, are surface-mounted on the fatigued
plate to form an active sensor network. This sensor network offers 56 sensing
paths, which are instrumented with the SHM system introduced in Sect. 18.4. In
conjunction with the system, a Ciprian© US-TXP-3 power amplifier is specifically
chosen to provide a large enough excitation voltage (80 Vp-p) on PZT actuators for
second harmonic observation. 16-cycle Hann-windowed sinusoidal tone bursts at
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Fig. 18.16 (a) Schematic diagram of the aluminum panel with four rivet holes, attached with an
active PZT sensor network consisting of eight sensors (all dimensions and coordinates shown in
mm); (b) the specimen undergoing fatigue testing; and (c) a close-up of Crack 1 after fatigue testing

800 kHz, conforming to the mode selection criterion described in Sect. 18.3.2 and
the dispersion curves in Fig. 18.2 is generated, making S1 the probing fundamental
mode and S2 the cumulatively generated second harmonics once nonlinearities in
the structure are encountered. Response wave signals are then captured by the
system and stored and processed by the CCDP module of the SHM system. Notice
that in this method no baseline (healthy condition) information is acquired.
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18.5.2 Signal Processing and Imaging

The procedure of diagnostic damage imaging is established based on the correlation
between the offset distance (do) from the fatigue damage to a particular sensing path
in the sensor network and the value of RANP extracted from the Lamb wave signals
acquired via that sensing path. It has been shown in Sect. 18.3.4 that the smaller do

is, the higher RANP is, presenting approximately monotonous variation. In addition,
such a correlation is observed to be insensitive to the difference in the length of a
sensing path, which can be attributable to the fact that the local nonlinearity due
to fatigue damage (β l) is more dominant in the signal compared with that due to
material (βg). It is also relevant to note that RANP captured via a sensing path
possesses high inertness to distant damage away from that path, implying a sensing
path perceives the damage near it only. Such a trait makes it possible to identify
multi-fatigue damage using such a nonlinear parameter.

Residing on RANP, a damage index (DI) for the inspected region is constructed
using a probability imaging algorithm (PIA) [57]. The PIA differentiates itself from
traditional damage imaging techniques such as tomography by taking advantage
of its unique traits, such as the use of sparse sensor networks and the adoption
of a fast imaging algorithm. With PIA, the plane structure of the structure under
inspection is virtually meshed into an image. The probability of damage presence at
each spatial point is represented by the value borne by its corresponding pixel in the
image (called field value), which is adjusted by a weight function that determines
the influence of each sensing path in the sensor network. For a RANP-based DI, its
field value at pixel (x, y) is defined as:

DIi,j (x, y) = RANP i,j
[
ς − Ri,j (x, y)

ς − 1

]
. (18.28)

The subscript i, j stresses that the index is defined for a single sensing path
from transducer Ti to Tj. In addition, ς is a scaling parameter. Rij(x, y) is a weight
parameter [57, 58] which reads

Ri,j (x, y) =

⎧
⎪⎨

⎪⎩

√
(xm−xi )2+(yn−yi )2+

√
(xm−xj )2+(yn−yj )2√

(xi−xj )2+(yi−yj )2
when Ri,j (x, y) < ς

ς. when Ri,j (x, y) ≥ ς
(18.29)

With Eq. (18.28), each sensing path in the sensor network contributes a proba-
bilistic image. Ideally, all the field values are low provided the inspected area is free
of fatigue damage (practically it is not zero due to noise interference), while they are
elevated pronouncedly at those pixels contained in the fatigue damage zone, subject
to the corresponding do.

As an example, the time domain signal captured via sensing path T2 − T7 is
displayed in Fig. 18.17a. To facilitate the extraction of the amplitudes of the second
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Fig. 18.17 (a) Time domain signal acquired via sensing path T2 − T7; (b) time–frequency
spectrogram of the signal in (a) obtained using STFT, with 3-D and planar representations
integrated with dispersion curves of S1 and S2; and (c) amplitude profiles extracted from (b) at the
fundamental frequency (800 kHz) and at the second harmonic frequency (1.6 MHz), respectively
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Fig. 18.17 (continued)

harmonic mode (S2) and of the fundamental mode (S1), STFT is performed to
deploy the signal over a time–frequency domain, as shown in Fig. 18.17b. The
fundamental and second harmonic modes are then extracted at 800 kHz and at
1.6 MHz, respectively, and their amplitude profiles are plotted against time, as
shown in Fig. 18.17c, where A1 and A2 can be respectively determined. Now, the
RANP for this sensing path can be calculated using Eq. (18.26), and the DI is
subsequently computed through Eqs. (18.28) and (18.29) by which a source image
can be created, as exemplified by Fig. 18. This source image reflects the probability
of damage occurrence at each pixel perceived by a particular sensing path, calibrated
in gray scale. The scaling parameter ς in Eqs. (18.28) and (18.29) is empirically
adjusted to control the effective area regulated by each sensing path, which can be
estimated by referring to the conclusions from Sect. 18.3.4 and Fig. 18.11.

Repeating this process for the other 55 sensing paths, 56 source images are
then obtained, which then can be fused into a final diagnostic image as shown in
Fig. 18.19 by taking the arithmetic average of 56 field values at each pixel. As
can been seen, two regions with larger grayscale values (i.e., higher field values)
can be observed, covering Holes 1 and 2 as well as their vicinities. These darker
areas imply higher probabilities of fatigue cracks occurring, although artifacts due
to measurement noise can also be seen in the image.
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Fig. 18.18 A source image obtained using RANP-based DI showing the probability of damage
occurrence over the entire plate area, as perceived by a single sensing path

18.5.3 Results and Discussions

Once the diagnostic image is constructed, a threshold κ can be further applied to
the field values of the DI in order to enhance the identification result by masking
measurement noise. More specifically, κ is a preset percentage of the maximum
field value of the image, and any field value less than κ is forced to approach
zero. As some representative results, Fig. 18.20 displays the diagnostic images.
When κ = 0.8, two fatigue damage zones are clearly pictured in Fig. 18.20d. It
is noteworthy that these two highlighted regions have nothing to do with the rivet
holes themselves or the fatigue crack initiators at the hole edges. In fact, the two
highlighted zones not only capture the fatigue cracks, but also describe any plastic
regions around them, as plasticity-induced nonlinearities in the vicinities of the
cracks would also contribute to the increase in RANP.

It is important to point out that this approach would explore any abnormal,
local increase in RANP due to damage-induced nonlinearities; thus, it may be
independent of any baseline condition in which the connatural material nonlinearity,
geometric nonlinearity, and gross damage (e.g., the rivet holes in this study) in the
structure would not increase RANP locally.
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Fig. 18.19 Final diagnostic image after fusing source images, with two areas with particularly
high (dark) field values, indicating higher probabilities of damage occurring at these two places

18.6 Conclusions

In this chapter, a damage identification method based on Lamb waves is investi-
gated, through the modeling of nonlinear Lamb wave features and its application in
characterizing multiple fatigue cracks in aluminum plates in conjunction with the
use of an active sensor network. In doing so, propagation characteristics of Lamb
waves in thin plate structures are first reviewed, and linear and nonlinear features
of Lamb wave signals are briefly discussed. A dedicated modeling technique
is then established to understand the nonlinearity related to the material and
fatigue damage. A nonlinear feature, RANP, is engineered to measure nonlinearity
introduced into ultrasonic signals. Results from the simulation and experiment show
good consistency, both revealing that the parameter RANP grows cumulatively with
wave propagation due to the material, and RANP changes subjected to the offset
distance from a sensing path to the damage site.

In the meantime, an in situ health diagnosis system, largely oriented at real-
world SHM for in-service engineering structures, is developed by exploring local
propagation characteristics of actively generated guided waves in a sensor network.
Using such a system, a proof-of-concept case study is presented, in which fatigue
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Fig. 18.20 Diagnostic images applied with different threshold: (a) κ = 0.5; (b) κ = 0.6; (c)
κ = 0.7; and (d) κ = 0.8
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Fig. 18.20 (continued)
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cracks in an aluminum panel are evaluated experimentally using the developed
RANP feature. A damage imaging algorithm based on RANP is then developed,
which is found to be highly sensitive to damage-induced nonlinearities and is
successfully employed to locate multiple small-scale fatigue cracks simultaneously,
using the spatial information provided by the arrangement of the sensor network.
As illustrated in the case study, accurate characterization results have demonstrated
the feasibility of the proposed modeling approach in quantitatively characterizing
real-world fatigue damage.
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nonlinear spectra of
damaged CFRP specimen, 308
GFRP specimen, 308, 309
noise-like spectrum, transition of UFP,

310
Nonlinear Air-Coupled Emission,

312–316
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nonlinear imaging via laser scanning
vibrometry, 310–312

odd harmonic generation in intact
wood, 308

UFP spectrum calculation, 307, 308
USB-UFP bifurcation, 309
vibration spectra measurement, 307

derivative effect, 302
laser vibrometry, 302
LDR (see Local defect resonance)
NACE, 302
NDE, 302
nonlinear vibration spectra of fractured

defects, 303–306
resonant nonlinear defect-selective imaging

contact activation of damage, 331–336
noncontact nonlinear imaging of

damage, 336–341
resonant nonlinearity of defects

combination frequency resonance,
327–328

enhanced “classical” nonlinear effects,
322–325

parametric and subharmonic
resonances, 328–331

superharmonic resonances, 325–327
Nonlinear acoustics and damage detection

aluminium plate
adaptive resampling procedure, 152
amplitude spectrum, 153
camera operating mode, 148
closing–opening action, 149
crack divergence analysis, 147
cross-modulation technique, 149, 150
Fourier order spectra, 152
LF excitation frequency, 151
modulation intensity vs. excitation

amplitude, 151
modulation transfer mechanism, 150
mono-harmonic excitation, 147
Polytec PSV-400 laser vibrometer,

149
time-domain data, 153

applications, 146
classical nonlinear effects, 140
composite laminates

clamping force, 157
damage index DI vs. projected

delamination area, 157
local defect resonance, 157–161
low-velocity impacts, 154
preliminary tests, 155
pumping and probing frequencies, 156

sample and experimental clamping
arrangement, 155

spatial mapping-based methods, 161
surface-bonded piezoceramic

transducers, 162
triple correlation, 163–165

composite sandwich panels
chiral composites, 165–168
foam core, 168–170

contact piezoceramic transducers, 145
crack detection based, 146
cross-modulation damage detection

technique, 142
excitation methods, 145
experimental configurations, 144
glass, 146–147
low-frequency excitation, 141
Luxemburg–Gorky effect, 140, 142–143
non-contact measurements, 145
pump-probe techniques, 140
techniques, 139
vibration-based damage detection methods,

140
vibro-acoustic wave modulation technique

(VAM), 141–142, 144
weak high-frequency ultrasonic wave,

141
Nonlinear air-coupled emission (NACE), 302,

312–316
experimental setup, 314
Fourier transform, 313
GFRP specimen, 313
inter-ply cracking, 315
linear ACU-transmission, 315
multiple impact-induced damage in

multi-ply, 314
nonlinear radiation source, 313
point-like defect, 316

Nonlinear bounded elastic medium, 227
Nonlinear bulk waves for nondestructive

evaluation
heat treatment processes, 13
linear acoustic parameters, 15, 16
nonlinear acoustic parameter measurement,

12, 15, 16
relative acoustic nonlinearity variation, 14,

15
ultrasonic nonlinearity measurement

system, 14
Nonlinear convolution signal processing, 48
Nonlinear damage models, wave propagation,

123–125
Nonlinear elastic regime, waves in, 375–379
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Nonlinear elasticwave propagation problem
formulation

constitutive equation, stresses and strains,
110

Green–Lagrange tensor, 110
guided wave propagation in bounded

media, 114
hyper-elastic framework, 110
Lagrangian description, 108
path-independent deformations, 110
Piola–Kirchoff stress, 109, 111–114
strain energy density function, 111

Nonlinear guided waves
constrained thermal expansion, 395–411,

413
in isotropic plates and rods (analytical

method), 345
absence of antisymmetric modes,

condition for, 357–358
analysis of solution, 370–374
antisymmetric Rayleigh–Lamb waves,

366
complex reciprocity relation, 352–354
experimental confirmation, 364–366
first-order nonlinearity, application to,

358–360
guided waves, forced solution to,

355–356
higher-order harmonics, applications to,

362–364
nonlinear equation of motion for

waveguide, 348–351
nonlinearity in rods, 366–369
nonlinear Lamb waves, 346, 354–355
nonlinear problem, solution to, 369–370
nonlinear SAFE analysis in plates,

360–361
nonlinear strain energy expression,

347–348
perturbation, 356
solution, 357–358
waveguide mode orthogonality,

351–352
residual energy, 412
semi-analytical computational method

anisotropic elastic composite laminate,
388–391

internal resonance, 375–379
nonlinear semi-analytical algorithm,

379–381
railroad track, 381–386
reinforced concrete slab, 391–394
viscoelastic isotropic plate, 386–388

zero thermal stress, 412

Nonlinear impact resonance acoustic
spectroscopy (NIRAS), 46

Nonlinearity in rods, 366–369
Nonlinearity in stress–strain relation, 2
Nonlinear Lamb waves, 346

features, 705–706
in isotropic plates and rods, 354–355
mode tuning, 21
Navier’s equation, 21
NDE

thermal fatigue assessment, pipes by
nonlinear guided waves, 30–38

thermal fatigue detection, composites,
24–30

perturbation method, 22
phase matched Lamb wave modes,

23–24
phase velocity and group velocity

dispersion curves, 61
signal-to-noise ratio, 21
traction-free boundary surfaces, 22

Nonlinear media models, wave propagation
deformations, 117
finite element method, 118–121
hyper-elastic stress formulas, 117–118
LISA, 121–123
strains, 117
stresses, 117–118

Nonlinear mesoscopic elastic materials
(NMEM), 46, 47

Nonlinear resonance techniques
hysteretic stress-strain relations, 47
multiple resonance spectra, 45–46
nonlinear convolution signal processing, 48
nonlinear mesoscopic elastic materials, 46
quadratic and cubic elastic constants, 46
schematic test configuration, 45
SD based nondestructive testing, 47
stress–strain relation, 46

Nonlinear resonant ultrasound spectroscopy
(NRUS), 512, 535

advantages, 94
complications

hysteresis, 97
rate dependence, 94–97

crack orientation, Crab Orchard sandstone,
92

DAET, 512
global damage, 97–99
history, 93–97
large-amplitude waves, 91
Observer Effect, 96
quasi-static and wave mixing

measurements, 93
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quasi-static stress-strain curves, 97
repeated loading and unloading stress-strain

curves, 90, 91
single-mode resonance measurements, 94
slow dynamics, 95
softening nonlinearity, 93
style measurement, 97

Nonlinear reverberation spectroscopy (NRS),
99

Nonlinear scanning laser vibrometry (NSLV),
306, 310, 311, 313, 314

Nonlinear seismo-acoustic land mine detection
methodology, 316

Nonlinear semi-analytical algorithm, 379–381
Nonlinear single-impact resonant acoustic

spectroscopy (NSIRAS), 505
Nonlinear spring-type interface model

amplitude reflection coefficient, 295
for contacting rough surfaces

bistable interface model,
266

boundary conditions, 266
effect of adhesive force, 266
elastic/ultrasonic waves, 263
elastic wave impinging, 266
Hertz contact of asperities, 265–266
linear elastodynamic field equations,

266
linear spring-type interface model, 265
nominal normal stress, 264
nominal shear stress, 264
nonlinear responses, 263–266
perfect closure, 265
perfect opening, 265
physical characteristics, 263
piecewise linear spring-type interface

model, 265
pressure–gap distance relation, 263, 264
ultrasonic waves interaction, 266

interfacial normal stiffness, 295, 296
nonlinear interfacial parameter, 296
pulse reflection waveform, 295
second-harmonic amplitude ratio, 296, 297

Nonlinear thermoelasticity, 395
Nonlinear ultrasonic/acoustic methods, 106
Nonlinear ultrasonic modulation technique,

fatigue crack and delamination
detection

advantages, 662
conditions for, 671–673
controlling, inputs for, 673–675
damage detection techniques using, 675

issues, 675
spatial comparison technique, 676–677

SPC technique, 677–679
state space attractor technique, 680–683

NDE, 662
noncontact ultrasonic generation and

measurement
ACT, 664– 666
contact transducers, limitations,

663–664
different scanning strategies, 668–670
EMAT, 664, 665
laser-based ultrasonic generation, 666
laser ultrasonic measurement, 666–667
laser ultrasonic scanning system, 668,

669
plates, fatigue crack detection

in ACT-based measurement systems,
683–685

laser-based measurement systems,
687–690

principle of, 670–671
rotating shafts, fatigue crack detection,

685–687
wind turbine blades,

delamination/debonding detection
on, 690–693

Nonlinear wave mixing, 232–236, 247
Nonlinear wave modulation spectroscopy

(NWMS), 2
acoustic modulation process, 49, 50
continuous high-frequency probe wave, 49
experimental testing techniques, 52–53
impact induced modulation techniques, 52
low-frequency vibration/pump wave, 49
nonlinear resonance and finite-amplitude

techniques, 49
side band generation, 50–52
vibro-acoustic modulation, 52

Nonlocal approach, 589–591
Nonlocal Christoffel equation, 598, 599
Nonlocal-continuum physics, 615–616
Nonlocal damage entropy (NLDE), 584, 599,

600–602
Normal-incidence longitudinal wave,

second-harmonic generation
frequency-domain analysis

boundary condition, 273
complex reflection and transmission

coefficients, 274
complex-value representation, 273
driving force, 275
forward and backward waves, 274, 276
frequency-domain displacement field,

273
gap change, 275
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Normal-incidence longitudinal wave,
second-harmonic generation (cont.)

governing equations, 272
linear response, 272
quadratic nonlinear response, 272
second-harmonic component, 276–277
stationary component, 275
time-domain displacement field, 277

perturbation analysis
dimensional variables, 270, 271
non-dimensional variables, 269
quadratic nonlinear response, 270
reflected and transmitted waves, 271
second-harmonic amplitude ratio, 271

power-law stiffness–pressure relation,
277–278

time-domain formulation, 267–269
Normal modal expansion method, 18
Normal stiffness, 277, 291, 295, 296
Normal transmission mode (NTM), 683
NRUS, see Nonlinear resonant ultrasound

spectroscopy
NSLV, see Nonlinear scanning laser vibrometry
Nucera, C., 345–413
Numerical modeling strategies, 116
NWMS, see Nonlinear wave modulation

spectroscopy

O
Oblique-incidence longitudinal wave,

second-harmonic generation
boundary conditions, 282–283
governing equations, 281–282
linear response

boundary conditions, 285
equations, 283–284
frequency domain displacement, 284
interfacial displacements, 286
nonlinear spring-type interface, 285,

286
reflected and transmitted wave fields,

285
mode-converted longitudinal waves, 282
with nonlinear spring-type interface, 281,

282
perturbation approach, 283
plane time-harmonic longitudinal wave,

282
quadratic nonlinear response

driving force, 287–288
interfacial nonlinearity, 290
second-harmonic field, 289, 290
stationary field, 288

strain-free field, 288–289
Odd harmonics, 372–373
Ohara, Y., 57, 419–467
1D dislocations, 175
One-dimensional wave propagation, 229–231
Optical microscopy imaging, precursor

damage, 617–618
Orthogonality of normal modes, 242
Overbey, L.A., 680

P
Packo, P., 103–133
Park, B., 661–694
Partial wave technique, 18
Patra, S., 583–620
Payá, J., 1–82, 487–505
Payan, C., 44, 471–484, 570
PBC, see Periodic boundary conditions
PCI eXtensions for Instrumentation (PXI)

platform, 726
Pecorari, C., 266, 267, 281, 290
Periodic boundary conditions (PBC), 387, 391,

394
Perspex specimen, 311
Perturbation approach, 6, 228, 230, 306, 356,

710
Perturbation condition, 377
Phase analysis, 520
Phase inversion/pulse inversion (PI), 567
Phase matched Lamb wave modes, 23–24
Phase noise, 515–516
Phase velocity, 703
Physical Acoustics Corporation Pico

transducer, 364
Physical nonlinearity, 347
Piecewise linear spring-type interface model,

265
Pieczonka, L., 139–171
Piezoelectric transducers (PZT), 557, 668

wafer, 718, 719
Piezoelectric wafer active sensors (PWAS),

607
Pinducer sensor, 364
Piola–Kirchhoff stress tensor, 226, 228,

348–350, 355, 376, 377
Pitch-catch ultrasonic Lamb wave experiment,

611
Plasticity-driven nonlinearity, 714, 719
Plates, fatigue crack detection

in ACT-based measurement systems,
683–685

laser-based measurement systems, 687–690
PMMA, see Polymethyl methacrylate
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Pochhammer Chree wave, 370
Polymethyl methacrylate (PMMA), 310,

318–321
Polytec PSV-400 laser vibrometer, 149
Popovics, J.S., 487–505
Portevin-Le Chatelier effect, 653, 654, 657
Power-law stiffness–pressure relation, 277–278
Precursor damage

bottom-up multiscale predictive failure
models, 586–587

characterization
optical microscopy imaging, 617–618
SAM, 619
SEM, 618–619

CWI technique, 603–604
application of, 606–607
precursor damage quantification,

612–615
stretching technique with cross-

correlation, 604–605
Taylor series expansion technique, 606

damage state quantification process, 594
incremental damage state and nonlocal

parameters, 594–595
nonlocal damage entropy, 600–602
nonlocal parameter, identification of,

598–599
SAM, 595–598
stiffness degradation, evaluation of,

602–603
experimental design

fatigue testing, 609–610
materials and specimen preparation,

607–608
pitch-catch ultrasonic Lamb wave

experiment, 611
Tensile test, 608

nonlocal-continuum physics, 615–616
quantification

detection and, 585
SAW velocity profiles, 616–617
using CWI, 612–615
using nonlocal-continuum physics,

615–616
quasi-longitudinal wave velocity,

probability distribution, 611–612
QUIC, 588–589

Eigenvalue problem, 592–594
motion with nonlocal parameters,

fundamental equation, 591–592
nonlocal approach and micromorphic

Kernel function, 589–591
precursor quantification process,

600–602

unifying bottom-up and top-down
approaches, 587–589

Precursor quantification process, 600–602
Predoi, M.V., 391
Preisach–Mayergoyz model, 472
Probability imaging algorithm (PIA), 730
Probe analysis, DAET

cross-correlation method, 520, 521
phase analysis in frequency domain,

520–522
Propagative pump wave, 518–519
Pruell, C., 258
Pulse-inversion technique, 246
Pulse repetition frequency (PRF), 515
Pump analysis, 519–520
Pump-probe techniques, 140
Pumpwave after-effect monitoring, Coda wave

interferometry, 56
Pumpwave and probewave-based techniques

after-effect monitoring, Coda wave
interferometry, 56

DAET, 53–56
NWMS, 49–53

Q
Qu, J., 225–258
Quadratic nonlinear response, 270
Quality factor (inverse of attenuation), 2
Quantitative ultrasonic image correlation

(QUIC), 588–589
Eigenvalue problem, 592–594
motion with nonlocal parameters,

fundamental equation, 591–592
nonlocal approach and micromorphic

Kernel function, 589–591
precursor quantification process, 600–602

Quantization bits, 516
Quasi-longitudinal wave velocity, probability

distribution, 611–612
QUIC, see Quantitative ultrasonic image

correlation

R
Radecki, R., 103–133, 375
Railroad track

geometry and FE mesh, 381, 382
material properties, 381
nonresonant combination, 383–384
propagative modes, 383
resonant combination, 385–386

RANP, see Relative acoustic nonlinearity
parameter (RANP)
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Rayleigh surface waves, 236–239
advantages, 251
air-coupled transducer, 252
applications, 253
austenite 304 and 304 L stainless steels,

255
chromium carbide precipitation, 255
DOS, 256, 257
experimental setup, 251
fatigue damage, 251
IGSCC, 255
material nonlinearity, 251, 252, 254–257
microstructural changes, 253
non-contact air-coupled receiver, 253, 254
nonlinear ultrasonic measurements, 254
normalized acoustic nonlinearity, 252, 253
out-of-plane displacement, 251
precipitates, 253
propagation, 17
wedge transducer and laser interferometer,

251
Rayleigh wavelength, 570
Reduced elastic friction principle (REFP)

arbitrary contact geometry, 185
Coulomb friction law, 185, 187
displacement-driven system, 185
Dundur’s constant, 187
force-driven counterpart, 188
forces and displacements, 187
geometric information, 188
isotropic rough surfaces, 188
shear stress distribution, 185
tangential force and displacement

distribution, 184, 185
REFP, see Reduced elastic friction principle
Reinforced concrete slab, 391–394
Relative acoustic nonlinearity parameter

(RANP), 712
vs. sensing path offset, 719–722
vs.wave propagation, 717–719

Relaxation time, 475, 476, 541
Remillieux, M.C., 547–576, 570
Renaud, G., 54, 509–542
Resonance frequencies, 487

and attenuation coefficient, 2
shift, 662, 663

Resonant frequency test, 487–488
amplitude dependence, 490
attenuation, 490, 491
dynamic excitation, 491
harmonic mode generation, 491
nonlinear parameters, 493
stress-strain behavior, 490
variability and systematic errors

double-hump effect, 501–503
environmental factors, 503
material conditioning, 503–504
nonlinear parameter estimation,

499–500
test configuration, 500–501

Resonant Inspection, 89, 90
Resonant shear wave, normalized amplitude

of, 249, 250
Resonant ultrasound spectroscopy (RUS),

nonlinearity, see Nonlinear resonant
ultrasound spectroscopy (NRUS)

Resonant wave, 236, 248
Reverse time migration (RTM), 559
Richardson’s model, 429
Rigid boundary condition, 228
Riviere, J., 509–542
Rocks, cementitious, and granular materials

amplitude dependence, 534–537
early time vs. late-time recovery, 539–542
elastic softening, 532
instantaneous velocity changes, 533–534
slow dynamics, 538–539
transition from static to dynamic

acousto-elasticity, 537–538

S
SAFE, see Semi-analytical finite element
SAM, see Scanning acoustic microscope
Scalerandi, M., 569
Scaling subtraction method (SSM), 42,

569–560
Scanning acoustic microscope (SAM)

damage precursors, 619
damage state quantification process,

595–598
precursor quantification process, 600–602

Scanning electron microscope (SEM),
precursor damage, 618–619

Scanning laser Doppler vibrometers (SLDVs),
145

SD, see Slow dynamics
Second-harmonic generation, 239, 671, 706,

712
frequency, 240, 241
by normal-incidence longitudinal wave

frequency-domain analysis, 272–277
perturbation analysis, 269–272
power-law stiffness–pressure relation,

277–278
time-domain formulation, 267–269

by normal-incidence shear wave
boundary conditions, 279
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frequency-domain solution, 279, 280
linear response, 279
with nonlinear spring-type interface,

279, 280
perturbation analysis, 279
quadratic nonlinear response, 279
second-harmonic longitudinal

displacement field, 280–281
tangential motion, 278–279
time-harmonic incident wave, 279
transverse displacement, 279

oblique-incidence longitudinal wave
boundary conditions, 282–283
governing equations, 281–282
linear response, 283–286
mode-converted longitudinal waves,

282
with nonlinear spring-type interface,

281, 282
perturbation approach, 283
plane time-harmonic longitudinal wave,

282
quadratic nonlinear response, 287–291

quantitative evaluation
contact-pressure dependence, 293–294
displacement amplitude, 293
experimental setup, 291, 292
least-square fits, 293
particle velocity measurement, 293
second-harmonic amplitudes, 294
tone-burst transmission measurement,

294
transmission waveforms, 291, 292

Sekoyan, S.S., 381
Selective source reduction (SSR), 558
Self-reciprocity, 246
Semi-analytical computational method

anisotropic elastic composite laminate,
388–391

internal resonance, 375–379
nonlinear semi-analytical algorithm,

379–381
railroad track, 381–386
reinforced concrete slab, 391–394
viscoelastic isotropic plate, 386–388

Semi-analytical finite element (SAFE) method,
360–361, 360–361, 378–380, 379,
380, 382, 383, 385, 387, 394

Shokouhi, P., 43, 509–542
Short-time Fourier transform (STFT) analysis,

714, 732
Shui, G., 265
Sideband peak count (SPC) technique, 3, 61,

677–679, 689

aging process, 68
anti-symmetric wave modes for

propagation, 70
crack detection

in aircraft fitting-lugs, 75–77
in aluminum plate specimens, 70–75
localization in aluminum plate

specimens, 77–81
crack perturbation condition, 67
damage index, 70
frequency band selection, 70
generated Lamb wave, 67
glass–fiber reinforced cement composite

specimens, 67, 69
Lamb wave modes, 63
laser Doppler vibrometer, 65
laser pulse excitation, 67
material nonlinearity variation, 65
mechanical destructive tests, 67
mode matching condition, 67
NIRAS tests, 67
noncontact laser ultrasonic system, 66
peri-ultrasound modeling technique, 64

Signal-to-noise ratio (SNR), 712
Sinc function, 303
Single-impact vibration signal

damage quantification, 496–498
sliding window, 493–494
time domain fitting, 494–496

Slanted transmission mode (STM), 683, 684
Slow dynamics (SD), 471, 472

based nondestructive testing, 47
fast and slow dynamic effects, 48
nonlinear regimes, resonance experiments,

48
recovery process, 48
resonance-based techniques, 48
resonance frequency tests, 48
resonance test configurations, 48
rheological models, 47

Small-amplitude probe wave, 524
Small-scale damage, 705, 706
Snell’s law, 665
Snieder, R., 540
Soft-ratchet model, 474
Sohn, H., 1–82, 661–694
Solodov, I., 301–341
Solodov, I.Y., 123
SPACE, see Subharmonic phased array for

crack evaluation
Spatial comparison technique, 676–677
SPC technique, see Sideband peak count

technique
Srivastava, A., 345–413
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SSM, see Scaling subtraction method
Standard sensing, 724
Staszewski, W.J., 103–133, 139–171
State space attractor technique, 680–683
Stationary pump wave, 517–518
STFT-based signal processing, 719, 722
Stiffness degradation, evaluation of, 602–603
Stimulated emission, 666
Strain energy, 347
Strang splitting scheme, 478
Stress corrosion crack (SCC)

accurate measurement of, 448
deep SCCs, 448, 449
experimental configuration, 448, 450
fatigue precrack, 448
fundamental array (FA) image, 449, 450
in heat-affected zone

closed and open state transition, 455
crack closure point, 457–459
crack opening displacement, 456
crack opening point, 453, 457, 458
DDN model, 454–458
experimental configuration, 451
FDTD method, 452
moving crack response, 453
radarlike displays, 453, 455
shift-summation waveforms, 452–454,

456
single-focus FA and SA images, 453,

457, 459
stress ratio, 452
tensile stress, 452, 453
unmoving crack response, radarlike

displays, 451, 452
subharmonic array image, 449, 450

Stress-free boundary, 228
Stress wave factor, 258
Stretching technique, 604–605
Structural damage detection, 103
Structural health monitoring (SHM), 585, 700

mechanical stability, 647
MI 8 helicopter, 643

shaking procedures, 655, 656
tape removal, 656
temperature variation, 654, 655

stress and strain
aluminium, 650–653
brass, 645, 647
copper wire, 647–650

See also Anharmonic monitoring
Su, Z., 699–737
Sub-harmonic, nonlinear ultrasonic

phenomena, 662, 663

Subharmonic phased array for crack evaluation
(SPACE), 57–58

adhesion force effect, 422
advantage of, 421
asymmetric stiffness, 421
crack closure stress, 422, 429
DC response, 421
in elastic medium, 422, 423
fatigue crack growth monitoring

closure behavior, 441, 444
crack depth distribution, 441, 444
experimental configuration, 440, 441
fatigue conditions, 440
fundamental array image, 440–443
plasticity-induced crack closure, 442
PZT 31-element array transducer, 440
subharmonic array image, 440–443

incident wave amplitude threshold (ath),
424

interaction forces, 423
long-burst waves, 421
in manufacturing process

backscattering configuration, 445
effect of aperture, 447, 448
fundamental array image, 445–447
Ni-Cr-Mo steels, experimental

configuration, 443, 445
nondestructive methods, 443
spatial resolution of images, 446
subharmonic array image, 445–448

mechanical diode effect, 421
nanoscale imaging, 421
nonlinear interaction of intense ultrasound,

420
numerical theory

crack opening displacement, 429
elastic-body-oscillator model, 429, 430
incident waveform, 430
repulsive and attractive force, 429, 430
Richardson’s model, 429
spectra on crack closure stress, 431
spectra on incident wave amplitude,

431, 432
transient solutions, 431
van der Waals interatomic force, 429

open and closed fatigue cracks, 436–438
principle of

array transducer, 432, 433
confocal SPACE, 433, 434
delay time, 435
forward- and backward-scattering

waves, 432
fundamental array image, 432, 434–436
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LiNbO3 single-crystal transmitter, 432,
433

shift-summation waveforms, 434, 435
subharmonic array image, 432, 434–436
transmission focal point, 433

SCC, 448–459
in stainless-steel specimen

experimental configuration, 437, 439
fatigue conditions, 437
fundamental array image, 437–440
subharmonic array image, 437–440

surface acoustic wave
array transducer, 460
for contact testing, 460
crack length measurement, 459
experimental configuration, 460, 461
fatigue conditions, 460
fundamental array image, 461
Rayleigh wave propagation, 460, 462
subharmonic array image, 461
water immersion testing, 463–465

threshold behavior, 422–423
through-transmission configuration, fatigue

crack
broadband piezoelectric transducer, 425
displacement amplitude measurement,

425
experimental configuration, 425
incident wave measurement, 425, 426
nonlinear ultrasonic measurement, 425
power spectra, 426, 428
subharmonic intensity vs. fundamental

intensity, 426
time-averaged displacement variation,

427, 428
transmitted waveforms, 425–428, 427
twenty-cycle burst wave, 426

time-averaged displacement variation,
422–424

Subharmonics, 3
Surface acoustic wave (SAW)

precursor damage, 616–617
velocity, 597

Surface wave-based NDE, 16–17
Surface wave propagation, acoustic nonlinear

parameter
advantages, 16–17
attenuation correlation factor, 19
longitudinal and shear wave potentials, 18
normal modal expansion method, 18
particle displacements, 16

Sutin, A., 562, 567
Symmetric primary mode, 244
Synchronized mode pair, 712

T
Tangential stiffness, 124, 265
Tang, G.X., 247
Taylor series expansion technique, 604, 606
TenCate, J.A., 89–99
Tensile test, 608
Thermal buckling, 395, 412
Thermal fatigue

assessment, pipes by nonlinear guided
waves

acoustic field, second harmonic guided
wave propagation, 33

acoustic nonlinearity parameter,
specimen, 38

aluminum pipes, dispersion curves, 34,
35

cylindrical shell, 32
damage induced nonlinearity, 34
experimental setup and comb

transducer, 35, 36
material nonlinearity characterization,

33
modal expansion, 31
nonlinear parameter values, propagation

distance, 37
nonlinear parameter variations with

propagation distance, 38
nonlinear wave equation, 30
phase matching condition, 33
primary wave field of particle

displacement components, 32
second harmonic wave mode whose

phase velocity, 33
detection, composites by second harmonic

Lamb waves
carbon/epoxy composites, density and

elastic stiffness coefficients, 24, 25
coefficient of thermal expansion

mismatch, 27
dispersion curves, 25, 26
fast Fourier transform, 27
linear and nonlinear acoustic

parameters, loading cycles, 29, 30
material properties, specimens, 24, 25
multi-mode separation process, 26, 27
normalized second harmonic amplitude,

27, 28
phase matching condition, 24
phase velocity dispersion curve plot, 25
relative acoustic nonlinearity, 28, 29
transverse matrix micro-cracks and

micro-debondings, 27
wave propagation distance, 27

Thiele, S., 252
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Third-order elastic constants (TOEC), 347,
376, 389, 390, 530, 533, 535

Third-order phase symmetry analysis, 568–569
3D defects, 175
3D Hooke’s Law, 707
Time integration schemes, 104
Time of flight (ToF), 594, 704
Time reversal acoustic non-contact excitation

(TRANCE), 557
Time reversal techniques

amplitude and quality, 557
beamforming, 558
benefits and limitations, 559–560
biomedical applications, 561
bounded medium

forward and backward steps, 548, 549
frequency domain, 550
impulse response, 549
longitudinal wave, 550
mode conversion, 550

characteristics of, 551–552
computed impulse response method, 553
deconvolution method, 554
DORT, 558
free space, 558
inverse-filter process, 555
laser Doppler vibrometer, 556
matched field processing, 558
nonlinear crack, 562
nonlinear features

elastic wave energy, 564
glass block and aluminum block

interface, 564, 566
inherent nonlinearity, 566
piezoelectric transducer, 564

nonlinear signatures of defects, 562–563
numerical simulations, 562
optimal propagation delays, 548
piezoelectric transducers, 557
reciprocal time reversal, 552

high-amplitude response, 567
linear C-scan, 568
phase inversion/pulse inversion (PI),

567
residue signal, 567
scaling subtraction method (SSM),

569–560
third-order phase symmetry analysis,

568–569
robust ability, 556
RTM, 559
singular value decomposition procedure,

558

SSR, 558
standard TR, 552
surficial and depth imaging, 570–571
3D focusing

composite plate, 574
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