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Universitat Politècnica de València, Camı́ de Vera s/n, 46022 Valencia, Spain
{dinsa,serperu,jsilva,stamarit}@dsic.upv.es

Abstract. In the software lifecycle, a program can evolve several times
for different reasons such as the optimisation of a bottle-neck, the refac-
toring of an obscure function, etc. These code changes often involve sev-
eral functions or modules, so it can be difficult to know whether the
correct behaviour of the previous releases has been preserved in the new
release. Most developers rely on a previously defined test suite to check
this behaviour preservation. We propose here an alternative approach to
automatically obtain a test suite that specifically focusses on compar-
ing the old and new versions of the code. Our test case generation is
directed by: a sophisticated combination of several already existing tools
such as TypEr, CutEr, and PropEr; the choice of an expression of interest
whose behaviour must be preserved; and the recording of the sequences
of values this expression is evaluated to. All the presented work has been
implemented in an open-source tool that is publicly available on GitHub.
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1 Introduction

During its useful lifetime, a program might evolve many times. Each evolution
is often composed of several changes that produce a new release of the soft-
ware. There are multiple ways to control that these changes do not modify the
behaviour of any part of the program that was already correct. Most of the com-
panies rely on regression testing [13,19] to assure that a desired behaviour of the
original program is kept in the new release, but there exist other alternatives
such as the static inference of the impact of changes [7,9,11,14].

Even when a program is perfectly working and it fulfils all its functional
requirements, sometimes we still need to improve parts of it. There are several
reasons why a released program needs to be modified. For instance, improving
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the maintainability or efficiency; or for other reasons such as obfuscation, secu-
rity improvement, parallelization, distribution, platform changes, and hardware
changes, among others. Programmers that want to check whether the semantics
of the original program remains unchanged in the new release usually create a
test suite. There are several tools that can help in all this process. For instance,
Travis CI can be easily integrated in a GitHub repository so that each time a
pull request is performed, the test suite is launched. We present here an alter-
native and complementary approach that creates an automatic test suite to do
regression testing. Therefore, our technique can check the evolution of the code
even if no test suite has been defined.

In the context of debugging, programmers often use breakpoints to observe
the values of an expression during an execution. Unfortunately, this feature is not
currently available in testing, even though it would be useful to easily focus the
test cases on one specific point without modifying the source code (as it happens
when using asserts) or adding more code (as it happens in unit testing). In this
paper, we introduce the ability to specify points of interest (POI) in the context
of testing. A POI can be any expression in the code (e.g., a function call) meaning
that we want to check the behaviour of that expression.

In our technique, (1) the programmer identifies a POI, typically a variable1,
and a set of input functions whose invocations should evaluate the POI. Then,
by using a combination of random test case generation, mutation testing, and
concolic testing, (2) the tool automatically generates a test suite that tries to
cover all possible paths that reach the POI (trying also to produce execution
paths that evaluate the POI several times). Therefore, in our setting, the input
of a test case (ITC) is defined as a call to an input function with some specific
arguments, and the output is the sequence of those values the POI is evaluated
to during the execution of the ITC. For the sake of disambiguation, in the rest
of the paper we use the term traces to refer to these sequences of values. Next,
(3) the test suite is used to automatically check whether the behaviour of the
program remains unchanged across new versions. This is done by passing each
individual test case against the new version, and checking whether the same
traces are produced at the POI. Finally, (4) the user is provided with a report
about the success or failure of these test cases. When two versions of a program
are available at the beginning of the test generation process, we can use both
for the generation of ITCs in step (2). In this alternative mode, step (3) is not
performed as a separated step but it is integrated in step (2). We named this
execution mode the comparison mode, and the one that uses only one version
the suite generation mode. Note that, as it is common in regression testing, both
modes only work for deterministic executions. This does not mean that they
cannot be used in a program with concurrency or other sources of indeterminism,
but POIs not affected by these features should be used in these cases.

1 While our current implementation limits the POI to variables, nothing prevents the
technique from accepting any expression as the POI.
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We have implemented our approach in a tool named SecEr (Software Evolu-
tion Control for Erlang), which implements both execution modes and is pub-
licly available at: https://github.com/mistupv/secer. Instead of reinventing the
wheel, some of the analyses performed by our tool are done by other existing
tools such as CutEr [5], a concolic testing tool, to generate an initial set of test
cases; TypEr [10], a type inference system for Erlang, to obtain types for the
input functions; and PropEr [12], a property-based testing tool, to obtain values
of a given type. All the analyses performed by SecEr are transparent to the user.
The only task that requires user intervention in our technique is, at each version,
selecting the POI that is supposed to produce the same trace. This task is easy
when the performed changes are not too aggressive, but it could be more difficult
when the similarities between both codes are hard to find. In those cases where
the versions are too different, the expression that define the values returned by
the main functions can be a good starting point to start checking the behaviour
preservation. In case the users need more refined or intricate POIs, they could
move them following the control flow backwards on both versions of the code.

Example 1. Consider the real commit in the string.erl module of the standard
library of the Erlang/OTP whose commit report is available at:

https://github.com/erlang/otp/commit/53288b441ec721ce3bbdcc4ad65b75e11acc5e1b

This change optimizes function string:tokens/2. SecEr can automatically
check, using the comparison mode, whether this change preserves the original
behaviour with a single command. We only need to indicate the two files that
must be compared, and a POI for each file. Then, the tool automatically gener-
ates test cases that evaluate the POIs, trying to cover as many paths as possible.
In this particular example, the POI in both versions is placed in the output of
function string:tokens/2. SecEr generated 7044 test cases (see Listing 1.8 [6])
that reached these POIs, and it reported that both versions produced the same
traces for all test cases.

We can now consider a different scenario and introduce a simple error like, for
instance, replacing the expression in line 253 of the new release with the expres-
sion [C | tokens multiple 2(S, Seps, Toks, [C])]. In this scenario, SecEr
generates 6576 test cases, 5040 of which have a mismatch in their traces (see List-
ing 1.9 [6]). SecEr stores all the discrepancies found in a file, and it also reports
one instance of these failing test cases: ITC tokens([12,4,5],[2,3,2,5,0,1]),
for which the original program produces the trace [[[12,4]]] whereas the new
one produces the trace [[4,[12,4]]].

2 A Novel Approach to Automated Regression Testing

Our technique is divided into three sequential phases that are summarized in
Figs. 1, 2, and 3. In these figures, the big dark grey areas are used to group several
processes with a common objective. The light grey boxes outside these areas
represent inputs and the light grey boxes inside these areas represent processes,

https://github.com/mistupv/secer
https://github.com/erlang/otp/commit/53288b441ec721ce3bbdcc4ad65b75e11acc5e1b


Erlang Code Evolution Control 131

the white boxes represent intermediate results, and the initial processes of each
phase are represented with a thick border box. All these boxes are connected by
continuous black arrows (representing the control flow between processes) or by
dot-dashed arrows (representing that some data is stored in a database). Finally,
there are also parts of these figures contained in light grey boxes with dashed
borders. This means that they are only used in the comparison mode. In this
case, the process only has two phases instead of three.

Fig. 1. Type analysis phase

The first phase (Type analysis), depicted in Fig. 1, is in charge of preparing
all inputs of the second phase (Test Case Generation). This phase starts by
locating in the source code the Erlang module (.erl1) and an input function
(Fun) specified by the user2 (for instance, function exp in the math module).
Then, TypEr is used to obtain the types of the parameters (from now on just
types) of that function.

It is important to know that, in Erlang, a function is composed of clauses and,
when a function is invoked, an internal algorithm traverses all the clauses in order
to select the one that will be executed. Unfortunately, TypEr does not provide
the individual types of each clause, but global types for the whole function.
Therefore, we need to first analyze the AST of the module to identify all the
clauses of the input function, and then we refine the types provided by TypEr to
determine the specific types of each clause. All these clause types are used in the
second phase. In this phase, we use PropEr to instantiate only one of them (e.g.,
〈Number, Integer〉 can be instantiated to 〈4.22, 3 〉 or 〈6, 5 〉). However, PropEr
is unable to understand TypEr types, so we have defined a translation process
from TypEr types to ProEr types. Finally, CutEr is fed with an initial call (e.g.,
math:exp(4.22, 3)) and it provides a set of possible arguments (e.g., {〈1.5, 6 〉,
〈2, 1 〉, 〈1.33, 4 〉}). Finally, this set is combined with the function to be called
to generate ITCs (e.g., {math:exp(1.5, 6), math:exp(2, 1), math:exp(1.33,
4)}). All this process is explained in detail in Sect. 3.1.

2 We show the process for only one input function. In case the user defined more than
one input function, the process described here would be repeated for each of them.
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Fig. 2. Test case generation phase

The second phase, shown in Fig. 2, is in charge of generating the test suite.
As an initial step, we instrument the program so that its execution records (as a
side-effect) the sequence of values produced at the POI (i.e., the traces). Then,
we store all ITCs provided by the previous phase onto a working list. Note that
it is also possible that the previous phase is unable to provide any ITC due to
the limitations of CutEr. In such a case, or when there are no more ITCs left, we
randomly generate a new one with PropEr and store it on the working list. Then,
each ITC on the working list is executed against the instrumented code, so a
trace is produce as a side-effect. The executed ITC and the obtained trace form
a new test case, which is a new output of the phase. Moreover, to increase the
quality of the test cases produced, whenever a non-previously generated trace is
computed, we mutate the ITC that generated that trace to obtain more ITCs.
The reason is that a mutation of this ITC will probably generate more ITCs
that also evaluate the POI but to different values. This process is repeated until
the specified limit of test cases is reached. This phase is slightly modified for the
comparison mode where we can directly compare the traces generated by both
of them to check discrepancies. Moreover, we only mutate an ITC when the pair
of traces generated by both versions has not been obtained before. The entire
process is explained in detail in Sects. 3.2 and 3.3.

Finally, the last phase (shown in Fig. 3) checks whether the new version of
the code passes the test suite. This suite is only generated in the suite generation
mode. In fact, this phase is only applied in this mode. First, the source code of
the new release is also instrumented to compute the traces produced at its POI.
Then, all the previously generated ITCs are executed and the traces produced
are compared with the expected traces.



Erlang Code Evolution Control 133

3 Thorough Description of the Approach

In this section, we describe in more detail the most relevant parts of our app-
roach: the generation of ITCs (Sect. 3.1), the code instrumentation to obtain the
traces (Sect. 3.2) and the test case generation (Sect. 3.3).

Fig. 3. Comparison phase

3.1 Initial ITC Generation

The process starts from the types inferred by TypEr for the whole input function.
This is the first important step to obtain a significant result, because ITCs are
generated with the types returned by this process, so the more accurate the
types are, the more accurate the ITCs are. TypEr’s standard output is an Erlang
function type specification returned as a string, which needs to be parsed. For
this reason, we have hacked the Erlang module that implements this functionality
to obtain the types in a structure, easier to traverse and handle. However, the
types returned by TypEr have (in our context) three drawbacks that need to
be corrected since they could yield to ITCs that do not match a desired input
function.

The first drawback is generated due to the fact that the types provided by
TypEr refers to a whole function. We explain the first drawback with an example.
Consider a function with two clauses whose headers are g(0,0) and g(1,1). For
this function, TypEr infers the function type g( 0 | 1, 0 | 1 ). Thus, the
types obtained by TypEr for both parameters are expected to be formed by
integers with the values 0 or 1, but the value of each parameter may be any of
them in every possible combinations. This means that, if we do not identify the
types of each clause, we may generate ITCs that do not match any clause of the
function, e.g. g(0,1).

The other two drawbacks are due to the type produced for lists and due to
the occurrence of repeated variables. We explain both drawbacks with another
example. Consider a function with a single clause whose header is f(A,[A,B]).
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For this function, TypEr infers the function type f( 1 | 2, [ 1 | 2 | 5 | 6]). Thus,
the type obtained for the second parameter of the f/2 function indicates that the
feasible values for this parameter are proper lists with a single constraint: it has to
be formed with numbers from the set {1, 2, 5, 6}. This means that we could build
lists of any length, which is our first drawback. If we use these TypEr types, we may
generate ITCs that do not match the function, e.g. f(2,[2,1,3,5]).3 Apart from
that, we have another drawback caused by the fact that the value relation gener-
ated by the repeated variable A is ignored in the function type. In particular, the
actual type of variable A is diluted in the type of the second argument. This could
yield to mismatching ITCs if we generate, e.g., f(1,[6,5]).

These three drawbacks show that the types produced by TypEr are too impre-
cise in our context, because they may produce test cases that are useless (e.g.,
non-executable). After the TypEr types inference, we can only resolve the type
conflict introduced by the first drawback. The other drawbacks will be com-
pletely resolved when the ITCs are built.

To solve this first drawback, we traverse every clause classifying the possible
types of each parameter with the TypEr deduced types. In this traversal every term
is given its own value and every time a variable appears more than once, we calcu-
late its type as the intersection of both the TypEr type and the accumulated type.
For instance, in the g/2 example we generate two different types: one for the clause
g(0,0)where the only possible value for both parameters is 0, and another one for
the clause g(1,1)where the only possible values for both parameters is 1. Further-
more, this transformation is useful not only for functions with multiple clauses, but
also with the functions with a single clause like the f/2 function. In this function,
we have A = 1 | 2 for the first occurrence, and A = 1 | 2 | 5 | 6 for the second one,
obtaining the new accumulated type A = 1 | 2 after applying this solution.

Once we have our refined TypEr types, we rely on PropEr to obtain the
input for CutEr. PropEr is a property-based testing framework with a lot of
useful underlying functionality. One of them is the value generators, which,
given a PropEr type, are able to randomly generate values belonging to such
type. Thus, we can use the PropEr generators in our framework to generate
values for a given type. However, TypEr and PropEr use slightly different nota-
tions for their types, which is reasonable given that their scopes are completely
different. Unfortunately, there is no available translator from TypEr types to
PropEr types. In our technique, we need such a translator to link the inferred
types to the PropEr generators. Therefore, we have built the translator by our-
selves. This translation deals with the previously postponed type drawbacks.
For that, we use the parameters of the clause in conjunction with their types.
To solve the first drawback, each time a list is found during the translation, we
traverse its elements and generate a type for each element on the list. Thereby,
we synthesize a new type for the list with exactly the same number of elements.

3 Note that having ITCs that do not match with any function clause is not a problem.
This scenario is common when TypEr returns the any type for some of the function’s
parameters. However, these ITCs are useless since they will produce an empty trace.
This explains our effort to avoid them.
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The second drawback is solved by recording the value each variable is assigned
to and, whenever a variable already treated is found, the value recorded for its
first occurrence is used.

Finally, we can feed CutEr with an initial call by using a randomly selected
clause and its values generated by PropEr. CutEr is a concolic testing framework
that generates a list of arguments that tries to cover all the execution paths.
Unfortunately, this list is internally generated by CutEr but not provided as an
output, so we have hacked CutEr to extract all these arguments. Additionally,
the execution of CutEr can last too long or even not terminate. For this reason,
we run CutEr with a timeout. In the comparison mode, the time assigned to
CutEr is equally distributed to generate ITCs of both versions. Finally, by using
this slightly modified version of CutEr we are able to generate the initial set of
ITCs by mixing the arguments that it provides with the input function.

3.2 Recording the Traces of the Point of Interest

There exist several tools available to trace Erlang executions [2–4,16] (we
describe some of them in Sect. 5). However, none of them allows for defining
a POI that points to any part of the code. Being able to trace any possible
point of interest requires either a code instrumentation, a debugger, or a way
to take control of the execution of Erlang. However, using a debugger (e.g., [3])
has the problem that it does not provide a value for the POI when it is inside
an expression whose evaluation fails. Therefore, we decided to instrument the
code in such a way that, without modifying the semantics of the code, traces are
collected as a side effect when the code is executed.

The instrumentation process creates and collects the traces of the POI. To
create the traces in an automatic way, we instrument the expression pointed by
the POI. To collect the traces, we have several options. For instance, we can store
the traces in a file and process it when the execution finishes, but this approach
is inefficient. We follow an alternative approach based on message passing. We
send messages to a server (which we call the tracing server) that is continuously
listening for new traces until a message indicating the end of the evaluation
is received. This approach is closer to the Erlang’s philosophy. Additionally,
it is more efficient since the messages are sent asynchronously resulting in an
imperceptible overhead in the execution. As a result of the instrumenting process,
the transformed code sends to the tracing server the value of the POI each time
it is evaluated, and the tracing server stores these values.

In the following, we explain in detail how the communication with the server
is placed in the code. This is done by firstly annotating the AST, then obtaining
the path from the root to the POI and finally dividing this path in two. In order
to do this, the following three steps are applied:

1. We first use the erl syntax lib:annotate bindings/2 function to annotate
the AST of the code. This function annotates each node with two lists of
variables: those variables that are being bound and those that were already
bound in its subtree.
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2. The next step is to find in the code the POI. During the search process,
we store the path followed in the AST with tuples of the form (Node,
ChildIndex), where Node is the AST node and ChildIndex is the index
of the node in its parent’s children array. When the POI is found, the traver-
sal finishes. Thus, the output of this step is a path in the AST that yields to
the POI.

3. The goal of this step is to divide the AST path into two sub-paths
(PathBefore, PathAfter). PathBefore yields from the root to the deep-
est target expression (included), and PathAfter yields from the first children
of the target expression to the POI. We call target expression to those expres-
sions that need a special treatment in the instrumentation. In Erlang, these
target expressions are: pattern matchings, list comprehensions, and expres-
sions with clauses (i.e., case, if, functions, . . . ).

After applying the previous steps we can instrument the POI. Most often,
the POI can be easily instrumented by adding a send command to communicate
its value to the tracing server. However, when the POI is in the pattern of an
expression, this expression needs a special treatment in the instrumentation. Let
us show the problem with an example.

Example 2. Consider a POI inside a pattern {1,POI,3}. If the execution tries to
match it with {2,2,3} nothing should be sent to the tracing server because the
POI is never evaluated. Contrarily, if it tries to match the pattern with {1,2,4},
then value 2 must be sent to the tracing server. Note that the matching fails in
both cases, but due to the evaluation order, the POI is actually evaluated (and
the partial matching succeeds) in the second case. There is an interesting third
case, that happens when the POI has a value, e.g., 3, and the matching with
{1,4,4} is tried. In this case, although the matching at the POI fails, we send
the value 4 to the tracing server.4

We explain now how the actual instrumentation is performed. First, the
PathBefore path is used to reach the deepest target expression that contains
the POI. At this point, five rules (described below) are used to transform the
code by using PathAfter. Finally, PathBefore is traversed backwards to update
the AST of the targeted function. The five rules are depicted in Fig. 4. The first
four rules are mutually exclusive, and when none of them can be applied, rule
(EXPR) is applied. Rule (LEFT PM) is fired when the POI is in the pattern of
a pattern-matching expression. Rule (PAT GEN LC) is used to transform a list
comprehension when the POI is in the pattern of a generator. Finally, rules
(CLAUSE PAT) and (CLAUSE GUARD)5 transform an expression with clauses when
the POI is in the pattern or in the guard of one of its clauses, respectively.
4 We could also send its actual value, i.e., 3. This is just a design decision, but we

think that including the value that produced the mismatch could be more useful to
find the source of a discrepancy.

5 Function clauses need an additional transformation that consists in storing all the
parameters inside a tuple so that they could be used in the case expressions intro-
duced by these rules.
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Fig. 4. Instrumentation rules for tracing

In the rules, we use the underline symbol ( ) to represent a value that is not
used. There are several functions used in the rules that need to be introduced.
Functions hd(l), tl(l), length(l) and last(l) return the head, the tail, the length,
and the last element of the list l, respectively. Function pos(e) returns the index
of an expression e on the list of children of its parent. Function is bound(e)
returns true if e is bounded according to the AST binding annotations (see step
1). Function clauses(e) and change clauses(e, clauses) obtains and modifies the
clauses of e, respectively. Function fv() builds a free variable. Finally, there is
a key function named pfv , introduced in Fig. 5, that transforms a pattern so
that the constraints after the POI do not inhibit the sending call. This is done
by replacing all the terms on the right of the POI with free variables that are
built using fv function. Unbound variables on the left and also in the POI are
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replaced by fresh variables to avoid the shadowing of the original variables. In the
pfv function, children(e) and change children(e, children) are used to obtain
and modify the children of expression e, respectively. In this function, lists are
represented with the head-tail notation (h : t).

Fig. 5. Function pfv

3.3 Generation of New Test Cases Using PropEr and Test Mutation

The test case generation phase uses CutEr whose concolic analyses try to gen-
erate 100% branch coverage test cases. Sometimes, these analyses can last too
long time. Moreover, even with a 100% branch coverage, frequently the test cases
generated by CutEr can be insufficient in our context. For instance, if the expres-
sion Z=X-Y is replaced in a new version of the code with Z=X+Y, a single test case
that executes both of them with Y=0 cannot detect any difference. Clearly, more
values for Y are needed to detect the behaviour change in that expression.

Therefore, to increase the reliability of the test suite when using the suite
generation mode, we complement the test cases produced by CutEr with a test
mutation technique. Using a mutation technique is much better than using, e.g.,
the PropEr generator to randomly synthesize new test cases, because random
test cases would produce many useless test cases (i.e., test cases that do not
execute the POI). In contrast, the use of a test mutation technique increases the
probability of generating test cases that execute the POI (because only those
test cases that execute the POI are mutated). The function that generates new
test cases using mutation is depicted in Fig. 6. The result of the function is a
map from the different obtained traces (i.e., the outputs of the test cases) to
the set of ITCs that produced them (i.e., the inputs of the test cases). The
first call to this function is tgen(top, cuter tests, ∅), where top is a user-defined
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limit of the desired number of test cases6 and cuter tests are the test cases that
CutEr generates. Function tgen uses the auxiliary functions proper gen, trace,
and mut. The function proper gen() simply calls PropEr to generate a new test
case, while function trace(input) obtains the corresponding trace when the ITC
input is executed. The size of a map, size(map), is the total amount of elements
stored in all lists that belong to the map. Finally, function mut(input) obtains a
set of mutations for the ITC input, where, for each argument in input, a new test
case is generated by replacing the argument with a randomly generated value
(using PropEr) and leaving the rest of arguments unchanged.

Fig. 6. Test case generation function

We can define an alternative way to generate tests for the comparison mode.
In this scheme, the generated tests are only focused on comparing the differences
between two version of the program. This generally yields to better tests for
comparison, since some bugs can be explored deeply. For instance, consider that,
for a given version of a program, ITCs f(0, 1) and f(0, 2) produce the same
trace, e.g. [2, 3]. According to the test generation function in Fig. 6, the second
generated ITC (e.g., f(0, 2)) is not further mutated. However, if we used another
version of the program and the traces obtained by both ITCs were [2, 3] and
[4, 5], respectively, it would be good to continue mutating the ITC since it is
possible that a change in the second parameter reveals new discrepancies between
the two versions. Therefore, we do not consider the trace of each individual
version to decide whether it should be mutated, but the combination of both
of them at the same time. We handle these cases by building a map from a
pair of traces to a list of ITCs, instead of from a single trace. For example,
the map from the previous example would contain 〈[2, 3], [2, 3]〉 �→ [f(0, 1)] and
〈[2, 3], [4, 5]〉 �→ {f(0, 2)} instead of [2, 3] �→ {f(0, 1), f(0, 2)}. Therefore, the key
in this new map is different for each ITC so, according to Fig. 6, f(0, 2) should
be further mutated. In fact, the algorithm to generate traces considering both
versions is exactly the same that the one depicted in Fig. 6. The only difference,
apart from the change in the map structure, is that the function trace(input) is
returning here a tuple 〈traceold(input), tracenew(input)〉, where traceold(input)

6 In SecEr, a timeout is also used as a way to stop the test case generation.
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and tracenew(input) are the traces obtained for the ITC input using the old
and the new version of the code, respectively. Note that in the comparison mode
we should obtain a report of the discrepancies during the test generation phase.
Obtaining the discrepancies between the traces of both versions is easy using the
result of Fig. 6. The following formula calculates them from the map returned
by tgen.7

discrepancies(map) =
⋃{inputs | (〈to, tn〉 �→ inputs) ∈ map s.t. to �= tn}

4 The SecEr Tool

SecEr is able to automatically generate a test suite that checks the behaviour
of a POI given two versions of the same program. There are two modes of
running this tool. The first one allows for generating and storing a test suite
of a program that is specific to test a given POI (the suite generation mode).
The second one compares the traces of two different versions of a program and
reports the discrepancies (the comparison mode).

Listing 1.1. SecEr command format

$ ./secer -f FILE -li LINE -var VARIABLE [-oc OCCURRENCE]
[-f FILE -li LINE -var VARIABLE [-oc OCCURRENCE ]]
[-funs INPUT_FUNCTIONS] -to TIMEOUT

Listing 1.1 shows the usage of the SecEr command. If we want to run the
command in the suite generation mode, we need to provide the path of the
target file (FILE), the POI (LINE, VARIABLE, and OCCURRENCE), a list of initial
functions (INPUT FUNCTIONS),8 and a timeout (TIMEOUT). If we execute the tool in
the comparison mode, the required inputs are slightly different. For each version,
we need to specify the path of its file and the details of its POI. Note that both
versions use the same input functions. Therefore, these functions need to be
exported in both versions of the program for the proper execution of SecEr.

The implementation uses a timeout as a limit to stop generating test cases,
while the formalization of the technique uses a number to specify the amount
of test cases that must be generated (see variable top in Sect. 3.3). This is not a
limitation, but a design decision to increase the usability of the tool. The user
cannot know a priory how much time it could take to generate an arbitrary
number of test cases. Hence, to make the tool predictable and give the user
control over the computation time, we use a timeout. Thus, SecEr generates as
many test cases as the specified timeout permits.

We have collected some interesting use cases and described how the source
of a discrepancy can be spotted using SecEr in them. They are available at [6].
7 According to the definition of function tgen, the selection of the ITC that is going to

be mutated is completely random. However, in our tool we give more priority to the
inputs belonging to discrepancies(map) since they are more susceptible of revealing
new discrepancies between versions.

8 The format for this list is [FUN1/ARITY1, FUN2/ARITY2 ...]. If the user does not
provide it, all functions exported by the module are used as input functions.
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5 Related Work

Automated behavioral testing techniques like Soares et al. [14] and Mongiovi [11]
are very similar to our approach, but their techniques are restricted in the kind
of changes that can be analyzed (they only focus on refactoring). Contrarily, our
approach is independent of the kind (or the cause) of the changes, being able to
analyze the effects of any change in the code regardless of its structure.

Automated regression test case generation techniques like Korel and Al-Yami
[8] are also very similar to our approach, but they can only generate test cases
if they have available both the old and the new releases. Contrarily, in our
approach, we can generate test cases with a single release, and reuse the test
cases to analyze any new releases by only specifying the points of interest.

Yu et al. [20] presented an approach that combines coverage analysis and
delta debugging to locate the sources of the regression faults introduced during
some software evolution. Their approach is based on the extraction and analysis
of traces. Our approach is also based on traces although not only the goals
but also the inputs of this process are slightly different. In particular, we do
not require the existence of a test suite (it is automatically generated), while
they look for the error sources using a previously defined test suite. Similarly,
Zhang et al. [21] use mutation injection and classification to identify commits
that introduce faults.

Most of the efforts in regression testing research have been put in the regres-
sion testing minimization, selection, and prioritization [19]. In fact, in the par-
ticular case of the Erlang language, most of the works in the area are focused
on this specific task [1,15,17,18]. We can find other works in Erlang that share
similar goals but more focused on checking whether applying a refactoring rule
will yield to a semantics-preserving new code [7,9].

With respect to tracing, there are multiple approximations similar to ours.
In Erlang’s standard libraries, there are implemented two tracing modules. Both
are able to trace the function calls and the process related events (spawn, send,
receive, etc.). One of these modules is oriented to trace the processes of a single
Erlang node [3], allowing for the definition of filters to function calls, e.g., with
names of the function to be traced. The second module is oriented to distributed
system tracing [4] and the output trace of all the nodes can be formatted in many
different ways. Cronqvist [2] presented a tool named redbug where a call stack
trace is added to the function call tracing, making possible to trace both the
result and the call stack. Till [16] implemented erlyberly, a debugging tool with
a Java GUI able to trace the previously defined features (calls, messages, etc.)
but also giving the possibility to add breakpoints and trace other features such
as exceptions thrown or incomplete calls. All these tools are accurate to trace
specific features of the program, but none of them is able to trace the value of an
arbitrary point of the program. In our approach, we can trace both the already
defined features and also a point of the program regardless of its position.
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6 Conclusions

During the lifecycle of any piece of software, different releases may appear, e.g.,
to correct bugs, to extend the functionality, or to improve the performance. It
is of extreme importance to ensure that every new release preserves the correct
behaviour of previous releases. Unfortunately, this task is often expensive and
time-consuming, because it implies the definition of test cases that must account
for the changes introduced in the new release.

In this work, we propose a new approach to automatically check whether the
behaviour of certain functionality is preserved among different versions of a pro-
gram. The approach allows the user to specify a POI that indicates the specific
parts of the code that are suspicious or susceptible of presenting discrepancies.
Because the POI can be executed several times with a test case, we store the
values that the POI takes during the execution. Thus, we can compare all actual
evaluations of the POI for each test case.

The technique introduces a new tracing process that allows us to place the
POI in patterns, guards, or expressions. For the test case generation, instead
of reinventing the wheel, we orchestrate a sophisticated combination of existing
tools like CutEr, TypEr, and PropEr. But, we also improve the result produced
by the combination of these tools introducing mutation techniques that allow us
to find more useful test cases. All the ideas presented have been implemented
and made publicly available in a tool called SecEr.

There are several interesting evolutions of this work. We would like to extend
our technique to other paradigms. Therefore, we would have to define a gener-
alization of this approach so it could be implemented in other languages. Then,
some important features present in most languages (e.g., concurrency) could also
be properly traced.

Some extensions to improve the results of the approach can be carried out.
Adding some relevant data into the traces, e.g., computation steps, would allow
for checking the preservation (or even the improvement) of non-functional prop-
erties such as efficiency. In a similar way, allowing for the specification of a list
of POIs instead of a single one would enable the tracing of several functionalities
in a single run, or the reinforcement of the quality of the test suite. Another way
to increase the usefulness of our approach is a special tracing for function calls
that would permit to distinguish easier whether an error is due to a discrepancy
between either function implementations or calls’ arguments. With respect to
the mutation technique, we want to find more efficient ways of deciding what
should be mutated, e.g., mutate certain elements of a list instead of changing
the whole list.

Finally, the user experience can be enriched in several ways. Currently, the
approach receives a sequence of functions as input. However, a sequence of con-
crete calls could be an alternative that could better lead to obscure errors. This
alternative also makes it easier to reuse unit test cases building, in this way, a
link between unit testing and our approach. Another interesting extension is the
implementation of a GUI, which would allow the user to select a POI by just
clicking on the source code. We are also interested in investigating whether it
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is possible to automatically infer POI candidates from the differences between
two versions. We could use tools like diff to obtain the differences, and either,
suggest the inferred candidate POIs to the user, or use them directly without
user interaction. Finally, the integration of our tool with control version systems
like Git or Subversion would be very beneficial to easily compare code among
several versions.
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