
Nominal C-Unification

Mauricio Ayala-Rincón1(B), Washington de Carvalho-Segundo1(B),
Maribel Fernández2(B), and Daniele Nantes-Sobrinho1(B)

1 Depts. de Matemática e Ciência da Computação,
Universidade de Braśılia, Braśılia, Brazil

{ayala,dnantes}@unb.br, wtonribeiro@gmail.com
2 Department of Informatics, King’s College London, London, UK

maribel.fernandez@kcl.ac.uk

Abstract. Nominal unification is an extension of first-order unification
that takes into account the α-equivalence relation generated by binding
operators, following the nominal approach. We propose a sound and com-
plete procedure for nominal unification with commutative operators, or
nominal C-unification for short, which has been formalised in Coq. The
procedure transforms nominal C-unification problems into simpler (finite
families) of fixed point constraints, whose solutions can be generated by
algebraic techniques on combinatorics of permutations.

1 Introduction

Unification, where the goal is to solve equations between first-order terms, is
a key notion in logic programming systems, type inference algorithms, proto-
col analysis tools, theorem provers, etc. Solutions to unification problems are
represented by substitutions that map variables (X,Y, . . .) to terms.

When terms include binding operators, a more general notion of unification is
needed: unification modulo α-equivalence. In this paper, we follow the nominal
approach to the specification of binding operators [20,26,30], where the syn-
tax of terms includes, in addition to variables, also atoms (a, b, . . .), which can
be abstracted, and α-equivalence is axiomatised by means of a freshness rela-
tion a#t and name-swappings (a b). For example, the first-order logic formula
∀a.a ≥ 0 can be written as a nominal term ∀([a]geq(a, 0)), using function sym-
bols ∀ and geq and an abstracted atom a. Nominal unification [30] is the problem
of solving equations between nominal terms modulo α-equivalence; it is a decid-
able problem and efficient nominal unification algorithms are available [9,11,24],
that compute solutions consisting of freshness contexts (containing freshness con-
straints of the form a#X) and substitutions.

In many applications, operators obey equational axioms. Nominal reasoning
and unification have been extended to deal with equational theories presented by
rewrite rules (see, e.g., [5,17,18]) or defined by equational axioms (see, e.g., [14,

Work supported by the Brazilian agencies FAPDF (DE 193.001.369/2016), CAPES
(Proc. 88881.132034/2016-01, 2nd author) and CNPq (PQ 307009/2013, 1st author).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Fioravanti and J. P. Gallagher (Eds.): LOPSTR 2017, LNCS 10855, pp. 235–251, 2018.
https://doi.org/10.1007/978-3-319-94460-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94460-9_14&domain=pdf

236 M. Ayala-Rincón et al.

19]). The case of associative and commutative nominal theories was considered
in [3], where a parametric {α,AC}-equivalence relation was formalised in Coq.
However, only equational deduction was considered (not unification). In this
paper, we study nominal C-unification.

Contributions: We present a nominal C-unification algorithm, based on a set
of simplification rules. The algorithm transforms a given nominal C-unification
problem 〈Δ, Q〉, where Δ is a freshness context and Q a set of freshness con-
straints and equations, respectively of the form a#?s and s ≈? t, into a finite
set of triples of the form 〈∇, σ, P 〉, consisting of a freshness context ∇, a substi-
tution σ and a set of fixed point equations (for short, FP equations) P of the
form π.X ≈? X. The simplifications are based on a set of deduction rules for
freshness and α-C-equivalence (denoted as ≈{α,C}).

The role of FP equations in nominal C-unification is tricky: while in stan-
dard nominal unification [30], solving a FP equation of the form (a b).X ≈? X
reduces to checking whether the constraints a#X, b#X (a and b fresh in X) are
satisfied, and in this case the solution is the identity substitution, in nominal
C-unification, for ∗ and + commutative operators, one can have additional com-
binatory solutions of the form {X/a+b}, {X/(a+b)∗. . .∗(a+b)}, {X/f(a)+f(b)},
etc. We show that in general there is no finitary representation of solutions using
only freshness contexts and substitutions, hence a nominal C-unification problem
may have a potentially infinite set of independent most general unifiers (unlike
standard C-unification, which is well-known to be finitary).

We adapt the proof of NP-completeness of syntactic C-unification to show
that nominal C-unification is NP-complete as well. Soundness and completeness
of the simplification rules were formalised in Coq. The formalisation, an extended
version of the paper with all proof details and an OCaml implementation are
available at http://ayala.mat.unb.br/publications.html.

Related work: To generate the set of combinatorial solutions for FP equations
we can use an enumeration procedure given in [4], which is based on the com-
binatorics of permutations. By combining the simplification and enumeration
methods, we obtain a nominal C-unification procedure in two phases: a simplifi-
cation phase, described in this paper, which outputs a finite set of most general
solutions that may include FP constraints, and a generation phase, which elim-
inates the FP constraints according to [4].

Several extensions of the nominal unification algorithm have been defined, in
addition to the equational extensions already mentioned.

An algorithm for nominal unification of higher-order expressions with recur-
sive let was proposed in [23]; as in the case of nominal C-unification, FP equations
are obtained in the process. Using the techniques in [4], it is possible to proceed
further and generate the combinatorial solutions of FP equations.

Recently, Aoto and Kikuchi [1] proposed a rule-based procedure for nominal
equivariant unification [13], an extension of nominal unification that is useful in
confluence analysis of nominal rewriting systems [2,16].

http://mat.unb.br/~ayala/publications.html

Nominal C-Unification 237

Furthermore, several formalisations and implementations of the nominal uni-
fication algorithm are available. For example, formalisations of its soundness and
completeness were developed by Urban et al [29,30], Ayala-Rincón et al [6], and
Kumar and Norrish [22] using, respectively, the proof assistants Isabelle/HOL,
PVS and HOL4. An implementation in Maude using term graphs [10] is also
available. Urban and Cheney used a nominal unification algorithm to develop
a Prolog-like language called α-Prolog [12]. Our formalisation of nominal C-
unification is based on the formalisation of equivalence modulo {α,AC} pre-
sented in [3]. The representations of permutations and terms are similar, but
here we deal also with substitutions and unification rules, and prove soundness
and completeness of the unification algorithm.

Reasoning modulo equational theories (but without considering the nomi-
nal approach to deal with α-equivalence) has been subject of formalisations.
For instance, Nipkow [25] presented a set of Isabelle/HOL tactics for reasoning
modulo A, C and AC; Braibant and Pous [8] designed a plugin for Coq, with
an underlying AC-matching algorithm, that extends the system tactic rewrite
to deal with AC function symbols; also, Contejean [15] formalised in Coq the
correction of an AC-matching algorithm implemented in CiME.

Syntactic unification with commutative operators is an NP-complete problem
and its solutions can be finitely generated [21,28]. Since C-unification problems
are a particular case of nominal C-unification problems, our simplification algo-
rithm, checked in Coq, is also a formalisation of the C-unification algorithm.

Organisation: Section 2 presents basic concepts and notations. Section 3 intro-
duces the formalised equational and freshness inference rules for nominal C-
unification, and briefly discusses NP-completeness; Sect. 4 shows that a single
FP equation can have infinite independent solutions; Sect. 5 shortly discusses
the formalisation in Coq and Sect. 6 concludes and proposes future work.

2 Background

Consider countable disjoint sets of variables X := {X,Y,Z, · · · } and atoms
A := {a, b, c, · · · }. A permutation π is a bijection on A with a finite domain,
where the domain (i.e., the support) of π is the set dom(π) := {a ∈ A | π ·a
= a}.
The inverse of π is denoted by π−1. Permutations can be represented by lists of
swappings, which are pairs of different atoms (a b); hence a permutation π is a
finite list of the form (a1 b1) :: . . . :: (an bn) :: nil, where the empty list nil corre-
sponds to the identity permutation; concatenation is denoted by ⊕ and, when
no confusion may arise, :: and nil are omitted. We follow Gabbay’s permutative
convention: Atoms differ on their names, so for atoms a and b the expression
a
= b is redundant. Also, (a b) and (b a) have identical action: they exchange a
and b; thus, they represent the same swapping.

We will assume as in [3] countable sets of function symbols with different
equational properties such as associativity, commutativity, idempotence, etc.
Function symbols have superscripts that indicate their equational properties;

238 M. Ayala-Rincón et al.

thus, fC
k will denote the kth function symbol that is commutative and f∅

j the
jth function symbol without any equational property.

Nominal terms are generated by the following grammar:

s, t := 〈〉 | ā | [a]t | 〈s, t〉 | fE
k t | π.X

〈〉 denotes the unit (that is the empty tuple), ā denotes an atom term, [a]t
denotes an abstraction of the atom a over the term t, 〈s, t〉 denotes a pair,
fE

k t the application of fE
k to t and, π.X a moderated variable or suspension.

Suspensions of the form nil .X will be represented just by X.
The set of variables occurring in a term t will be denoted as V ar(t). This

notation extends to a set S of terms in the natural way: V ar(S) =
⋃

t∈S V ar(t).
As usual, | | will be used to denote the cardinality of sets as well as to denote
the size or number of symbols occurring in a given term.

Definition 1 (Permutation action). The action of a permutation on atoms
is defined as: nil ·a := a; (b c) :: π ·a := π ·a; and, (b c) :: π ·b := π ·c. The action
of a permutation on terms is defined recursively as:

π · 〈〉 := 〈〉 π · 〈u, v〉 := 〈π · u, π · v〉 π · fE
k t := fE

k (π · t)
π · a := π · a π · ([a]t) := [π · a](π · t) π · (π′ .X) := (π′ ⊕ π) .X

Notice that according to the definition of the action of a permutation over
atoms, the composition of permutations π and π′, usually denoted as π ◦ π′,
corresponds to the append π′ ⊕ π. Also notice that π′ ⊕ π · t = π · (π′ · t). The
difference set between two permutations π and π′ is the set of atoms where the
action of π and π′ differs: ds(π, π′) := {a ∈ A | π · a
= π′ · a}.

A substitution σ is a mapping from variables to terms such that its domain,
dom(σ) := {X | X
= Xσ}, is finite. For X ∈ dom(σ), Xσ is called the
image of X. Define the image of σ as im(σ) := {Xσ | X ∈ dom(σ)}. Let
dom(σ) = {X1, · · · ,Xn}, then σ can be represented as a set of bindings in the
form {X1/t1, · · · ,Xn/tn}, where Xiσ = ti, for 1 ≤ i ≤ n.

Definition 2 (Substitution action). The action of a substitution σ on a term
t, denoted tσ, is defined recursively as follows:

〈〉σ := 〈〉 aσ := a (fE
k t)σ := fE

k tσ
〈s, t〉σ := 〈sσ, tσ〉 ([a]t)σ := [a]tσ (π.X)σ := π · Xσ

The following result can be proved by induction on the structure of terms.

Lemma 1 (Substitutions and Permutations Commute). (π ·t)σ = π ·(tσ)

The inference rules defining freshness and α-equivalence are given in Figs. 1
and 2. The symbols ∇ and Δ are used to denote freshness contexts that are sets of
constraints of the form a#X, meaning that the atom a is fresh in X. The domain
of a freshness context dom(∇) is the set of atoms appearing in it; ∇|X denotes
the restriction of ∇ to the freshness constraints on X: {a#X | a#X ∈ ∇}. The

Nominal C-Unification 239

(#〈〉)∇ � a# 〈〉 (#atom)∇ � a# b

∇ � a# t
(#app)∇ � a# fE

k t
(#a[a])∇ � a#[a]t

∇ � a# t
(#a[b])∇ � a#[b]t

(π−1 · a#X) ∈ ∇
(#var)∇ � a#π.X

∇ � a# s ∇ � a# t
(#pair)∇ � a# 〈s, t〉

Fig. 1. Rules for the freshness relation

(≈α 〈〉)∇ � 〈〉 ≈α 〈〉 (≈α atom)∇ � a ≈α a

∇ � s ≈α t
(≈α app)∇ � fE

k s ≈α fE
k t

∇ � s ≈α t
(≈α [aa])∇ � [a]s ≈α [a]t

∇ � s ≈α (a b) · t ∇ � a# t
(≈α [ab])∇ � [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∇
(≈α var)∇ � π.X ≈α π′.X

∇ � s0 ≈α t0 ∇ � s1 ≈α t1
(≈α pair)∇ � 〈s0, s1〉 ≈α 〈t0, t1〉

Fig. 2. Rules for the relation ≈α

rules in Fig. 1 are used to check if an atom a is fresh in a nominal term t under
a freshness context ∇, also denoted as ∇ � a#t. The rules in Fig. 2 are used to
check if two nominal terms s and t are α-equivalent under some freshness context
∇, written as ∇ � s ≈α t. These rules use the inference system for freshness
constraints: specifically freshness constraints are used in rule (≈α [ab]).

Example 1. Let σ = {X/[a]a}. Verify that 〈(a b).X, f(e)〉σ ≈α 〈X, f(e)〉σ.

By dom(π)#X and ds(π, π′)#X we abbreviate the sets {a#X | a ∈ dom(π)}
and {a#X | a ∈ ds(π, π′)}, respectively.

Key properties of the nominal freshness and α-equivalence relations have
been extensively explored in previous works [3,6,29,30].

2.1 The Relation ≈{α,C} as an Extension of ≈α

In [3], the relation ≈α was extended to deal with associative and commutative
theories. Here we will consider α-equivalence modulo commutativity, denoted as
≈{α,C}. This means that some function symbols in our syntax are commutative,
and therefore the rule for function application (≈α app) in Fig. 2 should be
replaced by the rules in Fig. 3.

The following properties for ≈{α,C} were formalised as simple adaptations of
the formalisations given in [3] for ≈α.

Lemma 2 (Inversion). The inference rules of ≈{α,C} are invertible.

This means, for instance, that for rules (≈α [ab]) one has ∇ � [a]s ≈{α,C}
[b]t implies ∇ � s ≈{α,C} (a b) · t and ∇ � a# t; and for (≈{α,C} app),

240 M. Ayala-Rincón et al.

∇ � s ≈{α,C} t
, E 	= C or both s and t are not pairs (≈{α,C} app)∇ � fE

k s ≈{α,C} fE
k t

∇ � s0 ≈{α,C} ti, ∇ � s1 ≈{α,C} t(i+1) mod 2
, i = 0, 1 (≈{α,C} C)∇ � fC

k 〈s0, s1〉 ≈{α,C} fC
k 〈t0, t1〉

Fig. 3. Additional rules for {α, C}-equivalence

∇ � fC
k 〈s0, s1〉 ≈{α,C} fC

k 〈t0, t1〉 implies ∇ � s0 ≈{α,C} t0 and ∇ � s1 ≈{α,C}
t1, or ∇ � s0 ≈{α,C} t1 and ∇ � s1 ≈{α,C} t0.

Lemma 3 (Freshness preservation). If ∇ � a# s and ∇ � s ≈{α,C} t then
∇ � a# t.

Lemma 4 (Intermediate transitivity for ≈{α,C} with ≈α). If ∇ � s ≈{α,C}
t and ∇ � t ≈α u then ∇ � s ≈{α,C} u.

Lemma 5 (Equivariance). ∇ � π · s ≈{α,C} π · t whenever ∇ � s ≈{α,C} t.

Lemma 6 (Equivalence). � ≈{α,C} is an equivalence relation.

Remark 1. According to the grammar for nominal terms, function symbols have
no fixed arity: any function symbol can apply to any term. Despite this, in the
syntax of our Coq formalisation commutative symbols apply only to tuples.

3 A Nominal C-Unification Algorithm

Inference rules are given that transform a nominal C-unification problem into
a finite family of problems that consist exclusively of FP equations of the form
π.X ≈? X, together with a substitution and a set of freshness constraints.

Definition 3 (Unification problem). A unification problem is a pair 〈∇, P 〉,
where ∇ is a freshness context and P is a finite set of equations and freshness
constraints of the form s ≈? t and a#?s, respectively, where ≈? is symmetric, s
and t are terms and a is an atom. Nominal terms in the equations preserve the
syntactic restriction that commutative symbols are only applied to tuples.

Given 〈∇, P 〉, by P≈, P#, Pfp≈ and Pnfp≈ we will resp. denote the sets of
equations, freshness constraints, FP and non FP equations in the set P .

Example 2. Given the nominal unification problem P =〈∅, {[a][b]X ≈? [b][a]X}〉,
the standard unification algorithm [30] reduces it to 〈∅, {X ≈? (a b).X}〉, which
gives the solution 〈{a#X, b#X}, id〉. However, we will see that infinite indepen-
dent solutions are feasible when there is at least a commutative operator.

Nominal C-Unification 241

We design a nominal C-unification algorithm using one set of transforma-
tion rules to deal with equations (Fig. 4) and another set of rules to deal with
freshness constraints and contexts (Fig. 5). These rules act over triples of the
form 〈∇, σ, P 〉, where σ is a substitution. The triple that will be associated by
default with a unification problem 〈∇, P 〉 is 〈∇, id , P 〉. We will use calligraphic
uppercase letters (e.g., P,Q,R, etc) to denote triples.

Remark 2. Let ∇ and ∇′ be freshness contexts and σ and σ′ be substitutions.

– ∇′ � ∇σ denotes that ∇′ � a#Xσ holds for each (a#X) ∈ ∇, and
– ∇ � σ ≈ σ′ that ∇ � Xσ ≈{α,C} Xσ′ for all X (in dom(σ) ∪ dom(σ′)).

Definition 4 (Solution for a triple or problem). A solution for a triple
P = 〈Δ, δ, P 〉 is a pair 〈∇, σ〉, where the following conditions are satisfied:

1 . ∇ � Δσ; 3 . ∇ � sσ ≈{α,C} tσ, if s ≈? t ∈ P ;
2 . ∇ � a# tσ, if a#?t ∈ P ; 4 . there is a substitution λ such that ∇�δλ≈σ.

A solution for a unification problem 〈Δ, P 〉 is a solution for the associated
triple 〈Δ, id , P 〉. The solution set for a problem or triple P is denoted by UC(P).

Definition 5 (More general solution and complete set of solutions). For
〈∇, σ〉 and 〈∇′, σ′〉 in UC(P), we say that 〈∇, σ〉 is more general than 〈∇′, σ′〉,
denoted 〈∇, σ〉 � 〈∇′, σ′〉, if there exists a substitution λ satisfying ∇′ � σλ ≈ σ′

and ∇′ � ∇λ. A subset V of UC(P) is said to be a complete set of solutions of P
if for all 〈∇′, σ′〉 ∈ UC(P), there exists 〈∇, σ〉 in V such that 〈∇, σ〉 � 〈∇′, σ′〉.

We will denote the set of variables occurring in the set P of a problem 〈Δ, P 〉
or triple P = 〈∇, σ, P 〉 as V ar(P). We also will write V ar(P) to denote this set.

The unification algorithm proceeds by simplification. Derivation with rules
of Figs. 4 and 5 is respectively denoted by ⇒≈ and ⇒#. Thus, 〈∇, σ, P 〉 ⇒≈
〈∇, σ′, P ′〉 means that the second triple is obtained from the first one by appli-
cation of one rule. We will use the standard rewriting nomenclature, e.g., we will
say that P is a normal form or irreducible by ⇒≈, denoted by ⇒≈-nf, whenever
there is no Q such that P ⇒≈ Q; ⇒∗

≈ and ⇒+
≈ denote respectively derivations

in zero or more and one or more applications of the rules in Fig. 4.
The only rule that can generate branches is (≈? C), which is an abbreviation

for two rules providing the different forms in which one can relate the arguments
s and t in an equation fC

k s ≈? fC
k t for a commutative function symbol (s, t are

tuples, by the syntactic restriction in Definition 3): either 〈s0, s1〉 ≈? 〈t0, t1〉 or
〈s0, s1〉 ≈? 〈t1, t0〉.

The syntactic restriction on arguments of commutative symbols being only
tuples, is not crucial since any equation of the form fC

k π.X ≈? t can be trans-
lated into an equation of form fC

k 〈π.X1, π.X2〉 ≈? t, where X1 and X2 are new
variables and ∇ is extended to ∇′ in such a way that both X1 and X2 inherit
all freshness constraints of X in ∇: ∇′ = ∇ ∪ {a#Xi | i = 1, 2, and a#X ∈ ∇}.

242 M. Ayala-Rincón et al.

〈∇, σ, P
 {s ≈? s}〉
(≈? refl)〈∇, σ, P 〉

〈∇, σ, P
 {〈s1, t1〉 ≈? 〈s2, t2〉}〉
(≈? pair)〈∇, σ, P ∪ {s1 ≈? s2, t1 ≈? t2}〉

〈∇, σ, P
 {fE
k s ≈? fE

k t}〉
, if E 	= C (≈? app)〈∇, σ, P ∪ {s ≈? t}〉

〈∇, σ, P
 {fC
k s ≈? fC

k t}〉
,

{
where s = 〈s0, s1〉 and t = 〈t0, t1〉
v = 〈ti, t(i+1) mod 2〉, i = 0, 1

}
(≈? C)〈∇, σ, P ∪ {s ≈? v}〉

〈∇, σ, P
 {[a]s ≈? [a]t}〉
(≈? [aa])〈∇, σ, P ∪ {s ≈? t}〉

〈∇, σ, P
 {[a]s ≈? [b]t}〉
(≈? [ab])〈∇, σ, P ∪ {s ≈? (a b) t, a#?t}〉

〈∇, σ, P
 {π.X ≈? t}〉 let σ′ := σ{X/π−1 · t}
, if X /∈ V ar(t) (≈? inst)〈

∇, σ′, P{X/π−1 · t} ∪
⋃

Y ∈dom(σ′),
a#Y ∈∇

{a#?Y σ′}
〉

〈∇, σ, P
 {π.X ≈? π′.X}〉
, if π′ 	= nil (≈? inv)〈∇, σ, P ∪ {π ⊕ (π′)−1.X ≈? X}〉

Fig. 4. Reduction rules for equational problems

In the rule (≈? inst) the inclusion of new constraints in the problem, given

in
⋃

Y ∈dom(σ′),
a#Y ∈∇

{a#?Y σ
′}

is necessary to guarantee that the new substitution σ′ is

compatible with the freshness context ∇.
Examples 3, 4 and 5 are running examples of the C-unification procedure. A

graphic representation of the derivation tree for these examples, generated using
the OCaml implementation, is depicted in the extended version of this paper.

Example 3. Let ∗1 be a commutative function symbol. Below, we show how
the problem P = 〈∅, {[e](a b).X ∗ Y ≈? [f](a c)(c d).X ∗ Y }〉 reduces (via rules

〈∇, σ, P
 {a#?〈〉}〉
(#?〈〉)〈∇, σ, P 〉

〈∇, σ, P
 {a#?b̄}〉
(#?ab̄)〈∇, σ, P 〉

〈∇, σ, P
 {a#?f t}〉
(#?app)〈∇, σ, P ∪ {a#?t}〉

〈∇, σ, P
 {a#?[a]t}〉
(#?a[a])〈∇, σ, P 〉

〈∇, σ, P
 {a#?[b]t}〉
(#?a[b])〈∇, σ, P ∪ {a#?t}〉

〈∇, σ, P
 {a#?π.X}〉
(#?var)〈{(π−1 · a)#X} ∪ ∇, σ, P 〉

〈∇, σ, P
 {a#?〈s, t〉}〉
(#?pair)〈∇, σ, P ∪ {a#?s, a#?t}〉

Fig. 5. Reduction rules for freshness problems

1 Infix notation is adopted for commutative symbols: s ∗ t abbreviates ∗〈s, t〉.

Nominal C-Unification 243

in Figs. 4 and 5). Application of rule (≈? C) gives two branches that reduce
into two FP problems: Q1 and Q2. Highlighted terms show where the rules
are applied. For brevity, let π1 = (a c)(c d)(e f), π2 = (a b)(e f)(c d)(a c), π3 =
(a c)(c d)(e f)(a b) and σ = {X/(e f)(a b).Y }.

〈∅, id , { [e](a b).X ∗ Y ≈? [f](a c)(c d).X ∗ Y }〉 ⇒(≈?[ab])

〈∅, id , { (a b).X ∗ Y ≈? π1.X ∗ (e f).Y , e#?(a c)(c d).X ∗ Y }〉 ⇒(≈?C)

branch 1: 〈∅, id , { (a b).X ≈? π1.X , Y ≈? (e f).Y , e#?(a c)(c d).X ∗ Y }〉
⇒(≈?inv)(2×) 〈∅, id , {(a b)[π1]

−1.X ≈? X, [(e f)]−1.Y ≈? Y, e#?(a c)(c d).X ∗ Y }〉
⇒ (#?app),

(#?pair)

〈∅, id , {π2.X ≈? X, (e f).Y ≈? Y, e#?(a c)(c d).X , e#?Y }〉

⇒(#?var)(2×) 〈{e#X, e#Y }, id , {π2.X ≈? X, (e f).Y ≈? Y }〉 = Q1

branch 2: 〈∅, id , { (a b).X ≈? (e f).Y , Y ≈? π1.X, e#?(a c)(c d).X ∗ Y }〉
⇒(≈?inst) 〈∅, σ, { Y ≈? (a c)(c d)(e f)(e f)[(a b)]−1.Y , e#?π1[(a b)]−1.Y ∗ Y }〉
⇒(≈?inv) 〈∅, σ, {[(a c)(c d)(a b)]−1.Y ≈? Y, e#?π3.Y ∗ Y }〉
⇒ (#?app),

(#?pair)

〈∅, σ, {(a b)(c d)(a c).Y ≈? Y, e#?π3.Y , e#?Y }〉

⇒(#?var)(2×) 〈{e#Y, f#Y }, σ, {(a b)(c d)(a c).Y ≈? Y }〉 = Q2

Definition 6 (Set of ⇒≈ and ⇒#-normal forms). We denote by P⇒≈ (resp.
P⇒#) the set of normal forms of P with respect to ⇒≈ (resp. ⇒#).

Definition 7 (Fail and success for ⇒≈). Let P be a triple, such that the
rules in Fig. 4 give rise to a normal form 〈∇, σ, P 〉. The rules in Fig. 4 are said
to fail if P contains non FP equations. Otherwise 〈∇, σ, P 〉 is called a successful
triple regarding ⇒≈ (i.e., in a successful triple, P consists only of FP equations
and, possibly, freshness constraints).

The rules in Fig. 5 will only be applied to successful triples regarding ⇒≈.

Definition 8 (Fail and success for ⇒#). Let Q = 〈∇, σ,Q〉 be a successful
triple regarding ⇒≈, and Q′ = 〈∇′, σ,Q′〉 its normal form via rules in Fig. 5,
that is Q ⇒∗

Q′ and Q′ is in Q⇒# . If Q′ contains freshness constraints it is
said that ⇒# fails for Q; otherwise, Q′ will be called a successful triple for ⇒#.

Remark 3. Since in a successful triple regarding ⇒≈, Q, one has only FP equa-
tions and ⇒# acts only over freshness constraints, Q′ in the definition above
contains only FP equations and freshness constraints. Also, by a simple case
analysis on t one can check that any triple with freshness constraints a#?t is
reducible by ⇒#, except when t ≡ ā. Hence the freshness constraints in Q′ would
be only of the form a#?ā.

The relation ⇒≈, starts from a triple with the identity substitution and
always maintains a triple 〈∇, σ′, P ′〉 in which the substitution σ′ does not affect
the current problem P ′. The same happens for ⇒# since the substitution does
not change with this relation. This motivates the next definition and lemma.

244 M. Ayala-Rincón et al.

Definition 9 (Valid triple). P = 〈∇, σ, P 〉 is valid if im(σ)∩dom(σ) = ∅ and
dom(σ) ∩ V ar(P) = ∅.

Remark 4. A substitution σ in a valid triple P is idempotent, that is, σσ = σ.

Lemma 7 is proved by case analysis on the rules used by ⇒≈ and ⇒#.

Lemma 7 (Preservation of valid triples). If P = 〈∇, σ, P 〉 is valid and
P ⇒≈ ∪ ⇒# P ′ = 〈∇′, σ′, P ′〉, then P ′ is also valid.

From now on, we consider only valid triples.

Lemma 8 (Termination of ⇒≈ and ⇒#). There is no infinite chain of reduc-
tions ⇒≈ (or ⇒#) starting from an arbitrary triple P = 〈∇, σ, P 〉.

Proof. – The proof for ⇒≈ is by well-founded induction on P using the measure
‖P‖ = 〈|V ar(P≈)|, ‖P‖, |Pnfp≈ |〉 with a lexicographic ordering, where ‖P‖ =∑

s≈?t ∈ P≈ |s| + |t| +
∑

a#?u∈P#
|u|. Note that this measure decreases after

each step 〈∇, σ, P 〉 ⇒≈ 〈∇, σ′, P ′〉: for (≈? inst), |V ar(P≈)| > |V ar(P ′
≈)|; for

(≈? refl), (≈? pair), (≈? app), (≈? [aa]), (≈? [ab]) and (≈? C), |V ar(P≈)| ≥
|V ar(P ′

≈)|, but ‖P‖ > ‖P ′‖; and, for (≈? inv), both |V ar(P≈)| = |V ar(P ′ ≈
)| and ‖P‖ = ‖P ′‖, but |Pnfp≈ | > |P ′

nfp≈
|.

– The proof for ⇒# is by induction on P using as measure ‖P#‖. It can be
checked that this measure decreases after each step: 〈∇, σ, P 〉 ⇒# 〈∇, σ′, P ′〉.

To solve a unification problem, 〈∇, P 〉, one builds the derivation tree for
⇒≈, labelling the root node with 〈∇, id , P 〉. This tree has leaves labelled with
⇒≈-nf’s that are either failing or successful triples. Then, the tree is extended
by building ⇒#-derivations starting from all successful leaves. The extended
tree will include failing leaves and successful leaves. The successful leaves will
be labelled by triples P ′ in which the problem P ′ consists only of FP equations.
Since ⇒≈ and ⇒# are both terminating (Lemma 8), the process described above
must be also terminating.

Definition 10 (Derivation tree for 〈Δ, P 〉). A derivation tree for the unifi-
cation problem 〈Δ, P 〉, denoted as T〈Δ,P 〉, is a tree with root label P = 〈Δ, id , P 〉
built in two stages:

– Initially, a tree is built, whose branches end in leaf nodes labelled with the
triples in P⇒≈ . The labels in each path from the root to a leaf correspond to
a ⇒≈-derivation.

– Further, for each leaf labelled with a successful triple Q in P⇒≈ , the tree is
extended with a path to a new leaf that is labelled with a Q̄ ∈ Q⇒# . The labels
in the extended path from the node with label Q to the new leaf correspond to
a ⇒#-derivation.

Remark 5. For 〈Δ, P 〉, all labels in the nodes of T〈Δ,P 〉 are valid by Lemma 7.

Nominal C-Unification 245

The next lemma is proved by case analysis on elements of P⇒≈ and P⇒# .

Lemma 9 (Characterisation of leaves of T〈Δ,P 〉). Let 〈Δ, P 〉 be a unifica-
tion problem. If P ′ = 〈∇, σ′, P ′〉 is the label of a leaf in T〈Δ,P 〉, then P ′ can be
partitioned as follows: P ′ = P ′′ ∪ P⊥, where P ′′ is the set of all FP equations in
P ′ and P⊥ = P ′ − P ′′. If P⊥
= ∅ then UC(P ′) = ∅.

The next definition is motivated by the previous characterisation of the labels
of leaves in derivation trees.

Definition 11 (Successful leaves). Let 〈Δ, P 〉 be a unification problem. A
leaf in T〈Δ,P 〉 that is labelled with a triple of the form Q = 〈∇, σ,Q〉, where Q
consists only of FP equations, is called a successful leaf of T〈Δ,P 〉. In this case
Q is called a successful triple of T〈Δ,P 〉. The sets of successful leaves and triples
of T〈Δ,P 〉 are denoted respectively by SL(T〈Δ,P 〉) and ST (T〈Δ,P 〉).

The soundness theorem states that successful leaves of T〈Δ,P 〉 produce correct
solutions. The proof is by induction on the number of steps of ⇒≈ and ⇒# and
uses Lemma 9 and auxiliary results on the preservation of solutions by ⇒≈ and
⇒#. Proving preservation of solutions for rules (≈? [ab]) and (≈? inst) is not
straightforward and uses Lemmas 1, 2, 3 and 5 to check that the four conditions
of Definition 4 are valid before, if one supposes their validity after the rule
application.

Theorem 1 (Soundness of T〈Δ,P 〉). T〈Δ,P 〉 is correct, i.e., if P ′ = 〈∇, σ, P ′〉
is the label of a leaf in T〈Δ,P 〉, then 1. UC(P ′) ⊆ UC(〈Δ, id , P 〉), and 2. if P ′

contains non FP equations or freshness constraints then UC(P ′) = ∅.

The completeness theorem guarantees that the set of successful triples provides a
complete set of solutions. Its proof uses case analysis on the rules of the relations
⇒≈ and ⇒# by an argumentation similar to the one used for Theorem 1. For
⇒# one has indeed equivalence: P ⇒# P ′, implies UC(P) = UC(P ′). The same
is true for all rules of the relation ⇒≈ except the branching rule (≈? C), for
which it is necessary to prove that all solutions of a triple reduced by (≈? C)
must belong to the set of solutions of one of its children triples.

Theorem 2 (Completeness of T〈Δ,P 〉). Let 〈Δ, P 〉 and T〈Δ,P 〉 be a unification
problem and its derivation tree. Then UC(〈Δ, id , P 〉) =

⋃
Q∈ST (T〈Δ,P 〉) UC(Q).

Corollary 1 (Generality of successful triples). Let P = 〈Δ, P 〉 be a uni-
fication problem and 〈∇′′, σ′〉 ∈ UC(P). Then there exists a successful triple
Q ∈ ST (T〈Δ,P 〉) where Q = 〈∇, σ,Q〉 such that 〈∇′′, σ′〉 ∈ UC(Q), and hence,
∇′′ � ∇σ′ and there exists λ such that ∇′′ � σλ ≈ σ′.

Proof. By Theorem 2, UC(P) =
⋃

P′∈ST (T〈Δ,P 〉) UC(P ′). Then there exists Q ∈
ST (T〈Δ,P 〉) such that 〈∇′′, σ′〉 ∈ UC(Q). Suppose Q = 〈∇, σ,Q〉. Then by the
first and fourth conditions of the definition of solution (Definition 4) we have
that ∇′′ � ∇σ′ and there exists λ such that ∇′′ � σλ ≈ σ′.

246 M. Ayala-Rincón et al.

Remark 6. The nominal C-unification problem is to decide, for a given P, if
UC(P) is non empty; that is, whether P has nominal C-unifiers. To prove that
this problem is in NP, a non-deterministic procedure using the reduction rules in
the same order as in Definition 10 is designed. In this procedure, whenever rule
(≈? C) applies, only one of the two possible branches is guessed. In this manner,
if the derivation tree has a successful leaf, this procedure will guess a path to
the successful leaf, answering positively to the decision problem. According to
the measures used in the proof of termination (Lemma 8), reduction with both
the relations ⇒≈ and ⇒# is polynomially bound, which implies that this non-
deterministic procedure is polynomially bound.

To prove NP-completeness, one can polynomially reduce the well-known NP-
complete positive 1-in-3-SAT problem into nominal C-unification, as done in [7]
for the C-unification problem. An instance of the positive 1-in-3-SAT problem
consists of a set of clauses C = {Ci|1 ≤ i ≤ n}, where each Ci is a disjunction of
three propositional variables, say Ci = pi ∨ qi ∨ ri. A solution of C is a valuation
with exactly one variable true in each clause. The proposed reduction of C into
a nominal C-unification problem would require just a commutative function
symbol, say ⊕, two atoms, say a and b, a variable for each clause Ci, say Yi,
and a variable for each propositional variable p in C, say Xp. Instantiating Xp

as a or b, would be interpreted as evaluating p as true or false, respectively.
Each clause Ci = pi ∨ qi ∨ ri in C is translated into an equation Ei of the form
((Xpi

⊕Xqi
)⊕Xri

)⊕Yi ≈? ((b⊕b)⊕a)⊕((b⊕a)⊕b). The nominal C-unification
problem for C is given by PC = 〈∅, {Ei|1 ≤ i ≤ n}〉. Simplifying PC would not
introduce freshness constraints since the problem does not include abstractions.
Thus, to conclude it is only necessary to check that 〈∅, σ〉 is a solution for PC if
and only if σ instantiates exactly one of the variables Xpi

,Xqi
and Xri

in each
equation with a and the other two with b, which means that C has a solution.

4 Generation of Solutions for Successful Leaves of T〈Δ,P 〉

To build solutions for a successful leaf P = 〈∇, σ, P 〉 in the derivation tree of a
given unification problem, we will select and combine solutions generated for FP
equations π.X ≈? X, for each X ∈ V ar(P). We introduce the notion of pseudo-
cycle of a permutation, in order to provide precise conditions to build terms t by
combining the atoms in dom(π), such that π ·t ≈{α,C} t. For convenience, we use
the algebraic cycle representation of permutations. Thus, instead of sequences of
swappings, permutations in nominal terms will be read as products of disjoint
cycles [27].

Example 4. (Continuing Example 3) The permutations (a b) :: (e f) :: (c d) ::
(a c) :: nil and (a b) :: (c d) :: (a c) ::nil are respectively represented as the prod-
uct of permutation cycles (a b c d)(e f) and (a b c d)(e)(f).

Permutation cycles of length one are omitted. In general the cyclic represen-
tation of a permutation consists of the product of all its cycles.

Nominal C-Unification 247

Let π be a permutation with dom(π) = n. Given a ∈ dom(π) the elements of
the sequence a, π(a), π2(a), . . . cannot be all distinct. Taking the first k ≤ n, such
that πk(a) = a, we have the k-cycle (a π(a) . . . πk−1(a)), where πj+1(a) is the
successor of πj(a). For the 4-cycle in the permutation (a b c d) (e f), the 4-cycles
generated by a, b, c and d are the same: (a b c d) = (b c d a) = (c d a b) = (d a b c).

Definition 12 establishes the notion of a pseudo-cycle w.r.t. a k-cycle κ. Intu-
itively, given a k-cycle κ and a commutative function symbol ∗, a pseudo-cycle
w.r.t κ, (A0 . . . Al), is a cycle whose elements are either atom terms built from
the atoms in κ or terms of the form A′

i ∗A′
j , for A′

i, A
′
j elements of a pseudo-cycle

w.r.t κ.

Definition 12 (Pseudo-cycle). Let κ = (a0 a1 . . . ak−1) be a k-cycle of a
permutation π. A pseudo-cycle w.r.t. κ is inductively defined as follows:

1. κ = (a0 · · · ak−1) is a pseudo-cycle w.r.t. κ, called trivial pseudo-cycle of κ.
2. κ′ = (A0 ... Ak′−1) is a pseudo-cycle w.r.t. κ, if the following conditions are

simultaneously satisfied:
(a) each element of κ′ is of the form Bi ∗ Bj, where ∗ is a commutative

function symbol in the signature, and Bi, Bj are different elements of κ′′,
a pseudo-cycle w.r.t. κ. κ′ will be called a first-instance pseudo-cycle of
κ′′ w.r.t. κ.

(b) Ai
≈α,C Aj for i
= j, 0 ≤ i, j ≤ k′ − 1;
(c) for each 0 ≤ i < k′ − 1, κ · Ai ≈{α,C} A(i+1)mod k′ .

The length of the pseudo-cycle κ, denoted by |κ|, consists of the number of
elements in κ. A pseudo-cycle of length one will be called unitary.

Example 5. A (Continuing Example 2) The unitary pseudo-cycles of κ = (a b)
are of the form (a ∗ b) for ∗ any commutative symbol in the signature. These
pseudo-cycles are the basis for a more elaborated construction used to build
infinite independent solutions for the leaf 〈∅, id , {X ≈? (a b).X}〉. Examples of
these solutions are: 〈∅, {X/a∗b}〉, 〈∅, {X/(a∗a)∗(b∗b)}〉, 〈∅, {X/(a∗b)∗(a∗b)}〉,
〈∅, {X/((a ∗ a) ∗ a) ∗ ((b ∗ b) ∗ b)}〉, 〈∅, {X/(a ∗ (a ∗ a)) ∗ (b ∗ (b ∗ b))}〉, etc.

B (Continuing Examples 3 and 4) In Q1 and Q2 we have the occurrences of
the 4-cycle κ = (a b c d). Suppose ∗,⊕,+ are commutative operators in the
signature. The following are pseudo-cycles w.r.t. κ: κ = (a b c d); κ1 =
((a∗b) (b∗c) (c∗d) (d∗a)); κ2 = ((a⊕c) (b⊕d)); κ11 = (((a∗b)+(b∗c)) ((b∗
c)+(c∗d))((c∗d)+(d∗a)) ((d∗a)+(a∗b))); κ12 = (((a∗b)∗(c∗d)) ((b∗c)∗(d∗a)));
κ21 = (((a ⊕ c) ∗ (b ⊕ d))); κ121 = (((a ∗ b) ∗ (c ∗ d)) ∗ ((b ∗ c) ∗ (d ∗ a))). κ1 and
κ2 are first-instance pseudo-cycles of κ, and κ11 and κ12 of κ1 and κ21 of κ2.
Notice that, |κ| = |κ1| = |κ11| = 4, |κ12| = 2, and |κ21| = |κ121| = 1. Also, κ1

corresponds to ((a ∗ d) (b ∗ a) (c ∗ b) (d ∗ c)), a first-instance pseudo-cycle of κ.
Finally, observe that for the elements of the unitary pseudo-cycles κ21 and
κ121, say s = (a ⊕ c) ∗ (b ⊕ d) and t = ((a ∗ b) ∗ (c ∗ d)) ∗ ((b ∗ c) ∗ (d ∗ a)),
{X/s} and {X/t} (resp. {Y/s} and {Y/t}) are solutions of the FP equation
(a b c d)(e f).X ≈? X (resp. (a b c d).Y ≈? Y).

248 M. Ayala-Rincón et al.

Let κ be a pseudo-cycle. Notice that only item 2 of Definition 12 may build
a first-instance pseudo-cycle κ′ w.r.t. κ with fewer elements. If |κ′| < |κ| then,
due to algebraic properties of cycles and commutativity of the operator applied
(∗), one must have that |κ′| = |κ|/2. Thus, unitary pseudo-cycles can only be
generated from cycles of length a power of two. This is the intuition behind the
next theorem, proved by induction on the size of the cycle κ.

Theorem 3. A pseudo-cycle κ generates unitary pseudo-cycles iff |κ| is a power
of two.

Notice that, according to item 2.c of Definition 12, if κ′ = (A0 . . . Ak′−1) is
a pseudo-cycle w.r.t. π then π · Ak′−1 ≈{α,C} A0; particularly, if k′ = 1 then
π · A0 ≈{α,C} A0. Below, given P = 〈∅, {π.X ≈? X}〉 a FP equational problem,
we call a combinatory solution of P, a substitution {X/t}, such that π · t ≈C t,
and t contains only atoms from π and commutative function symbols, built as
unary pseudo-cycles w.r.t. κ a cycle in π.

The next theorem is proved by contradiction, supposing that κ has an odd
factor and using Theorem 3.

Theorem 4. Let P = 〈∅, {π.X ≈? X}〉 be a FP problem. P has a combinatory
solution iff there exists a unitary pseudo-cycle κ w.r.t. π.

Remark 7. Since one can generate infinitely many unitary pseudo-cycles from a
given 2n-cycle κ in π, n ∈ N, there exist infinite independent solutions for the
FP problem 〈∅, {π.X ≈? X}〉.

General solutions for FP problems. To compute the set of solutions for a FP
equation, we use a method described in [4], which is based on the computation
of unitary extended pseudo-cycles (epc). We refer to [4] for the definition of
extended pseudo-cycles and an algorithm to enumerate all the solutions of a
successful leaf in the derivation tree.

Pseudo-cycles are built just from atom terms in dom(π) and commutative
function symbols, while epc’s consider all nominal syntactic elements including
new variables, and also non commutative function symbols. The soundness and
completeness of the generator of solutions described in [4] relies on the properties
of pseudo-cycles described above, in particular the fact that only unitary pseudo-
cycles generate solutions.

5 Formal Proofs

In the Coq formalisation, nominal terms are specified inductively, which permits
to use induction to formalise properties of terms (to check nominal α-equality
modulo C we use the rules given in [3]; see Fig. 3). The relations ⇒# and ⇒≈
are inductivelty specified, as propositions from problems to problems, resp. as
fresh sys and equ sys, and normal forms and their reflexive-transitive closures
are specified using abstract relations as shown below.

Nominal C-Unification 249

Definition NF (T :Type) (R:T→T→Prop) (s:T) := ∀ t, ¬ R s t.

Inductive tr clos (T :Type) (R:T→T→Prop) : T→T→Prop :=
| tr rf : ∀ s, tr clos T R s s
| tr os : ∀ s t, R s t → tr clos T R s t
| tr ms : ∀ s t u, R s t → tr clos T R t u → tr clos T R s u

A unification step, unif step, is a reduction step either with the relation
equ sys or with the relation fresh sys, the latter restricted to FP problems; and
a leaf is a normal form for this relation.

Inductive unif step : Triple → Triple → Prop :=
| equ unif step : ∀ T T’, equ sys T T’ → unif step T T’
| fresh unif step : ∀ T T’, fixpoint Problem (equ proj (snd T)) →

fresh sys T T’ → unif step T T’ .

Definition leaf (T : Triple) := NF unif step T .

Unification paths are derivations with the relation unif step to a leaf:

Definition unif path (T T’ : Triple) := tr clos unif step T T’ ∧ leaf T’.

Soundness is specified as the Theorem below, which reads: for any unification
problem T that reduces into a problem T’ with the relation unif path, and such
that Sl is a solution of T’, Sl is also a solution of T.

Theorem c unif path soundness : ∀ T T’ Sl,

valid triple T → unif path T T’ → sol c Sl T’ → sol c Sl T.

The formalisation of soundness is given in a theory that consists of 902 lines
or 35 KB. This theory also includes lemmas that characterise successful leaves
and their solutions. The theorem uses three auxiliary lemmas, also proved by
induction. A lemma expresses preservation of the set of solutions of unification
problems under reduction by the relation ⇒#:

Lemma fresh sys compl : ∀ T T’ Sl, fresh sys T T’ → (sol c Sl T ↔ sol c Sl T’) .

Another lemma, the longer one, states that the solutions of a unification
problem obtained from a given problem through application of the relation ⇒≈
are solutions of the given problem:

Lemma equ sol preserv : ∀ T T’ Sl, valid triple T →
equ sys T T’ → sol c Sl T’ → sol c Sl T .

Finally, the last auxiliary lemma applied to prove soundness states that solu-
tions are preserved in each unification step:

Lemma unif step preserv : ∀ T T’ Sl,

valid triple T → unif step T T’ → sol c Sl T’ → sol c Sl T.

Since except (≈{α,C} C) unification rules are invertible, the formalisation of
the proof of completeness is shorter, consisting only of 351 lines or 13 KB. The
additional element to be considered is the nondeterminism of (≈{α,C} C), indeed
implemented as two rules. The key theorem states that Sl is a solution for T iff
there exists a unification path form T to some T’ with solution Sl.

250 M. Ayala-Rincón et al.

Theorem unif path compl : ∀ T Sl,

valid triple T → (sol c Sl T ↔ ∃ T’, unif path T T’ ∧ sol c Sl T’).

Excluding formalisation of nominal terms and E-equivalence, subject of [3],
the whole theory consists of theories Completeness, Soundness, Termination,
C-Unif, Substs, Problems and C-Equiv, which consist of 5474 lines or 204 KB.

6 Conclusions and Future Work

A Coq formalisation of a sound and complete nominal C-unification algorithm
was obtained by combining ⇒≈- and ⇒#-reduction. The algorithm builds finite
derivation trees, such that the leaves, which may contain FP equations, represent
a complete set of unifiers. We have shown that nominal C-unification is infinitary
and NP-complete. An OCaml implementation of the simplification phase has
been developed, which outputs derivation trees. Extensions to deal with different
equational theories will be considered in future work.

References

1. Aoto, T., Kikuchi, K.: A rule-based procedure for equivariant nominal unification.
In: Pre-proceeding of Higher-Order Rewriting (HOR), pp. 1–5 (2016)

2. Aoto, T., Kikuchi, K.: Nominal confluence tool. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 173–182. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 12

3. Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.: A
formalisation of nominal equivalence with associative-commutative function sym-
bols. ENTCS 332, 21–38 (2017)

4. Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
On solving nominal fixpoint equations. In: Dixon, C., Finger, M. (eds.) FroCoS
2017. LNCS (LNAI), vol. 10483, pp. 209–226. Springer, Cham (2017)

5. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Nominal narrowing. In:
Proceedings of the 1st International Conference on Formal Structures for Compu-
tation and Deduction (FSCD). LIPIcs, vol. 52, pp. 11:1–11:17 (2016)

6. Ayala-Rincón, M., Fernández, M., Rocha-oliveira, A.C.: Completeness in PVS of
a nominal unification algorithm. ENTCS 323, 57–74 (2016)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge UP, New York
(1998)

8. Braibant, T., Pous, D.: Tactics for reasoning modulo AC in Coq. In: Jouannaud, J.-
P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 167–182. Springer, Heidelberg
(2011)

9. Calvès, C.F.: Complexity and implementation of nominal algorithms. Ph.D Thesis,
King’s College London (2010)

10. Calvès, C.F., Fernández, M.: Implementing nominal unification. ENTCS 176(1),
25–37 (2007)

11. Calvès, C., Fernández, M.: The first-order nominal link. In: Alpuente, M. (ed.)
LOPSTR 2010. LNCS, vol. 6564, pp. 234–248. Springer, Heidelberg (2011)

12. Cheney, J.: αProlog Users Guide & Language Reference Version 0.3 DRAFT (2003)
13. Cheney, J.: Equivariant unification. J. Autom. Reasoning 45(3), 267–300 (2010)

https://doi.org/10.1007/978-3-319-40229-1_12

Nominal C-Unification 251

14. Clouston, R.A., Pitts, A.M.: Nominal equational logic. ENTCS 172, 223–257
(2007)

15. Contejean, E.: A certified AC matching algorithm. In: van Oostrom, V. (ed.) RTA
2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)

16. Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205(6), 917–965
(2007)

17. Fernández, M., Gabbay, M.J.: Closed nominal rewriting and efficiently computable
nominal algebra equality. In: Proceedings of the 5th International Workshop on
Logical Frameworks and Meta-languages: Theory and Practice (LFMTP). EPTCS,
vol. 34, pp. 37–51 (2010)

18. Fernández, M., Gabbay, M.J., Mackie, I.: Nominal rewriting systems. In: Proceed-
ings of the 6th International Conference on Principles and Practice of Declarative
Programming (PPDP), pp. 108–119. ACM Press (2004)

19. Gabbay, M.J., Mathijssen, A.: Nominal (Universal) algebra: equational logic with
names and binding. J. Logic Comput. 19(6), 1455–1508 (2009)

20. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects Comput. 13(3–5), 341–363 (2002)

21. Kapur, D., Narendran, P.: Matching unification and complexity. SIGSAM Bull.
21(4), 6–9 (1987)

22. Kumar, R., Norrish, M.: (Nominal) Unification by recursive descent with triangular
substitutions. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 51–66. Springer, Heidelberg (2010)

23. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of
higher order expressions with recursive let. In: Hermenegildo, M.V., Lopez-Garcia,
P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 328–344. Springer, Cham (2017)

24. Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Proceedings
of the 21st International Conference on Rewriting Techniques and Applications
(RTA). LIPIcs, vol. 6, pp. 209–226 (2010)

25. Nipkow, T.: Equational reasoning in Isabelle. Sci. Comput. Program. 12(2), 123–
149 (1989)

26. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
UP, Cambridge (2013)

27. Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms,
and Symmetric Functions, 2nd edn. Springer, New York (2001)

28. Siekmann, J.: Unification of commutative terms. In: Ng, E.W. (ed.) Symbolic and
Algebraic Computation. LNCS, vol. 72, pp. 22–29. Springer, Heidelberg (1979).
https://doi.org/10.1007/3-540-09519-5 53

29. Urban, C.: Nominal unification revisited. In: Proceedings of the 24th International
Workshop on Unification (UNIF). EPTCS, vol. 42, pp. 1–11 (2010)

30. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci.
323(1–3), 473–497 (2004)

https://doi.org/10.1007/3-540-09519-5_53

	Nominal C-Unification
	1 Introduction
	2 Background
	2.1 The Relation {, C} as an Extension of

	3 A Nominal C-Unification Algorithm
	4 Generation of Solutions for Successful Leaves of T"426830A , P"526930B
	5 Formal Proofs
	6 Conclusions and Future Work
	References

