
A Constructor-Based Reachability
Logic for Rewrite Theories

Stephen Skeirik(B), Andrei Stefanescu, and José Meseguer

University of Illinois at Urbana-Champaign, Champaign, USA
{skeirik2,stefane1,meseguer}@illinois.edu

Abstract. Reachability logic has been applied to K rewrite-rule-based
language definitions as a language-generic logic of programs. To be able
to verify not just code but also distributed system designs, a new rewrite-
theory-generic reachability logic is presented and proved sound for a wide
class of rewrite theories. Constructor-based semantic unification, match-
ing, and satisfiability procedures greatly increase the range of decidable
background theories that can be used in reachability logic proofs. New
methods for proving invariants of possibly never terminating distributed
systems are developed, and experiments with a prototype implementa-
tion illustrating the new proof methods are presented.

Keywords: Program verification · Rewriting logic · Reachability logic

1 Introduction

The main applications of reachability logic to date have been as a language-
generic logic of programs [14,15]. In these applications, a K specification of a
language’s operational semantics by means of rewrite rules is assumed as the lan-
guage’s “golden semantic standard,” and a correct-by-construction reachability
logic for a language so defined is automatically obtained [15]. This method has
been effective in proving reachability properties for a wide range of programs.

Although the foundations of reachability logic are very general [14,15], the
existing theory does not provide straightforward answers to the following ques-
tions: (1) Could a reachability logic be developed to verify not just conven-
tional programs, but also distributed system designs and algorithms formalized
as rewrite theories in rewriting logic [8]? (2) If so, what would be the most nat-
ural way to conceive such a rewrite-theory-generic logic? A satisfactory answer
to questions (1)–(2) would move the verification game from the level of verifying
code to that of verifying both code and distributed system designs. Since the cost
of design errors can be several orders of magnitude higher than that of cod-
ing errors, answering questions (1) and (2) is of practical software engineering
interest.

Although a first step towards a reachability logic for rewrite theories has been
taken in [6], as explained in Sect. 7 and below, that first step still leaves several

c© Springer International Publishing AG, part of Springer Nature 2018
F. Fioravanti and J. P. Gallagher (Eds.): LOPSTR 2017, LNCS 10855, pp. 201–217, 2018.
https://doi.org/10.1007/978-3-319-94460-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94460-9_12&domain=pdf

202 S. Skeirik et al.

important questions open. The most burning one is how to prove invariants.
Since they are the most basic safety properties, support for proving invariants is
a sine qua non requirement. As explained below, a serious obstacle is what we
call the invariant paradox : we cannot verify in this manner any invariants of a
never-terminating system such as, for example, a mutual exclusion protocol.

A second open question is how to best take advantage of the wealth of equa-
tional reasoning techniques such as matching, unification, and narrowing modulo
an equational theory (Σ,E), and of recent results on decidable satisfiability of
quantifier-free formulas in initial algebras, e.g., [9] to automate as much as pos-
sible reachability logic deduction. In this regard, the very general foundations of
reachability logic—which assume any Σ-algebra A with a first-order-definable
transition relation—provide no help at all for automation. As shown in this
work and its prototype implementation, if we assume instead that the model
in question is the initial model TR of a rewrite theory R satisfying reasonable
assumptions, large parts of the verification effort can be automated.

A third important issue is simplicity. Reachability logic has eight inference
rules [14,15]. Could a reachability logic for rewrite theories be simpler? This work
tackles head on these three open questions to provide a general reachability logic
and a prototype implementation suitable for reasoning about properties of both
distributed systems and programs based on their rewriting logic semantics.

Rewriting Logic in a Nutshell. A distributed system can be designed and
modeled as a rewrite theory R = (Σ,E,R) [8] in the following way: (i) the
distributed system’s states are modeled as elements of the initial algebra TΣ/E

associated to the equational theory (Σ,E) with function symbols Σ and equa-
tions E; and (ii) the system’s concurrent transitions are modeled by rewrite
rules R, which are applied modulo E. Let us consider the QLOCK [5] mutual
exclusion protocol, explained in detail in Sect. 2. QLOCK allows an unbounded
number of processes, which can be identified by numbers. Such processes can
be in one of three states: “normal” (doing their own thing), “waiting” for a
resource, and “critical,” i.e., using the resource. Waiting processes enqueue their
identifier at the end of a waiting queue and can become critical when their name
appears at the head of the queue. A QLOCK state can be represented as a
tuple < n | w | c | q > where n, resp. w, resp. c, denotes the set of identifiers
for normal, resp. waiting, resp. critical processes, and q is the waiting queue.
QLOCK can be modeled as a rewrite theory R = (Σ,E,R), where E includes
axioms such as associativity-commutativity of multiset union, list associativity,
and identity axioms for ∅ and nil . QLOCK’s behavior is specified by five rewrite
rules R. Rule w2c below specifies a waiting process i becoming critical

w2c : < n | w i | c | i ; q > → < n | w | c i | i ; q > .

Reachability Logic in a Nutshell. A reachability logic formula has the form
A →� B, with A and B state predicates (see Sect. 3). Assume for simplicity
that vars(A) ∩ vars(B) = ∅. Such a formula is then interpreted in the initial
model TR of a rewrite theory R = (Σ,E,R), whose states are E-equivalence
classes [u] of ground Σ-terms, and where a state transition [u] →R [v] holds iff

A Constructor-Based Reachability Logic for Rewrite Theories 203

R � u → v according to the rewriting logic inference system [8] (computation
= deduction). As a first approximation, A →� B is a Hoare logic partial cor-
rectness assertion of the form {A}R{B}, but with the slight twist that B need
not hold of a terminating state, but just somewhere along the way. To be fully
precise, A →� B holds in TR iff for each state [u0] satisfying A and each termi-
nating sequence [u0] →R [u1] . . . →R [un−1] →R [un] there is a j, 0 ≤ j ≤ n such
that [uj] satisfies B. A key question is how to choose a good language of state
predicates like A and B. Here is where the potential for increasing the logic’s
automation resides. We call our proposed logic constructor-based, because our
choice is to make A and B positive (only ∨ and ∧) combinations of what we call
constructor patterns of the form u | ϕ, where u is a constructor term1 and ϕ a
quantifier-free (QF) Σ-formula. The state predicate u | ϕ holds for a state [u′]
iff there is a ground substitution ρ such that [u′] = [uρ] and E |= ϕρ.

The Invariant Paradox. How can we prove invariants in such a reachability
logic? For example, mutual exclusion for QLOCK? Paradoxically, we cannot!
This is because QLOCK, like many other protocols, never terminates, that is,
has no terminating sequences whatsoever. And this has the ludicrous trivial
consequence that QLOCK’s initial model TR vacuously satisfies all reachability
formulas A →� B. This of course means that it is in fact impossible to prove
any invariants using reachability logic in the initial model TR. But it does not
mean that it is impossible using some other initial model. In Sect. 4.1 we give a
systematic solution to this paradox by means of a simple theory transformation
allowing us to prove any invariant in the original initial model TR by proving an
equivalent reachability formula in the initial model of the transformed theory.

Our Contributions. Section 2 gathers preliminaries. The main theoretical con-
tributions of a simple semantics and inference system for a rewrite-theory-generic
reachability logic with just two inference rules and its soundness are developed in
Sects. 4 and 5. A systematic methodology to prove invariants by means of reacha-
bility formulas is developed in Sect. 4.1. The goal of increasing the logic’s poten-
tial for automation by making it constructor-based is advanced in Sects. 3–5.
A proof of concept of the entire approach is given by means of a Maude-based
prototype implementation and a suite of experiments verifying various proper-
ties of distributed system designs in Sect. 6. Related work and conclusions are
discussed in Sect. 7. Proofs can be found in [13].

2 Many-Sorted Algebra and Rewriting Logic

We present some preliminaries on many-sorted algebra and rewriting logic. For a
more general treatment using order-sorted algebra see [13]. Readers familiar with
many-sorted logic may go directly to Definition 1. We assume familiarity with
the following basic concepts and notation that are explained in full detail in, e.g.,
[10]: (i) many-sorted (MS) signature as a pair Σ = (S,Σ) with S a set of sorts
1 That is, a term in a subsignature Ω ⊆ Σ such that each ground Σ-term is equal
modulo E to a ground Ω-term.

204 S. Skeirik et al.

and Σ an S∗ × S-indexed family Σ = {Σw,s}(w,s)∈S∗×S of function symbols,
where f ∈ Σs1...sn,s is displayed as f : s1 . . . sn → s; (ii) Σ-algebra A as a pair
A = (A, A) with A = {As}s∈S an S-indexed family of sets, and A a mapping
interpreting each f : s1 . . . sn → s as a function in the set [As1 × . . .×Asn

→ As].
(iii) Σ-homomorphism h : A → B as an S-indexed family of functions h = {hs :
As → Bs}s∈S preserving the operations in Σ; (iv) the term Σ-algebra TΣ and
its initiality in the category MSAlgΣ of Σ-algebras when Σ is unambiguous.

An S-sorted set X = {Xs}s∈S of variables, satisfies s
= s′ ⇒ Xs ∩ Xs′ = ∅,
and the variables in X are always assumed disjoint from all constants in Σ.
The Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signa-
ture Σ(X) obtained by adding to Σ the variables X as extra constants. Since a
Σ(X)-algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation of
the constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality of
TΣ(X) means that for each A ∈ MSAlgΣ and α ∈ [X→A], there exists a unique
Σ-homomorphism, α : TΣ(X) → A extending α, i.e., such that for each s ∈ S
and x ∈ Xs we have xαs = αs(x). In particular, when A = TΣ(Y), an interpre-
tation of the constants in X, i.e., an S-sorted function σ ∈ [X→TΣ(Y)] is called
a substitution, and its unique homomorphic extension σ : TΣ(X) → TΣ(Y)
is also called a substitution. Define dom(σ) = {x ∈ X | x
= xσ}, and
ran(σ) =

⋃
x∈dom(σ) vars(xσ). Given variables Z, the substitution σ|Z agrees

with σ on Z and is the identity elsewhere.
We also assume familiarity with many-sorted first-order logic including: (i)

the first-order language of Σ-formulas for Σ a signature (in our case Σ has
only function symbols and the = predicate); (ii) given a Σ-algebra A, a formula
ϕ ∈ Form(Σ), and an assignment α ∈ [Y →A], with Y = fvars(ϕ) the free
variables of ϕ, the satisfaction relation A,α |= ϕ (iii) the notions of a formula
ϕ ∈ Form(Σ) being valid, denoted A |= ϕ, resp. satisfiable in a Σ-algebra A.
For a subsignature Ω ⊆ Σ and A ∈ MSAlgΣ , the reduct A|Ω ∈ MSAlgΩ

agrees with A in the interpretation of all sorts and operations in Ω and discards
everything in Σ \ Ω. If ϕ ∈ Form(Ω) we have the equivalence A |= ϕ ⇔
A|Ω |= ϕ.

An MS equational theory is a pair T = (Σ,E), with E a set of (possibly
conditional) Σ-equations. MSAlg(Σ,E) denotes the full subcategory of MSAlgΣ

with objects those A ∈ MSAlgΣ such that A |= E, called the (Σ,E)-algebras.
MSAlg(Σ,E) has an initial algebra TΣ/E [10]. The inference system in [10] is
sound and complete for MS equational deduction, i.e., for any MS equational
theory (Σ,E), and Σ-equation u = v we have an equivalence E � u = v ⇔
E |= u = v. For the sake of simpler inference we assume non-empty sorts,
i.e., ∀s ∈ S TΣ , s
= ∅. Deducibility E � u = v is abbreviated as u =E v,
called E-equality. An E-unifier of a system of Σ-equations, i.e., a conjunction
φ = u1 = v1 ∧ . . . ∧ un = vn of Σ-equations is a substitution σ such that
uiσ =E viσ, 1 ≤ i ≤ n. An E-unification algorithm for (Σ,E) is an algorithm
generating a complete set of E-unifiers Unif E(φ) for any system of Σ equations
φ, where “complete” means that for any E-unifier σ of φ there is a τ ∈ Unif E(φ)
and a substitution ρ such that σ =E (τρ)|dom(σ)∪dom(τ), where =E here means

A Constructor-Based Reachability Logic for Rewrite Theories 205

that for any variable x we have xσ =E x(τρ)|dom(σ)∪dom(τ). The algorithm is
finitary if it always terminates with a finite set Unif E(φ) for any φ.

We recall some basic concepts about rewriting logic. The survey in [8] gives
a fuller account. A rewrite theory R axiomatizes a distributed system, so that
concurrent computation is modeled as concurrent rewriting with the rules of
R modulo the equations of R. Recall also the following notation from [3]: (i)
positions in a term viewed as a tree are marked by strings p ∈ N

∗ specifying a
path from the root, (ii) t|p denotes the subterm of term t at position p, and (iii)
t[u]p denotes the result of replacing subterm t|p at position p by u.

Definition 1. A rewrite theory is a 3-tuple R = (Σ,E ∪B,R) with (Σ,E ∪B)
an MS equational theory and R a set of conditional Σ-rewrite rules l → r if φ,
with l, r ∈ TΣ(X)s for some s ∈ S, and φ a quantifier-free Σ-formula. We further
assume that: (1) Each equation u = v ∈ B is regular, i.e., vars(u) = vars(v),
and linear, i.e., there are no repeated variables in either u or v. (2) The equations
E, when oriented as conditional rewrite rules
E = {u → v if ψ | u = v if ψ ∈
E}, are convergent modulo B, i.e., strictly coherent, confluent, and operationally
terminating as rewrite rules modulo B [7]. (3) The rules R are ground coherent
with the equations E modulo B [4].

Conditions (1)–(2) ensure that the initial algebra TΣ/E∪B is isomorphic to
the canonical term algebra CΣ/E,B , whose elements are B-equivalence classes
of
E,B-irreducible ground Σ-terms. Define the one-step R,B-rewrite relation
t →R,B t′ between ground terms as follows. For t, t′ ∈ TΣ,s, s ∈ S, t →R,B t′

holds iff there is a rewrite rule l → r if φ ∈ R, a ground substitution σ ∈ [Y →TΣ]
with Y the rule’s variables, and a term position p in t such that t|p =B lσ,
t′ = t[rσ]p, and E ∪ B |= φσ. In the context of (1)–(2), condition (3) ensures
that “computing
E,B-canonical forms before performing R,B-rewriting” is a
complete strategy. That is, if t →R,B t′ and u = t!E,B , i.e., t →∗

�E,B
u with u in

E,B-canonical form (abbreviated in what follows to u = t!), then there exists a
u′ such that u →R,B u′ and t′! =B u′!. Note that vars(r) ⊆ vars(l) is nowhere
assumed for rules l → r if φ ∈ R. This means that R can specify an open
system, in the sense of [11], that interacts with an external, non-deterministic
environment such as, for example, a thermostat.

Conditions (1)–(3) allow a simple description of the initial reachability model
TR [8] of R as the canonical reachability model CR whose states belong to the
canonical term algebra CΣ/E,B , and the one-step transition relation [u] →R [v]
holds iff u →R,B u′ and [u′!] = [v]. Furthermore, if u →R,B u′ has been performed
with a rewrite rule l → r if φ ∈ R and a ground substitution σ ∈ [Y →TΣ], then,
assuming B-equality is decidable, checking whether condition E ∪B |= φσ holds
is decidable by reducing the terms in φσ to
E,B-canonical form.

A Running Example. Consider the following rewrite theory R = (Σ,E∪B,R)
modeling a dynamic version of the QLOCK mutual exclusion protocol [5], where
(Σ,B) defines the protocol’s states, involving natural numbers, lists, and multi-
sets over natural numbers. Σ has sorts S = {Nat ,List ,MSet ,Conf ,State,Pred}

206 S. Skeirik et al.

with subsorts2 Nat < List and Nat < MSet and operators F = {0 : →
Nat , s : Nat → Nat , ∅ : → MSet , nil : → List , : MSet MSet →
MSet , ; : List List → List , dupl : MSet → Pred , tt : → Pred , < > : Conf →
State, | | | : MSet MSet MSet List → Conf }, where underscores denote oper-
ator argument placement. The axioms B are the associativity-commutativity of
the multiset union with identity ∅, and the associativity of list concatenation
; with identity nil . The only equation in E is dupl(s i i) = tt . It defines the

dupl predicate by detecting a duplicated element i in the multiset s i i (s could
be empty). States of QLOCK are B-equivalence classes of ground terms of sort
State.

QLOCK [5] is a mutual exclusion protocol where the number of processes is
unbounded. Furthermore, in the dynamic version of QLOCK presented below,
such a number can grow or shrink. Each process is identified by a number. The
system configuration has three sets of processes (normal, waiting, and critical)
plus a waiting queue. To ensure mutual exclusion, a normal process must first
register its name at the end of the waiting queue. When its name appears at
the front of the queue, it is allowed to enter the critical section. The first three
rewrite rules in R below specify how a normal process i first transitions to a
waiting process, then to a critical process, and back to normal. The last two
rules in R specify how a process can dynamically join or exit the system.

n2w : < n i | w | c | q > → < n | w i | c | q ; i >
w2c : < n | w i | c | i ; q > → < n | w | c i | i ; q >
c2n : < n | w | c i | i ; q > → < n i | w | c | q >
join : < n | w | c | q > → < n i | w | c | q > if φ
exit : < n i | w | c | q > → < n | w | c | q >

where φ ≡ dupl(n iw c)
= tt , i is a number, n, w , and c are, respectively, normal,
waiting, and critical process identifier sets, and q is a queue of process identifiers.
It is easy to check that R = (Σ,E ∪ B,R) satisfies requirements (1)–(3). Note
that join makes QLOCK an open system in the sense explained above.

3 Constrained Constructor Pattern Predicates

Given an MS equational theory (Σ,E∪B), the atomic state predicates appearing
in the constructor-based reachability logic formulas of Sect. 4 will be pairs u | ϕ,
called constrained constructor patterns, with u a term in a subsignature Ω ⊆ Σ
of constructors, and ϕ a quantifier-free Σ-formula. Intuitively, u | ϕ is a pattern
describing the set of states that are EΩ ∪ BΩ-equal to ground terms of the form
uρ for ρ a ground constructor substitution such that E ∪ B |= ϕρ. Therefore,
u | ϕ can be used as a symbolic description of a, typically infinite, set of states
in the canonical reachability model CR of a rewrite theory R.

2 As pointed out at the beginning of Sect. 2, [13] treats the more general order-sorted
case, where sorts form a poset (S, ≤) with s ≤ s′ interpreted as set containment
As ⊆ As′ in a Σ-algebra A.

A Constructor-Based Reachability Logic for Rewrite Theories 207

Often, the signature Σ on which TΣ/E∪B is defined has a natural decompo-
sition as a disjoint union Σ = Ω � Δ, where the elements of the canonical term
algebra CΣ/E,B are Ω-terms, whereas the function symbols f ∈ Δ are viewed
as defined functions which are evaluated away by
E,B-simplification. Ω (with
same poset of sorts as Σ) is then called a constructor subsignature of Σ.

A decomposition of a MS equational theory (Σ,E ∪ B) is a triple (Σ,B,
E)
such that the rules
E are convergent modulo B. (Σ,B,
E) is called sufficiently
complete with respect to the constructor subsignature Ω iff for each t ∈ TΣ

we have: (i) t!�E,B ∈ TΩ , and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ. This
ensures that for each [u]B ∈ CΣ/E,B we have [u]B ⊆ TΩ . Sufficient completeness
is closely related to the notion of a protecting inclusion of decompositions.

Definition 2. Let (Σ0, E0 ∪ B0) ⊆ (Σ,E ∪ B) be a theory inclusion such that
(Σ0, B0,
E0) and (Σ,B,
E) are respective decompositions of (Σ0, E0 ∪ B0) and
(Σ,E ∪ B). We then say that the decomposition (Σ,B,
E) protects (Σ0, B0,
E0)
iff (i) for all t, t′ ∈ TΣ0(X) we have: (i) t =B0 t′ ⇔ t =B t′, (ii) t = t! �E0,B0

⇔
t = t!�E,B, and (iii) CΣ0/E0,B0 = CΣ/E,B|Σ0 .

(Ω,BΩ ,
EΩ) is a constructor decomposition of (Σ,B,
E) iff (i) (Σ,B,
E)
protects (Ω,BΩ ,
EΩ), and (ii) (Σ,B,
E) is sufficiently complete with respect to
the constructor subsignature Ω. Furthermore, Ω is called a subsignature of free
constructors modulo BΩ iff EΩ = ∅, so that CΩ/EΩ ,BΩ

= TΩ/BΩ
.

We are now ready to define constrained constructor pattern predicates.

Definition 3. Let (Ω,BΩ ,
EΩ) be a constructor decomposition of (Σ,B,
E).
A constrained constructor pattern is an expression u | ϕ with u ∈ TΩ(X)
and ϕ a QF Σ-formula. The set PatPred(Ω,Σ) of constrained construc-
tor pattern predicates contains ⊥ and the set of constrained constructor pat-
terns, and is closed under disjunction (∨) and conjunction (∧). Capital letters
A,B, . . . , P,Q, . . . range over PatPred(Ω,Σ). The semantics of a constrained
constructor pattern predicate A is a subset �A� ⊆ CΣ/E,B defined inductively as
follows:

1. �⊥� = ∅
2. �u | ϕ� = {[(uρ)!]BΩ

∈ CΣ/E,B | ρ ∈ [X→TΩ] ∧ E ∪ B |= ϕρ}.
3. �A ∨ B� = �A� ∪ �B�
4. �A ∧ B� = �A� ∩ �B�.

Note that for any constructor pattern predicate A, if σ is a (sort-preserving)
bijective renaming of variables we always have �A� = �Aσ�. Given constructor
patterns u | ϕ and v | ψ with vars(u | ϕ) ∩ vars(v | ψ) = ∅, we say that u | ϕ
subsumes v | ψ iff there is a substitution α such that: (i) v =EΩ∪BΩ

uα, and (ii)
TE∪B |= ψ ⇒ (ϕα). It then follows easily from the above definition of �u | ϕ�
that if u | ϕ subsumes v | ψ, then �v | ψ� ⊆ �u | ϕ�. Likewise,

∨
i∈I ui | ϕi

subsumes v | ψ iff there is a k ∈ I such that uk | ϕk subsumes v | ψ.

208 S. Skeirik et al.

Pattern Predicate Example. Letting n, w , c be multisets of process identifiers
and q be an associative list of process identifiers, recall that QLOCK states have
the form < n | w | c | q >. From the five rewrite rules defining QLOCK, it is
easy to prove that if < n | w | c | q > →∗ < n ′ | w ′ | c′ | q ′ > and nw c is a set
(has no repeated elements), then n′ w′ c′ is also a set. Of course, it seems very
reasonable to assume that these process identifier multisets are, in fact, sets,
since otherwise we could, for example, have a process i which is both waiting
and critical at the same time. We can rule out such ambiguous states by means
of the pattern predicate < n | w | c | q > | dupl(n w c)
= tt .

If EΩ ∪ BΩ has a finitary unification algorithm, any constrained constructor
pattern predicate A is semantically equivalent to a finite disjunction

∨
i ui | ϕi

of constrained constructor patterns. This is because: (i) by (3)–(4) in Defini-
tion 3 we may assume A in disjunctive normal form; and (ii) it is easy to check
that �(u | ϕ) ∧ (v | φ)� =

⋃
α∈Unif EΩ∪BΩ

(u,v)�uα | (ϕ ∧ φ)α�, were we assume
that vars(u | ϕ) ∩ vars(v | ψ) = ∅, and that all variables in ran(α) are fresh.
Pattern intersection can also be defined when u | ϕ and v | φ share parameters
Y = vars(u | ϕ) ∩ vars(v | φ) = vars(u) ∩ vars(v). [13] defines in detail the
notions of parametric intersection �u | ϕ� ∩Y �v | φ� and of parametric subsump-
tion v | φ ⊆Y u | ϕ of patterns. These notions are very useful to reason about
parameterized invariants and co-invariants (see Sect. 4.1 and [13]).

4 Constructor-Based Reachability Logic

The constructor-based reachability logic we define is a logic to reason about
reachability properties of the canonical reachability model CR of a topmost
rewrite theory R where “topmost” intuitively means all rewrites must occur at
the top of the term.3 Many rewrite theories of interest, including those specify-
ing distributed object-oriented systems or the semantics of (possibly concurrent)
programming languages, can be easily made topmost by a theory transformation
(see, e.g., [16]). Formally, we require R = (Σ,E ∪ B,R), besides satisfying the
requirements in Definition 1, also satisfies:

1. (Σ,E ∪ B) has a sort State, a decomposition (Σ,B,
E), and a constructor
decomposition (Ω,BΩ ,
EΩ) where: (i) ∀u ∈ TΩ(X)State , vars(u) = vars(u!);
(ii) BΩ are linear and regular with a finitary EΩ ∪ BΩ-unification algorithm.

2. Rules in R have the form l → r if ϕ with l ∈ TΩ(X). Furthermore, they are
topmost in the sense that: (i) for all such rules, l and r have sort State, and (ii)
for any u ∈ TΩ(X)State and any non-empty position p in u, u|p
∈ TΩ(X)State .

Requirements (1)–(2) ensure that in the canonical reachability model CR if
[u] →R [v] holds, then the R,B-rewrite u →R,B u′ such that [u′!] = [v] happens
at the top of u, i.e., uses a rewrite rule l → r if ϕ ∈ R and a ground substitution
σ ∈ [Y →TΩ], with Y the rule’s variables, such that u =BΩ

lσ and u′ = rσ.
3 Topmost theories have reachability completeness for narrowing [16]. Our inference
system uses narrowing to symbolically compute successor states in CR.

A Constructor-Based Reachability Logic for Rewrite Theories 209

We are now ready to define the formulas of our constructor-based reachability
logic for R satisfying above requirements (1)–(2). Let PatPred(Ω,Σ)State denote
the subset of PatPred(Ω,Σ) determined by those pattern predicates A such
that, for all atomic constrained constructor predicates u | ϕ appearing in A, u
has sort State. Reachability logic formulas then have the form: A →� B, with
A,B ∈ PatPred(Ω,Σ)State . The parameters Y of A →� B are the variables in
the set Y = vars(A)∩vars(B), and A →� B is called unparameterized iff Y = ∅.

The reachability logic in [14,15] is based on terminating sequences of state
transitions; when there are no terminating states, all reachability formulas are
vacuously true. Our purpose is to extend the logic in order to verify properties
of general distributed systems specified as rewrite theories R which may never
terminate. For this, as explained in Sect. 4.1, we generalize the all-paths satis-
faction relation in [15], which for a theory R we denote by R |=∀ A →� B, to
a relativized satisfaction relation R |=∀

T A →� B, where T is a constrained
pattern predicate such that �T � is a set of terminating states. That is, let
TermR = {[u] ∈ CR,State | (
 ∃[v]) [u] →R [v]}. We then require �T � ⊆ TermR.
The standard relation R |=∀ A →� B is then recovered as the special case where
�T � = TermR. Call [u] →∗

R [v] a T -terminating sequence iff [v] ∈ �T �.

Definition 4. Given T with �T � ⊆ TermR, the all-paths satisfaction rela-
tion R |=∀

T u | ϕ →� ∨
j∈J vj | φj asserts the satisfaction of the formula

u | ϕ →� ∨
j∈J vj | φj in the canonical reachability model CR of a rewrite

theory R satisfying topmost requirements (1)–(2). It is defined as follows:
For u | ϕ →� ∨

j∈J vj | φj unparameterized, R |=∀
T u | ϕ →� ∨

j∈J vj | φj

holds iff for each T -terminating sequence [u0] →R [u1] . . . [un−1] →R [un] with
[u0] ∈ �u | ϕ� there exist k, 0 ≤ k ≤ n and j ∈ J such that [uk] ∈ �vj | φj�. For
u | ϕ →� ∨

j∈J vj | φj with parameters Y , R |=∀
T u | ϕ →� ∨

j∈J vj | φj holds if
R |=∀

T (u | ϕ)ρ →� (
∨

j∈J vj | φj)ρ holds for each ρ ∈ [Y →TΩ].
Since a constrained pattern predicate is equivalent to a disjunction of atomic

ones, we can define satisfaction on general reachability logic formulas as follows:
R |=∀

T

∨
1≤i≤n ui | ϕi →� A iff

∧
1≤i≤n R |=∀

T ui | ϕi →� A, assuming same
parameters Yi = vars(ui | ϕi) ∩ vars(A), i.e., Yi = Yi′ for 1 ≤ i < i′ ≤ n.

R |=∀
T A →� B is a partial correctness assertion: If state [u] satisfies

“precondition” A, then “postcondition” B is satisfied somewhere along each
T -terminating sequences from [u], generalizing a Hoare formula {A}R{B} [13].

Recall that rewrite rules l → r if φ are assumed to have l ∈ TΩ(X). For
symbolic reasoning purposes it will be very useful to also require that r ∈ TΩ(X).
This can be achieved by a theory transformation R �→ R̂. Stated formally, if
R = (Σ,E ∪ B,R), then R̂ = (Σ,E ∪ B, R̂), where the rules R̂ are obtained
from the rules R by transforming each l → r if φ in R into the rule l → r′ if φ∧θ̂,
where: (i) r′ is the Ω-abstraction of r obtained by replacing each length-minimal
position p of r such that t|p
∈ TΩ(X) by a fresh variable xp whose sort is the
least sort of t|p, (ii) θ̂ =

∧
p∈P xp = tp, where P is the set of all length-minimal

positions in r such that t|p
∈ TΩ(X).

210 S. Skeirik et al.

The key semantic property about this transformation is:

Lemma 1. The canonical reachability models CR and CR̂ are identical.

4.1 Invariants, Co-Invariants, and Never-Terminating Systems

The notion of an invariant applies to any transition system S = (S,→S) with
states S and transition relation →S⊆ S×S. The set Reach(S0) of states reachable
from S0 ⊆ S is defined as Reach(S0) = {s ∈ S | (∃s0 ∈ S0) s0 →∗

S s}, where →∗
S

denotes the reflexive-transitive closure of →S . An invariant about S with initial
states S0 can be specified in two ways: (i) by a “good” property P ⊆ S, the
invariant, that always holds from S0, i.e., such that Reach(S0) ⊆ P , or (ii) as
a “bad” property Q ⊆ S, the co-invariant, that never holds from S0, i.e., such
that Reach(S0) ∩ Q = ∅. Obviously, P is an invariant iff S \ P is a co-invariant.

Suppose we have specified a distributed system by a topmost rewrite theory
R, and constrained pattern predicates S0 and P , and we want to prove that
�P � is an invariant of the system (CR,State ,→R) from �S0�. Can we specify such
invariant or co-invariant by means of reachability formulas and use the inference
system of Sect. 5 to try to prove such formulas?

The answer to the above question is not obvious. Suppose R specifies a never-
terminating system, i.e., TermR = ∅. For example, QLOCK and other mutual
exclusion protocols are never-terminating. Then, no reachability formula can
characterize and invariant holding by means of the satisfaction relation R |=∀

T

A →� B. The reason for this impossibility is that, since TermR = ∅, R |=∀
T

A →� B holds vacuously for all reachability formulas A →� B.
Is then reachability logic useless to prove invariants? Definitely not. We need

to first perform a simple theory transformation. Call an invariant specifiable by
constrained pattern predicates S0 and P if �P � is an invariant of (CR,State ,→R)
from �S0�. To ease the exposition, we explain the transformation for the case
where Ω has a single state constructor operator, say, 〈 , . . . , 〉 : s1, . . . , sn →
State. The extension to several such operators is straightforward. The theory
transformation is of the form R �→ Rstop , where Rstop is obtained from R by
just adding: (1) a new state constructor operator [, . . . ,] : s1, . . . , sn → State
to Ω, and (2) a new rewrite rule stop : 〈x1:s1, . . . , xn:sn〉 → [x1:s1, . . . , xn:sn]
to R. Also, let [] denote the pattern predicate [x1:s1, . . . , xn:sn] | �. Likewise,
for any atomic constrained pattern predicate B = 〈u1, . . . , un〉 | ϕ we define
the pattern predicate [B] = [u1, . . . , un] | ϕ and extend this notation to any
union Q of atomic predicates. Since 〈 , . . . , 〉 : s1, . . . , sn → State is the only
state constructor, we can assume without loss of generality that any atomic
constrained pattern predicate in R is semantically equivalent to one of the form
〈u1, . . . , un〉 | ϕ. Likewise, any pattern predicate will be semantically equivalent
to a union of atomic predicates of such form, called in standard form.

Theorem 1. For S0, P ∈ PatPred(Ω,Σ) constrained pattern predicates in stan-
dard form with vars(S0) ∩ vars(P) = ∅, �P � is an invariant of (CR,State ,→R)
from �S0� iff Rstop |=∀

[] S0 →� [P].

A Constructor-Based Reachability Logic for Rewrite Theories 211

The notion of a parametric invariant can be reduced to the unparameterized
one: if Y = vars(S0) ∩ vars(P), then �P � is an invariant of (CR,State ,→R)
from �S0� with parameters Y iff Rstop |=∀

[] S0 →� [P]. That is, iff �Pρ� is an
(unparameterized) invariant of (CR,State ,→R) from �S0ρ� for each ρ ∈ [Y →TΩ].
In this way, Theorem 1 extends to parametric invariants.

Specifying Invariants for QLOCK. Consider the QLOCK specification from
Sects. 2 and 3. QLOCK is never terminating. However, we can apply the theory
transformation in Theorem 1 by adding an operator [] : Conf → State and a
rule stop : < t > → [t] for t:Conf . Define the set of initial states by the pattern
predicate S0 = < n ′ | ∅ | ∅ | nil > | dupl(n′)
= tt . Since QLOCK states have
the form < n | w | c | q >, mutual exclusion means |c| ≤ 1, which is expressible
by the pattern predicate < n | w | i | i ; q > ∨ < n | w | ∅ | q >. But we need
also to ensure our multisets are actually sets. Thus, the pattern predicate P =(
< n | w | i | i ; q > | dupl(n w i)
= tt

)
∨

(
< n | w | ∅ | q > | dupl(n w)
= tt

)

specifies mutual exclusion. By Theorem 1, QLOCK ensures mutual exclusion
from �S0� iff Rstop |=∀

[] S0 →� [P].
The following easy corollary can be very helpful in proving invariants. It can,

for example, be applied to prove the mutual exclusion of QLOCK.

Corollary 1. Let S0, P ∈ PatPred(Ω,Σ) be constrained pattern predicates in
standard form with vars(S0)∩vars(P) = ∅. �P � is an invariant of (CR,State ,→R)
from �S0� if: (i) S0 ⊆ P , and (ii) Rstop |=∀

[] P →� [Pσ], where σ is a sort-
preserving bijective renaming of variables such that vars(P) ∩ vars(Pσ) = ∅.

Corollary 1 can be extended to parametric invariants (see [13]). The treat-
ment of co-invariants is similar and can also be found in [13].

5 A Sound Inference System

We present our inference system for all-path reachability for any R satisfying
topmost requirements (1)–(2), with rules R = {lj → rj if φj}j∈J such that
lj , rj ∈ TΩ(X), j ∈ J . Variables of rules in R are always assumed disjoint from
variables in reachability formulas; this can be ensured by renaming. The inference
system has two proof rules. The Step∀ +Subsumption proof rule allows taking
one step of (symbolic) rewriting along all paths according to the rules in R. The
Axiom proof rule allows the use of a trusted reachability formula to summarize
multiple rewrite steps, and thus to handle repetitive behavior.

These proof rules derive sequents of the form [A, C] �T u | ϕ −→� ∨
i vi | ψi,

where A and C are finite sets of reachability formulas and T a pattern predicate
defining a set of T -terminating ground states. Formulas in A are called axioms
and those in C are called circularities. We furthermore assume that in all reach-
ability formulas u | ϕ −→� ∨

i vi | ψi we have vars(ψi) ⊆ vars(vi) ∪ vars(u | ϕ)
for each i. According to the implicit quantification of the semantic relation |=∀

T

this means that any variable in ψi is either universally quantified and comes

212 S. Skeirik et al.

from the precondition u | ϕ, or is existentially quantified and comes from vi

only. This property is an invariant preserved by the two inference rules.
Proofs always begin with a set C of formulas that we want to simultaneously

prove, so that the proof effort only succeeds if all formulas in C are eventually
proved. C contains the main properties we want to prove as well as any auxiliary
lemmas that may be needed to carry out the proof. The initial set of goals
we want to prove is [∅, C] �T C, which is a shorthand for the set of goals
{[∅, C] �T u | ϕ −→� ∨

i vi | ψi

∣
∣ (u | ϕ −→� ∨

i vi | ψi) ∈ C}. Thus, we start
without any axioms A, but we shall be able to use the formulas in C as axioms
in their own derivation after taking at least on step with the rewrite rules in R.

A very useful feature is that sequents [∅, C] �T u | ϕ −→� ∨
i vi | ψi,

whose formulas C have been postulated (as the conjectures to be proved), are
transformed by Step∀ + Subsumption into sequents of the form [C, ∅] �T

u′ | ϕ′ −→� ∨
i v′

i | ψ′
i, where now the formulas in C can be assumed valid, and

can be used in derivations with the Axiom rule.

Verifying QLOCK’s Mutual Exclusion. By Corollary 1, QLOCK’s mutual
exclusion can be verified by: (i) using pattern subsumption to check the trivial
inclusion �S0� ⊆ �P �, and (ii) proving Rstop |=∀

[] Pσ →� [P], where σ is a sort-
preserving bijective renaming of variables such that vars(P) ∩ vars(Pσ) = ∅.
But, since for QLOCK, P is a disjunction, in our inference system this means
proving from Rstop that [∅, C] �[] C, where C are the conjectures:

< n ′ | w ′ | i ′ | i ′ ; q ′ > | ϕ′ →� [< n | w | i | i ; q > | ϕ ∨ < n | w | ∅ | q > | ψ]

< n ′ | w ′ | ∅ | q ′ > | ψ′ →� [< n | w | i | i ; q > | ϕ ∨ < n | w | ∅ | q > | ψ].

where ϕ ≡ dupl(n w i)
= tt , ψ ≡ dupl(n w)
= tt , and ϕ′, ψ′ are their obvious
renamings.

Before explaining the Step∀ + Subsumption proof rule we introduce some
notational conventions. Assume T is the pattern predicate T =

∨
j tj | χj , with

vars(χj) ⊆ vars(tj), and let R = {lj → rj if φj}j∈J , we then define:

match(u, {vi}i∈I) ⊆ {(i, β) | β ∈ [vars(vi) \ vars(u) → TΩ(X)] s.t. u =EΩ∪BΩ viβ}

a complete set of (parameter-preserving) EΩ ∪ BΩ-matches of u against the vi,

unify(u | ϕ′, R) ≡ {(j, α) | α ∈ UnifEΩ∪BΩ
(u, lj) and (ϕ′∧φj)α satisfiable in TΣ/E∪B}

a complete set of EΩ ∪ BΩ-unifiers of a pattern u | ϕ′ with the lefthand-sides of
the rules in R with satisfiable associated constraints.4 Consider now the rule:
4 In the current prototype implementation (see Sect. 6), variant satisfiability makes
constraint checking decidable. Future versions will only assume �E convergent mod-
ulo B for the equational part E ∪ B of R, so that satisfiability of such con-
straints will in general be undecidable. Unifiers whose associated constraints cannot
be proved unsatisfiable will then be included in unify(u | ϕ′, R) as a safe over-
approximation. The same approach will apply to the, in general undecidable, check-
ing of satisfiability/validity for other constraints involved in the application of the
Step∀+Subsumption or Axiom rules below: they will be either over-approximated,
or will become proof obligations to be discharged by an inductive theorem prover.

A Constructor-Based Reachability Logic for Rewrite Theories 213

Step∀ + Subsumption

∧

(j,α)∈unify(u|ϕ′, R)

[A ∪ C, ∅] �T (rj | ϕ′ ∧ φj)α −→� ∨

i

(vi | ψi)α

[A, C] �T u | ϕ −→� ∨

i

vi | ψi

where ϕ′ ≡ ϕ ∧
∧

(i,β)∈match(u, {vi}) ¬(ψiβ). This inference rule allows us to
take one step with the rules in R. Intuitively, u | ϕ′ characterizes the states
satisfying u | ϕ that are not subsumed by any vi | ψi; that is, states in the
lefthand side of the current goal that have not yet reached the righthand side.
Note that, according to Definition 4, u | ϕ −→� ∨

i vi | ψi is semantically valid
iff u | ϕ′ −→� ∨

i vi | ψi is valid. Thus, this inference rule only unifies u | ϕ′

with the lefthand sides of rules in R. We impose on this inference rule a side
condition that

∨
j,γ∈UnifEΩ∪BΩ

(u,tj)
(ϕ′ ∧ χj)γ is unsatisfiable in TΣ/E∪B, where

T =
∨

j tj | χj is the pattern predicate characterizing the chosen T -terminating
states. This condition ensures that any state in u | ϕ′ has an R-successor. Thus,
a state in u | ϕ′ reaches on all T -terminating paths a state in

∨
i vi | ψi if all

its successors do so. Each R-successor is covered by one of (rj | ϕ′ ∧ φj)α. As
an optimization, we check that (ϕ′ ∧ φj)α is satisfiable and we drop the ones
which are not. Finally, we also assume that vars((u | ϕ)α)∩vars((

∨
i vi | ψi)α) =

vars((rj | ϕ′ ∧ φj)α)∩vars((
∨

i vi | ψi)α). This parameter preservation condition
ensures correct implicit quantification. Note that formulas in C are added to A,
so that from now on they can be used by Axiom. By using EΩ ∪BΩ-unification,
this inference rule performs narrowing of u | ϕ′ with rules R [16].

Axiom
∧

j

[{u′ | ϕ′ −→� ∨

j

v′
j | ψ′

j} ∪ A, ∅] �T v′
jα | ϕ ∧ ψ′

jα −→� ∨

i

vi | ψi

[{u′ | ϕ′ −→� ∨

j

v′
j | ψ′

j} ∪ A, ∅] �T u | ϕ −→� ∨

i

vi | ψi

if ∃α such that u =EΩ∪BΩ
u′α and TΣ/E∪B |= ϕ ⇒ ϕ′α. This inference rule

allows us to use a trusted formula in A to summarize multiple transition steps.
This is similar to how several transition steps would apply to a ground term,
except that for ground terms we would check that ϕ′α is valid, whereas here we
check that the condition ϕ implies ϕ′α. Since ϕ is stronger than ϕ′α, we add ϕ
to (v′

j | ψ′
j)α (the result of using axiom u′ | ϕ′ −→� ∨

j v′
j | ψ′

j). We assume that
u | ϕ −→� ∨

i vi | ψi and u′ | ϕ′ −→� ∨
j v′

j | ψ′
j do not share variables, which

can always be guaranteed by renaming. For correct implicit quantification, as
in Step∀ + Subsumption, we assume for each j the parameter preservation
condition vars(u | ϕ)∩vars(

∨
i vi | ψi) = vars(v′

jα | ϕ ∧ ψ′
jα)∩vars(

∨
i vi | ψi).

On a practical note, in order to be able to find the α, our implementation requires
that vars(ϕ′) ⊆ vars(u′), so that all the variables in vars(ϕ′) are matched.

214 S. Skeirik et al.

The soundness of Step∀ + Subsumption plus Axiom is now the theorem:

Theorem 2 (Soundness). Let R be a rewrite theory, and C a finite set of reach-
ability formulas. If R proves [∅, C] �T C then R |=∀

T C.

Investigating completeness of the logic is left as future work.

6 Prototype Implementation and Experiments

We have implemented the reachability logic proof system in Maude [1]. Our
prototype takes as input (i) a rewrite theory R = (Σ,E ∪ B,R, φ) and (ii) a set
of reachability formulas C = {Ai →� Bi}i∈I to be simultaneously proved.

To mechanize the two proof rules we use a finitary B-unification algorithm
as well as an SMT solver to discharge E ∪ B constraints. For SMT solving we
use variant satisfiability [9,12], which allows us to handle any rewrite theory
R = (Σ,E ∪ B,R) satisfying topmost requirements (1)–(2) and such that the
equational theory (Σ,E ∪ B) has a convergent decomposition satisfying the
finite variant property [2] and protects a constructor subtheory which we assume
consists only of commutative and/or AC and/or identity axioms BΩ . Thus,
both validity and satisfiability of QF formulas in the initial algebra TΣ/E∪B are
decidable [9]. Future implementations will support more general rewrite theories,
add other decision procedures, and use an inductive theorem prover backend.

We have verified properties for a suite of examples of rewrite theories speci-
fying distributed systems such as communication or mutual exclusion protocols
and real-time systems. Table 1 summarizes these experiments. For further details
plus runnable code see http://maude.cs.illinois.edu/tools/rltool/.

Table 1. Examples verified in the prototype implementation

Example Description of the system/property

Choice Nondeterministically throws away elements from a
multiset/eventually only one element left

Comm. Protocol 1 Simple communication protocol/received data is always a
prefix of the data to be sent

Comm. Protocol 2 Fault-tolerant communication protocol/all data is
eventually received in-order

Dijkstra Dijkstra’s mutual exclusion alg./mutual exclusion

Fixed-size token ring 2-Token ring mutual exclusion alg./mutual exclusion

QLOCK QLOCK mutual exclusion alg./mutual exclusion

Readers/writers Readers-writers mutual exclusion alg./mutual exclusion

Lamport’s bakery Unbounded Lamport’s bakery/mutual exclusion

Thermostat Open system that dynamically responds to
temperature/temperature remains in preset bounds

http://maude.cs.illinois.edu/tools/rltool/

A Constructor-Based Reachability Logic for Rewrite Theories 215

T1 ≡
{

sub(P1, α)
[C, ∅] �[] [n3 | w3 | ∅ | q3] | dupl(n ′′ w ′ p) �= tt ∧

dupl(n3w3) �= tt →� [P1] ∨ [P2]

T2 ≡
{

sub(P2, α)
[C, ∅] �[] [n3 | w3 | i3 | i3; q3] | dupl(n ′′ w ′ p) �= tt ∧

dupl(n3w3 i3) �= tt →� [P1] ∨ [P2]

T1 T2
axiom(G2, α)

· · · [C, ∅] �[] <n ′′ | w ′ p | ∅ | q ′> | dupl(n ′′ w ′ p) �= tt
→� [P1] ∨ [P2]

· · ·
step(n2w, θ)

[∅, C] �[] <n ′ | w ′ | ∅ | q ′> | dupl(n ′ w ′) �= tt
→� [P1] ∨ [P2]

Fig. 1. Partial proof tree for QLOCK

To illustrate how the tool works in practice, Fig. 1 shows a partial derivation of
a sequent. Recall that for QLOCK we had to prove [∅, C] �[] C, where C was two
already-discussed reachability formulas Gi ≡ P ′

i → [P1] ∨ [P2] for i ∈ {1, 2} with
respective preconditions the renamed disjuncts P ′

i , 1 ≤ i ≤ 2 in invariant P1∨P2,
and postcondition [P1] ∨ [P2], where P1 ≡ < n | w | i | i ; q > |dupl(n w i)
= tt
and P2 ≡ < n | w | ∅ | q > |dupl(n w)
= tt. Now, consider [∅, C] �[] P ′

2 →� [P].
In the proof fragment below, the initial sequent must apply the step rule. The
result of step(n2w, θ) is the goal resulting from unifying the head of the sequent
with the lefthand side of the rule n2w using the unifier θ = {n �→ n′′p,w �→
w′, c �→ ∅, q �→ q′}. The next inference axiom(G2, α) applies axiom G2 using
the substitution α ⊇ {n �→ n3, w �→ w3, i �→ i3, q �→ q3}. Since G2 has two
constrained patterns in its succedent, we derive two new goals, represented by
proof trees T1 and T2. In either case, we can immediately subsume by noting
that our reachability formula’s antecedent is an instance of either [P1] or [P2]
using substitution α, thus terminating the proof.

7 Related Work and Conclusions

This work extends reachability logic [14,15] to a rewrite-theory-generic logic to
reason about both distributed system designs and programs. This extension is
non-trivial. It requires: (i) relativizing terminating sequences to a chosen subset
�T � of terminating states; (ii) solving the “invariant paradox,” to reason about
invariants and co-invariants and characterizing them by reachability formulas
through a theory transformation; and (iii) making it possible to achieve higher
levels of automation by systematically basing the state predicates on positive
Boolean combination of patterns of the form u | ϕ with u a constructor term.

In contrast, standard reachability logic [14,15] uses matching logic, which
assumes a first-order model M and its satisfaction relation M |= ϕ in its reach-
ability logic proof system. As discusses in Sect. 3, we choose TΣ/E∪B as the

216 S. Skeirik et al.

model and →R for transitions, rather than some general M and systematically
exploit the isomorphism TΣ/E∪B|Ω ∼= TΩ/EΩ∪BΩ

, allowing us to use unifica-
tion, matching, narrowing, and satisfiability procedures based on the typically
much simpler initial algebra of constructors TΩ/EΩ∪BΩ

. This has the advantage
that we can explicitly give the complete details of our inference rules (e.g. how
Step∀ + Subsumption checks the subsumption, or ensures that states have at
least a successor), instead of relying on a general satisfaction relation |= on some
M. The result is a simpler logic with only two rules (versus eight in [14,15]).

We agree with the work in [6] on the common goal of making reachability logic
rewrite-theory-generic, but differ on the methods used. Main differences include:
(1) [6] does not give an inference system but a verification algorithm. (2) the
theories used in [6] assume restrictions like those in [11] for “rewriting modulo
SMT,” which limit the class of equational theories. (3) Matching is used in [6]
instead of unification. Thus, unless a formula has been sufficiently instantiated,
no matching rule may exist, whereas unification with some rule is always possible
in our case. (4) No method for proving invariants is given in [6].

In conclusion, the goal of making reachability logic a rewrite-theory-generic
verification logic has been advanced. Feasibility has been validated with a proto-
type and a suite of examples. Building a robust and highly effective reachability
logic tool for rewrite theories is a more ambitious future goal.

Acknowledgements. Partially supported by NSF Grant CNS 14-09416.

References

1. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

2. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

3. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, vol. B, pp. 243–320. North-Holland (1990)

4. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of con-
ditional order-sorted rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850
(2012)

5. Futatsugi, K.: Fostering proof scores in CafeOBJ. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 1–20. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16901-4 1

6. Lucanu, D., Rusu, V., Arusoaie, A., Nowak, D.: Verifying reachability-logic proper-
ties on rewriting-logic specifications. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C.
(eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 451–474. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 21

7. Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting.
J. Log. Algebr. Meth. Program. 85(1), 67–97 (2016)

8. Meseguer, J.: Twenty years of rewriting logic. J. Algebr. Logic Program. 81, 721–
781 (2012)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-642-16901-4_1
https://doi.org/10.1007/978-3-642-16901-4_1
https://doi.org/10.1007/978-3-319-23165-5_21

A Constructor-Based Reachability Logic for Rewrite Theories 217

9. Meseguer, J.: Variant-based satisfiability in initial algebras. In: Artho, C., Ölveczky,
P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 3–34. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29510-7 1

10. Meseguer, J., Goguen, J.: Initiality, induction and computability. In: Algebraic
Methods in Semantics, pp. 459–541. Cambridge UP (1985)

11. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Logic Algebr. Methods Program. 86, 269–297 (2017)

12. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. In:
Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 167–184. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44802-2 10

13. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. Technical report. http://hdl.handle.net/2142/95770

14. Ştefănescu, A., et al.: All-path reachability logic. In: Dowek, G. (ed.) RTA 2014.
LNCS, vol. 8560, pp. 425–440. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08918-8 29

15. Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program
verifiers for all languages. In: Proceedings of the OOPSLA 2016, pp. 74–91. ACM
(2016)

16. Thati, P., Meseguer, J.: Symbolic reachability analysis using narrowing and its
application to the verification of cryptographic protocols. J. High.-Order Symb.
Comput. 20(1–2), 123–160 (2007)

https://doi.org/10.1007/978-3-319-29510-7_1
https://doi.org/10.1007/978-3-319-29510-7_1
https://doi.org/10.1007/978-3-319-44802-2_10
http://hdl.handle.net/2142/95770
https://doi.org/10.1007/978-3-319-08918-8_29
https://doi.org/10.1007/978-3-319-08918-8_29

	A Constructor-Based Reachability Logic for Rewrite Theories
	1 Introduction
	2 Many-Sorted Algebra and Rewriting Logic
	3 Constrained Constructor Pattern Predicates
	4 Constructor-Based Reachability Logic
	4.1 Invariants, Co-Invariants, and Never-Terminating Systems

	5 A Sound Inference System
	6 Prototype Implementation and Experiments
	7 Related Work and Conclusions
	References

