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Preface

This volume contains a selection of the papers presented at LOPSTR 2017, the 27th
International Symposium on Logic-Based Program Synthesis and Transformation held
during October 10–12, 2017, at the University of Namur, Belgium. It was co-located
with PPDP 2017, the 19th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming. The co-location of these two related conferences
has occurred several times and has been stimulating and cross-fertilizing.

Previous LOPSTR symposia were held in Edinburgh (2016), Siena (2015),
Canterbury (2014), Madrid (2013 and 2002), Leuven (2012 and 1997), Odense (2011),
Hagenberg (2010), Coimbra (2009), Valencia (2008), Lyngby (2007), Venice (2006
and 1999), London (2005 and 2000), Verona (2004), Uppsala (2003), Paphos (2001),
Manchester (1998, 1992 and 1991), Stockholm (1996), Arnhem (1995), Pisa (1994),
and Louvain-la-Neuve (1993). More information about the symposium can be found at:
https://www.sci.unich.it/lopstr17/.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration in logic-based program development. LOPSTR is open to contri-
butions on all aspects of logic-based program development, all stages of the software
life cycle, and issues of both programming-in-the-small and programming-in-the-large.
LOPSTR traditionally solicits contributions, in any language paradigm, in the areas of
synthesis, specification, transformation, analysis and verification, specialization, testing
and certification, composition, program/model manipulation, optimization, transfor-
mational techniques in software engineering, inversion, applications, and tools.
LOPSTR has a reputation for being a lively, friendly forum that allows for the pre-
sentation and discussion of both finished work and work in progress. Formal pro-
ceedings are produced only after the symposium so that authors can incorporate the
feedback from the conference presentation and discussion.

In response to the call for papers, 29 contributions were submitted from 13 different
countries. The Program Committee accepted five full papers for immediate inclusion in
the formal proceedings, and 14 more papers presented at the symposium were accepted
after a revision and another round of reviewing. Each submission was reviewed by
three Program Committee members or external referees. The paper “Context Genera-
tion from Formal Specifications for C Analysis Tools” by Michele Alberti and Julien
Signoles won the best paper award, sponsored by Springer. In addition to the 19
contributed papers, this volume includes the abstracts of the invited talks by three
outstanding speakers: Sumit Gulwani (Microsoft Research, USA) and Marieke
Huisman (University of Twente, The Netherlands), whose talks were shared with
PPDP, and Grigore Roşu (University of Illinois at Urbana-Champaign, USA).

We want to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the LOPSTR 2017
Symposium Chair, Wim Vanhoof, and the local organizers for the great job they did in



managing the symposium. Many thanks also to Brigitte Pientka, the Program Com-
mittee chair of PPDP, with whom we often interacted for coordinating the two events.
We would also like to thank Andrei Voronkov for his excellent EasyChair system that
automates many of the tasks involved in chairing a conference. Special thanks go to the
invited speakers and to all the authors who submitted and presented their papers at
LOPSTR 2017.

We also thank our sponsors, the University of Namur, le Fonds de la Recherche
Scientifique (FNRS), the GRASCOMP Doctoral School, the FOCUS Research Group,
Microsoft Research, and Springer for their cooperation and support in the organization
of the symposium. Finally, Fabio Fioravanti gratefully acknowledges financial support
from the Italian INdAM Research group GNCS.

April 2018 Fabio Fioravanti
John P. Gallagher
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Programming by Examples: Applications,
Algorithms, and Ambiguity Resolution

Sumit Gulwani

Microsoft Research, USA
sumitg@microsoft.com

Abstract. 99% of computer users do not know programming and hence struggle
with repetitive tasks. Programming by Examples (PBE) can revolutionize this
landscape by enabling users to synthesize intended programs from example
based specifications. A key technical challenge in PBE is to search for programs
that are consistent with the examples provided by the user. Our efficient search
methodology is based on two key ideas: (i) Restriction of the search space to an
appropriate domain-specific language; (ii) A divide-and-conquer based search
paradigm that inductively reduces the problem of synthesizing a program with a
certain top-level operator to simpler synthesis problems over its sub-programs
by leveraging the operator’s inverse semantics. Another challenge in PBE is to
resolve the ambiguity in the example based specification. Our ambiguity reso-
lution methodology leverages two complementary approaches: (a) machine
learning based ranking techniques that can pick an intended program from
among those that satisfy the specification, and (b) active-learning based user
interaction models. I will illustrate these various concepts using Flash Fill,
FlashExtract, and FlashRelate—PBE technologies for data manipulation
domains. These technologies, which have been released inside various Micro-
soft products, are useful for data scientists who spend 80% of their time
wrangling with data. The Microsoft PROSE SDK allows easy construction of
such technologies.



A Verification Technique for Deterministic
Parallel Programs

Marieke Huisman

University of Twente, The Netherlands
m.huisman@utwente.nl

Abstract. A commonly used approach to develop parallel programs is to aug-
ment a sequential program with compiler directives that indicate which program
blocks may potentially be executed in parallel. This talk presents how we use
our verification technique for concurrent software, as supported by the VerCors
tool set, to prove correctness of compiler directives combined with functional
correctness of the program. We propose syntax and semantics for a simple core
language, capturing the main forms of deterministic parallel programs. This
language distinguishes three kinds of basic blocks: parallel, vectorized and
sequential blocks, which can be composed using three different composition
operators: sequential, parallel and fusion composition. We show that it is suf-
ficient to have contracts for the basic blocks to prove correctness of the compiler
directives, and moreover that functional correctness of the sequential program
implies correctness of the parallelized program. We also show how a
widely-used subset of OpenMP can be encoded into our core language, thus
effectively enabling the verification of OpenMP compiler directives, and we
discuss automated tool support for this verification process.



K: A Logic-Based Framework for Program
Semantics and Analysis

Grigore Roşu

University of Illinois at Urbana-Champaign, USA
grosu@illinois.edu

Abstract. K (kframework.org) is a logic-based executable semantic framework
in which programming languages, type systems and formal analysis tools can be
defined using special rewrite rules. The K (rewrite) rules make it explicit which
parts of the term they read-only, write-only, read-write, or do not care about.
Several real languages have been defined in K, such as C (ISO C11 standard),
Java (1.4), JavaScript (ES5), Ethereum Virtual Machine (EVM), Python,
Scheme, Verilog, and dozens of prototypical or classroom languages.
The ISO C11 semantics and a fast OCAML backend for K power RV-Match

(runtimeverification.com/match), one of the most advanced commercial auto-
mated analysis tools for C. K is a best-effort implementation of matching logic, a
logic which uniformly generalizes several logical frameworks important for
program analysis, such as: propositional logic, algebraic specification, FOL with
equality, modal logic, and separation logic.
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Generation of Initial Contexts
for Effective Deadlock Detection

Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel(B)

Complutense University of Madrid (UCM), Madrid, Spain
{elvira,mzamalloa}@fdi.ucm.es, miguelis@ucm.es

Abstract. It has been recently proposed that testing based on sym-
bolic execution can be used in conjunction with static deadlock analysis
to define a deadlock detection framework that: (i) can show deadlock
presence, in that case a concrete test-case and trace are obtained, and
(ii) can also prove deadlock freedom. Such symbolic execution starts from
an initial distributed context, i.e., a set of locations and their initial tasks.
Considering all possibilities results in a combinatorial explosion on the
different distributed contexts that must be considered. This paper pro-
poses a technique to effectively generate initial contexts that can lead
to deadlock, using the possible conflicting task interactions identified by
static analysis, discarding other distributed contexts that cannot lead
to deadlock. The proposed technique has been integrated in the above-
mentioned deadlock detection framework hence enabling it to analyze
systems without the need of any user supplied initial context.

1 Motivation

Deadlocks are one of the most common programming errors and they are there-
fore one of the main targets of verification and testing tools. We consider a
distributed programming model with explicit locations (or distributed nodes)
and asynchronous tasks that may be spawned and awaited among locations.
Each location represents a processor with a procedure stack and an unordered
queue of pending tasks. Initially all processors are idle. When an idle proces-
sor’s task queue is non-empty, some task is selected for execution, this selection
is non-deterministic. Let us see now our motivating example in Fig. 1 which
simulates a simple communication protocol between a database location and
a worker location. Our implementation has the main method, and two classes
Worker and DB implementing the worker and the database, respectively. The
main method creates two distributed locations: the database and the worker,
and (asynchronously) invokes methods register and work on each of them, respec-
tively. The work method of a worker simply accesses the database (invoking
asynchronously method getData) and then blocks until it gets the result, which

This work was funded partially by the Spanish MINECO project TIN2015-69175-
C4-2-R, and by the CM project S2013/ICE-3006.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Fioravanti and J. P. Gallagher (Eds.): LOPSTR 2017, LNCS 10855, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-94460-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94460-9_1&domain=pdf


4 E. Albert et al.

1 main(){
2 DB db = new DB();
3 Worker w = new Worker();
4 db!register(w);
5 w!work(db);}
6

7 class Worker{
8 Data data;
9 int work(DB db){

10 Future〈Data〉 f;
11 f = db!getData(this);
12 data = f.get;
13 return 0;
14 }
15 int ping(int n){return n;}
16 }// end of class Worker
17

18 class DB{
19 Data data = ...;
20 Worker client = null;
21 int connected = 1;

22 int connect(){
23 connected = 3;
24 return connected;
25 }
26 int register(Worker w){
27 connected = 5;
28 Future〈Data〉 g;
29 g = this!getData(w);
30 await g?;
31 if (connected > 0){
32 connected = connected − 1;
33 Future〈int〉 f = w!ping(5);
34 if (f.get == 5) client = w;
35 }
36 return 0;
37 }
38 Data getData(Worker w){
39 if (client == w) return data;
40 else return null;
41 }
42 }// end of class DB

Fig. 1. Working example. Communication protocol between a DB and a worker

is assigned to its data field. The instruction get blocks the execution in the cur-
rent location until the awaited task has terminated. We use future variables
[7,8] to detect the termination of asynchronous tasks. The register method of
the database makes a call to getData and waits for its execution. Once it has
finished, it checks if the number of possible connections is bigger than 0. In
that case connected is decreased by one, and the database makes sure that the
worker is online. This is done by invoking asynchronously method ping with a
concrete value and blocking until it gets the result with the same value. Then,
the database registers the provided worker reference storing it in its client field.
Method getData of the database returns its data field if the caller worker is regis-
tered, otherwise it returns null. Finally, method connect sets the field connected
to 3. Depending on the sequence of interleavings, the execution of this program
can finish: (1) as one would expect, i.e., with worker.data = db.data, (2) with
w.data = null if getData is executed before the assignment at line 34, or, (3) in
a deadlock.

We have recently proposed a deadlock detection framework [2,3] that com-
bines static analysis and symbolic execution based testing [1,3,6,14]. The dead-
lock analysis (for example, [9]) is first used to obtain descriptions of potential
deadlock cycles which are then used to guide the testing process. The resulting
deadlock detection framework hence can: (i) show deadlock presence, in which
case a concrete test-case and trace are obtained, and (ii) prove deadlock free-
dom (up to the symbolic execution exploration limit). However, the symbolic
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execution phase needs to start from a concrete initial distributed context, i.e., a
set of locations and their initial tasks. In our example, such an initial context is
provided by the main method, which creates a Database and a Worker location,
and schedules a work task on the worker with the database as parameter, and,
a register task on the database with the worker as parameter. This is however
only one out of the possible contexts, and, of course, it could be the case that it
does not expose an error that occurs in other contexts (for example, it does not
manifest any deadlock). This clearly limits the framework potential.

A fundamental challenge for a symbolic execution framework of distributed
programs is to automatically and systematically generate relevant distributed
contexts for the type of error that it aims at detecting. This would allow for
instance applying symbolic execution for system and integration testing. The
generation of relevant contexts involves two challenging aspects: (1) A first chal-
lenge is related to the elimination of redundant (useless) contexts. Observe that
there is a combinatorial explosion on the different possible distributed contexts
that can be generated when one considers all possible types and number of dis-
tributed locations and tasks within them. Therefore, it is crucial to provide the
minimal set of initial contexts that contains only one representative of equiva-
lent contexts. (2) For the particular type of error that one aims at detecting, an
additional challenge is to be able to only generate initial contexts in which the
error can occur. In the case of generating initial contexts for deadlock detection
in our working example, this would mean generating for instance, a context with
a database location and some worker location with a scheduled work task and a
register task on the database for it, i.e., the context created by the main method.
For instance, contexts that do not include both tasks would be useless for dead-
lock detection. Let us observe that if the assignment at Line 23 is changed to
assign 0, then the initial contexts must also include a connect task, otherwise
no deadlock will be produced. Interestingly, deadlock analyses provide [9,11,12]
potential deadlock cycles which contain the possibly conflicting task interactions
that can lead to deadlock. This information will be used to help our framework
anticipate this information and discard initial distributed contexts that cannot
lead to deadlock from the beginning. Briefly, the main contributions of this paper
are the following:

– We introduce the concept of minimal set of initial contexts and extend a
static testing framework to automatically and systematically generate them.

– We present a deadlock-guided approach to effectively generate initial contexts
for deadlock detection and prove its soundness.

– We have implemented our proposal within the aPET/SYCO system [4] and
performed an experimental evaluation to show its efficiency and effectiveness.

2 Asynchronous Programs

A program consists of a set of classes that define the types of locations, each of
them defines a set of fields and methods of the form M ::=T m(T̄ x̄){s}, where
statements s take the form s::=s; s | x=e |if e then s else s | while e do s | return x; |
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b=new T(z̄) | f = x ! m(z̄) | await f? | x = f.get. Syntactically, a location will
therefore be similar to a concurrent object that can be dynamically created
using the instruction new T(z̄). The declaration of a future variable is as follows
Future〈T〉 f, where T is the type of the result r, it adds a new future variable
to the state. Instruction f = x ! m(z̄) spawns a new task (instance of method m)
and it is set to the future f in the state. Instruction await f? allows non-blocking
synchronization. If the future variable f we are awaiting for points to a finished
task, then the await can be completed. Otherwise the task yields the lock so that
any other task of the same location can take it. On the other hand, instruction
f.get allows blocking synchronization. It waits for the future variable without
yielding the lock, i.e., it blocks the execution of the location until the task that
is awaiting is finished. Then, when the future is ready, it retrieves the result and
allows continuing the execution. This instruction introduces possible deadlocks
in the program, as two tasks can be awaiting for termination of tasks on each
other’s locations. Finally, instruction return x; releases the lock that will never be
taken again by that task. Consequently, that task is finished and removed from
the task queue. All statements of a task takes place serially (without interleaving
with any other task) until it gets to a return or await f? instruction. Then, the
processor becomes idle again, chooses non-deterministically the next pending
task, and so on.

A program state or configuration is a set of locations {loc0, ..., locn}. A loca-
tion is a term loc(o, tk , h,Q) where o is the location identifier, tk is the identi-
fier of the active task that holds the location’s lock or ⊥ if the location’s lock
is free, h is its local heap, and Q is the set of tasks in the location. A task
is a term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method
name executing in the task, l is a mapping from local variables to their val-
ues, and s is the sequence of instructions to be executed. We assume that the
execution starts from a main method without parameters. The initial state is
S={loc(0, 0,⊥, {tsk(0,main, l, body(main))} with an initial location with iden-
tifier 0 executing task 0, maps local variables to their initial values, and body(m)
is the sequence of instructions in method m and ini(main) is the initial program
point in method m. From now on, we represent the state as a Prolog list, and
we write [x �→ v] to denote h(x) = v (resp. l(x) = v), that is, field x in the heap
h (resp. local variable x in the mapping l) takes the value v.

In what follows, a derivation or execution [20] is a sequence of states S0
o1.t1−→

...
on.tn−→ Sn, where Si

oi.ti−→ Si+1 denotes the execution of task ti in location oi ∈ Si.
The derivation is complete if S0 is the initial state and � loc(o, , , {tk}∪Q) ∈ Sn

such that Sn
o.tk−→ Sn+1 and Sn 	= Sn+1. Given a state S, exec(S) denotes the set

of all possible complete executions starting at S.

3 Specifying and Generating Initial Contexts

In our asynchronous programs, the most general initial contexts consist of sets
of locations with free variables in their fields, and initial tasks in each location
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queue with free variables as parameters, i.e., neither the fields nor the param-
eters have concrete values. A first approach to systematically generate initial
contexts could consist in generating, on backtracking, all possible multisets of
initial tasks (method names), and for each one, generate all aliasing combina-
tions with the locations of the tasks belonging to the same type of location.
They are multisets because there can be multiple occurrences of the same task.
To guarantee termination of this process we need to impose some limit in the
generation of the multisets. For this, we could simply set a limit on the multiset
global size. However it would be more reasonable and useful to set a limit on the
maximum cardinality of each element in the multiset. To allow further flexibility,
let us also set a limit on the minimum cardinality of each element. For instance,
if we have a program with just one location type A with just one method m, and
we set 1 and 2 as the minimum and maximum cardinalities respectively, then
there are two possible multisets, namely, {m} and {m,m}. The first one leads
to one initial context with one location of type A with an instance of task m in
its queue. The second one leads to two contexts, one with one location of type A
with two instances of task m in its queue, and the other one with two different
locations, each with an instance of task m in its queue.

On the other hand, it makes sense to allow specifying which tasks should be
considered as initial tasks and which should not. A typical scenario is that the
user knows which are the main tasks of the application and does not want to
consider auxiliary or internal tasks as initial tasks. Another scenario is in the
context of integration testing, where the tester might want to try out together
different groups of tasks to observe how they interfere with each other. Also,
the use of static analysis can help determine a subset of tasks of interest to
detect some specific property. This is the case of our deadlock-guided approach
of Sect. 4. With all this, the input to our automatic generation of initial contexts
is: a set of tuples (C.M,Cmin, Cmax), where C.M is an abstract task, i.e., a task
name, being C and M the class and method name resp., and, Cmin resp. Cmax

is the associated minimum resp. maximum cardinality. Note that this does not
limit the approach in any way since one could just include in Tini all methods
in the program and set Cmin = 0 and a sufficiently large Cmax.

Example 1. Let us consider the set Tini = {(DB.register, 1, 1), (DB.connect, 0, 1)}.
The corresponding multisets are {register} and {register, connect}. All contexts
must contain exactly one instance of task register and at most one instance of
task connect. This leads to three possible contexts: (1) a DB location instance
with a task register in its queue, (2) a DB location instance with tasks register
and connect in its queue, and, (3) two different DB location instances, one of
them with an instance of task register and the other one with an instance of task
connect. For instance, the state corresponding to the latter context would be:

S = [loc(DB1, bot, [data �→ D1, clients �→ Cl1, checkOn �→ B1],
[tsk(1, register, [this �→ r(DB1), m �→ W1], body(register))])

loc(DB2, bot, [data �→ D2, clients �→ Cl2, checkOn �→ B2],
[tsk(2, connect, [this �→ r(DB2)], body(connect))])],
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where D1,Cl1, and B1 (resp. D2,Cl2, and B2) are the fields data, clients, and
checkOn of location DB1 (resp. DB2), and W1 resp. W2 the parameter of the task
register resp. connect, and body(m) is the sequence of instructions in method m.
Note that both fields and task parameters are fresh variables so that the context
is the most general possible. Note that the first parameter of a task is always
the location this and it is therefore fixed. �

In the following, we formally define the contexts that must be produced
from a set of abstract tasks Tini with associated cardinalities. We use the
notation {[m1, ...,mn]oi} for an initial context where there exists a loca-
tion loc(oi,⊥, h, {tk(tk1,m1, l1, body(m1))} ∪ ... ∪ {tk(tkn,mn, ln, body(mn))}).
Note that we can have mi = mj with i 	= j. For instance, the three con-
texts in Example 1 are written as {[register]db1}, {[register, connect]db1} and
{[register]db1 , [connect]db2}, respectively. Let us first define the set of initial con-
texts from a given Tini when all tasks belong to the same class.

Definition 1 (Superset of initial contexts (same class Ci)). Let Tini =
{(Ci.m1, C

min
1 , Cmax

1 ), . . . , (Ci.mn, C
min
n , Cmax

n )} be the set of abstract tasks

with associated cardinalities. Let us have
n∑

i=1

Cmax
i different identifiers:

o1,1, . . . , o1,Cmax
1

, . . . , on,1, . . . , on,Cmax
n

. We can find at most
n∑

i=1

Cmax
i instances

of class Ci, that is, each abstract task mi (i ∈ [1, n]) has at most Cmax
i instances

and each of them can be inside a different instance of class Ci. Let umk
i,j be an

integer variable that denotes the number of instances of task mk inside the loca-
tion oi,j and let us consider the following integer system:

⎧
⎪⎨

⎪⎩

Cmin
1 ≤ um1

1,1 + . . . + um1
1,Cmax

1
+ . . . + um1

n,1 + . . . + um1
n,Cmax

n
≤ Cmax

1

. . .

Cmin
n ≤ umn

1,1 + . . . + umn

1,Cmax
1

+ . . . + umn
n,1 + . . . + umn

n,Cmax
n

≤ Cmax
n

Each formula requires at least Cmin
k and at most Cmax

k instances of task mk.
Each solution to this system corresponds to an initial context.
Let (dm1

1,1 , . . . , d
m1
n,Cmax

n
, . . . , dmn

1,1 , . . . , d
mn

n,Cmax
n

) be a solution, then the correspond-
ing initial context contains:

– loc(oi,j ,⊥, h,Q), that is, a location oi,j whose lock is free, the fields in h
are mapped to fresh variables, and the queue Q contains: dm1

i,j instances of
abstract task m1,. . . , and dmn

i,j instances of mn, if i ∈ [1, n], j ∈ [1, Cmax
i ]

and ∃dmk
i,j > 0, k ∈ [1, n], where each instance of mi is tsk(tk ,mi, l, body(mi))

and every argument in l is mapped to a fresh variable.

Example 2. Let us consider the example Tini =
{
(DB.register, 0, 1), (DB.connect,

1, 1)
}
. The identifiers are o1,1 and o2,1, and the variables of the system are ureg

1,1 ,
ureg
2,1 , uget

1,1 and uget
2,1 . Finally, we obtain the next system:

{
0 ≤ ureg

1,1 + ureg
2,1 ≤ 1

1 ≤ uget
1,1 + uget

2,1 ≤ 1
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We obtain 6 solutions: (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0) and
(0, 1, 0, 1). Then, the superset of initial contexts is

{{[connect]o1,1}, {[connect]o2,1}, {[register, connect]o1,1}, {[register, connect]o2,1},

{[register]o2,1 , [connect]o1,1}, {[register]o1,1 , [connect]o2,1}}
�

Let us observe that the two last contexts are equivalent since they are both
composed of two instances of DB with tasks register and connect respectively.
Therefore, we only need to consider one of these two contexts for symbolic exe-
cution. Considering both would lead to redundancy. The notion of minimal set
of initial contexts below eliminates redundant contexts, hence avoiding useless
executions.

Definition 2 (Equivalence relation ∼). Two contexts C1 and C2 are equiv-
alent, written C1 ∼ C2, if C1 = C2 = ∅ or C1 = {loc(o1,⊥, h1,Q1)} ∪ C ′

1, and
∃ o2 ∈ C2 such that:

1. C2 = {loc(o2,⊥, h2,Q2)} ∪ C ′
2,

2. Q1 and Q2 contain the same number of instances of each task, and
3. C ′

1 ∼ C ′
2.

Example 3. The superset in Example 2 contains 3 equivalence classes induced by
the relation ∼: (1) the class {{[connect]o1,1}, {[connect]o2,1}}, where both contexts
are composedof a locationwitha task connect, (2) the class{{[register, connect]o1,1},
{[register, connect]o2,1}}, whose locations have two tasks register and connect.
and, finally, (3) the class {{[register]o2,1 , [connect]o1,1}, {[register]o1,1 , [connect]o2,1}},
where both contexts have two locations with a task register and a task connect,
respectively. �

Definition 3 (Minimal set of initial contexts ICi (same class Cli)). Let
Tini be the set of abstract tasks, then the minimal set of initial contexts ICli is
composed of a representative of each equivalence class induced by the relation ∼
over the superset of initial contexts for the input Tini.

Example 4. As we have seen in the previous example, there are three different
equivalence classes. So, the minimal set of initial contexts is composed of a
representative of each class (we have renamed the identifiers for the sake of
clarity):

IDB = {{[connect]db1}, {[register, connect]db1}, {[register]db1 , [connect]db2}}

�

Let us now define the set of initial contexts I when the input set Tini contains
tasks of different types of locations.
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Definition 4 (Minimal set of initial contexts I (Different classes)). Let
Tini = {(C1.m1, C

min
1 , Cmax

1 ), . . . , (Cn.mn, C
min
n , Cmax

n )} be the set of abstract
tasks with associated cardinalities, and let us consider a partition of this set where
every equivalence class is composed of abstract tasks of the same class. Hence,
we have: T C1

ini = {C1.m
′
1, . . ., C1.m

′
j1

}, . . . , T Cn
ini = {Cn.m

′′
1, . . . , Cn.m

′′
jn} where

Ci 	= Cj ,∀i, j ∈ [1, n], i 	= j.
Then, let ICi be the minimal set of initial contexts for the input T Ci

ini , i ∈ [1, n]
and U : IC1 × . . . × ICn → I , defined by U(s1, . . . , sn) = s1 ∪ . . . ∪ sn. The set
I is defined by the image set of application U .

Example 5. Let us consider the set Tini =
{
(DB.register, 1, 1), (DB.connect, 1, 1),

(Worker.work, 1, 1)
}

from which we get the initial contexts IWorker =
{{[work]w1}} and IDB = {{[register, connect]db,1}, {[register]db1 , [connect]db2}}.
Then, by Definition 4,

I ={{[register, connect]db1 , [work]w1}, {[register]db1 , [connect]db2 , [work]w1}}

�

It is straightforward to implement a function that generates the minimal set
of initial contexts from a provided set of initial tasks (for instance [5]). Such
a function is denoted as generate contexts(Tini). The main complication is to
avoid the generation of equivalent contexts (Definition 2) as soon as possible
during the process. For this aim one can rely on the definition of a normal form
according to the number of tasks inside each location.

4 On Automatically Inferring Deadlock-Interfering Tasks

The systematic generation of initial contexts produces a combinatorial explosion
and therefore it should be used with small sets of abstract tasks (and low cardi-
nalities). However, in the context of deadlock detection, in order not to miss any
deadlock situation, one has to consider in principle all methods in the program,
hence producing scalability problems. Interestingly, it can happen that many of
the tasks in the generated initial contexts do not affect in any way deadlock exe-
cutions. Our challenge is to only generate initial contexts from which a deadlock
can show up. For this, the deadlock analysis provides the possibly conflicting
task interactions that can lead to deadlock. We propose to use this information
to help our framework discard initial contexts that cannot lead to deadlock from
the beginning. Section 4.1 summarizes the concepts of the deadlock analysis used
to obtain the deadlock cycles, and Sect. 4.2 presents the algorithm to generate
the set of initial tasks Tini.

4.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [9] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,
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tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location abstrac-
tions or task abstractions. The abstractions for tasks and locations can be per-
formed at different levels of accuracy during the analysis: the simple abstraction
that we will use for our formalization abstracts each concrete location o by the
program point at which it is created opp, and each task by the method name exe-
cuting (as in Sect. 3). They are abstractions since there could be many locations
created at the same program point and many tasks executing the same method.
Points-to analysis [9,18] can be used to infer such abstractions with more preci-
sion, for instance, by distinguishing the actions performed by different location
abstractions. Each arrow e

p:tk−−→ e′ should be interpreted like “abstract location
or task e is waiting for the termination of abstract location or task e′ due to the
synchronization instruction at program point p of abstract task tk”. Three kinds
of arrows can be distinguished, namely, task-task (an abstract task is awaiting
for the termination of another one), task-location (an abstract task is awaiting
for an abstract location to be idle) and location-task (the abstract location is
blocked due the abstract task). Location-location arrows cannot happen.

Example 6. In our working example there are two abstract locations, o2, cor-
responding to location database created at line 2 and o3, corresponding to the
n locations worker, created inside the loop at line 3; and four abstract tasks,
register, getD, work and ping. The following cycle is inferred by the deadlock
analysis: o2

34:register−−−−−−−→ ping
15:ping−−−−−→ o3

12:work−−−−−→ getD
38:getD−−−−−→ o2. The first arrow

captures that the location created at Line 2 is blocked waiting for the termina-
tion of task ping because of the synchronization at L34 of task register. Also, a
dependency between a task and a location (for instance, ping and o3) captures
that the task is trying to execute on that (possibly) blocked location. Abstract
deadlock cycles can be provided by the analyzer to the user. But, as it can be
observed, it is complex to figure out from them why these dependencies arise,
and more importantly the interleavings scheduled to lead to this situation. �

4.2 Generation of Initial Tasks

The underlying idea is as follows: we select an abstract cycle detected by the
deadlock analysis, and extract a set of potential abstract tasks which can be
involved in a deadlock. In a naive approximation, we could take those abstract
tasks that are inside the cycle and contain a blocking instruction. We also need
to set the maximum cardinality for each task to ensure finiteness (by default 1)
and require at least one instance for each task (minimum cardinality).

This approach is valid as long as we only have blocking synchronization prim-
itives, i.e., when the location state stays unchanged until the resumption of a
suspended execution. However, this kind of concurrent/distributed languages
usually include some sort of non-blocking synchronization primitive. When a
location stops its execution due to an await instruction, another task can inter-
leave its execution with it, i.e., start to execute and, thus, modify the location
state (i.e., the location fields). Then, if a call or a blocking instruction involved
in a deadlock depends on the value of one of these fields, and we do not consider
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all the possible values, a deadlock could be missed. As a consequence, we need
to consider at release points, all possible interleavings with tasks that modify
the fields in order to capture all deadlocks.

Let us consider now a simple modification of our working example. Line 27
is replaced by connected = 0. Now it is easy to see that if we only consider
register and work as input, deadlocks are lost: once register is executed and the
instruction at line 30 is reached, the location’s queue only contains task getData
but no connect and, therefore, when task register is resumed, field connected stays
unchanged and the body of the condition is not executed, so we cannot have a
deadlock situation.

In the following we define the deadlock-interfering tasks for a given abstract
deadlock cycle, i.e., an over-approximation of the set of tasks that need to be
considered in initial contexts so that we cannot miss a representative of the given
deadlock cycle. In our extended example, those would be, register and work but
also connect.

Definition 5 (initialTasks(C)). Let C an abstract deadlock cycle. Then,

initialTasks(C) :=
⋃

icall∈t∈C

initialTasks(t, icall, C) ∪
⋃

isync∈t∈C

initialTasks(t, isync, C)

where:

– initialTasks(t, i, C) = ∅ if o
t−→ t2 �∈ C and i �= imod and � ∃ iawait ∈[t0, i]

– initialTasks(t, i, C) = {t} if (o
t−→ t2 ∈ C or i = imod ) and � ∃ iawait ∈[t0, i]

– initialTasks(t, i, C)

= {t} ∪ ⋃
f∈fields(i)

(
⋃

(imod,tmod)∈mods(f)

initialTasks(tmod, imod, C)

)

if ∃ iawait ∈ [t0, i]

The definition relies on function fields(I) which, given an instruction I, returns
the set of class fields that have been read or written until the execution of instruc-
tion I. Let mods(f) be the set of pairs (instruction,task) that modify field f. We
can observe that initialTasks(C) is the union of the initial tasks for each relevant
instruction inside the cycle C, i.e., asynchronous calls and synchronization prim-
itives. We can also observe in the auxiliary function initialTasks(t,i,C) that: (1)
if the instruction i is not producing a location-task edge and it is not an instruc-
tion modifying a field, then t does not need to be added as initial task, (2) if
i produces a location-task edge or is modifying a field, and we do not have any
await instruction between the beginning of the task and i, then i is going to
be executed under the most general context, so we do not need to add more
initial tasks but t, and (3) on the other hand, if there exists an await instruction
between the beginning of task t, namely t0, and instruction i, each field f inside
the set fields(i) could be changed before the resumption of the await by any task
modifying f . Thus, tasks containing any of the possible f -modifying instructions
must be considered and, recursively, their initial tasks.

It is important to highlight that this definition could be non-terminating
depending on the program we are working with. For instance, if we apply the
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Data: An abstract cycle C and a maximum cardinality M
Result: A list with the interfering tasks for C
Q = ∅; L = ∅;
forall the t ∈ C do

icall = receiveCall(t,C); enqueue(Q,(icall,t));
iawait = receiveSync(t,C); enqueue(Q,(iawait,t));
iget = receiveSync(t,C); enqueue(Q,(iget,t));

if ∃ ∈ o
t−→ t2 ∈ C then

insert(L,(iget,t));
end

end
while !empty(Q) do

(i,t) = dequeue(Q);
if ∃iawait ∈ t between the beginning of t and i then

forall the f ∈ fields(i) do
forall the (imod, tmod) ∈ mods(f) do

if !member(L,(imod, tmod)) then
insert(L,(imod, tmod));
enqueue(Q,(imod, tmod));

end

end

end

end

end
return [(m,1,M) : m ∈ set(projecty(L))];

Algorithm 1. Algorithm to infer interfering tasks for a given deadlock cycle

definition to the abstract cycle C in Example 6, initialTasks(db.register, 32, C)
will be evaluated. It fits well with the conditions on the third clause, as there
exists an await instruction, fields(32) = {connected} and then again 32 is a
modifier instruction of field connected, so initialTasks(db.register, 32, C) will be
evaluated again recursively.

Algorithm 1 shows how to finitely infer the interfering-tasks for a
given deadlock cycle as defined by Definition 5. Function receiveCall(t, C)
(receiveSync(t, C)) receives the asynchronous call (synchronization instruction)
of a task t inside the cycle C. Q is the queue of pending pairs {instruction,
task}, and L is the list containing all such pairs whose tasks we have to con-
sider. Finiteness is guaranteed because each instruction is added to Q and L at
most once, and the number of instructions is finite. For each task in the cycle,
we take the call and the corresponding synchronization instruction, and we add
them to Q. Instructions get producing a location-task edge, are also added to
L, as they have to be inside the initial context. The other tasks included in the
initial context are the ones which could affect the conditions of the aforemen-
tioned instructions.

In the second loop, we take a pending instruction inside Q and we check
if there exists an await instruction where the field values could be changed
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(third clause in Definition 5). In case it does, we need to include all tasks which
contain instructions modifying such field. However, this change could be inside
an if-else body and we also need to consider the fields inside such condition.
Therefore, we add the modifier instruction to the pending instructions queue
Q. The algorithm finishes when Q is empty and L is the list of pairs with
all interfering instructions and their container tasks. Finally, we only take the
tasks, i.e., the second component of each pair (projecty), remove duplicates (set)
and set their minimum and maximum cardinalities. From now on, we denote
initial tasks(c,M), the set of initial tasks inferred for the abstract deadlock cycle
c and the maximum cardinality M.

Example 7. Let us show how the algorithm works for our modified example and
the maximum cardinality M = 1. For the sake of clarity, instructions are identi-
fied by their line numbers. After executing the first forall loop, the value of Q and
L is {(33,DB.register), (34,DB.register), (11,Worker.work), (12,Worker.work)}
and [(34,DB.register), (12,Worker.work)], respectively. Let us assume Q uses
a LIFO policy, hence (12,Worker.work) is taken first. Since fields(12) = ∅,
L stays unchanged. The same happens with (11,Worker.work). At the
beginning of the third loop, Q is {(33,DB.register), (34,DB.register)} and
(34,DB.register) is taken. Now, fields(34) = {connected} and ∃instawait

(line 30) between lines 26 and 34. We find three pairs modifying the
field connected: (23,DB.connect), (27,DB.register) and (32,DB.register). None
of them is a member of L and hence they are added to both queues.
Now, Q is {(33,DB.register), (27,DB.register), (32,DB.register), (23,DB.connect)}
but again fields(32) = fields(23) = ∅ and, thus, L stays unchanged.
Finally, both (33,DB.register) and (27,DB.register) are taken and fields(33)=
fields(27)={connected}, but the modifier instructions have been previously added
to L, hence L remains unchanged. At the end of while, L is

{
(34,DB.register),

(12,Worker.work), (27,DB.register), (32,DB.register),(23,DB.connect)
}
. Finally,

the algorithm projects over the second component of each pair in
the list, removes duplicates and returns the set Tini={(DB.register, 1, 1),
(Worker.work, 1, 1), (DB.connect, 1, 1)}. Our generation of initial contexts for this
set (see Example 5) produces

I = { {[register, connect]db1 [work]w1},
{[register]db1 , [connect]db2 , [work]w1}},

where both initial contexts are composed of a worker location with a task work.
However, the former context contains a database location with tasks register and
connect, whereas the latter one contains two locations with a task register and a
task connect, respectively. �

The next theorem establishes the soundness of our approach. Intuitively,
soundness states that, for a given deadlock cycle c and maximum cardinality M ,
if there is an initial context, fulfilling M , from which a deadlock representative of
c can be obtained, then our approach will generate a context (possibly different
from the above) from which a deadlock representative of c is obtained.
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Theorem 1 (Soundness). Given a program P , an abstract deadlock cycle c
and a maximum cardinality M, if there exists a derivation starting at a state
Sini and ending at Send such that the cardinality of each task in Sini is less than
M and Send is a representative of the cycle c, then there exists an initial context
St0 ∈ generate contexts(initial tasks(c,M)) such that Send2 ∈ exec(St0) and
Send2 is also a representative of the cycle c.

Proof. (Sketch) Let us define a task t as necessary in Sini for the deadlock
cycle c if and only if �Se′ such that Sini\{t} ∗−→ Se′ and Se′ is a representa-
tive of c, where S\{t} denotes the context S without the task t. Let us define
now an initial context nec(S) as the initial context that only contains the nec-
essary tasks in S for c. In order to prove soundness, we need to prove that
nec(Sini) ∈ generate contexts(initial tasks(M, c)). We reason by contradiction.
Assume that there exists a necessary task t ∈ nec(Sini), instance of method m,
which is not in any initial context generated. This is equivalent to assume that
method m is not inferred by Algorithm1. We can distinguish two different roles
which task t plays in the deadlock situation:

– If task t gets blocked, then t contains an instruction pp:get where pp is the
program point, and, by the soundness of the deadlock analysis (Theorem 1
of [9]), pp:get is the tag of an edge inside the deadlock cycle c. So, the pair
(pp,m) is added to L in the first loop of Algorithm1 and m is finally inferred.
Thus, we have a contradiction.

– If task t modifies a field f at program point pp that appears in a condition
of another task r, then we cannot get a deadlock if t is not executed before
the evaluation of condition in task r (t is necessary). Here, we need to notice
that if task r does not contain any await, symbolic execution explores all
possible execution paths and t would be unnecessary. But we have supposed
that t is necessary, then r contains an await. Then, (pp,m) will be added to L
because of the third forall in Algorithm1 and m is inferred, what contradicts
our assumption. �

5 Experimental Evaluation

We have implemented the proposed techniques within the aPET/SYCO tool [4],
a testing tool for the ABS [13] concurrent objects language. The tool is avail-
able for online use at http://costa.ls.fi.upm.es/syco, where the benchmarks below
can also be found. This section summarizes our experimental evaluation whose
objectives are the following:

1. Show the effectiveness of our approach in Sect. 4 to generate initial contexts
for deadlock detection w.r.t the full systematic generation of Sect. 3.

2. Demonstrate the potential of the technique when being applied in practice
within our deadlock detection framework.

The benchmarks we have used include classical concurrency patterns contain-
ing deadlocks, namely: DBProt is an extension of the database communication

http://costa.ls.fi.upm.es/syco
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protocol of our working example; Barber is an extension of the sleeping barber
problem, Fact is a distributed and recursive implementation of a factorial func-
tion, Loop is a loop that creates asynchronous tasks and locations, and, Pairing
is the pairing problem.

Effectiveness of generation of initial contexts for deadlock detection:
Table 1 shows, for each benchmark: the number of generated initial contexts
using the full systematic generation of contexts of Sect. 3 (column Syst.), the
number of contexts generated using our deadlock-guided generation of Sect. 4
(column G), and, the number of contexts among those generated that lead to
a deadlock (column D). This is done for three different values of maximum
cardinality, namely, M = 1, M = 2 and M = 3. The rest of the columns are
explained in the next paragraph. A timeout of 30 s is used and, when reached,
we write >X to indicate that we encountered X contexts up to that point. The
reductions of our deadlock guided generation of contexts w.r.t the full systematic
generation are huge. As expected the full systematic generation blows up fast
for most examples. We can also observe that our deadlock guided generation of
contexts is very precise, producing no false positives, i.e., contexts that do not
lead to deadlock, except for DBProt. The reason of the loss of precision in the
DPProt example is that task register only gets blocked if task connect changes
the value of field connected. Therefore, contexts in which these two tasks do not
belong to the same location will not lead to deadlock. This can be observed in
Example 7. Improving our method to capture this situation is left for future
work.

Table 1. Evaluating generation of initial contexts: Systematic vs. deadlock-guided

M = 1 M = 2 M = 3

Bench. TA/C Syst. G D T Syst. G D T Syst. G D T

DBProt 5/1 30 2 1 35 >12960 57 30 101s* >6308 576 156 974s*

Barber 5/1 8 1 1 35 6859 9 9 57 >8310 36 36 309

Fact 6/2 15 2 2 11 2419 6 6 14 >4771 12 12 16

Loop 20/1 3375 1 1 30 >13433 27 27 495 >4771 216 216 77s*

Pairing 4/2 2 2 2 9 57 12 12 37 576 42 42 162

Application within our deadlock detection framework: Our deadlock-
guided generation of initial contexts has been integrated within the deadlock
detection feature of the testing system aPET/SYCO as follows: After running
the static deadlock analysis, and only in case it outputs a non-empty set of
potential abstract cycles (i.e. if the program is not already proven deadlock-free),
we run our deadlock guided generation of initial contexts for each of the cycles
inferred by the analysis. For each generated initial context, we start (possibly
in parallel) a deadlock-guided symbolic execution [2,3] that stops as soon as it
finds a deadlock. As a result, we obtain a concrete test-case with its associated
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trace and sequence of interleavings. A local timeout for each symbolic execution
is set so that it does not degrade the overall process in case a blowup is produced
before finding a deadlock. This is relatively frequent with false-positive contexts
(see paragraph above). Table 1 shows, for each benchmark, the time of the static
deadlock analysis and the number of generated deadlock cycles (column TA/C),
and, the overall time of the rest of the process (column T ), which includes both
the time of the generation of contexts and the symbolic executions. Times are in
milliseconds except where indicated and are obtained on an Intel(R) Core(TM)
i7 CPU at 2.5 GHz with 8 GB of RAM, running Ubuntu 5.4.0. A timeout of 5s is
set for each symbolic execution and an asterisk in the time indicates the timeout
has been reached at least once.

Overall, our deadlock guided generation of initial contexts hence enables our
deadlock detection framework to analyze systems without the need of any user
supplied initial context. Also, it allows generating concrete test cases that lead
to deadlock for integration and system testing.

6 Conclusions and Related Work

We have proposed a framework for the automatic generation of initial contexts
for deadlock-guided symbolic execution. Such initial contexts are composed of
the interfering tasks which, according to a static deadlock analyzer, might lead
to deadlock. Given the initial contexts, we can drive symbolic execution towards
paths that are more likely to manifest a deadlock, discarding safe contexts.
There is a large body of work on deadlock detection including both dynamic and
static approaches. Much of the existing work, both for asynchronous programs
[9,10] and thread-based programs [17,19], is based on static analysis techniques.
Although we have used the static analysis of [9], the information provided by
other deadlock analyzers could be used in an analogous way. Deadlock detec-
tion has been also studied in the context of dynamic testing and model checking
[6,15,16], where sometimes has been combined with static information [1,14].
The initial contexts generated by our framework are of interest also in these
approaches. As regards the application in a thread-based concurrency model,
the fundamental difference is that our whole approach is defined at the level of
atomic tasks that execute concurrently using non-preemptive scheduling, unlike
thread-based preemption. However, our approach would be adaptable to thread-
based applications that rely on synchronized blocks of code (such as in monitors
or concurrent objects). As future work, we plan to investigate how our framework
could be adapted to this model.
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Abstract. Database schema elements such as tables, views, triggers and
functions are typically defined with many interrelations. In order to sup-
port database users in understanding a given schema, a rule-based app-
roach for analyzing the respective dependencies is proposed using Dat-
alog expressions. We show that many interesting properties of schema
elements can be systematically determined this way. The expressiveness
of the proposed analysis is exemplarily shown with the problem of com-
puting induced functional dependencies for derived relations. The prop-
agation of functional dependencies plays an important role in data inte-
gration and query optimization but represents an undecidable problem in
general. And yet, our rule-based analysis covers all relational operators as
well as linear recursive expressions in a systematic way showing the depth
of analysis possible by our proposal. The analysis of functional dependen-
cies is well-integrated in a uniform approach to analyzing dependencies
between schema elements in general.

Keywords: Schema analysis · Functional dependencies
Dependency propagation · Datalog

1 Introduction

The analysis of database schema elements such as tables, views, triggers, user-
defined functions and constraints provides valuable information for database
users for understanding, maintaining and managing a database application and
its evolution. In the literature, schema analysis has been investigated for improv-
ing the quality of SQL/program code or detecting program errors [5], for detect-
ing the consequences of schema changes [18], for versioning [13], and match-
ing [19]. In addition, the analysis of schema objects plays an important role for
tuning resp. refactoring database applications [4]. All these approaches rely on
exploring dependencies between schema objects and an in-depth analysis of their
components and interactions. A comprehensive and flexible analysis of schema
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elements, however, is not provided as these approaches are typically restricted to
some subparts of a given schema. The same is true for analysis features provided
by commercial systems where approaches such as integrity checking, executing
referential actions or query change notification (as provided by Oracle) already
use schema object dependencies but in an implicit and nontransparent way, only.
That is, no access to the underlying meta-data is provided to the user nor can
be freely analyzed by means of user-defined queries. Even the meta-data about
tables and SQL views which are sometimes provided by system tables cover only
certain information of the respective schema elements. This makes it difficult
for database users to understand a given schema, explain specific derivations or
oversee the consequences of intended schema modifications.

In this paper, we propose a uniform approach for analyzing schema elements
in a comprehensive way. To this end, the schema objects are compiled and their
meta-data is stored into a Datalog program which employs queries for deriving
interesting properties of the schema. This way, indirect dependencies between
tables, views and user-defined functions can be determined which is important
for understanding follow-up changes. In order to show the expressiveness of the
proposed analysis, our rule-based approach is applied to the problem of deduc-
ing functional dependencies (FDs) for derived relations, i.e., views, based on FDs
defined for base relations. This so-called FD propagation or FD-FD implication
problem has been studied since the 80s [7,12,15,16,21,22] and has applications
in data exchange [11], data integration [8], data cleaning [12], data transforma-
tions [9], and semantic query optimization [20].

Functional dependencies describe relationships between attributes of a data-
base relation and are the most widely used uni-relational dependencies [10]. They
arise naturally in many ways, for instance when modeling key constraints, one-
to-one or one-to-many relationships. The problem of FD propagation is unde-
cidable in the general setting and coNP-complete for many special cases [12].
Consequently, the task of finding induced FDs is rather complex and needs to
be flexible in order to allow for further refinements. We show that our rule-
based approach to schema analysis is well-suited for realizing techniques for FD
propagation in a declarative way indicating the expressiveness of the proposed
analysis. In particular, our contributions are as follows:

– We propose a rule-based approach for analyzing the properties of views,
tables, triggers and functions in a uniform way.

– Our declarative approach in Datalog can be easily extended for refining the
analysis by user-defined queries and transferred into corresponding SQL views
for an in-database analysis.

– In order to show the expressiveness of our approach, the implication problem
for functional dependencies is investigated using our approach.

– As a proof-of-concept a PROLOG-based implementation of the proposed Dat-
alog solution is presented showing the solution of small technical issues arising
from our proposed declarative solution.

The paper is organized as follows: First, we introduce the rule-based frame-
work for analyzing schema objects in Sect. 2. Afterwards, the problem of FD
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Fig. 1. Dependency graph induced by views, triggers and functions

propagation is investigated serving as a use case in Sect. 3. In this section, a
systematic way for deriving FD propagation rules is developed (Subsect. 3.3)
before the most difficult operations ‘union’ and ‘recursion’ are investigated in
more detail in Subsect. 3.4. Finally, we draw a conclusion in Sect. 4.

2 Rule-Based Schema Analysis

A database schema describes the structure of the data stored in a database
system but also contains views, triggers, integrity constraints and user defined
functions for data analysis. Functions and these different rule types, namely
deductive, active and normative rules, are typically defined with various inter-
dependencies. For example, views are defined with respect to base relations
and/or some other views inducing a hierarchy of derived queries. In particu-
lar, the expression CREATE VIEW q AS SELECT ... FROM p1, p2,. . . ,pn leads to
the set {p1 → q, . . . , pn → q} of direct dependencies where q is a derived relation
and pi denote either a derived or a base relation. These direct dependencies are
typically represented by means of a predicate dependency graph which allows
for analyzing indirect dependencies, too. Those indirect dependencies allow for
understanding the consequences of changes made to the instances of the given
database schema (referred to as update propagation in the literature) or to its
structure. Understanding the consequences of structural changes of a base table,
for example, is important if a database user wants to know all view definitions
potentially affected by these changes.

Various dependencies are provided by the rules and functions in a database
schema such as table-to-table dependencies induced by triggers or views-to-table
dependencies which can be induced by functions. A sample dependency graph is
given in Fig. 1 depicting dependencies between the base relations {b1, b2, b3},
the derived relations {v1, v2, v3}, the triggers {t1, t2}, and the functions {f1,
f2}. For example, trigger t2 fires upon changes in b2 and refers in its action part
to b3 whereas function f2 is called from v3 and executes operations affecting b3.
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The transitive closure allows for detecting indirect dependencies such as the one
between b2 and b3 due to the path b2 → v2 → v3 → f2 → b3 .

This analysis can be further refined by structural details (e.g., negative vs.
positive dependencies as needed in approaches for update propagation) as well
as by considering the syntactical components of schema objects such as col-
umn names (attributes) or operator types (sum, avg, insert, delete, etc.). To
this end, the definitions of schema objects need to be parsed and the obtained
tokens stored as queryable facts. This kind of analysis is well-known from meta-
programming in Prolog which led to the famous vanilla interpreter [14]. For
readability reasons we use Datalog instead of Prolog or SQL. Datalog facts of
the form

dep(To,From) % dependency relation (path/2 its transitive closure)

base(R,A) % base relation R with arity A

derived(V,A) % view V with arity A

call(V,I,O,F) % input I and output O of function F in view V

attr(R,P,N) % position P of attribute named N in relation R

are used (amongst others) for representing meta-information about different
schema objects. Based on these facts, the analysis of schema elements can be
simply realized by means of Datalog queries like

attr dups(R1,R2,N) ← attr(R1, ,N),attr(R2, ,N),R1<>R2.
idb func pred(V) ← derived(V, ),call(V, , , ).
base changes(B) ← path(B,f1),base(B, ),func(f1, ).
tbl dep(A,B) ← base(A, ),base(B, ),path(A,F),path(F,B),func(F, ).

for determining reused attribute names, views calling a function, base tables pos-
sibly changed by function f1, and cyclic dependencies between two base tables
through a function. In doing so, many interesting properties of schema elements
can be systematically determined which supports users in understanding the
interrelations of schema elements. Most database systems already allow for stor-
ing and querying meta-data about schema elements in a simple way but a com-
prehensive (and in particular user-driven) analysis is missing. In contrast, the
proposed Datalog program can be easily extended by user-defined rules and the
respective program can be directly transferred into a given database using SQL.
This way, the schema analysis becomes a natural part of a database application.

3 Functional Dependency Propagation

In order to show the expressiveness of our approach, we investigate the possi-
bility to compute induced FDs for derived relations using the deductive rules
introduced above. FDs form special constraints which are assumed to hold for
any possible valid database instance. The FD propagation problem analyzes how
FDs are propagated through the dependency graph of a database. The problem
is undecidable in the general setting for arbitrary relational expressions [15] and
even restricted to SC views, i.e., relational expressions allowing selection and
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cross product only, it turns out to be coNP-complete.1 In favor of addressing the
general setting, we drop the ambition of achieving completeness by considering
a special case, only. Instead, we allow for arbitrary expressions over all relational
operators, multiple propagation steps and possibly finite domains2 in order to
cover the majority of practical cases. Due to the inherent complexity of the nec-
essary reasoning process, the FD propagation problem is well-suited for showing
the expressiveness of using deductive rules for schema analysis.

After giving some preliminaries in Subsect. 3.1, we present our FD propaga-
tion approach in Subsects. 3.2, 3.3 and 3.4 and discuss implementation details
of our proof-of-concept implementation in Subsect. 3.5. We conclude this section
with a discussion (Subsect. 3.6) and related work (Subsect. 3.7).

3.1 Preliminaries

A functional dependency α → B states that the attribute values of α determine
those of B. The restriction to univariate right sides can be done without loss
of generality as multivariate right sides can be composed using Armstrong’s
composition axiom [2]. We allow α = ∅ which means that the attribute values
of B are constant and restrict the represented FDs to those satisfying B /∈ α
(omitted FDs can be retrieved via Armstrong’s augmentation axiom).

For our FD propagation rules, we employ a Datalog variant with special data
types for finite, one-leveled sets denoted by Greek letters (with corresponding set
operations union ∪, intersection ∩, set minus −, as well as the check for empty
sets α �= ∅) and finite, possibly nested lists denoted by squared brackets (with
comparison and manipulation functionality). For example, the expression

p(L[1,2],ε) ← b(L[1,2],α,Y), c(Y,γ,Z), ε = α ∪ (γ − {Z}).

defines a join between two predicates b and c where the first attribute of p is a
list comprising two elements 1 and 2, and the second attribute of p is the union
of the sets α and γ without the value in Z.

In our approach we use the extended transitivity axiom

α → B, γ → D, B ∈ γ, D /∈ α ⇒ α ∪ (γ − B) → D (1)

to derive transitive FDs. Note that if B /∈ α and D /∈ γ, then the derived FD
also satisfies D /∈ α ∪ (γ − B).

Rule Normalization. In order to provide a systematic approach for FD prop-
agation, we need the input rules to be in a so-called normal form, where each
rule corresponds to exactly one relational operator. Any set of Datalog rules can
be transformed into an equivalent set of normalized rules while properties of the
original rule set like being stratifiable are preserved [3]:

1 An in-depth discussion on the complexity can be found in [12].
2 Finite domains cause troubles as FDs can occur due to the fact of limited possible

value combinations without being induced by another FD (cf. [12]).
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Example 1. The rule p(W,Z) ← s(W,X), t(X,Y,Z), Y = 2. can be normalized as

p(W,Z) ← q(W,X,Y,Z).
q(W,X,Y,Z) ← r(W,X,Y,Z), Y = 2.
r(W,X,Y,Z) ← s(W,X), t(X,Y,Z).

where the first rule corresponds to the projection operator π, the second is a
selection σ with constraint Y = 2, and the third represents the join �� of s and t.

In the following, we assume that the Datalog rules defining views are trans-
formed into normal form for further analysis. That is, each Datalog rule corre-
sponds to exactly one of the following relational algebra operators ({Xh}, {Yi},
{Zj} denote sets of pairwise distinct variables):

Projection π: p(X1, ...,Xk) ← q(Y1, ...,Yn). for {X1,. . . ,Xk} ⊆ {Y1,. . . ,Yn}
Extension π′: p(X1,...,Xk,Y1,...,Yn) ← q(X1,...,Xk), Y1 = t1,...,Yn = tn.

where each ti is a variable Xji or a constant ci
Selection σ: p(X1,...,Xk) ← q(X1,...,Xk), <Condition(X1,...,Xk)>.
Cross product ×: p(X1,...,Xk) ← q(Y1,...,Yn), r(Z1,...,Zm).

for {X1,. . . ,Xk} = {Y1,. . . ,Yn} ∪̇ {Z1,. . . ,Zm}
Union ∪: p(X1,...,Xk) ← pi(X1,...,Xk). for 1 ≤ i ≤ 2
Intersection ∩: p(X1,...,Xk) ← q(X1,...,Xk), r(X1,...,Xk).
Negation −: p(X1,...,Xk) ← q(X1,...,Xk), not r(X1,...,Xk).

Join ��: p(X1,...,Xk) ← q(Y1,...,Yn), r(Z1,...,Zm).
for {X1,. . . ,Xk} = {Y1,. . . ,Yn} ∪ {Z1,. . . ,Zm}

Renaming ρ: p(X1,...,Xk) ← q(X1,...,Xk).

In order to simplify the FD propagation, we will not allow for self joins or cross
products (i.e., q = r) which can always be achieved by applying renaming of
one of the respective relations first.

3.2 Representation of FDs and Normalized Rules

We assume that functional dependencies for EDB predicates are given in a rela-
tion edb fd(p,α, B, ID). Here α and B are (sets of) column numbers of the
relation p. The fact represents the functional dependency α → B for the rela-
tion p. The ID is of type list and used to identify the dependency in later steps,
e.g., in case of union. The derived functional dependencies will be represented
in the same way in an IDB predicate fd(p,α, B, ID’). Here ID’ is related to
the dependency’s ID where the FD is derived from for propagated FDs or to a
newly created ID for FDs that arise during the propagation process.

As in normal form every rule corresponds to exactly one operator, we
can refine the above defined dependency relation dep/2 to rel/3 by adding
the respective operator. A fact rel(p,q,op) indicates that a relation p
depends (positively) on a relation q via a relational operator op which
is one of ‘projection’, ‘extension’, ‘selection’ ‘product’, ‘union’,
‘intersection’, ‘negation’, ‘join’, and ‘renaming’.
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We further introduce an EDB predicate pos(head, body, pos head,
pos body) for storing information on how the positions of non position pre-
serving operators (cf. Table 1) transform from rule body to head (since FDs
are represented via column numbers). For the rules of Example 1 these are:

p(W,Z) ← q(W,X,Y,Z) → pos(p,q,1,1). pos(p,q,2,4).
r(W,X,Y,Z) ← s(W,X),t(X,Y,Z) → pos(r,s,1,1). pos(r,s,2,2).

pos(r,t,2,1). pos(r,t,3,2).
pos(r,t,4,3).

Remembering that each relation is defined via one operator only and that we
exclude self joins for simplicity (cf. Sect. 3.1), the above defined relation pos/4
is non-ambiguous. Finally, we have two EDB predicates eq(pred, pos1, pos2)
and const(pred, pos, val) for information on equality conditions (e.g., X = Y or
X = const resp.) in extension and selection rules.

3.3 Propagation Rules

In this section, we present three different types of propagation rules for (a) propa-
gating FDs to the next step, (b) introducing additional FDs arising from equality
constraints, and (c) calculating transitive FDs.

Example 2. Consider again the rule set introduced in Example 1. If we assume
two FDs fd(s, {1}, 2, ID1) and fd(t, {1,2}, 3, ID2) for the base relations
s and t we obtain the following propagation process (omitting IDs). First, both
FDs are propagated to r resulting in fd(r, {1}, 2) and fd(r, {2,3}, 4) (with
the appropriate column renaming for the latter FD). By transitivity we have
fd(r, {1,3}, 4) as a combination of the two. All three FDs are propagated to q
together with fd(q, ∅, 3) resulting from the equality constraint Y = 2. Applying
transitivity results in three more FDs for q, but only fd(q, {1}, 4) is propagated
further to p as fd(p, {1}, 2). The complete list of propagated FDs including
IDs is given in Example 3.

Table 1 summarizes the properties of how FDs are propagated via the differ-
ent relational operators which form the basis for the propagation rules. (Note
that in the first two rows attention has to be paid for no/–, whereas in the last
three rows special attention has to be paid for yes/×.) In most cases, the FDs
are propagated as they are (with adjustments on the positions for π, ×, and ��).
If there is a single rule defining a derived relation, the source FDs transform to
FDs for the derived relation (restricted to the attributes in use). Union forms an
exception where even common FDs are only propagated in special cases and is
therefore treated separately (cf. Sect. 3.4). For extensions and selections where
additional FDs can occur due to equality conditions as well as for joins transi-
tive FDs may appear so that taking the transitive closure becomes necessary. In
cases where the number of tuples is reduced (i.e., σ, ∩, ��, and −) it is possible
that new FDs appear as there are less tuples for which the FD constraint must
be satisfied. But as we are working on schema and not on instance level, this FD
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Table 1. Properties of FD propagation categorized by operator

had to be present in a specific part of the parent relations. The only case, where
a FD is propagated to just a part of the derived relation is union.

The different propagation rules for the relational operators except union,
additional FDs due to equality conditions, and transitive FDs are specified in
the following. The definition and usage of IDs and how they are propagated is
deferred to Sect. 3.4.

(a) Induced FDs. For direct propagation of FDs from one level to the next, we
distinguish between position preserving and non position preserving operators.
In the first case FDs can be directly propagated (2), whereas in the latter adjust-
ments on the column numbers are necessary (3). The EDB predicates pos pres
and non pos pres comprise the respective operators as listed in Fig. 2.

fd(P,α,B) ← fd(Q,α,B), rel(P,Q,Op), pos pres(Op). (2)

fd(P,{X1, . . . ,Xn},Y) ← fd(Q,{A1, . . . ,An},B),
pos(P, Q, X1, A1), . . . , pos(P, Q, Xn, An), pos(P, Q, Y, B),
rel(P, Q, Op), non pos pres(Op).

(3)

Fig. 2. Position preserving (left) and non position preserving (middle) operators, and
relations where transitive FDs may occur (right).
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(b) Additional FDs. For any equality constraint X = Y we can deduce the
dependencies X → Y and Y → X as after the application of the constraint the
values of X and Y coincide. Similar, a constant constraint X = const induces
the dependency ∅ → X. Translated to our approach that is for any fact
eq(R, Pos1, Pos2) and const(R, Pos, Val) respectively we derive the follow-
ing FDs:

fd(R,{Pos1},Pos2) ← eq(R,Pos1,Pos2). (4)

fd(R,{Pos2},Pos1) ← eq(R,Pos1,Pos2). (5)

fd(R, ∅,Pos) ← const(R,Pos,Val). (6)

(c) Transitive FDs. Since transitive FDs can only arise for certain operators
it is sufficient to deduce transitive FDs in those cases (cf. Table 1). For the
computation we use the following two rules:

fd(P, ε,D) ← fd(P,α,B), fd(P, γ,D),

B ∈ γ, D /∈ α, ε = α ∪ (γ − {B}), trans(P).
(7)

fd(P,{X},Y) ← fd(P,α,X,ID), fd(P,α,Y,ID), trans(P). (8)

The first rule implements the extended transitivity axiom (1) and the second
equates the right sides of two identical FDs (identified by matching IDs, cf.
Sect. 3.4). The IDB predicate trans/1 defined in Fig. 2 comprises those relations
where transitive FDs may occur. Base relations are included to start with a
complete set of representatives.

3.4 Union and Recursion

In case of union p = p1 ∪ p2 even common FDs of p1 and p2 are only propagated in
special cases. Consider the following example of student IDs. For each university,
the student ID uniquely identify the student associated with it. But the same stu-
dent ID can be used by different universities for different students. So although
we have the FD student ID → student name in the relations Bonn students and
Cologne students, it is not a valid FD in the union of both. A common FD
of p1 and p2 is only propagated to p if the domains of the FD are disjoint, or
if they match on common instances. The first case can only be handled safely
on schema level if constants are involved. The latter is the case if the FDs have
the same origin and are propagated in a similar way. Whether two FDs have
the same origin can be easily checked with the path relation of Sect. 2. This
criteria is not yet enough as the FDs might have been manipulated during the
propagation process (e.g., changes in the ordering, equality constraints, etc.). So
we employ a system of identifiers to track those changes made to a certain FD.
For the IDs we use a list structure that adopts the tree structure of [15] who
represents FDs as trees with source domains as leaves and the target domain as
the tree’s root. As the target is already handled in the FD itself, we keep track
of the source domains and transitively composed FDs, only.
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At the beginning, each FD α → B gets a unique identifier IDi. The idea is to
propagate this ID together with the FD and to keep track of the modifications
made to that FD. For this purpose we attach an ordered tuple, a (possibly nested)
list to the ID, i.e., IDi[A1, . . . , An] for the above base FD with α = {A1, . . . , An}.
For the position preserving operators (that in particular do not change the FD’s
structure) the ID is identically propagated in (2). For the non position preserving
operators the positions are updated (using a UDF) similarly to the position
adjustments of the FD itself in (3). The difference is that the ID maintains an
ordering and that the cardinality stays invariant. For constant constraints, we
set the constant value as ID in (6), equality constraints in (4), (5) and (8) get the
(column number of the) left side as ID. In (7) we replace the occurrences of the
column number B in the ID of fd(X, γ, D, -) by the ID of fd(X,α, B, -). Note
that this corresponds to a column number replacement for equality constraints.

Example 3. For the FD propagation in Example 2 we have the following IDs:

fd(s, {1}, 2, ID1[1]). fd(q, {1}, 2, ID1[1]).
fd(t, {1,2}, 3, ID2[1,2]). fd(q, {2,3}, 4, ID2[2,3]).

fd(q, {1,3}, 4, ID2[ID1[1],3]).
fd(r, {1}, 2, ID1[1]). fd(q, ∅, 3, ‘2’).
fd(r, {2,3}, 4, ID2[2,3]). fd(q, {2}, 4, ID2[2,‘2’]).
fd(r, {1,3}, 4, ID2[ID1[1],3]). fd(q, {1}, 4, ID2[ID1[1],‘2’]).

fd(p, {1}, 2, ID2[ID1[1],‘2’]).

A common ID implies that the same modifications (not counting column number
shifts due to joins, projections and equality constraints) have been made to a
common base FD. This means that the FD is preserved in the case of union. So
the final propagation rule for union reduces to a check for similar IDs:

fd(P, α, B, ID) ← fd(P1, α, B, ID), fd(P2, α, B, ID), P1 �= P2, (9)
rel(P,P1,‘union’), rel(P,P2,‘union’).

Common FDs resulting from equality and constant constraints are propagated
in any case. Due to the choice of IDs this case is captured in the above ID
comparison rule. Note that there are FDs with different IDs for with the common
FD is maintained in the union. Examples of such cases which are not covered by
our approach can be found in [15].

Recursion. Recursion forms another special case. Consider the following recur-
sive example modeling the ancestor relationship of a tree. We have the following
two rules recursively defining the relation p:

p(Child, Parent, Parent) ← q(Child, Parent).
p(Child, Parent, Ancestor) ← p(Child, Parent, X), q(X, Ancestor).
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Or equivalently transformed into the normal form:

p(C, P, A) ← p1(C, P, A).
p(C, P, A) ← p2(C, P, A).
p1(C, P, Y) ← q(C, P), Y = P.
p2(C, P, A) ← p3(C, P, X, A).
p3(C, P, X, A) ← p(C, P, X), q(X, A).

Each vertex has a unique parent, so we assume the FD Child → Parent for q,
i.e., fd(q, {1}, 2, *[1]). With the rules defined above we cannot compute any
FD for p although the FD Child → Parent is propagated from q. This is because
the FD is propagated to the recursion’s base case and survives the recursion step.
The rules above cannot detect this FDs as it is only propagated to p1 but not
derivable for p2 or p3.

Our solution is to take the potential FDs propagated to the recursion’s base
case and feed them into the recursion step(s). If they survive the recursion step,
i.e., if they are propagated with the above defined rules (2)–(9), then they are
propagated as FD for the whole relation.

Since we limited the union rule in the definition of the normal form to two
operands (cf. Sect. 3.1) the rule defining a linear recursive relation P has only
two components, which are w.l.o.g. a base case Q and a recursive component R.
We maintain this information in an EDB predicate rec(P, Q, R). As potential
FDs we introduce those that are propagated from the base case Q to the base
part of the recursive relation P.

pfd(P,α,B,ID) ← fd(Q,α,B,ID), rec(P,Q,R).

Finally after propagating them through the dependency graph, we can deduce
those FDs present in the recursive relation by ID comparison:

fd(P,α,B,ID) ← fd(Q,α,B,ID), pfd(R,α,B,ID), rec(P,Q,R).

Applied to the ancestor example this results in the following facts correctly
deriving the FD 1 → 2, i.e., Child → Parent, for relation p:

fd(q,1,2,*[1]). pfd(p,1,2,*[1]). fd(p3,3,4,*(3)). pfd(p2,1,2,*[1]).

pfd(p,2,3,3). pfd(p3,1,2,*[1]). pfd(p2,2,3,*[2]).

fd(p1,1,2,*[1]). pfd(p,3,2,3). pfd(p3,2,3,2). pfd(p2,1,3,*[*[1]]).

fd(p1,2,3,2). pfd(p,1,3,*[1]). pfd(p3,3,2,3).

fd(p1,3,2,3). pfd(p3,1,3,*[1]). fd(p,1,2,*[1]).

fd(p1,1,3,*[1]). pfd(p3,2,4,*[2]).

pfd(p3,1,4,*[*[1]]).

In addition to the case of union it is not only important that the FD’s ID
is maintained to keep the FD property through the recursion’s union, but also
the propagation process has to be tracked to ensure the propagated FD as the
following example shows.
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Example 4. Consider the following rule set defining the recursive relation r:

r(W, X, Y, Z) ← r1(W, X, Y, Z).
r(W, X, Y, Z) ← r2(W, X, Y, Z).
r1(A, B, A2, B2) ← e(A, B), A2 = A, B2 = B.
r2(Y, Y2, W, X) ← r3(W, X, Y, Z, Y2).
r3(W, X, Y, Z, Y2) ← r(W, X, Y, Z), Y2 = Y.

If we assume a FD fd(e, {1}, 2, *[1]) for the base relation e, the approach
would calculate the FD fd(r, {3}, 4, *[3]) for r as the pfd(r, {3}, 4, *[3])
survives the recursion step. But this is not correct as the fact e(1, 2)
yields p(1, 2, 1, 2), p(1, 1, 1, 2), and p(1, 1, 1, 1). The problem is that
pfd(r, {3}, 4, *[3]) is propagated from pfd(r,{1},2,*[1]) which does not
survive the recursion step and therefore causes the violation of the first in the
second recursion step. So the IDs have to be slightly updated to keep track of
the used FDs during the propagation.

3.5 Implementation

We developed an implementation that can execute the above Datalog meta rules.
It is available from the following web page:

http://www.informatik.uni-halle.de/∼brass/fd/

It reads an input file consisting of

– declarations of base predicates and their functional dependencies, and
– Datalog rules in normal form defining derived predicates (views).

These definitions are transformed into the facts of the meta program described
above, i.e. facts of the predicates base, base fd, rel, pos, const, and eq. The
parser actually produces the lower level representation of Datalog rules presented
in [6]. We used Datalog to check for the rule normal forms and compute the
meta-level facts that encode the input rules.

For representing the left-hand side of an FD we use sets of integers with the
following built-in predicates as an extension of standard Datalog:

– set one(A, α) produces a singleton set from an element, i.e. α = {A}.
– set elem(A, α) checks whether A ∈ α.
– set minus(α, A, β) removes an element from a set, i.e. β = α − {A}.
– set plus(α, A, β) adds an element to a set, i.e. β = α ∪ {A}.
– set split(α, A, β) permits to iterate over all elements of a set. For a given

set α it returns an element A ∈ α and the rest of the set β = α −{A}. In our
implementation, A is always the smallest element of α.

– set union(α, β, γ) computes the union of two sets, i.e. γ = α ∪ β.

Our Datalog implementation also uses an aggregation function to compute sets
from single facts, which is used to compute the base fd facts that are considered
given here.

http://www.informatik.uni-halle.de/~brass/fd/
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Nested sets are excluded, thus sets can contain only the finitely many con-
stants of the given input, which ensures termination. Furthermore, sets of small
numbers as used here could be represented internally as short bit strings.

The situation with the IDs is more difficult. IDs encode how functions corre-
sponding to the FDs in the base tables were composed. An ID for an FD α → B
is a term consisting of function symbols for base table FDs, and the column
numbers from α (plus constants from the program). Note that column numbers
and constants must be distinguished. Our special data type for IDs comprises
the following built-in predicates:

– id gen(R, FdNo, {A1, . . . , An},B, ID) generates an ID f(A1, . . . , An) for
a base relation, where the function symbol f uniquely identifies the FD
A1, . . . , An → B in the base relation R.

– id col(B, ID) is used for equality conditions and generates an ID that con-
sists only of the column number B.

– id const(c, ID) is used for conditions of the form X = c and constructs an
ID that consists of c specially marked as constant.

– id subst(IdIn, B, IdSubst, IdOut) is used for computing the ID of an
FD that was derived by transitivity. It walks through IdIn, and replaces every
leaf node that is column number B by IdSubst.

– id map start(IDin, IDout) is needed together with the following predicate
for mapping column numbers for non position preserving operators. Since the
rules must walk through each input-output column pair, we must avoid that
after e.g. column 1 was replaced by 2, it is replaced again, when column 2 is
mapped. This predicate marks all column numbers in the ID. The next pred-
icate replaces only marked columns, and removes this mark, so the resulting
column will not be touched again in this mapping.

– id map(IdIn,A,B, IdOut) replaces marked occurrences of A by B.

Note that an unrestricted application of the transitivity rule could lead to non-
termination by building larger and larger terms due to ID composition. This
could happen already for a base relation R(A,B,C) with FDs A → B, B → A,
and B → C. As the following example illustrates, it is not a feasible solution
to restrict an FD to one ID only. Consider the case with two base predicates
r(A, B) and s(A, B) each with FD A→ B and the following rules

t(X,Y) ← r(X,Y), s(X,Y).
p(X,Y) ← r(X,Y). q(X,Y) ← s(X,Y).
p(X,Y) ← t(X,Y). q(X,Y) ← t(X,Y).

The FD 1 → 2 derived for t needs two IDs, namely the IDs of the given FDs
in r and s. Only then we can derive the FD for the union predicates p and q.

So our solution to the termination problem is as follows. If the transitivity rule
was applied to α → B and γ → D with result ε → D, then no further application
of the transitivity rule (directly or indirectly) to ε can re-introduce B. If this
would happen, we could remove α → B from the sequence of FDs that are
transitively composed (and also FDs that replace attributes introduced by α),
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and get the same or a stronger FD (with a subset on the left hand side). Since the
set of “forbidden columns” (which cannot appear in α) grows for each application
of the transitivity rule (B is added), this ensures termination for each predicate.
When we derive an FD for another predicate, the set of forbidden columns is
initialized to ∅. Since recursion can never introduce new FDs and new IDs, also
global termination is ensured.

3.6 Discussion

In Sect. 3.3 we introduced our propagation rules for propagating functional
dependencies. To compute the set of propagated FDs these rules are simultane-
ously applied to the input Datalog program in normal form including specified
base FDs and the extracted meta-data tokens. (Note that the relation fd com-
prising the propagated functional dependencies is recursively defined.) The rules
are based on the observations in Table 1 which can be easily verified. For exam-
ple an equality constraint X =Y introduces two FDs between the attributes X
and Y as the attribute values of one determine the identical attribute values of
the other. Due to a new FD a transitive deduction of FDs inside the view may
become possible, e.g., X =Y, Y → Z ⇒ X → Z. If there is a functional depen-
dency α → B for which not all attributes of α∪{B} are present in the projected
relation p, then either one of the source domains or the target domain is missing,
so the FD cannot be propagated to p. If A is missing in p and α − {A} → B is
a valid FD in p, then the FD has a matching FD in the parent relation and is
propagated to p via this FD.

The propagated functional dependencies of our approach are not complete as
the problem is undecidable in the general setting. Also limited to a less expressive
subset of the relational operators (e.g., restricted operator order SPC views) one
has to assume the absence of finite domains to achieve completeness. Nevertheless
we are able to deal with many cases appearing in real world applications and
the provided rules can be directly used for an implementation (as indicated in
the previous Subsection). The implementation shows that a schema analyzer
tool can be realized in any expressive rule-based language such as Prolog or
SQL. Note the performance of the implementation is not a critical issue even
though the number of propagated FDs may grow exponentially in the number
of considered attributes per relation3. This is due the fact that a typical relation
does not contain a multitude of attributes and the analysis has no real-time
requirements.

The FD propagation approach can be further generalized to allow user-
defined functions Yi = f(Xi1 ,. . ., Xin) in the extension operator π′. As the EDB
predicate call/4 already maintains the information which function F is called
in a view V with input I and output O, we just can use the propagation rule

fd(V,I,O,F[I]) ← call(V,I,O,F).

to include this case as well. After a function call, the output of the UDF is
functionally determined by the input, i.e., I → O.
3 A subsumption step could be added for avoiding redundant FD representations.
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3.7 Related Work

The work of [15] was the first addressing the FD propagation problem. In his
paper, Klug considers relational algebra expressions and defines a set of rules
which iteratively compute the set of induced FDs. The rules are sound and –
limited to restricted operator order which is as powerful as relational algebra
without set difference – complete, assuming the absence of finite domains. The
propagation with this approach is not complete anymore when considering more
than one propagation step as in this case the restricted operator order might be
violated which can cause the loss of FDs that reappear in later steps. In any rule
based approach, special attention has to be paid to the union operator. In [15]
this difficulty is addressed with an algorithm systematically testing possible value
combinations using formal values.

The authors of [12] use the concept of conditional FDs to handle union. The
idea is that the dependencies are not propagated to the whole view but are
still maintained in its subsets. In the student ID example above, the IDs are
still unique restricted to one university. So on the condition that the university
is University of Bonn (Cologne), the FD student ID → student name can be
propagated.

Besides the mentioned rule based approaches, the chase is an established
algorithm for FD implication. Originally developed as lossless join test [1], the
chase has been used to infer dependencies inside one relation [17] and for FD-
FD implication [7]. Related to the approach of [15] the idea is to equate formal
values following and applying functional dependencies. In [21] the chase is used
to deal with FD propagation in linear recursive Datalog programs.

4 Conclusion

In this paper, we discussed a uniform framework for analyzing schema objects
using deductive rules. In doing so, many interesting schema object properties as
well as relationships can be systematically deduced. These form valuable infor-
mation for database users. Our approach can be easily extended for refining the
analysis by user-defined queries and is suitable for SQL systems due to the choice
of Datalog. The expressiveness of the underlying reasoning process has been
demonstrated by the analysis of induced functional dependencies. The respec-
tive FD propagation problem is known to be undecidable and intricate in detail.
And yet, the proposed deductive rules supplemented by a proof-of-concept imple-
mentation allow for covering known approaches to solving the FD propagation
problem proposed so far. This includes multiple propagation steps, union and
linear recursion showing the depth of analysis which can be achieved for schema
analysis in this way. Identifying how other FD propagation approaches can be
integrated into our rule based approach as well as the experimental evaluation
of our proposal is part of further research.



Analyzing Database Schema Objects with Datalog 35

References

1. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.
TODS 4(3), 297–314 (1979)

2. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress 1974, pp. 580–583 (1974)

3. Behrend, A., Manthey, R.: A transformation-based approach to view updating in
stratifiable deductive databases. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS
2008. LNCS, vol. 4932, pp. 253–271. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-77684-0 18

4. Boehm, A.M., Seipel, D., Sickmann, A., Wetzka, M.: Squash: a tool for analyzing,
tuning and refactoring relational database applications. In: Seipel, D., Hanus, M.,
Wolf, A. (eds.) INAP/WLP 2007. LNCS (LNAI), vol. 5437, pp. 82–98. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00675-3 6

5. Brass, S., Goldberg, C.: Proving the safety of SQL queries. In: QSIC 2005, pp.
197–204 (2005)

6. Brass, S.: Language constructs for a datalog compiler. In: Benslimane, D., Damiani,
E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017.
LNCS, vol. 10438, pp. 130–140. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-64468-4 10
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Abstract. This paper presents a technique for deadlock detection of
Java programs. The technique uses typing rules for extracting infinite-
state abstract models of the dependencies among the components of
the Java intermediate language – the Java bytecode. Models are sub-
sequently analysed by means of an extension of a solver that we have
defined for detecting deadlocks in process calculi. Our technique is com-
plemented by a prototype verifier that also covers most of the Java

features.

1 Introduction

Deadlocks are common flaws of concurrent programs that occur when a set of
threads are blocked because each one is attempting to acquire a lock held by
another one. Such errors are difficult to detect or anticipate, since they may not
happen during every execution, and may have catastrophic effects for the over-
all functionality of the software system. At the time of writing this paper, the
Oracle Bug Database1 reports more than 40 unresolved bugs due to deadlocks,
while the Apache Issue Tracker2 reports around 400 unresolved deadlock bugs.
These two databases refer to programs written in Java, a mainstream program-
ming language in a lot of domains, such as web and cloud applications, user
applications and mobile applications.

The objective of our research is to design and implement a technique capable
of detecting potential deadlock bugs of Java programs at static time. This objec-
tive is difficult because Java has a complex concurrency model: it uses threads
that may perform read/write operations over shared variables and whose execu-
tion depends on the scheduling strategy implemented in the Java Virtual Machine
(JVM). In addition, Java, being a full-fledged programming language, includes an
extensive standard library with lots of features implemented in native language.

To reduce the complexity of our work, we decided to address the Java byte-
code, namely 198 instructions that are the compilation target of every Java
application and have a reference semantics that is defined by the JVM behaviour.
Therefore, it is possible to deliver correctness results without narrowing/oversim-
plifying our original goal. In this paper, we present our technique on a subset of
1 http://bugs.java.com/.
2 https://issues.apache.org/jira.
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Java bytecode, called JVMLd, which includes basic instructions for concurrency,
such as thread creations, synchronizations, and creations of new objects. The
language is defined in Sect. 3.

The technique consists of two stages. The first stage defines a type system
that reconstructs the concurrent behaviour of methods. The key principles are
the following ones. Each method has an associated type that depends on the
type of the arguments (the object “this” is one argument) and that expresses
the concurrent behaviour. This “concurrent behaviour” reports (i) the sequence
of locks that has been acquired/released by the method, (ii) the threads created,
and (iii) the methods that have been invoked. The type also includes the analysis
of aliases that traces the creation of new objects and their copies (because JVMLd

instructions may create and copy objects). The alias analysis is performed in
a symbolic way by using a finite set of names: this is a critical part of our
technique because methods may create threads and, when methods are either
recursive or iterative, the set of created threads may be infinite. Therefore, we
had to devise finite representatives of (infinite sets of) thread names that are
sound with respect to the (deadlock) analysis. Section 2 reports a code that can
be written in (a simple extension of) JVMLd and that is problematic as regards
deadlock detection. Section 4 is a gentle introduction to the type system and
Sect. 6 overviews the typing of complex features of JVML.

The second stage of our technique defines the analysis of the behavioural
model. In fact, the three reports above – (i), (ii), and (iii) – are terms in a mod-
elling language that extend so-called lams [7,8,10]. Lams, which are introduced
in Sect. 5, are conjunctions and disjunctions of object dependencies and method
invocations and the extension has been necessary for modelling Java reentrant
locks. In particular, our dependencies also carry thread names – (a, b)t means
that the thread t, which owns the lock of a, is going to lock b. In Java, the lam
(a, a)t is not a circular dependency because it means that t is acquiring the same
lock twice. Because of this extension, the algorithm for detecting circularities in
lams is different than the one in [7,10]. In Sect. 5 we also address this issue.

Our deadlock detection technique has been prototyped and the verifier is
called JaDA. While the type system in this paper simply checks static information,
JaDA infers the behavioural types from the bytecode. Inference is important in
practice because it lightens the analysis but checking is crucial for type safety3.
JaDA includes several features of JVML; this has made possible to deliver initial
assessments of the tool, which are discussed in Sect. 7. Section 8 discusses related
work and reports our concluding remarks.

2 Overview of JVML and of our technique

Figure 1 reports a Java class called Network and some of its JVMLd representation.
The corresponding main method creates a network of n threads – the philoso-
phers – by invoking buildNetwork – say t1, · · · , tn – that are all potentially
running in parallel with the caller – say t0. Every two adjacent philosophers
3 The technical details of type safety appear in [12].
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Fig. 1. Java Network program and corresponding bytecode (only the buildNetwork

method).

share an object – the fork –, which is also created by buildNetwork. Every
thread ti locks the two adjacent forks, that are passed as (implicit) arguments
of the thread, and terminates – this is performed by the method takeForks. It
is well-known that when the network is a table (it is circular – the thread tn is
sharing one of its forks with t0) and all the threads have a symmetric strategy
of locking objects then a deadlock may occur. On the contrary, when either the
network is not circular or one thread has an anti-symmetric strategy, no dead-
lock will ever occur. Therefore buildNetwork(n,x,y) is deadlock free, while
buildNetwork(n,x,x) is deadlocked (when n > 0).

The problematic issue of Network is that the number of threads is not known
statically because n is an argument of main. This is displayed in the bytecode
of buildNetwork in Fig. 1 by the instruction at address 30 where a new thread
is created and by the instruction at address 37 where the thread is started. The
recursive invocation that causes the (static) unboundedness is found at instruc-
tion 47. Our technique is powerful enough to cope with such problems and to pre-
dict the correct behaviour of the code of Fig. 1 and the faulty one if we comment
buildNetwork(n,x,y) and de-comment buildNetwork(n,x,x). The technique
works as follows. It infers abstract methods’ behaviors by computing types, called
lams, of their bytecode bodies. These lams abstract each bytecode instruction by
dropping the non-relevant information for the deadlock analysis (e.g. operations
on integer variables). In practice, the relevant operations for deadlock analysis
are: locking operations (monitorenter and monitorexit instructions), thread



40 C. Laneve and A. Garcia

spawning operations, function invocations and objects’ structures. Thereafter
the abstract model is analysed by a solver.

3 The Language JVMLd

JVMLd is a restriction of JVML that includes basic constructs and instructions for
concurrency4. In JVMLd, a program is a collection of class files whose meth-
ods have bodies written in JVMLd bytecode. This bytecode is a partial map
from addresses Addr to instructions. Addresses, ranged over by L, L′, · · · , are
intended to be natural numbers and we use the function L + 1 that returns
the least address that is strictly greater than L. When P is a program, we
write dom(P ) to refer to its domain (the set of addresses) and we assume that
0 ∈ dom(P ) for every bytecode P .

We use a number of names: for classes, ranged over by C, D, · · · , for fields,
ranged over by f, f′, · · · , for methods, ranged over by m, m′, · · · , and for local
variables, ranged over by x, y, · · · . A possible empty sequence of names or
syntactic categories of the following grammar is written by over-lining the name
or the syntactic category, respectively. For instance a sequence of local variables
is written x. However, when we need to access to the elements of a sequence, we
use the notation x1, · · · , xn. Class files CF are defined by the grammar:

CF ::= class C {fields : FD methods : MD}
FD ::= C.f : T

MD ::= T m (C, T) P
T ::= � | int | C

where “fields :” and “methods :” are keywords and � is a special type that
include all the other types (any value of any type has also type �). This type
will represent values that are unusable in our static semantics. The type name
C represents a class type, which is never recursive in JVMLd.

Instructions Instr of JVMLd bytecode are of the following form:

Instr ::= inc | pop | push | load x | store x | if L | gotoL
| new C | putfield C.f : T | getfield C.f : T | monitorenter | monitorexit
| invokevirtual C.m(T) | start C | return

The informal meaning of these instructions is as follows:

– inc increments the content of the stack; pop and push, respectively, pops an
element from the stack and pushes the integer 0 on the stack; load x and
store x respectively loads the value of x on the stack and pops the top value
of the stack by storing it in x; if L pops the top value of the stack and either
jumps to the instruction at address L, if it is nonzero, or goes to the next
instruction; gotoL is the unconditional jump;

– new C allocates a new object of type C, initializes it and pushes it on top of the
stack; putfield C.f : T pops the value on the stack and the underlying object
value, and assigns the former to the field f of the latter; getfield C.f : T
pops the object on the stack and pushes the value in the field f of that object;

4 Actually, JVMLd has a minor difference with respect to JVML: in JVML, local variables
are addressed by non-negative integers instead of names.
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– monitorenter, monitorexit are the synchronization primitives that pop the
object on the stack and lock and unlock it, respectively;

– invokevirtual C.m(T1, · · · , Tn) pops n values from the stack (the arguments
of the invocation) and dispatches the method m on the object on top of the
stack; when the method terminates, the returned value is pushed on the stack;

– start C creates and starts a new thread for the object on top of the stack.
This operation corresponds to invokevirtual java/lang/Thread/start()
on a thread of class C in JVML. We separate it from invokevirtual in order
to provide more structure to our semantics (because it has an effect on the
set of threads – see the operational semantics in the Appendix, where we also
consider the instruction join);

– return terminates program execution.

The bytecode in Fig. 1 is written in a sugared extension of JVMLd. In particular,
aload and iload correspond to our load instruction (when the argument is
an object or an integer, respectively), ifne corresponds to if, dup duplicates
the top of the stack, sub subtracts the element on top of the stack from the
last-by-one, invokespecial is the method invocation of the constructor of the
class.

In order to simplify the presentation, in this paper we assume that fields
are read-only as they cannot be modified after the initialisation (which is done
by constructors that, in turn, are sequential). The full paper [12] reports the
complete analysis that also addresses race conditions.

4 The Type System

The purpose of the type system is to associate lams to JVMLd bytecodes. Since
JVMLd is the target (of large part) of Java, the association is complex because
we must deal with objects and aliasing, object creation and updates performed
by constructors, and the concurrent operations – creation of new threads, lock
and unlock operations. Therefore the details are pretty technical.

In this paper we adopt a didactic approach by discussing features that are
of increasing difficulty. In particular, we focus on one typing rule – that of
invokevirtual – and we will study the basic, sequential case, the case of invo-
cation of constructors, and the case of invocation of a concurrent thread. The
complete set of rules appears in [12].

Typing rules associate types, which are lams, to JVMLd instructions by means
of judgments that are usually abstractions of the machine states. In case of JVM,
the state is a memory, called heap and the set of running threads. In turn, every
thread is a stack of activation records – each one containing the address of the
instruction to be performed, a stack, and a local memory – plus the sequence of
locks owned.

A possible judgment for the instruction at address i of the JVMLd program
P is

Γ, F, S, Z, i �t P : �
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where Γ , called environment, is the abstraction of the heap, F and S are the
abstraction of the local memory and the stack, respectively, and Z is the sequence
of locks acquired by the thread. The term � is the lam of the instruction i and t
is a symbolic name identifying the thread that is executing the instruction. (At
static time it is not possible to model the stack of activation records).

Environments Γ , memories F , stacks S, and sequences of locks Z are defined
by means of types, which are more descriptive than those in JVMLd syntax. In
particular object types are not just classes C, that is records [f1 : T1, · · · , fn : Tn],
where fi are the fields of the class, because this notation is not adequate for
dealing with aliasing. For example, let C be a class with two fields f1 and f2
that store objects of class D. If C-objects are represented by [f1 : D, f2 : D] then
it is not possible to recover the identities of the values of f1 and f2; therefore
we cannot distinguish the cases when f1 and f2 store the same object or two
different objects, which is important when we compute object dependencies.

Therefore we decided to use symbolic names, ranged over by a, b, · · · , which
also include void and thread names (threads are objects in Java; we use t, t′, · · ·
when a name addresses a thread). Symbolic names allow us to define flattened
types such as [f1 : b, f2 : b] and [f1 : b, f2 : c], thus separating the two foregoing
cases. Actually, in order to avoid ambiguities with different classes having same
field names, the flattened types also carry the class name, e.g. ([f1 : b, f2 : b], C).
The binding of symbolic names and flattened types is defined by the environ-
ments, ranged over by Γ, Γi, · · · . For example [a �→ ([f : b], C), b �→ ([g : int], D)]
is an environment that defines the names a and b. The function typeof (Γ, a)
returns the type of a in Γ .

In the type system Γ, F, S, Z are vectors that are indexed by the addresses
in dom(P ). The elements of these vectors are

– Γi is the environment at address i;
– the map Fi maps local variables to type values;
– Si is a sequence of type values;
– Zi is the sequence of symbolic names locked at address i.

Simple Methods. We begin with the rule for invokevirtual of a method that
has no argument, does not modify the carrier and returns void . Operationally,
invokevirtual (without arguments) takes the element on the stack, which is the
invoked object, and executes the first instruction of the corresponding method.
In this case, the typing rule is

P [i] = invokevirtual C.m ( ) i + 1 ∈ dom(P )
Si = a · S′ typeof (Γi, a) = C

Γi+1 = Γi Si+1 = void · S′ Fi+1 = Fi Zi+1 = Zi

Γ, F, S, Z, i �t P : C.m(a, t, �Zi�)
The rule verifies that the top element of the stack is of type C and constraints
the stack Si+1 to be the same as Si, except for the top element, which is replaced
by void . The lam of the instruction i indicates that the instruction is a method
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invocation: we will discuss this term later; we just notice that �Zi� is the first
name in the sequence Zi (that represents the last object locked by t).

Constructors. We next discuss what happens when methods update the carrier,
such as constructors, and return an object. In Java, the returned object is usually
a new object (in the JVM it is a fresh run time name) and it is possible to create
infinitely many objects by means of iterations or recursions. In the type system,
since objects are represented by symbolic names, which must be finitely many,
we admit that one symbolic name may represent infinitely many instances of
objects. Technically, we use a function names(i) that takes an address i and
returns a tuple of names whose length is finite and depends on the address.
This function returns a name that may occur already in the judgment when the
instruction is not executed once.

The above rule for invokevirtual has no element specifying (i) the type of
the returned object (because, in that case, it was void) and (ii) the symbolic
names created by the invocation (because, in that case, there was no one). We
discuss the extension of the rule for invokevirtual to manage these issues.

First of all, we need a map associating methods to types. Again, types cannot
be simple types because we need to trace the identity of objects. For example,
let C.m be a method that returns an object of class C; we must distinguish the
cases when C.m is the identity or returns a new object with the same fields of
the carrier, or with the two fields storing a same object, etc. Instead of using
environments for defining this association we decided to use a further map – the
behavioural class table, noted bct. This because the bct is an invariant of the
system – it does not change from one instruction to another – and the separation
highlights this fact.

The types used in the bct are a variation of flattened types that completely
specifies the tree structure of the object. These types are called structured types
and are ranged over by ρ, ρ′, · · · . For example

(a[f1 : (b[g : int], D), f2 : (c[g : int], D)], C)

is an object of class C whose symbolic name is a and that stores two different
objects of class D in the fields. There is a simple way to transform a symbolic
name and an environment into a structured type and conversely, to get an envi-
ronment out of a structured type. We call these functions mk tree(Γ, a) and
env(ρ), respectively, and we leave their definitions as an exercise.

Let us discuss two examples of method types in the behavioural class table:

– C.m is the identity; hence it returns the carrier and the type also specifies that
the carrier has not been modified. The method type is

bct(C.m) = (X, t, b) → 〈X,X, �〉.

We notice that the type uses variable names, ranged over by X,Y, · · · , when
the structure of the argument is not relevant. Additionally, the arguments of
C.m are three: the first element is the structured type of the carrier, the second
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and the third arguments are two symbolic names. The name t is the thread
that performed the invocation and b is the last object name whose lock has
been acquired by t. These two informations are used by the analyser to build
the right dependencies between callers and callees and appear in the lam � of
the return type.
In the above method type, the carrier is addressed by X. This means that
the symbolic name of the carrier is not used in the dependencies of �. When
this name is used, we write bct(C.m) as

((a[f1 : X, f2 : Y ], C), t, b) → 〈(a[f1 : X, f2 : Y ], C), (a[f1 : X, f2 : Y ], C), �〉,
which binds the occurrences of a in the return type.

– C.p is the constructor of the class C that returns the carrier where the two
fields have been initialised with the same new object of class D (we assume D
has no field and we shorten c[ ] into c). In this case, bct(C.p) is

((a[f1 : X, f2 : Y ], C), t, b) →
(ν c)〈(a[f1 : (c, D), f2 : (c, D)], C), (a[f1 : (c, D), f2 : (c, D)], C), �〉

We notice that the return type has a binding (ν c). This binding specifies that
the name c is new, namely it does not occur in the arguments (a[f1 : X, f2 :
Y ], C), t, b.

The last concept we need for presenting the new rule for invokevirtual is
that of instance of a method type. Let bct(C.p) be

((a[f1 : X, f2 : Y ], C), t, b) →
(ν c)〈(a[f1 : (c, D), f2 : (c, D)], C), (a[f1 : (c, D), f2 : (c, D)], C), �〉

When C.p is invoked with (a′[f1 : �, f2 : �], C), t′, b′) (e.g. a′ has been created
without initialising the fields) then the return type is

〈(a′[f1 : (c′, D), f2 : (c′, D)], C), (a′[f1 : (c′, D), f2 : (c′, D)], C), �{a′, t′, b′, c′
/a, t, b, c}〉

that will be written as bct(C.p)((a′[f1 : �, f2 : �], C), t′, b′)(c′).
The type rule of a constructor C.m without arguments that returns the

updated carrier (by creating one object and storing it in the two fields of its) is

P [i] = invokevirtual C.m ( ) i + 1 ∈ dom(P )
Si = a · S′ typeof (Γi, a) = C

ρ = mk tree(Γi, a) b = names(i) bct(C.m)(ρ, t, �Zi�)(b) = 〈ρ′, ρ′′, �〉
Γi+1 = Γi + env(ρ′) + env(ρ′′) Si+1 = root(ρ′) · S′ Fi+1 = Fi Zi+1 = Zi

bct, Γ, F, S, Z, i �t P : C.m(ρ, t, �Zi�) → ρ′

The third line in the premise is the new part of the rule. In particular, in order
to compute the instance of bct(C.m), we construct mk tree(Γi, a). The instance
of the return type 〈ρ′, ρ′′, �〉 is used to update Γi (in this case ρ′ = ρ′′, therefore
env(ρ′) = env(ρ′′)). The function root(ρ) returns the root of the structured
type ρ.
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Concurrent Methods. The last feature we discuss is concurrency. Let C.m be a
constructor that creates and starts a new thread, say t′ (and returns it as a
field of the carrier). Since t′ runs in parallel with the current thread, say t, the
conjunctive effects of t and t′ must be analysed by our tool (the second stage
of our technique). In order to delegate the analyser to check the consistency
of these conjunctive effects, the type system must record the threads that are
created. We therefore extend the judgments with a set collecting such thread
names. Actually, we use two sets because the set of threads may be infinite
(when the method is recursive or iterative). In order to have a more precise
analysis, we distinguish the cases when the thread creation is executed once
from those when the thread creation is executed several times. In the first case,
the analyser will spawn exactly one thread; in the second case the analyser will
spawn infinitely many threads (see the last part of Sect. 5). The two sets of tread
names are called T , for the names created once, and R for the names that will
be spawned infinitely many times, each time with a fresh name. Therefore the
judgment becomes

bct, Γ, F, S, Z, T,R, i �t P : �

Let “i is executed once” be the predicate that is true whenever the method
containing the instruction i is not (mutual) recursive or the instruction i is not
inside an iteration (this predicate can be easily computed in our type system).

The type rule for a method C.m that creates two threads – t′ executed once,
t′′ spawned several times – is

P [i] = invokevirtual C.m ( ) i + 1 ∈ dom(P )
Si = a · S′ typeof (Γi, a) = C

ρ =mk tree(Γi, a) t′, t′′ =names(i) bct(C.m)(ρ, t, �Zi�)(t′, t′′)= 〈ρ′, {t′}, {t′′}, ρ′′, �〉
Γi+1 = Γi + env(ρ′) + env(ρ′′) Si+1 = root(ρ′) · S′ Fi+1 = Fi Zi+1 = Zi

Ti+1, Ri+1 =

{
Ti ∪ {t′}, Ri ∪ {t′′} if i is executed once
Ti, Ri ∪ {t′, t′′} otherwise

bct, Γ, F, S, Z, T,R, i �t P : C.m(ρ, t, �Zi�) → ρ′

In this case, the last premise defines the values of Ti+1 and Ri+1 according to
the instruction i is executed once or not.

5 Lams and the Analysis of Circularities

In our technique, the dependencies between symbolic names are expressed by
means of lams [7], noted �, whose syntax is

� ::= 0 | (a, b)t | C.m(ρ) → ρ′ | (ν a)� | �� � | � + �

The term 0 is the empty type; (a, b)t specifies a dependency between the object
a and the object b that has been created by the thread t. The term C.m(ρ) → ρ′

defines the invocation of C.m with arguments ρ and with returned type ρ′. The
argument sequence ρ has always at least three elements in our case: the first
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element is the carrier, while the last two elements are the thread that performed
the invocation and the last object name whose lock has been acquired by it. The
operation (ν a)� creates a new name a whose scope is the type �; the operations
�� �′ and � + �′ define the conjunction and disjunction of the dependencies in �
and �′, respectively. The operators + and � are associative and commutative.

A lam program is a pair
(
L , �

)
, where L is a finite set of function definitions

C.m(ρ) → ρ′ = �C.m

with �C.m being the body of C.m, and � is the main lam. We notice that the type
ρ′ is considered an argument of the lam function as well. When ρ′ = void , the
function definitions are shortened into C.m(ρ) = �C.m and the invocations into
C.m(ρ).

Fig. 2. Network’s lams (the is a place holder for an integer)

As an example, the lams of the Network’s code in Fig. 1 is reported in Fig. 2
(lams have been simplified for easing the readability). We discuss the methods
takeForks and buildNetwork. The method takeForks has arguments this, x,
y, t and u, where t and u are as discussed above. This method acquires the
locks of x and y in order; therefore its lam is quite simple: there is a dependency
between u and x and a dependency between x and y, namely (u,x)t � (x,y)t.
The lam of buildNetwork is more complex. The first line corresponds to the
then-branch (lines 0–10), namely the invocation to takeForks. The other lines
correspond to the else-branch. Here we have the creation of the object z and
the invocation of the corresponding constructor (second line of the body of the
lam function and line 17 of the bytecode), the invocation to the constructor of
Network, that is called Network$1, which returns a new thread that we call t1.
The last line of the lam of buildNetwork contains the invocation of t1.start and
the recursive invocation to buildNetwork. These invocations are in conjunction
because they are in parallel.
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It is important to notice that the dependencies specified by the judgment

bct, Γ, F, S, Z, T,R, i �t P : �

are actually those defined by � and those defined by Zi, Ti, and Ri. In particular,
let Zi = a·a′, Ti = {t′}, and Ri = {t′′}. Then the dependencies of the instruction
i are (mk tree(Γi, t

′) = (t′[f : ρ′], C) and mk tree(Γi, t
′′) = (t′′[f : ρ′′], C)):

� � (a′, a)t � C.run((t′[f : ρ′], C), t′, lockt′) � RUN(t′′[f : ρ′′], C)

where C is a subclass of Thread, lockt′ is a (fake) name associated to t′ and
representing a default object locked by t′, and RUN is a lam function defined by

RUN(a[f : ρ], C) = C.run((a[f : ρ], C), a, locka) � (ν a′) RUN(a′[f : ρ], C)

The difference between T and R is exactly the fact that RUN is recursive. This
means that every name in R corresponds to the parallel composition of infinitely
many threads with different root names. The following analyser verifies whether
this composition is consistent or not (with respect to deadlocks).

Operational Semantics of lams. The semantics of lams is very simple: it is the
unfolding of function invocations. Since the unfolding may create new fresh
names and the function definitions may be recursive, the model may have infinite
states. To formalise the semantics, take a lam program

(
L , �

)
such that every

C.m(ρ) → ρ′ = �C.m in L has �C.m = (ν a)�′
C.m and �′

C.m without ν-binder. We
also assume that � does not contain any ν-binder (the lam functions in Fig. 2
satisfy these constraints). Let a lam context, noted L[ ], be a term derived by the
following syntax:

L[ ] ::= [ ] | ��L[ ] | � + L[ ]

As usual L[�] is the lam where the hole of L[ ] is replaced by �. According to the
syntax, lam contexts have no ν-binder; that is, the hassle of name captures is
avoided. The operational semantics of a program

(
L , �

)
is a transition system

where states are lams, the transition relation is the least one satisfying the rule

m(ρ) → ρ′ = (ν c)�m ∈ L (ρ → ρ′)σ = ρ′′ → ρ′′′ c′ fresh

(�m{c′
/c})σ = �′

m

L[m(ρ′′) → ρ′′′] → L[�′
m]

.

The initial state of
(
L , �

)
is �. (The class name in the names of lam functions

has been dropped, for simplicity.) We write →∗ for the reflexive and transitive
closure of →.

Definition 1. The flattening of a lam �, noted (�)�, is the lam � where every
function invocation has been replaced by 0.
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For example, let � = m(a, b, c, t) + (a, b)t�m′(b, c, t′)�m(d, b, c, t) (we assume
that return types of lam functions are empty). Then (�)� = 0 + (a, b)t�0�0.

Let V ranges over lams that do not contain function invocations and let ≡ be
the least congruence containing the axioms:

V�V = V V + V = V V�(�′ + �′′) = V��′ + V��′′ (1)

We notice that these axioms permit to rewrite a lam without function invocations
as a collection (operation +) of relations (elements of a relation are gathered by
the operation �).

Definition 2. Let � be a conjunction of dependencies. The transitive clo-
sure of �, noted �+, is the least conjunction that contains � and such that if
(a, b)t � (b, c)t′ is a subterm of �+ then (i) if t �= t′ implies (a, c)� is a subterm
of �+, (ii) if t = t′ implies (a, c)t is a subterm of �+.

A lam � has a circularity if (�)� ≡ ∑
i∈I �i, where every �i is a conjunction of

dependencies, and, for some a and i, (a, a)� is a subterm of �i
+.

A lam program
(
L , �

)
has a circularity if there exists �′ such that � → ∗�′

and �′ has a circularity.

For example � = (a, b)t � (b, a)t � (b, c)t′ has no circularity because �+ =
(a, b)t � (b, a)t � (a, a)t � (b, b)t � (b, c)t′ � (a, c)� does not contain any pair
(a, a)�.

The Analysis Algorithm and the Correctness of the Type System. Our analysis
relies on an algorithm that we have studied in [11]. In particular, the algorithm
computes an interpretation function IL that is a fixpoint on the set P(P(A ×
A × A ∪ {�, •})) where (� has been discussed above)

– • is a special name that indicates an unknown thread (because it is created
during the evaluation). In particular, the transitivity of (a, b)•, (b, c)• is (a, c)�
because the two • might correspond to two different (thread) names.

We omit the definition of IL and refer to [11] for the details. What is relevant
for this paper is that the computation of IL terminates because the domain
P(P(A × A × A ∪ {�, •})) is finite. The main result about extended lams is
the following:

Theorem 1 ([11]). Let
(
L , �

)
be a lam program and � →∗ �′. If IL (�′) has a

circularity then IL (�) has also a circularity.

The proof of correctness of our technique is a consequence of Theorem 1 and
a subject reduction theorem (we state it informally and we refer to [12] for the
formal statement).

Theorem 2. If a JVM configuration cn has lam � and cn reduces to a config-
uration cn ′ then (i) cn ′ is also well-typed and (ii) if �′ is the type of cn ′ then
� →∗ �′.
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Since our algorithm uses a saturation technique on names based on a power-
set construction, it has a computational complexity that is exponential on the
number of names. We remind that the names we consider are the arguments of
lam functions (which corresponds to methods’ arguments), which is usually not
big. In fact, the algorithm is quite efficient in practice (see Table 1).

6 More About Typing and JaDA

The type system overviewed in Sect. 4 has been prototyped. It also covers features
such as constructors, arrays, exceptions, static members, interfaces, inheritance,
recursive data types. The overall system is called JaDA. Here we overview two
relevant extensions – inheritance and recursive data types –, the details of these
two extensions and the other ones can be found in Garcia’s PhD thesis [6].

Inheritance. JVMLd does not admit to derive classes from other classes. As a
consequence, when a method is invoked, it is possible to uniquely locate the
method definition (the output of typeof (Γi, a) in Sect. 4 is always a single ele-
ment. Therefore we cannot type

C w ; { if (z) w = new D ; else w = new E ; } w.foo();

which is a correct Java program, assuming that D and E are subclasses of C. In
this case, if D and E have different implementations of foo, we do not know how
the invocation w.foo() will be dispatched at run-time. Our solution consists of
relaxing the relation between consecutive environments Γi and Γi+1 in such a
way that the type of Γi+1(w) may be the one of Γi(w) plus a set of subclasses
therein. Henceforth, the lam corresponding to the invokevirtual of w.foo() is∑

C′∈typeof (Γi,w)
C′.foo(w, t, a), namely C.foo(w, t, a)+D.foo(w, t, a)+E.foo(w, t, a).

Recursive Types. Recursive types are managed by using finite representations.
Object names of recursive types are special names indexed by $. A flattened
recursive record type is built by unfolding the recursive types (exactly) up to
those nodes containing a name of a class already present in the tree. Nodes
inside the tree are labelled by new names, nodes in the leaves are labelled either
(for non recursive types) with � or int or with names already present in the
environment or (for recursive types) with names subscribed by a $ that cor-
respond to the nodes of the classes that are already present in the tree. By
construction, these structures are finite. For instance, if C is a class whose type
is [val : Thread, next : C] (a list of threads) then, in correspondence of a new C
instruction, we produce an environment r$ �→ [val : (a[ ], Thread), next : r$].

Lists like the foregoing one are managed in ad-hoc ways. In particular we can
deliver a precise analysis as long as the nodes of the list are all equal, otherwise
we return false positives. We observe that this technique is more precise than one
would think. For instance, assume to create a list of threads, where the field val
of each node contains a new thread. This list is created by an iteration and the
instruction creating the thread is always the same – say i. Hence, by definition
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of the function names(i), the nodes of the list always contain the same name
and can be represented as described above. Finally, in order to have a sound
analysis, we also modify our definition of circularity in lams. In particular, if the
types of r$ and of r′

$ are the same, a term like (r$, c)t�(c, r′
$)t′ is a circularity

because r$ may be replaced by every name of the same type, including r′
$.

7 Assessment of JaDA

Since JaDA covers many features of Java, it has been possible to deliver an initial
assessment of it with respect to existing deadlock analysis tools. In particular,
we have considered tools using different techniques: Chord for static analysis [13],
Sherlock for dynamic analysis [3], and GoodLock for hybrid analysis [2]. We have
also considered a commercial tool, ThreadSafe5 [1]. Out of these tools, we were
able to install and effectively test only two of them: Chord and ThreadSafe;
the results corresponding to GoodLock and Sherlock come from [3]. We also
had problems in testing Chord with some of the examples in the benchmarks,
perhaps due to some misconfigurations, that we were not able to solve because
Chord has been discontinued.

Table 1. Comparison with different deadlock detection tools. The inner cells show the
number of deadlocks detected by each tool. The output labelled “(*)” are related to
modified versions of the original programs: see the text.

Static Hybrid Dynamic Commercial

benchmarks LOC, #Threads deadlock JaDA[tm] Chord[tm] GoodLock[tm] Sherlock[tm] ThreadSafe[tm]

Sor 1274, 5 Yes 1 [135 s] 1 [210 s] 7 [4 s] 1 [39 s] 4 [435 s]

RayTracer(*) 1292, 5 No 0 [155 s] 0 [223 s] 8 [2 s] 2 [30 s] 0 [502 s]

MolDyn (*) 1351, 5 No 0 [110 s] 0 [191 s] 6 [5 s] 1 [49 s] 0 [423 s]

MonteCarlo (*) 3619, 4 No 0 [231 s] 0 [342 s] 23 [5 s] 2 [102 s] 0 [821 s]

BuildNetworkN 40, N+1 Yes 3 [8 s] 0 [50 s] 0 [50 s]

PhilosophersN 60, N+1 Yes 3 [12 s] 0 [51 s] 0 [51 s]

ThreadArraysN 23, N+1 Yes 1 [6 s] 1 [40 s] 1 [40 s]

ThreadArraysJoinsN 37, N+1 Yes 1 [6 s] 1 [41 s] 0 [41 s]

ScalaSimpleDeadlock 39, 2 Yes 1 [3 s]

ScalaPhilosophersN 62, N+1 Yes 3 [4 s]

We have analysed a number of programs that exhibit a variety of sharing
patterns. The source of all benchmarks in Table 1 is available either at [3,13]
or in the JaDA-deadlocks repository6. Since the current release of JaDA does
not completely cover the JVML, in order to gain preliminary experience, we mod-
ified the Java libraries and the multithreaded server programs of RayTracer,
MolDyn and MonteCarlo (labelled with “(*)” in the Table 1) and implemented
them in our system. This required little programming overhead; in particular,
we removed volatile variables, avoided the use of Runnable interfaces for cre-
ating threads, and reduced the invocations of native methods involved in I/O
5 http://www.contemplateltd.com/threadsafe.
6 https://github.com/abelunibo/Java-Deadlocks.

http://www.contemplateltd.com/threadsafe
https://github.com/abelunibo/Java-Deadlocks
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operations. For every program, we give the lines of code (LOC), the number
#Threads of threads explicitly created (in the second and third block this num-
ber depends on the argument N). We also state whether the program under
examination has a deadlock or not and the time in seconds (tm) each tool took
to perform the analysis. The times for GoodLock and Sherlock were taken from
the literature [3].

Here are our remarks. The first block of programs belongs to a well known
group used as benchmarks for several Java analysis tools; the second block cor-
responds to examples designed to test JaDA against complex deadlock scenarios.
First of all JaDA is the unique tool that never returns false positives or false neg-
atives. Chord and ThreadSafe are unsound because they return false negative
(see the second block). The execution time of the tools are similar (JaDA appears
more efficient), except for GoodLock and Sherlock, which appear however much
less precise (they return a lot of false positives). As regards the second block, we
observe that JaDA returns few deadlocks, which do not depend from N. This is
because our analysis is symbolic and does not consider numeric values (most of
the deadlock are considered “to be similar”).

The third group reports the analysis of two examples of Scala programs [14]
(the Scala compiler 2.11 produces Java bytecode). To the best of our knowledge,
there is no static deadlock analysis tool for Scala (for this reason the entries
corresponding to the other tools are empty).

We have also analyzed the whole Java library. The overall analysis took 5 h
and 40 min. We have considered as entry points the public static parameterless
methods and we have run the analyzer with the following limitations: native
codes are not analyzed (their behavioural type is 0) and concurrency depen-
dencies caused by wait/notify patterns are not verified. The analysis has not
reported any deadlock.

8 Related Work and Conclusions

We do not have space to discuss in detail the related work; therefore we focus on
the tools used in the assessment of Sect. 7 and their theories. ThreadSafe uses a
data-flow analysis that constructs an execution flow graph and searches for cycles
within this graph. Some heuristics are used to remove likely false positives. No
alias analysis to resolve object identity across method calls is attempted. This
analysis is performed in Chord [3,13], which can detect re-entrance on restricted
cases, such as when lock expressions concern local variables (it is not possible
to use fields). GoodLock [2] and its refinement Sherlock [3] use a theory that is
based on monitors. Therefore the technique is a runtime technique that tags each
segment of the program reached by the execution flow and specifies the exact
order of lock acquisitions. Thereafter, these segments are analyzed for detecting
potential deadlocks that might occur because of different scheduler choices (than
the current one). This kind of technique is partial because one might overlook
sensible patterns of methods’ arguments (cf. BuildNetwork, for instance). Two
powerful static tools that are based on abstract interpretation are Checkmate [4]
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and SACO [5]. The former one does not seem to be available, therefore we haven’t
been able to compare JaDA with it. SACO has been developed for ABS, an object-
oriented language with a concurrent model different from Java. A comparison
between SACO and a tool using a technique similar to the one in this paper can
be found in [9].

In this paper we have defined a new technique for detecting deadlocks in Java
programs by analysing the Java intermediate language JVML. The technique has
been specified by focusing on a subset of JVML featuring thread creations and
synchronizations, called JVMLd. We have also developed a prototype, called JaDA,
which also covers complex features of Java, such as static members, arrays, recur-
sive data types, exception handling, inheritance and dynamic dispatch. These
extensions have made possible to deliver an initial assessment of JaDA with
respect to existing deadlock analysis tools for Java.

Our future work includes the analysis of features of Java that have not yet
been studied. One relevant feature is thread coordination, which is expressed by
the methods wait, notify and notifyAll. Another extension addresses native
methods, namely methods that are not implemented within the language and
that are used when it is necessary to interact with the Operating System or
for meta-programming purposes. Our current solution is to manually insert in
the bct the behavioural types of native methods. We are investigating testing
mechanisms that may help in writing the types of such methods.

Acknowledgments. We thank Elena Giachino for the fruitful discussions and useful
comments, in particular for the help in the proof of Theorem 2.
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Abstract. The ever increasing number and complexity of energy-bound
devices (such as the ones used in Internet of Things applications, smart
phones, and mission critical systems) pose an important challenge on
techniques to optimize their energy consumption and to verify that they
will perform their function within the available energy budget. In this
work we address this challenge from the software point of view and pro-
pose a novel approach to estimating accurate parametric bounds on the
energy consumed by program executions that are practical for their appli-
cation to energy verification and optimization. Our approach divides a
program into basic (branchless) blocks and performs a best effort mod-
eling to estimate upper and lower bounds on the energy consumption
for each block using an evolutionary algorithm. Then it combines the
obtained values according to the program control flow, using a safe static
analysis, to infer functions that give both upper and lower bounds on the
energy consumption of the whole program and its procedures as functions
on input data sizes. We have tested our approach on (C-like) embed-
ded programs running on the XMOS hardware platform. However, our
method is general enough to be applied to other microprocessor architec-
tures and programming languages. The bounds obtained by our proto-
type implementation on a set of benchmarks were always safe and quite
accurate. This supports our hypothesis that our approach offers a good
compromise between safety and accuracy, and can be applied in practice
for energy verification and optimization.

Keywords: Energy modeling · Evolutionary algorithms
Static analysis · Energy consumption analysis and verification
Resource analysis and verification

1 Introduction

Reducing and controlling the energy consumption and the environmental impact
of computing technologies has become a challenging problem worldwide. It is a
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significant issue in systems ranging from large data centers and high-performance
computing systems down to small Internet of Things (IoT) devices, sensors,
smart watches, smart phones, portable/implantable medical devices, wearables,
etc. Such devices often rely on small batteries or energy harvested from the
environment, and may have to operate and intercommunicate continuously for
long periods of time, which implies that their energy consumption should be
very low. Although there have been improvements in battery and energy har-
vesting technology, they alone are often not enough to achieve the required level
of energy consumption to fully support IoT and other energy-bound applica-
tions. In addition, for many of these IoT applications (as well as others, such as,
e.g., space systems or implantable/portable medical devices), beyond optimizing
energy consumption, it is actually crucial to guarantee that execution will com-
plete within a specified energy budget, i.e., before the available system energy
runs out, or that the system will function for a given period of time.

In spite of the recent rapid advances in energy-efficient hardware, it is soft-
ware that controls the hardware, so that far more energy savings remain to be
tapped by improving the software that runs on these devices. In this work we
address these challenges from the software point of view, focusing on the static
estimation of the energy consumed by program executions (i.e., at compile time,
without actually running the programs with concrete data), as a basis for energy
optimization and verification. Such estimations are given as functions on input
data sizes, since data sizes typically influence the energy consumed by a program,
but are not known at compile time. This approach allows abstracting away such
sizes and inferring energy consumption in a way that is parametric on them.

Different types of resource usage estimations are possible, such as, e.g., proba-
bilistic, average, or safe bounds. However, not all types of estimations are valid or
useful for a given application. For example, in order to verify/certify energy bud-
gets, safe upper and lower bounds on energy consumption are required [14,15].
Unfortunately, current approaches that guarantee that the bounds are always
safe tend to compromise their accuracy with overly conservative bounds, which
may not be useful in practice. With this safety/accuracy trade-off in mind, we
propose an approach that combines a best effort modeling with a safe static anal-
ysis, to infer accurate bounds that are on the safe side in most cases, in order to
be practical for verification applications, in addition to energy optimization.

Describing how energy verification is performed is out of the scope of this
paper, and we refer the reader to [13,14] for a description on how upper and
lower bounds on resource usage in general can be used for verification within
the CiaoPP system [6], and to [15] for a specialization to energy consumption
verification. Herein we focus instead on the inference of energy bounds. Never-
theless, in the following we provide the intuition on how these bounds are used in
our system for verification and certification: assume that El and Eu are (strict)
safe lower and upper bounds (respectively) on the energy consumption of a pro-
gram, and that Eb is an energy budget expressed by a program specification,
e.g., defined by the capacity of the battery. Then:
1. If Eu ≤ Eb, then the given program can be safely executed within the existing

energy budget.
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2. If El ≤ Eb ≤ Eu, it might be possible to complete the execution of the
program, but we cannot claim it for certain.

3. If Eb < El, then it is not possible to execute the program (the system will
run out of batteries before program execution is completed).
Of the small number of static energy analyses proposed to date, only a

few [11,12,20] use resource analysis frameworks that are aimed at inferring safe
upper and lower bounds on the resources used by program executions. A crucial
component in order for such frameworks to infer information regarding hardware-
dependent resources, and, in particular, energy, is a low-level resource usage
model, such as, e.g., a model of the energy consumption of individual instruc-
tions. Examples of such instruction-level models are [10], at the Java bytecode
level, or [9], at the Instruction Set Architecture (ISA) level.

Clearly, the safety of the bounds inferred by analysis depends on the safety
of the low-level models. Unfortunately, instruction-level models such as [9,10]
provide average energy consumption values or functions, which are not really
suitable for safe upper- or lower-bounds analysis. Furthermore, trying to obtain
instruction-level models that provide strict safe energy bounds would result in
very conservative bounds. Although when supplied with such models the static
analysis would infer high-level energy consumption functions providing strictly
safe bounds, these bounds would not be useful in general because of their large
inaccuracy. For this reason, the analyses in [11,12,20] used instead the already
mentioned instruction level average energy models [9,10]. However, this meant
that the energy functions inferred for the whole program were not strict bounds,
but rather approximations of the actual bounds, and could possibly be below
or above. This trade-off between safety and accuracy is a major challenge in
energy analysis. In this paper we address this challenge by finding a good com-
promise and providing a best effort technique for the generation of lower-level
energy models which are useful and effective in practice for verification-type
applications.

The main source of inaccuracy in current instruction-level energy models is
inter-instruction dependence (including also data dependence), which is not cap-
tured by most models. On the other hand, the concrete sequences of instructions
that appear in programs exhibit worst cases that are not as pessimistic as con-
sidering the worst case for each of the individual intervening instructions. Based
on this, we decided to use branchless blocks of ISA instructions as the modeling
unit instead of individual instructions. We divide the (ISA) program into such
basic blocks, each a straight-line code sequence with exactly one entry to the
block (the first instruction) and one exit from the block (the last instruction).
We then measure the energy consumption of these basic blocks, and determine
an upper (resp. lower) bound on the energy consumption of each block. In this
way the inter-instruction data dependence discussed above and other factors are
accounted for within each block. The inter-instruction dependencies between
blocks are still modeled in a conservative way, and hence can be one of the
sources of inaccuracy. However, such modeling does not affect the safety of the
energy bounds. The energy values obtained for each block are supplied to our
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(safe) static resource analysis, which combines them according to the program
control flow and produces functions that give both (practical) upper and lower
bounds on the energy consumption of the whole program and its procedures, as
functions on input data sizes.

In order to find bounds on the energy consumption of each basic block we
use an evolutionary algorithm (EA), varying the basic block’s input values and
taking energy measurements directly from the hardware for each input combina-
tion. This way, we take advantage of the fast search space exploration provided
by EAs. The approach in [22] also uses EAs for estimating worst case energy
consumption. However, it is applied to whole programs, rather than at the basic
block level. A major disadvantage of such an approach is that, if there are data-
dependent branches in the programs, as is often the case, the EA quickly loses
accuracy, and does not converge since different input combinations can trigger
different sets of instructions [22]. This can make the problem intractable. In con-
trast, our approach combines EAs and static analysis techniques in order to get
the best of both worlds. Our approach takes out the treatment of data-dependent
branches from the EA, so that the same sequence of instructions is always exe-
cuted in each basic block. This way, the EA converges and estimates the worst
(resp. best) case energy of the basic blocks with higher accuracy. We take care
of the program control flow dependencies by using static analysis instead.

For concreteness, in our experiments we focus on the energy analysis of pro-
grams written in XC [25], running on the XS1-L architecture [17], designed
by XMOS.1 However, our approach is general enough to be applied as well to
the analysis of other architectures and other programming languages and their
associated lower-level program representations. XC is a high-level, C-based pro-
gramming language that includes extensions for concurrency, communication,
input/output operations, and real-time behavior. Our experimental setup infers
energy consumption information by processing the ISA (Instruction Set Archi-
tecture) code compiled from XC, and reflects it up to the source code level.
Such information is provided in the form of functions on input data sizes, and
is expressed by means of assertions [7].

The results of our experiments suggest that our best effort approach is quite
accurate, in the sense that the inferred energy bounds are close to the actual
upper and lower bounds. Furthermore, the energy estimations produced by our
approach were always safe, in the sense that they over-approximated the actual
bounds (i.e., the inferred upper bounds were above the actual highest energy
consumptions and the inferred lower bounds below the actual lowest energy
consumptions). We argue thus that our analysis provides a good practical com-
promise.

In summary, the main contributions of this paper are:
– A novel approach that combines dynamic and static analysis techniques for

inferring more accurate upper and lower bounds on the energy consumption
of program executions as functions of input data sizes. The dynamic part is
based on EAs, and produces low-level energy models that contain (best effort)

1 http://www.xmos.com/.

http://www.xmos.com/
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upper and lower bounds on the cost of the elementary operations, as opposed
to just average values.

– The proposal of a new abstraction level at which to perform the energy mod-
eling of program components, namely at the level of basic (branchless) blocks
of ISA instructions, and a method based on EAs to dynamically obtain
upper and lower bounds on the energy of such basic blocks with a good
safety/accuracy compromise.

– A prototype implementation and experimental study that supports our
claims.
In the rest of the paper, Sect. 2 explains our best effort technique for energy

modeling of program basic blocks. Section 3 shows how these models are used by
the safe static analysis to infer (practical) upper and lower bounds on the energy
consumed by programs as functions of their input data sizes. Section 4 reports
on an experimental evaluation of our approach. Related work is discussed in
Sect. 5, and finally Sect. 6 summarizes our conclusions.

2 Modeling the Energy Consumption of Blocks

As mentioned before, the first step of our energy bounds analysis is to determine
upper and lower bounds on the energy consumption of each basic (branchless)
program block. We perform the modeling at this level rather than at the instruc-
tion level in order to cater for inter-instruction dependencies. We first identify
all the basic blocks of the program, and then perform a best effort profiling of
the energy consumption of each basic block for different input data using an EA.
These steps are explained in the following sections.

2.1 Identifying the Basic Blocks to Be Modeled

A basic block over an inter-procedural control flow graph (CFG) is a maxi-
mal sequence of distinct instructions, S1 through Sn, such that all instructions
Sk, 1 < k < n have exactly one in-edge and one out-edge (excluding call/return
edges), S1 has one out-edge, and Sn has one in-edge. A basic block therefore has
exactly one entry point at S1 and one exit point at Sn.

In order to divide a program into such basic blocks, the program is first
compiled to a lower-level representation, ISA in our case. A dataflow analysis
of the ISA representation yields an inter-procedural control flow graph (CFG).
A final control flow analysis is carried out to infer basic blocks from the CFG.
These basic blocks are further modified so that they can be run and their energy
consumption measured independently by the EA. Modifications for each basic
block include:
1. A basic block with k function call instructions is divided into k + 1 basic

blocks without the function call instructions.
2. A number of special ISA instructions (e.g., return, call, entsp) are omitted

from the block. The cost of such instructions is measured separately and
added to the cost of the block or the function.
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3. The harness function that runs the blocks in isolation provides the context
to each block needed for the results to be applicable to the original program.
For example the memory accesses in each block are transformed into accesses
to a fixed address in the local memory of the harness function. The initial
values placed in this local memory are the inputs to the block that the EA
explores.

Fig. 1. Example: basic block modifications

An example of modifications 1 and 2 above is shown in Fig. 1. Listing 1.2
shows an ISA representation of a recursive factorial program where the instruc-
tions are grouped together into 3 basic blocks B1, B2, and B3. Consider basic
block B2. Since it has a (recursive) function call to fact at address 12, it is
divided further into two blocks in Listing 1.3, such that the instructions before
and after the function call form two blocks B21 and B22 respectively, and the
call instruction (bl) is omitted. The energy consumption of these two blocks
is maximized (minimized) by providing values to the input arguments to the
block (see below) using the EA. The energy consumption of B2 can then be
characterized as:

B2Ae = B2A1e + B2A2e + blAe

where B2A1e, B2A2e, and blAe denote the energy consumption of the B21, and B22
blocks, and the bl ISA instruction respectively, with approximation A (where
A= upper or A= lower).

For each modified basic block, a set of input arguments is inferred. This set
is used for an individual representation to drive the EA algorithm to maximize
(minimize) the energy consumption of the block. For the entry block, the input
arguments are derived from the signature of the function. The set gen(B) char-
acterizes the set of variables read without being previously defined in block B.
It is defined as:

gen(b) =
n⋃

k=1

{v | v ∈ ref (k) ∧ ∀(j < k).v /∈ def (j)}
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where ref (n) and def (n) denote the variables referred to and defined/updated
at a node n in block b, respectively. For the basic blocks in List-
ing 1.2 (Fig. 1), the input arguments are gen(B1) = {r0}, gen(B21) = {sp[0x1]},
gen(B22) = {sp[0x1],r0}, and gen(B3) = ∅.

2.2 Evolutionary Algorithm for Finding Energy Bounds for Basic
Blocks

We now detail the main aspects of the EA used for approximating the upper-
bound (i.e., worst case) and lower-bound (i.e., best case) energy consumption
of a basic block. The only difference between the two algorithms is the way we
interpret the objective function: in the first case we want to maximize it, while
in the second one we want to minimize it.

Fig. 2. Crossover

Individual. The search space dimensions are the differ-
ent input variables to the blocks. Our goal is to find the
combination of input values which maximizes (minimizes)
the energy consumption of each block. The set of input
variables to a block is inferred using a dataflow analysis
(as explained in the previous section). Thus, an individ-
ual is simply an array of input values given in the order
of their appearance in the block. In the initial population,
the input values to an individual are randomly assigned
to 32-bit numbers. In addition, some corner cases that are
known to cause high or low energy consumption for par-
ticular instructions are included.2

Fig. 3. Mutation

Crossover. The crossover operation is imple-
mented as an even-odd crossover, since it pro-
vides more variability than a standard n-point
crossover. The process is depicted in Fig. 2,
where P1 and P2 are the parents, and C1 and
C2 are their children created by the crossover
operation.

Mutation. For the purpose of this work we have created a custom mutation
operator. Since the energy consumption in digital circuits is mainly the result
of bit flipping, we believe that the best way to explore the search space is by
performing some bit flipping in the mutation operation. This is implemented as
follows. For each gene component (i.e., for each input value to the basic block):
1. We create a random 32-bit integer (a random mask).
2. Then we perform the XOR operation of that integer and the corresponding

gene. This results in a random flipping of the bits of each gene: only the bits
of the gene at positions where the value of the random mask is 1 are flipped.

2 For example, all 1s for high energy consumption, or all 0s for low energy consumption
as operands to a multiply ISA instruction.
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The process is depicted in Fig. 3, where the input values are given as binary
numbers.

In the ISA representation of the program, the type structure is implicit and
each operand (e.g., register) of an ISA instruction is a 32-bit value that either
represents data or a memory address holding data. Since the input variables to
a block holds data (memory accesses are transformed as described in the previ-
ous section), the mutation and crossover operators could generate data that such
input variables would never take if the block were to run as part of the whole pro-
gram. Thus, this conservative modeling of inter-block data dependencies could
be one source of inaccuracy.

Objective function. The objective function that we want to maxi-
mize/minimize is the energy of a basic block, which is measured directly from
the chip. The concrete measurement setting will be explained in Sect. 4.

The XMOS XS1 architecture used in our experiments is a cache-less, by
design-predictable architecture, and it does not exhibit pipeline effects such as
stalls (to resolve pipeline hazards), since exactly one instruction per thread is exe-
cuted in a 4-stage pipeline. However, in general, pipeline effects, which depend on
the state of the processor at the start of the execution of a basic block, can affect
the upper/lower bound estimated on the energy consumption of such a block,
and have to be taken into account. Intra-block pipeline effects are accounted for
by our approach just because the dependencies among the instructions within a
block are captured. The inter-block pipeline effects could be modeled in a conser-
vative way by assuming a maximum stall penalty for the upper bound estimation
of each block (e.g., by adding a stall penalty to the execution time of the block).
Similarly, for the lower bound estimation a zero stall penalty could be used. To
approximate these effects, in [2], the authors characterize each block through
pairwise executions with all of its possible predecessors. Each basic block pair is
characterized by executing it on an Instruction Set Simulation (ISS) to collect
cycle counts. A similar reasoning would apply to cache effects due to module
boundaries. These effects could also be bounded using cache and pipeline anal-
ysis techniques [16].

3 Static Analysis of the Program Energy Consumption

Once (best effort) energy models are obtained for each basic block of the pro-
gram, the energy consumption of the whole program is bounded by a (safe) static
analyzer that takes into account the control flow of the program and infers (prac-
tical) upper/lower bounds on its energy consumption. We have implemented such
an analyzer by specializing the generic resource analysis framework provided by
CiaoPP [3,4,21,23], for programs written in the XC programming language [25]
and running on the XMOS XS1-L architecture. This includes the use of a trans-
formation [11,12] of the ISA code into an intermediate representation for analysis
which is a series of connected code blocks, represented as Horn Clauses (HC IR).
Such a transformation is shown in Fig. 4 where the ISA representation of the fac-
torial function from Listing 1.2 (Fig. 1) is shown. It transforms the blocks into
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clauses and instructions into clause literals. Conditional branching is modeled
by predicates with two clauses, one with the condition true and the other false.
The input/output arguments of each block are inferred via a dataflow analysis.
The final step transforms the blocks into Static Single Assignment (SSA) form
where each variable is assigned exactly once. The analyzer deals with this HC IR
always in the same way, independently of where it originates from. We have also
written the necessary code (i.e., assertions [7]) to feed such analyzer with the
block-level upper/lower bound energy model obtained by using the technique
explained in Sect. 2. The analyzer enables a programmer to symbolically bound
the energy consumption of a program P on input data x̄ without actually run-
ning P (x̄). It automatically sets up a system of recurrence (cost) equations that
capture the cost (energy consumption) of P as a function of the sizes of its input
arguments x̄. Typical metrics used for data sizes in this context are the actual
value of a number, the length of a list or array, etc. [21,23].

Fig. 4. An ISA (factorial) program (left) and its Horn-clause representation (right)

Consider the example in Fig. 4 (right). The following cost equations are set
up over the function fact that characterize the energy consumption of the whole
function using the approximation A (e.g., upper/lower) of each block inferred
by the EA, as a function of its input data size R0 (in this case the metric is the
actual value of R0):

factAe (R0) = B1Ae + fact auxA
e (0 ≤ R0, R0)

fact auxA
e (B,R0) =

{
B2Ae + factAe (R0 − 1) if B is true
B3Ae if B is false

These inferred recurrence relations/equations are then passed on to a com-
puter algebra system (e.g., CiaoPP’s internal solver or an external solver such
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as Mathematica, both used for the results presented in this paper) in order to
obtain a closed form function for them. If we assume (for simplicity of exposi-
tion) that each basic block has unitary cost in terms of energy consumption, i.e.,
Bie = 1 for all i, we obtain the energy consumed by fact as a function of its
input data size R0 as: facte(R0) = R0 + 1.

The functions inferred by the static analysis are arithmetic (including polyno-
mial, exponential, logarithmic, etc.), and their arguments (the input data sizes)
are natural numbers. The generic resource analyzer ensures that the inferred
bounds are strict/safe if it is supplied with energy models which provide safe
bounds.

4 Experimental Assessment

The main goal of our experimental assessment is to perform a first comparison
of the actual upper and lower bounds on energy consumption measured on the
hardware against the respective bounds obtained by evaluating the functions
inferred by our proposed approach (which depend on input data sizes), for each
program considered and for a range of input data sizes. As mentioned before,
the experiments have been performed with XC programs running on the XMOS
XS1-L architecture [17]. The particular (development) hardware for which we
derive the branchless-block-level model is a dual-tile board that contains an
XS1-A16-128-FB217 processor.

In order to take power measurements during execution on real hardware,
record and/or display them in real time, we use the hardware and software
harness designed by XMOS, as an extension of the XMOS toolchain, which
includes:
– A (hardware) debug adapter (xTAG v3.0) that enables power to be mea-

sured.3 The basic principle consists in placing a small shunt resistor of Rshunt

ohm in series within the supply line. By measuring the voltage drop on the
shunt Vshunt, the current is calculated as Ishunt = Vshunt/Rshunt (Ohm’s
law), which is also the current of the power supply Isup = Ishunt. Then the
power consumption is estimated as Vsup × Isup, where Vsup is the voltage of
the power supply. The xTAG v3.0 adapter has an extra connector that carries
the analog signals required to estimate the power consumption, as explained
above. The measurements regarding these signals are transported to the host
computer over USB using the xSCOPE interface.4

– A (software) tool (xgdb, the debugger), which collects data from the xTAG
to be used by the analysis, by connecting to it over a USB interface (using
libusb), and reading both ordinary xSCOPE traffic and voltage/current mea-
surements.
The selected benchmarks, shown in Table 1, are either iterative or recursive.

For conciseness, the first column only shows the names of the programs and

3 https://www.xmos.com/download/private/xTAG-3-Hardware-Manual.pdf.
4 https://www.xmos.com/download/private/Trace-data-with-XScope(X9923H).pdf.

https://www.xmos.com/download/private/xTAG-3-Hardware-Manual.pdf
https://www.xmos.com/download/private/Trace-data-with-XScope(X9923H).pdf
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Table 1. Accuracy of upper- and lower-bound estimations

Program DDBr Upper/Lower bounds (nJ)× 103 vs. HW

fact(N) n ub = 5.1 N + 4.2 +7%

lb = 4.1 N + 3.8 −11.7%

fibonacci(N) n uba = 5.2 lucas(N) + 6 fib(N)− 6.6 +8.71%

lb = 4.5 lucas(N) + 5 fib(N)− 4.2 −4.69%

reverse(A) n ub = 3.7 N + 13.3 (N = length of array A) +8%

lb = 3 N + 12.5 −8.8%

findMax(A) y ub = 5 N + 6.9 (N = length of array A) +8.7%

lb = 3.3 N + 5.6 −9.1%

selectionSort(A) y ub = 30 N2 + 41.4 N + 10 (N = length of array A) +8.7%

lb = 16.8 N2 + 28.5 N + 8 −9.1%

fir(N) y ub = 6 N + 26.4 +8.9%

lb = 4.8 N + 22.9 −9.7%

biquad(N) y ub = 29.6 N + 10 +9.8%

lb = 23.5 N + 9 −11.9%
aThe mathematical function lucas(n) satisfies the recurrence relation lucas(n) =
lucas(n− 1) + lucas(n− 2) with lucas(1) = 1 and lucas(2) = 3.

the arguments that are relevant for their energy-bound functions. The first two
benchmarks are small arithmetic programs, and the third one reverses elements
of an input array A of size N (reverse(A)). A sorting algorithm (selectionsort)
and a simple program for finding the maximum number in an array (findMax)
are also included. The latter, which is also part of the former, is a program where
data-dependent branching can bring significant variations in the worst- and best-
case energy consumption for a given input data size. We have also studied two
audio signal processing benchmarks, biquad and fir (Finite Impulse Response),
provided by XMOS as representatives of XS1 application kernels. Both programs
perform filtering tasks that attenuate or amplify specific frequency ranges of
a given input signal. The DDBr column expresses whether a benchmark has
data-dependent branching or not (y/n). The third column shows the upper- and
lower-bound energy functions (on input data sizes) estimated by our approach,
as well as the size metric used. When an input argument (in the first column) is
numeric, its size metric is its actual value (and is omitted in the third column).
Column vs. HW shows the average deviation of the energy estimations obtained
by evaluating such functions, with respect to the actual bounds measured on
the hardware as explained above. A deviation is positive (resp. negative) if the
estimated value is over (resp. under) the actual measurement. For a given input
data size n the actual upper and lower bounds measured on the hardware are
obtained by using data of size n that exhibit the worst and best cases respectively.
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Fig. 5. Estimated energy upper/lower bounds vs. actual measurements (Color figure
online)

Figure 5(a) depicts the upper- and lower-bound energy functions estimated
by the analysis, as well as the actual bounds measured on the hardware for the
fact(N) program (taking different values of N). In this case, both the actual
upper- and lower-bounds coincide, as shown by the middle curve (in red), which
plots the actual measurements on the hardware. It can be observed that the
values of the upper-bound function estimated by the static analysis supplied with
the model obtained by the EA always over-approximate the actual hardware
measurements (by 7%, as given by Table 1), whereas the lower-bound values
under-approximate them (by 11.7%).

Similarly, the findMax benchmark is shown in Fig. 5(b). Unlike fact, the
actual upper- and lower-bound functions of findMax, depending on input arrays
of length N , do not coincide, due to the data-dependent branching. The actual
energy consumption of findMax not only depends on the length of the input
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array, but also on its contents, and thus cannot be captured exactly by a function
that depends on data sizes only (i.e., by abstracting the data by their sizes).
A call to findMax with a sorted array in ascending order (of a given length
N) will discover a new max element in each iteration, and hence update the
current max variable, resulting in the actual upper bound (i.e., worst case of the
algorithm). In contrast, if the array is sorted in descending order, the algorithm
will find the max element in the first iteration, and the rest of the iterations
will never update the current max variable, resulting in the actual lower bound
(i.e., best case). Thus, Fig. 5(b) depicts four curves: the upper- and lower-bound
energy functions estimated by our approach for findMax, as well as the two
actual energy bound curves measured on the hardware. The former are obtained
by evaluating the energy functions in Table 1 for different array-lengths N , as
before. The latter are obtained with actual arrays of length N that give the
worst and best cases, as explained above. Note that it is not always trivial to
find data that exhibit program worst and best case behaviors. Table 1 shows that
the estimated upper- (resp. lower-) bounds over- (resp. under-) approximate the
actual upper- (resp. lower-) bounds measured on the hardware by 8.7% (resp.
9.1%). Figure 5(c) for selectionsort shows a similar behavior but with quadratic
bounds.

The inaccuracies in the energy estimations of our technique come mainly
from two sources: the modeling, which assigns an energy value to each basic
block as described in Sect. 2, and the static analysis, described in Sect. 3, which
estimates the number of times that the basic blocks are executed depending
on the input data sizes, and hence, the energy consumption of the whole pro-
gram. Table 2 shows part of the results of our study in order to quantify the
inaccuracy originating from those sources. Different executions of the findMax
benchmark are shown for different input arrays of length N (Column N). The
table is divided into two parts. The first part uses randomly generated input
arrays of length N, while the second part (three lower rows) uses input arrays
that cause the worst- and best-case energy consumption. Column Cost App
indicates the type of approximation of the automatically inferred energy func-
tions: upper bound (ub) and lower bound (lb). Such energy functions are shown
in Table 1. We have then compared the energy consumption estimations obtained
by evaluating the energy function (Column Est) with the observed energy con-
sumption of the hardware measurements (Column Obs). Column D% shows
the relative harmonic difference between the estimated and the observed energy
consumption, given by the formula:

rel harmonic diff(Est,Obs) =
(Est − Obs) × ( 1

Est + 1
Obs )

2
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Table 2. Source of inaccuracies in findMax:
analysis vs. modeling

N Cost Energy(nJ)× 103 D% PrD%

App Est Prof Obs

Random array data

5 lb 22.3 24.9 27.3 −20.1 −9.2

ub 31.9 30.2 15.6 10

15 lb 55.9 61.8 69.1 −17 −11

ub 82.1 75.1 21 8.3

25 lb 89.4 99.6 110.9 −17.6 −10.7

ub 132.2 120.8 21.7 8.5

Actual worst- and best-case array data

5 lb 22.3 22.3 25.2 −12.2 −12.2

ub 31.9 31.9 29.4 8.1 8.1

15 lb 55.9 55.9 62.6 −11.3 −11.3

ub 82.1 82.1 75.5 8.3 8.3

25 lb 89.4 89.4 100.2 −11.4 −11.4

ub 132.2 132.2 121.5 8.4 8.4

Column Prof shows the result
of estimating the energy consump-
tion using the energy model and
assuming that the static analy-
sis was perfect and estimated the
exact number of times that the
basic blocks were executed. This
obviously represents the case in
which all loss of accuracy must
be attributed to the energy model.
The values in Column Prof have
been obtained by profiling actual
executions of the program with the
concrete input arrays, where the
profiler has been instrumented to
record the number of times each
basic block is executed. The energy
consumption of the program is
then obtained by multiplying such
numbers by the values provided by
the energy model for each basic
block, and adding all of them. Col-
umn PrD% represents the inaccuracy due to the energy modeling of basic
blocks using the EA, which has been quantified as the relative harmonic differ-
ence between Prof and the observed energy consumption Obs. The difference
between D% and PrD% represents the inaccuracy due to the static analysis.

Although the first part of the table, using random data, may give the impres-
sion that both the static analysis and the energy modeling contribute to the
inaccuracy of the energy estimation of the whole program, the second (lower)
part of the table indicates that the inaccuracy only comes from the energy mod-
eling. This is because in the lower part the comparison was performed with input
arrays that make findMax exhibit its actual upper- and lower-bounds (depend-
ing on the length of the array). In this case, Columns Est and Prof show the
same values, which means that there was no inaccuracy due to the static analy-
sis (regarding the inference of the actual upper- and lower-bound functions), and
that the overall inaccuracy is due to the over- and under-approximation in the
EA to model energy consumption of each basic block.

Table 3 shows a similar experiment for the reverse program, which has no
data-dependent branching. Since the number of operations performed by reverse
is actually a function of the length of its input array (not of its contents),
Columns Est and Prof show the same values for random data (unlike for
findMax), which means that no inaccuracy comes from the static analysis part.
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Table 3. Source of inaccuracies in reverse:
analysis vs. modeling

N Cost Energy(nJ)× 103 D% PrD%

App Est Prof Obs

Random array data

5 lb 28 28 29 −3.5 −3.5

ub 31.8 31.8 9.2 9.2

15 lb 59 59 64 −8.1 −8.1

ub 68.8 68.8 7.2 7.2

25 lb 90 90 98 −8.5 −8.5

ub 105.8 105.8 7.7 7.7

Regarding the time taken by
the EA, it can vary depending
on the parameters it is initialized
with, as well as the initial pop-
ulation. This population is differ-
ent every time the EA is initi-
ated, except for a fixed number of
individuals that represent corner
cases. In the experiments, the EA
is run for up to a maximum of 20
generations, and is stopped when
the fitness value does not improve
for four consecutive generations. In
all the experiments the biquad benchmark took the most time (a maximum time
of 230 min) for maximizing the energy consumption. In contrast, the fact bench-
mark took the least time (a maximum time of 121 min). The times remained
within the 150–200 min range on average. Time speed-ups were also achieved
by reusing the EA results for sequences of instructions that were already pro-
cessed in a previous benchmark (e.g., return blocks, loop header blocks, etc.).
This makes us believe that our approach could be used in practice in an itera-
tive development process, where the developer gets feedback from our tool and
modifies the program in order to reduce its energy consumption. The first time
the EA is run would take the highest time, since it would have to determine the
energy consumption of all the program blocks. After a focused modification of
the program that only affects a small number of blocks, most of the results from
the previous run could be reused, so that the EA would run much faster during
this development process. In other words, the EA processing can easily be made
incremental.

The static analysis, on the other hand, is quite efficient, with analysis times
of about 4 to 5 s on average, despite the naive implementation of the interface
with external recurrence equation solvers, which can be improved significantly.

5 Related Work

Static analysis of the energy consumed by program executions has received rela-
tively little attention until recently. An analysis of Java bytecode programs that
estimated upper-bounds on energy consumption as functions on input data sizes
was proposed in [20], where the Jimple (a typed three-address code) represen-
tation of Java bytecode was transformed into Horn Clauses [18], and a simple
energy model at the Java bytecode level [10] was used. However the energy
model for the Java opcodes used average estimations, which are not suitable
for verification applications. Also, the results were not compared with actual,
measured energy consumption. A similar approach was proposed in [12] for XC
programs, using an ISA-level model. This work did compare to actual energy
consumptions, obtaining promising results, but the ISA-level model also pro-
vided average energy values, which implied the same problem for verification.
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Other approaches to static analysis based on the transformation of the analyzed
code into another representation have been proposed for analyzing low-level lan-
guages [5] and Java bytecode [1]. In [1], cost relations are inferred directly for
these bytecode programs, whereas in [20] the bytecode is first transformed into
Horn Clauses [18].

Other work is based on techniques referred to generally as WCET (Worst
Case Execution Time Analyses), which have been applied, usually for impera-
tive languages, in different application domains (see e.g., [26] and its references).
These techniques generally require the programmer to bound the number of
iterations of loops, and then apply an Implicit Path Enumeration technique
to identify the path of maximal consumption in the control flow graph of the
resulting loop-less program. This approach has inspired some worst case energy
analyses, such as [8]. It distinguishes instruction-specific (proportional to data)
from pipeline-specific (proportional to time) energy consumption, and also takes
into account branch prediction and cache misses. However, it requires the user to
identify the input which will trigger the maximal energy consumption. In [24] the
approach is refined for estimating hard (i.e., over-approximated) energy bounds
using relative energy models (at the LLVM level), where the energy of instruc-
tions is given in relation to each other (e.g., if all instructions have relative
energy 1, then they all consume the same absolute energy), which does not
depend on the specific hardware, but can be applied if a mapping between LLVM
and low-level ISA instructions exists. If the energy bounds are not hard (i.e., the
application allows their violation) a genetic algorithm is used to obtain an under-
approximation of the energy bounds. However, this approach loses accuracy when
there are data-dependent branches present in the program, since different inputs
can lead to the execution of different sets of instructions. A similar approach is
used in [22] to find the worst-case energy consumption of two benchmarks using
a genetic algorithm. In contrast to our approach, the evolutionary algorithm is
applied to whole programs, which are required to not have any data-dependent
branching. The authors further introduce probability distributions for the transi-
tion costs among pairs of independent instructions, which can then be convolved
to give a probability distribution of the energy for a sequence of instructions.

In contrast to the work presented here and in [19], all these WCET-style
methods (either for execution time or energy) do not infer cost functions on
input data sizes but rather absolute maximum values, and, as mentioned before,
they generally require the manual annotation of all loops to express an upper
bound on the number of iterations, which can be tedious (or impossible). Loop
bound inference techniques can also be applied but require that all loop counts
can be resolved. All of this essentially reduces the case to that of programs with
no loops.

6 Conclusions

We have proposed a combined static/dynamic approach for estimating para-
metric upper and lower bounds on the energy consumption of a program.
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The dynamic part, based on an evolutionary algorithm, is a best effort app-
roach to approximating the maximum/minimum energy consumption of the
basic blocks in the program. Such blocks contain multiple instructions, which
allows this phase to capture inter-instruction dependencies. Moreover, the basic
blocks are branchless, which makes the evolutionary algorithm approach quite
practical and efficient, and the energy values inferred by it are accurate, since
no control flow-related variations occur. A safe static analysis is then used to
combine the energy values obtained for the blocks according to the program
control flow, and estimate energy consumption bounds of the whole program
that depend on input data sizes. In the experiments we performed on a set of
benchmarks, the upper and lower bounds obtained were always safe and quite
accurate. Such results suggest that our approach offers a good safety/accuracy
compromise, estimating bounds that are practical for its application to energy
verification and optimization.
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Abstract. Dynamic Pushdown Networks (DPNs) are a natural model
for multithreaded programs with (recursive) procedure calls and thread
creation. On the other hand, CARET is a temporal logic that allows to
write linear temporal formulas while taking into account the matching
between calls and returns. We consider in this paper the model-checking
problem of DPNs against CARET formulas. We show that this problem
can be effectively solved by a reduction to the emptiness problem of Büchi
Dynamic Pushdown Systems. We then show that CARET model check-
ing is also decidable for DPNs communicating with locks. Our results
can, in particular, be used for the detection of concurrent malware.

1 Introduction

Pushdown Systems (PDSs) are known to be a natural model for sequential pro-
grams [18]. Therefore, networks of pushdown systems are a natural model for
concurrent programs where each PDS represents a sequential component of the
system. In this context, Dynamic pushdown Networks (DPNs) [6] were intro-
duced by Bouajjani et al. as a natural model of multithreaded programs with
procedure calls and thread creation. Intuitively, a DPN is a network of pushdown
processes {P1, ...,Pn} where each process, represented by a Pushdown system
(PDS), can perform basic pushdown actions, call procedures, as well as spawn
new instances of pushdown processes. A lot of previous researches focused on
investigating automated methods to verify DPNs. In [6,9,14,15], the reachability
analysis of DPNs are considered. While the model-checking problem for DPNs
against double-indexed properties is undecidable, i.e., the properties where the
satisfiability of an atomic proposition depends on control states of two or more
threads [10], it is decidable to model-check DPNs against the linear temporal
logic (LTL) and the computation tree logic (CTL) with single-indexed properties
[19], i.e., properties where the satisfiability of an atomic proposition depends on
control states of only one thread.

CARET is a temporal logic of calls and returns [1]. This logic allows us to
write linear temporal formulas while taking into account the matching between

This work was partially funded by the FUI project AiC.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Fioravanti and J. P. Gallagher (Eds.): LOPSTR 2017, LNCS 10855, pp. 73–90, 2018.
https://doi.org/10.1007/978-3-319-94460-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94460-9_5&domain=pdf


74 H.-V. Nguyen and T. Touili

calls and returns. CARET is needed to describe several important properties
such as malicious behaviors or API usage rules. Thus, to be able to analyse such
properties for multithreaded programs, we need to be able to check CARET
formulas for DPNs. We tackle this problem in this paper. As LTL is a subclass
of CARET, CARET model-checking for DPNs with double-indexed properties
is also undecidable. Thus, in this paper, we consider the model-checking problem
for DPNs against single-indexed CARET formulas and show that it is decidable.
A single-indexed CARET formula is a formula in the form

∧
fi where fi is a

CARET formula over a certain PDS Pi. A DPN satisfies
∧

fi iff all instances of
the PDS Pi created in the network satisfy the subformula fi.

The model-checking problem of DPNs against single-indexed CARET for-
mulas is non-trivial because the number of instances of pushdown processes in
DPNs can be unbounded. It is not sufficient to check if every PDS Pi satisfies the
corresponding formula fi. Indeed, we need to ensure that all instances of Pi cre-
ated during a run of DPN satisfy the formula fi. Also, it is not correct to check
whether all possible instances of Pi satisfy the formula fi. Indeed, an instance
of Pi should not be checked if it is not created during the run of DPNs. In this
paper, we solve these problems. We show that single-indexed CARET model
checking is decidable for DPNs. To this end, we reduce the problem of checking
whether Dynamic Pushdown Networks satisfy single-indexed CARET formulas
to the membership problem for Büchi Dynamic Pushdown Networks (BDPNs).
Finally, we show that single-indexed CARET model checking is decidable for
Dynamic Pushdown Networks communicating via nested locks.

Related Work

[2,3,5,7] considered Pushdown networks with communications between pro-
cesses. However, these works consider only networks with a fixed number of
threads. The model-checking problem for pushdown networks where synchro-
nization between threads is ensured by a set of nested locks is considered in
[10–12] for single-indexed LTL/CTL and double-indexed LTL. These works do
not handle dynamic thread creation.

Multi-pushdown systems were considered in [4,13] to represent multithreaded
programs. These systems have only a finite number of stacks, and thus, they
cannot handle dynamic thread creation.

Pushdown Networks with dynamic thread creation (DPNs) were introduced
in [6]. The reachability problems of DPNs and its extensions are considered
in [6,9,14,15,21]. [19] considers the model-checking problem of DPNs against
single-indexed LTL and CTL, while [20] investigates the single-indexed LTL
model checking problem for DPNs with locks.

[16,17] consider CARET model checking for pushdown systems and its appli-
cation to malware detection. These works can only handle sequential programs.
In this paper, we go one step further and extend these works [16,17] to DPNs
and concurrent programs.



CARET Analysis of Multithreaded Programs 75

2 Linear Temporal Logic of Calls and Returns - CARET

In this section, we recall the definition of CARET [1]. A CARET formula is
interpreted on an infinite path where each state on the path is associated with a
tag in the set {call, ret, int}. A call-state denotes an invocation to a procedure
of a program while the corresponding ret-state denotes the ret statement of that
procedure. A simple statement (neither a call nor a ret statement) is called an
internal statement and its associated state is called int-state.

Let ω = s0s1... be an infinite path where each state on the path is associated
with a tag in the set {call, ret, int}. Over ω, three kinds of successors are defined
for every position si:

– global-successor : The global-successor of si is si+1.
– abstract-successor : The abstract-successor of si is determined by its associated

tag.
• If si is a call, the abstract successor of si is the matching return point.
• If si is a int, the abstract successor of si is si+1.
• If si is a ret, the abstract successor of si is defined as ⊥.

– caller-successor : The caller-successor of si is the most inner unmatched call
if there is such a call. Otherwise, it is defined as ⊥.

A global-path is obtained by applying repeatedly the global-successor opera-
tor. Similarly, an abstract-path or a caller-path are obtained by repeatedly apply-
ing the abstract-successor and caller-successor respectively.

In Fig. 1, from s4, the global-path is s4s5s6s7s8s9s10..., the abstract-path
is s4s5s9s10... while the caller-path is s4s2. Note that the caller-path is always
finite.

Fig. 1. Three kinds of successors of CARET

Formal Definition. Given a finite set of atomic propositions AP. Let AP ′ =
AP ∪ {call, ret, int}. A CARET formula over AP is defined as follows (where
e ∈ AP ′):

ψ := e | ψ ∨ ψ | ¬ψ | Xgψ | Xaψ | Xcψ | ψUaψ | ψUgψ | ψU cψ



76 H.-V. Nguyen and T. Touili

Let Σ = 2AP × {call, ret, int}. Let π = π(0)π(1)π(2)... be an ω-word over
Σ. Let (π, i) be the suffix of π starting from π(i). Let nextgi , nextai , nextci be
the global-successor, abstract-successor and caller-successor of π(i) respectively.
The satisfiability relation is defined inductively as follows:

– (π, i) � e, where e ∈ AP ′, iff π(0) = (Y, d) and e ∈ Y or e = d
– (π, i) � ψ1 ∨ ψ2 iff (π, i) � ψ1 or (π, i) � ψ2

– (π, i) � ¬ψ iff (π, i) � ψ
– (π, i) � Xgψ iff (π, nextgi ) � ψ
– (π, i) � Xaψ iff nextai �= ⊥ and (π, nextai ) � ψ
– (π, i) � Xcψ iff nextci �= ⊥ and (π, nextci ) � ψ
– (π, i) � ψ1U

bψ2 (with b ∈ {g, a, c}) iff there exists a sequence of posi-
tions h0, h1, ..., hk−1, hk where h0 = i, for every 0 ≤ j ≤ k − 1 : hj+1 =
nextbhj

, (π, hj) � ψ1 and (π, hk) � ψ2

Then, π � ψ iff (π, 0) � ψ. Other CARET operators can be expressed by the
above operators: F gψ = true Ugψ, Ggψ = ¬(true Ug¬ψ), F aψ = true Uaψ,...

Closure. Let ψ be a CARET formula over AP . The closure of ψ, denoted Cl(ψ),
is the smallest set that contains ψ, call, ret and int and satisfies the following
properties:

– if ¬ψ′ ∈ Cl(ψ), then ψ′ ∈ Cl(ψ)
– if Xbψ′ ∈ Cl(ψ) (with b ∈ {g, a, c}), then ψ′ ∈ Cl(ψ)
– if ψ1 ∨ ψ2 ∈ Cl(ψ), then ψ1 ∈ Cl(ψ), ψ2 ∈ Cl(ψ)
– if ψ1U

bψ2 ∈ Cl(ψ) (with b ∈ {g, a, c}), then ψ1 ∈ Cl(ψ), ψ2 ∈
Cl(ψ),Xb(ψ1U

bψ2) ∈ Cl(ψ)
– if ψ′ ∈ Cl(ψ), and ψ′ is not in the form ¬ψ′′ then ¬ψ′ ∈ Cl(ψ)

Atoms. A set A ⊆ Cl(ψ) is an atom of ψ if it satisfies the following properties:

– ∀ψ′ ∈ Cl(ψ), ψ′ ∈ A ⇔ ¬ψ′ /∈ A
– ∀ψ′ ∨ ψ′′ ∈ Cl(ψ), ψ′ ∨ ψ′′ ∈ A ⇔ ψ′ ∈ A or ψ′′ ∈ A
– ∀ψ′U bψ′′ ∈ Cl(ψ), where b ∈ {g, a, c}, ψ′U bψ′′ ∈ A ⇔ ψ′′ ∈ A or (ψ′ ∈ A and

Xb(ψ′U bψ′′) ∈ A)
– A includes exactly one element of the set {call, ret, int}
Let Atoms(ψ) be the set of atoms of ψ. Let A and A′ be two atoms, we define
the following predicates:

– AbsNext(A,A′) = true iff for every Xaφ′ ∈ Cl(ψ) : (Xaφ′ ∈ A iff φ′ ∈ A′).
– GlNext(A,A′) = true iff for every Xgφ′ ∈ Cl(ψ) : (Xgφ′ ∈ A iff φ′ ∈ A′)
– CallerNext(A,A′) = true iff for every Xcφ′ ∈ Cl(ψ) : (Xcφ′ ∈ A iff φ′ ∈ A′).

We define NexCallerForms(A) (resp. NexAbsForms(A)) to be a function
which returns the caller-formulas (resp. abstract-formulas) in A. Formally:

– NexCallerForms(A) = {Xcφ′ | Xcφ′ ∈ A}
– NexAbsForms(A) = {Xaφ′ | Xaφ′ ∈ A}
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3 Dynamic Pushdown Networks (DPNs)

3.1 Definitions

Dynamic Pushdown Networks (DPNs) is a natural model for multithreaded pro-
grams [6]. To be able to define CARET formulas over DPNs, we must extend
this model to record whether a transition rule corresponds to a call, ret or a
simple statement (neither call nor ret).

Definition 1. A Dynamic Pushdown Network (DPN) M is a set {P1, ...,Pn}
s.t. for every 1 ≤ i ≤ n, Pi = (Pi, Γi,Δi) is a Labelled Dynamic Pushdown
System (DPDS), where Pi is a finite set of control locations, Pi ∩ Pj = ∅ for all
j �= i, Γi is a finite set of stack alphabet, and Δi is a finite set of transition rules.
Rules of Δi are of the following form, where p, p1 ∈ Pi, γ, γ1, γ2 ∈ Γi, ω1 ∈ Γ ∗

i ,
d ∈ {�, psωs | psωs ∈ ⋃

1≤j≤n Pj × Γ ∗
j }:

– (r1) pγ
call−−→i p1γ1γ2 � d

– (r2) pγ
ret−−→i p1ε � d

– (r3) pγ
int−−→i p1ω1 � d

Intuitively, there are two kinds of transition rules depending on the nature
of d. A rule with a suffix of the form � � is a nonspawn rule (does not spawn
a new process), while a rule with a suffix � psωs describes a spawn rule (a new
process is spawned). A nonspawn step describes pushdown operations of one
single process in the network. Roughly speaking, a call statement is described
by a rule in the form pγ

call−−→i p1γ1γ2 � d ∈ Δi. This rule usually models a
statement of the form γ

call proc−−−−−−→ γ2 where γ is the control point of the program
where the function call is made, γ1 is the entry point of the called procedure
proc, and γ2 is the return point of the call; p and p1 can be used to encode
various information, such as the return values of functions, shared data between
procedures, etc. A return statement is modeled by a rule (r2), while a rule (r3)
is used to model a simple statement (neither a call nor a return). A spawn step
allows in addition the creation of a new process. For instance, a rule of the form
pγ

t−→i p1ω1 � psωs ∈ Δi where t ∈ {call, ret, int} describes that a process Pi at
control location p and having γ on top of the stack can (1) change the control
location to p1 and modify the stack by replacing γ with ω1 and also (2) create
a new instance of a process Pj (1 ≤ j ≤ n) starting at psωs. Note that in this
case, if t is call, then ω1 is γ1γ2, and if t is ret, then ω1 is ε.

A DPDS Pi can be seen as a Pushdown System (PDS) if there are no spawn
rules in Δi. Generally speaking, a DPN consists of a set of PDSs {P1, ...,Pn}
running in parallel where each PDS can dynamically spawn new instances of
PDSs in the set {P1, ...,Pn} during the run. An initial local configuration of
a newly created instance psωs is called a Dynamically Created Local Initial
Configuration (DCLIC). For every i ∈ {1...n}, let Di = {psωs ∈ ⋃

1≤j≤n Pj ×
Γ ∗

j | pγ
t−→i p1ω1 � psωs ∈ Δi} be the set of DCLICs that can be created by the

DPDS Pi.
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A local configuration of an instance of a DPDS Pi is a tuple pω where p ∈ Pi

is the control location, ω ∈ Γ ∗
i is the stack content. A global configuration of M

is a multiset over
⋃

1≤i≤n Pi × Γ ∗
i , in which pω ∈ Pi × Γ ∗

i is a local configuration
of an instance of Pi which is running in parallel in the network M.

A DPDS Pi defines a transition relation =⇒i as follows: if pγ
t−→i p1ω1 � d

then pγω =⇒i p1ω1ω � D for every ω ∈ Γ ∗
i where D = ∅ if d = �, D = {psωs} if

d = psωs. Let =⇒∗
i be the transitive and reflexive closure of =⇒i, then, for every

pω ∈ Pi × Γ ∗
i :

– pω =⇒∗
i pω � ∅

– if pω =⇒∗
i p1ω1 � D1 and p1ω1 =⇒∗

i p2ω2 � D2, then, pω =⇒∗
i p2ω2 � D1 ∪ D2.

A local run of an instance of a DPDS Pi starting at a local configuration c0
is a sequence c0c1... s.t. for every x ≥ 0, cx ∈ Pi × Γ ∗

i is a local configuration of
Pi, cx =⇒i cx+1 � D for some D. A global run ρ of M from a global configuration
G = {p0ω0, ..., pkωk} is a set of local runs (possibly infinite) where each local
run describes the execution of one instance of a certain DPDS Pi. Initially, ρ
consists of k local runs of k instances starting from {p0ω0, ..., pkωk}, when a new
instance is created, a new local run of this instance is added to ρ. For example,
when a DCLIC c is created by a certain local run of ρ, a new local run that
starts at c is added to ρ. Note that from a global configuration, we can obtain a
set of global runs because from a local configuration, we can have different local
runs.

3.2 Single-Indexed CARET for DPNs

Given a DPN M = {P1, ...,Pn}, a single-indexed CARET formula f is a formula
in the form

∧n
i=1 fi s.t. for every 1 ≤ i ≤ n, fi is a CARET formula in which

the satisfiability of its atomic propositions depends only on the DPDS Pi.

Given a set of atomic propositions AP , let λ :
⋃n

i=1 Pi → 2AP be a labeling
function that associates each control location with a set of atomic propositions.

Let π = p0ω0p1ω1.... be a local run of the DPDS Pi. We associate to each
local configuration pxωx of π a tag tx in {call, int, ret} as follows, where D = ∅
or D = {psωs}:

– If pxωx =⇒i px+1ωx+1 � D corresponds to a transition rule pγ
t−→i p1ω1 � d,

then tx = t.

Then, we say that π satisfies fi iff the ω-word (λ(p0), t0)(λ(p1), t1)... satisfies
fi. A local configuration c of Pi satisfies fi (denoted c � fi) iff there exists a local
run π starting from c such that π satisfies fi. If D is the set of DCLICs created
during the run π, then, we write c �D fi. A DPN M satisfies a single-indexed
CARET formula f iff there exist a global run ρ s.t. for every 1 ≤ i ≤ n, each
local run of Pi in ρ satisfies the formula fi.
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4 Applications

We show in this section how model-checking single-indexed CARET for DPNs
is necessary for concurrent malware detection.

Malware detection is nowadays a big challenge. Several malwares are multi-
threaded programs that involve recursive procedures and dynamic thread cre-
ation. Therefore, DPNs can be used to model such programs. We show in what
follows how single-indexed CARET for DPNs can describe malicious behaviors
of concurrent malwares.

More precisely, we show how this logic can specify email worms. To this aim,
let us consider a typical email worm: the worm Bagle. Bagle is a multithreaded
email worm. In the main thread, one of the first things the worm does is to
register itself into the registry listing to be started at the boot time. Then, it
does some different actions to hide itself from users. After this, the malware
creates one thread (named Thread2 ) that listens on the port 6777 to receive
different commands and also allow the attacker to upload a new file and execute
it. This grants the attacker the ability to update new versions for his malware.
In addition, the attacker can send a crafted byte sequence to this port to force
the malware to kill itself and delete it from the system. Thus, the attacker
can remove his malware remotely. In the next step, the malware creates one
more thread (named Thread3 ) which contacts a list of websites every 10 min to
announce the infection of the current machine. The malware sends the port it
is listening to as well as the IP of the infected machine to these sites. At some
point in the program, the malware continues to spawn a thread named Thread4
to search on local drives to look for valid email addresses. In this thread, for each
email address found, the malware attaches itself and sends itself to this email
address.

Thus, you can see that Bagle is a mutithreaded malware with dynamic thread
creation, i.e., the main process can create threads to fulfill various tasks. To
model Bagle, DPNs is a good candidate since DPNs allow dynamic thread cre-
ation. Let M = {P1,P2,P3,P4} be a model of Bagle where P1 is a PDS that
represents the main process of the malware; P2,P3,P4 are PDSs that model the
code segments corresponding to Thread1, Thread2, Thread3 respectively. Note
that P2,P3,P4 are designed to execute specific tasks, while P1 is a main pro-
cess able to dynamically create an arbitrary number of instances of P2,P3,P4

to fulfill tasks in need.

We show now how the malicious behavior of the different threads can be
described by a CARET formula. Let us start with the main process. The typi-
cal behaviour of this process is to add its own executable name to the registry
listing so that it can be started at the boot time. To do this, the malware needs
to invoke the API function GetModuleF ileNameA with 0 and x as parameters.
GetModuleF ileNameA will put the file name of its current executable on the
memory address pointed by x. After that, the malware calls the API function
RegSetV alueExA with the same x as parameter. RegSetV alueExA will use the
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file name stored at x to add itself into the registry key listing. This malicious
behaviour can be specified by CARET as follows:

ψ1 =
∨

x∈K F g(call(GetModuleF ileNameA) ∧ 0xΓ ∗ ∧ F a(call(RegSetV alueExA) ∧ xΓ ∗))
where the

∨
is taken over all possible memory addresses x over domain K.

Note that parameters are passed via the stack in binary programs. For suc-
cinctness, we use regular variable expression xΓ ∗ (resp. 0xΓ ∗) to describe the
requirement that x (resp. 0x) is on top of the stack. Then, this formula states
that there is a call to the API GetModuleFileNameA with 0 and x on the top
of the stack (i.e., with 0 and x as parameters), followed by a call to the API
RegSetV alueExA with x on the top of the stack. Using the operator F a guar-
antees that RegSetValueExA is called after GetModuleFileNameA terminates.

Similarly, the malicious behaviors of the Threads 2, 3 and 4 can be described
by CARET formulas ψ2, ψ3 and ψ4 respectively.

Thus, the malicious behavior of the concurrent worm Bagle can be described
by the single-indexded CARET formula ψ = ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4.

5 Single-Indexed CARET Model-Checking for DPNs

In this section, we consider the CARET model-checking problem of DPNs. Let
λ :

⋃n
i=1 Pi → 2AP be a labeling function that associates each control location

with a set of atomic propositions. Let M = {P1, ...,Pn} be a DPN, f =
∧n

i=1 fi

be a single-indexed CARET formula.

5.1 Büchi DPNs (BDPNs)

Definition 2. A Büchi DPDS (BDPDS) is a tuple BPi = (Pi, Γi,Δi, Fi) s.t.
Pi = (Pi, Γi,Δi) is a DPDS, Fi ⊆ Pi is the set of accepting control locations. A
run of a BDPDS is accepted iff it visits infinitely often some control locations
in Fi.

Definition 3. A Generalized Büchi DPDS (GBDPDS) is a tuple BPi =
(Pi, Γi,Δi, Fi), where Pi = (Pi, Γi,Δi) is a DPDS and Fi = {F1, ..., Fk} is a
set of sets of accepting control locations. A run of a GBDPDS is accepted iff it
visits infinitely often some control locations in Fj for every 1 ≤ j ≤ k.

Given a BDPDS or a GBDPDS BPi = (Pi, Γi,Δi, Fi), let c ∈ Pi × Γ ∗
i be

a local configuration of BPi. Then, let L(BPi) be the set of all pairs (c,D) ∈
Pi × Γ ∗

i × 2Di s.t. BPi has an accepting run from c and D is the set of DCLICs
generated during that run. We get the following properties:

Proposition 1. Given a GBDPDS BPi, we can effectively compute a BDPDS
BP ′

i s.t. L(BPi) = L(BP ′
i).

This result comes from the fact that we can translate a GBDPDS to a cor-
responding BDPDS by applying the similar approach as the translation from a
Generalized Büchi automaton to a corresponding Büchi automaton [8].
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Definition 4. A Büchi Dynamic Pushdown Network (BDPN) is a set
{BP1, ...,BPn} s.t. for every 1 ≤ i ≤ n, BPi = (Pi, Γi,Δi, Fi) is a BDPDS.
A (global) run ρ of a BDPN is accepted iff all local runs in ρ are accepting
(local) runs.

Definition 5. A Generalized Büchi Dynamic Pushdown Network (GBDPN) is a
set {BP1, ...,BPn} s.t. for every 1 ≤ i ≤ n, BPi = (Pi, Γi,Δi, Fi) is a GBDPDS.
A (global) run ρ of a GBDPN is accepted iff all local runs in ρ are accepting
(local) runs.

Given a BDPN or a GBDPN BM = {BP1, ...,BPn}, let L(BM) be the set
of all global configurations G s.t. BM has an accepting run from G. We get the
following properties:

Proposition 2. Given a GBDPN BM, we can effectively compute a BDPN
BM′ s.t. L(BM) = L(BM′).

This result is obtained due to the fact that we can translate each GBDPDS
in BM to a corresponding BDPDS in BM′.

Given a BDPN BM = {BP1, ...,BPn} where BPi = (Pi, Γi,Δi, Fi). Let I(c) be
the index i of the local configuration c ∈ Pi × Γ ∗

i . Let D =
⋃n

i=1 Di. Then, we
get the following theorem:

Theorem 1 [19,20]. The membership problem of a BDPN is decidable in time
O(Σn

i=1|Δi|.|Γi|.|Pi|3.2|Di| + Σc∈D(|c|.|PI(c)|3.|ΓI(c)|.22|DI(c)| + |D|2.2|D|).

Thus, from Proposition 2 and Theorem 1, we get that the membership prob-
lem of a GBDPN is decidable.

Theorem 2. The membership problem of GBDPNs is decidable.

5.2 From CARET Model Checking of DPNs to the Membership
Problem in BDPNs

Given a local run π, let ϑ(π) be the index of the DPDS corresponding to π. Let
G be an initial global configuration of the DPN M, then we say that G satisfies f
iff M has a global run ρ starting from G s.t. every local run π in ρ satisfies fϑ(π).
Determining whether G satisfies f is a non-trivial problem since the number of
global runs can be unbounded and the number of local runs of each global run
can also be unbounded. Note that it is not sufficient to check whether every
pushdown process Pi satisfies the corresponding CARET formula fi. Indeed, we
need to ensure that all instances of Pi created during a global run satisfy the
formula fi. Also, it is not correct to check whether all possible instances of Pi

satisfy the formula fi. Indeed, an instance of Pi should not be checked if it is
not created during a global run. To solve these problems, we reduce the CARET
model-checking problem for DPNs to the membership problem for GBDPNs. To
do this, we compute a GBDPN BM = {BP1, ...,BPn} where BPi (i ∈ {1..n}) is



82 H.-V. Nguyen and T. Touili

a GBDPDS s.t. (1) the problem of checking whether each instance of Pi satisfies
a CARET formula fi can be reduced to the membership problem of BPi; (2) if
Pi creates a new instance of Pj starting from psωs, which requires that psωs � fj ;
BPi must also create an instance of BPj starting from a certain configuration
(computed from psωs) from which BPj has an accepting run. In what follows,
we present how to compute such GBDPDSs.

Let Label = {exit, unexit} (we explain later the need to these labels).
Given a DPDS Pi (i ∈ {1..n}), a corresponding CARET formula fi, we
define Initiali as the set of atoms A (A ∈ Atoms(fi)) such that fi ∈ A and
NextCallerFormulas(A) = ∅. Our goal is that for every Pi (i ∈ {1..n}), we com-
pute a GBDPDS BPi s.t. for every pω ∈ Pi×Γ ∗

i , pω satisfies fi iff there exists an
atom A where A ∈ Initiali s.t. BPi has an accepting run from �p,A, unexit�ω.

GBDPDSs Computation
Let us fix a DPDS Pi = (P, Γ,Δ) in the DPN M, a CARET formula fi in
f =

∧n
i=1 fi corresponding to the DPDS Pi. In this section, we show how to

compute such a GBDPDS BPi corresponding to Pi. Given a local configuration
pω, let δ(pω) be the index of the DPDS corresponding to pω. We define BPi =
(P ′, Γ ′,Δ′, F ) as follows:

– P ′ = {�p,A, l� | p ∈ P, l ∈ Label, A ∈ Atoms(fi)andA ∩ AP = λ(p)} is the
finite set of control locations of BPi

– Γ ′ = Γ ∪ (Γ × Atoms(fi)×Label) is the finite set of stack symbols of BPi.

The transition relation Δ′ of BPi is the smallest set of transition rules sat-
isfying the following:

– (α1) for every pγ
call−−→i qγ′γ′′� d ∈ Δ:

�p,A, l�γ −→i �q,A′, l′�γ′�γ′′, A, l� � d0 ∈ Δ′ for every A,A′ ∈ Atoms(fi);
l, l′ ∈ Label such that:

• (β0) A ∩ {call, ret, int} = {call}
• (β1) A ∩ AP = λ(p)
• (β2) A′ ∩ AP = λ(q)
• (β3) GlNext(A,A′)
• (β4) CallerNext(A′, A)
• (β5) l′ = unexit implies (l = unexit and NexAbsForms(A) = ∅)
• (β6) d0 = � if d = �; d0 = �ps, A0, unexit�ωs where A0 ∈ Initialδ(psωs)

if d = psωs

– (α2) for every pγ
ret−−→i qε� d ∈ Δ:

• (α2.1) �p,A, exit�γ −→i �q,A′, l′�ε� d0 ∈ Δ′ for every A,A′ ∈ Atoms
(fi); l, l′ ∈ Label such that:

∗ (β0) A ∩ {call, ret, int} = {ret}
∗ (β1) A ∩ AP = λ(p)
∗ (β2) A′ ∩ AP = λ(q)
∗ (β3) GlNext(A,A′)
∗ (β4) NexAbsForms(A) = ∅
∗ (β5) d0 = � if d = �; d0 = �ps, A0, unexit�ωs where A0 ∈

Initialδ(psωs) if d = psωs
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• (α2.2) �q,A′, l′�, �γ0, A0, l0�〉 −→i 〈�q,A′, l′�γ0 ∈ Δ′ for every γ0 ∈
Γ,A0, A

′ ∈ Atoms(fi); l′, l0 ∈ Label such that:
∗ (β6) AbsNext(A0, A

′)
∗ (β7) NexCallerForms(A′) = NexCallerForms(A0)
∗ (β8) A′ ∩ AP = λ(q)
∗ (β9) l0 = l′

– (α3) for every pγ
int−−→i qω � d ∈ Δ: �p,A, l�γ −→i �q,A′, l�ω � d0 ∈ Δ′ for

every A,A′ ∈ Atoms(fi), l ∈ Label such that:
• (β0) A ∩ {call, ret, int} = {int}
• (β1) A ∩ AP = λ(p)
• (β2) A′ ∩ AP = λ(q)
• (β3) GlNext(A,A′)
• (β4) AbsNext(A,A′)
• (β5) NexCallerForms(A) = NexCallerForms(A′)
• (β6) d0 = � if d = �; d0 = �ps, A0, unexit�ωs where A0 ∈ Initialδ(psωs)

if d = psωs

Let clUg (fi) = {φ1U
gχ1, ..., φkUgχk} and clUa(fi) = {ξ1U

aτ1, ..., ξk′Uaτk′}
be the set of Ug-formulas and Ua-formulas of Cl(fi) respectively. The generalized
Büchi accepting condition F of BPi is defined as: F = {F1} ∪ F2 ∪ F3 where

– F1 = P × Atoms(fi)×{unexit}
– F2 = {F g

1 , ..., F g
k } where F g

x = {P ×FφxUgχx
×Label} where FφxUgχx

= {A ∈
Atoms(fi) | if φxUgχx ∈ A then χx ∈ A} for every 1 ≤ x ≤ k.

– F3 = {F a
1 , ..., F a

k′} where F a
x = {P × FξxUaτx × {unexit}} where FξxUaτx =

{A ∈ Atoms(fi) | if ξxUaτx ∈ A then τx ∈ A} for every 1 ≤ x ≤ k′.

Given a configuration pω, let P(pω) be the procedure to which pω belongs. For
example, in Fig. 2, P(px+1ωx+1) = proc, ..., P(py−1ωy−1) = proc. Intuitively,
we compute BPi as a kind of product of Pi and fi which ensures that: for every
pω ∈ Pi × Γ ∗

i , pω satisfies fi iff there exists an atom A ∈ Intiali s.t. BPi has
an accepting run from �p,A, unexit�ω. To do this, we encode atoms of fi into
control locations of Pi. The form of control locations of BPi is �p,A, l� where
A contains all sub formulas of fi which are satisfied at the configuration pω, l
is a label to determine whether the execution of the procedure of pω, P(pω),
terminates in the path π. A configuration pω labeled with exit means that the
execution of P(pω) is finished in π, i.e., the run π will run through the procedure
P(pω), reaches its ret statement and exits P(pω) after that. On the contrary,
pω labeled with unexit means that in π, the execution of the procedure P(pω)
never terminates, i.e., the run π will be stuck in and never exits the procedure
P(pω). Let π = p0ω0p1ω1... be a run of Pi and �p0, A0, l0�ω0�p1, A1, l1�ω1.... be
a corresponding run of BPi. We give in what follows the intuition behind our
construction.

Encoding Atoms to Control Locations. Firstly, we need to ensure that
BPi has an accepting (local) run from �px, Ax�ωx iff pxωx satisfies φ (denoted
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Fig. 2. Case of Xaφ′ ∈ Ax

pxωx � φ) for every φ ∈ Ax. To ensure this, in rules (α1), (α2) and (α3), the first
class of conditions (β0) ensures that the tags {call, ret, int} assigned to each
configuration of the run are guessed correctly. The second class of conditions
(β1) and (β2) expresses that for every e ∈ AP , (π, x) � e iff e ∈ λ(px), and the
class of conditions (β3) expresses that (π, x) � Xgφ′ iff (π, x + 1) � φ′. Now,
let us consider the most delicate case where φ = Xaφ′ ∈ Ax. There are two
possibilities:

– pxωx =⇒i px+1ωx+1� d0 corresponds to a call statement. Let us consider Fig. 2
to explain this case. Let pyωy be the abstract-successor of pxωx. (π, x) � Xaφ′

iff (π, y) � φ′. Thus, we must have φ′ ∈ Ay. This is ensured by rules (α1) and
(α2): rules (α1) allow to record Xaφ′ in the return point of the call, and
rules (α2) allow to extract and validate φ′ when the return-point is reached.
In what follows, we show in more details how this works: Let pxγ

call−−→i

px+1γ
′γ′′ � d be the rule associated with the transition pxωx =⇒i px+1ωx+1 �

d0, then we have ωx = γω′ and ωx+1 = γ′γ′′ω′. Let py−1ωy−1 =⇒i pyωy � d0
be the transition that corresponds to the ret statement of this call. Let then
py−1β

ret−−→i pyε � d ∈ Δ be the corresponding return rule. Then, we have
necessarily ωy−1 = βγ′′ω′, since as explained in Sect. 3.1, γ′′ is the return
address of the call. After applying this rule, ωy = γ′′ω′. In other words,
γ′′ will be the topmost stack symbol at the corresponding return point of
the call. So, in order to recover φ′ in Ay, we proceed as follows: At the call

pxγ
call−−→i px+1γ

′γ′′ � d, we encode Ax into γ′′ by the rule (α1) stating that
�px, Ax, l�γ −→i �px+1, Ax+1, l

′�γ′�γ′′, Ax, l� � d0 ∈ Δ′. This allows to record
Xaφ′ in the corresponding return point of the stack. After that, �γ′′, Ax, l� will
be the topmost stack symbol at the corresponding return-point of this call. At
the return-point, the condition (β6) in (α2.2) stating that AbsNext(Ax, Ay)
and the fact that φ = Xaφ′ ∈ Ax imply that φ′ ∈ Ay.

– pxωx =⇒i px+1ωx+1 � d0 corresponds to a simple statement. Then, the
abstract successor of pxωx is px+1ωx+1. (π, x) � Xaφ′ iff (π, x + 1) � φ′.
Thus, we must have φ′ ∈ Ax+1. This is ensured by condition (β4) in (α3)
stating that AbsNext(Ax, Ax+1) = true.

The label l . Now, let us explain how the label l is used in the transition rules to
ensure the correctness of the formulas. Note that our explanation above makes
implicitly the assumption that along the run π, every call to a procedure proc
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will eventually reach its corresponding return point, i.e., the run π will finally
exit proc, then, we can encode formulas at the call and validate them at its
corresponding return-point. However, it might be the case that at a certain
point in the procedure proc, there will be a loop, and π never exits proc. To
solve this problem, we annotate the control states by the label l ∈ {exit, unexit}
to determine whether π can complete the execution of the procedure P(pω). In
the following, we explain three cases corresponding to three kinds of statements:

– Let us consider Fig. 2. pxωx =⇒i px+1ωx+1 � d0 corresponds to a call state-
ment. Note that P(px+1ωx+1) = proc in this case. There are two possibilities.
If proc terminates, then the call at pxωx will reach its corresponding return-
point. In this case, px+1ωx+1 is labelled by exit. If proc never terminates,
then the call at pxωx will never reach its corresponding return-point. In this
case, px+1ωx+1 is labelled by unexit. If px+1ωx+1 is labelled by exit, then
pxωx can be labelled by exit or unexit. However, if px+1ωx+1 is labelled by
unexit, then pxωx must be labelled by unexit. This is ensured by the condition
(l′ = unexit implies l = unexit) in the rule (α1). In addition, if px+1ωx+1

is labelled by unexit, then pxωx never reaches its corresponding return-point.
Thus, pxωx does not satisfy any formula in the form Xaφ. This is ensured by
the condition (l′ = unexit implies NexAbsForms(A) = ∅) in the rule (α1).

– Again, let us consider Fig. 2. py−1 ωy−1=⇒i pyωy � d0 corresponds to a ret
statement. At py−1ωy−1, we are sure that proc will terminate. In this case,
py−1ωy−1 must be always labelled by exit and pyωy can be labelled by exit
or unexit. This is ensured by the rule (α2.1). Also, the abstract-successor of
py−1ωy−1 is ⊥, then, py−1ωy−1 does not satisfy any formula in the form Xaφ.
This is ensured by the condition (NexAbsForms(A) = ∅) in the rule (α2.1).

– Finally, let us consider Fig. 2. py−2ωy−2 =⇒i py−1ωy−1 � d0 corresponds to a
simple statement. Then, py−2ωy−2 and py−1ωy−1 are in the same procedure
proc. Thus, the labels assigned to py−2ωy−2 and py−1ωy−1 should be the
same. This is ensured by the transition rule (α3)

The Accepting Conditions. The generalized Büchi accepting condition F of
BPi consists of three families of accepting conditions F1, F2 and F3. The first
set F1 guarantees that an accepting run should go infinitely often through the
label unexit. Each set of F2 ensures that the liveness requirement φ2 in φ1U

gφ2

is eventually satisfied in P. The idea behind the set F3 is similar to the set F2

except that the liveness requirement for a Ua-formula φ1U
aφ2 is only required on

the (unique) infinite abstract path (labelled by unexit). With respect to caller-
until formulas, note that caller paths are always finite, so we do not need to
consider this case in F . The liveness requirements of caller-until formulas are
ensured by the condition NexCallerForms(A) = ∅ since π(0) have no caller
successors.
Thus, we get the following lemma:

Lemma 1. Given a DPDS Pi = (P, Γ,Δ), and a CARET formula fi, we can
construct a GBDPDS BPi = (P ′, Γ ′,Δ′, F ) such that for every configuration
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pω ∈ Pi × Γ ∗
i , pω � fi iff there exists an atom A ∈ Initiali s.t. BPi has an

accepting run from �p,A, unexit�ω.

Spawning New Instances. Lemma 1 guarantees that the problem of checking
whether an instance of Pi starting from pω satisfies fi can be reduced to the
problem of checking if BPi has an accepting run from �p,A, unexit�ω where
A ∈ Initiali. Now, we need to ensure the satisfiability on instances created
dynamically. Suppose that Pi spawns a new instance of Pj starting from psωs,
this means that we need to guarantee that psωs � fj . Note that by applying
Lemma 1 for the DPDS Pj , we get that psωs � fj iff there exists an atom
A ∈ Initialj s.t. BPj has an accepting run from �ps, A, unexit�ωs. Then, the
requirement psωs � fj is ensured by the conditions (β6) in (α1), (β5) in (α2)
and (β6) in (α3) stating that for every pγ

t−→i qω � d ∈ Δ (t ∈ {call, ret, int}),
we have �p,A, l�γ −→i �q,A′, l′�ω � d0 ∈ Δ′ such that if d = psωs, then,
d0 = �ps, A0, unexit�ωs where A0 ∈ Initialj (since δ(psωs) = j in this case).

Thus, we can show that:

Theorem 3. Given a DPN M = {P1, ...,Pn}, a single-indexed CARET for-
mula f =

∧n
i=1 fi, we can compute a GBDPN BM = {BP1, ...,BPn} such that

a global configuration G of M satisfies f iff G′ ∈ L(BM) where G′ is a global
configuration of BM that corresponds to the configuration G.

6 Single-Indexed CARET Model-Checking for DPNs
with Regular Valuations

In this section, we consider the single-indexed CARET model-checking problem
for DPNs with regular valuations, in which the set of configurations where an
atomic proposition is satisfied is a regular language.

Definition 6. Let M = {P1, ...,Pn} be a DPN. For every i ∈ {1..n}, a set
of configurations of a pushdown process Pi = (Pi,Δi, Γi) is regular if it can be
written as the union of sets of the form Ep, where p ∈ Pi and Ep = {(p,w)|w ∈
Lp}, where Lp is a regular set over Γ ∗

i .

Definition 7. Let M = {P1, ...,Pn} be a DPN. Let AP be a finite set of atomic
propositions. Let ν : AP → 2

⋃n
i=1 Pi×Γ ∗

i be a valuation. ν is called regular if for
every e ∈ AP , ν(e) is a regular set of configurations.

Let ν : AP → 2
⋃n

i=1 Pi×Γ ∗
i be a regular valuation. We define λν : P × Γ ∗ →

2AP such that λν(pω) = {e ∈ AP | pω ∈ ν(e)}. Let π = p0ω0p1ω1... be a
local path of Pi. We associate each configuration pxωx of π with a tag tx in
{call, int, ret} as presented in Sect. 3.2. Let fi be a CARET formula over AP .
The satisfiability relation w.r.t. the regular valuation ν is defined as follows:

π �ν fi iff (λν(p0ω0), t0)(λν(p1ω1), t1) · · · � fi
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Theorem 4 [19]. Single-indexed LTL model-checking with regular valuations for
DPNs can be reduced to standard LTL model checking for DPNs.

Given a DPN M = {P1, ...,Pn} and a regular valuation ν : AP →
2

⋃n
i=1 Pi×Γ ∗

i , this result is based on translating every DPDS Pi (i ∈ {1..n})
into a DPDS P ′ = (Pi, Γ

′
i ,Δ

′
i) where the regular valuation requirements are

encoded in Γ ′
i . The same reduction is still true for single-indexed CARET with

regular valuations. For details about this reduction, we refer readers to [19]. We
can show that:

Theorem 5. Single-indexed CARET model-checking with regular valuations for
DPNs can be reduced to standard single-indexed CARET model checking for
DPNs.

7 DPNs Communicating via Locks

Dynamic Pushdown Network with Locks (L-DPNs) is a natural formalism for
multithreaded programs communicating via locks [14,20]:

Definition 8. A Dynamic Pushdown Network with Locks (L-DPN) M is a set
{L, Act,P1, ...,Pn} where L is a set of locks, Act = {acq(l), rel(l), τ | l ∈ L} is a
set of actions on locks s.t. acq(l) (resp. rel(l)) for l ∈ L represents an acquisition
(resp. release) of the lock l and the action τ describes internal actions (neither
acquire nor release locks); for every 1 ≤ i ≤ n, Pi = (Pi, Γi,Δi) is a Labelled
Dynamic Pushdown System with Locks (L-DPDS), where Pi is a finite set of
control locations and Pi ∩ Pj = ∅ for all j �= i, Γi is a finite set of stack
alphabets, and Δi is a finite set of transitions rules. Rules of Δi are of the
following form, where a ∈ Act, p, p1 ∈ Pi, γ ∈ Γi, ω1 ∈ Γ ∗

i , d ∈ {�, psωs | psωs ∈⋃
1≤j≤n Pj × Γ ∗

j }:

– (r1) pγ
(a,call)−−−−−→i p1γ1γ2 � d

– (r2) pγ
(a,ret)−−−−→i p1ε � d

– (r3) pγ
(a,int)−−−−→i p1ω � d

Intuitively, a L-DPN is a DPN where processes communicate via locks. The
difference is that each transition rule of L-DPNs is assigned to one additional
action a ∈ Act. Depending on the nature of the associated action a, each transi-
tion step of L-DPDSs include one additional operation on a given lock l. acq(l)
(resp. rel(l)) represents an acquisition (resp. release) of the lock l and the action
τ describe internal actions (neither acquire nor release locks).

A local configuration of an instance of a L-DPDS Pi is a tuple (pω, L) where
p ∈ Pi is the control location, ω ∈ Γ ∗

i is the stack content and L ⊆ L is a
set of locks owned by the instance. A global configuration of M is a multiset
over

⋃
1≤i≤n Pi × Γ ∗

i × 2L, in which (pω, L) ∈ Pi × Γ ∗
i × 2L represents the local

configuration of an instance of a pushdown process Pi which is running in the
network.
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A L-DPDS Pi defines a transition relation =⇒i as follows where t ∈
{call, ret, int}:

– if pγ
(τ,t)−−−→i p1ω1 � d then (pγω, L)=⇒i (p1ω1ω,L) � D0 where D0 = ∅ if

d = �, D0 = {(psωs, ∅)} if d = psωs for every ω ∈ Γ ∗
i , L ⊆ L

– if pγ
(acq(l),t)−−−−−−→i p1ω1 � d then (pγω, L)=⇒i (p1ω1ω,L ∪ {l}) � D0 where

D0 = ∅ if d = �, D0 = {(psωs, ∅)} if d = psωs for every ω ∈ Γ ∗
i , L ⊆ L. This

expresses that the current instance can move from (pγω, L) to (p1ω1ω,L∪{l}).
This ensures that the current instance owns the lock l after the action acq(l).

– if pγ
(rel(l),t)−−−−−→i p1ω1 � d then (pγω, L)=⇒i (p1ω1ω,L\{l}) � D0 where D0 = ∅

if d = �, D0 = {(psωs, ∅)} if d = psωs for every ω ∈ Γ ∗
i , L ⊆ L. This means

that the current instance can move from (pγω, L) to (p1ω1ω,L \ {l}). This
ensures that the current instance releases the lock l after the action rel(l).

Roughly speaking, if d = psωs, then the current instance not only does local
move but also creates a new instance of the pushdown process Pj starting at
(psωs, ∅). Note that we suppose that the new instance holds no locks when it is
created.

A local run of an instance of a L-DPDS Pi starting at a local configuration c0
is a sequence c0c1... s.t. for every j ≥ 0, cj ∈ Pi ×Γ ∗

i ×2L is a local configuration
of Pi, cj =⇒i cj+1 � D0. The definition of global run of a L-DPNs M is similar
to the one for DPNs.
Nested Lock Access. In this work, we suppose that in all local runs, the locks
are accessed in a well-nested and no-reentrant manner, i.e. a local run can only
release the latest lock it acquired that is not released yet. Indeed, if we allow
arbitrary locks, then reachability becomes undecidable [10].

Theorem 6 [20]. Single-indexed LTL model-checking for L-DPNs can be
reduced to single-indexed LTL model checking for DPNs.

Given a L-DPN M = {L, Act,P1, ...,Pn}, this result is based on translat-
ing every Pi (i ∈ {1..n}) into a DPDS P ′

i = (P ′
i , Γi,Δ

′
i) s.t. P ′

i is a kind of
product between the DPDS Pi and the acquisition structure, where an acquisi-
tion structure (encoded in control locations of P ′

i) stores information about how
locks are used such as the number of held locks, the order of acquisition and
release of locks. We can compute a DPN M′ = {P ′

1, ...,P ′
n} s.t. the global runs

of M′ mimic the global runs of M and the acquisition structures reflect the lock
usages. Thus, the global runs of M′ correspond to global runs of M in which
the locks are accessed in a nested manner. The same reduction is still true for
single-indexed CARET formulas. For details of this reduction, we refer readers
to [20]. We can show that:

Theorem 7. Single-indexed CARET model-checking for L-DPNs can be reduced
to single-indexed CARET model checking for DPNs.
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Abstract. Analysis tools like abstract interpreters, symbolic execution
tools and testing tools usually require a proper context to give useful
results when analyzing a particular function. Such a context initializes
the function parameters and global variables to comply with function
requirements. However it may be error-prone to write it by hand: the
handwritten context might contain bugs or not match the intended spec-
ification. A more robust approach is to specify the context in a dedicated
specification language, and hold the analysis tools to support it properly.
This may mean to put significant development efforts for enhancing the
tools, something that is often not feasible if ever possible.

This paper presents a way to systematically generate such a context
from a formal specification of a C function. This is applied to a subset
of the ACSL specification language in order to generate suitable contexts
for the abstract interpretation-based value analysis plug-ins of Frama-C,
a framework for analysis of code written in C. The idea here presented
has been implemented in a new Frama-C plug-in which is currently in
use in an operational industrial setting.

Keywords: Formal specification · Code generation · Transformation
Code analysis · Frama-C · ACSL

1 Introduction

Code analysis tools are nowadays effective enough to be able to provide suit-
able results on real-world code. Nevertheless several of these tools including
abstract interpreters, symbolic execution tools, and testing tools must analyze
the whole application from the program entry point (the main function); or
else either they just cannot be executed, or they provide too imprecise results.
Unfortunately such an entry point does not necessarily exist, particularly when
analyzing libraries.
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In such a case, the verification engineer must manually write the context of
the analyzed function f as a main function which initializes the parameters of f
as well as the necessary global variables. This mandatory initialization step must
enforce the function requirements and may restrict the possible input values for
the sake of memory footprint and time efficiency of the analysis. This approach
is however error-prone: additionally to usual pitfalls of software development
(e.g. bugs, code maintenance, etc.), the handwritten context may not match the
function requirements, or be over restrictive. Moreover this kind of shortcomings
may be difficult to detect due to the fact that the context is not explicitly the
verification objective.

A valid and more robust alternative is to specify such a context in a dedicated
specification language, and make the analysis tools handle it properly. This is
often an arduous approach as the support for a particular specification language
feature may entail a significant development process, something that is often not
feasible if ever possible. Also, it requires to do so for every tool.

This paper presents a way to systematically generate an analysis context
from a formal specification of a C function. The function requirements as well
as the additional restrictions over the input domains are expressed as function
preconditions in the ANSI/ISO C Specification Language (in short, ACSL) [2].
This specification S is interpreted as a constraint system, simplified as much as
possible, then converted into a C code C which exactly implements the specifica-
tion S. Indeed not only every possible execution of C satisfies S but conversely,
there is an execution of C for every possible input satisfying the constraints
expressed by S. We present the formalization of this idea for an expressive sub-
set of ACSL including standard logic operators, integer arithmetic, arrays and
pointers, pointer arithmetic, and built-in predicates for the validity and initial-
ization properties of memory location ranges.

We also provide implementation details about our tool, named CfP for Con-
text from Preconditions, implemented as a Frama-C plug-in. Frama-C is a code
analysis framework for code written in C [12]. Thanks to the aforementioned
technique, CfP generates suitable contexts for two abstract interpretation-based
value analysis tools, namely the Frama-C plug-in EVA [3] and TIS-Analyzer [9]
from the TrustInSoft company. Both tools are actually distinct evolved versions of
an older plug-in called Value [6]. In particular, TrustInSoft successfully used CfP
on the mbed-TLS library (also known as PolarSSL), an open source implementa-
tion of SSL/TLS1, when building its verification kit [22]. It is worth noting that
CfP revealed some mistakes in contexts previously written by hand by expert
verification engineers when comparing its results with these pieces of code. Also,
CfP generates code as close as possible to human-written code: it is quite read-
able and follows code patterns that experts of these tools manually write.

Contributions. The contributions of this paper are threefold: a novel technique
to systematically generate an analysis context from a formal specification of
a C function, a precise formalization of this technique, and a presentation of a

1 https://tls.mbed.org/.

https://tls.mbed.org/
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tool implementing this technique which is used in an operational industrial
setting.

Outline. Section 2 presents an overview of our technique through a motivating
example. Section 3 details preconditions to constraints conversion, while Sect. 4
explains the C code generation scheme for these latter. Section 5 evaluates our
approach and Sect. 6 discusses related work. Section 7 concludes this work by
also discussing future work.

2 Overview and Motivating Example

We illustrate our approach on context generation through the function
aes crypt cbc, a cryptographic utility implemented by the mbed-TLS library.
Figure 1 shows its prototype and ACSL preconditions as written by TrustInSoft
for its verification kit [22].

Fig. 1. ACSL preconditions of the mbed-TLS function aes crypt cbc.

Specification. The function aes crypt cbc provides encryption and decryp-
tion of a buffer according to the AES cryptographic standard and the CBC
encryption mode. The function takes six parameters. The last two are the input
and the output strings. The parameter ctx stores the necessary information to
the AES substitution-permutation network, in particular the number of rounds
and the round keys defined in a dedicated structure at lines 1–5. The parame-
ter mode indicates whether the function should encrypt or decrypt the input.
The parameter length indicates the length of the input string. Finally the
parameter iv provides an initialization vector for the output of 16 characters
(unsigned char iv[16]). This declared length is actually meaningless for
most C tools because an array typed parameter is adjusted to have a pointer
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type [11, Sect. 6.9.1 and also footnote 79 at p. 71], but CfP nevertheless considers
it as part of the specification in order to generate a more precise context.

ACSL annotations are enclosed in /*@ ... */ as a special kind of com-
ments. Therefore they are ignored by any C compiler. A function precondition
is introduced by the keyword requires right before the function declaration or
definition. It must be satisfied at every call site of the given function. Here
the function aes crypt cbc has 12 precondition clauses, and the whole func-
tion precondition is the conjunction of all of them. Clauses may be tagged with
names, which are logically meaningless but provide a way to easily refer to and
to document specifications. For instance, the first precondition (line 7) is named
ctx valid while the second (line 8) is named ctx init.

We now detail the meaning of each precondition clause. All pointers must
be valid, that is properly allocated, and point to a memory block of appropriate
length that the program can safely access either in read-only mode (predicate
\valid_read), or in read-write mode (predicate \valid). That is the purpose of
preconditions ctx valid, iv valid, input valid and output valid: ctx
must point to a memory block containing at least a single aes context struct,
iv must be able to contain at least 16 unsigned characters (ranging from 0
to 15), while input and output must be able to contain at least length
unsigned characters (ranging from 0 to length − 1). Memory locations, which
are read by the function, must be properly initialized. That is the purpose of
the precondition clauses ctx init, iv init, and input init which initialize
the first 64 cells of ctx->buf as well as every valid cell of iv and input. The
specification clause mode specifies that the mode must be either 0 (encryption)
or 1 (decryption), while the specification clause length mod specifies that the
length should be a multiple of the block size (i.e. 16) as specified in mbed-
TLS. The other clauses restrict the perimeter of the analysis in order to make it
tractable.

The clause ctx rk is a standard equality for an AES context, while the clause
ctx nr is true for 256-bit encryption keys. Finally the clause length aims to
restrict the analysis to buffers of size from 16 to 16672 unsigned characters.

Context Generation. A naive approach for context generation would consider
one precondition clause after the other and directly implement it in C code.
However, this would not work, in general, since requirements cannot be treated
in any order. In our running example, for instance, variables input and output
depends on the variable length: the precondition clauses over this latter must
be treated before those over the former, as well as the generated code for
these variables must initialize the latter, first, and the former afterwards, to
be sound. To solve such problems, one could first record every dependency
among the left-values involved in the specification, and then proceed to gen-
erate C code accordingly. An approach based only on a dependency graph is
nonetheless insufficient for those preconditions that need an inference reasoning
in order to be implemented correctly. As an example, treating the precondition
/*@requires \valid(x+(0..3)) && *(x+4)==1;*/ demands to infer x as an array of 5
elements in order to consider the initialization x[4] = 1; correct.
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Fig. 2. Slightly simplified version of the code generated by CfP for the specification in
Fig. 1. Compared to the actual version, only a few integer casts have been removed for
reasons of brevity.

We now give an overview on how we treat context generation by means of
the plug-in CfP of Frama-C. On the aes crypt cbc function contract, CfP
provides the result shown in Fig. 2 (assuming that the size of unsigned long
is 4 bytes2).

First note that every execution path ends by a call to the function
aes crypt cbc. Up to these calls, the code initializes the context variables
(prefixed by cfp) in order to satisfy the precondition of this function, while
the different paths contribute to cover all the cases of the specification. The ini-
tialization code is generated from sets of constraints that are first inferred for
every left-value involved in the precondition. While inferring these constraints
from the precondition clauses, the implicit dependencies among left-values are
made explicit and recorded in a dependency graph. This latter is finally visited
to guide the code generation process in order to obtain correct C code.

Let us start detailing the generated code for both preconditions about
length (Fig. 1, lines 12–13). First CfP declares a variable cfp length of the
same type as length (line 4). Then it initializes it by means of the Frama-
C library function Frama C unsigned int interval (line 7). It takes two
unsigned int arguments and returns a random value comprised between the
2 This kind of system-dependent information is customizable within Frama-C.
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two. This allows to fulfill the former requirement and to guarantee that Frama-
C-based abstract interpreters will interpret this result with exactly the required
interval. Also, it corresponds to the way that expert engineers would write a
general context for such analyzers. Finally, the requirement length % 16 ==
0 is implemented by the conditional at line 8.

Lines 9–11 implement the preconditions about ctx, a pointer to an
aes context. Instead of allocating such a pointer, the generated code just
declares a local variable cfp ctx and passes its address to the function calls.
This automatically satisfies the precondition on pointer validity. Line 9 initial-
izes the 256 first bytes of the structure field buf by using the Frama-C library
function Frama C make unknown. Assuming that the size of unsigned long
is 4 bytes, 256 bytes is the size of 64 values of type unsigned long. Again,
an expert engineer would also use this library function. Lines 10 and 11 initial-
ize the fields ctx->nr and ctx->rk by single assignments. Here CfP fulfills
the equality requirement ctx->rk == ctx->buf with respect to ctx->rk
instead of ctx->buf because the latter already refers to a memory buffer.

The requirements on function arguments iv, input, and output are imple-
mented by lines 12–17. Let us just point out how CfP defines the respective
variables: while ctx iv is as an array of 16 unsigned char, ctx input and
ctx output are just pointers to dynamically allocated memory buffers. Indeed,
while CfP can infer the exact dimension of the former from the specification, the
dimension of these latter depends on the value of ctx length, which is deter-
mined only at runtime.

The last part of the generated code (lines 18–29) handles the requirement
on mode, which is either 0 or 1. Although the generated conditional may seem
excessive in the case of these particular values, it is nonetheless required in the
general case (for instance, consider the formula mode == 5 || mode == 7).

3 Simplifying ACSL Preconditions into State Constraints

This section presents a way to systematically reduce a function precondition to
a set of constraints on the function context (i.e. function parameters and global
variables).

We first introduce an ACSL-inspired specification language on which we shall
formalize our solution. Then, we define the notion of state constraint as a form
of requirement over a C left-value, which in turn we generate as C code for
initializing it. In order to simplify state constraints the most, we make use of
symbolic ranges, originally introduced by Blume and Eigenmann [4] for compiler
optimization. We finally provide a system of inference rules that formalizes such
a simplification process.

3.1 Core Specification Language

In this work we shall consider the specification language in Fig. 3. It is almost
a subset of ACSL [2] but for the predicate defined, which subsumes the ACSL
predicates \initialized and \valid (see below).
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Fig. 3. Predicates, terms, and types.

Predicates are logic formulæ defined on top of typed term comparisons and
predicates defined. Terms are arithmetic expressions combining integer con-
stants and memory values by means of the classic arithmetic operators. Memory
values include left-values, which are C variables and pointer dereferences (�), and
memory displacements through the operator (++). In particular, M ++ T1..T2

defines the set of memory values {M ++ T1, . . . , M ++ T2} and may only appear
as the outermost construct in a predicate defined. On integers, defined(L)
holds whenever L is an initialized left-value. On pointers, defined(M) holds
whenever M is a properly allocated and initialized memory region.

Term Typing. Terms of our language are typed. A left-value may take either an
integer (ι) or a pointer (κ�) type, while memory values are pointers. We omit
the typing rules for terms, which are quite standard. Let us just specify that
memory values of the form M ++ T have pointer type, as well as the recursive
occurrence M , while T must have integer type. (Memory values M ++ T..T
are typed as set of pointers [2].) Since we do not consider any kind of coercion
construct, terms of pointer type cannot appear where integer terms are expected,
that is, they cannot appear in arithmetic expressions. It also follows that term
comparisons only relate terms of the same type.

Term Normal Forms. For the sake of concision and simplicity, the remainder of
this work assumes some simplifications to take place on terms in order to consider
term normal forms only. In particular, arithmetic expressions are maximally flat-
tened and factorized (e.g. by means of constant folding techniques, etc.). We will
conveniently write single displacements M ++ T as M ++ T..T . We also assume
memory values with displacement ranges to be either of the form x ++ T1..T2

or �L ++ T1..T2. To this end, terms of the form (L ++ T1..T2) ++ T3..T4

simplify into L ++ (T1 + T3)..(T2 + T4). Finally, memory values L ++ 0..0
normalize to L.
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Disjunctive Normal Forms. A precondition is a conjunction of predicate clauses,
each one given by an ACSL requires (cf. example in Fig. 1). As a preliminary
step, we shall rewrite this conjunctive clause into its disjunctive normal form∨

i

∧
j Pij , where each Pij is a predicate literal (or simply literal), that is, a

predicate without nested logic formulæ. A negative literal is either of the form
¬defined(M) or ¬(M1 ≡ M2), with M1,M2 pointers, as every other negative
literal in the input predicates is translated into a positive literal by applying
standard arithmetic and logical laws. A non-negative literal is called a positive
literal. Most of the rest of this section focuses on positive literals: negative literals
and conjunctive clauses are handled in the very end, while disjunctive clauses
will be considered when discussing code generation in Sect. 4.

3.2 State Constraints

We are interested in simplifying a predicate literal into a set of constraints over
C left-values, called state constraints. These are meant to indicate the minimal
requirements that the resulting C function context must implement for satisfying
the function precondition. In Sect. 4, they will be, in turn, converted into C code.

We intuitively consider a state constraint to represent the domain of defini-
tion of a C left-value of the resulting function context state. Since such domains
might not be determined in terms of integer constants only, we shall found their
definition on the notion of symbolic ranges [4]. As we want to simplify state
constraints the most, we define them in terms of the symbolic range algebra pro-
posed by Nazaré et al. [15]. Our definitions are nonetheless significantly different,
even though inspired from their work.

Symbolic Expressions. A symbolic expression E is defined by the following gram-
mar, where z ∈ Z, bop ∈ {+, -, ×, /, %}, and max and min are, respectively, the
largest and the smallest expression operators. We denote E the set of symbolic
expressions.

E :: = z | x | �E | E bop E | max(E,E) | min(E,E).

In the rest of this section, we assume a mapping from memory values to their
respective symbolic expression, and let the context discriminate the former from
the latter.

In Sect. 3.3 we shall simplify symbolic expressions. For this, we need a domain
structure. Let us denote E∞ = E ∪ {−∞; +∞} and Z∞ = Z ∪ {−∞; +∞}. We
define a valuation of a symbolic expression E every map V(E), from E∞ to Z∞,
obtained by substituting every C variable in E with a distinct integer, the symbol
� with a natural number strictly greater than 1 as a multiplicative coefficient,
and interpreting the operators {bop,min,max} as their respective functions
over Z∞ ×Z∞. If we denote ≤∞ the standard ordering relation on Z∞, then the
preorder � on E∞ is defined as follows:

E1 � E2 ⇐⇒ ∀V,V(E1) ≤∞ V(E2).
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The partial order 
 over E∞ is therefore the one induced from � by merging
in the same equivalence class elements x and y of E∞ such that x � y and y � x.
As an example, the elements 0 and min(0, 0) are equivalent.

Lattice of Symbolic Expression Ranges. A symbolic range R is a pair of symbolic
expressions E1 and E2, denoted [E1, E2]. Otherwise said, a symbolic range is
an interval with no guarantee that E1 
 E2. We denote R the set of symbolic
ranges extended with the empty range ∅ and � its partial ordering which is the
usual partial order over (possibly empty) ranges. Any symbolic range [E1, E2]
such that E2 ≺ E1 is therefore equivalent to ∅. Consequently (R,�) is a domain.
Its infimum is ∅ while its supremum is [−∞,+∞]. We denote � and � its join
and meet operators, respectively. It is worth noting that, given (Ei)1≤i≤4 four
symbolic expressions, the following equations hold:

[E1, E2] � [E3, E4] = [min(E1, E3),max(E2, E4)]
[E1, E2] � [E3, E4] = [max(E1, E3),min(E2, E4)] .

In words, min and max are compliant with our ordering relations. In Sect. 3.3,
when simplifying literals, they will be introduced as soon as incomparable for-
mulæ will be associated to the same left-value, resulting into an unsimplifiable
constraint. Also, it is worth noting that � and � are, in general, not stati-
cally computable operators. To solve this practical issue, when these are not
computable on some symbolic expressions, CfP relies on the above equations in
order to delay their evaluations at runtime. Eventually, the code generator will
convert them into conditionals.

State Constraints as Symbolic Ranges with Runtime Checks. Symbolic ranges
capture most minimal requirements over the C left-values of a function pre-
condition: for integer typed left-values, a symbolic range represents the integer
variation domain, while for pointer typed left-values, it represents a region of
valid offsets. They are commonly used in abstract interpreters for range [8,14]
and region analysis [15,19], respectively.

However, some predicate literals cannot be simplified into symbolic ranges,
requiring their encoding as runtime checks, that is, to be verified at runtime by
means of conditionals. We denote RTC(T1 cop T2) a runtime check between two
terms T1 and T2. We then call state constraint any pair C = R ⊕ X given by a
symbolic range R and a set X of runtime checks. We denote π1(C) (resp. π2(C))
the first (resp. the second) projection of C, that is, R (resp. X).

3.3 Inferring State Constraints

We now formalize our solution for simplifying a positive literal into a set of state
constraints as a system of inference rules. Negative literals, as well as conjunctive
clauses, are handled separately at the end of the section.
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Simplification Judgments. Simplification rules are given over judgments of the
form

Σ � P ⇒ Σ′,

where P is a predicate literal, and Σ, Σ′ are maps from left-values to state
constraints. Each judgment associates a set of state constraints Σ and a literal
P with the result of simplifying P with respect to the left-values appearing in
it, that is, an updated map Σ′ equal to Σ but for the state constraints on these
latter. Figures 4 shows the formalization of the main literal simplifications. This
system does not assume the consistency of the precondition: if this is inconsistent,
no rule applies and the simplification process fails.

Predicates defined. Figure 4a provides the simplification rules for literal
defined. Rules Variable and Dereference enforce the initialization of a
left-value L in terms of the symbolic range neutral ival(κ). This latter is respec-
tively defined as ∅, for κ a pointer type, and [−∞,+∞], for κ integer type. These
are quite common initial approximations when inferring variation domains of
either memory or integer values.

Rules Range-1 and Range-2 enforce the validity of a memory region deter-
mined by the displacement range L ++ (T1..T2). The first premise of these
rules established whether L is already enforced in Σ to be an alias of a mem-
ory value M , as indicated by the singleton range [M ; M ]. If not, rule Range-
1 first enforces the initialization of L and the soundness of the displacement
bound determined by T1 and T2, and then it updates the region of valid offsets
pointed to by L to include the range [0; T2]. In practice, predicates 0 ≤ T1 ≤ T2

are added only if not statically provable. Moreover, note that we do not con-
sider T1 as the lower bound of the symbolic range, because C memory regions
must start at index 0. Rule Range-2 handles the case of L alias of M in Σ
by enforcing the validity of the memory region determined by M to take into
account the displacement range (T1..T2). In particular, since single displace-
ments only may appear in memory equality predicates (cf. rule Memory-Eq),
M is of the form L′ ++ (T3..T3), and the validity of the alias L within the
range (T1..T2) is obtained by requiring the validity of the displacement range
L′ ++ (min(T1, T3)..max(T2, T3)).

Rule Idempotence is provided only to allow the inference process to
progress.

Term Comparison Predicates. Rules in Fig. 4b formalize the simplification of
integer term comparison and memory equality predicates. The first two are actu-
ally rule schema, as Cmp-1 and Cmp-2 describe term comparison simplifications
over the integer comparison operators {≡, ≤, ≥}. (Strict operators are treated
in terms of non-strict ones.) Let us detail rule Cmp-1 with respect to a generic
operator cop. The rule applies whenever T1 cop T2 can be rewritten by means
of classic integer arithmetic transformations as L cop T3, that is, as a left-value
in relation cop with an integer term T3. If so, Cmp-1 reduces the symbolic range
of L with respect to the one given by ival(cop, T3). This latter function takes a
comparison operator cop and an integer term T as arguments, and returns as
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Fig. 4. Simplification of literals into state constraints.
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result the symbolic range [T ; T ] when cop is ≡, [−∞; T ] (resp. [T ; +∞]) when
cop is ≤ (resp. ≥). Since both L and T3 are integer typed terms, there is no
aliasing issue here. Rule Cmp-2 can always be applied, although we normally
consider it when Cmp-1 cannot. In that case, rule Cmp-2 conservatively enforces
the validity of the term comparison by means of a runtime check.

Aliasing. Rule Memory-Eq handles aliasing between two pointers with single
displacement M1 and M2. Assuming both of the form L{i,j} ++ T{i,j}, with
distinct i, j ∈ {1, 2}, a pointer M ′ is first defined as Lj with single displacement
T3, this latter determined by summing the offsets −Ti and Tj together. Such a
pointer is then enforced to be defined, and in the case that the actual region
pointed by Lj is established to be larger then the one pointed by Li, then Li is
considered an alias of M ′. Although rather conservative, due to the fact that �
is not statically computable in general, the second to last premise is important
for ensuring soundness.

Negative Literals. Figure 4c shows the rules for negative literals. These rules
do not simplify literals into state constraints, but rather ensure precondition
consistency. For instance, ¬defined(x)∧x == 0 is inconsistent as x should be
defined with value 0 and undefined at the same time. In such a case, the system
must prevent code generation.

Rule Not-Defined just checks that the memory value M does not appear
in the map Σ, which suffices to ensure that M is not yet defined.

Rule Memory-Neq applies under the hypothesis that both pointers M1 and
M2 determine different memory regions. In particular, the two are not aliases
whenever each base address of one pointer does not overlap with the memory
region of the other.

Conjunctive Clauses.
∧

i Pi, on either positive or negative literals Pi, are handled
sequentially through the following And rule. Given the definition of Memory-
Neq and Not-Defined, it assumes that negative literals are treated only after
the positive ones, by exhaustively applying rule Memory-Neq first, and rule
Not-Defined afterwards.

And
Σ0 � P1 ⇒ Σ1 Σ1 � P2 ⇒ Σ2 · · · Σn−1 � Pn ⇒ Σn

Σ0 �
∧

i

Pi ⇒ Σn

Dependency Graph on Memory Values. On a conjunctive clause, the system of
inference rules in Fig. 4 not only generates a map Σ, but it also computes a
dependency graph G on memory values. (Considering only the formalization of
this section, the memory values of the graph are actually left-values only. How-
ever, when considering separately the ACSL predicates \initialized and \valid

instead of defined, this is not true anymore.) This graph is necessary for ensur-
ing, first, the soundness of the rule system with respect to mutual dependency
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on left-values in Σ, and, consequently, for the correct ordering of left-value ini-
tializations when generating C code (cf. Sect. 4).

Generally speaking, each time a rule that needs inference is used in a state
constraint derivation for some left-value L (e.g. Dereference, Range-1, Cmp-
1, etc.), edges from L to every other left-value involved in some premise are added
to the dependency graph G. Such derivation fails as soon as this latter operation
makes the graph G cyclic.

Example. When applying the inference system on our example in Fig. 1, the final
map associates the integer length to [16, 16672]⊕{RTC(length%16 ≡ 0)} and
the array input to [0,length − 1] ⊕ ∅, along with the dependency graph in
Fig. 5.

ctx->rk

*ctx

ctx->nr ctx->buf

iv + (0 .. 15)

*(iv + (0 .. 15))

ctx->buf[0 .. 63]

ctx mode length

input + (0 .. length - 1) output + (0 .. length - 1)

iv input output

*(input + (0 .. length - 1))

Fig. 5. Dependency graph for the aes crypt cbc preconditions generated by CfP.

The system of inference rules in Fig. 4 is sound: given a conjunctive clause
C, the simplification procedure on C always terminates, either with Σ or it fails.
In the former case, for each left-value L in C, state constraints in Σ satisfy
respective literals in C (that we denote as Σ |= C, its formal definition being
omitted here).

Theorem 1. For all conjunctive clause C, either ∅ � C ⇒ Σ and Σ |= C, or it
fails.

4 Generating C Code from State Constraints

This section presents the general scheme for implementing preconditions,
through state constraints, in a C language enriched with one primitive function
for handling ranges. In practice, such primitive is meant to be analyzer-specific
so as to characterize state constraints as precisely as possible. As an example,
we report on the case of our tool CfP. However, for the sake of conciseness,
we do neither detail nor formalize the code generation scheme. We nevertheless
believe that the provided explanation should be enough to both understand and
implement such a system in a similar setting.
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Generating Code from a Conjunctive Clause. Consider a conjunctive clause C
and the pair (Σ, G), respectively given by the map of state constraints and the
dependency graph of C, inferred by the system of rules in Fig. 4. We shall show
the general case of disjunctive normal forms

∨n
i=1 Ci later on.

To generate semantically correct C code, we topologically iterate over the left-
values of G so as to follow the dependency ordering. For every visited left-value L,
we consider its associated state constraint C = R ⊕ X in Σ. Then, the symbolic
range R is handled by generating statements that initialize L. For most con-
structs, these statements are actually a single assignment, although a loop over
an assignment may be sometimes needed (e.g. when initializing a range of array
cells). In particular, initializations of left-values L to symbolic ranges [T1, T2] are
implemented by means of the primitive function make range(κ, T1, T2), where κ
is integer or pointer type, and T1 (resp. T2) are the C translation of T1 (resp.q T2).
In practice, this function must be provided by the analyzer for which the context
is generated, so that, when executed symbolically, the analyzer’s abstract state
will associate abstract values [T1, T2] to respective left-values L. Finally, condi-
tionals are generated to initialize left-values with symbolic expressions involving
min and max.

Once L has been initialized, the rest of the code is guarded by conditionals
generated from runtime checks in X. To resume, the generation scheme for L is
the following:
1 /* initialization of L from R through assignments */
2 if (/* runtime checks from X */) {
3 /* code for initializing the next left-values */ ...; } }

After the initialization of the last left-value, the function under considera-
tion (in our running example, the function aes crypt cbc) is called with the
required arguments.

Handling Disjunctions. We rewrite preconditions into disjunctive normal form∨n
i=1 Ci as a preliminary step. Then we process each disjunct Ci independently by

applying the inference system in Fig. 4 and the code generation scheme previously
described.

We now describe the code generation scheme of such a precondition
∨n

i=1 Ci

given the code fragments for each and every of its disjunct Ci. If n = 1, then
the code fragment of C1 is directly generated. Otherwise, an additional variable
cfp disjunction is generated and initialized to the interval [1, n]. Then, a
switch construct (or a conditional if n = 2) is generated, where each case
contains the fragment Bi respective to Ci. To resume, the context is generated
as a function including the following code pattern:
1 cfp_disjunction = make_range(ι, 1, n);
2 switch (cfp_disjunction) {
3 case 1: { B_1; break; }
4 case 2: { B_2; break; }
5 ...
6 case n: { B_n; break; }
7 }

Primitives in CfP. Our tool CfP follows the generation scheme just
described. It implements make range in terms of the Frama-C built-ins
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Frama C τ interval, with τ a C integral type, and Frama C make unknown
to handle symbolic ranges for integers and pointers, respectively. These built-ins
are properly supported by the two abstract interpretation-based value analysis
tools EVA [3] and TIS-Analyzer [9].

5 Implementation and Evaluation

We have implemented our context generation mechanism as a Frama-C plug-in,
called CfP for Context from Preconditions, written in approximately 3500 lines
of OCaml. (Although Frama-C is open source, CfP is not, due to current contrac-
tual obligations.) CfP has been successfully used by the company TrustInSoft for
its verification kit [22] of the mbed-TLS library, an open source implementation
of the SSL/TLS protocol. In this latter use case, CfP is used, among others, to
generate contexts for customizing the initialization of structure md5 context
needed by functions md5 starts, md5 update and md5 process. This struc-
ture is defined as follows.
1 typedef struct {
2 unsigned long total[2]; /*!< number of bytes processed */
3 unsigned long state[4]; /*!< intermediate digest state */
4 unsigned char buffer[64]; /*!< data block being processed */
5 unsigned char ipad[64]; /*!< HMAC: inner padding */
6 unsigned char opad[64]; /*!< HMAC: outer padding */
7 } md5_context;

We now evaluate our approach, and in particular CfP, in terms of some quite
natural properties, that is, usefulness, efficiency, and quality of the generated
contexts.

This work provides a first formal answer to a practical and recurring problem
when analyzing single functions. Indeed, the ACSL subset considered is expressive
enough for most real-world C programs. Most importantly, CfP enables any tool
to support a compelling fragment of ACSL at the minor expense of implementing
two Frama-C built-ins, particularly so if compared to the implementation of a
native support (if ever possible). Finally, CfP has proved useful in an operational
industrial setting in revealing some mistakes in contexts previously written by
hand by expert verification engineers. Although we cannot disclose precise data
about these latter, CfP revealed, most notably, overlooked cases in disjunctions
and led to fix incomplete specifications.

CfP is able to efficiently handle rather complex ACSL preconditions: the gen-
eration of real-world contexts (e.g. the one of Fig. 2) is usually instantaneous.
Although the disjunctive normal form can be exponentially larger than the orig-
inal precondition formula, such transformation is used in practice [13,18] and
leads to better code in terms of readability and tractability by the verifica-
tion tools. This approach is further justified by the fact that, in practice, just a
small number of disjuncts are typically used in manually-written ACSL specifica-
tions. Concretely, CfP and its use in combination with TIS-Analyzer or EVA have
never suffered from the state-explosion problem or any other unefficiency issue in
practice.
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Our approach allows to generate contexts which are reasonably readable and
follows code patterns that experts of the Frama-C framework use to manually
write. In particular, when handling disjunctions, CfP factorizes the generated
code for a particular left-value as soon as the rule system infers the very same
solution in each conjunctive clause. For instance, in our running example, only
the initialization of the variable mode depends on the disjunction mode == 0
|| mode == 1. Hence all the other left-values are initialized before considering
cfp disjunction (cf. Fig. 2).

We conclude by briefly discussing some current limitations. Our ACSL frag-
ment considers quantifier free predicate formulæ, and no coercion constructs
are allowed. Support for casts among integer left-values should be easy to add,
whereas treating memory addresses as integers is notoriously difficult. We leave
these for future work.

6 Related Work

Similarly to our approach, program synthesis [13,17,21] automatically provides
program fragments from formal specifications. However, the two approaches have
different purposes. Once executed either symbolically or concretely, a synthesized
program provides one computational state that satisfies the specification, while
a context must characterize all such states. In particular, not only every state
must satisfy the specification but, conversely, this set of states must contain
every such possible one.

Some code generators also have to deal with variable dependencies, such as
compilers for Lustre-like languages [7]. However, the aims are at odds since our
goal is not to generate code from a higher language to a lower one to concretely
execute it, but to characterize all states represented by a formal specification.

In software testing, contexts are useful for concentrating the testing effort
on particular inputs. Most test input generation tools, like CUTE [20] and
PathCrawler [5,10], allow to express contexts as functions which, however, the
user must manually write. Some others, like Pex [1], directly compile formal
preconditions for runtime checking.

The tool STADY [16] shares some elements of our approach. It instruments C
functions with additional code for ensuring pre- and postconditions compliance,
allowing monitoring and test generation. However, the tool performs a simple
ACSL-to-C translation, it does neither take into account dependencies among C
left-values, nor it inferences their domain of definition.

7 Conclusion

This paper has presented a novel technique to automatically generate an analy-
sis context from a formal precondition of a C function. The core of the system
has been formalized, while we provide enough details about code generation to
allow similar systems to be implemented. Future work includes the formalization
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of code generation as well as statements and proofs of the fundamental proper-
ties of the system as a whole. It also includes evaluating the presented system
for different techniques such as symbolic execution or testing tools. A running
example from the real world has also illustrated our presentation. The whole
system is implemented in the Frama-C plug-in CfP. It generates code as close as
possible to human-written code. It is used in an operational industrial setting
and already revealed some mistakes in contexts previously written by hand by
expert verification engineers.
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A Response to Reviewer Comments

A.1 Reviewer 1

– The reviewer points out that one important issue has not been addressed in
the paper: how our code generation might be tailored for.
The reviewer is right. While we argue in the introduction that our system may
be used for different analysis techniques, this is not demonstrated in the paper
since CfP has only been evaluated with 2 different abstract interpreters for
the time being. We are however confident about the possible tailoring because
the theoretical construction, which is the core of our work, remains the same.
Also, adapting the code generator to other settings would not require many
efforts, even if we leave it as future work. We have clarified our stance by
adding in the Conclusion the following sentence:
“It [Future work] also includes evaluating the presented system for different
techniques such as symbolic execution or testing tools.”

– The reviewer assumes we rely implicitly on some formal semantics, and thinks
that it would be better to specify them in the paper.
Indeed, Theorem 1 relies on a formal definition of Σ |= C, while we only
provide its intuition in the paper. The formal definition has been omitted
because we have not enough room to add it and because it does not represent
the core of our system. It should be clearer now because we have added “, its
formal definition being omitted here” after introducing symbol |=.

– The reviewer thinks that work for code generation from executable speci-
fication languages should be mentioned as well (notably, Lustre and logic
synthesis in hardware).
We have added a brief comparison with Lustre, but none for logic synthesis in
hardware. Indeed our paper already referred to program synthesis, which is
closer to our work that logic synthesis in hardware, while still quite different.
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A.2 Reviewer 2

– The only reviewer’s important comment is about a lack of precision in our
sentence “For a 64-bit architecture, 256 bytes is the size of 64 values of type
unsigned long.”. The reviewer is right. We have rewritten the sentence as
follows: “Assuming that the size of unsigned long is 4 bytes, 256 bytes is
the size of 64 values of type unsigned long.”
Previously, in the same section, we have also rewritten “(assuming a 64-bit
architecture)” by “(assuming that the size of unsigned long is 4 bytes)”
and we have added a footnote indicating that this kind of system-dependent
information is customizable within Frama-C.

– All the reviewer’s minor comments and typos have been addressed.

A.3 Reviewer 3

– The only reviewer’s concern is that the paper gives no evidence of generating
code from specifications of other functions besides that from the initial moti-
vating example. (S)he has consequently related questions.
We have extended the first paragraph of Sect. 5 (Implementation and Evalu-
ation) as follows:
“In this latter use case, CfP is used, among others, to generate contexts for
customizing the initialization of structure md5 context needed by functions
md5 starts, md5 update and md5 process. This structure is defined as
follows.
<code example added>”
Also, we have extended the paragraph explaining why DNF explosion is not
an issue in practice as follow: “Concretely, CfP and its use in combination with
TIS-Analyzer or EVA have never suffered from the state-explosion problem or
any other unefficiency issue in practice.”

A.4 Other Improvements

– Several minor changes (fixing typos, or using better/more standard math
symbols) have been made.
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Abstract. Randomly generated programs are popular for testing com-
pilers and program analysis tools, with hundreds of bugs in real-world C
compilers found by random testing. However, existing random program
generators may generate large amounts of dead code (computations
whose result is never used). This leaves relatively little code to exer-
cise a target compiler’s more complex optimizations.

To address this shortcoming, we introduce liveness-driven random pro-
gram generation. In this approach the random program is constructed
bottom-up, guided by a simultaneous structural data-flow analysis to
ensure that the generator never generates dead code.

The algorithm is implemented as a plugin for the Frama-C frame-
work. We evaluate it in comparison to Csmith, the standard random C
program generator. Our tool generates programs that compile to more
machine code with a more complex instruction mix.

Keywords: Code generation · Random testing · Data-flow analysis
Program optimization

1 Motivation

Optimizing compilers for real-world programming languages are complex pieces
of software. Compiler bugs may manifest in several ways: As compiler crashes,
missed optimizations, or as silent miscompilations. The third category is espe-
cially serious as it may introduce bugs in correct programs. Such wrong-code
bugs may invalidate all correctness guarantees provided by source-level verifica-
tion of safety-critical (and other) software systems.

Two main avenues of work address these problems: compiler verification and
compiler testing. Compiler verification has seen much research [4], with Comp-
Cert as a prominent example [9]. However, such compilers have not entered
the mainstream yet: Compiler verification is difficult and time-consuming, and
verified compilers therefore perform fewer optimizations and target fewer CPU
architectures than others.

A different approach is to test compilers in a way that instills confidence.
Standard compiler test suites exist for exercising C compilers, in particular for
testing their conformance to various details of the standard [15,16]. In addition,
c© Springer International Publishing AG, part of Springer Nature 2018
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randomized differential testing has gained prominence in recent years. Compiling
many random programs with various compilers and comparing the behaviors of
the generated binaries can uncover input programs that cause compiler crashes
or miscompilations. The best-known example of this approach is the work of
Yang et al. on Csmith [20], a generator of random C programs. Csmith gener-
ates programs that are fully self-contained (including all their inputs in initialized
global variables) and conform to the C standard by construction. If two compil-
ers produce code that behaves differently for a Csmith-generated program, one
of the compilers must contain a miscompilation bug. Testing of C compilers with
Csmith has uncovered hundreds of bugs in total, including crashes and miscom-
pilations in every compiler under test. This included bugs in (unverified parts
of) the CompCert verified C compiler [20].

This article describes a random generator of C programs developed for a
project on finding missed optimizations in C compilers. Inspired by the successes
of Csmith, in this project we generate random C programs, compile them using
various compilers, then use custom tooling to search for possible optimizations
in the resulting binaries. (The details are described in a separate paper [2].)

Starting with Csmith as our program generator, we found early on that it was
not an optimal fit for our intended use case: Despite generating realistic-looking
programs with complex arithmetic expressions, accesses to global and local vari-
ables including through pointers, structures, and arrays, as well as nested loops
and branches, it produces large amounts of dead code whose results are never
used. (See our experiments in Sect. 4.) Dead code elimination, a standard part
of every optimizing compiler, can thus remove large parts of the code generated
by Csmith, leaving very little relevant code for the remaining more interesting
optimizations. Csmith often generate functions of several hundred lines of code
that are compiled to ten machine instructions, representing only a small fraction
of the computations present on the source code level.

In this paper we address this problem with our new liveness-driven random
generator ldrgen. Our tool uses liveness analysis during program generation to
avoid generating dead code. In the following sections we describe liveness-driven
program generation; the implementation of our tool as a Frama-C plugin; and its
experimental evaluation, showing that ldrgen generates programs that compile
to a larger amount of code and a more complex instruction mix than programs
generated by Csmith.

2 Fully Live Programs

In this section we briefly recall the basics of liveness analysis and then present
our novel formulation as a set of structural inference rules.

2.1 Principles of Liveness Analysis

A variable is called live at a program point if the value it holds at that point
may be read in the future, without an intervening redefinition; otherwise, it is
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called dead. For example, in a code snippet like x = a + b; x = 0; return x;,
the variable x is dead after the first assignment but live after the second one
(because it is used in the return statement). We can extend the notion of liveness
from variables to the assignment statements defining them: An assignment v = e
is live iff the variable v is live just after this statement. The first assignment
to x above is dead, the second one is live. (Unfortunately, some authors use the
term dead code to refer to unreachable code, as in if (false) x = y. These
concepts are not the same; our use of the terms live and dead does not refer to
reachability.)

Dead assignments without other side effects are useless and can be removed
from the program. Even mildly optimizing compilers implement a dead code
elimination pass that would completely remove the addition from the first pro-
gram fragment above. Our goal is to generate only live code, i.e., only code that
does not contain any such opportunities for dead code elimination.

Liveness analysis is one of the classical data-flow analyses [13]. It is a back-
ward, may analysis traditionally performed as backward fixed-point iteration
over a program’s control-flow graph. A statement S in the control-flow graph
has a live-in set S• and a live-out set S◦ which capture the sets of live vari-
ables before and after execution of S. Every statement S also has a transfer
function fS relating these sets. Figure 1 shows the transfer functions for assign-
ments, if statements, and while loops. Liveness information is noted on the
edges of the control flow graph. In the equations, FV (e) denotes the set of all
variables in expression e.

Fig. 1. Liveness transfer functions

The transfer function for an assignment v = e is said to kill the variable v
and generate all the variables in e. The transfer functions for if statements
and while loops kill nothing and generate the variables in their condition c. The
live-in set S• of a loop S has a recursive dependency on itself: It is the same
as the body’s live-out set B◦, on which the body’s live-in set B• depends. The
desired solution for S• is the least fixed point of the system of equations, which
can be found efficiently by propagating data-flow information backwards around
the loop.
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2.2 Recognizing Fully Live Programs

We will call a program fully live if all of the assignment statements it contains are
live. This section develops an inference system characterizing fully live programs.

Figure 2 shows the abstract syntax of our programming language of interest,
a subset of C function bodies without declarations. The language contains vari-
ables, constants, and all side-effect-free arithmetic and bitwise operators of C.
Statements are assignments (the only source of side effects), return statements,
if statements and general while loops. In contrast to C’s concrete syntax, we
view the semicolon ; as a statement separator, not a terminator. For now, the
language does not include for loops, nor any structures, arrays, or pointers. All
variables are considered local.

Fig. 2. Abstract syntax of a C-like programming language

Figure 3 shows a system of inference rules that characterize fully live pro-
grams. In these rules we use a notation similar to Hoare triples. A liveness triple

〈S•〉 S 〈S◦〉
means that the variables in the set S• are live immediately before the statement S
(live in), and the variables in S◦ are live immediately after S (live out). A
program S is fully live iff there is a set of variables S• such that the liveness
triple 〈S•〉 S 〈∅〉 is derivable in the system.

Intuitively, the system of inference rules encodes two things. First, the rules
are an alternative presentation of the transfer functions of liveness analysis. A
triple 〈S•〉 S 〈S◦〉 that appears in a valid derivation corresponds to a data-
flow equation S• = fS(S◦) where fS is the transfer function for the state-
ment S. For example, the transfer function fv=e for an assignment v = e is
just fv=e(S◦) = (S◦ \ {v}) ∪ FV (e), as in the side condition of the Assign rule.
Similarly, the Sequence rule encodes the composition of transfer functions, and
the If rule encodes the split and join of data-flow information along different
program paths.

Second, the other side conditions add a system of constraints to ensure full
liveness: Any assignment statement appearing in a fully live program S (i.e., for
which a derivation of 〈S•〉 S 〈∅〉 for some S• exists) is itself live. This follows
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Fig. 3. System of inference rules for fully live programs

directly from the Assign rule’s side condition v ∈ S◦. For example, a triple of
the form

〈S•〉 x = a; x = b 〈S◦〉
can never be derived in the system because the first of the two assignments is
dead. The Sequence rule says that to derive this triple, there must be some
intermediate set S′ of variables such that x ∈ S′ due to Assign on x = a while
at the same time S′ = (S \ {x}) ∪ {b} due to Assign on x = b. This is a
contradiction, so the derivation attempt must fail.

While the other rules are straight-forward, the While rule deserves some
discussion. Unlike the two branches of the if statement, the whole loop’s live-
out set S◦ is not identical to the loop body’s live-out set B◦: Typically there are
loop-carried dependences, i.e., cases where a variable is set on one iteration of
the loop and its value is read on a later iteration. Such variables are live out of
(and live into) the loop body, but if they are no longer used once the loop has
terminated, they are not live out of the loop. When performing a derivation in
the system, we must guess or calculate the set of these additional variables.

Let fS denote the liveness transfer function corresponding to the loop body
statement S. Then from the liveness triple 〈B•〉 S 〈B◦〉 we have B• = fS(B◦),
and the equation B◦ = S◦ ∪ B• ∪ FV (c) means that B◦ is a fixed point of the
function λ B. (S◦ ∪ fS(B) ∪ FV (c)). The minimality side condition additionally
specifies that we are interested in the least fixed point of this function. This least
fixed point exists and is unique [13].

In Fig. 4 we illustrate the use of the inference system to prove full liveness of a
program taking an input variable n (assumed to be non-negative) and returning
the n-th Fibonacci number. We omit some details to focus on the analysis of the
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Fig. 4. Example derivation proving full liveness.

loop. Note that only the return variable a is live after the loop. However, the
live-out set of the loop’s body is {a, b, n}. This includes the return variable a and
the variable n that is used in the loop condition. It also includes the variable b,
which is the element computed by fixed point iteration: The value of b at the
end of the loop body will be used on the next loop iteration, if any. Conversely,
if b were not live at some point in the loop body, our inference system would not
allow derivation of a triple for the assignment b = t. Indeed, all assignments in
the loop body satisfy the condition that they define variables that are live after
the assignment. That is, this program is fully live by our definition.

2.3 Limitations of the System

Note that fully live programs may still contain opportunities for simple opti-
mizations that remove code that does not have interesting effects. For example,
programs accepted by the inference system above may contain fragments like
if (0) { ... } else { ... } where one of the branches of the if statement
is unreachable and thus irrelevant; or assignments like y = ...; x = y - y;
where the computation for the value of y is irrelevant for x’s final value of 0.
Our inference rules do not consider the semantics of the code in enough detail
to exclude such cases.

Our claims with regards to full liveness are relative to a purely syntactic
notion of liveness that does not consider such semantic issues. In particular, we
cannot guarantee that the liveness analysis embedded in these rules is equivalent
to liveness analysis as performed by any given compiler. Any other analyses or
transformations performed by the compiler before liveness analysis may influence
the results, typically making the compiler’s results more precise than ours.

As our experimental results in Sect. 4 show, our generator performs well
nonetheless, so we can leave refinements of the system for future work.
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2.4 Generating Fully Live Programs

The inference rules can be translated almost directly into an executable random
(or exhaustive) generator of fully live programs. Like traditional liveness analysis,
generation proceeds backwards, i.e., in the direction opposite control flow.

The side conditions of the inference rules ensure that a fully live program
always ends in a return statement, as no other statement may have an empty
live-out set. The generator can thus start by picking a random program variable v
and generating a statement return v with live-in set L = {v}. It then iteratively
prepends random statements S to the current program fragment and updates the
live-in set according to fS(L). The possibilities for the generation of S are guided
by L. In particular, if the generator decides to generate an assignment statement,
the target variable v must be an element of L at that point. Conversely, if L
ever becomes empty, generation of the current block of code must stop at that
point: Any code preceding that point would be dead. Figure 5 shows pseudocode
of such a generator in an OCaml-like functional language.

Every statement generation function takes a live variable set L (representing
the live-out set S◦ of the statement S to be generated) and returns a pair of
a newly generated statement and an updated live variable set according to the
statement’s transfer function. We iterate statement generation and collect a list
of statements forming a block. In this presentation we omit helper functions such
as the ones for generating random variables and expressions.

As before, the handling of loops merits more discussion. Just as the inference
system needs a minimal set B• containing new variables that are live into and out
of the loop body, the random generator must synthesize such a set of variables.
But here the problem is more difficult: During inference, we can start with an
initial live-out set and derive the eventual live-in set by fixed-point iteration.
During code generation this is not possible since we cannot analyze the loop
body before we have constructed it. Instead, we first generate a random set of
newly live variables and let this choice guide generation of the loop’s code.

This solution relies on the following observation: The new variables we are
interested in are ones that are defined before the loop, may be defined on some
loop iteration, and then used on some later iteration. In the example of Fig. 4, this
is the case for variable b, which stores the next Fibonacci number for assignment
to a on the subsequent iteration. Using the names in the While rule of Fig. 3,
the set of these ‘new’ variables is B′ = B◦\(S◦∪FV (c)). It follows that B′ ⊆ B•,
i.e., every b ∈ B′ is live into the loop.

To generate a fully live loop, we choose a random set B′ of new variables
and generate a loop body in a way that ensures that B◦ = S◦ ∪ B′ ∪ FV (c) is a
least fixed point of the loop. For this we add B′ to the live variable set L before
generating a loop body block (along with the live variables FV (c) generated
by the loop condition). The generated loop body may or may not define or
use variables in B′, and thus these variables may or may not be live into the
generated block. However, we must force them to be used in the loop body and
be live into the body: If there were some b in the generated B′ that is not live
into the loop body, we would violate the condition B′ ⊆ B• established above.
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Fig. 5. Pseudocode of a liveness-driven random program generator.

On the other hand, if b were live into the loop body but did not have a use
anywhere in the body, then B• would not be minimal and hence B◦ would not
be a least fixed point of the constraint system.

To ensure a correct, minimal solution, we therefore find the set V of all b ∈ B′

that are not in L′ or that are in L′ but have no use in the generated loop body.
We pick a random live variable v ∈ L′ and prepend an assignment v = e to the
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generated loop body, where e is an expression containing all the variables in V .
This final loop body ensures that all variables in B′ are live into it and used in
it, hence ensuring that B◦ = S◦ ∪ B′ ∪ FV (c) is a least fixed point of the loop’s
liveness constraint system.

A small detail not illustrated in the pseudocode is the case when L′ is empty
at the beginning of the generated loop body. This can only be the case if the
first statement in the body is an assignment of a constant expression (i.e., not
using any variables) to some variable v, since such assignments are the only
statements that can remove variables from the live variable set without adding
any new ones. In this case, we replace this assignment’s right-hand side with the
expression e generated as above.

3 Implementation

We have implemented the random program generation algorithm sketched above
as a plugin for Frama-C [7]. Frama-C is a general, extensible framework for
source-level analysis and transformation of C programs. It is written in OCaml
and can be extended with plugins written in that language. For this work, we
do not need any advanced Frama-C features but benefit from its AST (abstract
syntax tree) type definitions, utilities for managing variables and constructing
AST fragments, and its pretty-printer for outputting the generated AST as C
source code. As these general parts are provided by Frama-C, ldrgen itself can
be quite small: It consists of only about 600 lines of generator code, plus some
utilities and configuration.

ldrgen is free software, available at https://github.com/gergo-/ldrgen.

3.1 Random Generation

The core of the generator has the same structure as the pseudocode in Fig. 5.
After generating an empty function definition and a return statement, it fills in
the function’s body by generating a fully live sequence of statements as in the
pseudocode. Statements are represented by AST fragments; we never need to
worry about generating actual C syntax. The current version of ldrgen always
generates a single function.

Random expressions are generated by choosing an operator among the arith-
metic operators available in C and recursively generating the appropriate num-
ber of operand expressions. At this point, C’s type system becomes relevant; if
needed, we insert type casts to ensure all operands of an operator have the same
type. Type casts are also needed in some other cases: Bitwise operators and the
modulo operator cannot be applied to floating-point numbers in C, so we insert
conversions to integer types in such cases.

Many C operators may invoke undefined behavior when applied to inappro-
priate values. Two examples are division by zero and signed integer arithmetic
overflow. Unlike Csmith in its default mode, ldrgen does not try to guard against
such undefined operations, except for two cases that compilers have repeatedly

https://github.com/gergo-/ldrgen
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warned us about: We clamp the right-hand-side operands of bit-shift operations
to the bit size of the expression on the left-hand-side, and we always gener-
ate division and modulo operations of the form e1/(e2+c) for some constant c
instead of just e1/e2. The idea behind this is that e2+c is less likely to evaluate
to zero than a random expression in general. This approach is primitive, but we
have found it to work well in practice.

Leaves of expressions are constants or variables. For constant literals we
simply generate a random number. For a variable use we either use a previously
used variable or generate a new one. Variables generated in this way may be
local variables or function parameters. Both can be used in expressions, but we
only generate assignments to locals, not to parameters.

Some of the generator’s choices are weighted by manually chosen parameters
to ensure generation of somewhat more realistic-looking programs. For example,
we prefer generation of basic arithmetic operations to bitwise operators. We
also ensure that loop and branch conditions are not constant expressions, i.e.,
that they contain at least one variable. In order to avoid trivial non-termination
issues, we also ensure that every loop body’s final statement is an assignment to
some variable that occurs in the loop condition. If there were no modification
of any of these variables at all, a loop once entered could never terminate. Even
so, termination is not at all guaranteed.

Bottom-up generation of the function’s body may stop if there are no more
live variables, or if a user-defined limit is reached. In this latter case, there may
remain live local variables at the start of the function’s body. Their liveness
means that they may be used without being assigned to, so we must ensure that
they are initialized. We therefore finalize the function definition by initializing
all such live-in variables to constants or to the values of function parameters.

3.2 Configuration

The generator’s behavior may be tuned using command-line arguments. These
may specify features of the sub-language of C that is used. For example, the
user may request the generation of code that only uses integer types, or only
floating-point types. They may also specify that no bitwise operations or no
divisions should be generated, and whether loops may be generated. Other flags
specify structural properties: The maximal number of statements per block, and
the maximal nesting depths of statements and expressions.

ldrgen’s random generation uses OCaml’s standard pseudorandom number
generator, which can be seeded with a random seed or with a seed value specified
as a command line argument. Invoking a given version of ldrgen with a fixed
set of arguments and a fixed seed thus always gives the same reproducible result.

3.3 Extensions to the Basic Model

We describe two extensions to the core language of Fig. 2 that are already imple-
mented in ldrgen: very limited uses of pointers and for loops over arrays.
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First, in addition to the arithmetic types used so far, we can generate function
parameters of type T * (pointer to T) for some arithmetic type T. A parameter p
of such type can be used in generated code as *p. We currently do not generate
assignments to such dereferenced pointers, nor any pointer arithmetic.

Second, we want to generate arrays and restricted forms of loops over them
in order to exercise loop optimizations such as unrolling or vectorization. For
this we generate pointer arguments T *arr which are only used in for loops of
the following form:

v = . . .;
for (unsigned int i = 0; i < N; i++) {

v = v ◦ f(arr[i]);
}

Here, N is a global variable considered to hold the array’s size, f(arr[i]) is
a random expression involving arr[i], and ◦ is a randomly chosen binary arith-
metic operator. This loop pattern implements a map-reduce operation, mapping
some function f over the array and reducing (folding) the result with ◦. It is
currently the only kind of for loop we implement, but this would be easy to
generalize.

Similar forms of loops are already generated by Csmith, but there their results
are virtually never used. Csmith’s loops are therefore completely eliminated by
compilers instead of being vectorized. In ldrgen, we choose a loop result vari-
able v that is live after the loop to ensure that it is used, and the loop exposed
to the compiler’s loop optimizer.

3.4 Future Extensions

In the future, we are planning to extend ldrgen to generate structure types and
allow the use of their members.

In the longer term, ldrgen will also be extended to support programs consist-
ing of several random functions which may call each other. We are not planning
to support non-structured control flow using goto. The more structured break
and continue statements might eventually be supported, but this is not a pri-
ority as they complicate the structural liveness analysis.

4 Evaluation

The design goal of ldrgen was to have a random program generator that exposes
as much interesting code as possible to all passes of the compiler under test; recall
that we found Csmith-generated code to contain much dead code which is never
seen by many parts of the compiler because it can be optimized away early
on. We will have achieved our goal if, for comparable amounts of generated C
code, ldrgen’s output results in more, and ideally more varied, assembly code
than Csmith’s output. We therefore compare the two generators along these
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lines. We do not claim superiority to Csmith in any other regard, especially
not concerning its power to find subtle miscompilation bugs. Csmith covers a
larger subset of the C language than ldrgen and, in its default mode, carefully
ensures that its output is well-defined according to the C standard. ldrgen tries
to guard against oversized shifts and divisions by zero (see Sect. 3.1) but does
not otherwise guarantee well-definedness.

Csmith is designed to run complete, self-contained applications consisting of
several functions, driven by a main function. In contrast, ldrgen only generates
individual functions without a driver. However, Csmith’s many configuration
options allow us to ask it to generate files consisting only a single function
without main.1

Table 1 presents our experimental results for 1000 programs each generated
by Csmith and ldrgen. We investigate three characteristics of the generated
programs: lines of C code, number of instructions in the generated code, and
number of unique opcodes in the generated code. In all cases, the C code was
compiled to x86-64 machine code using GCC 5.4.0 with optimization setting -O3.
For each characteristic, the table shows the total over the 1000 files as well as
the minimum, median, and maximum values. (In cases where the median is not
unique, we chose the arithmetic mean of the two closest values.)

Table 1. Comparison of code generated by Csmith and ldrgen in 1000 runs each.

Generator Min Median Max Total

Lines of code Csmith 25 368.5 2953 459021

ldrgen 12 411.5 1003 389939

Instructions Csmith 1 15.0 1006 45606

ldrgen 1 952.5 4420 1063503

Unique opcodes Csmith 1 8 74 146

ldrgen 1 95 124 204

Our command line flags for Csmith were chosen in order to generate com-
parable numbers of lines of C code to ldrgen. In fact Table 1 shows that it
generates somewhat more, but these numbers are difficult to compare precisely
because Csmith-generated code tends to contain many initializers for global vari-
ables; ldrgen does not generate any global variables at all. We believe that the
settings we chose allow a fair comparison of the generators.

Next we compare the number of instructions (executable code only, excluding
static data, assembler directives etc.) emitted by the compiler for the generated
source files. ldrgen was designed to increase this number compared to Csmith,
and the table shows that we have succeeded: While on average Csmith’s out-
put compiles to a single machine instruction per ten lines of code, ldrgen’s
1 The concrete flags we used were --nomain --float --max-funcs 1 --no-safe

-math --max-block-size 8 --concise.
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output has almost three instructions per single line of source code. Overall,
ldrgen-generated programs compile to about 20 times as much machine code
as Csmith-generated programs of comparable size. We can also see that the dis-
tribution for Csmith is highly skewed: The median shows that at least half of
the functions generated by Csmith compile to 15 instructions or fewer. This
also confirms our initial, more informal observation that Csmith-generated code
tends to contain large amounts of dead code. ldrgen manages to generate code
with a less skewed distribution, and in particular with generally higher numbers
of emitted instructions.

On a side note, we remark that both Csmith and ldrgen sometimes gener-
ate functions that compile to a single machine instruction. Inspection showed
that this happens in cases where the compiler recognizes that a function ends
up in an infinite loop without externally visible side effects. Such functions are
then compiled into a single unconditional jump instruction looping back to itself.
Many other functions compile to two instructions, typically some simple oper-
ation on a function argument or a constant followed by a return. It would be
difficult to completely avoid generating infinite loops, but comparatively easy
(at least within ldrgen) to avoid generating functions that return after a single
operation. For both Csmith and ldrgen, about 10% of all cases fall into one of
these trivial categories (with Csmith producing fewer infinite loops).

We analyze the coverage of the instruction set in the generated code by look-
ing at the number of different opcodes generated. Here, too, we see that indi-
vidual functions generated by ldrgen have a more varied instruction mix than
functions generated by Csmith: Even the median for ldrgen is higher than the
maximum for Csmith. Totaling over all the machine code in 1000 functions, we
see that Csmith-generated code compiles to a mix of 146 different opcodes, while
ldrgen-generated code contains 204 different opcodes, an increase in instruction
set coverage of 40%. Inspection of the sets of opcodes shows that this difference is
almost entirely due to various vector (SIMD) arithmetic instructions generated
for ldrgen’s code. Compiling to such instructions was the goal of adding for
loops over arrays to ldrgen. Manual inspection of some cases shows that such
loops are indeed the origin of these instructions. As noted above, such loops are
also generated by Csmith, but their results are almost never used, so they do not
appear in the compiled code. Disabling generation of for loops in ldrgen brings
its total number of unique instructions down to 147, comparable to Csmith.

One of the few opcodes emitted for Csmith-generated code but not for ldrgen
are call instructions to memcpy which are sometimes generated by compilers for
structure copies. ldrgen currently does not generate structures at all.

Finally, in Table 2 we compare the speed of the two generators. Generat-
ing the 1000 files each analyzed above took 871 s with Csmith and 124 s with
ldrgen (Csmith backtracks if it finds that it has generated unsafe code). Csmith
generates about 527 lines of C code per second, with ldrgen generating 3140
(about 6× more). With respect to final machine code, Csmith-generated code
compiles to about 52 instructions per second of generation time, whereas ldrgen
produces 8563 (about 160×). These numbers do not include the time taken by
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Table 2. Comparison of the time to generate 1000 files.

Generator Time (sec) Lines/sec Instrs/sec

Csmith 871 527 52.4

ldrgen 124 3140 8562.8

the compiler; compiling all 1000 files for each generator takes about 46.6 s for
Csmith and 80.3 s for ldrgen.

5 Related Work

5.1 Csmith

The best-known random program generator is Csmith [20], based on an earlier
system called randprog [5,19]. Csmith generates complete, self-contained pro-
grams that take all their input from initialized global variables and compute an
output consisting of a hash over the values of all global variables at the end
of execution. The generator is designed to only generate programs with well-
defined semantics: Operations that may be undefined in C, such as overflowing
signed integer arithmetic, are guarded by conditionals that exclude undefined
cases (these guards can be disabled, and we disabled them for the experiments
reported above). Like ldrgen, Csmith performs data-flow analysis during gen-
eration, although the details differ due to the differing design goals. Csmith’s
forward analysis computes points-to facts and uses them for safety checks. If
the checks fail, Csmith backtracks, deleting code it generated until a safe state
is reached again. In contrast, ldrgen’s data-flow analysis only deals with live-
ness, and ldrgen never backtracks: Full liveness of variables in loops is ensured
by construction. Csmith generates a larger subset of C than current or cur-
rently planned versions of ldrgen, including unstructured control flow and less
restricted use of pointers.

Due to Csmith’s forward generation and data-flow analysis, it does not appear
possible to directly integrate our backward liveness-driven approach in Csmith.
A ‘best effort’ approach that would not give full liveness guarantees might extend
Csmith with a forwards reaching definitions analysis [13]. At each program
point, when generating an expression, Csmith could then prefer to use previ-
ously defined variables over fresh variables. Alternatively, it might be extended
with a mode that computes a function’s return value from all otherwise unused
variables in the program, artificially making them live.

Csmith has been used to find hundreds of bugs in C compilers when compiling
the programs it generates [20]. It has also been used as the basis of mutation-
based systems, where Csmith’s output was modified using other tools to provoke
compiler bugs [8]. The CLsmith tool derived from Csmith has been used to find
many bugs in OpenCL compilers [10].
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5.2 Other Random Generators

Other notable random generators include Orange3 [12] for C, jsfunfuzz [17] for
JavaScript, and efftester [11] for OCaml. Our generator following a system of
inference rules is similar to a generator based on Haskell’s typing rules [14].

The JTT program generator [21] is aimed at testing compiler optimizations.
It uses a model-based approach, with generation guided by test scripts. These
scripts contain code templates and temporal logic specifications of the optimiza-
tions to be tested. For example, the authors specify opportunities for dead code
elimination as cases where a variable is assigned, then assigned again before being
used. The test script contains a temporal logic formula expressing this pattern
and the test condition that the compiler should eliminate the first assignment.
Using this script, JTT generates test programs containing this pattern.

Other work specifically aimed at testing and comparing program verification
tools generates code from randomly generated LTL formulae [18]. The generated
code is guaranteed to satisfy the specified temporal properties.

5.3 Structural Data-Flow Analysis

Our formulation of liveness analysis as set of structural inference rules is inspired
by formulations of interval-based data-flow analysis where reducible programs
are decomposed into components called intervals, and analysis data is efficiently
propagated among the intervals [1,3,6].

6 Conclusions

We presented ldrgen, a new generator of random C programs designed for test-
ing C compilers. In contrast to Csmith, the dominant player in this field, ldrgen
is driven by liveness analysis to avoid generating dead code. We designed an
inference system to capture our liveness analysis and implemented its rules as
an executable program generation system.

ldrgen is implemented as a plugin for the Frama-C framework. Our eval-
uation of ldrgen in comparison to Csmith shows that we have achieved our
goal of generating C code that compiles to larger amounts of machine code with
a more interesting instruction mix, including many SIMD instructions. We are
actively using ldrgen in a project on finding missed optimizations in compil-
ers [2]. Because it is able to exercise loop optimizations not usually addressed by
Csmith, it may also be useful for finding correctness bugs in these optimizations.
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Abstract. In the software lifecycle, a program can evolve several times
for different reasons such as the optimisation of a bottle-neck, the refac-
toring of an obscure function, etc. These code changes often involve sev-
eral functions or modules, so it can be difficult to know whether the
correct behaviour of the previous releases has been preserved in the new
release. Most developers rely on a previously defined test suite to check
this behaviour preservation. We propose here an alternative approach to
automatically obtain a test suite that specifically focusses on compar-
ing the old and new versions of the code. Our test case generation is
directed by: a sophisticated combination of several already existing tools
such as TypEr, CutEr, and PropEr; the choice of an expression of interest
whose behaviour must be preserved; and the recording of the sequences
of values this expression is evaluated to. All the presented work has been
implemented in an open-source tool that is publicly available on GitHub.

Keywords: Code evolution control · Automated regression testing
Tracing

1 Introduction

During its useful lifetime, a program might evolve many times. Each evolution
is often composed of several changes that produce a new release of the soft-
ware. There are multiple ways to control that these changes do not modify the
behaviour of any part of the program that was already correct. Most of the com-
panies rely on regression testing [13,19] to assure that a desired behaviour of the
original program is kept in the new release, but there exist other alternatives
such as the static inference of the impact of changes [7,9,11,14].

Even when a program is perfectly working and it fulfils all its functional
requirements, sometimes we still need to improve parts of it. There are several
reasons why a released program needs to be modified. For instance, improving
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the maintainability or efficiency; or for other reasons such as obfuscation, secu-
rity improvement, parallelization, distribution, platform changes, and hardware
changes, among others. Programmers that want to check whether the semantics
of the original program remains unchanged in the new release usually create a
test suite. There are several tools that can help in all this process. For instance,
Travis CI can be easily integrated in a GitHub repository so that each time a
pull request is performed, the test suite is launched. We present here an alter-
native and complementary approach that creates an automatic test suite to do
regression testing. Therefore, our technique can check the evolution of the code
even if no test suite has been defined.

In the context of debugging, programmers often use breakpoints to observe
the values of an expression during an execution. Unfortunately, this feature is not
currently available in testing, even though it would be useful to easily focus the
test cases on one specific point without modifying the source code (as it happens
when using asserts) or adding more code (as it happens in unit testing). In this
paper, we introduce the ability to specify points of interest (POI) in the context
of testing. A POI can be any expression in the code (e.g., a function call) meaning
that we want to check the behaviour of that expression.

In our technique, (1) the programmer identifies a POI, typically a variable1,
and a set of input functions whose invocations should evaluate the POI. Then,
by using a combination of random test case generation, mutation testing, and
concolic testing, (2) the tool automatically generates a test suite that tries to
cover all possible paths that reach the POI (trying also to produce execution
paths that evaluate the POI several times). Therefore, in our setting, the input
of a test case (ITC) is defined as a call to an input function with some specific
arguments, and the output is the sequence of those values the POI is evaluated
to during the execution of the ITC. For the sake of disambiguation, in the rest
of the paper we use the term traces to refer to these sequences of values. Next,
(3) the test suite is used to automatically check whether the behaviour of the
program remains unchanged across new versions. This is done by passing each
individual test case against the new version, and checking whether the same
traces are produced at the POI. Finally, (4) the user is provided with a report
about the success or failure of these test cases. When two versions of a program
are available at the beginning of the test generation process, we can use both
for the generation of ITCs in step (2). In this alternative mode, step (3) is not
performed as a separated step but it is integrated in step (2). We named this
execution mode the comparison mode, and the one that uses only one version
the suite generation mode. Note that, as it is common in regression testing, both
modes only work for deterministic executions. This does not mean that they
cannot be used in a program with concurrency or other sources of indeterminism,
but POIs not affected by these features should be used in these cases.

1 While our current implementation limits the POI to variables, nothing prevents the
technique from accepting any expression as the POI.
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We have implemented our approach in a tool named SecEr (Software Evolu-
tion Control for Erlang), which implements both execution modes and is pub-
licly available at: https://github.com/mistupv/secer. Instead of reinventing the
wheel, some of the analyses performed by our tool are done by other existing
tools such as CutEr [5], a concolic testing tool, to generate an initial set of test
cases; TypEr [10], a type inference system for Erlang, to obtain types for the
input functions; and PropEr [12], a property-based testing tool, to obtain values
of a given type. All the analyses performed by SecEr are transparent to the user.
The only task that requires user intervention in our technique is, at each version,
selecting the POI that is supposed to produce the same trace. This task is easy
when the performed changes are not too aggressive, but it could be more difficult
when the similarities between both codes are hard to find. In those cases where
the versions are too different, the expression that define the values returned by
the main functions can be a good starting point to start checking the behaviour
preservation. In case the users need more refined or intricate POIs, they could
move them following the control flow backwards on both versions of the code.

Example 1. Consider the real commit in the string.erl module of the standard
library of the Erlang/OTP whose commit report is available at:

https://github.com/erlang/otp/commit/53288b441ec721ce3bbdcc4ad65b75e11acc5e1b

This change optimizes function string:tokens/2. SecEr can automatically
check, using the comparison mode, whether this change preserves the original
behaviour with a single command. We only need to indicate the two files that
must be compared, and a POI for each file. Then, the tool automatically gener-
ates test cases that evaluate the POIs, trying to cover as many paths as possible.
In this particular example, the POI in both versions is placed in the output of
function string:tokens/2. SecEr generated 7044 test cases (see Listing 1.8 [6])
that reached these POIs, and it reported that both versions produced the same
traces for all test cases.

We can now consider a different scenario and introduce a simple error like, for
instance, replacing the expression in line 253 of the new release with the expres-
sion [C | tokens multiple 2(S, Seps, Toks, [C])]. In this scenario, SecEr
generates 6576 test cases, 5040 of which have a mismatch in their traces (see List-
ing 1.9 [6]). SecEr stores all the discrepancies found in a file, and it also reports
one instance of these failing test cases: ITC tokens([12,4,5],[2,3,2,5,0,1]),
for which the original program produces the trace [[[12,4]]] whereas the new
one produces the trace [[4,[12,4]]].

2 A Novel Approach to Automated Regression Testing

Our technique is divided into three sequential phases that are summarized in
Figs. 1, 2, and 3. In these figures, the big dark grey areas are used to group several
processes with a common objective. The light grey boxes outside these areas
represent inputs and the light grey boxes inside these areas represent processes,

https://github.com/mistupv/secer
https://github.com/erlang/otp/commit/53288b441ec721ce3bbdcc4ad65b75e11acc5e1b
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the white boxes represent intermediate results, and the initial processes of each
phase are represented with a thick border box. All these boxes are connected by
continuous black arrows (representing the control flow between processes) or by
dot-dashed arrows (representing that some data is stored in a database). Finally,
there are also parts of these figures contained in light grey boxes with dashed
borders. This means that they are only used in the comparison mode. In this
case, the process only has two phases instead of three.

Fig. 1. Type analysis phase

The first phase (Type analysis), depicted in Fig. 1, is in charge of preparing
all inputs of the second phase (Test Case Generation). This phase starts by
locating in the source code the Erlang module (.erl1) and an input function
(Fun) specified by the user2 (for instance, function exp in the math module).
Then, TypEr is used to obtain the types of the parameters (from now on just
types) of that function.

It is important to know that, in Erlang, a function is composed of clauses and,
when a function is invoked, an internal algorithm traverses all the clauses in order
to select the one that will be executed. Unfortunately, TypEr does not provide
the individual types of each clause, but global types for the whole function.
Therefore, we need to first analyze the AST of the module to identify all the
clauses of the input function, and then we refine the types provided by TypEr to
determine the specific types of each clause. All these clause types are used in the
second phase. In this phase, we use PropEr to instantiate only one of them (e.g.,
〈Number, Integer〉 can be instantiated to 〈4.22, 3 〉 or 〈6, 5 〉). However, PropEr
is unable to understand TypEr types, so we have defined a translation process
from TypEr types to ProEr types. Finally, CutEr is fed with an initial call (e.g.,
math:exp(4.22, 3)) and it provides a set of possible arguments (e.g., {〈1.5, 6 〉,
〈2, 1 〉, 〈1.33, 4 〉}). Finally, this set is combined with the function to be called
to generate ITCs (e.g., {math:exp(1.5, 6), math:exp(2, 1), math:exp(1.33,
4)}). All this process is explained in detail in Sect. 3.1.

2 We show the process for only one input function. In case the user defined more than
one input function, the process described here would be repeated for each of them.
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Fig. 2. Test case generation phase

The second phase, shown in Fig. 2, is in charge of generating the test suite.
As an initial step, we instrument the program so that its execution records (as a
side-effect) the sequence of values produced at the POI (i.e., the traces). Then,
we store all ITCs provided by the previous phase onto a working list. Note that
it is also possible that the previous phase is unable to provide any ITC due to
the limitations of CutEr. In such a case, or when there are no more ITCs left, we
randomly generate a new one with PropEr and store it on the working list. Then,
each ITC on the working list is executed against the instrumented code, so a
trace is produce as a side-effect. The executed ITC and the obtained trace form
a new test case, which is a new output of the phase. Moreover, to increase the
quality of the test cases produced, whenever a non-previously generated trace is
computed, we mutate the ITC that generated that trace to obtain more ITCs.
The reason is that a mutation of this ITC will probably generate more ITCs
that also evaluate the POI but to different values. This process is repeated until
the specified limit of test cases is reached. This phase is slightly modified for the
comparison mode where we can directly compare the traces generated by both
of them to check discrepancies. Moreover, we only mutate an ITC when the pair
of traces generated by both versions has not been obtained before. The entire
process is explained in detail in Sects. 3.2 and 3.3.

Finally, the last phase (shown in Fig. 3) checks whether the new version of
the code passes the test suite. This suite is only generated in the suite generation
mode. In fact, this phase is only applied in this mode. First, the source code of
the new release is also instrumented to compute the traces produced at its POI.
Then, all the previously generated ITCs are executed and the traces produced
are compared with the expected traces.
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3 Thorough Description of the Approach

In this section, we describe in more detail the most relevant parts of our app-
roach: the generation of ITCs (Sect. 3.1), the code instrumentation to obtain the
traces (Sect. 3.2) and the test case generation (Sect. 3.3).

Fig. 3. Comparison phase

3.1 Initial ITC Generation

The process starts from the types inferred by TypEr for the whole input function.
This is the first important step to obtain a significant result, because ITCs are
generated with the types returned by this process, so the more accurate the
types are, the more accurate the ITCs are. TypEr’s standard output is an Erlang
function type specification returned as a string, which needs to be parsed. For
this reason, we have hacked the Erlang module that implements this functionality
to obtain the types in a structure, easier to traverse and handle. However, the
types returned by TypEr have (in our context) three drawbacks that need to
be corrected since they could yield to ITCs that do not match a desired input
function.

The first drawback is generated due to the fact that the types provided by
TypEr refers to a whole function. We explain the first drawback with an example.
Consider a function with two clauses whose headers are g(0,0) and g(1,1). For
this function, TypEr infers the function type g( 0 | 1, 0 | 1 ). Thus, the
types obtained by TypEr for both parameters are expected to be formed by
integers with the values 0 or 1, but the value of each parameter may be any of
them in every possible combinations. This means that, if we do not identify the
types of each clause, we may generate ITCs that do not match any clause of the
function, e.g. g(0,1).

The other two drawbacks are due to the type produced for lists and due to
the occurrence of repeated variables. We explain both drawbacks with another
example. Consider a function with a single clause whose header is f(A,[A,B]).
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For this function, TypEr infers the function type f( 1 | 2, [ 1 | 2 | 5 | 6]). Thus,
the type obtained for the second parameter of the f/2 function indicates that the
feasible values for this parameter are proper lists with a single constraint: it has to
be formed with numbers from the set {1, 2, 5, 6}. This means that we could build
lists of any length, which is our first drawback. If we use these TypEr types, we may
generate ITCs that do not match the function, e.g. f(2,[2,1,3,5]).3 Apart from
that, we have another drawback caused by the fact that the value relation gener-
ated by the repeated variable A is ignored in the function type. In particular, the
actual type of variable A is diluted in the type of the second argument. This could
yield to mismatching ITCs if we generate, e.g., f(1,[6,5]).

These three drawbacks show that the types produced by TypEr are too impre-
cise in our context, because they may produce test cases that are useless (e.g.,
non-executable). After the TypEr types inference, we can only resolve the type
conflict introduced by the first drawback. The other drawbacks will be com-
pletely resolved when the ITCs are built.

To solve this first drawback, we traverse every clause classifying the possible
types of each parameter with the TypEr deduced types. In this traversal every term
is given its own value and every time a variable appears more than once, we calcu-
late its type as the intersection of both the TypEr type and the accumulated type.
For instance, in the g/2 example we generate two different types: one for the clause
g(0,0)where the only possible value for both parameters is 0, and another one for
the clause g(1,1)where the only possible values for both parameters is 1. Further-
more, this transformation is useful not only for functions with multiple clauses, but
also with the functions with a single clause like the f/2 function. In this function,
we have A = 1 | 2 for the first occurrence, and A = 1 | 2 | 5 | 6 for the second one,
obtaining the new accumulated type A = 1 | 2 after applying this solution.

Once we have our refined TypEr types, we rely on PropEr to obtain the
input for CutEr. PropEr is a property-based testing framework with a lot of
useful underlying functionality. One of them is the value generators, which,
given a PropEr type, are able to randomly generate values belonging to such
type. Thus, we can use the PropEr generators in our framework to generate
values for a given type. However, TypEr and PropEr use slightly different nota-
tions for their types, which is reasonable given that their scopes are completely
different. Unfortunately, there is no available translator from TypEr types to
PropEr types. In our technique, we need such a translator to link the inferred
types to the PropEr generators. Therefore, we have built the translator by our-
selves. This translation deals with the previously postponed type drawbacks.
For that, we use the parameters of the clause in conjunction with their types.
To solve the first drawback, each time a list is found during the translation, we
traverse its elements and generate a type for each element on the list. Thereby,
we synthesize a new type for the list with exactly the same number of elements.

3 Note that having ITCs that do not match with any function clause is not a problem.
This scenario is common when TypEr returns the any type for some of the function’s
parameters. However, these ITCs are useless since they will produce an empty trace.
This explains our effort to avoid them.
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The second drawback is solved by recording the value each variable is assigned
to and, whenever a variable already treated is found, the value recorded for its
first occurrence is used.

Finally, we can feed CutEr with an initial call by using a randomly selected
clause and its values generated by PropEr. CutEr is a concolic testing framework
that generates a list of arguments that tries to cover all the execution paths.
Unfortunately, this list is internally generated by CutEr but not provided as an
output, so we have hacked CutEr to extract all these arguments. Additionally,
the execution of CutEr can last too long or even not terminate. For this reason,
we run CutEr with a timeout. In the comparison mode, the time assigned to
CutEr is equally distributed to generate ITCs of both versions. Finally, by using
this slightly modified version of CutEr we are able to generate the initial set of
ITCs by mixing the arguments that it provides with the input function.

3.2 Recording the Traces of the Point of Interest

There exist several tools available to trace Erlang executions [2–4,16] (we
describe some of them in Sect. 5). However, none of them allows for defining
a POI that points to any part of the code. Being able to trace any possible
point of interest requires either a code instrumentation, a debugger, or a way
to take control of the execution of Erlang. However, using a debugger (e.g., [3])
has the problem that it does not provide a value for the POI when it is inside
an expression whose evaluation fails. Therefore, we decided to instrument the
code in such a way that, without modifying the semantics of the code, traces are
collected as a side effect when the code is executed.

The instrumentation process creates and collects the traces of the POI. To
create the traces in an automatic way, we instrument the expression pointed by
the POI. To collect the traces, we have several options. For instance, we can store
the traces in a file and process it when the execution finishes, but this approach
is inefficient. We follow an alternative approach based on message passing. We
send messages to a server (which we call the tracing server) that is continuously
listening for new traces until a message indicating the end of the evaluation
is received. This approach is closer to the Erlang’s philosophy. Additionally,
it is more efficient since the messages are sent asynchronously resulting in an
imperceptible overhead in the execution. As a result of the instrumenting process,
the transformed code sends to the tracing server the value of the POI each time
it is evaluated, and the tracing server stores these values.

In the following, we explain in detail how the communication with the server
is placed in the code. This is done by firstly annotating the AST, then obtaining
the path from the root to the POI and finally dividing this path in two. In order
to do this, the following three steps are applied:

1. We first use the erl syntax lib:annotate bindings/2 function to annotate
the AST of the code. This function annotates each node with two lists of
variables: those variables that are being bound and those that were already
bound in its subtree.
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2. The next step is to find in the code the POI. During the search process,
we store the path followed in the AST with tuples of the form (Node,
ChildIndex), where Node is the AST node and ChildIndex is the index
of the node in its parent’s children array. When the POI is found, the traver-
sal finishes. Thus, the output of this step is a path in the AST that yields to
the POI.

3. The goal of this step is to divide the AST path into two sub-paths
(PathBefore, PathAfter). PathBefore yields from the root to the deep-
est target expression (included), and PathAfter yields from the first children
of the target expression to the POI. We call target expression to those expres-
sions that need a special treatment in the instrumentation. In Erlang, these
target expressions are: pattern matchings, list comprehensions, and expres-
sions with clauses (i.e., case, if, functions, . . . ).

After applying the previous steps we can instrument the POI. Most often,
the POI can be easily instrumented by adding a send command to communicate
its value to the tracing server. However, when the POI is in the pattern of an
expression, this expression needs a special treatment in the instrumentation. Let
us show the problem with an example.

Example 2. Consider a POI inside a pattern {1,POI,3}. If the execution tries to
match it with {2,2,3} nothing should be sent to the tracing server because the
POI is never evaluated. Contrarily, if it tries to match the pattern with {1,2,4},
then value 2 must be sent to the tracing server. Note that the matching fails in
both cases, but due to the evaluation order, the POI is actually evaluated (and
the partial matching succeeds) in the second case. There is an interesting third
case, that happens when the POI has a value, e.g., 3, and the matching with
{1,4,4} is tried. In this case, although the matching at the POI fails, we send
the value 4 to the tracing server.4

We explain now how the actual instrumentation is performed. First, the
PathBefore path is used to reach the deepest target expression that contains
the POI. At this point, five rules (described below) are used to transform the
code by using PathAfter. Finally, PathBefore is traversed backwards to update
the AST of the targeted function. The five rules are depicted in Fig. 4. The first
four rules are mutually exclusive, and when none of them can be applied, rule
(EXPR) is applied. Rule (LEFT PM) is fired when the POI is in the pattern of
a pattern-matching expression. Rule (PAT GEN LC) is used to transform a list
comprehension when the POI is in the pattern of a generator. Finally, rules
(CLAUSE PAT) and (CLAUSE GUARD)5 transform an expression with clauses when
the POI is in the pattern or in the guard of one of its clauses, respectively.
4 We could also send its actual value, i.e., 3. This is just a design decision, but we

think that including the value that produced the mismatch could be more useful to
find the source of a discrepancy.

5 Function clauses need an additional transformation that consists in storing all the
parameters inside a tuple so that they could be used in the case expressions intro-
duced by these rules.
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Fig. 4. Instrumentation rules for tracing

In the rules, we use the underline symbol ( ) to represent a value that is not
used. There are several functions used in the rules that need to be introduced.
Functions hd(l), tl(l), length(l) and last(l) return the head, the tail, the length,
and the last element of the list l, respectively. Function pos(e) returns the index
of an expression e on the list of children of its parent. Function is bound(e)
returns true if e is bounded according to the AST binding annotations (see step
1). Function clauses(e) and change clauses(e, clauses) obtains and modifies the
clauses of e, respectively. Function fv() builds a free variable. Finally, there is
a key function named pfv , introduced in Fig. 5, that transforms a pattern so
that the constraints after the POI do not inhibit the sending call. This is done
by replacing all the terms on the right of the POI with free variables that are
built using fv function. Unbound variables on the left and also in the POI are
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replaced by fresh variables to avoid the shadowing of the original variables. In the
pfv function, children(e) and change children(e, children) are used to obtain
and modify the children of expression e, respectively. In this function, lists are
represented with the head-tail notation (h : t).

Fig. 5. Function pfv

3.3 Generation of New Test Cases Using PropEr and Test Mutation

The test case generation phase uses CutEr whose concolic analyses try to gen-
erate 100% branch coverage test cases. Sometimes, these analyses can last too
long time. Moreover, even with a 100% branch coverage, frequently the test cases
generated by CutEr can be insufficient in our context. For instance, if the expres-
sion Z=X-Y is replaced in a new version of the code with Z=X+Y, a single test case
that executes both of them with Y=0 cannot detect any difference. Clearly, more
values for Y are needed to detect the behaviour change in that expression.

Therefore, to increase the reliability of the test suite when using the suite
generation mode, we complement the test cases produced by CutEr with a test
mutation technique. Using a mutation technique is much better than using, e.g.,
the PropEr generator to randomly synthesize new test cases, because random
test cases would produce many useless test cases (i.e., test cases that do not
execute the POI). In contrast, the use of a test mutation technique increases the
probability of generating test cases that execute the POI (because only those
test cases that execute the POI are mutated). The function that generates new
test cases using mutation is depicted in Fig. 6. The result of the function is a
map from the different obtained traces (i.e., the outputs of the test cases) to
the set of ITCs that produced them (i.e., the inputs of the test cases). The
first call to this function is tgen(top, cuter tests, ∅), where top is a user-defined
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limit of the desired number of test cases6 and cuter tests are the test cases that
CutEr generates. Function tgen uses the auxiliary functions proper gen, trace,
and mut. The function proper gen() simply calls PropEr to generate a new test
case, while function trace(input) obtains the corresponding trace when the ITC
input is executed. The size of a map, size(map), is the total amount of elements
stored in all lists that belong to the map. Finally, function mut(input) obtains a
set of mutations for the ITC input, where, for each argument in input, a new test
case is generated by replacing the argument with a randomly generated value
(using PropEr) and leaving the rest of arguments unchanged.

Fig. 6. Test case generation function

We can define an alternative way to generate tests for the comparison mode.
In this scheme, the generated tests are only focused on comparing the differences
between two version of the program. This generally yields to better tests for
comparison, since some bugs can be explored deeply. For instance, consider that,
for a given version of a program, ITCs f(0, 1) and f(0, 2) produce the same
trace, e.g. [2, 3]. According to the test generation function in Fig. 6, the second
generated ITC (e.g., f(0, 2)) is not further mutated. However, if we used another
version of the program and the traces obtained by both ITCs were [2, 3] and
[4, 5], respectively, it would be good to continue mutating the ITC since it is
possible that a change in the second parameter reveals new discrepancies between
the two versions. Therefore, we do not consider the trace of each individual
version to decide whether it should be mutated, but the combination of both
of them at the same time. We handle these cases by building a map from a
pair of traces to a list of ITCs, instead of from a single trace. For example,
the map from the previous example would contain 〈[2, 3], [2, 3]〉 �→ [f(0, 1)] and
〈[2, 3], [4, 5]〉 �→ {f(0, 2)} instead of [2, 3] �→ {f(0, 1), f(0, 2)}. Therefore, the key
in this new map is different for each ITC so, according to Fig. 6, f(0, 2) should
be further mutated. In fact, the algorithm to generate traces considering both
versions is exactly the same that the one depicted in Fig. 6. The only difference,
apart from the change in the map structure, is that the function trace(input) is
returning here a tuple 〈traceold(input), tracenew(input)〉, where traceold(input)

6 In SecEr, a timeout is also used as a way to stop the test case generation.
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and tracenew(input) are the traces obtained for the ITC input using the old
and the new version of the code, respectively. Note that in the comparison mode
we should obtain a report of the discrepancies during the test generation phase.
Obtaining the discrepancies between the traces of both versions is easy using the
result of Fig. 6. The following formula calculates them from the map returned
by tgen.7

discrepancies(map) =
⋃{inputs | (〈to, tn〉 �→ inputs) ∈ map s.t. to �= tn}

4 The SecEr Tool

SecEr is able to automatically generate a test suite that checks the behaviour
of a POI given two versions of the same program. There are two modes of
running this tool. The first one allows for generating and storing a test suite
of a program that is specific to test a given POI (the suite generation mode).
The second one compares the traces of two different versions of a program and
reports the discrepancies (the comparison mode).

Listing 1.1. SecEr command format

$ ./secer -f FILE -li LINE -var VARIABLE [-oc OCCURRENCE]
[-f FILE -li LINE -var VARIABLE [-oc OCCURRENCE ]]
[-funs INPUT_FUNCTIONS] -to TIMEOUT

Listing 1.1 shows the usage of the SecEr command. If we want to run the
command in the suite generation mode, we need to provide the path of the
target file (FILE), the POI (LINE, VARIABLE, and OCCURRENCE), a list of initial
functions (INPUT FUNCTIONS),8 and a timeout (TIMEOUT). If we execute the tool in
the comparison mode, the required inputs are slightly different. For each version,
we need to specify the path of its file and the details of its POI. Note that both
versions use the same input functions. Therefore, these functions need to be
exported in both versions of the program for the proper execution of SecEr.

The implementation uses a timeout as a limit to stop generating test cases,
while the formalization of the technique uses a number to specify the amount
of test cases that must be generated (see variable top in Sect. 3.3). This is not a
limitation, but a design decision to increase the usability of the tool. The user
cannot know a priory how much time it could take to generate an arbitrary
number of test cases. Hence, to make the tool predictable and give the user
control over the computation time, we use a timeout. Thus, SecEr generates as
many test cases as the specified timeout permits.

We have collected some interesting use cases and described how the source
of a discrepancy can be spotted using SecEr in them. They are available at [6].
7 According to the definition of function tgen, the selection of the ITC that is going to

be mutated is completely random. However, in our tool we give more priority to the
inputs belonging to discrepancies(map) since they are more susceptible of revealing
new discrepancies between versions.

8 The format for this list is [FUN1/ARITY1, FUN2/ARITY2 ...]. If the user does not
provide it, all functions exported by the module are used as input functions.
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5 Related Work

Automated behavioral testing techniques like Soares et al. [14] and Mongiovi [11]
are very similar to our approach, but their techniques are restricted in the kind
of changes that can be analyzed (they only focus on refactoring). Contrarily, our
approach is independent of the kind (or the cause) of the changes, being able to
analyze the effects of any change in the code regardless of its structure.

Automated regression test case generation techniques like Korel and Al-Yami
[8] are also very similar to our approach, but they can only generate test cases
if they have available both the old and the new releases. Contrarily, in our
approach, we can generate test cases with a single release, and reuse the test
cases to analyze any new releases by only specifying the points of interest.

Yu et al. [20] presented an approach that combines coverage analysis and
delta debugging to locate the sources of the regression faults introduced during
some software evolution. Their approach is based on the extraction and analysis
of traces. Our approach is also based on traces although not only the goals
but also the inputs of this process are slightly different. In particular, we do
not require the existence of a test suite (it is automatically generated), while
they look for the error sources using a previously defined test suite. Similarly,
Zhang et al. [21] use mutation injection and classification to identify commits
that introduce faults.

Most of the efforts in regression testing research have been put in the regres-
sion testing minimization, selection, and prioritization [19]. In fact, in the par-
ticular case of the Erlang language, most of the works in the area are focused
on this specific task [1,15,17,18]. We can find other works in Erlang that share
similar goals but more focused on checking whether applying a refactoring rule
will yield to a semantics-preserving new code [7,9].

With respect to tracing, there are multiple approximations similar to ours.
In Erlang’s standard libraries, there are implemented two tracing modules. Both
are able to trace the function calls and the process related events (spawn, send,
receive, etc.). One of these modules is oriented to trace the processes of a single
Erlang node [3], allowing for the definition of filters to function calls, e.g., with
names of the function to be traced. The second module is oriented to distributed
system tracing [4] and the output trace of all the nodes can be formatted in many
different ways. Cronqvist [2] presented a tool named redbug where a call stack
trace is added to the function call tracing, making possible to trace both the
result and the call stack. Till [16] implemented erlyberly, a debugging tool with
a Java GUI able to trace the previously defined features (calls, messages, etc.)
but also giving the possibility to add breakpoints and trace other features such
as exceptions thrown or incomplete calls. All these tools are accurate to trace
specific features of the program, but none of them is able to trace the value of an
arbitrary point of the program. In our approach, we can trace both the already
defined features and also a point of the program regardless of its position.
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6 Conclusions

During the lifecycle of any piece of software, different releases may appear, e.g.,
to correct bugs, to extend the functionality, or to improve the performance. It
is of extreme importance to ensure that every new release preserves the correct
behaviour of previous releases. Unfortunately, this task is often expensive and
time-consuming, because it implies the definition of test cases that must account
for the changes introduced in the new release.

In this work, we propose a new approach to automatically check whether the
behaviour of certain functionality is preserved among different versions of a pro-
gram. The approach allows the user to specify a POI that indicates the specific
parts of the code that are suspicious or susceptible of presenting discrepancies.
Because the POI can be executed several times with a test case, we store the
values that the POI takes during the execution. Thus, we can compare all actual
evaluations of the POI for each test case.

The technique introduces a new tracing process that allows us to place the
POI in patterns, guards, or expressions. For the test case generation, instead
of reinventing the wheel, we orchestrate a sophisticated combination of existing
tools like CutEr, TypEr, and PropEr. But, we also improve the result produced
by the combination of these tools introducing mutation techniques that allow us
to find more useful test cases. All the ideas presented have been implemented
and made publicly available in a tool called SecEr.

There are several interesting evolutions of this work. We would like to extend
our technique to other paradigms. Therefore, we would have to define a gener-
alization of this approach so it could be implemented in other languages. Then,
some important features present in most languages (e.g., concurrency) could also
be properly traced.

Some extensions to improve the results of the approach can be carried out.
Adding some relevant data into the traces, e.g., computation steps, would allow
for checking the preservation (or even the improvement) of non-functional prop-
erties such as efficiency. In a similar way, allowing for the specification of a list
of POIs instead of a single one would enable the tracing of several functionalities
in a single run, or the reinforcement of the quality of the test suite. Another way
to increase the usefulness of our approach is a special tracing for function calls
that would permit to distinguish easier whether an error is due to a discrepancy
between either function implementations or calls’ arguments. With respect to
the mutation technique, we want to find more efficient ways of deciding what
should be mutated, e.g., mutate certain elements of a list instead of changing
the whole list.

Finally, the user experience can be enriched in several ways. Currently, the
approach receives a sequence of functions as input. However, a sequence of con-
crete calls could be an alternative that could better lead to obscure errors. This
alternative also makes it easier to reuse unit test cases building, in this way, a
link between unit testing and our approach. Another interesting extension is the
implementation of a GUI, which would allow the user to select a POI by just
clicking on the source code. We are also interested in investigating whether it
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is possible to automatically infer POI candidates from the differences between
two versions. We could use tools like diff to obtain the differences, and either,
suggest the inferred candidate POIs to the user, or use them directly without
user interaction. Finally, the integration of our tool with control version systems
like Git or Subversion would be very beneficial to easily compare code among
several versions.
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Abstract. We present a straightforward source-to-source transforma-
tion that introduces justifications for user-defined constraints into the
CHR programming language. Then a scheme of two rules suffices to allow
for logical retraction (deletion, removal) of constraints during computa-
tion. Without the need to recompute from scratch, these rules remove not
only the constraint but also undo all consequences of the rule applications
that involved the constraint. We prove a confluence result concerning the
rule scheme and show its correctness.

When algorithms are written in CHR, constraints represent both
data and operations. CHR is already incremental by nature, i.e. con-
straints can be added at runtime. Logical retraction adds decremental-
ity. Hence any algorithm written in CHR with justifications will become
fully dynamic. Operations can be undone and data can be removed at
any point in the computation without compromising the correctness of
the result.

We present two classical examples of dynamic algorithms, written in
our prototype implementation of CHR with justifications that is avail-
able online: maintaining the minimum of a changing set of numbers and
shortest paths in a graph whose edges change.

1 Introduction

Justifications have their origin in truth maintenance systems (TMS) [McA90] for
automated reasoning. In this knowledge representation method, derived informa-
tion (a formula) is explicitly stored and associated with the information it orig-
inates from by means of justifications. This dependency can be used to explain
the reason for a conclusion (consequence) by its initial premises. With the help
of justifications, conclusions can be withdrawn by retracting their premises. By
this logical retraction, e.g. default reasoning can be supported and inconsisten-
cies can be repaired by retracting one of the reasons for the inconsistency. An
obvious application of justifications are dynamic constraint satisfaction problems
(DCSP), in particular over-constrained ones [BM06].

In this work, we extend the applicability of logical retraction to arbitrary
algorithms that are expressed in the programming language Constraint Handling
c© Springer International Publishing AG, part of Springer Nature 2018
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Rules (CHR) [Frü09,Frü15,FR18]. To accomplish logical retraction, we have to
be aware that CHR constraints can also be deleted by rule applications. These
constraints may have to be restored when a premise is retracted. With logical
retraction, any algorithm written in CHR will become fully dynamic1.

Minimum Example. Given a multiset of numbers min(n1), min(n2),. . . ,
min(nk). The constraint (predicate) min(ni) means that the number ni is a
candidate for the minimum value. The following CHR rule filters the candidates.

min(N) \ min(M) <=> N=<M | true.

The rule consists of a left-hand side, on which a pair of constraints has to be
matched, a guard check N=<M that has to be satisfied, and an empty right-hand
side denoted by true. In effect, the rule takes two min candidates and removes
the one with the larger value (constraints after the \ symbol are deleted). Note
that the min constraints behave both as operations (removing other constraints)
and as data (being removed).

CHR rules are applied exhaustively. Here the rule keeps on going until only
one, thus the smallest value, remains as single min constraint, denoting the cur-
rent minimum. If another min constraint is added during the computation, it
will eventually react with a previous min constraint, and the correct current
minimum will be computed in the end. Thus the algorithm as implemented in
CHR is incremental. It is not decremental, though: We cannot logically retract
a min candidate. While removing a candidate that is larger than the minimum
would be trivial, the retraction of the minimum itself requires to remember all
deleted candidates and to find their minimum. With the help of justifications,
this logical retraction will be possible automatically.

Contributions and Overview of the Paper. In the next section we recall
syntax and operational semantics for CHR. Our contributions are as follows:

– We introduce CHR with justifications (CHRJ ) in Sect. 3. We enhance stan-
dard CHR programs with justifications by a source-to-source program trans-
formation. We show the operational equivalence of rule applications in both
settings. Thus CHRJ is a conservative extension of standard CHR.

– We define a scheme of two rules to enable logical retraction of constraints
based on justifications in Sect. 4. We show that the rule scheme is confluent
with each rule in any given program, independent of the confluence of that
program. We prove correctness of logical retraction: the result of a computa-
tion with retraction is the same as if the constraint would never have been
introduced in the computation.

– We present a proof-of-concept implementation of CHRJ in CHR and Prolog
(available online) in Sect. 5. We discuss two classical examples for dynamic
algorithms, maintaining the minimum of a changing set of numbers and main-
taining shortest paths in a graph whose edges change.

1 Dynamic algorithms for dynamic problems should not be confused with dynamic
programming.
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The paper ends with discussion of related work in Sect. 6 and with conclusions
and directions for future work.

2 Preliminaries

We recall the abstract syntax and the equivalence-based abstract operational
semantics of CHR in this section. Upper-case letters stand for (possibly empty)
conjunctions of constraints in this paper.

2.1 Abstract Syntax of CHR

Constraints are relations, distinguished predicates of first-order predicate logic.
We differentiate between two kinds of constraints: built-in (pre-defined) con-
straints and user-defined (CHR) constraints which are defined by the rules in a
CHR program.

Definition 1. A CHR program is a finite set of rules. A (generalized) simpaga-
tion rule is of the form

r : H1\H2 ⇔ C|B
where r : is an optional name (a unique identifier) of a rule. In the rule head (left-
hand side), H1 and H2 are conjunctions of user-defined constraints, the optional
guard C| is a conjunction of built-in constraints, and the body (right-hand side)
B is a goal. A goal is a conjunction of built-in and user-defined constraints. A
state is a goal. Conjunctions are understood as multisets of their conjuncts.

In the rule, H1 are called the kept constraints, while H2 are called the removed
constraints. At least one of H1 and H2 must be non-empty. If H1 is empty, the
rule corresponds to a simplification rule, also written

s : H2 ⇔ C|B.

If H2 is empty, the rule corresponds to a propagation rule, also written

p : H1 ⇒ C|B.

In this work, we restrict given CHR programs to rules without built-in con-
straints in the body except true and false. This restriction is necessary as long
as built-in constraint solvers do not support the removal of built-in constraints.

2.2 Abstract Operational Semantics of CHR

Computations in CHR are sequences of rule applications. The operational seman-
tics of CHR is given by the state transition system. It relies on a structural equiv-
alence between states that abstracts away from technical details in a transition
[RBF09,Bet14].

State equivalence treats built-in constraints semantically and user-defined
constraints syntactically. Basically, two states are equivalent if their built-in



150 T. Frühwirth

constraints are logically equivalent (imply each other) and their user-defined
constraints form syntactically equivalent multisets. For example,

X =<Y ∧ Y =<X ∧ c(X,Y ) ≡ X =Y ∧ c(X,X) �≡ X =Y ∧ c(X,X) ∧ c(X,X).

For a state S, the notation Sbi denotes the built-in constraints of S and Sud

denotes the user-defined constraints of S.

Definition 2 (State Equivalence). Two states S1 = (S1bi ∧ S1ud) and S2 =
(S2bi ∧ S2ud) are equivalent, written S1 ≡ S2, if and only if

|= ∀(S1bi → ∃ȳ((S1ud = S2ud) ∧ S2bi)) ∧ ∀(S2bi → ∃x̄((S1ud = S2ud) ∧ S1bi))

with x̄ those variables that only occur in S1 and ȳ those variables that only
occur in S2.

Using this state equivalence, the abstract CHR semantics is defined by a
single transition (computation step). It defines the application of a rule. Note
that CHR is a committed-choice language, i.e. there is no backtracking in the
rule applications.

Definition 3 (Transition). Let the rule (r : H1\H2 ⇔ C|B) be a variant2 of
a rule from a given program P. The transition (computation step) S 	→r T is
defined as follows, where S is called source state and T is called target state:

S ≡ (H1 ∧ H2 ∧ C ∧ G) (r : H1\H2 ⇔ C|B) ∈ P (H1 ∧ C ∧ B ∧ G) ≡ T

S 	→r T

The goal G is called context of the rule application. It is left unchanged.
A computation (derivation) of a goal S in a program P is a connected

sequence Si 	→ri Si+1 beginning with the initial state (query) S0 that is S
and ending in a final state (answer, result) or the sequence is non-terminating
(diverging). We may drop the reference to the rules ri to simplify the presenta-
tion. The notation 	→∗ denotes the reflexive and transitive closure of 	→.

If the source state can be made equivalent to a state that contains the head
constraints and the guard built-in constraints of a variant of a rule, then we delete
the removed head constraints from the state and add the rule body constraints
to it. Any state that is equivalent to this target state is in the transition relation.

The abstract semantics does not account for termination of inconsistent
states and propagation rules. From a state with inconsistent built-in constraints,
any transition is possible. If a state can fire a propagation rule once, it can do
so again and again. This is called trivial non-termination of propagation rules.

Minimum Example, contd. Here is a possible transition from a state S =
(min(0) ∧ min(2) ∧ min(1)) to a state T = (min(0) ∧ min(1)):

S ≡ (min(X) ∧ min(Y ) ∧ X ≤ Y ∧ (X = 0 ∧ Y = 2 ∧ min(1)))
(min(X)\min(Y ) ⇔ X ≤ Y |true)

(min(X) ∧ X ≤ Y ∧ true ∧ (X = 0 ∧ Y = 2 ∧ min(1))) ≡ T

S 	→ T
2 A variant (renaming) of an expression is obtained by uniformly replacing its variables

by fresh variables.
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3 CHR with Justifications (CHRJ )

We present a conservative extension of CHR by justifications. If they are not
used, programs behave as without them. Justifications annotate atomic CHR
constraints. A simple source-to-source transformation extends the rules with
justifications.

Definition 4 (CHR Constraints and Initial States with Justifications).
A justification f is a unique identifier. Given an atomic CHR constraint G, a CHR
constraint with justifications is of the form GF , where F is a set of justifications.
An initial state with justifications is of the form

∧n
i=1 G

{fi}
i where the fi are

distinct justifications.

We now define a source-to-source translation from rules to rules with justifi-
cations. Let kill and rem (remove) be unary reserved CHR constraint symbols.
This means they are only allowed to occur in rules as specified in the following.

Definition 5 (Translation to Rules with Justifications). Given a gener-
alized simpagation rule

r :
l∧

i=1

Ki \
m∧

j=1

Rj ⇔ C |
n∧

k=1

Bk

Its translation to a simpagation rule with justifications is of the form

rf :
l∧

i=1

KFi
i \

m∧

j=1

R
Fj

j ⇔ C |
m∧

j=1

rem(RFj

j )F ∧
n∧

k=1

BF
k where F =

l⋃

i=1

Fi∪
m⋃

j=1

Fj .

The translation ensures that the head and the body of a rule mention exactly the
same justifications. More precisely, each CHR constraint in the body is annotated
with the union of all justifications in the head of the rule, because its creation is
caused by all of the head constraints. The constraint rem/1 (remember removed)
stores the constraints removed by the rule together with their justifications.

3.1 Operational Equivalence of Rule Applications

Let A,B,C . . . be states. For convenience, we will often consider them as multi-
sets of atomic constraints. Then the notation A−B denotes multiset difference,
A without B. To avoid clutter, let AJ , BJ , CJ . . . stand for conjunctions (or
corresponding states) whose atomic CHR constraints are annotated with jus-
tifications according to the above definition of the rule scheme. Similarly, let
rem(R)J denote a conjunction

∧m
j=1 rem(RFj

j )F .
We show that rule applications correspond to each other in standard CHR

and in CHRJ .
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Lemma 1 (Equivalence of Program Rules). There is a computation step
S 	→r T with simpagation rule

r : H1\H2 ⇔ C|B

if and only if there is a computation step with justifications SJ 	→rf TJ ∧
rem(H2)J with the corresponding simpagation rule with justifications

rf : HJ
1 \HJ

2 ⇔ C|rem(H2)J ∧ BJ .

Proof. We compare the two transitions involving rule r and rf, respectively:

(r : H1\H2 ⇔ C|B)
S ≡ (H1 ∧ H2 ∧ C ∧ G) (H1 ∧ C ∧ B ∧ G) ≡ T

S 	→r T

(rf : HJ
1 \HJ

2 ⇔ C|rem(H2)J ∧ BJ )
SJ ≡ (HJ

1 ∧ HJ
2 ∧ C ∧ GJ ) (HJ

1 ∧ C ∧ BJ ∧ GJ ) ≡ TJ ∧ rem(H2)J

SJ 	→rf TJ ∧ rem(H2)J

Given the standard transition with rule r, the corresponding transition with
justifications with rule rf is always possible. The rule rf by definition involves
the same constraints (up to addition of justifications) as the standard rule r. It
does not impose any additional built-in constraints, in particular no constraints
on its justifications. The justifications in the rule body are computed as the union
of the justifications in the rule head, which is always possible. Furthermore, the
rem constraints in the rule body are simply added to the target state.

Conversely, given the transition with justifications with rule rf , we can strip
away3 all justifications from it and remove rem(H2)J from the rule and the
target state to arrive at the standard transition with rule r. �

Since computations are sequences of connected computation steps, this
lemma implies that computations for program rules in CHR and in CHR with
justifications correspond to each other. Thus CHRJ is a conservative extension
of CHR.

4 Logical Retraction Using Justifications

We use justifications to remove a CHR constraint from a computation without
the need to recompute from scratch. This means that all its consequences due
to rule applications it was involved in are undone. CHR constraints added by
those rules are removed and CHR constraints removed by the rules are re-added.
To specify and implement this behavior, we give a scheme of two rules, one for
retraction and one for re-adding of constraints. The reserved CHR constraint
kill(f) undoes all consequences of the constraint with justification f .

3 For a related strip function, see the proof of Theorem 3.
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Definition 6 (Rules for CHR Logical Retraction). For each n-ary CHR
constraint symbol c (except the reserved kill and rem), we add a rule to kill
constraints and a rule to revive removed constraints of the form:

kill : kill(f) \ GF ⇔ f ∈ F | true
revive : kill(f) \ rem(GFc)F ⇔ f ∈ F | GFc ,

where G = c(X1, . . . , Xn), where X1, . . . , Xn are different variables.

Note that a constraint may be revived and subsequently killed. This is the case
when both Fc and F contain the justification f .

4.1 Confluence of Logical Retraction

Confluence of a program guarantees that any computation starting from a given
initial state can always reach equivalent states, no matter which of the appli-
cable rules are applied. There is a decidable, sufficient and necessary syntactic
condition to check confluence of terminating programs and to detect rule pairs
that lead to non-confluence when applied.

Definition 7 (Confluence). If A 	→∗ B and A 	→∗ C then there exist states
D1 and D2 such that B 	→∗ D1 and C 	→∗ D2 where D1 ≡ D2.

Theorem 1 [Abd97,AFM99]. A terminating CHR program is confluent if and
only if all its critical pairs are joinable.

Decidability comes from the fact that there is only a finite number of critical
pairs to consider.

Definition 8 (Overlap, Critical Pair). Given two (not necessarily different)
simpagation rules whose variables have been renamed apart, K1\R1 ⇔ C1|B1

and K2\R2 ⇔ C2|B2. Let A1 and A2 be non-empty conjunctions of constraints
taken from K1 ∧R1 and K2 ∧R2, respectively. An overlap of the two rules is the
state consisting of the rules heads and guards:

((K1 ∧ R1) − A1) ∧ K2 ∧ R2 ∧ A1 =A2 ∧ C1 ∧ C2.

The critical pair are the two states that come from applying the two rules to
the overlap, where E = (A1=A2 ∧ C1 ∧ C2):

(((K1 ∧ K2 ∧ R2) − A2) ∧ B1 ∧ E <> ((K1 ∧ R1 ∧ K2) − A1) ∧ B2 ∧ E).

Note that the two states in the critical pair differ by R2 ∧ B1 and R1 ∧ B2.
A critical pair is trivially joinable if its built-in constraints are inconsistent

or if both A1 and A2 do not contain removed constraints [AFM99].
We are ready to show the confluence of the kill and revive rules with each

other and with each rule in any given program. It is not necessary that the given
program is confluent. This means for any given program, the order between
applying applicable rules from the program and retracting constraints can be
freely interchanged. It does not matter for the result, if we kill a constraint first
or if we apply a rule to it and kill it and its consequences later.
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Theorem 2 (Confluence of Logical Retraction). Given a CHR program
whose rules are translated to rules with justifications together with the kill
and revive rules. We assume there is at most one kill(f) constraint for each
justification f in any state. Then all critical pairs between the kill and revive
rules and any rule from the program with justifications are joinable.

Proof. There is only one overlap between the kill and revive rules,

kill : kill(f) \ GF ⇔ f ∈ F | true

revive : kill(f) \ rem(GFc)F ⇔ f ∈ F | GFc ,

since GF cannot have the reserved constraint symbol rem/1 . The overlap is in
the kill(f) constraint. But since it is not removed by any rule, the resulting
critical pair is trivially joinable.

By our assumption, the only overlap between two instances of the kill rule
must have a single kill(f) constraint. Again, since it is not removed, the resulting
critical pair is trivially joinable. The same argument applies to the only overlap
between two instances of the revive rule.

Since the head of a simpagation rule with justifications from the given pro-
gram

rf : KJ \RJ ⇔ C|rem(R)J ∧ BJ

cannot contain reserved kill and rem constraints, these program rules cannot
have an overlap with the revive rule.

But there are overlaps between program rules, say a rule rf , and the kill rule.
They take the general form:

kill(f) ∧ KJ ∧ RJ ∧ GF=AF ∧ f∈F ∧ C,

where AF occurs in KJ ∧ RJ . This leads to the critical pair

(kill(f) ∧ ((KJ ∧ RJ ) − GF ) ∧ E) <> (kill(f) ∧ KJ ∧ rem(R)J ∧ BJ ∧ E),

where E = (GF=AF ∧ f∈F ∧ C). In the first state of the critical pair, the kill
rule has been applied and in the second state the rule rf . Note that AF is atomic
since it is equated to GF in E. Since GF has been removed in the first state and
GF=AF , rule rf is no longer applicable in that state.

We would like to join these two states. The joinability between a rule rf and
the kill rule can be visualized by the diagram:

kill(f) ∧ KJ ∧ RJ ∧ E�
kill

������
����

����
����

� �
rf

�����
����

����
���

kill(f) ∧ ((KJ ∧ RJ ) − GF ) ∧ E ��
revive∗,kill∗

∗ �
kill(f) ∧ KJ ∧ rem(R)J ∧ BJ ∧ E
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We now explain this joinability result. The states of the critical pair differ. In
the first state we have the constraints RJ and have GF removed from KJ ∧RJ ,
while in the second state we have the body constraints rem(R)J ∧ BJ of rule
rf instead. Any constraint in rem(R)J ∧ BJ must include f as justification by
definition, because f occurred in the head constraint AF and E contains f∈F .

The goal rem(R)J contains rem constraints for each removed constraint from
RJ . But then we can use kill(f) with the revive rule to replace all rem constraints
by the removed constraints, thus adding RJ back again. Furthermore, we can use
kill(f) with the revive rule to remove each constraint in BJ , as each constraint in
BJ contains the justification f . So rem(R)J ∧BJ has been removed completely
and RJ has been re-added.

The two states may still differ in the occurrence of GF (which is AF ). In the
first state, GF was removed by the kill rule. Now if AF (GF ) was in RJ , it has
been revived with RJ . But then the kill rule is applicable and we can remove
AF again. In the second state, if AF was in RJ it has been removed together
with RJ by application of rule rf. Otherwise, AF is still contained in KJ . But
then the kill rule is applicable to AF and removes it from KJ . Now AF (GF )
does not occur in the second state either.

We thus have arrived at the first state of the critical pair. Therefore the
critical pair is joinable. �
This means that given a state, if there is a constraint to be retracted, we can
either kill it immediately or still apply a rule to it and use the kill and revive
rules afterwards to arrive at the same resulting state.

Note that the confluence between the kill and revive rules and any rule from
the program is independent of the confluence of the rules in the given program.

4.2 Correctness of Logical Retraction

We prove correctness of logical retraction. The result of a computation with
retraction is the same as if the retracted constraint would never have been intro-
duced in the computation. We show that given a computation starting from
an initial state with a kill(f) constraint that ends in a state where the kill and
revive rules are not applicable, i.e. these rules have been applied to exhaustion,
then there is a corresponding computation without constraints that contain the
justification f .

Theorem 3 (Correctness of Logical Retraction). Given a computation

AJ ∧ G{f} ∧ kill(f) 	→∗ BJ ∧ rem(R)J ∧ kill(f) �	→kill,revive,

where f does not occur in AJ . Then there is a computation without G{f} and
kill(f)

AJ 	→∗ BJ ∧ rem(R)J .

Proof. We distinguish between transitions that involve the justification f or do
not. A rule that applies to constraints that do not contain the justification f
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will produce constraints that do not contain the justification. A rule application
that involves at least one constraint with a justification f will only produce
constraints that contain the justification f .

We now define a mapping from a computation with G{f} to a corresponding
computation without G{f}. The mapping essentially strips away constraints that
contain the justification f except those that are remembered by rem constraints.
In this way, the exhaustive application of the revive and kill rules kill(f) is
mimicked.

strip(f,AJ ∧ BJ ) := strip(f,AJ ) ∧ strip(f,BJ )
strip(f, rem(GF1)F2) := strip(f,GF1) if f ∈ F2

strip(f,GF ) := true if G is an atomic constraint except rem/1 and f ∈ F
strip(f,GF ) := GF otherwise.

We extend the mapping from states to transitions. We keep the transitions
except where the source and target state are equivalent, in that case we replace
the transition 	→ by an equivalence ≡. This happens when a rule is applied that
involves the justification f . The mapping is defined in such a way that in this
case the source and target state are equivalent. Otherwise a rule that does not
involve f has been applied. The mapping ensures in this case that all necessary
constraints are in the source and target state, since it keeps all constraints that
do not mention the justification f . For a computation step CJ 	→ DJ we define
the mapping as:

strip(f, CJ 	→rf DJ ) := strip(f, CJ ) ≡ strip(f,DJ ) if rule rf involves f
strip(f, CJ 	→rf DJ ) := strip(f, CJ ) 	→rf strip(f,DJ ) otherwise.

We next have to show is that the mapping results in correct state equivalences
and transitions. If a rule is applied that does not involve justification f , then it is
easy to see that the mapping strip(f, . . .) leaves states and transitions unchanged.

Otherwise the transition is the application of a rule rf from the program,
the rule kill or the rule revive where f is contained in the justifications. Let the
context EJ be an arbitrary goal where f ∈ J . Then we have to compute

strip(f, kill(f) ∧ GF ∧ f ∈ F ∧ EJ 	→kill kill(f) ∧ EJ )

strip(f, kill(f) ∧ rem(GFc)F ∧ f ∈ F ∧ EJ 	→revive kill(f) ∧ GFc ∧ EJ )

strip(f,KJ ∧ RJ ∧ C ∧ EJ 	→rf K
J ∧ rem(R)J ∧ BJ ∧ C ∧ EJ )

and to show that equivalent states are produced in each case. The resulting
states are

true ∧ true ∧ true ∧ EJ ′ ≡ true ∧ EJ ′

true ∧ GFc ∧ true ∧ EJ ′ ≡ true ∧ GFc ∧ EJ ′
if f �∈ Fc
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true ∧ true ∧ true ∧ EJ ′ ≡ true ∧ true ∧ EJ ′
if f ∈ Fc

KJ ′ ∧ RJ ′ ∧ C ∧ EJ ′ ≡ KJ ′ ∧ RJ ′ ∧ C ∧ EJ ′
where f �∈ J ′,

where, given a goal A, the expression AJ ′
contains all constraints from AJ that

do not contain the justification f .
In the end state of the given computation we know that the revive and

kill rules have been applied to exhaustion. Therefore all rem(GF1)F2 where F2

contains f have been replaced by GF1 by the revive rule. Therefore all standard
constraints with justification f have been removed by the kill rule (including
those revived), just as we do in the mapping strip(f, . . .).

Therefore the end states are indeed equivalent except for the remaining kill
constraint. �

5 Implementation

As a proof-of-concept, we implement CHR with justifications (CHRJ ) in SWI-
Prolog using its CHR library. This prototype source-to-source transformation
is available online at http://pmx.informatik.uni-ulm.de/chr/translator/. The
translated programs can be run in Prolog or online systems like WebCHR.

Constraints with Justifications. CHR constraints annotated by a set of jus-
tifications are realized by a binary infix operator ##, where the second argument
is a list of justifications:

C{F1,F2,...} is realized as C ## [F1,F2,...].

For convenience, we add rules that add a new justification to a given con-
straint C. For each constraint symbol c with arity n there is a rule of the form

addjust @ c(X1,X2,...Xn) <=> c(X1,X2,...Xn) ## [ F].

where the arguments of X1,X2,...Xn are different variables.

Rules with Justifications. A CHR simpagation rule with justifications is real-
ized as follows:

rf :
l∧

i=1

KFi
i \

m∧

j=1

R
Fj

j ⇔ C |
m∧

j=1

rem(RFj

j )F ∧
n∧

k=1

BF
k where F =

l⋃

i=1

Fi∪
m⋃

j=1

Fj

rf @ K1 ## FK1,... \ R1 ## FR1,... <=> C |
union([FK1,...FR1,...],Fs), rem(R1##FR1) ## Fs,...B1 ## Fs,...

where the auxiliary predicate union/2 computes the ordered duplicate-free union
of a list of lists4.
4 More precisely, a simplification rule is generated if there are no kept constraints and

a propagation rule is generated if there are no removed constraints.

http://pmx.informatik.uni-ulm.de/chr/translator/
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Rules remove and revive. Justifications are realized as flags that are initially
unbound logical variables. This eases the generation of new unique justifications
and their use in killing. Concretely, the reserved constraint kill(f) is realized as
built-in equality F=r, i.e. the justification variable gets bound. If kill(f) occurred
in the head of a kill or revive rule, it is moved to the guard as equality test F==r.
Note that we rename rule kill to remove in the implementation.

revive : kill(f) \ rem(CFc)F ⇔ f ∈ F | CFc

kill : kill(f) \ CF ⇔ f ∈ F | true

revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC.
remove @ C ## Fs <=> member(F,Fs),F==r | true.

Since rules are tried in program order in the CHR implementation, the constraint
C in the second rule is not a reserved rem/1 constraint when the rule is applicable.
The check for set membership in the guards is expressed using the standard
nondeterministic Prolog built-in predicate member/2.

Logical Retraction with killc/1. We extend the translation to allow for
retraction of derived constraints. The constraint killc(C) logically retracts one
occurrence of a constraint C. The two rules killc and killr try to find the con-
straint C. The killr rule applies in the case where constraint C has been removed
and is therefore now present in a rem constraint. The associated justifications
point to all initial constraints that where involved in producing the constraint
C. For retracting the constraint, it is sufficient to remove one of its producers.
This introduces a choice which is implemented by the member predicate.

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r.
killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

Note that in the killr rule, we bind a justification F from FC, because FC contains
the justifications of the producers of constraint C, while Fs also contains those
that removed it by a rule application.

5.1 Examples

We discuss two classical examples for dynamic algorithms, maintaining the min-
imum of a changing set of numbers and shortest paths when edges change.

Dynamic Minimum. Translating the minimum rule to one with justifications
results in:

min(A)##B \ min(C)##D <=> A<C | union([B,D],E), rem(min(C)##D)##E.

The following shows an example query and the resulting answer in SWI-Prolog:

?- min(1)##[A], min(0)##[B], min(2)##[C].
rem(min(1)##[A])##[A,B], rem(min(2)##[C])##[B,C], min(0)##[B].
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The constraint min(0) remained. This means that 0 is the minimum. The con-
straints min(1) and min(2) have been removed and are now remembered. Both
have been removed by the constraint with justification B, i.e. min(0).

We now logically retract with killc the constraint min(1) at the end of the
query. The killr rule applies and removes rem(min(1)##[A])##[A,B].

killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

In the rule body, the justification A is bound to r – to no effect, since there are
no other constraints with this justification:

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(1)).
rem(min(2)##[C])##[B,C], min(0)##[B].

On the other hand, if we retract the minimum min(0), the killc rule

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r

applies. It removes min(0)##[B] and binds justification B. The two rem con-
straints for min(1) and min(2) have justification B as well, so these two con-
straints are re-introduced by applications of rule revive

revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC.

The minimum rule applies to these two revived constraints. Note that min(2)
is now removed by min(1) (before it was min(0)). The result is the updated
minimum, which of course is 1:

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(0)).
rem(min(2)##[C])##[A,C], min(1)##[B].

Dynamic Shortest Path. Given a graph with directed arcs e(X,Y), we com-
pute the lengths of the shortest paths between all pairs of reachable nodes:

% keep shorter of two paths from X to Y
pp @ p(X,Y,L1) \ p(X,Y,L2) <=> L1=<L2 | true.
% edges have a path of unit length

e @ e(X,Y) ==> p(X,Y,1).
% extend path in front by an edge

ep @ e(X,Y), p(Y,Z,L) ==> L1=:=L+1 | p(X,Z,L1).

The corresponding rules in the translated program are:

pp@p(A,B,C)##D \ p(A,B,E)##F <=> C=<E |

union([D,F],G), rem(p(A,B,E)##F)##G.

e @e(A,B)##C ==> true | union([C],D), p(A,B,1)##D.

ep@e(A,B)##C,p(B,D,E)##F ==> G is E+1 | union([C,F],H),p(A,D,G)##H.

Here is a sample query and its resulting answer.
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?- e(a,b)##[A], e(b,c)##[B], e(a,c)##[C].
rem(p(a, c, 2)##[A, B])##[A,B,C],
p(a, b, 1)##[A], e(a, b)##[A],
p(b, c, 1)##[B], e(b, c)##[B],
p(a, c, 1)##[C], e(a, c)##[C].

We see that a path of length 2 has been removed by the constraint e(a,c)##[C],
which produced a shorter path of length one. We next kill this constraint e(a,c).

?- e(a,b)##[A], e(b,c)##[B], e(a,c)##[C], kill(e(a,c)).
p(a, b, 1)##[A], e(a, b)##[A],
p(b, c, 1)##[B], e(b, c)##[B],
p(a, c, 2)##[A,B].

Its path p(a,c,1) disappears and the removed path p(a,c,2) is re-added. We
can see that the justifications of a path contains are those from the edges in that
path. The same happens if we logically retract p(a,c,1) instead of e(a,c).

What happens if we remove p(a,c,2) from the initial query? The killr
rule applies. Since the path has two justifications, there are two computations
generated by the member predicate. In the first one, the constraint e(a,b) dis-
appeared, in the second answer, it is e(b,c). In both cases, the path cannot be
computed anymore, i.e. it has been logically retracted.

?- e(a,b)##[A], e(b,c)##[B], e(a,c)##[C], kill(p(a,c,2)).
p(b, c, 1)##[B], e(b, c)##[B],
p(a, c, 1)##[C], e(a, c)##[C]
;
p(a, b, 1)##[A], e(a, b)##[A],
p(a, c, 1)##[C], e(a, c)##[C].

6 Related Work

The idea of introducing justifications into CHR is not new. The thorough work of
Armin Wolf on Adaptive CHR [WGG00] was the first to do so. Different to our
work, this technically involved approach requires to store detailed information
about the rule instances that have been applied in a derivation in order to undo
them. In our approach, we use a straightforward source-to-source transformation
and retract constraints one-by-one instead. Adaptive CHR had a low-level imple-
mentation in Java [Wol01], while we give an implementation in CHR itself by
a straightforward source-to-source transformation that we prove confluent and
correct. Moreover we prove confluence of the rule scheme for logical retraction
with the rules of the given program. The application of adaptive CHR consid-
ered dynamic constraint satisfaction problems (DCSP) only, in particular for
the implementation of search strategies [Wol05], while we apply our approach to
arbitrary algorithms in order to make them fully dynamic.



Justifications in CHR for Logical Retraction in Dynamic Algorithms 161

The issue of search strategies was further investigated by De Koninck et al.
[DKSD08]. They introduce a flexible search framework in CHR∨ (CHR with dis-
junction) extended with rule and search branch priorities. In their work, justifica-
tions are introduced into the semantics of CHR∨ to enable dependency-directed
backtracking in the form of conflict-directed backjumping. Our work does not
need a new semantics for CHR, nor its extension with disjunction, it rather relies
on a source-to-source transformation within the standard semantics.

Our work does not have a particular application of justifications in mind,
but rather provides the basis for any type of application that requires dynamic
algorithms. There are, however, CHR applications that use justifications. The
work of Wazny et al. [SSW03] introduced informally a particular kind of justi-
fications into CHR for the specific application of type debugging and reasoning
in Haskell. Justifications correspond to program locations in the given Haskell
program. Unlike other work, the constraints in the body of CHR rules have
given justifications to which justifications from the rule applications are added
at runtime. The more recent work of Duck [Duc12] introduces SMCHR, a tight
integration of CHR with a Boolean Satisfiability (SAT) solver for quantifier-
free formulae including disjunction and negation as logical connectives. It is
mentioned without giving further details that for clause generation, SMCHR
supports justifications for constraints that include syntactic equality constraints
between variables.

7 Conclusions

In this paper, the basic framework for CHR with justifications (CHRJ ) has
been established and formally analyzed. We defined a straightforward source-
to-source program transformation that introduces justifications into CHR as a
conservative extension. Justifications enable logical retraction of constraints. If
a constraint is retracted, the computation is adapted and continues as if the
constraint never was introduced. We proved confluence and correctness of the
two-rule scheme that encodes the logical retraction. We presented a prototype
implementation that is available online together with two classical examples.

Our approach applies to CHR rules without built-in constraints in the body,
because built-in constraint solvers typically do not support removal of con-
straints. But note that built-in constraints can be re-implemented in CHR. As
one reviewer pointed out, CHR systems typically feature a propagation history
to avoid the re-application of propagation rules and try to apply rules in the
given order. This may lead to adverse effects in our implementation. The reviv-
ing of constraints may trigger redundant firings of propagation rules because the
propagation history is partially lost then. The order in which constraints are
revived may lead to different rule applications and thus to different results if the
program is not confluent. We have not observed these effects in our experiments
so far.

Future work could investigate three topics: dynamic algorithms, implementa-
tion and application domains of CHR with justifications. First, we would like to
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research how logical as well as classical algorithms implemented in CHR behave
when they become dynamic. Second, we would like to improve the implemen-
tation, optimize and benchmark it. A first step can be found in the companion
paper [Fru17] together with an informal complexity analysis. A formal complex-
ity analysis would clarify the overhead involved in adding justifications. Cur-
rently, the entire history of removed constraints is stored. It could suffice to
remember only a partial history if only certain constraints can be retracted or if
partial recomputation proves to be more efficient for some constraints. A lower-
level implementation could benefit from the propagation history of propagation
rules. Third, the rule scheme can be extended to support typical application
domains of justifications: explanation of derived constraints by justifications
(for debugging), detection and repair of inconsistencies (for error diagnosis),
and implementing nonmonotonic logical behaviors (e.g. default logic, abduction,
defeasible reasoning).

Acknowledgements. We thank Daniel Gall for implementing the online transforma-
tion tool for CHRJ . We also thank the anonymous reviewers for their helpful sugges-
tions on how to improve the paper.
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Abstract. Convergence of an abstract reduction system (ARS) is the
property that any derivation from an initial state will end in the same
final state, a.k.a. normal form. We generalize this for probabilistic ARS
as almost-sure convergence, meaning that the normal form is reached
with probability one, even if diverging derivations may exist. We show
and exemplify properties that can be used for proving almost-sure con-
vergence of probabilistic ARS, generalizing known results from ARS.

1 Introduction

Probabilistic abstract reduction systems, PARS, are general models of systems
that develop over time in discrete steps [7]. In each non-final state, the choice of
successor state is governed by a probability distribution, which in turn induces
a global, probabilistic behaviour of the system. Probabilities make termination
more than a simple yes-no question, and the following criteria have been pro-
posed: probabilistic termination – a derivation terminates with some probability
> 0 – and almost-sure termination – a derivation terminates with probability
= 1, even if infinite derivations may exist (and whose total probability thus
amounts to 0). When considering a PARS as a computational system, almost-
sure termination may be the most interesting, and there exist well-established
methods for proving this property [6,10].

PARS cover a variety of probabilistic algorithms and programs, scheduling
strategies and protocols [5,7,23], and PARS is a well-suited abstraction level for
better understanding their termination and correctness properties. Randomized
or probabilistic algorithms (e.g., [4,20,21]) come in two groups: Monte Carlo
Algorithms that allow a set of alternative outputs (typically only correct with a
certain probability or within a certain accuracy), e.g., Karger-Stein’s Minimum
Cut [18], Monte Carlo integration and Simulated Annealing [19]; and Las Vegas
Algorithms, that provide one (correct) output and that may be simpler and on
average more efficient than their deterministic counterparts, e.g., Randomized
Quicksort [11], checking equivalence of circular lists [17], probabilistic modular
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GCD [30]. We focus on results that are relevant for the latter kind of systems,
and here the property of convergence is interesting, as it may be a necessary
condition for correctness: a system is convergent if it is guaranteed to terminate
with a unique result. We introduce the notion of almost-sure convergence for
PARS, meaning that a unique result is found with probability = 1, although
there may be diverging computations; this property is a necessary condition for
partial correctness, more precisely a strengthened version of partial correctness
where the probability of not getting a result is zero.

The related notion of confluence has been extensively studied for ARS,
e.g., [3,16], and especially for terminating ones for which confluence implies
convergence: a system is confluent if, whenever alternative paths (i.e., repeated
reductions; computations) are possible from some state, these paths can be
extended to join in a common state. Newman’s lemma [22] from 1942 is one
of the most central results: in a terminating system, confluence (and thus con-
vergence) can be shown from a simpler property called local confluence. In, e.g.,
term rewriting [3] and (a subset of) the programming language CHR [1,2], prov-
ing local confluence may be reduced to a finite number of cases, described by
critical pairs (for a definition, see these references), which in some cases may be
checked automatically. It is well-known that Newman’s lemma does not gener-
alize to non-terminating systems (and thus neither to almost-sure terminating
ones); see, e.g., [16].

Probabilistic and almost-sure versions of confluence were introduced concur-
rently by Frühwirth et al. [12] – in the context of a probabilistic version of CHR
– and by Bournez and Kirchner [7] in more generality for PARS. However, the
definitions in the latter reference were given indirectly, assuming an insight into
Homogeneous Markov Chain Theory, and a number of central properties were
listed without hints of proofs.

In the present paper, we consider the important property of almost-sure
convergence for PARS and state properties that are relevant for proving it. In
contrast to [7], our definitions are self-contained, based on elementary math,
and proofs are included. One of our main and novel results is that almost-sure
termination together with confluence (in the classical sense) gives almost-sure
convergence. Almost-sure convergence and almost-sure termination were intro-
duced in an early 1983 paper [13] for a specific class of probabilistic programs
with finite state space, but our generalization to PARS’ appears to be new.

In 1991, Curien and Ghelli [9] described a powerful method for proving con-
fluence of non-probabilistic systems, using suitable transformations from the
original system into one, known to be confluent. We can show how this result
applies to probabilistic systems, and we develop an analogous method for also
proving non-confluence.

In Sect. 2, we review definitions for abstract reduction systems and introduce
and motivate our choices of definitions for their probabilistic counterparts; a
proof that the defined probabilities actually constitute a probability distribution
is found in the Appendix. Section 3 formulates and proves important properties,
relevant for showing almost-sure convergence of particular systems. Section 4
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goes in detail with applications of the transformational approach [9] to (dis-)
proving almost-sure convergence, and in Sect. 5 we demonstrate the use of this
for a random walk system and Hermans’ Ring. We add a few more comments on
selected, related work in Sect. 6, and Sect. 7 provides a summary and suggestions
for future work.

2 Basic Definitions

The definitions for non-probabilistic systems are standard; see, e.g., [3,16].

Definition 1 (ARS). An Abstract Reduction System is a pair R = (A,→)
where the reduction → is a binary relation on a countable set A.

Instead of (s, t) ∈→ we write s → t (or t ← s when convenient), and s →∗ t
denotes the transitive reflexive closure of →.

In the literature, an ARS is often required to have only finite branching. i.e.,
for any element s, the set {t | s → t} is finite. We do not require this, as the
implicit restriction to countable branching is sufficient for our purposes.

The set of normal forms RNF are those s ∈ A for which there is no t ∈ A
such that s → t. For given element s, the normal forms of s, are defined as the
set RNF (s) = {t ∈ RNF | s →∗ t}. An element which is not a normal form is said
to be reducible; i.e., an element s is reducible if and only if {s′ | s → s′} �= ∅.

A path from an element s is a (finite or infinite) sequence of reductions
s → s1 → s2 → · · · ; a finite path s → s1 → s2 → · · · → sn has length n (n ≥ 0);
in particular, we recognize an empty path (of length 0) from a given state to
itself. For given elements s and t ∈ RNF (s), Δ(s, t) denotes the set of finite paths
s → · · · → t (including the empty path); Δ∞(s) denotes the set of infinite paths
from s. A system is

– confluent if for all s1 ←∗ s →∗ s2 there is a t such that s1 →∗ t ←∗ s2,
– locally confluent if for all s1 ← s → s2 there is a t such that s1 →∗ t ←∗ s2,
– terminating1 iff it has no infinite path,
– convergent iff it is terminating and confluent, and
– normalizing2 iff every element s has a normal form, i.e., there is an element

t ∈ RNF such that s →∗ t.

Notice that a normalizing system may not be terminating. A fundamental
result for ARS is Newman’s Lemma: a terminating system is confluent if and
only if it is locally confluent.

The following property indicates the complexity of the probability measures
that are needed in order to cope with paths in probabilistic abstract reduction
systems defined over countable sets.

1 A terminating system is also called strongly normalizing elsewhere, e.g., [9].
2 A normalizing system is also called weakly normalizing or weakly terminating else-

where, e.g., [9].
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Proposition 1. Given an ARS as above and given elements s and t ∈ RNF (s),
it holds that Δ(s, t) is countable, and Δ∞(s) may or may not be countable.

Proof. For the first part, Δ(s, t) is isomorphic to a subset of
⋃

n=1,2,... A
n. A

countable union of countable sets is countable, so Δ(s, t) is countable.
For the second part, consider the ARS 〈{0, 1}, {i → j | i, j ∈ {0, 1}}〉. Each

infinite path can be read as a real number in the unit interval, and any such
real number can be described by an infinite path. The real numbers are not
countable.

This means that we can define discrete and summable probabilities over Δ(s, t),
and – which we will avoid – considering probabilities over the space Δ∞(s)
requires a more advanced measure.

In the next definition, a path is considered a Markov process/chain, i.e., each
reduction step is independent of the previous ones, and thus the probability of a
path is defined as a product in the usual way. PARS can be seen as a special case
of Homogenous Markov Chains, cf. [7], but for practical reasons it is relevant to
introduce them as generalizations of ARS.

Definition 2 (PARS). A Probabilistic Abstract Reduction System is a pair
RP = (R,P ) where R = (A,→) is an ARS, and for each reducible element
s ∈ A \ RNF , P (s → ·) is a probability distribution over the reductions from s,
i.e.,

∑
s→t P (s → t) = 1; it is assumed, that for all s and t, P (s → t) > 0 if and

only if s → t.
The probability of a finite path s0 → s1 → . . . → sn with n ≥ 0 is given as

P (s0 → s1 → . . . → sn) =
n∏

i=1

P (si−1 → si).

For any element s and normal form t ∈ RNF (s), the probability of s reaching t,
written P (s →∗ t), is defined as

P (s →∗ t) =
∑

δ∈Δ(s,t)

P (δ);

the probability of s not reaching a normal form (or diverging) is defined as

P (s →∞) = 1 −
∑

t∈RNF (s)

P (s →∗ t).

When referring to confluence, local confluence, termination, and normalization
of a PARS, we refer to these properties for the underlying ARS.

Notice that when s is a normal form then P (s →∗ s) = 1 since Δ(s, t) contains
only the empty path with probability

∏0
i=1 P (si−1 → si) = 1. It is important

that P (s →∗ t) is defined only when t is a normal form of s since otherwise, the
defining sum may be ≥ 1, as demonstrated by the following example.
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Example 1. Consider the PARS RP given in Fig. 1(a); formally, RP =
(({0, 1}, {0 � 1, 1 � 1}), P ) with P (0 � 1) = 1 and P (1 � 1) = 1. An attempt
to define P (0→∗ 1) as in Def. 2, for the reducible element 1, does not lead to a
probability, i.e., P (0→∗ 1) �≤ 1: P (0→∗ 1) = P (0�1) + P (0�1�1) + P (0�1�1�
1) + . . . = ∞.

Fig. 1. PARS with different properties, see Table 1.

The following proposition justifies that we refer to P as a probability function.

Proposition 2. For an arbitrary finite path π, 1 ≥ P (π) > 0. For every
element s, P (s →∗ ·) and P (s →∞) comprise a probability distribution, i.e.,
∀t ∈ RNF (s) : 0 ≤ P (s →∗ t) ≤ 1; 0 ≤ P (s →∞) ≤ 1; and

∑
t∈RNF (s)

P (s →∗

t) + P (s →∞) = 1.

Proof. The proofs are simple but lengthy and are given in the Appendix.

Proposition 3 justifies that we refer to P (s →∞) as a probability of divergence.

Proposition 3. Consider a PARS which has an element s for which Δ∞(s) is
countable (finite or infinite). Let P (s1 → s2 → · · · ) =

∏
i=1,2,...P (si → si+1) be

the probability of an infinite path then P (s→∞) =
∑

δ∈Δ∞(s) P (δ) holds.

Proof. See Appendix.

We can now define probabilistic and almost-surely (abbreviated “a-s.”) versions
of important notions for derivation systems. A system is

– almost-surely convergent if for all s1 ←∗ s →∗ s2 there is a normal form
t ∈ RNF such that s1 →∗ t ←∗ s2 and P (s1 →∗ t) = P (s2 →∗ t) = 1,

– locally almost-surely convergent if for all s1 ← s → s2 there is a t ∈ RNF such
that s1 →∗ t ←∗ s2 and P (s1 →∗ t) = P (s2 →∗ t) = 1,

– almost-surely terminating3 iff every element s has P (s →∞) = 0, and
– probabilistically normalizing iff every element s has a normal form t such that

P (s →∗ t) > 0.

We have deliberately omitted almost-sure confluence and local confluence [7],
since these require a more advanced measure in order to define the probability
of visiting a perhaps reducible element.
3 Almost-sure termination is named probabilistic termination elsewhere, e.g., [12,28].
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Table 1. A property overview of the systems (a)–(d) in Fig. 1 and (d′) with same ARS
as (d), but with all probabilities replaced by 1/2.

(a) (b) (c) (d) (d′)

Loc. confl. + + + + +

Confl. + + – + +

Term. – – – – –

A-s. loc. conv. – + – – +

A-s. conv. – + – – +

A-s. term. – + + – +

Example 2. The four probabilistic systems in Fig. 1 demonstrate these proper-
ties. We notice that (b)–(d) are normalizing in {a}, {a, b} and {a}, respectively.
Furthermore, they are all non-terminating: system (b) and (c) are a-s. termi-
nating, which is neither the case for (a) nor (d); for element 0 in system (d) we
have P (0 →∞) =

∏∞
i=1(1 − (1/4)i) ≈ 0.6885 > 0.4 Table 1 summarizes their

properties of (almost-sure) (local) confluence; (d′) refers to a PARS with the
same underlying ARS as (d) and with all probabilities = 1/2.

System (c) is a probabilistic version of a classical example [15,16] which
demonstrates that termination (and not only a-s. termination) is required in
order for local confluence to imply confluence. The difference between system
(d) and (d′) emphasizes that the choice of probabilities do matter for whether
or not different probabilistic properties hold. For any element s in (d′), the
probability of reaching the normal form a is 1/2 + 1/22 + 1/23 + · · · = 1.

3 Properties of Probabilistic Abstract Reduction Systems

With a focus on almost-sure convergence, we consider now relevant relationships
between the properties of probabilistic and their underlying non-probabilistic
systems. Lemmas 1 and 3, below, have previously been suggested by [7] without
proofs, and we have chosen to include them as well as their proofs to provide a
better understanding of the nature of almost-sure convergence. The most impor-
tant properties are summarized as follows. For any PARS RP :

– RP is normalizing if and only if it is probabilistically normalizing (Lemma 1),
– if RP is almost-surely terminating then it is normalizing (Lemma 2),
– if RP is terminating then it is almost-surely terminating (Lemma 3),
– RP is almost-surely terminating and confluent, if and only if it is almost-

surely convergent (Theorem 1).

The following inductive characterization of the probabilities for reaching a
given normal form is useful for the proofs that follow.
4 Verified by Mathematica. The exact result is

(
1
4
; 1
4

)
∞; see [29] for the definition of

this notation.
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Proposition 4. For any reducible element s, the following holds.

∑

t∈RNF

P (s →∗ t) =
∑

s→s′

(

P (s → s′) ×
∑

t∈RNF

P (s′ →∗ t)
)

Proof. Any path from s to a normal form t will have the form s → s′ → · · · → t,
for some direct successor s′ of s. The other way round, any normal form for a
direct successor s′ of s will also be a normal form of s. With this observation,
the proposition follows directly from Definition 2 (prob. of path).

Lemma 1 ([7]). A PARS is normalizing if and only if it is probabilistically
normalizing.

Proof. Every element s in a normalizing PARS has a normal form t such that
s →∗ t and by definition of PARS, P (s →∗ t) > 0, which makes it prob-
abilistically normalizing. The other way round, the definition of probabilistic
normalizing includes normalization.

Prob. normalization differs from the other properties in nature (requiring prob-
ability > 0 instead of = 1), and is the only one which is equivalent to its non-
probabilistic counterpart. Thus, the existing results on proving and disproving
normalization can be used directly to determine probabilistic normalization. The
following lemma is also a consequence of Proposition 7, parts 3 and 5, of [7].

Lemma 2. If a PARS is almost-surely terminating then it is normalizing.

Proof. For every element s in a almost-surely terminating system, Proposition 2
gives that

∑
t∈RNF

P (s →∗ t) = 1, and hence s has at least one normal form t
such that P (s →∗ t) > 0. By Lemma 1, the system is also normalizing.

The opposite is not the case, as demonstrated by system (d) in Fig. 1; every
element has a normal form, but the system is not almost-surely terminating.

Lemma 3 ([7]). If a PARS is terminating then it is almost-surely terminating.

Proof. In a terminating PARS, Δ∞(s) = ∅ for any element s. By Proposition 3
we have P (s →∞) = 0.

The opposite is not the case, as demonstrated by systems (b)–(d) in Fig. 1. The
following theorem is a central tool for proving almost-sure convergence.

Theorem 1. A PARS is almost-surely terminating and confluent if and only if
it is almost-surely convergent.

Thus, to prove almost-sure convergence of a given PARS, one may use the meth-
ods of [6,10] to prove almost-sure termination and prove classical confluence –
referring to Newman’s lemma (cf. our discussion in the Introduction), or using
the method of mapping the system into another system, already known to be
confluent, as described in Sect. 4, below.
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Proof (Theorem 1). We split the proof into smaller parts, referring to proper-
ties that are shown below: “if”: by Proposition 5 and Lemma 6. “only if”: by
Lemma 5.

Lemma 4. A PARS is almost-surely terminating if it is locally almost-surely
convergent.

Proof. Let RP be a PARS which is locally almost-surely convergent, and con-
sider an arbitrary element s. We must show P (s →∞) = 0 or, equivalently,∑

t∈RNF
P (s →∗ t) = 1.

When s is a normal form, we have P (s →∗ s) = 1 and thus the desired
property. Assume, now, s is not a normal form. This means that s has at least
one direct successor; for any two (perhaps identical) direct successors s′, s′′, local
almost-sure convergence implies a unique normal form ts′,s′′ of s′ as well as of
s′′ with P (s′ →∗ ts′,s′′) = P (s′′ →∗ ts′,s′′) = 1. Obviously, this normal form is
the same for all such successors and thus a unique normal form of s, so let us
call it ts. We can now use Proposition 4 as follows.

∑

t∈RNF

P (s �
∗ t) = P (s �

∗ ts) =
∑

s→s′

(

P (s � s′)·P (s′
�

∗ ts)
)

=
∑

s→s′
P (s � s′) = 1.

This finishes the proof.

Since almost-sure convergence implies local almost-sure convergence, we obtain
the weaker version of the above lemma.

Proposition 5. A PARS is almost-surely terminating if it is almost-surely
convergent.

The following property for (P)ARS, is used in the proof of Lemma 5, below.

Proposition 6. A normalizing system is confluent if and only if every element
has a unique normal form.

Proof. “If”: By contradiction: Let RP be a normalizing (P)ARS; assume that
every element has a unique normal form and that RP is not confluent. By non-
confluence, there exist s1 ←∗ s →∗ s2 for which there does not exists a t such that
s1 →∗ t ←∗ s2. However, s has one unique normal form t′, i.e., {t′} = RNF (s).
By definition of normal forms of s, we have that ∀s′ : s →∗ s′ ⇒ RNF (s) ⊇
RNF (s′). This holds specifically for s1 and s2, i.e., {t′} = RNF (s) ⊇ RNF (s1)
and {t′} = RNF (s) ⊇ RNF (s2). Since R is normalizing, every element has at least
one normal form, i.e., RNF (s1) �= ∅ and RNF (s2) �= ∅, leaving one possibility:
RNF (s1) = RNF (s2) = {t′}. From this result we obtain s →∗ s1 →∗ t′ and
s →∗ s2 →∗ t′; contradiction. “Only if”: This is a known result; see, e.g., [3].

Lemma 5. If a PARS is almost-surely terminating and confluent then it is
almost-surely convergent.
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Proof. Lemma 2 and Proposition 6 ensure that an a-s. terminating system has a
unique normal form. A-s. termination also ensures that this unique normal form
is reached with probability = 1, and thus the system is almost-surely convergent.

Lemma 6. A PARS is confluent if it is almost-surely convergent.

Proof. Assume almost-sure convergence, then for each s1 ←∗ s →∗ s2 there
exists a t (a normal form) such that s1 →∗ t ←∗ s2.

4 Showing Probabilistic Confluence by Transformation

The following proposition is a weaker formulation and consequence of Theorem
1; it shows that (dis)proving confluence for almost-surely terminating systems is
very relevant when (dis)proving almost-sure convergence.

Proposition 7. An almost-surely terminating PARS is almost-surely conver-
gent if and only if it is confluent.

Proof. This is a direct consequence of Theorem 1 (or using Lemmas 5 and 6).

Curien and Ghelli [9] presented a general method for proving confluence by
transforming5 the system of interest (under some restrictions) to a new system
which is known to be confluent. We start by repeating their relevant result.

Lemma 7 ([9]). Given two ARS R = (A,→R) and R′ = (A,→R′) and a map-
ping G : A → A′, then R is confluent if the following holds.

(C1) R′ is confluent,
(C2) R is normalizing,
(C3) if s→R t then G(s)↔∗

R′G(t),
(C4) ∀t ∈ RNF , G(t) ∈ R′

NF , and
(C5) ∀t, u ∈ RNF , G(t) = G(u) ⇒ t = u

We present a version which permits also non-confluence of the transformed sys-
tem to imply non-confluence of the original system. Notice that (C2)–(C5) is
a part of (C2′)–(C5′), and in particular (C4′) requires additionally that only
normal forms are mapped to normal forms.

Lemma 8. Given two ARS R = (A,→R) and R′ = (A,→R′) and a mapping
G : A → A′, satisfying

(C1′) (surjective) ∀s′ ∈ A′, ∃s ∈ A,G(s) = s′,
(C2′) R and R′ are normalizing,
(C3′) if s→R t then G(s)↔∗

R′ G(t), and
if G(s)↔∗

R′ G(t) then s↔∗
R t,

(C4′) ∀t ∈ RNF , G(t) ∈ R′
NF , and ∀t′ ∈ R′

NF , G−1(t′) ⊆ RNF ,
(C5′) (injective on normal forms) ∀t, u ∈ RNF , G(t) = G(u) ⇒ t = u,

5 This is also referred to as interpreting a system elsewhere, e.g., [9].
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then R is confluent iff R′ is confluent.

Proof. “⇒”: follows from Lemma 7.
“⇐”: Assume that R is confluent and R′ is not confluent, i.e., there exist
s′
1←∗

R′ s′→∗
R′ s′

2 for which �t′ ∈ R′ : s′
1→∗

R′ t′←∗
R′ s′

2.
By (C2′): ∃t′1, t

′
2 ∈ R′

NF : t′1←∗
R′ s′

1←∗
R′ s′→∗

R′ s′
2→∗

R′ t′2 where t′1 �= t′2.
By (C1′) and (C4′): ∃t1, t2 ∈ RNF : G(t1) = t′1 ∧ G(t2) = t′2
By (C5′): t1 �= t2
By (C3′): t′1↔∗

R′ t′2 ⇒ t1↔∗
R t2

By confluence of R: t1 = t2 (contradicts t1 �= t2).

We summarize the application of the above to probabilistic systems in Theo-
rems 2 and 3.

Theorem 2. An almost-surely terminating PARS RP = ((A,→R), P ) is
almost-surely convergent if there exists an ARS R′ = (A′,→R′) and a mapping
G : A → A′ which together with (A,→R) satisfy (C1)–(C5).

Proof. Since RP is a-s. terminating, R is normalizing (Lemma 2). So, given an
ARS R′ and G be a mapping from R to R′ satisfying (C1), (C3)–(C5), we can
apply Lemma 7 and obtain that R and thereby RP is confluent. A-s. convergence
of RP follows from Proposition 7 since RP is confluent and a-s. terminating

Example 3. We consider the nonterminating, almost-surely terminating system
RP (below to the left) with the underlying normalizing system R (below, middle),
the confluent system R′ (below to the right) and the mapping G(0)= 0, G(a)= a.

RP :
0 a

p

1-p R :
0 a

R′ : 0 a

The systems R, R′ and the mapping G satisfy (C1)–(C5), and therefore we can
conclude that RP is almost-surely convergent.

Theorem 3. Given an almost-surely terminating PARS RP = (R,P ) with R =
(A,→R), an ARS R′ = (A,→R′) and a mapping G from A to A′ which together
with R satisfy (C1′)–(C5′), then system RP is almost-surely convergent if and
only R′ is confluent.

Proof. Assume notation as above. Since RP is a-s. terminating, R is normalizing
(Lemma 2), thus satisfying the first part of (C2′). So, given an ARS R′ and G
be a mapping from A to A′ which together with R satisfy (C1′)–(C5′), we can
apply Lemma 7 obtaining that R is confluent iff R′ is confluent. Proposition 7
gives that the a-s. terminating RP is a-s. convergent iff R′ is confluent.

5 Examples

In the following we show almost-sure convergence in two different cases that
exemplifies Theorem 3. We use the existing method for showing almost-sure
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termination [6,10]: To prove that a PARS RP = ((A,→), P ) is a-s. terminating,
it suffices to show existence of a Lyapunov ranking function, i.e., a function
V : A → R+ where ∀s ∈ A there exists an ε > 0 so the inequality of s, V(s) ≥∑

s→s′ P (s → s′) · V(s′) + ε holds.

5.1 A Simple, Antisymmetric Random Walk

We consider RP = (R,P ), depicted in Fig. 2(a), a simple positive antisymmetric
1-dimensional random walk. In each step the value n can either increase to n+1,
P (n → n+1) = 1/3, or decrease to n−1 (or if at 0 we “decrease” to the normal
form a instead), P (n → n − 1) = P (0 → a) = 2/3. Formally, the underlying
system R = (A,→) is defined by A = N � {a} and → = {0 → a} � {n → n′ |
n, n′ ∈ N, n′ = n + 1 ∨ n′ = n − 1}.
We start by showing RP a-s. terminating, i.e., that a Lyapunov ranking function
exists: let the function V be defined as follows.

V(s) =

{
s + 2, if s ∈ N

1, if s = a

This function is a Lyapunov ranking since the inequality (see above) holds for
all elements s ∈ A; we divide into three cases s > 0, s = 0, and s = a:

V(s) > 1
3 · V(s + 1) + 2

3 · V(s − 1) ⇔ s + 2 > 1
3 · (s + 3) + 2

3 · (s + 1) (= s + 5
3 )

V(0) > 1
3 · V(1) + 2

3 · V(a) ⇔ 2 > 1
3 · 3 + 2

3 · 1 , and
V(a) > 0 ⇔ 1 > 0.

Since RP is a-s. terminating, it suffice to define R′ = ({number, a}, number → a),
see Fig. 2(c), and the mapping G : N � {a} → {number, a}.

G(s) =

{
number, if s ∈ N

a, otherwise.

Because RP is a-s. terminating, R′ is (trivially) a confluent system, and the
mapping G satisfies (C1′)–(C5′) then RP is a-s. convergent (by Theorem 3).

5.2 Herman’s Self-stabilizing Ring

Herman’s Ring [14] is an algorithm for self-stabilizing n identical processors
connected in an uni-directed ring, indexed 1 to n. Each process can hold one or
zero tokens, and for each time-step, each process either keeps its token or passes
it to its left neighbour (−1) with probability 1/2 of each event. When a process
keeps its token and receives another, both tokens are eliminated.

Herman showed that for an initial state with an odd number of tokens, the
system will reach a stable state with one token with probability =1. This system
is not almost-sure convergent, but proving it for a similar system can be a part
of showing that Herman’s Ring with 3 processes either will stabilize with 1 token
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Fig. 2. Random walk (1 Dimension)

Fig. 3. Herman’s self-stabilizing Ring

with probability = 1 or 0 tokens with probability = 1. We use a boolean array to
represent whether each process holds a token (1 indicates a token) and is defined
as in Fig. 3(a), where both dashed and solid edges indicate reductions.

Since [000] is a normal form and {[100], [010], [001]} is the set of successor-
states of each of [100], [010] and [001], then we can prove stabilization of RP

by showing almost-sure convergence for a slightly altered system R′P , i.e., the
system in Fig. 3(a) consisting of the solid edges only.

To show almost-sure convergence of R′P , we prove almost-sure termination
by showing the existence of a Lyapunov ranking function, namely V([b1 b2 b3]) =
22 · (b1 + b2 + b3) + b1 · 20 + b2 · 21 + b3 · 22, which decreases, firstly, with the
reduction of tokens and, secondly, by position of the tokens. The only two states
where V increases in a direct successor are [110] and [101] where the inequality
of [110] reduces to 11 > 9 + 1

2 and that of [101] to 14 > 9 + 1
2 showing RP to be

a-s. terminating.
We provide, now, a mapping G from the elements of the underlying system

into the elements of a trivially confluent system, i.e., R′′ in Fig. 3(b):

G([100]) = [100] G([000]) = [000]
G([111]) = G([001]) = G([010]) = odd

G([011]) = G([101]) = G([110]) = even

The RP is a-s. term., R′′ is confluent and G satisfy (C1′)–(C5′), then
(by Theorem 3) RP is a-s. convergent.
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6 Related Work

We see our work as a succession of the earlier work by Bournez and Kirchner [7],
with explicit and simple definitions (instead of referring to Homogeneous Markov
Chain theory) and proofs of central properties, and showing novel properties that
are important for showing (non-) convergence. Our work borrows inspirations
from the result of [12,27,28], given specifically for probabilistic extensions of
the programming languages CHR. A notion of so-called nondeterministic PARS
have been introduced, e.g., [6,10], in which the choice of probability distribution
for next reduction is nondeterministic; these are not covered by our results.

PARS can be implemented directly in Sato’s PRISM System [24,25], which
is a probabilistic version of Prolog, and recent progress for nonterminating pro-
grams [26] may be useful convergence considerations.

7 Conclusion

We have considered almost-sure convergence – and how to prove it – for prob-
abilistic abstract reduction systems. Our motivation is the application of such
systems as computational systems having a deterministic input-output relation-
ship, and therefore almost-sure termination is of special importance. We have
provided properties that are useful when showing almost-sure (non-) convergence
by consequence of other probabilistic and “classic” properties and by transfor-
mation. We plan to generalize these results to almost-sure convergence modulo
equivalence relevant for some Monte-Carlo Algorithms, that produces several
correct answers (e.g. Simulated Annealing), and thereby continuing the work we
have started for (non-probabilistic) CHR [8].

A Selected Proofs

Proposition 2. For an arbitrary finite path π, 1 ≥ P (π) > 0. For every ele-
ment s, P (s →∗ ·) and P (s →∞) comprise a probability distribution, i.e.,
∀t ∈ RNF (s) : 0 ≤ P (s →∗ t) ≤ 1; 0 ≤ P (s →∞) ≤ 1; and

∑
t∈RNF (s)

P (s →∗ t) + P (s →∞) = 1.

Proof. Part one follows by Definition 2. Part two is shown by defining a sequence
of distributions P (n), n ∈ N, only containing paths up to length n, and show
that it converges to P . Let Δ(n)(s, t) be the subset of Δ(s, t) with paths of length
n or less, and Δ(n)(s, �) be the set of paths of length n, starting in s and ending
in a reducible element.

We can now define P (n) over {Δ(n)(s, t) | t ∈ RNF (s)} � {Δ(n)(s, �)} as
follows:

P (n)(s →∗ t) =
∑

δ∈Δ(n)(s,t) P (δ), and (1)

P (n)(s →∞) =
∑

π∈Δ(n)(s,�) P (π). (2)
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First, we prove by induction that P (n) is a distribution for all n. The P (0) is
a distribution because: [(i)] If s is irreducible, P (0)(s →∗ s) = 1 (the empty-
path); and P (0)(s →∞) = 0 (a sum of zero elements). [(ii)] If s is reducible,
P (0)(s →∗ s) = 0; and P (0)(s →∞) =

∑
s→t P (s → t) = 1 by Definition 2.

The inductive step: The sets Δ(n+1)(s, t), t ∈ RNF (s), and Δ(n+1)(s, �) can be
constructed by, for each path in Δ(n)(s, �), create its possible extensions by one
reduction. When an extension leads to a normal form t, it is added to Δ(n)(s, t).
Otherwise, i.e., if the new path leads to a reducible, it is included in Δ(n+1)(s, �).
Formally, for any normal form t of s, we write:

Δ(n+1)(s, t) = {(s� · · · �u� t) | (s� · · · �u) ∈ Δ(n)(s, �), u→ t} � Δ(n)(s, t)
Δ(n+1)(s, �) = {(s� · · · �u�v) | (s� · · · �u) ∈ Δ(n)(s, �), u�v, u �∈ RNF (s)}

We show that for a given s, the probability mass added to the Δ( · )(s, t) sets is
equal to the probability mass removed from Δ( · )(s, �) as follows (where δsu =
(s� · · · �u)).

∑

t∈RNF (s)

P (n+1)(s→∗ t) + P (n+1)(s →∞) =
∑

t∈RNF (s)

δ∈Δ(n+1)(s,t)

P (n+1)(δ) + P (n+1)(s →∞)

=
∑

t∈RNF (s)

δst∈Δ(n)(s,t)

P (n)(δ) +
∑

δsu∈Δ(n)(s,�),
u→v,v∈RNF (s)

P (n)(δ)P (u→v) +
∑

δsu∈Δ(n)(s,�),
u→v,v �∈RNF (s)

P (n)(δ)P (u→v)

=
∑

t∈RNF (s)

P (n)(s→∗ t) +
∑

δsu∈Δ(n)(s,�),
u→v

P (n)(δ)P (u→v) =
∑

t∈RNF (s)

P (n)(s→∗ t) +
∑

δsu∈Δ(n)(s,�)

P (n)(δ)

(
∑

u→v

P (u→v)

)

=
∑

t∈RNF (s)

P (n)(s→∗ t) + P (n)(s →∞) = 1

Thus, for given s, P (n+1) defines a probability distribution. Notice also that the
equations above indicate that P (n+1)(s →∗ t) ≥ P (n)(s →∗ t), for all t ∈ RNF (s).

Finally, for any s and t ∈ RNF (s), limn→∞ Δ(n)(s, t) = Δ(s, t),
we get (as we consider increasing sequences of real numbers in a closed
interval) limn→∞ P (n)(s →∗ t) = P (s →∗ t), and as a consequence of this,
limn→∞ P (n)(s →∞) = P (s →∞). This finishes the proof.

Proposition 3. Consider a PARS which has an element s for which Δ∞(s) is
countable (finite or infinite). Let P (s1 → s2 → · · · ) =

∏
i=1,2,...P (si → si+1) be

the probability of an infinite path then P (s→∞) =
∑

δ∈Δ∞(s) P (δ) holds.

Proof. We assume the characterization in the proof of Proposition 2 above, of P
by the limits of the functions P (n)(s →∗ t) and P (n)(s →∞) given by equations
(1) and (2). When Δ∞(s) is countable, limn→∞ P (n)(s →∞) =

∑
δ∈Δ∞(s) P (δ).
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Abstract. Computational systems based on a first-order language that
can be given a canonical model which captures provability in the cor-
responding calculus can often be seen as first-order theories S, and
computational properties of such systems can be formulated as first-order
sentences ϕ that hold in such a canonical model of S. In this setting,
standard results regarding the preservation of satisfiability of different
classes of first-order sentences yield a number of interesting applications
in program analysis. In particular, properties expressed as existentially
quantified boolean combinations of atoms (for instance, a set of uni-
fication problems) can then be disproved by just finding an arbitrary
model of the considered theory plus the negation of such a sentence. We
show that rewriting-based systems fit into this approach. Many computa-
tional properties (e.g., infeasibility and non-joinability of critical pairs in
(conditional) rewriting, non-loopingness, or the secure access to pro-
tected pages of a web site) can be investigated in this way. Interestingly,
this semantic approach succeeds when specific techniques developed to
deal with the aforementioned problems fail.

Keywords: Logical models · Program analysis
Rewriting-based systems

1 Introduction

First-Order Logic is an appropriate language to express the semantics of
computational systems and also the (claimed) properties of such computational
systems [5]. In this paper we explore some new uses of first-order logic in pro-
gram analysis. After providing a generic approach where we consider arbitrary
first-order theories, we apply our results to rewriting-based systems, including
Term Rewriting Systems (TRSs, [2]), Conditional TRSs (CTRSs, [3,11,28]),
Membership Equational Programs [26], and more general rewriting-based for-
malisms [4,15,27]. The insertion of a ‘rewriting-based system’ R into First-Order
Logic is made as a Horn theory R, i.e., a set of universally quantified implica-
tions A1 ∧ · · · ∧ An ⇒ B for some n ≥ 0, where Ai, 1 ≤ i ≤ n and B are
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atoms with predicate symbols →, →∗, etc. Such a Horn theory is obtained from
the operational semantics of the considered rewriting-based system R, which is
usually given by means of some inference rules.

Example 1. Consider the following CTRS R:

b → a (1)
a → b ⇐ c → b (2)

Its associated Horn theory R (using predicate symbols → and →∗) is:

(∀x) x →∗ x (3)
(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z (4)
b → a (5)
c →∗ b ⇒ a → b (6)

Sentence (3) corresponds to reflexivity of the rewrite relation →∗ and (4)
describes how the one-step rewrite relation → contributes to the rewrite relation
→∗. Finally, (5) and (6) describe rules (1) and (2).

In this setting, our approach goes back to Floyd, Hoare, and Manna’s early work
on proving program properties using first-order logic: we can use logical formulas
to describe the execution of a program and then other formulas describe the
property of interest [5, Chap. 10]. However, the natural idea of using the notion
of logical consequence R |= ϕ (i.e., that ϕ is satisfied in every model of R) as a
formal definition of “system R has property ϕ” may fail to work.

Example 2 (Continuing Example 1). Note that a does not rewrite into b because
the conditional part of rule (2) cannot be satisfied: c cannot be rewritten into
b. We are tempted to formalize this as follows: R |= ¬(a → b) holds, i.e., every
model of R satisfies ¬(a → b). However, an interpretation of symbols a and b as
0, with → and →∗ interpreted as the equality satisfies (3)–(6) (i.e., it is a model
of R), but ¬(a → b) does not hold. Thus, R |= ¬(a → b) does not hold!

This ‘mismatch’ between the expressivity of pure first-order logic and the
intended meaning of logic sentences referred to the computational logic describ-
ing a given computational system is usually avoided by the assumption that
sentences expressing program properties should be checked with respect to a
given canonical model only [6, Chap. 4]. For instance, the problem in Example 2
disappears if we assume that ¬(a → b) must hold in the least Herbrand model
HR of R only. In HR, → and →∗ are interpreted precisely as the sets (→)HR

and (→∗)HR of pairs (s, t) of ground terms s and t such that s →R t and s →∗
R t,

respectively. Then, we indeed have HR |= ¬(a → b), which is agreed to be the
intended meaning of the logic expression ¬(a → b).

In general, the (standard) least Herbrand model H of a first-order theory
is not computable1. Thus, the practical verification of properties ϕ as satisfi-
ability in H, i.e., H |= ϕ, can be unfeasible. In this paper we show that the
1 For instance, given terms s and t, s →∗

R t is undecidable (Post’s correspondence
problem is a particular case). Hence, HR |= s →∗ t is undecidable.
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class of properties ϕ which can be written as the existential closure of a positive
boolean combination of atoms can be disproved (with regard to the least Her-
brand model of the first-order theory S) by showing the satisfiability of ¬ϕ in an
arbitrary model A of S, i.e., by proving A |= ¬ϕ. Dealing with rewriting-based
systems R with Horn theories R, a number of interesting properties (some of
them already considered in the literature) can be expressed and disproved in
this way. Examples are given in Table 1, where s and t denote ground terms, and
s1, . . . , sn, t1, . . . , tn, denote arbitrary terms with variables in x , and � is the
subterm relation.

Table 1. Some properties about rewriting-based systems

Property ϕ

Reachable s →∗ t

Feasible (∃x )s1 →∗ t1 ∧ · · · ∧ sn →∗ tn

Joinable (∃x) s →∗ x ∧ t →∗ x

Reducible (∃x) t → x

Convertible s → t ∨ t → s

Cycl ing term (∃x) t → x ∧ x →∗ t

Cycl ing system (∃x, y) x → y ∧ y →∗ x

Looping term (∃x, y) t → x ∧ x →∗ y ∧ y � t

Looping system (∃x, y, z) x → y ∧ y →∗ z ∧ z � x

Unif iable (∃x ) s1 = t1 ∧ · · · ∧ sn = tn

Example 3 (Continuing Example 2). The fact that a rewrites into b (i.e., a →R b)
can be disproved if there is a model A of (3)–(6) satisfying ¬(a → b). The
interpretation A with domain N, interpreting both a and c as 1, b as 2, → as >N

and →∗ as ≥N is a model of {(3)–(6)} ∪ {¬(a → b)}. This proves that a 
→R b.

After some preliminaries, Sect. 3 presents the main results of the paper which
are formulated in a standard first-order logic framework [17,25]. Sections 4 and
5 explain their use in a rewriting setting. By lack of space we mainly focus on
CTRSs but other rewriting-based and computational systems could be treated
in this way. Section 6 discusses some related work. Section 7 concludes.

2 Preliminaries

A signature with predicates2 Ω is a pair Ω = (F ,Π), where F is a set of function
symbols F = {f, g, . . .} and Π is a set of predicate symbols Π = {P,Q, . . .} with
F ∩Π = ∅. An arity mapping ar : F ∪Π → N fixes the number of arguments for
each symbol. First-order terms t and formulas ϕ are built from these symbols

2 We follow the terminology and notation in [15].
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(and an infinite set X of variable symbols X = {x, y, z, . . .}, which is disjoint
from F ∪Π) in the usual way. Equations s = t for terms s and t can also be used
as atoms if necessary, even without any equality symbol in Π. The set of terms
is denoted as T (F ,X ); the set of ground terms, i.e., terms without variables, is
denoted as T (F). The set of (first-order) formulas is denoted as FormF,Π .

An Ω-structure A for a signature with predicates Ω is an interpretation of
the function and predicate symbols in Ω as mappings fA, gA, . . . and relations
PA, QA, . . . on a given set (carrier) dom(A), often denoted A as well. The equal-
ity symbol has a fixed interpretation as the identity relation {(a, a) | a ∈ A}
on A. An Ω-homomorphism between Ω-structures A and A′ is a mapping
h : dom(A) → dom(A′) such that (i) for each k-ary symbols f ∈ F , and
a1, . . . , ak ∈ dom(A), h(fA(a1, . . . , ak)) = fA′

(h(a1), . . . , h(ak)) and (ii) for each
n-ary predicate symbols P ∈ Π and a1, . . . , an ∈ dom(A), if (a1, . . . , an) ∈ PA,
then (h(a1), . . . , h(an)) ∈ PA′

[17, Sect. 1.2]. Given a valuation mapping α :
X → A, the evaluation mapping [ ]αA : T (F ,X ) → A is given by [t]αA = α(t) if
t ∈ X and [t]αA = fA([t1]αA, . . . , [tk]αA) if t = f(t1, . . . , tk) (if k = 0, then t is just
a constant symbol f). Finally, [ ]αA : FormF,Π → Bool is given by:

1. [P (t1, . . . , tn)]αA = true (with P ∈ Π) if and only if ([t1]αA, . . . , [tn]αA) ∈ PA;
2. [¬φ]αA = true if and only if [φ]αA = false;
3. [φ ∧ ψ]αA = true if and only if [φ]αA = true and [ψ]αA = true;
4. [φ ∨ ψ]αA = true if and only if [φ]αA = true or [ψ]αA = true;
5. [(∀x) φ]αA = true if and only if for all a ∈ A, [φ]α[x�→a]

A = true; and
6. [(∃x) φ]αA = true if and only if there is a ∈ A, such that [φ]α[x�→a]

A = true.

A valuation α ∈ X → A satisfies a formula ϕ in A (written A |= ϕ [α]) if
[ϕ]αA = true. A model for a theory S, i.e., a set of sentences (which are formulas
whose variables are all quantified), is just a structure that makes them all true,
written A |= S, see [17]. Let Mod(S) be the class of structures A which are
models of S. A sentence ϕ is a logical consequence of a theory S (written S |=
ϕ) if for all A ∈ Mod(S), A |= ϕ. If ϕ can be proved from S by using an
appropriate calculus (e.g., the axiomatic calculus by Hilbert [25, Sect. 2.3], or
Gentzen’s natural deduction, see [29]), we write S � ϕ.

3 Existentially Closed Boolean Combinations of Atoms

Every set S of ground atoms has an initial model.

Theorem 1 [17, Theorem 1.5.2]. Let Ω be a first-order signature and S be a
set of ground atoms. Then, there is a structure IS such that

1. IS |= S,
2. every element of dom(IS) is of the form tIS for some ground term t,
3. if A is an Ω-structure and A |= S, then there is a unique homomorphism

h : IS → A.
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Actually, the initial structure IS (or just I, if S is understood from the context)
which is mentioned in Theorem 1, and also in some of the results below, consists
of the usual Herbrand Domain of ground terms modulo the equivalence ∼ gen-
erated by the equations in S [17, Lemma 1.5.1]: For each ground term t ∈ T (F),
let t∼ be the equivalence class of t under ∼. Then,

1. For each constant c ∈ F , we let cI = c∼.
2. For each function symbol f ∈ F of arity k, define fI by fI(t∼1 , . . . , t∼k ) =

f(t1, . . . , tk)∼.
3. For each predicate symbol P ∈ Ω of arity n, define P I as the set

{(t∼1 , . . . , t∼n ) | P (t1, . . . , tn) ∈ S}.

If S contains no equation, then I is the Least Herbrand Model of S [17]. A
positive boolean combination of atoms is a formula

m∨

i=1

ni∧

j=1

Aij (7)

where m ≥ 0, ni ≥ 0 for all 1 ≤ i ≤ m, and Aij are atoms for all 1 ≤ i ≤ m
and 1 ≤ j ≤ ni (cf. [17, Sect. 2.4]); if m = 0, then (7) is equivalent to false.
Satisfiability of the existential closure of formulas (7), i.e., formulas of the form

(∃x1) · · · (∃xk)
m∨

i=1

ni∧

j=1

Aij (8)

where x1, . . . , xk for some k ≥ 0 are the variables occurring in the atoms Aij

for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni, is preserved under homomorphism, i.e., the
following holds:

Theorem 2 [17, cf. Theorem 2.4.3(a)]. Let Ω be a signature with predicates
and Aij be atoms for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni with variables x1, . . . , xk.
Let A and A′ be Ω-structures such that there is an Ω-homomorphism from A to
A′. Then,

A |= (∃x1) · · · (∃xk)
m∨

i=1

ni∧

j=1

Aij =⇒ A′ |= (∃x1) · · · (∃xk)
m∨

i=1

ni∧

j=1

Aij (9)

Our main result is just a combination of the two previous results. If S is a
set of ground atoms, then it is satisfiable in the initial model IS of S (i.e.,
IS |= S holds) and for all models A of S there is a homomorphism h : IS → A
(Theorem 1). By Theorem 2, if IS satisfies a formula ϕ of the form (8), then for
all such models A of S (for which we have a homomorphism h : IS → A) we
have A |= ϕ. Thus, ϕ is a logical consequence of S: S |= ϕ.

Corollary 1. Let Ω be a first-order signature, S be a set of ground atoms, and
Aij be atoms for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni with variables x1, . . . , xk. Then,

IS |= (∃x1) · · · (∃xk)
m∨

i=1

ni∧

j=1

Aij =⇒ S |= (∃x1) · · · (∃xk)
m∨

i=1

ni∧

j=1

Aij (10)
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Corollary 1 does not hold for universally quantified formulas or when negated
atoms are present (stronger requirements on the homomorphisms are required,
see [17, Theorems 2.4.1 and 2.4.3(b, c)]).

Example 4. Let S = {P(a)} and ϕ = (∀x)P(x), which clearly holds in the least
Herbrand model of S. The structure A with domain N that interprets a as 0 and
P as {0} is a model of S but A |= ϕ does not hold. Thus, S |= ϕ does not hold.

Add a new constant symbol b to the previous signature and consider
ϕ′ = (∃x)¬P(x). Clearly, IS |= ϕ′ holds. The structure A′ over {0}, interpreting
both a and b as 0 and P again as {0}, is a model of S, but A′ |= ϕ′ does not
hold.

Now consider a set S0 of first-order sentences (i.e., a first-order theory) and let
S be the set of ground atoms obtained as the deductive closure of S0, i.e., the
set of atoms P (t1, . . . , tn) for each n-ary predicate symbol P and ground terms
t1, . . . , tn, such that S0 � P (t1, . . . , tn). By construction, every model A of S0

is also a model of S. By Theorem 1, there is a homomorphism h from IS to A.
By Theorem 2, if A |= ¬ϕ holds and ϕ is the existential closure of a positive
boolean combination of atoms, then IS |= ¬ϕ holds, which we often read: S0

lacks property ϕ. Accordingly, the following result is the basis of the practical
applications discussed in the following sections.

Corollary 2 (Semantic criterion). Let S0 be a first-order theory and S be the
set of its ground atomic consequences, ϕ be the existential closure of a positive
boolean combination of atoms, and A be a structure. If A |= S0 ∪ {¬ϕ}, then
IS |= ¬ϕ.

Using Corollary 2 only makes sense if S0 is consistent (otherwise, A |= S0 never
holds, [17, Sect. 2.3]) and the set T (F) of ground terms is not empty (i.e., F
contains at least a constant symbol, which can be a dummy one). Otherwise,
the domain of IS is empty and every existentially closed formula ϕ is trivially
false in IS . In the following, we use S (rather than S0) to refer the considered
first-order theory.

Remark 1 (Many-sorted signatures). Corollaries 1 and 2 easily generalize to
many-sorted signatures: each variable x of sort si is given an atom Si(x) which
is added as a new conjunction to the matrix formula (7) [36]. In Sect. 5.6 we use
this without further formalization (but see [15]).

Models A to be used in Corollary 2 can be automatically generated from the
(many-sorted) first-order theory S and sentence ϕ at stake by using a tool like
AGES [16] which implements the methodology described in [19]. Models displayed
in the examples of this paper have been automatically generated by AGES.

Case Study: Unsolvable Unification (ϕUnif ). Two expressions e and e′

(terms or atoms) unify iff there is a substitution σ (which is called a unifier)
which make them syntactically equal. A unification problem is usually repre-
sented as e =? e′ and said to be solvable if such a unifier exists. Similarly, a
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set of unification problems U = {ei =? e′
i | 1 ≤ i ≤ n} is solvable iff there is

a substitution σ which is a unifier of ei =? e′
i for all 1 ≤ i ≤ n. We can use

Corollary 2 together with ϕUnif (see Table 1) to show that a set of unification
problems among terms s1 =? t1, . . . , sn =? tn is unsolvable. In this case, S
consists of the equality axioms only (see, e.g., [25, Proposition 2.25]).

(Rf)
x →∗ x

(C)f,i
xi → yi

f(x1, . . . , xi, . . . , xk) → f(x1, . . . , yi, . . . , xk)
for all f ∈ F and 1 ≤ i ≤ k = arity(f)

(T ) x → y y →∗ z

x →∗ z
(Rl)α

s1 →∗ t1 · · · sn →∗ tn

� → r
for α : � → r ⇐ s1 → t1, . . . , sn → tn ∈ R

Fig. 1. Inference rules for conditional rewriting with a CTRS R with signature F

Example 5. Consider a first-order signature with constant symbols a and b. In
order to prove that there is no unifier for U = {x =? a, x =? b}, we try to find
a model of {¬ϕUnif }, where ϕUnif is (∃x) x = a ∧ x = b. The structure A with
domain A = {−1, 0, 1} and interpretation for symbols given by aA = 0, bA = 1,
and =A the equality on A shows unsolvability of U .

If we consider a set of equations E together with the usual equality axioms, then
the interpretation of ϕUnif would be E-unification and we could use Corollary 2
to disprove the E-unification of terms or finite sets of pairs of terms.

4 Conditional Rewrite Systems as Horn Theories

A CTRS is a pair R = (F , R) where F is a signature of function symbols and
R is a set of conditional rules 	 → r ⇐ c where 	 and r are terms and c is
the conditional part of the rule consisting of sequences s1 ≈ t1, . . . , sn ≈ tn of
expressions si ≈ ti, usually interpreted as reachability or joinability problems
after an appropriate instantiation with a substitution σ, i.e., for all i, 1 ≤ i ≤
n, σ(si) →∗

R σ(ti) (for the rewriting semantics); or σ(si) ↓R σ(ti) (for the
joinability semantics) [3,11,28]. In the following we focus on the reachability
semantics for CTRSs3. We write s →∗

R t for terms s and t iff there is a proof
tree for s →∗ t using R in the inference system of Fig. 1 (and similarly for
one-step rewriting steps s →R t regarding proofs of the goal s → t) [20].

3 Note that the joinability semantics can be rephrased into a reachability semantics:
a joinability condition s ↓ t is equivalent to a reachability condition s →∗ x, t →∗ x
if x is a fresh variable not occurring elsewhere in the rule.
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Remark 2. Schematic rules B1 ··· Bn

A actually denote instances σ(B1) ··· σ(Bn)
σ(A) by

a substitution σ [31]. For instance, (Rl)α in Fig. 1 establishes that, for all sub-
stitutions σ, σ(	) rewrites into σ(r) whenever σ(si) →∗ σ(ti) for 1 ≤ i ≤ n.

In the logic of CTRSs, with binary predicates → and →∗, the Horn theory R
for a CTRS R is obtained from the inference rules in Fig. 1 (for the reachability
semantics of conditions) by specializing (C )f,i for each f ∈ F and 1 ≤ i ≤ ar(f),
and (Rl)α for all α : 	 → r ⇐ c ∈ R. Inference rules B1 ··· Bn

A become universally
quantified implications B1 ∧ · · · ∧ Bn ⇒ A [22, Sect. 2].

Example 6. For the following CTRS R [14, p. 46]:

a → b (11)
f(a) → b (12)
g(x) → g(a) ⇐ f(x) → x (13)

We have the following Horn theory R:

(∀x) x →∗ x (14)
(∀x, y, z) (x → y ∧ y →∗ z ⇒ x →∗ z) (15)
(∀x, y) (x → y ⇒ f(x) → f(y)) (16)
(∀x, y) (x → y ⇒ g(x) → g(y)) (17)
a → b (18)
f(a) → b (19)
(∀x) (f(x) →∗ x ⇒ g(x) → g(a)) (20)

5 Application to (Conditional) Term Rewriting

Most sentences in Table 1 are particular cases of (8) when the language of the
logic of CTRSs is used. Some of the problems represented by these formulas
have been investigated in the literature. In the following, we consider them and
show that our results are useful to improve or complement the already developed
proof methods for these analysis problems.

5.1 Infeasible Conditional Critical Pairs (ϕFeas)

In the literature about confluence of conditional rewriting, the so-called infeasible
Conditional Critical Pairs (CCPs) for a CTRS R are those critical pairs s ↓ t ⇐ c
whose conditional parts c are infeasible, i.e., there is no substitution σ such that
for all i, 1 ≤ i ≤ n, we have σ(si) →∗

R σ(ti) (for the rewriting semantics;
or σ(si) ↓R σ(ti) for the joinability semantics) [28, Definition 7.1.8]. Detecting
infeasible CCPs is important in proofs of confluence of CTRSs [3,28,33,34].

Although infeasibility of CCPs is undecidable, recent tools developed to prove
confluence of CTRSs (e.g., [32]) implement a number of sufficient criteria to prove
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infeasibility of CCPs [33,34]. Infeasibility of CCPs with respect to a CTRS R
can be investigated using ϕFeas , i.e., (∃x ) s1 →∗ t1 ∧ · · · ∧ sn →∗ tn (see Table 1)
together with Corollary 2.

Example 7. The following CTRS [33, Example 5.1]

0 ≤ x → true s(x) > 0 → true x − 0 → x
s(x) ≤ s(y) → x ≤ y s(x) > s(y) → x > y 0 − x → 0 s(x) − s(y) → x − y

x ÷ y → 〈0, y〉 ⇐ y > x → true
x ÷ y → 〈s(q), r〉 ⇐ y ≤ x → true, (x − y) ÷ x → 〈y, z〉

has the following conditional critical pair:

〈0, x〉 ↓ 〈s(y), z〉 ⇐ x ≤ w → true, (w − x) ÷ x → 〈y, z〉, x > w → true

The structure A below provides a model of R ∪ {¬ϕFeas} where ϕFeas is

(∃w, x, y, z) (x ≤ w →∗ true, (w − x) ÷ x →∗ 〈y, z〉, x > w →∗ true) (21)

The domain of A is the set of natural numbers N. Function symbols are
interpreted as follows:

trueA = 1 0A = 0 sA(x) = x + 1

x ≤A y =
{

1 if y ≥N x
0 otherwise x >A y =

{
1 if x >N y
0 otherwise x ÷A y = 1

x −A y =
{

x −N y if x ≥N y
0 otherwise 〈x, y〉A = 1

Predicate symbols → and →∗ are interpreted as follows:

x → y ⇔ x =N y x →∗ y ⇔ x ≥N y

Thus, the critical pair is infeasible. In [33, Example 5.1] this is proved by using
the theorem prover Waldmeister [12].

Example 8. The following CTRS R [34, Example 23]

g(x) → f(x, x) (22)
g(x) → g(x) ⇐ g(x) → f(a, b) (23)

has a conditional critical pair f(x, x) ↓ g(x) ⇐ g(x) → f(a, b). The following
structure A over the finite domain {0, 1}:

aA = 1 bA = cA = 0 fA(x, y) =
{

x − y + 1 if x ≥ y
y − x + 1 otherwise

gA(x) = 1 x →A y ⇔ x = y x (→∗)A y ⇔ x ≥ y

is a model R ∪ {¬ϕFeas} for ϕFeas given by (∃x) g(x) →∗ f(a, b). Thus, the
critical pair is infeasible. In [34, Example 23] this is proved by using unification
tests together with a transformation. It is discussed that the alternative tree
automata techniques investigated in the paper do not work for this example.
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5.2 Infeasible Rules (ϕFeas)

The infeasibility of the conditional part c of a conditional rule 	 → r ⇐ c
with respect to a given CTRS is also important to prove other computational
properties of such systems. In particular, proving the infeasibility of the condi-
tional dependency pairs which are used to characterize termination properties of
CTRSs [21] is useful in (automated) proofs of such termination properties [24].

Example 9. A CTRS R is operationally terminating iff no term t has an infinite
proof tree using the inference system in Fig. 1 [20]. According to [21,24], a formal
proof of operational termination of R in Example 6 is easily obtained if the
following conditional dependency pair (which is just a conditional rule):

G(x) → G(a) ⇐ f(x) → x (24)

(where G is a new function symbol) is proved infeasible with respect to reductions
with R. The following structure A over N − {0}:

aA = 1 bA = 2 fA(x) = x + 1 gA(x) = 1
x →A y ⇔ x ≤ y x (→∗)A y ⇔ x ≤ y

is a model of R∪{¬ϕFeas}, where R is in Example 6 and ϕFeas is (∃x) f(x) →∗ x.
Thus, rule (24) is proved R-infeasible and R operationally terminating.

Example 10. Consider the following CTRS R [34, Example 17]:

h(x) → a (25)
g(x) → x (26)
g(x) → a ⇐ h(x) → b (27)
c → c (28)

The following structure A over N:

aA = 0 bA = cA = 1 gA(x) = x + 2 hA(x) = 0
x →A y ⇔ x ≥ y x (→∗)A y ⇔ x ≥ y

is a model of R ∪ {¬ϕFeas} where ϕFeas is (∃x) h(x) →∗ b. Therefore, rule (27)
is proved R-infeasible. In [34, Example 17] this is proved by using tree automata
techniques. It is also shown that the alternative technique investigated in the
paper (the use of unification tests) does not work in this case.

5.3 Non-joinability of Critical Pairs (ϕJoin)

The analysis of confluence often relies on checking for joinability of the com-
ponents s and t of a critical pair s ↓ t obtained from the rules of the (C)TRS
R, i.e., we look for a term u such that s →∗

R u and t →∗
R u. The problem

of disproving joinability of ground terms has been investigated for TRSs, as
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an interesting contribution to the development of methods for (automatically)
proving non-confluence of TRSs [1].

Actually, proving non-joinability of (ground) terms can be seen as a particular
case of infeasibility : given ground terms s and t, we prove that (∃x)(s →∗ x∧t →∗

x) does not hold. In this way, we use our technique to check non-joinability of
ground terms in CTRSs, something which is also considered in [34].

Example 11. The following CTRS R [34, Example 3]

f(x) → a ⇐ x → a (29)
f(x) → b ⇐ x → b (30)

has a conditional critical pair a ↓ b ⇐ x → a, x → b, which is both non-joinable
and infeasible. For non-joinability, consider the structure A over {0, 1}:

aA = 0 bA = 1 fA(x) = x
x →A y ⇔ x = y x (→∗)A y ⇔ x = y

which is a model R∪{¬ϕJoin} for ϕJoin given by (∃x) a →∗ x∧b →∗ x. Thus, the
critical pair is non-joinable. In [34, Example 3] this is proved by an unification
test. For infeasibility, consider the structure A over N:

aA = 1 bA = 0 fA(x) = x
x →A y ⇔ x = y x (→∗)A y ⇔ x = y

which is a model R ∪ {¬ϕFeas} for ϕFeas given by (∃x) x →∗ a ∧ x →∗ b. Thus,
the critical pair is infeasible. In [34, Example 3] this is not actually proved but
the authors argue that the unification test does not work.

5.4 Irreducible Terms (ϕRed)

It is well-known that, in sharp contrast to unconditional rewriting, for CTRSs
R it is not decidable whether a given term t is (one-step) reducible. In Exam-
ple 3, we already exemplified the use of our technique to check whether a given
reduction step s → t for ground terms s and t is not possible. In general, with
ϕRed , i.e., (∃x) t → x, and Corollary 2 we can prove that a given ground term t
is irreducible. In the following example we show an interesting variant.

Example 12. Consider the following CTRS R [23, Example 13]:

a → b (31)
b → a (32)
f(x) → x ⇐ c → d, a → c (33)

Note that every term f(t) is irreducible at the root. We can prove this claim with
a slight variant of ϕRed : (∃x, y) f(x) Λ→ y, which claims for the existence of a
root-reducible instance f(t) of f(x). The new predicate Λ→ has a slightly different
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Horn theory H Λ→R
where reductions with Λ→R are not propagated below the root

of terms: for each rule 	 → r ⇐ s1 → t1, . . . , sn → tn, we have a sentence:

(∀x1, . . . , xk) s1 →∗ t1 ∧ · · · ∧ sn →∗ tn ⇒ 	
Λ→ r (34)

in H Λ→R
(where x1, . . . , xk are the variables occurring in the rule) and nothing

else. Note that the conditions in the rules are evaluated with →∗
R rather than

with Λ−→∗
R . For this reason, no definition of the reflexive and transitive closure

of Λ→ is given. Thus, the Horn theory R ∪ H Λ→R
we have to deal with is

(∀x)x →∗ x (35)
(∀x, y, z)(x → y ∧ y →∗ z ⇒ x →∗ z) (36)
(∀x, y)(x → y ⇒ f(x) → f(y)) (37)
a → b (38)
b → a (39)
(∀x) c →∗ d ∧ a →∗ c ⇒ f(x) → x (40)

a
Λ→ b (41)

b
Λ→ a (42)

(∀x) c →∗ d ∧ a →∗ c ⇒ f(x) Λ→ x (43)

with R = {(35)–(40)} and H Λ→R
= {(41)–(43)}. The following structure A over

{−1, 0, 1} is a model of R ∪ H Λ→R
∪ {¬ϕRRed} where ϕRRed is (∃x, y) f(x) Λ→ y:

aA = bA = −1 cA = 0 dA = 1 fA(x) = 1
x →A y ⇔ x ≥ y x (→∗)A y ⇔ x ≥ y x( Λ→)Ay ⇔ 5x + y ≤ 1

This proves that for all ground terms t, f(t) is irreducible at the root.

5.5 Non-cycling/looping Terms and Systems (ϕCycl/ϕLoop)

A term t loops (with respect to a CTRS R) if there is a rewrite sequence
t = t1 →R · · · →R tn for some n > 1 such that t is a (non-necessarily strict)
subterm of tn, written tn � t (cf., [10, Definition 3]). We say that a CTRS is non-
looping if no term loops. We can prove non-loopingness of terms t or CTRSs R
by using ϕLoopt and ϕLoop in Table 1 if the considered Horn theory is the union
of R and the Horn theory H� describing the subterm relation �:

(∀x) x � x (44)
(∀x, y, z) x � y ∧ y � z ⇒ x � z (45)
(∀x1, . . . , xk) f(x1, . . . , xk) � xi (46)
for each f ∈ F and 1 ≤ i ≤ k



192 S. Lucas

Example 13. Consider the two rules TRS R = {a → c(b), b → c(b)}. We can
prove a non-looping. The Horn theory R ∪ H� is the following

(∀x) x →∗ x (47)
(∀x, y, z) (x → y ∧ y →∗ z ⇒ x →∗ z) (48)
(∀x, y) (x → y ⇒ c(x) → c(y)) (49)
a → c(b) (50)
b → c(b) (51)
(∀x) x � x (52)
(∀x, y, z) x � y ∧ y � z ⇒ x � z (53)
(∀x) c(x) � x (54)

The following structure over N ∪ {−1}:

aA = −1 bA = 1 cA(x) = x
x →A y ⇔ x ≤ 1 ∧ y ≥ 1 x (→∗)A y ⇔ x ≤ y x �A y ⇔ x ≤ y

is a model of R∪H� ∪{¬ϕLoopt} where ϕLoopt is (∃x, y) a → x∧x →∗ y ∧y �a.
Therefore, a is non-looping. On the other hand, although b is a looping term,
we can also prove that it is non-cycling. Actually, we can prove that R itself is
non-cycling with the following structure over N ∪ {−1}

aA = −1 bA = −1 cA(x) = 2x + 2
x →A y ⇔ x < y x (→∗)A y ⇔ x ≤ y

which is a model of R ∪ {¬ϕCycl} where ϕCycl is (∃x, y) x → y ∧ y →∗ x.

5.6 Secure Access to Web Sites

The order-sorted specification in Fig. 2 provides a partial representation of the
structure and connectivity of the web site of the 1st International Workshop on
Automated Specification and Verification of Web Sites, WWV’054. Web pages
are modeled as terms p(u) of sort WPage where u represents the user browsing
page p. The sort of u is used to allow/disallow the access to some web pages.
Registered and eventual users are given sorts RegUsr and EvUsr, respectively
(subsorts of Usr). Transitions among web pages are modeled as rewrite rules.
Browsing the web site is modeled as rewriting in the corresponding OS-TRS R.
For this reason, the specification is given as a Maude module whose syntax is
hopefully self-explanatory [7]. Our goal is verifying that no eventual user can
submit. Thus, we formulate the property we want to avoid :

(∃u : EvUsr) wwv05(u) →∗ submit(u) (55)

4 http://users.dsic.upv.es/workshops/wwv05/.

http://users.dsic.upv.es/workshops/wwv05/
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mod WWV05-WEBSITE is

sorts EvUsr RegUsr Usr WPage . subsorts RegUsr EvUsr < Usr .

ops login register sbmlink submission submit vlogin wwv05 : Usr -> WPage .

op good : -> RegUsr .

op maybe : -> EvUsr .

var R : RegUsr . var U : Usr .

rl wwv05(U) => submission(U) .

rl submission(U) => sbmlink(U) .

rl sbmlink(U) => login(U) .

rl sbmlink(U) => register(U) .

rl login(U) => vlogin(U) .

rl vlogin(R) => submit(R) .

endm

Fig. 2. Maude specification of part of the WWV05 web site

The following structure A with AEvUsr = {1}, ARegUsr = {0}, AUsr = N,
AWPage = N ∪ {−1}; function symbols interpreted by goodA = 0, maybeA = 1,
loginA(x) = 7x + 2, registerA(x) = 8x + 2, sbmlinkA(x) = 7x + 1,
submissionA(x) = 6x, submitA(x) = 4 vloginA(x) = 8x + 3, wwv05A(x) =
6x − 1; and predicate symbols interpreted by x →A y ⇔ y > x and x(→∗)Ay ⇔
y ≥ x is a model of R ∪ {¬(∃u : EvUsr) wwv05(u) →∗ submit(u)}, thus prov-
ing the desired security property. This crucially depends on the type RegUsr of
variable R controling the ‘identity’ of any user reaching the web page submit.

6 Related Work

The so-called first-order theory of rewriting (FOThR in the following) uses a
restricted first-order language (without constant or function symbols, and with
only two predicate symbols → and →∗). The predicate symbols are by definition
interpreted on an intended model [9]: the least Herbrand model HR (see Sect. 1).
FOThR is often used to express and verify properties of TRSs. For instance,
confluence can be expressed as follows:

(∀x, y, z) (x →∗ y ∧ x →∗ z ⇒ (∃u)(y →∗ u ∧ z →∗ u)) (56)

Given a TRS R and a formula ϕ in the language of FOThR, HR |= ϕ (i.e., the
satisfiability of ϕ in HR) actually means that the property expressed by ϕ holds
for the TRS R. For instance HR |= (57) means ‘R is ground confluent’. And
¬(HR |= (57)), which is equivalent to HR |= ¬(57), means ‘R is not ground
confluent’. Decision algorithms for these properties exist for restricted classes of
TRSs R like left-linear right-ground TRSs, where variables are allowed in the
left-hand side of the rules (without repeated occurrences of the same variable)
but disallowed in the right-hand side [30]. However, a simple fragment of FOThR
like the First-Order Theory of One-Step Rewriting, where only a single predicate
symbol → representing one-step rewritings with R is allowed, has been proved
undecidable even for linear TRSs [35].
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In a different approach, Gallagher and Rosendahl use Horn clauses to encode
TRSs and then investigate reachability issues [13]. Their approach, however, is
quite different from ours. As explained in Sect. 4, our starting point is not just
a TRS but the inference rules associated to the TRS in a given computational
logic which can be different for the same TRS. In this way, we make explicit not
only the rules of the TRS but also the description of the considered operational
semantics (and possibly other relations). Such a semantic description is implicit
(and therefore fixed) in their encoding. Also, we view rewrite rules 	 → r just
as atoms for a binary predicate →, whereas they translate each rewrite rule
into several Horn clauses which flatten the original terms to simulate pattern
matching [13, Sect. 3]. Furthermore, we do not restrict the attention to TRSs.

In contrast to FOThR, we use the full expressive power of first-order logic to
represent sophisticated rewrite theories where sorts, conditional rules and equa-
tions, membership predicates, etc., are allowed. We do not impose any restriction
on the class of rewrite systems we can deal with. In contrast to FOThR, where
function symbols are not allowed in formulas, we can use sentences involving
arbitrary terms. Also in contrast to FOThR, with a single allowed model HR,
we permit the arbitrary interpretation of the underlying first-order logic lan-
guage for proving properties. As a consequence of this, though, we also need to
impose restrictions to the shape of first-order sentences (8) we can deal with. The
application of this approach to well-known problems in rewriting leads to new
methods which show their usefulness with regard to existing ones. In contrast
to FOThR, though, sentences like (56) do not fit format (8) considered in this
paper. But most sentences in Table 1 cannot be expressed in FOThR either, as
they involve specific terms with or without variables.

Other approaches like the ITP tool, a theorem prover that can be used to prove
properties of membership equational specifications [8] work like the ones using
FOThR: the tool can be used to verify properties with respect to ITP-models
which are actually special versions of the Herbrand model of the underlying the-
ory. Then, one may have similar decidability problems as discussed for FOThR.

7 Conclusions

We have presented a semantic approach to prove properties of computational
systems whose semantics can be given as a first-order theory S. Provided that
a program property can be expressed as a first-order sentence ϕ which is the
existential closure of a positive boolean combination of atoms, the satisfaction
of the negation ¬ϕ of this sentence by an arbitrary model A of S implies that
¬ϕ holds in the standard Herbrand model of S. As usual, we can think of this
fact as S actually lacking the property expressed by ϕ.

We have explained how to apply this simple technique to deal with rewriting-
based computational systems, in particular with (possibly sorted) conditional
rewrite systems. We have considered a number of properties that have been
investigated in the literature (infeasibility of conditional critical pairs and
rules, non-joinability of ground terms, non-loopingness, nonreachability, etc.).
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Quite surprisingly, we could handle many specific examples coming from papers
developing specific techniques to deal with these problems with our semantic
approach (Corollary 2). In particular, we could deal with all the examples solved
in [33,34] (some of them reported in our examples above; note that these papers
explore several alternative methods and, as reported by the authors, some of
them fail in specific examples which then require a different approach). We also
dealt with all Aoto’s examples in [1] in combination with his usable rules refine-
ment (see also [18]). Furthermore, these examples were all handled by using our
tool AGES for the automatic generation of models of Order-Sorted First-Order
Theories.
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Abstract. Reachability logic has been applied to K rewrite-rule-based
language definitions as a language-generic logic of programs. To be able
to verify not just code but also distributed system designs, a new rewrite-
theory-generic reachability logic is presented and proved sound for a wide
class of rewrite theories. Constructor-based semantic unification, match-
ing, and satisfiability procedures greatly increase the range of decidable
background theories that can be used in reachability logic proofs. New
methods for proving invariants of possibly never terminating distributed
systems are developed, and experiments with a prototype implementa-
tion illustrating the new proof methods are presented.

Keywords: Program verification · Rewriting logic · Reachability logic

1 Introduction

The main applications of reachability logic to date have been as a language-
generic logic of programs [14,15]. In these applications, a K specification of a
language’s operational semantics by means of rewrite rules is assumed as the lan-
guage’s “golden semantic standard,” and a correct-by-construction reachability
logic for a language so defined is automatically obtained [15]. This method has
been effective in proving reachability properties for a wide range of programs.

Although the foundations of reachability logic are very general [14,15], the
existing theory does not provide straightforward answers to the following ques-
tions: (1) Could a reachability logic be developed to verify not just conven-
tional programs, but also distributed system designs and algorithms formalized
as rewrite theories in rewriting logic [8]? (2) If so, what would be the most nat-
ural way to conceive such a rewrite-theory-generic logic? A satisfactory answer
to questions (1)–(2) would move the verification game from the level of verifying
code to that of verifying both code and distributed system designs. Since the cost
of design errors can be several orders of magnitude higher than that of cod-
ing errors, answering questions (1) and (2) is of practical software engineering
interest.

Although a first step towards a reachability logic for rewrite theories has been
taken in [6], as explained in Sect. 7 and below, that first step still leaves several

c© Springer International Publishing AG, part of Springer Nature 2018
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important questions open. The most burning one is how to prove invariants.
Since they are the most basic safety properties, support for proving invariants is
a sine qua non requirement. As explained below, a serious obstacle is what we
call the invariant paradox : we cannot verify in this manner any invariants of a
never-terminating system such as, for example, a mutual exclusion protocol.

A second open question is how to best take advantage of the wealth of equa-
tional reasoning techniques such as matching, unification, and narrowing modulo
an equational theory (Σ,E), and of recent results on decidable satisfiability of
quantifier-free formulas in initial algebras, e.g., [9] to automate as much as pos-
sible reachability logic deduction. In this regard, the very general foundations of
reachability logic—which assume any Σ-algebra A with a first-order-definable
transition relation—provide no help at all for automation. As shown in this
work and its prototype implementation, if we assume instead that the model
in question is the initial model TR of a rewrite theory R satisfying reasonable
assumptions, large parts of the verification effort can be automated.

A third important issue is simplicity. Reachability logic has eight inference
rules [14,15]. Could a reachability logic for rewrite theories be simpler? This work
tackles head on these three open questions to provide a general reachability logic
and a prototype implementation suitable for reasoning about properties of both
distributed systems and programs based on their rewriting logic semantics.

Rewriting Logic in a Nutshell. A distributed system can be designed and
modeled as a rewrite theory R = (Σ,E,R) [8] in the following way: (i) the
distributed system’s states are modeled as elements of the initial algebra TΣ/E

associated to the equational theory (Σ,E) with function symbols Σ and equa-
tions E; and (ii) the system’s concurrent transitions are modeled by rewrite
rules R, which are applied modulo E. Let us consider the QLOCK [5] mutual
exclusion protocol, explained in detail in Sect. 2. QLOCK allows an unbounded
number of processes, which can be identified by numbers. Such processes can
be in one of three states: “normal” (doing their own thing), “waiting” for a
resource, and “critical,” i.e., using the resource. Waiting processes enqueue their
identifier at the end of a waiting queue and can become critical when their name
appears at the head of the queue. A QLOCK state can be represented as a
tuple < n | w | c | q > where n, resp. w, resp. c, denotes the set of identifiers
for normal, resp. waiting, resp. critical processes, and q is the waiting queue.
QLOCK can be modeled as a rewrite theory R = (Σ,E,R), where E includes
axioms such as associativity-commutativity of multiset union, list associativity,
and identity axioms for ∅ and nil . QLOCK’s behavior is specified by five rewrite
rules R. Rule w2c below specifies a waiting process i becoming critical

w2c : < n | w i | c | i ; q > → < n | w | c i | i ; q > .

Reachability Logic in a Nutshell. A reachability logic formula has the form
A →� B, with A and B state predicates (see Sect. 3). Assume for simplicity
that vars(A) ∩ vars(B) = ∅. Such a formula is then interpreted in the initial
model TR of a rewrite theory R = (Σ,E,R), whose states are E-equivalence
classes [u] of ground Σ-terms, and where a state transition [u] →R [v] holds iff
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R � u → v according to the rewriting logic inference system [8] (computation
= deduction). As a first approximation, A →� B is a Hoare logic partial cor-
rectness assertion of the form {A}R{B}, but with the slight twist that B need
not hold of a terminating state, but just somewhere along the way. To be fully
precise, A →� B holds in TR iff for each state [u0] satisfying A and each termi-
nating sequence [u0] →R [u1] . . . →R [un−1] →R [un] there is a j, 0 ≤ j ≤ n such
that [uj ] satisfies B. A key question is how to choose a good language of state
predicates like A and B. Here is where the potential for increasing the logic’s
automation resides. We call our proposed logic constructor-based, because our
choice is to make A and B positive (only ∨ and ∧) combinations of what we call
constructor patterns of the form u | ϕ, where u is a constructor term1 and ϕ a
quantifier-free (QF) Σ-formula. The state predicate u | ϕ holds for a state [u′]
iff there is a ground substitution ρ such that [u′] = [uρ] and E |= ϕρ.

The Invariant Paradox. How can we prove invariants in such a reachability
logic? For example, mutual exclusion for QLOCK? Paradoxically, we cannot!
This is because QLOCK, like many other protocols, never terminates, that is,
has no terminating sequences whatsoever. And this has the ludicrous trivial
consequence that QLOCK’s initial model TR vacuously satisfies all reachability
formulas A →� B. This of course means that it is in fact impossible to prove
any invariants using reachability logic in the initial model TR. But it does not
mean that it is impossible using some other initial model. In Sect. 4.1 we give a
systematic solution to this paradox by means of a simple theory transformation
allowing us to prove any invariant in the original initial model TR by proving an
equivalent reachability formula in the initial model of the transformed theory.

Our Contributions. Section 2 gathers preliminaries. The main theoretical con-
tributions of a simple semantics and inference system for a rewrite-theory-generic
reachability logic with just two inference rules and its soundness are developed in
Sects. 4 and 5. A systematic methodology to prove invariants by means of reacha-
bility formulas is developed in Sect. 4.1. The goal of increasing the logic’s poten-
tial for automation by making it constructor-based is advanced in Sects. 3–5.
A proof of concept of the entire approach is given by means of a Maude-based
prototype implementation and a suite of experiments verifying various proper-
ties of distributed system designs in Sect. 6. Related work and conclusions are
discussed in Sect. 7. Proofs can be found in [13].

2 Many-Sorted Algebra and Rewriting Logic

We present some preliminaries on many-sorted algebra and rewriting logic. For a
more general treatment using order-sorted algebra see [13]. Readers familiar with
many-sorted logic may go directly to Definition 1. We assume familiarity with
the following basic concepts and notation that are explained in full detail in, e.g.,
[10]: (i) many-sorted (MS) signature as a pair Σ = (S,Σ) with S a set of sorts
1 That is, a term in a subsignature Ω ⊆ Σ such that each ground Σ-term is equal
modulo E to a ground Ω-term.
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and Σ an S∗ × S-indexed family Σ = {Σw,s}(w,s)∈S∗×S of function symbols,
where f ∈ Σs1...sn,s is displayed as f : s1 . . . sn → s; (ii) Σ-algebra A as a pair
A = (A, A) with A = {As}s∈S an S-indexed family of sets, and A a mapping
interpreting each f : s1 . . . sn → s as a function in the set [As1 × . . .×Asn

→ As].
(iii) Σ-homomorphism h : A → B as an S-indexed family of functions h = {hs :
As → Bs}s∈S preserving the operations in Σ; (iv) the term Σ-algebra TΣ and
its initiality in the category MSAlgΣ of Σ-algebras when Σ is unambiguous.

An S-sorted set X = {Xs}s∈S of variables, satisfies s 
= s′ ⇒ Xs ∩ Xs′ = ∅,
and the variables in X are always assumed disjoint from all constants in Σ.
The Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signa-
ture Σ(X) obtained by adding to Σ the variables X as extra constants. Since a
Σ(X)-algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation of
the constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality of
TΣ(X) means that for each A ∈ MSAlgΣ and α ∈ [X→A], there exists a unique
Σ-homomorphism, α : TΣ(X) → A extending α, i.e., such that for each s ∈ S
and x ∈ Xs we have xαs = αs(x). In particular, when A = TΣ(Y ), an interpre-
tation of the constants in X, i.e., an S-sorted function σ ∈ [X→TΣ(Y )] is called
a substitution, and its unique homomorphic extension σ : TΣ(X) → TΣ(Y )
is also called a substitution. Define dom(σ) = {x ∈ X | x 
= xσ}, and
ran(σ) =

⋃
x∈dom(σ) vars(xσ). Given variables Z, the substitution σ|Z agrees

with σ on Z and is the identity elsewhere.
We also assume familiarity with many-sorted first-order logic including: (i)

the first-order language of Σ-formulas for Σ a signature (in our case Σ has
only function symbols and the = predicate); (ii) given a Σ-algebra A, a formula
ϕ ∈ Form(Σ), and an assignment α ∈ [Y →A], with Y = fvars(ϕ) the free
variables of ϕ, the satisfaction relation A,α |= ϕ (iii) the notions of a formula
ϕ ∈ Form(Σ) being valid, denoted A |= ϕ, resp. satisfiable in a Σ-algebra A.
For a subsignature Ω ⊆ Σ and A ∈ MSAlgΣ , the reduct A|Ω ∈ MSAlgΩ

agrees with A in the interpretation of all sorts and operations in Ω and discards
everything in Σ \ Ω. If ϕ ∈ Form(Ω) we have the equivalence A |= ϕ ⇔
A|Ω |= ϕ.

An MS equational theory is a pair T = (Σ,E), with E a set of (possibly
conditional) Σ-equations. MSAlg(Σ,E) denotes the full subcategory of MSAlgΣ

with objects those A ∈ MSAlgΣ such that A |= E, called the (Σ,E)-algebras.
MSAlg(Σ,E) has an initial algebra TΣ/E [10]. The inference system in [10] is
sound and complete for MS equational deduction, i.e., for any MS equational
theory (Σ,E), and Σ-equation u = v we have an equivalence E � u = v ⇔
E |= u = v. For the sake of simpler inference we assume non-empty sorts,
i.e., ∀s ∈ S TΣ , s 
= ∅. Deducibility E � u = v is abbreviated as u =E v,
called E-equality. An E-unifier of a system of Σ-equations, i.e., a conjunction
φ = u1 = v1 ∧ . . . ∧ un = vn of Σ-equations is a substitution σ such that
uiσ =E viσ, 1 ≤ i ≤ n. An E-unification algorithm for (Σ,E) is an algorithm
generating a complete set of E-unifiers Unif E(φ) for any system of Σ equations
φ, where “complete” means that for any E-unifier σ of φ there is a τ ∈ Unif E(φ)
and a substitution ρ such that σ =E (τρ)|dom(σ)∪dom(τ), where =E here means
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that for any variable x we have xσ =E x(τρ)|dom(σ)∪dom(τ). The algorithm is
finitary if it always terminates with a finite set Unif E(φ) for any φ.

We recall some basic concepts about rewriting logic. The survey in [8] gives
a fuller account. A rewrite theory R axiomatizes a distributed system, so that
concurrent computation is modeled as concurrent rewriting with the rules of
R modulo the equations of R. Recall also the following notation from [3]: (i)
positions in a term viewed as a tree are marked by strings p ∈ N

∗ specifying a
path from the root, (ii) t|p denotes the subterm of term t at position p, and (iii)
t[u]p denotes the result of replacing subterm t|p at position p by u.

Definition 1. A rewrite theory is a 3-tuple R = (Σ,E ∪B,R) with (Σ,E ∪B)
an MS equational theory and R a set of conditional Σ-rewrite rules l → r if φ,
with l, r ∈ TΣ(X)s for some s ∈ S, and φ a quantifier-free Σ-formula. We further
assume that: (1) Each equation u = v ∈ B is regular, i.e., vars(u) = vars(v),
and linear, i.e., there are no repeated variables in either u or v. (2) The equations
E, when oriented as conditional rewrite rules 
E = {u → v if ψ | u = v if ψ ∈
E}, are convergent modulo B, i.e., strictly coherent, confluent, and operationally
terminating as rewrite rules modulo B [7]. (3) The rules R are ground coherent
with the equations E modulo B [4].

Conditions (1)–(2) ensure that the initial algebra TΣ/E∪B is isomorphic to
the canonical term algebra CΣ/E,B , whose elements are B-equivalence classes
of 
E,B-irreducible ground Σ-terms. Define the one-step R,B-rewrite relation
t →R,B t′ between ground terms as follows. For t, t′ ∈ TΣ,s, s ∈ S, t →R,B t′

holds iff there is a rewrite rule l → r if φ ∈ R, a ground substitution σ ∈ [Y →TΣ ]
with Y the rule’s variables, and a term position p in t such that t|p =B lσ,
t′ = t[rσ]p, and E ∪ B |= φσ. In the context of (1)–(2), condition (3) ensures
that “computing 
E,B-canonical forms before performing R,B-rewriting” is a
complete strategy. That is, if t →R,B t′ and u = t!E,B , i.e., t →∗

�E,B
u with u in


E,B-canonical form (abbreviated in what follows to u = t!), then there exists a
u′ such that u →R,B u′ and t′! =B u′!. Note that vars(r) ⊆ vars(l) is nowhere
assumed for rules l → r if φ ∈ R. This means that R can specify an open
system, in the sense of [11], that interacts with an external, non-deterministic
environment such as, for example, a thermostat.

Conditions (1)–(3) allow a simple description of the initial reachability model
TR [8] of R as the canonical reachability model CR whose states belong to the
canonical term algebra CΣ/E,B , and the one-step transition relation [u] →R [v]
holds iff u →R,B u′ and [u′!] = [v]. Furthermore, if u →R,B u′ has been performed
with a rewrite rule l → r if φ ∈ R and a ground substitution σ ∈ [Y →TΣ ], then,
assuming B-equality is decidable, checking whether condition E ∪B |= φσ holds
is decidable by reducing the terms in φσ to 
E,B-canonical form.

A Running Example. Consider the following rewrite theory R = (Σ,E∪B,R)
modeling a dynamic version of the QLOCK mutual exclusion protocol [5], where
(Σ,B) defines the protocol’s states, involving natural numbers, lists, and multi-
sets over natural numbers. Σ has sorts S = {Nat ,List ,MSet ,Conf ,State,Pred}
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with subsorts2 Nat < List and Nat < MSet and operators F = {0 : →
Nat , s : Nat → Nat , ∅ : → MSet , nil : → List , : MSet MSet →
MSet , ; : List List → List , dupl : MSet → Pred , tt : → Pred , < > : Conf →
State, | | | : MSet MSet MSet List → Conf }, where underscores denote oper-
ator argument placement. The axioms B are the associativity-commutativity of
the multiset union with identity ∅, and the associativity of list concatenation
; with identity nil . The only equation in E is dupl(s i i) = tt . It defines the

dupl predicate by detecting a duplicated element i in the multiset s i i (s could
be empty). States of QLOCK are B-equivalence classes of ground terms of sort
State.

QLOCK [5] is a mutual exclusion protocol where the number of processes is
unbounded. Furthermore, in the dynamic version of QLOCK presented below,
such a number can grow or shrink. Each process is identified by a number. The
system configuration has three sets of processes (normal, waiting, and critical)
plus a waiting queue. To ensure mutual exclusion, a normal process must first
register its name at the end of the waiting queue. When its name appears at
the front of the queue, it is allowed to enter the critical section. The first three
rewrite rules in R below specify how a normal process i first transitions to a
waiting process, then to a critical process, and back to normal. The last two
rules in R specify how a process can dynamically join or exit the system.

n2w : < n i | w | c | q > → < n | w i | c | q ; i >
w2c : < n | w i | c | i ; q > → < n | w | c i | i ; q >
c2n : < n | w | c i | i ; q > → < n i | w | c | q >
join : < n | w | c | q > → < n i | w | c | q > if φ
exit : < n i | w | c | q > → < n | w | c | q >

where φ ≡ dupl(n iw c) 
= tt , i is a number, n, w , and c are, respectively, normal,
waiting, and critical process identifier sets, and q is a queue of process identifiers.
It is easy to check that R = (Σ,E ∪ B,R) satisfies requirements (1)–(3). Note
that join makes QLOCK an open system in the sense explained above.

3 Constrained Constructor Pattern Predicates

Given an MS equational theory (Σ,E∪B), the atomic state predicates appearing
in the constructor-based reachability logic formulas of Sect. 4 will be pairs u | ϕ,
called constrained constructor patterns, with u a term in a subsignature Ω ⊆ Σ
of constructors, and ϕ a quantifier-free Σ-formula. Intuitively, u | ϕ is a pattern
describing the set of states that are EΩ ∪ BΩ-equal to ground terms of the form
uρ for ρ a ground constructor substitution such that E ∪ B |= ϕρ. Therefore,
u | ϕ can be used as a symbolic description of a, typically infinite, set of states
in the canonical reachability model CR of a rewrite theory R.

2 As pointed out at the beginning of Sect. 2, [13] treats the more general order-sorted
case, where sorts form a poset (S, ≤) with s ≤ s′ interpreted as set containment
As ⊆ As′ in a Σ-algebra A.
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Often, the signature Σ on which TΣ/E∪B is defined has a natural decompo-
sition as a disjoint union Σ = Ω � Δ, where the elements of the canonical term
algebra CΣ/E,B are Ω-terms, whereas the function symbols f ∈ Δ are viewed
as defined functions which are evaluated away by 
E,B-simplification. Ω (with
same poset of sorts as Σ) is then called a constructor subsignature of Σ.

A decomposition of a MS equational theory (Σ,E ∪ B) is a triple (Σ,B, 
E)
such that the rules 
E are convergent modulo B. (Σ,B, 
E) is called sufficiently
complete with respect to the constructor subsignature Ω iff for each t ∈ TΣ

we have: (i) t!�E,B ∈ TΩ , and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ. This
ensures that for each [u]B ∈ CΣ/E,B we have [u]B ⊆ TΩ . Sufficient completeness
is closely related to the notion of a protecting inclusion of decompositions.

Definition 2. Let (Σ0, E0 ∪ B0) ⊆ (Σ,E ∪ B) be a theory inclusion such that
(Σ0, B0, 
E0) and (Σ,B, 
E) are respective decompositions of (Σ0, E0 ∪ B0) and
(Σ,E ∪ B). We then say that the decomposition (Σ,B, 
E) protects (Σ0, B0, 
E0)
iff (i) for all t, t′ ∈ TΣ0(X) we have: (i) t =B0 t′ ⇔ t =B t′, (ii) t = t! �E0,B0

⇔
t = t!�E,B, and (iii) CΣ0/E0,B0 = CΣ/E,B|Σ0 .

(Ω,BΩ , 
EΩ) is a constructor decomposition of (Σ,B, 
E) iff (i) (Σ,B, 
E)
protects (Ω,BΩ , 
EΩ), and (ii) (Σ,B, 
E) is sufficiently complete with respect to
the constructor subsignature Ω. Furthermore, Ω is called a subsignature of free
constructors modulo BΩ iff EΩ = ∅, so that CΩ/EΩ ,BΩ

= TΩ/BΩ
.

We are now ready to define constrained constructor pattern predicates.

Definition 3. Let (Ω,BΩ , 
EΩ) be a constructor decomposition of (Σ,B, 
E).
A constrained constructor pattern is an expression u | ϕ with u ∈ TΩ(X)
and ϕ a QF Σ-formula. The set PatPred(Ω,Σ) of constrained construc-
tor pattern predicates contains ⊥ and the set of constrained constructor pat-
terns, and is closed under disjunction (∨) and conjunction (∧). Capital letters
A,B, . . . , P,Q, . . . range over PatPred(Ω,Σ). The semantics of a constrained
constructor pattern predicate A is a subset �A� ⊆ CΣ/E,B defined inductively as
follows:

1. �⊥� = ∅
2. �u | ϕ� = {[(uρ)!]BΩ

∈ CΣ/E,B | ρ ∈ [X→TΩ ] ∧ E ∪ B |= ϕρ}.
3. �A ∨ B� = �A� ∪ �B�
4. �A ∧ B� = �A� ∩ �B�.

Note that for any constructor pattern predicate A, if σ is a (sort-preserving)
bijective renaming of variables we always have �A� = �Aσ�. Given constructor
patterns u | ϕ and v | ψ with vars(u | ϕ) ∩ vars(v | ψ) = ∅, we say that u | ϕ
subsumes v | ψ iff there is a substitution α such that: (i) v =EΩ∪BΩ

uα, and (ii)
TE∪B |= ψ ⇒ (ϕα). It then follows easily from the above definition of �u | ϕ�
that if u | ϕ subsumes v | ψ, then �v | ψ� ⊆ �u | ϕ�. Likewise,

∨
i∈I ui | ϕi

subsumes v | ψ iff there is a k ∈ I such that uk | ϕk subsumes v | ψ.
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Pattern Predicate Example. Letting n, w , c be multisets of process identifiers
and q be an associative list of process identifiers, recall that QLOCK states have
the form < n | w | c | q >. From the five rewrite rules defining QLOCK, it is
easy to prove that if < n | w | c | q > →∗ < n ′ | w ′ | c′ | q ′ > and nw c is a set
(has no repeated elements), then n′ w′ c′ is also a set. Of course, it seems very
reasonable to assume that these process identifier multisets are, in fact, sets,
since otherwise we could, for example, have a process i which is both waiting
and critical at the same time. We can rule out such ambiguous states by means
of the pattern predicate < n | w | c | q > | dupl(n w c) 
= tt .

If EΩ ∪ BΩ has a finitary unification algorithm, any constrained constructor
pattern predicate A is semantically equivalent to a finite disjunction

∨
i ui | ϕi

of constrained constructor patterns. This is because: (i) by (3)–(4) in Defini-
tion 3 we may assume A in disjunctive normal form; and (ii) it is easy to check
that �(u | ϕ) ∧ (v | φ)� =

⋃
α∈Unif EΩ∪BΩ

(u,v)�uα | (ϕ ∧ φ)α�, were we assume
that vars(u | ϕ) ∩ vars(v | ψ) = ∅, and that all variables in ran(α) are fresh.
Pattern intersection can also be defined when u | ϕ and v | φ share parameters
Y = vars(u | ϕ) ∩ vars(v | φ) = vars(u) ∩ vars(v). [13] defines in detail the
notions of parametric intersection �u | ϕ� ∩Y �v | φ� and of parametric subsump-
tion v | φ ⊆Y u | ϕ of patterns. These notions are very useful to reason about
parameterized invariants and co-invariants (see Sect. 4.1 and [13]).

4 Constructor-Based Reachability Logic

The constructor-based reachability logic we define is a logic to reason about
reachability properties of the canonical reachability model CR of a topmost
rewrite theory R where “topmost” intuitively means all rewrites must occur at
the top of the term.3 Many rewrite theories of interest, including those specify-
ing distributed object-oriented systems or the semantics of (possibly concurrent)
programming languages, can be easily made topmost by a theory transformation
(see, e.g., [16]). Formally, we require R = (Σ,E ∪ B,R), besides satisfying the
requirements in Definition 1, also satisfies:

1. (Σ,E ∪ B) has a sort State, a decomposition (Σ,B, 
E), and a constructor
decomposition (Ω,BΩ , 
EΩ) where: (i) ∀u ∈ TΩ(X)State , vars(u) = vars(u!);
(ii) BΩ are linear and regular with a finitary EΩ ∪ BΩ-unification algorithm.

2. Rules in R have the form l → r if ϕ with l ∈ TΩ(X). Furthermore, they are
topmost in the sense that: (i) for all such rules, l and r have sort State, and (ii)
for any u ∈ TΩ(X)State and any non-empty position p in u, u|p 
∈ TΩ(X)State .

Requirements (1)–(2) ensure that in the canonical reachability model CR if
[u] →R [v] holds, then the R,B-rewrite u →R,B u′ such that [u′!] = [v] happens
at the top of u, i.e., uses a rewrite rule l → r if ϕ ∈ R and a ground substitution
σ ∈ [Y →TΩ ], with Y the rule’s variables, such that u =BΩ

lσ and u′ = rσ.
3 Topmost theories have reachability completeness for narrowing [16]. Our inference
system uses narrowing to symbolically compute successor states in CR.
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We are now ready to define the formulas of our constructor-based reachability
logic for R satisfying above requirements (1)–(2). Let PatPred(Ω,Σ)State denote
the subset of PatPred(Ω,Σ) determined by those pattern predicates A such
that, for all atomic constrained constructor predicates u | ϕ appearing in A, u
has sort State. Reachability logic formulas then have the form: A →� B, with
A,B ∈ PatPred(Ω,Σ)State . The parameters Y of A →� B are the variables in
the set Y = vars(A)∩vars(B), and A →� B is called unparameterized iff Y = ∅.

The reachability logic in [14,15] is based on terminating sequences of state
transitions; when there are no terminating states, all reachability formulas are
vacuously true. Our purpose is to extend the logic in order to verify properties
of general distributed systems specified as rewrite theories R which may never
terminate. For this, as explained in Sect. 4.1, we generalize the all-paths satis-
faction relation in [15], which for a theory R we denote by R |=∀ A →� B, to
a relativized satisfaction relation R |=∀

T A →� B, where T is a constrained
pattern predicate such that �T � is a set of terminating states. That is, let
TermR = {[u] ∈ CR,State | (
 ∃[v]) [u] →R [v]}. We then require �T � ⊆ TermR.
The standard relation R |=∀ A →� B is then recovered as the special case where
�T � = TermR. Call [u] →∗

R [v] a T -terminating sequence iff [v] ∈ �T �.

Definition 4. Given T with �T � ⊆ TermR, the all-paths satisfaction rela-
tion R |=∀

T u | ϕ →� ∨
j∈J vj | φj asserts the satisfaction of the formula

u | ϕ →� ∨
j∈J vj | φj in the canonical reachability model CR of a rewrite

theory R satisfying topmost requirements (1)–(2). It is defined as follows:
For u | ϕ →� ∨

j∈J vj | φj unparameterized, R |=∀
T u | ϕ →� ∨

j∈J vj | φj

holds iff for each T -terminating sequence [u0] →R [u1] . . . [un−1] →R [un] with
[u0] ∈ �u | ϕ� there exist k, 0 ≤ k ≤ n and j ∈ J such that [uk] ∈ �vj | φj�. For
u | ϕ →� ∨

j∈J vj | φj with parameters Y , R |=∀
T u | ϕ →� ∨

j∈J vj | φj holds if
R |=∀

T (u | ϕ)ρ →� (
∨

j∈J vj | φj)ρ holds for each ρ ∈ [Y →TΩ ].
Since a constrained pattern predicate is equivalent to a disjunction of atomic

ones, we can define satisfaction on general reachability logic formulas as follows:
R |=∀

T

∨
1≤i≤n ui | ϕi →� A iff

∧
1≤i≤n R |=∀

T ui | ϕi →� A, assuming same
parameters Yi = vars(ui | ϕi) ∩ vars(A), i.e., Yi = Yi′ for 1 ≤ i < i′ ≤ n.

R |=∀
T A →� B is a partial correctness assertion: If state [u] satisfies

“precondition” A, then “postcondition” B is satisfied somewhere along each
T -terminating sequences from [u], generalizing a Hoare formula {A}R{B} [13].

Recall that rewrite rules l → r if φ are assumed to have l ∈ TΩ(X). For
symbolic reasoning purposes it will be very useful to also require that r ∈ TΩ(X).
This can be achieved by a theory transformation R �→ R̂. Stated formally, if
R = (Σ,E ∪ B,R), then R̂ = (Σ,E ∪ B, R̂), where the rules R̂ are obtained
from the rules R by transforming each l → r if φ in R into the rule l → r′ if φ∧θ̂,
where: (i) r′ is the Ω-abstraction of r obtained by replacing each length-minimal
position p of r such that t|p 
∈ TΩ(X) by a fresh variable xp whose sort is the
least sort of t|p, (ii) θ̂ =

∧
p∈P xp = tp, where P is the set of all length-minimal

positions in r such that t|p 
∈ TΩ(X).
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The key semantic property about this transformation is:

Lemma 1. The canonical reachability models CR and CR̂ are identical.

4.1 Invariants, Co-Invariants, and Never-Terminating Systems

The notion of an invariant applies to any transition system S = (S,→S) with
states S and transition relation →S⊆ S×S. The set Reach(S0) of states reachable
from S0 ⊆ S is defined as Reach(S0) = {s ∈ S | (∃s0 ∈ S0) s0 →∗

S s}, where →∗
S

denotes the reflexive-transitive closure of →S . An invariant about S with initial
states S0 can be specified in two ways: (i) by a “good” property P ⊆ S, the
invariant, that always holds from S0, i.e., such that Reach(S0) ⊆ P , or (ii) as
a “bad” property Q ⊆ S, the co-invariant, that never holds from S0, i.e., such
that Reach(S0) ∩ Q = ∅. Obviously, P is an invariant iff S \ P is a co-invariant.

Suppose we have specified a distributed system by a topmost rewrite theory
R, and constrained pattern predicates S0 and P , and we want to prove that
�P � is an invariant of the system (CR,State ,→R) from �S0�. Can we specify such
invariant or co-invariant by means of reachability formulas and use the inference
system of Sect. 5 to try to prove such formulas?

The answer to the above question is not obvious. Suppose R specifies a never-
terminating system, i.e., TermR = ∅. For example, QLOCK and other mutual
exclusion protocols are never-terminating. Then, no reachability formula can
characterize and invariant holding by means of the satisfaction relation R |=∀

T

A →� B. The reason for this impossibility is that, since TermR = ∅, R |=∀
T

A →� B holds vacuously for all reachability formulas A →� B.
Is then reachability logic useless to prove invariants? Definitely not. We need

to first perform a simple theory transformation. Call an invariant specifiable by
constrained pattern predicates S0 and P if �P � is an invariant of (CR,State ,→R)
from �S0�. To ease the exposition, we explain the transformation for the case
where Ω has a single state constructor operator, say, 〈 , . . . , 〉 : s1, . . . , sn →
State. The extension to several such operators is straightforward. The theory
transformation is of the form R �→ Rstop , where Rstop is obtained from R by
just adding: (1) a new state constructor operator [ , . . . , ] : s1, . . . , sn → State
to Ω, and (2) a new rewrite rule stop : 〈x1:s1, . . . , xn:sn〉 → [x1:s1, . . . , xn:sn]
to R. Also, let [ ] denote the pattern predicate [x1:s1, . . . , xn:sn] | �. Likewise,
for any atomic constrained pattern predicate B = 〈u1, . . . , un〉 | ϕ we define
the pattern predicate [B] = [u1, . . . , un] | ϕ and extend this notation to any
union Q of atomic predicates. Since 〈 , . . . , 〉 : s1, . . . , sn → State is the only
state constructor, we can assume without loss of generality that any atomic
constrained pattern predicate in R is semantically equivalent to one of the form
〈u1, . . . , un〉 | ϕ. Likewise, any pattern predicate will be semantically equivalent
to a union of atomic predicates of such form, called in standard form.

Theorem 1. For S0, P ∈ PatPred(Ω,Σ) constrained pattern predicates in stan-
dard form with vars(S0) ∩ vars(P ) = ∅, �P � is an invariant of (CR,State ,→R)
from �S0� iff Rstop |=∀

[ ] S0 →� [P ].
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The notion of a parametric invariant can be reduced to the unparameterized
one: if Y = vars(S0) ∩ vars(P ), then �P � is an invariant of (CR,State ,→R)
from �S0� with parameters Y iff Rstop |=∀

[ ] S0 →� [P ]. That is, iff �Pρ� is an
(unparameterized) invariant of (CR,State ,→R) from �S0ρ� for each ρ ∈ [Y →TΩ ].
In this way, Theorem 1 extends to parametric invariants.

Specifying Invariants for QLOCK. Consider the QLOCK specification from
Sects. 2 and 3. QLOCK is never terminating. However, we can apply the theory
transformation in Theorem 1 by adding an operator [ ] : Conf → State and a
rule stop : < t > → [t ] for t:Conf . Define the set of initial states by the pattern
predicate S0 = < n ′ | ∅ | ∅ | nil > | dupl(n′) 
= tt . Since QLOCK states have
the form < n | w | c | q >, mutual exclusion means |c| ≤ 1, which is expressible
by the pattern predicate < n | w | i | i ; q > ∨ < n | w | ∅ | q >. But we need
also to ensure our multisets are actually sets. Thus, the pattern predicate P =(
< n | w | i | i ; q > | dupl(n w i) 
= tt

)
∨

(
< n | w | ∅ | q > | dupl(n w) 
= tt

)

specifies mutual exclusion. By Theorem 1, QLOCK ensures mutual exclusion
from �S0� iff Rstop |=∀

[ ] S0 →� [P ].
The following easy corollary can be very helpful in proving invariants. It can,

for example, be applied to prove the mutual exclusion of QLOCK.

Corollary 1. Let S0, P ∈ PatPred(Ω,Σ) be constrained pattern predicates in
standard form with vars(S0)∩vars(P ) = ∅. �P � is an invariant of (CR,State ,→R)
from �S0� if: (i) S0 ⊆ P , and (ii) Rstop |=∀

[ ] P →� [Pσ], where σ is a sort-
preserving bijective renaming of variables such that vars(P ) ∩ vars(Pσ) = ∅.

Corollary 1 can be extended to parametric invariants (see [13]). The treat-
ment of co-invariants is similar and can also be found in [13].

5 A Sound Inference System

We present our inference system for all-path reachability for any R satisfying
topmost requirements (1)–(2), with rules R = {lj → rj if φj}j∈J such that
lj , rj ∈ TΩ(X), j ∈ J . Variables of rules in R are always assumed disjoint from
variables in reachability formulas; this can be ensured by renaming. The inference
system has two proof rules. The Step∀ +Subsumption proof rule allows taking
one step of (symbolic) rewriting along all paths according to the rules in R. The
Axiom proof rule allows the use of a trusted reachability formula to summarize
multiple rewrite steps, and thus to handle repetitive behavior.

These proof rules derive sequents of the form [A, C] �T u | ϕ −→� ∨
i vi | ψi,

where A and C are finite sets of reachability formulas and T a pattern predicate
defining a set of T -terminating ground states. Formulas in A are called axioms
and those in C are called circularities. We furthermore assume that in all reach-
ability formulas u | ϕ −→� ∨

i vi | ψi we have vars(ψi) ⊆ vars(vi) ∪ vars(u | ϕ)
for each i. According to the implicit quantification of the semantic relation |=∀

T

this means that any variable in ψi is either universally quantified and comes
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from the precondition u | ϕ, or is existentially quantified and comes from vi

only. This property is an invariant preserved by the two inference rules.
Proofs always begin with a set C of formulas that we want to simultaneously

prove, so that the proof effort only succeeds if all formulas in C are eventually
proved. C contains the main properties we want to prove as well as any auxiliary
lemmas that may be needed to carry out the proof. The initial set of goals
we want to prove is [∅, C] �T C, which is a shorthand for the set of goals
{[∅, C] �T u | ϕ −→� ∨

i vi | ψi

∣
∣ (u | ϕ −→� ∨

i vi | ψi) ∈ C}. Thus, we start
without any axioms A, but we shall be able to use the formulas in C as axioms
in their own derivation after taking at least on step with the rewrite rules in R.

A very useful feature is that sequents [∅, C] �T u | ϕ −→� ∨
i vi | ψi,

whose formulas C have been postulated (as the conjectures to be proved), are
transformed by Step∀ + Subsumption into sequents of the form [C, ∅] �T

u′ | ϕ′ −→� ∨
i v′

i | ψ′
i, where now the formulas in C can be assumed valid, and

can be used in derivations with the Axiom rule.

Verifying QLOCK’s Mutual Exclusion. By Corollary 1, QLOCK’s mutual
exclusion can be verified by: (i) using pattern subsumption to check the trivial
inclusion �S0� ⊆ �P �, and (ii) proving Rstop |=∀

[ ] Pσ →� [P ], where σ is a sort-
preserving bijective renaming of variables such that vars(P ) ∩ vars(Pσ) = ∅.
But, since for QLOCK, P is a disjunction, in our inference system this means
proving from Rstop that [∅, C] �[] C, where C are the conjectures:

< n ′ | w ′ | i ′ | i ′ ; q ′ > | ϕ′ →� [< n | w | i | i ; q > | ϕ ∨ < n | w | ∅ | q > | ψ]

< n ′ | w ′ | ∅ | q ′ > | ψ′ →� [< n | w | i | i ; q > | ϕ ∨ < n | w | ∅ | q > | ψ].

where ϕ ≡ dupl(n w i) 
= tt , ψ ≡ dupl(n w) 
= tt , and ϕ′, ψ′ are their obvious
renamings.

Before explaining the Step∀ + Subsumption proof rule we introduce some
notational conventions. Assume T is the pattern predicate T =

∨
j tj | χj , with

vars(χj) ⊆ vars(tj), and let R = {lj → rj if φj}j∈J , we then define:

match(u, {vi}i∈I) ⊆ {(i, β) | β ∈ [vars(vi) \ vars(u) → TΩ(X)] s.t. u =EΩ∪BΩ viβ}

a complete set of (parameter-preserving) EΩ ∪ BΩ-matches of u against the vi,

unify(u | ϕ′, R) ≡ {(j, α) | α ∈ UnifEΩ∪BΩ
(u, lj) and (ϕ′∧φj)α satisfiable in TΣ/E∪B}

a complete set of EΩ ∪ BΩ-unifiers of a pattern u | ϕ′ with the lefthand-sides of
the rules in R with satisfiable associated constraints.4 Consider now the rule:
4 In the current prototype implementation (see Sect. 6), variant satisfiability makes
constraint checking decidable. Future versions will only assume �E convergent mod-
ulo B for the equational part E ∪ B of R, so that satisfiability of such con-
straints will in general be undecidable. Unifiers whose associated constraints cannot
be proved unsatisfiable will then be included in unify(u | ϕ′, R) as a safe over-
approximation. The same approach will apply to the, in general undecidable, check-
ing of satisfiability/validity for other constraints involved in the application of the
Step∀+Subsumption or Axiom rules below: they will be either over-approximated,
or will become proof obligations to be discharged by an inductive theorem prover.
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Step∀ + Subsumption

∧

(j,α)∈unify(u|ϕ′, R)

[A ∪ C, ∅] �T (rj | ϕ′ ∧ φj)α −→� ∨

i

(vi | ψi)α

[A, C] �T u | ϕ −→� ∨

i

vi | ψi

where ϕ′ ≡ ϕ ∧
∧

(i,β)∈match(u, {vi}) ¬(ψiβ). This inference rule allows us to
take one step with the rules in R. Intuitively, u | ϕ′ characterizes the states
satisfying u | ϕ that are not subsumed by any vi | ψi; that is, states in the
lefthand side of the current goal that have not yet reached the righthand side.
Note that, according to Definition 4, u | ϕ −→� ∨

i vi | ψi is semantically valid
iff u | ϕ′ −→� ∨

i vi | ψi is valid. Thus, this inference rule only unifies u | ϕ′

with the lefthand sides of rules in R. We impose on this inference rule a side
condition that

∨
j,γ∈UnifEΩ∪BΩ

(u,tj)
(ϕ′ ∧ χj)γ is unsatisfiable in TΣ/E∪B, where

T =
∨

j tj | χj is the pattern predicate characterizing the chosen T -terminating
states. This condition ensures that any state in u | ϕ′ has an R-successor. Thus,
a state in u | ϕ′ reaches on all T -terminating paths a state in

∨
i vi | ψi if all

its successors do so. Each R-successor is covered by one of (rj | ϕ′ ∧ φj)α. As
an optimization, we check that (ϕ′ ∧ φj)α is satisfiable and we drop the ones
which are not. Finally, we also assume that vars((u | ϕ)α)∩vars((

∨
i vi | ψi)α) =

vars((rj | ϕ′ ∧ φj)α)∩vars((
∨

i vi | ψi)α). This parameter preservation condition
ensures correct implicit quantification. Note that formulas in C are added to A,
so that from now on they can be used by Axiom. By using EΩ ∪BΩ-unification,
this inference rule performs narrowing of u | ϕ′ with rules R [16].

Axiom
∧

j

[{u′ | ϕ′ −→� ∨

j

v′
j | ψ′

j} ∪ A, ∅] �T v′
jα | ϕ ∧ ψ′

jα −→� ∨

i

vi | ψi

[{u′ | ϕ′ −→� ∨

j

v′
j | ψ′

j} ∪ A, ∅] �T u | ϕ −→� ∨

i

vi | ψi

if ∃α such that u =EΩ∪BΩ
u′α and TΣ/E∪B |= ϕ ⇒ ϕ′α. This inference rule

allows us to use a trusted formula in A to summarize multiple transition steps.
This is similar to how several transition steps would apply to a ground term,
except that for ground terms we would check that ϕ′α is valid, whereas here we
check that the condition ϕ implies ϕ′α. Since ϕ is stronger than ϕ′α, we add ϕ
to (v′

j | ψ′
j)α (the result of using axiom u′ | ϕ′ −→� ∨

j v′
j | ψ′

j). We assume that
u | ϕ −→� ∨

i vi | ψi and u′ | ϕ′ −→� ∨
j v′

j | ψ′
j do not share variables, which

can always be guaranteed by renaming. For correct implicit quantification, as
in Step∀ + Subsumption, we assume for each j the parameter preservation
condition vars(u | ϕ)∩vars(

∨
i vi | ψi) = vars(v′

jα | ϕ ∧ ψ′
jα)∩vars(

∨
i vi | ψi).

On a practical note, in order to be able to find the α, our implementation requires
that vars(ϕ′) ⊆ vars(u′), so that all the variables in vars(ϕ′) are matched.
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The soundness of Step∀ + Subsumption plus Axiom is now the theorem:

Theorem 2 (Soundness). Let R be a rewrite theory, and C a finite set of reach-
ability formulas. If R proves [∅, C] �T C then R |=∀

T C.

Investigating completeness of the logic is left as future work.

6 Prototype Implementation and Experiments

We have implemented the reachability logic proof system in Maude [1]. Our
prototype takes as input (i) a rewrite theory R = (Σ,E ∪ B,R, φ) and (ii) a set
of reachability formulas C = {Ai →� Bi}i∈I to be simultaneously proved.

To mechanize the two proof rules we use a finitary B-unification algorithm
as well as an SMT solver to discharge E ∪ B constraints. For SMT solving we
use variant satisfiability [9,12], which allows us to handle any rewrite theory
R = (Σ,E ∪ B,R) satisfying topmost requirements (1)–(2) and such that the
equational theory (Σ,E ∪ B) has a convergent decomposition satisfying the
finite variant property [2] and protects a constructor subtheory which we assume
consists only of commutative and/or AC and/or identity axioms BΩ . Thus,
both validity and satisfiability of QF formulas in the initial algebra TΣ/E∪B are
decidable [9]. Future implementations will support more general rewrite theories,
add other decision procedures, and use an inductive theorem prover backend.

We have verified properties for a suite of examples of rewrite theories speci-
fying distributed systems such as communication or mutual exclusion protocols
and real-time systems. Table 1 summarizes these experiments. For further details
plus runnable code see http://maude.cs.illinois.edu/tools/rltool/.

Table 1. Examples verified in the prototype implementation

Example Description of the system/property

Choice Nondeterministically throws away elements from a
multiset/eventually only one element left

Comm. Protocol 1 Simple communication protocol/received data is always a
prefix of the data to be sent

Comm. Protocol 2 Fault-tolerant communication protocol/all data is
eventually received in-order

Dijkstra Dijkstra’s mutual exclusion alg./mutual exclusion

Fixed-size token ring 2-Token ring mutual exclusion alg./mutual exclusion

QLOCK QLOCK mutual exclusion alg./mutual exclusion

Readers/writers Readers-writers mutual exclusion alg./mutual exclusion

Lamport’s bakery Unbounded Lamport’s bakery/mutual exclusion

Thermostat Open system that dynamically responds to
temperature/temperature remains in preset bounds

http://maude.cs.illinois.edu/tools/rltool/
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T1 ≡
{

sub(P1, α)
[C, ∅] �[] [n3 | w3 | ∅ | q3] | dupl(n ′′ w ′ p) �= tt ∧

dupl(n3w3 ) �= tt →� [P1] ∨ [P2]

T2 ≡
{

sub(P2, α)
[C, ∅] �[] [n3 | w3 | i3 | i3; q3] | dupl(n ′′ w ′ p) �= tt ∧

dupl(n3w3 i3 ) �= tt →� [P1] ∨ [P2]

T1 T2
axiom(G2, α)

· · · [C, ∅] �[] <n ′′ | w ′ p | ∅ | q ′> | dupl(n ′′ w ′ p) �= tt
→� [P1] ∨ [P2]

· · ·
step(n2w, θ)

[∅, C] �[] <n ′ | w ′ | ∅ | q ′> | dupl(n ′ w ′) �= tt
→� [P1] ∨ [P2]

Fig. 1. Partial proof tree for QLOCK

To illustrate how the tool works in practice, Fig. 1 shows a partial derivation of
a sequent. Recall that for QLOCK we had to prove [∅, C] �[] C, where C was two
already-discussed reachability formulas Gi ≡ P ′

i → [P1] ∨ [P2] for i ∈ {1, 2} with
respective preconditions the renamed disjuncts P ′

i , 1 ≤ i ≤ 2 in invariant P1∨P2,
and postcondition [P1] ∨ [P2], where P1 ≡ < n | w | i | i ; q > |dupl(n w i) 
= tt
and P2 ≡ < n | w | ∅ | q > |dupl(n w) 
= tt. Now, consider [∅, C] �[] P ′

2 →� [P ].
In the proof fragment below, the initial sequent must apply the step rule. The
result of step(n2w, θ) is the goal resulting from unifying the head of the sequent
with the lefthand side of the rule n2w using the unifier θ = {n �→ n′′p,w �→
w′, c �→ ∅, q �→ q′}. The next inference axiom(G2, α) applies axiom G2 using
the substitution α ⊇ {n �→ n3, w �→ w3, i �→ i3, q �→ q3}. Since G2 has two
constrained patterns in its succedent, we derive two new goals, represented by
proof trees T1 and T2. In either case, we can immediately subsume by noting
that our reachability formula’s antecedent is an instance of either [P1] or [P2]
using substitution α, thus terminating the proof.

7 Related Work and Conclusions

This work extends reachability logic [14,15] to a rewrite-theory-generic logic to
reason about both distributed system designs and programs. This extension is
non-trivial. It requires: (i) relativizing terminating sequences to a chosen subset
�T � of terminating states; (ii) solving the “invariant paradox,” to reason about
invariants and co-invariants and characterizing them by reachability formulas
through a theory transformation; and (iii) making it possible to achieve higher
levels of automation by systematically basing the state predicates on positive
Boolean combination of patterns of the form u | ϕ with u a constructor term.

In contrast, standard reachability logic [14,15] uses matching logic, which
assumes a first-order model M and its satisfaction relation M |= ϕ in its reach-
ability logic proof system. As discusses in Sect. 3, we choose TΣ/E∪B as the
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model and →R for transitions, rather than some general M and systematically
exploit the isomorphism TΣ/E∪B|Ω ∼= TΩ/EΩ∪BΩ

, allowing us to use unifica-
tion, matching, narrowing, and satisfiability procedures based on the typically
much simpler initial algebra of constructors TΩ/EΩ∪BΩ

. This has the advantage
that we can explicitly give the complete details of our inference rules (e.g. how
Step∀ + Subsumption checks the subsumption, or ensures that states have at
least a successor), instead of relying on a general satisfaction relation |= on some
M. The result is a simpler logic with only two rules (versus eight in [14,15]).

We agree with the work in [6] on the common goal of making reachability logic
rewrite-theory-generic, but differ on the methods used. Main differences include:
(1) [6] does not give an inference system but a verification algorithm. (2) the
theories used in [6] assume restrictions like those in [11] for “rewriting modulo
SMT,” which limit the class of equational theories. (3) Matching is used in [6]
instead of unification. Thus, unless a formula has been sufficiently instantiated,
no matching rule may exist, whereas unification with some rule is always possible
in our case. (4) No method for proving invariants is given in [6].

In conclusion, the goal of making reachability logic a rewrite-theory-generic
verification logic has been advanced. Feasibility has been validated with a proto-
type and a suite of examples. Building a robust and highly effective reachability
logic tool for rewrite theories is a more ambitious future goal.

Acknowledgements. Partially supported by NSF Grant CNS 14-09416.
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Abstract. Unification and generalization are operations on two terms
computing respectively their greatest lower bound and least upper bound
when the terms are quasi-ordered by subsumption up to variable renam-
ing (i.e., t1 � t2 iff t1 = t2σ for some variable substitution σ). When
term signatures are such that distinct functor symbols may be related
with a fuzzy equivalence (called a similarity), these operations can be
formally extended to tolerate mismatches on functor names and/or arity
or argument order. We reformulate and extend previous work with a
declarative approach defining unification and generalization as sets of
axioms and rules forming a complete constraint-normalization proof sys-
tem. These include the Reynolds-Plotkin term-generalization procedures,
Maria Sessa’s “weak” unification with partially fuzzy signatures and its
corresponding generalization, as well as novel extensions of such opera-
tions to fully fuzzy signatures (i.e., similar functors with possibly differ-
ent arities). One advantage of this approach is that it requires no modi-
fication of the conventional data structures for terms and substitutions.
This and the fact that these declarative specifications are efficiently exe-
cutable conditional Horn-clauses offers great practical potential for fuzzy
information-handling applications.

1 Subsumption Lattice

The first-order term (FOT ) was introduced as a data structure in software pro-
gramming by the Prolog (https://en.wikipedia.org/wiki/Prolog) language. Just
like the S-expression for LISP, the FOT is Prolog’s universal data structure.
Using formal algebra notation, we write TΣ,V for the set of FOTs on an operator
signature Σ

def=
⋃

n≥0 Σn where Σn is a set of operator symbols of n arguments

This article appears in the pre-proceedings of LOPSTR 2017 with the title “Lat-
tice Operations on Terms over Similar Signatures.” Its new title is technically more
accurate. All proofs and more examples can be found in a more detailed paper [2].
This work is part of a wider study [3].

c© Springer International Publishing AG, part of Springer Nature 2018
F. Fioravanti and J. P. Gallagher (Eds.): LOPSTR 2017, LNCS 10855, pp. 218–234, 2018.
https://doi.org/10.1007/978-3-319-94460-9_13
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Σn
def= {f |arity(f) = n, n ∈ IN}, and V is a set of variables.1 We shall des-

ignate an element f in Σ as a functor, with arity(f) denoting its number of
arguments.2 This set TΣ,V can then be defined inductively as:

TΣ,V
def= V ∪ {f(t1, . . . , tn) | f ∈ Σn, ti ∈ TΣ,V , 0 ≤ i ≤ n, n ≥ 0}.

We write c instead of c() for a constant c ∈ Σ0. Also, when the set Σ of
functor symbols and the set V of variables are implicit from the context, we
simply write T instead of TΣ,V . The set var(t) of variables occurring in a FOT
t ∈ T is defined as:

var(t) def=
{

{X} if t = X ∈ V⋃n
i=1 var(tn) if t = f(t1, . . . , tn).

The lattice-theoretic properties of FOTs as data structures were first exposed
and studied by Reynolds (in [16]) and Plotkin (in [14,15]). They noted that the
set T is ordered by term subsumption (denoted as ‘�’); viz., t � t′ (and we say:
“t′ subsumes t”) iff there exists a variable substitution σ : var(t′) → T such
that t′σ = t. Two FOTs t and t′ are considered “equal up to variable renaming”
(denoted as t � t′) whenever both t � t′ and t′ � t. Then, the set of first-order
terms modulo variable renaming, when lifted with a bottom element ⊥ standing
for “no term” (i.e., the set T/� ∪{⊥}) has a lattice structure for subsumption. It
has a top element 
 = V (indeed, since any variable in V can be substituted for
any term, V is therefore the class of any variable modulo renaming). Unification
corresponds to its greatest lower bound (glb) operation. The dual operation,
generalization of two terms, yields a term that is their least upper bound (lub)
for subsumption. This can be summarized as the lattice diagram shown in Fig. 1.
In this diagram, given a pair of terms 〈t1, t2〉, the pair of substitutions 〈σ1, σ2〉
are their respective most general generalizers, and the substitution σ is the pair’s
most general unifier (mgu). We formalize next these lattice operations on FOTs
as declarative constraint normalization rules.

t = lub(t1, t2)

t1 = tσ1 t2 = tσ2

t =
t1σ = t2σ

tσ1σ = tσ2σ
= glb(t1, t2)

σ1
σ
2

σ σ

Fig. 1. Subsumption lattice operations
1 We shall use Prolog’s convention of writing variables with capitalized symbols.
2 When arity(f) = n, this is often denoted by writing f/n.
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(1) TERM DECOMPOSITION:

E ∪ {f(s1, . . . , sn)
.= f(t1, . . . , tn)}

E ∪ {s1
.= t1, . . . , sn

.= tn}
[n ≥ 0]

(2) VARIABLE ERASURE:

E ∪ {X
.= X}

E

(3) VARIABLE ELIMINATION:

E ∪ {X
.= t}

E[X←t] ∪ {X
.= t}

X var(t)
X occurs in E

(4) EQUATION ORIENTATION:

E ∪ {t
.= X}

E ∪ {X
.= t}

[t ]

Fig. 2. Herbrand-Martelli-Montanari unification rules

1.1 Unification Rules

n Fig. 2, we give the set of equation normalization rules that we shall call Herbrand-
Martelli-Montanari [8,13]. Each rule is provably correct in that it is a solution-
preserving transformation of a set of equations. We can use these rules to unify
two FOTs t1 and t2. We start with the singleton set of equations E

def= {t1
.=

t2}, and apply any applicable rule in any order until none applies. This always
terminates into a finite set of equations E′. If all the equations in E′ are of the form
X

.= t with X occurring nowhere else in E′, then this is a most general unifying
substitution (up to consistent variable renaming) σ

def= {t/X | X
.= t ∈ E′ }

solving the original equation (i.e., t1σ = t2σ); otherwise, there is no solution—i.e.,
glb(t1, t2) = ⊥. In these rules, we check for circular terms (“occurs-check ” is side
condition: X ∈ var(t) of Rule Variable Elimination). We could do without
it, technically, so that these same rules without this “occurs-check” would perform
rational term unification [9].

1.2 Generalization Rules

In 1970, John Reynolds and Gordon Plotkin published each an article, in the
same volume [15,16], giving two identical algorithms (up to notation) for the
generalization of two FOTs. Each describes a procedural method computing the
most specific FOT subsuming two given FOTs in finitely many steps by com-
paring them simultaneously, and generating a pair of generalizing substitutions
from a fresh variable wherever they disagree being scanned from left to right,
each time replacing the disagreeing terms by the new variable everywhere they
both occur in each term.

Next, we present a set of declarative normalization rules for generalization
which are equivalent to these procedural algorithms. As far as we know, this is
the first such presentation of a declarative set of rules for generalization besides
its more general form as order-sorted feature term generalization in [5]. The
advantage of specifying this operation in this manner rather than procedurally
as done originally by Reynolds and Plotkin is that each rule or axiom relates
a pair of prior substitutions to a pair of posterior substitutions based only on
local syntactic-pattern properties of the terms to generalize, and this without
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resorting to side-effects on global structures. In this way, the terms and sub-
stitutions involved are derived as solutions of logical syntactic constraints. In
addition, correctness of the so-specified operation is made much easier to estab-
lish since we only need to prove each rule’s correctness independently of that of
the others. Finally, the rules also provide an effective means for the derivation
of an operational semantics for the so-specified operation by constraint solving,
without need for control specification as any applicable rule may be invoked in
any order.3

Definition 1 (Generalization Judgement). A generalization judgement is
an expression of the form:

(
σ1

σ2

)

�
(

t1
t2

)

t

(
θ1
θ2

)

(1)

where σi : var(ti) → T and θi : var(t) → T (i = 1, 2) are substitutions, and
t ∈ T and ti ∈ T (i = 1, 2) are FOTs.

Definition 2 (Generalization Judgement Validity). A generalization
judgement such as (1) is said to be valid whenever tiσi = tθi, for i = 1, 2.

Contrary to other normalization rules in this document which are expressed
as conditional rewrite rules whereby a prior form (the “numerator”) is related to a
posterior form (the “denominator”), these normalization rules are more naturally
rendered as (conditional) Horn clauses of judgements. This is as convenient as
rewrite rules since a Prolog-like operational semantics can then readily provide
an effective interpretation. This operational semantics is efficient because it does
not need backtracking as long as the complete set of conditions of a ruleset covers
all but mutually exclusive syntactic patterns. Thus, a generalization rule is of
the form:

[φ]
J1 . . . Jn

J
(2)

where φ is a side meta-condition, and J, J1, . . . , Jn are judgements, and it reads,
“whenever the side condition φ holds, if all the n antecedent judgements Jn are
valid, then the consequent judgement J is also valid.” Such a generalization rule
without a specified antecedent (a “numerator”) is called a “generalization axiom.”
Such an axiom is said to be valid iff its consequent (the “denominator”) is valid
whenever its optional side condition holds. It is equivalent to a rule where the
only antecedent is the trivial generalization judgement true.

Definition 3 (Generalization Rule Correctness). A conditional Horn rule
such as Rule (2) is correct iff Jk is a valid judgement for all k = 1, . . . , n implies
that J is a valid judgement, whenever the side condition φ holds.

3 Such as the Herbrand-Martelli-Montanari unification rules w.r.t. to Robinson’s pro-
cedural unification algorithm.
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Given t1 and t2 two FOTs having no variable in common, in order to find
the most specific term t and most general substitutions σi, i = 1, 2, such that
tσi = ti, i = 1, 2, one needs to establish the generalization judgement:

(
∅
∅

)

�
(

t1
t2

)

t

(
σ1

σ2

)

. (3)

In other words, this expresses the upper half of Fig. 1 whereby t = lub(t1, t2),
with most general substitutions σ1 and σ2. We give a complete set of normal-
ization axioms and rule for generalization for all syntactic patterns in Fig. 3.
Rule “Equal Functors” uses an “unapply” operation (‘↑’) on a pair of terms
(t1, t2) given a pair of substitutions (σ1, σ2). It may be conceived as (and in fact
is) the result of simultaneously “unapplying” σi from ti into a common variable
X only if such X is bound to ti by σi, for i = 1, 2. If there is no such a variable,
it is the identity. Formally, this is defined as:

(
t1
t2

)

↑
(

σ1

σ2

)
def=

⎧
⎪⎪⎨

⎪⎪⎩

(
X
X

)

if ti = Xσi, for i = 1, 2;
(

t1
t2

)

otherwise.
(4)

(5) EQUAL VARIABLES :

σ1

σ2

X
X

X
σ1

σ2

(6) VARIABLE-TERM :

[t1 ∈ V or t2 ∈ V; t1 = t2; X is new]
σ1

σ2

t1
t2

X
σ1{t1/X}
σ2{t2/X}

(7) UNEQUAL FUNCTORS :

[m ≥ 0, n ≥ 0; m = n or f = g; X is new]
σ1

σ2

f(s1, . . . , sm)
g(t1, . . . , tn)

X
σ1{f(s1, . . . , sm)/X}
σ2{g(t1, . . . , tn)/X}

(8) EQUAL FUNCTORS :

[n ≥ 0]

σ1

σ2

s1
t1

↑ σ1

σ2
u1

σ1
1

σ1
2

. . .
σn−1
1

σn−1
2

sn

tn
↑ σn−1

1

σn−1
2

un
σn
1

σn
2

σ1

σ2

f(s1, . . . , sn)
f(t1, . . . , tn)

f(u1, . . . , un)
σn
1

σn
2

Fig. 3. Generalization axioms and rule

Note also that Rule “Equal Functors” is defined for n ≥ 0. For n = 0
(for any constant c), it becomes the following axiom:

(
σ1

σ2

)

�
(

c
c

)

c

(
σ1

σ2

)

. (5)
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Theorem 1. The axioms and the rule of Fig. 3 are correct.

In particular, with empty prior substitutions, we obtain the following corol-
lary.

Corollary 1 (FOT Generalization). Whenever the judgement
(

∅
∅

)

�
(

t1
t2

)

t

(
σ1

σ2

)

is valid, then tσi = ti, for i = 1, 2.

2 Fuzzy Lattice Operations

2.1 Fuzzy Unification

A fuzzy unification operation on FOTs, dubbed “weak unification,” was proposed
by Maria Sessa in [17]. It normalizes equations between conventional FOTs mod-
ulo a similarity relation ∼ over functor symbols. This similarity relation is then
homomorphically extended to one over all FOTs. It is: (1) the (crisp) identity
relation on variables (i.e., X ∼1 X, for any X in V); otherwise, (2) zero when
either of the two terms is a variable (i.e., X ∼0 t and t ∼0 X, for any X = t in
V); otherwise (3):

f(s1, . . . , sn) ∼(α∧∧n
i=1 αi) g(t1, . . . , tn) if f ∼α g and si ∼αi

ti, i = 1, . . . , n

where α ∈ [0, 1] and αi ∈ [0, 1] (i = 1, . . . , n) denote the unification degrees to
which each corresponding equation holds.4

In Fig. 4, we provide a set of declarative rewrite rules equivalent to Sessa’s
case-based “weak unification algorithm” [17]. To simplify the presentation of
these rules while remaining faithful to Sessa’s weak unification algorithm, it is
assumed for now that functor symbols f/m and g/n of different arities m = n are
never similar. This is without any loss of generality since Sessa’s weak unification
fails on term structures of different arities.5 Later, we will relax this and allow
functors of different arities to be similar.

The rules of Fig. 4 transform Eα a finite conjunctive set E of equations among
FOTs along with an associated truth value, or “unification degree,” α ∈ [0, 1],
into E′

α′ another set of equations E′ with truth value α′ ∈ [0, α]. Given to solve a
fuzzy unification equation s

.= t between two FOTs s and t, form the set {s
.= t}1

(i.e., with unification degree 1), and apply any applicable rules in Fig. 4 until
either the unification degree of the set of equations is 0 (in which case there is
no solution to the original equation, not even a fuzzy one), or the final resulting
set Eα is a solution with truth value α in the form of a variable substitution
σ

def= {X/t | X
.= t ∈ E} such that sσ ∼α tσ.

From our perspective, a fuzzy unification operation ought to be able to fuzzify
full FOT unification: whether (1) functor symbol mistmatch, and/or (2) arity
4 The ∧ operation used by Sessa in this expression is min; but other interpretations

are possible [3,7].
5 See Case (2) of the weak unification algorithm given in [17], Page 413.
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(9) FUZZY TERM DECOMPOSITION:

(E ∪ {f(s1, . . . , sn)
.= g(t1, . . . , tn)})α

(E ∪ {s1
.= t1, . . . , sn

.= tn})α∧β

f ∼β g

n ≥ 0

(10) VARIABLE ERASURE:

(E ∪ {X
.= X})α

Eα

(11) VARIABLE ELIMINATION:

(E ∪ {X
.= t})α

(E[X ← t] ∪ {X
.= t})α

X var(t)
X occurs in E

(12) EQUATION ORIENTATION:

(E ∪ {t
.= X})α

(E ∪ {X
.= t})α

[t ]

Fig. 4. Normalization rules corresponding to Maria Sessa’s “weak unification”

mismatch, and/or (3) in which order subterms correspond. Sessa’s fuzzification
of unification as weak unification misses on the last two items. This is unfortu-
nate as this can turn out to be quite useful. In real life, there is indeed no such
guarantee that argument positions of different functors match similar informa-
tion in data and knowledge bases, hence the need for alignment [12].

Still, it has several qualities:

– It is simple—specified as a straightforward extension of crisp unification: only
one rule (Rule “Fuzzy Term Decomposition”) may alter the fuzziness of
an equation set by tolerating similar functors.

– It is conservative—neither FOTs nor FOT substitutions per se need be fuzzi-
fied; so conventional crisp representations and operations can be used; if
restricted to only 0 or 1 truth values, it is equivalent to crisp FOT unifi-
cation.

We now give an extension of Sessa’s weak unification which can tolerate such
fuzzy similarity among functors of different arities. Given a similarity relation
∼ on a ranked signature Σ

def= Σn≥0, ∼: Σ2 → [0, 1] which, unlike M. Sessa’s
equal-arity condition, now allows mismatches of similar symbols with distinct
arities or equal arities but different argument orders. Namely,

– it admits that (∼ ∩ Σm ×Σn) = ∅ for some m ≥ 0, n ≥ 0, such that m = n;
– for each pair of functors 〈f, g〉 ∈ Σ2, such that f ∈ Σm and g ∈ Σn,

with 0 ≤ m ≤ n, and f ∼α g, (α ∈ (0, 1]), there exists an injective (i.e.,
one-to-one) mapping p : {1, . . . , m} → {1, . . . , n} associating each of the m
argument positions of f to a unique position among the n arguments of g
(which is denoted as f ∼p

α g).

Note that in the above, m and n are such that 0 ≤ m ≤ n; so the one-to-one
argument-position mapping goes from the lesser set to the larger set. There is
no loss of generality with this assumption as this will be taken into account in
the normalization rules.

Example 1. [Similar functors with different arities] Consider person/3, a func-
tor of arity 3, and individual/4, a functor of arity 4 with:
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– similarity truth value of .9; i.e., person/3 ∼.9 individual/4; and,
– one-to-one position mapping p : {1, 2, 3} → {1, 2, 3, 4}:

from person/3 to individual/4 with p : {1 → 1, 2 → 3, 3 → 4}

so that:

person(Name,SSN,Address) ∼p
.9 individual(Name,DoB,SSN,Address)

writing f ∼p
α g a similarity relation between a functor f and a functor g of truth value

α and f -to-g argument-position mapping p; in our example, person ∼{1→1,2→3,3→4}
.9

individual.
With this kind of specification, we can tolerate not only fuzzy mismatching of

terms with distinct functors person and individual, but also up to a correspondence of
argument positions from person to individual specified as p, all with a truth value of .9.

Starting with the Herbrand-Martelli-Montanari ruleset of Fig. 2, fuzziness is
introduced by relaxing “Term Decomposition” to make it also tolerate possi-
ble arity or argument-order mistmatch in two structures being unified. In other
words, the given functor similarity relation ∼ is adjoined a position mapping
from argument positions of a functor f to those of a functor g when f = g and
f ∼α g with α ∈ (0, 1]. This is then taken into account in tolerating a fuzzy
mismatch between two term structures s = f(s1, . . . , sm) and t = g(t1, . . . , tn).
This may involve a mismatch between the terms’ functor symbols (f and g),
their arities (m and n), subterm orders, or a combination. We first reorient all
such equations by flipping sides so that the left-hand side is the one with lesser
or equal arity. In this manner, assuming f ∼p

β g and 0 ≤ α, β ≤ 1, an equa-
tion of the form:

{
f(s1, . . . , sm) .= g(t1, . . . , tn)

}
α

for 0 ≤ m ≤ n acquires its
truth value α ∧ β due to functor and arity mismatch when equated. A fully
fuzzified term-decomposition rule should proceed with replacing such a fuzzy
structure equation with the following conjunction of fuzzy equations between
subterms at corresponding indices given by the one-to-one argument mapping
p : {1, . . . , m} → {1, . . . , n}:

{
s1

.= tp(1), . . . , sm
.= tp(m), . . .

}
α∧β

. Note that
all the subterms in the right-hand side term that are arguments at indices which
are not p-images are ignored as they have no counterparts in the left-hand side.
These terms are simply dropped as part of the fuzzy approximative unification.
This generic rule is shown in Fig. 5 along with another rule needed to make it
fully effective: a rule reorienting a term equation into one with a lesser-arity term
on the left.

Theorem 2. The fuzzy unification rules of Fig. 4 where
Rule “Fuzzy Term Decomposition” is replaced by the rules of Fig. 5 are
correct.

In other words, applying this modified ruleset to E1
def= {s

.= t}1, an equation
set of truth value 1 (in any order as long as a rule applies and its truth value is
not zero) always terminates. And when the final equation set is a substitution
σ, it is a fuzzy solution with truth value α such that sσ ∼α tσ.
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(13) GENERIC WEAK TERM DECOMPOSITION :

0 ≤ m ≤ n; f ∼p
β g

(E ∪ {f(s1, . . . , sm) .= g(t1, . . . , tn)})α
E ∪ {s1

.= tp(1), . . . , sm
.= tp(m)} α∧β

(14) FUZZY EQUATION REORIENTATION :

[0 ≤ n < m]

(E ∪ {f(s1, . . . , sm) .= g(t1, . . . , tn)})α
(E ∪ {g(t1, . . . , tn)

.= f(s1, . . . , sm)})α

Fig. 5. Generic fuzzification of FOT unification’s decomposition rule

Example 2. [FOT fuzzy unification with similar functors of different arities]
Let us take a functor signature such that: {a, b, c, d} ⊆ Σ0, {f, g, �} ⊆ Σ2, {h} ⊆ Σ3;
and let us further assume that the only non-zero similarities argument mappings among
these functors are:

– a ∼.7 b,
– c ∼.6 d,
– f ∼{1→2,2→1}

.9 g and g ∼{1→2,2→1}
.9 f ,

– � ∼{1→2,2→3}
.8 h.

Let us consider the fuzzy equation set {t1 .
= t2}1:

{h(X, g(Y, b), f(Y, c))
.
= �(f(a, Z), g(d, c))}1 (6)

and let us apply the rules of Fig. 4 with rule Weak Term Decomposition is
replaced by the rules of Fig. 5:

– apply Rule Fuzzy Equation Reorientation with α = 1 since arity(�) <
arity(h):

{�(f(a, Z), g(d, c))
.
= h(X, g(Y, b), f(Y, c))}1 ;

– apply Rule Generic Weak Term Decomposition to:

�(f(a, Z), g(d, c))
.
= h(X, g(Y, b), f(Y, c))

with α = 1 and β = .8 since � ∼{1→2,2→3}
.8 h, to obtain:

{f(a, Z)
.
= g(Y, b), g(d, c)

.
= f(Y, c)}.8 ;

– apply Rule Generic Weak Term Decomposition to f(a, Z)
.
= g(Y, b)

with α = .8 and β = .9 since f ∼{1→2,2→1}
.9 g, to obtain:

{a
.
= b, Z

.
= Y, g(d, c)

.
= f(Y, c)}.8 ;

– apply Rule Generic Weak Term Decomposition to a
.
= b with α = .8

and β = .7 since a ∼.7 b, to obtain:

{Z
.
= Y, g(d, c)

.
= f(Y, c)}.7 ;
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– apply Rule Generic Weak Term Decomposition to g(d, c)
.
= f(Y, c)

with α = .7 and β = .9 since f ∼{1→2,2→1}
.9 g, to obtain:

{Z
.
= Y, d

.
= c, c

.
= Y }.7 ;

– apply Rule Generic Weak Term Decomposition to d
.
= c with α = .7

and β = .6 since d ∼.6 c, to obtain:

{Z
.
= Y, c

.
= Y }.6 ;

– apply Rule Equation Orientation to c
.
= Y with α = .6, to obtain:

{Z
.
= Y, Y

.
= c}.6 .

– apply Rule Variable Elimination to Y
.
= c with α = .6, to obtain:

{Z
.
= c, Y

.
= c}.6 .

This last equation set is in normal form with truth value .6 and defines the substitution
σ = { c/Z, c/Y } so that:

t1σ = h(X, g(Y, b), f(Y, c)) { c/Z, c/Y } ∼.6 t2σ = �(f(a, Z), g(d, c)) { c/Z, c/Y } ,
(7)

that is:

t1σ = h(X, g(c, b), f(c, c)) ∼.6 t2σ = �(f(a, c), g(d, c)). (8)

Example 3. [The same fuzzy unification with more expressive symbols] Let
us give more expressive names to functors of Example 2 in the context of, say, a gift-
shop Prolog database which describes various configurations for multi-item gift boxes
or bags containing such items as flowers, sweets, etc., which can be already joined as
pairs or not joined as loose couples.

– a
def
= violet,

– b
def
= lilac,

– c
def
= chocolate,

– d
def
= candy,

– f
def
= pair,

– g
def
= couple,

– �
def
= small-gift-bag,

– h
def
= small-gift-box,

with the following similarity degrees and argument mappings,:

– violet ∼.7 lilac,
– chocolate ∼.6 candy,
– pair ∼.9 couple,
– pair ∼{1→2,2→1}

.9 couple and couple ∼{1→2,2→1}
.9 pair,

– small-gift-bag ∼{1→2,2→3}
.8 small-gift-box.

With these functors Eq. (6) now reads:
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(t1)

small-gift-box ( X
, couple(Y, lilac)
, pair(Y, chocolate)
)

.
=

(t2)
small-gift-bag ( pair(violet, Z)

, couple(candy, chocolate)
)

With the new functor symbols, the substitution σ = { chocolate/Z, chocolate/Y }
obtained after normalization yields the fuzzy solution:

(t1σ)

small-gift-box ( X
, couple(chocolate, lilac)
, pair(chocolate, chocolate)
)

∼.6

(t2σ)
small-gift-bag ( pair(violet, chocolate)

, couple(candy, chocolate)
)

with truth value .6 capturing the unification degree to which σ solves the original
equation.

Rule Generic Weak Term Decomposition is a very general rule for
normalizing fuzzy equations over FOT structures. It has the following convenient
properties:

1. it accounts for fuzzy mismatches of similar functors of possibly different arity
or order of arguments;

2. when restricted to tolerating only similar equal-arity functors with
matching argument positions, it reduces to Sessa’s weak unification’s
Weak Term Decomposition rule;

3. when truth values are further restricted to be in {0, 1}, it reduces to Herbrand-
Martelli-Montanari’s Term Decomposition rule;

4. it requires no alteration of the standard notions of FOTs and FOT substitu-
tions: similarity among FOTs is derived from that of signature symbols;

5. finally, and most importantly, it keeps fuzzy unification in the same complex-
ity class as crisp unification: that of Union-Find [11,18].6

As a result, it is more general than all other extant approaches we know which
propose a fuzzy FOT unification operation. The same will be established for the
6 Quasi-linear; i.e., linear with a log . . . log coefficient [1].
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fuzzification of the dual operation: first a limited “functor-weak ” FOT general-
ization corresponding to the dual operation of Sessa’s “weak” unification, then
to a more expressive “functor/arity-weak ” FOT generalization corresponding to
our extension of Sessa’s unification to functor/arity weak unification.

2.2 Fuzzy Generalization

Let t1 and t2 be two FOTs in T to generalize. We shall use the following notation
for a fuzzy generalization judgement:

(
σ1

σ2

)

α

�
(

t1
t2

)

t

(
θ1
θ2

)

β

(9)

given:

– σi : var(ti) → T (i = 1, 2): two prior substitutions with prior truth value α,
– ti (i = 1, 2): two prior FOTs,
– t: a posterior FOT ,
– θi : var(t) → T (i = 1, 2): two posterior substitutions with truth value β.

Definition 4 (Fuzzy Generalization Judgement Validity). A fuzzy gener-
alization judgement such as (9) is valid whenever 0 ≤ β ≤ α ≤ 1 and tiσi ∼β tθi

for i = 1, 2.

Definition 5 (Fuzzy Generalization Rule Correctness). A fuzzy gener-
alization rule is correct iff, whenever the side condition holds, if all the fuzzy
generalization judgements making up its antecedent are valid, then necessarily
the generalization judgement in its consequent is valid.

In Fig. 6, we give a fuzzy version of the generalization rules of Fig. 3. As was
the case in Sessa’s weak unification, we assume as well (for now) that we are only
given a similarity relation ∼ ∈ Σ × Σ → [0, 1] on the signature Σ = ∪n≥0Σn

such that for all m ≥ 0 and n ≥ 0, m = n implies ∼ ∩Σm × Σn = ∅ (i.e., if
functors f and g have different arities, then f ∼ g).

Rule Similar Functors uses a “fuzzy unapply” operation (‘↑
α
’) on a pair

of terms (t1, t2) given a pair of substitutions (σ1, σ2) and a truth value α. It is
the result of “unapplying” σi from ti into a common variable, if any, whenever
it is bound by σ1 to a term t′1 and by σ2 to a term t′2 which are respectively
α-similar to ti for i = 1, 2. It is defined as:

(
t1
t2

)

↑
α

(
σ1

σ2

)
def=

⎧
⎪⎪⎨

⎪⎪⎩

(
X
X

)

if ti ∼α Xσi for i = 1, 2;
(

t1
t2

)

otherwise.
(10)

Theorem 3. The fuzzy generalization rules of Fig. 6 are correct.
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(15) FUZZY EQUAL VARIABLES :

σ1

σ2 α

X
X

X
σ1

σ2 α

(16) FUZZY VARIABLE-TERM :

[t1 ∈ V or t2 ∈ V; t1 = t2; X is new]
σ1

σ2 α

t1
t2

X
σ1{t1/X}
σ2{t2/X}

α

(17) DISSIMILAR FUNCTORS :

[f g; m ≥ 0, n ≥ 0; X is new]
σ1

σ2 α

f(s1, . . . , sm)
g(t1, . . . , tn)

X
σ1{f(s1, . . . , sm)/X}
σ2{g(t1, . . . , tn)/X}

α

(18) SIMILAR FUNCTORS :

f ∼β g; n ≥ 0; α0
def= α ∧ β

σ1

σ2 α0

s1
t1

↑α0

σ1

σ2
u1

σ1
1

σ1
2 α1

. . .
σn−1
1

σn−1
2 αn−1

sn

tn
↑αn−1

σn−1
1

σn−1
2

un
σn
1

σn
2 αn

σ1

σ2 α

f(s1, . . . , sn)
g(t1, . . . , tn)

f(u1, . . . , un)
σn
1

σn
2 αn

Fig. 6. Functor-weak generalization axioms and rule

Example 4. [FOT fuzzy generalization] Let us apply the fuzzy generalization
axioms and rules of Fig. 6 to:

t1
def
= h(f(a, X1), g(X1, b), f(Y1, Y1)),

t2
def
= h(X2, X2, g(c, d)).

– Let us find term t, substitutions σi : var(t) → var(ti) (i = 1, 2), and truth
value α ∈ [0, 1] such that tσ1 ∼α h(f(a, X1), g(X1, b), f(Y1, Y1)) and tσ2 ∼α

h(X2, X2, g(c, d)); that is, solve the following fuzzy generalization constraint
problem: (

∅
∅

)
1

	
(

h(f(a, X1), g(X1, b), f(Y1, Y1))
h(X2, X2, g(c, d))

)
t

(
σ1

σ2

)
α

.

– By Rule Similar Functors, we must have t = h(u1, u2, u3) since:(
∅
∅

)
1

	
(

h(f(a, X1), g(X1, b), f(Y1, Y1))
h(X2, X2, g(c, d))

)
h(u1, u2, u3)

(
σ1

σ2

)
α

where:
• u1 is the fuzzy generalization of

(
f(a, X1)
X2

)
↑1

(
∅
∅

)
; that is, of f(a, X1) and

X2; and by Rule Fuzzy Variable-Term:(
∅
∅

)
1

	
(

f(a, X1)
X2

)
X

(
{f(a, X1)/X}
{X2/X}

)
1

and so u1 = X; u2 is the fuzzy generalization of
(

g(X1, b)
X2

)
↑1

(
{f(a, X1)/X}
{X2/X}

)
;

that is, of g(X1, b) and X2; and by Rule Fuzzy Variable-Term:(
{f(a, X1)/X}
{X2/X}

)
1

	
(

g(X1, b)
X2

)
Y

(
{. . . , g(X1, b)/Y }
{. . . , X2/Y }

)
1
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and so u2 = Y ;
• u3 = f(v1, v2) is the fuzzy generalization of(

f(Y1, Y1)
g(c, d)

)
↑.9

(
{f(a, X1)/X, g(X1, b)/Y }
{X2/X, X2/Y }

)
;

that is, of f(Y1, Y1) and g(c, d) with truth value .9, because of Rule
Similar Functors and f ∼.9 g, and:

∗ v1 is the fuzzy generalization of(
{f(a, X1)/X, g(X1, b)/Y }
{X2/X, X2/Y }

)
↑.9

(
Y1

c

)
;

that is, of Y1 and c; and by Rule Fuzzy Variable-Term:(
{f(a, X1)/X, g(X1, b)/Y }
{X2/X, X2/Y }

)
.9

	
(

Y1

c

)
Z

(
{. . . , Y1/Z}
{. . . , c/Z}

)
.9

that is, v1 = Z;
∗ v2 is the fuzzy generalization of(

Y1

d

)
↑.9

(
{f(a, X1)/X, g(X1, b)/Y, Y1/Z}
{X2/X, X2/Y, c/Z}

)
;

that is, of Y1 and d; and by Rule Fuzzy Variable-Term:(
{f(a, X1)/X, g(X1, b)/Y, Y1/Z}
{X2/X, X2/Y, c/Z}

)
.9

	
(

Y1

d

)
U

(
{. . . , Y1/U}
{. . . , d/U}

)
.9

that is, v2 = U ;
in other words, u3 = f(Z, U) since:(

{f(a, X1)/X, g(X1, b)/Y }
{X2/X, X2/Y }

)
1

	
(

f(Y1, Y1)
g(c, d)

)
f(Z, U)

(
{. . . , Y1/Z, Y1/U}
{. . . , c/Z, d/U}

)
.9

and so:(
∅
∅

)
1

	
(

t1
t2

)
h(X, Y, f(Z, U))

(
{f(a, X1)/X, g(X1, b)/Y, Y1/Z, Y1/U}
{X2/X, X2/Y, c/Z, d/U}

)
.9

.

In Fig. 7, we give a fuzzy version of the generalization rules taking into
account mismatches not only in functors, but also in arities; i.e., number and/or
order of arguments. Unlike Sessa’s unification, we now assume that we are
not only given a similarity relation ∼ ∈ Σ × Σ → [0, 1] on the signature
Σ = ∪n≥0Σn, but also that functors of different arities may be similar with some
non-zero truth value as specified by an one-to-one argument-position mapping for
each pair of so-similar functors associating to each argument position of the func-
tor of least arity a distinct argument position of the functor of larger arity. The
only rule among those of Fig. 6 that differs is the last one (Similar Functors)
which is now a pair of rules called Functor/Arity Similarity Left and
Functor/Arity Similarity Right to account for similar functors’s argu-
ment positions depending which side has less arguments. If the arities are the
same, the two rules are equivalent.

Theorem 4. The fuzzy generalization rules of Fig. 6 where Rule “Similar
Functors” is replaced with the rules in Fig. 7 are correct.
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(19) FUNCTOR/ARITY SIMILARITY LEFT :

f ∼p
β

g; 0 ≤ m ≤ n; α0
def
= α ∧ β

σ1
σ2 α0

s1
tp(1)

↑α0
σ1
σ2

u1
σ1
1

σ1
2 α1

. . .
σm−1
1

σm−1
2 αm−1

sm

tp(m)
↑αm−1

σm−1
1

σm−1
2

um
σm
1

σm
2 αm

σ1
σ2 α

f(s1, . . . , sm)
g(t1, . . . , tn)

f(u1, . . . , um)
σm
1

σm
2 αm

(20) FUNCTOR/ARITY SIMILARITY RIGHT :

g ∼p
β f ; 0 ≤ n ≤ m; α0

def
= α ∧ β

σ1
σ2 α0

sp(1)
t1

↑α0
σ1
σ2

u1
σ1
1

σ1
2 α1

. . .
σn−1
1

σn−1
2 αn−1

sp(n)
tn

↑αn−1

σn−1
1

σn−1
2

un
σn
1

σn
2 αn

σ1
σ2 α

f(s1, . . . , sm)
g(t1, . . . , tn)

g(u1, . . . , un)
σn
1

σn
2 αn

Fig. 7. Functor/arity-weak generalization axioms and rule

3 Conclusion

We have summarized the principal results regarding the derivation of fuzzy lat-
tice operations for the data structure known as first-order term. This is achieved
by means of syntax-driven constraint normalization rules for both unification
and generalization. These operations are then extended to enable arbitrary mis-
match between similar terms whether functor-based, arity-based (number and
order), or combinations. The resulting lattice operations are in the same class of
complexity as their crisp versions, of which they are conservative extensions—
namely that of Union/Find. All these details, along with proofs and examples,
are to be found in [2].

As for future work, there are several avenues to explore. The most immediate
concerns implementation of such operations in the form of public libraries to
complement extant tools for first-order terms and substitutions [10]. This is
eased by the fact that the fuzzy lattice operations do no require altering these
conventional first-order structures. There are several other disciplines where this
technology has potential for fuzzifying applications wherever FOTs are used for
their lattice-theoretic properties such as linguistics and learning. Finally, most
promising is using this work’s approach to more generic and more expressive
knowledge structures for applications such as Fuzzy Information Retrieval [6]. We
are currently developing the same formal construction for fuzzy lattice operations
over order-sorted feature (OSF) graphs [4]. Encouraging initial results are being
reported in [3].
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Abstract. Nominal unification is an extension of first-order unification
that takes into account the α-equivalence relation generated by binding
operators, following the nominal approach. We propose a sound and com-
plete procedure for nominal unification with commutative operators, or
nominal C-unification for short, which has been formalised in Coq. The
procedure transforms nominal C-unification problems into simpler (finite
families) of fixed point constraints, whose solutions can be generated by
algebraic techniques on combinatorics of permutations.

1 Introduction

Unification, where the goal is to solve equations between first-order terms, is
a key notion in logic programming systems, type inference algorithms, proto-
col analysis tools, theorem provers, etc. Solutions to unification problems are
represented by substitutions that map variables (X,Y, . . . ) to terms.

When terms include binding operators, a more general notion of unification is
needed: unification modulo α-equivalence. In this paper, we follow the nominal
approach to the specification of binding operators [20,26,30], where the syn-
tax of terms includes, in addition to variables, also atoms (a, b, . . . ), which can
be abstracted, and α-equivalence is axiomatised by means of a freshness rela-
tion a#t and name-swappings (a b). For example, the first-order logic formula
∀a.a ≥ 0 can be written as a nominal term ∀([a]geq(a, 0)), using function sym-
bols ∀ and geq and an abstracted atom a. Nominal unification [30] is the problem
of solving equations between nominal terms modulo α-equivalence; it is a decid-
able problem and efficient nominal unification algorithms are available [9,11,24],
that compute solutions consisting of freshness contexts (containing freshness con-
straints of the form a#X) and substitutions.

In many applications, operators obey equational axioms. Nominal reasoning
and unification have been extended to deal with equational theories presented by
rewrite rules (see, e.g., [5,17,18]) or defined by equational axioms (see, e.g., [14,
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(Proc. 88881.132034/2016-01, 2nd author) and CNPq (PQ 307009/2013, 1st author).
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19]). The case of associative and commutative nominal theories was considered
in [3], where a parametric {α,AC}-equivalence relation was formalised in Coq.
However, only equational deduction was considered (not unification). In this
paper, we study nominal C-unification.

Contributions: We present a nominal C-unification algorithm, based on a set
of simplification rules. The algorithm transforms a given nominal C-unification
problem 〈Δ, Q〉, where Δ is a freshness context and Q a set of freshness con-
straints and equations, respectively of the form a#?s and s ≈? t, into a finite
set of triples of the form 〈∇, σ, P 〉, consisting of a freshness context ∇, a substi-
tution σ and a set of fixed point equations (for short, FP equations) P of the
form π.X ≈? X. The simplifications are based on a set of deduction rules for
freshness and α-C-equivalence (denoted as ≈{α,C}).

The role of FP equations in nominal C-unification is tricky: while in stan-
dard nominal unification [30], solving a FP equation of the form (a b).X ≈? X
reduces to checking whether the constraints a#X, b#X (a and b fresh in X) are
satisfied, and in this case the solution is the identity substitution, in nominal
C-unification, for ∗ and + commutative operators, one can have additional com-
binatory solutions of the form {X/a+b}, {X/(a+b)∗. . .∗(a+b)}, {X/f(a)+f(b)},
etc. We show that in general there is no finitary representation of solutions using
only freshness contexts and substitutions, hence a nominal C-unification problem
may have a potentially infinite set of independent most general unifiers (unlike
standard C-unification, which is well-known to be finitary).

We adapt the proof of NP-completeness of syntactic C-unification to show
that nominal C-unification is NP-complete as well. Soundness and completeness
of the simplification rules were formalised in Coq. The formalisation, an extended
version of the paper with all proof details and an OCaml implementation are
available at http://ayala.mat.unb.br/publications.html.

Related work: To generate the set of combinatorial solutions for FP equations
we can use an enumeration procedure given in [4], which is based on the com-
binatorics of permutations. By combining the simplification and enumeration
methods, we obtain a nominal C-unification procedure in two phases: a simplifi-
cation phase, described in this paper, which outputs a finite set of most general
solutions that may include FP constraints, and a generation phase, which elim-
inates the FP constraints according to [4].

Several extensions of the nominal unification algorithm have been defined, in
addition to the equational extensions already mentioned.

An algorithm for nominal unification of higher-order expressions with recur-
sive let was proposed in [23]; as in the case of nominal C-unification, FP equations
are obtained in the process. Using the techniques in [4], it is possible to proceed
further and generate the combinatorial solutions of FP equations.

Recently, Aoto and Kikuchi [1] proposed a rule-based procedure for nominal
equivariant unification [13], an extension of nominal unification that is useful in
confluence analysis of nominal rewriting systems [2,16].

http://mat.unb.br/~ayala/publications.html
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Furthermore, several formalisations and implementations of the nominal uni-
fication algorithm are available. For example, formalisations of its soundness and
completeness were developed by Urban et al [29,30], Ayala-Rincón et al [6], and
Kumar and Norrish [22] using, respectively, the proof assistants Isabelle/HOL,
PVS and HOL4. An implementation in Maude using term graphs [10] is also
available. Urban and Cheney used a nominal unification algorithm to develop
a Prolog-like language called α-Prolog [12]. Our formalisation of nominal C-
unification is based on the formalisation of equivalence modulo {α,AC} pre-
sented in [3]. The representations of permutations and terms are similar, but
here we deal also with substitutions and unification rules, and prove soundness
and completeness of the unification algorithm.

Reasoning modulo equational theories (but without considering the nomi-
nal approach to deal with α-equivalence) has been subject of formalisations.
For instance, Nipkow [25] presented a set of Isabelle/HOL tactics for reasoning
modulo A, C and AC; Braibant and Pous [8] designed a plugin for Coq, with
an underlying AC-matching algorithm, that extends the system tactic rewrite
to deal with AC function symbols; also, Contejean [15] formalised in Coq the
correction of an AC-matching algorithm implemented in CiME.

Syntactic unification with commutative operators is an NP-complete problem
and its solutions can be finitely generated [21,28]. Since C-unification problems
are a particular case of nominal C-unification problems, our simplification algo-
rithm, checked in Coq, is also a formalisation of the C-unification algorithm.

Organisation: Section 2 presents basic concepts and notations. Section 3 intro-
duces the formalised equational and freshness inference rules for nominal C-
unification, and briefly discusses NP-completeness; Sect. 4 shows that a single
FP equation can have infinite independent solutions; Sect. 5 shortly discusses
the formalisation in Coq and Sect. 6 concludes and proposes future work.

2 Background

Consider countable disjoint sets of variables X := {X,Y,Z, · · · } and atoms
A := {a, b, c, · · · }. A permutation π is a bijection on A with a finite domain,
where the domain (i.e., the support) of π is the set dom(π) := {a ∈ A | π ·a 
= a}.
The inverse of π is denoted by π−1. Permutations can be represented by lists of
swappings, which are pairs of different atoms (a b); hence a permutation π is a
finite list of the form (a1 b1) :: . . . :: (an bn) :: nil, where the empty list nil corre-
sponds to the identity permutation; concatenation is denoted by ⊕ and, when
no confusion may arise, :: and nil are omitted. We follow Gabbay’s permutative
convention: Atoms differ on their names, so for atoms a and b the expression
a 
= b is redundant. Also, (a b) and (b a) have identical action: they exchange a
and b; thus, they represent the same swapping.

We will assume as in [3] countable sets of function symbols with different
equational properties such as associativity, commutativity, idempotence, etc.
Function symbols have superscripts that indicate their equational properties;
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thus, fC
k will denote the kth function symbol that is commutative and f∅

j the
jth function symbol without any equational property.

Nominal terms are generated by the following grammar:

s, t := 〈〉 | ā | [a]t | 〈s, t〉 | fE
k t | π.X

〈〉 denotes the unit (that is the empty tuple), ā denotes an atom term, [a]t
denotes an abstraction of the atom a over the term t, 〈s, t〉 denotes a pair,
fE

k t the application of fE
k to t and, π.X a moderated variable or suspension.

Suspensions of the form nil .X will be represented just by X.
The set of variables occurring in a term t will be denoted as V ar(t). This

notation extends to a set S of terms in the natural way: V ar(S) =
⋃

t∈S V ar(t).
As usual, | | will be used to denote the cardinality of sets as well as to denote
the size or number of symbols occurring in a given term.

Definition 1 (Permutation action). The action of a permutation on atoms
is defined as: nil ·a := a; (b c) :: π ·a := π ·a; and, (b c) :: π ·b := π ·c. The action
of a permutation on terms is defined recursively as:

π · 〈〉 := 〈〉 π · 〈u, v〉 := 〈π · u, π · v〉 π · fE
k t := fE

k (π · t)
π · a := π · a π · ([a]t) := [π · a](π · t) π · (π′ .X) := (π′ ⊕ π) .X

Notice that according to the definition of the action of a permutation over
atoms, the composition of permutations π and π′, usually denoted as π ◦ π′,
corresponds to the append π′ ⊕ π. Also notice that π′ ⊕ π · t = π · (π′ · t). The
difference set between two permutations π and π′ is the set of atoms where the
action of π and π′ differs: ds(π, π′) := {a ∈ A | π · a 
= π′ · a}.

A substitution σ is a mapping from variables to terms such that its domain,
dom(σ) := {X | X 
= Xσ}, is finite. For X ∈ dom(σ), Xσ is called the
image of X. Define the image of σ as im(σ) := {Xσ | X ∈ dom(σ)}. Let
dom(σ) = {X1, · · · ,Xn}, then σ can be represented as a set of bindings in the
form {X1/t1, · · · ,Xn/tn}, where Xiσ = ti, for 1 ≤ i ≤ n.

Definition 2 (Substitution action). The action of a substitution σ on a term
t, denoted tσ, is defined recursively as follows:

〈〉σ := 〈〉 aσ := a (fE
k t)σ := fE

k tσ
〈s, t〉σ := 〈sσ, tσ〉 ([a]t)σ := [a]tσ (π.X)σ := π · Xσ

The following result can be proved by induction on the structure of terms.

Lemma 1 (Substitutions and Permutations Commute). (π ·t)σ = π ·(tσ)

The inference rules defining freshness and α-equivalence are given in Figs. 1
and 2. The symbols ∇ and Δ are used to denote freshness contexts that are sets of
constraints of the form a#X, meaning that the atom a is fresh in X. The domain
of a freshness context dom(∇) is the set of atoms appearing in it; ∇|X denotes
the restriction of ∇ to the freshness constraints on X: {a#X | a#X ∈ ∇}. The
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(#〈〉)∇ � a# 〈〉 (#atom)∇ � a# b

∇ � a# t
(#app)∇ � a# fE

k t
(#a[a])∇ � a#[a]t

∇ � a# t
(#a[b])∇ � a#[b]t

(π−1 · a#X) ∈ ∇
(#var)∇ � a#π.X

∇ � a# s ∇ � a# t
(#pair)∇ � a# 〈s, t〉

Fig. 1. Rules for the freshness relation

(≈α 〈〉)∇ � 〈〉 ≈α 〈〉 (≈α atom)∇ � a ≈α a

∇ � s ≈α t
(≈α app)∇ � fE

k s ≈α fE
k t

∇ � s ≈α t
(≈α [aa])∇ � [a]s ≈α [a]t

∇ � s ≈α (a b) · t ∇ � a# t
(≈α [ab])∇ � [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∇
(≈α var)∇ � π.X ≈α π′.X

∇ � s0 ≈α t0 ∇ � s1 ≈α t1
(≈α pair)∇ � 〈s0, s1〉 ≈α 〈t0, t1〉

Fig. 2. Rules for the relation ≈α

rules in Fig. 1 are used to check if an atom a is fresh in a nominal term t under
a freshness context ∇, also denoted as ∇ � a#t. The rules in Fig. 2 are used to
check if two nominal terms s and t are α-equivalent under some freshness context
∇, written as ∇ � s ≈α t. These rules use the inference system for freshness
constraints: specifically freshness constraints are used in rule (≈α [ab]).

Example 1. Let σ = {X/[a]a}. Verify that 〈(a b).X, f(e)〉σ ≈α 〈X, f(e)〉σ.

By dom(π)#X and ds(π, π′)#X we abbreviate the sets {a#X | a ∈ dom(π)}
and {a#X | a ∈ ds(π, π′)}, respectively.

Key properties of the nominal freshness and α-equivalence relations have
been extensively explored in previous works [3,6,29,30].

2.1 The Relation ≈{α,C} as an Extension of ≈α

In [3], the relation ≈α was extended to deal with associative and commutative
theories. Here we will consider α-equivalence modulo commutativity, denoted as
≈{α,C}. This means that some function symbols in our syntax are commutative,
and therefore the rule for function application (≈α app) in Fig. 2 should be
replaced by the rules in Fig. 3.

The following properties for ≈{α,C} were formalised as simple adaptations of
the formalisations given in [3] for ≈α.

Lemma 2 (Inversion). The inference rules of ≈{α,C} are invertible.

This means, for instance, that for rules (≈α [ab]) one has ∇ � [a]s ≈{α,C}
[b]t implies ∇ � s ≈{α,C} (a b) · t and ∇ � a# t; and for (≈{α,C} app),



240 M. Ayala-Rincón et al.

∇ � s ≈{α,C} t
, E 	= C or both s and t are not pairs (≈{α,C} app)∇ � fE

k s ≈{α,C} fE
k t

∇ � s0 ≈{α,C} ti, ∇ � s1 ≈{α,C} t(i+1) mod 2
, i = 0, 1 (≈{α,C} C)∇ � fC

k 〈s0, s1〉 ≈{α,C} fC
k 〈t0, t1〉

Fig. 3. Additional rules for {α, C}-equivalence

∇ � fC
k 〈s0, s1〉 ≈{α,C} fC

k 〈t0, t1〉 implies ∇ � s0 ≈{α,C} t0 and ∇ � s1 ≈{α,C}
t1, or ∇ � s0 ≈{α,C} t1 and ∇ � s1 ≈{α,C} t0.

Lemma 3 (Freshness preservation). If ∇ � a# s and ∇ � s ≈{α,C} t then
∇ � a# t.

Lemma 4 (Intermediate transitivity for ≈{α,C} with ≈α). If ∇ � s ≈{α,C}
t and ∇ � t ≈α u then ∇ � s ≈{α,C} u.

Lemma 5 (Equivariance). ∇ � π · s ≈{α,C} π · t whenever ∇ � s ≈{α,C} t.

Lemma 6 (Equivalence). � ≈{α,C} is an equivalence relation.

Remark 1. According to the grammar for nominal terms, function symbols have
no fixed arity: any function symbol can apply to any term. Despite this, in the
syntax of our Coq formalisation commutative symbols apply only to tuples.

3 A Nominal C-Unification Algorithm

Inference rules are given that transform a nominal C-unification problem into
a finite family of problems that consist exclusively of FP equations of the form
π.X ≈? X, together with a substitution and a set of freshness constraints.

Definition 3 (Unification problem). A unification problem is a pair 〈∇, P 〉,
where ∇ is a freshness context and P is a finite set of equations and freshness
constraints of the form s ≈? t and a#?s, respectively, where ≈? is symmetric, s
and t are terms and a is an atom. Nominal terms in the equations preserve the
syntactic restriction that commutative symbols are only applied to tuples.

Given 〈∇, P 〉, by P≈, P#, Pfp≈ and Pnfp≈ we will resp. denote the sets of
equations, freshness constraints, FP and non FP equations in the set P .

Example 2. Given the nominal unification problem P =〈∅, {[a][b]X ≈? [b][a]X}〉,
the standard unification algorithm [30] reduces it to 〈∅, {X ≈? (a b).X}〉, which
gives the solution 〈{a#X, b#X}, id〉. However, we will see that infinite indepen-
dent solutions are feasible when there is at least a commutative operator.
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We design a nominal C-unification algorithm using one set of transforma-
tion rules to deal with equations (Fig. 4) and another set of rules to deal with
freshness constraints and contexts (Fig. 5). These rules act over triples of the
form 〈∇, σ, P 〉, where σ is a substitution. The triple that will be associated by
default with a unification problem 〈∇, P 〉 is 〈∇, id , P 〉. We will use calligraphic
uppercase letters (e.g., P,Q,R, etc) to denote triples.

Remark 2. Let ∇ and ∇′ be freshness contexts and σ and σ′ be substitutions.

– ∇′ � ∇σ denotes that ∇′ � a#Xσ holds for each (a#X) ∈ ∇, and
– ∇ � σ ≈ σ′ that ∇ � Xσ ≈{α,C} Xσ′ for all X (in dom(σ) ∪ dom(σ′)).

Definition 4 (Solution for a triple or problem). A solution for a triple
P = 〈Δ, δ, P 〉 is a pair 〈∇, σ〉, where the following conditions are satisfied:

1 . ∇ � Δσ; 3 . ∇ � sσ ≈{α,C} tσ, if s ≈? t ∈ P ;
2 . ∇ � a# tσ, if a#?t ∈ P ; 4 . there is a substitution λ such that ∇�δλ≈σ.

A solution for a unification problem 〈Δ, P 〉 is a solution for the associated
triple 〈Δ, id , P 〉. The solution set for a problem or triple P is denoted by UC(P).

Definition 5 (More general solution and complete set of solutions). For
〈∇, σ〉 and 〈∇′, σ′〉 in UC(P), we say that 〈∇, σ〉 is more general than 〈∇′, σ′〉,
denoted 〈∇, σ〉 � 〈∇′, σ′〉, if there exists a substitution λ satisfying ∇′ � σλ ≈ σ′

and ∇′ � ∇λ. A subset V of UC(P) is said to be a complete set of solutions of P
if for all 〈∇′, σ′〉 ∈ UC(P), there exists 〈∇, σ〉 in V such that 〈∇, σ〉 � 〈∇′, σ′〉.

We will denote the set of variables occurring in the set P of a problem 〈Δ, P 〉
or triple P = 〈∇, σ, P 〉 as V ar(P ). We also will write V ar(P) to denote this set.

The unification algorithm proceeds by simplification. Derivation with rules
of Figs. 4 and 5 is respectively denoted by ⇒≈ and ⇒#. Thus, 〈∇, σ, P 〉 ⇒≈
〈∇, σ′, P ′〉 means that the second triple is obtained from the first one by appli-
cation of one rule. We will use the standard rewriting nomenclature, e.g., we will
say that P is a normal form or irreducible by ⇒≈, denoted by ⇒≈-nf, whenever
there is no Q such that P ⇒≈ Q; ⇒∗

≈ and ⇒+
≈ denote respectively derivations

in zero or more and one or more applications of the rules in Fig. 4.
The only rule that can generate branches is (≈? C), which is an abbreviation

for two rules providing the different forms in which one can relate the arguments
s and t in an equation fC

k s ≈? fC
k t for a commutative function symbol (s, t are

tuples, by the syntactic restriction in Definition 3): either 〈s0, s1〉 ≈? 〈t0, t1〉 or
〈s0, s1〉 ≈? 〈t1, t0〉.

The syntactic restriction on arguments of commutative symbols being only
tuples, is not crucial since any equation of the form fC

k π.X ≈? t can be trans-
lated into an equation of form fC

k 〈π.X1, π.X2〉 ≈? t, where X1 and X2 are new
variables and ∇ is extended to ∇′ in such a way that both X1 and X2 inherit
all freshness constraints of X in ∇: ∇′ = ∇ ∪ {a#Xi | i = 1, 2, and a#X ∈ ∇}.
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〈∇, σ, P 
 {s ≈? s}〉
(≈? refl)〈∇, σ, P 〉

〈∇, σ, P 
 {〈s1, t1〉 ≈? 〈s2, t2〉}〉
(≈? pair)〈∇, σ, P ∪ {s1 ≈? s2, t1 ≈? t2}〉

〈∇, σ, P 
 {fE
k s ≈? fE

k t}〉
, if E 	= C (≈? app)〈∇, σ, P ∪ {s ≈? t}〉

〈∇, σ, P 
 {fC
k s ≈? fC

k t}〉
,

{
where s = 〈s0, s1〉 and t = 〈t0, t1〉
v = 〈ti, t(i+1) mod 2〉, i = 0, 1

}
(≈? C)〈∇, σ, P ∪ {s ≈? v}〉

〈∇, σ, P 
 {[a]s ≈? [a]t}〉
(≈? [aa])〈∇, σ, P ∪ {s ≈? t}〉

〈∇, σ, P 
 {[a]s ≈? [b]t}〉
(≈? [ab])〈∇, σ, P ∪ {s ≈? (a b) t, a#?t}〉

〈∇, σ, P 
 {π.X ≈? t}〉 let σ′ := σ{X/π−1 · t}
, if X /∈ V ar(t) (≈? inst)〈

∇, σ′, P{X/π−1 · t} ∪
⋃

Y ∈dom(σ′),
a#Y ∈∇

{a#?Y σ′}
〉

〈∇, σ, P 
 {π.X ≈? π′.X}〉
, if π′ 	= nil (≈? inv)〈∇, σ, P ∪ {π ⊕ (π′)−1.X ≈? X}〉

Fig. 4. Reduction rules for equational problems

In the rule (≈? inst) the inclusion of new constraints in the problem, given

in
⋃

Y ∈dom(σ′),
a#Y ∈∇

{a#?Y σ
′}

is necessary to guarantee that the new substitution σ′ is

compatible with the freshness context ∇.
Examples 3, 4 and 5 are running examples of the C-unification procedure. A

graphic representation of the derivation tree for these examples, generated using
the OCaml implementation, is depicted in the extended version of this paper.

Example 3. Let ∗1 be a commutative function symbol. Below, we show how
the problem P = 〈∅, {[e](a b).X ∗ Y ≈? [f ](a c)(c d).X ∗ Y }〉 reduces (via rules

〈∇, σ, P 
 {a#?〈〉}〉
(#?〈〉)〈∇, σ, P 〉

〈∇, σ, P 
 {a#?b̄}〉
(#?ab̄)〈∇, σ, P 〉

〈∇, σ, P 
 {a#?f t}〉
(#?app)〈∇, σ, P ∪ {a#?t}〉

〈∇, σ, P 
 {a#?[a]t}〉
(#?a[a])〈∇, σ, P 〉

〈∇, σ, P 
 {a#?[b]t}〉
(#?a[b])〈∇, σ, P ∪ {a#?t}〉

〈∇, σ, P 
 {a#?π.X}〉
(#?var)〈{(π−1 · a)#X} ∪ ∇, σ, P 〉

〈∇, σ, P 
 {a#?〈s, t〉}〉
(#?pair)〈∇, σ, P ∪ {a#?s, a#?t}〉

Fig. 5. Reduction rules for freshness problems

1 Infix notation is adopted for commutative symbols: s ∗ t abbreviates ∗〈s, t〉.
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in Figs. 4 and 5). Application of rule (≈? C) gives two branches that reduce
into two FP problems: Q1 and Q2. Highlighted terms show where the rules
are applied. For brevity, let π1 = (a c)(c d)(e f), π2 = (a b)(e f)(c d)(a c), π3 =
(a c)(c d)(e f)(a b) and σ = {X/(e f)(a b).Y }.

〈∅, id , { [e](a b).X ∗ Y ≈? [f ](a c)(c d).X ∗ Y }〉 ⇒(≈?[ab])

〈∅, id , { (a b).X ∗ Y ≈? π1.X ∗ (e f).Y , e#?(a c)(c d).X ∗ Y }〉 ⇒(≈?C)

branch 1: 〈∅, id , { (a b).X ≈? π1.X , Y ≈? (e f).Y , e#?(a c)(c d).X ∗ Y }〉
⇒(≈?inv)(2×) 〈∅, id , {(a b)[π1]

−1.X ≈? X, [(e f)]−1.Y ≈? Y, e#?(a c)(c d).X ∗ Y }〉
⇒ (#?app),

(#?pair)

〈∅, id , {π2.X ≈? X, (e f).Y ≈? Y, e#?(a c)(c d).X , e#?Y }〉

⇒(#?var)(2×) 〈{e#X, e#Y }, id , {π2.X ≈? X, (e f).Y ≈? Y }〉 = Q1

branch 2: 〈∅, id , { (a b).X ≈? (e f).Y , Y ≈? π1.X, e#?(a c)(c d).X ∗ Y }〉
⇒(≈?inst) 〈∅, σ, { Y ≈? (a c)(c d)(e f)(e f)[(a b)]−1.Y , e#?π1[(a b)]−1.Y ∗ Y }〉
⇒(≈?inv) 〈∅, σ, {[(a c)(c d)(a b)]−1.Y ≈? Y, e#?π3.Y ∗ Y }〉
⇒ (#?app),

(#?pair)

〈∅, σ, {(a b)(c d)(a c).Y ≈? Y, e#?π3.Y , e#?Y }〉

⇒(#?var)(2×) 〈{e#Y, f#Y }, σ, {(a b)(c d)(a c).Y ≈? Y }〉 = Q2

Definition 6 (Set of ⇒≈ and ⇒#-normal forms). We denote by P⇒≈ (resp.
P⇒#) the set of normal forms of P with respect to ⇒≈ (resp. ⇒#).

Definition 7 (Fail and success for ⇒≈). Let P be a triple, such that the
rules in Fig. 4 give rise to a normal form 〈∇, σ, P 〉. The rules in Fig. 4 are said
to fail if P contains non FP equations. Otherwise 〈∇, σ, P 〉 is called a successful
triple regarding ⇒≈ (i.e., in a successful triple, P consists only of FP equations
and, possibly, freshness constraints).

The rules in Fig. 5 will only be applied to successful triples regarding ⇒≈.

Definition 8 (Fail and success for ⇒#). Let Q = 〈∇, σ,Q〉 be a successful
triple regarding ⇒≈, and Q′ = 〈∇′, σ,Q′〉 its normal form via rules in Fig. 5,
that is Q ⇒∗

# Q′ and Q′ is in Q⇒# . If Q′ contains freshness constraints it is
said that ⇒# fails for Q; otherwise, Q′ will be called a successful triple for ⇒#.

Remark 3. Since in a successful triple regarding ⇒≈, Q, one has only FP equa-
tions and ⇒# acts only over freshness constraints, Q′ in the definition above
contains only FP equations and freshness constraints. Also, by a simple case
analysis on t one can check that any triple with freshness constraints a#?t is
reducible by ⇒#, except when t ≡ ā. Hence the freshness constraints in Q′ would
be only of the form a#?ā.

The relation ⇒≈, starts from a triple with the identity substitution and
always maintains a triple 〈∇, σ′, P ′〉 in which the substitution σ′ does not affect
the current problem P ′. The same happens for ⇒# since the substitution does
not change with this relation. This motivates the next definition and lemma.
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Definition 9 (Valid triple). P = 〈∇, σ, P 〉 is valid if im(σ)∩dom(σ) = ∅ and
dom(σ) ∩ V ar(P ) = ∅.

Remark 4. A substitution σ in a valid triple P is idempotent, that is, σσ = σ.

Lemma 7 is proved by case analysis on the rules used by ⇒≈ and ⇒#.

Lemma 7 (Preservation of valid triples). If P = 〈∇, σ, P 〉 is valid and
P ⇒≈ ∪ ⇒# P ′ = 〈∇′, σ′, P ′〉, then P ′ is also valid.

From now on, we consider only valid triples.

Lemma 8 (Termination of ⇒≈ and ⇒#). There is no infinite chain of reduc-
tions ⇒≈ (or ⇒#) starting from an arbitrary triple P = 〈∇, σ, P 〉.

Proof. – The proof for ⇒≈ is by well-founded induction on P using the measure
‖P‖ = 〈|V ar(P≈)|, ‖P‖, |Pnfp≈ |〉 with a lexicographic ordering, where ‖P‖ =∑

s≈?t ∈ P≈ |s| + |t| +
∑

a#?u∈P#
|u|. Note that this measure decreases after

each step 〈∇, σ, P 〉 ⇒≈ 〈∇, σ′, P ′〉: for (≈? inst), |V ar(P≈)| > |V ar(P ′
≈)|; for

(≈? refl), (≈? pair), (≈? app), (≈? [aa]), (≈? [ab]) and (≈? C), |V ar(P≈)| ≥
|V ar(P ′

≈)|, but ‖P‖ > ‖P ′‖; and, for (≈? inv), both |V ar(P≈)| = |V ar(P ′ ≈
)| and ‖P‖ = ‖P ′‖, but |Pnfp≈ | > |P ′

nfp≈
|.

– The proof for ⇒# is by induction on P using as measure ‖P#‖. It can be
checked that this measure decreases after each step: 〈∇, σ, P 〉 ⇒# 〈∇, σ′, P ′〉.

To solve a unification problem, 〈∇, P 〉, one builds the derivation tree for
⇒≈, labelling the root node with 〈∇, id , P 〉. This tree has leaves labelled with
⇒≈-nf’s that are either failing or successful triples. Then, the tree is extended
by building ⇒#-derivations starting from all successful leaves. The extended
tree will include failing leaves and successful leaves. The successful leaves will
be labelled by triples P ′ in which the problem P ′ consists only of FP equations.
Since ⇒≈ and ⇒# are both terminating (Lemma 8), the process described above
must be also terminating.

Definition 10 (Derivation tree for 〈Δ, P 〉). A derivation tree for the unifi-
cation problem 〈Δ, P 〉, denoted as T〈Δ,P 〉, is a tree with root label P = 〈Δ, id , P 〉
built in two stages:

– Initially, a tree is built, whose branches end in leaf nodes labelled with the
triples in P⇒≈ . The labels in each path from the root to a leaf correspond to
a ⇒≈-derivation.

– Further, for each leaf labelled with a successful triple Q in P⇒≈ , the tree is
extended with a path to a new leaf that is labelled with a Q̄ ∈ Q⇒# . The labels
in the extended path from the node with label Q to the new leaf correspond to
a ⇒#-derivation.

Remark 5. For 〈Δ, P 〉, all labels in the nodes of T〈Δ,P 〉 are valid by Lemma 7.
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The next lemma is proved by case analysis on elements of P⇒≈ and P⇒# .

Lemma 9 (Characterisation of leaves of T〈Δ,P 〉). Let 〈Δ, P 〉 be a unifica-
tion problem. If P ′ = 〈∇, σ′, P ′〉 is the label of a leaf in T〈Δ,P 〉, then P ′ can be
partitioned as follows: P ′ = P ′′ ∪ P⊥, where P ′′ is the set of all FP equations in
P ′ and P⊥ = P ′ − P ′′. If P⊥ 
= ∅ then UC(P ′) = ∅.

The next definition is motivated by the previous characterisation of the labels
of leaves in derivation trees.

Definition 11 (Successful leaves). Let 〈Δ, P 〉 be a unification problem. A
leaf in T〈Δ,P 〉 that is labelled with a triple of the form Q = 〈∇, σ,Q〉, where Q
consists only of FP equations, is called a successful leaf of T〈Δ,P 〉. In this case
Q is called a successful triple of T〈Δ,P 〉. The sets of successful leaves and triples
of T〈Δ,P 〉 are denoted respectively by SL(T〈Δ,P 〉) and ST (T〈Δ,P 〉).

The soundness theorem states that successful leaves of T〈Δ,P 〉 produce correct
solutions. The proof is by induction on the number of steps of ⇒≈ and ⇒# and
uses Lemma 9 and auxiliary results on the preservation of solutions by ⇒≈ and
⇒#. Proving preservation of solutions for rules (≈? [ab]) and (≈? inst) is not
straightforward and uses Lemmas 1, 2, 3 and 5 to check that the four conditions
of Definition 4 are valid before, if one supposes their validity after the rule
application.

Theorem 1 (Soundness of T〈Δ,P 〉). T〈Δ,P 〉 is correct, i.e., if P ′ = 〈∇, σ, P ′〉
is the label of a leaf in T〈Δ,P 〉, then 1. UC(P ′) ⊆ UC(〈Δ, id , P 〉), and 2. if P ′

contains non FP equations or freshness constraints then UC(P ′) = ∅.

The completeness theorem guarantees that the set of successful triples provides a
complete set of solutions. Its proof uses case analysis on the rules of the relations
⇒≈ and ⇒# by an argumentation similar to the one used for Theorem 1. For
⇒# one has indeed equivalence: P ⇒# P ′, implies UC(P) = UC(P ′). The same
is true for all rules of the relation ⇒≈ except the branching rule (≈? C), for
which it is necessary to prove that all solutions of a triple reduced by (≈? C)
must belong to the set of solutions of one of its children triples.

Theorem 2 (Completeness of T〈Δ,P 〉). Let 〈Δ, P 〉 and T〈Δ,P 〉 be a unification
problem and its derivation tree. Then UC(〈Δ, id , P 〉) =

⋃
Q∈ST (T〈Δ,P 〉) UC(Q).

Corollary 1 (Generality of successful triples). Let P = 〈Δ, P 〉 be a uni-
fication problem and 〈∇′′, σ′〉 ∈ UC(P). Then there exists a successful triple
Q ∈ ST (T〈Δ,P 〉) where Q = 〈∇, σ,Q〉 such that 〈∇′′, σ′〉 ∈ UC(Q), and hence,
∇′′ � ∇σ′ and there exists λ such that ∇′′ � σλ ≈ σ′.

Proof. By Theorem 2, UC(P) =
⋃

P′∈ST (T〈Δ,P 〉) UC(P ′). Then there exists Q ∈
ST (T〈Δ,P 〉) such that 〈∇′′, σ′〉 ∈ UC(Q). Suppose Q = 〈∇, σ,Q〉. Then by the
first and fourth conditions of the definition of solution (Definition 4) we have
that ∇′′ � ∇σ′ and there exists λ such that ∇′′ � σλ ≈ σ′.
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Remark 6. The nominal C-unification problem is to decide, for a given P, if
UC(P) is non empty; that is, whether P has nominal C-unifiers. To prove that
this problem is in NP, a non-deterministic procedure using the reduction rules in
the same order as in Definition 10 is designed. In this procedure, whenever rule
(≈? C) applies, only one of the two possible branches is guessed. In this manner,
if the derivation tree has a successful leaf, this procedure will guess a path to
the successful leaf, answering positively to the decision problem. According to
the measures used in the proof of termination (Lemma 8), reduction with both
the relations ⇒≈ and ⇒# is polynomially bound, which implies that this non-
deterministic procedure is polynomially bound.

To prove NP-completeness, one can polynomially reduce the well-known NP-
complete positive 1-in-3-SAT problem into nominal C-unification, as done in [7]
for the C-unification problem. An instance of the positive 1-in-3-SAT problem
consists of a set of clauses C = {Ci|1 ≤ i ≤ n}, where each Ci is a disjunction of
three propositional variables, say Ci = pi ∨ qi ∨ ri. A solution of C is a valuation
with exactly one variable true in each clause. The proposed reduction of C into
a nominal C-unification problem would require just a commutative function
symbol, say ⊕, two atoms, say a and b, a variable for each clause Ci, say Yi,
and a variable for each propositional variable p in C, say Xp. Instantiating Xp

as a or b, would be interpreted as evaluating p as true or false, respectively.
Each clause Ci = pi ∨ qi ∨ ri in C is translated into an equation Ei of the form
((Xpi

⊕Xqi
)⊕Xri

)⊕Yi ≈? ((b⊕b)⊕a)⊕((b⊕a)⊕b). The nominal C-unification
problem for C is given by PC = 〈∅, {Ei|1 ≤ i ≤ n}〉. Simplifying PC would not
introduce freshness constraints since the problem does not include abstractions.
Thus, to conclude it is only necessary to check that 〈∅, σ〉 is a solution for PC if
and only if σ instantiates exactly one of the variables Xpi

,Xqi
and Xri

in each
equation with a and the other two with b, which means that C has a solution.

4 Generation of Solutions for Successful Leaves of T〈Δ,P 〉

To build solutions for a successful leaf P = 〈∇, σ, P 〉 in the derivation tree of a
given unification problem, we will select and combine solutions generated for FP
equations π.X ≈? X, for each X ∈ V ar(P ). We introduce the notion of pseudo-
cycle of a permutation, in order to provide precise conditions to build terms t by
combining the atoms in dom(π), such that π ·t ≈{α,C} t. For convenience, we use
the algebraic cycle representation of permutations. Thus, instead of sequences of
swappings, permutations in nominal terms will be read as products of disjoint
cycles [27].

Example 4. (Continuing Example 3) The permutations (a b) :: (e f) :: (c d) ::
(a c) :: nil and (a b) :: (c d) :: (a c) ::nil are respectively represented as the prod-
uct of permutation cycles (a b c d)(e f) and (a b c d)(e)(f).

Permutation cycles of length one are omitted. In general the cyclic represen-
tation of a permutation consists of the product of all its cycles.



Nominal C-Unification 247

Let π be a permutation with dom(π) = n. Given a ∈ dom(π) the elements of
the sequence a, π(a), π2(a), . . . cannot be all distinct. Taking the first k ≤ n, such
that πk(a) = a, we have the k-cycle (a π(a) . . . πk−1(a)), where πj+1(a) is the
successor of πj(a). For the 4-cycle in the permutation (a b c d) (e f), the 4-cycles
generated by a, b, c and d are the same: (a b c d) = (b c d a) = (c d a b) = (d a b c).

Definition 12 establishes the notion of a pseudo-cycle w.r.t. a k-cycle κ. Intu-
itively, given a k-cycle κ and a commutative function symbol ∗, a pseudo-cycle
w.r.t κ, (A0 . . . Al), is a cycle whose elements are either atom terms built from
the atoms in κ or terms of the form A′

i ∗A′
j , for A′

i, A
′
j elements of a pseudo-cycle

w.r.t κ.

Definition 12 (Pseudo-cycle). Let κ = (a0 a1 . . . ak−1) be a k-cycle of a
permutation π. A pseudo-cycle w.r.t. κ is inductively defined as follows:

1. κ = (a0 · · · ak−1) is a pseudo-cycle w.r.t. κ, called trivial pseudo-cycle of κ.
2. κ′ = (A0 ... Ak′−1) is a pseudo-cycle w.r.t. κ, if the following conditions are

simultaneously satisfied:
(a) each element of κ′ is of the form Bi ∗ Bj, where ∗ is a commutative

function symbol in the signature, and Bi, Bj are different elements of κ′′,
a pseudo-cycle w.r.t. κ. κ′ will be called a first-instance pseudo-cycle of
κ′′ w.r.t. κ.

(b) Ai 
≈α,C Aj for i 
= j, 0 ≤ i, j ≤ k′ − 1;
(c) for each 0 ≤ i < k′ − 1, κ · Ai ≈{α,C} A(i+1)mod k′ .

The length of the pseudo-cycle κ, denoted by |κ|, consists of the number of
elements in κ. A pseudo-cycle of length one will be called unitary.

Example 5. A (Continuing Example 2) The unitary pseudo-cycles of κ = (a b)
are of the form (a ∗ b) for ∗ any commutative symbol in the signature. These
pseudo-cycles are the basis for a more elaborated construction used to build
infinite independent solutions for the leaf 〈∅, id , {X ≈? (a b).X}〉. Examples of
these solutions are: 〈∅, {X/a∗b}〉, 〈∅, {X/(a∗a)∗(b∗b)}〉, 〈∅, {X/(a∗b)∗(a∗b)}〉,
〈∅, {X/((a ∗ a) ∗ a) ∗ ((b ∗ b) ∗ b)}〉, 〈∅, {X/(a ∗ (a ∗ a)) ∗ (b ∗ (b ∗ b))}〉, etc.

B (Continuing Examples 3 and 4) In Q1 and Q2 we have the occurrences of
the 4-cycle κ = (a b c d). Suppose ∗,⊕,+ are commutative operators in the
signature. The following are pseudo-cycles w.r.t. κ: κ = (a b c d); κ1 =
((a∗b) (b∗c) (c∗d) (d∗a)); κ2 = ((a⊕c) (b⊕d)); κ11 = (((a∗b)+(b∗c)) ((b∗
c)+(c∗d))((c∗d)+(d∗a)) ((d∗a)+(a∗b))); κ12 = (((a∗b)∗(c∗d)) ((b∗c)∗(d∗a)));
κ21 = (((a ⊕ c) ∗ (b ⊕ d))); κ121 = (((a ∗ b) ∗ (c ∗ d)) ∗ ((b ∗ c) ∗ (d ∗ a))). κ1 and
κ2 are first-instance pseudo-cycles of κ, and κ11 and κ12 of κ1 and κ21 of κ2.
Notice that, |κ| = |κ1| = |κ11| = 4, |κ12| = 2, and |κ21| = |κ121| = 1. Also, κ1

corresponds to ((a ∗ d) (b ∗ a) (c ∗ b) (d ∗ c)), a first-instance pseudo-cycle of κ.
Finally, observe that for the elements of the unitary pseudo-cycles κ21 and
κ121, say s = (a ⊕ c) ∗ (b ⊕ d) and t = ((a ∗ b) ∗ (c ∗ d)) ∗ ((b ∗ c) ∗ (d ∗ a)),
{X/s} and {X/t} (resp. {Y/s} and {Y/t}) are solutions of the FP equation
(a b c d)(e f).X ≈? X (resp. (a b c d).Y ≈? Y ).
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Let κ be a pseudo-cycle. Notice that only item 2 of Definition 12 may build
a first-instance pseudo-cycle κ′ w.r.t. κ with fewer elements. If |κ′| < |κ| then,
due to algebraic properties of cycles and commutativity of the operator applied
(∗), one must have that |κ′| = |κ|/2. Thus, unitary pseudo-cycles can only be
generated from cycles of length a power of two. This is the intuition behind the
next theorem, proved by induction on the size of the cycle κ.

Theorem 3. A pseudo-cycle κ generates unitary pseudo-cycles iff |κ| is a power
of two.

Notice that, according to item 2.c of Definition 12, if κ′ = (A0 . . . Ak′−1) is
a pseudo-cycle w.r.t. π then π · Ak′−1 ≈{α,C} A0; particularly, if k′ = 1 then
π · A0 ≈{α,C} A0. Below, given P = 〈∅, {π.X ≈? X}〉 a FP equational problem,
we call a combinatory solution of P, a substitution {X/t}, such that π · t ≈C t,
and t contains only atoms from π and commutative function symbols, built as
unary pseudo-cycles w.r.t. κ a cycle in π.

The next theorem is proved by contradiction, supposing that κ has an odd
factor and using Theorem 3.

Theorem 4. Let P = 〈∅, {π.X ≈? X}〉 be a FP problem. P has a combinatory
solution iff there exists a unitary pseudo-cycle κ w.r.t. π.

Remark 7. Since one can generate infinitely many unitary pseudo-cycles from a
given 2n-cycle κ in π, n ∈ N, there exist infinite independent solutions for the
FP problem 〈∅, {π.X ≈? X}〉.

General solutions for FP problems. To compute the set of solutions for a FP
equation, we use a method described in [4], which is based on the computation
of unitary extended pseudo-cycles (epc). We refer to [4] for the definition of
extended pseudo-cycles and an algorithm to enumerate all the solutions of a
successful leaf in the derivation tree.

Pseudo-cycles are built just from atom terms in dom(π) and commutative
function symbols, while epc’s consider all nominal syntactic elements including
new variables, and also non commutative function symbols. The soundness and
completeness of the generator of solutions described in [4] relies on the properties
of pseudo-cycles described above, in particular the fact that only unitary pseudo-
cycles generate solutions.

5 Formal Proofs

In the Coq formalisation, nominal terms are specified inductively, which permits
to use induction to formalise properties of terms (to check nominal α-equality
modulo C we use the rules given in [3]; see Fig. 3). The relations ⇒# and ⇒≈
are inductivelty specified, as propositions from problems to problems, resp. as
fresh sys and equ sys, and normal forms and their reflexive-transitive closures
are specified using abstract relations as shown below.
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Definition NF (T :Type) (R:T→T→Prop) (s:T ) := ∀ t, ¬ R s t.

Inductive tr clos (T :Type) (R:T→T→Prop) : T→T→Prop :=
| tr rf : ∀ s, tr clos T R s s
| tr os : ∀ s t, R s t → tr clos T R s t
| tr ms : ∀ s t u, R s t → tr clos T R t u → tr clos T R s u

A unification step, unif step, is a reduction step either with the relation
equ sys or with the relation fresh sys, the latter restricted to FP problems; and
a leaf is a normal form for this relation.

Inductive unif step : Triple → Triple → Prop :=
| equ unif step : ∀ T T’, equ sys T T’ → unif step T T’
| fresh unif step : ∀ T T’, fixpoint Problem (equ proj (snd T )) →

fresh sys T T’ → unif step T T’ .

Definition leaf (T : Triple) := NF unif step T .

Unification paths are derivations with the relation unif step to a leaf:

Definition unif path (T T’ : Triple) := tr clos unif step T T’ ∧ leaf T’.

Soundness is specified as the Theorem below, which reads: for any unification
problem T that reduces into a problem T’ with the relation unif path, and such
that Sl is a solution of T’, Sl is also a solution of T.

Theorem c unif path soundness : ∀ T T’ Sl,

valid triple T → unif path T T’ → sol c Sl T’ → sol c Sl T.

The formalisation of soundness is given in a theory that consists of 902 lines
or 35 KB. This theory also includes lemmas that characterise successful leaves
and their solutions. The theorem uses three auxiliary lemmas, also proved by
induction. A lemma expresses preservation of the set of solutions of unification
problems under reduction by the relation ⇒#:

Lemma fresh sys compl : ∀ T T’ Sl, fresh sys T T’ → (sol c Sl T ↔ sol c Sl T’) .

Another lemma, the longer one, states that the solutions of a unification
problem obtained from a given problem through application of the relation ⇒≈
are solutions of the given problem:

Lemma equ sol preserv : ∀ T T’ Sl, valid triple T →
equ sys T T’ → sol c Sl T’ → sol c Sl T .

Finally, the last auxiliary lemma applied to prove soundness states that solu-
tions are preserved in each unification step:

Lemma unif step preserv : ∀ T T’ Sl,

valid triple T → unif step T T’ → sol c Sl T’ → sol c Sl T.

Since except (≈{α,C} C) unification rules are invertible, the formalisation of
the proof of completeness is shorter, consisting only of 351 lines or 13 KB. The
additional element to be considered is the nondeterminism of (≈{α,C} C), indeed
implemented as two rules. The key theorem states that Sl is a solution for T iff
there exists a unification path form T to some T’ with solution Sl.
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Theorem unif path compl : ∀ T Sl,

valid triple T → (sol c Sl T ↔ ∃ T’, unif path T T’ ∧ sol c Sl T’).

Excluding formalisation of nominal terms and E-equivalence, subject of [3],
the whole theory consists of theories Completeness, Soundness, Termination,
C-Unif, Substs, Problems and C-Equiv, which consist of 5474 lines or 204 KB.

6 Conclusions and Future Work

A Coq formalisation of a sound and complete nominal C-unification algorithm
was obtained by combining ⇒≈- and ⇒#-reduction. The algorithm builds finite
derivation trees, such that the leaves, which may contain FP equations, represent
a complete set of unifiers. We have shown that nominal C-unification is infinitary
and NP-complete. An OCaml implementation of the simplification phase has
been developed, which outputs derivation trees. Extensions to deal with different
equational theories will be considered in future work.
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Abstract. Uniquely closable skeletons of lambda terms are Motzkin-
trees that predetermine the unique closed lambda term that can be
obtained by labeling their leaves with de Bruijn indices. Likewise,
uniquely typable skeletons of closed lambda terms predetermine the
unique simply-typed lambda term that can be obtained by labeling their
leaves with de Bruijn indices.

We derive, through a sequence of logic program transformations, effi-
cient code for their combinatorial generation and study their statistical
properties.

As a result, we obtain context-free grammars describing closable and
uniquely closable skeletons of lambda terms, opening the door for their
in-depth study with tools from analytic combinatorics.

Our empirical study of the more difficult case of (uniquely) typable
terms reveals some interesting open problems about their density and
asymptotic behavior.

As a connection between the two classes of terms, we also show that
uniquely typable closed lambda term skeletons of size 3n + 1 are in a
bijection with binary trees of size n.

Keywords: Deriving efficient logic programs
Logic programming and computational mathematics
Combinatorics of lambda terms · Inferring simple types
Uniquely closable lambda term skeletons
Uniquely typable lambda term skeletons

1 Introduction

Lambda calculus [1] has been, together with Turing machines and combinators
a key foundational framework describing the essence of universal computations
on which computers and their smaller siblings help running our everyday digital
lives.

Lambda calculus has started being used as an actual programming language
construct in early functional languages like LISP and is prevalent in this role
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in modern functional languages like Haskell, ML and F#. In the last few years
it has also made it as an actual language construct in virtually all widely used
programming languages ranging from C++, C# and Java to Python, Javascript,
Ruby and Scala.

Computation in the lambda calculus operate on lambda terms, an amazingly
simple data structure, conveniently seen, in de Bruijn notation [2], as trees made
of unary and binary nodes with leaves labeled with integers indicating their way
up to their lambda binders, as described by the following Haskell data type
declaration:

data DeBruijnTerm =

DeBruijnIndex Integer |

Lambda DeBruijnTerm |

Application DeBruijnTerm DeBruijnTerm

When computations are triggered via binary application nodes, lambda binders
on their left side direct substitutions of terms on their right side to the leaf nodes
the binders cover.

When every de Bruijn index has a lambda binder a term is called closed.
Among closed lambda terms, simply typed lambda terms stand out as a model of
well-behaved computations that mimic the semantics of mathematical functions
operating on sets.

The study of combinatorial properties of lambda terms has theoretical ram-
ifications ranging from their connection to proofs in intuitionistic logic via the
Curry-Howard correspondence [3] and their role as a foundation of Turing-
complete as well as expressive but terminating computations in the case of
simply typed lambda terms [4]. At the same time, lambda terms are used in
the internal representations of compilers for functional programming languages
and proof assistants, for which the generation of large random lambda terms
helps with automated testing [5].

This paper focuses on binary-unary trees that are obtained from lambda
terms in de Bruijn form, represented as trees, by erasing the de Bruijn indices
labeling variables at their leaves. Such “skeletons” of the lambda terms turn out
to predetermine some non-trivial properties the lambda terms they host, e.g., if
such terms are closed or simply-typed. Of particular interest are the cases when
unique such terms exist.

Our declarative meta-language is Prolog, which turns out to provide every-
thing we need: easy combinatorial generation via backtracking over the set of
all answers, specified as a Definite Clause Grammar (DCG) that enforces size
constraints and allows placing more complex constraints at points in the code
where they ensure the earliest possible pruning of the search space.

Our meta-language also facilitates program transformations that allow us to
derive step-by-step faster programs as well as simpler expressions of the under-
lying combinatorial mechanisms, e.g., a context-free grammar in the case of
uniquely closable skeletons, that in turn makes them amenable to study with
powerful techniques from analytical combinatorics.
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The paper is organized as follows. Section 2 describes generators for closed
lambda terms and their Motzkin-tree skeletons. Section 3 introduces closable
skeletons and studies their statistical properties. Section 4 derives algorithms
(including a CF-grammar) for efficient generation of uniquely closable skeletons.
Section 5 discusses typable and untypable closed skeletons. Section 6 introduces
uniquely typable closed skeletons, studies the special case of uniquely closable
and uniquely typable skeletons and establishes their connection to members of
the Catalan family of combinatorial objects. Section 7 overviews related work
and Sect. 8 concludes the paper.

The paper is structured as a literate Prolog program to facilitate an easily
replicable, concise and declarative expression of our concepts and algorithms.

The code extracted from the paper, tested with SWI-Prolog [6] version 7.5.3,
is available at: http://www.cse.unt.edu/∼tarau/research/2017/uct.pro.

2 Closed Lambda Terms and their Motzkin-Tree
Skeletons

A Motzkin tree (also called binary-unary tree) is a rooted ordered tree built from
binary nodes, unary nodes and leaf nodes. Thus the set of Motzkin trees can be
seen as the free algebra generated by the constructors v/0, l/1 and a/2.

We define lambda terms in de Bruijn form [2] as the free algebra generated by
the constructors l/1, and a/2 and leaves labeled with natural numbers wrapped
with the constructor v/1.

A lambda term in de Bruijn form is closed if for each of its de Bruijn indices
it exists a lambda binder to which it points, on the path to the root of the tree
representing the term. They are counted by sequence A135501 in [7].

The predicate closedTerm/2 specifies an all-terms generator, which, given a
natural number N backtracks one member X at a time, over the set of terms of
size N.

closedTerm(N,X):-closedTerm(X,0,N,0).

closedTerm(v(I),V)-->{V>0,V1 is V-1,between(0,V1,I)}.

closedTerm(l(A),V)-->l,{succ(V,NewV)},closedTerm(A,NewV).

closedTerm(a(A,B),V)-->a,closedTerm(A,V),closedTerm(B,V).

The size definition is expressed by the work of the predicates l/1, consuming
1 size unit for each lambda binder and a/2 consuming 2 size units for each a/2
application constructor and 0 units for variables v/1. The initial term which is
just a unique variable has size 0.

Given that the number of leaves in a Motzkin tree is the number of binary
nodes +1, it follows that:

Proposition 1. The set of terms of size n for the size definition
{application=2, lambda=1, variable=0} is equal to the set of terms of size n+1
for the size definition {application=1, lambda=1, variable=1}.

http://www.cse.unt.edu/~tarau/research/2017/uct.pro
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Thus our size definition gives the sequence A135501 of counts, first introduced
in [8], shifted by one. For instance, the term l(a(v(0), v(0))) will have size 3 =
1 + 2 with our definition, which corresponds to size 4 = 1 + 1 + 1 + 1 using the
size definition of [8].

Our size definition is implemented as

l(SX,X):-succ(X,SX). % true if SX>0 and X is SX-1

a-->l,l.

with Prolog’s DCG notation controlling the consumption of size units from N
to 0.

The predicate toMotSkel/2 computes the Motzkin skeleton of a term.

toMotSkel(v(_),v).

toMotSkel(l(X),l(Y)):-toMotSkel(X,Y).

toMotSkel(a(X,Y),a(A,B)):-toMotSkel(X,A),toMotSkel(Y,B).

The predicate motSkel/2 generates Motzkin trees X of size N, using the same
size definition as the lambda terms for which they serve as skeletons.

motSkel(N,X):-motSkel(X,N,0).

motSkel(v)-->[].

motSkel(l(X))-->l,motSkel(X).

motSkel(a(X,Y))-->a,motSkel(X),motSkel(Y).

3 Closable and Unclosable Skeletons

We call a Motzkin tree closable if it is the skeleton of at least one closed lambda
term.

The predicate isClosable/1 tests if it exists a closed lambda term having X
as its skeleton. For each lambda binder it increments a count V (starting at 0),
and ensures that it is strictly positive for all leaf nodes.

isClosable(X):-isClosable(X,0).

isClosable(v,V):-V>0.

isClosable(l(A),V):-succ(V,NewV),isClosable(A,NewV).

isClosable(a(A,B),V):-isClosable(A,V),isClosable(B,V).

We define generators for closable and unclosable skeletons by filtering the
stream of answers of the Motzkin tree generator motSkel/2 with the predicate
isClosable/1 and its negation.

closableSkel(N,X):-motSkel(N,X),isClosable(X).

unClosableSkel(N,X):-motSkel(N,X),not(isClosable(X)).

In Fig. 1 we show 3 closable and 3 unclosable Motzkin skeletons.
Next, we derive the predicate quickClosableSkel/2 that generates closable

skeletons about 3 times faster by testing directly that lambda binders are avail-
able at each leaf node, resulting in earlier pruning of those that do not satisfy
this constraint.
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Fig. 1. Closable vs. unclosable skeletons of size 7

quickClosableSkel(N,X):-quickClosableSkel(X,0,N,0).

quickClosableSkel(v,V)-->{V>0}.

quickClosableSkel(l(A),V)-->l,{succ(V,NewV)},quickClosableSkel(A,NewV).

quickClosableSkel(a(A,B),V)-->a,

quickClosableSkel(A,V),

quickClosableSkel(B,V).

One step further, we can derive a grammar generating closable skeletons, by
observing that they require at least one lambda (l/1 constructor) on each path,
with Motzkin trees below the l/1 constructor, as generated by the predicate
motSkel/3 introduced in Sect. 2. Thus, the following holds:

Proposition 2. A Motzkin tree is a skeleton of a closed lambda term if and
only if it exists at least one lambda binder on each path from the leaf to the root.

The predicate closable/2, implementing the corresponding CF-grammar as
a generator, runs about 3 times as fast as closableSkel/2.

closable(N,X):-closable(X,N,0).

closable(l(Z))-->l,motSkel(Z).

closable(a(X,Y))-->a,closable(X),closable(Y).

By entering this grammar as input to Maciej Bendkowski’s Boltzmann sam-
pler generator [9] we have obtained a Haskell program generating uniformly
random closable skeletons of one hundred thousand nodes in a few seconds. The
probability to pick l/1 and enter a Motzkin subtree instead of an a/2 con-
structor was 0.8730398709632761. The threshold within the Motzkin subtree
to pick a leaf was 0.3341408333975344, then 0.667473848839429 for a unary
constructor, over which a binary constructor was picked.

We observe that there are slightly more unclosable Motzkin trees than clos-
able ones as size grows:
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closable: 0,1,1,2,5,11,26,65,163,417,1086,2858,7599,20391,55127,150028,410719, ...

unclosable: 1,0,1,2,4,10,25,62,160,418,1102,2940,7912,21444,58507,160544,442748, ...

Let us denote by M(z) =
∑

mnzn the ordinary generating function for
Motzkin trees (mn is the number of Motzkin trees of size n). It is well known
[10] that M(z) follows the algebraic functional equation M = z + zM + zM2

which can be obtained directly from the symbolic method and we get M(z) =
1−z−√−3 z2−2 z+1

2z . From this, we obtain the classical result that asymptotically

the number mn of Motzkin trees of size n is equivalent to
√

3
2
√

π
3nn−3/2.

Now, following the proposition 1 (and the predicate closable/2 providing
the corresponding grammar definition), we can deduce that the ordinary gener-
ating function C(z) for closable lambda terms satisfies C(z) = zC(z)2 + zM(z).
Indeed, a closable term has either an application at the root followed by two
sub-closable terms (which gives rise to zC(z)2), either an abstraction at the
root followed by a term (which gives rise to zM(z)). Consequently, C(z) =
1−

√
2 z

√−3 z2−2 z+1+2 z2−2 z+1
2z . Now, we are in the framework of the Flajolet-

Odlysko transfer theorems [11] which gives directly the asymptotics of the num-

ber cn of closable skeletons: cn ∼
√

15
10

√
π

3nn−3/2. By dividing cn with mn we

obtain:

Proposition 3. When n tends to the infinity, the proportion of closable lambda

term skeletons tends to
1√
5

.= 44.7%.

It is possible to calculate very efficiently the coefficients cn. For that purpose,
from the equation C(z) = zC(z)2 + zM(z), an easy calculation gives that C(z)
satisfies the algebraic equation z2C(z)4 − 2zC(z)3 + (−z2 + z + 1)C(z)2 + (z −
1)C(z)+z2. Thus, dealing with classical tools (in order to pass from an algebraic
equation into a holonomic one), we can deduce a linear differential equation
from it:

0 = −208z6 − 168z5 + 12z4 + 94z3 − 42z2 + 6z

+
(−16z6 + 24z5 + 36z4 − 92z3 + 60z2 − 12z

)
C (z)

+
(
768z9 − 480z8 − 1088z7 − 64z6 + 216z5 + 44z4 + 30z3 − 54z2 + 18z − 2

)
d
dz

C (z)

+
(
384 z10 − 32 z9 − 368 z8 − 56 z7 − 4 z6 + 110 z5 − 21 z4 − 21 z3 + 9 z2 − z

)
d2

dz2
C (z)

with the initial condition C (0) = 0. Now, extracting a relation on the coeffi-
cients from this holonomic equation, we obtain the following P-recurrence for
the coefficient cn:

(
384n2 + 384n

)
cn

+
(−32n2 − 512n − 480

)
cn+1

+
(−368n2 − 2192n − 2928

)
cn+2
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+
(−56n2 − 344n − 504

)
cn+3

+
(−4n2 + 188n + 852

)
cn+4

+
(
110n2 + 1034n + 2328

)
cn+5

+
(−21n2 − 201n − 390

)
cn+6

+
(−21n2 − 327n − 1272

)
cn+7

+
(
9n2 + 153n + 648

)
cn+8

+
(−n2 − 19n − 90

)
cn+9 = 0

with the initial conditions c0 = 0, c1 = 0, c2 = 1, c3 = 1, c4 = 2, c5 = 5, c6 =
11, c7 = 26, c8 = 65.

Note that by a guess-and-prove approach, we can a little simplify the recur-
rence into:

(
1200n5 + 18480n4 + 90816n3 + 161088n2 + 87552n

)
cn

+
(
800n5 + 13520n4 + 79024n3 + 202312n2 + 231768n + 95760

)
cn+1

+
(−100n5 − 1840n4 − 12848n3 − 38792n2 − 44100n − 9576

)
cn+2

+
(−100n5 − 1990n4 − 14648n3 − 48254n2 − 66276n − 23940

)
cn+3

(−225n5 − 4815n4 − 38883n3 − 147519n2 − 260286n − 167580
)
cn+4

+
(
150n5 + 3435n4 + 29817n3 + 120441n2 + 218739n + 131670

)
cn+5

+
(−25n5 − 610n4 − 5642n3 − 24128n2 − 45405n − 26334

)
cn+6 = 0

with the initial conditions c0 = 0, c1 = 0, c2 = 1, c3 = 1, c4 = 2, c5 = 5.
This recurrence is extremely efficient in order to calculate the coefficient cn.
Alternatively, the expansion into Taylor series of C(z) gives z2 + z3 + 2z4 +

5z5 + 11z6 + 26z7 + 65z8 + 163z9 + 417z10 + 1086z11 + 2858z12 + 7599z13 +
20391z14 + 55127z15... with its coefficients matching the number of terms of
sizes given by the exponents, corresponding to the number of solutions of the
predicate closableSkel/2.

4 Uniquely Closable Skeletons

We call a skeleton uniquely closable if it exists exactly one closed lambda term
having it as its skeleton.

Proposition 4. A skeleton is uniquely closable if and only if exactly one lambda
binder is available above each of its leaf nodes.

Proof. Note that if more than one were available for any leaf v, one could choose
more then one de Bruijn index at the corresponding leaf v/1 of a lambda term,
resulting in more than one possible lambda terms having the given skeleton.

The predicate uniquelyClosable1/2 derived from quickClosableSkel1/2
ensures that for each leaf v/0 exactly one lambda binder is available.
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uniquelyClosable1(N,X):-uniquelyClosable1(X,0,N,0).

uniquelyClosable1(v,1)-->[].

uniquelyClosable1(l(A),V)-->l,{succ(V,NewV)},uniquelyClosable1(A,NewV).

uniquelyClosable1(a(A,B),V)-->a,uniquelyClosable1(A,V),

uniquelyClosable1(B,V).

As a skeleton is uniquely closable if on any path from a leaf to the root there’s
exactly one l/1 constructor, we derive the predicate uniquelyClosable2/2 that
marks subtrees below a lambda l1/1 constructor to ensure no other l/1 construc-
tor is used in them.

uniquelyClosable2(N,X):-uniquelyClosable2(X,hasNoLambda,N,0).

uniquelyClosable2(v,hasOneLambda)-->[].

uniquelyClosable2(l(A),hasNoLambda)-->l,

uniquelyClosable2(A,hasOneLambda).

uniquelyClosable2(a(A,B),Has)-->a,uniquelyClosable2(A,Has),

uniquelyClosable2(B,Has).

By specializing with respect to having or not having a lambda binder above, we
obtain uniquelyClosable/2 which mimics a context-free grammar generating
all uniquely closable skeletons of a given size.

uniquelyClosable(N,X):-uniquelyClosable(X,N,0).

uniquelyClosable(l(A))-->l,closedAbove(A).

uniquelyClosable(a(A,B))-->a,uniquelyClosable(A),uniquelyClosable(B).

closedAbove(v)-->[].

closedAbove(a(A,B))-->a,closedAbove(A),closedAbove(B).

In fact, if one wants to only count the number of solutions, the actual
term (argument 1) can be omitted, resulting in the even faster predicate
uniquelyClosableCount/1.

uniquelyClosableCount(N):-uniquelyClosableCount(N,0).

uniquelyClosableCount-->l,closedAboveCount.

uniquelyClosableCount-->a,uniquelyClosableCount,uniquelyClosableCount.

closedAboveCount-->[].

closedAboveCount-->a,closedAboveCount,closedAboveCount.

This sequence of program transformations results in code running an order of
magnitude faster, with all counts up to size 30, shown in Fig. 2, obtained in
less than a minute. Figure 2 shows the growths of the set of uniquely closable
skeletons.
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Fig. 2. Uniquely closable skeletons by increasing sizes

If expressed as a Haskell data type, the grammar describing the set of closable
skeletons becomes:

data UniquelyClosable = L ClosedAbove

| A UniquelyClosable UniquelyClosable deriving(Eq,Show,Read)

data ClosedAbove = V | B ClosedAbove ClosedAbove deriving(Eq,Show,Read)

With this notation, a skeleton, with the constructor B used for binary trees not
containing an L constructor, is A (A (L V) (L V)) (L (B (B V V) V)).

One can transliterate the Prolog DCG grammar into Haskell by using list
comprehensions to mimic backtracking as follows.

genA 0 = []

genA n | n>0 =

[L x | x <- genB (n-1)] ++

[A x y | k <- [0..n-2], x <- genA k, y <- genA (n-2-k)]

genB 0 = [V]

genB n | n>0 = [B a b | k <- [0..n-2], a <- genB k, b <- genB (n-2-k)]

By entering the equivalent of this data type definition as input to Maciej
Bendkowski’s Boltzmann sampler generator [9] we have obtained a Haskell pro-
gram generating uniformly random terms of one hundred thousand nodes in
a few seconds. The probability threshold for a unary constructor was below
0.5001253328728457 and then, once having entered a closed above subtree, it
was 0.5001253328728457 to stop at a leaf rather than continuing with a binary
node.
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Let us denote by B(z) the ordinary generating function for binary trees.
The series B(z) follows the algebraic functional equation B = z + zB2 and
consequently B(z) = 1−√−4 z2+1

2z .
The ordinary generating function U(z) for uniquely closable lambda terms

satisfies U(z) = zU(z)2 + zB(z). Indeed, a uniquely closable term has either
an application at the root followed by two sub uniquely closable terms
(which gives rise to zC(z)2), either an abstraction at the root followed by a
term with no abstraction (which gives rise to zB(z)). Consequently, U(z) =
1−

√
2 z

√−4 z2+1−2 z+1
2z . We are again in the framework of the Flajolet-Odlysko

transfer theorems [11] which gives directly the asymptotics of the number un of
uniquely closable terms: un ∼ 21/4+n

4Γ (3/4)n5/4 .
We can follow the same approach that for C(z) to calculate quickly the

coefficients un. In particular, U(z) satisfies the algebraic equation z2U(z)4 −
2zU(z)3 + (z + 1)U(z)2 − U(z) + z2 = 0. From which we deduce a linear
differential equation:

0 = − 128z5 − 40z4 + 52z3 + 18z2 − 6z + (16z5 + 56z4 − 20z3 − 20z2 + 8z − 2)U(z)

+ (512z8 − 512z7 − 320z6 + 96z5 + 144z4 + 16z3 − 24z2 − 6z + 2)( d
dz

U (z))

+ (256z9 − 128z8 − 128z7 − 32z6 + 64z5 + 24z4 − 16z3 − 2z2 + z)( d2

dz2
U (z))

with the initial condition U (0) = 0.
Thus, we can efficiently compute the coefficient un using the P-recurrence:

(
256n2 + 256n

)
un+

(−128n2 − 640n − 512
)
un+1

+
(−128n2 − 704n − 880

)
un+2+

(−32n2 − 64n + 152
)
un+3

+
(
64n2 + 592n + 1324

)
un+4+

(
24n2 + 232n + 540

)
un+5

+
(−16n2 − 200n − 616

)
un+6

+
(−2n2 − 32n − 128

)
un+7 +

(
n2 + 17n + 72

)
un+8 = 0

with the initial conditions u0 = 0, u1 = 0, u2 = 1, u3 = 0, u4 = 1, u5 = 1, u6 =
2, u7 = 2.

The Taylor series expansion of U(z) gives z2+z4+z5+2z6+2z7+7z8+5z9+
20z10 +19z11 +60z12 +62z13 +202z14 +202z15... with coefficients of z matching
the number of solutions of the predicate uniquelyClosable/2 for sizes given by
the exponents of z.

Let us notice that the polynomial factor in the asymptotics is not in n−3/2

as it is universal for tree-like structures. Here we have an interesting polynomial
factor in n−5/4 which appears when two square-root singularities coalesce. This
fact has a positive effect on the performance of the Boltzmann random sampling.
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5 Typable and Untypable Closable Skeletons

Let us denote x : T the fact that x has type T . In the simply typed lambda
calculus, given a context (a set of variable:type pairs), types are inferred using
the following rules:

1. if x : T in a context then x : T
2. term constants (if part of the language) have appropriate base type
3. if in a context, x has type S and an expression e has type T , then in the

same context, with the binding of x removed from the context, λx.e has type
S → T

4. if in a context the term e has type S → T and the term f has type S then
the application of e to f has type T .

We call a Motzkin skeleton typable if it exists at least one simply-typed closed
lambda term having it as its skeleton. An untypable skeleton is a closable skeleton
for which no such term exists.

We will follow the interleaving of term generation, checking for closedness
and type inference steps shown in [12], but split it into a two stage program,
with the first stage generating code to be executed, via Prolog’s metacall by the
second, while also ensuring that the terms generated by the second stage are
closed.

The predicate genSkelEqs/4 generates type unification equations, that, if
satisfied by a closed lambda term, ensure that the term is simply-typable.

genSkelEqs(N,X,T,Eqs):-genSkelEqs(X,T,[],Eqs,true,N,0).

genSkelEqs(v,V,Vs,(el(V,Vs),Es),Es)-->{Vs=[_|_]}.

genSkelEqs(l(A),(S->T),Vs,Es1,Es2)-->l,genSkelEqs(A,T,[S|Vs],Es1,Es2).

genSkelEqs(a(A,B),T,Vs,Es1,Es3)-->a,genSkelEqs(A,(S->T),Vs,Es1,Es2),

genSkelEqs(B,S,Vs,Es2,Es3).

el(V,Vs):-member(V0,Vs),unify_with_occurs_check(V0,V).

Note that each lambda binder adds a new type variable to the list (starting
empty at the root) on the way down to a leaf node. A term is then closed if the
list of those variables Vs is not empty at each leaf node.

Thus, to generate the typable terms, one simply executes the equations Eqs,
as shown by the predicate typableClosedTerm/2.

typableClosedTerm(N,Term):-genSkelEqs(N,Term,_,Eqs),Eqs.

The predicate typableSkel/2 generates skeletons that are typable by run-
ning the same equations Eqs and ensuring they have at least one solution using
the Prolog built-in once/1. The predicate untypableSkel/2 succeeds, when the
negation of these equations succeeds, indicating that no simply-typed lambda
term exists having the given skeleton. Clearly, this is much faster than naively
generating all the closed lambda terms and then finding their distinct skeletons.

typableSkel(N,Skel):-genSkelEqs(N,Skel,_,Eqs),once(Eqs).

untypableSkel(N,Skel):-genSkelEqs(N,Skel,_,Eqs),not(Eqs).
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Fig. 3. Typable vs. untypable skeletons of size 8
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Fig. 4. Closable skeletons vs. typable skeletons by increasing sizes

In Fig. 3 we show 3 typable and 3 untypable Motzkin skeletons.
An interesting question arises at this point about the relative density of

closable and typable skeletons. Figure 4, shows how many typable skeletons are
among the closable skeletons for sizes up to 18. We leave as an open problem find-
ing out the asymptotic behavior of the relative density of the typable skeletons
in the set of closable ones.
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Fig. 5. Uniquely typable skeletons by increasing sizes

6 Uniquely Typable Skeletons and their Relation to
Uniquely Closable Skeletons

A uniquely typable skeleton is one for which it exists exactly one simply-typed
closed lambda term having it as a skeleton.

The predicate uniquelyTypableSkel/2 generates unification equations for
which, with the use of the built-in findnsols/4, it ensures efficiently that they
have unique solutions. Figure 5 shows the counts of the skeletons it generates up
to size 21.

uniquelyTypableSkel(N,Skel):-

genSkelEqs(N,Skel,_,Eqs),has_unique_answer(Eqs).

has_unique_answer(G):-findnsols(2,G,G,Sols),!,Sols=[G].

The natural question arises at this point: are there (uniquely)
typable skeletons among the set of uniquely closable ones? The predicate
uniquelyTypableSkel/2 generates them by filtering the answer stream of
uniquelyClosable/2 with the predicate isUniquelyTypableSkel/1.

uniquelyClosableTypable(N,X):-

uniquelyClosable(N,X),isUniquelyTypableSkel(X).

isUniquelyTypableSkel(X):-skelType(X,_).

The predicate isUniquelyTypableSkel/2 works by trying to infer the simple type
of a uniquely typable lambda term corresponding to the skeleton. Note that this
is a specialization of a general type inferencer to the case when exactly one type
variable is available for each leaf node.
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skelType(X,T):-skelType(X,T,[]).

skelType(v,V,[V0]):-unify_with_occurs_check(V,V0).

skelType(l(A),(S->T),Vs):-skelType(A,T,[S|Vs]).

skelType(a(A,B),T,Vs):-skelType(A,(S->T),Vs),skelType(B,S,Vs).

Proposition 5. Uniquely closable typable skeletons of size 3n+1 are in bijection
with Catalan objects (binary trees) of size n.

Proof. We will exhibit a simple bijection to binary trees. We want to show that
terminal subtrees must be of the form l(v(0)). As there’s a unique lambda above
each leaf, closing it, the leaf should be (in de Bruijn notation), v(0) pointing
to the first and only lambda above it. Assume a terminal node of the form
a(v(0),v(0)). Then the two leaves must share a lambda binder resulting in a
circular term when unifying their types (i.e., as in the case of the well-known
term ω = l(a(v(0),v(0)))) and thus it could not be typable.

The following two trees illustrate the shape of such skeletons and their bijec-
tion to binary trees. Note that the skeleton is mapped into a binary tree simply
by replacing its terminal subtrees of the form l(v) with a leaf node v.

a

l

v

a

l

v

l

v

a

a

l

v

l

v

l

v

In this case, terms of size 3n + 1 = 7 = 2 + 2 + 1 + 1 + 1 + 0 + 0 + 0 are
mapped to binary trees of size n = 2 = 1 + 1 + 0 + 0 + 0 (with a/2 nodes there
counted as 1 and v/0 nodes as 0) after replacing l(v) nodes with v nodes.

As a consequence, each uniquely closable term that is typable is uniquely
typable, as identity functions of the form l(v(0)) would correspond to the end
of each path from the root to a leaf in a lambda term having this skeleton.
This tells us that there are no “interesting” uniquely closable terms that are
typable. However, as there are normalizable terms that are not simply typed,
an interesting open problem is to find out if uniquely closable terms, other than
those ending with l(v(0)) are (weakly) normalizable.

7 Related work

The classic reference for lambda calculus is [1]. Various instances of typed lambda
calculi are overviewed in [4].

The first paper where de Bruijn indices are used in counting lambda terms
is [8], which also uses a size definition equivalent to ours (but shifted by 1). The
idea of using Boltzmann samplers for lambda terms was first introduced in [13].
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The combinatorics and asymptotic behavior of various classes of lambda
terms are extensively studied in [14,15]. However, the concepts of closable and
typable skeletons of lambda terms and their uniquely closable and typable vari-
ants are new and have not been studied previously. The second author has used
extensively Prolog as a meta-language for the study of combinatorial and com-
putational properties of lambda terms in papers like [12,16] covering different
families of terms and properties, but not in combination with the precise analytic
methods as developed in this paper.

It has been a long tradition in logic programming to use step-by-step program
transformations to derive semantically simpler as well as more efficient code,
going back as far as [17], that we have informally followed. In [18] a general con-
straint logic programming framework is defined for size-constrained generation
of data structures as well as a program-transformation mechanism. By contrast,
we have not needed to use constraint solvers in our code as our derivation steps
allowed us to place constraints explicitly at the exact program points where
they were needed, for both the case of closable and typable skeletons. Keeping
our programs close to Horn Clause Prolog has helped deriving CF-grammars for
closable and uniquely closable skeletons and has enabled the use of tools from
analytic combinatorics to fully understand their asymptotic behavior.

8 Conclusion

We have used simple program transformations to derive more efficient or con-
ceptually simpler logic programs in the process of attempting to state, empiri-
cally study and solve some interesting problems related to the combinatorics of
lambda terms. Several open problems have also been generated in the process
with interesting implications on better understanding structural properties of
the notoriously hard set of simply-typed lambda terms.

The lambda term skeletons introduced in the paper involve abstraction mech-
anisms that “forget” properties of the difficult class of simply-typed closed
lambda terms to reveal classes of terms that are easier to grasp with analytic
tools. In the case of the combinatorially simpler set of closed lambda terms, we
have found that interesting subclasses of their skeletons turn out to be easier to
handle. The case of uniquely closable terms turned out to be covered by a context
free grammar, after several program transformation steps, and thus amenable to
study analytically.

The focus on uniquely closable and uniquely typable Motzkin-tree skeletons
of lambda terms, as well as their relations, has shown that closability and typa-
bility are properties that predetermine which lambda terms in de Bruijn notation
can have such Motzkin trees as skeletons. Our analytic and experimental study
has shown exponential growth for each of these families and suggests possible
uses as positive or negative lemmas for all-term and random lambda term gen-
eration in dynamic programming algorithms.

Last but not least, we have shown that a language as simple as side-effect-
free Prolog, with limited use of impure features and meta-programming, can
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handle elegantly complex combinatorial generation problems, when the synergy
between sound unification, backtracking and DCGs is put at work.
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Abstract. Android embodies security mechanisms at both OS and
application level. In this platform application security is built primarily
upon a system of permissions which specify restrictions on the operations
a particular process can perform. The critical role of these security mech-
anisms makes them a prime target for (formal) verification. We present
an idealized model of a reference monitor of the novel mechanisms of
Android 6 (and further), where it is possible to grant permissions at
run time. Using the programming language of the proof-assistant Coq we
have developed a functional implementation of the reference validation
mechanism and certified its correctness with respect to the specified ref-
erence monitor. Several properties concerning the permission model of
Android 6 and its security mechanisms have been formally formulated
and proved. Applying the program extraction mechanism provided by
Coq we have also derived a certified Haskell prototype of the reference
validation mechanism.

1 Introduction

The Android [21] platform for mobile devices captures more than 85% of the
total market-share [16]. Mobile devices allow people to develop multiple tasks
in different areas, regrettably, the benefits of using them are counteracted by
increasing security risks.

Android embodies security mechanisms at both OS and application level.
Application security is built primarily upon a system of permissions, which spec-
ify restrictions on the operations a particular process can perform. Permissions in
Android are basically tags that developers declare in their applications, more pre-
cisely in the so-called application manifest, to gain access to sensitive resources.
On all versions of Android an application must declare both the normal and the
dangerous permissions it needs in its application manifest. However, the effect
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of that declaration is different depending on the system version and the appli-
cation’s target SDK level [3]. In particular, if a device is running Android 6
(Marshmallow) and the application’s target SDK is 23 or higher the application
has to list the permissions in the manifest, and it must request each dangerous
permission it needs while the application is running. The user can grant or deny
each permission, and the application can continue to run with limited capabili-
ties even if the user denies a permission request. This modification of the access
control and decision process, on the one side, streamlines the application install
process, since the user does not need to grant permissions when he/she installs or
updates an application. On the other hand, as users can revoke the (previously
granted) permissions at any time, the application needs to check whether it has
the corresponding privileges every time it attempts to access a resource on the
device [3]. The important and critical role of these security mechanisms makes
them a prime target for (formal) verification.

Security models play an important role in the design and evaluation of secu-
rity mechanisms of systems. Their importance was already pointed out in 1972
in the Anderson report [1], where the concept of reference monitor was first
introduced. This concept defines the design requirements for implementing what
is called a reference validation mechanism, which shall be responsible for enforc-
ing the access control policy of a system. The work presented here is concerned
with the formal analysis and verification of properties performed on an idealized
model that abstracts away the specifics of any particular implementation, and
yet provides a realistic setting in which to explore the issues that pertain to the
realm of (critical) security mechanisms of Android.

Contributions. In [9,10], we have presented a formal specification of an idealized
formulation of the permission model of version 5 of Android. Here we present an
enriched version of that model which can be used to perform a formal analysis
of the novel mechanisms of Android 6, which make it possible to grant permis-
sions at run time. Furthermore, using the programming language of Coq [24]
we have developed an executable (functional) specification of the reference val-
idation mechanism and it has been proved that those functions conform to the
axiomatic specification as specified in the model. Additionally, and using the pro-
gram extraction mechanism provided by Coq, we have derived a certified Haskell
prototype of the reference validation mechanism. Several properties concerning
the security model of Android 6 have been formally formulated and proved.

Organization of the Paper. Section 2 reviews the security mechanisms of
Android. Section 3 describes the formal axiomatic specification of the Android
security system and discusses some of the verified properties. Section 4 presents a
functional (operational) semantics of the specified reference monitor and outlines
its proof of correctness. This section also discusses security properties satisfied
by the certified implementation of the security mechanisms. Section 5 considers
related work and finally, Sect. 6 concludes with a summary of our contributions
and directions for future work. The full formalization may be obtained from [17]
and verified using the Coq proof assistant.
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2 Android’s Security Model

The architecture of Android takes the form of a software stack which comprises
an OS, a run-time environment, middleware, services and libraries, and applica-
tions. An Android application is built up from components. A component is a
basic unit that provides a particular functionality and that can be run by any
other application with the right permissions. There exist four types of compo-
nents [2]: (i) activity, which is essentially a user interface of the application; (ii)
service, a component that executes in background without providing an interface
to the user; (iii) content provider, a component intended to share information
among applications; and (iv) broadcast receiver, a component whose objective is
to receive messages, sent either by the system or an application, and trigger the
corresponding actions. Activities, services and broadcast receivers are activated
by a special kind of message called intent. An intent makes it possible for dif-
ferent components to interact at runtime. An intent filter specifies the types of
intents that a component receiver can respond to [2].

Applications usually need to use system resources to execute properly. Since
applications run inside sandboxes, this entails the existence of a decision proce-
dure (a reference validation mechanism) that guarantees the authorized access
to those resources. Decisions are made by following security policies using a sim-
ple notion of permission. Every permission is identified by a name/text, has a
protection level and may belong to a permission group. There exist two princi-
pal classes of permissions: the ones defined by the application, for the sake of
self-protection; and those predefined by Android, which are intended to protect
access to resources and services of the system. An application declares –in an
XML file called AndroidManifest– the set of permissions it needs to acquire
further capacities than the default ones. When an action involving permissions
is required, the system determines which permissions every application has and
either allows or denies its execution.

Depending on the protection level of the permission, the system defines the
corresponding decision procedure [4]. There are four classes of permission levels:
(i) Normal, assigned to low risk permissions that grant access to isolated charac-
teristics; (ii) Dangerous, permissions of this level are those that provide access to
private data or control over the device. From version 6 of Android dangerous per-
missions are not granted at installation time; (iii) Signature, a permission of this
level is granted only if the application that requires it and the application that
defined it are both signed with the same certificate; and (iv) Signature/System,
this level is assigned to permissions that regulate the access to critical system
resources or services. Additionally, an application can also declare the permis-
sions that are needed to access it. A running application may ask the user to
grant it dangerous permission groups and ungrouped permissions, who in turn
can accept or decline this request.

If the execution of an action requires for an application to have certain per-
mission the system will first make sure that this holds by means of the follow-
ing rules: (i) the application must declare the permission as used in its mani-
fest; (ii) if the permission is of level Normal, then the application does have it;
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(iii) if the permission is of level Dangerous and belongs to a permission group,
such group must have been granted to the application; (iv) if the permission is of
level Dangerous but is ungrouped, then it must have been individually granted to
the application; (v) if the permission is of level Signature, then both the involved
application and the one that declares it must have been signed with the same
certificate; (vi) lastly, if the permission is of level Signature/System, then the
involved application must have been signed with either the same certificate as
the one who declares it or the certificate of the device manufacturer. Otherwise,
an error is thrown and the action is not executed.

Android provides two mechanisms by which an application can delegate its
own permissions to another one. These mechanisms are called pending intents
and URI permissions. An intent may be defined by a developer to perform a par-
ticular action. A PendingIntent is an object which is associated to the action, a
reference that might be used by another application to execute that action. The
URI permissions mechanism can be used by an application that has read/write
access to a content provider to delegate those permissions to another application.

3 Formalization of the Permission Model

In this section we provide a short account of the axiomatic semantics of the
Android security system and discuss some of the verified security properties.

Formal Language Used. The Coq proof assistant provides a (dependently typed)
functional programming language and a reasoning framework based on higher
order logic to perform proofs of (complex) specifications and programs. Coq
allows the definition of objects (sets, lists, streams, functions, programs), the
writing of formulas (using basic predicates, logical connectives and quantifiers),
and the construction of proofs. The type of propositions is called Prop. The
Coq environment provides program extraction towards languages like Ocaml and
Haskell for execution of (certified) algorithms [18,19].

In this work, enumerated types and sum types are defined using Haskell-like
notation; for example, option T

def= None | Some (t : T ). Record types are of the
form {l1 : T1, . . . , ln : Tn}, whereas their elements are of the form {t1, . . . , tn}.
Field selection is written as r.li. We also use {T} to denote the set of elements of
type T . Finally, the symbol × defines tuples, and nat is the datatype of natural
numbers. We omit Coq code for reasons of clarity; this code is available in [17].

3.1 Model States

The Android security model we have developed has been formalized as an
abstract state machine. In this model, states (AndroidST) are modelled as 12-
tuples that respectively store data about the applications installed, their per-
missions and the running instances of components; the formal definition appears
in Fig. 1.
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Fig. 1. Android state

The type PermId represents the set of permissions identifiers; PermGroup, the
set of permission groups identifiers; Comp, the application components whose
code will run on the system; AppId represents the set of application identifiers;
iComp is the set of identifiers of running instances of application components;
ContProv is a subset of Comp, a special type of component that allows sharing
resources among different applications; a member of the type Uri is a particular
uri (uniform resources identifier); the type Res represents the set of resources
an application can have (through its content providers, members of ContProv);
the type Val is the set of possible values that can be written on resources; an
intent –i.e. a member of type Intent– represents the intention of a running com-
ponent instance to start or communicate with other applications; a member of
SysImgApp is a special kind of applications which are deployed along with the
OS itself and has certain privileges, like being impossible to uninstall.

The first component of a state records the identifiers (AppId) of the appli-
cations installed by the user. The second and third components of the state
keep track, respectively, of the permission groups (PermGroup) and ungrouped
permissions granted to each application present in the system, both the ones
installed by the user and the system applications. The fourth component of the
state stores the set of running component instances (CompInstance), while the
components DelPPerms and DelTPerms store the information concerning per-
manent and temporary permissions delegations, respectively1. The seventh and
eight components of the state store respectively the values (Val) of resources
(Res) of applications and the set of intents (Intent) sent by running instances of
components (iComp) not yet processed. The four last components of the state
record information that represents the manifests of the applications installed by

1 A permanent delegated permission represents that an app has delegated permission
to perform an operation on the resource identified by an URI. A temporary delegated
permission refers to a permission that has been delegated to a component instance.
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the user, the certificates (Cert) with which they were signed and the set of per-
missions they define. The last component of the state stores the set of (native)
applications installed in the Android system image, information that is relevant
when granting permissions of level Signature/System.

A manifest (Manifest) is modelled as a 6-tuple that respectively declare appli-
cation components (set of components, of type Comp, included in the applica-
tion); optionally, the minimum version of the Android SDK required to run the
application; optionally, the version of the Android SDK targeted on develop-
ment; the set of permissions it may need to run at its maximum capability; the
set of permissions it declares; and the permission required to interact with its
components, if any. Application components are all denoted by a component
identifier. A content provider (ContProv), in addition, encompasses a mapping
to the managed resources from the URIs assigned to them for external access.
While the components constitute the static building blocks of an application, all
runtime operations are initiated by component instances, which are represented
in our model as members of an abstract type.

We define a notion of valid state, through the predicate valid state on the
elements of type AndroidST, that captures several well-formedness conditions.

3.2 Action Semantics

The axiomatic semantics of the Android security system is modeled by defining
a set of actions, and providing their semantics as state transformers. Table 1
summarises a subset of the actions specified in our model, which provide coverage
to the different functionalities of the Android security model.

The behaviour of actions (of type Action) is specified by a precondition Pre
and by a postcondition Post of respective types: Pre : AndroidST → Action →
Prop, and Post : AndroidST → Action → AndroidST → Prop. For instance, the
axiomatic semantics of the install action is given by:

Pre(s, install app m c lRes)
def
=

¬isAppInstalled(app, s) ∧ ¬has duplicates cmp(m) ∧
∀c : Comp, c ∈ cmp(m) → c /∈ cmpInState(s) ∧
¬hasDuplicates perm(m) ∧ authPerms(m, s) ∧
∀c : Comp, c ∈ cmp(m) → cmpDeclareIntentF ilterCorrectly(c)

Post(s, install app m c lRes, s′) def
=

addManifest(m, app, s, s′) ∧ addCert(c, app, s, s′) ∧
addDefPerms(app,m, s, s′) ∧ addApp(app, s, s′) ∧
addRes(app, lRes, s, s′) ∧ initializePermLists(app, s, s′) ∧
sameOtherF ields install(s, s′)

The precondition of action install app m c lRes in a state s requires
that the application is not already installed, and that no system application
has its same identifier (¬isAppInstalled(app, s)). The identifiers of the com-
ponents listed in its manifest (c ∈ cmp(m)) must be different from each
other (¬has duplicates cmp(m)), and also different from those of the compo-
nents already present in the device (c /∈ cmpInState(s)). The permissions
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defined by the application to be installed must be different from each other
(¬hasDuplicates perm(m)) as well as different from those defined by other
applications (authPerms(m, s)). Finally, the intent filters of its components
(c ∈ cmp(m)) must be well-defined, that is the specified types of intents must
match (cmpDeclareIntentF ilterCorrectly(c)).

The postcondition of action install app m c lRes, with initial state s
and final state s′, specifies that its manifest (m), the certificate with which
it was signed (c) and the permissions it defines that are not system permis-
sions must be added to the state bound to the application identifier (predicates
addManifest, addCert, and addDefPerms); which in turn must be included in
the list of installed applications (addApp(app, s, s′)). The application resources
are initialized with the initial value initV al (addRes(app, lRes, s, s′)), while the
lists of permission and permission groups granted to the application are initial-
ized as empty (initializePermLists(app, s, s′)). The rest of the system compo-
nents remain unchanged (sameOtherF ields install(s, s′)).

3.3 Executions

There can be attempts to execute an action on a state that does not verify the
precondition of that action. In the presence of one such situation the system
answers with a corresponding error code (of type ErrorCode).

Executing an action a over a valid state s produces a new state s′ and a
corresponding answer r (denoted s↪

a/r−−→s′), where the relation between the former
state and the new one is given by the postcondition relation Post.

valid state(s) Pre(s, a) Post(s, a, s′)

s ↪
a/ok−−−→ s′

valid state(s) ErrorMsg(s, a, ec)

s ↪
a/error(ec)−−−−−−−→ s

Whenever an action occurs for which the precondition holds, the valid state may
change in such a way that the action postcondition is established. The notation
s↪

a/ok−−−→s′ may be read as the execution of the action a in a valid state s results in
a new state s’. However, if the precondition is not satisfied, then the valid state
s remains unchanged and the system answer is the error message determined by
a relation ErrorMsg2. Formally, the possible answers of the system are defined
by the type Response def= ok | error (ec : ErrorCode), where ok is the answer
resulting from a successful execution of an action. One-step execution with error
management preserves valid states.

Lemma 1 (Validity is invariant).
∀ (s s′ : AndroidST)(a : Action)(r : Response), s ↪

a/r−−→ s′ → valid state(s′)

The results presented in this work are obtained from valid states of the system.

2 Given a state s, an action a and an error code ec, ErrorMsg(s, a, ec) holds iff error ec
is an acceptable response when the execution of a is requested on state s.
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Table 1. Actions

install app m c lRes Install application with id app, whose manifest is m,
is signed with certificate c and its resources list is
lRes

uninstall app Uninstall the application with id app

grant p app Grant the permission p to the application app

revoke p app Remove the permission p from the application app

grantPermGroup g app Grant the permission group g to the application app

revokePermGroup g app Remove the permission group g from the application
app

hasPermission p app Check if the application app has the permission p

read ic cp u The running comp. ic reads the resource
corresponding to URI u from content provider cp

write ic cp u val The running comp. ic writes value val on the
resource corresponding to URI u from content
provider cp

startActivity i ic The running comp. ic asks to start an activity
specified by the intent i

startActivityRes i n ic The running comp. ic asks to start an activity
specified by the intent i, and expects as return a
token n

startService i ic The running comp. ic asks to start a service specified
by the intent i

sendBroadcast i ic p The running comp. ic sends the intent i as
broadcast, specifying that only those components
who have the permission p can receive it

sendOrdBroadcast i ic p The running comp. ic sends the intent i as an
ordered broadcast, specifying that only those
components who have the permission p can receive it

sendSBroadcast i ic The running comp. ic sends the intent i as a sticky
broadcast

resolveIntent i app Application app makes the intent i explicit

receiveIntent i ic app Application app receives the intent i, sent by the
running comp. ic

stop ic The running comp. ic finishes its execution

grantP ic cp app u pt The running comp. ic delegates permanent
permissions to application app. This delegation
enables app to perform operation pt on the resource
assigned to URI u from content provider cp

revokeDel ic cp u pt The running comp. ic revokes delegated permissions
on URI u from content provider cp to perform
operation pt

call ic sac The running comp. ic makes the API call sac
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3.4 Reasoning over the Specified Reference Monitor

In this section we present and discuss some relevant properties that can be estab-
lished concerning the Android Marshmallow security framework. In particular,
we shall focus on vulnerabilities that if exploited would allow violations to the
intended security policy. The helper functions and predicates used to define the
properties and lemmas discussed in this paper are presented and described in
Table 2. The full formal definition of the lemmas as well as those of other secu-
rity properties that were formally analyzed can be found in [17], along with their
corresponding proofs. We also include an informal description of each property,
in italics.

The first property presents a controversial characteristic of Android’s
new permission system. For example, as the dangerous permissions READ
CONTACTS (required for reading the contact list) and WRITE CONTACTS
(required for writing the contact list) both belong to the permission group
CONTACTS, none of them can be individually granted. Instead, the applica-
tion must be granted the permission group CONTACTS, giving it the right to
both reading and writing the user’s contact list. This violates the intended least
privilege security policy claimed by the designers of the platform.

Property 1 (No fine control over grouped permissions).
∀(s, s′ : AndroidST)(p : Perm)(g : PermGroup)(app : AppId),
permissionIsGrouped(p) → ¬s ↪

grant p app/ok−−−−−−−−−−→ s′

Android’s permission system is not granular enough for granting a proper subset
of the set of permissions that belong to a group.

The next property formalizes another weak point in the specification of
Android’s new permission system: in a valid state an application may have the
right of writing the contact list (WRITE CONTACTS) even if this permission was
never individually granted.

Property 2 (Implicit individual permission granting).
∃(s : AndroidST)(p : Perm)(app : AppId), valid state(s)∧
getPermissionLevel(p) = dangerous ∧ p /∈ getGrantedPermsApp(app, s) ∧
p /∈ getDefPermsApp(app, s) ∧ appHasPermission(app, p, s)

Applications may obtain permissions that were never granted to them
individually.

In Android 6 an application that wishes to send information through the
network must have the permission INTERNET but, since this permission is of
level normal, any application that lists it as used in its manifest file has the right
to access the network in an implicit and irrevocable way. Once again, this has
been criticized due to the potential information leakage it allows. The following
property formally generalizes this situation and embodies a reasonable argument
to roll back this security issue introduced in Android Marshmallow.
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Table 2. Helper functions and predicates

Function/Predicate Description

appHasPermission(app, p, s) holds iff app is considered to have permission p on
state s

canGrant(cp, u, s) holds iff the content provider cp allows the
delegation of permissions over the resource at URI
u on state s

canStart(c′, c, s) holds if the app containing component c′

(installed in s) has the required permissions to
create a new running instance of c

cmpProtectedByPerm(c) returns the permission by which the component c
is protected

componentIsExported(c) holds iff the component c is exported and can be
accessed from other applications

existsRes(cp, u, s) holds iff the URI u belongs to the content
provider cp on s

getAppFromCmp(c, s) given a component c on s, returns the app to
which it belongs

getAppRequestedPerms(m) given the manifest m of an app, returns the set of
permissions it uses

getDefPermsApp(app, s) returns the set of permissions defined by app on
state s

getGrantedPermsApp(app, s) returns the set of individual permissions granted
to app on s

getInstalledApps(s) returns the set of identifiers of the applications
installed on s

getManifestForApp(app, s) returns the manifest of application app on state s

getPermissionId(p) returns the identifier of permission p

getPermissionLevel(p) returns the permission level of permission p

getRunningComponents(s) returns the set of pairs consisting of a running
instance id, and its associated component
currently running on state s

inApp(c, app, s) holds iff the component c belongs to application
app on state s

permissionIsGrouped(p) holds iff permission p belongs to any permission
group

permissionRequiredRead(c) returns the permission required for reading the
component

permSACs(p, sac) holds iff permission p is required for performing
the system call sac (of type SACall)
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Property 3 (Internet access implicitly and irrevocably allowed).
∀(s : AndroidST)(sac : SACall)(c : Comp)(ic : iComp)(p : Perm),
valid state(s) → permSAC(p, sac) →
getPermissionLevel(p) = normal → getPermissionId(p) ∈
getAppRequestedPerms(getManifestForApp(getAppFromCmp(c, s), s)) →
(ic, c) ∈ getRunningComponents(s) → s ↪

call ic sac/ok−−−−−−−−−→ s

If the execution of an Android API call only requires permissions of level normal,
it is enough for an application to list them as used on its manifest file to be
allowed to perform such call.

4 A Certified Reference Validation Mechanism

The implementation of the Android security system that we have developed
consists of a set of Coq functions such that for every predicate involved in the
axiomatic specification of action execution there exists a function which stands
for the functional counterpart of that predicate. In this section we show how the
correctness of the implementation is certified by a formal proof that establishes
its soundness with respect to the inductive (axiomatic) semantics of the Android
security mechanisms.

The execution of an action has been implemented as a step function that
given a system state s and an action a invokes the function that implements
the execution of a in s and returns an object res of type Result

def= {resp :
Response, st : AndroidST}, where res.resp is either an error code ec, if the pre-
condition of the actions does not hold in state s, or otherwise the value ok, and
the state res.st represents the execution effect. The step function acts basically
as an action dispatcher3. Figure 2, which shows the structure of the dispatcher,
details the branch corresponding to the dispatching of action install, which is
the action we shall use along this section to illustrate the working of the imple-
mentation. The functions invoked in the branches, like install safe, are state
transformers whose definition follows this pattern: first it is checked whether the
precondition of the action is satisfied in state s, and then, if that is the case,
the function that implements the execution of the action is invoked. Otherwise,
the state s, unchanged, is returned along with an appropriate response specify-
ing an error code which describes the failure. In this figure we also describe the
function that implements the execution of the install action. The Coq code
of this function, together with that of the remaining functions, can be found
in [17]4. The function install pre is defined as the nested validation of each of
the properties of the precondition, specifying which error to throw when one of
them doesn’t hold. The function install post implements the expected behavior
of the install action: the identifier of the application is prepended to the list of
installed applications, both the list of granted permission and the list of granted
permission groups are initialized as empty for it, its resource list is added to the
3 Mechanism to trigger actions, on a state, according to the type of event considered.
4 We omit here the formal definition of these functions due to space constraints.
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system, and its manifest, certificate and defined permissions are included in the
system state5.

Fig. 2. The step function and execution of install action

4.1 Correctness of the Implementation

We proceed now to outline the proof that the functional implementation of the
security mechanisms of Android correctly implements the axiomatic model. This
property has been formally stated as the following correctness theorem which in
turn was verified using Coq [17].

Theorem 1 (Correctness of the reference validation mechanism).
∀ (s : AndroidST) (a : Action), valid state(s) → s ↪

a/step(s,a).resp−−−−−−−−−−→ step(s, a).st

The proof of this theorem follows by, in the first place, performing a case
analysis on Pre(s, a) (this predicate is decidable) and then in the case that
Pre(s, a) applying Lemma 2; otherwise applying Lemma 4.

Lemma 2 (Correctness of valid execution).
∀ (s : AndroidST) (a : Action), valid state(s) → Pre(s, a) →
s ↪

a/ok−−−→ step(s, a).st ∧ step(s, a).resp = ok

The proof of Lemma 2 proceeds by applying functional induction on step(s, a)
and then by providing the corresponding proof of soundness of the function that
implements the execution of each action. Thus, in the case of the action install
we have stated and proved Lemma 3. This lemma, in turn, follows by performing
a case analysis on the result of applying the function install pre on s and the
action: if the result is an error code then the thesis follows by contradiction.
Otherwise, it follows by the correctness of the function install post.

Lemma 3 (Correctness of install execution).
∀ (s : AndroidST) (app : App) (m : Manifest) (c : Cert) (lRes : list Res),
valid state(s) → Pre(s, install app m c lRes) →
Post(s, install app m c lRes, install post(app,m, c, lRes, s))

5 We implement the sets in the model with lists of Coq.
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As to Lemma 4, the proof also proceeds by first applying functional induction
on step(s, a). Then, for each action a, it is shown that if ¬Pre(s, a) the execution
of the function that implements that action yields the values returned by the
branch corresponding to the case that the function that validates the precondi-
tion of the action a in state s fails, i.e., an error code ec and the (unchanged)
state s.

Lemma 4 (Correctness of error execution).

∀ (s : AndroidST) (a : Action), valid state(s) → ¬Pre(s, a) → ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = error(ec) ∧ ErrorMsg(s, a, ec)

4.2 Reasoning over the Certified Reference Validation Mechanism

We have modeled the execution of the permission validation mechanism during
a session of the system as a function that implements the execution of a list of
actions starting in an (initial) system state. The output of the execution, a trace,
is the corresponding sequence of states.

Function trace (s : AndroidST) (actions : list Action) : list AndroidST :=
match actions with

| nil ⇒ nil
| action :: rest ⇒ let s′ := (step s action).st in s′ :: trace s′ rest

end.

We have stated and proved several security properties over the function trace.
In what follows s, initstate, sndstate and laststate stand for variables of type
AndroidST, p is a variable of type Perm, app and app′ of type AppId and l of type
list Action. We present first a property that formally states that in version 6 of
the OS for an application to have a non-grouped dangerous permission it must
be explicitly granted to it.

Property 4 (Dangerous permissions must be explicitly granted).
valid state(initState) → app ∈ getInstalledApps(initState) →
getPermissionLevel(p) = dangerous → permissionIsGrouped(p) = None →
appHasPermission(app, p, lastState) →
¬appHasPermission(app, p, initState) → uninstall app /∈ l →
last(trace(initState, l), initState) = lastState → grant p app ∈ l

A non-grouped dangerous permission can only be explicitly granted to an appli-
cation.

The following property refers to the revocation of permissions and how to
obtain them again.

Property 5 (Revoked permissions must be regranted).
valid state(initState) → getPermissionLevel(p) = dangerous →
permissionIsGrouped(p)= None→
p /∈ getDefPermsForApp(app, initState) →
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step(initState, revoke p app).st = sndState →
step(initState, revoke p app)).resp = ok →
uninstall app /∈ l → grant p app /∈ l →
last(trace(sndState, l), sndState) = lastState →
¬appHasPermission(app, p, lastState)

If an application used to have a permission that was later revoked, only regranting
it will allow the application to have it again.

Certain assertions on which a developer could rely in previous versions of
Android OS do not hold in its latest version. The following property states that
a running component may have the right of starting another one on a certain
state, but may not be able to do so at a later time.

Property 6 (The right to start an external component is revocable).
∀(c : Comp) (act : Activity) valid state(initState) →
getPermissionLevel(p) = dangerous → permissionIsGrouped(p) = None →
app �= app′ → p /∈ getDefPermsApp(app, initState) →
inApp(c, app, initState) →
inApp(act, app′, initState) → cmpProtectedByPerm(act) = Some p →
canStart(c, act, initState) → ∃(l : list Action), uninstall app /∈ l ∧
uninstall app′ /∈ l ∧ ¬canStart(c, act, last(trace(initState, l), initState))

A running component may have the right of starting another one on a certain
state, but may not be able to do so at a later time.

When an application app is granted a permission p to access certain resource,
it is also given the right to delegate this ability to another application, say app′,
to access that same resource on its behalf. However, if p is revoked from the
application app, the permission delegations are not invalidated and thus the
application app′ may still be able to access the resource. This property is a proof
that the current specification allows a behavior which is arguably against the
user’s will.

Property 7 (Delegated permissions are not recursively revoked).
∀(ic, ic′ : iComp) (c, c′ : Comp) (u : uri) (cp : CProvider),
valid state(s) → step(s, grant p app).resp = ok →
getAppFromCmp(c, s) = app → getAppFromCmp(c′, s) = app′ →
(ic, c) ∈ getRunningComponents(s) →
(ic′, c′) ∈ getRunningComponents(s) →
canGrant(cp, u, s) → existsRes(cp, u, s) → componentIsExported(cp) →
permissionRequiredRead(cp) = Some p →
let opsResult := trace(s, [grant p app, grantP ic cp app′ u Read,
revoke p app] in step(last(opsResult, s), read ic′ cp u).resp = ok

In Android 6 if a permission p is revoked for an application app not necessarily
shall it be revoked for the applications to which app delegated p.
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5 Related Work

Several analyses have been carried out concerning the security of the Android sys-
tem [5,11,12,14,15,20]. Few works, however, pay attention to the formal aspects
of the permission enforcing framework. In particular, Shin et al. [22,23] build a
formal framework that represents the Android permission system, which is devel-
oped in Coq, as we do. However, that work does not consider several aspects of
the platform covered in our model, namely, the different types of components,
the interaction between a running instance and the system, the R/W operation
on a content provider, the semantics of the permission delegation mechanism
and novel aspects of the security model, such as the management of runtime
permissions.

Moving away from OS verification, many works have addressed the problem
of relating inductively defined relations and executable functions, in particular in
the context of programming language semantics. For instance, Tollitte et al. [25]
show how to extract a functional implementation from an inductive specification
in the Coq proof assistant. Similar approaches exist for Isabelle, see e.g. [8]. Ear-
lier, alternative approaches such as [6,7] aim to provide reasoning principles for
executable specifications. An alternative approach is presented in [13], where the
verification of properties of imperative programs is performed using techniques
based on the specialization of constrained logic programs. In our case, given
that Coq provides a reasoning framework based on higher order logic to perform
proofs of specifications and programs and a functional programming language,
we are able to develop independently the specification of the reference moni-
tor and the implementation of the validation mechanism. More specifically, in
this work we present a model of a reference monitor and demonstrate properties
which shall hold for every correct implementation of the model. Then, using the
programming language of Coq we have developed a functional implementation
of the reference validation mechanism and proved its correctness with respect
to the specified reference monitor. Applying the program extraction mechanism
provided by Coq we have also derived a certified Haskell prototype of the refer-
ence validation mechanism, which can be used to conduct verification activities
on actual (real) implementations of the platform.

The results presented in this paper extend the ones reported in [9,10]. We
have enriched the (formal) model presented in [9,10] so as to consider, in par-
ticular, the run time requesting/granting of permissions behavior introduced in
Android Marshmallow. We also consider in this work execution error manage-
ment and we have developed a certified monitor of the security model. Finally,
several new properties concerning the security model of Android 6 (and further)
have been formally formulated and proved.

6 Conclusion and Future Work

We have presented the development of an exhaustive formal specification of the
Android security model that includes elements and properties that have been
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partially analyzed in previous work. We have enhanced the model considered
in [9,10] with an explicit treatment of errors and with the latest version of
the security mechanisms of the platform, which makes it possible to grant per-
missions at run time. We also present the formalization of security properties
concerning the Android permission mechanisms that have not previously been
formally verified and proved.

Using the programming language of the proof-assistant Coq we have defined
a functional implementation of the reference validation mechanism, certified its
correctness with respect to the axiomatic specification of the reference monitor
and derived a certified Haskell prototype (CertAndroidSec) applying the pro-
gram extraction mechanism provided by the proof assistant. The full certified
code is available in [17].

The formal development is about 21k LOC of Coq, including proofs, and
constitutes a suitable basis for reasoning about Android’s permission model and
security mechanisms.

One important goal of our work is to help to increase the level of reliability on
the security of the Android platform by providing certified guarantees that the
specified security mechanisms effectively allow to enforce the expected security
policies. The use of idealized models and certified prototypes is a good step for-
ward but no doubt the definitive step is to be able to provide similar guarantees
concerning actual implementations of the platform. We plan to use the certified
extracted algorithm, CertAndroidSec, as a testing oracle and also to conduct
verification activities on actual implementations of the platform. In particular,
we are investigating the use of that algorithm to compare the results of execut-
ing an action on a real Android platform and executing that same action on the
correct program. This would allow us to monitor the actions performed in a real
system and assessing whether the intended security policy is actually enforced
by the particular implementation of the platform.

On the other hand, we are interested in to gain confidence in whether actual
implementations of the platform conform with the abstract reference monitor,
using lightweight verification techniques such as model-based testing (MBT) [26].
In general, MBT methods generate abstract test cases by performing different
static analyzes of a (formal) model (of a given program). Those test cases are
later refined to the level of the program; the program is run on these refined
test cases; the outputs are collected and abstracted away on the model; and,
finally, the model, the abstract test cases and the abstracted outputs are used
to decide whether the program has errors or not. In the last step we plan to
use CertAndroidSec instead of the Coq axiomatic specification. In effect, as
CertAndroidSec is a certified prototype it behaves as prescribed by the Coq
specification. Furthermore, as CertAndroidSec is a program it can be easily run
on the abstract test cases, thus greatly simplifying this step.
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Abstract. Relational verification is a technique that aims at proving
properties that relate two different program fragments, or two different
program runs. It has been shown that constrained Horn clauses (CHCs)
can effectively be used for relational verification by applying a CHC
transformation, called Predicate Pairing, which allows the CHC solver
to infer relations among arguments of different predicates. In this paper
we study how the effects of the Predicate Pairing transformation can be
enhanced by using various abstract domains based on Linear Arithmetic
(i.e., the domain of convex polyhedra and some of its subdomains) during
the transformation. After presenting an algorithm for Predicate Pairing
with abstraction, we report on the experiments we have performed on
over a hundred relational verification problems by using various abstract
domains. The experiments have been performed by using the VeriMAP
verification system, together with the Parma Polyhedra Library (PPL)
and the Z3 solver for CHCs.

1 Introduction

Relational program properties are properties that relate two different programs or
two executions of the same program. Relational properties that have been stud-
ied in the literature include program equivalence, non-interference for software
security, and relative correctness [4,5,22].

Recent papers have advocated the use of Constrained Horn Clauses (CHCs)
for the verification of relational program properties [12,18,27]. As suggested in
these papers a verification problem is first translated into a set of Horn clauses
with constraints in a suitable domain (usually, Linear Arithmetic), and then the
satisfiability of that set of clauses is verified by using an SMT solver for Horn
clauses, called here a CHC solver, such as Z3 [15] or Eldarica [19].
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The main difficulty encountered by CHC solvers when verifying relational
properties is that these solvers find models of single predicates expressed in
terms of Linear Arithmetic constraints, whereas the proof of relational proper-
ties often requires the discovery of relations among arguments of two (or more)
distinct predicates. To mitigate this difficulty, Predicate Pairing transforms a set
of clauses defining two predicates, say p and q, into a new set of clauses defining
a new predicate, say r, equivalent to the conjunction of p and q [12]. Thus, when
the CHC solver finds a model for the predicate r, it discovers relations among
the arguments of p and q.

In the approach presented in this paper we use Predicate Pairing together
with Abstraction, which is a technique often used in program analysis and trans-
formation. It consists in mapping the concrete semantics of a program into an
abstract domain, where some program properties can more easily be verified [6].
In the context of relational verification, Predicate Pairing combined with a basic
form of abstraction has been introduced in a previous paper [12]. In that paper,
in fact, Predicate Pairing is performed by introducing new definitions whose
bodies are made out of two atoms together with equalities between some argu-
ments of these predicates, and these equality constraints can be viewed as an
abstraction into the domain of equalities.

Abstraction is also used by CHC Specialization, which is another transfor-
mation technique that has been proposed to increase the effectiveness of CHC
solvers [8,20]. Given a set of clauses, CHC Specialization propagates constraints
through the clauses, and since this propagation often causes strengthening of the
constraints, it may be the case that, if we first specialize a given set of clauses,
the task of CHC solving is made easier. However, the impact of the specialization
process very much depends on the choices of the particular abstract domain and
associated widening operator, which are used when the specialized predicates are
introduced or manipulated.

In this paper we address the problem of evaluating various combinations of
(i) Predicate Pairing, (ii) Abstraction, and (iii) Specialization for the specific
objective of verifying relational properties of programs. In order to do so, we
have introduced a general algorithm for Predicate Pairing that is parametric with
respect to the abstract constraint domain that is used. This domain is taken to
be a subdomain of Linear Arithmetic, such as Convex Polyhedra, Boxes, Bounded
Differences, and Octagons [2,3,7,26]. Our parametric Abstraction-based Predi-
cate Pairing algorithm, called the APP strategy, generalizes the one that makes
use of equalities between variables that has been used in a previous paper of
ours [12]. We have also considered a CHC Specialization algorithm, called the
ASp strategy, that is parametric with respect to the abstract constraint domain
that is used, and can be viewed as a particular instance of the APP strategy.
Finally, we have performed various sets of experiments by applying different
sequences of the APP and ASp strategies to sets of CHCs encoding relational
properties of imperative programs. In these experiments we have varied the
abstract constraint domains that the strategies use and we have explored the
relative merits of these different domains when verifying relational properties.
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The lesson we learned from our experiments is that the strategies achiev-
ing the best results use constraint domains, such as Bounded Differences or
Octagons, in which one can express relations between variables, without requir-
ing more precise domains, such as Convex Polyhedra. Moreover, Abstraction-
based Predicate Pairing essentially incorporates the effect of CHC Specialization,
and thus extra specializations steps (before or after Abstraction-based Predicate
Pairing) are not cost-effective.

The paper is organized as follows. In Sect. 2 we present an introductory exam-
ple showing the usefulness of abstraction. Then, in Sect. 3 we present the var-
ious abstract constraint domains, such as Convex Polyhedra, Boxes, Bounded
Differences, and Octagons, and the operations defined on them. In Sect. 4 we
present the APP and ASp strategies, and we prove that they preserve satis-
fiability (and unsatisfiability). In Sect. 5 we briefly describe the implementa-
tion of our verification method based on: (i) the VeriMAP transformation and
verification system, (ii) the Parma Polyhedra Library for constraint manipula-
tion [3], and (iii) the Z3 solver for CHC satisfiability. We also report on the
experiments we performed on more that one hundred verification problems.
Finally, in Sect. 6, we discuss the related work on program transformation and
verification.

2 An Introductory Example

In this section we present our running example concerning the problem of proving
the equivalence of two imperative programs. CHC solvers, like Z3 [15], which
are based on Linear Arithmetic are not able to prove that equivalence starting
from its direct encoding in CHC. However, we will show that if we pre-process
that encoding by the Predicate Pairing strategy which uses a suitable abstract
constraint domain, then the Z3 solver is able to make that proof.

Let us consider the programs P1 and P2 shown in Fig. 1, where program P2
is obtained from program P1 by applying a compiler optimization technique,
called software pipelining. Software pipelining takes as input a program with a
loop and produces in output a program with a new loop whose instructions are
taken from different iterations of the original loop. Combined with other pro-
gram transformations, software pipelining may allow more parallelism during
program execution, and indeed, it can produce loops whose instructions have
no read/write dependencies and thus can be executed in parallel. For exam-
ple, in program P2, derived by pipelining from program P1, the dependency
on x in the instructions of the loop in P2 can be removed by: (i) introducing a
fresh variable u initialized to x, and (ii) replacing x by u on the right-hand side
of the assignments within the loop. After this replacement we get the instruc-
tions ‘u = x; y = y+u; a = a+1; x = u+a’, and we can safely execute in parallel the
instruction ‘y = y+u’ and the sequence of instructions ‘a = a+1; x = u+a’.
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Fig. 1. The input program P1 and the output program P2 obtained from P1 by
applying software pipelining.

The equivalence of programs P1 and P2 with respect to the output value
of x, can be expressed by the following clause F :

F : false ← X1 �=X2, whl1(A,B,X, Y,A1, B1,X1, Y 1),
ifte(A,B,X, Y,A2, B2,X2, Y 2)

where: (i) predicates whl1 and ifte represent the input/output relation of pro-
grams P1 and P2, respectively, (ii) A,B,X, Y and A1, B1,X1, Y 1 represent the
values of the variables a, b, x, y at the beginning and at the end, respectively, of
the execution of program P1, and similarly, (iii) A,B,X, Y and A2, B2,X2, Y 2
represent the values of a, b, x, y at the beginning and at the end, respectively,
of the execution of program P2. The clauses defining whl1 and ifte, as well as
the predicate whl2 on which ifte depends, are reported below. (The non-expert
reader may find the description of the technique for constructing clauses starting
from imperative programs in a previous paper of ours [13].) Note that predicates
whl1 and whl2 correspond to the while-loops of programs P1 and P2, respec-
tively. Note also that strict inequalities occurring in programs (such as a < b in
program P1) are represented by using non-strict inequalities in clauses (see, for
instance, A ≤ B−1 in clause 2).

1. whl1(A,B,X, Y,A,B,X, Y ) ← A ≥ B
2. whl1(A,B,X, Y,A2, B2,X2, Y 2) ← A ≤ B−1, A1=A+1,X1 = X+A,

Y 1=X1+X,whl1(A1, B,X1, Y 1, A2, B2,X2, Y 2)
3. ifte(A,B,X, Y,A,B,X, Y ) ← A ≥ B
4. ifte(A,B,X, Y,A2, B2,X2, Y 2) ← A ≤ B−1,X1 = X+A,

whl2(A,B,X1, Y, A2, B2,X2, Y 2)
5. whl2(A,B,X, Y,A2, B,X, Y 2) ← A ≥ B−1, A2=A+1, Y 2 = Y +X
6. whl2(A,B,X, Y,A2, B2,X2, Y 2) ← A ≤ B−2, A1=A+1, X1 = A1+1,

Y 1=Y +X,whl2(A1, B,X1, Y 1, A2, B2,X2, Y 2)

Let P be the set of clauses {1, . . . , 6}. By proving the satisfiability of P ∪{F}, we
prove that programs P1 and P2 produce identical values for x as output, when
provided with the same input values. Unfortunately, CHC solvers, like Z3, based
on Linear Arithmetic cannot prove the satisfiability of P ∪{F}. This inability is
due to the fact that the solver computes models of single predicates expressed in
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terms of linear constraints among their arguments, while non-linear constraints
among the arguments of each predicate whl1 and ifte need be discovered to
prove that the conjunction of the two atoms in the body of clause F implies
X1=X2. In particular, the solver has to discover that the whl1 and ifte atoms
imply X1=X+(B2−A2−B+A)/2 and X1=X+(B2−A2−B+A)/2, respectively.

The Predicate Pairing strategy we have introduced in a previous paper [12]
may help in overcoming this difficulty. By Predicate Pairing we may introduce
new predicates defined in terms of two (or more) atoms, together with suitable
linear constraints among their arguments. Then, CHC solvers based on Linear
Arithmetic may be able to infer relations among arguments of the new predicates
that correspond to conjunctions of predicates before Predicate Pairing.

However, the efficacy of the Predicate Pairing strategy crucially depends on
the choice of the constraints that are added when introducing new predicates.
The original Predicate Pairing strategy [12] adds equalities between arguments.
In Sect. 4 we extend that strategy so as to be parametric with respect to the
domain of constraints used, and in Sect. 5 we evaluate in an experimental way
the effect of varying the choice of that domain for relational verification.

In Sect. 4, after presenting our extended Predicate Pairing transformation
strategy, we complete our running example and we show that the transformation
strategy that uses the constraint domain of Bounded Differences is able to prove
the equivalence property.

3 Constrained Horn Clauses over Numerical Domains

Let us first recall the basic notions about: (i) some abstract domains used in
static program analysis based on abstract interpretation [6], and (ii) constrained
Horn clauses (CHCs).

We consider the abstract constraint domain of Convex (Closed) Polyhe-
dra [2,3,7,26], CP for short, over the n-dimensional real space R

n. The atomic
constraints of the CP domain are of the form a1 x1+ . . . + an xn ≤ a, where the
ai’s are coefficients in R and the x’s are variables ranging over R. A constraint c
is either true, or false, or an atomic constraint, or a conjunction of constraints.

Given a formula F , by ∀(F ) and ∃(F ) we denote its universal and existential
closure, respectively. By vars(F ) we denote the set of variables occurring in F .
A constraint c is said to be satisfiable if CP |= ∃(c). Given two constraints c
and d, we say that c entails d, and we write c 	 d, if CP |= ∀(c → d). We say
that c and d are equivalent if c 	 d and d 	 c.

We also consider the following abstract constraint domains, namely: (i) Univ,
(ii) Boxes, (iii) Bounded Differences, and (iv) Octagons, which are all subdomains
of Convex Polyhedra in the sense that they are defined by putting restrictions on
the form of the polyhedra associated with the atomic constraints. These abstract
domains have all true and false as constraints and are closed under conjunction.

The constraints of the domain Univ are true and false only, and in the
n-dimensional case true denotes the whole space R

n and false denotes the empty
set on n-tuples of reals. The atomic constraints of Boxes are inequalities of the
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form x ≤ a, where a ∈ R. The atomic constraints of Bounded Differences are
inequalities of the form a1 x1 +a2 x2 ≤ a, where a∈R, ai∈{−1, 0, 1}, for i=1, 2,
and a1 is different from a2. The atomic constraints of Octagons are inequalities
of the form a1 x1 + a2 x2 ≤ a, where a∈R and ai∈{−1, 0, 1}, for i=1, 2.

Each abstract constraint domain D ⊆ CP is endowed with some operators
that we now define. (Details and examples of these operators can be found
in [2,3,7,26].) Let c and d be two constraints in D, or D-constraints.

The least upper bound operator is a function  : D ×D → D such that
(i) c 	 c  d, (ii) d 	 c  d and (iii) for all D-constraints e, if c 	 e and d 	 e,
then c  d 	 e.

A widening operator is a function ∇ : D×D → D such that (i) c 	 c∇d,
(ii) d 	 c∇d, and (iii) for all chains y0 	 y1 	 . . ., the chain x0 	 x1 	 . . . ,
where x0 = y0 and, for i>0, xi+1 = xi∇yi+1, has finitely many distinct elements
(modulo equivalence in Linear Arithmetic).

The abstraction operator for a subdomain D of CP, is a function α : CP → D
such that (i) c 	 α(c), and (ii) for all D-constraints e, if c 	 e, then α(c) 	 e.

The projection of a D-constraint c onto a set X of variables, denoted c ⇓ X,
is a D-constraint c′, with variables in X, which is equivalent to ∃Y.c, where
Y=vars(c)−X. Clearly, c 	 c′.

An atom is a formula of the form p(X1, . . . , Xm), where p is a predicate
symbol different from ‘≤’ and X1, . . . , Xm are distinct variables. A constrained
Horn clause (or simply, a clause, or a CHC) is an implication of the form
A ← c,G (comma denotes conjunction), where the conclusion (or head) A is
either an atom or false, the premise (or body) is the conjunction of a constraint
c and a (possibly empty) conjunction G of atoms. The empty conjunction is
identified with true. We also assume that two atoms in the body of a clause do
not share any variable. Note that, for reasons of simplicity, we wrote the clauses
of the example in Sect. 2 in a form which does not comply with the syntax
defined in this section. However, they can be rewritten into a compliant form by
applying the following transformations: (i) the removal of multiple occurrences
of variables in (conjunctions of) atoms in favor of equalities, (ii) the replacement
of equalities by conjunctions of inequalities, and (iii) the split of clause F into
two clauses where the disequality X1 �=X2 has been replaced by the inequalities
X1≤X2−1 and X1≥X2+1, respectively.

A set S of CHCs is said to be satisfiable if S∪CP has a model, or equivalently,
S ∪ CP �|= false.

4 Predicate Pairing with Abstraction

In this section we present an algorithm for transforming CHCs, called
Abstraction-based Predicate Pairing (or APP strategy, for short), which combines
Predicate Pairing [12] with abstraction operators acting on a given constraint
domain (see Fig. 2). The APP transformation strategy preserves satisfiability of
clauses and has the objective of increasing the effectiveness of the satisfiability
check that is performed by the subsequent application of a CHC solver.
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The APP transformation strategy tuples together two or more predicates into
a single new predicate which is equivalent to their conjunction. As discussed in
Sect. 2, the addition of suitable constraints among the variables of the predicates
paired together (or tupled together, if more than two), may ease the discovery
of the relations existing among the arguments of the individual predicates. The
APP strategy is parametric with respect to: (i) the abstract constraint domain
which is considered, and (ii) a Partition operator that determines, for a given a
clause, the atoms to be tupled together by splitting the conjunction G of atoms
in the body of the clause into n (≥1) subconjunctions G1, . . . , Gn. By choosing
the abstract constraint domain and the Partition operator in suitable ways, we
can derive a wide range of transformations, and among these, the Predicate
Pairing strategy introduced in a previous paper [12], Linearization [10], and
CHC Specialization [8,20].

In particular, the Predicate Pairing strategy is derived as follows. The
constraint domain is the set of equalities between variables (thus, a subdo-
main of the Bounded Differences domain). For defining the Partition opera-
tor, suppose that the goal of the strategy is to pair two predicates q and r
defined by two disjoint sets of clauses Q and R, respectively. Then, for a clause
H ← c,Q1, . . . , Qm, R1, . . . , Rn, with m≤n, where Q1, . . . , Qm are atoms defined
by clauses in Q and R1, . . . , Rn are atoms defined by clauses in R, the Parti-
tion operator returns the partition (Q1, R1), . . . , (Qm, Rm), (Rm+1), . . . , (Rn),
and similarly for the case m≥n (more sophisticated ways of choosing (Qi, Rj)
pairs have been proposed [14]).

A CHC Specialization strategy with Abstraction, which we call ASp strategy,
can be derived by instantiating the APP strategy as we now specify. The ASp
strategy is obtained by using the Partition operator that, given a conjunction
of atoms A1, . . . , An in the body of a clause, returns n subconjunctions, each
consisting of a single atom Ai, with i ∈ {1, . . . , n} (that is, Predicate Pairing is
not performed). In Sect. 5 we will show the effects of using ASp, together with
APP, with different abstract constraint domains.

The APP strategy is realized by performing a sequence of applications of the
well-known unfold/fold rules [17]. In order to be self-contained, now we present
the version of the Unfolding rule used in this paper. The other rules will be
presented when describing the APP strategy.
Unfolding Rule. Let P be a set of clauses and C be a clause of the form
H ← c, L,A,R, where A is an atom and L and R are (possibly empty) con-
junctions of atoms. Let us consider the set {A ← ci, Bi | i = 1, . . . , m} made out
of all the clauses in P whose head is A (after renaming). By unfolding C w.r.t. A
using P , we derive the set of clauses {(H ← c, ci, L,Bi, R) | i = 1, . . . , m}.

The APP strategy constructs a tree Defs of clauses whose head is either
false or a new predicate, that is, a predicate not occurring in the input set P of
clauses. Clauses with new head predicates are called definitions. A definition D
is said to be a child of a definition C, and equivalently, C is said to be the parent
of D, if D is introduced to fold a clause derived by unfolding from clause C. The
ancestor relation on Defs is the reflexive transitive closure of the parent relation.
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Fig. 2. The APP transformation strategy.

Note that, by construction, every constraint, either ai or di, occurring in
a new definition Di introduced during the Definition&Folding phase (see
Fig. 2), belongs to the abstract constraint domain.

Let us now prove the termination and soundness of the strategy. A Partition
operator is said to be bounded if there exists a positive integer k such that,
for any clause C, the operator splits the body of C into the subconjunctions
G1, . . . , Gn, where, for i = 1, . . . , n, the number of atoms in Gi is at most k. For
instance, k≤2 is a bound for the Partition operators described above.

Theorem 1 (Termination and Soundness of Predicate Pairing with
Abstraction). Let the set P ∪{C} of clauses be the input of the APP strategy.
Suppose that APP uses a bounded Partition operator. Then, the strategy termi-
nates and returns a set TransfCls of clauses such that P ∪ {C} is satisfiable iff
TransfCls is satisfiable.

Proof (Sketch). Since the Partition operator is bounded and, by definition, no
sequence of applications of the widening operator ∇ can generate infinitely many
distinct constraints (modulo equivalence), the set of new predicate definitions
that can be introduced by the APP strategy is finite. Thus, the number of exe-
cutions of the while loop of the strategy is also finite, and hence APP terminates.
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To show the soundness of APP we first recall the following result (see The-
orem 2 in [12], which is a consequence of a well-known result by Etalle and
Gabbrielli [17]): Suppose that from a set Cls of clauses we derive a new set
TransfCls of clauses by a sequence of applications of the unfold/fold rules, such
that every definition used for folding is unfolded during that sequence. Then Cls
is satisfiable iff TransfCls is satisfiable. Now, by taking Cls to be the set P ∪{C}
of clauses that are an input of APP, the thesis follows from the fact that every
clause added to Defs (and hence to InCls) is eventually unfolded. �

Let us see the APP strategy in action on the example of Sect. 2. As already
mentioned, the disequality X1 �=X2 is viewed as a disjunction of two inequalities,
and hence clause F is split into two clauses, say F1 and F2, containing the two
disjuncts. For reasons of space we only prove the satisfiability of the set P ∪{F1},
where F1 is the following clause:

F1: false ← X1≤X2−1, whl1(A,B,X, Y,A1, B1,X1, Y 1),
ifte(A,B,X, Y,A2, B2,X2, Y 2)

The satisfiability of P ∪{F1, F2} can be proved by applying the strategy twice.
For the application of the APP strategy we use the Bounded Differences domain,
or BDS, for short.

After the Initialization step, the APP strategy selects F1 from InCls and
applies the Unfolding step. The unfolding of whl1 and ifte occurring in the
body of F1 mimics the execution of the while loop of program P1 and the if-
then-else of program P2. By unfolding we get four clauses, three of which have
unsatisfiable constraints and are removed by the subsequent Clause Deletion
step. The only clause with a satisfiable constraint is the following one (up to
equivalence in Linear Arithmetic and variable renaming):

7. false ← X2≤X4−1, A1≤B1, A1=A3+1, Y 1=Y 3+X1, B1=B3,X1=X3,
whl1(A1, B1,X1, Y 1, A2, B2,X2, Y 2),
whl2(A3, B3,X3, Y 3, A4, B4,X4, Y 4).

Then the Definition&Folding step adds the following new definition to Defs
and to InCls:

8. pp(A1, B1,X1, Y 1, A2, B2,X2, Y 2, A3, B3,X3, Y 3, A4, B4,X4, Y 4) ←
X2 ≤X4−1, A1≤B1, A1=A3+1, B1=B3, X1=X3,
whl1(A1, B1,X1, Y 1, A2, B2,X2, Y 2),
whl2(A3, B3,X3, Y 3, A4, B4,X4, Y 4).

The body of clause 8 consists of the conjunction of the two atoms occurring in
the body of clause 7 together with the constraints obtained from the constraints
of clause 7 by applying the abstraction operator α for BDS (the projection
is the identity in this case, because the variables occurring in the constraints
are a subset of the variables in the atoms). The operator α drops the con-
straint Y 1=Y 3+X1 whose least overapproximation in BDS is true. By folding
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clause 7 using definition 8 we get the following clause, which is then added to
TranfCls:

9. false ← X2≤X4−1, A1≤B1, A1=A3+1, Y 1=Y 3+X1, B1=B3,X1=X3,
pp(A1, B1,X1, Y 1, A2, B2,X2, Y 2, A3, B3,X3, Y 3, A4, B4,X4, Y 4).

Now, the APP strategy performs a second iteration of the while loop to process
definition 8 in InDefs. By Unfolding and Clause Deletion we have that the
constraints occurring in definition 8 are preserved. Hence, we get a clause that
can be folded again using definition 8, thereby deriving:

10. pp(A1, B1,X1, Y 1, A2, B2,X2, Y 2, A3, B3,X3, Y 3, A4, B4,X4, Y 4) ←
X2 ≤X4−1, A1≤B1, A1=A3+1, B1=B3, X1=X3, A5≤B1,
A5=A1+1, X5=X1+A1, Y 5=Y 1+X5, X6=X5, Y 6=Y 3+X1,
pp(A5, B1,X5, Y 5, A2, B2,X2, Y 2, A1, B3,X6, Y 6, A4, B4,X4, Y 4).

Since there are no more clauses to be processed in InCls, the final set of clauses
is TransfCls = {9,10}. The satisfiability of TransfCls is trivial, and is easily
checked by Z3, because it contains no constrained facts (that is, clauses with
only constraints in their body), and hence a model is obtained by taking pp to
be false.

Note that the widening and least upper bound operators were not used in
our running example, but widening is needed, in general, to guarantee the ter-
mination of APP (see Theorem 1).

Note also that the abstract constraint domain used by APP is crucial for
deriving clauses without constrained facts. Indeed, if in our running example
we use the domain Univ, instead of BDS, then the body of the new definition
introduced after unfolding consists of the conjunction of the two whl1 and whl2
atoms without any constraint, as the abstraction operator for Univ maps every
satisfiable constraint to true. Then, by unfolding this new definition, we get
a constrained fact derived from the constrained facts of whl1 and whl2 (i.e.,
clauses 1 and 5 of Sect. 2).

5 Experimental Evaluation

In this section we present the results of the experiments we have performed
by applying in various ways both the APP strategy and its instance, the ASp
strategy. These results illustrate the role of abstract constraint domains consid-
ered when applying those strategies, and they also show the usefulness of the
APP strategy for improving the performance of the CHC solvers when checking
satisfiability of clauses.

We have implemented the APP and the ASp strategies using the VeriMAP
transformation system [9] and the Parma Polyhedra Library (PPL) [3], and
we have used the Z3 solver [15] for checking satisfiability of the clauses gener-
ated by those strategies. The verification process is depicted in Fig. 3 and can
be described as follows. The clauses encoding a verification problem are given
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Fig. 3. The verification process.

as input to the VeriMAP system which applies to them a (possibly empty)
sequence of APP (or ASp) strategies, using a specific constraint domain. When
applying these strategies the constraints in the domain abstract are manipu-
lated using the Parma Polyhedra Library. The resulting clauses, if produced
within a specified timeout, will be passed in input to the Z3 solver to test their
satisfiability.
Implementation of the APP and ASp Strategies. We have ported the VeriMAP
system from SICStus Prolog 3.12.5 to SWI-Prolog 7.4.2 and we have extended
its transformation engine so to use the abstract constraint domains and the
associated operations provided by the Parma Polyhedra Library 1.2.

The domains we have considered are: (i) Univ, (ii) Boxes, (iii) Bounded Dif-
ferences (also called Bounded Difference Shapes, and denoted BDS, for short),
(iv) Octagons (also called Octagonal Shapes, and denoted OS, for short), and
(v) Convex Polyhedra, together with the operations of projection, least upper
bound, widening, emptiness check, and inclusion check (these two kinds of checks
correspond to satisfiability and entailment, respectively). In particular, we have
considered the following two variants of the Convex Polyhedra domain: (1) the
one with the widening operator of Halbwachs [7], and (2) the one with the widen-
ing operator of Bagnara et al. [2]. These variants will be denoted by CP-H and
CP-B, respectively. Since VeriMAP natively represents constraints using the syn-
tax of the Constraint Logic Programming (CLP), when implementing the APP
strategy, we have used the translation from PPL polyhedra to CLP constraints,
and vice versa.
Benchmark Suite. We have considered a benchmark suite consisting of 136 ver-
ification problems, for a total number of 1655 input constrained Horn clauses.
Each problem consists in the verification of a relational property, such as equiv-
alence, monotonicity, injectivity, functional dependency, loop optimization, and
non-interference [4,5,10,12,18].
Experiments. We have performed the following six sets of experiments E0–E5
(see the corresponding six frames in Table 1):

E0: Z3
E1: ASp(X) ; Z3
E2: ASp(X) ; APP(X) ; Z3
E3: ASp(X) ; APP(X) ; ASp(X) ; Z3
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E4: APP(X) ; Z3
E5: APP(Univ) ; ASp(X) ; Z3

where: (i) the parameter X is an abstract domain in the set {Boxes, BDS,
OS, CP-H, CP-B} and (ii) ASp(X) and APP(X) denote an application of the
Abstraction-based Specialization strategy and the Abstraction-based Predicate
Pairing strategy, respectively, by using the abstract domain X.

When trying to solve a single verification problem, we set a timeout of 300 s
for each application of the APP(X) strategy or of the ASp(X) strategy or of the
Z3 solver.

Here is an explanation of the experiments E0, E1 with X = OS, and E2 with
X = OS. The explanation of the other experiments is similar.

Experiment E0 (see Frame E0 in Table 1) consists in performing a run of Z3
directly on the clauses that encode each verification problem. Z3 solves (either
positively or negatively) 28 problems (see Column SolProbls) out of the total
136 verification problems, by providing the answer (either ‘satisfiable’ or ‘unsat-
isfiable’, respectively) within the timeout in an average time of 2.36 s (see Col-
umn AvgTime2) per solved problem.

Experiment E1 with X=OS (see line OS of Frame E1 in Table 1) consists in
applying the ASp(OS) strategy on the clauses that encode each of the 136 ver-
ification problems, and then running Z3. From a total of 1655 input clauses
these 136 applications of ASp(OS) produce a total of 3540 output clauses
(see Column OutCls) with a size increase of about 2.14 (≈ 3540/1655) times
(see Column SizeRatio), in an average time of 0.73 s per problem (see Col-
umn AvgTime1). Then, on the 3540 output clauses we run Z3 that solves 28
problems with an average time of 4.10 s per solved problem.

Experiment E2 with X=OS (see line OS of Frame E2 in Table 1) consists
in applying the ASp(OS) strategy on the input clauses, exactly as in Experi-
ment E1, then applying the APP(OS) strategy, which produces a total of 20361
output clauses, and finally running Z3. Note that for two problems APP(OS) is
unable to produce the output clauses within the timeout (see Column OutProbls
where the entry is 134, instead of 136).

When trying to solve a verification problem among the 136 problems of a
given experiment, it may be the case that the ASp(X) strategy, or the APP(X)
strategy, does not complete its execution within the timeout. In that case we
say that the verification problem is aborted and the input clauses encoding that
problem are not taken into account when computing the size ratios of Col-
umn SizeRatio. Similarly, the time taken for any aborted verification problem is
not taken into account when computing the average times of Column AvgTime1.

In all our experiments we have used as constraint solver Z3 4.5.0 with the
Duality fixed-point engine [24] on an Intel Xeon CPU E5-2640 2.00 GHz pro-
cessor with 64 GB of memory under the GNU/Linux 64 bit operating system
CentOS 7.
Discussion of the Results. Let us now comment on the experimental results
presented in Table 1. First we observe that various combinations of the ASp and
APP strategies (or the APP strategy alone) significantly increase the number
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Table 1. Column Exp reports the set of experiments considered in each frame. Every
line in each frame reports the results of a single experiment which consists of 136
verification problems. The abstract domain used in an experiment is shown in Col-
umn Domain X. Columns OutProbls and OutCls report the number of non-aborted
verification problems and the total number of their output clauses, respectively. Col-
umn SizeRatio reports the value OutCls divided by the total number of input clauses
of the non-aborted verification problems. Column AvgTime1 reports the time taken to
produce the clauses of Column OutCls divided by the value OutProbls. Columns Sol-
Probls and AvgTime2 report the number of (non-aborted) verification problems solved
by Z3 and the average time taken by Z3 per solved problem. The times are the CPU
seconds spent in user mode.

Exp VeriMAP Z3

Domain X OutProbls OutCls SizeRatio AvgTime1 SolProbls AvgTime2

E0 — — — — — 28 2.36

E1 Boxes 136 3111 1.88 0.67 29 3.15

BDS 136 2629 1.59 0.66 28 3.79

OS 136 3540 2.14 0.73 28 4.10

CP-H 136 3021 1.83 0.66 34 3.95

CP-B 136 3633 2.20 0.69 36 10.14

E2 Boxes 134 27753 17.10 2.52 73 2.20

BDS 136 12793 7.73 3.26 119 3.69

OS 134 20361 12.44 5.23 121 3.90

CP-H 135 16193 9.84 3.74 113 0.93

CP-B 127 12554 8.06 3.51 114 3.65

E3 Boxes 134 45970 28.32 5.09 77 3.54

BDS 136 26683 16.12 6.56 121 3.86

OS 134 36871 22.52 10.21 119 3.06

CP-H 135 31521 19.16 7.66 115 2.05

CP-B 127 25495 16.37 8.10 112 1.27

E4 Boxes 136 20296 12.26 2.27 78 2.01

BDS 136 8630 5.21 1.38 121 2.45

OS 135 13762 8.37 2.97 120 1.77

CP-H 135 13823 8.40 2.59 110 1.57

CP-B 131 11718 7.35 2.22 113 2.19

E5 Boxes 136 19932 12.04 2.94 74 3.07

BDS 136 8387 5.07 2.17 120 1.63

OS 135 14065 8.55 3.64 118 1.39

CP-H 135 14111 8.58 3.29 112 1.44

CP-B 129 9831 6.24 3.12 113 2.05
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of problems that Z3 solves. Indeed, while Z3 alone solves 28 problems only (see
Frame E0), suitable combinations of the ASp and APP strategies (or APP alone)
allow Z3 to solve over 120 problems (see Frames E2–E5).

However, the increase of efficacy in proving the desired properties is mainly
due to the APP strategy, rather then the ASp strategy. Indeed, Frame E1 shows
that the use of ASp alone makes just a marginal increase in the number of
problems solved by Z3 (from the 28 solved problems, as shown in Frame E0, to a
maximum of 36 solved problems, as shown in Frame E1). Moreover, by combining
the ASp and APP strategies (see Frames E2 and E3, Column SolProbls) we get
results which are not significantly better than the ones obtained by using the
APP strategy alone (see Frame E4, Column SolProbls).

The comparison between Frames E4 and E5 (Columns for Z3) tells us that
the effect of the APP(X) strategy, for a given abstract domain X, can also be
obtained in two steps: (i) first, by applying APP(Univ), and (ii) then, by apply-
ing ASp(X). Recall that the abstraction operator for the Univ domain maps
any satisfiable constraint to true, and hence APP(Univ) does not add any con-
straint when new definitions are introduced. In other terms, APP(Univ); ASp(X)
separates Predicate Pairing from constraint addition using domain X, whereas
APP(X) does the two transformations at the same time.

Let us now analyze our results from the perspective of the constraint
domain X used in ASp(X) and APP(X). The use of the Boxes domain, that
is, interval constraints on single real variables, is not very effective. Indeed, in
Frames E2–E5 we see that Boxes allows the solution of at most 78 problems
(see Frame E4, line ‘Boxes’), while the other domains enable Z3 to solve at
least 110 problems (see Frame E4, line ‘CP-H’). The poor performance of Boxes
with respect to those of the other domains can be explained by the fact that
constraints in Boxes are not expressive enough to represent relations among pro-
gram variables. Hence, they are of little help for proving relational properties.
Note, however, that if precision is increased, from BDS and OS to Convex Poly-
hedra (CP-H or CP-B), the efficacy of the verification process decreases. For
instance, Frame E4 shows that APP(BDS) and APP(OS) allow Z3 to solve 121
and 120 problems, respectively, while APP(CP-H) and APP(CP-B) allow Z3 to
solve at most 113 problems. We would also like to point out that the sets of
problems solved with two different abstract domains are not always comparable.
For instance, in Frame E2 the set of 119 problems solved with BDS is not a
subset of the 121 problems solved with OS. In particular, two problems were
solved by using BDS and not by using OS.

Finally, we would like to comment on the computational performances of the
transformations. Some combinations of ASp and APP significantly increase the
number of output clauses (see, in particular, the increase of over 28 times shown
in Frame E3, line ‘Boxes’, Column SizeRatio) and are costly (see, for instance,
the average time of 10.21 s in Frame E3, line ‘OS’, Column AvgTime1). This
is mainly due to the fact that ASp may introduce several specialized versions
for the same predicate occurring in the original set of clauses. However, if we
consider the APP(BDS) strategy, without previous or subsequent applications
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of ASp (see Frame E4), then the increase of the number of output clauses is
limited to about 5 times and the average transformation time is only 1.38 s, and
hence much lower than the average solving time taken by Z3.

6 Related Work and Conclusions

We have proposed various ways of combining transformation and abstraction
techniques for constrained Horn clauses with the goal of verifying relational prop-
erties of imperative programs. To this aim we have presented two algorithms, the
Predicate Pairing and Specialization algorithms, which are parameterized with
respect to a given abstract constraint domain and its operators. Then we have
presented an extensive experimental evaluation of CHC satisfiability problems
encoding relational verification problems. Our experiments show that suitable
combinations of transformations and abstraction dramatically increase the effec-
tiveness of the Z3 solver on the given benchmark. The most effective techniques
combine Predicate Pairing and Abstraction based on Bounded Differences or
Octagons [2,26], that is, constraint domains that are quite simple, but expres-
sive enough to capture the relations between predicate arguments.

Relational verification has been extensively studied, and still receives
much attention as a relevant problem in the field of software engineering
[4,12,18,22,27]. In particular, during the software development process it may be
helpful to prove that the semantics of a new program version has some specified
relation with the semantics of an old version.

Among the various methods to prove relational properties, those by
Mordvinov and Fedyunkovich [27] and by Felsing et al. [18] are the most closely
related to ours. The method proposed in the former paper [27] introduces the
notion of CHC product (somewhat related to Predicate Pairing), that is, a CHC
transformation that synchronizes computations to improve the effectiveness of
the CHC satisfiability checks. The latter method proposed by Felsing et al. [18]
presents proof rules for relations between imperative programs that are trans-
lated into constrained Horn clauses. The satisfiability of these clauses, which
entails the relation of interest, is then checked by state-of-the-art CHC solvers.

The Predicate Pairing technique we present in this paper is a descendant of
well-known techniques for logic program transformation, such as Tupling [29] and
Conjunctive Partial Deduction [16], which derive new predicates defined in terms
of conjunctions of atoms. The goal of these techniques is to derive efficient logic
programs by: (i) avoiding multiple traversals of data structures and repeated
evaluations of predicate calls, and (ii) producing specialized program versions
that take into account partial information on the input values. An integration
of Conjunctive Partial Deduction and abstract interpretation, called Abstract
Conjunctive Partial Deduction, has also been presented in the literature [23].
Recent work has shown that the extension of these transformation techniques to
constrained Horn clauses can play a significant role in improving the effectiveness
of CHC solvers for proving properties of imperative programs, and in particular
for verifying relational properties [11,12].
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The CHC Specialization strategy we consider in this paper is a variant of
specialization techniques for (constraint) logic programs which have been pro-
posed to support program verification [1,8,10,13,20,21,25,28]. However, these
techniques are focused on the verification of partial or total correctness of single
programs, and not on the relational verification.

Acknowledgements. We thank the anonymous referees for their constructive com-
ments.
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1. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code using analysis and transformation of logic programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124–139. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-69611-7 8

2. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for
convex polyhedra. Sci. Comput. Program. 58(1), 28–56 (2005)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

5. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of POPL 2004, pp. 14–25. ACM (2004)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM (1977)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL 1978, pp. 84–96. ACM (1978)

8. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Program verification
via iterated specialization. Sci. Comput. Program. 95(Part 2), 149–175 (2014)

9. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
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Abstract. Decision procedures can be either theory-specific, e.g., Pres-
burger arithmetic, or theory-generic, applying to an infinite number of
user-definable theories. Variant satisfiability is a theory-generic proce-
dure for quantifier-free satisfiability in the initial algebra of an order-
sorted equational theory (Σ, E ∪ B) under two conditions: (i) E ∪ B has
the finite variant property and B has a finitary unification algorithm; and
(ii) (Σ, E ∪ B) protects a constructor subtheory (Ω, EΩ ∪ BΩ) that is
OS-compact. These conditions apply to many user-definable theories, but
have a main limitation: they apply well to data structures, but often do
not hold for user-definable predicates on such data structures. We present
a theory-generic satisfiability decision procedure, and a prototype imple-
mentation, extending variant-based satisfiability to initial algebras with
user-definable predicates under fairly general conditions.

Keywords: Finite variant property (fvp) · OS-compactness
User-definable predicates · Decidable validity and satisfiability
in initial algebras

1 Introduction

Some of the most important recent advances in software verification are due to
the systematic use of decision procedures in both model checkers and theorem
provers. However, a key limitation in exploiting the power of such decision pro-
cedures is their current lack of extensibility. The present situation is as follows.
Suppose a system has been formally specified as a theory T about which we
want to verify some properties, say ϕ1, . . . , ϕn, using some model checker or
theorem prover that relies on an SMT solver for its decision procedures. This
limits a priori the decidable subtheory T0 ⊆ T that can be handled by the SMT
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solver. Specifically, the SMT solver will typically support a fixed set Q1, . . . , Qk

of decidable theories, so that, using a theory combination method such as Nelson
and Oppen [25], or Shostak [26], T0 must be a finite combination of the decidable
theories Q1, . . . , Qk supported by the SMT solver.

In non-toy applications it is unrealistic to expect that the entire specification
T of a software system will be decidable. Obviously, the bigger the decidable sub-
theory T0 ⊆ T , the higher the levels of automation and the greater the chances
of scaling up the verification effort. With theory-specific procedures for, say,
Q1, . . . , Qk, the decidable fragment T0 of T is a priori bounded. One promising
way to extend the decidable fragment T0 is to develop theory-generic satisfia-
bility procedures. These are procedures that make decidable not a single theory
Q, but an infinite class of user-specifiable theories. Therefore, an SMT solver
supporting both theory-specific and theory-generic decision procedures becomes
user-extensible and can carve out a potentially much bigger Decidable Fragment
T0 of the given system specification T .

Variant-based satisfiability [21] is a recent theory-generic decision procedure
applying to the following, easily user-specifiable infinite class of equational the-
ories (Σ,E ∪ B): (i) Σ is an order-sorted [15] signature of function symbols,
supporting types, subtypes, and subtype polymorphisms; (ii) E ∪ B has the
finite variant property [9] and B has a finitary unification algorithm; and (iii)
(Σ,E ∪ B) protects a constructor subtheory (Ω,EΩ ∪ BΩ) that is OS-compact
[21]. The procedure can then decide satisfiability in the initial algebra TΣ/E∪B,
that is, in the algebraic data type specified by (Σ,E∪B). These conditions apply
to many user-definable theories, but have a main limitation: they apply well to
data structures, but often do not hold for user-definable predicates.

The notions of variant and of OS-compactness mentioned above are defined
in detail in Sect. 2. Here we give some key intuitions. Given Σ-equations E ∪ B
such that the equations E oriented as left-to-right rewrite rules are confluent
and terminating modulo the equational axioms B, a variant of a Σ-term t is
a pair (u, θ) where θ is a substitution, and u is the canonical form of the term
instance tθ by the rewrite rules E modulo B. Intuitively, the variants of t are the
fully simplified patterns to which the instances of t can reduce. Some simplified
instances are of course more general (as patterns) than others. E∪B has the finite
variant property (FVP) if any Σ-term t has a finite set of most general variants.
For example, the addition equations E = {x+0 = x, x+s(y) = s(x+y)} are not
FVP, since (x+y, id), (s(x+y1), {y �→ s(y1)}), (s(s(x+y2)), {y �→ s(s(y2))}), . . .,
(sn(x+yn), {y �→ sn(yn)}), . . ., are all incomparable variants of x+y. Instead, the
Boolean equations G = {x ∨ � = �, x ∨ ⊥ = x, x ∧ � = x, x ∧ ⊥ = ⊥} are FVP.
For example, the most general variants of x∨y are: (x∨y, id), (x, {y �→ ⊥}), and
(�, {y �→ �}). Assuming for simplicity that all sorts in a theory (Ω,EΩ ∪ BΩ)
have an infinite number of ground terms of that sort which are all different
modulo the equations EΩ ∪ BΩ , then OS-compactness of (Ω,EΩ ∪ BΩ) means
that any conjunction of disequalities

∧
1≤i≤n ui =| vi such that EΩ∪BΩ 
 ui = vi,

1 � i � n, is satisfiable in the initial algebra TΩ/EΩ∪BΩ
, obtaining a decision

procedure. For example, ({0, s},H) is OS-compact, where {0, s} are the usual
natural number constructors. Thus, s(x) =| s(y) ∧ 0 =| y is satisfiable in T{0,s}.
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The key reason why user-definable predicates present a serious obstacle is
the following. Variant satisfiability works by reducing satisfiability in the ini-
tial algebra TΣ/E∪B to satisfiability in the much simpler algebra of construc-
tors TΩ/EΩ∪BΩ

. In many applications EΩ = H, and if the axioms BΩ are
any combination of associativity, commutativity and identity axioms, except
associativity without commutativity, then (Ω,BΩ) is an OS-compact theory
[21], making satisfiability in TΩ/BΩ

and therefore in TΣ/E∪B decidable. We
can equationally specify a predicate p with sorts A1, . . . , An in a positive way
as a function p : A1, . . . , An → Pred , where the sort Pred of predicates con-
tains a “true” constant tt , so that p(u1, . . . , un) not holding for concrete ground
arguments u1, . . . , un is expressed as the disequality p(u1, . . . , un) =| tt . But
p(u1, . . . , un) =| tt means that p must be a constructor of sort Pred in Ω, and
that the equations defining p must belong to EΩ , making EΩ =| H and ruling
out the case when TΩ/EΩ∪BΩ

= TΩ/BΩ
is decidable by OS-compactness.

This work extends variant-based satisfiability to initial algebras with user-
definable predicates under fairly general conditions using two key ideas: (i) char-
acterizing the cases when p(u1, . . . , un) =| tt by means of constrained patterns ;
and (ii) eliminating all occurrences of disequalities of the form p(v1, . . . , vn) =| tt
in a quantifier-free (QF) formula by means of such patterns. In this way, the QF
satisfiability problem can be reduced to formulas involving only non-predicate
constructors, for which OS-compactness holds in many applications. More gen-
erally, if some predicates fall within the OS-compact fragment, they can be kept.

Preliminaries are in Sect. 2. Constructor variants and OS-compactness in
Sect. 3. The satisfiability decision procedure is defined and proved correct in
Sect. 4, and its prototype implementation is described in Sect. 5. Related work
and conclusions are discussed in Sect. 6. All proofs can be found in [16].

2 Many-Sorted Logic, Rewriting, and Variants

We present some preliminaries on many-sorted (MS) logic, rewriting and finite
variant and variant unification notions needed in the paper. For a more general
treatment using order-sorted (OS) logic see [16].

We assume familiarity with the following basic concepts and notation that
are explained in full detail in, e.g., [23]: (i) many-sorted (MS) signature as a
pair Σ = (S,Σ) with S a set of sorts and Σ an S∗ × S-indexed family Σ =
{Σw,s}(w,s)∈S∗×S of function symbols, where f ∈ Σs1...sn,s is displayed as f :
s1 . . . sn → s; (ii) Σ-algebra A as a pair A = (A, A) with A = {As}s∈S an
S-indexed family of sets, and A a mapping interpreting each f : s1 . . . sn → s as
a function in the set [As1 × . . . × Asn

→ As]. (iii) Σ-homomorphism h : A → B
as an S-indexed family of functions h = {hs : As → Bs}s∈S preserving the
operations in Σ; (iv) the Σ-algebra TΣ and its initiality in the category MSAlgΣ

of Σ-algebras when Σ is unambiguous.
An S-sorted set X = {Xs}s∈S of variables, satisfies s =| s′ ⇒ Xs ∩ Xs′ = H,

and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signature
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Σ(X) obtained by adding to Σ the variables X as extra constants. Since a
Σ(X)-algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation
of the constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality
of TΣ(X) means that for each A ∈ MSAlgΣ and α ∈ [X→A], there exists a
unique Σ-homomorphism, α : TΣ(X) → A extending α, i.e., such that for each
s ∈ S and x ∈ Xs we have xαs = αs(x). In particular, when A = TΣ(Y ), an
interpretation of the constants in X, i.e., an S-sorted function σ ∈ [X→TΣ(Y )]
is called a substitution, and its unique homomorphic extension σ : TΣ(X) →
TΣ(Y ) is also called a substitution. Define dom(σ) = {x ∈ X | x =| xσ}, and
ran(σ) =

⋃
x∈dom(σ) vars(xσ). Given variables Z, the substitution σ|Z agrees

with σ on Z and is the identity elsewhere.
We also assume familiarity with many-sorted first-order logic including: (i)

the first-order language of Σ-formulas for Σ a signature (in our case Σ has
only function symbols and the = predicate); (ii) given a Σ-algebra A, a for-
mula ϕ ∈ Form(Σ), and an assignment α ∈ [Y →A], with Y = fvars(ϕ) the free
variables of ϕ, the satisfaction relation A,α |= ϕ; (iii) the notions of a formula
ϕ ∈ Form(Σ) being valid, denoted A |= ϕ, resp. satisfiable, in a Σ-algebra A.
For a subsignature Ω ⊆ Σ and A ∈ MSAlgΣ , the reduct A|Ω ∈ MSAlgΩ

agrees with A in the interpretation of all sorts and operations in Ω and dis-
cards everything in Σ \ Ω. If ϕ ∈ Form(Ω) we have the equivalence A |= ϕ
⇔ A|Ω |= ϕ.

An MS equational theory is a pair T = (Σ,E), with E a set of Σ-equations.
MSAlg(Σ,E) denotes the full subcategory of MSAlgΣ with objects those A ∈
MSAlgΣ such that A |= E, called the (Σ,E)-algebras. MSAlg(Σ,E) has an
initial algebra TΣ/E [23]. The inference system in [23] is sound and complete
for MS equational deduction, i.e., for any MS equational theory (Σ,E), and Σ-
equation u = v we have an equivalence E 
 u = v ⇔ E |= u = v. For the
sake of simpler inference we assume non-empty sorts, i.e., ∀s ∈ S, TΣ , s �= H.
Deducibility E 
 u = v is abbreviated as u =E v.

In the above notions there is only an apparent lack of predicate symbols:
full many-sorted first-order logic can be reduced to many-sorted algebra and
the above language of equational formulas. The reduction is achieved as follows.
A many-sorted first-order (MS-FO) signature, is a pair (Σ,Π) with Σ a MS
signature with set of sorts S, and Π an S∗-indexed set Π = {Πw}w∈S∗ of
predicate symbols. We associate to a MS-FO signature (Σ,Π) a MS signature
(Σ ∪ Π) by adding to Σ a new sort Pred with a constant tt and viewing each
p ∈ Πw as a function symbol p : s1 . . . sn → Pred . The reduction at the model
level is now very simple: each (Σ∪Π)-algebra A defines a (Σ,Π)-model A◦ with
Σ-algebra structure A|Σ and having for each p ∈ Πw the predicate interpretation
A◦

p = A−1
p:w→Pred(tt). The reduction at the formula level is also quite simple: we

map a (Σ,Π)-formula ϕ to an equational formula ϕ̃, called its equational version,
by just replacing each atom p(t1, . . . , tn) by the equational atom p(t1, . . . , tn) =
tt . The correctness of this reduction is just the easy to check equivalence: A◦ |=
ϕ ⇔ A |= ϕ̃. A MS-FO theory is just a pair ((Σ,Π), Γ ), with (Σ,Π) a MS-
FO signature and Γ a set of (Σ,Π)-formulas. Call ((Σ,Π), Γ ) equational iff
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(Σ ∪ Π, Γ̃ ) is a many-sorted equational theory. By the above equivalence and
the completeness of many-sorted equational logic such theories allow a sound
and complete use of equational deduction also with predicate atoms. Note that
if ((Σ,Π), Γ ) is equational, it is a very simple type of theory in many-sorted
Horn Logic with Equality and therefore has an initial model T(Σ,Π),Γ [14]. A
useful, easy to check fact is that we have an identity: T ◦

Σ∪Π/ ˜Γ
= T(Σ,Π),Γ .

Recall the notation for term positions, subterms, and term replacement from
[10]: (i) positions in a term viewed as a tree are marked by strings p ∈ N

∗

specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) t[u]p denotes the result of replacing subterm t|p at position p by u.

Definition 1. A rewrite theory is a triple R = (Σ,B,R) with (Σ,B) a MS
equational theory and R a set of Σ-rewrite rules, i.e., sequents l → r, with
l, r ∈ TΣ(X)s for some s ∈ S. In what follows it is always assumed that: (1) For
each l → r ∈ R, l �∈ X and vars(r) ⊆ vars(l). (2) Each equation u = v ∈ B is
regular, i.e., vars(u) = vars(v), and linear, i.e., there are no repeated variables
in either u or v. The one-step R,B-rewrite relation t →R,B t′, holds between
t, t′ ∈ TΣ(X)s, s ∈ S, iff there is a rewrite rule l → r ∈ R, a substitution
σ ∈ [X→TΣ(X)], and a term position p in t such that t|p =B lσ, and t′ = t[rσ]p.

R is called: (i) terminating iff the relation →R,B is well-founded; (ii) strictly
B-coherent [22] iff whenever u →R,B v and u =B u′ there is a v′ such that
u′ →R,B v′ and v =B v′; (iii) confluent iff u →∗

R,B v1 and u →∗
R,B v2 imply

that there are w1, w2 such that v1 →∗
R,B w1, v2 →∗

R,B w2, and w1 =B w2 (where
→∗

R,B denotes the reflexive-transitive closure of →R,B); and (iv) convergent if
(i)–(iii) hold. If R is convergent, for each Σ-term t there is a term u such that
t →∗

R,B u and (� ∃v) u →R,B v. We then write u = t!R,B and t →!
R,B t!R,B,

and call t!R,B the R,B-normal form of t, which, by confluence, is unique up to
B-equality.

Given a set E of Σ-equations, let R(E) = {u → v | u = v ∈ E}. A
decomposition of a MS equational theory (Σ,E) is a convergent rewrite the-
ory R = (Σ,B,R) such that E = E0 � B and R = R(E0). The key property of
a decomposition is the following:

Theorem 1 (Church-Rosser Theorem) [17,22]. Let R = (Σ,B,R) be a decom-
position of (Σ,E). Then we have an equivalence:

E 
 u = v ⇔ u!R,B =B v!R,B.

If R = (Σ,B,R) is a decomposition of (Σ,E), and X an S-sorted set of
variables, the canonical term algebra CR(X) has CR(X)s = {[t!R,B ]B | t ∈
TΣ(X)s}, and interprets each f : s1 . . . sn → s as the function CR(X)f :
([u1]B , . . . , [un]B) �→ [f(u1, . . . , un)!R,B ]B . By the Church-Rosser Theorem we
then have an isomorphism h : TΣ/E(X) ∼= CR(X), where h : [t]E �→ [t!R,B ]B . In
particular, when X is the empty family of variables, the canonical term algebra
CR is an initial algebra, and is the most intuitive possible model for TΣ/E as an
algebra of values computed by R,B-simplification.
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Quite often, the signature Σ on which TΣ/E is defined has a natural decom-
position as a disjoint union Σ = Ω � Δ, where the elements of CR, that is,
the values computed by R,B-simplification, are Ω-terms, whereas the function
symbols f ∈ Δ are viewed as defined functions which are evaluated away by
R,B-simplification. Ω (with same poset of sorts as Σ) is then called a construc-
tor subsignature of Σ. Call a decomposition R = (Σ,B,R) of (Σ,E) sufficiently
complete with respect to the constructor subsignature Ω iff for each t ∈ TΣ we
have: (i) t!R,B ∈ TΩ , and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ . This ensures
that for each [u]B ∈ CR we have [u]B ⊆ TΩ . We will give several examples of
decompositions Σ = Ω � Δ into constructors and defined functions.

As we can see in the following definition, sufficient completeness is closely
related to the notion of a protecting theory inclusion.

Definition 2. An equational theory (Σ,E) protects another theory (Ω,EΩ) iff
(Ω,EΩ) ⊆ (Σ,E) and the unique Ω-homomorphism h : TΩ/EΩ

→ TΣ/E |Ω is
an isomorphism h : TΩ/EΩ

∼= TΣ/E |Ω. A decomposition R = (Σ,B,R) protects
another decomposition R0 = (Σ0, B0, R0) iff R0 ⊆ R, i.e., Σ0 ⊆ Σ, B0 ⊆ B,
and R0 ⊆ R, and for all t, t′ ∈ TΣ0(X) we have: (i) t =B0 t′ ⇔ t =B t′, (ii)
t = t!R0,B0 ⇔ t = t!R,B, and (iii) CR0 = CR|Σ0 .

RΩ = (Ω,BΩ , RΩ) is a constructor decomposition of R = (Σ,B,R) iff R
protects RΩ and, Σ and Ω have the same poset of sorts, so that by (iii) above R
is sufficiently complete with respect to Ω. Furthermore, Ω is called a subsignature
of free constructors modulo BΩ iff RΩ = H, so that CRΩ

= TΩ/BΩ
.

The case where all constructor terms are in R,B-normal form is captured by
Ω being a subsignature of free constructors modulo BΩ . Note also that conditions
(i) and (ii) are, so called, “no confusion” conditions, and for protecting extensions
(iii) is a “no junk” condition, that is, R does not add new data to CR0 .

Given a MS equational theory (Σ,E) and a conjunction of Σ-equations φ =
u1 = v1 ∧ . . . ∧ un = vn, an E-unifier of φ is a substitution σ such that
uiσ =E viσ, 1 ≤ i ≤ n. An E-unification algorithm for (Σ,E) is an algorithm
generating for each system of Σ-equations φ and finite set of variables W ⊇
vars(φ) a complete set of E-unifiers Unif W

E (φ) where each τ ∈ Unif W
E (φ) is

assumed idempotent and with dom(τ) = vars(φ), and is “away from W” in
the sense that ran(τ) ∩ W = H. The set Unif W

E (φ) is called “complete” in
the precise sense that for any E-unifier σ of φ there is a τ ∈ Unif E(φ) and a
substitution ρ such that σ|W =E (τρ)|W , where, by definition, α =E β means
(∀x ∈ X) α(x) =E β(x) for substitutions α, β. Such an algorithm is called
finitary if it always terminates with a finite set Unif W

E (φ) for any φ.
The notion of variant answers, in a sense, two questions: (i) how can we

best describe symbolically the elements of CR(X) that are reduced substitution
instances of a pattern term t? and (ii) given an original pattern t, how many
other patterns do we need to describe the reduced instances of t in CR(X)?
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Definition 3. Given a decomposition R = (Σ,B,R) of a MS equational theory
(Σ,E) and a Σ-term t, a variant1 [9,13] of t is a pair (u, θ) such that: (i) u =B

(tθ)!R,B, (ii) dom(θ) ⊆ vars(t), and (iii) θ = θ!R,B, that is, θ(x) = θ(x)!R,B for
all variables x. (u, θ) is called a ground variant iff, furthermore, u ∈ TΣ. Given
variants (u, θ) and (v, γ) of t, (u, θ) is called more general than (v, γ), denoted
(u, θ) �B (v, γ), iff there is a substitution ρ such that: (i) (θρ)|vars(t) =B γ, and
(ii) uρ =B v. Let �t�R,B = {(ui, θi) | i ∈ I} denote a complete set of variants of
t, that is, a set of variants such that for any variant (v, γ) of t there is an i ∈ I,
such that (ui, θi) �B (v, γ).

A decomposition R = (Σ,B,R) of (Σ,E) has the finite variant property [9]
(FVP) iff for each Σ-term t there is a finite complete set of variants �t�R,B =
{(u1, θ1), . . . , (un, θn)}. If B has a finitary B-unification algorithm the relation
(u, α) �B (v, β) is decidable by B-matching. Under this assumption on B, if
R = (Σ,B,R) is FVP, �t�R,B can be chosen to be not only complete, but also
a set of most general variants, in the sense that for 1 ≤ i < j ≤ n, (ui, θi) ��B

(uj , θj) ∧ (uj , θj) ��B (ui, θi). Also, given any finite set of variables W ⊇ vars(t)
we can always choose �t�R,B to be of the form �t�W

R,B, where each (ui, θi) ∈ �t�W
R,B

has θi idempotent with dom(θi) = vars(t), and “away from W ,” in the sense that
ran(θi) ∩ W = H.

If B has a finitary unification algorithm, the folding variant narrowing strat-
egy described in [13] provides an effective method to generate �t�R,B . Further-
more, folding variant narrowing terminates for each input t ∈ TΣ(X) with a
finite set �t�R,B iff R has FVP [13].

Two example theories, one FVP and another not FVP, were given in the
Introduction. Many other examples are given in [21]. The following will be used
as a running example of an FVP theory:

Example 1. (Sets of Natural Numbers). Let NatSet = (Σ,B,R) be the following
equational theory. Σ has sorts Nat and NatSet , subsort inclusion2 Nat < NatSet ,
and decomposes as Σ = Ωc �Δ, where the constructors Ωc include the following
operators: 0 and 1 of sort Nat , + : Nat Nat → Nat (addition), H of sort NatSet
and , : NatSet NatSet → NatSet (set union). B decomposes as B = BΩc

�BΔ.
The axioms BΩc

include: (i) the associativity and commutativity of + with
identity 0, the associativity and commutativity of , . R decomposes as R =
RΩc

�RΔ. The rules RΩc
include: (i) an identity rule for union NS,H → NS; and

(ii) idempotency rules for union NS,NS → NS, and NS,NS,NS′ → NS,NS′.
The signature Δ of defined functions has operators max : Nat Nat → Nat ,
min : Nat Nat → Nat , and ´ : Nat Nat → Nat , for the maximum, minimum
and “monus” (subtraction) functions. The axioms BΔ are the commutativity

1 For a discussion of similar but not exactly equivalent versions of the variant notion
see [6]. Here we follow the shaper formulation in [13], rather than the one in [9],
because it is technically essential for some results to hold [6].

2 As pointed out at the beginning of Sect. 2, [16] treats the more general order-sorted
case, where sorts form a poset (S, ≤) with s ≤ s′ interpreted as set containment
As ⊆ As′ in a Σ-algebra A. All results in this paper hold in the order-sorted case.
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of the max and min functions. The rules RΔ for the defined functions are:
max (N,N + M) → N + M , min(N,N + M) → N , N ´ (N + M) → 0, and
(N + M) ´ N → M , where N and M have sort Nat .

FVP is a semi-decidable property [6], which can be easily verified (when it
holds) by checking (using folding variant narrowing supported by Maude 2.7)
that for each function symbol f : s1 . . . sn → s the term f(x1, . . . , xn), with
xi of sort si, 1 � i � n, has a finite number of most general variants. Given
an FVP decomposition R its variant complexity is the total number n of vari-
ants for all such f(x1, . . . , xn), provided f has some associated rules of the form
f(t1, . . . , tn) → t′. This gives a rough measure of how costly it is to perform vari-
ant computations relative to the cost of performing B-unification. For example,
the variant complexity of NatSet above is 16.

To be able to express systems of equations, say, u1 = v1 ∧ . . . ∧ un = vn, as
terms, we can extend an MS signature Σ with sorts S to an OS signature Σ∧ by:
(1) adding to S fresh new sorts Lit and Conj with a subsort inclusion Lit < Conj ;
(2) adding a binary conjunction operator ∧ : Lit Conj → Conj ; and (3) adding
for each s ∈ S binary operators = : s s → Lit and �= : s s → Lit .

Variant-based unification goes back to [13]. The paper [21] gives a more
precise characterization using Σ∧-terms as follows. If R = (Σ,B,R) is an FVP
decomposition of (Σ,E) and B has a finitary B-unification algorithm, given a
system of Σ-equations φ with variables W , folding variant narrowing computes a
finite set VarUnif W

E (φ) of E-unifiers away from W that is complete in the strong
sense that if α is an R,B-normalized E-unifier of φ there exists θ ∈ VarUnif W

E (φ)
and an R,B-normalized ρ such that α|W =B (θρ)|W .

3 Constructor Variants and OS-Compactness

We gather some technical notions and results needed for the inductive satisfia-
bility procedure given in Sect. 4.

The notion of constructor variant is used to answer the question: what vari-
ants of t cover as instances modulo BΩ all canonical forms of all ground instances
of t? The following lemma (stated and proved at the more general order-sorted
level in [16], but stated here for the MS case for simplicity) gives a precise answer
under reasonable assumptions. For more on constructor variants see [16,21,27].

Lemma 1. Let R = (Σ,B,R) be an FVP decomposition of (Σ,E) protecting a
constructor decomposition RΩ = (Ω,BΩ , RΩ). Assume that: (i) Σ = Ω∪Δ with
Ω ∩ Δ = H; (ii) B has a finitary B-unification algorithm and B = BΩ � BΔ,
with BΩ Ω-equations and if u = v ∈ BΔ, u, v are non-variable Δ-terms. Call
�t�Ω

R,B = {(v, θ) ∈ �t�R,B | v ∈ TΩ(X)} the set of constructor variants of t.
If [u] ∈ CRΩ

is of the form u =B (tγ)!R,B, then there is (v, θ) ∈ �t�Ω
R,B and a

normalized ground substitution τ such that u =B vτ .

We finally need the notion of an order-sorted OS-compact equational OS-FO
theory ((Σ,Π), Γ ), generalizing the compactness notion in [8]. The notion is the



314 R. Gutiérrez and J. Meseguer

same (but called MS-compactness) for the special case of MS theories treated in
the preliminaries to simplify the exposition. It is stated here in the more general
OS case because the satisfiability algorithm in Sect. 4 works for the more general
OS case, and the paper’s examples are in fact OS theories.

Given a OS equational theory (Σ,E), call a Σ-equality u = v E-trivial iff
u =E v, and call a Σ-disequality u =| v, denoting the negated atom ¬(u = v),
E-consistent iff u =| Ev. Likewise, call a conjunction

∧
D of Σ-disequalities E-

consistent iff each u �= v in D is so. Call a sort s ∈ S finite in both (Σ,E) and
TΣ/E iff TΣ/E,s is a finite set, and infinite otherwise.

Definition 4. An equational OS-FO theory ((Σ,Π), Γ ) is called OS-compact
iff: (i) for each sort s in Σ we can effectively determine whether s is finite
or infinite in TΣ∪Π/ ˜Γ,s, and, if finite, can effectively compute a representative
ground term rep([u]) ∈ [u] for each [u] ∈ TΣ∪Π/ ˜Γ,s; (ii) =

˜Γ is decidable and

Γ̃ has a finitary unification algorithm; and (iii) any finite conjunction
∧

D of
negated (Σ,Π)-atoms whose variables all have infinite sorts and such that

∧
D̃

is Γ̃ -consistent is satisfiable in TΣ,Π,Γ .
Call an OS theory (Σ,E) OS-compact iff OS-FO theory ((Σ,H), E) is OS-

compact.

The key theorem, generalizing a similar one in [8] is the following:

Theorem 2 ([21]). If ((Σ,Π), Γ ) is an OS-compact theory, then satisfiability
of QF (Σ,Π)-formulas in TΣ,Π,Γ is decidable.

The following OS-compactness results are proved in detail in [21]: (i) a free
constructor decomposition modulo axioms RΩ = (Ω,BΩ ,H) for BΩ any combi-
nation of associativity, commutativity and identity axioms, except associativity
without commutativity, is OS-compact; and (ii) the constructor decompositions
for parameterized modules for lists, compact lists, multisets, sets, and hereditar-
ily finite (HF) sets are all OS-compact-preserving, in the sense that if the actual
parameter has an OS-compact constructor decomposition, then the correspond-
ing instantiation of the parameterized constructor decomposition is OS-compact.

Example 2. The constructor decomposition RΩc
= (Ω,BΩc

, RΩc
) for the NatSet

theory in Example 1 is OS-compact. This follows from the fact that NatSet is just
the instantiation of the constructor decomposition for the parameterized module
of (finite) sets in [21] to the natural numbers with 0, 1, and + , which is itself
a theory of free constructors modulo associativity, commutativity and identity 0
for + and therefore OS-compact by (i), so that, by (ii), RΩc

= (Ω,BΩc
, RΩc

)
is also OS-compact.

4 QF Satisfiability in Initial Algebras with Predicates

The known variant-based quantifier-free (QF) satisfiability and validity results
[21] apply to the initial algebra TΣ/E of an equational theory (Σ,E) such that
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(1) R = (Σ,B,R) is a FVP variant-decomposition, (2) R protects a construc-
tor decomposition RΩ = (Ω,BΩ , RΩ) and (3): (i) B has a finitary unification
algorithm; and (ii) the equational theory of RΩ = (Ω,BΩ , RΩ) is OS-compact.

Example 3. QF validity and satisfiability in the initial algebra TΣ/E for (Σ,E)
the theory with the NatSet FVP variant-decomposition R = (Σ,B,R) in
Example 1 are decidable because its axioms B have a finitary unification algo-
rithm and, as explained in Example 2, its constructor decomposition RΩ =
(Ω,BΩ , RΩ) is OS-compact.

The decidable inductive validity and satisfiability results in [21] apply indeed
to many data structures of interest, which may obey structural axioms B such as
commutativity, associativity-commutativity, or identity. Many useful examples
are given in [21], and a prototype Maude implementation is presented in [27].
There is, however, a main limitation about the range of examples to which
these results apply, which this work directly addresses. The limitation comes
from the introduction of user-definable predicates. Recall that we represent a
predicate p with sorts s1, . . . , sn as a function p : s1, . . . , sn → Pred defined
in the positive case by confluent and terminating equations p(ui

1, . . . , u
i
n) = tt ,

1 ≤ i ≤ k. The key problem with such predicates p is that, except in trivial
cases, there are typically ground terms p(v1, . . . , vn) for which the predicate
does not hold. This means that p must be a constructor operator of sort Pred
which is not a free constructor modulo the axioms BΩ. This makes proving
OS-compactness for a constructor decomposition RΩ = (Ω,BΩ , RΩ) including
user-definable predicates a non-trivial case-by-case task. For example, the proofs
of OS-compactness for the set containment predicate ⊆ in the parameterized
module of finite sets and for other such predicates in other FVP parameterized
modules in [21] all required non-trivial analyses. Furthermore, OS-compactness
may fail for some RΩ precisely because of predicates (see Example 4 below).

Example 4. Consider the following extension by predicates NatSetPreds of the
NatSet theory in Example 1. Its constructor signature Ω = Ωc � ΩΠ adds the
subsignature ΩΠ containing the sort Pred , a constant tt of sort Pred , the subset
containment predicate ⊆ : NatSet NatSet → Pred , the strict order predicate

> : Nat Nat → Pred , the “sort predicate” :Nat : NatSet → Pred , char-
acterizing when a set of natural numbers is a natural, and the even and odd
predicates even, odd : NatSet → Pred , defined by the rules RΠ : H ⊆ NS → tt,
NS ⊆ NS → tt, NS ⊆ NS,NS′ → tt, N + M + 1 > N → tt , N :Nat → tt ,
even(N + N) → tt and odd(N + N + 1) → tt , where NS and NS′ have sort
NatSet , and N and M have sort Nat . NatSetPreds is FVP, but its constructor
decomposition RΩ = (Ωc � ΩΠ , BΩc

, RΩc
� RΠ) is not OS-compact, since the

negation of the trichotomy law N > M ∨M > N ∨N = M is the BΩc
-consistent

but unsatisfiable conjunction N > M |= tt ∧ M > N |= tt ∧ N |= M .

The goal of this work is to provide a decision procedure for validity and
satisfiability of QF formulas in the initial algebra of an FVP theory R that may
contain user-definable predicates and protects a constructor decomposition RΩ
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that need not be OS-compact, under the following reasonable assumptions: (1)
R = (Δ�Ωc�ΩΠ , BΔ�BΩc

, RΔ�RΩc
�RΠ) protects RΩ = (Ωc�ΩΠ , BΩc

, RΩc
�

RΠ), where ΩΠ consists only of predicates, and RΠ consists of rules of the form
p(ui

1, . . . , u
i
n) → tt , 1 � i � kp, defining each p ∈ ΩΠ ; furthermore, RΩ satisfies

conditions (i)–(ii) in Lemma 1; (2) RΩc
= (Ωc, BΩc

, RΩc
) is OS-compact, its

finite sorts (if any) are different from Pred , and is the constructor decomposition
of (Δ � Ωc, BΔ � BΩc

, RΔ � RΩc
); and (3) each p ∈ ΩΠ has an associated set of

negative constrained patterns of the form:
∧

1�l�nj

wj
l =| w′j

l ⇒ p(vj
1, . . . , v

j
n) =| tt , 1 � j � mp

with the vj
i , wj

l and w′j
l Ωc-terms with variables in Yj = vars(p(vj

1, . . . , v
j
n)).

These negative constrained patterns are interpreted as meaning that the follow-
ing semantic equivalences are valid in CR for each p ∈ ΩΠ , where ρj ∈ {ρ ∈
[Yj→TΩc

] | ρ = ρ!R,B}, B = BΔ � BΩc
, and R = RΔ � RΩc

� RΠ :

[p(vj
1, . . . , v

j
n)ρj ] ∈ CR ⇔

∧

1�l�nj

(wj
l =| w′j

l)ρj ∧
∧

1�i�n

vj
iρj =B (vj

iρj)!R,B

[p(t1, . . . , tn)] ∈ CR ⇔ ∃j∃ρj [p(t1, . . . , tn)] = [p(vj
1, . . . , v

j
n)ρj ]

∧
∧

1�l�nj

(wj
l =| w′j

l)ρj

The first equivalence means that any instance of a negative predicate pat-
tern by a normalized ground substitution ρj satisfying its constraint where
the predicate’s arguments are normalized is itself normalized, so that CR |=
p(vj

1, . . . , v
j
n)ρj =| tt . It can be automatically checked by computing the non-

identity variants (u, α) of the pattern term p(vj
1, . . . , v

j
n) such that vj

iα =B

(vj
iα)!R,B , 1 � i � n, and then checking that all associated substitutions α for

such variants invalidate the pattern’s constraint. The second equivalence means
that [p(t1, . . . , tn)] ∈ CR iff [p(t1, . . . , tn)] instantiates a negative pattern sat-
isfying its constraint. Its proof requires a case analysis showing that for each
p ∈ ΩΠ each ground instance p(x1, . . . xn)θ, θ(xi) =B θ(xi)!R,B , 1 � i � n, is
either reducible to tt or irreducible and an instance of a constrained pattern.

Example 5. The module NatSetPreds from Example 4 satisfies above assump-
tions (1)–(3). Indeed, (1), including conditions (i)–(ii) in Lemma 1, follows easily
from its definition and that of NatSet , and (2) also follows easily from the defini-
tion of NatSet and the remarks in Example 2. This leaves us with condition (3),
where the negative constrained patterns for ΩΠ = { ⊆ , > , even, odd , :Nat}
are the following:

– (NS,NS′) =| NS′ ⇒ NS ⊆ NS′ =| tt .
– N > N + M =| tt
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– even(N + N + 1) =| tt , even(H) =| tt , (N =| NS ∧ NS =| H) ⇒
even(N,NS) =| tt

– odd(N + N) =| tt , odd(H) =| tt , (N =| NS ∧ NS =| H) ⇒ odd(N,NS) =| tt
– H :Nat =| tt , (N =| NS ∧ NS =| H) ⇒ (N,NS) :Nat =| tt .

where N and M have sort Nat , and NS and NS′ sort NatSet . The first equiv-
alence can be automatically checked as explained above. For example, the non-
identity variants of NS ⊆ NS′ are (tt , {NS �→ H}), (tt , {NS �→ NS′}), and
(tt , {NS′ �→ NS,NS′′}). Their substitutions all leave the instances of NS and
NS′ irreducible, and violate the constraint (NS,NS′) =| NS′. The second equiv-
alence is proved in [16].

The Inductive Satisfiability Decision Procedure. Assume R satisfies con-
ditions (1)–(3) above and let Σ = Δ � Ωc � ΩΠ , and E be the axioms B plus
the equations associated with the rules R in R. Given a QF Σ-formula ϕ the
procedure decides if ϕ is satisfiable in CR. We can reduce the inductive validity
decision problem of whether CR |= ϕ to deciding whether ¬ϕ is unsatisfiable in
CR. Since any QF Σ-formula ϕ can be put in disjunctive normal form, a disjunc-
tion is satisfiable in CR iff one of the disjuncts is, and all predicates have been
turned into functions of sort Pred , it is enough to decide the satisfiability of a
conjunction of Σ-literals of the form

∧
G ∧ ∧

D, where the G are equations and
the D are disequations. The procedure performs the following steps:

1. Unification. Satisfiability of the conjunction
∧

G∧∧
D is replaced by satis-

fiability for some conjunction in the set {(
∧

Dα)!R,B | α ∈ VarUnif E(
∧

G)},
discarding any obviously unsatisfiable (

∧
Dα)!R,B in such a set.

2. Π-Elimination. After Step (1), each conjunction is a conjunction of disequal-
ities

∧
D′. If

∧
D′ is a Δ � Ωc-formula, we go directly to Step (3); otherwise∧

D′ has the form
∧

D′ =
∧

D1 ∧ p(t1, . . . , tn) =| tt ∧ ∧
D2, where p ∈ ΩΠ

and D1 and/or D2 may be empty conjunctions. We then replace
∧

D′ by all
not obviously unsatisfiable conjunctions of the form:

(
∧

D1 ∧
∧

1≤l≤nj

wj
l =| w′j

l ∧
∧

D2)θα

where 1 � j � mp, W = vars(
∧

D′), (p(t′1, . . . , t
′
n), θ) ∈ �p(t1, . . . , tn)�W,Ω

R,B ,
and α is a disjoint BΩc

-unifier of the equation p(t′1, . . . , t
′
n) = p(vj

1, . . . , v
j
n)

(i.e., sides are renamed to share no variables and ran(α)∩(W ∪ran(θ)) = H).
We use the negative constrained patterns of p and the constructor variants
of p(t1, . . . , tn) to eliminate the disequality p(t1, . . . , tn) =| tt . If for some
p′ ∈ ΩΠ some disequality remains in (

∧
D1 ∧ ∧

D2)θα, we iterate Step 2.
3. Computation of Ω∧

c -Variants and Elimination of Finite Sorts. For∧
D′ a Δ�Ωc-conjunction of disequalities, viewed as a (Δ�Ωc)∧-term its con-

structor Ω∧
c -variants are of the form (

∧
D′′, γ), with

∧
D′′ an Ωc-conjunction

of disequalities. The variables of
∧

D′′ are then Yfin � Y∞, with Yfin the vari-
ables whose sorts are finite, and Y∞ the variables with infinite sorts. Compute
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all normalized ground substitution τ of the variables Yfin obtained by: (i) inde-
pendently choosing for each variable y ∈ Yfin a canonical representative for
the sort of y in all possible ways, and (ii) checking that for the τ so cho-
sen

∧
D′′τ is normalized, keeping τ if this holds and discarding it otherwise.

Then
∧

D′ is satisfiable in CR iff some
∧

D′′τ so obtained is BΩc
-consistent

for some Ω∧
c -variant (

∧
D′′, γ) of

∧
D′.

Example 6. We can illustrate the use of the above decision procedure by proving
the validity of the QF formula odd(N) = tt ⇔ even(N) =| tt in the initial
algebra CR of NatSetPreds. That is, we need to show that its negation (odd(N) =
tt ∧ even(N) = tt) ∨ (odd(N) =| tt ∧ even(N) �= tt) is unsatisfiable in CR.
Applying the Unification step to the first disjunct odd(N) = tt ∧ even(N) = tt
no variant unifiers are found, making this disjunct unsatisfiable. Applying the
Π-Elimination step to the first disequality in the second disjunct odd(N) =| tt∧
even(N) �= tt , since the only constructor variant of odd(N) different from tt is the
identity variant, and the only disjoint BΩc

-unifier of odd(N) with the negative
patterns for odd is {N �→ M + M} for the (renamed) unconstrained negative
pattern odd(M + M) =| tt , we get the disequality even(M + M) =| tt , whose
normal form tt =| tt is unsatisfiable.

Theorem 3. For FVP R = (Δ�Ωc�ΩΠ , BΔ �BΩc
, RΔ �RΩc

�RΠ) protecting
RΩ = (Ωc � ΩΠ , BΩc

, RΩc
� RΠ) and satisfying above conditions (1)–(3), the

above procedure correctly decides the satisfiability of a QF Σ-formula ϕ in the
canonical term algebra CR.

Sort Predicates for Recursive Data Structures. Theorem 3 can be used
to add sort predicates to (non-circular) recursive data structures, which can be
axiomatized as the elements of an initial algebra TΩ on a many-sorted signature
of free constructors Ω. For example, lists can be so axiomatized with Ω consisting
of just two sorts, Elt , viewed as a parametric sort of list elements, and List , a
constant nil of sort List , and a “cons” constructor ; : Elt List → List .

In general, however, adding to such data structures defined functions corre-
sponding to “selectors” that can extract the constituent parts of each data struc-
ture cannot be done in a satisfactory way if we remain within a many-sorted set-
ting. For example, for lists we would like to have selectors head and tail (the usual
car and cdr in Lisp notation). For head the natural equation is head(x; l) = x.
Likewise, the natural equation for tail is tail(x; l) = l. But this leaves open the
problem of how to define head(nil), for which no satisfactory solution exists.
Meseguer and Goguen proposed a simple solution to this “constructor-selector”
problem using initial order-sorted algebras in [24]. The key idea is the following.
For each non-constant constructor symbol, say c : A1 . . . An → B, n � 1, we
introduce a subsort Bc < B and give the tighter typing c : A1 . . . An → Bc.
The selector problem is now easily solved by associating to each non-constant
constructor c selector functions selci : Bc → Ai, 1 � i � n, defined by the
equations selci (c(x1, . . . , xn)) = xi, 1 � i � n. Outside the subsort Bc the selec-
tors selci are actually undefined. For the above example of lists this just means
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adding a subsort List ; < List , where List ; is usually written as NeList (non-
empty lists), and tightening the typing of “cons” to ; : Elt List → NeList .
In this way the head and tail selectors have typings head : NeList → Elt and
tail : NeList → List , again with equations head(x; l) = x and tail(x; l) = l, with
x of sort Elt and l of sort List .

We have just described a general theory transformation Ω �→ (Ω̃ � Δ,EΔ)
from any MS signature Ω to an OS theory with selectors Δ. Due to space limita-
tions, the following key facts are discussed in detail in [16]: (1) (Ω̃�Δ,H, R(EΔ))
is FVP with (Ω̃,H,H) as its constructor decomposition. (2) To increase expres-
siveness, we can define for each subsort Bc associated with a constructor c a
corresponding equationally-defined sort predicate :Bc, thus obtaining a decom-
position (Ω̃ � Π � Δ,H, R(EΔ) � R(EΠ)) that is also FVP. (3) Each sort pred-
icate :Bc has an associated set of negative patterns, so that our variant sat-
isfiability algorithm makes satisfiability of QF formulas in the initial algebra
T

˜Ω�Π�Δ/EΔ�EΠ
decidable.

Example 7. (Lists of Naturals with Sort Predicates). We can instantiate the
above order-sorted theory of lists with selectors head and tail by instantiating
the parameter sort Elt to a sort Nat with constant 0, subsort NzNat < Nat , and
unary constructor s : Nat → NzNat with selector p : NzNat → Nat satisfying
the equation p(s(n)) = n. We then extend this specification with sort predicates

:NzNat : Nat → Pred and :NeList : List → Pred , defined by equations
n′ :NzNat = tt and l′ :NeList = tt , with n′ of sort NzNat and l′ of sort NeList .
Their corresponding negative patterns are: 0 :NzNat =| tt and nil :NeList =| tt .

One advantage of adding these sort predicates is that some properties not
expressible as QF formulas become QF-expressible. For example, to state that
every number is either 0 or a non-zero number (resp. every list is either nil or a
non-empty list) we need the formula n = 0∨(∃n′) n = n′ (resp. l = nil ∨(∃l′) l =
l′), where n has sort Nat and n′ sort NzNat (resp. l has sort List and l′ sort
NeList). But with sort predicates this can be expressed by means of the QF
formula n = 0 ∨ n :NzNat = tt (resp. l = nil ∨ l :NeList = tt).

5 Implementation

We have implemented the variant satisfiability decision procedure of Sect. 4 in
a new prototype tool (see http://users.dsic.upv.es/∼rgutierrez/var-pred/). The
implementation consists of 11 new Maude modules (from 17 in total), 2345 new
lines of code, and uses the Maude’s META-LEVEL to carry out the procedure in a
reflective way. The three steps of the variant satisfiability procedure are imple-
mented using Maude’s META-LEVEL functions. Let us illustrate NatSetPreds.

Example 8. We can prove the inductive validity of the formula N - M = 0 ⇔
(M > N = tt ∨ N = M), where N - M denotes N “monus” M, by showing that each
conjunction in its negation, (N - M = 0 ∧ M > N �= tt ∧ N �= M) ∨ (N - M �=
0 ∧ M > N = tt) ∨ (N - M �= 0 ∧ N = M) is unsatisfiable. For the first conjunct

http://users.dsic.upv.es/~rgutierrez/var-pred/
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the algorithm’s three steps are as follows. After the unification step, we obtain
(V2 + V3) > V2 �= tt ∧ V2 �= V2 + V3, where V2 and V3 are variables of sort
Natural. Applying the Π-elimination step, we obtain: V4 �= V4 + 0, where V4
is a variable of sort Natural. After normalization, the formula becomes BΩc

-
inconsistent and therefore unsatisfiable. The other two conjuncts are likewise
unsatisfiable.

For a more detailed discussion of the implementation see [16].

6 Related Work and Conclusions

The original paper proposing the concepts of variant and FVP is [9]. FVP ideas
have been further advanced in [4,6,7,13]. Variant satisfiability has been studied
in [21,27]. In relation to that work, the main contribution of this paper is the
extension of variant satisfiability to handle user-definable predicates.

As mentioned in the Introduction, satisfiability decision procedures can be
either theory-specific or theory-generic. These two classes of procedures comple-
ment each other: theory specific ones are more efficient; but theory-generic ones
are user-definable and can substantially increase the range of SMT solvers. On
theory-specific decision procedures advanced textbooks include, e.g., [5,18], and
work on data type satisfiability includes, e.g., [3,11,28]. In relation to theory-
specific work, what the results in this paper provide is a generic algorithm for a
wide class of user-definable data types with user-definable predicates.

Other theory-generic satisfiability approaches include: (i) the superposition-
based one, e.g., [1,2,19,20,29], where it is proved that a superposition theorem
proving inference system terminates for a given first-order theory together with
any given set of ground clauses representing a satisfiability problem; and (ii) that
of decidable theories defined by means of formulas with triggers [12], that allows
a user to define a new theory with decidable QF satisfiability by axiomatizing
it according to some requirements, and then making an SMT solver extensible
by such a user-defined theory. While not directly comparable to the present
one, these approaches (discussed in considerably greater detail in [21]) can be
seen as complementary ones, further enlarging the repertoire of theory-generic
satisfiability methods.

In conclusion, the present work has extended variant satisfiability to support
initial algebras specified by FVP theories with user-definable predicates under
fairly general conditions. Since such predicates are often needed in specifica-
tions, this substantially enlarges the scope of variant-based initial satisfiability
algorithms. The most obvious next step is to combine the original variant satis-
fiability algorithm defined in [21] and implemented in [27] with the present one.
To simplify both the exposition and the prototype implementation, a few simpli-
fying assumptions, such as the assumption that the signature Ω of constructors
and that Δ of defined functions share no subsort-overloaded symbols, have been
made. For both greater efficiency and wider applicability, the combined generic
algorithm will drop such assumptions and will use constructor unification [21,27].
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Abstract. Static type systems are usually not sufficient to express all
requirements on function calls. Hence, contracts with pre- and postcon-
ditions can be used to express more complex constraints on operations.
Contracts can be checked at run time to ensure that operations are
only invoked with reasonable arguments and return intended results.
Although such dynamic contract checking provides more reliable pro-
gram execution, it requires execution time and could lead to program
crashes that might be detected with more advanced methods at compile
time. To improve this situation for declarative languages, we present an
approach to combine static and dynamic contract checking for the func-
tional logic language Curry. Based on a formal model of contract checking
for functional logic programming, we propose an automatic method to
verify contracts at compile time. If a contract is successfully verified,
dynamic checking of it can be omitted. This method decreases execution
time without degrading reliable program execution. In the best case,
when all contracts are statically verified, it provides trust in the software
since crashes due to contract violations cannot occur during program
execution.

1 Introduction

Static types, provided by the programmer or inferred by the compiler, are useful
to detect specific classes of run-time errors at compile time. This is expressed
by Milner [23] as “well-typed expressions do not go wrong.” However, not all
requirements on operations can be expressed by standard static type systems.
Hence, one can either refine the type system, e.g., use a dependently typed
programming language and a more sophisticated programming discipline [28],
or add contracts with pre- and postconditions to operations. In this paper, we
follow the latter approach since it provides a smooth integration into existing
software development processes. For instance, consider the well-known factorial
function:
fac n = if n==0 then 1

else n * fac (n-1)
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Although fac is intended to work on non-negative natural numbers, standard
static type systems cannot express this constraint so that
fac :: Int → Int

is provided or inferred as the static type of fac.1 Although this type avoids the
application of fac on characters or strings, it allows to apply fac on negative
numbers which results in an infinite loop.

A precondition is a Boolean expression to restrict the applicability of an
operation. Following the notation proposed in [6], a precondition for an operation
f is a Boolean operation with name f ′pre. For instance, a precondition for fac is
fac′pre n = n >= 0

To use a precondition for checking fac invocations at run time, a preprocessor
could transform each call to fac by attaching an additional test whether the
precondition is satisfied (see [6]). After this transformation, an application to
fac to a negative number results in a run-time error (contract violation) instead
of an infinite loop.

Unfortunately, run-time contract checking requires additional execution time
so that it is often turned off, in particular, in production systems. To improve
this situation for declarative languages, we propose to reduce the number of
contract checks by (automatically) verifying them at compile time. Since we do
not expect to verify all of them at compile time, our approach can be seen as
a compromise between a full static verification, e.g., with proof assistants like
Agda, Coq, or Isabelle, which is time-consuming and difficult, and a full dynamic
checking, which might be inefficient.

For instance, one can verify (e.g., with an SMT solver [12]) that the precon-
dition for the recursive call of fac is always satisfied provided that fac is called
with a satisfied precondition. Hence, we can omit the precondition checking for
recursive calls so that n − 1 precondition checks are avoided when we evaluate
fac n.

In the following, we make this idea more precise for the functional logic lan-
guage Curry [21], briefly reviewed in the next section, so that the same ideas can
also be applied to purely functional as well as logic languages. After discussing
contracts for Curry in Sect. 3, we define a formal model of contract checking
for Curry in Sect. 4. This is the basis to extract proof obligations for contracts
at compile time. If these proof obligations can be verified, the corresponding
dynamic checks can be omitted. Some examples for contract verification are
shown in Sect. 5 before we discuss the current implementation and first bench-
mark results, which are quite encouraging. Due to lack of space, the proofs are
omitted (they are available in a long version of this paper).

2 Functional Logic Programming and Curry

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [17] for a recent survey).
1 The inferred type depends on the underlying static type system. For instance, Haskell

infers a more general overloaded type.
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In particular, the functional logic language Curry [21] conceptually extends
Haskell with common features of logic programming, i.e., non-determinism, free
variables, and constraint solving. Since we discuss our methods in the context
of functional logic programming, we briefly review those elements of functional
logic languages and Curry that are necessary to understand the contents of this
paper. More details can be found in surveys on functional logic programming
[17] and in the language report [21].

The syntax of Curry is close to Haskell [25]. In addition to Haskell, Curry
applies rules with overlapping left-hand sides in a (don’t know) non-deterministic
manner (where Haskell always selects the first matching rule) and allows free
(logic) variables in conditions and right-hand sides of rules. These variables
must be explicitly declared unless they are anonymous. Function calls can con-
tain free variables, in particular, variables without a value at call time. These
calls are evaluated lazily where free variables as demanded arguments are non-
deterministically instantiated [2].

Example 1. The following simple program shows the functional and logic fea-
tures of Curry. It defines an operation “++” to concatenate two lists, which is
identical to the Haskell encoding. The operation ins inserts an element at some
(unspecified) position in a list:

(++) :: [a] → [a] → [a] ins :: a → [a] → [a]

[] ++ ys = ys ins x ys = x : ys

(x:xs) ++ ys = x : (xs ++ ys) ins x (y:ys) = y : ins x ys

Note that ins is a non-deterministic operation since it might deliver more
than one result for a given argument, e.g., the evaluation of ins 0 [1,2] yields
the values [0,1,2], [1,0,2], and [1,2,0]. Non-deterministic operations, which
are interpreted as mappings from values into sets of values [15], are an impor-
tant feature of contemporary functional logic languages. Hence, there is also a
predefined choice operation:
x ? _ = x

_ ? y = y

Thus, “0 ? 1” evaluates to 0 and 1 with the value non-deterministically chosen.
Non-deterministic operations can be used as any other operation. For

instance, exploiting ins, we can define an operation perm that returns an arbi-
trary permutation of a list:
perm [] = []

perm (x:xs) = ins x (perm xs)

Non-deterministic operations are quite expressive since they can be used to com-
pletely eliminate logic variables in functional logic programs. Actually, it has
been shown that non-deterministic operations and logic variables have the same
expressive power [4,11]. For instance, a Boolean logic variable can be replaced
by the non-deterministic generator operation for Booleans defined by
aBool = False ? True
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This equivalence can be exploited when Curry is implemented by translation
into a target language without support for non-determinism and logic variables.
For instance, KiCS2 [9] compiles Curry into Haskell by adding a mechanism
to handle non-deterministic computations. In our case, we exploit this fact by
simply ignoring logic variables since they are considered as syntactic sugar for
non-deterministic value generators.

Curry has many additional features not described here, like monadic I/O [31]
for declarative input/output, set functions [5] to encapsulate non-deterministic
search, functional patterns [3] and default rules [7] to specify complex transfor-
mations in a high-level manner, and a hierarchical module system together with
a package manager2 that provides access to dozens of packages with hundreds
of modules.

Due to the complexity of the source language, compilers or analysis and
optimization tools often use an intermediate language where the syntactic sugar
of the source language has been eliminated and the pattern matching strat-
egy is explicit. This intermediate language, called FlatCurry, has also been
used to specify the operational semantics of Curry programs [1]. Since we will
use FlatCurry as the basis for verifying contracts, we sketch the structure of
FlatCurry and its semantics.

P ::= D1 . . .Dm (program)
D ::= f (x1, . . . ,xn) = e (function definition)
e ::= x (variable)

| c(e1, . . . ,en) (constructor call)
| f (e1, . . . ,en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (case expression)
| e1 or e2 (disjunction)
| let {x1 = e1; . . . ;xn = en} in e (let binding)

p ::= c(x1, . . . ,xn) (pattern)

Fig. 1. Syntax of the intermediate language FlatCurry

The abstract syntax of FlatCurry is summarized in Fig. 1. In contrast to
some other presentations (e.g., [1,17]), we omit the difference between rigid and
flexible case expressions since we do not consider residuation (which becomes less
important in practice and is also omitted in newer implementations of Curry [9]).
A FlatCurry program consists of a sequence of function definitions, where each
function is defined by a single rule. Patterns in source programs are compiled
into case expressions and overlapping rules are joined by explicit disjunctions. For
instance, the non-deterministic insert operation ins is represented in FlatCurry
as
ins(x, xs) = (x : xs) or (case xs of {y : ys → y : ins(x, ys)}

2 http://curry-language.org/tools/cpm.

http://curry-language.org/tools/cpm
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The semantics of FlatCurry programs is defined in [1] as an extension of Launch-
bury’s natural semantics for lazy evaluation [22]. For this purpose, we consider
only normalized FlatCurry programs, i.e., programs where the arguments of con-
structor and function calls and the discriminating argument of case expressions
are always variables. Any FlatCurry program can be normalized by introducing
new variables by let expressions [1]. For instance, the expression “y : ins(x, ys)”
is normalized into “let {z = ins(x, ys)} in y : z.” In the following, we assume
that all FlatCurry programs are normalized.

In order to model sharing, which is important for lazy evaluation and also
semantically relevant in case of non-deterministic operations [15], variables are
interpreted as references into a heap where new let bindings are stored and
function calls are updated with their evaluated results. To be more precise, a
heap, denoted by Γ,Δ, or Θ, is a partial mapping from variables to expressions.
The empty heap is denoted by []. Γ [x �→ e] denotes a heap Γ ′ with Γ ′(x) = e
and Γ ′(y) = Γ (y) for all x �= y.

Fig. 2. Natural semantics of normalized FlatCurry programs

Using heap structures, one can provide a high-level description of the oper-
ational behavior of FlatCurry programs in natural semantics style. The seman-
tics uses judgements of the form “Γ : e ⇓ Δ : v” with the meaning that in
the context of heap Γ the expression e evaluates to value (head normal form) v
and produces a modified heap Δ. Figure 2 shows the rules defining this seman-
tics w.r.t. a given normalized FlatCurry program P (ok denotes a sequence of
objects o1, . . . , ok).

Constructor-rooted expressions (i.e., head normal forms) are just returned
by rule Val. Rule VarExp retrieves a binding for a variable from the heap and
evaluates it. In order to avoid the re-evaluation of the same expression, VarExp
updates the heap with the computed value, which models sharing. In contrast
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to the original rules [1], VarExp removes the binding from the heap. On the
one hand, this allows the detection of simple loops (“black holes”) as in func-
tional programming. On the other hand, it is crucial in combination with non-
determinism to avoid the binding of a variable to different values in the same
derivation (see [8] for a detailed discussion on this issue). Rule Fun unfolds func-
tion calls by evaluating the right-hand side after binding the formal parameters
to the actual ones. Let introduces new bindings in the heap and renames the
variables in the expressions with the fresh names introduced in the heap. Or
non-deterministically evaluates one of its arguments. Finally, rule Select deals
with case expressions. When the discriminating argument of case evaluates to a
constructor-rooted term, Select evaluates the corresponding branch of the case
expression.

FlatCurry and its operational semantics has been used for various language-
oriented tools, like compilers, partial evaluators, or debugging and profiling tools
(see [17] for references). We use it in this paper to define a formal model of
contract checking and extract proof obligations for contracts from programs.

3 Contracts

The use of contracts even in declarative programming languages has been moti-
vated in Sect. 1. Contracts in the form of pre- and postconditions as well as
specifications have been introduced into functional logic programming in [6].
Contracts and specifications for some operation are operations with the same
name and a specific suffix. If f is an operation of type τ → τ ′, then a specifi-
cation for f is an operation f ′spec of type τ → τ ′, a precondition for f is an
operation f ′pre of type τ → Bool, and a postcondition for f is an operation
f ′post of type τ → τ ′ → Bool.

Intuitively, an operation and its specification should be equivalent operations.
For instance, a specification of non-deterministic list insertion could be stated
with a single rule containing a functional pattern [3] as follows:
ins′spec :: a → [a] → [a]

ins′spec x (xs ++ ys) = xs ++ [x] ++ ys

A precondition should be satisfied if an operation is invoked, and a postcondition
is a relation between input and output values which should be satisfied when
an operation yields some result. We have already seen a precondition for the
factorial function in Sect. 1. A postcondition for fac could state that the result
is always positive:
fac′post n f = f > 0

This postcondition ensures that the precondition of nested fac applications
always holds, like in the expression fac (fac 3). If an operation has no post-
condition but a specification, the latter can be used as a postcondition. For
instance, a postcondition derived from the specification for ins is
ins′post :: a → [a] → [a] → Bool

ins′post x ys zs = zs ‘valueOf’ ins′specS x ys
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This postcondition states that the value zs computed by ins is in the set of all
values computed by ins’spec (where fS denotes the set function of f , see [5]).

Antoy and Hanus [6] describe a tool which transforms programs containing
contracts and specifications into programs where these contracts and specifica-
tions are dynamically checked. This tool is available in recent distributions of
the Curry implementations PAKCS [19] and KiCS2 [9] as a preprocessor so that
the transformation can be automatically performed when Curry programs are
compiled. Furthermore, the property-based testing tool CurryCheck [18] auto-
matically tests contracts and specifications with generated input data.

Although these dynamic and static testing tools provide some confidence in
the software under development, a static verification of contracts is preferable
since it holds for all input values, i.e., it is ensured that violations of verified
contracts cannot occur at run time so that their run-time tests can be omitted. As
a first step towards this objective, we specify the operational meaning of contract
checking by extending the semantics of Fig. 2. Since pre- and postconditions
are checked before and after a function invocation, respectively, it is sufficient
to extend rule Fun. Assume that function f has a precondition f ′pre and a
postcondition f ′post (if some of them is not present, we assume that they are
defined as predicates which always return True). Then we replace rule Fun by
the extended rule FunCheck:

Γ : f ′pre(xn) ⇓ Γ ′ : True Γ ′ : ρ(e) ⇓ Δ′ : v Δ′ : f ′post(xn, v) ⇓ Δ : True
Γ : f(xn) ⇓ Δ : v

where f(yn) = e ∈ P and ρ = {yn �→ xn}. For the sake of readability, we omit
the normalization of the postcondition in the premise, which can be added by
an introduction of a let binding for v. The reporting of contract violations can
be specified by the following rules:

Γ : f ′pre(xn) ⇓ Γ ′ : False
Γ : f(xn) ⇓ <<precondition of f violated>>

Γ : f ′pre(xn) ⇓ Γ ′ : True Γ ′ : ρ(e) ⇓ Δ′ : v Δ′ : f ′post(xn, v) ⇓ Δ : False
Γ : f(xn) ⇓ <<postcondition of f violated>>

Note that we specified eager contract checking, i.e., pre- and postconditions are
immediately and completely evaluated. Although this is often intended, there are
cases where eager contract checking might influence the execution behavior of a
program, e.g., if the evaluation of a pre- or postcondition requires to evaluate
more than demanded by the original program. To avoid this problem, Chitil
et al. [10] proposed lazy contract checking where contract arguments are not
evaluated but the checks are performed when the demanded arguments become
evaluated by the application program. Lazy contract checking could have the
problem that the occurrence of contract violations depend on the demand of
evaluation so that they are detected “too late.” Since there seems to be no ideal
solution to this problem, we simply stick to eager contract checking.
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4 Contract Verification

In order to statically verify contracts, we have to extract some proof obligation
from the program and contracts. For instance, consider the factorial function and
its precondition, as shown in Sect. 1. The normalized FlatCurry representation
of the factorial function is
fac(n) = let { x = 0 ; y = n==x }

in case y of True → 1

False → let { n1 = n - 1 ; f = fac(n1) }

in n * f

Now consider the call fac(n). Since we assume that the precondition holds when
an operation is invoked, we know that n ≥ 0 holds before the case expression is
evaluated. If the False branch of the case expression is selected, we know that
n = 0 has the value False. Altogether, we know that n ≥ 0 ∧ ¬(n = 0) holds
when the right-hand side of the False branch is evaluated. Since this implies
that n > 0 and, thus, (n − 1) ≥ 0 holds (in integer arithmetic), we know that
the precondition of the recursive call to fac always holds. Hence, its check can
be omitted at run time.

This example shows that we have to collect in expressions (the rules’ right-
hand sides) properties that are ensured to be valid when we reach particular
points. For this purpose, we define an assertion-collecting semantics. It is ori-
ented towards the concrete semantics shown before but has the following differ-
ences:

1. We compute with symbolic values instead of concrete ones.
2. We collect properties that are known to be valid (also called assertions in the

following).
3. Instead of evaluating functions, we collect their pre- and postconditions.

This semantics uses judgements of the form “Γ : C | z ← e ⇓ D” where Γ is a
heap, z is a (result) variable, e is an expression, and C and D are assertions, i.e.,
Boolean formulas over the program signature. Intuitively, this judgement means
that if e is evaluated to z in the context Γ where C holds, then D holds after
the evaluation.

Figure 3 shows the rules defining the assertion-collecting semantics. Rule Val
immediately returns the collected assertions. Since this semantics is intended to
compute with symbolic values, there might be variables without a binding to
a concrete value. Hence, Val also returns such unbound variables. Rule VarExp
behaves similarly to rule VarExp of the concrete semantics and returns the asser-
tions collected during the evaluation of the expression. Note that the assertion-
collecting semantics does not really evaluate expressions since it should always
return the collected assertions in a finite amount of time. For the same rea-
son, rule Fun does not invoke the function in order to evaluate its right-hand
side. Instead, the pre- and postcondition information is added to the collected
assertions since they must hold if the function returns some value. The nota-
tion f ′pre(xn) and f ′post(xn, z) in the assertion means that the logical formulas
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Fig. 3. Assertion-collecting semantics

corresponding to the pre- and postcondition are added as an assertion. These for-
mulas might be simplified by replacing occurrences of operations defined in the
program by their definitions. Rule Let adds the let bindings to the heap, similarly
to the concrete semantics, before evaluating the argument expression. Rules Or
and Select collect all information derived from alternative computations, instead
of the non-deterministic concrete semantics. Rule Select also collects inside each
branch the condition that must hold in the selected branch, which is important
to get precise proof obligations. To avoid the renaming of local variables in dif-
ferent branches, we implicitly assume that all local variables are unique in a
normalized function definition.

In contrast to the concrete semantics, the assertion-collecting semantics is
deterministic, i.e., for each heap Γ , assertion C, variable z, and expression e,
there is a unique (up to variable renamings in let bindings) proof tree and asser-
tion D so that the judgement “Γ : C | z ← e ⇓ D” is derivable.

The assertion-collecting semantics allows to extract proof obligations to verify
contracts. For instance, to verify that a postcondition f ′post for some function f
defined by f(xn) = e holds, one derives a judgement (where z is a new variable)

[] : f ′pre(xn) | z ← e ⇓ C

and proves that C implies f ′post(xn, z).
As an example, consider the non-deterministic operation

coin = 1 or 2

and its postcondition
coin′post z = z > 0
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(the precondition is simply True). We derive for the right-hand side of coin the
following proof tree:

Val
[] : true | z ← 1 ⇓ z = 1

Val
[] : true | z ← 2 ⇓ z = 2

Or
[] : true | z ← 1 or 2 ⇓ z = 1 ∨ z = 2

Since z = 1 ∨ z = 2 implies z > 0, the postcondition of coin is always satisfied.
If we construct the proof tree for the right-hand side e of the factorial func-

tion, we derive the following judgement:

[] : n ≥ 0 | z ← e ⇓ (n ≥ 0 ∧ y = true ∧ z = 1) ∨ (n ≥ 0 ∧ y = false)

Since there is no condition on the result variable z in the second argument of the
disjunction, this assertion does not imply the postcondition z > 0. The reason is
that the recursive call to fac is not considered in the proof tree since it does not
occur at the top level. Note that rule Fun only adds the contract information
of top-level operations but no contracts of operations occurring in arguments.
Due to the lazy evaluation strategy, one does not know at compile time whether
some argument expression is evaluated. Hence, it would not be correct to add the
contract information of nested arguments. For instance, consider the operations
const x y = y f x | x>0 = 0 g x = const (f x) 42

f′post x z = x>0

If e denotes the right-hand side of g (in normalized FlatCurry form), then we
can derive with the inference rules of Fig. 3 the judgement

[] : true | z ← e ⇓ true

If we change rule Fun so that the contracts of argument calls are also added to
the returned assertion, then we could derive

[] : true | z ← e ⇓ x > 0

This postcondition is clearly wrong since (g 0) successfully evaluates to 42.
Nevertheless, we can improve our semantics in cases where it is ensured that

arguments are evaluated. For instance, primitive operations, like +, *, or ==,
evaluate their arguments. Thus, we add the following rule (and restrict rule Fun
to exclude these operations):

PrimOp
Γ : C | x ← x ⇓ D Γ : D | y ← y ⇓ E

Γ : C | z ← x ⊕ y ⇓ E ∧ z = x ⊕ y
where ⊕ ∈ {==, +, -, *, . . .}

Since primitive operations are often known to the underlying verifier, we also
collect the information about the call of the primitive operation. In a similar
way, one can also improve user-defined functions if some argument is known
to be demanded, a property which can be approximated at compile time by a
demand analysis [16].
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If we construct a proof tree for the factorial function with these refined infer-
ence rules, we obtain the following (simplified) assertion:

(n ≥ 0 ∧ n = 0 ∧ z = 1) ∨ (n ≥ 0 ∧ n �= 0 ∧ n1 ≥ 0 ∧ f > 0 ∧ z = n ∗ f)

Since this assertion implies z > 0, the postcondition fac′post holds so that its
checking can be omitted at run time.

Proof obligations for preconditions can also be extracted from the proof tree.
For this purpose, one has to consider occurrences of operations with non-trivial
preconditions. If such an operation occurs as a top-level expression or in a let
binding associated to a top-level expression and the assertion before this expres-
sion implies the precondition, then one can omit the precondition checking for
this call. For instance, consider again the proof tree for the right-hand side of
the factorial function which contains the following (simplified) judgement:

[] : n ≥ 0 ∧ n �= 0 | z ← let {n1 = n − 1; f = fac n1} in n ∗ f ⇓ . . .

Since n ≥ 0 ∧ n �= 0 ∧ n1 = n − 1 implies n1 ≥ 0, the precondition holds so that
its check can be omitted for this recursive call.

The correctness of our approach relies on the following relation between the
concrete and the assertion-collecting semantics:

Theorem 1. If Γ : e ⇓ Γ ′ : v is a valid judgement, z a variable, and C an
assertion such that ̂Γ ⇒ C is valid, then there is a valid judgement Γ : C | z ←
e ⇓ D with (̂Γ ′ ∧ z = v) ⇒ D.

Here, ̂Γ denotes the representation of heap information as a logic formula, i.e.,

̂Γ =
∧

{x = e | x �→ e ∈ Γ, e constructor-rooted or a variable}

The proof is by induction on the height of the proof tree and requires some
technical lemmas which we omit here due to lack of space.

5 More Examples

There are various recursively defined operations with pre- and postconditions
that can be verified similarly to fac as shown above. For instance, the postcon-
dition and the preconditions for both recursive calls to fib in
fib x | x == 0 = 0

| x == 1 = 1

| otherwise = fib (x-1) + fib (x-2)

fib′pre n = n >= 0

fib′post n f = f >= 0

can be verified with a similar reasoning. SMT solvers like Z3 [12] provide good
reasoning on integer theories. This can be successfully applied to verify more
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complex postconditions. For instance, consider the function which sums up all
natural numbers:
sum n = if n==0 then 0

else n + sum (n-1)

The precondition requires that the argument must be non-negative, and the
postcondition specifies the correctness of this function by Gauss’ formula:
sum′pre n = n>=0

sum′post n f = f == n * (n+1) ‘div’ 2

Our method allows a fully automatic verification of this postcondition.
The precondition on the operation take defined by

take 0 xs = []

take n (x:xs) | n>0 = x : take (n-1) xs

take′pre n xs = n >= 0

can be verified similarly to fac or fib since the list structures are not relevant
here. On the other hand, the verification of the precondition of the recursive call
of the function last defined by
last [x] = x

last (_:x:xs) = last (x:xs)

last′pre xs = not (null xs)

requires the verification of the implication

not (null xs) ∧ xs = (y:ys) ∧ ys = (z:zs) ⇒ not (null (z:zs))

This can be proved by evaluating the right-hand side to true. Hence, a reasonable
verification strategy includes the simplification of proof obligations by symbolic
evaluation before passing them to the external verifier.3

A more involved operation is the list index operator which selects the nth
element of a list:
nth (x:xs) n | n==0 = x

| n>0 = nth xs (n-1)

nth′pre xs n = n >= 0 && length (take (n+1) xs) == n+1

The precondition ensures that the element to be selected always exists since
the selected position is not negative and not larger than the length of the list.
The use of the operation take (instead of the simpler condition length xs > n)
is important to allow the application of nth also to infinite lists. To verify that
the precondition holds for the recursive call, one has to verify that

n ≥ 0 ∧ length (take (n + 1) xs) = n + 1 ∧ xs = (y:ys) ∧ n �= 0 ∧ n > 0

3 Since Curry programs might contain non-terminating operations, one has to be care-
ful when simplifying expressions. In order to ensure the termination of the simpli-
fication process, one can either limit the number of simplification steps or use only
operations for simplification that are known to be terminating. Since the latter prop-
erty can be approximated by various program analysis techniques, the Curry program
analyzer CASS [20] contains such an analysis.
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implies

(n − 1) ≥ 0 ∧ length (take ((n − 1) + 1) ys) = (n − 1) + 1

The proof of the first conjunct uses reasoning on integer arithmetic as in the
previous examples. The second conjunct can also be proved by SMT solvers when
the rules of the operations length and take are axiomatized as logic formulas.

6 Implementation and Benchmarks

We implemented static contract verification as a fully automatic tool which
tries to verify contracts at compile time and, in case of a successful verifica-
tion, removes their run-time checking from the generated code. The complete
compilation chain with this tool is as follows:

1. The Curry preprocessor performs a source-level transformation to add con-
tracts as run-time checks, as sketched in Sect. 3 and described in [6].

2. The preprocessed program is compiled with the standard Curry front end
into an intermediate FlatCurry program.

3. For each contract, the contract verifier extracts the proof obligation as
described in Sect. 4.

4. Each proof obligation is translated into SMT-LIB format and sent to an SMT
solver (here: Z3 [12]).

5. If the proof shows the validity of the contract, its check is removed from the
FlatCurry program.

This general approach can be refined. For instance, if a pre- or postcondition is
a conjunction of formulas, each conjunct can separately be verified and possibly
removed. This allows to make dynamic contract checking more efficient even if
the complete contract cannot be verified.

Although our tool is a prototype, we applied it to some initial benchmarks
in order to get an idea about the efficiency improvement by static contract veri-
fication. For this purpose, we compared the execution time of the program with
and without static contract checking. Note that in case of preconditions, only
verified preconditions for recursive calls can be omitted so that the operations
can safely be invoked as before.

For the benchmarks, we used the Curry implementation KiCS2 (Version
0.6.0) [9] with the Glasgow Haskell Compiler (GHC 7.10.3, option -O2) as its
back end on a Linux machine (Debian 8.9) with an Intel Core i7-4790 (3.60 GHz)
processor and 8 GiB of memory. Table 1 shows the execution times (in seconds,
where “0.00” means less than 10 ms) of executing a program with the given main
expression. Column “dynamic” denotes purely dynamic contract checking and
column “static+dynamic” denotes the combination of static and dynamic con-
tract checking as described in this paper. The column “speedup” is the ratio of
the previous columns (where a lower bound is given if the execution time of the
optimized program is below 10 ms).
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Table 1. Benchmarks comparing dynamic and static contract checking

Expression Dynamic static+dynamic Speedup

fac 20 0.00 0.00 n.a.

sum 1000000 0.99 0.19 5.10

fib 35 1.95 0.60 3.23

last [1..20000000] 0.63 0.35 1.78

take 200000 [1..] 0.31 0.19 1.68

nth [1..] 50000 26.33 0.01 2633

allNats 200000 0.27 0.19 1.40

init [1..10000] 2.78 0.00 >277

[1..20000] ++ [1..1000] 4.21 0.00 >420

nrev [1..1000] 3.50 0.00 >349

rev [1..10000] 1.88 0.00 >188

Many of the programs that we tested are already discussed in this paper.
allNats produces (non-deterministically) some natural number between 0 and
the given argument, where the precondition requires that the argument must
be non-negative. init removes the last element of a list, where the precondition
requires that the list is non-empty and the postcondition states that the length
of the output list is decremented by one. The list concatenation (++) has a
postcondition which states that the length of the output list is the sum of the
lengths of the input lists. nrev and rev are naive and linear list reverse operations,
respectively, where their postconditions require that the input and output lists
are of identical length.

As expected, the benchmarks show that static contract checking has a posi-
tive impact on the execution time. If contracts are complex, e.g., require recur-
sive computations on arguments, as in nth, init, “++”, or rev, static contract
checking can improve the execution times by orders of magnitudes. Even if the
improvement is small or not measurable (e.g., fac), static contract verification
is useful since any verified contract increases the confidence in the correctness of
the software and contributes to a more reliable software product.

7 Related Work

As contract checking is an important contribution to obtain more reliable soft-
ware, techniques for it have been extensively explored. Mostly related to our
approach is the work of Stulova et al. [27] on reducing run-time checks of asser-
tions by static analysis in logic programs. Although the objectives of this and
our work are similar, the techniques and underlying programming languages are
different. For instance, Curry with its demand-driven evaluation strategy pre-
vents the construction of static call graphs that are often used to analyze the
data flow as in logic programming. The latter is used by Stulova et al. where
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assertions are verified by static analysis methods. Hence, the extensive set of
benchmarks presented in their work is related to typical abstract domains used
in logic programming, like modes or regular types. There are also approaches to
approximate argument/result size relations in logic programs, e.g., [26], which
might be used to verify assertions related to the size of data. In contrast to these
fixpoint-based approaches, we simply collect assertions from program expressions
and use symbolic reasoning, e.g., integer arithmetic with user-defined functions,
to solve them. SMT solvers are well suited for this purpose and we showed that
they can be successfully applied to verify complex assertions (see example nth

above).
Static contract checking has also been explored in purely functional lan-

guages. [32] presents a method for static contract checking in Haskell by a pro-
gram transformation and symbolic execution. Since an external verifier is not
used, the approach is more limited. SMT solvers for static contract checking
are also used in [24]. Similarly to our work, abstract assertions are collected and
solved by an SMT solver in order to verify contracts. However, we consider a non-
strict non-deterministic language which requires a different reasoning compared
to the strict functional language used there. Another approach is the extension of
the type system to express contracts as specific types. Dependent types are quite
powerful since they allow to express size or shape constraints on data in the lan-
guage of types. Although this supports the development of programs together
with their correctness proofs [28], programming in such a language could be
challenging if the proofs are difficult to construct. Therefore, we prefer a more
practical method by checking properties which cannot be statically proved at
run time. One can also express contracts as refinement types as in LiquidHaskell
[29,30]. Similarly to our approach, LiquidHaskell uses an external SMT solver
to verify contracts. Hence, LiquidHaskell can verify quite complex assertions, as
shown by various case studies in [29]. Nevertheless, there might be assertions
that cannot be verified in this way so that a combination of static and dynamic
checking is preferable in practice.

An alternative approach to make dynamic contract checking more efficient
has been proposed in [13] where assertions are checked in parallel to the appli-
cation program. Thus, one can exploit the power of multi-core computers for
assertion checking by running the main program and the contract checker on
different cores.

8 Conclusions

In this paper we proposed a framework to combine static and dynamic contract
checking. Contracts are useful to make software more reliable, e.g., avoid invok-
ing operations with unintended arguments. Since checking all contracts at run
time increases the overall execution time, we presented a method to verify con-
tracts in Curry at compile time by using an external SMT solver. Of course, this
might not be successful in all cases so that unverified contracts are still required
to be checked at run time. Nevertheless, our initial experiments show the advan-
tages of this technique, in particular, to reduce dynamic contract checking for
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recursive calls. Since we developed this framework for Curry, a language com-
bining functional and logic programming features, the same techniques can be
applied to purely functional or purely logic languages.

We do not expect that all contracts can be statically verified. Apart from the
complexity of some contracts, preconditions of operations of the API of some
libraries or packages cannot be checked since their use is unknown at compile
time. However, one could provide two versions of such operations, one with a
dynamic precondition check and one (“unsafe”) without this check. Whenever
one can verify that the precondition is satisfied at the call site, one can invoke the
version without the precondition check. If all versions with precondition checks
become dead code in a complete application, one has a high confidence in the
quality of the entire application.

For future work, we will improve our tool in order to test the effectiveness of
our approach on larger examples. This might provide also insights how to improve
this approach in practice, e.g., how to use demand information to generate more
precise proof obligations. If the contract verifier finds counter-examples to some
proof obligation, one could also analyze these in order to check whether they
show an actual contract violation. Furthermore, it might also be interesting to
improve the power of static contract checking by integrating abstract interpre-
tation techniques, like [14,27].

Acknowledgments. The author is grateful to John Gallagher, Grigore Rosu, and the
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11. de Dios Castro, J., López-Fraguas, F.J.: Extra variables can be eliminated from
functional logic programs. Electron. Notes Theor. Comput. Sci. 188, 3–19 (2007)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Dimoulas, C., Pucella, R., Felleisen, M.: Future contracts. In: Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP 2009), pp. 195–206. ACM Press (2009)

14. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
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