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Abstract. Internet-based polling systems allow voters to cast their
votes at any time during the polling period, from any Internet-connected
computing device anywhere in the world. Security is an important feature
of such systems that should address inherent concerns, such as secrecy
of vote, anonymity and unlinkability of voter, voter coercion, secrecy of
intermediate results, verifiability, auditability, and poll integrity. Another
major concern is that an infected voting device with a malicious pro-
gram (e.g., virus, malware) could take control over the vote casting pro-
cess and make unauthorized and potentially undetected modifications
to the voter’s voting choices, and, hence, should not be trusted. In this
paper we present VSPReP, a verifiable, secure and privacy-preserving
remote polling (e-poll) system, which provides vote’s privacy and poll
integrity, prevents double voting, enables multiple voting (within the
allowed polling period), and achieves verifiability (cast-as-intended and
tallied-as-recorded) and uncoercibility in the presence of an untrusted
voting device. This paper presents a general design of VSPReP and
describes its workflow during three polling phases: pre-polling, polling
and post-polling. It also analyzes the security properties of VSPReP and
evaluates its performance in terms of computational and cryptographic
costs. The experimental results show that the average time a voter takes
to cast his/her vote is less than 45 secs, thus demonstrating the practi-
cality of VSPReP.

Keywords: Remote polling · Malware detection · Privacy
Verifiability

1 Introduction

In traditional elections, a voter presence is necessary to take part in an elec-
tion/poll and cast a vote. With the rise and popularity of the Internet and mobile
phones, elections/polls could be conducted remotely. Today, a trend towards
electronic and Internet voting can be observed, e.g., online polls and surveys
are popular in social networks, forums and newspapers. Similarly, till date, 14
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countries have conducted election trials to enable voters to cast votes on the
Internet using their own computing devices [14].

Internet-based voting system is based on the voter’s computing device
(smartphone, tablet, desktop PC, etc.), the Internet, and the voting system.
The voter’s computing device casts the votes that are sent across the Internet to
the voting system, where they are stored and tallied. These three different envi-
ronments and the information shared between them are vulnerable to various
attacks [18], such as voter coercion (a voter is put under pressure or is threatened
by a coercer to vote in a particular manner) or vote buying (a voter is offered
monetary benefits by a vote buyer to vote in a particular way, or not at all),
vote modification due to an infected voting device (a malicious program such as a
malware or virus may cause unauthorized and potentially undetected alterations
to voter’s selected voting choices), theft/forgery of voter identity (an attacker
with an access to authentication credentials could cast votes using the identities
of a legitimate voter), double voting (an eligible voter may cast multiple votes
using his/her authenticated credentials), a coalition of malicious participants
(involved parties may collude to alter or eliminate any voter’s vote, or cast fake
ballots on the behalf of authenticated voter), and disclosure of partial vote tally
before the end of the voting period.

Designing a secure Internet-based voting system has become a considerable
topic of discussion in the scientific community. A number of schemes have been
implemented and deployed in real-world, e.g., Prêt à Voter [17], and Helios [1],
which ensure vote privacy as well as verifiability in the presence of untrusted
authorities. However, these systems assume that the voting device is trusted for
privacy and verifiability. This assumption is unrealistic because a voting device
might be controlled by an attacker or host a malicious program. To resolve this
problem, many e-voting protocols are proposed to provide three types of verifi-
ability: (1) cast-as-intended verifiability [3,11] that provides a voter with means
to make sure that the vote cast by his/her voting device contains the intended
voting option, and that no changes have been performed, (2) tallied-as-cast ver-
ifiability [12] that allow voters, auditors and third party observers to check that
votes tallied corresponds to the cast votes, and (3) end-to-end verifiability [5]
that provides both cast-as-intended and tallied-as-cast verifiability. Here, the
tallied-as-cast verifiability is divided into two phases: recorded-as-cast (voters
can check that their cast votes have been properly recorded in the ballot box)
and tallied-as-recorded (voters, auditors and third party observers can verify
that the votes published on the BB are correctly included in the tally, without
knowing how any voter voted). In the literature, there exists a few protocols that
use return codes to provide cast-as-intended verifiability [2,3,9,11], and a Bul-
letin Board to provide tallied-as-cast verifiability [12]. These return code-based
systems send a code sheet containing pre-generated return codes, and finaliza-
tion codes to the registered voter over a secondary channel (postal mail) before
the voting phase. During voting, when the voter selects his/her voting choices
and the voting device submits an encrypted vote to the remote voting server,
the voting authorities calculate or retrieve return codes corresponding to voter’s
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choices. These codes are sent back to the voter who compares them with the
pre-generated return codes printed on his/her code sheet against the selected
choices. If matches, the voter finalizes the vote casting process by using finaliza-
tion codes. The issue of these schemes is that they assume the voting device is
not compromised and supports single vote casting.

The scientific community has published a lot of research work in designing
secure voting systems for national-level or big elections, and less attention has
been paid to develop secure e-polling systems (low-risk or small-level public-
opinion systems, where reasonable level of security, privacy, and functionality
should be provided to the voter).

In this paper, we propose an e-polling system, VSPReP, inspired by return
codes-based protocols [3,6,9] to provide cast-as-intended verifiability in the pres-
ence of untrusted voting devices. Also, VSPReP provides recorded-as-cast verifi-
ability (while preserving the privacy of the voter), poll integrity, non-coercibility,
resistance against collusion of voting authorities, and supports multiple voting
within an allowed polling period, while preventing double voting. The security
analysis of the e-polling protocol, and the experimental results of the polling
phase (implemented on Java programming language) are presented to show that
VSPReP provides a balance between security and functionality.

The rest of the paper is organized as follows. In Sect. 2, we provide the build-
ing blocks of VSPReP. Section 3 describes VSPReP in detail. The security anal-
ysis and experimental results are discussed in Sect. 4. Finally, Sect. 5, concludes
the paper.

2 Building Blocks

A. Distributed ElGamal Cryptosystem: In a distributed cryptosystem, a
set of agents cooperate to perform decryption on encrypted messages so as to pro-
vide confidentiality by preventing any single agent from decrypting messages. In
VSPReP, distributed ElGamal cryptosystem proposed in [10] is used to provide
voters’ privacy. Distributed ElGamal cryptosystem is a set of three protocols:
key generation (KeyGen), encryption (Enc), and decryption(Dec). In KeyGen
algorithm, a subgroup Gp is taken on as input which has a generator g of order
q of elements in Z

∗
p (a message space of the cryptosystem), where p and q are

two large numbers with p = 2kq + 1 for some integer constant k > 0. KeyGen
outputs ElGamal public key y = gx (global and known to all parties), and a
secret key x that is shared among t polling organizers (PO1, . . . , POt) using a
polynomial f of degree l over Zq such that each polling organizer holds a share
xi = f(i). In Enc algorithm, a message m ∈ Gp, y, and a randomly chosen
r ∈ Zq are taken as inputs to compute a cipher-text c: c = (c1, c2) = (gr, yr.m).
For decryption of c, Dec algorithm requires all polling organizers to compute
decryption shares di = c1

xi to output a plain-text message m. To provide verifi-
ability, non-interactive zero-knowledge proofs are computed during KeyGen and
Dec protocols.
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B. Pseudo-random Function Based on Decisional Diffie-Hellman
(DDH): A pseudo-random function (PRF) is a deterministic-keyed function
F : K x X → Y (where K is the set of keys, X is the domain, and Y is the
range) guaranteeing that a computationally bounded adversary having access
to PRF’s outputs at chosen points, cannot distinguish between the PRF and
a truly random function mapping between the same domain and range as the
PRF. In VSPReP, we use a variant of PRF, a key homomorphic PRF (FDDH

based on DDH), proposed by Naor et al. [15]. A PRF is key homomorphic if
given F (k1,m) and F (k2,m), there is a procedure that outputs F (k1 ⊕ k2,m),
where ⊕ denotes group operation on k1 and k2. FDDH is constructed by consid-
ering a cyclic group Gp of order q, and a hash function H1: X → Gp modeled as
a random oracle. FDDH is defined as: FDDH(k,m) ← H1(m)k with the following
homomorphic property, FDDH(k1+k2,m) = FDDH(k1,m)·FDDH(k2,m). FDDH is
a secure PRF in the random oracle model assuming the DDH assumption holds
in Gp.

C. Verifiable Mixnet: Verifiable mixnet is used to provide an anonymous
and verifiable tally in electronic voting systems. Verifiable mixnet enables a
collection of trustworthy servers to take as input an ordered set of cipher-texts
E = E1, E2, . . . , EN to be re-encrypted using a new randomization value without
changing the decryption process. The output is an ordered set of encryptions
E′ = E′

π(1)
, E′

π(2)
, . . . , E′

π(N)
(where E′

π(N)
is a re-encryption of EN , and π is a

uniformly random and secret permutation), and non-interactive zero-knowledge
proofs πmixt

(where t = 1, . . . , N) of correct mixing. Thus, this re-randomized
encryption prevents an adversary to determine the link between the output and
the input cipher-texts. The link between elements from input and output is only
retrieved in case of conspiring mix-nodes. Verifiability is provided by πmixt

, which
is checkable by any party and demonstrates that E′ is correctly constructed. The
tallying phase (Sect. 3.4) of VSPReP employs the verifiable mixnet proposed
in [20].

D. Digital Signature Scheme: A digital signature scheme (e.g., RSA, DSA)
is used to provide data integrity, data origin authentication and non-repudiation.
In our proposed system, we have used the RSA signature [4] that is made up of
three algorithms, (Gen, Sign, Verify), for generating keys, signing, and verifying
signatures, respectively. Gen is a key generation algorithm that creates an RSA
pubic key pk (pk = (n, e)), and a corresponding RSA private key sk (sk = d),
where n is a product of two large distinct prime numbers p and q, e is a public
exponent (a randomly generated integer with 1 < e < φ, where φ = (p−1)(q−1)),
and d is a private unique integer with 1 < d < φ. Sign is a probabilistic signature
algorithm that takes a message m as an input, produces a hash H of m, and then
computes a signature S on hash value (Hs) using sk. Verify is a deterministic
verification algorithm that takes pk and a signature S as inputs to extract hash
Hs from S. Also, it computes hash on the received message to generate another
hash value (Hv), and compares it with Hs for verification purposes. If both
hashes are identical, S is considered valid, otherwise invalid.
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E. Crypto MAC: Message Authentication Code (MAC) is a cryptographic
primitive that relies on a pseudorandom function to provide authentication, and
verification of received messages. A specific type of MAC, the keyed-hash message
authentication code (HMAC), is used to provide data integrity and authentic-
ity of the message. HMAC is obtained by using a cryptographic hash function
(e.g., SHA256) over the data (to be authenticated) in combination with a secret
(symmetric) key. The cryptographic strength of a HMAC depends on the prop-
erties of the underlying hash function. The ballot processing phase (Sect. 3.4)
and polling codes generation phase (Sect. 3.4) of VSPReP relies on the HMAC
algorithm described in [13].

F. Non-Interactive Zero Knowledge Proofs: A non-interactive zero knowl-
edge proof (NIZKP) is a variant of zero knowledge proof that does not require
an interaction between the prover and the verifier. The prover computes and
sends a statement to the verifier, who either accepts or rejects it. NIZKPs can
be obtained in the random oracle using Fiat-Shamir heuristic [8]. To provide ver-
ifiability in VSPReP, we have used the following proofs in different phases of the
polling: (1) proof of correct encryption based on Schnorr protocol [19] (polling
phase), (2) proof-of-equality of discrete logarithms based on Chaum-Pederson
protocol [7] (polling phase), (3) proof of correct decryption of ElGamal cipher-
texts (πdect) (mix and tallying phase), and (4) proof of correct mixing (πmixt

)
of ElGamal encryptions in the mixnet (mix and tallying phase).

3 VSPReP Model

This section describes the design and functionality of VSPReP. In Sect. 3.1, we
describe the role of each entity. Section 3.2 defines the functionality requirements
and the security assumptions. An attack model is described for VSPReP in
Sect. 3.3. Section 3.4 describes three phases of VSPReP in detail.

3.1 VSPReP Entities

VSPReP consists of eight basic entities. The functionality of each entity is defined
as follows: (1) The voter(Vk) is a participant who has a valid credential obtained
from the credential issuer to cast a vote (k = 1, . . . , N , where N is equal to max-
imum voters allowed in polling). (2) The voting device (VDS) is a computing
device responsible of casting a ballot given the options selected by Vk. A voter
Vk can use as many as S computing devices to cast his/her vote. Besides VDS ,
Vk uses another computing device as a validation device to receive return and
confirmation codes. (3) The polling organization is a trusted entity that is
in-charge of setting up the poll (poll questions and their corresponding vot-
ing options, etc.), tallying the votes and publishing the results of the poll. The
polling organization consists of t polling organizers: PO1 . . . POt. It is assumed
that out of t POs, there is one main PO who manages the remaining POs.
(4) The credential issuer (CI) is a trusted third party that is responsible
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for authentication and registration of the voter. It provides authenticated vot-
ers with the necessary polling credentials (keys and pseudo-identities). (5) The
bulletin board (BB) is a publicly verifiable entity where the results of various
steps of the polling process including the final polling result are published by
the authorized entities. All the entities of VSPReP have read-only access to BB,
whereas some parties have write-only and append-only access to BB. No party
is allowed to delete the existing data. (6) The polling server (PS) checks the
correctness of the ballots cast by the authenticated voters, updates, records and
stores these ballots into the ballot box. (7) The code generator (CG) is an
entity that manages multiple polling code generators (PCG). In VSPReP, we
have assumed six PCGX (X = 1, . . . , 6) that are responsible of generating return
codes, acknowledgment and confirmation codes to be used in the polling phase.
Also, each PCG generates a mapping table to map long-length return codes
to small-length return codes. (8) The printing facility (PF) is in-charge of
printing voting options along with their corresponding return codes, polling code
sheet identity (PCSID), acknowledgment and confirmation codes. Also, PF in
cooperation with CI, delivers polling card sheets to the authenticated voters
only.

3.2 Design Requirements and Security Assumptions

In this section, the design requirements and assumptions of VSPReP are
described.

A. Design Requirements: In the following, the design requirements related
to the construction of VSPReP are defined: (1) Only an authenticated voter
can use VSPReP on his/her lightweight computing device to cast his/her votes
for a maximum of three times. Only the last vote cast by the voter (within an
allowed voting period) is considered valid. Double voting by the same voter is
not allowed. (2) A voter should use the same pseudo-identity (issued by CI at
the time of registration) in three rounds of the poll. In case of a new pseudo-
identity request, all the previous votes of the voter shall be revoked. (3) Three
votes from the same voter within a permitted polling period shall be linked
together by a tag, which is a poll-specific pseudonym signed by the PS. (4) No
vote can be linked to the identity of the voter who has cast it. (5) All ballots
must remain secret while polling is in progress. A voter can read the contents
of the BB once the polling phase is finished. (6) Since the voting device of the
voter is untrusted, the integrity of the vote must be guaranteed, i.e. a verification
mechanism is required that should prevent vote’s manipulation by the malware-
affected device. (7) A voter should not be able to provide a proof of his/her
vote to any other entity. (8) A voter cannot be coerced by a coercer to cast a
vote for a specific voting option or abstain from voting. (9) No entity can gain
any knowledge about the tally before the start of the vote counting phase. (10)
After the polling phase and before the start of the tallying phase, a voter should
be able to verify that the vote cast by his/her voting device corresponds to what
he/she intended to cast in the voting phase. (11) After the tallying phase, the
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results should be published on the BB and can be verified by the voter, auditors
or passive observers that the final tally is correctly computed from the votes that
were cast. Also, a voter should be able to verify that his/her vote was correctly
included in the tallying phase. (12) The polling system should be efficient and
scalable.

B. Design and Security Assumptions: The underlying design and security
assumptions of our scheme are described as follows: (1) The poll consists of
multiple choice questions in which each voter should mark his/her preferences
(selecting one option per question) and order them sequentially. (2) A voter
is allowed to cast his/her vote three times within the allowed voting period
using his/her voting device. A tag is used to identify different votes sent by
a single voter within the voting period. (3) VSPReP assumes a TLS channel
between a voting device and the polling server during polling phase. (4) The
polling protocol of VSPReP depends on the voter using two computing devices
(one for casting vote, i.e. a voting device, and another for receiving return and
confirmation codes, i.e. a validation device). (5) The polling card sheets are
provided to each voter through a secure communication channel (post, email,
etc.) by a printing facility. Once the polling card sheets are delivered to the
voters, PF destroys all the information related to these sheets. (6) The exis-
tence of PKI is assumed such that any entity who uses the public key of another
participant knows that this key belongs to a legitimate party. The RSA and
ElGamal key generation is performed offline to generate key pairs. (7) Crypto-
graphic primitives and constructions used in VSPReP are secure and verifiable.
(8) The return, acknowledgment and confirmation codes are composed of 6, 6
and 8 alphanumeric digits, respectively. We have assumed the use of all upper-
case and lower-case letters, and digits (0–9). (9) Cast-as-intended verifiability
depends on the assumption that the voting device and the polling server cannot
be malicious simultaneously. (10) Generation of polling card sheets is an offline
process. In our experimental case, we assume each polling code generator has
50 pre-generated keys (1024-bits) to assist more than 10, 000 users. (11) Each
voter has access to the general parameters and the public keys, which are made
available by the polling server, the polling organizers, the printing facility, the
code generator and the polling code generators. (12) Six polling code generators
are assumed in generation of the polling card sheets. The reason of considering
multiple PCGs in VSPReP is to make the system scalable. With an increase
in the number of PCGs in the system, the computational cost of generating
temporary keys in the return codes generation phase is reduced.

3.3 Threat Model

This sub-section highlights an attack model for VSPReP related to coercion
resistance, double voting, vote manipulation by a malicious voting device, and
the voter’s privacy. The security of the system against these attacks is discussed
in Sect. 4.1.
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A. Voter Coercion: In voter coercion, the voter may be threatened by a
coercer to vote his/her choice of voting options. Once a vote casting phase fin-
ishes, the election authority may want to provide a receipt to the voter to allow
individual verifiability. The vote coercion attack is possible as long as the voters
are able to prove to the coercer how they voted.

B. Double Voting: Remote polling is vulnerable to electoral fraud due to the
possibility of double voting, i.e. an authenticated but a malicious voter may
request different polling credentials from the credential issuer to cast multiple
ballots in the same poll.

C. Vote Modification by a Malicious Voting Device: In a remote elec-
tronic polling system, the voters input their vote choices on a privately owned
computing devices. If the voting device is infected with a malware, it can modify
the voter’s choices covertly before these are submitted to the election authori-
ties and, therefore, falsely recorded and counted by the election authority unde-
tectably (without the voter’s knowledge).

D. Coalition of Malicious Entities: The following three attacks describe the
coalition of malicious VSPReP’s participants: (a) A malicious VDS may form a
coalition with PS to generate partial return codes (not corresponding to voter’s
encrypted voting options) undetectably; (b) PS and CG may collude to infer the
voting choices selected by the voter; and (c) After sending the valid confirmation
code to the voter, PS may collude with the CG to replace the voter’s ballot in
the ballot box with the colluded vote.

3.4 Overview of VSPReP

VSPReP, as shown in Fig. 1, consists of 3 phases: pre-polling, polling, and post-
polling.

In the pre-polling phase, cryptographic keys and polling parameters are coop-
eratively generated by the POs of VSPReP. Also, a web address containing the
list of voting options for each polling question, a unique poll identity, and a
polling period, are generated by the POs. This url is only sent to the authen-
ticated voters on request of CI. A voter gets registered to the system through
the voter registration phase, in which the voter receives a unique and valid cre-
dential from CI after a successful authentication. Only the authenticated voters
receive the polling card sheets (PCSs) (via mail) from the PF on CI’s request.
A PCS contains return codes, acknowledgment and confirmation codes, and is
generated by the CG, six PCGs, and the PF.

During the polling phase, the authenticated voter uses his/her credential to
input his/her voting options into V DS that encrypts the selected voting options,
computes and encrypts partial return codes, generates NIZKPs and forms a bal-
lot. The ballot contains an encrypted ID, cipher-text of votes, NIZKPs, time
stamp, session ID (a poll-specific pseudonym), and encrypted partial codes. V DS

sends the ballot to the PS via an anonymous and secure channel (TLS). Before
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Fig. 1. Overview of VSPReP.

the post-polling phase, vote validation and ballot processing phases are per-
formed to remove duplicate votes, and provide individual verifiability to the
voter.

In the post-polling phase, POs input the list of confirmed encrypted votes
into a verifiable mixnet that outputs an anonymized list of cipher-texts and
NIZKPs (proofs of correct mixing). These cipher-texts are then distributedly
decrypted by the POs to reveal the original votes, which are then published on
the BB.

In this paper, we have described two phases (generation of a PCS, and a
polling phase) in detail due to the fact that these two processes of e-poll protocol
address our objectives of providing protection against malware (during polling),
prevention of double voting, individual verifiability, and coercion resistance. The
post-polling is similar to other voting schemes in the literature that employ
mixnets to preserve anonymity of votes.

A. Pre-polling Phase: In this preliminary phase, Vk gets registered, and the
polling system is configured: an e-poll is created, cryptographic parameters and
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keys are generated and published on the BB by POs, and PCS are generated
and distributed to the authenticated voters.

I. Voter Registration: To be able to cast a vote, Vk must first register to
VSPReP to obtain his/her polling credential from CI. Vk can prove his/her
identity (e.g., eID card, a digital certificate issued by a trusted authority, ver-
ified email address) to CI, and obtains his/her polling credentials, i.e. a key
pair (KpVk

, KsVk
) and a pseudo-identity (we abstract here from the details of

authentication and assume that a secure authentication mechanism is used). The
pseudo-identity is obtained through a successful run of an interactive protocol
[16] between CI and Vk. This protocol results in a shared secret random value
rVk

between CI and Vk, which is used along with other identity details of Vk to
generate a unique pseudo-identity.

II. Poll Configuration: During polling configuration phase, the polling cryp-
tographic parameters (p, q, g) to be used in ElGamal cryptosystem and homo-
morphic PRF are defined and published. A cyclic Gp ⊆ Z

∗
p of quadratic residues

modulo a safe prime p = 2q + 1 is chosen as a common group for all the cryp-
tographic operations used in VSPReP. The key pairs of PF (KpPF ,KsPF ), PS
(KpPS ,KsPS), CG (KpCG,KsCG), and PCGs are generated. Also, PCGs cre-
ate their joint public encryption key KpPCG and a shared secret decryption
key KsPCG using distributed cryptosystem. Similarly, POs create a joint pub-
lic encryption key and a shared secret decryption key for ElGamal encryption
and decryption. Each PO creates its share of the key and posts the public part
along with the proofs at BB. BB checks the proofs and combines the shares
to form a public election key (KpPO). A message encrypted under KpPO can
only be decrypted by KsPO if all POs collaborate. POs and PS are provided
with “write” and “append” access to the BB. CG is provided with “write-only”
access to the BB. The voters are provided with “read-only” access to the BB. A
poll description is generated by POs that contains a unique poll identifier, poll
questions, voting options vj = {A,B,C,D} (small bit-length prime numbers ∈
Gp) for each question, polling time period (tp), and KpPO to be used by the
voters to encrypt their votes before casting them. This data is signed by the
main PO, and is appended to the poll description. The link containing the poll
description is sent to authenticated voters by CI after a successful registration.

III. Generation of Polling Card Sheets: For the generation of PCSs, CG,
PCGX, and PF perform cryptographic operations using their respective key
pairs. For proof-of-concept, it is assumed that there are 3 polling questions (Qi

with i = 1, 2, 3) with each Qi having 4 voting options (vj with j = 1, 2, 3, 4)
represented by small bit-length prime numbers. For example, the following voting
options for 3 questions are generated by the main PO, and are communicated
to PCGX before generation of PCSs: v1j = {11, 13, 17, 19}, v2j = {7, 29, 31, 41}
and v3j = {433, 53, 5, 47}. Each PCGX randomly picks up a key from a pool
of 50 (l = 1, . . . , 50) pre-generated keys. Also, each PCGX generates a unique
key KsessX

of 256-bits. Figure 2 illustrates the following steps performed between
CG, PCGX and PF to generate PCSs.
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Fig. 2. Generation of polling card sheets.

(1) Each PCGX calculates partial return codes (RCij(PCGX)) using PRF based
on DDH assumption for each voting option vj of Qi. Each PCGX uses its selected
secret key to obtain RCij(PCGX) in the following way:

RCij(PCG1) = FDDH(Ksal
), RCij(PCG2) = FDDH(Ksbl),

RCij(PCG3) = FDDH(Kscl), RCij(PCG4) = FDDH(Ksdl
),

RCij(PCG5) = FDDH(Ksel
), RCij(PCG6) = FDDH(Ksfl

),

where FDDH(K, vij) = H1(vij)K . (2) For each code, PCGX sends RCij(PCGX)
to CG that computes product of the received partial codes, and sends the result
(RRCij) to each PCGX, e.g., RRC11 that corresponds to voting option “1” of Q1

is computed as: RRC11 =
∏6

X=1 RC11(PCGX). (3) Each PCGX computes full
return code using the received code RRCij (from CG), and the symmetric key in
the following way: fRCij(PCGX) = hmac(RRCij ,KsesX

). Then, fRCij(PCGX)
is encrypted with KpPCG to obtain encrypted return codes (efRCij(PCGX)) to
be sent to PF. Also, each PCGX generates small-length (64-bits codes) ran-
dom codes sRCij(PCGX) that correspond to long (1024-bits efRCij) return
codes (sRCij(PCGX) ← efRCij(PCGX)), and encrypts both sRCij(PCGX)
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and efRCij(PCGX) with the public key (KpPF ) of PF to be sent to PF.
Also, each PCGX encrypts its secret key used in computation of partial return
codes (RCij(PCGX)) with KpPF , and sends the encrypted key to PF. (4) CG
generates a random Acknowledgment (ACK) code (64-bits code encoded with
Extended ASCII encoding to 6 digits), which a voter uses in the polling phase
to provide confirmation of the received return codes. CG encrypts ACK with
KpPF , and sends the encrypted code (EncKpPF

(ACK)) to PF. (5) When PF
receives the sets of the return codes (both long and short), the encrypted keys,
and EncKpPF

(ACK), it computes the following:

(a) PF decrypts the received encrypted keys using its KsPF , and generates a
Polling Card Sheet ID: PCSID =

∑
(Ksal

,Ksbl ,Kscl ,Ksdl
,Ksel

,Ksfl
).

(b) PF decrypts the received encrypted long return codes with KsPF to compute
a long code (LCij) for each voting option: LCij =

∏6
X=1 efRCij(PCGX).

(c) PF decrypts EncKpPF
(ACK) to obtain ACK. Also, PF decrypts encrypted

short return codes to obtain plain-text short return codes SCij(PCGX).
(d) PF permutes SCij(PCGX) with a random permutation key ρ, and then

randomly selects permuted (S̃Cij(PCGX)) codes, and pairs them with the
encrypted long return codes such that it obtains i × j pairs of return codes
to create a mapping table, e.g., in our proof-of-concept, 3 × 4 = 12 pairs of
codes are generated: (LCij , S̃Cij(PCGX)). Each entry of the mapping table
is then encrypted with KpPCG, and sent to each PCGX.

(e) PF generates a confirmation number (Confirm) by using PCSID, ACK,
and a nonce: Confirm = H(PCSID, ACK, nonce). Confirm is used as a
proof that the vote has been confirmed by the voter. PF encrypts Confirm
with KpCG, and sends the encrypted code to CG.

(f) PF prints the randomly selected 12 short return codes (S̃Cij(PCGX) along
with the corresponding voting options {A,B,C,D}, PCSID, Confirm, and
ACK as a Polling Card Sheet.

(6) Upon receiving EncKpPCG
(LCij , S̃Cij(PCGX)) from PF, each PCGX dis-

tributedly decrypts the encrypted entries (one time to decrypt the pair, and a
second time to decrypt LCij to obtain long return codes (dLCij)). The short
return codes (S̃Cij(PCGX)) are encrypted with the corresponding long return
codes dLCij to obtain EncdLCij

(S̃Cij(PCGX)), which is paired with plain-text
S̃Cij(PCGX) to create a mapping table that contains pairs (i × j) of return
codes:

enSCij = (EncdLCij
(S̃Cij(PCGX)), S̃Cij(PCGX)).

This mapping table is shared between CG and PCGX. (7) CG computes the
hash of each pair in the mapping table, and publishes it on BB as commitments
to the return codes. Also, CG computes commitments to ACK and Confirm
codes, and publishes CommitACKi

and CommitConfirmi
on the BB (since 3

PCSs will be sent to each voter, thus, BB would contain 3 tables of commitments
to the return codes, and i = 3 values of CommitACKi

and CommitConfirmi
for

each voter).
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B. Polling Phase: Once the pre-polling phase is finished, each Vk may cast
his/her ballot using his/her V DS . V DS of each Vk creates a ballot with the
selected voting options of each polling question (Qi), and submits it to PS. Vk

can cast his/her ballot at most three times (1 ≤ t ≤ 3). Each Vk casts his/her
ballot as follows: (1) V DS sets up a TLS connection with PS. PS authenticates
the V DS and receives a session ID (a poll specific pseudonym PIPoll) and a
time-stamp (ts) with the current time. (2) Vk selects one option for each Qi,
i.e. it inputs vj of each Qi into his/her V DS . (3) V DS computes a partial bal-
lot as a product of Vk’s selected options (vij): BVk

=
∏3

i=1 vij . V DS encrypts
BVk

with the joint public key of POs (KpPO) to obtain ElGamal cipher-text:
(c1, h1) = EncKpPO

(BVk
). Also, V DS generates NIZKP (πenc) to prove knowl-

edge of the randomness used for computing the encryption of BVk
. (4) Addi-

tionally, Vk inputs a 3-digit (alphanumeric) random number for each voting
option (γ1, γ2, γ3) into his/her V DS . (5) V DS concatenates three digits γVk

=
γ1||γ2||γ3, and encrypts γVk

with KpPO: (d1, e1) = EncKpPO
(γVk

). V DS con-
catenates both the cipher-texts (c1, h1)||(d1, e1), and generates NIZKP (πenccon)
to prove that (c1, h1)||(d1, e1) is equivalent to the concatenation of two ElGamal
encrypted cipher-texts under KpPO. The concatenated cipher-texts, PIPoll and
ts are digitally signed by V DS : SignKsVK

((c1, h1)||(d1, e1), P IPoll, ts, πenccon).
(6) Vk inputs his/her PCSID into V DS , who would compute partial codes cor-
responding to voter’s selected vij options using PRF based on DDH assumption
with homomorphic properties. V DS encrypts each computed partial return code
with the public key of CG (KpCG). Also, V DS generates i NIZKPs (πPCSi

) for
each computed partial return code. (7) The final ballot (ballotVk

) submitted by
V DS to PS consists of the following items:

ballotVk = EncKpPS (IDVk), (c1, h1)||(d1, e1), πenc, P IPoll, ts, πenccon , tVk ,

SignKsVK
((c1, h1)||(d1, e1), P IPoll, ts, πenccon), EncKpCG(FDDH(PCSID, v1j)),

EncKpCG(FDDH(PCSID, v2j)), EncKpCG(FDDH(PCSID, v3j)), πPCS1 , πPCS2 , πPCS3

(where tVk
is the time of voting according to V DS system clock).

I. Vote Validation: When PS receives ballotVk
from VDS , it starts a verifica-

tion process. PS decrypts EncKpPS
(IDVk

) to obtain IDVk
, and checks if there is

already an entry of ballot ballotVk
for Vk. If found, then PS checks the value of

the flag (FL) that indicates the number of entries of Vk. If FL = 0, i.e. ballotVk

is not found against Vk’s record, PS continues the validation process by verifying
the digital signature and proofs (πenc, πenccon) contained in ballotVk

. PS verifies
that ts and PIPoll used in ballotVk

are equal to the ones sent to Vk. If verified,
PS creates a new entry for Vk, stores his/her ballotVk

, and sets FL = 1. In case
FL = 3, three entries exist for Vk (i.e. the voter has cast his/her vote three
times), PS halts the polling process. If PS finds that there is already an entry of
Vk and FL < 3, it updates ts and PIPoll in ballotVk

, and checks that the new
time is more recent than that of an old entry.

II. Ballot Processing: (1) After creation or update of Vk’s voting record, PS
encrypts voter’s id (IDVk

) with KpCG, and sends EncKpCG
(IDVk

), encrypted
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partial return codes (EncKpCG
(FDDH(PCSID, vij)), and NIZKPs (πPCS1 ,

πPCS2 , πPCS3) to CG. (2) Upon receiving encrypted identity and partial return
codes, CG decrypts these using KsCG to obtain IDVk

along with the clear-text
of partial return codes. (3) CG sends partial return codes, and NIZKPs to each
PCGX. (4) Each PCGX verifies NIZKPs, and upon successful verification, com-
putes full return codes using the keyed-PRF and a symmetric key (the same key
used to compute the return codes during pre-polling generation of PCS):

NRCij(PCGX) = hmac(FDDH(PCSID, vij),KsesX
).

Each PCGX encrypts NRCij(PCGX) with KpPCG to obtain eNRCij(PCGX):

eNRCij(PCGX) = EncKpPCG
(NRCij(PCGX)),

PCGX sends eNRCij(PCGX) to CG. (5) CG computes long return codes
NLCij : NLCij =

∏6
X=1 eNRCij(PCGX), and sends these long codes to each

PCGX. (6) Upon receiving NLCij , each PCGX looks into its stored mapping
table (sent by PF during pre-polling PCS generation) to extract the corre-
sponding short return codes. Each PCGX encrypts these codes with NLCij ,
and sends to CG. (7) Upon receiving the encrypted codes, CG uses its stored
mapping table (shared with PCGX) to extract the corresponding short return
codes (S̃Cij(PCGX)). Once matching entries are found, CG encrypts the cor-
responding S̃Cij(PCGX) with KpPS , and sends these to PS. (8) PS decrypts
EncKpPS

(S̃Cij(PCGX)) and sends the plain-text short codes to the voter either
via mobile connection or an email (in a form of self-destructing message). (9)
When Vk receives the message from PS, he/she opens it in his/her validation
device, and checks whether the received short codes corresponds to the printed
short return codes in the PCS. If all the received codes match with the printed
ones, Vk inputs ACK to his/her voting device to finalize the ballot casting phase.
(10) V DS encrypts ACK with KpCG and sends EncKpCG

(ACK) to PS.

(a) PS sends EncKpCG
(ACK) to CG, who decrypts it with KsPS , and then per-

forms a check on it to confirm that the received ACK is a valid opening for
the CommitACKi

. If yes, CG checks the index of CommitACKi
since there

are three published commitments for each voter. CG checks the number cor-
responding to index “i” of CommitConfirmi

. CG extracts the corresponding
Confirm code and encrypts it with KpPS and sends it to PS.

(b) PS decrypts the encrypted code and sends Confirm code to Vk. PS adds the
ballotVk

to its ballot box. Only the validated votes with “confirmed” codes
would be considered in tallying phase. If Confirm code as displayed by Vk’s
validation device matches with the Confirm code on his/her PCS, the vote
confirmation must have been successful. After the confirmation phase, PS
generates hash of ballot and publishes it on the BB (concealed from the
voters until the final results are announced).

C. Post-polling Phase: After the polling period (tp) expires, PS no longer
accepts the votes. PS sends the list of cipher-texts Ck = (ck, hk)||(dk, ek) (stored
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in its ballot box) with “Confirmed” status to the main PO. The main PO initiates
the mixing process to anonymize the votes such that it is impossible to trace
which cipher-text belongs to which voter. To mix C0, a verifiable mixnet is
instantiated based on ElGamal encryption, and the shuffle size (equal to the
number of POs, i.e. t). Permutation (r̄) and re-encryption randomizations (s)
are selected at random. To provide the proof of correctness of the mixing, each
of these values (r̄ and s) must be generated explicitly. Each PO acts like a mixer,
who permutes and re-encrypts the ballots (C t

k = (ck, hk)||(dk, ek)) and forwards
it to the next mixer (PO). It is necessary to protect the privacy of the vote, as
the joint decryption phase will reveal vote contents to allow tallying.

I. Mixing and Tallying Phase: C 1
k is input to the first PO1 that chooses a

random permutation r̄(t1) and permutes the input list to achieve a new list C 1
k ={

(c1
r̄(t1)k

, h1
r̄(t1)k

)||(d1
r̄(t1)k

, e1
r̄(t1)k

)
}

. r̄ only changes the order of the cipher-texts
contained in Ck, while the message hidden in the cipher-text remains unchanged.
PO1 re-encrypts (C 1

k ) using s1 to obtain C
′1
k . PO1 submits the mixing result

along with the proof (πmix1) to the BB. BB verifies πmix1 and, on successful
verification, posts the mixed vote list for the next PO to mix. C

′1
k is input to the

next PO2, and so on. The output of the last POt is the output of the mixing
phase. Once all POs have completed the mix, and BB has verified all the proofs
(πmix1 , . . . , πmixt

), the mixing phase is over. The result is an anonymized list
of mixed cipher-texts that can be downloaded from BB by each PO to perform
decryption using his/her share of secret key, and produce a list of plain-text
ballots (BVk

||(γVk
). Each PO must generate and publish NIZKP (πdect) on the

BB. BB verifies all πdect proofs. Once all proofs are validated by BB, the main
PO outputs the factors vij from BVk

by performing prime factorization. PO
checks for each factor to obtain the corresponding voting option, and publishes
the output and associated γVk

on the BB against each polling question.

4 VSPReP Analysis

This section provides an analysis of VSPReP in terms of security and perfor-
mance.

4.1 Security Analysis

This section discusses the security of VSPReP according to the design require-
ments and the threat model presented in Sects. 3.2 and 3.3.

A. Coercion Resistance: VSPReP minimizes the possibility of coercion since
it allows multiple voting within tp (with only the last vote being considered
valid), and provides multiple PCSs to the authenticated voters. Thus, the vot-
ers can always update their votes by using a different PCS, and embedding a
new time stamp and a constant PIPoll in the updated ballot before the poll is
closed. Therefore, the coercer has no way of knowing if the vote cast in his/her



76 A. Qureshi et al.

presence and the return codes shown to him/her represents the ballot that was
actually counted for that voter. Alternatively, if the coercer has control over the
voter’s voting device, the voter can forge the contents of the PCS received in the
validation device and generate a fake ACK to send to the PS via a controlled
voting device. On receiving incorrect ACK, CG would not send a confirmation
to the voter, and thus, the ballot would not be considered confirmed and not
counted in the tally.

B. Double Vote Prevention: A poll-specific pseudonym PIPoll (signed by
PS) is used to identify different votes (≤3) cast by a single authenticated voter
during the polling phase to prevent double voting. During vote validation phase,
once the PS verifies IDVk

, Sig, and NIZKPs, it checks the received ballot to
verify that PIPoll embedded in the ballot matches with the one sent to the voter
earlier (step 1 of the polling phase). Since the voter is allowed to vote three times
within tp, the valid ballot must always contain the same PIPoll as described in
assumptions (Sect. 3.2). If all other credentials (IDVk

, Sig, and NIZKPs) are
verified but PIPoll is not matched, PS halts the polling process. In another
possible scenario, a malicious voter may attempt double vote casting by using
different identity (pseudo-identity issued at the time of registration). This attack
is not possible due to the fact that during three rounds of polling, the pseudo
ID of the voter must remain constant. In case of a new pseudo ID request, all
the previous votes of the voter shall be revoked by PS on CI’s request.

C. Verifiability: Individual verifiability is achieved through the proposed cast-
as-intended mechanism based on return codes, which enables the detection of a
possible malware attack on the voting device, e.g., if a malicious voting device
tries to modify the vote contents, and submit the vote on voter’s behalf, the
return codes sent to the voter by the PS would not match with the voter’s
intended voting options. PCGs would also detect the manipulated vote by means
of NIZKPs, i.e. the partial return codes and their proofs would not be verified.
Moreover, the malicious voting device could not get any information about the
received return codes, since the voter uses the validation device to read the
message (containing the return codes) received from the PS. In case of mismatch,
the voter will then cast his/her vote using a different voting device.

In VSPReP, POs publish the output of the mixing and tallying phase (voting
options along with three-digit random codes, associated NIZKPs, and hashes of
the confirmed ballots) on the BB so that a voter, any other participant, or
auditor can check whether the votes are counted correctly or not. The voters
can verify the votes by generating hashes of their submitted ballots, and then
compare them to the ones displaying on the BB. Moreover, the published three-
digit random code (only known by the voter) on the BB confirms to the voter
that his/her vote has been recorded correctly.

D. Privacy of Votes: The possible attacks against the privacy of the votes,
as described in Sect. 3.3, can be circumvented in the following ways: (1) a pos-
sible coalition between V DS and PS could not affect vote’s privacy, due to
the fact that even if a malicious PS verifies incorrect NIZKPs corresponding to
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manipulated encrypted votes, at the next stage, PCGs would detect the manip-
ulated vote by means of NIZKPs and a voter would not receive any return codes;
(2) given the fact that the relation between return codes and the voting options
is only known to the voter, neither the PS nor CG/PCGs can use the generated
return codes to infer the voter’s selected voting options; and (3) after sending
the confirmation code to the voter, PS may attempt to collude with CG/PCG
to replace the confirmed vote with the colluded vote, i.e. by only replacing the
encrypted voting options with their chosen options, and partial return codes
computed by brute forcing. However, this attack is infeasible due to the fact
PCSID used by the voter is only known to him/her. Also, at the end of post-
polling phase, the voter could compute the hash of the published vote on the
BB, and in case of mismatch, complain to the POs of vote manipulation.

4.2 Computational and Cryptographic Costs

We have implemented the polling phase (Sect. 3.4) of VSPReP in Java program-
ming language on a workstation equipped with an Intel i-5 processor at 2.5 GHz
and 8 GB of RAM to compute the costs of involved cryptographic operations.
Table 1 presents the cryptographic primitives used in the polling phase and the
computational costs associated with each operation. The results in Table 1 cor-
respond to 100 runs of each operation on the system (assuming the voter has
only cast his/her vote once during tp). Considering the costs of other operations
(computing safe primes, ElGamal key distribution, RSA keys generation, poll
setup), on average, a voter requires less than 45 s to cast his/her vote, thus,
demonstrating the practicality of the proposed polling protocol.

Table 1. Computational costs of cryptographic primitives.

Phase Entity Operations Time (ms)

V DS joins with PS V DS TLS 1100

Polling Phase V DS ElGamal Enc of votes and a random no 492

V DS + PS + CG RSA Enc/Dec of voter ID 5/38

V DS + CG Partial return codes Gen 59

V DS RSA Enc/Dec of partial return codes 11/98

V DS RSA Sig on ballot contents 65

V DS NIZKPs Gen 58

PS RSA Sig/NIZKPs Ver 4/545

PCG Full return codes Gen 10

PCG ElGamal Enc of long and short codes 1895

CG+ PS RSA Enc/Dec of short codes 2/19

CG+ V DS RSA Enc/Dec of ACK 1/11

CG+ V DS RSA Enc/Dec of Confirm 1/9

In the polling phase, the product of selected voting options, a 3-digit ran-
dom number, and the long and short return codes are encrypted with ElGamal
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encryption algorithm, which requires 2 exponentiations each (total 16 modular
exponentiations). The voter’s pseudo ID, the partial and short return codes,
ACK, and Confirm codes are encrypted with the RSA encryption algorithm
that requires 1 exponentiation to generate a cipher-text (total 9 exponentia-
tions), and 1 exponentiation to decrypt the cipher-text (total 9 exponentia-
tions). The computation of partial return codes requires 1 exponentiation and
M -modular multiplications of each voter selection (1 option per 3 questions
that sums up to 3 exponentiations) to polling code sheet ID (a voter-specific
key). Two NIZKPs are computed by V DS : (1) Schnorr identification protocol;
and (2) Chaum-Pederson protocol. The generation of first proof requires one
modular exponentiation (total 2 for generating ElGamal ciphers) and its veri-
fication requires 2 exponentiations (total 4). The second proof requires 2 mod-
ular exponentiations (total 6 exponentiations for 3 partial return codes) and
its verification requires 4 exponentiations (total 12 exponentiations). The ballot
contents are digitally signed using the RSA algorithm that requires one modu-
lar exponentiation for signature generation and one modular exponentiation for
signature verification. It can be observed that V DS does not need to perform
most expensive cryptographic operations (NIZKP Ver, ElGamal Enc of long and
short return codes), which demonstrates the feasibility of implementation of the
polling phase on the smartphones.

5 Conclusion

This paper presents a remote polling system, VSPReP, which provides vote
anonymity, poll integrity and uncoercibility, and prevents malware infected
device to cast a vote on behalf of an authenticated voter during polling phase.
VSPReP provides verifiability based on short return codes, a separate voting
device, and a BB. To provide cast-as-intended verifiability, VSPReP employs
cryptographic primitives to design a complex voting interaction between the
voting device and the polling server, which is experimentally shown to be compu-
tationally feasible for implementation on portable communication devices. Also,
VSPReP supports multiple voting by providing multiple voting sheets, while
preventing double voting. As a future work, we intend to address authentication
in VSPReP, and develop a working prototype.
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