l‘)

Check for
updates

Thalos: Secure File Storage in Untrusted
Clouds

Luca Maria Castiglione and Simon Pietro Romano(®

DIETTI - Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione,
Universita degli Studi di Napoli “Federico II”, Naples, Italy
luc.castiglione@studenti.unina.it, spromano@unina.it

Abstract. In this paper we present Thalos, an architecture for the
secure storage of files in the presence of untrusted third parties. Namely,
Thalos has been conceived at the outset as a system for protecting both
the confidentiality and the privacy of users who rely on an untrusted
remote server for storing their files. The system ha been designed as
a browser-enabled client-server application and its implementation has
been conducted by leveraging the Model-View-Controller pattern. The
paper discusses the rationale behind our work, as well as briefly presents
the design and implementation phases by focusing on the main use cases
that Thalos is capable to support.

1 Introduction

Nowadays, there is a growing interest towards the possibility of remotely storing
our files while making them readily available across multiple devices. People do
not normally manage their own storage servers; thus, they need to rely on third-
party, cloud-based storage services like Google Drive or Dropbox, which have
rapidly gained momentum in the technology market. We might ask ourselves
how much secure are these kinds of services [1] and what would happen to our
files if someone seized storage servers or hacked into them. More in general, we
might wonder whether to trust those companies at all.

This paper presents Thalos as a solution to the above-mentioned issues.

Thalos is an extremely robust storage service that is made secure by design.
The chosen cryptographic algorithms and the way they are applied offer to the
final users the opportunity to securely store their files remotely, while denying
any attempt to access them without the proper authorization. Thalos design,
indeed, makes it impossible for anyone who has physical or virtual access to the
servers to decrypt files without the right key. It also prevents any possibility
of establishing an exact match between one specific file and its owner. Thalos
relies on local elaborations to perform encryption: everything outside the owner’s
computer is hard encrypted with asymmetric algorithms (AES 4096 bit key),
according to OpenPGP standards. Due to the most known critical issues that
belong to read and write operations, in fact, cryptography is executed locally on
the machine of the user who owns the original contents. About that, in no way
does Thalos memorize keys or pass-phrases in browser cookies or anywhere else.

© Springer International Publishing AG, part of Springer Nature 2018
R. Doss et al. (Eds.): FNSS 2018, CCIS 878, pp. 178-192, 2018.
https://doi.org/10.1007/978-3-319-94421-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94421-0_14&domain=pdf

Thalos: Secure File Storage in Untrusted Clouds 179

Thalos will be provided as a service that can be easily used, in theory, by any
device connected to the Internet. Prospective users can easily register an account
by using their email address and choosing a username and a password; sessions
keep track of the users across the application. Once a user is registered, a first
key pair can be generated. The following keys are created: (i) Master Key: the
private key of the cryptographic key pair. It belongs to the user that can unlock
it through a pass-phrase chosen during the creation process; (ii) Public key:
this is the public key of the pair and is stored on a remote database. It will also
be used for secure file sharing in future improvements.

Once a key pair is generated it is possible to add a basket to one’s own basket
list. Baskets are virtual file containers (they can be thought of as very simple
virtual file systems). Each basket is described by a basket description file which
basically stores information about contained files, including name, type, size and
a pointer to the encrypted file on disk (attribute id) as it can be seen in Fig. 1.

Current Basket Size (in bytes)
File List Stuctures

Name (Before uploading)
File Size

File Type
‘Signature (For Integrity check)
File ID (Random string: needed to
retrieve the fle from the storage server)
Flle 1

Name (Before uploading)
File Size

File Type
Signature (For integrity check)

File ID (Random string: needed to
retrieve the file from the storage server)

Flle2

Name (Before uploading)
File Size
File Type
‘Signature (For Integrity check)
File ID (Random string: needed to
retrieve the fie from the storage server)
Filen

Encrypled BasketFile

Fig. 1. Thalos basket description

Together with the basket, two new keys are generated: (i) Basket Private
Key: used to decode the basket description and each file which belongs to the
basket itself; (ii) Basket Public Key: used to encode the basket description and
each file which belongs to the basket itself.

Basket description files are stored remotely and are encrypted with the basket
private key. Furthermore, a base file is associated with each user. It is remotely
stored and is encrypted with the Master Key of the user to whom it belongs. A
basefile contains the basket private keys of the baskets owned by the user it is
associated with.

180 L. M. Castiglione and S. P. Romano

2 Using Thalos

In the following we will briefly illustrate how our usual friends Alice and Bob
can securely store their files using Thalos. Figure 2 illustrates Alice’s example
usage path with Thalos. The involved sequence of steps is reported below:

1.

©w

Alice retrieves from remote her base file which is encrypted with her Master
Key Pair;

Alice decrypts locally in her laptop the base file and gets the keys needed to
unlock her own baskets;

Alice retrieves from remote the encrypted description of the “UAV” basket;
Alice decrypts the description and gets the entire file list which includes
pointers to the actual files on disk;

Now Alice can securely download any files she wants to access.

Basket 1:'Alice’s deepest secrets'. Owned by Alice

% ey Pointers to encrypted files

A oo

e ?

? Alice's Master Key

_— Encrypted
? P Storage

ket
2,
Alice se%,key
Alice's encrypted Basefile Q

Basket 2: 'Newest UAV datasheets’. Owned by Alice

Pointers to encrypted files

Fig. 2. Alice’s Thalos use path

In much the same way, Fig. 3 sketches Bob’s interactions with Thalos:

. Bob retrieves from remote his base file which is encrypted with his Master

Key Pair;

. Bob decrypts locally in his laptop the base file and gets the keys needed to

unlock his own baskets;

. Bob retrieves from remote the encrypted description of the basket containing

his deepest secrets;

. Bob decrypts the description locally in his laptop and gets the entire file list

which includes pointers to the actual files on disk;

. Now Bob can securely add a brand new secret to his list, staying assured that

no one will ever steal it from Thalos.

Alice’s and Bob’s files are stored (encrypted) on the same hard drive along

with other users files. It is impossible to find a reverse path which leads from a
file to its owner.

Thalos: Secure File Storage in Untrusted Clouds 181

Basket 1:'Bobs deepest secrets’. Owned by Bob

i Bob's Master key > Pointers to encrypted files 9
? ? Basket 1 secret key ? Encrypted
Bob

Storage

Bob's encrypted Basefile

Fig. 3. Bob’s Thalos use path

2.1 Protecting Master Keys in Thalos

The Master Key appears to be both the bottleneck and the weakness of our stor-
age system. Indeed, the key is strictly related to the device used to read and write
remote content and moving it among different laptops or smartphones might con-
stitute a security issue. In addition, in case of a device being lost or stolen, the
whole remote content would be exposed to unauthorized users. This problem has
been analyzed and a mitigation has been found in what we have called the Mul-
tiple Key Management System. In the newest version of Thalos, indeed, a user is
allowed to generate and manage more than one Master Key (MK). Once a MK
has been compromised, the victim can simply disable the access rights deriving
from the impaired credentials. The Multiple Key Management System has been
designed by taking advantage of the hierarchical structure of Thalos. At the end
of a key addition process, on the remote system many basefiles will exist, one
for each key actively owned by the end user. To avoid malicious exploitations of
this feature, the creation of an additional key is carried out via a feedback from
an already existing key, following these steps:

1. Standard user authentication (login and password) from the ‘new device’. Up
to this moment the ‘new device’ will be logged-in and it will not be able to
decrypt user’s content, yet.

2. Key Pair Generation within the context of the ‘new device’. New private
Master Key will be stored locally while the public key will be sent to the
Thalos Server along with a new key association request. The server forwards
the request through a push notification towards the set of already associated
devices.

3. The user will accept the request from an already associated device. Using
the old (locally stored) private key, the basefile is first decrypted and then
re-encrypted with the new public key.

4. From now on, the user can access his files from multiple devices.

The process introduces a minimal redundancy in the system since encryption
of a single file is carried out using the keys of the baskets. On the other hand, key
compromising is a well-known issue of asymmetric encryption and the Multiple
Key Management System is able to completely protect the end user provided
that the deletion of an impaired key is carried out as soon as possible.

182 L. M. Castiglione and S. P. Romano

3 From Theory to Practice: Thalos Software Description

In practice, Thalos shows up as a Web Application that can be reached through
any modern Internet browser (it has been successfully tested on Firefox and
Google Chrome) and allows users to create an account, generate a master key
pair and, eventually, securely manage their files.

More in details Thalos has been developed following a Client-Server pattern
where the client role is played by a Web Browser.

3.1 Server Side Architecture

Since the project runs on NodelJS [3], server routines are programmed in server-
side Javascript. Furthermore, the server has been designed following a Model
View Controller paradigm as showed by the architectural view in Fig.4. The
application uses PUG [4] as view engine to dynamically render HTML pages and
SEQUELIZE [6] as ORM (Object to Relational Mapping) tool to dynamically
map views inside a relational database and manage migrations.

s

'
_ | [Foashbourd] [login] [signup]

Fig. 4. Thalos architecture

Models Description. Two models are used in this application, namely ‘user’
and ‘basket’. As it can be easily guessed by their name, the former is needed to
manage users and the latter to manage baskets. Tables content is described in
Figs. 5 and 6, respectively. Particular fields are:

— users.public key: stores the user public key (from master key pair);
— users.base: stores the encrypted base file associated with the user;
— baskets.description: stores the encrypted basket description.

Thalos: Secure File Storage in Untrusted Clouds 183

-t
NULL | auto_incr
NULL

NULL

NULL

NULL

NULL

0

inactive

riaDB [(none)]> describe thalos
--------- R

Default | Extra
B B e e B +
basket_id | int(11) NULL | auto_increment |

name | varchar(255) NULL
description | text NULL
ownership | int(11) M NULL
public | text YES NULL
createdAt | datetime N NULL
updatedAt | datetime \[NULL
userId | int(11)
B R
8 rows in set (0,00 sec)

Fig. 6. Baskets table

Views Description. Views are written according to PUG syntax [4]. PUG
engine dynamically renders HTML pages. Data coming from controllers are sent
to the view as messages through flash [7].

Controller Description. The express [5] framework has been used with
NodelJS in order to manage HTTP requests. Express manages incoming con-
nections through the use of routes: when an HTTP request is incoming, it calls
the associated callback, if it exists. The following controllers have been defined
for Thalos:

— passportController: Defines strategies for user login and registration.

— dashController: Manages operations on user dashboards. It allows users to
upload and download keys and base files, as well as to create baskets. The
following interfaces are exposed:

— addBasket: responds to POST requests. Retrieves user data from the
current session and updates the basket tables with the POST parameters
received along with the request. Returns a JSON object containing the
result.

— addPublicKey: responds to POST requests. Retrieves user data from the
current session and updates the users table with the new public key and
the new base file, both received from POST parameters. Returns a JSON
object containing the result.

— getBasefile: responds to POST requests. Retrieves user data from the
current session. Returns a JSON object containing the result.

184 L. M. Castiglione and S. P. Romano

— basketController: Manages operations on baskets, like download/upload of
a description, download /upload of a file. This controller exposes the following
interfaces:

— getFile: responds to POST requests. Returns file selected by file id.
Result is returned as a JSON object.

— updateBasket: retrieves user data from the current session and updates
the basket tables with POST parameters received along with the request.
Returns a JSON object containing the result.

— deleteBasket: responds to POST requests. Deletes a basket. Returns a
JSON object containing the result.

— getBasket: responds to POST requests. Retrieves user data from the
current session. Returns a JSON object containing the result.

— authController: Manages users’ authorizations and exposes the following
interfaces:

— login: responds to GET requests and commands the PUG engine to
show the login page.

— signup: responds to GET requests and commands the PUG engine to
show the signup page.

— validateUser: changes user status from ‘inactive’ to ‘active’; this allows
the user to login. It’s a kind of ‘antispam’ filter.

Controllers do not implement or call any kind of encryption algorithm since
the data they work with are already encoded.

3.2 Client Side Architecture

In order to execute all encryption operations locally to the user machine, par-
ticularly in the user browser, the client side part of the project has been written
entirely in Javascript. About this, the client side routines require the OpenPGP.js
library [2] to perform their duty. The code is divided in three main categories,
according to the functions that are carried out.

— Operations on dashboard:

— genkey: given a pass-phrase generates a keypair. The public key is sent
to the server through AJAX as user public key. The private one is the
user Master Key. A downloadable file is generated on the fly and a link
is displayed.

— addBasket: given the Master Key, the Master Key pass-phrase and a
basket pass-phrase, it generates a new basket for the user who requested
it. Eventually the function updates the base file and sends it along with
the new basket data to the server through AJAX.

— Operations on baskets:

— bloadlist: given a user, it sends an XMLHttpRequest to the server
asking for the base file. Eventually, it decrypts the base file and displays
the user basket list.

Thalos: Secure File Storage in Untrusted Clouds 185

— openbasket: given a user and a basket name, this function sends an
XMLHttpRequest to the server asking for the basket description file. Once
got it, it decrypts it and displays it to the user.

— Operations on files:

— Upload: this function assumes that a file (to upload) and a basket have
both been selected. It locally loads the file from an HTML form, saves its
related information into a JSON object, encrypts the file, pushes the new
JSON into the basket description array and encrypts the description as
well. The file and the updated description are sent to the server through
the remote interface UpdateBasket.

— Download: this function assumes that a file (to download) and a bas-
ket have both been selected. It retrieves file information from the basket
description and then requests the selected file to the server through the
file id. Once a response from the server has arrived, the client decrypts it
and generates a downloadable file on the fly.

— Delete: this function assumes that a file (to delete) and a basket have
both been selected. It updates the current basket description by deleting
the selected file (identified through the provided file id). The updated
basket description is sent to the server along with the query needed to
remove the file from the storage server as well.

4 Dynamic Views

Some of the actions described in the previous section are herein reported through
sequence diagrams. This section aims to give the reader a clearer vision of the
whole project by pointing out how client and server work together.

Figure 7 shows how user registration is based on the validation of an activa-
tion code that is generated at subscription time on the server’s side.

e

1: Signup(email, username, password)

z

1.1: Signuplemal, username, password)

1.2: Activation Code

1.3: Activation Code

2: Validate(activation code)

2.1: Validate(activation code)

22:status
2.3:status

S S N

Fig. 7. User registration sequence diagram

186 L. M. Castiglione and S. P. Romano

Similarly, Fig.8 illustrates that a request for the creation of a key pair
(through a user-provided pass-phrase) is served directly within the browser. Of
the pair in question, the private key is provided back to the user, while the public
key is delivered to the Thalos server, where it gets stored for all future uses.

% Web Browserr Thaos Server

1: Login(email, username, password)

1.1: Login(email, username, password)

1.2: Session

1.3: Session

2: GenerateKeypair (passphrase)

2.1: generate keypair

22: prvate key

2.3; updatePublicKey(publickey) .

T |

Fig. 8. Master key pair generation sequence diagram

Figure9 sketches what happens when creating a Thalos basket. Basically,
the original base file is first retrieved from Thalos and locally decrypted with
the crypto material provided by the user (pass-phrase and private key). Then,
the addBasket method is triggered, which translates into the creation of a brand
new basket key pair, the update of the downloaded base file and eventually the
upload of the updated (and encrypted) base file to the Thalos server, together
with the newly generated basket public key.

% Wab Browserr Thalos Server
1 gtBasororteky,psspvase)
[Rr—
2 Erenpiaamoti ™
[13 DocnptBasato
14 et
2 AddBasolvasto_passtvase)
[21:qonort aset kopar-
—
T pe—
e
[2 Eno saseio
2.4: updatebase(Encrypted_basefile, basckel_public_key)
25;sas
26 sas
i
| i

Fig. 9. Basket creation sequence diagram.

Figure 10 describes the process of retrieving the list of files contained inside
a basket. As already discussed for the previous case, we first download the
encrypted base file, which is locally decrypted with user-provided information.

Thalos: Secure File Storage in Untrusted Clouds 187

Then, we call the getBasketList method on the client-side Thalos JavaScript
library. With the basket list readily available, we can eventually call the client-
side openbasket method, which in turn downloads from the Thalos server the
encrypted basket description file. As usual, the encrypted description is locally
decrypted and the resulting file list is provided back to the requesting user.

% Wab Browser Thalos Server

1: gotBasoflo(prvatokoy, passphrase)

1.1: gotBasofio{usord)

1.2. Encrypled Basefie

1.3 Decrypt Basefile

1.4: Basafio

2 gotBaskeList

21:asketist

3: openbasket

3

V2 gt e ”

:‘ 33: Decrypt Basket Desciption

3.4: retur fl st

Fig. 10. Basket list retrieval sequence diagram

Figure 11 focuses on file upload. Steps 1 through 3.4 are exactly the same
as those described when commenting Fig. 10. Starting from there (i.e., assuming
the file list has been made available to the end-user), we can call the client-side
UploadFile method, which: (i) updates and encrypts the basket description; (ii)
encrypts the file to be uploaded; (iii) uploads to the Thalos server both the
encrypted file and the encrypted (as well as updated) basket description.

Finally, Fig.12 focuses on file download. Once again, we start from step
4 in the diagram, which shows how a call to the client-side GetFile method
gets translated into an analogous getFile call to the Thalos server. Such a call
allows the browser to download an encrypted copy of the requested file, which
is decrypted on-the-fly and provided to the end-user in the clear.

5 The External Perspective

In this last section we try to follow the breadcrumbs left by a user who uses
Thalos to securely store his/her files. The goal is to show to the reader how the
system works in terms of files and data stored on the server. As it can be seen
in Fig. 13, the actor in question first of all creates an account in the webapp and
validates it.

188 L. M. Castiglione and S. P. Romano

X = T

1: gotBasofle(privatokey, passphraso)

1.1: getBasefie{userd)

1.2: Encrypled Basafi.

1.3: Decrypt Basefie

1.4: Basafio

2 getBaskellist

2.1: baskotist

3 openbasket
3.1: getBaskelDescription

LY

32 encyplod basket desciption

:‘ 33 Decryp! Basket Description

3.4:roturn i st

4 UploadFie(tie)
[, 41 UpdateBasketDosciplion
:‘ 42: EncrypiBaskelDescription
43 EnypiFe
44: SendFioffencryptodiic)
a5
46: UpdaleBaskatDoscrptionenc_dosc)
47 status
48 staws.

Fig. 11. File upload sequence diagram

% Web Browserr ,Wj

1: gotBase flo(privatokey, passphraso)

1.1 gotsasenotuser) .
12 Erepatasae ”
[13 Decrptsasete
14 Basetio
2 gotBaskatist
21 baskatist
5 cpanbasket
31 goiBaskoDoscrpton R
3.2: encrypted basket description g
[5 owomomaceerion
24 roum o st
4 GotFioiia)
— o
4.2: encrypledtie]
"
; 4.3 Decrypt DataFile =
4.4;coatent daa

Fig. 12. File download sequence diagram

Once done with the previous step, our special guest signs in through the
dashboard and generates his/her master key pair by clicking on the Generate
Master Key button (Fig. 14).

Thalos: Secure File Storage in Untrusted Clouds 189

Fig. 13. Account registration

Fig. 14. Dashboard

Fig. 15. Information uploading

Using the newly created key pair, the user adds a basket to his/her basket list
by following the instructions displayed in the web consolle. Eventually, he/she
uploads confidential information (Fig.15) to the remote Thalos server.

From now on, the file is in the secure storage and it is ready to be downloaded
by its owner whenever the need arises, as illustrated in Fig. 16.

190 L. M. Castiglione and S. P. Romano

Fig. 16. Information downloading

Let’s now assume that a bad guy has gotten, in some way, access to the
database. What can he actually learn about our user? In Fig.17 a view of the
database is shown.

Fig. 17. Database view: users

From the attached snapshot, we can derive that the attacker is now sure that
princess Leia uses Thalos and that she owns one basket named rebels_info, as
reported in the further snapshot in Fig. 18. Thus, the attacker tries to decrypt
the basket in question by reading the princess basefile where keys are stored.
What he gets is just a meaningless sequence of PGP-encrypted bytes.

The same thing happens if he tries to read any of the basket descriptions.
The only information that is ‘leaked’ is that Leia created one container. Though,
nothing is leaked with respect to sensitive data like, e.g., the total number of
files that have been uploaded.

Fig. 18. Database view: baskets

Assume that, at this point, the attacker accesses the hard drive as well as
the database. When he tries to list the storage directory, the only thing that
he realizes is that a lot of files are saved on disk with a random generated 199
characters length and a name that is encrypted with some key.

Again, the match between each file and its owner is recorded into the bas-
ket description that is encrypted with the basket key, which, itself, needs to
be decoded with the master key. In conclusion the attacker will never discover

Thalos: Secure File Storage in Untrusted Clouds 191

sensitive user’s information as long as the user in question keeps his/her Master
Key in a safe place.

6 Related Work

In this section we provide an overview of common services that focus on untrusted
computing and its application to the field of secure storage techniques. We will
try and highlight their differences with respect to our solution, for better or
worse.

MegaNZ is probably the most famous service on the market offering secure
storage for free on the Internet with a file level granularity. Mega developers have
written from scratch their own implementation of encryption algorithms using
Javascript asm. Files encryption works locally to the user machine and their
work has been open-sourced!. Moreover, the service is offered through a friendly
interface and the asymmetric encryption process is completely transparent to
the end user. On the other hand, the infrastructure does not provide any form
of anonymization. In fact, as written within the privacy policies, information on
files such as metadata, ownership and upload date is clearly stored by remote
servers®. Also, the asymmetric encryption breaks when the needs arises to share
a file. In such a case, the key needed for file decryption has to be explicitly
provided along with the file. Finally, the entire server side architecture is kept
hidden by the company; in this sense, the service cannot be deployed within a
private network.

Storj [8] is an interesting service that uses a pure P2P configuration in order to
keep user files secret. Every file is split in hundreds of shards that are stored,
encrypted, all over the nodes. The service is completely free and the code, written
in C, has been open-sourced. Unlike our solution, this service comes with the
strengths and weaknesses of peer-to-peer and neither reliability nor availability
of files can be ensured under all circumstances.

Clear storage with an encrypted security layer is another approach that can be
considered capable to reach a good privacy level in remote storage. It consists
in adding a double key encryption layer to a common storage service such as
Dropbox, Google Drive and Microsoft One Drive. Many applications have been
developed with this purpose but, unlike Thalos, they cannot provide the user
with file anonymization. This approach indeed requires a user to be aware of the
common privacy issues, as well as of the existence of countermeasures such as
advanced encryption.

! https://github.com/meganz/webclient.
2 https://mega.nz/privacy.

https://github.com/meganz/webclient
https://mega.nz/privacy

192 L. M. Castiglione and S. P. Romano

7 Conclusions

In this paper we have presented Thalos, an architecture for the storage of content
within third-party storage facilities, with both security and privacy guarantees.
We have discussed how Thalos has been designed and implemented as a remotely
accessible, web-enabled service. We have also briefly compared Thalos function-
ality with wide-spread cloud-based storage facilities.

Thalos has been already presented to the international security community as
an open-source tool for the secure storage of contents in the presence of untrusted
third-party storage providers. Namely, the project has been presented at the
recent BlackHat Europe 2017 conference that has taken place in London between
the 4" ad the 7" of December 2017. BlackHat is a renowned venue for security
researchers and practitioners, providing attendees with the very latest advances
in research, development, and trends in Information Security. Thalos has been
part of the so-called BlackHat Arsenal®, that is a session entirely devoted to the
presentation of cutting-edge tools in all fields of security.

Source code, documentation and installation information for Thalos are all
publicly available on gitlab at the following address: http://gitlab.comics.unina.
it/NS-Projects/Thalos.

Acknowledgments. This work was partially funded by the European Space Agency,
within the framework of project SHINE, ESA Contract No.: 4000118273/16/NL/CLP.

References

1. Rong, C., Nguyen, S.T., Jaatun, M.G.: Beyond lightning: a survey on security chal-
lenges in cloud computing. Comput. Electr. Eng. 39(1), 47-54 (2013). ISSN 0045—
7906

2. OpenPGPjs.org, OpenPGP.js. https://openpgpjs.org/, https://github.com/

openpgpjs/openpgpjs

NodeJS Foundation: NodeJS. https://nodejs.org/en/

PUG; s. https://pugjs.org

Expressjs. https://expressjs.com/

Sequelizejs. http://docs.sequelizejs.com/

FlashJS. http://flashjs.org/

Storj. https://storj.io/

® N ootk

3 http://www.blackhat.com/eu-17/arsenal /schedule/index.html.

http://gitlab.comics.unina.it/NS-Projects/Thalos
http://gitlab.comics.unina.it/NS-Projects/Thalos
https://openpgpjs.org/
https://github.com/openpgpjs/openpgpjs
https://github.com/openpgpjs/openpgpjs
https://nodejs.org/en/
https://pugjs.org
https://expressjs.com/
http://docs.sequelizejs.com/
http://flashjs.org/
https://storj.io/
http://www.blackhat.com/eu-17/arsenal/schedule/index.html

	Thalos: Secure File Storage in Untrusted Clouds
	1 Introduction
	2 Using Thalos
	2.1 Protecting Master Keys in Thalos

	3 From Theory to Practice: Thalos Software Description
	3.1 Server Side Architecture
	3.2 Client Side Architecture

	4 Dynamic Views
	5 The External Perspective
	6 Related Work
	7 Conclusions
	References

