
Computing with Multisets: A Survey
on Reaction Automata Theory

Takashi Yokomori1(B) and Fumiya Okubo2

1 Department of Mathematics, Faculty of Education, Integrated Arts and Sciences,
Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan

yokomori@waseda.jp
2 Faculty of Business Administration, Takachiho University, 2-19-1 Ohmiya,

Suginami-ku, Tokyo 168-8508, Japan
fokubo@takachiho.ac.jp

1 Introduction

In Natural Computing research [18], as mathematical modeling tools of biochem-
ical reactions, Ehrenfeucht and Rozenberg introduced a formal model called
reaction systems [6] for investigating the functioning of the living cell, where
two basic components (reactants and inhibitors) play a key role as a regulation
mechanism in controlling interactions.

Inspired by the notion of reaction systems, reaction automata (RAs) have
been first introduced in [10] as computing devices for accepting string languages.
The notion of RAs is an extension of reaction systems in that RAs employ
reactions which are defined by triples (consisting of reactants, inhibitors and
products), however they entail dealing with multisets for reactants and products
(rather than usual sets as reaction systems do). Thus, RAs are computing models
based on multiset rewriting that accept string languages. Another feature that
distinguishes RAs from reaction systems is that a reaction automaton receives its
input by feeding one symbol of an input string at each step of the computation. In
this respect, RAs have the taste similar to P automata, P systems with accepting
configurations, in which the idea of taking input sequences of multisets into the
systems from the environment was introduced (e.g., [5]).

This survey paper is primarily based on the research works on RAs achieved
in [9–12,15] in which various classes of RAs are considered in four types of
computation process: with/without λ-input modes in rule application of the
maximally parallel manner and the sequential manner.

In what follows, we make a quick survey of the results presented in this paper.
The first result in the series of papers was that RAs are computationally Tur-
ing universal [10]. In the paper, space-bounded complexity classes of RAs was
also introduced, and in the follow-up paper [11], it eventually turned out that

F. Okubo—The work of T.Yokomori was in part supported by JSPS KAKENHI,
Grant-in-Aid for Scientific Research (C) JP17K00021, and by Waseda University
grant for Special Research Project: 2017K-121. The work of F. Okubo was in part
supported by JSPS KAKENHI Grant Number JP16K16008.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 421–431, 2018.
https://doi.org/10.1007/978-3-319-94418-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_42&domain=pdf

422 T. Yokomori and F. Okubo

exponential-bounded RAs can exactly characterize the class of context-sensitive
languages. Further characterization result of the class of recursively enumerable
languages was developed by using the class of linear-bounded RAs together with
homomorphisms. The paper [11] also considered some of the closure properties
of language classes defined by linear-bounded RAs, showing that the class forms
an AFL, while the issue of the computing powers of RAs with λ-input mode in
sequential manner was taken up in [9] and investigated to prove that they have
again the Turing universal computability. Further investigations was made to a
simpler variant of RAs called Chemical reaction automata (CRAs), and it was
proved that CRAs with λ-input mode in parallel manner have the Turing univer-
sal computability, while their computing powers coincide with the class of Petri
net languages when working in sequential manner. In [15], several subclasses of
CRAs was introduced and their computing powers was studied. We leave more
details of the results to later sections.

The rest of this section is devoted to a brief preliminary. We assume that the
reader is familiar with the basic notions of reaction systems as well as of formal
language theory. For unexplained details in the theory of reaction systems and
in formal language theory, refer to, e.g., [6,7], respectively.

We use the basic notations and definitions concerning multisets that follow
[4]. A multiset over an alphabet V is a mapping μ : V → N, where N is the
set of non-negative integers, and for each a ∈ V , μ(a) represents the number of
occurrences of a in the multiset μ. The set of all multisets over V is denoted
by V #, including the empty multiset denoted by μλ, where μλ(a) = 0 for all
a ∈ V . A multiset μ over V can be represented by any permutation of the string
x = a

μ(a1)
1 · · · aμ(an)

n , where V = {a1, a2, · · · , an}. (Note that for each a ∈ V , a0

is an empty string λ.) In this sense, a multiset μ is often identified with its string
representation xμ or any permutation of xμ. A usual set U(⊆ V) is regarded as
a multiset μU such that μU (a) = 1 if a is in U and μU (a) = 0 otherwise. In
particular, for each symbol a ∈ V , a multiset μ{a} is often denoted by a itself.

2 Reaction Automata

Inspired by the works of reaction systems (initiated by [6]), the notion of reaction
automata has been introduced in [10] by extending sets in each reaction (of a
reaction system) to multisets. Here, we start by recalling basic notions concerning
reaction automata.

Definition 1. For a set S, a reaction in S is a 3-tuple a = (Ra, Ia, Pa) of finite
multisets such that Ra, Pa ∈ S#, Ia ⊆ S and Ra ∩ Ia = ∅. The multisets Ra and
Pa are called the reactant of a and the product of a, respectively, while the set
Ia is called the inhibitor of a.

These notations are extended to a multiset of reactions as follows: For a set
of reactions A and a multiset α over A (i.e., α ∈ A#),

Rα =
∑

a∈A

Rα(a)
a , Iα =

⋃

a⊆α

Ia, Pα =
∑

a∈A

Pα(a)
a ,

A Survey on Reaction Automata Theory 423

Notes. (1). A is often identified with its label set and is used as an alphabet.
(2). The symbol

∑
a∈A denotes the sum of multisets.

In the existing works on reaction automata, two ways of applying reactions have
been considered: the sequential manner and the maximally parallel manner. The
former manner was adopted in [10,11], while the literatures [9,12,15] studied the
latter as well.

Definition 2. Let A be a set of reactions in S and α ∈ A# be a multiset of
reactions over A. Then, for a finite multiset T ∈ S#, we say that

(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅.
(2) α is enabled by T in sequential manner if α is enabled by T with |α| = 1.
(3) α is enabled by T in maximally parallel manner if there is no β ∈ A# such

that α ⊂ β, and α and β are enabled by T .
(4) By Ensq

A (T) and Enmp
A (T), we denote the sets of all multisets of reactions

α ∈ A# which are enabled by T in sequential manner and in maximally
parallel manner, respectively.

(5) The results of A on T, denoted by ResX
A (T) with X ∈ {sq,mp}, is defined

as follows:

ResX
A (T) = {T − Rα + Pα |α ∈ EnX

A (T)}.

We note that ResX
A (T) = {T} if EnX

A (T) = ∅. Thus, if no multiset of reactions
α ∈ A# is enabled by T , then T remains unchanged.

Definition 3. A reaction automaton (RA) A is a 5-tuple A = (S,Σ,A,D0, f),
where

– S is a finite set, called the background set of A,
– Σ(⊆ S) is called the input alphabet of A,
– A is a finite set of reactions in S,
– D0 ∈ S# is an initial multiset,
– f ∈ S is a special symbol which indicates the final state.

Unlike the reaction system, a reaction automaton takes its input symbol from
the environment into the current multiset (or state) representing current config-
uration, from time to time during the computing process. This idea was already
considered and realized in the P automata theory (e.g., [5]).

Definition 4. Let A = (S,Σ,A,D0, f) be an RA, w = a1 · · · an ∈ Σ∗ and
X ∈ {sq,mp}. An interactive process in A with input w in X manner is an
infinite sequence π = D0, . . . , Di, . . ., where

{
Di+1 ∈ ResX

A (ai+1 + Di) (for 0 ≤ i ≤ n − 1), and
Di+1 ∈ ResX

A (Di) (for all i ≥ n).

In order to represent an interactive process π, we also use the “arrow nota-
tion” for π : D0 →a1 D1 →a2 D2 →a3 · · · →an−1 Dn−1 →an Dn → Dn+1 → · · · .

424 T. Yokomori and F. Okubo

Fig. 1. An illustration of interactive processes for accepting the language L =
{anbn |n ≥ 0} in terms of the reaction automaton A.

By IPX(A, w) we denote the set of all interactive processes in A with input w
in X manner. If for an input string w = a1 · · · an, it is allowed that ai = λ for
some 1 ≤ i ≤ n, then an interactive process is said to be with λ-input mode. By
IPλ

X(A, w) we denote the set of all interactive processes in A with λ-input mode
in X manner for the input w ([11]).

For an interactive process π in A with input w, if EnX
A (Dm) = ∅ for some

m ≥ |w|, then we have that ResX
A (Dm) = {Dm} and Dm = Dm+1 = · · · . In

this case, considering the smallest m, we say that π converges on Dm (at the
m-th step). If an interactive process π converges on Dm, then Dm is called the
converging state of π and the successive multisets Dm+1,Dm+2, . . . are omitted.

Definition 5. Let A = (S,Σ,A,D0, f) be an RA and X ∈ {sq,mp}. The lan-
guages accepted by A are defined as follows:

LX(A) = {w ∈ Σ∗ | there exists π ∈ IPX(A, w) such that π converges on Dm

for some m ≥ |w| and f is included in Dm}
Lλ

X(A)={w ∈ Σ∗ | there exists π ∈ IPλ
X(A, w) satisfying the same as LX(A)}.

Example 1. Let us consider a reaction automaton A = (
{
p0, p1, a, b, a′, f

}
,

{a, b}, {a0,a1,a2,a3,a4}, p0, f), where a0 = (p0, aba′, f), a1 = (p0a, b, p0a
′),

a2 = (p0a′b, ∅, p1),a3 = (p1a′b, a, p1), a4 = (p1, aba′, f). Figure 1 illustrates the
whole view of possible interactive processes in A with inputs anbn for n ≥ 0.
Let w = aaabbb ∈ Σ∗ be the input string and consider an interactive process π
in sequential manner such that

π : p0 →a p0a
′ →a p0a

′2 →a p0a
′3 →b p1a

′2 →b p1a
′ →b p1 → f.

It is easily seen that π ∈ IPsq(A, w) and w ∈ Lsq(A). Further, we see that
Lsq(A) = {anbn |n ≥ 0} which is a context-free language.

We remark that this interactive process can be also performed by A in max-
imally parallel manner, i.e. π ∈ IPmp(A, w). In fact, it holds that Lmp(A) =
{anbn |n ≥ 0}.

A Survey on Reaction Automata Theory 425

3 Main Results on RAs

This section presents some results on reaction automata (RAs) that have been
established in an earlier stage. In what follows, a language accepted by an RA
is often referred to as an RA language.

3.1 Computing Powers of RAs and Their Subclasses

It has been proven that the accepting power of reaction automata with both
manners of applying reactions coincides with that of Turing machines.

Theorem 1 ([9,10]). The followings hold :

(1) Every recursively enumerable language is accepted by a reaction automaton
in maximally parallel manner.

(2) Every recursively enumerable language is accepted by a reaction automaton
in sequential manner with λ-input mode.

(3) There exists a recursively enumerable language which cannot be accepted by
any reaction automaton in sequential manner.

The proofs are based on two facts: (i) every recursively enumerable language
is accepted by a restricted two-stack machine (Theorem 8.13 in [7]) and (ii) one
can devise an injective function to encode strings into multisets. The result (2) is
in marked contrast to (3), which clarifies the computing power of λ-input mode
in sequential manner.

The space complexity issues of reaction automata (RAs) have been consid-
ered. By restricting the volume of each multiset that is produced in an interac-
tive process by RA, some subclasses of RAs were introduced and investigated on
relations between classes of languages accepted by those subclasses of RAs and
language classes in the Chomsky hierarchy.

Let A be an RA and X ∈ {sq,mp}. Motivated by the notion of a workspace
for a phrase-structure grammar, we define the counterpart of RA as follows: For
w ∈ LX(A) with n = |w|, the workspace of A for w is defined as:

WS(w,A) = minπ{maxi{|Di| | Di appears in π}, π ∈ IPX(A, w) }.

Definition 6. Let f be a function defined on N and X ∈ {sq,mp}.

(1) An RA A is f(n)-bounded if for any w ∈ LX(A) with n = |w|, WS(w,A) ≤
f(n).

(2) If a function f(n) is a constant k (linear, exponential), then A is termed
constant-bounded (resp. linear-bounded, exponential-bounded).

(3) The class of languages accepted by constant-bounded RAs (linear-bounded,
exponential-bounded, arbitrary RAs) in X manner is denoted by CoRAX

(resp. LRAX , ERAX , RAX).
(4) The class of languages accepted by constant-bounded RAs (linear-bounded,

exponential-bounded, arbitrary RAs) with λ-input mode in X manner is
denoted by CoRAλ

X (resp. LRAλ
X , ERAλ

X , RAλ
X).

426 T. Yokomori and F. Okubo

In order to explore and make clearer inclusion relations among language
classes (considered so far), it is necessary to find a family of languages (or at
least a particular language) with certain properties which plays a role of witness
to distinguish one class from the other. The following lemma is useful for the
purpose.

Lemma 1 ([9]). Let Σ be an alphabet with |Σ| ≥ 2 and h : Σ∗ → Σ∗ be an
injection, and consider Lh = {wh(w) |w ∈ Σ∗}. Then, Lh is not in RAsq.

Let us denote by REG (CF , CS,RE) the class of regular (resp. context-free,
context-sensitive, recursively enumerable) languages.

Theorem 2 ([9,10]). The following inclusions hold :

(1). REG = CoRAmp ⊂ LRAmp ⊂ ERAmp ⊆ RAmp = RE
(2). REG = CoRAsq ⊂ LRAsq ⊂ RAsq ⊂ RAλ

sq = RE.
(3). ERAλ

sq = ERAmp = CS.
(4). CF , LRAmp and RAsq are incomparable.

Thus, new characterizations of the classes REG, CS and RE have been estab-
lished in terms of the subclasses of RA languages CoRAmp, ERAmp,RAmp,
respectively. As seen later, however, the class CF has been proved incompa-
rable to any known class of languages defined by RAs so far, exhibiting a unique
position within the RA language hierarchy.

3.2 Some Other Characterizations of RA Language Classes

One of the primary issues in the formal language theory is to investigate the
closure properties of a language class under various language operations. When
featuring the classes LRAmp and LRAλ

mp, the following has been proven.

Theorem 3 ([10,11])

(1). LRAmp is closed under union, intersection, concatenation, derivative, λ-
free morphisms, λ-free gsm-mappings and shuffle, while not closed under com-
plementation, quotient by regular languages, morphisms or gsm-mappings.
(2). LRAλ

mp is closed under union, intersection, concatenation, Kleene +,
Kleene ∗, derivative, λ-free morphisms, inverse morphisms, λ-free gsm-mappings
and shuffle.

We remark that in order to prove some of the negative closure properties of
LRAmp, the following lemma is of crucial importance.

Lemma 2 ([10]). For an alphabet Σ with |Σ| ≥ 2, let h : Σ∗ → Σ∗ be an
injection such that for any w ∈ Σ∗, |h(w)| is bounded by a polynomial of |w|.
Then, the language Lh = {wh(w) |w ∈ Σ∗} is not in LRAmp.

Further characterization results of RE have been developed by using LRAmp

and RAsqtogether with homomorphisms and regular languages.

A Survey on Reaction Automata Theory 427

Theorem 4 ([9,11])

(1). For any recursively enumerable language L, there exists an LRA A such
that L = h(Lmp(A)) for some projection h.
(2). For any recursively enumerable language L, there exists an LRA A such
that L = R\Lmp(A) (or Lmp(A)/R) for some regular language R.
(3). For any recursively enumerable language L, there exists an RA A such that
L = h(Lsq(A)) for some projection h.

4 Chemical Reaction Automata

As a simple and modified version of a reaction automaton, a chemical reac-
tion automaton (CRA) has been introduced and investigated [12]. Rather lately,
this computing model CRA turned out to be important, because it can provide
an online computational model for a molecular programming language called
Chemical reaction networks (CRNs [19]). It is known that CRNs involve wet
implementations by a molecular reaction primitive called DNA strand displace-
ment (DSD) systems.

Specifically, a CRA is a 5-tuple (S,Σ,A,D0, F), where each reaction in A is
of the form (R, ∅, P) (each reaction in CRA has no inhibitor), and F is a finite
set of final multisets. For convenience, each reaction in A is denoted by R → P .
In an interactive process of CRA, if EnX

A (D) = ∅, ResX
A (D) is undefined. A

language accepted by a CRA A = (S,Σ,A,D0, F) is defined by

Lλ
X(A) = {w ∈ Σ∗

λ |π : D0 →a1 D1 →a2 · · · →an D ∈ IPλ
X(A,w), D ∈ F}.

Remarks: The acceptance condition of CRA computation is slightly different
from that of RA computation. A CRA accepts an input string if the final multiset
coincides with an element of F , while an RA accepts an input string if the final
multiset includes a particular symbol f . This difference is significant to obtain
the results in our paper.

4.1 The Computation Power of CRAs

It has been shown that CRAs working in maximally parallel manner are com-
putationally Turing universal. Our proof requires the fact that (i) a two-counter
machine is equivalent to a Turing machine as a language accepting device [7] as
well as the result that (ii) for any k-counter machine, there effectively exists an
equivalent CRA. From (i) and (ii), the following is derived:

Theorem 5 ([12]). The computational power of CRAs with λ-input mode in
maximally parallel manner is equivalent to that of Turing machines.

A naive question now arises: Concerning the computing power of CRAs
whether or not there exists a real gap between working in maximally paral-
lel manner and in sequential manner. This question is solved as a corollary of
the next theorem.

428 T. Yokomori and F. Okubo

Theorem 6 ([12]). A language L is generated by a Petri net system if and only
if L is accepted by a CRA with λ-input mode in sequential manner.

Note that among several types of Petri net languages, here we mean a lan-
guage of Lλ-type in [17]. Since the class of Petri net languages is strictly included
in the class of context-sensitive languages and is incomparable to the class of
context-free languages [17], it turns out that the computational power of CRAs
with λ-input mode in sequential manner is less powerful than that of CRAs with
λ-input mode in maximally parallel manner.

4.2 Determinism and Reversibility in CRAs

In this section we introduce the notions of determinism and reversibility into
CRAs, and investigate the computational powers of those classes of CRAs in
comparison with the language classes of Chomsky hierarchy.

The computing power of reversible CRAs involves the physical realization
of molecular programming of chemical reaction networks with DNA strand dis-
placement system implementation [19], and therefore, it is of great significance to
elucidate the computing capabilities of both deterministic and reversible CRAs
from the theoretical viewpoint of molecular computing.

Unlike the determinism of conventional computation models such as push-
down automata, since a reactant is not divided into “input” part and “memory
(multiset)” part, the determinism of CRAs cannot be decided only by a form of
transition rules. This comes from the property of multiset memory, that is, from
the current configuration alone, a CRA cannot identify a reactant of the next
reaction to be applied. Therefore, the determinism of CRA has to be defined so
as to exclude any branching computation, regardless of a non-empty input or
empty input.

A CRA is said to be deterministic if for every input symbol a ∈ Σ and every
reachable configuration, the resultant multiset after a reaction is unique. Similar
to the definition of deterministic pushdown automata, this condition is extended
to the case of λ-input mode.

It is not trivial, only from their definitions, to recognize the difference of
computing powers of the determinism between realtime CRA and CRA with
λ-input mode, where “realtime” means “no λ input is allowed”. The following
result might be rather unexpected in some sense.

Lemma 3 ([15]). If a language L is accepted by a DCRA with λ-input mode,
then L is also accepted by a realtime DCRA.

Note that by our definition of DCRA, without receiving an input symbol,
no configuration of a DCRA with λ-input mode can have an enabled reaction,
while this is not the case for a realtime DCRA. In order to make a reaction, a
realtime DCRA always requires an input symbol, even if its configuration has
an enabled reaction with no input symbol.

Information preserving computations (forward and backward determinis-
tic computations) are very important and are considered as “reversibility” in

A Survey on Reaction Automata Theory 429

Fig. 2. Inclusion relations among a variety of RA language classes at large.

many existing research papers (e.g., [2,3]). However, in order to understand
their properties in more details, we want to take a position to think of them
apart(i.e., separate into forward and backward determinisms). Thus, in our view
the “reversibility” simply means that the previous configuration of computation
can be uniquely determined (backward determinism).

A CRA is said to be reversible if for every input symbol a ∈ Σ and every
reachable configuration D, the set of configurations which directly reaches D
with a is a singleton. For the case of λ-input mode, this condition is extended
to the case of λ-input mode in a natural manner.

The following lemma holds true for a deterministic and reversible CRA
(abbrev. DRCRA).

Lemma 4 ([15]). If a language L is accepted by a DRCRA with λ-input mode,
then L is also accepted by a realtime DRCRA.

By CRAsq, CRAλ
sq, DCRAsq, DCRAλ

sq, RCRAsq, RCRAλ
sq, DRCRAsq, and

DRCRAλ
sq, we denote the classes of languages accepted by realtime CRAs,

CRAs with λ-input mode, realtime DCRAs, DCRAs with λ-input mode, real-
time RCRAs, RCRAs with λ-input mode, realtime deterministic and reversible
CRAs (DRCRAs), DRCRAs with λ-input mode, respectively.
Remarks: Due to the space limitation, most of the details on the results of
DCRAs and RCRAs are omitted and the reader is advised to refer to [15].
Instead, Fig. 2 summarizes the inclusion relations among various classes of CRA
languages discussed in this paper, where PN is the class of Petri net languages
of Lλ-type [17] and revREG is the class of zero-reversible regular languages [1].

Last but not least, it should be noted the following:

430 T. Yokomori and F. Okubo

(1). Another type of “finite automata with multiset memory (FAMMs)” was
proposed and investigated in [14] which employs a rule application mode
similar to (but different from) that of RAs, and with FAMM framework a
new characterization of Chomsky hierarchy was established.

(2). The reader is kindly advised to refer to another survey paper on reaction
automata theory [13] for more details on the results and discussion left out
in this paper because of the space limit.

5 Future Research Topics

Many subjects remain to be investigated along the research direction suggested
by reaction automata.

– Inclusion relations and Computing powers:
• Further refinements of the hierarchy of RA language classes and CRA

language classes are strongly encouraged to clarify the inclusion relations
in Fig. 2.

• It is of great importance to explore the relationships between subclasses of
RA and others defined by computing devices based on the multiset rewrit-
ing, such as a variety of P-systems and their variants (e.g., P automata
and dP automata [5,16]).

• It is also intriguing to clarify the relationships between subclasses of CRAs
studied here and others defined by reversible computing models such as
reversible pushdown automata [8].

• It remains open whether or not deterministic CRAs (with/without λ-
input mode) in maximally parallel manner are Turing universal.

– Complexity issues: There remain open time complexity issues to be stud-
ied in the hierarchies of RA and CRA classes. For example, no efforts have
been made yet for investigating the time complexity of any class from the
hierarchies.

– Decision problems: One may be encouraged to study a variety of the deci-
sion problems on subclasses within RA hierarchy. For example, it is an inter-
esting question to explore the equivalence problem for the class LRA or the
classes of deterministic/reversible CRAs.

– Other issues: It would also be useful to develop methods for simulating
a variety of chemical reactions in the real world application, by the use of
the framework based on reaction automata. For that purpose, investigating
stochastic models based on RAs has to be conducted, and such stochastic
versions of RAs may provide useful simulation tools for analyzing any natural
phenomena modeled by RAs.

Finally, considering the natural correspondence to (or analogy of) classic the-
ory of automata, we conclude this survey with our firm belief that Reaction
Automata are computational devices which deserve much further research efforts.

A Survey on Reaction Automata Theory 431

References

1. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
2. Alhazov, A., Freund, R., Morita, K.: Sequential and maximally parallel multiset

rewriting: reversibility and determinism. Nat. Comput. 11, 95–106 (2012)
3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–

532 (1973)
4. Calude, C.S., PĂun, G., Rozenberg, G., Salomaa, A. (eds.): WMC 2000. LNCS,

vol. 2235. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45523-X
5. Csuhaj-Varju, E., Vaszil, G.: P automata. In: The Oxford Handbook of Membrane

Computing, pp. 145–167 (2010)
6. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75, 263–280

(2007)
7. Hopcroft, J.E., Motwani, T., Ullman, J.D.: Introduction to Automata Theory,

Language and Computation, 2nd edn. Addison-Wesley, Boston (2003)
8. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.

78, 1814–1827 (2012)
9. Okubo, F.: Reaction automata working in sequential manner. RAIRO Theor.

Inform. Appl. 48, 23–38 (2014)
10. Okubo, F., Kobayashi, S., Yokomori, T.: Reaction automata. Theor. Comput. Sci.

429, 247–257 (2012)
11. Okubo, F., Kobayashi, S., Yokomori, T.: On the properties of language classes

defined by bounded reaction automata. Theor. Comput. Sci. 454, 206–221 (2012)
12. Okubo, F., Yokomori, T.: The computational capability of chemical reaction

automata. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 53–
66. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4 4. Also, in
Natural Computing, vol. 15, pp. 215–224 (2016)

13. Okubo, F., Yokomori, T.: Recent developments on reaction automata theory: a
survey. In: Suzuki, Y., Hagiya, M. (eds.) Recent Advances in Natural Computing.
MI, vol. 9, pp. 1–22. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-
55105-8 1

14. Okubo, F., Yokomori, T.: Finite automata with multiset memory: a new charac-
terization of chomsky hierarchy. Fundam. Inform. 138, 31–44 (2015)

15. Okubo, F., Yokomori, T.: The computing power of determinism and reversibility
in chemical reaction automata. In: Adamatzky, A. (ed.) Reversibility and Univer-
sality. ECC, vol. 30, pp. 279–298. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73216-9 13

16. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York (2010)

17. Peterson, J.L.: Petri Net Theory and the Modelling of Systems. Prentice-Hall,
Englewood Cliffs (1981)

18. Rozenberg, G., Back, T., Kok, J.N. (eds.): Handbook of Natural Computing.
Section IV: Molecular Computation, vol. 3, pp. 1071–1355. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-540-92910-9

19. Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand
displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS,
vol. 7433, pp. 135–149. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32208-2 11

https://doi.org/10.1007/3-540-45523-X
https://doi.org/10.1007/978-3-319-11295-4_4
https://doi.org/10.1007/978-4-431-55105-8_1
https://doi.org/10.1007/978-4-431-55105-8_1
https://doi.org/10.1007/978-3-319-73216-9_13
https://doi.org/10.1007/978-3-319-73216-9_13
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-642-32208-2_11
https://doi.org/10.1007/978-3-642-32208-2_11

	Computing with Multisets: A Survey on Reaction Automata Theory
	1 Introduction
	2 Reaction Automata
	3 Main Results on RAs
	3.1 Computing Powers of RAs and Their Subclasses
	3.2 Some Other Characterizations of RA Language Classes

	4 Chemical Reaction Automata
	4.1 The Computation Power of CRAs
	4.2 Determinism and Reversibility in CRAs

	5 Future Research Topics
	References

