
Diminishable Parameterized Problems
and Strict Polynomial Kernelization

Henning Fernau1, Till Fluschnik2(B), Danny Hermelin3, Andreas Krebs4,
Hendrik Molter2, and Rolf Niedermeier2

1 Fachbereich 4 – Abteilung Informatik, Universität Trier, Trier, Germany
fernau@uni-trier.de

2 Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany

{till.fluschnik,h.molter,rolf.niedermeier}@tu-berlin.de
3 Ben Gurion University of the Negev, Beersheba, Israel

hermelin@bgu.ac.il
4 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,

Tübingen, Germany
krebs@informatik.uni-tuebingen.de

Abstract. Kernelization—a mathematical key concept for provably
effective polynomial-time preprocessing of NP-hard problems—plays a
central role in parameterized complexity and has triggered an extensive
line of research. In this paper we consider a restricted yet natural vari-
ant of kernelization, namely strict kernelization, where one is not allowed
to increase the parameter of the reduced instance (the kernel) by more
than an additive constant. Building on earlier work of Chen, Flum, and
Müller [CiE 2009, Theory Comput. Syst. 2011], we underline the appli-
cability of their framework by showing that a variety of fixed-parameter
tractable problems, including graph problems and Turing machine com-
putation problems, does not admit strict polynomial kernels under the
weaker assumption of P �= NP. Finally, we study a relaxation of the
notion of strict kernels.

Work initiated by the research retreat of the Theoretical Computer Science group
of the Universität of Tübingen in Sulz (Neckar), September 2016.
T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13) and project
TORE (NI 369/18).
D. Hermelin—Supported by the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement number 631163.11, and by the ISRAEL SCIENCE FOUNDA-
TION (grant No. 551145/14). Also supported by a DFG Mercator fellowship, project
DAMM (NI 369/13) while staying at TU Berlin (August 2016).
A. Krebs—Supported by the DFG Emmy Noether program (KR 4042/2).
H. Molter—Partially supported by the DFG, project DAPA (NI 369/12).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 161–171, 2018.
https://doi.org/10.1007/978-3-319-94418-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_17&domain=pdf

162 H. Fernau et al.

1 Introduction

Kernelization is one of the most fundamental concepts in the field of param-
eterized complexity analysis. Given an instance (x, k) ∈ {0, 1}∗ × N of some
parameterized problem L (we assume the parameter to be encoded in unary), a
kernelization for L produces in polynomial time an instance (x′, k′) satisfying:
(x′, k′) ∈ L ⇐⇒ (x, k) ∈ L and |x′| + k′ ≤ f(k) for some fixed computable
function f(k). In this way, kernelization can be thought of as a preprocessing
procedure that reduces an instance to its “computationally hard core” (i.e., the
kernel). The function f(k) is accordingly called the size of the kernel, and it
is typically the measure that one wishes to minimize. Kernelization is a central
concept in parameterized complexity not only as an important algorithmic tool,
but also because it provides an alternative definition of fixed-parameter tractabil-
ity (FPT) [6]. An algorithm with running time f(k) · |x|O(1) for a parameterized
problem L implies that L has a kernel of size f(k), but in the converse direction
one cannot always take the same function f . The goal of minimizing the size of
the problem kernel leads to the question of what is the kernel with the small-
est size one can obtain in polynomial time for a given problem. In particular,
do all fixed-parameter tractable problems have small kernels, say, of linear or
polynomial size?

The latter question was answered negatively [5,14] by proving that various
problems in FPT do not admit a polynomial-size kernel (polynomial kernel for
short) under the assumption that NP � coNP/poly. The framework has been
extended in several directions [18]. Regardless, all of these frameworks rely on the
assumption that NP � coNP/poly, an assumption that, while widely believed
in the community, is a much stronger assumption than P �= NP.

Throughout the years, researchers have considered different variants of ker-
nelization such as fidelity-preserving preprocessing [11], partial kernelization [3],
lossy kernelization [20], and Turing kernelization [4,21]. In this paper, we con-
sider a variant which has been considered previously quite a bit, which is called
proper kernelization [1] or strict kernelization [8]:

Definition 1 (Strict Kernel). A strict kernelization for a parameterized prob-
lem L is a polynomial-time algorithm that on input (x, k) ∈ {0, 1}∗ × N out-
puts (x′, k′) ∈ {0, 1}∗ × N, the strict kernel, satisfying: (i) (x, k) ∈ L ⇐⇒
(x′, k′) ∈ L, (ii) |x′| ≤ f(k), for some function f , and (iii) k′ ≤ k + c,
for some constant c. We say that L admits a strict polynomial kernelization
if f(k) ∈ kO(1).

Thus, a strict kernelization is a kernelization that does not increase the output
parameter k′ by more than an additive constant. While the term “strict” in the
definition above makes sense mathematically, it is actually quite harsh from a
practical perspective. Indeed, most of the early work on kernelization involved
applying so-called data reduction rules that rarely ever increase the parameter
value (see e.g. the surveys [15,18]). Furthermore, strict kernelization is clearly
preferable to kernelizations that increase the parameter value in a dramatic way:

Diminishable Parameterized Problems and Strict Polynomial Kernelization 163

Often a fixed-parameter algorithm on the resulting problem kernel is applied,
whose running time highly depends on the value of the parameter, and so a
kernelization that substantially increases the parameter value might in fact be
useless. Finally, the equivalence with FPT is preserved: A parameterized problem
is solvable in f(k) · |x|O(1) time if and only if it has a strict kernel of size g(k)
(where f and g are some computable functions).

Chen et al. [8] showed that Rooted Path, the problem of finding a simple
path of length k in a graph that starts from a prespecified root vertex, param-
eterized by k has no strict polynomial kernel unless P = NP. They also showed
a similar result for CNF-Sat parameterized by the number of variables. Both
of these results seemingly are the only known polynomial kernel lower bounds
that rely on the assumption of P �= NP (see Chen et al. [7] for a few linear
lower bounds that also rely on P �= NP). The goal of our work is to show that
Chen et al.’s framework applies for more problems and is easy to extend.

Our Results. We build on the work of Chen et al. [8], and further develop and
widen the framework they presented for excluding strict polynomial kernels.
Using this extended framework, we show that several natural parameterized
problems in FPT have no strict polynomial kernels under the assumption that
P �= NP. The main result of our work is given in Theorem 2 below. Note that
we use the brackets in the problem names to denote the parameter under con-
sideration.1

Theorem 2. Unless P = NP, each of the following fixed-parameter tractable
problems does not admit a strict polynomial kernel:

– Multicolored Path(k) and Multicolored Path(k log n);
– Clique(Δ), Clique(tw), Clique(bw), and Clique(cw);
– Biclique(Δ), Biclique(tw), Biclique(bw), and Biclique(cw);
– Colorful Graph Motif(k) and Terminal Steiner Tree(k + |T |);
– Multi-Component Annotated Defensive Alliance(k) and Multi-

Component Annotated Vertex Cover(k);
– Short NTM Computation(k+|Σ|), Short NTM Computation(k+|Q|),

and Short Binary NTM Computation(k).

(Herein, k denotes the solution size, n, Δ, tw, bw, and cw denote the number of
vertices, the maximum vertex degree, the treewidth, bandwidth, and cutwidth of
the graph, respectively, T denotes the set of terminals, |Σ| denotes the alphabet
size, and |Q| denotes the number of states.)

Finally, we also explore how “tight” the concept of strict polynomial ker-
nels is. We modify the framework for “less” strict kernels, and, employing the
Exponential Time Hypothesis (ETH), conclude that we often cannot hope for
significantly relaxing the concept of strict kernelization to achieve a compara-
ble list of such analogous kernel lower bounds under P �= NP. Notably, our

1 For a complete list of problem definitions we refer to a long version [12] of the paper.

164 H. Fernau et al.

x k

(x, k)

Dd+1

x1
k1

(x1, k1)
k > k1

K
x2

k2

(x2, k2)
k1 + d ≥ k2

k
O(1)
1 ≥ |x2|

Dd+1

x3

k3

(x3, k3)
k2 > k3

K
x4

k4

(x4, k4)
k3 + d ≥ k4

k
O(1)
3 ≥ |x4|

· · ·

· · ·

x′

k′

(x′, k′)
k′ ≤ c

Fig. 1. Illustration to the proof of Theorem 4 for an input instance (x, k). Herein, K
denotes the strict kernelization with additive constant d and D denotes the parameter
diminisher. We represent each instance by boxes: the size of a box symbolizes the size
of the instance or the value of the parameter (each dashed box refers to k).

modified framework herein was recently applied [13] for proving the first direct
kernelization lower bounds for polynomial-time solvable problems.

We remark that for the problems we discuss in this paper, one can exclude
polynomial kernels under the assumption that NP � coNP/poly using the exist-
ing frameworks [5,18]. In contrast, our results base on a weaker assumption, but
exclude a more restricted version of polynomial kernels. Hence, our results are
incomparable with the existing no-polynomial-kernel results.

Notation. We use basic notation from parameterized complexity [10] and graph
theory [9]. Let G = (V,E) be an undirected graph. For W ⊆ V , let G − W :=
(V \ W, {e ∈ E | e ∩ W = ∅}). If W = {v}, then we write G − v. For v ∈ V ,
we denote by NG(v) := {w ∈ V | {v, w} ∈ E} the neighborhood of v in G. We
denote by [�], � ∈ N, the set {1, . . . , �} and by log the logarithm with base two.

2 Framework

In this section we present the general framework used throughout the paper.
Firstly, we define the central notion of a parameter diminisher referring to param-
eter decreasing polynomial reduction introduced by Chen et al. [8].

Definition 3 (Parameter Diminisher). A parameter diminisher for
a parameterized problem L is a polynomial-time algorithm that maps
instances (x, k) ∈ {0, 1}∗ × N to instances (x′, k′) ∈ {0, 1}∗ × N such that (i)
(x, k) ∈ L if and only if (x′, k′) ∈ L and (ii) k′ < k.

We call a parameterized problem L diminishable if there is a parameter dimin-
isher for L. The following theorem was proved initially by Chen et al. [8], albeit
for slightly weaker forms of diminisher and strict polynomial kernels.

Theorem 4 ([8]). Let L be a parameterized problem such that its unparame-
terized version is NP-hard and {(x, k) ∈ L | k ≤ c} ∈ P, for some constant c. If
L is diminishable and admits a strict polynomial kernel, then P = NP.

Diminishable Parameterized Problems and Strict Polynomial Kernelization 165

The idea behind Theorem 4 is to repeat the following two procedures until the
parameter value drops below c (see Fig. 1 for an illustration). First, apply the
parameter diminisher a constant number of times such that when, second, the
strict polynomial kernelization is applied, the parameter value is decreased. The
strict polynomial kernelization keeps the instances small, hence the whole process
runs in polynomial time.

Reductions transfer diminishability from one parameterized problem to
another if they do not increase the parameter value and run in polynomial time.
Formally, given two parameterized problems L with parameter k and L′ with
parameter k′, a parameter-non-increasing reduction from L to L′ is an algo-
rithm that maps each instance (x, k) of L to an equivalent instance (x′, k′) of L′

in poly(|x| + k) time such that k′ ≤ k. Note that to transfer diminishability,
we need parameter-non-increasing reductions between two parameterized prob-
lems in both directions—a crucial difference to other reduction-based hardness
results.

Lemma 5 (�2). Let L1 and L2 be two parameterized problems such that there
are parameter-non-increasing reductions from L1 to L2 and from L2 to L1. Then
we have that L1 is diminishable if and only if L2 is diminishable.

Parameter-Decreasing Branching and Strict Composition. To construct parame-
ter diminishers, it is useful to follow a “branch and compose” technique: Herein,
first branch into several subinstances while decreasing the parameter value in
each, and then compose the subinstances into one instance without increasing
the parameter value by more than an additive constant. We first give the defi-
nitions and then show that both combined form a parameter diminisher.

A parameter-decreasing branching rule for a parameterized problem L is a
polynomial-time algorithm that on input (x, k) ∈ {0, 1}∗ ×N outputs a sequence
of instances (y1, k′), . . . , (yt, k′) ∈ {0, 1}∗×N such that (x, k) ∈ L ⇐⇒ (yi, k′) ∈
L for at least one i ∈ [t] and k′ < k. Composition is the core concept behind
the standard kernelization lower bound framework introduced by Bodlaender
et al. [5]. Here we use a more restrictive notion of this concept: A strict com-
position for a parameterized problem L is an algorithm that receives as input
t instances (x1, k), . . . , (xt, k) ∈ {0, 1}∗ × N, and outputs in polynomial time a
single instance (y, k′) ∈ {0, 1}∗ × N such that (i) (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for
some i ∈ [t] and (ii) k′ ≤ k + c for some constant c. If we now combine (multiple
applications of) a parameter-decreasing branching rule with a strict composi-
tion, then we get a parameter diminisher. We remark that this also holds if we
require in both definitions that the equivalence holds for all i ∈ [t].

Lemma 6 (�). Let L be a parameterized problem. If L admits a parameter-
decreasing branching rule and a strict composition, then it is diminishable.

2 Full proofs of results marked with (�) are deferred to a long version [12] of the paper.

166 H. Fernau et al.

On the Exclusion of Non-Uniform Kernelization Algorithms. The presented
framework can be easily adapted to exclude different forms of strict kerneliza-
tions. As our example, we show that the framework can be used to exclude strict
polynomial kernels computed in non-uniform polynomial time (the correspond-
ing complexity class is called P/poly) under the assumption that NP � P/poly. A
non-uniform strict kernelization for a parameterized problem L is a non-uniform
polynomial-time algorithm that on input (x, k) ∈ {0, 1}∗ × N outputs (x′, k′) ∈
{0, 1}∗ × N, the strict kernel, satisfying: (i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L, (ii)
|x′| ≤ f(k), for some function f , and (iii) k′ ≤ k + c, for some constant c. We
say that L admits a non-uniform strict polynomial kernelization if f(k) ∈ kO(1).

Proposition 7 (�). Let L be a parameterized problem such that its unparam-
eterized version is NP-hard and we have that {(x, k) ∈ L | k ≤ c} ∈ P/poly, for
some constant c. If L is diminishable and admits a non-uniform strict polynomial
kernel, then NP ⊆ P/poly.

We remark that if NP ⊆ P/poly, then the Polynomial Hierarchy collapses to its
second level [17] (note that NP ⊆ coNP/poly implies a collapse in the Polynomial
Hierarchy to its third level).

3 Problems Without Strict Polynomial Kernels

In this section, we exemplify the proof of Theorem 2 on two selected graph
problems. The complete proof of Theorem 2 can be found in a long version [12].

First, we present a diminisher for the Multicolored Path(k) problem:
Given an undirected graph G = (V,E) with a vertex coloring function col : V →
[k], determine whether there exists a simple path of length k containing one
vertex of each color. This problem is NP-complete as it generalizes Hamiltonian

Path. Furthermore, Multicolored Path(k) is fixed-parameter tractable as it
can be solved in 2O(k)n2 time [2]. The idea used in the parameter diminisher for
Multicolored Path(k) can also be applied for the Colorful Graph Motif

problem, a problem with applications in bioinformatics.

Proposition 8. Multicolored Path(k) is diminishable.

For graph problems, a vertex-coloring seems to help to construct diminishers.
As an example, the diminishability of the (uncolored) Path(k) problem, asking
whether a given graph contains a simple path of length k, remains open.

Proof. We give a parameter-decreasing branching rule and a strict composition
for Multicolored Path(k). The result then follows from Lemma 6. Let (G =
(V,E), col) be an instance of Multicolored Path(k). Our parameter-
decreasing branching rule for (G = (V,E), col) creates a graph G(v1,v2,v3) for
each ordered triplet (v1, v2, v3) of vertices of V such that v1, v2, v3 is a multicol-
ored path in G. The graph G(v1,v2,v3) is constructed from G as follows: Delete
from G all vertices w ∈ V \ {v2, v3} with col(w) ∈ {col(v1), col(v2), col(v3)}.

Diminishable Parameterized Problems and Strict Polynomial Kernelization 167

Following this, only vertices of k − 1 colors remain, and v2 and v3 are the only
vertices colored col(v2) and col(v3), respectively. Then delete all edges incident
with v2, apart from {v2, v3}, and relabel all colors so that the image of col
for G(v1,v2,v3) is [k − 1].

Clearly our parameter-decreasing branching rule can be performed in poly-
nomial time. Furthermore, the parameter decreases in each output instance. We
show that the first requirement holds as well: Indeed, suppose that G has a mul-
ticolored path v1, v2, . . . , vk of length k. Then v2, . . . , vk is a multicolored path
of length k − 1 in G(v1,v2,v3) by construction. Conversely, suppose that there is a
multicolored path u2, . . . , uk of length k − 1 in some G(v1,v2,v3). Then since v2 is
the only vertex of color col(v2) in G(v1,v2,v3), and since v2 is only adjacent to v3,
it must be without loss of generality that u2 = v2 and u3 = v3. Hence, since v1
is adjacent to v2 in G, and no vertices of u2, . . . , uk have color col(v1) in G, the
sequence of v1, u2, . . . , uk forms a multicolored path of length k in G.

Our strict composition for Multicolored Path(k) is as follows. Given a
sequence of inputs (G1, col1), . . . , (Gt, colt), the strict composition constructs
the disjoint union G and the coloring function col of all graphs Gi and coloring
functions coli, 1 ≤ i ≤ t. Clearly, (G, col) contains a multicolored path of length k
if and only if there is a multicolored path of length k in some (Gi, coli). The result
thus follows directly from Lemma 6. ��
Proposition 9 (�). Unless P = NP, Multicolored Path(k log n) has no
strict polynomial kernel.

We next consider the NP-complete Terminal Steiner Tree (TST) [19]
problem: given an undirected graph G = (V = NT,E) (T is called the terminal
set) and a positive integer k, decide whether there is a subgraph H ⊆ G with at
most k + |T | vertices such that H is a tree and T is a subset of the set of leaves
of H. TST forms a variant of the well-known Steiner Tree problem. When
parameterized by k+|T |, TST is fixed-parameter tractable (see long version [12]).

Proposition 10 (�). Terminal Steiner Tree(k + |T |) is diminishable.

Proof (Diminisher Construction). We present a parameter-decreasing branching
rule and a strict composition for Terminal Steiner Tree(k + |T |). Together
with Lemma 6, the claim then follows. Let (G = (N T,E), k) be an instance of
TST(k+ |T |) (we can assume that G has a connected component containing T).
We make several assumptions first. We can assume that |T | ≥ 3 (otherwise a
shortest path is the optimal solution) and additionally that for all terminals
t ∈ T it holds that NG(t) �⊆ T (as otherwise the instance is a no-instance).
Moreover, we can assume that there is no vertex v ∈ N such that T ⊆ NG(v),
as otherwise we immediately output whether k ≥ 1.

For the parameter decreasing branching rule, select a terminal t∗ ∈ T , and
let v1, . . . , vd denote the neighbors of t∗ in G − (T \ {t∗}). We create d instances
(G1, k − 1), . . . , (Gd, k − 1) as follows. Define Gi, i ∈ [d], by Gi := G − vi. Turn
the vertices in NG(vi) in Gi into a clique, that is, for each distinct vertices v, w ∈

168 H. Fernau et al.

NG(vi) add the edge {v, w} if not yet present. This finishes the construction of Gi.
It is not hard to see that the construction can be done in polynomial time.

Next, we describe the strict composition for TST(k+|T |). Given the instances
(G1, k), . . . , (Gd, k), we create an instance (G′, k) as follows. Let G′ be initially
the disjoint union of G1, . . . , Gd. For each t ∈ T , identify its copies in G1, . . . , Gd,
say t1, . . . , td, with one vertex t′ corresponding to t. This finishes the construction
of G′. Note that for every i, j ∈ [d], i �= j, any path between a vertex in Gi

and a vertex in Gj contains a terminal vertex. Hence, any terminal Steiner
tree in G′ contains non-terminal vertices only in Gi for exactly one i ∈ [d].
It is not difficult to see that (G′, k) is a yes-instance if and only if one of the
instances (G1, k), . . . , (Gd, k) is a yes-instance. ��

4 Problems Without Semi-strict Polynomial Kernels

As strict kernels only allow an increase of the parameter value by an additive
constant (Definition 1), one may ask whether one can exclude less restrictive ver-
sions of strict kernels for parameterized problems using the concept of parameter
diminishers. Targeting this question, in this section we study scenarios with a
multiplicative (instead of additive) parameter increase by a constant. That is,
property (iii) in Definition 1 is replaced by k′ ≤ c · k, for some constant c. We
refer to this as semi-strict kernels.

Note that Theorem 4 does not imply that the problems mentioned in Theo-
rem 2 do not admit semi-strict polynomial kernelizations unless P = NP. Intu-
itively, the parameter diminisher is constantly often applied to decrease the
parameter, while dealing only with a constant additive blow-up of the parameter
caused by the strict kernelization. When dealing with a constant multiplicative
blow-up of the parameter caused by the semi-strict kernelization, the parameter
diminisher is required to be applied a non-constant number of times. Hence, to
deal with semi-strict kernelization, we introduce a stronger version of our param-
eter diminisher: Formally, we replace property (ii) in Definition 3 by k′ ≤ k/c,
for some constant c > 1. We refer to this as strong parameter diminishers.

Next, we show an analogue of Theorem 4 for semi-strict polynomial kernel-
izations and strong parameter diminishers.

Theorem 11 (�). Let L be a parameterized problem such that its unparam-
eterized version is NP-hard and {(x, k) ∈ L | k ≤ c} ∈ P, for some constant
c ≥ 1. If L is strongly diminishable and admits a semi-strict polynomial kernel,
then P = NP.

By Theorem 11, if we can prove a strong diminisher for a parameterized problem,
then it does not admit a semi-strict polynomial kernel, unless P = NP. We give a
strong diminisher for the Set Cover problem: Given a set U called the universe,
a family F ⊆ 2U of subsets of U , and an integer k, the question is whether there
are k sets in the family F that cover the whole universe. We show that Set

Cover parameterized by k log n, where n = |U |, is strongly diminishable.

Diminishable Parameterized Problems and Strict Polynomial Kernelization 169

Theorem 12 (�). Unless P = NP, Set Cover(k log n) and Hitting

Set(k log m) do not admit a semi-strict polynomial kernel.

Proof (Strong Diminisher Construction). Let (U,F = {F1, . . . , Fm}, k) be an
instance of Set Cover(k log n) and assume that k ≥ 2 and n ≥ 5. If k is odd,
then we add a unique element to U , a unique set containing only this element
to F , and we set k = k + 1. Hence, we assume that k is even. The following
procedure is a strong parameter diminisher for the problem parameterized by
k log n. Let U ′ = U and for all Fi, Fj create F ′

{i,j} = Fi∪Fj . Let F ′ = {F ′
{i,j} | i �=

j} and set k′ = k/2. This yields the instance (U ′,F ′, k′) of Set Cover(k log n)
in polynomial time. The proof of correctness is deferred to a long version [12]. ��

Seeking for parameter diminishers to exclude strict polynomial kerneliza-
tions raises the question whether there are parameterized problems that are not
(strongly) diminishable. In the following, we prove that under the Exponential
Time Hypothesis, or ETH for short [16], there are natural problems that do
not admit strong parameter diminishers. Here we restrict ourselves to problems
where we have a parameter diminisher. The Exponential Time Hypothesis states
that there is no algorithm for 3-CNF-Sat running in 2o(n) poly(n + m) time,
where n and m denote the number of variables and clauses, respectively.

Theorem 13 (�). Assuming ETH, none of the following is strongly dimin-
ishable: CNF-Sat(n), Rooted Path(k), Clique(Δ), Clique(tw), and
Clique(bw).

The following lemma is the key tool for excluding strong parameter diminishers
under ETH. Roughly, it can be understood as saying that a strong parameter
diminisher can improve the running time of existing algorithms.

Lemma 14 (�). Let L be a parameterized problem. If there is an algorithm A
that solves any instance (x, k) ∈ L in 2O(k) · |x|O(1) time and L is strongly dimin-
ishable, then there is an algorithm B that solves L in 2O(k/f(x,k)) · |x|f(x,k)O(1)

time, where f : L → N is a function mapping instances of L to the natural
numbers with the following property: For every constant c there is a natural
number n such that for all instances (x, k) ∈ L we have that |x| ≥ n implies that
f(x, k) ≥ c.

Intuitively, we apply Lemma 14 to exclude the existence of strong parameter
diminishers under ETH as follows. Consider a problem where we know a running
time lower bound based on the ETH and we also know an algorithm that matches
this lower bound. Then, due to Lemma 14, for many problems a strong parameter
diminisher and a suitable choice for the function f would imply the existence of
an algorithm whose running time breaks the lower bound.

5 Conclusion

We showed that for several natural problems a strict polynomial-size problem
kernel is as likely as P = NP. Since basically all observed (natural and practically

170 H. Fernau et al.

relevant) polynomial kernels are strict, this reveals that the existence of valuable
kernels may be tighter connected to the P vs. NP problem than previously
expected (in almost all previous work a connection is drawn to a collapse of the
polynomial hierarchy to its third level, and the conceptual framework used there
seems more technical than the one used here). Our work is based on results of
Chen et al. [8] and shows that their basic ideas can be extended to a larger class
of problems than dealt with in their work.

The diminisher framework leaves several challenges for future work. Are there
natural problems where the presented framework is able to refute strict polyno-
mial kernels while the composition framework [5] is not? It is not clear whether
a framework based on a weaker assumption is even able to produce results that
a framework based on a stronger assumption is not able to produce. This pos-
sibly also ties in with the question whether there are “natural” parameterized
problems that admit a polynomial kernel but no strict polynomial kernel.3 We
close with two concrete open problems:

– We proved that Multicolored Path(k) is diminishable (and thus refutes a
strict polynomial kernel unless P = NP). Can this result be extended to the
uncolored version of the problem? This is also open for the directed case.

– Clique(Δ), Clique(tw), Clique(bw) do not have strong diminishers under
the ETH (Sect. 4). Is this also true for Clique(cw)?

References

1. Abu-Khzam, F.N., Fernau, H.: Kernels: annotated, proper and induced. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275.
Springer, Heidelberg (2006). https://doi.org/10.1007/11847250 24

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average parameterization

and partial kernelization for computing medians. J. Comput. Syst. Sci. 77(4), 774–
789 (2011)

4. Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S., Vil-
langer, Y.: Kernel(s) for problems with no kernel: on out-trees with many leaves.
ACM Trans. Algorithms 8(4), 38 (2012)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

6. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability. Ann. Pure Appl. Logic 84(1), 119–138 (1997)

7. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–
1106 (2007)

8. Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other prepro-
cessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)

9. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-662-53622-3

3 Note that Chen et al. [8, Proposition 3.3] presented an artificial parameterized prob-
lem admitting a polynomial kernel but no strict polynomial kernel.

https://doi.org/10.1007/11847250_24
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

Diminishable Parameterized Problems and Strict Polynomial Kernelization 171

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

11. Fellows, M.R., Kulik, A., Rosamond, F.A., Shachnai, H.: Parameterized approx-
imation via fidelity preserving transformations. J. Comput. Syst. Sci. 93, 30–40
(2018)

12. Fernau, H., Fluschnik, T., Hermelin, D., Krebs, A., Molter, H., Niedermeier, R.:
Diminishable parameterized problems and strict polynomial kernelization. CoRR
abs/1611.03739 (2018). http://arxiv.org/abs/1611.03739

13. Fluschnik, T., Mertzios, G.B., Nichterlein, A.: Kernelization lower bounds for find-
ing constant size subgraphs. CoRR abs/1710.07601 (2017). http://arxiv.org/abs/
1710.07601

14. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

15. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(1), 31–45 (2007)

16. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

17. Karp, R.M., Lipton, R.: Turing machines that take advice. L’Enseignement
Mathématique 28(2), 191–209 (1982)

18. Kratsch, S.: Recent developments in kernelization: a survey. In: Bulletin of the
EATCS, no. 113 (2014)

19. Lin, G., Xue, G.: On the terminal Steiner tree problem. Inf. Process. Lett. 84(2),
103–107 (2002)

20. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization.
In: Proceedings of 49th STOC, pp. 224–237. ACM (2017)

21. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computa-
tional complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891
(2012)

https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1611.03739
http://arxiv.org/abs/1710.07601
http://arxiv.org/abs/1710.07601

	Diminishable Parameterized Problems and Strict Polynomial Kernelization
	1 Introduction
	2 Framework
	3 Problems Without Strict Polynomial Kernels
	4 Problems Without Semi-strict Polynomial Kernels
	5 Conclusion
	References

