
Florin Manea
Russell G. Miller
Dirk Nowotka (Eds.)

 123

LN
CS

 1
09

36

14th Conference on Computability in Europe, CiE 2018
Kiel, Germany, July 30 – August 3, 2018
Proceedings

Sailing Routes in the World
of Computation

Lecture Notes in Computer Science 10936

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Florin Manea • Russell G. Miller
Dirk Nowotka (Eds.)

Sailing Routes in the World
of Computation
14th Conference on Computability in Europe, CiE 2018
Kiel, Germany, July 30 – August 3, 2018
Proceedings

123

Editors
Florin Manea
Kiel University
Kiel
Germany

Russell G. Miller
Queens College, CUNY
Queens, NY
USA

Dirk Nowotka
Kiel University
Kiel
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94417-3 ISBN 978-3-319-94418-0 (eBook)
https://doi.org/10.1007/978-3-319-94418-0

Library of Congress Control Number: 2018947191

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Computability in Europe 2018: Sailing the Routes
of Computation Kiel, Germany, July 30 to August 3, 2018

The conference Computability in Europe (CiE) is organized yearly under the auspices
of the Association CiE, a European association of mathematicians, logicians, computer
scientists, philosophers, physicists, biologists, historians, and others interested in new
developments in computability and their underlying significance for the real world. CiE
promotes the development of computability-related science, ranging over mathematics,
computer science, and applications in various natural and engineering sciences, such as
physics and biology, as well as related fields, such as philosophy and history of
computing. CiE 2018 had as its motto “Sailing Routes in the World of Computation,” a
nod to the host city of Kiel and its rich nautical traditions, but also a reminder of the
possibility of widely varied solutions to problems in computability and the importance
of considering the different possible routes that can be followed when studying and
answering open questions.

CiE 2018 was the 14th conference in the series, and the second one to take place in
Germany. The conference was organized by the Department of Computer Science of
Kiel University. The 13 previous CiE conferences were held in Amsterdam (The
Netherlands) in 2005, Swansea (Wales) in 2006, Siena (Italy) in 2007, Athens (Greece)
in 2008, Heidelberg (Germany) in 2009, Ponta Delgada (Portugal) in 2010, Sofia
(Bulgaria) in 2011, Cambridge (UK) in 2012, Milan (Italy) in 2013, Budapest (Hun-
gary) in 2014, Bucharest (Romania) in 2015, Paris (France) in 2016, and Turku
(Finland) in 2017. CiE 2019 will be held in Durham (UK). Currently, the annual CiE
conference is the largest international meeting focused on computability-theoretic
issues. The proceedings containing the best submitted papers, as well as extended
abstracts of invited, tutorial, and special session speakers, for all these meetings are
published in the Springer series Lecture Notes in Computer Science.

The CiE conference series is coordinated by the CiE Conference Series Steering
Committee consisting of Alessandra Carbone (Paris), Liesbeth De Mol (Lille), Mathieu
Hoyrup (Nancy), Natasha Jonoska (Tampa FL), Benedikt Löwe (Amsterdam), Florin
Manea (Kiel, Chair), Klaus Meer (Cottbus), Mariya Soskova (Sofia), and ex-officio
members Paola Bonizzoni (Milan, President of the Association CiE), and Dag
Normann (Oslo).

The Program Committee of CiE 2018 was chaired by Russell Miller (City
University of New York, USA) and Dirk Nowotka (Christian-Albrechts-Universität,
Kiel, Germany). The committee, consisting of 30 members, selected the invited and
tutorial speakers and the special session organizers, and coordinated the reviewing
process of all submitted contributions.

Structure and Program of the Conference

The Program Committee invited six speakers to give plenary lectures at CiE 2018:
Kousha Etessami (Edinburgh, UK), Johanna Franklin (Hempstead, USA), Mai Gehrke
(Paris, France), Alberto Marcone (Udine, Italy), Alexandra Silva (London, UK), and
Jeffrey O. Shallit (Waterloo, Canada). The conference also had two plenary tutorials,
presented by Pinar Heggernes (Bergen, Norway) and Bakhadyr Khoussainov
(Auckland, New Zealand).

In addition, the conference had six special sessions: Approximation and Opti-
mization; Bioinformatics and Bio-inspired Computing; Computing with Imperfect
Information; Continuous Computation; History and Philosophy of Computing (cele-
brating the 80th birthday of Martin Davis); and SAT-solving. Speakers in these special
sessions were selected by the respective special session organizers and were invited to
contribute a paper to this volume.

Approximation and Optimization

Organizers: Leah Epstein and Klaus Jansen
Speakers:
Sebastian Berndt (Kiel University)
Thomas Erlebach (University of Leicester)
Kim-Manuel Klein (École Polytechnique Fédérale de Lausanne)
Asaf Levin (Technion, Haifa)

Bioinformatics and Bio-inspired Computing

Organizers: Andre Franke and Victor Mitrana
Speakers:
Oliver Kohlbacher (Universität Tübingen)
Alfonso Paton (Universidad Politécnica de Madrid)
Bertil Schmidt (Johannes Gutenberg University Mainz)
Takashi Yokomori (Waseda University)

Computing with Imperfect Information

Organizers: Tim McNicholl and Mariya Soskova
Speakers:
Eric Astor (University of Connecticut)
Ethan McCarthy (University of Wisconsin-Madison)
Arno Pauly (Swansea University)
Paul Schupp (University of Illinois at Urbana-Champaign)

VI Preface

Continuous Computation

Organizers: Ulrich Berger and Dieter Spreen
Speakers:
Matthew de Brecht (Kyoto University)
Daniel Graça (University of Algarve)
Mathieu Hoyrup (LORIA, Nancy)
Dag Normann (University of Oslo)

History and Philosophy of Computing

Organizers: Liesbeth De Mol and Giuseppe Primiero
Speakers:
Christoph Benzmüller (Luxembourg/FU Berlin)
Martin Davis (New York University)
Paula Quinon (Lund University)
Wilfried Sieg (Carnegie Mellon University)

SAT-solving

Organizers: Olaf Beyersdorff and Vijay Ganesh
Speakers:
Oliver Kullmann (Swansea University)
Massimo Lauria (Sapienza University Rome)
Florian Lonsing (TU Vienna)
Joao Marques Silva (University of Lisbon)

The members of the Program Committee of CiE 2018 selected for publication in this
volume and for presentation at the conference 26 of the 55 non-invited submitted
papers. Each paper received at least three reviews by the Program Committee and their
subreviewers. In addition to the accepted contributed papers, this volume contains 15
invited papers. The production of the volume would have been impossible without the
diligent work of our expert referees, both Program Committee members and subre-
viewers. We would like to thank all of them for their excellent work.

Springer generously funded a Best Student Paper Award this year, awarded to a
paper authored solely by students. The winner of this award was the paper “Elementary
Bi-embeddability Spectra of Structures” by Dino Rossegger.

All authors who contributed to this conference were encouraged to submit signifi-
cantly extended versions of their papers, with additional unpublished research content,
to Computability: The Journal of the Association CiE.

The Steering Committee of the conference series CiE is concerned about the repre-
sentation of female researchers in the field of computability. In order to increase female
participation, the series started the Women in Computability (WiC) program in 2007. In
2016, after the new constitution of the Association CiE allowed for the possibility of
creating special interest groups, a Special Interest Group named Women in Com-
putability was established. Since 2016, the WiC program has been sponsored by ACM’s
Women in Computing. This program includes a workshop, the annual WiC diner, the
mentorship program and a grant program for young female researchers. The Women in
Computability workshop continued in 2018, coordinated by Liesbeth De Mol.

Preface VII

The organizers of CiE 2018 would like to acknowledge and thank the following
entities for their financial support (in alphabetical order): the Association for Symbolic
Logic (ASL), the European Association for Theoretical Computer Science (EATCS),
and Springer. We would also like to acknowledge the support of our non-financial
sponsor, the Association Computability in Europe.

We gratefully thank all the members of the Organizing Committee of CiE 2018 for
their work toward making the conference a successful event, and Gheorghe Iosif for
designing the poster and banner of CiE 2018.

We thank Andrej Voronkov for his EasyChair system, which facilitated the work
of the Program Committee and the editors considerably.

April 2018 Florin Manea
Russell Miller
Dirk Nowotka

VIII Preface

Organization

Program Committee

Eric Allender Rutgers University, USA
Arnold Beckmann Swansea University, UK
Marco Benini Università degli Studi dell’Insubria, Italy
Olaf Beyersdorff University of Leeds, UK
Patricia Bouyer LSV, CNRS and ENS Cachan, Université Paris Saclay,

France
Alessandra Carbone Sorbonne Université, France
Barbara Csima University of Waterloo, Canada
Anuj Dawar University of Cambridge, UK
Ekaterina Fokina Vienna University of Technology, Austria
Peter Høyer University of Calgary, Canada
Georgiana Ifrim University College Dublin, Ireland
Lila Kari University of Waterloo, Canada
Karen Lange Wellesley College, USA
Benedikt Löwe University of Amsterdam, The Netherlands
Florin Manea Kiel University, Germany
Barnaby Martin Durham University, UK
Klaus Meer BTU Cottbus-Senftenberg, Germany
Russell Miller Queens College and The Graduate Center, CUNY, USA
Angelo Montanari University of Udine, Italy
Andrey Morozov Sobolev Institute of Mathematics, Russia
Anca Muscholl LaBRI, Université de Bordeaux, France
Dirk Nowotka Kiel University, Germany
Arno Pauly Swansea University, UK
Giuseppe Primiero Middlesex University, UK
Henning Schnoor Kiel University, Germany
Monika Seisenberger Swansea University, UK
Shinnosuke Seki University of Electro-Communications, Japan
Mariya Soskova Sofia University, Bulgaria
Peter Van Emde Boas ILLC-FNWI-Universiteit van Amsterdam (Emeritus),

The Netherlands
Heribert Vollmer Leibniz Universität Hannover, Germany

Organizing Committee

Joel D. Day
Karoliina Lehtinen
Florin Manea
Dirk Nowotka (Chair)
Anneke Twardzik

Additional Reviewers

Abel, Andreas
Andrews, Uri
Balbiani, Philippe
Barmpalias, George
Baskent, Can
Beggs, Edwin
Berger, Ulrich
Berndt, Sebastian
Brattka, Vasco
Buss, Sam
Calvert, Wesley
Cenzer, Douglas
Chandoo, Maurice
Cholak, Peter
Day, Joel
De Mol, Liesbeth
Dorais, François
Downey, Rod
Fan, Xiuyi
Fazekas, Szilard Zsolt
Fichte, Johannes
Franklin, Johanna
Frittaion, Emanuele
Gacs, Peter
Galeotti, Lorenzo
Gambino, Nicola
Gherardi, Guido
Giannopoulos, Panos
Giannopoulou, Archontia
Graça, Daniel
Haak, Anselm
Hackbusch, Wolfgang
Harrison-Trainor, Matthew
Hirschfeldt, Denis
Hoyrup, Mathieu
Kach, Asher
Kawamura, Akitoshi
Kjos-Hanssen, Bjoern
Kosub, Sven
Kufleitner, Manfred
Lempp, Steffen
Longley, John
Lück, Martin

Maack, Marten
Martin, Barnaby
Martini, Simone
McInerney, Michael
Meier, Arne
Melnikov, Alexander
Mercas, Robert
Metcalfe, George
Molinari, Alberto
Mottet, Antoine
Nagel, Lars
Naibo, Alberto
Neumann, Eike
Ng, Keng Meng Selwyn
Ng, Timothy
Nordvall Forsberg, Fredrik
Ochem, Pascal
Ochremiak, Joanna
Okubo, Fumiya
Panangaden, Prakash
Patey, Ludovic
Pikhurko, Oleg
Policriti, Alberto
Reinhardt, Klaus
Rin, Benjamin
Rossegger, Dino
Sala, Pietro
San Mauro, Luca
Schlicht, Philipp
Setzer, Anton
Sigley, Sarah
Soskova, Alexandra
Stephan, Frank
Stephenson, Jonny
Todinca, Ioan
Tucker, John
van den Berg, Benno
Variyam, Vinodchandran
Vicedomini, Riccardo
Westrick, Linda Brown
Winslow, Andrew
Zetzsche, Georg

X Organization

Algorithmic Randomness in Analysis
(Invited Talk)

Johanna N. Y. Franklin

Hofstra University, Room 306, Roosevelt Hall, Hempstead,
NY 11549-0114, USA

johanna.n.franklin@hofstra.edu
http://people.hofstra.edu/Johanna_N_Franklin/

While there is a plethora of ways to formalize randomness algorithmically, they all
result in a measure one set of random points. Furthermore, theorems in analysis tend to
hold on a measure one set of points. In the past decade, there has been a concerted
effort to formalize these theorems using computability theory and then to identify the
set of points on which such a theorem holds as a set of random points (often, the
appropriate randomness notion is Martin-Löf randomness or Schnorr randomness, but
not always).

I will survey some recent work that demonstrates the connections between algo-
rithmic randomness and theorems on ergodic theory, differentiability, and convergence
of Fourier series and discuss some of the proof techniques used in each.

Contents

A Journey to Computably Enumerable Structures (Tutorial Lectures) 1
Bakh Khoussainov

Polynomial-Time Presentations of Algebraic Number Fields 20
Pavel Alaev and Victor Selivanov

Multiple Permitting and Array Noncomputability . 30
Klaus Ambos-Spies

Degrees of Categoricity for Prime and Homogeneous Models 40
Nikolay Bazhenov and Margarita Marchuk

Universality in Freezing Cellular Automata . 50
Florent Becker, Diego Maldonado, Nicolas Ollinger,
and Guillaume Theyssier

A Deontic Logic Reasoning Infrastructure . 60
Christoph Benzmüller, Xavier Parent, and Leendert van der Torre

Optimized Program Extraction for Induction and Coinduction. 70
Ulrich Berger and Olga Petrovska

Computing Tree Width: From Theory to Practice and Back 81
Sebastian Berndt

Using Structural Properties for Integer Programs . 89
Sebastian Berndt and Kim-Manuel Klein

From Eventually Different Functions to Pandemic Numberings. 97
Achilles A. Beros, Mushfeq Khan, Bjørn Kjos-Hanssen,
and André Nies

Divide and Conquer Computation of the Multi-string BWT
and LCP Array . 107

Paola Bonizzoni, Gianluca Della Vedova, Serena Nicosia,
Yuri Pirola, Marco Previtali, and Raffaella Rizzi

Some Observations on Infinitary Complexity . 118
Merlin Carl

Taming Koepke’s Zoo . 126
Merlin Carl, Sabrina Ouazzani, and Philip Welch

Online Computability and Differentiation in the Cantor Space 136
Douglas Cenzer and Diego A. Rojas

Turing’s Vision and Deep Learning. 146
Martin Davis

Computing and Scheduling with Explorable Uncertainty 156
Thomas Erlebach

Diminishable Parameterized Problems and Strict Polynomial Kernelization. . . 161
Henning Fernau, Till Fluschnik, Danny Hermelin, Andreas Krebs,
Hendrik Molter, and Rolf Niedermeier

New Nonterminal Complexity Results for Semi-conditional Grammars 172
Henning Fernau, Lakshmanan Kuppusamy, and Rufus O. Oladele

Kernelization Lower Bounds for Finding Constant-Size Subgraphs 183
Till Fluschnik, George B. Mertzios, and André Nichterlein

On General Sum Approximations of Irrational Numbers 194
Ivan Georgiev, Lars Kristiansen, and Frank Stephan

Computability of Ordinary Differential Equations . 204
Daniel S. Graça and Ning Zhong

Topological Analysis of Representations . 214
Mathieu Hoyrup

A Unified Framework for Designing EPTAS’s for Load Balancing
on Parallel Machines . 224

Ishai Kones and Asaf Levin

Weak Reduction Principle and Computable Metric Spaces 234
Margarita Korovina and Oleg Kudinov

Decidable and Undecidable Fragments of First-Order
Concatenation Theory . 244

Lars Kristiansen and Juvenal Murwanashyaka

Algorithm Analysis Through Proof Complexity . 254
Massimo Lauria

Computing with SAT Oracles: Past, Present and Future 264
Joao Marques-Silva

The Isometry Degree of a Computable Copy of ‘p 277
Timothy H. McNicholl and Don Stull

XIV Contents

Algorithmic Statistics and Prediction for Polynomial
Time-Bounded Algorithms . 287

Alexey Milovanov

A C.E. Weak Truth Table Degree Which Is Array Noncomputable
and R-maximal . 297

Martin Monath

The Complexity of Tukey Types and Cofinal Types 307
Marie Nicholson

Functionals of Type 3 as Realisers of Classical Theorems in Analysis 318
Dag Normann

Enumeration Degrees and Topology . 328
Arno Pauly

A Taxonomy of Deviant Encodings. 338
Paula Quinon

Elementary Bi-embeddability Spectra of Structures 349
Dino Rossegger

A Generic m-Reducibility . 359
Alexander Rybalov

Some Nonstandard Equivalences in Reverse Mathematics 365
Sam Sanders

Bit Complexity of Computing Solutions for Symmetric Hyperbolic
Systems of PDEs (Extended Abstract) . 376

Svetlana V. Selivanova and Victor L. Selivanov

What Is the Concept of Computation? . 386
Wilfried Sieg

Witness Hiding Without Extractors or Simulators . 397
André Souto, Luís Antunes, Paulo Mateus, and Andreia Teixeira

Algorithms and Geometric Constructions . 410
Vladimir Uspenskiy and Alexander Shen

Computing with Multisets: A Survey on Reaction Automata Theory 421
Takashi Yokomori and Fumiya Okubo

Author Index . 433

Contents XV

A Journey to Computably Enumerable
Structures (Tutorial Lectures)

Bakh Khoussainov(B)

Department of Computer Science, University of Auckland, Auckland, New Zealand
bmk@cs.auckland.ac.nz

Abstract. The tutorial focuses on computably enumerable (c.e.) struc-
tures. These structures form a class that properly extends the class of all
computable structures. A computably enumerable (c.e.) structure is one
that has computably enumerable equality relation E such that the atomic
operations and relations of the structure are induced by c.e. operations
and relations that respect E. Finitely presented universal algebras (e.g.
groups, rings) are natural examples of c.e. structures. The first lecture
gives an introduction to the theory, provides many examples, and proves
several simple yet important results about c.e. structures. The second lec-
ture addresses a particular problem about finitely presented expansions
of universal algebras with an emphasis to semigroups and groups. The
lecture is based on the interplay between important constructions, con-
cepts, and results in computability (Post’s construction of simple sets),
universal algebra (residual finiteness), and algebra (Golod-Shafarevich
theorem). The third lecture is devoted to studying dependency of vari-
ous properties of c.e. structures on their domains.

1 Introduction

The goal of the tutorial is to present a beautiful interplay between computability
and the theory of algebraic structures. Here by an algebraic structure we mean
the first order structures given by their domains, atomic operations and predi-
cates on the domains. We always assume that the number of atomic operations
and predicates in algebraic structures is finite and the structures are countable.
For computability, we accept the Turing model of computation. How does one
introduce computability into the study of algebraic structures? Traditionally,
this depends on what one considers to be the primary object of interest:

– Assume the primary object is a particular structure (e.g. a graph). A natural
way to introduce computability is to postulate that the domain, all the atomic
operations and predicates of the structure are computable. Such structures
are called computable. This is the line taken by Mal’cev [29], Rabin [32] that
lead to the development of the theory of computable structures.

– Assume that the primary object is a particular first order theory T (closed
under deduction). In this case, a natural way to introduce computability is
to postulate that T is a decidable set. With this assumption, the Henkin’s

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-94418-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_1&domain=pdf

2 B. Khoussainov

construction of a model of T can now be carried out effectively. In particular,
one can build a model M of T such that the elementary diagram of M is
a decidable set. Such models of T are called decidable models. This set-up
leads to computable model theory initiated by Yu. Ershov and A. Nerode,
and developed by S. Goncharov, T. Millar, N. Khisamiev and L. Harrington.

In this tutorial, we propose an alternative way to introduce computabil-
ity into the study of algebraic structures. As opposed to the two traditional
approaches described above, our primary objects will be quotient sets of the
form ω/E, where E is an equivalence relation on ω.

What do the quotient sets ω/E have to do with introducing computability
theoretic considerations into the study of algebraic structures?

One answer comes from the homomorphism theorem. The theorem states that
any algebra A (that is, a structure of purely functional language) is a homo-
morphic image of the term algebra F . Let us code the elements (terms) of the
term algebra F with natural numbers. So, we view each n natural number as a
term. Therefore, the term algebra F is an algebra such that the domain of F is
ω and the atomic operations of F are computable operations. So, the algebra F
is computable. The homomorphism theorem implies the following:

Representation Theorem: For any algebra A there is a congruence relation E
on the term algebra F such that A is isomorphic to the quotient algebra F/E.
The representation theorem tells us the following. Each n ∈ ω represents the
element [n] of the algebra A, where [n] is the E-equivalence class of n. Under this
representation, the atomic operations of A are induced by computable functions.
Namely, for any atomic k-ary operation f , given representatives n1, . . . , nk of
elements a1, . . . , ak, respectively, we can compute a representative of the element
f(a1, . . . , ak). The representative of f(a1, . . . , ak) is just the term f(n1, . . . , nk).
Now we specify algebras whose domains are the quotient sets ω/E:

Definition 1. An E-algebra is the quotient algebra of the form (ω/E; f1, . . . , fn)
such that all f1, . . . , fn are computable operations that respect E.

By the representation theorem, for each algebra A there exists an equivalence
relation E such that A is isomorphic to an E-algebra.

Definition 2. Let C be a class of algebras and let E be an equivalence relation
on the set ω of natural numbers. Let us set:

K(C, E) = {A ∈ C | algebra Ais isomorphic to an E-algebra}.

The definitions above place the domains ω/E as primary objects. Through these
two definitions we introduce computability into the study of algebraic structures.

If C is the class of all algebras, then instead of K(C, E) we write K(E). Thus,
from the representation theorem we have the following important equality:

C =
⋃

E

K(C,E).

A Journey to Computably Enumerable Structures (Tutorial Lectures) 3

The equality tells us that the class C has been sliced into classes K(C, E). Under-
standing the class C is thus reduced to understanding the classes K(C, E) for
various E. In particular, many algebraic problems about the class C, such as the
classification problem of algebras up to isomorphism, can now be refined and
studied in the slices K(C, E). We note that the slices are not necessarily disjoint.

Definition 3. If an algebra A belongs to K(C, E) then we say that E realises
the algebra A. Otherwise, we say that E omits A.

We now have a research agenda with many questions. For instance, consider
the class K(E), all algebras isomorphic to E-algebras. Does K(E) contain a
finitely generated algebra? Are there rings or Boolean algebras or trees in K(E)?
Can we say anything reasonable about structures in the class K(E)? Does K(E)
contain the term algebra F? What algebraic properties of algebras from K(E)
are implied by computability-theoretic properties of E? Similarly, what algebraic
properties of structures from K(E) imply computability-theoretic properties of
E? Can we describe isomorphism invariants of algebras from K(E)?

One goal of this tutorial is to set up a framework that will address all the
questions above. One way to start the investigation of the classes K(E) is to put
computability-theoretic assumptions on E. So, let A be an E-algebra.

Definition 4. We call A a Σ0
n-algebra if E is a Σ0

n-relation. Similarly, we call
A a Π0

n-algebra if E is a Π0
n-set. Σ0

1 -algebras are called computably enumerable
(c.e.) algebras, and Π0

1 -algebras are called co-c.e. algebras.

We identify algebras up to the isomorphisms. So, we say that an algebra is
c.e. presentable (co-c.e. presentable) if it is isomorphic to a c.e. (co-c.e.) algebra.
Thus, c.e. (co-c.e.) presentability is the isomorphism type property.

The first lecture of this tutorial is an introduction with many examples
and important results. The second lecture solves a particular problem about
finitely presented expansions of semigroup, groups, and algebras. The lecture is
based on the interplay between important constructions, concepts, and results
in computability (Post’s construction of simple sets), universal algebra (residual
finiteness), and algebra (Golod-Shafarevich theorem). The third lecture studies
dependency of various properties of c.e. structures on their domains and com-
pares classes K(C, E) for various E. Each tutorial ends with a compact reference
list for the topics covered in the tutorial. There is a good amount of research on
c.e. equivalence relations (e.g. [1,2,5,8,11,28,30]) but we present an alternative
and more algebraic view towards understanding the equivalence relations.

2 Lecture 1: Implications of Non-computability

In this lecture, we postulate that E is a c.e. but not computable equivalence
relation. Just with this assumption, we deduce several results of algebraic nature.
In particular, we describe types of algebras that are omitted by the class K(E).

4 B. Khoussainov

Theorem 5 (Mal’cev [29]). The class K(E) omits all finitely generated alge-
bras whose nontrivial quotients are all finite.

Proof. Let A be a finitely generated E-algebra that is a counter-example. For
elements [n], [m], let E(n,m) be the congruence relation of A generated by the
pair ([n], [m]). The congruence E(n,m) is a c.e. relation. If [n] �= [m] in A, then
the algebra A/E(n,m) is finite. This implies that the the complement of E can
be computably enumerated. Thus, E is computable. Contradiction. ��
Corollary 6. The class K(E) omits the following: (a) the successor algebra
(ω;S), (b) the arithmetic (ω; +,×), and (c) the algebra (Z;S, S−1). ��
Theorem 7 (Ershov [9]). The class K(E) omits all algebras that possess
finitely many congruences only.

Proof. Let A be an E-algebra that is a counter-example to the statement. For
simplicity, assume that A has only 3 non-trivial congruences E1, E2, and E3.
There must exist pairs ([x1], [y1]), ([x2], [y2]), ([x3], [y3]) such that the following
properties hold: (1) in algebra A we have [x1] �= [y1], [x2] �= [y2], and [x3] �= [y3],
and (2) For every (n,m) �∈ E the congruence relation E(n,m) contains one of
the pairs (x1, y1), (x2, y2), (x3, y3). Hence, the complement of E is computably
enumerable. Therefore, the equivalence relation E is computable. ��
Recall that an algebra is simple if it has no non-trivial congruence relations.

Corollary 8. The class K(E) omits fields as well as simple groups. ��
Next we use two fundamental concepts from algebra. The first is the notion

of residually finite algebra. Malcev and MacKenzie started studying this notion
already in the 1940s. The second is the concept of finitely presented algebra.
Dehn initiated the study of finitely presented groups in the 1910s.

Definition 9. An algebra A is residually finite if for all x, y ∈ A, x �= y, there
is a homomorphism h of A onto a finite algebra B such that h(x) �= h(y).

For instance, finitely generated abelian groups, the term algebras, the suc-
cessor algebra (Z;S, 0) are residually finite, and the algebra (ω;S, S−1) is not.

Finite presentability of groups is generalised to the setting of universal alge-
bra as follows. A finite presentation S is a finite set of equations t = p, where
t and p are terms that might contain variables. Examples are (1) semi-group
axioms, (2) group axioms, and (3) ring axioms. The class of algebras satisfying
S is a variety; the class is closed under sub-algebras, products, and homomor-
phisms.

Let S be a finite presentation. Let F be the term algebra generated by con-
stants present in the language of S. The elements of F are usually called ground
terms. Let E(S) be the congruence relation on F generated by S:

E(S) = {(p, q) | p, q are ground terms and S � p = q}.

A Journey to Computably Enumerable Structures (Tutorial Lectures) 5

Definition 10. The algebra FS = F/E(S) is called finitely presented by S.

The finitely presented algebra possesses several nice properties: (a) FS sat-
isfies S, (b) FS is an E(S)-algebra, (c) FS is a c.e. algebra, and (d) FS is
universal and unique. In particular, item (d) says that any algebra generated by
the constants and that satisfies S is a homomorphic image of FS .

Theorem 11 (Mal’cev and MacKenzie [29]). The class K(E) omits all
finitely presented and residually finite algebras.

Proof. Let A be an E-algebra that is a counter-example. Let S be a finite pre-
sentation of A. Effectively list B0, B2, . . . all finite algebras satisfying S. These
are homomorphic images of A. For all [x], [y] ∈ A, [x] �= [y], there is an algebra
Bi in which images of [x] and [y] are distinct. Hence, the complement of E is
computably enumerable. Hence, the equivalence relation E is computable. ��
Corollary 12. The class K(E) omits the following algebras: the term algebra
F , the free group with n generators, the free abelian group Zn, the free non-
associative algebra over a finite field with n non-commuting variables.

Proof. The algebras listed are all finitely presented and residually finite. ��
Next we connect locally finite algebras with immunity property. For the

equivalence relation E, let tr(E) be the set consisting of all minimal represen-
tatives of the E-equivalence classes. So, tr(E) = {x | ∀y(y < x → (x, y) �∈ E)}.

Definition 13. An algebra A is locally finite if every finitely generated sub-
algebra of A is finite.

For instance, the direct sum of infinitely many finite groups is a locally finite
algebra. Here is the definition of immunity for subsets X of ω. Post gave this
definition in 1944 and proved that immune sets exist:

Definition 14. An infinite set X ⊆ ω is immune if X contains no computably
enumerable infinite subset.

One subclass of immune sets that is constantly present in the study of Turing
degrees is the class of hyperimmune sets. Immunity of sets and locally finite alge-
bras are connected via the hyperimmune sets. Now we explain that connection.

Consider the listing x0 < x1 < . . . of the set X. Call the set X hyperimmune
if no computable function f exists such that xn ≤ f(n) for all n. Hyperimmune
sets are immune and they exist [33].

Theorem 15 (Kasymov and Khoussainov [25]). If tr(E) is hyperimmune
then all algebras in K(E) are locally finite.

Proof. Let X = {[x1], . . . , [xk]} be a finite subset of A. Consider the sequence:
X0 = {x1, . . . , xk},Xn+1 = Xn∪{ f(s̄) | s̄ ∈ Xn, f is atomic operation}, n ≥ 0.
If the sub-algebra generated by X is infinite, then max(X0), max(X1), . . . is a
computable sequence, and max(Xi) is greater than or equal to the ith element
of the transversal. This is a contradiction. ��

6 B. Khoussainov

Theorem 16 (Kassymov [20]). Let A ∈ K(E) be such that all nontrivial quo-
tients of A are finite. Then either E is computable or tr(E) is hyperimmune.

Proof. Let f be a computable function witnessing that tr(E) is not hyperim-
mune. For [x] �= [y], consider the congruence E(x, y). The algebra A/E(x, y)
is finite. This finiteness can effectively be determined through f . Hence, the
complement of E is computably enumerable. This is a contradiction. ��
Corollary 17. Assume that all non-trivial quotients of A ∈ K(E) are finite.
Then A is residually finite and one of the atomic operations of A has arity > 1.

Proof. For the first part, let [a] �= [b] be such that in all non-trivial quotients
of A the image of [a] equals the image of [b]. Then [x] �= [y] if and only if
(a, b) ∈ E(x, y). Hence E is computable.

For the second part, assume that all atomic operations of A are unary. Let
Sub(X) be the sub-algebra generated by a finite set X. By the theorem above,
tr(E) is hyperimmune. Hence, the sub-algebra Sub(X) is finite. Define the fol-
lowing congruence relation E′: (a, b) ∈ E′ ⇐⇒ a, b ∈ Sub(X) ∨ a = b. This
implies that the quotient algebra A/E′ is infinite. This is a contradiction. ��
References to this lecture are [16,20,25].

3 Lecture 2: On Finitely Presented Expansions
of Algebras

We start the lecture with the following innocent question: Given an algebra A,
is A finitely presented? If S is a finite presentation of A, then A is of the
form FS = F/E(S), where F is the term algebra generated by the constants
of S; so, A is finitely generated by the constants in the language of S, has c.e.
equality relation E = E(S) with atomic computable operations respecting the
equality. Thus, necessarily, finitely presented algebras are finitely generated and
c.e. algebras. It is not surprising that these necessary conditions are not sufficient
for algebras to be finitely presented. For instance, Baumslag [6] and Bergstra and
Tucker [3] proved (respectively) that the wreath product groups Zk � Zn, with
k, n > 1, and the algebra (ω;x + 1, 2x, 0) are not finitely presented. Thus, given
that not every finitely generated c.e. algebra is finitely presented, a natural way
to address finite presentability problem is to use expansions of algebras:

Definition 18. An expansion of A = (A; f1, . . . , fn, c1, . . . , cr) is any algebra of
the form A′ = (A; f1, . . . , fn, g1, . . . , gs, c1, . . . , cr).

The idea is to search for a finitely presented expansion of algebra A in case
A is not finitely presented. As observed above, necessarily, the algebra A must
be a c.e. algebra generated by the constants c1, . . . , cr, that is, an E-algebra of
the form (F/E; f1, . . . , fn, c1, . . . , cr). Also, necessarily, expansions of A must
be computable functions. It is important to note that not every computable
function can be used in expansion; the function must respect the relation E.

A Journey to Computably Enumerable Structures (Tutorial Lectures) 7

Bergstra and Tucker [3,4] proved that every computable algebra has a finitely
presented expansion. This solves finite presentability problem for computable
algebras. In Lecture 1, we noted that there are finitely presented algebras which
are not computable. In the mid 1980s Bergstra-Tucker [4], and independently
Goncharov [27], stated the finite presentability problem: Does every finitely gen-
erated and c.e. algebra have a finitely presented expansion?

Kassymov [20] and, independently, Khoussainov [23] gave a negative answer.
Both gave examples of algebras whose all atomic operations were unary; Khous-
sainov’s algebra was defined based on Kolmogorov complexity. The examples are
specific and ad hoc tailored towards the solution of the problem. Here we aim to
solve this problem in the setting of classical algebra:

Are here finitely generated and computably enumerable semigroups,
groups, and algebras that have no finite presentable expansions?

Note that in this question the word algebra refers to rings that are vector spaces
over fields rather than algebraic structures in pure functional languages.

3.1 The Non Finite Presentability Theorem (The NFP Theorem)

Our answer to the question above is based on the concept of immunity (men-
tioned in Lecture 1) borrowed from computability theory. We need to adapt this
concept in the context of universal algebras.

Definition 19. An algebra A = F/E is effectively infinite if there is an infinite
c.e. sequence t0, t1, . . . of pairwise distinct elements of A. Otherwise, call the
algebra A immune if the algebra is infinite.

Theorem 20 (Hirschfeldt and Khoussainov [18]). There exists a com-
putably enumerable, finitely generated, and immune semigroup.

Proof (Outline). Consider A = ({a, b}�; ·) the free semigroup, where the oper-
ation is the concatenation of strings. Let X ⊆ {a, b}� be a nonempty subset.
Define: u ≡X v ⇐⇒ u = v ∨ u and v have substrings from X.

The equivalence relation ≡X has one infinite equivalence class. The class con-
sists of all strings that contain substrings from X. All other equivalence classes
are singletons {u}, where u contains no substring from X. The concatenation
operation respects ≡X . Hence, the semigroup A(X)/ ≡X is well defined.

We claim the following. There is a simple set X such that A(X)/ ≡X is
infinite, and hence immune. For the proof of the claim we use Post’s adapted
construction. Consider a standard listing W0, W1, . . . of all c.e. subsets of {a, b}�.
Put string y into X if y is the first string of length ≥ i + 5 that appeared in Wi

for some i. An easy combinatorial argument (similar to the original argument
by Post) shows the set X is simple and that there are infinitely many strings
that contain no substrings from X. Hence, A(X)/ ≡X is infinite. ��

8 B. Khoussainov

A question arises if there are finitely generated immune groups? Note that
such groups answer the generalised Burnside problem. Miasnikov and Osin in [31]
constructed such examples. Such groups are now called Dehn monsters. Later
we too construct c.e. finitely generated immune groups; but our groups will also
be residually finite thus answering the question of Miasnikov and Osin [31].

Now we would like to list some simple properties of immune algebras:

Lemma 21. Let A = F/E be an immune c.e. algebra. Then (1) Each expan-
sion of A is immune if E is c.e. (2) Each finitely generated sub-algebra of
A is immune or finite. (3) For every term t(x) the trace a, t(a), tt(a), . . . is
eventually periodic. (4) Infinite homomorphic images of A are immune.

Proof. Items (2), (3), and (4) are easy to prove. For item (1), assume that there is
an infinite c.e. sequence t0, t1, . . . of pairwise distinct elements of some expansion
A′ of A. Given ti one can effectively find a term qi in the language of A such
that ti = qi in A. Hence, A is effectively infinite which is a contradiction. ��
Lemma 22 (Separator Lemma). If A = F/E is residually finite then for all
distinct x, y ∈ A there is a separator subset S(x, y) ⊂ F such that S(x, y) is
computable and E-closed, and x ∈ S(x, y) and y ∈ F \ S(x, y).

Proof. Let h be a homomorphism from A = F/E onto finite algebra B such that
h(x) �= h(y). Consider the set of all pre-images of h(x) in the free algebra F . In
other words, S(x, y) is the set of all ground terms that map onto h(x) under the
natural homomorphism from F onto B. This set is the desired S(x, y). ��
Lemma 23 (Main Lemma [24]). If A = F/E is immune and residually finite,
then so are all expansions of A.

Proof. Let x, y be distinct elements of an expansion A′ of A. Define:

[a] ≡(x,y) [b] ⇐⇒ no elements in S(x, y) and its complement are identified by
the congruence relation E(a, b) on A′ generated by (a, b).

Our goal is to show that the relation ≡(x,y) is a congruence relation of finite
index. For this we need tools borrowed from universal algebra [17]. The first is a
characterisation of congruence relations through algebraic terms. The second is
Malcev’s lemma. These two claims are stated below. Proofs are easily verified.
For the first claim, recall that a term for an algebra is algebraic if it is of the
form t(x, ḡ) where x is a variable and ḡ are parameters from the algebra.

Claim 1: An equivalence relation E on algebra is a congruence relation if and
only if all algebraic terms for the algebra respect E.

Claim 2 (Malcev’s lemma): Consider the congruence relation E(a, b). Then
(c, d) ∈ E(a, b) iff there are sequences of elements e0, . . ., en, and terms t1(x, ḡ),
. . ., tn(x, ḡ) such that e0 = c, en = d, {e0, e1} = {t1(a, ḡ), t0(b, ḡ)}, {e1, e2} =
{t2(a, ḡ), t1(b, ḡ)}, . . ., {en−1, en} = {tn(a, ḡ), tn(b, ḡ)}.

A Journey to Computably Enumerable Structures (Tutorial Lectures) 9

Using these two claims, we now proceed to proving the main lemma.

Property 1: The relation ≡(x,y) forms an equivalence relation.
Assume a ≡(x,y) b and b ≡(x,y) c but not a ≡(x,y) c. This implies that

a, b, c ∈ S(x, y) or a, b, c �∈ S(x, y). Since a �≡(x,y) c, there is an algebraic term
with t(x) such that one of t(a), t(c) belongs to S(x, y) and the other does not.
If t(a) ∈ S(x, y), then t(b) ∈ S(x, y) since a ≡(x,y) b. Hence, t(c) ∈ S(x, y) since
b ≡(x,y) c. Contradiction.

Property 2: ≡(x,y) is a congruence relation on A′.
Otherwise, there exist a, b ∈ A′ and an algebraic term t(x) with a ≡(x,y) b and

t(a) �≡(x,y) t(b). So, there is an algebraic term p(y) with either p(t(a)) ∈ S(x, y)
and p(t(b)) �∈ S(x, y) or p(t(a)) �∈ S(x, y) and p(t(b)) ∈ S(x, y). Contradiction
with the fact that a ≡(x,y) b.

Property 3: The relation ≡(x,y) is a co-c.e. relation.
We have a �≡(x,y) b iff ∃(c, d) ∈ E(a, b)(c ∈ S(x, y) & d �∈ S(x, y)) iff there is

an algebraic term t(x, ḡ) such that c = t(a, ḡ) and d = t(b, ḡ) and t(a, ḡ) ∈ S(x, y)
and t(b, ḡ) �∈ S(x, y). Hence, the complement of ≡(x,y) is computably enumerable.

Property 4: The quotient A′/ ≡(x,y) is finite.
Suppose not. Then the transversal Tr(≡(x,y)) is a c.e. set. Indeed, t is a

minimal element in its equivalence class iff z �≡(x,y) t for all z < t. Therefore,
A′ / ≡(x,y) is effectively infinite. Hence A is effectively infinite. Contradiction.

To complete the proof of the main lemma, note that in the quotient algebra
A′/ ≡(x,y) the images of x and y are distinct. ��

Now we prove our meta-theorem that provides sufficient conditions of finitely
generated computably enumerable algebras not to have finite presentation.

Theorem 24 (The NFP Theorem [24]). Let A = F/E be a f.g., c.e.,
immune, and residually finite algebra. Then A has no finitely presented expan-
sions.

Proof. Let A′ be a finitely presented expansion of A. By the main lemma, A′ is
residually finite. Since A′ is residually finite, by Malcev/McKenzie theorem that
we proved in Lecture 1, the equality E in A′ is decidable. Contradiction. ��

3.2 Application of the NFP Theorem

We apply the NFP theorem to build c.e. finitely generated semigroups, algebras,
and groups that have no finitely presented expansions.

Theorem 25 (Semigroups case [24]). There exists a c.e., finitely generated,
and immune semigroup that has no finitely presented expansion.

Proof. The semigroup A(X) that built in Theorem20 is c.e., finitely generated,
immune, and residually finite. Apply the NFP theorem to the semigroup. ��

10 B. Khoussainov

To apply the NFP theorem to algebras and groups, we employ the celebrated
theorem of Golod and Shafarevich. Here is the set-up for GS Theorem.

Let K be a finite field. Let P = K〈x1, x2, . . . , xs〉 be the algebra of poly-
nomials in non-commuting variables. Here the term algebra refers to a non-
commutative ring that forms a vector space over K. View P as the direct sum

P =
∑

n

Pn

where Pn is the vector space spanned over sn monomials of degree n.
Let H be a set of homogeneous polynomials in the algebra P. Recall that

a polynomial is homogeneous if all of its monomials have the same degree. Let
I = 〈H〉 be the two sided ideal generated by H.

Theorem (Golod and Shafarevich [13,14]). Let rn be the number of polyno-
mials in H of degree n. Let ε be such that 0 < ε < s/2 and rn ≤ ε2 · (s−2ε)n−2

for all n. Then the algebra

A = P/I =
∑

n

Pn/I

is infinite dimensional.

Theorem 26 (Algebra case [24]). There exists a c.e., finitely generated, and
immune algebra that has no finitely presented expansion.

Proof (Outline). Use Post’s type of construction to build a simple set H of
homogeneous polynomials. Also, satisfy the assumption of Golod-Shafarevich
theorem. Here is an outline of the construction. List Wi, i ∈ ω all c.e. subsets
of F . Let f and g be polynomials in Wi such that:

1. f = f1 + f2, g = g1 + g2, f1 = g1, and
2. The degrees of homogeneous polynomials occurring in both f2 and g2 are

greater than i + 10.

Put f2 and g2 into H. Let I = 〈H〉 be the ideal generated by H. Define: A =
P/I. The algebra A is residually finite because the ideal I is generated by
homogeneous polynomials. Now apply the NFP theorem to the algebra. ��
Theorem 27 (Groups case [24]). There exists a c.e., finitely generated and
immune group G that has no finitely presented expansion.

Proof (Outline). We use Golod’s conversion of the algebra A built in the previous
theorem to a group [13]. For simplicity assume that the algebra A above is built
from P with exactly two variables x and y. Consider the semigroup G = G(A)
generated by (1 + x)/I and (1 + y)/I. The semigroup is a group as observed by
Golod. The group G is infinite and residually finite. It is immine as well. Apply
the NFP theorem to the group. ��
References to this lecture are [18,24].

A Journey to Computably Enumerable Structures (Tutorial Lectures) 11

4 Lecture 3: Reducibilities on Equivalence Relations

The previous two lectures show deep interactions between computability theo-
retic properties of the domains ω/E and algebraic properties of E-algebras. As
mentioned in Lecture 1, for any class C of algebras, the following equality holds:

C =
⋃

E

K(C, E)

This implies that the domains ω/E can be used as taming tools of algebras from
class C. This lecture aims at formalising these interactions.

We extend the definition of E-algebra to general algebraic structures. An n-
ary relation R on ω respects E if for all s1, . . . , sn, q1, . . . , qn such that (si, qi) ∈ E
for i = 1, . . . , n, we have R(s1, . . . , sn) iff R(q1, . . . , qn). So, if R respects E then
the truth-value of R does not depend on representatives of equivalence classes.

Definition 28. The quotient structure (ω/E; f1, . . . , fn, P1, . . . , Pk), where
f1, . . . , fn are computable operations and all P1, . . . , Pk are c.e. relations that
all respect E, is called an E-structure.

Let C be a class of structures. The central definition of the third lecture is this.
The terminology in this definition is borrowed from computability theory:

Definition 29. For equivalence relations E1 and E2 we say that E1 is C-
reducible to E2, written E ≤C E2, if every structure realised by E1 is also realised
by E2. The equivalence relations E1 and E2 have the same C-degree, written
E1 ≡C E2, if E1 ≤C E2 and E2 ≤C E1. The C-degree of E is denoted by E/ ≡C.

Every class C of structures defines the preorder ≤C between equivalence rela-
tions E (or domains ω/E). Thus, we have the following partially ordered set:

EC = ({E/ ≡C | E is c.e. equivalence relation},≤C).

Our aim is to study the orders EC . We restrict ourselves to c.e. E equivalence
relations because we would like our domains ω/E to be (in some ways) effective.

4.1 The Class Alg of Algebras

We exhibit basic properties of EAlg. Call a function f : An → A trivial if it is a
projection function or f is a constant function, that is, either there is an i such
that f(x1, . . . , xn) = xi or there is an a ∈ A for which f(x1, . . . , xn) = a for all
(x1, . . . , xn) ∈ ωn. The identity function is obviously a trivial function. Call an
algebra trivial if all of its atomic operations are trivial. The following is clear:

Lemma 30. For all E every trivial algebra is an E-algebra. In other words, the
classes K(Alg,E) all realise all trivial algebras. ��

It turns out there exists an equivalence relation E that realises trivial algebras
only. In particular, this implies that the partial order EAlg has the least element:

12 B. Khoussainov

Theorem 31 ([22]). There is a c.e. equivalence relation E such that the class
K(Alg,E) consists of trivial algebras only. Hence, E is the minimal ≡Alg-degree.

Proof (Outline). A set X ⊆ ω is called E-closed if it is a union of E-equivalence
classes. For the proof we use a c.e. equivalence relation E that satisfies the
following properties: (1) the quotient set ω/E is infinite, (2) every c.e. E-closed
set is either ω or ∅ or a finite union of E-equivalence classes, (3) No c.e. set
W exists such that both Tr(E) ∩ W and tr(E) ∩ (ω \ W) are infinite. Such
equivalence relations exist [8,22]. Let us fix one such equivalence relation E.

A routine combinatorial argument will show that every computable function
that respects E is trivial on the domain ω/E. To make our argument easy we
assume that f respects E and f is a unary computable operation on ω.

Assume that f is not a constant function on ω/E. Define the following equiv-
alence relation E′: (n,m) ∈ E′ iff ∃k((fk(n),m) ∈ E ∨ (fk(m), n) ∈ E), where
f0(a) = a, fk+1(a) = f(fk(a)) for k ∈ ω. Note that E′ is c.e. and E ⊆ E′. The
relation must have infinitely many equivalence classes since, otherwise, there
would be an E-closed c.e. set that is a union of infinitely many E-equivalence
classes. By the choice of E, this is impossible. Also, all but finitely many equiva-
lence classes of E′ must coincide with equivalence classes of E. Otherwise, for the
set W = ω \ tr(E′) both Tr(E)∩W and tr(E)∩ (ω \W) are infinite. Hence, the
set A = {x | (f(x), x) ∈ E} is computably enumerable, E-closed, and consists of
infinitely many E-equivalence classes. Therefore A = ω. ��
Thus, for the minimal Alg-degree E we can fully characterise the isomorphism
types of E-algebras. These are just trivial algebras. This is a good example
showing the way the domains ω/E tame the isomorphism types of E-structures.

Theorem 32 ([12]). Suppose that the class K(Alg,E) contains a finitely gen-
erated algebra. Then E is a maximal ≡Alg-degree.

Proof. Let A be a finitely generated E-algebra. Let E′ be a c.e. equivalence
relation such that there is an E′-algebra B isomorphic to A. We need to show that
K(Alg,E) = K(Alg,E′). Let [n1]E , . . . , [nk]E be the generators of A. For each
element [n]E of A there is a term t(x1, . . . , xk) such that [n]E = [t(n1, . . . , nk)]E .
Let [m1]E′ , . . . , [mk]E′ be the images of [n1]E , . . . , [nk]E in B. Then by mapping
t(n1, . . . , nk) to t(m1, . . . ,mk) we can set up a computable mapping g : ω → ω
that induces a bijection from ω/E onto ω/E′. Through this computable function
one can show that any E-algebra is isomorphic to an E′-algebra. ��

In contrast to the theorem above, Khoussainov et al. [26] provide an example
of an equivalence relation E such that E is a maximal ≡Alg-degree but the class
K(Alg,E) contains no finitely generated algebra.

4.2 The Class LO of Linear Orders

It is important to clarify the definition of linear order. We always assume that
linear orders are defined by binary relations that are reflexive, antisymmetric
and transitive. Other definitions of linear orders might lead to different results.

A Journey to Computably Enumerable Structures (Tutorial Lectures) 13

Let L = (L,≤) be a linear order. An element a is isolated if either it has
immediate successor and immediate predecessor or it is the left-most element
with immediate successor or it is the right-most element with immediate prede-
cessor.

Lemma 33. If a linear order L is an E-structure, then every isolated element
a = [n] of L is a computable E-equivalence class.

Proof. Assume that a has immediate successor [x] and immediate predecessor
[y], then ω = {i | i ≤ y} ∪ [a] ∪ {j | x ≤ j}. Thus, the set [a] is computable. ��
Corollary 34. Let idω be the identity relation on ω. If E contains a non-
computable c.e. equivalence class then idω �≤LO E. ��

For the rest of this subsection we consider the equivalence relations E(X),
where X ⊆ ω is an infinite and co-infinite set, defined as follows:

(n,m) ∈ E(X) ⇐⇒ (n = m) ∨ (n ∈ X & m ∈ X).

Each equivalence class of E(X) is thus either a singleton of the form {n}, where
n �∈ X, or the infinite set X. We aim to study the classes K(LO,E(X)) and the
partial order ≤LO restricted to the equivalence relations of type E(X):

P = {E(X)/ ≡LO| X is an infinite and co-infinite c.e. set}.

We explain some interesting properties of this partial order.
We need semi-recursive sets introduced by Jockusch [19]. A set A ⊆ ω is

semi-recursive if there exists a computable function f : ω2 → ω such that for all
x, y ∈ ω we have (a) f(x, y) = x or f(x, y) = y and (b) if x ∈ A or y ∈ A then
f(x, y) ∈ A. Jockusch [19] proves the following result that we state as a lemma:

Lemma 35 (Jockusch [19]). A set A is semi-recursive if and only if A is an
initial segment of some computable linear order on ω. ��
We use this lemma in the following characterisation theorem:

Theorem 36 ([12]). Let X be a coinfinite c.e. set. Then we have the following:

1. The equivalence relation E(X) realises a linear order in which X represents
an isolated point iff X is computable.

2. The equivalence relation E(X) realises a linear order with X being an end
point iff X is semirecursive;

3. The equivalence relation E(X) realises a linear order iff X is one-one
reducible to the join of two c.e. semirecursive sets.

Proof. Part (1) follows from Lemma 33. Part (2) is Jockusch lemma stated above.
We prove (3). Assume that E(X) realises a linear order � and x ∈ X. Then

one can define the sets Y = {y | y � x} and Z = {z | x � z}. Both Y and Z are
semirecursive. Now it is routine to show that X ≤1 Y ⊕ Z.

14 B. Khoussainov

Let X be one-one reducible via f to the join Y ⊕ Z of two c.e. semirecursive
sets. Equip Y and Z with computable orderings �Y and �Z , respectively, where
Y is the upper end point of �Y and Z is the lower end point of �Z . Take the
disjoint sum of �Y and �Z , and pull this linear order back via f to ω. The result
is a c.e. binary relation �′ that induces a linear order on ω/E(X). ��
Corollary 37. If E(X) realises a linear order then X is neither hyperhyper-
simple nor creative nor r-maximal nor simple and non-hypersimple. ��
We now fully characterise the isomorphism types of linear orders realised by
equivalence relations E(X), where X is a simple set:

Theorem 38 ([12]). If X is simple, then one of the following occurs:

1. If X is not one-one reducible to the join of two semirecursive sets then E(X)
does not realise any linear order;

2. If X is semirecursive E(X) realises the linear orders ω + n, n + ω∗ and
ω + 1 + ω∗ for all n;

3. If X is one-one reducible to the join of two semirecursive sets but not semire-
cursive then E(X) realises exactly the linear order which is ω + 1 + ω∗.

Proof. Part (1) follows form the previous theorem. We note that simple sets
satisfying the hypothesis exist (e.g. maximal sets).

For part (2), let X be simple and semirecursive. Let � be a c.e. order respect-
ing E(X) and y represents an element larger than X then there are only finitely
many y with x � y due to simplicity; furthermore, if y represents an element
below X then there are only finitely many y with y � x. Hence only the orders
ω + n, n + ω∗ and ω + 1 + ω∗ can be represented. Furthermore, there is a linear
order represented by E(X) and this linear order has X as its endpoint; hence
ω + 1 and 1 + ω∗ can be represented; and thus ω + n and n + ω∗ can also be
represented. Arguments similar to the proof of Part (3) of Theorem36 provide
an order of the type ω + 1 + ω∗ realised by E(X).

For part (3), let X be simple and one-one reducible to the join of two semire-
cursive sets and not semirecursive. We use the proof of Part (3) of Theorem 36.
That proof shows that E(X) realises an infinite order and X is not an end point
of this order. As one can modify the ordering on finitely many elements and X
cannot be made an end point of the ordering, the ordering cannot be of the form
ω + n or n + ω∗. Hence the order must be ω + 1 + ω∗. ��
Consider the subset S of LO-degrees from P: S = {E(X)/ ≡LO| X is simple}.
From the results above we get the next corollary:

Corollary 39. The partial order ≤LO on S is a 3-element linear order.

Proof. Let X1, X2, and X3 be simple sets such that (1) E(X1) realizes no linear
order; (2) The only linear order realized over E(X2) is of the type ω + 1 + ω�;
(3) The only linear orders realized over E(X3) are of the form, ω +1+ω∗, ω +n
or n + ω�, where n ∈ ω. Clearly, E(X1) <LO E(X2) <LO E(X3). As mentioned
above, these are the only possibilities that occur for simple sets. ��

A Journey to Computably Enumerable Structures (Tutorial Lectures) 15

Corollary 40. The partial order ≤LO on P has a least and greatest element.

Proof. The least element is witnessed by E(X), where X is a maximal set. The
largest element E(Y) is witnessed by a computable set Y , as every linear order
realized over any E(Z) has a computable copy, that is, realized over E(Y). For
the proof of the last part, that requires a deeper argument, see [12]. ��
Corollary 41. S is an initial segment of P.

Proof. Let X be a non-simple set and (ω/E(X),�) be a linear order. Fix infinite
computable C ⊆ ω \ X. Construct a new linear order by restricting to � on
ω \ C and placing C to the right of ω \ C. That is, we define a�̂b ⇐⇒ a � b for
a, b ∈ ω \ C, and a�̂b for a ∈ ω \ C and b ∈ C. We then define �̂ on C to be any
computable linear order. Thus E(X) is not ≤LO-below any LO-degree in S. ��

4.3 Class Part

A graph is a structure of the form (V ;Edge), where Edge consists of unordered
pairs. So, these are just undirected graphs where self-loops are not allowed.

Definition 42. A graph G = (V,Edge) is a partition graph if there is a partition
A0, A1, . . . of V such that Edge = {{x, y} | ∃i∃j (x ∈ Ai & y ∈ Aj & i �= j)}.
Sets Ai from the definition above are called anti-clique components of G. Denote
the class of all partition graphs by Part. We study the partial order EPart.

There are two trivial partition graphs. One is the complete graph Kω, and
the other is the graph Isl whose all vertices are isolated.

Theorem 43 ([15]). The graphs Kω and Isl have the following properties: (1)
If Kω is realised by E then E is computable. (2) Every E realises Isl. ��
Important equivalence relations are precomplete equivalence relations [30]. A
c.e. equivalence relation E is precomplete if for every partial-recursive function
ψ : ω → ω there is a total-recursive function f such that for all n ∈ dom(ψ),
we have ψ(n)E f(n). Lachlan [28] showed that all precomplete universal equiv-
alence relations are computably isomorphic. No two distinct equivalence classes
of precomplete equivalence relations are recursively separable [30].

Theorem 44 ([15]). Every precomplete equivalence relation realises only the
trivial partition graph Isl. So, the order EPart has the least element.

Proof. Let E be a precomplete equivalence relation. Assume that a partition
graph G = (ω/E,Edge) is realised by E and G has at least two anti-clique
components. Let us select x and y from these two anti-clique components. For
every z we define f(z) = 0 if {x, z} is enumerated into Edge before {y, z} and
define f(z) = 1 if {y, z} is enumerated into Edge before {x, z}. The function f
recursively separates the E-equivalence classes of x and y. Hence, G is Isl. ��

The natural question is if EPart has the greatest element. In [15] a positive
answer is given; the equivalence relation idω is the greatest Part-degree in EPart.

16 B. Khoussainov

Lemma 45. Let [x] be a non-computable equivalence class of E. Then if G is
realised by E, then [x] belongs to an infinite anti-clique component.

Proof. Let G = (V,Edge) be realised by E and that the anti-clique component of
G containing [x] is finite. Let x, y1, y2, . . . , yn be representatives of the anti-clique
component. Decide the equivalence class of x as follows. On input z, search until
either xE z or z E ym for m ∈ {1, 2, . . . , n} or (x, z) ∈ Edge. These conditions
are disjoint c.e. events. If xE z then z ∈ [x]. Otherwise, z �∈ [x]. ��
Corollary 46. If E realises a partition graph whose all anti-clique components
are finite, then each equivalence class of E is recursive. ��

Let E0, E1, . . . be an effective enumeration of all c.e. equivalence relations.
Define: (〈x, y〉, 〈x′, y′〉) ∈ univ ⇔ x = x′ ∧ (y, y′) ∈ Ex [30]. The relation univ
is a universal c.e. equivalence relation [7] in the sense that all c.e. equivalence
relations are m-reducible to it.

Let Ez be a computably enumerable equivalence relation realising a partition
graph G = (ω/E;Edge′) with at least one infinite anti-clique component. Fix z′,
a member of an infinite anti-clique component. Define Edge relation on ω/univ:

(〈x, y〉, 〈x′, y′〉) ∈ Edge ⇔ (x = z ∧ x′ = z ∧ (y, y′) ∈ Edge′)
∨ (x = z ∧ x′ �= z ∧ (y, z′) ∈ Edge′)
∨ (x �= z ∧ x′ = z ∧ (y′, z′) ∈ Edge′).

The graph (ω;Edge)/univ is isomorphic to the graph G. This observation with
the lemma above implies the following characterisation theorem:

Theorem 47 ([15]). A c.e. partition graph G = (V ;Edge) is realised by the
relation univ iff one of the anti-clique components of G is infinite. ��

Now we concentrate on special subclass of partition graphs. Call an infinite
partition graph G finitary if the number of its anti-clique components is finite.

Definition 48. A c.e. equivalence relation E finitary if all partition graphs
realised by E are finitary. Let F be the class of all c.e. finitary equivalence
relations.

It is easy to fully characterise isomorphism types of finitary partition graphs.

Definition 49. The isomorphism invariant of a finite partition graph G is the
tuple (i,m, k1, . . . , km), where i is the number of infinite anti-clique components,
m is the number of finite anti-clique components and k1, . . ., km is the sequence,
in non-decreasing order, of the cardinalities of all finite anti-clique components
of the graph G. Call the pair (i,m) the type of the graph G.

Two finitary partition graphs are isomorphic iff they have the same isomorphism
invariants. The following two lemmas are easy:

A Journey to Computably Enumerable Structures (Tutorial Lectures) 17

Lemma 50. Let G = (ω/E;Edge) be a c.e. finitary partition graph. Then all
anti-clique components of G are computable.

Proof. Let x1, . . . , xk be representatives of the anti-clique components. The anti-
clique component of xi is Ai = {y | (∀j �= i, 1 ≤ j ≤ k)[(y, xj) ∈ Edge]}. Since
the Ai’s partition ω, we have that Ai is computable. ��
Lemma 51. If E is a c.e. equivalence relation with no computable classes, then
all anti-clique components in partition graphs realised by E are infinite. ��
Lemma 52. For a finitary equivalence relation E, let n(E) be the maximum i
such that E realises a partition graph with i many infinite anti-clique compo-
nents, and m(E) be the maximum i such that E realises a partition graph with i
many finite anti-clique components. Then for all (n,m) with 1 ≤ n < 1 + n(E),
m < 1 + m(E), E realises finitary partition graphs of type (n,m).

Proof. By Lemma 45 every equivalence class [x]E that belongs to a finite anti-
clique component of some E-partition graph must be computable. Hence, E has
exactly m(E) computable equivalence classes.

Case 1: n(E) = ω & m(E) = ω. Take an isomorphism invariant (n,m,
k1, . . . , km). Let G be any E-partition graph of type (n′,m′), where n′ ≥ n.
Select an infinite anti-clique component, say C, in G. We change G to G′ by
(1) adding all [x]E that belong to finite anti-clique components of G to C, and
(2) combining n′ − n many infinite anti-clique components all different from C
with C. In this way, we changed G to G′ in which the original C has enlarged
to a new anti-clique component. The new graph G′ has type (n, 0). Now select
k1 + . . . + km recursive E-equivalence classes and change G′ to G′′ by forming
new m many anti-clique components (using these k1 + . . . + km E-equivalence
classes) of cardinalities k1, . . ., km. The resulting graph G has type (n,m).

The other 3 cases when n(E) = ω & m(E) = r < ω, n(E) < ω & m(E) = ω,
and n(E) < ω &m(E) < ω are treated in a similar fashion. ��
Definition 53. A c.e. equivalence relation E has type (n,m) if n and m are the
largest cardinalities such that for all i, j with 1 ≤ i < n and j < m, the relation
E realises finitary partition graphs of type (i, j).

We would like to construct finitary equivalence relations.

Theorem 54 ([15]). Let X be a simple set. Then E(X) realises a partition
graph G iff G is finitary whose type is of the form (1,m), where m ∈ ω.

Proof. Suppose G = (ω/E(X);Edge) is a partition graph realised by E(X).
Then the anti-clique component of G containing X is infinite by Lemma 45. Let
x ∈ X. The set S = {z | (z, x) ∈ Edge} is c.e., respects E, and is contained in
the complement of X. Thus, S is finite. So, G is of type (1,m) for some m.

Let G be a partition graph with isomorphism invariant (1,m, k1, . . . , km). To
build an E(X)-graph isomorphic to G, select a set T ⊂ ω−X of size k1+. . .+km,
and build a partition graph with anti-clique components ω−T , T1, . . . , Tm, where
T is the disjoint union of T1, . . . , Tm of cardinalities k1, . . . , km, respectively. ��

18 B. Khoussainov

Thus, for simple sets X, the c.e. equivalence relation E(X) has type (2, ω). By
Theorem 44, a precomplete c.e. equivalence relation E has type (2, 1). The next
lemma gives us a full description of finitary c.e. equivalence relations. The proof
is a combinatorial argument that uses the equivalence relation E(X), where X
is simple, precomplete equivalence relations, and their finite joins and products.

Lemma 55. For each pair (n,m) such that 1 < n ≤ ω and 1 ≤ m ≤ ω there
exists a c.e. equivalence relation of type (n,m). ��

The lemmas above imply the full characterisation of Part-reducibility in the
class F of all finitary c.e. equivalence relations.

Theorem 56 ([15]). The degree-structure of F ordered by Part-reducibility is
isomorphic to the two-dimensional grid-order ({(n,m) | n,m ∈ ω ∪ {ω}};≤),
where ≤ is the component-wise order on the set of pairs. ��
References for this last lecture with many more results are [10,12,15].

References

1. Andrews, U., Sorbi, A.: Joins and meets in the structure of Ceers. arXiv:1802.09249
(2018, submitted)

2. Andrews, U., Lempp, S., Miller, J., Ng, K., Mauro, L.S., Sorbi, A.: Universal
computably enumerable equivalence relations. J. Symb. Log. 79(1), 60–88 (2014)

3. Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type spec-
ifications: two characterization theorems. SIAM J. Comput. 12, 366–387 (1983)

4. Bergstra, J.A., Tucker, J.V.: Algebraic specifications of computable and semi-
computable DataTypes. Theor. Comput. Sci. 50, 137–181 (1987)

5. Bernardi, C., Sorbi, A.: Classifying positive equivalence relations. J. Symb. Log.
48(3), 529–538 (1983)

6. Baumslag, G.: Wreath products and finitely presented groups. Math. Z. 75, 22–28
(1960/1961)

7. Ershov, Y.L.: Positive equivalence. Algebra Log. 10(6), 378–394 (1974)
8. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)
9. Ershov, Y.L., Goncharov, S.S.: Constructive models. Transl. from the Russian.

(English) Siberian School of Algebra and Logic, vol. xii, 293 p. Consultants Bureau,
New York (2000)

10. Fokina, E., Khoussainov, B., Semukhin, P., Turetsky, D.: Linear orders realized by
ce equivalence relations. J. Symb. Log. 81(2), 463–482 (2016)

11. Gao, S., Gerdes, P.: Computably enumerable equivalence relations. Stud. Logica
67(1), 27–59 (2001)

12. Gavryushkin, A., Khoussainov, B., Stephan, F.: Reducibilities among equivalence
relations induced by recursively enumerable structures. Theoret. Comput. Sci. 612,
137–152 (2016)

13. Golod, E.S.: On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk
SSSR Ser. Mat. 28, 273–276 (1964). (Russian)

14. Golod, E.S., Shafarevich, I.R.: On the class field tower. Izv. Akad. Nauk SSSSR
28, 261–272 (1964). (in Russian)

http://arxiv.org/abs/1802.09249

A Journey to Computably Enumerable Structures (Tutorial Lectures) 19

15. Gavruskin, A., Jain, S., Khoussainov, B., Stephan, F.: Graphs realised by R.E.
equivalence relations. Ann. Pure Appl. Logic 165(7–8), 1263–1290 (2014)

16. Goncharov, S., Khoussainov, B.: Open problems in the Theory of Constructive
Algebraic Systems, Contemporary Mathematics 257, Computability Theory and
Its Applications (Current Trends and open Problems), pp. 145–170 (2000)

17. Gratzer, G.: Universal Algebra. Van Nostrand, Princeton (1968)
18. Hirschfeldt, D., Khoussainov, B.: On finitely presented expansions of computably

enumerable semigroups. Algebra Log. 51(5), 435–444 (2012)
19. Jockusch, C.J.: Semirecursive sets and positive reducibility. Trans. Am. Math. Soc.

131, 420–436 (1968)
20. Kassymov, N.K.: On finitely approximable and C.E. representable algebras. Alge-

bra Log. 26(6) (1986)
21. Khalimulin, I., Khoussainov, B., Melnikov, A.: Limit-wise monotonicity and the

degree spectra of structures. Proc. Am. Math. Soc. 141, 3275–3289 (2013)
22. Khoussainov, B.: Quantifier free definability on infinite algebras. In: Proceedings

of Logic in Computer Science Conference, LICS 2016, pp. 730–738 (2016)
23. Khoussainov, B.: Randomness, computability, and algebraic specifications. Ann.

Pure Appl. Logic 91(1), 1–15 (1998)
24. Khoussainov, B., Miasnikov, A.: Finitely presented expansions of groups, semi-

groups, and algebras. Trans. Amer. Math. Soc. 366(3), 1455–1474 (2014)
25. Kasymov, N., Khoussainov, B.: Finitely generated enumerable and absolutely

locally finite algebras. Vychislitelnye Sistemy 116, 3–15 (1986). (in Russian)
26. Khoussainov, B., Lempp, S., Slaman, T.A.: Computably enumerable algebras, their

expansions, and isomorphisms. Int. J. Algebra Comput. 15, 437–454 (2005)
27. Ershov, Y., Goncharov, S. (eds.): Logic Notebook (Open questions in Logic).

Novosibirsk University Press (1989)
28. Lachlan, A.H.: A note on positive equivalence relations. Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik 33, 43–46 (1987)
29. Mal’cev, A.I.: Constructive algebras. I. Uspehi Mat. Nauk 16(3(99)), 3–60 (1961)
30. Maltsev, A.I.: Towards a theory of computable families of objects. Algebra i Logika

3(4), 5–31 (1963)
31. Miasnikov, A., Osin, D.: Algorithmically finite groups. J. Pure Appl. Algebra

215(11), 2789–2796 (2011)
32. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.

Trans. Amer. Math. Soc. 95, 341–360 (1960)
33. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

Polynomial-Time Presentations
of Algebraic Number Fields

Pavel Alaev1,2(B) and Victor Selivanov3,4

1 S. L. Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
alaev@math.nsc.ru

2 Novosibirsk State University, Novosibirsk, Russia
3 A. P. Ershov Institute of Informatics Systems SB RAS,

Novosibirsk, Russia
vseliv@iis.nsk.su

4 Kazan Federal University, Kazan, Russia

Abstract. Using an extension of the notion of polynomial time pre-
sentable structure we show that some natural presentations of the
ordered field Ralg of algebraic reals and of the field Calg of algebraic
complex numbers are polynomial-time equivalent to each other and are
polynomial time. We also establish upper complexity bounds for the
problem of rational polynomial evaluation in Calg and for the problem
of root-finding for polynomials in Calg[x] which improve the previously
known bound.

Keywords: Algebraic number · Ordered field · Polynomial
Polynomial-time presentable structure · Complexity bound

1 Introduction

Based on the notion of a computable structure, the computability issues in
algebra and model theory were thoroughly investigated. In particular, a rich
and useful theory of computable fields was developed (see e.g. [1,2] and ref-
erences therein). For instance, Rabin [3] has shown that the algebraic closure
of a computable field is computably presentable, and Ershov [4] has shown
that the real algebraic closure of a computable ordered field is computably pre-
sentable. Since the ordered field Q of rationals is computably presentable, the
field Calg = (Calg; +,×, 0, 1) of complex algebraic numbers and the ordered field
Ralg = (Ralg;≤,+,×, 0, 1) of algebraic reals are computably presentable.

In applications one of course has to pay attention to the complexity of imple-
mented algorithms and of structure presentations. The complexity of structure

P. Alaev—The work of first author was funded by RFBR, the research project 17-
01-00247.
V. Selivanov—The work of second author was funded by the subsidy allocated to
Kazan Federal University for the state assignment in the sphere of scientific activities,
project No 1.12878.2018/12.1.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 20–29, 2018.
https://doi.org/10.1007/978-3-319-94418-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_2&domain=pdf

Polynomial-Time Presentations of Algebraic Number Fields 21

presentations was studied e.g. in [5–7] where, in particular, the notion of a
polynomial-time (p-time) structure was introduced. To our knowledge, the com-
plexity issues for presentations of fields were not studied in computability theory
so far. At the same time, there exists a well-developed theory of symbolic compu-
tations (closely related to computer algebra) which investigates the complexity
of algorithms in fields, of concrete presentations of fields and rings, and aims
to implement these in computer systems. In particular, there is a vast literature
around the Tarski theorems on decidability of the theories of algebraically closed
fields and of real closed fields (see e.g. [8] and references therein). Although the
mentioned theories are obviously intimately related, they developed apparently
independently and there are essentially no references between them.

This paper has two aims. First, we partially fill the gap between the men-
tioned theories by applying the notions of computability theory to the investi-
gation of some presentations of Ralg and Calg. In particular, we show that the
notion of p-time presentable structure is not applicable to some presentations of
Ralg and Calg in the literature. We introduce in Sect. 2 a more general notion of
p-computable quotient-structure and show that several natural presentations of
Ralg and Calg are p-time equivalent to each other, and are p-time computable.
Thus, we clear up the conceptual basis for the complexity theory of structure
presentations.

The second aim is to study the complexity of some algorithmic problems in
Ralg and Calg. In Sect. 3 we find an optimal (in a sense) complexity bound for the
problem of rational polynomial evaluation. In Sect. 4 we find an upper bound
for the problem of root-finding for polynomials in Calg[x] which improves the
bounds previously known in the literature on computer algebra.

2 Presentations of Algebraic Number Fields

We use multi-tape Turing machines as our basic model of computation (see
e.g. [9, §1.6] for additional details). Let Σ be a finite alphabet. Suppose that
f : A → Σ∗, where A ⊆ (Σ∗)n. We say that f is computable on a k-tape Turing
machine T in t(x̄) steps, where t : A → N, if k � n + 1 and we can write the
words x̄ = x1, . . . , xn from A on the first n tapes, run the machine T , which stops
in at most t(x̄) steps, and obtain f(x̄) written on (n + 1)-st tape. More precise
definitions may be found, for example, in [10]. We say that f is computable in
polynomial time (p-computable) if we can choose t(x̄) = c|x̄|m for |x̄| �= 0, where
c,m ∈ N are constants and |x̄| = max{|xi| | i � n}.

Recall that a structure (A;σ) of a finite signature σ is p-computably pre-
sentable if it is isomorphic to a polynomial-time computable (p-computable)
structure (B;σ) where B ⊆ Σ∗ is p-computable (for a finite alphabet Σ), as
well as all the signature functions and predicates.

We illustrate the introduced notion for the structures Ralg and Calg, using
some standard notions and facts from [11,12]. With any α ∈ Ralg we associate
the unique pair (pα, k) where pα ∈ Q[x] is the minimal (hence, irreducible)
unitary polynomial of degree ≥ 1 with pα(α) = 0, and k satisfies α = αk where
α1 < · · · < αm is the increasing sequence of all real roots of pα.

22 P. Alaev and V. Selivanov

The standard binary encoding b : Q → {0, 1, ∗}∗ induces an encoding b :
Q[x] → {0, 1, ∗}∗, which associates with a polynomial p(x) = anxn+· · ·+a1x+a0,
an �= 0 if n �= 0, the code b(an)∗ · · · ∗b(a0). Now we associate with any α ∈ Ralg

the word b(pα) ∗ b(k) where (pα, k) is the pair from the previous paragraph,
which yields an injection b : Ralg → {0, 1, ∗}∗.

Let now R1 = (R1;�,+,×, 0, 1), where R1 = b(Ralg), be the isomorphic
copy of Ralg induced by b; we call it the order presentation of Ralg. The bijection
b : Ralg → R1 and the Gauss representation z = x + iy of complex numbers
induce a bijection between R1 ×R1 and Calg. By encoding again the elements of
R1 × R1 by words in a finite alphabet in a standard way, we obtain a bijection
b : Calg → C1 which induces an isomorphism g : Calg → C1 = (C1; +,×, 0, 1).
Informally, C1 is the product R1 × R1.

In all cases, let L(x) denote the length |b(x)|, where the exact sense of b(x)
should be clear from the context. Sometimes we will identify x and b(x), con-
sidering it as the standard encoding.

Theorem 1. The structures R1 and C1 are p-computable, and the operations
−x and 1/x in these fields are also p-computable. As a corollary, Ralg and Calg

are p-computably presentable.

Proof Sketch. We provide very short proof hints based on well known deep facts
about symbolic computations. Another proof (not using the resultant calculus),
which is suggested in our work, is based on results of Sects. 3 and 4, in particular,
on Theorem 2. The proof for C1 follows rather easily from the proof for R1, so
we concentrate on the latter structure.

The p-computability of R1 and of � follow from p-computability of find-
ing the greatest common divisor and of the factorization problem in Q[x], the
Schturm root separation algorithm, and Mahler’s estimate for the lower bound
of the length of root separating intervals [13–15]. The p-computability of +,×
follows from the formulas concerning resultants in [14,16]. Although those for-
mulas refer to the interval presentation of Ralg (recalled below), they can easily
be adjusted to the order presentation using the abovementioned algorithms. 	

To describe some other popular presentations of Ralg and Calg, we need an
extension of the notion of a p-computable structure. Let A ⊆ Σ∗ and let E ⊆ A2

be an equivalence relation on A. We call the quotient set of the form Ā = A/E =
{[a] | a ∈ A} a quotient-set in Σ∗. In this paper we abbreviate “quotient-set in
Σ∗”, to “quotient-set”. A quotient-set Ā = A/E is p-computable if A and E
are p-computable. A function f : Ā → B̄ between quotient-sets is p-computable
if there is a p-computable function f0 : A → B such that f([x]E) = [f0(x)]F
for x ∈ A. Note that in this case (x, y) ∈ E implies (f0(x), f0(y)) ∈ F . In a
similar way one can define the notion of a p-computable function f : (Ā)n → B̄
or f : (Ā)n → Σ∗. Any A ⊆ Σ∗ maybe identified with A/idA, so the notion of
a p-computable function between quotient-sets extends that of a p-computable
function.

A structure Ā of a finite signature is called a quotient-structure if its uni-
verse is a quotient-set. A quotient-structure Ā = (Ā; . . .) is p-computable if Ā

Polynomial-Time Presentations of Algebraic Number Fields 23

is a p-computable quotient-set and all signature functions and predicates are p-
computable on Ā. Quotient-structures Ā and B̄ are p-computably isomorphic if
there is an isomorphism f : Ā → B̄ such that both f and f−1 are p-computable
functions. Identifying the set A with A/idA, we can consider the usual structures
as quotient-structures. Quotient-structures arise when we cannot define elements
of an abstract structure by a unique “canonical” word from Σ∗.

Next we formulate a useful characterization of quotient-structures p-com-
putably isomorphic to R1. It involves some properties of root-finding. In the
formulation we use a standard encoding a0 ∗ · · · ∗ an of finite sequences of words
ai ∈ Σ∗ (assuming that the symbol ∗ is not in Σ).

Proposition 1. Suppose that Ā = (Ā;�,+,×, 0, 1) is a p-computable quotient-
structure isomorphic to Ralg. Let Q1 be the least subfield of R1 and QA be the
least subfield of Ā, which correspond to the set of rational numbers. Then Ā is
p-computably isomorphic to R1 iff

(a) QA is p-computably isomorphic to Q1;
(b) there is a p-computable function f that finds from a given a ∈ A a word

f(a) = an ∗ · · · ∗ a1 ∗ a0, [ai] ∈ QA, such that [an] �= 0 and [a] is a root of
[an]xn + · · · + [a1]x + [a0] in Ā;

(c) there is a p-computable function that finds from a given word an∗· · ·∗a1∗a0,
[ai] ∈ QA, [an] �= 0, a word b1∗· · ·∗bm, m ≥ 0, bj ∈ A, such that [b1], . . . , [bm]
are exactly all the roots of [an]xn + · · · + [a1]x + [a0] in Ā.

This proposition shows that R1 is a most natural p-computable presentation
of Ralg in some sense. In [10], it is proved that for every infinite p-computable
structure A, there exists an isomorphic p-computable structure A′ such that they
are not p-computably isomorphic. In particular, such A′ exists for R1.

Now we define other natural presentations of Ralg and Calg known in the
literature. For any polynomial p ∈ Q[x] of degree ≥ 1 without multiple roots, let
p′(x), p′′(x), . . . , p(n−1)(x) be the sequence of its derivative polynomials. For any
x ∈ R, let ε̄p(x) = (ε1(x), . . . , εn−1(x)) where εi(x) = 1, 0,−1 iff p(i)(x) is resp.
positive, zero, or negative. As follows from Thom’s Lemma [17], ε̄p(α) �= ε̄p(β)
whenever α and β are distinct roots of p(x). Associate with any α ∈ Ralg the
unique pair (pα, ε̄pα

(α)), and let R2 be the set of codes of such pairs in a natural
word encoding based on the above-mentioned encoding of rational polynomials
and a natural encoding of sequences of 1, 0,−1. Let R2 = (R2;<,+,×, 0, 1) be
the isomorphic copy of Ralg induced by the bijection α �→ (pα, ε̄pα

(α)). The
presentation R2 of Ralg (which we call the sign presentation) was introduced in
[17].

We can also code a real α ∈ Ralg by a pair (p(x), I), where p(x) ∈ Q[x] \ {0},
p(α) = 0, and I = (a, b] is an isolating rational interval for α including α and
no other roots of p(x). Call two pairs equivalent, (p1(x), I1) ∼ (p2(x), I2), if they
encode the same real. Let
A3 = {b(p(x)) ∗ b(a) ∗ b(b) | p(x) ∈ Q[x], a, b ∈ Q and (p(x), I = (a, b]) encodes
some α ∈ R},

24 P. Alaev and V. Selivanov

let E3 ⊆ A3 × A3 be the relation corresponding to the equivalence of pairs, and
let R3 = A3/E3 be the corresponding quotient-set. Let R3 = (R3;<,+,×, 0, 1)
be the corresponding isomorphic copy of Ralg. We call this presentation of Ralg

the interval presentation (see e.g. [16]).
A similar interval presentation of Calg is also known in the literature. We say

that a triple (p, I,K), where p is a polynomial and I,K are rational intervals as
above, defines the number z ∈ C if z is the unique root of p in the rectangle I+iK.
Let C be the set of codes of such triples (p, I,K) in a natural encoding, γ : C →
Calg be the surjection defined similarly to the previous paragraph (of course, γ
is not a bijection), and E be the corresponding equivalence relation on C. Then
we have a presentation of Calg as a quotient-structure C2 = (C/E; +,×, 0, 1).
The following fact follows from Proposition 1 using the results mentioned in the
proof sketch of Theorem 1.

Corollary 1. The quotient-structures R2,R3 are p-computably isomorphic to
R1 and are therefore p-computable. The quotient-structure C2 is p-computably
isomorphic to C1 and is therefore p-computable.

3 Complexity of Polynomial Evaluation

Here we establish an optimal upper complexity bound for the problem of rational
polynomial evaluation in R1 and C1.

Let < be the lexicographic order on the set ω∗ of finite strings of natural
numbers. If I ⊆ ω∗, I = {i0 < i1 < . . . < in}, ai for i ∈ I are words in
some alphabets and b is a new symbol, then we define Cb

i∈Iai = ai0bai1b . . . bain
.

Fix a sequence of variables x1, x2, Any polynomial t(x̄) in Q[x1, . . . , xn] is
representable in the form

t(x̄) =
∑

(s1,...,sk)∈I

qs1,...,sk
xs1
1 xs2

2 . . . xsk

k ,

where I ⊆ ω∗, I �= ∅, sk �= 0 for k �= 0, qs1,...,sk
∈ Q, and qs1,...,sk

�= 0 for k �= 0.
We set

b(t(x̄)) = 1m ∗ C+
(s1,...,sk)∈Ib(qs1,...,sk

) ∗ b(s1) ∗ . . . ∗ b(sk),

where m = max
(s1,...,sk)∈I

{si}. By L(t(x̄)) we denote the length |b(t(x̄))|. The unary

word 1m makes this encoding (for k = 1) p-equivalent to the above-mentioned
encoding of polynomials in Z[x]. Recall that the degree deg(α) of α ∈ Calg is the
degree of the minimal polynomial pα for α.

Theorem 2. There exists an algorithm which, given k � 1, α1, . . . , αk ∈ Calg

and t(x1, . . . , xk) ∈ Q[x1, . . . , xk], finds β = t(α1, . . . , αk) ∈ Calg. More precisely,
the algorithm from given words C&

i�kb(αi) and b(t(x1, . . . , xk)) finds the word
b(β).

Polynomial-Time Presentations of Algebraic Number Fields 25

Let ni = deg[αi] for each i � k, and let n = maxi�k{ni}. Then the working
time of the algorithm is bounded by (n1n2 · · · nk)cLd, or nckLd, where c, d are
some constants and L is the input length. In particular, for a fixed k we get
a p-computable function that evaluates polynomials from Q[x1, . . . , xk]. Also,
deg[β] �

∏
i�k

deg[αi].

Proof Sketch. We briefly describe only basic ideas of the proof. The main step
is an algorithm that, given k � 1, non-zero polynomials p1(x), . . . , pk(x) ∈ Z[x],
and t(x1, . . . , xk) ∈ Q[x1, . . . , xk], constructs a non-zero polynomial q(x) ∈ Z[x]
such that if α1, . . . , αk ∈ C and pi(αi) = 0 for i � k, then q(t(α1, . . . , αk)) = 0.
Its work time can also be estimated as (n1n2 . . . nk)cLd, where ni = deg[pi(x)],
L is the input length, and c, d are fixed constants.

The algorithm is based on bulky computations. Let bi be the leading coeffi-
cient of pi(x), i � k. Given s � 0, we find numbers cs,i

t ∈ Z such that

αs
i =

1
bs
i

∑

t<ni

cs,i
t αt

i, (1)

using pseudo-division of the polynomial xs by pi(x).
Next, given s1, . . . , sk � 0, we find numbers ds1,...,sk

t1,...,tk
∈ Z such that

αs1
1 αs2

2 . . . αsk

k =
1

bs
1b

s
2 . . . bs

k

∑

ti<ni

ds1,...,sk
t1,...,tk

αt1
1 αt2

2 . . . αtk

k , (2)

where s = maxi�k{si}. This means that every monomial αs1
1 . . . αsk

k is expressed
as a linear combination of a finite set of base monomials {αt1

1 . . . αtk

k }ti<ni
, which

has u = n1n2 . . . nk elements.
Let β = t(α1, . . . , αk). Having t(x̄), we can find a linear combination of the

form (2) for β. The same can be done for all βs, s � 0, by induction on s.
Therefore we obtain u + 1 linear combinations of length u for β0, β1, . . . , βu,
which must be linearly dependent. Applying Gauss algorithm for solving a cor-
responding system of linear equations in polynomial time [18], we find numbers
λ0, λ1, . . . , λu ∈ Q such that λ0 + λ1β + . . . + λuβu = 0. We have constructed
required q(x).

The rest of the proof is as follows. The given numbers α1, . . . , αk ∈ Calg

are defined by two polynomials for their real and imaginary parts. First, we
pass to one polynomial pi(x) ∈ Z[x] such that pi(αi) = 0, i � k. Using the
algorithm above, find q(x) having β = t(α1, . . . , αk) in its roots. Then, we pass
to q1(x), q2(x) ∈ Z[x] whose real roots include the real and imaginary parts of
roots of q(x), respectively. If β = β1 + iβ2 then βj ∈ R is a root of qj(x).

Using approximations for α1, . . . , αk and standard arithmetic calculations,
we construct an approximation sequence for β. Separating roots of qj(x), we can
find ones that correspond to β.

An essential part of the proof are exact estimations for the work time of all
steps above, and the sizes of corresponding intermediate objects. Certainly, we
cannot designate them here. The theorem is proved.

26 P. Alaev and V. Selivanov

We note that the upper bound in Theorem 2 is in a sense close to optimal.
This is a corollary of the following result in [19]: for all distinct primes p1, . . . , pk

and all n1, . . . , nk � 1, the extension degree [Q(p1/n1
1 + · · · + p

1/nk

k) : Q] is
n1n2 · · · nk. If now p1, . . . , pk are the first k primes then pk � 2k. Take arbitrary
n1, . . . , nk � 1 and let αi = p

1/ni

i for i � k. The number αi is coded by (xni −
pi,m) where m ∈ {1, 2}, and |L(αi)| � 2ni + k + 5, |b(α1)& · · · &b(αk)| �
2(n1 + · · · + nk) + k2 + 6k. If t(x1, . . . , xk) = x1 + · · · + xk then L(t) � k2 + 6k.
Also, L(α1 + · · · + αk) � n1n2 . . . nk, because the length of a number cannot be
less than the degree of its minimal polynomial. Thus, the algorithm of Theorem
2 cannot work in polynomial time uniformly on k even when evaluating the
polynomials x1 + · · · + xk, and the upper bound from this theorem is bounded
by a polynomial from L and the lower bound n1n2 · · · nk. Moreover, if we take
ni = n for i � k and L∗ = L(t(α1, . . . , αk)) then L∗/Ld for k → ∞ is close to
nk, therefore the bound of Theorem 2 cannot be essentially improved.

Some algorithms for computing the function

b(t(x1, . . . , xk)),b(α1) ∗ · · · ∗ b(αk) �→ t(α1, . . . , αk)

are well known in the literature. For k = 2 one can use resultants to get a
polynomial time bound, while for k > 2 one can use a series of k−1 of resultants.
For computing the resultants good enough algorithms are known [20], but the
straightforward application of these algorithms gives rather bad estimates.

At the same time, the standard algorithm for k = 1 is fast because the
arithmetic in the simple algebraic extension Q(α1) is very easy. The standard
algorithm for k > 1 is to reduce the problem to the case k = 1 using the primitive
element theorem saying that for all α1, . . . , αk ∈ Calg, there is a “primitive
element” θ ∈ Calg such that Q(α1, . . . , αk) = Q(θ). There is a p-time algorithm
which for given α1, α2 ∈ Calg finds θ ∈ Calg and polynomials c1(x), c2(x) ∈
Q[x] such that Q(α1, α2) = Q(θ) and ci(θ) = αi for i = 1, 2. The algorithm is
described in [16] and used in many other texts, see e.g. [21, §5.4]. This algorithm
may be applied for k > 2 subsequently (in some order) to compute θ with
Q(θ) = Q(α1, . . . , αk), see e.g. [22, §4.2] or [23]. This method is also used in [24]
for describing a relatively fast algorithm of quantifier elimination for Th(R).

In our situation, this method yields for a fixed k a p-time algorithm for
computing t(α1, . . . , αk) but the resulting estimate (based on the estimates in
[16] for finding θ and c1, c2(x)) seems to be at least nck log(k)Ld where n is the
maximal degree of αi, i � k, L is the input length and c, d are constants. Our
algorithms are based on other ideas (not using the primitive elements) and yield
a better estimate for k → ∞.

4 Complexity of Root Finding

Here we study the complexity of root-finding in Calg, i.e. of finding all roots of
an equation αex

e + . . . + α1x + α0 = 0 where αi ∈ Calg for i � e. Our estimates
look better if we consider equations of the form

te(α1, . . . , αk)xe + . . . + t1(α1, . . . , αk)x + t0(α1, . . . , αk) = 0, (3)

Polynomial-Time Presentations of Algebraic Number Fields 27

where α1, . . . , αk ∈ Calg and tj(x̄) ∈ Q[x1, . . . , xk]. The problem is to find a list of
(codes of) all roots from given b(α1)& · · · & b(αk) and b(t0(x̄))& · · · & b(te(x̄)).
The form (3) is convenient since our algorithm remains polynomial for fixed k
even if e grows.

Again, there are well known p-time algorithms that solve the problem for
k = 1, and for k > 1 the authors often recommend to go from α1, . . . , αk to a
primitive element θ [16]. In this way, we meet the same growth of complexity
as above. We propose an alternative algorithm (not using the resultants and
primitive elements at all) which again yields a better estimate (n1 · · · nk)cLd.

Theorem 3. There exists an algorithm which, given k � 1, α1, . . . , αk ∈ Calg

and polynomials t0(x̄), . . . , te(x̄) ∈ Q[x1, . . . , xk], finds a list β1, . . . , βg ∈ Calg of
all complex roots of the Eq. (3).

More precisely, the algorithm sends words C&
i�kb(αi) and C&

p�eb(tp(x̄)) to
a word C&

j�gb(βj). Let ni = deg[αi] for i � k, n = maxi�k{ni}, and let L
be the input length. Then the working time of the algorithm is estimated as
(n1n2 · · · nk)cLd, or nckLd, where c, d are constant. In particular, if k is fixed
or n = 1, we get a p-time algorithm for root-finding. Furthermore, deg[βj] �
e
∏

i�k deg[αi] for j � g.

Proof Sketch. Again we briefly describe only the basic ideas of the proof. It is
close to the proof of Theorem 2 in many aspects. The main part of the proof is
devoted to the case where te(x̄) = −1. Then (3) has the form

xe = te−1(α1, . . . , αk)xe−1 + . . . + t1(α1, . . . , αk)x + t0(α1, . . . , αk). (4)

Let α1, . . . , αk ∈ Calg and let β ∈ Calg be a root of (4). Proceeding as in Theorem
2, we find minimal polynomials pi(x) ∈ Z[x] such that pi(αi) = 0. Let ni =
deg[pi(x)]. Then βe can be expressed as a linear combination of a finite set of
base monomials {αt1

1 αt2
2 . . . αtk

k βp}p<e
ti<ni

by (2). The set has eu elements, where
u = n1n2 . . . nk. Using induction on s, we can express every βs, s � e, by such
a combination:

βs =
1
es

p<e∑

ti<ni

es
t1,...,tk,pα

t1
1 . . . αtk

k βp, (5)

where es, e
s
t1,...,tk,p ∈ Z.

As in Theorem 2, we therefore obtain eu+1 linear combinations of length eu for
β0, β1, . . . , βeu. They are linear dependent. Solving a system of linear equations,
we obtain numbers λ0, λ1, . . . , λeu ∈ Q such that λ0 + λ1β + . . . + λeuβeu = 0.
Hence, we have constructed a polynomial q(x) ∈ Z[x] such that q(β) = 0.

Now all roots of (4) are among the roots of q(x). We pass to q1(x), q2(x) ∈
Z[x] whose real roots include the real and imaginary parts of roots of q(x),
respectively. Then we can form a finite list of elements of Calg which includes all
its roots. Using the algorithm from Theorem 2, we substitute them to (4) and
prove which of them are the required roots.

28 P. Alaev and V. Selivanov

In the general case, where te(x̄) is an arbitrary polynomial, we pass from k
to k + 1, defining αk+1 = −1/te(α1, . . . , αk), and obtain the equation

xe = αk+1te−1(α1, . . . , αk)xe−1 + . . . + αk+1t0(α1, . . . , αk). (6)

The proof is reduced to the previous case. If te(α1, . . . , αk) = 0 then we proceed
by induction on e. All needed estimations are omitted here. The theorem is
proved.

References

1. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Plenum, New York (1999)
2. Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Handbook of Logic in

Computer Science: Semantic Modelling, vol. IV, pp. 357–526. Oxford University
Press, Oxford (1995)

3. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.
Trans. Am. Math. Soc. 95, 341–360 (1960)

4. Ershov, Y.L.: Theorie der Nummerierungen III. Ziets. Math. Logik Grundl. Math.
23, 289–371 (1977)

5. Nerode, A., Remmel, J.B.: Complexity theoretic algebra I, vector spaces over finite
fields. In: Proceedings of Structure in Complexity, 2nd Annual Conference, pp.
218–239. Computer Sci. Press, New York (1987)

6. Cenzer, D., Remmel, J.B.: Complexity theoretic model theory and algebra. In:
Handbook of Recursive Mathematics, vol. 1. Elsevier, New York City (1998)

7. Cenzer, D., Remmel, J.: Polynomial time versus recursive models. Ann. Pure Appl.
Log. 54, 17–58 (1991)

8. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

9. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley Pub. Co., Boston (1974)

10. Alaev, P.E.: Structures computable in polynomial time I. Algebra Log. 55(6), 421–
435 (2016). https://doi.org/10.1007/s10469-017-9416-y

11. Van der Waerden, B.L.: Algebra. Springer, Berlin (1967)
12. Balcázar, J.L., Dı́az, J., Gabarró, J., Structural, C.I.: Structural Complexity I.

EATCS, vol. 11. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-
97062-7

13. Akritas, A.G.: Elements of Computer Algebra with Applications. Wiley, New York
(1989)

14. Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins,
G.E., Loos, R., Albrecht, R. (eds.) Computer Algebra: Symbolic and Algebraic
Computations. COMPUTING, vol. 4, pp. 83–94. Springer, Vienna (1982). https://
doi.org/10.1007/978-3-7091-7551-4 7

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

16. Loos, R.: Computing in algebraic extensions. In: Buchberger, B., Collins, G.E.,
Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computations. COM-
PUTING, vol. 4, pp. 173–187. Springer, Vienna (1982). https://doi.org/10.1007/
978-3-7091-3406-1 12

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/s10469-017-9416-y
https://doi.org/10.1007/978-3-642-97062-7
https://doi.org/10.1007/978-3-642-97062-7
https://doi.org/10.1007/978-3-7091-7551-4_7
https://doi.org/10.1007/978-3-7091-7551-4_7
https://doi.org/10.1007/978-3-7091-3406-1_12
https://doi.org/10.1007/978-3-7091-3406-1_12

Polynomial-Time Presentations of Algebraic Number Fields 29

17. Coste, M., Roy, M.F.: Thom’s lemma, the coding of real algebraic numbers and the
computation of the topology of semi-algebraic sets. J. Symb. Comput. 5, 121–129
(1988)

18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
19. Jian-Ping, Z.: On the degree of extensions generated by finitely many algebraic

numbers. J. Number Theory 34, 133–141 (1990)
20. Collins, G.E.: The Calculation of multivariate polynomial resultants. J. Assoc.

Comput. Mach. 18(4), 515–532 (1971)
21. Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, Wien (1996).

https://doi.org/10.1007/978-3-7091-6571-3
22. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Hei-

delberg (1996). https://doi.org/10.1007/978-3-662-02945-9
23. Yap, C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University

Press, Oxford (2000)
24. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic

decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

https://doi.org/10.1007/978-3-7091-6571-3
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/3-540-07407-4_17

Multiple Permitting and Array
Noncomputability

Klaus Ambos-Spies(B)

Institut für Informatik, Universität Heidelberg, 69120 Heidelberg, Germany
ambos@math.uni-heidelberg.de

Abstract. Downey et al. [5] have introduced the array noncomputable
(a.n.c.) computably enumerable (c.e.) sets which capture certain multiple
permitting arguments. In this way they have classified the c.e. degrees
below which certain constructions can be performed. More recently,
Downey et al. [3] have introduced the not totally ω-c.a. c.e. degrees allow-
ing some stronger permitting arguments. Here we introduce a formal
notion of multiple permitting which captures the permitting strength of
the a.n.c. sets. This notion which – in contrast to array noncomputability
– is wtt-invariant allows to simplify the proofs of the basic properties of
the a.n.c. sets. Moreover, some results on the a.n.c. sets can be naturally
extended to the multiply permitting sets hence to the c.e. sets which
are wtt-equivalent to a.n.c. sets. We demonstrate this by showing that
multiply permitting sets are not dense simple. Finally, in Ambos-Spies
and Losert (ta) the multiply permitting notion introduced here is refined
in order to get a new formal characterization of the permitting power of
the not totally ω-c.a. c.e. degrees too.

1 Introduction

Downey et al. [5] studied a class of permitting arguments where each positive
requirement needs multiple permitting to succeed. They introduced the array
noncomputable (a.n.c.) computably enumerable (c.e.) sets which “consist of
precisely those sets which allow enough permission for these constructions to
be performed”. By classifying the degrees of the a.n.c. sets – in particular by
showing that first all non-low2 c.e. degrees are a.n.c., second the a.n.c. degrees
are closed upwards in the c.e. degrees and third the a.n.c. degrees nontrivially
split both the nonzero low degrees and the c.e. degrees which are low2 but not
low – Downey, Jockusch and Stob describe the degrees in which the multiple
permitting constructions can be performed.

Actually, the a.n.c. sets are characterized by a certain similarity property
which is exploited in showing that any a.n.c. set A provides the required permit-
ting. Namely, in order to make A change on the first x numbers after a stage s,
a number ≤ x is enumerated into an auxiliary set B and it is argued that (under
certain circumstances) the fact that A locally looks like B forces a number ≤ x
to enter A after stage s. So the a.n.c. sets provide multiple permittings but they

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 30–39, 2018.
https://doi.org/10.1007/978-3-319-94418-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_3&domain=pdf

Multiple Permitting and Array Noncomputability 31

characterize the sets giving such permittings only up to wtt-equivalence. Here we
introduce multiply permitting sets which more directly describe and provide the
desired sort of permittings. The multiply permitting sets coincide with the a.n.c.
sets up to wtt-equivalence but, in contrast to the latter, the multiply permit-
ting sets are wtt-invariant. Moreover the permittings can be achieved in a more
straightforward way which allows to simplify proofs of some results dealing with
a.n.c. sets, and, by replacing a.n.c. sets by the newly defined multiply permitting
sets, in some cases such results can be extended from the a.n.c. sets to all c.e.
sets which are wtt-equivalent to some a.n.c. sets. In this note we demonstrate
this by giving some examples.

After introducing the new multiple permitting notion in Sect. 2 we first give
some basic properties of the multiply permitting sets (Sect. 3) and of their wtt-
degrees (Sect. 4). A comparison of the proofs given here with the correspond-
ing proofs on a.n.c. sets (in cases where parallel results hold) in [5] shows the
simplifications provided by our new notion. Then, in Sect. 5, we show the coin-
cidence of the multiple permitting notion and array noncomputability up to
wtt-equivalence. For an example of a result which can be extended from the
a.n.c. sets to the multiply permitting sets, in Sect. 6 we look at simplicity prop-
erties and, by extending a result of Downey et al. [5] on a.n.c. sets, we show that
no multiply permitting set is dense simple. Finally, we note that our multiple
permitting notion can be extended in order to capture the stronger multiple per-
mitting arguments pertaining to the non-totally-ω-c.a. c.e. degrees introduced in
Downey et al. [3], thereby giving a new characterization of the permitting power
of these degrees (see Sect. 7).

Our notation is standard. For unexplained notation we refer to the mono-
graphs Downey and Hirschfeldt [4] and Soare [9].

2 Multiple Permitting Notions

We first review the array noncomputability notions. Just as the new multiply
permitting notions to be introduced here, these notions are based on very strong
arrays (see [5] respectively [4] for the variation used here). A very strong array
(v.s.a.) F = {Fn}n≥0 is a sequence of mutually disjoint finite sets such that there
is a computable function f such that f(n) is the canonical index of Fn and such
that 0 < |Fn| < |Fn+1| (n ≥ 0). A v.s.a. F = {Fn}n≥0 is complete if

⋃
n≥0 Fn =

ω and F is a very strong array of intervals (v.s.a.i.) if the members Fn of F are
intervals where max Fn < min Fn+1. Then, given a v.s.a. F = {Fn}n≥0, a c.e.
set A is F-array noncomputable if, for any c.e. set B, there are infinitely many
numbers n such that A ∩ Fn = B ∩ Fn, and A is array noncomputable (a.n.c.) if
A is F-array noncomputable for some v.s.a. F . Finally, a c.e. degree is a.n.c. if
it contains an a.n.c. set.

Definition 1. Let F = {Fn}n≥0 be a v.s.a., let f be a computable function, let
A be a c.e. set, and let {As}s≥0 be a computable enumeration of A. Then A is
F-permitting via f and {As}s≥0 if, for any partial computable function ψ,

∃∞n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f(x) + 1
= Aψ(x) � f(x) + 1) (1)

32 K. Ambos-Spies

holds. A is F-permitting via f if there is a computable enumeration {As}s≥0

of A such that A is F-permitting via f and {As}s≥0; A is F-permitting if A
is F-permitting via some computable f ; and A is multiply permitting if A is
F-permitting for some v.s.a. F . A c.e. r-degree a is multiply permitting if there
is a c.e. set A in a such that A is multiply permitting.

Note that, for a given c.e. set A which is F-permitting via (a nondecreasing
function) f , for infinitely many n we can force A to change below f(max Fn)+1
after up to |Fn| effectively enumerated stages sn

0 < · · · < sn
mn

(mn < |Fn|) by
letting ψ(xn

p) = sn
p where xn

0 < xn
1 < . . . are the elements of Fn in order.

3 Some Basic Observations

In the following we list some simple but useful facts on the multiply permitting
sets which we will tacitly use later. We first observe that the multiple permit-
ting properties do not depend on the chosen enumerations, that the permitting
bounds f may be assumed to be strictly increasing, and that the quantifier ∃∞n
in (1) can be replaced by ∃ n.

Proposition 1. Let A be F-permitting via f and {As}s≥0 and let {Âs}s≥0 be
a computable enumeration of A. Then A is F-permitting via f and {Âs}s≥0.

Proof. Given a partial computable function ψ̂, we have to show

∃∞n ∀ x ∈ Fn(ψ̂(x) ↓ ⇒ A � f(x) + 1
= Âψ̂(x) � f(x) + 1). (2)

Define the partial computable function ψ by letting ψ(x) be the least stage
s > ψ̂(x) such that Âψ̂(x) � f(x) + 1 ⊆ As � f(x) + 1 if ψ̂(x) is defined and

by letting ψ(x) ↑ otherwise. Then ψ̂ and ψ have the same domain and Âψ̂(x) �
f(x) + 1 ⊆ Aψ(x) � f(x) + 1. Since, by choice of A, (1) holds, this implies (2). �

Proposition 2. Let A be F-permitting via f and let f̂ be any computable func-
tion dominating f . Then A is F-permitting via f̂ . Hence, in particular, for any
F-permitting set A there is a strictly increasing computable function f̂ such that
A is F-permitting via f̂ .

Proof. This is immediate by definition and by the fact that any computable
function is dominated by a strictly increasing computable function. �
Proposition 3. Let F = {Fn}n≥0 be a v.s.a., let f be a computable function,
let A be a c.e. set and let {As}s≥0 be a computable enumeration of A such that,
for any partial computable function ψ,

∃ n ∀ x ∈ Fn(ψ(x) ↓ ⇒ A � f(x) + 1
= Aψ(x) � f(x) + 1) (3)

holds. Then A is F-permitting via f (and {As}s≥0).

Multiple Permitting and Array Noncomputability 33

We omit the straightforward proof but remark that a corresponding obser-
vation on a.n.c. sets has been made in [5]. The next proposition shows that if we
have to give a set A which is F-permitting via f then w.l.o.g. we may assume
that F is a complete v.s.a.i. hence, in particular, computable. For this sake we
use the following definition. We say that the v.s.a. F̂ = {F̂n}n≥0 dominates the
v.s.a. F = {Fn}n≥0 if for almost every number n there is a number m such that
Fm ⊆ F̂n.

Proposition 4. Let F = {Fn}n≥0 and F̂ = {F̂n}n≥0 be very strong arrays
such that F̂ = {F̂n}n≥0 dominates F = {Fn}n≥0, and let f be any computable
function. Then any c.e. set A which is F̂-permitting via f is F-permitting via f .
Hence, in particular, for any v.s.a. F = {Fn}n≥0 there is a complete v.s.a.i. F̂ =
{F̂n}n≥0 such that any c.e. set A which is F̂-permitting via f is F-permitting
via f .

Proof. The first part of the proposition is immediate. For the second part it
suffices to observe that any v.s.a. F is dominated by a complete v.s.a.i. F̂ . For
instance we may let F̂n = [xn, xn+1) where x0 = 0 and xn+1 = 1+xn + max Fm

for the least m such that xn ≤ min Fm. �
Finally, we observe that the multiple permitting property does not depend

on the underlying v.s.a. as long as we do not require the same permitting bound
f .

Lemma 1 (Array-Invariance Lemma). Let A be multiply permitting and let
F = {Fn}n≥0 be any v.s.a. Then A is F-permitting.

Proof. By Proposition 4, w.l.o.g. we may assume that F is a complete v.s.a.i. So,
for any number x, we can compute the unique number nx such that x ∈ Fnx

. By
the assumption that A is multiply permitting, fix a v.s.a. F̂ = {F̂n}n≥0 and a
computable function f̂ such that A is F̂-permitting via f̂ where, by Proposition
2, we may assume that f̂ is strictly increasing. Finally, fix a strictly increasing
computable function g such that, for n ≥ 0, |Fn| ≤ |F̂g(n)|, and define the
computable function f by letting f(x) = f̂(max

⋃
m<g(nx+1) F̂m). We claim that

A is F-permitting via f .

Fix a partial computable function ψ. By Proposition 3, it suffices to show
(3). Define the partial computable function ψ̂ by letting ψ̂(x̂m

k) = ψ(xn
k) for

g(n) ≤ m < g(n + 1) and k < |Fn| where x̂m
0 , . . . , x̂m

|F̂m|−1
are the elements of

F̂m in increasing order and xn
0 , . . . , xn

|Fn|−1 are the elements of Fn in increasing

order and by letting ψ̂(x) ↑ otherwise. (Note that, by definition of g, |F̂m| ≥ |Fn|.
Hence ψ̂ is well defined.)

Now, since A is F̂-permitting via f̂ , there is a number m ≥ g(0) such that

∀ x̂ ∈ F̂m (ψ̂(x̂) ↓ ⇒ Aψ̂(x̂) � f̂(x)
= A � f̂(x)).

But, by definition of ψ̂ and f this implies that the unique n such that g(n) ≤
m < g(n + 1) witnesses that (3) holds. �

34 K. Ambos-Spies

4 On the Wtt-Degrees of the Multiply Permitting Sets

Here we first show that the property of being multiply permitting is wtt-degree
invariant. In fact, any c.e. set which wtt-computes a multiply permitting set is
multiply permitting too. Then we show that no multiply permitting c.e. set can
be split into two c.e. sets which are not multiply permitting. We conclude that
the class of the c.e. wtt-degrees which are not multiply permitting is an ideal in
the partial ordering of the c.e. wtt-degrees.

Lemma 2 (Wtt-Invariance Lemma). Let A and B be c.e. sets such that A
is multiply permitting and A ≤wtt B. Then B is multiply permitting. Hence, in
particular, any c.e. set which is wtt-equivalent to a multiply permitting set is
multiply permitting.

Lemma 2 is immediate by the following lemma.

Lemma 3. Let F = {Fn}n≥0 be a v.s.a., let f and g be strictly increasing
computable functions and let A and B be c.e. sets such that A is F-permitting
via f and A ≤g-T B. Then B is F-permitting via g(f).

Proof. Given a computable enumeration {Bs}s≥0 of B and a partial computable
function ψ, by Proposition 3, it suffices to show that there is a number n such
that

∀ x ∈ Fn(ψ(x) ↓ ⇒ B � g(f(x)) + 1
= Bψ(x) � g(f(x)) + 1). (4)

Fix a computable enumeration {As}s≥0 of A such that A is F-permitting
via f and {As}s≥0, fix a g-bounded Turing functional Φ such that A = ΦB ,
and define the partial computable function ψ̂ by letting ψ̂(x) be the least stage
s ≥ ψ(x) such that As � f(x) + 1 = ΦBs

s � f(x) + 1 if ψ(x) is defined and let
ψ̂(x) ↑ otherwise. Note that the domains of ψ and ψ̂ agree; ψ̂ majorizes ψ where
defined; and, for any x such that ψ(x) ↓ (hence ψ̂(x) ↓) and A � f(x) + 1
=
Aψ̂(x) � f(x) + 1, it follows that B � g(f(x)) + 1
= Bψ̂(x) � g(f(x)) + 1 hence
B � g(f(x)) + 1
= Bψ(x) � g(f(x)) + 1. So we obtain a number n satisfying
(4), by fixing n such that A � f(x) + 1
= Aψ̂(x) � f(x) + 1 for all x ∈ Fn such

that ψ̂(x) ↓. Note that such an n must exist since A is F-permitting via f and
{As}s≥0. �
Lemma 4 (Splitting Lemma). Let A,A0, A1 be c.e. sets such that A0 and
A1 are disjoint, A = A0 ∪ A1 and A is multiply permitting. Then A0 or A1 is
multiply permitting.

Proof. Fix computable enumerations {As}s≥0 and {Ai,s}s≥0 of A and Ai, respec-
tively, such that As = A0,s ∪ A1,s. Let F = {Fn}n≥0 be a complete v.s.a.i., let
Fi = {F2n+i}n≥0 (i = 0, 1), and let F̂ = {F2n ∪ F2n+1}n≥0. By Lemma 1 and
Proposition 2 fix a strictly increasing function f̂ such that A is F̂-permitting via
f̂ , and define the computable function f by letting f(x) = f̂(max F2n ∪ F2n+1)
for x ∈ F2n ∪ F2n+1. We claim that, for some i ≤ 1, Ai is Fi-permitting via f .

Multiple Permitting and Array Noncomputability 35

For a contradiction assume that neither A0 is F0-permitting via f nor A1 is
F1-permitting via f . Then there are partial computable functions ψi such that,
for any n ≥ 0 and i ≤ 1, there is a number xn,i ∈ F2n+i such that ψi(xn,i) ↓ and

Ai,ψi(xn,i) � f(xn,i) + 1 = Ai � f(xn,i) + 1. (5)

Fix in ≤ 1 minimal such that ψin(xn,in) ≥ ψ1−in(xn,1−in). Then, by definition
of f , f̂(xn,in) ≤ f(xn,0) = f(xn,1). Since As = A0,s ∪ A1,s, it follows by (5) that

Aψin (xn,in) � f̂(xn,in) + 1 = A � f̂(xn,in) + 1.

So if we define the partial computable function ψ by letting ψ(x) = ψi(x) for
x ∈ ⋃

n≥0 F2n+i (i ≤ 1) then, for any n and for x = xn,in , x ∈ F2n ∪ F2n+1,
ψ(x) = ψin(xn,in) ↓ and

Aψ(x) � f̂(x) + 1 = A � f̂(x) + 1.

But this contradicts the assumption that A is F̂-permitting via f̂ . �
Theorem 1. The class MPwtt of the c.e. wtt-degrees which do not contain mul-
tiply permitting c.e. sets is an ideal in the upper semilattice (Rwtt,≤) of the c.e.
wtt-degrees.

Proof. By Lemma 2, the class MPwtt is closed downwards. So, given degrees a0
and a1 in MPwtt, it suffices to show that, for a = a0 ∨ a1, a is in MPwtt. Fix
disjoint c.e. sets A0 and A1 such that A0 ∈ a0 and A1 ∈ a1, and let A = A0∪A1.
Then A ∈ a. Moreover, since A0 and A1 are not multiply permitting, A is not
multiply permitting by Lemma 4. It follows, by Lemma 2, that no c.e. set in a
is multiply permitting. Hence a is in MPwtt. �

The reader should note that, in contrast to Lemma 3, Downey et al. [5] have
shown that array noncomputability is not wtt-invariant. Downey et al. [5] proved
the analog of Lemma 4 for a.n.c. sets, however, and they showed that any c.e. set
wtt-above an a.n.c. set is wtt-equivalent to an a.n.c. set. Since we show next that
the wtt-degrees of the multiply permitting sets coincide with the wtt-degrees of
the a.n.c. sets, this gives an alternative proof of Theorem 1.

5 Multiple Permitting vs. Array Noncomputability

We now show that a set A is multiply permitting iff it is wtt-equivalent to an
a.n.c. set. For this sake we first show that F-a.n.c. sets are F-permitting via
the identity function. Then we show that, for any v.s.a. F and for any multiply
permitting set A there is an F-a.n.c. set which is wtt-equivalent to A.

Lemma 5 (Permitting Lemma for A.N.C. Sets). Let F = {Fn}n≥0 be a
v.s.a., let A be an F-a.n.c. set, let {As}s≥0 be a computable enumeration of A,
and let ψ be a partial computable function. Then

∃∞n ∀ x ∈ Fn (ψ(x) ↓ ⇒ x ∈ A \ Aψ(x)) (6)

holds. Hence, in particular, A is F-permitting via f(x) = x.

36 K. Ambos-Spies

Proof. Let V = {x : ψ(x) ↓ & x
∈ Aψ(x)}. Then V is c.e. So, by F-array
noncomputability of A, there are infinitely many n such that A ∩ Fn = V ∩ Fn.
But any such n is a witness for (6). �
Lemma 6. Let A be multiply permitting and let F = {Fn}n≥0 be a v.s.a. There
is an F-a.n.c. set B such that B =wtt A.

Proof. Since the analog of Proposition 4 holds for the array noncomputable
sets too, w.l.o.g. we may assume that F is computable. For any e ≥ 0, let
Fe = {F〈e+1,n〉}n≥0. Then Fe is a v.s.a. Moreover, there is a computable function
f such that A is Fe-permitting via f for all e. Note that the latter follows
from Lemma 1 and Proposition 4 since the v.s.a. F̂ = {F̂n}n≥0 where F̂n =⋃

〈n,n〉≤m<〈n+1,n+1〉 Fm dominates the very strong arrays Fe for all e.

Now define B as follows. For x ∈ F〈0,n〉 let B(x) = A(n). This ensures that
A =wtt B ∩ ⋃

n≥0 F〈0,n〉. So, in order to guarantee that B =wtt A, it suffices to
define B on

⋃
e≥0,n≥0 F〈e+1,n〉 so that

B ∩
⋃

e≥0,n≥0

F〈e+1,n〉 ≤wtt A. (7)

On the other hand, in order to make B F-a.n.c., it suffices to ensure

∃∞n (B ∩ F〈e+1,n〉 = We ∩ F〈e+1,n〉) (8)

for e ≥ 0. We achieve (7) and (8) by letting

B ∩F〈e+1,n〉 = {x ∈ F〈e+1,n〉 : ∃ s (x ∈ We,s & As+1 � f(x)+1
= As � f(x)+1)}

for e, n ≥ 0. It is obvious that this ensures (7). Satisfaction of (8) follows from
the fact that A is Fe-permitting via f by considering the partial computable
function ψ(x) = μ s (x ∈ We,s). �
Theorem 2. Let a be a c.e. wtt-degree, let F be a very strong array and let f
be a strictly increasing computable function. The following are equivalent.

(i) a is array noncomputable.
(ii) a is multiply permitting.
(iii) There is an F-a.n.c. set A ∈ a.
(iv) There is a c.e. set A ∈ a such that A is F-permitting via f .

Note that the equivalence (i) ⇔ (iii) is already in [5].

Proof. The implications (iii) ⇒ (i) and (iv) ⇒ (ii) are immediate by definition,
and the implication (i) ⇒ (ii) follows from the implication (iii) ⇒ (iv). So it
suffices to prove the implications (ii) ⇒ (iii) and (iii) ⇒ (iv). But the former
implication holds by Lemma 6 while the latter implication holds by Lemma 5
and Proposition 2. �

Multiple Permitting and Array Noncomputability 37

Corollary 1 (Downey et al. [5]). For any a.n.c. set A and any v.s.a. F there
is an F-a.n.c. set which is wtt-equivalent to A.

Proof. This is immediate by the implication (i) ⇒ (iii) in Theorem 2. �
Corollary 2 (Downey et al. [5]). The class ANCwtt of the c.e. wtt-degrees
which do not contain array noncomputable c.e. sets is an ideal in the upper
semilattice (Rwtt,≤) of the c.e. wtt-degrees.

Proof. This is immediate by the equivalence (i) ⇔ (ii) in Theorem 2 and by
Theorem 1. �

Downey et al. [5] have shown that there are c.e. sets A0 and A1 such that
degT(A0) and degT(A1) are not a.n.c. and degT(A0 ⊕A1) = 0′ hence degT(A0 ⊕
A1) is a.n.c. ([5], Theorem 3.15). So the analog of Corollary 2 for Turing degrees
fails. Moreover, by Corollary 2, for sets A0 and A1 as above, the wtt-degree of
the Turing complete set A0 ⊕ A1 is not a.n.c. So, in particular, there is a c.e.
set A such that degT(A) is a.n.c. whereas degwtt(A) is not a.n.c. By Theorem 2,
these results imply the following corresponding results on multiply permitting
sets: the Wtt-Invariance Lemma (Lemma 2) fails if we replace wtt-reducibility
by Turing reducibility and so does Theorem 1. Moreover, the complete Turing
degree 0′ contains c.e. sets with the multiple permitting property and c.e. sets
without the multiple permitting property. Ambos-Spies and Monath [2] have
extended the latter result by showing that any high c.e. Turing degree has this
property. (In Sect. 6 below we obtain an alternative proof of this fact.) They
have also shown, however, that there is a completely multiply permitting Turing
degree, i.e., a c.e. Turing degree a such that all c.e. sets A ∈ a are multiply
permitting (or, equivalently, all c.e. wtt-degrees inside a are a.n.c.).

6 Array Noncomputability and Simplicity Properties

Downey et al. [5] have shown that a.n.c. sets are not dense simple hence neither
hyperhypersimple nor maximal ([5], Theorem 3.1). Here we extend this result
on a.n.c. sets to multiply permitting sets (hence to a.n.c. wtt-degrees).

Theorem 3. No multiply permitting set is dense simple.

Recall that a c.e. set A is dense simple if the complement A = {a0 < a1 <
. . . } of A is infinite and the principal function pA(n) = an of A dominates every
computable function. Just as in [5] we use the following equivalent characteri-
zation of dense simplicity due to Robinson [8]: a coinfinite c.e. set A is dense
simple if and only if, for every strong array {Fn}n≥0 of mutually disjoint sets,
there is a number m such that

∀ n ≥ m (|Fn ∩ A| < n). (9)

38 K. Ambos-Spies

Proof. For a contradiction assume that A is multiply permitting and dense
simple. Let I = {In}n≥0 be the unique complete v.s.a.i. such that |In| =
1 +

∑
n′≤n n′, let xn

0 < · · · < xn
kn

(kn = 0 + 1 + · · · + n) be the elements
of In in increasing order, and, by the Array-Invariance Lemma, fix a strictly
increasing computable function f such that A is I-permitting via f .

Define the strong array {Fn}n≥0 of mutually disjoint sets by letting F0 =
[0, f(x0

k0
)] and Fn+1 = (f(xn

kn
), f(xn+1

kn+1
)]. By dense simplicity of A fix m such

that (9) holds, fix a computable enumeration {As}s≥0 of A, and fix s0 such that
As0 ∩ Fn = A ∩ Fn for all n < m. Then the function s(n) defined by

s(n) = μ s ≥ s0 [∀ n′ (m ≤ n′ ≤ n ⇒ |Fn′ ∩ As| > |Fn′ | − n′)]

is partial computable and s(n) ↓ for n ≥ m. Finally, define the partial com-
putable function ψ on

⋃
n≥m In by letting ψ(xn

0) = s(n) and, for k < kn,

ψ(xn
k+1) = μ s > ψ(xn

k) [As � f(xn
kn

) + 1
= Aψ(xn
k)

� f(xn
kn

) + 1]

provided that ψ(xn
k) ↓ (and by letting ψ(xn

k+1) ↑ otherwise).

Now, since A is I-permitting via f , we may fix n ≥ m such that

∀ x ∈ In (ψ(x) ↓ ⇒ A � f(x) + 1
= Aψ(x) � f(x) + 1).

It follows by definition of ψ that ψ(x) ↓ for all x ∈ In and that, for k < kn,
ψ(xn

k) < ψ(xn
k+1) and Aψ(xn

k+1)
� f(xn

kn
) + 1
= Aψ(xn

k)
� f(xn

kn
) + 1 whence

|(A � f(xn
kn

) + 1) \ (As(n) � f(xn
kn

) + 1)| ≥ kn = 0 + 1 + · · · + n. (10)

On the other hand, by definition of the strong array {Fn}n≥0, ω � f(xn
kn

) + 1 is
the disjoint union of the sets Fn′ for n′ ≤ n. So, by definition of s(n),

|(A � f(xn
kn

) + 1) \ (As(n) � f(xn
kn

) + 1)| < m + (m + 1) + · · · + n

contrary to (10). �
Note that, by the Wtt-Invariance Lemma and by Theorem 2, Theorem 3 can

be rephrased as follows.

Corollary 3. Let A be a.n.c. Then A is not wtt-reducible to any dense simple
set.

Moreover, since any non-low2 c.e. degree hence any high c.e. degree contains
an a.n.c. set (Downey et al. [5]) and since any high c.e. degree contains a maximal
set hence a dense simple set (Martin [6]), it follows by Theorems 3 and 2 that
any high c.e. degree contains a c.e. set which is multiply permitting and a c.e.
set which is not multiply permitting (or, equivalently, a c.e. wtt-degree which
is a.n.c. and a c.e. wtt-degree which is not a.n.c.). As mentioned at the end of
Sect. 5 already, the latter was previously shown by Ambos-Spies and Monath [2]
using some other arguments.

Multiple Permitting and Array Noncomputability 39

Finally we should mention, that Monath [7] further explores the question
which of the most common simplicity notions are compatible with the multiply
permitting property. By showing that there is an r-maximal multiply permitting
set (and by Theorem 3 above) he obtains a complete answer for the simplicity
notions considered in Soare ([9], Diagram 1.1, page 211). Monath’s result con-
trasts a result of Downey et al. [5] showing that no a.n.c. set is r-maximal (in
fact no a.n.c. set is strongly hypersimple).

7 Further Results

By the Array-Invariance Lemma (Lemma 1) any multiply permitting set A is
F-permitting for all very strong arrays F . The permitting bound fF such that
A is F-permitting via fF , however, in general depends on the array F . It is
natural to ask whether this bound can be fixed, i.e., whether there are uniformly
multiply permitting sets which are F- permitting via f for all very strong arrays
F and fixed f . In [1] Ambos-Spies and Losert show that uniformly multiply
permitting sets exist and that their Turing degrees are just the c.e. not totally ω-
c.a. degrees. This gives a new way to formally describe the permitting properties
of these degrees. In [1] this is exploited in order to give a finite lattice such that
the c.e. degrees which bound embeddings of this lattice in the c.e. Turing degrees
are just the not totally ω-c.a. degrees.

References

1. Ambos-Spies, K., Losert, N.: Universally array noncomputable sets. Submitted
2. Ambos-Spies, K., Monath, M.: Completely array noncomputable degrees. In Prepa-

ration
3. Downey, R., Greenberg, N., Weber, R.: Totally ω-computably enumerable degrees

and bounding critical triples. J. Math. Log. 7, 145–171 (2007)
4. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory

and Applications of Computability. Springer, New York (2010). https://doi.org/10.
1007/978-0-387-68441-3

5. Downey, R., Jockusch, C., Stob, M.: Array nonrecursive sets and multiple permitting
arguments. In: Ambos-Spies, K., Müller, G.H., Sacks, G.E. (eds.) Recursion Theory
Week. LNM, vol. 1432, pp. 141–173. Springer, Heidelberg (1990). https://doi.org/
10.1007/BFb0086116

6. Martin, D.A.: Classes of recursively enumerable sets and degrees of unsolvability. Z.
Math. Log. Grundl. Math. 12, 295–310 (1966)

7. Monath, M.: A c.e. weak truth table degree which is array noncomputable and
r-maximal. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol.
10936, pp. 297–306. Springer, Cham (2018)

8. Robinson, R.W.: Simplicity of recursively enumerable sets. J. Symb. Log. 32, 162–
172 (1967)

9. Soare, R.I.: Recursively Enumerable sets and Degrees. A Study of Computable
Functions and Computably Generated Sets. Perspectives in Mathematical Logic.
Springer, Berlin (1987). xviii+437 pp

https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/BFb0086116
https://doi.org/10.1007/BFb0086116

Degrees of Categoricity for Prime
and Homogeneous Models

Nikolay Bazhenov1,2(B) and Margarita Marchuk1,2

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
bazhenov@math.nsc.ru, margaretmarchuk@gmail.com
2 Novosibirsk State University, Novosibirsk, Russia

Abstract. We study effective categoricity for homogeneous and prime
models of a complete theory. For a computable structure S, the degree
of categoricity of S is the least Turing degree which can compute isomor-
phisms among arbitrary computable copies of S. We build new examples
of degrees of categoricity for homogeneous models and for prime Heyt-
ing algebras, i.e. prime models of a complete extension of the theory of
Heyting algebras. We show that 0(ω+1) is the degree of categoricity for
a homogeneous model. We prove that any Turing degree which is d.c.e.
in and above 0(n), where 3 ≤ n < ω, is the degree of categoricity for a
prime Heyting algebra.

Keywords: Computable categoricity · Categoricity spectrum
Degree of categoricity · Computable structure · Autostability spectrum
Homogeneous model · Prime model · Heyting algebra

1 Introduction

In this paper we study algorithmic complexity of isomorphisms between com-
putable copies for prime and homogeneous models of a complete theory.

Let d be a Turing degree. A computable structure M is d-computably cate-
gorical if for any computable copy N of M, there is a d-computable isomorphism
f : M → N . The categoricity spectrum of M is the set

CatSpec(M) = {d : M is d-computably categorical}.

A degree c is the degree of categoricity of M if c is the least degree in the
spectrum CatSpec(M).

The research of d-computably categorical structures goes back to the works
of Fröhlich and Shepherdson [15], and Mal’tsev [18,19]. Categoricity spectra and
degrees of categoricity were introduced by Fokina et al. [14]. They showed [14]
that for a natural number n, any Turing degree d which is d.c.e. in and above 0(n)

N. Bazhenov was supported by RFBR project No. 16-31-60058 mol a dk.
M. Marchuk was supported by RFBR project No. 17-01-00247.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 40–49, 2018.
https://doi.org/10.1007/978-3-319-94418-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_4&domain=pdf
http://orcid.org/0000-0002-5834-2770

Degrees of Categoricity for Prime and Homogeneous Models 41

is the degree of categoricity for a computable structure. Csima et al. [11] proved
that a similar result holds for any degree d.c.e. in and above 0(α+1), where α
is an infinite computable ordinal. Anderson and Csima [1] constructed a Σ0

2 set
whose Turing degree cannot be a degree of categoricity. Miller [20] built the
first example of a structure with no degree of categoricity. For further results on
categoricity spectra, the reader is referred to, e.g., [5,13].

Our motivation for investigating categoricity spectra of prime models is two-
fold. First, much work has been done of late in studying categoricity spectra of
structures in familiar classes: algebraic fields [20,21], linear orders [6,16], rigid
structures [9,12], etc. Following this line of research, we want to investigate d-
computable categoricity for structures with some natural model-theoretic prop-
erties.

Our second source of motivation has an origin in the following results. Sup-
pose that d is a degree which is d.c.e. in and above 0(n), and M is the structure
with degree of categoricity d, built in [14]. A careful analysis of the construction
reveals that M is a prime model of its first-order theory. On the other hand,
the authors [8] proved the following: Suppose that T is a complete extension of
the theory of Boolean algebras. If B is a prime model of T , then B has degree
of categoricity d ∈ {0(α) : α ≤ ω}. Therefore, it is natural to state the following
problem.

Problem. What degrees can be degrees of categoricity for prime models? In par-
ticular, if M is a prime model which belongs to a familiar algebraic class, then
what can one say about the categoricity spectrum of M?

Furthermore, it is natural to consider a more general class of structures, the
class of homogeneous models of a complete theory. This can be illustrated by the
following fact. It is not difficult to prove that for any computable homogeneous
model M, there is an “upper bound” on its categoricity spectrum: M is always
0(ω+1)-computably categorical (see Sect. 3 for details).

In the paper we study degrees of categoricity for prime and homogeneous
models of a complete theory. The outline of the paper is as follows. Section 2
contains the necessary preliminaries. In Sect. 3 we build a computable homo-
geneous model (of a complete theory) with degree of categoricity 0(ω+1). This
shows that the upper bound given above is sharp. In Sect. 4, for n ≥ 3 and a
Turing degree d d.c.e. in and above 0(n), we construct a prime model M of a
complete extension of the theory of Heyting algebras such that d is the degree
of categoricity for M. We leave open whether this can be extended for n ≤ 2.
Note that this theorem contrasts with the result of [8] mentioned above: a sim-
ilar result cannot be obtained for Boolean algebras. Section 5 contains further
discussion.

2 Preliminaries

We consider only computable languages. For any considered countable structure,
its domain is contained in ω.

42 N. Bazhenov and M. Marchuk

For a structure M, Th(M) denotes the first-order theory of M. Suppose
that M and N are L-structures, ā ∈ M and b̄ ∈ N are tuples of the same finite
length. Then the formula (M, ā) ≡ (N , b̄) means that the structures (M, ā) and
(N , b̄) are elementarily equivalent.

2.1 Prime and Homogeneous Models

Suppose that T is a complete first-order theory in a language L. An L-structure
M is a prime model of T if M |= T and for any structure N |= T , there is an
elementary embedding from M into N . An L-structure M is an atomic model
if for any tuple ā = a0, . . . , an from M, there is an L-formula ϕ(x0, . . . , xn)
such that M |= ϕ(ā), and every L-formula ψ(x0, . . . , xn) satisfies the following:
if M |= ψ(ā), then M |= ∀x̄[ϕ(x̄) → ψ(x̄)]. Such a formula ϕ(x̄) is called a
complete formula of the theory Th(M).

Vaught (see [10]) proved that an L-structure M is a prime model of a theory
T if and only if M |= T and M is a countable atomic model.

An L-structure M is a homogeneous model of T if M |= T and for any tuples
ā and b̄ of the same finite length and any element c from M, the following holds:

(M, ā) ≡ (M, b̄) ⇒ ∃d[(M, ā, c) ≡ (M, b̄, d)].

Note that a prime model of T is homogeneous.

2.2 Pairs of Computable Structures

Our proofs heavily use the technique of pairs of computable structures developed
by Ash and Knight [3,4]. Here we give necessary preliminaries on the technique.

For a language L, infinitary formulas of L are formulas of the logic Lω1,ω. For
a countable ordinal α, infinitary Σα and Πα formulas are defined in a standard
way (see, e.g., [4, Chap. 6]). Suppose that A is an L-structure and K is a family
of L-structures. We say that K ≤α A if every infinitary Πα sentence true in all
structures from K is also true in A. We write B ≤α A if {B} ≤α A.

Let α be a computable ordinal. A family K = {Ai : i ∈ I} of L-structures
is α-friendly if the structures Ai are uniformly computable in i ∈ I, and the
relations

Bβ := {(i, ā, j, b̄) : i, j ∈ I, ā ∈ Ai, b̄ ∈ Aj , (Ai, ā) ≤β (Aj , b̄)}

are computably enumerable, uniformly in β < α.

Theorem 2.1 ([3, Theorem 3.1]). Suppose that α is a non-zero computable
ordinal, A and B are L-structures. If B ≤α A and the family {A,B} is α-friendly,
then for any Π0

α set X, there is a uniformly computable sequence of L-structures
{Cn}n∈ω such that

Cn
∼=

{A, if n ∈ X;
B, if n �∈ X.

Degrees of Categoricity for Prime and Homogeneous Models 43

Theorem 2.2 ([3, Theorem 4.2]). Suppose that α is a non-zero computable
ordinal, A is an L-structure, K = {Bi : i ∈ ω} is a family of L-structures. If
K ≤α A and the family {A} ∪ K is α-friendly, then for any Π0

α set X, there is
a uniformly computable sequence of L-structures {Cn}n∈ω such that

Cn
∼=

{A, if n ∈ X;
a structure from K, if n �∈ X.

2.3 Ordinals

We treat ordinals as structures in the language {≤}. First, we introduce
some auxiliary first-order formulas. Using the proof of [4, Proposition 7.2] or
[17, Sect. 2], for an ordinal α < ωω, one can define finitary formulas λα+1(x) and
μα+1(x, y) such that for any partial order P, the following holds:

– P |= λα+1(a) if and only if the set P[a] := {b ∈ P : b is comparable with a}
is linearly ordered and isomorphic to the ordinal α + 1.

– P |= μα+1(a, b) if and only if a ≤ b, the closed interval [a; b]P := {c ∈ P : a ≤
c ≤ b} is linearly ordered, and [a; b]P is isomorphic to α + 1.

Ash [2] obtained a complete description of the relations ≤α for ordinals. Here
we give only an excerpt from the description.

Lemma 2.1 ([2], see also [3, p. 224] and [4, Sect. 15.3.3]). For a countable
ordinal β, we have ωβ · 2 ≤2β+1 ωβ and ωβ+1 + ωβ ≤2β+2 ωβ+1. Moreover,
{γ : γ < ωβ} ≤2β ωβ.

It is well-known that ordinals behave nicely with respect to α-friendliness:

Lemma 2.2 ([4, Proposition 15.11]). Suppose that α, β0, β1, . . . , βn, γ are
computable ordinals, and γ is infinite. There exist α-friendly families {R0,R1,
. . . ,Rn} and {Sj : j ∈ ω} with the following properties:

– every Ri is isomorphic to βi;
– for any non-zero ordinal ξ < γ, there is a structure Sj isomorphic to ξ;
– every Sj is isomorphic to some ξj < γ.

2.4 Heyting Algebras

We treat Heyting algebras as structures in the language LHA := {∨2,∧2,→2;
0, 1}. An LHA-structure H is a Heyting algebra if the {∨,∧}-reduct of H is a
distributive lattice, 0 is the least element in H, 1 is the greatest element, and H
satisfies the following three axioms:

(a) ∀x∀y[x ∧ (x → y) = x ∧ y];
(b) ∀x∀y∀z[x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z))];
(c) ∀x∀y∀z[z ∧ ((x ∧ y) → x) = z].

44 N. Bazhenov and M. Marchuk

A partial order ≤ in H is recovered in a standard lattice-theoretical way: x ≤ y
if and only if x ∨ y = y.

An element y is a complement of an element x if x ∨ y = 1 and x ∧ y = 0.
Any element x from a Heyting algebra has at most one complement.

Suppose that {An}n∈ω is a sequence of Heyting algebras. The direct sum
of the sequence {An}n∈ω (we denote it by

∑
n∈ω An) is the subalgebra of the

product
∏

n∈ω An on the domain
{

f ∈
∏
n∈ω

An : (∃c ∈ {0, 1})∃m(∀k ≥ m)(f(k) = cAk)

}
.

It is not hard to show that
∑

n∈ω An is a Heyting algebra. Furthermore, if a
sequence {An}n∈ω is computable, then one can build a computable presentation
of the sum

∑
n∈ω An, in a standard way (see, e.g., [7, sect. 2.1] for details). Hence,

in this case, we will identify the direct sum with its standard computable copy.
If ai ∈ Ai, i ≤ n, and an �= 0An , then (a0, a1, . . . , an,⊥n+1) denotes the ele-

ment (a0, a1, . . . , an, 0, 0, 0, . . .) from
∑

n∈ω An. If an �= 1An , then by (a0, a1, . . . ,
an,�n+1) we denote the element (a0, a1, . . . , an, 1, 1, 1, . . .).

If L is a linear order with the least element 0 and the greatest element 1,
then L can be treated as a Heyting algebra H(L) with the following operations:
x ∨ y := max(x, y), x ∧ y := min(x, y), and

x → y :=
{

1, if x ≤ y;
y, if x > y.

3 Homogeneous Models

In this section, we show that for any computable homogeneous model M, 0(ω+1)

belongs to the categoricity spectrum of M. Furthermore, we construct a homo-
geneous model with degree of categoricity 0(ω+1).

Proposition 3.1. Let M be a computable homogeneous model of a complete
theory T .

(i) M is 0(ω+1)-computably categorical.
(ii) If T is arithmetical (i.e. T ≤T 0(n) for some n < ω) and M is a prime

model of T , then M is 0(ω)-computably categorical.

For reasons of space, the proof of Proposition 3.1 is omitted.

Theorem 3.1. There exists a computable homogeneous model M with degree of
categoricity 0(ω+1).

Proof. Let M be a partial order which is arranged as follows. For every ordinal
α ≤ ωω, M contains infinitely many copies of α + 1. It is not difficult to build
a standard computable presentation Mst of M with the following property: A
number x belongs to a copy of ωω + 1 inside Mst if and only if x is even.

Degrees of Categoricity for Prime and Homogeneous Models 45

For an ordinal β < ωω, we define the formula

ξβ+1(x) := ∃c[∀y(y ≤ x → c ≤ y)&μβ+1(c, x)].

It is straightforward to show that elements a and b from M are automorphic if
and only if they satisfy one of the following three cases:

1. There are ordinals β ≤ α < ωω such that M |= λα+1(a)&λα+1(b)&ξβ+1(a)&
ξβ+1(b) (this means that each x ∈ {a, b} lies in a copy of α+1, and the closed
interval between the least element (in this copy) and x is isomorphic to β+1).

2. There is an ordinal β < ωω such that ξβ+1(a)&ξβ+1(b) holds, but for any
α < ωω, we have ¬λα(a)&¬λα(b) (in particular, this implies that each of a
and b lies in a copy of ωω + 1, and it is not a maximal element in the copy).

3. For any α, β < ωω, we have ¬λα+1(a)&¬λα+1(b)&¬ξβ+1(a)&¬ξβ+1(b) (this
means that each of a and b is a maximal element in a copy of ωω + 1).

Using this observation, it is not hard to prove that for any tuples ā and b̄, the
condition (M, ā) ≡ (M, b̄) implies that (M, ā) ∼= (M, b̄). Hence, a standard
argument shows that M is a homogeneous model of Th(M).

Fix an ω-friendly family K = {Sj : j ∈ ω} such that K contains a copy of
every non-zero ordinal β < ωω and nothing else. An analysis of the proof of
Lemma 2.2 shows that one can build a computable copy R of ωω such that the
family {R} ∪ K is also ω-friendly. By Lemma 2.1, we have K ≤ω R. Hence,
one can apply Theorem 2.2 and produce a computable sequence of linear orders
{Cn}n∈ω such that for any n,

Cn
∼=

{
ωω, if n �∈ ∅(ω+1);
an ordinal < ωω, if n ∈ ∅(ω+1).

Consider a computable copy N of M which is built as follows. The partial
order N is a disjoint union of Mst and a computable partial order N0 which is
arranged as a computable disjoint union of the sequence {Cn + 1}n∈ω. Suppose
that cn is the greatest element in the order (Cn+1). Let f be an isomorphism from
N onto Mst. Then the following conditions are equivalent: n �∈ ∅(ω+1) iff (cn lies
in a copy of ωω + 1) iff (f(cn) is an even number). Therefore, f ≥T 0(ω+1). This
fact and Proposition 3.1 together imply that 0(ω+1) is the degree of categoricity
for M. ��

4 Prime Heyting Algebras

A prime Heyting algebra is a prime model of a complete extension of the theory of
Heyting algebras. In this section, we build new examples of degrees of categoricity
for prime Heyting algebras.

Theorem 4.1. Suppose that n ≥ 3 is a natural number, and d is a Turing
degree which is d.c.e. in and above 0(n). Then there exists a computable prime
Heyting algebra with degree of categoricity d.

46 N. Bazhenov and M. Marchuk

Proof. Here we give a proof for the case when n is even. The case of odd n is
similar, and it will be discussed at the end of this section. We emphasize that
all omitted technical details can be recovered from the proof of [7, Theorem 4].

A relativization of the argument from [14, Theorem 3.1] shows that one can
choose a set D ∈ d such that D is d.c.e. in 0(n) and for any X ⊆ ω, we have: If
D is c.e. in X, then D ≤T X ⊕ 0(n).

Suppose that n = 2m, where m ≥ 2. We fix Σ0
2m+1 sets A and B such that

B ⊂ A and D = A \ B.
Using Lemma 2.2, we obtain a (2m + 1)-friendly family {S1,S2} such that

S1
∼= ωm and S2

∼= ωm · 2. Since ωm · 2 ≤2m+1 ωm, we apply Theorem 2.1 and
produce three computable sequences {Ce}e∈ω, {De}e∈ω, and {Ee}e∈ω such that
for any e ∈ ω,

Ce
∼=

{
ωm, if e �∈ A,
ωm · 2, if e ∈ A; De

∼=
{

ωm, if e �∈ B,
ωm · 2, if e ∈ B;

Ee
∼=

{
ωm, if e �∈ ∅(2m),
ωm · 2, if e ∈ ∅(2m).

For every e, we define a computable linear order Le:

L4k := Ck + 1 + η + Ck + (2k + 1),
L4k+1 := Dk + 1 + η + ωm · 2 + (2k + 1),
L4k+2 := Ek + 1 + η + Ek + (2k + 2),
L4k+3 := ωm + 1 + η + ωm · 2 + (2k + 2).

It is easy to effectively construct the sequence {Le}e∈ω in a uniform way.
Consider a computable Heyting algebra M :=

∑
e∈ω H(Le). We prove that

M satisfies our theorem.
For k ∈ ω, let ek := (0, 0, . . . , 0, ck,⊥k+1), where ck is the greatest element

in the algebra H(Lk). We define auxiliary finitary formulas

Lin(x) := ∀y∀z[(y ≤ x)&(z ≤ x) → (y ≤ z) ∨ (z ≤ y)],
MaxLin(x) := Lin(x)&∀y[(x ≤ y)&Lin(y) → (y = x)].

The ∀∃-formula MaxLin(x) says that an element x is maximal such that the
interval [0;x]M is linearly ordered. It is not hard to establish the following alge-
braic fact (see [7, Lemma 3] for a similar argument).

Claim. (1) The set MaxLin(M) contains precisely the elements ek, k ∈ ω.
(2) If a is an element such that a �∈ {0M, 1M}, then it satisfies exactly one

of the following two conditions:
(2a) There are elements p0, p1, . . . , pk such that a = p0 ∨ p1 ∨ · · · ∨ pk, and

for any i ≤ k, we have 0 < pi ≤ eli , where li �= lj for i �= j.
(2b) There are elements q0, q1, . . . , qk such that for any i ≤ k, we have 0 ≤

qi < eli , where li �= lj for i �= j. These elements have the following property: the
union (el0 ∨el1 ∨· · ·∨elk) has a complement r in M, and a = (q0∨q1∨· · ·∨qk)∨r.

Degrees of Categoricity for Prime and Homogeneous Models 47

Lemma 4.1. The structure M is a prime Heyting algebra.

Proof (sketch). It is sufficient to show that M is an atomic model. First, we
demonstrate how to obtain a complete formula ψa(x) for an element a from M.
We will use the following remark (its proof is omitted for reasons of space).

Remark 4.1. For any k ∈ ω, the order Lk is an atomic model.

Suppose that 0 < a ≤ ek for some k. We find ordinals α, β < ωm+1 such that
the order Lk is isomorphic to (α + 1) + η + (β + 1). Let ξa(x) be a complete
formula of the theory Th(Lk) such that ξa(a) holds in [0; ek]M. We set

ψ0
a(x, e) := MaxLin(e)&∃y∃z[μα+1(0, y)&(the interval [y; z] is dense)&

μβ+1(z, e)]&(x ≤ e)&ξa(x),

ψa(x) := ∃eψ0
a(x, e).

If a �≤ ek for any k, then either a = 1, or a satisfies one of the conditions (2a)
or (2b) from the claim above. For example, if a satisfies (2b), then one can set

ψa(x) := ∃u0 . . . ∃uk∃v0 . . . ∃vk∃r[(vi are pairwise distinct)&
∧
i

ψ0
qi(ui, vi)&

(r is a complement of v0 ∨ · · · ∨ vk)&(x = u0 ∨ · · · ∨ uk ∨ r)].

If (2a) holds for a, then ψa(x) is defined in a similar way. It is not hard to show
that the condition M |= ψa(b) implies that (M, a) ∼= (M, b). Hence, ψa is a
complete formula of the theory Th(M).

Construction of a complete formula for a tuple ā = a0, . . . , ak, where k ≥ 1,
is a little bit more tricky. Nevertheless, this can be done using a more careful
analysis. A typical example looks like follows: Suppose that a0 = p0 ∨ p1 and
a1 = q0 ∨ q1 ∨ q2 ∨ (0, 0, 0,�3), where 0 < pi < ei and 0 < qi < ei. Then a
complete formula for the tuple ā = a0, a1 is defined as follows:

ψā(x0, x1) := ∃u0∃u1∃v0∃v1∃v2∃w0∃w1∃w2∃r[(wi are pairwise distinct)&∧
i≤1

ψ0
pi

(ui, wi)&
∧
j≤2

ψ0
qj (vj , wj)&(r is a complement of (w0 ∨ w1 ∨ w2))&

(x0 = u0 ∨ u1)&(x1 = v0 ∨ v1 ∨ v2 ∨ r)].

Lemma 4.1 is proved. ��
The next two lemmas show that d is the degree of categoricity for M.

Lemma 4.2. The structure M is d-computably categorical.

For reasons of space, the proof of Lemma 4.2 is omitted.

Lemma 4.3. There is a computable copy N of M such that for any isomor-
phism f from M onto N , we have f ≥T d.

48 N. Bazhenov and M. Marchuk

Proof. For e ∈ ω, we define a computable linear order Re:

R4k := Dk + 1 + η + Ck + (2k + 1),
R4k+1 := Ck + 1 + η + ωm · 2 + (2k + 1),
R4k+2 := ωm + 1 + η + Ek + (2k + 2),
R4k+3 := Ek + 1 + η + ωm · 2 + (2k + 2).

It is easy to show that the structure N :=
∑

e∈ω H(Re) is a computable copy of
M. Let uk denote the element (0, 0, . . . , 0, dk,⊥k+1) from the algebra N , where
dk is the greatest element in H(Rk).

Suppose that f is an isomorphism from M onto N . Note the following: If
k �∈ ∅(2m), then f(e4k+2) = u4k+2; otherwise, f(e4k+2) = u4k+3. Therefore, we
have f ≥T 0(2m).

Furthermore, k ∈ D if and only if k ∈ B or f(e4k) = u4k. Hence, D is c.e. in
(f ⊕ 0(2m)). The choice of D implies that D ≤T (f ⊕ 0(2m)) ≡T f . Lemma 4.3
is proved. ��

The proof for the case when n = 2m + 1, m ≥ 1, is essentially the same
modulo the following key modification: we use ordinals ωm+1 and ωm+1 +ωm in
place of ωm and ωm · 2, respectively. More details on this case can be recovered
from the discussion in [7, p. 610]. This concludes the proof of Theorem 4.1. ��

5 Further Discussion

First, we note that the proof of Theorem 4.1 can be extended in a natural way
(see, e.g., [7, Theorem 4] for a similar situation) to obtain.

Corollary 5.1. Suppose that α is an infinite computable ordinal, and d is a
Turing degree which is d.c.e. in and above 0(α+1). Then there exists a computable
Heyting algebra with degree of categoricity d.

Notice that Proposition 3.1 implies the following: If d �= 0(ω+1), then the
algebra from the corollary cannot be a homogeneous model.

Second, we provide examples of prime models with no degree of categoricity.
In [7, Corollary 3], it was proved that for any computable successor ordinal α ≥ 2,
there is a computable Heyting algebra such that its categoricity spectrum is equal
to the set of all PA degrees over 0(α). A not difficult analysis of the proof reveals

Corollary 5.2. Suppose that n ≥ 2 is a natural number. Then there exists a
computable prime Heyting algebra M such that the categoricity spectrum of M
contains precisely the PA degrees over 0(n).

References

1. Anderson, B.A., Csima, B.F.: Degrees that are not degrees of categoricity. Notre
Dame J. Form. Log. 57(3), 389–398 (2016). https://doi.org/10.1215/00294527-
3496154

https://doi.org/10.1215/00294527-3496154
https://doi.org/10.1215/00294527-3496154

Degrees of Categoricity for Prime and Homogeneous Models 49

2. Ash, C.J.: Recursive labelling systems and stability of recursive structures in hyper-
arithmetical degrees. Trans. Am. Math. Soc. 298(2), 497–514 (1986). https://doi.
org/10.1090/S0002-9947-1986-0860377-7

3. Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Log. 46(3),
211–234 (1990). https://doi.org/10.1016/0168-0072(90)90004-L

4. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hier-
archy. Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier
Science B.V., Amsterdam (2000)

5. Bazhenov, N.: Autostability spectra for decidable structures. Math. Struct. Com-
put. Sci. 28(3), 392–411 (2018). https://doi.org/10.1017/S096012951600030X

6. Bazhenov, N.A.: Degrees of autostability for linear orders and linearly ordered
abelian groups. Algebra Log. 55(4), 257–273 (2016). https://doi.org/10.1007/
s10469-016-9395-4

7. Bazhenov, N.A.: Effective categoricity for distributive lattices and Heyting alge-
bras. Lobachevskii J. Math. 38(4), 600–614 (2017). https://doi.org/10.1134/
S1995080217040035

8. Bazhenov, N.A., Marchuk, M.I.: Degrees of autostability for prime Boolean alge-
bras. Algebra Logic. To appear

9. Bazhenov, N.A., Yamaleev, M.M.: Degrees of categoricity of rigid structures. In:
Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 152–161.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 16

10. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)
11. Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyper-

arithmetic hierarchy. Notre Dame J. Form. Log. 54(2), 215–231 (2013). https://
doi.org/10.1215/00294527-1960479

12. Fokina, E., Frolov, A., Kalimullin, I.: Categoricity spectra for rigid structures.
Notre Dame J. Form. Log. 57(1), 45–57 (2016). https://doi.org/10.1215/00294527-
3322017

13. Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey,
R. (ed.) Turing’s Legacy: Developments from Turing’s Ideas in Logic, Lect. Notes
Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014).
https://doi.org/10.1017/CBO9781107338579.006

14. Fokina, E.B., Kalimullin, I., Miller, R.: Degrees of categoricity of computable struc-
tures. Arch. Math. Log. 49(1), 51–67 (2010). https://doi.org/10.1007/s00153-009-
0160-4

15. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans.
Roy. Soc. Lond. Ser. A 248, 407–432 (1956). https://doi.org/10.1098/rsta.1956.
0003

16. Frolov, A.N.: Effective categoricity of computable linear orderings. Algebra Log.
54(5), 415–417 (2015). https://doi.org/10.1007/s10469-015-9362-5

17. Goncharov, S.S., Bazhenov, N.A., Marchuk, M.I.: Index set of linear orderings that
are autostable relative to strong constructivizations. J. Math. Sci. 221(6), 840–848
(2017). https://doi.org/10.1007/s10958-017-3272-0

18. Mal’tsev, A.I.: Constructive algebras I. Russ. Math. Surv. 16, 77–129 (1961).
https://doi.org/10.1070/RM1961v016n03ABEH001120

19. Mal’tsev, A.I.: On recursive abelian groups. Sov. Math. Dokl. 32, 1431–1434 (1962)
20. Miller, R.: d-computable categoricity for algebraic fields. J. Symb. Log. 74(4),

1325–1351 (2009). https://doi.org/10.2178/jsl/1254748694
21. Miller, R., Shlapentokh, A.: Computable categoricity for algebraic fields with split-

ting algorithms. Trans. Am. Math. Soc. 367(6), 3955–3980 (2015). https://doi.org/
10.1090/S0002-9947-2014-06093-5

https://doi.org/10.1090/S0002-9947-1986-0860377-7
https://doi.org/10.1090/S0002-9947-1986-0860377-7
https://doi.org/10.1016/0168-0072(90)90004-L
https://doi.org/10.1017/S096012951600030X
https://doi.org/10.1007/s10469-016-9395-4
https://doi.org/10.1007/s10469-016-9395-4
https://doi.org/10.1134/S1995080217040035
https://doi.org/10.1134/S1995080217040035
https://doi.org/10.1007/978-3-319-58741-7_16
https://doi.org/10.1215/00294527-1960479
https://doi.org/10.1215/00294527-1960479
https://doi.org/10.1215/00294527-3322017
https://doi.org/10.1215/00294527-3322017
https://doi.org/10.1017/CBO9781107338579.006
https://doi.org/10.1007/s00153-009-0160-4
https://doi.org/10.1007/s00153-009-0160-4
https://doi.org/10.1098/rsta.1956.0003
https://doi.org/10.1098/rsta.1956.0003
https://doi.org/10.1007/s10469-015-9362-5
https://doi.org/10.1007/s10958-017-3272-0
https://doi.org/10.1070/RM1961v016n03ABEH001120
https://doi.org/10.2178/jsl/1254748694
https://doi.org/10.1090/S0002-9947-2014-06093-5
https://doi.org/10.1090/S0002-9947-2014-06093-5

Universality in Freezing Cellular
Automata

Florent Becker1, Diego Maldonado1, Nicolas Ollinger1,
and Guillaume Theyssier2(B)

1 Université Orléans, LIFO EA 4022, 45067 Orléans, France
2 Institut de Mathématiques de Marseille (Université Aix Marseille,

CNRS, Centrale Marseille), Marseille, France
guillaume.theyssier@cnrs.fr

Abstract. Cellular Automata have been used since their introduction
as a discrete tool of modelization. In many of the physical processes one
may modelize thus (such as bootstrap percolation, forest fire or epidemic
propagation models, life without death, etc), each local change is irre-
versible. The class of freezing Cellular Automata (FCA) captures this
feature. In a freezing cellular automaton the states are ordered and the
cells can only decrease their state according to this “freezing-order”.

We investigate the dynamics of such systems through the questions
of simulation and universality in this class: is there a Freezing Cellu-
lar Automaton (FCA) that is able to simulate any Freezing Cellular
Automata, i.e. an intrinsically universal FCA? We show that the answer
to that question is sensitive to both the number of changes cells are
allowed to make, and geometric features of the space. In dimension 1,
there is no universal FCA. In dimension 2, if either the number of changes
is at least 2, or the neighborhood is Moore, then there are universal FCA.
On the other hand, there is no universal FCA with one change and Von
Neumann neighborhood. We also show that monotonicity of the local
rule with respect to the freezing-order (a common feature of bootstrap
percolation) is also an obstacle to universality.

1 Introduction

Cellular automata (CA for short) are discrete dynamical systems at the crossroad
of several research fields and points of view (dynamical systems theory, computer
science, physical modeling, etc). In the pioneering works impulsed by von Neu-
mann and Ulam in the 50–60s, when cellular automata were formally defined for
the first time, two important themes were already present: universality [12,15,18]
and growth dynamics [19]. Since then, these themes have received a consider-
able attention in the literature. Concerning universality, production of examples
[1,17] was accompanied by progresses on the formalization and the theoretical
analysis of the concept [16], in particular with the emergence of intrinsic simu-
lations and universality [4,5]. Growing dynamics in cellular automata were also
much studied, mostly through (classes of) examples with different points of view
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 50–59, 2018.
https://doi.org/10.1007/978-3-319-94418-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_5&domain=pdf

Universality in Freezing Cellular Automata 51

[2,7,10,11]. More recently, substantial work have been published on models of
self-assembly tilings, most of which can be seen as a particular non-deterministic
2D CA where structures grow from a seed. Interestingly, the question of intrinsic
universality was particularly studied in that case [6,14].

A common feature of all these examples is that only a bounded number of
changes per cell can occur during the evolution. To our knowledge, the first time
that the class of CAs with that feature was considered as a whole is in [20] with
a point of view of language recognition. More recently the notion of freezing CA
was introduced in [9], which captures essentially the same idea with an explicit
order on states, and a systematic study of this class (dynamics, predictability,
complexity) was started. In particular it was established that the class is Turing
universal (even in dimension 1).

In this paper, we study intrinsic universality in freezing CA as a first step
to understand universality in growth dynamics in general. Our central result is
the construction of such intrinsically universal freezing CA: it shows that the
class of freezing CA is a natural computational model with maximally complex
elements which can be thought of as machines that can be ‘programmed’ to pro-
duce any behavior of the class. Moreover, the universal CA that we construct
are surprisingly small (5 states, see Sect. 3) which is in strong contrast with the
complicated construction known to obtain intrinsic universality for the classi-
cal self-assembly aTAM model [6]. Our contribution also lays in the negative
results we prove (Theorems 5, 6 and 7): interpreting them as necessary condi-
tions to achieve universality for freezing CA, we obtain a clear landscape of the
fundamental computational or dynamical features of this class.

The paper is organized as follows. In Sect. 2 we define the main concepts
(freezing CA, and intrinsic simulation) and prove that the use of context-free
simulation cannot lead to universality. Section 3 gives a general construction
scheme to obtain universal freezing CA giving three positive results in three
different settings depending on the dimension, the neighborhood and the maxi-
mum number of state changes per cell. In Sect. 4, we show several obstacles to
the existence of universal freezing CA: dimension 1, 1 change per cell with von
Neumann neighborhood in 2D, and monotonicity.

2 Definitions

Definition 1. A cellular automaton F of dimension d and state set Q is a tuple
F = (d,Q,N, f), where d, its dimension is an integer, Q, its set of states is a
finite set, N ⊂ Zd is its finite neighborhood, and f : QN → Q is its local
function.

It induces a global function, which we also note F , acting on the set of con-
figurations QZd

as follows:

∀c ∈ QZd

,∀z ∈ Zd, F (c)z = f(c|z+N)

Let e1, . . . , ed be the canonical basis of Zd; VNd = {0, e1, . . . , ed} is the von
Neumann neighborhood. We also use the following neighborhoods in dimension

52 F. Becker et al.

2: MN = {(0, 0), (±1, 0), (0,±1), (±1,±1), (∓1,±1)} is the Moore Neighborhood ;
LN = {(0, 0), (1, 0), (0, 1)} is the L-neighborhood.

In many cellular automata from the literature, there is a global bound on the
number of times a cell can change: they are bounded-change cellular automata.
This property is found in most of the Cellular Automata considered in bootsrap
percolation, as well as in other well-known examples such as ‘Life without death’
[11] and various models of propagation phenomena like in [7]. We say that a CA
is k-change if any cell in any orbit changes at most k times of state.

Moreover, in all those examples, the bound is defined through an explicit
order on states. Such an automaton is a freezing cellular automaton; they were
introduced in [9]. This freezing-order on state can also be used to define inter-
esting subclasses (see Sect. 4).

Definition 2 (Freezing Cellular Automaton). A CA F is a ≺-freezing CA,
for some (partial) order ≺ on states, if F (c)z ≺ cz for any configuration c and
any cell z. A CA is freezing if it is ≺-freezing for some order.

Any freezing CA is k-change for some k (at most the depth of its freezing
order, but possibly less). For V ⊂ Zd, we note FCAV for the class of d-
dimensional freezing cellular automata with neighborhood V . Finally, we set
FCAd =

⋃
V ⊂Zd FCAV and omit d when context makes it clear.

Intrinsic universality is defined through a notion of simulation between CA.
Roughly speaking, F simulates G if there is an encoding of configurations of
G into configurations of F such that one step of G is simulated through this
encoding by a fixed number of steps of F .

Definition 3 (Simulation). Let T > 0, and B ⊆ Zd be a d-dimensional rect-
angular block, with size-vector b ∈ Zd. Let C ⊂ Zd be a finite set, with 0 ∈ C. Let
F = (d,Q,N, f) and G = (d,Q′, N ′, g) be two d-dimensional cellular automata.
F simulates G with slowdown T , block B and context C if there is a coding map
φ : QC

G → QB
F such that the global map φ̄ : QZd

G → QZd

F verifies:

– φ̄ is injective;
– ∀c ∈ QZd

G : φ̄(G(c)) = FT (φ̄(c)).

where φ̄ is defined by: for z ∈ Zd, r ∈ B, φ(c)bz+r = φ(c|z+C)r

When C = {0}, this definition corresponds with the classical notion of ‘injective
simulation’, as in [4,5] and we call it context-free.

In the context of freezing CAs, context-free universality is prevented by the
irreversibility of any computation performed by a putative U combined with the
injectivity of the coding map, as witnessed by the following theorem.

Theorem 1 (No freezing context-free universality). Let d ∈ N, there is
no F ∈ FCAd which is context-free FCAVNd

-universal.

Context-sensitive simulation can get us over this hurdle as we show below; it
is akin to the notion of conjugacy in symbolic dynamics [13].

Universality in Freezing Cellular Automata 53

3 Constructing Intrinsically Universal FCA

We give a number of constructions for intrinsically universal freezing cellular
automata. All of these exhibit the same running theme: if there is a means
of crossing information asynchronously, then universality can be reached. This
insight yields three constructions which are concrete implementations under var-
ious technical constraints of a common abstract construction. The abstract con-
struction can be described by: the structure of macro-cells, the mechanism to
trigger state change in each macro-cell, and the wiring between neighboring
macro-cells to ensure communication. At this abstract level we assume that
there is a mean to cross wires without interference. Another aspect of wiring
is the necessity to put delays on some wires in order to keep synchronicity of
information: it is a standard aspect of circuit encoding in CAs [1,16], which
we won’t address in detail here but which can be dealt with by having wires
make zigzag to adjust their length as desired. The freezing condition imposes
strong restrictions on the way we can code, transport and process information.
We focus below on where our construction differs from the classical approach in
general CAs.

Wires are Fuses. It is not possible to implement classical wires where bits of
information travel freely without violating the freezing condition. In all of our
constructions wires are actually fuses that can be used only once and they are
usually implemented with two states: 1 stays stable without presence of neigh-
boring 0s and 0 propagates over neighboring 1s. With that behavior our wires
can be trees connecting various positions in such a way that a 0 appearing at any
position is broadcasted to the whole tree. A finite wire can either be uniformly
in state b ∈ {0, 1} in which case all leaves’agree’ on the bit of information trans-
ported by it, or not uniform in which case information is incoherent between
leaves. As it will become clear later, our constructions will use wires between
adjacent blocks (or macro-cells) in the simulator CA and our encodings require
that those wires are in a coherent state (uniformly b ∈ {0, 1}): it is precisely in
this aspect that we use the power of context sensitive simulations, because the

A B C

D E F

G H I

a b c

d e f

g h i

φ

φ

(a) Context-free simulation, C = {0}.

A B C

D E F

G H I

a

a

b

b

b c

c

d

d

d

e

e

e

e

f

f

f

g

g

h

h

h

i

i

a b c

d e f

g h i

φ

φ

(b) Context-sensitive simulation with
context C = VN2.

Fig. 1. Coding of states into blocks for the two modes of simulation

54 F. Becker et al.

content of a block (or macro-cell) cannot be fixed independently of its neighbors
in that case (Fig. 1).

State Codification. In each macro-cell we must code in some way a (possibly
very big) state that can change a (possibly very big) number of times: a classical
binary encoding would violate the freezing condition so we actually use a unary
coding. Given a finite set S and a quasi order (Q,), let q0 	 . . . 	 q|Q|−1 be a
linearization of 	, and let ι(qi) = i. Then let Qu = 1∗0+∩{0, 1}|Q|, and φ ∈ Q →
Qu : q �→ 1ι(q)0|Q|−ι(q). Note that for any i < |Q| we have q 	 q′ ⇔ φ(q)i ≤ φ(q′)i

(where ≤ is the lexicographic order). Since φ is a bijection, for any cellular
automaton F with state set Q, φ̄ ◦ F ◦ φ̄−1 is a cellular automaton isomorphic
to F , with state set Qu, which we call the unary representation of F . If F is
	-freezing, then its unary representation is ≤-freezing. We will use this unary
encoding everywhere in the structure of our macro-cells: each state of a simulated
CA F will be represented by a collection of wires representing the bits of an
element of Qu defined above. This encoding is coherent with the freezing property
of the simulated CA because the fact that states can only decrease corresponds
to the fact that the number of wires uniformly equal to 0 increases.

Neighborhood Matchers. The fundamental basic block of our construction
is a circuit that detects a fixed pattern in the neighborhood and outputs a bit
of information saying: “given this particular neighborhood pattern w, the new
state of the macro-cell must be smaller than l”. Our unary encoding is adapted
for this because the predicate “smaller than l” for a state translates into a
condition on a single bit of an element of Qu, that is to say a single wire in our
concrete representation of states. Without loss of generality we assume that F =
(Z2, Qu, f,N) is a FCA with state in unary representation. Take L = |Qu|, and
m = |N |. For l ∈ Qu, let {wl

1, ..., w
l
Kl

} =
⋃

s′≤l f−1(s′) = {n ∈ (Qu)N |f(n) ≤ l}.
Take, for some state l, wl

k = (q1, ..., qm) ∈ ⋃
s′≤l f−1(s′) a fixed neighborhood

with output smaller than l; each state qi is in {0, 1}L, so wl
k is a binary word

in {0, 1}mL. Given l and k, the logic gate diagram of Fig. 2a, the Neighborhood
Matcher, called Bl

k, outputs 0 if and only if in the input in the wires is exactly
wl

k or the output cable was already in state 0. The i-th wire joins the i-th letter
in w with either the ∃ gate on the left if the i-th letter of wl

k is 1 or the ∀ gate on
the right if the i-th letter of wl

k is 0. Gate ∃ triggers a 0 on wire x if at least on of
its incoming wire is 0, while gate ∀ triggers a 0 on wire y if all incoming wires are
0. Note that both behaviors are compatible with the freezing conditions since
the set of wires in state 0 can only grow during evolution. The gate α at the top
triggers a 0 on the output wire if wire y is in state 0 and wire x is in state 1 (see
Fig. 2a). It is also a freezing gate, meaning that once it has triggered a 0 it will
never change its state again, even if the wire x turns to state 0. Moreover this
gate also turns into “trigger” state as soon as the output wire is 0.

Local Function Computation. Now we can compute the local function of F
through a macro-cell CF , receiving the states x = (xn)n∈N of the neighborhood
as input, and yielding the next state f(x) as output. For this we will divide the
space into rows ρl for l ∈ Qu, and some number of columns. Intuitively, the role

Universality in Freezing Cellular Automata 55

x y

∃ ∀

α

Output

· · ·

∈ (wl
k) ∈ (wl

k)

Input

Bl
k

(a) Neighborhood matcher Bl
k. No-

tations (w) and (w) stand for
the set of all indexes i s.t. wi = 0
and wi = 1 respectively. This block
triggers a 0 on the output wire ex-
actly when the input is wl

k.

ρ1 B1
1 B1

2 B1
K1· · ·

ρ2 B2
1 B2

2 B2
K2· · ·

ρL BL
1 BL

2 BL
KL· · ·

...

1

2

3

L
STATE

(b) Construction of a macro-cell. Single line
represent wires transporting one bit and
double lines represent multi-bit wires (rep-
resenting a state).

Fig. 2. Recognizing one neighborhood (left), and wiring these neighborhood matchers
into a macro-cell which computes the local function of F (right).

of row ρl is to maintain the information “the current state of the macro-cell is
less than l”. For a given l ∈ Qu, ρl contains all block Bl

k for k ∈ {1, . . . , Kl}.
The inputs are distributed to each block, and the outputs of all blocks in ρl are
connected together by a broadcast wire. Thus, the final output in ρl is 0 as soon
as one block Kl

k triggers, i.e. as soon as f(x) ≤ l, see Fig. 2b. Notice that once
a neighborhood matcher Bl

k in row l has output 0, the output of the macro-cell
it belongs to must be less than l for ever: indeed, at the time when the Bl

k was
triggered to output 0 the output value of the Macro-Cell must be less than l by
definition of Bl

k, after that time the output is always less than l thanks to the
freezing condition on the CA being simulated. Concatenating rows in the right
order, we obtain as output of the gate the correct state codification f(x) for any
state of the neighborhood x received as input.

Information Exchanging. Given these basic blocks, one needs to embed one
macro-cell per simulated cell on the simulator CA, and wire the inputs and
outputs of neighboring macro-cells, as in Fig. 3. The wiring between macro-
cells depends on the neighborhood of the simulated CA. In order to clarify the
presentation we will always assume that the simulated CA has a von Neumann
neighborhood which is enough to achieve universality thanks to the following
lemma.

Lemma 1. For any dimension d and any F ∈ FCAd there is G ∈ FCAd with
von Neumann neighborhood that simulates F .

56 F. Becker et al.

The von Neumann wiring between macro-cells in dimension 2 is shown on
Fig. 3. It is straightforward to generalize it to any dimension. Technically, thanks
to Lemma 1, all the encoding map φ we use later have a von Neumann neigh-
borhood context (C in Definition 3).

Fig. 3. The dashed block in the middle is a macro cell, as in Fig. 2b. The fat arrows
exchange the state of each macro-cell with its neighbors.

Context-Sensitive Encoding. Given a configuration c of the simulated CA,
the encoding is defined as follows. All wires of the construction are in a coherent
state (same state along the wire). Each macro-cell holds a state of the config-
uration c represented in unary by the rows ρl described above. Wires incom-
ing from neighboring macro-cells hold the information about neighboring states
(hence the context-free encoding) which is transmitted to each block Bl

k. Inside
each of this blocks the inputs arrive at gates “∃” and “∀” and these gates have
eventually triggered a 0 on wires x and y. However, gate “α” has not yet trig-
gered to preserve the property that the main wire of row ρl is coherent and
represents the information on the current state of the macro-cell. Starting from
that well encoded configuration, a simulation cycle begins by the possible trig-
gering of “α” gates. After some time a well encoded configuration is reached
again because changes coming from triggerings of α gates are broadcasted on
each row, and, in each block Bl

k, the content up to the α gate is determined by
the inputs.

We can now state three variants of the construction which differ essentially
in the way crossing of information is implemented.

Theorem 2. ∃U ∈ FCAVN2 with 5 states which is 2-change and FCA2-
universal.

Theorem 3. ∃U ∈ FCAVN3 with 2 states which is 1-change and FCA3-
universal.

Theorem 4. ∃U ∈ FCAMN2 with 4 states which is 1-change and FCA2-
universal.

Universality in Freezing Cellular Automata 57

4 Obstacles to FCA-Universality

The One-Dimensional Case. Although one-dimensional freezing CA can be
computationally universal [9], they cannot be FCA1-universal. This is a major
difference with CA in general. The intuition behind this limitation is the follow-
ing: in any given 1D freezing CA, there is a bound on the number of times a
zone of consecutive cells can be crossed by a signal; and above this bound, the
zone becomes a blocking word preventing any information flow between left and
right halves around it.

Theorem 5 (Dimension 1). There is no F ∈ FCA1 which is FCAVN1-
universal, even with context-sensitive simulation.

2D von Neumann 1-Change FCA: Information Crossing. We will show
that there is no freezing universal FCA which is 1-change and has the von
Neumann neighborhood. This result is to be contrasted with the case of self-
assembly tiling where an intrinsically universal system exists [6] (although with
an unavoidably more technical definition of simulation). The intuition is that the
propagation of state changes in such FCA produces 4-connected paths that can
not be crossed in the future of the evolution because only 1 state change per cell
is possible. As shown in the construction of Theorem 2, two changes per cell are
enough to get rid of this limitation, even with the von Neumann neighborhood.

We will show that no 1-change von Neumann FCA can simulate the following
2-change FCA (Z2, QF ,LN, f), with QF = {0,←, ↓,←↓} and where f is defined by

f(0, ↓, 0) =↓ f(0, 0,←) =← f(0, ∗,←↓) =← f(↓, ∗,←) =←↓
and f(a, ∗, ∗) = a else, where ∗ stands for any state and the arguments of f
correspond to neighborhood LN in the following order: center, north, east.

Theorem 6. There is no automaton in FCAVN2 which is 1-change and able to
simulate F . Therefore there is no automaton in FCAVN2 which is 1-change and
FCAVN2-universal.

Monotone FCA: Synchronous vs. Asynchronous Information. As for
classical real function, we can consider the property of monotonicity in CA:
given two configurations, one smaller that the other, their images by the CA
compare in the same order. We are particularly interested in the case where the
order on configurations is given by the order on states of a freezing CA. Several
examples of such monotone FCAs were studied in literature. In particular, a
simple model called bootstrap percolation was proposed by Chalupa in 1979 [3]
to understand the properties in some magnetic materials. This model and several
variants were studied from the point of view of percolation theory [2,10], but
also from the point of view of complexity of prediction [8].

Definition 4. A ≺-freezing CA F of dimension d with alphabet Q is monotone
if it satisfies: ∀c, c′ ∈ QZd

: c ≺ c′ ⇒ F (c) ≺ F (c′), where ≺ is naturally extended
to configurations by c ≺ c′ ⇔ ∀z ∈ Zd : cz ≺ c′

z.

58 F. Becker et al.

The intuitive limitation of monotone freezing CAs is that they must always
produce a smaller state when two signals arrive simultaneously at some cell com-
pared to when one of the two signals arrives before the other. We now exhibit a
freezing non monotone CA F that does precisely the opposite (non-simultaneous
arrival produces a smaller state). Next theorem shows that F cannot be simu-
lated by any freezing monotone CA. F is defined by (Z2, {0, s1, s2, w,�}, LN, f)
with f given by:

– f

⎛

⎝
w

si

0

⎞

⎠ = si

– f

⎛

⎝
w

0

si

⎞

⎠ = si

– f

⎛

⎝
s1

s2

0

⎞

⎠ = s2

– f

⎛

⎝
s1

s2

w

⎞

⎠ = s2

– f

⎛

⎝ �
s1

s1

⎞

⎠ = s1

– f

⎛

⎝ �
s1

w

⎞

⎠ = s2.

and unspecified transitions let the state unchanged. F is ≺-freezing for the fol-
lowing order on states: s2 ≺ s1 ≺ 0,Δ,w. Essentially F is a FCA sending the
signals s1 and s2 towards south or west along the wires materialized by state w.
s2 can also move on wires made of s1. Δ plays the role of a non-monotone local
gate: when two signals arrive simultaneously, a s1-signal is sent to the south, but
when only one signal arrives, a s2-signal is sent to the south. F cannot be simu-
lated by any monotone FCA, hence no monotone FCA can be FCA-universal.

Theorem 7. For any d ≥ 1, there is no freezing monotone CA of dimension d
which is FCAVNd

-universal.

5 Perspectives

Here are some questions or research directions that we think are worth being
considered:

– do CA with a bounded number of change per cell also exhibit intrinsic uni-
versality?

– what about intrinsic universality for non-deterministic or asynchronous freez-
ing CA as a generalization of aTAM models?

– what are the limit sets of FCA?
– what can be said about FCA from an ergodic theory point of view (this

includes questions from percolation theory)?

References

1. Banks, E.R.: Universality in cellular automata. In: Eleventh Annual Symposium
on Switching and Automata Theory, Santa Monica, California. IEEE (1970)

2. Bollobás, B., Smith, P., Uzzell, A.: Monotone cellular automata in a random envi-
ronment. Comb. Probab. Comput. 24(4), 687–722 (2015)

Universality in Freezing Cellular Automata 59

3. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J.
Phys. C: Solid State Phys. 12, L31–L35 (1979)

4. Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking I: an abstract theory
of bulking. Theor. Comput. Sci. 412(30), 3866–3880 (2011)

5. Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking II: classifications of
cellular automata. Theor. Comput. Sci. 412(30), 3881–3905 (2011)

6. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.:
The tile assembly model is intrinsically universal. In: FOCS 2012 Proceedings, pp.
302–310 (2012)

7. Fuentes, M.A., Kuperman, M.N.: Cellular automata and epidemiological models
with spatial dependence. Physica A: Stat. Mech. Appl. 267(3–4), 471–486 (1999)

8. Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstraping
percolation and other problems. Theor. Comput. Sci. 504, 73–82 (2013)

9. Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In:
Kari, J., Törmä, I., Szabados, M. (eds.) Exploratory Papers of Cellular Automata
and Discrete Complex Systems (AUTOMATA 2015), pp. 65–73 (2015)

10. Gravner, J., Griffeath, D.: Cellular automaton growth on Z2: theorems, examples,
and problems. Adv. Appl. Math. 21(2), 241–304 (1998)

11. Griffeath, D., Moore, C.: Life without death is P-complete. Complex Syst. 10,
437–448 (1996)

12. Holland, J.H.: A universal computer capable of executing an arbitrary number of
subprograms simultaneously. In: Bukrs, A.W. (ed.) Essays on Cellular Automata,
pp. 264–276. University of Illinois Press, Champaign (1970)

13. Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, New York (1995)

14. Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods,
D.: Intrinsic universality in tile self-assembly requires cooperation. In: SODA 2014
Proceedings, pp. 752–771 (2014)

15. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois
Press, Champaign (1966)

16. Ollinger, N.: Universalities in cellular automata. In: Rozenberg, G., Bäck, T., Kok,
J.N. (eds.) Handbook of Natural Computing, pp. 189–229. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-540-92910-9 6

17. Ollinger, N., Richard, G.: Four states are enough!. Theor. Comput. Sci. 412(1–2),
22–32 (2011)

18. Thatcher, J.W.: Universality in the von neumman cellular model. In: Bukrs, A.W.
(ed.) Essays on Cellular Automata, pp. 132–186. University of Illinois Press, Cham-
paign (1970)

19. Ulam, S.M.: On some mathematical problems connected with patterns of growth
of figures. In: Bukrs, A.W. (ed.) Essays on Cellular Automata, pp. 219–231. Uni-
versity of Illinois Press, Champaign (1970)

20. Vollmar, R.: On cellular automata with a finite number of state changes. In: Knödel,
W., Schneider, H.-J. (eds.) Parallel Processes and Related Automata. Computing
Supplementum, vol. 3, pp. 181–191. Springer, Vienna (1981). https://doi.org/10.
1007/978-3-7091-8596-4 13

https://doi.org/10.1007/978-3-540-92910-9_6
https://doi.org/10.1007/978-3-7091-8596-4_13
https://doi.org/10.1007/978-3-7091-8596-4_13

A Deontic Logic Reasoning Infrastructure

Christoph Benzmüller(B), Xavier Parent, and Leendert van der Torre

Computer Science and Communications, University of Luxembourg,
Esch-sur-Alzette, Luxembourg
c.benzmueller@gmail.com

Abstract. A flexible infrastructure for the automation of deontic and
normative reasoning is presented. Our motivation is the development,
study and provision of legal and moral reasoning competencies in future
intelligent machines. Since there is no consensus on the “best” deontic
logic formalisms and since the answer may be application specific, a flexi-
ble infrastructure is proposed in which candidate logic formalisms can be
varied, assessed and compared in experimental ethics application stud-
ies. Our work thus links the historically rich research areas of classical
higher-order logic, deontic logics, normative reasoning and formal ethics.

1 Introduction

If humans and intelligent machines are supposed to peacefully coexist, appropri-
ate forms of machine-control and human-machine-interaction are required. This
motivates the provision of legal and ethical reasoning competencies in intelligent
machines. Bottom-up, learning based approaches (e.g. GenEth [1]) try to acquire
ethical behaviour from dialogs with ethicist or from existing data. Top-down
approaches (e.g. [21]) try to explicitly model selected ethical theories or policies
and to enforce them in intelligent systems; cf. [20,23] and the references therein.
Our research, which is more in line with the top-down approach, assumes that
suitable declarative, logical reasoning means and competencies are mandatory
in intelligent machines, in particular in the context of legal and moral reason-
ing. Such competencies seem vital not only for guaranteeing sufficient degrees of
reliability and accountability, but also for achieving human intuitive interaction
means regarding explainability and transparency of decisions.

This paper therefore addresses the practical development of computational
tools for normative reasoning based on deontic logics. Since ethical and legal
theories/policies as well as suitable deontic logic formalisms are both still under
development [34], we outline a flexible workbench to support empirical studies
with such theories/policies in which the preferred logic formalisms themselves
can still be varied, complemented, assessed and compared. The infrastructure
we propose draws on both recent developments in universal logical reasoning
in classical higher-order logic (HOL) [5] and the coalescence and improvements
in interactive and automated theorem proving (ATP) in HOL, as witnessed by
systems such as Isabelle/HOL [32], LEO-II [11] and Leo-III. We are thus linking

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 60–69, 2018.
https://doi.org/10.1007/978-3-319-94418-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_6&domain=pdf

A Deontic Logic Reasoning Infrastructure 61

the historically rich research areas of HOL, deontic logics, normative reasoning
and formal ethics. Moreover, since modern HOL theorem provers internally col-
laborate with effective SMT and SAT solvers, a novel bridge is provided from
expressive deontic logics to SMT and SAT technology.

The paper is structured as follows. Section 2 surveys relevant deontic logic
formalisms and discusses recent extensions to model ethical agency. Section 3
introduces norm-based deontic logic, our preferred framework. Sections 4 and 5,
the core contribution of this paper, outline our flexible deontic reasoning infras-
tructure and sketch a case study in data protection.

2 Traditional Deontic Logic

Deontic logic [25,39] is the field of logic that is concerned with normative con-
cepts such as obligation, permission, and prohibition. Alternatively, a deontic
logic is a formal system capturing the essential logical features of these concepts.
Typically, a deontic logic uses Op to mean that it is obligatory that p, (or it ought
to be the case that p), and Pp to mean that it is permitted, or permissible, that
p. The term “deontic” is derived from the ancient Greek déon, meaning “that
which is binding or proper”. Deontic logic can be used for reasoning about nor-
mative multiagent systems, i.e. about multiagent organisations with normative
systems in which agents can decide whether to follow the explicitly represented
norms, and the normative systems specify how, and to which extent, agents can
modify the norms. Normative multiagent systems need to combine normative
reasoning with agent interaction, and thus raise the challenge to relate the logic
of normative systems to aspects of agency.

Traditional (or “standard”) deontic logic (SDL) is a normal propositional
modal logic of type KD, which means that it extends the propositional tautolo-
gies with the axioms K: O(p → q) → (Op → Oq) and D: ¬(Op∧O¬p), and it is
closed under the inference rules modus ponens p, p → q/q and generalization or
necessitation p/Op. Prohibition and permission are defined by Fp = O¬p and
Pp = ¬O¬p. SDL is an unusually simple and elegant theory. An advantage of
its modal-logical setting is that it can easily be extended with other modalities
such as epistemic or temporal operators and modal accounts of action.

Dyadic deontic logic (DDL) introduces a conditional operator O(p/q), to be
read as “it ought to be the case that p, given q”. Many DDLs have been proposed
to deal with so-called contrary-to-duty reasoning, cf. [18] for an overview on this
area. An example is the DDL proposed by Hansson [28] and Åqvist [3,33], and
the one proposed by Carmo and Jones [18,19].

To enable ethical agency a model of decision needs to be integrated in the
deontic frames. Horty’s STIT logic [29], which combines deontic logic with a
modal logic of action, has been proposed as a starting point. The semantic
condition for the STIT-ought is a utilitarian generalisation of the SDL view that
“it ought be that A” means that A holds in all deontically optimal worlds.

62 C. Benzmüller et al.

3 Norm-Based Deontic Logic

The term “norm-based” deontic logic has been coined by Hansen [27] to refer
to a family of frameworks analysing the deontic modalities not with reference to
a set of possible worlds (some of them being more ideal than others), but with
reference to a set of explicitly given norms. In such a framework, the central
question is: given some input (e.g. a fact) and a set of explicitly given conditional
norms (a normative system), what norms apply? Thus, the perspective is slightly
different from the traditional setting, focusing on inference patterns [35].

We propose to base the AI deontic reasoner on a specific norm-based deontic
logic called input/output (I/O) logic. Initially devised by Makinson [31] and
further developed over the past years by van der Torre and colleagues, I/O logic
has gained increased recognition in the AI community. This is evidenced by the
fact that the framework has its own chapter in the aforementioned Handbook of
Deontic Logic and Normative Systems [34]. I/O logic can be viewed as a rule-
based system. The knowledge base takes the form of a set of rules of the form
(a,b) to be read as “if a then b”. The key feature of I/O logic is that it uses an
operational semantics, based on the notion of detachment, rather than a truth-
functional one in terms of truth-values and possible worlds. On the semantical
side, the meaning of the deontic concepts is given in terms of a set of procedures,
called I/O operations, yielding outputs (e.g., obligations) for inputs (facts). On
the syntactical side, the proof-theory is formulated as a set of inference rules
manipulating pairs of formulas rather than individual formulas. The framework
covers functionalities that are unanimously regarded as characteristic of the legal
domain, and thus required to enable effective legal reasoning:

1. Support for the modelling of constitutive rules, which define concepts or con-
stitute activities that cannot exist without such rules (e.g. legal definitions
such as “property”), and prescriptive rules, which regulate actions by making
them obligatory, permitted, or prohibited.

2. Management of the reification of rules that are objects with properties, such
as jurisdiction, authority, temporal attributes [26].

3. Implementation of defeasibility–see [26,38]; when the antecedent of a rule is
satisfied by the facts of a case (or via other rules), the conclusion of the rule
presumably holds, but is not necessarily true.

4 Deontic Logic Reasoning Machinery

In a nutshell, a reasoner is a tool that can perform reasoning tasks in a given
application domain. Reasoning thereby refers to the process of deriving or con-
cluding information that is not explicitly encoded in the knowledge base. In our
context, a number of reasoning tasks are particularly relevant. These include:

– Compliance checking : Is the current situation compliant with a given regula-
tion (a set of formally represented norms)?

A Deontic Logic Reasoning Infrastructure 63

– Consistency checking : Is a given regulation consistent? Is such-and-such norm,
as part of a given regulation, consistent with this other set of norms, stemming
from another regulation? Is such-and-such legal interpretation consistent with
another one?

– Entailment checking : Does such-and-such obligation or legal interpretation
follow from a given regulation?

Some of these tasks, e.g. consistency checking, are well supported by model
finders, while others, such as entailment checking, in general require theorem
proving technology. A powerful deontic reasoner should thus ideally provide both
model finding and theorem proving. While this is comparably easy to achieve
for many decidable propositional fragments of deontic logics, it becomes much
less so for their quantified extensions.

The quest for “a single, best deontic logic” is still open, and it eventually
will remain so for a long time to come. While I/O logic is the solution favoured
in our group (see Sect. 3), we also want to stay open-minded regarding alterna-
tive proposals, such as the DDL by Hansson or the one by Carmo and Jones.
Moreover, it is unclear yet whether regulatory texts can always be abstracted
and simplified to the point that pure propositional logic encodings are feasible
and justified, or whether first-order (FO) or even higher-order (HO) encodings
are required instead. This poses a multitude of concrete challenges for a flexible
deontic reasoning infrastructure.

These raised questions motivate empirical studies in which the different
options are systematically compared and assessed within well selected appli-
cation studies (see Sect. 5). However, for such empirical work to be feasible,
implementations of the different deontic candidate logics have to be provided
first, both on the propositional level and ideally also on the FO and HO level.
Moreover, it is reasonable to ensure that these implementations remain max-
imally comparable regarding the technological foundations they are based on,
since this may improve the fairness and the significance of (conceptual) empirical
evaluations.

A Meta-Logical Approach for Flexible, Deontic Logic Reasoning. Our currently
preferred solution for the implementation of a most flexible deontic reasoner
in the above sense is to work with a meta-logical approach to universal logic
reasoning, cf. [5] and the references therein. We subsequently instantiate this
approach in our ongoing project for various deontic candidate logics, including
I/O logic and the other ones as mentioned. The approach, which is based on
shallow semantical embeddings (SSE) [10] of these logics in HOL1, has a very
pragmatic motivation, foremost reuse of tools, simplicity and elegance. It utilises
HOL as a unifying meta-logic in which the syntax and semantics of varying other
logics can be explicitly modeled and flexibly combined. Off-the-shelf interactive
1 HOL as addressed here refers to a (simply) typed logic of functions, which has been
proposed by Church [2]. It provides lambda-notation, as an elegant and useful means
to denote unnamed functions, predicates and sets. Types in HOL eliminate paradoxes
and inconsistencies. For more information on HOL see the literature [7].

64 C. Benzmüller et al.

and automated theorem provers, and model finders can then be employed to
reason about and within the shallowly embedded logics.

Evidence from Previous Work. Respective experiments with this approach have
e.g. been conducted in metaphysics (cf. [13]). An initial focus thereby has been
on computer-supported assessments of rational arguments, in particular, of mod-
ern, modal logic variants of the ontological argument for the existence of God.
In the course of these experiments, in which the SSE approach was applied for
automating different variants of HO quantified modal logics [10], the HO theo-
rem prover LEO-II even detected an previously unnoticed inconsistency in Kurt
Gödel’s prominent variant of the ontological argument, while the soundness of
the slightly modified variant by Dana Scott was confirmed and all argument
steps were verified. Further modern variants of the argument have subsequently
been studied with the approach, and theorem provers have even contributed to
the clarification of an unsettled philosophical dispute [12].

Deontic Logics Already Covered in the SSE Approach. The following deontic
logics have already been “implemented” by utilising the SSE approach:

– SDL: All logics from the modal logic cube, including logic KD, i.e. SDL,
have meanwhile been faithfully implemented in the SSE approach [10]. These
implementations scale for FO and even HO extensions.

– the DDL by Carmo and Jones [19]: A semantic embedding of the propositional
fragment of this logic in Isabelle/HOL is already available [6,8], and most
recently the ATP Leo-III has been adapted to accept DDL as input.

– I/O logic [31]: The main challenge comes from the fact that the framework
does not have a truth-functional semantics, but an operational one. First
experiments with the semantic embedding of the I/O-operator “out1” (called
simple-minded) in Isabelle/HOL are promising [9]; see also Sect. 5.

Some relevant I/O logic variants have very recently been studied (see [36]),
and we conjecture that some of these variants are related to certain non-normal
modal logics, e.g. conditional logics with a selection function semantics or similar
logics with a neighbourhood semantics. However, the embedding of such logics
has already been studied in the first authors previous work [4]. It should thus
be possible to benefit from these existing results in the given context.

A most interesting aspect is, that the SSE approach even supports meta-
logical investigations within Isabelle/HOL in which the possible relationships
between I/O and conditional logics we hinted at can be formally assessed. Exam-
ples of meta-logical studies are e.g. mentioned in [10].

Moreover, the SSE approach enables the reuse of existing model finding and
theorem proving technology within the Isabelle/HOL proof assistant [32]. The
automated reasoning systems that are integrated with Isabelle/HOL, respec-
tively that are available via remote calls, include state-of-the-art SMT solvers,
FO and HO theorem provers, and model finders; cf. [15] and the references
therein. This infrastructure, in combination with the SSE approach, meets our
demanding requirements regarding flexibility along different axes.

A Deontic Logic Reasoning Infrastructure 65

While there is some related work, see e.g. [17,21,24,37], we are not aware of
any other existing deontic logic reasoning approach and associated machinery
that offers the same amount of flexibility and scalability.

Another advantage of the SSE approach, when implemented within powerful
proof assistants such as Isabelle/HOL, is that proof construction (interactive or
automated) can be supported at different levels of abstraction. For this note that
proof protocols/objects may generally serve two different purposes: (a) they may
provide an independently verifiable explanation in a (typically) well-defined log-
ical calculus, or (b) they may provide an intuitive explanation to the user why
the problem in question has been answered positively or negatively. Many rea-
soning tools, if they are offering proof objects at all, do generate only objects of
type (a). The SSE approach, however, has already demonstrated its capabilities
to provide both types of responses simultaneously in even most challenging logic
settings. For example, a quite powerful, abstract level theorem prover for hyper-
intensional HO modal logic has been provided by Kirchner [30]. He encoded an
abstract level proof calculus for this logic as proof tactics and he demonstrated
how these abstract level proof tactics can again be elegantly automated using
respective tools in Isabelle/HOL. Kirchner then successfully applied his reason-
ing infrastructure to reveal, assess and intuitively communicate a non-trivial
paradox in Zalta’s “Principia-logico Metaphysica” [40].

Drawing on the results and experiences from previous work, the ambition of
our ongoing project is to further extend the already existing implementations
of deontic logics in Isabelle/HOL towards a most powerful, flexible and scalable
deontic logic reasoning infrastructure. A core motivation thereby is to support
empirical studies in various application scenarios, and to assess and compare the
suitability, adequacy and performance of individual deontic logic solutions for
the engineering of moral agents and explainable intelligent systems.

5 Case Study: Data Protection

The General Data Protection Regulation (GDPR, Regulation EU 2016/679) is
a relevant and interesting application scenario for normative reasoning. It is
a regulation by which the European Parliament, the Council of the European
Union and the European Commission intend to strengthen and unify data pro-
tection for all individuals within the European Union. The regulation becomes
enforceable from 25 May 2018. We present two sample norms of the GDPR:

1. Personal data shall be processed lawfully (Art. 5). For example, the data
subject must have given consent to the processing of his or her personal
data for one or more specific purposes (Art. 6/1.a).

2. If the personal data have been processed unlawfully (none of the require-
ments for a lawful processing applies), the controller has the obligation to
erase the personal data in question without delay (Art. 17.d, right to be
forgotten).

When combined with the following a typical CTD-structure is exhibited.

66 C. Benzmüller et al.

3. It is obligatory e.g. as part of a respective agreement between a customer
and a company) to keep the personal data (as relevant to the agreement)
provided that it is processed lawfully.

4. Some data in the context of such an agreement has been processed unlaw-
fully.

Fig. 1. GDPR example scenario in Isabelle/HOL.

The latter information pieces are not explicit part of the GDPR. Instead
they are to be seen as implicit. 3 comes from another regulation, with which the
GDPR has to co-exists. 4 is a factual information — it is exactly the kind of world

A Deontic Logic Reasoning Infrastructure 67

situations the GDPR wants to regulate. This example is given for illustrative
purposes only. It provides a taste of what this knowledge base might look like.

In a recent technical report [8] we illustrate the practical challenge of such a
CTD scenario. Namely, when the above norms are encoded in SDL, an inconsis-
tency follows, meaning that everything is implied in the given context, including
arbitrarily weird and unethical conclusions such as the obligation to “kill the
boss”. In the same report we demonstrate that our SSE based implementation
of Carmo and Jones’s DDL is in contrast not suffering from this effect. No incon-
sistency follows when the above scenario is modelled in DDL. The obligation to
erase the data, however, is implied as intended.

We now analyse the above CTD scenario in the context of I/O logic.
This is done is Fig. 1, which first presents, in lines 4–13, an SSE based
implementation of I/O logic in Isabelle/HOL.2 A possible world semantics
is employed in this embedding to adequately address an extensionality issue
we have revealed in our previous work. This issue, and its solution, is dis-
cussed in more detail in a technical report [9]. The prescriptive rules of the
GDPR scenario are then modelled in lines 19–25, where the set of given Norms
is defined as {(�, process data lawfully), (¬process data lawfully, erase data),
(process data lawfully,¬erase data))}. The given Situation, in which we have
¬process data lawfully, is defined in line 27. Subsequently, three different queries
are answered by the reasoning tools integrated with Isabelle/HOL. The first
query asks whether the data should be erased in the given context. The ATPs
integrated with Isabelle/HOL via the Sledgehammer tool [15] respond quickly:
the SMT solver CVC4 [22] and the first-order prover Spass [16] return a proof
within a few milliseconds. For queries 2 and 3 the ATPs fail (not shown here),
but now the countermodel finder Nitpick [14] responds and presents counter-
arguments to both queries. That is, we receive the intended negative answers
to queries 2 and 3 when the GDPR example is modelled in our preferred I/O
logic. It is worth mentioning that I/O logic (and also DDL) have never been
automated before.

6 Conclusion

The deontic logic reasoning infrastructure we have presented supports empirical
studies on legal and ethical theories/policies in which the particular deontic logic
formalisms itself can be varied, assessed and compared in context. We believe
that this infrastructure can fruitfully support the development of much needed
logic based approaches towards ethical agency. The solution we have presented
supports a wide range of specific deontic logic variants, and it also scales for their
first-order and higher-order extensions. In fact, our infrastructure already now
implements a wider range of deontic and related logics than any other competitor
systems we are aware of.
2 The semantical embedding of out1 as presented here is technically still an approxi-
mative solution. For a complete embedding, x needs to be defined as a consequence
of an arbitrary number of facts (instead of just i, j and k) in lines 13 and 14.

68 C. Benzmüller et al.

References

1. Anderson, M., Anderson, S.L.: Toward ensuring ethical behavior from autonomous
systems: a case-supported principle-based paradigm. Ind. Robot 42(4), 324–331
(2015)

2. Andrews, P.: Church’s type theory. In: Zalta, E. (ed.) The Stanford Encyclopedia
of Philosophy, Spring 2014 edn (2014)

3. Åqvist, L.: Deontic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic, 2nd edn, vol. 8, pp. 147–264. Kluwer Academic Publishers, Dor-
drecht, Holland (2002)

4. Benzmüller, C.: Cut-elimination for quantified conditional logic. J. Philos. Logic
46(3), 333–353 (2017)

5. Benzmüller, C.: Recent successes with a meta-logical approach to universal logical
reasoning (extended abstract). In: da Costa Cavalheiro, S.A., Fiadeiro, J.L. (eds.)
SBMF 2017. LNCS, vol. 10623, pp. 7–11. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70848-5 2

6. Benzmüller, C., Farjami, A., Parent, X.: Faithful semantical embedding of a dyadic
deontic logic in HOL. Technical report, CoRR (2018). https://arxiv.org/abs/1802.
08454

7. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Gabbay, D.M.,
Siekmann, J.H., Woods, J. (eds.) Handbook of the History of Logic. Computational
Logic, vol. 9, pp. 215–254. North Holland, Elsevier (2014)

8. Benzmüller, C., Parent, X.: First experiments with a flexible infrastructure for
normative reasoning. Technical report, CoRR (2018). http://arxiv.org/abs/1804.
02929

9. Benzmüller, C., Parent, X.: I/O logic in HOL – first steps. Technical report, CoRR
(2018). https://arxiv.org/abs/1803.09681

10. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory.
Log. Univers. 7(1), 7–20 (2013)

11. Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover
LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)

12. Benzmüller, C., Weber, L., Woltzenlogel Paleo, B.: Computer-assisted analysis of
the Anderson-Hájek controversy. Log. Univers. 11(1), 139–151 (2017)

13. Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological
argument: a success story for AI in metaphysics. In: Kambhampati, S. (ed.) IJCAI
2016, vol. 1–3, pp. 936–942. AAAI Press (2016)

14. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

15. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013)

16. Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with
Isabelle - superposition with hard sorts and configurable simplification. In:
Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 345–360. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8 24

17. Bringsjord, S., Arkoudas, K., Bello, P.: Toward a general logicist methodology for
engineering ethically correct robots. IEEE Intell. Syst. 21, 38–44 (2006)

18. Carmo, J., Jones, A.J.I.: Deontic logic and contrary-to-duties. In: Gabbay, D.M.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8, pp. 265–343.
Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-010-0387-2 4

https://doi.org/10.1007/978-3-319-70848-5_2
https://doi.org/10.1007/978-3-319-70848-5_2
https://arxiv.org/abs/1802.08454
https://arxiv.org/abs/1802.08454
http://arxiv.org/abs/1804.02929
http://arxiv.org/abs/1804.02929
https://arxiv.org/abs/1803.09681
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-32347-8_24
https://doi.org/10.1007/978-94-010-0387-2_4

A Deontic Logic Reasoning Infrastructure 69

19. Carmo, J., Jones, A.J.I.: Completeness and decidability results for a logic of
contrary-to-duty conditionals. J. Logic Comput. 23(3), 585–626 (2013)

20. Dennis, L.A., Fischer, M.: Practical challenges in explicit ethical machine reason-
ing. In: ISAIM 2018, Fort Lauderdale, Florida, USA (2018)

21. Dennis, L.A., Fisher, M., Slavkovik, M., Webster, M.: Formal verification of ethical
choices in autonomous systems. Rob. Auton. Syst. 77, 1–14 (2016)

22. Deters, M., Reynolds, A., King, T., Barrett, C.W., Tinelli, C.: A tour of CVC4:
how it works, and how to use it. In: Formal Methods in Computer-Aided Design,
FMCAD 2014, Lausanne, Switzerland, 21–24 October 2014, p. 7. IEEE (2014)

23. Dignum, V.: Responsible autonomy. In: IJCAI 2017, pp. 4698–4704 (2017)
24. Furbach, U., Schon, C., Stolzenburg, F.: Automated reasoning in deontic logic. In:

Murty, M.N., He, X., Chillarige, R.R., Weng, P. (eds.) MIWAI 2014. LNCS (LNAI),
vol. 8875, pp. 57–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13365-2 6

25. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems. College Publications, London
(2013)

26. Gordon, T.: The Pleading Game: An Artificial Intelligence Model of Procedural
Approach. Springer, New York (1995)

27. Hansen, J.: Reasoning about permission and obligation. In: Hansson, S.O. (ed.)
David Makinson on Classical Methods for Non-Classical Problems. OCL, vol.
3, pp. 287–333. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-
7759-0 14

28. Hansson, B.: An analysis of some deontic logics. Noûs 3(4), 373–398 (1969)
29. Horty, J.: Agency and Deontic Logic. OUP, London (2009)
30. Kirchner, D., Benzmüller, C., Zalta, E.N.:Mechanizing principia logico-metaphysica

in functional type theory. CoRR (2017). https://arxiv.org/abs/1711.06542
31. Makinson, D., van der Torre, L.W.N.: Input/output logics. J. Philos. Logic 29(4),

383–408 (2000)
32. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

33. Parent, X.: Completeness of Åqvist’s systems E and F. Rev. Symb. Logic 8(1),
164–177 (2015)

34. Parent, X., van der Torre, L.: Input/output logic. In: Gabbay et al. [25], pp. 499–
544 (2013)

35. Parent, X., van der Torre, L.: Detachment in normative systems: examples, infer-
ence patterns, properties. IfCoLog J. Logics Appl. 4(9), 2295–3039 (2017)

36. Parent, X., van der Torre, L.: The pragmatic oddity in a norm-based semantics.
In: Governatori, G. (ed.) ICAIL 2017, Proceedings, pp. 169–178. ACM, New York
(2017)

37. Pereira, L.M., Saptawijaya, A.: Programming Machine Ethics. Studies in Applied
Philosophy, Epistemology and Rational Ethics, vol. 26. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29354-7

38. Sartor, G.: Legal Reasoning: A Cognitive Approach to Law. Springer, Dordrecht
(2005)

39. von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)
40. Zalta, E.N.: Principia logico-metaphysica. Draft version (2016). https://mally.

stanford.edu/principia.pdf

https://doi.org/10.1007/978-3-319-13365-2_6
https://doi.org/10.1007/978-3-319-13365-2_6
https://doi.org/10.1007/978-94-007-7759-0_14
https://doi.org/10.1007/978-94-007-7759-0_14
https://arxiv.org/abs/1711.06542
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-29354-7
https://mally.stanford.edu/principia.pdf
https://mally.stanford.edu/principia.pdf

Optimized Program Extraction
for Induction and Coinduction

Ulrich Berger(B) and Olga Petrovska

Swansea University, Swansea SA2 8PP, Wales, UK
{u.berger,olga.petrovska}@swansea.ac.uk

Abstract. We prove soundness of an optimized realizability interpre-
tation for a logic supporting strictly positive induction and coinduc-
tion. The optimization concerns the special treatment of Harrop formu-
las which yields simpler extracted programs. We show that wellfounded
induction is an instance of strictly positive induction and derive from
this a new computationally meaningful formulation of the Archimedean
property for real numbers. We give an example of program extraction in
computable analysis and show that Archimedean induction can be used
to eliminate countable choice.

1 Introduction

This paper studies a constructive logic for strictly positive inductive and coin-
ductive definitions with a realizability interpretation that permits the extraction
of programs from proofs in abstract mathematics. Particular attention is paid
to a special treatment of Harrop formulas (which have trivial realizers) leading
to optimized programs.

Similar work on this topic has been done in [2,13–15,18] and to a large extent
implemented in the Minlog system [5]. Related methods of optimized program
extraction can be found in [16] and in the systems Coq [9] and Nuprl [11].

Our main contribution is the extension of the realizability interpretation to
inductive predicates defined by Harrop operators permitting induction over non-
Harrop predicates. This enables us to exhibit wellfounded induction as a special
case of strictly positive induction.

We show the usefulness of our results by a simple example in computable
analysis, where we identify a new formulation of the Archimedean property as an
induction principle and use it to obtain a direct and computationally meaningful
proof that the inequality of approximable real numbers implies their apartness.
The proof using Archimedean induction is technically and conceptually simpler
than the usual proof using the Archimedean property, Markov’s principle and
the axiom of countable choice. The fact that Archimedean induction can be
used to eliminate countable choice makes this principle potentially interesting
for constructive mathematics, where one tries to avoid choice principles as far
as possible [10,17].

The theoretical results are to a large extent dual for induction and coin-
duction. However, our focus is on induction. For applications of coinduction see
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 70–80, 2018.
https://doi.org/10.1007/978-3-319-94418-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_7&domain=pdf

Optimized Program Extraction for Induction and Coinduction 71

e.g. [3,6–8] and for a discussion of coinduction in type-theoretic systems see [1].
The Soundness Theorem (Theorem 1) shows correctness of the extracted pro-
gram with respect to a domain-theoretic semantics. Correctness with respect
to an operational semantics ensuring, for example, termination of programs
is obtained via a Computational Adequacy Theorem which is proven in [2].
Although the logical system and realizability interpretation in [2] is slightly dif-
ferent to ours this does not affect adequacy in our context since programs and
their semantics are type free and therefore independent of the logical system.

Our system of strictly positive inductive definitions is proof-theoretically
rather strong since it permits nested and interleaved inductive definitions. The
proof-theoretic strength of a related system has been analysed in [19], a discus-
sion of this topic can be found in [2].

2 Intuitionistic Fixed Point Logic (IFP)

The language of IFP consists of formulas A,B defined simultaneously with pred-
icates P,Q, and operators Φ, Ψ . We let X,Y, . . . range over predicate variables,
and P,Q over predicate constants, each with a fixed arity, s, t range over first-
order terms. There is a distinguished 0-ary predicate constant ⊥ for falsity which
we identify with the formula ⊥().

Formulas � A,B ::= P(�t) (P not an abstraction,�t arity(P) many terms)
| A ∧ B | A ∨ B | A → B | ∀x A | ∃x A

Predicates � P,Q ::= X | P | λ�x A | μΦ | ν Φ
(arity(λ�x A) = |�x|, arity(μΦ) = arity(νΦ) = arity(Φ))

Operators � Φ, Ψ ::= λX P (arity(λX P) = arity(X) = arity(P))

The application of an operator to a predicate is defined as (λX P)(Q) = P[Q/X].
A definition P Def= μΦ will also be written P μ

= Φ(P) and if Φ = λXλ�xA

it may be written P(�x)
μ
= A[P/X] (similarly for P Def= ν Φ). We use ≡ for

equivalence, i.e., A ≡ B
Def= A ↔ B and P ≡ Q Def= ∀�x (P(�x) ≡ Q(�x)). The

bounded quantifiers ∀x ∈ P . . . and ∃x ∈ P . . . abbreviate ∀x (P(x) → . . .) and
∃x (P(x) ∧ . . .).

An expression (formula, predicate, operator) is strictly positive (s.p.) in a
predicate variable X if it does not contain X free in the premise of an implication.
λY P is strictly positive if P is s.p. in Y . An expression is regular if it contains
only inductive predicates μΦ and coinductive predicates ν Φ where Φ is s.p..
Throughout the paper it is assumed that all expressions are regular and all
operators mentioned are strictly positive.

The proof rules of IFP are the usual rules of intuitionistic first-order logic
extended by the following rules for inductive and coinductive definitions:

cl
Φ(μΦ) ⊆ μΦ

Φ(P) ⊆ P
ind

μΦ ⊆ P
cocl

ν Φ ⊆ Φ(ν Φ)
P ⊆ Φ(P)

coindP ⊆ ν Φ

72 U. Berger and O. Petrovska

3 Intuitionistic Fixed Point Logic for Realizers (RIFP)

The Scott domain of realizers is defined by the recursive domain equation [12]

D = Nil + Lt(D) + Rt(D) + Pair(D × D) + F(D → D)

where + denotes the separated sum, × the Cartesian product and D → D is
the continuous function space. Nil,Lt,Rt,Pair,F are mnemonic labels called
constructors. The elements of D are of the form ⊥ (the least element), Nil,
Lt(d), Rt(d) where d ∈ D, or F(f) where f is a continuous function from
D to D.

Programs denote elements of D. They are defined simultaneously with
function terms (functions for short), which denote continuous functions on D.

Programs � p, q ::= a, b (variables) | Nil | Lt(p) | Rt(p) | Pair(p, q) | F(α)
| case(p, α, β) | proji(p) (i ∈ {0, 1}) | α p | rec(α)

Functions � α, β ::= f, g (variables) | λa p | app(p)

Since Scott domains and continuous functions form a Cartesian closed cat-
egory and the mapping (D → D) � f → ⊔

n fn(⊥) ∈ D defines a continuous
fixed point operator, programs and abstractions have an obvious denotational
semantics [12].

To reason formally about realizers and programs we extend IFP by a sort δ
for elements of D and a sort δ → δ for continuous functions from D to D. The
terms of sort D are the programs, the terms of sort δ → δ are the function terms.
We further add predicate variables X̃, Ỹ , . . . which admit an extra argument of
sort δ, and extend the notions of formula, predicate and operator as well as the
rules and axioms of IFP accordingly. We add the axioms:

case(Lt(a), f, g) = f a app(F(f)) a = f a

case(Rt(a), f, g) = g a (λa p) b = p[b/a] (for every prog. p)

proji(Pair(a0, a1)) = ai rec(f) = f (rec(f))

The resulting system is called Intuitionistic fixed point logic for realizers (RIFP).

4 Realizability and Soundness

An expression is Harrop if it contains no disjunction or free predicate variable at
a s.p. position, it is non-computational (nc) if it contains no disjunction or free
predicate variable at all. Hence, nc-expressions are Harrop. We assume that to
every predicate variable X there is assigned, in a one-to-one fashion, a predicate
variable X̃ with one extra argument place for realizers. We define for every
expression � an expression R(�) (the realizability interpretation of �) and, if
� is Harrop, an expression H(�) (a simplified realizability interpretation), more
precisely, for a

Optimized Program Extraction for Induction and Coinduction 73

– formula A a predicate R(A) with one argument for realizers,
– predicate P a predicate R(P) with an extra argument for realizers,
– non-Harrop operator Φ an operator R(Φ) with an extra argument for realizers,
– Harrop formula A a formula H(A),
– Harrop predicate P a predicate H(P) of the same arity,
– Harrop operator Φ an operator H(Φ) of the same arity.

We sometimes write a rA for R(A)(a) and rA for ∃a a rA. Set HX(P) Def=
(H(P[P/X]))[X/P] where P is a fresh predicate constant.

a rA = H(A) ∧ a = Nil (A Harrop)

R(P) = λ(�x, a) (H(P) ∧ a = Nil) (P Harrop)

Otherwise

a rP(�t) = R(P)(�t, a) H(P(�t)) = H(P)(�t)

c r (A ∧ B) = ∃a, b (c = Pair(a, b) ∧ a rA ∧ b rB) H(A ∧ B) = H(A) ∧ H(B)

(neither A nor B Harrop)

a r (A ∧ B) = a rA ∧ H(B) (B Harrop)

b r (A ∧ B) = H(A) ∧ b rB (A Harrop)

c r (A ∨ B) = ∃a (c = Lt(a) ∧ a rA ∨ c = Rt(a) ∧ a rB)

c r (A → B) = ∃f (c = F(f) ∧ ∀a (a rA → (f a) rB)) H(A → B) = rA → H(B)

(neither A nor B Harrop)

b r (A → B) = H(A) → b rB (A Harrop)

a r♦x A = ♦x (a rA) (♦ ∈ {∀, ∃}) H(♦x A) = ♦xH(A)

R(X) = X̃ H(P) = P

R(♦ Φ) = ♦R(Φ) (♦ ∈ {ν, μ}) H(♦ Φ) = ♦H(Φ)

R(λ�x A) = λ�xR(A) (= λ(�x, a) a rA) H(λ�x A) = λ�xH(A)

R(λX P) = λX̃ R(P) H(λX P) = λX HX(P)

It is clear that the operations R and H preserve regularity and strict pos-
itivity, hence realizability is well-defined. Furthermore, if A is Harrop, then
H(A) ≡ rA, and if A is nc, then H(A) = A.

The Soundness Theorem below is restricted to proofs where every instance
of induction or coinduction satisfies the condition that either Φ and P are both
Harrop or both non-Harrop or Φ is Harrop and simple (see below) and P is
non-Harrop. We call such proofs admissible. This is not a severe restriction since
in all practical applications proofs turn out to be admissible. An expression �
is X-simple if no sub-expression of � of the form μΦ or ν Φ contains X free. A
(strictly positive) operator λX P is simple if P is X-simple. We conjecture that
the Soundness Theorem also holds without the admissibility assumption. From
now on we tacitly assume that all proofs are admissible.

We write p q for app(p) q, λa p for F(λa p), and p ◦ q for λa (p(q a)).

74 U. Berger and O. Petrovska

Theorem 1 (Soundness). Let Γ be a set of Harrop formulas and Δ a set of
formulas that are not Harrop. Then, from an admissible IFP-proof of a formula
A from the assumptions Γ,Δ one can extract a program p with FV(p) ⊆ �u such
that p r A is RIFP-provable from the assumptions H(Γ) and �u r Δ.

Proof. By induction on derivations one shows simultaneously

(1) If Γ,Δ �IFP A where A is not Harrop, then H(Γ), �u r Δ �RIFP p r A for some
program p with FV(p) ⊆ �u.

(2) If Γ,Δ �IFP A where A is Harrop, then H(Γ), �u r Δ �RIFP H(A).

The logical rules are easy. To see that the rules for induction and coinduction are
realizable in all admissible cases one needs to do a case distinction on whether
or not the operator Φ and the predicate P are Harrop. Note that the case that
Φ is non-Harrop but P is Harrop is excluded due to the admissibility condition.

W.l.o.g. we assume that Φ is not constant; i.e., if Φ = λX Q then X does
occur freely (and hence strictly positively) in Q. We first look at induction

Φ(P) ⊆ P
μΦ ⊆ P ind

If Φ and P are both not Harrop, then the premise of induction gives us a realizer
s of Φ(P) ⊆ P, i.e., ∀b, �x (b rΦ(P)(�x) → (s b) rP(�x)). Using the notation g−1 ◦
Q Def= λ(�x, b)Q(�x, g b) and the easily provable fact that R(Φ(P)) = R(Φ)(R(P))
if Φ and P are both Harrop, this can be written as

(1) R(Φ)(R(P)) ⊆ s−1 ◦ R(P)).

By recursion on the build-up of Φ one can define a closed term map realizing
the formula X ⊆ Y → Φ(X) ⊆ Φ(Y). Using the notation above, this means that
for all g, X̃, Ỹ , we have X̃ ⊆ g−1 ◦ Ỹ → R(Φ)(X̃) ⊆ (map g)−1 ◦ R(Φ)(Ỹ), in
particular for X̃

Def= g−1 ◦ Ỹ one has

(2) R(Φ)(g−1 ◦ Ỹ) ⊆ (map g)−1 ◦ R(Φ)(Ỹ).

We need a realizer of μΦ ⊆ P. Since μΦ is not Harrop, the realizer f must satisfy
∀�x∀b (μR(Φ))(�x, b) → (f b) rP(�x)), i.e., μR(Φ) ⊆ f−1 ◦ R(P). We attempt to
prove this by induction (with a yet unknown f). Therefore, we try to show
R(Φ)(f−1 ◦ R(P)) ⊆ f−1 ◦ R(P).

Using (1) and (2) with g
Def= f and Ỹ

Def= R(P) we obtain

R(Φ)(f−1 ◦ R(P)) ⊆ (map f)−1 ◦ R(Φ)(R(P))
⊆ (map f)−1 ◦ (s−1 ◦ R(P))
≡ (s ◦ map f)−1 ◦ R(P)

Hence if we define f recursively by f = s ◦ map f we are done.
The case that Φ and P are both Harrop is easy, since then premise and conclu-

sion of the induction rule are Harrop and therefore the realizability interpretation

Optimized Program Extraction for Induction and Coinduction 75

of the premise is H(Φ(P)) ⊆ H(P) and that of the conclusion μH(Φ) ⊆ H(P).
Since one can prove by structural induction that H(Φ(P)) is the same as
H(Φ)(H(P)) and H(Φ) inherits strict positivity from Φ, we obtain an instance
of the induction rule for the H(Φ) and the H(P).

The last case to consider is that Φ is Harrop and simple, and P is not
Harrop. The premise of induction gives us a realizer s of Φ(P) ⊆ P i.e.,
since Φ(P) is not Harrop, ∀b, �x (b rΦ(P)(�x) → (s b) rP(�x)). Using the nota-
tion Pa

Def= λ�x (a rP(�x)) this can be written as ∀b (Φ(P)b ⊆ Ps b). We need
a realizer a of μΦ ⊆ P. Since μΦ is Harrop, this means that a must satisfy
∀�x (μH(Φ))(�x) → a rP(�x)), i.e., μH(Φ) ⊆ Pa. We attempt to prove this by
induction (with a yet unknown a). Therefore, we show H(Φ)(Pa) ⊆ Pa. By
recursion on the build-up of Φ one can construct a closed (recursion-free) term ψ
such that H(Φ)(Pb) ⊆ Φ(P)ψ(b) for all b. It follows that H(Φ)(Pa) ⊆ Φ(P)ψ(a) ⊆
Ps ψ(a). Hence, if a is defined recursively as a = sψ(a), we are done.

For coinduction the proof is completely dual in the first two cases (Φ,P both
non-Harrop or both Harrop) and similar to induction in the third case (Φ Harrop,
P non-Harrop).

5 Wellfounded Induction

In the following we let upper-case Roman letters range over arbitrary predicates.
The usual formulation of induction over a wellfounded relation < is

Prog<(P)
∀xP (x)

WfI(<)

where Prog<(P) Def= ∀x (∀y (y < x → P (y)) → P (x)). In order to be computa-
tionally meaningful we formulate this principle in a relativized form where we
require the relation < to be wellfounded only on a given predicate A (which is
typically non-Harrop). This is expressed by the condition that A is contained in
the wellfounded (or accessible) part of <. Hence Wellfounded induction is the
principle

A ⊆ Acc< Prog<,A(P)
A ⊆ P

WfI(<,A)

where Acc<(x)
μ
= ∀y < xAcc<(y)

Prog<,A(P) Def= ∀x ∈ A (∀y ∈ A (y < x → P (y)) → P (x))

Proposition 1. Wellfounded induction follows from admissible s.p. induction.
If P is not Harrop, then the extracted program is the least fixed point operator;
i.e., if f realizes Prog<,A(P), then the least fixed point of f realizes A ⊆ P .

76 U. Berger and O. Petrovska

Proof. Set Φ
Def= λX λx ∀y < xX(y) which is a simple Harrop operator. Then

Acc< = μΦ and the assumed progressivity, Prog<,A(P), is equivalent to Φ(A ⇒
P) ⊆ (A ⇒ P), where A ⇒ P

Def= λx (A(x) → P (x)). Hence μΦ ⊆ (A ⇒ P),
and therefore, by the assumption A ⊆ Acc<, A ⊆ (A ⇒ P). It follows A ⊆ P .

Now let P be non-Harrop and let f realize Prog<,A(P). By the proof of the
Soundness Theorem, a defined recursively as a = f ψ(a) realizes Acc< ⊆ (A ⇒
P) where ψ satisfies H(Φ)(Qb) ⊆ Φ(Q)ψ(b). Unfolding this formula one sees that
ψ is the identity. Therefore, the least fixed point of f realizes Acc< ⊆ (A ⇒ P)
and therefore, as can be easily seen, also A ⊆ P .

6 Archimedean Induction

We give an application of wellfounded induction and hence inductive definitions
in computable analysis. We let the variables x, y, . . . range over abstract reals.
We assume that the basic arithmetic operations (0, 1,+, ∗, | · |, . . .) and relations
(=, <,≤, . . .) are given as function and predicate symbols and we will freely use
any true arithmetic nc-properties of them. Hence x = y, x < y, x ≤ y are atomic
formulas. We write x �= y as a shorthand for ¬(x = y), i.e. x = y → ⊥. All these
formulas are nc.

Natural numbers are inductively defined as a subset of the real numbers by

N(x)
μ
= (x = 0 ∨ N(x − 1))

(i.e. N Def= μ (λX λx (x = 0 ∨ X(x − 1)))). The formula N(x) is not Harrop since
it contains a disjunction at a strictly positive position. Integers (Z) and rational
numbers (Q) are defined from the natural numbers in the usual way.

Cauchy reals are represented as real numbers satisfying the predicate

A(x) Def= ∀n ∈ N∃q ∈ Q |x − q| ≤ 2−n

The realizability interpretation of the predicate N is

a rN(x)
μ
= a = Lt(Nil) ∧ x = 0 ∨ ∃b (a = Rt(b) ∧ b rN(x − 1))

Hence realizers of the elements of N are numerals Rtn(Lt(Nil)). We write
0 for Lt(Nil) and S(a) for Rt(a).1 A realizer of A(x) is a function f such that

∀n, a (a rN(n) → ∃q ∈ Q (f(a) rQ(q) ∧ |x − q| ≤ 2−n))

Hence, essentially, f is a sequence of (representations of) rational numbers
converging quickly to x. To work in the model of Cauchy reals one simply

1 The binary representation of natural numbers is obtained by defining the (same) set

of natural numbers as N(x)
µ
= ∃y ((y = 0 ∨ y > 0 ∧N(y)) ∧ ∃i ∈ {0, 1}(x = 2y + i)).

Optimized Program Extraction for Induction and Coinduction 77

relativizes all quantifiers to A. However, we refrain from doing so since there
are principles (such as Archimedean induction below) which are valid without
such relativization.

The usual apartness relation between real numbers is defined by

x � �= y
Def= ∃k ∈ N |x − y| ≥ 2−k

Clearly, x � �= 0 implies x �= 0 but the converse implication only holds with extra
assumption on x, for example x ∈ A. We are interested in a proof of the converse
implication that permits the extraction of a program, possibly admitting classi-
cally true assumptions as long as they are Harrop or realizable and therefore do
not spoil program extraction.

We first prove the implication x �= y → x � �= y relativized to x, y ∈ A with the
help of a Harrop formulation of the Archimedean property, Markov’s principle
and the countable axiom of choice:

Archimedean property (AP): (∀n ∈ N |x| < 2−n) → x = 0.
Markov’s principle (MP):

∀n ∈ N (A(n) ∨ ¬A(n)) → ¬¬∃n ∈ NA(n) → ∃n ∈ NA(n)
Axiom of countable choice (ACC):

∀n ∈ N∃xA(n, x) → ∃f ∀n ∈ NA(m, f(n)).

Note that AP is a Harrop formula which is equivalent to H(AP). MP is
realized by an unbounded search operator which can be easily defined by recur-
sion. ACC quantifies over functions, hence requires an extension of IFP, and is
realized by the identity.

Proposition 2 (AP,MP,ACC). ∀x ∈ A (x �= 0 → x � �= 0).

Proof. Assume A(x) and x �= 0. By ACC there exists an infinite sequence of
rational numbers qk (k ∈ N) such that |x − qk| ≤ 2−k for all k ∈ N. It is
impossible that |qk+1| ≤ 2−k for all k ∈ N since this would clearly imply that
|x| ≤ 2−k for all k ∈ N and therefore x = 0, by AP. Since |qk+1| ≤ 2−k is a
decidable property of k, by MP we can find some k ∈ N with |qk+1| > 2−k. It
follows that |x| ≥ 2−(k+1).

We now introduce an alternative formulation of the Archimedean property in
the form of an induction principle. This will allow us to prove the implication
x �= 0 → x � �= 0 for x ∈ A without using Markov’s principle or countable choice
and will directly yield a simple extracted program.

Archimedean induction is the rule

∀x �= 0 ((|x| ≤ 3 → P (2x)) → P (x))
∀x �= 0P (x) AI

Of course, the number 3 can be replaced by any positive rational number and
the number 2 by any rational number > 1.

Proposition 3. AI follows classically from AP and wellfounded induction. If P
is not Harrop, then AI is realized by rec.

78 U. Berger and O. Petrovska

Proof. By the Archimedean property, for each x �= 0, the sequence
|x|, |2x|, |4x|, . . . is unbounded, hence will eventually exceed 3. Therefore, A ⊆
Acc≺ holds, where A(x) Def= x �= 0 and y ≺ x

Def= |x| ≤ 3∧y = 2x. The premise of
AI is Prog≺,A(P), hence A ⊆ P , by WfI(≺, A). By Proposition 1 the extracted
realizer is rec.

A useful variant of Archimedean induction is its relativization to A:

∀x ∈ A \ {0} ((|x| ≤ 3 → P (2x)) → P (x))
∀x ∈ A \ {0}P (x) AIC

Proposition 4. AIC follows from AI and hence is realizable.

Proof. Apply AI to the predicate A ⇒ P
Def= λx (A(x) → P (x)) and use the

fact that A is closed under doubling.

If s realizes the premise of AIC, then a realizer of the conclusion of AIC is
extracted as the recursively defined function χ g = s g (χ (d g)) where d =
λg λn 2∗(g(S(n))) is the realizer extracted from the easy proof of A(x) → A(2x)
and 2∗ implements doubling of (unary representations of) natural numbers.

Proposition 5 (AIC). ∀x ∈ A (x �= 0 → x � �= 0).

Proof. We show ∀x ∈ A \ {0}x � �= 0 using AIC. Let x ∈ A \ {0} and assume, as
induction hypothesis, |x| ≤ 3 → 2x � �= 0. Since x ∈ A there is q ∈ Q such that
|x − q| ≤ 1. If |q| > 2, then |x| ≥ 1 and we are done. If |q| ≤ 2, then |x| ≤ 3 so
we can apply the induction hypothesis to obtain 2x � �= 0, which implies x � �= 0.

Program extraction for Proposition 5: The program extracted from above
proof is

ϕf = if |f 0| > 2 then1elseS(ϕ (λn2 ∗ f(S(n))))

where | · | and > implement the absolute value function and > relation
on (representations of) rational numbers and if t then p else q stands for
case(t, λa p, λa q) assuming that the Booleans are encoded as Lt(Nil) and
Rt(Nil).

7 Conclusion

We presented a constructive theory of strictly positive inductive and coinduc-
tive definitions that permits (co)induction over a Harrop operator to be applied
to non-Harrop predicates. This allowed us to exhibit wellfounded induction as a
special case of strictly positive induction and, in turn, to give a new presentation
of the Archimedean property for real numbers as a computationally meaning-
ful induction principle. A simple example in computable analysis reveals that
Archimedean induction is able to provide a new computationally meaningful

Optimized Program Extraction for Induction and Coinduction 79

proof (Proposition 5) of a result that would normally be proven using count-
able choice plus Markov’s principle (Proposition 2). Hence Archimedean induc-
tion allowed us to eliminate these constructively questionable principles. We
leave it as an open question whether for this particular example (approximable
non-zero reals are apart from 0) a computationally meaningful proof using the
Archimedean property and Markov’s principle alone could be given, but we con-
jecture that this is not the case. Archimedean induction (even with Markov’s
principle) is weaker than countable choice since the computable reals validate
the former while, classically, they do not validate the latter. Regarding the con-
structive status of Archimedean induction it must be noted that its reduction to
wellfounded induction (Proposition 3) uses classical logic but no choice. Hence
this achieves only classical elimination of choice. However, there might be an
independent constructive justification of Archimedean induction. At least com-
putationally this principle is justified through its realizability interpretation.

It is straightforward to extend our results to generally positive inductive
and coinductive definitions. There is even a possibility of extending this to a
system of higher-order logic and monotone inductive and coinductive definition
as presented in [4].

Acknowledgments. This work was supported by the Marie Curie International
Research Staff Exchange Schemes Computable Analysis (PIRSES-GA-2011-294962)
and Correctness by Construction (FP7-PEOPLE-2013-IRSES-612638) as well as the
Marie Curie RISE project Computing with Infinite Data (H2020-MSCA-RISE-2016-
731143) and the EPSRC Doctoral Training Grant No. 1818640.

References

1. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infi-
nite structures by observations. In: 40th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2013), pp. 27–38 (2013)

2. Berger, U.: Realisability for induction and coinduction with applications to con-
structive analysis. J. Univ. Comput. Sci. 16(18), 2535–2555 (2010)

3. Berger, U.: From coinductive proofs to exact real arithmetic: theory and applica-
tions. Logical Methods Comput. Sci. 7(1), 1–24 (2011)

4. Berger, U., Hou, T.: A realizability interpretation of Church’s simple theory of
types. Math. Struct. Comput. Sci. 27, 1–22 (2016)

5. Berger, U., Miyamoto, K., Schwichtenberg, H., Seisenberger, M.: Minlog - a tool
for program extraction supporting algebras and coalgebras. In: Corradini, A., Klin,
B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 393–399. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22944-2 29

6. Berger, U., Miyamoto, K., Schwichtenberg, H., Tsuiki, H.: Logic for Gray-code
computation. In: Concepts of Proof in Mathematics, Philosophy, and Computer
Science. De Gruyter (2016)

7. Berger, U., Seisenberger, M.: Proofs, programs, processes. Theory Comput. Syst.
51(3), 213–329 (2012)

8. Berger, U., Spreen, D.: A coinductive approach to computing with compact sets.
J. Logic Anal. 8, 1–35 (2016)

https://doi.org/10.1007/978-3-642-22944-2_29

80 U. Berger and O. Petrovska

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07964-5

10. Bridges, D., Richman, F., Schuster, P.: Linear independence without choice. Ann.
Pure Appl. Logic 101(1), 95–102 (1999)

11. Constable, R.: Implementing Mathematics with the Nuprl Proof Development Sys-
tem. Prentice-Hall, New Jersey (1986)

12. Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.: Continuous
Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93.
CUP (2003)

13. Miranda-Perea, F.: Realizability for monotone clausular (co)inductive definitions.
Electr. Notes Theoret. Comput. Sci. 123, 179–193 (2005)

14. Miyamoto, K.: Program extraction from coinductive proofs and its application to
exact real arithmetic. Ph.D. thesis, Mathematisches Institut LMU, Munich (1993)

15. Miyamoto, K., Nordvall Forsberg, F., Schwichtenberg, H.: Program extraction from
nested definitions. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 370–385. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39634-2 27

16. Parigot, M.: Recursive programming with proofs. Theor. Comput. Sci. 94(2), 335–
356 (1992)

17. Richman, F.: The fundamental theorem of algebra: a constructive development
without choice. Pacific J. Math. 196(1), 213–230 (2000)

18. Tatsuta, M.: Realizability of monotone coinductive definitions and its application
to program synthesis. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 338–
364. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054298

19. Tupailo, S.: On the intuitionistic strength of monotone inductive definitions. J.
Symb. Logic 69(3), 790–798 (2004)

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-39634-2_27
https://doi.org/10.1007/978-3-642-39634-2_27
https://doi.org/10.1007/BFb0054298

Computing Tree Width: From Theory
to Practice and Back

Sebastian Berndt(B)

Department of Computer Science, Kiel University, Kiel, Germany
seb@informatik.uni-kiel.de

Abstract. While the theoretical aspects concerning the computation
of tree width – one of the most important graph parameters – are well
understood, it is not clear how it can be computed practically. As tree
width has a wide range of applications, e. g. in bioinformatics or arti-
ficial intelligence, this lack of understanding hinders the applicability
of many important algorithms in the real world. The Parameterized
Algorithms and Computational Experiments (PACE) challenge there-
fore chose the computation of tree width as one of its challenge problems
in 2016 and again in 2017. In 2016, Hisao Tamaki (Meiji University) pre-
sented a new algorithm that outperformed the other approaches (includ-
ing SAT solvers and branch-and-bound) by far. An implementation of
Tamaki’s algorithm allowed Larisch (King-Abdullah University of Sci-
ence and Engineering) and Salfelder (University of Leeds) to solve over
50% of the test suite of PACE 2017 (containing graphs with over 3500
nodes) in under six seconds (and the remaining 50% in under 30min).
Before PACE 2016, no algorithm was known to compute tree width on
graphs with about 100 nodes. As a wide range of parameterized algo-
rithms require the computation of a tree decomposition as a first step,
this breakthrough result allows practical implementations of these algo-
rithms for the first time.

This work starts with a gentle introduction to tree width and its use
in parameterized complexity, followed by an algorithmic approach for the
exact computation of the tree width of a graph, based on a variant of
the well-studied cops-and-robber game. Finally, we present a streamlined
version of Tamaki’s algorithms due to Bannach and Berndt based on this
game.

Keywords: Tree width · Algorithms · Experimental evaluation
Graph searching · Parameterized complexity

1 Talk Summary

1.1 Introducing Tree Width

Consider your favorite optimization problem on graphs. With high probability,
it is easy, i. e. solvable in polynomial time, if restricted to trees. Let us consider

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 81–88, 2018.
https://doi.org/10.1007/978-3-319-94418-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_8&domain=pdf

82 S. Berndt

the Maximum Independent Set problem, where we want to find a set of
vertices V ′ ⊆ V (G) of maximum cardinality such that {u, v} �∈ E(G) for all
u, v ∈ V ′. This is one of the classical NP-hard problems, but solving it on trees
is fairly simple. Root the tree T at some arbitrary vertex r ∈ V (T) to obtain
the rooted tree T r. For a vertex v ∈ V (T), let ch(v) be the children of v of in
T r and let T r[v] be the set of descendants of v in T r. Furthermore, let I+[v] be
the size of a maximal independent set of T r[v] that contains v and I−[v] be the
size of a maximal independent set of T r[v] that does not contain v. For all leafs
v of T r, we have I+[v] = 1 and I−[v] = 0. If v is an inner node, we clearly have

I+[v] = 1 +
∑

w∈ch(u)

I−[w],

I−[v] =
∑

w∈ch(u)

max{I+[w], I−[w]}.

As max{I+[r], I−[r]} is the size of a maximal independent set in T r[r] = V (T),
we can conclude that this problem is indeed solvable in linear time.

Now suppose that we add an edge {u,w} to the tree T and obtain a graph
G. Intuitively, the problem should not become much harder on G: After all, the
graph G is just a tree and a single edge. The simple observation that a maximal
independent set can contain u, or w, or none of them allows us to reuse our
previous dynamic program with simple adaptions. Generalizing this principle,
if G is a graph consisting of a tree and an additional set of edges E′, we can
compute the size of a maximal independent set in time O(22|E′|·|V (G)|) by trying
out all 22|E′| independent sets in E′. Note that some of the edges {u, v}, {u′, v′}
in E′ may be independent of each other in the sense that the inclusion of u into
the maximal independent set does not tell us whether u′, v′ or none of them
need to be part of the maximal independent set. See e. g. the edges {d, e} and
{f, h} in Fig. 1(a).

The concept of the tree width of a graph G captures the idea that a graph is
tree-like and also integrates our previous discussion on independent edges. A tree
decomposition of a graph1 G = (V,E) is a pair (T , ι) such that T is a tree and
ι maps nodes of T to subsets of V . These subsets are called bags. Furthermore,
such a tree decomposition must have the following properties: (i) for every vertex
v ∈ V , there is a node X in T such that v ∈ ι(X), (ii) for every edge u, v ∈ E,
there is a node X in T such that {u, v} ⊆ ι(X), and (iii) for every vertex v ∈ V ,
the set {X | v ∈ ι(X)} is connected in T . The width of a tree decomposition
(T , ι) is the maximum size of one of its bags minus one. As the width corresponds
to the complexity of such a decomposition, we want to minimize this quantity.
Hence, the tree width tw(G) of a graph G is the minimum width over all tree
decompositions of G. See Fig. 1 for an example.

The concept of tree decompositions has been used for a wide number of differ-
ent applications. It is one of the fundamental tools in parameterized complexity

1 All graphs in this work are undirected, unless stated otherwise.

Computing Tree Width: From Theory to Practice and Back 83

Fig. 1. Two tree decompositions of an undirected graph G = (V,E) shown at (a). The
decomposition in (b) shows tw(G) ≤ 2 and the expanded one in (c) gives more intuition
on the construction.

(see e. g. [6,9–11]), but also found applications in bioinformatics (see e. g. [15])
or artificial intelligence (see e. g. [12]).

Given a graph G on n nodes, one can test in time f(k) ·n whether tw(G) ≤ k
by the celebrated algorithm of Bodlaender [3]. Hence, this problem is fixed-
parameter-tractable (and belongs to the class FPT), but the algorithm is not
useful in practice, as the function f(k) is quite large [4]. A wide number of
FPT-algorithms compute a tree decomposition as a first step. Hence, any prac-
tical implementation of these algorithms relies on a practical algorithm for tree
width. See also [2] for a more detailed discussion on this. Finding a practically
fast algorithm for tree width – like modern algorithms for the SAT problem – is
thus still an open and intriguing problem. Fortunately, due to the Parameter-
ized Algorithms and Computational Experiments (PACE) challenge, huge steps
toward such an algorithm were made. The aim of the PACE challenge, initiated
in 2016, is the development of practically FPT algorithms [7,8]. The winning
algorithm of PACE 2016, due to Hisao Tamaki, was in fact so successful, that
all participants in PACE 2017 used a variant of this algorithm. The winning
implementation of 2017 by Larisch and Salfelder “is basically Hisao Tamakis
implementation” [13]. A variant of this algorithm is described in [17]. In the
remainder of this paper, we will give an simplified presentation of the core of
Tamaki’s algorithm. This presentation is due to Bannach and Berndt [1].

1.2 An Algorithmic Approach: Cops-and-Robber

In contrast to other graph parameters, the definition of tree width does not
give immediate rise to an exponential-time algorithm: If one tries to find a tree
decomposition with width k, the number of possible bags is nk+1, and the number

84 S. Berndt

of possible trees on these bags is thus (nk+1)nk+1/2, giving a super-exponential
running time. Nevertheless, there are alternative characterizations of tree width
that allow the design of practical exponential-time algorithms. We will take a
closer look at one of them, namely the cops-and-robber game.

In the cops-and-robber game (sometimes also called searchers-and-fugitive
game or graph-searching game), two players – the cops and the robber – play
a game on the vertices of a graph G = (V,E). The goal of the cops is to catch
the robber, while the robber tries to avoid this. In the first turn, the cops player
choose k vertices to put the cops on. Then the robber player chooses some
vertex to position the robber. In each subsequent turn, the cops player announces
that he moves � ≤ k cops from their current position v1, . . . , v� to new vertices
v′
1, . . . , v

′
�. The cops are then removed from v1, . . . , v�. Before the cops are put on

v′
1, . . . , v

′
�, the robber player may move the robber along the edges of the graph,

but is not allowed to visit vertices currently occupied by a cop (hence, he may
now visit v1, . . . , v�, as those are currently not occupied). After the movement of
the robber, the cops are put on v′

1, . . . , v
′
�. The cops player wins, if he places a

cop on the vertex occupied by the robber player. The minimum number of cops
to win this game on the graph G is denoted as vs(G). Figure 2 depicts the first
turns of such a game.

Fig. 2. A possible game on the graph depicted in (a). First, the cops player (depicted
by double circles) choose vertices a, b and e in (b). Then, the robber player (depicted
as rectangle) chooses vertex g in (c). The cop player announces that he moves a cop
from b to g and the robber player moves the robber to f in (d). In order to win, the
cops player will now move the cop from a to f .

The close connection between this game and the tree width of G was already
observed by Seymour and Thomas who proved that vs(G) = tw(G) + 1 [14]. We
will give some intuition behind this relation. An important aspect of this game

Computing Tree Width: From Theory to Practice and Back 85

is that if vs(G) = k, there is a monotone winning strategy for the k cops, i. e. the
area where the robber may move is monotonically decreasing. This non-trivial
fact was also shown in [14].

• If we know that vs(G) = k + 1, the cops player can catch the robber with
k + 1 cops in a monotone way. Intuitively, the positions occupied by the
cops correspond to the bags of the tree decomposition. This is a valid tree
decomposition of width k, as
(i) each vertex must at some point be occupied by some cop (otherwise, the

robber would simply stay on this vertex);
(ii) for each edge, there must be a situation, where both endpoints of the

edge are occupied by cops (otherwise, the robber could alternate between
these endpoints);

(iii) the connectedness property of the tree decomposition is guaranteed due to
the monotonicity of the strategy (otherwise, if the bags containing some
vertex v were not connected, the robber may “escape” through v, which
would violate the monotonicity).

• On the other hand, if we are given a tree decomposition (T , ι) of width k, this
corresponds to a valid monotone winning strategy for k + 1 cops. Consider
some bag X ∈ T in the tree decomposition, which we will treat as root.
The cops player puts its k cops on ι(X). The robber player now decides the
position v of the robber. The cops player will now determine a child Y of
X, such that v occurs in some bag in the tree rooted at Y . Such a child
must always exists, as each vertex must occur in some bag. As v �∈ ι(X)
(otherwise, the game would be over now), the connectedness property of the
tree decomposition guarantees that such a child Y is unique. The cops player
then announces that the cops in ι(X) ∩ ι(Y) stay on their positions and that
the cops in ι(X)\ι(Y) move to ι(Y)\ι(X). The game then goes on inductively
until a leaf is reached, where the robber is captured.

For a formal proof of this relation, see e. g. [14].
This connection gives us a simple O(nk+2) algorithm to test whether tw(G) ≤

k. Construct the so called arena graph G = (V, E), which is directed. Each vertex
(C,H, r) in V has three components: (i) a set C of current positions of the cops,
(ii) a set H of future positions of the cops (i. e. these positions are not currently
occupied by cops, but will be at the end of the turn), and (iii) a vertex r ∈ V (G)
determining the position of the robber or the value ⊥, if the robber is not yet
positioned.

Consider the game in Fig. 2. The situation in Fig. 2(c) would be described as
(C = {a, b, e},H = ∅, r = g). As the cops player announces that he moves a cop
from b to g, this situation is described as (C = {a, e},H = {g}, r = g), as the
cop is removed from b. The robber player now moves the robber to f and the
resulting situation is (C = {a, e},H = {g}, r = f). Finally, the cop is put on g
and the resulting situation of Fig. 2(d) would be (C = {a, e, g},H = ∅, r = f).

As |C∪H| ≤ k+1, there are at most nk+2 such nodes in V. The start vertices
are the vertices having the form (C, ∅,⊥) for all C ⊆ V (G) with |C| ≤ k + 1.

86 S. Berndt

These vertices correspond to situations, where the cops are positioned in the
first turn, but the robber is not yet placed. The final vertices are of the form
(C, ∅, r) for all C ⊆ V (G) with |C| ≤ k+1 and r ∈ C. These vertices correspond
to situations, where the robber was captured.

For each vertex (C, ∅, r), we add a cops edge to each vertex (C ′,H, r), where
H ⊆ V (G) with |H| ≤ |C| and C ′ ⊆ C with |C ′| ≤ |C| − |H|. Such an edge
corresponds to the announced move of the cops player. It also allows us to forget
some cops that will never appear again. This will be useful later on to reduce
the final vertices. For each vertex (C,H, r) with H �= ∅, we add a robber edge
to each vertex (C,H, r′), where r′ is reachable from r in the graph G \ C. We
also add a robber edge from each start vertex (C, ∅,⊥) to each vertex (C, ∅, r).
Finally, if there is an robber edge between (C,H, r) and (C,H, r′), we place a
placement edge between (C,H, r′) and (C ∪ H, ∅, r′).

We can now determine whether there is a winning strategy by using the
following backward labeling : First, mark all final vertices. Every vertex (C,H, r)
with an outgoing placement edge to a marked vertex (C ∪H, ∅, r) is also marked.
If a vertex (C, ∅, r) has an outgoing cop edge to some marked vertex (C ′,H, r),
it is also marked. Finally, we mark a vertex (C,H, r) if all its children reachable
by robber edges are marked. One can easily see that a start vertex (C, ∅,⊥) is
marked by this process iff there is a winning strategy for k + 1 cops that start
at C. One can thus simply construct the arena graph G in time O(nk+2) and
perform this backward labeling.

1.3 Tamaki’s Algorithm

The following description of Tamaki’s algorithm is due to Bannach and
Berndt [1], who generalized Tamaki’s algorithm to a wide range of different
graph parameters including path width, tree depth, and D-width. A closer look at
the algorithm on the arena graph G in the previous section reveals some places
that might be optimized. First of all, there are nk+1 start vertices, but most of
these start positions will be clearly unsuited for a winning strategy. But listing
all of these start vertices takes nearly as much time as the complete algorithm.
Furthermore, there might be a lot of dead ends in the graph, i. e. non-final ver-
tices that can not lead to final vertices. Finally, we actually do not need every
final vertex (C, ∅, r), but only those of the form (N [r], ∅, r), where N [r] denotes
the neighbourhood of r in G (including r itself). Note that we modeled our arena
graph in such a way that we might forget some cops along the way in order to
make this work. The naive approach described in the previous section lists all of
these superfluous vertices.

We still want to perform the backward labeling, but we do not want to build
the complete arena graph in order to do so. We will rather build the active
vertices of the arena graph iteratively by using a queue-like structure. First, we
add all n final vertices (N [r], ∅, r) to the queue. While this queue is non-empty, we
dequeue one vertex (C,H, r) and add all vertices with outgoing edges to (C,H, r)
to the queue. While doing this, we also maintain the same backward labeling as
before. If we ever mark a start vertex, we know that a winning strategy with

Computing Tree Width: From Theory to Practice and Back 87

k+1 cops exists and have thus proved that tw(G) ≤ k. Intuitively, this approach
allows us to only look at situations that really might occur within in the game
and get rid of the superfluous ones. Furthermore, by ordering the vertices within
the queue in such a way that vertices with short distance to the start vertices
are preferred, we might also be able to leave non-necessary parts of the arena
graph unexplored.

This approach of getting rid of superfluous situations was coined positive
instance driven (PID) dynamic programming [17]. The algorithm described
above was used to win the PACE challenge in 2016 by Tamaki [16] on the nor-
mal arena graph. An alternative implementation of Tamaki’s algorithm due to
Larisch and Salfelder [13] was used to win the PACE challenge in 2017. Tamaki’s
submission to the PACE challenge in 2017 [18] (where he took the second place)
made use of the fact that one can reduce the vertices in the arena graph to
those corresponding to maximal potential cliques, as described by Bouchitté and
Todinca in [5]. This improved algorithm is described in [17], but is not described
in terms of the arena graph. To the best knowledge of the author, there is no
formal description of Tamaki’s original algorithm used in the PACE challenge
2016 before the work of Bannach and Berndt [1]. Bannach and Berndt [1] used
their description in terms of the arena graph to show that the running time of
both variants of Tamaki’s algorithm [16,18] is of the form |Active(G)|2 ·poly(n),
where Active(G) corresponds to the active vertices of G described above.

Acknowledgments. The author likes to thank Max Bannach for many fruitful dis-
cussions around theoretical and practical approaches to tree width.

References

1. Bannach, M., Berndt, S.: Positive-Instance Driven Dynamic Programming for
Graph Searching, unpublished

2. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree
decompositions. In: Proceedings of SEA. LIPIcs, vol. 75, pp. 28:1–28:21. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: Proceedings of STOC, pp. 226–234. ACM (1993)

4. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Inf. Comput. 208(3), 259–275 (2010)

5. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.
Comput. Sci. 276(1–2), 17–32 (2002)

6. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

7. Dell, H., Husfeldt, T., Jansen, B.M.P., Kaski, P., Komusiewicz, C., Rosamond,
F.A.: The first parameterized algorithms and computational experiments challenge.
In: Proceedings of IPEC. LIPIcs, vol. 63, pp. 30:1–30:9. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016)

https://doi.org/10.1007/978-3-319-21275-3

88 S. Berndt

8. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameter-
ized algorithms and computational experiments challenge: the second iteration. In:
Proceedings of IPEC. LIPIcs, pp. 30:1–30:12. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2018)

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2016). https://doi.org/10.1007/978-1-4471-5559-1

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(2012). https://doi.org/10.1007/978-1-4612-0515-9

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

12. Karger, D.R., Srebro, N.: Learning markov networks: maximum bounded tree-
width graphs. In: Proceedings of SODA, pp. 392–401. ACM/SIAM (2001)

13. Larisch, L., Salfelder, F.: p17 (2017). https://github.com/freetdi/p17. Accessed 1
Mar 2018

14. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-
width. J. Comb. Theory Ser. B 58, 22–33 (1993)

15. Song, Y., Liu, C., Malmberg, R.L., Pan, F., Cai, L.: Tree decomposition based fast
search of RNA structures including pseudoknots in genomes. In: Proceedings of
CSB, pp. 223–234. IEEE Computer Society (2005)

16. Tamaki, H.: Treewidth-exact (2016). https://github.com/TCS-Meiji/treewidth-
exact. Accessed 1 Mar 2018

17. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. In: Pro-
ceedings of ESA. LIPIcs, vol. 87, pp. 68:1–68:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

18. Tamaki, H., Ohtsuka, H.: tw-exact (2017). https://github.com/TCS-Meiji/
PACE2017-TrackA. Accessed 1 Mar 2018

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/3-540-29953-X
https://github.com/freetdi/p17
https://github.com/TCS-Meiji/treewidth-exact
https://github.com/TCS-Meiji/treewidth-exact
https://github.com/TCS-Meiji/PACE2017-TrackA
https://github.com/TCS-Meiji/PACE2017-TrackA

Using Structural Properties for Integer
Programs

Sebastian Berndt1(B) and Kim-Manuel Klein2

1 Department of Computer Science, Kiel University, Kiel, Germany
seb@informatik.uni-kiel.de

2 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
kim-manuel.klein@epfl.ch

Abstract. Integer programs (IPs) are one of the fundamental tools used
to solve combinatorial problems in theory and practice. Understanding
the structure of solutions of IPs is thus helpful to argue about the exis-
tence of solutions with a certain simple structure, leading to significant
algorithmic improvements. Typical examples for such structural proper-
ties are solutions that use a specific type of variable very often or solu-
tions that only contain few non-zero variables. The last decade has shown
the usefulness of this method. In this paper we summarize recent progress
for structural properties and their algorithmic implications in the area of
approximation algorithms and fixed parameter tractability. Concretely,
we show how these structural properties lead to optimal approximation
algorithms for the classical Makespan Scheduling scheduling problem
and to exact polynomial-time algorithm for the Bin Packing problem
with a constant number of different item sizes.

1 Introduction

Integer programming is one of the fundamental tools used to solve scheduling
problems in practice. Understanding the structure of optimal solutions of integer
programs is helpful in many ways: First, we might want to find optimal solutions
that have certain characteristics like having a small number of non-zero variables.
Using structural theorems, we can show the (non)-existence of solutions with
such characteristics. Second, understanding the structure of the integer program
might also lead to algorithmic improvements: If one knows that some optimal
solutions belong to a certain set S, we only need to search through S instead of
the whole solution space.

This work was partially supported by the Swiss National Science Foundation (SNSF)
within the project Convexity, geometry of numbers, and the complexity of inte-
ger programming (Nr. 163071) and DFG Project “Entwicklung und Analyse von
effizienten polynomiellen Approximationsschemata für Scheduling- und verwandte
Optimierungsprobleme”, Ja 612/14-2.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 89–96, 2018.
https://doi.org/10.1007/978-3-319-94418-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_9&domain=pdf

90 S. Berndt and K.-M. Klein

Our main focus is on IPs of the following form. Given a polytope P = {x ∈
R

d | Ax ≤ b} for some matrix A ∈ Z
d×m and vector b ∈ Z

d. Then the IP is
defined by

min
∑

xp

∑

p∈P∩Zd

xpp = a (1)

x ∈ Z
d
≥0,

with variables x = (xp)p∈P∩Zd . Throughout this work, let α be the largest entry
in P ∩ Z

d, i. e. α = maxp∈P∩Zd{||p||∞}. IPs of this specific shape are especially
interesting when it comes to packing and scheduling problems, as the well-known
configuration IPs are of this form. Intuitively, a configuration corresponds to a
certain schedule of a single machine or a valid packing of a single object such as a
bin. The configuration IP then chooses suitable configurations depending on the
concrete programs. Here, we mainly consider the classical Bin Packing problem
and the classical Makespan Scheduling problem on identical machines. In
this paper, we summarize and explain the structural properties needed to obtain
two important algorithmic advances in combinatorial optimization of the recent
years.
Bin Packing: In the Bin Packing problem, item sizes s1, . . . , sd ∈ (0, 1] are
given. Every item size si occurs with a certain multiplicity ai and the objective
is to pack the given item into as few unit sized bins as possible. This problem can
be written in the form of IP (1) by setting P = {x ∈ R

d
≥0 | s1x1+. . .+sdxd ≤ 1}.

This polytope P is called the knapsack polytope and an element p ∈ P (called
a pattern) corresponds to a valid packing of a single bin. Hence, the optimal
solution of IP (1) corresponds to a packing with a minimal number of bins.

For Bin Packing we give an overview of the structural properties needed to
obtain the following theorem, which solved a long standing open problem (see
e. g. [3,4,10]).

Theorem 1 (Goemans and Rothvoß [5]). Assuming the number of different
item sizes d is constant, then there exists a polynomial time algorithm for Bin

Packing.

Makespan Scheduling: In the Makespan Scheduling problem on identical
machines, a set of n jobs with processing times p1, . . . , pd are given. The goal is to
assign all jobs to m machines with identical speeds such that the maximum load
over all machines (the so called makespan) is minimized. If T is a guess for the
optimal makespan, we can determine whether a schedule with makespan at most
T exists by using IP (1): We set PT = {x ∈ R

d
≥0 | p1x1 + . . . + pdxd ≤ T} as the

corresponding knapsack polytope. An element p ∈ PT (called a configuration)
corresponds to the packing of a single machine. Any solution of IP (1) with
objective value at most m thus corresponds to a schedule with makespan at
most T .

Using Structural Properties for IPs 91

For Makespan Scheduling, we summarize an algorithmic result in the area
of approximation algorithms that settles the complexity of this problem (under
a widely believed complexity assumption):

Theorem 2 (Jansen et al. [7]). There is an approximation algorithm for
classical Makespan Scheduling on identical machines with a running time of

2O(1/ε·log4(1/ε)) + O(n log n),

that produces an (1 + ε)-approximation.

The optimality of this algorithm is based on a theorem due to Chen et al.
[2], which states that for all δ > 0, the existence of an (1 + ε)-approximation
algorithm for Makespan Scheduling on identical machines running in time
2O([1/ε]1−δ) · poly(n) implies that the Exponential Time Hypothesis (ETH) is
false. The ETH states that the satisfiability problem SAT can not be solved in
truly subexponential time.

As we will see, both results are based on elementary structural results of the
IP (1). However, the structural properties themselves differ in a very important
point. In case of the scheduling problem, we do not require an optimal solution.
This allows us to round processing times and ignore small jobs, as those small
jobs can be placed greedily on an existing schedule without losing too much.
Hence the entries of the Makespan Scheduling IP turn out to be relatively
small (smaller than 1/ε). Therefore, bounds in the structural properties may
depend on the largest entry in the IP. In Bin Packing however, where the
goal is to get an optimal solution, small items can not be added greedily and
therefore have to be placed optimally by the IP. This implies that the sizes of
entries (which correspond to the inverse of the sizes of the items) of the IP can
be very large. Therefore, structural properties that yield bounds independent of
the size of the entries in IP (1) are needed.

2 Solutions of Bounded Support

One of the first structural results for IP (1) was to show that there always exists
a solution (assuming the IP is feasible) with a bounded support. The support
supp(λ) of a solution λ ∈ Z

d is defined to be the set of non-zero components,
i. e. supp(λ) = {i | λi > 0} for λ = (λ1, . . . , λd).

Theorem 3 (Eisenbrand and Shmonin [3]). Assuming that IP (1) is
feasible, then there exists a feasible solution λ ∈ Z

d of (1) with

| supp(λ)| ≤ 2d · log(4dα).

Actually this result does not only hold for IP (1) but for arbitrary inte-
ger programs with entries bounded by α. Very recently, this bound has been
improved by Aliev et al. [1] to | supp(λ)| ≤ 2d · log(2

√
dα). Furthermore, they

92 S. Berndt and K.-M. Klein

showed that this bound also holds for optimal solutions and arbitrary objective
functions min cT x.

Similar to the previous theorem, Eisenbrand and Shmonin [3] proved a bound
for the support of an integral solution of IP (1) that does not depend on the
largest entry α in P ∩ Z

d. We also give a sketch of the proof due to its very
elementary nature.

Theorem 4 (Eisenbrand and Shmonin [3]). Assuming IP (1) is feasible,
then there exists a feasible solution λ of (1) such that |supp(λ)| ≤ 2d.

Proof. We assign a potential ϕ(λ) to each feasible solution λ of IP (1), with

ϕ(λ) =
∑

p∈P∩Zd

λp || (1, p)� ||,

where || · || is the Euclidean norm in R
d+1. Informally, this potential is larger

for solutions that are not in the center of the polytope. Let λ∗ be the solution of
IP (1) with the smallest potential. If | supp(λ∗)| > 2d, the pidgeonhole principle
implies that there are p1, p2 ∈ P∩Z

d with the same parity, i. e. p1 ≡ p2 mod 2, as
there are at most 2d different parities. Hence, p′ = (p1 +p2)/2 is also an element
of P ∩ Z

d. If λ∗
p1

≥ λ∗
p2

, we construct a new solution λ′ that reassigns the weight
from p1 and p2 to p′. Informally, we will shift weight towards the center of the
polytope. Formally, we have λ′

p = λ∗
p for p �∈ {p1, p2, p

′}. Furthermore, we set
λ′

p1
= λ∗

p1
− λ∗

p2
, λ′

p2
= 0, and λ′

p′ = λ∗
p′ + 2λ∗

p2
. Clearly, λ′ is a feasible solution

of IP (1). As (1, p1)� and (1, p2)� are not co-linear, we have ϕ(λ′) < ϕ(λ∗). This
is a contradiction to the minimality of ϕ(λ∗). Hence, the solution with minimal
potential has support of size at most 2d. 	

3 Structural Results for IPs with Large Entries

By the previous section, we got an understanding of the support of solutions
of IP (1). However, we would actually like to know more about the shape of
these solutions. For example, we would like to understand what kind of config-
urations are actually used and what their respective multiplicities are. In this
spirit, Goemans and Rothvoß showed the following theorem in order to prove
Theorem 1.

Theorem 5 (Goemans and Rothvoß [5]). Let P be a polytope as in IP
(1). There exists a distinguished set of configurations X ⊆ P ∩ Z

d with |X| ≤
mddO(d)(log Δ)d such that for every right hand side a of IP (1), there exists a
vector λ ∈ Z

P∩Z
d

≥0 with
∑

p∈P∩Zd λpp = a and

1. λp ≤ 1 ∀p ∈ (P ∩ Z
d) \ X

2. |supp(λ) ∩ X| ≤ 22d

3. |supp(λ) \ X| ≤ 22d

Furthermore, X can be computed in time poly(|X|).

Using Structural Properties for IPs 93

The set X ⊆ P ∩ Z
d of distinguished configurations actually comes from

a rather technical covering of the polytope P into parallelepipedes. The set
X is then the set of vertices of the parallelepipedes. So one might wonder if
there exists a structure theorem with a rather natural set of extinguished point.
Therefore, we consider the integer hull PI of the polytope P which is defined
by the convex hull of all integral points inside P, i. e. PI = Conv(P ∩ Z

d). The
following structure theorem uses the set of vertices VI of PI , which gives a more
natural alternative to the set X used in Theorem 5.

Theorem 6 (Jansen and Klein[6]). Let P be a polytope as in IP (1).
For every right hand side a of IP (1), there exists a vector λ ∈ Z

P∩Z
d

≥0 with∑
p∈P∩Zd λpp = a and

1. λp ≤ 22
O(d) ∀p ∈ (P ∩ Z

d) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

Theorem 6 can now be used to prove Theorem 1. Note that the cardinality
of the set of vertices VI of PI is bounded by dd ·O(log α)d and can be computed
in time |VI | ·dO(d). The right hand side a is given by the Bin Packing instance.
In order to determine the solution λ implied by Theorem 6, we first find the set
Vλ = supp(λ) ∩ VI . Due to the second property of λ, there are at most

(|VI |
d·2d

) ≤
|Vi|O(2d) such sets. We also guess the cardinality of the set V̄λ = supp(λ) \ VI .
Due to the third property of λ, we have |V̄λ| ≤ 22d and there are thus at most
22d choices for k.

For guess Vλ and guess |V̄λ|, we need to (i) find the multiplicities λp for the
pattern p ∈ Vλ and we need to (ii) find the elements of V̄λ and their multiplicities.
For (i), let λ̂p be a variable describing the multiplicity of p ∈ Vλ. In order to solve
(ii), the i-th element of V̄λ will be described by d variables xi,1, xi,2, . . . , xi,d.
As we also need to determine the multiplicity of the i-th element of V̄λ, we
actually use variables x

(�)
i,j indicating the j-th coordinate of the i-th element

with multiplicity 2�. Note that there are at most 2d variables λ̂p and at most
d · 2O(d) variables x�

i,j . One can thus formulate this task as an integer program
with at most 2O(d) variables which can be solved in time (2O(d))O(d) ·poly(n) by
the algorithms of Lenstra and Kannan [8,9].

By using a binary search on the number of bins, we can thus solve Bin Pack-

ing in time poly(n)f(d) for some function f , which proves Theorem 1. A closer
inspection shows that the running time is actually of the form f(|VI |) · poly(n).
The Bin Packing problem is thus fixed parameter tractable for parameter |VI |.
See [6] for a more detailed discussion on this.

4 Structural Results for IPs with Small Entries

In contrast to the previous section, we are now interested in IPs that only contain
small numbers. In order to determine the optimal makespan, we perform a binary

94 S. Berndt and K.-M. Klein

search. Let T be the current guess and PT = {x ∈ R
d
≥0 | p1x1 + . . . + pdxd ≤ T}

be the polytope of valid configurations. To simplify notation, let π be the
vector of the processing times. A configuration p ∈ PT is called simple if
| supp(p)| ≤ log(T + 1). Otherwise, it is called complex. Let PC be the set of
complex configurations and PS be the set of simple configurations. In the Bin

Packing setting, we saw that there is always an optimal solution that is mostly
built on elements of VI . Similarly, we will show that the Makespan Schedul-

ing problem always has an optimal solution that is mostly built on the simple
configurations PS .

Theorem 7 (Jansen et al. [7]). Let α be the largest entry of any vector in
PT ∩ Z

d. Assume that IP (1) is feasible. Then there exists a feasible solution λ
to (1) such that:

1. if λp > 1 then the configuration p is simple,
2. the support of λ satisfies | supp(λ)| ≤ 4d log(4dα), and
3.

∑
p∈PC

λp ≤ 2d log(4dλ), where PC denotes the set of complex configurations.

Proof. The main idea in the proof is that for any complex configuration p, we
can write 2p as 2p = p1 + p2 for two configurations p1, p2 with π · p1 = π · p2 and
supp(pi) � supp(p). For S ⊆ supp(p), let p[S] be the configuration with

p[S]i =

{
1 i ∈ S

0 else.

Note that |{p[S] | S ⊆ supp(p)}| = 2| supp(p)| > 2log(T+1) = T + 1. As π ·
p[S] ≤ π · p ≤ T , the pidgeonhole principle implies that there are different sets
S1, S2 ⊆ supp(p) with π · p[S1] = π · p[S2]. Clearly, π · p[S′

1] = π · p[S′
2] also

holds for S′
1 = S1 \ S2 and S′

2 = S2 \ S1. Then p1 = p + p[S′
1] − p[S′

2] and
p2 = p + p[S′

2] − p[S′
1] are the desired configurations.

If λ(0) is a feasible solution, we can now iteratively reduce complex configu-
rations p ∈ PC with λ

(0)
p ≥ 2 into smaller configurations p1 and p2 and achieve

a solution λ(1). We repeat this, until our final solution λ(k) has the property
that λ

(k)
p ≤ 1 for all p ∈ PC . Finally, we can use Theorem 3 to bound the cardi-

nality of the support. One needs to be careful here, as the solution implied by
Theorem 3 might contain a complex configuration with higher multiplicity. This
problem can be avoided by making use of a potential function that guarantees
that complex configurations do not reappear in this step. 	

If one wants to compute a (1 + ε)-approximation, we can discard all process-
ing times smaller than ε ·LB = ε ·max{pmax,

∑
j pj/m}, where pmax is the maxi-

mal processing time of a single job. The discarded jobs can be added greedily later
on. This process is the reason why the corresponding IP has only small entries.
The remaining n′ large jobs with processing time p such that εLB ≤ p ≤ LB
can be rounded geometrically to the form ε ·LB ·(1+ ε)i without losing too much
precision. After this preprocessing, the number of different processing times is
thus d′ = O(1/ε log(1/ε)). By normalizing our instance, we can assume that

Using Structural Properties for IPs 95

T ≤ 1/ε2 and that all processing times are integers between 1/ε and 1/ε2. Let
π′ = (π′

1, . . . , π
′
d′) be the vector corresponding to these processing times and n′

j

be the number of jobs with processing times π′
j .

By formulating IP (1) for this reduced problem, we can use the following
approach:

1. For each j = 1, . . . , d′, guess the number nC
j ≤ n′

j of jobs covered by complex
configurations.

2. Find the minimum number of machines mC to schedule the nC =
∑

j nC
j jobs

with makespan T .
3. To schedule the remaining jobs with simple configurations, guess the simple

configurations S ⊆ PS .
4. Solve the IP (1) restricted to the nS = n′ − n′C jobs that will be scheduled

by simple configurations in S.

For step 1, note that Theorem 7 guarantees that mC – the number
of machines scheduled according to complex configurations – is at most
2d′ log(4d′α) ∈ O(1/ε log(1/ε)). As only 1/ε jobs belong to a configuration (they
are of size at least 1/ε), there are at most O(1/ε2 log(1/ε)) many jobs covered
by complex configurations. There are thus at most

∑O(1/ε2 log(1/ε))
k=0

(
k+d′−1

d′−1

) ≤
2O(1/ε log2(1/ε)) many such choices. Step 2 can thus be solved by a dynamic
program in the same running time of 2O(1/ε log2(1/ε)). For step 3, note that
|PS | ≤ 2O(log2(1/ε)), as T ≤ 1/ε2 and each job has size at least 1/ε. As our
desired solution uses at most 4d′ log(4d′α) ∈ O(1/ε log2(1/ε)) different config-
urations in total, we can try out all

∑O(1/ε log2(1/ε))
k=0

(|PS |
k

) ≤ 2O(1/ε log4(1/ε))

choices for the support S of the simple configurations. Finally, the IP in step
4 has at most O(1/ε log2(1/ε)) many variables and can thus be solved by the
algorithms of Lenstra and Kannan [8,9] in time 2O(1/ε log3(1/ε)) · log(n). Due to
the preprocessing and the binary search, the complete algorithm thus runs in
time 2O(1/ε log4(1/ε)) + O(n log n). This proves Theorem 2.

5 Conclusions

Understanding the structure of solutions of combinatorial problems has been one
of the most successful strategies to design efficient algorithms for a long time.
Recent advances in the theory of integer programming allow to take a closer
look at the structure of solution space of IP formulations of these combinatorial
problems. This led to a series of exciting results for longstanding open problems.
We have seen that Bin Packing can be solved in time f(|VI |) · poly(n), which
can be bounded by poly(n)g(d) for some function g. Hence, for constant d, this
running time is polynomial. A major open question is whether one can obtain
a running time of f(d) · poly(n), i. e. whether Bin Packing is fixed parameter
tractable with parameter d.

96 S. Berndt and K.-M. Klein

References

1. Aliev, I., De Loera, J., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of
integer optimal solutions. arxiv:1712.08923 (2017)

2. Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes for
the classical scheduling problem. In: Proceedings of SODA. SIAM, pp. 657–668
(2014)

3. Eisenbrand, F., Shmonin, G.: Carathodory bounds for integer cones. Oper. Res.
Lett. 34(5), 564–568 (2006)

4. Filippi, C.: On the bin packing problem with a fixed number of object weights.
Eur. J. Oper. Res. (EJOR) 181(1), 117–126 (2007)

5. Goemans, M.X., Rothvoß, T.: Polynomiality for bin packing with a constant num-
ber of item types. In: Proceedings of SODA, pp. 830–839 (2014)

6. Jansen, K., Klein, K.: About the structure of the integer cone and its application
to bin packing. In: Proceedings of SODA. SIAM, pp. 1571–1581 (2017)

7. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. In: Proceedings of ICALP, LIPIcs, vol. 55, pp. 72:1–72:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

8. Kannan, R.: Minkowskis convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

9. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

10. McCormick, S.T., Smallwood, S.R., Spieksma, F.C.R.: Polynomial algorithms for
multiprocessor scheduling with a small number of job lengths. In: Proceedings of
SODA. SIAM, pp. 509–517 (1997)

http://arxiv.org/abs/1712.08923

From Eventually Different Functions
to Pandemic Numberings

Achilles A. Beros1, Mushfeq Khan1, Bjørn Kjos-Hanssen1(B) ,
and André Nies2

1 University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
{beros,mushfeq,bjoernkh}@hawaii.edu

2 University of Auckland, Auckland, New Zealand
nies@cs.auckland.ac.nz

Abstract. A function is strongly non-recursive (SNR) if it is eventually
different from each recursive function. We obtain hierarchy results for the
mass problems associated with computing such functions with varying
growth bounds. In particular, there is no least and no greatest Much-
nik degree among those of the form SNRf consisting of SNR functions
bounded by varying recursive bounds f .

We show that the connection between SNR functions and canonically
immune sets is, in a sense, as strong as that between DNR (diagonally
non-recursive) functions and effectively immune sets. Finally, we intro-
duce pandemic numberings, a set-theoretic dual to immunity.

1 Introduction

It has been known for over a decade that bounding diagonally non-recursive
functions by various computable functions leads to a hierarchy of computational
strength [1,16] and this hierarchy interacts with Martin-Löf random reals and
completions of Peano Arithmetic [10,11]. The strongly non-recursive functions
form an arguably at least as natural class, and here we start developing analogous
hierarchy results for it.

Definition 1. A function f : ω → ω is strongly nonrecursive (or SNR) if for
every recursive function g, for all but finitely many n ∈ ω, f(n) �= g(n). It is
strongly non-partial-recursive (or SNPR) if for every partial recursive function
g, for all but finitely many n, if g(n) is defined, f(n) �= g(n).

Note that every SNPR function f is SNR, as well as almost DNR: for all
but finitely many n, if ϕn(n) is defined, then f(n) �= ϕn(n). Also, a function is
strongly nonrecursive iff it is eventually different from each recursive function.
Thus it is eventually different in the sense of set theory with the recursive sets
as ground model [2].

This work was partially supported by a grant from the Simons Foundation (#315188
to Bjørn Kjos-Hanssen).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 97–106, 2018.
https://doi.org/10.1007/978-3-319-94418-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_10&domain=pdf
http://orcid.org/0000-0002-6199-1755

98 A. A. Beros et al.

Definition 2. An order function is a recursive, nondecreasing, and unbounded
function h : ω → ω such that h(0) ≥ 2. For a class C of functions from ω to ω,
let Ch denote the subclass consisting of those members of C that are bounded by
h.

Theorem 1. For each order function h, there exists an order function g such
that every DNRg function computes an SNPRh function.

In order to prove this theorem, we will need a result due to Cenzer and
Hinman [8], in a form presented in Greenberg and Miller [10].

Definition 3 (Greenberg and Miller[10]). Let a ≥ 2 and let c > 0. Let Pc
a

denote the class of functions f bounded by a such that for all e and for all x < c,
if ϕe(x) ↓, then f(e) �= ϕe(x).

Theorem 2 (Cenzer and Hinman [8]). Let a ≥ 2 and c > 0. Then any
DNRa function computes a function in Pc

ca. Moreover, the reduction is uniform
in a and c.

Proof (Proof of Theorem 1). Let r be the recursive function such that ϕr(x)(e) =
ϕe(x). For each n ≥ 2, let xn ∈ ω be the least such that h(xn) ≥ n2.

We construct g to ensure that any DNRg function computes a function f
that is bounded by h and such that for all x > xn and for all e < n, if ϕe(x) ↓,
then f(x) �= ϕe(x).

In order to compute f on the interval [xn, xn+1), a function in Pn
n2 suffices and

such a function can be uniformly obtained from a DNRn function, by Theorem 2.
However, we only need a finite part of this function, and we can recursively
determine how much. Note that the reductions in Theorem 2 can be assumed
to be total. For n ≥ 2, let γn denote the use of reduction that, given a DNRn

function, computes a Pn
n2 function.

Then, letting

mn = max({γn(r(x)) : x ∈ [xn, xn+1)]}),

it suffices for g to be any recursive function such that for all x ≤ mn, g(x) ≤ n.

We also have the following counterpart to Theorem 1:

Theorem 3. For each order function g, there exists an order function h such
that every DNRg function computes an SNPRh function.

Proof. For n ≥ 1, let τn : ω → ωn be a uniformly recursive sequence of bijec-
tions, and for i < n, πn

i : ωn → ω denote the projection function onto the i-th
coordinate.

Let r be the recursive function such that for n ≥ 1 and e < n, if ϕe(n)
converges, then ϕr(e,n), on any input, outputs πn

e (τn(ϕe(n)).
Now, given a DNRg function f , let j(0) = 0 and for n ≥ 1, let

j(n) = τ−1
n (〈f(r(0, n)), ..., f(r(n − 1, n))〉).

From Eventually Different Functions to Pandemic Numberings 99

Then j(n) �= ϕe(n) for any e < n: If it were, then we would have

f(r(e, n)) = πn
e (τn(j(n))) = πn

e (τn(ϕe(n))) = ϕr(e,n)(r(e, n)),

which contradicts the fact that f is DNR. Thus, j is SNPRh where for n ≥ 1,

h(n) = max({τ−1
n (〈i1, ..., in−1〉) : ik < g(r(k, n)) for all k < n}).

Theorem 4 (Kjos-Hansen et al. [13]). Every non-high SNR is SNPR.

Proof. Suppose that f : ω → ω is not high, and that ψ is a partial recursive
function that is infinitely often equal to it. For each n ∈ ω, let g(n) be the least
stage such that |{x ∈ ω : ψ(x)[g(n)] ↓ = f(x)}| ≥ n+1. Then g is recursive in f .

Since f is not high, there is a recursive function h that escapes g infinitely
often. We define a recursive function j that is infinitely often equal to f . Let
j0 = ∅. Given jn, let

A = {〈x, ψ(x)〉 : x /∈ dom(jn), ψ(x)[h(n)] ↓}.

Let y be the least such that it is not in the domain of jn ∪ A. Finally, let
jn+1 = jn ∪ A ∪ 〈y, 0〉.

It is easily seen that j =
⋃

n jn is recursive and infinitely often equal to f .

Corollary 1. Given any order function h, every non-high SNRh function com-
putes a DNRh function.

2 The SNR Hierarchy

2.1 Definitions and Combinatorial Lemmas

The following definitions can also be found in [10] and [12].

Definition 4. Given σ ∈ ω<ω, we say that a tree T ⊆ ω<ω is n-bushy above σ
if every element of T is comparable with σ, and for every τ ∈ T that extends σ
and is not a leaf of T , τ has at least n immediate extensions in T . We refer to
σ as the stem of T .

Definition 5. Given σ ∈ ω<ω, we say that a set B ⊆ ω<ω is n-big above σ if
there is a finite n-bushy tree T above σ such that all its leaves are in B. If B is
not n-big above σ then we say that B is n-small above σ.

Proofs of the following lemmas can be found in [10] and [12].

Lemma 1 (Smallness preservation property). Suppose that B and C are
subsets of ω<ω and that σ ∈ ω<ω. If B and C are respectively n- and m-small
above σ, then B ∪ C is (n + m − 1)-small above σ.

Lemma 2 (Small set closure property). Suppose that B ⊂ ω<ω is n-small
above σ. Let C = {τ ∈ ω<ω : }B is n-big above τ . Then C is n-small above σ.
Moreover C is n-closed, meaning that if C is n-big above a string ρ, then ρ ∈ C.

100 A. A. Beros et al.

Definition 6. Given an order function h, let h<ω denote the set of finite strings
in ω<ω whose entries are bounded by h, and let hn denote the set of such strings
of length n.

Theorem 5. Let h be any order function. Then, uniformly in h, we can find a
recursive function π such that if g is any order function such that h(n)/g(π(n))
is unbounded, then there is a low f ∈ DNRh that computes no DNRg function.

Proof. Given σ ∈ h<ω, let q(σ, e, k) be an index for the partial recursive function
that searches for a k-big set A ⊂ h<ω above σ such that Φτ

e (q(σ, e, k)) converges
and is constant as τ ranges over A, and which then outputs this constant value.
Let

π(n) = max{q(σ, e, k) : σ ∈ hn, e, k ≤ n}.

Next, we describe a 0′-recursive construction of f . We define a sequence

f0 � f1 � f2 � ...

of finite strings in h<ω, and

B0 ⊆ B1 ⊆ B2 ⊆ ...

of r.e. subsets of h<ω such that for each s ∈ ω, Bs is h(|fs|)-small and h(|fs|)-
closed above fs.

Let f0 = 〈〉, and let B0 be the set of non-DNR strings. Next, we describe
how to construct fs+1 and Bs+1 given fs and Bs.
If s = 2e is even: We ensure that Φf

e is not DNRg. Let k = h(|fs|) and let n ≥ k, e
be the least such that h(n) ≥ k(g(π(n)) + 1). We begin by extending fs to a
string σ /∈ Bs of length n. Note that Bs is k-small and k-closed above σ. Let
x = q(σ, e, k), and note that x ≤ π(n).

Now, if ϕx(x) ↓ to some value i less than g(x), then the set

Ai = {τ � σ : Φτ
e (x) ↓ = i}

is k-big above σ, so there is an extension τ of σ such that τ ∈ Ai \ Bs. Let
fs+1 = τ and Bs+1 = Bs. This forces Φf

e to not be DNR.
Otherwise, for each i < g(x), Ai is k-small above σ, and so

C =
⋃

i<g(x)

Ai

is kg(x)-small above σ, and C ∪ Bs is k(g(x) + 1)-small above σ. Since h(n) ≥
k(g(π(n)) + 1) ≥ k(g(x) + 1), we can let Bs+1 = Bs ∪ C and fs+1 = σ. This
forces Φf

e (x) to either diverge, or to converge to value greater than or equal to
g(x).
If s = 2e + 1 is odd: We ensure that f is low. We begin by extending fs to a
string σ /∈ Bs such that h(|σ|) ≥ 2h(|fs|). If the set

Fe = {τ � σ : ϕτ
e (e) ↓}

From Eventually Different Functions to Pandemic Numberings 101

is h(|fs|)-big above σ, then there is a τ ∈ Fe \ Bs. Let fs+1 = τ and Bs+1 = Bs.
This forces e into the jump of f . Otherwise, let fs+1 = σ and let Bs+1 = Bs ∪Fe,
which is h(|σ|)-small above σ. This forces e out of the jump of f .

By making g grow slowly enough, we get:

Corollary 2. For every order function h there is an order function g such that
there is a low DNRh that computes no DNRg.

Additionally, we have:

Corollary 3. For every order function g there is an order function h such that
there is a low DNRh that computes no DNRg.

Proof. Using the uniformity in Theorem 5 along with the recursion theorem,
we construct h knowing its index in advance, thereby obtaining π, and ensuring
that h(n)/g(π(n)) is unbounded.

By combining the strategies for the two corollaries above, we get:

Corollary 4. For every order function h there is an order function g such that
there is a low f1 ∈ DNRg that computes no DNRh as well as a low f2 ∈ DNRh

that computes no DNRg.

Corollary 5. Given any order function h there is an order function g such that
there is an SNRh that computes no SNRg.

Proof. By Theorem 1, there is an order function h′ such that any DNRh′ com-
putes an SNRh. By Corollary 2, there is an order function g such that there is
a low DNRh′ function f ′ that computes no DNRg function. Then f ′ computes
an SNRh function f that computes no SNRg function: if j is recursive in f
and is an SNRg function and since it is low, it is itself DNRg by Corollary 1, a
contradiction.

Corollary 6. Given any order function g there is an order function h such that
there is an SNRh that computes no SNRg.

Proof. By Corollary 3, there is an h′ and a low DNRh′ function f ′ that computes
no DNRg function. By Theorem 3 there is an h such that f ′ computes an SNRh

function f . Then f cannot compute an SNRg function since the latter would be
DNRg by Corollary 1.

Let O denote the set of all order functions. Recall the Muchnik and Medvedev
reducibilities of mass problems:

Definition 7. A mass problem A is Muchnik reducible to a mass problem B,
written A ≤w B and sometimes read “weakly reducible”, if for each B ∈ B, there
is an A ∈ A such that A ≤T B, where ≤T is Turing reducibility. If there is a
single Turing reduction Φ such that for all B ∈ B, ΦA ∈ A then A is Medvedev
reducible to B, written A ≤S B and sometimes read “strongly reducible”.

102 A. A. Beros et al.

We can phrase Corollaries 6 and 5 as follows:

∀h ∈ O ∃g ∈ O SNRg �≤w SNRh;

∀g ∈ O ∃h ∈ O SNRg �≤w SNRh .

Thus, the Muchnik degrees of various mass problems SNRf have no least or
greatest element.

3 Canonical Immunity

Canonical immunity was introduced by three of the present authors in [6] and
shown there to be equivalent, as a mass problem, to SNR, and studied further
in [5]. Here we give a new Theorem 10 below, analogous to the case of DNR,
that was not obtained in [6].

Considering lowness notions associated with Schnorr randomness was what
lead those authors to this new notion of immunity.

Definition 8. A canonical numbering of the finite sets is a surjective function
D : ω → {A : A ⊆ ω and A is finite} such that {(e, x) : x ∈ D(e)} is recursive
and the cardinality function e �→ |D(e)|, or equivalently, e �→ max D(e), is also
recursive.

We write De = D(e).

Definition 9. R is canonically immune (CI) if R is infinite and there is a
recursive function h such that for each canonical numbering of the finite sets
De, e ∈ ω, we have that for all but finitely many e, if De ⊆ R then |De| ≤ h(e).

We include proofs of some of the results from [6].

Theorem 6 (Beros et al. [6]). Schnorr randoms are canonically immune.

Proof. Fix a canonical numbering of the finite sets, {De}e∈ω. Define Uc = {X :
(∃e > c)

(|De| ≥ 2e ∧ De ⊂ X
)}. Since e �→ |De| is recursive, μ(Uc) is recursive

and bounded by 2−c. Thus, the sequence {Uc}c∈ω is a Schnorr test. If A is a
Schnorr random, then A ∈ Uc for only finitely many c ∈ ω. We conclude that A
is canonically immune.

Theorem 7 (Beros et al. [6]). Each canonically immune set is immune.

Proof. Suppose A has an infinite recursive subset R. Let h be any recursive
function. Let Rn denote the set of the first n elements of R, and let {De : e ∈ ω}
be a canonical numbering of the finite sets such that D2n = Rh(2n)+1 for all
n ∈ ω. For all n, D2n ⊆ R ⊆ A and |D2n| = h(2n) + 1 > h(2n), and so h does
not witness the canonical immunity of A.

From Eventually Different Functions to Pandemic Numberings 103

We now show that canonically immune is the “correct” analogue of effectively
immune. Let W0, W1, W2, ... be an effective enumeration of the recursively
enumerable (or r.e.) sets of natural numbers. An infinite set A of natural numbers
is said to be immune if it contains no infinite r.e. subset. It is said to be effectively
immune when there is a recursive function f such that for all e, if We is a subset of
A, then |We| ≤ f(e). The interest in sets whose immunity is effectively witnessed
in this manner originally arose in the search for a solution to Post’s problem; for
more on this the reader may see [6].

Theorem 8 (Beros et al. [6]). Each canonically immune (CI) set computes a
strongly nonrecursive function, i.e.,

SNR ≤w CI .

Incidentally, Beros and Beros [4] showed that the index set of Medvedev
reductions from CI to SNR is Π1

1 -complete.

Theorem 9 (Kjos-Hanssen [13]). Each SNR function is either of high or
DNR Turing degree.

Corollary 7 (Beros et al. [6]). The following are equivalent for an oracle A:

1. A computes a canonically immune set,
2. A computes an SNR function,
3. A computes an infinite subset of a Schnorr random.

If a canonically immune set A is of non-high Turing degree then by Theorem
8, A computes an SNR function, which by Theorem 9 means that A computes
a DNR function, hence A computes an effectively immune set. Our new result
is to make this more direct: A is itself that effectively immune set.

Theorem 10. If A is non-high and canonically immune, then A is effectively
immune.

Proof. Let us introduce the notation

We,s#u

to mean the set of k ∈ We,s such that when k enters We,s, at most u other
numbers have already entered We,s. Roughly speaking, D#u consists of the first
u + 1 elements of D.

Let A be non-high and not effectively immune. We need to show that A is
not canonically immune.

Since A is not effectively immune, there are infinitely many e for which there
is an s with 〈e, s〉 ∈ F where

F = {〈e, s〉 : |We,s| > h(e), and We,s#h(e) ⊆ A}.

Here we assume h is nondecreasing. So

∀d ∃s ∃ed > d 〈ed, s〉 ∈ F

104 A. A. Beros et al.

Let f(d) = s. Then there is a recursive function g(d) which is not dominated
by f .

We may assume s > ed since increasing s will keep 〈e, s〉 ∈ F . Let

D2〈e,d〉 = We,g(d)#h(d)

Let h̃(〈e, d〉) = h(d) for d ≤ e ≤ g(d). Using a recursive bijection between the
domain of h̃,

{〈e, d〉 : d ≤ e ≤ g(d)}
and ω, we may assume the domain of h̃ is ω.

Then for infinitely many e (namely, there are infinitely many d with f(d) ≤
g(d), and for each such d there is an e with d ≤ e ≤ g(d) that works) we have

1. D2〈e,d〉 = We,g(d)#h(d) ⊆ We,g(d)#h(e) ⊆ A, and
2. |D2〈e,d〉| > h̃(〈e, d〉) = h(d).

We have limn→∞ h̃(n) = ∞ since for each d we only include e up to the ed

above.
Let the sets D2k+1 be a canonical list of all the finite sets, just in case we

missed some of them using the sets D2k.

4 Pandemic Numberings

Brendle et al. [7] explored an analogy between the theory of cardinal character-
istics in set theory and highness properties in computability theory, following up
on work of Rupprecht [15].

Their main results concerned a version of Cichon’s diagram [3] in computabil-
ity theory. They expressed the cardinal characteristics in Cichon’s diagram as
either

d(R) = min{|F | : F ⊆ Y and ∀x ∈ X ∃y ∈ F (x R y)},

d(R) = min{|F | : F ⊆ Y and ∀x ∈ X ∃y ∈ F (x R y)}
or

b(R) = min{|G| : G ⊆ X and ∀y ∈ Y ∃x ∈ G¬(x R y)},

b(R) = min{|G| : G ⊆ X and ∀y ∈ Y ∃x ∈ G¬(x R y)},

where X and Y are two spaces and R is a relation on X × Y . As the spaces
considered admit a notion of relative computability, it is natural to say that an
element x ∈ X is computable (in A ⊂ ω).

They defined two computability-theoretic notions corresponding to d(R) and
b(R) as follows:

B(R) = {A : ∃y ≤T A∀x (x is computable → x R y)},

B(R) = {A : ∃y ≤T A∀x (x is computable → x R y)},

From Eventually Different Functions to Pandemic Numberings 105

and
D(R) = {A : ∃x ≤T A∀y (y is computable → ¬(x R y))},

D(R) = {A : ∃x ≤T A∀y (y is computable → ¬(x R y))}.

They found that B(R) and D(R) tend to be highness properties in computability
theory, often equivalent to well-known notions.

They finally mapped a cardinal characteristic d(R) or b(R) to D(R) or B(R)
respectively, and showed that if b(R) ≤ d(S), then B(R) ⊆ D(S) and so on.

The resulting analog of Cichon’s diagram is not isomorphic to the original
diagram, in that some strict inequalities of cardinal characteristics are consistent
with ZFC but the corresponding computability-theoretic notions coincide.

Using their point of view we find a new dual notion to canonical immunity:
that of a numbering such that no recursive set is large with respect to it.

Definition 10. Let D = (e �→ De) be a numbering of the finite subsets of ω
and let R ⊆ ω. We say that D is h-endemic to R if there are infinitely many e
with |De| ≥ h(e) and De ⊆ R. D is a pandemic numbering if there is an order
function h such that for all infinite recursive sets R, D is h-endemic to R.

Recall also that an escaping function is a function f : ω → ω such that f is not
dominated by any recursive function.
Theorem 11. The Muchnik degrees of pandemic numberings and of hyperim-
mune sets coincide.

Proof. In one direction, if e �→ max De is recursively bounded then we show that
D is not a pandemic numbering. Namely, we construct a recursive set R which
waits for h to get large (h(e) > d say) and only then lets its dth element rd

enter R, and lets rd be large enough (larger than maxDk, k ≤ e) to prevent
|De| ≥ h(e), De ⊆ R.

In the other direction, given a hyperimmune set, we (as is well known) also
have an escaping function f . At those inputs e where f is greater than a function
associated with a potential infinite recursive set Rk (given as the graph of a
partial recursive {0, 1}-valued function), we define the next De so as to ensure
De ⊆ R and |De| ≥ h(e). Namely, the function to escape is the time e �→ tk(e) =
t(〈e, k〉) it takes for Rk to get h(e) many elements. If Rk is really infinite then
tk is total and so f(e) ≥ tk(e) for some (infinitely many) e. So we define D〈e,k〉
to consist of the first h(〈e, k〉) elements of Rk, if any, as found during a search
time of f(〈e, k〉) or even just f(e).

By Corollary 7 and Theorem 11, the dualism between immunity and pandemics
is the same, Muchnik-degree-wise, as that between, in the notation of Brendle
et al. [7],

– eventually different functions, b(�=∗), and
– functions that are infinitely often equal to each recursive function, d(�=∗).

Remark 1. As the recursive sets are closed under complement, a notion of bi-
pandemic would be the same as pandemic. Thus, while we do not know whether
canonical bi-immunity is Muchnik equivalent to canonical immunity, there is no
corresponding open problem on the dual side.

106 A. A. Beros et al.

References

1. Ambos-Spies, K., Kjos-Hanssen, B., Lempp, S., Slaman, T.A.: Comparing DNR
and WWKL. J. Symb. Log. 69(4), 1089–1104 (2004)

2. Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K
Peters Ltd., Wellesley (1995)

3. Bartoszyński, T., Judah, H., Shelah, S.: The Cichoń diagram. J. Symb. Log. 58(2),
401–423 (1993)

4. Beros, A.A., Beros, K.A.: Index sets of universal codes. arXiv e-prints, October
2016

5. Beros, A.A., Beros, K.A.: Canonical immunity and genericity. arXiv e-prints, July
2017

6. Beros, A.A., Khan, M., Kjos-Hanssen, B.: Effective Bi-immunity and randomness.
In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond,
F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 633–643. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-50062-1 38

7. Brendle, J., Brooke-Taylor, A., Ng, K.M., Nies, A.: An analogy between cardinal
characteristics and highness properties of oracles. In: Proceedings of the 13th Asian
Logic Conference, pp. 1–28. World Scientific Publishing, Hackensack (2015)

8. Cenzer, D., Hinman, P.G.: Degrees of difficulty of generalized r.e. separating classes.
Arch. Math. Log. 46(7–8), 629–647 (2008)

9. Greenberg, N., Miller, J.S.: Lowness for Kurtz randomness. J. Symb. Log. 74(2),
665–678 (2009)

10. Greenberg, N., Miller, J.S.: Diagonally non-recursive functions and effective Haus-
dorff dimension. Bull. Lond. Math. Soc. 43(4), 636–654 (2011)

11. Khan, M.: Some results on algorithmic randomness and computability-theoretic
strength. ProQuest LLC, Ann Arbor, MI, Ph.D. thesis, The University of Wiscon-
sin, Madison (2014)

12. Khan, M., Miller, J.S.: Forcing with bushy trees. Bull. Symb. Log. 23(2), 160–180
(2017)

13. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recur-
sion theorem. Trans. Am. Math. Soc. 363(10), 5465–5480 (2011)

14. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing
degrees. J. Symb. Log. 70(2), 515–535 (2005)

15. Rupprecht, N.: Relativized Schnorr tests with universal behavior. Arch. Math. Log.
49(5), 555–570 (2010)

16. Simpson, S.G.: Turing degrees and muchnik degrees of recursively bounded DNR
functions. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov,
A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp.
660–668. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1 40

https://doi.org/10.1007/978-3-319-50062-1_38
https://doi.org/10.1007/978-3-319-50062-1_40

Divide and Conquer Computation
of the Multi-string BWT and LCP Array

Paola Bonizzoni, Gianluca Della Vedova, Serena Nicosia,
Yuri Pirola, Marco Previtali(B), and Raffaella Rizzi

DISCo, University of Milano-Bicocca, Milan, Italy
marco.previtali@disco.unimib.it

Abstract. Indexing huge collections of strings, such as those produced
by the widespread sequencing technologies, heavily relies on multi-
string generalizations of the Burrows-Wheeler Transform (BWT) and
the Longest Common Prefix (LCP) array, since solving efficiently both
problems are essential ingredients of several algorithms on a collection
of strings.

In this paper we explore lightweight and parallel computational strate-
gies for building the BWT and LCP array. We design a novel algorithm
based on a divide and conquer approach that leads to a simultaneous
and parallel computation of multi-string BWT and LCP array.

1 Introduction

In this paper we address the problem of building in external memory the
Burrows-Wheeler Transform (BWT) and the Longest Common Prefix (LCP)
array for a large collection of strings. Efficient indexing of very large collec-
tions of strings is strongly motivated by the widespread use of Next-Generation
Sequencing (NGS) technologies that cheaply produce data that fill several ter-
abytes of secondary storage, that has to be analyzed. The Burrows-Wheeler
Transform (BWT) [8] is a reversible transformation of a text that was originally
designed for text compression (and it’s still at the core of the widely used bzip2
tool). The BWT of a text T is a permutation of T and is strictly related to
the Suffix Array of T . In fact, the ith symbol of the BWT is the symbol pre-
ceding the ith smallest suffix of T according to the lexicographical order. The
Burrows-Wheeler Transform has gained importance beyond its initial purpose,
becoming the basis for self-indexing structures such as the FM-index [12], which
allows to efficiently search a pattern in a text [12,15,18] (see [13] for a recent
survey) or in a graph [4] and other crucial tasks on sequences in bioinformat-
ics. Multiple generalization of the BWT to set of sequences [16], trees [11], and
graphs [3] have been proposed in the last years. The generalization of the BWT
(and the FM-index) to a collection of strings [16] is an ideal tool in genome
assembly under the Overlap-Layout-Consensus (OLC) approach [17]. This app-
roach requires the efficient construction of a string graph [17] which is the result
of finding all prefix-suffix matches (or overlaps) between reads. For this purpose,
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 107–117, 2018.
https://doi.org/10.1007/978-3-319-94418-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_11&domain=pdf

108 P. Bonizzoni et al.

the BWT of a collection of strings allows to achieve time and space efficiency for
building a string graph when dealing with a huge amount of available biological
data [19]. Indeed, Light String Graph [5] (LSG) is an external memory algorithm
for computing the string graph, while Fast String Graph [7] (FSG) is a faster in-
memory alternative: both algorithms require the construction of the BWT and
LCP array of a collection of strings. We note that most of the approaches for
building the BWT and the LCP array of a set of strings usually build them inde-
pendently or in two successive steps. Since the two data structures are closely
related, it makes sense from a theoretical point of view to design methods that
build them together to show even more their interconnection.

The construction of the BWT and LCP array of a huge collection of strings
is a challenging task and the investigation of possible algorithmic approaches
is of theoretical interest, besides its practical application. For this purpose we
explore new strategies for computing the BWT and the LCP array of a collection
of strings that can be adapted to both external memory and parallel approaches.
Current external memory algorithms for the construction of the BWT and the
LCP array of a set of strings [1,2,9] exploit the disk by storing partial BWT s and
partial LCP arrays that will eventually converge to the BWT and LCP array of
the input set in k iterations (where k is the length of the input sequences). Such
procedures are hard to parallelize since each element of each partial BWT must
be computed after its preceding element in the same data structure.

The algorithm we describe in this paper consists of two phases; the first
one is common with our previous algorithm [6], whereas the second phase is
different. More precisely, while the strategy in [6] follows the approach of [14] for
merging a set of BWTs based on the well-known backward extension operation
on a BWT, the strategy of the second phase is based on the opposite forward
extension operation on a BWT. This forward extension operation is the novel
ingredient of our approach and it allows for a simple parallel implementation of
our algorithm. Moreover, our approach is entirely based on linear scans of the
data which makes it more amenable to actual disk-based implementations.

2 Preliminaries

Let Σ = {c0, . . . , cσ} be a finite alphabet where c0 = $ (called sentinel), and
c0 < · · · < cσ where < specifies the lexicographic ordering over alphabet Σ. We
consider a collection S = {s1, . . . , sm} of m strings, where each string sj consists
of k symbols over the alphabet Σ \ {$} and is terminated by the symbol $. For
ease of presentation and to simplify the presentation of the following methods,
we will assume that all the strings in S have the same length. The ith symbol of
string sj is denoted by sj [i] and the substring sj [i]sj [i+1] · · · sj [t] of sj is denoted
by sj [i : t]. The suffix and prefix of sj of length l are the substrings sj [k−l+1 : k]
(denoted by sj [k − l + 1 :]) and sj [1 : l] (denoted by sj [: l]), respectively. Then
the l-suffix and l-prefix of a string sj are the suffix and prefix with length l,
respectively. The lexicographic ordering among the strings in S is defined in the
usual way. Although we use the same sentinel to terminate strings, we sort equal

Divide and Conquer Computation of the BWT and LCP Array 109

suffixes of different strings by assuming an implicit ordering of the sentinels that
is induced by the ordering of the input strings. More precisely, we assume that
given si, sj ∈ S, with i < j, then the sentinel of si is lexicographically smaller
than the sentinel of sj .

Given the lexicographic ordering X of the suffixes of S, the Suffix Array
is the (m(k + 1))-long array SA s.t. SA[i] is equal to (p, j) if and only if the
ith element of X is the p-suffix of string sj . The multi-string Burrows-Wheeler
Transform (BWT) of S is the (m(k +1))-long array B s.t. if SA[i] = (p, j), then
B[i] is the first symbol of the (p + 1)-suffix of sj if p < k, or $ otherwise. In
other words B consists of the symbols preceding the ordered suffixes of X. The
Longest Common Prefix (LCP) array of S is the (m(k + 1))-long array LCP
s.t. LCP [i] is the length of the longest prefix between suffixes X[i− 1] and X[i].
Conventionally, LCP [1] = −1.

Given n + 1 arrays V0, V1, . . . , Vn, an array W is an interleave of V0, V1, . . . , Vn

if W is the result of merging the arrays s.t.: (i) there is a 1-to-1 function ψW

from the set ∪n
i=0{(i, j) : 1 ≤ j ≤ |Vi|} to the set {q : 1 ≤ q ≤ |W |}, (ii)

Vi[j] = W [ψW (i, j)] for each i, j, and (iii) ψW (i, j1) < ψW (i, j2) for each j1 < j2.
By denoting with L =

∑n
i=0 |Vi| the total length of the arrays, the interleave

W is a L-long array representing the fusion of the arrays V0, V1 . . . , Vn that
preserves the relative order of the elements of each array. Hence, for each i with
0 ≤ i ≤ n, the jth element of Vi corresponds to the jth occurrence in W of an
element of Vi. This fact allows to encode the function ψW as an L-long array IW

s.t. IW [q] = i if and only if W [q] is an element of Vi. Given IW , we reconstruct W
by noticing that W [q] is equal to VIW [q][j], where j is the number of values equal
to IW [q] in the interval IW [1, q]; we refer to this value as the rank of the element
IW [q] at position q. In the following, we will refer to vector IW as encoding.
Algorithm 1 shows how to reconstruct an interleave from its encoding.

Let l be an integer between 0 and k and let Bl and Xl be m-long arrays
s.t. Bl[i] is the symbol preceding the ith smallest l-suffix of S and Xl[i] is the
ith smallest l-suffix of S. Note that the BWT B is an interleave of the k + 1
arrays B0, B1, . . . , Bk, since the ordering of symbols in Bl is preserved in B, i.e.
B is stable w.r.t. each array B0, B1, . . . , Bk. This fact is a direct consequence of
the definition of B and Bl. For the same reason, the lexicographic ordering X
of all suffixes of S is an interleave of the arrays X0,X1, . . . , Xk. Let IB be the
encoding of the interleave of arrays B0, B1, . . . , Bk and let IX be the encoding
of the interleave of arrays X0,X1, . . . , Xk. Then IB = IX . Therefore, computing
either IB or IX is equivalent to computing the BWT of the input collection S.

3 The Algorithm

Our algorithm for building the BWT and the LCP array of a set S = {s1, . . . , sm}
of strings with length k (provided as a file on disk) consists of two distinct
steps: in the first step the arrays B0, . . . , Bk are computed, while the second
step determines IX = IB by implicitly reordering the whole set of suffixes in
vectors Xl, thus reconstructing the BWT B as an interleave of B0, . . . , Bk whose
encoding is IB. At the same time the algorithm computes the LCP array.

110 P. Bonizzoni et al.

Algorithm 1. Reconstruct the interleave W from the encoding IW

1 for i ← 0 to n do
2 rank[i] ← 0;
3 for q ← 1 to |IW | do
4 i ← IW [q];
5 rank[i] ← rank[i] + 1;
6 W [q] ← Vi[rank[i]];

The first step requires O(mk) time. A first preprocessing step splits the
sequences in input column-wise in k + 1 arrays S0, . . . , Sk s.t. Si[j] is equal to
the symbol sj [i]. These arrays are used to compute the arrays B0, . . . , Bk as
follows. Array B0 is trivially the vector of the last characters s1[k], . . . , sm[k] of
the reads, i.e., it is equal to the array Sk. For l > 0, array Bl is a permutation
of Sk−l and it is computed from Bl−1 by a bucket sort strategy. The procedure
for computing vectors B1, . . . , Bk for a set of string of equal length is postponed
to the full version of the paper due to lack of space. Extending the procedure to
handle a set of strings with different lengths is rather simple (see [6]) and causes
variable length vectors Bi. A variable length input set is justified, for example,
when the strings undergo a trimming step to remove low-quality regions.

The second step of the method computes the interleave IX = IB in O(kmL)
time, where L is the length of the longest common substring in the input set, by
implicitly sorting the whole set of suffixes of S. The idea is to achieve IB through
L iterations, where each iteration p, from 1 to L, computes the encoding of the
interleave of vectors Xl giving the sorting of the suffixes by their first p symbols
from the encoding giving the sorting by the first p−1 symbols. The first iteration
starts from the encoding of the interleave given by the concatenation X0, . . . , Xk

(that is, suffixes in X0 are followed by suffixes in X1, . . ., are followed by suffixes
in Xk). We can maintain a partial LCP array Lcpp together with the encoding
IXp , where Lcpp is the LCP array of the p-prefixes of the suffixes sorted by IXp .
Since L is the length of the longest common substring in the input set of reads,
the encoding IXp computed by the last iteration p = L gives the lexicographic
ordering X of the suffixes in S and Lcpp is the LCP array of S. We point out that
the task of implicitly sorting the suffixes of S can be accomplished by following
two different strategies, both exploiting a bucket sort approach.

The first strategy [6] is to adopt the approach proposed in [14] for merging a
set of BWTs, revisited in [10], to compute also the LCP array together with the
BWT. This approach is based on the backward extension of the suffixes, where at
each iteration p the order of the suffixes sorted by their p-prefix is computed by
the order of the suffixes sorted by their (p − 1)-suffix by considering the symbol
that must be prepended to the latter suffixes to produce the former.

The second strategy is based on the forward extension of the (p − 1)-prefixes
of the suffixes in the ordering given by the encoding IXp , and is the strat-
egy detailed in this paper. It requires O(mkL) time where m is the number of
input sequences, k is their length, and L is the length of the longest common

Divide and Conquer Computation of the BWT and LCP Array 111

string between two sequences in the input set. The main idea is to iteratively
group together the suffixes by prefixes of increasing length, similarly to a bucket
sort procedure. Nevertheless, storing all the suffixes would require too much
space and we provide efficient algorithms to induce the order of the suffixes from
the arrays Bl computed in the previous step.

The rest of this section is laid out as follows. In Sect. 3.1 we describe how
to compute the interleave of arrays Bl, i.e., the core of the second step of the
method proposed in this article. In Sect. 3.2 we extend the previous procedure to
compute the LCP array of the input sequence and provide an efficient algorithm
to compute arrays Qp

l that are fundamental for this step. For space constraint,
the first step of the method, i.e., the computation of arrays Bl, is deferred to
the full version of the paper since it is similar to the one in [6].

3.1 Computing the Interleave

The second step of our algorithm computes the encoding IX of the interleave
X of the arrays X0,X1, · · · ,Xk, giving the lexicographic ordering of all suffixes
of S and at the same time computes the LCP array. Recall that IX is equal to
the encoding IB of the interleave of the arrays B0, B1, · · · , Bk giving the BWT
B. This section is devoted to describe how to compute IX from which it is easy
to obtain the BWT B as explained in Algorithm 1, while the description of the
approach to obtain the LCP array is postponed until Sect. 3.2. Before entering
into the details, we provide some fundamental definitions.

Definition 1. Let α = siα
[k − lα + 1 :] and β = siβ

[k − lβ + 1 :] be two generic
suffixes of S, with length respectively lα and lβ. Then, given an integer p, α ≺p β
(and we say that α p-precedes β) iff one of the following conditions hold: (1)
α[: p] is lexicographically strictly smaller than β[: p], (2) α[: p] = β[: p] and
lα < lβ, (3) α[: p] = β[: p], lα = lβ and iα < iβ.

Definition 2. Given the arrays X0,X1, . . . , Xk, the p-interleave Xp (0 ≤ p ≤
k) is the interleave s.t. Xp[i] is the ith smallest suffix in the ≺p-ordering of all
the suffixes of S.

It is immediate to verify that Xk (that is, the suffixes sorted according to the
≺k relation) is equal to X, hence IX = IXk . Our approach determines IXk by
iteratively computing IXp by increasing values of p, starting from IX0 . Observe
that X0 lists the suffixes in the same order given by the concatenation of arrays
X0,X1, . . . , Xk and the encoding IX0 is trivially given by |X0| 0s, followed by
|X1| 1s, . . . , followed by |Xk| values equal to k.

Definition 3. Let Xp be the p-interleave of X0,X1, . . . , Xk, and let i be a posi-
tion. Then, the p-segment of i in Xp is the maximal interval [b, e] s.t. b ≤ i ≤ e
and all suffixes in Xp[b, e] have the same p-prefix. Positions b and e are called
respectively begin and end position of the segment, and the common p-prefix is
denoted by wp(b, e).

112 P. Bonizzoni et al.

It is immediate to observe that the set of all the p-segments of a p-interleave
form a partition of its positions (1, . . . , (k + 1)m). Observe that, by definition, a
suffix smaller than p belongs to a p-segment [b, e] having b = e. In other words,
such suffix is the unique element of the p-segment.

Before describing the approach, the computation of Xp from Xp−1 is
explained. Let Qp

l be the m-long array s.t. Qp
l [i] is the pth symbol of the suffix

Xl[i] if p ≤ l, or $ otherwise. Moreover, let Qp be the interleave of the arrays
Qp

0, Q
p
1, . . . , Q

p
k s.t. IQp = IXp−1 . In other words, Qp[i] is the pth symbol of

the suffix Xp−1[i]. The following lemma shows that each p-segment [bp, ep] can
be computed from the unique (p − 1)-segment [bp−1, ep−1] s.t. bp−1 ≤ bp and
ep ≤ ep−1.

Lemma 4. Let [b, e] be a (p−1)-segment of Xp−1. Then, Xp[b, e] is a permuta-
tion of Xp−1[b, e] defined by the permutation Πp−1

b,e of the indexes (b, b+1, . . . , e)
producing the stable ordering of the symbols in Qp[b, e], s.t. the rth suffix of
Xp[b, e] is the suffix of Xp−1 in position Πp−1

b,e [r].

Given the suffix in position i of Xp−1, s.t. i is in the (p − 1)-segment [b, e],
Lemma 4 allows to compute its position i′ ∈ [b, e] on Xp. Let #< be the number
of symbols of Qp[b, e] that are strictly smaller than Qp[i] and let #=

q be the
number of symbols of Qp[b, q] which are equal to Qp[i]. Then, the rank of suffix
Xp−1[i] in Xp[b, e] is r = #< + #=

i , thus deriving that its position in Xp is
i′ = b + r − 1. Note that the positions (b, b + 1, . . . , e) on Xp are partioned
into n p-segments [b1, e1], . . . , [bn, e] (referred as induced by the (p − 1)-segment
[b, e] of Xp−1), where n is the number of distinct non-$ symbols in Qp[b, e] plus
the number #$ of symbols $ in Qp[b, e]. Observe that the first #$ p-segments
[b1, e1], . . . , [b#$, e#$] have width 1, while the width of the last n−#$ p-segments
[b#$+1, e#$+1], . . . , [bn, en] can be computed as follows. Let {c1, . . . , cn−#$} be
the ordered set of the distinct non-$ symbols in Qp[b, e]. Then, the width of
[b#$+i, e#$+i] (1 ≤ i ≤ n − #$) is equal to the number of occurrences of the
symbol ci in Qp[b, e]. From what described above, it derives that the p-segments
on Xp form a partition of its positions (1, · · · , (k + 1)m) that is a refinement of
the partition formed by the (p − 1)-segments on Xp−1.

Algorithm 2. Compute Xp[b, e] from the (p − 1)-segment [b, e] on Xp−1

1 Lc0 , Lc1 , · · · , Lcσ ← empty lists;
2 for i ← b to e do
3 c ← Qp[i];
4 Append Xp−1[i] to Lc;

5 r ← 1;
6 for h ← 0 to σ do
7 for rh ← 1 to |Lch | do
8 Xp[b + r − 1] ← Lch [rh];
9 r ← r + 1;

Divide and Conquer Computation of the BWT and LCP Array 113

Algorithm 3. Compute IXp from IXp−1

1 Lc0 , Lc1 , · · · , Lcσ ← empty lists;
2 rank ← a vector of k zeroes;
3 pick up start ← true;
4 for i ← 1 to (k + 1)m do
5 if pick up start = true then
6 b ← i;
7 pick up start = false;

8 j ← IXp−1 [i];
9 rank[j] ← rank[j] + 1;

10 c ← Qp
j [rank[j]];

11 Append j to Lc;
12 if i is the end position of a (p − 1)-segment then
13 pick up start = true;
14 r ← 1;
15 for h ← 0 to σ do
16 for rh ← 1 to |Lch | do
17 j ← Lch [rh];
18 IXp [b + r − 1] ← j;
19 if rh > 1 and h > 0 then
20 Lcpp[b + r − 1] = p;
21 else
22 Lcpp[b + r − 1] = Lcpp−1[b + r − 1];
23 r ← r + 1;

24 Lc0 , Lc1 , . . . , Lcσ ← empty lists;

Algorithm 2 describes a simple procedure to compute Xp[b, e] from the (p−1)-
segment [b, e] of Xp−1. The procedure uses σ+1 lists Lc0 , . . . , Lcσ

initially empty.
Each position i ∈ [b, e] is considered and each suffix Xp−1[i] is appended to the
list Lc s.t. c is the pth symbol of Xp−1[i]. Afterwards, the new order of the
elements in Xp−1[b, e] provided by the concatenation of the lists Lc0 , · · · , Lcσ is
copied in Xp[b, e]

Algorithm 2 can be easily modified in order to produce also the p-segments
[b, e1], [b2, e2], . . . , [bn, e] induced by the (p − 1)-segment [b, e] on IXp without
directly storing X. The entire interleave IXp is obtained by computing IXp [b, e]
for each distinct (p−1)-segment [b, e] of IXp−1 . Algorithm 3 is an iterative proce-
dure that computes the encoding IXp from IXp−1 . Even though the description
is sequential, it is possible to give a parallel version, since all (p − 1)-segments
on IXp−1 can be managed independently to obtain the induced p-segments.

All the k-segments of the encoding IXk have width equal to 1. Moreover,
if L is the length of the longest common substring of two strings in S, after L
iterations the two following properties hold: (1) the encoding IXL is equal to
IXk , and (2) each IXj with j > L is identical to IXL . These two properties
are a consequence of the following two observations: (i) the length p of the
longest common prefix between two strings is equal to the length of the longest

114 P. Bonizzoni et al.

Algorithm 4. Compute all lists Qp
l for any given p ≥ 2.

Input : The lists B0, . . . , Bk on alphabet c0, · · · , cσ, an integer p with
2 ≤ p ≤ k, and all Qp−1

l .
Output: The lists Qp

l for each k ≥ l ≥ p
1 for l ← p to k do
2 Qp

l ← empty list;
3 for h ← 0 to σ do
4 Qp

l (ch) ← empty list;
5 for j ← 1 to m do

6 Append Qp−1
l−1 [j] to Qp

l (Bl−1[j]);

7 for h ← 0 to σ do
8 Append Qp

l (ch) to Qp
l ;

common substring in S, and (ii) if all the (p + 1)-prefixes of the suffixes are
distinct, then the ≺p+1 relation does not affect the ordering given by IXp , that
is IXp+1 = IXp . Finally, notice that all p-segments are independent, therefore
they can be computed in parallel from the (p − 1)-segments.

3.2 Computing the LCP Array and the Qp
l Arrays

The LCP array is obtained by exploiting Proposition 5 which follows from the
definition of p-segment.

Proposition 5. Let i be a position on the Longest Common Prefix array LCP .
Then LCP [i] is the largest p s.t. i is the start of a (p + 1)-segment (of IXp+1)
and is not the start of a p-segment (of IXp).

Let Lcpp be the ((k +1)m)-long array s.t. Lcpp[i] is the length of the longest
common prefix between the p-prefix of suffix Xp[i] and the p-prefix of suffix
Xp[i − 1]. The array Lcpk is equal to the LCP array of the input set S.

Algorithm 3 exploits Proposition 5 to compute the LCP array iteratively
along with the interleave IX . More precisely, at each iteration p, Algorithm 3
computes Lcpp from Lcpp−1 by increasing each entry of Lcpp−1 that is not the
starting position of a p-segment. Since the LCP between two empty string is
0, the array Lcp0 is set to all 0s (apart from the first position that is set to
−1) before the first iteration. The following invariant, which directly implies the
correctness of the procedure, is maintained at each iteration.

Lemma 6. At the end of iteration p, Lcpp[i] = p iff i is not the start position
of any p-segment.

We now show how to compute the arrays Qp
0, . . . , Q

p
k used by iteration p of

Algorithm 2. Recall that Qp
l is the m-long array s.t. Qp

l [i] is the pth symbol of
the ith smallest l-suffix of Xl if p ≤ l, or $ otherwise. The following proposition
establishes a recursive definition of Qp

l .

Divide and Conquer Computation of the BWT and LCP Array 115

Algorithm 5. Computation of the interleave
Input : The arrays B0, B1, . . . , Bk

Output: The encoding IXk .
1 for l ← 0 to k do
2 for i ← 1 to m do
3 IX0 [lm + i] ← l; Lcp[lm + i] ← 0;

4 Compute lists Q1
l for 0 ≤ l ≤ k;

5 p ← 1;
6 while there exists some (p − 1)-segment on IXp−1 which is wider than 1 do
7 Compute IXp from IXp−1 ;

8 Compute lists Qp+1
l for 0 ≤ l ≤ k;

9 Output IXp ;

Proposition 7. Let Xl and Xl−1 be respectively the sorted l-suffixes and (l−1)-
suffixes of the set S. Let αl and αl−1 be respectively the l-suffix and the (l − 1)-
suffix of a generic input string si. Then the pth symbol of αl is the (p − 1)th

symbol of αl−1.

Algorithm 4 shows how to compute all the lists Qp
l iteratively from Qp−1

l−1

exploiting Proposition 7. We note that, for l ≥ 1, Q1
l is the result of sorting Bl−1

whereas Q1
0 is a sequence of sentinels. Therefore the arrays Q1

0, . . . , Q
1
k can be

trivially computed and form the initial step of the recursion.
In order to prove the correctness of Algorithm4 we need to show that the

permutation Stl−1 over indexes 1, . . . ,m of Bl−1 induced by the lexicographic
ordering of Bl−1, is the correct permutation of Qp−1

l−1 to obtain Qp
l . Indeed,

observe that Stl−1 is the permutation that relates positions of indexes of strings
in Xl−1 to their positions in Xl. More precisely, given a string sq of S, s.t. its
(l − 1)-suffix is in position j of list Xl−1, then if Stl−1[j] = t, it means that the
l-suffix is of the string sq is in position t of list Xl. The above observation is
a consequence of the fact that in order to get the lexicographic ordering of Xl

from the list Xl−1 we simply sort the (l − 1)-suffixes by the first symbol that
precedes them, i.e., they are sorted by the list Bl−1.

Finally, Algorithm5 shows how to combine Algorithms 3 and 4 in order to
compute IXk from the input arrays B0, . . . , Bk.

4 Time Complexity and Conclusions

The overall time complexity of the method is O(kmL). Trivially, computing
arrays Sl and Bl requires O(mk) (see [6] for a more thorough analysis). The sec-
ond step (Algorithm 5) requires O(kmL) time since initializing the support data
structures (lines 1–5) and each call in lines 7 and 8 require O(km). Moreover,
as said before, the while loop at lines 6–8 is executed L times, where L is the
length of the longest common substring in the input set.

116 P. Bonizzoni et al.

In this paper, we presented a new algorithm to compute the BWT and the
LCP array of a set of strings, that is suitable for either parallel or external mem-
ory approaches. Notice that all the arrays are accessed sequentially, therefore
they can be stored in external files and it is immediate to view our procedure
as an external memory approach, where only the arrays Sl (0 ≤ l ≤ k − 1)
of the symbols of the input strings are kept in main memory (together with
some additional data structures). The overall I/O complexity of the algorithm
is O(mkL(log k + log σ)) (detailed in the full version of the paper). Moreover,
we note that Algorithms 3 and 4 are suitable for parallel approaches and that
these two algorithms are the fundamental steps of Algorithm 5, i.e., the main
approach proposed in this article. Finally, we notice that our time complexity
(O(mkL)) is no worse than the one of the best known lightweight approaches.

References

1. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing and
inverting the BWT of string collections. Theor. Comp. Sci. 483, 134–148 (2013)

2. Bauer, M.J., Cox, A.J., Rosone, G., Sciortino, M.: Lightweight LCP construction
for next-generation sequencing datasets. In: Raphael, B., Tang, J. (eds.) WABI
2012. LNCS, vol. 7534, pp. 326–337. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33122-0 26

3. Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M., Puglisi, S.J.: Bidirectional
variable-order de Bruijn graphs. In: Kranakis, E., Navarro, G., Chávez, E. (eds.)
LATIN 2016. LNCS, vol. 9644, pp. 164–178. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49529-2 13

4. Beretta, S., Bonizzoni, P., Denti, L., Previtali, M., Rizzi, R.: Mapping RNA-seq
data to a transcript graph via approximate pattern matching to a hypertext. In:
Figueiredo, D., Mart́ın-Vide, C., Pratas, D., Vega-Rodŕıguez, M.A. (eds.) AlCoB
2017. LNCS, vol. 10252, pp. 49–61. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58163-7 3

5. Bonizzoni, P., Della Vedova, G., Pirola, Y., Previtali, M., Rizzi, R.: LSG: an
external-memory tool to compute string graphs for next-generation sequencing
data assembly. J. Comput. Biol. 23(3), 137–149 (2016)

6. Bonizzoni, P., Della Vedova, G., Pirola, Y., Previtali, M., Rizzi, R.: Computing the
BWT and LCP array of a set of strings in external memory. CoRR abs/1705.07756
(2017). http://arxiv.org/abs/1705.07756

7. Bonizzoni, P., Della Vedova, G., Pirola, Y., Previtali, M., Rizzi, R.: FSG: fast string
graph construction for de novo assembly. J. Comput. Biol. 24(10), 953–968 (2017)

8. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report, Digital Systems Research Center (1994)

9. Cox, A.J., Garofalo, F., Rosone, G., Sciortino, M.: Lightweight LCP construction
for very large collections of strings. J. Discrete Algorithms 37(C), 17–33 (2016)

10. Egidi, L., Manzini, G.: Lightweight BWT and LCP merging via the gap algorithm.
In: Fici, G., Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp.
176–190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 15

11. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1), 4:1–4:33 (2009)

12. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

https://doi.org/10.1007/978-3-642-33122-0_26
https://doi.org/10.1007/978-3-642-33122-0_26
https://doi.org/10.1007/978-3-662-49529-2_13
https://doi.org/10.1007/978-3-662-49529-2_13
https://doi.org/10.1007/978-3-319-58163-7_3
https://doi.org/10.1007/978-3-319-58163-7_3
http://arxiv.org/abs/1705.07756
https://doi.org/10.1007/978-3-319-67428-5_15

Divide and Conquer Computation of the BWT and LCP Array 117

13. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based
data structures. Theor. Comput. Sci. 698, 67–78 (2017)

14. Holt, J., McMillan, L.: Merging of multi-string BWTs with applications. Bioinfor-
matics 30(24), 3524–3531 (2014)

15. Li, H.: Fast construction of FM-index for long sequence reads. Bioinformatics
30(22), 3274–3275 (2014)

16. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

17. Myers, E.: The fragment assembly string graph. Bioinformatics 21(suppl. 2), ii79–
ii85 (2005)

18. Rosone, G., Sciortino, M.: The Burrows-Wheeler transform between data compres-
sion and combinatorics on words. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.)
CiE 2013. LNCS, vol. 7921, pp. 353–364. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39053-1 42

19. Simpson, J., Durbin, R.: Efficient construction of an assembly string graph using
the FM-index. Bioinformatics 26(12), i367–i373 (2010)

https://doi.org/10.1007/978-3-642-39053-1_42
https://doi.org/10.1007/978-3-642-39053-1_42

Some Observations on Infinitary
Complexity

Merlin Carl(B)

Fachbereich Mathematik und Statistik, Universität Konstanz, Konstanz, Germany
merlin.carl@uni-konstanz.de

Abstract. Continuing the study of complexity theory of Koepke’s Ordi-
nal Turing Machines (OTMs) that was done in [CLR], we prove the fol-
lowing results:

1. An analogue of Ladner’s theorem for OTMs holds: That is, there are
languages L which are NP∞, but neither P∞ nor NP∞-complete.
This answers an open question of [CLR].

2. The speedup theorem for Turing machines, which allows us to bring
down the computation time and space usage of a Turing machine
program down by an aribtrary positive factor under relatively mild
side conditions by expanding the working alphabet does not hold for
OTMs.

3. We show that, for α < β such that α is the halting time of some
OTM-program, there are decision problems that are OTM-decidable
in time bounded by |w|β ·γ for some γ ∈ On, but not in time bounded
by |w|α · γ for any γ ∈ On.

1 Introduction

After the introduction of Infinite Time Turing Machines (ITTMs) in [HL] and
the subsequent development of various other infinitary machine models of com-
putation e.g. in [wITRM,KS,ITRM,OTM,ORM], analogues of several central
topics in classical computability theory were developed for these machine types,
among them degree theory [W1], computable model theory [HMS], random-
ness [CS,C14,CS2] and complexity theory. Complexity theory was first stud-
ied by Schindler in the case of ITTMs, who proved that P �= NP for ITTMs
[Schindler], which was later refined in various ways [DHS,HW]. Results on the
space complexity for infinitary computations were given by Winter in [Wi1,Wi2].
It was occasionally remarked that complexity theory for ITTMs is somewhat
unsatisfying due to the fact that all inputs for ITTMs have the same length,
namely ω.

This motivated the consideration of complexity theory for ‘symmetrical’ mod-
els that have the same amount of time and space available, the most prominent of
which are Koepke’s ‘Ordinal Turing Machines’ (OTMs), which can be thought
of as Turing machines with a tape of proper class length On and unbounded
ordinal working time. For an introduction to OTMs, we refer to [OTM]. In
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 118–125, 2018.
https://doi.org/10.1007/978-3-319-94418-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_12&domain=pdf

Some Observations on Infinitary Complexity 119

agreement with the theory of classical Turing machines, we explicitly allow mul-
titape OTMs, i.e. OTMs with any finite number of scratch tapes.1 The study of
complexity theory for these machines was started by Löwe in [L]. After this, the
subject lay dormant for a while, until it was revived by Löwe and Rin at the CiE
2016, which led to [CLR]. The central contributions of that paper were the intro-
duction of natural infinitary analogues of the classes P and NP, called P∞ and
NP∞ and of the satisfaction problem SAT for OTMs, called SAT∞, the proof
of a corresponding Cook-Levin theorem showing that SAT∞ is NP∞-complete,
and the proof that SAT∞ (and hence any other NP∞-complete problem) is
in fact not OTM-computable (while its restriction to constructibly countable
formulas is).

Among the questions left open in [CLR] was whether there is an analogue of
Ladner’s theorem for OTMs, i.e. whether there are problems in NP∞\P∞ that
are not NP∞-complete.

In this paper, we respond to this question by showing that the OTM-analogue
of Ladner’s theorem holds. We then use the same proof idea to show that the
hierarchy of OTM-decision problems decidable with time bound |w|α · γ, where
|w| is the input length, γ is fixed ordinal, and α is the halting time of an OTM-
program, is strictly increasing in α. We also show that there is no analogue of
the speedup-theorem for Ordinal Turing Machines.

2 Preliminaries

We start by explaining the notations and giving the results that will be used in
the course of this paper. Those which are not folklore can be found in [CLR].
For the definition of the complexity classes P∞, NP∞ as well as the problem
SAT∞, we also refer to [CLR].

We say that a structure (S,E) with E ⊆ S×S, is coded by c ⊆ On if and only
if there is some bijection f : γ → S, γ ∈ On and c := {p(ι1, ι2) : f(ι1)Ef(ι2)},
where p is Cantor’s pairing function.

Let {0, 1}∗∗ denote the class of all ordinal-length binary strings. That is,
{0, 1}∗∗ is the class of functions with domain an ordinal and codomain {0, 1}.
For x ∈ {0, 1}∗∗, let |x| denote the length of x, i.e. its domain. A ‘language’ or
‘decision problem’ is now simply a subclass X of {0, 1}∗∗.

For an ordinal β, denote by β0 and β1 the summand < ω and the rest,
respectively, when β is written in Cantor normal form, i.e. β = ωβ1+β0, β0 < ω.
In this way, every ordinal naturally corresponds to a pair consisting of a multiple
of ω and a natural number.

Let (Pi : i ∈ ω) enumerate the OTM-programs in some natural way.
The following is the main result of [CLR]:

1 Multitape OTMs can be simulated by single-tape OTMs quickly enough so that this
does not make a difference for Theorem 2, our main result. However, the proofs of
Theorem 3 and Corollary 2 both make crucial use of the availability of several tapes.

120 M. Carl

Theorem 1. The satisfaction problem for infinitary propositional formulas
(conjunctions and disjunctions of any ordinal length are allowed) is NP∞-
complete. At the same time, it is OTM-undecidable.

Proof. See [CLR], Theorems 4, 5 and 10.

3 An Analogue of Ladner’s Theorem

Ladner’s theorem answers the question whether any NP-problem that is not in
P is already NP-complete. Of course, this is trivially true if it should happen
that P = NP. Thus, Ladner’s theorem is stated in a conditional form [FG]: If
P �= NP, there is A ∈ NP \ P such that A is not NP-complete. We will now show
that an analogous result holds for OTMs. Since we know that P∞ �=NP∞ from
Theorem 1, we can state it unconditionally. Also by Theorem 1, it will suffice for
proving an infinitary analogue of Ladner’s theorem to find a decidable problem
in NP∞\P∞. Such a problem will now be constructed by a diagonalization.

Such a problem will now be constructed by a diagonalization. We start with
some preliminary results that will be helpful in the construction. In the following,
KP denotes Kripke-Platek set theory, see e.g. [B].

Lemma 1. If M |= KP, then the well-founded part of M is admissible and thus
closed under ordinal exponentiation.

Proof. See [B], Corollary 8.5.

Proposition 1. For each infinite ordinal α, there is a subset of α2 that codes a
model of KP that has α in its well-founded part and moreover codes ι ∈ α by ι.

Proof. This can be achieved by first observing that there must be such a model
of the right cardinality (form the elementary hull of α+1 in some Lβ |= KP with
β > α, then use condensation) and then re-organizing the code, if necessary.

Lemma 2. Checking whether some x ⊆ α codes a model of a certain first-order
sentence φ is possible in polynomial time in α, in fact in time αω (in fact in
time αn when φ contains n quantifiers and occurrences of ∈). Hence, checking
whether a subset of an ordinal α codes a model of KP is possible in time αωω,
which is still polynomial in α.

Proof. This is done by exhaustively searching through the code for every quanti-
fier and evaluating the logical connectives in the obvious way (technically, evalu-
ating the relation needs another searching through the code, which is the reason
for the exponent mentioned above).

We refer to [OTM], Lemma 6.1 for a more detailed description of the
algorithm.

Theorem 2. There is a decision problem X ⊆ {0, 1}∗∗ which is NP∞, but nei-
ther P∞ nor NP∞-complete. In fact, X ∈ NP∞ \P∞ can be chosen to be OTM-
decidable.

Some Observations on Infinitary Complexity 121

Proof. We construct such a problem X ⊆ {0, 1}∗∗ by diagonalization. Let X :=
{x ∈ {0, 1}∗∗ : P|x|0(x) does not halt in ≤ |x||x|1

1 |x|1
many steps or does halt in that many steps but rejects (i.e. outputs 0)}.

It is easy to see that X is OTM-decidable: Given x ∈ {0, 1}∗∗, simply simulate
P|x|0(x) for |x||x|1

1 |x|1 many steps and then flip the output (i.e. accept if the
simulated computation rejects or does not halt, otherwise reject).

It is also clear that X is not in P∞: If Pk was an OTM-program that decides
X in time ≤ |x|αβ, let x ∈ {0, 1}∗∗ be such that |x| > max{α, β} and |x|0 = k;
then Pk(x) will give the wrong result by definition of X.

It remains to see that X is in NP∞. Consider the class

X ′ :=
{
(x, y) : x, y ∈ {0, 1}∗∗ ∧ ‘y ⊆ |x|2 codes a KP-modelM

with well-founded part of height > |x|’ ∧ ‘M believes that
P|x|0(x) does not halt in ≤ |x||x|1

1 |x|1 many steps or does halt in
≤ |x||x|1

1 |x|1 many steps but rejects (i.e. outputs0)’
}
.

Such a code exists by Proposition 1 above.
The statement just given is a first-order statement in the parameter x and

can be evaluated in time polynomial in |x| + |y|, which is polynomial in |x| as
|y| ≤ |x|2 by assumption. By Lemma 1, the computation within M will belong
to the well-founded part of M , and thus be an actual computation in V , so that
M will be correct about the result.

Hence X ′ belongs to P∞, and X, as the projection of X ′ to the first compo-
nent, belongs to NP∞.

Thus X is indeed an OTM-decidable (and thus NP∞-incomplete) problem
in NP∞\P∞, so X is as desired.

It was shown in [CLR] that P∞ �= NP∞. The above proof, only depending on
the fact that KP-models are closed under ordinal polynomials, actually shows
much more. For example, let us say that a class X ⊆ {0, 1}∗∗ is EXPTIME∞ if
and only if there are an OTM-program P , an ordinal α and an ordinal polynomial
p such that P decides X and works for ≤ αp(β) many steps on an input of length
β. Similarly, let X be EXPEXPTIME∞ if and only if this works with time bound
ααp(β)

. Then, by the same argument, one also obtains:

Corollary 1. EXPTIME∞ and EXPEXPTIME∞ are properly contained in
NP∞.

4 Speedup and Strictness of the ∞-exponent Time
Hierarchy

A well-known theorem from classical complexity theory is the speedup-theorem,
see e.g. [Hro]. This theorem says that, under certain mild conditions about the
function f , if 0 < c < 1 and there is a Turing program for deciding a certain lan-
guage within time or space bounded by f in the length of the input, then there
is another Turing program deciding this language in time or space bounded by

122 M. Carl

cf in the length of the input. This observation is crucial for classical complexity
theory, as it justifies the introduction of O(f)-classes for measuring complexi-
ties. The proof idea is to let the new machine work on a considerably enriched
alphabet, in which long strings of symbols of the original alphabet are condensed
into one symbol and thus processed in much fewer steps.

It is rather obvious that this approach will not work for infinitary machines:
First, the alphabet is restricted to {0, 1}; however, this is a formal limitation
that could be overcome by slight changes in the definition. More importantly,
such a compression of the alphabet will not have much of an effect, since a finite
time compression will not reduce the working time when it is a limit ordinal.

In fact, there are speedup theorems also for infinitary machines, such as the
speedup-theorem for Infinite Time Turing Machines by Hamkins and Lewis (see
[HL]). These appear in the context of clockable ordinals, but they give in a sense
only a much weaker speedup: Namely, if there is a program P that halts in α+n
many steps and 1 < n ∈ ω, then there is a program P ′ that halts in α + 1 many
steps. Note that this statement makes no reference to decision problems.

We will now show that there is in fact no analogue of the classical speedup-
theorem for OTMs by showing that there is a decision problem that is solvable
in running time α · 4, but not in running time α · 2.

Theorem 3. There is a decision problem L ⊆ Σ∗∗ such that L is decidable in
running time α · 4, but not in running time α · 2 (where α denotes the length of
the input).

Proof. We prove this by diagonalization. To this end, we consider the language
L ⊆ {0, 1}∗∗, where w ∈ {0, 1}∗∗ belongs to L if and only if the following holds:
Let w′ be the initial segment of w of length ω. Let i = 0 if w′ consists entirely of
1s, and let i be the length of the longest initial segment of w′ consisting entirely
of 1s otherwise. Now run Pi on input w for |w| · 2 many steps. If the output is
1, output 0, otherwise (i.e. if the output is different from 1 or there is no output
as the program didn’t halt in that time) output 1.

Claim 1: L is not OTM-decidable in time complexity α · 2.

For suppose that Pj was a program that decides L in running time bounded
by |w| · 2. Consider a word w of the form w = 11...1︸ ︷︷ ︸

j×
0v with |v| > ω. If Pj with

input w does not halt in < |w| ·2 many steps, it does not decide L in the desired
running time. Otherwise, its output will be wrong by definition of L.

Claim 2: L is OTM-decidable in time complexity α · 4.

To see this, we use a multitape OTM, i.e. an OTM with multiple (but finitely
many) tapes. Given w, we run through the first ω many symbols to determine
i. Then, we write the ith OTM-program to an extra tape, which will later on
direct the simulation of Pi on input w. Further, we write |w| many 1s to the initial

Some Observations on Infinitary Complexity 123

segments of each of two extra tapes T0, T1, filling the rest with 0s; these will serve
as a ‘stopwatch’ for our simulation. Now simulate Pi on w; each simulation step
will only take a bounded finite number c of computation steps, which depends
only on i. For each simulation step, move the head to the right first on T0 and,
when the head arrives at the first 0 of T0, continue on T1; when the right border
of T1 has been reached, stop the simulation.

The first phase needs ω + α many steps, which is α for α sufficiently large
(i.e. α ≥ ω2). The simulation then takes cα · 2 many steps. Writing α = ωα′ + k,
k ∈ ω, we have c(ωα′+k)·2 = (cωα′+ck)·2 = (ωα′+ck)·2 = ωα′ ·2+ck2 < α·4,
so that we get < α · 4 many steps in total.

Remark: As one can easily see from inspecting the proof, neither the choice
of the constants nor of the function α 	→ α instead of e.g. α 	→ α2 makes a
difference.

We now define a rather natural hierarchy on the ∞-polynomially decidable
decision problems.

For α ∈ On, let us say that a class X ⊆ {0, 1}∗∗ is Pα if and only if there is
an OTM-program Q and β ∈ On such that Q decides X and takes fewer than
γαβ many steps on an input of length γ.

Clearly, every Pα-class is also Pδ for α ≤ δ. The Pα-classification is thus a
stratification of the class P∞, which we name the ∞-exponent time hierarchy.

An easy adaptation of the argument used for Theorem 3 yields:

Corollary 2. The ∞-exponent time hierarchy is strict: If α < β and α is the
halting time of some OTM-program, there is a decision problem X ⊆ {0, 1}∗∗

which is Pβ, but not Pα.

Proof. Given w, define i = i(w) as in the proof of Theorem 3. Now run Pi on
input w for |w|α|w| many steps. If Pi halts in that many steps with output 1,
then let w /∈ L, otherwise w ∈ L.

By the usual argument, L is not decidable in time bounded by the function
xα · γ for any γ ∈ On: To see this, just assume that Pj is an OTM-program that
decides L within that time bound and pick w ∈ {0, 1}∗∗ such that i(w) = j and
|w| > γ.

To see that L belongs to Pβ , notice that, for |w| > α, we have |w|β · 2 >
|w|α|w|. Thus, |w|β · ω steps suffice to simulate Pi(w) for |w|α|w| many steps on
input w and flip the output, which decides L. As α is by assumption the halting
time of some OTM-program, the time bound |w|α|w| is OTM-computable in the
input w.

5 Conclusion and Further Work

In many respects, the complexity theory of OTMs resembles classical complexity
theory; typical results from classical complexity theory also hold in the OTM-
concept and can often be proved by adaptations of the classical arguments to

124 M. Carl

the infinitary framework. This suggests studying infinitary analogues of decision
problems considered in classical complexity theory and to see what their OTM-
complexity is. In [CLR], this was done for SAT, and it turned out that the
usual proof of the Cook-Levin theorem could be adapted to yield an analogue
for OTMs. However, things do not always go that smoothly: For example, while
the independent set problem (i.e. determining whether a given graph G has
a subset of n vertices, no two of which are connected) has a straightforward
infinitary analogue (which is obtained by replacing n with an arbitrary ordinal),
the classical reduction of SAT to the independent set problem no longer works in
the infinitary context since infinitary sets can have infinitary subsets of the same
size. More precisely, the classical reduction works by forming a graph based on a
propositional formula φ given in disjunctive normal form by introducing a vertex
for each occurrence of a literal and linking two vertices with an edge if and only
if the corresponding literal occurences belong to the same clause or contradict
each other. Now an independent set the cardinality of which is the number of
clauses induces a satisfying assignment for φ and vice versa. However, in the
infinitary case, e.g. given a formula φ with ω many clauses, one can pick one
literal from countable many clauses and make it true without thereby defining
a satisfying assignment for φ, since we might have skipped some clauses.

This motivates the general, if somewhat vague question: What is it about
decision problems in the classical sense that allows an infinitary generalization?
Is there a general transfer principle?

On the other hand, we plan to explore the complexity classes of problems
from infinitary combinatorics, such as the existence of infinite paths in a given
tree.

Acknowledgements. We thank Philipp Schlicht for checking our proof of Theorem 2.
We also thank our three anonymous referees for a considerable amount of constructive
comments on the exposition.

References

[B] Barwise, J.: Admissible sets and structures. Stud. Log. 37, 297–299 (1975)
[C14] Carl, M.: Randomness and degree theory for infinite time register machines

1. Computability 5, 181–196 (2016)
[CS] Carl, M., Schlicht, P.: Infinite computations with random oracles. Notre

Dame J. Form. Log. 58(2), 249–270 (2017)
[CS2] Carl, M., Schlicht, P.: Randomness via infinite computation and effective

descriptive set theory. J. Symbol. Log. (to appear)
[DHS] Deolalikar, V., Hamkins, J., Schindler, R.: P �= NP ∩ co − NP for infinite

time turing machines. J. Log. Comput. 15, 577–592 (2005)
[CLR] Carl, M., Löwe, B., Rin, B.G.: Koepke machines and satisfiability for infini-

tary propositional languages. In: Kari, J., Manea, F., Petre, I. (eds.) CiE
2017. LNCS, vol. 10307, pp. 187–197. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-58741-7 19

[FG] Fortnow, L., Gasarch, B.: Two proofs of Ladner’s theorem. Online lecture
notes. http://oldblog.computationalcomplexity.org/media/ladner.pdf

https://doi.org/10.1007/978-3-319-58741-7_19
https://doi.org/10.1007/978-3-319-58741-7_19
http://oldblog.computationalcomplexity.org/media/ladner.pdf

Some Observations on Infinitary Complexity 125

[HL] Hamkins, J., Lewis, A.: Infinite time turing machines. J. Symbol. Log. 65,
567–604 (2000)

[HMS] Hamkins, J.D., Miller, R., Seabold, D., Warner, S.: Infinite time computable
model theory. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computa-
tional Paradigms, pp. 521–557. Springer, New York (2008). https://doi.
org/10.1007/978-0-387-68546-5 20

[Hro] Hromkovic, J.: Theoretische Informatik: Formale Sprachen, Berechen-
barkeit, Komplexitätstheorie, Algorithmik, Kommunikation und Kryp-
tographie. Springer, Wiesbaden (2011)

[HW] Hamkins, J., Welch, P.: P f �= NP f for almost all f . Math. Log. Q. 49(5),
536 (2003)

[ITRM] Koepke, P., Miller, R.: An enhanced theory of infinite time register
machines. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE
2008. LNCS, vol. 5028, pp. 306–315. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69407-6 34

[KS] Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion the-
ory. Ann. Pure Appl. Log. 160, 310–318 (2009)

[KT] Komjath, P., Totik, V.: Problems and Theorems in Classical Set Theory.
Springer, New York (2006). https://doi.org/10.1007/0-387-36219-3

[L] Löwe, B.: Space bounds for infinitary computation. In: Beckmann, A.,
Berger, U., Löwe, B., Tucker, J. (eds.) Logical Approaches to Computa-
tional Barriers. Lecture Notes in Computer Science, vol. 3988, pp. 319–329.
Springer, Berlin (2006). https://doi.org/10.1007/11780342 34

[ORM] Koepke, P., Siders, R.: Computing the recursive truth predicate on ordinal
register machines. In: Beckmann, A., et al. (eds.) Logical Approaches to
Computational Barriers. Computer Science Report Series, vol. 7, pp. 160–
169, Swansea (2006)

[OTM] Koepke, P.: Turing computations on ordinals. Bull. Symb. Log. 11, 377–397
(2005)

[Schindler] Schindler, R.: P �= NP for infinite time turing machines. Monatsh. Math.
138, 335–340 (2003)

[W1] Welch, P.: Eventually infinite time turing machine degrees: infinite time
decidable reals. J. Symb. Log. 65(3), 1193–1203 (2000)

[wITRM] Koepke, P.: Infinite time register machines. In: Beckmann, A., Berger, U.,
Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 257–266.
Springer, Heidelberg (2006). https://doi.org/10.1007/11780342 27

[Wi1] Winter, J.: Space complexity in Infinite Time Turing Machines. Master’s
thesis, Universiteit van Amsterdam (2007)

[Wi2] Winter, J.: Is P = PSPACE for infinite time turing machines? In: Archibald,
M., Brattka, V., Goranko, V., Löwe, B. (eds.) ILC 2007. LNCS (LNAI), vol.
5489, pp. 126–137. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03092-5 10

https://doi.org/10.1007/978-0-387-68546-5_20
https://doi.org/10.1007/978-0-387-68546-5_20
https://doi.org/10.1007/978-3-540-69407-6_34
https://doi.org/10.1007/978-3-540-69407-6_34
https://doi.org/10.1007/0-387-36219-3
https://doi.org/10.1007/11780342_34
https://doi.org/10.1007/11780342_27
https://doi.org/10.1007/978-3-642-03092-5_10
https://doi.org/10.1007/978-3-642-03092-5_10

Taming Koepke’s Zoo

Merlin Carl1(B), Sabrina Ouazzani2, and Philip Welch3

1 Fachbereich Mathematik und Statistik,
Universität Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany

merlin.carl@uni-konstanz.de
2 LACL, Universitè Paris-Est Crèteil, 61 avenue du Gènèral de Gaulle,

94010 Crèteil, France
sabrina.ouazzani@lacl.fr

3 School of Mathematics, University of Bristol, Clifton, Bristol BS8 1TW, UK
P.Welch@bristol.ac.uk

Abstract. For ordinals α and β, Koepke defined (α, β)-Turing machines
as Turing machines with tape length α and working time bounded above
by β. So far, their computational strength was determined for α = β
exponentially closed, α = β = On and (α, β) = (ω, On). In this paper,
we determine the set of (α, β)-writable subsets of α when α is multiplica-
tively closed and β > α is admissible. This answers some open questions
by Koepke in [5].

1 Introduction

In [2], Hamkins and Lewis introduced Turing machines which run along an ordi-
nal time axis, while ‘keeping’ the tape length ω. Soon afterwards, the prospects of
expanding the tape length as well were considered, along with the idea of restrict-
ing the working time to a certain ordinal. In this way, one obtains Koepke’s
(α, β)-Turing machines, which have a tape of length α while their working time
is bounded by β. We are thus facing a family of On × On many models of com-
putation, which we label ‘Koepke’s Zoo’.

We briefly describe the mechanics of (α, β)-Turing machines; a detailed
account can be found in [8].

An (α, β)-Turing machine ((α, β)-TM, (α, β)-machine) has an input tape,
an output tape and a scratch tape, each of length α ∈ On, each cell of which
can contain 0 or 1. When α is closed under the Cantor pairing function, which
will always be the case in this paper, one may grant the machine finitely many
scratch tapes instead of a single one without changing any of the results in this
paper; we will make silent use of this where convenient. Programs for (α, β)-
TMs are regular Turing programs. We imagine the inner states occurring in a
program indexed uniquely with natural numbers. The computation of such a
program on an (α, β)-TM works by carrying out the usual Turing operation at
successor ordinals. When the read-write-head is commanded to move to the left
while currently occupying a cell indexed by a limit ordinal, it is reset to position
0. At a limit time δ < β, the inner state is determined as the inferior limit of
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 126–135, 2018.
https://doi.org/10.1007/978-3-319-94418-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_13&domain=pdf

Taming Koepke’s Zoo 127

the sequence of earlier inner states (which, as we recall, are labelled with natural
numbers). For ι < α, the content of the ιth tape cell at time δ is determined as
the inferior limit of the sequence of earlier contents of that cell. The head position
at time δ is also the inferior limit of the sequence of earlier head positions, if
this is <α. Otherwise, the head is reset to cell 0. A computation is considered
to be halting if the halting state is reached in <β many steps. Otherwise, it is
considered as non-halting. We will consider computations relative to parameters.
For a machine with an α-tape, a parameter is a finite sequence p ⊆ α which is
given to the machine by marking the cells with indices in p with 1.

The following cases have so far been considered:
(ω, ω)-machines are of course regular Turing machines. (ω,On)-machines

were invented by Kidder and introduced by Hamkins and Lewis in [2] as ‘Infinite
Time Turing Machines’ and were extensively studied e.g. in [1,2,11].

(α, α)-machines for admissible α were studied by Koepke and Seyfferth in [8]
and turned out to compute exactly the Δ1(Lα)-subsets of α. (On,On)-machines
are known as ‘Ordinal Turing Machines’, and it was shown by Koepke in [4]
that, if ordinal parameters are admitted, then they compute the constructible
sets of ordinals. Rin [9] considered parameter-free (α,On)-machines for arbitrary
α and showed that they exhibit a somewhat extravagant behaviour; for example,
there are α < α′ such that there are (α′,On)-incomputable subsets of α that are
nevertheless (α,On)-computable. Also, note that (α, β)-machines are equivalent
to (β, β)-machines for α ≥ β, as no cells with index ≥ β can be reached in fewer
than β many steps.

In this paper, we determine the computational strength for many of the
remaining machine models; more specifically, we show that, if α is multiplica-
tively closed (i.e. if γ, δ < α, then γ · δ < α) and β > α is admissible, then
the subsets of α that are computable by an (α, β)-machine with parameters (i.e.
finitely many ordinals <α) are exactly those contained in Lβ . This answers some
questions left open by Koepke in Sect. 3 of [5]. The analysis can be extended to
broader classes of ‘reasonably closed’ α and β, which, however, leads to some
extra technical complications, which we decided to avoid mainly for the sake of
readability.

2 The Computational Strength of (α, β)-Turing Machines

A crucial concept in the analysis of (α, β)-machines is that of the ‘clockability’
of an ordinal. We say that γ is α-clockable if and only if there are an α-Turing
machine program P and a parameter p such that P (p) runs for exactly γ + 1
many steps.

A subset A ⊆ α is (α, β)-writable if and only if there are an α-Turing machine
program P and a parameter p such that P (p) halts in <β many steps with (the
characteristic function of) A on the output tape. If this holds for some β ∈ On,
then A is α-writable.

An ordinal δ is α-writable if and only if there is an α-writable A ⊆ α which
codes a well-ordering of length δ. Here, coding of well-orderings via subsets of α

128 M. Carl et al.

works as follows: Let p denote Cantor’s ordinal pairing function. Then x ⊆ α is
a code for the ordinal δ if and only if there is a bijection f : α → δ such that
x = {p(ι, ι′) : f(ι) ∈ f(ι′)}. Note that multiplicative closure of α implies closure
under p.

In the following, when we say that a program P halts, diverges, has a certain
output etc. without specifying an input, we mean that P is run on the empty
input, i.e. tapes that initially contain 0s everywhere.

It is not hard to see that, for any α, the α-writable ordinals form a downwards
closed set: If c ⊆ α codes an ordinal η and β < η, then there is ι < α such that
restricting c to elements smaller than ι in the sense of c yields a code for β;
this restriction is easily computable in the parameter ι. However, the same does
not hold for the clockable ordinals: It is shown in [2] that the set of ω-clockable
ordinals has ‘gaps’, i.e. there are ω-clockable ordinals β, η with β + ω < η such
that no ξ ∈ [β, η) is ω-clockable. For machines with tape length α, we call such
intervals ‘α-clockable gaps’. If in this situation (β′, η) contains an α-clockable
ordinal for every β′ < β, then β is called the ‘start of the gap’. The ordinal δ
‘belongs to the gap [β, η)’ if and only if β < δ < η.

size of the [β, η) gap

· · ·

· · ·

· · ·

0

β

η

λ

Fig. 1. A [β, η) gap in the ω-clockable ordinals.

Let us observe at this point that αι is α-clockable for any ι ∈ ω + 1, which
will become relevant later on.

Lemma 1. If α is additively closed, then αι is α-clockable for every ι ∈ ω + 1.

Proof. We show inductively that αn is α-clockable for any n ∈ ω. To this end,
we show how to obtain, recursively in n ∈ ω, an α-machine program Qn that
clocks αn. It then follows that there is a program Q that runs all Qi one after
another and will thus clock αω.

Taming Koepke’s Zoo 129

The Q1 case is dealt with by Rin’s ‘LoopAround’ algorithm, see [9]: Clearly,
α is α-clockable by a program that simply moves the head to the right until it
is back at the starting position (which is e.g. the unique cell marked with 1).

Now suppose that Qn is given; then Qn+1 works as follows: Until the end of
the tape is reached, place 0 11 · · · 1

︸ ︷︷ ︸

(n+1)×
to the right of the supremum ρ of all blocks

of (n + 1) successive 1s on the working tape. Then run Qn on the rest of the
tape (when the head is reset to position 0 during the run of Qn, it is moved to
position ρ before Qn is continued).

By multiplicative closure of α and the inductive assumption, this will take
αn+1 + 1 many steps and thus clock αn+1.

Note that Qi can easily be obtained recursively from i for i ∈ ω. We can thus
run all Qi in succession, which will clock αω.

We fix some notation. If α is an ordinal, then α+ denotes the smallest admis-
sible ordinal > α. If α, β ∈ On and β belongs to an α-clockable gap, then gapα(β)
denotes the ordinal that starts this gap; otherwise, gapα(β) = β. When α = ω,
the subscript is dropped. We also fix natural enumerations (Pi : i ∈ ω) and
(φi : i ∈ ω) of the Turing programs and the ∈-formulas, respectively.

2.1 Tape Length ω

We start by determining the computational strength of (α, β)-machines in the
case that α = ω and β > ω is admissible. This already reveals the main structure
of the argument.

We will need the following facts about (ω,On)-machines, which are better
known as ITTMs:

Theorem 1 [Welch, see [11]]. There are ordinals λ, ζ, Σ such that x ⊆ ω is
ITTM-writable if and only if x ∈ Lλ. Moreover, every ITTM will either halt in
<λ many steps or cycle from time Σ on, repeating its sequence of configurations
between ζ and Σ over and again. Finally, (λ, ζ,Σ) is characterized as the lexically
minimal triple such that Lλ ≺Σ1 Lζ ≺Σ2 LΣ.

Theorem 2. No admissible ordinal is ω-clockable. [Hamkins and Lewis, see [2]]
Conversely, if β starts an ω-clockable gap, then β is admissible. [Welch, see [11]]

Theorem 3 [See [11], Lemma 48 and [1], Remark after Lemma 2]. Suppose that
α is ω-clockable. Then a code for α is ω-writable in exactly α many steps and a
code c for Lα is ω-writable in <α+ many steps.

Using these ingredients, we prove:

Theorem 4. Let β > ω be admissible. Then x ⊆ ω is (ω, β)-writable if and only
if one of the following holds:

(i) β does not belong to an ω-clockable gap and x ∈ Lβ.

130 M. Carl et al.

(ii) β does belong to an ω-clockable gap started by some β′ and x ∈ Lβ′ . Thus,
x ⊆ ω is (ω, β)-writable if and only if x ∈ Lgapω(β).

Proof. First, note that the definition of the computation of an ω-tape Turing
machine is absolute between V and the constructible hierarchy; also, by an easy
induction, the computation up to time γ will be contained in Lγ+ω. Thus, if
x ⊆ ω is (ω, β)-writable, then it is written at some time γ < β; the whole
computation, and hence x, will thus be contained in Lγ+ω ⊆ Lβ . (This requires
only that γ + ω < β for all γ < β, i.e. that β is a multiple of ω2.)

If β belongs to an ω-clockable gap started by β′, then no ITTM-program will
halt between times β′ and β; the interval [β′, β) is ‘empty time’ as far as ITTM-
Turing machine computations are concerned. Thus x ⊆ ω is (ω, β)-writable if
and only if it is (ω, β′) writable and (ii) reduces to (i).

Now suppose that β does not belong to an ω-clockable gap. It remains to
show that every x ∈ Lβ is (ω, β)-writable. As β does not belong to a gap, there
must be cofinally many ω-clockable ordinals below β. In particular then, there is
an ω-clockable ordinal γ < β such that x ∈ Lγ . By Theorem 3, the ω-clockability
of γ implies that a code c for Lγ is writable in <γ+ ≤ β many steps. In the code
for Lγ , x is coded by some natural number i which can be given to the program
as a parameter.1 Now, given i and c, the code x can easily be computed in time
<β, thus x is (ω, β)-writable.

2.2 The General Case

We now turn to the general case. In this section, α is always multiplicatively
closed (and thus a fortiori closed under Cantor pairing) and β is always admissi-
ble and strictly greater than α. In contrast to the last section, we work in Jensen’s
J-hierarchy (see [3]) rather than in the Gödel-hierarchy. In addition to allowing
more direct generalizations of the relevant results from [1] to the α-tape case,
this has a number of technical advantages, such as the existence of uniformly and
parameter-freely Σ1-definable Σ1-Skolem functions, i.e. maps f : ω × J<ω

γ → Jγ

that map the pair (i,p) to some (in fact, the <L-minimal) witness for the ith
Σ1-formula in the parameter p (see e.g. Theorem 1.15 of [10]). Also recall from
[3] that, for ωα = α, we have Lα = Jα; thus, for reasonably closed ordinals such
as α and β, but also the ordinals λ(α), ζ(α) and Σ(α) defined below, this does
not make a difference; in these cases, we will prefer to state our results in terms
of the better-known L-hierarchy.

We start by showing that an (α, β)-machine can produce a code for Lα. To
this end, we introduce two-dimensional ordinal machines as an auxiliary concept.

Definition 1. An α×α-Turing machine has a two-dimensional ‘tape’ of dimen-
sion α×α. The head is initially located at position (0, 0). The head can be moved

1 This, of course, is unnecessary, as every natural number is ITTM-writable. We pro-
ceed in this way for the sake of analogy with the general case, in which it is no longer
the case that there is a parameter-freely writable code for each ordinal below the
tape length.

Taming Koepke’s Zoo 131

to the right, to the left, up and down. The programs are like regular Turing pro-
grams, with the modification that ‘up’ and ‘down’ are added to the legitimate head
movements. Here, going ‘up’ from position (δ, γ) results in position (δ, γ + 1),
while going ‘down’ from (δ, γ + 1) leads to (δ, γ). If δ is a limit ordinal, moving
the head to the left (resp. downwards) from position (δ, γ) (resp. (γ, δ)) results in
the head location (0, γ) (resp. (γ, 0)). At limit times, the head position is deter-
mined by coordinate-wise inferior limits (or resets to 0, if the limit is α). A set
A ⊆ α is (α × α, β)-writable if and only if there is an α × α-program P that,
when run on the empty ‘tape’, halts in <β many steps with the characteristic
function of A on the portion {(0, ι) : ι < α} of its ‘tape’.

Lemma 2. If A ⊆ α is (α × α, β)-writable, then it is (α, β)-writable.

Proof. This is proved by simulating α × α-machines by α-machines. The simu-
lation works by splitting the α-tape into α many disjoint portions via Cantor
pairing, each representing one ‘row’ of the two-dimensional tape. The details are
omitted for the sake of brevity.

Lemma 3. There is an (α, β)-writable code x ⊆ α for Lα = Jα.

Proof. This can be seen by using an α × α-machine to build up the L-hierarchy
iteratively, writing a code for Lγ in the (γ + 1)th ‘row’ of the tape for γ < α
and finally one for Lα on the 0th row. It can be checked that this works in <α+

many steps, so that the claim follows from the last lemma. The details are again
omitted.

Definition 2. Let α, γ ∈ On. Then Σ2-Th(Jγ , α) denotes the set of pairs
([φ],p), where [φ] is (the Gödel number of) a Σ2-formula and p ⊆ α is a finite
sequence such that Jγ |= φ(p).

Lemma 4. Let c ⊆ α be an (α, β)-writable code for a structure (X,E), where E
is a binary relation on X. Then the elementary diagram T of (X,E) is (α, β)-
writable. In particular, this holds for Σ2-Th(Jγ , α) whenever Jγ has an (α, β)-
writable code.

Proof. This is an easy adaption of Lemma 4 of [8].

We now generalize Theorem 2.

Lemma 5. For any multiplicatively closed α ∈ On, there are ordinals λ(α),
ζ(α), Σ(α) such that a subset of α is writable by an (α,On)-Turing machine with
finitely many ordinal parameters <α if and only if it is contained in Lλ(α), it is
eventually writable by an (α,On)-Turing machine (i.e. every tape cell eventually
stabilizes at the correct value) if and only if it is contained in Lζ(α) and it is acci-
dentally writable by an (α,On)-tape Turing machine (i.e. it appears at some point
on the output tape, whether it stays there or not) if and only if it is contained in
LΣ(α). Moreover, λ(α) is the supremum of the halting times of (α,On)-Turing
machines with parameters. Finally, (λ(α), ζ(α), Σ(α)) is the lexically minimal
triple of ordinals such that λ(α) > α and Lλ(α) ≺Σ1 Lζ(α) ≺Σ2 LΣ(α).

132 M. Carl et al.

Proof. The proof is analogous to that of the λ-ζ-Σ-theorem, see [11].

We use the following version of a subclaim from the proof of Lemma 1 from
[1] (see also [12]). Here, h

Jβ

1 is the canonical Σ1-Skolem function for Jβ (see [3]);
the superscript β is dropped when it is clear from the context.

Lemma 6. Let α ∈ On, and let δ > α be a limit ordinal such that δ < Σ(α).
Furthermore, let φ(p) ≡ ∃x∀yψ(x, y,p) be a Σ2-formula, where ψ is Δ0 and
p ⊆ α is a finite sequence. Then Jδ |= φ(p) if and only if there is an n ∈ ω
such that, for all sufficiently large β < δ, we have that the following holds in Jβ:
There is γ with γ = 0 or Jγ ≺Σ1 Jβ such that Jγ |= φ(p) or h1(n, γ) exists and
Jβ |= ∀yψ(h1(n, γ),p).

Proof. The proof is analogous to that given in [1]; see also [12], Sect. 4.1.

Corollary 1. There is an α-machine program Plimit such that the following
holds:

Let δ > α be a limit ordinal such that δ < Σ(α), and let ̂Tδ := {(φ,p) : p ⊆
α ∧ φ ∈ Σ2 ∧ ∃β < δ∀γ < δ(β < γ → Jγ |= φ(p))}.

Then, given a subset of α coding ̂Tδ, Plimit writes a code for Σ2-Th(Jδ, α) in
α many steps.

Proof. For each Σ2-formula φ and each finite sequence p of ordinals in α, the
question whether Lδ |= φ(p) reduces, via Lemma 6, to the question whether
there is n ∈ ω such that a certain Σ2-formula φ′ with parameter p and n holds
in Jβ for all sufficiently large β < δ. The appropriate φ′ given by Lemma 6 is
recursive in φ and thus computable from φ in finitely many steps. Looking up
(φ′,p) in ̂Tδ is done by running to and reading out the appropriate cell of the
input tape, which takes <α many steps. This is done α many times. Searching
for an appropriate n ∈ ω requires iterating this ω many times. By multiplicative
closure of α, this takes α many steps in total.

We now work towards an α-tape version of the ‘theory machine’ in [1]. Intu-
itively, the theory machine is a program that writes codes of the Σ2-theories of
the levels of the J-hierarchy in a controllable amount of time.

Lemma 7. There are α-TM programs Plft (‘level from theory’) and Psucc such
that the following holds for every ρ < Σ(α):

(i) Given T := Σ2-Th(Jρ, α) as the input, Plft halts in <α2 · ω many steps and
outputs a code for Jρ.

(ii) Given T := Σ2-Th(Jρ, α) as the input, Psucc halts in <αω · 2 many steps
and outputs Σ2-Th(Jρ+1, α).

Proof. (i) We use the following Fact generalising Theorem 3 of [13]. For this we
let β0(α) be the least β > α with Jβ |= ZF−.

Fact (Uniform Σn-Skolem Functions). For every n < ω there is a single Σn-
definition of a partial function hn, which defines a Σn-Skolem function over any

Taming Koepke’s Zoo 133

〈Jγ ,∈〉 with γ < β0(α), in the sense that for any X ⊆ Jγ then h
Jγ
n “ω × (X ∪α)

is the least Σn elementary substructure of Jγ .

By our choice of ρ we have that ρ < β0(α). Taking n = 2 we see there is a
partial map h = h

Jγ

2 map of α onto Jγ . (Since Jγ |= “∀x(|x| ≤ α)” and any
τ ∈ h“ω × α is the range of an onto map fτ ∈ h“ω × α from α, we shall have
that h“ω ×α is transitive and so is some Jδ ≺Σ2 Jγ with δ ≤ γ. By our minimal
choice of ρ we must have δ = γ.) Now suppose we are given T . We have shown
that h is thus a partial function from α onto Jγ . Furthermore statements such
as “h(i, ξ) = \∈ h(i′, ξ′)” are included in T . Thus given the set of (i, ξ) so that
h(i, ξ) is defined, define the equivalence relation ∼ and equality relation E by:
h(i, ξ) = \∈ h(i′, ξ′) respectively, then this yields a model isomorphic to (Jγ ,∈)
and we are done.

(ii) Is an easy consequence of (i): Use Plft to compute a code c ⊆ α for Jγ

from T . Then compute a code c′ ⊆ α for Jγ+1 from c by successively computing
the intermediate S-levels and using Lemma 4 to evaluate the ∈-relations in these
levels. Finally, read off Σ2-Th(Jγ+1, α) from c′.

The following is an α-TM version of Theorem 4 of [1], there called as the
‘theory machine’:

Lemma 8. Let β > α be admissible. There are an α-TM program Ptheory and
an α-clockable ordinal γ < β with the following property: For any τ < Σ(α),
Ptheory contains Σ2-Th(Jτ , α) on its output tape at time γ + αω · 2 · τ .

Proof. We reserve the first two tape cells as ‘flags’. Initially, they will be set to
the contents 0 and 1. By Lemma 3, a code for Jα is (α, β)-writable; let γ < β be
the halting time of the respective program, then γ is clearly α-clockable. Now,
when Σ2-Th(Jδ, α) is given on the output tape at time τ , we use Psucc to write
Σ2-Th(Jδ+1, α) on the output tape; in parallel, we clock αω ·2 and continue with
computing Σ2-Th(Jδ+2, α) from Σ2-Th(Jδ+1, α) only after the clocking program
has halted. Whenever a new Σ2-Th(Jδ, α) has been written, the contents of the
flag cells are flipped. The flag cells will thus have equal content if and only if
the order type of the sequences of theories so far computed is a limit ordinal
δ, in which case we use Plimit to compute Σ2-Th(Jδ, α) from the ‘limit theory’
currently on the output tape. Then, we use the clocking program to wait for αω2
many steps to ensure that the theory is not overwritten ‘too early’.

Thus, we have at least the following α-version of ‘quick writing’:

Lemma 9. If τ is a halting time of an α-program P with parameters p, then a
code for some Jγ with γ ≥ τ is α-writable in time <τ+ in the parameter p.

Proof. We run the program Ptheory. The statement that P (p) has halted is Σ1

in the parameter p. Thus, given the parameter p, it can be read off from Σ2-
Th(Jγ , α) whether P (p) has halted at time γ. As soon as this happens, Plft

is applied to the content of the output tape (which will be Σ2-Th(Jγ , α) for
some γ with ωγ > τ) to obtain a code for some J-level with index ≥ τ . By the
estimates given on the running time of Ptheory and Plft, this takes place in time
well before τ+.

134 M. Carl et al.

Theorem 5. For any multiplicatively closed α ≥ ω and any admissible β > α,
if β does not belong to an α-clockable gap, then the subsets of α which are (α, β)-
writable with finitely many ordinal parameters <α are exactly those contained
in Lβ = Jβ. If β belongs to a gap started by γ, then it is the set of those in
Lγ = Jγ .

Thus, the (α, β)-writable subsets of α are exactly those in Lgapα(β).

Proof. The case that β belongs to a gap is reduced to the case where it does not
as in the proof of Theorem4. So let us now assume that β does not belong to a
gap, so that the α-clockable ordinals are cofinal in β.

That the (α, β)-writable subsets of α (with parameters) are contained in Lβ

is shown as in the proof of Theorem4.
Thus, let A ⊆ α be contained in Jβ . Pick γ < β such that A ∈ Jγ . By

Lemma 9, a code c for some Jδ with δ ≥ γ can be written in time <β. From c,
one can write A, as it is coded in the code for Lγ by some ordinal ι < α, which
in turn we can give to the machine as a parameter. Thus A is (α, β)-writable.

3 Conclusion and Further Work

By the results in this paper, the missing fields in the table given on p. 8 of [5] can
be filled out (new results are written in boldface and marked with an asterisk):

Tape length ω Tape length α multiplicatively
closed

Tape length On

Time ω Δ1(Lω) = Δ0
1 (Folk-

lore)
Δ1(Lω) = Δ0

1 (Folklore) Δ1(Lω) = Δ0
1

(Folklore)

Time β admis-
sible

∗P(ω) ∩ Lgapω(β) Δ1(Lmin(α,β)) if β ≤ α
and α is exponentially
closed (Koepke, Seyfferth)
∗Lgapα(β) ∩ P(α) if β > α

Δ1(Lβ) (Koepke,
Seyfferth)

Time On P(ω) ∩ Lλ (Hamkins,
Lewis, Welch)

∗P(α) ∩ Lλ(α) P(Ord) ∩ L
(Koepke)

A natural next question concerns the notions of eventual and accidental
writability associated with tape models of infinitary computability (see e.g. [2]).
What are the sets of eventually and accidentally writable subsets of α for an
(α, β)-TM?

Also, the arguments in this paper can probably be applied to work for weaker
closure conditions on α than multiplicative closure: With some extra effort, the
closure condition can probably be removed altogether. It might also well be that
it is sufficient to require that the time bound β is exponentially closed rather
than admissible.

In contrast, a question left wide open by the above is the strength of (α, β)-
TMs without ordinal parameters, which are basically a time-bounded version of
the machines considered in [9].

Finally, we will in further work consider the (α, β)-variants of the machine
model based on register machines, such as Koepke’s Infinite Time Register

Taming Koepke’s Zoo 135

Machines (ITRMs, [6]) and Ordinal Register Machines (ORMs, [7]). We con-
jecture that, for appropriately closed α and admissible β > α, the (α, β)-register
machine computable subsets of α will be those in Lmin{α+ω,β}, where α+ω denotes
the smallest limit of admissible ordinals > α (the arguments in [6] can easily be
adapted to show that this is in fact an upper bound).

References

1. Friedman, S., Welch, P.: Two observations concerning infinite time Turing
machines. In: Dimitriou, I. (ed.) BIWOC Report, pp. 44–47. Hausdorff Centre
for Mathematics, Bonn (2007)

2. Hamkins, J.D., Lewis, A.: Infinite time turing machines. J. Symb. Log. 65(2),
567–604 (2000)

3. Jensen, R.: The fine structure of the constructible hierarchy. Ann. Math. Log. 4,
229–308 (1972)

4. Koepke, P.: Computing a model of set theory. In: Cooper, S.B., Löwe, B., Toren-
vliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 223–232. Springer, Heidelberg
(2005). https://doi.org/10.1007/11494645 28

5. Koepke, P.: Ordinal computability. In: Ambos-Spies, K., Löwe, B., Merkle, W.
(eds.) CiE 2009. LNCS, vol. 5635, pp. 280–289. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03073-4 29

6. Koepke, P., Miller, R.: An enhanced theory of infinite time register machines. In:
Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp.
306–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-
6 34

7. Koepke, P., Syders, R.: Computing the recursive truth predicate on ordinal register
machines. In: Beckmann, A., et al. (eds.) Logical Approaches to Computational
Barriers. Computer Science Report Series, Swansea, vol. 7, pp. 160–169 (2006)

8. Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion theory. Ann.
Pure Appl. Log. 160, 310–318 (2009)

9. Rin, B.: The computational strengths of α-tape infinite time turing machines. Ann.
Pure Appl. Log. 165(9), 1501–1511 (2014)

10. Schindler, R., Zeman, M.: Fine structure. In: Foreman, M., Kanamori, A. (eds.)
Handbook of Set Theory, pp. 605–656. Springer, Dordrecht (2010). https://doi.
org/10.1007/978-1-4020-5764-9 10

11. Welch, P.: Characteristics of discrete transfinite time turing machine models: halt-
ing times, stabilization times, and normal form theorems. Theoret. Comput. Sci.
410, 426–442 (2009)

12. Welch, P.: Some observations on truth hierarchies. Rev. Symb. Log. 7(1), 1–30
(2014)

13. Welch, P.: Weak systems of determinacy and arithmetical quasi-inductive defini-
tions. J. Symb. Log. 76(2), 418–436 (2011)

https://doi.org/10.1007/11494645_28
https://doi.org/10.1007/978-3-642-03073-4_29
https://doi.org/10.1007/978-3-540-69407-6_34
https://doi.org/10.1007/978-3-540-69407-6_34
https://doi.org/10.1007/978-1-4020-5764-9_10
https://doi.org/10.1007/978-1-4020-5764-9_10

Online Computability and Differentiation
in the Cantor Space

Douglas Cenzer1(B) and Diego A. Rojas2

1 Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville,
FL 32611-8105, USA
cenzer@ufl.edu

2 Department of Mathematics, Iowa State University, 411 Morrill Road,
396 Carver Hall, Ames, IA 50011-2104, USA

darojas@iastate.edu

Abstract. This paper investigates a notion of differentiation for func-
tions on the Cantor space. We study the existence and complexity of
this derivative, particularly for online and computable online functions.
It is shown that a random online function has no derivative at any com-
putable point. It is shown that if a computable online function F has
derivate m > 0 at a weakly 1-random point, then F has derivative m on
a set of positive measure. We also explore the family of online functions
on the Cantor space which represent real-valued functions.

1 Introduction

The interaction between computable analysis and algorithmic randomness has
been very productive in recent years. Following the introduction of the concept of
algorithmically random sequences by Martin-Löf [10], notions have been devel-
oped for random sets and functions. Barmpalias et al. [1] defined the random
closed sets on the Cantor space 2N, and later extended their work to random
continuous functions [2] on 2N. The connection between random closed sets and
capacities has been developed in [4,5]. The latter paper examined the notions
of online functions on 2N, and in particular of computable and random online
functions. Brattka et al. [3] showed in 2016 that a real number z is computably
random if and only if each nondecreasing computable function from [0, 1] to R

is differentiable at z.
The computability and complexity of differentiability has been studied going

back to Myhill [11], who constructed in 1971 a computable real function with a
derivative which is continuous but not computable. Cenzer and Remmel [6] gave
an enumeration F0, F1, . . . of the (partial) computable real functions and showed
that the index set of the computably differentiable functions is Σ0

3 complete, the
index set of the continuously differentiable functions is Π0

3 complete, and the
index set of the everywhere differentiable functions is Π1

1 complete. Pour-El and
Richards [12] defined a computable ordinary differential equation which possess
no computable solution. Heinonen wrote a survey [8] on nonsmooth calculus
concerned with differentiation and integration on general “nonsmooth” spaces.
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 136–145, 2018.
https://doi.org/10.1007/978-3-319-94418-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_14&domain=pdf

Online Computability and Differentiation in the Cantor Space 137

Cenzer and Porter discussed integrals of random functions on 2N in [5]. In
the present paper, we develop a notion of differentiation for online continu-
ous functions on 2N and make a connection with algorithmic randomness. In
particular, we show that a random online function is not differentiable at any
computable point, and we show that if an online computable function F has
derivative F ′(A) = m > 0 at any weakly one-random point, then F ′(X) = m on
a set of positive measure.

We outline the paper in the following way:
Section 2 introduces the necessary definitions and background that will be

used throughout the paper. A function F on 2N is said to be online continuous
if the first n values of the output Y = F (X) are determined by the first n
values of the input X; F is online computable if there is a program to compute
Y (n) from X(0), . . . , X(n). In addition, we define reducibility notions in the
arithmetical hierarchy and the effective Wadge hierarchy of sets that will be
used in the discussion on computability and complexity of derivatives in 2N.

Section 3 gives some basic results about online functions and introduces the
notion of the derivative of a function on 2N which we are exploring in the paper.
Given the standard distance d(A,B) = 2−n−1 where n is the least such that
A(n) �= B(n), we let

F ′(A) = lim
X→A

d(F (X), F (A))
d(X,A)

,

if this exists. We also look at the connections between functions on 2N and
functions on R. We show that certain classes of real-valued functions can be
represented by online functions. If an online function F on 2N represents a real
function Φ : [0, 1] → [0, 1], then Φ satisfies a Lipschitz condition and is therefore
differentiable almost everywhere.

Section 4 contains a discussion on the complexity of sets in relation to the
derivatives of computable online functions on 2N. We also give insight as to the
computability of the derivative of a computable online function. We show in
particular that for any online computable function F , {X : F ′(X) = 0} is a Π0

3

class and that for any computable A ∈ 2N, the set of (representations for) online
continuous functions F such that F ′(A) = 0 is lightface Π0

3 complete. We give
examples to show that the derivative of an online computable function F need
not be continuous even when F ′ is defined everywhere.

Section 5 considers the existence of the derivative for random functions and
for random inputs. We prove in particular that a random online function is not
differentiable at any computable point.

In Sect. 6, we consider further the representation of real functions by online
functions on 2N. We show that a linear function Φ(r) = mr + b on [0, 1] with
m �= 0 may be represented by an online function if there exists n such that
m = ±2−n and there exists k such that b = k/2n+1. For the converse direction,
we show that if Φ = mr+b is represented by an online function, then m = ±2−n

for some n and b = k/22n for some k. We show that if Φ is represented by
an online function, then |Φ(r) − Φ(s)| ≤ |r − s| for all reals r, s so that Φ is
differentiable almost everywhere and, furthermore, |Φ′(r)| ≤ 1 whenever it exists.

138 D. Cenzer and D. A. Rojas

Many proofs are omitted due to page limitations. Details will be given in a
planned full version of the paper.

2 Background

Some definitions are needed for the discussion of closed and open sets and con-
tinuous functions on the space 2N. The space 2N may be viewed as a metric
space with the distance d(X,Y) between two distinct elements given by 2−n−1,
where n is the least such that X(n) �= Y (n). Then for any X and any n, the basic
open set {Y : d(X,Y) < 2−n} is the interval [[X�n]] = {Y : Y �n = X�n}. An
alternate metric may be given by letting d2(X,Y) =

∑{2−n−1 : X(n) �= Y (n)}.
Note that d(X,Y) ≤ d2(X,Y) ≤ 2d(X,Y), so that d and d2 induce the same
topology.

A continuous function F on 2N has a representation f : {0, 1}∗ → {0, 1}∗

such that

(a) For all strings σ � τ , f(σ) ⊆ f(τ);
(b) (∀n)(∃m)(∀σ ∈ {0, 1}m)|f(σ)| ≥ n.

Then for Y = F (X), we have Y =
⋃

m f(X�m).
A function F is said to be online continuous if it has a representation g with

|g(σ)| = |σ| for all strings σ; F is said to be online computable if the function g
is computable. Alternatively, we can represent F by the function f : {0, 1}∗ →
{0, 1}, where f(σ) = g(σ)(|σ|−1). Then g(σ�0) = g(σ)�f(σ�0). We will often
use this function f to represent an online function F . Since there is a computable
enumeration of {0, 1}∗ in order first by length and then lexicographically, it
follows that an online continuous function has a representation in 2N. The online
function F is said to be online 1-random if this representation is a 1-random
real, and similarly for other notions of randomness. Online random functions
were studied by Cenzer and Porter in [5]. The general notions of online random
continuous functions and closed sets were developed by Barmpalias et al. in [1,2].

A real X ∈ 2N is said to be weakly 1-random, or Kurtz random, if it does not
belong to any Π0

1 class of measure 0. X is said to be Martin-Löf random if for
every effective sequence S1, S2, . . . of c.e. open sets with μ(Sn) ≤ 2−n, x /∈ ⋂

n Sn

(where μ is the uniform measure on 2N). This can be straightforwardly extended
to the space {0, 1, 2}N or kN for any finite k.

We want to consider the arithmetical complexity of subsets of N as well as the
effective Wadge complexity of subsets of 2N. For subsets A and B of N, we say
that A is many-one reducible to B, written A ≤m B, if there is a computable
function φ such that, for all n, n ∈ A ⇔ φ(n) ∈ B. Then we say that B is
Π0

2 complete if A ≤m B for every Π0
2 set. Similar definitions apply for other

complexity classes. It is well-known that {e : We is infinite} is Π0
2 complete and

that {e : We is cofinite} is Σ0
3 complete. See [14] for these and other so-called

index set results.
For subsets C,D of 2N, we say that C is effectively Wadge reducible to D,

written C ≤w D, if there is a computable continuous function Φ such that, for all
X, X ∈ C ⇔ Φ(X) ∈ D. Then we say that D is lightface Π0

2 complete if C ≤w D
for every Π0

2 class. Similar definitions apply for other complexity classes.

Online Computability and Differentiation in the Cantor Space 139

Here are results from the folklore of this area that we will need. These can be
found in [9], pp. 178–179. First, the set LI = {X ∈ NN : limn X(n) = ∞} is Π0

3

complete. Second, the class D of all X ∈ 2N such that {n : X(n) = 1} is infinite,
is lightface Π0

2 Wadge complete. Finally, the class {X ∈ 2N : X is cofinite} is
Σ0

2 complete.

3 Continuity and Differentiability on 2N

Here we want to consider a notion of differentiability for functions on 2N. We
define our derivative as follows:

Definition 1. Let F : 2N → 2N be a function. Then the derivative F ′(A) at a
point A ∈ 2N is the limit

lim
X→A

d(F (X), F (A))
d(X,A)

if this exists, and then we say that F is differentiable at A. If F is differentiable
for all A, we say F is differentiable.

If this definition were applied to real functions Φ, one would obtain |F ′(A)|,
since on the real line d(X,A) = |X − A|.

Note that for the standard metric d, the distance d(U, V) between distinct
U, V ∈ 2N can only be of the form 2−k−1 for some k. Also, for a function F on
2N, d(F (X), F (Y)) ≤ d(X,Y), so that F ′(A) can only equal 0, 1, or 2−k−1 for
some k. When F ′(A) = 2−k, this means that in the limit, when X begins to dis-
agree with A, it takes exactly k steps until F (X) begins to disagree with F (A).

Example 2. Let F (X) = (0,X(0),X(1), . . .). It is clear that d(F (X), F (A)) =
1
2d(X,A), and so F ′(A) = 1

2 for all A ∈ 2N. Now we may consider the Choquet
integral G : 2N → [0, 1] of the constant function 1

2 mapping 2N to [0, 1] which
will be G(X) = 1

2r(X) and may be represented by F .

A key result for real continuous functions Φ is that Φ is constant if and only
if Φ′(r) = 0 for all reals r. Certainly a constant function on 2N will have deriva-
tive zero at all points. In the Cantor space, however, we can have a continuous
function with a range of exactly k points for any finite k. Thus, we consider the
following definition.

Definition 3. The function F : 2N → 2N is almost constant if there is a finite
set S ⊆ 2N such that for all X, F (X) ∈ S. If F is an online function with
representative f as above, this means that there is some n such that for all
σ of length |σ| ≥ n, f(σ�0) = f(σ�1). Note that F is constant if for all σ,
f(σ�0) = f(σ�1).

Proposition 4. If the online function F : 2N → 2N is almost constant, then
F ′(A) = 0 for all A ∈ 2N.

Somewhat surprisingly, this result is not reversible, as seen by the following
example.

140 D. Cenzer and D. A. Rojas

Example 5. Define the online function F by F (X) = 0X(0)0X(1)0X(2)0.... It
is easy to check that if d(X,A) = 2−n−1, then d(F (X), F (A)) = 2−2n−1, so that

d(F (X), F (A))
d(X,A)

= 2−n,

and it follows that F ′(A) = 0. However, F is not almost constant and is in fact
one-to-one.

Here is an online computable function which is nowhere differentiable.

Example 6. Let F (X) = (X(0), 0,X(2), 0,X(4), 0, . . .) and fix a point A ∈ 2N.
For each n, let Xn = (A(0), A(1), . . . , A(2n − 1), 1 − A(2n), 0, 0, . . .) and let
Yn = (A(0), A(1), . . . , A(2n − 2), 1 − A(2n − 1), 1 − A(2n), 0, 0, . . .). Then for
all n, d(F (Xn), F (A))/d(Xn, A) = 1, whereas d(F (Yn), F (A))/d(Yn, A) = 1

2 . It
follows that F ′(A) does not exist for any A ∈ 2N.

Every real number r ∈ [0, 1] has a dyadic representation X ∈ 2N so that
r = rX =

∑
n X(n)2−n−1. r is said to be a dyadic rational if it has a finite rep-

resentation r =
∑n

i=0 ei2−i−1 for some finite string (e0, . . . , en) and each dyadic
rational r has two representations. For example 1

2 is represented by (1, 0, 0, . . .)
and (0, 1, 1, . . .). We will say that a function F on 2N represents a real function
Φ, defined by Φ(rX) = rF (X), if whenever rX = rY , then rF (X) = rF (Y). The
function F from Example 2 above represents the real function Φ(r) = 1

2r.
More generally, various piecewise linear functions on [0, 1] with dyadic ratio-

nal slopes may have online representations. Here is an example of a piecewise
linear function with infinitely many segments.

Example 7. The function Φ on [0, 1] will consist of line segments connected at
the values Φ(2−n−1) = 1

3 (1 + 2−2n−1), that is, Φ(1) = 1, Φ(12) = 1
2 , Φ(14) = 3

8 ,
Φ(18) = 11

32 , and so on. Finally, we let Φ(0) = 1
3 . The representing function has

F (0n1X) = (01)n1X.
We note that for x = 2−n−1, we have Φ(x) = 1

3 (1 + 2x2), so that the overall
graph of Φ approximates a quadratic near x = 0.

4 Computability and Complexity

In this section, we determine the complexity of certain classes related to our
notion of differentiability.

We will let the complexity of a given class of online functions to be given
by the corresponding class C ⊆ 2N of representing functions. Given r ∈ 2N, let
fr : {0, 1}∗ \ {ε} → {0, 1} be defined by fr(σn) = r(n) and let Fr ∈ F(2N) be
defined so that Y = Fr(X) is given by Y (n) = fr(X�n).

Theorem 8.

1. For any computable online function F , {X : F ′(X) = 1} is a Σ0
2 class.

Online Computability and Differentiation in the Cantor Space 141

2. For any computable A ∈ 2N, B = {r : F ′
r(A) = 1} is a lightface Σ0

2 Wadge-
complete subset of 2N.

3. AC = {r : Fr is almost constant} is a lightface Σ0
2 Wadge-complete subset of

2N.

Proof. The following lemma is needed.

Lemma. For any online function F : 2N → 2N with representing function f :
{0, 1}∗ → {0, 1}, and any X ∈ 2N, F ′(X) = 1 if and only if there exists n such
that for all m ≥ n, f(X�m + 1) �= f(X�m(1 − X(m))).

The fact that these first two classes are Σ0
2 follows immediately from the

preceding lemma. For the completeness of B, we use the dual result from Sect. 2
that the class of finite subsets of N is Σ0

2 complete. Fix a computable A ∈ 2N.
We will define a computable map Φ such that for Φ(Z) = r, we have Z �∈
D ⇔ F ′

r(A) = 1. We define r so that fr(σ�0) = 0 for all σ and such that
fr(A�n�1) = 1 for all n such that n /∈ Z and fr(σ) = 0 for all other strings σ.
Thus for all n /∈ Z, we have Fr(A)�n(1 − A(n)�X) = 0n10ω and FR(Y) = 0ω

for all other Y ∈ 2N. By the preceding lemma, we know that F ′
r(A) = 1 if and

only if {m : fr(X�m + 1) = fr(X�m(1 − X(m)))} is finite, which will be if and
only if Z is finite.

The fact that AC is Σ0
2 is immediate from the definition. For the complete-

ness, we observe that for the function Φ given above, if r = Φ(Z), Z is cofinite
if and only if Fr is almost constant. �

Notice that the set of points X in which F ′(X) = 0 for any computable online
function F on 2N are more complicated than the set of X in which F ′(X) = 1,
as seen in the result below.

Theorem 9.

1. For any computable online function F , {X : F ′(X) = 0} is a Π0
3 class.

2. For any computable A ∈ 2N, A = {r : F ′
r(A) = 0} is a lightface Π0

3 Wadge-
complete subset of 2N.

Proof. These are Π0
3 classes, since F ′(A) = 0 if and only if

(∀k)(∃m)(∀n > m)(∀X)[d(X,A) < 2−n → d(F (X), F (A)) < 2−n−k].

This statement is equivalent to

(∀k)(∃m)(∀n > m)(∀σ ∈ {0, 1}k)[f(A�n�σ) = f(A�n + k)].

Since the (∀σ) quantifier is bounded, this becomes a Π0
3 statement.

For the completeness of the class A, we let A = 0ω (for the sake of simplicity)
and define a reduction Ψ of the class LI from Sect. 2 as follows. Given Z ∈ NN,
let r = Ψ(Z) be defined so that F (0ω) = 0ω and, for each n, for each σ of length
Z(n), and for all X ∈ 2N, Fr(0n1σX) = 0n+Z(n)+11ω. The representing function
fr maps 0n to 0n, maps 0n1σ to 0n+|σ| whenever |σ| ≤ Z(n) + 1, and maps
0n1στ to 0n+Z(n)+1+|τ | whenever |σ| = Z(n).

For any n, it follows from the construction there that for r = Ψ(Z), and any
extension Yn of 0n1, we have the following:

142 D. Cenzer and D. A. Rojas

1. d(Yn, A) = 2−n−1;
2. d(F (Yn), F (A)) = 2−n−Z(n)−3;

3.
d(F (Yn), F (A))

d(Yn, A)
=

2−n−Z(n)−3

2−n−1
= 2−Z(n)−2.

Now assume that limn Z(N) = ∞. Then F ′(A) = limn→∞ 2−Z(n)−2 = 0. On
the other hand, if limn Z(n) �= ∞, then there exists some k such that Z(n) = k
for infinitely many n, say n1 < n2 < · · · . Now, for each i, let Yi = 0ni1ω. It
follows that d(F (Yi), F (A))/d(Yi, A) = 2−k−2 for each i, so that F ′(A) �= 0. �

Given a computable online function F , the complexity of the sets in Theo-
rems 8 and 9 allows us to determine the computability of F ′ as shown below.

Proposition 10. For any computable online function F , F ′ is (partial) Δ0
3 com-

putable.

Proof. Consider F ′ as mapping 2N to the space {0} ∪ {2−n : n ∈ N} ⊂ [0, 1].
Then we can let 0ω represent the real number 0, and 0n10ω represent the real
number 2−n to get this. It follows from Theorems 8 and 9 that the graph of F ′

is a Π0
3 class and therefore F ′ is Δ0

3 computable. �
As one would expect, the derivative of an online function need not be continu-

ous, and the derivative of a computable online function need not be computable.

Example 11. Let F (0ω) = 0ω and, for each n, each σ of length n and each
X ∈ 2N, let F (0n1σX) = 02n1X. It is easy to see that F ′(0) = 0 and that for
any other element Y , F ′(Y) = 1.

Example 12. Let E be any noncomputable c.e. set and define F so that again
F (0ω) = 0ω but now for each n, each σ of length n, and each X ∈ 2N, there are
two cases. If n /∈ E, then F (0n1σX) = 02n1X, as before. However, if n comes
into E at stage s, then for τ of length s, we let F (0n1στX) = 02n1τ0ω. It follows
that, for any extension Y of 0n1, if n /∈ E, then F ′(Y) = 1, but if n ∈ E, then
F ′(Y) = 0.

5 Randomness

In this section, we use the ideas from Sect. 4 to prove some results about random-
ness and the derivative of online functions. It is not hard to prove that a weakly
1-random online function cannot be differentiable at any computable point. In
fact, we can show the following stronger result.

Theorem 13. If F is a weakly 1-random online function, then F is not differ-
entiable at any A ∈ 2N.

Here is a sketch of the case involving computable points. Suppose that A ∈ 2N

is a computable point and suppose f represents an online function F . We will
show that F ′(A) �= 1. Observe that F ′(A) = 1 if and only if, for some n and all k,

Online Computability and Differentiation in the Cantor Space 143

f(A�(n+k)0) �= f(A�(n+k)1). Fixing n, we note that for each k, the probability
that f(A�(n + k)0) �= f(A�(n + k)1) in the space of online functions is 1

2 . Thus
the Π0

1 set V = {f : (∀k)f(A�(n + k)0) �= f(A�(n + k)1)} has measure zero. It
follows that if f is weakly 1-random, then f /∈ V and therefore F ′(A) �= 1.

Next we consider the weaker dual version of this result.

Theorem 14. Let F is a computable online function on 2N.

(a) If A is weakly 1-random and F ′(A) = 2−p for some p ∈ N, then the set
{X : F ′(X) = 2−p} has positive measure.

(b) If A is weakly 1-random and F ′(A) = 0, then μ({X : F ′(X) ≤ 2−p}) > 0 for
any p ∈ N.

(c) If A is weakly 2-random and F ′(A) = 0, then μ({X : F ′(X) = 0}) > 0.

Here we sketch the argument in the case that F ′(A) = 1. Fix a computable
online function F with representative f . As above, we can see that the Π0

1 set
V = {X : (∀k)f(X�(n+k)0) �= f(X�(n+k)1)} has measure zero. It follows that
if A is weakly 1-random, then A /∈ V and thus F ′(A) �= 1.

6 Representation of Real Functions

In this section, we present further results regarding the representation of certain
classes of real-valued functions by online functions. We will want to compare
the discrete distance function that we are using on 2N with the usual distance
function on real numbers.

A key fact is that for an online function F on 2N, we know that for any A,B,
d(F (A), F (B)) ≤ d(A,B) since A�n = B�n implies that F (A)�n = F (B)�n.
Recall that rX =

∑
i X(i)2−i−1. It is not hard to see that |rA − rB | ≤ 2d(A,B).

It follows that the function from 2N to [0, 1] mapping X to rX is continuous.
On the other hand, note that for A = 10ω and B = 01ω, we have d(A,B) = 1

2
whereas rA = rB . So for a continuous function F which represents a function
Φ on the real interval, the comparison between |Φ(r) − Φ(s)| and |r − s| is not
immediately clear.

Theorem 15. Suppose that the function F on 2N represents a function Φ on
[0, 1]. Then for any reals r, s ∈ [0, 1], |Φ(r) − Φ(s)| ≤ |r − s|.

Now the property that |Φ(r) − Φ(s)| ≤ |r − s| is an example of a Lipschitz
condition on the function Φ. This condition clearly implies that Φ is continuous.
In addition, we may now conclude the following from well-known properties of
functions satisfying the Lipschitz condition (for which we refer the reader to
Royden [13]):

Theorem 16. If the online function F : 2N → 2N represents a function Φ on
[0, 1], then Φ is differentiable almost everywhere. Furthermore, for all x ∈ [0, 1],
|Φ′(x)| ≤ 1 if it exists.

The next result follows from Theorem 13.

144 D. Cenzer and D. A. Rojas

Corollary 17. No weakly random online function F can represent a real func-
tion.

We next revisit the problem of functions with derivative zero.

Proposition 18. Suppose that the function F on 2N represents a function Φ
on [0, 1] and that F ′(A) = 0 and Φ′(rA) is defined. Then Φ′(rA) = 0.

Proof. Consider the sequence Ak = (A�k(1−A(k)), A(k +1), . . .) and rk = rAk
.

Then d(A,Ak) = 2−k = |rA − rk|. Fixing n, we have, since F ′(A) = 0, that
for sufficiently large k, d(F (A), F (Ak)) ≤ 2−n−k. From this, we obtain that
|Φ(rA) − Φ(rk)| ≤ 21−n−k, and so

|Φ(rA) − Φ(rk)|
|rA − rk| ≤ 21−n.

Since we are assuming that Φ′(rA) exists, it follows that Φ′(rA) = 0. �
Now we can revisit the situation where F ′(A) = 0 for every A.

Proposition 19. Suppose that the function F on 2N represents a function Φ
on [0, 1] and that F ′(A) = 0 for all A and Φ′(r) exists for all r. Then Φ is a
constant function and F is almost constant.

Proof. It follows from Proposition 18 that Φ′(r) = 0 for all r ∈ [0, 1] and hence
Φ is constant. If the constant is not a dyadic rational, then F is constant, and
otherwise F may take on at most two values, and hence is almost constant. �

Certainly any constant function on [0, 1] may be represented by an online
function. Now we consider which other linear functions may be represented.

Proposition 20. For any n > 0 and m = 2−n, and any b = k
2n+1 such that

m + b ≤ 1, the function Φ(X) = mX + b on [0, 1] may be represented by an
online function F with F ′(X) = m for all X.

Proof. First, let m = 1
2 . The function 1

2X may be represented by F (X) = 0X.
Similarly, the function 1

2X + 1
2 may be represented by F (X) = 1X. Finally,

the function 1
2X + 1

4 may be represented by F (0X) = (01X(1)X(2) . . .) and
F (1X) = (10X(1)X(2) . . .).

Here we see that f(0σ) = 01σ(1)σ(2) . . . and f(1σ) = 10σ(1)σ(2) Thus
if |σ| = n + 1 ≥ 2, then f(σ0) = f(σ1) = f(σ)σ(n), while f(σ0i) = f(σ)σ(n)0
but f(σ1i) = f(σ)σ(n)1. It follows that F ′(X) = 1

2 for all X.
More generally, let n > 1 be given, let m = 2−n and let b = k/2n+1 so that

m+b ≤ 1. Then mX +b may be represented by the sum 2−nX with the constant
function b. The former is represented by 0nX and the latter is represented by a
string δk of length n+1. These can be added together in cases, depending on the
first bit of X, and the sum will not overflow since m + b ≤ 1. That is, m + b ≤ 1
implies that k +1 ≤ 2n+1. So we can define F (0X) = δkX and F (1X) = δk+1X.

It can be checked as above that F ′(X) = 2−n for all X. �

Online Computability and Differentiation in the Cantor Space 145

Using the map that switches 1s and 0s, we see that if F is represented by f ,
then G(X) = 1−F (X) may be represented by g(σ) = 1−f(σ), that is if τ = f(σ),
then g(σ) = (1−τ(0), 1−τ(1), . . .). Thus we may represent G(X) = 1−(mX+b)
for m and b as above.

For the converse direction, we weaken the n+1 to 2n. Note that Φ(r) = 1
4r+ 1

16
may be represented by a function F on 2N, but Ψ(r) = 1

4r + 7
16 may not be so

represented.

Theorem 21. If a linear function Φ(X) = mX + b (with m �= 0) maps [0, 1]
into [0, 1] and is represented by an online function, then m = ±2−n for some n
and b is a dyadic rational of the form k

22n for some k.

We just note here that, of course, m ≤ 1 since the function would otherwise
not map [0, 1] into [0, 1]. Functions on finite strings (and in particular on natural
numbers) that are computable by transducers (finite automata) are a special case
of online functions. Such functions were studied by Frougny and Sakarovitch [7].

References

1. Barmpalias, G., Brodhead, P., Cenzer, D., Dashti, S., Weber, R.: Algorithmic ran-
domness of closed sets. J. Log. Comput. 17, 1041–1062 (2007)

2. Barmpalias, G., Cenzer, D., Remmel, J., Weber, R.: k-triviality of closed sets and
continuous functions. J. Log. Comput. 19, 3–16 (2009)

3. Brattka, V., Miller, J., Nies, A.: Randomness and differentiability. Trans. Am.
Math. Soc. 368, 581–605 (2016)

4. Brodhead, P., Cenzer, D., Toska, F., Wyman, S.: Algorithmic randomness and
capacity of closed sets. Log. Methods Comput. Sci. 6, 1–16 (2011)

5. Cenzer, D., Porter, C.P.: Algorithmically random functions and effective capacities.
In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 23–37.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5 4

6. Cenzer, D., Remmel, J.: Index sets for computable differential equations. Math.
Log. Q. 50, 329–344 (2004)

7. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Com-
binatorics, Automata and Number Theory. Encyclopedia of Mathematics and its
Applications, vol. 135, pp. 34–107. Cambridge University Press (2010)

8. Heinonen, J.: Nonsmooth calculus. Bull. Am. Math. Soc. 44, 163–232 (2007)
9. Kechris, A.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol.

156. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4190-4
10. Martin-Löf, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)
11. Myhill, J.: A recursive function, defined on a compact interval, and having a con-

tinuous derivative that is not recursive. Mich. Math. J. 18, 97–98 (1971)
12. Pour-El, M., Richards, J.: A computable ordinary differential equation which pos-

sesses not computable solution. Ann. Math. Log. 17, 61–90 (1979)
13. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York

(1988)
14. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

https://doi.org/10.1007/978-3-319-17142-5_4
https://doi.org/10.1007/978-1-4612-4190-4

Turing’s Vision and Deep Learning

Martin Davis(B)

Courant Institute, New York University, New York, USA
martin@eipye.com

Abstract. The success of the AlphaGo computer program in playing
world class Go is examined in connection with what Turing had envi-
sioned more than 70 years ago. A critical discussion is given of Searle’s
comments on intelligent computer programs and of what Copeland had
to say about this.

Keywords: Turing · AlphaGo · Searle · Copeland
Convolutional neural network

An issue of the British newspaper The Guardian in October 2017 featured
an article on the achievements of DeepMind’s most recent incarnation of their
Go-playing machine. Their AlphaGo program had previously learned to play
this deep ancient Chinese game well enough to defeat human grandmasters. It
accomplished this after being trained using thousands of games that had been
played between grandmasters. The newer version “AlphaGo Zero” learned by
playing thousands of games against itself thereby steadily improving. Today it
beats all comers including the original AlphaGo. Both versions made use of multi-
layer neural networks. These are imagined as consisting of a large number of
individual elements called “neurons” interconnected so that signals output from
each became the input to others. One may imagine a tangle of interconnected
wires resembling the tangle of neural connections in a brain. However, entering
a room in which a device like AlphGo is housed, one would see only ordinary-
looking computer equipment.

In this paper, I will discuss how Turing imagined the future of computation
at a time when the first computers were yet to be built, and how this relates to
contemporary developments.

1 Alan Turing in 1945

The Second World War was over, but the contributions Turing had made to
victory at Bletchley Park were to remain secret for a long time. But he still had
knowledge he had acquired there of the use of vacuum tube (British: valves)
circuits in carrying out logical operations. And he understood the relevance of
the new expansive view of the nature of computation that had emerged from
his theoretical investigation of computability before the war. This led to his
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 146–155, 2018.
https://doi.org/10.1007/978-3-319-94418-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_15&domain=pdf

Turing’s Vision and Deep Learning 147

ACE report outlining the construction and use of a general purpose digital com-
puter [13]. A comparison of this report with von Neumann’s Edvac report is
revealing of Turing’s very different outlook. Whereas, along with addition and
multiplication, von Neumann would provide circuitry for arithmetic division as
well as, astonishingly, even for obtaining square roots, the ACE report suggests
performing division via software, but did specify circuitry for basic digit-by-digit
Boolean logical operations. Also two of the ten problems Turing discusses as pos-
sibly appropriate for the ACE, solving simple jigsaw puzzles and playing chess,
are quite remote from numerical computation.

In 1947 in concluding an address on the ACE to the London Mathematical
Society [14], Turing said:

It has beem said that computing machines can only carry out the processes
that they are instructed to do. This is certainly true in the sense that if
they do something other than what they were instructed then they have
just made some mistake. It is also true that the intention in constructing
these machines in the first instance is to treat them as slaves, giving them
only jobs which have been thought out in detail, jobs such that the user
of the machine fully understands what in principle is going on all the
time. Up till the present machines have only been used in this way. But
is it necessary that they should always be used in such a manner? Let us
suppose we have set up a machine with certain initial instruction tables,1

so constructed that these tables might on occasion, if good reason arose,
modify those tables. One can imagine that after the machine had been
operating for some time, the instructions would have altered out of all
recognition, but nevertheless still be such that one would have to admit
that the machine was still doing very worthwhile calculations. Possibly it
might still be getting results of the type desired when the machine was
first set up, but in a much more efficient manner. In such a case one would
have to admit that the progress of the machine had not been foreseen
when its original instructions were put in. It would be like a pupil who
had learnt much from his master, but had added much more by his own
work. When this happens I feel that one is obliged to regard the machine
as showing intelligence. As soon as one can provide a reasonably large
memory capacity it should be possible to begin to experiment on these
lines. The memory capacity of the human brain is probably of the order
of ten thousand million binary digits. But most of this is probably used in
remembering visual impressions, and other comparatively wasteful ways.
One might reasonably hope to be able to make some real progress with a
few million digits, especially if one confined one’s investigations to some
rather limited field such as the game of chess. It would probably be quite
easy to find instruction tables which would enable the ACE to win against
an average player. Indeed Shannon of Bell Telephone laboratories tells me
that he has won games, playing by rule of thumb: the skill of his opponents

1 Turing had introduced the term instruction table for what came to be called a com-
puter program. As I write, one usually speaks of an app.

148 M. Davis

is not stated. But I would not consider such a victory very significant. What
we want is a machine that can learn from experience. The possibility of
letting the machine alter its own instructions provides the mechanism for
this, but this of course does not get us very far.

2 Turing and Machine Intelligence

Famously Turing proposed as a goal, the ability of a machine to carry on a con-
versation with a person so effectively that it would be difficult or impossible for
the person to tell whether the conversation had been with a person or a machine
[15]. This has led to a huge discussion of “Turing’s test,” and a proliferation of
claims that various programs had “passed” the test, mainly based on conver-
sations severely restricted in subject matter. In a brief forward to the Turing
Centenary reprint of Sara Turing’s biography of her son [18], I wrote, “The cri-
terion he chose was the ability of such a machine to carry on a conversation
that could not reasonably be distinguished from one by a person. He predicted
that this would be achieved by the end of the twentieth century, but was far
too optimistic about the task of programming computers to achieve a command
of natural language equivalent to that of every normal person”. I’m grateful to
Jack Copeland for calling my attention to the fact that Turing’s prediction of
what would be accomplished by the end of the century was far more modest:2

I believe that in about fifty years’ time it will be possible to programme
computers . . . to play the imitation game so well that an average inter-
rogator will have not more than a 70 per cent chance of making the right
identification after five minutes of questioning. . . . I believe that at the
end of the century the use of words and generally educated opinion will
have altered so much that one will be able to speak of machines thinking
without expecting to be contradicted.

I would claim that even this modest claim was too optimistic if the machine is
to exhibit anything like the verbal fluency of an adolescent or adult. Reading
what Turing had to say about teaching a “child computer” with rewards and
punishments, that is not at all surprising. Very young children seem to acquire
language with an ease that adults seeking to learn a “second” language can only
envy. Referring to my error, Copeland ([4] p. 272) refers to me as “one of Turing’s
critics”, and to what I said as “misguided criticism”. It wasn’t criticism at all, it
was an error, evidence of sloppy scholarship on my part. As Turing wisely said
at the end of his provocative essay, “We can only see a short distance ahead”; I
could never imagine criticizing Turing concerning his skill as a prophet.

I one of Turing’s critics? In 1987, Turing was still being totally ignored in dis-
cussions of the early history of computers, discussions that revolved around the
question of whether von Neumann had improperly denied the credit for their

2 I was embarrassed to find that I had made the same error in my book [6,7]. Fortu-
nately I’ve been able to correct it for the third edition, in press as I write.

Turing’s Vision and Deep Learning 149

contribution to the “stored program concept” that the engineers Eckert and
Mauchly purportedly deserved. My essay [5], published in that year, explained
the significance of Turing’s theoretical investigations contributions as providing
the conceptual basis for modern computers. David Leavitt, in his biography of
Turing [10], mentioned “von Neumann often being given credit for ideas origi-
nating with Turing”, and wrote: “Martin Davis must be credited with setting
the record straight on this account”.

Although I cannot fairly be called a critic of Turing, and although I very much
admire Copeland’s extensive and enthusiastic work in presenting and advocating
for Turing’s crucial contributions, I certainly have been a critic of Copeland. His
advocacy has at times led him to farfetched notions, as when he proclaimed that
the “the search is on” for the construction of a Turing oracle that could provide
answers to uncomputable problems [1,9].

I was astonished to find that Copeland takes seriously Searles fanciful Chinese
room as having anything significant to say about Turing’s ideas. Copeland takes
Searle seriously as “one of AI’s greatest critics”. He seems to believe that the
Chinese room provides a serious challenge with “a subtle fallacy” ([4], pp. 274–
275). Copeland responds with a clever verbal riposte such as one can hear in
the discussion following an academic philosophy seminar talk. I prefer to discuss
what Searle has to say in terms of a domain in which computers can already
perform quite creditably: chess. Fortunately, Searle has also provided us with a
chess room [12]:

Imagine that a man who does not know how to play chess is locked inside a
room, and there he is given a set of, to him, meaningless symbols. Unknown
to him, these represent positions on a chessboard. He looks up in a book
what he is supposed to do, and he passes back more meaningless symbols.
We can suppose that if the rule book, i.e., the program, is skillfully written,
he will win chess games. People outside the room will say, “This man
understands chess, and in fact he is a good chess player because he wins”.
They will be totally mistaken. The man understands nothing of chess, he
is just a computer. And the point of the parable is this: if the man does
not understand chess on the basis of running the chess-playing program,
neither does any other computer solely on that basis.

As with the Chinese room, Searle and Copeland can assure us that “the
individual steps” are “simple binary operations that a human being can easily
carry out . . . given enough time”. Because chess playing programs (and very good
ones at that) exist, one can calculate how much time is “enough time”. As I write,
I have no doubt that chess playing programs exist that are a lot better than Deep
Blue, the program that created a sensation when it defeated Kasparov. And Deep
Blue was a better player than its predecessor Deep Thought. After obtaining
some data from a member of the team that had designed Deep Thought, I
calculated that it would require an average of more than a year of the man’s
time to carry out enough of those “simple steps” for making a single move. Searle
nevertheless insists [12]:

150 M. Davis

Here is what is going on inside Deep Blue. The computer has a bunch of
meaningless symbols that the programmers use to represent the positions
of the pieces on the board. It has a bunch of equally meaningless symbols
that the programmers use to represent options for possible moves. The
computer does not know that the symbols represent chess pieces and chess
moves, because it does not know anything.

Some academic philosophers like Searle may enjoy regarding computers as know-
ing nothing, but a human chess player who has lost his queen to a fiendishly clever
trap, will retort, “Well it certainly knows how to play chess”. I have provided
the following version of Searle’s parable [6–8]:

A precocious child whose mother is passionate about chess becomes tired
of watching her play and demands that he be allowed to play her opponent.
His mother agrees on the condition that he move the pieces only when she
tells him to and exactly where she says. He does as requested and doing
what his mother whispers in his ear achieves a checkmate. Observing the
scene, Searle tells us that the child doesn’t know anything about chess,
and is certainly not playing chess. Who could disagree?

And here is my analogous parable for the famous Chinese room itself, a spy
story:

A double agent Nak Moon, who is Korean, is pretending to be fluent in
Chinese. Actually he doesn’t understand a word of it, but is an excellent
mimic. He is being questioned in Chinese by his interlocutor via a video
connection. Amy Chung, who was born and grew up in Shanghai, is in an
adjacent room. She hears everything, and can speak to Nak without his
interlocutor knowing, by means of a hidden earphone. She tells Nak what
to reply to the questions being thrown at him. The dialog ends with the
interlocutor satisfied and Nak Moon still totally ignorant of the meaning
of what he has been saying.

Searle tells us that Nak Moon knows no Chinese. Who could disagree? Copeland
concludes his discussion of Searle’s Chinese room, by writing:

Alan Turing’s test has been attacked by some of the sharpest minds in
the business. To date, however, it stands unrefuted. In fact, it is the only
viable proposal on the table for testing whether a computer is capable of
thought ([4] p. 275).

I cannot claim to share Copeland’s apparent ability to assess the relative “sharp-
ness” of the minds of those who engage in discussions regarding computer
thought. However, I will note that multi-level neural network software together
with the sheer power of contemporary hardware has enabled computer systems
to perform as well as and even better than people, in doing things that, when
people do them, certainly require thought. I don’t believe that one can have a
meaningful discussion of whether what these devices are doing constitutes think-
ing in the human sense until neuroscientists have some real understanding what

Turing’s Vision and Deep Learning 151

it is that we do, at the level of individual neurons, when we think. In the mean-
time, we can safely leave discussions of whether these remarkable systems are
really thinking to those philosophers who regard this as worthwhile.

3 Neural Networks and AlphaGo

The idea of, a “neural network” that sought to emulate a brain by imagining
an interconnected network of objects, each having some of the characteristics of
biological neurons, occurred to a number of researchers. The foundational article
[11] by McCulloch and Pitts was the first to elaborate a mathematical theory
of such structures. Turing himself in his 1948 memo to his boss at the National
Physical Laboratory, [17]3 considered several models of such neural networks.
Other early work in this area were done by Marvin Minsky, Frank Rosenblatt,
and Michael Arbib. The neurons considered in contemporary networks have sev-
eral input channels that receive numerical signals from other neurons or from
their external environment and one output channel that transmits such signals.
Each input channel has a number associated with it called its weight; at each
stage the signal transmitted by a neuron is the weighted average of the input
values. Although weights are already present in [11], there were no weights in
Turing’s neurons.

Contemporary neural networks usually consist of at least three intercon-
nected layers. In a three-layer network, the neurons in the first layer receive
input signals and transmit their output to neurons in the second layer. These
neurons in turn transmit their output to the third layer which generates the out-
put signal. In order to obtain worthwhile results, at least some of the neurons
must apply a suitable non-linear activation function to the weighted average of
its input signals to produce its output. The choice of an appropriate activation
function in the design is crucial. The hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x

is an example of an activation function with desirable properties. Learning takes
place by training the network with a collection of examples. A back propagation
algorithm is applied after each example. This algorithm is designed to reduce the
error between the desired output and the actual output. This process is what is
meant by deep learning.

Such deep learning techniques have been very successful in training neural
networks to identify specific objects in a video image. Video images exist in
the form of an array of pixels stored in a computer. Neural networks have been

3 Jack Copeland, in a careful detailed introduction to this essay, pointed out that
its previous publication, [16] pp. 107–132, contained serious errors. I should also
mention that in [1], the article I have criticized for its embrace of hypercomputation,
information about Turing’s early comments on neural nets was brought to public
attention.

152 M. Davis

trained to distinguish a bird from a squirrel and to identify individual human
faces. The networks that accomplish such feats are usually designed to be “convo-
lutional”: what people and animals accomplish by scanning a visual field through
eye movements, a convolutional neural network accomplishes by carrying out the
enormous number of computations needed to recognize that objects in different
parts of a video image are the same kind of thing. These computations are
greatly facilitated by having special “graphical processing unit” chips as part
of the hardware. These GPU chips were originally designed and manufactured
for machines intended for playing computer games, and make very fast complex
numerical computations feasible. It needs to be emphasized that these networks
are algorithms, typically implemented, not as a large box of wriggling intercon-
nected little gadgets, but rather as lines of code written in a modern high level
programming language. The network can be thought of as a kind of dynamic
data structure.

When I was preparing the third edition of my The Universal Computer [6–
8], just published as I write, there was general astonishment over a remarkable
achievement by AlphaGo, a machine for playing the ancient game of Go. Go is
much more complex than chess. Where chess is played on a board with 64 squares
on which the pieces can be placed, Go is played on a 19 × 19 board with 361
places where pieces, called stones, can be placed. Like chess the winner is entirely
determined by the moves the players make, taking alternate turns placing a stone
in an unoccupied place. An algorithm to play Go must at each stage choose a
branch from a tree that is very long and extremely wide. Playing against the
Go master Lee Sedol in a five game match, AlphaGo won four of the games.
The prevailing opinion had been that a Go machine capable of beating human
master players was still many years in the future. I wanted to write something
about this, but I was ignorant. I had been a skeptic about neural networks and
had never learned much about them. Fortunately Thore Graepelof, one of the
computer engineers in the DeepMind group that had developed AlphaGo, agreed
to an hour-long interview from London by video connection, courtesy of Google.
He turned out to be a clear and patient explainer.

AlphaGo uses a Monte Carlo tree search algorithm taking advice from two
auxiliary convolutional neural networks: a policy network and a value network.
Both networks were trained by giving them access to a huge library of games
played between expert players over many years.The policy network estimates
how likely various possible moves are to to be played by an expert Go player
starting from a particular arrangement of pieces on the Go board. Thore told us,
“This policy network was already a pretty good Go player. I am a pretty good
amateur player myself. On my first day at DeepMind, David Silver invited me
to play against this network, and I was sure I would win. But it beat me! Then
I was sure I wanted to be part of the AlphaGo team”. The other network, the
value network, starting with any Go position, estimates for one of the players,
the probability that player will win. Convolution plays a role similar to that in
object recognition: just as a bird in one corner of a video image needs to be
recognized as still a bird when it’s in a different part of the image, a certain

Turing’s Vision and Deep Learning 153

configuration of the stones in one part of the Go board needs to be recognized
as similar to one in a different part. It should be emphasized that the success
of AlphaGo is due not only to the effectiveness of the software design, but also
to the power of contemporary hardware. In particular, AlphaGo uses GPUs for
intensive computation.

In 2016 AlphaGo was brought to Korea to challenge Lee Sedol to a five game
match. Thore said, “Although we had great confidence in AlphaGo, you never
know what chance will come up with in a tournament. Fortunately, AlphaGo
won the first three games. By the fourth game, our team was actually rooting
for Lee Sedol, and was happy for him when he succeeded”. Then AlphaGo won
the fifth game. In May 2017 at the Future of Go Summit in China, AlphaGo won
all three games against world champion Ke Jie. Thore continued, “Go players
have started to pick up patterns of play that AlphaGo invented. In training
for the May competition, we let AlphaGo play against itself and create new
games of higher quality, resulting in a set of training data for a stronger version
of AlphaGo. With this kind of bootstrapping, a machine learning system can
continue to grow”.

4 Turing’s Vision

When Turing began writing about the capabilities of computers in the 1940s,
there were still no working computers. When the first computers did come on
line, they had severe limitations. Comparing them to the objects we call phones
and carry in our pockets, we might say metaphorically, would be like compar-
ing an earthworm to a monkey. Programming them had to be done in terms of
binary machine code. Yet his audacious comments spoke of far-reaching accom-
plishments to come:

In his 1945 detailed proposal for his Automatic Computing Engine (ACE)
[13], Turing listed chess as one of ten problems that might be appropriate for the
machine. He suggested that it could be programmed to “display intelligence” and
to play “very good chess”. We have already mentioned Turing’s 1947 lecture on
the ACE to the London Mathematical Society [14]. He suggested that given the
possibility of changing its own program, the machine might be able to improve
its performance. He asserted, “When this happens I feel that one is obliged to
regard the machine as showing intelligence”. He ended his address mentioning
chess as an appropriate arena for the machine to learn from exposure to human
opponents.

In 1948, Turing presented an essay entitled Intelligent Machinery as an inter-
nal memo to his superior at The National Physical Laboratory [17]. The far-
sighted comments are particularly astonishing considering the state of computer
hardware, with the first crude true stored program computers just being built. As
problems appropriate for machines like the ACE, Turing mentioned, games like
chess or bridge, learning languages, translation, cryptography. He discussed sev-
eral kinds of simple networks constructed from neuron-like elements, and pointed
out that the networks could be fully realized by programming a machine like the

154 M. Davis

ACE. He envisioned programming a computer to carry out formal deductions
in a system like Principia Mathematica, and using it to search for solutions of
mathematical problems. He suggested both the possibility of a computer mod-
ifying its own program and also that it might be useful to introduce a random
element. It can’t be said that Turing imagined something quite like AlphaGo.
However, with its two neural nets and its Monte Carlo search algorithm, one can
find an echo of Turing’s imaginings

Given what has already been achieved it is exciting to imagine the further
developments that will now be coming. May we hope that human society will
find itself able to deal intelligently and equitably with them as they arrive?

References

1. Copeland, B.J., Proudfoot, D.: Alan Turing’s forgotten ideas in computer science.
Sci. Am. 253(4), 98–103 (1999)

2. Copeland, B.J. (ed.): The Essential Turing. Oxford University Press, New York
(2004)

3. Copeland, B.J., et al.: Alan Turing’s Electronic Brain: The Struggle to Build the
ACE, the World’s Fastest Computer. Oxford University Press, Oxford (2005)

4. Copeland, B.J., et al.: The Turing Guide. Oxford University Press, Oxford (2017)
5. Davis, M.: Mathematical logic and the origin of modern computers. In: Studies

in the History of Mathematics, pp. 137–165. Mathematical Association of Amer-
ica (1987). Reprinted in The Universal Turing Machine - A Half-Century Survey,
Herken, R. (ed.), pp. 149–174. Verlag Kemmerer & Unverzagt/Oxford University
Press, Hamburg/Oxford (1988)

6. Davis, M.: The Universal Computer: The Road from Leibniz to Turing. W.W.
Norton, New York City (2000). Second (Turing Centenary) Edition. CRC Press,
Taylor & Francis (2012)

7. Davis, M.: Engines of Logic: Mathematicians and the Origin of the Computer.
W.W. Norton, New York City (2001). Paperpack edition of [6]

8. Davis, M.: The Universal Computer: The Road from Leibniz to Turing, 3rd edn.
Taylor & Francis/CRC Press, Boca Raton (2018)

9. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing: Life
and Legacy of a Great Thinker, pp. 195–212. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-05642-4 8

10. Leavitt, D.: The Man Who Knew Too Much: Alan Turing and the Ivention of the
Computer. W.W. Norton, New York City (2006)

11. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5, 115–133 (1943). Reprinted in McCulloch, W.S.,
Embodiments of Mind, pp. 19–39. M.I.T. Press, Cambridge (1965)

12. Searle, J.R.: I married a computer. N. Y. Rev. Books 46, 34–38 (1999)
13. Turing, A.: Proposed Electronic Calculator. Proposal submitted to the Mathemat-

ics Division of the National Physical Laboratory (1945). Reprinted in [16], pp.
1–86. Reprinted in [3], pp. 369–454

14. Turing, A.: The Automatic Computing Engine. Lecture delivered to the London
Mathematical Society, 20 February 1947. Reprinted in [16], pp. 87–105. Reprinted
in [2], pp. 378–394

15. Turing, A.: Computing machinery and intelligence. Mind LIX, 433–460 (1950).
Reprinted in [16], pp. 133–160. Reprinted in [2], pp. 433–464

https://doi.org/10.1007/978-3-662-05642-4_8
https://doi.org/10.1007/978-3-662-05642-4_8

Turing’s Vision and Deep Learning 155

16. Turing, A.: Collected Works: Mechanical Intelligence, Ince, D.C. (ed.) North-
Holland, Amsterdam (1992)

17. Turing, A.: Intelligent Machinery. [2], pp. 410–432. [16], pp. 107–127
18. Turing, S.: Alan M. Turing, Centenary Edition. Cambridge University Press, Cam-

bridge (2012)

Computing and Scheduling
with Explorable Uncertainty

Thomas Erlebach(B)

Department of Informatics, University of Leicester, Leicester, England
t.erlebach@leicester.ac.uk

Abstract. Explorable uncertainty refers to settings where parts of the
input data are initially unknown, but can be obtained at a certain cost
using queries. In a typical setting, initially only intervals that contain the
exact input values are known, and queries can be made to obtain exact
values. An algorithm must make queries one by one until it has obtained
sufficient information to solve the given problem. We discuss two lines
of work in this area: In the area of query-competitive algorithms, one
compares the number of queries made by the algorithm with the best
possible number of queries for the given input. In the area of scheduling
with explorable uncertainty, queries may correspond to tests that can
reduce the running-time of a job by an a priori unknown amount and are
executed on the machine that also schedules the jobs, thus contributing
directly to the objective value of the resulting schedule.

1 Introduction

In many real-world settings, parts of the input data of a problem may not be
known precisely. For example, instead of having the exact values of some input
parameters, only intervals containing the exact values may be known. If the
inputs are points in a higher-dimensional space, only regions containing the exact
point locations may be known. We are interested in settings where it is possible
to obtain the exact value of such an uncertain input element using a query.
As this means that an algorithm can obtain additional information about the
uncertain elements of the input data, such settings are referred to as explorable
uncertainty (or queryable uncertainty). Typically, queries are associated with a
cost and one wants to make as few queries as possible until one has obtained
sufficient information to solve the given problem. Using competitive analysis [1],
one can compare the number of queries made by an algorithm with the smallest
possible number of queries that are sufficient to solve the problem. An algorithm
is called ρ-query-competitive, or simply ρ-competitive, if it makes at most ρ
times as many queries as an optimal solution for each given instance. Another
direction is to consider scheduling problems where the execution of queries is
part of the schedule for the actual jobs, and hence the time spent on queries
contributes naturally to the objective value of the schedule produced.

Some examples of application settings that motivate the study of explorable
uncertainty are as follows. If the input to a computation consists of the locations
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 156–160, 2018.
https://doi.org/10.1007/978-3-319-94418-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_16&domain=pdf
http://orcid.org/0000-0002-4470-5868

Computing and Scheduling with Explorable Uncertainty 157

of moving objects (e.g., planes or mobile wireless devices) and the exact locations
of those objects were known at some point in the past, the current locations of
these objects are uncertain, but it is possible to obtain an object’s exact loca-
tion, e.g., using radio communication with a plane or a message exchange with
a mobile device [8]. In settings with a central master database and distributed
database caches that are updated less frequently than the central database, a
local database cache may provide approximate values as the input to a computa-
tion, but exact values can be obtained using a query to the master database [11].
In repair or maintenance work, the time required for a specific repair job may
be uncertain, but can be determined using fault diagnosis [9,12].

The remainder of this paper is structured as follows. Section 2 discusses
selected work on query-competitive algorithms for explorable uncertainty, while
Sect. 3 covers work on a scheduling problem where the execution of queries is
part of the produced schedule itself. Section 4 suggests some directions for future
work.

2 Query-Competitive Algorithms

In a problem with explorable uncertainty, for some input elements u only an
uncertainty set Au that is guaranteed to contain the exact value wu is given, but
the algorithm must query u in order to obtain wu. For example, the weight of
an edge e in a weighted graph might be given as an uncertainty set in the form
of an open interval, while the exact weight of the edge can be an arbitrary value
in that interval.

Query-competitive algorithms for problems with explorable uncertainty were
first considered by Kahan [8]. He studies problems where the input consists of
n uncertain values, each represented as a closed interval or a singleton set. For
the problem of identifying all elements whose value is equal to the maximum of
the n values, and for the problem of identifying all elements whose value is equal
to the median of the n values, he presents algorithms using at most OPT + 1
queries, where OPT is the minimum possible number of queries that suffice to
solve the problem. Bruce et al. [2] study geometric problems where the input
consists of n uncertain points in the plane, each represented by a singleton set
or the closure of a connected, open set. For the problem of computing the set
of maximal points or the set of points that lie on the convex hull, they present
3-competitive algorithms and show that this is best possible for deterministic
algorithms. Their algorithms are based on the concept of witness sets: A witness
set is a set of input elements with the property that it is impossible to solve the
problem without querying at least one element of the set. A witness set algorithm
repeatedly identifies a small witness set and queries all elements of that witness
set, until the problem can be solved without further queries. If every witness set
has size at most k, the resulting algorithm is k-competitive. Erlebach et al. [7]
present witness set algorithms for the minimum spanning tree problem with
uncertainty. For the case of uncertain edge weights with uncertainty sets that
are singleton sets or open intervals, they present a 2-competitive deterministic

158 T. Erlebach

algorithm and show a matching lower bound for deterministic algorithms. A
randomized algorithm achieving competitive ratio 1 + 1/

√
2 ≈ 1.707 for the

same problem was presented by Megow et al. [10], exploiting a connection to the
bipartite vertex cover problem (a more restricted version of that connection had
been used to determine the off-line complexity of computing the optimal query
set in [4]).

Query-competitive algorithms for cheapest set problems were presented in [6].
Here, the input consists of a set E of elements whose weights are uncertain, and
a family S of subsets of E. The uncertainty set Ae of an element e ∈ E can be an
open interval or a singleton set, and the exact weight of e is denoted by we. The
goal is to identify a set S ∈ S of minimum weight using a minimum number of
queries. For the case that each set in S has cardinality at most d, a straightfor-
ward application of the witness set algorithm approach yields a 2d-competitive
algorithm. In [6] it was shown that bounds with a better multiplicative factor
can be achieved using algorithms that do not always query witness sets: For arbi-
trary sets with cardinality at most d, their algorithm makes at most dOPT + d
queries, and for sets that represent minimal cuts in a tree with d terminal pairs,
their algorithm makes at most dOPT +1 queries. For the problem of computing
a minimum-weight matroid base, a generalisation of the minimum spanning tree
problem with edge uncertainty, they obtain a 2-competitive algorithm.

We refer to [5] for a more comprehensive survey of work on computing with
explorable uncertainty.

3 Scheduling with Explorable Uncertainty

In this section we review some of the results for a scheduling problem with
explorable uncertainty that were recently presented by Dürr et al. [3]. They
consider the classical scheduling problem 1 || ∑

Cj of minimizing the sum of
completion times for n given jobs without preemption on a single machine, but
with a new twist: For each job Jj , initially only an upper limit p̄j on its processing
time is known. If the job is not queried, its execution time is p̄j . If the job is
queried, its execution time changes to some value pj , 0 ≤ pj ≤ p̄j , that is revealed
only as a result of the query. As motivation for this model one can consider,
e.g., the case that jobs are file transmissions and querying a file corresponds to
compressing it (where the amount of compression is not known before executing
the compression). Another setting that motivates the model is that jobs can be
executed in a safe mode and a faster, alternative mode, and an analysis of the
job is necessary to determine whether the alternative mode can be used and
what the resulting running-time will be.

It is assumed that executing a query takes one unit of time, and that the
machine that executes the queries is the same as the machine that executes jobs.
An algorithm must at each time decide whether to query a job, to execute a
previously queried job, or to execute a job without querying (unqueried). This
adds a novel flavour to the scheduling problem. Algorithms are analyzed using
competitive analysis, comparing the objective value of the schedule produced

Computing and Scheduling with Explorable Uncertainty 159

by the algorithm with the objective value of the optimal schedule. The optimal
schedule also needs to query a job in order to be able to execute it with time pj
instead of p̄j , and it will do so only if 1 + pj < p̄j .

A 2-competitive deterministic algorithm can be obtained as follows: First,
schedule all jobs with upper limit at most 2 unqueried in order of non-decreasing
upper limit. Then, query all remaining jobs in arbitrary order. If querying a
job Jj yields pj ≤ 2, the job is executed immediately. Otherwise, the job is
deferred. At the end of the schedule, all deferred jobs are executed in order of
non-decreasing pj . Dürr et al. [3] also show that no deterministic algorithm can
be better than 1.8546-competitive. The lower bound instance consists of n jobs
with equal upper limit p̄. For each of the first δn jobs that the algorithm queries
or executes unqueried, the adversary sets pj to be equal to p̄ if the algorithm
queries the job and equal to 0 otherwise. Optimising the parameters δ and p̄
yields the lower bound.

The lower bound exploits the fact that the algorithm cannot distinguish
between jobs with pj = 0 and with pj = p̄ without querying them, and the
adversary can ensure that jobs with pj = 0 are queried last. A natural idea
for a randomized algorithm is therefore to query jobs in random order. Dürr
et al. [3] show that such an approach can be used to achieve competitive ratio
1.7453 against an oblivious adversary. They also give a lower bound of 1.6257
for randomized algorithms.

4 Future Directions

In the area of query-competitive algorithms for computing with explorable uncer-
tainty discussed in Sect. 2, a limitation of witness set algorithms is that they
cannot achieve a good competitive ratio for problems where it is not possible
to determine small witness sets. More generally, there are a number of funda-
mental optimisation problems (e.g., the shortest-path problem) where one can
construct instances where a single query suffices to solve the problem while any
deterministic algorithm can be forced to make a large number of queries (e.g.,
Ω(n) queries for the shortest-path problem in a graph with n nodes and uncer-
tain edge weights). It would be very interesting to model such problems in a way
that limits the power of the adversary, so that algorithms with good competitive
ratio become possible. For example, assuming that the uncertain weights are
drawn from some probability distribution (but still allowing queries to reveal
the exact weights) may be helpful [14].

Another interesting direction is the consideration of settings where a certain
number of queries can be made in parallel and the goal is to minimize the number
of query rounds that are needed to solve the problem. It is not straightforward
to adapt witness set algorithms to this setting, as it is often necessary to query
one witness set before another can be determined, and so it seems difficult to
query several witness sets in parallel.

For the problem of scheduling with explorable uncertainty discussed in
Sect. 3, an interesting question is whether there is a deterministic algorithm that

160 T. Erlebach

achieves competitive ratio strictly smaller than 2. For the special case where all
jobs have equal upper limits, such algorithms are presented in [3]. The crucial
ingredient seems to be balancing the time spent on querying and the time spent
on executing jobs. It would also be interesting to study other scheduling prob-
lems in the model where jobs can become shorter after querying. More generally,
studying other optimization problems with explorable uncertainty where the cost
for the queries is part of the overall objective function could be a worthwhile
direction [13].

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

2. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423
(2005)

3. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable uncer-
tainty. In: Karlin, A.R. (ed.) ITCS 2018 9th Innovations in Theoretical Computer
Science Conference, 11–14 January 2018, Cambridge, MA, USA. LIPIcs, vol. 94, pp.
30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://
doi.org/10.4230/LIPIcs.ITCS.2018.30

4. Erlebach, T., Hoffmann, M.: Minimum spanning tree verification under uncer-
tainty. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 164–175.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0 14

5. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with
uncertainty. Bull. EATCS 116, 22–39 (2015)

6. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheap-
est set problems under uncertainty. Theor. Comput. Sci. 613, 51–64 (2016)

7. Erlebach, T., Hoffmann, M., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: 25th International Symposium on
Theoretical Aspects of Computer Science (STACS 2008). LIPIcs, vol. 1, pp. 277–
288 (2008)

8. Kahan, S.: A model for data in motion. In: 23rd Annual ACM Symposium on
Theory of Computing (STOC 1991), pp. 267–277 (1991)

9. Levi, R.: Practice driven scheduling models. Talk at Dagstuhl Seminar 16081:
Scheduling (2016)

10. Megow, N., Meißner, J., Skutella, M.: Randomization helps computing a mini-
mum spanning tree under uncertainty. SIAM J. Comput. 46(4), 1217–1240 (2017).
https://doi.org/10.1137/16M1088375

11. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. In: 26th International Conference on Very Large Data
Bases (VLDB 2000), pp. 144–155 (2000)

12. Shaposhnik, Y.: Exploration vs. Exploitation: reducing uncertainty in operational
problems. Ph.D. thesis, Sloan School of Management, MIT (2016)

13. Singla, S.: The price of information in combinatorial optimization. In: Czumaj, A.
(ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018), pp. 2523–2532 (2018)

14. Yamaguchi, Y., Maehara, T.: Stochastic packing integer programs with few queries.
In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2018), pp. 293–310 (2018)

https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.1007/978-3-319-12340-0_14
https://doi.org/10.1137/16M1088375

Diminishable Parameterized Problems
and Strict Polynomial Kernelization

Henning Fernau1, Till Fluschnik2(B), Danny Hermelin3, Andreas Krebs4,
Hendrik Molter2, and Rolf Niedermeier2

1 Fachbereich 4 – Abteilung Informatik, Universität Trier, Trier, Germany
fernau@uni-trier.de

2 Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany

{till.fluschnik,h.molter,rolf.niedermeier}@tu-berlin.de
3 Ben Gurion University of the Negev, Beersheba, Israel

hermelin@bgu.ac.il
4 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,

Tübingen, Germany
krebs@informatik.uni-tuebingen.de

Abstract. Kernelization—a mathematical key concept for provably
effective polynomial-time preprocessing of NP-hard problems—plays a
central role in parameterized complexity and has triggered an extensive
line of research. In this paper we consider a restricted yet natural vari-
ant of kernelization, namely strict kernelization, where one is not allowed
to increase the parameter of the reduced instance (the kernel) by more
than an additive constant. Building on earlier work of Chen, Flum, and
Müller [CiE 2009, Theory Comput. Syst. 2011], we underline the appli-
cability of their framework by showing that a variety of fixed-parameter
tractable problems, including graph problems and Turing machine com-
putation problems, does not admit strict polynomial kernels under the
weaker assumption of P �= NP. Finally, we study a relaxation of the
notion of strict kernels.

Work initiated by the research retreat of the Theoretical Computer Science group
of the Universität of Tübingen in Sulz (Neckar), September 2016.
T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13) and project
TORE (NI 369/18).
D. Hermelin—Supported by the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement number 631163.11, and by the ISRAEL SCIENCE FOUNDA-
TION (grant No. 551145/14). Also supported by a DFG Mercator fellowship, project
DAMM (NI 369/13) while staying at TU Berlin (August 2016).
A. Krebs—Supported by the DFG Emmy Noether program (KR 4042/2).
H. Molter—Partially supported by the DFG, project DAPA (NI 369/12).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 161–171, 2018.
https://doi.org/10.1007/978-3-319-94418-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_17&domain=pdf

162 H. Fernau et al.

1 Introduction

Kernelization is one of the most fundamental concepts in the field of param-
eterized complexity analysis. Given an instance (x, k) ∈ {0, 1}∗ × N of some
parameterized problem L (we assume the parameter to be encoded in unary), a
kernelization for L produces in polynomial time an instance (x′, k′) satisfying:
(x′, k′) ∈ L ⇐⇒ (x, k) ∈ L and |x′| + k′ ≤ f(k) for some fixed computable
function f(k). In this way, kernelization can be thought of as a preprocessing
procedure that reduces an instance to its “computationally hard core” (i.e., the
kernel). The function f(k) is accordingly called the size of the kernel, and it
is typically the measure that one wishes to minimize. Kernelization is a central
concept in parameterized complexity not only as an important algorithmic tool,
but also because it provides an alternative definition of fixed-parameter tractabil-
ity (FPT) [6]. An algorithm with running time f(k) · |x|O(1) for a parameterized
problem L implies that L has a kernel of size f(k), but in the converse direction
one cannot always take the same function f . The goal of minimizing the size of
the problem kernel leads to the question of what is the kernel with the small-
est size one can obtain in polynomial time for a given problem. In particular,
do all fixed-parameter tractable problems have small kernels, say, of linear or
polynomial size?

The latter question was answered negatively [5,14] by proving that various
problems in FPT do not admit a polynomial-size kernel (polynomial kernel for
short) under the assumption that NP � coNP/poly. The framework has been
extended in several directions [18]. Regardless, all of these frameworks rely on the
assumption that NP � coNP/poly, an assumption that, while widely believed
in the community, is a much stronger assumption than P �= NP.

Throughout the years, researchers have considered different variants of ker-
nelization such as fidelity-preserving preprocessing [11], partial kernelization [3],
lossy kernelization [20], and Turing kernelization [4,21]. In this paper, we con-
sider a variant which has been considered previously quite a bit, which is called
proper kernelization [1] or strict kernelization [8]:

Definition 1 (Strict Kernel). A strict kernelization for a parameterized prob-
lem L is a polynomial-time algorithm that on input (x, k) ∈ {0, 1}∗ × N out-
puts (x′, k′) ∈ {0, 1}∗ × N, the strict kernel, satisfying: (i) (x, k) ∈ L ⇐⇒
(x′, k′) ∈ L, (ii) |x′| ≤ f(k), for some function f , and (iii) k′ ≤ k + c,
for some constant c. We say that L admits a strict polynomial kernelization
if f(k) ∈ kO(1).

Thus, a strict kernelization is a kernelization that does not increase the output
parameter k′ by more than an additive constant. While the term “strict” in the
definition above makes sense mathematically, it is actually quite harsh from a
practical perspective. Indeed, most of the early work on kernelization involved
applying so-called data reduction rules that rarely ever increase the parameter
value (see e.g. the surveys [15,18]). Furthermore, strict kernelization is clearly
preferable to kernelizations that increase the parameter value in a dramatic way:

Diminishable Parameterized Problems and Strict Polynomial Kernelization 163

Often a fixed-parameter algorithm on the resulting problem kernel is applied,
whose running time highly depends on the value of the parameter, and so a
kernelization that substantially increases the parameter value might in fact be
useless. Finally, the equivalence with FPT is preserved: A parameterized problem
is solvable in f(k) · |x|O(1) time if and only if it has a strict kernel of size g(k)
(where f and g are some computable functions).

Chen et al. [8] showed that Rooted Path, the problem of finding a simple
path of length k in a graph that starts from a prespecified root vertex, param-
eterized by k has no strict polynomial kernel unless P = NP. They also showed
a similar result for CNF-Sat parameterized by the number of variables. Both
of these results seemingly are the only known polynomial kernel lower bounds
that rely on the assumption of P �= NP (see Chen et al. [7] for a few linear
lower bounds that also rely on P �= NP). The goal of our work is to show that
Chen et al.’s framework applies for more problems and is easy to extend.

Our Results. We build on the work of Chen et al. [8], and further develop and
widen the framework they presented for excluding strict polynomial kernels.
Using this extended framework, we show that several natural parameterized
problems in FPT have no strict polynomial kernels under the assumption that
P �= NP. The main result of our work is given in Theorem 2 below. Note that
we use the brackets in the problem names to denote the parameter under con-
sideration.1

Theorem 2. Unless P = NP, each of the following fixed-parameter tractable
problems does not admit a strict polynomial kernel:

– Multicolored Path(k) and Multicolored Path(k log n);
– Clique(Δ), Clique(tw), Clique(bw), and Clique(cw);
– Biclique(Δ), Biclique(tw), Biclique(bw), and Biclique(cw);
– Colorful Graph Motif(k) and Terminal Steiner Tree(k + |T |);
– Multi-Component Annotated Defensive Alliance(k) and Multi-

Component Annotated Vertex Cover(k);
– Short NTM Computation(k+|Σ|), Short NTM Computation(k+|Q|),

and Short Binary NTM Computation(k).

(Herein, k denotes the solution size, n, Δ, tw, bw, and cw denote the number of
vertices, the maximum vertex degree, the treewidth, bandwidth, and cutwidth of
the graph, respectively, T denotes the set of terminals, |Σ| denotes the alphabet
size, and |Q| denotes the number of states.)

Finally, we also explore how “tight” the concept of strict polynomial ker-
nels is. We modify the framework for “less” strict kernels, and, employing the
Exponential Time Hypothesis (ETH), conclude that we often cannot hope for
significantly relaxing the concept of strict kernelization to achieve a compara-
ble list of such analogous kernel lower bounds under P �= NP. Notably, our

1 For a complete list of problem definitions we refer to a long version [12] of the paper.

164 H. Fernau et al.

x k

(x, k)

Dd+1

x1
k1

(x1, k1)
k > k1

K
x2

k2

(x2, k2)
k1 + d ≥ k2

k
O(1)
1 ≥ |x2|

Dd+1

x3

k3

(x3, k3)
k2 > k3

K
x4

k4

(x4, k4)
k3 + d ≥ k4

k
O(1)
3 ≥ |x4|

· · ·

· · ·

x′

k′

(x′, k′)
k′ ≤ c

Fig. 1. Illustration to the proof of Theorem 4 for an input instance (x, k). Herein, K
denotes the strict kernelization with additive constant d and D denotes the parameter
diminisher. We represent each instance by boxes: the size of a box symbolizes the size
of the instance or the value of the parameter (each dashed box refers to k).

modified framework herein was recently applied [13] for proving the first direct
kernelization lower bounds for polynomial-time solvable problems.

We remark that for the problems we discuss in this paper, one can exclude
polynomial kernels under the assumption that NP � coNP/poly using the exist-
ing frameworks [5,18]. In contrast, our results base on a weaker assumption, but
exclude a more restricted version of polynomial kernels. Hence, our results are
incomparable with the existing no-polynomial-kernel results.

Notation. We use basic notation from parameterized complexity [10] and graph
theory [9]. Let G = (V,E) be an undirected graph. For W ⊆ V , let G − W :=
(V \ W, {e ∈ E | e ∩ W = ∅}). If W = {v}, then we write G − v. For v ∈ V ,
we denote by NG(v) := {w ∈ V | {v, w} ∈ E} the neighborhood of v in G. We
denote by [�], � ∈ N, the set {1, . . . , �} and by log the logarithm with base two.

2 Framework

In this section we present the general framework used throughout the paper.
Firstly, we define the central notion of a parameter diminisher referring to param-
eter decreasing polynomial reduction introduced by Chen et al. [8].

Definition 3 (Parameter Diminisher). A parameter diminisher for
a parameterized problem L is a polynomial-time algorithm that maps
instances (x, k) ∈ {0, 1}∗ × N to instances (x′, k′) ∈ {0, 1}∗ × N such that (i)
(x, k) ∈ L if and only if (x′, k′) ∈ L and (ii) k′ < k.

We call a parameterized problem L diminishable if there is a parameter dimin-
isher for L. The following theorem was proved initially by Chen et al. [8], albeit
for slightly weaker forms of diminisher and strict polynomial kernels.

Theorem 4 ([8]). Let L be a parameterized problem such that its unparame-
terized version is NP-hard and {(x, k) ∈ L | k ≤ c} ∈ P, for some constant c. If
L is diminishable and admits a strict polynomial kernel, then P = NP.

Diminishable Parameterized Problems and Strict Polynomial Kernelization 165

The idea behind Theorem 4 is to repeat the following two procedures until the
parameter value drops below c (see Fig. 1 for an illustration). First, apply the
parameter diminisher a constant number of times such that when, second, the
strict polynomial kernelization is applied, the parameter value is decreased. The
strict polynomial kernelization keeps the instances small, hence the whole process
runs in polynomial time.

Reductions transfer diminishability from one parameterized problem to
another if they do not increase the parameter value and run in polynomial time.
Formally, given two parameterized problems L with parameter k and L′ with
parameter k′, a parameter-non-increasing reduction from L to L′ is an algo-
rithm that maps each instance (x, k) of L to an equivalent instance (x′, k′) of L′

in poly(|x| + k) time such that k′ ≤ k. Note that to transfer diminishability,
we need parameter-non-increasing reductions between two parameterized prob-
lems in both directions—a crucial difference to other reduction-based hardness
results.

Lemma 5 (�2). Let L1 and L2 be two parameterized problems such that there
are parameter-non-increasing reductions from L1 to L2 and from L2 to L1. Then
we have that L1 is diminishable if and only if L2 is diminishable.

Parameter-Decreasing Branching and Strict Composition. To construct parame-
ter diminishers, it is useful to follow a “branch and compose” technique: Herein,
first branch into several subinstances while decreasing the parameter value in
each, and then compose the subinstances into one instance without increasing
the parameter value by more than an additive constant. We first give the defi-
nitions and then show that both combined form a parameter diminisher.

A parameter-decreasing branching rule for a parameterized problem L is a
polynomial-time algorithm that on input (x, k) ∈ {0, 1}∗ ×N outputs a sequence
of instances (y1, k′), . . . , (yt, k′) ∈ {0, 1}∗×N such that (x, k) ∈ L ⇐⇒ (yi, k′) ∈
L for at least one i ∈ [t] and k′ < k. Composition is the core concept behind
the standard kernelization lower bound framework introduced by Bodlaender
et al. [5]. Here we use a more restrictive notion of this concept: A strict com-
position for a parameterized problem L is an algorithm that receives as input
t instances (x1, k), . . . , (xt, k) ∈ {0, 1}∗ × N, and outputs in polynomial time a
single instance (y, k′) ∈ {0, 1}∗ × N such that (i) (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for
some i ∈ [t] and (ii) k′ ≤ k + c for some constant c. If we now combine (multiple
applications of) a parameter-decreasing branching rule with a strict composi-
tion, then we get a parameter diminisher. We remark that this also holds if we
require in both definitions that the equivalence holds for all i ∈ [t].

Lemma 6 (�). Let L be a parameterized problem. If L admits a parameter-
decreasing branching rule and a strict composition, then it is diminishable.

2 Full proofs of results marked with (�) are deferred to a long version [12] of the paper.

166 H. Fernau et al.

On the Exclusion of Non-Uniform Kernelization Algorithms. The presented
framework can be easily adapted to exclude different forms of strict kerneliza-
tions. As our example, we show that the framework can be used to exclude strict
polynomial kernels computed in non-uniform polynomial time (the correspond-
ing complexity class is called P/poly) under the assumption that NP � P/poly. A
non-uniform strict kernelization for a parameterized problem L is a non-uniform
polynomial-time algorithm that on input (x, k) ∈ {0, 1}∗ × N outputs (x′, k′) ∈
{0, 1}∗ × N, the strict kernel, satisfying: (i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L, (ii)
|x′| ≤ f(k), for some function f , and (iii) k′ ≤ k + c, for some constant c. We
say that L admits a non-uniform strict polynomial kernelization if f(k) ∈ kO(1).

Proposition 7 (�). Let L be a parameterized problem such that its unparam-
eterized version is NP-hard and we have that {(x, k) ∈ L | k ≤ c} ∈ P/poly, for
some constant c. If L is diminishable and admits a non-uniform strict polynomial
kernel, then NP ⊆ P/poly.

We remark that if NP ⊆ P/poly, then the Polynomial Hierarchy collapses to its
second level [17] (note that NP ⊆ coNP/poly implies a collapse in the Polynomial
Hierarchy to its third level).

3 Problems Without Strict Polynomial Kernels

In this section, we exemplify the proof of Theorem 2 on two selected graph
problems. The complete proof of Theorem 2 can be found in a long version [12].

First, we present a diminisher for the Multicolored Path(k) problem:
Given an undirected graph G = (V,E) with a vertex coloring function col : V →
[k], determine whether there exists a simple path of length k containing one
vertex of each color. This problem is NP-complete as it generalizes Hamiltonian

Path. Furthermore, Multicolored Path(k) is fixed-parameter tractable as it
can be solved in 2O(k)n2 time [2]. The idea used in the parameter diminisher for
Multicolored Path(k) can also be applied for the Colorful Graph Motif

problem, a problem with applications in bioinformatics.

Proposition 8. Multicolored Path(k) is diminishable.

For graph problems, a vertex-coloring seems to help to construct diminishers.
As an example, the diminishability of the (uncolored) Path(k) problem, asking
whether a given graph contains a simple path of length k, remains open.

Proof. We give a parameter-decreasing branching rule and a strict composition
for Multicolored Path(k). The result then follows from Lemma 6. Let (G =
(V,E), col) be an instance of Multicolored Path(k). Our parameter-
decreasing branching rule for (G = (V,E), col) creates a graph G(v1,v2,v3) for
each ordered triplet (v1, v2, v3) of vertices of V such that v1, v2, v3 is a multicol-
ored path in G. The graph G(v1,v2,v3) is constructed from G as follows: Delete
from G all vertices w ∈ V \ {v2, v3} with col(w) ∈ {col(v1), col(v2), col(v3)}.

Diminishable Parameterized Problems and Strict Polynomial Kernelization 167

Following this, only vertices of k − 1 colors remain, and v2 and v3 are the only
vertices colored col(v2) and col(v3), respectively. Then delete all edges incident
with v2, apart from {v2, v3}, and relabel all colors so that the image of col
for G(v1,v2,v3) is [k − 1].

Clearly our parameter-decreasing branching rule can be performed in poly-
nomial time. Furthermore, the parameter decreases in each output instance. We
show that the first requirement holds as well: Indeed, suppose that G has a mul-
ticolored path v1, v2, . . . , vk of length k. Then v2, . . . , vk is a multicolored path
of length k − 1 in G(v1,v2,v3) by construction. Conversely, suppose that there is a
multicolored path u2, . . . , uk of length k − 1 in some G(v1,v2,v3). Then since v2 is
the only vertex of color col(v2) in G(v1,v2,v3), and since v2 is only adjacent to v3,
it must be without loss of generality that u2 = v2 and u3 = v3. Hence, since v1
is adjacent to v2 in G, and no vertices of u2, . . . , uk have color col(v1) in G, the
sequence of v1, u2, . . . , uk forms a multicolored path of length k in G.

Our strict composition for Multicolored Path(k) is as follows. Given a
sequence of inputs (G1, col1), . . . , (Gt, colt), the strict composition constructs
the disjoint union G and the coloring function col of all graphs Gi and coloring
functions coli, 1 ≤ i ≤ t. Clearly, (G, col) contains a multicolored path of length k
if and only if there is a multicolored path of length k in some (Gi, coli). The result
thus follows directly from Lemma 6. ��
Proposition 9 (�). Unless P = NP, Multicolored Path(k log n) has no
strict polynomial kernel.

We next consider the NP-complete Terminal Steiner Tree (TST) [19]
problem: given an undirected graph G = (V = NT,E) (T is called the terminal
set) and a positive integer k, decide whether there is a subgraph H ⊆ G with at
most k + |T | vertices such that H is a tree and T is a subset of the set of leaves
of H. TST forms a variant of the well-known Steiner Tree problem. When
parameterized by k+|T |, TST is fixed-parameter tractable (see long version [12]).

Proposition 10 (�). Terminal Steiner Tree(k + |T |) is diminishable.

Proof (Diminisher Construction). We present a parameter-decreasing branching
rule and a strict composition for Terminal Steiner Tree(k + |T |). Together
with Lemma 6, the claim then follows. Let (G = (N T,E), k) be an instance of
TST(k+ |T |) (we can assume that G has a connected component containing T).
We make several assumptions first. We can assume that |T | ≥ 3 (otherwise a
shortest path is the optimal solution) and additionally that for all terminals
t ∈ T it holds that NG(t) �⊆ T (as otherwise the instance is a no-instance).
Moreover, we can assume that there is no vertex v ∈ N such that T ⊆ NG(v),
as otherwise we immediately output whether k ≥ 1.

For the parameter decreasing branching rule, select a terminal t∗ ∈ T , and
let v1, . . . , vd denote the neighbors of t∗ in G − (T \ {t∗}). We create d instances
(G1, k − 1), . . . , (Gd, k − 1) as follows. Define Gi, i ∈ [d], by Gi := G − vi. Turn
the vertices in NG(vi) in Gi into a clique, that is, for each distinct vertices v, w ∈

168 H. Fernau et al.

NG(vi) add the edge {v, w} if not yet present. This finishes the construction of Gi.
It is not hard to see that the construction can be done in polynomial time.

Next, we describe the strict composition for TST(k+|T |). Given the instances
(G1, k), . . . , (Gd, k), we create an instance (G′, k) as follows. Let G′ be initially
the disjoint union of G1, . . . , Gd. For each t ∈ T , identify its copies in G1, . . . , Gd,
say t1, . . . , td, with one vertex t′ corresponding to t. This finishes the construction
of G′. Note that for every i, j ∈ [d], i �= j, any path between a vertex in Gi

and a vertex in Gj contains a terminal vertex. Hence, any terminal Steiner
tree in G′ contains non-terminal vertices only in Gi for exactly one i ∈ [d].
It is not difficult to see that (G′, k) is a yes-instance if and only if one of the
instances (G1, k), . . . , (Gd, k) is a yes-instance. ��

4 Problems Without Semi-strict Polynomial Kernels

As strict kernels only allow an increase of the parameter value by an additive
constant (Definition 1), one may ask whether one can exclude less restrictive ver-
sions of strict kernels for parameterized problems using the concept of parameter
diminishers. Targeting this question, in this section we study scenarios with a
multiplicative (instead of additive) parameter increase by a constant. That is,
property (iii) in Definition 1 is replaced by k′ ≤ c · k, for some constant c. We
refer to this as semi-strict kernels.

Note that Theorem 4 does not imply that the problems mentioned in Theo-
rem 2 do not admit semi-strict polynomial kernelizations unless P = NP. Intu-
itively, the parameter diminisher is constantly often applied to decrease the
parameter, while dealing only with a constant additive blow-up of the parameter
caused by the strict kernelization. When dealing with a constant multiplicative
blow-up of the parameter caused by the semi-strict kernelization, the parameter
diminisher is required to be applied a non-constant number of times. Hence, to
deal with semi-strict kernelization, we introduce a stronger version of our param-
eter diminisher: Formally, we replace property (ii) in Definition 3 by k′ ≤ k/c,
for some constant c > 1. We refer to this as strong parameter diminishers.

Next, we show an analogue of Theorem 4 for semi-strict polynomial kernel-
izations and strong parameter diminishers.

Theorem 11 (�). Let L be a parameterized problem such that its unparam-
eterized version is NP-hard and {(x, k) ∈ L | k ≤ c} ∈ P, for some constant
c ≥ 1. If L is strongly diminishable and admits a semi-strict polynomial kernel,
then P = NP.

By Theorem 11, if we can prove a strong diminisher for a parameterized problem,
then it does not admit a semi-strict polynomial kernel, unless P = NP. We give a
strong diminisher for the Set Cover problem: Given a set U called the universe,
a family F ⊆ 2U of subsets of U , and an integer k, the question is whether there
are k sets in the family F that cover the whole universe. We show that Set

Cover parameterized by k log n, where n = |U |, is strongly diminishable.

Diminishable Parameterized Problems and Strict Polynomial Kernelization 169

Theorem 12 (�). Unless P = NP, Set Cover(k log n) and Hitting

Set(k log m) do not admit a semi-strict polynomial kernel.

Proof (Strong Diminisher Construction). Let (U,F = {F1, . . . , Fm}, k) be an
instance of Set Cover(k log n) and assume that k ≥ 2 and n ≥ 5. If k is odd,
then we add a unique element to U , a unique set containing only this element
to F , and we set k = k + 1. Hence, we assume that k is even. The following
procedure is a strong parameter diminisher for the problem parameterized by
k log n. Let U ′ = U and for all Fi, Fj create F ′

{i,j} = Fi∪Fj . Let F ′ = {F ′
{i,j} | i �=

j} and set k′ = k/2. This yields the instance (U ′,F ′, k′) of Set Cover(k log n)
in polynomial time. The proof of correctness is deferred to a long version [12]. ��

Seeking for parameter diminishers to exclude strict polynomial kerneliza-
tions raises the question whether there are parameterized problems that are not
(strongly) diminishable. In the following, we prove that under the Exponential
Time Hypothesis, or ETH for short [16], there are natural problems that do
not admit strong parameter diminishers. Here we restrict ourselves to problems
where we have a parameter diminisher. The Exponential Time Hypothesis states
that there is no algorithm for 3-CNF-Sat running in 2o(n) poly(n + m) time,
where n and m denote the number of variables and clauses, respectively.

Theorem 13 (�). Assuming ETH, none of the following is strongly dimin-
ishable: CNF-Sat(n), Rooted Path(k), Clique(Δ), Clique(tw), and
Clique(bw).

The following lemma is the key tool for excluding strong parameter diminishers
under ETH. Roughly, it can be understood as saying that a strong parameter
diminisher can improve the running time of existing algorithms.

Lemma 14 (�). Let L be a parameterized problem. If there is an algorithm A
that solves any instance (x, k) ∈ L in 2O(k) · |x|O(1) time and L is strongly dimin-
ishable, then there is an algorithm B that solves L in 2O(k/f(x,k)) · |x|f(x,k)O(1)

time, where f : L → N is a function mapping instances of L to the natural
numbers with the following property: For every constant c there is a natural
number n such that for all instances (x, k) ∈ L we have that |x| ≥ n implies that
f(x, k) ≥ c.

Intuitively, we apply Lemma 14 to exclude the existence of strong parameter
diminishers under ETH as follows. Consider a problem where we know a running
time lower bound based on the ETH and we also know an algorithm that matches
this lower bound. Then, due to Lemma 14, for many problems a strong parameter
diminisher and a suitable choice for the function f would imply the existence of
an algorithm whose running time breaks the lower bound.

5 Conclusion

We showed that for several natural problems a strict polynomial-size problem
kernel is as likely as P = NP. Since basically all observed (natural and practically

170 H. Fernau et al.

relevant) polynomial kernels are strict, this reveals that the existence of valuable
kernels may be tighter connected to the P vs. NP problem than previously
expected (in almost all previous work a connection is drawn to a collapse of the
polynomial hierarchy to its third level, and the conceptual framework used there
seems more technical than the one used here). Our work is based on results of
Chen et al. [8] and shows that their basic ideas can be extended to a larger class
of problems than dealt with in their work.

The diminisher framework leaves several challenges for future work. Are there
natural problems where the presented framework is able to refute strict polyno-
mial kernels while the composition framework [5] is not? It is not clear whether
a framework based on a weaker assumption is even able to produce results that
a framework based on a stronger assumption is not able to produce. This pos-
sibly also ties in with the question whether there are “natural” parameterized
problems that admit a polynomial kernel but no strict polynomial kernel.3 We
close with two concrete open problems:

– We proved that Multicolored Path(k) is diminishable (and thus refutes a
strict polynomial kernel unless P = NP). Can this result be extended to the
uncolored version of the problem? This is also open for the directed case.

– Clique(Δ), Clique(tw), Clique(bw) do not have strong diminishers under
the ETH (Sect. 4). Is this also true for Clique(cw)?

References

1. Abu-Khzam, F.N., Fernau, H.: Kernels: annotated, proper and induced. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275.
Springer, Heidelberg (2006). https://doi.org/10.1007/11847250 24

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average parameterization

and partial kernelization for computing medians. J. Comput. Syst. Sci. 77(4), 774–
789 (2011)

4. Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S., Vil-
langer, Y.: Kernel(s) for problems with no kernel: on out-trees with many leaves.
ACM Trans. Algorithms 8(4), 38 (2012)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

6. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability. Ann. Pure Appl. Logic 84(1), 119–138 (1997)

7. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–
1106 (2007)

8. Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other prepro-
cessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)

9. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-662-53622-3

3 Note that Chen et al. [8, Proposition 3.3] presented an artificial parameterized prob-
lem admitting a polynomial kernel but no strict polynomial kernel.

https://doi.org/10.1007/11847250_24
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

Diminishable Parameterized Problems and Strict Polynomial Kernelization 171

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

11. Fellows, M.R., Kulik, A., Rosamond, F.A., Shachnai, H.: Parameterized approx-
imation via fidelity preserving transformations. J. Comput. Syst. Sci. 93, 30–40
(2018)

12. Fernau, H., Fluschnik, T., Hermelin, D., Krebs, A., Molter, H., Niedermeier, R.:
Diminishable parameterized problems and strict polynomial kernelization. CoRR
abs/1611.03739 (2018). http://arxiv.org/abs/1611.03739

13. Fluschnik, T., Mertzios, G.B., Nichterlein, A.: Kernelization lower bounds for find-
ing constant size subgraphs. CoRR abs/1710.07601 (2017). http://arxiv.org/abs/
1710.07601

14. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

15. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(1), 31–45 (2007)

16. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

17. Karp, R.M., Lipton, R.: Turing machines that take advice. L’Enseignement
Mathématique 28(2), 191–209 (1982)

18. Kratsch, S.: Recent developments in kernelization: a survey. In: Bulletin of the
EATCS, no. 113 (2014)

19. Lin, G., Xue, G.: On the terminal Steiner tree problem. Inf. Process. Lett. 84(2),
103–107 (2002)

20. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization.
In: Proceedings of 49th STOC, pp. 224–237. ACM (2017)

21. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computa-
tional complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891
(2012)

https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1611.03739
http://arxiv.org/abs/1710.07601
http://arxiv.org/abs/1710.07601

New Nonterminal Complexity Results
for Semi-conditional Grammars

Henning Fernau1(B), Lakshmanan Kuppusamy2, and Rufus O. Oladele3

1 CIRT, Fachbereich 4, Universität Trier, 54286 Trier, Germany
fernau@uni-trier.de

2 School of Computer Science and Engineering, VIT, Vellore 632 014, India
3 Department of Computer Science, University of Ilorin, P.M.B.1515, Ilorin, Nigeria

Abstract. A semi-conditional grammar is a form of regulated rewrit-
ing system. Each rule consists of a context-free core rule A → w and
two strings w+, w−; the rule is applicable if w+ (the positive condition)
occurs as a substring of the current sentential form, but w− (the negative
condition) does not. The maximum lengths i, j of the positive or negative
conditional strings, respectively, give a natural measure of descriptional
complexity, known as the degree of such grammars. Employing several
normal form results on phrase-structure grammars as derived by Gef-
fert, we improve on previously obtained results by reducing the number
of nonterminals of semi-conditional grammars of a given degree (i, j)
while maintaining computational completeness of the said mechanisms.

1 Introduction

One of the key areas in modern formal language theory is descriptional complex-
ity. In a nutshell, this area investigates how succinct can a grammatical device,
automaton, or rewriting system represent a formal language class (with respect
to a certain complexity measure). In this paper, we focus on the nonterminal
complexity of semi-conditional grammars of a certain degree so that they still
achieve computational completeness, i.e., they still characterize the class RE of
recursively enumerable languages. This includes questions like: Does there exist
a semi-conditional grammar GL for any RE language L such that GL has degree
(2, 1) and uses only six nonterminals? We will answer this question affirmatively
in this paper, while it is left as an open question if five nonterminals suffice.

To arrive at such results, it is often helpful to make use of other similar results
and to simulate the corresponding devices. Among the most often used ones are
the normal forms for type-0 grammars provided by Geffert in [3], because they
also use very few nonterminals to characterize RE.

To underline the importance and history of nonterminal complexity in the
context of regulated rewriting, we refer to [1,2,9]. In the field of semi-conditional
grammars, we would like to point to [4–6,8,9]. A further descriptional complexity
measure more special to semi-conditional grammars is that of the degree which
limits the length of the conditional strings that can be tested. It is known that
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 172–182, 2018.
https://doi.org/10.1007/978-3-319-94418-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_18&domain=pdf

New Nonterminal Complexity Results for Semi-conditional Grammars 173

Table 1. Survey on nonterminal complexity results for SCG grammars

Degree (i, j) # Nonterminals # Conditional rules Reference

(2,1) 8 7 [6]

(2,1) 7 6 [8]

(2,1) 6 7 + |Pcf | Theorem 1

(2,2) 6 6 Theorem 2

(3,1) 5 9 + 2(|T | + 1) + |Pcf | Theorem 3

(3,1) 6 13 Theorem 4

even semi-conditional grammars of degree (1, 1) are computationally complete,
i.e., they characterize the family RE of recursively enumerable languages; see [5].
Nothing is known on the nonterminal complexity in that case, though.

For semi-conditional grammars of degree (2, 1), we improve on the previous
result (due to [8]) of seven nonterminals, bringing it down to six. For semi-
conditional grammars of degree (3, 1), also nothing better than the sufficiency of
seven nonterminals is known. We reduce this bound to five by a non-trivial use of
another normal form result of Geffert. We survey the previously known and new
results in Table 1 , also including a discussion of the number of conditional rules.
In Table 1, T refers to the terminal alphabet and Pcf to a subset of the rules of
the given type-0 grammar; see Footnote 1. Notice that if we neglect the number
of conditional rules as a descriptional complexity aspects, our results improve
on all previously published ones, sometimes trading off degree parameters and
number of nonterminals.

In order to show our results, we make use of several normal forms for type-0
grammars that were presented in [3]. This is somehow special, as previously
(mostly) the normal form with non-context-free erasing rules AB → λ and
CD → λ was used. We also derive several useful properties of the said nor-
mal forms and we use them later while proving our results.

2 Preliminaries and Definitions

It is assumed in this paper that the reader is familiar with the fundamentals
of language theory and mathematics in general. Let N denote the set of non-
negative integers. Let Σ∗ denote the free monoid generated by a finite set Σ
called alphabet under an operation termed concatenation, where λ denotes the
unit of Σ∗, also called the empty string. Any element of Σ∗ is called a word or
string (over Σ). Any subset of Σ∗ is called a language. A word v is a subword
of x ∈ Σ∗ if there are words u,w such that x = uvw. Let sub(x) ⊆ Σ∗ denote
the set of all subwords of x ∈ Σ∗. Clearly, sub(x) is a finite language.

174 H. Fernau et al.

2.1 Semi-conditional Grammars

A semi-conditional grammar is a quadruple G = (V, T, P, S), where V is the total
alphabet, T ⊂ V is the terminal alphabet, S ∈ V \ T is the starting symbol, P
is a finite set of productions of the form (A → x, α, β) with A ∈ V \ T , x ∈ V ∗,
α, β ∈ V + ∪ {0}, where 0 �∈ V is a special symbol, intuitively meaning that the
condition is missing.

The production l : (A → x, α, β) ∈ P (with label l) is said to be conditional if
α �= 0 or β �= 0. String α is permitting, while β is forbidden, as formally explained
now. The production labeled l can be applied on a string u ∈ V ∗(V \ T)V ∗ if
and only if A ∈ sub(u) and (α ∈ sub(u) or α = 0) and (β �∈ sub(u) or β = 0).
Under these conditions, u = u1Au2 will be transformed into v = u1xu2, which
is denoted by u ⇒l v.

When no confusion exists on the rule being applied we avoid mentioning the
label and we simply write u ⇒ v. The language of G is defined as L(G) = {w ∈
T ∗ | S ⇒∗ w} , where ⇒∗ denotes the reflexive and transitive closure of ⇒.

G is said to be of degree (i, j), where i, j ∈ N, if in every rule (A → x, α, β) of
P we have |α| ≤ i and |β| ≤ j whenever α, β �= 0. For brevity, we write SCP(i, j)
to refer to semi-conditional grammars of degree (i, j).

2.2 Geffert Normal Forms

In [3], quite a number of normal forms for type-0 grammars have been derived.
They all differ by the number of nonterminals that are used and also by the
number of non-context-free rules. We will hence speak of (n, r)-GNF to refer to a
Geffert normal form with n nonterminals and r non-context-free rules. However,
all these normal forms characterize the class RE.

The best known such normal form is the (5, 2)-GNF with nonterminals S (the
start symbol) and A,B,C,D that uses context-free rules with S as its left-hand
side in phase one; in a second phase, non-context-free erasing rules AB → λ and
CD → λ are applied to finally derive a terminal string.

In [3], it was also proved that every RE language is generated by a type-0
grammar G = (N,T, P, S) with three nonterminals only, i.e., N = {S,A,B} is
the set of non-terminals, T is the set of terminal symbols, S is the start symbol
and P contains the context-free productions of the form (i) S → w and the only
non-context-free rule of the form (ii) ABBBA → λ . ((3, 1)-GNF)

We need the following properties of (3, 1)-GNF that follow from its con-
struction from the better-known (5, 2)-GNF with nonterminals S,A,B,C,D; the
rules of this normal form are transformed by applying the morphism A
→ AB,
B
→ BBA, C
→ ABB and D
→ BA (otherwise behaving like the identity) to
obtain a grammar in (3, 1)-GNF.

1. If S ⇒∗ w, then w ∈ {AB,ABB}∗{S, λ}{BA,BBA}∗T ∗.
2. No sentential form w that is derivable in G contains a substring BBBBB.
3. If S ⇒∗ w, then w contains at most one of the three substrings ABBBA

or ABBA or ABBBBA, called the central part. In the latter two cases, the
derivation is stuck and the former case will only yield a fruitful derivation.

New Nonterminal Complexity Results for Semi-conditional Grammars 175

4. If S ⇒∗ w and w contains no substring BBB, then either w ∈ T ∗ or there is
no way to terminate this derivation.

5. A derivation S ⇒∗ x with x ∈ T ∗ works in two phases. Phase one actually
splits in two stages. In the first stage, rules of the form S → uSa are applied,
with u ∈ {AB,ABB}∗ and a ∈ T , while in the second stage, rules of the form
S → uSv are applied1, where u ∈ {AB,ABB}∗ and v ∈ {BA,BBA}∗, with
uv �= λ. The first phase ends with applying a rule of the form S → uv, where
u, v are as in the previous phrase. In phase two, the erasing rule ABBBA → λ
is applied.

6. In view of Property 1, we can assume that in any sentential form that is
derivable according to G, there is a symbol X occurring to the right of a
substring ABBBA and X will satisfy X ∈ T ∪ {B}.

We are now considering another normal form due to Geffert [3, Theorem 4],
where we have four nonterminals S,A,B,C, and non-context-free erasing rules
of the form AB → λ and CC → λ; we call this (4, 2)-GNF for short. This normal
form is obtained from the more classical one (using nonterminals S,A,B,C,D)
by applying the morphism A
→ CAA, B
→ BBC, C
→ CA and D
→ BC to
all rules. This already implies that the following properties hold for this normal
form.

1. If S ⇒∗ w, then w ∈ {CA,CAA}∗{S,CC, λ}{BC,BBC}∗T ∗.
2. No sentential form derivable in the grammar contains any of the substrings

BA, AAA, BBB, CCC.
3. If S ⇒∗ w, then w contains at most one of the two substrings CC, AB

(called the central part) at most once. This also rules out ABCC and ABAB
as substrings of sentential forms.

4. Again, the derivation proceeds in two phases, the first one split into two
stages. Only in phase two, the central part (either AB or CC) will appear.

3 Main Results

In this section, the main results of this paper (see Table 1) are presented.

1: (A → $S, AB, S) 2: (B → # , $S , #)
3: (S → $, S#, 0) 4: (C → $$, CC, $)
5: (C → # , $$, #) 6: ($ → λ , $# , 0)
7: (# → λ , 0 , $) w: (S → w , 0 , $)

Fig. 1. Semi-conditional rules simulating AB → λ and CC → λ and S → w ∈ Pcf .

1 We collect all rules S → w with S /∈ sub(w) plus the only rule S → uS within Pcf .

176 H. Fernau et al.

Theorem 1. For each RE language L, there is an SCG(2, 1) with only six non-
terminals that describes L.

Proof. Consider some RE language L represented by some type-0 grammar
G = ({S,A,B,C}, T, P, S) in (4, 2)-GNF. G is simulated by a semi-conditional
grammar of degree (2, 1) G′ = (V, T, P ′, S), where V = N ∪ {$,#} ∪ T .

The particular non-context-free erasing rules AB → λ and CC → λ of G
are simulated by the semi-conditional rules given in Fig. 1 where the last rule is
considered for each context-free rule S → w of the type-0 grammar G.

The intended derivations of phase one of G can be simulated by literally the
same rules (where only the forbidden context $ was added that has no influence
here as $ is not present until end of phase one). Observe that it is not possible
to start such a simulation when still being in the phase one simulation, as AB or
CC must be present as a substring, which can only happen after finishing with
the simulation of phase one.

In phase two, we consider a sentential form uvt, where u ∈ {CA,CAA}∗,
v ∈ {BC,BBC}∗ and t ∈ T ∗ with S ⇒∗ uvt. If u ends with A and v starts
with B, i.e., u = u′A and v = Bv′, AB → λ can be applied. In the simulating
semi-conditional grammar, we find

uvt = u′ABv′t ⇒1 u′$SBv′t ⇒2 u′$S#v′t ⇒3 u′$$#v′t ⇒2
6 u′#v′t ⇒7 u′v′t .

If instead CC is a substring of the current sentential form uvt, this means that
u = u′C and v = Cv′, and now CC → λ is simulated as follows:

uvt = u′CCv′t ⇒4 u′$$Cv′t ⇒5 u′$$#v′t ⇒2
6 u′#v′t ⇒7 u′v′t .

By induction, this argument shows that L(G) ⊆ L(G′).
Conversely, consider a sentential form w derivable by the simulating gram-

mar G′ that is also derivable by the (4, 2)-GNF grammar G. Assume first that w
contains some occurrence of S. As w is derivable in G, neither $ nor # occur in
w only rules of the type (S → x, 0, β) apply, β ∈ {0, $}. In particular, Rule 3 is
not applicable. Hence, for the string w′ derivable from w in one step we also find
w ⇒G w′. This means that we are simulating phase one of G faithfully with G′.

We are left with the case that w does not contain S. As w is also derivable
in G, we are in (the simulation of) phase two. Still, w does not contain any
occurrences of $ and # either. If w is a terminal string, nothing remains to be
shown. So, w contains some occurrences from {A,B,C} and satisfies Property 1
of (4, 2)-GNF. Hence, w ∈ {CA,CAA}∗{S,CC, λ}{BC,BBC}∗T ∗. All rules but
Rule 1 and Rule 4 require that sub(w) ∩ {S,#, $} �= ∅. If the central part AB is
a substring of w, then Rule 1 applies, starting an intended simulation cycle as
discussed above. We will look into this intended derivation later.

If AB is a substring of w, then w = u′ABv′t, with u′ ∈ {CA,CAA}∗{C,CA},
v′ ∈ {C,BC}{BC,BBC}∗ and t ∈ T ∗ (by induction), so that only Rule 1
is applicable. This leads us to w1, replacing any occurrence of A by $S. As
{#, $$}∩sub(w1) = ∅, only Rule 2 is applicable on w1. The resulting string w2 is
obtained from w1 by replacing some occurrence of B by #. As $,#, S ∈ sub(w2),

New Nonterminal Complexity Results for Semi-conditional Grammars 177

only Rules 3 or 6 apply. As w2 will have S occurring to the right of the only
occurrence of $, Rule 6 cannot be applied, leaving us with Rule 3 as the only
possibility. In order to have S# ∈ sub(w2), w2 = u′$S#v′t is enforced due
to Properties 2 and 3 of (4, 2)-GNF, as there are no other occurrences of the
substring AB in w but the one that we singled out. Hence, with w2 ⇒ w3, we
know that w3 = u′$#v′t. Due to the forbidden contexts, only Rules 3 or 6 might
apply, with Rule 3 being disabled, as S /∈ sub(w3). In order to apply Rule 6,
$# ∈ sub(w3) is required. Hence, w3 ⇒ w4 = u′#v′t follows. As S /∈ sub(w4),
Rules 1, 2, 3 are not applicable (and of course, no rule from phase one). As
$ /∈ sub(w4), Rules 5 and 6 do not apply, either. Hence, we are left with either
applying Rule 4 or Rule 7 next. If we applied Rule 4, any occurrence of C is
replaced by $$, leading to some string w5. With AB, S and # being absent in
w5 but $$ present as substrings, Rule 5 is the only potentially applicable rule.
However, this would require CC to appear as a substring in w4, which would
mean that CC appears twice as a substring in w, contradicting Properties 2 and
3 of (4, 2)-GNF. Hence, this derivation gets stuck. Rule 7 would be the intended
rule to be applied on w4, leading us to some w′ that satisfies w ⇒G w′ by
applying the rule AB → λ from G, this way finishing our argument in this case.

The argument for the case that CC is a substring of w is along similar lines.
We can also rule out using rules (S → x, 0, 0).

By induction, we see that L(G′) ⊆ L(G). �
By replacing the use of symbol S by a new nonterminal †, we can avoid using

an unbounded number of conditional rules. This would yield a result nearly
matching the one of Okubo [8].

It is open if the number of nonterminals can be further reduced for semi-
conditional grammars of degree (2, 1). In the following result, we show that if we
increase the (maximum) forbidden context length to two, then with 6 conditional
rules and 6 nonterminals we can obtain a computational completeness result.
Notice that we are not aware of any previous results for SCG(i, 2) for any i
(Table 1).

Theorem 2. For each RE language L, there is an SCG(2, 2) with only six non-
terminals and six conditional rules that describes L.

1: (A → $, AB, $) 2: (B → # , $B, #)
3: (C → #$, CC, #) 4: (C → ##, $C, ##)
5: ($ → λ , $# , AB) 6: (# → λ , 0 , $)

Fig. 2. Semi-conditional rules for simulating AB → λ and CC → λ.

For reasons of space, we only provide an explanation of how the simulation
of the non-context-free erasing rules of a type-0 grammar in (4, 2)-GNF should
work; cf. Fig. 1.

178 H. Fernau et al.

1: (B → $, BBB, $) 2: (B → # , B$B , #)
3.A: ($ → λ , #$A , S) 3.B: ($ → λ , #$B , S)

4: (B → S$, A#B, $) 5: (A → $$, A#A, $)
6: (# → λ , $$# , S) 7: (A → # , $$A , #)

8.X: ($ → λ , $#X , S) 9.X: (# → λ , #X , $)
δS: (S → λ , S$A , 0) w: (S → w , 0 , $)

Fig. 3. Semi-conditional rules for simulating ABBBA → λ, with X ∈ T ∪ {B}, and
for simulating S → w ∈ Pcf .

uvt = u′ABv′t ⇒1 u′$Bv′t ⇒2 u′$#v′t ⇒5 u′#v′t ⇒6 u′v′t ,

uvt = u′CCv′t ⇒3 u′#$Cv′t ⇒4 u′#$##v′t ⇒5 u′###v′t ⇒3
6 u′v′t .

Aiming at further trade-off results, trading the number of nonterminals for
degree conditions, we consider semi-conditional grammars of degree (3, 1). In
[8], it is shown that 7 nonterminals with degree (2, 1) suffice to describe any RE
language. Below, we improve on the nonterminal number, but with degree (3, 1).

Theorem 3. For each RE language L, there is an SCG(3, 1) with only five
nonterminals that describes L.

Proof. We start out with a representation of a recursively enumerable language
by a type-0 grammar G = (N,T, P, S) in (3, 1)-GNF that has only three nonter-
minals S,A,B. We are going to construct an equivalent an SCG(3, 1) G′ with
additional nonterminals $ and #. G has context-free rules of the form S → w
that we simply also incorporate in the semi-conditional grammar G′ that we
produce without any conditions (apart from the rules that replace S by a termi-
nal string), plus one non-context-free deletion rule, namely ABBBA → λ. This
particular rule is simulated by the semi-conditional rules listed in Fig. 3. The
intended simulation is as follows, basically executing the given rules in order.

ABBBAX ⇒1 AB$BAX ⇒2 A#$BAX ⇒3.B A#BAX ⇒4 A#S$AX ⇒δS

A#$AX ⇒3.A A#AX ⇒5 $$#AX ⇒6 $$AX ⇒7 $$#X ⇒8 $#X ⇒8 #X ⇒9 X

Notice that we might assume that in any sentential form that is derivable
according to G, a symbol X occurs to the right of the substring ABBBA that
satisfies X ∈ T ∪ {B} according to the last (3, 1)-GNF property. So, we can
assume that the symbol X that we are testing in Rules 9 and 10 does exist.
This shows that L(G) ⊆ L(G′). Before we continue with proving the converse
inclusion L(G′) ⊆ L(G), we observe the following.

Observation: If w ∈ (T ∪ {A,B})∗ and if w ⇒ w′ in G′, then there is only at
most one applicable rule in G′, which is Rule 1. Furthermore, this requires that
BBB ∈ sub(w).This claim is easily understood by inspecting the rules listed in
Fig. 3, as all other rules require that {$,#} ∩ sub(w) �= ∅. This nicely fits with
Property 4 of (3, 1)-GNF grammars.

New Nonterminal Complexity Results for Semi-conditional Grammars 179

Now we prove the converse inclusion L(G′) ⊆ L(G). Consider some sentential
form w of G′. By induction, we can assume that w is also a sentential form of G.
We are going to argue that after some further derivation steps of G′ (starting
from w), either the derivation is stuck, or some sentential form is produced that
is also a valid sentential form of G. By induction, this shows L(G′) ⊆ L(G).

As assumed above, w is a valid sentential form in G also, so it is possibly
part of a derivation taking place in phase one in this (3, 1)-GNF grammar only.
Hence, only context-free rules have been used, and this could be also assumed
with G′, i.e., the simulation was the intended one. In particular, none of the
nonterminals S, $,# occurs in w.

Hence, we are now in phase two of the (3, 1)-GNF grammar. According to
the properties of (3, 1)-GNF listed above, the interesting cases that remain to
be discussed is when (i) w = uABBBAvt or (ii) w = uABBBBAvt or (iii)
w = uABBAvt with u ∈ {AB,ABB}∗, v ∈ {BA,BBA}∗, where in the latter
two cases (ii) and (iii), there is no way to terminate the derivation in G according
to Properties 3 and 4 of (3, 1)-GNF grammars. According to Property 5 of (3, 1)-
GNF grammars the only rule applicable in G would be the non-context-free
deletion rule. In G′, we also find that at most some rules from Fig. 3 might
apply. By our Observation, Case (iii) is ruled out. In G′, as can be easily checked,
the only applicable rule would then be the first rule B → $. This results in a
string w1 with w ⇒ w1 where one occurrence of B is replaced by $. Now, due
to the fact that $ is a forbidden context in the first rule, it cannot be applied
again. We can check that rules numbered 3, 4, 5, 6, 8, 9 are not applicable,
as # is not contained in w1. As $$ /∈ sub(w1), neither Rule 7 is applicable.
So, we have to employ Rule 2. In order to continue, we can conclude that (1)
w1 = uAB$BAvt or (2) w1 = uAB$BBAvt or (3) w1 = uABB$BAvt, as in the
given normal form grammar G, no strings with a sequence of more than four
B’s can be produced, see Property 2 of (3, 1)-GNF grammars, and there is only
one position where one could find a sequence of three or four B’s according to
Property 3 of (3, 1)-GNF. It is then clear that for w1 ⇒ w2 we have that (a)
w2 = uA#$BAvt or (b) w2 = uAB$#Avt (both from w1 = uAB$BAvt), or
(c) w2 = uA#$BBAvt or (d) w2 = uAB$#BAvt or (e) w2 = uAB$B#Avt
(all three from w1 = uAB$BBAvt), or (f) w2 = uA#B$BAvt or (g) w2 =
uAB#$BAvt or (h) w2 = uABB$#Avt (all three from w1 = uABB$BAvt), or
(j) any other occurrence of B within u or v is replaced, leading to w2 where the
subword between the u- and the v-part is identical to w1.

In each case, both $ and # are present in the string w2, which immediately
rules out all but Rules 3, 6, 8 due to the forbidden strings in the other rules.
Rule 6 requires two occurrences of $, which is not satisfied with any of the w2.
We are now discussing possibilities for w2 ⇒ w3 with the two remaining rules.

If we try to apply Rule 8, this requires the substring $#X for X ∈ T ∪ {B},
which leaves us with Case (d). In that case, w2 ⇒ uAB#BAvt = w3. Now,
Rule 1 is excluded, as substring BBB is missing; Rule 2 is excluded by the
presence of #; Rules 3 and 8 are not possible, as $ is not present; Rule 4 is
not applicable, as the substring A#B is not present; similarly, Rule 5 is not

180 H. Fernau et al.

applicable, as the substring A#A is missing; Rules 6 and 7 require two occur-
rences of $ in the string, which is not the case here. Applying Rule 9 leads us to
w4 = uABBAvt. By our Observation, there is no possible continuation.

If we want to apply Rule 3 instead to the string w2, which in fact has the
same effect as Rule 8, namely, to delete the only occurrence of $ in w2, this
means that #$Y ∈ sub(w2) for Y = A or Y = B. This leaves us with Cases
(a) or (c) or (g). Some further case analysis shows that only Case (a) leads
to continuation, forcing us step-by-step along the intended derivation, this way
arriving at w6 = uA#Avt.2

As {BBB,B$B, $, A#B,#X | X ∈ T ∪ {B}} ∩ sub(w6) = ∅, the only appli-
cable rule is Rule 5. Hence, (A) w7 = u$$#Avt, or (B) w7 = uA#$$vt, or (C)
w7 = u′A#Av′t, where u = u′ or v = v′ and exactly one occurrence of A in uv
was replaced by $$ in order to get u′v′. As {$$,#} ⊆ sub(w7), only Rules 3, 6,
or 8 might be applicable. In Case (A), only Rule 6 is applicable by checking the
permitting conditions, i.e., w8 = u$$Avt. In Case (B), Rule 3 is not applicable,
as the symbol to the right of #$ is not A or B. The permitting conditions of
Rules 6 and 8 require the substring $#, which is not present in this case. The
same reasoning shows that Case (C) knows no continuation. To summarize, we
are forced to w8 = u$$Avt. As $ is present in w8, we cannot apply Rules 1,
4, 5, or 9. As {B$B,#$A,#$B,#} ∩ sub(w8) = ∅, the only applicable rule is
Rule 7. This leads us to w9 = u$$#vt or u′$$Av′t, where u′ = u or v′ = v,
and either v′ is obtained from v by replacing one occurrence of A by #, or u′ is
derived from u in a similar fashion. Anyways, the presence of $ and # in the new
string restricts us to using Rules 3, 6, 8 in the next derivation step, which always
requires $ and # to be neighboring symbols, leaving us with w9 = u$$#vt as
the only possibility, as u cannot end with A (and hence u′ cannot end with #)
and v cannot start with A (and hence v′ cannot start with #).

As {$$,#} ⊆ sub(w9), only Rules 3, 6 or 8 might be applicable to w9. The
permitting condition of Rule 3 is not satisfied. If we apply Rule 6, we arrive
at u$$vt. As can be checked by a case-by-case analysis, there is no rule that
applies to transform u$$vt any further in G′. If we use Rule 8 instead, we get
w10 = u$#vt. Again, only Rules 3, 6 or 8 might be applicable. The required
permitting strings of Rules 3 and 6 are not subwords of w10. Hence, we have to
apply Rule 8 once more, leading to w11 = u#vt. Now, recall that u ends with
a B and v starts with a B, unless they are empty. Hence, Rules 4 and 5 do
not apply. The presence of # prevents applying Rules 2 and 7. The absence of
$ does not allow us to apply Rules 3, 6, 7 or 8, either. As BBB /∈ sub(w11),
Rule 1 cannot be applied. Hence, only Rule 9 is applicable, yielding w12 = uvt.
As w ⇒ w12 in G is valid (recall that we are still considering Case (i) from the
beginning of this analysis), the induction step is shown.

There is one issue that needs to be finally addressed. As S is introduced as an
auxiliary symbol in the conditional rules in Fig. 3, within G′, a new simulation
of a derivation S ⇒∗ x in G might start. This possibility is stopped by the fact
that rules of G that are terminating the first phase, i.e., rules of the form S → w

2 Some details are suppressed due to space constraints.

New Nonterminal Complexity Results for Semi-conditional Grammars 181

for S /∈ sub(w), are now guarded by the condition checking if $ is absent. So, if
such a restart is attempted, then this could never lead to a terminal string. �

We can get a better bound on the number of conditional rules at the expense
of one additional nonterminal † in Fig. 4.

1: (B → $, BBB, $) 2: (B → # , B$B , #)
3.A: ($ → λ , #$A , †) 3.B: ($ → λ , #$B , †)

4: (B → †$, A#B, $) 5: (A → $$, A#A, $)
6: (# → λ , $$# , †) 7: (A → # , $$A , #)
8: ($ → λ , $#B , †) 8′: ($ → λ , 0 , A)
9: (# → λ , #B , $) 9′: (# → λ , 0 , A)

δ†: († → λ , †$A , 0) w: (S → w , 0 , 0)

Fig. 4. Semi-conditional rules simulating ABBBA → λ and S → w

Theorem 4. For each recursively enumerable language L, there is an SCG(3, 1)
with only six nonterminals and 13 conditional rules that describes L.

Future Research Questions. The interested reader might have wondered why we
restricted our attention to (simple) semi-conditional grammars of degree (i, j)
with i > 1, although also and even degree (1,1) is known to suffice for computa-
tional completeness. However, the construction of [5] (based on [7]) is not helpful
to get any bounds on the nonterminal complexity of such systems; even if we
start out with a matrix grammar with few nonterminals (as done in the construc-
tion of Mayer), and notice that few nonterminals suffice in matrix grammars,
as shown in [2], we arrive at a semi-conditional grammar with quite a number
of nonterminals, as the matrix grammars of [7] are binary to start with, while
in [2], the matrix grammars that are constructed contain arbitrarily many rule
in their matrices. We pose it as an open question to construct a (simple) semi-
conditional grammars of degree (1, 1) using only (any) fixed amount of nonter-
minals. Clearly, other open questions concern the optimality of our nonterminal
complexity results for degrees (2, 1), (2, 2) or (3, 1).

References

1. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory: EATCS
Monographs in Theoretical Computer Science. Springer, Heidelberg (1989)

2. Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal com-
plexity of graph-controlled, programmed, and matrix grammars. J. Autom. Lang.
Comb. 12(1/2), 117–138 (2007)

3. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique
théorique et Applications/Theor. Inform. Appl. 25, 473–498 (1991)

182 H. Fernau et al.

4. Masopust, T.: Formal models: regulation and reduction. Ph.D. thesis, Faculty of
Information Technology, Brno University of Technology, Brno, Czech Republic
(2007)

5. Masopust, T.: A note on the generative power of some simple variants of context-free
grammars regulated by context conditions. In: Dediu, A.H., Ionescu, A.M., Mart́ın-
Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 554–565. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00982-2 47

6. Masopust, T., Meduna, A.: Descriptional complexity of semi-conditional grammars.
Inf. Process. Lett. 104(1), 29–31 (2007)

7. Mayer, O.: Some restrictive devices for context-free languages. Inf. Control (now
Inf. Comput.) 20, 69–92 (1972)

8. Okubo, F.: A note on the descriptional complexity of semi-conditional grammars.
Inf. Process. Lett. 110(1), 36–40 (2009)

9. Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated
by context conditions. Theor. Comput. Sci. 330, 361–373 (2005)

https://doi.org/10.1007/978-3-642-00982-2_47

Kernelization Lower Bounds for Finding
Constant-Size Subgraphs

Till Fluschnik1(B), George B. Mertzios2, and André Nichterlein1

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
Berlin, Germany

{till.fluschnik,andre.nichterlein}@tu-berlin.de
2 Department of Computer Science, Durham University, Durham, UK

george.mertzios@durham.ac.uk

Abstract. Kernelization is an important tool in parameterized algorith-
mics. Given an input instance accompanied by a parameter, the goal is to
compute in polynomial time an equivalent instance of the same problem
such that the size of the reduced instance only depends on the parameter
and not on the size of the original instance. In this paper, we provide a
first conceptual study on limits of kernelization for several polynomial-
time solvable problems. For instance, we consider the problem of finding
a triangle with negative sum of edge weights parameterized by the maxi-
mum degree of the input graph. We prove that a linear-time computable
strict kernel of truly subcubic size for this problem violates the popular
APSP-conjecture.

1 Introduction

Kernelization is the main mathematical concept for provably efficient preprocess-
ing of computationally hard problems. This concept has been extensively studied
(see, e.g., [17,21,26,27]) and it has great potential for delivering practically rel-
evant algorithms [24,31]. In a nutshell, the aim is to significantly and efficiently
reduce a given instance of a parameterized problem to its “computationally hard
core”. Formally, given an instance (x, k) ∈ {0, 1}∗ × N of a parameterized prob-
lem L, a kernelization for L is an algorithm that computes in polynomial time
an instance (x′, k′), called kernel, such that (i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L and
(ii) |x′| + k′ ≤ f(k), for some computable function f . Although studied mostly
for NP-hard problems, it is natural to apply this concept also to polynomial-time
solvable problems as done e.g. for finding maximum matchings [29]. It is thus
also important to know the limits of this concept. In this paper we initiate a
systematic approach to derive kernelization lower bounds for problems in P. We

T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13) and project
TORE (NI 369/18).
G. B. Mertzios—Partially supported by the EPSRC grant EP/P020372/1.
A. Nichterlein—Supported by a postdoc fellowship of DAAD while at Durham Uni-
versity.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 183–193, 2018.
https://doi.org/10.1007/978-3-319-94418-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_19&domain=pdf

184 T. Fluschnik et al.

demonstrate our techniques at the example of subgraph isomorphism problems
where the sought induced subgraph has constant size and is connected.

When kernelization is studied on NP-hard problems (where polynomial run-
ning times are considered computationally “tractable”), the main point of inter-
est becomes the size f(k) of the kernel with respect to the parameter k. In
particular, from a theoretical point of view, one typically wishes to minimize the
kernel size to an—ideally—polynomial function f of small degree. As every deci-
sion problem in P admits a kernelization which simply solves the input instance
and produces a kernel of size O(1) (encoding the yes/ no answer), it is crucial
to investigate the trade-off between (i) the size of the kernel and (ii) the running
time of the kernelization algorithm. The following notion captures this trade-off:
An (a, b)-kernelization for a parameterized problem L is an algorithm that, given
any instance (x, k) ∈ {0, 1}∗ ×N, computes in O(a(|x|)) time an instance (x′, k′)
such that (i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L and (ii) |x′| + k′ ∈ O(b(k)).

Kernelization for problems in P is part of the recently introduced framework
“FPT in P” [20]. This framework is recently applied to investigate parame-
terized algorithms and complexity for problems in P [3,14,16,20,29]. Studying
lower bounds for kernelization for problems in P is—as it turns out—strongly
connected to the active research field of lower bounds on the running times of
polynomial-time solvable problems (see, e.g., [1–3,7]). These running time lower
bounds rely on popular conjectures like the Strong Exponential Time Hypothesis
(SETH) [22,23] or the 3SUM-conjecture [19], for instance.

In contrast to NP-hard problems, only little is known about kernelization
lower bounds for problems in P. To the best of our knowledge all known kernel-
ization lower bounds follow trivially from the corresponding lower bounds of the
running time: For instance, assuming SETH, it is known that (i) the hyperbol-
icity and (ii) the diameter of a graph cannot be computed in 2o(k) · n2−ε time
for any ε > 0, where k is (i) the vertex cover number and (ii) the treewidth of
the graph [3,14]. This implies that both problems do not admit an (n2−ε, 2o(k))-
kernelization—a kernel with 2o(k) vertices computable in O(n2−ε) time—since
such a kernelization yields an algorithm running in O(2o(k) + n2−ε) time.

In this paper we initiate a systematic approach to derive kernelization lower
bounds for problems in P for a—very natural—special type of kernels.

Definition 1 (strict (a, b)-kernelization). A strict (a, b)-kernelization for
a parameterized problem L is an algorithm that given any instance (x, k) ∈
{0, 1}∗×N computes in O(a(|x|)) time an instance (x′, k′) such that (i) (x, k) ∈ L
⇐⇒ (x′, k′) ∈ L, (ii) |x′| + k′ ∈ O(b(k)), and (iii) k′ ≤ k.

Chen et al. [8] introduced a framework to exclude strict kernels for NP-hard
problems, assuming that P �= NP. Fernau et al. [13] applied the framework to a
wide variety of FPT problems and studied it on “less” strict kernelizations. The
framework [8,13] is based on the notion of (strong) diminishers:

Definition 2 (a-diminisher). An a-diminisher for a parameterized problem L
is an algorithm that given any instance (x, k) ∈ {0, 1}∗ × N in O(a(|x|)) time
either decides whether (x, k) ∈ L or computes an instance (x′, k′) such that (i)

Kernelization Lower Bounds for Finding Constant-Size Subgraphs 185

Table 1. Overview of our results. Here, k is interchangeably the order of the largest
connected component, the degeneracy, or the maximum degree.

Negative Weight

Triangle (NWT)
Triangle Collection (TC)

lower bounds
(Theorem2)

No strict (nα, kβ)-kernelization with α, β ≥ 1
and α · β < 3, assuming:

the APSP-conjecture the SETH, APSP-, or
3SUM-conjecture

kernel (Theorem3) Strict (n(3+ε)/(1+ε), k1+ε)-kernelization for
every ε > 0, e.g. strict (n5/3, k3)-kernelization

(x, k) ∈ L ⇐⇒ (x′, k′) ∈ L, and (ii) k′ < k. A strong a-diminisher for L is an
a-diminisher for L with k′ < k/c for some constant c > 1.

Our Contributions. We adapt the diminisher framework [8,13] to prove kernel-
ization lower bounds for problems in P. Our results concern the H-Subgraph

Isomorphism (H-SI) problem1 for constant-sized connected graphs H. As a
running example, we focus on the fundamental case where H is a triangle and
we present diminishers (along with kernelization lower bounds) for the following
weighted and colored variants of the problem:

Negative Weight Triangle (NWT)

Input: An undirected graph G with edge weights w : E(G) → Z.
Question: Is there a triangle T in G with

∑
e∈E(T) w(e) < 0?

Triangle Collection (TC)

Input: An undirected graph G with surjective coloring col : V (G) → [f].
Question: Does there for all color-triples C ∈ (

[f]
3

)
exist a triangle with vertex

set T = {x, y, z} in G such that col(T) = C?

NWT and TC are conditionally hard: If NWT admits a truly subcubic
algorithm—that is, with running time O(n3−ε), ε > 0—then APSP also admits
a truly subcubic algorithm, breaking the APSP-conjecture [30]. A truly subcubic
algorithm for TC breaks the SETH, the 3SUM-, and the APSP-conjecture [4].

For both NWT and TC we consider three parameters (in decreasing order):
(i) order (that is, the number of vertices) of the largest connected component, (ii)
maximum degree, and (iii) degeneracy. We prove that both NWT and TC admit
a strong linear-time diminisher for all these three parameters. Together with the
conditional hardness, we then obtain lower bounds on strict kernelization. Our
results are summarized in Table 1.

Complementing our lower bounds, we prove a strict (n5/3, k3)-kernelization
for NWT and TC (k being any of the three aforementioned parameters) and a

1 The H-Subgraph Isomorphism asks, given an undirected graph G = (V, E),
whether G contains H as a subgraph.

186 T. Fluschnik et al.

strict (n · Δ�c/2�+1,Δ�c/2�+1)-Turing kernelization for H-Subgraph Isomor-

phism when parameterized by the maximum degree Δ, where c = |V (H)|.

Notation and Preliminaries. We use standard notation from parameterized com-
plexity [10] and graph theory [11]. For an integer j, we define [j] := {1, . . . , j}.

2 Frameworks to Exclude Polynomial Kernelizations

We briefly recall the existing frameworks to exclude (strict) polynomial-size ker-
nels for NP-hard problems. We further discuss the difficulties that appear when
transferring these approaches to polynomial-time solvable problems.

Composition Framework. The frequently used (cross-)composition frameworks
[5,6,18] are the tools to exclude polynomial-size problem kernels under the
assumption NP ⊆ coNP/poly. There are some issues when adapting these frame-
works for problems in P. We discuss the issues using the H-Subgraph Isomor-

phism (H-SI) problem for constant-sized connected H.
Adapting the proofs of Bodlaender et al. [5] and Fortnow and Santhanam

[18] for H-SI leads to the following: “If H-SI parameterized by the order k of
the largest connected component admits an (nc, kc′

)-kernelization, then H-SI ∈
NTIME(nc′(c+1))/nc+1.” Since there exists a trivial O(n|H|+1)-time brute-force
algorithm for H-SI, there also exist trivial polynomial-time computable kernels
for H-SI. Hence, we have to stick with specifically chosen c and c′ (with c · c′ <
|H|). Furthermore, we cannot transfer these results easily to other problems in
P due to the lack of a suitable completeness theory (H-SI belongs to P).

One drawback of the composition approach for any problem L in P is the lack
of clarity on the assumption’s (L /∈ NTIME(nc′(c+1))/nc+1) reasonability. More-
over, due to a missing equivalent to the NP-completeness theory, the assumption
bases on specific problems and not on complexity classes.

Strict Kernelization and Diminishers. Chen et al. [8] introduced a framework to
exclude strict kernelization, that is, kernelization that do not allow an increase
in the value of the parameter in the obtained kernel instance. This framework
builds on the assumption P �= NP and can be easily adapted to exclude strict
kernels for polynomial-time solvable problems. Recall that for problems in P,
both the size of the kernel and the kernelization running time are important.

Theorem 1 (�2). Let L be a parameterized problem with parameter k such
that each instance with parameter k ≤ c for some constant c > 0 is a trivial
instance of L. If L with parameter k admits a strict (a, b)-kernelization and an
a′-diminisher (a strong a′-diminisher), then any instance (x, k) is solvable in
O(k · (a(a′(b(k))) + a(|x|)) time (in O(log k · (a(a′(b(k))) + a(|x|)) time).

2 Results marked with (�) are deferred to a long version [15] of the paper.

Kernelization Lower Bounds for Finding Constant-Size Subgraphs 187

We point out that—in contrast to “classic” kernelization for NP-hard problems—
for two parameters k and k′ for a problem L such that k′ is stronger [25] than k,
a strict kernelization regarding k does not imply a strict kernelization regard-
ing k′.

Reductions for Transferring Kernels. There are two issues when using the strat-
egy of polynomial parameter transformations to transfer results of Theorem 1
along polynomial-time solvable problems: First, we need to require the trans-
formation to be computable “fast” enough and that the parameter does not
increase (k′ ≤ k). Second, in order to transfer a strict kernel we need to show a
reverse transformation from L′ to L which again is computable “quick” enough
and does not increase the parameter. Hence, we essentially need to show that the
two problems L and L′ are equivalent under these restrictive transformations.

3 Kernelization Lower Bounds via Diminishers

In this section, we present diminishers for H-Subgraph Isomorphism (H-SI)
for connected H with respect to the structural parameters (i) order � of the
largest connected component, (ii) maximum degree Δ, and (iii) degeneracy d.
Observe that d ≤ Δ ≤ � in every graph. These lead to our following main result.

Theorem 2. If NWT (TC) parameterized by k being the (i) order � of the largest
connected component, (ii) maximum degree Δ, or (iii) degeneracy d admits a
strict (nα, kβ)-kernel for constants α, β ≥ 1 with α · β < 3, then the APSP-
conjecture (the SETH, the 3SUM-, and the APSP-conjecture) breaks.

Parameter Order of the Largest Connected Component. In the following, we
prove a linear-time strong diminisher regarding the parameter order of the largest
connected component for problems of finding constant-size subgraphs (with some
specific property). The idea behind our diminisher is depicted as follows: for
each connected component, partition the connected component into small parts
and then take the union of not too many parts to construct new (connected)
components (see Fig. 1 for an illustration of the idea with H being a triangle).

Construction 1. Let H be an arbitrary but fixed connected constant-size
graph of order c > 1. Let G = (V,E) be a graph with the largest connected
component being of order �. First, compute in O(n + m) time the connected
components G1, . . . , Gr of G. Then, construct a graph G′ as follows.

Let G′ be initially the empty graph. If � ≤ 4c, then set G′ = G. Otherwise,
if � > 4c, then construct G′ as follows. For each connected component Gi =
(Vi, Ei), do the following. If the connected component Gi = (Vi, Ei) is of order at
most �/2, then add Gi to G′. Otherwise, if ni := |Vi| > �/2, then we partition Vi

as follows. Without loss of generality let Vi be enumerated as Vi = {v1
i , . . . , vni

i }.
For every p ∈ {1, . . . , 4c}, define V p

i := {vq
i ∈ Vi | q mod 4c = p−1}. This defines

the partition Vi = V 1
i
 · · ·
 V 4c

i . Then, for each {a1, . . . , ac} ∈ (
[4c]
c

)
, add the

graph G[V a1
i ∪ . . . ∪ V ac

i] to G′. This completes the construction. �

188 T. Fluschnik et al.

V1

V2

V3

V4

V5

V6x

y z

G
V1

V2

V3

x

y

V1

V2

V4

x

. . .

G[V1 ∪ V3 ∪ V5]
V1

V3 V5

x

y z

V1

V4

V5

x

z

. . .

V3 V5

V6

y z

V4

V5

V6

z

Fig. 1. Schematic illustration of the idea behind our diminisher for the parameter order
of the largest connected component.

Employing Construction 1, we obtain the following.

Proposition 1 (�). NWT and TC parameterized by the order � of the largest
connected component admit a strong (n + m)-diminisher.

There is a straight-forward O(k2 ·n)-time algorithm for NWT and TC: Check
for each vertex all pairs of other vertices in the same connected component.
However, under the APSP-conjecture (and SETH for TC) there are no O(n3−ε)-
time algorithms for any ε > 0 [4,30]. Combining this with our diminisher in
Proposition 1 we can exclude certain strict kernels as shown below.

Proof (of Theorem 2(i)). By Proposition 1, we know that NWT admits a strong
(n + m)-diminisher. Suppose that NWT admits a strict (nα, kβ)-kernel for α ≥
1, β ≥ 1 with α · β = 3 − ε0, ε0 > 0. It follows by Theorem 1 that NWT is
solvable in t(n, k) ∈ O(kβ·α log(k) + nα) time. Observe that log(k) ∈ O(kε1)
for 0 < ε1 < ε0. Together with k ≤ n and α ·β = 3− ε0 we get t(n, k) ∈ O(n3−ε)
with ε = ε0 −ε1 > 0. Hence, the APSP-conjecture breaks [30]. The proof for TC
works analogously. �
Parameter Maximum Degree. The diminisher described in Construction 1 does
not necessarily decrease the maximum degree of the graph. We thus adapt the
diminisher to partition the edges of the given graph (using an (improper) edge-
coloring) instead of its vertices. Furthermore, if H is of order c, then H can
have up to

(
c
2

) ≤ c2 edges. Thus, our diminisher considers all possibilities to
choose c2 (instead of c) parts of the partition. For the partitioning step, we need
the following.

Lemma 1 (�). Let G = (V,E) be a graph with maximum degree Δ and let b ∈
N. One can compute in O(b(n+m)) time an (improper) edge-coloring col : E →
N with less than 2b colors such that each vertex is incident to at most �Δ/b�
edges of the same color.

Kernelization Lower Bounds for Finding Constant-Size Subgraphs 189

Construction 2. Let H be an arbitrary but fixed connected constant-size
graph of order c > 1. Let G = (V,E) be a graph with maximum degree Δ.
First, employ Lemma 1 to compute an (improper) edge-coloring col : E → N

with 4c2 ≤ f < 8c2 many colors (without loss of generality we assume
�(col) = {1, . . . , f}) such that each vertex is incident to at most �Δ/(4c2)�
edges of the same color.

Now, construct a graph G′ as follows. Let G′ be initially the empty graph.
If Δ ≤ 4c2, then set G′ = G. Otherwise, if Δ > 4c2, then construct G′ as
follows. We first partition E: Let Ep be the edges of color p for every p ∈
{1, . . . , f}. Clearly, E = E1
 · · ·
 Ef . Then, for each {a1, . . . , ac2} ∈ (

[f]
c2

)
, add

the graph (V,Ea1 ∪ . . . ∪ Eac2) to G′. This completes the construction. �
Proposition 2 (�). NWT and TC parameterized by maximum degree Δ admit
a strong (n + m)-diminisher.

Parameter Degeneracy. The degeneracy of a graph is the smallest number d
such that every induced subgraph contains a vertex of degree at most d. For
parameter degeneracy, the diminisher follows the same idea as the diminisher
for the parameter maximum degree (see Construction 2). The only difference
between the two diminishers is how the partition of edge set is obtained.

Construction 3. Let H be an arbitrary but fixed constant-size graph of
order c > 1. Let G = (V,E) be a graph with degeneracy d. First, compute a
degeneracy ordering3 σ in O(n + m) time [28]. Construct a graph G′ as follows.

Let G′ be initially the empty graph. If d ≤ 4c2, then set G′ = G. Otherwise,
if d > 4c2, then construct G′ as follows. First, for each vertex v ∈ V , we partition
the edge set Ev := {{v, w} ∈ E | σ(v) < σ(w)} going to the right of v with
respect to σ into 4c2 parts. Let Ev be enumerated as {e1, . . . , e|Ev|}. For each v,
we define Ep

v := {ei ∈ Ev | i mod 4c2 = p − 1} for every p ∈ [4c2]. Clearly,
Ev = E1

v
· · ·
E4c2

v . Next, we define Ep :=
⋃

v∈V Ep
v for every p ∈ [4c2]. Clearly,

E =
⊎

1≤p≤4c2 Ep =
⊎

1≤p≤4c2
⊎

v∈V Ep
v . Then, for each {a1, . . . , ac2} ∈ (

[4c2]
c2

)
,

add the graph (V,Ea1 ∪ . . . ∪ Eac2) to G′. This completes the construction. �
Proposition 3 (�). NWT and TC parameterized by degeneracy admit a strong
(n + m)-diminisher.

4 (Turing) Kernelization Upper Bounds

We complement our results on kernelization lower bounds by showing straight-
forward strict kernel results for H-Subgraph Isomorphism for connected
constant-size H to show the limits of any approach showing kernel lower bounds.

Strict Turing Kernelization. For the parameters order of the largest connected
component and maximum degree, we present strict (a, b)-Turing kernels:
3 This is an ordering of the vertices such that each vertex v has at most d neighbors
ordered after v.

190 T. Fluschnik et al.

Definition 3. A strict (a, b)-Turing kernelization for a parameterized problem L
is an algorithm that decides every input instance (x, k) in time O(a(|x|)) given
access to an oracle that decides whether (x′, k′) ∈ L for every instance (x′, k′)
with |x′| + k′ ≤ b(k) in constant time.

Note that the diminisher framework in its current form cannot be applied to
exclude (strict) (a, b)-Turing kernelizations. In fact, it is easy to see that H-

Subgraph Isomorphism for connected constant-size H parameterized by the
order � of the largest connected component admits an (n+m, �2)-Turing kernel,
as each oracle call is on a connected component (which is of size at most O(�2)) of
the input graph. We present a strict Turing kernelization for H-SI for connected
constant-size H parameterized by maximum degree Δ.

Proposition 4 (�). H-Subgraph Isomorphism for connected H with c =
|V (H)| parameterized by maximum degree Δ admits a strict (n·Δ·(Δ−1)�c/2�,Δ·
(Δ − 1)�c/2�)-Turing kernel.

Running-time Related Strict Kernelization. For NP-hard problems, it is well-
known that a decidable problem is fixed-parameter tractable if and only if it
admits a kernel [12]. In the proof of the only if -statement, one derives a kernel
of size only depending on the running time of a fixed-parameter algorithm solving
the problem in question. We adapt this idea to derive a strict kernel where the
running time and size admit such running time dependencies.

Theorem 3 (�). Let L be a parameterized problem admitting an algorithm
solving each instance (x, k) in kc · |x| time for some constant c > 0. Then for
every ε > 0, each instance (x, k) admits a strict (|x|1+c/(1+ε), k1+ε)-kernel.

NWT and TC are both solvable in O(k2 · n) time (k being the order � of the
largest connected component, the maximum degree Δ, or the degeneracy d [9]).
Together with Theorem 3 gives several kernelization results for NWT and TC,
for instance, with ε = 2:

Corollary 1. NWT admits a strict (n5/3, d3)-kernel when parameterized by the
degeneracy d of the input graph.

Note that the presented kernel is a strict (nα, dβ)-kernel with α = 5/3 and β = 3.
As α · β = 5 in this case, there is a gap between the above kernel and the lower
bound of α · β ≥ 3 in Theorem 2(iii). Future work could be to close this gap.

5 Conclusion

We provided the first conceptual analysis of strict kernelization lower bounds
for problems solvable in polynomial time. To this end, we used and (slightly)
enhanced the parameter diminisher framework [8,13]. Our results for Negative

Weight Triangle and Triangle Collection rely on the APSP-conjecture
and SETH, but these assumptions can be replaced with any running-time lower

Kernelization Lower Bounds for Finding Constant-Size Subgraphs 191

bound known for the problem at hand. Indeed the framework is not difficult to
apply and we believe that developing special techniques to design diminishers is
a fruitful line of further research.

We point out that the framework excludes certain trade-offs between kernel
size and running time: the smaller the running time of the diminisher, the larger
the size of the strict kernel that can be excluded. However, the framework in
its current form cannot be used to exclude the existence of any strict kernel of
polynomial size in even linear time.

In this work, we only considered parameters that we call dispersed param-
eters, defined as follows. Let G be an instance of a graph problem L, and
let G1, G2, . . . , Gp be its connected components, where p ≥ 1. A parameter k
of G is dispersed if k(G) (i.e. the value of the parameter k in the graph G) is
equal to k(Gi) for at least one connected subgraph Gi of G. Otherwise, if k(G)
is larger than k(Gi) for every connected subgraph Gi of G, then we call k an
aggregated parameter. In our opinion, it is of independent interest to apply the
(strong) diminisher framework to graph problems with aggregated parameters.
Note that such a classification into dispersed and aggregated parameters has not
been studied previously.

We close with one concrete challenge: Is there a (strong) diminisher for NWT
or TC with respect to the (aggregated) parameter feedback vertex number? Note
that the disjoint union operation that we use in all our diminishers in Sect. 3 can
increase this parameter.

Acknowledgement. We thank Holger Dell (Saarland University) for fruitful discus-
sion on Sect. 2 and Rolf Niedermeier for discussions leading to this work.

References

1. Abboud, A., Grandoni, F., Williams, V.V.: Subcubic equivalences between graph
centrality problems, APSP and diameter. In: Proceedings of 26th SODA, pp. 1681–
1697. SIAM (2015)

2. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: Proceedings of 55th FOCS, pp. 434–443. IEEE Computer
Society (2014)

3. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter sub-
quadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of
27th SODA, pp. 377–391. SIAM (2016)

4. Abboud, A., Williams, V.V., Yu, H.: Matching triangles and basing hardness on
an extremely popular conjecture. In: Proceedings of 47th STOC, pp. 41–50. ACM
(2015)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

7. Bringmann, K.: Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In: Proceedings of 55th FOCS, pp.
661–670 (2014)

192 T. Fluschnik et al.

8. Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other prepro-
cessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)

9. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

11. Theory, G.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

13. Fernau, H., Fluschnik, T., Hermelin, D., Krebs, A., Molter, H., Niedermeier, R.:
Diminishable parameterized problems and strict polynomial kernelization (2016).
CoRR abs/1611.03739

14. Fluschnik, T., Komusiewicz, C., Mertzios, G.B., Nichterlein, A., Niedermeier, R.,
Talmon, N.: When can graph hyperbolicity be computed in linear time? Algorithms
and Data Structures. LNCS, vol. 10389, pp. 397–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62127-2 34

15. Fluschnik, T., Mertzios, G.B., Nichterlein, A.: Kernelization lower bounds for find-
ing constant size subgraphs. CoRR abs/1710.07601 (2017). http://arxiv.org/abs/
1710.07601

16. Fomin, F.V., Lokshtanov, D., Pilipczuk, M., Saurabh, S., Wrochna, M.: Fully
polynomial-time parameterized computations for graphs and matrices of low
treewidth. In: Proceedings of 28th SODA, pp. 1419–1432 (2017)

17. Fomin, F.V., Saurabh, S.: Kernelization methods for fixed-parameter tractability.
In: Tractability: Practical Approaches to Hard Problems, pp. 260–282. Cambridge
University Press (2014)

18. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. System Sci. 77(1), 91–106 (2011)

19. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. 5, 165–185 (1995)

20. Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter
algorithms: a case study for longest path on interval graphs. Theor. Comput. Sci.
689, 67–95 (2017)

21. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(1), 31–45 (2007)

22. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

23. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

24. Iwata, Y.: Linear-time kernelization for feedback vertex set. In: Proceedings of 44th
ICALP. LIPIcs, vol. 80, pp. 68:1–68:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2017)

25. Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In:
Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp.
19–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2 2

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-319-62127-2_34
http://arxiv.org/abs/1710.07601
http://arxiv.org/abs/1710.07601
https://doi.org/10.1007/978-3-642-32589-2_2

Kernelization Lower Bounds for Finding Constant-Size Subgraphs 193

26. Kratsch, S.: Recent developments in kernelization: a survey. Bulletin of EATCS
113, 58–97 (2014)

27. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – preprocessing with a
guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The
Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 129–161.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30891-8 10

28. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983)

29. Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of data reduction for
matching. In: Proceedings of 42nd MFCS. LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017, to appear)

30. Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix and
triangle problems. In: Proceedings of 51st FOCS, pp. 645–654. IEEE Computer
Society (2010)

31. Weihe, K.: Covering trains by stations or the power of data reduction. In: Proceed-
ings of 1st ALEX No publisher, pp. 1–8 (1998)

https://doi.org/10.1007/978-3-642-30891-8_10

On General Sum Approximations
of Irrational Numbers

Ivan Georgiev1(B), Lars Kristiansen2,3, and Frank Stephan4

1 Department of Mathematics and Physics, Faculty of Natural Sciences,
University “Prof. d-r Asen Zlatarov”, 8010 Burgas, Bulgaria

ivandg@yahoo.com
2 Department of Mathematics, University of Oslo, Oslo, Norway

larsk@math.uio.no
3 Department of Informatics, University of Oslo, Oslo, Norway

4 Department of Mathematics and School of Computing,
National University of Singapore, Singapore 119076, Republic of Singapore

fstephan@comp.nus.edu.sg

1 Introduction and Basic Definitions

There are numerous ways to represent real numbers. We may use, e.g., Cauchy
sequences, Dedekind cuts, numerical base-10 expansions, numerical base-2
expansions and continued fractions. If we work with full Turing computabil-
ity, all these representations yield the same class of real numbers. If we work
with some restricted notion of computability, e.g., polynomial time computabil-
ity or primitive recursive computability, they do not. This phenomenon has been
investigated over the last seven decades by Specker [13], Mostowski [8], Lehman
[10], Ko [3,4], Labhalla and Lombardi [9], Georgiev [1], Kristiansen [5,6] and
quite a few more. Georgiev et al. [2] is an extended version of the current paper.

Irrational numbers can be represented by infinite sums. Sum approximations
from below and above were introduced in Kristiansen [5] and studied further
in Kristiansen [6]. Every irrational number α between 0 and 1 can be uniquely
written as an infinite sum of the form

α = 0 +
D1
bk1

+
D2
bk2

+
D3
bk3

+ . . .

where

– b ∈ N \ {0, 1} and Di ∈ {1, . . . , b − 1} (note that Di �= 0 for all i)
– ki ∈ N \ {0} and ki < ki+1.

Let Âα
b (i) = Dib

−ki for i > 0 (and let Âα
b (0) = 0). The rational number

∑n
i=1 Âα

b (i) is an approximation of α that lies below α, and we will say that

I. Georgiev has been supported by the Bulgarian National Science Fund through the
project “Models of computability”, DN-02-16/19.12.2016.
F. Stephan has been supported in part by the Singapore Ministry of Education
Academic Research Fund grant MOE2016-T2-1-019/R146-000-234-112.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 194–203, 2018.
https://doi.org/10.1007/978-3-319-94418-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_20&domain=pdf

On General Sum Approximations of Irrational Numbers 195

the function Âα
b is the base-b sum approximation from below of α. The base-

b sum approximation from above of α is a symmetric function Ǎα
b such that

1 − ∑n
i=1 Ǎα

b (i) is an approximation of α that lies above α (and we have
∑∞

i=1 Âα
b (i) +

∑∞
i=1 Ǎα

b (i) = 1). Let S be any class of subrecursive functions
which is closed under primitive recursive operations. Furthermore, let Sb↑ denote
the set of irrational numbers that have a base-b sum approximation from below
in S, and let Sb↓ denote the set of irrational numbers that have a base-b sum
approximation from above in S. It is proved in [6] that Sb↑ and Sb↓ are incompa-
rable classes, that is, Sb↑ �⊆ Sb↓ and Sb↓ �⊆ Sb↑. Another interesting result proved
in [6] is that Sa↓ ⊆ Sb↓ iff Sa↑ ⊆ Sb↑ iff every prime factor of b is a prime factor
of a.

In this paper we prove some results on general sum approximations. The gen-
eral sum approximation from below of α is the function Ĝα : N×N → Q defined
by Ĝα(b, n) = Âα

b (n); let Ĝα(b, n) = 0 if b < 2. The general sum approximation
from above of α is the function Ǧα : N × N → Q defined by Ǧα(b, n) = Ǎα

b (n);
let Ǧα(b, n) = 0 if b < 2. Let S be any class of subrecursive functions which
is closed under primitive recursive operations. Furthermore, let Sg↑ denote the
set of irrational numbers that have a general sum approximation from below
in S, and let Sg↓ denote the set of irrational numbers that have a general sum
approximation from above in S.

It was proved in [5] that Sg↑ ∩ Sg↓ contains exactly the irrational numbers
that have a continued fraction in the class S. In this paper we prove that Sg↑ �=
Sg↓. Moreover, we prove that

Sg↓ �=
∞⋂

b=2

Sb↓ and Sg↑ �=
∞⋂

b=2

Sb↑.

Some might find it interesting (at least the authors do) that we manage to
complete all our proof without resorting to the standard computability-theoretic
machinery involving enumerations, universal functions, diagonalizations, and so
on. We prove our results by providing natural irrationals numbers (the numbers
are natural in the sense that they have neat and transparent definitions).

2 Preliminaries

We will restrict our attention to real numbers between 0 and 1.
A base is a natural number strictly greater than 1, and a base-b digit is a

natural number in the set {0, 1, . . . , b − 1}.
Let b be a base, and let D1, . . . , Dn be base-b digits. We will use (0.D1D2 . . . Dn)b

to denote the rational number
∑n

i=1 Dib
−i.

Let D1, D2, . . . be an infinite sequence of base-b digits. We say that (0.D1D2 . . .)b

is the base-b expansion of the real number α if for all n ≥ 1 we have

(0.D1D2 . . . Dn)b ≤ α < (0.D1D2 . . . Dn)b + b−n.

Every real number α has a unique base-b expansion (note the strict inequality).

196 I. Georgiev et al.

When α = (0.D1D2 . . . Dn)b for some n with Dn �= 0, we say that α has a finite
base-b expansion of length n. Otherwise, we say that α has an infinite base-b
expansion, and this infinite base-b expansion is periodic iff α is rational. More
concretely, if α = cd−1 for non-zero relatively prime c, d ∈ N, then the base-b
expansion of α is of the form 0.D1 . . . Ds(Ds+1 . . . Dt)ω which we use as shorthand
for the infinite sequence 0.D1 . . . DsDs+1 . . . DtDs+1 . . . DtDs+1 . . . Dt The number
s is the largest natural number such that ps divides d for some prime factor p of
b. The length of the period t−s is the multiplicative order of b modulo d1 where
d1 is the largest divisor of d relatively prime with b. It follows straightforwardly
that t < d. Of course, α has a finite base-b expansion iff d1 = 1, that is, iff every
prime factor of d is a prime factor of b.

We assume the reader is familiar with subrecursion theory and subrecursive
functions. An introduction to the subject can be found in [11] or [12].

A function φ is elementary in a function ψ, written φ ≤E ψ, if φ can be
generated from the initial functions ψ, 2x, max, 0, S (successor), In

i (projections)
by composition and bounded primitive recursion. A function φ is elementary if
φ ≤E 0. A function φ is primitive recursive in a function ψ, written φ ≤PR ψ, if
φ can be generated from the initial functions by composition and (unbounded)
primitive recursion. A function φ is primitive recursive if φ ≤PR 0.

Subrecursive functions in general, and elementary functions in particular,
are formally functions over natural numbers (N). We assume some coding of
integers (Z) and rational numbers (Q) into the natural numbers. We consider
such a coding to be trivial. Therefore we allow for subrecursive functions from
rational numbers into natural numbers, from pairs of rational numbers into ratio-
nal numbers, etc., with no further comment. Uniform systems for coding finite
sequences of natural numbers are available inside the class of elementary func-
tions. Hence, for any reasonable coding, basic operations on rational numbers –
like e.g. addition, subtraction and multiplication – will obviously be elementary.
It is also obvious that there is an elementary function ψ(q, i, b) that yields the
ith digit in the base-b expansion of the rational number q.

A function f : N → N is honest if it is monotonically increasing (f(x) ≤
f(x + 1)), dominates 2x (f(x) ≥ 2x) and has elementary graph (the relation
f(x) = y is elementary).

A class of functions S is subrecursive class if S is an efficiently enumerable
class of computable total functions. For any subrecursive class S there exists an
honest function f such that f �∈ S (see Sect. 8 of [5] for more details).

More on elementary functions, primitive recursive functions and honest func-
tions can be found in Sect. 2 of [5,7].

3 Irrational Numbers with Interesting Properties

Definition 1. Let Pi denote the ith prime (P0 = 2, P1 = 3, . . .). We define the
auxiliary function g by

g(0) = 1 and g(j + 1) = P
2(j+2)(g(j)+1)3

j .

On General Sum Approximations of Irrational Numbers 197

For any honest function f and any n ∈ N, we define the rational number αf
n and

the irrational number αf by

αf
n =

n∑

i=0

P
−h(i)
i and αf = lim

n→∞ αf
n

where h(i) = g(f(i) + i) (for any i ∈ N).

It is easy to see that both g and h are strictly increasing honest functions.
Moreover, we have

P 2(n+2)(h(n)+1)3

n < h(n + 1) (1)

for any n ∈ N. Thus the function h possesses a growth property which f might
not possess. We will need this property. This explains why we introduce the
function g in the definition of αf .

When f is a fixed honest function, we abbreviate αf
j and αf to αj and α,

respectively.
The next lemma is easily proven using the preliminaries on base-b expansions.

Lemma 2. For any j ∈ N and any base b, we have

(i) if Pi divides b for all i ≤ j, then αj has a finite base-b expansion of length
h(j)

(ii) if Pi does not divide b for some i ≤ j, then αj has an infinite (periodic)
base-b expansion.

Lemma 3. Let

– b be any base, and let j ∈ N be such that Pj > b
– (0.D1D2 . . .)b be the base-b expansion of αj

– (0.Ḋ1Ḋ2 . . .)b be the base-b expansion of αj+1

– M = M(j) = P
(j+1)h(j)
j and M ′ = M ′(j) = h(j + 1).

Then

(i) there are no more than M consecutive zeros in the base-b expansion of αj,
that is, for any k ∈ N \ {0} there exists i ∈ N such that

k ≤ i < k + M and Di �= 0

(ii) the first M ′ − M digits of the base-b expansions of αj and αj+1 coincide,
that is

i ≤ M ′ − M ⇒ Di = Ḋi

and moreover, these digits also coincide with the corresponding digits of the
base-b expansion of α.

198 I. Georgiev et al.

Proof. By Lemma 2 (ii), αj has an infinite periodic base-b expansion of the form
0.D1 . . . Ds(Ds+1 . . . Dt)ω with s < t. Using the preliminaries on base-b expansions
we obtain

t − s ≤ t <

j∏

i=0

P
h(i)
i ≤ P

(j+1)h(j)
j = M . (2)

Thus (i) holds since every M consecutive digits of αj contain all the digits
Ds+1, . . . , Dt of at least one period.

We turn to the proof of (ii). We have

αj < αj+1 = αj + P
−h(j+1)
j+1 ≤ αj + b−M ′

(3)

since bM ′
< PM ′

j = P
h(j+1)
j < P

h(j+1)
j+1 . At least one digit in the period Ds+1 . . . Dt

is different from b − 1, and the length of the period is t − s. Thus (3) entails

Di = Ḋi for any i ≤ M ′ − (t − s). (4)

It follows from (2) and (4) that the first M ′ − M digits of the base-b expansions
of αj and αj+1 coincide. Moreover, since M ′(j) is strictly increasing in j,

αj < αj+k ≤ αj +
∑

i<k

b−M ′(j+i) ≤ αj + b−M ′(j)+1

for any k ≥ 1. Letting k → ∞ we obtain as above that the first M ′ − M digits
of αj and α coincide. ��
Theorem 4. Let f be any honest function, and let b be any base. The function
Âαf

b is elementary.

Proof. Fix the least m such that Pm > b. We will use the functions M and M ′

from Lemma 3. We will argue that we can compute the rational number Âα
b (n)

elementarily in n when n ≥ M(m). Note that M(m) is a fixed number (it does
not depend on n). Thus, we can compute Âα

b (n) by a trivial algorithm when
n < M(m) (use a huge table).

Assume n ≥ M(m). We will now give an algorithm for computing Âα
b (n)

elementarily in n.

Step 1 of the algorithm: Compute (the unique) j such that

M(j) ≤ n < M(j + 1) (5)

(end of Step 1).
Step 1 is a computation elementary in n since M has elementary graph. So

is Step 2 as M ′ also has elementary graph.

Step 2 of the algorithm: Check if the following relation holds:

n2 + 1 < M ′(j) − M(j). (6)

On General Sum Approximations of Irrational Numbers 199

If it holds, carry out Step 3A, otherwise, carry out Step 3B (end of Step 2).

Step 3A of the algorithm: Compute αj . Then compute base-b digits D1, . . . , Dn2+1

such that

(0.D1D2 . . . Dn2+1)b ≤ αj < (0.D1D2 . . . Dn2+1)b + b−(n2+1) .

Find k such that Dk is the nth digit different from 0 in the sequence D1, . . . , Dn2+1.
Give the output Dkb−k (end of Step 3A).

Recall that αj =
∑j

i=0 P
−h(i)
i . We can compute αj elementarily in n since

h(0), h(1), . . . , h(j) < M(j) ≤ n and h is honest. Thus, we can also compute
the base-b digits D1, D2, . . . , Dn2+1 elementarily in n. In order to prove that our
algorithm is correct, we must verify that

(A) at least n of the digits D1, D2, . . . , Dn2+1 are different from 0, and
(B) D1, D2, . . . , Dn2+1 coincide with the first n2 + 1 digits of α.

By Lemma 3 (i) the sequence DkM(j)+1, DkM(j)+2, . . . , D(k+1)M(j) contains at least
one non-zero digit (for any k ∈ N). Thus, (A) holds since n ≥ M(j). Using
(6) and Lemma 3 (ii) we see that (B) also holds. This proves that the output
Dkb−k = Âα

b (n).

Step 3B of the algorithm: Compute αj+1 and M(j +1). Then proceed as in Step
3 A with αj+1 in place of αj and nM(j + 1) in place of n2 (end of Step 3B).

Step 3B is only executed when M ′(j) − M(j) ≤ n2 + 1. Thus, we have
M ′(j) = h(j + 1) ≤ n2 + n + 1. This entails that we can compute h(j + 1) – and
also αj+1 and M(j + 1) – elementarily in n. It follows easily from (1) that

M(j + 1)2 + M(j + 1) + 1 < M ′(j + 1)

which together with (5) imply

nM(j + 1) + 1 < M ′(j + 1) − M(j + 1) .

As in Step 3A, there will be at least n non-zero digits among the first nM(j +1)
digits of αj+1. Moreover, the first nM(j + 1) digits of αj+1 coincide with the
corresponding digits of α. ��

Theorem 5. Let f be any honest function. We have f ≤PR Ĝαf

(f is primitive
recursive in Ĝαf

).

Proof. Fix n ∈ N, and let b be the base b =
∏n

i=0 Pi. By Lemma (2) (i), αn has
a finite base-b expansion of length h(n). By the definition of α, we have

α = αn + P
−h(n+1)
n+1 + P

−h(n+2)
n+2 +

It follows that for any j > h(n)

Ĝα(b, j) ≤ P
−h(n+1)
n+1 + P

−h(n+2)
n+2 + . . . ,

200 I. Georgiev et al.

which easily implies Ĝα(b, j) ≤ P
−h(n+1)+1
n+1 (use that h is strictly increasing).

Hence we also have (Ĝα(b, j))−1 ≥ P
h(n+1)−1
n+1 > h(n + 1) − 1 for any j > h(n).

The considerations above show that we can compute h(n+1) by the following
algorithm:

– assume that h(n) is computed;
– compute b =

∏n
i=0 Pi;

– search for y such that y < (Ĝα(b, h(n) + 1))−1 + 1 and h(n + 1) = y;
– give the output y.

This algorithm is primitive recursive in Ĝα: The computation of b is an elemen-
tary computation. The relation h(x) = y is elementary, and thus the search for
y is elementary in h(n) and Ĝα. This proves that h is primitive recursive in Ĝα.
But then f will also be primitive recursive in Ĝα as the graph of f is elementary
and f(n) ≤ h(n) (for any n ∈ N). This proves that f ≤PR Ĝα. ��
Theorem 6. Let f be any honest function. There exists an elementary function
Ť : Q → Q such that (i) Ť (q) = 0 if q < αf and (ii) q > Ť (q) > αf if q > αf .

Proof. In addition to the sequence αj we need the sequence βj given by

β0 = P
−h(0)+1
0 = 2−h(0)+1 and βj+1 = αj + P

−h(j+1)+1
j+1 .

Observe that we have α < βj for all j ∈ N.
Now we will explain an algorithm that computes a function Ť with the prop-

erties (i) and (ii).

Step 1 of the algorithm: The input is the rational number q. We can w.l.o.g.
assume that 0 < q < 1. Pick any m′, n ∈ N such that q = m′n−1 and n ≥ h(0).
Find m ∈ N such that q = m(P0P1 . . . Pn)−n, and compute the base b such that
b =

∏n
i=0 Pi (end of Step 1).

The rational number q has a finite base-b expansion of length s where s ≤ n.
Moreover, the rational numbers α0, α1, . . . , αn and β0, β1, . . . , βn also have finite
base-b expansions.

Step 2 of the algorithm: Compute (the unique) natural number j < n such that

h(j) ≤ n < h(j + 1) .

Furthermore, compute α0, α1, . . . , αj and β0, β1, . . . , βj (end of Step 2).
All the numbers h(0), h(1), . . . h(j) are less than or equal to n, and h has

elementary graph. This entails that Step 2 is elementary in n (and also in q).

Step 3 of the algorithm: If q ≤ αk for some k ≤ j, give the output 0 and
terminate. If βk < q for some k ≤ j, give the output βk and terminate (end of
Step 3).

Step 3 is obviously elementary in q and gives the correct output.

On General Sum Approximations of Irrational Numbers 201

If the algorithm has not yet terminated, we have αj < q ≤ βj . Now

q ≤ βj+1 ⇔ q − αj ≤ P
−h(j+1)+1
j+1 ⇔ P

h(j+1)
j+1 ≤ (q − αj)−1Pj+1.

We have determined αj , and h is an honest function. This makes it possible
to check elementarily if q ≤ βj+1: Search for y < (q − αj)−1Pj+1 such that
h(j + 1) = y. If no such y exists, we have q > βj+1. If such an y exists, we have
q ≤ βj+1 iff P y

j+1 ≤ (q − αj)−1Pj+1.

Step 4 of the algorithm: Search for y < (q − αj)−1Pj+1 such that y = h(j + 1).
If the search is successful and P y

j+1 ≤ (q − αj)−1Pj+1, go to Step 5, otherwise
go to Step 6B (end of Step 4).

Clearly, Step 4 is elementary in q. If q ≤ βj+1, the next step is Step 5 (and
we have computed y = h(j + 1)). If βj+1 < q, the next step is Step 6B.

Step 5 of the algorithm: Compute αj+1 and βj+1. If q ≤ αj+1, give the output
0 and terminate. If αj+1 < q, search for z < (q − αj+1)−1Pj+2 such that z =
h(j+2). If the search is successful and P z

j+2 ≤ (q−αj+1)−1Pj+2, give the output
0 and terminate, otherwise, go to Step 6A (end of Step 5).

Step 5 is elementary in q since we have computed h(j + 1) in Step 4. If
the algorithm terminates because q ≤ αj+1, we obviously have q < α and the
output is correct. If q > αj+1, the algorithm will not proceed to Step 6A iff
αj+1 < q ≤ βj+2. So assume that αj+1 < q ≤ βj+2. It is not hard to show that
the first h(j +1) digits of αj+1, α, βj+2 coincide, and moreover, h(j +1) > n ≥ s
(recall that s is the length of the base-b expansion of q). Thus, we have q < α,
and the algorithm gives the correct output, namely 0. If the algorithm proceeds
with Step 6A, we have βj+2 < q.

Step 6A of the algorithm: Compute the least t such that bt > (q − αj+1)−1.
Search for u < (q − b−t − αj+1)−1Pj+2 such that u = h(j + 2). If the search
is successful and Pu

j+2 < (q − b−t − αj+1)−1Pj+2, give the output βj+2 and
terminate, otherwise, give the output q − b−t and terminate (end of Step 6A).

It is easy to see that Step 6 A is elementary in q: we can compute t elemen-
tarily in q, b and αj+1 (and we have already computed b and αj+1 elementarily
in q). When the execution of the step starts, we have βj+2 < q (thus, βj+2 will
be a correct output, but we do not yet know if we will be able to compute βj+2).
If the search for u is successful, we have u = h(j + 2). Then, we can compute
βj+2 elementarily in u, and give βj+2 as output. We also know that the search
for u is successful iff q − b−t < βj+2. Thus, if the search for u is not successful,
we have α < βj+2 ≤ q − b−t < q, and we can give the correct output q − b−t.

Step 6B of the algorithm: Exactly the same as 6A, but replace j + 1 and j + 2
by j and j + 1, respectively (end of Step 6B).

The argument for correctness of Step 6B is the same as for Step 6A, just
replace j + 1 and j + 2 by j and j + 1, respectively, and note that we have
βj+1 < q when the execution of the step starts. ��
Definition 7. A function D : Q → {0, 1} is a Dedekind cut of the real number
β when D(q) = 0 iff q < β.

202 I. Georgiev et al.

Corollary 8. Let f be any honest function. The Dedekind cut of the real number
αf is elementary.

Proof. By Theorem 6 there is an elementary function Ť such that Ť (q) = 0 iff
q < αf . Let D(q) = 0 if Ť (q) = 0, and let D(q) = 1 if Ť (q) �= 0. The function D
is elementary since Ť is elementary. Moreover, D is the Dedekind cut of αf . ��

4 Main Results

Theorem 9. For any subrecursive class S that is closed under primitive recur-
sive operations, we have

(i) Sg↓ ⊂
⋂

b

Sb↓ and (ii) Sg↑ ⊂
⋂

b

Sb↑.

Proof. The inclusion Sg↑ ⊆ ⋂
b Sb↑ is trivial. Pick an honest function f such that

f �∈ S. By Theorem 4, we have αf ∈ ⋂
b Sb↑. By Theorem 5, we have αf �∈ Sg↑.

This proves that Sg↑ ⊂ ⋂
b Sb↑. The proof of (i) is symmetric. ��

Definition 10. A function T̂ : Q → Q is a trace function from below for the
irrational number α when we have q < T̂ (q) < α for any q < α. A function
Ť : Q → Q is a trace function from above for the irrational number α when we
have α < Ť (q) < q for any q > α. A function T : Q → Q is a trace function for
the irrational number α when we have |α − q| > |α − T (q)| for any q.

For any subrecursive class S, let SD denote the set of irrational numbers that
have a Dedekind cut in S; let ST↑ denote the set of irrational numbers that have
a trace function from below in S; let ST↓ denote the set of irrational numbers that
have a trace function from above in S; let ST denote the set of irrational numbers
that have a trace function in S; let S[] denote the set of irrational numbers that
have a continued fraction in S.

It is proved in [5] that we have Sg↓ ∩ Sg↑ = ST = S[] for any S closed under
primitive recursive operations. It is conjectured in [5] that Sg↓ �= Sg↑. Theo-
rem 12 shows that this conjecture holds. The following theorem will be used as
a lemma in the proof of Theorem 12. Its proof can be found in Georgiev et al.
[2].

Theorem 11. For any subrecursive class S that is closed under primitive recur-
sive operations, we have

(i) ST↑ ∩ SD = Sg↑ and (ii) ST↓ ∩ SD = Sg↓ .

Theorem 12. For any subrecursive class S that is closed under primitive recur-
sive operations, there exist irrational numbers α and β such that

(i) α ∈ Sg↓ \ Sg↑ and (ii) β ∈ Sg↑ \ Sg↓ .

Proof. Pick an honest function f such that f �∈ S. We have αf ∈ ST↓ by
Theorem 6, and we have αf ∈ SD by Corollary 8. By Theorem 11, we have
αf ∈ Sg↓. By Theorem 5, we have αf �∈ Sg↑. This proves (i). The proof of (ii) is
symmetric. ��

On General Sum Approximations of Irrational Numbers 203

References

1. Georgiev, I.: Continued fractions of primitive recursive real numbers. Math. Log.
Q. 61, 288–306 (2015)

2. Georgiev, I., Kristiansen, L. and Stephan, F.: Subrecursive Approximations of Irra-
tional Numbers by Variable Base Sums (2018). ArXiv e-prints, arXiv:1804.05330
[math.LO]

3. Ko, K.: On the definitions of some complexity classes of real numbers. Math. Syst.
Theory 16, 95–109 (1983)

4. Ko, K.: On the continued fraction representation of computable real numbers.
Theor. Comput. Sci. 47, 299–313 (1986)

5. Kristiansen, L.: On subrecursive representability of irrational numbers. Com-
putability 6, 249–276 (2017)

6. Kristiansen, L.: On subrecursive representability of irrational numbers, part II.
Computability 6, 249–276 (2018). https://doi.org/10.3233/COM-170081

7. Kristiansen, L., Schlage-Puchta, J.-C., Weiermann, A.: Streamlined subrecursive
degree theory. Ann. Pure Appl. Log. 163, 698–716 (2012)

8. Mostowski, A.: On computable sequences. Fundamenta Mathematica 44, 37–51
(1957)

9. Labhalla, S., Lombardi, H.: Real numbers, continued fractions and complexity
classes. Ann. Pure Appl. Log. 50, 1–28 (1990)

10. Lehman, R.S.: On primitive recursive real numbers. Fundamenta Mathematica
49(2), 105–118 (1961)

11. Péter, R.: Rekursive funktionen. Verlag der Ungarischen Akademie der Wis-
senschaften, Budapest (1957). English translation: Academic Press, New York,
1967

12. Rose, H.E.: Subrecursion. Functions and hierarchies. Clarendon Press, Oxford
(1984)

13. Specker, E.: Nicht konstruktiv beweisbare Satze der Analysis. J. Symbol. Log. 14,
145–158 (1949)

http://arxiv.org/abs/1804.05330
https://doi.org/10.3233/COM-170081

Computability of Ordinary Differential
Equations

Daniel S. Graça1,2(B) and Ning Zhong3

1 FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal
dgraca@ualg.pt

2 Instituto de Telecomunicações, Lisbon, Portugal
3 DMS, University of Cincinnati, Cincinnati, OH 45221-0025, USA

Abstract. In this paper we provide a brief review of several results
about the computability of initial-value problems (IVPs) defined with
ordinary differential equations (ODEs). We will consider a variety of set-
tings and analyze how the computability of the IVP will be affected.
Computational complexity results will also be presented, as well as com-
putable versions of some classical theorems about the asymptotic behav-
ior of ODEs.

1 Introduction

Ordinary differential equations (ODEs) appear in many applications and are
used to describe a large variety of phenomena. For that reason much effort has
been directed towards solving ODEs. Although one can solve exactly a few classes
of ODEs such as linear ODEs, separable first-order ODEs, etc., in practice we
need other methods to analyze non-linear ODEs. For example, we can numeri-
cally approximate the solution of an initial-value problem (IVP) defined with an
ODE and, in some cases, we can also use some qualitative results to better under-
stand the dynamics of the system. For instance the Poincaré-Bendixson theorem
rules out chaotic behavior on dynamical systems defined by autonomous ODEs
in the plane.

Numerical methods have gained a particular prominence with the advent of
the digital computer. Here we will analyze the problem of finding the solution
of an IVP defined with an ODE, from a computational perspective.

2 Background

In this paper we consider (autonomous) ODEs with the format

y′ = f(y) (1)

where f : R
n → R

n and y : R → R
n is a solution of the ODE, with

y = (y1, . . . , yn). We notice that an initial-value problem (IVP) defined with
an apparently more general non-autonomous ODE y′ = f(t, y) can always be
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 204–213, 2018.
https://doi.org/10.1007/978-3-319-94418-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_21&domain=pdf
http://orcid.org/0000-0002-0330-833X

Computability of Ordinary Differential Equations 205

reduced to an initial-value problem defined with an autonomous ODE (1) by
introducing a new component yn+1 satisfying yn+1(0) = 0 and y′

n+1 = 1, and by
replacing t by yn+1 in the non-autonomous ODE. Therefore we don’t lose any
generality by only considering autonomous ODEs.

There are two important classical results on the existence and uniqueness of
solutions for initial value problems (IVPs) involving ODEs, i.e. problems of the
type {

y′(t)= f(y)
y(t0)= y0

(2)

Both results are important when analyzing IVPs (2) from a computability per-
spective. The first one is Peano’s existence theorem which asserts that if f is
continuous, then (2) has at least one (local) solution (see e.g. [2] for a precise
statement of this theorem). While this is a very general theorem (only continuity
of f is assumed), it poses some challenges since an IVP (2) can have, under these
conditions, an infinite number of solutions. Moreover, it was proved in [22] that
there exists an IVP (2) defined on the plane, where f is computable and thus
continuous — see Sect. 3 — but which does not admit any computable solution.
This result shows that it is not enough to assume continuity of f to ensure
computability of a solution of an IVP (2).

For that reason, we need the second classical result, the Picard–Lindelöf the-
orem, which is an existence and uniqueness theorem for IVPs (2). This theorem
says that if f is Lipschitz continuous, then (2) has one and only one (local) solu-
tion. Moreover, this theorem is constructive and thus can be used to compute
the solution of (2) when f is Lipschitz continuous. We recall that a function f
is Lipschitz continuous if there is a constant K > 0 such that

‖f(x) − f(y)‖ ≤ K ‖x − y‖ (3)

for all x, y in the domain of f .
The idea to prove the Picard-Lindelöf theorem is to first construct a very

rough approximation of the solution of (2). By Picard’s method one can con-
struct a sequence of approximate solutions which will converge to the solution
of (2). Moreover, by using the Lipschitz condition (3), we are able to show that
the sequence uniformly converges (locally) to the solution of (2) and that the
convergence rate can be expressed in terms of the Lipschitz constant K. From
these facts we can conclude that the solution of (2) is locally computable if f is
Lipschitz continuous and computable.

However, the previous two results are local. Thus it is natural to look also for
global results. When the hypotheses of the Picard–Lindelöf theorem are satisfied,
the above local existence and uniqueness can be extended globally. The idea is
to apply the (local) Picard–Lindelöf theorem to (2) to show that a local solution
exists and is unique in the time interval [t−1, t1], with t0 ∈ [t−1, t1]. By applying
again the Picard–Lindelöf theorem to two IVPs (1) associated to the initial
conditions y(t1) = y1 and y(t−1) = y−1, where y1 and y−1 are the values of the
local solution of (2) at times t1 and t−1, respectively, we obtain local solutions
for these two IVPs. Since those solutions are unique, they must be equal to the

206 D. S. Graça and N. Zhong

previously obtained solution on [t−1, t1]. Thus by “gluing” those solutions with
the previous one, we can get a local solution in a new time interval [t−2, t2],
with t−2 < t−1 and t1 < t2. By continuing this procedure we get a solution
which is defined in a time interval (t−∞, t∞). It can be shown that this interval
is maximal in the following sense: either t∞ is +∞ (t−∞ is −∞) or one of the
following two cases occurs:

– the solution explodes in finite time;
– the solution leaves the domain of f .

More formally, the following result is obtained (see e.g. [13, pp. 12–13]).

Proposition 1 (Maximal Interval of Existence). Let f : E → R
n be continuous

on E, where E ⊆ R
n+1 is an open set, and let y be some solution of the IVP

y′ = f(t, y), y(t0) = y0 in a nonempty interval. Then y can be extended (as a
solution of the IVP) over a maximal interval of existence of the form (α, β),
where α ∈ [−∞,∞) and β ∈ (−∞,∞]. Moreover, y(t) leaves every compact
subset of E, i.e. y(t) tends to the boundary ∂E of E, as t → α from above and
as t → β from below.

In the following sections, we will discuss the computability and computational
complexity of solving an IVP (2) from local as well as global perspectives. But
first some basic notions concerning computability with real numbers are in order.

3 Computable Analysis

In this paper, we consider computability questions involving real numbers, which
require computations with infinite data. Computable analysis provides a proper
setting for studying such problems. In computable analysis, real numbers are rep-
resented as infinite sequences of finite objects and computations are performed
only on a portion of this input; for example, a real number can be represented
by a Cauchy sequence of rational numbers [5,6,24]. A key feature of this app-
roach to computing with infinite data is that the result can be computed with
any guaranteed accuracy, usually by providing more computation time to read
more information from the input in exchange of augmented (rigorous) accu-
racy of results. Computable analysis is gaining an increasing amount of interest
due to several factors: (i) it allows computations with more general mathemat-
ical objects, such as real numbers, open or closed subsets of Rn, and functions
defined on subsets of R

n or over more general spaces (function spaces, metric
spaces, etc.); (ii) it makes possible to use many ideas and notions from theo-
retical computer science developed originally for discrete objects, including the
study of non-computable problems over R

n, the classification of problems to
different complexity classes, etc.; (iii) it reflects the limitation that computers
can only handle a finite number of bits at a time. These features of computable
analysis are well suited for our purposes. In the following, we present some basic
definitions. More details can be found in [5,6,24] and references therein .

Computability of Ordinary Differential Equations 207

Informally, an object is computable within the computable analysis frame-
work if it can be approximated by computer-generated approximations with an
arbitrarily high precision. To formalize this notion, one needs to encode infi-
nite objects, such as real numbers, as infinite sequences of finite objects, called
representations. In the case of real numbers, this can be done with sequences of
rationals converging rapidly to a given real number. This notion can be extended
to more general objects like open/closed sets in R

n, etc., by using representations
(see [24] for a complete development).

In general, a represented space is a pair (X; δ) where X is a set, dom(δ) ⊆ ΣN,
and δ :⊆ ΣN → X is an onto map (“⊆ ΣN” is used to indicate that the domain
of δ may be a subset of ΣN). Every q ∈ dom(δ) such that δ(q) = x is called
a δ-name of x (or a name of x when δ is clear from context). For example, a
possible representation of a real number is the encoding of a sequence of rationals
converging rapidly to it (see more details below). An element x ∈ X is said to be
computable if it has a computable name in ΣN (the notion of computability on
ΣN is well established). A map Φ : (X; δX) → (Y ; δY) between two represented
spaces is computable if there is a computable map φ :⊆ ΣN → ΣN such that
Φ◦δX = δY ◦φ. Informally speaking, this means that there is a computer program
that outputs a name of Φ(x) when given a name of x as input [5].

Since we are interested in computing the operator Φ which maps (f, t0, y0)
to a solution y of (2), we need to have representations of real numbers (for the
inputs t0, y0) and of functions (for the input f and the output y). Here we use the
following representations for points in R

n and for continuous functions defined
on I1 × I2 × · · · × In ⊂ R

n, where the Ij ’s are intervals:

(1) For a point x ∈ R
n, a name of x is a sequence {rk} of points with rational

coordinates satisfying |x − rk| < 2−k. Thus x is computable if there is a
Turing machine (or a computer program or an algorithm) that outputs a
rational n-tuple rk on input k such that |rk −x| < 2−k; for a sequence {xj},
xj ∈ R

n, a name of {xj} is a double sequence {rj,k} of points with rational
coordinates satisfying |xj − rj,k| < 2−k.

(2) For every continuous function f defined on I1 × I2 × · · · × In ⊆ R
n, where

Ij is an interval with endpoints aj and bj , a name of f is a double sequence
{Pk,l} of polynomials with rational coefficients satisfying dk(Pk,l, f) < 2−l,
where dk(g, f) = max{|g(x) − f(x)| : aj + 2−k ≤ xj ≤ bj − 2−k, 1 ≤ j ≤ n}
(dk(g, f) = 0 if [aj + 2−k, bj − 2−k] = ∅). Thus, f is computable if there is
an (oracle) Turing machine that outputs Pk,l (more precisely coefficients of
Pk,l) on input k, l satisfying dk(Pk,l, f) < 2−l.

(3) For every Cm function f defined on E = I1 × I2 × · · ·× In ⊆ R
n, where Ij is

an interval with endpoints aj and bj , a (Cm) name of f is a double sequence
{Pk,l} of polynomials with rational coefficients satisfying

dm
k (Pk,l, f) < 2−l,

where

dm
k (g, f) = max

0≤i≤m
max{|Dig(x) − Dif(x)| : aj + 2−k ≤ xj ≤ bj − 2−k}

208 D. S. Graça and N. Zhong

(dm
k (g, f) = 0 if [aj + 2−k, bj − 2−k] = ∅). We observe that a Cm name of

f contains information on both f and Df,D2f, . . . , Dmf , in the sense that
(P1, P2, . . .) is a name of f while (DiP1,D

iP2, . . .) is a name of Dif . See [25]
for further details.

Because we also want to characterize the computability of the maximal inter-
val of existence of (2), we need to have computability notions involving sets.
Informally, a planar computable open set can be visualized on a computer screen
with an arbitrarily high magnification.

(4) For an open subset A of Rn, a name of A consists of a pair of an inner-name
and of an outer-name; an inner-name is a sequence of balls B(an, rn) =
{x ∈ R

n : d(an, x) < rn}, an ∈ Q
n and rn ∈ Q, exhausting A, i.e., A =⋃∞

n=1 B(an, rn); an outer-name is a sequence dense in R
n − A. A is said to

be r.e. if the sequences {an} an {rn} are computable; co-r.e.if the sequence
(dense in A) is computable; and computable if it is r.e. and co-r.e..

We close this section by noting that computable functions are always contin-
uous (see e.g. [5]).

4 Computability of the Solutions of Ordinary Differential
Equations

In this section, we analyze the computability of ODEs in several settings. First
we note that if f in (2) is C1 on a compact set E = I1 × I2 × · · · × In ⊂ R

n,
where Ij ⊆ R is a closed interval, then it is Lipschitz continuous there. This fact
combined with the constructive nature of the Picard–Lindelöf theorem shows
that there is a computable operator which locally computes the solution of an
IVP (2) defined by a C1 function f . The computability of this operator is uniform
on f and on the initial data (t0, y0). In particular, if f is computable, then (2)
admits a local computable solution. A theorem by Osgood [1] shows that, in
the case of an IVP defined over R

2, if f is computable, then so is its (local)
solution (no C1 assumption is needed). The idea behind this results is that it
is possible to construct two sequences of functions, one converges from above
to a solution of (2), while the other converges from below to a solution of (2).
Since the solution is assumed to be unique, it follows that both sequences must
converge to the solution of (2), thus ensuring its computability.

We notice that if the uniqueness requirement is dropped from (2), then it
may happen that (2) has no computable solutions. This was shown in [22] and
further improved in [17]. In particular, there is a polynomial-time computable
function f : [0, 1] × [−1, 1] → R such that the IVP y′ = f(t, y), y(0) = 0 does
not have a computable solution on [0, δ] for any δ > 0. Note that the latter IVP
must have several solutions, since computability of f implies continuity of f and
therefore at least a solution of the IVP must exist by Peano’s theorem. This
solution cannot be unique because uniqueness would imply computability of the
solution.

Computability of Ordinary Differential Equations 209

Next we consider the computability of IVPs (2) when f is defined on an
open subset of Rn. Are we able to compute the solution of (2) over its maximal
interval of existence? The situation here is more complicated compared to the
compact case, because the Picard–Lindelöf theorem can no longer be applied
directly to the problem. Although, as described at the end of Sect. 2, it is pos-
sible to construct a global solution of (2) from infinitely many local solutions.
But one may encounter a problem here - there may not have a master program
to compute all local solutions despite the fact that each local solution is com-
putable; in other words, the computations of local solutions are non-uniform
and different algorithms are needed for different local solutions. Nevertheless,
since the input function f is the same and the initial point for each new local
solution is computable from the previous local solutions, we have almost all the
ingredients needed to uniformly compute all local solutions and thus to compute
the global solution of (2). The remaining problem is that, to ensure the proper
convergence of Picard’s method to a local solution, we need a (local) Lipschitz
constant; but there is no guarantee that such Lipschitz constants exist if f is
merely continuous. However, if f is C1, then it is locally Lipschitz and its local
Lipschitz constants are computable from its derivative. Hence, we can compute
the solution of (2) globally from a C1-name of f . This is shown in [10].

Theorem 1. Assume E is a r.e. open subset of Rn. Consider the initial-value
problem (2) where f is C1 on E. Let (α, β) be the maximal interval of existence
of the solution y(·) of (2) on E. Then:

1. The operator (f, t0, y0) �→ y(·) is computable;
2. The operator (f, t0, y0) �→ (α, β) is semi-computable (i.e. an inner name of

(α, β) can be computed from f, t0, y0).

In [10] it was also proved that the maximal interval can be non-computable.

Theorem 2. There is an analytic and computable function f : R → R such that
the unique solution of the problem

{
y′ = f(y)
y(0) = 0 (4)

is defined on a non-computable maximal interval of existence.

Since the function f in the above theorem is analytic, we conclude that the
computability of the maximal interval (α, β) of existence is not tied up to the
smoothness of f . The function f is constructed by creating a computable odd and
bijective function ϕ : (−α, α) → R, where α is a non-computable real number,
such that ϕ satisfies the following conditions: (i) ϕ is the solution of (4) for an
analytic and computable function f ; and (ii) ϕ(x) → ±∞ as x → ±α∓.

The previous result can be generalized in the following manner. Let E = R
n

and suppose that f is defined on R
n. If a solution y(t) of (2) is defined for all

t ≥ t0, it is called a (positively) global solution that does not blow up in finite
time. In general, it is difficult to predict whether or not a solution will blow

210 D. S. Graça and N. Zhong

up in finite time from a given initial condition (t0, y0), since it can be proved
that this problem is undecidable, even if f : R

n → R
n has only polynomials

as components [8]. Nevertheless, certain computational insights on the blow up
problem are obtainable from f , as the following theorem in [23] suggests.

Theorem 3. Consider the IVP (2), where f is locally Lipschitz. Let Z be the
set of all initial values (t0, y0) for which the corresponding unique solution of (2)
is (positively) global. Then Z is a Gδ-set (i.e. a countable intersection of open
sets) and there is a computable operator determining Z from f .

We note that in Theorem 2 we have assumed f is C1 over its open domain
E ⊆ R

n. However, the requirement for f to be C1 is nevertheless not necessary
for ensuring the existence of a unique solution of (2). It is then natural to ask
whether it is possible to compute the unique solution of the IVP (2) under more
general conditions. A possibility is to consider continuous functions f and to
assume uniqueness of solutions of (2). This problem is studied in [7] and the
following result, which strengthens Theorem 1, is presented there.

Theorem 4. Consider the initial value problem (2) where f is continuous on
the open set E. Suppose that (2) has a unique solution y(·) on E, defined on the
maximal interval of existence (α, β). Then

1. The operator (f, t0, y0) �→ y(·) is computable;
2. The operator (f, t0, y0) �→ (α, β) is semi-computable.

In particular, if f is a computable function and t0, y0 are computable points,
then (α, β) is a recursively enumerable open set and the solution y(·) is a com-
putable function.

The proof of this theorem uses a quite different approach; the idea under-
lying the approach is to try to cover the solution with rational boxes and to
test the following conditions, in an algorithmic way: (i) whether a given set of
rational boxes is an actual covering of the solution of (2), and (ii) whether the
“diameter of the covering” is sufficiently small so that the rational boxes pro-
vide an approximation of the solution with the desired accuracy, whenever (i) is
satisfied. We can enumerate all possible families of rational boxes and apply the
tests (i) and (ii) to each family generated, in a computable manner, therefore
obtaining better and better approximations of the unique solution of (2), and
thus proving that the solution is computable. This procedure can also be applied
to study the computability of differential inclusions (see [7] for more details).

Due to the limited length of this short survey, we will only briefly discuss
several results concerning computational complexity for solving ODEs. Let us
begin by considering the case where f is defined on a compact set. In this case, it
has been shown that the solution of (2), while computable, can have arbitrarily
high complexity. The following theorem can be found in [18, p. 219].

Computability of Ordinary Differential Equations 211

Theorem 5. Let a be an arbitrary computable real number in [0, 1]. Then there
is a polynomial-time computable function f defined on [0, 1] × [−1, 1] such that
y(t) = at2 is the unique solution of the initial-value problem defined by

y′ = f(t, y) and y(0) = 0. (5)

One solution to this problem is to ensure that f is Lipschitz continuous. In
this case, there are various techniques available for computing the solution of (2);
for example, Euler’s method. The theorem below was proved in [18, p. 221] by
a careful analysis of the computational resources needed when Euler’s method
is applied.

Theorem 6. Let f : [0, 1] × B(0, 1) → R
n, with B(0, 1) = {x ∈ R

n : ‖x‖ ≤
1} ⊆ R

n, be a polynomial-time computable Lipschitz function and assume that
y : [0, 1] → B(0, 1) is the solution of (5). Then y is polynomial-space computable.

It was shown in [14, Corollary 3.3] that this bound is sharp in the sense
that there is a polynomial-time computable Lipschitz function f such that the
solution of (5) is PSPACE-hard. Note that the above results are non-uniform
(they are only valid when f is polynomial-time computable). A uniform version
of this result was proved in [15, Theorem 4.10].

Another related question is whether the smoothness of f helps to reduce the
computational complexity of solving an IVP (5). This problem is analyzed in
[16] and PSPACE-hardness results are also shown for C1 functions. There it is
also shown that if f is more than once differentiable, then the unique solution
can be CH-hard, where CH ⊆ PSPACE is the counting hierarchy.

When f is analytic, the solution of (5) is polynomial-time computable on a
compact set. This follows from results of Müller [20] and Ko and Friedman [19].
As remarked in [16, last paragraph of Sect. 5.2], these results also show uniform
polynomial computability of the IVP solving operator for analytic functions.

When we consider (5) and (2) for functions f defined over an open domain
E = I1×I2×· · ·×In ⊂ R

n, where Ij ⊆ R is an open interval, the situation is more
complicated and very few results exist for that case. The problem is that the
above complexity results rely on the existence of a Lipschitz constant and depend
on its value. In a compact set, the value of the Lipschitz constant is fixed, and
thus its value can be ignored. However, in the non-compact case we have to use
local Lipschitz constants. Since the value of local Lipschitz constants can vary in
non-trivial ways (it depends on the solution we are trying to compute), affecting
hugely the local complexity, it is very hard to obtain a global complexity result. A
possible way to solve this problem is to use a bound on the growth of the solution
y of (5) as a parameter on the function used to measure the complexity, since the
problem of knowing how quickly y can grow is not generally well-understood,
even when f is constituted by polynomials. This approach is taken, for instance,
in [4,21] for the case of polynomial IVPs and in [3] for the case of analytic IVPs.
In particular, in [21] it is shown that the complexity of solving a polynomial
IVP over its maximal interval of definition is polynomial in the length of the
solution curve y. The idea of using the length of the solution curve solves several

212 D. S. Graça and N. Zhong

problems and provides a robust notion of complexity for the non-compact case.
See [21] for more details.

Finally, we note that there are several qualitative results about ODEs. In
general, the problem of determining the long-term behavior of a system defined
with an ODE is a very complicated one. For that reason, qualitative results have
been obtained in dynamical systems theory and computable version of several of
these results exist. For example, in [11] a computable version of the stable mani-
fold is given, while [12] provides a computable version of the Hartman-Grobman
theorem. It is also shown in [9] that the domain of attraction of an hyperbolic
equilibrium point x0 (i.e. a zero of f) is in general non computable, i.e. one
cannot decide whether the trajectory starting from some point will ultimately
converge to x0.

Acknowledgments. Daniel Graça was partially supported by Fundação para a
Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto de Teleco-
municações through the FCT project UID/EEA/50008/2013. This project has received
funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk�lodowska-Curie grant agreement No 731143.

References

1. Birkhoff, G. (ed.): A Source Book in Classical Analysis, pp. 251–258. Harvard
University Press, Cambridge (1973). Osgood’s Existence Theorem

2. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. Wiley, Hoboken
(1989)

3. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in poly-
nomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS
2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22993-0 18

4. Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value prob-
lems. In: Proceedings of 37th International Symposium on Symbolic and Algebraic
Computation (ISSAC 2012), vol. abs/1202.4407 (2012)

5. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing
Conceptions of What is Computable, pp. 425–491. Springer, New York (2008).
https://doi.org/10.1007/978-0-387-68546-5 18

6. Braverman, M., Cook, S.: Computing over the reals: foundations for scientific com-
puting. Not. Am. Math. Soc. 53(3), 318–329 (2006)

7. Collins, P., Graça, D.S.: Effective computability of solutions of differential inclu-
sions – the ten thousand monkeys approach. J. Univers. Comput. Sci. 15(6), 1162–
1185 (2009)

8. Graça, D.S., Buescu, J., Campagnolo, M.L.: Boundedness of the domain of def-
inition is undecidable for polynomial ODEs. In: Dillhage, R., Grubba, T., Sorbi,
A., Weihrauch, K., Zhong, N. (eds.) Proceedings of 4th International Conference
on Computability and Complexity in Analysis (CCA 2007). Electronic Notes in
Theoretical Computer Science, vol. 202, pp. 49–57. Elsevier (2007)

9. Graça, D.S., Zhong, N.: An analytic system with a computable hyperbolic sink
whose basin of attraction is non-computable. Theory Comput. Syst. 57, 478–520
(2015)

https://doi.org/10.1007/978-3-642-22993-0_18
https://doi.org/10.1007/978-3-642-22993-0_18
https://doi.org/10.1007/978-0-387-68546-5_18

Computability of Ordinary Differential Equations 213

10. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability and unde-
cidability of maximal intervals of IVPs. Trans. Am. Math. Soc. 361(6), 2913–2927
(2009)

11. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability, and hyper-
bolic systems. Appl. Math. Comput. 219(6), 3039–3054 (2012)

12. Graça, D.S., Zhong, N., Dumas, H.S.: The connection between computability of a
nonlinear problem and its linearization: the Hartman-Grobman theorem revisited.
Theor. Comput. Sci. 457(26), 101–110 (2012)

13. Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser, Basel (1982)
14. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-

space complete. Comput. Complex. 19(2), 305–332 (2010)
15. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans.

Comput. Theory 42(2), Article No. 5 (2012)
16. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of

smooth differential equations. Log. Methods Comput. Sci. 10(1:6), 1–15 (2014)
17. Ko, K.I.: On the computational complexity of ordinary differential equations. Inf.

Control 58, 157–194 (1983)
18. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser, Basel (1991)
19. Ko, K.I., Friedman, H.: Computing power series in polynomial time. Adv. Appl.

Math. 9(1), 40–50 (1988)
20. Müller, N.T.: Uniform computational complexity of Taylor series. In: Ottmann,

T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-18088-5 37

21. Pouly, A., Graça, D.S.: Computational complexity of solving polynomial differen-
tial equations over unbounded domains. Theor. Comput. Sci. 626(2), 67–82 (2016)

22. Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which
possesses no computable solution. Ann. Math. Log. 17, 61–90 (1979)

23. Rettinger, R., Weihrauch, K., Zhong, N.: Topological complexity of blowup prob-
lems. J. Univers. Comput. Sci. 15(6), 1301–1316 (2009)

24. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-642-56999-9

25. Zhong, N., Weihrauch, K.: Computability theory of generalized functions. J. ACM
50(4), 469–505 (2003)

https://doi.org/10.1007/3-540-18088-5_37
https://doi.org/10.1007/978-3-642-56999-9

Topological Analysis of Representations

Mathieu Hoyrup(B)

Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
mathieu.hoyrup@inria.fr

Abstract. Computable analysis is the theoretical study of the abilities
of algorithms to process infinite objects. The algorithms abilities depend
on the way these objects are presented to them. We survey recent results
on the problem of identifying the properties of objects that are decidable
or semidecidable, for several concrete classes of objects and representa-
tions of them. Topology is at the core of this study, as the decidable and
semidecidable properties are closely related to the open sets induced by
the representation.

In order to process mathematical objects with algorithms one has to encode or
represent these objects, by symbolic sequences or sequences of natural numbers.
The choice of the representation has a direct impact on the algorithmic tasks that
can be performed on these objects, for instance on the class of properties that can
be decided or semidecided. A property is decidable if there is a program or Turing
machine that given a representation of an input, halts and answers whether the
input satisfies the property. A property is semidecidable if the program halts
exactly when the input satisfies the property.

The problem of understanding the classes of decidable and semidecidable
properties with respect to a given representation has been addressed in many
ways in computability theory and computable analysis. Usually, a representation
induces a topology (its final topology), and the semidecidable properties are the
effective open sets and the computable functions are the effectively continuous
ones. Therefore the problem often amounts to understanding what are the open
sets in that topology.

The abstract correspondence between computability and topology has been
thoroughly studied, on countably-based topological spaces in [1], on more general
spaces in [2,3] among others.

Our general problem is to understand, for a given class of objects with a par-
ticular representation, the information contained in the representation of objects.
We investigate this problem by identifying what can be known about the objects
from their representations, more precisely:

Problem 1. Given a class of objects and a representation, identify the proper-
ties of objects that are semidecidable w.r.t. this representation.

The decidable properties are then the ones that are semidecidable and have a
semidecidable complement.
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 214–223, 2018.
https://doi.org/10.1007/978-3-319-94418-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_22&domain=pdf

Topological Analysis of Representations 215

We will see several cases where a solution to this problem is known. When the
class of semidecidable properties is not well-understood, one can try to identify
the difficulty of describing these properties:

Problem 2. Given a class of objects and a representation, identify the minimal
complexity of a set A ⊆ N such that there is a computable indexing (Pi)i∈A of
the semidecidable properties.

The complexity of A is usually measured in terms of the arithmetical or
hyperarithmetical hierarchies.

We present some recent results on this problem for various classes of objects
and their representations:

– When considering computable objects only, they can be represented by finite
programs, which is at the basis of Markov computability.

– Sometimes a task cannot be performed w.r.t. a particular representation,
unless some finite advice is provided, which induces another representation.

– While computable analysis behaves very well on countably-based topological
spaces, it is less understood on other spaces. A typical example is the space
of higher-order partial or total continuous functionals, introduced by Kleene
[4] and Kreisel [5].

Problems 1 and 2 are formulated for semidecidable properties but also
make sense for other classes of properties. In N

N, the semidecidable proper-
ties are the effective open sets, or the Σ0

1 -sets from the effective Borel hier-
archy. This hierarchy provides different levels of computability of properties
and can be transferred from the Baire space to any set X with a representa-
tion δX : dom(δX) ⊆ N

N → X as follows: say that A ⊆ X is a Σ0
n-subset of X

if there exists a Σ0
n-subset P of NN such that δ−1

X (A) = P ∩ dom(δX). This def-
inition is at the basis the development of descriptive set theory on represented
spaces [6].

With this definition, the semidecidable properties of points of X are exactly
the Σ0

1 -subsets of X. Then Problems 1 and 2 can also be formulated for Σ0
n-

properties.
In this paper we use the approach to computable analysis using representa-

tions. We mention another important branch using domain theory [7–9].

1 Countably-Based Spaces

The standard way of representing a real number x is by giving a sequence of
rational numbers converging at a certain fixed rate to x. Any such sequence can
be encoded as an element of NN and is called a name of x. A function f : R → R is
then computable if there is a Turing machine converting any name of any x ∈ R

to a name of f(x). One of the earliest results in computable analysis is that every
computable function is continuous. It implies for instance that no non-trival
subset of R is decidable because it should be clopen. Similarly, the semidecidable

216 M. Hoyrup

subsets of R are exactly the effective open sets, i.e. the open sets that can be
expressed as computable unions of open intervals with rational endpoints.

The relationship between computability and continuity has been taken for
granted and has suggested a standard way of representing points in an arbitrary
topological space with a countable basis: a point x is represented by any list
of (indices of) the basic neighborhoods of x. With this representation, every
computable function is continuous and moreover a function is continuous if and
only if it is computable relative to some oracle. Similarly, the semidecidable sets
are the effective open sets (i.e., the unions of computable sequences of basic open
sets) and a set is open if and only if it is semidecidable relative to some oracle.

Thus for countably-based spaces with the standard representation, the situ-
ation is pretty clear and the solution to Problem 1 is:

Solution to Problem 1. The semidecidable properties are the computable
unions of basic open sets.

Therefore, the answer to Problem 2 is as simple as possible: there is com-
putable enumeration of the semidecidable properties, derived from a computable
enumeration of the c.e. subsets of N, so one can take A = N.

Solution to Problem 2. The minimal complexity is Δ0
1.

Examples of countably-based spaces are:

– The real numbers with the Euclidean topology, generated by the rational
open intervals: the standard representation is equivalent to the Cauchy rep-
resentation.

– The Baire space N
N, or space of total functions from N to N with the product

topology induced by the cylinders: the standard representation is equivalent
to the trivial representation, where each f : N → N is a name of itself,

– The partial functions from N to N, with the Scott topology induced by the
cylinders.

For a complete development of computable analysis on countably-based
spaces, we refer the reader to [1].

2 Markov Computability

In Markov’s school of recursive constructive mathematics, a real number is a
program computing a Cauchy sequence of rationals converging at a certain fixed
rate. A function on real numbers is Markov computable if there is a procedure
that transforms a program for the input into a program for the output. The
comparison of this notion with the more standard notion of computable function
(defined in Sect. 1) has been thoroughly studied in the 50’s.

When the inputs are the partial computable functions, having a program (or
an index, or Gödel number) for the input or a standard name makes no difference:
the decidable and semidecidable properties are the same (Rice and Rice-Shapiro

Topological Analysis of Representations 217

theorems), the computable functionals are the same (Myhill-Shepherdson theo-
rem).

When the inputs are the total computable functions or the computable
real numbers, having a program for the input or a name makes no difference
when computing a total functional or deciding some property (Kreisel-Lacombe-
Schœnfield/Ceitin Theorem), however it does make a difference when computing
a partial functional or semideciding some property (Friedberg).

Let us give an example of a property of total computable functions f that is
Markov semidecidable (i.e., semidecidable from any index of f) but not semide-
cidable from f itself. Let (ϕe)e∈N be some canonical effective numbering of the
partial computable functions. The property of function f is: for all n, there
exists e ≤ n such that ϕe coincides with f on inputs 0, . . . , n.

So Problem 1 arises here: what do the Markov semidecidable properties of
total computable functions look like?

More generally, what exactly can be computed given an index, that cannot be
computed given a name? What additional information does the index contain?
We first show that the only additional information is an upper bound on the
index. If X is a countably-based space and δ its standard representation, then
let Xc be the set of computable points of X (the points that have a computable
name),

– Let δM be the Markov representation, representing a point x ∈ Xc by any
index of a computable name of x,

– And let δK be the representation of Xc that represents a point x by a standard
name of x and any upper bound on an index of x. One can think of this upper
bound as an upper bound on the Kolmogorov complexity of the point, or as
giving a finite list of programs such that one of them computes the point.

Theorem 1 ([10]). Let X be an effective topological space. A subset of Xc is
Markov-semidecidable iff it is semidecidable given a standard name and an upper
bound on any index.

More generally, the representations δ and δK induce the same properties that are
decidable with at most n mind changes (for any fixed n ∈ N) and the same Σ0

2

properties.
For k ≥ 3, the representations δ, δK and δM induce the same Σ0

k properties,
simply because Xc is a Σ0

3 -set.
Is it possible to have a concrete description of the Markov semidecidable

properties? To date Problem 1 remains open, however we now give a solution to
Problem 2.

A property is Markov semidecidable if there exists a c.e. set W ⊆ N that
is extensional, i.e. if ϕi = ϕj is total then i ∈ W ⇐⇒ j ∈ W . The set {e ∈
N : We is extensional} is a Π0

3 -set and immediately induces an indexing of the
Markov semidecidable properties, so the complexity of describing the Markov
semidecidable properties is at most Π0

3 . We recently proved that this bound is
optimal.

218 M. Hoyrup

Theorem 2 ([11]). There is no Σ0
3 -indexing of the Markov semidecidable prop-

erties of total computable functions.

The proof is based on a diagonalization, but requires several technical obsta-
cles to be overcome. It follows the same structure as the proof of Theorem 5
below.

Thus,

Solution to Problem 2. The minimal complexity of an indexing of the Markov
semidecidable properties of total computable functions is Π0

3 .

3 Finite Advice

Let X be a set with a representation.
In many situations, an algorithm taking points of X as inputs needs an addi-

tional finite information about the input to perform a given task. Computations
with finite advice have been studied in details by Ziegler [12]. Without loss of
generality, that finite information is a natural number. If we denote by Xn ⊆ X
the set of points for which n ∈ N is a correct advice, then one has X =

⋃
n∈N

Xn,
and we define a new representation by describing a point x ∈ X by a name of x
together with any n such that x ∈ Xn.

If we understand the former representation, can we understand the new one?

Example 1 A polynomial is represented as an infinite sequence of real numbers
(its coefficients) and an upper bound on its degree. Giving the coefficients only,
without an upper bound on the degree, would make evaluation uncomputable (a
precise account on the difficulty of bounding the degree from the coefficients can
be found in [13]). The representation only gives an upper bound on the degree,
because giving the exact degree would make simple operations such as addition
uncomputable. We denote this representation by δpoly.

Example 2 We saw that representing a computable object by an index is equiv-
alent to representing it by a name plus an upper bound on an index of the
object, in the sense that the two representations induce the same semidecidable
properties.

Example 3 Given a random sequence s ∈ {−1, 1}N, the random harmonic
series

∑
n∈N

sn

n converges and the sum can be uniformly computed from s and
an upper bound on its randomness deficiency (it is layerwise computable, see
[14]).

We give an answer to Problem 1 in a particular case.

Theorem 3 Let (X, d) be a computable metric space such that X =
⋃

n Xn

where Xn are uniformly effective compact sets. When representing points x by
pairs (p, n) where p is a Cauchy name of x and n is such that x ∈ Xn, the
semidecidable properties are:

Topological Analysis of Representations 219

– The basic open metric balls,
– The set {x : ∀n, d(x,Xn) < εn}, where (εn)n∈N is any computable sequence

of positive rationals,
– Effective unions of finite intersections of these properties.

This result is unpublished, but its proof in a particular case appears in [15].
So we obtain a concrete description of the semidecidable properties, solving

Problem 1. It implies a solution to Problem 2: there is a Π0
2 -indexing of the

semidecidable properties (the computable sequences of positive rationals can be
enumerated from a Π0

2 -set). Whether this complexity is optimal depends on the
decomposition (Xn)n∈N.

Solution to Problem 1. A polynomial is a sequence of coefficients cn ∈ R that
is eventually null. The properties of polynomials that are semidecidable w.r.t.
δpoly are:

– Given a rational interval (a, b) and n ∈ N, whether cn ∈ (a, b),
– Given a positive sequence (εn)n∈N, whether cn < εn for all n,
– Effective unions of finite intersections of these properties.

Unfortunately, Theorem 3 does not apply to Example 2, i.e. to the Markov
semidecidable properties of total computable functions. Indeed, the set Xn of
total computable functions having an index smaller than n, although effectively
compact, is not so uniformly in n. However when considering subrecursive classes
rather than arbitrary total computable functions, one ends up with a uniformly
effective compact decomposition to which Theorem 3 can be applied, as we now
show.

Subrecursive classes of functions. Let PR ⊆ N
N be the set of primitive recursive

functions. For the purpose of semideciding a property, it can be easily shown that
having a primitive recursive definition of f ∈ PR is equivalent to having a direct
access to f and an upper bound on an arbitrary primitive recursive definition
of f , thus we are in the case of Theorem 3 where PRn is the set of functions
having a primitive recursive definiton of length at most n (for any reasonable
measure of length).

Solution to Problem 2. ([15]). The semidecidable properties of primitive recur-
sive functions are:

– Given a, b ∈ N, whether f(a) = b,
– Given a computable non-decreasing unbounded function h, whether for all n

there exists a primitive recursive definition of length ≤ h(n) compatible with f
on inputs 0, . . . , n,

– Effective unions of finite intersections of these properties.

This result actually holds for any subrecursive class, i.e. any class C of total
computable functions that admits a sound and complete programming language,
i.e. a decidable language L ⊆ Σ∗ (where Σ is some finite alphabet) with com-
putable semantics, i.e. with a computable surjective map from L to C. Again, for

220 M. Hoyrup

the purpose of semideciding a property of functions, having a program w ∈ L
of f is equivalent to having a direct access to f and an upper bound on the
length of any program w ∈ L for f .

Examples of subrecursive classes are: the polynomial-time computable func-
tions, the elementary functions, the computable functions that are provably total
in Peano Arithmetic, etc.

4 Other Spaces

All the details and proofs of the results in this section can be found in [11].
So far, we have given results about semidecidable properties only, but it is

possible to consider other classes of properties. In N
N, the semidecidable proper-

ties are the effective open sets, or the Σ0
1 -sets from the effective Borel hierarchy.

This hierarchy provides different levels of computability of properties.
Any space X with a representation δX :⊂ N

N → X automatically inherits
the effective Borel hierarchy: say that A ⊆ X is a Σ0

n-subset of X if there exists
a Σ0

n-subset P of NN such that δ−1
X (A) = P ∩ dom(δX).

With this definition, the semidecidable properties are exactly the Σ0
1 -subsets

of X. Then Problems 1 and 2 can also be formulated for Σ0
n-properties.

For usual countably-based spaces such as R, or any effective Polish space [16]
or quasi-Polish space [17], the effective Borel hierarchy over X behaves nicely:
the Σ0

n-subsets of X are the computable unions of (differences of) Π0
n−1-sets, so

they can be inductively described (solving Problem 1) and effectively enumerated
from N (i.e., solution to Problem 2 is trivial).

We will see that some other spaces are not so well-behaved.

4.1 Open Subsets of the Baire Space

Here the objects are the open subsets of NN. The space of these open subsets is
denoted by O(NN). An open subset of NN is naturally represented by any list of
cylinders whose union is the open set. For this space, Problems 1 and 2 have a
simple solution. The semidecidable properties of open sets U ⊆ N

N are:

– Given an effective compact set K ⊆ N
N, whether K ⊆ U ,

– Effective unions of these properties.

An effective compact set can be obtained as {f : f ≤ g} \ V , where g is com-
putable and V is an effective open set. In particular there is a Π0

2 -indexing of
the semidecidable properties, and this is optimal.

Therefore the semidecidable or Σ0
1 properties are well-understood. However

understanding the Σ0
2 properties is an open problem. Contrary to what happens

on Polish or quasi-Polish spaces, they cannot all be obtained as countable unions
of differences of Π0

1 -sets, and more generally as countable boolean combinations
of open sets. We formalize it by using the notion of Borel set, for which some
explanation is needed first.

Topological Analysis of Representations 221

The representation on the space O(NN) induces a topology. If K ⊆ N
N is

compact then the set {U ∈ O(NN) : K ⊆ U} is an open subset of O(NN), and
the topology on O(NN) is generated by all these sets where K ranges over the
compact subsets of NN.

As a topological space, O(NN) has a notion of Borel subset: the class of Borel
subsets of O(NN) is the smallest class of sets containing the open sets and closed
under taking complements and countable unions. In this sense, the Borel sets
can be seen as countable boolean combinations of open sets.

Observe that this standard notion of Borel sets should not be confused with
the one derived from the representation, consisting of the sets having a Borel
pre-image. The following result shows in particular that the notion derived from
the representation is strictly more restrictive than the standard notion.

Theorem 4. There exists a Σ0
2 -subset of O(NN) that is not Borel.

An ingredient of the proof is to show that the evaluation map Eval : NN ×
O(NN) → S, which is known to be discontinuous for the product topology on N

N×
O(NN) as NN is not locally compact (see [18] for instance), is not even Borel. Said
differently, the set {(f, U) : f ∈ U} is not a Borel subset of the space N

N×O(NN)
with the product topology. However, that set is open in the topology induced
by the representation. In general, the topology induced by the representation on
a product space is not in general the product topology but a stronger topology,
except for countably-based spaces. Here, O(NN) is not countably-based and the
set {(f, U) : f ∈ U} is an example of a set that discriminates between the two
topologies.

Problems 1 and 2 for the Σ0
2 -subsets of O(NN) are still to be studied.

4.2 Kleene-Kreisel Functionals

The previous space is similar to the space of continuous partial functionals
from N

N to N. We now consider the continuous total functionals from N
N to N.

Such a functional F : NN → N is represented by a list of pairs ([u], n) such that
the value of F on [u] is n (we do not require to list all such pairs, but a list that
covers the whole space N

N).
What are the semidecidable properties of functionals? What are the open

subsets of NN
N

? These questions are difficult and we do not have an answer so
far. This topological space is not well-understood, although some of its properties
are known [19]. We give a solution to Problem 2, which also classifies this space
in terms of its base-complexity as defined in [20].

Theorem 5. There is no continuous surjection from N
N

N

to O(NN
N

).
There is no Σ1

2 -indexing of the semidecidable properties of functionals
from N

N to N.

However there is a straightforward Π1
2 -indexing of the semidecidable properties,

which is optimal by the previous result, solving Problem 2.

222 M. Hoyrup

Solution to Problem 2. The minimal complexity of an indexing of the semide-
cidable subsets of N

N
N

is Π1
2 .

The proof of Theorem 5 (and Theorem 2) is based on a diagonalization, but
several technical problems have to be overcome. Let us briefly explain how it
works.

The diagonal argument is very simple: if Y admits a fixed-point free function
then there is no surjection from X to Y X , because given φ : X → Y X one
can build f(x) = h(φ(x)(x)) which is not in the range of φ. In this general
form, all set-theoretic functions are considered, but it applies as is to subclasses
of functions: there is no continuous surjection from X to the space C(X,Y) of
continuous functions from X to Y (for the suitable topologies). In other words,
the argument applies in any cartesian-closed category (this general formulation
was done by Lawvere in [21]). In order to apply it to X = N

N
N

and Y = O(NN
N

),
two problems have to be overcome:

– For any Z, every continuous function h : O(Z) → O(Z) is Scott continuous
hence has a fixed-point by the Kleene fixed-point theorem. However we show
that there is a continuous multi-valued function h : O(NN

N

) ⇒ O(NN
N

) that
has no fixed-point, i.e. such that U /∈ h(U) for all U ∈ O(NN

N

).
– But then the diagonal argument only produces a multi-valued function, and

not a function, unless X is the Baire space or a subspace of it (a continuous
multi-valued function defined on a subset of the Baire space always admits
a continuous selection function). It happens that N

N
N

cannot be embedded
into N

N. However we show a way of extending the argument to spaces X that
contain a sufficiently rich closed set that can be embedded into the Baire
space. We show that NN

N

satisfies this property, hence there is no continuous
surjection from N

N
N

to C(NN
N

,O(NN
N

)) ∼= O(NN
N × N

N
N

) ∼= O(NN
N

).

Higher order functionals can be generalized to any finite type:

– N〈0〉 = N,
– N〈k〉 + 1 = N

N〈k〉,

In the same way, we show that there is no continuous surjection from N〈k〉
to O(N〈k〉), and that there is no indexing of the semidecidable subsets of N〈k〉
from any Σ1

k-subset of N.
The hierarchy of continuous functionals can be extended to the countable

ordinals by adding:

– N〈λ〉 =
∏

α<λ N〈α〉 for a limit countable ordinal λ (where some enumeration
of the ordinals below λ is fixed).

We can then prove that for each countable ordinal α, there is no continuous sur-
jection from N〈α〉 to O(N〈α〉). An effective version for the constructive ordinals
probably holds, but we did not investigate it.

Topological Analysis of Representations 223

References

1. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.
1007/978-3-642-56999-9

2. Schröder, M.: Extended admissibility. Theor. Comput. Sci. 284(2), 519–538 (2002)
3. Pauly, A.: On the topological aspects of the theory of represented spaces. Com-

putability 5(2), 159–180 (2015)
4. Kleene, S.: Countable functionals. In: Constructivity in Mathematics, pp. 81–100

(1959)
5. Kreisel, G.: Interpretation of analysis by means of functionals of finite type. In:

Constructivity in Mathematics, pp. 101–128 (1959)
6. Pauly, A., de Brecht, M.: Descriptive set theory in the category of represented

spaces. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2015, 6–10 July 2015, Kyoto, Japan, pp. 438–449. IEEE Computer Society
(2015)

7. Escard, M.H.: PCF extended with real numbers. Theor. Comput. Sci. 162(1), 79–
115 (1996)

8. Edalat, A.: Domains for computation in mathematics, physics and exact real arith-
metic. Bull. Symb. Log. 3(4), 401–452 (1997)

9. Blanck, J.: Domain representations of topological spaces. Theor. Comput. Sci.
247(1), 229–255 (2000)

10. Hoyrup, M., Rojas, C.: On the information carried by programs about the objects
they compute. In: STACS 2015, 4–7 March 2015, Garching, Germany. LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, vol. 30, pp. 447–459 (2015)

11. Hoyrup, M.: Results in descriptive set theory on some represented spaces. http://
arxiv.org/abs/1712.03680 (2017)

12. Ziegler, M.: Real computation with least discrete advice: a complexity theory of
nonuniform computability with applications to effective linear algebra. Ann. Pure
Appl. Log. 163(8), 1108–1139 (2012). Continuity, Computability, Constructivity:
From Logic to Algorithms

13. Pauly, A., Steinberg, F.: Comparing representations for function spaces in com-
putable analysis. Theory Comput. Syst. 62(3), 557–582 (2018)

14. Hoyrup, M., Rojas, C.: An application of Martin-Löf randomness to effective prob-
ability theory. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS,
vol. 5635, pp. 260–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03073-4 27

15. Hoyrup, M.: The decidable properties of subrecursive functions. In: ICALP 2016,
11–15 July 2016, Rome, Italy. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, vol. 55, pp. 108:1–108:13 (2016)

16. Brattka, V.: Effective borel measurability and reducibility of functions. Math. Log.
Q. 51(1), 19–44 (2004)

17. de Brecht, M.: Quasi-polish spaces. Ann. Pure Appl. Log. 164(3), 356–381 (2013)
18. Escardó, M., Heckmann, R.: Topologies on spaces of continuous functions. Topol.

Proc. 26(2), 545–564 (2001–2002)

19. Schröder, M.: The sequential topology on N
NN

is not regular. Math. Struct. Com-
put. Sci. 19(5), 943–957 (2009)

20. de Brecht, M., Schröder, M., Selivanov, V.: Base-complexity classifications of qcb0-
spaces. Computability 5(1), 75–102 (2016)

21. Lawvere, F.W.: Diagonal arguments and cartesian closed categories. Category
Theory, Homology Theory and their Applications II. LNM, vol. 92, pp. 134–145.
Springer, Heidelberg (1969). https://doi.org/10.1007/BFb0080769

https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
http://arxiv.org/abs/1712.03680
http://arxiv.org/abs/1712.03680
https://doi.org/10.1007/978-3-642-03073-4_27
https://doi.org/10.1007/978-3-642-03073-4_27
https://doi.org/10.1007/BFb0080769

A Unified Framework for Designing
EPTAS’s for Load Balancing on Parallel

Machines

Ishai Kones and Asaf Levin(B)

Faculty of Industrial Engineering and Management,
The Technion, 32000 Haifa, Israel

ishai.kones@gmail.com, levinas@ie.technion.ac.il

Abstract. We consider a general load balancing problem on parallel
machines. Our machine environment in particular generalizes the stan-
dard models of identical machines, and the model of uniformly related
machines, as well as machines with a constant number of types, and
machines with activation costs. The objective functions that we consider
contain in particular the makespan objective and the minimization of
the �p-norm of the vector of loads of the machines, and each case allow
the possibility of job rejection.

We consider this general model and design an efficient polynomial
time approximation scheme (EPTAS) that applies for all its previously-
studied special cases. This EPTAS improves the current best approx-
imation scheme for some of these cases where only a polynomial time
approximation scheme (PTAS) was known into an EPTAS.

1 Introduction

We consider a model that generalizes many previously-studied optimization
problems in the framework of scheduling and (minimization) load balancing
problems on parallel machines. We use this generalization in order to exhibit
that there is a standard way to design efficient polynomial time approximation
schemes for all these special cases and for new special cases as well. In the earlier
works, approximation schemes for many of special cases of our model were devel-
oped using ad-hoc tricks, we show that such ad-hoc methods are not necessary.

Before going into the details of the definition of our model, we define the
types of approximation schemes. A ρ-approximation algorithm for a minimiza-
tion problem is a polynomial time algorithm that always finds a feasible solution
of cost at most ρ times the cost of an optimal solution. The infimum value of ρ
for which an algorithm is a ρ-approximation is called the approximation ratio or
the performance guarantee of the algorithm. A polynomial time approximation
scheme (PTAS) for a given problem is a family of approximation algorithms such

This research was supported by a grant from the GIF, the German-Israeli Foundation
for Scientific Research and Development (grant number I-1366-407.6/2016).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 224–233, 2018.
https://doi.org/10.1007/978-3-319-94418-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_23&domain=pdf

A Unified Framework for Designing EPTAS’s 225

that the family has a (1+ε)-approximation algorithm for any ε > 0. An efficient
polynomial time approximation scheme (EPTAS) is a PTAS whose time com-
plexity is upper bounded by the form f(1ε) ·poly(n) where f is some computable
(not necessarily polynomial) function and poly(n) is a polynomial of the length
of the (binary) encoding of the input. A fully polynomial time approximation
scheme (FPTAS) is a stricter concept. It is defined like an EPTAS, with the
added restriction that f must be a polynomial in 1

ε . Note that whereas a PTAS
may have time complexity of the form ng(1

ε), where g is for example linear or even
exponential, this cannot be the case for an EPTAS. The notion of an EPTAS
is modern and finds its roots in the FPT (fixed parameter tractable) literature
(see e.g. [4,5,9,21]).

Since these problems are proven to be strongly NP-Hard [10] (as for exam-
ple our model is an extension of the minimum makespan problem on identical
machines), it is unlikely (impossible assuming P �= NP) that an optimal poly-
nomial time algorithm or an FPTAS will be found for them. In our research,
we will focus on finding an EPTAS for this general model and as a bi-product,
obtain improved results to many of its special cases. As usual, in order to present
an EPTAS we can show that for a sufficiently small value of ε there exists an
algorithm of time complexity of the form f(1ε) · poly(n) with an approximation
ratio of 1 + κε for an arbitrary constant κ (independent of ε).

Our Model. Being a scheduling problem, the definition of the problem can be
partitioned into the characteristics of the machines, the properties of the jobs,
and the objective function.

Machine Characteristics. We are given m machines denoted as {1, 2, . . . ,m}
each of which can be activated to work in one of τ types denoted as 1, 2, . . . ,
τ . The type of the machine will influence the processing time of a job assigned to
that machine. The input defines for every machine i a (positive rational) speed
si and an activation cost function αi(t) that is a non-negative rational number
denoting the cost of activating machine i in type t. We are also given a budget
Â on the total activation cost of all machines. The meaning of this budget is
that a feasible solution needs to specify for every machine i its type ti such that
the total activation cost is at most the budget, that is, the following constraint
holds

∑m
i=1 αi(ti) ≤ Â . In our work we assume that τ is a constant while m

is a part of the input. Furthermore, without loss of generality we assume that
1 = s1 ≥ s2 ≥ · · · sm > 0.

Job Characteristics. There are n jobs denoted as J = {1, 2, . . . , n}. Job j is
associated with a (τ -dimensional) vector pj that specifies the size pj(t) of job j
if it is assigned to a machine of type t. That is, if job j is assigned to machine i,
and we activate machine i in type t, then the processing time of job j (on this
machine) is pj(t)

si
. Furthermore, for every job j we are given a rejection penalty

πj that is a positive rational number denoting the cost of not assigning job j to
any machine. A definition of a feasible solution specifies for every job j if j is
rejected (and thus incurs a rejection penalty of πj) or not and if it is not rejected
(i.e., j is accepted), then the machine i that j is assigned to. Formally, we need

226 I. Kones and A. Levin

to specify a job assignment function σ : J → {0, 1, 2, . . . ,m}, where σ(j) = 0
means that j is rejected, and σ(j) = i for i ≥ 1 means that j is assigned to
machine i.

Definition of the Objective Function. As stated above a feasible solution
defines a type ti for every machine i, and a job assignment function σ. The
load of machine i in this solution is Λi =

∑
j∈J:σ(j)=i pj(ti)/si. Our objective

function is specified using a function F defined over the vector of the loads of
the machines F (Λ1, Λ2, . . . , Λm) that is the assignment cost of the jobs to the
machines. F is defined by two scalar parameters φ > 1 and 1 ≥ ψ ≥ 0 as follows:
F (Λ1, Λ2, . . . , Λm) = ψ · maxm

i=1 Λi + (1 − ψ) · ∑m
i=1(Λi)φ.

The value of ψ has the following meaning. For ψ = 1, the value of F is the
makespan of the schedule, i.e., the maximum load of any machine, while for
ψ = 0, the value of F is the sum of the φ powers of the loads of the machines,
an objective that is equivalent to the �φ norm of the vector of loads. For ψ
that is strictly between 0 and 1, the value of F is a convex combination of these
classical objectives in the load balancing literature. The common values of φ that
were motivated by various applications that were considered in the literature are
φ = 2 and φ = 3.

Our objective is to find a type ti for every machine i such that
∑m

i=1 αi(ti) ≤
Â, and a job assignment σ so that the following objective function (denoted as
obj) will be minimized: obj = F (Λ1, Λ2, . . . , Λm) +

∑
j∈J:σ(j)=0 πj .

Our result is an EPTAS for this load balancing problem. For ease of notation
we denote this problem by P and let ε > 0 be such that 1/ε ≥ 100 is an integer.
We will use the fact that φ is a constant and the following simple property
throughout the analysis.

Lemma 1. Given a value of ρ > 1 and two vectors (Λ1, . . . , Λm) and
(Λ′

1, . . . , Λ
′
m) such that for every i we have Λi ≤ Λ′

i ≤ (1 + ε)ρΛi, then

F (Λ1, Λ2, . . . , Λm) ≤ F (Λ′
1, Λ

′
2, . . . , Λ

′
m) ≤ (1 + ε)ρ·φF (Λ1, Λ2, . . . , Λm) .

Special Cases of Our Model and Related Literature on These Cases.
The objective function we consider here generalizes the makespan minimization
objective (the special case with all πj = ∞ and ψ = 1), the sum of the φ powers
of the machines loads (the special case with all πj = ∞ and ψ = 0), as well as
these two objectives with job rejections (i.e., finite πj for some j ∈ J).

As for the machine model that we consider, next we state some of the earlier
studied special cases of this model. We say that machines have pre-specified
type if Â = 0 and for every i we have a value ti such that αi(ti) = 0 and
αi(t) = 1 if t �= ti. This special case of the machine environment is the case of
unrelated machines with a constant number of types, whose special case where
machines have a common speed was studied in [16] who presented an EPTAS
for the makespan objective (the extension of this scheme to machines of different
speeds was explored in [17]). This EPTAS of [16] improves earlier PTAS’s for that
special case [3,11,23]. The �p-norm minimization objective for the case where
machines have pre-specified types and all speeds are 1 admits a PTAS [3].

A Unified Framework for Designing EPTAS’s 227

The case where machines have pre-specified types generalizes its special case
of uniformly related machines that is the case where τ = 1. For this machine
model, Jansen [15] presented an EPTAS for the makespan objective improving
the earlier PTAS established in the seminal work of Hochbaum and Shmoys [14],
while Epstein and Levin [6] presented an EPTAS for the minimization of the �p-
norm of the vector of machines loads improving an earlier PTAS by Epstein
and Sgall [8]. Later on, Epstein and Levin [7] presented an EPTAS for another
scheduling objective, namely total weighted completion times, and their scheme
for the case where all jobs are released at time 0, implies a different EPTAS
for the minimization of the sum of squares of the loads of the machines on
uniformly related machines. As far as we know the two schemes of [6,7] are the
only examples for EPTAS’s for load balancing objectives on uniformly related
machines where one cannot use the dual approximation method of [13,14]. Our
approach here is based on [7].

The case of identical machines is the special case of uniformly related
machines where all speeds are equal. See [1,12,13] for earlier approximation
schemes for this case.

The next special objective we consider here is scheduling with rejection. This
is the special case of our objective function where πj is finite (at least for some
jobs). In [2,8] there is a PTAS for this variant (for ψ ∈ {0, 1}) on identical
machines and on uniformly related machines.

The last special case we consider here is the machines with activation costs
model that was considered by [19]. They considered the special case of our model
with makespan objective and τ = 2, with αi(1) = 0 for all i, and pj(1) = ∞ for
all j ∈ J . In this case activating a machine as type 1 means that the machine is
not operating and cannot process any job. For this case [19] presents a PTAS.

Outline of the Scheme. We apply geometric rounding of the parameters of the
input, followed by a guessing step in which we guess for each type the minimum
index of the machine that is activated to this type together with its approximated
load. This guessing is motivated by a standard characterization of near-optimal
solutions that is described earlier. Based on these rounding and guessing steps,
we formulate a mixed integer linear program (MILP) that is solved to optimality
in polynomial time using [18,20] and the property that the number of integer
variables is a constant (see Sect. 3), and we prove that the optimal cost to our
scheduling problem P is approximated by the solution obtained to the MILP.
Last, we use the solution of the MILP to round it into a feasible solution to
problem P whose cost is approximately the cost of the solution of the MILP (see
Sect. 4).

2 Initial Steps

Rounding of the Input. In what follows we would like to assume that the
speed of each machine is an integer power of 1 + ε, and that for every job j and
type t, we have that pj(t) is an integer power of 1 + ε. Given an instance I of
problem P that does not satisfy these conditions, we round down the speed of

228 I. Kones and A. Levin

each machine i to an integer power of 1 + ε, and for each job j and type t, we
round up the value of pj(t) to an integer power of 1+ε. That is, we create a new
rounded instance I ′ in which the speed of machine i is s′

i, and for each job j and
type t, we let p′

j(t) be its size if it is assigned to a machine of type t, where we
define s′

i = (1+ε)�log1+ε si� ∀i , p′
j(t) = (1+ε)�log1+ε pj(t)� ∀j, t . The other

parameters of the input are left in I ′ as they were in I. The analysis of this step is
proved in the following lemma that follows using standard arguments. Recall that
a feasible solution to P means selecting a type for each machine satisfying the
total activation cost constraint and specifying a job assignment function. Then,
given a feasible solution to I of cost CI , then the same solution is a feasible
solution to I ′ of cost (evaluated as a solution to I ′) at most (1+ ε)2φ ·CI . Given
a feasible solution to I ′ of cost CI′ , then the same solution is a feasible solution
to I of cost (evaluated as a solution to I) at most CI′ . Noting that applying
the rounding step takes linear time, we conclude that without loss of generality
with a slight abuse of notation, we assume that the input instance satisfies the
properties that si and pj(t) are integer powers of 1 + ε (for all i, j, t).

Characterization of Near-Optimal Solutions. We say that a feasible solu-
tion to P is nice if the following property holds. Let i < i′, be a pair of machines
that are activated to a common type t such that i is the minimum index of
a machine that is activated to type t, then the load of i is at least the load
of i′ times ε2. The definition of nice solutions together with the guessing step
described next serve as an alternative to the dual approximation method of
[13,14] and suit cases in which the dual approximation method does not work
(i.e., non-bottleneck load balancing problems). We are able to show that given
an instance of P and a feasible solution sol of cost sol, there exists a feasible
solution sol

′ that is a nice solution whose cost sol′ satisfies sol′ ≤ (1+ε)φ ·sol.
Guessing Step. We apply a guessing step of (partial) information on an optimal
solution among nice solutions. See e.g. [22] for an overview of this technique of
guessing (or partitioning the solutions space) in the design of approximation
schemes. In what follows, we consider one nice solution of minimal cost among
all nice solutions to the (rounded) instance and denote both this solution and
its cost by opt together with its job assignment function σo and the type toi
assigned by opt to machine i (for all i).

We guess the approximated value of the makespan in opt, and denote it by
O. That is, if opt rejects all jobs then O = 0, and otherwise the makespan of
opt is in the interval (O/(1 + ε), O]. Furthermore, for every type t, we guess
a minimum index μ(t) of a machine of type t (namely, μ(t) = mini:to

i =t i), and
its approximated load Lt that is a value such that the load of machine μ(t) is
in the interval (Lt − εO

τ , Lt]. Without loss of generality, we assume that O ≥
maxt Lt. The number of different possibilities for the guessed information on opt

is O(nm log1+ε n · (mτ/ε)τ) . We note that if we consider the model of machines
with pre-specified type, then we do not need to guess the value of μ(t) (for all
t) and the number of different possibilities for the guessed information on opt

is O(nm log1+ε n · (τ/ε)τ).

A Unified Framework for Designing EPTAS’s 229

3 The Mixed Integer Linear Program

Let γ ≥ 10 be a constant that is chosen later (γ is a function of τ and ε). For a
type t and a real number W , we say that job j is large for (t,W) if pj(t) ≥ εγ ·W ,
and otherwise it is small for (t,W).

Preliminaries. Our MILP follows the configuration-MILP paradigm as one
of its main ingredients. Thus, next we define our notion of configurations. A
configuration C is a vector encoding partial information regarding the assignment
of jobs to one machine where C consists of the following components: t(C) is the
type assigned to a machine with configuration C, s(C) is the speed of a machine
with configuration C, w(C) is an approximated upper bound on the total size of
jobs assigned to a machine with this configuration where we assume that w(C)
is an integer power of 1 + ε and the total size of jobs assigned to this machine is
at most (1+ε)3 ·w(C), r(C) is an approximated upper bound on the total size of
small jobs (small for (t(C), w(C)) assigned to a machine with this configuration
where we assume that r(C) is an integer multiple of ε ·w(C) and the total size of
small jobs assigned to this machine is at most r(C), last, for every integer value
of ν such that (1 + ε)ν ≥ εγ · w(C) we have a component �(C, ν) counting the
number of large jobs assigned to a machine of configuration C with size (1+ε)ν .
Furthermore we assume that r(C)+

∑
ν(1+ ε)ν · �(C, ν) ≤ (1+ ε)3 ·w(C). Let C

be the set of all configurations. For every pair (s, w), we have |{C ∈ C : s(C) =

s, w(C) = w}| ≤ β := τ · (
2
ε

)(2γ+1)2 log1+ε(1/ε)
.

Our MILP formulation involves several blocks and different families of vari-
ables that are presented next (these blocks have limited interaction). We present
the variables and the corresponding constraints before presenting the objective
function.

First Block - Machine Assignment Constraints. For every machine i and
every type t, we have a variable zi,t that encodes if machine i is assigned type
t, where zi,t = 1 means that machine i is assigned type t. Furthermore, for
every type t and every speed s, we have a variable m(s, t) denoting the number
of machines of (rounded) speed s that are assigned type t. For every type t,
we have zi,t = 0 for all i < μ(t) while zμ(t),t = 1 enforcing our guessing. The
(additional) machine assignment constraints are as follows:

For every machine i, we require
∑τ

t=1 zi,t = 1, encoding the requirement
that for every machine i, exactly one type is assigned to i. For every type t and
speed s, we have

∑
i:si=s zi,t = m(s, t) . Let ms be the number of machines in

the rounded instance of speed s, then
∑τ

t=1 m(s, t) = ms . Last, we have the
machine activation budget constraint

∑τ
t=1

∑m
i=1 αi(t)zi,t ≤ Â .

The variables zi,t are fractional variables and their number is O(mτ), for
every type t and for every speed s such that sμ(t) ≥ s ≥ sμ(t) · εγ we require that
m(s, t) is an integer variable while all other variables of this family of variables
are fractional. Observe that the number of variables that belong to this family
and are required to be integral (for the MILP) formulation is O(τγ log1+ε

1
ε)

that is bounded by a polynomial in τγ
ε , and the number of fractional variables

of the family m(s, t) is O(nτ).

230 I. Kones and A. Levin

Second Block - Job Assignment to Machine Types and Rejection Con-
straints. For every job j and every t ∈ {0, 1, . . . , τ}, we have a variable yj,t that
encodes if job j is assigned to machine that is activated to type t (for t ≥ 1)
or rejected (for t = 0). That is, for t ≥ 1, if yj,t = 1, then job j is assigned
to machine of type t, and if yj,0 = 1 it means that j is rejected (and we will
pay the rejection penalty πj). Furthermore for every type t and every possible
integer value ζ we have two variables n(ζ, t) and n′(ζ, t) denoting the number
of jobs assigned to machine of type t whose (rounded) size (if they are assigned
to machine of type t) is (1 + ε)ζ that are assigned as large jobs and that are
assigned as small jobs, respectively. Here, possible values of ζ for a given t are
all integers for which (1 + ε)ζ ≤ sμ(t) · min{Lt/(ε3), O} such that the rounded
input contains at least one job whose size (when assigned to a machine of type t)
is (1+ ε)ζ (where recall that Lt is the guessed load of machine μ(t) and O is the
guessed value of the makespan). We denote by ζ(t) the set of possible values of
ζ for the given t. We implicitly use the variables n(ζ, t) and n′(ζ, t) for ζ /∈ ζ(t)
(i.e., impossible values of ζ) by setting those variables to zero.

The constraints that we introduce for this block are as follows: For every job
j, we should either assign it to a machine (of one of the types) or reject it, and
thus we require that

∑τ
t=0 yj,t = 1 . Furthermore, for every type t and possible

value of ζ (i.e., ζ ∈ ζ(t)) we require,
∑

j:pj(t)=(1+ε)ζ yj,t ≤ n(ζ, t) + n′(ζ, t) .
For the MILP formulation, the variables yj,t are fractional, while the variables

n(ζ, t) and n′(ζ, t) are integer variables only if ζ ∈ ζ(t) and (1 + ε)ζ ≥ sμ(t)Ltε
γ

(and otherwise they are fractional). Observe that we introduce for this block
O(nτ) fractional variables (excluding variables that are set to 0 corresponding
to impossible values of ζ) and O(τγ log1+ε

1
ε) integer variables.

Third Block - Configuration Constraints. For every C ∈ C we have a
variable xC denoting the number of machines of speed s(C) activated to type
t(C) whose job assignment is according to configuration C. Furthermore, for
every configuration C ∈ C and every integer value of ν such that (1 + ε)ν <
εγw(C) we have a variable χ(C, ν) denoting the number of jobs whose size (when
assigned to machine of type t(C)) is (1 + ε)ν that are assigned to machines of
configuration C. Such a variable χ(C, ν) exists only if there exists at least one
job j whose size (when assigned to a machine of type t) is (1 + ε)ν . For C ∈ C,
we let ν(C) denote the set of values of ν for which the variable χ(C, ν) exist.
For every t, we require that machine μ(t) has a configuration where sμ(t) · Lt is
approximately w(C). Thus, for every t, we will have the constraint

∑

C∈C:s(C)=sμ(t),t(C)=t,sμ(t)·Lt≤w(C)≤(1+ε)3·sμ(t)·Lt

xC ≥ 1 .

For the MILP formulation, xC is required to be integer only if C is a heavy
configuration, where C is heavy if w(C) ≥ εγ3

Lt(C) · sμ(t(C)). The variables
χ(C, ν) are fractional for all C ∈ C and ν ∈ ν(C). Observe that the number of
integer variables depends linearly in β where the coefficient is upper bounded
by a polynomial function of γ

ε .

A Unified Framework for Designing EPTAS’s 231

It remains to consider the constraints bounding these variables together with
the n(ζ, t), n′(ζ, t) and m(s, t) introduced for the earlier blocks. Here, the con-
straints have one sub-block for each type t. The sub-block of type t (for 1 ≤ t ≤ τ)
consists of the following constraints:

For every type t and every (rounded) speed s we cannot have more than
m(s, t) machines with configurations satisfying t(C) = t and s(C) = s, and there-
fore we have the constraint

∑
C∈C:t(C)=t,s(C)=s xC ≤ m(s, t) . For every ζ ∈ ζ(t),

we have that all the n(ζ, t) jobs of size (1 + ε)ζ that we guarantee to schedule
on machine of type t are indeed assigned to such machine as large jobs. Thus,
we have the constraints

∑
C∈C:t(C)=t �(C, ζ) · xC = n(ζ, t). The last constraints

ensures that for every ζ ∈ ζ(t), the total size of all jobs of size at least (1 + ε)ζ

that are scheduled as small jobs fits the total area of small jobs in configurations
for which (1+ε)ζ is small with respect to (t, w(C)). Here, we need to allow some
additional slack, and thus for configuration C we will allow to use r(C)+2εw(C)
space for small jobs. Thus, for every integer value of ζ we have the constraint∑

ζ′≥ζ n′(ζ ′, t) · (1 + ε)ζ′ ≤ ∑
C∈C:t(C)=t,εγ ·w(C)>(1+ε)ζ (r(C) + 2εw(C))xC .

Observe that while we define the last family of constraints to have an infinite
number of constraints, we have that if when we increase ζ, the summation on
the left hand side is the same, then the constraint for the larger value of ζ dom-
inates the constraint for the smaller value of ζ. Thus, it suffices to have the
constraints only for ζ ∈ ∪τ

t=1ζ(t). In addition to the last constraints we have the
non-negativity constraints (of all variables).

The Objective Function. Using these variables and (subject to these) con-
straints we define the minimization (linear) objective function of the MILP as

ψ · O + (1 − ψ) · ∑
C∈C

(
w(C)
s(C)

)φ

· xC +
∑n

j=1 πj · yj,0 .

Our algorithm solves optimally the MILP and as described in the next section
uses the solution for the MILP to obtain a feasible solution to problem P without
increasing the cost too much. Thus, the analysis of the scheme is crucially based
on proving the following. The optimal objective function value of the MILP is
at most (1 + ε)φ times the cost of opt as a solution to P .

4 Transforming the Solution to the MILP into a Schedule

Consider the optimal solution (z∗,m∗, y∗, n∗, n′∗, x∗, χ∗) for the MILP, our first
step is to round up each component of n∗ and n′∗. That is, we let n̂(ζ, t) =

n∗(ζ, t)� and n̂′(ζ, t) =
n′∗(ζ, t)� for every ζ and every t. Furthermore, we
solve the following linear program (denoted as (LP − y)) that has totally uni-
modular constraint matrix and integer right hand side, and let ŷ be an opti-
mal integer solution for this linear program: min

∑n
j=1 πj · yj,0 s.t.

∑τ
t=0 yj,t =

1, ∀j ∈ J,
∑

j∈J:pj(t)=(1+ε)ζ yj,t ≤ n̂(ζ, t) + n̂′(ζ, t) ∀t ∈ {1, 2, . . . , τ} , ∀ζ ∈
ζ(t)} , yj,t ≥ 0 ∀j ∈ J , ∀t ∈ {0, 1, . . . , τ} . We will assign jobs to types
(and reject some of the jobs) based on the values of ŷ, that is if ŷj,t = 1 we
will assign j to a machine of type t (if t ≥ 1) or reject it (if t = 0). Since y∗ is
a feasible solution to (LP − y) of cost that equal the total rejection penalty of

232 I. Kones and A. Levin

the solution to the MILP, we conclude that the total rejection penalty of this
(integral) assignment of jobs to types is at most the total rejection penalty of
the solution to the MILP. In what follows we will assign n̂(ζ, t) + n̂′(ζ, t) jobs of
size (1 + ε)ζ to machines of type t (for all t).

The next step is to round up each component of x∗, that is, let x̂C =
x∗
C�,

and allocate x̂C machines of speed s(C) that are activated as type t(C) and
whose schedule follows configuration C. These x̂C machines are partitioned into
x′

C = �x∗
C actual machines and x̂C − x′

C virtual machines. Both actual and
virtual machines are not machines of the instance but temporary machines that
we will use for the next step.

Then, it is possible to construct (in polynomial time) an allocation of n̂(ζ, t)
jobs of size (1 + ε)ζ for all t, ζ to (actual or virtual) machines that follow con-
figurations in {C ∈ C : t(C) = t, (1 + ε)ζ ≥ εγ · w(C) }, and of n̂′(ζ, t) jobs of
size (1+ ε)ζ for all t, ζ to (actual or virtual) machines that follow configurations
in {C ∈ C : t(C) = t, (1 + ε)ζ < εγ · w(C) }, such that for every machine that
follows configuration C ∈ C, the total size of jobs assigned to that machine is at
most (1 + ε)7w(C).

The assignment of jobs for which yj,0 �= 0 to machines is specified by assigning
every job that was assigned to a virtual machine that follows configuration C
to machine μ(t(C)) instead, and assigning the jobs allocated to actual machines
by allocating every actual machine to an index in {1, 2, . . . ,m} following the
procedure described in the next step. Before describing the assignment of actual
machines to indices in {1, 2, . . . ,m} of machines in the instance (of problem P),
we analyze the increase of the load of machine μ(t) due to the assignment of jobs
that were assigned to virtual machines that follow configuration with type t.

The performance guarantee that we prove for this step is that there is a value
of γ for which the resulting total size of jobs assigned to machine μ(t) is at most
(1 + ε)8 · w(C(μ(t)) where machine μ(t) follows the configuration C(μ(t)).

Next, we describe the assignment of actual machine to indices in
{1, 2, . . . ,m}. More precisely, the last step is to assign a type t̂i for every machine
i satisfying the total activation cost bound, and to allocate for every C ∈ C and
for every actual machine that follows configuration C, an index i such that
t̂i = t(C). This assignment of types will enforce our guessing of μ(t) for all t
This step is possible using the integrality of the assignment polytope. Specifi-
cally we show that there is a polynomial time algorithm that finds a type ti for
every machine i, such that the total activation cost of all machines is at most Â,
for all s, t the number of machines of speed s that are activated to type t is at
least the number of actual machines that follow configurations with type t and
speed s, and for all t μ(t) is the minimum index of a machine that is assigned
type t.

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

2. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM J. Discrete Math. 13(1), 64–78 (2000)

A Unified Framework for Designing EPTAS’s 233

3. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types.
http://arxiv.org/abs/1205.0974 (2012)

4. Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation
schemes. Inf. Process. Lett. 64(4), 165–171 (1997)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag, Berlin
(1999). https://doi.org/10.1007/978-1-4612-0515-9

6. Epstein, L., Levin, A.: An efficient polynomial time approximation scheme for load
balancing on uniformly related machines. Math. Progr. 147, 1–23 (2013)

7. Epstein, L., Levin, A.: Minimum total weighted completion time: Faster approxi-
mation schemes. http://arxiv.org/abs/1404.1059 (2014)

8. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related
and identical parallel machines. Algorithmica 39(1), 43–57 (2004)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag, Berlin
(2006). https://doi.org/10.1007/3-540-29953-X

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

11. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for scheduling
unrelated machines of few different types. In: Freivalds, R.M., Engels, G., Cata-
nia, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 290–301. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49192-8 24

12. Hochbaum, D.S.: Various notions of approximations: good, better, best and more.
In: Hochbaum, D.S. (ed.) Approximation Algorithms. PWS Publishing Company
(1997)

13. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)

14. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: using the dual approximation approach. SIAM J. Com-
put. 17(3), 539–551 (1988)

15. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM J. Discrete Math.
24(2), 457–485 (2010)

16. Jansen, K., Maack, M.: An EPTAS for scheduling on unrelated machines of few
different types. Algorithms and Data Structures. LNCS, vol. 10389, pp. 497–508.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 42

17. Jansen, K., Maack, M.: An EPTAS for scheduling on unrelated machines of few
different types. CoRR, abs/1701.03263 (v2) (2017)

18. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proceedings of STOC 1983, pp. 193–206 (1983)

19. Khuller, S., Li, J., Saha, B.: Energy efficient scheduling via partial shutdown. In:
Proceedings of SODA 2010, pp. 1360–1372 (2010)

20. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

21. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J.
51(1), 60–78 (2008)

22. Schuurman, P., Woeginger, G.J.: Approximation schemes - a tutorial (2001).
http://www.win.tue.nl/∼gwoegi/papers/ptas.pdf

23. Wiese, A., Bonifaci, V., Baruah, S.K.: Partitioned EDF scheduling on a few types
of unrelated multiprocessors. Real-Time Syst. 49(2), 219–238 (2013)

http://arxiv.org/abs/1205.0974
https://doi.org/10.1007/978-1-4612-0515-9
http://arxiv.org/abs/1404.1059
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-662-49192-8_24
https://doi.org/10.1007/978-3-319-62127-2_42
http://www.win.tue.nl/~gwoegi/papers/ptas.pdf

Weak Reduction Principle
and Computable Metric Spaces

Margarita Korovina1(B) and Oleg Kudinov2

1 A.P. Ershov Institute of Informatics Systems, SbRAS, Novosibirsk, Russia
rita.korovina@gmail.com

2 Sobolev Institute of Mathematics, SbRAS, Novosibirsk, Russia
kud@math.nsc.ru

Abstract. This paper is a part of the ongoing research on developing a
foundation for studying arithmetical and descriptive complexity of par-
tial computable functions in the framework of computable topology. We
propose new principles for computable metric spaces. We start with a
weak version of Reduction Principle (WRP) and prove that the lattice
of the effectively open subsets of any computable metric space meets
WRP. We illustrate the role of WRP within partial computability. Then
we investigate the existence of a principal computable numbering for
the class of partial computable functions from an effectively enumerable
space to a computable metric space. We show that while in general such
numbering does not exist in the important case of a perfect computable
Polish space it does. The existence of a principal computable numbering
gives an opportunity to make reasoning about complexity of well-known
problems in computable analysis in terms of arithmetical and analytic
complexity of their index sets.

1 Introduction

As it is well-known the class of distributive lattices is too rich and far from
Boolean algebra B that has simple descriptions. Hence an idea has been revealed
to bound the class of distributive lattices by elementary conditions making them
closer to B. Thus Heyting algebras and the distributive lattices with Reduction
principle have been proposed. In classical recursion theory Reduction principle is
well-known for the lattice Σ0

1 [ω] [13], in admissible set theory for Σ–definable sets
[1] and in descriptive set theory for effectively open subsets of some computable
Polish spaces (e.g. Baire space) [11]. However, in general, Reduction principle
does not hold for the lattice of effectively open subsets of computable Polish
spaces. In particular it does not hold for the lattice of effectively open subsets
of the real numbers due connectivity. In this paper we propose a weak version
of Reduction principle called WRP.

The research has been partially supported by the DFG grants CAVER BE 1267/14-1
and WERA MU 1801/5-1, RFBR grant A-17-01-00247.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 234–243, 2018.
https://doi.org/10.1007/978-3-319-94418-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_24&domain=pdf

Weak Reduction Principle and Computable Metric Spaces 235

From one hand WRP holds for the lattice of effectively open subsets of any
computable metric space (and obviously for the lattice of open subsets of any
separable metric space). From the other hand this principle is powerful enough to
provide pleasant properties of whole space. Thus we show that if WRP holds for
X ×R, where X is an effectively enumerable topological space, then MCX→R =
PCFX→R, i.e., majorant-computability and partial computability coincide.

Since the notion of a partial computable function on a computable metric
space is relatively new [6] the existence of a principal computable numbering
for different classes of partial computable functions is not well studied yet. We
show that while in general such numbering does not exist in the important case
of a perfect computable Polish space it does. The existence of a principal com-
putable numbering gives an opportunity to make reasoning about arithmetical
and analytic complexity of well-known problems in computable analysis. We
are interested in principal computable numberings since they adequately reflect
arithmetical and analytic complexity of subclasses of the partial computable
functions, i.e., the index sets of a subclass with respect to any other computable
numberings are m–reducible to the index set of the subclass with respect to the
principal computable numbering. For example if the index set of a subclass is
Σ0

n–hard with respect to some computable numbering then it is Σ0
n–hard with

respect to the principal computable numbering.

2 Basic Background

2.1 Preliminaries

We refer the reader to [2,13,14] for basic definitions and fundamental concepts of
recursion theory. In this paper we work with the following notion of a computable
metric space. A computable metric space is a separable metric space X with
a metric d and a countable dense subset B = {b1, b2, . . . } called a basis of
X such that the following two relations {(n,m, i) | d(bn, bm) < qi, qi ∈ Q}
{(n,m, i) | d(bn, bm) > qi, qi ∈ Q} are computably enumerable (c.f. [12,16]).
In this paper we consider only perfect Polish spaces, i.e., Polish spaces without
isolated points [12]. Hence, further on we omit the word “perfect” and when we
write a computable Polish space we mean a perfect complete computable metric
space. We consider these concepts in the framework of effectively enumerable
spaces (see Sect. 2.2). The standard notations B(x, y) and B(x, y) are used for
open and closed balls with the center x and the radius y.

2.2 Effectively Enumerable Topological Spaces

Now we recall the notion of an effectively enumerable topological space. Let
(X, τ, α) be a topological space, where X is a non-empty set, Bτ ⊆ 2X is a base
of the topology τ and α : ω → Bτ is a numbering.

Definition 1 [8]. A topological space (X, τ, α) is effectively enumerable if the
following conditions hold.

236 M. Korovina and O. Kudinov

1. There exists a computable function g : ω × ω × ω → ω such that

α(i) ∩ α(j) =
⋃

n∈ω

α(g(i, j, n)).

2. The set {i|α(i) �= ∅} is computably enumerable.

For a computable metric space (X,B, d) in a natural way we define the number-
ing of the base of the standard topology as follows. First we fix a computable
numbering α∗ : ω \ {0} → (ω \ {0}) × Q

+. Then,

α(0) = ∅, α(i) = B(bn, r) if i > 0 and α∗(i) = (n, r).

For α∗(i) = (n, r) later we use notation n = u(i) and r = ri.
It is easy to see that (X, τ, α) is an effectively enumerable topological space.

Therefore we consider the computable metric spaces as a proper subclass of the
effectively enumerable topological spaces. For details we refer to [8].

We recall the notion of an effectively open set.

Definition 2. Let (X, τ, α) be an effectively enumerable topological space. A set
A ⊆ X is effectively open if there exists a computably enumerable set V ⊆ ω
such that A =

⋃
n∈V α(n).

The set of all effectively open subsets of X is closed under intersection and
union since the class of effectively enumerable subsets of ω is a lattice. By analogy
to effective descriptive set theory (EDST), for a effectively enumerable T0-space
X , we say that a set A ∈ EI[X] if A =

⋂
n∈ω On, where {On}n∈ω is a com-

putable sequence of effectively open subsets of X. It is worth noting that, for a
computable Polish space P, EI[P] = Π0

2 [P] however, in general, EI[X] ⊂ Π0
2 [X]

(see [5]).

2.3 PCF over Effectively Enumerable Topological Spaces

In this subsection we recall the notion of a partial computable function f : X →
Y, where X = (X, τX , α) is an effectively enumerable topological space and
Y = (Y, τY , β) is an effectively enumerable T0–space.

Definition 3 [7]. Let X = (X, τX , α) be an effectively enumerable topological
space and Y = (Y, τY , β) be an effectively enumerable T0–space. A function f :
X → Y is called partial computable (pcf) if there exist a computable sequence
of effectively open sets {On}n∈ω and a computable function H : ω2 → ω such
that

1. dom(f) =
⋂

n∈ω On and
2. f−1(β(m)) =

⋃
i∈ω α(H(m, i)) ∩ dom(f).

In the following if a partial computable function f is everywhere defined we
say f is a total computable function. For an effectively enumerable topological
space X and an effectively enumerable T0–space Y we denote the set of partial
computable functions f : X → Y as PCFX→Y .

Weak Reduction Principle and Computable Metric Spaces 237

Remark 1. It is worth noting that, for computable Polish spaces, Definition 3
corresponds to the results in [4], where partial TTE–computable functions have
been described via effective continuity and Π0

2–domains. Moreover, for partial
real functions, the classes of PCFR→R, the TTE–computable [15], the domain-
computable [3] and the majorant–computable functions [9] coincide.

The following propositions summarise properties of PCF that we are going
to use in this papers. For more details we refer to [6,7].

Proposition 1. Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable T0-space.

1. If f : X → Y is a pcf then f is continuous at every points of dom(f).
2. A total function f : X → Y is computable if and only if it is effectively

continuous.

Proposition 2. Over effectively enumerable T0–spaces, PCF is closed under
composition.

Proposition 3. A function f : X → R is a pcf if and only if there exist two
effectively open sets U, V ⊆ X × IR such that

1. for all x ∈ X, U(x) is closed downward and V (x) is closed upward;
2. if x ∈ dom(f) then f(x) = y ↔ {y} = IR \ (U(x) ∪ V (x)) ;
3. if x �∈ dom(f) then the set IR \ (U(x) ∪ V (x)) is not a singleton.

2.4 MC over Effectively Enumerable Topological Spaces

In this subsection we recall the notion of a majorant–computable function on an
effectively enumerable topological space which agrees with the similar notion on
the predicate structures [9,10]. Let U(x) < V (x) denote that, for all z1 ∈ R and
z2 ∈ R, if z1 ∈ U(x) and z2 ∈ V (x) then z1 < z2.

Definition 4. Let X be an effectively enumerable topological space. A partial
function f : X → R is called majorant–computable if there exist two effectively
open sets U, V ⊆ X × IR satisfying the following requirements:

1. (∀x ∈ X) (U(x) < V (x));
2. for all x ∈ X, U(x) is closed downward and V (x) is closed upward;
3. f(x) = y ↔ {y} = IR \ (U(x) ∪ V (x)) .

If we fix a canonical numbering α̃ of the base of the topology on X × R then
U =

⋃
i∈V1

α̃(i) and V =
⋃

i∈V2
α̃(i) for some computable enumerable sets V1 and

V2. We say that the pair (U, V) defines a partial majorant-computable function
f : X → R if U and V satisfy the conditions of Definition 4. For an effectively
enumerable space X we denote the set of partial majorant–computable functions
f : X → R as MCX→R.

238 M. Korovina and O. Kudinov

3 Weak Reduction Principle

Definition 5. Let L be a distributive lattice. We say that Weak Reduction Prin-
ciple holds on L if for any A, B ∈ L there exist C, D ∈ L such that the following
conditions hold

1. A ⊆ B ∪ C and C ⊆ A;
2. B ⊆ A ∪ D and D ⊆ B;
3. C ∩ D = ∅.
Remark 2. If L admits relative complements then the first condition is equivalent
to A \ B ⊆ C ⊆ A and the second condition is equivalent to B \ A ⊆ D ⊆ B.

For an effectively enumerable topological space X we write WRPX if Weak
Reduction Principle holds on the lattice of all effectively open subsets of X.

Theorem 1. For every computable metric space M, WRPM holds.

Proof. Assume A =
⋃

i∈ω B(ai, ri) and B =
⋃

j∈ω B(bj , Rj), where ri, Rj ∈ Q
+

and the corresponding sequences are computable.
For s ∈ ω we define

x ∈ As ↔ (∃i ≤ s
)(d(x, ai)

ri
< 1 − 1

2s
∧ (∀k ≤ s

) d(x, bk)
Rk

> 1 − 1
2s

)

and

x ∈ Bs ↔ (∃j ≤ s
)(d(x, bj)

Rj
< 1 − 1

2s
∧ (∀k ≤ s

) d(x, ak)
rk

> 1 − 1
2s

)
.

Put A′ =
⋃

s∈ω As and B′ =
⋃

s∈ω Bs. By construction, A′ ⊆ A and B′ ⊆ B.
To show that A \ B ⊆ A′ assume that x ∈ A \ B and x ∈ B(ai, ri) for some
i ∈ ω. Let us choose s � i such that d(x,ai)

ri
< 1 − 1

2s . From d(x,ai)
ri

< 1 and
d(x,bj)

Rj
≥ 1 for all j ∈ ω it follows that x ∈ As. By similar reasons, B \ A ⊆ B′.

We prove A′ ∩ B′ = ∅ by contradiction. Assume without loss of generality that
there exists x ∈ X such that x ∈ As, x ∈ Bl and s ≤ l. Let us choose i ≤ s such
that d(x,ai)

ri
< 1 − 1

2s . From the definition of Bl it follows that d(x,ai)
ri

> 1 − 1
2l

.
Hence s > l. This contradicts the choice of s and l. Therefore A′ and B′ are
required subsets.

Proposition 4. There exists an effectively enumerable topological space X such
that WRPX does not hold.

Proof. Let us define X = ω, where the closed proper subsets are all finite subsets.
Put A = ω \ {0} and B = ω \ {1}. Since any nonempty open sets intersect there
are no A′ ⊆ A and B′ ⊆ B such that A′ ∩ B′ = ∅, A′ �= ∅ and B′ �= ∅. Hence
WRPX does not hold.

Proposition 5. For an effectively enumerable topological space X , if we have
the equality MCX→R = PCFX→R then WRPX holds.

Weak Reduction Principle and Computable Metric Spaces 239

Proof. Let A and B be effectively open sets. Put

U = A × (−∞, 0) ∪ B × (−∞, 1) and V = A × (0,+∞) ∪ B × (1,+∞).

By Proposition 3 the sets U and V define the following pcf:

f(x) =

⎧
⎨

⎩

0 if x ∈ A \ B
1 if x ∈ B \ A
↑ otherwise.

By assumption, f is a majorant-computable function. Therefore, there exist
effectively open sets Ũ and Ṽ that define f and Ũ(x) < Ṽ (x) for all x ∈ X.

Put

C = {x ∈ A | Ṽ (x,
1
2
)} and D = {x ∈ B | Ũ(x,

1
2
)}

It is clear that A \ B ⊆ C, B \ A ⊆ D and C ∩ D = ∅. Hence WRPX holds.

Proposition 6. For an effectively enumerable topological space X , if WRPX×R

holds then MCX→R = PCFX→R.

Proof. Let f ∈ PCFX→R. Without loss of generality we assume that im(f) ⊆
(0, 1) and (U, V) defines f . Since WRPX×R holds there exist effectively open sets
C and D such that U \ V ⊆ C ⊆ U , V \ U ⊆ D ⊆ V and C ∩ D = ∅.

Put

U∗(x) = {r | (∃r′ ∈ (0, 1))(r′ > r ∧ [0, r′] ⊆ C(x))};
V ∗(x) = {r | (∃r′ ∈ (0, 1))(r′ < r ∧ [r′, 1] ⊆ D(x))}.

By construction, U∗ and V ∗ are effectively open subset of X × R. Since C ∩ D =
∅, U∗∩V ∗ = ∅. From C ⊇ U \V and D ⊇ V \U it follows that V ∗(x) ⊆ V (x) and
U∗(x) ⊆ U(x). By construction, for x ∈ dom(f), V ∗(x) = V (x) and U∗(x) =
U(x). Hence (U∗, V ∗) defines a majorant computable function f∗ that coincides
with f on dom(f). It is easy to see that f = f∗ + χdom(f), where

χdom(f)(x) =
{

0 if x ∈ dom(f)
↑ if x �∈ dom(f).

From [7] it follows that χdom(f) is a majorant-computable function. Hence f is
majorant-computable.

Theorem 2. For any computable metric space M, MCM→R = PCFM→R.

Proof. The claim follows from Propositions 5, 6 and Theorem 1.

240 M. Korovina and O. Kudinov

4 On Principal Computable Numbering of PCF over
Computable Metric Spaces

A function γ : ω → PCFX→Y is called a numbering of PCFX→Y if {γ(n) |
n ∈ ω} = PCFX→Y . A numbering γ : ω → PCFX→Y is called computable if
Γ : ω × X → Y such that Γ (n, x) = γ(n)(x) is a partial computable function.
The numbering γ is called principal computable if it is computable and every
computable numbering ξ is computably reducible to γ.

Proposition 7 [7]. For any effectively enumerable T0-space X there exists a
principal computable numbering of PCFX→R.

Proposition 8 [6]. For any computable Polish spaces P1 and P2 there exists a
principal computable numbering of PCFP1→P2 .

Theorem 3. There is a computable metric space M2 such that PCFM1→M2

does not have a computable numbering for any computable metric space M1.

Proof. We consider R with the standard metric d and the basis B = Q. Let Rc

be the computable elements of R. We choose M2 such that

– Q ⊂ M2 ⊂ Rc;
– M2 �∈ Σ0

3 [R].

Put M2 = (M2,Q, d). Now assume that M1 = (M1,B, d′) is any computable
metric space and there exists a computable numbering γ of PCFM1→M2 . It is
worth noting that, for any fixed b ∈ B, {γ(n)(b) | n ∈ ω} = M2. Hence

x ∈ M2 ↔ (∃n ∈ ω)
(
(n, b) ∈ dom(γ) ∧ (∀m > 0)(∃r ∈ Q)(∃q ∈ Q)

(
r < q ∧

|r − q| <
1
m

∧ y ∈ (r, q) ∧ b ∈ γ(n)−1((r, q))
))

.

Therefore M2 ∈ Σ0
3 [R]. This contradicts the choice of M2.

These results motivate us to search for a wide class PCFX→Y that from one
hand enlarges the classes PCFX→R and PCFP1→P2 and from the other hand
admits a principal computable numbering.

Theorem 4. For any effectively enumerable T0-space X = (X, τ, α) and any
computable Polish space P = (P,B, d) there exists a principal computable num-
bering of PCFX→P .

The proof of the theorem is based on the following Lemmas. Let us denote
B = {b0, . . . , bn, . . . }.

Lemma 1. For any pcf G : X × P → R one can effectively construct a pcf
F : X × P → R which is a restriction of G, i.e., dom(F) ⊆ dom(G) and for
(x, y) ∈ dom(F) F (x, y) = G(x, y), that has the following properties:

Weak Reduction Principle and Computable Metric Spaces 241

1. If for some bn ∈ B F (x, bn) ↓ then (∀ k ∈ ω)F (x, bk) ↓.
2. If for some bn ∈ B F (x, bn) = r then (∃ bk ∈ B)F (x, bk) < r

2 .
3. For all bk ∈ B and bn ∈ B if F (x, bk) ↓ and F (x, bn) ↓ then

d(bk, bn) ≤ F (x, bk) + F (x, bn).

Proof. First we construct a restriction G∗ : X × P → R that satisfies the prop-
erty 1 as follows:

G∗(x, y) =
{

G(x, y) if (∀bn ∈ B)G(x, bn) ↓
↑ otherwise.

It is easy to see that dom(G∗) ∈ EI[X × P]. Then, in order to satisfy the prop-
erty 2 we construct a computable sequence {Gm | Gm : X × P → R}m∈ω of
partial computable functions in the following way.

G0 = G∗;

Gk+1(x, y) =
{

Gk(x, y) if (∃ bn ∈ B)Gk(x, bn) < Gk(x,y)
2↑ otherwise.

By construction,

dom(Gk+1) = dom(Gk)∩
{(x, y) | (∃n ∈ ω)(∃ r ∈ Q+)(x, y) ∈ Vk

2r ∧ (x, bn) ∈ Ok
r },

for some computable sequences {Ok
r }r∈Q+ and {Vk

q }q∈Q+ of effectively open sets
such that

Gk(x, y) > q ↔ (x, y) ∈ Vk
q ∧ (x, y) ∈ dom(Gk) and

Gk(x, y) < r ↔ (x, y) ∈ Ok
r ∧ (x, y) ∈ dom(Gk).

Hence dom(Gk) ∈ EI[X × P] uniformly in k. Put dom(G̃) =
⋂

k∈ω Gk. By
construction, G̃ is a restriction of G satisfying the properties 1–2. To satisfy
the property 3 we define F as follows.

F (x, y) =

⎧
⎨

⎩

G̃(x, y) if (∀bk ∈ B)(∀bl ∈ B) d(bk, bl) ≤ G̃(x, bk) + G̃(x, bl)
∧G̃(x, bk) ↓ ∧ G̃(x, bl) ↓

↑ otherwise.

It is clear that dom(F) ∈ EI[X × P] hence F is a required restriction of G.

Lemma 2. There exists a principal computable numbering γ of the class of pcfs
F : X × P → R satisfying the properties 1–3.

Proof. From Proposition 7 it follows that there exists the principal computable
numbering α : ω → PCFX×P→R. Using the notation F = res(G) for the effective
construction from Lemma 1 we define λx.γ(n, x) = res(α(n, x)).

242 M. Korovina and O. Kudinov

Lemma 3. Every pcf F : X × P → R satisfying the properties 1–3 uniquely
defines a pcf f : X → P such that

(a) f(x) ↓↔ F (x, b0) ↓;
(b) if x ∈ dom(f) then f(x) is equal to the unique y ∈ P such that (∀r ∈

Q
+)(∃bk ∈ B(y, r))F (x, bk) < r.

Proof. Since dom(f) = {x | ∀k F (x, bk) ↓} = {x | F (x, b0) ↓} it is easy to see
that dom(f) ∈ EI(X). For x ∈ dom(f) the property 2 ensures the existence
of y ∈ P such that (∀r ∈ Q

+)(∃bk ∈ B(y, r))F (x, bk) < r. In order to show
that y is uniquely defined we assume contrary that there exist y1 and y2 such
that y1 �= y2 and the properties (a) and (b) hold. We choose r ∈ Q

+ such that
4r < d(y1, y2). By the property (b), there exist bk ∈ B(y1, r) and bl ∈ B(y2, r)
such that F (x, bk) < r and F (x, bl) < r. Hence d(bk, bl) ≥ 2r. This contradicts
the property 3. Hence y is uniquely defined and, for x ∈ dom(f), f(x) = y. So
f is a partial function with dom(f) ∈ EI(X). From the equality f−1(B(a, q)) =
{x ∈ X | (∃ r ∈ Q

+)(∃ k ∈ ω)(F (x, bk) < r ∧ d(a, bk) + r < q
)} it follows that f

is effectively continuous on its domain. Hence f is a pcf.

Remark 3. The construction in Lemma 3 is effective which means that the effec-
tive intersection of open sets in the definition of dom(f) and the computable
sequence {f−1(B(a, r))}a∈B,r∈Q+ are effectively obtained from the definition of
F . Further on for such functions we use the notation f = twist(F).

Proof (Theorem 4). Using Lemma 2 we define λx.δ(n, x) = twist(λz.γ(n, z)). Let
us show that δ is a computable numbering of PCFX→P . For given f : X → P we
put F (x, y) = d(y, f(x)). It is clear that this function F : X × P → R

+ satisfies
the properties 1–3. Hence, for some m ∈ ω, F (z) = γ(m, z). By Lemma 3, f =
twist(F). So λx.f(x) = δ(m,x) and δ is a computable numbering of PCFX→P .
In order to show that δ is a principal let us take any computable sequence
{fn}n∈ω of function from PCFX→P . Put Fn(x, y) = d(y, f(x)). Since {Fn}n∈ω

is a computable sequence and γ is principal, by Lemma 2, we have Fn(x, y) =
γ(g(n), (x, y)), where g : ω → ω is a computable function. Since fn = twist(Fn)
we obtain fn(x) = δ(g(n), x). Hence δ is a principal computable numbering of
PCFX→P .

Definition 6 [13,14]. Let δ : ω → PCFX→P be a principal computable num-
bering and L ⊆ PCFX→P . The set Ix(L) = {n | δ(n) ∈ L} is called an index
set for the subset L.

In order to calculate complexity of index sets we use arithmetical and analytic
hierarchies which classifies certain sets of the natural numbers based on the
complexity of formulas defining them [13,14].

Let ⊥XP denote the nowhere defined function. In [6] we have shown that for
computable Polish spaces X and Y the index set Ix({f ∈ PCFX→Y | f �= ⊥XP})
is Σ1

1–complete. It is worth noting that in general this set is not even Σ1
1–hard.

It is easy to see in the following trivial case when X = {0} and Y = R since the
index set Ix({f ∈ PCFX→Y | f �= ⊥XP}) ∈ Π0

2 and actually it is Π0
2–complete.

However the following claims hold in general.

Weak Reduction Principle and Computable Metric Spaces 243

Proposition 9. Let X = (X, τ, α) be an effectively enumerable T0-space and
P = (P,B, d) be a computable Polish space. If K is any non-empty class of pcf
f : X → P such that ⊥XP �∈ K then Ix(K) is Π0

2–hard.

Corollary 1. Let K ⊆ PCFX→P . If Ix(K) ∈ Σ0
2 then Ix(K) is Σ0

2–complete.

Corollary 2 (Generalised Rice Theorem). Let K ⊆ PCFX→P . The index
set Ix(K) is Δ0

2 if and only if K is empty or coincides with PCFX→P .

References

1. Ershov, Y.L.: Definability and Computability. Springer, New York (1996)
2. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Com-

putability Theory, pp. 473–503. Elsevier Science B.V., Amsterdam (1999)
3. Edalat, A.: Domains for computation in mathematics, physics and exact real arith-

metic. Bull. Symb. Logic 3(4), 401–452 (1997)
4. Hemmerling, A.: Effective metric spaces and representations of the reals. Theor.

Comput. Sci. 284(2), 347–372 (2002)
5. Korovina, M., Kudinov, O.: On higher effective descriptive set theory. In: Kari,

J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 282–291. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 27

6. Korovina, M., Kudinov, O.: Outline of partial computability in computable topol-
ogy. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 64–76.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 7

7. Korovina, M., Kudinov, O.: Complexity for partial computable functions over com-
putable Polish spaces. Math. Struct. Comput. Sci. 28(3), 429–447 (2016)

8. Korovina, M., Kudinov, O.: Towards computability over effectively enumerable
topological spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125 (2008)

9. Korovina, M., Kudinov, O.: Towards computability of higher type continuous data.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
235–241. Springer, Heidelberg (2005). https://doi.org/10.1007/11494645 30

10. Korovina, M.V., Kudinov, O.V.: Characteristic properties of majorant-
computability over the reals. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL
1998. LNCS, vol. 1584, pp. 188–203. Springer, Heidelberg (1999). https://doi.org/
10.1007/10703163 14

11. Moschovakis, Y.N.: Descriptive Set Theory. North-Holland, Amsterdam (2009)
12. Moschovakis, Y.N.: Recursive metric spaces. Fund. Math. 55, 215–238 (1964)
13. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York (1967)
14. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable

Functions and Computably Generated Sets. Springer, Heidelberg (1987)
15. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.

org/10.1007/978-3-642-56999-9
16. Weihrauch, K.: Computability on computable metric spaces. Theor. Comput. Sci.

113(1), 191–210 (1993)

https://doi.org/10.1007/978-3-319-58741-7_27
https://doi.org/10.1007/978-3-319-58741-7_7
https://doi.org/10.1007/11494645_30
https://doi.org/10.1007/10703163_14
https://doi.org/10.1007/10703163_14
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

Decidable and Undecidable Fragments
of First-Order Concatenation Theory

Lars Kristiansen1,2(B) and Juvenal Murwanashyaka1

1 Department of Mathematics, University of Oslo, Oslo, Norway
larsk@math.uio.no

2 Department of Informatics, University of Oslo, Oslo, Norway

Abstract. We identify a number of decidable and undecidable frag-
ments of first-order concatenation theory. We also give a purely universal
axiomatization which is complete for the fragments we identify. Further-
more, we prove some normal-form results.

1 Introduction

1.1 First-Order Concatenation Theory

First-order concatenation theory can be compared to first-order number theory,
e.g., Peano Arithmetic or Robinson Arithmetic. The universe of a standard struc-
ture for first-order number theory is the set of natural numbers. The universe
of a standard structure for first-order concatenation theory is a set of strings
over some alphabet. A first-order language for number theory normally contains
two binary functions symbols. In a standard structure these symbols will be
interpreted as addition and multiplication. A first-order language for concate-
nation theory normally contains just one binary function symbol. In a standard
structure this symbol will be interpreted as the operator that concatenates two
stings. A classical first-order language for concatenation theory contains no other
non-logical symbols apart from constant symbols.

In this paper we extend concatenation theory with a binary relation symbol
and introduce bounded quantifiers analogous to the bounded quantifiers (∀x ≤
t)φ and (∃x ≤ t)φ we know from number theory. Before we go on and state our
main results, we will explain some notation and state a few basic definitions.

1.2 Notation and Basic Definitions

We will use 0 and 1 to denote respectively the bits zero and one, and we use
pretty standard notation when we work with bit strings: {0,1}∗ denotes the set
of all finite bit strings; (b)i denotes the ith bit of the bit string b; and 013021
denotes the bit string 0111001. The set {0,1}∗ contains the empty string which
we will denote ε.

Let LBT denote the first-order language that consist of the constants symbols
e, 0, 1, the binary function symbol ◦ and the binary relation symbol �. We will
consider two LBT -structures named B and D.
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 244–253, 2018.
https://doi.org/10.1007/978-3-319-94418-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_25&domain=pdf

Decidable and Undecidable Fragments of First-Order Concatenation Theory 245

The universe of B is the set {0,1}∗. The constant symbol 0 is interpreted
as the string containing nothing but the bit 0, and the constant symbol 1 is
interpreted as the string containing nothing but the bit 1, that is, 0B = 0
and 1B = 1. The constant symbol e is interpreted as the empty string, that
is, eB = ε. Moreover, ◦B is the function that concatenates two strings (e.g.
01 ◦B 000 = 01000 and ε ◦B ε = ε). Finally, �B is the substring relation, that
is, u �B v iff there exists bit strings x, y such that xuy = v.

The structure D is the same structure as B with one exception: the relation
u �D v holds iff u is a prefix of v, that is, iff there exists a bit string x such
that ux = v. To improve the readability we will use the symbol � in place of
the symbol � when we are working in the structure D. Thus, u � v should be
read as “u is a substring of v”, whereas u � v should be read as “u is a prefix
of v”. When we do not have a particular structure in mind, e.g. when we deal
with syntactical matters, we will stick to the symbol �.

We introduce the bounded quantifiers (∃x � t)α and (∀x � t)α as syntactical
abbreviations for respectively (∃x)[x � t ∧ α] and (∀x)[x � t → α] (x is of course
not allowed to occur in the term t), and we define the Σ-formulas inductively by

– α and ¬α are Σ-formulas if α is of the form s � t or of the form s = t where
s and t are terms

– α ∨ β and α ∧ β are Σ-formulas if α and β are Σ-formulas
– (∃x � t)α and (∀x � t)α and (∃x)α are Σ-formulas if α is a Σ-formula.

We assume that the reader notes the similarities with first-order number
theory. The formulas that correspond to Σ-formulas in number theory are often
called Σ1-formulas or Σ0

1 -formulas. Next we introduce the biterals. The biterals
correspond to the numerals of first-order number theory. Let b be a bit string.
We define the biteral b by ε = e, b0 = b ◦ 0 and b1 = b ◦ 1.

A Σ-formula φ is called a Σn,m,k-formula if it contains n unbounded exis-
tential quantifiers, m bounded existential quantifiers and k bounded universal
quantifiers. A sentence is a formula with no free variables. The fragment ΣB

n,m,k

(ΣD
n,m,k) is the set of Σn,m,k-sentences true in B (respectively, D).
To improve the readability we will skip the operator ◦ in first-order formulas

and simply write st in place of s ◦ t. Furthermore, we will occasionally contract
quantifiers and write, e.g., ∀w1, w2 � u[φ] in place of (∀w1 � u)(∀w2 � u)φ, and
for ∼∈{�,�,=}, we write s ∼ t in place of ¬s ∼ t.

1.3 Main Results and Related Work

We prove that the fragment ΣB
0,m,k is decidable (for any m, k ∈ N), and we

prove that ΣB
1,2,1 and ΣB

1,0,2 are undecidable. Furthermore, we prove that the
fragments ΣD

0,m,k and ΣD
n,m,0 are decidable (for any n,m, k ∈ N), and we prove

that ΣD
3,0,2 and ΣD

4,1,1 are undecidable. Our results on decidable fragments are
corollaries of theorems that have an interest in their own right: We prove the
existence of several normal forms, and we give a purely universal axiomatization
of concatenation theory which is Σ-complete.

246 L. Kristiansen and J. Murwanashyaka

The Axioms of B

1. ∀x[x = ex ∧ x = xe]
2. ∀xyz[(xy)z = x(yz)]
3. ∀xy[(x �= y) → ((x0 �= y0) ∧ (x1 �= y1))]
4. ∀xy[x0 �= y1]
5. ∀x[x � e ↔ x = e]
6. ∀x[x � 0 ↔ (x = e ∨ x = 0)]
7. ∀x[x � 1 ↔ (x = e ∨ x = 1)]
8. ∀xy[x � 0y0 ↔ (x = 0y0 ∨ x � 0y ∨ x � y0)]
9. ∀xy[x � 0y1 ↔ (x = 0y1 ∨ x � 0y ∨ x � y1)]

10. ∀xy[x � 1y0 ↔ (x = 1y0 ∨ x � 1y ∨ x � y0)]
11. ∀xy[x � 1y1 ↔ (x = 1y1 ∨ x � 1y ∨ x � y1)]

Fig. 1. These are the axioms of the first-order theory B.

Recent related work can be found in Halfon et al. [6], Day et al. [2], Ganesh et
al. [3], Karhumäki et al. [8] and several other places, see Sect. 6 of [3] for further
references.

The material in Sect. 8 of the textbook Leary and Kristiansen [10] is also
related to the research presented in this paper. So is a series of papers that
starts with with Grzegorczyk [4] and includes Grzegorczyk and Zdanowski [5],
Visser [13] and Horihata [7]. These papers deal with the essential undecidability
of various first-order theories of concatenation. The relationship between the
various axiomatizations of concatenation theory we find in these papers and the
axiomatization we give below has not yet been investigated.

The theory of concatenation seems to go back to work of Tarski and Quine,
see Visser [13] for a brief account of its history.

2 Σ-complete Axiomatizations

Theorem 1. Let B and D be the set of axioms given in respectively Figs. 1 and
2. For any Σ-sentence φ, we have

B |= φ ⇒ B � φ and D |= φ ⇒ D � φ

Proof. We give a brief sketch of the (very long) proof of B |= φ ⇒ B � φ. The
proof of D |= φ ⇒ D � φ is similar. Full proofs can found in Kristiansen and
Murwanashyaka [9].

Prove (by induction on the structure of t) that there for any variable-free
LBT -term t exists a biteral b such that

B |= t = b ⇒ B � t = b. (1)

Prove (by induction on the structure of b2) that we for any biterals b1 and b2
have

B |= b1 = b2 ⇒ B � b1 = b2. (2)

Decidable and Undecidable Fragments of First-Order Concatenation Theory 247

The Axioms of D

- the first four axioms are the same as the first four axioms of B
5. ∀x[x 	 e ↔ x = e]
6. ∀xy[x 	 y0 ↔ (x = y0 ∨ x 	 y)]
7. ∀xy[x 	 y1 ↔ (x = y1 ∨ x 	 y)]

Fig. 2. These are the axioms of the first-order theory D.

Use B � ∀x[x0 = e ∧ x1 = e] when proving (2). Furthermore, prove (by induction
on the structure of b2) that we for any biterals b1 and b2 have

B |= b1 � b2 ⇒ B � b1 � b2 and B |= b1 � b2 ⇒ B � b1 � b2. (3)

It follows from (1), (2) and (3) that we have

B |= φ ⇒ B � φ. (4)

for any φ of one of the four forms t1 = t2, t1 = t2, t1 � t2, and t1 � t2 where t1
and t2 are variable-free terms.
Use induction on the structure of b to prove the following claim:

If φ(x) is an LBT -formula such that we have B |= φ(b) ⇒ B � φ(b) for
any biteral b, then we also have

B |= (∀x � b)φ(x) ⇒ B � (∀x � b)φ(x)

for any biteral b.

Finally, prove (by induction on the structure of φ) that we for any Σ-sentence
φ have B |= φ ⇒ B � φ. Use (4) in the base cases, that is, when φ is an atomic
sentence or a negated atomic sentence. Use the claim and (1) in the case φ is of
the form (∀x � t)ψ. The remaining cases are rather straightforward. ��

Corollary 2. The fragments ΣB
0,m,k and ΣD

0,m,k are decidable (for any m, k ∈
N).

Proof. We prove that ΣB
0,m,k is decidable. Let φ be a Σ0,m,k-formula. The nega-

tion of a Σ0,m,k-formula is logically equivalent to a Σ0,k,m-formula (by De Mor-
gan’s laws). We can compute a Σ0,k,m-formula φ′ which is logically equivalent
to ¬φ. By Theorem 1, we have B � φ if B |= φ, and we have B � φ′ if B |= ¬φ.
The set of formulas derivable from the axioms of B is computably enumerable.
Hence it is decidable if φ is true in B. The proof that the fragment ΣD

0,m,k is
decidable is similar. ��

248 L. Kristiansen and J. Murwanashyaka

3 Normal Forms

A proof of the next lemma can be found several places, see e.g. Büchi and Senger
[1] or the proof of Theorem 6 in Karhumäki et al. [8]. The lemma is also proved
in [9].

Lemma 3. Let A ∈ {B,D}, and let s1, s2, t1, t2 be LBT -terms. There exist
LBT -terms s, t and variables v0, ..., vk such that

(1) A |= (s1 = t1 ∧ s2 = t2) ↔ s10s2s11s2 = t10t2t11t2
(2) A |= (s1 = t1 ∨ s2 = t2) ↔ ∃v0 . . . vk[s = t]
(3) A |= (¬s1 = t1) ↔ ∃v0 . . . vk[s = t].

Lemma 4. Let s1, t1 be LBT -terms. There exist LBT -terms s, t and variables
v1, . . . , vk such that

(1) D |= s1 � t1 ↔ ∃v1[s1v1 = t1] and (2) D |= (s1 � t1) ↔ ∃v1 . . . vk[s = t].

Proof. It is obvious that (1) holds. Furthermore, the formula s1 � t1 is equivalent
in D to the formula

(t1 � s1 ∧ t1 = s1) ∨ ∃xyz[(t1 = x0y ∧ s1 = x1z) ∨ (t1 = x1y ∧ s1 = x0z)] .

Thus, (2) follows by Lemma 3 and (1). ��

Comment: It is not known to us whether the bounded universal quantifier that
appears in clause (2) of the next lemma can be eliminated.

Lemma 5. Let s1, t1 be LBT -terms. There exist LBT -terms s, t and variables
v1, . . . , vk such that (1) B |= s1 � t1 ↔ ∃v1v2[t1 = v1s1v2] and

(2)B |= s1 � t1 ↔ ∀v1 � t1∃v2 . . . vk[s = t].

Proof. Cause (1) is trivial. Furthermore, observe that s1 � t1 is equivalent in B
to the formula (∀v � t1)α where α is

∃x[t1x = vs1 ∧ x = e] ∨ ∃xyz[(t1 = x0y ∧ vs1 = x1z) ∨
(t1 = x1y ∧ vs1 = x0z)].

If we let vs1 � t1 abbreviate ∃x[vs1x = t], then α can be written as vs1 � t1.
Thus, (2) follows by Lemma 3. ��
Theorem 6 (Normal Form Theorem I). Any Σ-formula φ is equivalent in
D to a LBT -formula φ′ of the form

φ′ ≡ (Qt1
1 v1) . . . (Qtm

m vm)(s = t)

where t1, .., tm, s, t are LBT -terms and Qtj
j vj ∈ {∃vj ,∃vj � tj ,∀vj � tj} for

j = 1, . . . , m. Moreover, if φ does not contain bounded universal quantifiers,
then φ′ does not contain bounded universal quantifiers.

Decidable and Undecidable Fragments of First-Order Concatenation Theory 249

Proof. We proceed by induction on the structure of φ (throughout the proof we
reason in the structure D). Suppose φ is an atomic formula or the negation of
an atomic formula. If φ is of the form s = t, let φ′ be s = t. Use Lemma 3(3) if
φ is of the form s = t. Use Lemma 4 if φ is of one of the forms s � t and s � t.

Suppose φ is of the form α∧β. By our induction hypothesis, we have formulas

α′ ≡ (Qt1
1 x1) . . . (Qtk

k xk)(s1 = t1) and β′ ≡ (Qs1
1 y1) . . . (Qsm

m ym)(s2 = t2)

which are equivalent to respectively α and β. Thus, φ is equivalent to a for-
mula of the form (Qt1

1 x1) . . . (Qtk
k xk)(Qs1

1 y1) . . . (Qsm
m ym)(s1 = t1 ∧ s2 = t2). By

Lemma 3(1), we have a formula φ′ of the desired form which is equivalent to φ.
The case when φ is of the form α ∨ β is similar. Use clause (2) of Lemma 3 in
place of clause (1).

The theorem follows trivially from the induction hypothesis when φ is of one
of the forms (∃v)α, (∀v � t)α and (∃v � t)α. ��
Theorem 7 (Normal Form Theorem II). Any Σ-formula φ is equivalent
in B to a LBT -formula φ′ of one of the forms

φ′ ≡ (Qt1
1 v1) . . . (Qtm

m vm) (s = t) or φ′ ≡ (∃v)(Qt1
1 v1) . . . (Qtm

m vm) (s = t)

where t1, .., tm, s, t are LBT -terms and Qtj
j vj ∈ {∃vj � tj ,∀vj � tj} for j =

1, . . . ,m.

Proof. Proceed by induction on the structure of φ. This proof is similar to the
proof of Theorem6. A formula of the form (∀x � t)(∃y)α is equivalent (in B) to
one of the form (∃z)(∀x � t)(∃y � z)α, a formula of the form (∃x � t)(∃y)α is
equivalent to one of the form (∃y)(∃x � t)α, and a formula of the form (∃x)(∃y)α
is equivalent to one of the form (∃z)(∃x � z)(∃y � z)α. Thus, the resulting
normal form will contain maximum one unbounded existential quantifier. ��
Corollary 8. The fragment ΣD

n,m,0 is decidable (for any n,m ∈ N).

Proof. By Theorem 6, any Σn,m,0-sentence is equivalent in D to a sentence of the
normal form (∃v1) . . . (∃vk)(s = t) (regard the bounded existential quantifiers as
unbounded). The transformation of a Σn,m,0-formula into an equivalent formula
(in D) of normal form is constructive. Makanin [11] has proved that it is decidable
whether an equation on the form

anxn . . . a1x1a0 = bmym . . . b1y1b0

where a1, ..., an, b1, ..., bm ∈ {0,1}∗, has a solution in {0,1}∗. It follows that the
fragment ΣD

n,m,0 is decidable. ��
We have not been able to prove that any Σn,m,0-sentence is equivalent in B to a
sentence of the form (∃v1) . . . (∃vk)(s = t). See the comment immediately before
Lemma 5. Thus, we cannot use Makanin’s [11] result to prove that the fragment
ΣB

n,m,0 is decidable.

250 L. Kristiansen and J. Murwanashyaka

Open Problem: Is the fragment ΣB
n,m,0 decidable (for any n,m ∈ N)?

4 Undecidable Fragments

Definition 9. Post’s Correspondence Problem, henceforth PCP, is given by

– Instance: a list of pairs 〈b1, b′
1〉, . . . , 〈bn, b′

n〉 where bi, b
′
i ∈ {0,1}∗

– Solution: a finite nonempty sequence i1, ..., im of indexes such that

bi1bi2 . . . bim = b′
i1b

′
i2 . . . b′

im .

We define the map N : {0,1}∗ → {0,1}∗ by N(ε) = ε, N(0) = 010, N(1) =
0120, N(b0) = N(b)N(0) and N(b1) = N(b)N(1).

It is proved in Post [12] that PCP is undecidable. The proof of the next
lemma is left to the reader.

Lemma 10. The instance 〈b1, b′
1〉, . . . , 〈bn, b′

n〉 of PCP has a solution iff the
instance 〈N(b1), N(b′

1)〉, . . . , 〈N(bn), N(b′
n)〉 has a solution.

We will now explain the ideas behind our proofs of the next few theorems. Given
the lemma above, it is not very hard to see that an instance 〈g1, g′

1〉, . . . , 〈gn, g′
n〉

of PCP has a solution iff there exists a bit string of the form

0150N(a1)0140N(b1)0150 . . . N(am)0140N(bm)0150 (∗)

where

(A) N(am) = N(bm)
(B) N(a1) = gj and N(b1) = g′

j for some 1 ≤ j ≤ n
(C) N(ak+1) = N(ak)N(gj) and N(bk+1) = N(bk)N(g′

j) for some 1 ≤ j ≤ n.

We also see that an instance 〈g1, g′
1〉, . . . , 〈gn, g′

n〉 of PCP has a solution iff there
exists a bit string s of the form (*) that satisfies

(a) there is j ∈ {1, . . . , n} such that 0150N(gj)0140N(g′
j)01

50 is an initial
segment of s

(b) if
0150N(a)0140N(b)0150

is a substring of s, then either N(a) = N(b), or there is j ∈ {1, . . . , n} such
that

0150N(a)N(gj)0140N(b)N(g′
j)01

50

is a substring of s.

Decidable and Undecidable Fragments of First-Order Concatenation Theory 251

In the proof of Theorem11 we give a formula which is true in D iff there exists a
string of the form (*) that satisfies (A), (B) and (C). In the proof of Theorem12
we give formulas which are true in B iff there exists a string of the form (*) that
satisfies (a) and (b). In order to improve the readability of our formulas, we will
write # in place of the biteral 0150 and ! in place of the biteral 0140.

Theorem 11. The fragment ΣD
3,0,2 is undecidable.

Proof. Let ψ(x) ≡ (∀z � x)(z14 � x). Observe that ψ contains one bounded
universal quantifier. Observe that ψ(b) is true in D iff the bit string b does not
contain 4 consecutive ones. Furthermore, let φn(x1, ..., xn, y1, ..., yn) ≡

(∃u)
(

⎛
⎝

n∨
j=1

#xj!yj# � u

⎞
⎠ ∧

(∀v � u)
[

v# � u ∨ v# = u ∨ (∃w1, w2)
{

v#w1!w2# � u ∧

ψ(w1w2) ∧
⎡
⎣ w1 = w2 ∨

⎛
⎝

n∨
j=1

v#w1!w2#w1xj!w2yj# � u

⎞
⎠

⎤
⎦

}])
.

Let 〈g1, g′
1〉, . . . , 〈gn, g′

n〉 be an instance of PCP. We have

D |= φn(N(g1), . . . , N(gn), N(g′
1), . . . , N(g′

n))

iff there exists a bit sting of the form (*) that satisfies (A), (B) and (C) iff the
instance 〈g1, g′

1〉, . . . , 〈gn, g′
n〉 has a solution. Furthermore φn is a Σ3,0,2-formula.

It follows that the fragment ΣD
3,0,2 is undecidable. ��

Theorem 12. The fragments ΣB
1,2,1 and ΣB

1,0,2 are undecidable.

Proof. Let �x = x1, . . . , xn, let �y = y1, . . . , yn and let

α(�x, �y, z) ≡
⎛
⎝

n∨
j=1

#xj!yj# � z ∧ 0#xj!yj# � z ∧ 1#xj!yj# � z

⎞
⎠ .

Consider the Σ1,2,1-formula ψn(�x, �y) ≡

(∃u)
(

α(�x, �y, u) ∧

(∀v � u)
[

#v# � u ∨ 15 � v ∨ (∃w1, w2 � v)
{

v = w1!w2

∧ 14 � w1 ∧ 14 � w2 ∧
⎡
⎣w1 = w2 ∨

⎛
⎝

n∨
j=1

#w1xj!w2yj# � u

⎞
⎠

⎤
⎦

}])

252 L. Kristiansen and J. Murwanashyaka

and consider the Σ1,0,2
1 -formula γn(�x, �y) ≡

(∃u)
(

α(�x, �y, u) ∧ (∀w1, w2 � u)
{

#w1!w2# � u ∨ 14 � w1w2

∨ w1 = w2 ∨
⎛
⎝

n∨
j=1

#w1xj!w2yj# � u

⎞
⎠

})
.

Let 〈g1, g′
1〉, . . . , 〈gn, g′

n〉 be an instance of PCP. We have

B |= ψn(N(g1), . . . , N(gn), N(g′
1), . . . , N(g′

n))

iff
B |= γn(N(g1), . . . , N(gn), N(g′

1), . . . , N(g′
n))

iff there exists a bit sting of the form (*) that satisfies (a) and (b) iff the instance
〈g1, g′

1〉, . . . , 〈gn, g′
n〉 has a solution. It follows that the fragments ΣB

1,2,1 and ΣB
1,0,2

are undecidable. ��
The proof of the next theorem is based on the following idea: The instance
〈g1, g′

1〉, . . . , 〈gn, g′
n〉 of PCP has a solution iff there exists a bit string of the form

0150N(a1)0140N(b1)0160N(a2)0140N(b2)0170 . . .

. . .015+m−10N(am)0140N(bm)015+m0

with the properties (A), (B) and (C) given above.

Theorem 13. The fragment ΣD
4,1,1 is undecidable.

Proof. Let !k ≡ 01k0. The Σ4,1,1-formula

(∃u)
(

⎛
⎝

n∨
j=1

!5xj !4yj !6 � u

⎞
⎠ ∧ (∀v � u)

[
v150 � u ∨ v = 0 ∨

(∃w1, w2, y)(∃z � v)
{

v = z0y150w1!4w201y ∧ 1y = y1 ∧
⎡
⎣ w1 = w2 ∨

⎛
⎝

n∨
j=1

v150w1xj !4w2yj011y150 � u

⎞
⎠

⎤
⎦

}])

yields the desired statement. Note that y is a solution of the equation 1y = y1
iff y ∈ {1}∗. ��

Decidable and Undecidable Fragments of First-Order Concatenation Theory 253

References

1. Büchi, J.R., Senger, S.: Coding in the existential theory of concatenation. Arch.
Math. Logik 26, 101–106 (1986)

2. Day, J., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of
extended word equations: the boundary between decidability and undecidability.
arXiv:1802.00523 (2018)

3. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

4. Grzegorczyk, A.: Undecidability without arithmetization. Stud. Logica. 79, 163–
230 (2005)

5. Grzegorczyk, A., Zdanowski, K.: Undecidability and concatenation. In: Ehren-
feucht, A., et al. (eds.) Andrzej Mostowski and Foundational Studies, pp. 72–91.
IOS, Amsterdam (2008)

6. Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expressive-
ness of first-order logic over the subword ordering. In: Proceedings of LICS 2017,
pp. 1–12. IEEE Computer Society (2017)

7. Horihata, Y.: Weak theories of concatenation and arithmetic. Notre Dame J. For-
mal Log. 53, 203–222 (2012)

8. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM 47, 483–505 (2000)

9. Kristiansen, L., Murwanashyaka, J.: Notes on fragments of first-order concatena-
tion theory. arXiv:1804.06367 (2018)

10. Leary, C., Kristiansen, L.: A Friendly Introduction to Mathematical Logic, 2nd
edn. Milne Library, SUNY Geneseo, Geneseo (2015)

11. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
USSR-Sbornik 32, 129–198 (1977)

12. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.
52, 264–268 (1946)

13. Visser, A.: Growing commas. A study of sequentiality and concatenation. Notre
Dame J. Formal Log. 50, 61–85 (2009)

http://arxiv.org/abs/1802.00523
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
http://arxiv.org/abs/1804.06367

Algorithm Analysis Through Proof
Complexity

Massimo Lauria(B)

Dipartimento di Scienze Statistiche, Università “La Sapienza” di Roma,
Rome, Italy

massimo.lauria@uniroma1.it

http://www.massimolauria.net

Abstract. Proof complexity can be a tool for studying the efficiency
of algorithms. By proving a single lower bound on the length of certain
proofs, we can get running time lower bounds for a wide category of
algorithms. We survey the proof complexity literature that adopts this
approach relative to two NP-problems: k-clique and 3-coloring.

1 Introduction

The problem of satisfiability (Sat) is a paradigmatic example of a theoretical
problem which arises from concrete applications as diverse as circuit verifica-
tion, electronic design automation, artificial intelligence, cryptography, opera-
tions research, railway signaling systems, etc. Given a formula over Boolean
variables and operators ∨,∧,¬, the problem Sat asks whether it is possible to
assign Boolean values to the variables so that the formula evaluates to true.
Sat is the original NP-complete problem [16,36], meaning that many important
problems can be solved in polynomial time if Sat itself can. Many experts in
the field think it cannot, and one of the most difficult open problems in mod-
ern mathematics, namely P vs NP, is to determine whether that’s true. Despite
their importance, to solve NP-complete problems we do not know anything much
faster than just searching exhaustively through the set of “all potential solu-
tions”, which is immensely large. Neither the increasing computational power
nor massively parallel architectures can help here: even a 100x speedup is use-
less when a computation takes 100 billion years.

Still, we need to solve NP-complete problems and there are several concrete
algorithms and heuristics designed for this purpose. These simple algorithms do
not necessarily exhibit worst-case behavior, therefore it makes sense to study
how they perform in practice and which inputs make them inefficient. We argue
that proof complexity, i.e., the study of propositional proofs, can be used to
do that. The central idea is that in practice most algorithms used to solve NP-
complete problems are relatively simple, hence we do not need to tackle P vs
NP to study their performance, their limits and new ways to improve them.
Together with the answer, these algorithms efficiently compute logical proofs of
their correctness. Technically we encode an instance of the NP-complete problem
c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 254–263, 2018.
https://doi.org/10.1007/978-3-319-94418-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_26&domain=pdf
http://orcid.org/0000-0003-4003-3168

Algorithm Analysis Through Proof Complexity 255

that we want to study as a set of propositional or algebraic constraints so that
when the algorithm outputs 0 (i.e. the instance does not belong to the NP set) it
simultaneously builds a proof that these constraints are collectively unsatisfiable.
The length of this proof is proportional to the running time. For most algorithms
this proof has a simple structure and is amenable to analysis: we can prove
running time lower bounds by proving proof length lower bounds. Since we deal
with the proof itself we can drop many details of the algorithm that builds it,
hence the same analysis applies simultaneously to many variants of the same
algorithm. We showcase the connection between algorithms and proofs using
two widely known NP-complete graph problems: 3-coloring and k-clique. First,
though, we give basic information about proof complexity and Sat.

The seminal work of Cook and Reckhow [17] laid out the proof complexity
framework around the question of how large a proof of unsatisfiability can be.1

Deciding unsatisfiability of a CNF formula (i.e. a conjunction of disjunctions of
Boolean variables and their negations) is a coNP-complete problem. If there are
CNF formulas with no short proofs of unsatisfiability then we get that NP �=
coNP and therefore P �= NP, since P is closed under complementation. This leads
to the concept of proof system: a language that describes such proofs.

Definition 1 ([17]). A proof system is an algorithm P that takes in input a
CNF formula F and a candidate proof π, so that

– P (F, π) runs in time polynomial in |F | + |π|;
– there is a proof π so that P (F, π) = 1 iff F is UNSAT.

In the literature a proof system is usually described by the shape of the proofs
it accepts, e.g. the format of its proof lines, and its inference rules.

The most studied proof system is resolution [11].

Definition 2 (Resolution). A resolution proof of unsatifiability (i.e. a res-
olution refutation) of a CNF formula F =

∧m
i=1 Ci is a sequence of clauses

D1, . . . , DL so that

– DL is the empty clause.
– each clause in the sequence is either some Ci for i ∈ [m] or is obtained from

previous clauses in the sequence by the means of the resolution rule

A ∨ x B ∨ ¬x

A ∨ B
. (1)

The size (or length) of such resolution refutation is L.

For example a resolution refutation of C1 = ¬x, C2 = ¬y, C3 = x ∨ y, is
obtained inferring clause x from C2 and C3, and then inferring the empty clause
by resolving x with C1. The resolution rule is sound, therefore the derivation of
the empty clause witnesses the unsatisfiability of F .

1 The possibility of short proofs for all tautologies was already mentioned by Gödel in
a letter to von Neumann [27].

256 M. Lauria

In 1985, Haken showed that there are unsatisfiable formulas with no reso-
lution refutation of polynomial length [29]. The core of most Sat solvers2 is
essentially an algorithm that, when run on an UNSAT formula, produces a reso-
lution proof of unsatisfiability. Hence no SAT solver based on resolution can run
efficiently on Haken’s formula.

For a more general account of proof complexity research we suggest the fol-
lowing books and surveys [8,32,44,45,53].

2 Resolution Based Algorithms for k-Clique

A k-clique in a graph G = (V,E) is a subset of k vertices U ⊆ V such that all
pairs {u, v} ⊆ U are in E, i.e., are edges of G. The concept of clique models
hidden substructures in larger structure, like a set of mutually compatible con-
strains, a group of friends in a huge social network, or even patterns in DNA
sequences [47]. How hard is to test whether a graph has a k-clique?

When k � n, an algorithm that checks every possible set of k vertices needs
roughly O(nk) steps. Is this strategy optimal? There are indeed good reasons to
believe that any algorithm for k-clique must have running time nΩ(k) [37], and
indeed in some computational models nΩ(k) operations are required [50–52].

We encode the k-clique problem for a graph G = (V,E) as the CNF formula
(2a)–(2c) defined on propositional variables si,v for i ∈ [k] and v ∈ V . The
Boolean value of variable si,v indicates whether v is the ith member of the
k-clique.

∨

v∈V

si,v for i ∈ [k], (2a)

¬si,u ∨ ¬sj,v for i, j ∈ [k], u, v ∈ V,when i �= j and {u, v} �∈ E, (2b)
¬si,u ∨ ¬si,v for i ∈ [k], u, v ∈ V,when u �= v. (2c)

The formula is satisfiable if and only if G has a k-clique. Chvátal [14] describes
a specialized proof system that captures some algorithms for k-clique that were
known at the time. The proofs in this system can be converted efficiently into
resolution proofs of essentially the same length.

Many algorithms for k-clique explore the search space in a tree-like fashion,
using branch and bound strategies. Bron-Kerbosch [12] is a classic example, but
a more recent algorithm of this type is by Österg̊ard [46] and it is the base of his
Cliquer software. Both algorithms can be formalized in subsystems of resolution.

Some of these branch and bound algorithms drastically reduce the size of
the search space using the fact that when a graph is �-colorable any maximum
clique picks at most one element from each color class [41,49]. To do that they
compute partial colorings of the graph. The proof complexity approach is very
fruitful here: these colorings must be found quickly, and the heuristics for that

2 A SAT solver is a software that decides satisfiability. While nowadays solvers go
beyond resolution, their main component still builds resolution proofs.

Algorithm Analysis Through Proof Complexity 257

vary widely in the literature. A lower bound for the resolution proof of CNF for-
mula (2a)–(2c) shows the inefficiency of these coloring based techniques, regard-
less of the quality of their heuristics.

Beame et al. [7] proved super-polynomial lower bounds on the running time
of these algorithms by proving lower bounds for the resolution refutations of the
k-clique formula, for the case k = Θ(n). For the interesting case of k � n the
problem seems beyond the current proof complexity methods. So far the only
results are for restricted forms of resolution.

The hard instance we study is the random graph model G(n, p)3. The value
p∗ = n− 2

k−1 is a threshold: if p � p∗ then G ∼ G(n, p) is very unlikely to contain
a k-clique; if p 	 p∗ then G ∼ G(n, p) is very likely to have one. These graphs
are hard for tree-like resolution, a subsystem of resolution where intermediate
clauses in the proof must be used at most once as premises.

Theorem 1 ([10]). For any integer k > 1, fix p = n−(1+ε) 2
k−1 for some ε > 0.

Any tree-like resolution proof of the k-clique formula described in (2a)–(2c) for
G ∼ G(n, p) must have length nΩ(k) with high probability over the sampling of
G.

Very recently [2] made a huge progress extending the result to regular reso-
lution, a subsystem of resolution that is able to capture most of the algorithms
mentioned in this section. Hence the following lower bound applies to those
algorithms too.

Theorem 2 ([2]). For any k � √
n, fix p = n−(1+ε) 2

k−1 for some ε > 0.
Any regular resolution proof of the k-clique formula described in (2a)–(2c) for
G ∼ G(n, p) must have length nΩ(k) with high probability over the sampling of
G.

Both theorems hold for p = 1/2 and k = 2 log(n), too. This is a natu-
ral choice of parameters: indeed G ∼ G(n, 1/2) with high probability contains
neither a 2 log(n)-clique nor a 2 log(n)-independent set. Such graphs are called
Ramsey graphs. It is natural to ask whether the previous lower bounds hold for
every Ramsey graph (i.e. with probability 1). This is still open, as it is also open
whether we can improve Theorem 2 to general resolution. Both questions have
been answered in [34,35], for a very different encoding of (2a)–(2c). This alter-
native encoding allows one to prove stronger lower bounds but fails to capture
the behavior of interesting algorithms.

An even more bold goal is to prove an nΩ(k) lower bound for geometric proof
systems. In this context the k-clique problem is expressed as an integer program,
and it is solved by the means of linear or semidefinite programming relaxations.
These algorithms are not very practical in general, but may perform better on
very tricky instances.

3 The graph has n vertices and the edges are independent {0, 1}-valued random vari-
ables with expected value p.

258 M. Lauria

3 Algebraic Algorithms for 3-Coloring

Given an undirected graph G = (V,E) and a positive integer k, the graph
coloring problem asks whether it is possible to assign a color between 1 and k to
each vertex so that no two vertices connected by an edge have the same color.
This is a widely studied NP-complete problem, for k ≥ 3. The fastest algorithm
know for 3-coloring runs in time O(1.3289n) [9], and a survey about various
approaches is in [31].

McDiarmid developed a method for prove non-3-colorability that captures
many concrete algorithms [42]. This method can be viewed as a way to build
resolution proofs that a graph is non-3-colorable. The exponential lower bound
on the length of resolution proofs of non-3-colorability by [5] implies for example
that every method described in the framework of [42] must take exponential
time.

Viewing 3-colorability from the proof complexity perspective, it is interest-
ing to observe that there are various algebraic attacks [1,38–40]. In particular
the thesis [4] introduces the approach of encoding the 3-coloring problem as
polynomial equations and then using Hilbert’s Nullstellensatz. The polynomial
equations, that are on {0, 1}-variables xv,i, for v ∈ V (G) and i ∈ {1, 2, 3}, are

x2
v,i − xv,i = 0 for v ∈ V (G) and i ∈ {1, 2, 3} (3a)

xv,1 + xv,2 + xv,3 = 1 for v ∈ V (G) (3b)
xu,ixv,i = 0 for {u, v} ∈ E(G) and i ∈ {1, 2, 3}. (3c)

Clearly this set of equations has a common solution if and only if G is
3-colorable. Hilbert’s Nullstellensatz claims that the Eqs. (3a)–(3c), enumerated
as f1 = 0, . . . , fm = 0, have no common solution if and only if there are polyno-
mials g1, . . . , gm so that

m∑

i=1

gifi = 1. (4)

Polynomials g1, . . . , gm are in fact a so called Nullstellensatz [6] proof of
non-3-colorability. The key measure of efficiency of a Nullstellensatz is the max-
imum degree among deg(figi) for i ∈ [m]. Low degree proofs are easy to find
using linear algebra.

Fact 1. Nullstellensatz proofs of degree d for a system of nO(1) polynomial equa-
tions over n Boolean variables can be found and output in time nO(d).

The initial degree of (3a)–(3c) is very low, and yet (as we will see in Theorem 3)
there are graphs for which non-3-colorability is unprovable unless the degree of
the proof is very large, rendering Fact 1 useless in practice.

There is a more flexible (and efficient) way to show that Eqs. (3a)–(3c) log-
ically imply 1 = 0, i.e. to show that 1 is in the ideal generated by polynomi-
als (3a)–(3c). This type of proof is based on the computation of Gröbner bases,
a concept from commutative algebra that we do not discuss here. It is suffi-
cient to know that a proof of non-3-colorability produced by algorithms based

Algorithm Analysis Through Proof Complexity 259

on either Nullstellensatz or Gröbner bases computation is easily and efficiently
represented as proofs in polynomial calculus [15].

Definition 3 (Polynomial calculus (PC)). Given a sequence of polynomials
f1, . . . , fm over a field F, and over variables x1, . . . , xn, a polynomial calculus
refutation of f1, . . . , fm is a sequence p1, . . . , pL where

– pL is the polynomial 1
– each pj in the sequence is either some fi for i ∈ [m] or is obtained from

previous polynomials in the sequence by the means of one of the inference
rules

q

xq

p q

αp + βq
(5)

where α, β are elements of F and x is one of the variables.

The degree of a PC refutation is the largest degree among the polynomials
p1, . . . , pL, and the size of the refutations is the number of monomials that occur.

Nullstellensatz proofs are special cases of PC proofs. Small degree proofs in PC
can be found using Buchberger’s algorithm, that computes the Gröbner basis [19]
of a system of polynomials.

Fact 2. Polynomial calculus proofs of degree d for a system of nO(1) polynomials
over n Boolean variables can be found and output in time nO(d).

We stress that a set of polynomials may have a proof of much smaller degree in
polynomial calculus than in Nullstellensatz. Indeed there are sets of polynomials
over O(n) variables that can be proved in degree O(1) in polynomial calculus
but require degree Ω(n/ log(n)) in Nullstellensatz [13].

Another very important observation is that while degree gives an indication
regarding how easy it is to find a polynomial calculus proof, there are systems
of polynomials over n variables that require degree Ω(

√
n) proofs and yet have

proofs of size nO(1) [26]. Hence the proof search strategy in Fact 2 is not optimal,
and it is unlikely that any proof strategy can be [25].

Nullstellensatz and polynomial calculus proofs of non-3-colorability have a
special connection with a long series of algorithms [20–24,30,43]. They present
ways to use algebraic techniques to decide whether a graph is k-colorable, tech-
niques that can be represented in polynomial calculus, and sometimes even in
the weaker proof system Nullstellensatz.

Introducing these ideas, De Loera et al. [22,23] were able to solve some
instances previously considered to be tricky, but observed in [24] that these
benchmarks actually have Nullstellensatz certificates of very small constant
degree. A dramatic improvement in the state of the art of degree lower bound
came with [33].

Theorem 3 ([33]). There is a family of graphs {Gn}n∈N so that

– each Gn has O(n) vertices and O(1) degree;
– each Gn is not 3-colorable;

260 M. Lauria

– any PC proof of (3a)–(3c) for these graphs requires degree Ω(n);
– any PC proof of (3a)–(3c) for these graphs requires size 2Ω(n).

The proof of this theorem is essentially the proof that certain reductions between
constraint satisfaction problems work in PC. A vast generalization of this result,
that applies to general CSP in a wide variety of proof systems, was presented
independently in [3].

The algorithms in [22,23] look for the Nullstellensatz refutation by solving a
system of linear equations of size roughly nΘ(d). If a refutation of degree d exists
then the algorithm succeed. The encoding for 3-coloring in these algorithm is
different from the one in (3a)–(3c) and while the degree lower bound holds in
this alternative encoding, the size lower bound may not. Hence these algorithms
still require exponential time on the graphs in Theorem3, even if it is consistent
with the current state of knowledge that there may be small proofs.

What about proofs of non-3-colorability in other proof systems? The graph
coloring instances in Theorem 3 are easy for cutting planes [18], a proof system
that formalizes integer programming techniques. It is open whether there are col-
oring instances hard for cutting planes. Before concluding, it is worth mentioning
Hajós calculus [28], a proof system specifically for non-3-colorability. It is a very
powerful computational model and can probably capture most algorithms [48].
It is very unlikely that we can prove any lower bound for it.

4 Conclusion

We discussed some examples of how proof complexity can be used to lower
bound the performance of algorithms for combinatorial/graph problems. We
can show that specific families of algorithms are inefficient by proving lower
bounds for the length of proofs of the appropriate encoding of the problem,
in the appropriate proof systems. Naturally there are still problems left open
in this line of research. Regarding k-clique the most immediate open problem
is to extend the lower bound from regular to general resolution. Regarding
3-coloring, recall that [5] shows resolution lower bounds for a natural distri-
bution of random graphs, while the result in [33] holds for a very specific and
artificial graph construction. Extending the lower bound to random graphs is a
natural next step. Another open problem related to our discussion is that the
proof size lower bound in Theorem3 does not hold for the alternative encoding
in [22]. It seems unlikely that short high-degree proofs of k-colorability could
exist just by the virtue of the encoding, but we do not know yet.

References

1. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2),
125–134 (1992)

2. Atserias, A., Bonacina, I., de Rezende, S.F., Lauria, M., Nordström, J., Razborov,
A.A.: Clique is hard on average for regular resolution. In: Proceedings of the 50th
Annual ACM Symposium on Theory of Computing (STOC 2008) (2018, to appear)

Algorithm Analysis Through Proof Complexity 261

3. Atserias, A., Ochremiak, J.: Proof complexity meets algebra. In: ICALP 2017. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 110:1–110:14.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017)

4. Bayer, D.A.: The division algorithm and the Hilbert scheme. Ph.D. thesis, Harvard
University, Cambridge, MA, USA, June 1982. https://www.math.columbia.edu/
∼bayer/papers/Bayer-thesis.pdf

5. Beame, P., Culberson, J.C., Mitchell, D.G., Moore, C.: The resolution complexity
of random graph k-colorability. Discrete Appl. Math. 153(1–3), 25–47 (2005)

6. Beame, P., Impagliazzo, R., Kraj́ıček, J., Pitassi, T., Pudlák, P.: Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. In: Proceedings of the 35th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1994), pp.
794–806, November 1994

7. Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of indepen-
dent sets and vertex covers in random graphs. Comput. Complex. 16(3), 245–297
(2007)

8. Beame, P., Pitassi, T.: Propositional proof complexity: past, present, and future.
In: Current Trends in Theoretical Computer Science, pp. 42–70. World Scientific
Publishing (2001)

9. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–
204 (2005)

10. Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search
procedures. ACM Trans. Comput. Log. 14(3), 20:1–20:21 (2013). Preliminary ver-
sion in SAT 2011

11. Blake, A.: Canonical expressions in Boolean algebra. Ph.D. thesis, University of
Chicago (1938)

12. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

13. Buresh-Oppenheim, J., Clegg, M., Impagliazzo, R., Pitassi, T.: Homogenization
and the polynomial calculus. Comput. Complex. 11(3–4), 91–108 (2002). Prelimi-
nary version in ICALP 2000

14. Chvátal, V.: Determining the stability number of a graph. SIAM J. Comput. 6(4),
643–662 (1977)

15. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to
find proofs of unsatisfiability. In: Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC 1996), pp. 174–183, May 1996

16. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151–158
(1971)

17. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44, 36–50 (1979)

18. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Appl. Math. 18(1), 25–38 (1987)

19. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 3rd edn.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-35651-8

20. De Loera, J.A.: Gröbner bases and graph colorings. Beiträge zur Algebra und
Geometrie 36(1), 89–96 (1995). https://www.emis.de/journals/BAG/vol.36/no.1/

https://www.math.columbia.edu/~bayer/papers/Bayer-thesis.pdf
https://www.math.columbia.edu/~bayer/papers/Bayer-thesis.pdf
https://doi.org/10.1007/978-0-387-35651-8
https://www.emis.de/journals/BAG/vol.36/no.1/

262 M. Lauria

21. De Loera, J.A., Margulies, S., Pernpeintner, M., Riedl, E., Rolnick, D., Spencer, G.,
Stasi, D., Swenson, J.: Graph-coloring ideals: Nullstellensatz certificates, Gröbner
bases for chordal graphs, and hardness of Gröbner bases. In: Proceedings of the
40th International Symposium on Symbolic and Algebraic Computation (ISSAC
2015), pp. 133–140, July 2015

22. De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Hilbert’s Nullstellensatz and
an algorithm for proving combinatorial infeasibility. In: Proceedings of the 21st
International Symposium on Symbolic and Algebraic Computation (ISSAC 2008),
pp. 197–206, July 2008

23. De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Computing infeasibility cer-
tificates for combinatorial problems through Hilbert’s Nullstellensatz. J. Symb.
Comput. 46(11), 1260–1283 (2011)

24. De Loera, J.A., Lee, J., Margulies, S., Onn, S.: Expressing combinatorial problems
by systems of polynomial equations and Hilbert’s Nullstellensatz. Comb. Probab.
Comput. 18(04), 551–582 (2009)

25. Galesi, N., Lauria, M.: On the automatizability of polynomial calculus. Theory
Comput. Syst. 47(2), 491–506 (2010)

26. Galesi, N., Lauria, M.: Optimality of size-degree trade-offs for polynomial calculus.
ACM Trans. Comput. Log. 12(1), 4:1–4:22 (2010)

27. Gödel, K.: Ein brief an Johann von Neumann, 20. März, 1956. In: Clote, P.,
Kraj́ıček, J. (eds.) Arithmetic, Proof Theory, and Computational Complexity, pp.
7–9. Oxford University Press, Oxford (1993)

28. Hajós, G.: Üver eine konstruktion nicht n-farbbarer graphen. Wissenschaftliche
Zeitschrift der Martin-Luther-Universitat Halle-Wittenberg, A 10, 116–117 (1961)

29. Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39, 297–308
(1985)

30. Hillar, C.J., Windfeldt, T.: Algebraic characterization of uniquely vertex colorable
graphs. J. Comb. Theory Ser. B 98(2), 400–414 (2008)

31. Husfeldt, T.: Graph colouring algorithms. In: Beineke, L.W., Wilson, R.J. (eds.)
Topics in Chromatic Graph Theory, Encyclopedia of Mathematics and its Appli-
cations, pp. 277–303. Cambridge University Press, May 2015. Chap. 13

32. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
Encyclopedia of Mathematics and its Applications, vol. 60. Cambridge University
Press, Cambridge (1995)

33. Lauria, M., Nordström, J.: Graph colouring is hard for algorithms based on
Hilbert’s Nullstellensatz and Gröbner bases. In: O’Donnell, R. (ed.) 32nd Com-
putational Complexity Conference (CCC 2017). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 79, pp. 2:1–2:20. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl (2017)

34. Lauria, M., Pudlák, P., Rödl, V., Thapen, N.: The complexity of proving that a
graph is Ramsey. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7965, pp. 684–695. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39206-1 58

35. Lauria, M., Pudlák, P., Rödl, V., Thapen, N.: The complexity of proving that a
graph is Ramsey. Combinatorica 37(2), 253–268 (2017). Preliminary version in
ICALP 2013

36. Levin, L.A.: Universal sequential search problems. Probl. Peredachi Informatsii
9(3), 115–116 (1973)

37. Lokshtanov, D., Marx, D., Saurabh, S., et al.: Lower bounds based on the expo-
nential time hypothesis. Bull. EATCS 3(105), 41–72 (2013)

https://doi.org/10.1007/978-3-642-39206-1_58
https://doi.org/10.1007/978-3-642-39206-1_58

Algorithm Analysis Through Proof Complexity 263

38. Lovász, L.: Stable sets and polynomials. Discrete Math. 124(1–3), 137–153 (1994)
39. Matiyasevich, Y.V.: A criterion for vertex colorability of a graph stated in terms

of edge orientations. Diskretnyi Analiz 26, 65–71 (1974). http://logic.pdmi.ras.ru/
˜yumat/papers/22paper/. English translation of the Russian original

40. Matiyasevich, Y.V.: Some algebraic methods for calculating the number of color-
ings of a graph. J. Math. Sci. 121(3), 2401–2408 (2004)

41. McCreesh, C.: Solving hard subgraph problems in parallel. Ph.D. thesis, University
of Glasgow (2017)

42. McDiarmid, C.: Colouring random graphs. Ann. Oper. Res. 1(3), 183–200 (1984)
43. Mnuk, M.: Representing graph properties by polynomial ideals. In: Ganzha, V.G.,

Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2001, pp. 431–444. Springer, Heidelberg
(2001). https://doi.org/10.1007/978-3-642-56666-0 33

44. Nordström, J.: A (biased) proof complexity survey for SAT practitioners. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 1–6. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3 1

45. Nordström, J.: On the interplay between proof complexity and SAT solving. ACM
SIGLOG News 2(3), 19–44 (2015)

46. Österg̊ard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete
Appl. Math. 120(1), 197–207 (2002)

47. Pevzner, P.A., Sze, S.-H., et al.: Combinatorial approaches to finding subtle signals
in DNA sequences. In: ISMB, vol. 8, pp. 269–278 (2000)

48. Pitassi, T., Urquhart, A.: The complexity of the Hajós calculus. SIAM J. Discrete
Math. 8(3), 464–483 (1995)

49. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algo-
rithms 5(4), 545–587 (2012)

50. Razborov, A.A.: Lower bounds for the monotone complexity of some Boolean func-
tions. Soviet Math. Dokl. 31(2), 354–357 (1985). English translation of a paper in
Doklady Akademii Nauk SSSR

51. Rossman, B.: On the constant-depth complexity of k-clique. In: Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, pp. 721–730. ACM
(2008)

52. Rossman, B.: The monotone complexity of k-clique on random graphs. In: 51th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, 23–
26 October 2010, Las Vegas, Nevada, USA, pp. 193–201. IEEE Computer Society
(2010)

53. Segerlind, N.: The complexity of propositional proofs. Bull. Symb. Log. 13(4),
417–481 (2007)

http://logic.pdmi.ras.ru/~yumat/papers/22paper/
http://logic.pdmi.ras.ru/~yumat/papers/22paper/
https://doi.org/10.1007/978-3-642-56666-0_33
https://doi.org/10.1007/978-3-319-09284-3_1

Computing with SAT Oracles:
Past, Present and Future

Joao Marques-Silva(B)

LASIGE, Faculty of Science, University of Lisbon, Lisbon, Portugal
jpms@ciencias.ulisboa.pt

Abstract. Boolean Satisfiability (SAT) epitomizes NP-completeness,
and so what is arguably the best known class of intractable problems.
NP-complete decision problems are pervasive in all areas of comput-
ing, with literally thousands of well-known examples. Nevertheless, SAT
solvers routinely challenge the problem’s intractability by solving propo-
sitional formulas with millions of variables, many representing the trans-
lation from some other NP-complete or NP-hard problem. The practical
effectiveness of SAT solvers has motivated their use as oracles for NP,
enabling new algorithms that solve an ever-increasing range of hard com-
putational problems. This paper provides a brief overview of this ongoing
effort, summarizing some of the recent past and present main successes,
and highlighting directions for future research.

1 Introduction

Boolean Satisfiability (SAT) represents the decision problem for propositional
logic. Given a propositional logic formula, the goal is to decide whether an
assignment satisfying the formula exists, or not. SAT is renowned as the first NP-
complete decision problem [19], and as such it is the first (complete) member of
one of the most studied classes of complexity, NP. Despite being extensively stud-
ied, there are still fundamental open questions about the class NP and about
NP-complete problems, including whether P = NP, i.e. whether the problems
that can be solved in deterministic polynomial time match the problems that
can be solved in non-deterministic polynomial time, i.e. whose solutions can be
certified in deterministic polynomial time. (It is widely believed that this is not
the case, with far reaching consequences if it were.)

Many different algorithmic solutions have been envisioned for solving NP-
complete and related NP-hard optimization problems. Some of these are remark-
able in their depth, representing important inroads, both in the theory of algo-
rithms and in computational complexity [20,25,87]. Unfortunately, the practical
impact of such solutions has been modest, at best. For some classes of problems,
a more pragmatic approach has been adopted, with SAT being one concrete
example. Commonly referred to as conflict-driven clause learning (CDCL) [14,

This work was supported by FCT grant ABSOLV (028986/02/SAICT/2017), and
LASIGE Research Unit, ref. UID/CEC/00408/2013.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 264–276, 2018.
https://doi.org/10.1007/978-3-319-94418-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_27&domain=pdf

Computing with SAT Oracles: Past, Present and Future 265

Chap. 4], this class of SAT algorithms has made a visible impact, which has
been significant from a theoretical perspective (e.g. in propositional proof com-
plexity), but which has delivered absolutely remarkable performance gains in
practice. These days, SAT solvers, i.e. the practical implementation of SAT algo-
rithms, find widespread industrial use and also hundreds of different practical
applications.

While there continue to exist improvements made to SAT algorithms [54,56],
some of the key ideas have remain unchanged since the 90s [14,62,68]. Never-
theless, this is a time of unprecedent progress in SAT solving. Recent times have
witnessed a trend in exploiting SAT solvers as oracles for the class NP, that
have enabled solving not only other NP-complete problems, but also NP-hard
optimization problems (with NP-complete decision versions) and, perhaps more
importantly, problems complete for other classes of complexity, including the first
levels of the polynomial hierarchy, but also PSPACE, and even beyond PSPACE.
In some cases, the success observed has been paradigm-changing [41,44,45].

This paper provides a brief overview of this ongoing effort, which we will
refer to as Computing with SAT Oracles1. We will summarize work on solving
decision problems, function problems, and enumeration problems, for different
classes of complexity. We will highlight the most visible practical results, but will
also identify active areas of research. We will also suggest areas where the use of
SAT solvers as oracles for NP are posed to provide additional paradigm-changing
results, and propose a few challenges aiming at far reaching impact.

The paper is organized as follows. Section 2 briefly overviews the definitions
and notation used in the remainder of the paper. The class NP of decision prob-
lems is analyzed in Sect. 3. This section also overviews key techniques used
for solving large-scale NP-complete decision problems. Decision problems are
one example of the computational problems of interest, but many other exist.
Section 4 covers function, counting and enumeration problems, and the uses
of SAT oracles in these settings. Section 5 addresses problem solving beyond
NP, emphasizing the polynomial hierarchy, PSPACE, but also classes beyond
PSPACE. A brief overview of ongoing efforts is presented in Sect. 6, highlighting
a sample of paradigm-changing challenges. Finally, the paper concludes in Sect. 7.

2 Preliminaries

This section introduces the notation and definitions used throughout the paper.

2.1 Basic Definitions

Standard propositional logic definitions apply (e.g. [14]). CNF formulas are
defined over a set of propositional variables. A CNF formula F is a finite conjunc-
tion of clauses, also interpreted as a finite set of clauses. A clause is a disjunction
1 The paper aims to highlight the many uses of SAT oracles, and so the list of references

does not aim to be exhaustive. Additional references can be found in the references
cited.

266 J. Marques-Silva

of literals, also interpreted as a set of literals. A literal is a variable or its com-
plement. The standard definitions of assignment, model and satisfiable formula
are assumed.

SAT Oracles. There has been extensive recent work on exploiting SAT solvers
as oracles. A SAT oracle is modeled as a function call that, in this paper, returns
an outcome, which is either true (or SAT), for a satisfiable formula, or false (or
UNSAT), for an unsatisfiable formula. For the cases the outcome is true, the SAT
oracle also returns a witness of satisfiability µ (i.e. a satisfying truth assignment,
mapping variables to values in {0, 1}). Given a formula F , a SAT solver call
is thus represented as (st, µ) ← SAT(F), where st is either True (or SAT)
or False (or UNSAT). Although this paper focuses exclusively on exploiting
SAT oracles in practical reasoners, SAT oracles have also recently been used for
characterizing classes of complexity in fixed-parameter tractability [22].

Computational Complexity. Standard computational complexity defini-
tions are assumed throughout the paper [28,75]. The notation used is adapted
from [75]. The paper will refer to different classes of complexity, mainly of deci-
sion and function problems. For decision problems, well-known classes of com-
plexity include NP, coNP and Dp, PSPACE, EXP, NEXP, etc. For function
problems example classes include FP, FNP, etc. In addition, well-known hier-
archies are assumed, including the polynomial hierarchy (PH) and its function
counterpart (FPH).

2.2 Tools of the Trade

While manipulating SAT solvers as oracles for NP, a number of practicalities
must be taken into account when devising practically efficient algorithms.

Exploiting SAT Oracles. In many cases, including solving other NP-complete
problems, it suffices to encode the original problem into propositional logic, and
invoke a SAT solver. A wealth of encodings have been devised, and these are
briefly overview in Sect. 3. Alternatively, the SAT solver internals can be exposed
or modified, which enables extending the basic functionality of the solver. For
example, this is often done in Satisfiability Modulo Theory (SMT) solving [14,
49,80], but also in Answer Set Programming (ASP) [29]. In this paper, we mostly
focus on the use of the SAT solver as a black-box, where no changes to the oracle
are required nor expected, and where changes to the oracle abstraction are kept
to a minimum. These are briefly discussed in this section.

Producing Witnesses. Technically, a SAT solver models a more powerful
abstraction than an NP oracle. Indeed, if the call to the oracle returns True, the
solver can also provide a (total) satisfying assignment, which represents a witness
for a formula to be declared satisfiable, enabling certification in polynomial time.

Computing with SAT Oracles: Past, Present and Future 267

As a result, from a computational complexity perspective, SAT solvers can be
viewed as witness-producing oracles for NP [46,60].

Incremental SAT. In most settings, SAT oracles are used incrementally [23].
A working formula is given to the SAT solver, which can then be updated or
configured in between oracle calls. Clauses can be temporarily removed using
the so-called selection variables, which represent a form of clause half-reification.
Selection variables can be turned off or on using assumptions, which are commu-
nicated to the solver at the outset of each call. Assumptions can be more general
than selecting or de-selecting clauses, enabling for example the specification of
concrete assignment to some of the variables.

Cores, Traces, Proofs and Interpolants. In some situations, the SAT solver
oracle abstraction is further extended to enable the oracle to produce a summary
when the call returns False. The summary should not be confused with the
certificate produced when the oracle returns True. A certificate can be checked
in polynomial time. A summary indicates that it contains enough information
for the oracle to return once again False. Such summaries are referred to as
(unsatisfiable) cores and find a wide range of applications [2]. SAT oracles can
also produce traces of their execution [2], from which proofs of unsatisfiability
can be generated. From this, interpolants can be computed [78], which also find
a wide range of applications [64].

Enabling Parallelization. A recent trend for large scale problem solving with
SAT oracles has been the so-called Cube&Conquer approach [35]. At the out-
set, some procedure identifies a (possibly very large) number of sub-problems
to solve, e.g. by heuristically picking some variables and considering all of their
assignments, and then solving such sub-problems in parallel [35]. The practi-
cal effectiveness of this approach has been demonstrated in different settings,
including proving open problems in Mathematics [34].

3 SAT Oracles Within NP

Propositional Encodings. Propositional logic is a fairly restricted knowl-
edge representation language. As a result, many computational problems do not
exhibit compact or straightforward representations in propositional logic.

Over the years, different encodings have been devised, to enable mapping
more expressive problem domains into SAT. One concrete example is SMT.
Although most modern SMT solvers implement the so-called lazy approach,
where a SAT solver is used as a fast model enumerator [80], an alternative
is the eager approach, where the SMT formula is encoded into propositional
logic [14,49]. Another example is ASP. Similarly to SMT, modern ASP solvers
exploit modified SAT solvers [29]. Nevertheless, another approach is to develop
encodings from ASP into SAT [40]. The area of constraint programming has also

268 J. Marques-Silva

investigated mappings into SAT [85] and exploiting SAT oracles [74], although
most existing CP solvers do not yet extensively borrow from SAT technology.
Furthermore, encodings of relational logic into SAT have been investigated [83].

At a lower level of expressivity, encodings of different types of constraints
have been investigated. Cardinality constraints, of the form

∑
i xi ≤ k, with

xi propositional, represent one concrete example. Different encodings have been
devised over the years [5,14,24,81,86], most of which ensure generalized arc
consistency (GAC) through unit propagation (UP).

Similarly, encodings for pseudo-Boolean constraints, of the form
∑

i aixi ≤ b,
with xi propositional, have been proposed over the years [1,10,24,86], enabling
polynomial-size encodings, while ensuring GAC through UP. Efficient handling
of cardinality and pseudo-Boolean constraints is of crucial importance in the
efficiency of SAT-based approaches for solving different problems.

SAT as the Oracles’ Oracle. As suggested above, SAT is pervasive as the
engine underlying solvers for more expressive domains, including SMT [49],
ASP [29], and in some cases CP [74]. More importantly, SAT oracles now
find widespread use in modern theorem provers, with AVATAR representing a
paradigmatic example [84]. The significance and impact of modern SAT solvers
also motivated proposals for languages aiming at directly encoding problems
into SAT [16]. Indirectly, problem solving with SAT oracles enabled the recent
discovery of the dual-rail MaxSAT proof system [15,37].

The Promise of Abstraction. One drawback of exploiting SAT solvers is
the often unwieldy problem representation size. In recent years, abstraction-
based techniques, including the well-known abstraction refinement paradigm,
have enabled solving an ever-increasing range of practical problems. Abstraction
is extensively applied in solving computational problems beyond NP [41,43,
82], and is expected to play a significant role when tackling large-scale problem
representations.

4 Beyond Decision Problems

Most naturally-occurring computational problems are not decision problems.
We often want some optimal solution, or some minimal set respecting some
constraints, or to list the solutions for some set of constraints, or to count the
number of solutions. SAT oracles have made important inroads at solving a wide
range of computational problems, including function, counting and enumeration
problems.

Function Problems. One class of problems are the so-called function (or
search) problems, where some solution is to be computed. Concrete examples
include minimal set problems, but also optimization problems.

Computing with SAT Oracles: Past, Present and Future 269

Minimal set problems find important applications, including the analysis of
over-constrained systems of constraints [79]. For unsatisfiable formulas, relevant
minimal set problems include finding a subset-minimal set of clauses which is
unsatisfiable. These subset-minimal sets of clauses are referred to as minimal
unsatisfiable subformulas (MUSes). Tightly related with MUSes are the mini-
mal correction subsets (MCSes), i.e. a minimal removal of clauses such that the
remaining clauses are satisfiable. There is a well-known minimal hitting set dual-
ity relationship between MUSes and MCSes [79]. The computation of MUSes and
MCSes has been the subject of remarkable performance improvements over the
last decade [8,9,11,30,57,65,66,69,73], involving several important new ideas in
terms of the algorithms and the optimizations used.

Minimal set problems find other important uses, including computing the
lean kernel of an unsatisfiable formula [50] or, for satisfiable formulas, comput-
ing the backbone of the formula [42], i.e. the set of variables that exhibit the
same value in all models, but also the computation of all prime implicates or
implicants [77], with applications in knowledge compilation. Somewhat surpris-
ingly, all these minimal set problems can be solved with essentially the same
algorithms based on SAT oracles. Under the name Minimal Sets of Monotone
Predicates (MSMP) a wealth of different minimal set problems have recently
been shown to be tightly related [58,60].

An arguably better known class of function problems is related with opti-
mization. Concrete examples include maximum satisfiability (MaxSAT), and
its different variants, but also minimal satisfiability (MinSAT). In recent years,
algorithms based on SAT oracles, and the iterated identification of unsatisfi-
able cores, enabled remarkable progress in the state of the art of MaxSAT and
MinSAT solving [21,26,32,33,61,63,67,70].

Counting and Enumeration Problems. Counting is a fundamental prob-
lem in computer science, with a wide range of applications [14] and associated
problems and classes of complexity, exemplified by #SAT and #P [75]. Efficient
algorithms for approximate model counting, based on iterative SAT oracle calls,
have been studied in recent years [17].

A related problem is the enumeration of solutions respecting some sort of con-
straint. Enumeration of models is one example. Enumeration of cost-optimum
solutions represents another one. But many other examples exist. For example,
enumeration of MCSes is of paramount importance when diagnosing systems
and streaming through possible system repairs. In a similar vein, the enumer-
ation of MUSes is apparently harder than the enumeration of MCSes, finding
important applications in the analysis of over-constrained systems. The most
efficient approaches for MUS enumeration are based on exploiting SAT oracles
and implicit hitting set dualization [55].

5 Beyond NP

Recent years have witnessed a paradigm shift in solving problems that involve
some form of quantification. The integration of SAT oracles with abstraction

270 J. Marques-Silva

refinement solutions enabled the development of efficient approaches for a grow-
ing range of problems.

PH and PSPACE. There has been important recent progress on practical algo-
rithms for solving computational problems with decision versions complete for
the first levels of the polynomial hierarchy. Concrete examples include Boolean
function minimization [39], propositional abduction [36], smallest MUS extrac-
tion [55], and kQBF [41,43]. A similar trend has been observed for PSPACE-
complete decision problems, including QBF [41] and modal logics [51], among
others.

Beyond PSPACE. There are a wealth of important problems complete for
classes beyond PSPACE originating in diffferent areas of application. There are
preliminary approaches exploiting SAT oracles for some of these problems. Con-
crete examples include Effectively Propositional Logic (EPR) [76], Bit-Vector
Logic (BVL) [72], theorem provers [27,48,84] and model finders [83], model
checkers [18], but also SUCCINT-circuit SAT/VAL [75].

6 A Glimpse of the Future

The success of SAT solvers in theorem provers motivates the question: to which
other computational problems can SAT solvers be successfully applied? This
section lists recent successes and proposes a number of challenges for the near
future. Solutions to any of these will have far reaching impact.

Recent work has obtained truly impressive performance gains in a number
of areas. Concrete examples include axiom pinpointing for the tractable decision
logic EL+ [4], approximate model counting [17], Boolean function minimiza-
tion using SAT oracles [39], propositional abduction [36] and also model-based
diagnosis [59]. These examples suggest that better understanding of problem
domains, but also of the many different ways in which SAT oracles can be used,
can enable further significant gains in different areas.

Challenges Within NP. Given the recent trends and successes within NP,
but also within PSPACE, one would expect that the efforts of applying SAT
and SAT oracles will continue.

Moreover, a different proof system [37] has been proposed, referred to as
dual-rail MaxSAT, and which is stronger than resolution but expected to be
weaker than the cutting plane proof system [15]. A new proof system that in
practice yields efficient algorithms does not necessarily render CDCL obsolete,
quite the contrary.

Challenge 1. Devise high performance NP and PSPACE reasoners using the
DRMaxSAT proof system, by building on CDCL SAT oracles.

Computing with SAT Oracles: Past, Present and Future 271

Given the complexity of formulas tackled by SAT solvers, and the vast num-
ber of ways in which SAT solvers can be organized, a recent line of research is
the application of machine learning techniques to configure the building blocks
of a SAT solver [54].

Challenge 2. Devise high performance automatically assembled SAT solvers.

With the explosive growth of machine learning (ML) applications, a general
concern is that of explainability [3,52,53], i.e. to enable ML models with the
capability of associating explanations with classifications which can be under-
stood by human decision makers. Naturally, one would expect logic-based ML
models to be more amenable to providing accurate explanations.

Challenge 3. Devise explainable ML models based on SAT oracles.

Examples of recent work on tackling this challenge include [38,71].

Challenges for PH and PSPACE. Despite the significant progress made in
QBF solving in recent years, the scale of formulas that can be solved with QBF
solvers is dwarfed by the scale of formulas easily solved by SAT solvers.

Challenge 4. Devise high performance QBF reasoners, by exploiting SAT ora-
cles, that can tackle formulas rivaling in size with those of SAT solvers.

Despite the successes of SAT solvers in the 90s [47], the most effec-
tive approaches for automated planning have since been based on heuristic
search [31]. A recent alternative exploiting SAT oracles and abstraction [82],
although promising, still lags in performance. An immediate question is whether
this state of affairs can be changed.

Challenge 5. Devise high performance planners based on SAT oracles.

There has also been recent significant progress for proof systems for QBF [13,
44], but also for DQBF [12], well-known to be NEXP-complete.

Challenge 6. Develop a detailed map of proof complexity for QBF and DQBF.

Challenges Beyond PSPACE. Recent work on axiom pinpointing for
tractable description logics suggests that SAT solvers could provide one way
to unlock the often-observed performance bottleneck of reasoners for the seman-
tic web [6,7]. For example, for expressive description logics, most reasoners are
still tableaux-based [7].

Challenge 7. Devise high-performance reasoners for expressive description log-
ics using SAT oracles.

Similarly, and with the exception of (grounded) ASP, SAT oracles have not
been exploited in logic programming. Concrete examples include reasoners for
basic Datalog (and its extensions), but also Prolog.

272 J. Marques-Silva

Challenge 8. Devise a high performance Prolog engine based on SAT oracles.

Over the years, there have been important successes on exploiting SAT solvers
in theorem provers. Nevertheless, and with the exception of Inst-Gen [27,48], the
use of SAT solvers is usually one of a number of reasoning techniques.

Challenge 9. Devise a high performance FOL theorem prover based on SAT
oracles.

7 Conclusions

The importance of SAT as the de facto NP oracle in a growing range of applica-
tions cannot be overstated. This paper provides a brief overview of the many uses
of SAT as a witness-producing NP oracle, for solving decision, function, count-
ing and enumeration problems for different classes of complexity, up until semi-
decidable problems. The paper also lists challenges that would further extend
the reach of SAT solvers as oracles and which, if successful, would have a much
wider impact.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-
Eichberger, V.: A new look at BDDs for pseudo-boolean constraints. J. Artif.
Intell. Res. 45, 443–480 (2012)

2. Achá, R.J.A., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Practical
algorithms for unsatisfiability proof and core generation in SAT solvers. AI Com-
mun. 23(2–3), 145–157 (2010)

3. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifi-
ably optimal rule lists. In: KDD, pp. 35–44 (2017)

4. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient MUS enumeration of horn for-
mulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.)
SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-24318-4 24

5. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2007)

7. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

8. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a
simple way of managing optional clauses. In: AAAI, pp. 835–841 (2014)

9. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 70–86. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21668-3 5

10. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of Pseudo-Boolean con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 19

https://doi.org/10.1007/978-3-319-24318-4_24
https://doi.org/10.1007/978-3-319-24318-4_24
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.1007/978-3-642-02777-2_19

Computing with SAT Oracles: Past, Present and Future 273

11. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

12. Beyersdorff, O., Chew, L., Schmidt, R.A., Suda, M.: Lifting QBF resolution calculi
to DQBF. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
490–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 30

13. Beyersdorff, O., Pich, J.: Understanding Gentzen and Frege systems for QBF. In:
LICS, pp. 146–155 (2016)

14. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

15. Buss, S., Bonet, M.L., Ignatiev, A., Marques-Silva, J., Morgado, A.: MaxSAT res-
olution with the dual rail encoding. In: AAAI, February 2018

16. Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT. Artif. Intell.
162(1–2), 89–120 (2005)

17. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
IJCAI, pp. 3569–3576 (2016)

18. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 23

19. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158
(1971)

20. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

21. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7 19

22. de Haan, R., Szeider, S.: The parameterized complexity of reasoning problems
beyond NP. In: KR (2014)

23. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3 37. MiniSat 2.2.
https://github.com/niklasso/minisat.git

24. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

25. Fomin, F.V., Kaski, P.: Exact exponential algorithms. Commun. ACM 56(3), 80–
88 (2013)

26. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814948 25

27. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.
In: LICS, pp. 55–64 (2003)

28. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

29. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Morgan & Claypool Publishers, San Rafael (2012)

30. Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: AAAI, pp. 2666–2673 (2014)

31. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246
(2006)

https://doi.org/10.1007/978-3-319-40970-2_30
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-540-24605-3_37
https://github.com/niklasso/minisat.git
https://doi.org/10.1007/11814948_25

274 J. Marques-Silva

32. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: AAAI (2011)

33. Heras, F., Morgado, A., Planes, J., Silva, J.P.M.: Iterative SAT solving for mini-
mum satisfiability. In: ICTAI, pp. 922–927 (2012)

34. Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8),
70–79 (2017)

35. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: cube-
and-conquer, a hybrid SAT solving method. In: IJCAI, pp. 4864–4868 (2017)

36. Ignatiev, A., Morgado, A., Marques-Silva, J.: Propositional abduction with implicit
hitting sets. In: ECAI, pp. 1327–1335 (2016)

37. Ignatiev, A., Morgado, A., Marques-Silva, J.: On tackling the limits of resolution
in SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
164–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 11

38. Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J.: A SAT-based approach
to learn explainable decision sets. In: IJCAR (2018)

39. Ignatiev, A., Previti, A., Marques-Silva, J.: SAT-based formula simplification. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 287–298. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 21

40. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set pro-
grams to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Program-
ming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS (LNAI),
vol. 6565, pp. 111–130. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20832-4 8

41. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

42. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of
propositional formulae. AI Commun. 28(2), 161–177 (2015)

43. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-21581-0 19

44. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

45. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp.
325–331 (2015)

46. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets
for monotone predicates. Artif. Intell. 233, 73–83 (2016)

47. Kautz, H.A., Selman, B.: Unifying SAT-based and graph-based planning. In:
IJCAI, pp. 318–325 (1999)

48. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics: Essays in
Memory of Harald Ganzinger. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37651-1 10

49. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View,
2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-50497-0

50. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and sim-
ple oracle queries. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp.
138–155. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 11

51. Lagniez, J., Berre, D.L., de Lima, T., Montmirail, V.: A recursive shortcut for
CEGAR: application to the modal logic K satisfiability problem. In: IJCAI, pp.
674–680 (2017)

https://doi.org/10.1007/978-3-319-66263-3_11
https://doi.org/10.1007/978-3-319-24318-4_21
https://doi.org/10.1007/978-3-642-20832-4_8
https://doi.org/10.1007/978-3-642-20832-4_8
https://doi.org/10.1007/978-3-642-21581-0_19
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-319-24318-4_11

Computing with SAT Oracles: Past, Present and Future 275

52. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint frame-
work for description and prediction. In: KDD, pp. 1675–1684 (2016)

53. Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through
prototypes: a neural network that explains its predictions. In: AAAI, February 2018

54. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted
average branching heuristic for SAT solvers. In: AAAI, pp. 3434–3440 (2016)

55. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

56. Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization
approach for CDCL SAT solvers. In: IJCAI, pp. 703–711 (2017)

57. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

58. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates
in Boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 592–607. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39799-8 39

59. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: IJCAI, pp. 1966–1972 (2015)

60. Marques-Silva, J., Janota, M., Menćıa, C.: Minimal sets on propositional formulae.
problems and reductions. Artif. Intell. 252, 22–50 (2017)

61. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satis-
fiability. CoRR, abs/0712.1097 (2007)

62. Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

63. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 39

64. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6 1

65. Menćıa, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol.
9710, pp. 342–360. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 21

66. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
IJCAI, pp. 1973–1979 (2015)

67. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 41

68. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535 (2001)

69. Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution.
In: FMCAD, pp. 197–200 (2013)

70. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: AAAI, pp. 2717–2723 (2014)

71. Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal deci-
sion trees with SAT. In: IJCAI (2018)

72. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Form. Methods Syst. Des. 51(3), 608–636 (2017)

73. Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In:
VaMoS, pp. 83–91 (2012)

https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-319-40970-2_21
https://doi.org/10.1007/978-3-319-40970-2_21
https://doi.org/10.1007/978-3-319-10428-7_41

276 J. Marques-Silva

74. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

75. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)
76. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic

using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)
77. Previti, A., Ignatiev, A., Morgado, A., Marques-Silva, J.: Prime compilation of

non-clausal formulae. In: IJCAI, pp. 1980–1988 (2015)
78. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone

computations. J. Symb. Log. 62(3), 981–998 (1997)
79. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95

(1987)
80. Sebastiani, R.: Lazy satisfiability modulo theories. JSAT 3(3–4), 141–224 (2007)
81. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:

van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

82. Suda, M.: Property directed reachability for automated planning. J. Artif. Intell.
Res. 50, 265–319 (2014)

83. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: TACAS, pp. 632–647
(2007)

84. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 46

85. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–
456. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45349-0 32

86. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

87. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You
Shrink!. LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36478-1 17

https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/3-540-45349-0_32
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/3-540-36478-1_17

The Isometry Degree of a Computable
Copy of �p

Timothy H. McNicholl1(B) and Don Stull2,3

1 Department of Mathematics, Iowa State University, Ames, IA, USA
mcnichol@iastate.edu

2 Department of Computer Science, Iowa State University, Ames, IA, USA
dstull@iastate.edu

3 Laboratoire lorrain de recherche en informatique et ses applications,
Campus scientifique, BP 239, 54506 Vandoeuvre-lés Nancy Cedex, France

donald.stull@inria.fr

Abstract. Suppose p is a computable real so that p ≥ 1. We define
the isometry degree of a computable presentation of �p to be the least
powerful Turing degree d by which it is d-computably isometrically iso-
morphic to the standard presentation of �p. We show that this degree
always exists and that when p �= 2 these degrees are precisely the c.e.
degrees.

Keywords: Computable analysis · Computable structure theory
Functional analysis

1 Introduction

Complexity of isomorphisms is a fundamental theme of computable structure
theory. For example, a computably presentable structure is computably categor-
ical if there is a computable isomorphism between any two of its computable
presentations; it is Δ0

n-categorical if there is a Δ0
n isomorphism between any two

of its computable copies. The degree of categoricity of a computable structure is
the least powerful oracle that computes an isomorphism between any two of its
computable copies [5]. There is at this time no characterization of the degrees
of categoricity. Partial results can be found in [1,4,5].

Throughout most of its development, computable structure theory has
focused on countable structures. However, there has recently emerged a pro-
gram to apply the concepts of computable structure theory to the uncountable
structures commonly encountered in analysis such as metric spaces and Banach
spaces. For example, Melnikov has shown that C[0, 1] is not computably cat-
egorical as a metric space [10], and Melnikov and Ng have shown that C[0, 1]

D. Stull—Research of the first author supported in part by a Simons Foundation
grant # 317870. Research of the second author supported in part by National Science
Foundation Grants 1247051 and 1545028.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 277–286, 2018.
https://doi.org/10.1007/978-3-319-94418-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_28&domain=pdf

278 T. H. McNicholl and D. Stull

is not computably categorical as a Banach space [11]. In their seminal text,
Pour-El and Richards proved that �1 is not computably categorical and that �2

is computably categorical (though the results were not framed in the language
of computable structure theory). In 2013 Melnikov asked if �p is computably
categorical for any values of p besides 2 [10]. In 2015 McNicholl answered this
question in the negative and later showed that �p is Δ0

2-categorical whenever p
is a computable real so that p ≥ 1 [8,9].

Here we put forward the study of a new notion: the degree of isomorphism for
a pair (A#,A+) of computable presentations of a structure A; this is defined to
be the least powerful oracle that computes an isomorphism of A# onto A+. This
notion fits in with the general theme of studying complexity of isomorphisms and
is a local version of the concept of degree of categoricity. If among all computable
presentations of A one is regarded as standard, then we define the isomorphism
degree of a single computable presentation A# of A to be the least power oracle
that computes an isomorphism of the standard presentation with A#.

We propose to study degrees of isomorphism in the context of the new inter-
section of computable structure theory and computable analysis, specifically with
regard to computable copies of �p. So, whenever (�p)# is a computable presenta-
tion of �p, we define the isometry degree of (�p)# to be the least powerful Turing
degree that computes a linear isometry of the standard presentation of �p onto
(�p)#.

It is not obvious that degrees of isomorphism always exist. For example,
Miller has produced a computable structure with no degree of computable cat-
egoricity [12]. We are thus pleasantly surprised to find that computable presen-
tations of �p always have an isometry degree and that we can say precisely what
these degrees are. Specifically, we prove the following two theorems.

Theorem 1. When p is a computable real so that p ≥ 1, every computable
presentation of �p has a degree of isometry, and this degree is c.e.

Theorem 2. When p is a computable real so that p ≥ 1 and p �= 2, the isometry
degrees of the computable presentations of �p are precisely the c.e. degrees.

One direction of Theorem2 is already known; namely that every c.e. degree is
an isometry degree [9]. However, we give a new proof which we believe is simpler
and more intuitive.

The paper is organized as follows. Sections 2 and 3 cover background and
preliminaries from functional analysis and computable analysis. Section 4 con-
tains a required result on the complexity of uniformly right-c.e. sequences of
reals which is perhaps interesting in its own right. Section 5 contains the new
proof that, when p �= 2, every c.e. degree is the isometry degree of a computable
presentation of �p. In Sect. 6, we show that every computable presentation of �p

has a degree of linear isometry and that this degree is c.e.

The Isometry Degree of a Computable Copy of �p 279

2 Background

2.1 Arboreal Matters

We use fairly standard terminology and notation for trees (as subsets of ω<ω).
We let ν− denote the parent of a nonempty node ν. Finally, we say that a
function f : S → R is decreasing if f(ν) > f(ν′) whenever ν′ ∈ S and ν ⊂ ν′.

2.2 Background from Functional Analysis

We assume that the field of scalars is the complex numbers although all results
hold when the field of scalars is the real numbers. A scalar is unimodular if
|λ| = 1.

Recall that a Banach space is a complete normed linear space. A subset of a
Banach space B is linearly dense if its linear span is dense in B.

The simplest example of a Banach space is C
n where the norm is given by

‖(z1, . . . , zn)‖ =

√
√
√
√

n∑

j=1

|zj |2.

Suppose 1 ≤ p < ∞. Recall that �p is the set of all functions f : N → C so
that

∑∞
n=0 |f(n)|p < ∞. When, f ∈ �p, the �p-norm of f is defined to be

‖f‖p =

(∞∑

n=0

|f(n)|p
)1/p

.

It is well-known that �p is a Banach space. For each n ∈ N, let en = χ{n}. Then,
{e0, e1, . . .} is the standard basis for �p.

Suppose that B0 and B1 are Banach spaces and that T : B0 → B1. If there is a
constant C > 0 so that ‖T (v)‖B1

≤ C ‖v‖B0
for all v ∈ B0, then T is bounded. If

T is linear, then T is continuous if and only if T is bounded. T is an isomorphism
if it is a linear homeomorphism. T is isometric if ‖T (u) − T (v)‖B1

= ‖u − v‖B0

whenever u, v ∈ B0. An isometric isomorphism thus preserves the linear and
metric structure of the Banach spaces. Finally, if B1 = C, then T is a functional.

Suppose 1 ≤ p < ∞ and 1
p + 1

q = 1 (i.e. q is the conjugate of p). When f ∈ �p

and g ∈ �q, let

〈f, g〉 =
∞∑

n=0

f(n)g(n).

When f ∈ �q, let f∗(g) = 〈g, f〉 for all g ∈ �p. It follows from Hölder’s
inequality that |f∗(g)| ≤ ‖g‖p ‖f‖q and so f∗ is a bounded linear functional on
�p.

When f ∈ �p, the support of f , which we denote by supp(f), is the set of
all n ∈ N so that f(n) �= 0. Vectors f, g ∈ �p are disjointly supported if their
supports are disjoint. A subset of �p is disjointly supported if any two of its
elements are disjointly supported. We will utilize the following whose proof is
elementary.

280 T. H. McNicholl and D. Stull

Proposition 1. Suppose 1 ≤ p < ∞ and {gn}n∈N is a sequence of disjointly
supported nonzero vectors of �p. Then, there is a unique linear isometry T :
�p → �p so that T (en) = ‖gn‖−1

gn.

When f, g ∈ �p, let σ0(f, g) = |2(‖f‖p
p + ‖g‖p

p) − ‖f + g‖p
p − ‖f − g‖p

p |. The
following was proven in 1956 by Hanner and independently by Lamperti in 1958
[6,7].

Proposition 2. Suppose 1 ≤ p < ∞ and p �= 2. Then, f, g ∈ �p are disjointly
supported if and only if σ0(f, g) = 0.

The following are more or less immediate consequences of Proposition 2. They
were first observed by Banach and later rigorously proven by Lamperti [2,7].

Theorem 3. Suppose 1 ≤ p < ∞ and p �= 2. If T : �p → �p is linear and
isometric, then T preserves disjointness of support. That is, T (f) and T (g) are
disjointly supported whenever f, g ∈ �p are disjointly supported.

Theorem 4. Suppose p is a real number so that p ≥ 1 and p �= 2. Let T be a
linear map of �p into �p. Then, T is an isometric isomorphism if and only if
there is a permutation φ of N and a sequence {λn}n∈N of unimodular scalars
so that T (en) = λneφ(n) for all n. Furthermore, if φ is a permutation of N,
and if Λ = {λn}n∈N is a sequence of unimodular scalars, then there is a unique
isometric isomorphism Tφ,Λ of �p so that Tφ,Λ(en) = λneφ(n) for each n ∈ N.

We now summarize some definitions and results from [8]. When f, g ∈ �p,
write f � g if and only if f = g · χA for some A ⊆ N. In this case we say f is
a subvector of g. It follows that the subvector relation is a partial order on �p.
Accordingly, if B is a subspace of �p, then f ∈ B is an atom of B if there is no
g ∈ B so that 0 ≺ g ≺ f . It follows that f is an atom of �p if and only if f is a
unimodular scalar multiple of a standard basis vector.

Note that f is a subvector of g if and only if f and g − f are disjointly
supported. Thus, when p �= 2, the subvector ordering of �p is preserved by linear
isometries.

Suppose S is a tree and φ : S → �p. We say φ is separating if φ(ν) and
φ(ν′) are disjointly supported whenever ν, ν′ ∈ S are incomparable. We say φ
is summative if for every nonterminal node ν of S, φ(ν) =

∑

ν′ φ(ν′) where ν′

ranges over the children of ν in S. Finally, we say φ is a disintegration if it is
injective, separating, summative, never zero, and if its range is linearly dense in
�p.

Suppose φ : S → �p is a disintegration. A chain C ⊆ S is almost norm-
maximizing if whenever ν ∈ C is a nonterminal node of S, C contains a child ν′

of ν so that
max

μ
‖φ(μ)‖p

p ≤ ‖ν′‖p
p + 2−|ν|

where μ ranges over the children of ν in S. The existence of such a child follows
from calculus.

The following is proven in [8].

The Isometry Degree of a Computable Copy of �p 281

Theorem 5. Suppose 1 ≤ p < ∞ and p �= 2, and let φ be a disintegration of �p

1. If C is an almost norm-maximizing chain of φ, then the �-infimum of φ[C]
exists and is either 0 or an atom of �. Furthermore, inf φ[C] is the limit in
the �p norm of φ(ν) as ν traverses the nodes in C in increasing order.

2. If {Cn}∞
n=0 is a partition of dom(φ) into almost norm-maximizing chains,

then inf φ[C0], inf φ[C1], . . . are disjointly supported. Furthermore, for each
j ∈ N, there exists a unique n so that {j} is the support of inf φ[Cn].

2.3 Background from Computable Analysis

We assume the reader is familiar with the central concepts of computability the-
ory, including computable and computably enumerable sets, Turing reducibility,
and enumeration reducibility. These are explained in [3]. We begin with the appli-
cation of computability concepts to Banach spaces. Our approach is essentially
the same as in [13].

A real r is left (right)-c.e. if its left (right) Dedekind cut is c.e. A sequence
{rn}n∈N of reals is uniformly left (right)-c.e. if the left (right) Dedekind cut of
rn is c.e. uniformly in n.

Let B be a Banach space. A function R : N → B is a structure on B if its
range is linearly dense in B. If R is a structure on B, then (B, R) is a presentation
of B.

A Banach space may have a presentation that is designated as standard ;
such a space is identified with its standard presentation. In particular, if we let
R(n) = en, then (�p, R) is the standard presentation of �p. If R(j) is the (j +1)st
vector in the standard basis for C

n when j < n, and if R(j) = 0 when j ≥ n,
then (Cn, R) is the standard presentation of Cn.

Suppose B# = (B, R) is a presentation of B. Then, B# induces associated
classes of rational vectors and rational open balls as follows. We say v ∈ B is a
rational vector of B# if there exist α0, . . . , αM ∈ Q(i) so that v =

∑M
j=0 αjR(j).

A rational open ball of B# is an open ball whose center is a rational vector of
B# and whose radius is a positive rational number.

The rational vectors of B# then give rise to associated classes of computable
vectors and sequences. A vector v ∈ B is a computable vector of B# if there is
an algorithm that given any k ∈ N as input produces a rational vector u of B#

so that ‖u − v‖B < 2−k. A sequence {vn}n∈N of vectors of B is a computable
sequence of B# if vn is a computable vector of B# uniformly in n.

When X ⊆ N, the classes of X-computable vectors and X-computable
sequences of B# are defined by means of the usual relativizations. If S ⊆ N

∗, then
the definitions of the classes of computable and X-computable maps from S into
B# are similar to the definitions of computable and X-computable sequences of
B#.

Presentations B#
0 and B#

1 of Banach spaces B0 and B1 respectively induce an
associated class of computable maps from B#

0 into B#
1 . Namely, a map T : B0 →

B1 is said to be a computable map of B#
0 into B#

1 if there is a computable function
P that maps rational balls of B#

0 to rational balls of B#
1 so that T [B1] ⊆ P (B1)

282 T. H. McNicholl and D. Stull

whenever P (B1) is defined and so that whenever U is a neighborhood of T (v),
there is a rational ball B1 of B#

1 so that v ∈ B1 and P (B1) ⊆ U . In other
words, it is possible to compute arbitrarily good approximations of T (v) from
sufficiently good approximations of v. This definition relativizes in the obvious
way.

When the map T is linear, the following well-known characterization is useful.

Theorem 6. Suppose B#
1 = (B1, R1) is a presentation of a Banach space and

B#
2 is a presentation of a Banach space. Suppose also that T : B1 → B2 is linear.

Then, T is an X-computable map of B#
1 into B#

2 if and only if {T (R1(n)}n∈N

is an X-computable sequence of B#
2 .

We say that a presentation B# of a Banach space B is a computable pre-
sentation if the norm is a computable map from B# into C. It follows that the
standard presentations of �p and C are computable.

For a proof of the following see [15] or Sect. 6.3 of [14].

Proposition 3. Suppose r is a computable positive number. If f is a computable
function on D(0; r), and if f has exactly one zero, then this zero is a computable
point. Furthermore, this zero can be computed uniformly in f, r.

The following is proven in [8].

Theorem 7. Suppose p is a computable real so that p ≥ 1 and p �= 2. Then,
every computable presentation of �p has a computable disintegration.

3 Preliminaries

3.1 Preliminaries from Functional Analysis

Let 1 ≤ p < ∞, and suppose f is a unit atom of �p (i.e. an atom of norm 1). Then,
f is also a unit vector of �q where q is the conjugate of p. So, |f∗(g)| ≤ ‖g‖p.
It also follows that f∗(g)f � g for all g ∈ �p. Suppose g is an atom of �p. If
f∗(g) = 0, then f and g are disjointly supported; otherwise supp(f) = supp(g)
and f∗(g)f = g.

The proof of Theorem2 utilizes the following.

Lemma 1. Suppose 1 ≤ p < ∞, and suppose φ : S → �p is a disintegration of
�p. Let C ⊆ S be a chain so that whenever ν ∈ C is a nonterminal node of S, C
contains a child ν′ of ν so that

max{‖φ(μ)‖p
p : μ ∈ ν+

S } − ‖φ(ν′)‖p
p < min{‖φ(ν)‖p

p , 2−|ν|}.

Suppose f is a unit atom of �p.

1. If inf φ[C] is nonzero, then there is a ν ∈ C so that

‖φ(ν) − f∗(φ(ν))f‖p
p + ε(ν) < ‖f∗(φ(ν))f‖p

p . (1)

2. If ν ∈ C satisfies (1), then inf φ[C] = f∗(φ(ν))f .

The Isometry Degree of a Computable Copy of �p 283

3.2 Preliminaries from Computable Analysis

We first extend some of the results in [8] on partitioning the domain of a disin-
tegration into almost norm-maximizing chains.

Lemma 2. Suppose p ≥ 1 is computable and that (�p)# is a computable presen-
tation of �p. Suppose also that φ is a computable disintegration of (�p)#. Then,
from a nonterminal node ν of dom(φ) and a positive rational number ε it is
possible to compute a child ν′ of ν in dom(φ) so that

max
μ

‖φ(μ)‖p
p − ‖φ(ν′)‖p

p < ε

where μ ranges over all children of ν in dom(φ).

Theorem 8. Suppose p ≥ 1 is computable and let (�p)# be a computable pre-
sentation of �p. Suppose also that φ is a computable disintegration of (�p)# and
that ε : dom(φ) → (0,∞) is lower semicomputable. Then, there is a partition
{Cn}n∈N of dom(φ) into uniformly computable chains so that whenever ν ∈ Cn

is a nonterminal node of dom(φ), Cn contains a child ν′ of ν so that

max
μ

‖φ(μ)‖p
p − ‖φ(ν′)‖p

p < ε(ν)

where μ ranges over all children of ν in dom(φ).

Proposition 4. Suppose p is a computable real so that p ≥ 1, and let (�p)#

be a computable presentation of �p. Suppose f is a unit atom of �p. If f is a
computable vector of (�p)#, then f∗ is a computable functional of (�p)#.

4 A Compression Theorem

Our proof of Theorem2 will utilize the following theorem which we believe is
interesting in its own right. Roughly speaking, it gives conditions under which
the information in a sequence of reals can be compressed into a single real.

Theorem 9. Let {rn}n∈N be a sequence of real numbers.

1. If {rn}n∈N is uniformly right-c.e., then there is a right-c.e. real r so that the
join of the left Dedekind cuts of the rn’s is enumeration-equivalent to the left
Dedekind cut of r.

2. If {rn}n∈N is uniformly left-c.e., then there is a left-c.e. real r so that the join
of the right Dedekind cuts of the rn’s is enumeration-equivalent to the right
Dedekind cut of r.

5 Every C.E. Degree Is a Degree of Linear Isometry

The following establishes half of Theorem2. It essentially follows from the proof
of the main theorem of [9].

Theorem 10. If p ≥ 1 is a computable real so that p �= 2, then every c.e. degree
is a degree of isometry of some computable presentation of �p.

284 T. H. McNicholl and D. Stull

6 Every Computable Copy of �p Has a C.E. Degree of
Isometry

Suppose p ≥ 1 is computable, and let (�p)# be a computable presentation of
�p. If p = 2, then, as mentioned in the introduction, there is a computable
isometric isomorphism of �p onto (�p)#. So, suppose p �= 2. Let φ be a computable
disintegration of (�p)#, and let S = dom(φ).

For each ν ∈ S, let ε(ν) = min{2−|ν|, ‖φ(ν)‖p
p}. Thus, ε is computable. It

follows from Theorem 8 that there is a partition {Cn}n∈N of S into uniformly
computable chains so that for every n and every nonterminal ν ∈ Cn, Cn contains
a child ν′ of ν so that

max
μ

‖φ(μ)‖p
p − ‖φ(ν′)‖p

p < ε(ν)

where μ ranges over the children of ν in S. Thus, each Cn is almost norm-
maximizing. Let gn denote the �-infimum of φ[Cn].

The proof of Theorem1 uses the following lemmas.

Lemma 3. If {‖gn‖p}n∈N is an X-computable sequence of reals, then X com-
putes an isometric isomorphism of �p onto (�p)#.

Lemma 4. If X computes an isometric isomorphism of �p onto (�p)#, then
{‖gn‖p}n∈N is an X-computable sequence of reals.

Proof (Proof of Lemma 3). Suppose {‖gn‖p}n∈N is an X-computable sequence
of reals.

We first claim that {gn}n∈N is an X-computable sequence of (�p)#. For,
let n, k ∈ N be given. For each σ ∈ Cn, gn � φ(σ), and so ‖φ(σ) − gn‖p =
p

√

‖φ(σ)‖p
p − ‖gn‖p

p. Thus, for each σ ∈ Cn, X computes ‖φ(σ) − gn‖p uniformly

in σ, n. By Theorem 5, there is a σ ∈ Cn so that ‖φ(σ) − gn‖p < 2−(k+1); using
oracle X, such a σ can be found by a search procedure. Since φ is computable,
we can additionally compute a rational vector f of (�p)# so that ‖f − φ(σ)‖p <

2−(k+1). Thus, we have computed a rational vector f of (�p)# so that ‖f − gn‖p <

2−k.
Let G denote the set of all n ∈ N so that gn is nonzero. Thus, G is c.e. relative

to X. By Theorem 5, for each j ∈ N there is a unique n ∈ G so that supp(gn) =
{j}. Thus, G is infinite. So, X computes a one-to-one enumeration {nk}k∈N of
G. Let hk = ‖gnk

‖−1
p gnk

. Thus, {hk}k∈N is an X-computable sequence of (�p)#.
Again, by Theorem5, for each j ∈ N, there is a unique k ∈ N so that

supp(hk) = {j}. So, there is a permutation φ of N so that supp(hk) = {φ(k)}
for each k ∈ N. Since ‖hk‖p = 1, it follows that there is a unimodular scalar λk

so that hk = λkeφ(k). It then follows from Theorem 4 there is a unique isometric
isomorphism T of �p so that T (ek) = hk for all k ∈ N. So, by Theorem 6, T is
an X-computable map of �p onto (�p)#.

The Isometry Degree of a Computable Copy of �p 285

Proof (Proof of Lemma 4). Let n, k ∈ N be given. We compute a rational number
q so that |q − ‖gn‖p | < 2−k as follows. Using oracle X, we search for ν ∈ Cn so
that either ‖φ(ν)‖p < 2−k or so that for some j ∈ N

‖φ(ν) − T (ej)∗(φ(ν))T (ej)‖p
p + ε(ν) < ‖T (ej)∗(φ(ν))T (ej)‖p

p .

By Theorem 4, if gn �= 0, then there exists j ∈ N so that T (ej) and gn have the
same support and so T (ej)∗(gn)T (ej) = gn. So, by Lemma 1.1, this search must
terminate. If ‖φ(ν)‖p < 2−k, since gn � φ(ν), it follows that ‖gn‖p < 2−k and
so we output 0. Otherwise, it follows from Lemma 1.2 that T (ej)∗(φ(ν))T (ej) =
gn. So, using oracle X, we compute and output a rational number q so that
|q − ‖T (ej)∗(φ(ν))T (ej)‖p | < 2−k.

Let rn = ‖gn‖p. Since gn � φ(ν) for all ν ∈ Cn, rn ≤ ‖φ(ν)‖p for all ν ∈ Cn.
Since gn = inf φ[Cn], it follows from Theorem 5 that rn is right-c.e. uniformly in
n. So, by Theorem 9, there is a right-c.e. real r so that the left Dedekind cut of
r is enumeration-equivalent to the join of the left Dedekind cuts of the rn’s. Let
D denote the left Dedekind cut of r, and let d denote the Turing degree of D.
Thus, d is c.e.

We claim that d is the degree of isometric isomorphism of (�p)#. For, since
‖gn‖p is right-c.e. uniformly in n, {‖gn‖p}n∈N is a D-computable sequence. Thus,
by Lemma 3, D computes an isometric isomorphism of �p onto (�p)#. Conversely,
suppose an oracle X computes an isometric isomorphism of �p onto (�p)#. By
Lemma 4, X computes {‖gn‖p}n∈N. Thus, X computes the left Dedekind cut of
r. Therefore, X computes D.

7 Conclusion

For a computable real p ≥ 1 with p �= 2, we have investigated the least powerful
Turing degree that computes a surjective linear isometry of �p onto one of its
computable presentations. We have shown that this degree always exists, and,
somewhat surprisingly, that these degrees are precisely the c.e. degrees. Thus
computable analysis yields a computability-theoretic property that characterizes
the c.e. degrees.

The isometry degree of a pair of computable copies of �p is an instance of
a more general notion of the isomorphism degree of an isomorphic pair of com-
putable structures which is related to the concept of a degree of categoricity.
Since there exist computable structures for which there is no degree of cate-
goricity, this leads to the question “Is there a computable structure A for which
there is no degree of computable categoricity but with the property that any
two of its computable copies possess a degree of isomorphism?”.

Acknowledgments. We thank U. Andrews, R. Kuyper, S. Lempp, J. Miller, and M.
Soskova for very helpful conversations during the first author’s visit to the University
of Wisconsin; in particular for suggesting the use of enumeration reducibility. We also
thank Diego Rojas for proofreading and making several very useful suggestions. Finally,
we thank the reviewers for helpful comments and suggestions.

286 T. H. McNicholl and D. Stull

References

1. Anderson, B., Csima, B.: Degrees that are not degrees of categoricity. Notre Dame
J. Form. Log. 57, 389–398 (2016)

2. Banach, S.: Theory of Linear Operations. North-Holland Mathematical Library,
vol. 38. North-Holland Publishing Co., Amsterdam (1987). Translated from the
French by F. Jellett, With comments by A. Pe�lczyński and Cz. Bessaga

3. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)
4. Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyper-

arithmetic hierarchy. Notre Dame J. Form. Log. 54(2), 215–231 (2013)
5. Fokina, E.B., Kalimullin, I., Russell, M.: Degrees of categoricity of computable

structures. Arch. Math. Log. 49(1), 51–67 (2010)
6. Hanner, O.: On the uniform convexity of Lp and lp. Ark. Mat. 3, 239–244 (1956)
7. Lamperti, J.: On the isometries of certain function-spaces. Pac. J. Math. 8, 459–466

(1958)
8. McNicholl, T.H.: Computable copies of �p. Computability Preprint (Preprint), pp.

1–18
9. McNicholl, T.H.: A note on the computable categoricity of �p spaces. In: Beck-

mann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 268–275.
Springer, Cham (2015)

10. Melnikov, A.G.: Computably isometric spaces. J. Symb. Log. 78(4), 1055–1085
(2013)

11. Melnikov, A.G., Ng, K.M.: Computable structures and operations on the space of
continuous functions. Fundamenta Mathematicae 233(2), 1–41 (2014)

12. Miller, R.: d-computable categoricity for algebraic fields. J. Symb. Log. 74(4),
1325–1351 (2009)

13. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives
in Mathematical Logic. Springer, Berlin (1989)

14. Weihrauch, K.: Computable analysis. Texts in Theoretical Computer Science. An
EATCS Series. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-
9

15. Ziegler, M.: Effectively open mappings. J. Complex. 22, 827–849 (2006)

https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

Algorithmic Statistics and Prediction
for Polynomial Time-Bounded Algorithms

Alexey Milovanov(B)

National Research University Higher School of Economics,
Moscow Institute of Physics and Technology, Moscow, Russia

almas239@gmail.com

Abstract. Algorithmic statistics studies explanations of observed data
that are good in the algorithmic sense: an explanation should be sim-
ple i.e. should have small Kolmogorov complexity and capture all the
algorithmically discoverable regularities in the data. However this idea
can not be used in practice as is because Kolmogorov complexity is not
computable.

In recent years resource-bounded algorithmic statistics were created
[7,8]. In this paper we prove a polynomial-time version of the following
result of ‘classic’ algorithmic statistics.

Assume that some data were obtained as a result of some unknown
experiment. What kind of data should we expect in similar situation
(repeating the same experiment)? It turns out that the answer to this
question can be formulated in terms of algorithmic statistics [6]. We prove
a polynomial-time version of this result under a reasonable complexity
theoretic assumption. The same assumption was used by Antunes and
Fortnow [1].

1 Introduction

Here we give some basic notation and present results about algorithmic statistics
and prediction for general (without resource restrictions) algorithms.

1.1 Algorithmic Statistics

Let x be a binary string, and let A be a finite set of binary strings containing x.
Considering A as an “explanation” (statistical model) for x, we want A to be as
simple and small as possible. This approach can be made formal in the framework
of algorithmic information theory, where the notion of Kolmogorov complexity
of a finite object is defined. The definition and basic properties of Kolmogorov
complexity can be found in [5,9,11]. Informally Kolmogorov complexity C(x) of
a string x is defined as the minimal length of a program that produces x.

We also use another basic notion of the algorithmic information theory, the
discrete a priori probability. Consider a probabilistic machine V without input
that outputs some binary string and stops. It defines a probability distribution

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 287–296, 2018.
https://doi.org/10.1007/978-3-319-94418-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_29&domain=pdf

288 A. Milovanov

on binary strings: mV (x) is the probability to get x as the output of V . There
exists a universal machine U [5,11] such that mU is maximal up to O(1)-factor
among all mV . We fix some U with this property and call mU (x) the discrete
a priori probability of x, denoted as m(x). The function m is closely related to
Kolmogorov complexity: the value − log2 m(x) is equal to C(x) with O(log C(x))-
precision.

Now we can define two parameters that measure the quality of a finite set A
as a model for its element x: the complexity C(A) of A and the binary logarithm
log |A| of its size. The first parameter measures how simple is our explanation;
the second one measures how specific it is. We use binary logarithms to get both
parameters in the same scale: to specify an element of a set of size N we need
log N bits of information.

There is a trade-off between two parameters. The singleton A = {x} is a very
specific description, but its complexity may be high. On the other hand, for a
n-bit string x the set A = {0, 1}n of all n-bit strings is simple, but it is large.
To analyze this trade-off, following [3,4], let us note that every set A containing
x leads to a two-part description of x: first we specify A using C(A) bits, and
then we specify x by its ordinal number in A, using log |A| bits. In total we need
C(A)+ log |A| bits to specify x (plus logarithmic number of bits to separate two
parts of the description). This gives the inequality

C(x) ≤ C(A) + log |A| + O(log C(A)).

The difference δ(x,A) = C(A) + log |A| − C(x)

is called optimality deficiency of A (as a model for x). As usual in algorithmic
statistic, all our statements are made with logarithmic precision (with error
tolerance O(log n) for n-bit strings), so we ignore the logarithmic terms and say
that δ(x,A) is positive and measures the overhead caused by using two-part
description based on A instead of the optimal description for x.

One could wonder why we consider only sets as explanations and not general
probability distributions (in other terms, why we restrict ourselves to uniform
probability distributions). The reason is that this extension is not essential: for
every string x and for every distribution μ there exists a set A � x explaining x
that is almost as good as μ, as the following observation shows:

Proposition 1 ([14]). For every string x and for every distribution μ there
exists a set A � x such that C(A|μ) ≤ O(log |x|) and 1

|A| ≥ 1
2μ(x).

There exists another approaches to algorithmic statistics (see [10,13,15])
however they are essentially equivalent.

1.2 Prediction Hierarchy

Assume that we have some experimental data represented as a binary string x.
We look for a good statistical model for x and find some set A that has small
optimality deficiency δ(x,A). The problem, however, is that many different mod-
els with small optimality deficiency may exist for a given x. If we want to cover

Algorithmic Statistics and Prediction 289

all the possibilities, we need to consider the union of all these sets, so we get the
following definition.

Definition 1. Let x ∈ {0, 1}n be a binary string and let d be some integer. The
union of all finite sets of strings A ⊂ {0, 1}n such that x ∈ A and δ(x,A) ≤ d is
called algorithmic prediction d-neighborhood of x.

Obviously d-neighborhood increases as d increases.
There is another natural approach to prediction. Since we treat the exper-

iment as a black box (the only thing we know is its outcome x), we assume
that the possible models A ⊂ {0, 1}n are distributed according to their a priori
probabilities, and consider the following two-stage process. First, a finite set is
selected randomly: a non-empty set A is chosen with probability m(A). Second,
a random element x of A is chosen uniformly. In this process every string x is
chosen with probability ∑

A�x

m(A)/|A|.

For a given pair of strings x and y consider the conditional probability

Px(y) := Pr[y ∈ A | the output of the two-stage process is x].

Having some string x and some threshold d, we now can consider all strings y
such that Px(y) ≥ 2−d (we use the logarithmic scale to facilitate the comparison
with algorithmic prediction). These strings could be considered as plausible ones
to appear when repeating the experiment of unknown nature that once gave x.

Definition 2. Let x be a binary string and let d be an integer. The set of all
strings y such that px(y) ≥ 2−d is called probabilistic prediction d-neighborhood
of x.

It turns out that this approach is essentially equivalent to algorithmic prediction
neighborhood.

Theorem 1 ([6]). (a) For every n-bit string x and for every d the algorithmic
prediction d-neighborhood is contained in probabilistic prediction d + O(log n)-
neighborhood.

(b) For every n-bit string x and for every d the probabilistic predic-
tion d-neighborhood of x is contained in algorithmic prediction d + O(log n)-
neighborhood.

Our main result is a version of this theorem for time-bounded algorithms.

2 Algorithmic Statistics for Polynomial Time

Here we present our approach to polynomial time-bounded algorithmic statistics.
As explanations for strings we consider probability distributions over the set of
binary strings. We can not limit ourself by sets (uniform distributions) since an
analogue of Proposition 1 for polynomial time-bounded algorithms is unknown.

290 A. Milovanov

Let a probability distribution μ be an explanation for a string x. There is
a natural parameter measuring how good is μ as an explanation for x, namely
μ(x). Also we need to measure simplicity of μ. A probability distribution is
called simple, if it can be sampled by a short probabilistic program with no
input in polynomial time. A formal definition can be done by using the notion
of universal machines—see [8]. There are other ways to measure acceptability
of a distribution as explanation to stings [8]. However the way discussed above
is the most usable for our investigation.

To measure “simplicity” we will use the notion of time-bounded prefix-free
Kolmogorov complexity Kt(x). Informally it is defined as the minimal length of
a prefix-free program that produces x in at most t steps (see [5] for more details).
In fact the difference between prefix free and plain time-bounded complexities
is not essential (the plain complexity bounded by time t of a string x is denoted
by Ct(x)).

Proposition 2 ([5]). For every string x and for every t there exists c such that:

(a) Ct(x) ≤ Kt(x) + c.
(b) Kct log2 t(x) ≤ Ct(x) + c log |x|.

Models of Restricted Type

So far we considered arbitrary distributions as models (statistical hypotheses).
However, in practice we usually have some a priori information about the data.
We know that the data was obtained by sampling with respect to an unknown
probability distribution from a known family of distributions M.

For example, we can consider the family of uniform distribution on Hamming
balls as M. (That means we know a priori that our string was obtained by
flipping certain number of bits in an unknown string.) Restricting the class of
allowed hypotheses was initiated in [15].

In our paper we will consider families with the following properties:

– Every element from M is a distribution on the strings of the same length.
The family of distribution on {0, 1}n that belong to M is denoted by Mn.

– There exists a polynomial q such that |Mn| = 2q(n) for every n.
– There exists a polynomial t such that for every μi ∈ Mn there exists a

program pi that samples μi in time t(n). (This means that for every x of
length n the probability of the event “pi outputs x” equals μi(x) and the
running time of pi is at most t(n) for all outcomes of coin tossing.) Moreover
there exists a deterministic program pM that for i ∈ {0, 1}q(n) outputs the
program pi in time t(n).

– For every string x there exists μ ∈ M such that μ(x) = 1. Moreover the pro-
gram that samples this distribution can be obtained as pM(x0q(n)−n) where
n is the length of x.

Any family of distributions that satisfies these four conditions is called accept-
able. For example, the family of uniform distribution on Hamming balls is accept-
able.

Algorithmic Statistics and Prediction 291

If a probability distribution μ ∈ M is sampled by a program pi = p(i) then
it is natural to compare Kpoly(i)− log μ(x) with Kpoly(x) (the difference between
these values is an analogue of optimality deficiency in ‘classic’ algorithmic statis-
tics). If Kpoly(i) − log μ(x) − Kpoly(x) ≈ 0 then μ is called optimal distribution
for x. Here is a formal definition.

Definition 3. A distribution μ in an acceptable family M is called M, d, t1, t2-
optimal for a string x if the distribution μ can be sampled by a probabilistic
program pM(i) ∈ M in time t1 such that

Kt1(i) − log μ(x) − Kt2(x) ≤ d.

3 Prediction Hierarchy in Polynomial Time

Here for a given acceptable family M we introduce notions of algorithmic and
probabilistic prediction neighborhoods. For simplicity first we will consider only
families of uniform distributions.

Definition 4. Let x ∈ {0, 1}n, let d, t1, t2 be some integers and let M be an
acceptable family of uniform distributions. The set of all strings y such that
there exists μ ∈ M such that

– μ(y) > 0,
– μ is d, t1, t2-optimal for x

is called M-algorithmic prediction d, t1, t2-neighborhood of x.

Such d, t1, t2-neighborhood increases as d and t1 increases and t2 decreases.
To define probabilistic prediction neighborhood we need first to recall the

time-bounded version of discrete a priori probability. The t-bounded discrete a
priori probability of string x is defined as

mt(x) = 2−Kt(x).

Now we present results that show that this definition is consistent with the
unbounded definition.

Definition 5. A probability distribution σ over {0, 1}∗ is called P-samplable, if
there is randomized machine M so that Pr[M output x] = σ(x) and M runs a
polynomial time of the length of the output.

Theorem 2 ([2]). For every polynomial p, there are a P-samplable distribution
σ and a constant c such that for every string x

σ(x) ≥ 1
|x|c mp(x).

The inequality in the opposite direction holds under the following assumption.

292 A. Milovanov

Assumption 1. There is a set which is decidable by deterministic Turing
machines in time 2O(n) but is not decidable by deterministic Turing machines in
space 2o(n) for almost all n.

Theorem 3 (Lemma 3.2 in [1]). Under Assumption 1 for every P-samplable
probability distribution σ there is number d such that for all x of length n,

mnd

(x) ≥ σ(x)
nd

.

Now we are ready to define M-probabilistic prediction neighborhood. Recall
that by the 2nd and the 4th properties of acceptability of M there exists a
polynomial q such that every string in {0, 1}q(n) defines a distribution in M.

Consider the following two-stage process for given polynomial t. First a string
s ∈ {0, 1}q(n) is selected randomly with probability mt(n)(s). This string s defines
a distribution μs ∈ M. Then a string x ∈ {0, 1}n is randomly chosen according
the distribution μs. In this process every string x is chosen with probability

∑

s

mt(n)(s)μs(x).

Consider the following probability.

P t
x,M(y) = Pr[μs(y) > 0 | the output of the two-stage process is x]. (1)

Note that μs is a uniform distribution (now we consider only such families M).

Definition 6. Let x be a binary string, let d be an integer, t be a polynomial
and M be an acceptable family. The set of all strings y such that P t

x,M(y) ≥ 2−d

is called M-probabilistic prediction d, t-neighborhood of x.

Our main result is the following

Theorem 4. (a) Under Assumption 1 the following holds. For every polyno-
mial t there exists polynomial r such that for every n-bit string x and for every
d the M−algorithmic prediction d, t(n), r(n)-neighborhood of x is contained in
M−probabilistic prediction d + O(log n), t-neighborhood of x.

(b) Under Assumption 1 the following holds. For every polynomial t there
exists a polynomial r such that for every n-bit string x and for every d the
M-probabilistic prediction d, t-neighborhood of x is contained in M-algorithmic
prediction d + O(log n), r(n), t(n)-neighborhood.

Non-uniform Distribution

Here we extend the notions of algorithmic and probabilistic prediction neigh-
borhoods to arbitrary acceptable family of distribution M . Before we define
algorithmic neighborhood note that now the condition μ(y) > 0 is very weak (it
is possible that for every y the value μ(y) is very small but positive). By this
reason we have to add a new parameter.

Algorithmic Statistics and Prediction 293

Definition 7. Let x ∈ {0, 1}n, let d, k, t1, t2 be some integers and let M be an
acceptable family of distributions. The set of all strings y such that there exists
μ ∈ M such that

– μ(y) > 2−k,
– μ is d, t1, t2-optimal for x

is called M-algorithmic prediction d, k, t1, t2-neighborhood.

Such d, k, t1, t2-neighborhood increases as d, k and t1 increases and t2 decreases.
To define the probability neighborhood we consider the same 2-stage process.
However now we consider another the conditional probability for given x and y.

pr
x,h,M(y) = Pr[μs(y) > 2−h | the output of the two-stage process is x]. (2)

Definition 8. Let x be a binary string, let λ, h be integers, r be a polynomial and
M be an acceptable family. The set of all strings y such that pr

x,h,M(y) ≥ 2−λ

is called M-probabilistic prediction λ, h, r-neighborhood of x.

The generalization of Theorem 4 is the following.

Theorem 5. (a) Under Assumption 1 the following holds. For every polynomials
t there exists polynomial r such that for every n-bit string x and for every d and
k the M−algorithmic prediction d, k, t(n), r(n)-neighborhood of x is contained in
M−probabilistic prediction λ, h, t-neighborhood of x if λ ≥ d − min(0, h − k) +
O(log n).

(b) Under Assumption 1 the following holds. For every polynomial t there
exists a polynomial r such that for every n-bit string x and for every d the M-
probabilistic prediction λ, h, t-neighborhood of x is contained in M-algorithmic
prediction d, k, t(n), r(n)-neighborhood of x if λ ≥ d + min(0, h − k) + O(log n).

4 Proof of Theorem4

Proof (of Theorem 4(a)). This direction is simple. Assume that y belongs to
M−algorithmic prediction d, t(n), r(n)-neighborhood of x. Here r is a polyno-
mial that we will define later. By definition this means that there exists μ ∈ M
such that μ(y) > 0 and μ is d, t(n), r(n)-optimal. The later means that for some
i the following inequality holds:

Kt(n)(i) − log μi(x) − Kr(n)(x) ≤ d. (3)

We need to show that y belongs to M-probabilistic prediction d + O(log n), t-
neighborhood of x, i.e. P t

x,M(y) ≥ 2−d−O(log n) (see (1)). By definition (1) can
be rewritten as

P t
x,M(y) =

∑
s:ms(y)>0 mt(n)(s)μs(x)
∑

s mt(n)(s)μs(x)
. (4)

Now we choose polynomial r such that the denominator of (4) is not greater
than mr(n)(x)2O(log n). Under Assumption 1 such polynomial r exists. Indeed,

294 A. Milovanov

the denominator of (4) defines a P-sample distribution that can be dominated
by a polynomial-time bounded discrete a priori probability by Theorem3.

The sum at the numerator of (4) is not less than one term that obtained
by taking s = i. So, from (3) it follows that the numerator is not less
than mr(n)(x)2−d. Hence, P t

x,M(y) ≥ 2−d−O(log n). Therefore y belongs to M-
probabilistic prediction d + O(log n), t-neighborhood of x.

We will derive Theorem 4(b) from the following lemma.

Lemma 1. For every polynomial t under Assumption 1 there exists polynomial
r such the following hold. Let x and y be strings of length n and let M be an
acceptable family of distributions. Then there exists string i s. t. μi(y) > 0 and

∑

s:μs(y)>0

mt(n)(s)μs(x) ≤ mr(n)(i)μi(x)2O(log n).

Proof (of Theorem 4(b) from Lemma 1). Let string y belongs to M-probabilistic
prediction d, t-neighborhood of x, i.e. P t

x,M(y) ≥ 2−d. Let us estimate P t
x,M(y).

First note that the denominator of (4) is less than mt(n)(x). Indeed, by the
last property of acceptability there exists μs ∈ M such that μs(x) = 1
and mO(t(n))(s) = mt(n)(x) + O(1). The numerator of (4) can be estimated
by Lemma 1 as mr(n)(i)μi(x)2O(log n) for some string i and polynomial r. So,
log P t

x,M(y) is less than

Kr(n)(i) − log μi(x) − Kt(n)(x) + O(log n).

This value is not smaller than d. Hence, y belongs to M-algorithmic prediction
d + O(log n), r(n), t(n)-neighborhood of x.

Lemma 2. Let H be a set of functions from {0, 1}l to {0, 1}m with the following
properties.

– For every l at least 3
4 of all functions from {0, 1}l to {0, 1}n are in H.

– For some k there is a Σp
k machine with oracle access to a function H on input

1l will accept exactly when H is in H.

Then under Assumption 1 there is a polynomial-time computable function
H ′(x, r) with x ∈ {0, 1}l and |r| = O(log l) such that for at least 2

3 of the possible
r, Hr(x) = H ′(x, r) is in H.

Proof (of Lemma 1 from Lemma 2).

The sum
∑

s:ms(y)>0

mt(n)(s)μs(x) is equal to the sum over all k and j of sums

∑

s:μs(y)>0

mt(n)(s)=2−k

μs(x)=2−j

mt(n)(s)μs(x). (5)

Algorithmic Statistics and Prediction 295

In fact only poly(n) of such sums are positive. Indeed, from acceptability of M
it is follows that Kpoly(n)(μs) is bounded by poly(n). Also, if μs(x) < 2−poly(n)

then μs(x) = 0 since μs is sampled by a polynomial time-bounded program.
Hence it is enough to show that for every j and k there exists i and polynomial
r such that mr(n)(i)μi(x)2O(log n) is greater than (5) and μi(y) > 0.

Denote by U t(n) a function that works as a universal Turing machine U but if
U does not outputs anything in t(n) steps then it outputs empty string. Denote
by w the logarithm of the number of terms in the sum (5). Denote by H the set
of all functions h from {0, 1}k−w+8 log n to {0, 1}k with the following property:

If for a pair of strings (x′, y′) of length n there exist at least 2w strings s such
that μs(y′) > 0, mt(n)(s) = −k and μs(x′) = 2−j then one of this string is in
the image of U(h).

Lemma 3. At least 3
4 of all possible functions from {0, 1}k−w+8 log n to {0, 1}k

belongs to H.

Using Lemma 3 we prove the existence of i such that m(i)μi(x)2O(log n) is
greater than (5). (Note that here m is not polynomial-time bounded, so this is
not really what we want.) By Lemma 3 there exists a function that belongs to H.
The lexicographically first such function has small complexity, because it can be
computed given j, k, n and w. Since h ∈ H there exists i′ ∈ {0, 1}k−w+8 log n such
that μi(x) = 2−j and μi(y) > 0 where i = U(h(i′)). Since i′ ∈ {0, 1}k−w+8 log n

the complexity of i is not greater than K(i) ≤ k − w + O(log n). A simple
calculation shows that m(i)μi(x)2O log n is greater than (5).

To prove the existence of such string i which polynomial-time bounded com-
plexity is less than k − w + O(log n) we need a simple and polynomial-time
computable function in H. To find it we use Lemma 4 for l = k −w +8 log n and
m = k. We claim that family H satisfies properties of Lemma 4. For the first
property it is true by Lemma 3. For the second property note that the property
h ∈ H can written as

∀(x′
, y

′
)∃2ws : ((μs(x

′
) = 2

−j
) ∧ (μs(y

′
) > 0)) ⇒ ∃i : ((μU(h(i))(x

′
) = 2

−j
) ∧ (μU(h(i))(y

′
) > 0)).

This property belongs to PΣl
p for some l since the approximation of the number

of certificates belongs to Σ2
p [12]. So, there exists polynomial-time computable

H ′(x, r) such that for some fixed r function Hr(x) = H ′(x, r) is in H. Since |r| =
O(log n) we conclude that there exists simple and polynomial time computable
function in H that complete the proof.

Acknowledgments. This work is supported in parts by the RFBR grant 16-01-00362,
by the Young Russian Mathematics award, MK-5379.2018.1 and the RaCAF ANR-
15-CE40-0016-01 grant. The study has also been funded by the Russian Academic
Excellence Project ‘5-100’.

296 A. Milovanov

References

1. Antunes, L., Fortnow, L.: Worst-case running times for average-case algorithms.
In: Proceedings of the 24th IEEE Conference on Computational Complexity, pp.
298–303 (2009)

2. Antunes, L., Fortnow, L., Vinodchandran, N.V.: Using depth to capture average-
case complexity. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp.
303–310. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45077-
1 28

3. Koppel, M.: Complexity, depth and sophistication. Complex Syst. 1, 1087–1091
(1987)

4. Kolmogorov, A.N.: Talk at the Information Theory Symposium in Tallinn, Estonia
(then USSR) (1974)

5. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. TCS, vol. 3. Springer, New York (2008). https://doi.org/10.1007/978-0-387-
49820-1

6. Milovanov, A.: Algorithmic statistic, prediction and machine learning. In: Pro-
ceedings of 33rd Symposium on Theoretical Aspects of Computer Science (STACS
2016). Leibnitz International Proceedings in Informatics (LIPIcs), vol. 47, pp. 54:1–
54:13 (2016)

7. Milovanov, A.: On algorithmic statistics for space-bounded algorithms. In: Weil, P.
(ed.) CSR 2017. LNCS, vol. 10304, pp. 232–244. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58747-9 21

8. Milovanov A., Vereshchagin N.: Stochasticity in algorithmic statistics for polyno-
mial time. In: 32nd Computational Complexity Conference (CCC 2017). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 79, pp. 17:1–17:18 (2017)

9. Shen, A.: Around kolmogorov complexity: basic notions and results. In: Vovk, V.,
Papadopoulos, H., Gammerman, A. (eds.) Measures of Complexity: Festschrift
for Alexey Chervonenkis, pp. 75–115. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21852-6 7. ISBN: 978-3-319-21851-9

10. Shen, A.: The concept of (α, β)-stochasticity in the Kolmogorov sense, and its
properties. Sov. Math. Dokl. 271(1), 295–299 (1983)

11. Shen, A., Uspensky, V., Vereshchagin, N.: Kolmogorov Complexity and Algorith-
mic Randomness. ACM, New York (2017)

12. Stockmeyer, L.: On approximation algorithms for #P. SIAM J. Comput. 14(4),
849–861 (1985)

13. Vereshchagin, N., Shen, A.: Algorithmic statistics: forty years later. In: Day, A.,
Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.)
Computability and Complexity. LNCS, vol. 10010, pp. 669–737. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-50062-1 41

14. Vereshchagin, N., Vitányi, P.M.B.: Kolmogorov’s structure functions with an appli-
cation to the foundations of model selection. IEEE Trans. Inf. Theory 50(12),
3265–3290 (2004). Preliminary Version: Proceedings of 47th IEEE Symposium on
the Foundations of Computer Science, pp. 751–760 (2002)

15. Vereshchagin, N., Vitányi, P.M.B.: Rate distortion and denoising of individual data
using Kolmogorov complexity. IEEE Trans. Inf. Theory 56(7), 3438–3454 (2010)

https://doi.org/10.1007/978-3-540-45077-1_28
https://doi.org/10.1007/978-3-540-45077-1_28
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-3-319-58747-9_21
https://doi.org/10.1007/978-3-319-58747-9_21
https://doi.org/10.1007/978-3-319-21852-6_7
https://doi.org/10.1007/978-3-319-21852-6_7
https://doi.org/10.1007/978-3-319-50062-1_41

A C.E. Weak Truth Table Degree Which
Is Array Noncomputable and R-maximal

Martin Monath(B)

Institut für Informatik, Universität Heidelberg, 69120 Heidelberg, Germany
martin.monath@informatik.uni-heidelberg.de

Abstract. In 1990, Downey, Jockusch and Stob introduced array non-
computable sets which capture certain multiple permitting arguments.
They completely characterize the simplicity notions which are compat-
ible with array noncomputability. Here we generalize this question and
ask for which simplicity properties P there exist c.e. wtt-degrees that
contain both sets with property P and array noncomputable sets. By
showing that there exists an r-maximal set which is wtt-equivalent to an
array noncomputable set we obtain a complete answer to this question
for the standard simplicity notions.

1 Introduction

In 1944, Emil Post addressed in his paper [8] his famous question whether there
exists an incomplete and noncomputable computably enumerable (c.e.) Turing
degree. Today, this is known as Post’s problem. In his paper, he also introduced
the notions of simple, hypersimple and hyperhypersimple sets. Although it is
known that one cannot solve Post’s problem using (hyper-/hyperhyper-) sim-
ple sets, these properties have later been investigated independently and other
notions of simplicity have been proposed, e.g. maximal sets by Myhill [7]. An
overview of the best known simplicity notions and their relations among each
other is given in Fig. 1 (see Soare [9, p. 211]).

Now given a subclass C of the c.e. sets, it is an interesting question which of
the simplicity notions may hold for sets in C. An example of a class for which this
question was investigated is the class of the array noncomputable (a.n.c.) sets.
These sets were introduced by Downey et al. in [6] and they were classified there

maximal

r-maximal

quasi-maximal hh-simple

sh-simple fsh-simple

dense simple

h-simple simple

Fig. 1. Most common simplicity properties and their relations among each other. An
arrow P → Q indicates that property P implies property Q but not vice versa.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 297–306, 2018.
https://doi.org/10.1007/978-3-319-94418-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_30&domain=pdf

298 M. Monath

as the c.e. sets that allow certain permitting constructions below them, called
multiple permitting. It turned out that many constructions in computability
theory are compatible with the multiple permitting technique and thus can be
performed precisely below the a.n.c. degrees, i.e., the c.e. Turing degrees that
contain a.n.c. sets. For instance, a.n.c. degrees have deep connections to maximal
pairs both in the c.e. and the left-c.e. computable Lipschitz (cl) degrees as shown
in [3,4], respectively.

Now in [6], Downey et al. describe exactly which of the properties in Fig. 1
may hold for a.n.c. sets and which not. On the negative side, they showed that
a.n.c. sets cannot be dense simple nor strongly hypersimple. On the positive side,
they showed that there is a finitely strongly hypersimple a.n.c. set.

In this paper we address the question if the boundaries are the same if we
replace a.n.c. sets by their weak truth table (wtt) degrees. On the negative
side, recently Ambos-Spies [1] showed that no a.n.c. wtt-degree contains a dense
simple set, thereby extending the corresponding result in [6] from sets to wtt-
degrees. In contrast to [6], however, we show here that the positive bound turns
out to be stronger for a.n.c. wtt-degrees than for a.n.c. sets. More precisely, we
prove the following.

Theorem 1. There exists a c.e. wtt-degree a which is a.n.c. and r-maximal.

By Theorem 1 and the result by Ambos-Spies [1], we completely describe
which of the simplicity properties in Fig. 1 may hold for any a.n.c. wtt-degree.

The outline of the paper is as follows. In Sect. 2, we give the basic definitions
that are needed for the proof of Theorem1. In Sect. 3, we give the basic idea of
the proof and give the formal construction. Finally, in Sect. 4, we verify that the
construction yields a set with the required properties.

2 Preliminaries

In this paper, we follow the notation as given in [9]. In particular, {ϕe}e≥0

denotes the standard enumeration of all unary partial computable functions and
{We}e≥0, where We = dom(ϕe) – the domain of ϕe – the standard enumeration
of all c.e. sets. Moreover, ϕe,s denotes the approximation of ϕe within s steps
and We,s = dom(ϕe,s); finally, we follow the usual convention on converging
computations, i.e., for all e, x, s ≥ 0, if ϕe,s(x) ↓ holds then e, x, ϕe(x) < s. So
We,s ⊆ ω � s for all e, s.

Now first of all, recall the definition of an r-maximal set.

Definition 1. A c.e. set A is r-maximal if it is coinfinite and for every com-
putable set R, either R ∩ Ā or R̄ ∩ Ā is finite.

Next, we give the definition of an array noncomputable set. To that end, we
need the notion of a very strong array.

A C.E. Weak Truth Table Degree 299

Definition 2 ([6]). A very strong array (v.s.a. for short) is a sequence of finite
sets F = {Fn}n≥0 such that there exists a computable function f : ω → ω such
that for all n, it holds that Fn = Df(n) (i.e., f(n) is the canonical index of
Fn), 0 < |Fn| < |Fn+1| and Fm ∩ Fn = ∅ for all m �= n. Moreover, a v.s.a.
F = {Fn}n≥0 is called a very strong array of intervals (v.s.a.i.) if each Fn is an
interval such that max(Fn) < min(Fn+1) holds for all n.

Based on very strong arrays, array noncomputability is defined for c.e. sets
as follows.

Definition 3. Given a v.s.a. F = {Fn}n≥0, a c.e. set A is F-array non-
computable (F-a.n.c.) if for all c.e. sets W , there exists n ≥ 0 such that
W ∩ Fn = A ∩ Fn; A is called array noncomputable (a.n.c.) if it is F-a.n.c.
for some v.s.a. F ; and a wtt-degree a is array noncomputable if a contains an
array noncomputable set.

Note that in the original definition of very strong arrays given in [6], it is
required that very strong arrays partition ω. Definition 2 follows the one given in
[5]. However, this does not affect the notion of array noncomputability for wtt-
degrees. Namely, as shown in [2], every a.n.c. set A in the sense of Definition 3
is F-a.n.c. for a v.s.a F with

⋃
n∈ω Fn = ω. For the proof of Theorem 1, we use

a characterization of the a.n.c. wtt-degrees given by [1].

Definition 4 ([1]). Let F = {Fn}n≥0 be a v.s.a., let f be a computable function,
let A be c.e. set, and let {As}s≥0 be computable enumeration of A. Then A is
F-permitting via f and {As}s≥0 if, for any partial computable function ψ,

∃∞n ∀x ∈ Fn (ψ(x) ↓ ⇒ A � f(x) + 1 �= Aψ(x) � f(x) + 1) (1)

holds. A is F-permitting via f if there is a computable enumeration {As}s≥0

of A such that A is F-permitting via f and {As}s≥0; A is F-permitting if A is
F-permitting via some computable f ; and A is multiply permitting if A is F-
permitting for some v.s.a. F . Finally, a c.e. wtt-degree a is multiply permitting
if there is a multiply permitting set A ∈ a.

As shown in [1], the c.e. multiply permitting wtt-degrees coincide with the
a.n.c. wtt-degrees.

Theorem 2. For a c.e. wtt-degree a, the following are equivalent.

1. a is a.n.c.
2. a is multiply permitting.
3. Every c.e. set A ∈ a is multiply permitting.

So for the sake of Theorem 1, it suffices to construct a c.e. set A which is both
multiply permitting and r-maximal. Before we state the formal construction of
such a set A, let us give some idea of the proof.

300 M. Monath

3 Idea of the Proof of Theorem1

The construction of A is divided into two parts. First, we construct a c.e. set
B such that B is r-maximal and such that the complement B̄ is “big enough”
(which is made precise in (2) below). Then we define a v.s.a. F and construct A
as a c.e. superset of B such that A is F-permitting via the identity function. So
first let us make precise what B looks like.

Lemma 1. There exists a v.s.a.i. G = {Gn}n≥0 and an r-maximal set B such
that

∃∞n (|Gn ∩ B̄| ≥ (n + 1)2). (2)

We claim that from Lemma 1, we can define a c.e. set A as required.

Proof (of Theorem 1 using Lemma 1). Fix G = {Gn}n≥0 and B as in Lemma 1
and fix a computable enumeration {Bs}s≥0 of B. Let F = {Fn}n≥0 be the unique
v.s.a. such that Fn = {xn

0 , . . . , xn
n}, where xn

0 , . . . , xn
n are the first n+1 elements

of Gn+1 in order of magnitude (note that Fn ⊆ Gn+1 since |Gn| ≥ n + 1 for all
n; hence, max(Gn) < min(Fn) as G is a v.s.a.i.). Then we define a computable
enumeration {As}s≥0 of A in stages s as follows, where As denotes the finite set
of numbers that are enumerated into A by stage s.

Construction of A.

Stage 0. A0 = ∅.
Stage s + 1. Given As, let Ns be the set of all n ∈ ω such that
(a) Gn �⊆ As and
(b) ∃ e, x (e ≤ n & x ∈ Fn & ϕe,s(x) ↑ & ϕe,s+1(x) ↓)
hold (note that Ns ⊆ ω � s). Let As+1 = Bs+1 ∪ As ∪ {min(Gn \ As) : n ∈ Ns}.

We claim that the so constructed set A is multiply permitting and r-maximal.
Clearly, it suffices to show that A is multiply permitting (namely, every multiply
permitting set is noncomputable; hence, Ā is infinite, and every coinfinite c.e.
superset of an r-maximal set is r-maximal as well). To this end, let e be given.
By (2), fix n ≥ e such that |Gn ∩ B̄| ≥ (n + 1)2. We claim that any such n
witnesses that (1) holds for ϕe in place of ψ with f(x) = x. Since by Lemma 1,
there exist infinitely many such n, this proves the claim. By construction and by
convention on converging computations, it suffices to show that Gn �⊆ As holds
for any stage s such that (b) holds. For a proof by contraposition, let s be a
stage such that Gn ⊆ As. Now for any stage s′, a number may enter A ∩ Gn

only if (b) holds at stage s′ + 1 or if x enters B at stage s′ + 1. But on the one
hand, there are at most |Fn| · (n+1) = (n+1)2 numbers that may enter A∩Gn

via (b). On the other hand, Gn ∩ B̄ ≥ (n + 1)2 by choice of n. So Gn ⊆ As can
only hold if ϕe,s(x) ↓ holds for all x ∈ Fn; hence, (b) cannot hold for any stage
t ≥ s. ��

Thus, it remains to show that Lemma 1 holds.

A C.E. Weak Truth Table Degree 301

3.1 Proof of Lemma 1: Construction of B

For the proof of Lemma 1, we effectively construct a c.e. set B in stages s where
Bs denotes the finite set of numbers which are enumerated into B by stage s.
Before we give the formal construction, let us discuss some of the ideas behind
it and introduce some of the concepts to be used in the construction.

We give the definition of the v.s.a.i. G = {Gn}n≥0 in advance. We define
{Gn}n≥0 as the unique v.s.a.i. such that min(G0) = 0, min(Gn+1) = max(Gn)+1
and

|Gn| = 2
n(n+1)

2 (n + 1)2 (3)

holds. Then it suffices to construct B such that (2) holds and such that B meets
for all e the requirements

Qe : V 0
e ∪ V 1

e = ω ⇒ ∃i ≤ 1 ∀∞n (V i
e ∩ Gn ⊆ B). (4)

where {(V 0
e , V 1

e)}e≥0 is an effective enumeration of all pairs of disjoint c.e. sets.
Such an enumeration can be easily obtained as follows. Given e = 〈e0, e1〉 and
stage s, let te,s be the largest stage t ≤ s such that We0,t ∩ We1,t = ∅ and let
V i

e,s = Wei,te,s
for i ≤ 1. Then V 0

e,s ∩ V 1
e,s = ∅ for all e, s ≥ 0 and if We0 and We1

are disjoint then V i
e = Wei

for all i ≤ 1. We call a requirement Qe infinitary if
the hypothesis of Qe holds.

Clearly, it is undecidable whether a requirement is infinitary (in fact, it is
not hard to show that this question is Π2-complete). So we have to effectively
approximate this question in the course of the construction. For this we define T
as the full binary tree as a priority tree. A node α ∈ T of length n codes a guess
at which of the first n requirements are infinitary where, for e < n, α(e) = 0
codes that Qe is infinitary. Correspondingly we call e an infinitary edge of α
in this case. Then the true path TP is the infinite path through T satisfying
TP (e) = 0 iff Qe is infinitary. In order to approximate TP at stage s of the
construction we use the following length of agreement function

l(e, s) = μy(V 0
e,s(y) = V 1

e,s(y) = 0). (5)

By choice of the sequence {(V 0
e , V 1

e)}e≥0, l(e, s) is nondecreasing in s for all e
and, for fixed e, it is unbounded iff Qe is infinitary. Based on l(e, s), we define
the set of α-stages by induction on |α| as follows. Every stage is a λ-stage. An
α-stage s is called α-expansionary if s = 0 or l(|α|, s) > l(|α|, t) for all α-stages
t < s. Then a stage s is an α0-stage if it is α-expansionary and an α1-stage if it
is an α-stage but not α-expansionary. The current approximation δs of TP � s
at the end of stage s is the unique node α of length s such that s is an α-stage,
and we say that α is accessible at stage s + 1 if α is an initial segment of δs,
i.e., α � δs. Note that TP = lim infs→∞ δs, i.e., TP � n is the leftmost node
of length n which is accessible infinitely often for every n. As usual, we say for
two nodes α and β that α has higher priority than β and denote it by α < β iff
α � β (i.e., α is a proper initial segment of β) or α is to the left of β, denoted
by α <left β, i.e., there exists γ ∈ T such that γ0 � α and γ1 � β.

302 M. Monath

Now the strategy for meeting the requirements Qe which at the same time
satisfies (2) is based on a variant of the e-state definition used in the construction
of a maximal set as e.g. given in [9]. We assign the intervals Gn to the nodes
α ∈ T where at each stage at most one interval is assigned to α. An unused
interval is assigned to α only at a stage where α is accessible, and the interval
assigned to α is cancelled if α is to the right of δs. In this case, Gn is deleted, i.e.,
all elements of Gn are enumerated into B. So an interval may be permanently
assigned to α only if α is on the true path or to the left of it (we also make sure
that intervals that are never assigned to any node are deleted as well). Moreover,
for any number e, there will be only finitely many nodes to the left of TP � e+1
which get a permanent interval assigned since only finitely many such nodes are
ever accessible. So almost all intervals which are never deleted are assigned to
nodes extending TP � e + 1 and hence have the correct guess about the type of
the first e + 1 requirements.

Now, for any interval Gn, any node α and any stage s, the α-state of Gn

at stage s, denoted by σ(α, n, s) is a binary string of length ≤ k where k is the
number of infinitary edges of α where in the following, let e0 < e1 < · · · < ek−1

be the infinitary edges of α. Then |σ(α, n, s)| is the greatest j ≤ k such that
for any j′ < j, l(ej′ , s) > max(Gn); hence, V 0

ej′ ,s and V 1
ej′ ,s partition Gn (note

that for α on the true path |σ(α, n, s)| = k for sufficiently large s). Moreover,
for j′ < j, we choose the values ij′ of σ(α, n, s)(j′) inductively in such a way
that enumerating V

ij′
ej′ ∩Gn into B will keep |Gn ∩ B̄| at least as big as when we

would enumerate V
1−ij′
ej′ ∩ Gn into B (for the precise definition of the inductive

step of σ(α, n, s), see (7) below). As we will show, this ensures that the inner
clause of (2) holds for any n such that Gn is never deleted.

Finally, in order to guarantee that requirement Qe is met it suffices to ensure
that (in the limit) almost all of the states σ(α, n, s) of intervals Gn permanently
assigned to α extending TP � e + 1 agree on the first k′ + 1 arguments where
k′ + 1 = |{e′ ≤ e : TP (e′) = 0}|. Namely, for infinitary Qe this ensures that
there is i ≤ 1 such that σ(α, n, s)(k′) = i in almost all of the cases above whence
V i

e ∩ Gn ⊆ B for almost all undeleted intervals Gn; hence, V i
e ⊆∗ B.

Now the states can be unified in the above way as follows. Whenever intervals
Gn and Gn′ are assigned to α and β, respectively, where α < β, |α| < |β| and
σ(α, n′, s) <left σ(α, n, s) holds then the interval Gn′ is assigned to α in place
of Gn. Note that this replacement must be done even if α is to the left of δs. For
the formal definition of the states we first introduce an auxiliary notion.

For finite subsets E,F ⊆ ω the density of E inside F , denoted by ρ(E,F),
is defined as

ρ(E,F) =
|E ∩ F |

|F | , (6)

where we set ρ(E, ∅) = 0. Then given α ∈ T , stage s and n ≥ 0, we let σ(α, n, s)
denote the α-state of Gn at stage s and define it to be the longest string σ ∈
{0, 1}<ω such that |σ| ≤ |{e < |α| : α(e) = 0}| and for all j < |σ| such that
α(ej) = 0 (where ej is the (j + 1)th infinitary edge of α in order of magnitude),
l(ej , s) > max(Gn) holds and σ(j) is the least i ≤ 1 such that

A C.E. Weak Truth Table Degree 303

ρ(V i
ej ,s, B̄s ∩ Gn \

⋃

l<j

V σ(l)
el,s

) ≤ 1
2
. (7)

We let

Vσ(α,n,s) = Gn ∩
⋃

j<|σ(α,n,s)|
V σ(α,n,s)(j)

ej ,s . (8)

Then the construction is as follows.

Construction of B.

Stage 0. B0 = ∅.
Stage s + 1. Let Bs be given. We say that a node α requires attention at stage
s + 1 if |α| ≤ s and either
(i) α � δs and no interval is assigned to α, or
(ii) α ≤ δs, Gn is assigned to α and σ(α, n, s) � σ(α, n, s − 1), or
(iii) α ≤ δs, Gn is assigned to α, (ii) does not hold and there exists β > α and

n′ such that |β| > |α|, Gn′ is assigned to β and σ(α, n′, s) <left σ(α, n, s).
Let α be the node of highest priority which requires attention at stage s+1. Say
that α receives attention and acts via the clause via which α requires attention.

If (i) holds, assign Gs to α at stage s + 1.
If (ii) holds, enumerate all of Vσ(α,n,s) into B at stage s + 1.
If (iii) holds, let β be the highest priority node which makes (iii) true and
let Gn′ be its assigned interval. Cancel the assignment of Gn to α, assign
Gn′ to α and enumerate all of Vσ(α,n′,s) into B at stage s + 1.

At stage s + 1, initialize all nodes β > α, i.e., cancel their assigned interval (if
any). After α has received attention and the assignment of intervals to nodes
has been declared at stage s + 1, for all n ≤ s, do the following: if Gn is not
assigned to any node at stage s + 1, delete Gn at stage s + 1, i.e., enumerate all
of Gn into B at stage s + 1.

This ends the formal construction.

4 Verification

We prove in a series of claims that the so constructed set B has the required
properties. Before, let us give some general remarks about the construction which
we will tacitly use in the proofs below. Unless otherwise stated, they can be easily
shown by induction on the stage s.

The construction is effective and {Bs}s≥0 is a computable enumeration of
B; hence, B is a c.e. set. At any stage s, there is a unique node α ≤ δs which
requires attention at stage s + 1. For all nodes α and stages s, α is assigned at
most one interval at stage s, if Gn is the interval that is assigned to α at stage
s then |α| ≤ n < s and if α gets Gn assigned via (i) at stage s + 1 then n = s
and Gn ∩ Bs = ∅ since all intervals that are assigned to nodes by stage s have
index less than s.

304 M. Monath

Moreover, the assignment of intervals to nodes is nondecreasing in s and
strictly increasing with respect to the priority ordering, i.e., if α < β, α is
assigned Gn and β is assigned Gn′ at stage s then n < n′. Furthermore,
σ(α, n, s) � σ(β, n, s) holds whenever α � β holds and if Gn is assigned to
α at stage s + 1 then

σ(α, n, s) � σ(α, n, s + 1). (9)

Hence, Vσ(α,n,s) ⊆ Vσ(α,n,s+1) in this case.
Finally, and importantly, for any α and n, s ≥ 0, if α gets Gn assigned at

stage s + 1 then Gn has not been deleted at any stage t ≤ s. In particular, if Gn

is never deleted then from stage n + 1 on, it is always assigned to a node and
it is eventually permanently assigned to a node which is on or to the left of the
true path. Now the first claim states that nodes on or to the left of the true path
act only finitely often and that the former eventually get a permanent interval
assigned. Fix e in the following.

Claim 1. Every α ≤ TP � e requires attention only finitely often and if α =
TP � e then α eventually gets a permanent interval assigned.

Clearly, nodes to the left of the true path may act via (ii) or (iii) after they
have been accessible. However, since this action is finitary and since nodes to
the left of TP are accessible only finitely often, Claim 1 can be shown for given
α ≤ TP � e by induction on the number of nodes that have higher priority than
α and which are ever accessible on the tree.

For the next claim, we show that B̄ is infinite by proving that clause (2) holds
for all intervals Gn that are never deleted during the course of the construction.
Note that there are infinitely many such intervals. Namely, by Claim1, any
node α � TP gets a permanent interval assigned which by construction is never
deleted and different from intervals which are permanently assigned to proper
initial segments of α.

Claim 2. For all n, if Gn is never deleted then |Gn ∩ B̄| ≥ (n + 1)2.

Proof. Let n ≥ 0 be given such that Gn is never deleted. By construction, for
any stage s ≥ n, there is a node γ such that Gn is assigned to γ at stage s + 1.
Moreover, if Gn is assigned to γ at stage s and to γ′ at stage s + 1 then γ′

requires attention via (iii) which implies that γ′ < γ and |γ′| < |γ|. So we can
argue that there exists k ≥ 0 and a sequence of stages s0 = n < s1 < · · · < sk

and nodes γ0 > γ1 > · · · > γk such that Gn ∩ Bs0 = ∅, Gn is assigned to γk at
any stage s > sk and, moreover, for any i < k, Gn is assigned to γi at stage s+1
for any s ∈ [si, si+1) and

|γi| > |γi+1|, (10)

Gn ∩ Bsi+1 ⊆ (Gn ∩ Bsi
) ∪ Vσ(γi,n,si+1) (11)

A C.E. Weak Truth Table Degree 305

hold. Note that k ≤ n since k ≤ |γ0| by (10) and |γ0| ≤ n since Gn is assigned to
γ0 at stage s0+1. In particular, |γi| ≤ n−i by (10) for all i ≤ k. Furthermore, γk

must be on or to the left of the true path. Otherwise, γk would be initialized after
stage sk and Gn would be deleted. So by Claim 1, fix the least stage sk+1 > sk

such that γk does not require attention after stage sk+1. Then Gn ∩ B = Gn ∩
Bsk+1 and Gn ∩ Bsk+1 ⊆ (Gn ∩ Bsk

) ∪ Vσ(β,n,sk+1). So since for all nodes α, all
n, s ≥ 0,

ρ(Vσ(α,n,s), Gn ∩ B̄s) ≤ 1 −
(

1
2

)|σ(α,n,s)|
(12)

holds, by (9) and (11), we may easily deduce that

|Gn ∩ B̄si+1 | ≥ 2−|γi||Gn ∩ B̄si
|

holds for all i ≤ k. However, since Gn ∩ Bs0 = ∅, this yields

|Gn ∩ B̄| ≥ 2−(|γk|+|γk−1|+···+|γ0|)|Gn| ≥ (n + 1)2.

This completes the proof. ��
Finally, we show that all Q-requirements are met.

Claim 3. Qe is met.

Proof. If the hypothesis of Qe does not hold, Qe is trivially met. So we may
assume that Qe is infinitary, i.e., TP (e) = 0 holds. We have to show that there
exists i ≤ 1 and m ≥ 0 such that for all n ≥ m, V i

e ∩ Gn ⊆ B. For the proof of this
statement, suppose that e = ek where ek denotes the (k +1)th infinitary edge of
TP in order of magnitude and let M be the set of all nodes β � TP � e+1 which
eventually get a permanent interval assigned. For β ∈ M , let nβ denote the index
of the last interval assigned to β and let σ(β, nβ) = lims→∞ σ(β, nβ , s). Note that
σ(TP � e + 1, nβ , s) � σ(β, nβ , s); hence, σ(TP � e + 1, nβ) = lims→∞ σ(TP �
e + 1, nβ , s) exists, too and σ(TP � e + 1, nβ) � σ(β, nβ). Moreover, |σ(TP �
e+1, nβ)| = k+1 since TP � e+1 lies on the true path; hence, |σ(β, nβ)| ≥ k+1
for any β ∈ M . Now let τ be the leftmost binary string of length k +1 such that
τ � σ(β, nβ) for infinitely many β ∈ M . We claim that

∀∞β ∈ M (τ � σ(β, nβ)) (13)

holds and that (13) suffices to prove Claim 3. First, assume that (13) holds. Let
β0 ∈ M be such that (13) holds for all β ∈ M with β ≥ β0. Let m = nβ0

and i = τ(k). We claim that for all n ≥ m, V i
e ∩ Gn ⊆ B holds. Fix n ≥ m.

We distinguish between the following two cases. If Gn is eventually deleted then
Gn ⊆ B. So the claim trivially holds for n. Otherwise, Gn is never deleted. Then
by construction, there is a unique β ∈ M such that n = nβ . Namely, β must be
on or to the left of the true path. But by choice of m, β cannot be to the left
of TP � e + 1 nor can β < β0 hold because by construction, nβ < m holds in

306 M. Monath

both cases. Thus, by (13), σ(β, nβ)(k) = i. So by (9) and since β � TP � e + 1,
β eventually enumerates Vσ(β,nβ) ⊇ V i

e ∩ Gn into B.
Thus, to complete the proof, we show that (13) holds. By definition of τ ,

let β′
0 ∈ M be such that for all β ∈ M with |β| ≥ |β′

0|, τ ≤ σ(TP � e + 1, nβ)
holds. Fix any such node β and by Claim 1, fix s0 such that β does not require
attention after stage s0. In particular, σ(β, nβ) = σ(β, nβ , s) for all s ≥ s0. We
claim that σ(β, nβ) � τ . Otherwise, τ <left σ(β, nβ) by choice of β. By choice
of τ , let β′ ∈ M with |β′| > |β| and β′ > β be such that σ(β′, nβ′) � τ and
let s1 > s0 be a stage such that σ(β′, nβ′ , s1) = σ(β′, nβ′). Such a β′ exists
because by construction, there are only finitely many nodes in M which have
higher priority than β. But then β requires attention via (iii) at stage s1 + 1,
contrary to choice of s0. ��
By Claim 3, this completes the proof of Lemma 1 and hence of Theorem 1.

Acknowledgements. We would like to thank Klaus Ambos-Spies for suggesting this
problem and for numerous helpful discussions on the topic of this paper.

References

1. Ambos-Spies, K.: Multiple permitting and array noncomputability. In: Manea, F.,
et al. (eds.) CiE 2018. LNCS, vol. 10936, pp. 30–39 (2018)

2. Ambos-Spies, K., Fang, N., Losert, N., Merkle, W., Monath, M.: Array noncom-
putability: a modular approach. Unpublished Notes

3. Ambos-Spies, K., Ding, D., Fan, Y., Merkle, W.: Maximal pairs of computably
enumerable sets in the computably Lipschitz degrees. Theory Comput. Syst. 52,
2–27 (2013)

4. Barmpalias, G., Downey, R., Greenberg, N.: Working with strong reducibilities
above totally ω-c.e. and array computable degrees. Trans. Am. Math. Soc. 362,
777–813 (2010)

5. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory and
Applications of Computability. Springer, New York (2010). https://doi.org/10.1007/
978-0-387-68441-3

6. Downey, R., Jockusch, C., Stob, M.: Array nonrecursive sets and multiple permitting
arguments. In: Ambos-Spies, K., Müller, G.H., Sacks, G.E. (eds.) Recursion Theory
Week. LNM, vol. 1432, pp. 141–173. Springer, Heidelberg (1990). https://doi.org/
10.1007/BFb0086116

7. Myhill, J.: The lattice of recursively enumerable sets. J. Symb. Log. 21, 220 (1966)
8. Post, E.: Recursively enumerable sets of positive integers and their decision prob-

lems. Bull. Am. Math. Soc. 50, 284–316 (1944)
9. Soare, R.: Recursively Eumerable Sets and Degrees. Perspectives in Mathematical

Logic. Springer, Chicago (1987)

https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1007/BFb0086116
https://doi.org/10.1007/BFb0086116

The Complexity of Tukey Types and
Cofinal Types

Marie Nicholson(B)

Cork Institute of Technology, Cork, Ireland
marie.nicholson@cit.ie

Abstract. This paper studies how difficult it is to determine whether
two computable partial orders share the same Tukey type and the same
cofinal type. For Tukey types, we show the index set is 0(3). For cofi-
nal types, the we shows the index set is computable from 0(4). This is
in sharp contrast to the isomorphism problem for computable partial
orders, which is Σ1

1 .

1 Introduction

The isomorphism relation on countable posets preserves all the structural infor-
mation but there are 2ℵ0 many isomorphism classes of countable posets and the
isomorphism relation is Σ1

1 -complete. One way of dealing with the complexity of
classifying posets up to isomorphism is to look at coarser equivalence relations
that preserve some but not all of the structural information. Two examples of
this for posets are Tukey equivalence and cofinal equivalence. These equivalences
are defined in terms of reducibility notions. In both cases, the equivalence rela-
tions give rise to just countably many equivalence classes and their equivalence
types are defined arithmetically.

Both Tukey and cofinal types have been studied on more restrictive classes
than posets, such as directed posets, and on more general classes, such as ori-
ented systems. Tukey introduced the Tukey ordering to develop the notion of
Moore-Smith convergence in topology [9]. After its initial success in helping
develop general topology, Tukey reducibility was studied as a means of classi-
fying algebraic structures related to partially ordered sets in, for example, Day
[1], Isbell [5] and Todorčević [8]. Cofinal equivalence is closely related to Tukey
equivalence of posets and although it is finer than Tukey equivalence, in the
context of directed posets the two notions are the same. Here we examine the
complexity of Tukey types and cofinal types of countable posets.

In Sect. 2, we introduce Tukey reducibility for partially ordered sets and
the resulting equivalence classes which are called Tukey types. Tukey types are
themselves partially ordered by the Tukey reduction ≤ty and we outline the
maximal and minimal Tukey types of computable partial orders. In Sect. 3, we
outline the conditions under which we can decompose a partially ordered set into
directed components and in Sect. 4, we show that the complexity of the index

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 307–317, 2018.
https://doi.org/10.1007/978-3-319-94418-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_31&domain=pdf

308 M. Nicholson

set of Tukey types is 0(3). In Sect. 5, we show that cofinal type of a computable
partial order can be uniformly computed by 0(4).

Our notation is standard and follows Soare [7].

2 Tukey Types of Computable Partial Orders

We begin by introducing Tukey reducibility for partially ordered sets.

Definition 1. We say that f : D → E is a convergent map from D into E if
for each e ∈ E there is a d ∈ D such that f(c) ≥E e for all c ≥D d.

Definition 2. We say a partial ordering (E,≤E) is Tukey reducible to a partial
ordering (D,≤D), written as E ≤ty D, if and only if there is a convergent map
from D into E.

There are various classically equivalent definitions for the notion of Tukey
reducibility.

Definition 3. We say a function f : D → E is cofinal if the image of each
cofinal subset of D is cofinal in E.

Definition 4. A subset X ⊆ D is called unbounded if there is no single d ∈ D
which simultaneously bounds every member of X. That is, for each d ∈ D, there
is some x ∈ X such that d �≥D x. A map g : E → D is called a Tukey map or an
unbounded map if the g-image of each unbounded subset of E is an unbounded
subset of D.

The following useful facts are proved in Tukey [9] and in Schmidt [6].

Lemma 1 (Tukey [9], Schmidt [6]). For partially ordered sets D and E, the
following are equivalent:

1. E ≤ty D.
2. There is a cofinal map from D into E.
3. There is an unbounded map from E into D.

Definition 5. If P ≤ty Q and Q ≤ty P we say that P is Tukey equivalent to
Q, written as P ≡ty Q.

The relation ≡ty is an equivalence relation and the equivalence classes are
called Tukey types. Tukey types are themselves partially ordered by the Tukey
reduction ≤ty. We now consider the Tukey types of directed posets.

Definition 6. We say that a poset P is directed if for all a, b ∈ P there exists
c ∈ P such that a ≤P c and b ≤P c.

In what follows, we let 1 = {e} denote the directed set with just one element
and we let ω denote N under the usual ordering. Maximal and greatest elements
will be important in this context.

The Complexity of Tukey Types and Cofinal Types 309

Definition 7. Let (P,≤P) be a poset. We say that a ∈ P is a maximal element
if for all p ∈ P such that p ≥P a we have p = a.

Definition 8. Let (P,≤P) be a poset. We say that a ∈ P is a greatest element
if for all p ∈ P we have p ≤P a.

Note that in directed posets a maximal element is also a greatest element.
Tukey showed in [9] that the Tukey types of countable directed partial orders

are 1 and ω. First we consider directed sets with a greatest element.

Lemma 2 (Tukey [9]). The Tukey type of a directed poset with a greatest ele-
ment is 1.

Any pair of functions between these partially ordered sets, which send the
greatest element of one set to the greatest element of the other set, witnesses
this equivalence.

In particular, any finite directed set is Tukey equivalent to 1. Also notice
that two partial orders do not need to have the same cardinality to be Tukey
equivalent. Next we consider directed sets without greatest elements.

Lemma 3 (Tukey [9]). The Tukey type of a countable directed set without a
greatest element is ω.

This equivalence is witnessed by functions which send cofinal ω-chains in one
set to cofinal ω-chains in the other set. More generally, Lemma 3 holds for any
directed set whose cofinality is ℵ0. We also note that 1 is strictly less than ω in
the Tukey ordering.

Hence the Tukey type 1 is characterised by the directed posets with a greatest
element and the Tukey type ω contains all countable directed sets without a
greatest element. Alternatively we may think of the posets of type ω as those
which have a cofinal ω-chain.

Remark 1. So, given a computable directed poset, if we can determine whether
or not it has a greatest element, then we know its Tukey type. This has Σ0

2

complexity.

We now consider an arbitrary computable poset. Given a poset (P,≤P), the
function f : P → 1 defined by f(p) = e is cofinal and so 1 ≤ty P for all posets.
As before, unless (P,≤P) has a greatest element, 1 is strictly less than P in the
Tukey ordering.

We now ask if the partial ordering of Tukey types of countable posets have
a greatest element.

Definition 9. Let (P,≤P) be a poset. We say that the elements a and b are
incompatible in P , if there is no c ∈ P such that a <P c and b <P c.

Definition 10. A strong antichain in a poset (P,≤P) is a subset A of P in
which each pair of distinct elements are incompatible in P .

310 M. Nicholson

The existence of a strong antichain characterises the maximal element in the
partial ordering of countable posets.

Lemma 4 (Day [1]). If (P,≤P) and (Q,≤Q) are countable posets and P has a
infinite strong antichain, then Q ≤ty P .

Also, if P has an infinite strong antichain and P ≤ty Q, then Q also has an
infinite strong antichain.

Lemma 5 (Day [1]). Suppose P is a countable poset with an infinite strong
antichain and let g : P → Q be an unbounded map. Then Q also has an infinite
strong antichain.

Hence a poset (P,≤P) is in the maximal Tukey type of countable partial
orders if and only if (P,≤P) has an infinite strong antichain. It was shown by
Frittation and Marcone in [4] that the existence of an infinite strong antichain
in a partial order is equivalent to the existence of arbitrarily large finite strong
antichain. So (P,≤P) has an infinite strong antichain if and only if for all n ∈ N

there exists a strong antichain of size n. That is,

(∀n ∈ N)(∃a1, a2, . . . , an ∈ P)(∀i �= j ≤ n)(∀p ∈ P)(ai �≤P p or aj �≤P p).

This is a Π0
3 statement. In fact, the index set of computable posets with an

infinite strong antichain is Π0
3 -complete.

Lemma 6. There is a computable sequence of posets 〈Pn | n ∈ N〉 such that Pn

has an infinite strong antichain if and only if Wn is co-infinite.

Proof. We construct the poset (Pn,≤Pn
) in stages. At each stage we enumerate

two elements, as and xs, into Pn. We let xi ≤Pn
xs for each i ≤ s. In addition,

if i ≤ s is enumerated into Wn by stage s, we let ai ≤Pn
xs. The ai’s will form

a antichain and the xi’s will form an infinite chain as follows:

x0 ≤Pn
x1 ≤Pn

x2 ≤Pn
. . . xi ≤Pn

xi+1 ≤Pn
. . . .

We claim Pn has an infinite strong antichain if and only if Wn is co-infinite.
The poset Pn has an infinite strong antichain if and only if there are infinitely
many ai such that ai �≤Pn

xs for any s. This happens if and only if there are
infinitely many i such that i �∈ Wn. That is, Wn is co-infinite.

We let ∞ denote the Tukey type which consists of all posets with an infinite
strong antichain. Hence given a countable poset (P,≤P) we have 1 ≤ty P ≤ty ∞.

3 Decomposing Partial Orders into Directed Components

We now seek to compute the Tukey type of posets which are not directed and
do not have an infinite strong antichain. As a first step, we decompose posets
into directed components, where possible. It is always possible to decompose a

The Complexity of Tukey Types and Cofinal Types 311

poset into directed subsets by decomposing it into single points. However, the
unrelated disjoint union of two ω-chains clearly has two directed parts. So we
would like to partition a set into as few directed subsets as possible. We may
think of this as decomposing a poset into paths and stars. In [2,3], Diestel and
Pikhurko captured this notion in a essential directed subset; a directed subset
which every cofinal subset must intersect with. Following their notation, we begin
with some definitions.

Definition 11. If A ⊆ P is not cofinal in P , we say A is small in P . If A is
small in P , then we say that the complement of A in P is essential.

Hence any cofinal subset of P intersects all of the essential subsets of P . The
canonical example of an essential subset is the up-closure of a single point x
in P , that is �x�P . In fact, it is straightforward to check that a subset of P is
essential if and only if it contains the up closure of at least one point in P . In [2],
Diestel showed that any poset without an infinite antichain may be decomposed
into finitely many essential directed sets and the decomposition is unique up to
Tukey equivalence. We will strengthen this result by showing that a partially
ordered set may be decomposed into finitely many essential directed sets if and
only if it does not contain a strong antichain.

Lemma 7. If (P,≤P) is a countable partially ordered set, then P can be par-
titioned into finitely many essential directed subsets if and only if P does not
contain an infinite strong antichain.

Proof. Suppose P contains an infinite strong antichain. By definition, a directed
subset of P may contain at most one element of the strong antichain. Hence P
cannot be partitioned into finitely many directed sets.

Conversely, suppose P cannot be partitioned into finitely many directed sets.
We will show by induction on n ≥ 2 that P has a strong antichain of size n.
By Frittaion and Marcone [4], this suffices to show that P has an infinite strong
antichain. For the base case, we show that P has a strong antichain of size 2.
Take a0 ∈ P . Then �a0�P is an essential set. Either �a0�P is directed or not.
First consider the case when �a0�P is directed. Then there must be a1 ∈ P such
that a1 �≤P a for any a ∈ �a0�P . If such an a1 does not exist, then P is a directed
set and hence may be partitioned into one directed essential set. Hence {a0, a1}
forms a strong antichain of size two. For the second case, suppose that �a0�P is
not directed. Then there exists a1 >P a0 and a2 >P a0 such that a1 and a2 are
incompatible. So �a1�P and �a2�P are disjoint essential sets. Now {a1, a2} forms
an strong antichain of size two.

For the induction case, suppose we have a strong antichain a0, a1, . . . , an−1

of size n. We show that there exists a strong antichain of size n + 1. As
a0, a1, . . . , an−1 forms a strong antichain �a0�P , �a1�P , �a2�P , . . . , �an−1�P are
disjoint essential sets. If �a0�P , �a1�P , �a2�P , . . . , �an−1�P are also directed
sets, then there exists an such that an �≤P a for any a in �ai�P where 0 ≤ i < n.
If this were not the case, it would be possible to partition P into n many
essential directed sets. Hence {a0, a1, . . . , an−1, an} is a strong antichain of size

312 M. Nicholson

n+1. Otherwise, suppose that at least one of �a0�P , �a1�P , �a2�P , . . . , �an−1�P

is not directed. Take the least such ai. Since �ai�P is not directed we have
an >P ai and an+1 >P ai such that an and an+1 are not compatible in P .
Hence {a0, a1, . . . , ai−1, ai+1, . . . , an, an+1} is a strong antichain of size n + 1.

As there exists a strong antichain of size n for every n ∈ N, there exists an
infinite strong antichain.

Remark 2. To construct an infinite strong antichain in Lemma1 we need to
determine when the up-closure of a point is directed, which is a Π0

2 statement.
We also need to determine if a point x is below any point in the up-closure of
another point �a�P . This is a Σ0

1 statement.

Lemma 8 (Diestel [2]). If P =
⋃

0≤i≤n Ai is a partition of P into essential
directed subsets, then every essential directed subset of P is Tukey equivalent to
one of the Ai.

Furthermore, the number of essential directed subsets n in the partition is
unique.

Lemma 9 (Diestel [2]). Let P =
⋃

0≤i≤n Ai and B =
⋃

0≤i≤m Bi be two parti-
tions of P into essential directed subsets. Then m = n.

Therefore there is a most one partition of a partially ordered set into directed
essential sets, up to Tukey equivalence.

4 Complexity of Tukey Types

Recall that the Tukey type of a directed set is 1 if that set has a greatest element
and the Tukey type of a directed set is ω otherwise. Given a partition of a poset
P into essential directed sets, one would hope that the Tukey type of the essential
directed subsets would determine the Tukey type of the poset. To this end, we
say that a poset P has type (n,m) when P partitions into n + m many directed
sets and n of those sets have greatest elements where n,m ∈ N. Day showed that
two posets are Tukey equivalent if and only if they have the same type.

Lemma 10 (Day [1]). If P has type (n1,m1) and Q has type (n2,m2), then
P ≤ty Q if and only if n1 + m1 ≤ n2 + m2 and m1 ≤ m2.

So, once we have partitioned a poset into essential directed sets, we can
determine the Tukey type of the poset by checking whether or not each essential
directed set in the partition has a greatest element. Hence we have the following
theorem, initially proved by Day [1] in the context of oriented systems.

Theorem 1 (Day [1]). If (P,≤P) is a computable poset, then the Tukey type
is that of an infinite strong antichain, ∞, or (n,m) where P decomposes into
n + m many essential directed sets and n of them have a greatest element.

The Complexity of Tukey Types and Cofinal Types 313

For i ∈ N, let ≤i be the binary relation computable by the ith partial com-
putable function ϕi on N. We let Pi = (N,≤i) and note that saying that Pi is
a partial order is a Π0

2 statement since it requires saying ϕi is total. We denote
the index set of Tukey types as

Ity = {〈e, i〉 | Pe and Pi are partial orders and Pe ≡ty Pi}.

Lemma 11. Ity is Turing computable from 0(3).

Proof. We have 〈e, i〉 ∈ Ity if and only if ϕe and ϕi define partial orders on N

(which are Π0
2 conditions) plus one of the following holds:

1. both Pe and Pi have infinite strong antichains (which are Π0
3 conditions), or

2. there are n and m such that each of Pe and Pi decompose into exactly n+m
many essential directed sets and n of them have maximal elements.

Condition 2 is Σ0
3 : there exist m,n ∈ N such that

– for all x1, . . . , xn+m+1, there are u, v ≤ n + m + 1 with u �= v, such that xu

and xv are compatible (this is a Π0
2 condition), and

– there exist elements x1, . . . , xn+m such that
• for all u �= v ≤ n + m, xu and xv are incompatible (Π0

1 condition), and
• for all u ≤ n, there is a maximal element above xu (Σ0

2 condition), and
• for all n < v ≤ n + m, there is not a maximal element above xv (Π0

2

condition).

So condition 2 has the form
∃(

Π0
2 ∧ Σ0

3

)

and hence is Σ0
3 . Altogether, the statement defining Ity has the form

Π0
2 ∧ (

Π0
3 ∨ Σ0

3

)
.

As 0(3) can answer Π0
3 and Σ0

3 questions, we have Ity ≤T 03.

We also have the following corollary of Lemma6.

Lemma 12. Let Q be a fixed computable poset consisting of an infinite
antichain. There is a computable sequence of posets 〈Pn | n ∈ N〉 such that
{n | Pn ≡ty Q} ≡T 0(3).

Proof. Let 〈Pn | n ∈ N〉 be the sequence constructed in Lemma 6. By con-
struction, the set {n | Pn has an infinite strong antichain} ≡T 0(3). The current
lemma now follows from the fact that Pn ≡ty Q if and only if Pn has a strong
infinite antichain.

Theorem 2. The complexity of the index set of Tukey types Ity is 0(3)

Proof. This follows from the previous lemmas.

314 M. Nicholson

In comparison the isomorphism problem,

{(a, b) | Pa, Pb are computable posets and Pa
∼= Pb},

is Σ1
1 -complete. Clearly the isomorphism type of a partial order gives us more

information than the Tukey type. However if the Tukey type of a partial order
is (n,m), where n,m ∈ N, then we have a very good idea what the partial order
looks like. However if the Tukey type is ∞ then, for example, it may contain
a binary tree, ℵ0 many ω-chains, or an infinite antichain. We turn to cofinal
similarity to give us a better picture in this case.

5 Cofinal Similarity of Computable Partial Orders

Definition 12. Two partially ordered sets P,Q are cofinally similar if there
exists a third partial order into which they both embed cofinally. That is, there
is a partially ordered set R with cofinal sets CP , CQ ⊆ R such that P is order
isomorphic to CP and Q is order isomorphic to CQ.

Cofinal similarity turns out to be an equivalence relation, and the equivalence
classes are called cofinal types. If P is cofinally similar to Q, then we write
P ≡cf Q. Day showed in [1] that for directed sets cofinal similarity coincides
with Tukey equivalence. He also showed that cofinal similarity and Tukey equiv-
alence coincide when a partially ordered set can be partitioned into finitely many
essential directed sets. However, not all posets with an infinite strong antichain
are cofinally similar. For example, an infinite strong antichain cannot preserve
order and embed cofinally into a poset which has a cofinal binary tree or cofinal
set which is isomorphic to ℵ0 many ω-chains. Similarly a partial order with ℵ0

many ω-chains cannot embed cofinally into a partial order with a cofinal binary
tree.

In what follows, let (P,≤P) be a partially ordered set.

Definition 13. We say that B is an essential cofinal subset of P if B is cofinal
in some essential subset C of P .

Everywhere branching trees are important in this context.

Definition 14. Let P be a poset. We call A ⊆ P an everywhere branching tree
if for all a ∈ A there exists incompatible elements a1, a2 ≥P a.

Following Day’s notation in [1] we make the following definitions.

Definition 15. Let P1 = {p ∈ P | �p� is directed} and P2 = {q ∈ P | ∀p ≥P

q (p �∈ P1)}.
So we have determined two disjoint subsets of P . The first part P1 consists of

directed subsets of P and the second part P2 consists of a maximal everywhere
branching tree in P . Note that if P is computable, then P1 is Π0

2 and P2 is Π0
3 .

The Complexity of Tukey Types and Cofinal Types 315

As already mentioned, every poset with no infinite antichain can be parti-
tioned into finitely many essential directed sets. In addition to this, Diestel and
Pikhurko showed in [3] that a countable partially ordered set (P,≤P) does not
have an essential cofinal subset isomorphic to an ever-branching tree if and only
if it admits a partition into essential directed sets.

As infinitely many copies of 2<ω or ω<ω can embed into a single copy, we
need only consider the existence or absence of an everywhere branching tree.
Again, following Day’s notation, we make the following definition.

Definition 16. Let E0 denote the partial order that consists of countably many
disjoint copies of ω<ω.

Day proved in [1] Lemma 7.2 that a countable poset P is ever-branching
(meaning that P2 = P) if and only if P has a cofinal subset isomorphic to E0.
Also in Theorem 4.8 [1], Day gives the following properties, which outline how
a countable poset P can be decomposed to understand its cofinal parts.

– P1 and P2 are disjoint and at least one is non-empty.
– P1 and P2 are each upward closed.
– P1 + P2 is cofinal in P .
– If P2 is non-empty, then (P2,≤P) is an everywhere branching poset and hence

has a cofinal subset isomorphic to E0 by Lemma 7.2 in Day.
– If P1 is non-empty, then (P1,≤P) can be partitioned into essential directed

sets, each of which either has a maximal element or has a cofinal ω-chain.
However, unlike the Tukey type case there may be infinitely many of each of
these types of essential directed subsets.

So, to determine the cofinal type of a countable partially ordered set we
need to determine if it contains any essential cofinal subsets isomorphic to a
everywhere branching tree and then partition the remainder of the poset into
essential directed sets. Hence, with each countable poset P we associate a tuple
(nP ,mP , lP) such that nP , where 0 ≤ nP ≤ ℵ0, is the number of essential
directed subsets with a greatest element in a partition of P , and mP , where
0 ≤ mP ≤ ℵ0, is the number of essential directed subsets without a greatest
element in a partition of P , and lP , where lP ∈ {0, 1} denotes the existence of
a essential cofinal subset isomorphic to an ever-branching tree. If lP = 1, then
P contains an essential cofinal subset isomorphic to an ever-branching tree and
if lP = 0 it does not. Day found a classification of countable oriented systems
under cofinal similarity in terms of these three elements.

Lemma 13 (Day [1, Corollary 7.4]). Two countable partially ordered sets are
cofinally similar if and only if their associated triples are the same.

Now that we know the tuple (nP ,mP , lP) associated with a computable par-
tial order P determines the cofinal type, we ask how complicated it is to find the
tuple (nP ,mP , lP). To do this we need to determine if a computable poset P con-
tains an essential cofinal subset which is isomorphic to an everywhere branching
tree. First, we make the following observation.

316 M. Nicholson

Theorem 3. The complexity of finding the cofinal type of a computable poset is
at most Σ0

4 ∧ Π0
4 .

Proof. Given a computable poset P , to compute the tuple (nP ,mP , lP) we need
to find out if P contains a cofinal essential everywhere branching tree and then
decompose the remainder of P into essential directed posets.

Firstly, we need to determine if P contains a cofinal essential everywhere
branching tree. This is equivalent to asking if P2 is non-empty, which is Σ0

4

question. This determines the third component of the cofinal type.
Secondly, we need to determine the number of directed components in P1

and whether or not these directed components have a maximal element. Note
that an element is maximal in (P1,≤P) if and only if it is maximal in (P,≤P).
To be a maximal point in P is a Π0

1 condition. Therefore, to ask if there are
infinitely many is a Π0

3 question and to ask if there are exactly n many maximal
points is a Σ0

2 ∧ Π0
2 question (i.e. there are n many maximal points and there

are not n + 1 many maximal points). The answers to these questions determine
the first component of the cofinal type.

Finally, we need to determine how many maximal directed sets in P1 have
cofinal type ω. To ask if there are infinitely many, we need to ask whether for
every n, there are n many distinct elements x1, . . . , xn in P1 such that each pair
xi �= xj is incompatible. Since being in P1 is Π0

2 and being incompatible is Π0
1 ,

this question is Π0
4 . To ask if there are exactly n many such points, we need

to ask whether there are n many pairwise incompatible elements of P1 (a Σ0
3

condition) but not n + 1 such elements (a Π0
3 condition).

It follows that the triple describing the cofinal type of a computable partial
order can be uniformly computed by 0(4). We conjecture that this bound is
sharp. That is, the complexity of the index set

Icf = {〈e, i〉 | Pe, Pi are posets and Pe ≡cf Pi}

is exactly 0(4). The proof of this conjecture is ongoing research.

References

1. Day, M.M.: Oriented systems. Duke Math. J. 11, 201–229 (1944). MR 0009970
2. Diestel, R.: Relating subsets of a poset, and a partition theorem for WQOs. Order

18(3), 275–279 (2001). MR 1867238
3. Diestel, R., Pikhurko, O.: On the cofinality of infinite partially ordered sets: factoring

a poset into lean essential subsets. Order 20(1), 53–66 (2003). MR 1993410
4. Frittaion, E., Marcone, A.: Reverse mathematics and initial intervals. Ann. Pure

Appl. Log. 165(3), 858–879 (2014). MR 3142390
5. Isbell, J.R.: The category of cofinal types. II. Trans. Am. Math. Soc. 116, 394–416

(1965). MR 0201316
6. Schmidt, J.: Konfinalität. Z. Math. Logik Grundlagen Math. 1, 271–303 (1955). MR

0076836 (17,951e)

The Complexity of Tukey Types and Cofinal Types 317

7. Soare, R.I.: Recursively enumerable sets and degrees. Bull. Am. Math. Soc. 84(6),
1149–1181 (1978)

8. Todorčević, S.: Directed sets and cofinal types. Trans. Am. Math. Soc. 290(2),
711–723 (1985). MR 792822 (87a:03084)

9. Tukey, J.W.: Convergence and Uniformity in Topology. Annals of Mathematics
Studies, vol. 2. Princeton University Press, Princeton (1940). MR 0002515 (2,67a)

Functionals of Type 3 as Realisers
of Classical Theorems in Analysis

Dag Normann(B)

Department of Mathematics, The University of Oslo,
P.O. Box 1053, Blindern, 0316 Oslo, Norway

dnormann@math.uio.no

Abstract. We investigate the relative computational strength of com-
binations of four higher order functionals, the jump and hyperjump seen
as functionals of type 2 and realisers for the compactness of Cantor space
and the Lindelöf property of Baire space seen as functionals of type 3.
We compare them with the closure operator for non-monotone inductive
definitions of sets of integers, also seen as a functional of type 3.

1 Background

The current note is a spin-off from a joint project with Sam Sanders, based on his
original initiative. In [17], Sanders used the Kohlenbach-inspired axiomatisation
of nonstandard analysis from [1] to obtain results in computability theory from
nonstandard analysis. His proof-theoretical analysis of the nonstandard proofs of
Weak König’s Lemma and the less known Weak Weak König’s Lemma, combined
with methods of term extraction, led to the discovery of two classes of type three
functionals, the Θ-functionals (which will be discussed further in this note), and
the Λ-functionals. For the latter, see also [13–15]. The original classes of Θ-
and Λ-functionals were obtained using term extraction from proofs, but brief
formulations equivalent from the point of view of computability theory are:

If we view a functional F of type two as representing an open covering of the
Cantor space (see details in Sect. 2.2), then Θ(F) will be a finite subcovering,
while Λ(F) will be a countable subcovering of a set of measure 1.

Sanders got the author of this note interested in the computational strength
of these objects, and a fruitful cooperation started. As a preliminary result, it
was established that these objects are genuinely of type 3, no Θ- or Λ-functional
is computable, in the sense of Kleene, in any object of type 2. Moreover, it
became clear that there will be Θ- and Λ-functionals that are countably based. A
functional Ψ of type 3 is countably based if the value of Ψ(F) will be determined
from the restriction of F to a countable set. The initial investigations of count-
ably based functionals were described by Hartley [6–8]. At the time, there were
few natural examples beyond the Superjump. The fan functional and the Gandy-
Hyland functional are important objects of type three, but they are nowadays

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 318–327, 2018.
https://doi.org/10.1007/978-3-319-94418-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_32&domain=pdf

Functionals of Type 3 as Realisers of Classical Theorems in Analysis 319

mainly considered as functionals that are restricted to the class of continuous
objects of type 2. Our project now has shown that many natural functionals of
type 3 belong to the class of countably based functionals.

Next, it became clear that there are Θ- and Λ-functionals that are sequen-
tial in the sense that the value can be “computed” via a transfinite recursive
procedure. It also became clear that these functionals are intimately related to
some classical theorems in mathematics, such as the Heine-Borel theorem and
the Vitali covering theorem. In particular, we observed that the sequential trans-
finite procedure used to construct one particular Θ-functional turned out to be
an almost line-by-line translation from [a, b] to the Cantor space of a construc-
tion due to Borel [2]. These connections are to some extent explored in [16], are
brought further in [18] and will also be investigated in the continuation of our
project.

We now see Θ-functionals as realisers for the compactness of the Cantor
space, and we have introduced another class of functionals, the Ξ-functionals,
that can be seen as realisers of the Lindelöf property of the Baire space N

N. The
technical aim of this note is to show how the computational strengths of these
objects are related, and also to link this to the complexity of (non-monotone)
inductive definitions of subsets of N. As a part of this, we will use the Borel-
method to produce a realiser for the Lindelöf property, and indirectly, give a kind
of Reverse Mathematics characterisation of the strength of the Borel method
from 1895.

2 The Five Functionals

2.1 Two Functionals of Type 2

We will consider the functional μ, known as Feferman’s μ, and the Suslin func-
tional S as follows:

μ(f) :=

{
0 if f is constant zero
the least a such that f(a) > 0 otherwise.

S(f) :=
{

0 if ∀g∃n(f(ḡ(n)) = 0)
1 if ∃g∀n(f(ḡ(n)) > 0)

where f and g are functions on N, and ḡ(n) is the number 〈g(0), . . . , g(n − 1)〉,
which we identify with the corresponding sequence.

We use μ instead of ∃2, also known as 2E: modulo full Kleene computability,
they are equivalent, while in fragments like e.g. Gödel’s T, μ is more expressive
that ∃2. Arithmetical definitions can be transformed to terms using μ, and our
use of S will mainly be to isolate the well-founded segment of a relation.

2.2 Specifications for Realisers of Type 3

Without digging too deep into the theory of realisers, we can say that a realiser
of a theorem of the form ∀x∃y(A(x) → B(x, y)) is a total function φ that maps

320 D. Normann

an x satisfying A to some y such that B(x, y). We analyse the complexity of
realisers of this kind for two classical theorems. We will use C = 2N = {0, 1}N as
the Cantor space.

1. Compactness of the Cantor space
For each x ∈ C, let Ox ⊆ C be an open set containing x. Then there is a
finite set {x1, . . . , xn} ⊆ C such that C ⊆ Ox1 ∪ · · · ∪ Oxn

.
2. The Lindelöf Property of the Baire space

For each x ∈ N
N, let Ox ⊆ N

N be an open set containing x. Then there is a
sequence {xi}i∈N in N

N such that N
N ⊆ ⋃

i∈N
Oxi

.

In [16] we discuss how these statements relate to the classical theorems known
as the Heine-Borel theorem and the Lindelöf property for subsets of R. Here
we will consider equivalent, styled versions suitable for interpretations over the
standard typed structure of functionals with base type N.

For the sake of simplicity, we will identify a finite sequence s of non-negative
integers with its sequence number. If s is a finite binary sequence of length n,
we let Cs be the set of functions f ∈ C with s = f̄(n) = 〈f(0), . . . , f(n − 1)〉,
while if s is a finite sequence of non-negative numbers, still of length n, we let
Bs be the set of f : N → N such that f̄(n) = s. Any F : NN → N will define open
coverings of C resp. NN. They are {Cf̄(F (f)) | f ∈ C} resp. {Bf̄(F (f)) | f ∈ N

N}.
Moreover, any general cover allocating an open set Ox containing x to each x in
the spaces C or N

N can, with an arithmetical construction, be replaced by one
obtained from a functional as above, without simplifying the task of verifying
compactness or the Lindelöf property.

We can then define what we mean by a realiser Θ for the compactness of C
or a realiser Ξ for the Lindelöf property of NN by

Definition 1.

Θ An instance of Θ will be a functional, which we also denote Θ, of type 3 such
that if F : C → N, then Θ(F) is a finite sequence f1, . . . , fn in C such that
the Cf̄i(F (fi))’s cover C.

Ξ An instance of Ξ will be a functional, which we also denote Ξ, of type 3 such
that if F : NN → N, then Ξ(F) is an infinite sequence {fi}i∈N from N

N such
that {Bf̄i(F (fi))}i∈N covers N

N.

It is routine to rewrite these definitions to fit pure type 3, but for the sake
of readability, we prefer not to do this routine.

Remark 1. It is common to define an open covering of C as a class O of open
sets such that

∀f ∈ C∃O ∈ O(f ∈ O).

Then a functional F of type 2 such that

∀f ∈ C∃n ∈ N∃O ∈ O(Cf̄(F (f)) ⊆ O)

can be considered as a realiser of the fact that O is an open covering. In this
sense, our realisers will take realisers of the assumptions and provide witnesses
to the conclusions.

Functionals of Type 3 as Realisers of Classical Theorems in Analysis 321

The definitions of Θ and Ξ may look similar, but there is an important difference:
while checking if a finite set s1, . . . , sn of binary sequences induce a finite covering
of C is computable at a low level, the set of countable sequences {si}i∈N inducing
a countable covering of NN will be complete Π1

1 . This is reflected in Theorem 1(b)
and can be seen as the cause of the increased computational strength of Ξ,
compared to that of Θ. Even Θ will have some computational strength, though,
as any instance of Θ will compute, in conjunction with μ, a realiser of transfinite
recursion, see [13,15], and will in particular compute functions that are not
hyperarithmetical. However, any function uniformly computable in all instances
of Θ will be hyperarithmetical, see [15] for a proof.

Remark 2. Our interpretation of the Lindelöf property of the Baire space may
seem a bit odd, since we actually start with a countable cover {Bf̄(F (f)) | f ∈
N

N}. The original assumption in Lindelöf [10] was essentially as follows:

For x ∈ E ⊆ R
n, let Dx be a disc with centre in x and a positive radius.

Then, selecting a countable set of such discs is equivalent to selecting a countable
set of centres, so our formulation captures the original formulation of the Lindelöf
property correctly.

The easy proof of the Lindelöf property will use Σ1
1 [F]-comprehension and

countable choice, and for proving that every subset of Rn has the Lindelöf prop-
erty, there do not seem to be any good alternatives. Our choice-free proof for
N

N can be seen as a special proof for the set of irrational numbers. It is well
known that NN and the set of irrationals between 0 and 1 are homeomorphic via
continued fractions.

2.3 Non-monotone Inductive Definitions

Let F : 2N → 2N, where 2N denotes the powerset of N, identified with the set of
characteristic functions. We may view F as a functional of type 2, ignoring the
necessary coding. We may also consider F as an inductive definition:

Definition 2. Let F : 2N → 2N, and let α be an ordinal number. By recursion
on α we define

Γα(F) =
⋃

β<α

F (Γβ(F)).

The sequence Γα(F) indexed by ordinals is an increasing sequence of subsets
of N, with Γ0(F) = ∅. For cardinality reasons, there is a countable ordinal α0,
depending on F , such that Γα0(F) = Γα0+1(F), i.e. F (Γα0(F)) ⊆ Γα0(F).

Definition 3. We let Γ be the functional of type 3 defined by Γ (F) = Γα0(F)
where α0, depending on F , is as above.

We observe that if we let G(X) = F (X) \ X for X ∈ 2N, then Γα(F) = Γα(G)
for all α, and in particular, Γ (F) = Γ (G).

322 D. Normann

Remark 3. The functional F is monotone if A ⊆ B ⇒ F (A) ⊆ F (B). Our induc-
tive definitions are not necessarily monotone, so we call them non-monotone in
general. Non-monotone inductive definitions were in particular studied in the
late 60’s and early 70’s, see e.g. Sect. III of [4] with papers by St̊al Aanderaa,
Douglas Cenzer, Robin O. Gandy and Wayne Richter/Peter Aczel.

3 The Main Theorem

We will use Kleene’s definition via the schemes S1–S9 (see [9], or alternatively
[11]) as our formal notion of computability in a higher order context.

Theorem 1. The five functionals are related as follows:

(a) For any instance of Ξ, there is an instance of Θ uniformly computable in Ξ
and μ.

(b) S is uniformly computable in μ and any instance of Ξ.
(c) Γ is uniformly computable in S and any instance of Θ.
(d) There is an instance of Ξ computable in Γ .

Proof. (a) is easy. Computing a finite covering from a countable covering of C
is computable even in the Turing sense. Given a covering of C we extend this to
a covering of NN such that each f �∈ C is covered by an open set disjoint from
C, and then Ξ provides a countable sub-covering of the original covering of C.

In order to prove (b), observe that if A ⊂ N is Σ1
1 , there will, for each a ∈ N

be a closed set Ta ⊆ N
N such that a ∈ A ⇔ Ta �= ∅. For each a, we define Fa

such that Bf̄(Fa(f)) ∩ Ta = ∅ whenever f �∈ Ta, and zero on Ta. Then a ∈ A if
and only if Ξ(Fa) contains an element in Ta.

The proof of (c), which is the main technical achievement of this note, will
be given in a separate section, see below, so let us prove (d).

We need the Kleene-Brouwer ordering : If s and t are finite sequences of
integers, then s ≺KB t if s is an extension of t or if s is below t in the lexi-
cographical ordering. If F : N

N → N and A is a set of finite sequences s, we
let G(A) = {f̄A(F (fA))}, where fA is the least function that properly bounds⋃

s∈A Bs, provided that this set is bounded in the lexicographical ordering of
N

N. If not, we let G(A) = ∅. fA is definable from A in an arithmetical manner
as follows:

Let gA(0) be the maximal value of s0 for s ∈ A. By recursion, and for as long
as it is possible, let gA(n) be the maximal integer a such that for some s ∈ A, s
extends 〈gA(0), . . . gA(n − 1), a〉.

If this process goes on forever, let fA = gA. If step n cannot be carried out,
let fA(m) = gA(m) for m < n − 1, fA(n − 1) = gA(n − 1) + 1 and fA(m) = 0 for
n ≤ m.

Each set Γα(G) will be a set of finite sequences well-ordered by the Kleene-
Brouwer ordering, and if α < β, then Γβ(G) will be an end extension of Γα(G)
with respect to this ordering. Moreover, the union

⋃
s∈Γα(G) Bs will be an initial

segment Oα of NN under the lexicographical ordering of NN. Finally, the function

Functionals of Type 3 as Realisers of Classical Theorems in Analysis 323

fα = fΓα(G) is definable from Γ (G) uniformly in the finite sequence sα added at
stage α, following the procedure for fA where A = {s ∈ Γ (G) | s ≺KB sα}. Thus
we may arithmetically extract an enumeration of the set {fα | sα ∈ Γ (G)}, and
this will be the output of our Ξ(F). ��
Remark 4. Borel’s proof in [2] essentially starts with an open covering of [0, 1],
builds up a larger and larger half-open interval [0, xα) by, at each stage adding an
open set containing xα. Borel assumes that the original covering is countable, but
this is not needed in order to show that the process must stop at some countable
ordinal. Finally, through backtracking the process, Borel uses that there are no
infinite descending sequences of ordinals in order to extract the finite covering.
The point is that Borel’s construction is deterministic and choice free, the finite
sub-covering is fully determined by the map x �→ Ox through his proof.

Remark 5. We see that modulo computability relative to μ there is a minimal
instance of Ξ, and this one is equivalent to Γ . On the other hand, the analysis
of computability in Θ in [13,15] shows that there is no minimal instance of Θ.
However, if one takes the instance Θ0 that is naturally obtained using Borel’s
proof, then S will be computable in Θ0 and μ (see [13]), and consequently, Θ0

is also equivalent to Γ modulo μ. A closer inspection of the proofs will show
that we only need a tiny fragment of Kleene-computability to establish these
equivalences, we do not need the scheme for primitive recursion and the scheme
of enumeration.

3.1 The Proof of Theorem1(c)

We will see how we may compute the inductive closure Γ (F) from F , Θ and S.
So, let F be given. For the sake of notational simplicity, we assume that F (A)
is disjoint from A for all A.

Associated with the sequence Γα(F), we have the relation Δ(F) on Γ (F)
defined by Δ(F)(a, b) if the least β such that a ∈ Γβ(F) is less than or equal to
the least γ such that b ∈ Γγ(F). The relation Δ(F) is inductively definable as
well, with approximations Δα(F) defined on Γα(F).

To be more precise, we may use the operator F̃ to define Δ(F) as follows:
If R is a binary relation, we let DR be the domain of R, here defined as the

set of a such that for some b, either (a, b) ∈ R or (b, a) ∈ R. Then F̃ (R) will,
by definition, consist of all pairs (a, b) where a ∈ DR and b ∈ F (DR) together
with all pairs (a, b) where both a and b are in F (DR). Instead of defining Γ (F)
directly with the help of Θ, we extract Δ(F) = Γ (F̃) from F , S, μ and Θ.

We now need to establish some notation and general machinery: The advan-
tage of Δ(F) is that it is a prewellordering. A preordering is a binary rela-
tion R that is both transitive and reflexive, and such that for all a, b ∈ DR

we have R(a, b) or R(b, a) (or both). The corresponding strict relation will be
Rs(a, b) ↔ R(a, b) ∧ ¬R(b, a), and a is in the well founded part WR if a ∈ DR

and there is no Rs-descending sequence starting with a.

324 D. Normann

If R is a preordering and a ∈ DR, we let DR[a] = {b ∈ DR | Rs(b, a)} and we
let [a]R = {b | R(a, b) ∧ R(b, a)}. These are the initial segments and layers (or
equivalence classes) of DR.

We will now see how we can code all this with functions f : N → {0, 1}:

Definition 4

(a) Let f : N → {0, 1}. Let Rf (a, b) if f(〈a, b〉) = 1. We write Df for DRf
.

(b) We say that f is in PREO if Rf is a preordering.
(c) If f ∈ PREO and a ∈ Df , we let Df [a] = DRf

[a] and [a]f = [a]Rf

(d) If f ∈ PREO, we write Wf for WRf
, Rf [a] for the restriction of Rf to Df [a]

and Rf [W] for the restriction of Rf to Wf .

We now link this to the inductive operator F , which we still assume to be
fixed:

Lemma 1. Let f ∈ PREO. The following are equivalent:

1. Wf = Γ (F) and Rf [W] = Δ(F)
2. (i) For all a ∈ Wf we have that [a]f = F (Df [a])

(ii) F (Wf) = ∅.
The proof is trivial.

Lemma 2. Let F be as above. There is a type 2 functional G : {0, 1}N → N,
uniformly computable in S and F , such that for any instance of Θ, Θ(G) will
contain an element f such that f ∈ PREO and such that Wf and Rf [W] either
satisfy (i) and (ii) in Lemma 1, or has a proper initial segment that does so.

Proof. We define G by cases, and, at the same time, explain what is achieved
in that case. For each case, we assume that the previous cases do not apply.
Whenever we write “let a, b etc. be such and such”, we can make the definition
precise by applying numerical search, i.e. using μ, which is computable in S.

The aim is to define G such that whenever G(f) > 0, then f̄(G(f)) has no
extension g that is in PREO and such that (Γ (F),Δ(F)) is equal to (Dg, Rg),
while when G(f) = 0, we can define (Γ (F),Δ(F)) from f , using μ, S and F .
Thus, in order to induce a finite set of neighbourhoods covering the one g coding
(Γ (F),Δ(F)), Θ(G) must contain an f with G(f) = 0, and from which we can
compute (Γ (F),Δ(F)) using μ and S.

The first part of the aim is met by, for each f with G(f) > 0, letting G(f) >
〈a, b〉 for some pair (a, b) such that f(〈a, b〉) = 0 ⇔ Δ(F)(a, b).

1. If f is not in PREO, there will be a number n such that f̄(n) cannot be
extended to any f ′ ∈ PREO. We let G(f) = n for the least such n.

2. If (Γ (F),Δ(F)) is all of, or an initial segment of (Df , Rf), then G(f) = 0.
This can be checked using F , S and μ, since if this is the case, it will be
the case also for (Wf , Rf [W]), and from this relation, all initial segments are
arithmetically defined. This case clearly satisfies our aim.

3. For some a ∈ Wf , we have that [a]f �= F (Df [a]). Select an Rf -minimal such
a. Then (Df [a], Rf [a]) is a proper initial segment of (Γ (F),Δ(F)), proper
since we are not in Case 2. There will be two subcases:

Functionals of Type 3 as Realisers of Classical Theorems in Analysis 325

(i) [a]f ⊂ F (Df [a]). Since the sets are not equal, let b be in F (Df [a]), but
not in [a]f . If f(〈b, b〉) = 0, it suffices to let G(f) = 〈b, b〉+1 to achieve our
aim. If f(〈b, b〉) = 1, we have that b ∈ Df while b is neither Rf -equivalent
to, nor Rf -less than a, so we must have f(〈a, b〉) = 0. Since a and b appear
at the same stage in the F -recursion, it suffices to let G(f) = 〈a, b〉 + 1.

(ii) Otherwise. We may then as well assume that a �∈ F (Df [a]). Since we
are not in Case 2, there is a b ∈ F (Df [a]). If f(〈b, b〉) = 0, we may let
G(f) = 〈b, b〉 + 1. If f(〈b, b〉) = 1, b ∈ Df , and we will use that Rf is a
preordering. We must have that f(〈a, b〉) = 1, since b �∈ Df [a]. But we
will not have Δ(F)(a, b) since b ∈ Df [a] ∪ F (Df [a]), while a is not. Thus
it suffices, in this case, to let Gf) = 〈a, b〉 + 1.

4. In this remaining case, we have that Wf is one of the initial segments of Γ (F),
but not Γ (F) itself. Let a ∈ F (Wf). If f(〈a, a〉) = 0, we let G(f) = 〈a, a, 〉+1.
This suffices since Δ(F)(a, a). If f(〈a, a〉) = 1, we use that Rf is a preordering,
a ∈ Df , but a is not in the well founded part of of Rf . In particular, there
will be some b not in Wf such that f(〈b, a〉) = 1 while f(〈a, b〉) = 0. If we let
G(f) = max{〈b, a〉, 〈a, b〉} + 1, we have ensured that we are in conflict with
Δ(F).

We have defined G(f) for all f , and the construction of G is such that if
G(f) > 0, then either f �∈ PREO or for some (a, b) we have that 〈a, b〉 < G(f)
and f(〈a, b〉) = 0 ⇔ Δ(F)(a, b). Thus we cannot cover the Cantor space just
by neighbourhoods given by f̄(G(f)) for f with G(f) > 0. Consequently, Θ(G)
must contain some f with Θ(f) = 0. We can compute Γ (F) uniformly in any
such f , using μ and S. ��

Theorem 1(c) is an immediate consequence of this lemma.

4 Speculations on Functionals of Type 3

Prior research on the computational strength of functionals of type 3 has, to our
knowledge, been concentrated on the normal functionals (with 3E computable
in them), the Superjump and continuous functionals like the fan functional and
the Gandy-Hyland functional, also denoted Γ . Our project has exposed that the
class of non-normal, countably based functionals of type 3 in which μ or 2E is
computable contains objects that reflect actual mathematical strength in some
sense. For instance, consequences of the uncountable Heine-Borel theorem HBU
will have realisers of type 3 of their own, and the computational strength of these
realisers may reflect, at least in some sense, the strength of these consequences.

The functional Λ, only briefly discussed in this note, is also of this nature.
Λ will not be computable in any type 2 functional, and actually neither in the
Superjump, but it is strictly weaker than Θ in the sense that any instance of Θ
computes an instance of Λ while the converse does not hold, even modulo μ.

One obvious challenge will be to classify the 1-section of Γ , i.e. the class
of functions computable in Γ . A reasonable conjecture is that this 1-section

326 D. Normann

is generated in a gap-free manner, and that it corresponds to a class of func-
tions computable by an Infinite Time Turing Machine, ITTM, within some time
bound. A gap will be an interval of ordinals in which a generalised computing
device computes no new subsets of N, but will do so again at the end of the
gap. The ITTM’s were introduced by Hamkins and Kidder, but first appeared
in published form in [5]. For a recent survey, see [19]. A more ambitious, but
vague, conjecture is that there is some total, countably based functional Ψ of type
3 such that Kleene-computations relative to Ψ somehow reflects computations
using ITTM’s. For this to make sense, there should at least be a gap-structure
in the generation of the 1-section of Ψ resembling that of ITTM’s. We know
that there is a gap-structure for computations relative to 3E, (see [12]), and by
a Löwenheim-Skolem argument there will be countably based functionals with
a similar structure, but beyond this, little is known. More is known about the
gap-structure for ITTM’s, see e.g. the recent [3].

Acknowledgements. I am grateful to Sam Sanders for initiating the project of which
this note can be seen as an outcome, and for commenting fruitfully on the content of
the note.

I will also thank John P. Hartley for sharing his thoughts around the early days of
countably based functionals with me.

Finally, I will thank the two reviewers. They both gave valuable advice, and helped
me improve the exposition and correct some typos and linguistic errors.

References

1. van den Berg, B., Briseid, E., Safarik, P.: A functional interpretation for nonstan-
dard arithmetic. Ann. Pure Appl. Log. 163, 1962–1994 (2012)

2. Borel, E.: Sur quelques points de la théorie des fonctions. Ann. Sci. École Norm.
Sup. 3(12), 9–55 (1895)

3. Carl, M., Durand, B., Lafitte, G., Ouazzani, S.: Admissibles in gaps. In: Kari, J.,
Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 175–186. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 18

4. Fenstad, J.E., Hinman, P.: Generalized Recursion Theory. North-
Holland/American Elsevier, Amsterdam (1974)

5. Hamkins, J.D., Lewis, A.: Infinite time turing machines. J. Symb. Log. 65, 567–604
(2000)

6. Hartley, J.P.: Recursion on Countably Based Functionals. Thesis, University of
Leeds (1982)

7. Hartley, J.P.: The countably based functionals. J. Symb. Log. 48, 458–474 (1983)
8. Hartley, J.P.: Effective discontinuity and a characterisation of the superjump. J.

Symb. Log. 50, 349–358 (1985)
9. Kleene, S.C.: Recursive functionals and quantifiers of finite types I. Trans. Am.

Math. Soc. 91, 1–52 (1959)
10. Lindelöf, E.: Sur Quelques Points De La Théorie Des Ensembles. Comptes Rendus,

pp. 697–700 (1903)
11. Longley, J., Normann, D.: Higher-Order Computability. Springer, Heidelberg

(2015). https://doi.org/10.1007/978-3-662-47992-6

https://doi.org/10.1007/978-3-319-58741-7_18
https://doi.org/10.1007/978-3-662-47992-6

Functionals of Type 3 as Realisers of Classical Theorems in Analysis 327

12. Moldestad, J.: Computations in Higher Types. LNM, vol. 574. Springer, Heidelberg
(1977). https://doi.org/10.1007/BFb0087822

13. Normann, D., Sanders, S.: Nonstandard Analysis, Computability Theory, and
Their Connections. arXiv: https://arxiv.org/abs/1702.06556 (2017, submitted)

14. Normann, D., Sanders, S.: The strength of compactness in Computability Theory
and Nonstandard Analysis. arXiv: https://arxiv.org/abs/1801.08172 (2018, sub-
mitted)

15. Normann, D., Sanders, S.: Nonstandard Analysis, Computability Theory, and
Metastability, in preparation

16. Normann, D., Sanders, S.: On the mathematical and foundational significance of
the uncountable. arXiv: http://arxiv.org/abs/1711.08939 (2017, submitted)

17. Sanders, S.: The Gandy-Hyland functional and a computational aspect of nonstan-
dard analysis. Computability 7, 7–43 (2018)

18. Sanders, S.: Metastability and higher-order computability. In: Artemov, S., Nerode,
A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 309–330. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72056-2 19

19. Welch, P.D.: Transfinite machine models. In: Downey, R. (ed.) Turing’s Legacy.
ASL Lecture Notes in Logic, vol. 42, pp. 493–529. Cambridge University Press,
Cambridge (2014)

https://doi.org/10.1007/BFb0087822
https://arxiv.org/abs/1702.06556
https://arxiv.org/abs/1801.08172
http://arxiv.org/abs/1711.08939
https://doi.org/10.1007/978-3-319-72056-2_19

Enumeration Degrees and Topology

Arno Pauly1,2(B)

1 Swansea University, Swansea, UK
Arno.M.Pauly@gmail.com

2 University of Birmingham, Birmingham, UK

Abstract. The study of enumeration degrees appears prima facie to
be far removed from topology. Work by Miller, and subsequently recent
work by Kihara and the author has revealed that actually, there is a
strong connection: Substructures of the enumeration degrees correspond
to σ-homeomorphism types of second-countable topological spaces. Here,
a gentle introduction to the area is attempted.

1 Enumeration Reducibility

Enumeration reducibility is a computability-theoretic reducibility for subsets of
N introduced by Friedberg and Rogers [10].

Definition 1. A ≤e B iff there is a c.e.-set W such that:

A = {n ∈ N | ∃k ∈ N ∃m0, . . . ,mk ∈ B 〈n,m0, . . . ,mk〉 ∈ W}

where 〈 〉 : N
∗ → N is some standard coding for tuples of arbitrary length. We

write E for the collection of enumeration degrees.

The intuitive idea is that the elements of W are rules, that upon observing the
presence of some finite collection of numbers in B let us conclude the presence of
some number in A. Contrasted to Turing reducibility, we note that the symmetry
between presence and absence is broken: We only receive positive information
about B, and only need to provide position information about A.

Looking at individual sets, we find that enumeration reducibility and Tur-
ing reducibility appear very different: For any combination of enumeration and
Turing reductions between A and B, we can construct sets realizing that combi-
nation. On the level of the degree structures, both E and the Turing degrees (to
be denoted by T) are join-semilattices with the usual tupling function ⊕ acting
as join. We can make the following observation:

Observation 2. The map A 	→ A⊕AC induces a join-semilattice embedding of
T into E.

A different intuitive interpretation of what enumeration reducibility is about
is connected to this observation: Using the usual oracle Turing machines, we

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 328–337, 2018.
https://doi.org/10.1007/978-3-319-94418-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_33&domain=pdf

Enumeration Degrees and Topology 329

obtain a reducibility not only between total functions, but between partial func-
tions, too (e.g. [7, Sect. 11.3]). We obtain the degree structure E like that, and
the embedding just becomes the natural inclusion of the total functions into the
partial functions.

A third notion of reducibility relevant for us is Medvedev reducibility. Rather
than being about subsets of N, we are dealing with subsets of 2N or N

N here. We
recall that computability for functions of type F :⊆ 2N → 2N can be defined via
Type-2 Turing machines (which run forever, and have a write-once-only output
tape), or equivalently via Turing functionals. In the latter case, we consider an
oracle Turing machine M . We say that M computes F , if given oracle access to
p ∈ 2N, it computes n 	→ F (p)(n).

Definition 3. A ≤M B if there is a computable F : B → A. We denote the
collection of Medvedev degrees by M.

Both the Turing degrees and the enumeration degrees embed in natural ways
into the Medvedev degrees: For the former, map p ∈ 2N to {p} ⊆ 2N. For the
latter, map A ⊆ N to {p ∈ N

N | ∀n ∈ N n ∈ A ⇔ ∃k ∈ N p(k) = n + 1}.1 In
words, to embed an enumeration degree into the Medvedev degrees, we move
from a set A ⊆ N to the set of all enumerations of A. If we start with a Turing
degree, embed it as enumeration degree, and then embed that as a Medvedev
degree, we obtain the same degree (although not the same set) as when we move
from Turing degrees directly to Medvedev degrees.

2 Represented Spaces and Generalized Turing Reductions

If we wish to delve deeper into the idea that the difference between Turing
reducibility and enumeration reducibility is about having different information
about the sets available, we are led to the notion of a represented space. Repre-
sented spaces are the means by which we introduce computability to the spaces
of interest in computable analysis [44].

Definition 4. A represented space is a set X together with a partial surjection
δX :⊆ N

N → X.

A function between represented spaces X = (X, δX) and Y = (Y, δY) is just
a set-theoretic function on the underlying sets. We say that F :⊆ N

N → N
N is a

realizer of f :⊆ X → Y, if δY(F (p)) = f(δX(p)) for all p ∈ dom(f ◦δX). We then
call a function between represented spaces computable, if it has a computable
realizer. More on the theory of represented spaces is presented in [35].

A potential way to introduce Turing reducibility is to say that for p, q ∈ N
N

we have p ≤T q if there is a computable F :⊆ N
N → N

N with F (q) = p. Not only
does this approach align well with our embedding of T into M, it immediately
suggests a generalization. Given that we have available to us a notion of partial
computable functions between represented spaces in general, we can introduce:
1 Using p(k) = n + 1 rather than p(k) = n is necessary to deal with the empty set in

a uniform way.

330 A. Pauly

Definition 5 (Kihara and Pauly [24]). For represented spaces X, Y, and
elements x ∈ X, y ∈ Y, say that x is reducible to y (written xX ≤T yY), if there
is a computable F :⊆ Y → X with F (y) = x.

Unraveling the definitions, we see that xX ≤T yY is just a fancy way of saying
δ−1
X (x) ≤M δ−1

Y (y). Considering the degree structure for arbitrary represented
spaces just gives back M again. However, we do gain two advantages: On the
one hand, we can now deal with the degrees of meaningful mathematical objects,
rather than faceless subsets of Baire space. On the other hand, we can look at
the degrees of all points in more restricted classes of represented spaces than all
of them at once, and investigate which degrees are present in those.

Two particular classes of represented spaces have received significant atten-
tion, computable metric spaces and countably-based spaces2. In both, represen-
tations can be constructed in a canonical way from other data about the space:

Definition 6. A computable metric space is a metric space (X, d) together with
a dense sequence (ai)i∈N such that (i, j) 	→ d(ai, aj) : N

2 → R is computable. Its
associated representation is defined via δ(p) = x iff ∀i ∈ N d(x, ap(i)) < 2−i.

Definition 7. Given an enumeration (Bn)n∈N of a basis of a T0 topological
space, its induced representation is given by δ(p) = x iff:

{n | x ∈ Bn} = {n | ∃i p(i) = n}

In effective descriptive set theory [32], a slightly different effectivization of
metric spaces is used, namely recursively presented metric spaces. The difference
disappears if we add a completeness-requirement and forget the specific choice of
metric [14]. We then arrive at computable Polish spaces. The complete version
of countably-based T0 spaces are the quasi-Polish spaces [4].

The generalized reducibility restricted to computable metric spaces was stud-
ied by Miller [30]. He showed that there are indeed degrees of points in com-
putable metric spaces (he called these continuous degrees) that are not Turing
degrees, and obtained many results about them. Since there are universal Polish
spaces (for example, the Hilbert cube [0, 1]ω or the space of continuous functions
C([0, 1], [0, 1])), we can in particular define:

Definition 8. We call Spec([0, 1]ω) the continuous degrees.

For countably-based spaces, we find that there too exists a universal space.
Let O(N) be the space of open subsets of N, i.e. of all subsets of N represented via
ψ(p) = {n | ∃i p(i) = n+1}. Alternatively, O(N) can be seen as derived from the
countably-based topology generated by the subbasis {{U ⊆ N | n ∈ U} | n ∈ N},
i.e. carrying the Scott topology.

2 There are some variations here regarding what aspects are required to be effective.
Typical names used in the literature are effective topological space, computable topo-
logical space or effectively enumerable topological space, see e.g. [25,45]. These details
do not matter for our purposes.

Enumeration Degrees and Topology 331

Observation 9. Spec(O(N)) = E
Thus, we see that the enumeration degrees are the degrees of points in

countably-based spaces.

3 σ-Homeomorphisms

While we have seen that enumeration degrees can naturally be conceived of as
the degrees of points in countably-based spaces, we have not yet discussed how
topological properties of a space interact with the degrees of its points. The
relevant notion here is that of a σ-homeomorphism. We have both a computable
and a continuous version of σ-homeomorphism.

Definition 10. A represented space X σ-embeds into a represented space Y, if
there is a countable partition X =

⋃
i∈N

Xi such that any Xi embeds into Y.3 If
X σ-embeds into Y and vice versa, we call X and Y σ-homeomorphic.

Definition 11 (Kihara and Pauly [24]). For a represented space X, let
Spec(X) be the set of degrees of points in X.

Theorem 12 (Kihara and Pauly [24]). The following are equivalent for rep-
resented spaces X, Y:

1. Spec(X) ⊆ Spec(Y)
2. X computably σ-embeds into Y

Thus, we see that the degrees present in a space (above some oracle) just char-
acterize its σ-homeomorphism type. For Polish spaces, the question of their σ-
homeomorphism types has received significant attention. Here, the partition of X
in Definition 10 can even be chosen to be Π0

2 . Intricate arguments from descrip-
tive set theory [13,33,38] then show that for Polish spaces, σ-homeomorphism
agrees with second-level Borel isomorphism. Jayne had explored second-level
Borel isomorphism of Polish spaces in 1974 [20] motivated by applications in
Banach space theory. While it is well-known that 2N and [0, 1]ω are not σ-
homeomorphic4, it remained open whether there were more σ-homeomorphism
types of uncountable Polish spaces. This question was reraised by Motto-Ros
[33] and by Motto-Ros et al. [34]. The context of [34] is the generalization of
Wadge degrees. The question was answered using recursion-theoretic methods
by Kihara and Pauly, yielding:

Theorem 13 (Kihara and Pauly [24]). The poset (ω≤ω
1 ,⊆) of countable sub-

sets of the first uncountable ordinal ω1 ordered by set-inclusion embeds into the
poset of uncountable Polish spaces ordered by σ-embeddability.
3 We have slightly deviated from the usual definition here. In topology, we would

typically demand that the Xi can be disjointly embedded into Y. The difference
can be removed by replacing Y with Y×N. The results we need from topology hold
for either version, and the present one makes the connection to degree theory more
elegant.

4 We now realize that this means that there are continuous degrees which are not
Turing degrees!

332 A. Pauly

4 Non-total Continuous Degrees

Miller had observed in [30] that all continuous degrees share a peculiar property,
namely being almost-total (the name was coined later, in [2]). The name is
explained by noting that an enumeration degree is called total, if it is in the
range of the embedding of the Turing degrees.

Definition 14. An enumeration degree d is almost-total, if for every total degree
p with p �e d we find that p ⊕ d is total.

The question of existence of non-total almost-total degrees prima facie is
purely recursion-theoretic question. Miller’s result shows that the existence of
continuous degrees which are not Turing degrees gives a positive answer. Miller’s
proof of the existence of continuous non-total degrees in [30] proceeds by con-
structing a multi-valued function on [0, 1]ω whose fixed-points are non-total, and
invoking a generalization of Brouwer’s fixed point theorem to conclude existence.
It is, in particular, relying heavily on topological arguments.

A different proof follows from the observation by Day and Miller [8] that
Levin’s neutral measures from [27] (see also [11]) have non-total continuous
degrees. A measure μ is called weakly neutral, if every point is μ-random –
this in particular requires every point computable from μ to have positive mea-
sure. The existence of neutral measures is obtained via the Kakutani fixed point
theorem.

We already mentioned that by Theorem 12 the existence of non-total contin-
uous degrees is equivalent to saying that 2N and [0, 1]ω are not σ-homeomorphic.
This is in turn a consequence of a classic result in topological dimension the-
ory [19]: A Polish space is countably-dimensional iff it is σ-homeomorphic to 2N

– and the Hilbert cube is not countably-dimensional. We thus have three dif-
ferent proofs of the existence of the recursion-theoretic theorem that non-total
almost-total degrees exist – and all of them invoke classic topological theorems.

That the existence of non-total almost-total degrees is proven via a seeming
detour through the continuous degrees is not accident: Andrews et al. proved that
the almost-total degrees are exactly the continuous degrees [2]. Their proof pro-
ceeds via a number of characterizations, essentially showing that every almost-
total degree has a certain representative, and that the collection of these rep-
resentatives forms an effective regular topological space. Schröder’s effective
metrization theorem [16,39] then enables the conclusion that all these repre-
sentatives have continuous degree.

5 Gδ-Spaces and Cototal Degrees

That enumeration degrees correspond to countably-based spaces, and Turing
degrees to Cantor space, or more generally, countably-dimensional spaces could
still be put aside as a superficial resemblance. We shall thus present further
examples of topological spaces and substructures of the enumeration degrees
both studied in their own right, and explain how they link up.

Enumeration Degrees and Topology 333

The total enumeration degrees can be characterized as having a representa-
tive A ⊆ N such that AC ≤e A. We can dualize this to get the cototal enumer-
ation degrees as those having a representative such that A ≤e AC . Every total
degree is cototal, but not vice versa. McCarthy [29] revealed various characteri-
zations of the cototal degrees: They are the degrees of complements of maximal
antichains in N

<ω, of (uniformly) e-pointed trees and of the languages of min-
imal subshifts. Here, a (uniformly) e-pointed tree is an infinite binary tree T
such that every infinite path through T is (uniformly) ≤e-above T . For more
on degrees and minimal subshifts, see [21]. The cototal enumeration degrees are
further studied in [1,31].

A topological space is a Gδ-space, if every closed subset can be written as a
countable intersection of open sets. If we consider only countably-based spaces,
this is equivalent to saying that every closed subset is equal to the intersection of
all open sets containing it. Every Polish space is Gδ, while neither the Sierpiński
space S nor O(N) are.

Theorem 15 (Kihara et al. [23]). The degrees of points in countably-based
Gδ-spaces are exactly the co-total degrees.

In particular, we can conceive of the space of complements of maximal antichains
in N

<ω or the space of languages of minimal subshifts to be a universal Gδ-space,
taking into account McCarthy’s results.

6 Graph-Cototal Degrees and the Cofinite Topology

Call an enumeration degree graph-cototal, if it contains a representative of the
form Graph(f)C for some f : N → N. Graph-cototal enumeration degrees were
studied by Solon [42]5 in the context of quasi-minimal enumeration degrees6.

To find their topological counterpart, we turn to the cofinite topology on N.
Here, a subset of N is open iff it is empty or cofinite. As a representation, we find
that δcof(p) = n iff {p(i) | i ∈ N} = N \ {n} produces the desired represented
space Ncof . The space Ncof is perhaps the simplest example of a topological
space satisfying the T1 separation axiom (every singleton is closed), but not the
T2 separation axiom (being Hausdorff, i.e. every two points are separated by
disjoint open sets).

Observation 16 (Kihara et al. [23]). Spec(Nω
cof) contains exactly the graph-

cototal enumeration degrees.

The question has been raised7 whether all almost-total degrees are graph-
cototal. Via the aforementioned results and Theorem 12, we can rephrase this
question to a topological one:
5 Solon uses the name cototal instead of graph-cototal, which we have already used

for a different concept above.
6 An enumeration degree is quasi-minimal, if it is non-computable, but every total

degree below is computable.
7 This open question was brought to the author’s attention by Joe Miller.

334 A. Pauly

Question 17. Does [0, 1]ω σ-embed into N
ω
cof?

What we can rule out easily is an actual embedding of [0, 1]ω into N
ω
cof , due

to the following:

Theorem 18 (Sierpiński, see e.g. [9, Theorem6.1.27]). Let X be a con-
nected compact metric space. Then every continuous f : X → Ncof is constant.

By a classic theorem from topological dimension theory (see [19]), the Hilbert
cube cannot be the countable union of disconnected spaces. At first glance, this
may appear to answer Question 17. However, there are connected metric spaces
containing no non-trivial connected subspaces. Spaces with the latter property
are called punctiform, and a construction of a connected punctiform space is
found as [26, Example 1.4.8]. For a further discussion of punctiform spaces and
additional references, see [28].

7 The Lower Reals and Semirecursive Sets

The lower reals R< are the real numbers, where x ∈ R is represented via an
increasing sequence (qi)i∈N of rationals with supi∈N

qi = x. Equivalently, they
are the reals equipped with the (countably-based) topology {{y ∈ R | y < x} |
x ∈ R} ∪ {∅, R}. This spaces appears naturally when performing the Dedekind-
construction of the reals in a constructive setting, and has a central role in the
development of measure theory via valuations (e.g. [6,37]).

Recall from [22] that a set A ⊆ N is called semirecursive, if there is a
computable function f : N × N → N such that for all n,m ∈ N we find
f(n,m) ∈ {n,m}, and if n ∈ A or m ∈ A, then f(n,m) ∈ A. Combining
results by Jockusch [22] and by Ganchev and Soskova [12] shows:

Theorem 19. The semirecursive enumeration degrees are precisely Spec(R<).

For most natural spaces, taking finite products does not change their σ-
homeomorphism type. In other words, the products of any two degrees of their
corresponding spectra will lie in the spectrum again. The situation is different
for semirecursive sets. It is readily seen that 2N does not embed into R<, whereas
R< × R> contains a copy of R (and thus of 2N). In degree language, almost all
semirecursive degrees are not total, whereas any total degree can be written as a
product of two semirecursive degrees. Using geometric reasoning, one can obtain
the following general result:

Theorem 20 (Kihara and Pauly [24]). Let X be uncountable, countably-
based and T1. Then the spectra of X × R

n
< and R

n+1
< are incomparable.

One recursion-theoretic corollary is that for any n, there is a degree arising
as the product of n+1 semirecursive degrees, but not of n semirecursive degrees
and one graph-cototal degree, and vice versa. Studying the spectrum of spaces
X×R< also led to a generalization ([24, Lemma 8.2]) of Arslanov et al. result [3]
that if a real x is neither left-c.e. nor right-c.e., then x ∈ R< is quasi-minimal.

Enumeration Degrees and Topology 335

8 And More. . .

In [23], several countably-based spaces from “Counterexamples in topology” [43]
had their spectra classified in recursion-theoretic terms, including the Arens
square, the Gandy-Harrington space, Roy’s space and the relatively-coprime
topology on the integers. One can lift the notion of quasi-minimality to spaces:
a non-computable point x ∈ X is called Y-quasi-minimal, if x computes no non-
computable point in Y. Various existence result for such quasi-minimal points
are provided in [23].

We can also leave behind the realm of enumeration degrees and countably-
based spaces, and study degrees in non-countably-based spaces. The spectrum
of O(NN) exceeds the enumeration degrees; we can show this by lifting a diag-
onalization argument from Hinman [17] from partial functions on 2N to partial
functions on O(N).

Non-countably-based spaces can be very resistant to the usual descriptive set
theoretic methods. Hoyrup [18] has shown that already the lowest levels of the
Borel hierarchy behave very differently for O(N) than their usual behaviour on
quasi-Polish spaces8. In [5,41] various hierarchies of non-countably-based repre-
sented topological spaces are explored. It is an open task to explore how these
align with hierarchies of spectra.

Two further approaches to non-countably-based spaces in sight are to gener-
ate examples via the sequential de Groot dual [15] (essentially, given a T1-space,
consider the space of singletons as a subspace of its space of closed subsets); or
via countably cs-networks. It was shown by Schröder that the existence of these
characterize the topological spaces than can be obtained as represented spaces
in [40].

Acknowledgments. My understanding of the subject material has tremendously
benefited from a multitude of discussions and talks. Foremost, I am grateful to Takayuki
Kihara, but also to Matthew de Brecht, Mathieu Hoyrup, Steffen Lempp, Joseph Miller,
Keng Meng Selwyn Ng and Mariya Soskova.

The author received support from the MSCA-RISE project “CID - Computing with
Infinite Data” (731143) and the Marie Curie International Research Staff Exchange
Scheme Computable Analysis, PIRSES-GA-2011-29496.

References

1. Andrews, U., Ganchev, H.A., Kuyper, R., Lempp, S., Miller, J.S., Soskova, A.A.,
Soskova, M.I.: On cototality and the skip operator in the enumeration degrees
(preprint). http://www.math.wisc.edu/∼msoskova/preprints/cototal.pdf

2. Andrews, U., Igusa, G., Miller, J.S., Soskova, M.I.: Characterizing the continuous
degrees (2017, preprint). http://www.math.wisc.edu/∼jmiller/Papers/codable.pdf

3. Arslanov, M.M., Kalimullin, I.S., Cooper, S.B.: Splitting properties of total enu-
meration degrees. Algebra Log. 42(1), 1–13 (2003)

8 This raises the question how exactly one ought to define the Borel hierarchy in these
spaces. One approach is found in [36].

http://www.math.wisc.edu/~msoskova/preprints/cototal.pdf
http://www.math.wisc.edu/~jmiller/Papers/codable.pdf

336 A. Pauly

4. de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Log. 164(3), 354–381 (2013)
5. de Brecht, M., Schröder, M., Selivanov, V.: Base-complexity classifications of

QCB0-spaces. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS,
vol. 9136, pp. 156–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20028-6 16

6. Collins, P.: Computable stochastic processes. arXiv:1409.4667 (2014)
7. Cooper, S.B.: Computability Theory. Chapman and Hall/CRC, Boca Raton (2004)
8. Day, A., Miller, J.: Randomness for non-computable measures. Trans. AMS 365,

3575–3591 (2013)
9. Engelking, R.: General Topology. Heldermann, Berlin (1989)

10. Friedberg, R., Rogers, H.: Reducibility and completeness for sets of integers.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik 5, 117–125
(1959)

11. Gács, P.: Uniform test of algorithmic randomness over a
general space. Theor. Comput. Sci. 341(1), 91–137 (2005).
http://www.sciencedirect.com/science/article/pii/S030439750500188X

12. Ganchev, H.A., Soskova, M.I.: Definability via Kalimullin pairs in the structure of
the enumeration degrees. Trans. Am. Math. Soc. 367(7), 4873–4893 (2015)

13. Gregoriades, V., Kihara, T., Ng, K.M.: Turing degrees in Polish spaces and decom-
posability of Borel functions (2016, preprint)

14. Gregoriades, V., Kispéter, T., Pauly, A.: A comparison of concepts from com-
putable analysis and effective descriptive set theory. Math. Struct. Comput. Sci.
(2016). arXiv:1403.7997

15. de Groot, J., Strecker, G., Wattel, E.: The compactness operator in general topol-
ogy. In: General Topology and its Relations to Modern Analysis and Algebra, pp.
161–163. Academia Publishing House of the Czechoslovak Academy of Sciences
(1967). http://eudml.org/doc/221016

16. Grubba, T., Schröder, M., Weihrauch, K.: Computable metrization. Math. Log. Q.
53(4–5), 381–395 (2007)

17. Hinman, P.G.: Degrees of continuous functionals. J. Symb. Log. 38, 393–395 (1973)
18. Hoyrup, M.: Results in descriptive set theory on some represented spaces.

arXiv:1712.03680 (2017)
19. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton Mathematical Series,

vol. 4. Princeton University Press, Princeton (1948)
20. Jayne, J.E.: The space of class α Baire functions. Bull. Am. Math. Soc. 80, 1151–

1156 (1974)
21. Jeandel, E., Vanier, P.: Turing degrees of multidimen-

sional SFTs. Theor. Comput. Sci. 505, 81–92 (2013).
http://www.sciencedirect.com/science/article/pii/S0304397512008031

22. Jockusch, C.: Semirecursive sets and positive reducibility. Trans. AMS 131(2),
420–436 (1968)

23. Kihara, T., Ng, K.M., Pauly, A.: Enumeration degrees and non-metrizable topol-
ogy. (201X, in preparation)

24. Kihara, T., Pauly, A.: Point degree spectra of represented spaces. arXiv:1405.6866
(2014)

25. Korovina, M.V., Kudinov, O.V.: Towards computability over effectively enumer-
able topological spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125 (2008)

26. Krupka, D.: Introduction to Global Variational Geometry. Elsevier, Amsterdam
(2000)

27. Levin, L.A.: Uniform tests of randomness. Sov. Math. Dokl. 17(2), 337–340 (1976)

https://doi.org/10.1007/978-3-319-20028-6_16
https://doi.org/10.1007/978-3-319-20028-6_16
http://arxiv.org/abs/1409.4667
http://www.sciencedirect.com/science/article/pii/S030439750500188X
http://arxiv.org/abs/1403.7997
http://eudml.org/doc/221016
http://arxiv.org/abs/1712.03680
https://arxiv.org/abs/1712.03680
http://www.sciencedirect.com/science/article/pii/S0304397512008031
http://arxiv.org/abs/1405.6866

Enumeration Degrees and Topology 337

28. Lipham, D.: Widely-connected sets in the bucket-handle continuum.
arXiv:1608.00292 (2016)

29. McCarthy, E.: Cototal enumeration degrees and their application to computable
mathematics. In: Proceedings of the AMS (to appear)

30. Miller, J.S.: Degrees of unsolvability of continuous functions. J. Symb. Log. 69(2),
555–584 (2004)

31. Miller, J.S., Soskova, M.I.: Density of the cototal enumeration degrees.
Ann. Pure Appl. Log. (2018). http://www.sciencedirect.com/science/article/pii/
S0168007218300010

32. Moschovakis, Y.N.: Descriptive Set Theory, Studies in Logic and the Foundations
of Mathematics, vol. 100. North-Holland, Amsterdam (1980)

33. Motto-Ros, L.: On the structure of finite level and omega-decomposable Borel
functions. J. Symb. Log. 78(4), 1257–1287 (2013)

34. Motto-Ros, L., Schlicht, P., Selivanov, V.: Wadge-like reducibilities on arbitrary
quasi-polish spaces. Math. Struct. Comput. Sci. 1–50 (2014). http://journals.
cambridge.org/article S0960129513000339, arXiv:1204.5338

35. Pauly, A.: On the topological aspects of the theory of represented spaces. Com-
putability 5(2), 159–180 (2016). arXiv:1204.3763

36. Pauly, A., de Brecht, M.: Descriptive set theory in the category of represented
spaces. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pp. 438–449 (2015)

37. Pauly, A., Fouché, W.: How constructive is constructing measures? J. Log. Anal.
9 (2017). http://logicandanalysis.org/index.php/jla/issue/view/16

38. Pawlikowski, J., Sabok, M.: Decomposing Borel functions and structure at finite
levels of the Baire hierarchy. Ann. Pure Appl. Log. 163(12), 1748–1764 (2012)

39. Schröder, M.: Effective metrization of regular spaces. In: Ko, K.I., Nerode, A.,
Pour-El, M.B., Weihrauch, K., Wiedermann, J. (eds.) Computability and Complex-
ity in Analysis. Informatik Berichte, vol. 235, pp. 63–80. FernUniversität, Hagen
(1998)

40. Schröder, M.: Extended admissibility. Theoret. Comput. Sci. 284(2), 519–538
(2002)

41. Schröder, M., Selivanov, V.L.: Some hierarchies of QCB0-spaces. Math. Struct.
Comput. Sci. 1–25 (2014). arXiv:1304.1647

42. Solon, B.: Co-total enumeration degrees. In: Beckmann, A., Berger, U., Löwe, B.,
Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 538–545. Springer, Heidelberg
(2006). https://doi.org/10.1007/11780342 55

43. Steen, L.A., Seebach Jr., J.A.: Counterexamples in Topology, 2nd edn. Springer,
Heidelberg (1978). https://doi.org/10.1007/978-1-4612-6290-9

44. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.
org/10.1007/978-3-642-56999-9

45. Weihrauch, K., Grubba, T.: Elementary computable topology. J. Univ. Comput.
Sci. 15(6), 1381–1422 (2009)

http://arxiv.org/abs/1608.00292
http://www.sciencedirect.com/science/article/pii/S0168007218300010
http://www.sciencedirect.com/science/article/pii/S0168007218300010
http://journals.cambridge.org/article_S0960129513000339
http://journals.cambridge.org/article_S0960129513000339
http://arxiv.org/abs/1204.5338
http://arxiv.org/abs/1204.3763
http://logicandanalysis.org/index.php/jla/issue/view/16
http://arxiv.org/abs/1304.1647
https://arxiv.org/abs/1304.1647
https://doi.org/10.1007/11780342_55
https://doi.org/10.1007/978-1-4612-6290-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

A Taxonomy of Deviant Encodings

Paula Quinon(B)

Philosophy Department, Lund University, Lund, Sweden
paula.quinon@fil.lu.se

http://www.paulaquinon.com

Abstract. The main objective of this paper is to design a common back-
ground for various philosophical discussions about adequate conceptual
analysis of “computation”.

Keywords: The Church-Turing Thesis · Deviant encodings
Fixed points of conceptual analysis

1 Introduction: Circularity in the Definition
of Computability

The core of the problem discussed in this paper is the following: the Church-
Turing Thesis states that Turing Machines formally explicate the intuitive con-
cept of computability. The description of Turing Machines requires description of
the notation used for the input and for the output. The notation used by Tur-
ing in the original account and also notations used in contemporary handbooks
of computability all belong to the most known, common, widespread notations,
such as standard Arabic notation for natural numbers, binary encoding of nat-
ural numbers or stroke notation. The choice is arbitrary and left unjustified. In
fact, providing such a justification and providing a general definition of nota-
tions, which are acceptable for the process of computations, causes problems.
This is so, because the comprehensive definition states that such a notation or
encoding has to be computable. Yet, using the concept of computability in a
definition of a notation, which will be further used in a definition of the concept
of computability yields an obvious vicious circle.

This argument appears in discussions about what is an adequate or cor-
rect conceptual analysis of the concept of computability. Its exact form depends
on the underlying picture of mathematics that an author is working with. My
objective in this paper is, firstly to discuss various versions and aspects of this

I am indebted to Liesbeth de Mol and Giuseppe Primiero for inviting me to the
Special Session in History and Philosophy of Computing at CiE 2018. I am also
grateful to Patrick Blackburn (Roskilde) and Nina Gierasimczuk (KTH) for helpful
comments on an earlier version of this paper. I am finally indebted to the anonymous
reviewer for the valuable insight into possible new openings to which the subject
matter of the paper can, and certainly will, lead.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 338–348, 2018.
https://doi.org/10.1007/978-3-319-94418-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_34&domain=pdf
http://orcid.org/0000-0001-7574-6227

A Taxonomy of Deviant Encodings 339

problem, and then, secondly, to point towards possible solutions, both those
proposed explicitly, and these which are relevant for us only implicitly, because
they target some disguised version of the problem. Finally, I will indicate related
topics and formulate some ideas arising from this discussion.

2 Background: Philosophical Framework
and Terminology Clarification

It was Gödel’s ambition to explicate the concept of “absolute” computation, that
is a computation which is not formulated for a particular domain. However, all
know today explications of computability refer to some sort of ω-progression.
Philosophical investigations into the concept of natural number, and its use as
basis for analysis of the concept of computation, involve – more or less explicitly
– one or both layers:

1. the syntactical layer of numerals and
2. the semantical layer of abstract natural numbers.

A denotation δ maps the elements from one layer to the elements of the other
layer. See [16].

The syntactical layer of numerals consists of a sequence of inscriptions sus-
ceptible to be subjected to computational manipulations. Various syntactical
systems have different syntactical properties. A priori, without an interpreta-
tion, a sequence of random inscriptions is as good as a binary notation based
on recursive combinations of zeros and ones. At the semantical layer natural
numbers are always understood as some sort of abstract entities. It does not
belong to the current endeavor to analyze all possible modalities of existence
of abstract natural numbers, neither to decide, which of these modalities is the
correct one. That would complicate the picture unnecessarily. However, in order
to mark the ground, let me say that you can think of variety of things starting
from types of inscriptions, conceptual content associated with numerals in the
process of learning, cognitive content issued from the empirical experience, a sys-
tem of mental representations or Platonic ideas remaining in the Platonic world
of ideas. The denotation function matches numerals from the syntactical layer
with natural numbers from the semantical one, so denotation is a cross-modal
function, mapping physical inscriptions on abstract objects.

Computations can be defined on the syntactical layer, or semantical layer or
on both of them combined. Functions from syntactical layer are called string-
theoretic functions, functions from semantical layer are called number-theoretic
functions.

This picture was explicitly proposed by [16] and, in a more or less implicit
manner, appears in various other papers studying philosophical correlations
between computability and natural numbers of such authors as [1,3] or [15].
The terminology that various authors use differ from one account to another.
My very first objective in this paper is to clarify the basic vocabulary.

340 P. Quinon

Three notions come back in accounts of deviations related to the concept of
computability are the following: “notation”, “encoding” and “semantics”.

For instance, when it comes to “notation”, in his paper entitled “Acceptable
notation” [16] calls “notation” a syntactic sequence of numerals together with
a denotational function. This is definitely more handy in his context, as he
considers only computable sequences of inscriptions. Shapiro’s concern consists
in defining adequate ways of associating those sequences with semantics in such
a way that string-theoretic functions have clear number-theoretic counterparts.
[4] by “notation” mean the triple: a sequence of inscriptions with a denotation
function and the standard semantics. One notation differs from another one
by syntactical features of the sequence of inscriptions. In this paper, I speak
of notation in the context of purely syntactical layer of inscriptions. I speak
of notation with denotation function or notation with interpretations when I
introduce other layers.

When the full picture (all layers) is in place, I call “deviant encodings” devi-
ations that happens on the syntactic level; I call “deviant semantics” deviations
that happens on the semantic level; finally I call “unacceptable denotation func-
tion” deviations of the denotation function.

I divide the discussion in this paper to three general perspectives:

– I make an attempt to talk about numerals without any reference to natural
numbers formulating a purely syntactical version of the problem;

– I reflect on what happens when one starts associating names with abstract
objects, and in this context I look at the denotation function;

– I look at those realistic positions where abstract objects are taken as existing
before being named.

3 The Lightest Shade of the Problem: Purely Syntactical
Approach

The general presentation of the problem, proposed at the beginning of this paper,
addresses the syntactical version of the issue. In this version, computations are
understood as manipulations of inscriptions, functions on inscriptions are string-
theoretic functions, etc. This version is easily conceptualised in the context of
a machine. When a human agent is involved at any stage the computational
process, there exists at least a theoretical possibility that purely mechanical
computations exist.1

The problem in its purely syntactical version can be formulated as follows. In
a definition of Turing computability, one of the aspects that needs to be clarified
is the characterization of notation that can be used as an input for a machine
to process. If a Turing Machine is supposed to explicate the intuitive concept
of computability it is necessary to explain, which sequence of numerals can be
used as an input without the use of the concept of computability. That means,

1 It might be claimed that humans always associate some meaning with symbols.

A Taxonomy of Deviant Encodings 341

we cannot simply say: “sequences that can be used as input are the computable
ones” as we have not yet defined what means “to be computable”.

Study of symbol manipulation as a mathematical endeavor has its place in
history of philosophy. A clear distinction between syntax and semantics dates
from [17]. In a different context, [6] designs methods to deal with a purely syn-
tactical calculus. [10] introduced philosophical problems related to the rejection
of all abstract entities.

To understand this situation better, ask this question: what one could tell
the Skeptic, who thinks that there is no way of distinguishing an acceptable
notation from an unacceptable one?

3.1 Nominalist Platonism Solution: Syntactic Entwining

One could tell the Skeptic that sequences of inscriptions exist and are free of
interpretations independently of human beings apprehending them. However,
even if we cannot see that from our earthy perspective, there is something specific
about certain sequences of inscriptions. Some of the sequences are computable.
Hence, this primarly nominalistic position has a Platonist dimension. I call it
“Platonist Nominalism”2.

Imagine that, similarly to the librarians from the Library of Babel, described
by Borges - I am going to get back to the original Borges story a little bit later
- you wander in the land of inscriptions. You might be a robot equipped with
means to process sequences of inscriptions and after processing some of those
sequences you get an expected output. You can also imagine a “Chinese Room
world”3. In any of those cases, you have no means to formulate a general theoret-
ical law enabling you to distinguish processable sequences from non-processable
ones.

“Nominalist Platonism” faces similar problems as those encountered by con-
crete computations. Consider, for instance, presentation of concrete computa-
tions by [13].

In our ordinary discourse, we distinguish between physical systems that
perform computations, such as computers and calculators, and physical
systems that don’t, such as rocks. Among computing devices, we distin-
guish between more and less powerful ones. These distinctions affect our
behaviour: if a device is computationally more powerful than another, we
pay more money for it. What grounds these distinctions? What is the
principled difference, if there is one, between a rock and a calculator, or
between a calculator and a computer? Answering these questions is more
difficult that it may seem.

2 The name “Nominalist Platonism” has been used in a different context by George
Boolos in “Nominalist Platonism”, Philosophical Review 94(3): 327–344 (1985). I do
not want to get into comparison here.

3 John Searle (1980), “Minds, Brains and Programs”, Behavioral and Brain Sciences,
3(3): 417–457.

342 P. Quinon

The difficulty for both, nominalist Platonism and concrete computations,
consists in distinguishing sequences of physical objects (inscriptions in the first
case and whatever physical systems, in the second) that can play the role of sub-
jects of computations from those that cannot. We know the difference between
a rock and a computer, in as much the same way as we know the difference
between computable and non-computable sequences of inscriptions. We make a
difference between notations for natural numbers, random sequences of random
inscriptions, and even weird permutations of numerals.

However, when it comes to formulating an explanation of why is this so, there
is no easy way out. Nominalist Platonism suffers from a severe and incurable epis-
temological problem of the sort described in [2] in the context of full-blooded
Platonism: we always face a choice between realistic ontology and epistemological
access to abstract objects. It is not impossible to get both. “[S]omething must
be said to bridge the chasm, created by [...] [a] realistic [...] interpretation of
mathematical propositions... and the human knower,” he writes. For prima facie
“the connection between the truth conditions for the statements of [our math-
ematical theories] and [...] the people who are supposed to have mathematical
knowledge cannot be made out”. [2, p. 675], see also [7].

3.2 Analytic Solution: The Turing Blank-Type Restriction
and Turing Notational Thesis

Some Skeptics will obviously not agree to accept the Nominalist Platonism solu-
tion and we shall not take it against them. The position is plausible and coherent,
but it is not philosophically very fruitful. The lack of epistemological access is a
strong and non fixable defect rendering Nominalist Platonism useless for every-
day reasonings, decision making and, most importantly, computational practice.

In this paper, I will recall a solution that has been proposed in the context
of computability. The answer that might help overcome Skeptics’ worries was
originally proposed by Turing and recently reevaluated by Copeland & Proudfoot
[8]. I will call it the “analytic solution”.

Copeland & Proudfoot reconstruct the way in which Turing implicitly guar-
antees that sequences of symbols that are processed by a machine are com-
putable. Computable sequences are subjects of two constraints.

Firstly, the Turing’s Blank-Tape Restriction: “If the [Turing] machine is sup-
plied with a blank tape and set in motion [. . .] the subsequence of the symbols
printed by it which are of the first kind [i.e. binary digits] will be called the
sequence computed by the machine. The real number whose expression as a
binary decimal is obtained by prefacing this sequence by a decimal point is
called the number computed by the machine” [18, p. 232].

Secondly, Turing Notational Thesis: “Any job of work that can be done by
a human computer engaged in numerical calculation can be carried out equiva-
lently by a human computer employing Turing-unary notation”.

When these two constraints are put together, the sequence that is in the input
and the sequence that is in the output of the process are necessarily computable.

A Taxonomy of Deviant Encodings 343

4 The Problem Gets One Shade Darker: Numerals Get
Meanings

Let’s now imagine that the Skeptic is convinced by the arguments that one can
generate the sequence of inscriptions - or, more precisely, of numerals - in such
a way that this structure is recursive. She can do it on a basis that she finds
the most convincing (social, cognitive, Blank-Type Restriction, etc.), it will not
play any role in my further reflections.

Now, let us assume that the Skeptic thinks that numerals have meanings,
but she refuses to rely on arbitrary choices of a “standard” notation, a “stan-
dard” denotation function, and a “standard” semantics. Instead, she asks for
providing her a way to distinguish acceptable notations from unacceptable ones.
In consequence, the problem of deviation extends to the semantical level.

4.1 Everyday Solution: Arbitrary Choice of Notation
and Denotation

The solution commonly adopted in the real world is to take arbitrary decisions,
possibly based on social, cultural or cognitive reasons, of which notation and
which denotation to use. We simply use a commonly known, well-recognised
notation, whose denotation does not leave to us any doubts. This is the case
of [4]. When those authors introduce the question of changing notation they
narrow the problem to the practical issue of using rather one notation than
another. For instance, they say, “multiplying numbers given in decimal numerals
(expressing the product in the same form) is easier in practice than multiplying
numbers given in something like Roman numerals”. They also claim that “it is
possible in principle to do it in any other notation, simply by translating the
data from the difficult notation into an easier one, performing the operation using
the easier notation, and then translating the result back from the easier to the
difficult notation”, which means there is a computational translation between
the notations. Ideas of “deciphering” a notation and “the system now in common
use” show that, according to the authors, defining a notation require an external,
non-mathematical, non-formal, non-effective knowledge [4, p. 24].

Indeed, when they define a Turing machine they say:

A Turing machine is a specific kind of idealised machine for carrying out
computations, especially computations on positive integers represented in
monadic notation.

There is no theoretical explanation that would justify the choice of one nota-
tion together with a denotation function over another. One can, obviously, try
to justify the choice by saying that numerals are social creations that children
learn in social interactions or that there is a necessity of learning them in this
specific order because of cognitive process, but all these justifications go beyond
the theoretical and conceptual context, which is ours.

344 P. Quinon

4.2 Formal Problem: Deviant Encodings and Deviant Semantics

It is highly doubtful if any Skeptic gets convinced by an arbitrary argument.
There is no theoretical reason to favour one notation, accompanied by a denota-
tion, over another. In consequence, the “lacuna” remains, but at another level.
And here finally comes time to recall the story of the Library of Babel. Under
Jorge Luis Borges description [1941] “the Library is total and that its shelves
register all the possible combinations of the twenty-odd orthographical symbols
(a number which, though extremely vast, is not infinite). [. . .] When it was pro-
claimed that the Library contained all books, the first impression was one of
extravagant happiness. All men felt themselves to be the masters of an intact
and secret treasure. [. . .] As was natural, this inordinate hope was followed by
an excessive depression. The certitude that some shelf in some hexagon held
precious books and that these precious books were inaccessible, seemed almost
intolerable”.

The librarians usually know which books make sense and which do not. It is
ok if a copy contains typos. However, the librarians do not understand reasons
why some sequences are special. A priori, no one is able to tell the difference
between books that tell the stories from books containing illegible information.
Similarly, no one is able to tell the difference between sequences that are com-
putable from those that are not.

However, if no external justification is adapted, we fall once more into vicious
circle of a conceptual analysis. This type of deviations is a deviation of the
meaning associated to the denotation function. There is no formal way of defining
such a function without referring to the concept of computability. A traditional
way of presenting this problem is clearly visible on the example of the Semantical
Halting Problem introduced by [12] and discussed by [8].

The classical formulation of the Halting Problem, first described by [18] and
named by Davis, provides a negative reply to the question of whether there exists
a general procedure to decide if a given Turing Machine, or more generally a
given computer program, will eventually stop. The proof goes by showing that
assuming the opposite leads to contradiction. The classical formulation uses some
intended and arbitrary, recursive, notation with standard semantics, e.g., Arabic
notation with standard interpretations.

Formulating the Halting Problem in purely syntactical terms is not really
possible, because the input, even if purely syntactical, is being generated by a
recursive procedure of encoding Turing Machines. Each numeral stands for the
Turing Machines it encodes. Problems arise however, when semantical layer gets
involved in the Semantical Halting Problem.

The Semantical Halting Problem is a Skeptical issue of the same sort as
the problem of non-computable, but ω-ordered models of the first-order Peano
Arithmetic introduced by [11] and [14], and discussed by [5]. In the presentation
of the classical Halting Problem, machines are encoded in a standard way. The
Semantical Halting Problem opens up to the possibility of using deviant - non-
computable - encodings. Imagine, you have encoded Turing machines with some
standard encoding. Then, it is Funes de Memorious – a character from another

A Taxonomy of Deviant Encodings 345

Borges’ story – who inherits the job from you. He is not following any recursive
rules. Since his memory is infinite and he has trouble synthesising information,
he names subsequent machines by a random name, and symbolises by a random
inscription.

He told me that in 1886 he had invented an original system of numbering
and that in a very few days he had gone beyond the twenty-four-thousand
mark. [. . .] In place of seven thousand thirteen, he would say (for example)
Máximo Pérez, in place of seven thousand fourteen, The Railroad ; other
numbers were Luis Melián Lafinur, Olimar, sulphur, the reins, the whale,
the gas, the caldron, Napoleon, Augustn de Veida. In place of five hun-
dred, he would say nine. Each word had a particular sign, a kind of mark;
the last in the series were very complicated... I tried to explain to him
that this rhapsody of incoherent terms was precisely the opposite of a sys-
tem of numbers. I told him that saying 365 meant saying three hundreds,
six tens, five ones, an analysis which is not found in the “numbers” The
Negro Timoteo or meat blanket. Funes did not understand me or refused
to understand me.

Tapes with Funes encoding are subsequently given to the Halting Machine.
What then happens? The Halting Machine that processes encodings of Turing
Machines is designed to process information in an algorithmic manner. If inputed
with a given non-standard enumeration of Turing machines, the machine will
process those non-computable encodings as it were standard notation.

No one will, obviously, have the idea of encoding Turing Machines with a
non-standard encoding. However, the problem of distinguishing one encoding
from another is the same as it was in the case of purely syntactical version of
the problem. If “being computable by a Turing machine” is how computable is
defined, one cannot use the concept of being computable in the definition. Is
there any formal general way of distinguishing standard encodings from deviant
encodings?

4.3 Way Out: Constraints on Denotation Function (Shapiro)

Shapiro in [16] defines computability on inscriptions and then searches for ways
of constraining the denotation function in such a way that no uncomputable
semantics can be reached. The first constraint is that between the syntactic and
the semantic layer there is a bijection (one-to-one and onto). He shows then that
the class of number-theoretic functions which are computable relative to every
notation is too narrow, containing only rather trivial functions, and that the class
of number-theoretic functions which are computable relative to some notation is
too broad (containing, for example, every characteristic function [p. 15]). Since
these constraints does not single out any standard notation, Shapiro introduces
human factor: “under normal circumstances, a person engaged in computation
is not merely following an algorithm. It is usually important, in particular, that
the computist know the number-theoretic goal of the algorithm” [p. 18].

346 P. Quinon

4.4 Model-Realistic Solution: Model-Theoretic Entwining

Some Skeptics could feel disappointed by lack of a purely formal solution. What
Shapiro proposes is, in the end, human-based and handwavy. If this is the case,
the Skeptic might find some peace in a solution recently proposed by [9]. Dean
develops a model-theoretic realism for the concept of computation. He claims
that there is no point in trying to find external arguments to distinguish between
various standard and non-standard models of arithmetic, nor of recursive theory.
We should rather use the richness of the model-theoretic universe for studying
structural properties of the concept of computability.

5 The Darkest Shade of the Problem: Computations
Happen on Abstract Objects

There is finally another type of Skeptical worry. In his paper, [15] puts forward
the idea that a full account of computability necessitated to define both syntactic
and semantic computability. He then formulates a “crucial lacuna” indicating the
intrinsic impossibility of defining computability on inscriptions first, and then,
on its basis, computability on abstract numbers.

The lacuna states that in a realistic picture, when computations are defined
on inscriptions, that there is no non-circular way of defining what computability
on natural numbers is, if we want to take computability as first applying it to
strings of characters. Let me remind you, that in an epistemologically plausible
picture, computability on numbers as abstract objects is defined via notation.
In an “epistemologically plausible picture” abstract objects are approached via
language, and not via a private insight.

Rescorla’s objective is to give an account of what a number-theoretic com-
putability is. He works under three hypotheses, first, computability refers to
numbers via notation (via numerals and with help of denotation function);
second, Turing Machines manipulate syntactic entities; third, to specify which
number-theoretic function a Turing Machine computes, one must correlate these
syntactic entities with numbers. The problem is that the correlation must itself
be computable, otherwise the Turing machine would compute uncomputable
functions. And the circularity arises: if we propose the intuitive notion of com-
putable relation between syntactic entities and numbers, then our analysis of
computability is circular.

In consequence, Rescorla claims that computability needs to be defined as
a property of abstract objects and shall be defined as such. Computability on
abstract objects is defined via Church’s thesis with the axioms of the theory of
recursivity. This is where a Skeptic can be consoled again by the model-theoretic
entwinement proposed by [9].

5.1 Moderate Realism Solution: Any Old ω-Sequence Will Do
After All

In [3] – sequel to the famous [1] – the author takes a structuralist position and
claims that abstract objects playing the role of natural numbers in the structure

A Taxonomy of Deviant Encodings 347

do not need to form a recursive progression. According to Benacerraf, there is
no reason to proclaim computability of the series of abstract entities. This is so,
because it is always possible to enumerate these entities with a recursive series
of names. But, and here we get back to the beginning, how can we know which
sequences of numerals are actually recursive.

6 Conclusions

There is no final answer that will fully satisfy our Skeptics. Each analysis of
the concept of computation ends up in a vicious circle, it has a conceptual fixed
point and suffers from a diagonal problem. We should keep that in mind when
attempting to define computation and its twin concept of natural number.

References

1. Benacerraf, P.: What numbers could not be. Philos. Rev. 74(1), 47–73 (1965)
2. Benacerraf, P.: Mathematical truth. J. Philos. 70(19), 661–679 (1973)
3. Benacerraf, P.: Recantation, or: any old ω-sequence would do after all. Philosophia

Math. 4, 184–189 (1996)
4. Boolos, G., Burgess, J., Jeffrey, R.: Computability and Logic. Cambridge University

Press, Cambridge (2007)
5. Button, T., Smith, P.: The philosophical significance of Tennenbaum’s theorem.

Philosophia Math. 20(1), 114–121 (2012)
6. Carnap, R.: Foundations of Logic and Mathematics. The University of Chicago

Press, Chicago (1939)
7. Clarke-Doane, J.: What is the Benacerraf problem? In: Pataut, F. (ed.) Truth,

Objects, Infinity: New Perspectives on the Philosophy of Paul Benacerraf. LEUS,
vol. 28, pp. 17–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45980-6 2

8. Copeland, J., Proudfoot, D.: Deviant encodings and Turing’s analysis of com-
putability. Stud. Hist. Philos. Sci. 41, 247–252 (2010)

9. Dean, W.: Models and computability. Philosophia Math. 22(2), 143–166 (2013)
10. Goodman, N., Quine, W.V.: Steps toward a constructive nominalism. J. Symb.

Log. 12(4), 105–122 (1947)
11. Halbach, V., Horsten, L.: Computational structuralism. Philosophia Math. 13(2),

174–186 (2005)
12. van Heuveln, B.: Emergence and consciousness. Ph.D. thesis, Binghamton Univer-

sity (2000)
13. Piccinini, G.: Physical Computation: A Mechanistic Account. Oxford University

Press, Oxford (2015)
14. Quinon, P., Zdanowski, K.: Intended model of arithmetic. Argument from Ten-

nenbaum’s theorem. In: Cooper, S., Loewe, B., Sorbi, A. (eds.) Computation and
Logic in the Real World, CiE Proceedings (2007)

15. Rescorla, M.: Church’s thesis and the conceptual analysis of computability. Notre
Dame J. Form. Log. 48, 253–280 (2007)

16. Shapiro, S.: Acceptable notation. Notre Dame J. Form. Log. 23(1), 14–20 (1982)

https://doi.org/10.1007/978-3-319-45980-6_2
https://doi.org/10.1007/978-3-319-45980-6_2

348 P. Quinon

17. Tarski, A.: The concept of truth in formalized languages. In: Tarski, A. (ed.)
Logic, Semantics, Metamathematics, pp. 152–278. Oxford Univeraity Press, Oxford
(1936)

18. Turing, A.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. 42(1), 230–265 (1936)

Elementary Bi-embeddability Spectra
of Structures

Dino Rossegger(B)

Institute of Discrete Mathematics and Geometry, Technische Universität Wien,
Vienna, Austria

dino.rossegger@tuwien.ac.at

Abstract. We study elementary bi-embeddability spectra, the collec-
tion of Turing degrees of elementary bi-embeddable structures. We give
examples of such spectra and compare them with related notions.

1 Introduction

We investigate families of Turing degrees realized by the elementary bi-
embeddability type of countable structures, bi-embeddability spectra of struc-
tures. The study of families of degrees realized by structures is a central topic
in computable structure theory. Richter [15] was the first to study degrees real-
ized by isomorphic copies of a structure. Knight [12] introduced the notion of
the degree spectrum of a structure, the set of degrees of its isomorphic copies.
Since then the question of which sets of degrees are realized as degree spectra of
structures has seen a lot of interest, for an overview of the topic see [5, Sect. 2].
Andrews and Miller [1] studied theory spectra, the set of models of a complete
theory; Fokina et al. [7] studied Σn spectra of structures, the set of degrees
of structures satisfying the same Σn formulas as a given structure, and recently
Fokina et al. [6] initiated the study of bi-embeddability spectra of structures, the
collection of degrees of bi-embeddable copies of a structure. In [7] the authors
defined the general notion of a degree spectrum under an equivalence relation.

Definition 1. Given a structure A and an equivalence relation ∼, the degree
spectrum of A under ∼ is

DgSp∼(A) = {deg(B) : B ∼ A}.

Given a complete theory T and a model A of T , the theory spectrum of T is
the degree spectrum under elementary equivalence of A. We study degree spectra
under elementary bi-embeddability, or short elementary b.e. spectra.

Two structures A and B are elementary bi-embeddable, A � B, if either is
isomorphic to an elementary substructure of the other. We will also refer to the

The author was supported by the Austrian Science Fund FWF through project
P 27527. He thanks the logic group of the University of Wisconsin – Madison, Eka-
terina Fokina, Luca San Mauro and Nikolay Bazhenov for useful discussions.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 349–358, 2018.
https://doi.org/10.1007/978-3-319-94418-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_35&domain=pdf
http://orcid.org/0000-0003-3494-9049

350 D. Rossegger

notion of bi-embeddability. Two structures A and B are bi-embeddable, A ≈ B,
if either is isomorphic to a substructure of the other.

In this article we give several examples of collections of degrees which are or
are not elementary bi-embeddability spectra. One of the goals of this research is
to seperate elementary bi-embeddability spectra with spectra under other equiv-
alence relations that have been investigated. Using our examples we obtain that
there are collections of degrees that are elementary bi-embeddability spectra but
are not theory spectra, Σn spectra or spectra of atomic theories and vice versa. It
is open whether every elementary bi-embeddability spectrum is an isomorphism
spectrum and vice versa.

1.1 Notation

Our computability theoretic notation is standard and as in [17]; for model the-
oretic background we suggest [13]. We denote structures by calligraphic letters
and their universe by the corresponding capital letter. All our structures are
countable and relational and we identify a structure A by its atomic diagram:
the set of atomic formulas and negations of atomic formulas true of A expanded
by a constant symbol for every element in A under a suitable Gödel numbering.
Thus, A is a set of natural numbers and we can apply computability theoretic
tools as usual.

2 Elementary Bi-embeddability Spectra

For many arguments presented in this article it is useful to assume that our
languages are finite. Indeed in our scenario this assumption is justified since
graphs are universal for elementary bi-embeddability spectra.

Theorem 2. Given a countable structure A in any language we can compute a
graph GA such that DgSp�(A) = DgSp�(GA).

Proof (Sketch). We use the coding given in [1, Proposition 2.2]. We assume
without loss of generality that A is in a relational language 〈Ri〉i∈I where each
Ri has arity i. Given A the graph GA consists of 3 vertices a, b, c where to a we
connect the unique 3-cycle in the graph, to b the unique 5-cycle, and to c the
unique 7-cycle. For each element x ∈ A we add a vertex vx and an edge a → vx.
For every i tuple x1, . . . , xi ∈ A we add chains of length i + k for 1 ≤ k ≤ i
where for each such chain y1, . . . , yi+k the last vertex yi+k is the same. We add
an edge vxk

→ y1 only if y1 is the first element of the chain of length i + k. If
A |= Ri(x1, . . . , xi) then we add an edge yi+k → b and if A |= ¬Ri(x1, . . . , xi)
we add yi+k → c.

It is easy to see that any copy of GA computes a copy of A and vice versa.
Andrews and Miller [1] showed that A ≡ B if and only if GA ≡ GB; we need
to show that A � B if and only if GA � GB. The proof makes use of the
Tarski-Vaught test and Ehrenfeucht-Fraissé games. Due to reasons of space we
omit it.
�

Elementary Bi-embeddability Spectra of Structures 351

A structure is automorphically trivial if there is a finite subset of its universe
such that any permutation that fixes this subset pointwise is an automorphism.
Knight [12] showed that the degree spectrum of automorphically trivial struc-
tures is a singleton and that otherwise it is upwards closed. The same holds for
elementary b.e. spectra of structures. The key observation here is due to Fokina
et al. [6] on the bi-embeddability type of automorphically trivial structures.

Proposition 3 ([6]). Let A be automorphically trivial and bi-embeddable with
B. Then B ∼= A.

Corollary 4. The elementary bi-embeddability spectrum of a structure is either
a singleton or upwards closed.

Proof. It is a simple observation that the elementary b.e. spectrum of a struc-
ture A is the union of isomorphism spectra of the structures elementary bi-
embeddable with it, i.e.,

DgSp�(A) =
⋃

B�A
DgSp∼=(B).

Thus, if A is automorphically trivial we get by Proposition 3 that its elementary
b.e. spectrum is a singleton and that otherwise it is upwards closed.
�
Fokina et al. [7] showed the following.

Theorem 5 ([7]).

1. There is a class F of degrees such that for all n ∈ ω and all structures A,
DgSp≡n

(A) �= F .
2. There is a structure A such that DgSp≡(A) = DgSp∼=(A) = F .

By the same argument as in Corollary 4 we get that there is a structure A with
DgSp�(A) = F and thus obtain an examples of an elementary bi-embeddability
spectrum that is not a Σn spectrum for any n ∈ ω.

Knight [12] showed that a set X is c.e. in all isomorphic copies of a structure
A if and only if it is enumeration reducible to the existential type of a tuple in
A. In fact this holds for elementary bi-embeddable copies.

Lemma 6. Let X ⊆ ω and A be a structure then the following are equivalent.

1. X is c.e. in every isomorphic copy of A,
2. X is e-reducible to ∃-tpA(a) for some a ∈ A<ω,
3. X is c.e. in every elementary bi-embeddable copy of A.

Proof. The equivalence of Items 1 and 2 was proven in [12]. To see the equivalence
with Item 3 let B be an elementary bi-embeddable copy of A and f : A → B
be elementary. Say X is e-reducible to ∃-tpA(a), then by elementarity of f ∃-
tpA(a) = ∃-tpB(f(a)) and thus X is e-reducible to ∃-tpB(f(a)). Item 3 now
follows from the equivalence between Items 1 and 2.
�

352 D. Rossegger

Theorem 7. For n > 1 let a1, . . . an be incomparable enumeration degrees.
Then for any structure A, DgSp�(A) �= ⋃

i<n{d : d ≥ ai}.
Corollary 8. No elementary bi-embeddability spectrum is the union of finitely
or countably many non degenerate cones of Turing degrees.

Using Lemma 6 the proofs of the above Theorem and Corollary are similar to
those for isomorphism spectra as presented by Montalbán [14, TheoremV.3.1].
We therefore omit them here.

Corollary 8 also holds for isomorphism spectra [18], spectra of atomic theo-
ries [1], and Σ1 spectra [7]. On the other hand spectra of non-atomic theories
and Σn spectra for n > 1 can be the union of two cones as was shown in [1],
respectively, [7].

Given a set X, the strong flower graph1 Gs
X is the graph containing one vertex

to which for every x ∈ ω a cycle of length 2x+1 is attached if x ∈ X and a cycle
of length 2x+2 if x �∈ X. It is not hard to see that any copy of Gs

X computes X
and thus the isomorphism spectrum of Gs

X is {deg(Y) : Y ≥T X}. Furthermore
any bi-embeddable copy A of Gs

X must be isomorphic to it as any cycle in Gs
X

must be mapped to a cycle of the same length in A, all cycles must intersect in
a single point and GX contains at most one cycle of length n for every n ∈ ω.
We thus obtain a similar result for elementary bi-embeddability spectra.

Proposition 9. For every Turing degree d, {e : e ≥ d} is an elementary bi-
embeddability spectrum.

Definition 10. Two sets A, B form a Σ1 minimal pair if every set that is both
A-c.e. and B-c.e. is c.e.

Definition 11. A structure A has the c.e. extension property (ceep) if every
existential type of a finite tuple of A is c.e.

Proposition 12 ([1, Proposition 3.6]). Let Y be any set and P be a non-
empty Π0

1 class. Then there is X ∈ P such that X and Y form a Σ1-minimal
pair.

Proposition 13. DgSp�(A) contains a Σ1 minimal pair if and only if every B
elementary bi-embeddable with A has the ceep.

Proof. (⇒). Let a,b ∈ DgSp�(A) be a Σ1 minimal pair and A be a-computable,
B be b-computable. As the existential types realized in elementary b.e. copies
coincide and existential types realized in a structure are computably enumerable
from it, the existential types of A and B are c.e.

(⇐). This follows from the same Proposition for isomorphism spectra, i.e.,
it holds that given A with the ceep then there exists a B ∼= A such that deg(A)
and deg(B) form a Σ1 minimal pair [1, Proposition 3.5].
�
1 In the literature strong flower graphs are sometimes called flower graphs or daisy
graphs. We use the term strong flower graph as we will use a similar construction
only coding positive membership information of X below.

Elementary Bi-embeddability Spectra of Structures 353

Proposition 14 ([1, Proposition 3.8]). Let A be a structure with the ceep,
then there is an isomorphic copy of A that does not compute a member of any
special Π0

1 class.

A Π0
1 class is special if it does not have a computable member. Putting Proposi-

tions 12 to 14 together we get that no elementary bi-embeddability spectrum is
the upward closure of a special Π0

1 class.

Theorem 15. For all structures A and special Π0
1 classes P , DgSp�(A) �=

{deg(X) : ∃p ∈ P X ≥T p}.
The class of diagonally noncomputable functions, short DNC, form a special
Π0

1 class. Thus, their upward closure can not be an elementary bi-embeddability
spectrum, and, furthermore, any elementary bi-embeddability spectrum contains
a degree that does not compute a DNC. Combining this with the result by
Jockusch and Soare [9], and Solovay [unpublished] that a degree computes a
complete extension of Peano arithmetic (short, is a PA degree) if and only if it
computes a two valued DNC function we obtain the following corollary.

Corollary 16. The class of PA degrees is not the elementary bi-embeddability
spectrum of a structure.

In contrast to elementary bi-embeddability spectra, it was shown in [1] that there
is a theory spectrum that consists of the PA degrees.

Slaman [16] and, independently, Wehner [19] showed that there is a structure
whose isomorphism spectrum is all the non-computable degrees. Wehner used
the following result.

Theorem 17 ([19]). There is a family F of finite sets (Fi)i∈ω such that (Fi) is
uniformly X-c.e. for any non computable set X but not c.e.

To code this family in a structure we need a slightly weaker definition of a flower
graph coding only positive information about membership in a set. Given a set
X the weak flower graph Gw

X is defined as the strong flower graph apart from
the fact that if x �∈ X we do not attach a cycle to the central vertex. Then, for a
family F the bouquet graph G∞

F is the disjoint union of infinitely many copies of
the graphs Gw

X for any X ∈ F. It is not hard to see that G∞
F has an X-computable

copy if and only if F is X-c.e. Taking F as the family given by Wehner, one gets
a graph whose degree spectrum is the set of noncomputable degrees.

The same strategy was later used by Kalimullin [10,11] to show that for any
low or c.e. degree a there is a structure having degree spectrum {x : x �≤ a}.
This was later improved by Andrews et al. [1] who showed that for any degree
a that is low over a c.e. degree g (a degree a is low over a degree g if g ≤ a and
a′ ≤ g′) there is a structure having degree spectrum {x : x �≤ a}. As for flower
graphs we have that if a structure is elementary bi-embeddable with a bouquet
graph, then it is isomorphic to it. Thus, the above examples provide examples
of elementary bi-embeddability spectra.

354 D. Rossegger

Proposition 18. For every family F of finite sets and every graph A � G∞
F ,

A ∼= G∞
F .

Corollary 19. Suppose that for a there is c.e. g ≤ a such that a′ ≤ g′, then
there is A such that DgSp�(A) = {d : d �≤ a}.
For Σ1 spectra the above corollary does not hold. Fokina et al. [7] showed that
the collection of non-computable Turing degrees is not a Σ1 spectrum.

Proposition 20. For every family F of finite sets there is a structure A such
that X computes an elementary bi-embeddable copy of A if and only if X uni-
formly computes F.

Csima and Kalimullin showed that there is a family of finite sets F such that F
is X-computable if and only if deg(X) is hyperimmune. Diamondstone et al. [3]
constructed a family F of sets such that F is X-computable if and only if the
degree of X is array non-computable, and they showed that the degrees who
uniformly enumerate this family are exactly the non-jump traceable degrees.
Using Propositions 20 and 18 we get that these collections are elementary bi-
embeddability spectra of structures.

Corollary 21. The hyperimmune degrees, the array non-computable degrees
and the non-jump traceable degrees are all elementary bi-embeddability spectra
of structures.

3 Towards Jump Inversion for Elementary
Bi-embeddability Spectra

Goncharov et al. [8] showed that if F is the isomorphism spectrum of a structure,
then so is {d : d(α) ∈ F} for successor ordinals α < ωCK

1 . This result can
be seen as an analogue of the classical jump inversion results in computability
theory. Andrews and Miller [1] showed that {d : d(ω+1) ≥T 0(ω·2+2)} is not
the spectrum of a theory but by the above it is the isomorphism spectrum of a
structure. Thus, in general we can not do transfinite jump inversion for theory
spectra. In this section we obtain some positive examples for jump inversion of
elementary bi-embeddability spectra, and, among other things give an example
of an elementary bi-embeddability spectrum that is not the spectrum of a theory.

To obtain the results in this section we “invert” graphs. Given a graph G we
create a structure G−α by replacing every edge in G by a copy of a structure
Sα,0 and associating a structure Sα,1 with every pair of non-adjacent vertices.
These two structures have the property that it is Δ0

α-complete to check whether
a structure is a copy of Sα,0 or Sα,1. We then get that

DgSp�(G−α) = {d : d(α) ∈ DgSp�(G)}.

Formally, G−α is in the language consisting of relation symbols V /1, R/3
union the language of Sα,0, Sα,1. The relation V is true of elements representing

Elementary Bi-embeddability Spectra of Structures 355

the vertices of G and R partitions the remaining elements into infinitely many
infinite sets where for a, b ∈ V , R(a, b,−) ∼= Sα,0 if a and b are adjacent in G,
and R(a, b,−) ∼= Sα,1 otherwise.

In the following proofs we use pairs of linear orderings for Sα,0 and Sα,1.
Formally a pair of linear orderings (L1, L2) is in the language (T/1,≤/2) where
≤ restricted to T is isomorphic to L1 and ≤ restricted to ¬T is isomorphic to
L2. If we do jump inversion for even ordinals, i.e., ordinals of the form 2α + 2
we let

S2α+2,0
∼= (ωα+1 + ωα, ωα+1) and S2α+2,1

∼= (ωα+1, ωα+1 + ωα).

And for jump inversion of odd ordinals, i.e., of the form 2α + 1 we use

S2α+1,0
∼= (ωα · 2, ωα) and S2α+1,1

∼= (ωα, ωα · 2).
To get that for every copy H of G−α, H(α) computes a copy of G we need the
following Lemma.

Lemma 22. 1. It is Δ0
2α+2-complete to check whether L ∼= (ωα+1 + ωα, ωα+1)

or L ∼= (ωα+1, ωα+1 + ωα).
2. It is Δ0

2α+1-complete to check whether L ∼= (ωα · 2, ωα) or L ∼= (ωα, ωα · 2).
To prove the Lemma we define an equivalence relation ∼α on linear orderings
by transfinite recursion on α:

Definition 23. Let L be a linear ordering and x, y ∈ L. Then let

1. x ∼0 y if x = y,
2. x ∼1 y if [x, y] or [y, x] is finite,
3. for α = β + 1, x ∼α y if in L/∼β, [x]∼β

∼1 [y]∼β
,

4. for α = limβ, x ∼α y if for some β < α, x ∼β y.

The relation ∼1 is commonly known as the block relation.

Proof (Lemma 22). The α block relation ∼α for α = β + 1 is definable by the
following computable Σ2α formula.

x ∼α y ⇔
∨

n∈ω

∀y1, . . . , yn

⎛

⎝x < y1 < · · · < yn < y →
∨

1≤i<j≤n

yi ∼β yj

⎞

⎠ .

For λ a limit ordinal the defining formula is the disjunction of all formulas
defining ∼β for β < λ. This is then clearly Σλ and 2λ = λ. Goncharov et al. [8]
proved the following.

Claim ([8, Lemma 5.1]). Let α be a computable successor ordinal and A1,A2

such that

1. {A1,A2} is α-friendly,
2. A1, A2 satisfy the same infinitary Π2β formulas for β < α,

356 D. Rossegger

3. and each Ai, i ∈ {1, 2}, satisfies a computable Π2α sentence not satisfied by
the other,

Then for any Δ0
α set S there is a uniformly computable sequence (Ci)i∈ω such

that

Ci
∼=

{
A1 if n ∈ S,

A2 otherwise.

Fix α. That the pairs S2α+1,0 and S2α+1,1, respectively, S2α+2,0 and S2α+2,1

satisfy (1) and (2) follows from [2, Lemma 15.10]. To see that (3) is satisfied
consider the following facts.

1. (ωα2, ωα) |= ∀x, y ((¬T (x) ∧ ¬T (y)) → x ∼α y) which is Π2α+1,
2. (ωα, ωα2) |= ∀x, y ((T (x) ∧ T (y)) → x ∼α y) which is Π2α+1,
3. (ωα+1 + ωα, ωα+1) |= ∀x (¬T (x) → (∃y (y > x ∧ ¬T (y) ∧ y �∼α x))) which is

Π2α+2,
4. (ωα+1, ωα+1 + ωα) |= ∀x (T (x) → (∃y (y > x ∧ T (y) ∧ y �∼α x))) which is

Π2α+2.

Neither of the above sentences satisfied by one of the structures is satisfied by
its partner. Hence, the conditions in the Claim are satisfied and the Lemma
follows.
�
Definition 24. A degree d is non-lowα if d(α) > 0(α).

Theorem 25. For every n < ω the non-lown degrees, {d : d(n) > 0(n)}, are the
elementary bi-embeddability spectrum of a structure.

Proof. Let G be the bouquet graph of the Wehner family relativized to ∅(n),
then DgSp�(G) = {d : d > 0(n)}. To obtain the inverted graph G−n we use the
construction described above with Sn,0 and Sn,1 as our structures. We get from
Lemma22 that DgSp∼=(G−n) = {d : d(n) > 0(n)}.

By Proposition 18, DgSp�(G) = DgSp∼=(G). We show that DgSp�(G−n) =
DgSp∼=(G−n). The proof relies on the fact that for ordinals α, β < ωω, α � β
if and only if α ∼= β [4]. Let H � G−n and μ : H → G−n be an elementary
embedding. Clearly R holds only on triples with elements in the first and second
column satisfying V and by the above mentioned fact for all a, b ∈ H such that
V (a) and V (b), R(a, b,−) ∼= R(μ(a), μ(b),−). Thus we can construct a graph
H+n from H such that H+n

� G and hence, H+n ∼= G. But this implies that
H ∼= G−n and thus deg(H) ∈ DgSp∼=(G−n).
�
Theorem 26. For all successor ordinals α, β < ωCK

1 , {d : d(α) ≥T 0(β)} is the
elementary bi-embeddability spectrum of a structure.

Proof. We start with the strong flower graph G coding ∅(β) and produce a struc-
ture Ge in the language E/2, P/2, S/1. We interpret E as the edge relation in
G, P as the successor relation on ω and let S hold of the single vertex which is
the first element in P . It is easy to see that Ge computes ∅(β) and that from ∅(β)
we can compute a copy of Ge.

Elementary Bi-embeddability Spectra of Structures 357

Now we obtain a structure G−α by inverting G. We get the structure G−α
e by

adding relations P/2, S/1 and interpreting them so that the canonical bijection
between Ge and the elements for which V holds in G−α

e is structure preserving on
P and S. Let this structure be G−α

e . By Lemma22 DgSp∼=(G−α
e) is the desired

spectrum and clearly for Ge, H � Ge if and only if H ∼= Ge.
We show that H � G−α

e if and only if H ∼= G−α
e . Let H � G−α

e and μ :
H → G−n, ν : G−n → H be elementary embeddings. Then, as in the proof
of Theorem25, R holds only on triples with elements in the first and second
column satisfying V . Let a be the single element in H such that H |= S(a). Then
ν(μ(a)) = a and by induction we get the same for any u ∈ H such that V (u).
Thus we get that for all a, b ∈ H satisfying V that R(a, b,−) ∼= R(μ(a), μ(b),−).
Hence, we can construct a structure H+α from H such that H+α

� Ge, and
therefore H+α ∼= Ge. This implies that H ∼= G−α

e .
�
Notice that in the proof of Theorem26 we never used the fact that our embed-
dings are elementary, therefore the analogue of this theorem also holds for bi-
embeddability spectra.

Corollary 27. For all successor ordinals α, β < ωCK
1 , {d : d(α) ≥T 0(β)} is the

bi-embeddability spectrum of a structure.

Andrews and Miller [1] showed that {d : d(ω+1) ≥ 0(ω·2+2)} is not the spectrum
of a theory but by the above it is both a bi-embeddability spectrum and an
elementary bi-embeddability spectrum. We have thus found an example of an
elementary bi-embeddability spectrum that is not the spectrum of a theory.

Corollary 8 and Theorem26 show that there are theory spectra that are not
elementary bi-embeddability spectra and vice versa. From Theorem5 we get
an elementary bi-embeddability spectrum that is not a Σn spectrum for any n
and Corollary 8 again shows that there are Σn spectra for n > 1 that are not
elementary bi-embeddability spectra. Whether the same holds for Σ1 spectra and
the relationship between elementary bi-embeddability spectra and isomorphism
spectra is still unknown.

Question 28. Is every isomorphism spectrum the elementary bi-embeddability
spectrum of a structure and vice versa?

References

1. Andrews, U., et al.: The complements of lower cones of degrees and the degree
spectra of structures. J. Symb. Log. 81(3), 997–1006 (2016). https://doi.org/10.
1017/jsl.2015.59

2. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hier-
archy, vol. 144. Newnes, Amsterdam (2000). https://doi.org/10.1016/s0049-
237x(00)80006-3

3. Diamondstone, D., Greenberg, N., Turetsky, D.: Natural large degree spectra. Com-
putability 2(1), 1–8 (2013). https://doi.org/10.3233/COM-13008

https://doi.org/10.1017/jsl.2015.59
https://doi.org/10.1017/jsl.2015.59
https://doi.org/10.1016/s0049-237x(00)80006-3
https://doi.org/10.1016/s0049-237x(00)80006-3
https://doi.org/10.3233/COM-13008

358 D. Rossegger

4. Doner, J.E. Mostowski, A., Tarski, A.: The elementary theory of well-ordering—
a metamathematical study. Studies in Logic and the Foundations of Mathemat-
ics, vol. 96, pp. 1–54. Elsevier, Amsterdam (1978). https://doi.org/10.1016/s0049-
237x(08)71988-8

5. Fokina, E., Harizanov, V., Melnikov, A.: Computable model theory. In: Turing’s
Legacy: Developments from Turing’s Ideas in Logic, pp. 124–191. Cambridge Uni-
versity Press, Cambridge (2014). https://doi.org/10.1017/cbo9781107338579.001

6. Fokina, E., Rossegger, D. Mauro, L.S.: Bi-embeddability spectra and bases of spec-
tra (2018, preprint)

7. Fokina, E., Semukhin, P. Turetsky, D.: Degree spectra of structures under equiva-
lence relations. Algebra Log. (2018, to appear)

8. Goncharov, S., et al.: Enumerations in computable structure theory. Ann. Pure
Appli. Log. 136(3), 219–246 (2005). https://doi.org/10.1016/j.apal.2005.02.001

9. Jockush, C., Soare, R.: Degrees of members of Π0
1 classes. Pac. J. Math. 40(3),

605–616 (1972). https://doi.org/10.2140/pjm.1972.40.605
10. Kalimullin, I.: Almost computably enumerable families of sets. Sb.: Math. 199(10),

1451 (2008). https://doi.org/10.1070/sm2008v199n10abeh003967
11. Kalimullin, I.: Spectra of degrees of some structures. Algebra Log. 46(6), 729–744

(2007). https://doi.org/10.1007/s10469-007-0039-6
12. Knight, J.F.: Degrees coded in jumps of orderings. J. Symb. Log. 51(04), 1034–1042

(1986). https://doi.org/10.2307/2273915
13. Marker, D.: Model Theory: An Introduction. Springer, New York (2002). https://

doi.org/10.1007/b98860
14. Montalbán, A.: Computable structure theory, Draft, 20 January 2018
15. Richter, L.J.: Degrees of structures. J. Symb. Log. 46(04), 723–731 (1981). https://

doi.org/10.2307/2273222
16. Slaman, T.: Relative to any nonrecursive set. Proc. Am. Math. Soc. 126(7), 2117–

2122 (1998). https://doi.org/10.1090/S0002-9939-98-04307-X
17. Soare, R.I.: Turing Computability. Theory and Applications of Computability.

Springer, Berlin (2016). https://doi.org/10.1007/978-3-642-31933-4
18. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96,

45–68 (2004)
19. Wehner, S.: Enumerations, countable structures and turing degrees. Proc. Am.

Math. Soc. 126(7), 2131–2139 (1998). https://doi.org/10.1090/S0002-9939-98-
04314-7

https://doi.org/10.1016/s0049-237x(08)71988-8
https://doi.org/10.1016/s0049-237x(08)71988-8
https://doi.org/10.1017/cbo9781107338579.001
https://doi.org/10.1016/j.apal.2005.02.001
https://doi.org/10.2140/pjm.1972.40.605
https://doi.org/10.1070/sm2008v199n10abeh003967
https://doi.org/10.1007/s10469-007-0039-6
https://doi.org/10.2307/2273915
https://doi.org/10.1007/b98860
https://doi.org/10.1007/b98860
https://doi.org/10.2307/2273222
https://doi.org/10.2307/2273222
https://doi.org/10.1090/S0002-9939-98-04307-X
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1090/S0002-9939-98-04314-7
https://doi.org/10.1090/S0002-9939-98-04314-7

A Generic m-Reducibility

Alexander Rybalov(B)

Sobolev Institute of Mathematics, Pevtsova 13, Omsk 644099, Russia
alexander.rybalov@gmail.com

Abstract. Kapovich, Myasnikov, Schupp and Shpilrain in 2003 devel-
oped generic approach to algorithmic problems, which considers an algo-
rithmic problem on “most” of the inputs (i.e., on a generic set) instead of
the entire domain and ignores it on the rest of inputs (a negligible set).
Jockusch and Schupp in 2012 began the study of generic computabil-
ity in the context of classical computability theory. In particular, they
defined a generic analog of Turing reducibility. In this paper we intro-
duce a generic analog of m-reducibility as m-reducibility by computable
functions, which preserve the non-negligibility of sets. We study generic
m-reducibility of computable and c.e. sets. We prove the existence of
generically m-complete c.e. sets, incomparable c.e. sets and m-degrees,
which contain more than one generic m-degree.

1 Introduction

Kapovich et al. in [6] developed generic approach to algorithmic problems, which
considers an algorithmic problem on “most” of the inputs (i.e., on a generic set)
instead of the entire domain and ignores it on the rest of inputs (a negligible
set). It turned out, that many famous undecidable problems are easily decidable
on most inputs – on the so-called “generic” sets of inputs. For example, it was
proved for the halting problem for Turing machines with a one-way infinite tape
[5], for the word problem of many finitely presented groups with a word problem
that is undecidable in the classical sense [6]. But there are problems, which
remain undecidable even in the generic case [7].

Jockusch and Schupp in [4] began the study of generic computability in the
context of classical computability theory. In particular, they defined a generic
analog of Turing reducibility and found a deep connection between classical
and generic Turing degrees. However, there are some open questions about the
structure of generic Turing degrees. For example, it is not yet known whether
or not there are minimal degrees or minimal pairs in the generic degrees (see
[1–3]).

In this paper we introduce a generic analog of m-reducibility as m-reducibility
by computable functions, which preserve the non-negligibility of sets. We study
generic m-reducibility of computable and c.e. sets. We prove the existence of

A. Rybalov—Supported by the program of basic scientific researches SB RAS II.1,
project 0314-2016-0004.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 359–364, 2018.
https://doi.org/10.1007/978-3-319-94418-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_36&domain=pdf

360 A. Rybalov

generically m-complete c.e. sets, incomparable c.e. sets and m-degrees, which
contain more than one generic m-degree.

Now we give the basic definitions of generic-case computability from [4]. For
a set S ⊆ ω define the following sequence

ρn(S) =
|{x : x ≤ n, x ∈ S}|

n
, n = 1, 2, 3, . . .

The asymptotic density of S ⊆ ω is the following limit (if it exists)

ρ(S) = lim
n→∞ ρn(S).

A set S ⊆ ω is called generic if ρ(S) = 1 and negligible if ρ(S) = 0. Clearly, S is
generic if and only if its complement S is negligible.

Let S be a subset of ω with characteristic function χS . A partial function
ϕ : ω → {0, 1} is called a generic description of S if ϕ(x) = χS(x) whenever
ϕ(x) is defined and the domain of ϕ is generic. A set S ⊆ ω is called generically
computable if there exists a partial computable function ϕ, which is a generic
description of S. Otherwise S is called generically undecidable.

2 Generic m-Reducibility

Definition 1. A set A ⊆ ω is generically m-reducible to B ⊆ ω (written A ≤gm

B) if there is a computable function f : ω → ω such that

1. ∀x ∈ ω x ∈ A ⇔ f(x) ∈ B,
2. ∀S ⊆ ω S is not negligible ⇒ f(S) is not negligible.

As usual, A ≡gm B means that A ≤gm B and B ≤gm A. Also we write
A <gm B, if A ≤gm B and B �gm A. Define the gm-degree of a set A as
dgm(A) = {B ⊆ ω : B ≡gm A}.

Theorem 1. For any sets A,B,C ⊆ ω it holds

1. A ≤gm A.
2. A ≤gm B ⇒ A ≤m B.
3. A ≤gm B, B ≤gm C ⇒ A ≤gm C.
4. If A ≤gm B and B is generically computable, then A is generically com-

putable.

Proof. (1) and (2) are obvious.
To prove (3) suppose that A ≤gm B by a computable function f and B ≤gm

C by a computable function g. Then A ≤gm C by g(f), since for any S ⊆ ω the
set S is not negligible ⇒ f(S) is not negligible ⇒ g(f(S)) is not negligible.

To prove (4) suppose that A ≤gm B by a computable function f . Since B is
generically computable, then there is a generic description ϕ of B. Now function
ϕ(f) is a generic description of set A. Indeed, assume for a contradiction, that
domain of ϕ(f) is not generic. That means that C = {x ∈ ω : f(x) /∈ dom(ϕ)}
is not negligible. But f(C) ⊆ ω \ dom(ϕ) is negligible, a contradiction.
�

A Generic m-Reducibility 361

The following Lemma describes a particular case when 1-reducibility is gm-
reducibility.

Lemma 1. Let A ≤1 B by a computable monotonically increasing function f(x)
such that there exists a constant C > 0 such that f(x) < Cx for all x > 0. Then
A ≤gm B.

Proof. Let S ⊆ ω be a non-negligible set. That means that there is a constant
ε > 0 such that for any integer N there exists an n > N such that

ρn(S) =
|{k : k ≤ n, k ∈ S}|

n
> ε.

We need to prove that f(S) is not negligible. Since f is monotonically increasing,
we have

ρf(n)(f(S)) =
|{f(k) : f(k) ≤ f(n), k ∈ S}|

f(n)
=

=
|{k : k ≤ n, k ∈ S}|

f(n)
= ρn(S)

n

f(n)
.

But n
f(n) > 1

C , so ρf(n)(f(S)) > ε
C . It implies that f(S) is not negligible.
�

3 Generic m-Reducibility of Computable Sets

Theorem 2. Let A,B ⊆ ω be computable sets, A,B �= ∅, ω, and there exist
ρ(A), ρ(B). Then it holds.

1. If ρ(A) = ρ(B) = 1, then A ≡gm B.
2. If ρ(A) = ρ(B) = 0, then A ≡gm B.
3. If ρ(A), ρ(B) �= 0 and ρ(A), ρ(B) �= 1, then A ≡gm B.

Proof. (1) It is easy to see that A ≤gm B by the following function

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x, if x ∈ A and x ∈ B,
x, if x /∈ A and x /∈ B,
b, if x ∈ A and x /∈ B,
a, if x /∈ A and x ∈ B,

where a ∈ A, a /∈ B and b ∈ B. Similarly B ≤gm A.
Case (2) follows from (1).
Now consider case (3). Let A = {a1(i) : i ∈ ω}, A = {a2(i) : i ∈ ω},

B = {b1(i) : i ∈ ω}, B = {b2(i) : i ∈ ω} be effective enumerations of sets in
increasing order. Since A and B are computable, not finite and not co-finite, so
A ≤1 B by the computable function f , which maps a1(i) to b1(i) and a2(i) to

362 A. Rybalov

b2(i). Since ρ(A) > 0, there exist constants C1 > C2 > 0 such that for large
enough n

C2 < ρa1(n)(A) =
|{a1(k) : a1(k) ≤ a1(n)}|

a1(n)
=

n

a1(n)
< C1.

Whence n < C1a1(n). Similarly, since ρ(B) > 0, we can bound b1(n) < C3n for
some constant C3 > 0. It follows from these two bounds that b1(n) < C4a1(n)

for some constant C4 > 0. In the same manner we can bound b2(n) < C5a2(n)

with a constant C5 > 0. Now Lemma 1 implies that A ≤gm B. Analogously,
B ≤gm A.
�

The following theorem states that there are incomparable computable sets
with respect to the order ≤gm, contained in a 1-degree.

Theorem 3. There are computable sets A and B such that A ≡1 B, but A �gm

B and B �gm A.

Proof. Let A be any computable negligible infinite set, and B – any computable
generic set, which is not co-finite. Clearly, A ≡1 B. But if A ≤gm B by some
computable function f , then f maps the generic set A to the negligible set B
– a contradiction with the definition of gm-reducibility. If B ≤gm A by some
computable function g, then g maps generic set B to the negligible set A, a
contradiction.
�

4 Generic m-Reducibility of C.E. Sets

As for any classical reducibility notion, a c.e. set S is called gm-complete, if
A ≤gm S for every c.e. set A.

Theorem 4. There is a gm-complete c.e. set.

Proof. Let W0,W1, . . . ,Wk, . . . be an effective enumeration of all c.e. sets. Con-
sider the following c.e. set

C = {2k(2m + 1) : m ∈ Wk, k = 0, 1, . . .}.

Now Lemma 1 implies that Wk ≤gm C by the function fk(x) = 2k(2x + 1).
�
To construct incomparable generically undecidable c.e. sets we need more

complicated arguments than in the proof of Theorem3, because any generic c.e.
set is generically computable ([4], Corollary 2.3). Recall that a subset I ⊆ ω is
called immune if I is infinite and does not contain any infinite c.e. subset. A set
S ⊆ ω is called simple if S c.e. and S is immune.

Lemma 2. Any simple non-generic set is generically undecidable.

Proof. Let S be a simple non-generic set. Suppose S is generically computable
and ϕ is its generic description. Then the set {x : ϕ(x) = 0} is a not negligible
(and therefore infinite) subset of immune set S. A contradiction.
�

A Generic m-Reducibility 363

Theorem 5. There are generically undecidable c.e. sets A,B ⊆ ω such that
A �gm B and B �gm A.

Proof. Let S be a negligible simple set. The existence of such sets was estab-
lished in [4] (see the proof of Proposition 2.15). By Lemma2 S is not generically
computable. Consider the following sets:

A = S ∪ {2n : n ∈ ω}

and

B = 2S = {2x : x ∈ S}.

It is clear that the set A is simple, not negligible and not generic. By Lemma2
A is not generically computable. Lemma 1 implies that S ≤gm B by the function
f(x) = 2x. Therefore the set B cannot be generically computable. Now we will
prove that the sets A and B are incomparable with respect to the order ≤gm.

Suppose A ≤gm B by some computable function f . Then f(A) ⊆ B. But B
is negligible, since S is negligible. So f(A) is negligible. But A is not negligible
— a contradiction with the definition of generic m-reducibility.

Conversely, suppose B ≤gm A by some computable function g. Note, that
non-negligible c.e. set C = {2k + 1 : k ∈ ω} is a subset of B. Therefore c.e.
set f(C) is a subset of A. But A is immune, so f(C) is a finite and, certainly,
negligible set. Again we have a contradiction.
�

The following theorem states that there are c.e. m-degrees, which contain
more than one c.e. gm-degrees.

Theorem 6. There are generically undecidable c.e. sets A and B such that
A ≡m B, but A <gm B.

Proof. Let S be a negligible simple set. Consider the sets A = S and B = 2S =
{2x : x ∈ S}. By Lemma 2 the set A is generically undecidable. A ≤gm B by the
function f(x) = 2x. Therefore the set B is generically undecidable too. Moreover
B ≤m A by the following function

f(x) =
{

x/2, if x is even,
c, if x is odd,

where c /∈ S. But B �gm A because non-negligible c.e. set {2k + 1 : k ∈ ω} is
contained in B and immune set A does not contain any infinite c.e. subsets (see
the proof of Theorem 5). Therefore A <gm B.
�

The author would like to thank the anonymous reviewers for their remarks
and suggestions to improve the quality of the paper.

364 A. Rybalov

References

1. Cholak, P., Igusa, G.: Density-1-bounding and quasiminimality in the generic
degrees. J. Symb. Log. 82(3), 931–957 (2017)

2. Igusa, G.: Nonexistence of minimal pairs for generic computability. J. Symbol. Log.
78(2), 511–522 (2013)

3. Igusa, G.: The generic degrees of density-1 sets and a characterization of the hyper-
arithmetic reals. J. Symbol. Log. 80, 1290–1314 (2015)

4. Jockusch, C., Schupp, P.: Generic computability, turing degrees, and asymptotic
density. J. Lond. Math. Soc. 85(2), 472–490 (2012)

5. Hamkins, J.D., Miasnikov, A.: The halting problem is decidable on a set of asymp-
totic probability one. Notre Dame J. Form. Log. 47(4), 515–524 (2006)

6. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity,
decision problems in group theory and random walks. J. Algebra 264(2), 665–694
(2003)

7. Myasnikov, A., Rybalov, A.: Generic complexity of undecidable problems. J. Symb.
Log. 73(2), 656–673 (2008)

Some Nonstandard Equivalences
in Reverse Mathematics

Sam Sanders(B)

Center for Advanced Studies and Munich Center for Mathematical Philosophy,
LMU Munich, Munich, Germany

sasander@me.com

Abstract. Reverse Mathematics (RM) is a program in the foundations
of mathematics founded by Friedman and developed extensively by Simp-
son. The aim of RM is finding the minimal axioms needed to prove a the-
orem of ordinary (i.e. non-set theoretical) mathematics. In the majority
of cases, one also obtains an equivalence between the theorem and its
minimal axioms. This equivalence is established in a weak logical sys-
tem called the base theory ; four prominent axioms which boast lots of
such equivalences are dubbed mathematically natural by Simpson. In this
paper, we show that a number of axioms from Nonstandard Analysis are
equivalent to theorems of ordinary mathematics not involving Nonstan-
dard Analysis. These equivalences are proved in a base theory recently
introduced by van den Berg and the author. Our results combined with
Simpson’s criterion for naturalness suggest the controversial point that
Nonstandard Analysis is actually mathematically natural.

1 Introduction

Reverse Mathematics (RM) is a program in the foundations of mathematics
founded by Friedman ([5]) and developed extensively by Simpson ([22]) and
others. We refer to the latter for an overview of RM and will assume basic
familiarity, in particular with the Big Five systems of RM. The latter are (still)
claimed to capture the majority of theorems of ordinary (i.e. non-set theoretical)
mathematics ([12, p. 495]). Our starting point is the following quote by Simpson
on the ‘mathematical naturalness’ of logical systems from [22, I.12]:

From the above it is clear that the [Big Five] five basic systems RCA0,
WKL0, ACA0, ATR0, Π1

1 -CA0 arise naturally from investigations of the
Main Question. The proof that these systems are mathematically natural
is provided by Reverse Mathematics.

In a nutshell, according to Simpson, the many equivalences in RM, proved over
RCA0 and involving the other four Big Five, imply that the Big Five systems
are mathematically natural. In this paper, we show that a number of axioms

S. Sanders—This research was supported by the Alexander von Humboldt Founda-
tion and LMU Munich (via the Excellence Initiative).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 365–375, 2018.
https://doi.org/10.1007/978-3-319-94418-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_37&domain=pdf

366 S. Sanders

from Nonstandard Analysis (NSA) are equivalent to theorems of ordinary math-
ematics not involving NSA. These results combined with Simpson’s criterion for
naturalness suggest the controversial point that NSA is actually mathematically
natural. Indeed, both Alain Connes and Errett Bishop have expressed extremely
negative (but unfounded; see [19]) opinions of NSA, in particular its naturalness.

Finally, the aforementioned equivalences are proved in a (weak) base theory
recently introduced by van den Berg and the author in [3]. We sketch the main
properties of this base theory in Sect. 2 and prove our main results in Sect. 3.
The latter include an equivalence between the Heine-Borel compactness (for any
open cover) of the unit interval and the nonstandard compactness of Cantor
space. We obtain similar results based on WWKL, a weakening of WKL.

2 A Base Theory from Nonstandard Analysis

We introduce the system B0 from [3]. This system is a Π0
2 -conservative extension

of EFA (aka IΔ0 +EXP) enriched with all finite types and fragments of Nelson’s
axioms of internal set theory ([13]), a well-known axiomatic approach to NSA.

Let E-EFAω be EFA enriched with all finite types, i.e. Kohlenbach’s system
E-G3A

ω ([9, p. 55]). The language of B0 is obtained from that of E-EFAω by
adding unary predicates ‘stσ’ for any finite type σ. Formulas in the old language
of E-EFAω, i.e. those not containing these new symbols, are internal ; By contrast,
general formulas of B0 are external. The new ‘st’ predicates give rise to two new
quantifiers as in (2.1), and we omit type superscripts whenever possible.

(∀stx)Φ(x) ≡ (∀x)(st(x) → Φ(x)) and (∃stx)Φ(x) ≡ (∃x)(st(x) ∧ Φ(x)). (2.1)

The system B0 is E-EFAω + QF-AC1,0, plus the basic axioms as in Definition
2.2, and fragments of Nelson’s axioms of internal set theory IST, namely Ide-
alisation I, Standardisation HACint, and Transfer PF-TP∀, defined as follows.

Definition 2.1 [QF-AC] For all finite types σ, τ and quantifier-free A:

(∀xσ)(∃yτ)A(x, y) → (∃Y σ→τ)(∀xσ)A(x, Y (x)) (QF-ACσ,τ)

Definition 2.2

1. The axioms st(x) ∧ x = y → st(y) and st(f) ∧ st(x) → st(fx).
2. The axiom st(t) for each term t in the language of B0.
3. The axiom st0(x) ∧ y ≤0 x → st0(y).

For the next definition, we note that x in (2.3) and F (x) in (2.2) are both a
finite sequence of objects of type σ, as discussed in Notation 2.4.

Definition 2.3 [Fragments of IST]

1. HACint: For any internal formula ϕ, we have

(∀stxρ)(∃styσ)ϕ(x, y) → (∃stF ρ→σ
)
(∀stxρ)(∃yσ ∈ F (x))ϕ(x, y). (2.2)

Some Nonstandard Equivalences in Reverse Mathematics 367

2. I: For any internal formula ϕ, we have

(∀stxσ)(∃yτ)(∀zσ ∈ x)ϕ(z, y) → (∃yτ)(∀stzσ)ϕ(z, y). (2.3)

3. PF-TP∀ : For any internal ϕ with all parameters shown, we have ∀stxϕ(x) →
∀xϕ(x), i.e. x is the only free variable in ϕ(x).

Notation 2.4 (Finite sequences). There are at least two ways of approaching
‘finite sequences of objects of type σ’ in E-EFAω: First of all, as in [2], we could
extend E-EFAω with types σ∗ for finite sequences of objects of type σ, add
constants for the empty sequence and the operation of prepending an element
to a sequence, as well as a list recursor satisfying the expected equations.

Secondly, as in [3], we could exploit the fact that one can code finite sequences
of objects of type σ as a single object of type σ in such a way that every object
of type σ codes a sequence. Moreover, the operations on sequences, such as
extracting their length or concatenating them, are given by terms in Gödel’s T .

We choose the second option here and will often use set-theoretic notation
as follows: ‘∅’ is (the code of) the empty sequence, ‘∪’ stands for concatenation,
and ‘{x}’ for the finite sequence of length 1 with sole component x. For x and
y of the same type we will write x ∈ y if x is equal to one of the components of
the sequence coded by y. Furthermore, for α0→ρ and k0, the finite sequence αk
is exactly 〈α(0), α(1), . . . , α(k − 1)〉. Finally, if Y is of type σ → τ and x is of
type σ we define Y [x] of type τ as Y [x] := ∪f∈Y f(x).

With this notation in place, we can now formulate a crucial theorem from [3,
Sect. 3].

Theorem 2.5. For ϕ internal and Δint a collection of internal formulas, if the
system B0 + Δint proves (∀stx)(∃sty)ϕ(x, y), then

E-EFAω + QF-AC1,0 + Δint (∃Φ)(∀x)(∃y ∈ Φ(x))ϕ(x, y) (2.4)

By the results in Sect. 3 and [3], PF-TP∀ is useful for obtaining equivalences as in
RM. However, this ‘usefulness’ comes at a price, as B−

0 (i.e. B0\PF-TP∀) satisfies
the following, where a term of Gödel’s system T is obtained, to be compared to
the existence of a functional in (2.4). Hence, PF-TP∀ seems usuitable for proof
mining, as the latter deals with extracted terms

Theorem 2.6 (Term extraction). If Δint is a collection of internal formulas
and ψ is internal, and B−

0 +Δint (∀stx)(∃sty)ψ(x, y), then one can extract from
the proof a term t from Gödel’s T such that

E-EFAω + QF-AC1,0 + Δint (∀x)(∃y ∈ t(x))ψ(x, y). (2.5)

We finish this section with some notations.

Notation 2.7 (Equality). The system E-EFAω includes equality ‘=0’ for num-
bers as a primitive. Equality ‘=τ ’ for xτ , yτ is:

[x =τ y] ≡ (∀zτ1
1 . . . zτk

k)[xz1 . . . zk =0 yz1 . . . zk], (2.6)

368 S. Sanders

if the type τ is composed as τ ≡ (τ1 → . . . → τk → 0). Inequality ‘≤τ ’ is (2.6)
with =0 replaced by ≤0. Similarly, we define ‘approximate equality ≈τ ’ as:

[x ≈τ y] ≡ (∀stzτ1
1 . . . zτk

k)[xz1 . . . zk =0 yz1 . . . zk] (2.7)

Notation 2.8 (Real numbers and related notions inB0)

1. Natural numbers correspond to type zero objects. Rational numbers are
defined as quotients of natural numbers, and ‘q ∈ Q’ has its usual meaning.

2. A (standard) real number x is a (standard) fast-converging Cauchy sequence
q1(·), i.e. (∀n0, i0)(|qn − qn+i)| <0

1
2n).

3. We write ‘x ∈ R’ to express that x1 = (q1(·)) is a real as in the previous item
and [x](k) := qk for the k-th approximation of x.

4. Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if
(∀n0)(|qn − rn| ≤ 1

2n−1). Inequality <R is defined similarly.
5. We write x ≈ y if (∀stn0)(|qn − rn| ≤ 1

2n) and x � y if x > y ∧ x �≈ y.
6. Functions F : R → R are represented by Φ1→1 such that

(∀x, y)(x =R y → Φ(x) =R Φ(y)). (RE)

7. Sets of natural numbers X1, Y,1 Z1, . . . are represented by binary sequences.

Notation 2.9 (UsingHACint). As noted in Notation 2.4, finite sequences play
an important role in B0. In particular, HACint produces a functional which out-
puts a finite sequence of witnesses. However, HACint provides an actual witnessing
functional assuming (i) τ = 0 in HACint and (ii) the formula ϕ from HACint is
‘sufficiently monotone’ as in: (∀stxσ, n0,m0)

(
[n ≤0 m ∧ ϕ(x, n)] → ϕ(x,m)

)
.

Indeed, in this case one simply defines Gσ+1 by G(xσ) := maxi<|F (x)| F (x)(i)
which satisfies (∀stxσ)ϕ(x,G(x)). To save space in proofs, we will sometimes skip
the (obvious) step involving the maximum of finite sequences, when applying
HACint. We assume the same convention for other finite sequences e.g. obtained
from Theorem 2.6, or the contraposition of idealisation I.

3 Reverse Mathematics and Nonstandard Analysis

In Sects. 3.1 and 3.2, we establish the equivalence between the nonstandard com-
pactness of Cantor space and the Heine-Borel compactness (for any open cover)
of the unit interval. The latter essentially predates1 set theory, and is hence def-
initely part of ‘ordinary mathematics’ in the sense of RM. We establish similar
results for theorems based on WWKL in Sect. 3.3. We shall use ‘computable’ in
the sense of Kleene’s schemes S1–S9 inside ZFC ([11, Sect. 5.1.1]).

1 Heine-Borel compactness was studied before 1895 by Cousin ([4, p. 22]). The col-
lected works of Pincherle contain a footnote by the editors ([17, p. 67]) stating that
the associated Teorema (from 1882) corresponds to the Heine-Borel theorem.

Some Nonstandard Equivalences in Reverse Mathematics 369

3.1 Nonstandard Compactness and the Special Fan Functional

The main result of this section is Theorem 3.4, which establishes an equivalence
involving the nonstandard compactness of Cantor space and the special fan func-
tional, introduced in [18] and studied in detail in [14]. The variable ‘T ’ is reserved
for trees, and ‘T ≤1 1’ means that T is a binary tree.

Definition 3.1 [Special fan functional]. We define SCF(Θ) as follows for
Θ(2→(0×1)):

(∀g2, T 1 ≤1 1)
[
(∀α ∈ Θ(g)(2))(αg(α) �∈ T) → (∀β ≤1 1)(∃i ≤ Θ(g)(1))(βi �∈ T)

]
.

Any functional Θ satisfying SCF(Θ) is referred to as a special fan functional.

From a computability theoretic perspective, the main property of Θ is the selec-
tion of Θ(g)(2) as a finite sequence of binary sequences 〈f0, . . . , fn〉 such that
the neighbourhoods defined from fig(fi) for i ≤ n form a cover of Cantor space;
almost as a by-product, Θ(g)(1) can then be chosen to be the maximal value of
g(fi)+1 for i ≤ n. No type two functional computes Θ such that SCF(Θ) ([14]),
while the following functional can compute Θ via a term of Gödel’s T ([20]).

(∃ξ3)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ ξ(Y) = 0

]
. (∃3)

We stress that g2 in SCF(Θ) may be discontinuous and that Kohlenbach has
argued for the study of discontinuous functionals in higher-order RM ([10]).
Furthermore, RCAω

0 + (∃Θ)SCF(Θ) is conservative over WKL0 ([14,18]), and Θ
naturally emerges from Tao’s notion of metastability, as discussed in [15,20,21].

The special fan functional arose from STP, the nonstandard compactness of
Cantor space as in Robinson’s theorem ([7]). This fragment of Standard Part is
also known as the ‘nonstandard counterpart of weak König’s lemma’ ([8]).

(∀α1 ≤1 1)(∃stβ1 ≤1 1)(α ≈1 β), (STP)

as explained by the equivalence between STP and (3.2), as follows.

Theorem 3.2. In B−
0 , STP is equivalent to the following:

(∀stg2)(∃stw1 ≤1 1, k0)
[
(∀T 1 ≤1 1)

(
(∀α1 ∈ w)(αg(α) �∈ T) (3.1)

→ (∀β ≤1 1)(∃i ≤ k)(βi �∈ T)
)]

,

as well as to the following:

(∀T 1 ≤1 1)
[
(∀stn)(∃β)(|β| = n ∧ β ∈ T) → (∃stα1 ≤1 1)(∀stn)(αn ∈ T)

]
. (3.2)

Furthermore, B−
0 proves (∃stΘ)SCF(Θ) → STP.

Proof. A detailed proof may be found in any of the following: [14,18,21]. In a
nutshell, the implication (3.1)← (3.2) follows by taking the contraposition of
the latter and introducing standard g2 in the antecedent of the resulting for-
mula. One then uses Idealisation I to pull the standard quantifiers to the front

370 S. Sanders

and obtains (3.1). The other implication follows by pushing the standard quan-
tifiers in the latter back inside. For the remaining implication STP → (3.2)
(the other one and the final part then being trivial), one uses overspill (See [2,
Sect. 3]) to obtain a sequence of nonstandard length for a tree T ≤1 1 satis-
fying the antecedent of (3.2), and STP converts this sequence into a standard
path in T . ��

For the below results, we need the following corollary which expresses the
(trivial but important) fact that the type of the universal quantifier in STP (and
equivalent formulations) may be lowered. We view α0 ≤0 1 as a finite binary
sequence; we define α̂ to be α ∗ 00 . . . , i.e. the type one object obtained by
concatenating α with 01. Similarly, T 0 ≤0 1 is a binary tree of type zero, and
SCF0(Θ) is the specification of Θ restricted to trees T 0 ≤0 1.

Corollary 3.3. In B−
0 , STP is equivalent to (∀α0 ≤0 1)(∃stβ1 ≤ 1)(α̂ ≈1 β),

and also to the following:

(∀T 0 ≤0 1)
[
(∀stn)(∃β)(|β| = n ∧ β ∈ T) → (∃stα1 ≤1 1)(∀stn)(αn ∈ T)

]
, (3.3)

and also the following:

(∀stg2)(∃stw1 ≤1 1, k0)
[
(∀T 0 ≤0 1)

(
(∀α1 ∈ w)(αg(α) �∈ T) (3.4)

→ (∀β ≤1 1)(∃i ≤ k)(βi �∈ T)
)]

.

The system E-EFAω + QF-AC1,0 proves (∃Θ)SCF(Θ) ↔ (∃Θ0)SCF0(Θ0).

Proof. Now, (3.3)↔ (3.4) follows in the same way as for (3.2)↔ (3.1). The first
forward implication is trivial while the first reverse implication follows by con-
sidering αN for nonstandard N0 and α1 ≤1 1. The implication STP → (3.3)
follows in the same way as in the proof of the theorem. Note that T 0 ≤0 1 as
in the antecedent of (3.3) must be nonstandard by the basic axioms in Defi-
nition 2.2. The implication (3.3)→ (3.2) follows by restricting T 1 to sequences
of some fixed nonstandard length, which yields a type zero object. The final
equivalence follows by applying Theorem2.6 to ‘B−

0 (3.1)↔ (3.4)’. ��
The following theorem was proved in [3] using the Suslin functional, rather than
the much weaker Turing jump functional (∃2) as follows:

(∃ϕ2)(∀f1)
[
(∃n)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

Theorem 3.4. The system B0 + (∃2) + QF-AC2,1 proves STP ↔ (∃Θ)SCF(Θ),
while the system B−

0 + (∃3) + QF-AC does not.

Proof. The reverse implication is immediate using PF-TP∀ and Theorem 3.2. For
the forward implication, STP implies (3.4) by Corollary 3.3. Drop the second ‘st’
in (3.4), and apply PF-TP∀ to the resulting formula to obtain

(∀g2)(∃w1 ≤1 1, k0)
[
(∀T 0 ≤0 1)[(∀α1 ∈ w)(αg(α) �∈ T) (3.5)

→ (∀β ≤1 1)(∃i ≤ k)(βi �∈ T)]
]
,

Some Nonstandard Equivalences in Reverse Mathematics 371

where the formula in big square brackets is equivalent to a quantifier-free one,
thanks to (∃2). Apply QF-AC2,1 to (3.5) to obtain Θ0 producing w1, k0 from g2

as in (3.5). Corollary 3.3 yield (∃Θ)SCF(Θ).
The non-implication follows from [14, Theorem 4.2] as the latter expresses

that the special fan functional is not computable in any type two functional.
Indeed, STP is equivalent to (3.1) by Theorem 3.2 and applying Theorem2.6 to
B−
0 + (∃3) + QF-AC + (∃Θ)SCF(Θ) (3.1), one obtains a term t of Gödel’s T

such that SCF(t), which is impossible. ��

3.2 Nonstandard Compactness and Heine-Borel Compactness

We prove an equivalence between STP and the Heine-Borel theorem in the gen-
eral2 case, i.e. the statement that any (possibly uncountable) open cover of the
unit interval has a finite sub-cover. In particular, any Ψ : R → R+ gives rise
to a ‘canonical’ open cover ∪x∈[0,1]Ix of [0, 1] where IΨ

x ≡ (x − Ψ(x), x + Ψ(x)).
Hence, the Heine-Borel theorem trivially implies the following statement:

(∀Ψ : R → R+)(∃w1)(∀x ∈ [0, 1])(∃y ∈ w)(x ∈ IΨ
y). (HBU)

By Footnote 1, HBU is part of ordinary mathematics as it predates set theory.
Furthermore, HBU is equivalent to many basic properties of the gauge integral
([16]). The latter is an extension of Lebesgue’s integral and provides a (direct)
formalisation of the Feyman path integral.

Theorem 3.5. The system B0+(∃2)+QF-AC2,1 proves that STP ↔ HBU, while
the system B−

0 + (∃3) + QF-AC does not.

Proof. Note that (∃2) allows us to (uniformly) convert reals into their binary
representation (choosing the one with trailing zeros in case of non-uniqueness).
Hence, any type two functional can be modified to satisfy (RE) from Notation 2.8
if necessary. Hence, HBU immediately generalises to any Ψ2. Now, for the reverse
implication, note that HBU trivially implies

(∀Ψ2)(∃w1)(∀q0 ∈ [0, 1])(∃y ∈ w)(|q − y| <
1

Ψ(y) + 1
), (3.6)

where the underlined formula in (3.6) may be treated as quantifier-free, due to
the presence of (∃2) in the base theory. Applying QF-AC to (3.6), we obtain:

(∃Φ2→1)(∀Ψ2)(∀q0 ∈ [0, 1])(∃y ∈ Φ(Ψ))(|q − y| <
1

Ψ(y) + 1
), (3.7)

and applying PF-TP∀ to (3.7) implies that

(∃stΦ2→1)(∀Ψ2)(∀q0 ∈ [0, 1])(∃y ∈ Φ(Ψ))(|q − y| <
1

Ψ(y) + 1
), (3.8)

2 The Heine-Borel theorem in RM is restricted to countable covers ([22, IV.1]).

372 S. Sanders

and we now show that (3.8) implies STP. Since standard functionals yield stan-
dard outputs for standard inputs by Definition 2.2, (3.8) immediately implies

(∀stΨ2)(∀q0 ∈ [0, 1])(∃sty1 ∈ [0, 1])(|q − y| <
1

Ψ(y) + 1
).

Now, (∀stΨ2)(∃sty ∈ [0, 1])(|q − y| < 1
Ψ(y)+1) implies (∃sty ∈ [0, 1])(q ≈ y);

indeed, (∀sty ∈ [0, 1])(q �≈ y) implies (∀sty ∈ [0, 1])(∃stk0)(|q − y| ≥ 1
k),

and applying HACint yields standard Ξ2 such that (∀sty ∈ [0, 1])(∃k0 ∈
Ξ(y))(|q − y| ≥ 1

k). Defining standard Ψ2
0 as Ψ0(y) := maxi<|Ξ(y)| Ξ(y)(i),

we obtain (∀sty ∈ [0, 1]))(|q − y| ≥ 1
Ψ0(y)+1), a contradiction. Hence, we

have proved (∀q0 ∈ [0, 1])(∃sty ∈ [0, 1])(q ≈ y), which immediately yields
(∀x1 ∈ [0, 1])(∃sty1 ∈ [0, 1])(x ≈ y), as we have x ≈ [x](N) for any x ∈ [0, 1]
and nonstandard N0. However, every real has a binary expansion in RCA0 (See
[6]), and B0 similarly proves that every (standard) real has a (standard) binary
expansion. A real with non-unique binary expansion can be summed with an
infinitesimal to yield a real with a unique binary expansion. Hence, the previous
yields that (∀α1 ≤1 1)(∃stβ1 ≤1 1)(α ≈1 β), which is just STP.

For the forward direction, STP implies (∀x1 ∈ [0, 1])(∃sty1 ∈ [0, 1])(x ≈ y) as
in the previous paragraph, and we thus have:

(∀stΨ2)(∀x1 ∈ [0, 1])(∃sty1 ∈ [0, 1])(|x − y| <
1

Ψ(y) + 1
), (3.9)

Applying Idealisation to (3.9), we obtain

(∀stΨ2)(∃stw1)(∀x1 ∈ [0, 1])(∃y ∈ w)(|x − y| <
1

Ψ(y) + 1
). (3.10)

Dropping the second ‘st’ in (3.10) and applying PF-TP∀, we obtain HBU.
The non-implication follows from [14, Theorem 4.2] as the latter expresses

that the special fan functional is not computable in any type two functional.
Indeed, STP is equivalent to (3.1) by Theorem 3.2, and apply Theorem2.6 to
B−
0 + (∃3) + HBU + QF-AC (3.1), to obtain a term t of Gödel’s T such that

SCF(t), which is impossible. ��

3.3 Weak Compactness and the Weak Fan Functional

Clearly, HBU is a generalisation of WKL from RM. In this section, we list results
similar to Theorems 3.4 and 3.5 for generalisations of WWKL. The weak fan
functional Λ from [14] arises from the axiom WWKL, as follows:

(∀T ≤1 1)
[
μ(T) >R 0 → (∃β ≤1 1)(∀m)(βm ∈ T)

]
, (WWKL)

where ‘μ(T) >R 0’ is (∃k0)(∀n0)
(|{σ∈T :|σ|=n}|

2n ≥ 1
k

)
. Although WWKL is not part

of the Big Five, it sports some equivalences ([22, X.1]). The following fragment
of Standard Part is the nonstandard counterpart of WWKL, as studied in [23]:

(∀T 1 ≤1 1)
[
μ(T) � 0 → (∃stβ1 ≤1 1)(∀stm0)(βm ∈ T)

]
, (LMP)

Some Nonstandard Equivalences in Reverse Mathematics 373

where ‘μ(T) � 0’ is just the formula [μ(T) >R 0]st. Clearly, WWKL and LMP are
weakened versions of WKL and STP; the following weaker version of the special
fan functional arises from LMP. As for the special one, there is no unique weak
fan functional, i.e. it is in principle incorrect to refer to ‘the’ weak fan functional.

Definition 3.6 [Weak fan functional]. We define WCF(Λ) for Λ(2→(1×1)):

(∀k0, g2, T 1 ≤1 1)
[
(∀α ∈ Λ(g, k)(2))(αg(α) �∈ T) → (∃n ≤ Λ(g, k)(1))(Ln(T) ≤ 1

k
)
]
.

Any Λ satisfying WCF(Λ) is referred to as a weak fan functional.

Now, WWKL is equivalent to the following statement: for every X1, there
is Y 1 which is Martin-Löf random relative to X, as proved in [1, Theorem 3.1].
This equivalence is proved in RCA0, and the latter also suffices to e.g. define
a universal Martin-Löf test (UX

i)i∈N (relative to any X1). The latter has type
0 → 1 and represents a universal and effective (relative to X) null set, i.e. a rare
event. Intuitively, Y is (Martin-Löf) random relative to X, if Y is not in such
a rare event. To make this more precise, define ‘f1 ∈ [σ0]’ as f |σ| =0 σ for any
finite binary sequence and define MLR(Y,X) as (∃i0)(∀w0 ∈ UX

i)(Y �∈ [w]).
We can now define restrictions of STP and HBU to Martin-Löf random reals.

(∀stX1)(∀Y 1)(∃stZ1)
(
[MLR(Y,X)]st → Z ≈1 Y). (MLRns)

Let MLR(X,Y, i) be MLR(X,Y) without the leading quantifier. Now consider

(∀Ψ2, k0,X1)(∃w1)(∀Y)(∃Z ∈ w)(MLR(Y,X, k) → Y ∈ [ZΨ(Z)]). (HBUml)

Note that HBUml expresses that the canonical cover ∪f∈2N [fΨ(f)] has a finite
sub-cover which covers all reals which are random and already outside the univer-
sal test at level UX

k of the universal test. Since μ(Uk) ≤ 1
2k

, the finite sub-cover
need not cover a measure one set in Cantor space. The following theorem is
proved in the same way as Theorems 3.4 and 3.5.

Theorem 3.7. The system B0 + (∃2) + QF-AC2,1 proves LMP ↔ MLRns ↔
(∃Λ)WCF(Λ) ↔ HBUml.

Finally, the ‘st’ in the antecedent of LMP (and MLRns) is essential: in particular,
we show that STP (and hence Θ) is robust in the sense of RM ([12, p. 495]), but
LMP is not. Consider the following variations of LMP and STP.

(∀T ≤1 1)
[
μ(T) >R 0 → (∃stβ ≤1 1)(∀stm)(βm ∈ T)

]
, (LMP+)

(∀T ≤1 1)
[
(∀n0)(∃β0)(β ∈ T ∧ |β| = n) → (∃stβ ≤1 1)(∀stm)(βm ∈ T)

]
,

where the second one is called ‘STP−’. We have the following theorem.

Theorem 3.8. In B−
0 + WWKL, we have STP ↔ LMP+ ↔ STP−.

374 S. Sanders

Proof. For the first equivalence, we only need to prove STP ← STP−, which
follows by taking a tree T ≤1 1 as in the antecedent STP, noting that by overspill
it has a sequence of nonstandard length, and extending this sequence with 00 . . .
to obtain a tree as in the antecedent of STP−. Then STP− yields a standard
path in the standard part of the modified tree, which is thus also in the standard
part of the original tree. For STP → LMP+, apply STP to the path claimed to
exist by WWKL and note that we obtain LMP+. For LMP+ → STP, fix f1 ≤1 1
and nonstandard N . Define the tree T ≤1 1 which is f until height N , followed
by the full binary tree. Then μ(T) >R 0 and let standard g1 ≤1 1 be such that
(∀stn)(gn ∈ T). By definition, f ≈1 g follows, and we are done. ��

References

1. Avigad, J., Dean, E.T., Rute, J.: Algorithmic randomness, reverse mathematics,
and the dominated convergence theorem. Ann. Pure Appl. Log. 163(12), 1854–
1864 (2012)

2. van den Berg, B., Briseid, E., Safarik, P.: A functional interpretation for nonstan-
dard arithmetic. Ann. Pure Appl. Log. 163, 1962–1994 (2012)

3. van den Berg, B., Sanders, S.: Reverse Mathematics and parameter-free Transfer
(Submitted, 2015). arXiv: http://arxiv.org/abs/1409.6881

4. Cousin, P.: Sur les fonctions de n variables complexes. Acta Math. 19, 1–61 (1895)
5. Friedman, H.: Some systems of second order arithmetic and their use. In: Proceed-

ings of the ICM (Vancouver, B. C., 1974), vol. 1, pp. 235–242 (1975)
6. Hirst, J.L.: Representations of reals in reverse mathematics. Bull. Pol. Acad. Sci.

Math. 55(4), 303–316 (2007)
7. Hurd, A.E., Loeb, P.A.: An Introduction to Nonstandard Real Analysis, Pure and

Applied Mathematics, vol. 118. Academic Press Inc., Orlando (1985)
8. Keisler, H.J.: Nonstandard arithmetic and reverse mathematics. Bull. Symb. Log.

12, 100–125 (2006)
9. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and Their Use in

Mathematics. Springer Monographs in Mathematics. Springer, Berlin (2008)
10. Kohlenbach, U.: Higher order reverse mathematics. In: Reverse Mathematics 2001.

Lecture Notes in Logic, vol. 21. ASL, pp. 281–295 (2005)
11. Longley, J., Normann, D.: Higher-order Computability. Theory and Applications

of Computability. Springer, Berlin (2015)
12. Montalbán, A.: Open questions in reverse mathematics. Bull. Symb. Log. 17(3),

431–454 (2011)
13. Nelson, E.: Internal set theory: a new approach to nonstandard analysis. Bull.

Amer. Math. Soc. 83(6), 1165–1198 (1977)
14. Normann, D., Sanders, S.: Nonstandard Analysis, Computability Theory, and

Their Connections (2017). arXiv: https://arxiv.org/abs/1702.06556
15. Normann, D., Sanders, S.: Nonstandard Analysis, Computability Theory, and

Metastability. In: Preparation (2018)
16. Normann, D., Sanders, S.: On the mathematical and foundational significance of

the uncountable (Submitted, 2017). https://arxiv.org/abs/1711.08939
17. Pincherle, S.: Sopra alcuni sviluppi in serie per funzioni analitiche. Opere Scelte,

I, Roma 1954, 64–91 (1882)

http://arxiv.org/abs/1409.6881
https://arxiv.org/abs/1702.06556
https://arxiv.org/abs/1711.08939

Some Nonstandard Equivalences in Reverse Mathematics 375

18. Sanders, S.: The Gandy-Hyland functional and a computational aspect of Non-
standard Analysis, To appear in Computability (2015). arXiv: http://arxiv.org/
abs/1502.03622

19. Sanders, S.: Formalism 16, Synthese, S.I.: Foundations of Mathematics, pp. 1–42
(2017)

20. Sanders, S.: Metastability and higher-order computability. In: Artemov, S., Nerode,
A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 309–330. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72056-2 19

21. Sanders, S.: To be or not to be constructive, Special issue of Indagationes Mathe-
maticae, p. 68 (2017). https://arxiv.org/abs/1704.00462

22. Simpson, S.G.: Subsystems of second order arithmetic. Perspectives in Logic, CUP,
2nd edn. Cambridge University Press, Newyork (2009)

23. Simpson, S.G., Yokoyama, K.: A nonstandard counterpart of WWKL. Notre Dame
J. Form. Log. 52(3), 229–243 (2011)

http://arxiv.org/abs/1502.03622
http://arxiv.org/abs/1502.03622
https://doi.org/10.1007/978-3-319-72056-2_19
https://arxiv.org/abs/1704.00462

Bit Complexity of Computing Solutions
for Symmetric Hyperbolic Systems

of PDEs (Extended Abstract)

Svetlana V. Selivanova1,2 and Victor L. Selivanov3,4(B)

1 S.L. Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
sweseliv@gmail.com

2 KAIST, Daejeon, South Korea
3 A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia

vseliv@iis.nsk.su
4 Kazan Federal University, Novosibirsk, Russia

Abstract. We establish upper bounds of bit complexity of computing
solution operators for symmetric hyperbolic systems of PDEs. Here we
continue the research started in our papers of 2009 and 2017, where
computability, in the rigorous sense of computable analysis, has been
established for solution operators of Cauchy and dissipative boundary-
value problems for such systems.

Keywords: Symmetric hyperbolic system · Solution operator
Bit complexity · Guaranteed precision · Symbolic computations
Algebraic real · Symmetric matrix · Eigenvalue · Eigenvector
Difference scheme

1 Introduction

The algorithms used in mathematics-oriented software can be divided into two
big classes: symbolic algorithms which aim to find precise solutions, and approx-
imate algorithms which aim to find “good enough” approximations to precise
solutions. The symbolic algorithms are implemented e.g. in computer algebra
systems while the approximate algorithms are included into numerical mathe-
matics packages. Both classes of algorithms are widely used in applications and
in mathematical research. The symbolic algorithms correspond well to compu-
tations on discrete structures (with mathematical foundations in the classical

S. V. Selivanova—The work of first author was supported by the National Research
Foundation of Korea (grant NRF-2017R1E1A1A03071032), International Research
& Development Program of the Korean Ministry of Science and ICT grant NRF-
2016K1A3A7A03950702 and the Russian Foundation of Fundamental Research,
project No 17-01-00801.
V. L. Selivanov—The work of second author was funded by the subsidy allocated to
Kazan Federal University for the state assignment in the sphere of scientific activities,
project No 1.12878.2018/12.1.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 376–385, 2018.
https://doi.org/10.1007/978-3-319-94418-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_38&domain=pdf

Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems 377

computability and complexity theory) while the approximate algorithms help to
compute on continuous structures (with mathematical foundations in the field
of computability and complexity in analysis evolving under the slogan “Exact
real computation”).

An important idea relating the both classes of algorithms is to approximate
the solution with “guaranteed precision”. This is of crucial importance for safety-
critical applications but often requires much additional work. Accordingly, even
the existence of such a guaranteed-precision algorithm is often not obvious, and
when it exists it could require an additional work to establish reasonable com-
plexity bounds. In many cases the statement of a guaranteed-precision version
of some problem on a continuous structure (which requires to apply numerical
mathematics and/or computable analysis) reduces it to a problem on a discrete
structure which enables to apply the classical computability and complexity the-
ory (sometimes called bit complexity).

In this paper, we investigate the bit complexity of finding guaranteed preci-
sion solutions for Cauchy and boundary-value problems for symmetric hyperbolic

systems of PDEs A∂u
∂t +

m∑

i=1

Bi
∂u
∂xi

= f(t, x1, . . . , xm) where A = A∗ > 0 and

Bi = B∗
i are symmetric n × n-matrices, t ≥ 0, x = (x1, . . . , xm) ∈ Q = [0, 1]m,

f : [0,+∞)×Q → R
n is a partial function. Such systems can be used to describe

a wide variety of physical processes like those considered in the theories of elastic-
ity, acoustics, electromagnetism etc., see e.g. [5,7,8]. Accordingly, many people
from theoretical and numerical mathematics worked on the existence and unique-
ness theorems as well as on numerical methods of computing solution operators
for problems related to such systems (the explicit solution formulas exist only
in some simplest particular cases).

In [13–15] we developed an approach to the study of computability of solu-
tions for Cauchy and dissipative boundary-value problems for such systems based
on finite-dimensional approximations (the so called difference schemes widely
used in numerical analysis) and established the computability of solution opera-
tors in the rigorous sense of the TTE approach to computable analysis [4,17]. The
main obstacle in proving the computable dependence of solutions on the input
matrices A,Bi is the fact that all known stable difference schemes for finding
the approximate solutions use eigenvectors of some matrices and matrix pen-
cils related to A,Bi but these eigenvectors are know to be non-computable [18].
To overcome the obstacle, we considered in [14,15] restrictions of the solution
operators to computably presentable real closed number fields and have shown
that such restricted solution operators are computable. This fact together with
close relationships of such fields to the field of computable reals (also estab-
lished in [14,15]) imply that the solution operators are computable for any fixed
computable input matrices.

In this paper we develop the approach from [14,15] to establish some reason-
able upper bounds for some guaranteed-precision problems related to symmetric
hyperbolic systems. To our knowledge, these are the first such bounds in the
literature (though the bit complexity of some guaranteed-precision problems for
differential equations was considered before, see e.g. [11]). Our approach makes

378 S. V. Selivanova and V. L. Selivanov

a heavy use of some known algorithms of computer algebra (exact computa-
tions with integers, rationals, algebraic reals and polynomials, see e.g. [1,2,10]),
together with some algorithms from numerical mathematics and computable
analysis used in [13–15]. Altogether, our proofs demonstrate a fruitful mix of
methods from symbolic and numerical computation.

2 Preliminaries

2.1 Cauchy and Boundary-Value Problems

The Cauchy problem for a symmetric hyperbolic system is stated as follows:
⎧
⎨

⎩

A∂u
∂t +

m∑

i=1

Bi
∂u
∂xi

= f(t, x1, . . . , xm), t ≥ 0,

u|t=0 = ϕ(x1, . . . , xm),
(1)

where A = A∗ > 0 and Bi = B∗
i are constant symmetric n × n-matrices, t ≥ 0,

x = (x1, . . . , xm) ∈ Q = [0, 1]m, ϕ : Q → R
n, f : [0,+∞) × Q → R

n and
u : [0,+∞) × Q → R

n is a partial function acting on the domain H of existence
and uniqueness of the Cauchy problem (1). The set H is known to be (see e.g.
[7]) the intersection of semi-spaces

t > 0, xi − μ(i)
maxt > 0, xi − 1 − μ

(i)
mint < 0, (i = 1, . . . , m)

of Rm+1 where μ
(i)
min, μ

(i)
max are respectively the minimum and maximum of the

eigenvalues of the matrix A−1Bi.
The boundary-value problem is stated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A∂u
∂t +

m∑

i=1

Bi
∂u
∂xi

= f(t, x1, . . . , xm),

u|t=0 = ϕ(x1, . . . , xm),
Φ
(1)
i u(t, x1, . . . , xi−1, 0, xi+1, . . . , xm) = 0,

Φ
(2)
i u(t, x1, . . . , xi−1, 1, xi+1, . . . , xm) = 0,

i = 1, 2, . . . ,m,

(2)

where the boundary coefficients (which are constant rectangular matrices) Φ
(1)
i ,

Φ
(2)
i meet the following conditions:

(1) The number of rows of Φ
(1)
i (respectively, Φ

(2)
i) is equal to the number of

positive (respectively, negative) eigenvalues of the matrices A−1Bi; coinci-
dence conditions of the initial and boundary conditions hold (such conditions
depend on the particular problem and on the smoothness which we want to
obtain).

(2) The boundary conditions are assumed to be dissipative which means that

(Biu,u) ≤ 0 for xi = 0, (Biu,u) ≥ 0 for xi = 1, i = 1, 2, . . . ,m. (3)

Condition (1) guarantees existence of solution of the boundary problem (2)
in the cylinder [0,∞) × Q, while (2) implies its uniqueness.

Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems 379

For both problems (1) and (2), theorems on continuous dependence of the
solution on the input data hold, i.e. the problems are correctly posed, for reason-
able functional classes. Both are practically important, and there exist several
numerical methods for solving them, from which we choose those developed in
[7]. Their convergence relies on the following well-known theorem (see e.g. [7]):
if the difference scheme approximates the given difference problem and is stable
(which is an intrinsic property of a difference scheme), then the (discrete) solu-
tion of the corresponding difference equations converges to the exact solution of
the differential problem in an appropriate grid norm; the speed of convergence
corresponds to the order of approximation.

2.2 Discretization of the Problems

To investigate complexity of computing solutions of the problems (1) and (2)
(and even to formulate the results), we need discrete approximations of the
given and unknown functions, as well as their interpolations. Therefore we first
describe some discretization details (following the approach of [7]).

Consider, for any positive integer N , the uniform rectangular grid GN on
Q = [0, 1]m defined by the points

(
i1 − 1

2

2N
,
i2 − 1

2

2N
, . . .

im − 1
2

2N

)

where 1 ≤ i1, i2, . . . , im ≤ 2N . Let h = 1/2N be the spatial grid step, τ be the
time step. Denote Gτ

N = GN × {lτ}M
l=1. The numbers of space and time steps

are respectively 2N and M , related to the steps h and τ , which guarantee good
properties of the difference scheme, will be specified below.

Note that the number of points in the grid GN is 2Nm, so the set Q
GN of

grid functions g(h) : GN → Q
n may be identified with Q

n·2Nm

. We will consider
the following grid norms

||g(h)||s = maxx∈GN
|g(h)(x)|, ||g(h)||2L2

= hm
∑

x∈GN

〈g(h)(x), g(h)(x)〉.

We will consider the sL2-norm on the vector spaces Q
Gτ

N of grid functions
v(h)(t, x) on such grids:

||v(h)||sL2 = maxt∈{lτ}M
l=1

hm
∑

x∈GN

〈v(h)(t, x), v(h)(t, x)〉.

From the the known formulas for multilinear interpolation, linearity of the
interpolation operators u 	→ ũ and u(h) 	→ ũ(h) is obvious. It is known, that

||u − ũ||s ≤ max ||D2u||sh2. (4)

Further we will construct, by means of a stable difference scheme approxi-
mating the differential system (1), a grid function υ on Gτ

N such that

||u − υ̃ |H ||sL2 < ε, (5)

380 S. V. Selivanova and V. L. Selivanov

where ε > 0 is a given precision, u is the solution of (1) and υ̃ |H is the multilinear
interpolation of υ restricted to H.

2.3 Algebraic Preliminaries and Encodings

Here we briefly recall some relevant algebraic notions and facts. For details see
e.g. [16]. Coefficients of matrices and polynomials will usually be taken from a
fixed (ordered) field F ⊆ R of reals. For a field F, let F[x1, x2, . . .] denote the
ring polynomials with coefficients in F and variables x1, x2, In this paper we
most often work with ordered fields F ∈ {Q,Q(α),A | 0 �= α ∈ A} where Q

is the ordered field of rationals, A is the ordered field of algebraic reals (which
consists of the reals roots of rational polynomials), and Q(α1, . . . , αn) is the
smallest subfield of R containing given α1, . . . , αn ∈ A. For any latter field there
is a “primitive element” α ∈ A with Q(α) = Q(α1, . . . , αn). Note that A is the
smallest really closed ordered field. With any α ∈ A we associate the unique pair
(pα, k) where pα ∈ Q[x] is the minimal (hence, irreducible) unitary polynomial
of degree ≥ 1 with pα(α) = 0, and k satisfies α = αk where α1 < · · · < αm is
the increasing sequence of all real roots of pα. Next we encode pairs (pα, k) by
words in a finite alphabet.

Note (see e.g. [3]) that for any finite alphabet Σ there is a natural encoding
(injective function) c : Σ∗ → {0, 1}∗ of words over Σ by binary words such that
the function c, its range rng(c), and the inverse function c−1 are computable in
linear time, so in all interesting cases we can without loss of generality stick to
binary encodings. The standard binary encoding b of Q induces the encoding e :
Q[x] → {0, 1, ∗}∗ which associates with a polynomial p = a0 + a1x + · · · + anxn,
an �= 0, its code b(a0) ∗ · · · ∗ b(an). By the remark above, we may convert e to a
natural binary coding b : Q[x] → {0, 1}∗. Now we associate with any α ∈ A the
word b(pα) ∗ b(k) where (pα, k) is the pair from the previous paragraph which
yields an injection f from A into {0, 1, ∗}∗.

Let now A1 = (A1;<,+,×, 0, 1), where A1 = rng(f), be the isomorphic
copy of A induced by f . As follows from well-known facts about symbolic
computations (see e.g. [1,9,10]), this copy is polynomial-time computable (p-
computable), i.e. the set A1, as well as all the signature functions and predicates
are p-computable. This shows that the ordered field A is p-presentable, i.e. iso-
morphic to a p-computable structure. The ordered fields Q and Q(α) (for each
α ∈ A) are also p-presentable (this is much easier to show than for A). Note
however that some important computational properties of the presentation of A
differ from those for the presentations of Q and Q(α). In particular, the “long
sum” (α1 ∗ · · · ∗ αn) 	→ α1 + · · · + αn is not p-computable (even not computable
in PSPACE) uniformly on n w.r.t. the presentation of A (this follows from the
results in [19]) but it is p-computable in Q and Q(α).

The last fact extends to the evaluation of arbitrary rational polynomials.
The mentioned encoding of univariate rational polynomials induces encodings
of Q[x1, . . . , xn] for each n ≥ 1 which provide p-presentations of the corre-
sponding rings. Furthermore, these encodings induce an encoding of Q[x1, . . .] =⋃

n Q[x1, . . . , xn] in which any of Q[x1, . . . , xn] is p-computable; moreover, the

Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems 381

evaluation partial function Q[x1, . . .] × Q
∗ → Q, where Q

∗ is the set of finite
strings over Q, is p-computable. It is not hard to see (using well known algo-
rithms of polynomial arithmetics [1]) that the same fact holds for the field Q(α)
for each α ∈ A. According to the previous paragraph, similar fact does not hold
for the field A.

We will use some results from [2] about the complexity of root-finding in
the field Calg = (Calg; +,×, 0, 1) of complex algebraic numbers, i.e. of finding all
roots of an equation αex

e + . . . + α1x + α0 = 0 where αi ∈ Calg for i � e. More
precisely, the authors of [2] consider equations of the form

te(α1, . . . , αk)xe + . . . + t1(α1, . . . , αk)x + t0(α1, . . . , αk) = 0, (6)

where α1, . . . , αk ∈ Calg and tj(x̄) ∈ Q[x1, . . . , xk]. The problem is to find a list of
(codes of) all roots of (6) from given b(α1) ∗ · · · ∗ b(αk) and b(t0(x̄)) ∗ · · · ∗ b(te(x̄))
where b is a natural binary encoding of Calg induced by the presentation of A
described above and by Gauss representation of complex numbers as pairs of
reals. As shown in [2], the problem is solvable in polynomial time for any fixed
k. Moreover, the same estimate holds for the version of this problem when one
computes the list of all distinct real roots of (6) in increasing order.

Let Mn(R) be the set of n×n-matrices over a (commutative associative with
a unit element 1) ring R, and M(R) be the union of all Mn(R), n ≥ 1. We
use without reminding some terminology and notation from linear algebra. In
particular, det(A) is the determinant of A = (aij) ∈ Mn(R), diag(a1, . . . , an)
is the diagonal matrix with the diagonal elements a1, . . . , an ∈ R, so I = In =
diag(1, . . . , 1) is the unit matrix. The roots of the polynomial chA = det(λI −A)
are called eigenvalues of A ∈ Mn(C). In general, the eigenvalues of a real matrix
are complex numbers. The eigenvalues of a symmetric real matrix are always
real.

Associate with any matrix A = (aij) ∈ Mn(F) its code c(A) ∈ {0, 1, ∗}∗

by c(A) = b(a11) ∗ · · · ∗ b(a1n) ∗ b(a21) ∗ · · · ∗ b(a2n) ∗ · · · ∗ b(an1) ∗ · · · ∗ b(ann)
where b is a binary encoding of F. These encodings induce the binary encoding
of the set M(F) =

⋃
n Mn(F) of all square matrices over F in which any set

Mn(F) is p-computable. Furthermore, many matrix properties like symmetricity
are also p-computable. It is known (see e.g. [12]) that these encodings give p-
presentations of the rings Mn(Q) uniformly on n (uniformity means that there
is a polynomial bound working for all n). Moreover, it is not hard to check
that evaluation of some “long” terms in these rings are also p-computable w.r.t.
these presentations (in particular the function A1 ∗ · · · ∗ An 	→ A1 × · · · × An

is p-computable). Even more involved matrix algorithms like computing of the
determinant, computing of the inverse of a non-degenerate matrix, and Gauss
method also work in polynomial time (see Chap. 3 [12] for additional details).

From results in [10,12] it follows that the polynomial time estimates of the
previous paragraph remain true for the rings Mn(Q(α)) for each non-zero α ∈ A.
Moreover, our presentation of the ring Mn(A) is a p-presentation for any fixed
n ≥ 1, but not uniformly on n. The “long terms” are of course not p-computable
w.r.t. our presentation for Mn(A), even for a fixed n.

382 S. V. Selivanova and V. L. Selivanov

3 Main Results

Now we have enough notions and terminology to state our guaranteed-precision
problems in a rigorous form.

First we consider the task of computing the domain H of existence and
uniqueness of the Cauchy problem. By the structure of H in Sect. 2.1, the com-
putation of H reduces to computing of the eigenvalues of the matrices A−1Bi.
Our algorithms for solving the Cauchy problem will be for technical reasons pre-
sented only for the case when H satisfies the condition μ

(i)
min < 0 < μ

(i)
max for

all i = 1, . . . ,m; which often holds for natural physical systems. Note that this
condition implies that the closure of H is a compact subset of [0,+∞) × Q.

The next result establishes the complexity of computing the set H satisfying
the mentioned condition.

Theorem 1. For each m,n ≥ 2 there is a polynomial time algorithm which for
given A,B1 . . . , Bm ∈ Mn(A) finds the vector (μ(1)

max, . . . , μ
(m)
max, μ

(1)
min, . . . , μ

(m)
min)

and checks the condition μ
(i)
min < 0 < μ

(i)
max for all i = 1, . . . ,m. Thus, the

algorithm finds the domain H satisfying the condition above, or reports on the
absence of such a domain.

Now we state a guaranteed-precision version of a restricted Cauchy problem
(1). Let m,n ≥ 2 and a ≥ 1 be fixed integers. The version asks for an algorithm
(and its complexity estimation) which, for any given matrices A,B1 . . . , Bm ∈
Mn(A) and polynomials ϕ1 . . . , ϕn ∈ Q[x1 . . . , xm], f1 . . . , fn ∈ Q[t, x1 . . . , xm],
computes a rational T > 0 with H ⊆ [0, T] × Q, a spatial rational grid step
h dividing 1, a time grid step τ dividing T and an algebraic h, τ -grid function
v : G → A such that ||u − υ̃ |H ||sL2 < ε where ε = 1

a . We abbreviate this
problem as CP(m,n, a,A,Q). The guaranteed-precision version of a restricted
boundary-value problem (2) is stated in a similar way. Let m,n ≥ 2 and a ≥ 1
be fixed positive integers and let T be a fixed positive rational number. The
version asks for an algorithm (and its complexity estimation) which, for any
given matrices A,B1 . . . , Bm ∈ Mn(A), polynomials f1 . . . , fn ∈ Q[t, x1 . . . , xm]
and matrices Φ

(1)
i , Φ

(2)
i ∈ M ′

n(A) meeting the conditions in (2), computes a
spatial rational grid step h dividing 1, a time grid step τ dividing T and a
rational h, τ -grid function v : G → Q such that ||u − υ̃ |H ||sL2 < ε where ε = 1

a
and H = [0, T] × [0, 1]m. We abbreviate this problem as BVP(m,n, a, T,A,Q).
In the cases when the precision a ≥ 1 is included into the input, we will omit
it in the list of parameters. Our basic result on the stated problems may be
formulated as follows (see the definitions of complexity classes e.g. in [3]):

Theorem 2. 1. For any fixed integers m,n ≥ 2, the problems CP(m,n,A,Q)
and BVP(m,n, T,A,Q) are solvable in EXPTIME.

2. For any fixed integers m,n ≥ 2, a ≥ 1,M > 0 and input data such
that the following quantities are bounded by M : maxi,j

{
||A−1BiA

−1Bj −
A−1BjA

−1Bi||2, supt,x || ∂2f
∂xi∂xj

(t, x)||2, supx || ∂2ϕ
∂xi∂xj

(x)||2
}

, maxi{||Bi||2,

Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems 383

||(A−1Bi)2||2, ||Φ(1)
i ||2, ||Φ(2)

i ||2}, ||A||2, λmax(A)
λmin(A) , problems CP(m,n, a,A,Q)

and BVP(m,n, a, T,A,Q) are solvable in PTIME.

Here we provide only a short proof sketch for the problem CP(m,n,A,Q).
The first ingredients of the proof are the following upper bounds for the

complexity of symbolic computations of eigenvalues and eigenvectors for some
classes of matrices and matrix pencils. The computations are w.r.t. the encodings
specified in Sect. 2.3. The upper bounds follow from the known bound for the
root-finding in A and results in Sect. 2.3.

By spectral decomposition of a symmetric real matrix A ∈ Mn(R) we mean
a pair ((λ1, . . . , λn), (v1, . . . ,vn)) where λ1 ≤ · · · ≤ λn is the non-decreasing
sequence of all eigenvalues of A (each eigenvalue occurs in the sequence several
times, according to its multiplicity) and v1, . . . ,vn is a corresponding orthonor-
mal basis of eigenvectors.

Proposition 1. (1) For any fixed n ≥ 1, there is a polynomial time algo-
rithm which, given a symmetric matrix A ∈ Mn(A), computes a spectral
decomposition of A.

(2) There is a polynomial time algorithm which, given a symmetric matrix A ∈
Mn(Q), computes a spectral decomposition of A uniformly on n. The same
holds if we replace Q by Q(α) where α is any fixed algebraic real.

Matrix pencil is a pair (A,B) (often written in the form λA − B) of real
non-degenerate symmetric matrices such that A is positive definite (i.e., all its
eigenvalues are positive). Spectral decomposition of such a pencil is a tuple

((λ1, . . . , λn), (v1, . . . ,vn), (μ1, . . . , μn), (w1, . . . ,wn))

where ((λ1, . . . , λn), (v1, . . . ,vn)) and ((μ1, . . . , μn), (w1, . . . ,wn)) are spectral
decompositions of the symmetric matrices A and D∗L∗BLD respectively, where
L is the matrix formed by vectors v1, . . . ,vn written as columns and D =
diag{ 1√

λ1
, 1√

λ2
, . . . , 1√

λn
}.

Proposition 2. For any fixed n ≥ 1, there is a polynomial time algorithm
which, given a matrix pencil (A,B) with A,B ∈ Mn(A), computes a spectral
decomposition of (A,B).

The proof of Propositions 1 and 2 are based on the polynomial estimate
for root-finding from Sect. 2.3 and some non-trivial facts of linear algebra [6].
These propositions imply Theorem 1 and provide important auxiliary data for
the computations in the Godunov scheme used in the proof of Theorem 2.

The second ingredient of the proof of Theorem 2 is the following non-trivial
fact (based on the known properties of Godunov scheme) stating that the spacial
step h and the time step τ depend polynomially on the input data.

Proposition 3. For any fixed m,n ≥ 2 there exists a polynomial time algorithm
that computes, from given A,Bi ∈ Mn(A), T ∈ Q, ϕ1, . . . , ϕn ∈ Q[x1, . . . , xm],
and precision ε = 1

a ∈ Q, a rational h = 1
2N and a rational τ > 0 dividing T

such that the Godunov’s difference scheme is stable and ||u − υ̃ |H ||sL2 < ε.

384 S. V. Selivanova and V. L. Selivanov

With these propositions at hand, it is not hard to count the computation
steps in the Godunov scheme (all computations are w.r.t. the p-presentation of
A in Sect. 2.3). By Proposition 3, the number of grid points in the scheme (see
Sect. 2.2) is bounded by a polynomial. The computations in Godunov scheme
proceed bottom-up by layers, along the time axis. At the bottom level, we just
evaluate the initial functions in the grid points which requires polynomial time
according to remarks in Sect. 2.3. To go one level up requires, for each grid
point on the next level, the values at the previous level and a fixed number of
matrix multiplications by matrices, computed in advance using Propositions 1
and 2. Therefore, climbing one level up also requires polynomial time. Let pi,
i = 1, . . . , s (where s = T

τ), be a polynomial bounding the computation time for
level i. Since the computation at level i uses only the values of υ at grid points
of level i − 1 (and some matrices computed in advance), the whole computation
time is (essentially) bounded by the composition ps ◦ · · · ◦ p1 of polynomials
which lays down to EXPTIME. Obtaining the PTIME complexity bounds in
item 2 relies on a careful study of approximation and stability conditions of the
considered difference scheme, as well as on multiple application of estimates from
the uniqueness theorem proofs for (1), (2).

Our results provide apparently first upper bounds (which are exponential) for
computing solutions of the Cauchy and dissipative boundary-value problems for
symmetric hyperbolic systems of PDEs with guaranteed precision. An interesting
and appealing problem is to modify the algorithm (or to find a new one) in order
to improve the upper bound. Improving our estimate to PSPACE would be a
natural step, the above algorithm does not work in PSPACE, by the remarks in
Sect. 2.3 on the complexity of a “long sum”.

Although our methods do not seem to directly yield practically feasible algo-
rithms for guaranteed precision problems for PDEs, we hope that investigations
in this direction are fruitful for both theoretical research and applications. In par-
ticular, on the implementation level it seems useful and rewarding to enhance
the existing systems of “exact real computations” (like iRRAM) by packages
based on highly developed algorithms of computer algebra. We are not aware
of the existence of such “hybrid” systems built under the slogan of “guaranteed
precision numerical computations”.

References

1. Akritas, A.G.: Elements of Computer Algebra with Applications. Wiley, New York
(1989)

2. Alaev, P.E., Selivanov, V.L.: Polynomial-time presentations of algebraic number
fields. In: Manea, F., et al. (eds.) CiE 2018. LNCS, vol. 10936, pp. 20–29. Springer,
Heidelberg (2018)

3. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. EATCS Monographs
on Theoretical Computer Science, vol. 11. Springer, Heidelberg (1988). https://doi.
org/10.1007/978-3-642-97062-7

4. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 425–
491. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5 18

https://doi.org/10.1007/978-3-642-97062-7
https://doi.org/10.1007/978-3-642-97062-7
https://doi.org/10.1007/978-0-387-68546-5_18

Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems 385

5. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun.
Pure Appl. Math. 7, 345–392 (1954)

6. Gantmacher, F.R.: Matrix Theory. Nauka, Moscow (1967). (in Russian)
7. Godunov, S.K. (ed.): Numerical Solution of Higher-dimensional Problems of Gas

Dynamics. Nauka, Moscow (1976). (in Russian)
8. Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Y.: Mathematical Aspects of

Numerical Solution of Hyperbolic Systems. Chapman & Hall/CRC Press, Boca
Raton (2001)

9. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261, 515–534 (1982)

10. Loos, R.: Computing in algebraic extensions. In: Buchberger, B., Collins, G.E.,
Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computations, pp.
115–138. Springer, Vienna (1982). https://doi.org/10.1007/978-3-7091-3406-1 12

11. Pan, V., Reif, J.: The bit complexity of discrete solutions of partial differential
equations: compact multigrid. Comput. Math. Appl. 20(2), 9–16 (1990)

12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
13. Selivanova, S.V., Selivanov, V.L.: Computing solution operators of symmetric

hyperbolic systems of PDEs. J. Univers. Comput. Sci. 15(6), 1337–1364 (2009)
14. Selivanova, S., Selivanov, V.: Computing Solution Operators of Boundary-value

Problems for Some Linear Hyperbolic Systems of PDEs. Log. Methods Comput.
Sci. 13(4:13), 1–31 (2017). Earlier version on arXiv:1305.2494 (2013)

15. Selivanova, S.V., Selivanov, V.L.: On constructive number fields and computability
of solutions of PDEs. Dokl. Math. 477(3), 282–285 (2017)

16. van der Waerden, B.L.: Algebra. Springer, Berlin (1967). https://doi.org/10.1007/
978-3-662-22183-9

17. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.
1007/978-3-642-56999-9

18. Ziegler, M., Brattka, V.: A computable spectral theorem. In: Blanck, J., Brat-
tka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 378–388. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0 23

19. Jian-Ping, Z.: On the degree of extensions generated by finitely many algebraic
numbers. J. Number Theor. 34, 133–141 (1990)

https://doi.org/10.1007/978-3-7091-3406-1_12
http://arxiv.org/abs/1305.2494
https://doi.org/10.1007/978-3-662-22183-9
https://doi.org/10.1007/978-3-662-22183-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/3-540-45335-0_23

What Is the Concept of Computation?

Wilfried Sieg(B)

Carnegie Mellon University, Pittsburgh, USA
sieg@cmu.edu

Abstract. This essay examines the two central and equivalent ways of
introducing rigorous notions of computation as starting-points. The first
way explicates effective calculability of number theoretic functions as the
(uniform) calculability of their values in formal calculi; Gödel, Church
and Kleene initially pursued this way. The other way views mechani-
cal procedures as transforming finite configurations via production rules,
a path Turing and Post took. For both explications, one can prove
important mathematical theorems, namely, absoluteness and reducibility
results. These results are of great interest, but problematic when viewed
as justifying the adequacy of the rigorous notions. However, the theo-
rems and their proofs reveal features that motivate the abstract concept
of a computable dynamical system. That is, so I argue, the appropriate
structural axiomatization of computation.

1 Introduction

In 1936, a remarkable confluence of ideas started to take shape: a confluence
of ideas concerning the effective calculation of number theoretic functions and
the mechanical operation on finite configurations. These ideas had emerged in
mathematical and logical practice, were shaped into properly mathematical con-
cepts and proved to be equivalent in their rigorous forms. The equivalence of
the rigorous concepts has been taken as strong support for their adequacy to
capture the associated informal ideas. There are two clusters of notions sur-
rounding, on the one hand, Gödel’s concept of general recursive functions whose
values can be determined in (formal) logics and, on the other hand, Turing’s con-
cept of machines that manipulate finite configurations. The pioneers established
important mathematical theorems concerning these two clusters: absoluteness
and reducibility results were taken by them, in particular by Gödel, as “justi-
ficatory”. These theorems are of great interest, but fall short of supporting the
adequacy of the core concepts. And yet, they highlight crucial abstract features
that motivate the formulation of principles for a structural axiomatic concept,
namely that of a computable dynamical system.

This essay is dedicated to Martin Davis—mentor, friend, collaborator—on the occa-
sion of his 90th birthday.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 386–396, 2018.
https://doi.org/10.1007/978-3-319-94418-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_39&domain=pdf

What Is the Concept of Computation? 387

2 Two Gödel Mysteries: Looking Back

In 1934, Gödel gave beautiful lectures on his incompleteness theorems at Prince-
ton. Exactly thirty years later, in a Postscriptum to those lectures, he drew
consequences from advances that had been made in the intervening years. He
formulated matters as follows:

In consequence of later advances, in particular of the fact that, due to
A.M. Turing’s work, a precise and unquestionably adequate definition of
the general concept of formal system can now be given, the existence of
undecidable arithmetical propositions and the non-demonstrability of the
consistency can now be proved for every consistent formal system contain-
ing a certain amount of finitary number theory.

So, to rephrase, the incompleteness theorems hold now, in 1964, for all formal
theories that are consistent and contain a modicum of number theory, not just
for the specific theories Gödel had considered in his 1931 paper and the 1934
lectures. What is the reason for this assertion?

According to Gödel, we have “a precise and unquestionably adequate def-
inition of the general concept of formal system”, and it is Turing’s work that
provided it:

Turing’s work gives an analysis of the concept of “mechanical procedure”
(alias “algorithm” or “computation procedure” or “finite combinatorial
procedure”). This concept is shown to be equivalent with that of a “Turing
machine”.

Gödel also mentions Post production systems since formal systems can be defined
as mechanical procedures for generating formulas.1 Gödel’s dramatic remark
on Turing is mysterious, as neither “analysis” nor “shown to be equivalent” is
elucidated in his Collected Works or, as far as I know, in his Nachlass.

Equally mysterious is a remark Gödel made in the spring of 1934 that was
reported by Church in a letter to Kleene. Having judged Church’s identifica-
tion of the informal notion of effective calculability with λ-definability as “thor-
oughly unsatisfactory”, Gödel proposed to Church a way of proceeding: for-
mulate axiomatically the generally recognized aspects of calculability and “do
something on that basis”; but he hinted neither at suitable axioms nor at what
might be done on their basis. The remark was later interpreted as calling for a
formal theory in which Church’s Thesis could be proved as a theorem.2

The axiomatic approach I have taken is quite different; it is modeled after
the way in which modern mathematics introduces abstract notions via structural

1 Gödel states then that an appeal to mechanical procedures “is required by the con-
cept of formal system, whose essence it is that reasoning is completely replaced by
mechanical operations on formulas.”

2 The most ambitious undertaking along these lines is the work of Dershowitz and
Gurevich in their (2008) paper. My perspective on their mathematical work is
detailed in (Sieg 2013a, 116–123).

388 W. Sieg

definitions, like those for groups or fields or topological spaces. Such concepts
do not express essential properties of privileged objects like numbers or geo-
metric magnitudes; rather, they apply to classes of objects with appropriate
relational connections. This transformation of 19th century mathematics is most
strikingly reflected in Dedekind’s Was sind und was sollen die Zahlen? as well
as in Hilbert’s Grundlagen der Geometrie. I will follow Dedekind’s approach to
the question What are natural numbers? For him, it does not matter what they
are as individual objects as long as their system is simply infinite. Analogously,
what computations are as individual processes does not matter as long as . . .

The ellipsis will be filled in later. Now, I just recall the definition of Dedekind’s
concept of a simply infinite system and its central properties: N is a simply infi-
nite system just in case there is a mapping f on N and an element 1 in N ,
such that (1) f [N] ⊆ N , (2) N = {1}0, (3) 1 �∈ f [N], and (4) f is injective.3

The conditions (1)–(4) are the defining characteristics of an abstract, structural
concept and serve as the sole starting-points for proofs in arithmetic. Through
his theorem #66, Dedekind “established” the existence of a particular N sat-
isfying these conditions and proved a representation theorem, his #132, stating
that every simply infinite system is isomorphic to N . The very concept is thus
categorical, as the representation theorem immediately implies that any two sim-
ply infinite systems are isomorphic. Dedekind also proved the following fact: any
system that stands in a 1-1 relation with N can be turned into a simply infi-
nite system. Dedekind took an enormous methodological leap when treating the
concept natural numbers as a simply infinite system from the same abstract per-
spective as the concepts of a group or field. How can a similar leap be motivated
for the concept of computation?

As a prelude, I consider a particular problem involving that very concept
in a central way. The issue of deciding by a computation, whether a formula is
provable (in Principia Mathematica), was in the 1920s one of the most important
problems in mathematical logic. von Neumann was convinced, in 1927, that it is
unsolvable. He saw its unsolvability indeed as “a conditio sine qua non for the
contemporary practice of mathematics . . . to make any sense”. However, he had
to admit, “We have no clue how a proof of unsolvability would go”. The reason
for his assessment was the lack of a concept of computation. The confluence
of ideas in 1936 provided rigorous concepts. With their respective concepts in
hand, Church and Turing proved the unsolvability of the decision problem for
first-order logic; they also argued that their concepts were adequate to represent
the informal notions. The question “Are they adequate?” has ever since provoked
philosophical and other debates under the heading of Church’s Thesis, Turing’s
Thesis, or the Church-Turing Thesis.

3 {1}0, denotes the chain of the system {1} with respect to f , i.e., the intersection of
all systems that contain 1 as an element and are closed under f .

What Is the Concept of Computation? 389

3 Formal Calculi: Absoluteness

The classical approach to the effective calculability of number theoretic functions
led, mainly through Gödel and Church, to a notion of computability in formal
calculi and to absoluteness theorems. Why did Gödel, Church and others work
with number theoretic functions in the first place? Well, mathematicians had
experience with numerical procedures defined by primitive recursion and, ever
since Dedekind, knew how to solve the resulting equations. In 1931, Herbrand
defined a broader class of functions that included the non-primitive recursive, but
effectively calculable Ackermann function. Herbrand’s ways motivated Gödel’s
definition of (general) recursive functions via two characteristics: (I) they are
given as unique solutions of recursion equations; (II) their values are calculable
from the equations by formal rules. In a manuscript from the late 1930s, Gödel
analyzed the way in which calculations proceed and isolated two simple rules:
they allow substitutions of numerals for variables and of equals for equals.

Gödel made also the conceptual claim that (I) and (II) are “exactly those
[characteristics] that give the correct definition of a computable function”, i.e.,
the correct definition of computable functions as recursive ones. Ultimately, a
metamathematical fact made it plausible to Gödel that recursiveness captured
effective calculability. The fact is formulated in (Gödel 1936) for systems Si of
i-th order logic:

It can, . . . , be shown that a function computable in one of the systems
Si is computable already in S1. Thus, the notion “computable” is in a
certain sense “absolute”, while almost all metamathematical notions oth-
erwise known (for example, provable, definable, and so on) quite essentially
depend upon the system adopted.

Ten years later, Gödel took absoluteness as the reason for the importance of
recursiveness. Here we have, he claimed in his (1946), the first epistemological
notion whose definition is not dependent on the chosen formalism.

Gödel’s 1936 remark concerned clearly specified, particular formal systems
of higher-order arithmetic. His more general 1946 absoluteness claim pertained
to arbitrary formal theories that extend number theory. The latter assertion
reveals a difficulty: one has to exploit for its proof (by a version of Kleene’s
normal form theorem) that the extending theories are formal ones. This dif-
ficulty is also apparent in two analogous arguments that are due to Church
and Bernays, respectively. They introduced in (Church 1936) and (Hilbert and
Bernays 1939, Supplement II) two closely related concepts for number-theoretic
functions. Church considered the concept computable in a logic, whereas Bernays
investigated that of reckonable in a deductive system. They proved the charac-
terized function classes to be co-extensional with the class of general recursive
functions. However, for these arguments to be mathematical proofs some condi-
tions had to be imposed on Church’s “logics” and Bernays’ “deductive systems”.
The crucial condition in either approach requires the deductive steps to be (prim-
itive) recursive. The arguments of Gödel, Church and Bernays indeed establish
absoluteness. But they do so only if one takes for granted or explicitly demands,

390 W. Sieg

as Bernays did, that inference steps in the extending logical frameworks are
(primitive) recursive.

The explication of effectively calculable functions as functions whose values
can be algorithmically determined in “logical calculi” is definitely very appealing,
as is their provable “absoluteness”. However, a fundamental question remains:
Why should recursiveness conditions be imposed on calculation steps? A differ-
ent approach avoids the question altogether by (1) viewing computations in a
more general setting and (2) considering computation steps as mechanical (sub-
stitution) operations on finite, mainly syntactic, configurations. This approach
will be spelled out next.

4 Production Rules: Reducibility

The classical approach to mechanical operations on syntactic configurations led,
mainly through Turing and Post, to a notion of computability via production
systems and to reduction theorems. This assertion may surprise you: the 1936
models of Turing and Post don’t look like production systems at all; however,
in our paper, Davis and I argue for an underlying conceptual confluence that
indeed involves production systems.

In the early 1920s, Post presented operations on Principia Mathematica’s
symbolic configurations as operations on strings. He proved that operations on
strings can be reduced to those of normal (production) systems, which have one
initial word and finitely many rules of the form: gP → Ph, where g and h are
fixed strings, whereas P ranges over strings of the appropriate alphabet.4 Turing
reduced in his (1936) mechanical operations on two-dimensional configurations
to those of string machines, i.e., machines that function like Turing machines,
but operate on finite strings of symbols and not just on letters. He then observed
that computations of string machines are provably reducible to those of his letter
machines.

These parallel reductive arguments are striking, and even more so, if one
realizes — as Post did in his (1947) — that computations of Turing’s letter
machines can be described via production rules. Turing machine computations
are thus seen as manipulating sequences of symbols according to production
rules. Post used this formulation to prove the unsolvability of the word-problem
for semigroups. Turing extended that result in 1951 to semigroups with cancel-
lation by refining Post’s techniques. Given the character of their reductions with
quite open-ended starting-points, it is natural that Turing and Post wanted to
generalize them. They were concerned with mechanical operations on broader
classes of configurations, i.e., with the question, “What configurations and

4 In his letter to Gödel written on 30 October 1938, Post pointed out that “the whole
force” of his argument for his analysis of “all finite processes of the human mind”
depended on “identifying my ‘normal systems’ with any symbolic logic and my sole
basis for that were the reductions I mentioned.” This letter was published in volume
V of Gödel’s Collected Works.

What Is the Concept of Computation? 391

substitution operations are to be considered?” The question was important to
both, but neither Post nor Turing investigated it systematically.5

The central methodological problem for this way of ensuring the adequacy of
the mathematical notion can be formulated as follows: Is there an end to finding
generalized production systems or machines that operate on broader classes of
configurations going beyond letters, strings, and K-graphs, yet are still reducible
to Turing machines? To obtain reductions for different classes of machines, one
exploits boundedness and locality conditions: (B) There is a bound on the num-
ber of symbolic configurations a machine can directly work on, and (L) The
operations of a machine locally modify one of the configurations. The question
is now: Why should these conditions be imposed?

The conditions actually originate from Turing’s 1936 paper. As hinted at
above, Turing attempted to show that his machines can perform all operations
carried out by human computers who proceed in a “machine-like” way. For that
purpose, Turing strove to isolate operations that are “so elementary that it is not
easy to imagine them further divided” and required, in particular, that human
computers immediately recognize symbolic configurations on which they operate.
His thought experiment concerning the immediate recognition of finite strings
exposes sensory limitations of human computers and grounds the boundedness
and locality conditions in these psychological limitations.6

5 Structural Definitions: Representation

In his last published paper, (Turing 1954), Turing describes and investigates a
variety of puzzles, i.e., discrete finite configurations with particular transforma-
tion rules. He asserts that every puzzle can be easily reduced to a substitution
puzzle, where the latter is for Turing a particular kind of Post production sys-
tem.7 He then uses substitution puzzles to prove that there are “unsolvable
problems”. Before beginning the mathematical exposition, he makes a remark
that is of great methodological interest in the context of my reflections here:

This statement [on the reducibility of puzzles to substitution puzzles] is still
somewhat lacking in definiteness, and will remain so. . . . The statement
is moreover one which one does not attempt to prove. . . . its status is
something between a theorem and a definition. In so far as we know a
priori what is a puzzle and what is not, the statement is a theorem. In

5 Kolmogorov introduced operations on special kinds of graphs in his paper with
Uspensky, (1963). Byrnes and I took up their work in our (1996) and generalized it
to K-graphs. The production rules for those graphs are viewed as formalizations of
generalized Turing machines operating on K-graphs.

6 For Post, there is a genuine philosophical difficulty, as he programmatically appeals
to (subtle) properties of the human mind; see (Sieg et al. 2016, Sects. 7.6 and 7.7).

7 (Turing 1954, 15). I have analyzed this extremely interesting article, which was
intended for a general audience, in (Sieg 2012). One straightforward observation
should be mentioned. Turing discusses all the methodological issues surrounding
“Turing’s Thesis”, but does not at all appeal to computing machines.

392 W. Sieg

so far as we do not know what puzzles are, the statement is a definition
which tells us something about what they are.

The structural axiomatic approach locates the “definition” of computable
dynamical systems in just that position, as it formulates central aspects of our
understanding of mechanical procedures; but it also allows us to prove a theorem,
namely, the Representation Theorem formulated below.

An abstractive move in the ways of Dedekind yields informal requirements for
human computers: (1) they operate on finite, but unbounded configurations; (2)
they recognize, in each configuration, a unique sub-configuration or pattern from
a fixed, finite list; (3) they operate on the recognized pattern; (4) they assemble
the next configuration from the original one and the result of the local opera-
tion. These informal requirements can be formulated rigorously as the defining
characteristics or axioms for discrete dynamical systems (S,F), where S is its
state space and consists of hereditarily finite sets and F is an operation from
S to S. Such a system is called computable if and only if the operation F is
computable in the following sense: there are finitely many patterns and local
operations such that the value of F , for any argument, is obtained via a finite
sequence of states effected via the local operations. For the precise formulations,
I refer to earlier papers of mine; see footnote 8. However, I have to mention two
important facts: (1) Turing machines are computable dynamical systems, and
(2) the computations of any computable dynamical system are reducible to those
of Turing machines (Representation Theorem).

Now you may ask: How does this address the central methodological issue
or, for that matter, Gödel’s mysteries? Consider the left and right part of the
next diagram; they reflect that particular systems and machines fall under the
abstract concepts of “computable dynamical systems” and of “Turing machines”.

Concept of computable
dynamical systems Concept of Turing machines

↓ ↓

Particular computable
dynamical system ←→ Particular Turing machine

The facts (1) and (2) I formulated in the last paragraph allow us to draw the
bottom part of the diagram; I will come back to it when “resolving” Gödel’s
mysteries.

The guiding ideas of this analysis of human computations can be used to
investigate machine computations as Gandy did in his 1980-paper Church’s
Thesis and Principles for Mechanisms. He viewed machines informally as “dis-
crete mechanical devices” that can operate in parallel and considered cellular
automata as paradigmatic machines. In general, machines satisfy boundedness
and locality conditions on account of two physical facts, (i) a lower bound on the
size of distinguishable atomic components, and (ii) an upper bound on the prop-
agation of signals. Extending Gandy’s work, I introduced computable dynamical

What Is the Concept of Computation? 393

P-system to capture parallel computations of machines. The restrictive condi-
tions together with a complex re-assembly operation allow us to reduce com-
putations of any P-system to those of Turing machines, yielding again a Rep-
resentation Theorem.8 As Turing machines are computable P-systems, we can
complete the above “conceptual diagram” for P-systems as well. At the end of
Sects. 3 and 4, I asked critical and pointed specific questions. Here I ask just one
critical and pointed general question: Why should we proceed in this structural
axiomatic way?

6 Connections: Looking Ahead

Let me answer the single general question in a number of different ways. There
is, first of all, the broad methodological issue surrounding Church’s and Tur-
ing’s Theses. The above diagram reflects my answer to the questions I raised
after quoting Gödel’s 1964-remarks about Turing: the extension of Turing’s and
Post’s analysis of “mechanical procedure” has led to the abstract concept of a
computable dynamical system, and that concept has been shown “to be equiva-
lent with that of a Turing machine”. It clarifies not only this first Gödel mystery,
but also the second one: after all, axioms were formulated and “something” con-
cretely mathematical was done on their basis (proofs of representation theorems).

Beyond the importance for this very traditional question, the work can be
used, secondly, to answer a significant methodological question concerning par-
allelism. The Gandy inspired analysis of parallel computations gives a math-
ematical form to the informal assumption(s) underlying almost all models of
concurrent systems or distributed computing. In (Lamport and Lynch 1990,
1166) one finds this description of the issue:

Underlying almost all models of concurrent systems is the assumption that
an execution consists of a set of discrete events, each affecting only part of
the system’s state. Events are grouped into processes, each process being
a more or less completely sequenced set of events sharing some common
locality in terms of what part of the state they affect. For a collection of
autonomous processes to act as a coherent system, the processes must be
synchronized.

The analysis of parallel computation is conceptually convincing and gives a sharp
mathematical form to the informal assumptions “underlying almost all models
of concurrent systems”. Szabo explores in his (Szabo 2017, Chap. 4) standard
models of parallel computing and shows that they are computable dynamical
P-systems.

Dynamical P-systems had been applied earlier in a quite different context.
As is well-known, production systems have been used to model mental processes,

8 The mathematical details are found in my (2002) and (2009), where the earlier paper
is Sect. 5.

394 W. Sieg

especially at Carnegie Mellon in the footsteps of Newell and Simon. Other cogni-
tive scientists, for example Jay McClelland, have been using for that purpose par-
allel distributed systems or artificial neural nets. The commonly used neural nets
were shown in (DePisapia 2000) to be computable dynamical P-systems.9 Their
reducibility to Turing machine computations shows that the ideological contro-
versy between the appropriateness of symbolic or parallel distributed processes
for modeling aspects of cognition is resolved by focusing on levels of descriptions.
This is the third way of answering the above general question.

Finally and fourthly, taking my structural axiomatic approach there is no
question of proving Turing’s Thesis. There is only one, albeit basic question:
do the characteristic conditions of computable dynamical systems adequately
capture the “generally recognized aspects of calculability”? I think they do,
as they are obtained by abstraction from those of production systems in the
tradition of Post and Turing. The representation theorem brings out the central
role of Turing’s machines and Post’s systems for the theory of computability.
Focusing on this mathematical core does not lead us to an unusual thesis. Rather,
we find ourselves in harmony with the reflective practice of mathematics made
possible by the axiomatic method. The real foundational question concerns the
limitations of computing devices and their justification: (i) for human computers
via psychological laws and (ii) for machines via physical laws.

Let me mention two deeply connected research directions that are program-
matically related not only to the main topic of this essay and to concerns of
the pioneers,10 but also to the computational modeling of cognitive processes I
just pointed to. Is there a prospect of modeling mathematical reasoning? Given
the remarkable technological tools at our disposal, we can take a modest step
and face the practical issue of formally verifying mathematical theorems — in
humanly intelligible ways. Such natural formalization requires that we struc-
ture proofs conceptually and uncover heuristic strategies used in mathematics
for finding proofs. This natural formalization program leads directly to a quest
for automated proof search. When focused on procedures and results that are
humanly intelligible, it presents a deep challenge to, but also a remarkable oppor-
tunity for, cognitive science: we do need a better understanding of the sophisti-
cated mathematical mind.11 Such a deeper understanding can be obtained only
by a radically interdisciplinary approach that involves logicians, mathematicians,
computer scientists, and cognitive psychologists.

Remark: Versions of this essay have been presented to a number of audiences
during the last three years: in November of 2014 at the Philosophy Colloquium
of Carnegie Mellon, as the Williams Lecture at the University of Pennsylvania,
the Philosophy Colloquium at Ohio State University, at Waseda University in
Tokyo, at the Sorbonne in Paris, and most recently at the Institut für Informatik

9 E.g., artificial neural nets with a variety of learning algorithms, but also with back
propagation.

10 These concerns, with respect to Gödel and Turing, are exposed in my (2013b).
11 In quite different ways, this goal has been pursued by (Ganesalingam and Gowers

2017) and (Sieg and Walsh 2017).

What Is the Concept of Computation? 395

at the University of Bern, the Polaris Colloquium of the University of Lille and
the Mathematics Department at the University of Notre Dame in November of
2017.

References

Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58,
345–363 (1936)

Davis, M., Sieg, W.: Conceptual confluence in 1936: Post and Turing. In: Sommaruga,
G., Strahm, T. (eds.) Turing’s Revolution, pp. 3–27. Birkhäuser, Basel (2015)

Dedekind, R.: Was sind und was sollen die Zahlen?. Vieweg, Braunschweig (1888)
DePisapia, N.: Gandy machines: an abstract model of parallel computation for Turing

machines, the game of life, and artificial neural networks. Master’s thesis, Carnegie
Mellon University (2000)

Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof of
Church’s thesis. Bull. Symb. Log. 14, 299–350 (2008)

Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler, H.,
Kunen, K. (eds.) The Kleene Symposium, pp. 123–148. North-Holland Publishing
Company, Amsterdam (1980)

Gandy, R.: The confluence of ideas in 1936. In: Herken, R. (ed.) The Universal Turing
Machine - A Half-Century Survey, pp. 55–111. Oxford University Press (1988)

Ganesalingam, M., Gowers, W.T.: A fully automatic problem solver with human-style
output (2013). arXiv:1309.4501

Ganesalingam, M., Gowers, W.T.: A fully automatic problem solver with human-style
output. J. Autom. Reason. 58(2), 253–291 (2017)

Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I (1931). Trans. in Gödel, pp. 144–195 (1986)

Gödel, K.: On undecidable propositions of formal mathematical systems (1934). Gödel,
pp. 346–371 (1986)

Gödel, K.: Über die Länge von Beweisen (1936). Gödel, pp. 396–399 (1986)
Gödel, K.: Undecidable Diophantine propositions (1939). Gödel, pp. 164–175 (1995)
Gödel, K.: Remarks before the Princeton Bicentennial Conference on problems in math-

ematics (1990). Gödel, pp. 150–153 (1946)
Gödel, K.: Collected Works I. Oxford University Press, Oxford (1986)
Gödel, K.: Collected Works II. Oxford University Press, Oxford (1990)
Gödel, K.: Collected Works III. Oxford University Press, Oxford (1995)
Gödel, K.: Collected Works V. Oxford University Press, Oxford (2003)
Herbrand, J.: On the consistency of arithmetic (1931). Herbrand, pp. 282–298 (1971)
Herbrand, J.: Logical Writings. Harvard University Press, Cambridge (1971)
Hilbert, D.: Grundlagen der Geometrie. Teubner, Leipzig (1899)
Hilbert, D., Bernays, P.: Grundlagen der Mathematik II. Springer, Heidelberg (1939).

https://doi.org/10.1007/978-3-642-86896-2
Kolmogorov, A., Uspensky, V.: On the definition of an algorithm. AMS Trans. 21(2),

217–245 (1963)
Lamport, L., Lynch, N.: Distributed computing: models and methods. In: van Leeuwen,

J. (ed.) Handbook of Theoretical Computer Science. Elsevier, Groningen (1990)
McClelland, J.: A PDP approach to mathematical cognition (2015). https://stanford.

edu/∼jlmcc/PDPMathCogLecture.html
Post, E.: Finite combinatory processes—formulation I. J. Symb. Log. 1, 103–105 (1936)

http://arxiv.org/abs/1309.4501
https://doi.org/10.1007/978-3-642-86896-2
https://stanford.edu/~jlmcc/PDPMathCogLecture.html
https://stanford.edu/~jlmcc/PDPMathCogLecture.html

396 W. Sieg

Post, E.: Recursive unsolvability of a problem of Thue. J. Symb. Log. 12, 1–11 (1947)
Sieg, W.: Calculations by man and machine: mathematical presentation. In:

Gärdenfors, P., Wolenski, J., Kijania-Placek, K. (eds.) In the Scope of Logic, Method-
ology and Philosophy of Science. Synthese Library, vol. 315, pp. 247–262. Kluwer
(2002)

Sieg, W.: On computability. In: Irvine, A. (ed.) Philosophy of Mathematics. Elsevier,
New York City (2009)

Sieg, W.: Normal forms for puzzles: a variant of Turing’s thesis. In: Cooper, S., van
Leeuwen, J. (eds.) Alan Turing: His Work and Impact, pp. 332–339. Elsevier (2012)

Sieg, W.: Axioms for computability: do they allow a proof of Church’s Thesis?. In: Zenil,
H. (ed.) Computable Universe - Understanding and Exploring Nature as Computa-
tion, pp. 99–123. World Scientific (2013a)

Sieg, W.: Gödel’s challenge (to Turing). In: Copeland, B., Posy, C., Shagrir, O. (eds.)
Computability - Turing, Gödel, Church, and Beyond, pp. 183–202. The MIT Press
(2013b)

Sieg, W., Byrnes, J.: K-graph machines: generalizing Turing’s machines and arguments.
In: Hajek, P. (ed.) Gödel 1996. Lecture Notes in Logic 6, pp. 98–119. Springer,
Heidelberg (1996)

Sieg, W., Szabo, M., McLaughlin, D.: Why Post did [not] have Turing’s thesis. In:
Omodeo, E., Policriti, A. (eds.) Martin Davis on Computability, Computational
Logic, and Mathematical Foundations, pp. 175–208. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-319-41842-1 7

Sieg, W., Walsh, P.: Natural formalization: deriving the Cantor-Bernstein theorem in
ZF (2017). Manuscript

Szabo, M.: Human and machine computation: an exploration. Ph.D. thesis, Carnegie
Mellon University (2017)

Turing, A.: On computable numbers with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. 42, 230–265 (1936)

Turing, A.: Solvable and unsolvable problems. Sci. News 31, 7–23 (1954)
von Neumann, J.: Zur Hilbertschen Beweistheorie. Math. Z. 26, 1–46 (1927)

https://doi.org/10.1007/978-3-319-41842-1_7

Witness Hiding Without Extractors or
Simulators

André Souto1,4,5(B), Lúıs Antunes3,6, Paulo Mateus2,4,
and Andreia Teixeira6,7,8

1 DI - FCUL, Lisboa, Portugal
ansouto@fc.ul.pt

2 IST - UL, Lisboa, Portugal
3 DI - FCUP, Porto, Portugal
4 LASIGE, Lisboa, Portugal

5 Instituto de Telecomunicações, Lisboa, Portugal
6 INESC-TEC, Porto, Portugal

7 Cintesis, Porto, Portugal
8 ARC4DigiT, Viana do Castelo, Portugal

Abstract. In a witness hiding protocol the prover tries to convince the
verifier that he knows a witness to an instance of an NP problem without
revealing the witness. We propose a new look at witness hiding based on
the information conveyed in each particular instance of the protocol.

We introduce the concept of individual witness hiding (IWH) and
prove that zero-knowledge protocols for classical problems like HAM are
not IWH. On the other hand, we show that all FewP problems have an
IWH protocol. Finally, by introducing a Kolmogorov string commitment
protocol we can show that all FewP problems have an IWH protocol
that is zero-knowledge relative to an oracle.

1 Introduction

In [9], Goldwasser et al. introduced the concept of interactive proof systems and
knowledge complexity giving particular importance to Zero Knowledge (ZK)
proofs. The notions of witness indistinguishability and witness hiding were intro-
duced in [4], aiming to relax the conditions of zero knowledge. Rather than not
revealing any information, we just want to “hide” the witnesses used during the
protocol.

The definitions of zero-knowledge and witness-hiding are based on the exis-
tence of simulators or witness extractors that an adversary can use [2]. This leads

A. Teixeira—Work was funded by PEst-OE/EEI/LA0008/2013 of Instituto de
Telecomunicações and LASIGE, ref. UID/CEC/00408/2013 and Confident project
PTDC/EEI-CTP/4503/2014. A.T thanks the scholarship 6585/BPD B3-A/2018
within project “NanoSTIMA” ref. NORTE-01-0145-FEDER-000016 under POR-
TUGAL 2020 and ERDF. L.A acknowledges Digi-NewB project funded from the
European Unions Horizon 2020 research and innovation programme under grant
agreement No 689260.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 397–409, 2018.
https://doi.org/10.1007/978-3-319-94418-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_40&domain=pdf

398 A. Souto et al.

to problems in the context of tamper-proof devices [12] or in contexts where par-
allel repetitions are important (for which ZK protocols are not applicable). The
issue in both cases is in the definition itself rather than in the amount of informa-
tion leaked. In fact, the definition does not allow one to quantify the information
leakage. Perhaps there is a more fundamental way to define zero-knowledge, and
the existence of a simulator would be just a device to prove it (see Protocol 4).
Another concern is that the existence of a simulator might be too weak to guar-
antee that no information whatsoever is leaked to the verifier in all instances
of the protocol. In many known protocols, a small number of executions of the
protocol leak a substantial amount of information about the witness. Can the
prover identify these weak executions of the protocol beforehand?

These questions motivate us to propose a new approach based on Kolmogorov
complexity [11], a rigorous measure of the amount of information contained in
an individual object, usually a string, as the size of the smallest program that
generates that object. The definition we propose of individual witness hiding
is closer to the intuitive idea of zero-knowledge and does not depend on the
existence of simulators. A protocol is individual witness hiding if the advantage
to the verifier to retrieve the secret (for all possible exchanges of information
during the interaction with the prover) is at most a logarithmic term when com-
pared with the time-bounded Kolmogorov complexity of extracting the secret
without interaction (Definition 7). We show that the well-known zero-knowledge
(ZK) protocol for the Quadratic residues problem (QR) described in [9] is not
individual witness hiding according to our proposed definition. By identifying
the transcripts that leak a lot of information about the witnesses we are able
to design an individual witness-hiding protocol for QR, for FHAM, a version
of HAM the Hamiltonian path problem and, in fact for all problems in FewP.
Furthermore, we address the problem of designing individual witness-hiding pro-
tocols that are also zero-knowledge in the random oracle model.

2 Preliminaries

We assume the reader is familiar with standard notation on Kolmogorov com-
plexity and computational complexity (namely NP,FewP). We say that a func-
tion v is negligible if for any polynomial p, and sufficiently large n, v(n) ≤ 1/p(n).
For any L ∈ NP there exists a polynomial time testable relationship R such that
R(x,w) = 1 if and only if w is a witness for x ∈ L. We denote by WL the set
of witnesses for L and define WL

x = {w : (x,w) ∈ W} as the set of witnesses
for x ∈ L. A reduction f between L1 and L2 is parsimonious if for all x∈L1,
|WL1

x | = |WL2
f(x)|, i.e., the reduction also preserves the number of witnesses.

2.1 Algorithmic Information

We present the basic definitions and results needed in this work. We use prefix-
free Kolmogorov complexity.

Witness Hiding Without Extractors or Simulators 399

Definition 1 (Kolmogorov complexity). Let U be a fixed prefix-free univer-
sal Turing machine. For any strings x, y ∈ Σ∗, the Kolmogorov complexity of x
given y with oracle access to f is defined by Kf (x|y) = minp{|p| : Uf (p, y) = x}.

For any time-constructible t, the t-time-bounded Kolmogorov complexity of x
given y with oracle access to f is defined by Kt

f (x|y) = minp{|p| : Uf (p, y) =
x in at most t(|x| + |y|) steps}.

The common values for y and f are the empty string an the empty oracle and
are omitted. The incompressibility theorem states that for every n, fixed constant
r, and fixed finite string z, the set {x : x ∈ Σn ∧ K(x|z) ≤ n + K(〈n〉|z) − r}
has at most 2n−r+O(1) elements, where 〈n〉 is the binary representation of n.

Theorem 1 (Symmetry of information). For all x, y and z we have,
K(x, y|z) = K(x|z) + K(y|x, z) + O(log min{K(x|z),K(y|z)}) and K(x, y) =
K(x) + K(y|x,K(x)) + O(1).

Theorem 2. Let m be some polynomial and x, y ∈ Σm(n) be fixed strings. For
any sufficiently large constant e, there is a constant d and at least 2n − 2n−d

strings z ∈ Σn such that K(x|y, z) ≥ K(x|y) − e.

Clearly, the same theorem is true if we consider time-bounded Kolmogorov
complexity. In fact, the same strings satisfy Kt(x|y, z) ≥ Kt(x) − O(log n).

2.2 Interactive Proof Systems

We suggest [4,5] for more details on this topic. We opt to use �P,V	 (x) to
represent the random variable of V’s view of the interaction between P and V
on input x.

Definition 2 (Knowledge complexity [7]). Fix k : N → N. An interactive
proof system (P,V) for a language L can be simulated using a hint of length
k if for every probabilistic polynomial time verifier V ′ there is a probabilistic
polynomial time Turing machine SV′ , called simulator, such that for every x ∈ L
there is a string h(x) of length at most k(|x|), the knowledge complexity, such
that {SV′(x, h(x))}x∈L and {�P,V ′	 (x)}x∈L are statistically close.

An interactive proof system is statistical (resp. computational) zero knowl-
edge if k, in the above definition, can be the null function. Hence we say that
a protocol (P,V) is statistical (resp. computational) zero knowledge if there
is a probabilistic polynomial time Turing machine that can statistically (resp.
computationally) simulate the interaction between P and V.

We are interested in analyzing the amount of information about a witness of
the statement “x ∈ L” that is leaked during the interaction. Two related notions
have been introduced by Feige and Shamir [4]: witness indistinguishability and
witness hiding. These concepts were developed as a tool for cryptographic iden-
tification schemes in which the requirement of zero knowledge is too strong. A
protocol is witness hiding if, at the end of the protocol, V ′ is not able to compute
any new witness as a result of the interaction.

400 A. Souto et al.

Definition 3 (Witness indistinguishability [4]). Let L ∈ NP, WL a wit-
ness relation for L and (P,V) be a proof of knowledge system for L. We say that
(P,V) is a witness indistinguishable (WI) for the relation WL if for any V ′, any
large enough common input x, any two witnesses w1, w2 of WL

x , and for any
auxiliary input z for V ′, the ensembles, V ′

P(x,w1)
(x, z) and V ′

P(x,w2)
(x, z), corre-

sponding to the views of V ′ of the protocol with the two witnesses respectively,
are computationally indistinguishable.

Notice that unlike the definition of zero knowledge, the definition for wit-
ness indistinguishability involves no simulator. Also, as shown in [4] any zero
knowledge protocol is a witness indistinguishable protocol.

Definition 4 (Generator [4]). Let L ∈ NP and WL a polynomial time testable
relation for L. G is a generator of WL if on input 1n it produces instances
(z, w) ∈ WL such that |z| = n and |w| ≤ p(n) for some polynomial p.

Definition 5 (Witness hiding [4]). Let L ∈ NP and WL a polynomial time
testable relation for L. Let (P,V) be a proof of knowledge for L, and let G be
a generator for WL. (P,V) is witness hiding on (WL, G) if there is a witness
extractor M running in expected polynomial time, such that for any nonuniform
polynomial time V ′, Pr[V ′

P(x,w)(x) ∈ WL
x] < Pr[M(x;V ′, G) ∈ WL

x]+v(n) where
G(1n) = (x,w′) for some w′, v is some negligible function.

If each input has at least two “computationally independent” witnesses i.e.,
two witnesses that are not possible to relate in polynomial time, then any witness
indistinguishability protocol induces a witness hiding protocol [4].

3 Individual Witness Hiding

We propose the notion of individual witness hiding protocol based on algorithmic
information. A similar flavored definition to the one proposed in this paper has
been considered in Information complexity (see for example [10,13]).

Intuitively, an interactive proof system (P,V) is individual witness hiding if
for every (malicious) verifier V ′, and every possible transcript c of an interaction
between P and V ′, the algorithmic information of a witness w, given the validity
of “x ∈ L” is essentially the same as the algorithmic information of w given both
x and c, i.e., there is no communication c leading to a significant compression
of w. In order to be able to measure the gain of information by V concerning
the witnesses, while interacting with P, we only consider the part cPV of the
communication coming from P to V. This way, we also avoid the problem of
addressing the (very unlikely) case where V ′ randomly generates a witness w.

To define rigorously the notion of individual witness hiding we need to intro-
duce the concept of individual knowledge complexity.

Definition 6 (Individual knowledge complexity). Let L be a language, Sx

be a family of strings (for example a set of witnesses for x) and let (P,V) be an

Witness Hiding Without Extractors or Simulators 401

interactive proof system (IPS) for L. Consider c ∈ Cx, where Cx is the set of all
possible communications between P and V on x and denote by cPV the part of
the communication from P to V. Moreover, consider t to be any time bound.

1. If x ∈ L, the knowledge complexity gained about w ∈ Sx on transcript c
in time t is KCt

P,V(w;x, c) = Kt(w|x) − Kt(w|x, cPV).
2. The amount of individual knowledge complexity gained by interaction on
x about w ∈ Sx is KCt

P,V(w;x) = maxc∈Cx
KCt

P,V(w;x, c).

We show that individual knowledge complexity has some relevant properties,
which follow from the properties of the time-bounded Kolmogorov complexity.

Proposition 1. Let L ∈ NP and WL
x = {w : (x,w) ∈ W} the set of witnesses

for input x and (P,V) be an (χ, σ)-interactive proof system for L. Consider
c ∈ Cx, where Cx is the set of all possible communications between P and V on
x and denote by cPV the part of the communication from P to V. Finally, let t
be the any time constructible function. Then, we have:

1. KCt
P,V(w;x) ≥ 0;

2. KCt
P,V(w;x) ≤ maxc∈C Kt(c);

3. KCt
P,V(w;x) ≤ Kt(w|x) ≤ maxw′∈Wx

Kt(w′|x);

Definition 7 (Individual witness hiding proof). Let L be a language, S =
{Sx} be a family of sets of strings and (P,V) an interactive proof system for
L. We say that (P,V) is an (χ, σ)-individual S hiding proof for L if for every
possible probabilistic polynomial-time verifier V ′ and for every polynomial t, for
all sufficiently large x ∈ L, and every w ∈ Sx, KCt

P,V′(w;x) ≤ O(log |x|).
If S = {Wx : x ∈ L} where Wx is the set of witnesses for x ∈ L and L ∈ NP

then we say that (P,V) is an individual witness hiding proof for L.

We illustrate our approach by considering, for example, the Quadratic
Residues problem (QR ∈ FewP), i.e., the problem of determining, given n = pq
for unknown primes p and q and x, whether there is w such that w2 = x mod n.

Protocol 1 (Zero-knowledge protocol for QR (see [8]))
Input: An n = pq, where p and q are unknown primes and x ∈ Z∗

n.
Secret: If x ∈ QR(n), the secret is u such that x = u2 mod n (unknown to V).

The following steps are repeated � = log n times.

1. P chooses a random v ∈ Z∗
n, and computes y = v2 mod n. P sends y to V.

2. V chooses a random i∈{0, 1} and challenges P to see the square root of xiy.
3. P computes z = uiv mod n and sends it to V.
4. V checks if z2 = xiy mod n.

If all rounds are completed successfully, V accepts x ∈ QR(n). Otherwise reject.

Theorem 3. If QR /∈ P then Protocol 1 is not individual witness hiding for
QR.

402 A. Souto et al.

Proof. Let c be the unlikely, but possible, communication where y = 1. When
V challenges P on i = 1, then P must answer u to fulfill V’s challenge,
i.e., c contains u. Hence, Kt(u|(x, n), c) ≤ d for some constant d and then
we would have for all x ∈ QR(n) and for all u ∈ Wx, KCt

P,V((x, n), u) =
maxc∈C(Kt(u|x, n) − Kt(u|x, n, cPV)) ≥ Kt(u|x, n) − d. Under the individual
witness hiding assumption, we would have ∀x ∈ QR(n), that there is a square
root u ∈ Sx of x such that, Kt(u|x, n) ≤ O(log |(x, n)|). By searching through
all polynomially many candidates to u (given by programs of length at most
O(log |(x, n)|), this would yield a polynomial-time algorithm for QR.

In order to propose an individual witness hiding protocol for QR, we improve
Protocol 1 by imposing restrictions on the values v that the prover can send in
the first step.

Protocol 2 (Individual witness hiding protocol for QR (see [14]))
Input: An n = pq, where p and q are prime and x ∈ QR(n).
Secret: Sx = {u1, u2, u3, u4} such that x = u2

i mod n.
Let m be a parameter of security. The following steps are repeated m times. The
round j consists of:

1. (Commitment) At round j, P chooses vj ∈ Z∗
n such that:

(a) For i = 1, ..., 4, Kt(ui|z1, ..., zj−1, vj) ≥ Kt(ui|z1, ..., zj−1) − O(1);
(b) For i = 1, ..., 4, Kt(ui|z1, ..., zj−1, uvj) ≥ Kt(ui|z1, ..., zj−1) − O(1);
P computes y = v2

j mod n. P sends y to V.
2. V chooses a random i∈{0, 1} and challenges P to see the square root of xiyj.
3. (Revealing) P computes zj = uivj mod n and sends it to V.
4. V checks if z2j = xiy mod n.

If all rounds are completed with success, V accepts that x ∈ QR(n).

Theorem 4. If m, the number of rounds played in Protocol 2 is logarithmic in
the size of (n, x) then the Protocol is a (0, poly)-individual witness hiding. (see
the proof in the Appendix).

4 Individual Witness Hiding Protocol for FewP

In this section we discuss a possible protocol that is individual witness hiding
for any language in FewP. Before continuing observe that:

1. Theorem 4 does not have a similar counterpart for general NP problems. In
fact, the counting argument only works in the case of QR since the number
of witnesses is finite. In general, given a problem H in NP the size of WH is
unknown.

2. In contrast to classical zero-knowledge, if we are not interested in simulating
the communication between P and V, we can design an individual witness
hiding protocol based on the assumption that HAM /∈ P.

Witness Hiding Without Extractors or Simulators 403

Herein we use the HAM problem to setup individual witness hiding for FewP.
Assume that one-way functions exist and, consequently, it is possible to construct
a bit commitment scheme.

Protocol 3 (Zero-knowledge protocol for HAM (see [5])
Input: A graph H with set of vertices V = {1, · · · , n}.
Secret of P: A Hamiltonian path c in H.
The following steps are repeated n2 times.

1. P chooses a random permutation π and sets H ′ = π(H). For each (i, j) ∈
V ×V , P runs the commitment phase of a bit commitment scheme to commit
to “(i, j) is an edge/is not an edge in H ′” and sends them to V.

2. V chooses randomly one bit in {0, 1} and sends it to P challenging him to
show the isomorphism between the graph he got and H in the first case, and
to show the Hamiltonian path in H ′ on the latter one.

3. If P receives 0, it reveals the permutation π and all the keys to the commit-
ment. If it receives 1, it reveals the keys of the commitment containing the
Hamiltonian path in H ′.

4. V checks the validity of the things sent by P.

The idea is to consider a subset of problems of HAM with the promise that
if H ∈ HAM then the number of Hamiltonian paths are polynomially bounded.
We consider, fixed a family of polynomials p, the language ∪pFHAMp that is
FewP hard and any language L in FewP is parsimoniously reducible to some
FHAMp. For each instance of FHAMp, we can prove that it is possible to hide all
the witnesses, as there are at most polynomially many of them. Notice that in
the individual witness hiding setting, we are not concerned with the construction
of a simulator, we can design a protocol that does not use the assumption of the
existence of one-way functions.

Definition 8. Given a polynomial p, promised problem Few Hamiltonian Path
Problem (FHAMp) is defined as follows: Given a graph H is H Hamiltonian?
The promise is that if there is one Hamiltonian path then 0 < |WH | ≤ p(|H|).

Clearly HAM is FewP hard and for every p, FHAMp ⊂ HAM ∈ NP.

Protocol 4 (Individual witness hiding for FHAMp)
Input: Graph H with n vertices and with at most poly p many Hamiltonian
paths.
Secret of P: SH = {c1, . . . , cp(n)}, the set of all Hamiltonian path in H. Assume
that zi is the information revealed at round i. Let m be a fixed parameter of
security. The following steps are repeated m times.

1. At round j, P picks a K-random permutation πj and sets H ′ = πj(H) s. t.:
(a) ∀i=1, ..., p(n), Kt(ci|H, z1, ..., zj−1, πj(c1)) ≥ Kt(ci|H, z1, ..., zj−1)−O(1);
(b) ∀i=1, ..., p(n), Kt(ci|H, z1, ..., zj−1, πj) ≥ Kt(ci|H, z1, ..., zj−1) − O(1);
P sends H ′ to V.

2. V chooses b ∈ {0, 1}, and if b = 0 he asks P to see the isomorphism between
the graph he received and H. Otherwise he asks for Hamiltonian path in H ′.

404 A. Souto et al.

3. P provides π if he received 0 and π(c) if he received a 1.
4. V checks whether the messages sent by P are sound.

It seems that the previous protocol is not classical zero-knowledge, since we
are not able to build a simulator capable of mimicking the communication.

Theorem 5. If m is a logarithmic function on the |H|, then the Protocol 4 is
(0, poly)-individual witness hiding for FHAMp for some polynomial p.

We provide the proof of this theorem in the Appendix.
Note that using a parsimonious reduction to HAM (in fact FHAMp for some

poly p) we can design an IWH protocol for all L ∈ FewP. Notice that, if some
information about a witness y ∈ Wx for some x ∈ L was revealed during the
protocol than the Protocol 4 would not be witness hiding for FHAM since we
could apply the reduction to get information about a path in the reduced graph.
From this discussion, we conclude the following result.

Theorem 6. Any FewP problem admits a witness hiding protocol.

5 A Variant of IWH that Is Classical ZK

Classical zero-knowledge proofs can be defined relative to auxiliary inputs, where
the verifier has access to some string used during the protocol.

Definition 9 (Zero-knowledge relative to oracles (see for instance
[12])). Let R(x,w) be a predicate relative to a statement x and a witness w,
OP , OV ; O′

V be three lists of oracles with access to the same random coins rI .
An argument of knowledge for R relative to (OP ,OV) is a pair (POP ,VOV)

of polynomial time interactive machines POP (x,w, rP) and VOV (x, z, rV) such
that: x is a common input; P has a secret input w; V has an auxiliary input z
and produces a binary output (“accept” or “reject”). The system has to fulfil
the following properties:

Completeness for any rI , rP , rV , x, w, z such that R(x;w) holds, the outcome
of interaction POP (x,w; rP) ↔ VOV (x, z; rV) makes V accept.

Soundness there exists a polynomial-time algorithm E (called extractor) which
is given full black-box access to the prover such that for any x and z
polynomial-time algorithm P ′ with access to OP , if the probability (over all
random coins) that P ′OP (x, z; rP) ↔ VOV (x, z; rV) makes V accept is non-
negligible then EP′

(x; r) produces w such that R(x;w) with non-negligible
probability (over r).

The argument system is called zero-knowledge (ZK) relative to O′
V if for

any polynomial time algorithm V ′O′
V there exists a polynomial-time algo-

rithm SO′
V (called simulator), which could be run by the verifier, such that

for any x, w, and z such that R(x,w), the experiments of either computing
V iewV(POP (x,w; rP) ↔ VOV (x, z; rV) or running SO′

V (x, z; r) produce two ran-
dom outputs (over all random coins) with indistinguishable distributions.

Witness Hiding Without Extractors or Simulators 405

5.1 Kolmogorov String Commitment

In order to construct a zero-knowledge protocol from an individual witness hiding
protocol, we address the problem of string commitment.

Zero-knowledge protocols for NP-complete problems use bit commitment.
Unfortunately, Kolmogorov complexity is not suitable to deal with bit commit-
ment. We consider string commitment instead, which (like the notion of bit
commitment scheme) is based on the existence of (Kolmogorov) one-way func-
tions.

Protocol 5 (String commitment protocol). Let f : Σ∗ → Σ∗ be an honest
injective one-way function.
Commitment phase: The sender, willing to commit to a string x ∈ Σn selects
k ∈ {0, 1}n uniformly at random and sends the pair (f(k); k⊕x) to the receiver.
We call such a k the key for x.
Opening phase: The sender reveals the key k used in the commitment phase.
The receiver accepts the value x if f(k) = α and k ⊕ x = σ where (α, σ) is the
receiver’s view of the commitment phase.

Observe that since f is a one-way function, the receiver is not able to compute
with non negligible probability (k, x) because it is a pre-image of the string
commitment (α, σ). On the other hand, since the one-way function is injective
the sender is not able to change his commitment.

In [1,3] a Kolmogorov approach to the existence of one-way functions is given.
Considering classical one-way functions, the following results were obtained:

1. If E is the expected value of Kt
f (x|f(x), n) and E > c for some constant c

and some fixed polynomial time t, then f is a weak one-way function.
2. If f is a strong one-way function, then E > c log n for every constant c.

Definition 10 (Kolmogorov one-way function). Let t(·) be some com-
putable time bound, c a constant, f : Σn → Σm an injective and polynomial
time computable function and δ(·) a positive function. We say that an instance
x of length n is (t, δ)-secure relative to a random string r ∈ Σt(n) and to the
function f if Kt

f (x|r, n) ≥ c log n and Kt
f (x|r, n) − Kt

f (x|f(x), r, n) ≤ δ(n).
Let ε(·) be a function. f is a (t, ε, δ)-secure Kolmogorov one-way function if for
sufficiently large n, Pr(x,r)∈Σn×Σt(n) [x is not (t, δ)-secure for r] ≤ ε(n).

Theorem 7 ([1]). If f is a (t(n), ε(n), δ(n))-secure Kolmogorov one-way func-
tion, then E(Kt

f (x|f(x), r, n)) ≥ (1 − ε(n)) · (n − log n − δ(n)) − 2.

We can ground the existence of Kolmogorov string commitment schemes
on the assumption that there is a Kolmogorov one-way function (KOWF).
Given such a KOWF f we note that there are many strings k such that
Kt

f (k|f(k), r, n) > Kt
f (k|r, n) − O(log n) that can be used as keys in Proto-

col 5. Moreover, we can, for example, use Theorem 2 to derive Kolmogorov
independent keys.

406 A. Souto et al.

5.2 A Variant of the IWH Protocol that Is Classical ZK for FHAM

Capitalizing on the knowledge that one-way functions are essential for zero-
knowledge of NP complete problems (see [6]), we derive a version of individual
witness hiding protocols that is also zero-knowledge in the random oracle model.

Protocol 6 (Random oracle zero-knowledge for FHAMp)
Input: Graph H with vertices V = {1, · · · , n} and with at most p(n) Hamilto-
nian paths.
Secret of P: Hamiltonian path c in H. Let c1, · · · , cp(n) be all possible Hamil-
tonian paths of H.
Oracle: O = (O1,O2) where the oracle O1 when receiving a query either from
the prover or the verifier, produces a random permutation π such that:

(i) For all i ∈ {1, · · · , p(n)}, Kt(π(ci)|π,H) ≥ Kt(ci) − O(log n);
(ii) For all i ∈ {1, · · · , p(n)}, Kt(ci|π(c),H) ≥ Kt(ci) − O(log n);
(iii) π is O(log n)-Kolmogorov independent from all other π’s produced in the
previous rounds;

and the oracle O2 when queried for key production it generates ki such that:

(i) For all 0≤j <i, Kt(ki|kj) > O(log n);
(ii) For all 0≤j < i, Kt(zi|kj) ≥ Kt(zi)−O(log n) and Kt(zj |ki) ≥ Kt(zj) −
O(log n);

The following steps are repeated n2 times.

1. P queries O1 to get a random permutation π and sets H ′ = π(H).
2. P uses O2 to get k1, · · · , kn2 keys and Protocol 5 to commit to “zi = (u, v)
is/is not an edge on H ′”, where u and v are any two vertices of H ′.
3. V chooses randomly a bit b. If b = 0 he asks P for the isomorphism between
the graph received and H, and to show a Hamiltonian path in H ′ otherwise.
4. If P receives 0, he reveals π and all the keys k1, · · · kn2 used. Otherwise,
he reveals the keys k1, · · · , kn forming the path in H ′.
5. V checks whether the messages sent by P are sound.

Theorem 8. Protocol 6 is individual witness hiding.

The proof of this theorem is similar to the proof of Theorem 5. Clearly this
new protocol is zero-Knowledge in the Random Oracle model since the usual
simulator that queries the Oracles is a valid one. Thus:

Theorem 9. Protocol 6 is zero-knowledge relative to the given oracle O.

Acknowledgements. A very special thank is due to S. Laplante for many discussions.
We also would like to thank P. Vitányi, D. Ziao and A. Matos.

Witness Hiding Without Extractors or Simulators 407

6 Appendix

We now provide the proof of Theorem 4.

Proof. The proof of perfect completeness is similar to the proof of the original
protocol. Notice that, if P is able to choose the strings zj as in the Protocol, (for
the existence of such string see below and Theorem 2) then since (x, n) ∈ QR

and P knows u such that u2 ≡ x mod n, it follows that the Prover is able to
fulfill both challenges of V and hence the probability of P convincing V, is 1.

On the other hand, if (x, n) /∈ QR then no matter what P does, there is no
possibility of P to fulfill both challenges of V. In particular, the best we can do
is to guess which challenge we will be given by V. The probability of guessing
correctly the challenge and prepare the proper commitment for that challenge
is 1/2. Hence, the probability of passing all the m rounds is 2−m. Since m is
logarithmic on |(x, n)|, then 2−m is a polynomial on |(x, n)|.

Now we observe that, at each round there are exponential many strings vj

that can be chosen.
Consider � = log n and observe that |(x, n)| ≤ 2�.
At round j, there were already revealed j − 1 strings. Then the tuple

〈z1, ..., zj−1〉 has polynomial size on � and hence by Theorem 2, for any
constant d there are, at least, 2� − 2�−e strings v ∈ Σ� such that
Kt(u1, u2, u3, u4|x, n, z1, ..., zj−1, v) ≥ Kt(u1, u2, u3, u4|x, n, z1, ..., zj−1) − d for
some constant e sufficiently large. Let A be the set of such strings. Since
gcd(x, n) = 1 (otherwise the instance of QR would be easy to solve), the func-
tion fu(v) = uv is injective. Hence fu(A) also has, at least, 2� − 2�−e elements.
Therefore A ∩ fu(A) has, at least, 2(2� − 2m−�) − 2m = 2m − 2m−�−1 elements.

Notice that every v in A∩fu1(A) satisfies the requirements for round j since,
in particular, we have Kt(ui|x, n, z1, ..., zj−1, v) ≥ Kt(ui|x, n, z1, ..., zj−1) − d′

and Kt(ui|x, n, z1, ..., zj−1, uv) ≥ Kt(ui|x, n, z1, ..., zj−1) − d′ for i = 1...4 and
for some constant d′ depending on d.

To complete the proof we only need to show that, at the end of the protocol,
the amount of information that is leaked about the witnesses is logarithmic.
Notice that, by the choices of v’s, in between rounds, there is only a constant
number of bits of information that are leaked.

So, for all ui = u1, ..., u4 we have

KCt
P,V(ui; (x, n)) = max

c∈C

(
Kt(ui|x, n) − Kt(u|x, n, cPV)

)

= Kt(ui|x, n) − Kt(ui|x, n, z1, ..., zm)
≤ Kt(ui|x, n) − Kt(ui|x, n, z1, ..., zm−2) + dm + dm−1

≤ Kt(ui|x, n) − Kt(ui|x, n) + dm + dm−1 + ... + d1
≤ d′ × m = d′ × c log |(x, n)| ≤ O(log n)

Next we provide the proof of Theorem 5.

Proof. Similarly to the proof presented for Protocol 2, the proof of perfect com-
pleteness follows from the fact that if P is able to choose the permutations π

408 A. Souto et al.

as in the Protocol, (for the existence of such permutations see below and Theo-
rem 2) then since H ∈ FHAM and P knows a Hamiltonian path, it follows that
the Prover is able to fulfill both challenges of V and hence the probability of P
convincing V, is 1.

On the other hand, if H is not Hamiltonian then no matter what P does,
there is no possibility of P to fulfill both challenges of V. In particular, the best
we can do is to guess which challenge we will be given by V. The probability
of guessing correctly the challenge and prepare the proper commitment for that
challenge is 1/2. Hence, the probability of passing all the m rounds is 2−m. Since
m is logarithmic on |H|, then 2−m is a polynomial on |H|.

Now we observe that, at each round there are exponentially many strings π
that can be chosen. Notice that any permutation π can be described with n log n
bits where n is the number of vertices in H. Let � = n log n.

At round j, there were already revealed j − 1 strings, that either a
cycle of a permutation. Then the tuple 〈z1, ..., zj−1〉 has polynomial size
on � and hence by Theorem 2, for any constant d there are, at least,
2� − 2�−e permutations v ∈ Σ� such that Kt(〈c1, ..., cj〉|H, z1, ..., zj−1, π) ≥
Kt(〈c1, ..., cj〉|H, z1, ..., zj−1) − d for some constant e sufficiently large. On the
other hand, since |π(c)| = �, then there are also 2� − 2�−e permutations v ∈ Σ�

such that Kt(〈c1, ..., cj〉|H, z1, ..., zj−1, π(c)) ≥ Kt(〈c1, ..., cj〉|H, z1, ..., zj−1) − d
for some constant e sufficiently large. Then, again there are 2� − 2�−e−1 possible
permutations satisfying the conditions required in the protocol.

To complete the proof we have to show that the amount of information that
leaked about the paths is only logarithmic. So, for every path ci that is a cycle
in G we have

KCt
P,V(H, ci) = max

c∈C

(
Kt(ci|H) − Kt(ci|H, cPV)

)

≤ Kt(ci|H) − Kt(ci|H, z1, ..., zm−1) + dm

≤ Kt(ci|H) − Kt(ci|H) + dm + dm−1 + ... + d1
≤ d′ × m = d′ × c log |H| ≤ O(log n)

References

1. Antunes, L., Matos, A., Pinto, A., Souto, A., Teixeira, A.: One-way function using
algorithmic and classical information theories. ToCS 52, 162 (2013)

2. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000)

3. Casal, F., Rasga, J., Souto, A.: Kolmogorov one-way functions revisited. Cryptogr.
- MDPI 2, 9 (2018)

4. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of STOC. ACM (1990)

5. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cam-
bridge (2001)

6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38, 690–728
(1991)

Witness Hiding Without Extractors or Simulators 409

7. Goldreich, O., Petrank, E.: Quantifying knowledge complexity. Comput. Complex.
8(1), 50–98 (1999)

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of STOC. ACM (1985)

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

10. Kaplan, M., Laplante, S.: Kolmogorov complexity and combinatorial methods in
communication complexity. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS,
vol. 5532, pp. 261–270. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02017-9 29

11. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. TCS. Springer, New York (2008). https://doi.org/10.1007/978-0-387-49820-
1

12. Mateus, P., Vaudenay, S.: On tamper-resistance from a theoretical viewpoint. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 411–428. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9 29

13. Yehuda, R., Chor, B., Kushilevitz, E., Orlitsky, A.: Privacy, additional information
and communication. IEEE Tran. Inf. Theo. 39(6), 1930–1943 (1993)

14. Stinson, D.: Cryptography: Theory and Practice. CRC Press, Boca Raton (1995)

https://doi.org/10.1007/978-3-642-02017-9_29
https://doi.org/10.1007/978-3-642-02017-9_29
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-3-642-04138-9_29

Algorithms and Geometric Constructions

Vladimir Uspenskiy1 and Alexander Shen2(B)

1 Moscow State Lomonosov University, Moscow, Russia
2 LIRMM CNRS and University of Montpellier, on leave from IITP RAS,

Montpellier, France
alexander.shen@lirmm.fr

Abstract. It is well known that several classical geometry problems
(e.g., angle trisection) are unsolvable by compass and straightedge con-
structions. But what kind of object is proven to be non-existing by usual
arguments? These arguments refer to an intuitive idea of a geometric
construction as a special kind of an “algorithm” using restricted means
(straightedge and/or compass). However, the formalization is not obvi-
ous, and different descriptions existing in the literature are far from being
complete and clear. We discuss the history of this notion and a possible
definition in terms of a simple game.

1 Introduction

The notion of an algorithm as an intuitively clear notion that precedes any
formalization, has a rather short history. The first examples of what we now
call algorithms were given already by Euclid and al-Khwârizmı̂. But the general
idea of an algorithm seems to appear only in 1912 when Borel considered “les
calculus qui peuvent être réellement effectués”1 and emphasized: “Je laisse inten-
tionnellement de côté le plus ou moins grande longeur pratique des opérations;
l’essentiel est que chaqune de ces opérations soit exécutable en un temps fini,
par une méthode sûre et sans ambigüıte”2 [4, p. 162]. The formal definition of
a representative class of algorithms was given in 1930s (in the classical works
of Gödel, Church, Kleene, Turing, Post and others); the famous Church–Turing
thesis claims that the class of algorithms provided by these formal definitions is
representative.

In this paper we look at the history of another related notion: the notion of
a geometric construction. One may consider geometric constructions as a spe-
cial type of algorithms that deal with geometric objects. Euclid provided many
examples of geometric constructions by compass and straightedge (ruler); later
these constructions became a standard topic for high school geometry exercises.
Several classical problems (angle trisection, doubling the square, squaring the

A. Shen—Supported by ANR-15-CE40-0016-01 RaCAF grant.
1 The computations that can be really performed.
2 I intentionally put aside the question of bigger or smaller practical length of the

operation; it is important only that each of the operations can be performed in a
finite time by a clear and unambiguous method”.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 410–420, 2018.
https://doi.org/10.1007/978-3-319-94418-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_41&domain=pdf
http://orcid.org/0000-0001-8605-7734

Algorithms and Geometric Constructions 411

circle) were posed and remained unsolved since ancient times (though solutions
that involve more advanced instruments than compass and straightedge were
suggested). These problems were proved to be unsolvable in 19th century. One
would expect that the proof of unsolvability assumes as a prerequisite a rigor-
ously defined notion of a “solution” that does not exist. Recall that the first
undecidability proofs could appear only after an exact definition of an algorithm
was given.

However, historically this was not the case and the impossibility proofs
appeared without an exact definition of a “geometric construction”. These proofs
used the algebraic approach: For example, to show that the cube cannot be
doubled, one proves that 3

√
2 cannot be obtained from rationals by arithmetic

operations and square roots. The reduction from a geometric question to an alge-
braic one looks quite obvious and was omitted by Wantzel who first proved the
impossibility of angle trisection and cube doubling. As he wrote in [22], “pour
reconnaitre si la construction d’un problème de Géometrie peut s’effectuer avec
la règle et le compas, if faut chercher s’il est possible de faire dépendre les racines
de l’equation à laquelle il conduit de celles d’un système d’équations du second
degré”.3 This is said in the first paragraph of the paper and then he considers
only the algebraic question.

Several other interesting results were obtained in 19th century. It was shown
that all constructions by compass and straightedge can be performed using the
compass only (the Mohr–Mascheroni theorem) if we agree that a line is repre-
sented by a pair of points on this line. Another famous result from 19th century,
the Poncelet–Steiner theorem, says that if a circle with its center is given, then
the use of compass can be avoided, straightedge is enough. Other sets of tools
were also considered, see, e.g., [3,9,14].

Later geometric construction became a popular topic of recreational mathe-
matics (see, e.g., [6,10,13,15]). In most of the expositions the general notion of a
geometric construction is still taken as granted, without a formal definition, even
in the nonexistence proofs (e.g., when explaining Hilbert’s proof that the center
of a circle cannot be found using only a straightedge [6,10,15]; see below Sect. 6
about problems with this argument). Sometimes a definition for some restricted
class of geometric construction is given (see, e.g., [18]). In [13] an attempt to pro-
vide a formal definition is made, still it remains ambiguous with respect to the
use of “arbitrary points” (see Sect. 4). Baston and Bostock [2] observe that the
intuitive idea of a “geometric construction” has no adequate formal definition
and discuss several examples but do not attempt to give a formal definition that
is close to the intuitive notion. It seems that even today people still consider the
intuitive notion of a “geometric construction algorithm” as clear enough to be
used without a formal definition (cf. [1], especially the first arxiv version).

In Sect. 2 we consider a näıve approach that identifies constructible points
with the so-called “derivable” points. Then in Sects. 3 and 4 we explain why

3 To find out whether a geometric problem can be solved by straightedge and compass
construction, one should find whether it is possible to reduce the task of finding the
roots of the corresponding equation to a system of equations of second degree.

412 V. Uspenskiy and A. Shen

this approach contradicts our intuition. In Sect. 5 we suggest a more suitable
definition, and finally in Sect. 6 we note that the absence of formal definitions
has led to incorrect proofs.

2 Derivable Points and Straight-Line Programs

At first it seems that the definition of a geometric construction is straightforward.
We have three classes of geometric objects: points, lines and circles. Then we
consider some operations that can be performed on these objects. We need to
obtain some object (the goal of our construction) applying the allowed operations
to given objects. As Tao [18] puts it,

Formally, one can set up the problem as follows. Define a configuration to
be a finite collection C of points, lines, and circles in the Euclidean plane.
Define a construction step to be one of the following operations to enlarge
the collection C:

– (Straightedge) Given two distinct points A, B in C, form the line AB that
connects A and B, and add it to C.

– (Compass) Given two distinct points A, B in C, and given a third point
O in C (which may or may not equal A or B), form the circle with centre
O and radius equal to the length |AB| of the line segment joining A and
B, and add it to C.

– (Intersection) Given two distinct curves γ, γ′ in C (thus γ is either a line
or a circle in C, and similarly for γ′), select a point P that is common to
both γ and γ′ (there are at most two such points), and add it to C.

We say that a point, line, or circle is constructible by straightedge and com-
pass from a configuration C if it can be obtained from C after applying a finite
number of construction steps.

We can even try to define the geometric construction algorithm as a straight-line
program, a sequence of assignments whose left-hand side is a fresh variable and
the right-hand side contains the name of the allowed operation and the names
of objects to which this operation is applied.

Baston and Bostock [2] use the name “derivable” for objects that can be
obtained in this way starting from given objects. In other words, starting with
some set of given objects, they consider its closure, i.e., the minimal set of
objects that contains the given ones and is closed under allowed operations.
The objects that belong to this closure are called derivable from the given ones.
In these terms, the impossibility of trisecting the angle with the compass and
the straightedge can be stated as follows: for some points A, B, C the trisectors
of the angle BAC are not derivable from {A, B, C}.

Baston and Bostock note that the intuitive notion of a “constructible” point
(that they intentionally leave without any definition) may differ from the formal
notion of a derivable point in both directions. We discuss the differences in the
following sections.

Algorithms and Geometric Constructions 413

3 Uniformity and Tests

There are some problems with this approach. First of all, this appoach is “non-
uniform”. Asking a high school student to construct, say, a center of an inscribed
circle of a triangle ABC, we expect the solution to be some specific construction
that works for all triangles, not just the proof that this center is always derivable
from A, B, and C. The näıve approach would be to ask for a straight-line program
that computes this center starting from A, B, and C. However, an obvious
problem arises: the operation of choosing an intersection point of two curves is
non-deterministic (we need to choose one of two intersection points). We may
guarantee only that some run of the program produces the required object,
or guarantee that the required object is among the objects computed by this
program. This is a common situation for classical constructions. For example,
the standard construction of the centre of the incircle of a triangle can also
produce centres of excircles (the circles outside the triangle that touch one of its
sides and the extensions of two other sides).

The non-deterministic nature of the operations was mentioned by different
authors. Bieberbach [3] says that the constructions should be performed in the
“oriented plane” (not giving any definitions). Tietze [19–21] notes that some
objects can be constructed but only in a non-deterministic way, again without
giving definition of these notions.

One could give up and consider the non-uniform setting only. As Manin [13,
p. 209] puts it, “we ignore how to choose the required point from the set of
points obtained by the construction”. Another approach is to replace straight-
line programs by decision trees where tests appear as internal nodes. Still none
of these two approaches (decision trees or non-deterministic choice) is enough to
save some classical constructions in a uniform setting as observed by Baston and
Bostock [2, p. 1020]. They noted that the construction from Mohr–Mascheroni
theorem allows us to construct the intersection point of two intersecting lines
AB and CD (given A,B,C,D) using only a compass. Each use of the compass
increases the diameter of the current configuration at most by an O(1)-factor,
and the intersection point can be arbitrarily far even if A,B,C,D are close to
each other, so there could be no a priori bound on the number of steps. The
necessity of an iterative process in the Mohr–Mascheroni theorem was earlier
mentioned in another form by Dono Kijne [11, ch. VIII, p. 99]; he noted that
this result depends on Archimedes’ axiom.

To save the Mohr–Mascheroni construction, one may consider programs that
allow loops. This was suggested, e.g., by Engeler [7]. Here we should specify
what kind of data structures are allowed (e.g., whether we allow dynamic arrays
of geometric objects or not). In this way we encounter another problem, at
least if we consider straightedge-only constructions on the rational plane Q

2

and allow using tests and do not bound the number of steps/objects. Baston
and Bostock [2] observed that having four different points A,B,C,D ∈ Q

2 in
a general position (no three points lie on a line, no two connecting lines are
parallel), we can enumerate all (rational) points and therefore all rational lines.
Then we can wait until a line parallel to AB appears (we assume that we may

414 V. Uspenskiy and A. Shen

test whether two given lines intersect or are parallel) and then use this parallel
line to find the midpoint of AB. This construction does not look like a intuitively
valid geometric construction and contradicts the belief that one cannot construct
the midpoint using only a straightedge, see [2] for details.

4 Arbitrary Points

Let us now consider the other (and probably more serious) reason why the notion
of a derivable object differs from the intuitive notion of a constructible object.
Recall the statement about angle trisection as stated by Tao [18]: for some
triangle ABC the trisectors of angle BAC are not derivable from {A,B,C}.
(Tao uses the word “constructible”, but we keep this name for the intuitive
notion, following [2].) Tao interprets this statement as the impossibility of angle
trisection with a compass and straightedge, and for a good reason.

On the other hand, the center of a circle is not derivable from the circle
itself, for the obvious reason that no operation can be applied to enlarge the
collection that consists only of the circle. Should we then say that the center of
a given circle cannot be constructed by straightedge and compass? Probably not,
since such a construction is well known from the high school. A similar situation
happens with the construction of a bisector of a given angle (a configuration
consisting of two lines and their intersection point).

Looking at the corresponding standard constructions, we notice that they
involve another type of steps, “choosing an arbitrary point” (on the circle or
elsewhere). But we cannot just add the operation “add an arbitrary point” to the
list of allowed operations, since all points would become derivable. So what are
the “arbitrary points” that we are allowed to add? Bieberbach [3, p. 21] speaks
about “Punkte, über die keine Angaben affiner oder metrischer Art gemacht
sind”4 and calls them “willkürliche Punkte”—but this hardly can be considered
as a formal definition.

Tietze [21] notes only that “the role of arbitrary elements is not so simple as
it is sometimes thought”. Baston and Bostock [2] explain the role of arbitrary
elements, but say only that “the distinction between constructibility and deriv-
ability arising from the use of arbitrary points is not very complex” and “we
will not pursue a more detailed analysis in this direction”; they refer to [12] for
an “elementary approach”, but this book also does not give any clear definition.
Probably the most detailed explanation of the role of arbitrary points is pro-
vided by Manin [13], but he still defines the construction as a “finite sequence of
steps” (including the “arbitrary choices”) and says that a point is constructible if
there exists a construction that includes this point “for all possible intermediate
arbitrary choices”; this definition, if understood literally, makes no sense since
different choices leads to different constructions. Schreiber [16] tries to define the
use of arbitrary points in a logical framework, but his exposition is also far from
being clear.

4 Points for which we do not have affine or metric information.

Algorithms and Geometric Constructions 415

How can we modify the definitions to make them rigorous? One of the possi-
bilities is to consider the construction as a strategy in some game with explicitly
defined rules. We discuss this approach in the next section.

5 Game Definition

The natural interpretation of the “arbitrary choice” is that the choice is made
by an adversary. In other words, we consider a game with two players, Alice and
Bob. We start with the non-uniform version of this game.

Let E be some finite set of geometric objects (points, lines, and circles). To
define which objects x are constructible starting from E, consider the following
full information game. The position of the game is a finite set of geometric
objects. The initial position is E. During the game, Alice and Bob alternate. Alice
makes some requests, and Bob fulfills these requests by adding some elements
to the current position. Alice wins the game when x becomes an element of the
current position. The number of moves is unbounded, so it is possible that the
game is infinite (if x never appears in the current position); in this case Alice
does not win the game.

Here are possible request types.

– Alice may ask Bob to add to the current position some straight line that goes
through two different points from the current position.

– Alice may ask Bob to add to the current position a circle with center A and
radius BC, if A,B,C are points from the current position.

– Alice may ask Bob to add to the current position one or two points that form
the intersection of two different objects (lines or circles) that already belong
to the current position.

If we stop here, we get exactly the notion of derivable points, though in a strange
form of a “game” where Bob has no choice. To take the “arbitrary” points into
account, we add one more operation:

– Alice specifies an open subset of the plane (say, an open circle), and Bob adds
some point of this subset to the current position.

The point x is constructible from E if Alice has a winning strategy in this game.
Let us comment on the last operation.

(1) Note that Alice cannot (directly) force Bob to choose some point on a line or
on a circle, and this is often needed in the standard geometric constructions.
But this is inessential since Alice can achieve this goal in several steps. First
she asks to add points on both sides of the line or circle (selecting two small
open sets on both sides in such a way that every interval with endpoints
in these open sets intersects the line or circle), then asks to connect these
points by a line, and then asks to add the intersection point of this new line
and the original one.

416 V. Uspenskiy and A. Shen

(2) On the other hand, according to our rules, Alice can specify with arbitrarily
high precision where the new point should be (by choosing a small open set).
A weaker (for Alice) option would be to allow her to choose a connected
component of the complement of the union of all objects in the current
position. Then Bob should add some point of this component to the current
position.

Proposition 1. This restriction does not change the notion of a constructible
point.

Proof. Idea: Using the weaker option, Alice may force Bob to put enough points
to make the set of derivable points dense, and then use the first three options to
get a point in an arbitrary open set.

Let us explain the details. First, she asks for an arbitrary point A, then for
a point B that differs from A, then for line AB, then for a point C outside line
AB (thus having the triangle ABC), then for the sides of this triangle, and then
for a point D inside the triangle. (All this is allowed in the restricted version.)

A CY

X

B

D
P

Q

Now the points P and Q obtained as shown are derivable (after the projective
transformation that moves B and C to infinity, the points P and Q become the
midpoints of XD and AY). Repeating this construction, we get a dense set of
derivable points on intervals XD and AY , then the dense set of derivable points
in the quadrangle AXDY and then in the entire plane.

Now, instead of asking Bob for a point in some open set U , Alice may force
him to include one of the derivable points (from the dense set discussed above)
that is in U .

This definition of constructibility turns out to be equivalent to the neg-
ative definition suggested by Akopyan and Fedorov [1]. They define non-
constructibility as follows: an object x is non-constructible from a finite set E of
objects if there exists a set E′ ⊃ E that is closed under the operations of adding
points, lines, and circles (contains all objects derivable from E′), contains an
everywhere dense set of points, but does not contain x.

Proposition 2 (Akopyan–Fedorov). This negative definition is equivalent to
the game-theoretic definition given above.

Algorithms and Geometric Constructions 417

Proof. The equivalence is essentially proven as [1, Proposition 15, p. 9], but
Akopyan and Fedorov avoided stating explicitly the game-theoretic definition
and spoke about “algorithms” instead (without an exact definition).

Assume that x is non-constructible from E according to the negative defini-
tion. Then Bob can prevent Alice from winning by always choosing points from
E′ when Alice asks for a point in an open set. Since E′ is dense, these points are
enough. If Bob follows this strategy, then the current position will always be a
subset of E′ and therefore will never contain x.

On the other hand, assume that x in not constructible from E in the sense of
the positive definition. Consider the following strategy for Alice. She takes some
triangle abc and point d inside it and ask Bob to add points A,B,C,D that
belong to some small neighborhoods of a, b, c, d respectively. The size of these
neighborhoods guarantees that ABC is a triangle and D is a point inside ABC.
There are two cases:

– for every choice of Bob Alice has a winning strategy in the remaining game;
– there are some points A,B,C,D such that Alice does not have a winning

strategy in the remaining game.

In the first case Alice has a winning strategy in the entire game and x is con-
structible. In the second case we consider the set E′ of all objects derivable
from E ∪{A,B,C,D}. As we have seen in the proof of the previous proposition,
this set is dense. Therefore, x is non-constructible in the sense of the negative
definition.

The advantage of the game definition is that it can be reasonably extended
to the uniform case. For the uniform case the game is no more a full-information
game. Alice sees only the names (and types) of geometric objects in E, and
assigns names to new objects produced by Bob. One should agree also how Alice
can get information about the configuration and how she can specify the con-
nected component when asking Bob for a point in this component. For example,
we may assume that Alice has access to the list of all connected components and
the full topological information about the structure they form, as well as the
places of objects from E in this structure. Then Alice may choose some com-
ponent and request a point from it. To win, Alice needs to specify the name of
the required object x. After we agree on the details of the game, we may define
construction algorithms as computable strategies for such a game. (Note that in
this version Alice deals only with finite objects).

6 Formal Definitions Are Important

In fact, the absence of formal definitions and exact statements is more dangerous
than one could think. It turned out that some classical and well known arguments
contain a serious gap that cannot be filled without changing the argument. This
happened with a proof (attributed to Hilbert in [5]) that one cannot find the
center of a given circle using only a straightedge. It is reproduced in many

418 V. Uspenskiy and A. Shen

popular books (see, e.g., [6,10,15]) and all the arguments (at least in the four
sources mentioned above) have the same gap. They all go as follows [10, p. 18]:

Let the construction be performed in a plane P1 and imaging a transformation
or mapping T of the plane P1 into another plane P2 such that:

(a) straight lines in P1 transform into straight lines in P2 〈. . .〉
(b) The circumference C of our circle is transformed into a circumference T (C)

for some circle in P2.

As the steps called for in the construction are being performed in P1, they
are being faithfully copied in P2. Thus when the construction in P1 terminates
in the centre O of C, the “image” construction must terminate in the centre
T (O) of the circle T (C).

Therefore if one can exhibit a transformation T satisfying (a) and (b), but
such that T (O) is not the centre of T (C), then the impossibility of constructing
the centre of a circle by ruler alone will be demonstrated.

Such a transformation indeed exists, but the argument in the last paragraph
has a gap. If we understand the notion of construction in a non-uniform way and
require that the point was among the points constructed, the argument does not
work since the center of T (C) could be the image of some other constructed
point. If we use some kind of the uniform definition and allow tests, then these
tests can give different results in P1 and P2 (the projective transformation used
to map P1 into P2 does not preserve the ordering), so there is no reason to expect
that the construction is “faithfully copied”. And a uniform definition that does
not allow tests and still is reasonable, is hard to imagine (and not given in the
book). Note also that some lines that intersect in P1, can become parallel in P2.

It is easy to correct the argument and make it work for the definition of con-
structibility given above (using the fact that there are many projective mappings
that preserve the circle), but still one can say without much exaggeration that
the first correct proof of this impossibility result appeared only in [1]. One can
add also that the stronger result about two circles that was claimed by Cauer [5]
and reproduced with a similar proof in [15], turned out to be plainly false as
shown in [1], and the problems in the proof were noted already by Gram [8].
It is not clear why Gram did not question the validity of the classical proof for
one circle, since the argument is the same. Gram did not try to give a rigor-
ous definition of the notion of a geometric construction, speaking instead about
constructions in the “ordered plane” and referring to Bieberbach’s book [3] that
also has no formal definitions.

The weak version of Cauer’s result saying that for some pairs of circles one
cannot construct their centers, can be saved and proven for the definition of
constructibility discussed above (see [1] and the popular exposition in [17]).

It would be interesting to reconsider the other results claimed about geomet-
ric constructions (for example, in [9,19–21]) to see whether the proofs work for
some clearly defined notion of a geometric construction. Note that in some cases
(e.g., for Tietze’s results) some definition of the geometric construction for the
uniform case is needed (and the negative definition is not enough).

Algorithms and Geometric Constructions 419

Acknowledgements. The authors thank Sergey Markelov, Arseny Akopyan, Roman
Fedorov and their colleagues at Moscow State University and LIRMM (Montpellier)
for interesting discussions.

References

1. Akopyan, A., Fedorov, R.: Two circles and only a straightedge (2017). https://
arxiv.org/abs/1709.02562

2. Baston, V.J., Bostock, F.A.: On the impossibility of ruler-only constructions. Proc.
Am. Math. Soc. 110(4), 1017–1025 (1990)

3. Bieberbach, L.: Theorie der Geometrischen Konstruktionen. Springer, Basel (1952).
https://doi.org/10.1007/978-3-0348-6910-2

4. Borel, E.: Le calcul des intégrales définies. J. Math. pures appl. ser. 6 8(2), 159–210
(1912)

5. Cauer, D.: Über die Konstruktion des Mittelpunktes eines Kreises mit dem Lineal
allein. Math. Annallen 73, 90–94 (1913). A correction: 74, 462–464

6. Courant, R., Robbins, H., revised by Stewart, I.: What is Mathematics? An Ele-
mentary Approach to Ideas and Methods. Oxford University Press, Oxford (1996)

7. Engeler, E.: Remarks on the theory of geometrical constructions. In: Barwise, J.
(ed.) The Syntax and Semantics of Infinitary Languages. LNM, vol. 72, pp. 64–76.
Springer, Heidelberg (1968). https://doi.org/10.1007/BFb0079682

8. Gram, C.: A remark on the construction of the centre of a circle by means of the
ruler. Math. Scand. 4, 157–160 (1956)

9. Hilbert, D.: The foundations of geometry, authorized translation by E.J. Townsend,
Ph.D., University of Illinois (1902)

10. Kac, M., Ulam, S.M.: Mathematic and Logic. Dover publications, New York (1992)
11. Kijne, D.: Plane construction field theory. Ph.D. thesis, promotor H. Freudenthal,

van Gorcum & Co., N.V., G.A. Hak, H.J. Prakke, 28 May 1956
12. Kutuzov, B.V.: Studies in mathematics, vol. IV, Geometry (trans. by L.I. Gordon,

E.S. Shater) School Mathematics Study Group, Chicago (1960)
13. Manin, Y.: On the decidability of geometric construction problems using compass

and straightedge [Russian]. Encyclopedia of Elementary Mathematics, Geometry,
Moscow, vol. IV, pp. 205–227 (1963)

14. Martin, G.E.: Geometric Constructions. Springer, New York (1998). https://doi.
org/10.1007/978-1-4612-0629-3

15. Rademacher, H., Toeplitz, O.: Von Zahlen und Figuren, 2nd edn. Springer, Hei-
delberg (1933). https://doi.org/10.1007/978-3-662-36239-6

16. Schreiber, P.: Theorie der Geometrischen Konstruktionen. VEB Deutscher Verlag
der Wissenschaften, Berlin (1975)

17. Shen, A.: Hilbert’s Error? (2018). https://arxiv.org/abs/1801.04742
18. Tao, T.: A geometric proof of the inpossibility of angle trisection. https://

terrytao.wordpress.com/2011/08/10/a-geometric-proof-of-the-impossibility-of-
angle-trisection-by-straightedge-and-compass/

19. Tietze, H.: Über dir Konstruierbarkeit mit Lineal und Zirkel, Sitzungsberichte
der Kaiserlichen Akademie der Wissenschaften, Abt. IIa, 735–757 (1909). https://
www.biodiversitylibrary.org/item/93371

20. Tietze, H.: Über die mit Lineal und Zirkel und die mit dem rechten Zeichen-
winkel lösbaren Konstruktionaufgaben I. Math. Zeitschrift 46, 190–203 (1940).
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002379074

https://arxiv.org/abs/1709.02562
https://arxiv.org/abs/1709.02562
https://doi.org/10.1007/978-3-0348-6910-2
https://doi.org/10.1007/BFb0079682
https://doi.org/10.1007/978-1-4612-0629-3
https://doi.org/10.1007/978-1-4612-0629-3
https://doi.org/10.1007/978-3-662-36239-6
https://arxiv.org/abs/1801.04742
https://terrytao.wordpress.com/2011/08/10/a-geometric-proof-of-the-impossibility-of-angle-trisection-by-straightedge-and-compass/
https://terrytao.wordpress.com/2011/08/10/a-geometric-proof-of-the-impossibility-of-angle-trisection-by-straightedge-and-compass/
https://terrytao.wordpress.com/2011/08/10/a-geometric-proof-of-the-impossibility-of-angle-trisection-by-straightedge-and-compass/
https://www.biodiversitylibrary.org/item/93371
https://www.biodiversitylibrary.org/item/93371
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002379074

420 V. Uspenskiy and A. Shen

21. Tietze, H.: Zur Analyse der Lineal- und Zirkelkonstruktionen. I. Sitzungsberichte
der mathematisch-naturwissenschaftlichen Abteilung der Bayrischen Akademie der
Wissenschaften zu München, 1944, Heft III, Sitzungen Oktober–Dezember, pp.
209–231, München (1947). http://publikationen.badw.de/003900992.pdf

22. Wantzel, M.L.: Recherches sur les moyens de reconnâıtre si un probléme de
Géométrie peut se résoudre avec la règle et le compas. J. Math. pures Appl. 1re
série 2, 366–372 (1837)

http://publikationen.badw.de/003900992.pdf

Computing with Multisets: A Survey
on Reaction Automata Theory

Takashi Yokomori1(B) and Fumiya Okubo2

1 Department of Mathematics, Faculty of Education, Integrated Arts and Sciences,
Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan

yokomori@waseda.jp
2 Faculty of Business Administration, Takachiho University, 2-19-1 Ohmiya,

Suginami-ku, Tokyo 168-8508, Japan
fokubo@takachiho.ac.jp

1 Introduction

In Natural Computing research [18], as mathematical modeling tools of biochem-
ical reactions, Ehrenfeucht and Rozenberg introduced a formal model called
reaction systems [6] for investigating the functioning of the living cell, where
two basic components (reactants and inhibitors) play a key role as a regulation
mechanism in controlling interactions.

Inspired by the notion of reaction systems, reaction automata (RAs) have
been first introduced in [10] as computing devices for accepting string languages.
The notion of RAs is an extension of reaction systems in that RAs employ
reactions which are defined by triples (consisting of reactants, inhibitors and
products), however they entail dealing with multisets for reactants and products
(rather than usual sets as reaction systems do). Thus, RAs are computing models
based on multiset rewriting that accept string languages. Another feature that
distinguishes RAs from reaction systems is that a reaction automaton receives its
input by feeding one symbol of an input string at each step of the computation. In
this respect, RAs have the taste similar to P automata, P systems with accepting
configurations, in which the idea of taking input sequences of multisets into the
systems from the environment was introduced (e.g., [5]).

This survey paper is primarily based on the research works on RAs achieved
in [9–12,15] in which various classes of RAs are considered in four types of
computation process: with/without λ-input modes in rule application of the
maximally parallel manner and the sequential manner.

In what follows, we make a quick survey of the results presented in this paper.
The first result in the series of papers was that RAs are computationally Tur-
ing universal [10]. In the paper, space-bounded complexity classes of RAs was
also introduced, and in the follow-up paper [11], it eventually turned out that

F. Okubo—The work of T.Yokomori was in part supported by JSPS KAKENHI,
Grant-in-Aid for Scientific Research (C) JP17K00021, and by Waseda University
grant for Special Research Project: 2017K-121. The work of F. Okubo was in part
supported by JSPS KAKENHI Grant Number JP16K16008.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 421–431, 2018.
https://doi.org/10.1007/978-3-319-94418-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_42&domain=pdf

422 T. Yokomori and F. Okubo

exponential-bounded RAs can exactly characterize the class of context-sensitive
languages. Further characterization result of the class of recursively enumerable
languages was developed by using the class of linear-bounded RAs together with
homomorphisms. The paper [11] also considered some of the closure properties
of language classes defined by linear-bounded RAs, showing that the class forms
an AFL, while the issue of the computing powers of RAs with λ-input mode in
sequential manner was taken up in [9] and investigated to prove that they have
again the Turing universal computability. Further investigations was made to a
simpler variant of RAs called Chemical reaction automata (CRAs), and it was
proved that CRAs with λ-input mode in parallel manner have the Turing univer-
sal computability, while their computing powers coincide with the class of Petri
net languages when working in sequential manner. In [15], several subclasses of
CRAs was introduced and their computing powers was studied. We leave more
details of the results to later sections.

The rest of this section is devoted to a brief preliminary. We assume that the
reader is familiar with the basic notions of reaction systems as well as of formal
language theory. For unexplained details in the theory of reaction systems and
in formal language theory, refer to, e.g., [6,7], respectively.

We use the basic notations and definitions concerning multisets that follow
[4]. A multiset over an alphabet V is a mapping μ : V → N, where N is the
set of non-negative integers, and for each a ∈ V , μ(a) represents the number of
occurrences of a in the multiset μ. The set of all multisets over V is denoted
by V #, including the empty multiset denoted by μλ, where μλ(a) = 0 for all
a ∈ V . A multiset μ over V can be represented by any permutation of the string
x = a

μ(a1)
1 · · · aμ(an)

n , where V = {a1, a2, · · · , an}. (Note that for each a ∈ V , a0

is an empty string λ.) In this sense, a multiset μ is often identified with its string
representation xμ or any permutation of xμ. A usual set U(⊆ V) is regarded as
a multiset μU such that μU (a) = 1 if a is in U and μU (a) = 0 otherwise. In
particular, for each symbol a ∈ V , a multiset μ{a} is often denoted by a itself.

2 Reaction Automata

Inspired by the works of reaction systems (initiated by [6]), the notion of reaction
automata has been introduced in [10] by extending sets in each reaction (of a
reaction system) to multisets. Here, we start by recalling basic notions concerning
reaction automata.

Definition 1. For a set S, a reaction in S is a 3-tuple a = (Ra, Ia, Pa) of finite
multisets such that Ra, Pa ∈ S#, Ia ⊆ S and Ra ∩ Ia = ∅. The multisets Ra and
Pa are called the reactant of a and the product of a, respectively, while the set
Ia is called the inhibitor of a.

These notations are extended to a multiset of reactions as follows: For a set
of reactions A and a multiset α over A (i.e., α ∈ A#),

Rα =
∑

a∈A

Rα(a)
a , Iα =

⋃

a⊆α

Ia, Pα =
∑

a∈A

Pα(a)
a ,

A Survey on Reaction Automata Theory 423

Notes. (1). A is often identified with its label set and is used as an alphabet.
(2). The symbol

∑
a∈A denotes the sum of multisets.

In the existing works on reaction automata, two ways of applying reactions have
been considered: the sequential manner and the maximally parallel manner. The
former manner was adopted in [10,11], while the literatures [9,12,15] studied the
latter as well.

Definition 2. Let A be a set of reactions in S and α ∈ A# be a multiset of
reactions over A. Then, for a finite multiset T ∈ S#, we say that

(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅.
(2) α is enabled by T in sequential manner if α is enabled by T with |α| = 1.
(3) α is enabled by T in maximally parallel manner if there is no β ∈ A# such

that α ⊂ β, and α and β are enabled by T .
(4) By Ensq

A (T) and Enmp
A (T), we denote the sets of all multisets of reactions

α ∈ A# which are enabled by T in sequential manner and in maximally
parallel manner, respectively.

(5) The results of A on T, denoted by ResX
A (T) with X ∈ {sq,mp}, is defined

as follows:

ResX
A (T) = {T − Rα + Pα |α ∈ EnX

A (T)}.

We note that ResX
A (T) = {T} if EnX

A (T) = ∅. Thus, if no multiset of reactions
α ∈ A# is enabled by T , then T remains unchanged.

Definition 3. A reaction automaton (RA) A is a 5-tuple A = (S,Σ,A,D0, f),
where

– S is a finite set, called the background set of A,
– Σ(⊆ S) is called the input alphabet of A,
– A is a finite set of reactions in S,
– D0 ∈ S# is an initial multiset,
– f ∈ S is a special symbol which indicates the final state.

Unlike the reaction system, a reaction automaton takes its input symbol from
the environment into the current multiset (or state) representing current config-
uration, from time to time during the computing process. This idea was already
considered and realized in the P automata theory (e.g., [5]).

Definition 4. Let A = (S,Σ,A,D0, f) be an RA, w = a1 · · · an ∈ Σ∗ and
X ∈ {sq,mp}. An interactive process in A with input w in X manner is an
infinite sequence π = D0, . . . , Di, . . ., where

{
Di+1 ∈ ResX

A (ai+1 + Di) (for 0 ≤ i ≤ n − 1), and
Di+1 ∈ ResX

A (Di) (for all i ≥ n).

In order to represent an interactive process π, we also use the “arrow nota-
tion” for π : D0 →a1 D1 →a2 D2 →a3 · · · →an−1 Dn−1 →an Dn → Dn+1 → · · · .

424 T. Yokomori and F. Okubo

Fig. 1. An illustration of interactive processes for accepting the language L =
{anbn |n ≥ 0} in terms of the reaction automaton A.

By IPX(A, w) we denote the set of all interactive processes in A with input w
in X manner. If for an input string w = a1 · · · an, it is allowed that ai = λ for
some 1 ≤ i ≤ n, then an interactive process is said to be with λ-input mode. By
IPλ

X(A, w) we denote the set of all interactive processes in A with λ-input mode
in X manner for the input w ([11]).

For an interactive process π in A with input w, if EnX
A (Dm) = ∅ for some

m ≥ |w|, then we have that ResX
A (Dm) = {Dm} and Dm = Dm+1 = · · · . In

this case, considering the smallest m, we say that π converges on Dm (at the
m-th step). If an interactive process π converges on Dm, then Dm is called the
converging state of π and the successive multisets Dm+1,Dm+2, . . . are omitted.

Definition 5. Let A = (S,Σ,A,D0, f) be an RA and X ∈ {sq,mp}. The lan-
guages accepted by A are defined as follows:

LX(A) = {w ∈ Σ∗ | there exists π ∈ IPX(A, w) such that π converges on Dm

for some m ≥ |w| and f is included in Dm}
Lλ

X(A)={w ∈ Σ∗ | there exists π ∈ IPλ
X(A, w) satisfying the same as LX(A)}.

Example 1. Let us consider a reaction automaton A = (
{
p0, p1, a, b, a′, f

}
,

{a, b}, {a0,a1,a2,a3,a4}, p0, f), where a0 = (p0, aba′, f), a1 = (p0a, b, p0a
′),

a2 = (p0a′b, ∅, p1),a3 = (p1a′b, a, p1), a4 = (p1, aba′, f). Figure 1 illustrates the
whole view of possible interactive processes in A with inputs anbn for n ≥ 0.
Let w = aaabbb ∈ Σ∗ be the input string and consider an interactive process π
in sequential manner such that

π : p0 →a p0a
′ →a p0a

′2 →a p0a
′3 →b p1a

′2 →b p1a
′ →b p1 → f.

It is easily seen that π ∈ IPsq(A, w) and w ∈ Lsq(A). Further, we see that
Lsq(A) = {anbn |n ≥ 0} which is a context-free language.

We remark that this interactive process can be also performed by A in max-
imally parallel manner, i.e. π ∈ IPmp(A, w). In fact, it holds that Lmp(A) =
{anbn |n ≥ 0}.

A Survey on Reaction Automata Theory 425

3 Main Results on RAs

This section presents some results on reaction automata (RAs) that have been
established in an earlier stage. In what follows, a language accepted by an RA
is often referred to as an RA language.

3.1 Computing Powers of RAs and Their Subclasses

It has been proven that the accepting power of reaction automata with both
manners of applying reactions coincides with that of Turing machines.

Theorem 1 ([9,10]). The followings hold :

(1) Every recursively enumerable language is accepted by a reaction automaton
in maximally parallel manner.

(2) Every recursively enumerable language is accepted by a reaction automaton
in sequential manner with λ-input mode.

(3) There exists a recursively enumerable language which cannot be accepted by
any reaction automaton in sequential manner.

The proofs are based on two facts: (i) every recursively enumerable language
is accepted by a restricted two-stack machine (Theorem 8.13 in [7]) and (ii) one
can devise an injective function to encode strings into multisets. The result (2) is
in marked contrast to (3), which clarifies the computing power of λ-input mode
in sequential manner.

The space complexity issues of reaction automata (RAs) have been consid-
ered. By restricting the volume of each multiset that is produced in an interac-
tive process by RA, some subclasses of RAs were introduced and investigated on
relations between classes of languages accepted by those subclasses of RAs and
language classes in the Chomsky hierarchy.

Let A be an RA and X ∈ {sq,mp}. Motivated by the notion of a workspace
for a phrase-structure grammar, we define the counterpart of RA as follows: For
w ∈ LX(A) with n = |w|, the workspace of A for w is defined as:

WS(w,A) = minπ{maxi{|Di| | Di appears in π}, π ∈ IPX(A, w) }.

Definition 6. Let f be a function defined on N and X ∈ {sq,mp}.

(1) An RA A is f(n)-bounded if for any w ∈ LX(A) with n = |w|, WS(w,A) ≤
f(n).

(2) If a function f(n) is a constant k (linear, exponential), then A is termed
constant-bounded (resp. linear-bounded, exponential-bounded).

(3) The class of languages accepted by constant-bounded RAs (linear-bounded,
exponential-bounded, arbitrary RAs) in X manner is denoted by CoRAX

(resp. LRAX , ERAX , RAX).
(4) The class of languages accepted by constant-bounded RAs (linear-bounded,

exponential-bounded, arbitrary RAs) with λ-input mode in X manner is
denoted by CoRAλ

X (resp. LRAλ
X , ERAλ

X , RAλ
X).

426 T. Yokomori and F. Okubo

In order to explore and make clearer inclusion relations among language
classes (considered so far), it is necessary to find a family of languages (or at
least a particular language) with certain properties which plays a role of witness
to distinguish one class from the other. The following lemma is useful for the
purpose.

Lemma 1 ([9]). Let Σ be an alphabet with |Σ| ≥ 2 and h : Σ∗ → Σ∗ be an
injection, and consider Lh = {wh(w) |w ∈ Σ∗}. Then, Lh is not in RAsq.

Let us denote by REG (CF , CS,RE) the class of regular (resp. context-free,
context-sensitive, recursively enumerable) languages.

Theorem 2 ([9,10]). The following inclusions hold :

(1). REG = CoRAmp ⊂ LRAmp ⊂ ERAmp ⊆ RAmp = RE
(2). REG = CoRAsq ⊂ LRAsq ⊂ RAsq ⊂ RAλ

sq = RE.
(3). ERAλ

sq = ERAmp = CS.
(4). CF , LRAmp and RAsq are incomparable.

Thus, new characterizations of the classes REG, CS and RE have been estab-
lished in terms of the subclasses of RA languages CoRAmp, ERAmp,RAmp,
respectively. As seen later, however, the class CF has been proved incompa-
rable to any known class of languages defined by RAs so far, exhibiting a unique
position within the RA language hierarchy.

3.2 Some Other Characterizations of RA Language Classes

One of the primary issues in the formal language theory is to investigate the
closure properties of a language class under various language operations. When
featuring the classes LRAmp and LRAλ

mp, the following has been proven.

Theorem 3 ([10,11])

(1). LRAmp is closed under union, intersection, concatenation, derivative, λ-
free morphisms, λ-free gsm-mappings and shuffle, while not closed under com-
plementation, quotient by regular languages, morphisms or gsm-mappings.
(2). LRAλ

mp is closed under union, intersection, concatenation, Kleene +,
Kleene ∗, derivative, λ-free morphisms, inverse morphisms, λ-free gsm-mappings
and shuffle.

We remark that in order to prove some of the negative closure properties of
LRAmp, the following lemma is of crucial importance.

Lemma 2 ([10]). For an alphabet Σ with |Σ| ≥ 2, let h : Σ∗ → Σ∗ be an
injection such that for any w ∈ Σ∗, |h(w)| is bounded by a polynomial of |w|.
Then, the language Lh = {wh(w) |w ∈ Σ∗} is not in LRAmp.

Further characterization results of RE have been developed by using LRAmp

and RAsqtogether with homomorphisms and regular languages.

A Survey on Reaction Automata Theory 427

Theorem 4 ([9,11])

(1). For any recursively enumerable language L, there exists an LRA A such
that L = h(Lmp(A)) for some projection h.
(2). For any recursively enumerable language L, there exists an LRA A such
that L = R\Lmp(A) (or Lmp(A)/R) for some regular language R.
(3). For any recursively enumerable language L, there exists an RA A such that
L = h(Lsq(A)) for some projection h.

4 Chemical Reaction Automata

As a simple and modified version of a reaction automaton, a chemical reac-
tion automaton (CRA) has been introduced and investigated [12]. Rather lately,
this computing model CRA turned out to be important, because it can provide
an online computational model for a molecular programming language called
Chemical reaction networks (CRNs [19]). It is known that CRNs involve wet
implementations by a molecular reaction primitive called DNA strand displace-
ment (DSD) systems.

Specifically, a CRA is a 5-tuple (S,Σ,A,D0, F), where each reaction in A is
of the form (R, ∅, P) (each reaction in CRA has no inhibitor), and F is a finite
set of final multisets. For convenience, each reaction in A is denoted by R → P .
In an interactive process of CRA, if EnX

A (D) = ∅, ResX
A (D) is undefined. A

language accepted by a CRA A = (S,Σ,A,D0, F) is defined by

Lλ
X(A) = {w ∈ Σ∗

λ |π : D0 →a1 D1 →a2 · · · →an D ∈ IPλ
X(A,w), D ∈ F}.

Remarks: The acceptance condition of CRA computation is slightly different
from that of RA computation. A CRA accepts an input string if the final multiset
coincides with an element of F , while an RA accepts an input string if the final
multiset includes a particular symbol f . This difference is significant to obtain
the results in our paper.

4.1 The Computation Power of CRAs

It has been shown that CRAs working in maximally parallel manner are com-
putationally Turing universal. Our proof requires the fact that (i) a two-counter
machine is equivalent to a Turing machine as a language accepting device [7] as
well as the result that (ii) for any k-counter machine, there effectively exists an
equivalent CRA. From (i) and (ii), the following is derived:

Theorem 5 ([12]). The computational power of CRAs with λ-input mode in
maximally parallel manner is equivalent to that of Turing machines.

A naive question now arises: Concerning the computing power of CRAs
whether or not there exists a real gap between working in maximally paral-
lel manner and in sequential manner. This question is solved as a corollary of
the next theorem.

428 T. Yokomori and F. Okubo

Theorem 6 ([12]). A language L is generated by a Petri net system if and only
if L is accepted by a CRA with λ-input mode in sequential manner.

Note that among several types of Petri net languages, here we mean a lan-
guage of Lλ-type in [17]. Since the class of Petri net languages is strictly included
in the class of context-sensitive languages and is incomparable to the class of
context-free languages [17], it turns out that the computational power of CRAs
with λ-input mode in sequential manner is less powerful than that of CRAs with
λ-input mode in maximally parallel manner.

4.2 Determinism and Reversibility in CRAs

In this section we introduce the notions of determinism and reversibility into
CRAs, and investigate the computational powers of those classes of CRAs in
comparison with the language classes of Chomsky hierarchy.

The computing power of reversible CRAs involves the physical realization
of molecular programming of chemical reaction networks with DNA strand dis-
placement system implementation [19], and therefore, it is of great significance to
elucidate the computing capabilities of both deterministic and reversible CRAs
from the theoretical viewpoint of molecular computing.

Unlike the determinism of conventional computation models such as push-
down automata, since a reactant is not divided into “input” part and “memory
(multiset)” part, the determinism of CRAs cannot be decided only by a form of
transition rules. This comes from the property of multiset memory, that is, from
the current configuration alone, a CRA cannot identify a reactant of the next
reaction to be applied. Therefore, the determinism of CRA has to be defined so
as to exclude any branching computation, regardless of a non-empty input or
empty input.

A CRA is said to be deterministic if for every input symbol a ∈ Σ and every
reachable configuration, the resultant multiset after a reaction is unique. Similar
to the definition of deterministic pushdown automata, this condition is extended
to the case of λ-input mode.

It is not trivial, only from their definitions, to recognize the difference of
computing powers of the determinism between realtime CRA and CRA with
λ-input mode, where “realtime” means “no λ input is allowed”. The following
result might be rather unexpected in some sense.

Lemma 3 ([15]). If a language L is accepted by a DCRA with λ-input mode,
then L is also accepted by a realtime DCRA.

Note that by our definition of DCRA, without receiving an input symbol,
no configuration of a DCRA with λ-input mode can have an enabled reaction,
while this is not the case for a realtime DCRA. In order to make a reaction, a
realtime DCRA always requires an input symbol, even if its configuration has
an enabled reaction with no input symbol.

Information preserving computations (forward and backward determinis-
tic computations) are very important and are considered as “reversibility” in

A Survey on Reaction Automata Theory 429

Fig. 2. Inclusion relations among a variety of RA language classes at large.

many existing research papers (e.g., [2,3]). However, in order to understand
their properties in more details, we want to take a position to think of them
apart(i.e., separate into forward and backward determinisms). Thus, in our view
the “reversibility” simply means that the previous configuration of computation
can be uniquely determined (backward determinism).

A CRA is said to be reversible if for every input symbol a ∈ Σ and every
reachable configuration D, the set of configurations which directly reaches D
with a is a singleton. For the case of λ-input mode, this condition is extended
to the case of λ-input mode in a natural manner.

The following lemma holds true for a deterministic and reversible CRA
(abbrev. DRCRA).

Lemma 4 ([15]). If a language L is accepted by a DRCRA with λ-input mode,
then L is also accepted by a realtime DRCRA.

By CRAsq, CRAλ
sq, DCRAsq, DCRAλ

sq, RCRAsq, RCRAλ
sq, DRCRAsq, and

DRCRAλ
sq, we denote the classes of languages accepted by realtime CRAs,

CRAs with λ-input mode, realtime DCRAs, DCRAs with λ-input mode, real-
time RCRAs, RCRAs with λ-input mode, realtime deterministic and reversible
CRAs (DRCRAs), DRCRAs with λ-input mode, respectively.
Remarks: Due to the space limitation, most of the details on the results of
DCRAs and RCRAs are omitted and the reader is advised to refer to [15].
Instead, Fig. 2 summarizes the inclusion relations among various classes of CRA
languages discussed in this paper, where PN is the class of Petri net languages
of Lλ-type [17] and revREG is the class of zero-reversible regular languages [1].

Last but not least, it should be noted the following:

430 T. Yokomori and F. Okubo

(1). Another type of “finite automata with multiset memory (FAMMs)” was
proposed and investigated in [14] which employs a rule application mode
similar to (but different from) that of RAs, and with FAMM framework a
new characterization of Chomsky hierarchy was established.

(2). The reader is kindly advised to refer to another survey paper on reaction
automata theory [13] for more details on the results and discussion left out
in this paper because of the space limit.

5 Future Research Topics

Many subjects remain to be investigated along the research direction suggested
by reaction automata.

– Inclusion relations and Computing powers:
• Further refinements of the hierarchy of RA language classes and CRA

language classes are strongly encouraged to clarify the inclusion relations
in Fig. 2.

• It is of great importance to explore the relationships between subclasses of
RA and others defined by computing devices based on the multiset rewrit-
ing, such as a variety of P-systems and their variants (e.g., P automata
and dP automata [5,16]).

• It is also intriguing to clarify the relationships between subclasses of CRAs
studied here and others defined by reversible computing models such as
reversible pushdown automata [8].

• It remains open whether or not deterministic CRAs (with/without λ-
input mode) in maximally parallel manner are Turing universal.

– Complexity issues: There remain open time complexity issues to be stud-
ied in the hierarchies of RA and CRA classes. For example, no efforts have
been made yet for investigating the time complexity of any class from the
hierarchies.

– Decision problems: One may be encouraged to study a variety of the deci-
sion problems on subclasses within RA hierarchy. For example, it is an inter-
esting question to explore the equivalence problem for the class LRA or the
classes of deterministic/reversible CRAs.

– Other issues: It would also be useful to develop methods for simulating
a variety of chemical reactions in the real world application, by the use of
the framework based on reaction automata. For that purpose, investigating
stochastic models based on RAs has to be conducted, and such stochastic
versions of RAs may provide useful simulation tools for analyzing any natural
phenomena modeled by RAs.

Finally, considering the natural correspondence to (or analogy of) classic the-
ory of automata, we conclude this survey with our firm belief that Reaction
Automata are computational devices which deserve much further research efforts.

A Survey on Reaction Automata Theory 431

References

1. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
2. Alhazov, A., Freund, R., Morita, K.: Sequential and maximally parallel multiset

rewriting: reversibility and determinism. Nat. Comput. 11, 95–106 (2012)
3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–

532 (1973)
4. Calude, C.S., PĂun, G., Rozenberg, G., Salomaa, A. (eds.): WMC 2000. LNCS,

vol. 2235. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45523-X
5. Csuhaj-Varju, E., Vaszil, G.: P automata. In: The Oxford Handbook of Membrane

Computing, pp. 145–167 (2010)
6. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75, 263–280

(2007)
7. Hopcroft, J.E., Motwani, T., Ullman, J.D.: Introduction to Automata Theory,

Language and Computation, 2nd edn. Addison-Wesley, Boston (2003)
8. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.

78, 1814–1827 (2012)
9. Okubo, F.: Reaction automata working in sequential manner. RAIRO Theor.

Inform. Appl. 48, 23–38 (2014)
10. Okubo, F., Kobayashi, S., Yokomori, T.: Reaction automata. Theor. Comput. Sci.

429, 247–257 (2012)
11. Okubo, F., Kobayashi, S., Yokomori, T.: On the properties of language classes

defined by bounded reaction automata. Theor. Comput. Sci. 454, 206–221 (2012)
12. Okubo, F., Yokomori, T.: The computational capability of chemical reaction

automata. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 53–
66. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4 4. Also, in
Natural Computing, vol. 15, pp. 215–224 (2016)

13. Okubo, F., Yokomori, T.: Recent developments on reaction automata theory: a
survey. In: Suzuki, Y., Hagiya, M. (eds.) Recent Advances in Natural Computing.
MI, vol. 9, pp. 1–22. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-
55105-8 1

14. Okubo, F., Yokomori, T.: Finite automata with multiset memory: a new charac-
terization of chomsky hierarchy. Fundam. Inform. 138, 31–44 (2015)

15. Okubo, F., Yokomori, T.: The computing power of determinism and reversibility
in chemical reaction automata. In: Adamatzky, A. (ed.) Reversibility and Univer-
sality. ECC, vol. 30, pp. 279–298. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73216-9 13

16. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York (2010)

17. Peterson, J.L.: Petri Net Theory and the Modelling of Systems. Prentice-Hall,
Englewood Cliffs (1981)

18. Rozenberg, G., Back, T., Kok, J.N. (eds.): Handbook of Natural Computing.
Section IV: Molecular Computation, vol. 3, pp. 1071–1355. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-540-92910-9

19. Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand
displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS,
vol. 7433, pp. 135–149. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32208-2 11

https://doi.org/10.1007/3-540-45523-X
https://doi.org/10.1007/978-3-319-11295-4_4
https://doi.org/10.1007/978-4-431-55105-8_1
https://doi.org/10.1007/978-4-431-55105-8_1
https://doi.org/10.1007/978-3-319-73216-9_13
https://doi.org/10.1007/978-3-319-73216-9_13
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-642-32208-2_11
https://doi.org/10.1007/978-3-642-32208-2_11

Author Index

Alaev, Pavel 20
Ambos-Spies, Klaus 30
Antunes, Luís 397

Bazhenov, Nikolay 40
Becker, Florent 50
Benzmüller, Christoph 60
Berger, Ulrich 70
Berndt, Sebastian 81, 89
Beros, Achilles A. 97
Bonizzoni, Paola 107

Carl, Merlin 118, 126
Cenzer, Douglas 136

Davis, Martin 146
Della Vedova, Gianluca 107

Erlebach, Thomas 156

Fernau, Henning 161, 172
Fluschnik, Till 161, 183

Georgiev, Ivan 194
Graça, Daniel S. 204

Hermelin, Danny 161
Hoyrup, Mathieu 214

Khan, Mushfeq 97
Khoussainov, Bakh 1
Kjos-Hanssen, Bjørn 97
Klein, Kim-Manuel 89
Kones, Ishai 224
Korovina, Margarita 234
Krebs, Andreas 161
Kristiansen, Lars 194, 244
Kudinov, Oleg 234
Kuppusamy, Lakshmanan 172

Lauria, Massimo 254
Levin, Asaf 224

Maldonado, Diego 50
Marchuk, Margarita 40
Marques-Silva, Joao 264
Mateus, Paulo 397
McNicholl, Timothy H. 277
Mertzios, George B. 183
Milovanov, Alexey 287
Molter, Hendrik 161
Monath, Martin 297
Murwanashyaka, Juvenal 244

Nicholson, Marie 307
Nichterlein, André 183
Nicosia, Serena 107
Niedermeier, Rolf 161
Nies, André 97
Normann, Dag 318

Okubo, Fumiya 421
Oladele, Rufus O. 172
Ollinger, Nicolas 50
Ouazzani, Sabrina 126

Parent, Xavier 60
Pauly, Arno 328
Petrovska, Olga 70
Pirola, Yuri 107
Previtali, Marco 107

Quinon, Paula 338

Rizzi, Raffaella 107
Rojas, Diego A. 136
Rossegger, Dino 349
Rybalov, Alexander 359

Sanders, Sam 365
Selivanov, Victor L. 376
Selivanov, Victor 20
Selivanova, Svetlana V. 376
Shen, Alexander 410
Sieg, Wilfried 386

Souto, André 397
Stephan, Frank 194
Stull, Don 277

Teixeira, Andreia 397
Theyssier, Guillaume 50

Uspenskiy, Vladimir 410

van der Torre, Leendert 60

Welch, Philip 126

Yokomori, Takashi 421

Zhong, Ning 204

434 Author Index

	Preface
	Structure and Program of the Conference

	Organization
	Algorithmic Randomness in Analysis (Invited Talk)
	Contents
	A Journey to Computably Enumerable Structures (Tutorial Lectures)
	1 Introduction
	2 Lecture 1: Implications of Non-computability
	3 Lecture 2: On Finitely Presented Expansions of Algebras
	3.1 The Non Finite Presentability Theorem (The NFP Theorem)
	3.2 Application of the NFP Theorem

	4 Lecture 3: Reducibilities on Equivalence Relations
	4.1 The Class Alg of Algebras
	4.2 The Class LO of Linear Orders
	4.3 Class Part

	References

	Polynomial-Time Presentations of Algebraic Number Fields
	1 Introduction
	2 Presentations of Algebraic Number Fields
	3 Complexity of Polynomial Evaluation
	4 Complexity of Root Finding
	References

	Multiple Permitting and Array Noncomputability
	1 Introduction
	2 Multiple Permitting Notions
	3 Some Basic Observations
	4 On the Wtt-Degrees of the Multiply Permitting Sets
	5 Multiple Permitting vs. Array Noncomputability
	6 Array Noncomputability and Simplicity Properties
	7 Further Results
	References

	Degrees of Categoricity for Prime and Homogeneous Models
	1 Introduction
	2 Preliminaries
	2.1 Prime and Homogeneous Models
	2.2 Pairs of Computable Structures
	2.3 Ordinals
	2.4 Heyting Algebras

	3 Homogeneous Models
	4 Prime Heyting Algebras
	5 Further Discussion
	References

	Universality in Freezing Cellular Automata
	1 Introduction
	2 Definitions
	3 Constructing Intrinsically Universal FCA
	4 Obstacles to FCA-Universality
	5 Perspectives
	References

	A Deontic Logic Reasoning Infrastructure
	1 Introduction
	2 Traditional Deontic Logic
	3 Norm-Based Deontic Logic
	4 Deontic Logic Reasoning Machinery
	5 Case Study: Data Protection
	6 Conclusion
	References

	Optimized Program Extraction for Induction and Coinduction
	1 Introduction
	2 Intuitionistic Fixed Point Logic (IFP)
	3 Intuitionistic Fixed Point Logic for Realizers (RIFP)
	4 Realizability and Soundness
	5 Wellfounded Induction
	6 Archimedean Induction
	7 Conclusion
	References

	Computing Tree Width: From Theory to Practice and Back
	1 Talk Summary
	1.1 Introducing Tree Width
	1.2 An Algorithmic Approach: Cops-and-Robber
	1.3 Tamaki's Algorithm

	References

	Using Structural Properties for Integer Programs
	1 Introduction
	2 Solutions of Bounded Support
	3 Structural Results for IPs with Large Entries
	4 Structural Results for IPs with Small Entries
	5 Conclusions
	References

	From Eventually Different Functions to Pandemic Numberings
	1 Introduction
	2 The SNR Hierarchy
	2.1 Definitions and Combinatorial Lemmas

	3 Canonical Immunity
	4 Pandemic Numberings
	References

	Divide and Conquer Computation of the Multi-string BWT and LCP Array
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 Computing the Interleave
	3.2 Computing the LCP Array and the Qlp Arrays

	4 Time Complexity and Conclusions
	References

	Some Observations on Infinitary Complexity
	1 Introduction
	2 Preliminaries
	3 An Analogue of Ladner's Theorem
	4 Speedup and Strictness of the -exponent Time Hierarchy
	5 Conclusion and Further Work
	References

	Taming Koepke's Zoo
	1 Introduction
	2 The Computational Strength of (,)-Turing Machines
	2.1 Tape Length
	2.2 The General Case

	3 Conclusion and Further Work
	References

	Online Computability and Differentiation in the Cantor Space
	1 Introduction
	2 Background
	3 Continuity and Differentiability on 2N
	4 Computability and Complexity
	5 Randomness
	6 Representation of Real Functions
	References

	Turing's Vision and Deep Learning
	1 Alan Turing in 1945
	2 Turing and Machine Intelligence
	3 Neural Networks and AlphaGo
	4 Turing's Vision
	References

	Computing and Scheduling with Explorable Uncertainty
	1 Introduction
	2 Query-Competitive Algorithms
	3 Scheduling with Explorable Uncertainty
	4 Future Directions
	References

	Diminishable Parameterized Problems and Strict Polynomial Kernelization
	1 Introduction
	2 Framework
	3 Problems Without Strict Polynomial Kernels
	4 Problems Without Semi-strict Polynomial Kernels
	5 Conclusion
	References

	New Nonterminal Complexity Results for Semi-conditional Grammars
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Semi-conditional Grammars
	2.2 Geffert Normal Forms

	3 Main Results
	References

	Kernelization Lower Bounds for Finding Constant-Size Subgraphs
	1 Introduction
	2 Frameworks to Exclude Polynomial Kernelizations
	3 Kernelization Lower Bounds via Diminishers
	4 (Turing) Kernelization Upper Bounds
	5 Conclusion
	References

	On General Sum Approximations of Irrational Numbers
	1 Introduction and Basic Definitions
	2 Preliminaries
	3 Irrational Numbers with Interesting Properties
	4 Main Results
	References

	Computability of Ordinary Differential Equations
	1 Introduction
	2 Background
	3 Computable Analysis
	4 Computability of the Solutions of Ordinary Differential Equations
	References

	Topological Analysis of Representations
	1 Countably-Based Spaces
	2 Markov Computability
	3 Finite Advice
	4 Other Spaces
	4.1 Open Subsets of the Baire Space
	4.2 Kleene-Kreisel Functionals

	References

	A Unified Framework for Designing EPTAS's for Load Balancing on Parallel Machines
	1 Introduction
	2 Initial Steps
	3 The Mixed Integer Linear Program
	4 Transforming the Solution to the MILP into a Schedule
	References

	Weak Reduction Principle and Computable Metric Spaces
	1 Introduction
	2 Basic Background
	2.1 Preliminaries
	2.2 Effectively Enumerable Topological Spaces
	2.3 PCF over Effectively Enumerable Topological Spaces
	2.4 MC over Effectively Enumerable Topological Spaces

	3 Weak Reduction Principle
	4 On Principal Computable Numbering of PCF over Computable Metric Spaces
	References

	Decidable and Undecidable Fragments of First-Order Concatenation Theory
	1 Introduction
	1.1 First-Order Concatenation Theory
	1.2 Notation and Basic Definitions
	1.3 Main Results and Related Work

	2 -complete Axiomatizations
	3 Normal Forms
	4 Undecidable Fragments
	References

	Algorithm Analysis Through Proof Complexity
	1 Introduction
	2 Resolution Based Algorithms for k-Clique
	3 Algebraic Algorithms for 3-Coloring
	4 Conclusion
	References

	Computing with SAT Oracles: Past, Present and Future
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 Tools of the Trade

	3 SAT Oracles Within NP
	4 Beyond Decision Problems
	5 Beyond NP
	6 A Glimpse of the Future
	7 Conclusions
	References

	The Isometry Degree of a Computable Copy of p
	1 Introduction
	2 Background
	2.1 Arboreal Matters
	2.2 Background from Functional Analysis
	2.3 Background from Computable Analysis

	3 Preliminaries
	3.1 Preliminaries from Functional Analysis
	3.2 Preliminaries from Computable Analysis

	4 A Compression Theorem
	5 Every C.E. Degree Is a Degree of Linear Isometry
	6 Every Computable Copy of p Has a C.E. Degree of Isometry
	7 Conclusion
	References

	Algorithmic Statistics and Prediction for Polynomial Time-Bounded Algorithms
	1 Introduction
	1.1 Algorithmic Statistics
	1.2 Prediction Hierarchy

	2 Algorithmic Statistics for Polynomial Time
	3 Prediction Hierarchy in Polynomial Time
	4 Proof of Theorem4
	References

	A C.E. Weak Truth Table Degree Which Is Array Noncomputable and R-maximal
	1 Introduction
	2 Preliminaries
	3 Idea of the Proof of Theorem1
	3.1 Proof of Lemma1: Construction of B

	4 Verification
	References

	The Complexity of Tukey Types and Cofinal Types
	1 Introduction
	2 Tukey Types of Computable Partial Orders
	3 Decomposing Partial Orders into Directed Components
	4 Complexity of Tukey Types
	5 Cofinal Similarity of Computable Partial Orders
	References

	Functionals of Type 3 as Realisers of Classical Theorems in Analysis
	1 Background
	2 The Five Functionals
	2.1 Two Functionals of Type 2
	2.2 Specifications for Realisers of Type 3
	2.3 Non-monotone Inductive Definitions

	3 The Main Theorem
	3.1 The Proof of Theorem1(c)

	4 Speculations on Functionals of Type 3
	References

	Enumeration Degrees and Topology
	1 Enumeration Reducibility
	2 Represented Spaces and Generalized Turing Reductions
	3 -Homeomorphisms
	4 Non-total Continuous Degrees
	5 G-Spaces and Cototal Degrees
	6 Graph-Cototal Degrees and the Cofinite Topology
	7 The Lower Reals and Semirecursive Sets
	8 And More…
	References

	A Taxonomy of Deviant Encodings
	1 Introduction: Circularity in the Definition of Computability
	2 Background: Philosophical Framework and Terminology Clarification
	3 The Lightest Shade of the Problem: Purely Syntactical Approach
	3.1 Nominalist Platonism Solution: Syntactic Entwining
	3.2 Analytic Solution: The Turing Blank-Type Restriction and Turing Notational Thesis

	4 The Problem Gets One Shade Darker: Numerals Get Meanings
	4.1 Everyday Solution: Arbitrary Choice of Notation and Denotation
	4.2 Formal Problem: Deviant Encodings and Deviant Semantics
	4.3 Way Out: Constraints on Denotation Function (Shapiro)
	4.4 Model-Realistic Solution: Model-Theoretic Entwining

	5 The Darkest Shade of the Problem: Computations Happen on Abstract Objects
	5.1 Moderate Realism Solution: Any Old -Sequence Will Do After All

	6 Conclusions
	References

	Elementary Bi-embeddability Spectra of Structures
	1 Introduction
	1.1 Notation

	2 Elementary Bi-embeddability Spectra
	3 Towards Jump Inversion for Elementary Bi-embeddability Spectra
	References

	A Generic m-Reducibility
	1 Introduction
	2 Generic m-Reducibility
	3 Generic m-Reducibility of Computable Sets
	4 Generic m-Reducibility of C.E. Sets
	References

	Some Nonstandard Equivalences in Reverse Mathematics
	1 Introduction
	2 A Base Theory from Nonstandard Analysis
	3 Reverse Mathematics and Nonstandard Analysis
	3.1 Nonstandard Compactness and the Special Fan Functional
	3.2 Nonstandard Compactness and Heine-Borel Compactness
	3.3 Weak Compactness and the Weak Fan Functional

	References

	Bit Complexity of Computing Solutions for Symmetric Hyperbolic Systems of PDEs (Extended Abstract)
	1 Introduction
	2 Preliminaries
	2.1 Cauchy and Boundary-Value Problems
	2.2 Discretization of the Problems
	2.3 Algebraic Preliminaries and Encodings

	3 Main Results
	References

	What Is the Concept of Computation?
	1 Introduction
	2 Two Gödel Mysteries: Looking Back
	3 Formal Calculi: Absoluteness
	4 Production Rules: Reducibility
	5 Structural Definitions: Representation
	6 Connections: Looking Ahead
	References

	Witness Hiding Without Extractors or Simulators
	1 Introduction
	2 Preliminaries
	2.1 Algorithmic Information
	2.2 Interactive Proof Systems

	3 Individual Witness Hiding
	4 Individual Witness Hiding Protocol for FewP
	5 A Variant of IWH that Is Classical ZK
	5.1 Kolmogorov String Commitment
	5.2 A Variant of the IWH Protocol that Is Classical ZK for FHAM

	6 Appendix
	References

	Algorithms and Geometric Constructions
	1 Introduction
	2 Derivable Points and Straight-Line Programs
	3 Uniformity and Tests
	4 Arbitrary Points
	5 Game Definition
	6 Formal Definitions Are Important
	References

	Computing with Multisets: A Survey on Reaction Automata Theory
	1 Introduction
	2 Reaction Automata
	3 Main Results on RAs
	3.1 Computing Powers of RAs and Their Subclasses
	3.2 Some Other Characterizations of RA Language Classes

	4 Chemical Reaction Automata
	4.1 The Computation Power of CRAs
	4.2 Determinism and Reversibility in CRAs

	5 Future Research Topics
	References

	Author Index

