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Abstract. Distributed computing systems such as clouds continue to
evolve to support various types of scientific applications, especially
scientific workflows, with dependable, consistent, pervasive, and inex-
pensive access to geographically-distributed computational capabilities.
Scheduling multiple workflows on distributed computing systems like
Infrastructure-as-a-Service (IaaS) clouds is well recognized as a funda-
mental NP-complete problem that is critical to meeting various types of
Quality-of-Service (QoS) requirements. In this paper, we propose a multi-
objective optimization workflow scheduling approach based on dynamic
game-theoretic model aiming at reducing workflow make-spans, reducing
total cost, and maximizing system fairness in terms of workload distri-
bution among heterogeneous cloud virtual machines (VMs). We con-
duct extensive case studies as well based on various well-known scientific
workflow templates and real-world third-party commercial IaaS clouds.
Experimental results clearly suggest that our proposed approach out-
perform traditional ones by achieving lower workflow make-spans, lower
cost, and better system fairness.
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1 Introduction

Recently, various scientific fields employ workflows to analyze large amounts of
data and to perform complex simulations and experiments efficiently. A process
in such scientific applications can be modeled as a workflow by dividing it into
smaller and simpler tasks. These tasks can then be distributed to multiple com-
puting resources [1]. They usually present graphical interfaces to combine differ-
ent technologies along with efficient methods for using them, and thus increase
the efficiency of scientists. They are usually represented as directed graphs with
their nodes representing discrete computational components and the edges rep-
resenting connections along which data and results can communicate among
components. They have different types and usually their execution needs com-
puting platforms with different QoS requirements, e.g. most completion time,
load balancing, economics.

Recently, cloud computing is recognized as a promising solution and
paradigm for providing a flexible, on-demand computing infrastructure over the
Internet for large-scale scientific-workflow-based applications. The services that
can be provided from the cloud include Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) [2]. SaaS clouds offer
web applications/software over the Internet, running on cloud infrastructure.
PaaS and SaaS clouds are thus less suitable for scientific workflows than IaaS
ones because they mainly offer an environment to design, develop and test web
based applications. Instead, IaaS clouds offer an easily accessible, flexible, and
scalable infrastructure suitable for the deployment of large-scale scientific work-
flows based on on-demand and pay-per-use patterns [3].

One of the most challenging NP-complete problems that researchers try to
address is how to schedule large-scale scientific applications to distributed and
heterogeneous computational nodes, e.g., IaaS clouds, such that quantitative
objective functions such as process make-span are optimized, and certain exe-
cution constraints such as communication cost and storage requirements are
considered and fulfilled. From the end-users perspective, a low make-span is
always preferred, whereas from the systems perspective system-level efficiency
and fairness are often considered as a good motivation such that the scientific
applications and tasks are supposed to be fairly distributed among computa-
tional resources in order to avoid hot spots and performance bottle-necks. How-
ever, a careful investigation into related work shows that only a few schemes
are able to deal with both perspectives, such as optimizing user objectives (e.g.,
make-span) while fulfilling other constraints, and providing a good fair workload
distribution among physical computational resources of clouds.

The primary aim of the paper is therefore to propose a multi-objective
scheduling method to address the real-time workflow scheduling problem on mul-
tiple IaaS cloud. Specifically, we consider a multi-objective optimization workflow
scheduling approach based on dynamic game-theoretic model. It aims at reduc-
ing workflow make-spans, reducing cost, and maximizing system fairness in terms
of workload distribution among heterogeneous VMs. We conduct extensive case
studies as well based on various well-known scientific workflow templates and
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Table 1. Notations and description summary

Notations Description

N The total number of workflows
ni The total number of tasks in workflow
K The total number of tasks
M The total number of cloud service providers (CSPs)
mp The total number of virtual machines in CSP p

Tij The jth task of the workflow i

T l
option The set of the optional task (s) at stage l

V Mpk The kth virtual machine of CSP p

V M The set of virtual machines (V M = {V M11, V M12, . . . , V Mpk})
V M l

idle The set of the idle virtual machines at stage l

Cijpk The completion time of Tij on V Mpk

tijpks The setup time of Tij executed at V Mpk

tijpk The cutting time of Tij executed at V Mpk

ET ijpk The execution time of Tij executed at V Mpk

xijpk A Boolean variable indicating whether V Mpk is selected for Tij

upk The unit-price-per-time of V Mpk

wl
i The weight matrix of ith player at lth stage

Sl The strategies set of players in the lth stage of the game tree
Sl
i The strategy set of ith player in the lth stage of the game tree

ul
i(S

l
i) The utility function of ith player at lth stage

L The maximum stage number of a game tree
a0 The actions combination at lth stage
al The actions combination at lth stage
h0 The origin history information of game tree (h0 = ∅)
hl The lth stage history information set of game

(hl = (a0, a1, . . . , al−1))
H l The total history information set in l stages (H l = {hl})
Ai(H l) The optional action set of ith player in l stages of the game tree

heterogeneous VMs created on real-world third-party commercial IaaS clouds,
i.e., Amazon, Tencent, and Ali clouds. Experimental results clearly suggest that
our proposed approach outperforms traditional ones by achieving lower work-
flow make-spans, lower cost, and better system fairness. Table 1 summarized the
notations and description.
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The paper is structured as follows. In Sect. 2, we review related work.
In Sect. 3, we present the formulation for the heterogeneous-VM-based multi-
workflow scheduling problem. In Sect. 4, we present the real-time multi-objective
scheduling algorithm based on the dynamic game-theoretic model. In Sect. 5, we
conduct extensive case studies to validate our proposed approach. This paper
concludes in Sect. 6 with a summery.

2 Related Work

Along with rapidly growing data and computational requirements of large-scale
workflow applications, scheduling multiple workflows in distributed systems has
become a important and challenging research topic. In this section, we briefly
cover a part of the important or relevant related work.

2.1 Multi-objective Workflow Scheduling

The optimization model for workflow (single or multiple) scheduling aim at find-
ing tradeoffs among multiple quantitative objectives, e.g., make-span, cost, reli-
ability, energy consumption, security, or load balancing. Extensive efforts, e.g.,
[4–11] are paid in this direction. Durillo et al. [12] proposed tradeoff solutions
generated using a multi-objective-heterogeneous-earliest-finish-time (MOHET)
algorithm for multi-objective workflow scheduling problem. Yassa et al. [13] pro-
posed an approach based on dynamic voltage and frequency scaling (DVFS)
technique for multi-objective workflow scheduling in clouds to minimize energy
consumption, and introduced a hybrid particle swarm optimization (PSO) algo-
rithm to optimize the scheduling performance.

Many multi-objective evolutionary algorithms have been extended to deal
with the multi-objective problems. Khajemohammadi et al. [14] proposed a
genetic fast workflow scheduling over grid infrastructures. Zhu et al. [15]
proposed an evolutionary multi-objective optimization (EMO)-based workflow
scheduling algorithm with novel schemes for problem-specific encoding and pop-
ulation initialization, fitness evaluation and genetic operators. Chen et al. [16]
proposed an ant colony optimization (ACO) algorithm to schedule large-scale
workflows with make-span and cost. Padmaveni et al. [17] introduced a hybrid
algorithm called particle swarm memetic (PSM) algorithm make-span and dead-
line as the optimization objectives.

Recently, the Pareto-optimal methods are frequently employed. It aims at
pursuing a set of compromise solutions that represent good approximations
to the Pareto-optimal fronts (PFs). For instance, Zheng et al. [18] proposed a
Pareto-based fruit fly optimization algorithm (PFOA) to solve the task schedul-
ing and resource allocating (TSRA) problem in cloud computing environment.
Hou et al. [19] studied the Pareto optimization to schedule crude oil operations
in a refinery via genetic algorithm. Ebadifard et al. [20] introduced a recent
heuristic algorithm called black-hole-optimization (BHO) framework for work-
flow scheduling based on Pareto optimizer algorithm. It allows users to select
the best from the proper solution set of candidate scheduling plans.
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2.2 Game-Theoretic-Based Scheduling

Game theory models and methodologies are widely applied to the multi-
constraint process scheduling on cloud social, economic and resource scheduling
problems. Fard et al. [21] suggested a novel pricing model and truthful scheduling
mechanism to find the best resource using the game-theoretic concepts. Duan
et al. [22] modeled workflow scheduling the problem as a sequential cooper-
ative game and proposed a communication and storage-aware multi-objective
algorithm with network bandwidth and storage requirements as the constraints.
Sujana et al. [23] applied the game multi objective algorithm for minimizing the
execution time and cost of single workflow applications.

3 Model and Formulation

In this section, we first present the problem description and formulation of multi-
objective workflow scheduling over heterogeneous cloud VMs. Then, we propose
a finite multi-stage game model, i.e., Fig. 1, to reconcile multiple objectives and
introduce a dynamic game-theoretic-based algorithm to reduce make-span, opti-
mize system fairness and reduce the total cost.

Fig. 1. The abstract model for multi-workflow scheduling problem

3.1 Problem Formulation

In this study, we consider that scientific computational processes can be
described by multiple workflows which are supposed to be scheduled into hetero-
geneous VMs created over multiple IaaS CSPs. Each workflow can be represented
by a directed acyclic graph (DAG), W = (V,E), where V is a set of n tasks, i.e.,
{t1, t2, . . . , tn}. E is a set of precedence dependencies. Each task ti represents an
individual application with a certain task execution time vi on a VM. A prece-
dence dependency eij = (ti, tj) indicates that tj starts only after the data from
ti are received. The source and destination of a dependency eij are called the
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parent and the child task, respectively. Each workflow has an input and output
task, which are added to the beginning and the end, respectively. When multi-
ple workflows are ready for execution, we first partition their tasks into multiple
phases based on their hops from the input task as shown in Fig. 2. After the
partition, tasks are scheduled to VMs according to our proposed method and
tasks at earlier phases are scheduled earlier than those at later ones. Three quan-
titative objectives are considered: make-span, fairness, and total cost. Note that
reducing make-span, i.e., the time required to execute all workflows, usually con-
tradicts with cost reduction and thus we consider game-theoretic approaches to
reconcile such conflicting optimization aims. The fairness maximization objec-
tive aims at achieving fair distribution of workloads among all VMs and avoiding
hot-spots and performance bottle-necks.

Fig. 2. The partition procedure of multiple workflows

The following hypotheses are stipulated to facilitate the development of the
game-theoretic-based method: (1) VMs are created on multiple CSPs. (2) Each
task can be executed by only one VM. (3) The task execution duration is the
interval between the task setup time and the task cutting time. (4) The dynamic
game is finite because the number of workflows and tasks are finite. The game
is thus able to end within finitely many moves and every player has finitely
available choices at every moment.
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Based on the above hypotheses, we can formulate the problem into a multi-
stage dynamic game-theoretic model:

Min f1 = make − span = Max Cijpk (1)

Max f2 = fairness index =
(
∑K

i=1 ET ijpk)2

K · ∑K
i=1 ET ijpk

2
(2)

Min f3 = cost =
m∑

p=1

mp∑

k=1

n∑

i=1

ni∑

j=1

(tijpk − tijpks) · upk · xijpk (3)

subject to:
i ∈ [1, n], j ∈ [1, ni], p ∈ [1,m], k ∈ [1,mp] (4)

Cijpk ≤ Ci,j+1,p,k − ti,j+1,p,k − ti,j+1,p,k,s, Cijpk ≥ 0 (5)
∑

k∈VM(Tij)

xijpk = 1 (6)

V M(Tij) ⊂ V M (7)

3.2 The Proposed Dynamic Game Model

In this paper, the multi-stage dynamic game theory is applied to deal with the
conflicts and competition among multiple optimization objectives for the multi-
workflow scheduling problem. The optimization objectives can be seen as players
in the multi-stage dynamic game model, and the players are usually assumed to
be fully rational. The game equilibrium solutions can be obtained as the optimal
results. It is assumed that players take actions sequentially and the choice of the
former player has an effect on the selection of the latter because the latter can
observe the action of the former. The condition upon which the later makes a
choice is denoted as hl. The utility functions of the first/second/third player
correspond to make-span (u1 = f1), the utility function of the second player is
the second objective function which corresponds to, fairness (u2 = f2), and the
total cost (u3 = f3), respectively. Consequently, the multi-stage dynamic game
formulation for the problem can be described as follows:

G(hl) = {p1, p2, p3; {Sl
1}Ll=0, {Sl

2}Ll=0, {Sl
3}Ll=0;u1, u2, u3} (8)

Let H l = {hl} be the history set of all possible l stage. The pure strategies for
player i are defined as a contingency for every possible history hl. Formally, the
lth stage history information of the game is denoted as hl = (a0, a1, . . . , al−1).
The mapping ϕ i: si → {Sl

i}Ll=0 indicates the pure strategy for player i, which
is a collection of mappings from all possible histories into available actions.
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Sl
i is a mapping ϕ i: H l → Ai(H l), i.e., for all hl, Sl

i meets Sl
i(h

l) ∈ Ai(hl).
The mapping ϕ i: fi → ui indicates the utility functions of the game. At each
stage l, the player i calculates its pure Nash equilibrium solution based on the
history information in the last stage, i.e. hl−1.

4 The Algorithm to Obtain Approximate Equilibrium

According to earlier discussions, each sequential game is represented by a game
tree with game length of L + 1, shown as Fig. 3. To determine the optimal
behaviors of players, we employ the sub-game perfectness in the finite multi-
stage game with perfect information. A multi-stage dynamic game with perfect
information may have multiple Nash equilibriums some of which are with non-
credible threats or promises. The sub-game perfect Nash equilibrium (SPNE) is
those able to pass credibility tests. The SPNE solution can be found through
a standard procedure [24] by the backward induction method. However, the
standard procedure requires a traverse through the game tree and unfortunately
such tree for the multi-VM multi-workflow problem is extremely large. We there-
fore consider approximate equilibrium solutions with reduced complexity. The
approximate equilibriums can be defined as follows:

L∑

l=0

ul(Sl
1, S

l
2, S

l
3, h

l−1) ≥
L∑

l=0

ul(S∗
1 , S∗

2 , S∗
3 , hl−1) (9)

The approximate equilibrium S∗ = (S∗
1 , S∗

2 , S∗
3 ) is a set of strategies based on the

game in Eqs. (8)–(9), where S∗ is combination of the pure strategies Nash equilib-
riums at L stages. The decision strategies space S equals variables space X.

We introduce a multi-stage dynamic game-theoretic (MDGT) algorithm,
Algorithm 1, to obtain the approximate equilibrium solutions. In this algo-
rithm, during each stage l of the implementation of the workflow planning, a
dynamic-game theory-based real-time scheduling method is triggered so that
the tasks can be assigned to the most suitable VMs based on the real-time cloud
environment. The aim of the scheduling layer is to map optional tasks to the
most appropriate VMs. The algorithm repeatedly handles each stage until all
tasks are scheduled and the major steps within each stage are as follows:

Step 1: create a real-time scheduling task pool with multi-phase tasks from
multiple workflows to put T l

option into it. T l
option is supposed to meet topological

dependence of its corresponding workflow, i.e., a task is executed only after all
its preceding ones are executed.

Step 2: assign V M l
idle to three objectives in turns. Each virtual machine of

V M l
idle which is allocated to fi could choose the corresponding task from the

real-time scheduling task pool. The mapping of tasks to idle virtual machines is
called the strategies of the players.
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Step 3: calculate the utility functions based on Eqs. (1)–(3) using the pure
strategy Nash equilibrium based on historical information hl−1. Each T l

option

will best match with V M l
idle at stage l.

Step 4: construct a finite dynamic game model and obtain the equilibrium
solutions.

Algorithm 1. The MDGT scheduling algorithm
Input: task pool : a priority queue of workflows; T l

option ; V Ms ; wl
i

Output: opt stra : the real-time scheduling strategies

1: opt stra = ∅
2: for l =1 to L do

3: if task pool �= ∅ is true then

4: dequeue from task pool as T l
option

5: calculate ul
1(S

l
1) by using Eq.(1) and wl

1;

6: save the startegy branch of payoff to opt stra;

7: else

8: break

9: end if

10: if task pool �= ∅ is true then

11: dequeue from task pool as T l
option

12: calculate ul
2(S

l
2) by using Eq.(2) and wl

2;

13: save the startegy branch of payoff to opt stra;

14: else

15: break

16: end if

17: if task pool �= ∅ is true then

18: dequeue from task pool as T l
option

19: calculate ul
3(S

l
3) by using Eq.(3) and wl

3 ;

20: save the startegy branch of payoff to opt stra;

21: else

22: break

23: end if

24: end for

25: return opt stra
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Fig. 3. The game tree template of multiple players

Table 2. The unit price of heterogeneous VMs from three IaaS providers

CSP vType vCPU Memory Unit price/hour

Amazon EC2 t2.nano 1 0.5 $0.0058/h

t2.small 1 2 $0.023/h

t2.medium 2 4 $0.0464/h

t2.large 2 8 $0.0928/h

Tecent Cloud s2.standard 1 1 $0.0185/h

s2.standard 1 2 $0.0246/h

s2.standard 2 4 $0.0493/h

s2.standard 2 8 $0.0739/h

Ali Cloud ecs.c5.large 2 4 $0.1053/h

ecs.g5.large 2 4 $0.1244/h

ecs.sn1.medium 2 8 $0.1373/h

ecs.c5.xlarge 2 8 $0.2502/h

5 Case Study

In this section, we conduct extensive case study based on 5 well-known scientific
workflow templates as shown in Fig. 4 and real-world third-party commercial
clouds, i.e., Amazon EC2, Tencent, and Ali Clouds. Every task in all workflows
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Fig. 4. The case templates of five workflows

implements a GaussCLegendre calculation procedure with 8M of digits through
executing the Super-Pi program on VMs. We create heterogeneous VMs on these
clouds and expose them to the scheduling algorithms.

Table 2 shows the price-per-unit-time of such VMs with different resource
configurations. A resulting scheduling scheme generated by our proposed method
is shown in Fig. 5.

We compare our proposed method with a traditional non-game-theoretic
algorithm proposed in [25]. Note that: (1) we notice several other game-theoretic
scheduling algorithms, e.g., [22,23,26], but find out that they are intended for dif-
ferent problems and based on different architectural configurations and resource
constraints. We are therefore unable to compare them with our proposed method,
(2) other non-game-theoretic methods can be found in, e.g., [5,27]. However, our
tests show that their performance is actually very close to that of the baseline
one, (3) we are pretty aware of the fact that meta-heuristic algorithms, e.g., PSO
and GA-based ones, could well be promising options. However, we do not imple-
ment them and compare them with our proposed method because we consider
scientific applications to be time-critical and meta-heuristic algorithms are with
high time complexity.

Tables 3 and 4 present the comparisons of make-span and cost, respectively.
As the total number of tasks from five workflows increases, the number of game
stage increases. And our proposed MDGT method performs better than the
baseline method.

In Fig. 6, we show the comparisons of fairness indexes with different IaaS
cloud service providers. The curves represents that our method outperforms the
baseline method. Similarly, the results in Fig. 7 show that the MDGT method
performs better than baseline method on the average fairness.
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Fig. 5. An example of multi-objectives scheduling scheme for five workflows by using
our proposed method

Table 3. The comparisons of make-span

No. of tasks Game stage Make-span
MDGT method Baseline method

29 4 22.607 25.296
79 10 57.686 61.343
99 12 70.313 75.586

129 16 92.018 98.199
149 19 106.066 112.267
179 22 127.505 134.302
199 25 140.638 148.571
229 29 163.029 170.737
249 31 175.052 185.57
279 35 197.558 207.182
299 37 210.133 222.017
329 41 231.856 243.573
349 44 245.639 258.34
379 47 266.626 280.722
399 50 280.888 293.773
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Table 4. The comparisons of the total cost

No. of tasks Game stage Cost
MDGT method Baseline method

29 4 1.309 1.388
79 10 3.534 3.679
99 12 4.418 4.643

129 16 5.723 6.06
149 19 6.647 6.989
179 22 7.974 8.375
199 25 8.843 9.314
229 29 10.151 10.729
249 31 11.061 11.658
279 35 12.419 13.075
299 37 13.247 13.98
329 41 14.616 15.358
349 44 15.489 16.296
379 47 16.796 17.699
399 50 17.78 18.644

Fig. 6. The comparisons of different CSPs fairness



150 Y. Wang et al.

Fig. 7. The comparisons of average fairness

6 Conclusion

In this paper, we studied multi-objective multi-workflow scheduling problem
over heterogeneous VMs created on multi-Clouds platforms and introduce a
multi-stage dynamic game-theoretic (MDGT) scheduling approach. The pro-
posed method is featured by approximation algorithm for identifying equilibrium
solutions aiming at optimizing both workflow make-span, system fairness and
the total cost. In addition, we conduct extensive experiments based on various
well-kwon scientific workflow templates and real-world third-party commercial
IaaS clouds. Experimental results demonstrate that our approach outperforms
traditional baseline ones.
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