®

Check for
updates

Data Service API Design for Data
Analytics

Yun Zhang!2(®) | Liming Zhu'2, Xiwei Xu'2, Shiping Chen'-2,
and An Binh Tran!

! School of Computer Science and Engineering, UNSW, Sydney, Australia
2 Data 61, CSIRO, Sydney, Australia

{yun.zhang,liming.zhu,xiwei.xu,shiping.chen}@dataél.csiro.au

Abstract. Data service APIs provide uniform and filtered interfaces for
data analysts to retrieve data. However, existing RESTful data services
do not serve data analytics well because most of them are designed based
on the underlying data schema rather than aligning with the require-
ments of data analytics. First, the API representations only support
one-off communication, which lacks analytic semantics to guide ana-
lysts to continuously explore and retrieve data. Second, the current data
service design does not support re-usage of data exploration processes
and derived data generated from data analysts.

In this paper, we propose an analytics-focused API design for data
services. First, we introduce a service architecture and its resource APIs
to realize core functions of data retrieval. Second, we design a navigation
model for analysts to navigate resource APIs more efficiently. Third, we
extend and leverage data package technique to provide context informa-
tion about the origin, scope, and historical manipulations on a certain
dataset. This mechanism allows the analysts to share and reuse histori-
cal data exploration process and derived data. We evaluate our approach
using a case study and compare our approach against the conventional
data APIs. The evaluation shows that our approach has advantages over
traditional data service APIs in maturity, interoperability, discoverabil-
ity, and reusability.

Keywords: Data analytics - Data service - REST - API
Data package

1 Introduction

Large amounts of data are increasingly being published on the web. For example,
on Twitter, more than three million tweets are published every 10 min'. Another
example is open data platforms provided by governments, like data.gov.au?,

which already published over twenty thousands of datasets for free. How to

! http://www.internetlivestats.com/twitter-statistics/.
2 https://data.gov.au.
© Springer International Publishing AG, part of Springer Nature 2018

J. E. Ferreira et al. (Eds.): SCC 2018, LNCS 10969, pp. 87-102, 2018.
https://doi.org/10.1007/978-3-319-94376-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94376-3_6&domain=pdf
http://www.internetlivestats.com/twitter-statistics/
https://data.gov.au

88 Y. Zhang et al.

properly and efficiently retrieve these data for data analytics is becoming a hot
issue [1].

To analyze a dataset, data analysts often start by exploring data before
knowing exactly what they are looking for. It is not pragmatic to download the
whole large dataset before performing any exploratory analysis. Instead, it is
desirable to allow analysts to have a glimpse into the data through a sequence of
exploratory queries before the retrieval for further analysis [2]. Data exploration,
which is an interactive process to retrieve data, allows the analysts issue a query,
receive a response, and then iteratively interact with the data system to refine
their query based on the response from the system and domain knowledge [3].

Since data exploration is labor-intensive and repetitive, it would be beneficial
for analysts if the value-added data derived from the exploration stage could
be shared and reused in future. Data analysts can share the results from the
earlier exploration to better streamline the data analytics pipeline. To enable
more efficient data sharing and reuse, it is very important to provide provenance
information of data source so that data consumers are informed about what sort
of earlier manipulations have been done to the data.

Data services provide uniform, scalable, and filtered interfaces for data ana-
lysts to retrieve data [4]. Many companies and platforms, like Twitter, Google,
and CKAN? offer data service APIs that provide simple and easy-to-use access
to some of their resources. Data services allow third-parties to easily integrate
the data resource into their applications. However, these conventional interfaces
fall short on supporting responsive, interactive, and comprehensive data retrieval
for analytics. First, the existing data services are designed to answer questions
according to the underlying database schema and pre-assembled index, rather
than being driven by the requirement of data retrieval for data analytics [5]. Sec-
ond, the current data services only support one-off queries, which are isolated,
static and of not analytics semantics. Data analyst have to blindly request data
services many times to understand underlying data. Third, there is no standard
mechanism to provide context information about the origin, scope, and usage of
the data in data services. Data analysts cannot be informed about what data
exists, how the data is derived and used, and as a result, they cannot infer
whether these processed data can be reused.

In this paper, we propose a data service API design driven by the require-
ments of data analytics. Our contributions include (1) a new data service archi-
tecture with a set of analytic APIs (2) a navigation model to help discover and
generate data service API dynamically, and (3) a mechanism that extends data
package to share data processing scripts and data context information asso-
ciated with data. We evaluate the proposed API design through a real case
study and discuss quality attributes. The evaluation shows that our approach
has advantages over conventional data service APIs in maturity, interoperability,
discoverability, and reusability.

The remainder of this paper is organized as follows. Section 2 describe a brief
background and some related work. Section 3 gives three research requirements

3 https://ckan.org/.

https://ckan.org/

Data Service API Design for Data Analytics 89

derived from a scenario of human resource data analytics. Section 4 introduces
our approach with the service architecture, the navigation model and the appli-
cation of data package. Section 5 uses a case study to evaluate our API design
and discuss the contribution. Section 6 concludes the paper and extended work.

2 Background and Related Work

REST (REpresentational State Transfer) [6] is an architectural style for design-
ing web applications. Following REST design principles, a data service is iden-
tified by a URI as a resource. Client applications interact with data services
through using request-response messages. Protocols and Structures for Inference
(PSI)* specification defines a RESTful architecture for presenting concepts used
in machine learning as RESTful web services. The data source is wrapped as
data service, named relation. However, the relation does not indicate how to
discover a related data service for data exploration.

Database-as-a-Service (DaaS) has emerged as a new paradigm in the cloud
computing environment. Many commercial databases, like Amazon SimpleDB?,
provide accessible data service APIs to their data stores. HTSQLS enables access-
ing SQLServer via HTTP arbitrarily, which is an advanced query language on
the web. However, the design of these CRUD-based data services are merely
based on the underlying database schemas and pre-assembled indexes without
referring to the domain application protocol.

To build a domain application protocol over HTTP, which is domain agnostic
in the web application, additional explicit semantics are needed [7]. In the Seman-
tic Web, semantics are described by ontologies written in RDFS and OWL, while
RESTful implementations encode semantics by annotating hypermedia with link
relations [8]. Hypermedia as the Engine of Application State (HATEOAS) is a
constraint applied to hypermedia. HATEOAS requires that the service embed
links in its responses. The links represent the next possible actions that clients
can take [6].

However, there is a semantic gap for the clients to be navigated by hyper-
link automatically. To remedy this design flaws in HATEOAS implementation,
some hypermedia specifications such as AtomPub”and OpenSearch®are tailored
to achieve the specific application goals. However, the semantics of these domain-
specific media types are implicit and generic [9]. AtomPub is designed to cover
all the collection-based APIs but cannot reflect different application semantics.
Microsoft’s Open Data Protocol (OData)? is derived from AtomPub. OData
defines the protocol semantics for filtering and sorting a collection of data, using
a query language similar to SQL, but the semantics of the relationship between

4 http://psi.cecs.anu.edu.au/.

5 http://aws.amazon.com /simpledb/.

5 http://htsql.org/.

" https://bitworking.org/projects/atom /rfc5023. html.
8 http://www.opensearch.org/Home.

9 http://www.odata.org/.

http://psi.cecs.anu.edu.au/
http://aws.amazon.com/simpledb/
http://htsql.org/
https://bitworking.org/projects/atom/rfc5023.html
http://www.opensearch.org/Home
http://www.odata.org/

90 Y. Zhang et al.

resources focus on data instead of analytics operations, and the related metadata
services only present limited description documents [10].

Our approach fills this semantic gap by specifying the domain application
protocol for data exploration in analytics and using this protocol for the imple-
mentation of our services following HATEOAS principle.

In REST architecture, metadata provides self-describing information about
web resources, which enable automatic processing of web resources [11]. How-
ever, the metadata is sent in the header of HT'TP messages and restricted to
provide information about the syntax used in the resource representation. In
addition, the semantics of the origin, scope, and usage of the data is less consid-
ered. Ground [12] is a data context service that supports collecting, publishing
and querying the metadata information from applications, behavior, and change
of data context, but it is implemented as a system without consideration of
RESTful API presentation. A data package is a collection of datasets, meta-
data information and other data files. Data package protocol'® defines an open
standard for the format of a package, which guides users to share and manage
distributed dataset using data package. However, there is no guidance on how
to apply data package for exchanging metadata in RESTful services.

3 Scenario and Requirements

To explore the potential of our data services, we describe a practical human
resource analytics scenario in which the data services can aid in data exploration
and facilitate better collaboration between data analysts.

The purpose of the analysis is to help a company understand why some of
their most experienced employees are leaving prematurely and predict who will
leave in future.

Analyst Bob first requests the data service to investigate the sum, average,
min, max, and medium of numeric attributes respectively. Then he makes the
second request to discover a correlation between each pair of attributes. The
results show that on average, employees who left the company have lower sat-
isfaction levels. After knowing all the features of employees who have left, Bob
request data service to retrieve the data about valuable but left employees with
an evaluation result above average performance, or spend at least four years in
the company, or were working on more than five projects at the same time and
still left the company. Later, Bob will use these data to conduct an analysis
model to predict who will leave. After Bob completes the explorative analysis,
this value-added data and his explorative process could be shared by another
analyst named Alice. Alice can use Bob’s data to do a further analytic activity
without preparing the data from scratch. She also can reproduce Bob’s explo-
ration process to verify his result. Even, she can extend and construct her oper-
ation based on Bob’s. Afterward, Alice’s data exploration process and derived
data can be shared with another analyst.

10 https://specs.frictionlessdata.io/data- package, .

https://specs.frictionlessdata.io/data-package/

Data Service API Design for Data Analytics 91

From this scenario, we can derive three main requirements for building data
services to explore and retrieve data.

R1. The data service should be grounded on data explorative operations. An
analyst should be able to interact with the data services in the same manner as
client side data analysis tools.

R2. The data services should be able to guide analysts to discover the related
resources based on their specific requirements. An analyst should be able to
navigate resource APIs to understand underlying data efficiently.

R3. The data services should allow data analysts to share and reuse the result of
the explorative analysis. An analyst should be able to replay the shared process
based on the provided context information about who, when and what operations
have been performed on the data.

4 Service Design

The requirements described above motivate us to design a new data service that
fills the gap in current data services. First, we introduce a RESTful service archi-
tecture including key resources to facilitate data operations in data exploration.
Second, we propose a navigation model to describe the relationship of the main
resources in the domain of data analytics and illustrate how to use this model to
guide analysts to explore data. Finally, we customize and leverage data package
into our data services and showcase its usage and advantages for building a data
analysis sharing environment.

4.1 Service Architecture

As shown in Fig. 1, the main resources in our architecture are gateway, filter,
aggregator, sampler, function supplier and packager. A request from user or web
client is sent to gateway, which responds with a roadmap of all resource cat-
egories provided by the data service. Each resource category contains a set of
RESTful resource APIs that map a category of functions used in data explo-
ration and retrieval. The resources are interconnected via hyperlink whereby the

| Gateway I

L7 L 2 L2 L4
1 1 1 1
- Function
Sampler { Filter Aggregator _ Supplier { Packager g
e j Mo
(oo}

Fig. 1. Data service architecture

—

92 Y. Zhang et al.

user can navigate among resource APIs to explore data. After explorative data
analysis done, packager created a data package which contains the derived data,
processing scripts, and context information. Specifically, the properties of this
architecture are in the following:

Gateway is a self-describing resource that exposes the metadata defining
data schema and other information like type of data source(e.g. dynamic, static),
data size and description about this dataset, which helps the data analyst have
an initial understanding about the dataset. Data analysts interact with Gateway
to discover the resources related to the dataset.

Filter allows the data analysts to filter the dataset based on dimensions and
measures which are presented based on non-numeric attributes and quantitative
attributes. Dimensions represent which attributes of data that can be extracted
while measures represent the query schema that is used to extract the subset or
transformation of the dataset.

Aggregator allows the data analysts to have a summary statistics of the
data without extracting original data items. It can perform aggregation function
over one attribute’s values and group by the attribute’s name. The aggregation
queries have constraints based on the numeric or non-numeric data attribute.

Sampler provides diverse sampling methods to allow data analysts to quickly
build and test their models within a sample of data that can fit into their memory.
The sample size and specific sample methods are defined by users.

Function Supplier provides a set of statistics functions, which effectively
assist data analysts to discover the relation, general trend, and outlier of the data
as auxiliary means. For example, correlation is for understanding the relationship
between attributes; isnull is used to check for the missing value to help analysts
estimate the data quality.

Packager retrieves the data, wraps them with optional primitive operations
which are presented as scripts into the package, and then stores them in external
storage. Using the packager resource, the data consumer can acquire a targeted
subset of a dataset in batch along with the optional scripts provided by the data
publisher. These scripts can be used to pre-process the data and accelerate the
forthcoming analysis work. We will discuss more detail in Sect. 4.3.

4.2 Navigation Model

The resources in the service architecture are interconnected to each other accord-
ing to the context of the data analytics. A navigation model which defines the
domain application protocol for data exploration is designed to assist clients to
form their queries for interactive exploring large datasets. Based on the navi-
gation model, data service can recommend next steps for the data analyst in
the query session, and provide the information of the relationship between the
resources in the context of data analytics.

The navigation model is shown in Fig. 2. The circles represent the resources
introduced in the Sect. 4.1, while arrows correspond to the connections between
the resource API templates. The relationships across resources are categorized

Data Service API Design for Data Analytics 93

into four types, including narrow down, summary, relate and wrap up. Specif-
ically, narrow down means zoom into the data from less detail to more detail.
Users could be guided to the filter API template by the narrow down link to
query detailed data from summarized data based on the data distribution or
extreme value provided by the aggregator or the sampler. Conversely, users can
zoom out the data that are of little interest to discover other attributes through
sampler or aggregator API template guided by the summary link. The relate link
presents auxiliary services, for example, some statistic functions like correlation,
standardization and distribution. During the process of data exploration, wrap
up appears in every stage to refer users to the packager API template when the
returned data are too large for the client memory or the users wants to download
the whole data with previously recorded data exploration track.

Roll up/drill down/pan

P S i |
! 1
: Resource !
. AP Jd
’ Template: \
Relaye’,', AN 1. Filter
L mmm—a vt : Wrabyp 2. Aggregator
Roll up/drill :{own/pan 7, Narrowdown 1 . \ 3. Sampler
! Resource Summa'fl Resource 4. Function Supplier
! API ._: _______ API S. Packager
: Template : \ Wrapup Tem;;late 6. Gateway
1 : 1 :
! NN 1 'Narrowdown
| JGp— | \‘\\Summary 1 72— >
Relate “\\“ = wiapup » Narrow down
</ Resource ‘ * Summary
-——- AP| _ * Wrapup
| Te“;”';‘e: ' * Relate
: 4 | * Roll up/drill down/
_________ ! pan

Roll up/drill down/pan

Fig. 2. Navigation model

When focusing on one resource, the user can send a sequence of requests to
the resource API template adjusting the parameter values until she is satisfied
with the results. Alternatively, such a query session could be accelerated by our
navigation model through parameter prediction—parameter values can be used
to instantiate the API templates through analyzing the past parameters provided
by user. We generalize three types of relationship based on users navigation acti-
vates including Roll up, drill down and pan. Concretely, drill down provides a
more detailed view by either stepping down a hierarchy within a dimension or
introducing additional dimensions through changing the parameters. For exam-
ple, when viewing the salary data of Australia, a drill down link provides the
service querying the data of different states like NSW (New South Wales), QLD
(Queensland), etc. A further drill down on NSW may display data of Sydney.
It also can restrict the results in aggregator by tweaking the conditions. Roll
up is the reverse of drill down: it means climbing up a concept hierarchy for
a dimension, reducing the dimensions or relieving the conditions in a measure.

94 Y. Zhang et al.

Pan allows users to change the angle they observed by changing the dimensions
of data or the operations used.

The navigation model incorporates the analytics domain semantics into
HATEOAS. Specifically, the links property is used to represent all the actions
and resources related to each resource. Users can select one of the 1inks to fol-
low as the next step. links is defined as an array of Linked Description Objects
(LDOs) in JSON Hyper-Schema!!, which obeys HATEOAS principle and assists
discovering all the related resource API templates with the current resource API.
Each LDO at least contains one href property, which is the target of the link,
and a rel property indicating the relationship between the linked resource and
the current resource. Users could effectively make a data exploration by following
links embedded in the representation to access the next useful resource.

The navigation model involves both dynamical discovery and generation,
which enables users to dynamically discover the resource API templates and
automatically generate the parameters of API templates based on the previous
input from the client. We present their schemas of Links separately in Listings 1.1
and 1.2.

{ "$schema": "http://json-schema.org/draft-04/schema#",
"title": "Schema defining links between resources",
"type": "array",

"items": {

"links": [{
"rel": "narrow down",
"href": "/filter",
"method": "GET"

3.4
"rel": "summary",
"href": "/aggregator",
"method": "GET"

3. {
"rel": "relate",
"href": "/functionSupplier",
"method": "GET"

},{
"rel": "wrap up",
"href": "/packager",
"method": "POST",

"schema": {}

313}
Listing 1.1. HyperSchema of links for dynamical discovery

{ "$schema": "http://json-schema.org/draft-04/schema#",
"title": "Schema defining links within one resource",
"base": "/{resource}?{measures,dimensions}",
"type": "array",
"links": [{

Y http://json-schema.org/latest /json-schema-hypermedia.html.

http://json-schema.org/latest/json-schema-hypermedia.html

Data Service API Design for Data Analytics 95

"rel": "drill down",
"href": "/{resource}?{measures,added_dimensions}",
"method": "GET"
3,4
"rel": "roll up",
"href": "/{resourcel}",
"method": "GET"
}.{
"rel": "pan",
"href": "/{resource}?{new_measures ,new_dimensions}",
"method": "GET" }]}...

Listing 1.2. HyperSchema of links for dynamical generation

As shown in Listing 1.1, each 1inks comprises of rel that presents the mean-
ing of related action, and href that points to the location of resource. The value
of rel can be relate, summary, narrow down and wrap up. rel is used for the
dynamic discovery of resource APIs. The method and schema properties spec-
ify the HT'TP method and data format for the input. Client can send a HT'TP
OPTIONS request to acquire further assistance on how to form a specific API.

Listing 1.2 defines the schema of links for generating the specific resource
APIs. According to the different semantics of rel, the new parameters can be
generated based on the measures and dimensions in the base, and form a new
resource API as a href property for client. The value of rel can be roll up, drill
down and pan. rel is used for resource APIs dynamic generation.

4.3 Data Package

To allow users to share and reuse the data exploration process, our data services
adopt data package as a media type, which has an flexible and extensive data
structure to include various data.

Figure 3 gives an overview of the data format of the extended data pack-
age, which may contain (1) data such as tables and files stored remotely in
cloud storage or internally in the package. Data is classified into source data,
result data, query data according to their purposes, (2) scripts processing and
analyzing data, which are written by the data provider or generalized by the
data service in any cross-platform languages like Python or Java, and (3) meta-
data describing the structure and the content of the package, as well as the
relationship between the data and scripts and other data context information.
Specifically, a metadata includes but not is limited to following properties:

— Resources describe and locate all packaged data. The descriptor could be in
JSON or XML format while the paths could be a local path within a package
(inline) or URLs pointing to remote storage (non-inline).

— Scripts indicate the location and purposes of data processing scripts on the
datasets and specify the correlation among scripts and data. This property
helps analysts specify what operations have been done on which datasets.

96

Y. Zhang et al.

4 ¥
< R 2)
If-(- ———r — — mm === N —————— \
1 . 1
raw data] data scripts '
1
N \CLLLL! ’I
N
e i ::;;*“17
A 7 ~
4 (
i resources scripts provenance privacy
scripts P info constraints
. .
: metadata

metadata 1
k ' data package /

relations

Fig. 3. Data package structure

Provenance information is a sequence of links pointing to the previous data
packages from which current package is generated. After acquiring a data
package, analysts can modify the package content and create a new package.
A package chain is formed when this activity is repeated. Analysts can trace
the data usage back to the original dataset through the package chain.
Privacy constraints record the privacy constraints imposed on the data in the
package. When data providers apply privacy-enhancing techniques to gener-
ate anonymous data or expose their data partially, the operations they used
to preserve data privacy are informed to analysts so that they can take cor-
responding tactics in their analysis.

Other descriptor includes data schema, author, contributor, version, etc.

A simplified data package example in JSON is shown in Listing 1.3. The

required properties are listed, others are omitted due to length limitation.

{

"name": "dataPackage",
nign: e,
"sources": [{
"title":"hr-analytics dataset",
"path": "https://www.example .com/datasets/hr-analytics"
1,
"resources": [{
"path": "http:/www.example.com/hr-analytics.csv",
"schema": "{...}"
1,
"scripts": [{
"name": "retreive_good_employee_who_left",
"path": "",
"type": "python",

"resources": ["good_employees_left", ".."]

Data Service API Design for Data Analytics 97

1,
"provenanceLogs": [{

"lastPackage": "",

"created_in": "06/12/2017",

"path": "http://example/HrAnalytics/dataPackage"
1,

"privacyLogs": [{
"script_name": "",
"description": ""

3}
Listing 1.3. A data package example

In our data service architecture, the data package acts two roles as below:

Data Package as a Resource. As introduced in Sect. 4.1, the packager can pack-
age data into a non-inline resource by a path pointing to the remote storage.
Apart from the link to the data, the scripts inside the package also record
the user’s exploration process. Data package can be created through POST
and retrieved through GET. The included data, scripts, and metadata can
be acquired, updated and deleted by the HTTP methods (GET, PUT and
DELETE).

Data Package as a Context Service. Data package provides provenance infor-
mation, the upstream lineage, and the data constraints like privacy compliance
policy. For example, data publisher can use a random value perturbation tech-
niques to hide sensitive data by randomly modifying the data values using addi-
tive noise while preserving the underlying probabilistic properties of the dataset
so that a predictive analysis can be performed. The metadata in the data package
describes this manipulation and other privacy constraints so that data consumers
are more informed on the assumptions of data for later analysis.

By using the packager resource and created packages, data providers can
package and share the processed data with the scripts applied to the data. Due
to the data package, data consumers can be more informed what happened to
the data, and take more effective actions to do further analysis without preparing
data from scratch.

5 Evaluation

We conducted a case study to do a comparative evaluation of the proposed data
service design against the OData REST design. OData is an OASIS standard
protocol that defines how to build the RESTful APIs for open data. Our eval-
uation focused on three metrics including REST maturity, interoperability, and
discoverability.

5.1 Case Study

To exercise our design and validate its feasibility, we selected one dataset and
related kernels (data processing scripts) from Kaggle!?, which is a public plat-
form for data analytics community to explore and produce predictive models on

12 https://www . kaggle.com/datasets.

https://www.kaggle.com/datasets

98 Y. Zhang et al.

Sampler
= = = = P First glimpse of the
data

Sampler Aggregator
Sample the first 100 The percentage of
entries of data people who left

Aggregator
The percentage of
people who left,

group by job

Functions Supplier Function Supplier
Statistic calculations Check the number of
and other functions missing value

relate

Function Supplier
Make a correlation to
Aggregator - find factors make
-yl A summary of data |- - people left
based on the o

Why good and
experienced
employee left parameters

' ~
\

o (e T oot :

1 1 oM 1 Function Supplier

' " ' oo o Make a distribution of

' ! : " : : : ! satisfaction_level,

: . i:_ -_;_: 4 T , : : time_spend hours

! Acquire data details € = ' § MeeeTT—

~ = | ‘based on the fiter [€ === ===L==q===d==p----p--=--=--_< il down
conditions € == - S T T R

Resource APl template narrow down

Function Supplier
Make a distribution of
time-spend company
within the drill down

filtered data

'
'
1
1
1
1
1
1
'
1
1
1
1
1
1
1

Gateway [
'
)
1
1
1
1
'
'
1
1
1
1
1
1
1
'

Smmmm—— - ~
D Recommended API \ 4
Packager

Record the user's
whole data

———> The chosen relation exploration process

= = = = 2 drill down

Function Supplier
Make a distribution of
salary within the drill

down filtered data

wrap up

= = = = » Alternative relations

Fig. 4. HR analytics data exploration roadmap

the open datasets. The selected dataset is a Human Resource (HR) analytics
dataset with 15000 rows.

Our RESTful APIs are implemented using Apache CXF JAX-RS in java. All
the data returned are in JSON value. We simulated data exploration processes
based on 8 published kernels on this HR dataset using our data service APIs.

Figure 4 shows the roadmap of one data retrieval process with the alternative
relations and the resources. Based on the data exploration process, data analysts
starts from gateway which responds with a list of resources to be selected. He
starts his work from checking the data quality by the resource function supplier,
which returns the numbers of missing values for the selected attributes, as well
as links pointing to the packager, the function supplier, and the aggregator. Then
the analyst sends a GET request to the sampler to retrieve a sample data, the
returned response contains a defined size of data sample as well as links to
other resources. Next, the analyst chooses aggregator to retrieve the summary
information of the data.

In every step of the response, apart from a link pointing to the main resource
API template, a specific API with predicted parameters will be recommended
with an indicative href property. When the analyst makes a request of the
percentage of left people, the response includes a drill down link pointing to
a predicted aggregator API to group left people by their job. Afterward, the
analyst can pan in the function supplier to gain other features of retrieved data
until he is satisfied. Finally, the analyst moves to filter to retrieve the data of

Data Service API Design for Data Analytics 99

the best and most experienced employee who have left. Alternatively, he can
send a POST request to packager which can wrap up the data with his previous
operations. The data package created can be shared on any data sharing platform
for the purpose of reusing result and process of the data exploration.

5.2 Analysis

Maturity. We applied the Richardson Maturity Model'? to evaluate how well
our data service APIs adhere to REST principles. This Model categorizes a
RESTful Web service into three levels of maturity according to the degree of
its adherence to REST principle. Level 1 and level 2 specify resources and the
HTTP methods respectively. The highest level uses HATEOAS to discover the
next possible actions towards the clients.

Compared with OData service APIs which fails at level 3 because there is
no guidance for services to include links or self-documentation in response. Our
approach follows HATEOAS to provide links in the message body to trigger
state transition in the client application. For instance, a GET operation on the
gateway resource returns a response body with a list of all resources that can
be of interest to start interacting with. Based on the navigation model, data
service can navigate the users through resources and perform the user-desired
operations using hyperlinks. Thus, our data service APIs achieve the highest
level of maturity of REST.

Interoperability. Interoperability refers to the ability not only to exchange
information (syntactic interoperability) between two systems via interface but
also to correctly interpret data being exchanged (semantic interoperability). The
important aspects of interoperability involve discoverability of services and han-
dling of response from service requestor [13]. The Levels of Conceptual Inter-
operability Model (LCIM) defines five levels of interoperability maturity. The
lowest level signifies systems that do not share data at all. The highest level
indicates systems that work together seamlessly without mistakes interpreting
each other communication [14].

Most OData REST APIs achieve syntactic interoperability inherently
because they provide uniform, standard, and stateless interface on top of HTTP.
However, their semantic interoperability is not guaranteed due to their simple
message format without containing any context information. Table 1 compares
the OData service design and our Data Service from three aspects, including
analytical operation, analytics process, and context information shared in the
analytics pipeline at semantic level.

Our proposed data service API design enables semantic interoperability of
REST-based application and so partially reaches the highest level of LCIM for
data analytics in following two points:

'3 https://martinfowler.com/articles/richardsonMaturityModel.html.

https://martinfowler.com/articles/richardsonMaturityModel.html

100 Y. Zhang et al.

Table 1. Comparison of information sharing at semantic level

OData service Our design
Analytics e Mapping to the under-lying | ¢ Conforming to data analytic
operation data schema operations
Analytics e User driven e Define analytical relations in
process e Manually constructing HATEOAS

e Intelligent recommendation

Context e Manually collected by data | e Package chain
information | users e Record data exploration process

Interpretation of Analytics Domain Operation. With the help of the navigation
mechanism, which semantically interprets the underlying interactions in analyt-
ics process, a resource pointed by another known resource can be discovered by
the users. Further, the navigation model provides the request with predictive
parameters targeting users’requirement. As described in Sect. 5.1, an aggregator
API to group the percentage of left employee by job can be recommended for
client who requested the percentage of left employee.

Sharing of Data Context Information. The data package has a rich, extensive,
and self-descriptive structure. A data package containing all the context informa-
tion of analytics pipeline ensures the data consumers and data publishers have a
common view of the requested services and data. The data package clearly shows
the provenance information about when and what has been done by whom on
the provided data and privacy information determining how, when and to what
extent information about the provided data will be released to data users.

Discoverability. Discoverability means that when a service consumer requests
a resource, it receives URLs pointing to the resources associated with the cur-
rent resource in the response message. HATEOAS enables the discoverability of
web services. However, it is difficult to discover a service automatically without
specifying the semantics of operations in the response. Discovering services in
services using conventional REST design is time-consuming and error-prone.

Our data service proposes a roadmap of data exploration that defines differ-
ent relations in links property so that a service can be reached from different
resources. In addition, we use HTTP OPTIONS to inform users what operations
and parameters can be performed on the resource. The proposed data service
design partially fill the semantic gap of HATEOAS. Our HATEOAS with seman-
tics enables auto-discovery for applications and presents the services as a graph
illustrated in Fig. 2.

The Discoverability makes it possible to automate service interactions. Com-
pared with the general-purpose search API like Twitter REST API, our data
service APIs automatically provide developers with a list of available endpoints
along with information on how to interact with the endpoints.

Data Service API Design for Data Analytics 101

Reusability. Reusability is the degree to which a component can be used in
multiple business process or applications, without much overhead on configura-
tion and modification. Data package, as a media type, can support reusable data
and processing scripts. For example, when we GET and run the scripts that the
data package created from HR data exploration process, we can reproduce the
previous data operations. Given the same dataset and deterministic query, the
result is identical to the old one. This proves that the data package can be reused
and shared among analysts with the same data exploration purpose on the same
dataset. In addition, since the data package is a light-weight data container that
packages links to diverse data source and metadata, it will not cause big perfor-
mance burden for client environment. The flexible and extensive data structure
of data package allows users to customize their package based on their specific
requirement, which further improves the reusability of the data package.

5.3 Discussion

The case study demonstrates that our data service satisfies the first require-
ment in Sect. 3 by supporting the data exploration processes from Kaggle using
Python or R library. Second, the case study shows that our data service satisfies
the second requirement and achieves better interoperability and discoverability
compared with the existing solution. Last, the case study shows that using data
package is an effective way to reuse and share the derived data and processing
scripts among analysts, so the third requirement is satisfied.

6 Conclusion and Future Work

This paper proposes a REST-based data service API design, which specifies
data retrieval interface targeting data analytics. Our approach takes advantage
of REST properties and its related hypermedia-driven features to make resource
APIs generate and navigate each other automatically based on analytical needs.
In addition, we introduce a mechanism to package data source, primitive oper-
ations, and data context together for users to customize and reuse the data
exploration process. Our evaluation shows that this approach can enhance the
interoperability and discoverability of data services and the reusage of data
exploration processes. Our future plans include an extension of the approach
to accommodate multiple data sources, enhance service discovery. We also plan
to conduct more user studies.

References

1. Jagadish, H., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M.,
Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Commun.
ACM 57(7), 86-94 (2014)

2. Khan, H.A., Sharaf, M.A., Albarrak, A.: Divide: efficient diversification for inter-
active data exploration. In: Proceedings of the 26th International Conference on
Scientific and Statistical Database Management. ACM (2014)

102

10.

11.

12.

13.

14.

Y. Zhang et al.

Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration tech-
niques. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 277-281. ACM (2015)

Borkar, V., Carey, M., Mangtani, N., McKinney, D., et al.: Xml data services. Int.
J. Web Serv. Res. 3(1), 85 (2006)

. Dillon, S., Stahl, F., Vossen, G.: Towards the web in your pocket: curated data

as a service. In: Nguyen, N., Trawiriski, B., Katarzyniak, R., Jo, G.S. (eds.)
Advanced Methods for Computational Collective Intelligence. Studies in Compu-
tational Intelligence, vol. 457, pp. 25-34. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-34300-1_3

Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. University of California, Irvine Doctoral Dissertation (2000)

Wilde, E., Pautasso, C.: REST: From Research to Practice. Springer, New York
(2011). https://doi.org/10.1007/978-1-4419-8303-9

Page, K.R., De Roure, D.C., Martinez, K.: Rest and linked data: a match made for
domain driven development. In: Proceedings of the Second International Workshop
on RESTful Design, pp. 22-25. ACM (2011)

Robinson, I.: RESTful Domain Application Protocols, pp. 61-91. Springer, New
York (2011). https://doi.org/10.1007/978-1-4419-8303-9_3

Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs: Services for a Chang-
ing World. O’Reilly Media, Inc. (2013)

Hernéndez, A.G., Garcia, M.N.M.: Metadata Architecture in RESTful Design, pp.
459-471. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8303-
921

Hellerstein, J.M., Sreekanti, V., Gonzalez, J.E., Dalton, J., Dey, A., Nag, S.,
Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., et al.: Ground: A data
context service. In: CIDR (2017)

Clements, P.C.: Software architecture in practice. Diss. Software Engineering Insti-
tute (2002)

Tolk, A., Muguira, J.A.: The levels of conceptual interoperability model. In: Pro-
ceedings of the 2003 Fall Simulation Interoperability Workshop, vol. 7, pp. 1-11.
Citeseer (2003)

https://doi.org/10.1007/978-3-642-34300-1_3
https://doi.org/10.1007/978-3-642-34300-1_3
https://doi.org/10.1007/978-1-4419-8303-9
https://doi.org/10.1007/978-1-4419-8303-9_3
https://doi.org/10.1007/978-1-4419-8303-9_21
https://doi.org/10.1007/978-1-4419-8303-9_21

	Data Service API Design for Data Analytics
	1 Introduction
	2 Background and Related Work
	3 Scenario and Requirements
	4 Service Design
	4.1 Service Architecture
	4.2 Navigation Model
	4.3 Data Package

	5 Evaluation
	5.1 Case Study
	5.2 Analysis
	5.3 Discussion

	6 Conclusion and Future Work
	References

