q

Check for
updates

A Middleware Mediated Application Layer
Protocol to Decouple Provider-Consumer
Relationship in Web Services Orchestration
and Its Application in Novel IoT Integration

Devanathan Venkatesan™, Othiyappan Pandithurai,
and Sundaramoorthy Sridhar

Anna University Chennai, Chennai, India
d. venkatesan@aubit. edu. in

Abstract. At present URI based web service orchestration poses a fundamental
limitation on the nature of resulting web service applications restricting them to
client-server paradigm and the partnership determination as a static design time
activity. This naive simplicity limits the scope and capability of orchestration
technology that shows up sorely in our inability orchestrate IoT devices using
application level web service protocols/technology. This work suggests and
demonstrates a middleware (named here as Open Interaction Middleware
Services-OIMS) based web service orchestration approach that unfetter the
client-server nature of orchestration and introduces run time establishment of
provider-consumer relationship. OIMS mediated orchestration permits speech-
act based specification and orchestration of partners of the collaboration. OIMS
functionality deserves to be a part of the WS infrastructure eventually.
Decoupled service orchestration permit creation of novel application layer level
web services based protocols and applications — that has the merits of both bus
and broker based protocols combined - such as in the case of Internet of Things
(IoT) monitoring & integration. This work illustrates the proposed approach
using a case study in integrating IoT devices belonging to multi class IP network
that provides several important quality attributes such as loose coupling and
scalability to the resulting environment.

Keywords: Speech acts -+ Middleware based web service orchestration
Application integration - Loose coupling + Decoupled orchestration
Provider-consumer * Case study + WS infrastructure

1 Introduction

Explicit client-server nature of web service composition standards warrant determi-
nation and specification of WS provider address at the design time, resulting in
applications that does not possess several important quality attributes such as loose
coupling and separation of concern in a distributed computing environment
(Venkatesan and Sridhar 2016, 2017). This deficiency shows up sorely in situations
such as integration of IoT devices using web services standards where consumer cannot

© Springer International Publishing AG, part of Springer Nature 2018
D. Georgakopoulos and L.-J. Zhang (Eds.): ICIOT 2018, LNCS 10972, pp. 165-176, 2018.
https://doi.org/10.1007/978-3-319-94370-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94370-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94370-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94370-1_12&domain=pdf

166 D. Venkatesan et al.

statically specify the provider URI addresses at the design time. This deficiency has
forced IoT technology to groom kludges and low level ad-hoc protocol techniques to
accomplish integration (Al-Fuqaha et al. 2015). This work presents a middleware based
orchestration technology (that breaks off client-server nature of orchestration) and
expand on the idea presented in Venkatesan and Sridhar (2016, 2017). A case based
(Yin 2003) illustration is a good way to present and evaluate the outcome of the novel
ideas and so this work adopts the case of IoT device integration. It should be noted the
proposed protocol and middleware should be capable of handling integration with
smart objects/small devices (that are power/resource constrained) that may have diffi-
culties in dealing with protocols and SOA technologies designed for full-powered
computers. Results obtained in this case may be extended subsequently to a more
general situation and WS standards may be suitably amended.

This work is organized into 6 sections. Section 1 introduces the problem and
outlines an approach and context of the solution. Section 2 describes over all archi-
tectural layout for message based orchestration (IEEE-FIPA 2018) using intelligent
middleware namely OIMS. It describes the consumer application namely Intelligent
Open Interaction Application Framework (IOIAF), messaging format used by IOIAF,
its manner of interaction with OIMS and algorithm used by OIMS to determine and
invoke WS providers. Section 3 describes the application layer level interaction pro-
tocol patterns, and implementation details of a working prototype (GitHub hosted) that
uses Microsoft Windows Communication Foundation (WCF) technology (Sharp 2017).
Section 4 analyses the results and makes a comparison with other popular IoT inte-
gration protocols. Section 5 provides a review of related literature. Section 6 provides a
conclusion and proposal for further work. The suggested middleware technology is
inspired by the works of Okouya et al. (2013).

2 The Open Interaction System Middleware

Venkatesan and Sridhar (2016) and Chap. 8 of Venkatesan (2018) propose an appli-
cation layer protocol for integration of IoT devices using speech act messages and WS
technology (as depicted in Fig. 1). This application involve a centralized web services
consumer namely Intelligent Open Interaction Application Framework (IOIAF) based
controller/dashboard, an agent oriented middleware service namely OIMS that provides
facility to receive and transmit (IEEE-FIPA standard like speech act messages that
carry information to carry out WS orchestration on providers using SOAP messages)
across an ecosystem of IoT compute nodes connected to it. OIMS services act as
intermediaries in relaying the messages to appropriate WS provider destination. The
deployment level block diagram of this environment is depicted in Fig. 1.

A schematic of the proposed integration environment is provided in the Fig. 2. This
environment utilizes Microsoft Windows WCF ver. 4.5 technology at OIMS to realize
discovery of partnerlink services, enumerate them, enumerate services interfaces/input
and output parameters and bind with them to invoke. Interaction between IOIAF service
and OIMSs take place using Microsoft Message Queue (MSMQ) technology where the
messages are of FIPA-ACL kind as described in subsequent section. For light-weight
cases where performance and simplicity is the criteria, the interaction between IOIAF and

A Middleware Mediated Application Layer Protocol 167

OIMS is alternatively realized designed using WCF itself as it is the case between OIMS
and IoT leaf nodes. A IOIAF server shall connect with one or more OIMS middleware
servers using user supplied configuration information. OIMS in turn connect with other
OIMS or IoT leaf nodes to execute the contract as indicated by IOIAF application.

=
e o Wi

oms ’;VIIDDLEWARE i Onta bane

- —— @ o cevice
S D’s - =1
U

T MIDDLEWARC .
OT OF VICE
/\

- 1OT DEVICE 10T D& VICE
e 1OTDEVICE
5

Oma s mIGTREWARS o
—
=

OIMS MIDDIL.EWA RE ks oIMS MIDDLEWARE g

3 i
- 0T CEVICE

o p—
- oromvice
N > ad

0T DEVICE

10T DE VICE

Fig. 1. Block diagram of IoT integration environment

OIMS messages |
o g based OIMS Message
- 2 or nti decoder & router Applicatio
» =] rchestration WCF based
@ 3 =2 and partner link| 2.¢ a) alica
g < & S et e = Applicati pt
= c = Middleware A PPUCS
S < = onl
3 g E g
3L 13 % 2 £ | 10T devices &
= % '§ % » 'gb OIMS Message 57 al their WS
% © b A=A decoder & router- &‘__ sensor
Se |92 g & N (WCF based) anolications
w 3BFEA OIMSMiddleware = applications
S22 £ | L.N
g) E Z o
PARTNER L”g =
LINK 72} -
PARTNERLINK HOST..1

Fig. 2. Schematic of IOIAF orchestrator, OIMS middleware and IOT device (WS-Partner Link)
leaf nodes

The operational algorithm of IOIAF service is described in the Fig. 3. The designer
and programmer decide on the syntax and semantics of speech act messages based on
nature of requirement demanded by the end user or business case. IOIAF service sends
this message to various connected OIMS middleware service nodes. OIMS middleware
service receives the IOIAF messages and decodes them to understand the nature of
partner link invocation to be performed by it (for example asking for a specific set of

168 D. Venkatesan et al.

sensor data from IoT node service). Based on the SA it communicates with various IoT
nodes connected to it and consolidate the result and reply back to IOIAF server.
The SA based interaction models (requirement scenarios) also provides hints that can
be translated into system level functional test cases.

Algorithm IOIAF Node IoT Data Gatherer (input LIST oimsMWNodes)
loop ForEvery(“HH:MM:SS”)
{ iotData=NULL;
LIST oimsNd = RefreshListOfConnectedOims (oimsMWNodes);
SA qry= Generate loTNodeQuery(input UsrIP);
for each [oimsNd]
{ MQ mq_channel;
mq_channel = Open Message Queue (Destination oimsNd)
Send_SA Msg to_oimsNd (qry , oimsNd, mq_channel , qry);
iotData = { iotData } U receiveloTDataFromOIMS_Middleware Nd
(oimsNd);
} Report to consumer { iotData}

Fig. 3. IOIAF application (WS-Consumer) node “Processing” logic

The algorithmic description of OIMS capability is depicted in Fig. 4. Typically the
IoT integration specific OIMS network shall have one or more controller or dashboard,
each subscribing to an unspecified number of leaf IoT nodes and collect/control infor-
mation and process (in accordance with the type of collaboration as listed in Table 1).

Algorithm OIMS_Middleware Process (INPUT IOIAF iotSA)

LIST NTWRK Interfaces =Enumerate NTWRKInterfaces_In OIMSNode();
LIST OimsMsgQueue= RefreshOimsMsg_Queue();

for each “NwIntrfc” item in [NW_Interfaces]
LIST OimsSrvrs= Enumerate_attached OIMS();

Relay Selectively Msgs to_Other OIMS_And_FlushQueue (OimsMsgQueue);
DATA_RECORDS iotData =NULL, ndData=NULL;
for each “NwIntrfc” item in [NW_Interfaces]
{
LIST iotNd = Enumerate ConnectedloTNodes (NwIntrfc);
//iotNode consists of IP addresses in the same Local Area Network
for each [i0tNd]

{
soapMsg = Decode SA_specific_to_node (IOIAF _iotSA);
if (needTolnteractWithloTNode (iotNd }==TRUE)
{
ndData = invoke IoTNd_PL (iotNd, soapMsg);
iotData = iotData U ndData;

}// all 1oT nodes of a particular Network Interface contacted
}// all 10T nodes of a particular Network Interface contacted

Fig. 4. Processing control loop in OIMS

A Middleware Mediated Application Layer Protocol 169

While the centralized dashboard (such as closed loop video surveillance network) shall
use “ask” and “tell” speech acts through OIMS and other network gateways on the IP
network, a local dashboard application of an operation theater instruments shall use
subscription to selective IoT devices without intervention of gateways or centralized
servers but with the help of OIMS alone).

The OIMS makes use of WS-Addressing technology (for synchronous real-time
data processing/Message queues (for asynchronous data processing) along with WS-
Eventing technology to realize much of its infrastructure based loosely coupled inte-
gration capability. It may be noted OIMS and IOIAF support scalability like per-
instance, per-session or per-call semantics based service provisioning to support state
based, configuration based, service rendering in the case of multiple IOIAF dashboards
on the same shared physical network infrastructure — say a server farm - as in the case
of, for example a hospital network that has separate dashboards (IOIAF applications)

Table 1. Patterns of interaction between IOIAF and OIMS

Messaging Pat-
tern Type|Sample SA Message format (as formatted by IOIAF app)
/(Abbreviation)
Point-to-Point (PTP) {

sa_type : “ask”; sender_id : “192.168.1.2”; receiver_id : “192.168.2.12”

command_query: {

NODE-ID=ROOM203-DEV1 &&

TYPE=SENSOR-DATA &&

SENSOR-ID =SENSID001 &&

REPEAT-TIMES=100 &&

REPEAT-FREQ=:01:00:00:00 //format DD:HH:MM:SS:MSEC }

¥

//This message is interpreted by OIMS; This message means to gather data from a
specific IoT node with Id. ROOM203-DEV 1, for a specific sensor Id. SENSID001,
for every I second for next 100 times. OIMS will keep the state info. And query the
IoT node for data next 100 times every second and report the datum to IOIAF dash

board.
Point-to-Everybody {sa_type : “ask”; sender id: “192.168.1.2”; receiver id : “*”;
(PTE) command_query: {SENSOR-DATA }

}

//This message is interpreted by OIMS; it means to gather data from all connect-
ed IoT node covering all connected sensors.
Broadcast (BBB) {
sa_type : “tell”;sender id : “192.168.1.2”; receiver id : “*”
command_query: {SLEEP }

//This message is interpreted by OIMS, meaning to inform intermediary OIMS to
desist from contacting connected IoT nodes; they may cease to function until further
instruction from Dashboard controller. This may be used to save IoT node battery
and address lull in need to gather data.

Point-to- {sa_type : “ask”

Multipoint (PTM) sender id : “192.168.1.2”

receiver id : “*”

command_query: {SENSOR-DATA }}

//This message is interpreted by OIMS, means to gather data from all connected
IoT node covering all connected sensors.

170 D. Venkatesan et al.

for video surveillance, visitor service, patient service, hospital housekeeping, patient
monitoring etc.... that all still uses same OIMS middleware — say that are running on
the network intermediary hardware — capable of supporting and sustaining multiple
conceptual logical IoT networks using same WS executable using scalability (per-
session invocation) logic.

The number of OIMS middleware attached to IOIAF server can be handled using
different approaches. A straightforward approach is to provide a configuration file to
IOIAF server that lists the IP addresses of the attached OIMS middleware servers. This
work uses ioiafconfig.ini (Fig. 5a) to supply a list of OIMS nodes connected to IOIAF
server. Alternatively the available list of OIMS nodes connected to an IOIAF server can
be determined and discovered by a dynamic discovery protocol for OIMS middleware
(like the case of DHCP or DNS server discovery). In turn, OIMS middleware server
node is further configured using a “oimsconfig.ini” (Fig. 5b) file. This file provides a
list of class of connected IoT networks its network-interface. OIMS search periodically
over the entire subnet address space (wired or wireless) to discover available leaf nodes
(i.e. IoTClient nodes), at the given moment, using node discovery protocols. This work
uses a polling scheme for each IP address. Once the connected IoT leaf nodes are
determined, OIMS will start interrogating the IoT leaf nodes for data as indicated by
OIMS messages delivered to it by IOIAF server.

The IoT sensor nodes can also be configured to inform like the name of the sensors
connected to it and the port details of the sensors (or hardware connection Id) (Fig. 5c).
All these configuration information should use a shared ontology so that the received
“commands” (from IOIAF application and OIMS messages) and reported “data values”
are understood without ambiguity. This will help the entire IoT network work in a
standardized manner and able to serve various custom queries. In cases where no
standard compliance is available in Iol node, the IOIAF application need to specialize its
messages taking into account specific terminology adopted by custom IoT device class.
This research work uses a configuration file namely lomodesvc.ini (Fig. 5¢) to supply
configuration information of (simulated) 10T leaf node. This research assumes each IoT
node runs a WS to permit data acquisition or else has at least provides a proprietary
custom WS for data acquisition details of which can be supplied to the interfacing
OIMS as customized node specific orchestration information for a specified unique
node Id.

#File IOIAFconfig.ini... #File OIMSconfig.ini... # IoTNodeSvc.ini

#list of connected OIMS #1-use network; 0-dont #1-use sensor; 0-dont use
[ICURoom208] [CameralLAN] [AttachedSensors]
192.168.2.1=1 10.1.60.*=1 TempSnsr=1
192.168.3.1=1 10.1.70.*=1 HumiditySnsr=1
10.1.1.1=1 [ICUR208] [10TId]
[SurveillanceCamera] 192.168.2.*%=1 iotNodeld=aulTO1
192.168.2.1=1 [ICUR209] (©)

10.1.1.4=1 192.168.3.%=1

(a) (b)

Fig. 5. (a) IOIAFconfig.ini (b) OIMSconfig.ini (C) [oTNodeSvc.ini

A Middleware Mediated Application Layer Protocol 171

End users will invoke IOIAF application with a process initialization argument (i.e.
command-line argument) specifying its application identification. Corresponding
application identification must be there in the ioiafconfig.ini so that this particular
instance of IOIAF service goes on to initialize OIMS service instance belonging to it
completing the bootstrap of network of monitoring application chain (to accomplish a
given business functionality). Based on the logic of application architecture, a single
IOIAF application instance can serve multiple business functionality.

OIMS and IOIAF server instances are controlled as to how these instances are
created and destroyed by setting ServiceBehavior’s InstanceContextMode along with
configuration details to be used at the service deployment/invocation time. The
implementation details of IOIAF, OIMS and simulated IoT services are documented
and hosted in GitHub for easy exploration and experimentation (SIVAN 2018).

3 The Business Logic Based Patterns of Integration in IOIAF
Environment

Various kind of business use case served by this arrangement involves, IOIAF appli-
cation (WS-consumer) periodically sending messages encoding its intention of gath-
ering IoT data from WS-providers (IoT nodes) as Agent Communication Language
(IEEE-FIPA 2018) like-message payload (as illustrated in Table 1). This message can
have different level of sophistication in describing the URI of the intended providers
starting from syntactic encoding (as implemented in this work) to OWL-S based
semantic encoding (Sect. 3 in Venkatesan and Sridhar 2017). OIMS in turn determine
choice of WS providers to connect to and the nature of the contract to execute (SIVAN
2018; Venkatesan and Sridhar 2016, 2017). Some examples of the syntactic messages
originated by IOIAF server is depicted in Table 1.

The mechanism of the orchestration of IoT services described here gives rise to the
possibility of realizing application layer level protocol that permit creation of complex
integration applications. This capability is called as Message Based Service Integration
(MBSI) protocol in this work. Section 4 provides a survey and comparison of capa-
bilities of various IoT (application level) integration protocols including that of MBSI.
Table 2 reveal the nature and technical implication of using these protocols for
developing data gathering or monitoring end user applications.

A snapshot of the sample experiment carried out to gather data from an IoT net-
work of nodes involving multiple OIMS is illustrated in Fig. 6 below.

The manner of OIMS based WS orchestration envisaged here is quite a different
kind of business workflow compared to regular Process Aware Information Systems
(PAIS)/business applications (Aalst 2009). Presently PAIS typically invoke providers
using flow based technology (i.e. events, activities, gateways) and is entirely based on
design time decisions. The proposal made here is not disruptive and only adds a new
layer of features above existing standards and infrastructure. Hence it is a kind of
incremental innovation or suggestion.

D. Venkatesan et al.

172

(panunuod)

11 2INsud

s10ke] Surkpepun/SINIO
{[onuod

Moy 10 yoridxe paou oN

ssuondo a3essow
U0 Paseq ‘Iema[ppIw
SINIO £q papiaoid

(dvOS Iod se) 1opiaoxd
SA\ 101 0 SINIO *1opeay
OIW-SINIO 03 Jownsuo)

juerdwos ewoayos
TIAX “1eULI0} 1X) ureld
og1e]

IpdTTLLYE09
/MIIA/IUSWINOOP/310
‘sisaqpuadormmam//:dny

ordung

ISRONINIA [AS[-DINIAL
utodnnA-oulod
ALmoog-Sm.

2qissod

dvOos + 1OV

paseq

Kjdar-1sanbar pajdnosa
pajusLo

ofessour 29 AIEMIPPIA

19qLOSqNS <= 1y0Iq
[eNuAd <= Ioysqng

uoIssas
douesaxd pue soueisur
oy uo spuadop 10A10S

Py ¢

X9} ureld

LGN

Fro-ddwrx mmmy//:sdny

xarduo)
jsestun)
IOAIDS-IURID)
S1La
J[qIssoq
dI/dDL

Kjdes—sanboy

paseq uoneorddy

JOAIDS <= UL

PaIEONUIYINE MO[[
pue pouad e 0] 9yeIs
Juaysisiad e urejurewr

0] UOISSAS JOAIS

Py 8

**+012 Aepap ‘ssardwod
‘dIZ 39 Surpooud
JUSIUOD OS[B “IXd], UTe[d

Aury,

oM

ordunig
Iseatun
JOAISS-URID)
TISS/STIL
J[qIssoq
dI/dDL

Kjdar—sanboy

paseq uoneorddy

19quosqns <= Jaysiqnd

[0201014 uondusa
uoIssag 7 [0d0101d
uonenIu| UOISSAS

3R] dlqeLeA

Surpoous Areurg

Aury

ordurg
Isednn
109d—1004
S1La
J[qIssoq
ddn 1o ddL

100d 0y 1004

Paseq AALMIPPIA

10AIDS <= JUAI[D

IXQIU0D PEAIy)
Q[3uls sI UOISSAS
UL SIN[-UOU

0] panmwusuen p[ay
Jopeay ay) 1oddns
Jou s0p SN

Surpooua
a3essow panquusiq
Aury,

ans 1adofaaap
BAR[J[ORIQ

ordung
Jsestun
IOAIIS-IURID)
7ISS/STIL
AqIssoq
dI/dOL

aquosqns-ystiqnd

Paseq 2LMIPPIA

19qUOSQNS <= 1y01q
[ENU-IYSIqNg

[opour jonuod
MOp PasEq-mopuIm
© QAR SUOISSIS

‘SIeyd g

Surpoous Areurg

Lury

K3ojouyo)
~deooy/:dny

ordunig
seatun)
JIOAISS-UID)
S1La
J[qIssoq
dan

Kjdar 1sonbay
Paseq aIema[ppIu
pue paseq g

JOAIRS <= JUdl]D)

SO[NPOW UOISSAS
se panoddns
9q uBd UOISSAS

Kreord£y
‘SIBYD ()7 PUe 4

Surpooud Kreurg
Aurg,

S10-dbwe
mmm//ssdny

xardwo)
Iseon[ny
100d—1004
7ISS/STIL
Jqissod 10N
dI/dOL

Jutod

2quasqns ystqng
QIEMI[ppIW 2
pAULIQ 9FeSSIN

19qUOSqNS <= 1y0Iq
[enuad <= Ioysqng

UOISSS JUASISIOG

‘SIRYO G pue 7

Burpooua Areurg

Luyg

F1onbw

ordung

jsestun)
JOAISS-JURID)
ISS/STIL

J[qIssoq

dI/dOL

19301 JUAID
‘dquosqns ystqng

paseq qam

soSessow
JO [onuod Mo[q

yoddns
Burpuey uoissog

(p3u9p

Xew pue 9zIs Jopeat|)
s[ieop dofoAud o5essIA
(TINX/ATeurq/oLiouag)
K3ojouyoa)
uonejussarday/3urpoous
o3essajN

jund 1004

UOnRWLIOJUI
Q10U JOJ AISGIA
Kixopdwoo
uonejuawadwy

apowr sSAIPpY

adKy K1oA1op o3essoy
Aunoag
Anpqeradorug

ad£) uonosuuo)

sarSerens uoneisauy

adA) K10A1]9p 9BessaN
aodKy

PUQAH — Joyoig % sng paseq sng paseq sng paseq sng paseq Joyorg paseq 1oyoIg paseq 1oy01g paseq 1oy01g QIMIOAIYOIE 000101
' TUOTSIoA

ANATIOAUUOD OLUD uonipa 1 0T UOISIOA I'Te Apoq

pasodoig 0’1 UOISIoA J AT '] UOISIoA JIA] | ®ep [euoneusau] uadQ osudioug eaer -UoISIoA "PIs A 1Hl — 'PIS SISVO | UOISISA -'PIS SISVO prepuess o[qeorddy

ISEN ddINX LS saa SN dv0D dONV LIOW SANqLmE SA S[020)01]

sjoo0joxd 101 Jsendod jo uosuedwo) °z d[qel,

http://mqtt.org
https://www.amqp.org
https://www.amqp.org
http://coap.technology
http://coap.technology
https://www.xmpp.org
http://www.openthesis.org/document/view/603477_1.pdf
http://www.openthesis.org/document/view/603477_1.pdf
http://www.openthesis.org/document/view/603477_1.pdf

173

A Middleware Mediated Application Layer Protocol

alqeordde

5100} Juerdwod
A3010uyo9) 9014138 [
JOWNSUOd

pue 1apraoxd uaamieq
aSessouwr oy} Jo JynuUIPI
VS/UONESIAAUOD YSnoIy)
9[qissod s1 Suropio
a3essow jo pury Auy

a|qissod uonefou0d
paseq dimonyserjur
pue [2A9] "ddy
pog

JUR[[AOXH

aiqeqreae poddns [ing

parqqefd ‘emreyy
JULI[O 0) saessaut
BuwueArep pue SuLepio
10§ Sunnoi sasn

10A1S 1pUAS “AIuo
I3yjoue 0) pIssaIppe
2q ued a3esSoN

warD
yog

poon

douasaid pue adueIsuy

s[00) ug1Isap

paseq IdV NJLSHA
yoeoxdde

oSessouwr paseq JUAD

10 SunopIo ofessowr oul|

adid ayy M [om sIYy

SwasAs paseq Furdessow

SNOUOIYIUASE SIs()

a1

Aundag

1004

juaysisiod pue juesup

00}
1oung, ‘[o0) Surfepout
ensia asdipog

19[NPaYOs-yIomIou
onbrun e £q pajeniqe
ST UONRIOPAJ UT JLJeI],
‘INjeU Ul PIJRISPIY,
s1 SurSessoj

a1

Aunoag

1004

afew]
[OJeIdS OJUI PALIDAUOD
9q ued BIEp BJOW Y],

4l g9 eavf Auy
Ju9s d1om Ay
10PIO AU} UT POAIRdAI
2q Isnw uoneUNSAP
© 0] UoIssas

© Aq Juds sadessowr
Jey) sauyap SIAL

WD
Aunoag

1004
(1yutod

puER OJur) JUSWI[
Jo sesudwo))

1dAd pue sjueLea
xnurg remndoq

191005 [euondo
pue Apoq ‘sentodoxd
“19peay ojul I3eSsaw

SOpIAID JOINV

1ystangd

yog

1004

Juarsisiod
Koy Sunnoy

J10ssa001dnnu
saas

Ads-s@q xqa 210D
19pI0 103100

ur Ajquuosse

JO a1ed saye) pue
aouanbas ur aALe
soSessow [y

et
yog

poon

90In0sal

Jo uonejuasardar
Jo sesudwo))

1039adsur
-LLOW ‘Ads-LLOW

JUas dIom

siyoed HSITENd
[eurSuIo oy JopIo ur

‘s1oyoed HSITANd
Kue spuas-ay

wystand
yog

1004
(onfea

ad£) eyep) 1oynuapt
Jo sasudwo)

1oddns joo],

1oddns
Suropio a3esson

oddns

UONB[ALIOD SSI[UWRAS
SO0 pue Kjundeg
SQIIAJP

JO SOOOT O} PAOAUUOD
UM OUBULIONAJ
(101R01pUL

ad£) Juauoo) Surdessour
ur poddns eep-elopy

ISR

ddINX

LSHd

saa

SINI

dv0D

dONV

LIOW

sanqLyie sA S[0d0Joid

(panunyuod) -z dqey,

174 D. Venkatesan et al.

s 10IAFDashBoard had - [} >
OIMS-IOT Node view SensorDatal « | » Seneor Data Liet View Summary view
OIMS-id Node-id Sensor-id Value Time Stamp A
192.168.2.13 ~ 192168210 192.168.4.11 TEMPSNSR 1.86 2017-06-07T01:1
192.168.2.14 192.168.2.10 192.168.4.11 HUMIDITYSNSR 464 2017-06-07T01:1
192.168.2.16 192168210 192.168.4.11 FLOWSNSR 173 2017-06-07T01:1
jacles sl 192.168.2.10 192.168.4.11 PRSRSNSR 2.44 2017-06-07T01:1
g 192168210 192.168.4.16 TEMPSNSR 320.. 2017-06-07T01.1
192.168.2.19 192.1682 10 192 1684 16 HUMIDITYSNSR 621 2017-06-077T01:1
192.168.2.20 192.168.2.10 192.168.4.16 FLOWSNSR 425 2017-06-07T01:1
192.168.4.10 192168210 192.168.4.16 PRSRSNSR 1.72 2017-06-07T01:1
192.168.4.10 192.168.2.10 192.168.4.15 TEMPSNSR 5.83 2017-06-07T01:1
192 168 4 11 192168210 192.168.4.15 HUMIDITYSNSR 8.00 2017-06-07T01:1
192.168.4.12 192168210 192.168.4.15 FLOWSNSR 6.24 2017-06-07T01:1
192.1684.13 192.168.2.10 192.168.4.15 PRSRSNSR 1.79. 2017-06-07T01:1
192.168.4.14 192168210 192168417 TEMPSNSR 395 2017-06-07T01:1
192 1RR 4 15 2t 192.168.2.10 192.168.4.17 HUMIDITYSNSR 3.80. 2017-06-07T01:1
192168210 192.168.4.17 FLOWSNSR 3.32 2017-06-07T01:1. ¥
< >
AcquireOIMSData

Fig. 6. A snapshot of IOIAF dashboard gathering sensor data from IoT network

4 Related Work

Higher-level business processes can be created — that are solution to business
problems - by composing web services together. Service composition standards
(Dustdar and Wolfgang 2005) provide standards-based, an open approach to connect
web services with reduced complexity. WS standards (Weerawarana et al. 2005)
reduces time and costs, and increase overall efficiency in formulating software for
businesses problems. A well-established method of composing web services to create
business applications is to use WS-BPEL (WS-BPEL 2007). BPEL is a model based,
flow based, XML-based, imperative WS composition language which supports WS
technology stack fully. However due to static nature of the orchestration provided in
this language, it is not suited for IoT integration unless extensions are implemented to
the BPEL engine/language (Venkatesan and Sridhar 2017). Okouya et al. (2013)
propose middleware technology for integrating applications using speech-act like
messages. This work draws inspiration and hints from that work to formulate the
novelty presented here. Blake and Gomaa (2005) provides an early account of agent
based cross organizational workflow composition. However it lacks a rigorous speci-
fication and description of capabilities of agent oriented middleware. It also did not
provide an operational description how to realize the system making it a theoretical
treatise.

The hardware limitations of IoT devices make design of software application
unique and challenging. Jawad et al. (2017) provides a survey of various issues
involved in integrating constrained devices in agricultural field monitoring including
IoT integration issues. For example regular application level protocols like HTTP,
SOAP may not work if one ignores network topology, packet size limitation and data
rates and frequency of packet transaction. Hence software applications should
explicitly address these constraints in designing IoT application such as minimize
unwanted processing, reduce network data transaction.

Most of the existing application level protocols (given in Table 2) do not anticipate
or take into account future changes in network topology, application architectures and
IoT software stack evolution. Protocol innovations for IoT integration related can be

A Middleware Mediated Application Layer Protocol 175

applied to any layers of the network such as physical layer, data link layer, network
layer and application layer. This work specifically addresses problems of integration at
the application level protocol only. New 10T specific protocols (Al-Fuqaha et al. 2015)
tends to reduce data errors, avoid unwanted re-transmission, keep simple flow of data,
avoid complex buffering/computation algorithms (saving on RAM/CPU cycles) to
reorganize packets, increase reliability and wireless range. But one of the main issues
here is difficulty of writing device integration, control and monitoring applications
using these protocols. They do not offer satisfying experience for varying technical and
practical reasons and offer little room for evolution and capability to coexist with newer
developments. Presently bus based and broker based approaches are popular to network
these devices. Some popular application level protocols include Message Queue
Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), Con-
strained Application Protocol (COAP), Java Message Service (JMS), Data distribution
Service (DDS), Representational State Transfer (REST) and Extensible Message and
Presence Protocol (XMPP). Table 2 provides a survey and comparison of capabilities
of various IoT application level integration protocols including the Message Based
Service Integration (MBSI) protocol proposed here. Venkatesan and Sridhar (2019)
argues agent metaphor based system modeling and software development result in
manageable and intuitive information systems. Venkatesan and Sridhar (2018a) argues
agent metaphor based information system modeling anddevelopment result in superior
model driven development software environment. Hence this work embraces agent
oriented approach to realize the middleware solution.

5 Conclusion

This work presented an agent oriented approach to WS application composition and
business logic enactment that fuses technological sophistication of WS
technologies/standards and theoretical depth of agent oriented system modelling and
engineering. Due to space limitation a comparative and experimental evaluation MBSI
protocol with other IoT application level protocol is not carried out here. This work
highlighted only a few elementary cases of patterns of interaction between IOIAF,
OIMS and IoTNode services. This work did not carry out a comparative experimental
evaluation of (possibility of) realization of patterns of interaction in other IoT protocols
discussed here. These deficiencies need to be addressed in an elaborate study in the
near future. From the conceptual viewpoint, the pattern of interaction described here in
purely syntactical. This environment can be extended to permit varieties of application
integration such as semantic web technology standard based partner/provider identi-
fication (using SPARQL, for example). The results arrived here can be utilized to
formulate and extend orchestration standards by incorporating WS infrastructure sup-
port for the kind of orchestration approach envisaged here. These extensions remain to
be carried out in the future.

176 D. Venkatesan et al.

References

Aalst, W.M.P.: Process-aware information systems : design, enactment and analysis. In: Wah, B.
W. (ed.) Wiley Encyclopedia of Computer Science and Engineering, pp. 2221-2233. Wiley,
Chicester (2009). ISBN 978-0-471-38393-2

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a
survey on enabling technologies, protocols and applications. IEEE Commun. Surv. Tutor.
(2015). https://doi.org/10.1109/COMST.2015.2444095

Blake, B.M., Gomaa, H.: Agent-oriented compositional approaches to services-based cross-
organizational workflow. Decis. Support Syst. 40(1), 31-50 (2005). https://doi.org/10.1016/j.
dss.2004.04.003

Dustdar, S., Wolfgang, S.: A survey on web services composition. Int. J. Web Grid Serv. 1(1), 1-
30 (2005)

IEEE-FIPA: IEEE CS Approved Committee on Foundation for Intelligent Physical Agents
(2018). https://www.computer.org/web/standards/fipa

Jawad, H.M., et al.: Energy-efficient wireless sensor networks for precision agriculture: a review.
Sensors 17, 1781 (2017). https://doi.org/10.3390/s17081781

Okouya, D., Fornara, N., Colombetti, M.: An infrastructure for the design and development of
open interaction systems. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.)
EMAS 2013. LNCS (LNAI), vol. 8245, pp. 215-234. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45343-4_12

Sharp, J.: Microsoft Windows Communication Foundation Step by Step. Microsoft Press (2017).
ISBN 978-0735623361

SIVAN: IOIAF, OIMS, IoTSvc application code base at GitHub (2018). https://github.com/
sivanagent/{ IOIAFDashBoard, OIMS, IOTNodesvc}

Venkatesan, D.: A novel agent-based enterprise level system development technology, Ph.D.
thesis, Anna University (2018). http://www.openthesis.org/document/view/603477_1.pdf
Venkatesan, D., Sridhar, S.: Promoting Business -IT Alignment through Agent Metaphor Based
Software Technology, Int. J. of Inf. Technol. Manag. (2018a). https://doi.org/10.1504/IJITM.

2018.10013469

Venkatesan, D., Sridhar, S.: A rationale for the choice of enterprise architecture method and
software technology in a software driven enterprise, Int. J. of Bus. Inf. Syst. (2019). https://
doi.org/10.1504/1JBIS.2019.10013326

Venkatesan, D., Sridhar, S.: A novel programming framework for architecting next generation
enterprise scale information systems. Inf. Syst. E-Bus. Manag. 15(2), 489-534 (2017). https://
doi.org/10.1007/s10257-016-0330-y

Venkatesan, D., Sridhar, S.: A novel method and environment for scalable web service
orchestration. In: Proceedings of IEEE 12th 2016 World Congress on Services Computing
(SERVICES 2016), San Francisco, USA, pp. 128-129 (2016). https://doi.org/10.1109/
SERVICES.2016.27

Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WSBPEL, WS-Reliable Messag-
ing and More. Prentice Hall PTR, Upper Saddle River (2005)

WS-BPEL: OASIS Web Services Business Process Execution Language v 2.0 (2007). http://
docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html

Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Sage Publication, Thousand
Oaks (2003). ISBN 0-7619-2553-8

http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1016/j.dss.2004.04.003
http://dx.doi.org/10.1016/j.dss.2004.04.003
https://www.computer.org/web/standards/fipa
http://dx.doi.org/10.3390/s17081781
http://dx.doi.org/10.1007/978-3-642-45343-4_12
http://dx.doi.org/10.1007/978-3-642-45343-4_12
https://github.com/sivanagent/
https://github.com/sivanagent/
http://www.openthesis.org/document/view/603477_1.pdf
http://dx.doi.org/10.1504/IJITM.2018.10013469
http://dx.doi.org/10.1504/IJITM.2018.10013469
http://dx.doi.org/10.1504/IJBIS.2019.10013326
http://dx.doi.org/10.1504/IJBIS.2019.10013326
http://dx.doi.org/10.1007/s10257-016-0330-y
http://dx.doi.org/10.1007/s10257-016-0330-y
http://dx.doi.org/10.1109/SERVICES.2016.27
http://dx.doi.org/10.1109/SERVICES.2016.27
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

	A Middleware Mediated Application Layer Protocol to Decouple Provider-Consumer Relationship in Web Services Orchestration and Its Application in Novel IoT Integration
	Abstract
	1 Introduction
	2 The Open Interaction System Middleware
	3 The Business Logic Based Patterns of Integration in IOIAF Environment
	4 Related Work
	5 Conclusion
	References

