
Shijun Liu
Bedir Tekinerdogan
Mikio Aoyama
Liang-Jie Zhang (Eds.)

 123

LN
CS

 1
09

73

Second International Conference
Held as Part of the Services Conference Federation, SCF 2018
Seattle, WA, USA, June 25–30, 2018, Proceedings

Edge Computing –
EDGE 2018

Lecture Notes in Computer Science 10973

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

Shijun Liu • Bedir Tekinerdogan
Mikio Aoyama • Liang-Jie Zhang (Eds.)

Edge Computing –

EDGE 2018
Second International Conference
Held as Part of the Services Conference Federation, SCF 2018
Seattle, WA, USA, June 25–30, 2018
Proceedings

123

Editors
Shijun Liu
Shandong University
Jinan
China

Bedir Tekinerdogan
Wageningen University
Wageningen
The Netherlands

Mikio Aoyama
Nanzan University
Nagoya
Japan

Liang-Jie Zhang
Kingdee International Software Group CO., Ltd.
Shenzhen
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94339-8 ISBN 978-3-319-94340-4 (eBook)
https://doi.org/10.1007/978-3-319-94340-4

Library of Congress Control Number: 2018947345

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-4108-1391
http://orcid.org/0000-0002-8538-7261

Preface

The International Conference on Edge Computing (EDGE) is aimed at becoming a
prime international forum for both researchers and industry practitioners to exchange
the latest fundamental advances in the state of the art and practice of edge computing,
to identify emerging research topics, and to define the future of edge computing.

This volume presents the accepted papers for the 2018 International Conference on
Edge Computing (EDGE 2018), held in Seattle, USA, during June 25–30, 2018. EDGE
2018 placed its focus on the state of the art and practice of edge computing, in which
topics covered localized resource sharing and connections with the cloud. We accepted
12 papers, including nine full papers and three short papers. Each was reviewed and
selected by at least three independent members of the EDGE 2018 international Pro-
gram Committee. We are pleased to thank the authors whose submissions and par-
ticipation made this conference possible. We also want to express our thanks to the
Organizing Committee and Program Committee members, for their dedication in
helping to organize the conference and reviewing the submissions. We owe special
thanks to the keynote speakers for their impressive speeches.

May 2018 Shijun Liu
Mikio Aoyama

Bedir Tekinerdogan
Liang-Jie Zhang

Conference Committees

General Chair

Ying Huang Lenovo, China

Program Chairs

Mikio Aoyama Nanzan University, Japan
Shijun Liu Shandong University, China
Bedir Tekinerdogan Wageningen University, The Netherlands

Application and Industry Track Chairs

Samir Tata IBM Research, Almaden, USA
Andreas Wombacher Aurelius Enterprise, The Netherlands

Short Paper Track Chair

Georgia M. Kapitsaki University of Cyprus, Cyprus

Publicity Chairs

Srividya Bansal Arizona State University, USA
Shuiguang Deng Zhejiang University, China

Program Vice Chair

Zhibin Yu Chinese Academy of Science (Shenzhen), China

Services Conference Federation (SCF 2018)

General Chairs

Wu Chou Essenlix Corporation, USA
Calton Pu Georgia Tech, USA

Program Chair

Liang-Jie Zhang Kingdee International Software Group Co., Ltd, China

Finance Chair

Min Luo Huawei, USA

Panel Chair

Stephan Reiff-Marganiec University of Leicester, UK

Tutorial Chair

Carlos A Fonseca IBM T.J. Watson Research Center, USA

Industry Exhibit and International Affairs Chair

Zhixiong Chen Mercy College, USA

Operations Committee

Huan Chen (Chair) Kingdee, China
Jing Zeng Tsinghua University, China
Yishuang Ning Tsinghua University, China
Sheng He Tsinghua University, China
Cheng Li Tsinghua University, China

Steering Committee

Calton Pu Georgia Tech, USA
Liang-Jie Zhang (Chair) Kingdee International Software Group Co., Ltd, China

Program Committee

Haopeng Chen Shanghai Jiao Tong University, China
Roberto Di Pietro University of Rome, Italy
Daniel Grosu Grosu Wayne State University, USA
Jun Han Swinburne University of Technology, Australia
Mohamad Hoseiny Sydney University, Australia
Kisung Lee Luisiana State University, USA
Wei Li Sydney University, Australia
Wubin Li Ericsson Research, Italy
Xumin Liu Rochester Institute of Technology, USA
Min Luo Huawei, USA
Rui Oliveira University of Minho, Portugal
Ju Ren Central South University, China
Han Rui Chinese Academy of Sciences, China
Rizos Sakellariou University of Manchester, UK
Jun Shen University of Wollongong, Australia

VIII Conference Committees

Javid Taheri Karlstad University, Sweden
Pengcheng Xiong Apache Hive PMC, USA
Yun Yang Swinburne University of Technology, Australia
I-Ling Yen University of Texas at Dallas, USA
Qi Yu Rochester Institute of Technology, USA
Ming Zhao Florida International University, USA

Conference Committees IX

Contents

Research Track

Home Edge Computing (HEC): Design of a New Edge Computing
Technology for Achieving Ultra-Low Latency . 3

Cheikh Saliou Mbacke Babou, Doudou Fall, Shigeru Kashihara,
Ibrahima Niang, and Youki Kadobayashi

Modular Framework for Data Prefetching and Replacement at the Edge. 18
Dusan Ramljak, Deepak Abraham Tom, Doug Voigt, and Krishna Kant

Boundless Application and Resource Based on Container Technology 34
Zhenguang Yu, Jingyu Wang, Qi Qi, Jianxin Liao, and Jie Xu

A Reconfigurable Streaming Processor for Real-Time Low-Power
Execution of Convolutional Neural Networks at the Edge 49

Justin Sanchez, Nasim Soltani, Pratik Kulkarni,
Ramachandra Vikas Chamarthi, and Hamed Tabkhi

Application and Industry Track

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 67
Xudong Pang, Jing Wang, Jingyu Wang, Qi Qi, Jie Xu,
and Zhenguang Yu

Mobile Edge Offloading Using Markov Decision Processes 80
Khalid R. Alasmari, Robert C. Green II, and Mansoor Alam

A Face Recognition System Based on Cloud Computing
and AI Edge for IOT. 91

Junjie Zeng, Cheng Li, and Liang-Jie Zhang

A Robust Retail POS System Based on Blockchain and Edge Computing . . . 99
Bo Hu, Hongfeng Xie, Yutao Ma, Jian Wang, and Liang-Jie Zhang

A Privacy Risk Aware Service Selection Approach for Service Composition 111
Mingdong Tang, Jianguo Xie, and Sumeng Zeng

Short Paper Track

A Chinese Text Correction and Intention Identification Method
for Speech Interactive Context . 127

Jin Che, Huan Chen, Jing Zeng, and Liang-Jie Zhang

FCN-biLSTM Based VAT Invoice Recognition and Processing 135
Fei Jiang, Huan Chen, and Liang-Jie Zhang

Research on Cross-Chain Technology Based on Sidechain
and Hash-Locking . 144

Liping Deng, Huan Chen, Jing Zeng, and Liang-Jie Zhang

Author Index . 153

XII Contents

Research Track

Home Edge Computing (HEC): Design
of a New Edge Computing Technology

for Achieving Ultra-Low Latency

Cheikh Saliou Mbacke Babou1, Doudou Fall2(&),
Shigeru Kashihara2, Ibrahima Niang1, and Youki Kadobayashi2

1 Faculty of Science and Technology,
Cheikh Anta Diop University, 5005 Dakar, Senegal

{cheikhsalioumbacke.babou,

ibrahima1.niang}@ucad.edu.sn
2 Laboratory for Cyber Resilience, Nara Institute of Science and Technology,

8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
{doudou-f,shigeru,youki-k}@is.naist.jp

Abstract. Edge computing systems (Cloudlet, Fog Computing, Multi-access
Edge Computing) provide numerous benefits to information technology:
reduced latency, improved bandwidth, battery lifetime, etc. Despite all the
benefits, edge computing systems have several issues that could significantly
reduce the performance of certain applications. Indeed, current edge computing
technologies do not assure ultra-low latency for real-time applications and they
encounter overloading issues for data processing. To solve the aforementioned
issues, we propose Home Edge Computing (HEC): a new three-tier edge
computing architecture that provides data storage and processing in close
proximity to the users. The term “Home” in Home Edge Computing does not
restrain our work to the homes of the users, we take into account other places
where the users could connect to the Internet such as: companies, shopping
malls, hospitals, etc. Our three-tier architecture is composed of a Home Server,
an Edge Server and a Central Cloud which we also find in traditional edge
computing architectures. The Home Server is located within the vicinities of the
users which allow the achievement of ultra-low latency for applications that
could be processed by the said server; this also help reduce the amount of data
that could be treated in the Edge Server and the Central Cloud. We demonstrate
the validity of our architecture by leveraging the EdgeCloudSim simulation
platform. The results of the simulation show that our proposal can, in fact, help
achieve ultra-low latency and reduce overloading issues.

Keywords: Home Edge Computing (HEC) � Edge computing systems
Ultra-low latency � Hierarchical architecture � Micro-cells � Three layers

1 Introduction

The main objective of current Edge Computing architectures (Cloudlet, Fog Com-
puting, Multi-access Edge Computing) is to set up a distributed platform for integrating
cloud technology into telecommunication networks in order to solve the problems

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-94340-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_1&domain=pdf

encountered by cloud computing in relation to the emergence of new types of services.
But with the advent of the Internet of Things (IoT) [1], hence the increase of the
number connected devices that require more real-time processing, current Edge
Computing technologies are failing to achieve their goal due to the degradation of the
quality of the signal and data overloading at the edge computing level. For instance, if
we consider the latest Edge Computing technology, Multi-access Edge Computing
(MEC), the above-mentioned issues result in a poor connectivity between the mobile
and the base station. This will make the computing capacity at the MEC level sig-
nificantly reduced along with the performance of the network resulting on technical
issues on the user equipment: an increase in power consumption to access the base
station which consequently causes a reduction in the life of the batteries. To remedy
these problems, a system for stabilizing wireless communication is essential. In addi-
tion, the increase in the workload at the system level of the peripheral computing leads
to an increase in the service time in the data centers and also a delay in the transmission
of the requests in the network which do not meet the requirements of new types of real-
time applications. This delay is due to the overload of the communication network
where requests from mobile devices converge towards edge computing.

To solve the aforementioned issues, we propose a new concept called Home Edge
Computing (HEC), a three-tier edge computing architecture that provides data storage
and processing in close proximity to the users. HEC is an extension of MEC, we add
another layer of “local data center”, namely the Home Server. The latter is located near
the user (house, office, company, etc.) but is managed by the Internet Service Provider
(ISP). The idea is to implement a miniature cloud in the access point or connection box
that a user receives when he/she subscribes to an ISP. In addition to being transparent
to the user, we do not need additional infrastructure for the implementation of HEC
because this new architecture is based on already existing tools and infrastructures. As
a result, requests that are constrained by latency can be processed locally and no longer
need to be transferred to the MEC level or the central cloud. We believe that our
proposal will contribute to the rapid emergence of 5G by allowing the technologies that
are depicted in Fig. 1 to be processed with their required latency and bandwidth. HEC
can also help improve the signal strength with the installation of micro-cells at the
Home Server level. In order to validate our proposal, we run a simulation by using
EdgeCloudSim which is simulation platform for edge computing technologies [16].
The results show that, indeed, Home Edge Computing is better for applications that are
latency-sensitive.

The remainder of the paper is structured as follows: we survey the different Edge
Cloud technologies in Sect. 2. In Sect. 3, we explain in detail our proposal before
validating it through simulation in Sect. 4. Section 5 concludes the paper with a
summary and probable future works.

2 Overview of Edge Computing Systems

The set of terms Internet of Things (IoT) was first introduced by Kelvin Aston in a
presentation he made at Procter & Gamble (P & G) in 1999 [2]. Gubbi et al. discussed
the evolution of wireless technology from Bluetooth to IoT via RFID in parallel with

4 C. S. M. Babou et al.

application domains. They also talked about the achievements and challenges related to
IoT in cloud computing technology [2, 3]. In 2019, the majority of data on the Internet
will be generated by IoT devices [4] and will be processed at the edge of the network
[5]. According to Cisco, by 2020, more than 50 billion objects will be interconnected
around the world [6, 21]. As a result, certain types of applications will impose a low
latency; others, according to their confidentiality, for example, would need to be
processed locally. This is not in sync with the services that cloud computing can offer.
Thus, with the many solutions that the edge computing system can offer, players in this
area will focus on Edge technologies to address the various problems related to cloud
computing technology. In this section, we present a summary of the different archi-
tectures of Edge computing systems, their advantages, their limitations and the need for
a new Edge computing architecture.

2.1 Concept of Edge Computing Systems

Edge computing systems are introducing new ways to manipulate computing and
storage resources. Industry and academia present proposals on the architecture of
mobile Edge systems.

Cloudlet. With the advancement of the cloud system and the convergence of new
services, mobile users need more resources and accessibility in their environment. As a
result, Cloudlet was implemented (Fig. 2(a)). A Cloudlet is a virtualized architecture
that spans between mobile devices and a remote cloud, which allows the storage and
processing of certain types of data of mobile users without going to the remote cloud.
The main goal is to be able to reduce the response time in order to meet the needs of
some latency-sensitive applications [13]. Note that the Cloudlet has the advantage of

Fig. 1. Bandwidth of latency requirements of potential 5G use cases Source: GSMA
Intelligence

Home Edge Computing (HEC): Design of a New Edge Computing Technology 5

being close to the user but does not have the same capabilities as those of the central or
remote cloud. Thus its computing capacities are limited for certain services. In addition
to its proximity to the users, Cloudlet also has the advantage of being exploited by
mobile users who do not even have an internet connection.

Fog Computing. The second architecture of Edge Computing systems is Fog Com-
puting (Fig. 2(b)). The latter extends the services of the central cloud by reducing the
amount of data sent to the latter for processing and storage [7]. In addition, Fog
Computing system may be integrated into the radio system in the operators’ mobile
networks [8]. Thus, Fog Computing has the advantages of exploiting storage functions,
calculating, controlling, communications between users, depending on the type of
requests [9].

Multi-access Edge Computing. The latest concept of Edge Computing systems is
Multi-access Edge Computing (MEC). The latter, developed in 2014 by the European
Telecommunications Standards Institute (ETSI), enables the provision of resources
through cloud servers near users via the Radio Access Network (RAN) tickets [5, 10].
Thus, according to ETSI, MEC allows a considerable reduction of the latency and
permits the operators to better locate the positions of the users. Moreover, unlike the
aforementioned Edge Computing systems, MEC makes it possible to measure and
improve network performance by setting up services (Software Defined Network

Fig. 2. Edge computing system architectures

6 C. S. M. Babou et al.

(SDN), Network Function Virtualization (NFV), etc.) [12]. Hence, the MEC system has
several advantages: availability of the service, reliability, workload. It should be noted
that the ultimate goal of MEC is to increase the bandwidth, dramatically reduce the
latency and jitter, and provide quality of service (QoS) for mobile applications. MEC is
fully integrated into the mobile networks and its servers are located at the base stations.
The MEC ecosystem and the integration of MEC servers into the mobile network edge
are illustrated in Fig. 2(c), where mobile devices are connected into the base station.
The major disadvantage at the MEC level is when its platform is overloaded, there is a
poor quality of service performance and an increased latency for real-time services.

2.2 Advantages and Limitations of Edge Computing Systems

Advantages of Edge Computing Systems. Edge computing systems have many
advantages over traditional clouds, the most important of which are shown in Table 1.

Limitations of Edge Computing Systems. Despite all the benefits of Edge Com-
puting, there are many drawbacks.

Overload. MEC system failure can occur when a MEC server is overloaded and/or
broken. MEC can be overloaded by serving too many tasks, managing too many
resources, performing data filtration, or from handling too many service requests [14],
as a result, some types of traffic, even those that require minimal physical resources for
processing and some that are latency-sensitive, will not be processed in time, which
degrades the performance and eventually the quality of service (QoS).

Table 1. Comparison between cloud computing and edge computing systems

Items CC MCC Edge systems

Latency/Jitter High High Low (depends on the
rate of use)

Distance to the user High High Low
Deployment Core network Core

network
Network edge

User devices Any users Any
users

Mobile users

Storage capacity Ample Ample Limited
Geo-distribution Internet Internet RAN
Architecture 1-tier 1-tier 2-tier
Network access Any Any Mobile
Scalability Average High High
Computational power Ample Ample Limited
Bandwidth saving No No Yes
Battery life time Limited Limited Ample
Utilization of context
information

No No Yes

Home Edge Computing (HEC): Design of a New Edge Computing Technology 7

Poor signal quality in the macro cells in Edge Computing Systems. For the
establishment of the MEC servers, it will first be necessary to make a survey taking into
account two main factors the location of sites and areas of high density [14]. In these
areas where the traffic is denser, we will have more MEC servers in the same cell
(macro cell). On the other hand, this pertinent idea will not solve the problem because
certain kind of services will not be satisfied with the performance because of the bad
quality of the signal or even the congestion of the base station which is attached to the
MEC in question if we take for example Smart Home (in which we have intelligent
equipment) [11], it is desirable to bring the computer centers to end users in order to set
up microcells in their geographical locations.

2.3 The Need to Propose a New Edge Computing Architecture

Through the limitations of the aforementioned traditional Edge Computing systems and
according to the needs of new services such as augmented reality, virtual reality and
tactile Internet, the architecture of edge computing system has a critical need to be
improved for it to be in phase with these advances. In other words, the requirements of
these new applications in terms of proximity, latency and bandwidth cannot be
achieved by the current Edge Computing systems. As shown in Fig. 1, the afore-
mentioned services require latencies that are between 1 ms and 10 ms and bandwidths
that are between 100 Mbps and 1 Gbps. Thus, with the architecture of the current
systems of edge computing, this is practically impossible. First, the distance between
the user equipment and the base station means that the RTT typically exceeds this
latency. In addition, the signal deteriorates as the user equipment moves away from the
antenna. This will have consequences on the transmission power of the requests and
possibly the bandwidth.

To be able to solve all these problems of Edge computing systems, we propose a
new architecture with three levels, called Home Edge Computing (HEC). This new
architecture will allow these new services to have a local data center, called Home
Server, in which some latency-sensitive requests can be processed. In addition, micro-
cells will be integrated into these data centers in order to significantly improve the
signal strength and possibly the bandwidth.

3 Home Edge Computing (HEC)

The objective of MEC was to provide Mobile Cloud Computing (MCC) with solutions
to the problems that it could not solve such as mobility, response time (for certain types
of traffic), proximity, resource optimization, etc. Despite the implementation of MEC in
mobile networks, latency is still a major problem, especially if the peripheral system is
at its maximum use. In other words, during peak hours (when the traffic has reached its
maximum utilization level), there is a congestion at the servers that are found at the
edge of the network (it is logical because the resources on the edges of the network are
relatively limited). This causes a degradation of the network performance and possibly
an increase in response time (latency), even for some requests that require minimum
resource for their execution. This situation does not fit the real-time applications:

8 C. S. M. Babou et al.

augmented reality, virtual reality, tactile internet. This will pose a real problem in the
future because, according to Cisco, the number of connected objects in the global
network continues to increase (the number will triple at the end of 2019, from 15 to 50
billion). In addition, with the establishment of micro-cells at the level of homes, the
quality of the signal will be relatively efficient vis-à-vis the macro cells at the level of
MEC because the signal on the latter may be very low on some mobiles depending on
the distance with the antenna. This will provide a stable signal of good quality allowing
fast processing of queries and can save energy. Hence the establishment of a micro-cell
at the telecommunication network level is in line with the objectives of the 5G tech-
nology which aims to optimize the frequency and the bandwidth; possibly to be able to
manage the new generation of intelligent equipment by considerably reducing the
latency and also to be able to locally manage certain sensitive data which should not be
transmitted all the time to the outside. To overcome these shortcomings, we propose a
new architecture called Home Edge Computing (HEC). Our architecture will lighten
the work of Multi-access Edge Computing based on certain types of requests by
treating them locally.

3.1 What Is Home Edge Computing?

Home Edge Computing (HEC) is a new technique for having a storage and data
processing device near the users (Home Server); it also allows us to set up a micro-cell
at the user to reduce the workload at the base station located in the MEC and improve
system performance. The HEC architecture comprises three levels of cloud (local cloud
or Home Server, edge cloud, and central cloud). The term “Home” in Home Edge
Computing does not restrain our work to the homes of the users, we take into account
other places where the users could connect to the Internet such as: companies, shopping
malls, hospitals, etc. Thus, HEC is a new architecture of the edge computing system
that is more in proximity to the users compared to Cloudlet, Fog Computing and Multi-
access Edge Computing. HEC is a concept proposed to solve the latency problem still
present in MEC for certain types of applications that have very high needs in term of
resources and have to be processed with relatively reduced delays. With this concept,
we will no longer need to go to the MEC or the central cloud for some queries that do
not require a lot of computing resources for their processing. One could take the
example of smart homes and possibly health care. However, thanks to the synchro-
nization with the edge computing and that of the central cloud, in case of unavailability
of the resources on the Home Server, the latter will automatically launch a request, in a
hierarchical way, to these two systems which potentially possess resources for satis-
fying the computational needs of the task.

Thus, several reasons pushed us to create this concept, among which:

• The considerable reduction of the latency (ultra-low latency) for the requests
coming from the users equipment and to be able to delegate certain tasks of the
MEC server towards the Home Server for the reasons mentioned in [15].

• The installation, at the customer vantage point (office, hospital, company, house,
etc.), of a new device relating to the Cloud (Home Server) and a micro-cell that

Home Edge Computing (HEC): Design of a New Edge Computing Technology 9

would alleviate the load of the MEC (and also the eNB) and would be able to satisfy
the users in terms performance and processing of certain applications according to
their needs in terms of bandwidth and/or latency.

3.2 HEC Architecture

The architecture for Home Edge Computing is depicted in Fig. 3. It is composed of
three levels: Home Server, Edge Server and Central Cloud. In the environment of the
HEC (home, office, hospital, etc.), all equipment will be wired or wirelessly connected
to the local cloud. The Home Server serves, at the same time, as a gateway for this
equipment outside the local network because it will be installed and managed by the
Internet service provider. Thanks to the proximity of the HEC, the latency-sensitive
queries will be rapidly processed. Moreover, for its connection to the rest of the
network, we will have to use the system FTTx (Fiber To The x{Home, Office, etc.})
because it has an ultra-low latency and its flow can reach up to 1Gbps, which will
correspond to our objective as shown in Fig. 1. Thus, for its operation (Fig. 4), if a
request leaves the user’s equipment, it is loaded in the box provided by the Internet
provider. The Home Server inside the box will handle the customer’s request. On this
Home server, if the request cannot be processed, the system will hierarchically transfer
the request to the cloud (Edge Server or Cloud Central). In addition to lightening the
load of the MEC, HEC allows having micro-cells which can also help process latency-
sensitive applications. With the Home Edge Computing (HEC) architecture, we can see
that the only difference with MEC is the Home Server hosted by the customer. The
Home Server has to be tiny, non-cumbersome and transparent to the customer. It must
be able to fit within the box that the customer received from the internet service
provider i.e. it has to be a mini computer e.g. Raspberry Pi.

Fig. 3. Home Edge Computing architecture (HEC)

10 C. S. M. Babou et al.

Benefits. Home edge computing has many advantages:

• Ultra-low latency for applications that could be treated by the Home Server.
• Reduction of the workload on the Edge Server (MEC).
• Considerable improvement of the signal strength thanks to the installation of micro-

cells at each HEC.
• A hierarchical resource allocation system.
• Hierarchical resource allocation: We have what is called the hierarchical aspect at

the level of the cloud in general. Thus, any flow from the user (UE, tablet, IoT,
laptop, …) will pass the first level i.e. the Home Edge Computing (HEC) will be
loaded. If HEC cannot process the request, it will be transferred to the MEC or the
Central Cloud. This allows the MEC to have fewer spots (scheduling) and tasks to
process.

3.3 Use Cases

In this subsection, we will focus on some of the most specific use cases that experience
the need for ultra-low latency for proper operation. As shown in Fig. 1, with respect to
our goal and that of 5G technology, we will take the examples of augmented reality,
tactile internet and virtual reality. From this fact, we will prove that our proposed
solution is more adequate than MEC in terms of latency-sensitive applications.

Augmented Reality. According to Azuma et al. [19], augmented reality can be
defined as a system that combines real and computer-generated information in a real-
world environment, interactively, in real-time, and aligns virtual objects with physical
objects. It is a world in which everything is virtual. In other words, it is closely related
to virtual reality. From this fact, the interconnection between the human being and this
world can be done by a simple vision, by touch but also by movements. This new
concept of HEC will allow the interaction with the real world and that of technology.
Moreover, if we talk about this interaction, we think about real-time because nothing

Fig. 4. Processing model in Home Edge Computing (HEC)

Home Edge Computing (HEC): Design of a New Edge Computing Technology 11

can interact with reality without being in phase with it. We can take the example of
Daydream View and Google glasses.

Tactile Internet. The term tactile internet was first invented by Prof. Gerhard Fettweis
[18]. The tactile internet environment can be considered as a chain environment that
includes the touch of the human being (operator) until the task is executed by the robot
(remote operator). The architecture of the tactile internet can be divided into three parts,
namely the master domain (or of the human), the network domain and the slave
domain. Note that communication between the master and the slave is possible thanks
to what is called haptic communication, which establishes a link between the human
being and the robot through the network domain.

Virtual Reality. The virtual reality system can be defined as the ocular interaction, in
real time, between the eye of the human being in general and a 3D representation of the
virtual world by the computer according to certain types of software. But this inter-
action can also involve touch, smell, sound, etc. Thus, to be able to reach this quasi-real
concept (approximately <= 1 ms for latency), it is necessary to set up a data center very
close to the device in question in order to overcome the constraints with regard to
network latency and the local processing of these requests from the virtual reality
system. Thus, HEC will be better than MEC to meet this challenge as needed in terms
of time.

4 Experimental Validation

The main objective of this section is to show the effectiveness of the new HEC
compared to MEC. For this, we use the EdgeCloudSim simulator [16] as a simulation
environment. This allows us to measure the network latency, the service and the
processing time between MEC and HEC.

4.1 EdgeCloudSim

Developed by Sonmez et al. [16], EdgeCloudSim leverages CloudSim [17] to meet the
needs of Edge Cloud system specialists. With the CloudSim platform, the specific
needs of researchers in the field of mobile edge cloud could not be met. One could even
say that EdgeCloudSim is an extension of CloudSim. Because, in addition to having
the features of CloudSim, EdgeCloudSim allows offloading tasks to the edge com-
puting. Thus, depending on the needs, different modules are implemented in this
environment, namely a mobility module, a load generator module, an edge orchestrator
module, a network module and a main management module of the simulation [16].
Note that all these features are based on the CloudSim platform which provides the
modules for data centers. In this simulation we focus on the network and data center
modules as they relate best to HEC. We need two types of data centers, MEC and HEC.
We do not need the Central Cloud in our simulation, because it showed its limits with
respect to MEC. So, in a recursive way, we show that HEC has better latency than
MEC.

12 C. S. M. Babou et al.

4.2 Simulation Parameters

In our simulation environment, we have to configure 3 types of home devices: the data
center, the host and the virtual machine. The configuration of these devices depends on
the type of home server we choose. Moreover, in the simulation platform, we have to
define different parameters (Tables 2 and 3) and different use cases: virtual reality,
augmented reality, tactile internet, gaming. As we show in Fig. 5, in our environment,
we consider the two lowest levels: TWO_TIER and THREE_TIER. For the simulation,
each scenario (TWO_TIER and THREE_TIER) must be repeated ten times. As a result,
100 new mobile devices are added after each repetition in order to see the evolution of
the latency with respect to the WLAN and WAN network respectively at the HEC and
MEC positions.

In addition, the majority of configuration parameters (Table 2) are collected from
the Cisco Global Mobile Data Traffic Forecast Update [20]. These settings are WAN
propagation delay, LAN Internet delay, and bandwidth (for LAN and WAN). The
remaining values can be taken at these intervals according to the number of devices and
iteration compared to the simulation. Finally, for the orchestration policy, we chose
NEXT_FIT because we did not take into account the QoS aspect for this simulation.

Finally, in Table 3, we took the configurations of the Raspberry Pi which will
represent our HEC Server. This HEC will allow the hosting of Virtual Machines
(VMs) according to requests from User Equipment (UE).

Legend. Min_num_Dev: minimum number of devices, Max_num_Dev: maximum
number of devices, Mob_num_Count: mobile devices number count, WAN_-
Prop_Delay: WAN propagation delay, LAN_Inter_Delay: LAN internal delay,
MIPS_For_Cloud: million instruction per second for cloud.

Table 2. Default configuration properties

Parameters Values

Min_num_Dev [100–1000]
Max_num_Dev [1000–10000]
Mob_num_Count [100–1000]
WAN_Prop_Delay (sec) 0.005
LAN_Inter_Delay (sec) 0.1
WAN_Bandwidth (KB) 680
WLAN_Bandwidth (KB) [1000–10000]
MIPS_For_Cloud [1000–20000]
Orchestrator_Policies NEXT_FIT
Simulation_Scenarios THREE_TIER

TWO_TIER

Home Edge Computing (HEC): Design of a New Edge Computing Technology 13

4.3 Results and Discussion

After the simulation, we could clearly see that it was possible to significantly reduce the
latency in the network based on the distance between the two levels (TWO_TIER and
THREE_TIER) but also according to the number of mobile devices. Thanks to our
method and the help of our simulation platform, we were able to considerably reduce
the transmission time of requests using HEC, i.e. the Home Server. Thus, the average
delay, under the same conditions, went from 94.82% on the MEC to 5.17% at the HEC
level (Fig. 6).

Moreover, as the response time does not depend solely on the network delay, we
have also taken into account the service time and the processing time. According to
Fig. 6, it was possible to significantly reduce the latency between the MEC and the
HEC based on the requests launched by the mobile equipment.

Table 3. Home devices configuration

Parameters Characteristics Values

Datacenter Arch. x86 N/A
OS LINUX
VM XEN

Host Core N/A 4
MIPS 4000
RAM 2000
Storage 128000

Virtual machine VMM N/A XEN
Core 1
MIPS 1000
RAM 500
Storage 10000

Fig. 5. Simulation architecture in EdgeCLoudSim platform

14 C. S. M. Babou et al.

In Fig. 7, we have a visualization of the processing time and the service time of the
two data centers: the home server and the edge server. In this figure, we add another y-
axis in order to be able to integrate the network delay. Thus, after analysis of the
information, we found that, on average, the service and the processing time of the HEC
are higher than those of the MEC unlike the situation in Fig. 6. Unsurprisingly, this can
easily be explained by the fact that the resources at the MEC level are more important
than those of the Home Server according to the MIPS, the number of cores, the
RAM, etc.

Our future goal is to find methods or techniques that will allow us to significantly
reduce processing and service time.

0

20

40

60

80

100

1 00 2 00 3 00 4 00 5 00 6 00 7 00 8 00 9 00 10 00

TI
M

E
(M

S)

NUMBER OF DEVICES

TWO_TIER

THREE_TIER

Fig. 6. Network delay

0
10
20
30
40
50
60
70
80

0
500

1000
1500
2000
2500
3000
3500
4000

TWO_TIER THREE_TIER

DE
LA

Y
(M

S)
N

ET
W

O
RK

 D
EL

AY

DE
LA

Y
(M

S)

Service Time Processing Time Network Delay

Fig. 7. Latency between HEC and MEC

Home Edge Computing (HEC): Design of a New Edge Computing Technology 15

To remedy these issues, we plan to work on:

• The establishment of a home server cluster that will allow us to distribute the load
effectively.

• The implementation of a hierarchical resource allocation system.
• A quality of service policy for real-time services in Home Edge Computing.

5 Conclusion and Future Work

Cloud Computing has been a success in the Information Technology world. But with
the advancement of new technologies and the need for mobility, cloud computing has
grown rapidly to give birth to Mobile Cloud Computing (MCC). The latter encountered
many issues due to constraints imposed by new services and applications. The issues
lead to the implementation of the Edge Computing systems (Cloudlet, Fog Computing,
Multi-access Edge Computing). With the advent of the IoT, real-time applications,
augmented reality services, tactile internet, etc., Edge Computing technologies or the
most recent one Multi-access Edge Computing (MEC) faces many difficulties namely
the overload of its data centers especially in the peak hours which causes an increase in
latency, a degradation of the performance of the applications related to the bad quality
of the signal, etc. Hence, to remedy these problems, we proposed a new three-level
architecture, called Home Edge Computing (HEC), whose main objective is to sig-
nificantly reduce latency and to be able to improve the power of the signal by placing
micro-cells at the level of each home server. Through simulation, we demonstrated the
value of our proposal by reducing the transmission delay between MEC and HEC. For
our future work we will focus on the implementation of techniques that will help solve
the problems related to the limitation of resources on HEC and we will also focus on
resource allocation algorithms in the said edge architecture.

References

1. Twining, J.: Behind the numbers: growth in the Internet of Things. Platform with
information from Cisco IBSG (2015)

2. Ashton, K.: That Internet of Things thing. RFiD J. 22(7), 97–114 (2009)
3. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and challenges for realizing

the Internet of things, vol. 20(10) (2010)
4. Cisco global cloud index: forecast and methodology. In: 2014–2019 White Paper (2014)
5. Yi, S., Qin, Z., Li, Q.: Security and privacy issues of fog computing: a survey. In: Xu, K.,

Zhu, H. (eds.) WASA 2015. LNCS, vol. 9204, pp. 685–695. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21837-3_67

6. Evans, D.: The Internet of Things: how the next evolution of the Internet is changing
everything. In: CISCO White Paper, vol. 1, pp. 1–11 (2011)

7. Chiang, M.: Fog networking: an overview on research opportunities (2016). https://arxiv.
org/abs/1601.00835

8. Tandon, R., Simeone, O.: Harnessing cloud and edge synergies: toward an information
theory of fog radio access networks. IEEE Commun. Mag. 54(8), 44–50 (2016)

16 C. S. M. Babou et al.

http://dx.doi.org/10.1007/978-3-319-21837-3_67
http://dx.doi.org/10.1007/978-3-319-21837-3_67
https://arxiv.org/abs/1601.00835
https://arxiv.org/abs/1601.00835

9. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet
Things J. 3(6), 854–864 (2016)

10. Klas, G.I.: Fog computing and mobile edge cloud gain momentum open fog consortium,
ETSI MEC and cloudlets. Google Scholar (2015)

11. Rimal, B.P., Van, D.P., Maier, M.: Mobile-edge computing vs. centralized cloud computing
in fiber-wireless access networks. In: Proceedings of IEEE Conference on Computer
Communication Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, pp. 991–
996, April 2016

12. Hu, W., Gao, Y., Ha, K., Wang, J., Amos, B., Chen, Z., Pillai, P., Satyanarayanan, M.:
Quantifying the impact of edge computing on mobile applications. In: Proceedings of the 7th
ACM SIGOPS Asia-Pacific Workshop on Systems, p. 5. ACM (2016)

13. Gao, Y., Hu, W., Ha, K., Amos, B., Pillai, P., Satyanarayanan, M.: Are cloudlets necessary?”
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, Technical
report, CMU-CS-15-139, October 2015

14. Satria, D., Park, D., Jo, M.: Recovery for overloaded mobile edge computing. Future Gener.
Comput. Syst. 70, 138–147 (2017)

15. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: Mobile edge computing: survey and
research outlook. arXiv preprint arXiv:1701.01090 (2017)

16. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for performance
evaluation of edge computing systems. In: 2017 Second International Conference on Fog
and Mobile Edge Computing (FMEC). IEEE (2017)

17. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable Cloud
computing environments and the CloudSim toolkit: challenges and opportunities. In:
International Conference on High Performance Computing & Simulation, HPCS 2009. IEEE
(2009)

18. Fettweis, G.P.: The tactile internet: applications and challenges. IEEE Veh. Technol. Mag.
9(1), 64–70 (2014)

19. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances
in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

20. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/mobile-white-paper-c11-520862.pdf

21. Yamada, M., Cuka, M., Liu, Y., Oda, T., Matsuo, K., Barolli, L.: Design of a smart desk for an
IoT Testbed: improving learning efficiency and system security. In: Barolli, L., Enokido, T.
(eds.) IMIS 2017. AISC, vol. 612, pp. 27–35. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-61542-4_3

Home Edge Computing (HEC): Design of a New Edge Computing Technology 17

http://arxiv.org/abs/1701.01090
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
http://dx.doi.org/10.1007/978-3-319-61542-4_3
http://dx.doi.org/10.1007/978-3-319-61542-4_3

Modular Framework for Data Prefetching
and Replacement at the Edge

Dusan Ramljak1(B) , Deepak Abraham Tom2, Doug Voigt3,
and Krishna Kant1

1 Temple University, Philadelphia, PA, USA
{dusan.ramljak,kkant}@temple.edu

2 University of Florida, Gainesville, FL, USA
deepaktom@ufl.edu

3 Hewlett Packard Enterprise, Palo Alto, USA
doug.voigt@hpe.com

Abstract. In this paper, we define and evaluate a Bayesian reasoning
based cache management framework to minimize data movement and
hence the latency and energy consumption of edge devices when inter-
acting with the cloud to retrieve the needed data. The framework can
be implemented either directly as a real cache, or as a virtual cache
that acts as an advisor to the real cache. The latter strategy is useful
when the real cache already exists and deals with complexities such as
pinning/unpinning of some objects. The caching framework makes intel-
ligent prefetching and eviction decisions using contextual and temporal
relationships while automatically adjusting its parameters in the back-
ground. This flexibility and adjustability is crucial for the edge because of
the prevalence of the context dependent and heterogeneous nature of the
cloud interaction. The paper shows through several storage traces that
the mechanism is at least as good as other state of the art algorithms,
and can adapt faster to workload changes.

1 Introduction

The increasing proliferation of the Internet of Things (IoT) devices and sys-
tems [1–3] results in large amounts of highly heterogeneous data to be collected.
It is critical for many of today’s organizations to have fast and actionable insight
into this data by correlating newly obtained data (at the edge) with the histori-
cal or legacy data stored in the cloud. In the resource constrained environment,
getting the data that is needed for analysis at the right time is crucial both
from application responsiveness and energy consumption perspectives. The edge
access patterns are expected to be highly complex and context dependent [4].
This motivates us to study intelligent and flexible caching of the required cloud
hosted data at the edge.

Given the importance of context and ability to add any relevant information
and address new requirements, Bayesian reasoning provides the opportunity to
add evidence (information that will help improve our belief) on the fly. This, in
c© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 18–33, 2018.
https://doi.org/10.1007/978-3-319-94340-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_2&domain=pdf
http://orcid.org/0000-0001-7477-1973

Modular Framework for Data Prefetching and Replacement at the Edge 19

turn, allows us to both adapt to the workload changes and re-train the algorithm
to handle new environments.

We use the notion of “belief” to leverage the context of the data. A “belief”
encodes relationships across storage entities which could be blocks, objects, files,
storage chunks, etc., but generically referred to here as “objects”. Consider two
objects X and Y and a time window W. The belief of X regarding Y relative
to window W, can be defined as the conditional probability that object Y is
requested within the time window W following request for X. The belief is then
used to determine (or suggest, in case of a virtual cache) the objects to be
evicted (low belief) or prefetched (belief higher than elements in the cache, but
not present in the cache).

The rest of the paper is organized as follows. Section 2 introduces similarities
and differences between our approach and approaches that have been used in
related literature to address our needs. The model that we use in the experiments
is described in Sect. 3. Data and BeliefCache characteristics are presented in
Sect. 4, while results are explained and discussed in Sect. 5. We conclude the
paper by providing interesting areas of future studies in Sect. 6.

2 Related Work

Algorithms for predicting future data access in a caching context have been the
object of intensive research for many decades at the page, object, cache-line, file,
etc. levels, and an enormous body of knowledge has been accumulated in this
area. Therefore, we can’t provide an extensive survey of cache management and
prefetching techniques, just an overview of what we were looking for as a basis
for comparison with BeliefCache.

“The cornerstone of read cache management is to keep recently requested
data in the cache in the hope that such data will be requested again in the
near future [5]”. Even though this simple LRU caching and its more complex
improvements [6,7] are predictive approaches they rely on the first order caching
properties (recency and/or frequency of particular objects) and we wanted to
explore them in combination with second order properties (relationships between
the objects).

A lot of techniques explore sequentiality since it is important and widely
present [8–16]. Yang et al. [17] indicate the need to prefetch based on random
access patterns in addition to sequential ones, and observe that a cloud gateway
equipped with adaptive caching/prefetching policies could significantly reduce
tail latency. There are a lot of methods that leverage the access history informa-
tion [13,14,18–26]. A lot of them use the weighted edges as a predictor of which
objects will be requested next. A possible disadvantage is that rare requests may
not be a good enough indicator of what follows next. In our case, we solve this
issue by using a window size to allow several requests to vote on what is a likely
successor. That way even if the current request is rare, the previous requests can
be used to vote for prefetching candidates. Also, in a lot of works prefetching
degree and prefetching trigger point are fixed constants throughout the work-
load. These works [5,8–10,27–30] also try to determine the prefetching trigger

20 D. Ramljak et al.

point and prefetching degree. In order to be adaptive and flexible we don’t fix
either, and from request to request, we let the algorithm determine both based
on belief. We will show in the experimental section how fixing the prefetching
degree affects the quality of the results.

We consider works [17], and it’s containing algorithms AMP [5] and
SARC [11], as important steps towards augmenting first order caching prop-
erties with second order properties, but we aim to go step further. Part of the
Tombolo system that prefetches random access patterns is the history based
prefetching algorithm they call GRAPH. It works by creating a graph that cap-
tures the relationships between requested objects and the requests that occur
immediately afterwards. This is an important restriction which affects the ability
of GRAPH to address more complex access patterns and adapt to the changes in
the workload. We are gauging the relationships between the objects by looking
into the window of object successors rather than just the immediate successor.
This is a generalization since immediate successor in our framework could be
obtained for a window size of 1. We believe that, at the edge, successor rela-
tionships are workload dependent. Related objects might come at inconsistent
intervals which could be captured by increasing the window of object successors
that we are looking into.

Both SARC and AMP, and therefore Tombolo since it is using them, try to
relate utility to the amount of space that each part of cache should contain and
therefore partly decide which data to keep based on access history. We have a
unique policy that is able to address any pattern. Instead of utility, we examine
belief and our decisions are related to each object rather than the amount of
space necessary for objects in each group.

We rely on the claim from [31] that efficient pattern discovery and descrip-
tion, coupled with the observed predictability of complex patterns within many
high-performance applications, offers significant potential to enable many addi-
tional I/O optimizations. Thus, we are confident that belief-based caching and
prefetching is well grounded and might be a good alternative to address complex
access patterns. Directions how to address complex access patterns could also
be found in [32].

3 Method

In very broad terms, we rely on the idea of “belief” to guide underlying heuristics
in our framework and carry out all of the necessary functions of a cache. Belief
is an estimate of a conditional probability that a particular object Y will be
accessed next, after accessing X. It is calculated from how many times that
object has been accessed in the history “look-ahead” windows matching the
current access sequence. Note that the special case of Y = X captures the access
recency, and indirectly access frequency of object X. In literature [27,28,33] the
“look-ahead” period defines what it means for one file to be opened “soon” after
another file. We consider that two files are related if the files are accessed within
a “look-ahead” period of one another.

Modular Framework for Data Prefetching and Replacement at the Edge 21

Thus, beliefs provide a directed model of conditional dependence across ran-
dom access patterns such that integrated use of belief guides both prefetch and
eviction decisions. When determining whether a new object should be fetched,
we examine the belief we have that it will be accessed in the near future. In order
to determine what objects should be removed from the cache, we compare the
belief values of the objects currently in the cache and remove the ones with the
smallest values. In addition to determining when a new object should be fetched,
we also need to decide how many objects should be cycled into the cache. This
can range from replacing a single cache element in the event of both a miss and
a hit if we believe that another object will be more popular, to replacing mul-
tiple objects if we believe that pattern of accesses has been drastically changed.
This way we are addressing the increase in complexity of the encountered access
patterns.

Fig. 1. BeliefCache modular framework

Maintaining a good hit ratio
requires us to constantly monitor
and update the belief values of the
current cache elements, and com-
pare them against potential replace-
ments to determine if new objects
should be cycled into the cache.
While maintaining a good hit ratio
is important, first priority is to sat-
isfy demand requests as quickly as
possible. This is one context where
the notion of virtual cache, shown in
Fig. 1 becomes important. The vir-
tual cache advises the real cache about the cache objects to be prefetched or
evicted based on the belief calculations. This mechanism enables the real cache
to service IO access demand requests as fast as possible while the virtual cache
(possibly running on a separate core) is doing the belief calculations. Note that
the real cache can ignore eviction requests from virtual cache for those objects
that need to remain pinned, and can surely ignore prefetch requests if there are
too many demand requests to satisfy.

3.1 Calculating Beliefs

For each object we calculate the belief that it will be accessed after the current
object if the current object has been accessed more than once. Belief is a condi-
tional probability that an object we are calculating belief for will be accessed in
the window of the size h given that we access the current element. Belief for a
particular object is calculated as the ratio of the normalized counts of how many
times that object appeared in the “look-ahead” history window and counts of
how many times that object appeared in any “look-ahead” history window:

P ({x}|E = o) =
co−x

cxp

× fx
fo

(1)

22 D. Ramljak et al.

Where {x} means that x is in the window of the size h, and {x}|E = o
therefore means that x is in the window of the size h conditioned that o is
the current object. Furthermore, co−x is the count of x in “look ahead” history
windows of o, and cxp

is the count of x in all “look ahead” history windows up to
current time and it could be considered as popularity of x. Finally, fx, fo are the
current overall frequency (could also be considered as credibility of predictive
strength) of o, and x respectively.

Moving through the trace we calculate the belief for all objects in the “look-
ahead” history window of each object we encounter in the trace.

Fig. 2. A rolling history in example trace

A rolling history in toy example
trace on the left hand side is shown
in Fig. 2. Objects are shown by their
ids. Circled are the objects for which
we count the “look-ahead” history
windows. “Look-ahead” history win-
dows of size 5 are represented by
rectangles. On the right hand side is
how the counts get updated. Counts
are updated for the circled objects
only when the last object in rectan-
gle is accessed.

For each object we need to keep
the counts of only the objects that appear in its “look-ahead” windows. In prac-
tice, we update the counts after the fact, when we access the last element in
one elements’ “look-ahead” window. That is why in the Fig. 2 the last object
to have the counts updated is object with the ID 4. Note that Fig. 2 represents
overly simplified example trace and look ahead history windows of size 5 and it
is shown here for better understanding of the algorithm.

3.2 Virtual Caching Algorithm

Fig. 3. Cache candidate voting and determi-
nation example

Figure 4 gives the virtual caching
algorithm which stores the object
IDs as well as the sorted beliefs
calculated for the current object.
As stated before, the virtual cache
only determines the belief and what
should be prefetched. It does not
contain demand request elements
unless their ID’s are brought in by
high belief. We now briefly explain
the algorithm with the help of Fig. 3.

Figure 3, shows the trace history of the simple example when a current object
o with ID 15 is accessed. Cache represents the objects in the virtual cache
(cache size - kt). Cache candidates (cache candidate size - kc) are objects that
are considered to be put in cache. Cache size elements that vote (vote size - v)

Modular Framework for Data Prefetching and Replacement at the Edge 23

1: function BeliefCache(o)
2: Load o
3: if co > 0 then
4: \\Current Beliefs List (BELIEF)
5: for All x �= o do
6: Calculate belief P ({x}|E = o)
7: end for
8: Sort beliefs for x not in cache
9: Choose max kc cache candidates
10: for x in cache candidates and x in cache do
11: Find v voters’ maximal belief vmax

12: xmax ← vmax \\xmax is maximum belief
13: end for
14: Sort cache candidates and cache elements by maximal belief \\Sorted List
15: while xmax > threshold and x in Sorted List and xmax > bs do
16: Update stored value in BELIEF list
17: if x not in cache then
18: \\Prefetch List (PREFETCH)
19: Mark x for prefetching
20: end if
21: end while
22: Suggest objects in PREFETCH list for prefetching
23: Update beliefs in real cache according to stored BELIEF list
24: end if
25: end function

Fig. 4. BeliefCache virtual cache pseudocode

are objects that vote upon cache candidates and cache elements. All sizes in this
toy example, h, v, kc, and kt are equal to 5.

For the currently accessed object,“current object” o (line 2), if it has been
accessed at least once before (line 3), we first calculate beliefs for all other objects
(lines 5–7). Next, we choose kc objects not currently in the virtual cache which
have maximum beliefs that will be accessed after the current object (lines 8–9).
We call those objects “cache candidates”. We use kc last accessed elements in
the trace, including the current element, to “vote” upon which elements out of
the current cache elements and the cache candidates should be in the cache.
“Vote” upon means that, for each object in the virtual cache and among the
cache candidates, we find the maximum belief that voters provide (lines 10–13).

After obtaining maximal beliefs, we then sort these cache elements and cache
candidates according to those maximal beliefs (line 15). Even though we have one
sorted list we keep the information which element of the list is cache candidate
and which one is already in the virtual cache.

In case of any event, our assumption is that we might need to replace more
than one element depending on belief values. Therefore, we try to place in the
prefetch suggestion list the top kc elements from the sorted list of cache candi-
dates and virtual cache elements (lines 15–21). We say “try” because we do so
only if, for each object, the obtained maximal belief is higher than the threshold
t (line 15). By threshold t we refer to the minimum belief or Bayesian probability
required for an object so that it may be considered as a cache candidate. Also,
for each element, starting from the top of the sorted list, we compare its found
belief value with the smallest stored belief value of the objects in the virtual
cache (line 15). If that object from the sorted list was already in the virtual

24 D. Ramljak et al.

cache we only update its current stored belief value (line 16). If the object from
the sorted list was one of the cache candidates we mark it for prefetching from
its remote location (line 19), and store its obtained maximal belief (line 16).
We continue this process until we reach the list element for which the obtained
maximal belief is either smaller than the threshold, or smaller than the smallest
stored belief in the virtual cache. After this process is finished, before moving
on to consider the next event, we have the list of objects marked for prefetching
– PREFETCH (line 22). We update the associated belief values for all objects
in the virtual cache based on values from the new object (line 23) and updates
for elements we don’t want to evict.

Updating the belief for all elements, according to current element beliefs,
and updates for the elements we don’t want to evict (line 23) prevents building
up the high beliefs in the both virtual and real cache. This way we control the
ability to effectively change the elements of the real cache.

Subtracting Counts. At equidistant intervals sl we take a snapshot of the
sparse matrix of counts after subtracting the previous snapshot from the current
sparse matrix of counts.

Subtracting counts contributes to at least two goals. First, our beliefs remain
current and we are able to adapt to workload changes faster. Second, we prevent
the overflow of the cells in a sparse matrix of counts which might happen if we
experience excessive access to certain elements. Nevertheless, we add a measure
to prevent the overflow by limiting the maximal cell number.

Virtual Cache Complexity. Let n be the number of unique objects in the
trace. Note, that kc and h are fixed and lot smaller than n. On the other hand
kw is initially not fixed and is expected to be lot smaller than n.

For each event we have to increment h object counters and h belief counters
(O(h) in worst case). We calculate belief and sort kc best candidates, which
takes O(kc ∗ log kc ∗kw). We then sort kt cache elements with complexity (O(kt ∗
log kt) and compare at most 2 ∗ kt(O(kt)). The total final complexity could be
controlled by avoiding calculation of probabilities when belief could be gauged
by simple heuristics, and keeping all lists sorted. In that case each event only
costs O(log kt).

The required storage for belief counters is O(n × kw). In the worst case
scenario, which is highly unlikely, kw could approach n. In the literature, Oly and
Reed [34] claim that can happen only for the most complex, irregular patterns.
For that to happen, all objects have to be related to all other objects, or in
other words every window after the object needs to contain different objects.
Even being so, since h is lot smaller than n and fixed, for all objects to build
relationships to other objects they need to be accessed a lot and a lot of time has
to pass. However, by subtracting counts we limit the time interval during which
this phenomenon would have to occur and therefore kw could never approach n.

Modular Framework for Data Prefetching and Replacement at the Edge 25

3.3 Real Cache Module

On completion of every IO access virtual cache is supposed to provide the
prefetch and eviction advice, i.e. lists PREFETCH and BELIEF. The real cache
takes PREFETCH list of elements as an advice for prefetching elements in to
itself. For the real cache elements, belief information associated with them is
obtained from the belief vector BELIEF which is regularly updated by the vir-
tual cache. However, we keep a copy of the list in case that the list is locked
for processing by virtual cache. Additional to this, unlike the virtual cache, the
real cache also ensures that the element which it requires to currently access
be brought in to the real cache, if the current IO access is a cache miss. For
completion, the algorithm for the real cache is shown in Fig. 5

1: function RealCache(o)
2: Load o
3: if PREFETCH and BELIEF not locked then
4: Mark elements from PREFETCH for prefetching
5: Evict elements with smallest beliefs from BELIEF
6: end if
7: if cache miss then
8: Satisfy demand request
9: if BELIEF locked then
10: Evict elements with smallest beliefs from the stored copy of BELIEF list
11: else
12: Evict elements with smallest beliefs from the BELIEF list
13: end if
14: end if
15: end function

Fig. 5. BeliefCache real cache pseudocode

Note that, since PREFETCH and BELIEF lists are only suggestions real
cache could as well use other policies to evict elements.

4 Evaluation Characteristics

In order to show the characteristics of our framework we have built a simulator
in which we implemented our algorithm along with algorithms that we intend
to compare to, Tombolo (SARC-GRAPH-AMP).

In the following sections we first introduce evaluation measures in Sect. 4.1.
Section 4.2 contains the characteristics of the traces we worked with.

Characterization of the effects of user settable parameters, and decisions we
made are provided in Sect. 4.3.

All the experiments were performed on 2 6C Intel(R) Xeon(R) CPU E5-2630
v2 @ 2.60 GHz with 128 GB RAM. All code was written in Python 3. Hereinafter,
if not stated otherwise for the particular result, all the sizes are relative to the
number of unique objects in the trace.

26 D. Ramljak et al.

4.1 Evaluation Measures

We consider the following metrics.

(a) Hit ratio: Fraction of requests that have a cache hit over all the requested
data (same as fraction of requests that do not incur on-demand fetch
latency).

(b) Used ratio: Fraction of objects inserted into cache that receive at least one
request before being kicked out.

(c) Insertion ratio (includes prefetch requests and demandfetch requests): Aver-
age number of objects inserted per request.

Used ratio is used only to characterize the algorithm in the Sect. 4.3. The
important aspects of energy consumption are prefetching and demand fetching.
That part of energy consumption is directly proportional to insertion ratio.

4.2 Workloads

We focus on read requests since writes can largely be buffered locally in persistent
storage and flushed to remote system asynchronously. We used the trace using
only the FileName field to discriminate between what has been accessed, and
used TimeStamp, ElapsedTime, and ByteOffset for latency evaluation.

Microsoft Block IO Traces. For our evaluation, we used Microsoft servers
block traces, available on the Storage Networking Industry Association (SNIA)
website1. The traces include Display Ad (DA), Microsoft Network (MSN), and
Exchange Server (ES), all collected in 2007-08 time frame.

The traces are primarily Disk IO (block level), File IO traces and represent
the original stream of access events already filtered through a cache.

SPEC SFS ’14 Workload. The other workload we used is The Video Data
Acquisition (VDA), which is a part of SPEC-SFS (a file system benchmark). We
set up the cloud gateway file system, cloudfuse, which talks swift API to the
Object store and exposes the POSIX interface to the user. As an object store
we set up OpenStack on a single node.

The VDA streaming workload is the most appropriate for the edge context
since it simulates applications that store data acquired from individual devices
such as surveillance camera. Generally, the idea is to admit as many streams as
possible subject to bit rate and fidelity constraints. The workload consists of two
entities, VDA1 (data stream) and VDA2 (companion applications), each about
36 Mb/s. VDA1 has 100% write access, VDA2 has mostly random read access.

1 http://iotta.snia.org/tracetypes/3.

http://iotta.snia.org/tracetypes/3

Modular Framework for Data Prefetching and Replacement at the Edge 27

Fig. 6. DA Cumulative freq.
dist.

Workload Characteristics. One of the impor-
tant characteristics of the workload is object
popularity distribution. We calculated it as a
CFD (Cumulative Frequency Distribution) of a
number of accesses to unique objects arranged in
decreasing access rate. Figure 6, shows the object
popularity distribution for the DA workload, but
all the other popularity distributions look almost
the same. x axis represents the fraction of the
number of unique objects, while y axis repre-
sents the cumulative popularity of the objects.
It is seen that relatively small percentage of the
number of unique objects is accessed frequently for all traces.

Note that all further evaluations were done for different real cache sizes rang-
ing typically (in terms of number of 16 kB blocks) from 10% to 30% of the number
of unique IO accesses in the workload which is less than 3% of the total number
of unique objects. The size of the virtual cache was varied between 1 to 100% of
the real cache size, as appropriate.

Another important characteristic of the workload is the discretized auto-
correlation function. It could show the retention time of objects and is calcu-
lated by incrementing a counter each time we encounter the same object being
accessed for a given lag value. The function is then plotted after normalization.
Figures 7(a), (b), and (c) show the discretized autocorrelation function for the
workloads. x axis represents the time lag, while y axis represents the fraction
of the number of unique objects that are repeatedly accessed after that lag. For
DA it can be seen that the same objects appear regularly with a short gap. MSN
workload has very similar characteristics to DA, which is why we are not show-
ing it here. For ES a medium-term “memory” is evident, i.e., a pattern persists
for some time and then doesn’t show up again. SPEC-SFS shows a truly short
pattern and some long term correlations, but they are all rather weak.

(a) (b) (c)

Fig. 7. Discretized autocorrelation for (a) DA, (b) ES, and (c) SPEC SFS

28 D. Ramljak et al.

4.3 BeliefCache Characteristics

In this section we discuss BeliefCache characteristics and how internal parame-
ters affect the behaviour of our algorithm. Note that our end goal is to have an
adaptive algorithm after the parameters are learned.

General Trends. We noticed that, with the available different workloads
exhibiting different short medium and long-term correlations general trends were
similar except that peaks and valleys were at slightly different points in the
graph.

BeliefCache vs. Fixed Degree Prefetching. BeliefCache, for all of the work-
loads we measured, significantly outperforms cache management algorithms sim-
ilar to BeliefCache where the prefetching policy fixes the number of objects to
prefetch.

Internal Parameters. The way the parameters are tuned during training is as
follows. For each parameter, the value that causes the ratio of hit over insertion
to be maximum is chosen. In other words we want our algorithm to provide as
good of a hit rate as possible, while keeping the data movement minimal. For the
workloads we examined it is sufficient, and algorithm delivers what it promises
during the validation.

Parameters are tuned individually so as to reduce the complexity of the
training. Tuning the parameters together is possible through the application
of randomized optimization algorithm thus finding parameter points that give
better results.

Note that, while our algorithm continues to update the probability values
during both training and testing, we only learn the values of internal parameters
during the training phase.

Training Size: In general there exists a common learning curve for every prob-
lem that involves learning. It assumes a low accuracy at the beginning, increase
for some period of time and the saturation point. We noticed a lack of common
learning curve dependency for Microsoft traces. That could be explained by the
fact that our algorithm needs a small amount of data to produce good results, or
that for these workloads the amount of training data is not a significant param-
eter. For SPECSFS trace there is a lot to learn and bigger training sizes are
needed.

Cache Candidate Size: Cache candidate size does not affect the virtual cache
computation time. However, care must be taken in choosing the appropriate
cache candidate size. With an extremely small cache candidate size no significant
prefetch takes place. On reaching a suitably high cache candidate size Hit Rate
peaks and then remains stagnant with further increase in cache candidate size
since what ends up being examined as a cache candidate are the elements with
lower belief values.

Voter Size: Contrary to what one would expect the Hit Rate peaks initially
and then dips with further increase in voter size. One would expect the predic-
tion accuracy to improve with the increase in number of voters. However, with

Modular Framework for Data Prefetching and Replacement at the Edge 29

increase in the voter size, potentially, the elements with less temporal local-
ity to the current object (further away from it) might boost the belief of the
wrong potential cache candidate element. A large voter size is undesirable since
a larger voter size increases the probability calculation overhead. Therefore, the
best choice of voter size will be a smaller quantity, in fact having a larger voter
size is counter-productive.

Look-ahead History Window Size: With the increase in the window size,
Hit Rate is initially small until a peak is reached. Further on, the trend is again
descending. The reason why this takes place is that, with the increase in the
window size more elements come up in the window of an object and thereby
the probabilities get diluted. As a result, the probabilities do not get to be
sufficiently large in order for the elements to be prefetched in to the cache.
Observing the time for computation with varying look-ahead history window
sizes which steadily increases, it is evident that the best choice of look-ahead
history window size should also be a smaller quantity.

Belief Threshold: As we already mentioned, belief threshold is the minimal
belief that the object should have in order to be considered to be put in the cache.
For the workloads we explored, this parameter proves to have a high value in
protecting the cache from cache pollution. We expect that overprotecting the
cache might hurt the performance.

Hit rate peaks initially and then dips with further increase in belief threshold.
That means we should have a certain belief formed about the objects before we
try to put them in the cache. It is also noticeable that after a certain point
increasing the belief hurts the performance. Lower belief threshold recommends
more irrelevant prefetch elements, which explains the low initial Used Ratio.
With higher belief threshold, the algorithm becomes more conservative about
the elements to be prefetched. This in turn leads to lesser insertions, and thus
directly affecting the Hit Rate.

Tests also showed that the choice of belief threshold does not cause a variation
in the average computation time per IO access in the virtual cache. Thus, the
best choice of belief threshold will be workload specific.

5 BeliefCache Evaluation

Evaluation of the algorithm is done in comparison with Tombolo (SARC-
GRAPH-AMP) in several stages. The most important requirement, the ability
to address complex patterns is addressed first. In Sect. 5.2 we evaluate the speed
of the adjustment. We expect that the framework which better adjusts to the
variations in the workload is better able to reduce the tail latency. Throughout
the experiments both Tombolo and our framework had about the same execution
times.

5.1 Evaluation with Complex Patterns

We compare the performance of BeliefCache against the Tombolo scheme. In
Figs. 8(a), (b), (c), and 9 we show how hit ratio depends on varying the cache

30 D. Ramljak et al.

(a) (b) (c)

Fig. 8. BeliefCache vs. Tombolo hit rate for (a) DA, (b) ES, & (c) MSN

size. In all figures, x axis represents the cache size as fraction of the number
of unique objects and y axis the hit rate. Different line colors represent differ-
ent prefetching policies. As expected, both algorithms perform better on larger
cache on the workloads we examined. For the traces that exhibit random access
patterns and short to medium-term correlations it can be seen that BeliefCache
is slightly better than Tombolo, but differences are not significant. For the trace
which exhibit complex access patterns and long-term correlations BeliefCache is
significantly better than Tombolo. Differences could be explained by the deci-
sions to keep the graph manageable and ignore long chains of repeated accesses
made in parts of Tombolo that should address the random access patterns.

5.2 Adjustment to the Variations in the Workload

Fig. 9. BeliefCache vs. Tombolo

Finally, we evaluate the ability of BeliefCache to
adjust to changes in the workload and compare
the speed of adjustment to Tombolo.

To do this we have divided traces in two
parts. One remains untouched and the other is
perturbated. On untouched part we train both
algorithms. We measure the hit rate on the per-
turbated part which is changed on the follow-
ing way. We kept the same access pattern but
changed the objects which exhibit it. For exam-
ple, if the accesses to objects were 1 7 1 7, we
changed it to 2 8 2 8. Therefore, everything that
our algorithm has learned from previous accesses should be changed to adjust to
perturbation. Since the access patterns remain the same, both algorithms should
at some point recover the measured hit rate on that part before the perturbation.

For all the examined workloads BeliefCache recovers the previous hit rate 2
times faster than Tombolo. As the experiment shows BeliefCache quickly adopts
to the new workload and converges to the old hit rate result, requiring only a
small fraction of the new test set to make the adjustment. On the other hand
Tombolo’s prefetching has a slight upward slope as it is going through the trace.
This implies a rigidity of the structure that is being created as part of the
relationship it has created between different objects in the trace.

Modular Framework for Data Prefetching and Replacement at the Edge 31

6 Conclusions and Future Work

The BeliefCache modular framework exploits contextual and temporal relation-
ships gauged from the access history in the presence of complex access patterns
at the edge to improve prefetching and eviction performance. In this work –
time window, voting window size and belief threshold are among the parameters
learned from access history and kept constant while executing the framework.
In contrast, the beliefs themselves are dynamic values that are updated on each
request. The elements with the highest belief values are considered for prefetch-
ing and those with the lowest values for eviction. The net result is a unified
prefetching/caching algorithm that is not only competitive with the state-of-
the-art algorithms, but can also quickly adjust itself to changes in workload.

Important next steps are to explore the robustness of the parameters with
respect to the workload changes. Clearly, if the workload changes very substan-
tially, the performance of the algorithm may drop and require an update to
the parameters. Understanding the right time when to retrain the parameters
might improve the performance of the framework. Further, interesting avenues
of research would be to extend the belief by looking at temporal, behavioral and
structural factors and explore multiple sets of beliefs.

Acknowledgments. The authors would like to thank Sam Fineberg, and other col-
leagues from HPE, Jesse Friedman, Anis Alazzawe, and Alexey Uversky from Temple
University, for valuable discussions and contributions in the initial phases of this work.

References

1. Gubbi, J., et al.: Internet of things (IoT): a vision, architectural elements, and
future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

2. Rose, K., et al.: The Internet of Things: An Overview. The Internet Society
3. Kolb, S., Lenhard, J., Wirtz, G.: Application migration effort in the cloud. Serv.

Trans. Cloud Comput. 3(4), 1–15 (2015)
4. Zhang, F., et al.: Edgebuffer: caching and prefetching content at the edge in the

mobility first future internet architecture. In: 2015 IEEE 16th International Sym-
posium on World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp.
1–9. IEEE (2015)

5. Gill, B.S., Bathen, L.A.D.: AMP: adaptive multi-stream prefetching in a shared
cache. In: FAST, vol. 7, pp. 185–198 (2007)

6. Arı, İ., et al.: ACME: adaptive caching using multiple experts. In: Proceedings in
Informatics, vol. 14 (2002)

7. Megiddo, N., Modha, D.S.: ARC: a self-tuning, low overhead replacement cache.
In: FAST, vol. 3, pp. 115–130 (2003)

8. Smith, A.J.: Cache memories. ACM Comput. Surv. (CSUR) 14(3), 473–530 (1982)
9. Tcheun, M.K., et al.: An adaptive sequential prefetching scheme in shared-memory

multiprocessors. In: Proceedings of the 1997 International Conference on Parallel
Processing, pp. 306–313. IEEE (1997)

10. Pendse, R., Bhagavathula, R.: Pre-fetching with the segmented LRU algorithm.
In: 42nd Midwest Symposium on Circuits and Systems, vol. 2 (1999)

32 D. Ramljak et al.

11. Gill, B.S., Modha, D.S.: SARC: sequential prefetching in adaptive replacement
cache. In: USENIX Annual Technical Conference, General Track, pp. 293–308
(2005)

12. Cao, P., et al.: A study of integrated prefetching and caching strategies. ACM
SIGMETRICS Perform. Eval. Rev. 23(1), 188–197 (1995)

13. Curewitz, K.M., et al.: Practical prefetching via data compression. ACM SIGMOD
Rec. 22, 257–266 (1993)

14. Griffioen, J., Appleton, R.: Performance measurements of automatic prefetching.
In: Parallel and Distributed Computing Systems, pp. 165–170 (1995)

15. Madhyastha, T.M.: Automatic Classification of Input/Output Access Patterns.
Ph.D. thesis, University of Illinois at Urbana-Champaign (1997)

16. Madhyastha, T.M., Reed, D.A.: Input/output access pattern classification using
hidden Markov models. In: Proceedings of the Fifth Workshop on I/O in Parallel
and Distributed Systems, pp. 57–67. ACM (1997)

17. Yang, S., et al.: Tombolo: performance enhancements for cloud storage gateways.
In: Proceedings of the 32nd International Conference on Massive Storage Systems
and Technology (MSST 2016) (2016)

18. Li, Z., et al.: C-miner: Mining block correlations in storage systems. In: FAST, vol.
4, pp. 173–186 (2004)

19. Kuenning, G.H., Popek, G.J.: Automated hoarding for mobile computers, vol. 31.
ACM (1997)

20. Grimsrud, K.S., et al.: Multiple prefetch adaptive disk caching. IEEE Trans. Knowl.
Data Eng. 5(1), 88–103 (1993)

21. Joseph, D., Grunwald, D.: Prefetching using Markov predictors. In: Proceedings of
the 24th Annual International Symposium on Computer Architecture, ISCA 1997,
pp. 252–263 (1997)

22. Palmer, M., Zdonik, S.B.: Fido: a cache that learns to fetch. Brown University,
Department of Computer Science (1991)

23. Kroeger, T.M., Long, D.D.: Design and implementation of a predictive file prefetch-
ing algorithm. In: USENIX Annual Technical Conference, General Track

24. He, J., et al.: Knowac: I/O prefetch via accumulated knowledge. In: 2012 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 429–437. IEEE
(2012)

25. Vitter, J.S., Krishnan, P.: Optimal prefetching via data compression. J. ACM
43(5), 771–793 (1996)

26. Lei, H., Duchamp, D.: An analytical approach to file prefetching. In: USENIX
Annual Technical Conference, pp. 275–288 (1997)

27. Lin, L., et al.: AMP: an affinity-based metadata prefetching scheme in large-scale
distributed storage systems. In: 8th IEEE International Symposium on Cluster
Computing and the Grid, CCGRID 2008, pp. 459–466. IEEE (2008)

28. Gu, P., et al.: Nexus: a novel weighted-graph-based prefetching algorithm for meta-
data servers in petabyte-scale storage systems. In: 6th IEEE International Sym-
posium on Cluster Computing and the Grid, CCGRID 2006, vol. 1, pp. 409–416.
IEEE (2006)

29. Cortes, T., Labarta, J.: Linear aggressive prefetching: a way to increase the per-
formance of cooperative caches. In: Proceedings of the 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and Distributed Process-
ing, IPPS/SPDP, pp. 46–54. IEEE (1999)

30. Dahlgren, F., et al.: Fixed and adaptive sequential prefetching in shared memory
multiprocessors. In: International Conference on Parallel Processing, ICPP 1993,
vol. 1, pp. 56–63. IEEE (1993)

Modular Framework for Data Prefetching and Replacement at the Edge 33

31. He, J., et al.: I/O acceleration with pattern detection. In: Proceedings of the 22nd
International Symposium on High-Performance Parallel and Distributed Comput-
ing, pp. 25–36. ACM (2013)

32. Miller, J.A., Ramaswamy, L., Kochut, K.J., Fard, A.: Directions for big data graph
analytics research. Int. J. Big Data 2(1) (2015)

33. Griffioen, J., Appleton, R.: Reducing file system latency using a predictive app-
roach. In: USENIX Summer, pp. 197–207 (1994)

34. Oly, J., Reed, D.A.: Markov model prediction of I/O requests for scientific appli-
cations. In: Proceedings of the 16th International Conference on Supercomputing,
pp. 147–155. ACM (2002)

Boundless Application and Resource
Based on Container Technology

Zhenguang Yu(&), Jingyu Wang, Qi Qi, Jianxin Liao, and Jie Xu

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,

Beijing 100876, People’s Republic of China
{yuzhenguang,wangjingyu,qiqi,liaojianxin,

xujie}@ebupt.com

Abstract. Limitations like network latency and expensive cost are pushing
cloud computing to the edge. Edge computing, also known as fog computing is
an extension of cloud computing, providing features to solve problems of cloud
computing. However, edge computing is unstable and not enough reliable at
present. Orchestration may occur occasionally in order to meet the need of the
users. This paper provides an architecture named Boundless Resource Orches-
trator (BRO) combing cloud computing and edge computing based on con-
tainers. Containers provide more lightweight virtualization compared to VMs.
The proposed architecture leverages container technology to accelerate and
optimize the orchestration process taking container as the basic component of
orchestrating and minimum resource unit for service distribution. A master-slave
paradigm is implemented in the architecture to provide region autonomy abili-
ties rather than the centralized architecture. Considering the ever-changing cir-
cumstance of edge cloud, an orchestration strategy named Best Performance at
Least Cost (BPLC) is proposed to maximize the performance of computing at
minimum cost dynamically and automatically considering real-time conditions
of the cloud. Experiments are carried out on measuring couples of infrastruc-
tures and orchestration strategies that prove the BRO and BPLC as prior choices
dealing with massive jobs in edge computing.

Keywords: Containers � Edge computing � Cloud computing � Orchestration

1 Introduction

Resources are spread across datacenters, enterprise clusters and Internet of Things
(IoT) devices. Cloud computing virtualize datacenters and provide massive computing
resource but at a relatively high cost. Edge computing reorganized and made sufficient
use of computing resource in enterprise clusters, personal laptop and IoT devices
among the edge, avoiding waste of edge resource and cut costs on using computing
resource. Having their own pros and cons, computation offloading is an acceptable
solution to reach high performance and utilize of resource statically. However, con-
ditions such as computation overload, internet bandwidth and connection latency may
change over time. Applications may have better performance running on the edge now

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 34–48, 2018.
https://doi.org/10.1007/978-3-319-94340-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_3&domain=pdf

and even better in the cloud second later. Thus, real-time re-scheduling between cloud
and edge or redirecting among the edge is needed.

Migration should retain integrity and consistency of the application. Considering
the cost of migration and a variety of problems such as dependency loss and mutable
situations we may encounter during migrating, a lightweight virtualization solution
other than VM is needed [14]. Containerization is currently discussed as a frequently
used lightweight virtualization solution [16, 17]. Containers provide more interopera-
ble, standardized and lightweight application packing in the cloud which reduces the
overhead of application migration, for example, less time-consuming [13]. Standard-
ized with container technology, application and resource are simpler to manage across
the cloud. Containerized application could be distributed with restrictions on resource
usage set in advance to scheduled compute node. Furthermore, containers are enough
reliable and private to make the isolation of various applications easy [15]. Most
orchestration strategy on containers in the edge cloud [3] orchestrates the applications
with a scheduler in the data center ignoring different demands of various edge clouds.
Strategies may be difficult to formulate due to the ever-changing circumstance of
different edge clouds.

Regarding for the challenge of minimizing computing overhead and effectively
utilize resource on the edge, we come up with a new research on improving the
performance of dynamic re-scheduling between cloud and edge and among edge. Our
proposal is to build a modular system architecture, named Boundless Application an
Resource Orchestrator (BRO), aims at provisioning application to suitable edge node or
to the cloud automatically and dynamically to reach either best performance or best
utilization of resource based on container technology. The orchestration depends on
multiple parameters such as computation overload, internet bandwidth and the cost of
resources. The presented architecture considers single container as the minimum unit of
scheduling and a basic resource unit for service distribution. Containerized application
is available in a public registry maintained in the core cloud. Distribution and
deployment could be done in one click and are transparent to the end users. We
implement a master-slave paradigm instead of traditional centralized scheduling setting
associate schedulers in each edge cloud running different strategies according to the
circumstance of specified edge cloud. Schedulers will make an overall consideration
combining the parameters set in advance and real-time conditions on switching con-
tainerized application between cloud and edge or across the edge to ensure the per-
formance of the containerized application meet the need of users in minimum cost.
Edge devices are able to share idle resources by acting as a pseudo node of the
architecture.

Ultimately, the paper put forward an attempt to make resource and application
boundless, referring that all resource across the cloud and the edge is managed and could
be efficiently used. Applications are somewhere to gain best performance with least cost
automatically and dynamically under the proposed architecture. The remainder of this
paper is organized as follows. Section 2 lists the related works. Section 3 shows the
modular system architecture. Section 4 reveals the details on the implementation of the
dedicated system architecture and algorithms included. In Sect. 5, we evaluate the

Boundless Application and Resource Based on Container Technology 35

impact of using our architecture on top of different use cases with various aspects taken
into consideration. Section 6 concludes the paper and looks into the future work.

2 Related Works

2.1 Edge Computing

Edge Computing is an emerging computational architecture that shares an idea on
moving the computation closer to the edge devices in order to avoid limitations such as
bandwidth, latency and high cost in traditional cloud computing. Edge computing act
as an extension of traditional cloud computing, coming up with the multi-cloud
paradigm in line with the trend of decentralization and IoT. In constant to traditional
cloud computing, edge computing orchestrates resource and computation on the edge
as well as provide all services in a distributed way. Research on edge computing [8, 11,
12] has proved that edge computing meets the demand for computing architecture
through now to the future and edge computing is currently widely accepted as an
optional infrastructure of IoT [10]. In [9], a strategy for automatic task sharing and
switching between cloud and edge computing has been put forward and a smart IoT
gateway is designed based on machine learning and cognitive analytics to make an
orchestration for applications between the cloud and the edge. However, orchestration
on applications in edge computing may be difficult due to the diversity of edge devices
and mutable circumstance.

2.2 Container in Edge Computing

Container technology is a widely accepted lightweight virtualization solution which
provides isolation, standardization and flexibility with least overhead in cloud com-
puting. Researches shows that the characteristic and advantages of container technol-
ogy perfectly match the requirements of the edge computing technology on
virtualization. In [5], a performance evaluation is done on container technology as the
virtualization method in IoT edge architecture. The research shows that container-
virtualization technology produces negligible impact in terms of performance when
compared to native executions but can enhance IoT security. In [1, 7], other technical
evaluation and experiment on specified fundamental edge computing using case is
made and claim Docker container as a viable candidate for edge computing architecture
while still having rooms for improvement. In general, container technology, providing
more security, isolation and higher performance, is the optimal choice rather than VM
in edge computing. Researches on the orchestration of containers in edge computing
[2–4, 6] are in progress as well. Common orchestration strategy is making scheduling
decisions by a scheduler in the core cloud and delivers containers to separate edge
nodes considering dynamic circumstance, appearing to be cumbersome and inefficient
in contrast to native orchestration on edge computing.

36 Z. Yu et al.

3 Architecture Design

Cloud computing is moving from centralized to the decentralized pattern to avoid
network bottleneck and efficiently utilize edge computing resource. Boundless appli-
cation and resource system is an architecture attempting high performance though
scheduling applications between the cloud and the edge or among the edge based on
container technology (Fig. 1).

BRO has the following features:

• Based on container: considering container as the basic unit of application and
resource management and scheduling.

• High adaptability: supports various edge devices from enterprise server to personal
laptop. Any edge devices that support container can play a role in the architecture.

• High-performance dynamic scheduling strategy: taking real-time condition into
consideration, applies suitable mechanism such as BPLC mechanism and tagging
mechanism corresponding to different scenarios to achieve the best performance at
minimum cost dynamically.

• Sufficient utilize of edge resource through sharing rule: leveraging container tech-
nology, it is able to share idle resources of your server or even your laptop.

• Fault tolerant: improve the stability and reliability of the architecture through a
complete set of recovery mechanism.

3.1 Containers

Compare to cloud computing, edge computing could be relatively unstable and unre-
liable. Due to the complex network and heterogeneous structure of edge cloud, the
environment of edge computing may change time to time. Widely discussed as an
outstanding lightweight virtualization solution, container technology provide isolation

Fig. 1. Architecture of BRO

Boundless Application and Resource Based on Container Technology 37

for applications among changeable environment with much lower overhead than VMs.
While the performance of the application is affected by the real-time condition, re-
scheduling is common in edge computing to achieve higher performance. Container-
izing application makes scheduling simple. Container technology could provide stan-
dardize, isolation, less overhead and high fault tolerant for edge computing, leaving
dependency problems behind. Managing distributed containerized application could be
implemented as same as managing container clusters in the cloud. Thus, containers are
even suitable for the circumstance of edge computing and cloud computing.

3.2 Pseudo Node

BRO aims at making application and resource boundless implying making remote
resource reachable and local resource sharable. The most straightforward method is
attaching your devices to the cloud, afterward, cloud computing resource is next to
your hand. However, joining the cloud is too cumbersome for edge devices and may
lead to many problems. As the name suggests, pseudo node initializes the edge device
as an incomplete or fake minion with strong restrictions. If the edge device has been
initialized to a pseudo node, we can participate in BRO, gain cloud computing resource
and share local resources among the cloud portable and safe.

3.3 Regional Autonomy

BRO applies the concept of regional autonomy in edge computing in order to deal with
the ever-changing circumstance of the edge cloud. According to the concept of regional
autonomy, the architecture divides the edge into different portions according to various
properties and characteristic such as logical or physical location, computation overhead
and stability. Scheduling will be first done within current portion of edge cloud and
then across the edge if lack of resource. Regional autonomy could improve the per-
formance of scheduling efficiency and accuracy as well as be easy to adapt to diverse
infrastructures.

4 Implementation

See Fig. 2.

4.1 Application and Resource Unit Management

BRO takes container as the basic unit of application and resource management. All
application running under this architecture should be containerized. Thus, we can
manage application in a similar way with containers.

Application migration could be simply implemented by transferring container
images, which is so small and the state of the application will be stored in the container
image. Leveraging orientated scheduling of container cluster is another solution for
containerized application migration. The application manager records the behaviors of
the containerized application and generates a dockerfile, responsible for lifecycle

38 Z. Yu et al.

management of the containerized application. Application rollback could be imple-
mented by going through the dockerfile.

Container preconfigured a threshold of resource usage referring the maximum
resource the application could occupy using cgroup and namespace [20]. Thus, a
container can be a unit to measure resource. A special container with the same con-
figuration can be distributed to the objective node to test the resource before the
containerized application is scheduled.

4.2 Monitor Container

Monitor container is a special container created during initializing pseudo node.
Monitor container consists of various data collectors and several tools for testing,
pressure test and heartbeat detection, for example. A pseudo node is considered
unavailable when the monitor container is down.

The monitor container supervises the pseudo node and containerized application
running upon and is responsible for collecting real-time condition data such as CPU
usage, memory usage and I/O usage. Monitor container uploads real-time condition
data to the scheduler as a critical counter for the producing of scheduling strategy
(Tables 1 and 2).

Monitor container will provide the performance of containerized applications
scheduled on current pseudo node to the learning module of the scheduler to optimize
the algorithm. If low performance or congestion is detected, the monitor container will

Fig. 2. Lifecycle of edge computing under BRO

Boundless Application and Resource Based on Container Technology 39

inform the scheduler to reschedule the containerized applications in time and send
feedback for better performance.

Monitor container plays an important role in the tag system. It tries to quantify data
collected and add various tags to the pseudo node such as “stable” for pseudo nodes
with sustained connectivity and “massive” for pseudo nodes with massive computing
resources. Besides the default data collector, self-defined collectors are available for
special cases. Before scheduling, a monitor container with a self-defined collector will
be delivered to suitable nodes for addition dedicate condition data. Self-defined tags
could be added by self-defined collectors for further sharing and scheduling.

4.3 Master-Slave Paradigm

BRO implements regional autonomy through the master-slave paradigm. In contrast to
the traditional centralized paradigm, master-slave paradigm divides the edge into parts
according to the characteristic and property of the certain range of edge. Each edge cloud
owns a dedicate associate scheduler apart from the master scheduler in the data center.
The associate scheduler has a set of independent scheduling mechanisms depending on
the property and characteristic of the edge cloud. Containerized application could gain
best performance scheduling among the edge cloud under the dedicate scheduling
mechanism. The associate scheduler runs under the monitor of the master scheduler in
the data center. While current edge cloud cannot meet the requirement of the job, the
associate scheduler will call for the master scheduler to make an orchestration across

Table 1. Sets used in this article

Sets Domain

X Set of nodes
C Set of nodes in the data center
E Set of nodes in the edge cloud
S Set of nodes in the current edge cloud
A Set of applications
J Set of jobs
I Set of types of resources

Table 2. Common condition data referenced by the scheduler.

Notations Meaning

duv Available bandwidth of route uv, where u; v 2 X

T1
x Total available computational capacity of node x. x 2 X

T2
x Total available memory of node x. x 2 X

T3
x Total available storage of node x. x 2 X

Sx Available rate of node x. x 2 X
luv Latency between node u and node v, where u; v 2 X
Oa Average data transmission overhead scheduling containerized application a

40 Z. Yu et al.

different edge clouds or upload to the data center. The master scheduler is also
reasonable of instructing associate scheduler and adjusting edge scheduling mechanism
analyzing feedback uploaded to the data center. Through master-slave paradigm, BRO
implemented regional autonomy and retains the benefits of decentralization. Equa-
tion (1) shows default clustering mechanism to divide the edge. Li and Ll respectively
represent self-defined thresholds for corresponding dimensions.

ejTi
e\Li; lue\Ll; u 2 S; i ¼ 1; 2; 3

� � ð1Þ

4.4 Scheduling Strategy

Conditions of the cloud may change in time. An application may have fine performance
running on the edge for some time and have even better performance running in the
cloud for some other time. Thus, scheduling is required to achieve the best performance
at all time. Scheduling under BRO consists of scheduling between the cloud and the
edge and among the edge, while cloud resource is commonly known as stable, massive
but expensive and edge resource usually unstable, unreliable but low-cost.

The scheduler is responsible for generating scheduling strategies and initiating a
scheduling procedure through commanding the built-in scheduler of the container
cluster to schedule the target application. Scheduling strategy under BRO is usually
divided into two categories: static strategy and dynamic strategy. As the platform is
initialized statically and relatively stable, applications are initially scheduled under the
static strategy. Once real-time conditions such as computing overhead, internet band-
width or connectivity changes, the dynamic strategy should be used.

A traditional solution is categorizing the containerized applications manually into
few types such as high traffic or heavy computation, which brings lack of accuracy.
BRO guides the scheduling process according to the Best Performance at Least Cost
(BPLC) algorithm with the assistance of a tagging mechanism. BPLC aims at gaining
best performance at least cost through effective scheduling of containerized applica-
tions. The performance could be measured through the average job finishing time.
Average job finishing time is made up of the average job waiting time implying
scheduling overhead and average job execution time that depends on resource condi-
tions. Scheduling overhead depends on latency luv and data transmission overhead Oa.
We express average job execution time using resource conditions of the edge. Equa-
tion (2) shows the performance of the static scheduling strategy and Eq. (3) shows the
performance of the dynamic scheduling strategy. a, b and c are tuning parameters for
the weight of the separate parts.

a
P

i¼1;2;3
ci
P

e2S
Ti
e � b

P

e2S
min
c2C

lce þ
P

a2A
Oa

� �
ð2Þ

a
P

i¼1;2;3
ci
P

e2S
Ti
e � b

P

e12S
min
e22S

le1e2 þ
P

a2A
Oa

 !

ð3Þ

Boundless Application and Resource Based on Container Technology 41

Except gaining best performance, BPLC attempts to reduce the cost of running
applications in the edge cloud. We assume the cost on the device in the edge mainly
depend on the resource it provides. Cost of running applications is measured as Eq. (4).
Sa represents edge nodes occupied running application a and Ri

a respectively represent
resources required by application a.

P

i
ei
P

e2Sa
Ti
e ð4Þ

Considering both performance and the cost, object function of BPLC is shown as
Eq. (5). Equation (6)–(7) reveal part of the constraints such as bandwidth conservation
and computational resource conservation. auv represents application scheduling through
node u and node v.

max
e2Sa

a
P

i¼1;2;3
ci
P

e2Sa
Ti
e � b

P

e12Sa
min

e22S;e2 62Sa
lce þ

P

a2A
Oa

 !

� h
P

i
ei
P

e2Sa
Ti
e ð5Þ

P

ae1e22A;
Oae1e2

� de1e2 8e1; e2 2 Sa ð6Þ
P

e2Sa
Ti
e [Ri

a8i 2 I ð7Þ

Tagging mechanism act as a supplement to the BPLC algorithm. According to the
tagging mechanism, pseudo nodes on the edge is tagged during initialization by the
monitor container according to the instant condition of the devices such as computing
resource available, internet bandwidth and connection persistency and stability.
Application managers add tags to the containerized application according to the
demand of the application, massive or long living, for example. Though comparing the
tags, combing the overhead of migration and suitability of the pseudo node, it is easy to
determine a target node for scheduling.

However, common tags cannot cover the massive properties on demand. We come
up with customized tags added by monitor containers with self-defined data collectors
enriching the properties covered. With increasing amount of tags, fuzzy matching of
tags is effective but not efficient enough. The problem is that it is hard to match tags on
application to various customized tags. We put forward a new tagging mechanism based
on machine learning. Before scheduling, we run a simulation container that acts as the
same as the target containerized application on a sample node with a comprehensive
monitor container. The dedicate monitor container is trained with a machine learning
algorithm, classifying all customize tags and extract features. After a period, the dedicate
monitor container will analyze the behavior of the specified testing container and add a
group of customized tags with the corresponding features. The whole tagging procedure
is done automatically and will be more accurate with time. Feedback such as error report
and operational situation sent by monitor containers across the edge can further improve
the performance of the new tagging mechanism. Nevertheless, additional overhead is
required for the first time the containerized application is scheduled.

42 Z. Yu et al.

5 Experiment and Use Case

We present two case study respectively to examine master-slave paradigm and regional
autonomy as an impressive orchestration pattern for edge computing architecture based
on containers and estimate the strategy mentioned in scheduling containerized
applications.

5.1 Examining Effects of Master-Slave Paradigm

We setup a lab environment as showed at Fig. 3 with a datacenter and four groups of
edge devices ranges from dedicate servers to personal laptop. We use Docker [18] as an
implement of container technology and deploy a container cluster with Kubernetes in
the datacenter as the basic core cloud. Kubernetes [19] is a production grade container
orchestration tool and is the best solution to act as the native container cluster manager
in our architecture. Node manager, application manager and scheduler in our archi-
tecture will implement upon the native container cluster manager we choose, Kuber-
netes during this experiment, for example.

Edge devices are initialized to pseudo nodes, as a fake minion of the container
cluster. Each edge devices will have different properties: group a has least computing
overload, group b has low network latency, group c has maximum internet bandwidth
and group d is balanced on all properties. All edge devices are reachable by another and
accessible from the container cluster.

In this experiment, we created a group of containers running machine learning and
another group of containers running web crawlers program through the dockerfile and
randomly deploy them among the edge devices. In reality, containerized applications
should be pushed to the public registry in the cloud and deployed from the datacenter to
the edge cluster. We deploy them directly among the edge devices for convenience to
observe the scheduling procedure.

Four set of experiments is taken following the same procedure mentioned before
under various infrastructure. We take VM, native environment and centralized

Fig. 3. Topology of lab environment

Boundless Application and Resource Based on Container Technology 43

paradigm as parallel experiments to the master-slave paradigm. We respectively record
job average waiting time and job average execution time running different amount of
jobs. Job average waiting time implies the time cost of scheduling and job average
execution time indicates the performance of the architecture. We use the number of
jobs to simulate the scale of the computation and observe the performance of four
infrastructure under different circumstance.

The outcome of the experiment proves container technology as an effective solution
providing isolation, reducing scheduling overhead and fastening the scheduling pro-
cedure. Containerized application could be a choice under edge computing scenario.
According to the record in Figs. 4 and 5, we can temporarily draw some conclusions:

• Container technology cuts the overhead of scheduling and is a better choice com-
pared traditional VMs. However, container technology makes negligible improve-
ment in terms of performance compared to native executions.

Fig. 4. Job average waiting time in different scale of orchestration

Fig. 5. Job average execution time in different scale of orchestration

44 Z. Yu et al.

• Master-slave paradigm acts similar to the centralized paradigm in small scale but
gains better performance with the increase in the number of jobs.

• Master-slave paradigm accelerates scheduling and owns high accuracy comparing
to centralized paradigm dealing with massive jobs. Regional autonomy contributes
to this feature while dealing each edge cloud with more suitable strategy.

5.2 Estimating BPLC Associated with Tagging Mechanism

In order to estimate the effectiveness of tag mechanism under the circumstance men-
tioned in the paper, we present a case study to compare the tag mechanism with the
native container scheduling method and IoT gateway [9] without containers.

We setup a lab environment with a datacenter and four groups of edge devices. The
datacenter is initialized as same as the former experiment and the edge devices are
given random combinations of properties such as high internet bandwidth with high
computing overload or low computing overload with less network latency.

After initializing the lab environment, we create a group of containers running
different types of applications ranging from high traffic to high computing overload.
We deploy them from the datacenter to get a clear view of the scheduling procedure
between cloud and edge and among edge.

We will repeat the experiment procedure three times respectively with native
container orchestration mechanism, BPLC mechanism and IoT gateway and record a
set of data. The statistic of the result is revealed in Figs. 6 and 7.

According to the result recorded, Job avg. waiting time reveals the total time spent
scheduling the jobs to suitable nodes. The BPLC mechanism takes a little more time in
small scale but shows better performance than native container orchestration mecha-
nism along with the growth of jobs. IoT gateway owns least waiting time cause of none
overhead. Job avg. execution time shows the performance of the jobs. Statistic reveals
that BPLC mechanism performs much better than the others especially with massive

Fig. 6. Job average waiting time under different orchestration strategy

Boundless Application and Resource Based on Container Technology 45

jobs, claiming the accuracy of the orchestration and high resource utilization of edge
resource. The outcome of the experiment proves that the BPLC mechanism proposed in
the paper is effective in scheduling containerized application among the edge cloud.

5.3 Use Case

BRO owns strong adaptability and could be widely adopted by companies, public
organizations and even personal laptops. Use cases of BRO vary from applying as an
enhanced implementation of IoT scenarios such as Smart Cities, E-health and smart
homes to acting as an invisible frame making resource gaining and application running
automatic and convenient for the public.

A common use case is acting as an invisible frame contributing to accelerating the
automatic process of application orchestrating and resource utilize optimization. For
example, training a model for a deep learning job could be finished within one-step
setting parameters with a template. The specified job will be initialized, containerized
and orchestrated to suitable nodes for best performance without the intervention of
operators. Other use cases include but not limited to idle resource liquidation, traffic
shaving and fast deployment.

6 Conclusion and Future Work

This paper has put forward an architecture based on container technology aims at
combing cloud computing and edge computing. Appling container technology in edge
computing effectively increases stability and performance through optimizing the
orchestration procedure, lower the cost of scheduling. BRO attempts to deliver
applications to suitable edge node or to the cloud automatically and dynamically to
reach either best performance or best utilize of resource based on container technology.
Rather than centralized dispatching from the data center, the master-slave paradigm is
much more elastic, reliable and effective while regional autonomy can be better adapted

Fig. 7. Job average execution time under different orchestration strategy

46 Z. Yu et al.

to the ever-changing environment of edge computing. Furthermore, orchestration
strategy BPLC with tagging mechanism is designed for edge computing under the
container-based architecture and improves the performance of cloud computing and
edge computing.

Currently, there are still limits accessing resources in the cloud or among the edge
due to plenty of problems such as security problems. The emergence of BRO and
BPLC solves these problems slightly but not completely. Future work place emphasis
on improving the performance of container in edge computing and optimizing dedicate
orchestration strategy under various circumstances. Hopefully, resource and application
will be standardized and reachable anywhere in the visible future.

Acknowledgment. This work was jointly supported by: (1) National Natural Science Foun-
dation of China (No. 61771068, 61671079, 61471063, 61372120, 61421061); (2) Beijing
Municipal Natural Science Foundation (No.4182041, 4152039); (3) the National Basic Research
Program of China (No. 2013CB329102).

References

1. Ismail, B., Mostajeran, E., Bazli Ab Karim, M., Ming Tat, W., Setapa, S., Luke, J.-Y., Ong,
H.: Evaluation of docker as edge computing platform (2015)

2. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures – a technology review
(2015). https://doi.org/10.1109/ficloud.2015.35

3. Dupont, C., Giaffreda, R., Capra, L.: Edge computing in IoT context: horizontal and vertical
Linux container migration, pp. 1–4 (2017)

4. Park, J.-W., Hahm, J., Container-based cluster management platform for distributed
computing. In: Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, pp. 34–40 (2015)

5. Morabito, R.: Virtualization on internet of things edge devices with container technologies: a
performance evaluation (2017)

6. Morabito, R., Beijar, N.: Enabling data processing at the network edge through lightweight
virtualization technologies (2016)

7. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.F.:
Performance evaluation of container-based virtualization for high performance computing
environments. In: Proceedings of the 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP 2013, pp. 233–240. IEEE
Computer Society, Washington, DC (2013)

8. Jalali, F., Hinton, K., Ayre, R., Alpcan, T., Tucker, R.S.: Fog computing may help to save
energy in cloud computing. IEEE J. Sel. Areas Commun. (2016)

9. Jalali, F., Smith, O.J, Lynar, T., Suits, F.: Cognitive IoT gateways: automatic task sharing
and switching between cloud and edge/fog computing (2017)

10. Cozzolino, V., Ding, A.Y., Ott, J., Kutscher, D.: Enabling fine-grained edge offloading for
IoT (2017)

11. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: ThinkAir: dynamic resource
allocation and parallel execution in the cloud for mobile code offloading. In: 2012
Proceedings IEEE INFOCOM, pp. 945–953 (2012)

12. Kniess, J.: Reducing web application latency with fog computing (2016)

Boundless Application and Resource Based on Container Technology 47

http://dx.doi.org/10.1109/ficloud.2015.35

13. Zheng, C., Thain, D.: Integrating containers into workflows: a case study using makeflow,
work queue, and docker. In: Proceedings of the 8th International Workshop on Virtualization
Technologies in Distributed Computing, VTDC 2015, pp. 31–38. ACM, New York (2015)

14. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of
virtual machines and Linux containers. In: Performance Analysis of Systems and Software
(ISPASS), pp. 171–172 (2015)

15. Gerlach, W., Tang, W., Keegan, K., Harrison, T., Wilke, A., Bischof, J., D’Souza, M.,
Devoid, S., Murphy-Olson, D., Desai, N., Meyer, F.: Skyport: container-based execution
environment management for multi-cloud scientific workflows. In: Proceedings of the 5th
International Workshop on Data-Intensive Computing in the Clouds, DataCloud 2014,
pp. 25–32. IEEE Press, Piscataway (2014)

16. Bernstein, D.: Containers and cloud: From LXC to docker to kubernetes. IEEE Cloud
Comput. 1(3), 81–84 (2014)

17. Alfonso, C., Calatrava, A., Moltó, G.: Container-based virtual elastic clusters. J. Syst. Softw.
127, 1–11 (2017)

18. Docker. https://www.docker.com/. Accessed 22 Mar 2018
19. Kubernetes. http://kubernetes.io/. Accessed 23 Mar 2018
20. Linux containers, https://linuxcontainers.org/. Accessed 19 Feb 2018

48 Z. Yu et al.

https://www.docker.com/
http://kubernetes.io/
https://linuxcontainers.org/

A Reconfigurable Streaming Processor
for Real-Time Low-Power Execution
of Convolutional Neural Networks

at the Edge

Justin Sanchez(B), Nasim Soltani, Pratik Kulkarni,
Ramachandra Vikas Chamarthi, and Hamed Tabkhi

University of North Carolina at Charlotte, Charlotte, NC, USA
jsanch19@uncc.edu

Abstract. With the recent advances in machine learning and the deep
learning paradigm, there is a huge demand to push the data analytics
and cognitive inference to the edge of the network near the data pro-
ducers and sensors. Edge analytics are essential for real-time video ana-
lytics and situational awareness; which is required for the wide range of
cyber-physical applications such as smart transportation, smart cities,
and smart health. To this end, novel architectures and platforms are
required to enable real-time low-power deep learning execution at the
edge.

This paper introduces a novel reconfigurable architecture for real-time
execution of deep learning and in particular convolutional Neural Net-
works (CNNs) at the edge of the network, close to the video camera.
The proposed architecture offers a set of coarse-grain function blocks
required for realizing CNN algorithms. The macro-pipelined datapath is
created by chaining the function blocks with respect to the topology of
the target network. The function blocks operate over the streaming pixels
(directly fed from the camera interface) in a producer/consumer fashion.
At the same time, function blocks offer enough flexibility to adjust the
processing with respect to area, power, and performance requirements.
This paper primarily focuses on the two first layers of CNNs as the two
most compute-intensive layers of CNN network. Our implementation on
Xilinx Zynq FPGAs, for the first two layers of the SqueezNet Network,
shows 315mW power consumption when designed at 30 fps, with only a
0.24 ms one-time-latency. In contrast, the Nvidia Tegra TX2 GPU is lim-
ited to perform at 32.2 fps due to the 31.4 ms delay, with a much higher
power consumption (7.5 W).

1 Introduction

Deep learning paradigm has emerged as a promising scalable machine learning
solution for extensive data analytics and inference [1–4]. Many applications from
smart transportation, and smart and connected communities, inherently require

c© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 49–64, 2018.
https://doi.org/10.1007/978-3-319-94340-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_4&domain=pdf

50 J. Sanchez et al.

real-time or near real-time scalable deep-learning inference. One major example
is real-time video analytic for object localization, detection, and classification.
With the tight latency requirements, long communication latency, and scarcity
of communication bandwidth, the cloud comping paradigm is not able to offer
a scalable sustainable solution for real-time deep learning inference. Therefore,
novel architecture and design paradigms are required to push deep learning from
the cloud to the edge of the network near to the data producers (e.g. video
cameras).

While GPUs are widely used for training, they are not an efficient platform for
real-time deep learning inference at the edge. GPUs are inherently throughput-
oriented machines which makes them less suitable for the edge. GPUs require
the large batch size of data (multiple video frames) to achieve high performance
and power efficiency. Furthermore, GPUs have lack of deterministic execution
patterns; [5,6]. To overcome the limitations of GPUs, we have seen many new cus-
tom hardware approaches for accelerating deep learning inference. Few industrial
examples are Google TPU [7], and Microsoft Brainwave [8]. While these plat-
forms offered much higher performance and power efficiency compared to GPUs
they still rely on throughput-oriented processing principles, which is more suit-
able for cloud computing, than the real-time inference at the edge. There is a
need for novel custom platforms that offers latency-aware scalable acceleration
for real-time deep-learning analytics over streaming data at the edge.

In this paper, we propose a novel reconfigurable architecture template for
real-time low-power execution of Convolutional Neural Networks (CNNs) in the
edge devices next to the camera. In principle, our proposed architecture is a
coarse-grain dataflow machine, which performs CNN computation over stream-
ing pixels. It consists of basic functional blocks required for CNN processing. The
blocks are configurable with respect to data window size (size of convolution) and
stride, and other network hyperparameters. The macro data-path is constructed
by proper chaining of the function blocks with respect to targeted network topol-
ogy. Function blocks are fused together and work concurrently to realize the
convolutional operations without the need to store the streaming pixels in the
memory hierarchy. Furthermore, the architecture provides enough configurabil-
ity to adjust itself to rapidly growing and continuously evolving CNN topologies.
As a result, the proposed architecture offers a reconfigurable template (rather
than a single solution) that is able to generate efficient architecture instances.
This feature gives us the possibility of easily adapting the architecture to any
desired network topology. Furthermore our architecture works in a streaming
fashion with minimum memory access, with respect to the algorithm’s intrinsic
parallelism.

The major focus of our architecture is on accelerating the first two layers of
CNNs, as they are the most compute-intensive kernels. The first two layers will
run on the edge device, next to the camera, while other layers will run on the
edge server in a proximity to edge devices. Our implementation of Xilinx Zynq
FPGAs, for the first two layers of SqueezNet Network [9], shows 315 mW on-chip
power consumption with an execution time of 0.24 ms. In contrast, the Nvidia

A Reconfigurable Streaming Processor for Real-Time Low-Power Execution 51

Tegra TX2 GPU is only able to perform with an execution time of 31.4 ms, with
a much higher on-chip power consumption (135 W).

The rest of this paper is organized as follows. Section 2 presents a summary
on the existing methods and past literature on architectures for neural networks.
Section 3 motivates the proposed architecture. Section 4 explains the details of
the proposed architecture. Section 4.4 presents function blocks integration and
dimensioning. Section 5 presents our implementation results. Finally, Sect. 6 con-
cludes the paper.

2 Related Work

GPUs’ large power consumption conflicts with low power requirements in mobile
applications [10–13]. This pushed the designers to use customized hardware
accelerators for implementing CNNs at the edge. These custom accelerators
could be targeted for ASIC [6] or FPGAs [14]. Most of recent works have focused
on converting direct convolution to matrix multiplication. Among them, some
have focused on doing the multiplication in a low-latency and low-power man-
ner. Tann et al. [15] propose to map floating-point networks to 8-bit fixed-point
networks with integer power-of-two weights and hence to replace multiplication
with shift operations to do a low-power and low-latency multiplication.

A number of recent works have addressed this extensive memory requirement
and have proposed different methods to reduce this memory access [16]. As some
examples, [17] proposes entirely mapping a CNN inside an SRAM, consider-
ing weights are shared among many neurons, and eliminate all DRAM accesses
for weights. Later authors in [18] proposed a hardware accelerator targeted for
FPGAs that exploits sparsity of neuron activation to accelerate computation
and reduce external memory accesses. They exploit the flexibility of FPGAs to
make their architecture work with different kernel sizes and number of feature
maps. Han et al. [19] uses deep compression to fit large networks into on-chip
SRAMs and accelerates resulting sparse matrix-vector multiplication by weight
sharing. They decrease energy usage by going from DRAMs to SRAMs, exploit-
ing sparsity in multiplication, weight sharing, etc. Jafri et al. [20] presents an
architecture targeted for ASIC that exploits the flexibility of compressing and
decompressing both input image pixels and kernels to minimize DRAM accesses.
They also presents an algorithm (LAMP) that intelligently partitions memory
and computational resources of a MOCHA accelerator to map a CNN to it. [21]
proposes a convolution engine that achieves energy efficiency by capturing data
reuse patterns and enabling a large number of operations per memory access.
Authors in [22] propose fusing the processing of multiple CNN layers by modify-
ing the order that input data are brought on chip. They cache intermediate data
(data that is transferred between layers) between the evaluations of adjacent
CNN layers.

With all these different approaches towards reducing memory access, a lack
of an architecture that separates the computation data from memory data and
works on the streaming pixels is still sensed. This paper proposes such an archi-
tecture that can be further configured for any desirable network topology.

52 J. Sanchez et al.

3 Background and Motivation

In this section, we briefly overview data access types in CNN, and the differences
between General Matrix Multiplication (GEMM) and direct convolution. We
conclude with the motivation to focus on the first two layers of the CNN.

3.1 Data Access Types

Convolutional Neural Networks (CNN) are both memory and compute-intensive
applications, often reusing intermediate data and while consistently doing mil-
lions of parallel operations. Furthermore, the inherent memory intensive aspects
of the algorithm are further exaggerated due to complex multi-dimensional data
accesses. In this regard, we consider two major types of data when performing
CNN.

(1) 2D Weight: The first type is 2D weight matrices. These weight matrices
each correspond to a single channel and these channels weight matrices
group together to construct the entire kernel. Multiple kernels form a layer,
and multiple layers create a network topology.

(2) Frame Pixels: The streaming pixels which are the input to the CNN pro-
cessing. Just like the weight matrices these are 2D matrices, with multiple
channels. This is the data that flows through the network topology.

3.2 GEMM vs Direct Convolution

W0 W1 W2

W3

W6

W4 W5

W7 W8

P0 P1 P2 P3 P4

P5

P10

P15

P20

P6 P7 P8 P9

P11 P12 P13 P14

P16 P17 P18 P19

P21 P22 P23 P24

Fig. 1. Direct convolution

Direct convolution is the point-wise Multiply
and Accumulation (MAC) operation across
the 2D weight Matrices and frame pixels. In
direct convolution, similar to the algorithmic
level definition, the weight Matrices are used
to perform multiple multiply and then accu-
mulation operations directly on the 2D win-
dow of input pixels. The direct convolution
performs in a sliding window fashion with
respect to a stride parameter that varies layer
to layer in network topologies. Figure 1 exem-
plifies direct convolution operation, for a 3 by 3 convolution window over a frame
with 5 by 5 pixels.

A Reconfigurable Streaming Processor for Real-Time Low-Power Execution 53

W0 W1 W2 W3 W4 W5 W6 W7

P0 P1 P2 P5 P6 P7 P10 P11 P12

P1

P2

P5
P6

P7

P10

P11

P12

P2 P3 P6 P7 P8 P11 P12 P13

P3 P4 P7 P8 P9 P12 P13 P14

P6 P7 P10 P11 P12 P15 P16 P17
P7 P8 P11 P12 P13 P16 P17 P18

P8 P9 P12 P13 P14 P17 P18 P19

P11 P12 P15 P16 P17 P20 P21 P22

P12 P13 P16 P17 P18 P21 P22 P23

P13 P14 P17 P18 P19 P22 P23 P24

Pixels

Weights

Fig. 2. General Matrix Multiplica-
tion (GEMM)

Traditionally, GPUs have seen much suc-
cess in the cloud by using a linear algebra
transformation called General Matrix Multi-
plication (GEMM) to lower the dimensions
of convolution to regular matrix multiplica-
tion. GEMM transforms all the temporal par-
allelism into spatial parallelism. This helps
GPUs to achieve a high throughput assuming
the large data batches are available. However,
this comes at a significant memory cost. The transformation is done by rear-
rangement with redundant copies of input image pixels. Our estimation reveals
that the rearrangement results in 11X data duplication only for the first layer
of any CNN network. This translates to significant power and energy overhead
for accessing the redundant pixel data throughout memory hierarchy. Figure 2
exemplifies GEMM operation, for the same example illustrated in Fig. 1. As we
observe, redundancy of frame pixels is required to transfer the convolution oper-
ation to a large matrix multiplication. For this example, the pixels will be 9 by
9 compared to original frame size which is 5 by 5.

3.3 CNN Execution Bottlenecks

conv0

s1e1 s2 e2s3

e3

s4
e4

s5

e5

s6
e6

s7e7
s8e8

conv9

Fig. 3. Computation distribution across
the SqueezNet layers

In this paper, we primarily focus on
accelerating the first two layers of CNN
as the major execution bottlenecks.
We specifically target SqueezNet [9],
a DCNN design with memory effi-
ciency in mind. To motivate our argu-
ment, we have estimated the compu-
tation demands across the CNN lay-
ers for the example of SqueezNet [9].
Figure 3 shows the computation dis-
tribution across the SqueezNet layers.
Overall, SqueezNet contains 10 layers.
The first and last layers are traditional
convolution layers (conv0 and conv9).
The intermediate layers are squeeze (s)
and expand (e) convolutional layers.
The squeeze layers combine the feature maps to make the network more effi-
cient and expand layers expand the feature map. As we observe, the first layer
(conv0) has the highest computation demand with 21% contribution to overall
computation demand. The first layer also generates the largest size of feature
map across all layers which can lead to significant communication and memory
traffic. Figure 4 presents the contribution of layers on feature map. To mini-
mize the memory access and communication demand, it would be beneficial to
accelerate the second layer (s1, e1) along with the first layer. In this way, much

54 J. Sanchez et al.

co
nv

0 s1 e1 s2 e2 s3 e3 s4 e4 s5 e5 s6 e6 s7 e7 s8 e8
co

nv
9

0

400

800

1,200

Layer

M
em

or
y(

K
B

)

Fig. 4. Feature map distribution

smaller feature maps will be transferred to the edge server for processing of the
remaining layers.

4 Architecture Template

This section introduces our proposed architecture template, for real-time exe-
cution of CNN inference on the edge. The proposed template targets FPGA
devices, as they offer both efficient execution and sufficient reconfigurability to
cope with continuously growing CNN topologies [23]. Furthermore, by target-
ing the FPGAs, we are able to generate a customized datapath per each CNN
network as such to best fit the processing requirements. The major premise of
our proposed architecture is to remove the gap between the algorithm execution
semantic and architecture realization. Therefore, our proposed architecture is
primarily a data flow machine working on streaming data based on direct con-
volution. It consists of three main function blocks for realizing the wide range of
CNN inference topological structure. The blocks are Convolutional Processing
Element (CPE), Aggregation Processing Element (APE), and Pooling Processing
Element (PPE). The blocks will be configured and connected with respect to tar-
get network topology, creating a macro-pipeline datapath. Figure 5 presents over-
all architecture realization from logical domain (algorithm) to physical domain
(architecture).

Fig. 5. From algorithm composition to architecture realization.

A Reconfigurable Streaming Processor for Real-Time Low-Power Execution 55

Cloud

Edge Server

Layer 1

K96

FM= 3

C= 3

k0

FM=96

K0

K16

Layer 2

Edge Node

Layer 1 &2
< Layer 2

FM= Number of Feature Maps
C= Number of Channels

Fig. 6. CNN computation map-
ping between the edge node and
edge server

Our architecture is designed based on the
natural dataflow of CNNs. It is able to exploit
both spatial parallelism across the convolu-
tions within the same layer, as well as tem-
poral parallelism between the blocks across
the layers. The blocks are configurable with
respect to network parameters such as size of
convolution and stride. This gives us the pos-
sibility of easily adapting the architecture to
any desired network topology.

In this paper, we focus our architecture
realization of the first tow layers of CNNs.
While our proposed architecture template is
extensible and can support the entire CNN topology, the primary limitation is
available hardware resources on FPGAs of the edge devices. At this moment, we
are targeting smaller FPGAs, e.g. Xilinx Zynq [24], with small reconfigurable
fabric. However, by accelerating the first two layers on the edge node, we will
able to relax the computation demands on the edge server. Figure 6 shows the
logical mapping of the network between the edge node and edge devices. The
edge node will perform the heavy computation of the first layer. Furthermore, it
runs the second layer to significantly shrink the feature map. Then it sends the
feature maps to the edge server for the remaining layers to do the processing.

4.1 Covolutional Processing Elements (CPE)

Convolutional Processing Element (CPE) is responsible to perform the primary
computation of CNN which is direct convolution over two-dimensional pixel
stream. Figure 7 presents the internal architecture of CPE block. It contains two
primary blocks: (1) 2D-line Buffer and (2) Multiply and Accumulator (MAC)
engines.

+

Stream
Accumulator

+

2D-Line Buffer MAC Engine

Weight Matrix Data

Kernel
Buffer

Kernel
Buffer

*

*

Fig. 7. Convolutional Processing
Element

2D-Line Buffers. The 2D-line buffer is what
enables convolution neural networks to oper-
ate in an streaming manner. This is achieved
by maintaining the reused pixels for multi-
ple cycles. The pixels that must be reused are
determined by the network topology and the
receptive field of the layer the 2D line buffer
is mapped to. Every layer of a convolutional
neural network has a hyperparameter called
stride that dictates how the receptive field
slides through the feature maps, both horizon-
tally and vertically. No matter what the stride is set to, the minimum amount of
data that must be stored is determined by the size of the receptive field or filter
window. However, when the stride is less than the filter dimension size, extra
feature map data must be kept in a buffer.

56 J. Sanchez et al.

To deal with the horizontal reuse, only twice the extra pixels must be kept
at max, however, vertical stride requires all rows that were used in the filter
window to be available. The 2D-line buffer that is used in our approach is able
to overcome this by keeping the minimum amount of rows needed. We keep
at least one row of the streaming input to preserve the horizontal reuse and
we maintain extra rows depending on the filter size in order to preserve the
vertical reuse of data. This is done for all streaming feature map data in each
layer through the accelerator. The 2D-line buffer is expanded by having an input
FIFO which we call stream accumulator to allow the buffer to receive input while
operating on the data at the same time.

Multiply and Accumulator (MAC) Engines. The convolution unit is the
heart of the architecture. It is composed of a series of independent MAC units
that perform parallel multiply and accumulate operations together each cycle.
The MAC units are able to execute any kernel size by simply changing the
number of cycles it operates on data. These MAC units further enable efficient
and flexible convolution by exploiting the multiple forms of parallelism inherent
to the convolution operation. The first form of parallelism we exploit is Intra-
Kernel parallelism. Intra-Kernel achieved by dividing the convolution of a single
kernel to multiple MAC units. By exploiting this parallelism a 7× 7 kernel which
would normally take 49 cycles can only take 7 cycles, by dedicating 7 MAC units
to operate on the pixel and weight data in parallel.

The next form of parallelism, Inter-Kernel parallelism, is achieved by fetching
multiple kernels at once and having at least one MAC dedicated to each. The
main benefit to this form of parallelism comes when you exploit the full available
inter-kernel parallelism. When all kernels are run together the kernel weights can
be kept in the buffer thus removing unnecessary memory fetches. The 2D-line
buffer allows data0-level parallelism by reusing the same kernel on all the feature
map data available on the buffer. This approach leaves less of a memory footprint
on the system. Further feature map parallelism is also a possibility by running
multiple feature map sections concurrently, however, this would increase the
memory footprint left on the main system, so we do leave it to be explored in
future work.

4.2 Aggregation Processing Elements (APE)

+ 000...0

Input MSB
0

Input

Fig. 8. Aggregation Processing
Element (APE)

This layer performs aggregation across mul-
tiple output streams representing different
channels. Figure 8 presents overall view of our
proposed APE module. APE is perhaps the
simplest functional block in our architecture.
It takes the stream of input pixels that have
negative and positive values, rectifies the neg-
ative values to zero and passes the positive
values as they are. Therefore, the output of
APE is a non-negative sequence of pixel values.

A Reconfigurable Streaming Processor for Real-Time Low-Power Execution 57

4.3 Pooling Processing Elements (PPE)

Fig. 9. The sliding window with
stride

Pooling Processing Elements (PPEs) are in
charge of down-sampling the image. Every
pooling process has two parameters of stride
and window (filter) size. The degree of com-
pression actually depends on the stride. The
core idea of pooling with a n × n window
is to replace each window with the maxi-
mum among all the elements in that window.
Figure 9 shows an example of pooling with the
window size of 3 × 3 and stride of 2.

To avoid the unnecessary memory and
buffer requirements to store the entire feature
map, the proposed pooling block works on the
stream of pixels while supporting variable horizontal and vertical pooling strides.
Figure 10 presents the architecture details of our proposed PPE. In the following
we will present a detailed description of 3× 3 window with a stride of two as an
example to illustrate the on-the-fly pooling process. For horizontal stride, the
pooling block receives the first pixel and keeps it in a register until the second
pixel arrives. When the second pixel arrives, a comparator will compare the two
and keeps the result in a register since it is not the end of our window yet. When
the third pixel arrives, it is sent to the comparator to determine the maximum
of the first three pixels. This maximum is then stored in the FIFO. The third
pixel is also kept separately in a register to be compared with pixel 4. (Because
in a stride of 2, pixel 3 is shared between the first and second windows.) The
same process repeats until all the pixels in the first row are received. By this
time, maximum values in each window, for the first row of the image, are stored
in the FIFO and the FIFO is full now.

Fig. 10. Pooling Processing Elements (PPE)

For taking care of ver-
tical stride, when the sec-
ond row arrives, maxi-
mum of the three first
pixels is calculated like
the first row. However,
it is time for the old-
est input of the FIFO to
pop out. This oldest ele-
ment would be the maxi-
mum of the first window
in the first row, which
is then compared to our
new maximum in the sec-
ond row and the largest
between the two is fed
to the FIFO. Similarly,

58 J. Sanchez et al.

when the third row arrives, the process for the second row is repeated and
finally, the maximum of all nine pixels in the first window is Fed to the FIFO.
Moreover, to take care of the horizontal stride, since the third row is also the
horizontal end of our window, as the pixel stream for the third row arrives, we
also feed it to another pooling block as the first row of the image. All the process
described above is replicated in this second pooling block. The first pooling block
is vacated after all the maximums for first row windows are calculated and sent
out, and by the time the sixth row arrives, pooling block is ready to receive this
row as the first row.

4.4 Function Blocks Integration

The Macro-pipeline consists of single CPEs mapped to one input channel of a
layer. The full layer is then constructed by multiple CPEs operating in parallel.
The CPEs are then wired together by the APE to aggregate the convolutions and
pass data to the next layer. A PPE is optionally generated after the aggregation
if the network topology demands it with the data stream then being fed into the
multiple CPEs of the next layer.

This MACRO-pipelined datapath is generated layer by layer until the desired
network topology is achieved. By changing the number of CPEs we can support
multiple layers with multiple channels. Each CPE itself is also able to handle
customization to each layer’s hyper parameters such as stride, Kernel dimensions
and input frame size. The system receives image data directly from the sensor,
this allows users to separate the input and memory traffic and minimize the
memory footprint. To handle the kernel data we include on-chip memory to
double buffer access to the main memory and hide the latency. That becomes an
end to end accelerator capable of flexible acceleration over the domain of CNNs.

5 Evaluation

This section presents our evaluation results based on implementation on Xilinx
Zynq FPGAs.

5.1 Experimental Setup

The full architecture template was constructed using chisel [25], a high-level
hardware construction language. We feed the chisel code multiple parameters of
the network topology as well as design parameters on how we should extract
the natural parallelism. The code then generates a Macro-pipelined datapath to
run the network topology. We have implemented an instance of our architecture
template for the first two layers of the SqueezNet [9]. We focused on SqueezNet
network because it was designed with computational and memory efficiency. The
design was realized with a Xilinx Zynq-7000 FPGA [24], due to its low power
footprint and embedded Processor.

A Reconfigurable Streaming Processor for Real-Time Low-Power Execution 59

Table 1. SqueezNet topology properties for the first two layers.

Layer number Number of

CPEs

Kernel size Number of

MACs

Intra kernel

parallelism

Inter kernel

parallelism

Frequency

(MHz)

0 3 (7 × 7) 49 2 98 71

1 96 (1 × 1) 1 1 1 11

Table 1 presents SqueezNet architecture properties for the first two layers.
Overall, the first layer, as the major compute-intensive layer, contains 96 kernels
each one performing 7 by 7 convolution which translates to 49 MACs. It also
contains three channel representing R, G, and B.

For evaluation, we use three different possible datapaths of our proposed
architecture. Figures 11, 12 and 13 shows these three implementations respec-
tively, with respect to our proposed CPE and function block integration pre-
sented in Sect. 4. Intra kernel parallelism focuses on spatial parallelism in the
MAC operations within each kernel. On the other extreme, inter kernel paral-
lelism solely focuses on the spatial parallelism across MAC operations across all
96 parallel kernels. In between, the hybrid inter/intra kernel parallelism aims to
find a balance between inter and intra kernel parallelism.

Fig. 11. Intra kernel parallelism

K2

+ *

+ *

K1

K2

+ *

+ *

K1

K2

+ *

+ *

K1

+ 000...0

Input

+ 000...0

Input

CPE APE PPE

Fig. 12. Inter kernel parallelism

Fig. 13. Hybrid inter/intra kernel parallelism

60 J. Sanchez et al.

5.2 Resource Utilization and Power Overhead

This section presents the resource utilization and power overhead for the three
proposed configuration.

intra hybrid inter
0

150

300

450

600

Type of Parallelism
P
ow

er
(m

w
)

Fig. 14. First layer dynamic power for differ-
ent types of parallelism

Figure 14 shows the dynamic
power of our proposed architec-
ture when running the first layer
for three types of parallelism. The
results gathered for real-time pro-
cessing of 30 frames per second
with 227× 227 resolution. As the
figure illustrates, the intra-kernel
parallelism achieves the minimum
power consumption by consuming
only 135 mW dynamic power con-
sumption. The hybrid parallelism is
a close second and inter-kernel par-
allelism has the highest power con-
sumption. The static power of entire FPGAs is about 180 mW. This leads to the
overall power consumption of 315 mW.

In
tr

a

H
yb

ri
d

In
te

r

0

10k

20k

30k

T
ot

al
A

m
ou

nt

(a) LUT as logic

In
tr

a

H
yb

ri
d

In
te

r

0

2k

4k

6k

(b) LUT as Mem

In
tr

a

H
yb

ri
d

In
te

r

0

8k

16k

24k

(c) Register

In
tr

a

H
yb

ri
d

In
te

r

0

30

60

90

(d) BRAMs

Fig. 15. Absolute FPGAs resource demand for the first layer across design points.

Figure 15 presents the absolute resource consumption for the three design
points. Figure 16 also presents relative resource utilization on Xilinx Zynq across
the design points. Overall, intra kernel parallelism has the lowest utilization
except for LUT as memory. In intra kernel parallelism, the 2D-line buffers are
not mapped directly to BRAMs but instead to LUTs do to the extra Read ports
need. Although overall intra kernel parallelism performs best for the first layer
in SqueezNet, the remaining layers would map to better utilize different forms
of parallelism with respect to their inter and intra kernel data sharing patterns
which are directly driven from the network topology.

A Reconfigurable Streaming Processor for Real-Time Low-Power Execution 61

Intra Hybrid Inter
0%

20%

40%

60%

80%

Type of Parallelism

R
es

ou
rc

e
U

ti
liz

at
io

n
(%

)
LUT Logic
LUT Mem
Register
BRAM

Fig. 16. Relative resource utilization on Xilinx Zynq across design points

5.3 System-Level Impact

In this part, we quantify the system-level benefits of the computing the first
two layers on the edge node. Figure 17 compares two scenarios: (1) computing
entire network on the edge server and (2) computing across the edge node and
edge server (edge-node+edge-server). Figure 17b compares the execution time.
Overall, the server+node cooperative computation achieves 32% improvement
in the performance. Figure 17a compares the network communication traffic.
Node+server cooperative computation reduces the communication and network
traffic by more then 3x.

Server Node+Server
0

1

2

3

4

5

E
xe

cu
ti

on
ti

m
e

(m
s)

(a) Execution time

Server Node+Server
0

50

100

150

200

N
et

w
or

k
T
ra

ffi
c

(K
B

)

(b) Network Traffic

Fig. 17. Network traffic and execution time comparison between edge-server, and edge-
node+edge-server scenarios

5.4 Comparison Against GPUs

This section is the alternative solution comparison, which compares our proposed
architecture (implemented on Zynq FPGA) against the state of the art mobile
GPU, Nvidia Jestosn TX2 [26]. Figure 18 compares both execution time (as the
latency for performing single frame), and power consumption in the logarithmic
scale. Figure 18a shows that our architecture (implemented on Zynq FPGA) has

62 J. Sanchez et al.

a latency cost of 0.24 ms. While the mobile GPU solution imposes a latency
of 31.4 ms. Figure 18b shows that our proposed architecture can offer consider-
ably lower power consumption over mobile GPUs. For execution 30 frames at
the resolution of 227× 227, GPU consumes 7.5 W. In contrast, our proposed
architecture, implemented on Zynq FPGA, only consumes 0.315 W.

Our proposed architecture consumes about 24x lower power compared to
Nvidia Jetson TX2 GPU, while imposing 130x less latency. Our proposed archi-
tecture is a data-flow machine, thus it only operates when the streaming pixels
of the new frame are available. It is able to process the entire frame at 0.24 ms. It
then stays in the standby mode until it receives the next frame streaming data.
As a result, our architecture is able to even perform real-time processing at the
much higher frame rates such as 60 fps and 120 fps.

GPU FPGA
10−1

100

101

102

E
xe

cu
ti

on
ti

m
e

(m
s)

(l
og

)

(a) Execution time

GPU FPGA
10−1

100

101

102

P
ow

er
(W

)
(l

og
)

(b) Power

Fig. 18. Power and performance comparison against Nvidia Tegra TX2 GPU

6 Conclusions

In conclusion, this paper proposed a novel architecture template for real-time
low-power execution of Convolutional Neural Networks at the edge. The pro-
posed architecture is primarily targeted for FPGAs, and is able to offer config-
urable macro-pipeline datapath for scalable direct convolutions over streaming
pixels. The proposed architecture is an example of a hybrid solution across edge
nodes and edge servers for realizing compute-intensive deep learning applica-
tions. The proposed architecture is able to reduce the network traffic and execu-
tion time of the overall application. At the same time, it maintains the flexibility
to map to any standard CNN network topology. Future work includes supporting
full network topology acceleration on edge and supporting nonstandard CNN,
as well as a workflow for mapping them efficiently to different FPGA boards.

A Reconfigurable Streaming Processor for Real-Time Low-Power Execution 63

References

1. Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural
networksa review. Pattern Recogn. 35(10), 2279–2301 (2002)

2. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: 2012 IEEE conference on Computer vision and pattern
recognition (CVPR), pp. 3642–3649. IEEE (2012)

3. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: Proceedings of the 25th Inter-
national Conference on Machine learning, pp. 160–167. ACM (2008)

4. Zhao, H., Wang, J., Gao, P.: A deep learning approach for condition-based, p. 32.
STIoT Editorial Board (2017)

5. Paine, T., Jin, H., Yang, J., Lin, Z., Huang, T.: GPU asynchronous stochastic gra-
dient descent to speed up neural network training. arXiv preprint arXiv:1312.6186
(2013)

6. Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.C., Liu, C.C., Chang, M.C.F.: A recon-
figurable streaming deep convolutional neural network accelerator for internet of
things. IEEE Trans. Circ. Syst. I Reg. Pap. 65(1), 198–208 (2018)

7. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

8. Microsoft brainwave. https://www.microsoft.com/en-us/research/blog/microsoft-
unveils-project-brainwave/

9. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: AlexNet-level accuracy with 50x fewer parameters and <0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016)

10. Strigl, D., Kofler, K., Podlipnig, S.: Performance and scalability of GPU-based
convolutional neural networks. In: 2010 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pp. 317–324. IEEE
(2010)

11. Potluri, S., Fasih, A., Vutukuru, L.K., Al Machot, F., Kyamakya, K.: CNN based
high performance computing for real time image processing on GPU. In: 2011 Joint
3rd International Workshop on Nonlinear Dynamics and Synchronization (INDS)
and16th International Symposium on Theoretical Electrical Engineering (ISTET),
pp. 1–7. IEEE (2011)

12. Nasse, F., Thurau, C., Fink, G.A.: Face detection using GPU-based convolutional
neural networks. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp.
83–90. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03767-2 10

13. Latifi Oskouei, S.S., Golestani, H., Hashemi, M., Ghiasi, S.: CNNdroid: GPU-
accelerated execution of trained deep convolutional neural networks on Android.
In: Proceedings of the 2016 ACM on Multimedia Conference, pp. 1201–1205. ACM
(2016)

14. Nagy, Z., Szolgay, P.: Configurable multilayer CNN-UM emulator on FPGA. IEEE
Trans. Circ. Syst. I Fundam. Theory Appl. 50(6), 774–778 (2003)

15. Tann, H., Hashemi, S., Bahar, R.I., Reda, S.: Hardware-software codesign of
accurate, multiplier-free deep neural networks. In: 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2017)

http://arxiv.org/abs/1312.6186
http://arxiv.org/abs/1609.08144
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
http://arxiv.org/abs/1602.07360
https://doi.org/10.1007/978-3-642-03767-2_10

64 J. Sanchez et al.

16. Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J.K., Shao, C., Mishra, A.,
Esmaeilzadeh, H.: From high-level deep neural models to FPGAs. In: 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.
1–12. IEEE (2016)

17. Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y.,
Temam, O.: ShiDianNao: shifting vision processing closer to the sensor. In: ACM
SIGARCH Computer Architecture News, vol. 43, pp. 92–104. ACM (2015)

18. Aimar, A., Mostafa, H., Calabrese, E., Rios-Navarro, A., Tapiador-Morales, R.,
Lungu, I.A., Milde, M.B., Corradi, F., Linares-Barranco, A., Liu, S.C., et al.: Null-
Hop: a flexible convolutional neural network accelerator based on sparse represen-
tations of feature maps. arXiv preprint arXiv:1706.01406 (2017)

19. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE:
efficient inference engine on compressed deep neural network. In: 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pp. 243–
254. IEEE (2016)

20. Jafri, S.M.A.H., Hemani, A., Paul, K., Abbas, N.: MOCHA: morphable locality
and compression aware architecture for convolutional neural networks. In: 2017
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.
276–286. IEEE (2017)

21. Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis, C., Horowitz,
M.: Convolution engine: balancing efficiency and flexibility in specialized comput-
ing. Commun. ACM 58(4), 85–93 (2015)

22. Alwani, M., Chen, H., Ferdman, M., Milder, P.: Fused-layer CNN accelerators.
In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–12. IEEE (2016)

23. Xu, L., Pham, K.D., Kim, H., Shi, W., Suh, T.: End-to-end big data processing
protection in cloud environment using black boxes-an FPGA approach. Int. J.
Cloud Comput. 2, 14–27 (2014)

24. APU, A.P.U.: Zynq-7000 all programmable soc overview (2012)
25. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,

Wawrzynek, J., Asanović, K.: Chisel: constructing hardware in a scala embed-
ded language. In: Proceedings of the 49th Annual Design Automation Conference,
pp. 1216–1225. ACM (2012)

26. Naphade, M., Anastasiu, D.C., Sharma, A., Jagrlamudi, V., Jeon, H., Liu,
K., Chang, M.C., Lyu, S., Gao, Z.: The NVIDIA AI city challenge. In:
IEEE Smart-World, Ubiquitous Intelligence and Computing, Advanced and
Trusted Computed, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (2017)

http://arxiv.org/abs/1706.01406

Application and Industry Track

Efficient Bare Metal Auto-scaling for NFV
in Edge Computing

Xudong Pang, Jing Wang, Jingyu Wang, Qi Qi(✉), Jie Xu, and Zhenguang Yu

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

qiqi8266@bupt.edu.cn

Abstract. Elasticity is an essential attribute of cloud data center, which is critical
for operating resources in face of peaks and valleys of business. At present, the
automatic scaling technique of virtual machines is widely studied, but barely for
physical machines. Despite lack of flexibility, we all know that physical server
can perform faster and more efficiently than virtualized instances, especially in
Network Function Virtualization (NFV) systems. Some virtual network functions
(VNFs) actually require high performance computing, which is a hard task for
virtual machines. Besides, good management of bare metal resources can be
significant for the data center power cost and human maintenance cost. Accord‐
ingly, we think that auto-scaling of physical machine is worth studying. This paper
proposes a bare metal automatic scaling scheme based on workload prediction,
and finally make tests on an open source NFV platform. The new scheme obtains
good result on computation intensive VNFs scenario, including complete the
scale in minutes, guarantee for the continuity of VNF processing business, and
can cope with the load fluctuation better.

Keywords: Bare metal · NFV · Auto-scaling · Scheduling · Edge computing

1 Introduction

MEC offers storage and computational resources at the edge, reducing latency for mobile
end users and utilizing more efficiently the mobile backhaul and core networks.

Network Function Virtualization (NFV) will leverage modern technologies such as
those developed for cloud computing, which provides an analysis of the MEC orches‐
tration considering standalone services, service mobility, joint network and service
optimization as well as a comprehensive study of current orchestrator deployment
options. That is to say there is always an edge data center behind the NFV system [1],
and this kind of cloud data center usually consists of several servers, the workload time
series for the whole cluster appear to be large fluctuation. Only auto-scaling of virtual
machines cannot meet the needs of all. Some specific use-cases, for example, in the high-
performance computing clusters, computing tasks that require access to hardware
devices which cannot be virtualized [2], and for the database hosting (some databases
run poorly in a hypervisor), single tenant dedicated hardware for performance, security,
dependability and other regulatory requirements. When the cloud infrastructure rapidly

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 67–79, 2018.
https://doi.org/10.1007/978-3-319-94340-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_5&domain=pdf

deployment, it’s necessary for auto-scaling of bare metal resources. But managing that
large number of physical servers is a hassle, if all by human operations, to ensure the
quality of service (QoS) is an obvious challenge. Cloud computing itself has the char‐
acteristics of independent, safe, reliable, elastic, durable and others, so the automatic
scaling of bare-metal resources is necessary.

Amazon Web Services (AWS) developed the first virtual machine auto-scaling tech
in the industry, which is a solution for the holiday’s 5 times shopping rush to normal
flow. Moreover, the automatic scaling technique was applied to more areas, such as
some of the virtualization resources of cloud computing. Accordingly, we consider how
to make the bare-metal resources become more elastic for the ever-expanding data
center. Traditional redundancy allocation can cause wasting of resources, so the main
thing to do is to narrow the gap between allocating resources and actual needs.

However, there is no unified operating platform for bare metals currently, and we
can only manage through some access and configuration tools such as IPMI, Cobbler or
Ansible. Moreover, making all these processes automated is not easy, which requires a
complete and elaborate workflow to complete, including new machines discovery, nodes
deployment, as well as balance workloads to new online machines.

Besides, in advance allocation of resources can greatly improve quality and reduce
the response latency of applications. Therefore, it is critical to find resource bottlenecks
in time. We adopt Zabbix [3, 4] as a monitor, which is powerful and easy to expand. A
recent survey classifies auto-scaling techniques into several major categories [5],
including static policies, threshold-based polices, reinforcement learning, control theory
and time-series analysis. For our design, we combine threshold rules and time-series
analysis to make a suitable auto-scaling schedule algorithm. Based on the above tech‐
niques, we present an automatic horizontal scaling [6] algorithm for bare metal resources
and made a series of experiments on this.

The second section introduces our related work. The third section describes details
of our design framework, including core algorithm and related platform configurations.
The fourth section describes detailed experiment steps and data comparisons. Finally,
we conclude at the fifth section.

2 Related Work

NIST explained “rapid elasticity” as “capabilities can be elastically provisioned and
released, in some cases automatically, to scale rapidly outward and inward commensu‐
rate with demand” [7]. The purpose of elasticity as defined in [8] is to provide perform‐
ance, cost, increase infrastructure capacity, energy. All of these can be related to user
load.

Due to the elasticity demand of physical server resources on NFV system, this paper
probes into the automatic scaling of the bare metal resources. Here we use OpenStack
[9] powered cloud as NFV infrastructure. It is well-known that OpenStack is an open
source cloud platform, which has an excellent distributed architecture. A normal Open‐
Stack cluster can be divided into the control nodes, network nodes, computing nodes,
storage nodes. And there is also an Ironic project, which can help us manage bare metal

68 X. Pang et al.

resources. Better is, there is also a Tacker [10] project, which provide a NFV MANO
conception implementations.

In addition, among many monitors we choose Zabbix, not only because it is one of
the main monitoring tools of today’s operation and maintenance staffs, but also its easy
extendibility. Based on monitoring health status of cluster hardware, Zabbix can also
make the upper application quality check, which feedback VNF response latency in time.
Besides, Zabbix can also automatically discover and register new nodes. We use custom
monitoring strategies, which are more suitable for both bare metal and NFV scenarios.
In order to ensure the stability and smoothness of the upper services, Zabbix collects
monitoring data periodically, which can be used to identify obvious features and predict
loads of next moment.

We also present an auto scaling algorithm, which fully consider characteristics of
bare metal resources, and also make full use of historical workload data for prediction.
All these enable clusters to save as much resources as possible. Due to the process of
bare metal provision is very time consuming, we need to do a good job in multi-stage
pretreatment in advance, for example, packaging VNF image in advance, making some
buffered servers, all these can make the new machine launch for work faster.

3 Architecture Design

3.1 Workflow of the Framework

Figure 1 shows our workflow, which based on a NFV Management and Orchestration
(MANO) framework. The right part of this figure is a user request process, user requests
which hit the same ASG will be dispatched to different servers by a load balancer.

VNF
Manager

AutoScaling Controller

Workload Predictor

VIM

NFV Orchestrator

Bare Metal Pool

Load Balancer

Auto-scaling group of
physical servers7. get instance list

8. return instance list

9. get sample list10. return sample list

3.
re

qu
ir

e
re

so
ur

ce

12. return load
prediction

11. require load
prediction

6. do scaling

1. orchestrate network
functions through
TOSCA template

Requests

Bare Metal
Conductor

2. return
orchestration results

5. do resource adjustm
ent

Heat
Translator

Zabbix Monitor

4.return
resource info

13.require scheduling

Fig. 1. Bare metal auto-scaling workflow on NFV MANO platform

Workload predictor uses historical data collected by Zabbix monitor as input sample,
to make a workload prediction with our model, and then outputs a predict workload for

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 69

next moment. This prediction will be send to auto-scaling controller, which will make
a schedule decision with our design policy and send to VNF Manager (VNFM). VNFM
is responsible for the lifecycle management of VNF. A VNF Manager can manage one
or more VNFs, this is the ability to automate VNF including deployment, expansion,
scaling, offline. VNFM can receive TOSCA templates from Orchestrator and transform
them to VIM-understood profiles, and then handle bare metal instances though those
profiles.

Topology and Orchestration Specification for Cloud Applications (TOSCA) is a
service modeling language which can be used to model and deploy service function
chains (SFCs). By defining TOSCA templates, which can be instantiated using concrete
types, here we use this template to define VNF profiles. Orchestrator is responsible for
NFV resources and is the basis of the upper software resource arrangement and manage‐
ment, this arrangement ability can be flexible adjustment of the VNF instances according
to the requirements of the business. It’s the core of the automatic ability.

Virtualized Infrastructure Manager (VIM) is a cloud platform, which is responsible
for physical and virtual resource management. It can manage infrastructure resources,
and schedule servers to different regions. Besides, our bare metal conductor will handle
scaling actions in time.

3.2 Bare Metal Provision

According to our design, there are mainly three stages on bare metal provision, basically
are as follows:

Machine Discovery: SNMP or INTEL RSA can be used to discover new electrically
charged bare metals and report their information to conductor. Also, zero-conf provides
a really good alternative for general bare metal discovery scenario, which does not rely
on dedicated switches.

OS Installation: Nova uses Ironic driver to install operating system for the bare metals,
and the images are provided by OpenStack glance service. This process is also the most
time-consuming phase, average requiring approximately 20 min.

Software Configuration: Here we use tools like Ansible, Chef and puppet. Due to the
new launched node will report its metadata to the controller voluntarily, and then auto‐
matically register to the corresponding cluster. We configure Zabbix agent and some
service synchronize operations.

3.3 Monitor Configuration

Zabbix makes a good monitor for cloud data center, it is competent for large-scale
cluster, can support IPMI and network equipment monitoring, besides, it is easy to
extend, which is very suitable for NFV platform. According to [11], CPU accounts for
60% of the host’s power consumption, and can basically represent machine energy
consumption. We also use CPU load as default workload. Workloads of each processor

70 X. Pang et al.

can be detected by Zabbix agent periodically. Here we configure our Zabbix monitoring
items: average CPU load of each physical server, average response latency of each VNF,
and Power status of each physical server.

In Eq. (1), we define the workload of an ASG is the sum of workload of every
processor in it.

Load(t) =

m∑

i=1

Load(t, i) ∗ CoreNum(t, i) (1)

Another monitoring item is used to reflect the real-time service quality of VNFs. In
Eq. (2), we define the average VNF responding latency of an ASG is the average latency
of VNFs on every active server in the same group.

Latency(t) =

m∑

i=1

Latency(t, i)

/
m (2)

Auto-Registration: when a new machine is in the provision stage, it will be config‐
ured with a Zabbix agent, this agent can then be found by Zabbix server in local area,
and then the machine will be registered to the corresponding auto-scaling group (ASG).

3.4 Workload Prediction Model

There are many forecasting models currently, including time series model, differential
equation model, gray prediction model and so on. Differential equation model is based
on the assumption of local rule independence, and the solution of it is difficult to obtain.
And gray prediction model can be highlighted only when its prediction sequence has an
exponential growth characteristic.

We choose autoregressive and moving average (ARMA) model [12], a time series
prediction model, to predict the workloads of ASGs, and then convert to the schedule
of bare-metal resources by schedule program.

In Eq. (3), we show an AR (3) as special shape, which is using a linear combination
of the workloads of the previous three moments, to describe the workload predictions
for the next moment. This equation is a result of what we screened through experiments
(Fig. 2).

Loadpre(t + 1) = 0.8Load(t) + 0.15Load(t − 1) + 0.05Load(t − 2) (3)

Loadpre(t + 1) = 0.5Load(t) + ⋅ ⋅ ⋅ + 0.5tLoad(1) (4)

Exponential smoothing prediction model is a special weighted moving average
method, [13] which predicts the future workload by assigning a larger weight to the
workload near the forecast period and making the weight from the near-far-decreasing
exponential law. In Eq. (4), the mathematical expression of is shown in Table 1.

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 71

Bare Metal Conductor

Cont roller Node

Fetch images Access network

PXE driver IPM I driver

Load images Update

SSH

Configure Envstatus

Fig. 2. Bare metal provision

Table 1. Related symbols and descriptions

Parameters Meanings
m Running server number of an ASG
n Shutdown server number of an ASG
k Total prediction times of an ASG
Load(t,i) Average load of server i at time t
Load(t) Predict average load of an ASG at time t
Loadavg(t) Predict total load of an ASG at time t
Loadpre(t) Predict total load of an ASG at time t
CoreNum(t,i) Core number of running server i at time t
CoreNumoff(t,j) Core number of an off-server j at time t
CoreNum(t) Working processor number of an ASG at time t
CoreNummin(t) Min predict core number of an ASG at time t
CoreNummax(t) Max predict core number of an ASG at time t
Latency(t,i) Average VNF response latency of server i
Latency(t) Average VNF response latency of an ASG
MinLoad Low average load threshold of an ASG
MaxLoad High average load threshold of an ASG

Mean Absolute Error (MAE), Mean Square Error (MSE) and Mean Absolute Percent
Error (MAPE) are three models usually used to evaluate prediction accuracy. The
smaller obtained result is, the more accurate the prediction is. In this paper, we use MSE
method to achieve better prediction accuracy, and Eq. (5) shows its mathematical
expression.

MSE =

√∑k

t=1
[Loadpre(t) − Load(t)]2

/
k (5)

72 X. Pang et al.

Table 2 shows the workload prediction MSE of Eqs. (3) and (4). We have a one-
week statistical analysis of the load data and forecast data from our testbed. Comparing
their mean squared errors of the two models, we can see that both models got good
experiment results, and especially, the AR model obtained better prediction accuracy
and is more stable.

Table 2. Mean squared error of prediction models

Sun Mon Tue Wen Thu Fri Sat
AR 0.081 0.079 0.120 0.083 0.181 0.168 0.125
MA 0.102 0.092 0.107 0.101 0.239 0.156 0.164

3.5 Auto-Scaling Control Logic

First, we consider scale in and scale out as the following ways, that’s a little bit different
from usually on virtual machines.

Scale-out: when VNFM triggers scale out for an ASG, according to the need to
increase the number of servers, first to find are the configured but shutdown servers in
the same group, power them up to fit the need. But if no enough off machines left, it will
then request for filling the gaps in demand by triggering provision process of bare metal
in the resource pool. Scale-in: when VNFM triggers scale in action, it just chooses the
right nodes and turn them off.

Notice that here requires all VNFs should be either a stateless type or can be auto‐
matically migrated. Stateless VNFs use a shared data layer, so they don’t need to manage
their own data. This is much easier and can be easily switched to meet the changing
requirements [14].

In fact, the bare metal pool has a garbage collection mechanism. When there is not
enough resource in it, it will find some shutdown servers in ASGs by Least Recently
Used (LRU) policy [15] and then reset PXE as the first boot device.

In the Fig. 3, there are 3 statuses for a bare metal, those are UP, DOWN and EMPTY,
which represent the basic status of active, shutdown, and released. Besides, there are
generally 4 actions for a bare metal, those are ON, OFF, DEPLOY and RELEASE. Due
to the DEPLOY action is very time-consuming, scale out always try to trigger ON action
at first, but if there is no resource in ASG, it will request from bare metal pool, and
DEPLOY new instances. Based on the above rules, a practical workflow carried out in
stages. That is about how to deal with specific overload and low load.

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 73

Fig. 3. State transition diagram of a bare metal

Stage One: real-time acquisition of prediction samples from Zabbix’s monitoring
data. Workload predictor will retrieve sample data every 30 min (according to physical
machine acceptable interval, also avoid fluctuations). We use data of latest previous p
moments as input, and output predict results of next moment [16]. Equation (3) describes
a predict workload, it’s the sum of all processor workloads in an ASG.

Stage Two: in this threshold judgment phase, according to the real-time load of each
server, when the average load of an ASG occurs overload or low load situation, that
ASG needs to be expanded or constrained according to its current state. We use the
predict workload to adjust the number of working processors, according to Eq. (6) we
can get the average value of predict load at time t + 1. Equations (7) and (8) shows the
range of predict processor num. In Eq. (9) shows that conditions whether we need to
adjust core number or not. We take the ideal situation, where MinLoad equals 0.75,
MaxLoad equals 1.75.

Loadavg(t + 1) = Loadpre(t + 1)
/

CoreNum(t) (6)

CoreNummin(t + 1) = Loadpre(t + 1)
/

MaxLoad (7)

CoreNummax(t + 1) = Loadpre(t + 1)
/

MinLoad (8)

CoreNummin(t + 1) ≤ CoreNum(t) ≤ CoreNummax(t + 1) (9)

Stage Three: Scaling decision phase, when the condition described by inequality (9)
is not satisfied, there should be an adjustment of that ASG. if the right condition of the
inequality is not satisfied, that is, the ASG will be in a low load state and current resources
will exceed real needs. The target of the processor resource to be adjusted is the result
shown in the formula (8), the surplus processor quantity is the result shown in formula
(10). Similarly, if the condition of the left side of the inequality is not satisfied, that is,
the ASG will be in an over load state and current resources will do not meet real needs.

74 X. Pang et al.

The target of the processor resource to be adjusted is the result shown in formula (7),
insufficient core number is the result shown in formula (11).

Δlowload = CoreNummax(t + 1) − CoreNum(t) (10)

Δoverload = CoreNummin(t + 1) − CoreNum(t) (11)

SORT([CoreNum(t, 1),… , CoreNum(t, i),…CoreNum(t, m)], ASC) (12)

SORT([CoreNumoff (t, 1),… , CoreNumoff (t, j),… , CoreNumoff (t, n)], DESC) (13)

Stage Four: in scheduling phase, the method of sorting allocation is adopted. If it
will be in low load state, running servers in that ASG will be sorted by core number in
ascending order according to formula (12), and the servers are selected sequentially until
selected core number satisfies the result shown in formula (10). However, if it will be
in overload state, off servers in that ASG will be sorted by core number in descending
order according to formula (13), and the servers are selected sequentially until selected
core number meets the result shown in formula (11). When the result cannot be satisfied,
requests of remaining amount should be sending to the bare metal pool. Similarly, do
sorting for bare metals according to formula (13), and select bare metals sequentially
until it meets the demand, if resources in bare metal pool still cannot meet needs, then
alert for datacenter resource shortage and wait for free resources in queue.

4 Implementation and Evaluation

Experiment should be in real production environment, the biggest advantage of this is
we can validate the stability. But in order to avoid the experiment cost and in a more
controlled environment, we decided to setup a customized test bed, this will cost some
effort on system configuration.

In this platform, we used ten physical servers to test and optimize our auto-scaling
algorithm. Each physical machine has 12 Intel® Core CPUs, 24 GB RAM and 10G
Ethernet, and powered with CentOS7 system. There are two active nodes at initialization
phase, one controller and network node, one compute.

In this paper we use Deep Packet Inspection (DPI) as the experimental VNF, for it’s
a computation intensive network function and this is a typical bare metal scenario.
Figure 4 shows our measuring method, we use a client program to send requests to a
flow receiver and measure the response latency difference between closing and opening
the DPI firewall [17]. We wrote about 2 thousand lines of code (RScript and Python)
for this test bed, including prediction algorithms, auto-scaling control and automation
combination logic.

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 75

Flow
Generator

Flow
Receiver

DPI firewall
auto-scaling group

Fig. 4. DPI performance test

We compare the actual performance of multiple scheduling algorithms, assessing
the VNF response rate and the number of physical servers used. Three schedule algo‐
rithms are chosen as the evaluation benchmarks. The four schedulers prediction-based
and with transition state, no-prediction but with transition state, prediction-based but
with no transition state, and no-prediction and with no transition state, represent four
different scaling strategies are denoted by s1, s2, s3 and s4, respectively.

The performance of these schedulers is evaluated mainly from two perspectives,
eager mode and idle mode, which represent two extremes that can highlight our auto-
scaling policies. For the sake of statement, here we define the request density from 0 to
1, meaning density increasing.

First, we show a more comprehensive perspective (from idle mode to eager mode)
in Fig. 5. Each point represents the average workload per processor. We can see that the
CPU loads trend of our proposed auto-scaling scheme is more stable and is the case of
the smallest fluctuations.

Fig. 5. Average workloads per processor

Figure 6 shows that when bare metal resources are insufficient, requests can be
delayed due to the high CPU loads. We can see that s2 and s3 show roughly the same
performance. And our strategy is about 18% less than their average delay. As for the no-
prediction and no transition state scheduler, our strategy is about 29% less than the
average delay. The conclusion is our prediction-based auto-scaling scheme can improve
the quality of service VNF under eager mode.

76 X. Pang et al.

0

5

10

15

20

s1 s2 s3 s4
schedulers

av
er
ag

e_
re
sp

on
se

_l
at
en

cy

schedulers s1 s2 s3 s4

Fig. 6. Average VNF latency for eager mode (ms)

Figure 7 shows that when the bare metal resources are sufficient, power resources
may be wasted, due to the adjustment is not timely. We can see that s2 and s3 generally
use the same number of servers, about wasted 16% processor resources than our sched‐
uler. Moreover, the no prediction and no transition state scheduler wasted about 21% of
the power resources than ours. The conclusion is our prediction-based auto-scaling
scheme can reduce power waste under idle mode.

0

1

2

3

4

s1 s2 s3 s4
schedulers

av
er
ag

e_
se

rv
er
_c

ou
nt

schedulers s1 s2 s3 s4

Fig. 7. Average server counts for idle mode

5 Conclusion

In this paper, we presented a bare metal auto scaling mechanism based on NFV system.
This mechanism uses a method of forecasting and pre-allocating physical resources, to
make VNFs scale in and scale out more smoothly. Compared with traditional way of
relying more on human operations, it provides better QoS. Our work on bare metal auto-
scaling may provide an idea for the NFV platform maintenance, with more intelligent,
green, tight performance. Using this method, we believe that we opened a door for bare

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 77

metal auto-scaling to obtain significant improvements in both cost and execution time.
As the future work we intend to extend the prediction algorithm optimization, there is
still great room for improvement. And we also want to study on the auto-scaling
supporting both virtual machine and physical hosts, in a hybrid mode. This may be a
more normal scenario in practice. In the future, the NFV resource scaling may can be
optimized by the popular machine learning mechanisms [18–21].

Acknowledgment. This work was jointly supported by: (1) National Natural Science Foundation
of China (No. 61771068, 61671079, 61471063, 61372120, 61421061); (2) Beijing Municipal
Natural Science Foundation (No. 4182041, 4152039); (3) the National Basic Research Program
of China (No. 2013CB329102).

References

1. ETSI: Network Functions Virtualisation (2012). https://portal.etsi.org/nfv/nfvwhitepaper.pdf
2. Gupta, A., Kale, L.V., Milojicic, D., Faraboschi, P., Balle, S.M.: HPC-aware VM placement

in infrastructure clouds. In: Cloud Engineering (IC2E) (2013)
3. Naik, P., Shaw, D.K., Vutukuru, M.: NFVPerf: online performance monitoring and bottleneck

detection for NFV. In: Network Function Virtualization and Software Defined Networks
(NFV-SDN), 7–10 November 2016

4. Managing and monitoring performance in SDN/NFV (2015). https://www.virtualizationpractice.com/
managing-monitoring-performance-sdn-nfv-32088/. Accessed 15 Dec 2015

5. Gajjar, P., Shah, B.: An efficient scalable framework for auto scaling services in cloud
computing environment. IJIRT 2, 113–120 (2016)

6. Chaloemwat, W., Kitisin, S.: Horizontal auto-scaling and process migration mechanism for
cloud services with skewness algorithm. In: International Joint Conference on Computer
Science and Software Engineering (2016)

7. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
8. Sakellariou, R., Zhao, H.: A hybrid heuristic for dag scheduling on heterogeneous systems.

In: 18th IEEE International Parallel and Distributed Processing Symposium (2004)
9. OpenStack (2010). https://www.openstack.org/

10. Tacker (2015). https://wiki.openstack.org/wiki/Tacker
11. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer.

ACM SIGARCH Comput. Architect. News 35(2), 13–23 (2007)
12. Wu, Y., Hwang, K., Yuan, Y., Zheng, W.: Adaptive workload prediction of grid performance

in confidence windows. IEEE Trans. Parallel Distrib. Syst. 21(7), 925–938 (2010)
13. Liang, W., Huang, T., Chen, J., Liu, Y.: Workload prediction-based algorithm for

consolidation of virtual machines. J. Electron. Inf. Technol. 35(6), 1271–1276 (2013)
14. Kablan, M., Caldwell, B., Han, R., Jamjoom, H., Keller, E.: Stateless network functions. In:

SIGCOMM (2015)
15. Liu, C., Liu, Z., Zhang, D.: A cloud computing physical machine recovery method and its

device. CN102831016 A (2012)
16. Chuprikov, P., Nikolenko, S., Kogan, K.: On demand elastic capacity planning for service

auto-scaling. In: IEEE International Conference on Computer Communications (INFOCOM)
(2016)

17. Garcia, J.: A clustering-based analysis of DPI-labeled videoflow characteristics in cellular
networks. In: Integrated Network and Service Management (IM), 8–12 May 2017

78 X. Pang et al.

https://portal.etsi.org/nfv/nfvwhitepaper.pdf
https://www.virtualizationpractice.com/managing-monitoring-performance-sdn-nfv-32088/
https://www.virtualizationpractice.com/managing-monitoring-performance-sdn-nfv-32088/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Tacker

18. Xu, P., Yin, Q., Huang, Y., Song, Y.-Z., Ma, Z., Wang, L., Xiang, T., Kleijn, W.B., Guo, J.:
Cross-modal subspace learning for fine-grained sketch-based image retrieval.
Neurocomputing 278, 75–86 (2018)

19. Ma, Z., Xue, J.-H., Leijon, A., Tan, Z.-H., Yang, Z., Guo, J.: Decorrelation of neutral vector
variables: theory and applications. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 129–143
(2018)

20. Liu, W., Cao, J., Yang, L., Xu, L., Qiu, X., Li, J.: AppBooster: boosting the performance of
interactive mobile applications with computation offloading and parameter tuning. IEEE
Trans. Parallel Distrib. Syst. 28(6), 1593–1606 (2017)

21. Ma, Z., Rana, P.K., Taghia, J., Flierl, M., Leijon, A.: Bayesian estimation of dirichlet mixture
model with variational inference. Pattern Recogn. 47(9), 3143–3157 (2014)

Efficient Bare Metal Auto-scaling for NFV in Edge Computing 79

Mobile Edge Offloading Using Markov
Decision Processes

Khalid R. Alasmari1, Robert C. Green II2(B), and Mansoor Alam1

1 EECS Department, The University of Toledo, Toledo, OH 43606, USA
Khalid.Al-Asmari@rockets.utoledo.edu, Mansoor.Alam2@utoledo.edu

2 Department of Computer Science, Bowling Green State University,
Bowling Green, OH 43403, USA

greenr@bgsu.edu

Abstract. Considering where to process data and perform computa-
tion is becoming a more difficult problem as Mobile Edge Computing
(MEC) and Mobile Cloud Computing (MCC) continue to evolve. In order
to balance constraints and objectives regarding items like computation
time and energy consumption, computation and data should be automat-
ically shifted between mobile devices, the edge, and the cloud. To address
this issue, this study proposes a Markov Decision Process (MDP) based
methodology to intelligently make such choices while optimizing mul-
tiple objectives. Results demonstrate an 17.47% or greater increase in
performance.

1 Introduction

Overall, the number of smart phone users is rapidly increasing. According to a
Gartner press release from August 22, 2017 [1], Global sales of smart phones
to end users totaled 366.2 million units in the second quarter of 2017, a 6.7%
increase over the second quarter of 2016. These numbers demonstrate the higher
demand for smart phones and their level of integration into everyday life. How-
ever, smart phones still face the challenge of performing complex multimedia
operations such as image and video processing, object or face recognition, and
augmented reality applications [2]. As many of these operations can be compu-
tationally intense, maintaining battery life while addressing a consumer’s need
is becoming a bigger challenge.

In [3], Running tasks on mobile device will consume a large amount of energy
and bandwidth. Therefore, many researchers have proposed offloading mecha-
nism to reduce energy consumption on mobile devices by moving all or some of
the computation to the cloud [2,4]. Some of mobile applications, such as per-
ception and multimedia applications, the network latency of the cloud might
face a difficulty to achieve the desired performance [5]. Thus, mobiles devices
may prefer to access edge servers that have a lower latency for computation
offloading.

This study differs from previous studies by adding an edge device between the
mobile device and the cloud servers to perform data processing at the edge of the
c© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 80–90, 2018.
https://doi.org/10.1007/978-3-319-94340-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_6&domain=pdf

Mobile Edge Offloading Using Markov Decision Processes 81

network rather than sending them towards the cloud. This reduces end-to-end
delay, energy consumption and lower network congestion. Figure 1 illustrates an
architecture of our proposed system model for multisite offloading that include
a mobile device, cloud server and edge server. In this study, a methodology is
proposed that shows the offload tasks to edge servers is the effective technique to
save mobile device energy and reduce time delay. Therefore, we investigate the
collaborative application execution between the mobile device, the edge servers
and the cloud servers to conserve the energy consumption on the mobile device
by offloading technique.

The rest of the paper is organized as follows. Section 2 provides the related
work. Then in Sect. 3, a MDP methodology and formulation. Section 4 provides
a numerical simulation and evaluation. Finally, Sect. 5 concludes this paper.

2 Related Work

There are a variety of previous works that exist in the area of multi-site offloading
policies using Markov decision processes (MDPs) for mobile cloud computing.
Terefe et al. [3] proposed a multisite offloading policy (MDP) for mobile devices
in order to minimize energy consumption. The authors adopted a discrete time
Markov chain (DTMC) to model a fading channel and applied a MDP framework
to formulate the energy and time consumption of the multi-site offloading deci-
sions problem. The authors proposed the Energy-efficient Multisite Offloading
Policy (EMOP) algorithm with the value iteration algorithm (VIA) to determine
the optimal policy for a Markov chain model. However, their work considers
multiple cloud serves. The result shows that the EMOP algorithm is an effi-
cient multisite computation offloading approach for mobile devices with respect
to both energy consumption and execution time. Our approach considers edge
computing to develop more efficient offloading solution in energy and time.

Nasseri et al. [6] proposed a methodology that allowed various computation
tasks to be offloaded to mobile devices that belong to users considering battery
life, response delay, and power consumption. The authors adopted MDP optimal
policies and lookup tables for mobile cloud computing in order to guide mobile
devices in accepting or rejecting requests based on rewards. Result showed higher
rewards with a combination of a smaller delay in responding to a request and
reduced power consumption. However, sending the mobile phones data to the
lookup tables to update the battery level, signal strength and the distance to
helper consumes more energy. In this paper, we consider offloading sites have
own database server that could do the computational more easier and without
spending time and energy to retrieve the information from another location.

Zhang et al., in [4], proposed a framework solution for energy-optimal mobile
cloud computing under stochastic wireless channel. The authors adapted a
dynamic configuring technique to the clock frequency of the chip in order to
minimize the computation energy in mobile device. The authors also developed
a formulation that leads to an optimal data transmission schedule across the
stochastic wireless channel to minimize the transmission energy in cloud space.

82 K. R. Alasmari et al.

The authors employ the two-state Markov model known as the Gilbert-Elliot
channel. The result suggest offloading mobile applications to the cloud in order
to save a significant amount of energy in some application. Our approach consid-
ers Markov decision processes (MDPs) with three channel states (mobile, edge
and cloud).

3 MDP Methodology and Formulation

MDPs are used to help to make decisions in a stochastic environment. A MDP
is a discrete time stochastic control process. It is defined by a state space for
the system, an action space, a stochastic transition to determine how the system
will move to next state, and a reward function which determines the immediate
consequence for the agent’s choice of action a while in state s. Hence, a Markov
decision process can be defined by the 4-tuple (S,A, P,R) with the following
meaning:

– S is a finite set of states,
– A is a finite set of actions,
– P (s, s′, a) is the probability that action a in state s at time t will lead to state

s’ at time t + 1,
– R(s, s′, a) is the immediate reward received after transition to state s’ from

state s with action a.

3.1 MDP Formulation

This section introduces the formulation of our Multisite offloading in mobile edge
computing adapting the MDP methodology including appropriate policy con-
structs (i.e. state space, decision epochs, actions, transition probabilities, policy,
and reward function). The system architecture is shown in Fig. 1. Algorithm 2
shows the Energy-efficient multisite offloading policy algorithm.

State Space. The state space, S is defined as S = {1, 2, 3} where 1 denotes the
mobile space, 2 denotes the Edge site 1 and 3 denotes the Cloud.

Decision Epochs and Actions. The decision epoch is represented as T =
{0, 1, 2, . . . , n, n+1} where decision epoch t ∈ T indicates that component t has
already executed.

Transition Probabilities. The transition probabilities play the role of the
next-state function in a problem-solving search. Accordingly, for each state s(t)
and action a(t), the probability that the next state will be s(t + 1).

Mobile Edge Offloading Using Markov Decision Processes 83

Fig. 1. System model for the multi-site offloading formulation.

Reward Function. The reward function in this study considers two compo-
nents, Energy consumption and computation time, resulting in two objective
functions, Re(s, a) and Rt(s, a). Based on the reward function R and the tran-
sition function Tp, a transition is made to state s′ with probability Tp and a
reward R(s, s′, a) is received [7].

Value Iteration Algorithm. The VIA in Algorithm 1 will yield an approxi-
mation to the optimal value function and is used in this study.

Algorithm 1. Value Iteration Algorithm (VIA)
for all s ∈ S do V ← 0
end for
repeatΔ ← 0

for all s ∈ S do
v ← V (s)
V (s) ← maxa

∑
s′ P a

ss′ [Ra
ss′ + γV (s′)]

Δ ← max (Δ, |v − V (s)|)]

end for
until Δ ≤ θ(a small positive number)
π(s) ← argmaxa

∑
s′ P a

ss′ [Ra
ss′ + γV (s′)]

84 K. R. Alasmari et al.

4 Numerical Simulation and Evaluation

In this section, the performance of the proposed MDP-based methodology in
terms of energy consumption and computation time is analyzed.

4.1 Simulation Setup

This study considers a scenario with two offloading sites (i.e.,K = 2). Site 1
simulates an edge server and Site 2 simulates a cloud server that also contains a
database server as shown in Fig. 1. The mobile application consists of n compo-
nents in a linear topology, where each component could migrate to one of the two
offloading sites or remain on the mobile device in any given step. It is assumed
that the two offloading sites have different computational capacity and network
bandwidth [3].

Fig. 2. State transitions in the MDP model.

In the proposed model, the decision epoch is represented as T =
{0, 1, 2, . . . , n, n + 1}, where decision epoch t ∈ T indicates that component t
has already executed. The decision maker chooses either the action taken where
a = 1 (good) at time t that causes the state to transition to a new state at time
t + 1 from the current state, or the action is not taken where a = 0 (bad) [3].
In that event, at the beginning of every stage, a decision-maker observes the
current state, and chooses an action: migrate execution or continue execution,
and receives a reward depending on the current state [8].

Mobile Edge Offloading Using Markov Decision Processes 85

The system state at decision epoch t and i ∈ [0, k] denotes the location
of the executed component t. It is assumed that the executions start at the
mobile device and the initial channel state is observed to be good, which means
computation may be offloaded to one of the two sites. There are n + 2 stages
of execution considered, as shown in Fig. 2. Stage 0, at decision epoch 0, and
stage n + 1 represent the initiation and termination of application execution,
respectively. In each stage, the system state is defined as xi = (ti, γi) where ti
is the location of the executed component t, and γi is the channel state of the
next time slot between the mobile and offloading sites (i.e., ether good or bad).

Since the application execution starts and ends on the mobile device, it also
holds that t0 = 0, and tn+1 = 0.

The execution sites are defined as Q = {q0, q1, q2}, where q0 represents the
mobile device, q1 denotes the offloading site 1 (edge server) and q2 denotes the
offloading site 2 (cloud server). Energy cost is defined as Ev = {ev0 , ev1 , ev2},
where ev0 , ev1 and ev2 denotes the energy cost of component v that executed
on offloading site q0, q1 and q2, respectively. Time cost is defined as Tv =
{tv0 , tv1 , tv2}, where tv0 , tv1 and tv2 denotes the time cost to execute compo-
nent v on each of the offloading sites q0, q1 and q2, respectively [3].

f0, f1 and f2 are defined as the CPU clock speeds (cycles/second) of mobile
device q0, offloading site 1 (q1), and offloading site 2 (q2). The total CPU cycles
needed by the instructions of component v is Wv. tcvi

denotes the computational
time of executing component v on site qi and is given by:

tcvi
=

wv

fi
∀v ∈ V and ∀i ∈ [0, k] (1)

Data sent and received by component v as denoted as dvs
and dvr

, respec-
tively. Since the database is located at the cloud site, r0 and r1 are defined as
the data rate between site q0 and site q1 and the database server [3]. Also, tsvi

and trvi
are defined as the communication time spent for sending and receiving

data from the database by component v on site qi, given by (2) and (3).

tsvi
=

dvs

ri
,∀v ∈ V and ∀i ∈ [0, k] (2)

trvi
=

dvr

ri
,∀v ∈ V and ∀i ∈ [0, k] (3)

tvi
is defined as the total time cost of component v on site qi and is given by

tvi
= tcvi

+ tsvi
+ trvi

(4)

86 K. R. Alasmari et al.

It is assumed that the energy consumption Ev is calculated as the amount of
energy a mobile device spends while executing the component or waiting for the
component to be executed on offloading sites [3]. Energy cost of a component
is then defined by evi

in (5) where pc is the mobile power consumption when
computing, ps is the mobile power consumption when sending data, pr is the
mobile power consumption when receiving data, and pidle is the Mobile power
consumption at idle [3].

evi
=

{
tcvi

× pc + tsvi
× ps + trvi

× pr,

tvi
× pidle

(5)

The communication energy cost between two edges is denoted as
eu,v = {eu0v0 , eu0v1 , . . . , eu0v2 , eu1v0 , . . . , eu2v2}. (6) represents the communica-
tion energy spent on the edge for sending data from a mobile to an offloading
site, either and edge server or cloud server where eui,vj

denotes the energy cost
if component u is executed on site qi and component v is executed on site qj ,
and tui,vj

is the time spent transferring data from component u on site qi to
component v on site qj [3].

eui,vj
= tui,vj

× ps,∀(u, v) ∈ E and i = 0, j ∈ [1, 2] (6)

(7) represents the communication energy spent on the edge for receiving data
from an offloading site either edge server or cloud server to a mobile device, given
by

eui,vj
= tui,vj

× pr∀(u, v) ∈ E, i ∈ [1, 2], j = 0 (7)

The energy a mobile device spends while waiting for data transfer between
components on different offloading sites is represented by (8) taking into consid-
eration that ps > pr > pc > pidle [9].

eui,vj
= tui,vj

× pidle,∀(u, v) ∈ E, i, j ∈ [1, 2], i �= j (8)

The communication time spent to transfer data from component u on site qi
to component v on site qj is denoted as tui,vj

and is given by given by (9) where
du,v denotes the data transferred from component u to v, and ri,j denotes the
transmission rate between sites qi and qj [3].

tui,vj
=

du,v
rij

, (9)

Mobile Edge Offloading Using Markov Decision Processes 87

Algorithm 2. Energy-efficient multisite offloading policy algorithm
Input: initialization
Output: eM ,eE,eC ,tM ,tE,tC

while Not at end of stages do
R =< R1, R2, R3 >

� TP1 for action a = 1 mobile
� TP2 for action a = 2 Edge and Cloud

policy = floor(2 × rand(1, N)) + 1
� Random vector of 1 (stay at mobile)and 2 (offloading)

N ← 3
for i = 1 to N do

for j = 1 to N do
TP(i,j) = T(i,j,policy(i))

end for
end for
converge ← 0
V0 ← 0
γ ← 0.9
while converge do

V = transpose(R) + γ × TP × (transpose(V0))
old V ← V0

V0 ← inverse(V)
if abs(old V - V0) < 0.0001 then

converge ← 1
end if

end while
Return < eM , eE , eC , tM , tE , tC >

end while

4.2 Simulation Results

Table 1 shows the result of the multi-site offloading simulation using MDP. The
simulation was run eight times for a differing number of nodes. In the first exper-
iment where nodes or stages is equal to 5, two of the stages have executed at the
mobile device, two have executed at the edge server, and one has executed at
the cloud server. The total energy consumption of the mobile device is 19.25 J,
the edge server consumes 2.19 J, and the cloud server consumes 0.801 J. As men-
tioned in a previous section, the execution starts and ends at the mobile device.
Thus, there must be at least two stages executed at mobile device.

Several observations can be made when considering Tables 1, 2, 3 and 4. First,
the energy consumption of executing an application on the edge server results
in a larger energy saving than compared to the cloud server. Second, the time
cost for multiple site execution of single edge and cloud nodes is less than the
time cost for single mobile node, for example, when the nodes equal to 40, the

88 K. R. Alasmari et al.

average time cost for edge per node is 3.523 s, the average time cost for cloud
per node is 3.839 s, and the average time cost for mobile per node is 10.6 s, as
shown in Table 2. Third, the energy saving of executing an application across
multiple sites (i.e., edge and cloud) is between 17.473%–46.27% of the energy
consumption of execution on single site server (i.e., mobile device), as shown
in Table 3. Moreover, we noticed that the energy saving percentage decreases
as nodes increases, as shown in Table 3. However, the energy consumption of
execution on a edge server is higher than a cloud server because the database
is located at the cloud where there is a higher computational speed and faster
access to a database, while the mobile device or edge servers have to make data
requests to the cloud server. Fourth, the time cost for multiple site execution is
less than the time cost for single site execution. The time cost for multiple site
execution is between 41.88%–64.52% of the time cost of execution on single site
server (i.e., mobile device), as shown in Table 4.

Table 1. Energy consumption of executing an application on multiple sites.

Node No. of execution Energy (J)

Mobile Edge Cloud Mobile Edge Cloud

5 2 2 1 19.25 2.19 0.801

10 2 6 2 18.509 6.402 2.841

15 2 10 3 19.178 12.003 3.906

20 2 12 6 18.677 12.738 7.878

25 2 14 9 19.301 15.204 10.494

30 2 16 12 19.604 19.275 15.57

35 2 21 12 19.1999 24.983 13.011

40 2 24 14 18.077 30.906 16.125

Table 2. Time cost of executing an application on multiple sites.

Node No. of execution Time (sec.)

Mobile Edge Cloud Mobile Edge Cloud

5 2 2 1 23.21 7.86 2.67

10 2 6 2 21.54 19.58 9.47

15 2 10 3 18.64 37.32 13.02

20 2 12 6 19.32 42.8 26.26

25 2 14 9 22.58 51.19 34.98

30 2 16 12 18.46 54.53 51.9

35 2 21 12 21.18 85.045 43.37

40 2 24 14 21.2 84.56 53.75

Mobile Edge Offloading Using Markov Decision Processes 89

Table 3. Total energy consumption of executing an application on multiple sites and
single site.

Node Energy (J) Energy saving (%)

Multiple site Single site

5 22.241 48.065 46.27

10 27.752 93.781 29.59

15 35.087 144.126 24.34

20 39.293 190.541 20.62

25 44.999 235.441 19.11

30 54.449 284.622 19.13

35 57.1925 333.092 17.17

40 65.108 372.508 17.47

Table 4. Total time cost of executing an application on multiple sites and single site.

Node Time (sec.) Time saving (%)

Multiple site Single site

5 33.74 52.29 64.52

10 50.59 99.94 50.62

15 68.98 149.13 46.25

20 88.38 199.68 44.26

25 108.75 251.2 43.29

30 124.79 298.39 42.83

35 149.595 353.82 42.27

40 169.51 404.71 41.88

5 Conclusion

This study has investigated the problem of how to save energy and time for
mobile devices by executing some components of mobile applications remotely
(e.g., on the edge server or in a cloud server). A MDP-based methodology was
formulated to optimize energy consumption and execution time, resulting in
savings of 17.47% to nearly 46.27%.

In the future, this work will be enhanced through multiple routes:

– Various algorithms and techniques like dynamic programming or ant colony
optimization (ACO) may be compared with the MDP-based model in order to
evaluate which algorithms perform best when optimizing computation time
and energy consumption;

– The system may be expanded to be more realistic, involving multiple mobile
devices, multiple edge servers, and a variety of a cloud servers leading to a
more complex state space and more difficult optimization;

90 K. R. Alasmari et al.

– Calculation of the MDP process may be varied from a centralized to a decen-
tralized position, resulting in various impacts in optimization; and

– New reward functions, including the possible inclusion of some type of
token/credit may be included [6].

References

1. van der Meulen, R., Forni, A.A.: Gartner says demand for 4G smartphones in emerg-
ing markets spurred growth in second quarter of 2017. Technical report, Gartner
(2017)

2. Verbelen, T., Stevens, T., Simoens, P., Turck, F.D., Dhoedt, B.: Dynamic deploy-
ment and quality adaptation for mobile augmented reality applications. J. Syst.
Softw. 84(11), 1871–1882 (2011)

3. Terefe, M.B., Lee, H., Heo, N., Fox, G.C., Oh, S.: Energy-efficient multisite offloading
policy using Markov decision process for mobile cloud computing. Pervasive Mob.
Comput. 27, 75–89 (2016)

4. Zhang, W., Wen, Y., Guan, K.: Energy-optimal mobile cloud computing under
stochastic wireless channel. IEEE Trans. Wirel. Commun. 12(9), 4569–4581 (2013)

5. Bahl, P., Han, R.Y., Li, L.E., Satyanarayanan, M.: Advancing the state of mobile
cloud computing. In: Proceedings of the Third ACM Workshop on Mobile Cloud
Computing and Services, MCS 2012, pp. 21–28. ACM, New York (2012)

6. Nasseri, M., Alam, M., Green, R.C.: MDP based optimal policy for collaborative
processing using mobile cloud computing. In: IEEE 2nd International Conference
on Cloud Networking (CloudNet), pp. 123–129 (2013)

7. van Otterlo, M.: Markov decision processes: concepts and algorithms, May 2009.
Compiled for the SIKS Course on Learning and Reasoning

8. Bellman, R.: A Markovian decision process. Technical report, DTIC (1957)
9. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: can offloading computation

save energy? Computer 43(4), 51–56 (2010)

A Face Recognition System Based on Cloud
Computing and AI Edge for IOT

Junjie Zeng1,2(✉), Cheng Li1,2, and Liang-Jie Zhang1,2

1 National Engineering Research Center for Supporting Software of Enterprise Internet Services,
Chengdu, China

junjiezeng87@gmail.com
2 Kingdee Research, Kingdee International Software Group Company Limited, Shenzhen, China

Abstract. With the demand for interconnection of all things, more and more
kinds of sensors are connected to the Internet of Things. Different from traditional
sensors, such as low transmission frequency and small data volume, visual sensors
have the characteristics of high transmission rate and large data volume. Vision
sensors are widely used in security, health care and other face recognition. This
paper proposes a combination of edge-based artificial intelligence and cloud
computing that is suitable for areas such as face recognition and security that
require a large number of visual sensors and image processing and analysis. In
order to verify the effectiveness of the technical framework proposed in this paper,
a complete demonstration system was built at the end of the paper based on the
rk3288 and cloud server to prove the excellence of the system described in this
paper.

Keywords: Face recognition system · AI Edge · IOT · Cloud computing

1 Introduction

At present, the Internet of Things is growing faster and faster. More and more types and
quantities of IoT devices will be connected to the network. IoT can be viewed as a global
infrastructure for the information society [1, 2]. Because of the numerous opportunities
that IoT provides, the number of connected devices is increasing rapidly, and Interna‐
tional Data Corporation (IDC) predicted that number to reach 29 billion by 2020 [3–5].

Among these growing IoT devices, in addition to traditional low-speed, small-data-
rate sensor devices, some new types of IoT devices are gradually increasing, and vision
sensor devices are among the more and more concerned types. The vision sensor is a
general term for a series of image input devices, and the data it acquires are mostly still
photos or dynamic videos. Benefiting from the development since they have abilities to
recognize a person in the incorrect area and at the false hour because this person may
be a bad person for the environment [12].

The system based on vision sensor is divided into two kinds of systems based on
cloud processing and local processing according to the different ways of image
processing. In a cloud-based system, the vision sensor collects the image data and

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 91–98, 2018.
https://doi.org/10.1007/978-3-319-94340-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_7&domain=pdf

uploads it to the cloud service center for processing. In the local processing system, the
image data obtained by the vision sensor will be processed in the local hardware system.

As shown in Fig. 1, the cloud-based face recognition system, the vision sensor
uploads the obtained image data and waits for the cloud center to perform comparative
analysis according to the image data. Its advantages are a simple structure, low cost on
the equipment side, and can support different numbers of vision sensor devices according
to the capabilities of the cloud computing center. However, because the image data needs
to be uploaded through the network, although the image data can be reduced in size by
a compression technique, it still suffers from a great deal of interference from the network
state. When the network state is not ideal, the delay is very serious. And limited by the
ability of the cloud computing center, when the number of visual sensors is huge, the
computational expense of concurrent processing will be enormous of artificial intelli‐
gence technology, vision sensors are widely used in fields such as autopilot, security
protection, and health care that require visual image information [6–11]. Computer
Vision fusions can present more security system in an IoT platform for smart homes.

Fig. 1. Cloud-based face recognition system

The local-based face recognition system of Fig. 2, after the vision sensor acquires
the image data again, the image data is transmitted to the local computing device through
direct connection for comparison and analysis. The advantage is that it will not be
disturbed by the network conditions and it will be processed quickly. The disadvantage
is that the local processing hardware system based on artificial intelligence technology
is expensive and the installation is inconvenient.

Fig. 2. Local-based face recognition system

Based on these two recognition systems, this paper proposes a face recognition
system based on AI Edge and cloud computing (AE-FRS), which not only has lower

92 J. Zeng et al.

network delay time than the traditional cloud-based system, but also lowering the cost
and easier to install than local face recognition system.

The following framework of this paper is as follows. Section 2 will describe the
problems solved in this paper. Section 3 will introduce the face recognition scheme based
on edge AI and cloud computing in detail. Section 4 will prove the effectiveness of the
proposed scheme through experiments. Section 5 is the conclusion of this paper. Work
with in future.

2 Problem Formations

The purpose of this article is to significantly reduce the response delay of cloud-based
face recognition solutions. The response delay in the face recognition system is shown
in Formula 1, tdelay represents the delay time until the visual sensor obtains the image
until the recognition result returns, and the size is determined by the time spent in each
step of the recognition process.

tdelay is mainly composed of three parts, the first part is the time delay ttrans transmitted
from the visual sensor to the identification processing center, the second part is the
processing center wait time twait (mainly due to the queue when the processing volume
is large), and the third part is Recognition time trec, the size of which is determined by
the algorithm’s time complexity and hardware calculation speed.

tdelay = ttrans + twait + trec (1)

In Sect. 3, we will describe how to reduce the system’s response latency through
edge AI. Since the edge AI’s capability is sufficient to meet the requirements, and after
a real test (see Sect. 4 for details), we will ignore the processing time of the edge AI.

3 AE-FRS

Compared with the old cloud-based face recognition system, AE-FRS will complete a
part of the image processing that needs to be processed in the cloud due to the powerful
computing power of the edge AI, which will greatly reduce the response delay. At the
same time because of the edge AI and the need for complex identification calculations,
will not increase the excessive local equipment overhead. We can see from Fig. 3 that
compared with cloud-based systems, this system is more than happy local preprocessing.
The following will explain in detail the work performed by the preprocessing and how
to reduce the response delay of the system.

A Face Recognition System Based on Cloud Computing and AI Edge 93

Fig. 3. AE-FRS

As shown in Fig. 4, the preprocessing is mainly divided into the following four steps:
(1) background information processing (2) removal of background interference (3)
removal of interference repeatedly identified by the same person (4) facial region reduc‐
tion. Each step is described in detail below.

Fig. 4. Pretreatment

Step 1: background information processing, the main purpose is to eliminate the
background of the human face interference, such as posters, billboards and other still
face images. In real life, the scene that needs to be recognized may have the existence
of interfered portrait, which not only brings extra recognition overhead but also takes
up the file content to waste network traffic. Because of the calculation ability based on
edge AI, this system uses the model based on Uniform Pattern LBP eigenvalue to detect
the position of the face in the photo.

After the boot, the system checks a frame of an image every second, and the set of
rectangular regions of a face detected in a frame I image is Si

=

{
si

1, si
2, si

3 …… si
k

}
, si

k

represents the location of the k-face detected in frame i, si
k
=

(
xi

k
, yi

k
, wi

k
, hi

k

)
. As shown

in Fig. 5, xi
k
. denotes the distance between the face rectangle image and the left boundary

of the k-frame image, yi
k
 denotes the distance between the face rectangle image and the

boundary on the k-frame image, wi
k
. denotes the width of the face rectangle image, and

hi
k
 denotes the height of the face rectangle image is indicated.

If a face rectangle appears in more than six frames, it is stored in the background
interference region set Sback. Because the local area of the face in ten frames is rarely
fully overlapped, we regard the rectangular area with an overlap ratio of more than 90%
as a coincidence, and the other reclosing areas mentioned in this paper are also defined

94 J. Zeng et al.

in the same way. A method of calculating the overlap ratio r of the k face rectangle of
frame i and the l face rectangle region of frame j such as formula 2.

r =
(
si

k
∩ s

j

l

)

(
si

k
∪ s

j

l

) (2)

Step 2: remove background interference. After the previous step to determine the
background interference Sback, the system entered normal working mode. After obtaining
a frame of image from the visual sensor, the rectangular region of the face in the current
frame is obtained by using the eigenvalue model based on Uniform Pattern LBP. If there
is a rectangular region of the face, it should be compared with the rectangular region in
the background interference set. Remove overlapping rectangular areas of the face.

Step 3: remove repeated interference from the same person. In the traditional image
recognition system, when a continuous frame is recognized, if a person is still in the
image, it will cause additional network overhead and recognition overhead for multiple
recognition of that person, resulting in the delay of normal face recognition. Therefore,
by comparing the face rectangular region set Sk−1 of the previous frame with the face
rectangle region of the frame, the final face region set Si

final
 of the first frame is obtained

by removing the overlapped region.
Step 4: make facial cuts. In face recognition, the traditional cloud system directly

pushes the complete image or video stream, in which the redundant background infor‐
mation such as scenery, objects and so on occupying a large amount of image content,
resulting in additional network overhead. The cloud recognition center needs informa‐
tion about the face and its vicinity. The final facial region set Si

final
 obtained by the pre-

recording step will be clipped according to the position of the facial region and the cut

Fig. 5. Face rectangular region

A Face Recognition System Based on Cloud Computing and AI Edge 95

image will be transmitted to the cloud for processing and recognition. In order to avoid
the lack of image information near the face area, we can magnify the rectangular area
of the face by a certain multiple (the default 1.2 times) and upload it.

The image processing recognition section of the cloud will be described in a separate
article. Because of the edge AI based processing, the number of images uploaded and
the size of the image are greatly reduced, thus reducing the ttrans and twait, thus reducing
the tdelay.

4 Performances and Evaluation

In order to verify the effectiveness of this system, this paper uses rk3288 development
platform, webcam, remote server background to build a set of identification system to
prove the effectiveness of the system (Fig. 6).

Fig. 6. System hardware equipment

The parameters of system are shown in Table 1.

Table 1. System parameters

Parameters
Pixel 2048(H) × 1536(V)
Video frame rate 30 fps
Focal length 2.8 mm
Main frequency Four core A17, main frequency 1.8 Ghz
Memory 2 Ghz
Display card Mali T760
Uplink bandwidth 500 k/s
Downlink bandwidth 2 M/s
Identification frequency 1 fps

In order to verify the processing speed of edge AI, the images containing 100, 500,
1000, 2000 and 5000 human images were transferred to rk3288 to obtain the time delay

96 J. Zeng et al.

from the input image to the final rectangular region Si
final

. You can see that it’s stable at
around 0.3 s (Fig. 7).

0.3
0.301
0.302
0.303
0.304
0.305
0.306
0.307

100 500 1000 2000 5000

Fig. 7. Processing delay of edge AI

In order to verify the delay comparison between this paper’s scheme and the cloud-
based face recognition scheme, the rk3288 operation will be applied to the image set
containing 100, 500, 1000, 2000, and 5000 portraits respectively, and the time from the
image input to the server to return the verification result will be obtained. From the
Fig. 8, we can see that the delay of the traditional cloud scheme of blue-folded modern
(cyan line) watches has an average value of more than 5 s. With the increase in the
number of photos, the delay is significantly increased. The increase in the number of
images is 2,000. The cloud center handles the congestion. The purple broken line repre‐
sents the edge-based AI-based cloud processing system. Its average delay is more than
2 s, and its delay does not increase or decrease significantly, because it eliminates photos
that will bring extra recognition costs and reduces the size of the image required for
recognition.

0

2

4

6

8

10

12

100 500 1000 2000 5000

Fig. 8. Compare with traditional cloud-based scheme

A Face Recognition System Based on Cloud Computing and AI Edge 97

5 Conclusions and Future Works

Experiments show that compared with the traditional face recognition cloud system, the
face recognition system based on edge AI and cloud computing center proposed in this
paper can effectively reduce the delay.

In the future work, we will continue to modify the relevant recognition algorithms
in the cloud computing center in order to further reducing the delay.

Acknowledgement. This work is partially supported by the technical projects No.
2016YFB1000803, No. 2017YFB1400604, No. 2017YFB0802703, No. 2012FU125Q09, No.
2015B010131008 and No. JSGG20160331101809920.

References

1. Medina, C.A., Perez, M.R., Trujillo, L.C.: IoT paradigm into the smart city vision: a survey.
In: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), 21–23 June 2017

2. Borgia, E.: The internet of things vision: key features, applications and open issues. Comput.
Commun. 54, 1–31 (2014)

3. Ericsson: More than 50 billion connected devices. Ericsson white paper, pp. 1–12 (2011)
4. Internet of things (IoT) 2013 to 2020 market analysis: Billions of things, trillions of dollars.

International Data Corporation, Technical Report (2013)
5. Yigitoglu, E., Mohamed, M., Liu, L., Ludwig, H.: Foggy: a framework for continuous

automated IoT application deployment in fog computing. In: 2017 IEEE 6th International
Conference on AI and Mobile Services, June 2017

6. Munaro, M., Basso, F., Menegatti, E.: Tracking people within groups with RGB-D data. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
2101–2107, October 2012

7. Cherubini, A., Chaumette, F.: Visual navigation of a mobile robot with laser-based collision
avoidance. Int. J. Robot. Res. 32(2), 189–205 (2013)

8. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-
person tracking. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2008, pp. 1–8. IEEE (2008)

9. Piatkowska, E., Belbachir, A., Schraml, S., Gelautz, M.: Spatiotemporal multiple persons
tracking using dynamic vision sensor. In: 2012 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 35–40, June 2012

10. Reverter Valeiras, D., Orchard, G., Ieng, S.H., Benosman, R.B.: Neuromorphic event-based
3D pose estimation. Front. Neurosci. 9(522) (2015)

11. Ni, Z., Ieng, S.-H., Posch, C., Regnier, S., Benosman, R.: Visual tracking using neuromorphic
asynchronous event-based cameras. Neural Comput. 27(4), 925–953 (2015)

12. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using
class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (2007)

98 J. Zeng et al.

A Robust Retail POS System Based on Blockchain
and Edge Computing

Bo Hu1,2, Hongfeng Xie1, Yutao Ma3(✉), Jian Wang3, and Liang-Jie Zhang1,2

1 Kingdee International Software Co., Ltd., Shenzhen 518057, People’s Republic of China
2 NERC of Enterprise Internet Supporting Software,

Shenzhen 518057, People’s Republic of China
3 Institute of Intelligent Software and Services, School of Computer Science,

Wuhan University, Wuhan 430072, People’s Republic of China
ytma@whu.edu.cn

Abstract. New Retail has recently become one of the hottest concepts in the
world, particularly in China. Many Internet technologies like Cloud Computing
have been employed to address the limitations of the traditional retail industry,
and significant progress has been made towards this direction. Despite these
achievements, an intractable issue faced by the existing cloud-based retail POS
systems is that they cannot provide continuous services when the Internet connec‐
tions are interrupted. Towards this issue, in this paper, we leverage two new
technologies, Blockchain and Edge Computing, to design and develop a new
robust retail POS system. More specifically, this type of POS systems deployed
in a retail store can use blockchain networking, trustworthiness, and security. We
take all cash registers as nodes to build a POS blockchain network and store
transaction records in the blockchain network to deal with unexpected network
interruptions. Once the Internet connection recovers, a node in the blockchain
network will be selected as a POS edge computing server to synchronize data
with the POS cloud and resume regular communication between them. The
advantages of the robust retail POS system over traditional POS systems include
less dependency on the Internet in case of sudden interruptions and little or no
hands-on intervention required for changes in our POS system caused by external
changes.

Keywords: New retail · POS system · Blockchain · Edge computing

1 Introduction

Recently, New Retail has become one of the most popular concepts in the world, partic‐
ularly in China, and it is considered to be an optimal combination of physical and online
retails [1]. Despite a commercial hype to some extent, a few famous Internet companies
like Alibaba [2] and Amazon [3] have released their high-level solutions to New Retail,
such as mobile payment and self-service supermarket. Even so, there are still many
different types of problems to be solved. According to the best practices of the Internet
in other industries (e.g., e-Business and e-Government), we believe that traditional retail
problems will be tackled by new Internet technologies, business models, and operating

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 99–110, 2018.
https://doi.org/10.1007/978-3-319-94340-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_8&domain=pdf

methods. Moreover, the Internet will reshape the infrastructure of the traditional retail
industry.

As we know, the Retail Point of Sale (POS) System is a critical component of the
traditional retail infrastructure. From the perspective of necessity, a retail POS system
is also one of the essential IT systems in modern retail stores. Nowadays, an increasing
number of retail POS systems begin to transform from a single machine to a cloud
terminal. For large retail chains, standard cloud-based retail POS systems can help
managers monitor and control their operations more directly and globally. A cloud-based
retail POS system uses the “cloud + terminal” mode, in which the management system
for orders, inventory, and funds is placed in the cloud (or called POS cloud), while the
terminal includes cash registers which can connect to the POS cloud via the Internet or
a dedicated network. Generally speaking, this type of cloud-based retail POS systems
is efficient enough for most retail chains. Due to the unforeseeable failure of Internet
equipment, instability of access to the Internet environment, and other specific factors,
it is straightforward to cause an unexpected interruption of the connection to the Internet.
As a result, local retail stores fail to sell any products, thus affecting their business
operations and customer experience severely.

Developing a robust POS system has always been a matter for software engineers,
and setting up a transactional cache locally in a cash register is one of the standard
solutions. However, these existing approaches usually result in two issues. On the one
hand, although the connection of a retail POS system to the POS cloud is out of service,
other systems and terminals continue to work, possibly leading to data conflicts in the
data synchronization process after network recovery. On the other hand, during the
period of disconnection to the Internet, the security in offline transactions of the retail
POS system cannot be guaranteed because the transaction environment is not credible.
Inspired by the ideas of Blockchain and Edge Computing, the primary goal of this work
is to design and develop a novel retail POS system. This type of retail POS systems can
be deployed in a particular area in a retail store, using the mechanisms of blockchain
networking, trustworthiness, and security. In particular, to deal with sudden network
interruptions, all cash registers of a retail POS system act as nodes to build a POS
blockchain network and store the related transaction records in it. Besides, once the
access of the retail POS system to the Internet recovers, a node in the blockchain network
will be selected as a POS edge computing server to synchronize data with the POS cloud
and resume regular communication between them.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries
to this study, mainly including the concept, explanation, and applications of Blockchain
and Edge Computing. Section 3 presents specific requirements and application scenarios
of our work. Section 4 describes the details of blockchain-enabled transactions,
including the definition of a POS block, the method of building a POS blockchain
network, and the transaction process based on the POS blockchain. Section 5 presents
the selection mechanism of a POS edge computing server as well as the communication
mechanism between the POS edge computing server and the cloud. Section 6 introduces
the development and implementation of the proposed retail POS system by an example.
Finally, Sect. 7 concludes the paper.

100 B. Hu et al.

2 Preliminaries to This Work

2.1 Blockchain

Blockchain, initially Block Chain, is an underlying technology of Bitcoin. It is a decen‐
tralized transparent ledger with transaction records—the database that is shared by all
network nodes, updated by miners, monitored by everyone, and owned and controlled
by no one [4]. As a best practice, it enables Bitcoin [5], a new digital currency, running
well to describe how assets are transferred between buyers and sellers. Although block‐
chain was not first proposed in Satoshi Takemoto’s paper, it is increasingly recognized
by both the academia and industry and becomes gradually independent of the bitcoin
system. In addition to Bitcoin, blockchain, emerged as an independent and promising
technology, has been used in many application scenarios, such as food safety traceability
and judicial electronic data security.

2.2 Edge Computing

Edge Computing is a new computing paradigm increasingly emerged after Cloud
Computing and Internet of Things (IoT). According to the definition of IEEE Report, it
refers to “the enabling technologies allowing computation to be performed at the edge
of the network, on downstream data on behalf of cloud services and upstream data on
behalf of IoT services” [6, 7]. Edge Computing is suitable for the scenarios that data is
continuously generated and needs to be processed quickly and timely, but current
network bandwidth is not enough to deliver these data to the cloud for processing, such
as mobile communications, unmanned driving and so on.

3 Requirements and Application Scenarios

There are two types of popular POS systems in the market, one of which is the local
type and the other is cloud-based. The former type of POS systems represents that the
entire POS system works inside a retail store, including financial, invoicing and other
management software, as well as a cash register. This local POS system does not need
to interact with the corresponding systems of other retail stores, and such a system
usually does not fail unless its LAN (Local Area Network) is unavailable. However, this
type of local POS systems is often limited in the scope of applications, and they are more
suitable for small-scale retail companies that own only one store.

For large-scale chain stores, the cloud-based POS system is undoubtedly a preferable
choice. First, such a POS system can save the money, time, and labor costs of deploying
the system in various retail stores. Second, this type of cloud-based POS systems can
monitor and control the operations of all stores distributed in various places. Moreover,
it is also beneficial to the cloud-based management and coordination between different
stores, such as out-of-stock warnings and out-of-town transfers. However, the disad‐
vantage of the cloud-based POS system is that it is always affected by the Internet envi‐
ronment. Once the network of a store is suddenly interrupted, the operation of the store

A Robust Retail POS System Based on Blockchain and Edge Computing 101

will undoubtedly be limited to a standstill. To the best of our knowledge, there have
been several related attempts before, for example, a transaction is cached to a local cash
register and then synchronized to the cloud after the network recovers from a failure.
However, due to unsafety and unreliable local environment as well as the instability of
data synchronization, the current realizations are prone to cause data loss and accounting
errors. In the absence of the Internet, any cash register is considered to be a un-trust
machine without the support of the POS cloud because it is accessible to be attacked.

Inspired by the ideas of Blockchain and Edge Computing, we develop a robust retail
POS system in which cash registers can continue to work after the connection to the
Internet is interrupted. The network topology of this system is different from that of the
traditional cloud-based POS system. As shown in Fig. 1, in the traditional cloud-based
POS system, any cash register in a retail store is directly connected to the POS cloud
and communicates with the POS cloud. In other words, each cash register is a relatively
independent device, and there is no interaction between each other. Figure 2 shows the
network topology of the new POS system proposed in this paper. The most significant
feature of this system architecture is the self-selection of running mode for each cash
register when the network of a retail store fails. More specifically, if each cash register
cannot connect directly to the POS cloud, it will quickly switch to the off-line mode.
They organize together autonomously and automatically to form an internal peer-to-peer
network. The POS system then selects a specific node in the peer-to-peer network as a
POS edge computing server which communicates with the cloud and transfers data after
the access to the Internet is recovered.

Fig. 1. Traditional cloud-based POS system architecture: every retail store adopts the mode of
connecting to the cloud directly through a router and a backbone network.

102 B. Hu et al.

Fig. 2. The network topology of the new POS system. In case of network failure, all cash registers
in this retail store do not connect directly to the POS cloud but first form an internal peer-to-peer
network. The POS system then selects a specific node in the peer-to-peer network to communicate
with the POS cloud and transfer data.

Here, the peer-to-peer network in the retail store is a private blockchain (network).
It can be used to build trust and establish a decentralized system that does not require a
foundation of mutual trust or relies on a single centralized organization to guarantee the
security and traceability of transactions.

Selecting a node as the POS edge computing server is responsible for communicating
with the POS cloud and synchronizing transaction information between the local block‐
chain and the POS cloud, ensuring that our POS system can synchronize all local trans‐
action information to the POS cloud accurately. Whether the network of a retail store is
available, the cash registers of the retail store are not affected. Once the network is
interrupted or unavailable, the local blockchain does not choose to synchronize data
periodically but resumes data synchronization after the network connection to the POS
cloud is re-established.

4 Blockchain-Enabled Transactions

4.1 The Definition of a POS Block

A POS block is the basic unit of a POS blockchain, including the information, called
the head of the block that will be added to a blockchain, and the details of transactions.
In this article, we define the primary data structure of a POS block in Table 1, and the
head of a POS block includes:

(1) Index: the position of this block in the entire blockchain;
(2) Timestamp: the build time of the current block;
(3) Previous hash: the hash value of the previous block;
(4) Proof of Work (POW): proving the correctness of the work generated by the new

block.

A Robust Retail POS System Based on Blockchain and Edge Computing 103

Table 1. The primary data structure of a POS block.

Part Element
Head Index

Timestamp
Previous hash
Proof of Work

Transaction Transaction stream ID
Trading time
Trading commodity information
Transaction amount
Transaction ID
Transaction hash

Moreover, the elements of a transaction include:

(1) Transaction stream ID: a five-tuple composed of cash register identification, system
user ID, transaction time, transaction serial number, and random number generating
the transaction. This element is used to globally identify the uniqueness of the
transaction, as well as to trace the time and location of the transaction and the
participants involved in the transaction.

(2) Trading time: the specific time of the transaction.
(3) Trading commodity information: an array that records the identification information

of commodities involved in the transaction, the price of each commodity, the quan‐
tity of each commodity, and the actual sales price of each commodity.

(4) Transaction amount: the total amount generated in a transaction.
(5) Transaction ID: buyer identification.
(6) Transaction hash: the hash value of the above transaction information used to

ensure that the transaction information is not modified.

4.2 Building a POS Blockchain Network

The trust relationship between nodes is fundamental to building a POS blockchain
network. In this sub-section, we will focus on the security networking mechanism of the
proposed POS blockchain, which depends mainly on the CA certificate.

Figure 3 depicts the core components of this mechanism and how they work. These
core components include:

• CA Services: They are used to issue trusted digital certificates to cash registers so
that these cash registers can form a blockchain.

• POS Certification: This certification contains the POS machine’s public key, POS
machine information, and digital summary information.

104 B. Hu et al.

Fig. 3. Core components of the security networking mechanism of the proposed POS blockchain
and how they work with each other.

When a new node is ready to join the blockchain network, the new node first initiates
a broadcast sending the certificate. After the networked nodes have received the certif‐
icate, they would like to let the new node join the blockchain network after the certificate
has been verified to be true.

4.3 POS Blockchain-Based Transactions

Figure 4 shows the whole transaction process of the proposed POS blockchain, including
the following four steps.

Step 1: Generate transactions and broadcast. In the POS blockchain network, any
node can generate transactions, and each transaction generated by any node will be
transferred to other nodes in a manner of broadcasting. Each node needs to maintain a
blockchain and can accept transactions generated by all nodes and write these transac‐
tions into a new block. Typically, each block may have hundreds or thousands of trans‐
actions.

Step 2: Verify transactions and reach a consensus. Although each node can
receive transactions and write them into new blocks, the determination of a node which
owns the most realistic transactions requires a consensus among all the nodes in the
network. In our method, the POW is very simple. Each node which records a ledger will
obtain the right of verification. It can broadcast the hash information of all transactions
to the entire network and compare the information with other nodes.

Step 3: Broadcast the new block. The node that can first complete the POW is
recognized to own the certified new block, and it will broadcast its block to other nodes
in the blockchain network.

Step 4: Add the new block to the blockchain. Other nodes will confirm whether
the transaction contained in this block is valid. After confirming that the transaction has
not been duplicated and has a sign of validity, a node can accept the block. At this time,

A Robust Retail POS System Based on Blockchain and Edge Computing 105

the block is officially linked to the blockchain, and the data of the block can no longer
be modified. Once all nodes have accepted the block, other blocks which did not finish
the POW work before become invalid, and each node will re-establish a block and
continue the next POW calculation.

5 Data Synchronization Based on Edge Computing

When the network resumes work, the new retail POS system we develop will restore
the online mode. Before this mode is turned on, the transactions generated in the offline
mode and recorded in the POS blockchain must be synchronized to the POS cloud. The
synchronization process requires a node selected from the POS blockchain network to
be responsible for the work of data synchronization. Here, the selected node is called a
POS edge computing server.

The selection of a POS edge computing server is currently straightforward. The POS
blockchain network is a peer-to-peer network, in which each node has complete POS
blockchain information as well as all the transaction data. Theoretically, any node in the
POS blockchain network can be used as a POS edge computing server to synchronize
data with the POS cloud. In our system, we choose the node which first completes the
POW before the end of the offline mode as the edge computing server. When it finishes
broadcasting new blocks to other nodes, it starts to synchronize data with the POS cloud
as quickly as possible.

Fig. 4. The whole transaction process of the POS blockchain.

106 B. Hu et al.

6 Development and Implementation

We implemented the retail POS system in JDY.com. JDY.com is the largest management
software and cloud service in China, provided by Kingdee. In particular, it provides new
retail solutions such as POS System for medium, small- and micro-sized enterprises.
Before this, JDY.com provided a variety of traditional POS system solutions for retailers
with cash registers based on the Android and iOS platforms. As stated at the beginning
of the paper, the traditional cloud-based POS system is designed based on the Internet.
Once the access to the Internet is unavailable, the cash register equipment cannot transfer
data to the cloud promptly, possibly leading to financial losses of retail stores.

Here, we improved these traditional POS systems according to the solution
mentioned in this paper. For each cash register, we provide a packaged SDK (Software
Development Kit) integration into its terminal system software. Any cash register does
not connect directly to the POS cloud when it starts. The retail POS system obtains other
similar devices in the same local area network by broadcasting, shaping a peer-to-peer
network through two-way links. Then, a POS blockchain comes into being. Of course,
we also made some modifications in the cloud to be able to synchronize transaction data
in the local blockchain.

Figures 5 and 6 show how cash registers work after the retail POS system updates.
Figure 5 is an overview screenshot from the POS cloud. It depicts a business case with
a total of three retail stores in a particular area in Shenzhen city. Each point on the map
represents a retail store, and the different colors of the points represent different network
states of the three retail stores. Among the three retail stores, the blue dot indicates that
the retail store network is healthy, and the red dot indicates that the network is abnormal.
In other words, all the cash registers in the three retail stores represented by the red dot
cannot connect to the POS cloud.

Fig. 5. A business case with a total of three retail stores in a specific area in Shenzhen. More
specifically, each point on the map represents a retail store, and the different colors of the points
represent different network states of the retail stores. Note that the blue dot indicates that the retail
store network is healthy and the red dot indicates that the network is abnormal.

A Robust Retail POS System Based on Blockchain and Edge Computing 107

Fig. 6. Five cash registers have successfully formed a POS blockchain after the network of the
retail store was unavailable.

Figure 6 depicts a typical cash-collection scenario when an individual retail store is
abnormal on the Internet from the viewpoint of a cash register. From this figure, we can
see that there are six cash registers in this retail store with an abnormal Internet state.
Among all the cash registers, five cash registers have successfully constituted a POS
blockchain after the network was interrupted. Moreover, at this time, the retail store’s
transaction is continued from the time of the disconnection to the time of screenshot. A
total of 262 transactions were successfully conducted, and the transaction amount
exceeded 23,000 RMB.

Figures 7 and 8 show a comparison of the changes in the synchronization of specific
transaction data between different nodes in the blockchain. Figure 7 shows the screen‐
shot of the cash register under discussion before the transaction was synchronized. At
this time, there was a total of 2 transactions with a transaction value of 228 RMB.
Figure 8 displays the result of sales data of other cash registers synchronizing to the cash
register via the POS blockchain. The transaction amount is a little more than that shown
in Fig. 7, for a total of 3 transactions with a transaction value of 248 RMB.

108 B. Hu et al.

Fig. 7. The screenshots of the cash register in question before the transaction was synchronized.

Fig. 8. The result of other cash registers’ sales data synchronizing to this cash register via the
POS blockchain.

7 Conclusion

The article is an application-typed paper. In this paper, we propose and develop a novel
robust POS system based on the technologies of Blockchain and Edge Computing for
retail chains, which can be used in “weak” Internet environments. A “weak” Internet
environment implies that when the Internet connection of a retail store is suddenly
interrupted, cash registers in this store will turn on the off-line mode to continue work.

A Robust Retail POS System Based on Blockchain and Edge Computing 109

In this off-line mode, each cash register can form a POS blockchain network, in which
each node can trade and maintain blocks, and the transaction of all nodes is recorded by
the blockchain to ensure that the transaction is complete and reliable. When the access
to the Internet becomes available, these cash registers will be switched to the online
mode. A node with a full block in the POS blockchain network will be selected as a POS
edge computing server to communicate with the POS cloud. The selected POS edge
computing server synchronizes these off-line transactions to the POS cloud, and then
the whole retail POS system can be restored to regular use. The advantages of the robust
retail POS system compared with the traditional POS systems include two aspects. On
the one hand, our POS system does not always rely on the Internet if the Internet access
is suddenly interrupted, thus making retail stores less affected by the network failure.
On the other hand, changes in the POS system caused by external changes in the Internet
are automated and do not require manual intervention.

Acknowledgement. This application research was supported by the National Key Research and
Development Program of China (Nos. 2017YFB1400604 and 2016YFB1000803), National
Science Foundation of China (Nos. 61672387 and 61702378), and the Wuhan Yellow Crane
Talents Program for Modern Services Industry.

References

1. Gallino, S., Moreno, A.: Integration of online and offline channels in retail: the impact of
sharing reliable inventory availability information. Manage. Sci. 60(6), 1434–1451 (2014)

2. Glowik, M.: 4.1 case study: Alibaba group. In: Global Strategy in the Service Industries:
Dynamics, Analysis, Growth, vol. 96 (2017)

3. Kowalkiewicz, M., Rosemann, M., Dootson, P.: Retail 5.0: Check Out the Future (2017)
4. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc (2015)
5. Nakamoto, S.: Bitcoin: A Peer-To-Peer Electronic Cash System, October 2008 (2017). http://

www.bitcoin.org/bitcoin.Pdf
6. Shi, W., Cao, J., Zhang, Q., et al.: Edge computing: vision and challenges. IEEE Internet Things

J. 3(5), 637–646 (2016)
7. Sharma, P.K., Chen, M.-Y., Park, J.H.: A software defined fog node based distributed

blockchain cloud architecture for IoT. IEEE Access 6, 115–124 (2018)

110 B. Hu et al.

http://www.bitcoin.org/bitcoin.Pdf
http://www.bitcoin.org/bitcoin.Pdf

A Privacy Risk Aware Service Selection
Approach for Service Composition

Mingdong Tang1,2(&), Jianguo Xie1, and Sumeng Zeng2

1 School of Information Science and Technology,
Guangdong University of Foreign Studies, Guangzhou 510006, China

mdtang@126.com
2 School of Computer Science and Engineering,

Hunan University of Science and Technology, Xiangtan 411201, China

Abstract. Service composition has been widely used to fulfill a complex task
when a single service cannot meet its functional requirement. In dynamic service
composition, selecting appropriate services from all service candidates is a
critical issue. Most previous work focused on service selection based on the
services’ functionalities and quality, so that the user’s requirements can be well
satisfied. However, more and more service users are concerned about their
privacy in the Internet era. Therefore, it is increasingly important for selecting
services that preserves the privacy of service users. To address the shortcomings
of previous work, this paper proposes a privacy risk aware service selection
approach for service composition. Based on the user’s privacy preservation
requirement, the approach is intended to obtain a service composition that
minimize the user’s privacy risk. To do this, we use the service dependency
graph to model the relationships between services and define the above service
composition problem as searching an optimal path with the least privacy risk on
the graph. The privacy risk of an individual service to the user is computed by
integrating the user’s personal privacy preservation requirement, the service’s
privacy policy and the service’s reputation. Examples and empirical evaluations
validated the proposed approach in reducing the privacy risk of service users.

Keywords: Service composition � Service selection � Privacy preservation
Reputation � Service network

1 Introduction

The Internet has become a platform for provision and consumption of various services
such as Web services, cloud services and mobile services. With the abundant services,
service composition has been widely accepted as a promising approach for new
application creation. In general, service composition approaches can be divided into
two categories: static composition and dynamic composition [1]. Static service com-
position refers to a class of approaches that service users have to select and compose
services manually according to their requirements. Therefore, the service composition
occurs in the design stage. Dynamic service composition refers to a class of approaches

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 111–123, 2018.
https://doi.org/10.1007/978-3-319-94340-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_9&domain=pdf

that service users only need to define tasks with machine readable languages and
forward them to an execution engine, which in turn will automatically select appro-
priate services and compose them according to the tasks’ description. Actually,
dynamic service composition is much more challenging than static service composi-
tion, and thus has gained increasing attention in the past decade. To attack this issue,
dozens of dynamic service composition approaches have been proposed [2, 3]. The
critical issue is how to select suitable services so that the automatically generated
service composition can satisfy both functional and quality requirements of the task
defined by the user. The quality requirements on services are typically referred to as a
group of criteria like availability, reliability, latency, cost, reputation, etc.

Previous service selection and composition approaches seldom took the user’s
privacy concern into consideration, which, however, has become one of the most
important issues in the Internet era [4]. As a matter of fact, many services on the
Internet require users to provide personal information, such as name, telephone num-
ber, credit card number, email and location, to enhance its service quality. For example,
an online meal ordering and delivery service may ask a user to provide his/her exact
location and phone number, so that it can recommend the nearest restaurants to the user
and deliver the food successfully as soon as possible. Once the private information of a
user was obtained by the service provider, the service provider may abuse it or leak it
out, thus making the user’s privacy at risk. The user privacy risk is likely to be even
exaggerated, when service composition is concerned. That is, when a user is invoking a
service composition which comprises several services, his/her private information may
have to be repeatedly exposed to the multiple services. As a result, the user privacy risk
is multiplicated.

To reduce the privacy risk faced by users in service composition, this paper pro-
poses a privacy preservation-oriented service selection approach for service composi-
tion. Based on the service graph [5] or service network [6] model, we assume that all
services have been connected as a network according to their dependency relations.
Therefore, the service composition problem can be defined as a subgraph or path search
problem on the graph, as long as satisfying the user’s functional and non-functional
requirements. For simplicity, we only consider the path search problem in this paper. In
this regard, the proposed approach aims at searching an optimal path with the least
privacy risk on the service network. The privacy risk of an individual service to the user
is assessed by integrating the user’s personal privacy preservation requirement, the
service’s privacy policy and the service’s reputation. Examples and empirical evalu-
ations validated the effectiveness and efficiency of the proposed approach.

The rest of this paper is organized as follows. Section 2 presents some definitions
and formalizes the research problem. Section 3 describes the proposed service selection
and composition approach. Section 4 uses an example to illustrate the steps of the
proposed approach. Section 5 evaluates the time performance of the proposed
approach. Section 6 surveys related work. Finally, Sect. 7 concludes this paper with
future work.

112 M. Tang et al.

2 Definitions

In this section, we firstly define some important concepts used in our approach, such as
service network, user privacy preference, service privacy policy and service reputation.
Then, we formulate the service composition and service selection problem.

2.1 Service Network

Based on the models of Service Dependency Graph (SDG) [5] and Service Network
[6], we define a service network as a directed graph showing all possible interactions
and dataflow relationships among the services in a given service set. In other words, all
possible input and output relationships of the services are revealed in a service network.
We can process a user’s service request against the service network to determine if a
structure of services can be found to meet the service request. An example of service
network is given in Fig. 1. This service network consists of four services: AirTicket
Booking, Hotel Booking 1, Hotel Booking 2, and Scenic Spot Recommendation. The
text besides each service represents the input data required by it. Directed edges rep-
resent the data flows between services, and the text on the edges represents the data
output by a service to another. For example, the AirTicket Booking service needs input
data like customer name, customer id, destination, departure city, departure time, phone
number, etc., and would output data to a hotel booking service like arrival time and
destination. Formally, we define service network as follows:

Definition 1 (Service Network): A service network can be defined using a directed
graph G = (V, E, I, O), where V is the set of the services, E is the set of edges that
represent the data flows among services, I represents the set of input data needed by
services and O represents the set of output data produced by services.

Fig. 1. An example of service network

A Privacy Risk Aware Service Selection Approach 113

2.2 User Privacy Preference

The typical privacy data concerned by a service user may include name, id, phone
number, birthdate, income, email, address and so on. Different users could have dif-
ferent privacy preference, in other words, they are likely to have different sensitiveness
to different privacy data items. For example, some service users may consider name
more sensitive than phone number, while some other users may not. The following
definitions are used to formally describe privacy data and user privacy preference:

Definition 2 (Privacy Data): The privacy data concerned by users can be denoted by
the set I = {I1, I2, …, Im}, where Ij (1 � j � m) represents a privacy data item.

Definition 3 (Privacy Sensitiveness): Privacy sensitiveness can be described using a
partially ordered set P = (PC, �), where PC denotes the set of privacy sensitiveness
levels, which can be expressed using linguistic terms, i.e., {very low, low, medium,
high, very high}. The operator � is a partial order relation based on PC, so that we
have very low � low � medium � high � very high.

Definition 4 (Privacy Preference): A user’s privacy preference can be denoted by
F = {(i, p) | i 2 I, p 2 PC}, where i is a privacy data item concerned by the user, and
p represents a privacy sensitiveness level.

2.3 Service Reputation and Privacy Policy

In reality, a service user usually depends heavily on the reputation and privacy policy
of a service when assessing its risk to his/her privacy. Generally, the higher is the
service’s reputation, the less risk the user believes that the service will bring to his/her
privacy. Therefore, this work takes reputation of service into consideration. The pri-
vacy policy of a service usually specifies what privacy data the service will collect from
a user. A privacy policy may be very complicated in practice, while this work sim-
plifies it by only considering its privacy data requirement. In the following, we formally
define the reputation and privacy policy of a service.

Definition 5 (Service Reputation): Service reputation can be described using a par-
tially ordered set R = (RC, �), where RC denotes the set of reputation levels, i.e.,
{very low, low, medium, high, very high}. The operator � is a partial order relation
based on RC, so that we have very low � low � medium � high � very high.

Definition 6 (Privacy Policy): The privacy policy of a service (s) for users can be
defined as a subset of privacy data items I(s) = {Is,1, Is,2, …, Is,k}, where Is,j
(1 � j � k) represents a privacy data item required by the service. In this work, we
assume that the privacy data required by a service is a part of the input data of the
service. For example, in Fig. 1, the AirTicket Booking service’s input data includes
customer name, customer id, destination, departure city, departure time and phone
number, among which the customer’s name, id and phone number could be claimed as
privacy data items in the service’s privacy policy.

114 M. Tang et al.

2.4 Privacy Risk

In the following, we formally define the privacy risk of a data item, a service and a
service composition.

Definition 7 (Privacy Risk of a Data Item): There are usually multiple privacy-
sensitive data items concerned by a service user. Different privacy data items are likely
to have different sensitiveness to the user, and thus have different risk degrees. The risk
of an individual privacy data item (i) to a user raised by a service (s) is denoted by
PRs,i, in this paper. For instance, if a user is very sensitive to his/her address, the
privacy risk his/her address should be very high when requesting a service that requires
his/her address information. Assessment of the risk of an individual privacy data item
depends on the user’s sensitiveness on the data item and the service’s reputation (more
details will be discussed in Sect. 3).

Definition 8 (Privacy Risk of a Service): The privacy risk of a service (s) to a user is
calculated based on the privacy risks of all privacy data items supplied by the user to
the service. For instance, suppose that a service requires a user to provide privacy-
sensitive data such as name, phone number and address. The privacy risk of the service
to the user is an aggregation of the privacy risks of individual data items like PRs,name,
PRs,phone, and PRs,address.

Definition 9 (Privacy Risk of a Service Composition): The privacy risk of a service
composition is calculated based on the privacy risks of all services in the service
composition. For instance, suppose there is a service composition (c), which is com-
posed of services s and t. The privacy risk of the service to the user is an aggregation of
the individual privacy risks PR(s) and PR(t).

2.5 Privacy Risk Aware Service Selection for Composition

The research problem is defined as: Given a service network consisting of a set of
services and a set of dependency relations among them, how to select the optimal path
from the network to construct a service composition that not only meets the user’s
requirements but also has the least privacy risk to the user? Let’s take the example in
Fig. 1 to illustrate this research problem. Suppose there are two paths of services that
satisfy the user’s functional requirements, e.g., AirTicket Booking service -> Hotel
Booking service 1 -> Scenic Spot Recommendation service and AirTicket Booking
service -> Hotel Booking service 2 -> Scenic Spot Recommendation service. The two
service compositions may have different privacy risks to a user due to that their
corresponding component services’ reputation and privacy policies are different. It is
preferred to select the service path with the less privacy risk. To do this, it is vital to
evaluate the privacy risk of each service in the service network that may be needed in
service composition, as well as the privacy risk of each path in the service network that
satisfies the user’s functional requirements, so that optimal service path can be finally
identified.

A Privacy Risk Aware Service Selection Approach 115

3 The Approach

In this section, we firstly introduce how to compute the risk degree of an individual
privacy data item to the user based on the user’s privacy preference and the service’s
reputation. Then, we discuss how to assess the privacy risk degree of a service to the
user, which is based on aggregation of the calculated privacy risk degrees of the
privacy data items needed by the service. Afterwards, we present an algorithm for
optimal service composition selection in a service network, so that the service com-
position with the least privacy risks would be found for the user.

3.1 Assessment of the Risk Degree of an Individual Privacy Data Item

As defined in Definition 3, sensitiveness of privacy data items can be expressed as the
following five levels: very low, low, medium, high, very high. The reputation of a
service is also key to the privacy risk assessment for a user, since it is generally
believed that a service with higher reputation would be more trustworthy in preserving
the user’s privacy. The reputation of a service can also be expressed using five lin-
guistic terms: very low, low, medium, high, very high, as stated in Definition 5.

Taking the user’s privacy preference and the service’s reputation into consideration,
a set of heuristic rules can be developed to infer the risk of a privacy data item posed by
a service to the user, and they are summarized in Fig. 2. Actually, the twenty-five
heuristic rules are extended from the general heuristic rules as follows:

1. If the privacy data item is highly sensitive to the user and the reputation of the
service is low, the privacy risk is probably high to the user;

2. If the privacy data item is lowly sensitive to the user and the reputation of the
service is high, the privacy risk is probably low to the user;

3. If the privacy data item is lowly sensitive to the user and the reputation of the
service is low, or the privacy data item is highly sensitive to the user and the
reputation of the service is high, the privacy risk is at a medium level.

very low low medium high very high

very low medium high very high very high very high

low low medium high very high very high

medium very low low medium high very high

high very low very low low medium high

sensitiveness of user data

reputation
of service

risk levels inferred
based on user data
sensitiveness and
service reputation

Fig. 2. Inferring the privacy risk levels based on the users’ privacy sensitiveness and the
service’s reputation.

116 M. Tang et al.

Since both the user privacy sensitiveness and the service reputation have five
linguistic terms, the privacy risk degrees can also be expressed using five values: very
low, low, medium, high, very high.

3.2 Assessment of the Risk Degree of a Single Service

A service usually has a privacy policy for users, which specifies what privacy data
items will be collected from a user. Services provided by different vendors are likely to
have different privacy policies, i.e., different privacy data requirements, thus raising
different risks to a user. To assess the risk degree of a service to a user, it is a necessity
to leverage all privacy data items required by the service from the user. In the fol-
lowing, we introduce an aggregate operator to do this. Since the risk degree of each
privacy data item is valued in linguistic terms, we firstly transform their values to real
numbers. This work uses the centroid method (CM) [7] for defuzzifying linguistic
term-based values. The CM, also known as either the center of gravity (CoG) or center
of area (CoA) method, is the most commonly used defuzzification technique. This
technique provides a crisp value based on the CoG of the fuzzy set. It also determines
the best point for dividing the fuzzy set into exactly two masses. Because linguistic
terms can be decomposed in a triangular shape, the CM becomes a suitable approach
for defuzzifying the linguistic privacy risk terms. For a triangular fuzzy number F = (l,
k, q), its real number value (x) can be calculated as:

x ¼ kþ ðl� kÞþ ðq� kÞ
3

ð1Þ

In this work, five linguistic terms are decomposed into triangular fuzzy numbers
using the triangular fuzzy set shown in Fig. 3. These linguistic terms, their fuzzy
numbers and corresponding real number values are presented in Table 1.

If Ii and Ij are two privacy data items required by a service, and their assessed
privacy risk values are PRi and PRj respectively, their privacy risk values can be
aggregated as follows:

PRi ^ PRj ¼ PRi þPRj ð2Þ

where ^ is the aggregate operator. From this equation, we can see more privacy data
items provided by a user should cause a higher risk degree to the user.

Fig. 3. Triangular membership functions for the five linguistic terms of privacy risk

A Privacy Risk Aware Service Selection Approach 117

3.3 Optimal Service Composition Finding with the Least Privacy Risk

Similar to previous work [3], this work transforms the dynamic service composition
problem to optimal path finding in a service network. Figure 4 is an example showing
how to find the optimal path in a service network, where vertices represent services and
edges represent dependency relations. The notation besides a vertex represents its
assessed privacy risk value. We adapt the Dijkstra algorithm to address this issue, as
shown in Table 2. Please note that, the length of a path s ! t is represented by the

Table 1. The five linguistic terms, their fuzzy numbers, and corresponding real number values

Linguistic terms Fuzzy numbers Real number value

Very high (4, 5, 5) 4.67
High (3, 4, 5) 4.00
Medium (2, 3, 4) 3.00
Low (1, 2, 3) 2.00
Very low (1, 1, 2) 1.33

Table 2. The proposed algorithm for finding the optimal path in a service network

118 M. Tang et al.

summation of risk values of all services in the path, and the distance from t to s is
defined as the minimal length among all directed paths connecting s with t. Since the
best Dijkstra algorithm implementation has time complexity of O(nlogn + m), our
proposed algorithm can also be implemented with the same time complexity.

4 Illustrative Example

This section presents an example to illustrate our approach. Suppose that a user wants
to arrange a travel by requesting services from a tourism website. The tourism web site
responds to the user’s request via combining the three kinds of services: air ticket
booking, hotel booking, and scenic spot recommendation. Suppose there are three air
ticket booking services (i.e., S1, S2 and S3), three hotel booking services (i.e., S4, S5 and
S6), and two scenic spot recommendation services (i.e., S7 and S8) for selection. Table 3
shows the privacy data items and the user’s preference on them. Table 4 shows the
privacy requirements and reputation of the above services. The reputation values are
crisp values calculated using the defuzzification method presented in Sect. 3.2.
Figure 5 shows the dependency relations between the above services. The privacy
requirements and reputation values of services are also shown in Fig. 5.

Table 5 presents the privacy risk values of different services to the user, which are
calculated using Formula 2. For instance, Service 4 (S4) has the greatest privacy risk
value (i.e., 2.4) while Service 1 (S1) has the smallest privacy risk value (i.e., 1.4).
Figure 6 shows the example service network after privacy risk calculation for services.
By employing our optimal path searching algorithm, we can obtain the optimal path s -
> S1 > S5 -> S7 -> t, which represents the best service composition with the least
privacy risk.

s

S1

S2

S3

S4

S5

S6

S7

S8

t

Fig. 4. An example of optimal path finding in a service network based on privacy risks

Table 3. Privacy data items and the user’s preference on them

Name
(I1)

Address
(I2)

ID
(I3)

Email
(I4)

#Phone
(I5)

#Credit
card (I6)

#Alipay
account
(I7)

Sensitiveness 0.5 0.6 0.3 0.6 0.8 0.7 0.6

A Privacy Risk Aware Service Selection Approach 119

Table 4. Privacy requirements and reputation of services

Services Privacy requirements Reputation

S1 I1, I2, I4 0.70
S2 I2, I5, I6 0.60
S3 I1, I2, I7 0.80
S4 I2, I3, I5, I6 0.65
S5 I1, I3, I6 0.70
S6 I4, I5, I7 0.56
S7 I3, I5, I 6 0.60
S8 I1, I3, I5, I7 0.63

s

S1

S2

S3

S4

S5

S6

S7

S8

t

{I1,I2,I3},0.7

{I1,I3,I6},0.7

{I1,I2,I7},0.8

{I2,I3,I5,I6},0.65

{I2,I5,I6},0.6

{I4,I5,I7},0.56

{I3,I5,I6},0.6

{I1,I3,I5,I7},0.63

User privacy preference:
I1=0.5, I2=0.6, I3=0.3,
I4=0.6, I5=0.8,
I6=0.7, I7=0.6

Fig. 5. An example service network with service dependency relations, privacy requirements
and reputation values

s

S1

S2

S3

S4

S5

S6

S7

S8

t

Privacy risk=1.4

Privacy risk=2.1

Privacy risk=1.8

2.4

1.5

2.04

1.8

2.2

Fig. 6. The example service network after privacy risk calculation for services

Table 5. Privacy risk values of different services to the user

S1 S2 S3 S4 S5 S6 S7 S8
Values 1.40 2.10 1.80 2.40 1.50 2.04 1.80 2.20

120 M. Tang et al.

5 Performance Evaluation

This experiment evaluates the time performance of the proposed approach and its
scalability with the service number. We use a simulated service network, whose service
number is varied from 1 k, 10 k, 20 k, 50 k to 100 k. The experiment program was
developed using Java. Figure 7 shows the execution time of the proposed approach
versus the number of services. For instance, when the service number is 1 k, the
execution time is about 1 s. We can see that the execution time increases slowly with
respect to the number of services, which indicates that our proposed approach has a
good scalability with the increase of the service number.

6 Related Work

Preserving the user’s privacy when requesting services on the Internet has become a
requisite and many studies has been conducted on this topic. Most privacy preservation
techniques are based on anonymization [8, 9] or encryption [10]. Their basic ideas are
to anonymize or encrypt some key values of the user data, so that for each user
contained in the data it cannot be identified. The anonymization or encryption tech-
niques can prevent the user’s privacy being exposed in data release to some extent.
However, they assume that the service provider is trustworthy and will always use the
users’ data properly, which is unrealistic. Moreover, data leakage or violation may
occur inevitably because decryption and anti-anonymization techniques can be applied
by malicious users or organizations. Therefore, to reduce the privacy risk or loss of
users in service request, policy-based privacy preservation approaches have been
proposed for service selection [11]. They allowed a service provider defining privacy
requirements using policies and did matchmaking between the user’s privacy

0

100

200

300

400

500

600

0 2 4 6 8 10

x 10000

Execution time (s)

Service number

Fig. 7. Time performance

A Privacy Risk Aware Service Selection Approach 121

preference and the service’s privacy requirements [12–14] or between two services’
privacy requirements for service composition purpose [15–18]. Our previous work [19]
proposed a service ranking approach based on privacy risk evaluation, which allows a
user specifying his/her privacy preference and a service provider specifying its privacy
data requirements with linguistic terms. This work extended our previous work for
service composition. We integrate privacy risk computation and a service network
model to find a service composition with the least privacy risk.

7 Conclusions

This paper presented a privacy risk aware service selection approach for service
composition. The approach assessed a service’s risk degree to a user’s privacy based on
its reputation, privacy policy and the user’s privacy preference. To find the best service
composition with the least privacy risk, the approach employed a service network
model incorporating the dependency relations between services, based on which an
optimal path search algorithm for service composition was proposed. Examples and
experiments demonstrated that the proposed approach is effective and can perform
efficiently. The future work will conduct more evaluations to validate the proposed
approach. Moreover, we will take quality of service into consideration, and employ the
multi-objective optimization theory to optimize the tradeoff between privacy preser-
vation and quality of service in service selection and composition.

Acknowledgments. The work is supported by the National Natural Science Foundation of
China under Grant No. 61572186.

References

1. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of techniques
and tools. ACM Comput. Surv. 48(3), 33:1–33:41 (2016)

2. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for Web services selection with end-to-end
QoS constraints. ACM Trans. Web 1(1), 6 (2007)

3. Jiang, W., Wu, T., Hu, S., Liu, Z.: QoS-aware automatic service composition: a graph view.
J. Comput. Sci. Technol. 26(5), 837–853 (2011)

4. Featherman, M.S., Miyazaki, A.D., Sprott, D.E.: Reducing online privacy risk to facilitate e-
service adoption: the influence of perceived ease of use and corporate credibility. J. Serv.
Mark. 24(3), 219–229 (2010)

5. Gu, Z., Li, J., Xu, B.: Automatic service composition based on enhanced service dependency
graph. In: 2008 IEEE International Conference on Web Services (ICWS), pp. 246–253.
IEEE Press (2008)

6. Wang, Z., Xu, F., Xu, X.: Service network planning method for mass personalized functional
requirements. J. Softw. 25(6), 1180–1195 (2014)

7. Opricovic, S., Tzeng, G.H.: Defuzzification within a multicriteria decision model. Int.
J. Uncertain. Fuzziness Knowl.-Based Syst. 11(05), 635–652 (2003)

8. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst. 10(05), 557–570 (2002)

122 M. Tang et al.

9. Ammar, N., Malik, Z., Medjahed, B., Alodib, M.: K-anonymity based approach for privacy-
preserving web service selection. In: 2015 IEEE International Conference on Web Services
(ICWS), pp. 281–288. IEEE Press (2015)

10. Li, X., Jung, T.: Search me if you can: privacy-preserving location query service. In: 2013
IEEE International Conference on Computer Communications (INFOCOM), pp. 2760–
2768. IEEE Press (2013)

11. Lin, L., Liu, T., Hu, J., Ni, J.: PQsel: combining privacy with quality of service in cloud
service selection. Int. J. Big Data Intell. 3(3), 202–214 (2016)

12. Kapitsaki, G.M.: Reflecting user privacy preferences in context-aware web services. In: 2013
IEEE International Conference on Web Services (ICWS), pp. 123–130. IEEE Press (2013)

13. Squicciarini, A., Carminati, B., Karumanchi, S.: A privacy-preserving approach for web
service selection and provisioning. In: 2011 IEEE International Conference on Web Services
(ICWS), pp. 33–40. IEEE Press (2011)

14. Lin, L., Liu, T., Hu, J., Zhang, J.: A privacy-aware cloud service selection method toward
data life-cycle. In: 20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pp. 752–759. IEEE Press (2014)

15. Costante, E., Paci, F., Zannone, N.: Privacy-aware web service composition and ranking. In:
2013 IEEE 20th International Conference on Web Services (ICWS), pp. 131–138. IEEE
Press (2013)

16. Carminati, B., Ferrari, E., Tran, N.H.: A privacy-preserving framework for constrained
choreographed service composition. In: 2015 IEEE International Conference on Web
Services (ICWS), pp. 297–304. IEEE Press (2015)

17. Squicciarini, A.C., Carminati, B., Karumanchi, S.: Privacy aware service selection of
composite web services. In: 2013 IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing (Collaboratecom), pp. 260–268.
IEEE Press (2013)

18. Tbahriti, S.-E., Ghedira, C., Medjahed, B., Mrissa, M.: Privacy-enhanced Web service
composition. IEEE Trans. Serv. Comput. 7(2), 210–222 (2014)

19. Tang, M., Zeng, S., Liu, J., Cao, B.: Service selection based on user privacy risk evaluation.
In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol.
10656, pp. 308–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_25

A Privacy Risk Aware Service Selection Approach 123

http://dx.doi.org/10.1007/978-3-319-72389-1_25

Short Paper Track

A Chinese Text Correction and Intention
Identification Method for Speech

Interactive Context

Jin Che1(&), Huan Chen1,2, Jing Zeng1,2,3, and Liang-Jie Zhang1,2

1 Kingdee Research, Kingdee International Software Group Company Limited,
Shenzhen, China

18682213320@163.com
2 National Engineering Research Center for Supporting Software of Enterprise

Internet Services, Shenzhen, China
3 Research Institute of Web Information, Tsinghua University, Beijing, China

Abstract. ASR (Automatic Speech Recognition) is an important technology in
man-machine interaction. Due to the complexity of natural language, the
interference of environment and other factors, the recognition accuracy has low
accuracy. This paper analyzes the use cases of speech recognition errors and
proposes a text correction and intent recognition method based on the phonation
principle and language characteristics peculiar to Chinese, and proposes an
improved edit distance method to better calculate the text distance. Through a
large number of experiments, this method can improves 22.9% accuracy of text
recognition in ASR system.

Keywords: Text correction � Intention identification � ASR

1 Introduction

According to Statista’s estimate, the global smart home market will reach 79.3 billion
U.S. dollars in 2021. ABI Research’s predictions are more optimistic. It is predicted
that the global smart home market will reach 70 billion U.S. dollars in 2018 and 100
billion U.S. dollars in 2021. In addition, the major Internet giants have entered the
market for market layout; Apple’s Siri, Amazon’s Alexa, Google’s GoogleNow and
Microsoft’s Cortana have seized the smart home market. Due to the complexity of
natural language and the large differences between different human speech, and the
speech signal is easily disturbed by the environment, the accuracy of current Automatic
Speech Recognition (ASR) is still not high enough.

In recent years, many researchers have done a lot of research on text correction for
speech interaction scenarios. Back in 1997, Zhang and Wang [1] makes use of a hybrid
statistical and rule approach to realize Chinese pinyin to text translation and puts
forward an approach to correct some pinyin errors in the case of pinyin errors. In 2012,
Bassil and Alwani [2] proposed a post-editing ASR error correction method and
algorithm based on Bing’s online spelling suggestion. Experiments carried out on
various speeches in different languages indicated a successful decrease in the number

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 127–134, 2018.
https://doi.org/10.1007/978-3-319-94340-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_10&domain=pdf

of ASR errors and an improvement in the overall error correction rate. In 2016,
Fujiwara [3] designed a custom phonetic alphabet optimal for ASR. It enables the user
to input words more accurately than spelling them out directly or using the NATO
phonetic alphabet, which is known as the standardized phonetic alphabet used for
human-human speech interaction under noise. Wang et al. [4] divided speech error
correction process into four steps: (1) initial recognition; (2) detecting repeated words
by computing the phonetic similarity between collected words and the CCN; (3) cor-
recting recognition errors of repeated words automatically; (4) extracting new words
from the recognition result of the current utterance.

In this paper, For the Chinese speech interaction context, we propose a POST-
Editing Chinese text correction and intention recognition method for speech interac-
tion. First of all, syntactic analysis of all the text material, extract the core components
and use word2vec to extend the corpus, and then extract Pinyin to build inverted index.
For the results after the ASR speech recognition, the Pinyin representation is extracted
first, then the unvoiced sounds are unified, the retrieval is performed in the inverted
index, and finally the distance is calculated using the improved edit distance.

2 Related Research

Pronunciation primitive: Chinese is a language composed of syllables. Syllables can
be used as the basis for Chinese speech recognition. The internal structure of Chinese
syllables is structured. Generally, each syllable can be divided into two parts: initials
and finals [5]. It is a very good choice to use initials and finals as Chinese-specific
pronunciation recognition primitives. Table 1 lists all Chinese initials and finals.

Fuzzy tone: “Fuzzy tone” [6] is a pair of syllables that are easily confused and
indistinguishable. Fuzzy tone is used most often in Pinyin input method. In the field of
speech recognition, fuzzy tone is also useful, due to some Chinese pronunciation is
very similar, brought a lot of trouble to speech recognition, using of fuzzy tones to
unify all of these sounds is beneficial for the purpose of identification. Most of the
fuzzy sounds are listed in Table 2.

Table 1. Chinese initials and finals

Initials b, p, m, f, d, t, n, l, g, k, h, j, q, x, zh, ch, sh, z, c, s, y, w, r
Simple finals a, o, e, i, u, v
Compound finals ai, ei, ui, ao, ou, iu, ie, ve, er, an, en, in, un, vn, ang, eng, ing, ong

Table 2. Fuzzy sound classification and statistics

Initials (zh, z)(ch, c)(sh, s)(h, f)(r, l)
Finals (ang, an)(eng, en)(ing, in)(iang, ian)(uang, uan)(ian, ie)
Overall (fa, hua)(fan, huan)(fang, huang)(fei, hui)(fen, hun)(feng, hong)(fo, huo)(fu, hu)

128 J. Che et al.

3 The Framework of Speech Correction Overall Structure

This paper divides text correction and intention recognition of speech interaction
context into two phases: corpus processing and text correction (Fig. 1).

At the corpus processing stage, firstly obtain the question and answer corpus of the
required context, and then remove the colloquial stop words and then perform a
sequential dependency analysis on these corpus. The main purpose is to extract the core
components. These core component words can roughly express the overall meaning of
the sentence. But because of the diversity of language, many words can express the
same or similar, we use the Word2Vec model to replace the core components to
generate more similar question and answer corpus and extend the usability of the
model. Next, we will convert the generated linguistic data into Chinese Pinyin form,
and establish an inverted index to help us to conduct fast retrieval and timely response.

In the text correcting stage, we first need to obtain text data from ASR, and then
convert the text data into Chinese Pinyin, and then replace all the Pinyin with a unified
fuzzy word, and query the n words whose edit distance is less than k in the inverted
index. We use the improved edit distance method designed in this paper to perform
distance calculations on these n words, and output the most likely text error correction
and intent recognition results.

Fig. 1. Speech correction and intention recognition method for speech interaction context

A Chinese Text Correction and Intention Identification Method 129

3.1 Speech Recognition Error Analysis

In ASR systems, textual errors can generally be divided into three types:

(1) The pronunciation is the same (similar) but the characters are different
Since the ASR system is essentially a model for sounds and characters (words),
the model can often accurately recognize word sounds (or similar word sounds)
but output wrong words. For Examples ‘‘ ’’ (means login to Kingdee
cloud) was identified as ‘‘ ’’ (means login classic cloud’’) or
‘‘ ’’ (means login classic language). At this time, text correction is
needed to replace the text with the correct representation.

(2) The meaning is the same (similar) but the characters are different
Due to the diversity of natural language, we usually have many ways to express
the same thing, and the speech interaction is usually a language that is biased
toward colloquialism, and contains many meaningless stop words (such as “ ”
(means let me) and “ ” (means a bit). The presence or absence of a word does
not affect the core meaning of the whole sentence. For example, we say that
‘‘ ’’ (means Open this application
“everyone’s performance” let me take a look) to express the “ ”
(means open “everyone’s performance”) order. At this time, intention recognition
is needed to identify the true intention.

(3) Mixed
This type is a mixture of the above two types. That is to say, the recognized text
itself is wrong, and the semantics is also just an approximate representation of our
linguistic problems. At this time, it is necessary to organically combine text
correction and intention recognition.

3.2 Corpus Processing Stage

For a speech interaction application, corpus is needed as a support, the first is to train
the speech recognition model, and the second is to define the ability range. We need to
do some semantic extensions to support more comprehensive intent recognition, and
we need to establish a suitable model to support sorting and distance calculations.

First, we analyze the corpus by dependency syntax to find the core components of
the sentence. Dependency Parsing (DP) [7] reveals its syntactic structure by analyzing
the dependencies between components within a linguistic unit. Intuitively speaking,
grammatical components such as “subject-verb-object” and “attributive-adverbial-
complement” are identified in a sentence-by-syntax analysis, and the relationships
among the components are analyzed. For a sentence, the core component can roughly
express the approximate meaning of the sentence, so the core component plays an
extremely important role for a sentence. For the voice interaction scenario, the core
component of the user’s question is often a representative verb, such as “ ” (means
propose), “ ” (means open), “ ” (means play) etc. These words are often highly
substitutable, such as “ ” You can use “ ” instead.

Then, we use the trained Word2Vec [8, 9] to generate synonym words for the core
words and replace the core words in the original sentences to generate new corpus.
Word2Vec is a three-layer neural network model. It trains a large number of texts, and

130 J. Che et al.

it can be used to vectorize the words very well. With additional data structures, syn-
onyms can be calculated. The new corpus generated using the synonym to replace the
core words is semantically the same as the previous sentences, which can expand the
usability of intention recognition.

Then, all the corpus is converted into Pinyin representations and the fuzzy sounds
are replaced. All the phonetic alphabets which have similar pronunciation are replaced
by a single representation. After a unified replacement, the accuracy of speech
recognition can be greatly improved.

Finally, all the Pinyin is built inverted index for storage. The inverted index can
improve the efficiency of the fuzzy query, and the common inverted index engine can
quickly perform the search of the specified edit distance range. This operation helps us
to filter candidate results.

3.3 Error Correction Stage

For the text information t0 output by the ASR system, since the speech input of the
ASR is often spoken text, it is necessary that we need to preprocess it. The purpose of
preprocessing is to remove all redundant characters and words on the premise of
retaining as many core sentences as possible in order to keep the sentences streamlined
so that we can perform algorithm analysis. The commonly used pre-processing method
is to use the stop word list after the segmentation to filter out the stop words. In this
paper we uses the stop words data set provided by the Hanlp project [10] to perform
stop word culling operations. The dataset contains 1,208 Chinese and English stop
words.

Similarly, after the text preprocessing, we also need to convert the text into a
Chinese Pinyin form, and then unify the fuzzy word.

Next, we need to search in the reverse index database generated by the Corpus
processing stage to get n pieces of corpus with the closest edit distance to t0 for further
analysis. This paper uses Solr [11] to construct the inverted index. Solr is a high-
performance, full-text search server based on Lucene [12] developed by Java. It
extends on the basis of Lucene, provides a richer query language than Lucene, and is
configurable, extensible, and optimized for query performance. It is a very good full-
text search engine. Solr helps us quickly build inverted indexes and can quickly per-
form distance-based searches. By querying Solr, we obtained n pieces of corpus which
is nearest of t0 in editing distance. In this way, we do not need to calculate the distance
between t0 and each corpus, which greatly reduces the system response time and load.

Next, we need to use t0 and n pieces of acquired corpus t1 – tn to calculate distances
one by one to further narrow the candidate set. This paper uses a modified edit distance
to perform this distance calculation.

The traditional editing distance has a problem with the speech interaction context.
That is, if the lengths of the two strings differ greatly, the distance between the strings
cannot be well represented.

A Chinese Text Correction and Intention Identification Method 131

In order to solve this problem, this paper improves the traditional editing distance
algorithm. Improvements include the following:

(1) Pinyin texts are separated using the separator “-”, which can avoid the appearance
of Pinyin ambiguity and increase the editing distance between words.

(2) Introducing Pinyin Word Length Regular Terms:

lr ¼ abs len t0ð Þ � len tið Þð Þ � ð
Xw

w in t0
lenp wð Þþ

Xw

w in ti
lenp wð ÞÞ

.
len t0ð Þþ len tið Þð Þ

The abs(x) method refers to the calculation of the absolute value of x, the len(x)
method refers to the number of words of x, and the lenp(x) refers to the number of
letters in Pinyin of x. Adding Pinyin word length regular terms to the Pinyin editing
distance can better calculate the distance for texts with a large difference in length,
which is more suitable for speech interaction contexts.

4 Experiments

In order to verify the effectiveness of our method in the Chinese speech interaction
context, the method designed in this paper was connected to a smart ASR system, the
validity test was conducted by the multi-person round-call question test method.
Finally, the results were manually labeled. The test example is shown in Table 3.

We can see that some of these ASR misidentification use cases are similar in
pronunciation and some are semantically similar. We test on such a data set. The test
results are shown in Table 4.

We can see that our method can greatly improve the accuracy of text recognition in
ASR system. By analyzing the erroneous use cases, we found that in addition to invalid
(i.e. meaningless) exceptions, errors can be categorized into the following categories:

Table 3. Test example

132 J. Che et al.

(1) Intentional identification failure. For example, “ ” should be
identified as “ ” or “ ” (means playing channel
Kingdee cloud), but since corpus processing stage does not use the “play channel”
as a synonym for the core word “open”. Caused intention identification failure

(2) The input text is too long. Such as “
” (means hello little K, I’m very glad to

meet you. I want you to help me run the “performance of everyone”. Let me see if
it’s OK) Because the text is too long, it leads to a large deviation from the
calculation. As a result, error correction fails.

(3) ASR is incomplete. Due to the ASR’s own reasons or environmental reasons, the
identified text is different from the real text, or it fails to recognize the integrity.
For example, “ ” (meaningless) we guessed that the speaker’s intention was
to “ ” (means login to the Kingdee cloud) but due to missing some
information, the error correction failed.

5 Conclusions

This paper first briefly introduces the industry development and research trends in the
field of voice interaction, and points out the problems and deficiencies in text correcting
and intention recognition. On this basis, the method of text error correction and
intention recognition of the face-to-face speech interaction as described in this paper is
proposed. The method uses semantics and speech to perform error correction. It is
possible to deal with mixed complex contexts. Finally, a large number of tests are
carried out using test cases. The experiment shows that the accuracy of ASR system
can be greatly improved by the text error correction and intention recognition method.

But at the same time, we discovered some deficiencies in the system:

(1) Since the traditional edit distance algorithm is used in the search, the improved
edit distance algorithm is used when the final result set is calculated. Therefore,
the result set obtained in some cases is not the result we hoped for.

(2) Since all texts are unreliable and error-prone, the improved optimization method
designed in this paper will fail at some point and does not have the desired effect.
When the improvement method fails, it will degenerate into a Ordinary editing
distance algorithm.

Table 4. Test results

Total number of test cases 1189
Effective use cases 974
The correct number of ASR identifies 613
The correct number of ASR identifies + our method 836
Correct rate of ASR 62.9%
Correct rate of ASR + our method 85.8%

A Chinese Text Correction and Intention Identification Method 133

(3) Analyze the error use case to find that there is still room for further optimization in
the intent recognition. The method in this paper is not effective in dealing with the
long text and incomplete recognition.

Acknowledgement. This work is partially supported by the technical projects No. 2017YFB1
400604, No. 2016YFB1000803, No. 2017YFB0802703, No. 2012FU125Q09, No. 2015B010
131008 and No. JSGG20160331101809920.

References

1. Zhang, R., Wang, Z.: Chinese pinyin to text translation technique with error correction used
for continuous speech recognition. J. Tsinghua Univ. (1997)

2. Bassil, Y., Alwani, M.: Post-editing error correction algorithm for speech recognition using
bing spelling suggestion. Int. J. Adv. Comput. Sci. Appl. 3(2) (2012)

3. Fujiwara, K.: Error correction of speech recognition by custom phonetic alphabet input for
ultra-small devices. In: CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pp. 104–109. ACM (2016)

4. Wang, X., Li, X., Qian, Y., et al.: Automatic error correction for repeated words in Mandarin
speech recognition. J. Autom. Control Eng. 4(2), 153–158 (2016)

5. Yebo, B., Yu, H., Cong, L., et al.: Phoneme modeling units design for Mandarin LVCSR
systems. J. Tsinghua Univ. (Science and Technology) 2011(9), 1288–1292 (2011)

6. Qingqing, Z., Jielin, P.: The application of fuzzy pronunciation dictionary in dialect accent
speech recognition. In: The 8th National Man-machine Speech Communication Conference
Proceedings (2005)

7. Hall, J., Nilsson, J.: CoNLL-X shared task: multi-lingual dependency parsing. Matematiska
Och Systemtekniska Institutionen (2006)

8. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases
and their compositionality. In: International Conference on Neural Information Processing
Systems, pp. 3111–3119. Curran Associates Inc. (2013)

9. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in
vector space. Comput. Sci. (2013)

10. Hanlp (2018). https://github.com/hankcs/HanLP
11. Apache. Solr (2018). http://lucene.apache.org/solr/
12. Apache. Lucene (2018). https://lucene.apache.org/

134 J. Che et al.

https://github.com/hankcs/HanLP
http://lucene.apache.org/solr/
https://lucene.apache.org/

FCN-biLSTM Based VAT Invoice
Recognition and Processing

Fei Jiang1,2(&), Huan Chen1,2, and Liang-Jie Zhang1,2

1 National Engineering Research Center for Supporting Software
of Enterprise Internet Services, Shenzhen, China

2 Kingdee Research, Kingdee International Software Group Company Limited,
Shenzhen, China

faye_jiang@kingdee.com

Abstract. Financial Sharing Centre of big or medium-sized enterprises that
need to handle a large number of VAT invoices every day, but these invoices are
often handled manually in poor efficiency. They need automation of unsuper-
vised processing systems for VAT invoices to reduce costs and also to promote
their financial management capability. In this paper, we develop FCN-biLSTMs
that are capable of processing and recognizing invoice automatically. In view of
the characteristics of invoice, we propose the methods that extract text lines by
using invoice layout information and text characteristics, and achieve higher
accuracy. Combined with the previous text detection methods and the attention-
based biLSTM sequence learning structure for text recognizing, we developed
an automatic VAT invoice recognition and processing system. The system in the
actual projects of enterprises has achieved impressive performance.

Keywords: FCN � biLSTM � Invoice recognition and processing

1 Introduction

Chinese domestic value-added tax (VAT) invoice is an important accounting and
billing document and is a corporate tax certificate, and it is widely present in dealings
among enterprises. The format of it is under strict control of State Administration of
Taxation. Financial Sharing Centre of big or medium-sized enterprises need to handle a
large number of VAT invoices every day, but these invoices are often handled man-
ually in poor efficiency. They need automation of unsupervised processing systems for
VAT invoices to reduce costs and also to promote their financial management capa-
bility [1]. There are some projects of this kind that have been built or have been
bringing forth to build. The undergoing of an enterprise internal ERP plans is providing
a good infrastructure for it, and also, the developing of image processing technologies
such as text detection, text recognition and others are coming into a state of commercial
feasibility for it, with some extra efforts we can turn the VAT invoice image recog-
nition and processing automation into reality.

Due to the large variability of text patterns and the highly complicated background,
the recognition and processing for photo VAT invoice images are much more chal-
lenging than the scanned ones. An overview of the network architecture is presented in

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 135–143, 2018.
https://doi.org/10.1007/978-3-319-94340-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_11&domain=pdf

Fig. 1. It consists of a number of convolutional layers, corner points of text bounding
boxes, segmentation maps for text, and layout information for regressing the text box
locations, encoder for embedding proposals of varying sizes to fixed-length vectors,
and an attention-based Long Short-Term Memory (LSTM) decoder for word recog-
nition. Via this framework, an automatic VAT invoice recognition and processing
system is built and implemented.

We validate the effectiveness of our method on our accumulated VAT invoice
image datasets in the enterprise financial management scenario. The results show the
advantages of the proposed algorithm in accuracy and applicability.

The contributions of this paper are three-fold: (1) We propose a unified framework
for processing and recognizing the VAT invoices, which can be trained and evaluated
end-to-end. (2) Our method can simultaneously handle the challenges (such as rotation,
varying aspect ratios, very close instances) in multi-oriented text in VAT invoice
images. (3) We take invoice layout information into consideration and use some rule to
regress and constrain the text bounding boxes.

2 Related Work

An automatic VAT invoice recognition and processing system essentially includes two
tasks: text detection and word recognition. In this section, we present a brief intro-
duction to related works on text detection, word recognition, and text spotting systems
for VAT invoice that combine both. The text detection algorithm has developed rapidly
in recent years. It can be roughly classified into two categories: horizontal text detection
and skew text detection. For horizontal text detection, a number of approaches are
proposed to detect words directly in the images using DNN based techniques, and it is
similar to the method of object detection. Tian et al. [2] develop a vertical anchor

Fig. 1. Model overview. The network takes an image as input, and outputs both text bounding
boxes and text labels.

136 F. Jiang et al.

mechanism, and propose a Connectionist Text Proposal Network (CTPN) to accurately
localize text lines in image at ECCV 2016. The latest approach to skew text detection is
SegLink [3] and Corner Localization and Region Segmentation proposed by Lyu [4].
SegLink [3] predicts text segments and the linkage of them in a SSD style network and
links the segments to text boxes, in order to handle long oriented text in natural scene.
Lyu et al. [4] propose to detect scene text by localizing corner points of text bounding
boxes and segmenting text regions in relative positions. Word recognition has not made
much progress in the last two years. There are two main methods, one of the methods is
proposed by Shi et al. [5]. It is a novel neural network architecture, which integrates
feature extraction, sequence modeling and transcription into a unified framework, while
the another method is presented by Lee et al. [6] which use recursive recurrent neural
networks with attention modeling for lexicon-free optical character recognition in
natural scene images. Text spotting needs to handle both text detection and word
recognition. Li et al. [7] proposed a unified network that simultaneously localizes and
recognizes text with a single forward pass, avoiding intermediate processes like image
cropping and feature re-calculation, word separation, or character grouping. Combining
with specific application scenarios, Xie et al. [1] proposed to use many traditional
images processing technology to develop the invoice automatic recognition and pro-
cessing system.

3 Approach

3.1 Overall Architecture

The whole system architecture is illustrated in Fig. 1. It includes two parts: text
detection network (TDN) and text recognition network (TRN). Text detection network
aims to localize text in images and generate bounding boxes for words. Text recog-
nition network recognizes words in the detected bounding boxes based on the previous
text detection network. Our model is motivated by recent progresses in FPN [8], DSSD
[9], Instance FCN models [10] and sequence-to-sequence learning [11, 12], and we also
take the special characteristics of text and invoice layout information into considera-
tion. In this section, we present a detailed description of the whole system.

3.2 Text Detection Network

The network of our method is a fully convolutional network (FCN) that plays the roles
of feature extraction, corner detection, position-sensitive segmentation and fully con-
volutional segmentation. Inspired by the good performance achieved by FPN [8] and
DSSD [9], we adopt the backbone in FPN/DSSD architecture to extract features. In
detail, we convert the fc6 and fc7 in the VGG16 to convolutional layers and name them
conv6 and conv7 respectively. Then several extra convolutional layers (conv8, conv9,
conv10, conv11) are stacked above conv7 to enlarge the receptive fields of extracted
features. After that, a few deconvolution modules proposed in DSSD [9] are used in a
top-down pathway (Fig. 2). Particularly, to detect text with different sizes well, we
cascade deconvolution modules with 256 channels from conv11 to conv3 (the features

FCN-biLSTM Based VAT Invoice Recognition and Processing 137

from conv10, conv9, conv8, conv7, conv4, conv3 are reused), and 6 deconvolution
modules are built in total. Including the features of conv11, we name those output
features F3, F4, F7, F8, F9, F10 and F11 for convenience. In the end, the feature
extracted by conv11 and deconvolution modules, which have richer feature represen-
tations, are used to detect corner points and predict position-sensitive maps. A large
number of candidate bounding boxes can be generated after sampling and grouping
corner points. Inspired by [4], we adopt the methods which score the candidate boxes
by Rotated Position-Sensitive Average ROI Pooling and detect the arbitrary-oriented
text by using position-sensitive segmentation maps.

But unlike the above methods [4] that regress text boxes or segments directly, we
still added the supplementary method, which uses the invoice layout information in the
image (such as the form line, red chop and two-dimensional code.) detected by FCN
architecture [13] to constrain the detected bounding boxes and to improve the accuracy
and efficiency for text detection. Combine with the above method, we use the NMS and
some rules to filter out the candidate boxes with low score and get the RoIs. The
detected bounding boxes are merged via NMS according to their textness scores and
fed into Text Recognition Network (TRN) for text recognition.

3.3 Text Recognition Network

To process RoIs of different scales and aspect ratios in a unified way, most existing
works re-sample regions into fixed-size feature maps via pooling [14]. However, for
text, this approach may lead to significant distortion due to the large variation of word
lengths. For example, it may be unreasonable to encode short words like “Dr” and long
words like “congratulations” into feature maps of the same size. In this work, we
propose to re-sample regions according to their respective aspect ratios, and then use
RNNs to encode the resulting feature maps of different lengths into fixed length vec-
tors. The whole region feature encoding process is illustrated in Fig. 3.

For an RoI of size h � w, we perform spatial max-pooling with a resulting size of

H �minðWmax; 2Hw=hÞ; ð1Þ

where the expected height H is fixed and the width is adjusted to keep the aspect ratio
as 2w/h (twice the original aspect ratio) unless it exceeds the maximum length Wmax.

Fig. 2. Network architecture. The backbone is adapted from DSSD [9].

138 F. Jiang et al.

Note that here we employ a pooling window with an aspect ratio of 1:2, which benefits
the recognition of narrow shaped characters, like ‘i’, ‘l’, etc., as stated in [5].

Next, the resampled feature maps are considered as a sequence and fed into RNNs
for encoding. Here we use Long-Short Term Memory (LSTM) [11] instead of vanilla
RNN to overcome the shortcoming of gradient vanishing or exploding. The feature
maps after the above varying-size RoI pooling are denoted as Q 2 RC�H�W , where
W ¼ min Wmax; 2Hw=hð Þ is the number of columns and C is the channel size. We
flatten the features in each column, and obtain a sequence q1; . . .; qw 2 RC�H which are
fed into LSTMs one by one. Each time LSTM units receive one column of feature qt,
and update their hidden state ht by a non-linear function: ht = f (qt, ht−1). In this
recurrent fashion, the final hidden state hW (with size R = 1024) captures the holistic
information of Q and is used as a RoI representation with fixed dimension.

Text recognition aims to predict the text in the detected bounding boxes based on
the extracted region features. As shown in Fig. 4, we adopt LSTMs with attention
mechanism [12, 15] to decode the sequential features into words.

Firstly, hidden states at all steps h1; . . .; hW from RFE are fed into an additional
layer of LSTM encoder with 1024 units. We record the hidden state at each time step
and form a sequence of V ¼ v1; . . .; vW½ � 2 RR�W . It includes local information at each
time step and works as the context for the attention model.

As for decoder LSTMs, the ground-truth word label is adopted as input during
training. It can be regarded as a sequence of tokens s ¼ s0; s1; . . .; sTþ 1f g where s0 and
sT+1 represent the special tokens START and END respectively. We feed decoder
LSTMs with T + 2 vectors: x0; x1; . . .; xTþ 1, where x0 ¼ ½vW;AttenðV; 0Þ� is the
concatenation of the encoder’s last hidden state vW and the attention output with
guidance equals to zero; and xi ¼ ½wðsi�1;AttenðV; h0

i�1Þ�, for i ¼ 1; . . .;Tþ 1 , is
made up of the embedding wðÞ of the (i − 1)-th token si−1 and the attention output
guided by the hidden state of decoder LSTMs in the previous time-step h

0
i�1. The

embedding function wðÞ is defined as a linear layer followed by a tanh non-linearity.

Fig. 3. Region Features Encoder (RFE). The region features after RoI pooling are not required
to be of the same size. In contrast, they are calculated according to aspect ratio of each bounding
box, with height normalized. LSTM is then employed to encode different length region features
into the same size.

FCN-biLSTM Based VAT Invoice Recognition and Processing 139

The attention function ci ¼ AttenðV; h0
iÞ is defined as follows:

gj ¼ tanh Wvvj þWhh
0
i

� �
; j ¼ 1; . . .;W ;

a ¼ softmax wT
g � ½g1; g2. . .; gw�

� �
;

ci ¼
PW

j¼1 ajvj

8>>><
>>>:

ð2Þ

where V ¼ v1; . . .; vW½ � is the variable-length sequence of features to be attended, h
0
i is

the guidance vector, Wv and Wh are linear embedding weights to be learned, a is the
attention weights of size W, and ci is a weighted sum of input features.

At each time-step t ¼ 0; 1; . . .;Tþ 1, the decoder LSTMs compute their hidden
state h

0
t and output vector yt as follows:

h
0
t ¼ f ðxt; h0

t�1Þ
yt ¼ u h

0
t

� �
¼ softmaxðWoh

0
tÞ

8<
: ð3Þ

Where the LSTM [11] is used for the recurrence formula f(), and Wo linearly
transforms hidden states to the output space, including 26 case-insensitive characters,
10 digits, common standard Chinese characters, a token representing all punctuations
like “!” and “?”, and a special END token.

At test time, the token with the highest probability in previous output yt is selected
as the input token at step t + 1, instead of the ground-truth tokens s1; . . .; sT.

The process is started with the START token, and repeated until we get the special
END token.

Fig. 4. Text Recognition Network (TRN). The region features are encoded by one layer of
LSTMs, and then decoded in an attention based sequence to sequence manner. Hidden states of
encoder at all time steps are reserved and used as context for attention model.

140 F. Jiang et al.

3.4 Loss Functions and Training

As we demonstrate above, our system takes as input of an image, word bounding boxes
and their labels during training. For the final outputs of the whole system, we apply a
multi-task loss for both detection and recognition.

L ¼ LD þ LR ð4Þ

Our text detect network model is trained by the corner detection and position-
sensitive segmentation simultaneously. The loss function is defined as:

LD ¼ 1
Nc

Lconf þ k1
Nc

Lloc þ k2
Ns

Lseg ð5Þ

Where Lconf and Lloc are the loss functions of the score branch for predicting
confidence score and the offset branch for localization in the module of corner point
detection. Lseg is the loss function of position-sensitive segmentation. Nc is the number
of positive default boxes, Ns is the number of pixels in segmentation maps. Nc and Ns

are used to normalize the losses of corner point detection and segmentation. k1 and k2
are the balancing factors of the three tasks. In default, we set the k1 to 1 and k2 to 10.

We follow the strategy of text recognition which proposed by Lyu et al. [4] and the
loss for training text recognition is.

LR ¼ 1
Nc

XNc

i¼1
LrecðY ðiÞ; sðiÞÞ ð6Þ

Where s(i) is the ground-truth tokens for sample i and Y ið Þ ¼ yðiÞ0 ; yðiÞ1 ; . . .; yðiÞT þ 1

n o

is the corresponding output sequence of decoder LSTMs. LrecðY; sÞ ¼
�PT þ 1

t¼1 logytðstÞ denotes the cross entropy loss on y1; . . .; yTþ 1, where yt(st) repre-
sents the predicted probability of the output being st at time step t and the loss on y0 is
ignored.

4 Experiments

In this section, we perform experiments to verify the effectiveness of the proposed
method. We use the accumulated VAT invoice image datasets in the enterprise
financial management scenario to evaluate the proposed method.

Our method is implemented by using TensorFlow r1.4.1. All the experiments are
carried out on a workstation with an Intel Xeon 8-core CPU (2.10 GHz), 2
GeForce GTX 1080 Graphics Cards, and 64 GB RAM. Running on 1 GPUs in parallel,
training a batch takes about 1 s. The whole training process takes less than a day.

For different application scenarios of the invoice, scanned invoices and photo
invoices achieves different F-measures. The photo invoices is easily influenced by
some factors such as size, noise, blur, illumination, contrast and shelter. One contri-
bution of this work is added to the supplementary method,which uses the invoice

FCN-biLSTM Based VAT Invoice Recognition and Processing 141

layout information in the image to improve the accuracy and efficiency of text detec-
tion. To validate its effectiveness, we compare the performance of models “Ours FCN-
biLATM+NoLayout” and “Ours FCN-biLATM+Layout”. Experiment shows that the
model with constrained layout rule significantly better than unconstrained layout rule.
As illustrated in Tables 1 and 2, adopting constrained layout rule (“Ours FCN-biLATM
+Layout”) instead of unconstrained layout rule (“Ours FCN-biLATM+NoLayout”)
makes F-measures increase around 4%.

5 Conclusion

In this paper, we have presented an automatic value-added tax (VAT) invoice recog-
nition and processing system. In this system, VAT invoice can be detected and rec-
ognized in a single forward pass efficiently and accurately. Experimental results
illustrate that the proposed method can produce an impressive performance in the
actual projects of enterprises, and the model with constrained layout rule scenarios
significantly better than unconstrained layout rule scenarios. One of potential future
work is on maintaining images with other bills and documents.

Acknowledgement. This work is partially supported by the technical projects No. c1533411
500138 and No. 2017YFB0802700.

References

1. Xie, Z.G.: Researches on unsupervised image processing of VAT invoices, (Master Thesis)
Shanghai Jiao Tong University, Shanghai, China (2015)

2. Tian, Z., Huang, W., He, T., He, P., Qiao, Yu.: Detecting text in natural image with
connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46484-8_4

3. Shi, B., Bai, X., Belongie, S.: Detecting oriented text in natural images by linking segments.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

Table 1. Results on the scanned invoice image datasets. Precision (P) and Recall (R) at
maximum F-measure (F) are reported in percentage.

Method Precision Recall F-measure

Ours FCN-biLATM+NoLayout 89.0 83.0 66.0
Ours FCN-biLATM+Layout 93.3 79.4 85.8

Table 2. Results on the photo invoice image datasets. Precision (P) and Recall (R) at maximum
F-measure (F) are reported in percentage.

Method Precision Recall F-measure

Ours FCN-biLATM+NoLayout 66.0 44.7 53.3
Ours FCN-biLATM+Layout 70.8 43.0 53.6

142 F. Jiang et al.

http://dx.doi.org/10.1007/978-3-319-46484-8_4
http://dx.doi.org/10.1007/978-3-319-46484-8_4

4. Lyu, P., Yao, C., Wu, W., et al.: Multi-oriented scene text detection via corner localization
and region segmentation. Journal (2018)

5. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence
recognition and its application to scene text recognition. CoRR, abs/1507.05717 (2015)

6. Lee, C.Y., Osindero, S.: Recursive recurrent nets with attention modeling for OCR in the
wild. In: Computer Vision and Pattern Recognition, pp. 2231–2239. IEEE (2016)

7. Li, H., Wang, P., Shen, C.: Towards end-to-end text spotting with convolutional recurrent
neural networks. Journal (2017)

8. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid
networks for object detection. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017

9. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: Deconvolutional single shot
detector. arXiv preprint arXiv:1701.06659 (2017)

10. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–
549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

12. Shi, B., Wang, X., Lv, P., Yao, C., Bai, X.: Robust scene text recognition with automatic
rectification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016)

13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmen-
tation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440 (2015)

14. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE Conference on Computer Vision
(2015)

15. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural
machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (2015)

FCN-biLSTM Based VAT Invoice Recognition and Processing 143

http://arxiv.org/abs/1701.06659
http://dx.doi.org/10.1007/978-3-319-46466-4_32

Research on Cross-Chain Technology
Based on Sidechain and Hash-Locking

Liping Deng1,2(✉), Huan Chen1,2, Jing Zeng1,2, and Liang-Jie Zhang1,2

1 National Engineering Research Center for Supporting Software of Enterprise Internet Services,
Beijing, China

2 Kingdee Research, Kingdee International Software Group Company Limited, Shenzhen, China
liping_deng@kingdee.com

Abstract. Blockchain is a distributed ledger, which includes public blockchains,
private blockchains, and consortium blockchains. How to realize the exchange
and transfer of value between different blockchains is an important research topic
for the expansion of blockchain technology. This article describes what is cross-
chain and elaborates the principles and cases of multi-signature wallet. Then it
focuses on analyzing the current significant cross-chain technology and
successful cross-chain projects. Finally, this article explores a new cross-chain
solution.

Keywords: Cross-chain · Notary schemes · Sidechain · Relays · Hash-locking
Distributed private key control

1 Introduction

On October 31, 2008, Satoshi Nakamoto first proposed the concept of bitcoin in Bitcoin:
A Peer-to-Peer Electronic Cash System [1], which opened up a new era of blockchain.
Blockchain is a distributed ledger and a continuously growing list of records [2].
Currently, there are three types of blockchain networks: public blockchains, private
blockchains and consortium blockchains. If the consensus mechanism is the soul of the
blockchain, cross-chain technology is the key to realizing the value network for the
blockchain, especially the consortium chain and the private chain. It is a good medicine
to save the consortium chain from scattered and isolated islands. And it is a bridge to
expand and connect blockchains [3]. From a business perspective, a blockchain is a
value network. The more effective nodes that are connected, the wider the distribution,
and the greater the resulting value stack. Blockchain is the core infrastructure of value
network space. The application of blockchain cannot be confined to a single network.

In order to solve the trust mechanism between different blockchains and realize the
information transmission between different blockchains, a cross-chain protocol is
needed. The main contribution of this paper is to propose a cross-chain solution based
on sidechain and hash-locking, thus constructing a value network highway.

The reminder of this paper is organized as follows: Sect. 2 introduces the related
work about what is the cross-chain technology and multi-signature wallet. In Sect. 3,
we present the existing cross-chain technology solutions, including Notary Schemes,

© Springer International Publishing AG, part of Springer Nature 2018
S. Liu et al. (Eds.): EDGE 2018, LNCS 10973, pp. 144–151, 2018.
https://doi.org/10.1007/978-3-319-94340-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94340-4_12&domain=pdf

Sidechain/Relays, Hash-locking and Distributed Private Key Control. Section 4 intro‐
duces the current mature blockchain project on cross-chain technology, including Corda,
Polkadot, Cosmos, and Wanchain. For Sect. 5, combined with Sidechain and Hash-
locking technology, a solution for cross-chain blockchain technology is proposed.

2 Related Work

2.1 What Is Cross-Chain

The real society includes many industries and different economic fields. It is unrealistic
to move the entire real world to a blockchain. Goods in different industries and different
economic fields can realize value exchange through the market. Each blockchain is an
independent value economic system. The cross-chain blockchain is the hub linking
independent blockchains and carries the value exchange function of different value
system blockchains. Price is the prerequisite for the exchange of goods. The price is
determined by the value of the commodity itself and is influenced by the relationship
between supply and demand, and the supply and demand relationship is built on the
market. In order to realize the exchange of values on different blockchains, there will
be various value transaction markets in the cross-chain blockchain. Each value trans‐
action market in the cross-chain blockchain is a cross-chain contract service.

Cross-chain is a technology that allows value to cross the barrier between different
blockchains and direct circulation [4]. Each blockchain is an independent ledger, two
different blockchains correspond to two different independent ledgers, and there is no
correlation between the two ledgers. In essence, value cannot be transferred between
ledgers. However, for a specific user, the value stored in one blockchain can be translated
into another blockchain value, which is the circulation of value.

Assuming Alice has 1 BTC and Bob has 12 ETHs, how can they trade? From the
ledger point of view, the process of cross-chain operation is as follows (Table 1):

Table 1. Cross-chain operation process.

Before transaction Transaction After transaction
Alice 1 BTC Alice transfers 1 BTC to Bob 0

0 12 ETHs
Bob 0 Bob transfers 12 ETH to

Alice
1 BTC

12 ETHs 0

To sum up, the core of cross-chain technology is to help user Alice on the Bitcoin
blockchain to find Bob, the user who is willing to swap with the Ethernet blockchain.
From a business perspective, cross-chain technology is an exchange that allows users
to cross-chain transactions at the exchange.

Since Bitcoin and Ethereum belong to different blockchains, how do users between
different blockchains establish trust mechanisms? If Alice transfers Bitcoin to Bob but
Bob does not transfer Ethereum to Alice. So what should we do?

Research on Cross-Chain Technology Based on Sidechain and Hash-Locking 145

2.2 Multi-signature Wallet

In order to establish trust between Alice and Bob, trust transfer can be conducted through
the trading platform. First, Alice transfers 1 BTC to the platform, and Bob transfers 12
ETHs to the platform. The trading platform then transferred 12 ETHs to Alice and 1
BTC to Bob. By holding a digital currency in the middle of the trading platform, the
transfer of trust is realized, ensuring that Alice and Bob can perform cross-chain oper‐
ations.

However, the trading platform must be credible? If he runs Alice’s BTC and Bob’s
ETH. So what should we do? If the trading platform is operated by multiple entities, or
is a public chain, anyone can participate in the operation of the trading platform. the risk
of him running can be greatly reduced.

Using a multi-signature wallet allows multiple entities to jointly control an account
[5]. In simple terms, multi-signature means that multiple users digitally sign the same
message. In principle, A multi-signature address is an address that is associated with
more than one ECDSA private key. The simplest type is an m-of-n address that is asso‐
ciated with n private keys, and sending bitcoins from this address requires signatures
from at least m keys. A multi-signature transaction is one that sends funds from a multi-
signature address.

Taking 2/3 multi-signature as an example, Alice, Bob, and the trading platform all
have signing rights. If two of the principals confirm the signature, the transaction can
proceed. Bob transfers 12 ETHs to a multi-signature address that is associated with a
three-party private key. If the transaction is not going well, both Alice and Bob can
arbitrate. After being investigated by the trading platform, they can decide whether to
transfer ETH to Alice or return it to Bob through a signature.

3 Cross-Chain Technology

There are natural obstacles to the distribution of value between blockchains. Cross-chain
is a complex process. It requires not only a separate verification capability for the nodes
in the blockchain, but also a decentralized input, as well as the acquisition and verifi‐
cation of information outside the blockchain. Currently, cross-chain technologies mainly
include: Notary schemes, Sidechain/Relays, Hash-locking and Distributed private key
control.

3.1 Notary Schemes

The easiest way to interoperate between chains is to use the notary schemes [6]. In the
notary mode, a trusted individual or group is used to declare to a blockchain that some‐
thing has happened on another blockchain, or to make sure that the claim is correct.
These groups can both automatically listen to and respond to events and listen and
respond to events when they are requested.

Assuming that Alice and Bob can’t trust each other, the third party that both Alice
and Bob can trust is the intermediary of the notary. This establishes an indirect trust
mechanism between Alice and Bob. The representative scheme is Interledger, which is

146 L. Deng et al.

not itself a ledger and does not seek any consensus. It provides a top-level encryption
hosting system called “connectors”, with the help of this intermediary, allowing funds
to flow between ledgers.

3.2 Sidechain/Relays

The sidechain is not specifically referring to a blockchain, but refers to all blockchains
that comply with the sidechain protocol and is a concept relative to the main chain of
Bitcoin [7]. A sidechain protocol is an agreement that allows bitcoins to be safely trans‐
ferred from the Bitcoin main chain to other blockchains, and that can be securely trans‐
ferred back to the Bitcoin main chain from other blockchains [8]. The purpose of the
sidechain protocol is to achieve two–way peg so Bitcoin can transit between the main
chain and the sidechain. The sidechain protocol means Bitcoin can not only circulate on
the Bitcoin blockchain, but also on other blockchains.

The essential feature of the sidechain/relay is to pay attention to the structure and
consensus characteristics of the chain. In general, the main chain does not know the
existence of the sidechain, but the sidechain must know the existence of the main chain;
the double chain does not know the existence of the relay, but the relay must know the
existence of the double chain.

3.3 Hash-Locking

Hash locking is a trigger that sets interoperation between different blockchains, usually
a hash of the random number to be disclosed. It originated from Bitcoin’s Lightning
Network [9] and its key technology is the RSMC (Revocable Sequence Maturity
Contract) and HTLC (Hashed Time Lock Contract).

Alice and Bob can reach a protocol: The protocol will lock Alice’s BTC. Before time
T, if Bob can show Alice an appropriate R, make R’s hash value equal to the previously
agreed value H(R), Bob can get this BTC; if at time T, Bob cannot provide a correct R,
then this BTC will automatically thaw and return to Alice.

The use of hash locking can achieve the exchange of cross-chain assets, but can’t
achieve the transfer of cross-chain assets, but also can’t achieve cross-chain contracts,
its application scenario is more limited.

3.4 Distributed Private Key Control

The distributed private key control technology is a technology that uses a distributed
private key generation and control technology to generate a locked account of the orig‐
inal chain and then maps the corresponding assets to its own blockchain. Wanchain and
Fusion use this cross-chain technology. In this trading scheme, the account locking
mechanism does not use a two-way peg method. All transaction data is transferred to
the original chain node network after being reconstructed and synthesized at the verifi‐
cation node. This completely resolves the specific operations and calculations of the
cross-chain transaction. Completed in the new blockchain, no need to modify any mech‐
anism of the original chain, so that no matter existing public blockchains or private

Research on Cross-Chain Technology Based on Sidechain and Hash-Locking 147

blockchains or consortium blockchains can freely access the blockchain, thus reducing
cross-chain transactions Cooperative costs, to achieve free mapping of assets between
the various chains.

4 Cross-Chain Project

At present, the research on cross-chain technology of blockchain is still in the explora‐
tory stage. There are also some outstanding projects being tested. Below, we will focus
on four cross-chain blockchain projects.

4.1 Corda

Corda is a blockchain platform created for the business world [10]. It eliminates the
barriers between business transactions by achieving a direct exchange of business. Corda
implements a collaborative, open network that gives companies greater ability to collab‐
orate with each other and exchange value directly with one another.

Corda uses transactions to form a ledger, and its distributed ledger is an electronic
record stored on all parties involved in a financial or commercial contract [11]. This
information is stored in Corda Vault. At the same time, Corda will also store all trading
histories, trace the history of a recorded matter and verify it independently.

Transactions in Corda are only spread between participants and notaries. The notary
is chosen jointly by the parties to the transaction and is highly credible. The notary is
responsible for verifying the validity of the data and verifying the uniqueness of the data.
You can safely verify cross-billing messages by simply selecting cross-notices for
different ledgers or forcing them to point to the same authenticator and synchronizing
their ledgers.

4.2 Polkadot

Polkadot is a heterogeneous multi‑chain technology [12]. It consists of many parachains
with potentially differing characteristics which can make it easier to achieve anonymity
or formal verification. Transactions can be spread out across the chains, allowing many
more to be processed in the same period of time. Polkadot ensures that each of these
blockchains remains secure and that any dealings between them are faithfully executed.
Specialised parachains called bridges can be created to link independent chains.

Polkadot is a protocol that allows independent blockchains to exchange information.
Polkadot is an inter-chain blockchain protocol which unlike internet messaging proto‐
cols (e.g. TCP/IP) also enforces the order and the validity of the messages between the
chains. This interoperability also allows the additional benefit of scalability by creating
a general environment for multiple state machines.

148 L. Deng et al.

4.3 Cosmos

Cosmos is a decentralized network of independent parallel blockchains, each powered
by classical BFT consensus algorithms like Tendermint [13]. The first blockchain in the
Cosmos Network is the Cosmos Hub, whose native token is the Atom. Cosmos is a
permissionless network, meaning that anybody can build a blockchain on it.

The Cosmos Center connects (or calls it space) many other blockchains through a
new blockchain communication protocol. The center can track numerous token types
and record the total number of tokens in each connected space. Tokens can be safely
and quickly transferred from one space to another without the need to reflect exchange
liquidity between the two, because the token transmission between all spaces passes
through the Cosmos Center.

Cosmos is not just a single distributed ledger, but the Cosmos Center is not a closed
garden or a cosmic center. We are designing a protocol for the open network of distrib‐
uted ledgers. This protocol will become a new foundation for the future financial system
based on the principles of encryption, robust economics, consensus theory, transparency,
and accountability.

4.4 Wanchain

Wanchain is not merely a universal cross-chain protocol, it is a distributed ledger that
records cross-chain and intra-chain transactions [14]. Wanchain connects and exchanges
value between different blockchain ledgers in a distributed manner. It uses the latest
cryptographic theories to build a non-proprietary cross-chain protocol and a distributed
ledger that records both cross-chain and intra-chain transactions. Any blockchain
network, whether a public, private or consortium chain, can integrate with Wanchain to
establish connections between different ledgers and perform low cost inter-ledger asset
transfers. The Wanchain ledger supports not only smart contracts, but also token
exchange privacy protection.

When an unregistered asset is transferred from the original chain to Wanchain,
Wanchain will create a new asset using a built-in asset template to deploy a new smart
contract based on the cross-chain transaction information. When a registered asset is
transferred from the original chain to Wanchain, Wanchain will issue the corresponding
equivalent tokens in the existing contracts to ensure that the original chain assets can
still be traded on Wanchain.

5 The Cross-Chain Solution

In the many problems faced by the blockchain, the network isolation hinders the coop‐
erative operation between different blockchains, and limits the playing space of the
blockchain to a great extent. In order to realize the information interaction between
different blockchains, we explored a feasible scheme. The program combines side-chain
technology and hash-locking technology to establish a new blockchain as a third-party
trading platform, thus ensuring the transmission of trust between different blockchains.

Research on Cross-Chain Technology Based on Sidechain and Hash-Locking 149

The user develops a new blockchain as a trading platform. It can be either a public
chain or a private chain for recording transaction credentials. The transaction credentials
should appear in pairs, for which we have agreed on a trading interval, which is also the
difference in the hash-locking interval. At the same time, the new blockchain can realize
the quantification of value by issuing coins.

The specific implementation plan mainly includes three steps:
Step1: Both sides of the information exchange are registered as users on the new

blockchain, and the corresponding wallet is opened. At the same time, it is necessary to
deposit a sufficient amount of margin in personal accounts, which is a prerequisite for
achieving cross-chain value transmission. Margin can be the new blockchain currency
or other widely recognized and accepted cryptocurrencies such as BTC and ETH. As
shown in Fig. 1, at t0, Alice and Bob each have an asset with a value of N as collateral.
If Alice transfers assets to the Bob account on the chain A, there is no need to worry
about Bob running away with the assets in the account.

Fig. 1. A feasible cross-chain solution.

Step2: In order to encourage cross-chain transactions, all active parties based on
the new blockchain will be rewarded. At t1, Alice and Bob make a transaction on
block-chain A. The transaction initiator actively submits transaction credentials to
the new blockchain. The blockchain records the transaction in real-time and issues
a 1 unit bonus to Alice. After the record is complete, Alice’s asset in the new block‐
chain account is N + 1 and Bob’s asset is N.

Step3: In the case that the transaction is completed normally, at t2, on blockchain B,
Bob will pay Alice’s account the same amount of assets c as required by the prior agree‐
ment. After the transaction is complete, Bob submits the transaction credentials to the
new blockchain, and Bob will also receive a bonus for 1 unit of assets. The cross-chain
transaction was successfully implemented. If, after a given time interval, Bob still does
not pay Alice the same amount of assets, or if the paid assets are less than the agreed
value c. Bob will not be able to submit transaction credentials to the new blockchain
normally. When the waiting time exceeds the hash-lock interval, Bob will deduct the

150 L. Deng et al.

same amount of assets c in the new blockchain account, meanwhile, the deducted assets
c will pay for Alice as transaction compensation.

With the deepening of blockchain applications, cross-chain collaboration and inter-
working between future blockchain systems is an inevitable trend. Cross-chain tech‐
nology is the key to the realization of value networks in blockchain, and the intercon‐
nection and interoperability of blockchains will become more and more important issues.

Acknowledgement. This work is partially supported by the technical projects No.
2016YFB1000803, No. 2017YFB0802703, No. 2017YFB1400604, No. 2012FU125Q09, No.
2015B010131008 and No. JSGG20160331101809920.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1, 28 (2008)
2. https://en.wikipedia.org/wiki/Blockchain. Accessed 8 May 2018
3. Gao, Z.: Blockchain cross-chain technology introduction. JKGC Mag. 11, 46–51 (2016)
4. https://en.bitcoin.it/wiki/Atomic_cross-chain_trading. Accessed 10 May 2018
5. Yang, B., Chen, C.: The Principle, Design and Application of Blockchain, pp. 58–60. China

Machine Press (2018)
6. https://www.jianshu.com/p/7dd5305d71b6. Accessed 10 May 2018
7. Chang, J., Han, F.: Blockchain from Digital Currency to Credit Society, pp. 84–87. China

CITIC Press (2016)
8. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A.,

Timón, J., Wuille, P.: Enabling blockchain innovations with pegged sidechains. https://
blockstream.com/sidechains.pdf

9. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments. https://
lightning.network/lightning-network-paper.pdf

10. http://cncorda.com/. Accessed 10 May 2018
11. Hearn, M.: Corda: a distributed ledger. https://docs.corda.net/_static/corda-technical-

whitepaper.pdf
12. Wood, G.: Pounder. Polkadot: Vision for a Heterogeneous Multi-chain Framework. https://

block.academy/researches/PolkaDotPaper.pdf
13. Kwon, J., Buchman, E.: Cosmos: a network of distributed ledgers. https://cosmos.network/

resources/whitepaper
14. Wanchain: Building Super Financial Markets for the New Digital Economy. https://

www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf

Research on Cross-Chain Technology Based on Sidechain and Hash-Locking 151

https://en.wikipedia.org/wiki/Blockchain
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://www.jianshu.com/p/7dd5305d71b6
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://cncorda.com/
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://block.academy/researches/PolkaDotPaper.pdf
https://block.academy/researches/PolkaDotPaper.pdf
https://cosmos.network/resources/whitepaper
https://cosmos.network/resources/whitepaper
https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf

Author Index

Alam, Mansoor 80
Alasmari, Khalid R. 80

Babou, Cheikh Saliou Mbacke 3

Chamarthi, Ramachandra Vikas 49
Che, Jin 127
Chen, Huan 127, 135, 144

Deng, Liping 144

Fall, Doudou 3

Green II, Robert C. 80

Hu, Bo 99

Jiang, Fei 135

Kadobayashi, Youki 3
Kant, Krishna 18
Kashihara, Shigeru 3
Kulkarni, Pratik 49

Li, Cheng 91
Liao, Jianxin 34

Ma, Yutao 99

Niang, Ibrahima 3

Pang, Xudong 67

Qi, Qi 34, 67

Ramljak, Dusan 18

Sanchez, Justin 49
Soltani, Nasim 49

Tabkhi, Hamed 49
Tang, Mingdong 111
Tom, Deepak Abraham 18

Voigt, Doug 18

Wang, Jian 99
Wang, Jing 67
Wang, Jingyu 34, 67

Xie, Hongfeng 99
Xie, Jianguo 111
Xu, Jie 34, 67

Yu, Zhenguang 34, 67

Zeng, Jing 127, 144
Zeng, Junjie 91
Zeng, Sumeng 111
Zhang, Liang-Jie 91, 99, 127, 135, 144

	Preface
	Conference Committees
	Contents
	Research Track
	Home Edge Computing (HEC): Design of a New Edge Computing Technology for Achieving Ultra-Low Latency
	Abstract
	1 Introduction
	2 Overview of Edge Computing Systems
	2.1 Concept of Edge Computing Systems
	2.2 Advantages and Limitations of Edge Computing Systems
	2.3 The Need to Propose a New Edge Computing Architecture

	3 Home Edge Computing (HEC)
	3.1 What Is Home Edge Computing?
	3.2 HEC Architecture
	3.3 Use Cases

	4 Experimental Validation
	4.1 EdgeCloudSim
	4.2 Simulation Parameters
	4.3 Results and Discussion

	5 Conclusion and Future Work
	References

	Modular Framework for Data Prefetching and Replacement at the Edge
	1 Introduction
	2 Related Work
	3 Method
	3.1 Calculating Beliefs
	3.2 Virtual Caching Algorithm
	3.3 Real Cache Module

	4 Evaluation Characteristics
	4.1 Evaluation Measures
	4.2 Workloads
	4.3 BeliefCache Characteristics

	5 BeliefCache Evaluation
	5.1 Evaluation with Complex Patterns
	5.2 Adjustment to the Variations in the Workload

	6 Conclusions and Future Work
	References

	Boundless Application and Resource Based on Container Technology
	Abstract
	1 Introduction
	2 Related Works
	2.1 Edge Computing
	2.2 Container in Edge Computing

	3 Architecture Design
	3.1 Containers
	3.2 Pseudo Node
	3.3 Regional Autonomy

	4 Implementation
	4.1 Application and Resource Unit Management
	4.2 Monitor Container
	4.3 Master-Slave Paradigm
	4.4 Scheduling Strategy

	5 Experiment and Use Case
	5.1 Examining Effects of Master-Slave Paradigm
	5.2 Estimating BPLC Associated with Tagging Mechanism
	5.3 Use Case

	6 Conclusion and Future Work
	Acknowledgment
	References

	A Reconfigurable Streaming Processor for Real-Time Low-Power Execution of Convolutional Neural Networks at the Edge
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 Data Access Types
	3.2 GEMM vs Direct Convolution
	3.3 CNN Execution Bottlenecks

	4 Architecture Template
	4.1 Covolutional Processing Elements (CPE)
	4.2 Aggregation Processing Elements (APE)
	4.3 Pooling Processing Elements (PPE)
	4.4 Function Blocks Integration

	5 Evaluation
	5.1 Experimental Setup
	5.2 Resource Utilization and Power Overhead
	5.3 System-Level Impact
	5.4 Comparison Against GPUs

	6 Conclusions
	References

	Application and Industry Track
	Efficient Bare Metal Auto-scaling for NFV in Edge Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Architecture Design
	3.1 Workflow of the Framework
	3.2 Bare Metal Provision
	3.3 Monitor Configuration
	3.4 Workload Prediction Model
	3.5 Auto-Scaling Control Logic

	4 Implementation and Evaluation
	5 Conclusion
	Acknowledgment
	References

	Mobile Edge Offloading Using Markov Decision Processes
	1 Introduction
	2 Related Work
	3 MDP Methodology and Formulation
	3.1 MDP Formulation

	4 Numerical Simulation and Evaluation
	4.1 Simulation Setup
	4.2 Simulation Results

	5 Conclusion
	References

	A Face Recognition System Based on Cloud Computing and AI Edge for IOT
	Abstract
	1 Introduction
	2 Problem Formations
	3 AE-FRS
	4 Performances and Evaluation
	5 Conclusions and Future Works
	Acknowledgement
	References

	A Robust Retail POS System Based on Blockchain and Edge Computing
	Abstract
	1 Introduction
	2 Preliminaries to This Work
	2.1 Blockchain
	2.2 Edge Computing

	3 Requirements and Application Scenarios
	4 Blockchain-Enabled Transactions
	4.1 The Definition of a POS Block
	4.2 Building a POS Blockchain Network
	4.3 POS Blockchain-Based Transactions

	5 Data Synchronization Based on Edge Computing
	6 Development and Implementation
	7 Conclusion
	Acknowledgement
	References

	A Privacy Risk Aware Service Selection Approach for Service Composition
	Abstract
	1 Introduction
	2 Definitions
	2.1 Service Network
	2.2 User Privacy Preference
	2.3 Service Reputation and Privacy Policy
	2.4 Privacy Risk
	2.5 Privacy Risk Aware Service Selection for Composition

	3 The Approach
	3.1 Assessment of the Risk Degree of an Individual Privacy Data Item
	3.2 Assessment of the Risk Degree of a Single Service
	3.3 Optimal Service Composition Finding with the Least Privacy Risk

	4 Illustrative Example
	5 Performance Evaluation
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

	Short Paper Track
	A Chinese Text Correction and Intention Identification Method for Speech Interactive Context
	Abstract
	1 Introduction
	2 Related Research
	3 The Framework of Speech Correction Overall Structure
	3.1 Speech Recognition Error Analysis
	3.2 Corpus Processing Stage
	3.3 Error Correction Stage

	4 Experiments
	5 Conclusions
	Acknowledgement
	References

	FCN-biLSTM Based VAT Invoice Recognition and Processing
	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Overall Architecture
	3.2 Text Detection Network
	3.3 Text Recognition Network
	3.4 Loss Functions and Training

	4 Experiments
	5 Conclusion
	Acknowledgement
	References

	Research on Cross-Chain Technology Based on Sidechain and Hash-Locking
	Abstract
	1 Introduction
	2 Related Work
	2.1 What Is Cross-Chain
	2.2 Multi-signature Wallet

	3 Cross-Chain Technology
	3.1 Notary Schemes
	3.2 Sidechain/Relays
	3.3 Hash-Locking
	3.4 Distributed Private Key Control

	4 Cross-Chain Project
	4.1 Corda
	4.2 Polkadot
	4.3 Cosmos
	4.4 Wanchain

	5 The Cross-Chain Solution
	Acknowledgement
	References

	Author Index

