
Approximate Query Matching
for Graph-Based Holistic Image Retrieval

Abhijit Suprem1(&), Duen Horng Chau2, and Calton Pu1

1 School of Computer Science, Georgia Institute of Technology, Atlanta, USA
asuprem@gatech.edu, calton@cc.gatech.edu

2 School of Computational Science and Engineering,
Georgia Institute of Technology, Atlanta, USA

polo@gatech.edu

Abstract. Image retrieval has transitioned from retrieving images with single
object descriptions to retrieving images by using complex natural language to
describe desired image content. We present work on holistic image search to
perform exact and approximate image retrieval that returns images from a
database that most closely match the user’s description. Our approach can
handle simple queries for single objects (ex: cake) to more complex descriptions
of multiple objects and prepositional relations between objects (ex: girl eating
cake with a fork on a plate) in graph notation. In addition, our approach can
generalize to retrieve queries that are semantically similar in case specific results
are not found. We use the scene graph, developed in the Visual Genome dataset
as a formalization of image content stored as a graph with nodes for objects and
edges for relations describing objects in an image. We combine this with
approximate search techniques for large-scale graphs and a semantic scoring
algorithm developed by us to holistically retrieve images based on given search
criteria. We also present a method to store scene graphs and metadata in graph
databases using Neo4 J.

Keywords: Image retrieval � Graph search � Approximate search
Scene graphs

1 Introduction

Given the explosion of image-based content shared digitally, there has been similar
research focus on developing object recognition, image recognition and variants, and
image segmentation tools and systems for understanding, identifying, storing, and
querying images. The major research thrusts include automatic image captioning,
image annotation (including relationship detection), and content-based image retrieval.
Automatic image captioning attempts to generate natural language captions for image
images that try to represent the holistic meaning of the image. As the saying goes, ‘A
picture is worth a thousand words’, and finding the right words is a non-trivial task.
Image annotation focuses on object detection combined with relationship detection and
grounding to identify canonical relationships within an image. Following [1], these are
of the form <subject - predicate - object>. Finally, content-based image

© Springer International Publishing AG, part of Springer Nature 2018
F. Y. L. Chin et al. (Eds.): BIGDATA 2018, LNCS 10968, pp. 72–84, 2018.
https://doi.org/10.1007/978-3-319-94301-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94301-5_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94301-5_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94301-5_6&domain=pdf

retrieval is a wide net; we can consider some recent work from [2], who focus on using
automatic image annotation via scene graph grounding to retrieve images similar to a
query scene graph.

1.1 Motivation

The motivation for this work comes from the need for holistic image retrieval systems.
As [3] notes, text-based queries for image retrieval encode high levels of reasoning and
abstraction about an image that is difficult to represent textually. In addition, text-based
queries necessarily represent a semantic gap – a disconnect between human semantics
and visual features. [2] demonstrates some drawbacks of current text-based image
retrieval systems, namely the inability of such systems to abstract queries beyond
index-based searches by recognizing the relationships between terms. We show this in
Fig. 2, where common image search utilities return results that may not match the
given query. We note in the first search engine’s results that the second through fifth
results feature a woman eating a cake, while in the second, none of the first three
feature a girl eating a cake. Our results, however, return images that contain both
features of the query, where possible, at least one (image 4 in our results).

1.2 Overview

An overview of the process is shown in Fig. 1. Given the query, we extract the
canonical forms - what we deem to be the smallest query unit. In the Visual Genome
database, this is a subgraph of the form <subject - predicate - object>,
where each of the subject, predicate, and object are nodes with edges between them
labeled with the type of relation (subject-to-predicate or predicate-to-object). We the
generate approximates of the canonical forms to broaden our search. In this case,
approximates of <girl - eating - cake> include <girl.n.01 - eat.v.01 -
patty.n.01> and <girl.n.01 - eat.v.01 - cake.n.03>. Note that these
approximates are represented as WordNet synsets as they are sued to search the Visual
Genome database, whose scene graphs also represent nodes as WordNet synsets. We
retrieve images and ground them to the query – a process during which we identify
which portions of the query graph the image satisfies and to what degree – using phrase
similarities derived from high dimensional word embeddings (we use LexVec [4] for
its state-of-the-art performance on Word Similarity measurements), Finally, we score
each image on its grounding and rank the results.

Our work partially bridges the semantic gap by leveraging the idea of a scene graph
as presented in the Visual Genome dataset [1]. A key contribution of [1] is the for-
malization of a scene graph – each image in the Visual Genome Dataset contains a
human-generated graph of nodes denoting subjects, objects, and predicates, with the
edges denoting the relations between them. The graph annotates the relational content
in the image. The dataset also contains region-level and image-level natural language
captions, along with WordNet synsets for objects and relationships. There is a pre-
ponderance of research surrounding the scene-graph formalization – Relationship
Detection [5], Dense Caption Generation [6], and Scene Graph Generation [7]. We

Graph-Based Holistic Image Retrieval 73

propose leveraging existing capabilities showcased in the above works for an efficient
and scalable image retrieval pipeline.

Our contributions include:

Query Approximation and Ranking. We present a model for performing approxi-
mate search on a scene graph database. Given a query of the form <subject -
predicate - object> (e.g. <subject girl - eating - cake>, we generate
approximate queries searching for terms similar to the query terms and evaluating
phrases for their similarities to the query. Using this, we can generate, for the given
example, query approximates that include woman - eating - cake, person -
eating - cake, girl - eating - patty, and woman - eating - patty. In
addition, we present an algorithm for grounding and evaluating retrieved scene graphs
to the query graph for holistic image ranking.

Aggregate Graph Representations. We present several graph database representa-
tions that are used in generating plausible query approximates by reducing the search
space to the current semantic context. Specifically, we show how to create three
aggregate graph representations that each index a different query node type: (i) a
Subject Aggregate Graph (SAG) for obtaining subject approximates, (ii) an Object
Aggregate Graph (OAG) for obtaining object approximates, and (iii) a Predicate
Aggregate Graph (PAG) for obtaining predicate approximates, all in the current
semantic context.

Fig. 1. The user provides a query with two independent requests: girl - eating - cake and
fork - on - plate. We generate queries that approximately match the given query using
WordNet synsets (girl.n.01 - eat.v.01 - patty.n.01, fork.n.01 - along.
r.01 - plate.n.01). We then retrieve images that contain these subgraphs in their scene
graphs and ground the subgraphs to our top-level natural language queries. We then map the
retrieved synsets and the query nodes to the same word embedding space, and measure
similarities to determine holistic image similarity. the image similarity scores are then used to
rank the images.

74 A. Suprem et al.

1.3 The Image Retrieval Pipeline

Figures 1 and 3 summarize our approach. We now focus on the pipeline in Fig. 3.
Given a natural language graph query (e.g. a small scene graph as considered by [2]),
we reduce the query to its canonical forms (Sect. 4.1); we define a canonical form as
the basic unit of query consisting of a subject, predicate, and object of the form
<subject - predicate - object>. We then generate approximate queries using
WordNet synsets; we retrieve the set of candidate images that contain these approxi-
mates and ground the images’ scene graphs to the query. We then use word embed-
dings and project each canonical form to the vector space and score each image’s scene
graph to the query graph, penalizing images with missing or inexact results.

Three sample queries of varying complexity are presented in Fig. 4. Our approach
handles both simple and complex queries. Our grounding ensures images that most
closely match the entire query are ranked higher than images that offer a partial match.
In addition, we bridge the ‘semantic gap’ by searching for approximates. This allows us
to return images that closely match the provided query in situations where an exact
match may not be possible; an example is shown in Fig. 5: there is no image that
exactly matches the query; however, our approach approximates woman into girl, and
finds images that contain most of the query: a girl eating cake, with the cake on a plate,

Fig. 2. We show the results from common search engines for the same query. Our results are
also presented. We note in the first set of results that the first two images do not include cake - in
fact, the woman is eating peas and peppers. A woman eating cake appears third. In the second set
of results, a profile view of a woman eating cake appears third in the results. Our results show the
first two results with a woman (approximated as girl, as our far smaller image database did not
contain any images that exactly matched the query) eating cake, with a fork on the plate.

Graph-Based Holistic Image Retrieval 75

and a fork on the plate as well. While the highest ranked image in the figure does
contain cake with frosting, this is a happy coincidence; the scene graph itself does not
contain the annotation, so we say the image mostly matches the query. We also show
the second through fifth ranked images and their matches scene subgraphs.

Fig. 3. The user provides a natural language graph query. We convert this to the canonical form
(the basic query unit of the form <subject - predicate - object>) for each top-level
query and generate the approximates. Plausible subject, object, and predicate approximates are
generated using the aggregate graphs we have devised. These aggregate graphs – the Subject
Aggregate Graph, the Object Aggregate Graph, and the Predicate Aggregate Graph – allow us to
reduce the search space of subjects, objects, and predicates, respectively. Using the node
approximates, we generate query approximates and retrieve the set of candidate images using an
inverted index of the canonical queries from the Visual Genome dataset. We then ground the
images to determine and rank how well the image represents our natural language query.

Fig. 4. (a) A simple query. This is also the canonical form described in Sect. 4.1. (b) A more
complex query. The same noun (cake) is the object of two separate subjects (woman and
frosting), each connected by a different predicate. (c) Two independent top-level queries for
the same image, i.e. they do not share any nodes between them. This consists of a ‘simple’ top-
level query and a ‘complex’ top-level query, as per the informal terms adopted in (a) and (b).

76 A. Suprem et al.

2 Related Work

Content-Based Image Retrieval. Content-based image retrieval involves retrieving
and ranking images given either a text or image query. The former can be used to
retrieve images that incorporate some of the query requirements, while the latter can be
used to retrieve images relevantly similar to the query – here evaluation is context-
specific, e.g. whether images have similar objects, similar colors, similar poses, or
whether the images are exactly the same. Some implementations include Google
Reverse Image Search and TinEye. Our focus is on the former approach, as we feel
text-based queries allow users more freedom in specifying images to retrieve. It is not
the case that a user always has a sample of the image she would like, or can sketch a
faithful representation in, e.g., sketch-based image retrieval. [2] ’s key contribution is
as follows: the authors develop a framework for generating accurate groundings of a
query scene graph (either complete or partial) and use grounding likelihood to rank
images for retrieval and display.

Fig. 5. We show our system matching a complex query and returning images that most closely
match all facets of the query.

Graph-Based Holistic Image Retrieval 77

Semantic Similarity. An integral aspect of our image retrieval pipeline is approximate
query generation. We work with canonical relationship phrases of the form <subject
- predicate - object> to generate query approximates. As the Visual Genome
dataset maps each object to available WordNet synsets, we incorporate WordNet based
semantic similarity measures. [8] proposes a domain-specific corpus-based training
method to identify correct word sense and derives more accurate cosine-similarity
measures between source and target words. [9] shows a simple baseline for WordNet
synset similarity using vector embedding cosine similarity averages. [10] shows a
sentence-based similarity measure that uses a TF-IDF analogue to compute similarities
between a source word and its synset lemmas.

3 Graph Databases

As noted, [1] formalizes the scene graph – an image representation using human
annotations on bounded regions that grounds objects, relationships, and attributes. Each
object (usually a noun) is considered a node with a directed edge towards a relation
(a predicate with a part-of-speech tag of verb, preposition, or action), The predicate
may or may not have a directed edge towards another object instance. In addition,
objects also have attributes (usually adjectives, but may also include actions). We will
henceforth consider each object node as a noun with two forms: subject or
object. Note that object and object operate under separate domains; however,
notation confusion suggests these terms as an appropriate choice. A canonical form is a
set of three nodes and two edges of the form <subject ! predicate !
object>: this triplet indicates a base query that we use as the smallest query unit (i.e.
the canonical form).

3.1 Full Scene Graphs

We generate the full scene graph for each image using the scene_graphs from the
Visual Genome dataset. The full scene graph is stored in a Neo4J database. Each full
scene graph consists of at least one subgraph with at least one canonical triplet of the
form <subject - predicate - object>. We note that there may be multiple
independent subgraphs corresponding to different regions in the image.

3.2 Object Aggregate Graph

Our query approximation requires us to generate the candidate subjects, objects, and
predicates for each top-level query. We develop a novel aggregate characterization of
the aggregate graph that is introduced in [1] – we maintain a unique index of
<subject ! predicate> pairs, and for each pair, we maintain a unique list of
objects that are associated with that subject ! predicate pair. Objects are
not unique across each subgraph in the aggregate graph: apple.n.01 may appear in
multiple <subject ! predicate> subgraphs; however, within a subgraph, each
WordNet synset occurs once.

78 A. Suprem et al.

With the Object Aggregate Graph, we can, given a subject ! predicate
pair as well as several candidate objects, reduce the set of candidate objects to
plausible candidates for that subject ! predicate. Given candidate objects CO

and child objects KO in the Object Aggregate Graph, we return CO [KO. Figure 6
shows a subgraph within our Object Aggregate Graph.

3.3 Subject Aggregate Graph

To generate candidate subjects, we devise a Subject Aggregate Graph: we maintain a
set of unique predicate ! object pairs, and for each pair, we keep a unique set
of subjects that are associated with that pair. So, given a predicate ! object
pair, and candidate subjects CS, we reduce it to the plausible set of subjects by returning
CS [KS (where KS are the parent objects in each subgraph in the Subject Aggregate
Graph). We show this in Fig. 7.

Fig. 6. This subgraph from the Object Aggregate Graph shows all possible objects that a Fire
Engine (fire_engine.n.01) can be next to (along.r.01). These include streets
(street.n.01), sidewalks (sidewalk.n.01), and highways (highway.n.01). Given a
set of approximate synsets for street, as well as the fire_engine.n.01! along.r.01 pair,
we can identify the appropriate set of plausible objects using the process from Sect. 3.2.

Fig. 7. This subgraph from the Subject Aggregate Graph shows all possible objects that can eat
(eat.v.01) an apple (apple.n.01). These include woman (woman.n.01), child (child.
n.01), and girl (girl.n.01).

Graph-Based Holistic Image Retrieval 79

3.4 Predicate Aggregate Graph

We adapt [1] ’s aggregate graph here; however, we include all nouns and predicates
from the scene graphs, instead of the top-k nouns and predicates. Given a set of
candidate subjects and candidate objects, we can obtain the set of plausible
predicates, and return the union of the candidate and plausible predicates. We show a
subgraph in Fig. 8.

4 Query Matching and Image Retrieval

4.1 Canonical Form

The canonical form of a query is a triplet (Fig. 4a) of the form <subject !
predicate ! object>. Given a graph query, we extract canonical forms from the
query and operate on each independently, within scope of the query subgraph. Once
again, we refer to Fig. 4c – this query consists of two independent subgraphs: one
about a girl by a man, with the girl wearing a skirt and one about a
truck on grass. We split the first query into <girl ! wears ! skirt> and
<girl ! by ! man>. Similarly, we extract from truck on grass the triplet
<truck ! on ! grass>.

We perform this triplet extraction under an independence assumption – that we can
extract individual triplets, the combine them later to obtain the final rankings. This
allows us to operate independently on each triplet and its set of query approximates.

4.2 Approximate Generation and Retrieval

Given a triplet, we obtain the WordNet approximates for the subject, predicate, and
object. There are three levels of approximates – obtaining the sister synsets, the child
synsets (hyponymy), and the parent synsets (hypernymy). The sister synsets are
obtained by performing a lookup in the WordNet database of our natural language node
label (i.e. ‘girl’ or ‘skirt’ or ‘wears’). there are four scopes available for synset lookup:
we can take (i) just the sister synsets, (ii) the sister and child synsets, (iii) the sister and
parent synsets, (iv) or all three hierarchies: sister, child, and parent synsets. We limit

Fig. 8. This partial predicate aggregate graph shows all possible nodes that are subjects and
objects for the predicate dance (dance.v.01). This allows us to determine plausible predicates
given a subject-object pair.

80 A. Suprem et al.

our choice for candidate subjects and objects to the sister synsets and for candidate
predicates to sister and child synsets. This is to speed up computation time on our local
machines; on parallelized clusters, such a limitation is not necessary, and we can use
the complete closure of a synset: sisters, children, and parents.

Given the set of approximates for the subject and object, we obtain plausible
predicates from the aggregate graph. The predicates are ranked to the provided pred-
icate sister synsets: we measure the Wu & Palmer (WUP) Similarity between the
plausible predicates and set of sister predicates, and taker the average similarity score.
Here, we take the top 2/3 predicates as our set of predicate approximates. We choose
WUP similarity as it weights synset edges by distance in the hierarchy, i.e. semantically
similar predicates are ranked higher than synonymy predicates without semantic
relation. This allows us to narrow results to more appropriate relations by context.

4.3 Synset Embeddings

For ranking, we prefer to use a Euclidean metric for measuring triplet distance between
the query and approximates. However, the WordNet hierarchy does not operate on such
a metric. We use a model similar to [9] – we determine the embeddings for each synset
in our database following the baseline method for [9], but instead of the sum, we take
the average of the embeddings sum to obtain the synset centroid in the embedding
space with

vs ¼ 1
LSj j

X
l2LS vl ð1Þ

where vS is the embeddings vector for a synset S, LS is the set of lemmas for the synset
S, and Vl is the embedding for each lemma l 2 LS. We use LexVec [4] embeddings as
the lookup table for vl as LexVec has shown state-of-the-art performance in word
similarity and analogy. We deal with compound words by averaging the embeddings
for the compound word itself and the embeddings sum of its component words. If the
compound word does not exist, we take only the embeddings sum of component
words: given a compound word w ¼ w1;w2; � � �wn (i.e. for w ¼ christmas tree,

w 1 ¼ christmas and w 2 ¼ tree), we take v0l ¼ 1
2 vl þ

P
l¼l1;l2;���;ln vli

� �
.

4.4 Image Ranking

Approximate-Triplet Image Retrieval. After triplet retrieval, we have, for each
canonical triplet Ti, a set of approximates ATi ¼ a1; a2; � � � ; ak. Each of these approx-
imate is a triplet that is semantically similar to the query triplet. For each approximate
ai, we have a set of images I1; I2; � � � ; In that contain the approximate triplet within
them. We generate an inverted index of images for each image, we collect all
approximates ak for each triplet Ti (Fig. 9). This allows us to work on an image-by-
image basis by scoring each image based on its holistic similarity to the query triplet.

Graph-Based Holistic Image Retrieval 81

Inverted Index. Each approximate is a triplet of synsets, and we obtain the synset
embeddings using the method in Eq. 1. We also obtain the embeddings for the
canonical representations from the embeddings lookup (LexVec, in this case). At this
point, we note that each approximate triplet is independent of every other approximate
triplet. We further note that each approximate ai 2 In, there may be multiple triplets
that match the approximate. Consider an approximate triplet of the form man on
grass: an image may contain multiple instances of this approximate, and each is
stored in the inverted index. Each of these approximate primitives apj contains a
grounding of its nodes to nodes in the parent query approximate ak, which itself
contains a grounding to its parent triplet Ti. As such, for each api2 1;j½ �, we know what it
grounds to in Ti. We further note that a single image triplet may appear in multiple
primitives apj as the parent queries could have similar triplets in multiple subgraphs.

Subgraph Scoring. We first ‘collapse’ the obtained triplets to their subgraphs sa – we
generate the image subgraphs that contain all approximate primitives within a single
top-level query triplet Ti ¼ s1; s2; � � � sa. As such, we reduce all redundant copies of
each unique node within the inverted index and connect the independent triplets
wherever they share subjects or predicates. This is necessary for the query matching we
will perform to rank each image approximate to the provided query. We want a notion
of subgraph isomorphism to match out collapsed primitives to our top-level query Ti.
From Fig. 9, we note that there may be some Ti that do not contain approximates. For
each sa, we obtain the cosine similarity between its synset embedding and its ground
embedding, which is the embedding of the node in the top-level query Ti. The cosine
similarity is in 0; 1½ �, where 1 indicates the highest similarity. For each node, we instead
store nscore ¼ 1� cosine sim node; queryð Þ. For each missing node in sa, we add a null
node with a distance of 1, representing a missing node.

Fig. 9. We store all approximates for each triplet for each image. It is possible that images may
not contain a relation, in which case the index will not contain any approximate for a given query
(truck on grass).

82 A. Suprem et al.

Subgraph Ranking. With this representation, we can now formulate this as a mini-
mization problem: we wish to select the subgraph with the smallest score. Since each
subgraph sa 2 Ti may contain a combination of approximates, it is intractable to cal-
culate the global minimum selection of subgraphs. We instead model this as an ana-
logue of vertex cover. By construction, each subgraph contains a unique set of
approximates for the top-level query. As such, larger subgraphs are inherently more
‘isomorphic’ to each Ti simple because they contain more grounded nodes.

We then sort our subgraphs by size, and within each set of subgraphs with the same
size, we pick the subgraph sm with the smallest score. This subgraph sm has a subset of
the top-level approximates in Ti. We remove these approximates from consideration,
and again pick, from the remaining, the largest subgraphs. We repeat this until all top-
level queries are satisfied for each top-level subgraph. Each of the selected subgraphs
Sm’s scores Si ¼ score s1; s2; � � � ; smð Þ are summed and normalized by the number of
nodes to find the score on In for query Ti. We repeat this for each query in In to obtain
scores S ¼ ½S1; S2; � � � ; Sn� for each query Ti.

Image Scoring and Ranking. We note that for each of the scores S ¼ S1; S2; � � � ; Sn½ �
is in 0; 1½ �, with a lower score corresponding to a more similar match for each top-level
query. It is straightforward then to represent these scores as an i-dimensional score
vector S1; S2; � � � ; Si½ � and measure its Euclidean distance from the origin. This gives us
a score for image In. We then sort the image score to obtain the image ranking under
query, where the smallest score is the most relevant image.

5 Conclusions and Future Work

We have presented work on image retrieval using graph based approximate querying
and ranking. Representative examples are shown in Figs. 1 and 5, as well as a com-
parison in Fig. 2. We note from Fig. 2 that our system returns relevant results at higher
ranks than two leading Search Engines. We also note from Fig. 5 that even for more
complex queries, out system can return results that closely match the provided query.
Top ranked results match as much of the query as possible with holistic meaning – we
reduce the ‘semantic gap’ by considering relations between objects in the image in lieu
of using a document-based that eschews a focus on image relational content.

As such, the scene graph of an image is a key factor of our work. With regard to
this, future work is two-fold:

• Accurate scene graph generation: There is some work on scene graph generation
in [7]. However, the authors note that the performance is subpar. Better state-of-the-
art performance in automated scene graph generation from unannotated images
would allow creation of image databases at scale. Our system can then be imple-
mented on top of such a database for approximate image retrieval.

• Query graph generation: We provide an informal comparison of our results to
current search engine results in Fig. 2. However, this is not a robust comparison as
search engines accept natural language input while we provide input directly as
graph queries. This is due to a major input limitation in the conversion of natural

Graph-Based Holistic Image Retrieval 83

language to scene graphs. Future work would focus on graph query generation from
natural language that more closely matches desired human queries, using, e.g.
dependency parsing or similar methods.

References

1. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y.,
Li, L.-J., Shamma, D.A.: Visual genome: connecting language and vision using
crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

2. Johnson, J., Krishna, R., Stark, M., Li, L.-J., Shamma, D., Bernstein, M., Fei-Fei, L.: Image
retrieval using scene graphs. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3668–3678 (2015)

3. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-
level semantics. Pattern Recogn. 40(1), 262–282 (2007)

4. Salle, A., Idiart, M., Villavicencio, A.: Enhancing the lexvec distributed word representation
model using positional contexts and external memory. CoRR (2016)

5. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language
priors. In: Leibe, B., Matas, J., Sebe, N., Welling, Max (eds.) ECCV 2016. LNCS, vol. 9905,
pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

6. Johnson, J., Karpathy, A., Fei-Fei, L.: Densecap: Fully convolutional localization networks
for dense captioning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4565–4574 (2016)

7. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message
passing. In: Computer Vision and Pattern Recognition (CVPR) (2017)

8. Patwardhan, S., Pedersen, T.: Using WordNet-based context vectors to estimate the semantic
relatedness of concepts. In: Proceedings of the EACL 2006 Workshop: Making Sense of
Sense-Bringing Computational Linguistics and Psycholinguistics Together, vol. 1501, pp. 1–
8 (2006)

9. Khodak, M., Risteski, A., Fellbaum, C., Arora, S.: Automated WordNet Construction Using
Word Embeddings. In: SENSE 2017 (2017)

10. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings.
In: International Conference on Learning Representations (2017)

84 A. Suprem et al.

http://dx.doi.org/10.1007/978-3-319-46448-0_51

	Approximate Query Matching	for Graph-Based Holistic Image Retrieval
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 The Image Retrieval Pipeline

	2 Related Work
	3 Graph Databases
	3.1 Full Scene Graphs
	3.2 Object Aggregate Graph
	3.3 Subject Aggregate Graph
	3.4 Predicate Aggregate Graph

	4 Query Matching and Image Retrieval
	4.1 Canonical Form
	4.2 Approximate Generation and Retrieval
	4.3 Synset Embeddings
	4.4 Image Ranking

	5 Conclusions and Future Work
	References

