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Abstract. In order to speed-up query processing in the context of Data
Warehouse Systems, auxiliary summaries, such as materialized views and
calculated attributes, are built on top of the data warehouse relations. As
changes are made to the data warehouse through maintenance transac-
tions, summary data become stale, unless the refresh of summary data is
characterized by an expensive cost. The challenge gets even worst when
near real-time environments are considered, even with respect to emerg-
ing Big Data features. In this paper, inspired by the well-known Lambda
architecture, we introduce a novel approach for effectively and efficiently
supporting data warehouse maintenance processes in the context of near
real-time OLAP scenarios, making use of so-called big summary data,
and we assess it via an empirical study that stresses the complexity of
such OLAP scenarios via using the popular TPC-H benchmark.

1 Introduction

Usually, Data Warehouse Systems are deployed as part of a decision support
system separated from the system of records (a.k.a. production databases).
On-Line Analytical Processing (OLAP) queries, which execute at the data ware-
house level, are long-running and complex query meant to extract actionable
knowledge, but they are typically resource-consuming (e.g., [1–4]). Hence, in
order to speed-up query processing, auxiliary summaries, such as materialized
views and calculated attributes, are built on top of the data warehouse rela-
tions (e.g., [5]). As changes are made to the data warehouse through main-
tenance transactions, summary data become stale, unless the refresh of sum-
mary data is characterized by an expensive cost. Due to performance concerns,
fresh data propagate down to the data warehouse system episodically (yearly
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or monthly refreshes), periodically (night refreshes) or, at-the-best, after some
lag. Performance concerns are mainly resulting from complex data integration
workflow executions and ACID (Atomicity, Coherency, Isolation, Durability –
[6]) properties enforcement during the transaction maintenance task. Traditional
data warehouse systems, with episodic or periodical data refreshing, foster Ret-
rospective Analytics (e.g., [7]). The latter provides a look at what has already
happened, and allows us to analyze past activities of an organization. On the
other hand, in order to provide insights and actionable decisions at the right
time, it is important to analyze real-time data (e.g., [8]). Real-Time analytics use
cases occur in multiple instances, e.g.: (i) intelligent road-traffic management,
(ii) remote health-care monitoring, (iii) complex event processing systems, and
(iv) inventory management. Henceforth, novel approaches and paradigms are
required in order to deal with OLAP query processing in dynamic environments,
as the case of (data) changes at the data source level. In this paper, inspired
by the well-known Lambda architecture [9], we introduce a novel approach for
effectively and efficiently supporting data warehouse maintenance processes in
the context of near real-time OLAP scenarios, with emerging Big Data features
(e.g., [10]), and we assess it via an empirical study that stresses the complexity of
such OLAP scenarios via using the popular TPC-H benchmark [11]. The paper
extends a previous introduction short paper [12].

Refresh functions of data warehouse systems represent a common solution to
face-of the described problem. They are commonly referred as batch-incremental
update processing or maintenance transactions (e.g., [13]). Indeed, in standard
data warehouse systems, refresh procedures load data into the data warehouse in
a bulk mode. Prior to data loading, data are transformed. Data transformations
are modeled in terms of complex data integration workflows and are part of the
whole data integration process. Therefore, big data processing for data warehouse
maintenance is becoming more and more relevant, as combined with summary
data management, as also confirmed by recent research initiatives (e.g., [14]).
Our research work lies in this specific scientific area, and predicts a new instance
of big data warehouse data, the so-called big summary data, i.e. summary data
structures that aid big data warehouse maintenance processes in emerging big
data (e.g., Cloud-based – [15]) environments.

On a larger extent, data warehouse refresh can be modeled in terms of an
eight-step process, as follows:

(Step 1) Coping fresh data to the staging area. The staging area is an interme-
diate storage area used for data processing during the data integration
process; it sits between the data source(s) and the data target(s) [7,16].

(Step 2) Running transformations on fresh data. Transformations include: clean-
ing, de-duplication, data format conversion, derivation of new calcu-
lated values from existing data, filtering, joining, splitting, and so forth.

(Step 3) Preparing transformed fresh data. Prepare the insertion of transformed
fresh data by usually disabling reference constraints and entity con-
straints, thus making indexes able to accelerate data warehouse inser-
tion performance.
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(Step 4) Inserting fresh data into the data warehouse. In some cases, it is nec-
essary to merge fresh and stale data, indicate the time of last data
update or maintain multiple data versions in order to handle suitable
Change Data Capture (CDC).

(Step 5) Validating inserted data. Validate inserted data and processing different
alerts (e.g., constraint violations). Alerts may need human solutions.

(Step 6) (Re-)Setting-up constraints. Re-enable reference constraints, entity
constraints and other kinds of constraint over inserted data.

(Step 7) Refreshing indexes. Refresh indexes over inserted data.
(Step 8) Refreshing data summaries. Refresh auxiliary structures, such as mate-

rialized views, over inserted data.

Our research proposal aims at improving the big data warehouse maintenance
problem via interacting with the process above. In order to better describe the
proposed solution, we first need to focus on state-of-the-art data warehouse
benchmarks (e.g., [17]), and how they are exploited to assess the performance of
data warehouse systems.

The most prominent benchmarks for evaluating decision support systems are
the various benchmarks issued by the Transaction Processing Council (TPC).
The TPC-H benchmark [11] and its successor TPC-DS [18] assess the per-
formance of the system under test according to two different ways, namely:
(i) Power Test, and Throughput Test. The Power Test measures the query exe-
cution power of the system when connected with a single user. It runs the analysis
in a serial manner, i.e. queries and update functions run one at a time and the
elapsed time is measured separate for query run and refresh run. The Through-
put Test measures the ability of the system to process concurrent queries and
update functions in a multi-user environment.

Looking at refreshing operations in greater details, TPC-H benchmark
exposes two refresh functions, namely RF1, for loading new sales (TPC-H intro-
duces a classical product-order-supplier multidimensional model), and RF2 for
purging obsolete sales. In order to publish a TPC-H compliant performance
result, the system needs to support ACID properties, by also specifying one of
the four isolation levels (namely serializable, repeatable reads, read committed,
read uncommitted) as well as the snapshot isolation level [19]. Initially, TPC-DS
benchmark follows the TPC-H benchmark. In order to satisfy big data analytics
requirements, TPC-DS 2.0 reverted to a simpler model, in which analytic queries
and data maintenance procedures are strictly distinct. Big data solutions are
inherently not ACID-compliant, while most systems are indeed BASE-compliant
(BASE – Basically Available, Soft state, Eventual consistency) compliant [20].

By inspecting the nature of tests implemented by popular data warehouse
benchmarks, we can observe that the overlapping of ACID-compliant OLAP
queries and BASE-compliant data maintenance functions (e.g., refresh) overall
turns to be extremely costful. Hence, ad-hoc solutions must be devised in order
to circumvent the target problem.

Specifically, we propose (and experimentally assess) a new big data warehouse
maintenance methodology that pursues the idea of first performing a shortcut
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from (Step 1) to (Step 8), in order to improve both query performance as well as
the query accuracy with respect to fresh data, and then performing the remaining
steps from (Step 2) to (Step 7). The proposed approach is based on so-called
delta computations, inspired by the well-known Lambda architecture [9], which
allow us to (1) serve queries from both stale (big) data summaries in the data
warehouse system and fresh (big) data in the staging area. In addition to this,
the proposed approach applies factorization of streams processing for (2) fast
computation of so-called delta views, in order to capture dynamic properties of
big data systems. Finally, the proposed approach also (3) applies postponement
of the data warehouse maintenance transaction to an opportune time (still based
on a cost-aware analysis).

2 Related Work

Several proposals have been presented to address the management of real-time
data in Data Warehouses. Proposals address fast data processing in OLAP sys-
tems using different approaches. Hereafter, we overview related work. Authors
in [21–23] propose inserting real time data into OLAP multidimensional cube
structures, instead of into the Data Warehouse itself. They argue that insertions
in the data cubes would occur faster, due to the fact that they are not executed
over highly indexed tables that contain a large amount of historical data.

In [24], authors foster data fragmentation of the data warehouse over a
shared-nothing architecture, to accelerate the data integration process. The
maintenance transaction becomes distributed and more complex to manage with
well admitted commit distributed protocols (2-PC and 3-PC).

Dehne et al. propose CR-OLAP [25–27], a Real-time OLAP system based on
a distributed index structure for OLAP, refered to as a distributed PDCR tree.
R-Store [28,29] -A Scalable Distributed System for Supporting Real-time Ana-
lytics, which periodically materializes real-time data into a data cube. R-Store
uses HBase for data storage and MapReduce for query processing, and imple-
ments MVCC (Multi-version concurrent control) to support real-time OLAP. In
CR-OLAP, [28], summary data maintenance is not investigated.

In [30–33], Ferreiran, Cuzzocra et al., demonstrate propose near-real time
data warehouses and propose a Rewrite/Merge Approach for Real-Time Data
Warehousing. The proposed architecture in [32,33] implements a real-time data
warehouse without data duplication. It is composed of three main components:
the Dynamic Data Warehouse (D-DW), the Static Data Warehouse (S-DW) and
the Merger. The Integration between the D-DW and the S-DW is performed
offline.

Real-time new systems were deployed at Google and LinkedIn. The lat-
ters have different workloads. In [34], authors propose Mesa a highly scal-
able analytic data warehousing system that stores critical measurement data
related to Google’s Internet advertising business. Mesa satisfies near real-time
data ingestion and query-ability requirements. It supports continuous updates
which should be available for querying consistently across different views within
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minutes. Pinot [35] is a real-time distributed OLAP datastore designed to scale
horizontally and open sourced by LinkedIn. The database is column oriented and
implements bitmaps and inverted indexes. It is suited for analytical use cases on
immutable append-only data with exclusively selection, aggregation, filtering,
group by, order by, distinct queries on fact data. Pinot does not suit TPC DSS
benchmarks like workloads, which show complex join operations. Druid [36] is
an open source data store designed for real-time exploratory analytics on large
data sets. The system combines a column-oriented storage layout, a distributed,
shared-nothing architecture, and an advanced indexing structure allowing fast
data ingestion and analytics of events.

Materialized views (a.k.a. MVs, summary tables, aggregate tables), store
pre-computed results, and are widely adopted to facilitate fast queries on large
data sets. As update batches arrive at a high rate, it is infeasible to continu-
ously update MVs and a common solution is to group and defer maintenance
transactions. Meanwhile, the MVs become stale, which leads to inaccurate query
results. Multiple papers investigated Materialized views’ refresh mechanisms and
optimizations [37–41].

The Lambda Architecture [42–45] targets Big Data processing at scale and
involves both batch and stream systems. Indeed, batch and stream workloads
run in parallel on the same incoming data. The Lambda Architecture is made
up of three layers, namely, (i) the Batch Layer which ingests and stores large
quantities of immutable data and calculates batch views, (ii) the Speed Layer
which processes stream data into views and deploys the views on the Serving
Layer, and (iii) the Service Layer which queries the batch and real-time views
and merges them into serving up views. Challenging problems are handling large
quantities of data at the batch layer, unknown and time-varying data streams
at the speed layer, as well as fast merge of views at the service layer.

Our paper is inspired by Lambda architecture principles for architecting near-
real time OLAP scenarios in big data systems.

3 Big Summary Data: Definition and Management

Data warehousing is based on (1) collecting, cleansing, and integrating data
from a variety of operational systems; (2) calculating summary data to address
performance leaks, and (3) performing data analysis for decision support.

In order to address performance leaks related to complex OLAP queries’ pro-
cessing over big data, data warehouses build data summaries. Next, we overview
derived attributes and materialized views cycle life from design to refresh. Data
Summaries’ management has three costs, namely (i) building cost, (ii) storage
cost, (iii) refresh cost and have an age which indicates how old are these data
snapshots.

Examples in this section, are based on TPC-H benchmark [11]. Figure 1 illus-
trates the Database Schema of TPC-H Benchmark.
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Fig. 1. Database schema of TPC-H benchmark.

3.1 Design of Data Summaries

Given, (i) a relational data warehouse schema, (ii) a workload composed of
OLAP queries, (iii) refresh streams, we propose simple recommendations for
proposing both of (i) derived attributes and (ii) materialized views which allow
to achieve high performance OLAP over relational database management sys-
tems. Hereafter, we briefly recall definitions of materialized views and derived
attributes, and motivate their usage for each type of business query of TPC-H
workload.

Materialized Views. A materialized view summarizes large number of detail
rows into information that has a coarser granularity. As the data is pre-
computed, an aggregate table allows faster cube processing. Research work pro-
pose cost models assessing materialized view’s recommendations [46–49]. In this
paper, we propose a materialized view for each query, then a grouping along
full inclusion of dimensions. That’s if the MV -MVi of a query Qi is included
in the MV -MVj recommended for query Qj , then -MVj is proposed for both
Qi and Qj . The size of an MV is the number of rows in the MV. The latter
is simply derives as the product of all attributes cardinalities, except attributes
which are in functional dependency with an other attribute (as customer name
is in functional dependency with customer key), and attributes to which refer
other attributes (as customer key is referred in Orders table). We investigate
Materialized Tables for two types of OLAP queries. First, for OLAP queries
which MVs sizes are scale factor independent, and OLAP queries having very
sparse cubes. Next, we overview by example, these two types of OLAP queries.

Business query Q12 of TPC-H benchmark is illustrated in Fig. 2(a). Q12, the
Shipping Modes and Order Priority Query counts, by ship mode, for lineitems
actually received by customers in a given year, the number of lineitems belong-
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ing to orders for which the l receiptdate exceeds the l commitdate for two differ-
ent specified ship modes. Only lineitems that were actually shipped before the
l commitdate are considered. The aggregate table for Q12 is shown in Fig. 2(b)
while the MV12 recommended for Q12 is illustrated in Fig. 2(c). Whether is the
scale factor of TPC-H benchmark, MV12 has fixed number of rows equal to 49
computed as follows, � Line Receipt Years = 7 × � line ship modes = 7.

Fig. 2. SQL statement of TPC-H business query Q12 (a), aggregate table Agg Q12 for
Q12 (b), MV Q12 for Q12 (c), Q18 (d), MV Q18 for Q18 (e).

Business query Q18 of TPC-H benchmark is illustrated in Fig. 2(d). Q18 -the
Large Volume Customer Query finds all customers who have ever placed large
quantity orders. The query lists the customer name, customer key, the order
key, date and total price and the quantity for the order. Q18 return few rows as
3.8 ppm (parts per million) of orders are big orders. Hence, it’s recommended to
calculate an MV for Q18 (see Fig. 2(e)).

Derived Attributes. Derived Attributes are calculated from other attributes.
We recommend derived attributes for OLAP cubes which dimensionality is scale
factor dependent, as Q10 (see Fig. 3).

Indeed, for this type of business queries, derived attributes are much less
space consuming than aggregate tables. Q10 identifies customers who might be
having problems with the parts that are shipped to them, and have returned
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Fig. 3. SQL statement of TPC-H business query Q10 (a), with o sum lost revenue
immutable derived attributes (b), serving layer processing RF1 refresh function (c),
serving layer processing RF2 refresh function (d).

them, for so, it calculates the lost revenue for each customer for a given quarter
of a year. In order to improve the response time of Q10, we propose the following
alternatives, (1) Either add 28 derived attributes c sum lost rev /year/quarter
to CUSTOMER relation, or (2) add one attribute o sum lost rev to ORDERS

relation. Notice that, the second alternative is better than the first with respect
to both storage overhead and cost of refresh of stale derived attributes. Indeed,
following inserts or deletes of orders (respectively TPC-H refresh functions RF1
and RF2), the 28 derived attributes are stale, while refreshes do not render
stale the attribute o sum lost rev. Attribute o sum lost rev will enable a gain in
performance results from saving the cost of the join of LINEITEM and ORDERS

tables.
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Derived attributes alter the data warehouse schema, which is not costful
for column-oriented storage systems, and allow a gain in performance through
reducing both temporal and spatial complexities. The main point is to choose
attributes which are not stale after data refresh or refresh cost is not costful.

TPC-H Benchmark Analysis. Following our directives for recommending on
when to recommend Materialized Views and Derived Attributes, We concluded
that TPC-H business queries fall into three categories (see Table 1).

Table 1. TPC-H workload taxonomy.

Table 2 illustrates a total storage cost of all materialized views equal to
0.88 GB for all scale factors. The cost of derived attributes scales with TPC-
H scale factor and is 0.5 GB for SF =10 (see Table 3).

Table 2. Materialized views data
for TPC-H benchmark for any
scale factor.

Table 3. Tables’ volumes respectively
before and after adding new derived
attributes for SF = 10.
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3.2 Refresh of Data Summaries

In this section, we first overview different data integration strategies, namely
Lazy integration or Eager integration, which handle differently the processing
of fresh data. Then, we detail data summaries management from inception to
maintenance.

Data Integration [50]. Data Integration is the process of integrating data
from multiple sources. Integration is either Lazy or Eager [51]. Lazy Integra-
tion keeps data at the sources and requires a mid-tier for query processing. The
mid-tier determines the sources which answer the query and devises the exe-
cution tree. Once queries’ answer sets obtained, the mid-tier performs required
post-processing and returns a result set to the user-application. Summarizing,
Lazy integration leaves data at sources, integrates data on-demand i.e. at query
time, and queries’ answer sets is accurate. The system is out-of-service when
the sources are unavailable. The data sources are queried by the decision sup-
port system as well as the transactional system. This might degrade queries’
performances.

Eager integration, is based on data warehousing. Thus, information of each
source of interest is extracted in-advance and processed as appropriate, then
merged with information from other sources and stored. The data warehouse
is a database that is designed for query and analysis and is operational even
when sources are unavailable. High query performance is achieved by building
data summaries and local processing at sources is unaffected by the decision
support system workload. Summarizing, with Eager integration a business query
answer set might be stale. In order to overcome staleness, the data warehouse is
refreshed episodically, periodically, or at best after some time. The maintenance
transaction is also costful.

The combination of eager and lazy integration approaches is challenging and
will enable OLAP over fresh data and load balancing between the transactional
and the decision support system.

Refresh Operations. Given, (i) a relational data warehouse schema, (ii) a
workload -a set of queries, (iii) refresh streams, (iv) calculated attributes and
(v) materialized views; we have to determine when and how data summaries are
refreshed. Two refresh strategies are proposed for the refresh of data summaries,
and are detailed hereafter,

– Eager refresh: derived attributes and materialized views are refreshed with
in the maintenance transaction. Hence, the data warehouse is coherent at the
expense of costful maintenance.

– Lazy refresh: the refresh of calculated attributes and materialized views is
delayed and is not part of the maintenance transaction. Thus, the data ware-
house is incoherent for better performances.

Data Summaries refresh processing is performed is either incremental, requires
full reprocessing, or both,
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– Incremental processing : an incremental refresh executes first a sophisticated
merge of the old snapshot and a new snapshot built over fresh data and if
needed relations in the warehouse, and second integrates fresh data in the
data warehouse.

– Full reprocessing : a full reprocessing integrates fresh data in the data ware-
house, then recomputes data summaries.

– Hybrid processing : some parts require full reprocessing, while others can be
incrementally refreshed.

In Eqs. (1)–(4), we analyze relational algebra operations involving different types
of relations, namely relations which undergo inserts or deletes and immutable
relations.

For R1 and R2 concerned by new inserts,
(R1 ∪ ΔR1) �� (R2 ∪ ΔR2)
= (R1 �� R2) ∪ (R1 �� ΔR2) ∪ (ΔR1 �� R2) ∪ (ΔR1 �� ΔR2)
IF fresh data does not refer to stale data as in TPC-H RF1
THEN R1 �� ΔR2 = AND ΔR1 �� R2 =
= (R1 �� R2) ∪ (ΔR1 �� ΔR2)

(1)

For R1 concerned by new inserts and R2 immutable,
(R1 ∪ ΔR1) �� R2
= (R1 �� R2) ∪ (ΔR1 �� R2)

(2)

For R1 and R2 concerned by deletes,
(R1 − ΔR1) �� (R2 − ΔR2)
= (R1 �� R2) − (R1 �� ΔR2) − (ΔR1 �� R2) ∪ (ΔR1 �� ΔR2)
IF (ΔR1 = R1 �� ΔR2) THEN

ΔR1 �� R2 = R1 �� ΔR2 �� R2 = R1 �� ΔR2
AND ΔR1 �� ΔR2 = R1 �� ΔR2 �� ΔR2 = R1 �� ΔR2

= (R1 �� R2) − (ΔR1 �� R2)

(3)

For R1 concerned by deletes and R2 immutable,
(R1 − ΔR1) �� R2
= (R1 �� R2) − (ΔR1 �� R2)

(4)

The analysis of TPC-H benchmark workload reveals that all TPC-H bench-
mark business questions are concerned by refresh functions, except the following
business queries Q2, Q11, Q13 and Q16 (i.e. 4 over 22 queries).

4 Near Real-Time OLAP Scenarios

In this section, we detail near real-time OLAP scenarios querying fresh data for
an OLAP query improved using derived attribute, and a second for an OLAP
query tuned using a materialized view.
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4.1 Stream Workflow Management

Each stream has (1) a unique identifier streamID, typically a timestamp, (2) a
stream type -for TPC-H benchmark, stream type is either RF1 or RF2, and (3)
is composed of a sequence of operations (inserts, updates and deletes). All data
entering the system is dispatched to both the batch layer and the speed layer for
processing. The batch layer has two functions: (i) to manage the data warehouse,
and (ii) to compute the batch materialized views. The speed layer has also two
functions: (i) to manage the incremental updates i.e. streams, and (ii) to compute
the speed materialized views. The serving layer merges batch materialized views
and the speed materialized views, and indexes the resulting views i.e. serving views;
so that they can be queried in low-latency and ad-hoc way.

In Table 4, we enumerate the different processing related to TPC-H business
queries, and regroup them in order to depict which queries perform the same
relational operations.

Table 4. TPC-H business queries’ processing requirements implied by the batch
updates.
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In Fig. 4(a), we show general processing as dictated by TPC-H queries. Then,
in Fig. 4(b), we propose the join of Orders’ stream and LineItems’ stream, since
the join operation is required by multiple queries.

Fig. 4. Non-optimized stream processing (a) - Factorized stream processing (b).

4.2 Materialized View Management

The discounted revenue query Q19 of TPC-H benchmark [11], finds the gross
discounted revenue for all orders for three different types of parts that were
shipped by air or delivered in person. Parts are selected based on the combination
of specific brands, a list of containers, and a range of sizes.

4.3 Derived Attribute Management

Business query Q10 of TPC-H benchmark, illustrated in Fig. 3, identifies cus-
tomers who might be having problems with the parts that are shipped to them.
The query calculates for each customer the lost revenue of returned parts, i.e.
lineitems fulfilling (l returnflag = ‘R’). In order, to accelerate the processing
of Q10, we propose the derived attribute o sum lost revenue to be calculated
for each order. This derived attribute allows to save the join of the two tables
lineitem and orders. The computation of o sum lost revenue is described in
Fig. 3(b). Next, we discuss Q10 processing in case there are refreshes, namely
process new orders (RF1) and process deletes of orders (RF2).

– Query Q10 is affected by new inserts of orders (RF1). In order to enable real-
time Q10, the derived attribute o sum lost revenue is calculated for each new
order in each new stream, as illustrated in Fig. 3(c). This processing performed
at the speed layer requires different relational operations such as restrictions,
join, projection and scalar functions. The service layer is responsible for the
merge of Q10 resultsets at the batch layer and at the speed layer.
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– Query Q10 is also affected by delete of orders (RF2). The corresponding
processing is illustrated in Fig. 3(d).

5 Conclusions and Future Work

Inspired by the well-known Lambda architecture, in this paper we have intro-
duced and experimentally assessed a novel approach for effectively and efficiently
supporting data warehouse maintenance processes in the context of near real-
time OLAP scenarios, which makes use of innovative big summary data. Exper-
iments have been conducted against the popular TPC-H benchmark.

In future work, we will first conduct further experiments for bigger scales of
the TPC-H benchmark. Secondly, we will generate sketch synopsis rather than
derived attributes for several query classes of the TPC-H benchmark, namely:
Q2, Q9, Q10, Q11, Q20 and Q21. Those, in fact, are suitable to sketch-based
computations.
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