
Container-VM-PM Architecture: A Novel
Architecture for Docker Container Placement

Rong Zhang1,2, A-min Zhong1,2, Bo Dong1, Feng Tian1,2(&),
and Rui Li1

1 Shaanxi Province Key Laboratory of Satellite and Terrestrial Network Tech.
R&D, Xi’an Jiaotong University, Xi’an 710049, China

fengtian@mail.xjtu.edu.cn
2 School of Electronic and Information Engineering, Xi’an Jiaotong University,

Xi’an 710049, People’s Republic of China

Abstract. Docker is a mature containerization technique used to perform
operating system level virtualization. One open issue in the cloud environment
is how to properly choose a virtual machine (VM) to initialize its instance, i.e.,
container, which is similar to the conventional problem of VM placement
towards physical machines (PMs). Current studies mainly focus on container
placement and VM placement independently, but rarely take into consideration
of the two placements’ systematic collaboration. However, we view it as a main
reason for scattered distribution of containers in a data center, which finally
results in worse physical resource utilization. In this paper, we propose a defi-
nition named “Container-VM-PM” architecture and propose a novel container
placement strategy by simultaneously taking into account the three involved
entities. Furthermore, we model a fitness function for the selection of VM and
PM. Simulation experiments show that our method is superior to the existing
strategy with regarding to the physical resource utilization.

Keywords: Docker container � Virtual machine � Resource fragment
Three-tier architecture

1 Introduction

Currently, studies in cloud computing mainly focus on the placement of container to
Virtual Machine (VM) and the placement of VM to Physical Machine (PM) [1–3],
which we denote as “Container-VM” architecture and “VM-PM” architecture
respectively, shown in Fig. 1(a) and (b). They only consider the resource relation
between two objects, so we call these architectures as two-tier architecture. Techni-
cally, when a new Docker container is created, the Swarm master will choose a node to
host it, which has the highest ranking under a given strategy [4, 5]. Provided that the
node is a VM, the decision making mechanism only concerns the resource relationship
between the Docker container and VM. Moreover, when a new VM needs to be
created, the OpenStack nova filter scheduler selects correspond PMs according to a
given weighting functions [6, 7]. The new VM placement decision making thus only
concerns the resource relationship between the new VM and PMs, which ignores the

© Springer International Publishing AG, part of Springer Nature 2018
M. Luo and L.-J. Zhang (Eds.): CLOUD 2018, LNCS 10967, pp. 128–140, 2018.
https://doi.org/10.1007/978-3-319-94295-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94295-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94295-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94295-7_9&domain=pdf

resource request from the real workload, i.e. Docker container. In short, Swarm master
and OpenStack nova just like two separate divisions and there is no uniform operation,
currently. In other words, both Container-VM architecture and VM-PM architecture
are autonomous working; they do not systematically considering the resource rela-
tionships between container, VM and PM as a whole. For convenience, we name this
combination of the two autonomous working two-tier architectures as double two-tier
“Container-VM add VM-PM” (CV_VP) architecture, shown in Fig. 1(c).

In fact, current studies in this field rarely consider the potential influence caused by
physical servers. When placing new containers, it needs to choose suitable VMs to host
them. If the selection algorithm only considers the “Container-VM” architecture, it is
easy to cause containers in a scattered distribution situation. As showed in Fig. 2, the
small circles with different sizes in a queue represent the New coming Docker containers,
the small circle with white color and a dotted line represents the New Docker container
which is under the placement decision making process, the dotted lines with arrows
indicates that they are feasible to place. The new Docker container placed in VM1, VM2
or VM4 can make full use of their resource; the placement makes the same impacts to the
three VMs, but different impacts in physical resource utilization to the Swarm system. If
the newDocker container is no placed in VM1, then VM1 is no-load and can be cancel or
remove from PM1, therefore PM1 is no-load and can be shut down or turn into sleep
model. In fact, the selection algorithm which only considers the “Container-VM”
architecture cannot ensure no to choose VM1 as the target VM. As a result, this may lead
to use more active PMs for the placement and worse resource utilization.

c. CV_VPb. VM-PMa. Container-VM

1 2 3

VM1 VM2

PM 1 PM 2

Scheduler 1Scheduler

1 2 3

VM1 VM2

Scheduler

PM 1 PM 2

VM1 VM2

Scheduler 2

Fig. 1. Three different types of architecture.

PM 1

VM 1

PM 2

VM 2

PM 3

VM 3 VM 4

New Dockers

Swarm master

Fig. 2. An example of Docker container placement.

Container-VM-PM Architecture 129

To solve this problem, the resource relationships between container, VM and PM
should be systematically considered as a whole, we denote their collaborative operating
architecture as a three-tier “Container-VM-PM” (CVP) architecture, shown in Fig. 3.

However, current studies rarely consider the three as a whole, there is very little
literature about this concept. Tchana et al. [8] proposed the implementation of the
software consolidation based on the assumption that Docker is used for software iso-
lation and the same VM be shared between several soft applications. The authors want
to extend analysis of best coordinate software consolidation on VMs with VM con-
solidation on physical machines in their future work. Their idea involves CVP archi-
tecture which coincides with ours, although it is their future work. Still, it inspires us. In
this paper, we try to solve the new Docker container placement problem under the CVP
architecture, taking the minimum active PMs as the first goal and maximum resource
utilization as the second goal.

Due to the collaborative operations, the placement algorithm towards new Docker
containers is more complicated under the CVP architecture, which raises three
challenges:

– Which PM should be chosen?
– Which VM should be chosen?
– How to coordinate the placement of Docker containers to VMs, considering the

placement of VMs to PMs simultaneously.

We propose a container placement strategy under CVP architecture and make a
fitness model to select the optimal VMs and PMs. We also leverage the Best-fit
algorithm to search the optimal mapping. Finally, we derive the mapping relationship
between container, VM and PM. To the best of our knowledge, this work is the first
that systematically considers the resource relationships between container, VM and PM
and coordinates the placement of Docker containers to VMs with the placement of
VMs to PMs simultaneously.

Our main contributions are as follows:

(1) We focus on the Docker container placement problem in order to improve the
physical resource utilization.

(2) We systematically consider the resource relationships between container, VM and
PM as a whole and extend the study from two-tier architecture to a three-tier
“Container-VM-PM” architecture.

1 2 3

VM1 VM2

PM 1 PM 2

Scheduler

Fig. 3. The CVP architecture.

130 R. Zhang et al.

(3) We propose a Docker container placement strategy under the three-tier
“Container-VM-PM” architecture and establish a VM and PM selection model.

The rest of this paper is organized as follows. Related works and some important
definitions are reviewed in Sect. 2. In Sect. 3, we describe the key problem and our
proposed method. Furthermore, we propose an evaluation formula for the placement
performance comparison. Experiments and results are showed in Sect. 4. Conclude and
future work in Sect. 5.

2 Background

In this section, we introduce the concept of Docker container and Virtual Machine.
More concretely, we first compare the pros and cons of the two techniques and review
their related research in the literature. Then, we introduce the definitions of resource
utilization and resource fragmentation. Last, we introduce the Best-fit algorithm that
will adopt.

2.1 Docker Container and Virtual Machine

Docker [9], an open sourced project, provides a lightweight virtualization mechanism
at system level and automates a faster deployment of Linux applications by extending a
common container format called Linux Containers (LXC) [10]. It can be deployed on
VMs or “bare metal” physical servers. In most cases, a container can be created and
destroyed in almost real-time and introduces negligible performance overhead towards
CPU and memory [11]. It thus is suitable to quickly build and restructure application
services. Compared with VMs, containers have advantages of fast deployment and
migration, but they also suffer from weak isolation and security. Therefore, many cloud
service providers take a compromise solution by combining the two techniques, i.e.,
they place containers in VMs. As cloud business services thrive in recent years, the
requirement for efficiently placing containers while maximizing resource utilization has
attracted a wide range of attention [12].

VMs are widely used in cloud computing. Various kinds of service models are
offered by Cloud computing service, there are three kinds of service models that have
been popular accepted: Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) [13]. Many enterprises use their cloud platforms to
make VMs available to the end user and even run services inside VMs. One of
extensively used open source cloud platform is OpenStack. Nova is an important
compute component of OpenStack. OpenStack Nova is responsible for provisioning
and management of VMs [14]. The detail information about its scheduling strategy is
referring to [15, 16].

Many Platform providers built their PaaS and SaaS on IaaS, and run all the
workload inside VMs. Swarm plays an important role in PaaS and SaaS, which is used
to manage the Docker cluster. Scheduling strategy on Swarm can be introduced from
[17, 18] in detail.

Container-VM-PM Architecture 131

2.2 Resource Utilization

Both the Container placement problem under Container-VM architecture and the VM
placement problem under VM-PM architecture can be described as a bin packing
problem. For this reason, we can transform the Container-VM architecture as Fig. 4(a),
and the VM-PM architecture could be showed as Fig. 4(b).

As shown in the Fig. 4(a), the real workloads are Container 1 and Container 2.
Although the VM requests for cvm CPU and mvm Memory resources, but the effective
resources utilization are (cc1 + cc2) CPU and (mc1 + mc2) Memory. As shown in the
Fig. 4(b), it only concerned about the resources of VM and ignores the container layer.
The physical resource utilization is calculated by summing resources occupied by the
VMs hosted by the PM.

The CVP architecture can be transformed as Fig. 4(c). It systematically considers
the resource relationships between container, VM and PM as a whole. Because of the
real workloads are containers, the effective resources utilization are calculated by the
resources of containers. As a result, the physical resource utilization is calculated by
summing resources occupied by the containers run in the PM. As the resource infor-
mation of the three layers is clear, it can help to place new Docker containers more
effectively.

2.3 Resource Fragmentation

Different containers need to occupy different dimensions of resources. A node can host
a container when it meets the container’s resources requirement in every dimension.
After new container placement, the unused resources are called Resource Fragmenta-
tion [17, 19].

If the resource fragmentations are too small, it may unable to accept more new
objects’ placement. So, the size of resource fragmentations is the bigger the better in
the case of using same amount of active PMs.

VM

Conta
iner 1

Conta
iner 2

CPU

Mem
mvm

cvmcc1 cc1+cc20

mc1

mc1
+mc2

PM
cvm1

VM1

VM2

CPU

Mem

cvm1+cvm2

mvm1

mvm1
+mvm2

100%

100%0

a. Container-VM

b. VM-PM

PM
cvm1

VM1

VM2

CPU

Mem

cvm1+cvm2

mvm1

mvm1
+mvm2

100%

100%0

Conta
iner 1

Container 2

Conta
iner 3

c. Container-VM-PM
(CVP)

Fig. 4. Three different types of architecture in two-dimension.

132 R. Zhang et al.

2.4 Best-Fit Algorithm

Best-fit algorithm is a fast allocation algorithm and it is commonly used in solving the
bin packing problem. For an upon arrival item, Best-fit algorithm chooses a fullest bin,
in which it fits from a list of current bins to host the item; in case this process fails, a
new bin for the item will be opened [20]. As a result, when Best-fit algorithm is used in
the placement of Docker container to VM, we treat Docker containers as the items and
treat VMs as bins. Similarly, when Best-fit algorithm is used in the placement of VM to
PM, we treat VMs as the items and treat PMs as bins. Furthermore, resource frag-
mentation is used to evaluate the bin in order to judge if it is the fullest one or not.

3 Methods and Problem Formulation

The key in the new Docker container placement problem is how to choose the suitable
VM and PM. In this section, we will give a new Docker container placement strategy
referring to the placement strategies in [8, 9]. As it’s different in the view point of
resource relations between CV_VP and CVP architecture, the VM and PM selection
strategies are different too. We thus model the VM and PM selection fitness function
for CV_VP and CVP architecture respectively. Furthermore, we propose an evaluation
formula for the placement performance comparison.

To simplicity and clarity, we make the following assumptions:

(1) Each Docker container should be hosted by one VM, and several Docker con-
tainers can be placed in a same VM.

(2) All PMs have the same configuration.
(3) Only focus on two-dimension resources, they are CPU and Memory.

Considering taking the minimum active PMs as the first goal and maximum
resource utilization as the second goal, we propose a placement strategy for the new
Docker container and the VM and PM selection strategy for the two architectures,
respectively. The notations used in this paper are described in Table 1.

3.1 The Placement Strategy Under CV_VP Architecture

When dealing with a new Docker container, the Docker container should be placed in
the current existing VMs preferentially. There are two situations that need to be
considered.

(1) If there does not exists any VM that can host the new Docker container, the
smallest VM which can host the new Docker container should be selected from
the VM provision set as the new VM. This new VM is the target VM. Certainly
we need to choose a suitable PM to host the new VM. There are two possible
scenarios.
One scenario: Suppose that there are m active PMs which can host the new VM,
where m[0. Because of the CV_VP architecture, the PM selection is only
depending on the new VM’s resource requests. For each PM in the m active PMs
Set, we take the sum of its CPU and memory resources utilization after the new

Container-VM-PM Architecture 133

VM placement as its fitness. So, the fitness function PAfitðjÞ for the j active PM
can be defined as:

PAfitðjÞ ¼ cpuVusedj þ cpuvmnew
cpupmj

� aþ memVused
j þmemvm

new

mempm
j

� b; ð1Þ

where, j ¼ 1; � � � ;m, a and b are two constants, represent the two parts’ weights of
the formula. At last, the PM which has the max fitness will be chosen to host the
new VM. This PM will be the target PM.
The other scenario: Suppose that there does not exist any active PM that can host
the new VM, then an idle PM should be start. The new active PM will be the
target PM.

(2) If there exists n VMs that can host the new Docker, where n[0. Because of the
CV_VP architecture, the VM selection is only depending on the new Docker’s
resource requests. For each VM in the n exist VMs Set, we take the sum of its
CPU and memory resources utilization after the new Docker container placement
as its fitness. So, the fitness function VAfitðiÞ for the VM i can be defined as:

VAfitðiÞ ¼ cpuDusedi þ cpuDockernew

cpuvmi
� aþ memDused

i þmemDocker
new

memvm
i

� b; ð2Þ

where, i ¼ 1; � � � ; n. At last, the VM which has the max value of VAfit will be
chosen to host the new Docker container. This VM will be the target VM, and the
PM which hosts this VM will be the target PM.

Table 1. Notations.

Symbol Description

cpuVusedj The sum of the VMs’ CPU resource in the jth active PM

memVused
j The sum of the VMs’ Memory resource in the jth active PM

cpupmj The total CPU resource of the jth active PM

mempm
j The total Memory resource of the jth active PM

cpuDusedi The sum of the Docker containers’ CPU resource in the ith VM

memDused
i The sum of the Docker containers’ Memory resource in the ith VM

cpuvmi The total CPU resource of the ith VM
memvm

i The total Memory resource of the ith VM

cpuDockernew The CPU resource that the new Docker container request for

memDocker
new The Memory resource that the new Docker container request for

cpuDusedj The sum of the Docker containers’ CPU resource in the jth active PM

memDused
j The sum of the Docker containers’ Memory resource in the jth active PM

Nactive
PM The number of active PM

cpuremainj The remain CPU resources of the jth active PM

memremain
j The remain Memory resources of the jth active PM

134 R. Zhang et al.

3.2 The Placement Strategy Under CVP Architecture

There are two situations that need to be considered too, but some parts of the calcu-
lation are different from CV_VP architecture.

(1) If there does not exists any VM that can host the new Docker, the smallest VM
which can host the new Docker should be selected from the VM provision set as
the new VM. This new VM is the target VM. Certainly we need to choose a
suitable PM to host the new VM. There are two possible scenarios.
One scenario: Suppose there are m active PMs which can host the new VM,
where m[0. We define the fitness function PBfitðjÞ for the j active PM as:

PBfitðjÞ ¼ cpuDusedj þ cpuDockernew

cpupmj
� aþ memDused

j þmemDocker
new

mempm
j

� b; ð3Þ

where, j ¼ 1; � � � ;m. At last, the PM which has the max value of PBfit will be
chosen to host the new Docker container. This PM will be the target PM.
The other scenario: Suppose there does not exist any active PM that can host the
new VM, then an idle PM should be start. The new active PM will be the target
PM.

(2) If there exists n VMs that can host the new Docker, where n[0. The VM
selection is not only depending on the new Docker’s resource requests but also
depending on the real resource utilizations because of the CVP architecture. The
placement of a new container should better improve the resource utilization of the
target PM and the target VM. So, the fitness function VBfitðiÞ for the VM i can be
defined as:

VBfitðiÞ ¼ cpuusedi þ cpuDockernew

cpuvmi
� aþ memused

i þmemDocker
new

memvm
i

� bþPBfitðkÞ � dik;

ð4Þ

i ¼ 1; � � � ; n; dik ¼ 1; if PM k hosts VM i
0; the other

�
;

where, the first part and the second part of the fitness function are used to
represent the new Docker container placement impact on VM resources
utilization, the third part represent the impact on PM resources utilization. At
last, the VM which has the max value of VBfit will be chosen to host the new
Docker container. This VM will be the target VM, and the PM which hosts this
VM will be the target PM.

3.3 Evaluation Model

Because of the requested resource by a VM is not fully utilized in most situations, it is
more accurate to calculate the real resource utilization by the real workloads’ resource

Container-VM-PM Architecture 135

requests. The real workloads are Docker containers, so the evaluation formula Escore
can be given as follows:

Escore ¼ aE � Nactive
PM þ bE �

X
j

cpuremainj � memremain
j

� �
; ð5Þ

cpuremainj ¼ cpuPMj � cpuDusedj ; ð6Þ

memremain
j ¼ memPM

j � memDused
j ; ð7Þ

where, aE and bE are two constants, represent the two parts’ weights of Escore.
aE [0[bE and aE [[bEj j. The first part of Escore is to make sure that taking the
least active PMs as the first goal, and the second part is used to distinguish the size of
resource fragmentations when using the same amount of active PMs. The evaluation
score is the small the better.

4 Experiments and Results

In this section, a method is introduced to generate Docker container Synthetic Instances
and 16 types of VM instance from Amazon EC2 are constituted as our VM provision
set. The experiment simulates to deal with 9 batches of new Docker containers’
placement consecutively. Finally we evaluate the physical resource utilization between
CV_VP and CVP architecture after the new Docker container placement.

4.1 Docker Container Synthetic Dataset

A method is introduced to generate Docker container Synthetic Instances from [21, 22]
into this paper. The method is showed in Algorithm 1.

where, randðaÞ will return a random number in the range 0; a½ Þ; ucpu and umem are
represent the reference CPU and Memory utilization respectively. The probability
P can be used to control the correlation of CPU and Memory utilizations.

136 R. Zhang et al.

4.2 VM Dataset

As outlined in Table 2, 16 types of VM instance from Amazon EC2 are imported as
our VM provision set.

4.3 Parameter Setting

In this paper, our parameters are outlined in Table 3.

4.4 Experimental Comparison

After dealing with 9 batches of new Docker container placement consecutively, we
evaluate the physical resource utilization between CV_VP and CVP architecture. The
results are showed as Table 4 and Fig. 5.

As shown in Table 4, after the placement of first batch of containers, the total
number of Docker container is 787. It uses 292 active PMs and its evaluation score is
28727.866 under CV_VP architecture, however it uses only 244 active PMs that is

Table 2. VM instance types from Amazon EC2.

VM instance type vCPU Memory (GiB)

t2.micro 1 1
t2.small 1 2
t2.medium 2 4
t2.large 2 8
m3.medium 1 3.75
m3.large 2 7.5
c4.large 4 7.5
r4.xlarge 4 30.5
r4.2xlarge 8 61
r4.4xlarge 16 122
r4.8xlarge 32 244
m4.4xlarge 16 64
m4.10xlarge 40 160
g2.8xlarge 32 60
g3.4xlarge 16 122
d2.8xlarge 36 244

Table 3. The related parameter values.

Container-VM-PM Architecture 137

0.8536 times of CV_VP and its evaluation score is 24283.9 under CVP architecture
that is 0.8453 times of CV_VP. After the placement of nine batches of Docker con-
tainers, the total number of Docker container is 225627. It uses 80223 active PMs and
its evaluation score is 7906899 under CV_VP architecture, however it uses only 66103
active PMs that is 0.8240 times of CV_VP and its evaluation score is 6593462.821
under CVP architecture that is 0.8399 times of CV_VP. The experimental results show
that the placement under CVP architecture uses less active PMs and get a better
evaluation score than the placement under CV_VP architecture. New Docker container
placement is more effective in physical resource utilization under CVP architecture.

Table 4. Comparison of the placement under CV_VP and CVP architecture.

No. Docker
containers

CV_VP CVP The ratio of CVP to
CV_VP

Active Pms Escore Active Pms Escore Active Pms Escore

1 787 292 28727.866 244 24283.900 0.8356 0.8453
2 1019 377 37094.847 311 30978.971 0.8249 0.8351
3 2297 827 81556.531 707 70406.169 0.8549 0.8633
4 5014 1819 179197.533 1493 148878.131 0.8208 0.8308
5 10129 3613 356197.028 3011 300239.999 0.8334 0.8429
6 12569 4485 356197.028 3704 369394.082 0.8259 0.8358
7 124984 44516 4386860.736 36563 3647070.301 0.8213 0.8314
8 149601 53116 5235826.403 43893 4377877.318 0.8264 0.8361
9 225627 80223 7906899.000 66103 6593462.821 0.8240 0.8399

Fig. 5. Escore comparison.

138 R. Zhang et al.

5 Conclusion and Future Work

In this paper, we have extended the study from two-tier architecture to three-tier
“Container-VM-PM” (CVP) architecture. We focus on the new Docker container
placement problem under the CVP architecture, and compare it with the placement
under CV_VP architecture. The results show that the former is more effective than the
latter in physical resource utilization.

The resource utilization can be observed in a global view under CVP architecture,
so it can be more conducive to utilize the resource effectively. Based on this advantage,
we want to extend our study on Container consolidation and load balance under the
CVP architecture in our future work. We also want to test more algorithms in order to
fully show their performances under the CVP architecture.

Acknowledgement. This work is supported by National Key Research and Development
Program of China under Grant No. 2016YFB1000303, Innovative Research Group of the
National Natural Science Foundation of China (61721002), Innovation Research Team of
Ministry of Education (IRT_17R86), the National Natural Science Foundation of China
(61502379, 61532015, 61672410, 61472315, 61428206, 61532015 and 61532004), the Project
of China Knowledge Centre for Engineering Science and Technology.

References

1. Affetti, L., Bresciani, G., Guinea, S.: aDock: a cloud infrastructure experimentation
environment based on open stack and Docker. In: IEEE International Conference on Cloud
Computing (2015)

2. Kaewkasi, C., Chuenmuneewong, K.: Improvement of container scheduling for Docker
using Ant Colony Optimization. In: International Conference on Knowledge and Smart
Technology, pp. 254–259. IEEE (2017)

3. Rathor, V.S., Pateriya, R.K., Gupta, R.K.: Survey on load balancing through virtual machine
scheduling in cloud computing environment. Int. J. Cloud Comput. Serv. Sci. (IJ-CLOSER)
3(1), 37 (2014)

4. Docker Swarm Strategies. https://docs.docker.com/swarm/scheduler/strategy/
5. Docker/Awarm. https://github.com/docker/swarm/tree/master/scheduler/strategy
6. Filter Scheduler. https://docs.openstack.org/nova/latest/user/filter-scheduler.html
7. OpenStack/Nova. https://github.com/openstack/nova/tree/master/nova/scheduler
8. Tchana, A., Palma, N.D., Safieddine, I., Hagimont, D., Diot, B., Vuillerme, N.: Software

consolidation as an efficient energy and cost saving solution for a SaaS/PaaS cloud model.
In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 305–316.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48096-0_24

9. Naik, N.: Applying computational intelligence for enhancing the dependability of
multi-cloud systems using Docker swarm. In: Computational Intelligence (2017)

10. Bernstein, D.: Containers and cloud: from LXC to Docker to kubernetes. IEEE Cloud
Comput. 1(3), 81–84 (2015)

11. Felter, W., et al.: An updated performance comparison of virtual machines and Linux
containers. In: IEEE International Symposium on PERFORMANCE Analysis of Systems
and Software (2015)

Container-VM-PM Architecture 139

https://docs.docker.com/swarm/scheduler/strategy/
https://github.com/docker/swarm/tree/master/scheduler/strategy
https://docs.openstack.org/nova/latest/user/filter-scheduler.html
https://github.com/openstack/nova/tree/master/nova/scheduler
http://dx.doi.org/10.1007/978-3-662-48096-0_24

12. Mao, Y., et al.: DRAPS: dynamic and resource-aware placement scheme for docker
containers in a heterogeneous cluster. In: IEEE – International PERFORMANCE Comput-
ing and Communications Conference (2017)

13. Bhardwaj, T., Kumar, M., Sharma, S.C.: Megh: a private cloud provisioning various IaaS
and SaaS. In: Pant, M., Ray, K., Sharma, T.K., Rawat, S., Bandyopadhyay, A. (eds.) Soft
Computing: Theories and Applications. AISC, vol. 584, pp. 485–494. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-10-5699-4_45

14. Datt, A., Goel, A., Gupta, S.C.: Analysis of infrastructure monitoring requirements for
OpenStack Nova. Procedia Comput. Sci. 54, 127–136 (2015)

15. Hu, B., Yu, H.: Research of scheduling strategy on OpenStack. In: International Conference
on Cloud Computing and Big Data (2014)

16. Sahasrabudhe, S., Sonawani, S.S.: Improved filter-weight algorithm for utilization-aware
resource scheduling in OpenStack. In: International Conference on Information Processing
(2016)

17. Tseng, H.W., Wu, R.Y., Chang, T.S.: An effective VM migration scheme for reducing
resource fragments in cloud data centers (2014)

18. Lu, S., Ni, M., Zhang, H.: The optimization of scheduling strategy based on the Docker
swarm cluster. Information Technology, pp. 147–155 (2016)

19. Huang, W., Li, X., Qian, Z.: An energy efficient virtual machine placement algorithm with
balanced resource utilization. In: Seventh International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (2013)

20. Kenyon, C.: Best-fit bin-packing with random order. In: ACM-SIAM Symposium on
Discrete Algorithms (1996)

21. Gao, Y., et al.: A multi-objective ant colony system algorithm for virtual machine placement
in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)

22. Tian, F., et al.: Deadlock-free migration for virtual machine consolidation using Chicken
Swarm Optimization algorithm. J. Intell. Fuzzy Syst. 32, 1389–1400 (2017)

140 R. Zhang et al.

http://dx.doi.org/10.1007/978-981-10-5699-4_45

	Container-VM-PM Architecture: A Novel Architecture for Docker Container Placement
	Abstract
	1 Introduction
	2 Background
	2.1 Docker Container and Virtual Machine
	2.2 Resource Utilization
	2.3 Resource Fragmentation
	2.4 Best-Fit Algorithm

	3 Methods and Problem Formulation
	3.1 The Placement Strategy Under CV_VP Architecture
	3.2 The Placement Strategy Under CVP Architecture
	3.3 Evaluation Model

	4 Experiments and Results
	4.1 Docker Container Synthetic Dataset
	4.2 VM Dataset
	4.3 Parameter Setting
	4.4 Experimental Comparison

	5 Conclusion and Future Work
	Acknowledgement
	References

