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Abstract. Imbalanced classification is a classification problem that violates the
assumption of uniform distribution of samples. In such problems, traditional
imbalanced datasets are measured in terms of the imbalance of sample size,
without considering the distribution information, which has a more important
impact on the classification performance, so the traditional measurements have a
weak relation with the classification performance. This paper proposed an
improved measurement for imbalanced datasets, it is based on the idea that a
sample surrounded by more same class samples is easier to classify, for each
sample of different classes, the proposed method calculates the average number
of the k nearest neighbors in the same class in different subsets under the
weighted k-NN, after that, the product of these average values is regarded as the
measurement of this dataset, and it is a good indicator of the relationship
between the distribution of samples and the classification results. The experi-
mental results show that the proposed measurement has a higher correlation with
the classification results and shows the difficulty of classification of data sets
more clearly.
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1 Introduction

The classification problem is a very important part of machine learning. In the tradi-
tional classification problem, the model training is based on the assumption that the
sample distribution is uniform, so the classification cost of each sample is consistent.
However, in realistic data sets, the assumption of uniform distribution of samples is
difficult to satisfy, in order to pursue the global accuracy, the traditional classifier can
easily get an unsatisfying classification performance of the minority samples, causing
them to be hard to recognize. The imbalanced classification problem has appeared in
many fields, such as bioinformatics [1, 2], remote sensing image recognition [3], and
privacy protection in cybersecurity [4–6]. The wide coverage of the imbalance problem
has very important practical significance.

The traditional imbalanced classification problem has two features: the difference in
sample size; the difference in misclassification cost for different classes. Scholars have
proposed the data-level methods for feature 1 and the algorithm-level methods for
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feature 2. As the data-level methods can be regarded as a preprocessing before training
the classifier, so they have been popular for many years. The data-level methods can be
divided into the oversampling to add the minority samples, the under-sampling to
reduce the majority samples and the hybrid sampling methods, they aim to get a
balanced dataset, which is defined by the imbalanced dataset measurement.

Measurement of the imbalanced datasets can be divided into two types: local
measurements and global measurements. The local measurements refer to these
methods which need traversing each sample in a data set [7, 8], calculating a mea-
surement usually accompanied by the k-NN algorithm for each sample, the overall
measurement is defined by the mean value of measurement of all the samples in the
dataset. Because this kind of measurement contains the calculation for each sample,
and it can be used in the sampling algorithm to find a simpler dataset to model with
enough information with the original dataset. Global measurement [9] refers to a result
calculated for a sample in the entire data set, or a variety of indicators derived from
statistical analysis. It is usually accompanied by a variety of calculations for the sep-
arate results of the positive and negative subsets. Such measurements are difficult to
achieve in a single implemented on the sample, it can only be used as a measure of the
dataset, and it is difficult to play a role in the sampling algorithm because the movement
of a single sample can hardly affect the original measurement result.

As the number of samples has had a noticeable effect on the classification results.
Therefore, the imbalance ratio [8–10] (IR) of the number of samples in different classes
has been popular for many years as a measurement of imbalanced datasets. Based on
IR, scholars have proposed many sampling algorithms to balance the datasets to release
effect of the imbalance in sample size on the classification performance, so the mea-
surement plays a very important role in imbalanced classification. However, the IR is
not informative enough to measure a specific dataset overall, as it is a global mea-
surement, studies [10] have shown that when the number of samples is relatively large,
it does not cause a reduction in the classification performance of the minority class, but
when the number of samples is seriously insufficient, the rarity of the minority samples
will cause a low recognition rate of the minority samples. The local measurements
develop the global ones as they take the distribution into consideration, meanwhile,
with the understanding of the classifier and data, the distribution based sampling
methods [12–14] are taking the distribution information into consideration, and also
encourage the new measurements to contain the distribution information.

This paper proposes a measurement containing the distribution information, it is
motivated that the nearer a sample is with the same labeled samples, the easier it can be
classified correctly. The proposed method calculates the average number of the k
nearest neighbors in the same class in different subsets under the weighted k-NN, after
that, the product of these average values is regarded as the measurement of this dataset.
It improves the correlation between the measurement and the final classification per-
formance, which indicate that the proposed is more informative. This paper is arranged
as follows: Sect. 2 describes the related work in measurement of the imbalanced
dataset, Sect. 3 shows the proposed measurement improved generalized imbalanced
ratio (IGIR), and Sect. 4 describes the experimental results and analysis, the final
section concludes the proposed method and the future work.
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2 Related Work

There are many different factors which have effects on the imbalanced classification,
resulting in various kinds of measurements considering different factors. For example,
the Imbalance Ratio (IR) is based on the difference in sample size, the maximum
Fisher’s discriminant ratio (F1) is based on the overlap in feature values from different
classes, and the Complexity Measurement (CM), Generalized Imbalance Ratio (GIR),
and the proposed method Improved Generalized Imbalance Ratio (IGIR) are based on
the idea that data distribution plays important role in imbalanced classification. These
measurements are used in such two ways: indicate whether a dataset is easy to classify,
and measure the sampled subset in sampling methods. Therefore, in order to achieve a
better performance, the measurement should have a relatively high correlation with the
classification results.

Given dataset X, which contains N+ positive samples (the minority class), N_
negative samples (the majority class), and the total number of samples is N = N_ + N+.

2.1 IR

Imbalance ratio [11–13] the definition is as follows, it is defined as the size sample
ratio:

IR ¼ N
Nþ

ð1Þ

When samples with different labels have the same distribution, the sample size is
able to reflect whether the samples are easy to classify, otherwise, the IR is not so
informative to indicate whether the dataset is easy to classify. For example, in the
Fig. 1, the IR of data in (a) is 4 and in (b) is 1, but the two classes in (a) have a clear
linear boundary while there is not in (b), so we can get 100% accuracy in (a) but cannot
in (b) with a same linear model, which is contrary to the comparison result of IR, since
IR is the proportion of sample size and does not contain any sample distribution
information, complexity of the data distribution cannot be represented in IR.

Fig. 1. The dilemma of IR.
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2.2 F1

A classical measure of the discriminative power of the covariates, or features, is
Fisher’s discriminant ratio [9], and F1 is the maximum Fishers discriminant ratio:

f ¼ l1 � l2ð Þ2
r21 þ r22

ð2Þ

Where l1, l2, r1
2, r2

2 are the means and variances of the positive and negative
subsets, respectively. For multidimensional problems, the maximum f over all features
can be used. However, if f gets 0, it does not necessarily mean that the classes are not
separable, as it could just be that the separating boundary is not parallel to an axis in
any of the given features.

2.3 CM

CM [7] focuses on the local information for each data point via the nearest neighbors,
and uses this information to capture data complexity.

CMk jð Þ ¼ I

Number of patterns
j0in Nj with y0j ¼ yj

k
� 0:5

0
BB@

1
CCA ð3Þ

Where I(.) is the indicator function. The overall measurement is

CMk ¼ 1
n

Xn

j¼1
CMk jð Þ ð4Þ

CM is determined by the label of its neighbors. If the neighbors of a sample contain
more samples in the same class, the sample will be easier to classify. On the contrary, if
the samples are surrounded by samples with different labels, then the sample is difficult
to classify correctly, and the average number of different classes samples contained in
the k nearest neighbors is used as the measurement. The higher the CM, the more
difficult the dataset is to learn.

2.4 GIR

The GIR [8] is an improvement of cm, it focuses on the differences in the difficulty of
classifying the samples in different classes. A dataset with a larger GIR is more difficult
to get a good performance of the minority class, as the classifier tends to be trained with
the easier samples according to the Occam shaver principle. Because we tend to use a
most simple classifier to fit the whole dataset, while the more difficult samples need a
more complex classifier, which may cause overfitting with single classifier, so this is
the reason why ensemble can be effective in the imbalance classification, as they have
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the different classifiers corresponding to different levels of sample classification
difficulty.

Tþ ¼ 1
Nþ

X
x2P

1
k

Xk

r¼1
IR x;Xð Þ ¼ 1

Nþ

X
x2P tk xð Þ ð5Þ

T� ¼ 1
N�

X
x2N tk xð Þ ð6Þ

GIR ¼ T� � Tþ ð7Þ

Where IR(x, X) is an indicator function. For a sample x, if its k-nearest neighbor’s
label is the same as x, the result is 1, otherwise, it gets 0.

GIR considers the different measurements of the positive and negative subsets,
which is an improvement of CM, GIR is defined as the difference between positive and
negative sample subsets, and paper [8] successfully applies GIR to oversampling and
under-sampling algorithms. The experimental results show that GIR-based resampling
algorithm can effectively improve the classification performance.

However, there are two problems in GIR, first, in the classification process, besides
the label of k nearest neighbors, their distance from the sample will also affect the
classification result. Second, the GIR of the data set is calculated by the measurement
of the negative class minus positive class, so GIR is a relative measurement. As shown
in Table 1, the final result shows that the two data sets have the same GIR, but it is
clear that the dataset (b) is more difficult to classify than (a). Therefore, GIR is not so
sufficient to fully interpret the complexity of the dataset distribution.

3 The Proposed Method

We proposed an improved measurement called IGIR in this paper, it is based on the
idea that the sample distribution plays an important role in the classification result, the
motivation of IGIR is that if there are many samples with the same label around the
sample, the sample is easily classified, and on the contrary, the sample is hard to
classify. Different distances of the k nearest neighbors have different effects on the
classification results of the sample.

weightr ¼ k � r
k

; r ¼ 0; 1; 2 � � � k � 1 ð8Þ

Table 1. The dilemma of GIR

(a) (b)

T− 0.9 0.5
T+ 0.7 0.3
GIR 0.2 0.2
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wei-Tþ ¼ 1
Nþ

X
x2P 1=k

Xk

r¼1
weightr � IRðx;XÞ ¼ 1

Nþ

X
x2P tkðxÞ ð9Þ

wei-T� ¼ 1
N�

X
x2N tkðx) ð10Þ

wei-IGIR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wei-T� � wei-Tþ

p
ð11Þ

In the calculation of IGIR, the k-nearest neighbors of each sample in the dataset are
calculated at first, and their neighboring class labels are retained. First, according to the
calculation method in formula (8), the weights of the k nearest neighbors are gradually
reduced to 0. The main reason for not using distance is that the distances between
different samples and its neighbors are inconsistent. This will result in the inconsistency
of the weights of each sample in the calculation process, therefore, it is not possible to
have a comparative standard for the overall results; second, to describe the dataset
reasonably with an absolute measurement, and to avoid the relativity in the original
GIR and spired by the definition of geometric mean, IGIR is defined as the compound
measurements of positive and negative subsets. In this case, to ensure that the order of
magnitude is unchanged, it is processed by prescribing to better measure the difficulty
of classification of the dataset.

In the proposed method, firstly, calculate the weight according to formula (8),
secondly, compute the k nearest neighbors of each sample and tk xð Þ for each sample,
thirdly, compute the average tk xð Þ of the positive and negative subsets, finally, compute
the IGIR according to the formula (11).

IGIR can be regarded as the average classification accuracy under a weighted
k-NN. That is, the more neighbors of the same class in the sample, the more likely the
sample is to be classified as the original classifier, then IGIR has the nature to be related
to the final classification performance.
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4 Experimental Results

4.1 Datasets

The experimental data in this paper comes from the UCI machine learning database
[14]. Some of them are multi-class datasets, in order to obtain a harder dataset to
classify, we select one of the class as the minority class, and the rest of classes are
regarded as the majority, and the details are shown as Table 4.

4.2 Evaluation

In the binary imbalanced classification, the confusion matrix is often used to evaluate
the performance of the classifier, which is defined in Table 2:

FN represents the number of positive samples that are incorrectly classified as
negative, and FP is the number of samples that are incorrectly classified as positive,
there have been compound evaluations, such as F-value and Gmean [15].

sensitivity ¼ TP
TPþFP

ð12Þ

recall ¼ TP
TPþFN

ð13Þ

F-value ¼ ð1þ b2Þ � recall� precision

b2 � recallþ precision
ð14Þ

Gmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TPþ FN

� TN
TNþ FP

r
ð15Þ

4.3 Experimental Settings and Results

Set b = 1 in F-value called F1_min, all involved k-NN are set with k = 5, the classifier
is C4.5, all results are the average of 10 times of 10-fold cross-validation.

Table 2. Confusion metrics

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)
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Fig. 2. Measurements and sensitivity
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The classification results and measurements of different datasets are shown in
Table 5, as we can see from the table, the IR and F1 have no value restriction, so the
value can be very huge, while the CM, GIR and IGIR are limited in [0, 1], the scatter
plots are used to show a more clear relation between the measurements and classifi-
cation as shown in Fig. 2. Taking the sensitivity of minority class as an example, the
Fig. 2 shows the relationship between different measurements and classification results.
It can be seen that the correlation between CM and IGIR have a stronger linear relation
with sensitivity as the measurement while there is no obvious trend in the rest mea-
surements. In addition, the points in CM are more dispersed and the ones in IGIR are
more concentrated, which means datasets with the same IGIR are more likely to have
the same degree of classification difficulty than those with the same CM.

4.4 Analysis

In order to quantitatively analyze the relationship between different measurements and
the classification results, the results are further analyzed by the determination coeffi-
cient R2. R2 reflects how many percentages of the fluctuation of Y can be described by
the fluctuation of X. That is to say, what percentage of the variance of the represen-
tation variable Y can be explained by the controlled variable X.

R2 ¼ SSR
SST

¼ 1� SSE
SST

ð16Þ

Where SST = SSR + SSE, SST represents the total sum of squares, SSR represents
the regression sum of squares, and the SSE represents the error sum of squares.

The R2 in Table 3 also shows the superiority of IGIR. The IGIR proposed in this
paper is more capable to indicate the classification results, and it has a stronger rele-
vance with the final classification performance and can be a better indicator of the
sampled subset in resampling methods.

In IGIR, we calculate the number of samples of the average k-nearest neighbors by
each sample, so the calculated value can be considered as the probability that the
sample is classified as its own class. To a certain extent, this measurement can be
regarded as Gmean under the k-NN classifier, and it is reasonable to indicate the
classification performance of other classifiers.

Table 3. R2 of measurements and classification results.

F1_min Gmean Sensitivity

IGIR 0.92 0.88 0.93
IR 0.18 0.34 0.28
GIR −0.70 −0.58 −0.67
CM −0.80 −0.85 −0.84
F1 0.70 0.70 0.71
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Table 4. Datasets

Datasets Samples Attributes Target Minority

breasttissue 106 9 carcinoma 21
breastw 699 9 malignant 241
diabetes 768 8 0 268
german 1000 24 2 300
glass 214 9 1 2 3 51
haberman 306 3 1 81
ionosphere 351 34 G 126
movement 360 90 1 24
satimage 6435 36 4 703
segment-challenge 1500 19 brick face 205
sonar 208 60 R 97
spect 267 22 1 55
vehicle 846 18 van 199
vertebral 310 6 AB 100
wpbc 198 33 1 47
yeast0 1484 8 0 244
yeast1 1484 8 1 429
yeast2 1484 8 2 463
yeast6 1484 8 6 163

Table 5. Measurements and classification results

IR GIR CM F1 IGIR F1_min Gmean Sensitivity

breasttissue 4.05 0.30 0.24 3.33 0.46 0.78 0.83 0.83
breastw 1.90 0.05 0.05 3.47 0.57 0.91 0.92 0.88
diabetes 1.87 0.22 0.49 0.58 0.37 0.57 0.66 0.57
german 2.33 0.37 0.52 0.35 0.33 0.47 0.60 0.48
glass 3.20 0.19 0.12 3.31 0.53 0.75 0.80 0.75
haberman 2.78 0.43 0.46 0.18 0.32 0.24 0.35 0.30
ionosphere 1.79 0.39 0.21 0.61 0.46 0.84 0.87 0.82
movement 14.00 0.44 0.06 0.98 0.47 0.59 0.77 0.69
satimage 8.15 0.04 0.01 5.01 0.59 0.95 0.97 0.94
Segment* 6.32 0.04 0.03 1.81 0.58 0.97 0.98 0.97
sonar 1.14 0.16 0.34 0.46 0.47 0.59 0.58 0.62
spect 3.85 0.61 0.33 0.60 0.32 0.50 0.65 0.51
vehicle 3.25 0.10 0.12 1.12 0.54 0.88 0.92 0.89
vertebral 2.10 0.14 0.31 0.75 0.47 0.67 0.71 0.66
wpbc 3.21 0.39 0.43 0.47 0.32 0.42 0.56 0.46
yeast0 5.08 0.38 0.21 0.74 0.41 0.49 0.68 0.53
yeast1 2.46 0.34 0.42 0.24 0.37 0.48 0.62 0.50
yeast2 2.21 0.26 0.48 0.21 0.37 0.49 0.61 0.49
yeast6 8.10 0.33 0.08 2.75 0.47 0.69 0.82 0.71
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5 Conclusion

In this paper, an improved measurement for imbalanced datasets is proposed, it takes
the distribution information into consideration and it is based on the idea that a sample
surrounded by more same class samples is easier to classify, for each sample of
different classes, the proposed method calculates the average number of the k nearest
neighbors in the same class in different subsets under the weighted k-NN, after that, the
product of these average values is regarded as the measurement of this dataset. The
experimental results show that the proposed measurement has a higher correlation with
the classification results and can be used in the sampling algorithm. The future work
will be sampling algorithms based on this measurement to improve the classification
results.
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