®

Check for
updates

cuCloud: Volunteer Computing
as a Service (VCaaS) System

Tessema M. Mengistu®), Abdulrahman M. Alahmadi, Yousef Alsenani,
Abdullah Albuali, and Dunren Che

Department of Computer Science, Southern Illinois University at Carbondale,
Carbondale, USA
{tessema .mengistu,aalahmadi,yalsenani,aalbuali, dche}@s iu.edu

Abstract. Emerging cloud systems, such as volunteer clouds and mobile
clouds, are getting momentum among the current topics that dominate
the research landscape of Cloud Computing. Volunteer cloud computing
is an economical, secure, and greener alternative solution to the current
Cloud Computing model that is based on data centers, where tens of
thousands of dedicated servers are setup to back the cloud services. This
paper presents cuCloud, a Volunteer Computing as a Service (VCaaS)
system that is based on the spare resources of personal computers owned
by individuals and/or organizations. The paper addresses the design and
implementation issues of cuCloud, including the technical details of its
integration with the well-known open source IaaS cloud management
system, CloudStack. The paper also presents the empirical performance
evidence of cuCloud in comparison with Amazon EC2 using a big-data
application based on Hadoop.

1 Introduction

Cloud Computing, the still fast growing and evolving technology, has kept draw-
ing significant attention from both the computing industry and academia for
nearly a decade. Extensive researches in Cloud Computing have resulted in the
fulfillment of many of the promised characteristics, such as utility computing,
pay-as-you-go, flexible (unlimited) capacity, etc. Emerging cloud systems such
as ad hoc and mobile clouds, volunteer clouds, federation of clouds, and hybrid
clouds are among the research topics that may jointly help to reshape the land-
scape of future Cloud Computing — to better satisfy computing needs.
Currently, more than 4 billion users use the Internet!. Supercomputing sites
and large cloud data centers provide the infrastructures that host applications
like Facebook and Twitter, which are accessed by millions? of users concurrently.
The current cloud infrastructures that are based on tens (if not hundreds) of
thousands of dedicated servers are expensive to setup; running the infrastructure
needs expertise, a lot of electrical power for cooling the facilities, and redundant

! http://www.internetworldstats.com/.
2 http://www.internetlivestats.com/.
© Springer International Publishing AG, part of Springer Nature 2018

M. Luo and L.-J. Zhang (Eds.): CLOUD 2018, LNCS 10967, pp. 251-264, 2018.
https://doi.org/10.1007/978-3-319-94295-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94295-7_17&domain=pdf
http://www.internetworldstats.com/
http://www.internetlivestats.com/

252 T. M. Mengistu et al.

supply of everything in a data center to provide the desired resilience. Cloud
servers, specialized infrastructure for fault tolerance, and the electricity con-
sumption account for 45%, 25%, and 15% of the total amortized cost of a cloud
data center, respectively [1]. The servers and the cooling system make up about
80% of all the electricity consumption in a typical data center [2]. The high energy
consumption in data centers contributes to the environmental impact of global
warming. Currently, the ICT industry contributes 2% of the total greenhouse
gases emission and the contribution of data centers to this emission is expected
to increase to 18% by 2020 [3]. On top of the costs and environmental factors, the
current “datacenter based” cloud infrastructures, even though well-provisioned
and well-managed, are not suitable for some application scenarios. For instance,
the inevitable concerns of cloud clients for “no control” on their confidential
data and business logic can prohibit them from migrating their applications and
datasets to the clouds that are in the hands of third-parties. Self-provisioned,
on-premise, private cloud can be a suitable solution to these users. However, the
initial investment for setting up such a private cloud infrastructure based on a
dedicated data center can be prohibitively expensive.

In addition to the vast number of dedicated servers setup in cloud data cen-
ters, there are billions of Personal Computers (PCs) owned by individuals and
organizations worldwide. These PCs are underutilized, usually used only for a few
hours per day [4]. The computing power of these computers can be consolidated
as a huge cloud fabric and utilized as an alternative Cloud Computing solution,
i.e., volunteer cloud computing. Volunteer cloud computing based on consolidat-
ing the spare capacities of edge computing resources (within an organization or
community) and delivering on-premise private clouds is a rather economical and
greener alternative to the conventional “data center based” Cloud Computing
solutions.

Volunteer clouds come with multi-folds of benefits: no upfront investment
for procuring a large number of servers that are otherwise inevitable for data
center hosting, no maintenance costs such as electricity consumption for cooling
and running the servers in a conventional cloud data center, and boosting the
utilization of edge computing resources (such as individually owned PCs). In the
meantime, volunteer cloud computing introduces its own technical challenges
that are centred on the high dynamics and high heterogeneity of the volunteer
computers that are shared not only among the cloud users but also between
the cloud users and the local users of the machines. The key issues in Cloud
Computing such as availability, reliability, security, and privacy all need to be
readdressed in a more serious and critical way in volunteer cloud computing.
Nevertheless, exploitation of the untapped excessive capacity of the numerous
edge computers owned by individuals and/or organizations for volunteer cloud
computing is a worthwhile endeavour [5]. We believe “no data center based”
volunteer cloud computing is one of the most promising future research directions
of Cloud Computing [6,7].

This paper discusses cuCloud, a Volunteer Computing as a Service (VCaaS)
system that is based on the spare resources of personal computers owned by

cuCloud: Volunteer Computing as a Service (VCaaS) System 253

individuals and/or organizations. The paper addresses the design and imple-
mentation issues of cuCloud, including the technical details of its integration
with the well-known open source IaaS cloud management system, CloudStack.
The paper also presents the empirical performance evidence of cuCloud in com-
parison with Amazon EC2 using a big-data application based on Hadoop. To the
best of our knowledge, cuCloud is the first volunteer cloud system that is imple-
mented using an existing [aaS system with empirical evidence on its performance
in comparison with data center based cloud infrastructure.

The rest of the paper is organized as follows. Section 2 discusses cuCloud and
its client/server architecture in detail. It also elaborates on the internal details
of CloudStack together with the implementation of cuCloud using CloudStack
as a base support. Section 3 presents empirical performance comparison between
cuCloud and Amazon EC2 using a big-data application. Section 4 reviews related
works in regard to volunteer cloud computing and Sect. 5 concludes the paper.

2 Design and Implmentation of cuCloud

cuCloud is a Volunteer Computing as a Service (VCaaS) system that runs
over an existing computing infrastructure, which is not specifically setup for
cloud purposes. The system thus can be considered as an opportunistic pri-
vate/public cloud system that executes over scavenged resources of member PCs
(also referred to as member nodes or volunteer hosts) within an organization (or
community). Being non-dedicated, the PCs have other primary purposes, such as
word processing, data entry, web browsing, etc. Only the residual resource capac-
ity that is not used by the local processes is going to be extracted and utilized
by cuCloud. This setting decides numerous appealing advantages of cuCloud:
affordability, on-premise, self-provision, and greener computing. On the other
hand, full-fledged implementation of cuCloud raises unique technical challenges:
efficient management of highly dynamic and heterogeneous compute resources,
QoS assurance, and security/trust, which are all made more difficult due to
the high dynamic availability and heterogeneity of the non-dedicated volunteer
hosts. The following subsections discuss the design and implementation issues of
cuCloud in detail.

2.1 Design of cuCloud

The cuCloud adopts a client/server architecture with the volunteer hosts being
the clients and the dedicated management machine(s) being the server(s). The
server has various components as depicted in Fig. 1. The following are descrip-
tions for each of the server side components.

— Interface: is the first port of communication between users and cuCloud.
cuCloud has different types of users: admin users, cloud users, and local users.
Admin users use the Interface to manage the cuCloud system. The cloud users
(a.k.a clients or customers) specify their resource requirements and manage

254 T. M. Mengistu et al.

the allocated resources via the Interface. Local users (native users) are the
ones who contribute their spare computing resources to the cuCloud system
and use the Interface to check their resource contribution details, credits
earned, etc.

— Authentication and Authorization: component handles the user level
authentication, authorization, and security issues of cuCloud. Admin users
and cloud users should be preregistered and should be authenticated and
authorized before start using the system.

— Resource Manager and Allocator (RMA): component is the one that
manages all the volunteered computing resources possessed by cuCloud. It
communicates with the cuCloud member nodes and periodically updates the
availability of the resources from each member node. The component keeps
the reliability and availability profiles of all volunteer hosts. The profiles
together with the Service Level Agreement (SLA) are the basis of selecting
volunteer hosts for deploying Virtual Machines (VMs) to best satisfy cloud
users’ resource requirements and cuCloud’s system scheduling criteria.

— Scheduler: component receives cloud users’ requests and decides whether
to admit or deny the requests in consultation with the RMA and the Vir-
tual Machine Manager components. The Scheduler makes the admission deci-
sion and allocation of VM(s) to host(s) based on the dynamically updated
resource profiles maintained by the RMA. The Scheduler also handles the
(re)allocation of VMs in cooperation with the Virtual Machine Manager.

— Virtual Machine Manager (VMM): component handles the deployment
of VMs on volunteer hosts. More specifically, it performs the following tasks
regarding VM management: create a VM, migrate (live and cold) a VM,
suspend and resume a VM, kill and restart a VM, etc. The component also
monitors all deployed VMs and keeps track of their progress information.

— Security Module (SM): component handles the security of the VMs
deployed in cuCloud. There is no assumption of trust relationship between
the volunteer hosts and the VMs in cuCloud. Therefore, the SM secures VMs
from malicious volunteer hosts and vice versa.

— Monitoring and Management: component provides fine-grained informa-
tion about the aggregate computing resources of the cuCloud. This includes,
but not limited to, details of donated resource from each individual volun-
teer host, e.g., the total number of CPU cores, aggregated memory size, total
storage capacity, used/available CPU cores, etc.

In the system architecture (Fig.1) of the cuCloud, member nodes are sub-
sidiary to the server. There is a critical piece of software, called Membership
Controller (MC), that resides on each member node that contributes resources
to the cuCloud system. Membership Controller monitors the resource utilization
of processes at each volunteer node and decides the node’s membership status,
which is highly dynamic. It also decides the availability and reliability of the
node based on the member’s historical data and the current resource availabil-
ity. The MC collects and sends information to the server about the types and
quantities of the available resources (CPU, RAM, Hard Disk) for contribution

cuCloud: Volunteer Computing as a Service (VCaaS) System 255

1 Server

Scheduler

I

[Monltorlng] [Resource ManagerJ (Security]

s

Cloud
Users Virtual Machine

Manager

Authentication
& Authorlzatlo

Management & Allocator Module

DL EG D

Member Nodes (Volunteers)

Fig. 1. System architecture of cuCloud

to the resource pool of cuCloud. It also allows the owner of a volunteer host to
adjust the proportions of the node’s resources for contribution to the cuCloud
system. The MC has the following components (Fig. 2):

— Sensor: component periodically monitors the resource utilization of processes
(both local and guest) on a volunteer host and sends that information to the
Node Profiler. The total resource capacity of the host such as the number
of CPU cores, RAM, and Hard Disk capacity as well as the used and idle
resources are monitored periodically. The Sensor also collects other pieces of
data that are used by the Node Profiler.

— Node Profiler: is the heart of the Membership Controller. It periodically
accepts the resource utilization information from the Sensor and calculates
the residual computing resource availability information. It also predicts the
future availability and reliability of the volunteer host using the historical
data it receives from the Sensor. The historical data includes time to failure,
mean time between failures, mean time to repair, etc. This reliability and
availability profile will be used by the RMA for further processing that may
result in actions taken by the VMM, for example migration of VM(s).

— Reporter: The availability and reliability profile of a volunteer host is
reported to the Resource Manager and Allocator of the server of cuCloud
via the Reporter. The Reporter periodically accepts the profile information
from the Node Profiler and pushes the information to the server of cuCloud.

— Virtual Environment Monitor: is the component that manages the VMs
that are deployed on a volunteer node. It monitors the deployed VMs on a
host and passes information regarding their progress and status to the Node
Profiler for building the availability and reliability profile of the host.

— Policy: component stores the native user’s preferences regarding donated
resources, such as the time the resource should not be used, the number of
cores or the RAM capacity donated, etc. This policy information is used by
the Node Profiler for building the profile of the volunteer host.

256 T. M. Mengistu et al.

The cuCloud, a “No Data Center” cloud system [8], is expected to fulfil
all the characteristics of Cloud Computing systems such as elasticity, metered
services, resource pooling, networked access, and automated on-demand service
provisioning. Besides, service provisioning using non-dedicated, highly heteroge-
neous, and dynamically available volunteer hosts are idiosyncratic to cuCloud.
The following are the design goals of the cuCloud.

— Volunteer based: Participation in cuCloud is purely voluntary. No host will
be forced to join the virtual infrastructure base of cuCloud.

— Unobtrusive: The local processes of a volunteer host always have higher
priority than the guest processes (cuCloud’s VMs).

— Scalable: It should be scalable to tens of thousands of volunteer hosts.

— Easy to use and deploy: Usage and deployment of cuCloud should be as
simple as possible.

— Security: The volunteer hosts should securely execute the deployed VMs
without tampering them and vice versa.

[Membership Controller (MC)]

[Reporter]

[SensorHNode Profiler

Virtual Environment Monitor

Fig. 2. Membership Controller of cuCloud

2.2 CloudStack Based Implementation of cuCloud

We chose CloudStack?®, an open-source Infrastructure-as-a-Service (IaaS) man-
agement platform, to implement cuCloud. Apache CloudStack manages and
orchestrates pools of storage, network, and compute resources to build a public
or private IaaS cloud. It is a cloud system that supports multiple hypervisors,
high availability, complex networking, and VPN configurations in a multitenant
environment. According to a survey [9], CloudStack has a 13% adoption rate
as a private cloud solution for enterprises. CloudStack is chosen for the imple-
mentation of cuCloud because of its modular design, rich documentation, active
online development community, and highly extensible architecture. By using

3 http://cloudstack.apache.org/.

http://cloudstack.apache.org/

cuCloud: Volunteer Computing as a Service (VCaaS) System 257

CloudStack for the implementation of cuCloud, we can make use of its rich set
of functionalities such as Account Management, Virtual Machine Management,
etc., with little or no modification. This will increase the adoption of cuCloud
and avoid reinventing the wheel.

CloudStack follows a distributed client-server architecture where the Man-
agement Server(s) acts as a server and compute nodes act as clients. CloudStack
Management Server can manage tens of thousands of physical servers (com-
pute nodes) installed in geographically distributed datacenters. The Manage-
ment Server (MS) communicates with the compute nodes through the hypervi-
sors on the machines. Type I hypervisors such as Xen, Hyper-V, and VMWare
are supported in CloudStack.

As depicted in the basic layered architecture of CloudStack Management
Server (Fig. 3), the business logic is the one that accepts the user/admin requests
and applies the necessary checks such as authentication or resource availability
before sending it to the next layer. The Orchestration layer is responsible for
configuring, provisioning, and scheduling any operations such as VM creation
or storage allocation. Controllers are the one that directly communicate with
the underlining computing resources such as computing units and networking
devices, for the actual provisioning of resources. CloudStack is designed to be
extensible in such a way that plugin APIs are provided for extending the func-
tionality or modifying its behaviour [10]. Thus, a new plugin can be defined and
integrated with CloudStack as needed.

Business Logic

| Orchestration Engine
{ (Provisioning, Configuration & Scheduling)

Compute

Network Storage

Controller

MySQL Cloud
Database

Controller Controller

Fig. 3. Layered architecture of CloudStack [10]

CloudStack has Resource Manager component that is responsible for manag-
ing the compute, storage, and network resources. The addition of a new resource
(compute node or storage) in CloudStack is manual, i.e., the admin should give
the resource’s attributes such as IP address, root password, hypervisor type,
etc., via a web-based form. The resource information will then be stored in a
MySQL based database. Since CloudStack is an IaaS system that is developed

258 T. M. Mengistu et al.

to manage dedicated servers in data centers, we need to modify the Manage-
ment Server of CloudStack in such a way that it can handle the non-dedicated
volunteer nodes that we use as cloud infrastructure in cuCloud. This needs a
fundamental change of the Resource Manager component of the MS for two
reasons. First, the non-dedicated and high churn rate of the volunteer hosts cou-
pled with the unobtrusive nature of cuCloud require an automatic addition of
resources instead of the usual manual addition. Second, once a compute node is
added manually to the CloudStack database, the MS pulls servers to check their
availability and updates the status of the node in the database. This pull mech-
anism is not scalable for a highly dynamic resource base of cuCloud. Therefore,
a push mechanism should be deployed in cuCloud. Volunteer hosts push avail-
ability and reliability information periodically to the MS and if the MS doesn’t
receive this information for a certain duration, it will mark the volunteer host
as unavailable. A new plugin, called AdHoc component, is developed to handle
the volunteer hosts in coordination with the Resource Manager of CloudStack.

The Membership Controller (MC) (see Fig. 2) on the volunteer hosts contin-
uously monitors the resource utilization of processes on the host. This resource
utilization information will be used, together with the policy information, by
the Node Profiler to decide the availability and reliability of the volunteer host
[16]. Based on this information, the MC sends “active” availability message to
the AdHoc component of the CloudStack Management Server, if the volunteer
node is available to host Virtual Machine(s), “inactive” otherwise. Algorithm 1
describes the actions the AdHoc component takes after receiving the message
from the volunteer node.

The host (compute node) is the smallest organizational unit within Cloud-
Stack deployment. Every host should have a hypervisor such as Xen or KVM,
which is abstracted as ServerResource in CloudStack. The Management Server
cannot directly communicate with the hypervisor of a compute node, instead
it communicates with ServerResource through the Agent. ServerResource is a
translation layer between the hypervisor on a compute node and the commands
of the Management Server. The ServerResources makes the inclusion of a new
hypervisor support in CloudStack simple.

Due to the full self-autonomy of volunteer hosts and the non-intrusiveness
of cuCloud, we cannot use type I hypervisors like Xen or Hyper-V that takes
full control of the underline hardware of a volunteer host. Instead, we need a
virtualization solution that runs along with local processes on member nodes.
Therefore, for the virtualization environment at member nodes, we can use Type
IT hypervisors like VirtualBox or KVM. The current version of CloudStack (4.11)
supports KVM but not VirtualBox. Adding a support for VirtualBox in Cloud-
Stack is one of the entries in the to-do list of cuCloud. With the inclusion of
AdHoc component at the Management Sever and based on our client architecture,
we extend CloudStack in such a way that hosts (compute nodes) can be added
and removed from the resource pool dynamically, which is in high contrast with
the dedicated nature of the compute nodes in the original CloudStack. Moreover,
the VMs are now able to run along with non-cloud (local) tasks/processes on
the volunteer hosts.

cuCloud: Volunteer Computing as a Service (VCaaS) System 259

Algorithm 1. Member Node Addition Pseudo Code
1: message «— null;
status «— null;
message — reciveFromHost();

2: if message is “active” then

3: if host in DB of CloudStack then
4: checkStatus();

5: if status is “maintenance” then
6: status <« enabled,

7 end if

8: else

9: addNewHost();

10: end if

11: else

12: if host in DB of CloudStack then
13: checkStatus();

14: if status is “enabled” then
15: status «— maintenance;

16: end if

17: end if

18: end if

3 Experimentation

In order to test the suitability of cuCloud for real applications, we run a big-
data workload using Hadoop over the system. To gain a more detailed com-
parative performance, the same workload was run on Amazon EC2 with similar
VMs specifications. We used BigDataBench? software for the benchmarking. The
BigDataBench, which is a multi-discipline research and engineering effort from
both industry and academia, is an open-source big data and AI benchmark [11].
The current version of BigDataBench provides 13 representative real-world data
sets and 47 benchmarks. We used an offline analytics workload of PageRank
calculation using Hadoop MapReduce. Three VMs were deployed on cuCloud
for the experimentation (one master and 2 slaves). The master is deployed on
a machine with 8 GB of RAM, Intel 8 Core i7 2.4 GHz CPU, and a hard disk
of 250 GB. Each slave node has 8 GB of RAM, intel 4 Core i3 3.1 GHz CPU,
and 250 GB hard disk capacity. All the machines run Ubunu 14.04, are con-
nected to a 16 Gbps switch, and support intel hardware virtualization (VT-x).
The experimentation for cuCloud was done in the computer labs at Southern
Illinois University Carbondale. The PCs were being used by local users while the
PageRank calculation was computed, i.e., they were not dedicated only for the
cloud task. General-purpose instances with the same specifications as cuCloud
VMs were configured on Amazon EC2. The availability zone of all the EC2
instances was us-east-2b of Ohio region. The details of the VMs for both the
cuCloud and EC2 is given in Table1.

* http://prof.ict.ac.cn/.

http://prof.ict.ac.cn/

260 T. M. Mengistu et al.

Table 1. VMs specification

cuCloud Amazon EC2
Master | medium t2.medium
CPU |RAM |HD | CPU | RAM | HD
2 4 752 4 75
Slaves |small t2.small
CPU |RAM |HD | CPU | RAM | HD
1 2 50 |1 2 50

The PageRank calculation was performed for different data sizes (numbers of
nodes with the corresponding number of edges). Table2 gives the dataset used
in our experimentations. We run the experimentation for each data set 10 times
at different time of the day and week (morning vs. evening and weekend vs.
weekdays). Figure4 depicts the average time required to run the application in
both infrastructures.

Table 2. Experimental data size

Nodes Edges

Runl 16 21
Run2 256 462
Run3 65,536 214,270
Run4 | 1,048,576 | 4,610,034

The experimental results showed that cuCloud outperforms Amazon EC2 on
the Hadoop MapReduce based PageRank calculation for all runs. This is mainly
due to the comparative advantage of cuCloud over EC2 with regard to the net-
work latency, as cuCloud runs over a LAN. The average round trip time (rtt)
between the master and slaves for 10 packets is 10.5ms for EC2 vs. 0.5 ms for
cuCloud. Moreover, the runs on the general-purpose instances of EC2 showed
a very large processing time variation. For instance, calculating the PageRank
for Run3 took 352min (during the afternoon) vs. 16 min (during early in the
morning). On the other hand the processing times in the cuCloud were more
or less uniform. Figureb5 depicts the variability of processing times of the 10
experiments performed on both systems for Run3 dataset. In general, the work-
loads deployed on EC2 run faster during night times and were slower during
afternoons. From the preliminary experimental results we can conclude that for
applications with a heavy inter-task network communications requirement like
MapReduce, cuCloud performs well. This indicates that volunteer clouds have
comparative advantages over public clouds, typically backed by remote data cen-
ters, in reducing the round trip time latency of applications. Therefore, volunteer

cuCloud: Volunteer Computing as a Service (VCaaS) System 261

clouds are a perfect fit to the concept of edge computing since most applications
naturally happen at the edge (of the Internet) and volunteer clouds can be most
conveniently deployed to directly serve these applications — edge applications.

200 158 zzA cuCloud
E’ 100
£ 60
— r71
Runl Run4

Fig. 4. Average processing time of workloads cuCloud vs. EC2

4 Related Works

The next generation of Cloud Computing needs fundamental extension
approaches, to go beyond the capabilities of data centers. This means to include
resources at the edge of the network or voluntarily donated computing resources,
which are not considered in the existed conventional Cloud Computing model
[6]. The concept of using edge resources for computing has been investigated in
Cloud Computing as AdHoc Cloud [12], Volunteer Cloud Computing [13-15],
and Opportunistic Cloud Computing [17].

In order to make use of and derive the benefit from the preexisting computing
resources within an institution/organization scope, Rosales et al. built an oppor-
tunistic IaaS model through exploiting idle computing resources available in a
university campus called UnaCloud [17]. The UnaCloud follows a client/server
model, where the server hosts a web application that works as the main inter-
face for all the UnaCloud services and the client is a lightweight application,
based on the design concept of SETIQHome agent, installed on each node in
the system. All the resources are homogeneous where each resource can han-
dle one VM at a time in order to avoid resources competition. The UnaCloud
doesn’t provide any explanation on how to handle the associated challenges of
non-dedicated computing resources such high churn rate, unreliability, and het-
erogeneity. On the other hand, the model lacks Cloud Computing basic features
such as scalability, interoperability, and QoS. Another research work similar to
cuCloud is the AdHoc Cloud Computing system proposed in [12]. The idea of
AdHoc Cloud is to transform spare resource capacity from an infrastructure
owned locally, but non-exclusive and unreliable, into an overlay cloud platform.
The implemented client/server AdHoc cloud system is evaluated for its relia-
bility and performance. In comparison with Amazon EC2, the author claimed

262 T. M. Mengistu et al.

—— cuCloud
= 300 - ECQ2
E 200
£
= 100§

0

1 2 3 4 5 6 7 8 9 10

Fig. 5. Workload processing time variability cuCloud vs. EC2

a good comparable performance and concluded that AdHoc cloud is not only
feasible, but also a viable alternative to the current data center based Cloud
Computing systems. However, the authors mentioned nothing about the elas-
ticity, multitenancy, etc. characteristics of the system. Nebula, proposes to use
a widely distributed edge resources over the Internet [14]. It is a location and
context-aware distributed cloud infrastructure that provides data storage and
task computation. Nebula consists of volunteer nodes that donate their compu-
tation and storage resources, along with a set of global and application-specific
services that are hosted on dedicated, stable nodes [13]. The authors used Plan-
etlab based simulation to test their system. One typical characteristic of cuCloud
that differentiates it from all the above-mentioned works is that by extending
the already existing IaaS cloud system, it full-fills all the basic characteristics of
a cloud system such as elasticity, multitenancy, etc.

Cloud@home is a volunteer cloud system that provides similar or higher com-
puting capabilities than commercial providers’ data centers, by grouping small
computing resources from many single contributors [18]. In order to tackle the
node churn problem that occurs due to the random and unpredictable join and
leave of contributors, an OpenStack® based Cloud@home architecture is pro-
posed [15]. Every contributing node has a virtualization layer and a Node Man-
ager that handle the allocation, migration, and destruction of a virtual resource
on the node. The authors detailed the mapping of the reference architecture of
Cloud@home to Openstack as well as a possible technical implementation. Com-
pare to our work, the proposed prototype is only a blueprint of implementing
Cloud@Home where the authors gave no such evaluation or validation of the
performance of the proposed system.

5 Conclusion

The cuCloud, an opportunistic private/public cloud system that executes over
scavenged resources of member PCs within an organization (or community),
is a cheaper and greener alternative Cloud Computing solution for organiza-
tions/communities. In this paper, we discussed cuCloud together with its archi-
tecture and its implementation based on the open-source IaaS CloudStack. We

5 https:/ /www.openstack.org/.

https://www.openstack.org/

cuCloud: Volunteer Computing as a Service (VCaaS) System 263

also described the architecture and relevant components of CloudStack with
regard to cuCloud’s implementation. The paper presented the empirical perfor-
mance evidence of cuCloud in comparison with Amazon EC2 using a big-data
application based on Hadoop. From the results of the experimentation, we con-
cluded that cuCloud can handle big-data applications that need heavy commu-
nications well. However, we plan to do an experimentation at a larger scale and
with different workloads as well as applications in order to give general con-
clusions. Moreover, the cuCloud system is still under development. In general,
the cuCloud is a system that can be called a genuine volunteer cloud comput-
ing system, which manifests the concept of “Volunteer Computing as a Service”
(VCaaS) that finds particular significance in edge computing and related appli-
cations. In a highly dynamic and heterogeneous resource environment assumed
by cuCloud, research and re-investigation on scheduling algorithms, VM migra-
tion, QoS, Security, unobtrusiveness, resource management, etc. immediately
find new meanings and momentum.

References

1. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud research
problems in data center networks. SIGCOMM Comput. Commun. Rev. 39(1),
68-73 (2009)

2. Brown, R.: Report to congress on server and data center energy efficiency: public
law 109-431. Lawrence Berkeley National Laboratory (2008)

3. The Climate Group: SMART 2020: enabling the low carbon economy in the infor-
mation age. The Climate Group on behalf of the Global eSustainability Initiative
(2008)

4. Domingues, P., Marques, P., Silva, L.: Resource usage of windows computer labo-
ratories. In: IEEE, pp. 469-476 (2005)

5. Che, D., Hou, W.-C.: A novel “Credit Union” model of cloud computing. In: Cher-
ifi, H., Zain, J.M., El-Qawasmeh, E. (eds.) DICTAP 2011. CCIS, vol. 166, pp.
714-727. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21984-
959

6. Varghese, B., Buyya, R.: Next generation cloud computing: new trends and
research directions. Future Gener. Comput. Syst. 79, 849-861 (2018). https://
doi.org/10.1016/j.future.2017.09.020

7. Petcu, D., Fazio, M., Prodan, R., Zhao, Z., Rak, M.: On the next generations of
infrastructure-as-a-services, pp. 320-326 (2016)

8. Mengistu, T., Alahmadi, A., Albuali, A., Alsenani, Y., Che, D.: A “No Data Cen-
ter” solution to cloud computing. In: 10th IEEE International Conference on Cloud
Computing, pp. 714-717 (2017)

9. RightScale: State of the Cloud Report (2016). https://www.rightscale.com/lp/
2016-state-of-the-cloud-report

10. Sabharwal, N.: Apache Cloudstack Cloud Computing. Packt Publishing Ltd, Birm-
ingham (2013)

11. Gao, W., Wang, L., Zhan, J., Luo, C., Zheng, D., Jia, Z., Xie, B., Zheng, C.,
Yang, Q., Wang, H.: A Dwarf-based Scalable Big Data Benchmarking Methodology.
CoRR (2017)

https://doi.org/10.1007/978-3-642-21984-9_59
https://doi.org/10.1007/978-3-642-21984-9_59
https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1016/j.future.2017.09.020
https://www.rightscale.com/lp/2016-state-of-the-cloud-report
https://www.rightscale.com/lp/2016-state-of-the-cloud-report

264

12.

13.

14.

15.

16.

17.

18.

T. M. Mengistu et al.

McGilvary, G.A., Barker, A., Atkinson, M.: Ad hoc cloud computing. In: 2015
IEEE 8th International Conference on Cloud Computing (CLOUD), pp. 1063—
1068 (2015)

Ryden, M., Chandra, A., Weissman, J.: Nebula: data intensive computing over
widely distributed voluntary resources. Technical report (2013)

Chandra, A., Weissman, J.: Nebulas: using distributed voluntary resources to build
clouds. In: Proceedings of the 2009 Conference on Hot Topics in Cloud Computing
series, HotCloud 2009 (2009)

Distefano, S., Merlino, G., Puliafito, A.: An openstack-based implementation
of a volunteer cloud. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015.
CCIS, vol. 567, pp. 389-403. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-33313-7_30

Mengistu, T.M., Che, D., Alahmadi, A., Lu, S.: Semi-markov process based relia-
bility and availability prediction for volunteer cloud systems. In: 11th IEEE Inter-
national Conference on Cloud Computing (IEEE CLOUD 2018) (2018)

Rosales, E., Castro, H., Villamizar, M.: Unacloud: opportunistic cloud computing
infrastructure as a service. In: Cloud Computing 2011: The Second International
Conference on Cloud Computing, GRIDs, and Virtualization. IARIA, pp. 187-194
(2011)

Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Cloud@Home: bridging the
gap between volunteer and cloud computing. In: Huang, D.-S., Jo, K.-H., Lee, H.-
H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 423-432.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04070-2_48

https://doi.org/10.1007/978-3-319-33313-7_30
https://doi.org/10.1007/978-3-319-33313-7_30
https://doi.org/10.1007/978-3-642-04070-2_48

	cuCloud: Volunteer Computing as a Service (VCaaS) System
	1 Introduction
	2 Design and Implmentation of cuCloud
	2.1 Design of cuCloud
	2.2 CloudStack Based Implementation of cuCloud

	3 Experimentation
	4 Related Works
	5 Conclusion
	References

