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Abstract. Providing both optimal QoS and a minimum number of ser-
vices simultaneously is a promising perspective of QoS-aware service
composition, whereas most existing research studies are still unfavorable
toward making an ideal trade-off between quality and efficiency, partic-
ularly in large-scale scenarios. To address this issue, this paper proposes
a composition mechanism that effectively and efficiently minimizes the
number of services in the composition result while achieving the optimal
global QoS. We first transform the composition task into an equivalent
one with decreased computing complexity, after which a chained dynamic
programming algorithm, Chain-DP, is proposed to extract the optimal
QoS with the minimum number of services. Finally, we further optimize
the efficiency of the algorithm by adopting a global-local strategy of prun-
ing. Experimental results on Web Service Challenge 2010’s datasets show
that the proposed method outperforms the state-of-the-art approach by
generating solutions containing fewer services for the optimal QoS with
higher efficiency and better generalization on large-scale datasets.
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1 Introduction

The problem of QoS-Aware Web Service Composition [1–4] aims at obtaining a
combination result with an optimal, single-criterion, end-to-end QoS when fulfill-
ing a user’s request. In large-scale scenarios, for a given request, the composition
of a substantial number of services may generate numerous possible solutions
with the same optimal QoS but different numbers of services [5].

Minimizing the number of services of the composition while satisfying the
optimal QoS is a significant challenge because it has important benefits for bro-
kers, customers, and service providers [6,7]. From the brokers’ viewpoint, a com-
position result with fewer services can facilitate maintenance and management
work; from the customers’ point of view, a smaller composition ordinarily means
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that a lower payment is demanded for the services. Thus, a decrease in the num-
ber of services included in the composition may greatly increase the success rate
of achieving the desired responses to the requests of customers. From the service
providers’ viewpoint, solutions with fewer services can save resources and costs
for the same task. However, a survey on QoS-aware service composition shows
that the majority of studies aimed at optimizing the global QoS but rarely at
minimizing the total number of services when the optimal QoS is guaranteed.
To date, only a few studies have taken the optimization of both QoS and the
number of services into consideration simultaneously. These existing methods are
mainly divided into exact algorithms and approximate algorithms. Exact algo-
rithms can generate compositions with a minimum number of services subject
to the optimal QoS at the expense of a long running time, while approximate
algorithms can only achieve near-optimal results.

As a matter of fact, minimizing the number of services while maintaining
the optimal QoS leads to an NP-hard problem [8]. This will have a huge search
space for optimal solutions in large-scale environments. In this paper, to make a
good trade-off between quality and efficiency in large-scale scenarios, we propose
a complete web service composition mechanism that effectively and efficiently
minimizes the number of services in the composition result while achieving the
optimal global QoS. The main contributions of this paper are as follows:

• An equivalent transformation approach is proposed, which transforms the
problem of QoS-aware web service composition into a tractable one with
decreased computing complexity.

• An optimal dynamic programming algorithm called Chain-DP is proposed,
which guarantees to obtain the minimum number of services while holding
the optimal global QoS based on the tractable problem after transformation.

• A global-local strategy of pruning is proposed, which greatly improves the effi-
ciency of the above-mentioned Chain-DP algorithm by removing the redun-
dant services and ignoring useless search space.

Furthermore, a full validation on WSC-2010’s datasets is carried out. According
to the experimental results, we can draw the conclusion that the proposed mech-
anism is effective and efficient in outperforming the state-of-the-art methods.

The organization of the rest of the paper is as follows. Section 2 reviews
the related work. Section 3 illustrates the motivation of this research. Section 4
formally defines the composition problem. Section 5 presents the proposed mech-
anism in detail. Section 6 shows the experimental results.

2 Related Work

QoS-aware service composition has been studied by researchers from different
perspectives. Most of the researchers merely concentrated on the optimization of
the global QoS [9,10]. There are only a few studies that attempted to optimize
the total number of services while meeting the optimal QoS.
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In [11], an approximate mechanism was presented to obtain close-to-optimal
solutions against time. The authors proposed an on-the-fly algorithm to con-
struct only a path of the auxiliary graph instead of the complete graph. Addi-
tionally, a deterministic approach and a probabilistic approach were discussed to
find the path with the near-optimal QoS and number of services, which was cho-
sen as the final composition. Although the algorithm had a superior composition
time, the greedy strategy adopted was always stuck in local optima.

Yan et al. [12] proposed an algorithm that combined a systematic search
algorithm with a planning algorithm called GraphPlan. This method could find
and remove redundant services while achieving both functional goals and QoS
optimization. Inspired by this, a redundant service removal mechanism was pre-
sented by Chen and Yan [13]. This method first modeled a composition problem
as an integer programming problem (IP), and then obtained a composition whose
global QoS was optimal by solving the IP. The next step was to remove redun-
dant services in the composition while keeping the optimal QoS. This method is
not generally applicable to the real-time situation. Thus, the authors in [14] pro-
posed a modified approach to overcome the above drawback. In this approach,
the process of redundancy removal was performed in parallel with the process of
service composition, which had gone some way toward improving the efficiency.
The approximate algorithms could reduce redundant services in compositions
more or less, but still failed to work out optimal results.

A recent approach using exact algorithms was proposed by Rodriguez-Mier
et al. [6]. A hybrid local-global strategy was presented to optimize the QoS-aware
service composition problem. Although the local search strategy could only find
a solution with a near-optimal number of services, it was a fast algorithm that
saved plenty of time. The global search strategy could improve the solution
generated by the local search, but it took a longer time to minimize the total
number of services for the optimal QoS. Compared with approximate algorithms,
the hybrid strategy can generate solutions with fewer services while guaranteeing
the optimal QoS. However, the exhaustive combinatorial search makes it difficult
to obtain the solution in a short time, especially in large-scale scenarios.

In summary, the above algorithms all suffer from many disadvantages. The
approximate algorithms are fast but cannot generate results with a minimum
number of services, while the exact algorithm is optimal but not adequately
efficient. Therefore, there is a lack of approaches that have the ability to optimize
the global QoS, as well as to minimize the number of services of the composition,
effectively and efficiently.

3 Motivating Scenario and Analysis

As shown in Fig. 1, an example is described as a directed graph. The example
is actually conducted to solve a practical classification problem whose goal is to
predict if a client will subscribe to a term deposit in a bank. The problem of
classification is treated as a problem of QoS-aware service composition whose
request is R where the input is {ont1:UserID} and the output is {xsd:boolean}.
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Fig. 1. Example of a Service Dependency Graph. (Color figure online)

Every element in the graph has its unique meaning. Each rectangle in the graph
represents a web service (associated to a response time and a throughput), while
each circle is an input or output of a service. In addition, the edges connecting
circles represent the matching relations between services.

Returning to the original problem of classification in Fig. 1, there are two
different solutions of composition fulfilling the request R, which are highlighted
in two different colors. The composition highlighted in orange has the optimal
global response time (450 ms) and contains eight services in total (including the
Source and the Sink). The composition highlighted in purple owns the same
response time but contains only six services. In addition to the compositions
highlighted in the graph, there are others with a response time of 450 ms, whereas
their numbers of services are unexceptionally more than six. To sum up, the com-
position highlighted in purple is the optimal solution with a minimum number
of services while guaranteeing the lowest response time.

In large-scale scenarios, the directed graph as in Fig. 1 may be exceedingly
intricate and complex, which leads to a huge search space. As a result, it is
formidable to extract the optimal composition from the graph. An exhaustive
combinatorial search can guarantee the optima, but will take an unacceptable
length of time to generate the compositions. In the process of service composi-
tion, in order to improve the efficiency, many measures can be taken to reduce
the useless search space. For instance, in Fig. 1, the optimal composition high-
lighted in purple has a response time of 450 ms, while the response time of the
service Credit Info Query Service is 460 ms. Therefore, Credit Info Query Service
can be removed from the graph because it will not make any contribution to the
optimal composition. In a word, we pay attention not only to the quality of the
resulting composition but also to the efficiency of the composition algorithm.

4 Preliminaries

The formal definition of a web service is given as follows.

Definition 1. A Web Service (“service” for short) is defined as a tuple s =
{Ins, Outs, Qs}, where Ins = {in1

s, . . . , in
n
s } is the set of inputs required to
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invoke the service s, and Outs = {out1s, . . . , outns } is the set of outputs gen-
erated by executing s. Each input and output is related to a semantic concept
from the set Con defined in an ontology, namely, Ins ⊆ Con and Outs ⊆ Con.
Qs = {q1s , . . . , qn

s } is the set of nonfunctional attributes that are the measures
for how well the service s serves the user.

Relevant services can be combined by connecting matched inputs and outputs.

Lemma 1. Given an output outs of a service s, and an input ins′ of another
service s′, if outs and ins′ are equivalent concepts or outs is a subconcept of ins′ ,
outs matches ins′ (i.e., ins′ is matched by outs).

There are two main kinds of structures of the composition, namely, the sequen-
tial structure and the parallel structure. The services organized as sequential
structures are invoked in order, while those in parallel structures are invoked
synchronously.

Definition 2. A Composition containing the set of services S = {s1, . . . , sn}
is represented as Ω. If the services are chained in sequence, the composition is
expressed as Ω→ = s1 → . . . → sn; if in parallel, Ω‖ = s1 ‖ . . . ‖ sn. The set
of services involved in Ω is defined as Servs(Ω) = S. Moreover, the length of a
composition Ω is defined as Len(Ω) = |S|, namely, the number of services in Ω.
Taking the response time as an example, the global QoS of Ω is computed as

RT (Ω→) =
n∑

i=1

RT (si), si ∈ S

RT (Ω‖) = max
1≤i≤n

RT (si), si ∈ S

⎫
⎪⎪⎬

⎪⎪⎭
. (1)

where RT (Ω) represents the global response time of the composition Ω, and
RT (s) represents the response time of the service s. Similarly, the global through-
put TP (Ω) of the composition lies on the throughput TP (s) of each service s ∈ S.

TP (Ω→) = min
1≤i≤n

TP (si), si ∈ S

TP (Ω‖) = min
1≤i≤n

TP (si), si ∈ S

⎫
⎬

⎭ . (2)

Based on the above concepts, the precise definition of the QoS-aware web service
composition in this paper is provided.

Definition 3. QoS-Aware Web Service Composition is defined as follows: for
a given composition request R = {InR, OutR}, to seek a composition Ω with
optimization objectives of (1) minRT (Ω) or maxTR(Ω) and (2) minLen(Ω).

5 Framework

5.1 Generation of the Service Dependency Graph

For a given user request R = {InR, OutR}, a service dependency graph
[15,16] similar to that in Fig. 1 is constructed to show the input-output
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dependencies between services. There is only a dummy service so =
{∅, InR, {0 ms,+∞ inv/s}} in the first layer, and another dummy service
sk = {OutR, ∅, {0 ms,+∞ inv/s}} is the only one contained in the last layer.
The specific services in the other layers are selected from an external repository
Sall, and each layer contains the services whose inputs are all matched by the
outputs generated by previous layers.

5.2 Generation of Subproblems

Description of Optimal Substructure. Once the service dependency graph
G is completed for a request R, the composition problem is treated as finding a
path with the optimal QoS and the minimum number of services starting from
so and ending with sk in the graph. Obviously, a path Λ in G is actually a
composition Ω in Definition 2. An abstract path with the optimal quality from
the service so to a service s in the graph is expressed as Λs. As shown in Fig. 2,
to obtain the path Λsk

, the set of paths containing ΛX and ΛXI needs to be
determined in advance. Similarly, the path ΛXI depends on ΛIX , while the rest
can be done in the same manner.

Fig. 2. Example graph. Fig. 3. Subproblem V.

Definition 4. The set of precursors of a service s ∈ Li (the i-th layer) is defined
as Pre(s) = {s′ | s′ ∈ Lj(∀j < i) ∧ Ins ∩ Outs′ 
= ∅}. Specifically, Pre(so) = ∅.

On the basis of the above definition, for a service s, if the paths ΛPre(s) =
{Λs′ | s′ ∈ Pre(s)} have already been determined, the decision-making process
of the optimal path Λs is regarded as a subproblem named s.

Definition 5. The set of feasible precursor-decisions of a subproblem s is
defined as Ps = {ps | ps ⊆ Pre(s) ∧ Ins ⊆ ∪

s′∈ps

Outs′}.

As a sequence, the composition problem is divided into many subproblems.
The solution of a subproblem depends on the optimization results of subproblems
in previous layers.

Definition and Generation of Subproblems. We bring up the abstract
concept named quality of a path solely to explain the idea of the optimal sub-
structure. Assuming that only the optimal QoS is maintained for each path, we
will lose the optimal solution. For instance, there are two compositions in Fig. 2:



202 S.-L. Fan et al.

the composition Ω = so → [II ‖ III] → V → IX, whose global response time
RT (Ω) is 55 ms, as well as another composition Ω′ = so → IV → V II → IX
that has a global response time of RT (Ω′

s) = 70 ms. If the quality of a path is
measured merely by the global response time, the optimal path ΛIX is actually
Ω, which causes a loss of the optimal path highlighted in the graph. Accordingly,
to minimize the number of services simultaneously, we design a dissimilar way
to describe a path. A concrete path Λl

s starts from the service so and ends with
a service s. In addition, Λl

s has the optimal QoS among those paths whose length
(the number of services) is l. Let us reconsider the above example in this way. The
path Λ4

IX = so → IV → V II → IX has a response time of 70 ms. There are two
different paths with the same length of 5: Λ = so → [I ‖ III] → V → IX with
RT (Λ) = 60 ms, and Λ′ = so → [II ‖ III] → V → IX with RT (Λ′) = 55 ms.
Thus, Λ5

IX = Λ′ = so → [II ‖ III] → V → IX owing to RT (Λ′) < RT (Λ). By
this means, the path with minimum number of services for the optimal QoS can
be kept.

Then, a subproblem s is defined as determining a cluster of concrete paths
ΛL

s = {Λl
s | l ∈ L} (L = {1, . . . , |G|}). Each path Λl

s in ΛL
s is determined by

several paths selected from ΛL
s′ , where s′ ∈ Pre(s). For a feasible precursor

decision ps = {s1, . . . , sn}, let Cart(ps) = ΛL
s1

× . . . × ΛL
sn

, where × represents
the operation of a Cartesian product. Taking the optimization of the response
time as an example, the detailed optimization model of Λl

s is

RT (Λl
s) = min

ps∈Ps

{ min
nps∈Nps

{max
Λ∈nps

RT (Λ)}} + RT (s). (3)

where Nps
= {N |N ∈ Cart(ps) ∧ | ∪

Λ∈N
Servs(Λ)| = l − 1} is the set of feasible

length-decisions of ps, and Servs(Λ) memorizes all the services in the path Λ.

Table 1. Optimization process for Λ4
V .

ps Nps nps RT(Λ4
V)

{I, III} {(Λ2
I , Λ

2
III)} (Λ2

I , Λ
2
III) 40ms

{II, III} {(Λ2
II , Λ

2
III)} (Λ2

II , Λ
2
III) 35ms

{I, II, III} ∅ ∅ ×

The subproblem V is shown in Fig. 3. Table 1 shows the optimization process
of Λ4

V . According to the table, Λ4
V is generated by combining Λ2

II and Λ2
III .

The generation process for subproblems is described in Algorithm1, where
out serv map is a precomputed table that maps each output to those services
that own this output.

5.3 Transformation of Subproblems

It is inconvenient for set operations to identify whether a precursor decision
is feasible for a given subproblem. Considering the subproblem s, a precursor
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Algorithm 1. Subproblem Generation
Input: G, out serv map
Output: subs map

1 subs map ← {}, visited ← {}
2 for index = 0; index < |G|; index + + do
3 for service s ∈ Lindex do
4 pres ← {}
5 for concept c ∈ Ins do
6 servs ← out serv map[c]
7 for service s′ ∈ servs do
8 if s′ ∈ visited and s′ /∈ pres then
9 pres ← pres ∪ {s′}

10 subs map[s] ← pres

11 for service s ∈ Lindex do
12 visited ← visited ∪ {s}
13 return subs map

decision ps(ps ⊆ Pre(s)) is feasible if Ins ⊆ ∪
s′∈ps

Outs′ , which is too complicated

to be applied to the following dynamic programming algorithm. Therefore, an
equivalent transformation approach is proposed to overcome the obstacle.

Fig. 4. Schematic diagram. Fig. 5. V after transformation.

Definition 6. As shown in Fig. 4, given a set of concepts C and another set
C ′, where C ′ ∩ C 
= ∅, the contribution made by C ′ to C is defined as

ΔC(C ′) =
n−1∑

index=0

ArrayC∩C′ [index] × 2index. (4)

where ΔC(C) = 2n − 1. Conversely, if the contribution made by an unknown set
X to the set C is ΔC(X), the intersection of C and X is calculated as follows:

ΔC(X) =
n−1∑

index=0

aindex × 2index

ΦC(ΔC(X)) = {C[index] | aindex = 1}

⎫
⎪⎪⎬

⎪⎪⎭
. (5)
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More examples are shown to further illustrate the above approach. Given two
sets of concepts C = {c1, c2, c3, c4} and C ′ = {c2, c4, c5}, ΔC(C ′) equals 10 after
calculation. Moreover, if an unknown set X makes a contribution ΔC(X) = 5 to
the set C, we first complete the decimal-to-binary conversion of ΔC(X), namely,
5 = 1 × 20 + 1 × 22. Then, C ∩ X = ΦC(5) = {c1, c3}. There is a phenomenon
such that ΔC(C ′) + ΔC(X) = ΔC(C). Meanwhile, C ⊆ (C ′ ∪ X).

Lemma 2. Given a set of concepts C, as well as two other sets C ′ and C ′′, if
ΔC(C ′) + ΔC(C ′′) = ΔC(C), then C ⊆ (C ′ ∪ C ′′).

Next, a concept called the flow of a path is introduced to transform each
subproblem into another one, which avoids making use of set operations.

Definition 7. For a given subproblem s, the flow of a path Λl
s′ is defined as

flows′ = ΔIns
(Outs′), where s′ ∈ Pre(s). Moreover, the flow of the objective

path Λl
s is defined as flowtotal = ΔIns

(Ins).

The subproblem V after transformation is shown in Fig. 5. Operator ⊕ in the
figure is used to calculate the flow of a temporary path after composition. If a
temporary path Λ3

tmp (so → [I ‖ II]) is generated by combining Λ2
I and Λ2

II , the
flow of Λ3

tmp is flowtmp = flowI⊕flowII = ΔInV
(ΦInV

(flowI)∩ΦInV
(flowII)).

In this subproblem, we expect to obtain a set of paths ΛL
V where each Λl

V owns
the flow of 7 after composition.

Hence, Ps changes into Ps = {ps | ps ⊆ Pre(s) ∧ ∑
⊕

s′∈ps

flows′ = flowtotal},

where
∑

⊕ acting on the set ps = {s′
1, . . . , s

′
n} is short for flows′

1
⊕ . . .⊕ flows′

n
.

5.4 Chained Dynamic Programming Algorithm

For a subproblem s, there is no doubt that it is hardly desirable to explore all
possible combinations of paths to get the set of feasible precursor-decisions Ps,
as well as the set of feasible length-decisions Nps

for each ps ∈ Ps, especially
in large-scale scenarios. However, according to Lemma 2, each subproblem can
be further divided into a series of subproblems. Let Pre(s) = {s1, s2, . . . , sn}.
Considering that the set of paths ΛL

sn
is known, if the set of paths ΛL

s whose flow
equals flowtotal − flowsn

has been already determined by combining the paths
selected from ΛL

si
(1 ≤ i ≤ n− 1), paths ΛL

s with a flow of flowtotal can be easily
determined by combing the above two sets of paths.

Note that for each subproblem s, to differentiate the objective paths with
different flows, the set of paths ΛL

s with a flow of f (f ≤ flowtotal) is expressed
as Λ̃L

f hereafter. Moreover, if a path Λ̃l
f ∈ Λ̃L

f is expected to be found in a
subproblem of s, then the flow of each Λl

si
(1 ≤ i ≤ n) should be updated as

flowf
si

= ΔIns
(Outsi

∩ΦIns
(f)). For example, as we can see from the subproblem

V , flow7
II = 3 while flow1

II = 1.
On the basis of the above description, a chained dynamic programming algo-

rithm is proposed. Taking the optimization of the response time as an example,
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let F [i][f ][l] represent the response time of the path Λ̃l
f generated by combining

the first i clusters of known paths (ΛL
s1

, ΛL
s2

, . . . , ΛL
si

). It can be shown that

F [i][f ][l] = min
l′,l′′∈L

U(l′,l′′)=l

{max{F [i − 1][f − flowf
si

][l′], RT (Λl′′
si

)}}. (6)

where U(l′, l′′) = |Servs(Λ̃l′

f−flowf
si

) ∪ Servs(Λl′′
si

)|. Several candidate paths

whose flow is f are obtained by combining Λ̃l′

f−flowf
si

(for each l′ ∈ L) and

Λl′′
si

(for each l′′ ∈ L). Λ̃l
f is the one with the optimal response time while own-

ing the length of l. Thus, for fixed i and f , paths Λ̃L
f can be determined with a

time complexity of O(|L|2). By systematically increasing the values of i (from 1
to n) and f (from 1 to flowtotal), the desired path ΛL

s will finally be obtained
when i = n and f = flowtotal. For each Λl

s ∈ ΛL
s ,

RT (Λl
s) = F [n][flowtotal][l] + RT (s). (7)

Therefore, the subproblem s is solved. The solved subproblems are known con-
ditions of those unsolved; therefore, a chain of decisions is made from so to sk,
which is the reason the algorithm is named after Chain-DP.

5.5 Global-Local Pruning Strategy

When applying a dp algorithm, it is probable that numbers of useless subprob-
lems are solved, or many idle search spaces are explored. A global-local prun-
ing strategy is adopted to further improve the efficiency of the Chain-DP.

As can be seen from Definition 3, the optimal global QoS is the essential
prerequisite for seeking the expected composition. We first propose a fast pre-
processing approach to compute the optimal global QoS of each path without
consideration of the length. In the dependency graph, a path with the optimal
QoS from the service so to a service s is expressed as Λ̂s. Then, the approach
is shown in Algorithm 2, taking the preprocessing of the optimal response time
as an example. The optimal response time of each path is stored in a hash
table Opt RT where Opt RT [s] = RT (Λ̂s). Moreover, for each input ins ∈ Ins,
RT in[ins] stores the shortest response time to generate ins, that is to say,
RT in[ins] = min

s′∈Pre(s) ∧ ins∈Outs′
RT (Λ̂s′). Therefore, the decision-making pro-

cess for the path Λ̂s can be described as RT (Λ̂s) = max
ins∈Ins

{RT in[ins]}+RT (s).

Global pruning is applied to lessen the number of redundant subproblems,
which further reduces the number of useless services in the graph G.

Lemma 3. For each s ∈ G, if RT (Λ̂s) > RT (Λ̂sk
) or TR(Λ̂s) < TR(Λ̂sk

), the
service s will not be involved in the final composition.

According to Lemma 3, a service s can be removed from G if Opt RT [s] >
Opt RT [sk]. For example, in Fig. 1, the final path highlighted in purple has a
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Algorithm 2. Optimal QoS Preprocessing
Input: G, subs map
Output: Opt RT

1 Opt RT ← {so : 0}
2 for index = 1; index < |G|; index + + do
3 for service s ∈ Lindex do
4 tmp RT ← 0
5 for concept c ∈ Ins do
6 RT in[c] ← +∞
7 for concept c ∈ Ins do
8 for service s̃ ∈ subs map[s] do
9 if c ∈ Outs̃ and Opt RT [s̃] < RT in[c] then

10 RT in[c] ← Opt RT [s̃]

11 tmp RT ← max(tmp RT, RT in[c])

12 Opt RT [s] ← tmp RT + RT (s)

13 return Opt RT

global response time of 450 ms, while the path ending with Credit Info Query
Service has an optimal response time of 570 ms. Obviously, the Credit Info Query
Service is not involved in the final path. In addition, eliminating it from the graph
will not make a difference in the optimal solution of the composition.

Local pruning aims at reducing the search space of each subproblem.

Lemma 4. In the decision-making process for each subproblem s, for each s′ ∈
Pre(s) and each l ∈ L, the path Λl

s′ will make no contribution to the cluster
of paths ΛL

s on the condition that RT (Λl
s′) + RT (s) > RT (Λ̂s) and l + 1 >

|Servs(Λ̂s)|, or TR(Λl
s′) < TR(Λ̂s) and l + 1 > |Servs(Λ̂s)|.

On the basis of Lemma 4, local pruning is applied as follows. For each subproblem
s, when determining the cluster of paths ΛL

s , a precursor path Λl
s′ can be disre-

garded, subject to the following constraints: (1) Rets[s′][l]+RT (s) > Opt RT [s]
and (2) l + 1 > |Opt Paths[s]|.

6 Experimental Evaluation

We completed three groups of experiments on the datasets of Web Service Chal-
lenge (WSC) 2010 to evaluate the performance of the proposed mechanism. The
groups of experiments that were sequentially constructed are as follows: (1) val-
idation of the global-local pruning strategy, (2) validation of the Chain-DP from
the aspects of results and efficiency, and (3)validation of the applied scenarios.

6.1 Datasets

WSC 2010’s datasets range from 572 to 15211 services. Each dataset contains a
WSDL file defining the inputs and outputs of the services, a WSLA file storing
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the QoS values (response time and throughput) of the services, and an OWL file
describing the matching relations between all of the inputs and outputs.

6.2 Validation of the Hybrid Pruning Strategy

We first constructed experiments to validate the global-local pruning strategy.

Table 2. Comparisons of number of services before and after pruning.

WSC-2010’s datasets D-01 D-02 D-03 D-04 D-05

#Graph services 77 135 146 321 225

Validation with
resp. time

#Graph Services (opt) 45 100 81 210 210

Preprocessing time (ms) 1.8 1.6 2.1 4.9 3.1

Validation with
throughput

#Graph Services (opt) 11 63 100 174 107

Preprocessing time (ms) 1.3 1.7 1.6 4.0 4.6

On the one hand, we focused on the reduction of services in the dependency
graph after pruning. Moreover, when performing the experiment, we measured
the execution time of the preprocessing approach in passing. Table 2 lists the
results obtained for each dataset and for each QoS property. Row #Graph Ser-
vices shows the initial number of services in the graph, and #Graph Services
(opt) the number of services after pruning. As can be seen, the number of ser-
vices is reduced, on average, by 39% via pruning. Row Preprocessing Time shows
the execution time of the preprocessing approach. It is evident from the table
that the extra time spent by the preprocessing of pruning is no more than 5 ms.

Table 3. Comparison of efficiency of Chain-DP before and after pruning.

WSC-2010’s datasets D-01 D-02 D-03 D-04 D-05

Validation with
resp. time

Chain-DP (ms) 256 2125 1027 9259 22463

Chain-DP-pruning (ms) 57 60 86 209 528

Validation with
throughput

Chain-DP (ms) 259 2074 1152 21332 25168

Chain-DP-pruning (ms) 27 73 179 308 321

On the other hand, for each dataset and for each QoS, we compared the
efficiency of Chain-DP before and after pruning. As shown in Table 3, row
Chain-DP shows the execution time of the Chain-DP algorithm without pruning,
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and Chain-DP-Pruning shows the execution time of Chain-DP with global-local
pruning. The results indicate that Chain-DP with global-local pruning is, on
average, over 30 times faster than Chain-DP without pruning.

In conclusion, the above experiments indicate that the proposed pruning
strategy can effectively remove the redundant services in the dependency graph,
and can also significantly reduce the search space of the composition problem.
As a result, the strategy is powerful in improving the efficiency of Chain-DP.

6.3 Validation of the Chain-DP Algorithm

To validate our chained dynamic programming algorithm, we compared our app-
roach with five different approaches in the same experimental environment.

Table 4. Comparisons with other approaches.

Datasets D-01 D-02 D-03 D-04 D-05 D-01 D-02 D-03 D-04 D-05

Validation with response time Validation with throughput

Method in [13] RT (ms) 500 1690 760 1470 4070 TR (inv/s) 15000 6000 4000 2000 4000

#Services 8 21 10 42 33 #Services 5 20 21 40 30

Time (ms) 27 1491 12 54352 737 Time (ms) 7 158 1380 76125 735

Method in [14] RT (ms) 500 1690 760 1470 4070 TR (inv/s) 15000 6000 4000 2000 4000

#Services 10 20 10 42 33 #Services 5 20 10 44 32

Time (ms) 9 14 8 21 11 Time (ms) 8 14 13 31 15

Method in [11] RT (ms) 760 2270 1300 2140 5340 TR (inv/s) 10000 6000 4000 1000 4000

#Services 6 21 10 47 32 #Services 6 21 10 47 32

Time (ms) 1 2 1 14 3 Time (ms) 1 2 1 14 3

Local search in [6] RT (ms) 500 1690 760 1470 4070 TR (inv/s) 15000 6000 4000 4000 4000

#Services 5 20 10 40 32 #Services 5 20 15 62 31

Time (ms) 711 1098 2877 8475 3212 Time (ms) 385 1325 2235 9256 2715

Global search in [6] RT (ms) 500 1690 760 - 4070 TR (inv/s) 15000 6000 4000 - 4000

#Services 5 20 10 - 32 #Services 5 20 10 - 30

Time (ms) 738 1765 2907 - 26491 Time (ms) 374 1434 2330 - 120375

Our method RT (ms) 500 1690 760 1470 4070 TR (inv/s) 15000 6000 4000 4000 4000

#Services 5 20 10 40 32 #Services 5 20 10 62 30

Time (ms) 57 60 86 209 528 Time (ms) 27 73 179 308 321

Table 4 shows all of the comparisons. For each dataset and for each QoS
property, we mainly paid close attention to the global QoS of the obtained com-
position (RT for the response time and TR for throughput), the number of ser-
vices included in the obtained composition (#Services), and the execution time
to extract a composition from a graph (Time). A composition is better if (1) its
global QoS is better, or (2) it owns the same global QoS but fewer services. It can
be seen that our approach can always generate the same or better compositions.
As an exact algorithm, the global search proposed in [6] could not find a solution
for D-04 owing to a combinatorial explosion, while our approach succeeded in
finding one with better throughput (4000 inv/s) than other methods, except for
the local search [6].
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(a) Validation with Response Time. (b) Validation with Throughput.

Fig. 6. Further comparison with other approaches. (Color figure online)

Considering that almost all of the methods in Table 4 could find compositions
with the same global QoS, we further compared our method with those approx-
imate algorithms in terms of the number of services, and also compared our
method with the exact algorithm in terms of the execution time. Figure 6 shows
that compared with the approximate algorithms, our algorithm always found
compositions with the same or fewer services while guaranteeing the optimal
global QoS. In addition, compared with the global search, it took far less time
to generate solutions. The orange line represents the average execution time of
the global search, while the green line shows the average time of Chain-DP with
hybrid pruning. Our algorithm is, on average, over 35 times faster than the global
search without regard to D-04, which is a significant improvement. In summary,
our algorithm achieves an ideal trade-off between quality and efficiency.

6.4 Validation of the Applicable Scenarios

Lastly, we tested and validated the applicable scenarios that the proposed mech-
anism can be generalized to use.

To evaluate the effects of hybrid pruning in different scenarios, we define an
indicator as

Ratio PR =
Time WO

Time WI
. (8)

where Time WO represents the execution time of Chain-DP without pruning,
and Time WI the execution time of Chain-DP with hybrid pruning. As can be
seen from Fig. 7(a), the larger the size of a dataset, the better the hybrid pruning
strategy performs.

Furthermore, in order to compare Chain-DPs efficiency with that of the global
search in different scenarios, we similarly define another indicator:

Ratio CP =
Time GS

Time DP
. (9)

where Time GS represents the execution time of the global search, and
Time DP the execution time of Chain-DP with hybrid pruning. Seeing that
the global search could not find a solution for D-04, we used the execution time
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of the local search instead. As shown in Fig. 7(b), with an increase in the size of
the datasets, the advantage of our Chain-DP becomes progressively obvious. For
D-05 (Validation with Throughput), Chain-DP is even two orders of magnitude
faster than the global search while guaranteeing the same optimal solution.

(a) Ratio PR for WSC datasets (b) Ratio CP for WSC datasets

Fig. 7. Validation of applied scenarios.

The above experiments indicate that both the hybrid pruning strategy and
the Chain-DP algorithm can be easily generalized and applied to a variety of
scenarios, especially large-scale scenarios.

7 Conclusion

In this paper, we proposed an effective and efficient mechanism to automatically
generate compositions by minimizing the number of services while simultane-
ously satisfying the optimal global QoS. The mechanism combines a global-local
pruning strategy and a chained dynamic programming algorithm to extract the
optimal composition from the service dependency graph with high efficiency.
A large number of experiments on two different groups of datasets show that
our mechanism performs better than the state-of-the-art methods, as it not only
obtains compositions with fewer services for the optimal QoS than the approx-
imate algorithms, but also executes much faster than an exact algorithm while
obtaining nearly the same results. It is proven to achieve a very good trade-
off between quality and efficiency in various scenarios, especially in large-scale
scenarios.
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