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Abstract. Spatial crowdsourcing system refers to sending various
location-based tasks to workers according to their positions, and workers
need to physically move to specified locations to accomplish tasks. The
workers are restricted to report their real-time sensitive position to the
server so as to keep in coordination with the crowdsourcing server. There-
fore, implementing crowdsourcing system while preserving the privacy of
workers sensitive information is a key issue that needs to be tackled.
We discard the assumption of a trustworthy third party cellular service
provider (CSP), and further propose a local method to achieve acceptable
results. A differential privacy model ensures rigorous privacy guarantee,
and Laplace mechanism noise is introduced to preserve workers sensi-
tive information. Finally, we verify the effectiveness and efficiency of the
proposed methods through extensive experiments on real-world datasets.
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1 Introduction

Nowadays, with the rapid proliferation of all kinds of smartphones and the con-
venience of mobile Internet, crowdsourcing has emerged as a significant com-
puting technology which utilizes human intelligences. In particular, numerous
crowdsourcing-based platforms, such as CrowdFlower [1], Gigwalk [15], Gmis-
sion [5] and etc., which leverages the wisdom of crowd to perform the special-
ized assignment appropriately and accurately. This new framework encourages
active workers to participate in to perform specified tasks that are vicinity to
the required locations. The crowd of workers have shift their conventional idea of
data consumers to the role of gathering data to gain some deserved rewards (e.g.,
money, reputation). In crowdsourcing system, smartphone users are engaged to
provide pervasive and inexpensive tasks of data collecting and computing even-
tually. The application of crowdsourcing has developed incredibly. It has been
widely used in ride sharing, traffic or environment monitoring.

Specifically, the roles in the whole crowdsourcing system are categorized into
three types: crowding platform (i.e., server), crowdworkers (i.e., workers), crowd-
sourcer (i.e., requester) [3]. The platform is responsible for distributing atomic
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tasks or viral tasks to workers and in charge of the data collecting job. The
workers are the ones who are concentrating on finishing the small units of work
in return for monetary payment. The responsibility of crowdsourcer is aiming to
carrying out computationally hard tasks and divide them into several subtasks.
In [16], the tasks on crowdsourcing platform can be published in two distinct
modes: Worker Selected Tasks (WST) and Server Assigned Tasks (SAT). On the
one hand, in WST mode [15], online workers are allowed to select arbitrary tasks
delivered by the crowdsourcer in vicinity without the permission of crowdsouc-
ing platform. On the other hand, in SAT mode [6], the workers are restricted to
report their real-time position to the server so as to keep in coordination with the
crowdsourcing server, then the server will decide how to allocate tasks reason-
ably in terms of some optimal functions. Meanwhile, in WST mode, workers are
unnecessary to track the locations of workers while the crowdsourcing platform
are never interrupted to follow the tracks of workers in SAT mode, so the issues
on the privacy of these workers needs to be protected are rather hot problems.

Differential Privacy (DP) [11,25] is a relatively new notion of privacy, and also
is one of the most popular privacy notations. It is actually implemented by noise
mechanism which adds a random noise to the output data. With the privacy
definition, To et al. [19] developed a new framework for protecting workers’
locations by introducing the cellular service provider (CSP) [20] as a trustworthy
third party. private spatial decomposition, which partition the geospatial data
into smaller regions and obtain statistics on the points with each region, and
designed to enhance the accuracy of the entire crowdsourcing system [7]. Fan et
al. [12,23] divide the space into four equal subspaces using quadtree. Recursively
partitioning on quadtree is highly efficient compared with partitioning of kd-tree
[21,22]. [4,13] consider the privacy concerns that are hard to solve and propose
a flexible optimization framework that can be adjusted to trade-offs with the
joint efforts of platform and workers. As far as we know, there already have been
some related works protecting workers location information on the crowdsourcing
system, however, there are few works currently pay scalable attention to privacy-
preserving of workers sensitive information, which discards the entirely reliable
third party. It is a novel notion that proposed appropriately in accordance with
the characteristics of reality, so achieving a desired privacy-preserving result is
not a non-trivial problem.

In this paper, we formulate the privacy protection strategies without com-
promising the third party from a particular worker to a crowdsourcing plat-
form as a non-trivial problem that follows two criteria: (1) efficiency of our
proposed method, (2)utility of our method. Note that the aforementioned stan-
dards remains a secret for us, which motivates us to consider the fundamental
factors in crowdsourcing system. We show that these two criteria can hardly be
optimized simultaneously. We immediately divide the data publishing into three
part: data preprocessing, information filtering and noise addition. In the first
period, we generate a most suitable data structure to storage workers’ sensitive
information. Next, we filter out the insensitive information by exponent mech-
anism of differential privacy. Finally, we further add appropriate noises after
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information filtering to ensure the privacy leakage problem. In summary, the
main contributions of our work are listed as follows:

– We identify the specific challenges of privacy-preserving in crowdsourcing
system, and we further develop a model that illustrates this issue.

– We abandon the assumption that the third party CSP is rather convincing
and adopt a local method to publish sensitive data sets.

– We conduct both extensive numerical evaluations and performance analysis to
show the effectiveness and efficiency of our designed method using real-world
datasets, and analyze the key factors associated with hierarchical method.

The paper is structured as follows. We present related preliminaries in Sect. 2.
Next we develop our model to solve the problem in details in Sect. 3. We dis-
cuss the experimental results and analyze crucial factors in Sect. 4, respectively.
Section 5 summarizes related work. Finally, we conclude the work in Sect. 6.

2 Preliminaries

Intuitively, Differential Privacy (DP)has grown as the standard in privacy pro-
tection, thanks to its strong mathematical guarantees rooted in related statistical
analysis. DP ensures the attacker fail to deduce whether a particular individual
in or not in the original data, thereby protecting the workers’ privacy.

Definition 1 ((ε, δ)-differential privacy) [11]: Let D and D’ be two neigh-
boring datasets which differ on at most one record, denoted as |DΔD′| = 1, a
randomized mechanism M: D→ R, Ω(M) be the set of all possible outputs of M
in D and D’, algorithm M gives (ε,δ)-differential privacy if:

Pr[M(D) ∈ Ω] ≤ exp(ε) × Pr[M(D′) ∈ Ω] + δ (1)

The parameter ε is called privacy budget, which controls the level of privacy
guarantee. The smaller ε is, the higher security becomes. If δ = 0, the randomized
mechanism M gives ε -differential privacy by its strictest definition. Thus, (ε,δ)-
differential privacy in some degree provide freedom to violate strict differential
privacy for some low probability events.

Theorem 1 (Sequential Composition) [17]: Say we get a set of privacy algo-
rithms M = {M1,M2, ...,Mm}. For each Mi satisfies a εi-differential privacy
guarantee for the same dataset, M will provide

∑m
i=1εi-differential privacy.

Sequential composition undertakes the privacy guarantee for a combination
of the entire differential privacy process. When a set of randomized mechanisms
have been conducted on the same dataset, the total privacy budget is the sum
of all privacy budgets.

Theorem 2 (Parallel Composition) [18]: Say we get a set of privacy algo-
rithms M = {M1,M2, . . . ,Mm}. For each Mi satisfies a εi-differential pri-
vacy guarantee on a disjoint subset of the whole dataset, M will provide max
(ε1,ε2,. . . ,εm)-differential privacy.



512 K. Xu et al.

Parallel composition corresponds to situation where a quantity of private
mechanisms are applied to a disjoint dataset. Consequently, the privacy guaran-
tee only depends on the largest privacy budget.

Definition 2 (Sensitivity) [10]: Given neighboring datasets D and D’, for a
query function f: D→ R, the sensitivity of f is defined as

Δf = max
(D,D′)

|f(D) − f(D′)|1 (2)

Sensitivity Δf is closely related to the query f. It is regarded as the maximal
differential between the query results on neighboring datasets. Currently, two
basic mechanisms are widely used to guarantee differential privacy: the Laplace
mechanism and the Exponential mechanism.

Definition 3 (Laplace mechanism) [10]: Given dataset D and a function f:
D→ R, Δ f is the sensitivity of f, representing the maximal value on the output
of f when deleting any tuple in D. The randomized algorithm

M(D) = f(D) + Laplace(
Δf

ε
) (3)

satisfies ε-differential privacy. We use Laplace(x) to represent the noise sampled
from a Laplace distribution with a scaling of x.

Definition 4 (Exponential mechanism) [17]: Let (q, r) be a function of
dataset D that measures the quality of output r ∈ Range, Δ q represents the
sensitivity of r. The exponential mechanism M satisfies ε-differential privacy if:

M(D) = (r : Pr[r ∈ Range] ∝ exp(
εq(D, r)

2Δq
)) (4)

For non-numeric queries, differential privacy utilizes the exponential mechanism
to randomized the results.

3 Designed Model

We consider the problem of privacy-preserving spatial crowdsourcing task assign-
ment in the SAT mode. The crux of our method is to how to choose data struc-
ture to storage workers’ sensitive information and apply a differential privacy
mechanism to each worker’s location information. As mentioned in Sect. 1, data
structure selection is a non-trivial step. Previous literature assumes that the third
party Cell Service Provider (CSP) is completely convinced, but this may not be
the case in real-world scenarios. Our proposed method adopts a novel model to
protect workers’ locations. In this way, the approach recommends tasks to each
worker with a better success ration and a stronger privacy guarantee. Figure 1
shows the basic model of the proposed framework consisting of each worker’s
three components:
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Fig. 1. Our system model for task recommendation in crowdsourcing systems

Data Preprocessing: In this component, each worker collects various statistics
periodically in the background. After that, they will preprocess the detailed
data for a short time. The sensitive information of each worker are not delivered
to the third party, so this step can protect the private context information of
participating workers well.

Information Filtering: In this component, based on the statistics preprocess-
ing component, each worker then select the most sensitive location information.
Note that workers are allowed to decide how much private information they are
willing to share with others. Therefore, we set a constant threshold θ and elim-
inate those location information that are below this threshold. We may achieve
an ideal result according the Exponent mechanism to complete sensitive infor-
mation selection.

Noise Addition: In this component, based on the information filtering and
Laplace mechanism, each worker then adds suitable noises to these sensitive
information. It goes without saying that the noises are subjected to laplace
distribution. After adding some noise in the original data, we achieve a series of
brand new datasets.

3.1 Detailed Explanation

We just described the basic system model for task recommendation in Spatial
Crowdsourcing system. Next we will represent a description of the details in
these components and explain why we take these steps to tackle the barriers in
the entire crowdsourcing systems.
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Fig. 2. Creating a Trie-Tree

Data Preprocessing: We aim to provide good efficiency, privacy and utility
in our proposed framework. Each worker firstly achieve a transaction database
D including the work’s identity, the frequency of locations they visited during a
long period and when the worker arrive at these locations. Apparently, there is no
problem that we ignore some detailed location information such as the longitude
and latitude of locations. Then we randomly select several items (e.g., I items) to
represent the whole database D. After finishing that, it’s vital for us to determine
which data structure to storage our location information. We make a thorough
decision to choose Trie-Tree to represent workers’ context information. It’s non-
trivial for us to draw a solid conclusion that we select the data structure Trie-
Tree. We summarize the reasons as follows: (1) It is most suitable to maintain
the link between the location data and overwrite the original data set as well;
(2) It reduces the number of noise addition in that we add noise into each node
rather than each original data. It disturbs true visit frequency in each node,
we are required to add noises only once into each node. In other words, all the
original data sets in node are covered with some noise, it is unnecessary for us to
add extra noises into each original data. Therefore, workers can protect his/her
location privacy at a relatively low cost of utility. Figure 2 shows an example
describing how we store workers’ sensitive location information. We assume that
the root node in level 0, it is clearly see that there are

∑n
i=1 Ci

n = 2i − 1 nodes
in the Trie-Tree and all the 1st-items in the level 1. Here, there are four different
nodes in level 1 and total 23 − 1 = 7 nodes in the tree. More specifically, we
take node 1, 2 as an example, it denotes the combination of node 1 and node 2
in level 1, the constant value 20 means the least number of visiting times in the
node. As we all know, node 1 is visited 30 times and node 2 is 20, so we achieve
the minimum value 20 in node set 1, 2. Likewise, it is rather easy to get all the
other nodes in our Trie-Tree.
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Information Filtering: After representing detailed location data sets in Trie-
Tree, we continue to finish sensitive location information selection based on
Exponent mechanism. We firstly traverse the entire tree by level and eliminate
those nodes in which the constant value is smaller than the specified threshold θ.
By the way, we determine how much θ would be according the subsequent exper-
iments. Furthermore, we naturally derive the nodes set S in which the visiting
times of each node are above θ. Finally, we filter out n nodes in set S according
to the exponent mechanism of differential privacy. The specific operations are as
follows:

Step 1: Input the sensitive location information set S, then we successively take
out each node in it and mark them in turn:

tag(S, si) = q(si) (5)

where q(si) denotes the actual visiting frequency of node si.

Step 2: calculate the weight of each node:

si.w = exp(
ε1 × tag(S, si)

2Δtag
) (6)

Where ε1 means the privacy budget of exponent mechanism, the function Δtag
means the sensitivity of node si.

Step 3: randomized figure out the top n nodes according the following equation,
then we make up a new set C:

Pr(si) =
si.w∑n
i=1 si.w

(7)

The goal we design the equation is to follow the exponent mechanism. si.w is
derived from step 2.

In this section, we adopt exponent mechanism to finish information selection
because of the merits of exponent mechanism. Not only we can evaluate the pri-
vacy protection by privacy budget, but it improves the efficiency of our proposed
algorithm according to filtering out insensitive location information.

Noise Addition: We carry on adding suitable noises into elements in set C
followed by information selection. That is to say, noises which are subjected to
laplace distribution are appended into the top n nodes in C. Similarity, we use
privacy budget ε2 to evaluate privacy leakage in that the approach improves the
efficiency of our algorithm and strengths the utility of data sets. The details are
as follows:

q(ci) = q(ci) + laplace(
Δq

ε2
) (8)

where ε2 means the privacy budget of laplace mechanism, Δq is the global sen-
sitivity of function q. In this paper, both function tag and q mean the sensitive
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location visiting frequencies of each worker. In order to understand the laplace
mechanism, we list the probability density function of laplace mechanism:

Pr(x, λ) =
e− |x|

λ

λ
(9)

where λ denotes that there is no correlation between noises and database, it
merely concerned with sensitivity of function and privacy parameters. Here, x
means the actual visiting frequencies.

We eventually formulate a completely new set E and then publish it to our
crowdsourcing platform. At this point, We successfully complete the process of
privacy preserving and deliver it to the unreliable third party.

4 Experimental Study

4.1 Experiments Setup

We use a real-world dataset: Gowalla. It contains the check-in history of users
in allocation-based social network. It includes some detailed data such as the
type of each user, the longitude and latitude of the location and the time when
users visit the locations. For our experiments, we assume that these users are
workers of the spatial crowdsourcing system, and their locations are those of the
most recent check-in points. We transfer the original data into a database D in
which it records the visiting frequencies of users in a month. The algorithms
are implemented in java 8, and the experiments were performed on Intel(R)
Core(TM) i7 2.40 GHz CPU and 8 GB main memory.

4.2 Experimental Results

We evaluate our proposed method from the following two aspects: efficiency
and utility. When each worker receives a series of recommended tasks, he/she
decides to choose the appropriate task to conduct. Workers may spend a lot of
time finishing information filtering when the size of task set is substantial. Thus,
the efficiency of information filtering is directly related to the Trie-Tree. The
recommendation system should create Trie-Tree for a short time to ensure thee
efficiency of information filtering. Furthermore, utility represents the accuracy
and data protection level. From the perspective of the crowdsourcing platform,
the utility is expected accuracy of data protection. Meanwhile, the utility is the
degree of privacy preserving from the perspective of the workers. The utility for
both stakeholders is closely related to the privacy protection level.

Efficiency. We analyze the efficiency of our method from timeliness of creating
a Trie-Tree and extracting data from the tree. We vary the number of nodes
from 8 to 512 to observe the situation of creating an entire Trie-Tree. tcreate
denotes how long we need to build a tree. As is shown in the following Table 1,
We apparently see that building a tree is not a time-consuming process during
the whole period of privacy protection in spite of the size of nodes set.
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Table 1. Time to create Trie-Tree

Number of nodes 8 32 64 128 256 512

Tcreate/×10−6s 9 21 33 59 114 146

Table 2. Time to extract sensitive information.

ε1 0.01 0.02 0.10 0.40 0.90 1.30

n/s 3120 4382 41297 48633 52614 75621
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(a) RTR of varying n
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Fig. 3. RTR of varying n and ε.

From the Table 2, we also see that the efficiency of extracting data from tree
is so high, because it depends on the essential structure and characteristics of
Trie-Tree. In some degree, the time of extracting data grows longer as the privacy
budget becomes bigger.

Utility. First of all, we use Local Protection in Crowdsourcing (LPC) to repre-
sent our method. Then we show the performance on ratio of rejecting true nodes
(RTR), which significantly represents the utility of algorithms. Figure 3(a) plots
the RTR and number of nodes with n ranging from 50 to 350. At the same time,
we fix privacy level to 0.5. For each n, the x-axis represents the number of nodes
in set, and the y-axis represents the ratio. The ratio increases as the size of nodes
set grows bigger. LPC runs better than Trun-Fre [2] and DP-topkP [24]. This is
reasonable because we add noises into sets rather than nodes merely.

Secondly, we analyze the ratio of RTR and the privacy protection level. Since
noise needs to be added to provide (ε,δ)-differential privacy, the RTR is achieve
at the cost of accuracy. Before the experiment is conducted, we strictly control
the number of nodes to be 150. We illustrate the trade-off between the privacy
parameter ε and RTR in Fig. 3(b). It shows the RTR and number of nodes with
ε ranging from 0.5 to 2.0. For each ε, the x-axis represents the privacy budget
in our algorithm, and the y-axis represents the ratio. Our method outperforms
than Trun-Fre [2] and DP-topkP [24] as well.
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Fig. 4. Error of varying ε.

Lastly, we compare our novel method LPC with previous existing approaches
CM [9] and LP Signal [14]. Define Fbefore denotes the frequencies of locations
before adding noises and Fafter means frequencies after doing that. Thus error
signifies the ratio of Fbefore and the differences between Fafter and Fbefore:

Error =
‖Fafter − Fbefore‖2

‖Fbefore‖2
(10)

The experiment results are shown in the Fig. 4. It is clear for us to see that the
impact of varying privacy levels on the errors. We can observe that the minimum
error in our method compared with other existing algorithms. Moreover, whether
the privacy budget ε is high or not, our method also achieve the steady and
desired results. Since the error is inevitable with a small range, we conclude the
expected errors of our privacy-preserving approach is almost close the optimal
one.

5 Related Work

In this section, we review some previous work related to our problem in this liter-
ature. Differential privacy [8,11] is a strict privacy definition that is independent
of prior knowledge. With the definition of privacy, To et al. [19] proposed a
framework for protecting workers’ locations by illustrating the cellular service
provider (CSP) as a third party. The partition algorithm generates a private
spatial decomposition (PSD) is widely conducted by the following works such
as dividing grids [23], creating kd-trees [21,22] and quadtree [12]. However, the
main shortcoming of these methods is that the privacy-preserving depends on
the third party in some degree.

6 Conclusion

Privacy issues are increasingly becoming concerning with the popularity of spa-
tial crowdsourcing. In this paper, we introduced a novel differentially private
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approach for spatial crowdsourcing, which enables the participation of various
workers without compromising their sensitive information privacy. The magni-
tude of noise is minimized by fully utilizing the given privacy budget, which is
crucial for efficiency and utility of our method. To ensure effective privacy pro-
tection, we select the Trie-Tree to storage workers’ sensitive information rather
than sending them to the completely trust third party. Because a trustwor-
thy data collector is merely an assumption, which contradicts the reality and
common sense. Comparisons between our method and existing approaches that
privacy-preserving effects is dramatically enhanced by a series of experiments.
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