
Chapter 9
Quantum Black Holes as the Link
Between Microphysics and Macrophysics

B. J. Carr

Abstract There appears to be a duality between elementary particles,which span the
mass range below the Planck scale, and black holes, which span themass range range
above it. In particular, the Black Hole Uncertainty Principle correspondence posits
a smooth transition between the Compton and Schwarzschild scales as a function of
mass. This suggests that all black holes are in some sense quantum, that elementary
particles can be interpreted as sub-Planckian black holes, and that there is a subtle
connection between quantum and classical physics.

9.1 Classical Versus Quantum Black Holes

At the previous Karl Schwarzschild meeting, I spoke about some quantum aspects
of primordial black holes [1] and what I term the Black Hole Uncertainty Principle
correspondence [2]. My contribution this year will involve an amalgamation of these
two ideas and is therefore a natural follow-up. It will also allow me to discuss some
recent work with two of the organisers of this meeting.

Black holes could exist over a wide range of mass scales. Those larger than
several solar masses would form at the endpoint of evolution of ordinary stars and
there should be billions of these even in the disc of our own galaxy. “Intermediate
Mass Black Holes” (IMBHs) would derive from stars bigger than 100 M�, which
are radiation-dominated and collapse due to an instability during oxygen-burning,
and the first primordial stars may have been in this range. “Supermassive Black
Holes” (SMBHs), with masses from 106 M� to 1010 M�, are thought to reside in
galactic nuclei, with our own galaxy harbouring one of 4 × 106 M� and quasars
being powered by ones of around 108 M�. All these black holes might be described
as “macroscopic” since they are larger than a kilometre in radius.
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Black holes smaller than a solar mass could have formed in the early universe,
the density being ρ ∼ 1/(Gt2) at a time t after the Big Bang. Since a region of
mass M requires a density ρ ∼ c6/(G3M2) to form an event horizon, such “Pri-
mordial Black Holes” (PBHs) would initially have of order the horizon mass,
MH ∼ c3t/G, so those forming at the Planck time (tP ∼ 10−43 s) would have the
Planck mass (MP ∼ 10−5 g), while those forming at t ∼ 1s would have a mass of
105M�. Therefore PBHs could span an enormous mass range. Those initially lighter
than M∗ ∼ 1015 g would be smaller than a proton and have evaporated by now due
to Hawking radiation, the temperature and evaporation time of a black hole of mass
M being T ∼ 1012(M/1015g)−1 K and τ ∼ 1010(M/1015g)3y, respectively [3]. I will
classify black holes smaller than M∗ as “quantum”, although I will argue later that
all black holes are in a sense quantum. Those smaller than a lunar mass, 1024 g, will
be classified as “microscopic”, since their size is less than a micron. Coincidentally,
this is also the mass above which T falls below the CMB temperature.

A theory of quantum gravity would be required to understand the evaporation
process as the black hole mass falls to MP and this might even allow stable Planck-
mass relics. The existence of extra spatial dimensions, beyond the three macroscopic
ones, may also come into play. These dimensions are usually assumed to be com-
pactified on the Planck length (RP ∼ 10−33 cm) but they can be much larger than
this in some models. This would imply that gravity grows more strongly at short
distances than implied by the inverse-square law[4], leading to the possibility of
TeV quantum gravity and black hole production at accelerators. Such holes are not
themselves primordial but this would have crucial implications for PBH formation.

The wide range of masses of black holes and their crucial role in linking macro-
physics andmicrophysics is summarized in Fig. 9.1. This shows theCosmicUroborus
(the snake eating its own tail), with the various scales of structure in the universe
indicated along the side. It can be regarded as a sort of “clock” in which the scale
changes by a factor of 10 for each minute – from the Planck scale at the top left to
the scale of the observable universe at the top right. The head meets the tail at the
Big Bang because at the horizon distance one is peering back to an epoch when the
universe was very small, so the very large meets the very small there. The various
types of black holes discussed above are indicated on the outside of the Urobrous.
They are labelled by their mass, this being proportional to their size if there are three
spatial dimensions. On the right are the well established astrophysical black holes.
On the left – and possibly extending somewhat to the right – are the more specu-
lative PBHs. The vertical line between the bottom of the Uroborus (planetary mass
black holes) and the top (Planck mass black holes and extra dimensions) provides a
convenient division between the microphysical and macrophysical domains.

Although the length-scale λ decreases as one approaches the top of the Uroborus
from the left, the mass of the associated particle m ∼ �/(λc) increases. So Fig. 9.1
can also be used to represent elementary particles. On the inside of the Uroborus are
indicated the positions of the Higgs boson (250GeV) and proton (1GeV) on the left,
the dark energy mass-scale (10−4 eV) at the bottom, and the (possible) mass of the
graviton (10−32 eV) at the top. Note that the inner scale also gives the temperature
of a black hole with mass indicated by the outer scale.
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Fig. 9.1 The Cosmic Uroboros is used to indicate that mass the various types of black holes
and elementary particles, the division between the micro and macro domains being indicated by the
vertical line.QSO stands for “Quasi-StellarObject”,MWfor “MilkyWay”, IMBH for “Intermediate
Mass Black Hole”, LHC for “Large Hadron Collider”, and “DE” for “Dark Energy”

9.2 The Black Hole Uncertainty Principle Correspondence

A key feature of the microscopic domain is the (reduced) Compton wavelength
for a particle of rest mass M , which is RC = �/(Mc). In the (M, R) diagram of
Fig. 9.2, the region corresponding to R < RC might be regarded as the “quantum
domain”, in the sense that the classical description breaks down there. A key feature
of the macroscopic domain is the Schwarzschild radius for a body of mass M , RS =
2GM/c2, which corresponds to the size of the event horizon. The region R < RS

might be regarded as the “relativistic domain”, in the sense that there is no stable
classical configuration in this part of Fig. 9.2.

TheCompton and Schwarzschild lines intersect at around the Planck scales, RP =√
�G/c3 ∼ 10−33 cm, MP = √

�c/G ∼ 10−5g, and divide the (M, R) diagram in
Fig. 9.2 into three regimes, which we label quantum, relativistic and classical. There
are several other interesting lines in the figure. The vertical line M = MP marks the
division between elementary particles (M < MP ) and black holes (M > MP ), since
the size of a black hole is usually required to be larger than the Compton wavelength
associated with its mass. The horizontal line R = RP is significant because quantum
fluctuations in the metric should become important below this [5]. Quantum gravity
effects should also be important whenever the density exceeds the Planck value,
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Fig. 9.2 The division of the
(M, R) diagram into the
classical, quantum,
relativistic and quantum
gravity domains. The
boundaries are specified by
the Planck density, the
Compton wavelength and the
Schwarzschild radius

ρP = c5/(G2
�) ∼ 1094 g cm−3, corresponding to the sorts of curvature singularities

associated with the big bang or the centres of black holes [6]. This implies R <

RP(M/MP)1/3, which is well above the R = RP line in Fig. 9.2 for M � MP , so
one might regard the shaded region as specifying the ‘quantum gravity’ domain.
This point has recently been invoked to support the notion of Planck stars [7] and
could have important implications for the detection of evaporating black holes [8].
Note that the Compton and Schwarzschild lines transform into one another under the
T-duality transformation M → M2

P/M . This interchanges sub-Planckian and super-
Planckianmass scales and corresponds to a reflection in the lineM = MP in Fig. 9.2.
T-dualities arise naturally in string theory and are known tomapmomentum-carrying
string states to winding states and vice-versa [9].

Although the Compton and Schwarzschild boundaries correspond to straight lines
in the logarithmic plot of Fig. 9.2, this form presumably breaks down near the Planck
point due to quantum gravity effects. One might envisage two possibilities: either
there is a smooth minimum, as indicated by the broken line in Fig. 9.2, so that the
Compton and Schwarzschild lines in some sense merge, or there is some form of
phase transition or critical point at the Planck scale, so that the separation between
particles and black holes is maintained. Which alternative applies has important
implications for the relationship between elementary particles and black holes [10].
This may also relate to the issue of T-duality since this purports to play some role in
linking point particles and black holes. Such a link is also suggested by Fig. 9.1.

One way of smoothing the transition between the Compton and Schwarzschild
lines is to invoke some connection between the Uncertainty Principle onmicroscopic
scales and black holes on macroscopic scales. This is termed the Black Hole Uncer-
tainty Principle (BHUP) correspondence [1] and also the Compton-Schwarzschild
correspondence when discussing an interpretation in terms of extended de Broglie
relations [11]. It is manifested in a unified expression for the Compton wavelength
and Schwarzschild radius. The simplest expression of this kind would be

RCS = β�

Mc
+ 2GM

c2
, (9.1)
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where β is the (somewhat arbitrary) constant appearing in the Compton wavelength
expression. In the sub-Planckian regime, this can be written as

R′
C = β�

Mc

[

1 + 2

β

(
M

MP

)2
]

(M 	 MP) , (9.2)

with the second term corresponding to a small correction of the kind invoked by the
Generalised Uncertainty Principle [12]. In the super-Planckian regime, it becomes

R′
S = 2GM

c2

[

1 + β

2

(
MP

M

)2
]

(M � MP) . (9.3)

This is termed theGeneralisedEventHorizon [1],with the second termcorresponding
to a small correction to the usual Schwarzschild expression. More generally, the
BHUP correspondence might allow any unified expression R′

C(M) ≡ R′
S(M)which

has the asymptotic behaviour β�/(Mc) for M 	 MP and 2GM/c2 for M � MP .
One could envisage many such expressions but we are particularly interested in those
which – like (9.1) – exhibit T-duality.

At the last meeting, I discussed some of the consequences of the BHUP corre-
spondence, with particular emphasis on the implied black hole temperature, the link
with Loop Quantum Gravity [6] and the effect of extra dimensions [13, 14]. The
implication is that in some sense elementary particles are sub-Planckian black holes.
Next I discuss some developments arising out of recent work with my collaborators.

9.3 Carr–Mureika–Nicolini work

The results of [10] are now summarised. In the standard picture, the mass in the
Schwarzschild solution is obtained by matching the metric coefficients with the
Newtonian potential and this gives the Komar integral

M ≡ 1

4πG

∫

∂�

d2x
√

γ (2) nμσν∇μK ν , (9.4)

where K ν is a timelike vector, � is a spacelike surface with unit normal nμ, and ∂�

is the boundary of � (typically a 2-sphere at spatial infinity) with metric γ (2)i j and
outward normal σμ. For M � MP, quantum effects are negligible and one finds the
usual Schwarzschildmass. ForM < MP, however, the expression can simultaneously
refer to a particle and a black hole. One usually considers the particle case and writes
(9.4) as

M ≡
∫

�

d3x
√

γ nμKνT
μν ≈ −4π

∫ RC

0
dr r2T 0

0 , (9.5)
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whereγ is the determinant of the spatially inducedmetricγ i j , T μν is the stress-energy
tensor and T 0

0 accounts for the particle distribution on a scale of order RC. This
corresponds to the mass appearing in the expression for the Compton wavelength.
When the black hole reaches the final stages of evaporation, the major contribution
to integral (9.4) becomes

M = −4π
∫ RP

0
dr r2T 0

0 , (9.6)

where T 0
0 accounts for an unspecified quantum-mechanical distribution of matter

and energy. Integral (9.6) is then unknown and might lead to a completely different
definition of the Komar energy.

Inspired by the dual role ofM in theBHUPcorrespondencewe explore a variant of
the last scenario, based on the existence of sub-Planckian black holes, i.e. quantum
mechanical objects that are simultaneously black holes and elementary particles.
In this context, we suggest that the Arnowitt–Deser–Misner (ADM) mass, which
coincides with the Komar mass in the stationary case, should be

MADM = M

(
1 + β

2

M2
P

M2

)
, (9.7)

which is equivalent to (9.3).We thus posit a quantum-correctedSchwarzschildmetric,
like the usual one but with M replaced by MADM.We note a possible connection with
the energy-dependent metric proposed in the framework of “gravity’s rainbow” [15].
It may also relate to the distinction between the bare and renormalized mass in QFT
in the presence of stochastic metric fluctuations [16].

The horizon size for the modified metric is given by

R′
S = 2MADM

M2
P

≈
⎧
⎨

⎩

2M/M2
P (M � MP)

(2 + β)/MP (M ≈ MP)

β/M (M 	 MP) ,

(9.8)

where we use unitswith� = c = 1.Thefirst expression is the standardSchwarzschild
radius. The intermediate expression gives aminimumof order RP, so the Planck scale
is never actually reached for β > 0 and the singularity remains inaccessible. The last
expression resembles the Compton wavelength. If the temperature is determined by
the black hole’s surface gravity [3], one has

T = M2
P

8πMADM
≈

⎧
⎨

⎩

M2
P/(8πM) (M � MP)

MP/(8π(1 + β/2)) (M ≈ MP)

M/(4πβ) (M 	 MP) .

(9.9)

This temperature is plotted in Fig. 9.3. The large M limit is the usual Hawking
temperature with a small correction. However, as the black hole evaporates, the
temperature reaches a maximum at around TP and then decreases to zero as M → 0.
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Fig. 9.3 Hawking
temperature (9.9) implied by
the surface gravity argument
as a function of M/MP for
β = 1 (bottom), β = 0.5
(middle) and β = 0.1 (top).
As M decreases, T reaches a
maximum below TP and
then falls to zero

A possible explanation for the M 	 MPl behaviour is that a decaying black hole
makes a temporary transition to a (1+1)-D dilaton black hole when approaching the
Planck scale, since this naturally encodes a 1/M term in its gravitational radius. For
according to ’t Hooft [17], gravity might experience a (1+1)-D phase at the Planck
scale due to spontaneous dimensional reduction, such a conjecture being further
supported by studies of the fractal properties of a quantum spacetime at the Planck
scale. At this point the Komar mass can be defined as for dilaton black holes by [18]

M ∼
∫

dx
√
g(1) n(2)

i T i
0 , (9.10)

where g(1) is the determinant of the spatial section of gi j , the effective 2D quantum
spacetime metric, and (2)T i

0 is the dimensionally reduced energy-momentum tensor.
The black hole luminosity in this model is L = γ −1M−2

ADM where γ ∼ tP/M3
P.

Although the black hole loses mass on a timescale τ ∼ M/L ∼ γ M3(1 + βM2
P/

2M2)2, it never evaporates entirely because themass loss rate decreases whenM falls
below MP . There are two values of M for which τ is comparable to the age of the
Universe (t0 ∼ 1017 s). One is super-Planckian, M∗ ∼ (t0/γ )1/3 ∼ (t0/tP)1/3MP ∼
1015g, this being the standard expression for the mass of a PBH evaporating at the
present epoch, and the other is sub-Planckian, M∗∗ ∼ β2(tP/to)MP ∼ 10−65 g. The
usual Hawking lifetime (τ ∝ M3) gives the time for this mass to decrease to MP,
after which it quickly falls to the value M∗∗. Although this mass-scale is very tiny,
it arises naturally in some estimates for the photon or graviton mass [19]. Note that
the PBHmass cannot actually reach M∗∗ at the present epoch because the black hole
temperature is less than the CMB temperature below MCMB ∼ 10−36 g, leading to
effectively stable relics of this mass which might provide the dark matter.
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To summarise the advantages of our proposal: it encodes the BHUP duality in
the expression for the mass; it smooths the M(R) curve, so that there is no critical
point; it cures the thermodynamic instability of evaporating black holes; it exhibits
dimensional reduction in the sub-Planckian regime; and it gives a consistent theory of
gravity in different spacetime dimensions without needing two regimes governed by
different theories (GR and QM). Indeed, in some sense, the BHUP correspondence
implies that all black holes are quantum and that the Uncertainty Principle has a
gravitational explanation.

9.4 Lake–Carr Work

Canonical (non-gravitational) quantum mechanics is based on the concept of wave-
particle duality, encapsulated in the de Broglie relations E = �ω and p = �k. When
combined with the energy-momentum relation for a non-relativistic point particle,
these lead to the dispersion relation ω = (�/2m)k2. However, these relations break
down near the Planck scale, since they correspond to wavelengths λ 	 RP or peri-
ods t 	 tP . Reference [11] therefore proposes modified forms for the de Broglie
relations which may be applied even for E � MPc2, with the additional terms being
interpreted as representing the self-gravitation of the wave packet.

The simplest such relations are E = � and p = �κ with

 =
{

ω2
P

(
ω + ω2

P/ω
)−1

(m < MP)

β
(
ω + ω2

P/ω
)

(m > MP)
, κ =

{
k2P

(
k + k2P/k

)−1
(m < MP)

β
(
k + k2P/k

)
(m > MP).

(9.11)
Continuity of E , p, dE/dω and dp/dk at ω = ωP and k = kP is ensured by set-
ting β = 1/4. The relation  = (�/2m)κ2 then leads to new dispersion relations,
quadratic in ω, which can be solved for both E 	 Mpc2 and E � Mpc2. The two
solution branches, ω±(k,m), are shown as functions of k for three values of m
in Fig. 9.4a. The solutions are dual under the transformation m → M ′2

P /m where
M ′

P ≡ (π/2)MP . Canonical non-relativistic quantum mechanics is recovered in the
bottom left region, where ω− ≈ (�/2m)k2. The branches meet at ω±(kP) = ωP for
the critical casem = M ′

P but there is a gap in the allowedvalues of k form �= M ′
P . The

limiting values for a given mass, k±(m), are shown in Fig. 9.4b and these also exhibit
duality. These values correspond to the Schwarzschild formula for E � MPc2 and
the Compton formula for E 	 MPc2. So this is another way of interpreting the
BHUP correspondence.

In our second paper [20] we discuss the preservation of T-duality in higher dimen-
sions. In three spatial dimensions, theComptonwavelength andSchwarzschild radius
are dual under the transformation M → M2

P/M . In the presence of n extra dimen-
sions, compactified on some scale RE , it is usually assumed that RS ∝ M1/(1+n) [21]
and RC ∝ M−1 (as in three domensions) for R < RE , which breaks the duality. This
situation is illustrated in Fig. 9.5a and gives the standard scenario in which the effec-



9 Quantum Black Holes as the Link Between Microphysics and Macrophysics 93

(a) (b)

Fig. 9.4 Illustrating how a the dispersion relationsω±(m, k) for three values ofm and b the limiting
wavenumbers k±(m) are changed in the proposed model
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/
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Fig. 9.5 Showing change in Planck scales for large extra dimensions if a only the Schwarzschild
radius is modified and b the Compotn wavelength is also modified, preserving T-duality

tive Planck length is increased and the Planck mass reduced, allowing the possibility
of black hole production at the LHC.

Currently there is no evidence for such production. However, the effective Comp-
tonwavelength depends on the form of the (3 + n)-dimensional wavefunction. If this
is spherically symmetric, then one indeed has RC ∝ M−1. But if the wave function is
pancaked in the extra dimensions and maximally asymmetric, then RC ∝ M−1/(1+n),
so that the duality between RC and RS is preserved. This situation is illustrated in
Fig. 9.5b, which shows that the effective Planck length is reduced even more but
the Planck mass is unchanged. So TeV quantum gravity is precluded in this case
and black holes cannot be generated in collider experiments. Nevertheless, the extra
dimensions could still have consequences for the detectability of black hole evap-
orations and the enhancement of pair-production at accelerators on scales below
RE .
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