
Chapter 8
The Good Properties of Schwarzschild’s
Singularity

O. C. Stoica

Abstract The most notable problems of General Relativity (GR), such as the
occurrence of singularities and the information paradox, were initially found on the
background provided by Schwarzschild’s solution. The reason is that this solution
has singularities, widely regarded as a big problem of GR. While the event horizon
singularity can be removed by moving to non-singular coordinates, not the same is
true about the r = 0 singularity. However, I will present coordinates which make the
metric finite and analytic at the singularity r = 0. The metric becomes degenerate at
r = 0, so the singularity still exists, but it is of a type that can be described geometri-
cally by referring to finite quantities only. Also, the topology of the causal structure
is shown to remain intact, and the solution is globally hyperbolic. This suggests a
possible solution to the black hole information paradox, in the framework of GR. As
a side effect, the Schwarzschild singularity belongs to a class of singularities accom-
panied by dimensional reduction effects, which are hoped to cure the infinities in
perturbative Quantum Gravity.

8.1 Extending the Schwarzschild Solution Beyond the
Singularity

As it is well known, the Schwarzschild solution of Einstein’s equation is

ds2 = −
(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2dσ 2, (8.1)

where
dσ 2 = dθ2 + sin2 θdφ2 (8.2)
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is the metric of the unit sphere S2, m the mass of the body, and the units are chosen
such that c = 1 and G = 1 (see for example [1], p. 149). It represents a spherically
symmetric static and electrically neutral black hole. Themetric (8.1) has singularities
at r = 0 and r = 2m, which puzzled Schwarzschild, who decided to replace the
coordinate r with R = r − 2m, so that the only singularity is in the new origin
R = 0.

However, there are other coordinates for the Schwarzschild black hole, which
remove the singularity r = 2m, for example the Eddington–Finkelstein coordinates
[2, 3]. This shows that the event horizon singularity is due to the coordinates, which
themselves are singular.

Unfortunately, changing the coordinates cannot be used to remove the singularity
r = 0, as can be seen from the fact that the Kretschmann scalar Rabcd Rabcd is infinite
at r = 0 in any coordinates.

Fortunately, coordinate transformations can remove “half” of the singularity, so
that the metric gab is made finite and extends analytically beyond the singularity [4].

Theorem 8.1 The Schwarzschild metric can be extended analytically at r = 0.

Proof To see this, let us apply the coordinate transformation

{
r = τ 2

t = ξτ T (8.3)

where T ≥ 2 is an integer. Then, the components of the Jacobian matrix are

∂r

∂τ
= 2τ,

∂r

∂ξ
= 0,

∂t

∂τ
= T ξτ T−1,

∂t

∂ξ
= τ T . (8.4)

In the new coordinates, the components of the metric metric become

gττ = − 4τ 4

2m − τ 2
+ T 2ξ 2(2m − τ 2)τ 2T−4 (8.5)

gτξ = T ξ(2m − τ 2)τ 2T−3 (8.6)

gξξ = (2m − τ 2)τ 2T−2 (8.7)

and its determinant
det g = −4τ 2T+2. (8.8)

Then, the four-metric becomes

ds2 = − 4τ 4

2m − τ 2
dτ 2 + (2m − τ 2)τ 2T−4(T ξdτ + τdξ)2 + τ 4dσ 2, (8.9)

which remains finite and is in fact analytic at r = 0. �
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Given that T can be any integer T ≥ 2, we have obtained an infinite number of
solutions. However, a unique solution among them has special properties, as I will
explain in the following.

8.2 The Most Regular Extension

From geometric point of view, the problem with singular metrics is the following. In
semi-Riemannian geometry (where the metric is regular), one can define in a natural
way a unique connection which preserves the metric and is torsionless. Then, we can
define covariant derivatives for tensor fields, which enable us to write field equations.
Also, the curvature tensor, needed for the Einstein equation, can be defined and is
unique. But if the metric becomes singular, there is no way to define a covariant
derivative and curvature tensor by usual means. The reason is that both the metric
tensor gab and its reciprocal gab are used in the construction of these objects. When
gab has infinite components–as it happens in the Schwarzschild metric (8.1), the
connection and curvature can no longer be defined. Even if all of the components
of gab are finite, but it is degenerate (its determinant vanishes), gab is not defined
or is singular, and one cannot define the connection and curvature. If the metric is
degeneratewith constant signature,Kupeli showedone can define a sort of connection
and curvature, but his construction is not invariant andnot unique, relying on choosing
at each point a subspace of the tangent space complementary to the isotropic subspace
[5, 6]. But in [7, 8] it was shown that we can do this in an invariant way, and it also
works for a large class of metrics with variable signature (which are the ones needed
in GR). For this kind of metrics (named semi-regular in [7]) the covariant derivatives
can be defined for a large class of differential forms. Also, a differential operator
which plays the same role as the covariant derivative can be defined for vector fields.
It turns out that for semi-regular metrics we can also define the Riemann curvature
tensor Rabcd (although Ra

bcd usually is still singular).Moreover, theEinstein equation
can be cast in a form which has the same content outside the singularities, but also
works at semi-regular singularities [7, 9].

If the spacetime events where the metric is regular form a dense subset of the
spacetime, the metric is semi-regular if the contractions gst�abs�cdt are smooth [7],
where �abc = 1

2 (∂agbc + ∂bgca − ∂cgab) are Christoffel’s symbols of the first kind.
The reciprocal metric gst becomes infinite at the singularity, but gst�abs�cdt remains
smooth. For a general and invariant definition of semi-regular metrics see [7].

Among the solutions (8.9), there is only one with semi-regular metric [4].

Theorem 8.2 The solution (8.9) can be extended analytically so that the singularity
at r = 0 is semi-regular, if and only if T = 4.

Proof In the coordinate system (8.3), Christoffel’s symbols of the first kind �abc are
also smooth. Since at r = 0 the determinant of the metric vanishes, gst is singular.
But we can find T so that �abs�cdt compensates this singularity and the contractions
gst�abs�cdt are smooth.
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The reciprocal metric has the components

gττ = −1

4
(2m − τ 2)τ−4 (8.10)

gτξ = 1

4
T ξ(2m − τ 2)τ−5 (8.11)

gξξ = τ−2T+2

2m − τ 2
− 1

4
T 2ξ 2(2m − τ 2)τ−6 (8.12)

The partial derivatives of the coefficients of the metric are

∂τ gττ = 8
τ 5 − 4mτ 3

(2m − τ 2)2
+ 2T 2(2T − 4)mξ2τ 2T−5 − T 2(2T − 2)ξ2τ 2T−3, (8.13)

∂τ gτξ = 2T (2T − 3)mξτ 2T−4 − T (2T − 1)ξτ 2T−2, (8.14)
∂τ gξξ = 2m(2T − 2)τ 2T−3 − 2T τ 2T−1, (8.15)

∂ξ gττ = 2T 2ξ(2m − τ 2)τ 2T−4, (8.16)
∂ξ gτξ = T (2m − τ 2)τ 2T−3, (8.17)

∂ξ gξξ = 0. (8.18)

From (8.13)–(8.18) we find that the least power of τ in the partial derivatives of
the metric is min(3, 2T − 5). From the (8.10)–(8.12), the least power of τ in the
reciprocal metric is min(−6,−2T + 2). Hence, the least power of τ in gst�abs�cdt

is non-negative only if

− 1 − 2T + 3min(3, 2T − 5) ≥ 0. (8.19)

Therefore gst�abs�cdt are smooth only for T = 4, and the metric in two dimen-
sions (τ, ξ) is semi-regular. The metric in all four dimensions is the warped product
between the two-dimensional space (τ, ξ) and the sphere S2, with warping function
τ 2, which according to [10], is semi-regular. �

The geodesics of the extended solution are given by

dξ

dτ
= −4ξ

τ
± 2

(2m − τ 2)τ
, (8.20)

which become tangent to the hypersurface τ = 0. The causal structure is represented
in Fig. 8.1. We can see that, although the lightcones at events from the singularity
are flattened, they have the same topology as those outside the singularity [11].
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Fig. 8.1 The causal
structure of the extended
Schwarzschild solution. The
lightcones at the singularity
are flattened, but they have
the same topology as the
lightcones outside the
singularity

8.3 Globally Hyperbolic Spacetimes with Black Holes

The analytic extension of the Schwarzschild metric from (8.9) is symmetric at the
time reversal τ �→ −τ , which means that it extends beyond the singularity as a
white hole. If we modify the Schwarzschild solution to describe a black hole which
forms by gravitational collapse, for example as in the Oppenheimer–Snyder model
[12], then the solution extends beyond the singularity as an evaporating black hole
(Fig. 8.2b). It is interesting that, while one would normally expect that spacetime
ends at the singularity (Fig. 8.2a), solution (8.9) does not behave like this, and is
compatible with globally hyperbolic spacetimes like that in Fig. 8.2b [13].

In order for information to be preserved, this is not enough. The field equations
normally involve covariant derivatives, which are not defined in general when the
metric is degenerate. But the solution (8.9) with T = 4 allows us to define covariant
derivatives and even to rewrite the Einstein equation without infinities [7, 9]. What
about other fields? In [14] it is shown howwe can write theMaxwell and Yang–Mills
equations when themetric is semi-regular. There are still some open problems related
to this, in particular how to formulate the Dirac equation for semi-regular metrics.

8.4 Implications of Singularities to Quantum Gravity

The dimension of Newton’s constant is 2 − D = −2 in mass units, where D is the
dimension of spacetime. This makes Quantum Gravity (QG) perturbatively non-
renormalizable even without matter, at two loops [15, 16], by requiring an infinite
number of higher derivative counterterms, with their coupling constants. Various
approaches to make QG perturbatively renormalizable indicate that in the UV limit a
dimensional reduction to two dimensions takes place (for a review, see [17]), either
as a consequence of other hypotheses, or by being directly postulated to obtain the
desired result.



80 O. C. Stoica

Fig. 8.2 a Standard
evaporating black hole,
whose singularity destroys
the information. b
Evaporating black hole
extended through the
singularity preserves
information

(a)

(b)

At a semi-regular singularity, the metric becomes degenerate, behaving like a
lower-dimension metric. Moreover, the Weyl curvature tensor also becomes lower-
dimensional, and for this reason it vanishes [18]. Such effects happen at the singu-
larities of the Schwarzschild, but also of the charged and rotating black holes [8].
In particular they accompany pointlike particles. Some of the dimensional reduction
effects postulated in several approaches to QG follow naturally at singularities [19].
This suggests that when we use perturbative methods, by taking into consideration
the corrections introduced by the singularities, the desired dimensional reduction
occurs naturally.
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