
Chapter 6
Symplectic Structure of Extremal Black
Holes

K. Hajian and A. Seraj

Abstract We review the construction of phase space for the near horizon extremal
geometries (NHEG) as solutions to Einstein gravity. We study the symplectic sym-
metries of this phase space and compute their corresponding conserved charges. We
show that the symmetry algebra is an interesting generalization of Virasoro algebra.
The analysis is based on covariant phase space method.

6.1 Introduction

Black holes (BHs) are solutions to theories of gravity, specified by having an event
horizon in their geometry. They also usually have a singularity behind the horizon.
Although these solutionswere known from the early stages of development of general
relativity by Karl Schwarzschild, their thermodynamic behaviors were unraveled in
early 70s by seminal works of Bekenstein and Hawking [1, 2] in which entropy and
temperaturewere associated toBHs. InEinstein-Hilbert theoryof gravity,BHentropy
is related to the area of the horizon S = A

4G , while Hawking temperature can be read
from the surface gravity of the black hole κ , through the relation TH = κ

2π . Also for
stationary BHs in d-dimensions, with a number of commuting and compact U (1)
axial isometries, labelled by index i , one can associate conserved angular momenta
Ji as well asmassM (due to time translation symmetry). Thermodynamic conjugates
to the angular momenta are angular velocities of the horizon, denoted by�i

H
(indexH

forHorizon). In addition, dynamics of BHs satisfy laws which are analogous to usual
laws of thermodynamic [3]. Specifically, thefirst lawofBH thermodynamics is δM =
THδS + �i

H
δ Ji [3, 4]. During the past four decades, an active line of research aims

at describing microstates underlying these thermodynamic behaviors. The present
work would also be in the same line.
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Motivated by the microstate counting for usual thermodynamic systems (e.g. an
ideal gas) which is based on their phase spaces, here we try to build the classical
symplectic structure for the set of extremal (vanishing temperature) BHs. Interested
reader can refer to the original papers [5, 6] for detailed analysis, or to [7] as a
pedagogical text. In this analysis, we keep the spacetime dimension to be arbitrary d
and the theory to be given by the Einstein-Hilbert Lagrangian L = 1

16πG R, where
R is the Ricci scalar. In order to make the analysis simpler, we will concentrate on
extremal BHs with d − 3 number of commuting U (1) axial isometries, denoted by
U (1)d−3.

Significantly, thermodynamic properties of the BHs are encoded in their near
horizon region. The temperature and other chemical potentials, in addition to BHs
conserved charges can be read directly from that region. Interestingly, Iyer andWald
have shown that BH entropy is the conserved charge associated to the Killing vector
of the horizon, which is calculated on the horizon [4, 8]. Hence, one expects to find
themicrostates of black holes by focusing on their near horizon region. Therefore, we
study the phase space of near horizon geometries of extremal black holes (NHEG).
These solutions share some interesting features:

• Taking the near horizon limit of an extremal BH as a solution to a given theory
leads to a near horizon extremal geometry (NHEG) which is a solution to the same
theory [9] (because they are found by a limiting process instead of approximation
process [7]).

• Stationarity of BH is enhanced to SL(2, R) in NHEG, therefore the symmetries
of NHEG with the above mentioned properties is SL(2, R) ×U (1)d−3.

• NHEGs are uniquely identified by d − 3 number of angular momenta Ji [10].
• Under appropriate isometry and boundary conditions, perturbations on NHEGs
are restricted (upto infinitesimal diffeomophisms) to parametric variations, i.e.
infinitesimal variations of the solution identified by Ji to an adjacent solution
identified by Ji + δ Ji [11].

The metric of the considered NHEGs can be written in a suitable coordinate system
as [12, 13]:

ds2 = �(θ)

[
− r2dt2 + dr2

r2
+ dθ2 + γi j (θ)(dϕi + kir dt)(dϕ j + k jr dt)

]
.

(6.1)

�(θ) and γi j (θ) might be determined by imposing the equation of motion over the
above ansatz, or by taking the near horizon limit of a given BH. In the coordinate
which the metric is represented, the Killing vectors of SL(2, R) ×U (1)d−3 isometry
are explicitly as

ξ− =∂t , ξ0= t∂t−r∂r , ξ+ = 1

2

(
t2+ 1

r2

)
∂t−tr∂r − ki

r
∂ϕi , mi =∂ϕi .
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Their commutation relation is

[ξ0, ξ−] = −ξ−, [ξ0, ξ+] = ξ+, [ξ−, ξ+] = ξ0 , [ξa,mi ] = 0, (6.2)

in which a ∈ {−, 0,+} and i ∈ {1, . . . , d − 3}.
A significant property of NHEG geometry is that any surface of constant (t, r)

is the bifurcation point of a Killing horizon [5, 6], which we denote by H . Explic-
itly, the d − 2 surface H determined by t = tH , r = rH , is the intersection of the
following d − 1-dimensional null hypersurfaces

NH + : t + 1

r
= tH + 1

rH
, NH − : t − 1

r
= tH − 1

rH
. (6.3)

The magical Killing vector generating the above null two hypersurfaces is

ζH = na
H

ξa − kimi , (6.4)

in which

n−
H

= − t2
H
r2
H

− 1

2rH
, n0

H
= tH rH , n+

H
= −rH . (6.5)

ThereforeN = {NH + ∪ NH −} is a Killing horizon and their intersectionH is the
bifurcation surface. It is shown [14] that entropy of the NHEG (which is equal to the
entropy of original BH) is conserved charge associated to the ζH , calculated onH .

6.2 A Review on Covariant Phase Space Method

Bydefinition, a phase space is amanifold consisting of a set of allowed configurations
of a system equippedwith a symplectic form�ab (i.e a nondegenerate closed 2 form).
For a given gauge theory like Einstein gravity, and a given collection of geometries
viewed as an abstract manifold, there is a well established method for defining the
symplectic structure over this manifold, and thereby obtain a phase space [15]. This
is known as covariant phase spacemethod, since the construction of phase space does
not involve with breaking of covariance of the theory (unlike what happens in ADM
construction). Here we give the general method for construction of the symplectic
structure. In next section, we specify exactly what is the set of geometries relevant
for the construction of NHEG phase space (Fig. 6.1).

In covariant phase space method, the manifold M is built up of a set of metric
configurations gμν(xα). Therefore vectors tangent to the phase space are indeed
perturbations of the metric. For Einstein gravity, the symplectic 2-form acting on
two vectors δ1g, δ2g is given by
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Fig. 6.1 A schematic of
NHEG phase space, in terms
of angular momenta J. The
manifold M is comprised of
some metric configurations
gμν(xα). The point ḡμν is
the known NHEG solution.
Symplectic 2-form �, is the
Lee-Wald form, upto Y
ambiguities

�(δ1g, δ2g, g) =
∫

�

ω(δ1g, δ2g, g) (6.6)

where the symplectic current ω is

ω(δ1g, δ2g, g) ≡ δ1�(δ2g, g) − δ2�(δ1g, g) . (6.7)

The integration surface � in (6.6) is a d − 1-dim hypersurface. The d − 1-form �

is defined through the variation of the Lagrangian (as a top form) after using the
equations of motion, i.e δL ≈ d� (In this paper ≈ means on shell equality). For the
Einstein gravity [8]

�(δgμν, gμν) =
√−g

(d − 1)! εμμ1···μd−1

1

16πG
(∇αh

μα − ∇μh) dxμ1 ∧ · · · ∧ dxμd−1

(6.8)
where hμν ≡ gμσ gντ δgστ and h ≡ hα

α and εμ1···μd is the Levi-Civita symbol. If the
variation δg satisfies the linearized equation of motion, then it can be shown that the
symplectic current is closed on-shell, i.e. dω(δ1g, δ2g, g) ≈ 0.

Nowwe turn to the definition of symmetries of the covariant phase space and their
corresponding conserved charges. An infinitesimal symmetry of a phase space, is an
infinitesimal coordinate transformation x → x − ξ such that any metric configura-
tion in the phase space is sent to another configuration in the phase space. In other
words, although the configurations are transformed under the symmetry action, but
the whole phase space is closed under the symmetry action. Now the correspond-
ing conserved charge Hξ which is the generator of the symmetry transformation is
defined through the contraction of Lξg with the symplectic form

δHξ ≡ �(δg, δξg, g) =
∫

�

δ�(Lξg, g) − Lξ�(δg, g). (6.9)

It can be shown (e.g. see AppendixC.2 in [7]) that the integrand is on-shell an exact
form dkξ (δg, g). Therefore the charges can alternatively be defined (using Stoke’s
theorem) through the integration of kξ over ∂� which is a codimension 2 closed
surface. The latter is even more fundamental for geometries with more than one
boundaries. In Einstein gravity kξ is [16]
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kξ (δgμν, gμν) =
√−g

(d − 2)! 2! εμνμ1···μd−2 k
μν
ξ dxμ1 ∧ · · · ∧ dxμd−2 (6.10)

where

kμν
ξ = 1

16πG

([
ξν∇μh − ξν∇σ h

μσ + ξσ ∇νhμσ + 1

2
h∇νξμ − hρν∇ρξμ

]
− [μ ↔ ν]

)
.

(6.11)

6.3 The NHEG Phase Space

Now in order to construct the NHEG phase space, we need to specify the set of
relevant geometrie. The rough idea is that phase space configurations can serve as
the microstates of extremal black hole. According to the uniqueness of dynamical
perturbations, the set of relevant geometries are obtained by coordinate transforma-
tions of the background NHEG geometry. These transformations are infinitesimally
obtained by a vector field χ through x → x − χ . We refer the interested reader to
the original papers for the arguments for determination of χ , and state the result here.
The vector field χ is given by

χ [ε(ϕ)] = −k · ∂ϕε

(
1

r
∂t + r∂r

)
+ εk · ∂ϕ , (6.12)

where ε can be any periodic smooth function of the coordinates ϕi . Hence, χ gener-
ates the infinitesimal perturbations tangent to the phase space around the background
by δg[ε(ϕ)] = Lχ ḡ. Exponentiation of this infinitesimal transformation produces the
finite coordinate transformations which transfer ḡμν to arbitrary configurations gμν

of the phase space M . The finite coordinate transformation is

t̄ = t − 1

r
(e� − 1), r̄ = re−�, θ̄ = θ , ϕ̄i = ϕi + ki F . (6.13)

We call F(ϕ) thewiggle functionwhich is periodic in all its arguments and� is given
by e� = 1 + k · ∂ϕF. Therefore, corresponding to any function F , a configuration
over M with the following metric is identified

ds2 = �(θ)

[
− (σ − d�)2 +

(dr
r

− d�
)2 + dθ2 + γi j (dϕ̃

i + kiσ )(dϕ̃ j + k jσ )

]
,

(6.14)
in which σ = e−�r d(t + 1

r ) + dr
r and ϕ̃i = ϕi + ki (F − �).

By construction, the infinitesimal transformations generated by χ are symmetries
of the NHEG phase space. However, χ has also another important significance, i.e



66 K. Hajian and A. Seraj

thatχ is the symplectic symmety of theNHEGphase space.1 The notion of symplectic
symmetry is defined as

Definition 6.1 The vector field χ is the generator of a symplectic symmetry gener-
ators iff [5]

1. ω(δg, δχg, g) ≈ 0 ∀g ∈ M and δg ∈ TM ,
2. δHχ be integrable, and Hχ be finite over theM ,

Thanks to the properties of diffeomorphisms, any point of the phase space has com-
plete SL(2, R) ×U (1)d−3 isometry. It can be checked that any configuration has the
same angular momenta J and entropy S as the NHEG metric ḡμν background.

The symplectic symmetries form a closed algebra. To see this we expand χ in its
Fourier modes

χn = −e−i(n·ϕ)

(
i(n · k)

(
1

r
∂t + r∂r

)
+ k · ∂ϕ

)
. (6.15)

Then, the commutator of these vectors is

[χn , χm ] = i k · (n − m) χn+m (6.16)

which is a nice generalization ofWitt algebra. It can be shown that the corresponding
Hamiltonian generators are [5, 6]

Hn =
∮
H

εH T [�]e−in·ϕ, (6.17)

where

T [�] = 1

16πG

(
(� ′)2 − 2� ′′ + 2e2�

)
(6.18)

and primes are directional derivatives along the vector k. The function T [�] trans-
forms under infinitesimal phase space transformations as

δεT = εT ′ + 2ε′T − 1

8πG
ε′′′. (6.19)

Therefore the function T [�] resembles a Liouville type stress tensor.
The Poisson bracket of conserved charges have the same commutation relations

as (6.16) up to a central extension. Significantly, the central extension turns out to
be the entropy of the NHEG. Explicitly [5, 6]

{Hm, Hn} = −ik · (m − n)Hm+n − i(k · m)3
S

2π
δm+n,0. (6.20)

1The definition of a consistent symplectic form on NHEG phase space, however involves a suitable
fixing of ambiguities in the symplectic current. For details, see [5, 6].
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Using the Dirac quantization rules { } → 1
i [ ] and Hn → Ln, the symmetry alge-

bra promotes to an operator algebra, the NHEG algebra V̂k,S

[Lm, Ln] = k · (m − n)Lm+n + S

2π
(k · m)3δm+n,0 . (6.21)

The Ji and Hξa commute with Ln, and are therefore central elements of the NHEG

algebra V̂k,S . Also by Definition6.1, they are symplectic symmetry generators.
Hence, the full symplectic symmetry of the phase space is

NHEG Symplectic Symmetry Algebra = V̂k,S ⊕ sl(2, R) ⊕ u(1)︸ ︷︷ ︸
(d−3 times)

. (6.22)

We stress again that all geometries in the phase space have vanishing SL(2, R)

charges, and U (1) charges equal to Ji .
Yet many different mathematical and physical aspects of the NHEG phase space

and its algebra are yet to be understood and analyzed.
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