Chapter 4
Black Holes Sourced by a Massless Scalar | ¢

M. Cadoni and E. Franzin

Abstract We construct asymptotically flat black hole solutions of Einstein-scalar
gravity sourced by a nontrivial scalar field with 1/r asymptotic behaviour. Near the
singularity the black hole behaves as the Janis-Newmann-Winicour-Wyman solution.
The hairy black hole solutions allow for consistent thermodynamical description. At
large mass they have the same thermodynamical behaviour of the Schwarzschild
black hole, whereas for small masses they differ substantially from the latter.

4.1 Introduction and Motivations

Static, spherically symmetric solutions of Einstein gravity sourced by scalar fields
have played an important role for the development of black hole physics. The simplest
solution of this kind, describing a asymptotically flat (AF) spherically symmetric
solution with no horizon, sourced by a scalar with vanishing potential are known
since a long time [1, 2]. They are called the Janis-Newmann-Winicour or Wyman
(JNWW) solutions. Initially, the search for AF black holes (BHs) with scalar hair
was motivated by the issue of the uniqueness of the Schwarzschild solution and
related “old” no-hair theorems [3, 4], which forbid the existence of BHs if the scalar
potential V is convex or semipositive definite.

In the early nineties it was discovered that low-energy string models may allow for
black hole solutions with scalar hair [5—8]. But, in this case non-minimal couplings
between the scalar field and the electromagnetic field.

In recent times, the quest for hairy black hole and black brane solutions has been
motivated by the application of the AdS/CFT correspondence to condensed matter
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systems [9-17]. In holographic applications the scalar field has a nice interpretation
as an order parameter triggering symmetry breaking/phase transitions in the dual
field theory.

Several numerical and analytical, black hole and black brane with AdS asymp-
totics solutions with scalar hair have been found in this context [9-13, 16, 18, 19].

Shifting from AF to anti de Sitter (AdS) black holes allows to circumvent standard
no-hair theorems because in AdS the scalar field may have tachyonic excitations
without destabilizing the vacuum [20]. This led to the formulation of “new” no-hair
theorems [21]. The violation of the positivity energy theorem (PET) [22]. being
identified as a necessary condition for the existence of BH with scalar hair.

In this note, which is based on [23], we will show as the expertise achieved in the
holographic context can be successfully used to find AF BH solutions with scalar
hair. Extension to asymptotically flat BF is an important issue because we know that
scalar fields play a crucial role in gravitational and particle physics. Experimental
discovery of the Higgs particle at LHC has confirmed that there is a fundamental
scalar particle [24]. Observation of the Plank 2013-2015 satellite gives striking con-
firmation of cosmological inflation driven by scalar field coupled to gravity [25].
Moreover, scalar field give a way to describe dark energy.

The main result presented here is that the solution generating techniques developed
in the holographic context in [16] can be also successfully used to construct AF BH
solutions sourced by a scalar behaving at = oo as an harmonic function, ¢ = 1/r.

The structure of the paper is as follows. In Sect.4.2 we present the review the
solution-generating technique of [16]. In Sect. 4.3 we rederive the JINWW solutions
and discuss their main features. The boundary conditions on the scalar field and the
corresponding asymptotic behavior for V (¢) are discussed in Sect.4.4. In Sect. 4.5
we present our hairy BH solutions. The thermodynamical behaviour of our solutions
is discussed in Sect.4.6. Finally, in Sect.4.7 we present our conclusions.

4.2 The Solution-Generating Technique

We consider Einstein gravity in four spacetime dimensions minimally coupled to a
scalar ¢ (Z is the scalar curvature),

A= /d4xJ—_g(% —2(3¢9)* = V(9)) 4.1
and static, spherically symmetric solutions of the field equations,
ds® = —U(r)dt* + U~ (r)dr® + R*(r)dQ?, 4.2)
where d2? is the metric element of the two-sphere S2.

Finding exact solutions of the field equations stemming from the action (4.1) is
a very difficult task even for simple forms of the potential V. To solve the fields
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equation (FE) we use the solution generating technique developed in [16] to find
asymptotically AdS solutions once the scalar field profile ¢ = ¢ (r) is given. Using
the variables introduced in [16]

R=el", u=UR% 4.3)

the field equations take the simple form.

Y+ Y2 = ()%, 4.4
(ug') = ;12_;6” r (4.5)

W — 4uy) = -2, (4.6)
u =2-2verlY, (4.7)

Equations (4.4) for Y (Riccati equation) and (4.6) for u are universal, they do not
depend on the potential. One starts from a given scalar field profile ¢ (r) and solves
the Riccati equation for Y. Once Y is known can easily integrate the linear equation

for u, (4.6) to obtain
2r+C
u = R4 |:—/d}" <Tl) + C2:| ) (48)

where C| , are integration constants.
The last step is to determinate the potential using (4.7)

v—i<1 “-) (4.9)
TR\ 2) '

This is a very efficient solving method, very useful in the holographic context,
allowing to find exact solutions of Einstein-scalar gravity in which the potential is
not an input but an output of the theory.

4.3 The JNWW Solutions

The parametrization (4.3), allows a simple (re)derivation of solutions for V = 0 (the
JINWW solutions). Equation (4.7) gives u as a quadratic function of r, (4.5) and (4.6)
give ¢ (r) and R(r), whereas the Riccati equation simply constrains the parameters,

v=(1 —i")zwfl, R2:r2<1—r—0)2(17W), ¢:—yln(l —ri’)+¢o, w—w? =2
d g ' (4.10)
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According to old no-hair theorems, for 0 < w < 1 the solution is not a BH (V=0) but
interpolates between Minkowski space at r = 0o and a naked singularity at r = ry
(or r = 0). Nevertheless the solution is of interest for several reasons. The BH mass
is M = 8w (2w — 1)ry. We can have a solution with zero or positive mass even in
the presence of a naked singularity. In particular for w = 1/2 we have M =0, a
degeneracy of the Minkowski vacuum. The INWW appears as the zero charge limit
of charged dilatonic black holes. Near to the singularity the solution has a scaling
behavior typical of hyperscaling violation [17].

4.4 Asymptotic Behavior of the Scalar Field
and of the Potential

We are looking for AF BH solutions sourced by scalar field, which decays as 1/r.
We also assume that the Minkowki vacuum is at ¢ = 0 and that it is an extremum of
the potential with zero mass: V(0) = V’(0) = V”(0) = 0. These conditions imply
that near ¢ = 0 the potential behaves as V (¢) = u¢” withn > 3. The corresponding
asymptotic behavior for the scalar is determined by using the boundary conditions
atr =oou =r% R =rinthe FE. Forn =5 we get ¢ = é + O(1/r?). Hence, an
harmonic decay of the scalar field requires a quintic behavior for the potential V.

4.5 Black Hole Solutions

Let us now use the solution-generating method of Sect.4.2. We need an ansatz for
the scalar. We use the INWW scalar profile (also previously used to in the literature
to derive AdS BHs): ¢ = —y In(1 —ry/r). The Riccati equation gives the form
of the metric function R: R? = r2 (1— ro/r)z(l_w) L ow—wt= yz, 1/2 <w< 1.
We get three different class of solutions (X =1 — ry/r),

2
Uy = x2w-1 [1 Z A G2+ @w =3+ Qw — 1w — 3)r§)] + % 4.11)
2
r 2 2 2 -1
Uy = =x[(1428)x —22Am X + (1—r2A) x~ ' —2], 4.12
o= Ex(ea) e (eda) ) e
2 ZA 3r2A
U(r):%x‘/2 |:<1+r02)X2—2(1+r§A)X+r8AInX+1+rg:| (4.13)
0

respectively for 1/2 <w < 1, (w # 3/4), w = 1/2 and w = 3 /4. The correspond-
ing potentials are given by,
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V($) = 4A |:w(4w — 1) sinh M +8y2sinh M+

+(1 — w)(3 — 4w) sinh ZWTﬂ , (4.14)
V($) = 4A [3sinh 2¢ — 26 (cosh2¢ + 2)], (4.15)
V(g)=A (8J§¢ cosh % — 9sinh % — sinh 2J§¢> (4.16)

The previous solutions describe a one parameter family of AF black holes sourced
by a scalar field behaving asymptotically as 1/r and with a curvature singularity at
r =ry (or r = 0) and a regular event horizon at » = r;,. The scalar charge is not
independent. Near to the singularity the solution have the same scaling behavior of
the INWW solutions. As expected near ¢ = 0 the potential has always a quintic
behavior. The existence of these BH solution represent a way to circumvent old
and new no-hair theorems. In fact the potential V is not semipositive definite, it has
an inflection point at ¢ = 0 and is unlimited from below. The ADM mass is not
semipositive definite (the PET is violated).

4.6 Black Hole Thermodynamics

Scalar charge o is not independent from the mass but determined by the BH mass M,
implying the absence of an associate thermodynamical potential. The First principle
has therefore the form d M = Td S, where the temperature 7 and the entropy S are

, S = 16772R2|,:,h. For w = 1/2 we have

r=rp

VA 2 o2 (1 1

4.17)
where [ is a function of w defined implicitly by 2(1 — w) In(1 — w) — o*(1+1) +
2w = 0. We have an extremal low-mass state with non vanishing mass M,,in, zero
entropy and infinite temperature. In the large mass (small temperature) limit we
get the Schwarzschild behavior for the thermodynamical potentials: M =2/T, S =
1/T?>, F=M — TS = 1/T.Forw = 3/4 we have for T and S a different behaviour
(see [23]). Both the low and large mass regimes have the Schwarzschild behavior.
The extremal state has M = § = 0 and T = o0o. The thermodynamical behaviour of
the solutions with 1/2 < w < 3/4 and 3/4 < w < 1 are similar respectively to the
casesw = 1/2 and w = 3/4.

given by the usual forms 7' = %
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4.7 Concluding Remarks

AF BH solution sourced by a scalar field with 1/r fall-off do exist but require a
potential unlimited from below. Because ¢ = 0 is an inflection point for V, the
¢ = 0 Schwarzschild black hole is unstable. For 3/4 < w < 1 BH thermodynamics
is similar to Schwarzschild. For 1/2 <w < 3/4 the low-mass regime drastically
different. Near to the ¢ = 0 Minkowski vacuum V has a quintic behaviour. The
corresponding Field theory is not renormalizable. It cannot be fundamental. However
it could represent an effective description arising from renormalization group flow.
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