
Chapter 3
A Menagerie of Hairy Black Holes

E. Winstanley

Abstract According to the no-hair conjecture, equilibrium black holes are simple
objects, completely determined by global charges which can be measured at infinity.
This is the case in Einstein-Maxwell theory due to beautiful uniqueness theorems.
However, the no-hair conjecture is not true in general, and there is now a plethora
of matter models possessing hairy black hole solutions. In this note we focus on one
such matter model: Einstein-Yang-Mills (EYM) theory, and restrict our attention to
four-dimensional, static, non-rotating black holes for simplicity. We outline some
of the menagerie of EYM solutions in both asymptotically flat and asymptotically
anti-de Sitter space. We attempt to make sense of this black hole zoo in terms of
Bizon’s modified no-hair conjecture.

3.1 The “No-Hair” Conjecture

Static, spherically symmetric, asymptotically flat, four-dimensional black hole solu-
tions of the Einstein equations in vacuum or coupled to an electromagnetic field are
very simple (see, for example, [1] for a review). The metric must be a member of the
Reissner-Nordström family, determined by just two parameters. These parameters
correspond to the mass and charge of the black hole, which are global conserved
quantities, measurable (at least in principle) far from the black hole. A natural ques-
tion is whether this simplicity remains when some of the assumptions leading to the
electrovac uniqueness theorems are relaxed.We phrase this question as the following
conjecture, known as the “no-hair conjecture” [2]:

A static, spherically symmetric, four-dimensional black hole is uniquely determined by
global charges.

In this note we explore this conjecture when the matter content of the theory is
no longer simply an electromagnetic field. We consider Einstein-Yang-Mills (EYM)
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theory, which has been extensively studied over the past twenty-five years. This
theory is sufficiently complicated to have a rich space of black hole solutions, yet
simple enough that it is possible to analytically prove at least some results concerning
these black holes.

3.2 su(N) Einstein-Yang-Mills Theory

We consider the following action for four-dimensional Einstein gravity, with a cos-
mological constant �, coupled to an su(N ) nonabelian gauge field:

S = 1

2

∫
d4x

√−g
[
R − 2� − Tr FαβF

αβ
]
, (3.1)

where R is the Ricci scalar, Fαβ is the Yang-Mills (YM) gauge field strength and we
have set the gauge coupling equal to unity. Varying the action (3.1) gives the field
equations

Rαβ − 1

2
Rgαβ + �gαβ = Tαβ,

DαF
α

β = ∇αF
α

β + [
Aα, Fα

β

] = 0, (3.2)

where Aα is the YM gauge field potential and the stress-energy tensor of the YM
field is

Tαβ = Tr FαλF
λ
β − 1

4
gαβTr Fλσ F

λσ . (3.3)

We consider static, spherically symmetric, black holes with line element

ds2 = −ν(r)S(r)2 dt2 + [ν(r)]−1 dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (3.4)

where the metric functions ν(r) and S(r) depend on the radial co-ordinate r only
and ν(r) has the following form, in terms of an alternative metric function m(r),

ν(r) = 1 − 2m(r)

r
− �r2

3
. (3.5)

With a suitable choice of gauge, an appropriate static, spherically symmetric ansatz
for the su(N ) YM gauge potential is [3]

Aα dx
α = A dt + 1

2

(
C − CH

)
dθ − i

2

[(
C + CH

)
sin θ + D cos θ

]
dφ, (3.6)

where A , C and D are N × N matrices. The matrix A depends on N − 1 electric
gauge field functions h j (r); the matrix C depends on N − 1 magnetic gauge field
functions ω j (r) and the matrix D is constant.
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There is now an extensive literature on the EYM system and this short note cannot
do justice to all aspects, nor make reference to all relevant articles. Instead we focus
on work of the author and collaborators and a few selected other papers. We refer
the reader to the reviews [4, 5] for wider coverage of the field and more complete
bibliographies.

Let us for the moment restrict attention to purely magnetic configurations for
which all electric gauge field functions h j (r) vanish identically. We will return to
solutions with nontrivial h j (r) in Sect. 3.3.2. The first EYM black holes to be found
were asymptotically flat, with vanishing cosmological constant � = 0 and gauge
group su(2), and are known as “coloured black holes” [6]. With this gauge group,
the purely magnetic YM field is described by a single function ω1(r), which has at
least one zero. The requirement that the space-time is asymptotically flat constrains
ω1(r) to tend to±1 as r → ∞. As a result, the “coloured” black holes have no global
magnetic charge (seeSect. 3.3.1). They are therefore indistinguishable at infinity from
a Schwarzschild black hole, although the metric exterior to the event horizon is not
the same. Thus the “coloured” black holes are counter-examples to the “no-hair”
conjecture as stated above. However, there is a very general result that all purely
magnetic, spherically symmetric, asymptotically flat, su(N ) EYM black holes are
unstable [7]. Physically, it is natural to focus on stable equilibrium configurations,
so we consider the following modification of the “no-hair” conjecture [8]:

For a fixed matter model, a stable static, spherically symmetric, four-dimensional black hole
is uniquely determined by global charges.

The “coloured” black holes do not contradict this conjecture due to their instability.
If we include a positive cosmological constant � > 0 in the action (3.1), then

“cosmic coloured black holes” exist [9] when the gauge group is su(2). Like their
asymptotically flat counterparts, these too are unstable, and so themodified “no-hair”
conjecture holds, at least for the EYM model with � ≥ 0.

3.3 Asymptotically adS su(N) EYM Black Holes

In this section we consider whether the modified “no-hair” conjecture also holds for
EYM black holes when the cosmological constant � is negative, and the space-time
is asymptotically anti-de Sitter (adS).

3.3.1 Purely Magnetic Black Holes

Static, spherically symmetric, asymptotically adS black hole solutions of su(2)EYM
with a purelymagnetic gauge field have been found numerically [10–12]. In addition,
a very rich phase space of asymptotically adS black hole solutions has been found
when the larger su(N ) gauge group is considered [13, 14].
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These asymptotically adS solutions differ significantly from those in asymptoti-
cally flat space. Notably, there exist black hole solutions for which all the magnetic
gauge field functions ω j (r) have no zeros, provided |�| is sufficiently large [15],
which have no counterpart in asymptotically flat space. These nodeless solutions are
of particular interest because it can be proven that at least some of them are lin-
early stable under spherically symmetric perturbations [16]. When the gauge group
is su(N ), the gauge field is described by N − 1 independent functions ω j (r), cor-
responding to N − 1 matter degrees of freedom. Since there are stable solutions for
any N , there is therefore no limit on the amount of stable gauge field “hair” with
which a black hole in adS can be dressed.

The question is then whether these stable EYM black holes satisfy the modified
“no-hair” conjecture, in other words, are stable, asymptotically adS, su(N ) EYM
black holes uniquely determined by global charges? To answer this question, we first
define magnetic YM charges as follows [17]

Q(X) = 1

4π
K

(
X,

∫
S∞

F

)
, (3.7)

where F is the YM field strength, S∞ the two-sphere at space-like infinity, X is
an element of the Cartan subalgebra of the YM Lie algebra, and K is the Lie
algebra Killing form. Since su(N ) has rank N − 1, the definition (3.7) gives N − 1
independent magnetic charges Q j . The charges Q j depend on the values of the
magnetic gauge field functions ω j (r) as r → ∞. For example, for su(2), the single
charge Q1 is given by

Q1 = 1 − ω2
1(∞), (3.8)

and for su(3), the two charges are

Q1 = 1 − ω2
1(∞) + 1

2
ω2
2(∞), Q2 = √

3

[
1 − 1

2
ω2
2(∞)

]
. (3.9)

The asymptotically flat “coloured” black holes in su(2) EYM must have ω1 → ±1
as r → ∞ in order that the space-time is asymptotically Minkowskian, leading to
vanishingmagnetic charge.However, in asymptotically adS space-time, the boundary
conditions as r → ∞ imply that each magnetic gauge field functionω j (r)must tend
towards a constant, but do not constrain the values of these constants. In general,
asymptotically adS EYMblack holes have nonzero magnetic charges Q j . In [18], we
presented numerical evidence and an analytic argument that at least a subset of the
su(N )EYMblack hole solutions which are linearly stable are uniquely characterized
by the cosmological constant �, black hole mass M (which is the finite limit as r →
∞ of the function m(r) in the metric (3.5)) and the set of N − 1 global nonabelian
magnetic charges Q j .

Therefore stable black holes in su(N ) EYM in adS, while possessing potentially
unlimited amounts of stable gaugefield hair, satisfy themodified “no-hair” conjecture
as they are uniquely determined by global charges.
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3.3.2 Dyonic Black Holes

So far we have considered only purelymagnetic gauge field configurations. For su(2)
EYM in asymptotically flat space-time, nontrivial black holes must have a purely
magnetic gauge field [19, 20]; the only black hole solution having a nontrivial electric
gauge field component being the embedded abelian Reissner-Nordström solution.
This is no longer the case when the space-time is asymptotically adS.

Dyonic (that is, having nontrivial electric and magnetic gauge field components)
black hole solutions of su(2) EYM in adS were found numerically soon after the
corresponding purely magnetic black holes [10, 11]. These black holes have a single
electric gauge field function h1(r) and a single magnetic gauge field function ω1(r).
The electric gauge field function h1(r) is always nodeless, and there exist solutions
for which the magnetic gauge field function ω1(r) also has no zeros [10, 11, 21]. As
in the purely magnetic case, at least a subset of these nodeless solutions are stable
under linear, spherically symmetric perturbations when |�| is sufficiently large [22].

Enlarging the gauge group to su(N ), a rich phase space of dyonic black hole
solutions is found [23]. As with the su(2) solutions, the electric gauge field functions
h j (r) always have no zeros, and, for sufficiently large |�|, there are solutions for
which the magnetic gauge field functions ω j (r) are all nodeless [24]. The stability
of dyonic black holes with the larger gauge group remains an open question, but
one might conjecture the existence of stable dyonic black holes for sufficiently large
|�|. The question of whether these dyonic black holes are uniquely characterized by
global charges also remains uninvestigated at the time of writing.

3.4 Topological Black Holes

In four-dimensional adS, black hole event horizons do not necessarily have spherical
topology, which is the only possibility in asymptotically flat space-time.We now con-
sider static su(N ) EYM black holes in adS having event horizons with nonspherical
topology. In this case the metric takes the form

ds2 = −ν(r)S(r)2 dt2 + [ν(r)]−1 dr2 + r2
(
dθ2 + f 2k (θ) dφ2) , (3.10)

and the metric function ν(r) is modified to be

ν(r) = k − 2m(r)

r
− �r2

3
. (3.11)

In (3.10), the form of the function fk(θ) depends on the constant k as follows:

fk(θ) =
⎧⎨
⎩
sin θ, k = 1,
θ, k = 0,
sinh θ, k = −1,

(3.12)
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where k = 1denotes spherical event horizon topology; k = 0 for planar event horizon
topology, and for k = −1 the event horizon is a surface of constant negative curvature.
For topological black holes with k �= 1 the gauge potential ansatz (3.6) is generalized
to [25, 26]

Aα dx
α = A dt + 1

2

(
C − CH

)
dθ − i

2

[(
C + CH

)
fk(θ) + D

d fk(θ)

dθ

]
dφ.

(3.13)
Purely magnetic topological black holes with gauge group su(2) were found in

[26]. All the solutions are such that the single magnetic gauge field function ω1(r)
has no zeros if k �= 1. This is in contrast to the situation when k = 1 and the black
hole is spherically symmetric, when, as described in Sect. 3.3.1, there exist solutions
for which ω1(r) is nodeless, but there are also black holes for which ω1(r) has zeros.

Enlarging the gauge group to su(N ), it is no longer the case that all the magnetic
gauge field functions ω j (r) are nodeless for purely magnetic configurations [27],
although it can be shown for any N that there are purely magnetic black holes for
which all the ω j (r) have no zeros [25], if |�| is sufficiently large.

Dyonic topological black holes also exist. Those with planar event horizons
(k = 0) have attracted great attention in the recent literature as models of p-wave
holographic superconductors (see [28] for a review and references). Planar black
holes with su(2) gauge group have been found numerically [29], as have their coun-
terparts with the larger su(N ) gauge group [30]. For both k = 0 and k = −1, there
exist topological dyonic black hole solutions for which the magnetic gauge field
functions ω j (r) have no zeros, for any value of N and |�| sufficiently large [24].

The stability of topological EYMblack holes has been investigated thus far only in
the purely magnetic case. As might be anticipated from the discussion in Sect. 3.3.1,
there exist nodeless purely magnetic topological black holes in su(N ) EYM in adS
are which stable under linear perturbations [26, 31]. Whether or not it is possible
to uniquely characterize these stable topological black holes by global charges at
infinity has yet to be investigated.

3.5 Understanding the EYM adS Black Hole Menagerie

In this note we have briefly reviewed some aspects of the veritable zoo of hairy black
hole solutions of su(N ) EYM in adS, restricting our attention to four-dimensional,
static, spherically symmetric and topological black holes. We have considered solu-
tions with a purely magnetic gauge field, and also dyonic black holes whose gauge
field has nontrivial electric and magnetic components. In the literature, the existence
of nontrivial black hole solutions has been proven for all N , with the rich solution
space explored numerically for smaller values of N . Given the abundance of solu-
tions, we have explored whether these black holes satisfy the modified “no-hair”
conjecture, namely whether stable black holes in this model are uniquely determined
by global charges.



3 A Menagerie of Hairy Black Holes 45

Table 3.1 Summary of the su(N ) EYM adS black hole menagerie

Existence of stable solutions? Characterization by global
charges?

Spherically symmetric, Purely
magnetic

Yes [16] Yes [18]

Spherically symmetric, Dyonic Yesa [22] ?

Topological, Purely magnetic Yes [31] ?

Topological, Dyonic ? ?
aResults only for su(2)

In Table3.1, we have listed the different types of solutions considered in this note,
and summarized what is known about their stability and characterization by global
charges. A question mark ? means that this aspect has yet to be investigated in the
literature. Most is known about spherically symmetric, purely magnetic black holes,
for which there is analytic and numerical evidence that at least a subset of stable hairy
black holes are characterized by global charges, for any N and |�| sufficiently large
[18]. Recently the existence of stable topological black holes with purely magnetic
su(N ) gauge field has been proven [31], but it is not known whether these can be
characterized by global charges. For dyonic black holes with nontrivial electric and
magnetic gauge field components, rather less is known, with the existence of stable
spherically symmetric dyonic black holes with su(2) gauge group only recently
proven [22]. Characterization by global charges in the dyonic case remains an open
question.

To conclude, stable black hole solutions of su(N ) EYM theory in adS can be
arbitrarily complicated, in the sense that they are dressed with gauge field hair with
unbounded numbers of degrees of freedom. However, work to date indicates that
despite their complexity, these black holes can be uniquely characterized by global
charges defined at infinity. Hence the modified “no-hair” conjecture [8] seems to be
valid for black holes in su(N ) EYM in adS.
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