
Chapter 17
Perihelion Precession and Generalized
Uncertainty Principle

F. Scardigli and R. Casadio

Abstract We compute the corrections to the Schwarzschild metric necessary to
reproduce the Hawking temperature derived from a Generalized Uncertainty Princi-
ple (GUP), so that the GUP deformation parameter is directly linked to the deforma-
tion of themetric. Using thismodified Schwarzschildmetric, we compute corrections
to the standardGeneral Relativistic predictions for the perihelion precession for plan-
ets in the solar system. This analysis allows us to set bounds for the GUP deformation
parameter from well-known astronomical measurements.

17.1 Introduction

Research on generalizations of the uncertainty principle of quantum mechanics has
nowadays a long history [1]. One of the main lines of investigation focuses on under-
standing how the Heisenberg Uncertainty Principle (HUP) should be modified once
gravity is taken into account. Given the pivotal rôle played by gravitation in these
arguments, it is not surprising that the most relevant modifications to the HUP have
been proposed in string theory, loop quantum gravity, deformed special relativity,
and studies of black hole physics [2–7], just to mention some of the most notable
frameworks.

Studies that aim at putting bounds on the dimensionless deforming parameter of
the GUP, heretofore denoted by β, date back at least to Brau [8], and can be roughly
divided into three different categories (actually, only two, as we will see). In the first
group one finds papers such as those of Brau [8], Vagenas [9], Nozari [10], which
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use a specific (in general, non linear) representation of the operators in the deformed

fundamental commutator1
[
X̂ , P̂

]
= i �(1 + β P̂2/m2

p) in order to compute correc-

tions to quantummechanical predictions, such as energy shifts in the spectrum of the
hydrogen atom, or to the Lamb shift, the Landau levels, Scanning Tunneling Micro-
scope, charmonium levels, etc. The bounds so obtained on β are quite stringent, but
the drawback of this approach is a potentially strong dependence of the expected
shifts on the specific (non linear) representation chosen for the operators X̂ and P̂ in
the fundamental commutator.

In the second group, we can find the works of, e.g., Chang [11], Nozari and
Pedram [12], where a deformation of classical Newtonian mechanics is introduced
by modifying the standard Poisson brackets in a way that resembles the quantum
commutator,

[
x̂, p̂

] = i �
(
1 + β0 p̂2

) ⇒ {X, P} = (
1 + β0 P2

)
, where β0 =

β/m2
p. In particular, Chang in [11] computes the precession of the perihelion of

Mercury directly from this GUP-deformed Newtonian mechanics, and interprets it
as an extra contribution to the well known precession of 43”/century due to General
Relativity (GR). He then compares this global result with the observational data,
and the very accurate agreement between the GR prediction and observations leaves
Chang not much room for possible extra contributions to the precession. In fact, he
obtains the tremendously small bound β � 10−66. A problem with this approach
is that a GUP-deformed Newtonian mechanics is simply superposed linearly to the
usual GR theory. Onemay argue that a modification of GR at order β should likewise
be considered, but this is however omitted in [11]. In other words, it is not clear why
the two structures, GR and GUP-modified Newtonian mechanics, should coexist
independently, and why the two different precession errors add into a final single
precession angle.Most important, as amatter of fact, in the limitβ → 0, [11] recovers
only the Newtonian mechanics but not GR, and GR corrections must be added as an
extra structure. Clearly, the physical relevance of this approach and the bound that
follows for β, remain therefore questionable.

Finally, a third group of works on the evaluation of β contains, for example,
papers by Ghosh [13] and Pramanik [14]. They use a covariant formalism, first
defined in Minkowski space, with the metric ημν = diag(1,−1,−1,−1), which
can be easily generalized to curved space-times via the standard procedure ημν →
gμν . These papers should however be considered as belonging to the second group.
In fact, a closer look reveals that they also start from a deformation of classical
Poisson brackets, although posited in covariant form. From the deformed covariant
Poisson brackets, they obtain interesting consequences, like a β-deformed geodesic
equation, which leads to a violation of the Equivalence Principle. They do not deform
the field equations or the metric. In [15], however, we show that this violation of
the Equivalence Principle is completely due to the postulate of deformed Poisson
brackets, and has nothing to do with the covariant formalism, or with a deformation
of the GR field equations or solutions, or of the geodesic equation. Nonetheless, the

1We shallworkwith c = kB = 1, but explicitly show theNewton constantGN andPlanck constant�.
We also recall that the Planck length is defined as �2p = GN �/c3, the Planck energy as Ep �p = � c/2,

and the Planck mass as mp = Ep/c2, so that GN = �p/2mp and � = 2 �p mp.
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Ghosh–Pramanik formalism remains covariantwhenβ → 0 and reproduces standard
GR results in the limit β → 0 (this differs, in general, from the results obtained by
papers in the second group).

The novelties of our approach, when compared with the previous ones, are many
and various. The main point is to start directly from a quantum mechanical effect,
the Hawking evaporation, for which the GUP is necessarily relevant, rather than
postulating specific representations of canonical operators or modifications of the
classical equations of motion. We connect the deformation of the Schwarzschild
metric directly to the uncertainty relation, without relying on a specific representation
of commutators. We leave the Poisson brackets and classical Newtonian mechanics
untouched, and recover GR, and standard quantum mechanics, in the limit β → 0.
In particular, we preserve the Equivalence Principle, and the equation of motion of
a test particle is still given by the standard geodesic equation. In the present work,
this is obtained by deforming a specific solution of the standard GR field equations,
namely the Schwarzschild metric.

17.2 Deforming the Schwarzschild Metric

In this section, we start from a known way of deriving the Hawking temperature
directly from the metric of a black hole, and then show how the GUP modifies the
Hawking temperature. These two steps will pave the road to a deformation of the
Schwarzschild metric, constructed so as to reproduce the GUP-modified Hawking
temperature. We consider here a space-time with a metric that locally has the form

ds2 = gμνdx
μdxν = F(r) dt2 − F(r)−1 dr2 − r2 d�2, (17.1)

where d�2 = dθ2 + sin2 θ dφ2. The horizons (if any), are located at the positive
zeros of the function F(r) (see, for example, [16]).

We loosely follow a standard derivation, as for example that in [17]. Suppose
r = rH is an horizon, so that F(rH) = 0, and consider r ≥ rH. Then, a quantized
scalar field outside the horizon lives in a heat bath with temperature

T = �
F ′(rH)

4π
. (17.2)

Therefore the temperature of the black hole horizon as seen by a distant observer is
in general given by formula (17.2). In particular, for a Schwarzschild black hole the
function F(r) is given by (1 − 2GNM/r), the horizon is at rH = 2GN M , and we
get TH = �/(8π GN M) , which is the well-known Hawking temperature.

We now give here a derivation of the mass-temperature relation starting directly
from the uncertainty relations. Themost common form of deformation of the Heisen-
berg uncertainty relation (and the form of GUP that we are going to study in this
paper) is without doubt the following
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x 
p ≥ �

2

(
1 + β

4 �2p

�2

p 2

)
= �

2

[
1 + β

(

p

mp

)2
]

. (17.3)

The dimensionless parameter β is usually assumed to be of order one, in the most
common quantum gravity formulations. Following the arguments of [18–23], we
promptly arrive to translate relation (17.3) into a mass-temperature relation for a
Schwarzschild black hole

M = �

8π GN T
+ β

T

2π
. (17.4)

To zero order in β, we recover the usual Hawking formula. Let us note that in this
work we assume that the correction induced by the GUP has a thermal character,
and therefore it can be cast in the form of a shift of the Hawking temperature. Of
course, there are also different approaches (see e.g. [24]), where the corrections do
not respect the exact thermality of the spectrum, and thus need not be reducible to a
simple shift of the temperature.

We can legitimately wonder what kind of (deformed) metric would predict a
Hawking temperature like the one inferred from the GUP relation (17.4), for a given
β. Since we are interested only in small corrections to the Hawking formula, we can
consider a deformation of the Schwarzschild metric of the kind

F(r) = 1 − 2GN M

r
+ ε

G2
N M2

r2
, (17.5)

and we shall look for the lowest order correction in ε. We see that (17.5) is actually
the simplest mathematical form, if one supposes that the metric can be expanded
in powers of 1/r . This is nothing else than the well known Eddington–Robertson
expansion of a spherically symmetric metric. Note however that, since RH/r ∼ 10−5

on the surface of the Sun, the term proportional to ε can still be considered small even
if ε is relatively large. The temperature predicted by this deformed Schwarzschild
metric is

T (ε) = �
F ′(rH)

4π
= �

2π GN M

√
1 − ε(

1 + √
1 − ε

)2 , (17.6)

which must coincides with the temperature T (β) predicted by (17.4), for any given
β. This yields a relation between β and ε,

β(ε) = −π2 GN M2

�

ε2

1 − ε
. (17.7)

For |ε| � 1, to the lowest order in ε, we thus get β = −π2M2ε2/(4m2
p) where we

notice that both β and ε are dimensionless. It is now of great interest to observe
that (17.7) forces us to admit that β < 0, since ε ≤ 1. Although quite unexpected,
this might be a suggestion of fundamental importance. It seems that a metric is
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able to reproduce the GUP-deformed Hawking temperature only if the deforming
parameter β is negative.We already encountered a situation like this whenwe studied
the uncertainty relation formulated on a crystal lattice [25]. This could be a further
hint that the physical space-time has actually a lattice or granular structure at the
level of the Planck scale.

17.3 Perihelion Precession by Deformed Schwarzschild
Metric

Having established a connection between the GUP parameter β and the deformation
ε of the Schwarzschild metric, we are now in a position to compute the physical
(possible observable) consequences of such a deformed metric. Here, we consider a
particle bound in a orbit around a massive body, typically a planet around the Sun.
Again, we roughly follow the treatment of [26]. The relevant geometrical parameters
for an elliptic orbit in a polar coordinates system,with the radial coordinate r which at
aphelia and perihelia takes, respectively, the maximum value r+ and minimum value
r−, are the eccentricity e, the semi-major axis a, and the semilatus rectum L . These
geometrical parameters are related by r± = (1 ± e) a, L = (1 − e2) a, 2

L = 1
r+ + 1

r− .

The angle swept out by the position vector when it increases from r− to r is then
given by the integral

φ(r) − φ(r−) =
∫ r

r−

⎡
⎣r2−

(
1

F(r) − 1
F(r−)

)
− r2+

(
1

F(r) − 1
F(r+)

)

r2−r2+
(

1
F(r+)

− 1
F(r−)

) − 1

r2

⎤
⎦

−1/2

dr

r2
√
F(r)

.

(17.8)
The total change in φ at every lap is just twice the change as r increases from
r− to r+. This would equal 2π if the orbit were a closed ellipse, so the total orbital
precession in each revolution is given by
φ = 2 |φ(r+) − φ(r−)| − 2π .Weexpand
the integrand before integrating, and the small parameter is given by RH/r−, or better
RH/L . Finally the total precession after a single lap, to first order in RH/L , is given
by


φ 
 6π GN M

L

(
1 − ε

6

)
, (17.9)

which, of course, reproduces the usual GRprediction in the limit ε → 0. This relation
should now be compared with known observational data.

The perihelion precession for Mercury is by far the best known and measured
GR precession in the Solar system. Referring to [27] for the latest most accurate and
comprehensive data, we can report the relation

〈ω̇〉 = 6π GN M

L

[
1

3
(2 + 2γ − β̄) + 3 · 10−4 J2

10−7

]
, (17.10)
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where 〈ω̇〉 is the measured perihelion shift, J2 a dimensionless measure of the
quadrupole moment of the Sun, and γ and β̄ are the usual Eddington–Robertson
expansion parameters. The latest data from helioseismology give J2 = (2.2 ± 0.1) ·
10−7. The measured perihelion shift of Mercury is known to about 0.1% from radar
observations of Mercury between 1966 and 1990 [28]. The solar oblateness effect
due to the quadrupole moment is then smaller than the observational error, so it
can be neglected. Substituting standard orbital elements and physical constants for
Mercury and the Sun, we obtain

〈ω̇〉 =
(
1 + 2γ − β̄ − 1

3

)
42.98”/century , (17.11)

where we can place a bound of |2 γ − β̄ − 1| � 3 · 10−3. Comparing with 
φ from
(17.9), we get |ε| � 6 · 10−3 which, replaced in (17.7), yields the lower bound

|β| = M2

4m2
p

π2 ε2

1 − ε
� 3 · 1072 . (17.12)

We can also consider the most recent data from theMessenger spacecraft [29], which
orbited Mercury in 2011–2013, and improved very much the knowledge of its orbit.
Then we can push this bound even lower, to |2γ − β̄ − 1| � 7.8 · 10−5, although
the knowledge of J2 would have to improve simultaneously. If just the error in
|2γ − β̄ − 1| were taken into account, this would imply |ε| = 2

∣∣2γ − β̄ − 1
∣∣ �

1.56 · 10−4 and therefore
|β| � 2 · 1069 . (17.13)

But of course this limit should not be considered completely reliable in this contest,
since the less accurate bound on J2 cannot be brutally neglected, at least in principle.
Once again the perihelion shift appears to be one of the most precise tests of GR, a
true GR effect not present at all in Newtonian gravity (as it is well known).

17.4 Conclusions

We have shown that a suitable deformation of the Schwarz-schild metric can repro-
duce the Hawking temperature for a black hole, when this is computed from a Gener-
alized Uncertainty Principle. We have found in this way an analytic relation between
the deformation parameter of the metric ε and the usual GUP deformation parame-
ter β. In particular, when β → 0, we correctly recover GR, and standard quantum
mechanics. Neither the geodesic equation, nor the equivalence principle are violated,
for any value of β or ε. Well-known astronomical measurements, in the Solar system
as well as in binary pulsar systems, allowed us to put constraints on the parame-
ter β. This direction seems to point towards promising research: at present we just
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deformed the Schwarzschild solution, but a future possibility is to deform the full
field equations of GR, in order to get, among other things, a more stringent bound on
the GUP parameter β. We would like to conclude by emphasizing once again that,
although in the existing literature one can find bounds on β much tighter than those
obtained in this paper, they seem to depend, at least partially, either on a specific (non
linear) representation of the deformed commutator, or on the hypothesis of a defor-
mation of Poisson brackets, which implies a violation of the equivalence principle.
The line of reasoning presented in this paper avoids these possible difficulties.
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