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Generalized Uncertainty Principle
and Extra Dimensions
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Abstract The generalized uncertainty principle (GUP) is a modification of standard
quantum mechanics due to Planck scale effects. The GUP has recently been used to
improve the short distance behaviour of classical black hole spacetimes by invoking
nonlocal modifications of the gravity action. We present the problem of extending
such a GUP scenario to higher dimensional spacetimes and we critically review the
existing literature on the topic.

16.1 Generalized Uncertainty Principle and Black Holes

Gravitation plays no conventional role in quantum mechanical systems. Atoms are
dominated by electromagnetic forces, with nuclear forces becoming relevant at the
smaller sub-atomic scales. It is, however, interesting to ask how quantum mechanics
deviates from its standard formulation if the above systems were subject to gravita-
tional interactions. A full answer to this question would require a quantum theory
of gravity, whose formulation is probably one of the biggest problems in funda-
mental physics. There is nevertheless a “side effect” of quantum gravity that one
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can estimate in a semiclassical way. For instance, one can consider a non-vanishing
Newtonian gravitational interaction between the photon and the electron in Heisen-
berg’s microscope Gedankenexperiment [1]. As a result one finds a modification of
standard commutation relations [2–6]

[xi , p j ] = i � δij (1 + f (p2)), (16.1)

where the function f is customarily assumed as f (p2) � βp2 + . . . to first order.
Interestingly, the parameter β turns out to be a natural ultraviolet cutoff, since the
corresponding uncertainty relations prevent better spatial resolution than

√
β,

�x�p ≥ �

2
(1 + β(�p)2). (16.2)

The above relation is the Generalized Uncertainty Principle (GUP), represented in
Fig. 16.1.

The GUP has been studied in a variety of physical systems (for reviews see
[7–9]), and applied most notably to black holes and their evaporation [5, 10–12].
By assuming the emitted particles have momenta uncertainty proportional to the
black hole temperature, �p ∼ T , and position uncertainty proportional to the black
hole size, �x ∼ GM , one ends up with a non-divergent increase of the black hole
temperature and vanishing heat capacity at the Planck scale. Such a scenario for the
final stage of the evaporation would suggest the formation of a black hole remnant –
a Planckian size, neutral object that might be considered as a dark matter candidate
[11, 13]. Unfortunately this particular GUP temperature profile cannot be associated
to a surface gravity of any known black hole metric. In addition such remnants would
turn to be hot, since their temperature is of the order of the Planck temperature
TP ∼ 1032 K.

Against this background, it has recently been noted that GUP effects can be
implemented at the level of the spacetime metric by a non-local deformation of the
gravitational action [14]. This approach allows for calculating corrections to black
hole thermodynamics by a genuine modification of the surface gravity. In the case of
a spherically symmetric, static, and neutral black hole, one can solve the non-local
equations and obtain the metric

ds2 = −
(
1 − 2GM (r)

r

)
dt2 +

(
1 − 2GM (r)

r

)−1

dr2 + r2d�2. (16.3)

HereM (r) takes into account the spread of matter that is no longer concentrated in
a point, as conventionally occurs in the Schwarzschild case [15–19]. For a specific
profile of the nonlocal action, the mass distributionM (r) reproduces the ultraviolet
smearing predicted by the GUP. The final result then reads

M (r) = M γ (2, r/
√

β) = M
(
1 − e−r/

√
β − (r/

√
β)e−r/

√
β
)

, (16.4)
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Fig. 16.1 Length versusmass in the Planck region: The black line shows the Schwarzschild horizon
length scale L ∼ M , the red line the Compton wavelength L ∼ 1/M in Planck units. The GUP
green curve interpolates the two curves and predicts a minimal length but does not resolve the
phase ambiguity (black spot). The GUP-inspired black holes [14] modify the intersection of the
Compton/horizon curves due the introduction of a cold remnant (blue spot). In the resulting diagram,
the two phases (particles and black holes) are unambiguously separated

with M the ADM mass and γ (s, x) the lower incomplete gamma function. A com-
pelling feature of the GUP is that it implies a tail of the mass distribution trespassing
the event horizon, in close analogy with the leakage of quantum mechanical effects
that has been recently invoked to overcome the black hole information paradox
[20]. The above metric features a two-horizon structure and an extremal configura-
tion. The latter is a zero temperature state that nicely fits into the cold dark matter
paradigm. Interestingly, the presence of the remnantmakes themetric consistent with
the expected self-complete character of gravity [21–32]. Rather than a complete
evaporation, the black hole asymptotically approaches the remnant configuration,
preventing the exposure of length scales smaller of

√
β (see Fig. 16.1).

16.2 Extra Dimensions and the Heisenberg Microscope

Terascale quantum gravity is a formulation proposed to address the weak hierarchy
problemof theStandardModel by assuming the existence of additional spatial dimen-
sions [33–44]. According to the Arkani–Hamed/Dimopoulos/Dvali (ADD) model,
the spacetime is endowed with N − 3 extra dimensions which are compactified at a
length scale R ∼ 1mmor smaller. Gravity is the only fundamental interaction able to
“see” the additional dimensions, which would become relevant only for high energy
events (i.e., at the TeV or higher). If this is the case, GUP effects should be expected
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to set in at these energy scales rather than at the usual Planck scale. It is therefore
natural to consider the higher dimensional extension of the non-local action proposed
in [14] and derive the related black hole solution. To reach this goal, however, one
has to face a potential ambiguity that we illustrate below.

According to the Kempf–Mangano–Mann (KMM) model [6], the Hilbert space
representation of the identity reads

1 =
∫

dN p

1 + βp2
| p〉〈p |, (16.5)

with p an N -dimensional spatial vector. This can be interpreted as saying that, while
momentum operators preserve their standard character, position operators do not
have physical eigenstates, as one expects in the presence of a minimal length

√
β.

Accordingly the integration measure in momentum space is squeezed in the ultravi-
olet regime as follows

dVp ≡ dN p

1 + βp2
≈

βp2
1
pN−3 dp. (16.6)

We note the GUP correction becomes less and less important with increasing N .
The above profile of GUP corrections can be used to improve the higher dimen-

sional Newtonian potential. This can offer a first taste of the repercussions of GUP,
even before extending the action proposed in [14] to the higher dimensional case. To
reach this goal one has to consider the exchange of virtual massless scalars between
two static bodies at distance r = |x|. The static gravitational potential is the Fourier
transform of the massless scalar propagator,

�(r) = −G(N )M

(2π)N

∫
dVp D (p) |p0=0 exp (ip · x) , (16.7)

where the integration measure has been deformed as in (16.6). The net result reads

�(r)

G(N )M
= π1− N

2 	

(
N

2
− 1

) (
1

r

)N−2

︸ ︷︷ ︸
classical potential

− 2

(2π r
√

β)
N
2 −1

K N−2
2

(
r√
β

)
︸ ︷︷ ︸

GUP corrections

(16.8)

for r < R. The short distance behaviour of the above potential is regular at the
origin only for N = 3, i.e., � = 1/

√
β as r → 0. For N > 3 GUP corrections are

suppressed and cannot improve the potential.
There are, however, other proposals. As stated in the introduction, the GUP arises

from the inclusion of gravitational effects in quantum mechanics. This is the case of
Heisenberg’s microscope. Additional dimensions should not disrupt the reasoning
that leads to the GUP [1, 28]. As for N = 3 we identify two terms for the spa-
tial uncertainty �x ∼ �xC + �xg, one coming from the Compton wavelength of
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a particle �xC ∼ λ ∼ 1/�p < R and one due to the gravitational potential in the
compact higher dimensional space. Specifically, the photon not only illuminates the
electron but also exerts a gravitational force on it. The resulting acceleration causes
the electron to be displaced by

�xg ∼ G(N )

Meff

r N−1

(
r2

c2

)
∼ G(N )

�p

r N−3
� �xN−2

g ∼ LN−1
(N ) �p, (16.9)

where Meff = h/(λc) is the photon effective mass, G(N ) is the higher dimensional
Newtonian constant, and L(N ) is the new fundamental length scale that replaces
the Planck length. In the above derivation we assumed the interaction distance r ∼
�xg < R. The above Gedankenexperiment motivates amodified higher dimensional
GUP

�x�p ≥ �

2

(
1 +

(√
β �p

) N−1
N−2

)
, (16.10)

where we assumed
√

β ∼ L(N ). Equation (16.10) is consistent with what proposed
in [28, 45–49] and cleanly reproduces the higher dimensional Schwarzschild radii
for energies above the terascale. On the other hand, such a proposal fails to improve
the Newtonian potential and predicts GUP corrections even milder than those of the
KMM model for N > 3.

Alternatively, one can revise the basic reasoning behind Heisenberg’s microscope
in higher dimensional space. Following Fig. 16.1, one can approach the quantum
gravity scale from the left. In such a sub-Planckian regime, the gravitational cor-
rections are still sub-leading, i.e., �xg < �xC. Accordingly, one can assume that
at the leading order, the typical interaction distance is controlled by the Compton
wavelength r ∼ �xC ∼ λ < R. As a result, one finds a spatial uncertainty

�xg ∼ G(N )

Meff

r N−1

(
r2

c2

)
∼ G(N )

�p

r N−3
∼ LN−1

(N ) �pN−2 (16.11)

that is consistent with that proposed in [50–52]. Interestingly enough, the above
relation can also improve the asymptotic behaviour of the momentum integration
(16.6), as follows

dVp ≡ dN p

1 + (βp2)
N−1
2

≈
βp2
1

dp. (16.12)

The repercussions of the GUP are no longer dependent on N , and the suppression
of higher momenta is consistent with the original derivation for N = 3. The above
integration measure (16.12) relaxes the condition of reproducing the Schwarzschild
radius in the trans-Planckian regime, even if the condition remains valid for distances
r > R. Such a deviation of the curve from the Schwarzschild radius for r < R is
fully legitimate, since the quadratic correction in (16.6) is known to be the lowest
energy correction to standard quantum mechanics and makes sense only for the four
dimensional spacetime at scales r > R.
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It is natural to expect that at scales r < R where gravity becomes so strong as to
probe additional dimensions, the GUP effects also become stronger as in (16.10). In
otherwords, the picture based onmatching a length scale dictated bygeneral relativity
[28, 45–49] loses its meaning at an energy regime characterized by string/p-brane
effects [53], noncommutative geometry [54, 55] or a variety of non-classical effects
[56]. Such a vision is also consistent with a recent proposal aiming to interpret
black holes in terms of a pre-geometric, purely quantum mechanical formulation
[19, 57, 58].

16.3 Conclusions

In this paper, we have reviewed the basic properties of the GUP in three or more
dimensions. We have presented a black hole metric derived by a nonlocal action
able to reproduce GUP effects [14]. Such a metric overcomes the usual limitations
one encounters when considering GUP effects in Hawking radiation [11]. Specif-
ically, the new metric allows for the presence of cold remnants and the derivation
of the black hole temperature in terms of surface gravity. In the second part of the
paper, we provided an analysis of the GUP in higher dimensional spacetime. We
showed there is a potential ambiguity in the deformation of the measure in momen-
tum space.We highlighted that current proposals are unable to reproduce a consistent
cutoff to improve the bad short distance behaviour of gravity in higher dimensional
spacetimes [28, 45–49]. As a possible resolution to such a issue, we revised the rea-
soning of Heisenberg’s microscope in higher dimensional spacetimes. We proposed
an improved version of the GUP valid at length scales below the extra-dimensional
compactification radius. Our findings are consistent with previous approaches in the
literature [50–52]. We plan to study the repercussions of such a proposal on black
hole physics in a future investigation.
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