
Chapter 14
A Quantum Cosmic Conjecture

R. Casadio and O. Micu

Abstract For a quantum mechanically Gaussian shaped, electrically charged,
massive particle, we compute the Horizon Wave-function(s) in order to study (a) the
existence of the inner Cauchy horizon of the corresponding Reissner–Nordström
space-time when the charge-to-mass ratio 0 < α < 1 and (b) the survival of a naked
singularity when the charge-to-mass ratio α > 1. Our results suggest that any semi-
classical instability one expects near the inner horizon may not occur in quantum
black holes, with a mass around the Planck scale, and that no states with charge-to-
mass ratio greater than a critical value (of the order of

√
2) should exist.

14.1 Introduction

There is a general consensus that black holes might play the same role in quantum
gravity as the hydrogen atom does in the quantum theory of ordinary matter. In fact,
a black hole realises the strongest non-perturbative effect that gravity can have,
namely a total causal confinement. In order to investigate this feature in a quantum
context, the HorizonWave Function (HWF) formalism was proposed and developed
in [1, 2], which is built on the quantised Einstein equation relating the size of the
gravitational radius to the (quantum) state of matter.

The construction of the HWF starts from the spectral decomposition of the quan-
tum mechanical state for a spherically symmetric matter source which is localised
in space and static in time. By expressing the energy in terms of the gravitational
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(Schwarzschild) radius, the spectral decomposition then directly yields the (unnor-
malised) HWF. The normalised HWF supplies the probability for an observer to
detect a gravitational radius of a certain size (areal radius) around the source in the
quantum state that was used in the first place. The gravitational radius can then be
interpreted as a horizon if the probability of finding the particle inside of it is rea-
sonably high. According to this quantum picture, the horizon appears necessarily a
fuzzy location in space, precisely for the same reason the position of the particle that
sources the geometry is intrinsically uncertain. This formalism has been applied to
several case studies [3, 4], yielding sensible results in agreement with (semi)classical
expectations, and there is therefore hope that it will help our understanding of the
quantum nature of black holes.

In this talk, we will in particular summarise the results obtained for charged
sources in [5, 6].

14.2 Electrically Charged Spherical Source

We start from the Reissner–Nordström metric,

ds2 = − f dt2 + f −1 dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (14.1)

with f = 1 − 2 �p M
mp r

+ Q2

r2 , where M and Q respectively represent the ADM mass
and charge of the source. It is convenient to introduce the specific charge α =
|Q|mp/�p M . The case α = 0 then reduces to the neutral Schwarzschild metric with
one horizon of radius RH = 2 �p M/mp. For 0 < α ≤ 1, the space-time contains two
horizons, namely

R± = �p
M

mp

(
1 ±

√
1 − α2

)
, (14.2)

which overlap for the extremal case α = 1. Finally, for α > 1 no horizon exists and
the central singularity is therefore “naked”, or accessible to outer observers.

We next consider a spherically symmetric Gaussian source

ψS(r) = e− r2

2 �2

�3/2 π3/4
, (14.3)

whose width � is assumed to be the minimum compatible with the Heisenberg uncer-
tainty principle,

� = λm � �p
mp

m
, (14.4)
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where λm is the Compton length of the particle of rest mass m [2]. The spectral
decomposition of (14.3) is easily obtained from assuming the relativistic mass-shell
relation in flat space, M2 = p2 + m2, and by going to momentum space,

ψS(p) = e− p2

2Δ2

Δ3/2 π3/4
, (14.5)

where p2 = p · p is the square modulus of the spatial momentum, and the width
Δ = mp �p/� � m.

14.2.1 Inner Horizon and Mass Inflation

For 0 < α < 1, one can write a HWF for each of the two horizons (14.2), namely [5]

ψH(R±) = N± 
(R± − Rmin±) exp

{

− m2
p R

2±
2Δ2 �2p (1 ± √

1 − α2)2

}

, (14.6)

where the step function accounts for the minimum energy M = m, corresponding

to Rmin± = �p
m
mp

(
1 ± √

1 − α2
)
, and the normalisationsN± are fixed by using the

Schrödinger scalar product.
The probability density that the particle lies inside its own gravitational radius of

size r = R± can now be calculated starting from the wave-functions (14.6) as

P<±(r < R±) = PS(r < R±)PH(R±) , (14.7)

where PS(r < R±) = 4π
∫ R±
0 |ψS(r)|2 r2 dr is the probability that the particle is

inside the sphere r = R±, andPH(R±) = 4π R2± |ψH(R±)|2 is the probability den-
sity that the sphere r = R± is the gravitational radius. Finally, one can integrate (14.7)
over all possible values of R+ to find the probability that the particle is a BH, namely

PBH+ =
∫ ∞

Rmin+
P<+(r < R+) dR+ . (14.8)

The analogous quantity for R−,

PBH− =
∫ ∞

Rmin−
P<−(r < R−) dR− , (14.9)

will instead be viewed as the probability that the particle lies further inside its inner
horizon. It is obvious that PBH− < PBH+, and that only when PBH− � 1 we can say
that both horizons are physically realised at 〈 R̂− 〉 and 〈 R̂+ 〉.



128 R. Casadio and O. Micu

Fig. 14.1 Probabilities PBH+ (thick lines) and PBH− (thin lines) as functions of α for m = 2mp
(continuous line), m = mp (dotted line) and m = 0.5mp (dashed line)

The plot in Fig. 14.1 shows the probabilities PBH± as functions of α for values of
the particle mass above, equal to and below the Planck mass. One can notice that
PBH+ stays very close to one for masses larger than the Planck scale, whereas, for
m < mp, it clearly decreases as the specific charge increases to one. For instance, if
m = 0.5mp (� = 2 �p), PBH+ � 0.2 for a sizable range of α, and it only decreases
below 0.1 when α → 1 and the source is nearly maximally charged. The situation is
however different for the inner horizon. The probability PBH− starts out negligible
for small values of the charge-to-mass ratio and increases with α – the larger m,
the smaller the value of α for which the probability becomes significant. There is
a considerable range of α for which the probability for the inner horizon to exist is
approximately zero, while PBH+ � 1 and the object is a black hole. Figure14.2 shows
the probabilities PBH± as functions of the mass m for α = 0.3, 0.8 and 1. It is clear
that for smaller values of α, the probability PBH+ starts to increase from zero to one at
smaller values ofm, but the opposite occurs for PBH−. For α = 0.3, it is only around
a particle mass m � 6mp that PBH− � 1, while PBH+ � 1 already around mp. This
means that for mp ≤ m ≤ 6mp, the probability PBH+ � 1 while PBH− 	 1. This
mass range broadens up even more for smaller values of α, but decreases to zero in
the maximally charged limit α = 1. Our main finding is therefore that there exists a
considerable parameter space for m (around the Planck scale) and α < 1 in which

PBH+ � 1 and PBH− � 0 . (14.10)

In this range the particle is (most likely) a black hole, but the inner horizon at
r = 〈 R̂− 〉 is suppressed by quantum mechanical fluctuations. This conclusion is
important in light of the instability usually referred to as the “mass inflation” [7].

Let us conclude this part by deriving a generalised uncertainty relation analogous
to the neutral case [1]. We first note that the expectation value
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Fig. 14.2 Probabilities PBH+ (thick lines) and PBH− (thin lines) as functions of the mass for
α = 0.3 (continuous line), α = 0.8 (dotted line) and α = 1 (dashed line)

〈 R̂+ 〉 = 4π

∫ ∞

Rmin+
|ψH(R+)|2 R3

+ dR+ = R+(M̄) , (14.11)

reproduces exactly the classical expression of R+ in (14.2) for � = λm ∼ m−1 and
M̄ = 4m/[2 + e

√
π erfc(1)] � 1.45m (in agreement with the wave-function ψS

containing energy contributions from momenta p > 0). From 〈 R̂2+ 〉 � R2+(M̄) one
can then calculate the uncertainty

ΔR+ =
√

〈 R̂2+ 〉 − 〈 R̂+ 〉2 � R+ ∼ m , (14.12)

which, like in the neutral Schwarzschild case, grows linearly with the mass m of the
source.1 If we now combine the horizon uncertainty (14.12) with the usual Heisen-
berg uncertainty in the radial size of the source, Δr2 � �2, we finally obtain a total
uncertainty

Δr =
√

〈Δr2 〉 + γ

√
〈ΔR2+ 〉 � �p

mp

Δp
+ γ �p

Δp

mp
, (14.13)

where γ is a coefficient of order one.We can therefore conclude that the outer horizon
behaves qualitatively like the neutral Schwarzschild radius.

1Such objects would remain quantum mechanical even in astrophysical regimes, where we expect
the horizon has a sharp location. This result therefore supports alternative models of black holes as
extended quantum objects, like the ones in [4, 8].
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14.2.2 Naked Singularity and Cosmic Censorship

We next move on to overcharged sources, represented by α > 1 [6]. The Cosmic
Censorship Conjecture [9] was formulated in order to forbid the existence of such
naked singularities in the classical theory of gravity, so it is interesting to investigate
whether quantum physics leads to any predictions therein. Our guiding principle will
be to assume that the quantum states for α > 1 can be obtained by extending con-
tinuously the HWF obtained for α < 1. Of course, this is by no means a compelling
choice, but we hope that it leads to consistent predictions for charges not too much
larger than the classical limiting value of α = 1.

The classical expressions of R± are complex for α > 1, hence we lift only the real
parts of R± to quantum observables. The modulus squared of the two HWFs (14.6),
for R± > Rmin±, then merge into

|ψH(R)|2 = N 2 exp

{

−2 − α2

α4

m2
pR

2

Δ2�2p

}

, (14.14)

where R has replaced R±. This HWF is still normalizable if R is real and

1 < α2 < 2 . (14.15)

We deduce that no normalisable quantum state with α2 > 2 is allowed. We must
also consider what happens to the Heaviside function in (14.6) in the superextremal
regime. First we note that the real parts of the minimum values of R+ and R− are
again the same for α > 1, and our continuity principle requires

R ≥ Rmin = Re

[
�p

m

mp

(
1 ±

√
1 − α2

)]
= �p

m

mp
. (14.16)

The expectation value for R̂ then matches exactly the corresponding expressions for
α < 1 [5],

lim
α↘1

〈 R̂ 〉 = 4 �2p/�

2 + e
√

π erfc(1)
= lim

α↗1
〈 R̂± 〉 , (14.17)

like the uncertainty ΔR(�, α > 1) matches the uncertainties ΔR±(�, α < 1) at α =
1.We remark that, forα = 1, thewidth � > 〈 R̂ 〉 form <

√
2 + e

√
π erfc(1)mp/2 �

0.8mp, and quantum fluctuations of the source will dominate for masses m 	 mp

(like in the neutral case [1, 2]). It is important to further note that the ratio

〈 R̂ 〉
�

� 25/4 �2p√
π

(√
2 − α

) (14.18)



14 A Quantum Cosmic Conjecture 131

Fig. 14.3 PBH as a function of α for m = 2mp (solid line), m = mp (dotted line) and m = 0.5mp
(dashed line). Cases with m � mp are not plotted since they behave the same as m = 2mp, i.e. an
object with 1 < α2 < 2 must be a BH

blows up for all values of the mass m ∼ 1/� in the limit α2 → 2, and so does its
uncertainty, since ΔR � √

3π/8 − 1 〈 R̂ 〉 � 0.4 〈 R̂ 〉.
Using (14.8), one can calculate the probability PBH that the particle is a black hole

for α in the range (14.15). Figure14.3 shows that, for a mass above the Planck scale,
PBH � 1 throughout the entire range of α (extending the similar result for α < 1).
Moreover, even for m significantly less than mp, PBH approaches one in the limit
α2 → 2. We recall that PBH 	 1 for small m is related to � � 〈 R̂ 〉, and quantum
fluctuations in the source’s size dominate. On the other end, since both 〈 R̂ 〉 and ΔR
blow up at α2 = 2, the superextremal configurations with a significant probability of
being black holes display strong quantum fluctuations in the horizon’s size.

14.3 Conclusions and Outlook

We extended the HWF formalism from neutral to electrically charged sources and
considered separately the analogues of the classical Reissner–Nordström space-times
with two horizons or a naked singularity. In the former case, with 0 < α ≤ 1, we have
shown that quantum fluctuations can cover the inner horizon, thus helping to avoid
the instability known as mass inflation, at least for black holes not much heavier than
the Planck scale. In the latter, we have found that quantum black holes extend into
the range of classical naked singularities α > 1, but a quantum obstruction occurs at
α2 = 2.

Future developments involve extending the HWF to spinning sources and black
hole formation by colliding particles with a non-vanishing impact parameter.
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