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Abstract This is an extended version of a long lecture given on the workshop
“Pedagogical workshop on B-model” held at the University of Michigan, Ann Arbor
on 3–7 March 2014. The main goal is to prove that the total ancestor potential in
singularity theory depends analytically on the deformation parameters.

2000 Mathematics Subject Classification 14D05, 14N35, 17B69

1 Introduction

Motivated by quantum cohomology and Gromov–Witten theory Dubrovin invented
the notion of a Frobenius manifold [4]. Furthermore, he noticed that the Frobenius
manifolds satisfying certain semi-simplicity condition play a key role in the theory
of integrable hierarchies. This lead to the remarkable discovery that every semi-
simple Frobenius manifold gives rise to an integrable hierarchy [5]. Partially
motivated by Dubrovin’s work, Givental discovered a certain higher-genus recon-
struction formalism in Gromov–Witten (GW) theory which lead him to introduce
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the notion of a total ancestor potential in the abstract settings of an arbitrary semi-
simple Frobenius manifold S (see [8]). The potential is defined for each semi-simple
point s ∈ S and it has the form

˜As (h̄; t) = exp
(

∞
∑

g=0

h̄g−1
˜F (g)

s (t)
)

where ˜F (g)
s (t) is a formal power series in some formal vector variables t =

(t0, t1, t2, . . . ). Let us denote by B ⊂ S the subset of non-semisimple points. It
is known that B is an analytic hypersurface in S and that the coefficients of the
formal power series ˜F (g)

s (t) depend analytically in s for all s ∈ S \ B.
Givental conjectured that if S is the quantum cohomology of some compact

Kahler manifold, then under the semi-simplicity assumption, the total ancestor
potential of the Frobenius structure is a generating function for the so called ancestor
GW invariants (see Sect. 2.4 for more details). Givental’s conjecture was proved
by Teleman [21] in the more general settings of semi-simple Cohomological Field
Theories (CohFT).

On the other hand, most of the CohFT that we would like to compute satisfy the
semi-simplicity condition only after we deform them, so in order to use Givental’s
higher genus reconstruction it is important to determine whether the total ancestor
potential As (h̄; t) of a given semi-simple Frobenius structure extends analytically
through the non-semisimple locus. For example, if S is the orbit space of the Weyl
group of a non-simply laced simple Lie algebra (i.e., types B,C,F , or G), then there
is a natural Frobenius structure on S (see [4, 19]), but the total ancestor potential
does not extend analytically. It is a very interesting question to determine whether
the total ancestor potential of the Frobenius structures in that case has a geometric
origin, i.e., it is related in some way to some CohFT of Fan-Jarvis-Ruan-Witten
(FJRW) [7]. In fact, some progress in this direction was recently made by Liu-Ruan-
Zhang [15].

One of the most important examples of a semi-simple Frobenius structure, that
plays a crucial role in mirror symmetry, is Saito’s flat structure [18]. Motivated by
the classical theory of period integrals, K. Saito introduced the notion of a primitive
form. Let S be the base of the universal unfolding of the germ of a holomorphic
function f ∈ OCn+1,0 with an isolated critical point at 0 ∈ Cn+1. A primitive form
is the germ of a holomorphic volume form on Cn+1, possibly depending on the
deformation parameters s ∈ S, with some very special properties. Spelling out the
precise definition is quite difficult, but the main idea is that a primitive form and its
covariant derivatives with respect to the Gauss–Manin connection, provide a frame
for the vanishing cohomology bundle in which the Gauss–Manin connection turns
into a Dubrovin’s connection. In particular, the base S inherits a natural Frobenius
structure, which is always semi-simple, because the critical values provide canonical
coordinates (see [11, 20]). The goal in these notes is to prove the following theorem.
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Theorem 1 Let S be the base of the universal unfolding of some f ∈ OCn+1,0
equipped with a Frobenius structure corresponding to a primitive form; then the
coefficients of the total ancestor potential As(h̄; t) in front of the monomials in t
and h̄ extend analytically across B to analytic functions on the entire Frobenius
manifold S.

Theorem 1 motivates the following question. Given a singularity f ∈ OCn+1,0
and a primitive form, can we identify the total ancestor potential of the singularity
with the generating function of invariants of some CohFT. For example, if the germ
f can be represented by an invertible weighted-homogeneous polynomial and the
primitive form is chosen appropriately, then there is a conjecture that the appropriate
CohFT is a FJRW-CohFT [7].1

The proof of Theorem 1 follows the argument from [17]. We will try to keep
the exposition as self-contained as possible. In particular, up to some linear algebra
exercises, we give an introduction to Givental’s higher-genus reconstruction, define
and prove the properties of the so called propagators from [2], and finally give a
proof of the local Eynard–Orantin recursion [6, 16]. The only requirements for
reading this text is the knowledge of a Frobenius structure (see [4]). However, it
might be useful also to refer from time to time to Givental’s work [10], where the
period integrals were introduced and some of their most fundamental properties
were established.

2 Givental’s Total Ancestor Potential

Let S be a complex semi-simple Frobenius manifold and B ⊂ S be the analytic
hypersurface consisting of non-semisimple points. Motivated by Gromov–Witten
theory, Givental has defined the total ancestor potential As (h̄; q) of the Frobenius
manifold S for every semi-simple point s ∈ S \ B. The goal in this section is to
recall Givental’s construction.

2.1 Givental’s Symplectic Loop Space Formalism

Let H be a complex vector space equipped with a non-degenerate bi-linear pairing
( , ) and with a distinguished vector 1 ∈ H . By definition, Givental’s symplectic
loop space H = H((z−1)) is the space of formal Laurent series in z−1 with
coefficients in H , equipped with the following symplectic structure:

�(f (z), g(z)) = Resz=0(f (−z), g(z))dz,

the residue is interpreted formally as the coefficient in front of z−1.

1One of the pleasant outcomes of the workshop was that this conjecture was confirmed by
generalizing the approach of [14].



542 T. Milanov

The vector space H viewed as an abelian Lie algebra has a natural central
extension H ⊕ C in which the symplectic form coincides with the cocycle defining
the extension,

[v1, v2] := �(v1, v2), v1, v2 ∈ H.

SinceH⊕C is a Heisenberg Lie algebra it has a standard Fock space representations.
In our case the construction is as follows. Let us fix bases {φa}Na=1 and {φa}Na=1 of
H dual with respect to ( , ), then

�(φa(−z)−n−1, φbz
m) = δa,bδn,m.

Let us fix a sequence of formal vector variables q = (q0, q1, q2, . . . ), where qk =
∑N

a=1 qk,aφa . We will be interested in the Fock space of formal power series

Ch̄[[q0, q1 + 1, q2, . . . ]],

where Ch̄ is the field of formal Laurent series in h̄
1
2 . The shift by 1 is known as the

dilaton shift. The linear operator of the Fock space representing v ∈ H ⊕ C will
be denote by v̂ or (v)∧. The representation of the Heisenberg algebra on the Fock
space is uniquely defined by

(φaz
m)∧ := h̄

1
2 ∂qm,a , (φa(−z)−m−1)∧ := −h̄− 1

2 qm,a,

where 1 ≤ a ≤ N and m ≥ 0.

2.1.1 Quantization of Quadratic Hamiltonians

Note that the map

H → H∗, v �→ �( , v)

induces an isomorphism of Lie algebras

H ⊕ C ∼= H∗ ⊕ C,

where the RHS is the vector space of constant and linear functions on H and the Lie
bracket is the Poisson bracket corresponding to the symplectic form �. On the other
hand, a linear operator A on H is an infinitesimal symplectic transformation if and
only if the map v �→ Av is a Hamiltonian vector field. Moreover, the Hamiltonian
is given by the quadratic function hA(v) = 1

2�(Av, v). Put

pm,a = �( , φaz
m), qm,a = −�( , φa(−z)−m−1),
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then hA is a quadratic expression in pm,a and qm,a. We define the quantization
̂A := ̂hA by

(pm,apn,b)
∧ = h̄∂qm,a ∂qn,b ,

(pm,aqn,b)
∧ = (qn,bpm,a)

∧ = qn,b∂qm,a ,

(qm,aqn,b)
∧ = h̄−1qm,aqn,b.

We leave it as an exercise to verify the following properties

[̂A, v̂ ] = (Av)∧, {hA, hB} = h[A,B],

for all v ∈ H and all infinitesimal symplectic transformations A and B, where { , }
is the Poisson bracket.

2.1.2 Quantization of Symplectic Transformations

Let us assume that the operator series

R(z) = 1 + R1z + R2z
2 + · · · , Rk ∈ End(H)

is a symplectic transformation. It will be convenient to identify the sequence q =
(q0, q1, . . . ) with the series q0 +q1z+q2z

2 +· · · , then the natural action of R(z) on
H [z] induces an action on the formal sequence: q(z) �→ R(z)q(z), or in components

qn �→ R0qn + R1qn−1 + · · · + Rnq0.

Let us also define Vk� ∈ End(H) by the identity

∞
∑

k,�=0

Vk�z
kw� = RT (z)R(w) − 1

z + w
, (1)

where T is transposition with respect to the bi-linear form ( , ). We can define
formally A(z) = log R(z), so that R(z) = eA(z). By definition the quantization
̂R := e

̂A. The action of ̂R on the Fock space is not well defined in general. We have
the following Lemma.

Lemma 2 If F(h̄; q) is a formal power series in the Fock space and ̂RF is well
defined, then

̂RF(h̄; q) =
(

eh̄V (∂,∂)/2F
)

(h̄; R−1q),
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where V (∂, ∂) is the following 2nd order differential operator

V (∂, ∂) =
∞
∑

k,�=0

N
∑

a,b=1

(φa, Vk�φ
b)∂qk,a ∂q�,b .

2.1.3 Tame Asymptotical Functions

We will be interested in the so called tame functions. To define them let us introduce
first another sequence of formal vector variables t = (t0, t1, t2, . . . ), so that tk =
qk + δk,11. Formal power series in the Fock space of the type

A(h̄; q) = exp
(

∞
∑

g=0

h̄g−1F (g)(t)
)

, F (g) ∈ C[[t]], F (g)(0) = 0

are called formal asymptotical functions. We say that a formal asymptotical function
is tame if its Taylor’s coefficients satisfy the 3g − 3 + r-jet condition

∂rF (g)

dtk1,a1 · · · dtkr ,ar

∣

∣

∣

∣

∣

t=0

= 0 if k1 + · · · + kr > 3g − 3 + r.

Let us recall the following result from [10].

Lemma 3 If A is a tame asymptotical function, then ̂RA is a well defined tame
asymptotical function.

2.1.4 Symplectic Loop Space for a Frobenius Manifold

We fix a flat coordinate system {ta}Na=1 on S, s.t., the Euler vector field takes the
form

E =
N

∑

a=1

da ta∂a +
∑

b:db=1

rb∂b,

where d1, d2, . . . , dN and rb (b : db = 1) are some constants and ∂a := ∂/∂ta.

For simplicity, let us assume that S is simply connected, so that the flat vector fields
give a trivialization of the tangent and the cotangent bundle. More precisely, let us
denote by H the tangent space at some reference point, then we have

T ∗S ∼= T S ∼= S × H,
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where the first isomorphism is via the non-degenerate bi-linear form of the
Frobenius structure and the second one is via parallel transport with respect to the
corresponding Levi–Civita connection. The vector space H can be viewed also as
the vector space of flat vector fields on S. Note that φa = ∂a and φa := dta

form bases of H dual with respect to the Frobenius pairing. Recalling Givental’s
symplectic loop space formalism applied for H with ( , ) being the Frobenius
pairing, and 1 the unit vector field we get a symplectic loop space and a Fock
space equipped with a representation of the Heisenberg algebra and a projective
representation of the Poisson algebra of quadratic Hamiltonians on H .

2.2 Canonical Coordinates

Let us fix a semi-simple point s ∈ S \ B. By definition, there exists a coordinate
system {ui}Ni=1 defined locally near s in which both the Frobenius multiplication
and the flat metric are diagonal, i.e.,

∂ui • ∂uj = δi,j ∂uj , (∂ui , ∂uj ) = δi,j

�j

,

where {�j }Nj=1 are some functions analytic with no zeros in a neighborhood of s.
Coordinates {ui} with the above properties are called canonical. They are unique up
to permutation and a constant shift.

Let us denote by U the diagonal matrix of size N × N whose diagonal entries
are Ui,i = ui . We need also the N × N matrix � corresponding to the linear map

� : CN → TsB ∼= H, ei �→ √

�i∂ui .

The matrix of � is constructed by using the standard basis {ei}Ni=1 of CN and the
flat basis {φa}Na=1 of H , so that the entries of � are

�a,i = √

�i

∂ta

∂ui

, 1 ≤ a, i ≤ N.

Let us summarize some of the basic properties of the matrix � . The proofs follow
immediately from the definitions, so they will be left as an exercise.

Proposition 4 The matrix � has the following properties:

(1) If g = (ga,b), ga,b = (φa, φb) is the matrix of the flat pairing, then

� �T = g−1,

where T is the usual transposition of matrices.
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(2) Let A = ∑N
a=1 Aadta be the connection 1-form on S where Aa is the linear

operator of Frobenius multiplication by ∂a , then

�−1A� = dU.

(3) The Euler vector field has the form E = ∑N
i=1 ui∂ui . In particular,

�−1(E•)� = U,

where E• is the linear operator of multiplication by the Euler vector field E.

Recall the Dubrovin’s connection ∇ on the trivial bundle S × C∗ × H → S × C∗.
In flat coordinates

∇ = d − Az−1 +
(

− θz−1 + (E•)z−2
)

dz,

where θ is the so called Hodge grading operator defined by

θ : H → H, θ(φa) =
(D

2
+ da − 1

)

φa, 1 ≤ a ≤ N.

Proposition 5 Dubrovin’s connection has an irregular singularity at z = 0 and it
has a unique formal asymptotical solution of the form

�(1 + R1z + R2z
2 + · · · )eU/z. (2)

Proof Using Proposition 4 we get

�−1∇� = d + �−1d� − dUz−1 + (V z−1 + Uz−2)dz,

where V := −�−1θ� . The asymptotical series (2) is a solution to the Dubrovin’s
connection if and only if {Rk}∞k=0 (we set R0 = 1) satisfies the following system of
differential equations

dRk + (�−1d�)Rk = [dU,Rk+1], ∀k ≥ 0 (3)

and

kRk + [U,Rk+1] = −V Rk, ∀k ≥ 0. (4)

We have to prove that the above system has a unique solution. Arguing by induction
on � we will prove that there is a unique sequence R1, . . . , R� satisfying (3) and (4)
for all k ≤ � − 1, the diagonal part of (4) for k = �, and E(Rk) = −kRk for all
k ≤ �.
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Let us first prove the statement for � = 1. Using (3) with k = 0 and comparing
the (i, j)-th entries of the matrices with i �= j we get

(�−1d�)i,j = (dui − duj )(R1)i,j .

The flatness of ∇ implies that [dU,�−1d�] = 0. In particular, (dui − duj ) ∧
(�−1d�)i,j = 0, which by the de Rham lemma implies that (�−1d�)i,j =
αi,j (dui − duj ) for some function αi,j analytic in a neighborhood of s. Hence
(R1)i,j = αi,j . Comparing the diagonal entries in (4) for k = 1 we get

(R1)i,i = −
∑

p �=i

Vi,p(R1)p,i,

so R1 is uniquely determined. Let us check that the R1 satisfies (4) with k = 0. We
need only to compare the off-diagonal entries. Fix i �= j , then by definition we have

(�−1∂up�)i,j = 0, p �= i, j,

and

(R1)i,j = (�−1∂ui�)i,j = −(�−1∂uj �)i,j ,

hence

[U,R1]i,j = (ui − uj )(R1)i,j = (�−1E(�))i,j ,

where E = ∑N
i=1 ui∂ui is the Euler vector field. Since by definition LieE( , ) =

(2 − D)( , ) we get that E(�i) = D �i and

E(�a,i) =
(D

2
+ deg(ta) − 1

)

�a,i = θa,a�a,i.

In other words �−1E(�) = �−1θ� = −V. Finally, note that E(U) = U and
E(V ) = 0, so the identity [U,R1] = −V implies that E(R1) = −R1.

Assume that we have constructed R1, . . . , R�. We would like to construct R�+1
so that the inductive assumption holds. Note that since ∇ is flat we have

(

d + �−1d�
)2 = �−1d2� = 0, [dU, d + �−1d�] = 0,

so

[dU, dR� + �−1d�R�] = (d + �−1d�)[dU,R�] = (d + �−1d�)2R�−1 = 0.
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Now the same argument that we used to construct R1 can be used to construct R�+1.
The details are straightforward and will be left as an exercise. ��

2.3 The Total Ancestor Potential

Let us begin first with the case when S = C is equipped with the natural Frobenius
structure corresponding to the standard multiplication of complex numbers and the
pairing is (1, 1) = 1. The total ancestor potential in this case is defined through the
intersection theory on the Delign–Mumford moduli spaces Mg,n of stable curves.
Let us denote by ψi the 1st Chern class of the orbifold line bundle on Mg,n

corresponding to the cotangent lines at the i-th marked points. Put

〈ψk1
1 , . . . , ψkn

n 〉g,n :=
∫

Mg,n

ψ
k1
1 · · · ψkn

n . (5)

The Witten-Kontsevich tau-function is a formal series in t = (t0, t1, . . . ) defined by

˜Apt(h̄; t) = exp
(

∞
∑

g=0

h̄g−1
˜F (g)(t)

)

,

where the genus-g potential

˜F (g)(t) =
∞
∑

n=0

1

n! 〈t(ψ1), . . . , t(ψn)〉g,n

is defined as follows. We identify t with the formal series t(z) := t0 + t1z + · · · and
the n-point genus-g correlator is expanded multilinearly in t0, t1, . . . , so that the
correlators are reduced to expressions of the type (5). The total ancestor potential
Apt is obtained from ˜Apt via the dilaton shift: t(z) = q(z) + z, or in components
tk = qk + δk,1, k = 0, 1, 2, . . . , i.e.,

Apt(h̄; q) = ˜Apt(h̄; q(z) + z) ∈ Ch̄[[q0, q1 + 1, q2, . . . ]].

Note that in this case B = ∅ and that by definition Apt is independent of the choice
of a semi-simple point.

If S is an arbitrary simply connected semi-simple Frobenius manifold, then we fix
a reference tangent space H with a basis {φa}Na=1 that gives rise to a flat coordinate
system t = {ta}Na=1. In a neighborhood of a fixed semi-simple point s ∈ S \ B we
pick canonical coordinates {ui}Ni=1 and fix a branch of

√
�i , so that the matrix � is
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uniquely defined. The total ancestor potential is defined by

As (h̄; q) := ̂� ̂R e(U/z)∧
N
∏

i=1

Dpt(h̄�i; iq(z)
√

�i) ∈ Ch̄[[q0, q1 + 1, q2 . . . ]],
(6)

where iq(z) = ∑∞
k=0

iqkz
k. The expression preceding ̂� is a formal series in the

variables iqk (1 ≤ i ≤ N, k ≥ 0). The quantization ̂� is interpreted as the change
of variables

N
∑

i=1

iq��(ei) =
N

∑

a=1

q�,aφa,

i.e., ̂� transforms a formal series in iq� into a formal series in q�,a via the
substitution

iq� =
N

∑

a=1

(�−1)i,aq�,a.

Proposition 6 The coefficients in the formal series expansion of As (h̄; q) as a
series in q0, q1 + 1, q2, . . . are Laurent series in h̄, whose coefficients extend
analytically to the open subset S \ B of semi-simple points.

Proof In order to prove that the coefficients extend analytically along any path in
S \ B, it is enough to prove that the canonical coordinates ui have this property. Let
us denote by L ⊂ T ∗S the characteristic variety of the Frobenius multiplication.
Namely, L is defined as the zero locus of the sheaf of ideals I on T ∗S generated by
the kernel of the map

Sym(TS) → TS, v1 . . . vk �→ (v1 • · · · • vk). (7)

Here we are using that there is a natural map π∗ Sym(TS) → OT ∗S , where π :
T ∗S → S is the projection, so that the kernel of the map (7) can be mapped to OT ∗S
and it makes sense to define the ideal I generated by the image.

If s is a semi-simple point, then we can choose canonical coordinates
(u1, . . . , uN) around s and fiberwise coordinates x1, . . . , xN on T ∗S, so that all
1-forms in a neighborhood of s are given by

∑N
i=1 xidui . In the local coordinates

(u1, . . . , uN , x1, . . . , xN) the characteristic variety L is given by the equations

xixj − δi,j xj = 0, 1 ≤ i, j ≤ N.

It follows that over a neighborhood of s the subvariety L is a N-sheet covering and
the N sections of T ∗S that define L are precisely the 1-forms dui (1 ≤ i ≤ N).
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It is not hard to see from here that the projection π induces a branched covering
L → S of degree N and moreover the set B of non-semi-simple points coincides
with the branching locus, i.e., with the support of the sheaf of relative differentials
�1

L/S. Since L induces a regular covering on S \B the differential forms dui extend
along any path in S \ B, which proves that ui also extends.

The analytic continuation along a closed loop in S \ B acts as a permutation on
the sequence (u1, . . . , uN), while on the sequence (

√
�1, . . . ,

√
�N) the action is

given by the same permutation, but with possible sign changes of
√

�i . It remains
only to check that formula (6) is independent of the choices of signs in

√
�i and

invariant under the permutations of the canonical coordinates. This follows easily
from the definitions. ��

2.4 The Ancestor Correlators

In order to motivate our definition of correlators, let us first recall the definition in the
geometric settings, following [9]. For a given projective manifold V , let us denote
by Mg,n(V , d) the moduli space of degree-d stable maps from a genus-g nodal
Riemann surface, equipped with n marked points, to V . The ancestor correlator
functions are defined by the following intersection numbers:

〈φa1 ψ
k1
1 , . . . , φanψ

kn

n 〉g,n(t) :=
∞
∑

m=0

∑

d

Qd

m!
∫

[Mg,n+m(V ,d)]virt
ev∗(φa1 ⊗ · · · ⊗ φan ⊗ t⊗m)

n
∏

a=1

ψ
ka

a ,

where the notation is as follows. The classes {φas }ns=1 and t are cohomology classes
on V , the 2nd sum is over all effective curve classes d ∈ H2(V ;Z) and Qd is an
element of the Novikov ring. Furthermore, evaluating the stable map at the marked
points gives rise to the evaluation map

ev : Mg,n+m(V, d) → V n+m,

while the operation forgetting the last m marked points, the stable map,
and stabilizing (i.e. contracting the unstable components) gives a map ft :
Mg,n+m(V, d) → Mg,n. The cohomology classes ψs := ft∗(ψs) (1 ≤ s ≤ n).
Finally, [Mg,n+m(V, d)]virt is the virtual fundamental cycle. Let us point out that if
Mg,n is empty, i.e., 2g − 2 + n ≤ 0, then the ancestor correlator is by definition 0.
The total ancestor potential of V has the form

˜At (h̄; t) = exp
(

∞
∑

g=0

h̄g−1
˜F (g)

t (t)
)

, (8)
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where t ∈ H := H ∗(V ;C), t = {tk,a} is a set of formal variables and

˜F (g)
t (t) =

∞
∑

n=0

1

n! 〈t(ψ1), . . . , t(ψn)〉(t)g,n

is the so called genus-g ancestor potential, where t(z) = ∑

k,a tk,aφaz
k and the

definition of the correlator is extended mult-linearly.
Let us return to the settings of an abstract semi-simple Frobenius manifold.

It can be proved that the ancestor potential (6) still has the form (8). Motivated
by Gromov–Witten theory we would like to define the analogues of the ancestor
correlator functions, so that the ancestor potential can be written in the same way.
Put

〈φa1ψ
k1 , . . . , φanψ

kn〉g,n(s; t) := ∂tk1,a1
· · · ∂tkn,an

˜F (g)
s (h̄; t)

and

〈φa1ψ
k1 , . . . , φanψ

kn〉g,n(s) := 〈φa1ψ
k1 , . . . , φanψ

kn 〉g,n(s; 0), (9)

then by the Taylor’s formula we have

˜As (h̄; t) = exp
(

∞
∑

g,n=0

h̄g−1

n! 〈t(ψ), . . . , t(ψ)〉g,n(s)
)

,

where by extending multi-linearly the definition (9) we allow the insertions of the
correlator to be any formal power series from H [[ψ]]. We will refer to (9) as the
ancestor correlators of the Frobenius structure. According to Proposition 6 they are
analytic functions in s ∈ S \ B.

3 The Local Eynard–Orantin Recursion

Let us assume that S is a semi-simple Frobenius manifold. The goal in this section
is to derive a recursion for the ancestor correlators.

3.1 Virasoro Constraints for the Point

Recall that the Witten–Kontsevich tau-function is a vacuum vector for a certain
representation of the Virasoro algebra. The representation can be constructed as
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follows. Put

I
(k)
A1

(u, λ) = (−1)k
(2k − 1)!!

2k−1/2
(λ − u)−k−1/2, k ≥ 0

I
(−k−1)
A1

(u, λ) = 2
2k+1/2

(2k + 1)!! (λ − u)k+1/2, k ≥ 0.

These functions are known to be the periods of the A1-singularity. They satisfy the
following crucial property

∂λI
(n)
A1

(u, λ) = I
(n+1)
A1

(u, λ). (10)

We form the generating series

fA1(u, λ; z) =
∑

n∈Z
I

(n)
A1

(u, λ) (−z)n

and define

LA1 (u, λ) := 1

4
: (∂λfA1 (u, λ; z)∧(∂λfA1 (u, λ; z)∧ : + 1

16
(λ − u)−2 =:

∑

m∈Z
LA1,m(λ − u)−m−2,

where : : is the normal ordering which means that all differentiation operations
precede all multiplication ones. The operators LA1,m form a representation of the
Virasoro algebra (with central charge 1) on the Fock space of the Frobenius manifold
S = C. The first few of them have the form

LA1,−1 = q2
0

2h̄
+

∞
∑

k=0

qk+1∂qk ,

LA1,0 = 1

16
+ 1

2

∞
∑

k=0

(2k + 1)qk∂qk ,

LA1,1 = h̄

8

∂2

∂q0
2 + 1

4

∞
∑

k=0

(2k + 3)(2k + 1)qk

∂

∂qk+1
,

LA1,2 = 3h̄

8

∂2

∂q0∂q1
+ 1

8

∞
∑

k=0

(2k + 5)(2k + 3)(2k + 1)qk
∂

∂qk+2
.

It was conjectured by Witten [22] and proved by Kontsevich [13] that ˜Dpt is a
tau-function of the KdV hierarchy. In addition, ˜Dpt satisfies the string equation.
According to Kac and Schwarz [12] there exists a unique tau-function of KdV
satisfying string equation, which can be characterized also as the vacuum vectors



The Total Ancestor Potential in Singularity Theory 553

for the Virasoro algebra. In our notation the Virasoro constraints take the form

LA1,m Apt(h̄; q) = 0, m ≥ −1.

3.2 Virasoro Constraints for the Total Ancestor Potential

Fix a neighborhood of a generic semi-simple point, so that the canonical coordinates
(u1, . . . , uN) are pairwise distinct, i.e., ui �= uj for i �= j . Let us fix a sufficiently
small disk Di near each ui , s.t, Di ∩ Dj = ∅ for i �= j . Put

fi (s, λ; z) := � R(z) eU/zfA1(0, λ; z)ei = � R(z) fA1(ui, λ; z)ei ,

where for the 2nd equality we used the translation property (10). Expanding in the
powers of z we get

fi (s, λ; z) =
∑

n∈Z
I

(n)
i (s, λ)(−z)n,

where each I
(n)
i (s, λ) makes sense as a formal Laurent series in λ − ui . However,

using that �ReU/z is a solution for the Dubrovin’s connection, it is easy to prove
that I

(n)
i (s, λ) is a solution to the following system of ODEs

∂aI
(n)(s, λ) = −φa • I (n)(s, λ)

∂λI
(n)(s, λ) = I (n+1)(s, λ)

(λ − E•)∂λI
(n)(s, λ) =

(

θ − n − 1

2

)

I (n)(s, λ). (11)

Equation (11) has regular singularities at λ = ui (1 ≤ i ≤ N), which implies that
the Laurent series representing I

(n)
i (s, λ) is convergent for all λ ∈ Di and moreover

we can analytically extend in λ along any path in C \ {u1, . . . , uN }.
After a direct computation using Lemma 2 we get the following Lemma.

Lemma 7 The following identities hold:

(fi (s, λ; z))∧ ̂� ̂R = ̂� ̂R(fA1(ui , λ; z)ei)
∧, 1 ≤ i ≤ N.

The symplectic vector space H = H+ ⊕ H−, where H+ = H [z] and H− =
H [[z−1]]z−1 are Lagrangian subspaces. We denote by f �→ f+ and f �→ f− the
corresponding projections.
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Lemma 8 The symplectic pairing

�(f+A1
(ui, λ; z), f−A1

(ui, μ; z)) = 2 log(λ − μ) − 4 log((λ − ui)
1/2 + (μ − ui)

1/2),

where the RHS is expanded into a Laurent series at μ = ui , while keeping λ as a
parameter.

The proof is an easy computation using the explicit formulas for fA1 . The proof of
next Lemma is also a direct computation.

Lemma 9 The symplectic pairing �(f+i (s, λ; z), f−i (s, μ; z)) coincides with

�(f+A1
(ui , λ; z), f−A1

(ui , μ; z)) +
∞
∑

�′,�′′=0

(−1)�
′+�′′

(V�′,�′′ei , ei ) I
(−�′′−1)
A1

(ui , λ)I
(−�′−1)
A1

(ui , μ),

where V�′,�′′ ∈ End(CN) are defined in terms of R by (1).

Let us define the propagator

Pi,i (s, λ, μ) := ∂λ∂μ�(f+i (s, λ; z), f−i (s, μ; z)). (12)

where the RHS is interpreted as a Laurent series in (μ − ui) whose coefficients are
Laurent series in (λ−ui). In fact, using Lemmas 8 and 9 we get that the propagator
has the form of a singular term 2(λ − μ)−2 plus a Laurent series in (λ − ui) and
(μ − ui). Furthermore, we define

P
(0)
i,i (s, λ) := 1

2! ∂2
μ

(

(λ − μ)2Pi,i (s, λ, μ)
)

∣

∣

∣

∣

μ=λ

.

It is convenient to define

φj (s, λ; z) := ∂λfj (s, λ; z), ̂φj (s, λ) := (φj (s, λ; z))∧.

Put

Li(s, λ) := :̂φi(s, λ)2: + P
(0)
i,i (s, λ).

Proposition 10 The following formula holds

Li(s, λ) ̂� ̂R = 4 ̂� ̂R LA1(ui, λ).

Proof Put

PA1,A1(ui , λ, μ) := ∂λ∂μ�(fA1(ui, λ; z)+, fA1(ui , μ; z)−),
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and define

P
(0)
A1,A1

(ui, λ) := 1

2! ∂2
μ

(

(λ − μ)2PA1,A1(ui, λ, μ)
)

∣

∣

∣

∣

μ=λ

= 1

4
(λ − ui)

−2.

Note that

4LA1(ui , λ) =: ̂φA1(ui, λ)2 : +P
(0)
A1,A1

(s, λ).

After this observation the proof is straightforward. Namely, according to Lemma 7
we have

̂φi(s, λ)̂φi(s, μ) ̂� ̂R = ̂� ̂R ̂φA1(ui, λ)̂φA1(ui , μ). (13)

On the other hand

̂φi(s, λ)̂φi(s, μ) = :̂φi(s, λ)̂φi(s, μ): + Pi,i (s, λ, μ)

and

̂φA1(ui , λ)̂φA1(ui , μ) = :̂φA1(ui, λ)̂φA1(ui, μ): + PA1,A1(ui, λ, μ).

Also

Pi,i (s, λ, μ) = 2

(λ − μ)2 + P
(0)
i,i (s, λ) + O(λ − μ)

and

PA1,A1(ui, λ, μ) = 2

(λ − μ)2 + P
(0)
A1,A1

(ui, λ) + O(λ − μ).

Hence after subtracting the singular term 2(λ−μ)−2 from both sides in (13) we can
set μ = λ. We get precisely the identity that we wanted to prove. ��
Corollary 11 Let

Li(s, λ) =
∑

m∈Z
Li,m(λ − ui)

−m−2

be the Laurent series expansion at λ = ui; then

Li,m As(h̄; q) = 0, 1 ≤ i ≤ N, m ≥ −1.
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3.3 The Local Eynard–Orantin Recursion

By definition, the ancestor potential does not have non-zero correlators in the
unstable range (g, n) = (0, 0), (0, 1), (0, 2) and (1, 0). It is convenient however,
to extend the definition in the unstable range as well in the following two cases:

〈

φ+
j (s, λ; ψ1), t

〉

0,2
:= �(t(z), φ−

j (s, λ; z)), (14)

〈

φ+
j (s, λ; ψ1), φ

+
j (s, λ; ψ1)

〉

0,2
:= P

(0)
j,j (s, λ). (15)

Theorem 12 The ancestor correlators satisfy the following recursion

〈

φaψ
m
1 , t, . . . , t

〉

g,n+1
(s) =

1

4

N
∑

j=1

Resλ=uj

�(φaz
m , fj (s, λ; z)−)

(I
(−1)
j (s, λ), 1)

×

⎛

⎜

⎜

⎝

〈

φ+
j (s, λ;ψ1), φ

+
j (s, λ;ψ2), t, . . . , t

〉

g−1,n+2
(s) +

∑

g′+g′′=g

n′+n′′=n

(

n

n′

)

〈

φ+
j (s, λ;ψ1), t, . . . , t

〉

g′,n′+1
(s)

〈

φ+
j (s, λ;ψ1), t, . . . , t

〉

g′′,n′′+1
(s)

⎞

⎟

⎟

⎠

,

for all stable pairs (g, n + 1), i.e., 2g − 2 + n ≥ 0, where all unstable correlators
on the RHS are set to 0, except for the ones of the type (14) and (15).

Proof We will prove that the recursion is equivalent to the Virasoro constraints
stated in Corollary 11. To begin with let us write the generating series Lj(s, λ)

explicitly as the sum of the following three terms

∞
∑

k′,k′′=0

N
∑

a,b=1

(−1)k
′+k′′

(I
(k′+1)
j (s, λ), φa) (I

(k′′+1)
j (s, λ), φb) h̄∂qk′,a ∂qk′′,b , (16)

∞
∑

k′,k′′=0

N
∑

a,b=1

2(−1)k
′′+1 (I

(−k′)
j (s, λ), φa) (I

(k′′+1)
j (s, λ), φb) qk′,a∂qk′′,b , (17)

P
(0)
i,i (s, λ)+

∞
∑

k′,k′′=0

N
∑

a,b=1

(I
(−k′)
j (s, λ), φa) (I

(−k′′)
j (s, λ), φb) h̄−1qk′,a qk′′,b. (18)

Note that the double sum in (18) is analytic at λ = uj , so the sum does not contribute
to the Virasoro constraints, which means that it can be ignored. Let us undo the
dilaton shift, i.e., switch to the variables tk,a = qk,a − δk,1δa,1, where for simplicity
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we assume that φ1 = 1. Note that the only term affected by the change is (see (17)
when k′ = a = 1)

∞
∑

k=0

2(−1)k+1 (I
(−1)
j (s, λ), 1) (I

(k+1)
j (s, λ), φb) (t1,1 + 1)∂tk,b .

Now we need the following identity:

N
∑

j=1

Resλ=uj (I
(k′)
βj

(s, λ), φa) (I
(k′′)
βj

(s, λ), φb) dλ = 2(−1)k
′
δa,bδk′+k′′,0,

for all k′, k′′ ∈ Z and a, b = 1, 2, . . . , N. The proof follows from the definitions, so
it is left as an exercise. Fix m ≥ 0 and a ∈ {1, 2, . . . , N}, then

1

4

N
∑

j=1

Resλ=uj

(I
(−m−1)
j (s, λ), φa)

(I
(−1)
j (s, λ), 1)

Lj (s, λ)dλ =

∂

∂tm,a

+ 1

4

N
∑

j=1

Resλ=uj

(I
(−m−1)
j (s, λ), φa)

(I
(−1)
j (s, λ), 1)

(

Lj (s, λ)
∣

∣

q=t

)

dλ. (19)

The Virasoro constraints for the ancestor potential can be stated equivalently as
Lj(s, λ)As (h̄; q) is analytic at λ = uj for all j = 1, 2, . . . , N . Hence the
operator (19) annihilates ˜As (h̄; t). Comparing the coefficients in front of the
monomial expressions in t and h̄ of fixed degree n and genus g − 1 we get the
recursion that we wanted to prove. ��
Remark 13 The recursion in Theorem 12 is the same as the local Eynard–Orantin
recursion introduced in [6].

4 Analyticity of the Total Ancestor Potential in Singularity
Theory

Let us assume now that S is the base of the universal unfolding F of some function
f ∈ OCn+1,0 with an isolated critical point at 0. We may assume that S is a small ball
in CN with center at 0, where N is the multiplicity of the critical point. Furthermore,
we may arrange that the domain of F is an appropriate small contractible Stein
domain X ⊂ S × Cn+1, s.t., (0, 0) ∈ X and F(0, x) = f (x) (see [1] for some
background on singularity theory). Let us fix a primitive holomorphic volume form
ω ∈ �n+1

X/S(X), so that S becomes a Frobenius manifold (see [11, 20]). Moreover,
it can be proved that the critical values provide a canonical coordinate system and
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the non semi-simple points B are precisely those s ∈ S for which at least one of the
critical points of F(s, x) is not of type A1.

4.1 Period Integrals

The map

ϕ : X → S × C, (s, x) �→ (s, F (s, x)),

gives rise to a smooth fibration on (S×D)′, called the Milnor fibration. Here D ⊂ C

is a sufficiently small disk with center 0 and ′ denotes removing the points (s, λ) for
which the fiber Xs,λ := ϕ−1(s, λ) is singular. Let us fix a reference point (s0, η0) ∈
S × D and denote by h := Hn(Xs0,η0C) and by � ⊂ h the set of vanishing cycles.

The definition of a primitive form implies that the functions I
(k)
j (s, λ) introduced in

Sect. 3.2 can be identified with period integrals of the following type:

I (k)
α (s, λ) := −d

(

(2π)−�∂k+�
λ

∫

αs,λ

d−1ω
)

∈ T ∗
s S ∼= H,

where � := n/2 (by stabilizing the singularity if necessary we may assume that n

is even), α ∈ h is a cycle, and d−1ω denotes an arbitrary n-form ω̃, holomorphic
in a neighborhood of Xs,λ, s.t., ω = dω̃. The period is a multi-valued function on
(S × D)′ and its value depends on the choice of a path from the reference point to
(s, λ). In particular, we denoted by αs,λ the parallel transport of α along the path. If
s ∈ S \B is semi-simple and λ is in a neighborhood Dj of the critical value uj , then
let us choose α ∈ � to be a vanishing cycle and fix the path in such a way that αs,λ

becomes the cycle vanishing over λ = uj , then the period integral coincides with

I
(k)
j (s, λ) (see [10]).

For each fixed s ∈ S, the period vectors I
(n)
α (s, λ) satisfy Fuchsian differential

equation in λ with singularities only at the critical values of F(s, x) and λ = ∞.
Hence using analytic continuation we may assume that the period integrals are
define on (S × C)′. Equivalently, the cohomology groups Hn(Xs,λ;C), (s, λ) ∈
(S × D)′ form a vector bundle equipped with a flat Gauss–Manin connection and
the primitive form determines an extension of this bundle to a vector bundle on
S × P1, s.t., the Gauss–Manin connection has a logarithmic singularity at λ = ∞.

Finally, let us discuss the so called primitive direction. The flat identity of the
Frobenius structure is a vector field δ1, called primitive, s.t., δ1F = 1. We denote by
s �→ s+λ1 the time-λ flow of δ1. Note that if (s, λ) ∈ S×D is such that s−λ1 ∈ S,
then Xs,λ = Xs−λ1,0, so the periods have the following translation symmetry

I (n)
α (s, λ) = I (n)

α (s − λ1, 0).



The Total Ancestor Potential in Singularity Theory 559

Therefore we can extend the Frobenius structure in the primitive direction as well,
i.e., we may assume that S is invariant under the translations s �→ s + λ1 for all
λ ∈ C.

4.2 Propagators and the Monodromy Representation

Recall the propagators (12). In this section we prove that they can be extended
analytically along any path in (S × C)′ and moreover the analytic extension is
compatible with the monodromy action. To begin with let us introduce the following
terminology. Given cycles α, β ∈ h we define a propagator on (S × C)′ from α to
β to be a Laurent series

Pα,β(s, λ, μ) = (α|β)

(λ − μ)2
+

∞
∑

k=0

P
(k)
α,β(s, μ)(λ − μ)k,

where (α|β) up to the sign (−1)� is the intersection pairing of the cycles α and β,
satisfying the following properties.

(1) For every (s, μ) ∈ (S ×C)′, the radius of convergence of the series is non-zero.
(2) The functions P

(k)
α,β(s, μ) extend analytically along any path in (S ×C)′ and the

analytic continuation is compatible with the monodromy representation.
(3) If (s, μ) is such that s is semi-simple, μ is sufficiently close to ui(s), and β is

the cycle vanishing over μ = ui(s), then

Pβ,β(s, λ, μ) = Pi,i (s, λ, μ).

Property (2) means that if C is a closed loop in (S × C)′ based at (s, μ) and w is
the monodromy transformation of h corresponding to the parallel transport of cycles
along C, then the analytic continuation of P

(k)
α,β (s, μ) along C is P

(k)
w(α),w(β)

(s, μ).

The key to constructing propagators is the so called phase 1-form (see [2, 10])

Wα,β(s, ξ) = I (0)
α (s, ξ) • I

(0)
β (s, 0) ∈ T ∗

s S,

where the period vectors are interpreted as elements in T ∗
s S and the multiplication in

T ∗
s S is induced by the Frobenius multiplication via the natural identification T ∗

s S ∼=
TsS. The dependence on the parameter ξ is in the sense of a germ at ξ = 0, i.e., we
will be interested in the Taylor’s series expansion about ξ = 0. The phase form is a
power series in ξ whose coefficients are multivalued 1-forms on S′ := (S × {0})′.
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Lemma 14 We have

(α|β) = −ιEWα,β(s, 0) = −(I (0)
α (s, 0), E • I

(0)
β (s, 0)).

This is a well known fact due originally to K. Saito [18].

Lemma 15 The phase form is weighted-homogeneous of weight 0, i.e.,

(ξ∂ξ + LE)Wα,β(s, ξ) = 0,

where LE is the Lie derivative with respect to the vector field E.

Proof Note that

Wα,β(s, ξ) = (I (0)
α (s, ξ), dI

(−1)
β (s, 0)).

It is easy to check that Wα,β is a closed 1-form, so using the Cartan’s magic formula
LE = dιE + ιEd , where ιE is the contraction by the vector field E, we get

LEWα,β = d(I (0)
α (s, ξ), (θ + 1/2)I

(−1)
β (s, 0)) = −d((θ − 1/2)I (0)

α (s, ξ), I
(−1)
β (s, 0)).

We used that θ is skew-symmetric with respect to the residue pairing and that

ιEdI
(−1)
β (s, 0) = EI

(−1)
β (s, 0)) = (θ + 1/2)I

(−1)
β (s, 0),

where the last equality comes from the differential equation (11) with n = −1 and
λ = 0. Furthermore, using the Leibnitz rule we get

−((θ − 1/2)dI (0)
α (s, ξ), I

(−1)
β (s, 0)) − ((θ − 1/2)I (0)

α (s, ξ), dI
(−1)
β (s, 0)).

The first residue pairing, using the skew-symmetry of θ and the differential equation
dI

(0)
α = −AI

(1)
α becomes

(AI(1)
α (s, ξ), (θ + 1/2)I

(−1)
β (s, 0)) = −(AI(1)

α (s, ξ), E • I
(0)
β (s, 0)). (20)

Similarly, the 2nd residue pairing becomes

((ξ∂ξ + E)I (0)
α (s, ξ ), dI

(−1)
β (s, 0)) = ξ∂ξWα,β(s, ξ ) + (E • I (1)

α (s, ξ ), AI
(0)
β (s, 0)).

(21)

On the other hand, recall that A = ∑

i (φi•)dti and that the Frobenius multiplication
is commutative. In particular, [A,E•] = 0, so the terms (20) and (21) add up to
ξ∂ξWα,β(s, ξ). The lemma follows. ��
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Given cycles α, β ∈ h, then we define

Pα,β(s, λ, μ) := ∂λ∂μ

∫ s−μ1

s0

Wα,β(s′, λ − μ), (22)

where the integration is along a path C in (S × C)′, s.t., s0 is a generic point on the
discriminant and the cycle βs ∈ Hn(Xs,0;C) vanishes along C.

Proposition 16 The integral in definition (22) is convergent, independent of the
choice of path along which β vanishes, and the Laurent series expansion at λ = μ

of Pα,β(s, λ, μ) defines a propagator from α to β on (S × C)′.

Proof The integral can be computed explicitly in terms of the period integrals,
because according to Lemma 15 we have

∂λWα,β(s′, λ − μ) = −d
( 1

λ − μ
ιEWα,β(s′, λ − μ)

)

,

which by definition is

d
( 1

λ − μ
(I (0)

α (s′, λ − μ), (θ + 1/2)I
(−1)
β (s′, 0)

)

.

Using that I
(−1)
β (s′, 0) vanishes as s′ → s0, we get

Pα,β(s, λ, μ) = ∂μ

( 1

λ − μ
(I (0)

α (s, λ), (θ + 1/2)I
(−1)
β (s, μ))

)

.

The above series has a Laurent series expansion at λ = μ with a pole of order 2 and
no residue. The leading order term is

1

(λ − μ)2 (I (0)
α (s, μ), (θ + 1/2)I

(−1)
β (s, μ))

= 1

(λ − μ)2
(I (0)

α (s, μ), (μ − E•)I
(0)
β (s, μ)) = (α|β)

(λ − μ)2
,

where the last equality follows from Saito’s formula (see Lemma 14).
It remains only to prove that if s is a semi-simple point, λ and μ are sufficiently

close to a critical value ui(s), and α = β is vanishing cycle vanishing over λ =
ui(s), then Pα,β(s, λ, μ) = Pi,i (s, λ, μ). Since in definition (22) we can choose the
generic point s0 and the integration path as we wish, let us pick s0 = s − ui(s)1
and integrate along the straight segment [s0, s − μ1]. Using integration by parts
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together with

(I (k)
α (s′, λ − μ), dI

(−k−1)
β (s′, 0)) =

d(I (k)
α (s′, λ − μ), I

(−k−1)
β (s′, 0)) − (I (k+1)

α (s′, λ − μ), dI
(−k−2)
β (s′, 0))

it is easy to see that the integral in (22) coincides with the Laurent series expansion
at μ = ui(s) of the symplectic pairing

�(f+α (s, λ; z), f−β (s, μ; z)) =
∞
∑

k=0

(−1)k+1(I (k)
α (s, λ), I

(−k−1)
β (s, μ)).

This completes the proof. ��
Note that in the course of the proof we derived the following explicit formulas

for the the coefficients P
(k)
α,β(s, μ) of the Laurent series expansion in (λ − μ) of the

propagator:

1

(k + 1)! (I (k+1)
α (s, μ), (θ + 1/2)I

(0)
β (s, μ)) + 1

(k + 2)! (I (k+2)
α (s, μ), (θ + 1/2)I

(−1)
β (s, μ)).

In particular,

P
(0)
α,β(s, μ) = 1

2

(

(μ − E•s )I
(1)
α (s, μ), I

(1)
β (s, μ)

)

= 1

2

(

(θ − 1/2)I (0)
α (s, μ), I

(1)
β (s, μ)

)

.

(23)

Note that the propagator P
(0)
α,β (s, μ) is symmetric with respect to α and β.

4.3 Twisted Representation of the Heisenberg VOA

Let us denote by F = Sym(h[ζ−1]ζ−1). Given a ∈ h it is convenient to put
a(−n−1) := aζ−n−1, then every element in F is a linear combination of elements of
the type

a = α1
(−k1−1) · · ·αr

(−kr−1), αi ∈ h, ki ≥ 0.

Following [2] we define differential operators acting on the Fock space as follows.
First we define

Xs,λ(α) := ̂φα(s, λ), α ∈ h, (24)
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where we identify α ∈ h with α(−1) ∈ F and put ̂φα(s, λ) = (∂λfα(s, λ; z))∧, then
we set

Xs,λ(a) =
∑

J

(
∏

(i,j)∈J

∂
(kj )

λ P
(ki )

αi ,αj (s, λ)
)

:
(

∏

l∈J ′
∂

(kl)
λ Xs,λ(α

l)
)

: , (25)

where ∂
(k)
λ := ∂k

λ

k! and the sum is over all collections J of disjoint ordered pairs
(i1, j1), . . . , (is, js) ⊂ {1, . . . , r} such that i1 < · · · < is and il < jl for all l,
and J ′ = {1, . . . , r} \ {i1, . . . , is, j1, . . . , js}. Although we are not going to use
the theory of vertex algebras here, let us point out that formula (25) is obtained
by the axioms of vertex operator algebra representations. Namely, the vector space
F has a standard structure of a Heisenberg Vertex Operator Algebra (VOA) and
the fields (24) are known to be local to each other. It was proved in [2], that the
definition (24) extends uniquely to a σ -twisted representation of F , where σ is the
classical monodromy corresponding to a big loop that goes around the discriminant.

For (s, λ) ∈ (S × C)′ and c1, . . . , cr ∈ h we define

�
(g)
c1···cr (s, λ; t) ∈ C[[t0, t1, . . . , ]]

by the following equation

Xs,λ(c1 · · · cr )As (h̄; q) =:
∞
∑

g=0

h̄g− r
2 �

(g)
c1···cr (s, λ; q)As (h̄; q), (26)

where in order to define �
(g)
c1···cr

(s, λ; t) we replace q by t without using the dilaton
shift. If we denote by W ⊂ GL(h) the monodromy group, then W acts naturally
on F via w(a(−n−1)) := (w(a))(−n−1). Since both the generating fields (24)
and the propagators are compatible with the monodromy representation we get
that the analytic continuation of Xs,λ(a) along a closed loop C in (S × C)′ is
Xs,λ(w(a)), where w ∈ W is the monodromy transformation corresponding to the

loop C. In particular, the analytic continuation in (s, λ) along C of �
(g)
c1···cr (s, λ; t)

is �
(g)

w(c1)···w(cr )
(s, λ; t).

4.4 Extension Through a Generic Non-semisimple Point

Let b0 ∈ B be a generic point, so that F(b0, x) has N − 2 critical points of type A1
and 1 critical point of type A2. The critical values corresponding to the A1-critical
points will be denoted by ui(b0) (1 ≤ i ≤ N − 2) and we will assume that they are
pairwise distinct. All points b ∈ B that do not satisfy the above property are points
in some codimension 2 analytic subvariety of S. Therefore, according to Hartogue’s
extension theorem, in order to prove that the ancestor potential extends analytically,
it is enough to prove that it extends analytically at s = b0.
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4.4.1 Fixing a Neighborhood of b0

We fix pairwise disjoint sufficiently small disks Di, 1 ≤ i ≤ N − 1, in C, s.t., the
center of Di is the critical value ui(b0), where uN−1(b0) is the critical value of the
A2-critical point. Put

S0 = {s ∈ S | ui(s) ∈ Di(1 ≤ i ≤ N − 2), (uN−1(s), uN (s)) ∈ (DN−1 × DN−1)/Z2},

where Z2 = Z/2Z acts on DN−1 × DN−1 by permuting the coordinates. Note that
S0 ⊂ S is an open neighborhood of b0 homeomorphic to

D1 × · · · × DN−2 × (DN−1 × DN−1)/Z2.

Furthermore, if we restrict the Milnor fibration to (S0 ×D0)
′, where D0 = �N−1

i=1 Di ,
then the vanishing cycles �0 of the new fibration form a disjoint union

�0 = �1 � · · · � �N−1,

where �i (1 ≤ i ≤ N−1) is the set of cycles vanishing respectively over λ = ui(b0)

(1 ≤ i ≤ N−1) along some path in (S0×D0)
′. Note that �N−1 is a A2-root system,

while the remaining �i’s are A1-root systems.

4.4.2 Extending the Recursion

Let us rewrite the Eynard–Orantin recursion in terms of the operators (25). By
definition

Xs,λ(β
2
i ) =: ̂φβi (s, λ)2 : +P

(0)
βi ,βi

(s, λ).

Let us denote by ̂φ±
α (s, λ) the quantization of φ±

α (s, λ; z), then the above operator
becomes

̂φ+
βi

(s, λ)2 + 2̂φ−
βi

(s, λ)̂φ+
βi

(s, λ) + ̂φ−
βi

(s, λ)2 + P
(0)
βi ,βi

(s, λ). (27)

Recalling the definition (26), we get that �
(g)
βi,βi

(s, λ; t) can be written as a sum
of 4 type of terms corresponding to the 4 summands in (27). Let us compare
�

(g)
βi,βi

(s, λ, t) with the sum of correlators that appear in the big brackets on the
RHS of the local Eynard–Orantin recursion in Theorem 12. The contributions of
the 1st summand in (27) coincide with the sum of all stable correlators, the 2nd
summand in (27) corresponds to the sum of all products of an unstable correlator of
type (14) and a stable correlator, the third summand depends analytically on λ − ui

so it does not contribute to the residue, and finally the 4th summand corresponds
to the contribution of the unstable correlator (15). Hence, the local Eynard-Orantin
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recursion stated in Theorem 12 can be written conveniently in the following way

〈φa ψm〉g,1(s; t) = −1

4

N
∑

i=1

Resλ=ui

�(φa zm, f−βi
(s, λ; z))

yβi (s, λ)
�

(g)
βi,βi

(s, λ; t) dλ,

(28)

where βi is a cycle vanishing over λ = ui and

yβ(s, λ) := (I
(−1)
β (s, λ), 1).

Let {α, β} be a basis of simple roots for �N−1. Put

χ1 = 2

3
α + 1

3
β, χ2 = −1

3
α + 1

3
β, χ3 = −1

3
α − 2

3
β.

We refer to these as 1-point cycles. Note that the root system �N−1 consists of all
differences χi − χj for i �= j . Motivated by the construction of Bouchard–Eynard
[3] we introduce the following integral

− 1

2π
√−1

∮

∑

c1,...,cr

1

(r − 1)!
�(φa zm, f−c1

(s, λ; z))
∏r

k=2 yck−c1(s, λ)
�

(g)
c1···cr

(s, λ; t) dλ, (29)

where the integral is along a closed loop in DN−1 that goes once counterclockwise
around the critical values uN−1(s) and uN(s) and the sum is over all r = 2, 3 and
all c1, . . . , cr ∈ {χ1, χ2, χ3} such that ci �= cj for i �= j . Note that the integrand
is monodromy invariant (see Sect. 4.3), hence a single valued analytic 1-form in
DN−1 \ {uN−1(s), uN (s)}, so the integral makes sense.

Theorem 17 The integral (29) coincides with the sum of the last two summands
in (28) corresponding to the residues at λ = uN−1, uN .

4.4.3 Proof of Theorem 17

The proof relies on a certain identity that we would like to present first. Let us
denote by h�i (1 ≤ i ≤ N) the vector subspace of h spanned by the root system
�i (we assume that �N = �N−1). Let ui and uj (1 ≤ i, j ≤ N) be two of the
critical values, β := βj be the cycle vanishing over uj , and a ∈ h�i . Let us fix
some Laurent series

f (λ,μ) ∈ (λ − ui)
1/2

C((λ − ui, μ − uj )) + C((λ − ui, μ − uj ))
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where C((λ − ui, μ − uj )) denotes the space of formal Laurent series. We will have
to evaluate residues of the following form:

Resλ=ui Resμ=uj

∑

all branches

�(φ+
a (s, λ; z), f−β (s, μ; z))

yβ(s, μ)
f (λ,μ) dμ, (30)

where the sum is over all branches (2 of them) of the multivalued function that
follows.

Lemma 18 If f (λ,μ) does not have a pole at λ = ui; then the residue (30) is
non-zero only if i = j and in the latter case it equals to

(a|β) Resλ=ui

∑

all branches

f (λ, λ)

yβ(s, λ)
dλ.

Proof Put a = a′ + (a|βi)βi/2; then a′ is invariant with respect to the monodromy
around λ = ui . From this we get that φ+

a′ (s, λ; z) is analytic at λ = ui , so it does not
contribute to the residue. In other words, it is enough to prove the lemma only for
a = βi. Let us assume that a = βi . Recall that by definition β = βj , then we get

�(φ+
a (s, λ; z), f−β (s, μ; z)) = �(f+βj

(s, μ; z), φ−
βi

(s, λ; z)) + �(φβi
(s, λ; z), fβj

(s, μ; z)).

The first symplectic pairing on the RHS does not contribute to the residue,
because φ−

a (s, λ; z) has a pole of order at most 1
2 so after taking the sum over

all branches, the poles of fractional degrees cancel out and hence the 1-form at
hands is analytic at λ = ui . For the second symplectic pairing, recalling that
fβk(s, λ; z) = �RfA1(uk, λ; z) for k = i, j , we get

�(φA1(ui , λ; z)ei, fA1(uj , μ; z)ej ) = 2δi,j

(μ − uj )
1
2

(λ − ui)
1
2

δ(λ − ui, μ − uj ),

where

δ(x, y) =
∑

n∈Z
xny−n−1

is the formal δ-function. It is an easy exercise to check that for every f (y) ∈ C((y))

we have

Resy=0 δ(x, y) f (y) = f (x).

The lemma follows. ��
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The integral (29) can be written as a sum of two residues: Resλ=uN−1 and
Resλ=uN . We claim that each of these residues can be reduced to the corresponding
residue in the sum (28). Let us present the argument for λ = uN−1. The other case
is completely analogous.

Let α = βN−1 be the cycle vanishing over uN−1. The summands in (29) for
which r = 2 and c1, c2 ∈ {χ1, χ2} give precisely

Resλ=uN−1

�(φa zm, f−χ1−χ2
(s, λ; z))

yχ1−χ2(s, λ)
�(g)

χ1,χ2
(s, λ; t) dλ.

On the other hand, using that α = χ1 − χ2 we get

�(g)
χ1,χ2

(s, λ; t) = −1

4
�(g)

α,α(s, λ; t) + 1

4
�

(g)
χ1+χ2,χ1+χ2

(s, λ; t)

Since (χ1 + χ2|α) = 0, the form �
(g)
χ1+χ2,χ1+χ2

(s, λ; t) is analytic at λ = uN−1,
so it does not contribute to the residue. Therefore we obtain precisely the (N − 1)-
st residue in (28). It remain only to see that the remaining summands with r = 2
cancel out with the summand with r = 3.

There are two types of quadratic summands: c1, c2 ∈ {χ1, χ3} and c1, c2 ∈
{χ2, χ3}. They add up respectively to

�(φa zm, f−χ1−χ3
(s, λ; z))

yχ1−χ3(s, λ)
�(g)

χ1,χ3
(s, λ; t) dλ (31)

and

�(φa zm, f−χ2−χ3
(s, λ; z))

yχ2−χ3(s, λ)
�(g)

χ2,χ3
(s, λ; t) dλ. (32)

By definition

∞
∑

g=0

h̄g−3/2 �(g)
χi,χ3

(s, λ; t)As = h̄−1/2
(

:̂φχi (s, λ)̂φχ3 (s, λ): + P (0)
χi ,χ3

(s, λ)
)

As .

(33)

We claim that the propagators P
(0)
χi ,χ3(s, λ) in (33) do not contribute to the residue

at λ = uN−1. Indeed, their contribution is given by the residue at λ = uN−1 of the
following function

�(φa zm, f−χ1−χ3
(s, λ; z))

yχ1−χ3(s, λ)
P (0)

χ1,χ3
(s, λ) + �(φa zm, f−χ2−χ3

(s, λ; z))

yχ2−χ3(s, λ)
P (0)

χ2,χ3
(s, λ).
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Note that the above expression is invariant with respect to the local monodromy
around λ = uN−1 and that the coefficients in front of P

(0)
χi ,χ3(s, λ) do not have a pole

at λ = uN−1. Recalling formula (23) we get that P
(0)
χi ,χ3(s, λ) has a pole of order at

mots 1/2, which implies that the entire expression is analytic at λ = uN−1.
The normally ordered product on the RHS of (33) is by definition

̂φχ3(s, λ) ̂φ+
χi

(s, λ) + ̂φ−
χi

(s, λ)̂φχ3(s, λ). (34)

Since (χ3|α) = 0 the field ̂φχ3(t, λ) is analytic at λ = uN−1. In addition ̂φ−
χi

(t, λ)

has a pole of order at most 1
2 at λ = uN−1. It follows that the second summand

in (34) does not contribute to the residue and therefore it can be ignored. For the
RHS of (33) we get

∞
∑

g=0

h̄g−1
̂φχ3(s, λ) 〈φ+

χi
(s, λ; ψ)〉g,1(t; t)As,

which after recalling the local recursion (28) becomes

−1

4

N
∑

j=1

Resμ=uj

�(φ+
χi

(s, λ; z), f−βj
(s, μ; z))

yβj (s, μ)
̂φχ3(s, λ) X

uj
s,μ(β2

j ) dμAs ,

where X
uj
s,μ(a) is the Laurent series expansion of Xs,μ(a) in (μ−uj ). Therefore we

need to compute the residues Resλ=uN−1 Resμ=uj of the following expressions

−1

4

∑

i=1,2

�(φa zm, f−χi−χ3
(s, λ; z))

yχi−χ3(s, λ)

�(φ+
χi

(s, λ; z), f−βj
(s, μ; z))

yβj
(s, μ)

̂φχ3(s, λ)X
uj
s,μ(β2

j ) dμAs .

The operator ̂φχ3(s, λ) X
uj
s,μ(β2

j ) can be written as

: ̂φβj (s, μ)2
̂φχ3(s, λ) : +2[̂φ+

χ3
(s, λ), ̂φ−

βj
(s, μ)] ̂φβj (s, μ) + P

(0)
βj ,βj

(s, μ)̂φχ3(s, λ).

(35)

Since (χ3|α) = 0 the operator ̂φ+
χ3

(s, λ) is regular at λ = uN−1. It follows that the
commutator

[̂φ+
χ3

(s, λ), ̂φ−
βj

(s, μ)] ∈ C((λ − uN−1, μ − uj ))
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and therefore we may recall Lemma 18. The above residue is non-zero only if j =
N − 1. In the latter case we get

−1

4
Resλ=uN−1

∑

i=1,2

(χi |α)
�(φa zm, f−χi−χ3

(s, λ; z))

yχi−χ3(s, λ) yα(s, λ)
̂φχ3(s, λ) X

uN−1
s,λ (α2) dλAs .

(36)

Note that

[̂φ+
χ3

(s, λ), ̂φ−
βj

(s, μ)] = ιλ−uN−1 ιμ−uN−1 Pχ3,βj (s, λ, μ),

where ιλ−uN−1 is the Laurent series expansion at λ = uN−1. Hence

̂φχ3(s, λ) X
uN−1
s,λ (α2) = ιλ−uN−1Xs,λ(χ3α

2).

By definition

−1

4
α2 = χ1 χ2 − 1

4
χ2

3

and since χ3 is invariant with respect to the local monodromy around λ = uN−1,
the field Xs,λ(χ

3
3 ) does not contribute to the residue. We get the following formula

for the residue (36):

Resλ=uN−1

∑

i=1,2

(χi |α)
�(φa zm, f−χi−χ3

(s, λ; z))

yχi−χ3(s, λ) yα(s, λ)
X

uN−1
s,λ (χ1χ2χ3) dλAs .

Using that α = χ1 − χ2, (χ1|α) = 1, and (χ2|α) = −1 we get

Resλ=uN−1

(

�(φa zm, f−χ1
(s, λ; z))

yχ2−χ1(s, λ) yχ3−χ1(s, λ)
+ �(φa zm, f−χ2

(s, λ; z))

yχ1−χ2(s, λ) yχ3−χ2(s, λ)

+ �(φa zm, f−χ3
(s, λ; z))

yχ1−χ3(s, λ) yχ2−χ3(s, λ)

)

×
∞
∑

g=0

h̄g−3/2�(g)
χ1χ2χ3

(s, λ; t) dλAs .

This sum cancels out the contribution to the residue at λ = uN−1 of the cubic terms
(i.e. the terms with r = 3) of the integral (29). ��

Note that in the integral (29) we may choose the integration contour to be the
boundary of the disk DN−1. Since the integrand in (29) has singularities only at the
critical values uN−1(s) and uN(s), which are inside the disk DN−1 for all s ∈ S0,
we get that the integral (29) depends analytically on s ∈ S0. Using Theorem 17
we can set up a recursion that produces functions analytic in a neighborhood of any
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generic point b0 ∈ B. For example, let us write the recursion for 〈φa〉1,1(s; 0). Since

�(1)
c1,c2

(s, λ; 0) = P (0)
ci ,cj

(s, λ), �(1)
c1,c2,c3

(s, λ; 0) = 0,

we have

〈φa〉1,1(s; 0) = 1

4

N−2
∑

i=1

1

2π
√−1

∮

Ci

(I
(−1)
βi

(s, λ), φa)

(I
(−1)
βi

(s, λ), 1)
P

(0)
βi ,βi

(s, λ)dλ

− 1

2π
√−1

∮

CN−1

∑

1≤i<j≤3

(I
(−1)
χi−χj

(s, λ), φa)

(I
(−1)
χi−χj

(s, λ), 1)
P (0)

χi ,χj
(s, λ)dλ,

where Ci is the boundary of the disk Di , 1 ≤ i ≤ N − 1. By definition if (s, λ) ∈
S0 × Ci , then (s, λ) is not a point on the discriminant. Note that I

(−1)
ϕ (s, λ) �= 0

if ϕ is a vanishing cycle and (s, λ) is not on the discriminant, because according to
Lemma 14

2 = (ϕ|ϕ) = (I (0)
ϕ (s, λ), (θ + 1/2)I (−1)

ϕ (s, λ)).

All integrals depend analytically on s ∈ S0, so the correlator 〈φa〉1,1(s; 0) is analytic
in the entire neighborhood S0 of b0 ∈ B. Using induction on the lexicographical
order of the pairs (g, n), where g is the genus and n is the number of insertions, we
can prove by induction that all ancestor correlators are analytic in the neighborhood
S0. Theorem 1 follows from the Hartogues extension theorem.
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