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Abstract In the physics literature, geometric quantization is an operation that
arises from an attempt to make sense of the passage from a classical theory to
the corresponding quantum theory. In mathematics, on the other hand, the work
of Alexander Givental and others has revealed quantization to be a powerful tool
for studying Gromov–Witten-type theories in higher genus. For example, if the
quantization of a symplectic transformationmatches two total descendent potentials,
then the original symplectic transformationsmatches their genus-zero theories, and,
at least when a semisimplicity condition is satisfied, the converse is also true.
In these notes, we give a mathematically-minded presentation of quantization of
symplectic vector spaces, and we illustrate how quantization appears in specific
applications to Gromov–Witten theory.
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1 Preface

The following notes were prepared for the “IAS Program onGromov-Witten Theory
and Quantization” held jointly by the Department of Mathematics and the Institute
for Advanced Study at the Hong Kong University of Science and Technology in
July 2013. Their primary purpose is to introduce the reader to the machinery of
geometric quantization with the ultimate goal of computations in Gromov-Witten
theory. These notes are expository, and the authors make no claim to originality of
any of the material appearing in them.

First appearing in this subject in the work of Alexander Givental and his students,
quantization provides a powerful tool for studying Gromov-Witten-type theories
in higher genus. For example, if the quantization of a symplectic transformation
matches two total descendent potentials, then the original symplectic transformation
matches the Lagrangian cones encoding their genus-zero theories; we discuss this
statement in detail in Sect. 5.5. Moreover, according to Givental’s Conjecture (see
Sect. 6.2), the converse is true in the semisimple case. Thus, if one wishes to
study a semisimple Gromov-Witten-type theory, it is sufficient to find a symplectic
transformation identifying its genus-zero theory with that of a finite collection of
points, which is well-understood. The quantization of this transformation will carry
all of the information about the higher-genus theory in question.

In addition, quantization is an extremely useful combinatorial device for orga-
nizing information. Some of the basic properties of Gromov-Witten theory, for
instance, can be succinctly expressed in terms of equations satisfied by quantized
operators acting on the total descendent potential. To give another example, even
if one is concerned only with genus zero, the combinatorics of expanding the
relation between two theories into a statement about their generating functions
can be unmanageable, but when it is expressed via quantization this unwieldy
problem obtains a clean expression. The relationship between a twisted theory and
its untwisted analogue, discussed in Sect. 6.3, is a key instance of this phenomenon.

At present, there are very few references on the subject of quantization as it is
used in this mathematical context.While a number of texts exist (such as [4, 10, 26]),
these tend to focus on the quantization of finite-dimensional, topologically non-
trivial symplectic manifolds. Accordingly, they are largely devoted to explaining the
structures of polarization and prequantization that one must impose on a symplectic
manifold before quantizing, and less concerned with explicit computations. These
precursors to quantization are irrelevant in applications to Gromov-Witten theory,
as the symplectic manifolds one must quantize are simply symplectic vector spaces.
However, other technical issues arise from the fact that the symplectic vector spaces
in Gromov-Witten theory are typically infinite-dimensional. We hope that these
notes will fill a gap in the existing literature by focusing on computational formulas
and addressing the complications specific to Givental’s set-up.

The structure of the notes is as follows. In Sect. 2, we give a brief overview
of preliminary material on symplectic geometry and the method of Feynman
diagram expansion. We then turn in Sect. 3 to a discussion of quantization of
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finite-dimensional vector spaces. We obtain formulas for the quantizations of
functions on such vector spaces by three main methods: direct computation via the
canonical commutation relations (which may also be expressed in terms of quadratic
Hamiltonians), Fourier-type integrals, and Feynman diagram expansion. All three
methods yield equivalent results, but this diversity of derivations is valuable in
pointing to various generalizations and applications. We then include, Sect. 4,
an interlude on basic Gromov-Witten theory. Though this material is not strictly
necessary until Sect. 6, it provides motivation and context for the material that
follows.

Section 5, is devoted to quantization of infinite-dimensional vector spaces, such
as arise in applications to Gromov-Witten theory. As in the finite-dimensional case,
formulas can be obtained via quadratic Hamiltonians, Fourier integrals, or Feynman
diagrams, and for the most part the computations mimic those of Sect. 3. The major
difference in the infinite-dimensional setting though, is that issues of convergence
arise, which we make an attempt to discuss whenever they come up. Finally, in
Sect. 6, we present several of the basic equations of Gromov-Witten theory in the
language of quantization, and mention a few of the more significant appearances of
quantization in the subject.

2 Preliminaries

Before we begin our study of quantization, we will give a quick overview of some
of the prerequisite background material. First, we review the basics of symplectic
vector spaces and symplectic manifolds. This material will be familiar to most of
our mathematical audience, but we collect it here for reference and to establish
notational conventions; for more details, see [8] or [25]. Less likely to be familiar
to mathematicians is the material on Feynman diagrams, so we cover this topic in
more detail. The section concludes with the statement of Feynman’s theorem, which
will be used later to express certain integrals as combinatorial summations. The
reader who is already experienced in the methods of Feynman diagram expansion is
encouraged to skip directly to Sect. 3.

2.1 Basics of Symplectic Geometry

2.1.1 Symplectic Vector Spaces

A symplectic vector space (V , ω) is a vector space V together with a nondegenerate
skew-symmetric bilinear form ω. We will often denote ω(v,w) by 〈v,w〉.

One consequence of the existence of a nondegenerate bilinear form is that V

is necessarily even-dimensional. The standard example of a real symplectic vector
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space is R2n, with the symplectic form defined in a basis {eα, eβ}1≤α,β≤n by

〈
eα, eβ

〉 = 〈
eα, eβ

〉 = 0,
〈
eα, eβ

〉 = δα
β . (1)

In other words, 〈 , 〉 is represented by the (skew-symmetric) matrix

J =
(

0 I

−I 0

)
.

In fact, any finite-dimensional symplectic vector space admits a basis in which the
symplectic form is expressed this way. Such a basis is called a symplectic basis,
and the corresponding coordinates are known as Darboux coordinates.

If U ⊂ V is a linear subspace of a symplectic vector space (V , ω), then the
symplectic orthogonal Uω of U is

Uω = {v ∈ V | ω(u, v) = 0 for all u ∈ U}.

One says U is isotropic if U ⊂ Uω and Lagrangian if U = Uω, which implies in
particular that, if V is finite-dimensional, dim(U) = 1

2dim(V ).
A symplectic transformation between symplectic vector spaces (V , ω) and

(V ′, ω′) is a linear map σ : V → V ′ such that

ω′(σ (v), σ (w)) = ω(v,w).

In what follows, we will mainly be concerned with the case V = V ′, and it will be
useful to express the symplectic condition on a linear endomorphism σ : V → V

in terms of matrix identities in Darboux coordinates. Choose a symplectic basis for
V and express σ in this basis via the matrix

σ =
(

A B

C D

)
.

Then σ is symplectic if and only if σT Jσ = J , which in turn holds if and only if
the following three identities are satisfied:

ABT = BAT (2)

CDT = DCT (3)

ADT −BCT = I. (4)

Using these facts, one obtains a convenient expression for the inverse:

σ−1 =
(

DT −BT

−CT AT

)
.
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An invertible matrix satisfying (2)–(4) is known as a symplectic matrix, and the
group of symplectic matrices is denoted Sp(2n,R).

2.1.2 Symplectic Manifolds

Symplectic vector spaces are the simplest examples of the more general notion
of a symplectic manifold, which is a smooth manifold equipped with a closed
nondegenerate two-form, called a symplectic form.

In particular, such a 2-form makes the tangent space TpM at any point p ∈ M

into a symplectic vector space. Just as every symplectic vector space is isomorphic
to R2n with its standard symplectic structure, Darboux’s Theorem states that every
symplectic manifold is locally isomorphic toR2n = {(x1, . . . , xn, y1, . . . , yn)} with
the symplectic form ω = ∑n

i=1 dxi ∧ dyi .
Perhaps the most important example of a symplectic manifold is the cotangent

bundle. Given any smooth manifold N (not necessarily symplectic), there is a
canonical symplectic structure on the total space of T ∗N . To define the symplectic
form, let π : T ∗N → N be the projection map. Then one can define a one-form λ

on T ∗N by setting

λ|ξx = π∗(ξx)

for any cotangent vector ξx ∈ T ∗
x N ⊂ T ∗N . This is known as the tautological one-

form. The canonical symplectic form on T ∗N is ω = −dλ. The choice of sign
makes the canonical symplectic structure agree with the standard one in the case
where N = Rn, which sits inside of T ∗N ∼= R2n as Span{e1, . . . , en} in the basis
notation used previously.

In coordinates, the tautological one-form and canonical two-form appear as
follows. Let q1, . . . , qn be local coordinates on N . Then there are local coordinates
on T ∗N in which a point in the fiber over (q1, . . . , qn) can be expressed as a local
system of coordinates (q1, . . . , qn, p

1, . . . , pn), and in these coordinates,

λ =
∑

α

pαdqα

and

ω =
∑

α

dqα ∧ dpα.

The definitions of isotropic and Lagrangian subspaces generalize to symplectic
manifolds, as well. A submanifold of a symplectic manifold is isotropic if the
restriction of the symplectic form to the submanifold is zero. An isotropic sub-
manifold is Lagrangian if its dimension is as large as possible—namely, half the
dimension of the ambient manifold.
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For example, in the case of the symplectic manifold T ∗N with its canonical
symplectic form, the fibers of the bundle are all Lagrangian submanifolds, as is the
zero section. Furthermore, if μ : N → T ∗N is a closed one-form, the graph of μ is
a Lagrangian submanifold. More precisely, for any one-form μ, one can define

Xμ = {(x, μ(x)) | x ∈ N} ⊂ T ∗N,

and Xμ is Lagrangian if and only if μ is closed. In case N is simply-connected,
this is equivalent to the requirement that μ = df for some function f , called a
generating function of the Lagrangian submanifold Xμ.

Finally, the notion of symplectic transformation generalizes in an obvious way.
Namely, given symplectic manifolds (M,ω1) and (N,ω2) a symplectomorphism
is a smooth map f : M → N such that f ∗ω2 = ω1.

2.2 Feynman Diagrams

The following material is drawn mainly from [12]; another reference on the subject
of Feynman diagrams is Chapter 9 of [19].

Consider an integral of the form

h̄− d
2

∫

V

e−S(x)/h̄dx, (5)

where V is a d-dimensional vector space, h̄ is a formal parameter, and

S(x) = 1

2
B(x, x) +

∑

m≥0

gm

m! Bm(x, . . . , x) (6)

for a bilinear form B and m-multilinear forms Bm on V , where gm are constants.
The integral (5) can be understood as a formal series in the parameters h̄ and gm.

2.3 Wick’s Theorem

We begin by addressing the simpler question of computing integrals involving an
exponential of a bilinear form without any of the other tensors.

Let V be a vector space of dimension d over R, and let B be a positive-definite
bilinear form on V . Wick’s theorem will relate integrals of the form

∫

V

l1(x) · · · lN (x)e−B(x,x)/2dx,
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in which l1, . . . , lN are linear forms on V , to pairings on the set [2k] =
{1, 2, . . . , 2k}. By a pairing on [2k], we mean a partition of the set into k disjoint
subsets, each having two elements. Let 
2k denote the set of pairings on [2k]. The
size of this set is

|
2k| = (2k)!
(2!)kk! ,

as the reader can check as an exercise.
An element σ ∈ 
k can be viewed as a special kind of permutation on the set

[2k], which sends each element to the other member of its pair. Write [2k]/σ for the
set of orbits under this involution.

Theorem 1 (Wick’s Theorem) Let l1, . . . , lN ∈ V ∗. If N is even, then

∫

V

l1(x) . . . lN (x)e
−B(x,x)

2 dx = (2π)d/2

√
detB

∑

σ∈
N

∏

i∈[N]/σ
B−1(li, lσ (i)).

If N is odd, the integral is zero.

Proof First, apply a change of variables such that B is of the form B(x, x) = x2
1 +

· · · + x2
d . The reader should check that this change of variables changes both sides

of the equation by a factor of det(P ), where P is the change-of-basis matrix, and
thus the equality prior to the change of variables is equivalent to the result after
the change. Furthermore, since both sides are multilinear in elements of V ∗ and
symmetric in x1, . . . , xd , we may assume l1 = l2 = · · · = lN = x1. The theorem is
then reduced to computing

∫

V

xN
1 e

−(x21+···+x2d )

2 dx.

This integral indeed vanishes when N is odd, since the integrand is an odd function.
If N is even, write N = 2k. In case k = 0, the theorem holds by the well-known
fact that

∫ ∞

−∞
e

−x2

2 dx = √
2π.

For k > 0, we can use this same fact to integrate out the last d − 1 variables, by
which we see that the claim in the theorem is equivalent to

∫ ∞

−∞
x2ke

−−x2

2 dx = √
2π

(2k)!
2kk! . (7)
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To prove (7), we first make the substitution y = x2

2 . Recall that the gamma
function is defined by

�(z) =
∫ ∞

0
yz−1e−ydy

and satisfies �( 12 ) = √
π , as well as

�(z + k) = (z + k − 1)(z + k − 2) · · · z · �(z)

for integers k. Thus, we have:

∫ ∞

−∞
x2ke

−x2

2 dx = 2
∫ ∞

0
x2ke

−x2

2 dx

= 2
∫ ∞

0
(2y)k−1/2e−y dy

= 2k+1/2�(k + 1
2 )

= 2k+1/2(k − 1
2 )(k − 3

2 ) . . . ( 12 )�( 12 )

= √
2π

(2k)!
2kk! ,

which proves the claim. ��

2.3.1 Feynman’s Theorem

Now let us return to the more general integral

Z = h̄− d
2

∫

V

e−S(x)/h̄dx,

which, for reasons we will mention at the end of the section, is sometimes called
a partition function. Recall that S has an expansion in terms of multilinear forms
given by (6).

Because a pairing can be represented by a graph all of whose vertices are 1-
valent, Wick’s theorem can be seen as a method for expressing certain integrals as
summations over graphs, in which each graph contributes an explicit combinatorial
term. The goal of this section is to give a similar graph-sum expression for the
partition function Z.

Before we can state the theorem, we require a bit of notation. If n = (n0, n1, . . .)

is a sequence of nonnegative integers, all but finitely many of which are zero, let
G(n) denote the set of isomorphism classes of graphs with ni vertices of valence
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i for each i ≥ 0. Note that the notion of “graph” here is very broad: they may be
disconnected, and self-edges and multiple edges are allowed. If � is such a graph, let

b(�) = |E(�)| − |V (�)|,

where E(�) and V (�) denote the edge set and vertex set, respectively. An
automorphism of � is a permutation of the vertices and edges that preserves the
graph structure, and the set of automorphisms is denoted Aut(�).

We will associate a certain number F� to each graph, known as the Feynman
amplitude. The Feynman amplitude is defined by the following procedure:

1. Put the m-tensor −Bm at each m-valent vertex of �.
2. For each edge e of �, take the contraction of tensors attached to the vertices of e

using the bilinear form B−1. This will produce a number F�i for each connected
component �i of �.

3. If � = ⊔
i �i is the decomposition of � into connected components, define

F� = ∏
i F�i .

By convention, we set the Feynman amplitude of the empty graph to be 1.

Theorem 2 (Feynman’s Theorem) One has

Z = (2π)d/2

√
det(B)

∑

n=(n0,n1,...)

( ∞∏

i=0

g
ni

i

)
∑

�∈G(n)

h̄b(�)

|Aut(�)|F�,

where the outer summation is over all sequences of nonnegative integers with almost
all zero.

Before we prove the theorem, let us compute a few examples of Feynman
amplitudes to make the procedure clear.

Example 3 Let � be the following graph:

Given B : V ⊗V → R, we have a corresponding bilinear form B−1 : V ∨ ⊗V ∨ →
R. Moreover,B1 ∈ V ∨, and so we can write the Feynman amplitude of this graph as

F� = (B−1(−B1,−B1))
2.

Example 4 Consider now the graph
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Associated to B is a mapB : V → V ∨, and in this notation, the Feynman amplitude
of the graph can be expressed as

F� = −B3(B
−1

(−B1), B
−1

(−B1), B
−1

(−B1)).

Proof of Feynman’s Theorem After a bit of combinatorial fiddling, this theorem
actually follows directly from Wick’s theorem. First, perform the change of
variables y = x/

√
h̄, under which

Z =
∫

V

e−B(y,y)/2e
∑

m≥0 gm(
−h̄

m
2 −1

Bm(y,...,y)
m! )dy.

Expanding the exponential as a series gives

Z =
∫

V

e−B(y,y)/2
∏

i≥0

∑

ni≥0

g
ni

i

(i!)ni ni !
( − h̄

i
2−1Bi(y, . . . , y)

)ni dy

=
∑

n=(n0,n1,...)

(∏

i≥0

g
ni

i

(i!)ni ni ! h̄
ni (

i
2−1)

)∫

V

e−B(y,y)/2
∏

i≥0

( − Bi(y, . . . , y)
)ni dy.

Denote

Zn =
∫

V

e−B(y,y)/2
∏

i≥0

(−Bi(y, . . . , y))ni dy.

Each of the factors −Bi(y, . . . , y) in this integral can be expressed as a sum of
products of i linear forms on V . After unpacking the expression in this way, Zn
becomes a sum of integrals of the form

∫

V

e−B(y,y)/2 (one linear form
)n1(product of two linear forms

)n2 · · · ,

each with an appropriate coefficient, so we will be able to apply Wick’s theorem.
Let N = ∑

i i · ni , which is the number of linear forms in the above expression
for Zn. We want to express the integral Zn using graphs. To this end, we draw
n0 vertices with no edges, n1 vertices with 1 half-edge emanating from them,
n2 vertices with 2 half-edges, n3 vertices with 3 half-edges, et cetera; these are
sometimes called “flowers”. We place −Bi at the vertex of each i-valent flower.
A pairing σ ∈ 
N can be understood as a way of joining pairs of the half-edges to
form full edges, which yields a graph �(σ), and applying Wick’s theorem we get
a number F(σ) from each such pairing σ . One can check that all of the pairings
σ giving rise to a particular graph � = �(σ) combine to contribute the Feynman
amplitude F�(σ). In particular, by Wick’s theorem, only even N give a nonzero
result.
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At this point, we have

Z = (2π)d/2

√
det(B)

∑

n

(∏

i≥0

g
ni

i

(i!)ni ni !
) ∑

σ∈
N

h̄b(�(σ )F�(σ),

where we have used the straightforward observation that the exponent
∑

ni(
i
2 −

1) = N
2 −∑

ni on h̄ is equal to the number of edges minus the number of vertices
of any of the graphs appearing in the summand corresponding to n. All that remains
is to account for the fact that many pairings can yield the same graph, and thus we
will obtain a factor when we re-express the above as a summation over graphs rather
than over pairings.

To compute the factor, fix a graph �, and consider the set P(�) of pairings on
[N] yielding the graph �. Let H be the set of half-edges of �, which are attached
as above to a collection of flowers. Let G be the group of permutations of H that
preserve flowers; this is generated by permutations of the edges within a single
flower, as well as swaps of two entire flowers with the same valence. Using this, it
is easy to see that

|G| =
∏

i≥0

(i!)ni ni !.

The group G acts transitively on the set P(�), and the stabilizer of this action is
equal to Aut(�). Thus, the number of distinct pairings yielding the graph � is

∏
i (i!)ni ni !

|Aut(�)| ,

and the theorem follows. ��
We conclude this preliminary section with a bit of “generatingfunctionology”

that motivates the term “partition function” for Z.

Theorem 5 Let Z0 = (2π)d/2

det(B)
. Then one has

log(Z/Z0) =
∑

n=(n0,n1,...)

( ∞∏

i=0

g
ni

i

)
∑

�∈Gc(n)

h̄b(�)

|Aut(�)|F�,

where the outer summation is over n as before, and Gc(n) denotes the set of
isomorphism classes of connected graphs in G(n).

The proof of this theorem is a combinatorial exercise and will be omitted. Note
that if we begin from this theorem, then the terms in Feynman’s Theorem can
be viewed as arising from “partitioning” a disconnected graph into its connected
components. This explains the terminology for Z in this particular situation.
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3 Quantization of Finite-Dimensional Symplectic Vector
Spaces

From a physical perspective, geometric quantization arises from an attempt to make
sense of the passage from a classical theory to the corresponding quantum theory.
The state space in classical mechanics is represented by a symplectic manifold, and
the observables (quantities like position and momentum) are given by smooth real-
valued functions on that manifold. Quantum mechanics, on the other hand, has a
Hilbert space as its state space, and the observables are given by self-adjoint linear
operators. Thus, quantization should associate a Hilbert space to each symplectic
manifold and a self-adjoint linear operator to each smooth real-valued function, and
this process should be functorial with respect to symplectic diffeomorphisms.

By considering certain axioms required of the quantization procedure, we show
in Sect. 3.1 that the Hilbert space of states can be viewed as a certain space of
functions. Careful study of these axioms leads, in Sect. 3.2, to a representation of
a quantized symplectic transformation as an explicit expression in terms of multi-
plication and differentiation of the coordinates. However, as is explained in Sect. 3.4,
it can also be expressed as a certain integral over the underlying vector space.
This representation has two advantages. First, the method of Feynman diagrams
allows one to re-write it as a combinatorial summation, as is explained in Sect. 3.5.
Second, it can be generalized to the case in which the symplectic diffeomorphism
is nonlinear. Though the nonlinear case will not be addressed in these notes, we
conclude this section with a few comments on nonlinear symplectomorphisms and
other possible generalizations of the material developed here.

3.1 The Set-Up

The material of this section is standard in the physics literature, and can be found,
for example, in [4] or [10].

3.1.1 Quantization of the State Space

Let V be a real symplectic vector space of dimension 2n, whose elements are
considered to be the classical states. Roughly speaking, elements of the associated
Hilbert space of quantum states will be square-integrable functions on V . It is
a basic physical principle, however, that quantum states should depend on only
half as many variables as the corresponding classical states; there are n position
coordinates and n momentum coordinates describing the classical state of a system,
whereas a quantum state is determined by either position or momentum alone. Thus,
before quantizing V it is necessary to choose a polarization, a decomposition
into half-dimensional subspaces. Because these two subspaces should be thought
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of as position and momentum, which mathematically are the zero section and the
fiber direction of the cotangent bundle to a manifold, they should be Lagrangian
subspaces of V .

The easiest way to specify a polarization in the context of vector spaces is to
choose a symplectic basis e = {eα, eβ }1≤α,β≤n. Recall, such a basis satisfies

〈
eα, eβ

〉 = 〈
eα, eβ

〉 = 0,
〈
eα, eβ

〉 = δα
β ,

where 〈·, ·〉 is the symplectic form on V . The polarization may be specified by fixing
the subspace R = Span{eα}1≤α≤n and viewing V as the cotangent bundle T ∗R in
such a way that 〈·, ·〉 is identified with the canonical symplectic form.1 An element
of V will be written in the basis e as

∑

α

pαeα +
∑

β

qβeβ.

For the remainder of these notes, we will suppress the summation symbol in
expressions like this, adopting Einstein’s convention that when Greek letters appear
both up and down, they are automatically summed over all values of the index. For
example, the above summation would be written simply as pαeα + qβeβ .

Let V ∼= R2n be a symplectic vector space with symplectic basis e =
{eα, eβ}1≤α,β≤n. Then the quantization of (V , e) is the Hilbert spaceHe of square-
integrable functions on R which take values in C[[h̄, h̄−1]]. Here, h̄ is considered
as a formal parameter, although physically, it denotes Plank’s constant.

It is worth noting that, while it is necessary to impose square-integrability in order
to obtain a Hilbert space, in practice one often needs to consider formal functions
on R that are not square-integrable. The space of such formal functions from R to
C[[h̄, h̄−1]] is called the Fock space.

3.1.2 Quantization of the Observables

Observables in the classical setting are smooth functions f ∈ C∞(V ), and the
result of a measurement is the value taken by f on a point of V . In the quantum
framework, observables are operators U on He, and the result of a measurement is
an eigenvalue of U . In order to ensure that these eigenvalues are real, we require
that the operators be self-adjoint.

There are a few other properties one would like the quantization Q(f ) of
observables f to satisfy. We give one possible such list below, following Section 3

1Note that in this identification, we have chosen for the fiber coordinates to be the first n

coordinates. It is important to keep track of whether upper indices or lower indices appear first
in the ordering of the basis to avoid sign errors.
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of [4]. Here, a set of observables is called complete if any function that “Poisson-
commutes” (that is, has vanishing Poisson bracket) with every element of the set is
a constant function. Likewise, a set of operators is called complete if any operator
that commutes with every one of them is the identity.

The quantization procedure should satisfy:

1. Linearity: Q(λf + g) = λQ(f ) + Q(g) for all f, g ∈ C∞(V ) and all λ ∈ R.
2. Preservation of constants: Q(1) = id.
3. Commutation: [Q(f ),Q(g)] = h̄Q({f, g}), where { , } denotes the Poisson

bracket.2

4. Irreducibility: If {f1, . . . , fk} is a complete set of observables, then
{Q(f1), . . . ,Q(fk)} is a complete set of operators.

However, it is in general not possible to satisfy all four of these properties
simultaneously. In practice, this forces one to restrict to quantizing only a certain
complete subset of the observables, or to relax the properties required. We will
address this in our particular case of interest shortly.

One complete set of observables on the state space V is given by the coordinate
functions {pα, qβ}α,β=1,...,n, and one can determine a quantization of these observ-
ables by unpacking conditions (1)–(4) above. Indeed, when f and g are coordinate
functions, condition (3) reduces to the canonical commutation relations (CCR),
where we write x̂ for Q(x):

[p̂α, p̂β ] = [q̂α, q̂β ] = 0, [p̂α, q̂β ] = h̄δβ
α .

The algebra generated by elements q̂α and p̂β subject to these commutation
relations is known as the Heisenberg algebra. Thus, the above can be understood as
requiring that the quantization of the coordinate functions defines a representation
of the Heisenberg algebra. By Schur’s Lemma, condition (4) is equivalent to
the requirement that this representation be irreducible. The following definition
provides such a representation.

The quantization of the coordinate functions3 is given by

q̂α� = qα�,

p̂α� = h̄
∂�

∂qα

for � ∈ He.

2This convention differs by a factor of i from what is taken in [4], but we choose it to match with
what appears in the Gromov-Witten theory literature.
3To be precise, these operators do not act on the entire quantum state space He, because elements
of He may not be differentiable. However, this will not be an issue in our applications, because
quantized operators will always act on power series.
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In fact, the complete set of observables we will need to quantize for our intended
applications consists of the quadratic functions in the Darboux coordinates. To
quantize these, order the variables of each quadratic monomial with q-coordinates
on the left, and quantize each variable as above. That is:

Q(qαqβ) = qαqβ

Q(qαpβ) = h̄qα ∂

∂qβ

Q(pαpβ) = h̄2
∂2

∂qα∂qβ
.

There is one important problem with this definition: the commutation condition
(3) holds only up to an additive constant when applied to quadratic functions. More
precisely,

[Q(f )Q(g)] = h̄Q({f, g}) + h̄2C(f, g),

where C is the cocycle given by

C(pαpβ, qαqβ) =
{
1 α �= β

2 α = β
(8)

and C(f, g) = 0 for any other pair of quadratic monomials f and g. This ambiguity
is sometimes expressed by saying that the quantization procedure gives only a
projective representation of the Lie algebra of quadratic functions in the Darboux
coordinates.

3.1.3 Quantization of Symplectomorphisms

All that remains is to address the issue of functoriality. That is, a symplectic
diffeomorphism T : V → V should give rise to an operator UT : He → Hẽ.
In fact, we will do something slightly different: we will associate to T an operator
UT : He → He. In certain cases, there is a natural identification between He and
Hẽ, so our procedure does the required job. More generally, the need for such an
identification introduces some ambiguity into the functoriality of quantization.

Furthermore, we will consider only the case in which T is linear and is the
exponential of an infinitesimal symplectic transformation, which is simply a linear
transformationwhose exponential is symplectic. For applications to Gromov-Witten
theory later, such transformation are the only ones we will need to quantize.

The computation of UT is the content of the next three sections.
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3.2 Quantization of Symplectomorphisms via the CCR

The following section closely follows the presentation given in [27].
Let T : V → V be a linear symplectic isomorphism taking the basis e to a new

basis ẽ = {ẽα, ẽβ} via the transformation

ẽα = Aα
βeβ + Cβαeβ,

ẽα = Bβαeβ + Dβ
αeβ.

Let p̃α and q̃β be the corresponding coordinate functions for the basis vectors ẽα

and ẽβ . Then ̂̃pβ and ̂̃qα are defined in the same way as above. The relation between
the two sets of coordinate functions is:

pα = Aβ
αp̃β + Bαβ q̃β (9)

qα = Cαβp̃β + Dα
β q̃β,

and the same equations give relations between their respective quantizations. We
will occasionally make use of the matrix notation

p = Ap̃ + Bq̃

q = Cp̃ + Dq̃

to abbreviate the above.
To define the operator He → He associated to the transformation T , observe

that by inverting the relationship (9) and quantizing, one can view both p̂α, q̂β and
̂̃pα, ̂̂qβ as representations ofHe. The operatorUT will be defined by the requirement
that

ˆ̃qαUT = UT q̂α (10)

ˆ̃pαUT = UT p̂α. (11)

As the computation will show, these equations uniquely specify UT up to a
multiplicative constant.

To obtain an explicit formula for UT , we restrict as mentioned above to the case
in which

T =
(

A B

C D

)
= exp

(
a b

c d

)
.
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In other words, if

Tt =
(

A(t) B(t)

C(t) D(t)

)
= exp

(
ta tb

tc td

)
,

then
(

a b
c d

)
is the derivative at t = 0 of the family of transformations Tt . The

infinitesimal symplectic relations

bT = b, cT = c, aT = −d (12)

follow from the relations defining T by differentiation.
This family of transformations yields a family of bases {eα

t , et
α} defined by

eα
t = A(t)αβeβ + C(t)βαeβ

et
α = B(t)βαeβ + D(t)βαeβ,

with corresponding coordinate functions {pt
α, qα

t }. Note that we obtain the original
transformation T , as well as the original basis ẽ and coordinate functions p̃α, q̃β , by
setting t = 1.

Using the fact that

T −1
t = exp

(−at −bt

−ct −dt

)
=
(

I − ta −tb

−tc I − td

)
+ O(t2),

we obtain the relations

eα = eα
t − taα

βe
β
t − tcβαet

β + O(t2),

eα = et
α − tbβαe

β
t − tdβ

α et
β + O(t2).

This implies

pt
α = pα − taβ

αpβ − tbαβqβ + O(t2)

qα
t = qα − tcαβpβ − tdα

β qβ + O(t2)

and consequently

p̂t
α = p̂α − taβ

α p̂β − tbαβ q̂β + O(t2) (13)

q̂α
t = q̂α − tcαβ p̂β − tdα

β q̂β + O(t2).
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Let Ut = UTt , so that

p̂t
αUt = Utp̂α (14)

q̂α
t Ut = Ut q̂α.

Denote by u the infinitesimal variation of UT ,

u = d

dt

∣
∣
∣
∣
t=0

Ut .

By plugging (13) into the above equations and taking the derivative at t = 0, we
derive commutation relations satisfied by u:

[p̂α, u] = aβ
α p̂β + bαβq̂β

[q̂α, u] = cαβp̂β + dα
β q̂β .

These equations allow us to determine the infinitesimal variation of U up to a
constant:

u = − 1

2h̄
cαβp̂αp̂β + 1

h̄
aβ
α q̂αp̂β + 1

2h̄
bαβ q̂αq̂β + C.

After identifying p̂α and q̂α with the operators h̄ ∂
∂qα and qα, respectively, we obtain

u = − h̄

2
cαβ ∂

∂qα

∂

∂qβ
+ aβ

αqα ∂

∂qβ
+ 1

2h̄
bαβqαqβ + C. (15)

Expanding (14) with respect to t yields formulas for
[
p̂α,

(
( d
dt

)kUt

)∣∣
t=0

]
and

[
q̂α,

(
( d
dt

)kUt

)∣∣
t=0

]
. Using these, one can check that if Tt takes the form Tt =

exp
(
t
(

a b
c d

))
, then Ut will take the form Ut = exp(tu), so in particular, UT =

exp(u). Thus, Eq. (15) gives a general formula for UT .
The formula simplifies significantly when T takes certain special forms. Let us

look explicitly at some particularly simple cases.

Example 6 Consider first the case where b = c = 0. In this case, we obtain

(UT ψ)(q) = exp

(
aβ
α qα ∂

∂qβ

)
ψ(q) = ψ(AT q).

Let us verify this formula in a very easy case. Suppose that a has only one
nonzero entry, and that this entry is off the diagonal, so that a

β
α = δi

αδ
β
j for some

fixed i �= j . Assume furthermore that ψ is a monomial:

ψ(q) =
∏

α

(qα)cα .
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Then

(UT ψ)(q) = exp

(
a

j
i qi ∂

∂qj

)∏(
qα
)cα

=
cj∑

k=0

1

k!
(

a
j
i qi ∂

∂qj

)k ∏(
qα
)cα

=
cj∑

k=0

cj !
(k!)(cj − k)!

(
a

j
i

)k

(qi)k(qj )cj −k
∏

α �=j

(
qα
)cα

=
∏

α �=j

(
qα
)cα

(
qj + a

j
i qi

)cj

= ψ(AT q),

where we use that A = exp(a) = I + a in this case.

Example 7 In the case where a = c = 0, the formula above directly implies4

(UT ψ)(q) = exp

(
1

2h̄
bαβqαqβ

)
ψ(q).

However, in this case, it is easy to check that B = b, and we obtain

(UT ψ)(q) = exp

(
1

2h̄
Bαβqαqβ

)
ψ(q).

Example 8 Finally, consider the case where a = b = 0. Then

(UT ψ)(q) = exp

(
− h̄

2
Cαβ ∂

∂qα

∂

∂qβ

)
ψ(q).

Remark 9 It is worth noting that this expression can be evaluated using Feynman
diagram techniques, in which each diagram corresponds to a term in the Taylor
series expansion of the exponential; we will discuss this further in Sect. 3.5.4.

4The analogue of this case in the infinite-dimensional situation is referred to in the Gromov-
Witten theory literature as “lower-triangular”, although the matrix representing T is in fact
upper-triangular in our chosen ordering of the basis. To minimize confusion, we will avoid the
terminology “upper-triangular” and “lower-triangular” in these notes.
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In fact, the above three examples let us compute UT for any symplectic matrix

T =
(

A B

C D

)
= exp

(
a b

c d

)
for which the lower-right submatrix D is invertible.5

To do so, decompose T as

T =
(

A B

C D

)
=
(

I BD−1

0 I

)
·
(

I 0
DCT I

)
·
(

D−T 0
0 D

)
.

Each of the matrices on the right falls into one of the cases we calculated above.
Furthermore, the quantization procedure satisfies UT1◦T2 = UT1 ◦ UT2 (up to
a constant), since both sides satisfy (10) and (11). Thus, the formula for the
quantization UT of any such T is as follows:

(UT ψ)(q) = exp

(
1

2h̄
(BD−1)αβqαqβ

)
exp

(
− h̄

2
(DCT )αβ ∂

∂qα

∂

∂qβ

)
ψ((D−T )αβq),

or, in matrix notation,

(UT ψ)(q) = exp

(
1

2h̄
(BD−1q) · q

)
exp

(
− h̄

2

(
DCT ∂

∂q

)
· ∂

∂q

)
ψ(D−1q).

One should be somewhat careful with this expression, since the two exponentials
have, respectively, infinitely many negative powers of h̄ and infinitely many positive
powers of h̄, so a priori their composition may have some powers of h̄ whose
coefficients are divergent series. Avoiding this issue requires one to apply each
quantized operator to ψ(D−1q) in turn, verifying at each stage that the coefficient
of every power of h̄ converges. A similar issue will arise when dealing with powers
of the variable z in the infinite-dimensional setting; see Sect. 5.3.

3.3 Quantization via Quadratic Hamiltonians

Before moving on to other expressions for the quantizationUT , let us briefly observe
that the formulas obtained in the previous section can be described in a much
simpler fashion by referring to the terminology of Hamiltonian mechanics. We
have preferred the longer derivation via the CCR because it more clearly captures
the “obvious” functoriality one would desire from the quantization procedure, but
the Hamiltonian perspective is the one that is typically taken in discussions of
quantization in Gromov-Witten theory (see, for example, [6] or [16]).

5Throughout this text, we will assume for convenience that D is invertible. However, if this is not
the case, one can still obtain similar formulas by decomposing the matrix differently.
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Let T = exp(F ) be a symplectomorphism as above, where

F =
(

a b

c d

)

is an infinitesimal symplectic transformation. Because the tangent space to a
symplectic vector space at any point is canonically identified with the vector space
itself, we can view F : V → V as a vector field on V . If ω is the 2-form giving the
symplectic structure, the contraction ιF ω is a 1-form on V . Since V is topologically
contractible, we can write ιF ω = dhF for some function hF : V → R. This
function is referred to as the Hamiltonian of F . Concretely, it is described by the
formula

hF (v) = 1

2
〈Fv, v〉

for v ∈ V , where 〈 , 〉 is the symplectic pairing.
Being a classical observable, the quantization of the function hF : V → R has

already been defined. Define the quantization of F by

F̂ = 1

h̄
ĥF .

The quantization of the symplectomorphism T is then defined as

UT = exp(F̂ ).

It is an easy exercise to check that F̂ agrees with the general formula given
by (15), so the two definitions of UT coincide.

One advantage of the Hamiltonian perspective is that it provides a straight-
forward way to understand the noncommutativity of the quantization procedure
for infinitesimal symplectic transformations. Recall, the quantization of quadratic
observables obeys the commutation relation

[Q(f ),Q(g)] = h̄Q({f, g}) + h̄2C(f, g)

for the cocycle C defined in (8). It is easy to check (for example, by working
in Darboux coordinates) that the Hamiltonian hA associated to an infinitesimal
symplectic transformation satisfies

{hA, hB} = h[A,B].

Thus, the commutation relation for infinitesimal symplectic transformations is

[Â, B̂] = ̂[A,B] + C(hA, hB).
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For an explicit computation of this cocycle in an (infinite-dimensional) case of
particular interest, see Example 1.3.4.1 of [6].

3.4 Integral Formulas

The contents of this section are based on lectures given by Xiang Tang at the RTG
Workshop on Quantization at the University of Michigan in December 2011. In a
more general setting, the material is discussed in [3].

Our goal is to obtain an alternative expression for UT of the form

(UT ψ)(q) = λ

∫

Rn

∫

Rn

e
1
h̄ (φ(q,p′)−q ′·p′)ψ(q ′)dq ′dp′ (16)

for a function φ : R2n → R and a constant λ ∈ R[[h̄, h̄−1]] to be determined. Such
operators, since they generalize the Fourier transform of ψ , are known as Fourier
integral operators.

The advantage of this alternate expression for UT is twofold. First, they allow
quantized operators to be expressed as sums over Feynman diagrams, and this
combinatorial expansion will be useful later, especially in Sect. 5.5. Second, the
notion of a Fourier integral operator generalizes to the case when the symplectic
diffeomorphism is not necessarily linear, as well as to the case of a Lagrangian sub-
manifold of the cotangent bundle that is not the graph of any symplectomorphism;
we will comment briefly on these more general settings in Sect. 3.6 below.

To define φ, first let �T be the graph of T :

�T =
{

(p, q, p̃, q̃)

∣
∣∣
∣
∣

pα = A
β
αp̃β + Bαβq̃β

qα = Cαβp̃β + Dα
β q̃β

}

⊂ R2n × R2n.

Here, R2n denotes the symplectic vector space obtained by equippingR2n with the
opposite of the standard symplectic form, so that the symplectic form on the product
is given by

〈(p, q, p̃, q̃), (P,Q, P̃ , Q̃)〉 =
∑

i

( − piQ
i + Piq

i + p̃iQ̃
i − P̃i q̃

i
)
.

Under this choice of symplectic form, �T is a Lagrangian submanifold of the
product.

There is an isomorphism of symplectic vector spaces

R2n × R2n ∼−→ T ∗(R2n)

(p, q, p̃, q̃) �→ (q, p̃, p, q̃),
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where T ∗(R2n) is equipped with the canonical symplectic form

〈(q, p, π, ξ), (Q,P,
,�)〉 =
∑

i

(
qi
i + pi�

i − Qiπi − Piξ
i
)
.

Thus, one can view �T as a Lagrangian submanifold of the cotangent bundle.
Define φ = φ(q, p′) as the generating function for this submanifold. Explicitly,
this says that

{

(q, p̃, p, q̃))

∣
∣
∣
∣
∣

pα = A
β
αp̃β + Bαβ q̃β

qα = Cαβp̃β + Dα
β q̃β

}

=
{(

q, p′, ∂φ

∂q
,

∂φ

∂p′

)}
.

Let us restrict, similarly to Sect. 3.2, to the case in which D is invertible. The
relations defining �T can be rearranged to give

q̃ = D−1q − D−1Cp̃

p = BD−1q + D−T p̃.

Therefore, φ(q, p′) is defined by the system of partial differential equations

∂φ

∂q
= BD−1q + D−T p′

∂φ

∂p′ = D−1q − D−1Cp′.

These are easily solved; up to an additive constant, one obtains

φ(q, p′) = 1

2
(BD−1q) · q + (D−1q) · p′ − 1

2
(D−1Cp′) · p′.

The constant λ in the definition of UT is simply a normalization factor, and is
given by

λ = 1

h̄n ,

as this will be necessary to make the integral formulas match those computed in the
previous section. We thus obtain the following definition for UT :

(UT ψ)(q) = 1

h̄n

∫

Rn

∫

Rn

e
1
h̄ ( 12 (BD−1q)·q+(D−1q)·p′− 1

2 (D−1Cp′)·p′−q ′·p′)
ψ(q ′)dq ′dp′.

(17)



422 E. Clader et al.

We should verify that this formula agrees with the one obtained in Sect. 3.2. This
boils down to properties of the Fourier transform, which we will define as

ψ̂(y) =
∫

Rn

e−ix·yψ(x)dx.

Under this definition,

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄n

∫

Rn

∫

Rn

e
1
h̄ (D−1q)·p′

e
− 1

2h̄ (D−1Cp′)·p′
e
− 1

h̄ q ′·p′
ψ(q ′)dq ′dp′

= ine
1
2h̄ (BD−1q)·q

∫

iRn

ei(D−1q)·p′′
e

h̄
2 (D−1Cp′′)·p′′

ψ̂(p′′)dp′′

= e
1
2h̄ (BD−1q)·q

∫

Rn

eiQ·p′′′
e− h̄

2 (D−1Cp′′′)·p′′′
̂ψ ◦ i(p′′′)dp′′′

= e
1
2h̄ (BD−1q)·q

∫

Rn

eiQ·p′′′
(

e
− h̄

2 (D−1C ∂
∂q′ )· ∂

∂q′ (ψ) ◦ i

)∧
(p′′′)dp′′′

= e
1
2h̄ (BD−1q)·q

e
− h̄

2

(
DCT ∂

∂q

)
· ∂
∂q ψ(D−1q),

where we use the changes of variables 1
h̄
p′ = ip′′, ip′′ = p′′′, and D−1q = iQ. The

integral formula therefore matches the one defined via the CCR.

3.5 Expressing Integrals via Feynman Diagrams

The formula given for UT ψ in (17) bears a striking resemblance to the type of
integral computed by Feynman’s theorem, and in this section, we will make the
connection precise.

3.5.1 Genus-Modified Feynman’s Theorem

In order to apply Feynman’s theorem, the entire integrand must be an exponential,
so we will assume that

ψ(q) = e
1
h̄
f (q)

.

Furthermore, let us assume that f (q) is h̄−1 times a power series in h̄, so ψ is of
the form

ψ(q) = e
∑

g≥0 h̄g−1Fg(q).
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Then

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄−n

∫

R2n
e
− 1

h̄ S(p′,q ′)
dp′dq ′

with

S(p′, q ′) =
(

− (D−1q) · p′ + 1

2
(D−1Cp′) · p′ + q ′ · p′

)
−
∑

g≥0

h̄gFg(q
′).

Note that if we let y = (p′, q ′), then the bilinear leading term of S(p′, q ′) (in
parentheses above) is equal to

1

2
(D−1Cp′)·p′+1

2
(q ′−D−1q)·p′+1

2
p′·(q ′−D−1q) = B(y − D−1q, y − D−1q)

2
,

where B(y1, y2) is the bilinear form given by the block matrix

(
D−1C I

I 0

)

and q = (0, q) ∈ R2n.
Changing variables, we have

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄−n

∫

R2n
e
− 1

h̄

(−B(y,y)
2 −∑

g≥0 h̄gFg(q ′+D−1q)
)

dy.

Each of the terms −Fg(q
′ + D−1q) can be decomposed into pieces that are

homogeneous in q ′:

−Fg(q
′ + D−1q) =

∑

m≥0

1

m!
(
−∂m Fg

∣
∣
q ′=D−1q

· (q ′)m
)

,

where −∂mFg|q ′=−D−1q · (q ′)m is short-hand for the m-tensor

Bg,m = −
∑

|m|=m

m!
m1! · · ·mn!

∂mFg

(∂q ′
1)

m1 · · · (∂q ′
n)

mn

∣
∣
∣
∣
q ′=D−1q

(q ′
1)

m1 · · · (q ′
n)

mn,

in which the sum is over all n-tuples m = (m1, . . . ,mn) ∈ Zn
≥0 such that |m| =

m1+· · ·+mn = m. We consider this as anm-tensor in q ′ whose coefficients involve
a formal parameter q .
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Thus, we have expressed the quantized operator as

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄−n

∫

R2n
e
− 1

h̄

(−B(y,y)
2 +∑

g,m≥0
h̄g

m! Bg,m(q ′,...,q ′)
)

dy.

This is essentially the setting in which Feynman’s theorem applies, but we must
modify Feynman’s theorem to allow for the presence of powers of h̄ in the exponent.
This is straightforward, but nevertheless interesting, as it introduces a striking
interpretation of g as recording the “genus” of vertices in a graph.

Theorem 10 Let V be a vector space of dimension d , and let

S(x) = 1

2
B(x, x) +

∑

g,m≥0

h̄g

m!Bg,m(x, . . . , x),

in which each Bg,m is an m-multilinear form and B0,0 = B0,1 = B0,2 = 0. Consider
the integral

Z = h̄− d
2

∫

V

e−S(x)/h̄dx.

Then

Z = (2π)d/2

√
det(B)

∑

n=(n0,n1,...)

∑

�∈G′(n)

h̄−χ�

|Aut(�)|F�,

where F� is the genus-modified Feynman amplitude, defined below.

Here, G′(n) denotes the set of isomorphism classes of graphs with ni vertices of
valence i for each i ≥ 0, in which each vertex v is labeled with a genus g(v) ≥
0. Given � ∈ G′(n), the genus-modified Feynman amplitude is defined by the
following procedure:

1. Put the m-tensor −Bg,m at each m-valent vertex of genus g in �.
2. For each edge e of �, take the contraction of tensors attached to the vertices of e

using the bilinear form B−1. This will produce a number F�i for each connected
component �i of �.

3. If � = ⊔
i �i is the decomposition of � into connected components, define

F� = ∏
i F�i .

Furthermore, the Euler characteristic of � is defined as

χ� = −
∑

v∈V (�)

g(v) + |V (�)| − |E(�)|.

Having established all the requisite notation, the proof of the theorem is actually
easy.



Geometric Quantization with Applications to Gromov-Witten Theory 425

Proof of Theorem 10 Reiterate the proof of Feynman’s theorem to obtain

Z =
∑

n=(ng,m)g,m≥0

⎛

⎝
∏

g,m≥0

h̄gng,m+( m
2 −1)ng,m

(m!)ng,mng,m!

⎞

⎠
∫

V

e−B(y,y)/2
∏

g,m≥0

(−Bg,m)ng,mdy.

As before, Wick’s theorem shows that the integral contributes the desired sum-
mation over graphs, modulo factors coming from over-counting. A similar orbit-
stabilizer argument shows that these factors precisely cancel the factorials in the
denominator. The power of h̄ is

∑

g≥0

g

⎛

⎝
∑

m≥0

ng,m

⎞

⎠ +
∑

m≥0

(m

2
− 1

)
⎛

⎝
∑

g≥0

ng,m

⎞

⎠ ,

which is the sum of the genera of the vertices plus the number of edges minus the
number of vertices, or in other words, −χ� , as required. ��

It should be noted that for the proof of the theorem, there is no particular reason
to think of g as recording the genus of a vertex—it is simply a label associated to the
vertex that records which of the m-tensors Bg,m one attaches. The convenience of
the interpretation of g as genus comes only from the fact that it simplifies the power
of h̄ neatly.

3.5.2 Feynman Diagram Formula for UT

We are now ready to give an expression for UT ψ in terms of Feynman diagrams.
In order to apply Theorem 10, we must make one more assumption: that F0 has
no terms of homogeneous degree less than 3 in q ′. Assuming this, we obtain the
following expression by directly applying the theorem:

(UT ψ)(q) = (2π)ne
1
2h̄ (BD−1q)·q

√
det(D−1C)

∑

n=(n0,n1,...)

∑

�∈G′(n)

h̄−χ�

|Aut(�)|F�(q), (18)

where F�(q) is the genus-modified Feynman amplitude given by placing the m-
tensor

∑

|m|=m

m!
m1! · · ·mn!

∂mFg

(∂q ′
1)

m1 · · · (∂q ′
n)

mn

∣
∣
∣
∣
q ′=D−1q

(q ′
1)

m1 · · · (q ′
n)

mn
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at each m-valent vertex of genus g in � and taking the contraction of tensors using
the bilinear form

(
D−1C I

I 0

)−1

= −
(
0 I

I D−1C

)
.

In fact, since this bilinear form is only ever applied to vectors of the form (0, q ′), we
are really only taking contraction of tensors using the bilinear form −D−1C onRn.

3.5.3 Connected Graphs

Recall from Theorem 5 that the logarithm of a Feynman diagram sum yields the
sum over only connected graphs. That is:

(UT ψ)(q) = (2π)ne
1
2h̄ (BD−1q)·q

√
det(D−1C)

exp

⎛

⎝
∑

�∈G′
c

h̄−χ�

|Aut(�)|F�(q)

⎞

⎠ ,

where G′
c denotes the set of isomorphism classes of connected genus-labeled

graphs. Thus, writing

F g(q) =
∑

�∈G′
c(g)

1

|Aut(�)|F�(q)

with G′
c(g) collecting connected graphs of genus g, we have:

(UT ψ)(q) = (2π)ne
1
2h̄ (BD−1q)·q

√
det(D−1C)

exp

⎛

⎝
∑

g≥0

h̄g−1F g(q)

⎞

⎠ .

For those familiar with Gromov-Witten theory, this expression should be salient—
we will return to it in Sect. 5 of the book.

3.5.4 Another Diagram Expansion

At this point, we can return to a remark made previously (Remark 9), regarding the
computation of UT ψ in the case where a quadratic differential operator appears in
the formula. In that case, we may express the quantization formula obtained via the
CCR as a graph sum in a rather different way. We explain how to do this below,
and show that we ultimately obtain the same graph sum as that which arises from
applying Feynman’s Theorem to the integral operator.



Geometric Quantization with Applications to Gromov-Witten Theory 427

Let

T =
(

I 0
C I

)
.

We showed in Sect. 3.2 that

(UT ψ)(q) = exp

(
− h̄

2
Cαβ ∂

∂qα

∂

∂qβ

)
ψ(q).

Suppose that ψ(q) = e
∑

g≥0 h̄g−1Fg(q) as above and expand both exponentials in
Taylor series. Then (UT ψ)(q) can be expressed as:

∑

{iα,β },{�g}

h̄
∑

iαβ+∑
�g(g−1)

∏
iαβ !∏ �g!

∏

α,β

(
−Cαβ

2

)iαβ ( ∂

∂qα

∂

∂qβ

)iαβ ∏

g

(Fg(q))�g . (19)

Whenever a product of quadratic differential operators acts on a product of
functions, the result can be written as a sum over diagrams. As an easy example,
suppose one wishes to compute

∂2

∂x∂y
(fgh)

for functions f, g, h in variables x and y. The product rule gives nine terms, each of
which can be viewed as a way of attaching an edge labeled

to a collection of vertices labeled f, g, and h. (We allow both ends of an edge to be
attached to the same vertex.)

Applying this general principle to the expression (19), one can write each of

the products
∏

(−Cαβ

2 )iαβ
∏(

∂
∂qα

∂
∂qβ

)iαβ Fg(q) as a sum over graphs obtained by

taking �g vertices of genus g for each g, with vertices of genus g labeled Fg, and
attaching iαβ edges labeled

in all possible ways. Each possibility gives a graph �̂. It is a combinatorial exercise
to check that the contributions from all choices of �̂ combine to give a factor of∏

iαβ !·∏ �g!
|Aut(�̂)| .
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Thus, we have expressed (UT ψ)(q) as

∑

{iαβ },{�g},�̂

h̄−χ
�̂

|Aut(�̂)|Gi,�,�̂(q),

where Gi,�,�̂(q) is obtained by way of the above procedure. This is essentially the
Feynman amplitude computed previously, but there is one difference: Gi,�,�(q) is
computed via edges whose two ends are labeled, whereas Feynman diagrams are
unlabeled. By summing up all possible labelings of the same unlabeled graph �, we
can rewrite this as

(UT ψ)(q) =
∑

�

h̄−χ�

|Aut(�)|G�,

where G� is the Feynman amplitude computed by placing the m-tensor

∑

|m|=m

m!
m1! · · · mn!

∂mFg

(∂q ′
1)

m1 · · · (∂q ′
n)

mn

∣∣
∣
∣
q ′=q

(q ′
1)

m1 · · · (q ′
n)

mn

at each m-valent vertex of genus g in � and taking the contraction of tensors using
the bilinear form − 1

2 (C + CT ) = −C. Up to a multiplicative constant, which we
can ignore, this matches the Feynman diagram expansion obtained previously.

3.6 Generalizations

As remarked in Sect. 3.4, one advantage of the integral formula representation of
a quantized operator is that it generalizes in at least two ways beyond the cases
considered here.

First, if T is a symplectic diffeomorphism that is not necessarily linear, one can
still define φ as the generating function of the graph of T , and under this definition,
the integral in (16) still makes sense. Thus, in principle, integral formulas allow one
to define the quantization of an arbitrary symplectic diffeomorphism. As it turns
out, the formula in (16) is no longer quite right in this more general setting; the
constant λ should be allowed to be a function b = b(q, p′, h̄) determined by T and
its derivatives. Nevertheless, an integral formula can still be obtained. This is very
important from a physical perspective, since the state space of classical mechanics
is typically a nontrivial symplectic manifold. While one can reduce to the case of
R2n by working locally, the quantization procedure should be functorial with respect
to arbitrary symplectic diffeomorphisms, which can certainly be nonlinear even in
local coordinates.
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A second possible direction for generalization is that the function φ need not be
the generating function of the graph of a symplectomorphism at all. Any Lagrangian
submanifold L ⊂ T ∗(R2n) has a generating function, and taking φ to be the
generating function of this submanifold, (16) gives a formula for the quantization
of L.

4 Interlude: Basics of Gromov-Witten Theory

In order to apply the formulas for UT ψ to obtain results in Gromov-Witten theory,
it is necessary to quantize infinite-dimensional symplectic vector spaces. Thus, we
devote Sect. 5 to the infinite-dimensional situation, discussing how to adapt the
finite-dimensional formulas and how to avoid issues of convergence. Before doing
this, however, we pause to give a brief overview of the basics of Gromov-Witten
theory. Although this material will not be strictly necessary until Sect. 6, we include
it now to motivate our interest in the infinite-dimensional case and the specific
assumptions made in the next section.

4.1 Definitions

The material of this section can be found in any standard reference on Gromov-
Witten theory, for example [7] or [19].

Let X be a projective variety. Roughly speaking, the Gromov-Witten invariants
of X encode the number of curves passing through a prescribed collection of
subvarieties. In order to define these invariants rigorously, we will first need to define
the moduli spaceMg,n(X, d) of stable maps.

Definition 11 A genus-g, n-pointed pre-stable curve is an algebraic curve C with
h1(C,ØC) = g and at worst nodal singularities, equipped with a choice of n distinct
ordered marked points x1, . . . , xn ∈ C.

Fix non-negative integers g and n, and a cycle d ∈ H2(X;Z).

Definition 12 A pre-stable map of genus g and degree d with n marked points
is an algebraic map f : C → X whose domain is a genus-g, n-pointed pre-
stable curve, and for which f∗[C] = d . Such a map is stable if it has only finitely
many automorphisms as a pointed map; concretely, this means that every irreducible
component collapsed to a point by f has at least three special points (marked points
or nodes) if its genus is zero and at least one special point if its genus is one.

As eluded to in this definition, there is a suitable notion of isomorphism of stable
maps. Namely, stable maps f : C → X and f ′ : C′ → X are isomorphic if there
is an isomorphism of curves s : C → C′ which preserves the markings and satisfies
f ′ ◦ s = f .
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There is a moduli space Mg,n(X, d) whose points are in bijection with isomor-
phism classes of stable maps of genus g and degree d with n marked points. To
be more precise, Mg,n(X, d) is only a coarse moduli scheme, but it can be given
the structure of a Deligne-Mumford stack, and with this extra structure it is a fine
moduli stack. In general, this moduli space is singular and may possess components
of different dimensions. However, there is always an “expected” or “virtual”
dimension, denoted vdim, and a class [Mg,n(X, d)]vir ∈ H2vdim(Mg,n(X, d)),
called the virtual fundamental class, which plays the role of the fundamental class
for the purpose of intersection theory. The following theorem collects some of the
important (and highly non-trivial) properties of this moduli space.

Theorem 13 There exists a compact moduli space Mg,n(X, d), of virtual dimen-
sion equal to

vdim = (dim(X) − 3)(1 − g) +
∫

d

c1(TX) + n.

It admits a virtual fundamental class [Mg,n(X, d)]vir ∈ H2vdim(Mg,n(X, d)).

Virtual dimension can be given a precise meaning in terms of deformation theory,
which we will omit. In certain easy cases, though, the moduli space is smooth and
pure-dimensional, and in these cases the virtual dimension is simply the ordinary
dimension, and the virtual fundamental class is the ordinary fundamental class. For
example, this occurs when g = 0 and X is convex (such as the case X = Pr ) or
when g = 0 and d = 0.

Gromov-Witten invariants will be defined as integrals over the moduli space of
stable maps. The classes we will integrate will come from two places. First, there
are evaluation maps

evi : Mg,n(X, d) → X

for i = 1, . . . , n, defined by sending (C; x1, . . . , xn; f ) to f (xi). In fact, these set-
theoretic maps are morphisms of schemes (or stacks). Second, there are ψ classes.
To define these, let Li be the line bundle on Mg,n(X, d) whose fiber over a point
(C; x1, . . . , xn; f ) is the cotangent line6 to the curve C at xi . Then

ψi = c1(Li )

for i = 1, . . . , n.

6Of course, this is only a heuristic definition, as one cannot specify a line bundle by prescribing
its fibers. To be more precise, one must consider the universal curve π : C → Mg,n(X, d). This
carries a relative cotangent line bundle ωπ . Furthermore, there are sections si : Mg,n(X, d) → C
sending (C; x1, . . . , xn; f ) to xi ∈ C ⊂ C. We define Li = s∗

i ωπ .
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Definition 14 Fix cohomology classes γ1, . . . , γn ∈ H ∗(X) and integers
j1, . . . , jn ∈ Z≥0. The correspondingGromov-Witten invariant (or correlator) is

〈γ1ψj1
1 , · · · , γnψ

jn
n 〉Xg,n,d =

∫

[Mg,n(X,d)]vir
ev∗

1(γ1)ψ
j1
1 · · · ev∗

n(γn)ψ
jn
n .

Often in what follows, the indices on ψ class insertions will be dropped. We will
also sometimes make use of the physics notation

〈τj1(γ1), · · · , τjn(γn)〉Xg,n,d

for the above invariant, in which τ is a formal symbol recording the powers of ψ .

While the enumerative significance of this integral is not immediately obvious,
there is an interpretation in terms of curve-counting in simple cases. Indeed,
suppose that Mg,n(X, d) is smooth and its virtual fundamental class is equal to its
ordinary fundamental class. Suppose, further, that the classes γi are Poincaré dual to
transverse subvarieties Yi ⊂ X, and that ji = 0 for all i. Then the Gromov-Witten
invariant above is equal to the number of genus-g, n-pointed curves in X whose first
marked point lies on Y1, whose second marked point lies on Y2, et cetera. Thus, the
invariant indeed represents (in some sense) a count of the number of curves passing
through prescribed subvarieties.

In order to encode these invariants in a notationally parsimonious way, we write

ai(z) = ai
0 + ai

1z + ai
2z

2 + · · ·
for ai

j ∈ H ∗(X). Then, given a1, . . . , an ∈ H ∗(X)[[z]], define

〈a1(ψ), . . . , an(ψ)〉Xg,n,d =
∫

[Mg,n(X,d)]vir

⎛

⎝
∞∑

j=0

ev∗
1 (a

1
j )ψ

j

1

⎞

⎠ · · ·
⎛

⎝
∞∑

j=0

ev∗
n(an

j )ψ
j
n

⎞

⎠ .

Arbitrary Gromov-Witten invariants ofX are determined by those in which every
insertion is the same. Thus, making use of the above notation, we can describe all
of the genus-g invariants of X via the generating function

F g
X(t(z)) =

∑

n,d≥0

Qd

n! 〈t(ψ), . . . , t(ψ)〉Xg,n,d ,

which is a formal function of the variable t(z) ∈ H ∗(X)[[z]] taking values in the
Novikov ring C[[Q]]. Introducing another parameter h̄ to record the genus, we can
combine all of the genus-g generating functions into one:

DX = exp

(
∑

g

h̄g−1F g
X

)

.

This is referred to as the total descendent potential of X.
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It is convenient to sum invariants with certain fixed insertions over all ways of
adding additional insertions, as well as all choices of degree. Thus, we define:

〈〈a1(ψ), . . . , an(ψ)〉〉Xg,n(s) =
∑

m,d

Qd

m! 〈a1(ψ), . . . , an(ψ), s, . . . , s〉Xg,n+m,d

for specified s ∈ H ∗(X).

4.2 Basic Equations

In practice, Gromov-Witten invariants are usually very difficult to compute by hand.
Instead, calculations are typically carried out combinatorially by beginning from a
few easy cases and applying a number of relations. We state those relations in this
section. The statements of the relations can be found, for example, in [19], while
their expressions as differential equations are given in [23].

4.2.1 String Equation

The string equation addresses invariants in which one of the insertions is 1 ∈ H 0(X)

with no ψ classes. It states:

〈τa1(γ1), · · · , τan(ψn) 1〉Xg,n+1,d =
(20)

n∑

i=1

〈τa1(γ1), · · · , τai−1(γi−1), τai−1(γi), τai+1(γi+1), · · · , τan (γn)〉Xg,n,d

wheneverMg,n(X, d) is nonempty.
The proof of this equation relies on a result about pullbacks of ψ classes under

the forgetful morphism Mg,n+1(X, d) → Mg,n(X, d) that drops the last marked
point. Because this morphism involves contracting irreducible components ofC that
become unstable after the forgetting operation, ψ classes on the target do not pull
back to ψ classes on the source. However, there is an explicit comparison result,
and this is the key ingredient in the proof of (20). See [19] for the details.

It is a basic combinatorial fact that differentiation of the generating function with
respect to the variable t ij corresponds to adding an additional insertion of τj (φi).
Starting from this, one may express the string equation in terms of a differential
equation satisfied by the Gromov-Witten generating function. To see this, fix a basis
{φ1, . . . , φk} for H ∗(X), and write

tj = t ij φi .
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Then

∂

∂t10

∑

g

h̄g−1F g
X =

∑

g,n,d

Qdh̄g−1

n! 〈t(ψ), . . . , t(ψ), 1〉Xg,n+1,d

=
∑

g,n,d

Qdh̄g−1

(n − 1)!

〈

t(ψ), . . . , t(ψ),
∑

i,j

t ij+1τj (φi)

〉X

g,n,d

+ 1

2h̄
〈t(ψ), t(ψ), 1〉X0,3,0 + 〈1〉1,1,0

=
∑

i,j

t ij+1
∂

∂tij

∑

g

h̄g−1F g
X + 1

2h̄
〈t(ψ), t(ψ), 1〉X0,3,0 + 〈1〉1,1,0.

The “exceptional” terms at the end arise from reindexing the summation, because
the moduli spacesMg,n(X, d) do not exist for (g, n, d) = (0, 2, 0) or (1, 0, 0). The
first exceptional term is equal to

1

2h̄
〈t0, t0〉X,

where 〈 , 〉X denotes the Poincaré pairing on X, because the ψ classes are trivial on
M0,3(X, 0). The second exceptional term vanishes for dimension reasons.

Taking the coefficient of h̄−1, we find that F 0
X satisfies the following differential

equation:

∂F 0
X

∂t10

= 1

2
〈t0, t0〉X +

∑

i,j

t ij+1
∂F 0

X

∂tij

. (21)

Before we continue, let us remark that the total-genus string equation can be
presented in the following alternative form:

∑

g,n,d

Qdh̄g−1

(n − 1)! 〈1, t(ψ), . . . , t(ψ)〉Xg,n,d =
∑

g,n,d

Qdh̄g−1

(n − 1)!
〈[

t(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

+ 1

2h̄
〈t0, t0〉X. (22)

This expression will be useful later.
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4.2.2 Dilaton Equation

The dilaton equation addresses the situation in which there is an insertion of
1∈H ∗(X) with a first power of ψ attached to it:

〈τa1(γ1), · · · , τanτ1(T0)〉Xg,n,d = (2g − 2 + n)〈τa1(γ1), . . . , τan(γn)〉Xg,n,d .

Again, it can be expressed as a differential equation on the generating function. In
genus zero, the equation is:

∂F 0
X

∂t11

=
∑

1≤i≤k
j≥0

t ij
∂F 0

X

∂tij

− 2F 0
X. (23)

The proof is similar to the above, so we omit it.
A simple but extremely important device known as the dilaton shift allows us to

express this equation in a simpler form. Define a new parameter q(z) = q0 + q1z +
· · · ∈ H ∗(X)[[z]] by

q(z) = t(z) − z, (24)

so that qi = ti for i �= 1 and q1 = t1 − 1. If we perform this change of variables,
then the dilaton equation says precisely that

∑

1≤i≤k
j≥0

qi
j

∂F 0
X

∂qi
j

= 2F 0
X,

or in other words that F 0
X(q(z)) is homogeneous of degree two.

4.2.3 Topological Recursion Relations

A more general equation relating Gromov-Witten invariants to ones with lower
powers of ψ is given by the topological recursion relations. In genus zero, the
relation is:

〈〈τa1+1(γ1), τa2(γ2),τa3(γ3)〉〉X0,3(τ )

=
∑

a

〈〈τa1(γ1), φa〉〉X0,2〈〈φa, τa2(γ2), τa3(γ3)〉〉X0,3,

where, as above, {φa} is a basis for H ∗(X), and {φa} denotes the dual basis under
the Poincaré pairing. There are also topological recursion relations in higher genus
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(see [11, 14, 15]), but we omit them here as they are more complicated and not
necessary for our purposes.

In terms of a differential equation, the genus-zero topological recursion relations
are given by

∂3F 0
X

∂t
i1
j1

∂t
i2
j2

∂t
i3
j3

=
∑

μ,ν

∂2F 0
X

∂t
i1
j1

∂t
μ
0

gμν ∂F 0
X

∂t
i2
j2

∂t
i3
j3

∂tν0

. (25)

Here, we use gμν to denote the matrix for the Poincaré pairing on H ∗(X) in the
basis {φα} and gμν to denote the inverse matrix.

4.2.4 Divisor Equation

The divisor equation describes invariants in which one insertion lies in H 2(X) (with
no ψ classes) in terms of invariants with fewer insertions. For ρ ∈ H 2(X), it states:

〈τa1(γ1), · · · , τan
(γn) ρ〉Xg,n+1,d = 〈ρ, d〉〈τa1 (γ1), · · · , τan

(γn)〉Xg,n,d

+
n∑

i=1

〈τa1(γ1), · · · , τai−1(γi−1), τai−1(γiρ), τai+1(γi+1), · · · , τan
(γn)〉Xg,n,d ,

or equivalently,

〈a1(ψ), . . . , an−1(ψ), ρ〉Xg,n,d = 〈ρ, d〉〈a1(ψ), . . . , an−1(ψ)〉Xg,n−1,d (26)

+
n−1∑

i=1

〈
a1(ψ), . . . ,

[
ρai (ψ)

ψ

]

+
, . . . , an−1(ψ)

〉X

g,n−1,d

.

This equation, too, can be expressed as a differential equation on the generating
function. The resulting equation is not needed for the time being, but we will return
to it in Sect. 6.

4.3 Axiomatization

Axiomatic Gromov-Witten theory attempts to formalize the structures which arise
in a genus-zero Gromov-Witten theory. One advantage of such a program is that
any properties proved in the framework of axiomatic Gromov-Witten theory will
necessarily hold for any of the variants of Gromov-Witten theory that share the
same basic properties, such as the orbifold theory or FJRW theory. See [23], for a
more detailed exposition of the subject of axiomatization.
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Let H be an arbitrary Q-vector space equipped with a distinguished element 1
and a nondegenerate inner product ( , ). Let

H = H((z−1)),

which is a symplectic vector space with symplectic form � defined by

�(f, g) = Resz=0

(
(f (−z), g(z))

)
.

An arbitrary element ofH can be expressed as

∑

k≥0

pk,αφα(−z)−1−k +
∑

�≥0

q
β
� φβz�, (27)

in which {φ1, . . . , φd } is a basis forH with φ1 = 1. Define a subspaceH+ = H [[z]]
of H, which has coordinates qi

j . Elements of H+ are identified with t(z) ∈ H [[z]]
via the dilaton shift

t ij = qi
j + δi1δj1.

Definition 15 A genus-zero axiomatic theory is a pair (H,G0), where H is as
above and G0 = G0(t) is a formal function of t(z) ∈ H [[z]] satisfying the
differential equations (21), (23), and (25).

In the case where H = H ∗(X; �) equipped with the Poincaré pairing and
G0 = F 0

X, one finds that the genus-zero Gromov-Witten theory of X is an axiomatic
theory.

Note that we require an axiomatic theory to satisfy neither the divisor equation
(for example, this fails in orbifold Gromov-Witten theory), nor the WDVV equa-
tions, both of which are extremely useful in ordinary Gromov-Witten theory. While
these properties are computationally desirable for a theory, they are not necessary
for the basic axiomatic framework.

5 Quantization in the Infinite-Dimensional Case

Axiomatization reduces the relevant structures of Gromov-Witten theory to a special
type of function on an infinite-dimensional symplectic vector space

H = H((z−1)). (28)

As we will see in Sect. 6, the actions of quantized operators on the quantization of
H have striking geometric interpretations in the case where H = H ∗(X; �) for a
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projective variety X. Because our ultimate goal is the application of quantization to
the symplectic vector space (28), we will assume throughout this section that the
infinite-dimensional symplectic vector space under consideration has that form.

5.1 The Symplectic Vector Space

Let H be a vector space of finite dimension equipped with a nondegenerate inner
product ( , ) and letH be given by (28). As explained in Sect. 4.3,H is a symplectic
vector space under the symplectic form � defined by

�(f, g) = Resz=0

(
(f (−z), g(z))

)
.

The subspaces

H+ = H [z]
and

H− = z−1H [[z−1]]
are Lagrangian. A choice of basis {φ1, . . . , φd } for H yields a symplectic basis for
H, in which the expression for an arbitrary element in Darboux coordinates is

∑

k≥0

pk,αφα(−z)−1−k +
∑

�≥0

q
β
� φβz�.

Here, as before, {φα} denotes the dual basis to {φα} under the pairing ( , ). We can
identifyH as a symplectic vector space with the cotangent bundle T ∗H+.

Suppose that T : H → H is an endomorphism of the form

T =
∑

m

Bmzm, (29)

where Bm : H → H are linear transformations. Let T ∗ denote the endomorphism
given by taking the adjointB∗

m of each transformationBm with respect to the pairing.
Then the symplectic adjoint of T is

T †(z) = T ∗(−z) =
∑

m

B∗
m(−z)m.

As usual, a symplectomorphism is an endomorphism T of H that satisfies
�(Tf, T g) = �(f, g) for any f, g ∈ H. When T has the form (29), one can
check that this is equivalent to the condition

T ∗(−z)T (z) = Id .
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We will specifically be considering symplectomorphisms of the form

T = exp(A)

in which A also has the form (29). In this case, we will require that A is an infinites-
imal symplectic transformation, or in other words that �(Af, g) + �(f,Ag) = 0
for any f, g ∈ H. Using the expression for A as a power series as in (29), one finds
that this condition is equivalent to A∗(−z) + A(z) = 0, which in turn implies that

A∗
m = (−1)m+1Am. (30)

There is another important restriction we must make: the transformation A (and
hence T ) will be assumed to contain either only nonnegative powers of z or only
nonpositive powers of z. In the Gromov-Witten theory literature, a transformation

R =
∑

m≥0

Rmzm

with only nonnegative powers of z is typically referred to as upper-triangular, while
a transformation

S =
∑

m≤0

Smzm

with only nonpositive powers of z is referred to as lower-triangular. We will avoid
this terminology for the most part, because (as remarked previously) it disagrees
with the ordering of basis elements used in Sect. 3; however, we will occasionally
refer to these two situations collectively as “upper-triangular and lower-triangular”,
simply meaning that positive and negative powers of z do not both appear.

The reason for restricting to upper- and lower-triangular transformations is that
if A had both positive and negative powers of z, then exponentiating A would yield
a series in which a single power of z could have a nonzero contribution from
infinitely many terms, and the result would not obviously be convergent. There
are still convergence issues to be addressed when one composes the two types of
operators, but we defer discussion of this to Sect. 5.3.

5.2 Quantization via Quadratic Hamiltonians

Although in the finite-dimensional case we needed to start by choosing a symplectic
basis, by expressing our symplectic vector space asH = H((z−1)) we have already
implicity chosen a polarization H = H+ ⊕ H−. Thus, the quantization of the
symplectic vector space H should be thought of as the Hilbert space H of square-
integrable functions onH+ with values in C[[h̄, h̄−1]]. As in the finite-dimensional
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case, we will sometimes in practice allowH to contain formal functions that are not
square-integrable, and the space of all such formal functions will be referred to as
the Fock space.

5.2.1 The Quantization Procedure

Observables, which classically are functions on H, are quantized the same way as
in the finite-dimensional case, by setting

q̂α
k = qα

k

p̂k,α = h̄
∂

∂qα
k

,

and quantizing an arbitrary analytic function by expanding it in a Taylor series
and ordering the variables within each monomial in the form q

α1
k1

· · · qαn

kn
p�1,β1 · · ·

p�m,βm .
In order to quantize a symplectomorphism T = exp(A) of the form discussed in

the previous section, we will mimic the procedure discussed in Sect. 3.3. Namely,
define a function hA onH by

hA(f ) = 1

2
�(Af, f ).

Since hA is a classical observable, it can be quantized by the above formula. We
define the quantization of A via

Â = 1

h̄
ĥA,

and UT is defined by

UT = exp(Â).

The next section is devoted to making this formula more explicit.

5.2.2 Basic Examples

Before turning to the case of a general upper- or lower-triangular symplectomor-
phism, we will begin with two simple but crucial examples. These computations
follow Example 1.3.3.1 of [6].
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Example 16 Suppose that the infinitesimal symplectic transformation A is of the
form

A = Amzm,

where Am : H → H is a linear transformation and m > 0.
To compute Â, one must first compute the Hamiltonian hA. Let

f (z) =
∑

k≥0

pk,αφα(−z)−1−k +
∑

�≥0

q
β

� φβz� ∈ H.

Then

hA(f ) = 1

2
�(Af, f )

= 1

2
Resz=0

⎛

⎝(−z)m
∑

k1≥0

pk1,α(Amφα) z−1−k1 + (−z)m
∑

�1≥0

q
β

�1
(Amφβ)(−z)�1,

∑

k2≥0

pk2,αφα(−z)−1−k2 +
∑

�2≥0

q
β

�2
φβz�2

⎞

⎠

Since only the z−1 terms contribute to the residue, the right-hand side is equal to

1

2

m−1∑

k≥0

(−1)kpk,αpm−k−1,β(Amφα, φβ) + 1

2

∑

k≥0

(−1)mpm+k,αq
β
k (Amφα, φβ)

− 1

2

∑

k≥0

q
β
k pm+k,α(Amφβ, φα).

By (30), we have

(φα,Amφβ) = (−1)m+1(Amφα, φβ).

Thus, denoting (Am)αβ = (Amφα, φβ) and (Am)αβ = (Amφα, φβ), we can write

hA(f ) = 1

2

m−1∑

k=0

(−1)kpk,αpm−k−1,β(Am)αβ + (−1)m
∑

k≥0

pm+k,αq
β
k (Am)αβ .

This implies that

Â = h̄

2

m−1∑

k=0

(−1)k(Am)αβ ∂

∂qα
k

∂

∂q
β

m−k−1

+ (−1)m
∑

k≥0

(Am)αβq
β
k

∂

∂qα
m+k

.
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Example 17 Similarly to the previous example, let

A = Amzm,

this time with m < 0. Let (Am)αβ = (Amφα, φβ). An analogous computation shows
that

Â = 1

2h̄

−m−1∑

k=0

(−1)k+1(Am)αβqα
−m−k−1q

β

k + (−1)m
∑

k≥−m

(Am)αβq
β

k

∂

∂qα
k+m

.

Example 18 More generally, let

A =
∑

m<0

Amzm

be an infinitesimal symplectic endomorphism. Then the quadratic Hamiltonian
associated to A is

hA(f ) = 1

2

∑

k,m

(−1)m+1(A−k−m−1)αβqα
k qβ

m +
∑

k,m

(−1)m(Am)αβpk+m,αq
β
k .

Thus, after quantization, we obtain

Â = 1

2h̄

∑

k,m

(−1)m+1(A−k−m−1)αβqα
k qβ

m +
∑

k,m

(−1)m(Am)αβq
β
k

∂

∂qα
k+m

. (31)

It is worth noting that some of the fairly complicated expressions appearing in
these formulas can be written more succinctly, as discussed at the end of Example
1.3.3.1 of [6]. Indeed, the expression

∂A :=
∑

k

(Am)αβq
β
k

∂

∂qα
k+m

(32)

that appears in Â for both m > 0 and m < 0 acts on q(z) ∈ H+ by

(
∑

k

(Am)αβq
β
k

∂

∂qα
k+m

)(
∑

�

q
γ

� φγ z�

)

=
[
∑

k

(Am)αβq
β
k φαzk+m

]

+
,

where [·]+ denotes the power series truncation with only nonnegative powers of z.
In other words, if q = ∑

� qi
�φiz

�, then

∂Aq = [Aq]+. (33)
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By the same token, consider the expression

∑

k≥0

(−1)k(Am)αβ ∂

∂qα
k

∂

∂q
β
m−k−1

appearing in Â for m > 0. The quadratic differential operator ∂
∂qα

k

∂

∂q
β
m−k−1

can be

thought of as a bivector field on H+, and since H+ is a vector space, a bivector
field can be identified with a tensor product of two maps H+ → H+. Specifically,

∂
∂qα

k

∂

∂q
β
m−k−1

is the bivector field corresponding to the constant map

φαzk+ ⊗ φβzm−k−1− ∈ H [z+] ⊗ H [z−] ∼= H+ ⊗ H+.

Using the identity

m−1∑

k=0

(−1)kzk+zm−1−k− = zm+ + (−1)m−1zm−
z+ + z−

,

then, it follows that

∑

k≥0

(−1)k(Am)αβ ∂

∂qα
k

∂

∂q
β

m−k−1

=
[

A(z+) + A∗(z−)

z+ + z−

]

+
, (34)

where we use the pairing to identify (Am)αβφα ⊗ φβ ∈ H+ ⊗ H+ with Am ∈
End(H). Here, the power series truncation is included to ensure that (34) is trivially
valid when m is negative.

The modified expressions (33) and (34) can be useful in recognizing the
appearance of a quantized operator in computations. For example, (33) will come
up in Proposition 19 below, and both (33) and (34) arise in the context of Gromov-
Witten theory in Theorem 1.6.4 of [6].

5.2.3 Formulas for the General Cases

Extending the above two examples carefully, one obtains formulas for the quantiza-
tion of any upper-triangular or lower-triangular symplectomorphism. The following
results are quoted from [16]; see also [24] for an exposition.

Proposition 19 Let S be a symplectomorphism of H of the form S = exp(A), with

S(z) = I + S1/z + S2/z
2 + · · · .
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Define a quadratic form WS on H+ by the equation

WS(q) =
∑

k,�≥0

(Wk�qk, q�),

where qk = qα
k φα and Wk� is defined by

∑

k,�≥0

Wk�

zkw�
= S∗(w)S(z) − I

w−1 + z−1 .

Then the quantization of S−1 acts on the Fock space by

(US−1�)(q) = exp

(
WS(q)

2h̄

)
�([Sq]+)

for any function � of q ∈ H+. Here, as above, [Sq]+ denotes the truncation of
S(z)q to a power series in z.

Proof Let A =
∑

m<0

Amzm. Introduce a real parameter t and denote

G(t, q) = e−t Â�(q).

Define a t-dependent analogue of WS via

Wt(q) :=
∑

k,�≥0

(Wk�(t)qk, q�), (35)

where

∑

k,�≥0

Wk�(t)

zkw�
= et ·A∗(w)et ·A(z) − 1

z−1 + w−1 .

Note that Wk�(t) = W∗
�k(t).

We will prove that

G(t, q) = exp

(
Wt(q)

2h̄

)
ψ

([
etAq

]

+

)
(36)

for all t . The claim follows by setting t = 1.
To prove (36), let

g(t, q) = log(G(t, q))
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and write � = exp(f ). Then, taking logarithms, it suffices to show

g(t, q) = Wt(q)

2h̄
+ f

([
etAq

]

+

)
. (37)

Notice that

d

dt
G(t, q) = −Â G(t, q)

= 1

2h̄

∑

k,�

(−1)�(A−k−�−1)αβqα
k q

β
� G(t, q)

+
∑

k,�

(−1)�−1(A�)
α
βq

β
k

∂

∂qα
k+�

G(t, q),

using Example (18). This implies that g(t, q) satisfies the differential equation

d

dt
g(t, q) = 1

2h̄

∑

k,�

(−1)�A−k−�−1,αβqα
k q

β
� +

∑

k,�

(−1)�−1(A�)
α
βq

β
k+�

∂g

∂qα
k

(38)

We will prove that the right-hand side of (37) satisfies the same differential equation.
The definition of Wk�(t) implies that

d

dt
Wk�(t) =

�∑

�′=0

A∗
�′−�Wk�′(t) +

k∑

k′=0

Wk′�(t)Ak′−k + (−1)kA−k−�−1.

Therefore,

1

2h̄

d

dt
Wt (q) = 1

2h̄

∑

k,�

(∑

�′

(
A∗

�′−�Wk�′ (t)qk, q�

)+
∑

k′

(
Wk′�(t)Ak′−kqk, q�

)

+ (−1)k (A−k−�−1qk, q�)

)

= 1

2h̄

∑

k,�

(

2
∑

�′

(
Wk�′(t)qk, A�′−�q�

)+ (−1)k (A−k−�−1q�, qk)

)

= 1

2h̄

∑

k,�

(
2
∑

�′
(−1)�

′−�−1(A�′−�)
α
βq

β

� (Wk�′ (t)qk, φα)

(−1)k (A−k−�−1q�, qk)

)
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= 1

2h̄

∑

k,�

(−1)�(A−k−�−1)αβqα
k q

β

�

+ 1

h̄

∑

k,�,�′
(−1)�

′−�−1(A�′−�)
α
βq

β
�

(
Wk�′ (t)qk,

∂

∂qα
�′

q�′
)

= 1

2h̄

∑

k,�

(−1)�(A−k−�−1)αβqα
k q

β

� +
∑

k,�

(−1)�−1(A�)
α
βq

β

k

∂

∂α
k+�

(
Wt(q)

2h̄

)
.

Furthermore, using Eq. (33), it can be shown that

df
([

etAq
]
+
)

dt
=
∑

k,�

(−1)�−1(A�)
α
βq

β
k

∂

∂qα
k+�

f

([
etAq

]

+

)
.

Thus, both sides of (37) satisfy the same differential equation. Since they agree
when t = 0, and each monomial in q and h̄ depends polynomially on t , it follows
that the two sides of (37) are equal. ��

The other case has an analogous proposition, but we omit the proof.

Proposition 20 Let R be a symplectomorphism of H of the form R = exp(B), with

R(z) = I + R1z + R2z
2 + · · · .

Define a quadratic form VR on H− by the equation

VR(p0(−z)−1 + p1(−z)−2 + p2(−z)−3 + · · · ) =
∑

k,�≥0

(pk, Vk�p�),

where Vk� is defined by

∑

k,�≥0

(−1)k+�Vk�w
kz� = R∗(w)R(z) − I

z + w
.

Then the quantization of R acts on the Fock space by

(UR�)(q) =
[
exp

(
h̄VR(∂q)

2

)
�

]
(R−1q),

where VR(∂q) is the differential operator obtained from VR(p) by replacing pk

by ∂
∂qk

.
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5.3 Convergence

In Sect. 3, we expressed the quantization of an arbitrary symplectic transformation
by decomposing it into a product of upper-triangular and lower-triangular trans-
formations, each of whose quantizations was known. In the infinite-dimensional
setting, however, such a decomposition is problematic, because composing a series
containing infinitely many nonnegative powers of z with one containing infinitely
many nonpositive powers will typically yield a divergent series. This is why we
have only defined quantization for upper-triangular or lower-triangular operators,
not products thereof.

It is possible to avoid unwanted infinities if one is vigilant about each application
of a quantized operator to an element of H. For example, while the symplectomor-
phism S ◦R may not be defined, it is possible that (Ŝ ◦ R̂)� makes sense for a given
� ∈ H if Ŝ(R̂�) has a convergent contribution to each power of z. This verification
can be quite complicated; see Chapter 9, Section 3 of [24] for an example.

5.4 Feynman Diagrams and Integral Formulas Revisited

In this section, we will attempt to generalize the integral formulas and their resulting
Feynman diagram expansions computed in Sect. 3 to the infinite-dimensional case.
This is only interesting for symplectomorphisms with nonnegative powers of z,
since for transformations with nonpositive powers, the Feynman amplitude of any
graph with at least one edge vanishes.

To start, we must compute the analogues of the matrices A, C, and D that
describe the transformation in Darboux coordinates. Suppose that

R =
∑

m≥0

Rmzm

is a symplectomorphism. If

ek,α = φα(−z)−1−k, e�
α = φαz�,

then it is easily check that

ẽk,α = R · ek,α =
∑

k′≥0

(−1)k−k′
(Rk−k′)αγ ek′,γ +

∑

�′≥0

(−1)−1−k(R�′+k+1)
αγ e�′

γ ,

ẽ�
β = R(e�

β) =
∑

�′≥0

(R∗
�′−�)

γ
βe�′

γ .
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Let p̃k,α and q̃
β
� be defined by

∑

k≥0

pk,αek,α +
∑

�≥0

q
β
� e�

β =
∑

k≥0

p̃k,αẽk,α +
∑

�≥0

q̃
β
� ẽ�

β .

Then the relations among these coordinates are:

pk,α =
∑

k′≥0

(−1)k
′−k(Rk′−k)

γ
α p̃k′,γ ,

q
β
� =

∑

k′≥0

(−1)−1−k′
(R�+k′+1)

γβp̃k′,γ +
∑

�′≥0

(R∗
�−�′)βγ q̃

γ

�′ .

That is, if we define matricesA, C, and D by

(A ∗)(k
′,γ )

(k,α) = (−1)k
′−k(Rk′−k)

γ
α ,

C(�,β),(k′,γ ) = (−1)−1−k′
(R�+k′+1)

γβ,

D
(�,β)

(�′,γ )
= (R∗

�−�′)βγ ,

then the coordinates are related by

p = A p̃

q = C p̃ + D q̃.

These matrices have rows and columns indexed by

(k, α) ∈ Z≥0 × {1, . . . , d},

but the entries vanish when k is sufficiently large.
As in Sect. 3.4, the integral formula will be expressed in terms of a function

φ : H → R defined by

φ(q, p′) = (D−1q) · p′ − 1

2
(D−1Cp′) · p′.

It is not necessary to invert D, as one has D−1 = AT in this case. Thus, the above
gives an explicit formula for φ.

Equipped with this, we would like to define

(URψ)(q) = λ

∫
e

1
h̄ (φ(q,p′)−q ′·p′)

ψ(q ′)dq ′dp′, (39)
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where λ is an appropriate normalization constant. The problem with this, though, is
that the domain of the variables q = q

β
� and p′ = p′

k,α over which we integrate is
an infinite-dimensional vector space. We have not specified a measure on this space,
so it is not clear that (39) makes sense.

Our strategy for making sense of (39) will be to define it by its Feynman diagram
expansion, as given by (18). Modulo factors of 2π , which are irrelevant because UR

is defined only up to a real multiplicative constant, the answer is:

(URψ)(q) = 1
√
det(D−1C)

∑

n=(n0,n1,...,)

∑

�∈G′(n)

h̄−χ�

|Aut(�)|F�(q),

where, as before, G′(n) is the set of isomorphism classes of genus-labeled Feynman
diagrams, and F�(q) is the genus-modified Feynman amplitude given by placing
the m-tensor

∑

m∑
m�,β=m

m!
∏

m�,β !
∂mFg(s)

∏
(∂s�

β)m�,β

∣
∣
∣∣
∣
∣
∣
∣
s=D−1q

·
∏

(s
β
� )m�,β

at each m-valent vertex of genus g and taking the contraction of tensors using the
bilinear form −D−1C. Here, as before, Fg is defined by the expansion

ψ(q) = e
∑

g≥0 h̄g−1Fg(q)
.

Note that det(D−1C) is well-defined because, although these matrices have indices
ranging over an infinite indexing set, they are zero outside of a finite range.

5.5 Semi-classical Limit

The most important feature of quantization for our purposes that it relates higher
genus information to genus-zero information. We will return to this principle in
the next section in the specific context of Gromov-Witten theory. Before we do
so, however, let us give a precise statement of this idea in the abstract setting of
symplectic vector spaces.

Let H be a symplectic vector space, finite- or infinite-dimensional. Fix a
polarizationH = H+ ⊕ H−, and suppose that for each g ≥ 0,

F g

X : H+ → R, F g

Y : H+ → R
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are functions onH+. Package each of these two collections into the total descendent
potentials:

DX = exp

⎛

⎝
∑

g≥0

h̄g−1F g
X

⎞

⎠ , DY = exp

⎛

⎝
∑

g≥0

h̄g−1F g
Y

⎞

⎠ .

Let LX and LY be the Lagrangian subspaces of H that, under the identification of
H with T ∗H+, coincide with the graphs of dF 0

X and dF 0
Y , respectively. That is,

LX = {(p, q) | p = dqF 0
X} ⊂ H,

and similarly for LY .

Theorem 21 Let T be a symplectic transformation such that

UT DX = DY .

Then

T (LX) = LY .

(The passage from DX to LX is sometimes referred to as a semi-classical limit.)

Proof We will prove this statement in the finite-dimensional setting, but all of
our arguments should carry over with only notational modifications to the infinite-
dimensional case. To further simplify, it suffices to prove the claim when T is of one
of the three basic types considered in Sect. 3.2.

Case 1: T =
(

I B

0 I

)
Using the explicit formula for UT obtained in Sect. 3, the

assumption UT DX = DY in this case can be written as

exp

⎛

⎝
∑

g≥0

h̄g−1F g
Y

⎞

⎠ = exp

(
1

2h̄
Bαβqαqβ

)
exp

⎛

⎝
∑

g≥0

h̄g−1F g
X

⎞

⎠ .

Taking logarithms of both sides, picking out the coefficient of h̄−1, and taking
derivatives with respect to q , we find

dqF 0
Y = Bq + dqF 0

X. (40)

Now, choose a point (p, q) ∈ LX, so that dqF 0
X = p. Explicitly, the point in

question is pαeα + qαeα , so its image under T is

pαẽα + qαẽα = (p + Bq)αeα + qαeα,
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using the expressions for ẽα and ẽα in terms of the e basis obtained in Sect. 3. Thus,
the statement that T (p, q) ∈ LY is equivalent to

dqF 0
Y = p + Bq.

Since p = dqF 0
X by assumption, this is precisely Eq. (40). This proves that

T (LX) ⊂ LY , and the reverse inclusion follows from the analogous claim applied
to T −1.

Case 2: T =
(

A 0
0 A−T

)
This case is very similar to the previous one, so we omit

the proof.

Case 3: T =
(

I 0
C I

)
Consider the Feynman diagram expression for UT DX

obtained in Sect. 3.5. Up to a constant factor, the assumption UT DX = DY in this
case becomes

exp

⎛

⎝
∑

g≥0

h̄g−1F g
Y (q)

⎞

⎠ =
∑

�

h̄−χ�

|Aut(�)|F
X
� (q), (41)

where FX
� (q) is the Feynman amplitude given by placing the m-tensor

∑

|m|=m!

1

m1! · · ·mn!
∂mF X

g

(∂q ′
1)

m1 · · · (∂q ′
n)

mn

∣
∣
∣
∣∣
q ′=q

(q ′
1)

m1 · · · (q ′
n)

mn

at each m-valent vertex of genus g in � and taking the contraction of tensors using
the bilinear form −C.

Recall that if one takes the logarithm of a sum over Feynman diagrams, the result
is a sum over connected graphs only, and in this case, −χ� = g − 1. Thus, if one
takes the logarithm of both sides of (41) and picks out the coefficient of h̄−1, the
result is

F 0
Y (q) =

∑

� connected, genus 0

F�(q)

|Aut(�)| .

Let us give a more explicit formulation of the definition of F�(q). For conve-
nience, we adopt the notation of Gromov-Witten theory and write

F X
0 (q) = 〈 〉 + 〈eα〉Xqα + 1

2
〈eα, eβ〉Xqαqβ + · · · = 〈〈 〉〉X(q),
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where 〈〈φ1, . . . , φn〉〉X(q) := ∑
k≥0

1
k! 〈φ1, . . . , φn, q, . . . , q〉X (k copies of q) and

the brackets are defined by the above expansion. Then derivatives of F 0
X are given

by adding insertions to the double bracket. It follows that

FX
� (q) =

∑

{ih}

∏

v∈V (�)

〈〈
∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)∈E(�)

(−Ciaib ).

Here, V (�) and E(�) denote the vertex sets and edge sets of �, respectively, while
H(v) denotes the set of half-edges associated to a vertex v. The summation is over
all ways to assign an index ih ∈ {1, . . . , d} to each half-edge h, where d is equal
to the dimension of H+. For an edge e, we write e = (a, b) if a and b are the two
half-edges comprising e.

Thus, we have re-expressed the relationship between F Y
0 and F X

0 as

F Y
0 (q) =

∑

� connected, genus 0

1

|Aut(�)|
∑

{ih}

∏

v∈V (�)

〈〈
∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)∈E(�)

(−Ciaib ).

Now, to prove the claim, choose a point (p, q) ∈ LY . We will prove that
T −1(p, q) ∈ LX. Applying the same reasoning used in Case 1 to the inverse matrix

T −1 =
(

I 0
−C I

)
, we find that

T −1(p, q) = pαeα + (−Cp + q)αeα.

Therefore, the claim is equivalent to

dqF Y
0 = d−CdqF Y

0 +qF X
0 .

From the above, one finds that the ith component of the vector dqF 0
Y is equal to

∑

�

1

|Aut(�)|
∑

{ih},w∈V (�)

〈〈

ei

∏

h∈H(w)

eih

〉〉X

(q)
∏

v �=w∈V (�)

〈〈
∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)∈E(�)

(−Cia ib ).

On the other hand, the same equation shows that the ith component of the vector
d−CdqF Y

0 +qF 0
X is equal to

〈〈ei 〉〉X(−CdqF Y
0 + q)

=〈〈ei 〉〉X
⎛

⎝
∑

�

1

|Aut(�)|
∑

{ih},w∈V (�),j,k

〈〈

ej

∏

h∈H(w)

eih

〉〉X

(q)
∏

v �=w∈V (�)

〈〈
∏

h∈H(v)

eih

〉〉X

(q)

∏

e=(a,b)∈E(�)

(−Cia ib )(−C)kj ek + q�e�

⎞

⎠
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=
∑

�1,...,�n

1

n!|Aut(�1)| · · · |Aut(�n)|
∑

{ih}
w1∈V (�1),...,wn∈V (�n)

j1,...,jn

k1,...,kn
�1,...,�m

n∏

c=1

〈〈

ejc

∏

h∈H(wc)

eih

〉〉X

(q)

∏

v �=w1,...,wn

〈〈
∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)

(−Cia ib )(−C)kc jc
〈ei , ek1 , . . . , ekn , q�1e�1 , . . . , q�me�m 〉

m!

=
∑

�1,...,�n

1

n!|Aut(�1)| · · · |Aut(�n)|
∑

{ih}
w1∈V (�1),...,wn∈V (�n)

j1,...,jn
k1,...,kn

n∏

c=1

〈〈

ejc

∏

h∈H(wc)

eih

〉〉X

(q)

∏

v �=w1,...,wn

〈〈
∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)

(−Cia ib )(−C)kcjc 〈〈ei , ek1 , . . . , ekn 〉〉(q)

Upon inspection, this is equal to the sum of all ways of starting with a distinguished
vertex (where ei is located) and adding n spokes labeled k1, . . . , kn, then attaching n

graphs �1, . . . , �n to this vertex via half-edges labeled j1, . . . , jn. This procedures
yields all possible graphs with a distinguished vertex labeled by ei—the same
summation that appears in the expression for dqF Y

0 . Each total graph appears in
multiple ways, corresponding to different ways of partitioning it into subgraphs
labeled �1, . . . , �n. However, it is a combinatorial exercise to verify that, with this
over-counting, the automorphism factor in front of each graph� is precisely 1

|Aut(�)| .
Thus, we find that d−CdqF0Y+qF X

0 = dqF Y
0 , as required. ��

6 Applications of Quantization to Gromov-Witten Theory

In this final section, we will return to the situation in whichH = H ∗(X; �)((z−1))

for X a projective variety. In Sect. 6.1, we show that many of the basic equations
of Gromov-Witten theory can be expressed quite succinctly as equations satisfied
by the action of a quantized operator on the total descendent potential. More
strikingly, according to Givental’s conjecture, there is a converse in certain special
cases to the semi-classical limit statement explained in Sect. 5.5; we discuss this in
Sect. 6.2 below. In Sect. 6.3, we briefly outline the machinery of twisted Gromov-
Witten theory developed by Coates and Givental. This is a key example of the way
quantization can package complicated combinatorics into a manageable formula.

Ultimately, these notes only scratch the surface of the applicability of the
quantization machinery to Gromov-Witten theory. There are many other interesting
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directions in this vein, so we conclude the book with a brief overview of some of
the other places in which quantization arises. The interested reader can find much
more in the literature.

6.1 Basic Equations via Quantization

Here we give a simple application of quantization as a way to rephrase some of the
axioms of Gromov-Witten theory. This section closely follows Examples 1.3.3.2
and 1.3.3.3 of [6].

6.1.1 String Equation

Recall from (22) that the string equation can be expressed as follows:

∑

g,n,d

Qdh̄g−1

(n − 1)! 〈1, t(ψ), . . . , t(ψ)〉Xg,n,d =
∑

g,n,d

Qdh̄g−1

(n − 1)!
〈[

t(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

+ 1

2h̄
〈t0, t0〉.

Applying the dilaton shift (24), this is equivalent to

− 1

2h̄
(q0, q0) −

∑

g,n,d

Qdh̄g−1

(n − 1)!
〈[

q(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

= 0.

From Example 17 with m = −1, one finds

1̂

z
= − 1

2h̄
〈q0, q0〉 −

∑

k

qα
k+1

∂

∂qα
k

= − 1

2h̄
〈q0, q0〉 − ∂1/z.

Thus, applying (33), it follows that the string equation is equivalent to

1̂

z
DX = 0.
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6.1.2 Divisor Equation

In a similar fashion, the divisor equation can be expressed in terms of a quantized
operator. Summing over g, n, d and separating the exceptional terms, Eq. (26) can
be stated as

∑

g,n,d

Qdh̄g−1

(n − 1)! 〈t(ψ), . . . , t(ψ), ρ〉Xg,n,d =
∑

g,n,d

Qdh̄g−1

n! (ρ, d)〈t(ψ), . . . , t(ψ)〉g,n,d

+
∑

g,n,d

Qdh̄g−1

(n − 1)!
〈[

ρt(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

+ 1

2h̄
〈t(ψ), t(ψ), ρ〉0,3,0 + 〈ρ〉1,1,0. (42)

The left-hand side and the second summation on the right-hand side combine
to give

−
∑

g,n,d

Qdh̄g−1

(n − 1)!
〈[

ρ(t(ψ) − ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

.

After the dilaton shift, this is equal to ∂ρ/z(
∑

h̄g−1F X
g ).

As for the first summation, let τ1, . . . , τr be a choice of basis for H2(X;Z),
which yields a set of generators Q1, . . . ,Qr for the Novikov ring. Write

ρ =
r∑

i=1

ρiτ
i

in the dual basis {τ i} for {τi}. Then the first summation on the right-hand side of (42)
is equal to

r∑

i=1

ρiQi
∂

∂Qi

(
∑

g

h̄g−1F X
g

)

.

The first exceptional term is computed as before:

〈t(ψ), t(ψ), ρ〉0,3,0 = (q0ρ, q0).

The second exceptional term is more complicated in this case. We require the
fact that

M1,1(X, 0) ∼= X × M1,1,
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and that under this identification

[M1,1(X, d)]vir = e(TX × L−1
1 ) = e(TX) − ψ1cD−1(TX),

where L1 is the cotangent line bundle (whose first Chern class is ψ1) and D =
dim(X). Thus,

〈ρ〉X1,1,0 =
∫

X

e(TX) · ρ −
∫

M1,1

ψ1

∫

X

cD−1(TX) · ρ = − 1

24

∫

X

cD−1(TX) · ρ.

Putting all of these pieces together, we can express the divisor equation as

− 1

2h̄
(q0ρ, q0) − ∂ρ/z

(
∑

g

h̄g−1F X
g

)

=
(
∑

i

ρiQi
∂

∂Qi

− 1

24

∫

X

cD−1(TX) · ρ

)(
∑

g

h̄g−1F X
g

)

,

or in other words, as

(̂
ρ

z

)
· DX =

(
∑

i

ρiQi

∂

∂Qi

− 1

24

∫

X

cD−1(TX) · ρ

)

DX.

It should be noted that the left-hand side of this equality makes sense because
multiplication by ρ is a self-adjoint linear transformation on H ∗(X) under the
Poincaré pairing, and hence multiplication by ρ/z is an infinitesimal symplectic
transformation.

6.2 Givental’s Conjecture

The material in this section can be found in [17] and [23].
Recall from Sect. 4.3 that an axiomatic genus zero theory is a symplectic

vector space H = H((z−1)) together with a formal function G0(t) satisfying the
differential equations corresponding to the string equation, dilaton equation, and
topological recursion relations in genus zero.

The symplectic (or twisted) loop group is defined as the set {M(z)} of
End(H)-valued formal Laurent series in z−1 satisfying the symplectic condition
M∗(−z)M(z) = I . There is an action of this group on the collection of axiomatic
genus zero theories. To describe the action, it is helpful first to reformulate
the definition of an axiomatic theory in a more geometric, though perhaps less
transparent, way.
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Associated to an axiomatic genus zero theory is a Lagrangian subspace

L = {(p, q) | p = dqG0} ⊂ H,

where (p, q) are the Darboux coordinates on H defined by (27) and we are
identifying H ∼= T ∗H+ by way of this polarization. Note, here, that G0(t) is
identified with a function of q ∈ H+ via the dilaton shift, and that this is the same
Lagrangian subspace discussed in Sect. 5.5.

According to Theorem 1 of [18], a function G0(t) satisfies the requisite dif-
ferential equations if and only if the corresponding Lagrangian subspace L is a
Lagrangian cone with the vertex at the origin satisfying

L ∩ TfL = zTfL

for each f ∈ L.
The symplectic loop group can be shown to preserve these properties. Thus, an

element T of the symplectic loop group acts on the collection of axiomatic theories
by sending the theory with Lagrangian cone L to the theory with Lagrangian cone
T (L).

There is one other equivalent formulation of the definition of axiomatic genus-
zero theories, in terms of abstract Frobenius manifolds. Roughly speaking, a
Frobeniusmanifold is a manifold equippedwith a product on each tangent space that
gives the tangent spaces the algebraic structure of Frobenius algebras. A Frobenius
manifold is called semisimple if, on a dense open subset of the manifold, these
algebras are semisimple. This yields a notion of semisimplicity for axiomatic genus
zero theories. Given this, we can formulate the statement of the symplectic loop
group action more precisely:

Theorem 22 ([18]) The symplectic loop group acts on the collection of axiomatic
genus-zero theories. Furthermore, the action is transitive on the semisimple theories
of a fixed rank N .

Here, the rank of a theory is the rank of H .
The genus-zero Gromov-Witten theory of a collection of N points gives a

semisimple axiomatic theory of rank N , which we denote by HN . The theorem
implies that any semisimple axiomatic genus-zero theory T = (H,G0) can be
obtained from HN by the action of an element of the twisted loop group. Via the
process of Birkhoff factorization, such a transformation can be expressed as S ◦ R

in which S has only nonpositive powers of z and R has only nonnegative powers.

Definition 23 The axiomatic τ -function of an axiomatic theory T is defined by

τT
G = Ŝ(R̂DN),
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where S ◦ R is the element of the symplectic loop group taking the theory HN of N

points to T , andDN is the total descendent potential for the Gromov-Witten theory
of N points.

If T is in fact the genus-zero Gromov-Witten theory of a space X, then we have
two competing definitions of the higher-genus potential: DX and τT

G . Givental’s
conjecture is the statement that these two agree:

Conjecture 24 (Givental’s Conjecture [17]) If T is the semisimple axiomatic
theory corresponding to the genus-zero Gromov-Witten theory of a projective
variety X, then τT

G = DX.

In other words, the conjecture posits that in the semisimple case, if an element
of the symplectic loop group matches two genus zero theories, then its quantization
matches their total descendent potentials. Because the action of the symplectic loop
group is transitive on semisimple theories, this amounts to a classification of all
higher-genus theories for which the genus-zero theory is semisimple.

Givental proved his conjecture in case X admits a torus action and the total
descendent potentials are taken to be the equivariant Gromov-Witten potentials. In
2005 Teleman announced a proof of the conjecture in general:

Theorem 25 ([28]) Givental’s conjecture holds for any semisimple axiomatic
theory.

One important application of Givental’s conjecture is the proof of the Virasoro
conjecture in the semisimple case. The conjecture states:

Conjecture 26 For any projective manifold X, there exist “Virasoro operators”
{L̂X

m}m≥−1 satisfying the relations

[L̂X
m, L̂X

n ] = (m − n)̂LX
m+n, (43)

such that

L̂X
mDX = 0

for all m ≥ −1.

In the case where X is a collection of N points, the conjecture holds by setting
L̂X

m equal to the quantization of

Lm := −z−1/2Dm+1z−1/2,

where

D := z

(
d

dz

)
z = z2

d

dz
+ z.
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The resulting operators {L̂m}m≥−1 are the same as N copies of those used in
Witten’s conjecture [29], and the relations (43) indeed hold for these operators.

Thus, by Witten’s conjecture, the Virasoro conjecture holds for any semisimple
Gromov-Witten theory by setting

L̂X
m = Ŝ(R̂L̂mR̂−1)Ŝ−1

for the transformation S ◦ R taking the theory of N points to the Gromov-Witten
theory of X.7

6.3 Twisted Theory

The following is due to Coates and Givental; we refer the reader to the exposition
presented in [6].

LetX be a projective variety equippedwith a holomorphic vector bundleE. Then
E induces a K-class onMg,n(X, d),

Eg,n,d = π∗f ∗E ∈ K0(Mg,n(X, d)),

where

is the universal family over the moduli space. Consider an invertible multiplicative
characteristic class

c : K0(Mg,n(X, d)) → H ∗(Mg,n(X, d)).

Any such class can be written in terms of Chern characters

c(·) = exp

⎛

⎝
∑

k≥0

skchk(·)
⎞

⎠ ,

for some parameters sk .

7In fact one must check that L̂X
m defined this way agrees with the Virasoro operators of the

conjecture, but this can be done.
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A twisted Gromov-Witten invariant is defined as

〈τ1(γ1) · · · τn(γn); c(Eg,n,d)〉Xg,n,d =
∫

[Mg,n(X,d)]vir
ev∗

1 (γ1)ψ
a1
1 · · · ev∗

n(γn)ψ
an
n c(Eg,n,d).

These fit into a twisted genus-g potential F g
c,E and a twisted total descendent

potentialDc,E in just the way that the usual Gromov-Witten invariants do.
There is also a Lagrangian cone Lc,E associated to the twisted theory, but a bit

of work is necessary in order to define it. The reason for this is that the Poincaré
pairing on H(X; �) should be given by three-point correlators. As a result, when
we replace Gromov-Witten invariants by their twisted versions we must modify the
Poincaré pairing, and hence the symplectic structure onH, accordingly. Denote this
modified symplectic vector space byHc,E . There is a symplectic isomorphism

Hc,E → H

x �→ √
c(E)x.

We define the Lagrangian cone Lc,E of the twisted theory by

Lc,E = √
c(E) · {(p, q) | p = dqF 0

c,E} ⊂ H,

where we use the usual dilaton shift to identify F 0
c,E(t) with a function of q ∈

(Hc,E)+.
The quantum Riemann-Roch theorem of Coates-Givental gives an expression

for Dc,E in terms of a quantized operator acting on the untwisted Gromov-Witten
descendent potentialDX of X:

Theorem 27 ([6]) The twisted descendent potential is related to the untwisted
descendent potential by

exp

⎛

⎝− 1

24

∑

�>0

s�−1

∫

X
ch�(E)cD−1(TX)

⎞

⎠ exp

⎛

⎝1

2

∫

X
e(X) ∧

⎛

⎝
∑

j≥0

sj chj (E)

⎞

⎠

⎞

⎠Dc,E

= exp

⎛

⎜
⎜
⎝
∑

m>0
�≥0

s2m−1+�
B2m

(2m)! (ch�(E)z2m−1)∧

⎞

⎟
⎟
⎠ exp

⎛

⎝
∑

�>0

s�−1(ch�(E)/z)∧
⎞

⎠DX.

Here B2m are the Bernoulli numbers.
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The basic idea of this theorem is to write

c(Eg,n,d) = exp

⎛

⎝
∑

k≥0

skchk(Rπ∗f ∗E)

⎞

⎠

= exp

⎛

⎝
∑

k≥0

sk
(
π∗(ch(f ∗E)Td∨(Tπ))

)
k

⎞

⎠ ,

using the Grothendieck-Riemann-Roch formula. A geometric theorem expresses
Td∨(Tπ) in terms of ψ classes on various strata of the moduli space, and the rest
of the proof of Theorem 27 is a difficult combinatorial exercise in keeping track of
these contributions.

Taking a semi-classical limit and applying the result discussed in Sect. 5.5 of the
previous section, we obtain:

Corollary 28 The Lagrangian cone Lc,E satisfies

Lc,E = exp

⎛

⎝
∑

m≥0

∑

0≤�≤D

s2m−1+�
B2m

(2m)!ch�(E)z2m−1

⎞

⎠LX.

This theorem and its corollary are extremely useful even when one is only
concerned with the genus zero statement. For example, it is used in the proof
of the Landau-Ginzburg/Calabi-Yau correspondence in [5]. In that context, the
invariants under consideration, known as FJRW invariants, are given by twisted
Gromov-Witten invariants only in genus zero. Thus, Theorem 27 actually says
nothing about higher-genus FJRW invariants. Nevertheless, an attempt to directly
apply Grothendieck-Riemann-Roch in genus zero to obtain a relationship between
FJRW invariants and untwisted invariants is combinatorially unmanageable; thus,
the higher-genus statement, while not directly applicable, can be viewed as a clever
device for keeping track of the combinatorics of the Grothendieck-Riemann-Roch
computation.

6.4 Concluding Remarks

There are a number of other places in which quantization proves useful for Gromov-
Witten theory. For example, it was shown in [13, 20, 22] that relations in the
so-called tautological ring, an important subring of H ∗(Mg,n(X, β)), are invariant
under the action of the symplectic loop group. This was used to give one proof
of Givental’s Conjecture in genus g ≤ 2 (see [9, 30]), and can also be used to
derive tautological relations (see [1, 2, 21]). We refer the interested reader to [23]
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for a summary of these and other applications of quantization with more complete
references.
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