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Preface

This book is the product of a special semester on B-model Gromov-Witten theory
held at the University of Michigan in winter 2014. The goal of the semester
was to bring together experts (including both mathematicians and physicists) on
various aspects of mirror symmetry in order to better appreciate how their different
perspectives fit together into a coherent—yet still not entirely well-understood—
story.

Mirror symmetry, an equivalence between two versions of string theory, emerged
in the 1980s as a duality in theoretical physics. From a physical perspective, the
duality between the A-model of a manifold X and the B-model of its mirror
dual X∨ was natural to expect because the two theories encode the same physics.
Mathematically, though, it has taken years to specify the precise data that the A-
and B-models should capture, and the correspondences that have resulted have
been striking and unexpected. The A-model associated with X, for example, can
be viewed mathematically as encoding the enumerative geometry of curves inside
of X, leading to the advent of Gromov-Witten theory. When one restricts to genus-
zero curves, the B-model can be understood in terms of period integrals on X∨,
which have been classically studied and often explicitly computed. In this way,
genus-zero mirror symmetry has led (as in the celebrated example of the quintic
threefold) to beautifully explicit answers to some of enumerative geometry’s long-
standing questions. These answers were mathematically only conjectural when they
were first proposed (by physicists Candelas et al. [2]), but a mathematical proof of
genus-zero mirror symmetry followed in the 1990s from the work of Givental [4,
5] and Lian–Liu–Yau [12]. This was a major event, leading to the birth of mirror
symmetry as a mathematical subject.

Motivated by this success, one would hope to develop an analogous correspon-
dence in all genera, but the pursuit of higher-genusmirror symmetry has been a very
difficult task. On the A-side, while Gromov-Witten theory has a firm mathematical
foundation in all genera, its computation in genus beyond zero remains one of
the hardest problems in geometry and physics. On the B-side, even the theoretical
foundations of the higher-genus theory are mathematically not fully understood.
One can attempt to forge ahead, nevertheless, using physical methods; indeed, as
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early as 1993, Bershadsky et al. [1] formulated a higher-genus B-model theory
(now known as BCOV theory) in physical language and proposed many of its key
properties, such as the famous “holomorphic anomaly equation.” Furthermore, they
calculated the B-model generating function explicitly in genera one and two, which
implied, by way of mirror symmetry, a conjectural closed formula for the generating
functions Fg of genus-g Gromov-Witten invariants of the quintic threefold when
g ∈ {1, 2}. It took ten years before a mathematical proof of the BCOV formula for
F1 was given by Zinger [15], and another ten years for the analogue in genus two,
by Guo–Janda–Ruan [8].

Meanwhile, physicists have continued their B-model calculations with great
success. A B-model formula for F3 was calculated by Katz–Klemm–Vafa in 1999
[10], and a number of structural results on the generating functions Fg were
predicted on physical grounds. For example, a fundamental physical result of
Yamaguchi–Yau [14] states that Fg is a polynomial in five generators, constructed
explicitly from the period integrals of the mirror, of which four are holomorphic
limits of certain non-holomorphic objects in the B-model; the holomorphic anomaly
equation of BCOV theory can be recast into equations relating these four generators.
Using the holomorphic anomaly equation, together with other physical predictions
regarding the structure of Fg (the conifold gap condition, for example, and orbifold
regularity), Huang et al. [9] pushed the physical calculation of Fg to all g ≤ 51 for
the quintic threefold and to other large bounds for targets such as “one-parameter
models” and elliptically fibered Calabi–Yau threefolds.

Compared to this stunning success in physics, mathematical progress has been
frustratingly slow. One of the reasons is that mathematical understanding of the
BCOV B-model theory in higher genus, including the non-holomorphicity of the B-
model generating function, remains limited. We hope, in this book, to help change
this state of affairs by collecting some of what is known and providing a reference
for future study.

The organization of the book is as follows. Chapter “Mirror Symmetry Construc-
tions” (contributed by Emily Clader and Yongbin Ruan) outlines the various ways in
which mirror pairs have been constructed. These include the Batyrev construction,
which produces a mirror pair of Calabi–Yau hypersurfaces in toric varieties; the
Hori–Vafa construction, in which the mirror to a semi-Fano complete intersection
in a toric variety is produced as a “Landau–Ginzburg model” (a variety X together
with a polynomial functionX→ C known as the superpotential); and the Berglund–
Hübsch–Krawitz construction, which produces a mirror pair of Landau–Ginzburg
models. For each of these constructions, mirror symmetry is discussed in its most
basic manifestation: the “state space correspondence,” an isomorphism between bi-
graded vector spaces associated with each theory. For the geometric theory, the
state space is simply the (orbifold) cohomology of the hypersurface or complete
intersection, with different bi-gradings on the A- and B-sides, while in the Landau–
Ginzburg theory, it is a certain orbifold Jacobian ring of the superpotential. Mirror
symmetry provides a grading-preserving isomorphism between the A- and B-model
state spaces. The upshot, for example, in Batryev mirror symmetry is that the Hodge
diamonds of a mirror pair of hypersurfaces are related by rotation, which, in the case
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of Calabi–Yau threefolds, reduces to the statement that mirror symmetry exchanges
the two Hodge numbers h1,1 and h2,1. These are the dimensions, respectively, of
the space of infinitesimal deformations of the Kähler structure and the space of
infinitesimal deformations of the complex structure, providing a first hint that the
state space correspondence is a shadow of a deeper duality.

The bulk of the book is chapter “The B-model Approach to Topological String
Theory on Calabi-Yau n-Folds” (contributed by Albrecht Klemm). We focus on a
particular mirror symmetry construction—the Batyrev construction—but upgrade
our perspective from the state space correspondence to the much richer data of the
topological A- and B-models, which are constructed physically out of two different
topological twists of an N = 2 two-dimensional supersymmetric quantum field
theory. In particular, a major part of this long chapter is devoted to providing a full
(physical) account of BCOV B-model theory and its key properties.

According to the physical technique of supersymmetric localization, the A-
model path integral of a compact Calabi–Yau threefold X localizes to the space
of holomorphic curves of prescribed area, so it depends on the complexified Kähler
structure (not on the complex structure) of X. The resulting mathematical theory is
Gromov-Witten theory. For the B-model, the path integral localizes to the space
of constant maps, so the complication lies in the contribution of the transverse
directions; in particular, it depends only on the complex structure (not on the Kähler
structure) of the target. Thus, for a threefold X with mirror X∨, the goal of mirror
symmetry may be viewed as the construction, at least locally,1 of a function

t∗ :Mcs(X
∨)→Mcks(X)

from the moduli space of complex structures on X∨ to the moduli space of
complexified Kähler structures on X, such that t∗ relates the A- and B-model
amplitudes. Given such a function, the classical duality interchanging h1,1 and h2,1
(as discussed in chapter “Mirror Symmetry Constructions”) can be recovered by
taking tangent spaces on both sides.

More specifically, the generating function of Gromov-Witten invariants can be
viewed (modulo certain convergence issues) as a holomorphic function defined
within the “large radius” region V ⊆ Mcks(X), and one goal of BCOV B-model
theory is to define a similar function on Mcs(X

∨) and to prove that these two
functions agree under the mirror map t∗. Locally, the study of the complex structure
of X∨ is equivalent to its variation of Hodge structure. For genus-zero worldsheets,
this reduces to studying the dependence of period integrals on complex structure, a
classical subject in algebraic geometry that can be handled explicitly via the Picard–
Fuchs differential equations and monodromy techniques. In higher genus, the entire

1Indeed, this correspondence can only be local, because the moduli space of complexified Kähler
structures is a ball centered around a point known as the “large radius limit”, whereas the moduli
space of complex structures carries nontrivial topology. The effort to extend the moduli space of
complexified Kähler structures leads to other subjects, such as the gauged linear sigma model,
which are outside the scope of this book.
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BCOV theory comes into play, and it is much less well known to the mathematical
community.Much of chapter “The B-model Approach to Topological String Theory
on Calabi-Yau n-Folds” is devoted to explaining these ideas.

In the construction of the B-model generating function, a number of key
differences between the A- and B-model theories become apparent. First, the A-
model generating function is always holomorphic, whereas the B-model generating
function is not; its non-holomorphic dependence is the subject of the holomorphic
anomaly equation. Second, in light of the nontrivial topology on the moduli space
of complex structures, the B-model generating function can be viewed as a global
object—more precisely, a section of a certain line bundle. This naturally leads
to connections between the B-model theory and the theory of modular forms,
which are holomorphic sections of the same bundle. These two aspects of the
theory are intimately related; in dimension one, for example, the holomorphic
anomaly equation implies that the B-model generating function is a quasi-modular
form. On Calabi–Yau threefolds, moreover, the holomorphic anomaly equation is
a powerful computational tool, leading to such structural features as Yamaguchi–
Yau’s prediction that Fg is a polynomial in certain canonical generators constructed
from period integrals. One of the key issues discussed in chapter “The B-model
Approach to Topological String Theory on Calabi-Yau n-Folds” is the comparison
between the A- and B-model generating function, which involves the delicate
procedure of taking a “holomorphic limit” of the B-model generating function using
the geometry of the moduli space of complex structures.

The account of BCOV theory provided in chapter “The B-model Approach to
Topological String Theory on Calabi-Yau n-Folds” is physical in nature, whereas a
mathematical construction of the theory—though still far from complete—has been
initiated by Costello and Li [3, 11], whose work we encourage interested readers to
consult. A fundamental feature of both the physical and mathematical constructions
is that the higher-genus theory is defined as a quantization from genus zero. In order
to explain this in mathematical terms, we digress slightly in chapter “Geometric
Quantization with Applications to Gromov-Witten Theory” (contributed by Emily
Clader, Nathan Priddis, and Mark Shoemaker) to explain the topic of geometric
quantization. This is a procedure for producing a Hilbert spaceHV from a polarized
symplectic vector space V (finite- or infinite-dimensional), which is functorial in the
sense that a symplectic linear transformation T : V → W gives rise to an operator
̂T : HV → HW . The physical meaning of this procedure, and the explanation for
its name, comes from the passage from a classical theory, in which V represents the
space of states, to the associated quantum theory with state space HV .

Quantization also has deep mathematical significance, encoding the relationship
between the genus-zero Gromov-Witten theory of certain targetsX and their higher-
genus theory. In this case, one sets V = VX = H ∗(X;Λ)((z−1)), where Λ is a
Novikov ring and z a formal parameter. The genus-zero Gromov-Witten invariants
of X can be packaged into a Lagrangian submanifold LX ⊆ VX, and the higher-
genus invariants into a total descendant potential DX ∈ HVX . If the targets satisfy
the condition of “semisimplicity”, then a symplectic transformation T : VX → VY

for which T (LX) = LY has ̂T (DX) = DY . In particular, if one can produce a
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symplectic transformation taking the Gromov-Witten theory of X to the theory of
a finite collection of points, then the all genera Gromov-Witten theory of X can
be deduced via quantization from that simplest of targets. These ideas, which were
developed in the deep foundational work of Givental [6, 7] and Teleman [13], are
discussed in the second half of chapter “Geometric Quantization with Applications
to Gromov-Witten Theory”.

Equipped with the quantization machinery, in chapter “Some Classical/Quantum
Aspects of Calabi-Yau Moduli” (contributed by Si Li) we turn to a mathematical
perspective on the higher-genus B-model developed in [3]. The main idea is that
one should work on the chain level rather than in cohomology. More precisely,
the moduli space Mcs(X) of complex structures can be described mathematically
in terms of the chain complex of “polyvector fields” on X. From here, via Kyoji
Saito’s theory of primitive forms, one obtains a Frobenius manifold structure on
Mcs(X) and, in particular, a potential function F . Within the “large complex
structure” region U ⊆ Mcs(X), this potential function has been identified in
a large class of examples with the generating function of genus-zero Gromov-
Witten invariants on the mirror X∨. To obtain the higher-genus B-model, then, one
applies the quantization procedure described in chapter “Geometric Quantization
with Applications to Gromov-Witten Theory”. This is simply a definition, but at
the end of chapter “Some Classical/Quantum Aspects of Calabi-Yau Moduli”, we
discuss the case whereX is an elliptic curve, in which one can prove that the higher-
genus B-model correlation functions produced via quantization indeed agree in the
large complex structure limit with the higher-genus Gromov-Witten invariants ofX.

An alternative mathematical development of the higher-genus B-model is pre-
sented in chapter “Eynard-Orantin B-model and Its Application in Mirror Sym-
metry” (contributed by Bohan Fang), by way of the Eynard–Orantin topological
recursion. Specifically, one defines a “spectral curve” as an affine algebraic curve
Σ ⊆ (C∗)2 equipped with a certain extra structure, and the Eynard–Orantin
formalism recursively defines a collection of symmetric meromorphic differential
forms ωg,n on the n-fold product Σ

n
of a compactification Σ . (In fact, formal

spectral curves can be defined in a neighborhood of each semisimple point of
a generically semisimple Frobenius manifold, and it has been shown that the
Eynard–Orantin recursion is equivalent in this case to Givental’s quantization.) For
certain target spaces X, an associated spectral curve Σ can be defined, and the
Eynard–Orantin invariants of Σ can be viewed as a higher-genus B-model of Σ . In
particular, the mirror symmetry prediction that the A-model of X and the B-model
of Σ agree has been verified in a number of cases, including all toric Calabi–
Yau threefolds. One application of this view on the B-model is that it confirms
the modularity properties predicted by physicists, as these properties hold in the
Eynard–Orantin theory.

Chapter “The Total Ancestor Potential in Singularity Theory” (contributed by
Todor Milanov) addresses the question of when the B-model potential function,
defined via quantization as in chapter “Some Classical/Quantum Aspects of Calabi-
YauModuli”, is analytic. This is a particularly desirable property that is relevant, for
example, in the Landau–Ginzburg/Calabi–Yau correspondence, which relates the
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A-model in two different regions ofMcks (the large radius region, corresponding to
Gromov-Witten theory, and the orbifold region, corresponding to the Fan–Jarvis–
Ruan–Witten theory of an associated singularity) by passing through a mirror
symmetric comparison of both theories to a global B-model. Specifically, chapter
“The Total Ancestor Potential in Singularity Theory” focuses on Frobenius mani-
folds arising via the universal unfolding of a polynomial function f : Cn+1 → C,
in which the Frobenius structure corresponds to the choice of a primitive form; this
is the analogue in the orbifold region of the Frobenius manifold of chapter “Some
Classical/Quantum Aspects of Calabi-Yau Moduli”. In contrast to the Calabi–Yau
setting considered in chapter “The B-model Approach to Topological String Theory
on Calabi-Yau n-Folds”, this Frobenius manifold is generically semisimple, which
makes the quantization operation much better behaved. In particular, the B-model
generating function is always analytic at semisimple points, so the question is
whether it extends analytically across the non-semisimple locus. For the Frobe-
nius manifolds discussed in chapter “The Total Ancestor Potential in Singularity
Theory”, this is indeed the case. Furthermore, when f is quasi-homogeneous and
satisfies a condition known as “invertibility,” the ancestor potential of the above
Frobeniusmanifold can be identified with the generating function of all genera Fan–
Jarvis–Ruan–Witten invariants of f .

Finally, in chapter “Lecture Notes on Bihamiltonian Structures and Their Central
Invariants” (contributed by Si-Qi Liu), we turn to a rather different aspect of
the B-model: its connection to integrable systems. In the early days of Gromov-
Witten theory,Witten conjectured that the generating function of certain intersection
numbers on the moduli space of curves is a tau-function of the KdV hierarchy. This
conjecture was soon proven by Kontsevich, work for which he was awarded a Fields
Medal and that generated a great deal of interest in the interplay between Gromov-
Witten theory and integrable systems. A prominent approach to this subject, due to
Dubrovin and Zhang, is to develop an axiomatization of the integrable hierarchies
arising in geometry. Through this technique, Dubrovin and Zhang proved that
the higher-genus generating function associated which a semi-simple Frobenius
manifold is uniquely determined by the condition that it is a deformation of the
genus-zero generating function and it satisfies a system of differential equations
known as the Virasoro constraints. This observation directly motivated Givental’s
work on quantization. Dubrovin and Zhang pushed their theory much further,
however, classifying all possible integrable systems for the higher-genus theory
up to “gauge transformations.” Since then, their technique has become a standard
method for studying the integrable systems associated with semisimple Frobenius
manifolds. Chapter “Lecture Notes on Bihamiltonian Structures and Their Central
Invariants” gives an account of this fascinating story.

The material presented in this book is by no means complete. For example, it
only scratches the surface of Costello–Li’s B-model and does not cover any aspects
of homologicalmirror symmetry or the derived category. The reader should take this
book as a starting point rather than a definitive reference. As the editors, we wish to
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thank all the people who contributed to the book, without whose efforts it would not
have been possible.

San Francisco, CA, USA Emily Clader
Ann Arbor, MI, USA Yongbin Ruan
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Abstract Mirror symmetry, in general, is a correspondence between objects of
a certain type (manifolds, for example, or polynomial functions) and objects
of a possibly different type that exchanges the “A-model” of each object with
the “B-model” of its image. This equivalence has many manifestations in both
mathematics and physics, but in order to discuss any of them, one must first
understand how mirror pairs are constructed. We review three such constructions—
the Batyrev construction, the Hori–Vafa construction, and the Berglund–Hubsch–
Krawitz constructions—and, in each case, describe the A-model and B-model state
spaces that mirror symmetry interchanges.

The following notes are based on lectures by Yongbin Ruan during a special
semester on the B-model at the University of Michigan in Winter 2014. No claim to
originality is made for anything contained within.
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2 E. Clader and Y. Ruan

1 Preface: The Idea of Mirror Symmetry

The term “mirror symmetry” is used to refer to a wide array of phenomena in
mathematics and physics, and there is no consensus as to its precise definition. In
general, it refers to a correspondence that maps objects of a certain type—manifolds,
for example, or polynomials—to objects of a possibly different type in such a
way that the “A-model” of the first object is exchanged with the “B-model” of its
image. The phrases “A-model” and “B-model” originate in physics, and the various
definitions of mirror symmetry arise from different ideas about the mathematical
data that these physical notions are supposed to capture.

The Calabi-Yau A-model, for example, encodes deformations of the Kähler
structure of a Calabi-Yau manifold, while the Calabi-Yau B-model encodes defor-
mations of its complex structure. There is also a Landau-Ginzburg A-model and
B-model, which are associated to a polynomial rather than a manifold, and which
are somewhat less geometric in nature. The versions of mirror symmetry considered
in this course are:

• The Batyrev construction [4, 5], which interchanges the Calabi-Yau A-model of
a manifold and the Calabi-Yau B-model of its mirror manifold;

• The Hori-Vafa construction [17, 18, 20], which interchanges the Calabi-Yau (or,
more generally, semi-Fano) A-model of a manifold and the Landau-Ginzburg
B-model of its mirror polynomial;

• The Berglund-Hübsch-Krawitz construction [6, 23], which interchanges the
Landau-Ginzburg A-model of a polynomial and the Landau-Ginzburg B-model
of its mirror polynomial.

In each case, mirror symmetry is a conjectural equivalence between the sets of data
encoded by the two models. In full generality it remains a conjecture, but many cases
are known to hold. The Calabi-Yau/Calabi-Yau mirror symmetry, for example, has
been proven whenever the Calabi-Yau manifold X is a complete intersection in a
toric variety, and in some cases whenX is a complete intersection in a more general
GIT quotient.

We should note that, in these notes, mirror symmetry is only discussed as an
interchange of cohomology groups (or “state spaces”) on the A-side and B-side.
At least in the Calabi-Yau case, however, both the A-model and the B-model are
understood to capture much more data than these vector spaces alone. The Calabi-
Yau A-model, for example, can be encoded in terms of Gromov-Witten theory.

The structure of the notes is as follows. In Sect. 2, we review the fundamentals
of toric geometry, which are necessary to explain the Batyrev construction. Sec-
tions 3, 4, and 5 develop the three forms of mirror symmetry outlined above. The
Appendix reviews the basics of Chen-Ruan cohomology, a cohomology theory for
orbifolds that is needed in order to define the state spaces of the Calabi-Yau A- and
B-model, and that also provides a useful parallel to the definition of the states spaces
in Landau-Ginzburg theory.
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2 Toric Geometry

Toric geometry is the study of a class of algebraic varieties whose structure is
entirely encoded by combinatorial data. Due to their simplicity, toric varieties
provide a natural testing ground for many algebro-geometric ideas, and furthermore,
they allow the statement of mirror symmetry to be expressed combinatorially.

The contents of this section are based heavily on Chapter 7 of [21]. Other good
references for the basics of toric geometry include [14] and [16].

2.1 Toric Varieties and Fans

Definition 1 A toric variety is a complex variety X containing an algebraic torus
T := (C∗)r as an open dense subset, for which the action of T on itself by
multiplication extends to an action of T on all of X.

For example, complex projective space Pr is a toric variety. The open dense
torus is

{[x0 : · · · : xr ] | xi �= 0 ∀ i} ⊂ {[x0 : · · · : xr ]} = P
r .

When the toric variety is normal (which is always the case in what follows), it
can be constructed from a combinatorial object known as a fan.

Let N be a lattice,1 a discrete subgroup of Rr for some r . It follows thatN ∼= Zr ,
but by referring to N abstractly as a lattice, we are not fixing an isomorphism.
Denote

NR := N ⊗Z R ∼= R
r .

Definition 2 A convex rational polyhedral cone σ ⊂ NR is a set of the form

σ = {a1v1 + · · · + akvk | ai ≥ 0} (1)

for v1, . . . , vk ∈ N . (We sometimes say σ is generated by the vectors {v1, . . . , vk}.)
A convex rational polyhedral cone is called strongly convex if, furthermore, σ ∩
(−σ) = {0}; that is, σ does not contain any hyperplanes.

Since we deal exclusively with strongly convex rational polyhedral cones in this
course, they are referred to in what follows simply as “cones”.

1In the general theory of toric varieties, N is allowed to be any abelian group of finite rank.
However, in these notes, we assume that N has no torsion, and hence is a lattice.
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Fig. 1 The cone generated
by (1, 1) and (0, 1) in
N ∼= Z

2

Fig. 2 The cone generated
by (1, 0) and (−1, 0) is not
strongly convex

See Figs. 1 and 2 for examples. From these illustrations, the notion of a “face” of
a cone should be intuitively clear. To put it precisely, a face of a cone σ defined as
in (1) is a subset given by setting some collection of the ai’s to zero.

Definition 3 A fan is a collection � of strongly convex rational polyhedral cones
satisfying:

(1) Each face of a cone in � is also a cone in �.
(2) The intersection of any two cones in � is a face of each of them.

Example 4 Let N ∼= Z2, and define the following vectors in NR
∼= R2:

v1 := (−1,−1)
v2 := (1, 0)

v3 := (0, 1).

Then there is a fan � whose cones are generated by every proper subset of
{v1, v2, v3}, where by convention, the empty set of vectors generates the 0-
dimensional cone {0}. This fan is illustrated in Fig. 3.
Example 5 Again, let N ∼= Z2. Then there is a fan �n whose cones are generated
by proper subsets of {(1, 0), (−1, n), (0, 1), (0,−1)}. This fan is pictured in Fig. 4.

There are several constructions that yield a toric variety from the data of a fan.
Perhaps the most standard (see [16]) involves defining an affine variety for each
cone in the fan and using the intersections of the cones to describe how to glue these
affine varieties together. This procedure is analogous to the way that one obtains
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Fig. 3 The fan � from
Example 4

v2

v3

v1

Fig. 4 The fan �n from
Example 5

v1

v3

v2 v4

projective space by gluing together the affine subsets on which a given coordinate
is nonzero. We return to this perspective in Sect. 2.4.

For the present, we take a different approach to defining toric varieties from fans,
which, in the case of projective space, yields the quotient presentation

P
r = (Cr+1 \ {0})/C∗

as opposed to the decomposition into affines.
Fix a fan �, and let �(1) denote the set of 1-dimensional cones. These are

sometimes called “edges” or “rays”; explicitly, they are simply the cones generated
by a single nonzero vector in N .

For each cone ρ ∈ �(1), there is a primitive generator vρ ∈ N . That is, vρ
generates ρ in the sense of Definition 2, and for all integers k > 1 we have 1

k
vρ /∈

N . For convenience, choose an ordering v1, . . . , vn of these vectors, where n =
|�(1)|. By abuse of notation, we often write �(1) = {v1, . . . , vn}, identifying 1-
dimensional cones with their primitive generators.

Consider an affine space Cn with a coordinate xρ for each ρ ∈ �(1). In
accordance with the above ordering, we sometimes write these coordinates as
x1, . . . , xn. Inside this affine space, the discriminant locus is defined as

Z(�) =
⋃

S⊂�(1)
S does not span a cone in �

V (IS),

where IS is the ideal

IS = ({xρ | ρ ∈ S}) ⊂ C[x1, . . . , xn].
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Let

M = Hom(N,Z),

the dual lattice to N . Then there is a homomorphism

φ : HomZ(Z
�(1),C∗)→ HomZ(M,C∗) = N ⊗Z C

∗

f �→
(

m �→
∏

v∈�(1)

f (v)〈m,v〉
)

,

where 〈·, ·〉 denotes the natural pairing M ⊗N → Z. Let G = ker(φ).
There is an action of G on Cn defined by

g(x1, . . . , xn) = (g(v1)x1, . . . , g(vn)xn)

for g ∈ G, where we identify vρ ∈ �(1) with the corresponding standard basis
vector forZ�(1). It is straightforward to check that this action preservesZ(�). Thus,
one can define

X� := (Cn \ Z(�))/G.

This is the definition of the toric variety associated to a fan �.
Note that X� is indeed toric; the torus that acts is

T := (C∗)n/G ∼= HomZ(M,C∗) = N ⊗Z C
∗ ∼= (C∗)r ,

acting by the quotient of the usual diagonal action of (C∗)n on Cn. The first
isomorphism in this chain is given by φ.

For computations, it is helpful to describe φ concretely in coordinates. Under the
ordering of �(1) as {v1, . . . , vn}, one obtains coordinates (t1, . . . , tn) for Z�(1) ∼=
Zn. Furthermore, choosing a basis {e1, . . . , er } for N with dual basis {e1, . . . , er }
gives an identification Hom(M,C∗) ∼= (C∗)r . In these coordinates,

φ(t1, . . . , tn) =
(

n
∏

i=1
t
vi1
i , . . . ,

n
∏

i=1
t
vir
i

)

,

where

vi =
r
∑

i=1
vij e

j .
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One consequence of this description is that G can easily be computed by deter-
mining the linear relations satisfied by the vectors v1, . . . , vn. We carry this out
explicitly in Sect. 2.2 of this chapter.

Let us compute the toric varieties associated to the two fans described above.

Example 6 If� is the fan from Example 4, then r = 2 and n = 3. The discriminant
locus is

Z(�) = V (x1, x2, x3) = {0},

since the only subset of the vectors v1, v2, v3 that does not span a cone is the entire
set. In the standard basis {(1, 0), (0, 1)} for N ∼= Z2, the homomorphism φ is

φ : (C∗)3 → (C∗)2

(t1, t2, t3) �→ (t−11 t2, t
−1
1 t3).

Thus,

G = {(t, t, t) | t ∈ C
∗} ∼= C

∗.

We obtain

X� = (C3 \ {0})/C∗ = P
2.

To see how the torus T = (C∗)2 sits inside P2, reverse the homomorphism φ to
write

(C∗)2 ∼= (C∗)3/G

(λ1, λ2) �→ [1, λ1, λ2].

Thus, T ⊂ P2 as {[1 : y : z] | y, z �= 0}.
Example 7 Let �n be the fan from Example 5, in the special case where r = 2 and
n = 4. Then the discriminant locus is

Z(�n) = V (x1, x2) ∪ V (x3, x4),

and φ is given in the standard basis for N = Z2 by

(t1, t2, t3, t4) �→ (t1t
−1
2 , t−n

2 t3t
−1
4 ).

The kernel is

G = {(λ1, λ1, λn
1λ2, λ2)} ∼= (C∗)2.
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To understand the variety

X�n =
(

C
4 \ ({x1 = x2 = 0} ∪ {x3 = x4 = 0})

)

/(C∗)2,

first take the quotient by the λ1 factor inside (C∗)2. This yields the quotient of
C4 \ {0} by C∗ as

C
4 \ {0}

λ(x1, x2, x3, x4) ∼ (λx1, λx2, λnx3, x4)
,

which is the complement of the zero section in the total space of OP1(n) ⊕ OP1 .
Now, taking the quotient by the λ2 factor in (C∗)2 projectivizes this bundle. Thus,

X�n = P(OP1(n)⊕OP1),

which is the Hirzebruch surface Fn. Via the isomorphism

T = (C∗)2 ∼= (C∗)4/G

(λ1, λ2) �→ (λ1, 1, λ2, 1)

induced by φ, one sees that T sits inside Fn as

{(x, 1, z, 1) | x, z �= 0},
where the first two coordinates are the base coordinates and the second two are the
fiber coordinates.

Example 8 Consider a fan � in Z3 with

�(1) = {(1, 0, 1), (0, 1, 1), (−1,−1, 1), (0, 0, 1)}.
Specifically, each subset of �(1) of size 1 or 2 generates a cone, and
the 3-dimensional cones are generated by all subsets of size 3 except for
{(−1,−1, 1), (1, 0, 1), (0, 1, 1)}.

The homomorphism φ is easily computed in the standard basis:

φ(t1, t2, t3, t4) = (t1t
−1
3 , t2t

−1
3 , t1t2t3t4).

Thus,

G = {(t, t, t, t−3)} ∼= C
∗,

and one obtains

X� = OP2(−3).
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Note that this is a noncompact toric variety. In combinatorial terms, the noncompact-
ness of X� is reflected by the fact that the fan does not fill out the entire ambient
vector spaceR3, leaving some directions “free” from the constraints imposed by the
G-action.

In general, given a fan �, the resulting toric variety X� is compact if and only if
� spans Rn. Such fans are referred to as complete.

2.2 The Charge Matrix

As mentioned previously, there is a straightforward way to read off the group G,
and in particular the weights of the G-action on Cn, from the equations satisfied by
vectors in �(1).

To explain this, we need to assume that G does not contain any finite groups as
summands; thus, G ∼= (C∗)s for some s. Then the embedding

(C∗)s ⊂ (C∗)n

induced by viewing (C∗)s as the kernel of φ can be written in coordinates as

(t1, . . . , ts ) �→
(

s
∏

a=1
tQ1a
a , . . . ,

s
∏

a=1
tQna
a

)

(2)

for a matrix Q.

Definition 9 The matrix Qij in Eq. (2) is called the charge matrix for X� .

The terminology relates to a physical connection with the gauged linear sigma
model, which is discussed in Sect. 4. It should be noted that the representation of Q
as a matrix depends on an identification ofG with (C∗)s and hence is not canonical.

By the definition of G as the kernel of φ, we have

n
∑

i=1
Qiavik = 0

for all a = 1, . . . , s and all k = 1, . . . , r . In other words, the charge matrix gives s
linear relations

n
∑

i=1
Qiavi = 0

satisfied by the vectors v1, . . . , vn.
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It follows that if 
 is the lattice of linear relations on �(1), then a representation
of G as (C∗)s is equivalent to a choice of basis for 
. Having made such a choice,
one has

X� = (Cn \ Z(�))/(C∗)s ,

in which (C∗)s acts by

(λ1, . . . , λs) · (x1, . . . , xn) =
(

s
∏

a=1
λQ1a
a · x1, . . . ,

s
∏

a=1
λQna
a · xn

)

.

Thus, searching for a basis of linear relations among the 1-dimensional cones gives
a quick way to read off the toric variety from its fan.

Example 10 Consider the fan � from Example 4, for which X� = P2. Then
the linear relations among the vectors {v1, v2, v3} = {(−1,−1), (1, 0), (0, 1)} are
generated by the single relation

v1 + v2 + v3 = 0.

Under the corresponding identification of G with C∗, then, we have

Q =
⎛

⎝

1
1
1

⎞

⎠ ,

and indeed,

P
2 = (C3 \ {0})/C∗,

in which C∗ acts with weight 1 in each factor.

Example 11 For the Hirzebruch surface Fn described by the fan in Example 5, the
linear relations among v1, . . . , v4 are generated by

v3 + v4 = 0

and

v1 + v2 − n · v4 = 0.

This choice determines an identification of G with (C∗)2 in which

Q =

⎛

⎜

⎜

⎝

0 1
0 1
1 0
1 −n

⎞

⎟

⎟

⎠

.
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Note that, again, the columns give the weights of the two C∗ actions in the quotient

X�n =
C
4 \ Z(�n)

(C∗)2
.

2.3 Divisors on X�

Associated to each cone σ ∈ �, there is a subvariety

Zσ = {xρ1 = · · · = xρk = 0} ⊂ X�,

where ρ1, . . . , ρk are the generators of σ . It is easy to check that Zσ is T -invariant.
In fact, all of the T -invariant subvarieties of X� are of the above form.

The codimension of Zσ is equal to the dimension of σ , so elements σ ∈ �(1)
yield T -invariant divisors. If σ has primitive generator ρ ∈ N , we write Dρ for the
T -invariant divisor associated to σ .

The divisors Dρ in fact generate the group Ar−1(X�) of Weil divisors modulo
linear equivalence; in other words, any divisor on X� is linearly equivalent to
a linear combination of T -invariant divisors. Indeed, one can say even more: it
is possible to use the combinatorics of the fan to determine when two linear
combinations of the divisors Dρ are linearly equivalent. The criterion involves the
notion of the principal divisor associated to a character m ∈ M , which we explain
below.

Recall that the torus T is defined as Hom(M,C∗). Thus, an element m ∈ M

defines a holomorphic function on T by evaluation. Since X� is a compactification
of T , this holomorphic function extends to a meromorphic function fm on all of
X� . Let (m) be the divisor of zeroes and poles of fm. One can check that (m) is
also given by the explicit combinatorial formula

(m) =
∑

ρ∈�(1)

〈m, vρ〉Dρ ∈ Z
�(1) ∼= Ar−1(X�).

We will not prove this formula, but let us check it in an example.

Example 12 Let� again be the fan from Example 4, whose associated toric variety
is P2. Choose

m = (a, b) ∈ M ∼= Z
2.

A point (λ1, λ2) ∈ T = (C∗)2 can be viewed as the homomorphism

M → C
∗

(p, q) �→ λ
p
1λ

q
2 .
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Thus, the function on T associated to the point (a, b) is

(λ1, λ2) �→ λa
1λ

b
2.

Recalling from Example 6 that T sits inside P2 as {[1 : y : z]}, it is clear that the
unique meromorphic extension fm of this function to all of P2 is

(x, y, z) �→
(y

x

)a ( z

x

)b

.

In particular, this confirms that fm has a zero of order 〈m, v2〉 = a at D2 = {y = 0}
(or a pole of order −a, if a is negative), and similarly for the other vectors in �(1).

Using these principal divisors, we obtain an explicit description of Ar−1(X�).

Theorem 13 Given Weil divisors D = ∑

aρDρ and D′ = ∑

a′ρDρ on X� , the
following are equivalent:

(1) D and D′ are linearly equivalent;
(2) D andD′ are homologically equivalent (that is, they define the same element of

H2(r−1)(X�;Z));
(3) D and D′ have the same associated line bundle;
(4) D and D′ differ by (m) for some m ∈ M .

The upshot of everything we have said in this section, then, is that we have a
short exact sequence

0→ M → Z
�(1) → Ar−1(X�)→ 0, (3)

where Ar−1(X�) ∼= H2(r−1)(X�;Z) is the Chow group of divisors modulo linear
equivalence. The first map in the sequence is

m �→
(

〈m, vρ 〉
)

ρ∈�(1)
,

while the second sends (aρ)ρ∈�(1) to
∑

aρDρ . This induces

0→ Hom(Ar−1(X�),C∗)→ Hom(Z�(1),C∗)→ Hom(M,C∗)→ 0, (4)

and the rightmost arrow in this sequence is precisely φ.
There are a number of additional consequences of the exact sequences (3)

and (4) that we should mention. First, there is now a canonical, basis-independent
description of G as

G ∼= Hom(Ar−1(X�),C∗).
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In case X� is compact, this is equivalent via Poincaré duality to G = H2(X;Z)⊗Z

C∗.
Second, the entries of the charge matrix can now be described in a more

geometrically-motivated way. Rather than expressing it in terms of linear relations
on the fan �, the sequence (3) shows that such relations can be viewed as elements
of An−1(X�). Thus, a basis C1, . . . , Cn for the Mori cone of effective curve classes
yields a basis for the lattice 
 of relations. Associating the divisors D1, . . . ,Dn to
the generators v1, . . . , vn of �(1), one can show that

Qia = Di · Ca,

in which · denotes the intersection product.

2.4 Characterizing Toric Orbifolds

An orbifold is a variety that is locally given as the quotient of an affine space by a
finite group action. In keeping with the idea that all of the structure of toric varieties
is represented combinatorially, one can read off from the fan whether a particular
toric variety is an orbifold. To do so, we need to briefly describe the construction of
X� in terms of charts rather than quotients.

For each top-dimensional cone σ in �, define

Xσ = {x ∈ C
n \ Z(�) | xρ �= 0 for ρ /∈ σ }/G ⊂ X�.

In other words, Xσ = X�σ , where �σ is the fan consisting of σ and its faces. We
claim that

X� =
⋃

σ top-dimensional

Xσ . (5)

To see this, choose a point x ∈ X� , and let

Sx = {ρ | xρ = 0}.

Then Sx must span a cone, for otherwise x would lie in Z(X�). If σ is the maximal
cone containing the cone spanned by Sx , then x ∈ Xσ , which proves the claim.

Since G is infinite, the decomposition (5) does not immediately present X� as
an orbifold, despite the fact that each of the local patches Xσ is the quotient of an
affine variety by a subgroup ofG. We require a criterion to ensure that the stabilizer
of the G-action on each Xσ is finite.

Definition 14 A fan is simplicial if each of its top-dimensional cones gives a Q-
basis for N .
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Fig. 5 A non-simplicial cone

Example 15 The cone in R3 depicted in Fig. 5 is not simplicial, since it has too
many generators. In fact, the toric variety corresponding to this fan is the conifold
singularity xy = uw.

Theorem 16 A toric variety is an orbifold if and only if its fan is simplicial. It is a
(smooth) manifold if and only if each top-dimensional cone gives a Z-basis for N .

Sketch of proof We discuss only one direction of the proof, since we have explained
how to construct a toric orbifold from a fan but not the reverse. See Section 7.5 of
[21] for a discussion of the opposite implication.

Let � be a simplicial fan, and let σ be a top-dimensional cone. Without loss of
generality, we write

�(1) = {v1, . . . , vn}

and assume that v1, . . . , vr generate the 1-dimensional faces of σ .
We claim that each x ∈ Xσ is equivalent modulo the action of G to a point with

xρ = 1 for all ρ /∈ σ . Indeed, if ρ /∈ σ , then ρ ∪ σ is linearly dependent, since σ

already has maximum dimension. Thus, we have an equation

r
∑

i=1
aivi + aρvρ = 0.

This implies that

(ta1, . . . , tar , 1, . . . , taρ , . . . , 1) ∈ G

for any t ∈ C∗, where the element taρ is in the spot indexed by vρ . Acting by this
element, one can rescale xρ to 1 without changing any xρ′ for ρ′ /∈ σ other than ρ.
Repeating this procedure for each ρ /∈ σ yields the claim.

It follows that

Xσ = C
r/stabilizer, (6)

where the stabilizer is the kernel of the restriction of φ to

{xρ = 1 for all ρ /∈ σ } ⊂ (C∗)n.
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Any element of N yields an element of this stabilizer, since by assumption such
an element may be written as

�1v1 + · · · + �rvr

with �i ∈ Q, and it is easily checked that

(e2πi�1, . . . , e2πi�r , 1, . . . , 1) ∈ ker(φ),

given that �1v1 + · · · + �rvr is integral. This procedure produces the trivial element
of ker(φ) exactly when �i ∈ Z for each i, so we find that the stabilizer in (6) is
isomorphic to N/Z{v1, . . . , vr }. This is a finite group, and it is trivial exactly when
{v1, . . . , vr } forms a Z-basis for N . ��

A particularly simple kind of orbifold is a global quotient, which is the quotient
of a smooth variety by a global finite group action. In terms of fans, toric global
quotients are described by passing to a finite-index sublattice.

Fix a fan �. Suppose N ⊂ N ′ is a sublattice of finite index such that the
primitive2 generators of all of the top-dimensional cones of � form integral bases
for N .

Since NR = N ′
R
, either of these lattices can be used with the same fan � to

define a toric variety. The results, however, are different. Indeed, if

T = N ⊗Z C
∗ and T ′ = N ′ ⊗Z C

∗,

then

X�,N = X�,N

T/T
= X�,N

N/N
.

Though we will not prove this fact, let us see how it manifests in an example.

Example 17 Let X� = P2, where the lattice is N = Z2. Now, suppose we change
the lattice to N ′ = N + Z{( 13 , 2

3 )}, which has the effect of adding two additional
lattice points to each 1× 1 square. For example, the new lattice points in the square
whose lower-left vertex is the origin are ( 13 ,

2
3 ) and ( 23 ,

1
3 ).

In the basis φ1 = ( 23 ,
1
3 ), φ2 = ( 13 ,

2
3 ) for N

′, the generators of � become

{v1, v2, v3} = {(2,−1), (−1, 2), (−1,−1)}.

2It should be noted that the definition of “primitive” depends on the lattice. In the lattice Z2 ⊂ R
2,

for example, the vector (1, 0) is a primitive generator for its ray. The same ray, however, has
primitive generator ( 12 , 0) if we instead consider the lattice 1

2Z
2 ⊂ R

2.
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As the generators of the one-dimensional cones no longer give integral bases forN ′,
it follows that X�,N ′ is an orbifold. Indeed, one can check that X�,N ′ = [P2/Z3].

Conversely, given a global quotient [X�/H ] of a toric variety, one can recon-
struct the inclusion of lattices N ⊂ N that defines it. To do so, notice that N can be
read off from the torus T = N ⊗Z C

∗ as the lattice of 1-parameter subgroups.
Although the torus T ⊂ X� descends to a torus T ⊂ [X�/H ], 1-parameter
subgroups of the latter need not lift to 1-parameter subgroups of the former. The new
elements of N ′ that were not present in N are precisely the 1-parameter subgroups
of T that do not lift. For instance, in Example 17, the subgroups

t �→ (1, t1/3, t2/3)

and

t �→ (1, t2/3, t4/3)

are well-defined in the quotient but not in the original variety P
2, so these give the

extra lattice points in N ′.

2.5 Toric Resolutions

Now that we have described toric orbifolds in some detail, let us discuss how their
singularities can be resolved without leaving the toric setting.

Definition 18 A fan �′ is said to subdivide � if

(1) �(1) ⊂ �′(1);
(2) Each cone of �′ is contained in some cone of �.

Suppose �′ subdivides�, and write

�(1) = {ρ1, . . . , ρn},

�′(1) = {ρ1, . . . , ρn, ρn+1, . . . , ρm}.
Then the projection Cm → Cn determines a map X�′ → X� . One can check that
this map restricts to an isomorphism on the tori T = N ⊗C∗ for X� and X�′ , so it
is birational. We refer to such a map as a toric resolution.

Example 19 Consider the toric orbifold [C2/Z2]. By the procedure described in the
previous section, this orbifold arises from the fan whose 1-dimensional cones are

v1 = (1, 0) ∈ Z
2,

v2 = (0, 1) ∈ Z
2,
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Fig. 6 The fan for [C2/Z2]

where the larger lattice is generated by (1, 0) and (− 1
2 ,

1
2 ).

In the basis {(1, 0), (− 1
2 ,

1
2 )}, the coordinates of the vectors vi are (1, 0) and

(1, 2), respectively. Thus, the fan can equivalently be presented as in Fig. 6. If we
add a one-dimensional cone generated by v3 = (1, 1), subdividing the fan into
two 2-dimensional cones, then each of these cones has generators that give an
integral basis for the lattice. In other words, we have produced a smooth toric variety
birational to [C2/Z2]. In fact, the resulting variety is OP1(−2), which is the blowup
of [C2/Z2] at the origin.

Example 20 Generalizing the above example, consider the global quotient
[C2/Zn+1], where the action is by

ω · (z1, z2) = (ωz1, ω
nz2)

for ω = e2πi/(n+1).
Starting from the lattice Z2 that gives the toric variety C2, the extra lattice points

that must be added to obtain [C2/Z2] are generated by
(

n

n+ 1
,

1

n+ 1

)

,

(

n− 1

n+ 1
,

2

n+ 1

)

, . . . ,

(

1

n+ 1
,

n

n+ 1

)

.

Denote the corresponding vectors in R2 by v1, . . . , vn; these generate the 1-
dimensional cones one must add to the fan for [C2/Z2] in order to resolve its
singularity.

In the refined lattice,

{

(1, 0),

(

− 1

n+ 1
,

1

n+ 1

)}

is an integral basis for R2, and in this basis, vi has coordinates (1, i). Therefore, the
fan for [C2/Zn+1] and its blowup at the origin can be depicted as in Fig. 7.

Example 21 Consider the global quotient [C3/Z3], where Z3 acts with weight
1 in each factor. The fan for C3 is generated by the 1-dimensional cones
(1, 0, 0), (0, 1, 0), (0, 0, 1) in the lattice Z3. To obtain the quotient, one must
add the lattice point ( 13 ,

1
3 ,

1
3 ) and its multiples.
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Fig. 7 The fan for
[C2/Zn+1] is depicted with
bold lines. The lighter lines
show the rays that must be
added to obtain the toric
resolution

n+ 1

Fig. 8 The fan for OP2(−3),
which is a toric resolution of
[C3/Z3]

A toric resolution of [C3/Z3], then, is given by adding a 1-dimensional cone
generated by this new lattice point. In the basis

{(

−1

3
,
2

3
,−1

3

)

,

(

−1

3
,−1

3
,
2

3

)

,

(

1

3
,
1

3
,
1

3

)}

for R3, which is integral under the refined lattice, the coordinates of the 1-
dimensional cones in the fan for [C3/Z3] become

(−1,−1, 1), (1, 0, 1), (0, 1, 1),

while the coordinates of the lattice point ( 13 ,
1
3 ,

1
3 ) become (0, 0, 1). Thus, the toric

resolution can be depicted by the refinement of fans shown in Fig. 8.

Example 22 Toric resolutions need not be unique. For example, consider
the (non-orbifold) fan consisting of the single cone shown in Fig. 5, as
well as its faces. Specifically, the generators of the 1-dimensional cones are
(1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1,−1). The resulting toric variety can be
embedded as a hypersurface in C4 by the equation {xy = uv}, which is called
the conifold singularity.

There are two toric resolutions, given by adding the 2-dimensional cones shown
in Fig. 9. The relationship between the two resulting toric varieties is known as a
flop. It should be noted that neither is a blowup of the original conifold singularity,
since they are given not by introducing new 1-dimensional cones (which would
correspond to adding divisors) but rather by adding a 2-dimensional cone.
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Fig. 9 Two different toric
resolutions of the conifold
singularity

2.6 Toric Varieties from Polytopes

For projective toric varieties, an alternative combinatorial description can be given;
instead of constructing the variety from the data of a fan, it is described via a
polytope.

Definition 23 An integral polytope in MR is the convex hull of finitely many
points in M .

Given an integral polytope ⊂ MR with integral points

{m0, . . . ,mk} =  ∩M,

eachmi can be viewed as a complex-valued function on the torus T , as explained in
Sect. 2.3. Let

f : T → (C∗)k+1 ⊂ P
k

be the map defined by these mi :

f (t) = [m0(t) : · · · : mk(t)].
It is easy to check that f is an embedding, assuming that  is full-dimensional.

The toric variety associated to  is defined as

P := Im(f ).

Since f is injective, this contains Im(f ) ∼= T as a dense open subset, and the fact
that the mi are characters implies that the action of T on itself by multiplication
extends to all of P. Hence, P is indeed a toric variety.

Two observations can be made right away:

1. Shifting  by an integral point m ∈ M has the effect of multiplying each
coordinate of f by the same complex number, which does not change the image
in Pk . Thus, P is independent of integral shifts, and in particular, we may
assume without loss of generality that 0 ∈ M ∩.

2. If the integral points of  satisfy an equation

k
∑

i=0
aimi = 0
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for integers ai with
∑k

i=0 ai = 0, then the homogeneous coordinates yi of P

satisfy the equation

∑

ai>0

y
ai
i =

∑

ai<0

y
−ai
i .

We now have two procedures for obtaining normal toric varieties; the relationship
between them is fairly straightforward.

Definition 24 Given an integral polytope, the normal fan� has a cone σF for
each face F of , defined by

σF = {v ∈ NR | 〈m, v〉 ≤ 〈m′, v〉 for all m ∈ F,m′ ∈ }.

In particular, the 1-dimensional cones of the normal fan are generated by the
integral normal vectors vF to the codimension-1 faces F of, which are determined
by the equation

F = {m | 〈vF ,m〉 = 0}.

That is, ifN is identified withM via a choice of basis, then vF is the inward-pointing
integral normal vector to F—see Fig. 10.

More generally, if F is a codimension-i face of , then σF is an i-dimensional
cone. To determine σF , one writes F as the intersection of a collection of
codimension-1 faces; then σF is generated by the integral normal vectors to the
faces in this collection.

When P is normal, there is an isomorphism

X�
∼= P

given in homogeneous coordinates by

(x1, . . . , xn) �→
(

n
∏

i=1
x
〈m0,vi〉
i , . . . ,

n
∏

i=1
x
〈mk,vi〉
i

)

. (7)

On the other hand, non-normal toric varieties can arise via polytopes, whereas the
normal fan of a polytope is always defined. (In combinatorial terms, this occurs

Fig. 10 The inward-pointing
normal vector to a face
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Fig. 11 The toric variety
associated to this polytope is
P
2

when the lattice pointsm0, . . . ,mk are a proper subset of∩M whose convex hull
is nevertheless still .) In this situation, the map (7) is still an isomorphism on the
torus, and hence is still birational, but it is not an isomorphism on the entire toric
varieties; rather, X� is a resolution of P.

Example 25 Let  ⊂ R
2 be the polytope with vertices (0, 0), (1, 0), and (0, 1), as

shown in Fig. 11. The resulting map f is

f : (C∗)2 → P
2

f (t1, t2) = [1 : t1 : t2],

whose image is the standard embedding of the torus in P2. Thus, P = P2, and after
a shift of , the normal fan is the fan associated to P2.

Example 26 Scaling a polytope does not change the resulting toric variety (in
particular, it does not affect the normal fan of the polytope), but it changes the
embedding into projective space. For example, if the polytope in the above example
is scaled by a factor of two, then the map f becomes

f : (C∗)2 → P
5

f (t1, t2) = [1 : t1 : t21 : t2 : t22 : t1t2].

The closure of the image is a copy of P2 inside P5.

Example 27 “Cutting off a corner” of a polytope adds a 1-dimensional cone to the
normal fan, so it yields a toric resolution. For example, if the top corner of the
polytope from the previous example is cut off, the resulting  is given in Fig. 12.
The associated map is

f : (C∗)2 → P
4

f (t1, t2) = [1 : t2 : t21 : t2 : t22 ].

Either via the normal fan or via the polytope construction, it can be verified that the
resulting toric variety is F2.
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Fig. 12 The toric variety
associated to this polytope is
F2

When a toric variety P is constructed out of a polytope, it is automatically
equipped with an ample toric divisor D defined as the pullback of the hyperplane
class on projective space. Thus, the polytope construction yields strictly more data
than the fan method. However, given a toric varietyX� together with an ample toric
divisor, it is possible to reconstruct the polytope that yields this pair.3

Let X� be a toric variety equipped with an ample toric divisor D. (The choice
only matters up to linear equivalence, since a linearly equivalent divisor will
yield a shift of the resulting polytope.) Choosing D amounts to specifying a
morphism X� → Pk for which O(D) is the pullback of O(1), and hence the
coordinate functions x0, . . . , xk on Pk yield sections of O(D). Recall that there
is an isomorphism

{

meromorphic functions f on X�

∣

∣ D + (f ) ≥ 0
} ∼= �(X�,O(D))

given by

f �→ f · s0,
in which s0 is a global meromorphic function for which (s0) = D. Using this
correspondence, the coordinate function xi yield meromorphic functions fi on X� .
The restriction of each of these to the torus is a character of T , so it can be viewed
as an elementmi ∈ M . The polytope is the convex hull of m0, . . . ,mk .

Example 28 Suppose we begin with the toric variety P2 and the toric divisor D0 =
{x0 = 0}. Then s0 = x0 is a global meromorphic section whose divisor isD0, so the
functions f0, f1, f2 corresponding to the coordinate sections of D0 have

fi · x0 = xi,

and hence fi = xi/x0. In terms of the inhomogeneous coordinates t1 = x1
x0

and
t2 = x2

x0
on the torus, these are precisely

t01 t
0
2 , t11 t

0
2 , t01 t

1
2 .

3The case in which the divisor is ample but not very ample, and hence its associated morphism to
projective space is not an embedding, is when the morphism X� → P described in (7) fails to be
an isomorphism.
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Thus, the polytope is the convex hull of (0, 0), (1, 0), and (0, 1).

Example 29 Repeating the above example with the toric divisor D3 instead of D1
yields the convex hull of (0, 0), (0,−1), and (1,−1) as the polytope, which is
indeed a shift of .

Example 30 If, instead, the toric divisor is taken asD1+D2+D3, then the sections
of O(3) are generated by homogeneous degree-three polynomials. These can be
dehomogenized by dividing each by x1x2x3, at which point they can be expressed
in terms of the torus coordinates t1 = x2

x1
and t2 = x3

x1
to read off the lattice points of

the associated polytope. For example, x31 transforms to

x31

x1x2x3
=
(

x2

x1

)−1 (
x3

x2

)−1
= t−11 t−12 ,

so the point (−1,−1) lies in the polytope. Repeating this for each of the sections
of O(3) reveals the polytope to be a threefold dilation of the polytope obtained in
Example 28.

The above expression for the polytope is expressed more explicitly as follows:

Proposition 31 The integral points of the polytope associated to a toric varietyX�

with toric line bundle O
(

∑

ρ aρDρ

)

(in which aρ ≥ 0) are

{m ∈ M | 〈m, vρ 〉 ≥ −aρ}. (8)

Proof The previous definition shows that the integer points of the polytope consist
of m ∈ M for which (m)+D ≥ 0. This means that

∑

ρ

〈m, vρ〉Dρ +
∑

ρ

aρDρ ≥ 0,

which is clearly equivalent to the description given in the statement of the
proposition. ��

In other words, the polytope associated to
(

X�,O(
∑

ρ aρDρ)
)

is bounded by
the affine hyperplanes

Fρ := {m ∈ MR | 〈m, vρ〉 = −aρ}.

This fills out the correspondence between the fan and polytope perspectives on toric
varieties.
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3 Batyrev Mirror Symmetry

The Batyrev mirror symmetry construction applies to toric varieties constructed out
of a particular type of polytope, which we will discuss in the first subsection below.
Our presentation is based on Section 7.10 of [21]; other key references for this
material include [4] and [5].

3.1 Reflexive Polytopes

Definition 32 A full-dimensional integral polytope  is reflexive if there exist
vectors vF ∈ N associated to each codimension-1 face F of  such that

 = {m ∈ MR | 〈m, vF 〉 ≥ −1 for all F },

and if, furthermore, 0 ∈ Int().

A consequence of reflexivity is that 0 is the only interior integral point of .

Example 33 The polytope  appearing in Example 30 of the previous section,
depicted in Fig. 13 below, is reflexive. The vectors vF associated to the edges are
shown.

Proposition 31 above shows that in the reflexive case, the divisor in X�

determined by the polytope is

D =
∑

ρ∈�(1)

Dρ.

More explicitly, one can check (Theorem 8.2.3 of [14]) that D is the anticanonical
divisor ofX� . By exploiting this connection to the canonical divisor, one can prove
the geometric meaning of reflexivity.

Theorem 34 A full-dimensional lattice polytope  is reflexive if and only if P is
Gorenstein and Fano.

Fig. 13 A reflexive polytope

vF1 = (0, 1)

vF2 = (−1,−1)vF3 = (1, 0)
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Recall that the Gorenstein condition implies that the canonical bundle extends
across the singularities of P, and hence forms an honest line bundle on the entire
variety. Given this, the Fano condition says that the resulting bundle is ample.

Rather than prove the theorem, we trace its manifestation in the particular case
of weighted projective space.

Example 35 By definition, weighted projective space is the quotient

P(c0, . . . , cn) = (Cn+1 \ {0})
C∗

,

where C∗ acts by

λ(z0, . . . , zn) := (λc0z0, . . . , λ
cnzn).

Weighted projective space is easily seen to be a toric variety. In order to construct
its fan, one must find v0, . . . , vn satisfying a relation

c0v0 + · · · + cnvn = 0.

Assume, for simplicity, that c0 = 1. Then the vectors vi can be taken to be the
following:

⎛

⎜

⎜

⎜

⎝

v1
...

vn

v0

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
−c1 −c2 · · · −cn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

For example, the fan for P(1, c1, c2) is shown in Fig. 14.
Let  be the polytope  associated to P(1, c1, . . . , cn) and its anticanonical

divisor. If  is reflexive, then it is defined by the inequalities 〈m, vi 〉 ≥ −1 for
0 ≤ i ≤ n. In particular, vertices of would correspond to points where all but one
of these is an equality:

〈m,vj 〉 = −1 for j �= i.

Fig. 14 The fan for
P(1, c1, c2)

(1, 0)
(0, 1)

(−c1,−c2)
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These equations for i �= 0 imply that any point m = (m0, . . . ,mn) ∈  satisfies

mj = −1 for j �= i,

−c1m1 − · · · − cnmn = −1,

which implies that

cixi = 1+
∑

j �=0,i
cj =

∑

j �=i

cj .

This equation must have an integral solution in order for such a polytope to exist;
thus, one must have

ci

∣

∣

∣

∣

∣

∣

n
∑

j=0
cj

We have only proved one implication of Theorem 34, and we have made the
simplifying assumption that c0 = 1, but in fact, the analysis holds more generally:

Proposition 36 The following are equivalent:

(1) P(c0, . . . , cn) is Gorenstein.
(2) The polytope  associated to P(c0, . . . , cn) with its anticanonical bundle is

reflexive.

(3) ci

∣

∣

∣

∣

∑n
j=0 cj for each i.

Moreover, when these are satisfied, the polynomial

x
d/c0
0 + · · · + x

d/cn
n

with d :=∑n
j=0 cj defines a Calabi-Yau hypersurface of P(c0, . . . , cn).

The last statement follows from the adjunction formula. Polynomials of the form
x
a0
0 + · · · + x

an
n are referred to as Fermat. Thus, the result implies that a weighted

projective space is Gorenstein if and only if it contains a Calabi-Yau hypersurface
defined by a Fermat polynomial.

3.2 Polar Duality

Definition 37 Suppose that  ⊂ MR is a full-dimensional lattice polytope
containing 0 as an interior point. Then the polar dual of  is

◦ := {n ∈ NR | 〈m,n〉 ≥ −1 for all m ∈ }.
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Fig. 15 The polar dual of the
polytope in Fig. 13

It is straightforward to check that (◦)◦ = , justifying the name “duality”, and
furthermore, that  is reflexive if and only if ◦ is reflexive.

Example 38 The polar dual of the polytope in Fig. 13 is shown in Fig. 15. Notice
that the vectors vF for  become the vertices of◦.

One can see from this example that the normal fan � of a polytope  can also
be obtained by taking cones over faces of ◦. This is indeed a general feature of
polar duality, and will be important when understanding the relationship between
P and P◦ encoded by Batyrev mirror symmetry.

3.3 Batyrev Mirror Symmetry

If P is the toric variety associated to a reflexive polytope , then any hyper-
surface defined by the vanishing of a generic section of the anti-canonical bundle

O
(

∑

ρ Dρ

)

will automatically be Calabi-Yau by the adjunction formula. Varying

the section yields a family of Calabi-Yau hypersurfaces, denoted by X ⊂ P◦ .

Definition 39 Let  be a reflexive polytope The Batyrev mirror of the family
of Calabi-Yau hypersurfaces X ⊂ P as above is the family X◦ ⊂ P◦ of
hypersurfaces defined by the vanishing of a generic section of the anticanonical
bundle of P◦ .

In what sense are these two families of Calabi-Yau hypersurfaces mirror to one
another? One fairly straightforward yet important fact is the monomial-divisor
correspondence, which is a bijection

{

monomials in
coordinates of P

}

↔
{

toric orbifold
divisors in �◦

}

.
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To see why such a correspondence should hold, note that a nonzero element
m ∈ M ∩ can yield two different objects. On the one hand, since P is defined as
the closure of the image of the map

f : T → P
k

f (t) = [m0(t) : · · · : mk(t)]

in which {m0, . . . ,mk} = M ∩\{0}, the elementm gives a coordinate function of
P. On the other hand, each such m generates a ray in a subdivision of the fan �◦
given by cones on faces of. Thus,m yields a toric divisor in a resolution ofX�◦ ,
which can be viewed as an orbifold divisor in X�◦ . The full monomial-divisor
correspondence comes from taking linear combinations of the elementsm ∈ M∩.

More generally, whenX and X◦ are families of Calabi-Yau threefolds, Batyrev’s
theorem can be phrased in modern terminology as follows:

Theorem 40 (Batyrev) There are isomorphisms

H
1,1
CR(X) ∼= H

2,1
CR(X

◦)

and

H
2,1
CR(X) ∼= H

1,1
CR(X

◦).

Note that one must use Chen-Ruan cohomology [8] to account for the presence
of orbifold divisors; for a review of Chen-Ruan cohomology, see the Appendix.

To put it another way, one can define a state space for the Calabi-Yau A-model
as H ∗

CR(X), and define a state space for the Calabi-Yau B-model as the same vector
space but with a different bi-grading. Theorem 40 is then a bi-degree preserving
isomorphism between the A-model of X and the B-model of X◦.

For smooth threefolds, toric divisors give elements of H
1,1
CR(X

◦), while mono-
mials in the coordinate functions give sections of the anticanonical bundle and
these generate H

2,1
CR(X). Hence, Theorem 40 generalizes the monomial-divisor

correspondence.

Example 41 Let us explore the Batyrev mirror symmetry construction for the
quintic threefold X ⊂ P4, which is defined by the vanishing of a section of the
anticanonical bundleOP4(5).

Generalizing Example 6, the fan for P4 is generated by the rows of the matrix

A :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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If  is the polytope associated to P4 and its anticanonical divisor, then taking cones
on the faces of ◦ should yield the above fan. From here, it is easy to see that ◦
must be the convex hull of the rows of A, and hence the integral points of ◦ are

(0, 0, 0, 0), (−1,−1,−1,−1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

Thus, P◦ is the closure of the image of the morphism

f ◦ : (C∗)4 → P
5

[z1 : z2 : z3 : z4] �→ [1 : z−11 z−12 z−13 z−14 : z1 : z2 : z3 : z4].

More explicitly, this shows that P◦ ⊂ P5 is defined by the equation

y50 = y1y2y3y4y5.

Let (Z5)
3 act on P4 diagonally, where we view

(Z5)
3 =

{

(ω0, ω1, ω2, ω3, ω4) ∈ (C∗)5 | ω5
i = 1 for all i,

4
∏

i=0
ωi = 1

}

/G

andG = {(ω, ω,ω,ω,ω)} is the subgroup of elements that act trivially on P4. Then
there is a map

[P4/(Z5)
3] → P

5

[x̂1 : · · · : x̂5] �→ [x̂1x̂2x̂3x̂4x̂5 : x̂51 : · · · : x̂55 ].

This map is an isomorphism onto P◦ ⊂ P4.
The family of anti-canonical hypersurfaces in P◦ are given by the restriction of

linear functions in the coordinates on P5. From the perspective of [P4/(Z5)
3], these

correspond to the (Z5)
3-invariant quintics

a1x̂
5
1 + · · · + a5x̂

5
5 + a0x̂1 · · · x̂5 = 0.

Via a change of variables that rescales the coordinates, any such quintic can be
expressed as

{x51 + · · · + x55 + ψx1x2x3x4x5 = 0} ⊂ [P4/(Z5)
3]

for a constant ψ . The family of these hypersurfaces (as ψ varies) is the most
common expression of the mirror family to the quintic threefold.
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4 Hori-Vafa Mirror Symmetry

A few definitions are required in order to set the stage for the Hori-Vafa construction.

4.1 Basics of Symplectic Geometry

References for the material of this section include [7] and [25].

Definition 42 A symplectic manifold is a smooth manifold with a closed, nonde-
generate 2-form, referred to as a symplectic form.

Let M be a symplectic manifold, and let G be a Lie group acting on M that
preserves the symplectic form ω. Any element v in the Lie algebra g defines a vector
field Xv on M giving the infinitesimal action of v—that is,

Xv

∣

∣

∣

∣

x

= d

dt

∣

∣

∣

∣

t=0
exp(tv) · x

for any point x ∈ M , where exp : g→ G is the exponential map.

Definition 43 The action of G on M is Hamiltonian if

(1) there exists amoment map

μ : M → g∗,

defined by the property that

ω(Xv, ·) = d

(

μ(·)(v)
)

for all v ∈ g (here, μ(·)(v) is a smooth function M → R, so its differential is a
1-form on M);

(2) the map

g→ C∞(M)

v �→ μ(·)(v)

is a Lie algebra homomorphism, where the Lie bracket on C∞(M) is defined to
be the Poisson bracket.

Suppose that (M,ω) is a symplectic manifold equipped with a Hamiltonian
action by a group G. Let s ∈ g∗ be a regular value of μ. Then μ−1(s)/G has the
structure of a symplectic orbifold. Toric varieties can be constructed as symplectic
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orbifolds in this way via a method known as symplectic reduction, which we
describe below.

Start with the symplectic manifold M = Cn, with the standard symplectic
structure:

ω = 1

2

n
∑

i=1
dxi ∧ dyi = −1

2
Im

(

n
∑

i=1
dzi ∧ dzi

)

.

Let G be the torus (S1)r . An action of G on M is specified by a charge matrix
Q = (Qij ), where

g · x := gQx

for a row vector g ∈ G and a column vector x ∈ M . The moment map for this
action is

μ(z1, . . . , zn) =
(

1

2

n
∑

i=1
Q1i |zi |2, . . . , 1

2

n
∑

i=1
Qri |zi |2

)

.

Any of the symplectic orbifolds obtained as μ−1(s)/G for a regular value s of
this moment map will be toric; namely, they will be of the form

X� = Cn \ Z(�)

(C∗)r

for some discriminant locus Z(�). The discriminant locus depends on s—it can be
thought of as the complement of the image ofμ−1(s) under the action of (C∗)r—but
only in a rather coarse way. In particular,X� is independent of s within “chambers”,
connected regions of regular values; only when s crosses a “wall” at a critical value
of μ will the toric variety change.

Example 44 Consider a toric variety of the form

X� = Cn+1 \ Z(�)

C∗
,

in which the action of C∗ on C
n+1 has charge matrix (1, 1, . . . , 1,−d). Such a

variety arises via symplectic reduction on the symplectic manifold M = C
n+1,

whereG = S1 and the moment map is given in coordinates z1, . . . , zn, p on M by

μ = 1

2

(

n
∑

i=1
|zi |2 − d|p|2

)

.
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The only place where all of the partial derivatives of μ vanish is z1 = · · · = z5 =
p = 0, so the only critical value is s = 0. Thus, there are two chambers:

• If s > 0, then the equation μ(z1, . . . , zn, p) = s implies

n
∑

i=1
|zi |2 = d|p|2 + 1

2
s,

which can only occur if
∑n

i=1 |zi |2 �= 0. The discriminant locus, then, is

Z(�) = {z1 = · · · = zn = 0},

and we obtain

μ−1(s)/S1 = Cn+1 \ {z = 0}
C∗

= OPn−1(−d).

• If s < 0, then the equation μ(z1, . . . , zn, p) = s forces that p �= 0, so

Z(�) = {p = 0},

and

μ−1(s)/S1 = Cn+1 \ {p = 0}
C∗

= [Cn/Zd ].

4.2 Gauged Linear Sigma Models

Using the notion of symplectic reduction, one can define gauged linear sigma
models, which are the objects that will be the Hori-Vafa mirrors of varieties.

Definition 45 A gauged linear sigma model, orGLSM, consists of the following
data:

(1) an r × n charge matrix, which can be viewed as the definition of an action of
(C∗)r on Cn;

(2) a moment map μ : Cn → Cr ;
(3) an R-charge, which is an action of C∗ on Cn (denotedC∗R to distinguish it from

the action in (1));
(4) a superpotential, which is a map W : Cn → C satisfying:

(a) W is invariant under the action of (C∗)r ;
(b) W is homogeneous of degree 2 under the action of C∗R;
(c) the critical locus of W is compact inside μ−1(s)/(C∗)r for any regular

value s of μ.
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The first two parts of the definition amount to the definition of a toric variety by
the technique of symplectic reduction. The superpotential is constructed so it gives
a well-defined map with compact critical locus out of this toric variety.

Example 46 The two toric varieties considered in Example 44 are part of the same
GLSM, in which the charge matrix and moment map are as specified above. The
superpotential is

W = p(zd1 + · · · + zdn),

which is invariant under the action of C∗ on Cn+1 and hence defines a map out of
either of the toric varieties constructed above. Its critical locus in μ−1(s)/C∗ when
s > 0 is the hypersurface {zd1 +· · ·+ zdn = 0} inside the zero-section ofOPn−1(−d),
while its critical locus when s < 0 is {0} ⊂ [Cn/Zd ]. In either case, this locus is
indeed compact.

The R-charge of this GLSM can have weights (0, . . . , 0, 2), but this choice
is not unique. For example, another possibility is that the R-charge could be
(1, . . . , 1,−3), and these different choices yield possibly different physical theories.
Definition 47 A Landau-Ginzburg model is a GLSM with a choice of chamber
but without a choice of R-charge. In other words, it consists of a toric variety X�

and a map

W : X� → C

whose critical locus is compact.

Example 48 Associated to the GLSM considered in Example 46, there are two
Landau-Ginzburg models, one for each of the chambers. When s > 0, one has
the Landau-Ginzburg model

W : OPn−1(−d)→ C

W = p

5
∑

i=1
zdi ,

while for s < 0, the Landau-Ginzburg model is

W : [Cn/Zd ] → C

W =
n
∑

i=1
zdi ,

since the p-coordinate is rescaled to 1 in this presentation.
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The various Landau-Ginzburg models associated to a single GLSM are some-
times called phases.

Although a Landau-Ginzburg model need not have an R-charge, one can often
be chosen, as the above examples illustrate. A general principle of mirror symmetry
is that Calabi-Yau models should have quasihomogeneous mirrors; in other words,
the Landau-Ginzburg mirror of a Calabi-Yau hypersurface or complete intersection
should have a chosen R-charge.

4.3 The Jacobian Ring

Hori-Vafa mirror symmetry is an isomorphism of the Calabi-Yau A-model state
space associated to a variety (which, recall, is simply its cohomology) with the
Landau-Ginzburg B-model state space of a mirror Landau-Ginzburg model. Specif-
ically, the B-model state space associated to a Landau-Ginzburg model (Y,W), in
which Y is a toric variety of dimension n, is the Jacobian ring (sometimes called
theMilnor ring):

Jac(W) := C[x1, . . . , xn]
(∂x1W, . . . , ∂xnW)

.

The situation is especially simple when W is a Morse function. Indeed, the
Jacobian ring can be “localized” in the sense that

Jac(W) ∼=
∏

x0

Jac(W)|neighborhood of x0,

where x0 ranges over critical points of W . If W is Morse, then it takes the form
W = ∑i y

2
i in appropriate coordinates in a neighborhood of each critical point. It

follows that, in the Morse case, the restriction of Jac(W) to a neighborhood of each
critical point is one-dimensional, so the dimension of Jac(W) equals the number of
critical points. Hori-Vafa mirror symmetry, in this situation, is the claim that if X is
a variety with Hori-Vafa mirror (Y,W), then the number of critical points of W is
equal to the dimension of H ∗

CR(X).

Example 49 TheAn-singularity is defined as the polynomialW = xn+1, viewed as
a function C→ C. This has a single critical point at x = 0, and its Jacobian ring is

Jac(W) = SpanC{1, x, x2, . . . , xn−1}.

Thus, the dimension of the Jacobian ring equals the number of critical points if and
only if n = 1, which is indeed the only case in which the An-singularity is Morse.
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Example 50 Let W : (C∗)n → C be defined by

W = x1 + · · · xn + et

x1 · · · xn ,

where t is an unspecified parameter. Then

∂xiW = 1− etx−11 x−12 · · · x−1n x−1i ,

which vanishes only when

xi = etx−11 · · · x−1n . (9)

Since the right-hand side is independent of i, there can only be a critical point when
x1 = · · · = xn = λ for some λ ∈ C. Equation (9) implies that λn+1 = et , so the
n+ 1 solutions to this equation will yield n+ 1 critical points. It is straightforward
to check that all of these critical points are nondegenerate, so W is Morse and the
dimension of Jac(W) equals n+ 1.

4.4 Hori-Vafa Mirrors of Compact Toric Varieties

We are finally equipped to describe the cohomological statement of Hori-Vafa
mirror symmetry. The material of this section, and of the remainder of the section,
is based on [20].

Definition 51 Let

X� = C
n \ Z(�)

(C∗)r

be a compact toric variety with charge matrix Q = (Qij ). Then the Hori-Vafa
mirror is the Landau-Ginzburg model on the toric variety

{x ∈ C
n | xQ1j

1 · · · xQnj
n = etj for all 1 ≤ j ≤ r}

with superpotential given by the restriction of

W = x1 + · · · + xn.

One should check that the above subset of Cn is indeed toric, and that the critical
locus of W is compact. Having done this, the above constitutes a Landau-Ginzburg
model, which should be mirror to X� in the sense that

H ∗
CR(X�) ∼= Jac(W)

wheneverX� is semi-Fano. Let us verify this in some easy examples.
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Example 52 The chargematrix of Pn is (1, 1, . . . , 1), so the underlying toric variety
of the Hori-Vafa mirror is the subset of Cn+1 defined by the equation

x0 = et

x1 · · · xn ,

which is isomorphic to (C∗)n. The superpotential is the polynomial considered in
Example 50. We saw in that example that Jac(W) ∼= Cn+1, so it does matchH ∗(Pn)

as a vector space.

Example 53 A similar computation yields the Hori-Vafa mirror of weighted projec-
tive space. Assume for simplicity that c0 = 1, so P(c0, . . . , cn) has charge matrix
(1, c1, . . . , cn). Then the superpotential of the Hori-Vafa mirror is

W = x1 + · · · + xn + et

x
c1
1 · · · xcn

n

.

To confirm the statement of mirror symmetry, we compute

∂xiW = 1− cie
tx
−c1
1 · · · x−cn

n x−1i ,

so the critical points occur when

x1

c1
= · · · = xn

cn
= etx

−c1
1 · · · x−cn

n .

If this common value is denoted λ, then we have

λ

n
∏

i=1
(ciλ)

ci = et ,

yielding an equation λ1+c1+···+cn = Ket for a constant K . It follows that there are
1+ c1 + · · · + cn critical points. All of these are Morse, so

Jac(W) ∼= C
1+c1+···+cn,

which is indeed isomorphic to H ∗
CR(P(c0, c1, . . . , cn)).

The failure of Hori-Vafa mirror symmetry in the non-semi-Fano case can be
observed explicitly for Hirzebruch surfaces Fn, which are semi-Fano if and only
if n = 1.

Example 54 Let Fn be the Hirzebruch surface, given by

Fn = C4 \ Z(�)

(C∗)2
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with charge matrix

Q =
(

1 1 n 0
0 0 1 1

)

.

The constraints defining the toric variety of the mirror Landau-Ginzburg model,
then, are

x1x2x
n
3 = et1,

x3x4 = et2 .

Denoting qi = eti for i = 1, 2, the superpotential is

W = x2 + x3 + q1

x2x
n
3
+ q2

x3
.

An elementary computation shows that critical points occur only when

n2q1x
n
3 = (xn+1

3 − xn−1
3 q2)

2.

This is a polynomial of degree 2n + 2, so for generic values of the parameters q1
and q2, it has 2n+ 2 solutions.

On the other hand,H ∗(Fn) is 4-dimensional. Thus, the number of critical points
matches the rank of the cohomology only when n = 1, which is the semi-Fano case.

Remark 55 In recent years, some attempts have been made to adapt Hori-Vafa
mirror symmetry to the non-semi-Fano case. This involves adding higher-order
terms to W to ensure that the number of its critical points coincides with the rank
of the cohomology of the non-semi-Fano variety. These correction terms have an
interpretation in terms of counting holomorphic discs in X� .

Beyond the state space level, the statements of mirror symmetry at the level
of rings and quantum D-modules have also been extended to non-semi-Fano toric
varieties, by passing to certain q-adic completions. See the work of Iritani [22] and
Gonzalez-Woodward [19] for details.

4.5 Hori-Vafa Mirrors of Noncompact Toric Varieties

A simple example suffices to show that Hori-Vafa mirror symmetry, in the form
stated above, fails when X� is noncompact:

Example 56 Let X� = C. Then the Landau-Ginzburg mirror is W = x : C→ C.
This has no critical points, so the duality between H ∗(X�) and the Jacobian ring
fails.
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More heuristically, the reason why the above procedure requires compactness
involves the aspects of mirror symmetry beyond cohomology. Roughly speaking,
genus-zero mirror symmetry is a correspondence between the quantum cohomology
of X� , encapsulated by the J -function, and the oscillatory integrals

∫



e−W/zd log(x1) · · · d log(xn)

against cycles . When W satisfies certain growth properties, the cycles  are in
bijection with critical points of W , which, in turn, are supposed to correspond via
mirror symmetry to the cohomology of X� . In particular, the J -function and the
oscillatory integrals depend on the same number of parameters. If, however, X�

is noncompact, then the J -function is not well-defined, and the requisite growth
properties of W fail to hold. Thus, the statement of mirror symmetry breaks down
on both sides.

On the other hand, noncompact toric varieties do have equivariant J -functions,
so one might expect that there is an equivariant version of the Hori-Vafa mirror for
which the mirror symmetry statement is still valid. This is indeed the case.

Definition 57 Let X� = (Cn \ Z(�))/(C∗)r be a toric variety with charge matrix
Q. Then its equivariant Hori-Vafa mirror is the Landau-Ginzburg model with
superpotential

W = x1 + · · · + xn −
n
∑

i=1
λi log(xi)

on the subset of Cn+1 defined by the constraints
n
∏

i=1
x
Qib

i = qb

for nonzero parameters qb. Here, λi is a constant, viewed as the equivariant
parameter for the ith C∗ action.

Example 58 Let X� = C. Then the superpotential of the equivariant Hori-Vafa
mirror is

W = x − λ log(x),

so

∂xW = 1− λ

x
.

Unlike the nonequivariant case, this now has a single critical point, so we recover
the correspondence between the dimension of H ∗(X�) and the number of critical
points.
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Example 59 Let X� be the total space of the bundle OPn(−d), which has charge
matrix (1, 1, . . . , 1,−d). Then

W = x0 + x1 + · · · + xn+1 −
n+1
∑

i=0
λi log(xi)

and the constraint defining the toric variety is

x0 · · · xnxd
n+1 = q.

Thus, we obtain

W = x1 + · · · + xn+1 +
xd
n+1

x1 · · · xn −
n+1
∑

i=0
λi log(xi).

It is straightforward to check that the number of critical points of this superpotential
indeed matches the dimension of H ∗(X�).

Example 60 It is not always necessary to modify W by all of the terms λi log(xi)
in order to achieve mirror symmetry. For example, consider the toric variety
OP1(−1)⊕ OP1(−1), which has charge matrix Q = (1, 1,−1,−1). Its nonequiv-
ariant Hori-Vafa mirror is

W = x2 + x3 + x4 + q
x3x4

x2

defined over (C∗)3, while the equivariant mirror would subtract the terms
∑4

i=1 λi log(xi) from the above.
Even the partial modification

˜W = x2 + x3 + x4 + q
x3x4

x2
− λ3 log(x3)− λ4 log(x4)

of W upholds mirror symmetry, though. This makes sense from the perspective
of the J -function; only the two C∗ actions in the noncompact fiber directions of
OP1(−1)⊕OP1(−1) are necessary in order to make the equivariant Gromov-Witten
theory well-defined.

Despite the failure of nonequivariantHori-Vafa mirror symmetry for noncompact
toric varieties, the noncompact mirrors are still worth remembering, as they play a
role in the hypersurface version of mirror symmetry considered below.
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4.6 The Orbifold Jacobian Ring

The Hori-Vafa construction can be adapted to give the mirror of a smooth semi-
Fano hypersurface in a toric variety. As we will see, however, the resulting Landau-
Ginzburg model will have a nontrivial symmetry group, and the definition of its
B-model state space must be modified accordingly.

Consider a Landau-Ginzburg model of the form (CN,W), where W : CN → C

is a superpotential. Let G ⊂ (C∗)N be a (finite) group of diagonal matrices
preserving W ; this is referred to as a symmetry group of the Landau-Ginzburg
model.

We will define an “orbifolded” version of the Jacobian ring Jac(W) that takes
the data of G into account. This is modelled on the definition of the Chen-Ruan
cohomology of a global quotient, which is described in the Appendix. As in the
case of Chen-Ruan cohomology, a certain cohomology group is attached to each
fixed point of the G-action, and the state space is formed by taking the G-invariant
part of the direct sum of the contributions from all of the fixed points.

Definition 61 Given a polynomial W : CN → C and a group of symmetries
G of the associated Landau-Ginzburg model, the B-model Landau-Ginzburg
cohomology of (CN,W,G) is the vector space

Jac(W,G) :=
⎛

⎝

⊕

g∈G
Jac(Wg)

⎞

⎠

G

,

where

Wg = W |Fix(g)
and the G-invariant part is taken with respect to the action of G on

⊕

g∈G Jac(Wg)

that sends

Jac(Wg)→ Jac(Wh−1gh)

φ �→ det(h) · h∗φ.

for each h ∈ G.

This state space will be explained further in Sect. 5.5 of the next section.

4.7 Hori-Vafa Mirrors of Hypersurfaces in Toric Varieties

Let us begin by studying the case of Fermat hypersurfaces in projective space.
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Example 62 Let Xd ⊂ P
N−1 be a smooth degree-d hypersurface defined by the

vanishing of the polynomialA = xd
1 +· · ·+xd

N . Explicitly, the semi-Fano condition
corresponds to the requirement that d ≤ N .

To form the Hori-Vafa mirror, one first constructs a GLSM on a noncompact toric
variety for which Xd is the critical locus of the superpotential in a particular phase.
Namely, let C∗ act on CN+1 with charge matrix

(1, . . . , 1,−d),

so that the first N factors give precisely the charge matrix for PN−1. Let the
superpotential be

W = p · A(x1, . . . , xN) : CN+1 → C

in coordinates (x1, . . . , xN , p) on CN+1, and let the moment map be

μ = 1

2

(

N
∑

i=1
|zi |2 − d|p|2

)

.

(This generalizes the GLSM appearing in Examples 44 and 46.) As we have seen
previously, in the s > 0 phase of this GLSM, the critical locus of W is precisely the
hypersurfaceXd .

Next, construct the (non-equivariant) Hori-Vafa mirror of this noncompact toric
variety containing Xd . This is sometimes called the pre-Hori-Vafa mirror of Xd .
In this case, it is the Landau-Ginzburg model with superpotential

˜W = x1 + · · · + xN + xN+1

on the subset of CN+1 satisfying the constraint

x1 · · · xNx−d
N+1 = et .

In other words, setting

xi = ud
i for 1 ≤ i ≤ N

and

xN+1 = uN+1,

the pre-Hori-Vafa mirror becomes

˜W = ud
1 + · · · + ud

N + e−t/du1 · · · uN

on the toric variety (C∗)N .
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This Landau-Ginzburg model has a nontrivial symmetry group.4 Namely, an
automorphism of (C∗)N of the form

ui �→ ω
pi

d ui ,

for which ωd is a dth root of unity and

ω
p1+···+pN

d = 1,

will preserve the superpotential ˜W . The group of such symmetries is denoted
SL(W0), since if W0 = ud

1 + · · · + ud
N , the automorphisms in question are precisely

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

λ1
. . .

λN

⎞

⎟

⎠

∣

∣

∣

∣

W0(λ1x1, . . . , λNxN) = W0(x1, . . . , xN)

⎫

⎪

⎬

⎪

⎭

∩ SLN(C).

Finally, to form the Hori-Vafa mirror of Xd , one “compactifies” the pre-Hori-
Vafa mirror by adding the point u1 = · · · = uN = 0 to the domain CN of the
Landau-Ginzburgmodel, and then takes the quotient by the above symmetry group.
This yields

˜W : [CN/SL(W0)] → C

˜W = ud
1 + · · · + ud

N + e−t/du1 · · · uN

as the mirror. The claim, then, is:

H ∗
CR(Xd) ∼= Jac(˜W,SL(W0)).

That is, the Calabi-Yau A-model cohomology of Xd is isomorphic to the Landau-
Ginzburg B-model cohomology of (CN, ˜W,Aut(˜W)).

4An alternate explanation for the appearance of this automorphism group can be given in terms of
the data of the Landau-Ginzburg B-model beyond cohomology. Specifically, as we have mentioned
previously, the full Landau-Ginzburg B-model in genus zero can be viewed as encoding certain
oscillatory integrals

∫



e−W/zω,

where ω is a “primitive form”. In the toric case, we have mentioned that ω = d log(x1) ∧ . . . ∧
d log(xn). On the other hand, the primitive form for a hypersurface is ω = dx1 ∧ . . . ∧ dxn. From
this perspective, the appearance of the automorphism group SL(W0) is explained by the fact that
only automorphisms with determinant 1 will preserve this form.
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The same basic procedure computes the Hori-Vafa mirror of a hypersurface in
a more general weighted projective space. It is necessary, however, to restrict to a
certain class of polynomials.

Definition 63 A quasihomogeneous polynomial is invertible if the number of
monomials equals the number of variables. That is, after rescaling the variables
to absorb any coefficients, the polynomial can be written in the form

A =
N
∑

i=1

N
∏

j=1
x
mij

j .

This condition implies that the exponent matrix EA = (mij ) of A is square.
Assuming that {A = 0} also defines a smooth orbifold in weighted projective space,
it follows moreover that EA is invertible, which explains the terminology.

Example 64 Consider a smooth degree-d hypersurface X in weighted projective
space P(c1, . . . , cN ) defined by the vanishing of an invertible polynomial A with
exponent matrix (mij ). In this case, the semi-Fano condition is d ≤∑N

i=1 ci .
Again, one begins by constructing a GLSM in which X is the critical locus

of the superpotential in some phase. Namely, the GLSM will have charge matrix
(c1, . . . , cN ,−d) and the superpotential will be W = p · A(x1, . . . , xN). It follows
that the pre-Hori-Vafa mirror of X is the nonequivariant Hori-Vafa mirror of the
toric varietyOP(c1,...,cN )(−d) of this GLSM, which is

˜W = x1 + · · · xN + xN+1

defined over the subset of CN+1 with constraint

x
c1
1 · · · xcN

N x−d
N+1 = et . (10)

The constraint can be “solved”—that is, expressed in terms of onlyN variables—by
a change of coordinates:

xi =
N
∏

j=1
u
mji

j , i = 1, . . . , N, (11)

xN+1 = uN+1.

Then (10) becomes

N
∏

j=1
u

∑

i mji ci
j u−d

N+1 = et .
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The fact that A is quasihomogeneous means that

N
∑

j=1
mij cj = d

for each i, so the constraint is in fact

uN+1 = e−t/du1 · · · uN.

It follows that the pre-Hori-Vafa mirror has superpotential

˜W =
N
∑

i=1

N
∏

j=1
u
mji

j + e−t/du1 · · · uN : (C∗)N → C.

To form the mirror itself, we add u1 = · · · = uN = 0 and take the quotient by
SL(W0), where W0 =∑N

i=1
∏N

j=1 u
mji

j . Thus, the mirror is

˜W : [CN/SL(W0)] → C

with ˜W as above.

It is interesting to note that the term W0 in the superpotential of the mirror is the
transpose of the defining polynomial A of the hypersurface—that is, the exponent
matrix of W0 is the transpose of the exponent matrix for G. The idea that the
transpose polynomial should appear in mirror symmetry was actually suggested
before Hori and Vafa’s work, by physicists Berglund and Hübsch, as we will discuss
in the next section. At the time when Hori and Vafa proposed their mirror symmetry
construction, however, this connection to previous work was not realized.

More generally, the hypersurfaces in toric varieties for which the Hori-Vafa
mirror is defined are as follows:

Definition 65 Let X ⊂ X� := (CN \ Z(�))/(C∗)r be a hypersurface defined by
the vanishing of a polynomialA(x1, . . . , xM), whereM ≤ N andA is homogeneous
of degrees d1, . . . , dr with respect to the r actions of C∗. LetQ be the charge matrix
of X� . We say that X is invertible if

(1) N −M + 1 = r;
(2) the r × r matrix given by taking the last N −M rows of Q and appending the

row (−d1, . . . ,−dr) is invertible;
(3) the exponent matrix of A is square.
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When X ⊂ X� is a compact invertible semi-Fano hypersurface, its Hori-Vafa
mirror can be constructed by exactly the same procedure as in Example 64. To
summarize, one first forms the Hori-Vafa mirror of the toric variety

(CN \ Z(�))× C

(C∗)r ,

in which the charge matrix is given by appending the row (−d1, . . . ,−dr) to the
charge matrix Q of X� . This has superpotential

˜W = x1 + · · · + xN+1

and is defined on the subset of CN+1 satisfying the constraints

N
∏

i=1
x
Qij

i x
−dj
N+1 = etj

for j = 1, . . . , r . Then, one uses invertibility to express this subset of CN+1 as
(C∗)M in variables u1, . . . , uM . Namely, if (mij )i,j=1,...,M is the exponent matrix
of A and (Dij )i,j=1,...,r is the invertible matrix described by condition (2) of
Definition 65, then

xi =
M
∏

j=1
u
mji

j

for i = 1, . . . ,M and

xM+b = e
∑r

j=1 tjD
jb ∏

i,j,k

u
−mkiQijD

jb

k

for b = 1, . . . , r , where (Dij ) is the inverse of (Dij ).
The Hori-Vafa mirror is then

˜W : [CM/Aut(˜W)] → C.

Note that the symmetry group Aut(˜W) is in general smaller when N −M is larger,
since there are more constraints on the variables u1, . . . , uM . This situation occurs
when the original polynomial W = p · A has a larger symmetry group. We will
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explore the duality between the symmetries of W and those of ˜W much further in
the next section. For now, let us simply look at an example.5

Example 66 Consider the ambient toric variety

X� = (C3 \ {0})× (C \ {0})
(C∗)2

with charge matrix

Q =

⎛

⎜

⎜

⎝

1 −2
1 −1
1 0
0 3

⎞

⎟

⎟

⎠

.

It is straightforward to check thatX� = [P2/Z3]. LetX be the hypersurface defined
by the polynomial

A = x31 + x32 + x33 .

To form the Hori-Vafa mirror, first consider the toric variety

(C3 \ {0})× (C \ {0})× C

(C∗)2

with charge matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −2
1 −1
1 0
0 3
−3 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Its Hori-Vafa mirror (the pre-Hori-Vafa mirror of X) is

˜W = x1 + x2 + x3 + s + p

on the subset of C5 defined by the constraints

x1x2x3p
−3 = et1, x−21 x−12 s3 = et2 .

5We are grateful toMark Shoemaker for pointing out this example, and for correcting our definition
of invertibility in light of it.
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Setting xi = u3i for i = 1, . . . , 3, we find that

˜W = u31 + u32 + u33 + e−t1/3u1u2u3 + et2/3u21u2.

The symmetry group of ˜W is not all of SL(AT ), but instead is isomorphic to Z3.
Thus, the Hori-Vafa mirror of X is

˜W : [C3/Z3] → C

for ˜W as above.

4.8 Hori-Vafa Mirrors of Complete Intersections in Toric
Varieties

A similar procedure yields the Hori-Vafa mirror of a complete intersection in a toric
variety, but the notion of invertibility must once again be adapted.

Definition 67 Let X ⊂ X� := (CN \ Z(�))/(C∗)r be a complete intersection
defined by the vanishing of polynomials

A1(x1, . . . , xM), . . . , Ak(x1, . . . , xM),

where M ≤ N and Ab is homogeneous of degree dba with respect to the ath C
∗

action. Let Q be the charge matrix of X� . We say that X is invertible if

(1) N −M + k = r;
(2) the r × r matrix given by taking the last N −M rows of Q and appending the

matrix (−dba) is invertible;
(3) there exists a collection of N monomials

N
∏

j=1
x
mij

j , i = 1, . . . , N

such that

Ab =
N
∑

i=1
nib

N
∏

j=1
x
mij

j

with each nib ∈ {0, 1} and∑k
b=1 nib = 1. (In other words, there are no repeated

monomials among the Ab, and the total number of monomials appearing is
equal to the number of variables.)



48 E. Clader and Y. Ruan

Example 68 A complete intersection in PN1−1 × · · · × P
Nk−1 defined by invertible

polynomials {Ai = 0} ⊂ P
Ni−1 is invertible.

Example 69 A complete intersection in

P
N−1 × P

M−1

defined by polynomials

A1 =
N
∑

i=1
s
di
i

and

A2 =
M
∑

j=1
sj t

d2
j

with N ≥ M is invertible.

As in the case of hypersurfaces, we will proceed by first associating to a compact
invertible semi-Fano complete intersection X ⊂ X� a GLSM for which X is the
critical locus of the superpotential in a particular phase. From here, a similar set of
constraints determined by the defining polynomials of X will yield the pre-Hori-
Vafa mirror as a Landau-Ginzburg model. A partial compactification and quotient
by symmetries will convert this into the final Hori-Vafa mirror of X.

For simplicity, let us describe the procedure only in the case where N = M , so
that k = r . Then X is given by

{A1 = · · · = Ak = 0} ⊂ CN \ Z(�)

(C∗)k

in which the ambient toric variety X� has charge matrix Q = (Qia). Suppose that
Ab is homogeneous of degree dba with respect to the ath C∗ action.

The associated GLSM is

W : (C
N \ {0})× Ck

(C∗)k
→ C,

where (C∗)k acts with charge matrix
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Q11 · · · Q1N
...

...

Qk1 · · · QkN

−d11 · · · −d1k
...

...

−dk1 · · · −dkk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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and

W = p1A1(x1, . . . , xN)+ · · · + pkAk(x1, . . . , xN)

in coordinates x1, . . . , xN , p1, . . . , pk on CN ×Ck .
The pre-Hori-Vafa mirror is the Landau-Ginzburg model whose domain is the

subset of CN+1 defined by the constraints

N
∏

i=1
x
Qia

i

k
∏

b=1
x
−dba
N = eta

for a = 1, . . . , ak and whose superpotential is the restriction of

˜W = x1 + · · · + xN + xN+1 + · · · + xN+k

to this subset. If mij and nib are defined as in Definition 67, then one can check that
the change of variables

xi =
N
∏

j=1
u
mji

j , i = 1, . . . , N,

xN+b = e−
∑k

i=1 dbctc

N
∏

j=1
u
njb

j , b = 1, . . . , k

solves the constraint. Here, dbc is the inverse of the matrix dbc and the expression
−dbctc uses the Einstein summation convention, and hence should be understood as
a sum over c. After this coordinate change, the superpotential of the pre-Hori-Vafa
mirror is

˜W =
N
∑

i=1

N
∏

j=1
u
mji

j +
k
∑

b=1
e−dbctc

N
∏

j=1
u
njb

j .

After adding u1 = · · · = uN = 0 and taking the quotient of the domain by
symmetries preserving ˜W , one obtains the Hori-Vafa mirror.

4.9 An Alternative Description

For Calabi-Yau hypersurfaces in toric varieties, we now have two notions of the
mirror: the Batyrev mirror and the Hori-Vafa mirror. Although the two constructions
appear unrelated, a different description of the Hori-Vafa mirror can be used to show
that it coincides in the Calabi-Yau case with Batyrev’s definition.
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Recall that for a degree-d semi-Fano hypersurfaceXd = {Ad = 0} ⊂ P
N−1, the

first step in defining the Hori-Vafa mirror is to associate to Xd a GLSM with charge
matrix (1, . . . , 1,−d) and superpotentialW = p ·Ad . From here, the pre-Hori-Vafa
mirror is defined as the Landau-Ginzburg model on the subset of CN+1 satisfying
the constraint

x1 · · · xNp−d = et

with superpotential ˜W = x1 + · · · + xN + p.
Previously, we expressed this Landau-Ginzburg model in terms of coordinates

u1, . . . , uN . Suppose, however, that we instead used the change of variables

p = p̃

xi = ũi p̃ for 1 ≤ i ≤ d,

xi = ũi for d + 1 ≤ i ≤ N.

Note that the semi-Fano condition d ≤ N is necessary for this to be well-defined.
In these coordinates, the pre-Hori-Vafa mirror is

˜W = p̃(ũ1 + · · · + ũd+1)+
N
∑

i=d+1
ũi

on the subset of CN+1 satisfying the constraint

N
∏

i=1
ũi = et .

This GLSM, however, is “equivalent” to the GLSM with superpotential

˜W = −
N
∑

i=d+1
ũi

subject to the constraints

d
∑

i=1
ui = −1,

N
∏

i=1
ui = et . (12)

Intuitively, it makes sense that these two theories would be equivalent, since the first
of these new constraints kills the first term of the old superpotential. More explicitly,
“equivalent” means that the two theories yield the same oscillatory integrals. In
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particular, since mirror symmetry is defined as a correspondence between the J -
function and the generating function of such integrals, a theory equivalent to the
mirror of Xd will still be mirror.

In the Calabi-Yau case, this new presentation of the mirror agrees with the
Batyrev construction.

Example 70 The Calabi-Yau condition on Xd ⊂ PN−1 is d = N . In this case, the
new version of the pre-Hori-Vafa mirror described above has no superpotential; it is
simply the open manifold defined by (12). The second equation of (12) implies that
the coordinates ũi can be expressed in terms of new variables zi as

ũi = et/N
zNi

z1 · · · zN ,

after which the second equation of (12) becomes

zN1 + · · · + zNN + et/Nz1 · · · zN = 0.

After the compactification adding z1 = · · · = zN = 0 and the quotient by
symmetries of ˜W , this is precisely the Batyrev mirror, as we computed in the case
d = N = 5 in Example 41.

5 Berglund-Hübsch-Krawitz Mirror Symmetry

As we have seen, Hori-Vafa mirror symmetry for hypersurfaces reveals an inter-
esting duality between certain polynomials and their transposes: a semi-Fano
hypersurface X = {W = 0} in weighted projective space is Hori-Vafa mirror to
the Landau-Ginzburg orbifold

˜W = WT + etx1 · · · xN (13)

modulo the group SL(WT ).6 Given that both W and WT give rise to Landau-
Ginzburg models, this suggests an LG-to-LG version of mirror symmetry. Our
discussion of the resulting statement, known as Berglund-Hübsch-Krawitz Mirror
Symmetry, is based on [6] and [23].

6We have changed notation from the previous section, denoting the defining polynomial of
the hypersurface by W rather than A, to be consistent with the literature on LG-to-LG mirror
symmetry.
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5.1 Phases of the GLSM

In order to cast Hori-Vafa’s Fano-to-LGmirror symmetry in this new framework, we
will need to replace the geometric Fano model of the hypersurface X by a Landau-
Ginzburg model. We have already seen how to do this; the trick involves passing
from X to an associated gauged linear sigma model.

Suppose X ⊂ P(c1, . . . , cN ) is a hypersurface in weighted projective space
defined by the vanishing of an invertible quasihomogeneous polynomial W of
degree d . Then, as observed in the construction of the Hori-Vafa mirror, there is
a GLSM for which X is the critical locus in one phase. Namely, let

W := p ·W : C
N ×C

C∗
→ C,

where the charge matrix for the action of C∗ is (c1, . . . , cN ,−d). The moment map
for this GLSM is

μ = 1

2

(

N
∑

i=1
ci |xi|2 − d|p|2

)

.

The only critical value is s = 0, so the GLSM has two phases. The important fact for
Hori-Vafa mirror symmetry is that X is the critical locus of W in the phase s > 0,
which is the Landau-Ginzburg model

W : OP(c1,...,cN )(−d)→ C,

as computed in Example 48 of the previous section. This is sometimes referred to
as the “geometric phase”, since it arises out of a hypersurface. The s < 0 phase,
sometimes called the “Landau-Ginzburg phase”, is

W : [CN/Zd ] → C,

where the generator of Zd acts on CN via the matrix

J :=

⎛

⎜

⎜

⎝

e2πi
c1
d

. . .

e2πi
cN
d

⎞

⎟

⎟

⎠

∈ U(1). (14)

A Landau-Ginzburg model admits two types of cohomology. The one that we
have seen thus far, the orbifold Jacobian ring of the superpotential, is the Landau-
Ginzburg B-model cohomology. On the other hand, there is a Landau-Ginzburg
A-model cohomology [15], which we will define later in this section.
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When applied to the geometric phase of the above GLSM, the Landau-Ginzburg
A-model cohomology is simply the cohomology of the hypersurface X. Thus, the
Hori-Vafa mirror symmetry statement

H ∗
CR(X) ∼= Jac(˜W,SL(WT ))

can be phrased as an exchange of the Landau-GinzburgA-model cohomology of the
s > 0 phase of the GLSM with the Landau-Ginzburg B-model cohomology of the
model (CN, ˜W,SL(WT )) defined in the previous section.

To be more precise, the Hori-Vafa mirror ˜W ofX depended on a parameter t , and
in fact, X is only mirror to this Landau-Ginzburg model when t is near∞—this is
the large complex structure limit of the family of Landau-Ginzburg models. On
the other hand, if t is near −∞, then the B-model Landau-Ginzburg cohomology
of (CN, ˜W,SL(WT )) will instead match the A-model of the s < 0 phase of the
GLSM.7

In the special case where X is Calabi-Yau, the Landau-Ginzburg B-models of ˜W
for different values of the parameter t can be related to one another. We thus obtain
a diagram:

(15)

where each Landau-Ginzburg model should be understood as orbifolded with
respect to its symmetry group. The dotted horizontal arrow is a special case of a
conjecture known as the Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence,
which relates the various phases of a GLSM to one another [26]. The conjecture
has been proven in many instances; see [1, 9–13], among many other references, for
more information.

Given the discussion of the previous paragraphs and the fact that ˜W → WT as
t →∞, the diagram (15) can be re-expressed as:

(16)

7Roughly, t is the real part of the parameter s in the GLSM.
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The arrow from the bottom-left to the top-right, which is implied by the LG/CY
correspondence, is Berglund-Hübsch-Krawitz mirror symmetry.

More generally, Berglund-Hübsch-Krawitz mirror symmetry can be extended
by replacing the group Zd with any group G of diagonal symmetries of CN that
preserves W and contains the element J defined in (14). The construction yields a
“mirror group” GT associated to any such G. The generalization of the diagonal
arrow in (16), then, is

LG A-model of (W,G) ∼= LG B-model of (WT ,GT ),

the latter of which is Hori-Vafa mirror to the orbifold [X/(G/〈J 〉)].
All three forms of mirror symmetry discussed in these notes can now be

schematically related. Let XW := {W = 0} be a Calabi-Yau hypersurface. For a
groupG of symmetries as above, let ˜G denoteG/〈J 〉. Then we have a diagram:

in which the horizontal arrows are again the LG/CY correspondence.
It should be noted that, although we have used the Calabi-Yau assumption to

motivate the appearance of Berglund-Hübsch-Krawitz mirror symmetry, the state
space isomorphism between (W,G) and (WT ,GT ) holds even when the Calabi-
Yau assumption fails. The remainder of this section will be devoted to making
the specific assumptions and results of Berglund-Hübsch-Krawitz mirror symmetry
precise.

5.2 Classification of Nondegenerate Singularities

The polynomial W will be required to be invertible, quasihomogeneous, and to
satisfy a certain nondegeneracy condition.

Definition 71 A quasihomogeneous polynomialW is nondegenerate if

(1) zero is the only critical point;
(2) there are no monomials of the form xixj with i ≤ j .

A few remarks about this definition are in order. First, the condition that zero is
the only critical point is equivalent to the existence of only isolated critical points,
since quasihomogeneity implies that W and its derivatives vanish at x if and only if
the same is true for any scalar multiple λx.
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Second, suppose that we define:

Definition 72 The exponent matrix of an invertible quasihomogeneous
polynomial

W =
N
∑

i=1
ai

N
∏

j=1
x
mij

j

is the matrix EW := (mij ).

Definition 73 The charges of a quasihomogeneous polynomial with weights
c1, . . . , cN and degree d are the rational numbers

qj = cj

d
.

Then the definition of nondegeneracy has the following elementary conse-
quences:

1. The charges qj are unique.
2. qj ≤ 1/2 for all j .
3. The exponent matrix of W is nonsingular.

Polynomials satisfying the above conditions admit a very nice classification.

Theorem 74 (Kreuzer-Skarke [24]) Suppose thatW is a nondegenerate quasiho-
mogeneous invertible polynomial. Then W can be written as a sum of polynomials

W =
k
∑

s=1
Ws

in disjoint sets of variables, where each Ws is of one of the following types:

(1) Fermat: xa for some a ≥ 2;
(2) Loop: xa1

1 x2 + x
a2
2 x3 + · · · + x

aN
N x1;

(3) Chain: xa1
1 x2 + x

a2
2 x3 + · · · xaN

N .

This is extremely useful for computations in the Landau-Ginzburg model,
because the model decomposes as a “product”, in a precise sense, whenever the
superpotential breaks up as a disjoint sum. As a result, the study of the LG model
reduces to the study of the model associated to Fermat, loop, and chain polynomials
separately. Moreover, the operation of transpose preserves the types, so mirror
symmetry can also be studied in the three cases individually.

Let us mention a few specific examples of nondegenerate invertible quasihomo-
geneous polynomials, following [3]. An important invariant of such a polynomial is
its central charge

cW :=
N
∑

i=1
(1− 2qi). (17)
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When
∑

qi = 1—or, equivalently, cW = N − 2—the polynomial is said to
be Calabi-Yau, since it defines a Calabi-Yau hypersurface in weighted projective
space.

The only polynomials with cW < 1 are the ADE-singularities

• An = 1
n+1x

n+1;
• Dn = xn−1 + xy2, n ≥ 4;
• E6 = x3 + y3;
• E7 = x3 + xy3;
• E8 = x3 + y5.

These all have
∑

qi < 1, so none of them is Calabi-Yau. Note, furthermore, that
A-type and E-type polynomials are self-mirror under the operation of transpose,
whereas D-type polynomials are not self-mirror.

Among the Calabi-Yau examples, those with cW = 1 are the elliptic
singularities

• P8 = x3 + y3 + z3,
• X9 = x2 + y4 + z4,
• J10 = x2 + y3 + z6.

The Calabi-Yau examples with cW = 2 have four variables. These are the K3
singularities, of which there are 95 types. When cW = 3, we have the Calabi-Yau
threefolds, for which there are thousands of examples. As one can see, classification
becomes unwieldy beyond this point.

5.3 The Maximal Diagonal Symmetry Group

Let W be a nondegenerate quasihomogeneous invertible polynomial. Themaximal
diagonal symmetry group of W is the group of diagonal matrices preserving W ;
that is,

Gmax =

⎧

⎪

⎨

⎪

⎩

g =
⎛

⎜

⎝

e2πig1

. . .

e2πigN

⎞

⎟

⎠

∣

∣

∣

∣

W(g · x) = W(x)

⎫

⎪

⎬

⎪

⎭

.

The groups G for which the Landau-Ginzburg A-model and B-model are defined
will always be subgroups of Gmax .

There is a convenient description of this group in terms of the exponent matrix
of W . By the definition of invertibility,W is of the form

W =
N
∑

i=1

N
∏

j=1
x
mij

j ,
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for a matrix EW = (mij ). Let

ρk =
⎛

⎜

⎝

ρ
(k)
1
...

ρ
(k)
N

⎞

⎟

⎠ , k = 1, . . . , N

be the columns of the inverse matrix E−1W . Convert each into a diagonal matrix

ρk :=

⎛

⎜

⎜

⎝

e2πiρ
(k)
1

. . .

e2πiρ
(k)
N

⎞

⎟

⎟

⎠

.

Proposition 75 The maximal diagonal symmetry group Gmax is generated by the
matrices ρ1, . . . , ρN .

Proof The first thing to check is that each ρk lies in Gmax . Indeed,

W(ρkx) = W(e2πiρ
(k)
1 x1, . . . , e

2πiρ
(k)
N xN)

=
N
∑

i=1

N
∏

j=1
e
2πiρ

(k)
j mij x

mij

j

=
N
∑

i=1

(

e
2πi

∑

j ρ
(k)
j mij

) N
∏

j=1
x
mij

j .

The exponent
∑

j ρ
(k)
j mij is precisely the ith entry in the vector EW · ρk , which is

the (i, j)th entry in the matrix EW · E−1W . Hence, it equals δij , so we obtain

W(ρkx) =
N
∑

i=1

N
∏

j=1
x
mij

j = W(x),

as required.
Now, to see that ρ1, . . . , ρN generateGmax , notice that for a diagonal matrix

g =
⎛

⎜

⎝

e2πig1

. . .

e2πigN

⎞

⎟

⎠ ∈ Gmax, (18)
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we have

EW

⎛

⎜

⎝

g1
...

gN

⎞

⎟

⎠ = g1EWρ1 + · · · + gNEWρN = EW(g1ρ1 + · · · + gNρN),

since the column vectors ρk are defined so that EWρk is a vector with a 1 in the kth
entry and zeroes elsewhere. Cancelling EW from both sides of (18) shows that

g = g1ρ1 + · · · + gNρN,

so g can be expressed in terms of ρ1, . . . , ρN . ��
Note, in particular, that the distinguished element J ∈ Gmax defined in (14) is

presented in these generators as

J = ρ1 · · · ρk,

since it is the diagonal matrix corresponding to the column vector (q1, . . . , qN)T

and

EW ·
⎛

⎜

⎝

q1
...

qN

⎞

⎟

⎠ =
⎛

⎜

⎝

1
...

1

⎞

⎟

⎠ .

5.4 The Mirror Group

Given a quasihomogeneous invertible polynomial W , denote its maximal diagonal
symmetry group by GW,max , and denote the maximal diagonal symmetry group of
the transpose polynomial by GWT ,max ; recall, W

T is defined by the relationship

EWT = (EW)T .

For any subgroupG ⊂ GW,max containing J , we will construct a “mirror” subgroup
GT ⊂ GWT ,max . Before doing so, two simple observations are useful.

First, whereas Gmax,W consists of matrices ρ = ρ
k1
1 · · · ρkN

N , where ρi are the
diagonal matrices associated to columns of W , the group Gmax,WT , consists of
matrices h = h

r1
1 · · · hrN

N , in which hi are associated to the rows of W .
Second, the same proof that showed that ρk ∈ Gmax implies that a matrix

g =
⎛

⎜

⎝

e2πig1

. . .

e2πigN

⎞

⎟

⎠
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lies in the maximal diagonal symmetry groupGmax of W if and only if

E−1W

⎛

⎜

⎝

g1
...

gN

⎞

⎟

⎠ ∈ Z
N .

A similar observation holds for the maximal diagonal symmetry group of WT , but
replacing right multiplication by a column with left multiplication by a row.

With these facts in mind, we define GT as follows.

Definition 76 Given a subgroup G ⊂ GW,max containing J , the mirror (or
transpose) group is

⎧

⎪

⎨

⎪

⎩

h
r1
1 · · · hrN

N

∣

∣

∣

∣

(r1 · · · rN)E
−1
W

⎛

⎜

⎝

k1
...

kN

⎞

⎟

⎠ ∈ Z
N for any ρ

k1
1 · · · ρkN

N ∈ G

⎫

⎪

⎬

⎪

⎭

.

To put it another way, one can define a pairing betweenGmax,W andGmax,WT by

〈ρ, h〉 = (r1 · · · rN)E
−1
W

⎛

⎜

⎝

k1
...

kN

⎞

⎟

⎠ mod Z,

and in terms of this pairing,GT is the orthogonal complement of G.
The following are some useful observations regarding the operation of transpose

on both polynomials and groups:

1. If G1 ⊂ G2, then GT
2 ⊂ GT

1 .
2. (GT )T = G.
3. {1}T = Gmax .
4. 〈J 〉T = SL(WT ).

In particular, these facts imply that the transpose of groups preserves the Calabi-
Yau condition

〈J 〉 ⊂ G ⊂ SL(W)

for subgroups G. This is important for aspects of LG-to-LG mirror symmetry that
will not be discussed in these notes; namely, there are ring structures on the A-model
and B-model LG state spaces, and mirror symmetry gives a ring isomorphism only
in the Calabi-Yau case.
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5.5 B-Model LG Cohomology

We have now defined the mirror (WT ,GT ) of a Landau-Ginzburgmodel (W,G). In
order to make the statement of Berglund-Hübsch-Krawtizmirror symmetry precise,
we must carefully define the cohomology groups on the A-side and the B-side that
will be exchanged.

The Landau-Ginzburg B-model cohomology has already appeared in the context
of Hori-Vafa mirror symmetry, where we viewed it as an orbifold Jacobian ring. Let
us recall and expand upon this definition.

It is convenient to give a somewhat different presentation of the Jacobian ring.
Let

�W = �N(CN)/
(

dW ∧�N−1(CN)
)

.

Then the map

Jac(W)→ �W

φ �→ φ · dx1 · · · dxn =: φdx

is an isomorphism of vector spaces.8

There is a pairing on �W defined by

〈φdx, φ′dx〉 = Res

(

φφ′dx
∂1W · · · ∂NW

)

= 1

2πi

∫

|∂iW |=ε

φφ′dx
∂1W · · · ∂NW

.

Furthermore, there is a grading

deg(φdx) = deg(φ)+
N
∑

i=1
qi

on W , in which the charges qi are defined by

qi = ci

d
.

8Some care should be taken here, because both sides admit both a grading and a G-action, and the
isomorphism does not preserve these aspects. We will be careful to specify these in what follows,
but the basic principle is that they are inherited from �W , not from Jac(W).
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Under this grading, the pairing can equivalently be computed by using the fact
that, like the cohomology of a manifold, �W has a unique generator in the top
degree. This top degree is the central charge cW defined in (17), and the generator
is the Hessian Hess(W). Just as one computes the pairing on the cohomology of a
manifold via the volume form, then, one can compute

〈φ, φ′〉 = λ,

where

φ · φ′ = λ

μ
Hess(W)+ lower-order terms.

Here, the normalizing constant is the Milnor number μ, defined by

μ = dim(Jac(W)) =
N
∏

i=1

(

1

qi
− 1

)

.

The B-model Landau-Ginzburg cohomology can now be built by orbifolding, as
was previously described.

Definition 77 Given a nondegenerate quasihomogeneous invertible polynomialW
and a subgroup G ⊂ GW,max containing J , the B-model Landau-Ginzburg
cohomology of (W,G) is the vector space

�W,G =
⎛

⎝

⊕

g∈G
�Wg

⎞

⎠

G

, (19)

where

Wg = W |Fix(g).

Here, the G-invariant part is taken with respect to the action of G on
⊕

g∈G �Wg

that sends

�Wg → �W
h−1gh

via pullback under multiplication by h.

We should note that the restriction ofW to Fix(g) is still nondegenerate, so each
�Wg is of the form described previously.
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The pairings on the vector spaces �Wg defined above can be combined to give a
pairing on �W,G, again in much the same way that the Poincaré pairing is defined
in Chen-Ruan cohomology. Specifically, one pairs

�G
Wg
⊗�G

W
g−1
→ C

with the previously-defined residue pairing, using the fact that Fix(g) = Fix(g−1).
As in Chen-Ruan cohomology, a shift in the grading on �W,G is necessary in

order to make the pairing behave like a Poincaré pairing. First, define an unshifted
(or “internal”) bigrading on �W by doubling the single grading:

�
p,q
Wg
=
{

(�Wg)
p if p = q

0 if p �= q.

Then, define a degree shift:

(QB−,QB+) = (ι(g−1), ι(g))−
(

N
∑

i=1
qi,

N
∑

i=1
qi

)

.

Here, ιg is the age shift from Chen-Ruan cohomology, defined by

ι(g) =
N
∑

i=1

mi

m
,

wherem = ord(g) and g acts on the tangent space TxX to a point x ∈ Fix(g) by

g =

⎛

⎜

⎜

⎝

e2πi
m1
m

. . .

e2πi
mn
m

⎞

⎟

⎟

⎠

.

The grading on �W,G is then defined as

�
p,q
W,G =

⎛

⎝

⊕

g∈G
�

p−QB−,q−QB+
Wg

⎞

⎠

G

.

The purpose of this shift is to ensure that the following result holds:

Lemma 78 If

〈φ1dxg, φ2dxg−1〉 �= 0,
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then

deg±W(φ1dxg)+ deg±W(φ2dxg−1) = cW .

Proof We will require the fact that, if

g =

⎛

⎜

⎜

⎝

e2πi�1
g

. . .

e2πi�N
g

⎞

⎟

⎟

⎠

,

then

ι(g) =
∑

�i
g �=0

�i
g,

whereas

ι(g−1) =
∑

�i
g �=0

(1−�i
g).

Using this, we have

deg±W(φ1dxg)+ deg±W(φ2dxg−1)

= deg(φ1dxg)+QB±(g)+ deg(φ2dxg−1)+QB±(g−1)

= deg(φ1)+
∑

�i
g=0

qi +QB±(g)+ deg(φ2)+
∑

�i
g=0

qi +QB±(g−1)

= deg(φ1)+ deg(φ2)+
∑

�i
g=0

(1− 2qi)+ 2
∑

�i
g=0

qi +
∑

�i
g �=0

1− 2
N
∑

i=1
qi

=cWg +
∑

�i
g �=0

(1− 2qi)

=
N
∑

i=1
(1− 2qi)

=cW .

��
The upshot of Lemma 78 is that�W,G behaves like the cohomology of a complex

manifold of dimension cW—despite the fact that cW may be fractional. This is



64 E. Clader and Y. Ruan

referred to as a “manifold of dimension cW ” in the physics literature to make sense
of the notion of fractional dimension.

The components of the decomposition (19) are referred to as sectors. There are
a number of special cases that yield particularly important sectors.

First, when g = 1, the component of �W,G is called the nontwisted sector. It is
isomorphic to �W but is graded via the shift

(QB−,QB+) = −
(

N
∑

i=1
qi,

N
∑

i=1
qi

)

.

Thus,

deg±W(φdx) = deg(φ).

The element 1dx of bidegree (0, 0) and the element Hess(W)dx of bidegree
(cW , cW ) both lie in the nontwisted sector.

The J -sector, for which g = J , is 1-dimensional:

�G
WJ

∼= C,

since Fix(J ) = {0}. It degree shift is

(QB−,QB+) =
(

N
∑

i=1
(1− qi),

N
∑

i=1
qi

)

−
(

N
∑

i=1
qi,

N
∑

i=1
qi

)

= (cW , 0).

The J−1-sector is also one-dimensional, but its degree shift is

(QB−,QB+) = (0, cW ),

by an analogous computation.
Thus, the components of various bidegrees in the Landau-Ginzburg B-model

cohomology can be compiled into the following rough outline of a Hodge diamond:

where the middle column is the nontwisted sector.
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5.6 A-Model LG Cohomology

We have actually mentioned the A-model Landau-Ginzburg cohomology before
briefly, as well. Analogously to the way in which the B-model cohomology is built
out of Jacobian rings, the building blocks of the A-model cohomology are the vector
spaces

HN(CN,W+∞;C), (20)

where

W+∞ = (ReW)−1(ρ,∞)

for ρ � 0.9

Just as in the B-model case, we will define the A-model by taking a direct sum
of middle cohomology groups as in (20) for restrictions ofW to the fixed-point sets
of g ∈ G. There will be a degree shift, defined so that a certain pairing behaves like
a Poincaré pairing. Towards this end, we will need a pairing on (20).

The first step in that direction is to define a pairing

HN(CN,W−∞;Q)⊗HN(CN,W+∞;Q)→ Q, (21)

where

W−∞ = (ReW)−1(−∞,−ρ)

for ρ � 0. To do so, we use the fact thatHN(CN,W+∞,Q) is dual to the homology
group HN(CN,W+∞;Q). The latter has a basis consisting of the preimages in CN

of a collection of nonintersecting paths in C that begin at the critical values of W
and move in the direction of Re(z) = ∞, eventually becoming horizontal. These
subsets of CN are called Lefschetz thimbles; see Fig. 16. There is an analogous
basis forHN(CN,W−∞;C), consisting of “opposite” thimbles.

The two types of thimbles can intersect one another, so there is an intersection
pairing

HN(CN,W−∞;Q)⊗HN(CN,W+∞;Q)→ Q.

9Sometimes W+∞ is replaced with a “Milnor fiber” W−1(z0) of W , where z0 is a sufficiently
large real number. This does not affect the vector space; however, in other parts of the theory it is
necessary to use the Hodge structure on cohomology, and in order for a natural Hodge structure to
be defined, it is necessary to use W+∞ and not a single fiber.
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C

Fig. 16 The preimages in C
N of these paths are closed at one end and open at the other, giving

them the appearance of infinite “thimbles”

In fact, it is a perfect pairing, and (21) is obtained by dualization. To be
more explicit, if δi is a basis for HN(CN,W−∞;Q) and δ∨i is a basis for
HN(CN,W+∞;Q), then

〈α, β〉 =
∑

i,j

〈α, δi〉〈δi , δ∨j 〉〈β, δ∨j 〉,

where the three pairings on the right-hand side are given by intersection in
HN(CN,W+∞;Q),HN(CN ;Q), and HN(CN,W−∞;Q), respectively.

From here, (21) can be converted into a pairing on (20) by using the morphism

I : CN → C
N

(x1, . . . , xN) �→ (ξc1x1, . . . , ξ
cN xN)

for a chosen ξ satisfying ξd = −1. This morphism has

W(I (x1, . . . , xN)) = −W(x1, . . . , xN),

and hence it interchangesW+∞ with W−∞. The pairing on (20) is defined as

〈α, β〉 := 〈α, I∗β〉.

Although the resulting pairing appears to depend on a choice of ξ , we will always
look at its restriction to

HN(CN,W+∞;Q)G (22)

for G a subgroup of Gmax containing J . One can check that the pairing on
HN(CN,W+∞;Q)〈J 〉 is well-defined and independent of ξ , so the same is true
for the restriction to the smaller spaces (22).

The orbifolding construction is very similar to what we have seen previously.
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Definition 79 If W is a nondegenerate quasihomogeneous invertible polynomial
andG ⊂ GW,max is a subgroup containing J , then theA-model Landau-Ginzburg
cohomology of (W,G) is the vector space

HW,G :=
⎛

⎝

⊕

g∈G
HNg(CN

g ,W+∞
g ;Q)

⎞

⎠

G

, (23)

where CN
g is the fixed locus of g, W+∞

g = Re(W−1
g (ρ,∞)) for ρ � 0, Wg =

W |CN
g
, and Ng is the complex dimension of CN

g . The action of G takes the sector

indexed by g to the sector indexed by h−1gh via pullback under multiplication by h.

This has a pairing, given by mapping

HNg(CN
g ,W+∞

g ;Q)G ⊗H
N

g−1 (CN
g−1,W

+∞
g−1 ;Q)G → Q

via the pairing defined previously; note that CN
g = C

N
g−1 . There is also a degree

shift, defined so that this pairing behaves like a Poincaré pairing. It is:

Hp,q

W,G =
⎛

⎝

⊕

g∈G
�

p−QA−,q−QA+
Wg

⎞

⎠

G

,

where the shift is

(QA−,QA+) := (ιg, ιg)−
(

N
∑

i=1
qi,

N
∑

i=1
qi

)

and the internal bi-grading is given by the Hodge structure on the vector space
HNg(CN

g ,W+∞
g ;Q).

In fact, the A-model and B-model Landau-Ginzburg cohomology of (W,G) are
isomorphic to one another, but with different gradings. To prove this, one shows that
the map

�W → HN(CN,W+∞;C) = Hom(HN(CN,W+∞;Z),C)

φdx �→
(

 �→
∫



e−Wφdx

)

is an isomorphism; it also respects the pairing on either side, up to a constant.10 It
does not respect the grading, though; instead, �p

W maps to the bidegree (N − p,p)

part of HN(CN,W+∞;C).

10This is a more computationally practical way to compute the A-model pairing than via Lefschetz
thimbles.
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Even after the degree shift, the two sides are bigraded differently. An element of
(
⊕

g �Wg)
G with internal bidegree (p, p) and degree shift

(Q−B ,Q+B ) = (ιg−1, ιg)−
(
∑

qi,
∑

qi

)

corresponds to an element in
(

⊕

g HNg(CN
g ,W+∞

g ;Q)
)G

with internal degree

(Ng − p,p) and degree shift

(Q−A,Q+A) = (ιg, ιg)−
(
∑

qi,
∑

qi

)

.

One can compute, then, that

deg+A = deg+B

but

deg−A = cW − deg−B .

In particular, this says that theA-model Landau-Ginzburg cohomology of (W,G) is
obtained from the B-model cohomology of (W,G) by flipping the Hodge-diamond.

Let us use this relationship to the B-model cohomology to study a few of the
special sectors in the decomposition (23). The nontwisted sector, indexed by the
element g = 1, has degree shift

(QA−,QA+) =
(

−
N
∑

i=1
qi,−

N
∑

i=1
qi

)

and internal grading

deg(φdx) = deg(φ)+
N
∑

i=1
qi.

In particular, the A-model image of the element 1dx has bidegree

(

deg−A(dx), deg−A(dx)
)

=(N −
∑

qi,
∑

qi)+ (−
∑

qi,−
∑

qi)

=(cW , 0),
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and the A-model image of the element Hess(W)dx has bidegree

(

deg−A(Hess(W)dx), deg−A(Hess(W)dx)
)

=(N − cW −
∑

qi, cW +
∑

qi)+ (−
∑

qi,−
∑

qi)

=(0, cW ).

The sector g = J hasCN
J = {0}, so the middle-dimensional relative cohomology

is generated by the constant function 1, which we denote eJ . This has

(

deg−A(eJ ), deg
+
A(eJ )

) =
(
∑

qi,
∑

qi

)

+
(

−
∑

qi,−
∑

qi

)

= (0, 0).

The sector g = J−1 also has a single generator eJ−1 , with bidegree (cW , cW ).
Comparing with the sketch of the B-model Hodge diamond computed in the
previous section, we again see that passing between the A-grading and the B-grading
corresponds to a rotation.

5.7 Berglund-Hübsch-Krawitz Mirror Symmetry

The result that makes the association (W,G) �→ (WT ,GT ) qualify as mirror
symmetry is the following:

Theorem 80 (Krawitz [23]) There is a bidegree-preserving isomorphism

�W,G
∼= HWT ,GT .

Alternatively, the results of the previous section show that this can be expressed
as an isomorphism between the B-model of (W,G) and the B-model of (WT ,GT )

that rotates the bigrading.
For g ∈ G, let Fg ⊂ {1, . . . , N} be the indices of the coordinate directions fixed

by g, so that

Fix(g) = Spec
(

C
[{

xi | i ∈ Fg

}])

.

An element of �W,G will be written as

∑

i∈Fg

x
ri
i dxi

∣

∣

∣

∣

∣

∣

N
∏

j=1
ρ
sj+1
j

〉
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if it is drawn from the sector indexed by

g =
N
∏

j=1
ρ
sj+1
j ∈ G.

Under this notation, the mirror map in Theorem 80 is given in terms of the B-model
Landau-Ginzburg cohomology by

�W,G → �WT ,GT

∏

i∈Fg

x
ri
i dxi

∣

∣

∣

∣

∣

∣

N
∏

j=1
ρ
sj+1
j

〉

�→
N
∏

j=1
y
sj
j dyj

∣

∣

∣

∣

∣

∣

∏

i∈Fg

ρ
ri+1
i

〉

.

That is, it exchanges group elements with monomials in the coordinates.

Example 81 Let

W = x3y + xy5,

for which WT = W . This has weights cx = 2 and cy = 1 and degree 7, so

J =
(

e2πi 27 0

0 e2πi 17

)

.

Let

G = 〈J 〉,
for which

GT = SL(WT ) =
〈(

e2πi 12 0

0 e2πi 12

)〉

.

By computing the inverse of the exponent matrix, it is easy to verify that the
generators of Gmax,W are

ρx =
(

e2πi 5
14 0

0 e2πi −114

)

and

ρy =
(

e2πi −114 0

0 e2πi 3
14

)

.
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There are seven elements in the subgroup 〈J 〉. Using the fact that J = ρxρy and the
identity ρ3

xρy = 1, these can be written as

〈J 〉 = {ρ0
xρ

0
y , ρ

1
xρ

1
y , ρ

2
xρ

2
y , ρ

3
xρ

3
y, ρ

1
xρ

3
y , ρ

2
xρ

4
y , ρ

3
xρ

5
y }.

All but the first of these is narrow, so the corresponding sector of�W,〈J 〉 will just be

Q · eρa
x ρ

b
y
,

in which eρa
x ρ

b
y
denotes the volume form on the sector indexed by ρa

x ρ
b
y . There is no

need to restrict to the 〈J 〉-fixed part on these sectors, since the action is trivial. For
the remaining sector, indexed by ρ0

xρ
0
y , the action of J sends

xiyjdxdy �→ det(J ) · (e2πi 27 x)i(e2πi 17 y)jdxdy = e2πi
3+2i+j

7 xaybdxdy.

As a result, the 〈J 〉-invariant part is spanned by

{x2dxdy, xy2dxdy, y4dxdy}.

(Since we are working in the Jacobian ring

Jac(W) = C[x, y]
(3x2y + y5, x3 + 5xy4)

,

powers of y greater than 4 can always be expressed in terms of smaller exponents.)
As for the mirror side, there are two elements in 〈J 〉T , which can be written as

〈J 〉T = {ρ0
xρ

0
y , ρ

2
xρ

3
y }.

The second of these gives the sector

Q · eρ2
xρ

3
y

of �WT ,〈J 〉T . The first gives the nontwisted sector. Since the nontrivial element of
〈J 〉T acts by

xiyjdxdy �→ det(ρ2
xρ

3
y ) · (e2πi 12 x)i(e2πi 12 y)jdxdy = e2πi

i+j
2 xaybdxdy,

the 〈J 〉T -invariant part of the nontwisted sector is spanned by

{1, xy, x2y2, y2, xy3, x2y4, x2, y4},

again keeping the powers of y below 5.
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These generators are matched up by the mirror map in the following way:

(W, J ) eρ1x ρ1y
eρ2x ρ2y

eρ3x ρ3y
eρ1x ρ3y

(WT , 〈J 〉T ) 1eρ0x ρ0y xyeρ0x ρ0y
x2y2eρ0x ρ0y

y2eρ0x ρ0y

(W, J ) eρ2x ρ4y
eρ3x ρ5y

x2eρ3x ρ1y
xy2eρ0x

y4eρ1x ρ5y

(WT , 〈J 〉T ) xy3eρ0x ρ0y
x2y4eρ0x ρ0y

x2eρ3x ρ1y
eρ2x ρ3y

y4eρ1x ρ5y

Notice that the mirror map sends “narrow sectors”—those indexed by group
elements g for which Fix(g) = {0}—to elements of the nontwisted sector. In the
Calabi-Yau case, there are exactly as many narrow sectors for (W,G) as elements
of the nontwisted sector for (WT ,GT ), and the matching is perfect.

Via the Landau-Ginzburg/Calabi-Yau correspondence, this sets up a strong par-
allel between the Berglund-Hübsch-Krawitz and Batyrev-Borisov mirror symmetry
constructions. Indeed, in all known cases of the LG/CY correspondence, the narrow
sectors of the Landau-Ginzburg cohomology correspond to the ambient part of the
cohomology of XW , consisting of classes pulled back from the weighted projective
space. Such ambient cases are generated by toric divisors. Thus, the exchange
between narrow group elements and nontwisted monomials in Berglund-Hübsch-
Krawitz mirror symmetry is matched, via the correspondence, with the exchange
between toric divisors and monomials in Batyrev mirror symmetry.
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Appendix: Chen-Ruan Cohomology

Many more details on this topic can be found in [2].
An orbifold, speaking geometrically, is an object that is locally the quotient of

a manifold by the action of a finite group. One can make this definition precise
in the category-theoretic language of groupoids. From this perspective, an orbifold
is a groupoid for which the objects and arrows form manifolds and the structure
morphisms (source, target, composition, identity, and inversion) are all smooth.

The case on which we will focus is when X is a complex manifold and G is a
finite group acting on X. Then there is an orbifold

X = [X/G].
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This should be thought of as a version of the quotient that records any isotropy of
the original action. The fact that the orbifold “remembers” the data of the action is
clear from the groupoid point of view: the orbifold groupoid [X/G] has objects X
and arrows x → g · x for each x ∈ X and g ∈ G.

The de Rham or singular cohomology of an orbifold can be defined, but it is
insufficient for capturing all of the data of X . One way to understand the problem is
through Gromov-Witten theory. Ordinarily, in Gromov-Witten theory, there would
be evaluation morphisms

evi :Mg,n(Y, β)→ Y

to record the images of the various marked points. In the orbifold setting, however, a
morphism f : C → X from an orbifold curve C to an orbifold X has more local data
around a marked point xi than simply its image. Namely, C is of the form [C/Gi]
near xi for a finite groupGi , and part of the data of f is a homomorphismGi → G.
Thus, the evaluation maps should keep track not only of the images of the marked
points but of the homomorphisms on isotropy, and for this reason, they should land
not in X but in a more complicated object.

Definition 82 The inertia orbifold of X = [X/G] is


[X/G] =
⎡

⎣

⊔

g∈G
(Xg × {g})/G

⎤

⎦ ,

where

Xg = {x ∈ X | gx = x},

and G acts on this disjoint union by

h · (x, g) = (hx, hgh−1).

Equivalently, one can write


[X/G] =
⎡

⎣

⊔

(g)∈G∗
(Xg × {g})/C(g)

⎤

⎦ ,

in which G∗ denotes the set of conjugacy classes of G. The advantage of this
presentation is that it breaks 
[X/G] into its connected components. In particular,
there is a component

[(X × {1})/G] ⊂ 
[X/G]
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that is isomorphic to X itself, called the nontwisted sector. The other connected
components are referred to as twisted sectors.

The inertia orbifold is the image of the evaluationmaps in Gromov-Witten theory,
so, at least from that perspective, its cohomology is the natural object to study.

Definition 83 As a vector space, the Chen-Ruan cohomology of X is defined as
the cohomology of 
[X/G].

However, the grading on Chen-Ruan cohomology differs from that of the inertia
stack.

Definition 84 The degree (or age) shift of an element g ∈ G is defined as

ι(g) :=
n
∑

i=1

mi,g

mg

,

wheremg = ord(g) and g acts on the tangent space TxX to a point x ∈ Xg by

ρx(g) :=

⎛

⎜

⎜

⎜

⎝

e
2πi

m1,g
mg

. . .

e
2πi

mn,g
mg

⎞

⎟

⎟

⎟

⎠

. (24)

One can check that ι gives a locally constant function on 
[X/G]. The grading
on Chen-Ruan cohomology is defined as follows:

H
p,q

CR ([X/G];Q) :=
∏

(g)∈G∗
Hp−ι(g),q−ι(g)(Xg/C(g);Q).

There is an involution I : Xg × {g} → Xg−1 × {g−1} for any g ∈ G, which is
simply the identity on the first component. Using this, one can define a pairing on
Chen-Ruan cohomology by

〈 , 〉 : Hp,q(Xg × {g}/C(g);Q)⊗Hp′,q ′(Xg−1 × {g−1}/C(g−1);Q)→ Q.

Proposition 85 Let n = dimC(X), and choose α ∈ Hp,q(Xg × {g}/C(g)) and
β ∈ Hp′,q ′(Xg−1 × {g−1}/C(g−1)). If 〈α, β〉 �= 0, then

p + ι(g)+ p′ + ι(g−1) = n,

q + ι(g)+ q ′ + ι(g−1) = n.

That is, the degrees after shifting must sum to n.
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Proof We claim that

ι(g)+ ι(g−1) = rank(ρx(g)− I),

with ρx(g) as in (24). Indeed, mi,g−1 ≡ −mi,g mod mg, so if mi,g �= 0, then
mi,g +mi,g−1 = mi,g and hence

mi,g

mg

+ mi,g−1

mg

= 1.

If mi,g = 0, however, then mi,g−1 = 0, and so

mi,g

mg

+ mi,g−1

mg

= 0.

It follows that ι(g)+ ι(g−1) is the number of entries not equal to 1 in ρx(g), which
is precisely the rank of ρx(g)− I .

The dimension of the fixed locus in TxX under the action of g is the same as the
dimension of Xg , so the above implies that

ι(g)+ ι(g−1) = n− dimC(X
g).

Thus, the Proposition follows from the fact that two elements of ordinary cohomol-
ogy pair nontrivially only if

p + p′ = q + q ′ = dimC(X
g).

��
The role of the degree shift is now clear: it makes the pairing on Chen-Ruan

cohomology behave with respect to degrees like the Poincaré pairing on the ordinary
cohomology of a manifold. There are further parallels between Chen-Ruan and
ordinary cohomology. For example, there is a product structure, with a unit lying
in the nontwisted sector whose Poincaré dual is the volume form, also drawn from
the nontwisted sector. However, we only need to study the Chen-Ruan cohomology
as a graded vector space in these notes.

Example 86 Let Zr act on C via multiplication by rth roots of unity. Then


[C/Zr ] = [C/Zr ] � [•/Zr ] � · · · � [•/Zr ],

in which there are r − 1 twisted sectors in addition to the nontwisted sector. Thus,
as a vector space, the Chen-Ruan cohomology of [C/Zr ] is Qr , with generators
e0, e1, . . . , er−1 given by the constant function 1 on each of the above components.
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The degree-shift on the component generated by ei is i
r
, so the r copies of Q occur

in bidegrees (0, 0), ( 1
r
, 1
r
), . . . , ( r−1

r
, r−1

r
).
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Abstract The main goal of these lectures is to explain, to both mathematicians
and physicists, some of the new ideas and techniques that have been developed
in the course of considering compactifications of string theories from their critical
dimension on special holonomy manifolds M (such as Calabi–Yau manifolds) to
four dimensions. The physical motivation in this subject is simply to describe
the four-dimensional physical theories which arise in this construction, while
for mathematicians, the interest is that the physical perspective was effective in
discovering unexpected mathematical structures of these manifolds. Physicists and
mathematicians alike find interesting structures and simplifications in supersym-
metric theories, in particular exactly solvable subsectors, which might shed light
on more general mathematical properties of quantum theories of fields and strings.
We give an in-depth overview from a physical perspective, covering such topics as
the monodromy group and Picard-Fuchs equations, tt* structures, the holomorphic
anomaly equation, and modularity properties.
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1 Physical Motivation and Physical Applications

The main goal of the present lecture is to explain to mathematicians and physicists
some of the new ideas and techniques that have been developed in the course of
considering compactification of string theories from their critical dimension on
special holonomy manifolds M such as Calabi-Yau manifolds to four dimensions.
The physical motivation in this subject is simply to describe the four dimensional
physical theories which arise in this construction, because starting with superstring
theory they can describe all observed interactions and consistently combine them
with quantum gravity and are therefore candidates to describe the physical reality at
a deeper level and with a higher level of consistency then previously possible. The
theories typically carry some amount of supersymmetry and to find the mechanism
to break this symmetry at a suitable scale is still one of the biggest open challenges.
The interest for mathematicians is that the physical perspective was effective in
discovering unexpected mathematical structures of these manifolds and helped to
develop powerful new ideas to calculate for example topological information for
these manifolds explicitly. Physicists and mathematicians alike find interesting
structures and simplifications in supersymmetric theories, in particular exactly
solvable subsectors, which might shed light on more general properties of quantum
theories of fields and strings.

The purpose of the introduction section is mainly to familiarize mathematicians
with the key physical ideas of this setting. String physicist will know this part from
books and review, but hopefully both communities can profit from the outline at the
end of this section.

1.1 Kaluza-Klein Reduction and Supersymmetry

The original idea of Kaluza and Klein to geometrize physical properties by adding
compact extra dimensions was developed in the twenties of the last century. It was
motivated by the success of geometrizing gravity by Einstein’s theory of general
relativity and the geometrization of electromagnetism as a gauge theory. It attempted
to unify these two interactions in a five dimensional space time that had to be
reduced on a circle to four dimensions. While physically unsuccessful the idea
contributed to the development of non abelian gauge theory as explained in the
short historical account [272], where also the original references can be found.

Beside the spectacular success of the gauge principle as description of the
electro-weak interactions by Glashow, Weinberg and Salam in 1967 and the strong
interactions by the SU(3) gauge theory called quantum chromodynamics in 1973
that culminated in the standard model, a particularly broken non-abelian gauge
theory with gauge group SU(3) × SU(2) × U(1), the advent of supersymmetry
and superstring theory added substantially to the motivation to study Kaluza-Klein
reductions on compact manifoldsM .
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Supersymmetric theories, characterized by an integer N , have a symmetry that
transforms bosonic degrees to fermionic degrees of freedom and vice versa. The
corresponding supersymmetry generators Qi

α i = 1, . . . ,N transform in spinor
representations w.r.t. the D dimensional Poincaré group and fulfill the algebra

{Qi
α,Q

j †
β} = 2δij σμ

αβPμ . (1.1.1)

According to the Coleman-Mandula theorem supersymmetry is the largest sym-
metry that extends the Poincaré symmetry, introduces only a finite number of
spinor fields and allows still for non-trivial S-matrix elements, i.e. for interesting
physical processes. It fits the experience in particle physics that at higher energy
scales the physics should be more symmetric, even though at the energy scale
of present experiments supersymmetry is not yet found and must be broken. The
bigger N the more symmetric, tamer and unrealistic from the low energy point
of view is the theory. However solving an interacting field in three and more
dimensions is so difficult that solving the simpler supersymmetric version would
be a big breakthrough. A strong motivation to consider supersymmetric theories
are the cancellations of short distance divergencies that are typical in quantum
fields theories and render for example a perturbative point particle description
of quantum gravity in four dimensions inconsistent. These cancellations make
supersymmetric field theories better behaved at the quantum level than their non-
supersymmetric cousins. For example in the standard model of particle physics the
leading order correction to the mass of the Higgs at one loop level is quadratically
divergent δm = (
/m)2 with the cut-off parameter
, while in the supersymmetric
version of the standard model it is only logarithmically divergent δm = log(
/m).
This cut-off parameter, here chosen to be an energy scale, is unphysical, but
necessary to render the amplitudes finite at small length or high energy scales.
In renormalizable quantum field theories it must be possible to absord the cut-
off dependence uniquely using a finite set of counterterms so that the amplitudes
calculated including these counterterms depend, after enforcing a finite set of
physical renormalization conditions, only on finitely many measurable physical
quantities, such as masses and couplings, and are in particular independent of the
cut-off parameter. Supergravity theories, the supersymmetric cousins of gravity, are
yet not renormalizable in this sense. One possible way out is super string theory
in which a perturbative description of super gravity makes sense due to a physical
cut-off, which in energy units is the inverse of the string length. What singles this
cut-off out among other possible choices is the fact that it is compatible with the
Poincaré symmetry and internal symmetries such as gauge symmetries. If there
is now a physical cut-off, the milder scale dependence of quantum corrections in
supersymmetric theories are often invoked to argue that it might be natural to have
large hierarchies as for example between the string scale and the standard model
scale. On the other hand consistent string theories require supersymmetry. This,
together with the facts that the scale dependent couplings—the strong, the weak and
electric one—of a supersymmetrized standard model, unify at a scale close to the
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Planck scale, which would be a natural estimate for the string scale and that string
theories like the heterotic string can give an unified description of these interactions
plus gravity has given a perspective on a physical realization of supersymmetry and
string theory in nature.

Spinors have in D dimensions 2

⌊

D+1
2

⌋

−1
components. As discussed in more

detail below, depending on dimension D and the space time Lorentz signature
(t, s = D − t), these spinor representations can be real R also called Majorana
spinors, complex C, or quaternionicH.

In any case the degrees of freedom in the spinor representations grow approx-
imately exponentially with D, while bosonic degrees of a given spin grow only
polynomiallywithD. For this reason there is a maximal dimension in which one can
supersymmetrize pure gravity, if one insists that the graviton sits in a supersymmetry
representation with J ≤ 2. The maximal dimension is D = 11 for the signature1

(1,D − 1), since it is the maximal dimension in which a J ≤ 2 supersymmetry
representation exists [266]. The corresponding supergravity action was constructed
in [80]. Similarly gravity coupled to a gauge theory with signature (1,D−1) can be
supersymmetrized in maximal D = 10 dimensions, if one insist that the gauge
boson sits in a representation with J ≤ 1. In addition the mixed gravitational
and gauge anomalies cancel only for the gauge groups E8 × E8, SO(32), or
SO(16) × SO(16) see chapt. 13.5 of [142] for a review. Likewise purely from
representation theoretic arguments Nahm concluded [266] that six is the maximal
dimensions in which super conformal quantum field theories could exist. In this case
there is no Lagrangian description, but the advances of geometrical engineering of
quantum field theories, described in Section allow now to explore certain properties
of these theories.

The existence of these unique supersymmetric theories in the maximal dimen-
sions leads naturally to the program of a geometric classification of supersymmetric
theories in lower dimensions d = D − d by Kaluza-Klein reduction on real d

dimensional manifolds M , see [103] for a review. In particular in D = 11 the
supersymmetry generator transforms in one N = 1 real 32 = 25 spinor represen-
tation with components Qα , α = 1, . . . , 32. Lower dimensional theories can have
supersymmetry generators in different spinor representations but with maximally 32
real components, iff M has the maximal number of covariant constant spinors as it
is the case in particular for compactifications on the d dimensional torus T d .

The question what principal type of lower dimensional supergravity is realized
depends on how the 32 superchargesQα fill the lower dimensional spinor represen-
tations. IfM has less covariant constant spinors one can get supersymmetric theories
in d = D − d with less, e.g. none, supersymmetries. The number of covariant
constant spinors depends on the holonomy group of the compactification manifold
M . As the symmetric spaces turn out to be too rigid to obtain suitable d = D − d

physics the special holonomy manifolds classified by Berger have become of great

1For signature (2,D − 2) the maximal dimension is D = 12.
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interest to physicists. The mathematical theory is reviewed in [42].2 In our lectures
the Calabi-Yau n-folds, which have holonomy group SU(n) will play a prominent
role.

Of course the crucial question in the Kaluza-Klein program is how much about
the d = D− d theory can be learned from the geometry of the compactifying space
M and its symmetries in the supersymmetric case. An important statement concerns
the Kaluza-Kein spectrum. If the fields inD dimensions are massless and we denote
the Laplacian on a form (or spinor) field γ in m dimensions irrespectively of the
signature m then we get for the decomposition γ into the d and d dimensional
part3 γ = γ ′ · γ ′′

Dγ = (γ ′′dγ
′ + γ ′dγ

′′) = γ ′′(′d +m2
γ ′′(g))γ

′ = 0 . (1.1.2)

The second equation tells us that the masses in d dimensions are given by the spec-
trum of the Laplacian on the internal manifold M , which implies that the massless
fields correspond to harmonic forms on M , while the masses of massive fields
depend on the metric g and are in particular very massive if the internal manifold
is very small. Typically one assumes it to be close to the Planck scale, which is
in energy units at 1019 GeV which corresponds in length units to 1.6.10−35 m.
The dependence of the spectrum and couplings between the fields in the
d-dimensional effective Langrangian on those deformations of the metric g, which
keep the holonomy and therefore the supersymmetry and maybe even more so on
the ones which break supersymmetry, is clearly physically of great interest. The
first mentioned setting in which one stays within the supersymmetric theory is the
main theme of the lecture. As we mentioned before supergravity are theories alone
are not a good starting points because they are not renormalisable, so one rather has
to start with string theory in D dimensions. However many properties of the low
energy spectrum are unchanged by this, because the string excitations are again of
very high energy if the string tension is very high. Frequently one assumes it to be
also roughly the Planck-scale, while charged string excitations are experimentally
excluded at the scale of roughly 104 GeV.

To conclude the section we want to mention already that after including
string effects in simple situations, like compactification on a circle of radius
r—dimensionless in string units—denoted as S1

r and understanding T -duality to
a compactification on S1

1
r

as well as orbifolds compactifications on S1
r/Z2, the

program of studying supergravity theories and their string extensions in lower
dimensions from dimensional reduction of eleven dimensional supergravity, whose
putative microscopic description is called M-theory and is believed to be a non
perturbative completion of the Type IIA string, becomes rather complete and
successful.

2See in particular Theorem 10.90 (Berger and Simons) and Corollary 10.92.
3Here we assume the d-dimensional internal space and the d-dimensional space time to be a direct
product.
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1.1.1 The String Perspective

As we mentioned above, beside the unique supergravity theories in maximal
dimensions another strong motivation to reconsider Kaluza-Klein compactifications
is superstring theory whose critical dimension is D = 10. String theory has a
perturbative definition, which expands a functional integral in which one varies over
the map

X : � → Mst , (1.1.3)

from the two dimensional world-sheet � to the space time Mst . In the spirit of the
Kaluza-Klein approach one views the latter as product, or maybe a warped product,
of a large four dimensional space U4, our Universe as it is visible with low energy
experiments, and an internal six dimensional space M , in the simplest case Mst =
U4×M . The bosonic part of the weight functional associated to this map, called the
action

S(X, h,ψf erm,G,B, φ) =
∫

�

d2σL(X, h,ψf erm,G,B, φ) (1.1.4)

is the area of the image curve inMst , also known as the Dirichlet energy of the map.
The Lagrangian L contains as bosonic dynamical fields X and the two dimensional
metric h as Lagrangemultiplier. The action has to be supersymmetrized by fermions
as the pure bosonic string has a negative energy state, called tachyon, and is
therefore not consistent.We indicate the fermionic super partners only schematically
by ψf erm. The Lagrangian also contains as background fields the metric G of Mst ,
theNeveu-Schwarz background 2-form field B inMst , to which the string couples, as
well as dilaton whose vacuum expectation value determines the string coupling. The
dilaton φ multiplies the Euler density of� and a constant dilaton gives a topological
contribution φχ(�) to the Lagrangian. The usual approach to string theory is a first
quantized one, i.e. one does not vary in the path integral the background fieldsG, B
and φ. The “path” integral e.g. for the zero point function is hence

Z(G,B, φ) =
∫

DXDhDψf erme
i
h̄ S(X,h,ψferm,G,B,φ)

. (1.1.5)

Classically the world-sheet action depends only on the conformal structure of �,
i.e. it is scaling and reparametrisation invariant. In the critical dimension which is
D = 10 for the superstring this holds also in the quantum theory, as a potential
anomaly of the scaling symmetry cancels. As a consequence the variation Dh can
be replaced at each genus by a variation over conformal structure, which is also
the complex structure for a two dimensional surface. Schematically one has the
substantial simplification

∫

Dh→
∞
∑

g=0

∫

M�g

μ3g−3, (1.1.6)
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from a functional integral to a discrete sum over finite dimensional integrals in
the critical dimension. Here μ3g−3 is a measure on the moduli space of complex
structures of �g . By the Riemann-Roch theorem it has generically, i.e. for g ≥ 2,
the complex dimension 3g−3. Riemann surfaces with genus zero or one have three
or one complex Killing field(s) respectively. This raises the value of the dimension
of the moduli space given by the Riemann-Roch theorem to zero and one. The latter
is called τ and lives in the upper complex half-plane.

Consistency requires reparametrization invariance to hold also for those
reparametrizations, which are not continuously deformable to the identity. They are
called global reparametrizations and fall in a discrete number of topological types.
Not all,4 but essential consequences of this general consistency requirement can be
studied for the string vacuum amplitude at world sheets of genus one �1, which
can be interpreted as the worldsheet partition function Z1(τ ) of the string theory,5

which contains the information about the spectrum of the theory. In the genus one
case the different topological types of maps from �1 to itself are characterized by
the Dehn twists which form the group Sl(2,Z), also known as modular group, as it
acts projectively on the complex modulus τ of �1. The decisive requirement is then
that Z1(τ ) is modular invariant and that there are no negative energy states, called
tachyons, in the spectrum.

It gave much credibility to the importance of string theory as a fundamental
microscopic description of field theory that the consistent supergravity theories in
D = 10 can be all realized as the point particle limit of different superstring theories,
that are consistent in the sense described above, as was discovered in the 1980s.
Again this is reviewed in [142]. These supergravity theories are: The chiral type
IIB theory in which the supercharges transform in two (N = 2) 16 dimensional
spinors of one chirality; the non-chiral type IIA theory in which the supercharges
transform in two (N = 2) 16 dimensional spinors of opposite chirality; the chiral
supergravity with the supercharges transforming in one (N = 1) 16 dimensional
spinor representation coupled to a gauge theory, which can be for the requirement
of one-loop anomaly cancellation only have the gauge group SO(32) or E8 × E8.6

The corresponding D=10 closed string theories go by similar names: Type IIA/B
string theory and heterotic SO(32)/E8 × E8 string theory. The SO(32), N = 1
supergravity can also be realized as the point particle limit of an unoriented open
string called Type I string, where the consistency conditions imposed by global
reparametrization invariance are of course different then the ones described at the
end of the last paragraph and are known as tadpole cancellations conditions. Note
that the fundamental D=11 supergravity with 32 = 16+ 16 supercharges had found
no microscopic description by a perturbative critical string theory. A Kaluza Klein

4See [263] for the complete conditions in rational conformal two dimensional field theories.
5Note that it will depend on the background fields, which are trivial in D = 10 flat space. Also
unlike as for Z in (1.1.5) the integration over the complex moduli space, parametrized at genus one
by the fundamental region F = H+/PSL(2,Z) is not performed.
6The SO(16) × SO(16) theory has a dilaton tachyon [142].
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reduction of it on a circle S1
r leads to the non-chiral Type IIA supergravity. It was

proposed to provide a non-perturbative description of Type IIA theory, called M-
theory, in which the type IIA string coupling gIIA

s = r−1 is identified with the
inverse of the dimensionless radius of the circle S1

r [325].
If the string length7 ls is very small compared to the typical curvature radii r

of M , the Kaluza-Klein point particle approach is a good approximation. One can
introduce 1/r = ls/r � 1 as dimensionless parameter and provide a perturbative
scheme to include string corrections to higher orders in gσ = 1/r to the point
particle results. The starting point of this perturbative expansion is the action of
the non-linear σ -model. Its action contains the metric and the expansion is around
the flat or infinite volume metric.

If on the other hand ls is comparable to r this approach breaks down and one has
to the consider, e.g. in the closed string, the geometry of the loop space of M to get
information about the effective theory in D − d dimensions. In particular one has
to take into account the string instantons, which are in the limit discussed before
exponentially suppressed by their volume. To find just the contributions of these
classical solutions of the string action is already a very complicated problem on a
general special holonomy manifold M . The main reason that we can address it at
all is that the full string amplitudes exhibit so called spacetime duality symmetries,
precisely because of the extended nature of the string.

The simplest example8 is the � = Z2 duality group that states that string
amplitudes on a circle S1

r of radius r = r/ ls are equivalent to those on a circle
of radius r′ = 1/r = ls/r . Here we used again the dimensionless radius r as the
real modulus of the compactifications manifold S1

r . This allows at least to relate the
very stringy regime ls � r , where the instantons that correspond to strings winding
multiple times around the circle contribute most to the known point particle regime.

For superstring theories there are for certain amplitudes conditions fulfilled that
allow to reconstruct even very non-trivial amplitudes:

• The moduli are complex parameters, corresponding to the vacuum expectation
values of a complex scalar fields in a flat potential, in supersymmetric theories
certain amplitude depend holomorphically on them or can be related to holomor-
phic expressions of them.

• The duality symmetries form an infinite discrete group �, for example finite
index subgroups of Sl(2,Z) occur, that admits only a finitely generated ring of
holomorphic automorphic forms with the appropriate invariance properties under
the action of � on the moduli.

• The physics of the problem determines the automorphic weight and the boundary
behaviour that follows typically from a physical description of the theory in a
weak coupling regime and fixes the finite ambiguity in the amplitude.

7The string tension Ts can be introduced as the only dimensionful quantity [T ] = length−2. Other
common choices are the Regge slope α′ = 1

2πT
or the string length ls = 2π

√
α′.

8In this simple example the full string reduction can be performed.
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The above condition are typically met for protected amplitudes that arise in
compactifications of the type IIA/IIB string on Calabi-Yau 3-folds. In this case the
16 + 16 supercharges in ten dimensions, see Table 1, are reduced by the nontrivial
SU(3) holonomy to 8 which lie in two four component Majorana spinors. The
four dimensional supersymmetry is hence N = 2 supergravity and the techniques
outlined above carry over to the limit of the type IIA/IIB geometry in which gravity
decouples [205, 214, 231] and allow to understand the famousN = 2 gauge theory
results of [287, 288] from the point of view of string theory.

The proposal for the non-perturbative description of the type IIA theory ofWitten
by M-theory [325] predicts that M-theory has as effective eleven dimensional
low energy action the unique D = 11 N = 1 supergravity action that was
discovered by [80, 266]. The proposal does not include a microscopic description
of M-theory, like the ones given by the D = 10 string theories for the D = 10
dimensional super gravities. It merely suggest that the M2-brane plays a similar
role then the string and that the M5-brane plays an important role as the dual degree
of freedom in D = 11. The quantisation of these systems is very difficult, but
conjectures of special properties for the M2 brane degrees of freedom have been
made in large N-limits [8]. For circle compactifications detailed descriptions for the
topological string expansion including non-perturbative properties have been made
in [139, 140], using the D0/D2 brane spectrum, as we review in Sect. 4.3.3.

1.1.2 The B-Model in Mirror Symmetry

The B-model is concerned with the study of the dependence of the amplitudes
of superstring compactifications on the complex moduli, which correspond to
the deformation of the complex structure of the compactification manifold. This
complex moduli space can itself be compactified to a complex manifold, which we
callMcs(M).

An important physical application of the B-model is within the framework
of mirror symmetry. Mirror symmetry exchanges one Calabi-Yau manifold M

with another Calabi-Yau manifold W , so that the complex structure moduli space
Mcs(W) ofW is exchangedwith the moduli spaceMcks(M) of areas, complexified
with the NS B-field, ofM and vice versa. The latter is called the complexifiedKähler
structure moduli space.

Without going into the technical details let us recapitulate the facts, which makes
this setting so powerful for calculations:Mirror symmetry exchanges the topological
A-model with the topological B-model. The couplings in these topological theories
are of the same structure. They encode on the world sheet sphere the 3-point
couplings and on higher genus g world sheets, where the theory has to be coupled
to world-sheet gravity, the couplings between the selfdual part of the space time
curvature R+ and the selfdual part F+ of the graviphoton fields strength R2+F

2g−2
+ .

By supersymmetric localisation one can show that in the A-model, these world-
sheets are mapped to holomorphic curves of definite area. In general they depend
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therefore on the complexified size parameters of the Calabi-Yau space. One the
other hand one can show that they do not depend on the complex structure of the
Calabi-Yau space.

By supersymmetric localisation in the B-model one can establish that the world-
sheets are mapped to points. Hence the resulting theory does not depend on the
complexified areas. In fact the resulting theory is a field theory on the Calabi-Yau
space, known as Kodaira-Spencer gravity. As the name suggests its amplitudes do
depend on the complex structure.

Schematically one has the following picture

One uses this setting in the following way: One determines the moduli dependent
amplitudes on the side where they depend only on the complex structure deforma-
tions. Here they can be calculated exactly. In fact they are sections of bundles over
the complex moduli space, which can be expanded in convergent power series in
various regions of Mcs(∗). If the mirror map between the complex moduli and the
complexified Kähler structure moduli spaces say

t∗ :Mcs(W)→Mkcs(W) (1.1.7)

is locally known between the patches U∗ ∈Mcs(W) and V∗ ∈Mcks(M), one can
relate the individual terms of the expansion of the B-model amplitudes to individual
instanton contributions of the A-model amplitudes. This is particular successful in
region Ulr ofMcs(W), which correspond to a large radius region Vlr ofMkcs(M),
because here one understands in theA-model the principal form in which individual
world sheet instantons of a given genus and degree contribute to the amplitude.
Hence one can identify these contributions one by one. In this way the expansion
of the B-model amplitudes in the right parametrizations tlr , becomes a generating
function of an infinite number of WS-instantons contributions also known as
Gromov-Witten invariants, each of which would be very hard to calculate directly.
Other regions of Mcks(M) where again the expansion in the A-model is well
understood are the orbifold points of M where M looks locally like C3/G where
G is a discrete subgroup of SU(3). Again if the map torb : Uorb → Vorb is locally
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known, the B-model amplitudes expanded in torb become generating functions for
“Orbifold Gromov-Witten” invariants. Another interesting aspect of the orbifold
points is, that for these values of the moduli one has at least in many cases an exact
description of the two dimensional superconformal worldsheet theory. The latter
was suggested by Doron Gepner and for this reason these points are also known
as Gepner points. There are many other special regions and points corresponding
to critical locii in Mcks(M), where M either degenerates of becomes specially
symmetric, where the corresponding A-model interpretation of the amplitudes has
yet to be found.

The key B-model techniques that we develop in the bulk of the lectures can
be summarized as follows. This complex moduli space can be compactified to a
complex manifold, which we call Mcs . The study of the complex structure of M
is at least locally equivalent to the variation of the Hodge structure of M . The
information of this variation is contained in the dependence of periods integrals
on the complex structure moduli. The periods integrals have also have a direct
interpretation in terms of the physical amplitudes. For example for Calabi-Yau
n-folds Mcs is Kähler and the Kähler metric is determined by the periods. The
periods are solutions of systems of differential equations, often called the Picard-
Fuchs equations, which determines up to choice of basis of the solutions the periods
integrals and their dependence on the complex moduli. These systems of differential
equations can geometrically be interpreted as the flatness of a connection of a bundle
over M in which the periods are sections. The connection is known as the Gauss-
Manin connection. The local flatness does not mean that the connection is trivial,
rather the periods experience monodromies, when they are analytically continued
around critical loci which are at complex codimension one inMcs . At these loci in
Mcs the manifold M is either singular or exhibits additional discrete symmetries.
While the monodromygroup� ⊂ Sl(2,Z) for elliptic curves, i.e. Calabi-Yau spaces
in complex dimension one, has been intensively studied and found to be related to
deep number theoretical questions, not much is known about the monodromy group
� ⊂ Sp(h3(W),Z) of Calabi-Yau threefolds and even less about its automorphic
forms. It is this difficult question that can be at least in part addressed by mirror
symmetry and the B-model techniques that we discuss in the main part of the
lectures.

1.1.3 The Full Physical Mirror Conjecture

One should notice that the mirror conjecture as suggested from the worldsheet
point of view of type II string, which can be made rather precise for example
at the Gepner point, goes much further then exchanging the complex structure
with the complexified Kähler structure with the technical advantages explained
above. Generally one has an (N , N̄ ) = (2, 2) superconformal field theory on
the worldsheet of the closed string theories propagating on M as well as on W .
The surprising prediction is that these two (N , N̄ ) = (2, 2) superconformal field
theories are completely identical after some rather trivial field identification, which
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just flips the relative left and right charge assignment of the composite fields that are
constructed from left and the right moving fields.

Already the identification of the topological sectors of the (N , N̄ ) = (2, 2)
superconformal field theory with the cohomology groups of M and W implies that

Hn−k,k(M) = Hk,k(W) , k, n− k ≥ 0 (1.1.8)

i.e. for odd dimension n, odd forms are map to even forms and vice versa. The full
prediction is that not just the harmonic forms, but for a suitable and possible choice
of metrics on M and W , the complete spectrum of the Laplacians can be identified
and moreover all non-topological closed string amplitudes are also the same.

In odd dimensions mirror symmetry exchanges Type IIA with IIB theories
and even branes with odd branes. These branes correspond to possible boundary
conditions of the (N , N̄ ) = (2, 2) superconformal field and should be likewise
identified together with all possible open string amplitudes that are possible with
this boundary conditions. Again this should hold if these branes are topological
but even if they are not topological. The former statement leads to homological
mirror symmetry conjecture. Since the even topological branes and their interactions
are mathematical described by the derived category of coherent sheaves while the
odd topological branes and their interactions by the Fukaya category of special
Lagrangians the two structures are expected to be identified by mirror symmetry.

1.1.4 Comment on the Construction of Mirror Pairs

One obvious question is how to construct the mirror partner W from M . This
questions has a very nice conceptual answer outlined by Strominger, Yau and
Zaslow, because mirror symmetry can be understood as the T-duality r′ = 1

r , that
we discussed in the last section for one S1, performed on half of the real dimensions
of a Kähler manifold of complex dimension n. However in practice this program is
difficult to implement—we explain some difficulties below—, but there are several
constructive ways to produce mirror pairs. We list all of them below

• The Batyrev construction [28] defines pairs of reflexive polyhedra (, ̂), which
specify pairs of compact toric varieties (P,P

̂
), which are almost Fano. One

can define therefore pairs of smooth Calabi-Yau manifolds (M,W
̂
) as the

canonical bundles in these toric ambient spaces and show that the complex
structure and complexified Kähler structure are exchanged in these pairs.

• The Greene-Plesser construction [144] constructs the mirror of a Fermat hyper-
surfaces in weighted projective spaces by a maximal discrete orbifold [121]. It is
inspired by a duality on the worldsheet conformal field theory and yields a subset
of the hypersurface pairs within the Batyrev construction.

• The Batyrev-Borisov construction generalizes the Batyrev construction by spec-
ifying dual toric ambient spaces together with a dual nef partition that defines
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pairs of complete intersections Calabi-Yau manifolds in the toric ambient spaces
[29].

• The Berglund-Hübsch construction defines the mirror by transposing the adja-
cency matrix of the exponents in a hypersurface constraint. It has a considerable
but not complete overlap with the Batyrev construction.

• The Strominger-Yau-Zaslow conjecture, which asserts that the D0 brane or sky-
scraper sheaf on M is identified with a special Lagrangian brane L on W . As
the moduli space of the D0 brane is the Calabi-Yau manifold M this particular
special Lagrangian braneLmust have a moduli space that can also be the Calabi-
Yau space M . As the dimension of the geometric deformation space is b3(L), it
can be argued to be a real n-dimensional torus.M is then the total space of the T -
dual torus fibred over this deformation space, the real n-dimensional base. This
works because the complex deformation space of the brane is the geometrical
of L together with a flat gauge connection on L, which is described by the
dual torus. This picture not only implies that generically Calabi-Yau spaces have
special Lagrangian torus fibrations, it also predicts that the mirror Calabi-Yau
W is obtained by T -duality on the corresponding fibre torus. It can be shown
deformation space that this construction exchanges the complexified Kähler
structure or more general the symplectic structure with the complex structure.
It is easy to see that the T-duality on an odd number of circles maps type IIA
to type IIB string. The T-duality can be easily defined on the generic fibres. The
extension to the degenerate tori, which are necessarily present in actual Calabi-
Yau spaces with the full SU(n) holonomy, is harder to describe.

In practice for the examples explained here the Batyrev and Batyrev-Borisov
construction are sufficient to construct the mirrors. We should mention further
that recent progress in the localisation within the gauge linear σ -model, allows
to construct at least at genus topological A- and B- model data without actually
constructing the geometrical mirror pairs.

1.1.5 Bergers List

We finish this motivational introduction, which started with basic concepts of
Kaluza-Klein reduction, with a section containing a short summary of the spinor
representations in various dimensions and the corresponding special holonomy
manifolds.

For a vector bundle V with a connection � over a path connected manifold M

the holonomy group g� is generated by all transformations that a vector v ∈ Vp at
the point p experiences, when it is parallel transported around all possible closed
loops in M back to p. In particular for a d dimensional Riemannian manifold M

with �(g) the metric connection and V = TM the tangent bundle one denotes
the corresponding holonomy group Hol(g). Clearly Hol(g) ⊂ O(d) in general,
Hol(g) ⊂ SO(d) if M is oriented, Hol(g) = 1 if g is a flat metric and Hol(g) =
H , if M is a symmetric manifold defined by the Lie groups G and H as G/H .
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On orbifolds spaces of flat spaces with conical singularities one can have discrete
holonomy groups.

Berger classified all possible holonomy groups on simply connected irreducible
and non-symmetric manifolds of real dimension d . We reproduce the list with some
additional information about the properties of the metric and the number N+, N−
of complex covariant constant spinors with positive and negative chirality [312]
respectively. If d is odd the spinor representation is irreducible and we have just one
type of spinor. The last part in the list below comments on the special forms that
exist on this manifold. See [155, 203, 312] for more background.

1. Hol(g) = SO(d), generic oriented manifold, not necessarily spin.
2. d = 2n with n ≥ 2: Hol(g) = U(n), Kähler manifold, Kähler, not nec. spin; ω

Kähler form of Hodge type (1, 1).
3. d = 2n, n ≥ 2: Hol(g) = SU(n), Calabi-Yau manifold, Ricci-flat, Kähler,

N± = 1 for n odd,N+ = 2 for n even; ω Kähler (1, 1)-form and � holomorphic
(n, 0)-form.

4. d = 4n, n ≥ 2: Hol(g) = Sp(n), Hyperkähler manifold, Ricci-flat, Kähler,
N+ = n+ 1; H, I, J SU(2) triplet of (1, 1) forms.

5. d = 4n, n ≥ 2: Hol(g) = Sp(n)·Sp(1),Quaternionic Kähler manifold, Einstein,
not Ricci-flat, not Kähler .

6. d = 7: Hol(g) = G2, G2-manifold, Ricci-flat, N = 1; � associative 3-form, ∗�
coassociative 4-form.

7. d = 8: Hol(g) = Spin(7), Spin(7)-manifold, Ricci-flat, N− = 1; � Cayley
4-form.

1.1.6 Spinors and Supergravity in Various Dimensions

Here we provide a list of spinors in the dimensions which are relevant to study
Superstring-, M- and F-theory compactifications. In this sections spinors are
irreducible representationsV of theD = t+s dimensional Lorentz algebra so(t, s).

They have generically 2!D+12 "−1 components.
However more information is needed, as one has depending on the dimension

natural bilinear forms 〈·, ·〉 : V × V → K associated to the representation V ,
which fulfill 〈s1, s2λ〉 = 〈s1, s2〉λ and 〈s1, s2〉 = 〈s2, s1〉. Depending on whether
K is R, C or H one calls the spinor real, complex or quaternionic. In the physics
literature real spinors are denotedMarjorana spinors and quaternionic spinors make
two symplectic Majorana spinors. In even dimensions one uses in the physical
nomenclature often Weyl spinors.

Of course in physics one wants to have spinors that are irreducible represen-
tations under space reflections (parity), time reflections and charge conjugation as
for example the Dirac spinor in four dimensions or one wants to put additional
constraints to obtain the four dimensional Majorana spinor. These are more detailed
or specialized considerations as covered in the present discussions of irreducible
representations of so(t, s).
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Real spinors and complex spinors have the naive number of real components but a
nontrivial constraint on the quaternionic spinors eliminates half of their components.

Let us now give a list of the spinor representations. Since it is an useful
intermediate information we give also the irreducible representations of the Clifford
algebra called pinors below.

Using Bergers list and the list of spinors one can infer how many supersymme-
tries one gets in the uncompactified dimension d = D − d for a compactification
on a d = 2n- dimensional internal space. The spinor of the uncompactified space
decomposes under the representations of the low energy space time and the internal
space according to the embedding of the maximal subalgebra

so(1,D − 1) ⊃ so(1, d− 1)⊕ so(d) (1.1.9)

The holonomy group acts on the representations of so(d) of the internal space and
the number of surviving supersymmetries correspond to the number of covariantly
constant components of the spinor in the internal space.

For example for the compactification of the maximal supersymmetric type IIA/B
theories in D = 10 on a Calabi-Yau 3-fold one has according to Bergers list
Hol(g) = su(3). Now (1.1.9) reads

so(1, 9) ⊃ so(1, 3)⊕ so(6) ∼= so(1, 3)⊕ su(4) (1.1.10)

where we identified so(6) ∼ su(4). The eight dimensional spinor of so(6)
decomposes in spinors of positive- and negative chirality, which transform as 4 and 4̄
representations of su(4). Now we have to study the invariant pieces of these spinors
under the holonomy su(3). Luckily this is fixed by representation theory. One has

4 = 3+ 1 , (1.1.11)

where we have su(3) representations on the right hand side. Hence there is one
invariant or more precisely covariantly constant component for the positive- and
similar one for the negative chiral spinor of so(6). That leads to spinors of two
chiralities transforming under the Lorentzgroup so(1, 3) of the uncompactified four
dimensional space-time filling the C2 representation of Table 1. Hence if starts with
N = 2, i.e. two 16 component spinors QI

10, I = 1, 2 generating the N = 2
supersymmetry algebra in ten dimension, one gets two spinors QI

4, I = 1, 2
generating theN = 2 supersymmetry in four dimensions.

Often in the physics literature one speaks of the components of Qdim as
supercharges. Equation (1.1.11) is then interpreted that the su(3) holonomy on a
Calabi-Yau 3 fold divides the number of supercharges by four.

Similar the compactification of the ten dimensional theory on K3 yields the
decomposition

so(1, 9) ⊃ so(1, 5)⊕ so(4) ∼= so(1, 5)⊕ su(2)⊕ su(2) (1.1.12)
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Table 1 Pinors, Spinors,
Supersymmetry
Representations and maximal
number of supersymmetries

D = t + s Pinors Spinors Q N
12=2+10 R64 R32 ⊕ R32 R64 1

11=1+10 R
32 ⊕ R

32
R
32

R
32 1

10=1+9 R32 R16 ⊕ R16 R16 2

9=1+8 C
16

R
16

R
16 2

8=1+7 H
8

C
8

C
8 2

7=1+6 H4 ⊕H4 H4 H8 2

6=1+5 H
4

H
2 ⊕ H

2
H

4 4

5=1+4 C
4

C
4

C
4 4

4=1+3 R4 C2 C2 8

3=1+2 R
2 ⊕ R

2
R
2

R
2 16

2=1+1 R2 R⊕ R R2 16

1=1+0 C⊕ R R R 32

and the 16 decomposes as

16 = (4, 2, 1)⊕ (4, 1, 2) . (1.1.13)

We can identify the second su(2) with the holonomy of the K3, which as Calabi-
Yau 2-fold has Hol(g) = su(2). The two invariant combinations in the other su(2)
give one quaternonic spinor H4 for each ten dimensional spinor 16. E.g. N = 1 in
ten dimensions leads to N = 1 in six dimensions and the number of supercharges
is divided by two by the su(2) holonomy.

By the considerations above it is clear that compactifications on flat tori with
trivial holonomy leads to no reduction of the number of supercharges. If one starts
with the maximal supersymmetry in eleven dimensions one gets upon T d ∼ (S1)d

compactifications theorieswith the maximal amount of supersymmetries in all lower
dimensions that are indicated in Table 1.

One does not get all possible chiralities though. E.g. by compactifying eleven
dimensional supergravity on S1 one gets the chiral type IIA supergravity in ten
dimensions which has one positive- and one negative chiral 16 spinor generating
theN = 2 theory. If one wants to express that fact one uses the notationN = (1, 1)
instead ofN = 2.

1.1.7 String Dualities and Further Applications of B-Model Techniques

There have been indications that compactifications, which start with different super-
symmetry in ten dimensions but end up in the un-compactified d-dimensional space
with the same supergravity theory, are dual to each other, after non-perturbative
contributions have been taken into account.
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Heterotic/Type II Duality and Geometric Engineering of QFT

The earliest dualities start with the N = 1 heterotic string and the N = 2 type II
string in ten dimensions and compactify on the heterotic side on manifolds which
smaller holonomy groups, which break less supersymmetry [197]. For example the
following dualities between 1

2—and 1
4 super symmetric theories9 are believed to be

true

E8 × E8 heterotic string on T 4 = Type II String on K3

E8 × E8 heterotic string on K3× T 2 = Type II String on K3 fibred CY 3-fold
(1.1.14)

Convincing evidence for the first case was provided comparing the BPS spectrum
on both sides [290]. The most remarkable feature is that in this duality the
heterotic string coupling, which is given by a complex combinations of the vacuum
expectation value of heterotic dilaton φ and axion is identified with a geometric
modulus on the type II side and vice versa. For example in the second duality the
complexified size of the base P1 of the K3 fibred Calabi-Yau 3 fold is identified
with the heterotic string coupling. Together with mirror symmetry this conjectural
setting allows to calculate non-perturbative effects in heterotic string with B-model
techniques, e.g. on minons of K3 fibred Calabi-Yau 3-folds [204, 229]. While the
heterotic string comes naturally with non-abelian gauge groups, the charged gauge
bosons on the Type II side are non-perturbative Ramond-Ramond states that are
geometrically realised as solitonic branes configurations near singular limits of the
Calabi-Yau manifold. One can focus on the singular geometry and decompactify the
rest of the geometry to extract gauge theory quantities. The rigid Kähler potential
in this limit gives rise to the exact gauge coupling in suitable singular geometries,
while the periods encode the BPS masses. Stability of the BPS branes is related to
geodesics on the base [231]. This rich application of quantities calculable in the B-
model on specially chosen Calabi-Yau manifolds to N = 2 quantum field theories
in d = 4 dimensions is called geometrical engineering of quantum field theories
[214, 221]. It is not confined to theories which have Lagrangian descriptions, but
rather has become very useful to find and explore much more general classes of
N = 2 theories then previously known.

While the B-model is strong in calculating non-perturbative effects, the pertur-
bative heterotic string makes strong higher genus predictions in the topological
sector of the Type II string. The prototypical example is the prediction of Yau
and Zaslow [333] relating the count of nodal rational curves on K3 to the one
loop partition function of the heterotic string projected on the right moving (super
symmetric) ground state, also known as elliptic genus, giving the contributions of

9Upon further torus compactifications the first lead to N = 4 while the second lead directly to
N = 2 theories in d = 4.
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the 24 transversal bosonic modes hence the inverse of (comp (A4.28))

 = q

∞
∏

n=1
(1− qn)24 . (1.1.15)

This rational curves can be understood as degenerate higher genus curves, where the
points of degeneration are counted by the Euler characteristic of the Hilbert scheme
of points on K3. The genus can be made explicit by introducing the topological
string coupling qλ = eiλ in the formula for the refined Euler characteristic of the
Hilbert Scheme, yielding the higher genus counting formula for the topological
string partition function [215], see (4.3.22) for a definition

Zhol(K3, qλ, q) =
∑

n≥0
χλ(Hilb

n(K3))qn−1 = 1

q

∞
∏

n=1
(1− qλq

n)2(1− qn)20(1− q−1λ qn)2

.

(1.1.16)

This application of heterotic type II duality to curve counting that also yields
closed modular formulas for the higher genus B-model amplitudes has many
generalisations. For instance the only known formula for all genera (reduced)
invariants of a compact threefold is the one for K3 × T2 given in [215], but the
idea can be generalised to the K3 fibred Calabi-Yau spaces [222, 233, 260], as well
as to elliptically fibered Calabi-Yau spaces [195, 235].

M-Theory Unifying String Dualities

Given the uniqueness of the N supergravity in D = 11 dimensions and the
potential of M-theory of being, the maybe ultimate, non-perturbative description
of string theory it is natural to embed these string theory dualities on various
background geometries into M-theory compactifications. A key insight by Horava
and Witten that the D = 10 heterotic and type I string can be obtained by M-
theory compactifications with boundaries [180] in D = 10 and D = 9 dimensions
serves as staring point and a summary how these duality conjectures are related
can be found e.g. in [291]. A systematic approach stressing the E11 symmetry
of D = 11 supergravity was developed in [313]. The unique covariant constant
spinor in Bergers list for seven manifolds implies that compactifications ofD = 11
supergravity on G2 manifolds leads to N = 1 supergravity in d = 4. Compact
G2 manifolds have been constructed by Joyce [202, 203] and more recently by
Kovalev [241]. From the point of view of calculating the N = 1 effective action
in d = 4 this case would be the next level of complexity relative to the Type II string
compactifications on Calabi-Yau threefolds discussed mostly in the lecture. Some
aspects of the problem have been outlined in [159].
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F-Theory and 6D SCFT

The non-perturbative type IIB theory in d ≤ 8 with varying axio-dilaton is easier
described from an twelve dimensional starting point, where there is however no
supergravity multiplet in the right signature, see Table 1. Nevertheless a very
efficient way to describe these general type IIB in d = 2n is to consider an
6 − n complex dimensional elliptically fibred Calabi-Yau manifold over a d =
5 − n complex dimensional base [307], which needs to have some positivity
conditions, rendering the choice finite. In this construction known as F-theory,
the complex structure of the elliptic fibre parametrise the axio-dilaton and it has
been checked progressively in dimension of the base that the Calabi-Yau condition
ensures anomaly free theories in d dimensions. This is why elliptically Calabi-Yau
fourfolds, which lead to N = 1 theories in d = 4 are also relevant to physics
and indeed mirror symmetry and B-model techniques are of help to evaluate the
holomorphic quantities like the superpotential, the gauge kinetic functions as well
as some simple non-holomorphic ones as the Kähler potential [232, 262]. F-theory
compactifications on elliptic Calabi-Yau threefolds with contractable singularities
can be used to conjecturally classify the elusive d = 6 theories [171, 172], whose
existence was conjectured by Nahm [266] as mentioned above in Sect. 1.1. B-
model techniques. B-model techniques on the elliptic Calabi-Yau 3-fold are useful
to explore these theories [166, 230]. In particular a building block the E-string can
be very efficiently solved using modularity and B-model techniques [158].

1.1.8 The Plan of the Lecture

Chapter 2 is devoted to the main object that underlies all studies in this lecture
namely deformation families of Calabi-Yau n-folds

π : Mn →Mcs (1.1.17)

over their complex structure moduli spaceMcs . This is a very well studied beautiful
subject in algebraic geometry.

Physical input from string compactifications on Calabi-Yau manifolds added the
perspective of viewing this subject from theN = (2, 2) superconformal field theory
point of view. This theory allow a topological twisting that leads to a topological
subsector called the topological B-model, whose operators and deformations are
directly related to the complex structure deformations.

It describes also in the effective action of smooth Calabi-Yau compactifications
of Type II string a topological subsector whose metric (2-point amplitudes) and
higher point amplitudes depend on the complex the structure moduli and not on the
complexified Kähler moduli.

The main new input of physics is of course mirror symmetry which states that
the B-model on mirror pairs of Calabi-Yau spaces is strictly equivalent to another
topological subsector that depends for smooth Calabi-Yau compactifications on the
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complexifiedKähler moduli, but not on the complex the structure moduli. It is called
the topological A-model. The names are given in the paper of Witten [319], where
the decoupling is explained.

In the next chapters we explore properties of the topological B-model amplitudes
that on topological A-model side correspond to amplitudes that get only corrected
by genus zero instantons. Since mirror symmetry is proven at genus zero by
Givental [136, 137], Lian-Liu-Yau, [253–255] the statements below that we are
deriving for the complex the structure moduli of the manifold M are expected to
be strictly correct also for the A-model on the mirror manifold, at least for the
intersection Calabi-Yau manifolds in toric ambient spaces.

We start with an exposition about the basic geometric properties of Calabi-
Yau manifolds. A possible definition is the following: A Calabi-Yau n-fold M is
a complex manifold, which is also a Kähler manifold, and whose holonomy group
is the group SU(n).

However this is not the only way to define a Calabi-Yau space. It is very useful to
study equivalent properties on complex n dimensional Kähler manifolds M , which
can be used to define Calabi-Yau manifolds and highlight different geometric and
algebraic aspects of the latter. Before we do this we need to review topological
facts about real manifolds in Sect. 2.1. We then turn to introduce first properties
and examples of complex manifolds in Sect. 2.2. The notions of Kähler manifolds
are introduced in Sect. 2.3. The equivalent definitions of Calabi-Yau manifolds and
their physical relevance are discussed in Sect. 2.4.1. Their complex deformation
theory is closely related to their middle cohomology whose properties are reviewed
in Sect. 2.3.4. The main property of the this deformation theory on Calabi-Yau
manifolds is that it is unobstructed as explained in section “First Order Complex
Structure Deformations”.

Due to the local and global Torelli theorems a key tool to describe these moduli
spaces is the variation of Hodge structures that is concretely expressed by the
notion of the Picard-Fuchs equation describing the flat Gauss-Manin connection.
These concept are first abstractly introduced in Sect. 2.4.3 and exemplified with the
Legendre family of genus one curves.

The main focus then is on the stringy moduli space and its properties under
duality symmetries including in particular mirror symmetry. This is explained in a
short journey from one to higher complex dimensions in Sect. 2.4.4. The main focus
of this review are the Calabi-Yau 3 folds. Apart from being Kähler their moduli
space enjoys an additional structure, called special Kähler geometry which is central
to this review. Its discussion starts in Sect. 2.5.

The monodromy group, which plays an important role, as the string amplitudes
of interest are automorphic forms w.r.t. to that monodromy groups is discussed in
Sect. 2.6. The behaviour of the periods at the singular loci plays also an important
role in fixing the integral symplectic basis; we give a complete characterisations of
the latter in section “The �̂ Classes and Homological Mirror Symmetry”.
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We then turn to a first discussion of explicit examples of local and global Calabi-
Yau manifolds and their mirrors in Sect. 2.7. The constructions are based on toric
geometry and the work of Batyrev.

Next we discuss explicit representations of the holomorphic (n,0)-forms and
their period integrals on Calabi-Yau n-folds in Sect. 2.8. In Sect. 2.9 we describe
the differential ideal that annihilates the periods, named the Picard-Fuchs system.
From a complete set of generators of the ideal of linear differential one can
derive the n-point couplings, as described in Sect. 2.9.2. The rest of the section
describes various methods to get these systems of differential operators and
properties of their solutions. In the case the operators comes from a Gelfand-Greav-
Kapranov-Zelevinsky system their solutions can be given very explicitly in terms of
generalised hypergeometric functions.

This is all exemplified in detail for the quintic hypersurface in P4 and other hyper-
geometric and more general one parameter families in Sect. 2.10 and a selection of
two parameter families exhibiting K3 and elliptic fibrations in Sect. 2.11.

An interesting property of Calabi-Yau Picard Fuchs equations is the integrality of
the mirrormap for which we give some examples in Sect. 2.11.3. This property gives
hints for the role of the automorphic symmetries, which can be most completely
used, if the compact part of a non-compact mirror is an elliptic curve. As shown in
Sect. 2.12 these local cases which are dual to del Pezzo surfaces can be all treated
in an universal way.

Chapter 3 is concerned with the world-sheet aspects of string theory on Calabi-
Yau manifolds. It reviews material that were part of earlier lectures of myself and
that is essential to get good understanding of Sect. 4 that contains the description
of the complete solution of the B-model on local geometries and state of the art
of solving it on compact Calabi-Yau manifolds. Firstly we describe the relevant
superconformal algebras on the World-Sheet in Sect. 3.1 including the spectral flow
Sect. 3.1.2 and the supersymmetric non-linear sigma model that occurs for the string
world-sheet in a Calabi-Yau background geometry in Sect. 3.2. This allows to define
by the topological twists in Sect. 3.3 the topological A- in Sect. 3.4 and the B-model
in Sect. 3.5.

Much of the structure of special geometry can be more generally defined
using the t t∗ structure. This combination of spacetime and world-sheet techniques
is important to understand the derivation of the holomorphic anomaly equation
in Sect. 4. We therefore devote two subsections in Sect. 3.6 to develop the t t∗
algebra. Section 3.6.2 exploits this tt∗ structure to describe the n-point couplings on
Calabi-Yau n-folds and the relation to the Picard-Fuchs operators. Section 3.7 falls
somewhat out of the context of Sect. 3 as it sketches a space-time approach to the
B-model, which however gives results that clarify for example boundary properties
of the amplitudes that are important to fix the holomorphic ambiguity.

Chapter 4 contains in Sect. 4.1 the coupling of the B-model to gravity, which
leads to the derivation of the holomorphic anomaly equation in Sect. 4.1.1, which
have a wave function interpretation on which we comment on in Sect. 4.1.2.

The recursive character of holomorphic anomaly combinedwith some structures,
typical in the rings of almost holomorphic modular forms, allows under some
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assumptions to directly integrate the holomorphic anomaly so that the resulting
amplitudes are polynomials in holomorphic generators the so called propagators
and meromorphic coefficients as explained in Sect. 4.2.

There are physical and geometrical interpretations of the higher genus amplitudes
at various critical points in the moduli space corresponding to singularities in the
Calabi-Yau family which require a holomorphic limit and certain gauge choices
discussed in Sect. 4.3.1. Most notable is of course the prediction of the Gromov-
Witten invariants at the maximal unipotent monodromy or large volume point. More
suitable to explain the integrality are the Donaldson-Thomas and Pandharipande-
Thomas invariants as the latter can be related to the BPS invariants, whose physical
origin comes from the counting of super symmetric ground states of classical D-
brane configurations, that make their way into the amplitudes by a Schwinger-Loop
calculation. The fact that counting is involved gives the remarkable integrality
structures in the expansion of the amplitudes as discussed in Sect. 4.3.

These structures allow to a large extend fix the huge kernel in the holomorphic
anomaly equations, called the holomorphic ambiguity. We discuss both the refined
integrality which involves the actual counting as well as the unrefined that counts
more robust indices that are directly related to the genus expansion of the topological
string.

Constrained by modular properties, holomorphicity, or rather restricted mero-
morphicity, and the physical and geometrical expectations at the boundaries it is
possible to fix the refined and unrefined holomorphic anomaly completely for the
local models and the latter to some extend for the global models as we explain in
Sect. 4.5. We demonstrate this for the local P2 geometry the K3× T 2 example and
the quintic.

Chapter 5 is less self contained and aims at an overview over further and
more recent B-model—or closely related modular techniques that allow to obtain
impressive higher genus results. They fall into two classes, one in which one
evaluated a one-loop amplitude or rather an elliptic genus in a dual theory, like the
heterotic theory or a quiver gauge theory, that give all genera results for the certain
classes in the Calabi-Yau manifold. This is discussed in Sect. 5.1 for the two cases
Sects. 5.1.1 and 5.1.2 in turn.

In section we explain the open string disk calculation in Sect. 5.2.1 with an
example for the local P2 example in section “Disks on Harvey-LawsonBranes in the
O(−3)→ P2 Geometry”. The main objective of this material is to give latter a short
account of the remodelling the B-model by matrix model techniques in Sect. 5.2.2,
that applies open and closed higher genus amplitudes of local Calabi-Yau spaces
and gives impressive analytic results.
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2 Geometry of Calabi-Yau Manifolds

2.1 Some Aspects of (Co)Homology Theory on Real Manifolds

In this short section we review some basic notions of (Co)Homology theory on real
manifolds, the Hodge star operator and harmonic analysis. This is to define notations
and stress a few aspects that are used later.

2.1.1 Homology and Cohomology

Before we engage in the discussion of complex manifolds, we review aspects of
homology and cohomology on any manifold M . No matter whether we have real
or complex manifolds the homology is naturally defined over the ring of integers
Z or eventually over finite fields. Cohomology for complex manifolds is naturally
defined over C. On the other hand for a fixed manifold the two concepts are dual,
the pairing defined by integration gives rise to the period integrals. One of the key
ideas in the study of families of complex manifolds that we discuss latter is to
study suitable cohomology groups as they vary with the complex structure using
the complex structure dependence of these period integrals.

2.1.2 Homology

Let us review some elementary notations of singular homology theory as can be
found in the books [143, 296]. We then study it’s relation to de Rham cohomology
for smooth manifolds of real dimension d and finally to the cohomology of complex
manifolds. Recall that a p-chain Cp is a

Cp =
∑

k

bkNk (2.1.1)

sum of p dimensional oriented simplicial subsets Nk of M . Often we can think of
them simply as oriented smooth submanifolds of M . However the latter do not in
general represent all homology classes to be defined below.

Such linear combinations are particular natural if one thinks of chains as domains
over which p-forms γp can be integrated over

∫

Cp

γp =
∫

∑

k bkNk

γp =
∑

k

bk

∫

Nk

γp . (2.1.2)

The coefficients bk should come from a ring such as Z or fromR, C or other number
fields, such as the p-adic numbers, in which case one speaks of a integer, real,
complex, or p-adic chains. The most natural choice for our purposes is Z. Addition
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of chains is abelian and in the simplest case theCp are free abelian groups. However
torsion, i.e. chains whose multiple is trivial, can occur.

To any oriented simplicial complex or any oriented manifold M of dimension p

one can associate its oriented p−1 dimensional boundary by the boundary operator
∂ . A fundamental fact is that the boundary of a boundary is empty. In terms of the
boundary operator ∂ this fact is expressed as

∂∂M = 0 . (2.1.3)

By linearity of the boundary operator it extends immediately to chains and maps
p-chains to (p − 1)-chains

∂Cp =
∑

k

bk∂Nk (2.1.4)

and makes chains into a chain complex.
p-Cycles Zp are p-chains which are closed, i.e they have no boundaries or

equivalently they are in the kernel of ∂

∂Zp = 0 . (2.1.5)

Among them there are the trivial- or exact p-cycles Bp , which in the image of ∂ ,
i.e. they are itself boundaries of a (p + 1)-chains

Bp = {Cp|Cp = ∂Np+1} . (2.1.6)

The so called singular homology groups of the manifold M is then given by the
quotients

Hp(M) = Zp/Bp , (2.1.7)

describing the corresponding equivalence classes of closed modulo exact p-chains.
The dimensions of Hp(M) as vector spaces are called the Betti numbers

bp = dim(Hp(M)) . (2.1.8)

As mentioned a natural ring for the homology is Z, because of the possibility to
define an integral intersection form between elements of Hp(M,Z) and Hq(M,Z)

with p + q = d

Hp(M,Z)×Hd−p(M,Z)→ Z (2.1.9)



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 103

By the theorem of Poincaré duality for compact, orientable manifolds without
boundary10 this intersection pairing is unimodular, which means that any linear
functional Hd−p(M,Z) → Z is expressible as intersection with a class Cp ∈
Hp(M,Z) and any class Cp ∈ Hp(M,Z) that has intersection 0 with all classes in
Hd−p(M,Z) is a torsion class. So the groupsHp(M,Z) are abelian groups of finite
rank (lattices), possibly with torsion. Further aspects of (2.1.9) will be discussed in
Sect. 2.3.4.

2.1.3 Cohomology

Next we come to cohomology and recall that a p-form γp ∈ �p(R) is given in the
local coordinates xi of a real manifold by

γp = 1

p!γ (x)i1i2...ipdx
i1 ∧ dxi2 ∧ . . . ∧ dxip = γ (x)Ipdx

Ip (2.1.10)

with γ (x)i1i2...ip a skew symmetric tensor that is often enough differentiable for
what follows.11 The dxi span the cotangent space and transform in the naive

way dx̃i(x) = ∂x̃i

∂xk dx
k under coordinate changes.12 The symbol dxIp = dxi1 ∧

dxi2 ∧ . . . ∧ dxip , with i1 < i2 < . . . < ip is also skew symmetric, i.e.
dxi ∧ dxj = −dxj ∧ dxi , and spans the d !

p!(d−p)! dimensional vector space 
p

of forms. From the transformation of dxi follows that dxi1 ∧ dxi2 ∧ . . . ∧ dxip

transforms as a skew symmetric covariant tensor. In particular the form of maximal
degree p = d transforms with multiplication by the Jacobi-determinant, i.e. like a
volume element under coordinate changes. The skew symmetric tensor γ (x)i1i2...ip
transforms contravariant so that γp is invariant. Recall that a 0-from is just a
differentiable function, the components of a 1-forms are co-vector fields, that 
p

has the same dimension then 
d−p and q and p-forms can be multiplied to p + q-
forms with βq ∧ γp = (−1)pqγp ∧ βq .

An important operation on forms is the exterior derivative d

d : �p(R)→ �p+1(R) (2.1.11)

defined on

• f ∈ �0(R) as df = ∂f

∂xi dx
i with summation over equal indices implied and on

general forms
• γp = γIpdx

Ip ∈ �p(R) as dγp = dγIpdx
Ip .

10Later in the lecture we deal also with non-compact so called local Calabi-Yau manifolds. Often
in this situations one can still make partially sense of (2.1.9) by restriction to the compact part.
11We will often assume that it is in C∞, i.e. arbitrarily often differentiable in the coordinates x.
12We assume summation over equal indices.
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This is a canonical generalisation of the well known three dimensional case where
the exterior derivative d on 0-forms is the gradient, on 1-forms is the curl and on
2-forms is the divergence. Note also that by the Leipnitz- and the multiplication rule
of forms d is an anti-derivation: d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq .

Since partial derivatives commute the exterior derivative operator is nilpotent
d2 = 0 similar as the boundary operator and one can define as before the closed
p-forms

Zp = {γp|dγp = 0} (2.1.12)

in the kernel of d , the exact p-forms

Bp = {γp|γp = dνp−1} (2.1.13)

in the image of d and the de Rham cohomology groups

Hp(M) = Zp/Bp . (2.1.14)

The operation that makes homology and cohomology roughly dual to each other is
integration, which defines the periods of M

π(Cp, γp) =
∫

Cp

γp . (2.1.15)

The fact that makes π a well defined map from Hp(M)×Hp(M) typically to C is
the Stokes theorem

∫

Cp

dγp−1 =
∫

∂Cp

γp−1 . (2.1.16)

The reader should check that this eliminates the dependence on the representative
with respect to the equivalence γp ∼ γp + dνp−1 defining the classes in Hp as
well as w.r.t. Cp ∼ Cp + ∂Np+1 defining classes in Hp and that the Stokes theorem
implies the theorems of three dimensional integral calculus known as Stokes- and
Gauss theorem. The latter requires the Hodge star operator ∗ defined below.

Periods play a central rôle in the study of the families of complex manifolds M .
In this case they are not numbers, but functions of the complex structure parameters
of M . The singular cohomology groups are dual to the singular homology groups.
For example a natural number field for them will be R or C and we have e.g.
Hp(M,C) = Hp(M,Z) ⊗C Z = Hom(Hp(M;Z),C), because De Rhams
theorems

• for a basis {Zi} of Hp and any sets of periods values in the field μi with i =
1, . . . , bp one can find a closed p-form γp such that π(Zi, γp) = μi

• if all the periods of γp over the basis {Zi} vanish then γp is exact
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ensure that the integral (2.1.15) defines such a homomorphism. Explicitly13 one can
hence state H ∗

sing(M,C) = H ∗
de Rahm(M,C).

2.1.4 The Hodge Star Operator ∗

Obviously the structures apart from the natural ring or number field K , which we
take to be realR in this section, are very similar and one immediately might wonder
about the analog of (2.1.9) on the cohomology side. An natural guess is the integral
overM , which defines a number inK rather then an integer. Given a metric structure
one can define a positive real structure proportional to the volume using the Hodge
∗ operator

∗ : C∞(
p)→ C∞(
d−p) , (2.1.17)

whose definition on a basis of 
p is

∗(dxm1 ∧ . . . ∧ dxmp) = 1

(n− p)!
√
ggm1k1 · · · gmpkpεk1...kpkp+1...kd dx

kp+1 ∧ . . . ∧ dxkd

(2.1.18)

and that requires as additional structure the metric gij whose determinant we denote
by g. An useful exercise that requires the definition of the determinant using the
totally anti-symmetric tensor ε similar as in the transformation of dxId , shows that

∗ ∗γp = (−1)p(d−p)γp . (2.1.19)

The integral allows now to define on oriented manifolds a symmetric, positive
definite, bilinear inner product, i.e. a norm on C∞(
)

(αp, βp) =
∫

M

αp ∧ ∗βp =
∫ V

M

1

p!αm1...mpβ
m1...mpvolg, (2.1.20)

where

volg = √gdx1 ∧ . . . ∧ dxd (2.1.21)

is the volume form, which in turn allows to define the adjoint operator

d† : C∞(
p)→ C∞(
p−1) (2.1.22)

13We dropped the qualifiers “sing” and “de Rham” in the discussion.
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to the exterior derivative by

(αp, dβp−1) = (d†αp, βp−1) . (2.1.23)

Using Stokes theorem on closed manifolds M , that d is an anti-derivation and the
definition for the covariant derivative w.r.t to the metric ∇ one can show as exercise
that on p-forms

•

d† =
{ ∗d∗ if d odd
(−1)p ∗ d∗ if d even

(2.1.24)

•

d†αp = − 1

(p − 1)!∇
kαkm2...mpd

m2 ∧ . . . ∧ dmp . (2.1.25)

Of course d†d† = 0. An important feature of d and its adjoint is that one can define
a generalisation of the second order Laplace operator that preserves the form degree

d = dd† + d†d (2.1.26)

acting in coordinates on p forms as14

(αp)m1...mp
= −∇k∇kαm1...mp

− pRk[m1α
k
m2...mp] −

1

2
p(p − 1)Rjk[m1m2α

jk
m3...mp] .
(2.1.27)

A form is called harmonic if

α = 0 (2.1.28)

which is equivalent to the fact that it is closed dα = 0 and co-closed d†α = 0. A
very important theorem is the Hodge theorem that states that on a compact oriented
manifold without boundary, any p-form admits an unique decomposition into an
harmonic, exact and co-exact piece as follows

ωp = αp + dβp−1 + d†γp+1 . (2.1.29)

Comparing with the last section this implies in particular that any element in
cohomology Hp(M) can be represented by an harmonic form αp , because this
is closed and if it were exact it would be zero due to the uniqueness of the
decomposition.

14See [42] for the curvature tensors.
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2.2 Complex Manifolds

Consider a real 2n dimensional manifold M with a covering by coordinate patches
Ui , i = 1, . . . , r , which are homeomorphic to a neighborhood Ui ∈ Cn. Then
we can pick z

(i)
α , α = 1, . . . , n complex coordinates on each Ui . M is a complex

manifold, if all transition functions

f (jk) : z(k) → z(j) , (2.2.1)

defined for all points p ∈ Uj ∩ Uk, are biholomorphic.

2.2.1 Examples

Obviously Cn is a non-compact complex manifold with one chart and the identity
map as transition function.15 One may hope to get examples of compact complex
manifolds by considering constraints like f (z1, . . . , zn) = 0, which are holomor-
phic in all variables. While this leads indeed to a complex manifold, it fails to define
compact ones, because of the maximum modulus theorem, which states that the
maximum value of the modulus of a non constant differentiable function on an
arbitrary domain D is taken at the boundary of D. If now f = 0 is solved for
some zi in a compact domainD of the other variables, zi takes its maximal modulus
on the boundary of D and the construction fails to define a differentiable compact
manifold.

A way out is to use identifications on R2n by discrete shift symmetries, i.e.
consider tori T 2n = R2n/�2n, where the lattice �2n ∼= Z2n is identified with
Z2n as an abelian group. If one chooses a complex structure on R2n by aligning
real and imaginary directions of T ∗R2n ∼= R2n with the basis of �2n one gets
compact complex tori T n

C
. They are flat and have hence trivial holonomy. Dividing

by discrete rotations G of the lattice �2n leads to orbifold compactifications. For
example ifG acts as a discrete subgroup of SU(3) in the fundamental representation
on the complex coordinates of T 3

C
then one gets a complex orbifold with curvature

singularities at the fixset of G. The corresponding lattice automorphisms have been
classified [108]. Remarkably one can prove that this curvature singularities can be
smoothed to get a Kähler manifold with SU(3) holonomy.

An alternative route to construct simple compact complex manifolds is by
dividing by C∗ := C \ {0} actions. E.g. Pn is defined as the space of complex lines
through the origin inCn+1. This is the space of equivalence classes of [z1, . . . , zn+1]
in Cn+1 \ {0} with the equivalence relation

(z1, . . . , zn+1) ∼ λ(z1, . . . , zn+1), (2.2.2)

15It is also Kähler as seen below.
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where λ ∈ C∗. For the charts we take

Ui = {zi �= 0|zi ∈ P
n}

and as their coordinates the non-trivial ratios z(i)m = zm/zi . It is convenient to include
the trivial ratios and to define on Uj ∩ Uk with

z
(j)
m = zm

zk
/
zj

zk
= z

(k)
m

z
(k)
j

, (2.2.3)

biholomorphic transitions functions between the complex coordinates. Pn is a
obviously compact and as it turns out also a Kähler manifold.

A polynomial hypersurface constraint in Pn of the type P(z1, . . . , zn+1) = 0
must be homogeneous of some degree d in the zi , i.e. P(λz1, . . . , λzn+1) =
λdP (z1, . . . , zn+1), to be well defined on the equivalence classes. It defines a
compact complex variety. This is a smooth Kähler manifold if p is transversal,
i.e. dP �= 0 for P = 0. We will give an overview about the application of this
construction and generalizations to Calabi-Yau manifolds in Appendix 3 and in
Sect. 2.7.1 as well as Sect. 2.7.3.

2.2.2 Almost Complex Manifolds

Conceptional it is an important question if and how many complex structures an
even dimension real manifold possesses. A necessary prerequisite to have a complex
structure is a differentiable endomorphism of the tangent bundle J : TM → TM

with J 2 = −1. J corresponds to multiplication of the tangent bundle by i = √−1
and a manifold with this structure is called an almost complex manifold.16 With J

we can define projectors

P = 1

2
(1− iJ )

onto the holomorphic sub-bundle—and with

P̄ = 1

2
(1+ iJ )

16A complex manifold is almost complex, because multiplying the basis of TM of a complex

manifold with coordinates zk = uk + ivk by i = √−1 maps

(

∂
∂uk

∂

∂vk

)

�→
(

∂
∂vk

− ∂
∂uk

)

, i.e. J =
dui ⊗ ∂

∂vi
− dvi ⊗ ∂

∂ui . In holomorphic and anti-holomorphic coordinates this means J i
j = iδij ,

J ı̄
j̄ = −iδı̄j̄ and J i

j̄ = J ı̄
j = 0.
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onto the anti-holomorphic sub-bundle of the tangent bundle respectively. The
significance of the projectors is that on an almost complex manifold one can already
project r-forms� with p P ’s and q P̄ ’s (r = p+q) to (p, q)-forms�p,q . However
without the notion of an integrable complex structure these projected spaces do not
behave naturally under derivations.

2.2.3 Complex Vector Bundles

Let us suppose for the moment complex coordinates zk = uk + ivk with

∂k := ∂

∂zk
= 1

2

(

∂

∂uk
− i

∂

∂vk

)

, ∂k̄ :=
∂

∂z̄k
= 1

2

(

∂

∂uk
+ i

∂

∂vk

)

(2.2.4)

can be defined. We then can split TCM = TRM ⊗ C, which is spanned over ∂
∂wk

,

k = 1, . . . , 2n with complex coefficients V i as TCM = T 1,0M ⊕ T 0,1M . Here
{uk, vk} =: {wk,wk+n} and each vector V in TCM decomposes as

V =
2n
∑

k=1
V k ∂

∂wk

=
n
∑

k=1

[

(V k + iV n+k)∂k + (V k − iV n+k)∂k̄

]

=: V 1,0 + V 0,1 .

(2.2.5)

We call T 1,0M [T 0,1] spanned by ∂k , [∂k̄] the [anti]holomorphic tangent bundle.
The corresponding transition functions are [anti]holomorphic and are given by

∂
(i)
k = ∂z(j)l

∂z(i)k
∂
(j)

l from (2.2.1) and the complex conjugate. Obviously under complex

conjugation T 0,1M = T 1,0M . Similarly the cotangent bundle splits T ∗
C
M =

T ∗1,0M⊕T ∗0,1M into a holomorphic and an anti-holomorphic sub-bundle spanned
by dzk and dz̄k := dzk̄ respectively.17 Sections of∧rT ∗

C
M are called r-forms�r and

can be decomposed into sections of ∧pT ∗1,0M∧q T ∗0,1M , which are called (p, q)-
forms �p,q , i.e the space Ar of r forms splits into the space Ap,q of (p, q)-forms
Ar = ⊕r=p+q Ap,q . We also get natural holomorphic (1, 0) and an-holomorphic
(0, 1) derivative operators as

∂f =
n
∑

i=1

∂f

∂zi
dzi =: ∂if dzi , ∂̄f =

n
∑

j̄=1

∂f

∂z̄j̄
dz̄j̄ =: ∂̄j̄ f dz̄j̄ . (2.2.6)

17To avoid too complicated notations TM (T ∗M) will mean in the following the holomorphic
tangent bundle TM = T 10M (cotangent bundle T ∗M = T ∗ 1,0M).
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Integrable Complex Structures

Still we have to establish the existence of complex coordinates. According to a
theorem of Niremberg and Newlander a necessary and sufficient18 condition for
the existence of global complex coordinates, i.e. a complex structure, is that the Lie
bracket (2.4.14) of two holomorphic vector fields X,Y , defined as above by such
coordinates, is always a holomorphic vector field again [269] (see [182] and [57]
Chap. V. for physicists review). Written with the projectors this condition becomes

P̄ [PX,PY ] = 0. (2.2.7)

This integrability condition leads to [JX, JY ]−J [X, JY ]−J [JX, Y ]−[X,Y ] = 0.
In local flat coordinates J (∂b) = J e

b ∂e and with J b
c J

c
d = −δbd , i.e. (∂aJ

b
c )J

c
d =

−J b
c (∂aJ

c
d ) (2.2.7) means that the so called Nijenhuis tensor vanishes identically

[269]

Nc
bd := J a

b (∂aJ
c
d − ∂dJ

c
a )− J a

d (∂aJ
c
b − ∂bJ

c
a ) ≡ 0 . (2.2.8)

2.2.4 Exterior Derivatives on Complex Manifolds

A related perspective on the existence of a complex structure can be given as
follows. On an almost complex manifolds due to the dependence of J on the
coordinates the exterior derivative has a priori the pieces d�p,q = (d�)p−1,q+2 +
(d�)p,q+1 + (d�)p+1,q + (d�)p+2,q−1. One may then define ∂�p,q = (d�)p+1,q
and ∂̄�p,q = (d�)p,q+1 as the (1, 0) and (0, 1) parts of the d operator and search for
complex variables such that the latter follow from extending (2.2.6) in the canonical
way to forms. One can check that the condition ∂̄2 = 0 is equivalent to Nb

cd ≡ 0
and implies that the (d�)p−1,q+2 and (d�)p+2,q−1 pieces in the exterior derivative
disappear. It follows further by consideration of the (p, q) type that the equation
d2 = 0 on�∗ implies ∂2 = 0 and ∂̄∂+ ∂∂̄ = 0. To summarize if J is integrable one
has for

φ = 1

p!q!φi1...ip j̄1...j̄qdz
i1 ∧ . . .∧ zip ∧ dz̄j̄1 ∧ . . . ∧ dzj̄q (2.2.9)

∂φ = 1
p!q!∂φi1...ip j̄1...j̄qdz

i1 ∧ . . .∧ zip ∧ dz̄j̄1 ∧ . . . ∧ dzj̄q

∂̄φ = 1
p!q! ∂̄φi1...ip j̄1...j̄qdz

i1 ∧ . . .∧ zip ∧ dz̄j̄1 ∧ . . . ∧ dzj̄q
(2.2.10)

and the de Rham exterior derivative splits into and (1, 0) and an (0, 1) piece

d = ∂ + ∂̄ , (2.2.11)

18This is the nontrivial part.
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so that d�p,q ∈ Ap+1,q⊕Ap,q+1. Since ∂̄ is nilpotent we can define the cohomology

H ∗̄
∂
= Kern∂̄

Im∂̄
. (2.2.12)

As in Sect. 2.1.4, better insights into these cohomology groups and its represen-
tatives can be drawn, if one has a norm and with it the possibility to define adjoint
operators. Thereforewe relegate this points after the discussion of the corresponding
structure to Sect. 2.3.2.

We discuss further important aspects of different complex structures in sec-
tion “First Order Complex Structure Deformations”. In particular these different
complex structures on a real manifold can form families parametrized by the
complex structure moduli space. This is in particular the case for Calabi-Yau
manifolds, which is the reason that we relegate section “First Order Complex
Structure Deformations” after the definition of Kähler manifolds in Sect. 2.3 and
Calabi-Yau manifolds in Sect. 2.4.1.

2.3 Kähler Manifolds

Complex- and Kähler manifolds play a double role in supersymmetric Kaluza-
Klein and string compactifications. On the one hand the target space is in many
cases—a notable exception are G2 manifolds—a complex- and Kähler manifold.
On the other hand their deformations- or moduli spaces, become the physical
moduli spaces or vacuum manifolds. For global and local supersymmetric theories
these spaces are also complex- and Kähler manifolds and in the case of extended
super symmetry or compactifications on special holonomy manifolds they can have
additional geometric structures. We therefore recall now some essential aspects of
hermitian and Kähler manifolds.

2.3.1 Metric Aspects

A hermitian metric is a positive-definite inner product TM ⊗ T̄ M → C. Locally it
can be given by a covariant tensor19

ds2 =
n
∑

i,j

Gij̄ (w)dzi ⊗ dzj̄ (2.3.1)

19Note that the first index of Gij̄ is only summed over the unbarred i = 1, . . . , n and the second
only over barred j̄ = 1̄, . . . , n̄ indices respectively.
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with the properties that Gjı̄ = Gij̄ and Gij̄ is positive. Explicitly the positivity
means that

viGij̄ v̄
j̄ ≥ 0, ∀ v ∈ C

n . (2.3.2)

The equality holds only if v = 0, which in particular implies that det(Gij̄ ) > 0.
To define an hermitian metric, given a real metric, an almost complex structure

is sufficient, see Theorem 3.14 of [238]. Hermiticity is the condition G(X, Y ) =
G(JX, JY ) on the real metric, which becomes

Gmn = J a
mJ b

nGab (2.3.3)

in coordinates. It does not constraintM further then admitting J and any metric say
G′, because for any such G′ the metricGmn = 1

2 (G
′
mn+J a

mJ b
nG

′
ab) is hermitian. In

particular on any complexmanifold we can define a hermitian metric see [237] Chap
3.5. Multiplying (2.3.3) with Jm

p , defining Jnm = J a
n Gam and using Jm

p J a
m = −δap

we see that Jnm = −Jmn. Hence we can define a 2-form ω = Jnmdwn ∧ dwm. In
complex notation this becomes

ω = i

n
∑

i,j=1
Gij̄dzi ∧ dzj̄ . (2.3.4)

This is a real form ω̄ = ω of type (1, 1) and is called the fundamental form
associated to the hermitian metric. Because20 G := det(Gij̄ ) > 0 one gets by
wedging ω n-times

vol = ωn

n! = in det(Gij̄ )dz
1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n = 2ndet(Gij )

1
2 dw1 ∧ . . . ∧ dw2n

(2.3.5)

a positive volume form on M , which implies also that M is orientable.
Let us prepare some notions for the harmonic theory on complex manifolds. On

(p, q)-forms in Ap,q

φ = 1

p!q!φi1,...,ip,j̄1...,j̄q (z)dz
i1 ∧ . . .∧ dzip ∧ dzj̄1 ∧ . . .∧ dzj̄q (2.3.6)

we have an local inner product defined by the hermitian metric

(φ,ψ)(z) = 1

p!q!φi1...ip j̄1...j̄q ψ̄
i1 ...ipj̄1...j̄q (2.3.7)

20Note in coordinates xi , xī one has the block form Gnm =
(

0 Gμν̄

Gσρ̄ 0

)

and e.g. [57] defines

G := det(Gnm) = det2 Gμν̄ .
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where

ψ̄i1...ip j̄1...j̄q = Gk̄1i1 . . .Gk̄pip ·Gj̄1l1 . . .Gj̄q lqψk1...kp,l̄1...l̄q
. (2.3.8)

With this we can adapt the bilinear (2.1.20) to complex manifolds and define a
global bilinear inner product Ap,q × Ap,q → C

(φ,ψ) =
∫

M

(φ,ψ)(z)vol . (2.3.9)

One a compact manifolds one has the positivity properties

(φ,ψ) = (ψ, φ), (φ, φ) > 0 unless φ = 0, (2.3.10)

which makes Ap,q in a pre-Hilbert space. The Hodge operator ∗ maps now21 ∗ :
Ap,q → An−q,n−p and is defined as

(φ,ψ)vol = φ ∧ ∗ψ̄ . (2.3.11)

Here

ψ̄ = 1

p!q!ψj1...jq ,ı̄1...ı̄p
dzj1 ∧ . . . ∧ djq ∧ dzı̄1 ∧ . . .∧ dzı̄p (2.3.12)

and ψi1...ip,j̄1...j̄q = (−1)pqψ̄j1...jq ,ı̄1...ı̄p . Explicitly

∗ψ = in(−1)n(n−1)/2+np

p!q!(n− p)!(n− q)! det(G)ε
k1...kp

j̄1...j̄n−p
ε
l̄1...l̄q

i1...in−q
ψk1...kp,l̄1...l̄q

dzi1 ∧ . . .∧ dzin−q ∧ dzj̄1 ∧ . . . ∧ dzj̄n−p .

(2.3.13)

One checks ∗ψ̄ = ∗ψ and ∗ ∗ ψ = (−1)pqψ for ψ a (p, q)-form. On the middle
cohomology p + q = n one has for Ap,q in a suitable basis the eigen values22

∗ ψ = i(p−q)ψ . (2.3.14)

With the norm (·, ·) we can define the adjoint operators ∂∗ : Ap,q → Ap−1,q
and ∂̄∗ : Ap,q → Ap,q−1 by

(∂∗ψ,φ) := (ψ, ∂φ), and (∂̄∗ψ,φ) := (ψ, ∂̄φ) (2.3.15)

21Here the conventions are as in [237]. The ∗ operator in [150] maps ∗gh : Ap,q → An−p,n−q , so
it involves an additional complex conjugation ∗ghψ = ∗koψ̄ .
22For CY 3-fold formulas are summarized in Chapter 14 of [47] that involve the Kähler class ω.



114 A. Klemm

respectively. On a compact manifold one can calculate from the above that ∂̄∗ =
− ∗ ∂∗.

Let us next come to the Kähler condition. IfG = δij̄ is Euclidean it is an exercise
to show that the new Laplacian and the old Laplacian (2.1.26)

∂̄ = ∂̄ ∂̄∗ + ∂̄∗∂̄ , d = d†d + dd† (2.3.16)

are related by

∂̄ =
1

2
d , (2.3.17)

a fact that is important for the Hodge decomposition described below. On a complex
manifold it turns out that for this to be true the metric G = δij̄ must approximate
the Euclidean metric up to order two in z at each point in M . This is the Kähler
condition, which can be given in different equivalent ways, see [149], one of which
we state below. Let us denote the (1, 1)-form associated to Gij̄

ω = i

n
∑

i,j̄=1
Gij̄dz

i ∧ dz̄j̄ . (2.3.18)

An hermitian metric Gij̄ whose fundamental form is closed dω = 0 is called a
Kähler metric and ω is called the Kähler form. Since from dω = 0 follows

∂iGjk̄ = ∂jGik̄, ∂̄īGjk̄ = ∂̄k̄Gj ı̄ , (2.3.19)

which are the integration conditions for the local existence of a Kähler potential K
with

Gij̄ = ∂i ∂̄j̄K = −1

2
d(∂ − ∂̄)K (2.3.20)

Note that despite the form above ω cannot be exact. For if ω = dA would have
been exact (2.3.5) could not be true, because using Stokes theorem the integral

∫

ωn

would be zero. That means that (∂− ∂̄)K is not globally defined. Indeed as far as the
definition of ω goes K(z, z̄) only needs to be defined up to a Kähler transformation

K(z, z̄)→ K(z, z̄)− f (z)− f̄ (z̄) , (2.3.21)

so eK will be in general a section of a nontrivial line bundle overM . In general two
Kähler forms ω and ω′ are in the same class in H 2(M,R), if we can find a smooth
global real function φ on M and

ω′ = ω + ∂∂̄φ(z, z̄) . (2.3.22)



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 115

In Kähler geometry the non vanishing Christoffel symbols � have only pure
indices, e.g. they are given by

�i
jk = Gil̄∂jGkl̄, �ı̄

j̄ k̄
= Gı̄l∂j̄Gk̄l = �i

jk , (2.3.23)

which define a torsion free T i
jk = �i

jk − �i
kj = 0 metric connection ∇iGjk̄ = 0,

with ∇iVk = ∂jVk − �
p
ikVp and analogous equations for ∇̄ı̄ . Further one has the

simplified relation for the Riemann tensor23

R
k

ij̄ l = ∂̄j̄ �
k
il , R

k

ı̄j l = −∂̄ı̄�
k
jl , Rij̄kl̄ = −∂i∂j̄Gkl̄ +Gmn̄(∂iGkn̄)(∂j̄Gml̄) .

(2.3.24)

This implies an additional symmetry under the exchange of i and l and j and l

respectively. The other non-vanishing components are given by complex conjuga-
tion

R
k̄

ı̄j l̄
= R

k

ij̄ l , R
k̄

ij̄ l̄
= R

k

ı̄j l (2.3.25)

as well as by the usual symmetries of the Riemann tensor [42]. Our sign conventions,
which are really conventions about the position of the indices, are so that

[∇i ,∇j̄ ]Vk = R
p

ij̄k Vp . (2.3.26)

The Ricci tensor is defined by contracting

Rij̄ = R
ā

iāj̄ = −∂i ∂̄j̄ log det(G) (2.3.27)

is hermitian, i.e. Rij̄ = Rj̄i and Rij̄ = Rjı̄ , which follows from the fact that G is
hermitian and detG is real. It can be used to define the Ricci-formR as

R = i

2π
Rij̄ dz

j ∧dz̄j̄ = i

2π
∂∂̄ log det(G) = i

4π
d(∂− ∂̄) log det(G) . (2.3.28)

The latter also represents the first Chern class of TM

c1(TM) = [R] . (2.3.29)

It is a fundamental property of the Chern-class of holomorphic vector bundles, that
they don’t depend on the choice of the connection. So despite the appearance of the
metric or its connection in (2.3.28) the first Chern class c1(TM) is independent of
these data.

23Here we follow the conventions in which the real Riemann tensor has the index structure R
l

ijk =
∂j�

l
ik − ∂i�

l
jk + �l

jr�
r
ik − �l

ir�
r
jk .
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Example Pn is a Kähler manifold. This can be established by giving with the
Fubini-Studymetric an explicit form of a Kähler potential for a Kähler metric. In the
Ui , i = 0, . . . , n patches the Kähler potential is given by K(i)(z(i), z̄(i)) = log(1 +
|z(i)|2), where |z(i)|2 = ∑

j �=i |z(i)j |2. Using (2.2.3) we see that K(i)(z(i), z̄(i)) =
K(j)(z(j), z̄(j)) − log zi

zj
− log z̄i

z̄j
. The latter two terms are holomorphic and

antiholomorphic sections respectively onUi∩Uj . Hence they do not affect the metric
gij̄ = ∂i∂j̄K(z, z̄), which is globally well defined. Dropping the index for the patch
we get

ω = i∂∂̄ log(1+ |z|2) = i

(

dzi ∧ dzı̄

1+ |z|2 −
z̄idzi ∧ zjdzj̄

(1+ |z|2)2
)

. (2.3.30)

This defines a positive-definite metric. With det(gij̄ ) = 1
(1+|z|2)n+1 one calculates

the Ricci tensor Rij̄ = −∂i∂j̄ log det(gij̄ ) = (n + 1)gij̄ . If the Ricci tensor is
proportional to the Kähler metric one calls the metric Kähler-Einstein.

Let us mention briefly further important facts about Kähler manifolds. The
property of the Christoffel symbol to have only pure indices leads to the fact that
parallel transport of a vector generates only the holonomy group U(n) ∈ SO(2n)
rather then SO(2n), which would be the holonomy of a generic orientable manifold.

2.3.2 Hodge Theorem and Hodge Decompositions

Let us review next simple topological facts. As a consequence of (2.3.17)d = 2∂̄

does not change the (p, q)-type, i.e.Hp,q
d (M) = H

p,q

∂̄
(M) and the same equality is

true for the harmonic representatives Hp,q
d (M) = Hp,q

∂̄
(M). Taking the harmonic

forms as distinguished representatives we get the Hodge decomposition of the de
Rham cohomology groups

Hr(M,C) =
⊕

p+q=r

Hp,q(M)

Hp,q(M) = Hq,p .

(2.3.31)

Forms of Kähler manifolds are related by complex conjugation Ap,q = Aq,p,
which implies for the cohomology groups Hp,q(M) = Hq,p(M), since complex
conjugation commutes with d. The star operator ∗ : Ap,q → An−q,n−p is another
bijection which commutes with d and hence

Hq,p(M) = Hp,q(M) = Hn−q,n−p(M) . (2.3.32)

The Hodge theorem states that every element φ ∈ Ap,q has an unique orthogonal
decomposition into a harmonic form h, an exact piece ∂̄ξ with ξ ∈ Ap,q−1 and a
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co-exact piece ∂̄∗η with η ∈ Ap,q+1 i.e.

Ap,q = Hp,q ⊕ ∂̄Ap,q−1 ⊕ ∂̄∗Ap,q+1 . (2.3.33)

This is in analogy with the de Rham decompositionAp = Hp ⊕ dAp−1⊕ d∗Ap+1.
The usual argument shows that if φ is closed, i.e. ∂̄φ = 0, then the ∂̄∗η piece in
the decomposition is zero, because ∂̄φ = ∂̄ ∂̄∗η and thus 0 = (∂̄φ, η) = (∂̄∗η, ∂̄∗η),
which implies ∂̄∗η = 0. This in turn means that every ∂̄ closed form can be uniquely
decomposed into a harmonic form w.r.t. ∂̄ and a ∂̄ exact piece, which implies
H

p,q

∂̄
(M) ∼= Hp,q(M).

A central result is the Čech-Dolbeault isomorphism, which follows from the
Hodge-de Rham isomorphism see [150] and the ∂̄-Poincaré Lemma. It states for
sheaves of forms contracting sheafs of vectors fields F that

Hq(M,�p(F )) ∼= H
p,q

∂̄
(M,F) . (2.3.34)

For example Hq(M,∧pT ∗M) ∼= Hp,q(M, TM) =: Hp,q(M) and for the
holomorphic forms in Hp,0(M) = H 0(M,�p) it follows from the Hodge
decomposition that they are harmonic for any Kähler metric on a compact Kähler
manifold. Vise versa by consideration of type, we have for every holomorphic
(p, 0)-form �p that ∂̄∗�p = 0 as it maps to Ap,−1 which is trivial. If ∂̄�p = 0
then from ∂̄∗∂̄�p = 0 follows ∂̄�p = 0.

Using (∂̄∗ψ)i1...ipj̄2...j̄p = (−1)p+1∇ j̄1ψi1...ip j̄1 j̄2...j̄q one can show that the
Kähler ω form is harmonic. Hence h1,1(M) ≥ 1 on a Kähler manifold. Similarly
one shows that all ωm, m = 1, . . . , n are nontrivial elements in Hm,m(M).

2.3.3 Lefshetz Decomposition

On the cohomology of a Kähler manifold with n = dimC(M) one can define the
exterior product with the standard Kähler form ω as24 lowering operator S−, the
adjoint operator as raising operator S+ and the diagonal operator, which associates
to each form of degree r the eigenvalue (n − r)/2, as H . Then H,S± fulfill the
Lie algebra of sl(2,C), [S+, S−] = 2H , [H,S±] = ±S± and the cohomology
decomposes into its irreducible representations. More precisely the Hard Lefshetz
Theorem [148] says the following: (S−)k : Hn−k → Hn+k is an isomorphism and
with Pn−k := (Ker(S−)k+1 : Hn−k → Hn+k+2) = (KerS+) ∩Hn−k the primitive
cohomology has the Lefshetz decomposition

Hr(M) =
⊕

k

(S−)kP r−2k(M) . (2.3.35)

The primitive parts of the cohomology play here the rôle of highest weight vectors.

24Normalized on a Cn as ω = i
2

∑

i dzi ∧ dz̄i .
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Examples The cohomology of Pn forms a representation
(n
2

)

. The cohomology

of the two torus (dimR(T
2) = 2) decomposes as 2(0) +

(

1
2

)

, where the two (0)

representations are dz and dz̄ while [1, dz∧dz̄] form the
(

1
2

)

representation. Check

that the cohomology of the T 2n torus has the sl(2,C) decomposition

(

2(0)+
(

1
2

))⊗n

=
n
⊕

r=1

((

2n

n− r

)

−
(

2n

n− r − 2

))

( r
2

)

• (2.3.36)

2.3.4 The Middle (Co)homology and the Riemann Bilinear Relations

In the middle homology of an even real dimensional manifold one has an obvious
bilinear intersection form (2.1.9). There is a dual intersection form on the cohomol-
ogy, whose properties are particular interesting on Kähler manifolds and which we
discuss below.

The most important invariant of the bilinear form (2.1.9) is its signature, which
is given by the Hirzebruchs signature theorem

σ = hn+(M)− hn−(M) =
∫

Mn

Ln
2
. (2.3.37)

Here Lm is the Hirzebruch L polynomial a multiplicative class defined by

Q(x) = x

tanh(x)
= 1+

∞
∑

k=0
(−1) 22k

(2k)!Bkx
2k , (2.3.38)

where the Bernoulli numbers are normalized to B1 = 1
6 , B2 = 1

30 , B3 = 1
42 ,

B4 = 1
30 , etc. Expanding this in Pontryagin- (pk) or Chern classes (ck) yields

Lm
2
= 0, for m odd ,

L1 = 1

3
p1 = 1

3
(c21 − 2c2)|CY = −2χ

3
,

L2 = 1

45
(7p2 − p2

1) =
1

45
(4c21c2 − c41 − 14c1c3 + 3c22 + 14c4)|CY = χ

3
+ 32

etc.

(2.3.39)

From the first line follows for odd complex dimension, that one can find an sym-
plectic basis for the middle homology with equal positive and negative eigenvalues.
For the first even dimensional manifolds, we restricted the result in the last line
to Calabi-Yau manifolds. For complex 2-fold Calabi-Yau manifolds, i.e. K3, it
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follows simply from c1 = 0, but for Calabi-Yau 4-folds (and higher ones) one can
invoke in addition the Hirzebruch-Rieman-Roch theorem (A2.18), which states CY
4-folds that the first arithmetic genus χ0 = h00 + h40 = 2 = 1

720

∫

M4
3(c22 − c4)

to simplify the expression. In these even cases classifications of even lattices put
further powerful restrictions on the intersection forms. We discuss some of those in
section “K3 Surfaces”.

On the middle dimensional cohomologies of Kähler manifolds Hp,q with p +
q = n it is customary to specialize25 the bilinear form (2.3.9) to the bilinear
intersection form 〈·, ·〉 : Hn ⊗Hn → C, defined by integration

〈α, β〉 =
∫

Mn

α ∧ β . (2.3.40)

This form is obviously odd (even) for n odd (even) and has the property for ωp,q ∈
Hp,q and ωr,s ∈ Hr,s

〈ωp,q, ωr,s〉 = 0, unless p = s and q = r . (2.3.41)

Moreover if α is a primitive form in the middle cohomology then one has a
positive real structure, i.e.

R(α) = ip−q〈α, ᾱ〉 > 0 . (2.3.42)

Applied to the unique (n, 0) form this real structure determines the Kähler Weil-
Peterssen metric on the complex moduli space of Calabi-Yau metrics.

We are interested how the decomposition (2.3.31) of the middle cohomology
varies, when move the family of Calabi-Yau n-folds (1.1.17) overM. The theorems
of Tian and Todorov states the global unobstructedness of the complex moduli
deformations. This insures that M exists as complex and in fact Kähler manifold.
Moreover it states that the complex dimension is given by the Hodgenumber
h = hn−1,1(Mn) = dimC(M). We parametrize M by complex coordinates zi ,
i = 1, . . . , h.

For n even the question which part of the middle cohomology varies with the
complex structure depends on the choice of the polarisation. The part that varies with
the complex structure for algebraic embeddings on Mn, which fix the polarisation,
is called the (primitive) horizontal cohomology.

For n = 3 the whole middle cohomology is horizontal. From now let us denote
the decomposition of horizontal cohomology simply by

Hn(M) =
n
⊕

k=0
Hn−k,k(M) (2.3.43)

25In view of (2.3.14) the relation is (α, β) = ip−q 〈α, β̄〉.
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even so one strictly would need to call it Hn
hor(M) etc. We drop the qualifier

horizontal and the n on Mn below.

2.4 Calabi-Yau Manifolds and Their Deformation Spaces

Here we give first equivalent definitions of Calabi-Yau manifolds. We then discuss
generic structures of their deformation space. We focus on deformation families of
Calabi-Yau manifolds over their complex moduli space Mcs(W), because this is
mathematically better explored.

What string theory adds is mirror symmetry, which due to an approximate
decoupling between Mcs(W) and Mcks(M) states that this structure will be
mirrored into the complexified Kähler deformation space Mcks(M) of the Calabi-
Yau manifolds, the Kähler deformation space supplemented by the B-field.

2.4.1 Properties of Calabi-Yau Manifolds

We come now to the description of Calabi-Yau spaces by discussing important,
partly equivalent properties, that make a Kähler manifold into a Calabi-Yau
manifoldM . The precise relation between these properties is discussed below

(a) The canonical class KM is trivial.
(b) The first Chern class of the tangent bundle vanishes26 c1(TM) = 0.
(c) In each Kähler class onM there exists an unique Kähler metric27 g whose Ricci

tensor vanishes Rij̄ (g) = 0.
(d) There exists an—up to a constant—unique nowhere vanishing holomorphic

(n, 0) form called �.
(e) The holonomy group Hol(g) of M is a subgroup of SU(n).
(f) M admits a pair of globally defined covariantly constant (parallel) spinors ξ and

ξ̄ of opposite chirality if n is odd and of the same chirality if n is even.

We see that on a Calabi-Yau manifold one has two important forms: The Kähler
(1, 1)-form ω and the holomorphic (n, 0) form �. The above listed properties are
of different relevance in different physical contexts, but only partly equivalent.
For these reasons one finds different definitions of Calabi-Yau manifolds in the
physics literature. For reference let us give here a definition of a compact Calabi-Yau
manifold.

Definition For n ≥ 2 a Calabi-Yau manifold is the quadruple (M, J, g,�), where
(M, J ) is a compact complex manifold, g a Kähler metric, ω the Kähler form and

26We assume that we have a connection without torsion on TM .
27In the following g denotes the Kähler metric of the Calabi-Yau manifolds and G the one of its
moduli space.
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� an up to a phase unique non-vanishing holomorphic (n, 0) form. The latter forms
are linked by the fact that � ∧ �̄ is proportional to the volume form as the n-th
exterior power of the Kähler form

ωn

n! = (−1) n(n−1)
2

(

i

2

)n

� ∧ �̄ • (2.4.1)

This is a natural normalization which makes Re(�) a calibration for the special
Lagrangian submanifolds L ⊂M of real dimension n defined by

Re(eiθ�)|L = volL, and ω|L = 0 . (2.4.2)

Imposing (2.4.1) reduces the freedom in the constant in (e) to the phase θ [203].
Likewise there are the holomorphic submanifoldsZk of complex dimension k which
are calibrated as follows

ωk

k!
∣

∣

∣

∣

Zk

= volZk , and �|Zk = 0 . (2.4.3)

Here volZ is the volume form on the corresponding cycle Z and is important
to notice that (2.4.2) and (2.4.3) are minimal volume conditions. In particular
calibrated cycles are the cycles of the least volumes in its homology class [203].

In the physics literature calibrated cycles denoted in general by �p+1 are know
as supersymmetric cycles, see [129] for a review. It was shown in [33] that the
requirement of maximal supersymmetry on the worldvolume of a cycle, defined
by the embedding map � : �p+1 ↪→ M , is ensured if the global ten or
eleven dimensional susy transformation on the worldvolume can be undone by a
worldvolume κ symmetry. That leads to the conditions

P−η = 1

2

(

1− i

(p + 1)!h
−1/2εσ1...σp+1∂σ1φ

m1 . . . ∂σp+1φ
mp+1�m1...mp+1

)

η = 0,

(2.4.4)

where η is a ten or eleven dimensional constant spinor, P± are projection operators
and h is the induced metric on the word-volume of �p+1. It was shown in [33]
that (2.4.4) specializes to the calibration conditions (2.4.2), (2.4.3).

It useful to note that all the forms mentioned in Bergers list in Sect. 1.1.5 define
calibrations and equivalently supersymmetric cycles. If the complex dimensions of
a Calabi-Yau manifold n is even one can also define mixed calibration conditions,
e.g. on a fourfold the calibration with respect to ω2

2 +Re(eiθ�) leads to the so called
Caley cycles [129].

A general Kähler manifold has holonomyU(n). Under the above conditionYau’s
theorem states that one can chose a metric G on Mn with Rij̄ (g) = 0. Since Rij̄

generates the U(1) in the holonomy group U(n), a general Calabi-Yau manifold
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has holonomy SU(n). Unless mentioned otherwise we assume that the holomomy
of Mn is the full SU(n). That excludes the complex tori T n

C
which are flat Kähler

manifolds and have trivial holonomy or products of lower dimensional Calabi-Yau
manifolds, potentially with complex tori, which likewise have reduced holonomy.
It also excludes the more exotic cases such as the Enriques Calabi-Yau manifold,
which has holonomy Z2 × SU(2).

Let us now discuss the relation between the statements (a)–(f). In order to connect
(a)–(d) to (e) and (f) we will assume that M is simply connected and not of product
form.

(a)↔ (b) follows from (A2.7).
(c)→ (b) is a simple consequence of the independence of the Chern classes on

the choice of the Kähler metric. Once one knows that there exists a Ricci-flat metric
clearly c1(TM) = 0 and that holds for all Kähler metrics.

(b)→ (c) is a corollary to Yau’ theorem [331], which proves the conjecture that
E. Calabi formulated in (1956). It states that given the data

• (C.a) of a Kähler metric g,a Kähler form ω, a Ricci form R on M and a
real closed (1, 1) form R′, which represents the Chern class [R] = [R′] =
2πc1(TM)

one can construct

• (C.b) an unique metric g′ on M with associated Kähler form ω′ such that [ω′] =
[ω] ∈ H 2(M,R) and the Ricci form of g′ isR′.

In particular c1(TM) = 0 can be represented by R′ ≡ 0 and then according to the
above there exists a unique metric g′ whose Ricci form is R′. Therefore its Ricci
tensor vanishes.

One can formulate simpler equivalent versions of (C.a) and (C.b) as requirements
on the existence of functions onM as follows.R−R′ is a ∂̄ exact and d closed real
(1, 1) form. By the ∂, ∂̄ Lemma one has a real function f on M so that R −R′ =
i∂∂̄f up to a constant κ . Recalling (2.3.29) how R is derived from the positive
function multiplyingw1∧ . . .∧w2n in (2.3.5), which is itself determined by ωn

n! , we
conclude that f must make its appearance also in ef ωn = (ω′)n. In fact the constant
κ can be fixed by normalizing the volume

∫

M
efωn = ∫

M
ωn. The simplification is

that instead of requiring g′ to lead to a prescribed R′ one requires that it leads to
a prescribed volume form and the statement about R and R′ can be replaced by a
statement about f . Similarly one can formulate the [ω′] = [ω] condition in (C.b)
as a search for a real function φ as in (2.3.22). φ can be made unique by requiring
∫

M
φvolg = 0. So the simplified version of (C.a) and (C.b) is

• (C’.a) that for every given Kähler metric g, Kähler form ω and a real smooth
function f on M with

∫

M
efωn = ∫

M
ωn

one can construct

• (C’.b) an unique smooth real function φ onM such that (i) ω+ i∂∂̄φ is a positive
(1, 1) form ω′, (ii)

∫

M φvolg = 0 and (iii) (ω + i∂∂̄φ)n = ef ωn.
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Yau proved that the non-linear p.d.e (iii) on φ admits a unique solution which fulfills
(i) and (ii). This is an existence proof and up to date no explicit solutions for φ and28

e.g. the Ricci-flat metric on any compact Calabi-Yau manifold has been given.
(c) → (e) From the special form of the curvature tensor on Kähler mani-

folds (2.3.26) one can argue that the holonomy group of a Kähler manifold is
generically U(n). Moreover from the definition of the Ricci-tensor (2.3.27) as the
trace, one concludes that it is generating the U(1) part of U(n) ∼= SU(n) × U(1)
holonomy. On a Ricci-flat manifold this part is not generated and the holonomy is
reduced to SU(n).

(e)→ (d) An (n, 0)-form can always locally be written as�i1,...,in = f (x)εi1,...in .
It is therefore in the total antisymmetric representation of the holonomy group
SU(n), i.e. a singlet invariant under Hol. One can conclude from this that ∇� = 0.
Since � has no mixed indices ∂̄ī� = ∇ī� = 0 and � is holomorphic. This
implies that f (x) has to be a globally defined holomorphic function over the
compact manifold M and hence a constant. Note that ω, locally written as ω =
i
2

∑n
i=1 dxi ∧ dxı̄ , and g, locally written g = ∑n

i=1 |dxi|2, are also covariantly
constant. The normalization (2.4.1) established at a point requires |f | = 1, but
since all quantities are covariantly constant (2.4.1) will hold at any point.

� is also harmonic ∂̄� = 0 as beside ∂̄� = 0 also ∂̄∗� = − ∗ ∂ ∗ � = 0,
because ∗ : An,0 → An,0 and ∂ : An,0 → An+1,0 = {0}.

(d)→ (a) We just constructed with � a trivial constant section of the canonical
bundle ∧nT ∗1,0M .

(d)→ (b) Assume a nowhere vanishing holomorphic (n, 0) exists. We get then a
globally well defined scalar function

||�||2 = 1

n!�i1...in �̄
i1...in , (2.4.5)

where the indices are raised by the hermitian metric gij̄ . Locally � is given by
�i1,...,in = f (x)εi1,...in , where f (x) is a non-vanishing holomorphic function in

each patch. We can obtain �̄i1,...in = f̄
g
εi1...in and it follows that g = det(gij̄ ) =

|f |2
||�||2 . Inserting in (A2.6) we get c1(TM) = − i

2π ∂∂̄ log |�|2 which is exact since

log ||�||2 is a scalar, hence c1(TM) = 0 in cohomology.
(f) ↔ (d) is proven in generality in [312]. This is done using representation

theory. Let us just give a simple relevant example namely the threefold case, n = 3.
We must figure out how many spinors transform as singlets under the holonomy
SU(3). Under generic rotations in the internal 6d space, vectors transform by SO(6)
and the associated spin group with the same Lie algebra is isomorphic to SU(4).

The spinor representation in 6d is 2
6
2 = 8 dimensional and splits according to the

chirality into representations (4, 4̄) of this SU(4). Now the holonomy is reduced

28It is not that difficult to find a Kähler metric on a Calabi-Yau manifold, e.g. by constructing the
induced metric of the Fubini-Study metric on the quintic in P4, see [302].
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to SU(3) and embedding the SU(3) in SU(4) singles out an U(1), i.e. one has
SU(3)⊗U(1) ∈ SU(4). The decomposition of the (4, 4̄) into the representations of
thisU(1) and SU(3) is unique (4, 4̄) = (31⊗1−3, 3̄−1⊗13), where the superscripts
are theU(1)-charges. Hence we can conclude that there are indeed one invariant and
therefore covariantly constant spinor of each helicity. Bilinears of the covariantly
constant spinors can be used to build the covariantly constant tensors discussed
above. In particular the almost complex structure as J a

b = −iξ†�a
bξ , the metric as

gij̄ = ij†�ij̄ j and the (3, 0) form as�ijk = e−iαξT �ijkξ . In this way one can show
(f)→ (d) see [57] for details. Furthermore it is easy to see that the eight spinors can
be generated from ξ ∈ 1−3 as �iξ ∈ 3̄−1, �ij ξ ∈ 31, �ijkξ ∈ 13 and decomposed as

η = �0,0ξ +�
0,1
ı̄ �ı̄ ξ +�

0,2
ı̄ j̄ �ı̄j̄ ξ +�

0,3
ı̄ j̄ k̄

�ı̄j̄ k̄ξ, where �
0,n
ı̄1...ı̄r

dzı̄1 ∧ . . . ∧ dzı̄r ∈ H
0,r
∂̄

(M) .

(2.4.6)

On T 3
C
one has therefore eight covariant constant spinors and on T 1

C
×K3 four.

A very general tool in Čech cohomology is Serre duality which states for any
sheaf E on M that

Hk(E)∗ ∼= Hn−k(E∗ ⊗KM) . (2.4.7)

Using the Čech-Dolbeault isomorphism Hk(E) ∼= Hk

∂̄
(M,E), Hr(M,∧sT ∗M) =

Hs,r(M) and KM = OM we relate on a Calabi-Yau manifold the cohomology
groups H 0,r(M) ∼= H 0,n−r (M) by taking E = O(M) or by complex conjugation
the cohomology groups Hr,0(M) ∼= Hn−r,0(M). This particular result can be seen
also in a more direct way by contracting a (p, 0) form ωi1...ipdx

i1 ∧ . . .∧ dxip with

the unique (0, n) form to define a (0, n−p)-form ω̂j̄p+1...j̄n = 1
p! �̄j̄1...j̄nω

j̄1...j̄p . One

shows easily that this is an invertible map that commutes with , i.e. Hp,0(M) ∼=
H 0,n−p(M) ∼= Hn−p,0(M). As an exercise use the index theorem (A2.11) to argue
that h1,0 = h2,0 on a Calabi-Yau 3-fold.

With hn,0(M) = h0,0 = 1 Eq. (2.4.6) implies that one has at least two covariantly
constant spinors on a Ricci-flat manifold. In order to show that one has only this two
on a manifold with Hol = SU(n) we shall show that hp,0 = 0 for 0 < p < n. On
a compact Kähler manifold harmonicity of (p, 0)-form implies holomorphicity as
argued after (2.3.33) by consideration of type. Specializing (2.1.27) to Rijk̄l̄ = 0 for
Kähler- and Rij̄ = 0 for Ricci-flat manifolds harmonicity means ∇ν∇νωi1...ip = 0.
On a compact manifold one can use pairing and partial integration to see that this
requires ∇jωi1...ip = 0 (and also ∂̄ω = 0). From these equations we conclude that
all harmonic (p, 0) forms are covariantly constant. However that would mean that
they are invariant under SU(n), which is impossible for 0 < p < n as only the
trivial and the total antisymmetric representation are invariant.
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First Order Complex Structure Deformations

Our aim is to explain in this section the local tangent space of the complex structure
moduli space from a point of view and put forward by Kodaira and Spencer [237]
and to explain in the next section why the first order deformations on a Calabi-Yau
manifold are unobstructed.

Consider as in Sect. 2.2 a 2n real dimensional manifoldM and a covering of it by
coordinate patches Ui , i = 1, . . . , r , which are homeomorphic to a neighborhood
Ui ∈ Cn with coordinates z

(i)
α (p), α = 1, . . . , n. As was mentioned M is a

complex manifold if the transition functions f (jk) : z(k)(p) → z(j)(p), defined
for p ∈ Uj ∩Uk , are biholomorphic. One attempt now to define a family of complex

manifoldsMu, by considering a family of transition functions z(j)α = f
(jk)
α (z(k), u),

which depend also holomorphically on the complex parameters u. The difficulty
is that some u dependence of f (ik)

α (z(k), u) corresponds just to different choices of
local coordinates systems on the same complexmanifold. In order to decide whether
the f (jk)(z(k), u) really induce changes of the complex structure Kodaira [237]
considers in every patchUk an infinitesimal coordinate changes that is characterized

by a holomorphic vector field V (k)(u) = ∑n
α=1

∂f
(k)
α (z(k),u)

∂u
∂

∂z
(k)
α

. Next he forms the

composition of transition functions in Ui ∩ Uj ∩ Uk . Per definition the identity

f (ik)
α (z(k), u) = f (ij)

α (f
(jk)

1 (z(k), u), . . . , f
(jk)
n (z(k), u), u) (2.4.8)

holds. Differentiation w.r.t. to u gives

∂f
(ik)
α (z(k), u)

∂u
= ∂f

(ij)
α (z(j), u)

∂u
+

n
∑

β=1

∂z
(i)
α

∂z
(j)
β

∂f
(jk)
β (z(k), u)

∂u
. (2.4.9)

Denote general vector fields by

A(jk)(u) =
n
∑

α=1

∂f
(jk)
α (z(k), u)

∂u

∂

∂z
(j)
α

, z(k) = f (kj)(zj , u) . (2.4.10)

Note that A(kk)(u) = 0 since f
(kk)
α = z(k) independently of u. Therefore Eq. (2.4.9)

written covariantly in terms of the vector fields (2.4.10) implies A(kj)(u) =
−A(jk)(u). For general i, j, k (2.4.9) is a Čech29 1-cocycle condition for the A(ij)

A(ij)(u)+ A(jk)(u)+ A(ki)(u) = 0 . (2.4.11)

29Čech cohomology made a prominent physical appearance in topological charge quantization in
[15].
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The exact 1-cocycles come precisely from the infinitesimal coordinates changes
setting A(jk)(u) = V (j)(u)− V (k)(u), while the true changes of complex structure
correspond to 1-cocycles, which are not exact, i.e. elements of H 1(M,A), where A

are sheaves of vector fields A = O(TM). The Čech-Dolbeault theorem (2.3.34)
with F = O(TM) implies that complex structure deformations are given by
elements in H 0,1(M, TM), which we also call A.

2.4.2 Unobstructedness of the Complex Deformation Space

As explained further in [237] the existence of a global complex structure deforma-
tion requires the vanishing of higher Čech cohomology groups for vector fields.
Tian [301] and Todorov [303] have proven that these higher order conditions are
automatically fulfilled on a Calabi-Yau space.

The elements

A(u) = Ai
j̄ (x, u)dz

j̄ ∂

∂zi
∈ H 0,1(M, TM) (2.4.12)

representing first order deformation in the complex moduli space can be used to
deform the ∂̄ operator to ∂̄u = (∂̄ + A(u)) so that ∂̄uf (z) = 0, defines what a
holomorphic function on M is w.r.t. the new complex structure. The requirement
that ∂̄2u = 0 leads to

∂̄A(u)+ 1

2
[A(u),A(u)] = 0, (2.4.13)

where [., .] is the Lie bracket. For φ(z) = φi(z)∂zi ∈ L0,p(T ), with φi =
1
p!φ(z)iı̄1,...,ı̄pdz

ı̄1 ∧ . . . ∧ dzı̄p , and ω(z) ∈ L0,q(T ) similarly defined one has

[φ,ω] = (φi ∧ ∂iω
j − (−1)pqωi ∧ ∂iφ

j )∂j , (2.4.14)

giving above a (0, 2) form vector field from two (0, 1)-form vector fields. Condi-
tion (2.4.13) is equivalent to the vanishing of the Nijenhuis tensor (2.2.8) [237].

The main idea of the proof is that the existence of the holomorphic (n, 0) form
induces an isomorphism

H 0,p(M, TM) ∼= Hn−1,p(M) . (2.4.15)

which converts the condition (2.4.13) into a cohomological question, which is
solved by the ∂∂̄ lemma. This conversion of the deformation problem to a
cohomological question, which is solved by an analog of the ∂∂̄ Lemma extends
to deformations of G2 metrics [177, 202] as well as to the extended moduli space
considered in [27].
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Contraction with the homolomorphic (n, 0) form associates to A =
Ai

j̄1,...,j̄p
dzj̄1 ∧ . . .∧ dzj̄p ∂

∂zi
∈ H 0,p(M, TM) an Â ∈ Hn−1,p(M) as

Â = 1

(n− 1)!A
j
j̄1,...,j̄p

�j,i2,...,indz
i2 ∧ . . . ∧ dzindzj̄1 ∧ . . . ∧ dzj̄p (2.4.16)

with the inverse

(Â)∨ = 1

(n− 1)!|�|2 �̄
i,i2,...,in Âi2,...in,j̄1,...,j̄pdz

j̄1 ∧ . . . ∧ dzj̄p
∂

∂zi
(2.4.17)

where |�|2 is defined in (2.4.5). One checks that A is harmonic iff Â is harmonic
and the operation is invertible i.e. A = (A∧)∨, which shows (2.4.15).

Since � is holomorphic the hat operation (2.4.16) commutes with ∂̄ and we get

∂̄Â = ̂∂̄A = −1

2
[̂A,A] =: −1

2
[Â, Â], (2.4.18)

as equivalent to the condition (2.4.13).
The main technical instrument is the following Lemma (Tian-Todorov)

[Â, B̂] := [̂A,B] = ∂ ̂(A ∧ B)− (D ·A) ∧ B̂ + Â ∧ (D · B), (2.4.19)

where D · A = (∂iA
i
j̄1...j̄p

)zj̄1 ∧ . . . ∧ dzj̄p is a contraction. The calculation is a
straightforward exercise whose solution is made explicit in [301].

Equation (2.4.19) becomes particularly useful, if one can choose “gauge”
representatives for A and B so that (D ·A) = (D · B) = 0. To control this “gauge”
condition Tian considers a Taylor expansion A(u) = A1u + A2u

2 + . . . with Ai

sections of �(M,�(0,1)(TM)) and starting data ∂̄0 = ∂̄ , i.e. A(0) = 0. To order
u (2.4.13) states ∂̄A1(z) = 0 and we already argued that in order to get rid of
complex coordinate transformations we should consider A1 ∈ H 01

∂̄
(M, TM) only.

One wants now to prove inductively that ∂Ak + 1
2

∑k−1
i=1 [Ai,Ak−i ] = 0 for k > 1

which by (2.4.18) is equivalent to

∂̄Âk = 1

2

k−1
∑

i=1
[Âi, Âk−i], for k > 1 . (2.4.20)

First step of induction: To first order in u one has simply as above Â1 ∈
Hn−1,1(M) and we pick the harmonic representative Â1. In fact on compact Kähler
manifolds it follows from (2.3.10), (2.3.33) that every harmonic representative
fulfills ∂̄A1 = ∂̄∗A1 = 0. Moreover with ∂̄ = ∂ , see Sect. 2.3.1 also ∂Â1 = 0

holds. This implies D · A1 = 0 and by (2.4.19) [Â1, Â1] = ∂ ̂(A1 ∧ A1) is ∂-exact.
On the other hand for Â1 ∈ Hn−1,1(M) hence ∂̄A1 = 0 it is immediate from the
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definition of the bracket that ∂̄[Â1, Â1] = ∂̄∂ ̂(A1 ∧ A1) = 0. The ∂∂̄ Lemma of
Kähler geometry ([150], p. 149) states that if a form η ∈ �p,q is ∂̄ closed and d-, ∂-
or ∂̄− exact, then it can be written as η = ∂∂̄ψ . Applied to the bracket we can write
[Â1, Â1] = ∂∂̄ψ1 for someψ1 ∈ �1,1. Identifying Â2 = 1

2∂ψ1 we have constructed

a solution to ∂̄Â2 + 1
2 [Â1, Â1] = 0.

General induction: If for some N one has solved for Âi with ∂Âi = 0 and ∂̄Âi +
1
2

∑i−1
j=1[Âj , Âi−j ] = 0, i = 1, . . . , N , then

N
∑

j=1
[Âj , ÂN+1−j ] = ∂

N
∑

j=1
(Aj ∧AN+1−j )

∧ (2.4.21)

and one also checks that

∂̄

⎛

⎝

N
∑

j=1
[Âj , ÂN+1−j ]

⎞

⎠ = ∂̄∂

⎛

⎝

N
∑

j=1
[Aj ,AN+1−j ]

⎞

⎠

∧

= 1

2
∂

⎛

⎝

N
∑

j=1

j−1
∑

k=1

[[Ak,Aj−k], AN+1−j

]− [Aj , [Ak,AN+1−j−k]
]

⎞

⎠

∧

= 0 .

Here we used first (2.4.19), then the fact that ∂̄ and ∧ commutes, (2.4.21) for Ak

with k ≤ N and the Jacobi identity for (2.4.14). By the ∂ , ∂̄ Lemma one can set
ÂN+1 = 1

2∂ψN and since ∂ÂN+1 = 0 the induction proceeds. Moreover one has
arguments that the series converges in Hn−1,1(M) [301].

Hence there exist always a family of Calabi-Yau manifolds with varying complex
structure parameters, whose complex dimension is h0,1(M, TM) = hn−1,1(M).
Tians and Todorovs result is very important also with respect to the world sheet
theory, where is very not-trivial to establish that a deformation of type (4.1.7) is
exactly marginal and does lead to family of N = 2 SCFTs.

2.4.3 The Variation of Hodge Structures

The previous section gave us an understanding of the generic local structure of the
complex moduli space, which has the special good property of unobstructedness
for Calabi-Yau manifolds. To describe it globally we will discuss the idea of the
variation of Hodge structure which leads to the more concrete notion of Picard-
Fuchs differential equation and periods, which we discuss as important tools later.

Let us first informally describe the main idea with a short account of its possible
pitfalls, which are as we see irrelevant for our most natural applications. An very
nice introduction of the concept for Riemann surfaces can be found in [100]. In
Sect. 2.9.7 we go more in the technical aspects of the derivations of the Picard-
Fuchs equations applicable for general Calabi-Yau hypersurfaces and complete
intersections.
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Above we introduced the notion of a varying complex structures. Let us introduce
now a family M of complex manifolds {Mu} parametrized by some coordinates
u varying smoothly over some base space U , so that there is a projection π :
M → U with pre-image π−1(u) = Mu. As we just saw the complex dimension
of U is expected to be hn−1,1(M). It will useful and possible as we will see to
consider a compactification of U to the complex moduli space Mcs , which in
particular contains singular fibres π−1(us) of M, which occur at least at complex
co-dimension one in Mcs . That is generically, away from the singular fibres, the
fibres Mu are smooth and diffeomorphic to each other. In particular locally in some
neighborhood V ∈ Mcs away from the singularity the mapping π describes a
product and we can pick a k−chain or real k-dimensional sub manifold Cu ∈ Mu

that is locally constant in the sense that it always represents the same integer
homology class [Cu] ∈ Hk(Mu,Z). Because the homology is integer it is clear
that class can not jump by smooth variations along Mcs as long as we stay away
from the singularities. Elements in the dual cohomology are more naturally defined
over C and can smoothly depend on u. The latter can be defined as a restriction of a
not necessarily closed form ω onM to the fibres to yield a k-form ωu = ω|Mu . If ωu

is a closed k-form on each fibre then the definition (2.1.15) extends immediately
defining for the family {Mu} a period function by π(u) = ∫

C ωu. Here we
suppressed the dependence of C on u, because it is a constant class in Hk(Mu,Z).
Let x be coordinates onM , then because of the local product form ofM derivatives
w.r.t ∂ui , i = 1, . . . , hn−1,1 commute with derivatives ∂xi , i = 1, . . . , dimR(M).
In particular if ωu is closed, so is ∂

p

uiωu, p = 0, . . . , bk(Mu). However we can

have only bk(Mu) independent elements in Hk(Mu,R), hence by the theorem of de
Rham we must have a linear combination that is exact:

bk
∑

i=0
ai(u)∂

i
uk
ωu = dηu . (2.4.22)

By the Stokes theorem this immediately implies a linear differential equation the so
called Picard-Fuchs equation for the period function, which we call often simply the
period, which reads

bk
∑

i=0
ai(u)∂

i
uk
π(u) = 0 . (2.4.23)

The argument has interesting shortcomings when we really apply it to the context
of complex manifolds as intended, see [211] for an account of the problems. Let us
pass from the real coordinates xi , i = 1, . . . , 2n to complex coordinates (zi , zı̄ ), i =
1, . . . , n. Because of the Hodge theorem (2.3.31) we have the following situation:
Let us start with any form in Ap,q that is a holomorphic or algebraic (p, q)-form
with p + q = k. Since we can still locally trivialize π as holomorphic map and
since ∂ui commutes in this trivialization with ∂zi we would not change the Hodge
type (p, q) by derivatives w.r.t. u and do not reach all of Hk(Mu,C).
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A related issue that provides part of the solutions is that ωu vanishes at some
point u0 in Mcs . Then taking the derivative w.r.t. u at this point can create poles in
ωu. The rectification of both problem is wellknown, if M is a elliptic curve. Then
we extend the class of holomorphic one forms to include meromorphic one forms
which have poles of arbitrary order but no residue at those poles. The latter are
known as one forms of the second kind. Since they have no residue, their integral is
still independent of the class of the cycle and they represent an element in H1(�u),
but this class of forms closes under differentiation w.r.t. u.

Example The Legendre Elliptic Family is given by

y2 = x(x − 1)(x − s) . (2.4.24)

The (1,0) form differential

ωs = dx

y
(2.4.25)

can be differentiated as

L(2)ωs = (1+ 4(2s − 1)∂s + 4s(s − 1)∂2s )ωs = −2 d

(√
x(x − 1)

(x − s)3/2

)

(2.4.26)

to yield an exact form η as in (2.4.22). Hence

L(2)π(s) = 0 (2.4.27)

is the Picard Fuchs equation, which is a Hypergeometric system 2F1(
1
2 ,

1
2 , 1; s).

The normalized period over the vanishing cycle at s = 0 is
∫

A
ωs =

∫∞
1 ωs =

2π2F1(
1
2 ,

1
2 , 1; s).

On higher dimensional manifolds there is an analog of the differentials of the second
kind [150], which is however not quite sufficient in general to provide a basis of the
cohomology that is suitable to describe the variation of Hodge structure. Algebraic
De Rham theory is sufficient to describe the suitable cohomological objects, i.e. the
cohomology groups on the left hand side of (2.3.34) with coefficients in the sheaf
of p forms, which are algebraically defined, if M is an affine variety. In general one
has to pass [156] to Hypercohomology [150].

The primitive horizontal subspace in the cohomology of a Calabi-Yau n-foldMn

comes with a polarized Hodge structure, see [76, 78, 256] for reviews. In order
to study its variation we fix an integral structure Hn(M,Z) relative to which we
can measure the change of the spaces Hp,q(Mz) in Hn(M,R) with the change
in complex structure parametrized by z. The spaces Hp,q(Mz) do not fit into
holomorphic vector bundles over Mcs . The way of capturing the variation of the
polarized Hodge of Calabi-Yau n-folds π : Mn → Mcs over their complex
moduli space Mcs with fibre π−1(t) = Mt is therefore as follows: One captures
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the Hodge decomposition Hn(M,C) = ⊕n
k=0Hn−k,k with Hp,q(M) = Hq,p(M),

with respect to the real structure Hn(Mn,R), in terms of Hodge filtrations30 F • =
{Fp}np=0 with

Fp =
⊕

l≥p

H l,n−l (2.4.28)

so that

Hn = F 0 ⊃ F 1 ⊃ . . . ⊃ Fn ⊃ Fn+1 = 0 . (2.4.29)

One can recover the Hodge decomposition from the F • in (2.4.28) from the
following relations

Fp ⊕Fn−p+1 = Hn(M,C), Hp,q(M) = Fp(M)∩Fq(M) (2.4.30)

and

Hp,q(M) = Fp/Fp+1 . (2.4.31)

Together with the lattice Hn(Mn,Z) this defines the Hodge structure. Unlike the
Hp,q(Mn) the Fp(Mn) vary holomorphically with the complex structure and fit
into locally free sheaves over Mcs with inclusion Fp ⊂ Fp−1. This defines a
decreasing varying Hodge filtration

H = F0 ⊃ F1 ⊃ . . . ⊃ Fn ⊃ Fn+1 = 0 . (2.4.32)

for the locally free sheaves Fp.
In particular F0 = Rnπ∗C⊗OMcs

is the Hodge bundleH, which has a locally
constant subsheafRnπ∗C over the moduli spaceMcs . Taking this as the flat section
of F0 defines a flat connection, called the Gauss Manin connection ∇GM : F0 →
F0 ⊗�1

Mcs
by

∇GM(s ⊗ f ) = s ⊗ df . (2.4.33)

The locally constant subsheaf HC = Rnπ∗C of flat sections has as subsheaf
the sheaf of integer sections HZ = Im(Rnπ∗Z → Rnπ∗C). The Gauss Manin
connection fulfills the Griffiths nilpotency condition w.r.t. to the varying Hodge

30Sometimes, especially in the physics literature, Fp = Fn−p is used.
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filtration

∇GMFp ⊂ Fp−1 ⊗�1
Mcs

. (2.4.34)

In particular if we pick any � ∈ H then in view of (2.4.34), (2.4.32) the expression

(

∇GM
)n+1

� (2.4.35)

for derivatives in any directions inMcs must be expressible in terms of
(∇GM

)k
�,

k = 0, . . . , n in cohomology. This is equivalent to the Picard-Fuchs differential
ideal IPF , which is the kernel of the map φ(X1, . . . , Xr) = ∇X1 . . .∇Xr�(t) from
the sheaves of linear differential operatorsDi onMcs to the HodgebundleF0, which
makes the latter into a D-module. Here Xi = ∂zi , i = 1, . . . , r = dim(Mcs) is a
basis of vector fields onMcs . As

∂zi

∫

�t

�(t) =
∫

�t

∇∂zi
�(t) (2.4.36)

the Di annihilate the periods and determine them. The solutions to the Picard-
Fuchs equations determine then the above mentioned flat sections. The local flatness
implies that the non-trivial essence in this setup is to large extend in the global
monodromy group � acting on the sections over Mcs , which explains the pivotal
role of �.

In fact one can turn the problem around and given start with the monodromies
at critical divisors, which determine the leading behaviour of the sections, which in
turn are captured for simple examples by the Riemann-Hilbert symbol, and ask the
question whether there is a differential system with regular singularities only, which
then fully determines the sections. Problems of these kind are called Riemann-
Hilbert problems.

2.4.4 Periods, Torelli Theorems and the Stringy Moduli Space

Based on the signature theorem of Sect. 2.3.4 we review first the possible intersec-
tion forms on the middle homology (in Section “The Integral Basis in the Middle
(Co)homology”). We assume here based on the general remarks that we can obtain
the periods of the complex n-dimensional manifold over an integral basis of real n
dimensional cycles in the middle homology. We comment on the general choice of
local coordinates onMcs using the periods, which is possible due to a local Torelli
theorem.

Then we explain how the complex structure deformations can be viewed as
one part of possible deformations of the Ricci-flat metric. The other part, given
geometrically as volume or so called Kähler deformations, complements this to the
geometrical moduli space.
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In string theory it is very natural to extend the moduli space of Kähler deforma-
tions by the Neveu-Schwarz antisymmetric background fields, that are not related
to the metric. However as it turns out that the extended moduli spaces have better
properties in particular holomorphicity and nicer symmetries. Mirror symmetry is
the most famous example for the latter statement.

We discuss in examples in one and two dimensions the important aspect namely
that the periods or rather ratios of periods parametrize the moduli space faithfully
also globally. Such statements are know as global Torelli theorems in the literature.

We conclude the section with some general remarks on the higher dimensional
Calabi-Yau cases and the physical moduli space on Calabi-Yau 3 folds. The detailed
study of the moduli spaces of Calabi-Yau 3- and n-folds is discussed in Sect. 2.5.

The Integral Basis in the Middle (Co)homology

For odd dimension n this integral basis can be chosen to be integral symplectic,
i.e. in homology we pick such a symplectic basis AI ,BI ∈ Hn(Mn,Z) and in
cohomology we pick a dual basis αI , β

I ∈ Hn(Mn,Z) with I = 0, . . . , bn
2 − 1

such that the non-zero pairings are as follows

AJ ∩ BI = −BI ∩ AJ =
∫

Mn

αI ∧ βJ = −
∫

Mn

βJ ∧ αI =
∫

AJ

αI=
∫

BI

βJ = δJI

(2.4.37)

and we define the periods w.r.t. to this basis as

&% =
(

FI (z)

XI (z)

)

=

⎛

⎜

⎜

⎜

⎝

∫

BI

�(z)

∫

AI

�(z)

⎞

⎟

⎟

⎟

⎠

. (2.4.38)

For even dimension n we have an even intersection forms, whose signature can
be calculate by the Hirzebruch signature theorem, reviewed in Sect. 2.3.4. It is still
of importance for the definition of the inhomogeneous coordinates on the complex
moduli space Mcs that there are hn−1,1 = h non-intersecting A-cycles AI , I =
0, . . . , h, such that the inhomogeneous coordinates can be defined as ti = Xi/X0

see below.
Often as for example forK3, discussed below, the intersection form is restricted

by the classification of integer lattices. Given an algebraic realization which fixes
a polarization, only the horizontal subspace of the middle cohomology can be
described by periods integrals fulfilling Picard-Fuchs equations.

Using Griffiths residuum representation of the holomorphic (n,0) the integral
over some cycles in the symplectic basis in some regions of the moduli space might
be performed explicitly. In the general situation one finds the exact complex moduli
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dependence on z and anC basis of the periods using the fact that% fulfills a systems
of linear differential equations in the complex moduli. In order to determine the
integral basis one matches the so found solutions to the known leading behaviour of
integral cycles at degenerations points. The latter task is very much helped by mirror
symmetry. One also might use the fact that the monodromy respects the integer
symplectic basis, i.e. it has to be integer symplectic.

Choice of Coordinates

The existence of the holomorphic (n, 0) form on Calabi-Yau spaces relates the
infinitesimal complex structure deformations (2.4.12) to the middle cohomology
Hn−1,1(M) by (2.4.15). One can study the corresponding complex structure
deformations at least locally by the variation of the Hodge structures using periods
I = 0, . . . , hn−1,1(M) over suitable cycles in the integral basis. Let us call these
periods

XI , I = 0, . . . , hn−1,1(M) = h (2.4.39)

even so only for three-folds this can coincide with the definition in (2.4.38). These
periods constitute homogeneous coordinates of the, so called big moduli space,
whose dimension is hn−1,1(M)+ 1. The

t i = Xi

X0 , i = 1, . . . , hn−1,1(M) . (2.4.40)

are at least locally inhomogeneous coordinates of the actual complex moduli space
Mcs . What periods we select to define these coordinates depends on the locus in the
moduli space and in particular on the local monodromy as explained in Sect. 2.6.2.
For example for the 3-fold case, what we call A-cycles and thereforeXI in (2.4.38)
is of course a choice up to integer matrix M transformations, which respects the
intersection form � defined below in (2.4.37). I.e. for a Calabi-Yau 3-fold or
Riemann surfaces of genus g these are Sp(h3(M),Z) or Sp(2g,Z) transformations
respectively. As we will see in Sect. 2.6.4, at the points of maximal unipotent
monodromies, there is an unique holomorphic period X0 and exactly hn−1,1 single
logarithmic periods Xi , i = 1, . . . , hn−1,1(M). This singles out the ratios (2.4.40)
as the mirror map. This and choices at other points will be discussed more later.

The First Order Deformations of the Metric

We known the first order deformations and for the complex structure deformations
the fact that they are unobstructed as discussed in (2.4.2). Let us review [58, 60] the
linearization approach to the Ricci-flat metric and to get the stringy moduli space to
theB−field and further backgroundfields. So we consider deformations gμν+δgμν ,
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which do not change the Calabi-Yau condition31 Rμν(g) = 0, i.e.

Rμν(g + δg) = 0 . (2.4.41)

In analyzing this equation we have to eliminate the infinitesimal changes δg, which
come from coordinate transformations. Coordinate transformations or equivalently
diffeomorphism of M are generated by vectors fields V μ, compare section “First
Order Complex Structure Deformations”. An actual change of the metric δgμν is
orthogonal to diffeomorphism generated by the vector field in the following sense
∫ √

gδgμν(∇μVν + ∇νVμ)dmx = 0, which is equivalent to the gauge condition
∇μδgμν = 0, compare (3.3.20) and (3.3.21). Expandingwith this constraint (2.4.41)
to linear order around R(g) = 0 one gets

∇ρ∇ρδgμν − 2R κ σ
μ ν δgκσ = 0 (2.4.42)

Using the splitting of a Kähler metric in holomorphic and holomorphic indices
one can analyze δgij̄ , and δgij separately. Note that δgij̄ is real, while δgij with
δgij = δgı̄j̄ is complex. From (2.1.27) it follows that δgij̄ isd harmonic and δgi =
δgi

j̄dz
j̄ = gik̄δgk̄j̄dz

j̄ is ∂̄ harmonic. In other words the first order deformations

factorize and correspond to elements in H 1,1(M) and H 1(M, TM) ∼ H 2,1(M)

respectively. As mentioned the last equivalence is due to Serre duality (2.4.7), via
the no-where vanishing (3, 0) form. These are also among the deformations of the
A- and B-model as mentioned above.

As it is clear from the fact that the deformations δgij , δgı̄j̄ change the (i, ı̄)

type of the metric, the moduli space H 1(M, TM) is associated to complex
structure deformations, discussed already in section “First Order Complex Structure
Deformations” and Sect. 2.4.2.

Next we discuss the two moduli space associated toH 1,1(M). In a basis of (1, 1)-
forms ω(k), we expand a Kähler form ω

ω =
h11
∑

k=1
vkω(k) (2.4.43)

in terms of the real Kähler parameters vk > 0, which are the 2-volumes of the curves
Ck dual to ω(k)

vk =
∫

Ck

ω . (2.4.44)

31Strictly speaking one should ask for perturbations, which leave the Ricci-formR in the c1(M) =
0 cohomology class. Though the representatives of the deformations in the cohomology classes
would be different, the counting would be the same, see Sect. 3.3.1.
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Therefore the range of vk is bounded by the inequalities, which ensure positivity of
the 2-volumes of curves C and for examples for 3-fold the 4-volumes of divisors D
and the 6-volumes of M , i.e.

∫

C

ω > 0,
∫

D

ω ∧ ω > 0,
∫

M

ω ∧ ω ∧ ω > 0 . (2.4.45)

These conditions describe a real cone in Rh1,1+ , which is called the Kähler cone. The
volume parameters vk shrink to zero area at the boundaries of the Kähler cone.32

The Neveu-Schwarz B-Field and the Complexified Kähler Moduli Space

The string σ -model action (3.4.1) describes the string theory perturbatively in the
large volume limit. The relevant bosonic part is

∫

�

dσ 2
(

gij̄ η
ab + ibij̄ ε

ab
)

∂σa xi∂σbxj̄ . (2.4.46)

Here σa with a, b = 0, 1 are world sheet coordinates, xi(σ ), xj̄ (σ ) with i, j̄ =
1, . . . , n are the pullback of the complex coordinates on M to the world-sheet
� describing the embedding map X : � → M . ηab and εab are the flat
worldsheet metric and the worldsheet antisymmetric tensor respectively. Note that
the equations of motion for the B-field enforce that bij̄ is a harmonic (1, 1)
and therefore a representative of H 1,1(M). Combined with the possible Ricci-flat
deformations (2.4.42) is is therefore natural to decompose the space time moduli
metric element into a complex field for every cohomology element in H 2,1(M),
while the B field allows to complexify the real Käher modulus corresponding to
each element in H 1,1(M)

ds2 = 1

2V

∫

M

gim̄gjn̄
[

δgij δgm̄n̄ + (δgim̄δgjn̄ + δbim̄δbjn̄)
]√

gd6x . (2.4.47)

This decomposition is also natural from the IIA supergravity33 effective action,
which has complex moduli for Kähler deformations with an additional special
Kähler structure, while each complex deformation lives in a complex subspace
of a quaternionic space. The complex subspace is in the image of special Kähler
projection, while the additional fields which double the degree of freedom to make

32At the boundary of the Kähler also a divisor may collapse. In this case t̃ k is still the area of a
curve Ck in D.
33For the IIB compactification which has even form Ramond-Ramond fields the assignment of the
two types of metric and B-field deformations complex and complexified Kähler to the complex and
quaternionic moduli space is reversed.
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it to the quaternionic space are odd form Ramond-Ramond fields, invisible in the
perturbative action above. Moreover it can be argued from the N = 2 supergravity
interactions that this metric is at least for smooth manifolds block diagonal. Another
argument in favor of the two complex deformations spaces comes from the marginal
deformations of the (N ,N ) = (2, 2) world-sheet theory.

We see from (2.4.46), (2.4.47) that it is natural to complexify the parameter tk by
adding the integrals of the second term in (2.4.46), the anti-symmetric tensor Neveu-
Schwarz field b over Ck to the volumes and normalize to define the complexified
Kähler parameters tk as

tk = 1

2πi

∫

Ck

(ib − ω) = 1

2πi
(bk − vk). (2.4.48)

It is very important to note that the second term in (2.4.46) merely counts a winding
number, describing how often the string winds Ck . Since the action is unchanged by
an integer phase shift of 2πin with n ∈ Z a shift of bk by 2πi corresponds to an
exact symmetry of the large volume expansion, which is hence invariant under

tk → tk + 1 . (2.4.49)

The mirror symmetry conjecture asserts that Calabi-Yau manifolds occur in
mirror pairs (M,W) so that the complex moduli space Mcs(M) of M is identified
with the complexified Kähler moduli Mcks(W) space of W and vice versa. This
requires that all moduli spaces are at least one complex dimensional, because both
M andW are Kähler and have to have at least one Kähler modulus. This excludes the
so called rigid Calabi-Yau spaces which have no complex structure deformations.
However even in these cases the complexified Kähler moduli space Mcks(M) can
be mapped to the complex deformation space of a mirror geometry, which can either
be described as a higher dimensional manifold [62] or one with anticommuting
coordinates [285, 292]. Mirror symmetry also gives a natural choice of the complex
parametrization of the complexifiedKähler moduli spaceMcks , simply the complex
structure parameters of the mirror tmk .34

Elliptic Curve

The simplest example of a local and global Torelli theorem and the stringy moduli
space is the complex moduli space of an elliptic curve E that is locally parametrized
by periods of the holomorphic (1, 0)- form ω := �1 over a symplectic basis (A,B)

34As a corollary all singularities ofMK occur at complex codimension one and the cone structure
disappears completely.
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of H1(E,Z) as

τ =
∫

B
ω

∫

A
ω
∈ H+ . (2.4.50)

Here H+ is the complex upper half plane defined as

H+ = {z ∈ C|Im(τ ) > 0} = SU(1, 1)/U(1) . (2.4.51)

Note that by the definition of elliptic curve E = C/Z2(1, τ ), i.e. as a parellelogram
spanned by the complex numbers (1, τ ) and identified opposite sides, the inequality
Im(τ ) > 0 merely means the positivity of the volume of the curve. So the moduli
space is globally parametrized by τ ∈ H+ up to the SL(2,Z) monodromy action on
%, which induces a �1 = PSL(2,Z) on τ (A4.3). It can hence be identified with the
discrete quotient

Mcs(E) = �1\H+ , (2.4.52)

which is also called the fundamental region F . If we consider a family of
Riemann surfaces represented typically by the zero locus of algebraic equation
representing the anti canonical class in a Fano 2 fold, which is generically smooth
and parametrized by the complex parameter s, the actual monodromy group
�E(s) ∈ �1 is a subgroup of finite index m and Mcs(E(s)) = H+/�E(s) so that
Vol(Mcs(E(s)))/Vol(H+/�1) = m. According to the theorem of Yau the metric of
a Calabi-Yau manifold is fixed once �n and the Kählerform ω is fixed. Specialized
to the metric of the torus one has the moduli space

Mg =Mcs(E)×R+ , (2.4.53)

where the second factor represents the volume of the two torus. Note however that
in string theory or rather in the non-linear sigma model that defines it the volume
is complexified by the Neveu-Schwarz B-field as explained in greater generality
after (2.4.46). By mirror symmetry the moduli space of the complexified Kähler
structure must be a copy of the fundamental region F . Since string theory on the
two torus is solvable with all its dependence on the moduli this can be explicitly
shown, see [185] for review. The stringy moduli space becomes indeed

Mstring = �σ \Fcs ×Fck , (2.4.54)

where �σ is generated by three Z2 representing mirror symmetry, charge conjuga-
tion and world-sheet parity of the non-linear sigma model.
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Higher Genus Riemann Surfaces

Higher genus Riemann surfaces with c1(T �g>1) < 0 are of course not Calabi-Yau
manifolds in any sense. Nevertheless they also have a moduli space of complex
structures and similar considerations apply to the variation of their periods. The
difference is that the relevant space defined by the periods is the Siegel upper half
space. That is because genus g Riemann surfaces have unlike Calabi-Yau spaces g

holomorphic one forms �k
1, k = 1, . . . , g. E.g. if the genus g Riemann-surface is

given in hyperelliptic35 form, i.e. as

y2 =
2g+2
∏

i=1
(x − ei) , (2.4.55)

then they can be written as �k
1 = xk−1dx

y
, k = 1, . . . , g. Using them all one gets a

period matrix

%g×2g = (A,B) =
⎛

⎜

⎝

∫

A1 �
1
1, . . . ,

∫

A1 �
g

1
...

...
...

∫

Ag �1
1, . . . ,

∫

Ag �
g

1

∫

B1 �
1
1, . . . ,

∫

B1 �
g

1
...

...
...

∫

Bg �1
1, . . . ,

∫

Bg �
g

1

⎞

⎟

⎠ . (2.4.56)

that defines τg×g = A−1B a symmetric matrix. The Riemann bilinear relations
require Im(τg×g) > 0 to be positive. Matrices with this property take values in the
Siegel upper half space. Again one has to divide by the monodromy group a finite
index subgroup of Sp(2g,Z).

K3 Surfaces

For K3 surfaces and algebraic K3 surfaces one has likewise global Torelli theorems.
To state them we recall that by the Hirzebruch signature formula (2.3.37), (2.3.39)
for (Calabi-Yau) 2-folds the difference between positive and negative eigenvalues
in the intersection form is σ = ∫

K3

1
3 (c

2
1 − 2c2) = − 2

3χ(K3) = −16. The 22
dimensional lattice H2(K3,Z) has hence signature (3, 19). By Poincaré duality it
is selfdual. Since c1(TM) = 0 mod 2, a K3 is spin and one gets by the formula of
Wu that the intersection form is even36 [251, 296]. By the classification of even, self

35Note that three points can be brought to prescribed values by an SL(2,C) transformation acting
on the x-plane. Often one brings one of them to complex infinity and rescales y so that the r.h.s.
of (2.4.55) is of degree 2g + 1 as in (2.4.24). However only for g = 1, 2 all 3g − 3 moduli of a
genus g Riemann surface can be parametrized by the positions of the remaining 2g − 1 points, i.e.
for g > 2 one cannot write the most general Riemann surface in hyperelliptic form.
36See [327] for a similar application to CY 4 folds.
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dual Lorentzian lattices the intersection form on the K3 has to be

�3,19 = �E8 ⊕ �E8 ⊕ �1,1 ⊕ �1,1 ⊕ �1,1 . (2.4.57)

where �E8 is the negative of the E8 Cartan matrix and �1,1 =
(

0 1
1 0

)

. If we

parametrize the holomorphic two form �2 = x + iy with x, y ∈ H2(K3,R) then
it follows from (2.3.41) that 〈x, x〉 = 〈y, y〉 and 〈x, y〉 = 0 and from (2.3.42)
〈x, x〉 + 〈y, y〉 ≥ 0, hence �2 lies in the space like two plane in R3,19 with a fixed
orientation, which is reversed by complex conjugation. Hence the moduli space of
general complex structures is given by the choice of that two plane. The latter can be
parametrized by O+(3, 19) rotations relative to �3,19 and modulo rotations inside
and orthogonal to the two pane. I.e. by the Grassmannian

Gr+(�2,R
3,16) = (O+(3, 19)

(O(2)×O(1, 19))+
, (2.4.58)

so that the analog of (2.4.52) is the complex space with 20 complex dimension

Mcs(K3) = O+(�3,19)\Gr+(�2,R
3,19) . (2.4.59)

If we construct the K3 by a family of hypersurfaces given as the vanishing
locus of an algebraic equation representing the anti canonical class in a Fano 3-
fold, the complex moduli space is of different dimension. The reason is that the
curve classes that decent from the ambient space stay holomorphic in all complex
structures accessible by the family of hypersurfaces and are dual to (1, 1) forms,
which represent the Picard group Pic(K3) = H 2(K3,Z) ∩ H 1,1(K3) of rank ρ.
Exactly one of those (1, 1) forms represent the Kähler class and is by (2.3.5) also
space like, so that the signature of the Picard lattice is (1, ρ− 1). Therefore one can
choose the two-plane representing� only within the space R2,20−ρ , which implies
that the moduli space is the space with 20− ρ complex dimensions

Mcs(K3alg) = O(
Im(r)T )\O(2, 20− ρ)/(O(2)×O(20− ρ)) . (2.4.60)

Here 
Im(r)T is the orthogonal complement of image of the embedding map
r : Pic → �3,19 in �3,19 and O are as before the lattice automorphisms of the
corresponding lattices. The moduli space of the metric of K3 is according to the
theorem of Yau given by the choice of�2 andω, which span the space like subspace.
However the choice of ω within this three dimensional subspace turns out to be
irrelevant for the metric of the K3. The reason is that a it can be undone by rotation
representing a choice of complex structures parametrized by an S2, which does not
affect the metric. This is a special feature of hyperkähler manifolds such as K3.
Hence the metric moduli space does only depend on how we chose the space like
three dimensional subspace itself relative to the lattice and together with the volume
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is given by the 58 real dimensional space

Mg = O(�3,19)\O(3, 19)/(O(3)×O(19))× R+ . (2.4.61)

Mirror symmetry exchanges in the 20 dimensional cohomology of (1, 1) forms of
the K3, the Picard lattice with its complement. The 22 Neveu-Schwarz B-fields in
the non-linear sigma model, see (2.4.46), enhance the moduli space of the metric
into an 40 dimensional complex moduli space of string theory on K3 back grounds,
see [23] for a review, which is given by,

Mstring = O(�4,20)\O(4, 20)/(O(4)×O(20)) . (2.4.62)

Calabi-Yau 3-Folds

The moduli space of the metrics of Calabi-Yau 3-folds is not a homogenous space
like in the examples of Riemann surfaces or K3 discussed above. Also there is no
global Torelli theorem. It has a structure called special Kähler geometry which will
be discussed from the geometrical point of view in Sect. 2.5. Much of its structure
follows from the existence of the (n, 0) form and Griffiths tranversality which hold
in any dimensions. It leads however to very different geometrical structures in even
and odd dimensions.

We conclude the section with a description of the deformation spaces of 3-
folds from the physics points of view. In the low energy effective action of type
II A/B string theory these marginal deformations arise as vacuum expectation of
complex scalar fields labeling the vacuum manifold of the N=2 supergravity in 4d.
The general structure of this vacuum manifold for abelian gauge groups U(1)#V

and U(1)#H is that it is locally of the form M2#V ×Q4#H , where M is a complex
special Kähler manifold for the scalar fields in the vector multiplets [81, 83, 84, 116]
and Q is a quaternionic manifold [70] for the scalar fields in the hypermultiplets.
The subscripts indicate the real dimension of the moduli space. Its relation to the
perturbative sector of the II A/B string compactifications on the Calabi-Yau 3 folds
M and W is as follows

MIIA
tot (M) =MIIA

2h1,1(M)
×QIIA

4(h2,1(M)+1) MIIB
tot (W) =MIIB

2h2,1(W)
×QIIB

4(h1,1(W)+1) .
(2.4.63)

One very far reaching definition of the mirror conjecture is that type IIA and type
IIB string compactifications are completely identically if M andW are mirror pairs.
This in particular implies MIIA

tot (M) = MIIB
tot (W). The best studied object is

MIIB
2h2,1(W)

since it is literally the complex moduli space of W . The enhancement of
the Calabi-Yaumetric moduli space from the complex to the quaternionic spaceQ of
Kähler multiplets is due to the moduli of Ramond fields. The additional quaternionic
dimension inQ comes from the universal dilation, whose scalar components (S, C)

contain in particular the type II dilaton S.
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2.5 Special Geometry on the Complex Moduli Space

Special geometry is a differential property on complexmoduli spaceMcs of Calabi-
Yau manifolds. In the case of Calabi-Yau 3-folds it guarantees the existence of
a holomorphic prepotential from which the Kähler potential and triple structure
constants derives. We will now derive the integrality condition of special geometry
for 3-folds as a corollary to the consideration of type (2.3.41) and Griffiths
transversality (2.4.34) in way that generalizes immediately to the derivation of
similar differential and algebraic properties for general complex dimension n.
Additional algebraic properties occur if n is even. The structure generalizes in fact
to (2, 2) superconformal theories independent of their geometric interpretation. In
this generality it is known as tt∗-structure.

2.5.1 Universal Part of Special Geometry

We start with elements of the theory, which apply to the complex moduli spaces
of Calabi-Yau spaces of any dimensions namely the Weil-Petersson metric on the
complex moduli space Mcs , which determines the metric in front of the kinetic
terms of the moduli fields. The latter exist geometrically, because by the Tian-
Todorov theorem the moduli space of Calabi-Yau manifolds is unobstructed [301,
303]. Its tangent space is described by H 1(Mn, TMn), which can be identified with
Hn−1,1(Mn) by contractingwith�n. Calabi-Yaumanifolds have an unique nowhere
vanishing (n, 0) form�n and the real from (2.3.42) is related to the Kähler potential
for the metric on the moduli space as

e−K = (−1) n(n−1)
2 R(�n) = in

2〈�n, �̄n〉 (2.5.1)

The Weil-Petersson metric on the complex moduli space Mcs of the Calabi-Yau
n-foldMn is then given by (2.3.20).

The following derivation of special geometry relations is essentially due to
Bryant and Griffiths, which address the differential structure of infinitesimal period
variations of CY 3-folds.

Because of the Griffiths transversality (2.4.34) one has

∂i�n := ∂�n

∂zi
= αi(z)�n + χi ∈ Fn−1 = Hn,0 ⊕Hn−1,1 . (2.5.2)

Here we have chosen elements χi , i = 1, . . . , hn−1,1 in Hn−1,1(Mn) and αi(z) is
an auxiliary moduli dependent factor.

First we want to show that it can be given in terms of the Kähler potential as

αi(z) = −Ki =: −∂iK . (2.5.3)
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To this end we take a derivative of (2.5.1), which leads to the first equality below

−Kie
−K = in

2
∂i〈�n, �̄n〉 = in

2
αi〈∂i�n, �̄n〉 = αie

−K . (2.5.4)

The second equality follows from the anti-holomorphicity ∂i�̄n = 0 of �̄n, the third
from the consideration of type as in (2.3.41). Hence we conclude that the auxiliary
factor αi(z) is indeed αi = −Ki .

It is therefore convenient to define the elements χi ∈ Hn−1,1(Mn) and the
complex conjugated ones in χ̄ī ∈ H 1,n−1(Mn) by

Di�n = (∂i +Ki)�n =: χi D̄ī�̄n = (∂ı̄ +Kı̄)�̄n =: χ̄ī (2.5.5)

Because of the Tian-Todorov theorem the χi , i = 1, . . . , hn−1,1 span a basis of
Hn−1,1(Mn) if zi , i = 1, . . . , hn−1,1 are an independent local coordinate basis of
Mcs . One can then define a metric37

gij̄ = −in
2〈χi, χ̄ī〉 = e−KGij̄ (2.5.6)

The last equality follows from the application of ∂i ∂̄j̄ to (2.5.1) and using
(anti-)holomorphicity of �n (�̄n), (2.5.5) and considerations of type (2.3.41).

It is obviously useful to repeat these steps for further derivatives of (2.5.5) and
use (2.4.34), (2.3.41) to learn about the differential properties of the derivatives. The
outcome is known as special geometry, which we discuss below for n = 3 and 4.
Other cases are left to the reader as exercise.

At this point it is useful to summarize the gauge transformation properties and
the corresponding covariant derivative of the objects introduced. The no-where
vanishing holomorphic �n form lives in a holomorphic line bundle L over Mcs

and transforms as

�(z)→ ef (z)�(z) . (2.5.7)

The Kähler form transforms then in the Kähler line bundle with Kähler transforma-
tions (2.3.21)

K(z, z̄)→ K(z, z̄)− f (z)− f̄ (z̄),

so that e−K is a section of L⊗ L̄. One has natural covariant derivatives w.r.t. to the
Weil-Petersson metric, with a connection whose Christoffel symbols have the index
structure given by (2.3.23) and in addition with the Kähler connection. On general

37Note the additional minus from the ip−q factor in (2.3.42).
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sections say Vjj̄ ∈ T ∗1,0Mcs ⊗ T ∗0,1Mcs ⊗ L⊗n ⊗ L̄⊗m these connections act as

DiVjj̄ = ∂iVjj̄ − �l
ij Vlj̄ + nKiVjj̄ , Dı̄Vjj̄ = ∂ı̄Vj j̄ − �l̄

īj̄
Vil̄ +mKı̄Vjj̄ ,

(2.5.8)

with Ki = ∂iK and Kı̄ = ∂ı̄K .
Griffiths transversality (2.4.34) implies that any combination ∇GM

i1
. . .∇GM

ir
of

the application of the Gauss-Manin connection in the direction of complex moduli
ai , i = 1, . . . , dim(Mcs) to �n has the property

∇GM
i�n = ∇GM

i1
. . .∇GM

ir
� ∈ Fn−r , (2.5.9)

cff Sect. 2.4.3. All derivatives of � generate the primary horizontal subspace
Hn

H(Mn). By consideration of Hodge type and by (2.4.34) one gets

〈∇GM
i�n,�〉 =

∫

Mn

(∇GM
i1

. . .∇GM
ir

�n) ∧�n =
{

0 for 0 ≤ r < n

Ci1...in (z) for r = n

(2.5.10)

Note that one can replace the covariant derivative ∇GM
i in the definition of the

n-point coupling with ordinary derivatives ∂i , because by similar argument like
after (2.5.2) one concludes that only the terms, which do not involve Christoffel
symbols or their derivatives change the type enough to give by (2.3.41) a non-
vanishing intersection with �n. Therefore Ci1...in(z) is a purely holomorphic
quantity.

The n-point coupling Ci1...in , first introduced by Bryant and Griffiths, is purely
holomorphic and transforms as a section in

Ci1...in (z) ⊂ L2 ⊗ Symn(T ∗1,0(Mcs)). (2.5.11)

As explained in Sect. 2.9.2 there is always a gauge of � so that the Ci1...in (z) are
rational function in algebraic coordinates z on Mcs that are determined from the
Picard-Fuchs differential ideal. Moreover they are always regular at the maximal
unipotent or large radius points and have typically poles at the discriminant of the
Picard-Fuchs differential ideal.

Let us discuss one simple application.� ⊂ L and Di� = χi ⊂ L⊗ (T ∗1,0(Mcs)

therefore

[Di,Dj̄ ]�n = −Gij̄�n . (2.5.12)

This can also be checked by testing the coefficients αij̄ in [Di,Dj̄ ]�n = αij̄� by
calculating 〈[Di,Dj̄ ]�n|�̄n〉 using (2.5.1), (2.5.2) and (2.5.6). Similarly one has
from (2.3.26)

[Di,Dj̄ ]χk = −Gij̄χk + R
p

ij̄k χp . (2.5.13)
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Let us consider the derivative Diχı̄ , which by Griffiths transversality (2.4.34) is
expandable in the basis of (1, n− 1) forms (χk̄) and the (0, n) form �̄n as

Diχj̄ = αk̄
ij̄ χk̄ + βij̄ �̄n (2.5.14)

We have from (2.5.6)

gij̄ = −i〈Di�, χj̄ 〉 = −i〈∂i�, χj̄ 〉 = i〈�, ∂iχj̄ 〉 = i〈�,Diχj̄ 〉 = iβij̄ 〈�, �̄〉 = βij̄ e
−K

by partial integration, consideration of type and (2.5.14) and so

βij̄ = Gij̄ . (2.5.15)

On the other hand taking the complex conjugated version of (2.5.12) [Dj̄ ,Di ]�̄n =
−Gij̄ �̄n one has from consideration of type

0 = 〈χl,Diχj̄ 〉 = αk̄
ij̄ 〈χl, χj̄ 〉 = iαk̄

ij̄Glk̄e
−K, ∀ l, i, j̄ .

Since the Weil-Petersson metric is not degenerate we conclude that αk̄
ij̄ ≡ 0 and

hence

Diχj̄ = Gij̄ �̄n . (2.5.16)

Similarly we show that the αk
ij̄ in the ansatz

Diχj = αk
ij χk + β k̄

ij χ̄k̄ (2.5.17)

vanish by 0 = 〈Diχj , χj̄ 〉 = iαk
ijGkj̄ ∀i, j, j̄ .

Further determination of Di on basis elements involve the n-point coupling and
its factorisation by the Frobenius algebra and depends on the dimension. We turn to
the case n = 3 now.

2.5.2 Special Geometry on the Complex Moduli SpaceM of CY 3-Folds

Special geometry is the principle differential geometrical structure on the varying
Hodge structure over the complex moduli space Mcs of Calabi-Yau 3-folds. It is
characterized by the existence of a holomorphic prepotential F from which the
Kähler potential for the Weil-Petersson metric on Mcs and the holomorphic triple
couplings derive. From the curve counting perspective all data involved are genus
zero data.
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What is specific about 3-folds is that the βk̄
ij terms in (2.5.17) are expressible by

the 3-point functions and the simplification relative to higher dimensional Calabi-
Yau manifolds is that the 3-point functions are, unlike higher point functions, not
factorizable in lower point functions. This is familiar in 2d field theory. The relations
between the two descriptions is that the 2d field theories—more precisely the (2, 2)
superconformal theories discussed in section 2.3.1, for Mn a Calabi-Yau space—is
the σ -model on the string world-sheet of strings propagating in the target Mn.

Since we seen already that αk
ij = 0 for any n, it remains to evaluate the βk̄

ij term
in (2.5.17) via the bi-linear

β
p̄

ij e−KGp̄k = −i〈χi,Djχk〉 = −i〈∂i�,Dj (∂k +Kk)�〉 = i〈�, ∂i∂j ∂k�〉 = −iCijk .

(2.5.18)

Hence β
p̄

ij = −eKCijkG
kk̄ and we can summarize this with together with the

generic equations derived in the previous section, the Tian-Todorov theorem and
the non-degeneracy of the metric and the 3-point functions as

Appl. Di spans
� H 3,0

Di� = (∂i +Ki)� = χi H 2,1

Diχj = −ieKCijkG
kk̄χk̄ H 1,2

Diχk̄ = Gik̄�̄ H 0,3

Di�̄ = 0 ∅.

(2.5.19)

We can evaluate now easily the left handside of (2.5.13)

[Di,Dj̄ ]χk = Gkj̄χi − e2KCj̄m̄n̄G
mm̄Gnn̄Cikmχn (2.5.20)

and conclude from (2.5.13) that

[Di,Dj̄ ]kl = −R
k

ij̄ l = ∂j̄�
k
il = δkl Gj̄i + δki Gj̄l − Ckm

j̄ Cilm . (2.5.21)

In (2.5.21) the an-holomorphicCkl
j̄ are defined as

Ckl
j̄ = e2KCj̄k̄l̄G

kk̄Gll̄ , (2.5.22)

with Cj̄ k̄l̄ = (Cjkl)
∗ are a section of

Ckl
j̄ ∈ L−2 ⊗ T ∗0,1 ⊗ Sym2(T 1,0) (2.5.23)
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2.5.3 Special Geometry and Periods

Firstly in the discussion of the complex structure moduli space integrals like (2.3.40)
and (2.3.42) play a crucial role, because they are used directly in the definition
of the metric on the moduli space (2.5.1) as well as in the vanishing conditions
and the structure constants (2.5.10), that play an important role in the additional
differential geometric structure on the moduli space. Just as recapitulation in simple
notation: on a Calabi-Yau 3-fold the Kähler potential and the triple couplings have
the geometrical definition as integrals

e−K = i

∫

M

� ∧ �̄, Cijk =
∫

M

� ∧ ∂i∂j ∂k�. (2.5.24)

Here the ∂i are derivatives w.r.t. to any complex structure parametrization. We have
already seen that Griffiths tranversality implies that no covariant derivatives are
needed in (2.5.24) and it follows that Cijk is a section of Sym3(T

∗
1,0(Mcs)) ⊗ L2.

Using this and (2.5.5) we can also write the metric Gij̄ = ∂i ∂̄j̄K entirely using
integrals

Gij̄ = i−n2eK
∫

Mn

Di�n ∧ D̄j̄ �̄n = −
∫

M
χi ∧ χ̄j̄

∫

Mn
�n ∧ �̄n

= − 〈χi, χ̄j̄ 〉
〈�n, �̄n〉

. (2.5.25)

Note the minus sign, which together with (2.3.42) implies that the eigenvalues of
the non-degenerate metric Gij̄ are all positive. This is physically significant as
Gij̄ multiplies the kinetic terms of the moduli fields φi associated to the complex
structure deformations.

To actual calculate these integrals and their complex moduli dependence one
picks a fixed topological basis on Hn(Mn,Z) and a dual basis on Hn(Mn,Z). In
particular we can give concrete formulas for the Kähler potential and the triple
coupling based on the expansion of �(z) in terms of the symplectic basis αI , β

I

I = 0, . . . , h21 = h defined in (2.4.37)

� = XI (z)αI − FI (z)β
I . (2.5.26)

By (2.5.24), (2.4.37) one gets in terms of the periods

e−K = i

∫

M

� ∧ �̄ = i(X̄IFI −XI F̄I ) = i &%† � &%, (2.5.27)

where we defined as specialisation of the bilinear η on the horizontal part of the
middle homology for 3 dim Calabi-Yau manifolds the symplectic 2h × 2h matrix
� as

� =
(

0 1h×h

−1h×h 0

)

. (2.5.28)
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Similarly the 3 point functions can be expressed in terms of the periods as

Cijk = XI∂i∂j ∂kFI − FI ∂i∂j ∂kX
I = −XI

i X
J
j X

K
k FIJK . (2.5.29)

The last equality in (2.5.29) requires some calculation.38 Indeed due to the local
Torelli theorem, the XI can be used as homogenous coordinates on the moduli
space, or as coordinates on the big moduli space parametrizing complex structures
W together with a nonvanishing�. The transversality (2.3.41)

〈�I∂K�〉 = FK −XI∂KFI = 0 (2.5.30)

implies

2FK = ∂K(XIFI ) . (2.5.31)

Taking the prepotential to be

F = 1

2

(

XIFI

)

, (2.5.32)

we see that the FK = ∂KF are completely determined from F and therefore
not independent of each other. The transversality (2.5.30) also leads to the Euler
equation FK = XI ∂KFI = XI∂IFK , from which one concludes that FI is
homogeneous of degree one and F is of degree two, 2F = XI∂IF . These
homogeneities can also inferred from the effect of a constant rescaling of �, which
induces the same scaling of all the XI .

2.5.4 The Big Moduli Space

Returning to (2.5.29) and viewing the XI as coordinates on the big moduli space,
we compute

CIJK =
∫

W

∂I ∂J ∂K� ∧� = XLFIJKL = −FIJK, (2.5.33)

the last equality holding since FIJK is homogeneous of degree −1. From this
(2.5.29) follows immediately.

38We use ∂i = ∂
∂zi

(∂̄ı̄ = ∂
∂z̄ı̄

) denotes partial derivatives w.r.t. generic complex structure (small

moduli space) coordinates (i = 1, . . . , h21) and ∂I = ∂
∂XI for the derivatives w.r.t. to homogeneous

moduli space (big moduli space) coordinates I = 0, . . . , h21 and abbreviate ∂IF = FI etc.
We consider the XI as functions of the local coordinates on M together withX0 in writing the

partial derivatives XI
i , etc.
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In view of the symplectic pairing on H3(W,R3) one can view XI as positions
and

PI := FI = ∂

∂XI
F (2.5.34)

as the dual momenta.
Again due to the local Torelli theorem, the (b3/2)× (b3/2) matrix

X = (XI
α) = (DαX

I ) (2.5.35)

is generically invertible, where we have formally set D0X
I = XI . We denote the

components of the inverse matrix by Xα
I . The rigid supergravity metric in the large

moduli space derives from Kähler potential

K = i

2

(

X̄IFI −XI F̄I

)

= i

2
&%† � &% . (2.5.36)

as

GIJ = ∂I ∂̄J̄K =
i

2
(FIJ − FIJ ) = −Im (FIJ ) . (2.5.37)

It follows that the Christoffel symbols of the metric connection are

�K
IJ =

i

2
CK

IJ =
i

2
CIJLGKL . (2.5.38)

We now view the XI as local coordinates on the big moduli space and define

�̂I = ∂�

∂XI
= αI − FIJβ

J = αI − τIJ β
J (2.5.39)

as a new frame for H3,0 ⊕ H2,1. In the last equality of (2.5.39) we have used the
standard notation for the normalized periods τIJ . Note that the period matrix is
now normalized in this frame so that

∫

AJ �̂I = δJI , while
∫

BJ
�̂I = τIJ . Also, the

¯̂
�I = αI − τ̄IJ β

J give a frame forH2,1 ⊕H0,3. We have

〈�̂I , �̂J 〉 = 2iIm(τIJ ) . (2.5.40)

From Riemann’s inequality (2.3.42) we see that τ has signature (h21, 1), i.e. h21

positive eigenvalues and one negative eigenvalue.
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In order to get a (negative) definite (b3/2) × (b3/2) bilinear form, one infers
from (2.3.42) that one has to construct a frame forH3,0⊕H1,2. This is of the general
form �̂I = αI −NIJ β

J where the non-holomorphicNIJ is simply determined by
the transversality (2.3.41) of �̂I toH3,0 ⊕H1,2 itself

〈�̂I ,�〉 = 0, 〈�̂I ,&
(12)
J 〉 = 0 . (2.5.41)

Here the &
(12)
J are obtained by projecting the basis ¯̂�J to a redundant set of

generators for H 21, i.e. &(12)
J = ¯̂

�J − 〈 ¯̂�J ,�〉
〈�,�〉 �̄. We expand (2.5.41) as

−FI +XJNIJ = 0, −τIJ +NIJ −
(−FJ +XKτKJ

)

(

−FI +XKNIK

)

−X̄KFK +XKFK

= 0,

(2.5.42)

where we have used

〈 ¯̂�J ,�〉 = −FJ +XKτKJ . (2.5.43)

Upon writing −FI + XJNIJ = XJ (NIJ − τIJ ) and similarly replacing FJ , F̄J

with XI τIJ and X̄I τ̄IJ elsewhere, these conditions are easily solved in the form

NIJ = τ̄IJ + NILNJKXLXK

NKLXKXL
, (2.5.44)

where NIJ = τIJ − τIJ .
Physically, this definition is related to the positivity of the gauge kinetic terms

of N = 2 vectors including the graviphoton, which are − 1
8 (Im(NIJ )F

I
nmFnmJ +

iRe(NIJ )F
I
nmF ∗nmJ ). Mathematically NIJ describes the period matrix of the

Weil intermediate Jacobian, while τIJ describes the period matrix of the Griffiths
intermediate Jacobian.

2.5.5 Inhomogenous Flat Coordinates on the Small Moduli Space

The small moduli space can be parametrized by the flat inhomogeneous coordi-
nates (2.4.40). Here we study the relation between the large and the small moduli
space. Indeed it is an easy exercise to give the analogeneous equations to (2.5.27)
and (2.5.29) in these coordinates.

The key point is the homogeneity of the prepotential of degree two in terms of
the projective coordinates (2.5.31), which we proved from Griffiths transversality.
When we pass to inhomogenous coordinates ta = X0/Xa we can express the
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quantities (2.5.27) and (2.5.29) with39

F(t) = F(X)/(X0)2 (2.5.45)

locally as

e−K = i[(t ı̄ − t i )(Fi + Fı̄ )+ 2(F − F̄)] , Cijk = Fijk . (2.5.46)

We recall that the ratios t i = Xi/X0, i = 1, . . . , h are defined by A-cycle periods
XI = ∫

AI
�, I = 0, 1, . . . h. Here the A-cycles are defined to be a basis of the

symplectic basis of no-intersecting cycles defined in (2.4.37). � is the unique no-
where vanishing holomorphic (n, 0) form and we use the notationFi = ∂iF = ∂F

∂t i
,

F̄ = F∗ and Fı̄ is (Fi )
∗, as the complex conjugates.

In fact we derived Eq. (2.5.21) in the inhomogenous but not flat coordinates.
This equation can be viewed as a necessary integrability condition for the existence
of the holomorphic prepotential F(t) in inhomogeneous coordinates so that the
Kählerpotential and the triple couplings derive from it as in (2.5.46).

It is also useful to express the period vector (2.4.38) in terms of the inhomoge-
nous holomorphic prepotential F(t) as

&% =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

FI

XI

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= X0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2F(t)− t i∂iF(t)

∂iF(t)

1

t i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.5.47)

We can easily obtain an holomorphic version of (2.5.19) by noting that the n-form
can be expanded in terms of periods and in the gauge in the Kähler line bundle L
X0 = 1, we call it �̂, and get according to (2.5.26)

�̂0 = α0 + taαa − ∂aFβa − (2F − ta∂aF)β0 . (2.5.48)

Now we can complete this to a basis in H 3(M,C) by writing the further forms in
this gauge as

χ̂a = αa − ∂a∂bFβb − (∂aF − tb∂b∂aF)β0

χ̂a = −βa + taβ0

�̂0 = β0 ,

(2.5.49)

39Often the homogeneous—F(X) and the inhomogenous prepotential F(t) carry an index 0 to
indicate that they are encoding the genus theory world-sheet instanton contributions of the A-
model. This corresponds to the physical gauge, which is discussed in more detail in Sect. 4.3.
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and expressing the holomorphic version of (2.5.26) as

∂a

⎛

⎜

⎜

⎝

�̂0

χ̂b

χ̂b

�̂0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 δca 0 0
0 0 Cabc 0
0 0 0 δba
0 0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�̂0

χ̂ c

χ̂c

�̂0

⎞

⎟

⎟

⎠

. (2.5.50)

This can be seen as the first order form of the holomorphic Picard-Fuchs operators
and the nilpotent matrix Ca on the r.h.s can be viewed as a very special case the
nilpotent connection of the Gauss Manin operator ∇GM , which can be written as
∂a − Ca , but it is far from being equivalent as the latter needs neither the unique
(n, 0) forms nor special geometry.

The situation becomes more interesting if we consider higher dimensional
Calabi-Yau manifolds. We will address this situations after the discussion of the
twisted world-sheetN = (2, 2) theory where we can assign a natural charge grading
to vectors like (�̂0, χ̂b, χ̂b, �̂

0) and use the Frobenius structure of topological
N = (2, 2) field theory in Sect. 3.6.2.

2.5.6 The Attractor Equations

Consider a dyonic extremal black hole inN = 2 supergravity. It has a general dyonic
charge, i.e. eventually non-vanishing electric (qL) and magnetic charge (pL), that
comes from a three-brane wrapping the corresponding internal real dimensional
three-cycle in H3(M,Z) in the Calabi-Yau complex three-fold M . This charge can
be expanded in terms of the periods %T = (XL, FL) over the basis (αI , β

I ),
I = 0, . . . , h2,1 of the lattice H3(M,Z)

Q = qLX
L − pLFL . (2.5.51)

Here we mean the holomorphic periods ∂ı̄%k = 0 with Kähler weights (1, 0)
unlike the covariantly holomorphic periods %̂k = eK/2%k = (LI ,MI ) with Kähler
weights ( 12 ,

1
2 ) [112], which fulfill Dı̄%̂k = 0. The mass square of the BPS state,

which is Kähler transformation invariant, is then given by the chargeQ as

M2
BPS = eK |Q|2 . (2.5.52)

Despite the fact that the black hole solution depends on the values of the scalar
fields at infinity, the property of black holes to have no hair, i.e. the fact that
their near horizon geometry is described completely in terms of their charges,
which in the BPS case also describes their mass, is realized by the so called
attractor mechanism [114]. The statement is, that independent of multiplet scalar
the values of scalar vev at infinity a damped attractor equation governs their value
at the horizon. The attractor point in the vacuum space of the scalars in the vector
multiplets is determined by the charges. This realizes in particular the property that
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the near horizon geometry is independently of the values of scalar vev at infinity
and completely determined by the charges.

The essence of this mechanism is that the scalar moduli minimize M2
BPS at the

attractor point under the additional constraint

e−K = 1 . (2.5.53)

Since this is a manifestly real condition one expects the Lagrange multiplier λ [A]
to have a fixed phase and λ turns out to be purely imaginary. If we vary M2

BPS =
eK |Q|2 w.r.t toXK or X̄K , without restriction we get zero. Therefore we introduce a
small real parameter ε so thatM2

BPS(ε) = e(1+ε)K|Q|2 and consider the variational
equations ∂

∂Xk M
2
BPS(ε) = ελ ∂

∂Xk (e
−K − 1) as well as its complex conjugate and

consider the ε → 0 limit, i.e. the first order in ε. The equations for the variation
under the constraint become

∂M2
BPS(ε)

∂XK
= Q̄(qK − pLFKL)

i1+ε(X̄LFL −XLF̄L)1+ε
+ (1+ ε)|Q|2(F̄k − X̄LFKL)

i1+ε(X̄LFL −XLF̄L)2+ε
= ελ(F̄k − X̄LFKL)

∂M2
BPS(ε)

∂X̄K
= Q(qK−pLF̄KL)

i1+ε(X̄LFLFL−XLF̄L)1+ε
− (1+ ε)|Q|2(Fk−XLF̄KL)

i1+ε(X̄LFL−XLF̄L)2+ε
= −ελ(Fk−XLF̄KL) ,

(2.5.54)

so that λ has to be purely imaginary for the two equations to be compatible. Do

get (2.5.54)we used e−K = i(X̄LFL−XLF̄L) and FL = ∂
∂XK F , FKL = ∂2

∂XK∂XL F .
Further we note the holomorphic prepotential F is homogenous of degree 2 in
XL hence by the Euler-Equations 2F = XL ∂

∂XL F and FK = XLFKL. Moreover

FKL is at generic points invertible to FKL with FKLFLM = δKM , so we also have
XK = FKLFL. Indeed contracting the first equation (2.5.54) withXL or the second
with X̄L and using the above homogeneity identities we get in both cases a pure
imaginary λ

λ = ieK |Q|2 . (2.5.55)

We can summarize the conditions with μ = 2ieKQ̄ as

(qK − pLF̄KL) = μ

2
(Fk −XLF̄KL) . (2.5.56)

Taking the imaginary part of (2.5.56) and the imaginary part of the contraction
of (2.5.56) with FLK we get the attractor equations

pL = Re(μXL), qL = Re(μFL) . (2.5.57)

We can give a slightly more geometric interpretation of these equations. Let

γ = pIαI − qIβ
I ∈ H 3(M,Z), C = qIA

I −pIBI ∈ H3(M,Z) (2.5.58)
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the forms which correspond to the internal parts of the 10d anti-selfdual field
strength F ∈ �(
2(M4) ⊗ H 3(M,Z)), whose 4d part is the graviphoton or
the vector multiplet field strength in Minkowski 4-space, i.e. in �(
2(M4)) and
C ∈ H3(M,Z) the dual 3-cycle in the internal space which is wrapped by the
source brane. Then fixing these data the complex structure of M adjust itself at the
attractor point so that the real form

γ = γ 3,0 + γ 0,3 (2.5.59)

is purely of type (3, 0) and (0, 3). To see the equivalence we note that (2.5.59)
simply means that the (3, 0) projection of γ 3,0 is proportional to �. We identify the
proportionality factor as γ 3,0 = μ

2i � then

Im(μ�) = γ (2.5.60)

and integration of this equation over the basis AI and BI gives (2.5.57).

2.6 Action of the Monodromy � ∈ Sp(h3(W),Z)

The most important structure in the moduli space that characterizes the concrete
expressions that appear in special geometry as introduced so far for a concrete
complex family W(z) is its monodromy group. In a rather precise sense one can
identify the amplitudes that appear in special geometry and its generalization to
higher genus as modular forms of this monodromy group. Let us therefore describe
the transformation properties of the quantities introduced above.

2.6.1 General Form of the Monodromy Action

The analysis of the monodromy group is conceptually straightforward, but can be
technically involved. Let us assume we have specified a suitable resolution of Mcs

so that all critical loci of the Picard-Fuchs system are normal crossing divisorsDk ∈
Mcs . We specify a base point at which we fix periods &%, %, and an orientation of
the paths γk that encircle these divisors. Then the period vector &% and the period
matrix % transform under transport along the path γk as40

&% �→ &%γk = γk &%, % �→ %γk = �k% . (2.6.1)

40We denote the path and the monodromy matrix action on the period vector &% by the same
character γ . The matrix � acts on the period matrix %.
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All monodromy matrices γ leave the bilinear integer pairing invariant, i.e. in terms
of the intersection matrix � we get the characterisation of the possible monodromy
matrices

γ T �γ = � . (2.6.2)

The monodromy group is redundantly generated by the γk , k = 1, . . . , #(D). In odd
dimensions all monodromies γk are symplectic, so that the monodromy group of

the family W(z) is a subgroup �W ⊂ Sp(N,Z).41 Let us write γ =
(

d c

b a

)

. Then

a, . . . , d are integer valued N/2×N/2 matrices satisfying

aT d− cT b = 1, aT c = cT a, bT d = dT b . (2.6.3)

The components of the period matrix transform as

X′ Iα = dIJX
J
α + cIJ FαJ , F ′αI = bIJX

J
α + aJI FαJ (2.6.4)

respectively. We have N = b3(W) for a family of Calabi-Yau 3-folds W(z) and
N = 2g for a family of genus g Riemann surfaces W(z) = �g(z). By (2.6.4) the
τ = (τIJ ) matrix transforms as

τ �→ τγ = (aτ + b)(cτ + d)−1 . (2.6.5)

The same transformation rule applies to the τ -matrix of a genus g curve and
N = (NIJ ). We can see the latter either by transforming the equations (2.5.44)
by (2.6.4) and (2.6.5) and then reading off the new solution, or more conceptually
by noting that these transformation laws hold for the periods of �̂I as they do for the
periods of any (b3/2)-dimensional space of normalized three-forms, by a calculation
analogous to that for �̂I . The transformation properties of the correspondingmetrics
follow from Im(τ ) = (Im(τ )IJ ) = −(GIJ )

Im(τ ) �→ Im(τγ ) =
(

(cτ̄ + d)T
)−1

Im(τ ) (cτ + d)−1 (2.6.6)

hence for Im(τ )−1 = (Im(τ )IJ ) = −(GIJ ) we get

Im(τ )−1 �→ Im(τγ )
−1 = (cτ + d)Im(τ )−1(cτ + d)T − 2i(cτ + d)cT . (2.6.7)

41In the Calabi-Yau 3 fold case �W can have either finite or infinite index in Sp(h3(W),Z).
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2.6.2 Monodromy Types and Choice of Local Flat Coordinates

The choice of the homogeneous and inhomogenous coordinates consist of two
choices, which depends on the locus in the moduli space, where they are to be
defined. The choices are

1. picking A-cycles AI , I = 0, . . . , h21(M), i.e. cycles in H3(M) which do not
intersect each other AI ∩ AJ = 0.

2. Picking A0 and hence X0.

This choice is important near critical divisors Di , i = 1, . . . , k in the moduli space,
around which the periods develop monodromy.Without restriction of generality we
can assume that after a suitable blow up of the moduli space allDi have only normal
crossings. Now focus on one divisor Di . The principle properties of a monodromy
matrix γi around a divisor D are captured by the minimal integer k > 0 and p ≥ 0
in the equation

(γ k
i − 1)p+1 = 0 . (2.6.8)

Here p is the smallest integer so that the r.h.s. is zero. For p = 0, k > 1 one has
an Zk orbifold singularity. The cases k = 1 are the unipotent cases. The conifold
in n odd has p = 1 and the most relevant case for mirror symmetry is the maximal
unipotent case p = n. In particular one can show that

p ≤ n . (2.6.9)

This implies that the number highest power of logarithm in the solutions is n. E.g.
the maximal degeneration of an elliptic curve case can be characterize it as cusp
point in the moduli space.

We will make the choice (2) as follows. If the monodromy is of finite order, we
diagonalize it and take forX0 the eigenvector, which vanishes fastest as we approach
the critical divisor. If the monodromy is a shift of infinite order, which will we take
for X0 the period over the vanishing cycle, which multiplies the logarithms that
create the shift.

2.6.3 Monodromy and Degeneration of the Calabi-Yau Manifold

The local monodromy and the corresponding degeneration of the Calabi-Yau
manifolds are of great interest in mathematics and physics. For example in the
SU(N) N = 2 Seiberg-Witten geometry, which can be embedded in Calabi-Yau
3-folds [205, 214] one has in the asymptotic free region of the gauge theory with
nearly massless “electrically” charged gauge bosons k = N and n = 1 in (2.6.8), in
regions, where magnetic monopoles become massless one has k = n = 1, while in
regions with massless electric and magnetic degrees of freedom signal a conformal
theory typically one has orbifold singularities [21].
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The degeneration of the Hodge structure is also studied extensively in mathe-
matics. It is still a local analysis and as such a linear analysis. In order to enjoy the
full modularity properties of the amplitudes one has to explore the moduli space
globally and figure out which subgroup �M ⊂ Sp(h3(M),Z) is generated by all
monodromies. An intermediate concept is local mirror symmetry, which deals with
a sub-monodromy problem of the finite periods in a semi local limit, where part of
Mn decompactifies. Such limits are typical for a manifold W whose mirror exhibit
a fibration structure, see for example the occurrence of Sl(2,Z) monodromy in the
elliptically fibered Calabi-Yau manifolds in [195].

As a local analysis we recall as a simple example the limiting mixed Hodge
structure for the unipotent cases, see [22, 86, 256] for reviews. Let zi ∼ i be the
coordinates on the ith punctured disk D◦i so that (D◦)r is a local neighborhood
of the r dimensional moduli space at a normal crossing point. The mixed case

is reduced to unipotent case by changing to multicover variables z
1
k �→ z. Since

Ni = Mi − 1 is nilpotent one can define the Lie algebra generator Ni = log(Mi)

as a finite expansion in Ni . Ni andNi have the same kernel and cokernel. Schmid’s
nilpotent orbit theorem [293] provides an extension Fp

of Fp from (D◦)r to the
product of full disks Dr . In particular Schmid extends the Gauss Manin connection

to a map ∇ : F0 → F0 ⊗ �1
Mcs

(log(i)). Here the sheaf of rational one

forms �1
Mcs

(log(i)) is in the case of l unipotent divisors locally generated by
dz1
z1

, . . . ,
dzl
zl
, dzl+1, . . . , dzr . On Dr he introduces single valued periods

%S(z) = exp

(

− 1

2πi
log(zi)Ni

)

%(0) , (2.6.10)

extends that to a section of Fp
and shows that this is a leading order approximation

to the periods on the disk.
An important implication of the work of [87, 293] is the ability to define the limit-

ing mixed Hodge structure, which describes how the integral Hodge structure of the
singular model sits inside the integral Hodge structure of the smooth compact man-
ifold. In particular at 0 ∈ (D◦)r there is a limiting Hodge filtration F• = F•lim with

Nj (Fp
lim) ⊂ Fp−1

lim . Both Ni and the extension ∇θzj
(Fp

lim) ⊂ Fp−1
lim induce a linear

map Fp

lim/F
p−1
lim �→ Fp−1

lim /Fp

lim and are identified as ∇θzj
= − 1

2πi
Nj . Moreover if

%S(z) is a multivalued flat integer section of HZ then %S(0) is an integral element
over 0. The mixed Hodge structure comes from the monodromy weight filtrationW•
with W0 ⊂ W1 ⊂ . . . ⊂ W2n = Hn(Mt ,C). For any linear combination N of the
Ni with strictly positive coefficients one definesW0 = Im(Nn),W1 = Im(Nn−1)∩
Ker(N),W2 = Im(Nn−2)∩Ker(N)+Im(Nn−1)∩Ker(N2), . . . ,W2n−1 = Ker(Nn).
Let Grk = Wk/Wk−1. It is easy to see that N(Wk) ∈ Wk−2 and it follows from the
Jacobson-Morozov Lemma thatNl : Grk+l ∼ Grk−l . Much more non-trivially F•lim
is a Hodge structure of weight k on Grk , which means that (F•lim,W•) is a mixed
Hodge structure. It can be shown that N is the lowering operator of a SL(2,C)
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action on the LMHS [293]. A consequence of the theory is that the maximal
unipotent monodromy occurs for p = n and no higher p occurs.

The easiest example is the nodal degeneration of a genus g Riemann surface�g .
One can chose a symplectic basis Ai,Bi i = 0, . . . , g−1 such that A0 degenerates.
By the Lefschetz formula (2.6.11) the only cycle which is not monodromy invariant
is M : B0 �→ A0 + B0. N = N is nilpotent N2 = 0. One has N : B0 �→ A0

while all others cycles are annihilated.W−1 := 0, so Gr0 = Q · A0 of grade 0 must
be of type (0, 0), Gr1 = spanQ{A1, . . . , Ag−1, B1, . . . , Bg−1} = Hn(�g−1,Q) and
Gr2 = Q · B0 of grade 2 must be of type (1, 1). I.e. over Q the cohomology of �g

splits on Hn(�g−1,Q) and one has a closed sub-monodromy problem on the latter.
The situation is very similar for the conifold transition in Calabi-Yau 3-folds, up to
the fact that in an actual transition m S3 with k relations shrink [145].

Conifold Monodromy

According to the Lefschetz formula with some sign corrections by Lamotke [250],
an n-cycle � transforms along a path in the moduli space encircling the conifold
divisor ε = 0, where the n-sphere Sn =: ν vanishes, with positive orientation with
the monodromy action on � that is either a symplectic—for n-odd or an euclidean
reflection w for n-even, i.e.

w(�) = � + (−1)(n+2)(n+1)/2〈�, ν〉ν . (2.6.11)

The self intersection of the n-sphere itself is given by

〈ν, ν〉 =
{

0 , n odd
(−1)n/2 · 2 , n even .

(2.6.12)

Let us now discuss the two cases in turn:

• n odd: Due to the non-degenerate symplectic pairing the vanishing cycle ν

intersects a dual cycle � and in order to realize (2.6.11) the periods over these
cycles degenerate in the local parametrization δc = 0 for n odd like

Xν =
∫

ν

� = δ
n−1
2

c

∞
∑

k=1
ck(ž)δ

n
c ,

F� =
∫

�

� = (−1)(n+2)(n+1)/2
2πi

Xν log(Xν)+
∞
∑

k=0
bk(ž)δ

k
c .

(2.6.13)

Here we denote by ž the remaining variables which are, eventually after suitable
blow ups in the complex moduli space, transversal to the conifold divisor δc = 0.
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Usually one cannot determine the integral and cycles directly and rather
solves the Picard-Fuchs equations near ε = 0, but the Lefschetz formula

fixes the relative normalization of the solutions so that T =
(

1 0
1 1

)

is the

unipotent monodromy for a path that encircles δc = 0 counter clockwise. It
has been observed quite generally for Calabi-Yau 3 folds in toric varieties that
at the generic conifold discriminant, see Sect. 2.9.1 an S3 shinks to zero, which
corresponds in the type IIA side to the D6 brane, see Sect. 2.10 for the principal
example. This is more generally true and the monodromy corresponds to the
Seidel-Thomas twist on the derived category side (2.6.27).

• n even: The Sn intersects with itself and so the typical local behaviour for the
K3, 4-folds etc is w(ν) = −ν, for a single Sn and hence

Xν = δ
n−1
2

c

∞
∑

k=1
dk(ž)δ

k
c , (2.6.14)

e.g. for 4-folds one finds Xν = δ
3
2
c etc. This leads to a Z2 monodromy. For

fourfolds the D-brane class on the IIA for the generic conifold locus on derived
category side has been calculated in [46].

2.6.4 Integral Symplectic Basis of Periods

It is a prediction of mirror symmetry that the complex moduli of a Calabi-Yau
manifold shouldMcs have at least a point of maximal unipotent monodromy, i.e. a
point (2.6.8) with k = 1 and p = n. This follows from the mirror map (2.4.40) and
for 3− folds from of the periods in terms of the inhomogenous prepotential (2.5.47)
and the leading from of the prepotential for the A model in the large radius region.

For Calabi-Yau spaces in arbitrary dimensions mirror symmetry is expected to
hold and using the mirror map (2.4.40) and the form of the central charges of central
charge of A branes in terms of the mirror map in the large radius region we will
explain in general how to determine an integral basis of period integrals, which is
symplectic in odd and symmetric in even dimensions.

This method is very useful as the easiest way to determine the periods is not by
performing explicit integrals over a choice of an integral (symplectic for n odd) basis
in Hn(M,Z)—even though depending on the construction some of these integrals
can be performed—but rather in finding to solutions the Picard-Fuchs differential
equations in terms of the complex moduli. These equations are linear and lead to an
a priori arbitrary basis of such solutions. The problem we discuss in this section is
how to find the linear combinations of these solutions by mirror symmetry, which
do correspond to integrals (

∫

�I �) w.r.t. to an integral basis �I of Hn(M,Z).
One can in principle compute the analytic continuation to all those divisors

around which the monodromies generate the monodromy group �(M) and make
sure that it respects the even intersection form, e.g. is a subgroup of Sp(h3,Z) for
3-folds. Up to a normalization and integer conjugation this will in general determine
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the periods w.r.t. the integer symplectic basis, but it is especially for multi moduli
spaces a very complicated analysis.

Lessons Form B-Field Shift and Griffiths Transversality

Mirror symmetry exchanges the complex structure and the complexified Kähler
structure. At generic values of the complexified Kähler structure moduli space the
n-point amplitudes Ci1,...,in(t) of the A-model are very complicated functions of
the Kähler moduli, because these functions are world sheet instanton corrected.
However at large volumes Im(ti ) = vi →∞ the latter corrections are exponentially
suppressed as Qk = exp(2πitk) and Ci1,...,in (t) are dominated by the degree zero
maps. For example the classical n-point intersection

C
(cl)
i1,...,in

=
∫

Mn

ωi1 ∧ . . .∧ ωin = Di1 · · · . . . · · ·Din (2.6.15)

get promoted to instanton corrected intersection numbers42

Ci1,...,in (t) = C
(cl)
i1,...,in

+O(Q) . (2.6.16)

As we discussed in the non-linear σ model, the shift (2.4.49)

t i → t i + 1 (2.6.17)

is an exact symmetry and does not change the evaluation of amplitudes such
as (2.6.16) in the large radius region, where tk are physical coordinates.
Since (2.6.16) is holomorphic as explained cff. Eq. (2.5.11), the holomorphic
amplitudes are forced to be a function of the invariant exp(2πitk). Non-holomorphic
quantities such as the metric in the moduli space derived from the monodromy
invariants Kähler potential (2.5.1) can and do depend for example on the real part
(tk − t̄ k) of tk .

The main point is that already closed string mirror symmetry predicts that the
B field shift (2.6.17) of the A model is realized as a monodromy operation on the
period, which represent those coordinates of Mcs , which are identified with the
complexified Kähler coordinates. Let us denote by zk the coordinates defining the
normal crossing divisors {zk = 0} in Mcs around which the continuation of the
periods generate the monodromies Tk: π → Tk%, where Tk preserves the integral
intersection and generate in particular the shift (2.6.17). The large volume point
is assumed to correspond to z1 = . . . = zh = 0 in the complex moduli space
Mcs with h = h21(W) = h11(M). Because of the form of the inhomogenous
coordinates (2.4.40) this implies that at this point in the complex moduli Mcs at
least h solutions of the Picard Fuchs system Xi(z), i = 1, . . . , h have to develop
single logarithmic singularities, while at least one—X0(z)—must be holomorphic

42In mathematics these are the inter section numbers of the so called quantum cohomology.
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and monodromy invariant. This is because the only ratio solutions which can exhibit
the shifts as monodromies are of the form

tk(z) = Xk

X0 =
1

2πi
X0 log(zk)+ σ

(1)
k (z)

X0(z)
= 1

2πi
log(zk)+ σ

′(1)
k (z) (2.6.18)

where σ
(1)
k (z) σ

′(1)
k (z) are regular holomorphic series without poles or branch

behaviour.
Let us complete the argument for a point of maximal unipotent monodromy

using special Kähler geometry for CY 3-folds, which by mirror symmetry must also
be present on the complexified Kähler moduli space Mcks . Since special Kähler
geometry derives as we have seen from Griffiths transversality, the analysis of the
latter allows similar conclusion for higher dimensional Calabi-Yau spaces.

Special geometry implies that there is a prepotential (2.12.21) for the A-model,

whose leading term have to go like F = − c
(0)
ijk

3! t
i tj tk + O(t2) + O(Qn) in order

to reproduce (2.6.16) by (2.6.30). In view of (2.6.30) and (2.6.18) this also implies
that there must be h double logarithmic periods and one triple logarithmic period.
It is easy to see that this is the maximal possible degeneration of the periods, which
corresponds to k = 1 and p = 3 in (2.6.8).

We notice that by the theory of degenerations sketched in the last section, the
leading logarithmic terms of the solutions allow us to determine combinations of
them which correspond to actual cycles in the integral homology ofW . For example
X0 correspond, as period over the unique vanishing cycle relative to the other, to
an element in the integral basis. The single logarithmic solutions must correspond
likewise to actual integrals over cycles in an integral basis up to possible additions
ofX0, while adding higher logarithmic will lead to different basis elements. Further
constraints come from the fact that the monodromies Tk have to preserve the integral
intersection form. i.e for 3-folds they have to be in Sp(2h+ 2,Z). In explicit cases
one can find a conifold locus where the triple logarithmic period vanishes. Since
this vanishing cycle is unique and part of the integral basis one can them determine
the subleading terms of this period. This allows to fix F up to quadratic terms in t i

which drop out of 2F − t i∂t iF . However the constraints from the monodromies Tk

allow to fix the integral basis for 3- and 4-folds up to conjugation and it has been
observed that these subleading terms have an universal topological interpretation in
the A-model that we discuss next.

The �̂ Classes and Homological Mirror Symmetry

In multi moduli cases the techniques discussed above are complicated to apply
in general and we will invoke in this section basic facts of homological mirror
symmetry to find a better way to fix the integral bases and explain the occurrence of
universal topological terms mentioned above.

The basic idea is that the period vectors in the integral basis have the inter-
pretation of a basis of the central charge lattice 
Q in which the integral charge
ZD−brane(Q) takes values. The latter determine the masses for the supersymmetric
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A-branes, boundaries for the open string A-model, supported on special Lagrangian
cycles. In addition this lattice comes with an integral pairing on the middle
homology ofM and a monodromy group that leaves the pairing invariant. By mirror
symmetry completely analogous structures must exist for the supersymmetric B-
branes, which are boundaries for the open string B-model and are specified as
coherent sheafs on holomorphic sub-manifolds. In odd complex dimension the A-
model branes are odd and the B-model brane are even dimensional and on both
sides the pairing is symplectic, while in even dimensions for both types of branes the
pairing is symmetric. The monodromy of the B model becomes an auto equivalence
of the derived category of coherent sheafs in the A-model, respecting the bilinear
form and their charges become K-theory charges.

The physical picture behind the masses of the branes is quite easy. They are
given by the ‘volume’ of the supporting cycle times universal constants. This is
because the branes have a tension and their energy will be proportional to this
volume. However since they have also an U(1) connection the mass turns out to
be proportional to the absolute value of the complexified volume. For example for
A branes on 3-folds the relation between mass, central charge and charges Q is
given by the formula

MD−brane(Q) = ge
K
2 |ZD−brane(Q)| = ge

K
2

∣

∣

∣

∣

QI

∫

�I

�

∣

∣

∣

∣

, with I = 1, . . . , h3(W) ,

(2.6.19)

referring to special Lagrangian cycles �I ∈ H3(W,Z). Note that the factor e
K
2

is necessary for the mass to be invariant under Kähler gauge transformations.43

The key point is that by mirror symmetry a similar expression for the B-branes
of the A model must exist and has a simple grading by the volume of the highest
dimensional holomorphic submanifold H2i ∈ Hii(M,Z) of support. By the mirror
map this corresponds to a grading in powers of tk defined in (2.6.18). Given the
corresponding expression allows to identify the leading logarithms and hence the
corresponding basis of solutions.

Such an expression has been suggested in [183, 199, 217, 240], in term of the
�̂-classes. Let us recall the following multiplicative characteristic classes, some of
which are also discussed in Appendix 2. The well known Chern class the, A-roof
genus, the Todd class and the �-roof class introduced in [217, 240]

ch(x) = ex, Â(x) = x/2

sinh(x/2)
, td(x) = ex/2Â(x), �̂(x) = �

(

1− x

2πi

)

.

(2.6.20)

43Sometimes the central charge ZD-brane is defined as (QI
∫

�I
�)eN/2. Q denotes the string

coupling.
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For a vector bundle V we may expand the �̂ class as44

�̂(V ) = exp

⎛

⎝γ
ch1(V )

2πi
+
∑

k≥2
ζ(k)(k − 1)!ckk(V )

(2πi)k

⎞

⎠

= 1− ic1γ

2π
− 1

48

(

c21

(

6γ 2

π2 + 1

)

−2c2
)

+ 1

96π3

(

i(2c31γ
3+π2(c21−2c2)c1γ + 4(c31−3c2c1+3c3)ζ(3))

)

+O(4) .

(2.6.21)

For the tangent bundle of a Calabi-Yau manifold one has hence

�̂(TW) = 1+ 1

24
c2 + ic3ζ(3)

8π3
+
(

7c22−4c4
)

5760
+

i
(

π2c2c3ζ(3)+6(c2c3−c5)ζ(5)
)

192π5
+O(6) .

(2.6.22)

As has been explained in [199, 217, 240] due to the property

Â(V ) = ec1(V )/2td(V ) = �̂(V )̂̂�(V ) , (2.6.23)

the �̂ class can be viewed as an alternative definition of the square root of the A-roof
genus of the tangent bundle V = TW of the mirror in Mukai’s modified Chern-
Character map, which turns out to be the correct one to get integral auto equivalences
(twists) on theK-theory classes of the objects in theA brane category and the central
charges that determine Bridgeland stability [52]. This fact makes the notion very
useful for the comparison with the integral basis obtained in the last subsection.

Modifying the classical Chern character map from topologicalK-theory to even
cohomology ch : K(W) → H 2∗(W,Q) in a compatible way with the Hirzebruch
Riemann Roch index theorem that defines the bilinear

ηαβ = Q(�α, �β) = χ(Eα, Eβ) = .

∫

Wn

ch(E∗α) ∧ ch(Eβ) ∧ td(TWn)

=
n
∑

p=0
dimExtpOWn

(Eα, Eβ)(−1)p ,

(2.6.24)

Mukai defined an alternative Chern-Character map as μ(E) = ch(E)
√
td(TW).

However as observed later by [199, 217, 240] in order to get the right integer auto
equivalences on the K-theory classes one must replace

√
Td(TW) by �̂(TW). The

subsequent modification of [199, 240] leads to the central charge formulas of the

44Here γ is the Euler-Mascheroni constant. The term drops out in the application below since
ch1(TW) = c1(TW) = 0.
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A-branes given by

Z(OH2i ) =
∫

Mn

etω ∧ �̂(TMn) ∧ ch(OH2i ), i = 0, . . . , n . (2.6.25)

HereH2i are suitable holomorphic sub-varieties of complex dimension i. The reason
for the secondmodification is that while the twist E → E×O(1) comes out correctly
as integer with both definitions

χ(E ⊗O(1),F ⊗O(1)) = χ(E,F) , (2.6.26)

the Seidel-Thomas twist [289]

χ(�O(E),�O(F)) = χ(E,F) , (2.6.27)

which corresponds to the conifold monodromy, requires the use of the �̂ class and in
fact the modified Chern character map μ

�̂
(E) = ch(E)�̂(TMn) to be integer in the

basis at infinity. In particular for i = n the K-theory charge of the top dimensional
brane is obtained from (2.6.25) as

Z(OM) =
∫

Mn

etω ∧ �̂(TMn) =
∫

Mn

(

1+ωt+
(

J 2t2

2
+ c2

24

)

+
(

ω3t3

6
+ 1

24
tJ c2+ ic3ζ(3)

8π3

)

+
(

ω4t4

4! +
1

48
ω2t2c2 + 7c22 − 4c4

5760
+ iωtc3ζ(3)

8π3

)

+O(5)

)

+O(e2πit ) ,

(2.6.28)

where we understand that we restrict to the term of order n for Calabi-Yau n-
folds and integrate the class ω, which is dual to the Kähler class of t , and its
wedge products with the Chern classes over Mn. All terms are corrected by
world-sheet instantons effects of order O(Q), which can be calculated in the B-
model using the exact expressions of the period integrals on the mirror Wn near
a point of maximal unipotent monodromy. For multi parameter models e2πita are
exponentially suppressed if all large areas are large Im(ta)→∞.

Similar one gets for the D0 and D2 brane charges universal formulas

Z(Opt ) = 1+O(e2πit ) ,

Z(O
H

(i)
2
[−1]) = t i +O(e2πit )

Z(O
H

(i)
4

) = − 1
2C

cl
ijk t

i tj + Aij t
j + ci +O(e2πit ) .

(2.6.29)

Note that Z(OH2k ), k > 1 have to be chosen compatible so that the auto equivalence
acts integral and in accordance with monodromy calculation on the complex
structure side.

Because of the requirement that (2.6.27) and (2.6.26) are integer in the same
basis, the appearance of the coefficients of the �̂ class, like ζ(k), in the central
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charge formula that follows also from the analytic continuation of the period Xν

over vanishing cycle ν at the conifold point to the large complex structure point and
the fact that this period maps under homological mirror symmetry to the structure
sheaf on Wn. This was used in [61] and [153] to determine these coefficients for
threefolds and fourfolds respectively. It is possible to prove (2.6.25) using the hemi-
sphere partition function obtained by localization [181]. As was pointed out in [165]
the �̂ class is also compatible with the interpretation of the sphere partition function
of [36, 102] as e−K [201].

It is simple to identify the central charges of theA- model in an integer basis with
the central charges of the B-model, which are simply the periods on the mirror. For
Calabi-Yau 3 folds the comparison reads

⎛

⎜

⎜

⎝

Z(OM)

Z(OH4)

Z(Opt )

Z(OH2([−1])

⎞

⎟

⎟

⎠

= X0

⎛

⎜

⎜

⎜

⎝

2F(t)− t i ∂
∂t i

F(t)
∂
∂t i

F(t)

1
t i

⎞

⎟

⎟

⎟

⎠

. (2.6.30)

Note the grading by areas and higher dimensional volumes captured by powers of
t . This allows to compare the t powers or according to (2.6.18) equivalently the
leading logarithm in z in order to determine the period vector in inhomogenous coor-
dinates (2.5.47) in an integral monodromy basis, that is given by the l.h.s. of (2.6.30)
using (2.6.28), (2.6.29). Using (2.4.43) or rather its complexified version (2.4.48)we
can read off the holomorphic prepotential F form, compare (2.9.58). It is given by

F = −Ccl
abc

6
tatbtc + Aab

2
tatb + c2 ·Da

24
ta + ζ(3)χ

2(2πi)3
+ Finst (e

2πit1 , . . . , e2πtr ) .

(2.6.31)

One of the main applications of mirror symmetry is that in (2.9.58) the period vector
is reconstructed using the leading logarithmic degenerations of the full solutions to
the Picard-Fuchs equations on μ. That is if the leading logarithms match, the full
solutions give the sub leading terms at the point of maximal unipotent monodromy,
determine all the world sheet instanton corrections in (2.6.31) and predict of all
Gromov-Witten invariants on the mirror Calabi-Yau 3-fold μ.

We simplified the notation for the classical intersections by using the equivalence
of integrals over forms with the intersection of the dual divisors, in particular

Ccl
abc = Da ·Db ·Dc =

∫

M

ω(a) ∧ ω(b) ∧ ω(c), (2.6.32)

ca = c2 ·Da =
∫

M

c2(TM) ∧ ω(a) (2.6.33)
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and

χ =
∫

M

c3(TM) . (2.6.34)

ζ(3) is the Riemann ζ -function at argument 3. It comes technically by expanding the
� class from the 3rd derivative of �. More conceptually it has been related to a 4-
loop calculation of in the non-linear sigma model [59, 117, 118] or to a degree zero
map or D0 brane contribution. The quantity Aab is the only one which cannot read
off from theD6 brane chargeZ(OM) since it drops out from the combination 2F−
t i∂t iF . It requires a proper definition of the Z(OH4) brane charge that is compatible
with integrality of the monodromy in the B-model or the auto-equivalence in the
derived category of coherent sheaves in the A-model.

It is satisfying to see that the data that go into (2.6.31) are exactly the topological
data that classify Calabi-Yau up to topological type according to the theorem of
C.T.C Wall [310] that we review in Sect. 2.7. For fourfolds the basis has been
determined along similar lines in [46].

2.7 Examples for Calabi-Yau Mirror Pairs

As we mentioned in the introduction most examples of mirror pairs come from
Batyrevs construction of hypersurfaces in toric ambient spaces given by reflexive
polyhedra and Batyrevs and Borisovs construction of complete intersections given
by reflexive polyhedra with Neff partitions. We first recall the definition of the
toric spaces P related to lattice polyhedra . These give rise to Fano, semi-
Fano or almost Fano varieties which serve as ambient spaces for the Calabi-Yau
hypersurfaces given by the anti-canonical section, more general by complete
intersection constraints and even more general by determinantal or smooth non-
complete intersection Calabi-Yau spaces. Note that the above ambient spaces don’t
exhaust the mentioned even the smooth Fano varieties which come in finite families
in any dimensions. Smooth Fano manifolds have been classified in dimension one,
where the only example is P1, in dimension two, where the only examples are the
del Pezzo surfaces, given either by the blow up of P2 in 1, . . . , 8 points or P1 × P1.
Smooth Fano threefolds have been classified by [200] and [264]. In dimension two
and three only a subset of the classified ones correspond to a toric Fano variety given
by a P, with some restrictions on the points on the faces. For example in Fig. 1 the
polyhedra 1, 2, 3, 5, 7, which have no points on the interior of edges are a smooth
Fano surfaces.

Compact Calabi-Yau spaces come in finite numbers in any known construction.
The most investigated case are Calabi-Yau 3 folds.

In the present construction this is due to finiteness of reflexive polyhedra in any
dimensions, like the 16 two dimensional ones depicted in Fig. 1. In three dimensions
there are 4319 while in four dimensions in there are 473800776 [245] reflexive
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1 42 5 6 7 83

9 10 11 151413 6121

Fig. 1 These are the 16 reflexive polyhedra  in two dimensions, which build 11 dual pairs
(, ̂). Polyhedron k is dual to polyhedron 17 − k for k = 1, . . . , 6. The polyhedra 7, . . . , 10
are self-dual. The origin has label 0, the points right to it 1 and the other points are labelled counter
clockwise

Polyhedra, while the number of higher dimensional is finite but the number is not
exactly known. In principal higher and higher dimensional toric varieties could
allow by complete intersection to an arbitrary number of higher co-dimensions
Calabi-Yau manifolds, say 3-folds to be definite, but the example of products of
projective spaces, a special case of toric varieties, shows again within that this class
the topological different Calabi-Yau 3 folds is finite.

The question whether Calabi-Yau 3-folds are topological inequivalent is
answered within the more general theorem of C.T.C. Wall for the classification
of six manifolds up to homeomorphism, which specializes for Calabi-Yau 3-folds
to the following Lemma. Two Calabi-Yau 3-folds in our definition are topological
equivalent if

• Their fundamental group is the same. Note that the fundamental group for
hypersurfaces in toric ambient spaces is trivial. However discrete fundamental
groups can be achieved, by madding w.r.t. a freely acting discrete symmetry.

• The Cohomology groups are the same, which means H 2,1(M) and H 1,1(M) are
the same

• There is choice of basis ω(i), i = 1, . . . , h11 of H 1,1(M) so that the classical
triple intersections

Ccl
ijk =

∫

M

ω(i) ∧ ω(j) ∧ ω(k) = Da ·Db ·Dc

as well as the intersection

ci =
∫

M

c2(TM) ∧ ω(i) = [c2(TM)] ·Di

are the same.
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Fig. 2 Here we show the complete fan that yields the compact almost del Pezzo surface P(14)

associated to the fourteenth polyhedron (14) from Fig. 1 on the right. On the left we show the
non-complete fan (14) that yields O(−KP


(14) )→ P


(14)

On the other hand the toric ambient spaces can also be made to non-compact
toric Calabi-Yau spaces given by the anti-canonical line bundle fibred overP. Both
construction come with explicit mirrors.

But in the non-compact case the construction can be generalized to an infinite
number of Gorenstein fans of the type described in Fig. 2 that lead to non-compact
Calabi-Yau spaces. For example it is known that N = 2 four dimensional gauge
theories can be geometrically engineered for arbitrary gauge groups SU(N) (and
SO(N) by an orientifold action) from local Calabi-Yau geometries [214].

2.7.1 Toric Ambient Spaces and Non-compact Calabi-Yau Spaces

The d-dimensional toric45 almost or semi Fano varieties are most easily classified
by d-dimensional reflexive polyhedra. In particular toric almost del Pezzo surfaces
are given by reflexive polyhedra in two dimensions, which are depicted in Fig. 1,
where also the reflexive pairs (, ̂) are indicated. The anti-canonical class is only
semi-positive if there is a point on one edge of the toric diagram, otherwise positive
and ample. In particular the polyhedra 1,2,3,5,6 are Fano and correspond to toric
del Pezzo surfaces, by the construction explained below. However as in the three
dimensional case there are more, namely 9 Fano surfaces constructed as P2 blown
up in up to eight points and P1 × P1.

We fix the following conventions in arbitrary dimensions. If the dimension d of
 is important we indicate it as a subscript. is a lattice polyhedron in the lattice �

45We refer to [125, 270] for a general background in toric geometry.
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(whose real completion is denoted by �R), if it is the convex hull of points ν(i) ∈ �

that contain the origin ν(0) and span �. Analogous conventions are made for the
dual polyhedron ̂, where the above data are all marked with a hat. We denote by
〈ν, ν̂〉 ∈ Z the pairing between � and the dual lattice �̂. The dual polyhedron ̂ is
defined by [28]

̂ = {y ∈ �̂R|〈y, x〉 ≥ −1, ∀x ∈ } . (2.7.1)

Note that̂(̂) =  and contains only ν(0) as inner point. A pair is called reflexive
if both  and ̂ are lattice polyhedra.

 together with a triangulation defines a complete toric fan46 �. It is spanned
by all rays �(1) from the origin ν(0) through the points νi , i �= 0 as on the l.h.s
of Fig. 2. The fan � describes for a reflexive polyhedron in real dimension d an
(almost) Fano variety P� of complex dimension d , explicitly given in (2.7.3). For
simplicity we denote P� = P, if � comes from a reflexive polyhedron . E.g.
in the two-dimensional case P2 is a toric (almost) del Pezzo surface S. In this
construction a point in  different from the origin specifies a ray in the fan �.

We now give the general description of a toric variety starting from a fan �.
A toric variety X of complex dimension d is by definition a normal variety that
contains the algebraic torus Td = (C∗)d as dense subset together with an action
Td × X → X that extends the natural action of Td on itself [125]. It follows
immediately from this definition that a toric variety P� can given most explicitly
from a fan � as follows [77]. Let νi be all the points lying in an integer lattice �

and spanning the rays�(1) of� in �R. Denote the vectors47 l̄(k), k = 1, . . . , h that
specify a basis of linear relations among these points48

s
∑

i=1
l̄
(k)
i ν(i) = 0 . (2.7.2)

Now P� is given as49

P� = C|�(1)|[x1, . . . , x|�(1)|] \ Z�

Hom(Ad−1(P�),C∗)
. (2.7.3)

46A complete toric fan in Rd covers all Rd .
47In l̄(a) the l stands for linear relation. We extend the l̄(a) latter, see Eq. (2.8.18), in way that makes
useful to encode data of the periods, drop the bar and call them l(a).
48If the fan comes from a polytope h := l(d) − d − 1, where l() are the number of integer
points in d . For general fans �, which not necessarily come from d we have h := |�(1)| − d,
where s = |�(1)| is the number of points spanning the fan �. In many cases h can be identified
with the number of Kähler parameter.
49If � comes from a polytope d in the two ways described above, we also use the notation Pd

or P̄d
.
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Here Gμ := Hom(Ad−1(P�),C∗) = (C∗)rankAd−1(P) × Ad−1(P�)tors and the C∗-
action is specified by the l̄(k) as

xi �→ xi(μ
(k))l̄

(k)
i ∀i, (2.7.4)

with μ(k) ∈ C
∗. The rays �(1) of a fan � correspond to the toric divisors Di in the

Chow group Ad−1(P�) of the d-dimensional toric variety P� and we can assign a
coordinate xi , whose vanishing xi = 0 specifies the divisor Di . We abbreviate by
s = |�(1)| = rankAd−1 the number of one dimensional fans or rays defined by s

lattice points spanning the fan �. For example in Fig. 2, the right picture shows a
complete fan that corresponds to a compact geometry, while the left picture shows
a non-complete fan that defines a related non compact geometry. Z� is the Stanley-
Reisner ideal. Its subtraction guarantees well-defined orbits under the torus action.
It is determined from a triangulation of � and consists of all loci in the intersection
of divisors Di1 ∩ . . . ∩ Dir for which the set of corresponding points {νi1, . . . , νik }
are not on a common cone of dimension d . A d-dimensional cone in the left picture
in Fig. 2 contains for example all points C12 = {a1ν1 + a2ν2|a1, a2 ∈ R+} or in
the right picture in Fig. 2 all points C012 = {a0ν̄0 + a1ν̄1 + a2ν̄2|a0, a1, a2 ∈ R+}.
The triangulation determines also the generators l(k)i of the Mori cone, which is dual

to the Kähler cone, i.e. to each l
(k)
i there is a dual curve whose volume vanishes at

the boundary of the Kähler cone. Calculating the triangulations and the Mori cones
is an combinatorial problem, which is described in [79] and has been implemented
partly in SAGE packages. For the fans coming from the two dimensional reflexive
polyhedra the solution can be found in [235].

Each toric variety comes with a natural symplectic structure, which is given by
the real 2-form in coordinates xk = |xk|eiθk of the algebraic torus Td as

ω = i

2

d
∑

k=1
dxk ∧ dx̄k = 1

2

d
∑

k=1
d|xk|2 ∧ dθk (2.7.5)

and extends by the definition of (2.7.3) and (2.7.4) to P� .
Non-compact toric Calabi-Yau space Mnc = M̄ are canonically obtained

from d the following construction: In a (d+1)-dimensional lattice �̄ spanned by
the points with coordinates ν̄(i) = (1; ν(i)), d is canonically embedded in the
hyperplane at distance one from the originO = (0; 0, . . . , 0) ∈ �̄ as the convex hull
̄ of the points ν̄(i). FromO one can span a non-complete fan �̄ through ̄. I.e. the
rays�(1) that define �̄ go from the originO through all points ν̄i , i = 0, . . . , l(d),
as on the r.h.s of Fig. 2. The non-complete fan �̄ defines M̄ = P�̄ as a non-
compact toric variety with trivial canonical bundle as in (2.7.3). In this construction
d is called the trace of the fan �̄. In particular a reflexive polyhedron d defines
a (d+1)-dimensional non-compact toric Calabi-Yau variety given as the total space
M̄d

of the anticanonical line bundle over Pd , i.e.

M̄d
= O(−KPd

)→ Pd . (2.7.6)
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The coordinate ring ofM̄d
is defined also by (2.7.3), with replaced with ̄ in the

definition of (2.7.2). Note that in this case
∑

i l
(k)
i = 0, as the points lie in a plane.50

It is easy to see from (2.7.4) that this condition ensures the existence of a globally
defined (d + 1, 0)-form, hence Mnc =M̄d

is a non-compact CY (d + 1)-fold.
Since we add the new point O in the construction for the non-complete fan

the non-compact Calabi-Yau threefold does not require d to be reflexive. Any
maximally triangulated convex polyhedron d , for which the rays of every d + 1
dimensional cone, span the lattice �̄, will lead to a smooth non-compact CY (d+1)-
fold, otherwise to a singular one, which can be crepantly resolved to a smooth d+1
fold, by adding lattice points so that the generators of the new cones span �̄. In
general the space will be a CY (d+1)-fold if the spanning the incomplete fan lie on
the hyperplane of distance one to the origin. In particular d can have an arbitrary
number of inner points. For example if d = 2 each inner point corresponds to a
compact surface inside Mnc = M̄. In the case that 2 has no inner points, the
compact parts of Mnc = M̄ are just curves, as for e.g. for the resolved conifold
geometryO(−1)⊕O(−1)→ P1.

The latter is also the simplest example for a situation with two different
triangulations: We label the points of the O(−1) ⊕ O(−1) → P1 polyhedron
in Fig. 3 second and third picture counter-clockwise starting from the right lower
corner, the first triangulation corresponds to a Mori vector l(1) = (−1, 1,−1, 1).
The coordinates (x2 : x4) are homogeneous coordinates of the compact P1, whose
positive volume is the Kähler cone and x2 = x4 = 0 is the Stanley-Reisner ideal.
x1 and x3 are the line bundle coordinates. The coordinates of the flopped P1 with
l(1) = (1,−1, 1,−1) are correspondingly given by (x1 : x3) with x1 = x3 the
Stanley-Reisner ideal and x2 and x4 coordinates of the O(−1) ⊕ O(−1) line
bundles.

2.7.2 Gauge Linear σ -Model or Symplectic Quotient Perspective

Let us outline an equivalent description of toric geometry as the vacuum manifold
of an gauged (N ,N ) = (2, 2) supersymmetric two dimensional linear sigma
model [322], with abelian gauge group. Mathematically this corresponds to the
symplectic quotient construction of toric varieties, in which one divides or “mods
out” the (C∗)h = U(1)h × (R+)h group action in two steps: In one we identify the
abelian gauge groupU(1)h, where hwas the number of relations in the construction
of P� , in another we impose a constraint fixing the values ri ≥ 0, i = 1, . . . , h.
One advantage is that the symplectic structure is more obvious and in particular
the Kähler moduli appear explicitly as the ri ≥ 0 and can be complexified in
supersymmetric language by a so called Fayet-Illiopolous term.

The physical idea, summarized in [322], is that the two dimensional action of
the string propagating on a Kähler manifold M can be described by a gauged linear

50In the equivalent description by an abelian 2d gauged linear σ -model it ensures the cancellation
of the axial anomaly.



172 A. Klemm

Fig. 3 Here we show the graph of the toric diagram in light black and dashes black and the dual
graph in solid red. The latter is interpreted as web of [p, q] 5-branes of the type IIB string. The
geometries are C3, O(−1) ×O(−1) → P1, with the P1 flopped, O(−KP

(14) ) → P(14) , and an

A2 fibration over P1

σ -model, with a quite simple action with in particular d + s chiral super fields with
integral charges under each of the U(1)’s, say the k’s one that can be grouped into
charge vectors q(k) = {q(k)

1 , . . . , q
(k)
s+d}, k = 1, . . . , h, that are simply identified

with the vectors l(k) encoding the linear relations.
If M is a Calabi-Yau manifold the (2, 2) supersymmetric model must also

become conformal. It is argued that the gauged linear σ model indeed has in this
case a conformal fix point. The full conformal theory is hard to describe in this
approach, but it can be argued the vacuum manifold describes the Calabi-Yau target
space and depends only on the charge vectors and a charge invariant superpotential.
There is a very nice relationship between geometrical and physical properties. In
particular non anomalous R-symmetry of the field theory is equivalent to triviality
of the canonical bundle of M and implies

s
∑

i=1
q
(k)
i = 0 . (2.7.7)

Phases in the field theory correspond partly to geometrical phases in the Kählercone,
but there are new phases in the field theory that are only understandable geometri-
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cally if one includes all world-sheet instantons corrections to the couplings among
the chiral fields, a notion that is know as quantum geometry.

To specify the space of classical vacua we need to analyze the zero locus of
the scalar potential U . The latter is semi positive and contains the absolute values
of F− and D terms. The F terms come from the superpotential W(X) as Fi =
∂XiW(X) and the D-terms from the gauge theory. The superpotential leads to the
hypersurfaces and complete intersections like the one described in Sect. 2.7.3.

If we restrict ourself to the description of the ambient space or local Calabi-Yau
spaces we have only the D-terms

U =
h
∑

k=1

1

2e2k
D2

k , with Dk = −e2k(
∑

q
(k)
i |xi | − rk), (2.7.8)

where the ei the coupling constants of the i’s gauge group and rk are identified
with the Kähler parameters of our d dimensional variety. In the mathematical
literature the D-terms are known the moment maps with respect to the symplectic
structure (2.7.5). The toric variety is defined by the field space subject to the
vanishing of the D-terms divided by the gauge group

P� =
⎛

⎝

|�(1)|
⋂

k=1
D−1k (0)

⎞

⎠ /G . (2.7.9)

To illustrate this we consider a theory with U(1) × U(1) gauge group and
charges q(1) = (1, 1,−2, 0, 0), q(2) = (0, 0, 1,−2, 1). This corresponds to the
non-compact toric Calabi-Yau space M in (2.7.6), where the two dimensional
polyhedron  is the fourth in Fig. 1. We labelled its points ν1 = (0, 1), ν2 =
(−1,−2), ν3 = (−1, 0), ν4 = (0, 0) and ν5 = (1, 0). The scalar potential reads
then

U = e21

2
(|x1|2 + |x2|2 − 2|x3|2 − r1)

2 + e22

2
(|x3|2 − 2|x4|2 + |x5|2 − r2)

2

In the phase where r1 and r2 are both positive,51 we see that for our vacua we cannot
have x1 = x2 = 0 or x3 = x5 = 0. This is how the Stanley-Reisner ideal is encoded
in the present approach.

The space M contains a surface S defined by x4 = 0, which is in fact the
Hirzebruch surface F2 = P, again with  given by the fourth polyhedron in
Fig. 1, that is a ruled surface over P1 with fiber P1. The non-compact Calabi-Yau
manifoldM̄ has a compact part which we identify with the Hirzebruch surface F2
and the total space is identified with F2 together with the normal bundle on it as

51The U(1) generators were chosen so that the phase we are interested in corresponds to requiring
r1 and r2 to be positive—this is tantamount to choosing a basis for the Mori cone, as we will see.
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in (2.7.6). The latter is identified with the canonical line bundle for F2 given here
by the x4 direction. Our model resolves a curve of A1 singularities parameterized
by P1; the fibers of F2 are the vanishing cycles. The well-known cohomology of
F2 is generated by the class s of a section with s2 = −2 and the class f of a
fiber. The other intersection numbers are s · f = 1 and f 2 = 0. There is another
section H = s + 2f which is disjoint from s. The section s itself is defined by
x3 = x4 = 0. The curves x1 = x4 = 0 and x2 = x4 = 0 are fibers f of the
Hirzebruch surface. The section H is identified with the locus x4 = x5 = 0. The
divisors xi = 0 for i = 1, 2, 3, 5 are noncompact divisors in X which intersect S
in the respective curves f, f, s,H . For this reason, we will sometimes refer to these
divisors as f, f, s,H . The divisor S restricts to the surface S itself as the canonical
class K = KS by the adjunction formula.

2.7.3 Global Mirror Symmetry

Hypersurfaces

One key idea in Batyrev’s mirror construction [28] is that we can view each
polyhedron in two ways. Firstly as defining a projective toric variety P = P�

as explained in Sect. 2.7.1 and secondly as defining the Newton polyhedron for a
polynomial P(x), where the coordinates of the points determine the exponents of
the xi . These xi are the coordinates of the projective toric variety defined by the
dual polyhedron ̂ and P(x) = 0 defines a Calabi-Yau hypersurface in P

̂
. Mirror

symmetry then simply exchanges the rôles of and ̂. We describe the construction
outlining the difference between compact and non-compact toric mirror symmetry.

In the vanishing locus of compact case the Calabi-Yau M , the anti-canonical
divisor in P

̂
—is defined as the vanishing locus of an ample section of the anti-

canonical bundle in P
̂

P =
l()−1
∑

i=0
aiYi =

∑

ν(i)∈
ai
∏

ν̂(k)∈̂
x
〈ν(i),ν̂(k)〉+1
k = 0 (2.7.10)

in the homogeneous coordinate ring xk of P
̂
, defined analogously to the one

below (2.7.4), where the fan � is defined now by ̂.
Here the coefficients ai parametrize (redundantly) the complex structure of M .

In compact mirror symmetry points ν(i) inside codimension one faces of  can
be excluded from the sum (products) above, because the corresponding monomials
Yi can be removed by the automorphism group acting on P

̂
as will be discussed

in more detail below. Points ν̂(k) in ̂ on codimensions one faces of ̂ can also
be excluded from the product because the corresponding variables xk describe
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(exceptional) divisors xk = 0 (in the resolution of singularities) that lie outside
of the hypersurface52 P = 0.

In the definition of (2.7.10) we used the fact that any lattice polyhedron ̂ ∈ �̂,
which contains the origin, comes with a very ample divisor kD in P

̂
. It is given

by its support function φ : �̂∗
R
→ R defined φk(v) = min

ν∈k̂〈m, v〉. For reflexive
polyhedra k = 1 and P = 0 corresponds by to a generically smooth hypersurface
in P

̂
.

To understand the definition of P = 0 in the Yi coordinates note that Pd can
then be embedded as a singular variety in a projective space as follows. Take the
points {ν(0), . . . , ν(l()−1)} = ∩� and map Td → Pl()−1 by sending Y ∈ Td to

(Y ν(0)
, . . . , Y ν(l()−1)

), where Y ν(i) = ∏d
j=1 Y

ν
(i)
j

j and Yj are a coordinate basis for

Td . Pd is the completion of the image of this map in Pl()−1. This defines a vector
space of Laurent polynomials

L( ∩ �) = {P : P =
∑

ν(i)∈∩�
aiY

ν(i)

, ai ∈ C} (2.7.11)

and the geometry M is given by P = 0. The Laurant polynomials are a good
starting point to discuss the complex moduli space, see below. Alternatively we can
say that P is be embedded as a singular variety in Pl()−1 by the constraints53

∏

i

Y
l
(k)
i

i = 1 ∀k (2.7.12)

and M is then described by the additional constraint

P =
l()−1
∑

i=0
aiYi = 0 (2.7.13)

in Pl()−1.
Similarly the mirror to M called W is defined as a hypersurface, i.e. as an ample

section of the anti-canonical bundle of P

P
̂
=

l(̂)−1
∑

i=0
âiXi =

∑

ν̂(i)∈̂
âi
∏

ν(k)∈
y
〈ν̂(i),ν(k)〉+1
k = 0 (2.7.14)

52Readers who want to read in parallel the simplest example could look at the example of the
quintic in P

4 in Sect. 2.10 or consider the simple elliptic Calabi-Yau with two parameters which is
discussed after the data of the polyhedra in (2.7.35).
53By construction the Yi in (2.7.10) viewed as a function of the zk fulfill this constraint.
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as the Newton polynomial of ̂ in the coordinate ring of P, defined by (2.7.4) and
the Stanley Reisner ideal of its coordinate ring (2.7.3).

The quotient construction of mirror symmetry can be realized, if there is an
embedding map � : (̂, �̂) → (,�). This defines the êtale map from the Xi

coordinates to the Yi coordinates. For the example of the quintic the relevant charge
vector (2.7.2) is l(1) = (−5, 1, 1, 1, 1, 1) and the êtale map is

φ : (Y0 : Y1 : . . . : Y5) �→ (

5
∏

i=1
yi : y55 : . . . : y55) = (X0 : X1 : . . . : X5) ,

(2.7.15)

which is many to one viewed as map xk to yk and is made unique by identifying the
xk under the action of the mirror quotient groupG. I.e. kern(�) = G and the order
of G is the degree of �.

For example the pairs (2, ̂2) define one-dimensional compact Calabi-Yau
hypersurfaces P2(x) = 0 in (almost) del Pezzo surfaces P

̂2
, i.e. elliptic curves

and all ai up to one can be set to 0 or 1 by the automorphism group of P
̂2

and
rescalings of xi in the coordinate ring of P

̂
. Let us describe the moduli space

of the hypersurfaces more generally. Clearly as for the simple example the ai
defined in (2.7.10) are redundant parameters, from which first of all the action of
the automorphism group of P

̂
has to be divided. These automorphisms come in

three types [78].

(A1) By the definition of a toric variety P
̂2

contains the algebraic torus Td as an

open dense subset. The natural (C∗)l|2|−1 action onC(l|2|−1)[Yi ] is reduced
by the identifications (2.7.4), as expressed by the exact sequence

1→ Gμ → (C∗)�(1) → Td → 1 , (2.7.16)

to an action of Td on P
̂
that extends the natural action of Td on Td ⊂ P

̂
.

(A2) The second type of automorphism are the weighted homogeneous coordinate
transformations

Yi �→ b
(i)
0 Yi +

∑

k

b
(i)
k m

(i)
k (Y ) , (2.7.17)

of P
̂
. Here b

(i)
l ∈ C and the monomials m(i)

k (Y ) on the r.h.s do not contain
the one Yi on the l.h.s. They such that both sides of (2.7.17) transform equal
under (2.7.4) and P stays well defined under (2.7.17). Pairs (Y i, b

(i)
k ) are

called roots.
(A3) Further there can be symmetries of the toric polyhedron, which according

to [78] have to be identified.
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These actions A1–A3 do not leave the general P invariant unless they are
compensated by actions on the ai . This is the action that has to be divided out to
get a first model for the complex moduli space.

To construct this quotient [78] start with the Laurent polynomial in d variables
as defined in (2.7.11), which we can think of also as dividing from the Yi in (2.7.10)
the analog of the relations (2.7.12), because the coordinate ring Yi captures all the
blow up coordinates, but as far as the complex structure deformations of Mn go,
the d variables Yj that yield a basis for Td are sufficient to characterize P.54 The
statement about the moduli space can now be phrased as

MP = P(L( ∩ �))/Aut(P2) . (2.7.18)

It has been shown by Batyrev that any complex structure deformation has one
representative under the (gauge) orbits (2.7.17), which corresponds to the restricted
Newton polynomial of  in which only such monomials in (2.7.10) are considered
that correspond to points in ν(i) not inside co-dimension one faces of . We call
 without those points 0. This can be viewed as a gauge fixing and leads to the
definition

Msimp
P

= P(L(0 ∩ �))/Td . (2.7.19)

One can show that the map φ :Msimp
W

→MP is at most a finite cover. Note that
not all symmetries of Mn might be manifest in a chosen gauge.

As it turns out the most interesting points in the analysis below are precisely
related to the nature of the finite covers. In order to get the right description forMcs

we have to divide Aut(P2) by this discrete groupG.
It is explained in [28]55 how to calculate the Euler number and hn−1,1 and h1,1

from the polyhedra, which leads to the beautiful combinatorial formulas

hn−1,1(Mn) = h1,1(Wn) (2.7.20)

= l(n+1)− (n+ 2)−
∑

dim θ̂=n

l′(θ̂ )+
∑

codim θ̂i

l′(θ̂i)l′(θi) ,

h1,1(Mn) = hn−1,1(Wn) (2.7.21)

= l(̂n+1)− (n+ 2)−
∑

dim θ=n

l′(θ)+
∑

codim θi

l′(θi)l′(θ̂i) .

54Physically this independence of complex parameters from the blow ups moduli reflects, e.g. the
decoupling of vector- and hypermultiplets in type IIb compactifications on M3 to 4d at generic loci
in the moduli space.
55See Cor. 4.5.1, Cor 4.5.2, Thm 4.5.3.
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In this expression θ (θ̂) denote faces of  (̂), while the sum is over pairs (θi, θ̂i )

of dual faces. The l(θ) and l′(θ) count the total number of integral points of a face
θ and the number of integral points inside the face θ , respectively. Finally, l() is
the total number of integral points in the polyhedron.

This determines all Hodge numbers for n ≤ 3 and for n = 4 the other Hodge
numbers follow from the Hirzebruch-Riemann-Roch theorem, see Appendix 2. The
Euler number and hq,1 for 0 ≤ q ≤ d − r can also be directly calculated by
the formulas56 given for r > 0 in [29]. The above mentioned formulas relate
toric divisors and intersections thereof, as well as deformations of (2.7.10) to
representatives in the homology groups, while the E-polynomial [30] yields for
more general homology groups only information about the dimensions.

Complete Intersections

For the complete intersections case [34] one needs r semi-ample Cartier divisors
corresponding to r upper convex piecewise linear support functions φl , which define
a nef-partition E = E1 ∪ · · · ∪ Er of the vertices ρ∗ of ̂ := ̂n+r into disjoint
subsets E1, . . . , Er as

φl(ρ
∗) =

{

1 if ρ∗ ∈ El,

0 otherwise.
(2.7.22)

Each φl defines a semi-ample Cartier divisor D0,l = ∑

ρ∗∈El
Dρ∗ on P

̂
, where

Dρ∗ is the divisor corresponding to the vertex ρ∗ ∈ El . The family of Calabi-
Yau manifolds Mn is given as a complete intersection Mn = D0,1 ∩ · · · ∩ D0,r of
codimension r in P

̂
, where in accordance with the notation in the hypersurface

case we define a generic section of O(D0,l) as

Pl = 0, l = 1, . . . , r (2.7.23)

Each φl defines the lattice polyhedron l as l = {x ∈ �R : (x, y) ≥
−φl(y) ∀ y ∈ �̂R}. These l support global sections of the semi-ample invertible
sheaf O(D0,l), whose explicit form is given by (2.7.10) with  replaced by l .
Note that

∑r
l=1 φl = φ yields the support function of K and that the Minkowski

sum is 1 + · · · + r = . Moreover giving a partition %() = {1, . . . ,r }
of a supporting polyhedra l is equivalent to give E1, . . . , Er and is therefore
also called nef-partition. ∇l = 〈{0} ∪ El〉 ⊂ �̂R defines also a nef-partition

56This gives again the full Hodge diamond for n ≤ 4, which is implemented in the software
package PALP.
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%∗(∇) = {∇1, . . . ,∇r } and ∇ = ∇1 + · · · + ∇r is also reflexive polyhedron with
the following duality relations

�R �̂R

 = 1 + . . .+r ̂ = 〈∇1, . . . ,∇r 〉
(l,∇l′) ≥ −δl l′ (2.7.24)

∇̂ = 〈1, . . . ,r 〉 ∇ = ∇1 + . . .+∇r

where the angle-brackets denote the convex hull of the inscribed polyhedra. By a
conjecture due to [29] this construction leads mirror pairs (Mn,Wn) of families
of complete intersections Calabi-Yau varieties where Mn is embedded into P

̂
as

complete intersection of the sections Pl of the line bundles associated to D0,l
specified by l , while Wn is embedded into P∇ as complete intersection of the
sections of O(D∗0,l) specified by ∇l .

2.7.4 Local Mirror Symmetry

In Sect. 2.7.1 we constructed n + 1 dimensional non-compact Calabi-Yau spaces
Mnc = M̄d

by a fan defined by the trace of a toric polyhedron in co-dimension
a distance one from the origin as in Fig. 2. This situation is the realised for any
co-dimension two face of a d + 2 dimensional reflexive polyhedron ̂d+2. If the
compact Calabi-Yau space M , defined as hypersurface in P

̂d+2 , is a fibration of
a d − 1 dimensional Calabi-Yau manifold as fibre, that projects to P

̂d
one can

decompactify this fibre and focus onMnc = M̄d
and in particular obtain its mirror

from a limit of the global mirror W obtained by the Batyrev construction.
This construction was first described in [214] in the context of geometric

engineering of gauge theories and basically restricts Batryrevs êtale construction
to the coordinate ring definingMnc. More precisely one observes that in the decom-
pactification limit the mirror polynom P

̂
restricts to monomials that correspond

to the points in ̂d , whose zero locus describes a d − 1 dimensional variety, i.e. a
curve for the most relevant case that Mnc is a CY 3-fold, plus a quadric term which
corresponds to the normal direction and carries no complex structure deformation.
The mirror description is therefore57

Pd =
l(d)−1
∑

i=0
aiXi = 0 , (2.7.25)

where d is any d-dimensional polyhedron, not necessarily reflexive. In contrast
to the compact mirror symmetry discussed above there are no automorphisms in
M̄d

to remove monomials in (2.7.25), hence the sum runs over all points in d .

The independent deformations are hence as follows: Let l̄(i) generate a basis of

57In the following sections we drop theˆfor notational convenience.
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linear relations
∑

i l̄
(i)
i ν̄(i) = 0 among the points of ̄d , which define the analog

of (2.7.12) in the Xi coordinates. These relations restrict the possibility to undo
deformations parametrised by the ai using rescalings of Xi , leaving l(d)− d − 1
independent deformations of the B-model. A convenient way to introduce these
in the curve in a manifest scaling invariant way is to set first all ai = 1 and
modify (2.7.12) to

∏

i

X
l̄
(k)
i

i = zk ∀k . (2.7.26)

Here we use Batyrev’s coordinates for the complex structure deformations

zk =
∏

i

a
l̄
(k)
i

i (2.7.27)

so that zk = 0 is the large complex structure point.
In this description (2.7.25) with ai = 1, (2.7.26) and a C∗-identification Xi ∼

μXi with μ ∈ C∗ define the mirror geometry. It can be written as a (d + 1)-
dimensional affine variety by adding to the singular constraint Pd = 0 the trivial
non-compact normal directions as quadratic coordinates. E.g. for2 it is

H(x, p, z) := P2(x, p, z) = uv . (2.7.28)

Note that in order to solve (2.7.26) in favor of two variables say x, p we have to view
the Xi as C∗-variables. P(x, p) = 0 becomes in general a Laurant polynomial in
C∗-variables defining a genus g Riemann surface �g with h punctures. Here g is
the number of inner points in 2 and h = l(2)− g.

As an example we take the first polyhedron in Fig. 1. Here P = P2 and the
local Calabi-Yau 3-fold M̄ is the total space of O(−3) → P2. This can can also

been constructed as the blow up Ĉ3/Z3 of the singular orbifoldC3/Z3, with the Z3-

group acting like xi → e
2πi
3 xi , i = 1, 2, 3 on the C3 coordinates. The P2 emerges

as the exceptional divisor in the blow up of the singularity at zi = 0, i = 1, 2, 3. ̄
defining the non-complete fan for this geometry has the points

Div. ν̄i l̄

DX0 1 0 0 −3
DX1 = L 1 1 0 1
DX2 = L 1 0 1 1
DX3 = L 1 −1 −1 1

. (2.7.29)

with one relation l̄. From (2.7.26) we get

X1X2X3 = zX3
0 . (2.7.30)
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We can use the C∗ action on theXi to setX0 = 1 and identifyX1 = x and X2 = p.
Also we can set ai = 1 for i = 1, 2, 3. Then (2.7.28) defining the mirror geometry
reads

H(x, p; z) = 1+ x + p + z

xp
= uv . (2.7.31)

Here z = 1
a30

is the only complex structure deformation of H(x, p; z) = 0. We will

discuss the associated soutions to the Picard-Fuchs equations and the genus zero
instantons of this geometry and in fact all local Calabi-Yau geometries associated to
the polyhdra in Fig. 1 in Sect. 2.12.

In general the coefficients ai of the inner points deform the complex structure of
�g , while the punctures, whose number is given by the independent deformations
l() − g − 3 correspond to the independent residue values of the meromorphic
one form λ, which in turn are given by the coefficients of the non inner points.
In view of their rôle in geometric engineering they are referred to as masses mi ,
i = 1, . . . , l()− g − 3.

In the case of a del Pezzo basis there is only one inner point whose coefficient
a0 is identified with the complex structure of the elliptic curve P

̂
(X, Y ) = 0,

physically related to the gauge coupling of the U(1) theory on the Coulomb branch
while l(̂2)− 4 of the ai are identified with mass parameters.

There is a physical interpretation for the dual graph associated to a general
triangulated polyhedron [2]. It can be viewed as a web of [p, q] five branes for the
type IIB string. These 5-branes fill the 0, . . . , 5 directions of the five-dimensional
space-time. The red lines in Fig. 3 corresponds to the (5, 6)-plane, where the 5-
branes extend as lines, whose slope is given by the SL(2,Z) charge [p, q].

2.7.5 Fibration Structures and Global Embeddings of the Local
Geometries

Let us now discuss the global embeddings of local geometries in compact Calabi-
Yau spaces M . In the simplest case those are related to elliptic fibrations. The del
Pezzo surface appears as the base and all (1, 1)-classes of the del Pezzo surface are
(1, 1)-classes in M .

The global embeddings of local Calabi-Yau can be studied in via embeddings of
the reflexive polyhedra (B

n , ̂
B
n ) into a pair of reflexive polyhedra (n+2, ̂n+2),

so that the anti-canonical hypersurface in P
̂n+2 gives rise to an elliptically fibred

Calabi-Yau (n + 1)-fold over the toric base P
̂B

n
with an interesting structure of

global sections.
For Calabi-Yau manifolds defined in toric ambient spaces, as above, the fibration

structure descends from a toric morphism from the ambient space. Denote58 by �

58We again drop the ^.
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the fan in � generated from  and by �B the fan defined from B in the lattice �B

(generated by B ) and identify P� with P etc. Here are the two conditions for a
fibration map φ̃ from the ambient space P to PB with fibre PF [125]59

(F1) There exist a lattice morphism φ : � → �B . This is the case if F is a
reflexive lattice sub-polyhedron of the lattice polyhedron  and both share
the unique inner point. The lattice �F is then in the kernel of φ, i.e. one has

0→ �F → � → �B → 0 .

(F2) There exists a triangulation of � so that every cone σ ∈ � is mapped under
φ to a cone σB ∈ �B . In this case there is an Td -equivariant morphism φ̃ :
P → PB .

For notational simplicity we outline only the embedding of a two-dimensional
polyhedra in a four-dimensional polyhedron,which gives rise to an elliptically fibred
threefold over a toric (almost) del Pezzo surface P

̂B
2
, specified by ̂B

2 ∈ ̂4.

However everything in this section, except for (2.7.34),60 generalized trivially to
arbitrary dimension.

The reflexive pair (̂4,4) is the convex hull of the following points

ν̂i ∈ ̂4 νj ∈ 4

ν̂F
i νF

j

̂B
2

.

.

. sij
B
2

.

.

.

ν̂F
i νF

j

0 . . . 0 0 . . . 0
.
.
. ̂F

2

.

.

. F
2

0 . . . 0 0 . . . 0

. (2.7.32)

Here we consider all points ν̂F
j ∈ ̂F and define

sij = 〈νF
i , ν̂F

j 〉 + 1 ∈ N . (2.7.33)

Note that we scaledB
2 → sij

B
2 . This means to scale the coordinates of the points

of B
2 by sij while keeping the original lattice basis, i.e. sijB

2 , contains in general
more lattice points. Note that the vertices of ̂ () are given by the vertices of the
polyhedra ̂F

2 (̂F
2 ) and ̂B

2 (sijB
2 ) respectively.

It is obvious that both polyhedra (, ̂) fulfill the condition (F1), but only for
̂ it is easy to establish that one can pick a triangulation that also fulfills (F2), see
[235] for details. As a consequenceM given by P4 = 0 in P

̂
is a smooth and flat

59See exercise p.49, where the statements are made at the level of the fans.
60For which aspects of the generalization have been discussed in [235].
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elliptic fibration. All C.T.C Wall data of M depend in a simple way on the base and
the type of the fibration [235]. For example the the Euler number and the Hodge
number are given as

χ(M) = −aF

∫

B

c21, h11(M) = l(̂B)− 3+ s . (2.7.34)

where aF , and the number of sections s depend only on the fibration type, which

is in turn specifed by F̂ and νF̂ . The problem in establishing (F2) for W is the
scaling of B

2 . W given by P
̂4
= 0 in P

̂
is in general only a non-flat elliptic

fibration.
Let us give as the most elementary example the smooth elliptic fibration over

P2. In this case61 we pick for the base P2, whose toric polyhedron is the convex
hull of the points ̂B = conv((1, 0), (0, 1), (−1,−1)), for the fibre polynomial
̂F = conv((1, 0), (0, 1), (−2,−3)) and for ν̂F

3 = (−2,−3). Then νF
3 = (−1,−1)

and s33 = 6. For this fibre one has one section s = 1 and aF = 60.
We list the points which give rise to the coordinate ring of P = P/(Z18×Z6), all

points ν̂i ∈ ̂ and the two vectors of linear relations among them, which correspond
to the Mori cone of P

̂
, as well the toric divisors Dxi = {xi = 0}

Div. νi ν̂i l(E) l(B)

Dx0 0 0 0 0 0 0 0 0 −6 0
Dx1 = L 12 −6 −1 −1 1 0 −2 −3 0 1
Dx2 = L −6 12 −1 −1 0 1 −2 −3 0 1
Dx3 = L −6 −6 −1 −1 −1 −1 −2 −3 0 1
Dz = E 0 0 −1 −1 0 0 −2 −3 1 −3
Dx = 2H 0 0 2 −1 0 0 1 0 2 0
Dy = 3H 0 0 −1 1 0 0 0 1 3 0

. (2.7.35)

The classical topological data of the 3-fold M are easily calculable from the toric
construction. The Euler is χ(M) = −540, the two independent Hodge numbers are
h1,1(M) = 2, h2,1(M) = 272, the classical triple intersection numbers are given
by62

C0
111 = H 3 = 9, C0

112 = H 2 · L = 3, C0
122 = H · L2 = 1, C0

222 = L3 = 0
(2.7.36)

61It can be also written as the zero locus of a degree 18 polynomial in the weighted projective
space P4(1, 1, 1, 6, 9) called X18(1, 1, 1, 6, 9).
62In the notation of [186] these intersections are encoded in the ring R = 9J 3

E + 3J 2
EJB + JEJ 2

B .
H,L are the notations for the divisors used in [64].
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where H and L are the divisors dual to the curves defined by the Mori vectors l(E)

and l(B) and the Kähler classes JE and JB . The intersections with the second Chern
class c2 of M are

∫

M

c2 ∧ JE = [c2] ·H = 36,
∫

M

c2 ∧ JB = [c2] · L = 102 . (2.7.37)

2.7.6 Elliptic Fibrations, Flops and Transitions

In the second elliptic fibration that we discuss, we take as base the Hirzebruch
surface F1, which can be seen as blow up of P2 and corresponds to the polyhedra
in 3 Fig. 1. We take the same fibre type. i.e. aF = 60 and s = 1 in (2.7.34). The
polyhedra are hence specified by

¯̂νi l(E) l(f ) l(s) l̃(E) l̃(f ) = l(f ) + l(s) l̃(s)

D0 1 0 0 0 0 −6 0 0 −6 0 0
D1 1 1 0 −2 −3 0 0 1 1 1 −1
D2 1 0 1 −2 −3 0 1 0 0 1 0
D3 1 −1 −1 −2 −3 0 0 1 1 1 −1
D4 1 0 −1 −2 −3 0 1 −1 −1 0 1
Dz 1 0 0 −2 −3 1 −2 −1 0 −3 1
Dx 1 0 0 1 0 2 0 0 2 0 0
Dy 1 0 0 0 1 3 0 0 3 0 0

. (2.7.38)

Here l̃(E) = l(E) + l(s), l̃(f ) = l(f ) + l(s) and tilde l(s) = −l(s) are the Mori
generators of the flopped phase and we denote with E again the elliptic fibre and
with f the fibre and s the section of the Hirzebruch surface. This example shows
that there are two Calabi-Yau phases possible in the elliptic fibration over F1, which
are related by flopping s a P1, representing a curve with self-intersection (−1) in
the base that is represented by l(s). The geometries of the two phases for, which the
triangulation of ̂ is induced from the picture in the l.h.s of Fig. 4, is that in the
first phase we have an elliptic fibration and a K3 fibration. Moreover in this phase
there is a local geometry over the (−1) curve in the base, which is a rational elliptic
fibration known as half K3. We specify the intersections C(0)

ijk by the coefficients of
an intersection ring and get in the first phase

R = 8J 3
E + 3J 2

EJf + JEJ 2
f + 2J 2

EJs + Jf JsJE . (2.7.39)

Moreover
∫

M
c2JE = 92,

∫

M
c2Jf = 36 and

∫

M
c2Js = 24.

For the second phase we flop the P1 that corresponds to the Mori cone element
l(s) and get the triangulation of ̂ that is induced from the middle picture in Fig. 4.
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Generally if we flop the curve C this changes the triple intersection of the divisors
JiJjJk by [326]

ijk = −(C · Ji)(C · Jj )(C · Jk) . (2.7.40)

Here the intersection of the curves Ci which correspond to the mori cone vector l(i)

with the toric divisors Dk is given by (Ci ·Dk) = l
(i)
k . On the other hand the Jk are

combinations of the Dk restricted to the hypersurface so that (J k · Ci ) = δki .
In addition one has to change the basis in order to maintain positive intersection

numbers63 l̃(E) = l(E) + l(s), l̃(f ) = l(f ) + l(s) and l̃(s) = −l(s). For the Ji , which
transform dual to the curves, we get then the intersection ring in the new basis of
the Kähler cone

R = 8J̃ 3
E + 3J̃ 2

EJ̃f + J̃E J̃ 2
f + 9J̃ 2

EJ̃s + 3J̃EJ̃f J̃s + J̃ 2
f J̃s + 9J̃EJ̃ 2

s + 3J̃f J̃
2
s + 9J̃ 3

s .

(2.7.41)

The intersections with c2 are not affected by the flop, only the basis change has to
be taken into account. In this phase a del Pezzo surface of degree one, which is the
blow up of P2 in eight points, can be shrunken to get to the elliptic fibration over P2.

2.8 Representations of the (n,0) Form � and Special Integrals
of Them

Beside the Kähler formω an unique nowhere vanishing (n, 0)-form�(z) is the char-
acteristic form on a Calabi-Yau n-fold. It is also the fundamental object to define the
period integrals and the variation of Hodge structures with the change of complex
structure parameters here symbolically indicated by z, if we refer to complex struc-
ture parameters in which the point of maximal unipotent is at z = 0, otherwise by a.
We will first study various representations of �n for the compact and non-compact
Calabi-Yau n-folds discussed in Sect. 2.7, as well as the period over a distinguished

Fig. 4 The base triangulation
for the flop in second example
and the blowdown of an
degree 1 del Pezzo surface

flop

blowdown

63This is one criterion that holds in a simplicial Kähler cone. The full specification is that
∫

C J > 0,
∫

D J ∧ J > 0 and
∫

M
J ∧ J ∧ J > 0 for J in the Kähler cone and C, D curves and divisors. E.g.

if the latter is simplicial and generated by Ji then J =∑ diJi with di > 0.
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cycle, which has the topology of a real n-torus and is generically present in toric
embeddings. In the next section we use this information to obtain the complete D-
module of Picard-Fuchs operators. The completeness of the latter can be checked
with the methods to determine the n-point functions, described in Sect. 2.9.2.

2.8.1 Representations of the Holomorphic (n,0) Form

Let us first explain the different expressions to represent the holomorphic (n,0)
forms for the compact Calabi-Yau manifolds given as hypersurfaces or complete
intersection that we studied in Sect. 2.7.3.

We assume the reader to be familiar with the (1, 0) for the elliptic curve (2.4.25).
However there are equivalent and more symmetric forms given by residuum
expressions, which after performing the residuum integral take a form that spe-
cialised to (2.4.25) as we explain at the beginning of the next subsection.

Residuum Forms

In particular the nowhere vanishing holomorphic (n, 0)-form can be defined in a
coordinate patch of the (n+1)-dimensional toric ambient space by a contour integral
or a residuum at P = 0

�n = a0

(2πi)

∮

P=0
1

P

∧n+1
j=1

dYj

Yj

. (2.8.1)

Here we used the relations (2.7.12) to eliminate l(n+1)−n−2 coordinates, so that
P becomes a Laurant monomial. In particular we scaled Y0 = 1. As in (2.7.11)
we have to make sure that the points corresponding to the remaining coordinates are
linear independent. One advantage of the representation is that the integral over a
real n-cycle Tn that is induced from the toric ambient space and is defined by the
locus |Yi | = 0, i = 1, . . . , n+ 1 can be readily performed as residuum

X0 =
∫

Tn

�n = a0

(2πi)n+1

∫

|Yi |=0
1

P

∧n+1
j=1

dYj

Yj

. (2.8.2)

In particular in the large volume limit this integral can be performed by identifing
P = a0(1 + R) and expanding in small R. This is a valid expansion with finite
values as a0 → ∞ majorises in the large volume limit all ai , i �= 0 and the
factored a0 cancels in the expression of �n. Using the multinomial formulas to
rewrite the powers of R, se get sums restricted by the residuums, see Sect. 2.8.2 for
the explicit results. In particular if we use the generalised Mori cones l(k) (2.8.18)
to organize these sums we get immediately universal expressions in terms of the
complex structure zi = 0 defined in (2.7.27).
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This formalism extends to complete intersection where the three forms is
defined as

�n =
∏r

i=1 a0,i
(2πi)r

∮

P1=0
. . .

∮

Pr=0
1

∏

i Pi

∧n+r
j=1

dYj

Yj

. (2.8.3)

Here the a0,i are coefficient of the coordinate of the inner point in i . The
corresponding Y∗ have been scaled to one and the Yj appearing in (2.8.3) have
correspond to linear independent points. The analogous period integral to (2.8.2)

X0 =
∏r

i=1 a0,i
(2πi)n+r+1

∫

|Yi |=0
1

∏

i Pi

∧n+r
j=1

dYj

Yj

. (2.8.4)

can be performed in the same manner as (2.8.2) by expanding each of the polyno-
mials as Pi = a0,i(1+Ri) and performing the residuum integral using generalised
Mori cone vectors (2.8.18) see sectionrefgeneralizedMoricone and [31, 187].

We note that the results X0 = 1 + O(z) is always a normalized period in the
integral symplectic basis (2.6.30). It is identified with the D0 charge at the large
volume point.

We can also express (2.8.1) in homogeneous coordinates. In this case we use
l(n+1)−n−3 scaling relations to set all but n+2 coordinates to 1. The remaining
scaling relation of the remaining l(1) should act non-trivial on the coordinates xi
with weight wi in analogy to a weighted projective space xi �→ xiλ

wi , cfor i =
1, . . . , n+ 2 and λ ∈ C∗. Then one can check that the following expression is well
defined under the remaining scaling relation.

�n(a) =
∮

γ

μn+1
P(x, a)

, (2.8.5)

where γ is a path in P
̂
around P = 0 and64 and μ is given as

μn+1 =
n+2
∑

k=1
(−1)kwkxkdx1 ∧ . . .∧̂dxk ∧ . . . ∧ dxn+2 . (2.8.6)

This is the form the form appears in the work of [149], known as the Griffiths
residuum form.

64The xi are obtained from theXi by setting all but n+1 suitable ones to 1. The choice is canonical
if P

̂
is the resolution of a weighted projective space Pn+1(w1, . . . , wn+2). Then the xi are its

coordinates.
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Patchwise Form

Here we perform the integral over the small circle γ say in the patch Uk , i.e. xk = 1
to bring the expression of the (n, 0) form to one which is familiar from the study of
Riemann surfaces. To simplify notation we call P(x, a) just P below.

Note first that in each coordinate patch Ul , xl = 1 and dxl = 0 so the
sum (2.8.6) collapses to a single term. The wk makes (2.8.6) immediatly applicable
to hypersurfaces in weighted projective space [98] P

n[w0, . . . , wn], which are
generalizations of P

n, in which the equivalence class under the C
∗ action is

defined by

[x0, . . . , xn] ∼ [λw0x0, . . . , λ
wnxn] (2.8.7)

with λ ∈ C∗ and wi ∈ N+. The Stanley Reisner ideal is x0 = . . . = xn = 0.
These spaces have Zm singularitities normal to the codim k strata given by xi1 =
. . . = xik = 0 if m > 1 is a common factor of the k weights wi1 , . . . , wik . The
resolutions of these Zm singularities do not affect the fact that the complex structure
deformations of a hypersurface given by the vanishing of degree d polynomial
P(λw0x0, . . . λ

wnxn) = λdP (x0, . . . , xn), can be studied using the periods defined
by (2.8.5) if the hypersurface is a Calabi-Yau manifold, which is equivalent to
d =∑n

i=0 wi .
In order to reduce now one integration over dxi to the residuum integration

∫ dp
p
= 2πi we perform a coordinate transformation from (x1 . . . x̂k . . . xn+2) to

(x1 . . . x̂k . . . x̂i . . . xn+2, P ) under which the measure dx1∧. . .̂dxk . . .∧dxn+1 trans-
forms to

(

∂P
∂xi

)−1
dx1 ∧ . . .̂dxk . . .̂dxi . . . ∧ dxn+2 ∧ dP . Because of transversality

dP = 0 has no common solution with P = 0 and we can always pick an k and i so

that
(

∂P
∂xi

)

�= 0 for P = 0. Therefore the integrand will have a single pole at 1
P
and

integration leads to

�n(z) = a0wkxkdx1 ∧ . . .̂dxk . . .̂dxi . . .∧ dxn+2
∂P
∂xi

=: a0ν
(n)
i

∂P
∂xi1

. (2.8.8)

As we mentioned at the begining this (n, 0) form is analogous specializes to the
wellknown (1, 0) form� ∼ dx

y
in the case of an elliptic curve realised as cubic in P2

with the inhomogeneous equation in the z = 1 patch given in the Weierstrass form
y2 = 4x3 − g2x − g3.

Analogously we can express (2.8.3) in homogenous coordinates as

�n =
∮

γ1

. . .

∮

γr

(∏r
i=1 a0,i

)

μn+r

P1 . . . Pr

, (2.8.9)
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where the γi , i = 1, . . . , r are small circles in the ambient space around each
constraint Pi and perform the residue integral to arrive at

�n =
(∏r

i=1 a0,i
)

ν
(n)
i1,...,ir

∂P1
∂xi1

. . .
∂Pr

∂xir

, (2.8.10)

where μ(n+r) and ν
(n)
i1,...,ir

are straightforward generalisations of the forms intro-
duced for the hypersurfaces in (2.8.5) and (2.8.8). The forms (2.8.8) and (2.8.10) are
particular useful to perform the partial integration—or Griffiths reduction methods
in order to derive the Picard-Fuchs differential modul. With the measure (2.8.6)
this form applies to complete intersection of complex dimension n given by P1 =
. . . , Pr = 0 of degree d1, . . . , dr in weigted projective space P(w0, . . . , wn+r ) if
the later are Calabi-Yau, which is equivalent to

∑r
i=1 di =

∑n+r
i=0 wi .

Oscillatory Integral Form

In the context of singularities it is particular useful to express periods integrals
as oscillatory integrals [22]. For example for homogenous constraints P = 0 in
weighted projective P4[w1, . . . , w4] discussed above one can write the residue form
as

%i =
∫

�i

�n =
∫

γi

a0dx1 · · · dx5
P

. (2.8.11)

Here �i ∈ H3(M) while γi ∈ H5(C
5 \ P(x) = 0). The latter expression can be

transformed into an oscillatory integral of the form

%i =
∫

γi

a0dx1 · · · dx5
P

=
∫

γ±i
a0e

∓P0(x)dx1 · · · dx5 , (2.8.12)

where P0 is a non-singular from of the constraint, where the deformation parameter
ai are set to zero and γ±i ∈ H5(C

5,Re(P0(x) = ±∞) and the map from γi to γ±i is
given by a contour deformation [22, 35].

Meromorphic (n− k − 1, 0) Forms in Local Mirror Symmetry

Here we perform the reduction of the holomorphic (n, 0)-form to the meromophic
(n−k−1, 0) forms by restricting the coordinates to those living on an n−k plane of
̂n+1 for k ≥ 1 as discussed in Sect. 2.7.4 following in [214]. For example (2.8.1)
restricts as

λn−k−1 = 1

(2πi)

∮

P
̂n−k

=0
log(P

̂n−k
) ∧n−k

j=1
dXj

Xj

. (2.8.13)
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Let us assume we have a Calabi-Yau threefold i.e. n = 3. The interesting case65 is
k = 1 in which case λ1 is a meromorphic one form on a Riemann surface�g. There
will be g inner points in ̂n−k . This is for example the case if one engineersN = 2
supersymmetric SU(g + 1) gauge theory [214]. The Seiberg-Witten curve has g

parameters corresponding to the independent Casimirs u2, . . . , ug+1 of the gauge
group. An important consistency condition from geometric engineering is that λ
becomes the Seiberg-Witten differential with the property that the ∂ukλ become the
g holomorphic one forms. i.e. ∂ukλ = ωk−1 for k = 1, . . . , g. Now in the double
scaling limit introduced in [214] to obtain the gauge theory, derivatives w.r.t. to
uk correspond to logarithmic derivatives w.r.t. to the ãi which correspond to inner
points in n−k . For example if g = 1 we get ∂u2 = ã0∂ã0 where ã0 is the unique
inner point in n−k . Indeed taking ã0∂ã0λ1 = �1 as in (2.8.1). Moreover we can
perform the integral

λ1 = 1

(2πi)

∮

P
̂2
=0

log(P2)
dx

x

dp

p

= 1

(2πi)

∮

P
̂2
=0

dP

P
log(x)

dp

p

= log(x)
dp

p

(2.8.14)

This latter form of the differential and the form of the local mirror

H(x, p, z) := P
̂2

(x, p, z) = uv . (2.8.15)

play a key role when we study local mirror symmetry by the variation of mixed
Hodge structures of the compact Calabi-Yau in the non-compact limit.

Moreover we should point out that there is a generalisation to local varieties that
are not defined by a single constraint. For example we could consider the quadric
in P3, which has positive first Chern class and construct over it the bundle of the
anti-canonical line bundle this yields in general non-compact non-toric Calabi-Yau
space and the meromorphic form can be generalized to

λn−r−1 = 1

(2πi)

∮

P1=0
. . .

1

(2πi)

∮

Pr=0
log(P∇1) . . . log(P∇r ) ∧n−1

j=1
dXj

Xj

.

(2.8.16)

Likewise one can perform the integral over the algebraic torus Tn−1 in the compact
part of the ambient space to get the fundamental period.

The occurrence of the logarithm is familiar in the study of mixed Hodge structure
associated to singularities, see e.g. [283] or [173] for a review. The variation of
the mixed Hodge structure for log Calabi-Yau spaces (X,D) with D a divisor in

65k = 2 is also possible but gives a g = 0 mirror geometry, which is a bit more trivial.
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particular the isomorphism

φ : H 3(X \D)→
⊕

p+q=3
Hq(X,�

p

X̄
(log(D)) (2.8.17)

to the log cohomology has been used to calculate superpotentials in [152].

2.8.2 The Generalized Mori Cone and the Tn+r Integral

For Calabi-Yau hypersurfaces or complete intersectionM in a general toric ambient
space one can often determine the generators of the Mori cone of M from the one
of the ambient space. The Mori vectors l̄(a) that span this cone represent curves
C(a), a = 1, . . . , h11(M) in the Calabi-Yau space ambient space that are dual to the
Kähler cone of the ambient space and descend to the Calabi-Yau space M . Often
one gets in this way only a sub cone of the Kähler cone of M , whose generators
nevertheless define a well defined A-model curve counting problem with a well
defined B-model description. The generalized Mori vectors are obtained by the l̄(a)

by extending them by the degrees of the complete intersection as follows

l(a) = (l
(a)
0,1, . . . , l

(a)
0,r ; l̄(a)1 , . . . , l̄(a)s ), for a = 1, . . . , h1,1(M) = h2,1(W).

(2.8.18)

Here the negative of their first entries, i.e. −l
(a)
0,1, . . . ,−l

(a)
0,r , are the positive

(multi)degree(s) of the algebraic constraints P1 = 0, . . . , Pr = 0 defining the
complete intersection r > 1 or hypersurface r = 1 Calabi-Yau manifold. If
they are non zero the dual divisors correspond to curves in the Kähler cone that
cannot be blown down. For the other curves the first entries will be zero. For all
vectors the second set of entries l

(a)
1 , . . . , l

(a)
s are the intersections of the curve

C(a) with the toric divisors of the ambient space. These curves and the intersection
numbers can be determined purely combinatorial from the toric polyhedra ̂ and
suitable triangulation that defines a semi ample ambient space. The suitable one
are the complete star triangulations, see e.g. [187] for an early application and [79]
for an extensive review of toric techniques. There exist now powerful computer
programs under the umbrella of SAGE that can find all these triangulation using
e.g. the program Topcom, calculate the toric intersection numbers and determine
the Kähler cone and the generators of the dual Mori cone, i.e, the (l

(a)
1 , . . . , l

(a)
s ),

a = 1, . . . , h11(M) = h21(W). Once this information is given the topological data
that go in the theorem of C.T.C. Wall and the �̂ class of the Calabi-Yau manifoldM

can be calculated with some care for the hypersurfaces and with more care for the
complete intersections. The problem how the Mori cone of P

̂
restricts to the one of

M has few subtleties that are discussed in [37]. In general co-dimension one points
do not restrict to divisors of M and can therefore not lead to elements that corre-
spond to the Kähler cone on M . In many examples one can therefore just consider
singular triangulations of ̂ that do not involve these points. However this might
lead to aMori cone that is to small as some curves in the P

̂
still do not descend toM
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[37]. For the complete intersections the situation is expected to be much complicated
and the problem of restricting the Mori cone has not been discussed in general.

One crucial aspect of the generalized Mori cone in Batyrev’s construction is that
calculated for M and applied to the complex structure deformation problem of the
mirror W its vectors determine the large radius point of W . The same is of course
true with M and W exchanged.66 The large radius point is given by zk = 0 for all k
where

zk = (−1)
∑

a l
(b)
0,a

n
∏

i=1
a
l
(b)
i

i k = 1, . . . , h = h21(W) = h11(M) (2.8.19)

in terms of ai , the coefficients in the polynomial constraints of the complete
intersection in the torus variables (2.7.10).

Let us give the simplest examples. For the quintic in P
4 one has a single

generalized Mori vector l = (−5; 1, 1, 1, 1, 1). The last entries l̄
(a)
1 , . . . , l̄

(a)
s

parametrize the linear relations among the points νi , i = 1, . . . s spanning the rays
of�(1) of ̂, while the entries l(a)1 , . . . , l

(a)
s can be understood also a linear relations

including the inner point, when ̂ is put in a hyperplane at distance one from the
origin so that the coordinates become ν̄i = (1, νi), i = 0, . . . , s, where the origin
is shared by the sub polyhedra k defining the splitting of coordinates into those
occuring in the polynomials Pk , k = 1, . . . , r . For this reason all l(a) have the

property that
∑r

k=1 l
(a)
0,k +

∑s
k=1 l̄

(a)
k = 0. For example the complete intersection of

two cubics in P5 has a single Mori vector l = (−3,−3; 1, 1, 1, 1, 1, 1, 1).
Let us as a first exercise calculate the T3 integral (2.8.2) for the quintic

generalized in P4, which is a T4 integral in the ambient space. We parametrize the
dense algebraic torus like in (2.10.6) and by performing the torus integral (2.8.2) we
get

X0 =
∫

|Y1|=1
. . .

∫

|Y4|=1
1

1+∑4
i=1

ai
a0

Yi + a5
a0Y1Y1Y3Y4

∧4
i−1

dYi

Yi

=
∫

|Yi |=1

∞
∑

l=0
(−1)l

∑

l=0,...,∞
∑5

i=1 ki=l

(

l!
k1! . . . k5!

)(

a1

a0
Y1

)k1

· · ·
(

a4

a0
Y4

)k4
(

a5

a0

1

Y1 · · · Y4
)k5

∧4
i=1

dYi

Yi

=
∞
∑

l=0

(5l)!
(l!)5 z

l ,

(2.8.20)

66If the classical intersection refer to M , then the complex structure deformation ai and the l(k)

should be hatted as they refer to ̂ and (2.7.14). For notational convenience we omit theˆbelow.
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where z = (−1)l0∏5
i=0 a

li
i . Similarly for the complete intersection of two cubics in

P
5 we get in the variables of the algebraic torus T5

P∇1 = a0Y0 +
3
∑

i=1
aiYi = a0 + a1Y1 + a2Y2 + a3Y3

P∇2 = a0Y0 +
6
∑

i=4
aiYi = a0 + a4Y4 + a5Y5 + a6

1

Y1 · · · Y5

(2.8.21)

and by performing the integral (2.8.4) we get after a very similar calculation as
in (2.8.20)

X0 =
∞
∑

l=0

(3l)!(3l)!
(l!)6 zl (2.8.22)

with z = ∏2
i=1(−a0)

l0,i
∏6

i=1 a
li
i =

∏6
i=1 ai
a60

. This generalises very naturally for

all cases discussed in Sect. 2.7.3. Using the generalised Mori vectors, we can
summarize the calculation for the global cases

X0 =
∞
∑

n1=0
. . .

∞
∑

nh=0

∏r
j=1

(

−∑h
α=1 l

(α)
0,j nα

)

!
∏|�(1)|

j=1
(

∑h
α=1 l

(α)
j nα

)

!

h
∏

α=1
znα
α , (2.8.23)

where h is either h11(M) or h21(W) and the result depends only on the generalized
Mori vectors. We note that while the entries −l

(α)
0,i are positive integers the entries

l
(α)
i can be positive or negative. We replace n! by �(n + 1) and analyze the pole

behaviour of the coefficients in X0 to define (2.8.23) in case of negative l(α)i .
Let us consider also the local case and evaluate the integral for the local

O(−3) → P2, which has the Mori vector67 l = (−3, 1, 1, 1). We integrate the
algebraic two torus and get

t =
∫

|Y1|=0

∫

|Y2|=0
log a−40

(

a0 + a1Y1 + a2Y2 + a3

Y1Y2

)

dY1

Y1
∧ dY2

Y2
= −3 log(a0)

+
∞
∑

k=1

(−1)k
k

∫

|Yl |=0

∑

∑3
i=1 ki=k

(

k!
k1!k2!k3!

)(

a1Y1

a0

)k1
(

a2Y2

a0

)k2
(

a3

a0Y1Y2

)k3 dY1

Y1
∧dY2

Y2

= const + log(z)+
∞
∑

k=1

(−1)k(3k)!
k(k!)3 zk ,

(2.8.24)

67Note that in this notation we the semicolon in the first position as there is no constraints with a
degree.
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where z = a1a2a3
a30

. Note that a1, a2, a3 can be set to arbitrary values by the torus

automorphism that acts on the local geometry. Further the constant is natural, as λ1
is a meromorphic form whose residue has to be normalized. If we restrict from the
global model discussed in Sect. 2.7.5 to the local model then the global period X0

becomes 1 in the local limit, while t = XP2/X
0 represents the complexified volume

of the P2, which since X0 = 1 in the local model is represented as a period, which
is the one over the algebraic two torus evaluated in (2.8.24). Let us note further that
the elliptic curve C given as a cubic in P2 has a fundamental period (2.8.23) that
corresponds to the generalised Mori vector l = (−3; 1, 1, 1) with z̃ = − a1a2a3

a30
and

z̃ d
dz̃

t = X0
C(z̃).

The generalised Mori vectors l(a) are technical core data of mirror symmetry for
toric complete intersections. Let us end the section by summarizing the multitude
of information they contain

1. They contain the degrees of the constraints and theC∗ actions of the toric variety
of ambient space and fix thereby M .

2. Equivalently they can be viewed as U(1) charges vectors for the fields in the
linear σ model [322].

3. They span the Mori cone of M , which is dual the Kähler cone of M .
4. They specify the point of maximal unipotent monodromy in the moduli space of

W namely z(a) = 0, where the z(a) = 0 of (2.8.19) are good local coordinates
near this points and all monodromies T a around z(a) = 0, a = 1, . . . , h21(M)

satisfy (2.6.8) with N = 1 and k = dimC(W).
5. The periods of M are generalized hypergeometric functions with symplectic

basis at z(a) = 0 given by (2.9.58) and the generalized l(a) provide for
those functions the information that the constants a, b, c provide for ordinary
hypergeometric functions 2F1(a, b, c; z) (2.9.49).

2.9 The D-Module of Picard-Fuchs Operators and Their
Solutions

In this section we study the systems of Picard equations for the periods of Calabi-
Yau manifolds, their special properties and their solutions.

2.9.1 The General Form of the Picard-Fuchs Equation and Their
Singularities

Here we discuss general properties of the different ideal IPF , which is generated
from a linear system of operators that annihilate the periods. We denote such a
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system of generators by

L(nk)
k

(

z1, . . . , zh; ∂

∂z1
, . . .

∂

∂zh

)

, k = 1, . . . L . (2.9.1)

Here Lk is a polynomial in the derivatives w.r.t. to the complex structure parameters
and some meromorphic functions in zi which have at most rational branch cuts.
The index nk indicates the degree of the differential operator, i.e. the highest total
order in the derivatives. The differential ideal IPF is obtained by acting of the left
with other differential operators. We do not assume in this sections that z are large
complex structure coordinates.

A priori is seems rather difficult to find solutions to such a system, as naively one
might think that these are coupled partial differential equations. However the most
important fact is that since the solutions are only the finite number of periods, the
system is of rather special type.We expect hn

horizontal(M), i.e. for Calabi-Yau 3 folds
h3(M) solutions, since all of h3(M) is horizontal. For even dimensional manifolds
like e.g. Calabi-Yau fourfolds the distinction is important. Is has been found that
the in special cases one has to include some of the vertical part of the cohomology
of h2,2, but in any case the number of solutions will be finite. For the threefold
case and all other cases, where only the horizontal cohomology is relevant, one can
expects from the Griffith transversality that the maximal degree of the operators
will be n + 1. On the other hand at the maximal unipotent point one has exactly h

logarithmic solutions. This excludes the possibility that there are linear differential
operators. So IPF will be generated by degree 2, . . . , 4 operators for threefolds.

According to analysis of the degenerations of periods we expect only regular
singular points as explained in Sects. 2.6.2 and 2.6.3. In a sense the solutions can be
viewed as generalizations of hypergeometric functions and in the toric hypersurface
case they are exactly that.

To find the singularities of IPF we will first recall how to find the singularities
of M . For hypersurfaces they are given by solving the equations

P(x, z) = 0, dP =
n+1
∑

i=1

∂

∂xi
P (x, z)dxi = 0 . (2.9.2)

This is only possible if we restrict the complex moduli z to a complex co-dimension
one locus SM in in the moduli spaceMcs , which is in general singular itself. Direct
solutions of (2.9.2) is difficult except for the simplest examples as the equations
are non linear. A way to find SM is to calculate the resolvent of all the equations
in (2.9.2) where the xi are set at their base locus, i.e. generic xi , hypersurfaces
xi = 0 and their intersections. This yields in general many components, which
might have points of tangencies, singular points and points with both problems.
The generic component of discriminant, i.e. when all xi �= 0 will be a conifold
locus. Application of general theorems about desingularizations of Hironaki [175]
guarantees that all singularities can always be resolved so that ŜM are specified by
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smooth divisors with normal crossing, i.e. with no tangencies. This latter fact is true
for all representations of M , but the conditions (2.9.2) have to be generalized. E.g.
for complete intersections the conditions are

Pl(x, z) = 0, l = 1, . . . r and dP1 ∧ . . . dPr = 0

↔ rank

(

∂

∂xi
Pk(x, z)

)

< r, i = 1, . . . , h, k = 1, . . . , r ,
(2.9.3)

where the second line is a restatement of the second condition is the first line.
Certainly we expect the singularities of the IPF to include the above singu-

larities. The analysis of the latter can be done as follows. Introduce the so called
symbols of the L(nk)

k , by identifying the derivatives ∂
∂zk
= ξk with formal variables

ξk . Now take the homogenous degree nk part of L(nk)
l including its z-dependent

coefficients and consider

S(nk)(z, ξ) = 0 . (2.9.4)

The singularities are at the solution of (2.9.4) in which the ξ are fixed to their
base locus. This again is a complex co dimension one locus in Mcs , called SPF

In general we expect SM ⊂ SPF . SPF can have additional locii, which are orbifold
locii, which have monodromy and so called apparent singularities around which
the solutions of the IPF have no monodromy. Let us call Im

PF the locii around
which there is monodromy. The theorem of Hironaka [175] guarantees that there is
a smooth resolution ŜPF specified by smooth divisors with normal crossing.

2.9.2 Griffith Transversality and the n-Point Coupling

Crucial properties of the Picard-Fuchs differential ideal IPF follow from to Griffith
transversality and the fact that the n-point function can be chosen to be rational
functions in a natural parametrization of the complex moduli space, given for
the torically embedded examples by (2.8.19) and are more generally determined
by the form (2.9.26). One can use these properties, the existence of a point of
maximal unipotent monodromy and integrality of the mirror map and the genus
zero instanton expansion to classify Calabi-Yau differential ideals IPF . The idea
has been implemented for one parameter cases. It is a powerful idea for classifying
Calabi-Yau spaces, since it makes no reference to the actual construction of the
variety. An overview of this approach for one parameter families can be found in
[308].

Here we want to explore in a pragmatic way the concept of Griffith transversality
and the n− point coupling, by explaining in some detail how the latter can be
calculated from the Picard-Fuchs equations, with some emphasis on the properties
that the latter must have for that program to work.
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Let M be a Calabi-Yau n-fold with a h = hn−1,1 dimensional complex moduli
space, which we parametrize by zi , i = 1, . . . , h, and � its complex (n, 0) form.
We define

&(k1,...,kh) =
∫

M

� ∧ ∂k1
z1
· · · ∂kh

zh
� =:

∫

M

� ∧ ∂k� =: %(z)η∂k%(z) , (2.9.5)

with ni ∈ N0. Here %(z) is the period vector over the horizontal middle homology
Hhor

n (M) and η is the sympletic- or symmetric form on Hhor
n (M) for n odd or even

respectively. We introduce the abbreviations

k := {k1, . . . , kh}, |k| =
h
∑

i=1
ki, ∂k := ∂k1

z1
· · · ∂kh

zh
. (2.9.6)

Due to Griffiths transversality and the definition of the n-point Ci1,...,in coupling
we assign

&(k1,...,kh) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

W(k1,...,kh) if
h
∑

i=1
ki > n ,

C(k1,...,kh) if
h
∑

i=1
ki = n ,

0 if
h
∑

i=1
ki < n ,

(2.9.7)

Here theC(k1,...,kh) are related68 to theCi1,...,in ∈ Symn(T
1,0∗)⊕L−2, ip = 1, . . . , h

for p = 1, . . . , n in the obvious way, e.g C(n,0,...,0) = C1,...,1, with n 1’s,
C(n−1,1,...,0) = C1,...,1,2 with n− 1 1’s etc.

We assume from now on that the W(k) obey
∑h

i=1 ki = n + 1, even though
the higher W(k) still carry interesting information about IPF . It is an elementary
exercise to show by taking and combining derivatives of C(k1,...,kh) and using the
Griffith transversality that

W(k) = 1

2

∑

m(l) with m
(l)
i
∈N0

(m
(l)
1 ,...,m

(l)
l
+1,...,m(l)

h
)=

(k1,...,kh)

(m
(l)
k + 1)∂zlC

(m(l)) . (2.9.8)

68If the coordinate system say zi is important, we might also denote the Ci1,...,in by Czi1 ,...,zin
, see

e.g. (2.9.17).
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Here the sum is over all non-negative integral h-tuples m(l) = (m
(l)
1 , . . . ,m

(l)
h ),

which fulfill the indicated property. E.g. one gets

W(n+1,0,...,0) = n+ 1

2
∂z1C

(n,0,...,0), W (n,1,0...,0) = 1

2
(n∂z1C

(n−1,1,0,...,0) + ∂z2C
(n,0,...,0)), etc.

(2.9.9)

So far our results depend only mildly on the dimensions not at all on the specific h-
parameter family we are considering, since we have used nothing else then Griffiths
transversality. For the convenience of the reader we spell out (2.9.8) for the relevant
case of the threefolds

W(4,0,0,0) = 2∂z1C
(3,0,0,0)

W(3,1,0,0) = 3
2∂z1C

(2,1,0,0) + 1
2∂z2C

(3,0,0,0)

W(2,2,0,0) = ∂z1W
(1,2,0,0) + ∂z2C

(2,1,0,0)

W(2,1,1,0) = ∂z1W
(1,1,1,0) + 1

2∂z2W
(2,0,1,0) + 1

2∂z3W
(2,1,0,0)

W(1,1,1,1) = 1
2 (∂z1C

(0,1,1,1) + ∂z2C
(1,0,1,1) + ∂z3C

(1,1,0,1) + ∂z4C
(1,1,1,0)) .

(2.9.10)

The actual dependence on the Calabi-Yau manifold comes in via the Picard-Fuchs
differentially left graded ideal IPF , which is generated by

Lα =
∑

k

A
(k)
α (z)∂k . , (2.9.11)

Since Lα|∏(z) = 0 and using Griffiths duality we immediately obtain the relation

∑

k

A
(k)
α (z)&(k) =

∑

|k|=n+1
A

(k)
α (z)W(k) +

∑

|m|=n

A
(m)
α (z)C(m) = 0. (2.9.12)

Here we understand that we have constructed all elements Lα ∈ IPF with
differential degree |Lα| = n + 1 by taking suitable derivatives of the generators
of IPF if the latter have lower degrees. Note that the ideal IPF is complete iff

• The complete set of elements Lα ∈ IPF with |Lα| = n used in (2.9.12) allows
to express the

pn(h) = 1

n!
n−1
∏

i=0
(h+ i)

different n-point functions C(m) with |m| = n in terms in terms of one, say
C(z) = C(n,0...,0)(z).
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• The complete set of elements Lα ∈ IPF with |Lα| = n + 1 used in (2.9.12)
allows to express the pn+1(h) different n-point functionsW(k) with |k| = n+ 1
in terms of these C(m) with |m| = n so eventually in terms of C(z).

• Together with the equations (2.9.8) one can obtain a complete system of
differential equations of the form

∂zkC(z)

C(z)
= pk(z)

qk(z)
, k = 1, . . . , h, (2.9.13)

which can be integrated for C(z) up to a constant c that can be fixed by the
classical intersection number of the A-model.

Exercise

1) Prove the relations (2.9.9), (2.9.10). Show that from the Picard-Fuchs equation
for the quintic (2.10.13) one getsA(4) = z3(55z−1) and69 A(3) = 2z(22·55z−3).
Using (2.9.12) and from (2.9.10)W(4) = 2∂zW(3) we can integrate

Czzz = exp

(

−1

2

∫ z

c

dz′A
(3)

A(4)

)

= 5

z3(1− 55z)
, (2.9.14)

where we fixed c to match the A-model normalization Cttt = 5+O(q).
2) For the system (2.11.6) we consider first L1, ∂z1L2, ∂z2L2 in (2.9.12) to

express e.g. W(3,0) = Cz1,z1,z1 in terms of Cz1z1z2 , Cz1z2z2 and Cz2z2z2 . Using
∂z1L1, ∂z2L1, ∂

2
z1
L2, ∂z1∂z2L2 = ∂2z2L2 in (2.9.12) we may express W(4,0) in

terms of W(3,0) and integrate70 w.r.t. z1. Proceeding this way we get after
rescaling of a = 1728z1 and b = 4z2 the triple couplings

Caaa = 4
a31

, Caab = 2(1−a)

a2b1
,

Cabb = (2a−1)
ab12

, Cbbb = 1+b−a(1+3b)
2b212 ,

(2.9.15)

where we defined the components of the discriminant as

1 = 1− 2a − a2(1− b) , 2 = (1− b). (2.9.16)

The 3 point couplings (2.9.60)with their instanton expansion interpretation inQa =
e2πita in the A-model can now be recovered using the mirror map (2.9.53) in the
special gauge at the point of maximal unipotent monodromy

∫

A0
� = 1 of the

Kähler line bundle L−2, in the flat coordinates ta as

Ctatbtc (Q) = 1

X2
0

∑

ijk

∂zi

∂ta

∂zj

∂tb

∂zk

∂tc
Czizj zk (z(Q)) . (2.9.17)

69For reference we note also A(2) = z(22 · 32 · 54z− 7), A(1) = z(23 · 354 − 1) and A(0) = 120.
70To fix the function c(z2) in the z1 integration, we have to calculate W(3,1) and W(2,1) in a similar
fashion.
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In this section we derived the n-couplings from the differential ideal IPF .
It is clear that given the n-points couplings, and even the factorized form in
terms of more fundamental three points couplings if n > 3, see Sect. 3.6.2,
one cannot immediately reconstruct the differential ideal. The reason is that the
lower derivatives terms in the differentials operators do not go actually enter the
determination of the couplings. However if we in addition put in the information of
the homogeneous flat coordinates see Sect. 2.5.5, which do require the knowledge
of the A-periods, we can reconstruct the differential equations in the form (2.5.50),
whose existence is a consequence of Griffiths transversality.

For example in the special Kähler gauge in L, X0 = 1 in the inhomogeneous
flat coordinates see Sect. 2.5.5 one gets from (2.5.50) immediately a quite universal
form of the fourth order differential operator for the one parameter models

L(4) =
(

t
d

dt

)2 1

Cttt

(

t
d

dt

)2

(2.9.18)

As we have shown in Sect. 2.5 this is a consequence of the existence of the unique
(n, 0) form, the equation for the Kähler potential (2.5.1) and (2.5.10). It is however
possible to conclude from the existence of (2.9.18) directly an invariants condition
on the coefficients on the general four order differential operators of one parameter
families of Calabi-Yau spaces. Normalizing the coefficient of the fourth order
derivative of the single generator of IPF to one we write this operator

L(4) = ∂4 +
3
∑

k=0
A(k)(z)∂k . (2.9.19)

Then one can prove that one can bring the operator in flat coordinates into the form
(2.9.18) iff the coefficients fulfill the condition

W4 = 1

2
∂2A(3) + 3

4
A(3)∂A(3) + 1

8

(

A(3)
)3 − ∂A(2) − 1

2
A(2)A(3) + A(1) = 0 ,

(2.9.20)

as was pointed out by [13]. This condition is reminiscent to conditions on classical
W-algebra of Drinfeld Sokolov Hierarchies [89].

However for the general Calabi-Yau differential ideals IPF the analogous
conditions to (2.9.20) are not known and the one would need the A-periods to
get (2.5.50).We therefore put the existence of the unique (n, 0) formΩ , the Griffiths
transversality and the real bilinear relations, that is the structures that lead to special
geometry, in the focus of the analysis of the general differential properties of Mcs .
The specific Gauss-Manin connection, its associated differential ideal IPF and the
n-points couplings that derive from it due to Griffiths transversality are in the center
of the analysis of the data of the individual family under consideration. It would be
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interesting to know the analogous conditions to (2.9.20) for simple types of Calabi-
Yau ideals IPF .

2.9.3 Indicials and Normal Crossing Variables

The differential equations that arise as Picard-Fuchs equations in Calabi-Yau spaces
are of general Fuchsian type. A very useful account of these systems can be found
in [334].

In general one would try to first to find a powerseries solutions of IPF by making
and ansatz

s(z, c, α) =
∞
∑

n1,...,nh=0
cn1,...,nhz

α1+n1
1 . . . z

αh+nh

h . (2.9.21)

One would then act with the L(nk)
k on this ansatz and fix first from the lowest orders

in z the indicials αj and then attempt to construct the h3(M) solutions, by solving
recursions. For example if the solutions differ in one αi by a rational number on gets
two linear independent solutions with these different values of the indicials as series
with different rational powers of one or more zi must be independent.71 However
when the indicials are degenerate one has to use modified ansätze that involve log’s,
as we will explain in the next section.

Most interesting in this approach are the singular loci of SPF , because the
radii of convergence in a h-dimensional poly disk is bounded by the smallest
distance to SPF , so it is most efficient to solve the equations at SPF or rather
the normal crossing divisors of ŜPF and try to cover Mcs by patches in which
one has convergent solutions along cylindrical neighbourhoods around the normal
crossing divisors. At generic points the solutions are analytic and in this sense
boring, however they are important, when one wants to find analytic continuation
matrices from the basis near one singular locus to another. In order that this program
works one has first to construct the resolutionMcs that Hironaka’s theorem ensures
to exist. What this means in practice that one has to introduced blow up coordinate
patches defined by blow up coordinates, which certain ratios of expressions in the
old variabels, in which the normal crossing divisors of ŜPF are obtained. Without
that new coordinates one cannot construct basis of independent solutions. Examples
of such resolutions can be found in [334] and as an example for some physical
double scaling limit in [221].

Of course in the one parameter cases many of the difficulties mentioned above
evaporate. In particular the divisor are points and the notation of tangency and

71There is a nice theory about these indicials as summarized in the Riemann symbol for one
parameter families [334].
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normal crossing are void and one chose as variables simple the distance to the
singular points the cylindrical neighborhoods are just discs etc.

2.9.4 The Basis Dependent Intersection Form and the Transition Matrices

Once one has constructed a good model for the complex moduli space where
all special divisors are described locally by the vanishing of normal crossing
coordinates w1 = 0, . . .wh = 0, it is an easy matter to construct a local basis
of solutions. Using the fact about the possible local monodromies in Sect. 2.6.2 it is
clear that most general ansatz involves rational branch cuts as well as logarithms up
to degree n for Calabi-Yau n-folds, i.e. it must be of the form

l(m, {ck}, α) =
m
∑

|k|=0
log(w1)

k1 . . . log(wh)
khs(w, ck, α) , (2.9.22)

with m ≤ n and αi ∈ Q. It is always possible to construct a basis of linear
independent solution for the period vector %w of this type around any point pw ∈
Mcs . Because Griffith transversality holds in any basis and the n-point coupling are
rational globally defined functions on Mcs they can be simply expressed in the w

coordinates as Ck1...kh(w) = Cwi1 ...win
= ∂zi1

∂wi1
. . .

∂zin
∂win

Czi1 ...zin
. Then it is always

possible to reconstruct the local intersection form ηw so that

&(k1,...,kh)(w) = %t
wηw∂k%w (2.9.23)

fulfills (2.9.7). It is only necessary to use the equations for |k| ≤ n and one can
show that ηw in a local basis that exhibits locally integer monodromy has rational
coefficients.

One significance of this is that it gives Legendrian type of constrains on the
transition matrices. The latter are defined to connect the basis of period solution,
most significantly in an integer (symplectic) basis, between two different (singular)
points say %z(z) at z defined by z = 0 and %w(w) at w defined by w = 0 in Mcs .
That is the h× h matrix Tzw with the property

%z(z) = Tzw%w(w) . (2.9.24)

The complete set of all transition matrices between centers of polydiscs whose
radius of convergence coversMcs defines the periods everywhere. It is essential to
study global properties of the periods, finding the attractor points and to understand
resurgence relations that yield asymptotic properties of the instanton expansion.
Moreover the transition matrices determine the values of the periods in an integral
basis at all critical points. The latter have interesting number theoretic meaning and
are governed by the motivic Galois group.
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The fact that ηw can be constructed by (2.9.23) and (2.9.7) gives explicit
quadratic relations, called Legendre relations on the entries of the transition matrices

(2πi)ηz = T t
zwηwTzw, (2.9.25)

where  ∈ Z is given by the difference in unipotency of the monodromies around
at the points z = 0 and w = 0.

2.9.5 The Differential Ideal at the Large Complex Structure Point

The fact that the explicit solutions of the Picard-Fuchs equations can be specified
by (2.8.23) or (2.8.24) is helpful in finding the Picard-Fuchs equations. Moreover
the Batyrev construction of the complex structure variables za from the Mori
vectors (2.7.27) ensures that the za = 0 are normal crossing variables ∀a. Further
by construction the normal crossing divisor za = 0 intersect at a point of maximal
unipotent monodromy, which is highly degenerate. That means that the indicials αi

in the ansatz (2.9.21), with h = h12(W), for the solutions are all forced to be zero
αi = 0 with an h3(W) fold degeneration.

More explicitly the existence of a point of maximal unipotent monodromy—a
term that we use synonymously with large complex structure point—in a suitable
complex structure parametrization at za = 0 implies that the Picard-Fuchs
differential ideal IPF is generated by operators of the form

L(nk)

k = pk(θ1 . . . θh)+O(z)qk(θ1, . . . , θh, z1, . . . , zh) , (2.9.26)

where pk and qk are polynomials in their arguments, i.e. the complex variables zi
as well as in the logarithmic derivatives θk = zk

d
dzk

. The multi-degree nk refers to

the degrees of the θi in pk and gives the order of the operator L(nk). The maximal
unipotency at zk = 0 implies now that the system pk(θ) = 0 has an h3(W) fold
degenerate unique solution at θi = 0. This restricts the highest powers of θi in the
pk , to be larger or equal then the highest power of the θi in the qk. One can show
that the degree of pk in θi has to be strictly larger then one. This follows from the
existence of h logarithmic solutions at the maximal impotent monodromy point.

Let us view the θi as formal variables and not as differential operators. From the
pk(θ) of a complete ideal of Picard-Fuchs operators IPF of W one can determine a
finite dimensional algebraic ring

Rcoh = C[θ1, · · · , θh]/{pk(θ), k = 1, . . . #L} . (2.9.27)
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It is a corollary to the mirror symmetry hypothesis that the unique highest degree
element n = dimC(W)

Rcoh
n = μ

∑

i1,...in

Ccl
i1,···inθi1 · · · θin (2.9.28)

determines the classical intersection numbers of the mirror M to W , up to a
normalisation μ. Further the number r(m) of classes of elements Rcoh

m of degree
m = 0, · · · , n are the same as the dimension of the even vertical cohomology ofM ,
i.e. r(m) = hm,m(M),m = 0, · · · , n. The ringRcoh corresponds to the intersection
ring of that cohomology ofM in the region of the Kähler cone, which corresponds to
the particular large complex structure point in the complex moduli space Mcs(W)

ofW . Note that there can be more then one point of maximal unipotent monodromy
in Mcs(W), which correspond to topological different mirror manifolds M of W .
Mirror symmetry suggest of course that these different manifolds M , should be
unified in the complexified Kähler moduli space, which includes the B−field. We
can identify the number of classes of degree m operators also as the dimension of
the horizontal cohomology groups r(m) = hn−m,m(W) of W .

We note that the left differential ideal generated by applications of θi on the

L(nk)

k generate differential operators again of the form (2.9.26).We consider the ones
whose pure parts in the θi , the pk(θi, . . . , θh) in (2.9.26) are determined by Rcoh.
The maximal degenerations of the indicials at the maximal unipotent monodromy
points and the structure of Rcoh implies that there is exactly r(m) solutions of
the form (2.9.22) with logarithmic degree m. It is straightforward to determine
the coefficients of these logarithmic solutions by simply requiring that they are
annihilated by all operators that correspond to elements in Rcoh up to an overall
constant for each solution.

In principal one can reconstruct much information about IPF from one solution,
such asX0. Unfortunately it is difficult to find in general the highest power in the zj
in qk . However in many cases it is possible to find the Lk that generate the minimal
left differential ideal IPF with the following properties

• Each operator in IPF annihilates (2.8.23) or (2.8.24) respectively
• The pk of the Lk generate a classical intersection ring (2.9.27) .
• Stronger then the former point is the requirement that the operators of degree n

and n+1 are integrable in the sense that they determine the n-point couplings by
the procedure outlined in Sect. 2.9.2 .

We will describe more systematic ways of finding the differential ideal IPF in the
next sections.

2.9.6 Gelfand-Graev-Kapranov-ZelevinskyMethod

Here we describe how to obtain the differential ideal for hypersurfaces or complete
intersection in toric ambient spaces. In order to do this we consider for the compact
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case a modified differential �̃n starting with the expressions (2.8.1) or (2.8.3)

�̃n = �n

a0
, �̃n = �n

∏r
i=1 a0,i

. (2.9.29)

After dividing by a0 or
∏r

i=1 a0,i these expression violate the scaling symmetries.
However we can write differential operators that annihilate the �̃. This is the so
called restricted set of GKZ differential operators of [130, 131] appropriate for the
resonant case

Dl(k) =
∏

l
(k)
i >0

(

∂

∂ai

)l
(k)
i −

∏

l
(k)
i <0

(

∂

∂ai

)−l
(k)
i

, Zi =
r
∑

j=0
ν̄j,iϑj −βi , (2.9.30)

where 1 ≤ k ≤ |0| − d − 1, 1 ≤ i ≤ n + 1, r = |0| and β = (1; 0, . . . , 0)
and ϑi = ai

∂
∂ai

. The first set of operators k = 1, . . . , h11(W) follows from the

linear relation between the points in ̄, which are encoded in {l(i)}. The second set
of operatorsZi , i = 0, . . . , d eliminates the C∗ scaling symmetry of P and the Td

redundancy A1) in the parametrization of Mcs in terms of the ai . Note that for the
Z0 operator the β0 = 1 term vanishes if it acts on�n instead of �̃n. This observation
is important to eliminate the ϑ differentials in favor of the θ differentials in (2.9.32).
We discuss the origin of the Zi in for the simplest example in Sect. 2.10.

Let us denote the logarithmic derivatives w.r.t to the ai by ϑi = ai
∂
∂ai

and the

one w.r.t. to the Batyrev coordinates zi by θk = zk
∂

∂zk
. For both kind we have the

trivial commutator

[θi, zli ] = lzli , [ϑi, a
l
i ] = lai . (2.9.31)

We know that n + r of the ai are identified by the Tn+r action and are hence
redundant. It is easy to see that the (n + 1 + h) ai can be expressed in terms of
the h zk , k = 1, . . . h by the relation

ϑi = l
(k)
i θk . (2.9.32)

Now we consider the first relations in (2.9.30) and convert the ∂ai derivatives into
logarithmic derivatives. In this process the commutators are useful to bring the ai to
the left. Moreoverwe commute the factor 1/a0, (1/

∏r
i=1 a0,i) out fromDl(k)�̃n = 0

to get a differential equation on�n. Because of the violation of the scale invariance,
the latter will be only vanish up to exact terms, when the differential operator acts
on it. That is the latter yields a differential operator for the integrated�n over closed
cycles and annihilates the periods. It is further easy to see that the free ai can, by
definition of the zk variables through the l(k), all be absorbed into zk . Moreover the
ϑi can be replaced using (2.9.32), so that the Dl(k) become differential operators
that are naturally expressible in the zi coordinates and will be called L̃k . The latter
do not generate the differential ideal yet. First we can consider the same procedure
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for all positive integer linear combinations l̂k = ∑

i ni l
(i), with ni ∈ N+. These

will give additional linear operators. While these operators annihilate the periods
they annihilate also other functions and don’t uniquely fix the h3(M) periods.
However one can factorise these operators eventually after adding them with z and
θ dependent coefficients to obtain the minimal ideal in many cases. The simplest
case of this factorisation is explained for the quintic after Eq. (2.10.11).

More generally it was observed in [186] that the equations (2.9.30) are sufficient
to solve model of type I and that for type II models the infinitesimal version of the
invariance of (2.8.5) under the transformation corresponding to the roots (2.7.17)
leads to first order differential operatorsZ ′k , which supplement (2.9.30) and that for
general type III models one needs further differential equations Z ′′k coming from
relations between monomials corresponding to points at height greater one modulo
∂iP. Such relation can be found algorithmically using the Groebner basis for the
Jacobian ideal J , see below.

2.9.7 Dwork-Griffiths Reduction Method

From the formal definition of the period %(z) = ∫
�i

�(z), with � given in (2.10.7)
we can alternatively derive a fourth order differential equation for the period in
terms of the moduli z by the Dwork-Griffiths reduction method. We mention this
methods, because in general the symmetries of the ambient space are not sufficient
to find the full set of Picard-Fuchs equations. The key observation for this algorithm
can be explained as follows. Consider on the ambient space Pm−1(w1, . . . , wm) the
(m− 2)-form

� = a0

P r

∑

i<j

(−1)i+j (wj xjAi − wixiAj )dx1 ∧ . . .∧ ̂dxi ∧ . . .∧̂dxj ∧ . . .∧ dxn .

Here P = 0 is the hyper surface constraint and the Ai(x) are homogeneous of
degree di in x, i.e.

∑m
k=1 xkwk

∂
∂k
Ai = diAi . We further assume that c1(M) = 0↔

∑m
i=1 wi = d , where d is the homogeneous degree of P ,

∑m
k=1 xkwk

∂
∂k
P = Pd .

With these assumptions the total derivative of � simplifies

d� =
m
∑

k=1

( a0r

P r+1Ak∂kP − a0

P r
∂kAk

)

μ

+ a0

P r

m
∑

j=1
(d(1− r)−wi + di)Ai(−1)jdx1 ∧ . . . ∧̂dxj ∧ . . .∧ dxn .
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If we choose now the Aj so that Aj = 0 for j �= k and dk = d(r − 1)+wk so that
for Q(x) := Ak(x) the second term vanishes. In other words if

∂k

(

Q(x, a)a0

P r
μ

)

:= ∂

∂xk

(

Q(x, a)a0

P r
μ

)

(2.9.33)

is homogeneous of degree 0 w.r.t. the coordinate weights wi then

a0rQ(x, a)∂kP

P r+1 μ = a0∂kQ(x, a)

P r
μ (2.9.34)

holds under the integration sign.
Similarly for Calabi-Yau manifolds defined by a transversal complete intersec-

tions of s polynomials, i.e. as the zero set P1 = . . . = Ps = 0 with degree
d1, . . . , ds in a weighted projective space Pn+s [w1, . . . , wn+s ], c1(M) = 0 ↔
∑m

i=1 wi =∑s
j=1 dj , the analog of (2.10.7) is

� =
∫

γa

. . .

∫

γs

s
∏

k=1

a
(k)
0

Ps

μ, (2.9.35)

where γi are circles around the Pi=0 and similar as before ∂
∂k

(

Q(x, a)
∏s

k=1
a
(k)
0
Pk

μ

)

is exact iff it is of total degree zero. This leads to the partial integration rule [147]

Q∂iPj
∏s

l=1 P
nl

l

μ =
∑

k �=j

nk

nj − 1

Pj

Pk

1

nj − 1

Pj ∂iQ
∏s

l=1 P
nl

l

μ− Q∂iPk
∏s

l=1 P
nl

l

μ , (2.9.36)

where we omitted the factor
∏s

k=1 a
(k)
0 , which is however relevant for the correct

scaling in (2.10.11) we see in the example below we will commute this factor in
after the Griffith reduction calculation.

Let us outline the general idea and exemplify it in simple cases. We restricts
to the hypersurface case and consider the graded ring defined by the Jacobian
ideal J = {∂xiP } generated by the partial derivatives of the weighted homoge-
neous polynomial P(x) of degree d = ∑

i wi in the weighted projective space
P
n+1[w1, . . . , wn+2] as

R = C[x1, . . . , xn+2]
{∂xiP (x)} , (2.9.37)
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with elements φ
ik
dk(x), of weighted degree dk with k = 0, 1, . . . , n and

ik = 1, . . . , hhor
n−k,k . Indeed these ring elements span the horizontal cohomology72

Hhor
n−k,k(Mn,C) by the Griffiths residuum formula

χik,n =
∫

γ

φ
ik
dka0μ

P(x)k+1
. (2.9.38)

More precisely they yield a basis of rational cohomology. It is easy to calculate
the number of φik

dk(x) for a given degree by the Poincaré polynomials, which were
used to count the chiral (and anti-chiral) fields in Calabi-Yau/ Landau Ginzburg
models [304, 305]. In fact the E-polynomials [30] are based on the same idea.

The idea is take derivatives of the period%(a)w.r.t. the complex structuremoduli
parametrized by the a′s until the numerator contains elements that are reducible
w.r.t. to the ideal J . We need to consider only the relevant perturbations, i.e. the
ones that do not correspond to co-dimension one points of the Newton polyhedron,
and we also use (2.7.19) to set n + 2 of the ai to one ai = 1. For example if 

is simplicial one can set the ai = 1 for the monomials that corresponding to the
corners.

Then we rewrite the emerging expression in the numerator using Buchbinders
algorithm for a Groeber basis described in more detail below, in a form that
enables us to use the partial integration rules (2.9.34) or (2.9.36) w.r.t. xi . The
emerging expressions will have lower powers of P in the denominator and lower
homogeneous degree polynomials in x in the numerators.

Eventually all emergent terms can be manipulated into the form of moduli
dependent rational functions times lower derivatives of %(z) w.r.t. to the moduli
a. The relation derived in this way is one Picard-Fuchs operator.

Let us take as example the cubic in P2 given by the zero locus of

P = x31 + x32 + x33 − 3ax1x2x3, (2.9.39)

where the factor three in the perturbation has been chosen so that the discriminant is
at a3 = 1. Now we consider %(a)

a
= %̃(a) = ∫γ μ

P
and get be taking two derivatives

w.r.t. a

∂2

∂2a
%̃(a) =

∫

γ

18(x1x2x3)2μ

P 3
=
∫

γ

6(x21x
2
2∂3P + ax31x2∂2P + a2x21x2x3∂1P )μ

(1− a3)P 3

=
∫

γ

3ax31μ

(1− a3)P 2 +
6a2x1x2x3μ

(1− a3)P 2 =
∫

γ

ax1∂1Pμ

(1− a3)P 2 +
3a2

(1− a3)

∂

∂a
%̃(a)

= a

(1− a3)
%̃(a)+ 3a2

(1− a3)

∂

∂a
%̃(a) .

(2.9.40)

72Throughout the section we assume that all deformations of P(x) are polynomial, i.e. no
“twisted fields” in other places indicated by (htwisted

pq ).
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Hence we derived the operator

[(1− a2)∂2a − 3a3∂a − a]%̃(a) = 0 (2.9.41)

or after using %̃ = 1
a
%(a)

[a2(1− a2)∂2a − a(2+ a3)+ 2]%(a) = 0 . (2.9.42)

Using z = − 1
27a3

we can rewrite this with θz = z∂z as

[θ2z + 3z(3θz + 1)(3θz + 2)]%(z) = 0 . (2.9.43)

The GGKZ method starting with (2.9.30) will lead much quicker to the a third order
system

θz[θ2z + 3z(3θz + 1)(3θz + 2)]%(z) = 0 . (2.9.44)

Clearly the actual two periods of the holomorphic differential satisfy this system,
but there is one more solution that is obviously not associated with such periods,
which can be discarded by dropping in the factorised form the θz on the left. The
discarded solution has an interpretation in terms of chain integrals, instead of cycle
integrals and does play a role in open mirror symmetry.

It is a good exercise to perform the same for the quintic. Here we start with
four derivatives of %̃(z) and the emerging relation is of course the same 4th order
generalized hypergeometric differential equation as in (2.10.13).

In the multi moduli examples one has to consider various derivatives of %(z)

w.r.t. to different combinations z as starting point and the calculation becomes quite
tedious. Nevertheless one can give criteria when the left ideal of differential relations
is sufficient to determine %(z) and it is necessary to systematise the calculations
somewhat using a Groebner basis for the ring of monomials in the x [104, 186,
187, 211].

Using Buchbergers algorithm one can chose a Groebner basis for the Jacobian
ideal J . The properties of the Groebner basis allow to decompose any monomial
m

(i)
kd (x) of degree kd uniquely as follows

m
(i)
kd = q

(i)
j (a)M̃j (x)+

∑

j

Q
(i)
j (a, x)∂xj P . (2.9.45)

Here M̃j (x) are degree kd monomials in the multiplicative ring MR(Mj (x))

generated by the Mj(x) in (2.7.10), q(i)
j (a) is an unique rational function and the

Q
(i)
j (a, x) are likewise uniquely determined. In practice one uses (2.9.45), (2.9.34)

as follows: One takes n+ 1 derivatives of (2.8.5) w.r.t. to the relevant ai in (2.7.10).
This produces an integrand M̃i(x)/P

n+2, whose numerator is completely reducible
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by (2.9.45) to the last term on the r.h.s. The first term on the r.h.s of (2.9.45) is zero
as the ring R is empty at this degree. Using (2.9.34) one can reduce the integrand,
up to exact terms which do not affect the period integral, to sums of m

(i)
nd/P

n+1.
Repeating the procedure reduces the n+1 th derivative to lower derivatives of (2.8.5)
with rational coefficients.

This produces an differential ideal, which is complete if the n-point couplings
and its factorized forms can be derived from it. In this case it can be also written in
h first order matrix equations like in (3.6.41) in terms of these couplings.

The use of (2.9.36) is explained in an simple example the elliptic curve realised
as the complete intersections of two quadrics P1 = 1

2 (x
2
1 + x22 − 2ax3x4) and P2 =

1
2 (x

2
3 + x24 − 2ax1x2) in P3. It is an instructive exercise, with solution in [227] , to

derive the Picard-Fuchs operator

[a(1− a4)∂2a + (1− 4a4)∂a − 4a3]%(a) = 0 . (2.9.46)

As was pointed out in [227] one can use the generalized mori vector l =
(−2,−2; 1, 1, 1, 1, ) in (2.9.30). This fact is obvious from the relations of the
monomials. One can further use scaling relations to eliminate the redundant
parameters ai , i = 1, . . . , 4 and factorize a degree 4 systems to derive

θ2z [θ2z − z(θz + 1

2
)2]%(z) = 0 . (2.9.47)

whose nontrivial part θ2z + z(θz + 1
2 )

2 is equivalent to (2.9.46) after identifying
z = 1/a4.

2.9.8 Determining the Integral Symplectic Basis at the Point of Maximal
Unipotent Monodromy

If one knows a complete set of solutions at a large complex structure point, which is
characterised by its maximal unipotent monodromy, one can determine an integral
symplectic basis as a linear combination of these solutions as follows. Classical
intersection data of the mirror M determine it’s �̂ class and hence the charges of
the even branes in an integral symplectic basis on the A model. The precise linear
combinations in the B-model are then determined at the large complex structure
point by comparing the ta powers in the solutions of the Picard-Fuchs equations on
the r.h.s. in expression (2.6.30) with the one of the l.h.s, which are given even brane
masses as calculated from �̂ class.

Part of the classical intersection data for 3-folds are the classical 3-point
intersection numbers Ccl . More generally the latter can be determined up to a
normalisation also on the B-model side from IPF at a point of maximal unipotent
monodromy as discussed in (2.9.27), (2.9.28) for any Calabi-Yau n-fold. The ring
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Rcoh determines the logarithmic structure of a basis of solutions at the large
complex structure point.

We demonstrate the construction of the solutions at the point of maximal
unipotent monodromy as well as of the integral basis for the case of so called
hypergeometric Picard-Fuchs systems. A Picard Fuchs system whose solutions are
determined by the data of the generalized Mori cone is a hypergeometric system.
Given also the classical intersection ring one can immediately write down a local
expansion of a basis of solutions of the Picard Fuchs equations convergent near the
large complex structure point. Adding the complete topological data of C.T.C Wall
ofM as well as the choice of the even brane classes one can take linear combinations
of this basis, which correspond to the periods in an integral symplectic basis.

We review in the following the essentials and refer to [187] for further details.
The particular set of local coordinates za on the complex structure moduli space on
W are the Batyrevs coordinates defined in (2.8.19). The point of maximal unipotent
monodromy is then always at zk = 0 for all k = 1, . . . , h21(W) = h.

Let -a1,...,as be obtained by the Frobenius method73 from the coefficients of the
holomorphic function-(&z, &ρ) defined by

-(z1, . . . , zh, ρ1, . . . , ρh) =
∑

{nk}
c(n1 . . . nh, ρ1 . . . ρh)

h
∏

k=1
z
nk+ρk

k with

c(n1, . . . , nh, ρ1, . . . , ρh) =
∏r

m=1 �(1−∑h
k=1 l

(k)
0,m(nk + ρk))

∏n
i=1 �(1 +∑h

k=1 l
(k)
i (nk + ρk))

.

(2.9.48)

As the derivatives of (2.9.48)

-k1,...,ks (z1, . . . , zh) =
(

1

2πi

)s

∂ρk1
. . . ∂ρks

-(z1, . . . , zh, ρ1, . . . , ρh)|{ρk=0} .
(2.9.49)

with respect to the ρk , i.e. ∂k = ∂
∂ρk

. Note that if it hits the z
nk+ρk

k it yields

a logarithm log(zk) and the factor of
(

1
2πi

)s

avoids shift factors of 2πi in the

monodromy around zk = 0.
We define also X0(z) = -(z1, . . . , zh, ρ1, . . . , ρh)|ρk=0 = ϕ(z) which agrees

of course with the (2.8.23) from the direct evaluation of the algebraic torus integral.
It is also useful to define the quantities

σk1,...,ks = (-k1,...,ks (z1, . . . , zh)|log(zk)=0) , (2.9.50)

73The holomorphic period -(z1, . . . , zh) can also be directly integrated using a residuum
expression for the holomorphic (3, 0) form [187].
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which are together with σk1,...,ks /X
0 are analytic functions, since X0 = 1 + O(z),

with a finite radius of convergence near za = 0. The latter is determined by nearest
singularity in the discriminant of the D-moduli of linear Picard-Fuchs operators,
which is usually a conifold point. In order to evaluate σk1,...,kh from (2.9.49) a
relatively intriguing pole cancelation of the � functions and their derivatives has
to be considered, which is made explicit in [187].

The point of the definition of ∂
∂ρk

is that it commutes weakly with the differential
operators Lj defining the D-module, i.e.

[

∂

∂ρk

,Lj

]

“ = “ 0 , ∀k, j . (2.9.51)

In other words we expect that the -k1,...,ks (z1, . . . , zh) are closely related to
solutions to the Picard-Fuchs equations. Of course this cannot generate an arbitrary
number of solutions as there are only h3(M) periods and therefore only h3(M) inde-
pendent solutions. The structure of differential equations at the maximal unipotent
monodromy point (2.9.26) implies that the condition for-k1,...,ks (z1, . . . , zh) being
a solution can be completely determined from the criteria that the pk(θ) in (2.9.26)
annihilate all logarithms in the solutions. In particular since the degree of pk(θ) is
strictly greater then one, all the single logarithmic

Xa = -a = 1

2πi
log(za)+ σa a = 1, . . . h (2.9.52)

are solutions. At the large complex structure point these solutions indeed define the
mirror map which are the natural flat coordinates on the Kähler moduli space of the
original manifoldM as

ta = Xa

X0 =
1

2πi
log(za)+ σa

X0 , a = 1, . . . , h , (2.9.53)

and parametrize complexified areas of curves Ca embedded in M , so that the ta are
identified with the complexified Kähler parameters (2.4.48). The logarithmic shift
monodromy of the ta

ta → ta + 1, (2.9.54)

when za is analytically continued counterclockwise around za = 0 corresponds to
the shift of the Neveu-Schwarz b field by an flux quantum (2.4.49). Shift invariants
variables are

Qa = exp
(

2πita
)

. (2.9.55)

The Qa go exponentially to zero when the area of the curve
∫

Ca
ω goes to infinite,

which happens when za approaches the maximal unipotent monodromy point
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za = 0. The latter point is therefore often called the large area or large volume
point. The latter name is justified as inside the Kähler cone (2.4.45) the volumes of
all even cycles goes to infinity, when the areas of the curves go to infinity. The key
significance of theQa expansion is that their individual terms correspond to worlds-
sheet instanton effects, naturally suppressed at large volume, but of increasing
importance at smaller volumes. The B-model allows in particular sum up these
effects. A key technical problem74 in the calculation is to invert the exponentiated
mirror map (2.9.53) to obtain zi(t).

From mirror symmetry one can argue that there will be no solutions in which
the order of the derivatives s in (2.4.49) is more then the complex dimension of M ,
i.e. s > n. In fact this fits the analysis of the maximal degeneration of periods by
W. Schmidt [293].

In [187] it was shown that the pk(θ) determine the classical intersection ring and
that for Calabi-Yau 3-folds the double and triple logarithmic solutions are given by

w(2)
a = 1

2

h
∑

b,c=1
Ccl

abc-bc(z1, . . . , zh), a = 1, . . . , h. (2.9.56)

w(3) = 1

6

h
∑

a,b,c=1
Ccl

abc-abc(z1, . . . , zh) , (2.9.57)

where Ccl
abc = Da ∩Db ∩Dc is the classical intersection ring.

To find the integral symplectic basis it suffices as mentioned to write linear
combinations of the periods obtained above to match the complexified area powers
ta in (2.6.30) specified by the prepotential (2.6.31). An integral symplectic basis for
the periods is hence given by

% = X0

⎛

⎜

⎜

⎜

⎜

⎝

2F (0) − ta∂taF (0)

∂taF (0)

1

ta

⎞

⎟

⎟

⎟

⎟

⎠

= X0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ccl
abct

a tbtc

3! + cat
a − iχ

ζ(3)
(2π)3

+ 2f (Q)− ta∂ta f (Q)

−Ccl
abct

btc

2 + Aabt
b + ca + ∂ta f (Q)

1

ta

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.9.58)

The real coefficients Aab are not completely fixed. They are unphysical in the sense
that K(t, t̄) and Cabc(Q) do not depend on them. The Aab are further restricted
by the requirement that the Peccei-Quinn symmetries ta → ta + 1 act as integral
Sp(2h11 + 2,Z) transformations on %. Note that the prepotential (2.6.31) can be
read off from the periods. We put an index (0) on the prepotential F (0) = F to
stress that it counts the genus zero correction to the classical intersection. In fact the

74We wrote an improved code for that (http://hep.itp.tuwien.ac.at/~kreuzer/CY/hep-th/yymmnnn.
html).

http://hep.itp.tuwien.ac.at/~kreuzer/CY/hep-th/yymmnnn.html
http://hep.itp.tuwien.ac.at/~kreuzer/CY/hep-th/yymmnnn.html
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instanton part in (2.6.31) can be written as

F (0)
inst =

1

(2πi)3

∑

β∈H2(M,Z)>0

r
β
0 Q

β = 1

(2πi)3

∑

β>0

n
β
0 Li3(Q

β) . (2.9.59)

Here we definedQβ =∏a e2πiβat
a
where the tuple (β1, . . . , βh) specifies a class β

in H2(M,Z). Since ta are flat coordinates, we have

Cabc(Q) = ∂ta∂tb∂tcF (0) = Ccl
abc +

∑

β>0

n
β
0
βaβbβcQ

β

1−Qβ
. (2.9.60)

The sum counts as the last sum in (2.9.59) the genus zero contribution BPS numbers
n
β

0 ∈ Z. The first sum in (2.9.59) counts the genus zero Gromov-Witten invariants

r
β

0 ∈ Q.

Note that the term χζ(3)
2(2πi)3

in (2.6.31) can be also view as contributions of the
degree zero BPS invariant of D0 branes if we extend sum in (2.9.59) to β = 0 and
identify n

β=0
0 = χ(M)

2 as the virtual integral of the degree zero maps and use the
fact that Li3(1) = ζ(3).

For the quintic the expansion predicts the first line in Table 10. The higher genus
predictions will be discussed in Sect. 4.1.1.

2.9.9 The Mellin-Barnes Integrals from Supersymmetric Localisation

One new outcome of the supersymmetric localization [36, 102] are the formulas
for partition function of the (2, 2) gauged linear σ model [322] on the hemi-sphere
with A- and B-type boundary conditions [181]. These expressions are not valid at
large complex structure but rather at the origin of the Coulomb branch typically with
enhanced symmetry.

Even though the final formulas for the hemisphere partition function for the σ -
model with abelian gauge groups are close to the familiar period expressions in
terms of Barnes integrals [61], the formalism yields new conceptual insights in the
problem of finding a rational basis Hn(Mn,Q) due to its relation to homological
mirror symmetry. It is in addition very general and for non abelian gauge groups
it describes Calabi-Yau manifolds embedded in Grassmannians, flag-varieties and
those determinantal and more general non-complete intersection embeddings of
Calabi-Yau manifolds that are e.g. needed to get F-theory with more than 4 global
U(1) factors.



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 215

The General Data of the Hemisphere Partition Function

Let75 G be the rank lG gauge group of the 2d (2, 2) linear σ model and T ⊂ G

its maximal torus. The complex matter fields φi transform in a G representation
space V and carry a charge with respect to T called Qi . V is also acted on by an
R symmetry representation End(V ) with charge Ri , i.e. V |CR×T = ⊕iC(Ri,Qi).
One has an embedding eπiR =: J ∈ G. The superpotential W is a gauge invariant
function of the matter fields and homogeneous of degree two w.r.t. the R charge,
i.e.W(λRφ) = λ2W(φ). We need to consider only the situations where the twisted
superpotential is linear and contains just the term W̃ = − 1

2π t (s), where t = ζ−iθ is
a complex combination of the Fayet-Iliopoulus parameter, identified with the Kähler
parameter in the CY phase, and the theta parameter in R/ZlG , identified with the
periodic B field in the CY phase.

The boundary data for the hemi-sphere are specified by R = (M,Q, ρ, r∗),
whereM is the Z2 graded vector space of Chan-Paton factorsM = Mev⊕Mod over
C and ρ and r∗ are representations ofG and R on M , i.e.M|CR×T = ⊕C(ri , qi). It
has the charge integrality property

eπir∗ρ(J ) =
{

1 on Mev

−1 on Mod
. (2.9.61)

Q is an Endod(M) valued holomorphic function in V , which is gauge invariant
ρ−1(g)Q(gφ)ρ(g) = Q(φ), homogeneous λr∗Q(λRφ)λ−r∗ = λQ and has the
matrix factorization property of W

Q(φ)2 =W(φ)idM . (2.9.62)

The general form for the hemi-sphere partition is calculated by supersymmetric
localization and reads for the boundary dataR [181]

ZD2 (R)=c(
, r)

∫

γ

dlG s
∏

α>0

α(s)sinh(πα(s))
∏

i

�

(

iQi(s) + Ri

2

)

et(s)TrM
(

eπir∗e2πρ(s))
)

,

(2.9.63)

where α are the roots of G. The contour γ is chosen in a multidimensional
generalization of the contour used in (2.10.23) (rotated by π

2 to the left), so that
it is a deformation if the real locus it ⊂ tC ∼ ClG so that

(C1) the integral is convergent and
(C2) the deformations does not cross poles of the integrand.

75Our notation follows [181] and lectures of K. Hori at the University of Michigan in Ann Arbor.
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We specialize to the Calabi-Yau n-fold case where the axial U(1)A anomaly is
cancelled, t is not renormalized, ĉ = trV (1 − R) − dimG = n, the dependence
on the scale 
 and radius of the hemi-sphere r disappears and c(
, r) becomes
a normalization constant. We focus the attention to A-branes on Wn, which
correspond to twisted line bundles O(q1, . . . , qlG), with lG = h1,1(Wn) = h with
Chern character

ch(O(q1, . . . , qh)) = exp

(

h
∑

α=1
qαJα

)

. (2.9.64)

The range of independent {qi} is restricted by the relations in the Chow ring of Wn

and the corresponding branes for a Q-basis in the K-theory classes of the derived
category of coherent sheaves. In particular with standard intersection calculations
we can determine (2.6.24) in this basis.

The Case of Abelian Gauge Linear σ -Models

In order not to clutter the notations, we consider abelian gauge groups G = U(1)h

and only matter fields representations and superpotentials that lead to complete
intersections. In this case the first product in (2.9.63) is trivial and yields one and
we get

ZD2(O(q1, . . . , qh)) = 2r i

(2πi)n+r

∫

γ

dhs
r
∏

j=1
�
(

il
(α)
0j sα + 1

)

k
∏

j=1
�(il

(α)
j sα)e

2π(tα+qα)sα

r
∏

j=1
sinh(πl

(α)
0j sα) , (2.9.65)

where the sum over α is implicit and we restrict the arguments of eπtα analogously

to (2.10.23) to be in the ranges 0 ≤ arg(etα) < min

(

2π
−lα0,j

)

.

It is not hard to show that the formulas (2.9.65) are indeed a Mellin-Barnes
integral representation of (2.9.49) and certain combinations of its ∂

r
ρ |ρ derivatives.

We will use similar Barnes integral representations in Sect. 2.10.2. In particular we
can rewrite (2.10.23) and its transforms-0(β

ka) using the identity �(1− s)�(s) =
π

sin(πs)
in the form (2.9.65) and use contour deformations to analytically continue

the Barnes integrals from the orbifold point to the maximal unipotent monodromy
point. Two moduli examples where treated in [63, 64]. Elements of a general theory
are outlined in [277, 335].



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 217

Deriving the Picard-Fuchs Equations

It is useful and at least in the U(1)h cases straightforward, to derive from (2.9.65)
the full system of Picard-Fuchs equations Li , i = 1, . . . , s. The reason for the
usefulness of the remark is that it is hard to read from (2.9.65) all components of
the critical locus of the periods, which follow on other hand immediately from the
resultant of the symbols of the Li , i = 1, . . . , s. Moreover the expression (2.9.65) is
not useful to analytically continue to most of these components, e.g. to the conifold
loci. To derive the Li , i = 1, . . . , s that generate the ideal IPF , see Sect. 2.4.3, we
follow the observation made in [186] that the classical intersection ring R(ξ ) =
ci1,...,in ξ

i1 · · · ξ in at a large radius point in coordinates76 at zα = e−tα is given by

R(ξ ) = C[ξ1, . . . , ξh]/Id(Si (ξ ), i = 1, . . . , s), (2.9.66)

where Si is obtained as Si = limtα→∞ Li (∂tα = ξα) and Id denotes the
multiplicative ideal and the ξ are the symbols of the differential ideal IPF . Consider
now the monomials Di1 · Di|I∗| representing the Stanley Reisner ideal for a given
triangulation. Pick a basis Ki of the Chow ring and express the Di1 ·Di|I∗| in terms
of the Kj , j = 1, . . . , h. This yields polynomials Si (Ki = ξi), i = 1, . . . , s − δ

which generate part of the ideal Id. The full ideal can be obtained by completing
the Si (Ki = ξi), i = 1, . . . , s − δ minimally so that (2.9.66) holds. Now we can
act with the Sj (ξi = ∂ti ), j = 1, . . . , s on any period say the one corresponding to
the structure sheaf Z(OW). This brings down si monomials in the integrand, whose
exponents can be lowered by the relations x�(x) = �(x + 1), �(x)�(1 − x) =

π
sin(πx)

and a redefinition of the integration variables. This yields a relation between
maximal order derivatives and lower order derivatives of Z(O)W with polynomial
coefficients in the e2πitα and constitutes a linear differential operator annihilating
all Z(O)W (q1, . . . , qh), i.e. a Picard-Fuchs operator Li . The differential ideal of
the latter completely determines these periods, if (2.9.66) holds. The latter point
should also hold in the case of non-abelian gauged linear σ -models, which leads not
to differential systems of generalized hypergeometric type, but rather to the Apery
type.77 The α(s) factor in (2.9.63) makes it slightly more non-trivial to lower the
powers and rewrite the integral in the standard form described above.

76Note that in this section tα denotes not the quantum corrected Kähler parameter, which is defined
in (2.9.53).
77Only the one moduli cases of Apery type, like the Grassmannians for which higher genus
invariants have been calculated in [161], have conifold loci in different distance from the large
complex structure point limt→∞. This is a necessary condition for fast enough convergence of the
analytic continuation from the conifold to the large complex structure point, that would be needed
to prove the irrationality of ζ(2m + 1) occurring in the periods of CY 2m + 1-folds for m > 1 at
infinity due to (2.6.21) in (2.6.25). We thank Sergei Galkin to point this fact out.
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Some Remarks on the Local Cases

We can study the period system on local Calabi-Yau spaces, by replacing the
sections Wl = 0 of D0,l by the total space of the bundles ⊕r

l=1O(−D0,l) over
P∗ . This is the obvious generalization of taking instead of the elliptic curve
(quintic hypersurface) defined as a section of the canonical bundle K in P

2 (P4)
the noncompact Calabi-Yau 3(5)-manifold defined as the total space of the anti-
canonical line bundle O(−3) → P

2 (O(−5) → P
4). This is implemented by the

following change in the integrand of (2.9.65)

sinh(πl
(α)
0j sα)→

sinh(πl
(α)
0j sα)

sα
. (2.9.67)

This process can be done successively leading to an increasing number of non-
compact directions.

2.10 The Quintic and Other One Parameter Families

Let us now discuss an explicit simple example of such a mirror symmetry
computation. The principle example is the quintic in the projective space P4,
which is discussed in great detail in the paper [61]. We follow the notation
and the presentation in [191]. The quintic is defined as the zero locus of a
special homogeneous polynomial of degree 5 in xi , which we give here in three
parametrisations commonly used in the literature78

P =
5
∑

i=1
aix

5
i + a0

5
∏

i=1
xi =

5
∑

i=1
x5i − 5ψ

5
∏

i=1
xi =

5
∑

i=1
x5i − z−

1
5

5
∏

i=1
xi = 0

(2.10.1)

The z appears here as one of the 101 possible complex structure deformations of the
full family of quintics. A deformation is given by perturbing P0 = ∑5

i=1 x5i with
a parameter multiplying a monomial of degree 5. We count (5) x5i , (20) x

4
i xj , (20)

x3i x
2
j , (30) x

2
i x

2
j xk , (30) xixjx

3
k , (20) xixjxkx

2
l , (1)

∏5
i=1 xi , with i, j, k, l = 1, . . . 5

hence 126 monomials. Not all of those lead to independent complex structure
deformations, because the complex linear transformations of the coordinates xi of
P4 leads to completely equivalent forms of the constraint. The group of those has
dimension 52−1. Finally there is one relation by P = 0 leading to 101 independent

78The first is the generic parametrization corresponding to (2.7.10) the third one is the one in the
Batyrev parametrization (2.8.19), while in the middle the parameter ψ is as in the original paper
of [61].



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 219

complex structure deformations. The symmetric deformation in (2.10.4) is chosen
with hindsight, because we can see it as the unique complex structure deformation
on the mirror manifold of the quintic W . The mirror is constructed as Z3

5 orbifold
of the original quintic M . The orbifold is generated by phase rotations on the
homogeneous coordinates P4

xi → exp(2πig
(α)
i /5)xi, α = 1, 2, 3, i = 1, . . . , 5 , (2.10.2)

with g(1) = (1, 4, 0, 0, 0), g(2) = (1, 0, 4, 0, 0) and g(3) = (1, 0, 0, 4, 0). It leaves
precisely the single perturbing monomial

∏5
i=1 xi in (2.10.1) invariant. This one

deformation parameter z can be identified with the one Kähler deformation t of
the original quintic M which has Hodge numbers h1,1 = 1 and h2,1 = 101. The
one element in H 1,1(M) comes from the restriction of the unique Kähler form of
P5 to the hyper surface. The 101 elements of H 1(M, TM) we counted above and
explained their relation to H 2,1(M) in (2.4.15).

The quintic and its mirror is also the simplest example for Batyrev’s construction,
where one starts with the reflexive polyhedra (, ̂) given by

Div. νi ν̂i l(1)

Dx0 0 0 0 0 0 0 0 0 −5
Dx1 = H 4 −1 −1 −1 1 0 0 0 1
Dx2 = H −1 4 −1 −1 0 1 0 0 1
Dx3 = H −1 −1 −4 −1 0 0 0 1 1
Dx4 = H −1 −1 −1 4 0 0 0 1 1
Dx4 = H −1 −1 −1 −1 −1 −1 −1 −1 1

. (2.10.3)

Here we listed the divisors in the toric description of P
̂
= P4, which correspond

all to the hyperplane class in P4 and the basis of linear relation between the points in
̂, put in the hyperplane at distance one of the origin in R5. The polynom (2.7.14)
becomes

P
̂
=

5
∑

i=1
âiXi + â0X0 =

5
∑

i=1
âiy

5
i + â0

5
∏

i=1
yi . (2.10.4)

where we used only the coordinates that correspond to the points in  listed
in (2.10.3). In particular we set to one the coordinates that correspond to the inner
point y0 = 1 and the ones that correspond to points on edges and two faces of ,
which describe the solutions of the Z5 fixed curves and the Z5 ×Z5 fixpoints of the
Z
3
5 orbifold action on the quintic described above.79 The remaining coordinates are

enough to understand the complex structure of the mirror.

79The ones on co-dimension one faces correspond to Z
3
5 fixpoints in P4 which do not lie on the

quintic. The corresponding exceptional divisors do not meet the quintic.
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We note that (2.10.4) could also be viewed as a one parameter deformation of
P

P =
5
∑

i=1
aiYi + a0Y0 =

5
∑

i=1
aix

5
i + a0

5
∏

i=1
xi , (2.10.5)

only that in (2.10.4) the geometry has been divided by a Z
3
5, so that the overall

normalizations of the periods is divided by 53. It is customary to use variables
in (2.10.5), i.e. (Yi, xi , ai) whenever the complex structure deformations of a
geometry is considered and also to write P for P or P

̂
. We note that to introduce

the variables on the dense algebraic torus T4 of ambient space, we use (2.7.12).
Here this implies

∏5
i=1 Yi = Y 5

0 , we set Y0 = 1 and eliminate Y5 to arrive at

P = a0 +
4
∑

i=1
aiYi + a5

Y1Y2Y3Y4
. (2.10.6)

The holomorphic (3, 0) form can written explicit in every patch Ul of P4 as a
residuum expression [147]

�(z) =
∫

γ

a0μ

P
, (2.10.7)

where the contour surrounds the single pole at P = 0 inside P4 and the measure is
the specialisation of (2.8.6).

We now discuss the action of Zi operators in (2.9.30) on the period � and how
to use these operators to get the Picard-Fuchs operator in the example of the mirror
quintic.

An important consistency condition for � is its invariance under the C∗ action
xi → λxi . Let us consider the parametrization of the complex structure by the
parameters ai , i = 0, . . . , 5 in P =∑5

i=1 aix5i + a0
∏5

i=1 xi . Theses are redundant
parameters and can be “gauged” by the GP4 = PGL(N,C) × C∗ transformation
on the homogeneous parameters (x1 : . . . : x5) of P4 to one parameter. Let
us summarize the “gauge invariances” of �(a), which are obvious from (2.10.7)
and (2.8.6).

• It is invariant under the change ai → ρai with ρ ∈ C∗. Defining the logarithmic
derivative ϑi = ai

∂
∂ai

, this homogeneity of degree 0 is expressed as

5
∑

i=0
ϑi�(a) = 0 . (2.10.8)
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• It is invariant under the C
∗ actions (ai, aj ) → (ρ−5ai, ρ5aj ), i, j = 1, . . . , 5

with ρ ∈ C
∗. These are compensated on P by GP4 transformations (xi, xj ) →

(ρxi, ρ
−1xj ), which leave the form μ invariant. As differential relations one has

(ϑi − ϑ5)�(a) = 0, i = 1, . . . , 4 . (2.10.9)

These two equations mean that �(a) = �(z) does depend only on the combination
z = − a1a2a3a4a5

a50
, where we chose the sign for latter convenience. Instead of fixing

the gauge immediately we first notice the obvious differential relations

(

∂

∂a0

)5
�(a)

a0
=
(

n
∏

i=1

∂

∂ai

)

�(a)

a0
, (2.10.10)

which as explained after (2.9.30) just follow from the linear relations between the
points in the Newton polytop ̄ of P .

With ϑi = ai
∂
∂ai

, θ = z d
dz , the commutator [ϑi, a

x
i ] = xai and ϑ0 = −5θ as

well as ϑi = θ for i = 1, . . . , 5 we rewrite

(

ϑ0

a0

)5
�(a)

a0
= 1

a1a2a3a4a5

(

5
∏

i=1
ϑi

)

�(a)

a0

a1a2a3a4a5

a50

(

5
∏

k=1
(ϑ0 − k)

)

�(a) =
(

5
∏

i=1
ϑi

)

�(a)

z
∏

k=1
(5θ + k)�(z) = θ5�(z)

(2.10.11)

The last line means that the factorizing differential operator D = θL = θ [θ4 −
5z
∏4

i=1(θ + i)] annihilates �(z) and it also annihilates the periods

%i(z) =
∫

�i

�(z) (2.10.12)

with �i ∈ H 3(W). One checks that L�(z) is already exact, i.e.
∫

�i
L�(z) = 0 so

that the periods%i(z) =
∫

�i
�(z), which correspond to the four independent cycles

�i ∈ H3(W) are determined by the four solutions of differential equation

[θ4 − 5z
4
∏

i=1
(θ + i)]%(z) = 0 . (2.10.13)

Note that the mirror has h2,1 = 1 and hence 4 elements in the middle cohomology
H 3(M,Z) = H 3,0 ⊕ H 21 ⊕ H 12 ⊕ H 03. The four period integrals over the dual
four homology 3-cycles, which are invariant under the Z3

5 group correspond to four
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independent solutions of Eq. (2.10.13). The 3-cycles are in a fixed topological basis
of H 3(M,Z). This basis is independent of the complex structure. The trick in the
derivation of the differential equation was to fix the gauge symmetry at the very
end (last line of (2.10.11)). This results in a considerable simplification in the
derivation of the period equations compared with the Dwork-Griffiths reduction
method discussed in Sect. 2.9.7. The method is adjusted to derive the systems of
Picard-Fuchs operators of multi parameter Calabi-Yau hypersurfaces and complete
intersections in toric ambient spaces, which have the correspondingC∗ actions, see
[187, 233]. It will give in general as above differential operators allowing for too
many solutions, which need to be reduced to lower order differential operators. In
the simplest case this is accomplished by factorization.

We will now discuss the solution of the Picard-Fuchs equation at all critical points
in the moduli space, with the aim to get everywhere convergent expression for an
integral symplectic basis of the periods.

2.10.1 Integral Basis at the Large Complex Structure of Maximal
Unipotent Monodromy

Here we have the most general description, which applies immediately to all
hypersurfaces and complete intersections in toric varieties, for the moduli described
by the generalized l-vectors. Either by solving the Picard-Fuchs equations with up
to triple logarithmic ansäzte or by applying the Frobenius method with the data

ω(z, ρ) :=
∞
∑

n=0

�(5(n+ ρ)+ 1)

�5(n+ ρ + 1)
zn+ρ Dk

ρω :=
1

(2πi)kk!
∂k

∂kρ
ω

∣

∣

∣

∣

ρ=0
(2.10.14)

as discussed in Sect. 2.9.8 we obtain the following solutions.

ω0 = ω(z, 0) =∑∞
n=0

(5n)!
(n!)5 z

n

ω1 = Dρω(z, 0) = 1
2πi

(ω0 log(z)+ σ1)

ω2 = C0D2
ρω(z, ρ)+ cω0 = C0

2·(2πi)2

(

ω0 log2(z)+ 2σ1 log(z)+ σ2
)

ω3 = C0D3
ρω(z, ρ)+ cω1 + eω0 = C0

6·(2πi)3

(

ω0 log3(z)+ 3σ1 log2(z)+ 3σ2 log(z)+ σ3
)

(2.10.15)

The constants C0 = ∫

M ω3 = 5, a = 1
2 , c = 1

24

∫

M c2 ∧ ω = 25
12 and

e = ζ(3)
2(2πi)3

∫

M
c3 = −200 ζ(3)

2(2πi)3
are given by (2.6.30) and (2.12.21).
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The σk are determined directly from (2.10.13) or the Frobenius method. To the
first few orders we have

ω0 = 1+ 120z+ 113400z2 +O(z3),

σ1 = 770z+ 810225z2 +O(z3) ,

σ2 = 1150z+ 4208175
2 z2 +O(z3) ,

σ3 = −6900z− 9895125
2 z2 +O(z3) .

(2.10.16)

The solutions (2.10.15) can be combined into the period vector &% with respect to
an integer symplectic basis80 (Ai, Bj ) of H 3(W,Z) as follows [61]:

&% =

⎛

⎜

⎜

⎜

⎝

∫

B1
�

∫

B2
�

∫

A1 �
∫

A2 �

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

F0

F1

X0

X1

⎞

⎟

⎟

⎟

⎠

= ω0

⎛

⎜

⎜

⎜

⎝

2F (0) − t∂tF (0)

∂tF (0)

1
t

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

ω3 + c ω1 + e ω0

−ω2 − a ω1 + c ω0

ω0

ω1

⎞

⎟

⎟

⎟

⎠

.

(2.10.17)

The mirror map t which is identified with the complexified area of a degree one
curve is given either by

t (z) =
∫

C
(iJ + B) = ω1

ω0
= 1

2πi

(

log(z)+ 770z+ 717825z2 + ..
)

(2.10.18)

or by

1

z
= 1

Q
+ 770+ 421375Q+ 274007500Q2+ . . . . (2.10.19)

In (2.10.19), we inverted (2.10.18) with Q = e2πit . The genus one prepotential
reads

F (0) = − 5

3! t
3− (1/2)

2
t2+ 50

24
t+ −200

2(2πi)3
+ 1

(2πi)3

∞
∑

β=1
n
β
0 Li3(Q

β) , (2.10.20)

where the instanton expansion

Finst (Q)=
∑

β=0
r
β
0 Q

β=
∞
∑

β=0
n
β
0 Li3(Q

β)=
∫

M
c3ζ(3)

2
+2875q+4876875

2
q2+8564575000

27
+ . . .

(2.10.21)

with Q = exp(2πit) vanishes in the large radius limit Im(t) → ∞ exponentially
Q → 0. The r

β

0 ∈ Q are the Gromov-Witten invariants for rational curves in the

80With Ai ∩ Bj = δij and zero intersections otherwise.
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class β ∈ H2(M,Z) of the quintic M in P4, while the n
β
0 ∈ N count81 the rational

curves of degree β on the quintic or the BPS invariants of the topological string on
the quintic, which are in the first degree

n00 =
∫

M
c3

2
= −200

2
, n10 = 2875, n10 = 609250, n10 = 317206375, . . . .

(2.10.22)

Here we also included the degree zero imbedding, because as it turns out the BPS
invariants are determined by the fundamental virtual class, which is in this case the
Euler density, of its moduli space, which is in this case the Calabi-Yau M itself.
The virtual fundamental classes of the moduli spaces all degree maps are is zero, so
morally one gets an ‘orbifold’ point counting problem for the r

β

0 . The numbers nβ

0
can be interpreted as the number of lines, degenerate genus 0 quadrics, cubics etc.

2.10.2 Expansions Around the Orbifold Point z = ∞

The solutions of the Picard-Fuchs equation around the orbifold point w = 1
55z
= 0

are four power series solutions with the indices 1
5 ,

2
5 ,

3
5 ,

4
5

ωorb
k = w

k
5

∞
∑

n=0

([

k
5

]

n

)5

[k]5n

(

55w
)n

= − �(k)

�5
(

k
5

)

∫

C0
ds

e2πis − 1

�5
(

s + k
5

)

�(5s + k)

(

55w
)s+ k

5
, k = 1, . . . , 4 .

(2.10.23)

____
d

(d−1)

d

1__−2 −1 0 1 2.......

The Pochhammer symbols are defined as [a]n := �(a+n)
�(a)

and we normalized the

first coefficient in ωorb
k = w

k
5 +O(w

5+k
5 ) to one. The expression in the first line is

recovered from the integral representation by noting that the only poles inside C0,
for which the integral converges for |w| < 0, are from g(s) = 1

exp(2πis)−1 , which
behaves at sε−n = n− ε, n ∈ N as g(sε−n) ∼ − 1

2πiε
.

81In fact in general, i.e. for general classes β ∈ H2(M,Z) in more complicated manifolds M ,
n
β
0 ∈ Z and the correct interpretation of the n

β
0 is an index in the cohomology of stable pairs.
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Up to normalization this basis of solutions is canonically distinguished, as it
diagonalizes the Z5 monodromy at w = 0. Similar as for the C3/Z3 orbifold [6],
it can be viewed as a twist field basis. Here this basis is induced from the
twist field basis of C5/Z5. As it was argued in [6] for C3/Z3, this twist field
basis provides the natural coordinates in which the F (g) near the orbifold point
can be interpreted as generating functions for orbifold Gromov-Witten invariants.
Following up on foundational work on orbifold Gromov-Witten theory [73] and
examples given in two complex dimensions [56] this prediction has been checked
by direct computation of orbifold Gromov-Witten invariants [75] at genus zero. This
provides a beautiful check for the global picture of mirror symmetry.

We will now study the transformation from the basis (2.10.17) to the
basis (2.10.23) to make B-model prediction along the lines of [6] with the
additional Kähler transformation. Since the symplectic form ω on the moduli
space is invariant under monodromy and ωorb

k diagonalizes the Z5 monodromy,
we must have in accordance with the expectation from the orbifold cohomology
H ∗(C5/Z5) = C10 ⊕ C11 ⊕ C12 ⊕ C13 ⊕ C14

ω = dFk ∧ dXk = −54s1
6

dωorb
4 ∧ dωorb

1 + 54s2
2

dωorb
3 ∧ dωorb

2 . (2.10.24)

This is equivalent to determining the symplectic form η = �w at the orbifold
according to the description in Sect. 2.9.4.

The rational factors above have been chosen to match constraints from special
geometric discussed below. Similarly the monodromy invariant Kähler potential
must have the form

e−K =
4
∑

k=1
rkω

orb
k ωorb

k . (2.10.25)

To obtain the si , ri by analytic continuation to the basis (2.10.17) we follow [61] for
the quintic and the generalisation in [226] for other cases and note that the integral

converges for |w| > 1 due to the asymptotics of the f (s) = �5(s+k/5)
�(5s+k)

term, when
the integral is closed along C∞ [61]. At sεn = −n− ε the g(sεn) pole is compensated
by the f (sεn) zero and at s

ε
n,k = −n− k/5− ε we note the expansions

g(sεn,k) = αk

1−αk + 2πiαk

(1−αk)2
ε + (2πi)2αk(1+αk)

2(1−αk)3
ε2 + (2πi)3αk(1+4αk+α2k)

6(1−αk)4
ε3 +O(ε4)

f (sεn,k) = C0ω0(n)

ε4
+ κσ1(n)

ε3
+ 1

ε2

(

κσ2(n)
2 + (2πi)2c2J ω0(n)

24

)

+
1
ε

(

κσ3(n)
6 + (2πi)2c2J σ1(n)

24 + χζ(3)ω0(n)
)

+O(ε0)

(

55w
)sεn = zn(1+ log(z)ε + 1

2 log(z)
2ε2 + 1

6 log(z)
3ε3 +O(ε4))

.

(2.10.26)
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Here α = exp(2πi/5). C0 = ∫

M
J 3, c2J =

∫

M
c2J , and χ = ∫

M
c3 are the

classical intersection calculated at large volume. The ω0(n), σi(n) are coefficients
of the series we encountered in sec. 2.10.1. Performing the residue integration and
comparing with (2.10.15), (2.10.17) we get

ωorb
k = (2πi)4�(k)

�5
(

k
5

)

(

αkF0

1− αk
− αkF1

(1− αk)2
+ 5αk(α2k − αk + 1)X0

(1− αk)4
+ αk(8αk − 3)X1

(1− αk)3

)

(2.10.27)

It follows with ri =
�10
(

k
5

)

�2(k)
ci that

c1 = −c4 = α2(1− α)(2 + α2 + α3), c3 = −c2 = α(2 + α − α2 − 2α3)

s1 = s2 = − 1

55(2πi)3
(2.10.28)

and so

⎛

⎜

⎜

⎝

F0

F1

X0

X1

⎞

⎟

⎟

⎠

= w1/5
α�5

(

1
5

)

(2πi)4

⎛

⎜

⎜

⎝

(1− α)(α − 1− α2)
1
5 (8− 3α)(1− α)2

(1− α + α2)
1
5 (1− α)3

⎞

⎟

⎟

⎠

+O(w2/5) . (2.10.29)

Equation (2.10.28) implies that up to a rational rescaling of the orbifold periods the
transformation of the wave function Z = Ψ [321] from infinity to the orbifold is
given by a metaplectic transformation with the same rescaling of the string coupling

as for the C
3/Z3 case in [4]. The BPS mass formula mΠ = e

K/2
|Π | , for Π a period

in the Sp(4Z) symplectic basis (2.10.29), implies that there are no massless BPS
states at the orbifold. This means that there is no massless RR state in the K-theory
charge lattice at the orbifold point.We note further that after rescaling of the orbifold
periods the transformation (2.10.27) can be chosen to lie in Sp(4,Z[α, 1

5 ]).
We can define the analogue of mirror map at the orbifold point,

s = ωorb
2

ωorb
1

= w
1
5 (1+ 13w

360
+ 110069w2

9979200
+O(w3)) (2.10.30)

where we use the notation s, as in [6], to avoid confusion with the mirror map in
the large volume limit. We next calculate the genus zero prepotential at the orbifold
point. For convenience let us rescale our periods ω̂k−1 = 53/2ωorb

k . The Yukawa-
Coupling or 3-point function is transformed to the s variables as

Csss = 1

ω̂2
0

5

w2(1− w)

(

∂w

∂s

)3

= 5+ 5

3
s5 + 5975

6048
s10 + 34521785

54486432
s15 +O(s20) .

(2.10.31)
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A trivial consistency check of special geometry is that the genus zero
prepotential F (0) = ∫

ds
∫

ds
∫

ds Csss appears in the periods %̂orb =
(ω̂0, ω̂1,

5
2! ω̂2,− 5

3! ω̂3)
T as

%̂orb = ω̂0

⎛

⎜

⎜

⎜

⎝

1
s

∂sF
(0)
A-orbf.

2F (0)
A-orbf. − s∂sF

(0)
A-orbf.

⎞

⎟

⎟

⎟

⎠

. (2.10.32)

This can be viewed also as a simple check on the lowest order meta-plectic
transformation of � which is just the Legendre transformation. Note that the
Yukawa coupling is invariant under the Z5 which acts as s �→ αs. Z5 implies
further that there can be no integration constants, when passing from Csss to F0

and the coupling λ must transform with λ �→ α
3
2 λ to render F(λ, s, s̄) invariant.

The holomorphic limit w̄ → 0 of Kähler potential and metric follows
from (2.10.25) by extracting the leading anti-holomorphic behaviour. Denoting82

by ak the leading powers of ωorb
k we find

lim
w̄→0

e−K = r1w̄
a1ωorb

1 , lim
w̄→0

Gww̄ = w̄a2−a1−1 r2
r1

(

a2

a1
− 1

)

∂s

∂w
.

(2.10.33)

2.10.3 Expansions Around the Conifold Point

A basis of solutions of the Picard-Fuchs equation around the conifold point (1 −
55z) = δc ∼ 0 is the following

&%c =

⎛

⎜

⎜

⎝

ωc
0

ωc
1

ωc
2

ωc
3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

1+ 2δ3c
625 + 97δ4c

18750 +O(δ5c )

δc + 7δ2c
10 + 41δ3c

25 + 1133δ4c
2500 +O(δ5c )

δ2c + 37δ3c
30 + 2309δ4c

1800 +O(δ5c )

ωc
1 log(δc)− 23 δ3c

360 − 6397 δ4c
60000 +O(δ5c )

⎞

⎟

⎟

⎟

⎟

⎠

(2.10.34)

Here we use the superscript “c” in the periods to denote them as solutions
around the conifold point. We see that one of the solutions ωc

1 is singled out as
it multiplies the log in the solution ωc

3. By a Lefschetz argument as in section
“Conifold Monodromy” it corresponds to the integral over the vanishing S3 cycle
B1 and moreover the solution containing the log is the integral over dual cycle
A1. Comparing with (2.10.17), (2.6.30) and (2.10.35) shows in the Type IIA
interpretation that the D6 brane becomes massless. To determine the periods in

82This is to make contact with the other one modulus cases. Of course if a1 = a2 a log singularity
appears and the formula does not apply.
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the symplectic basis at the conifold we analytically continue the solutions (2.10.17)
from z = 0 to δc = 0 and get

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F0

F1

X0

X1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0
√
5

2πi
0 0

a − i
2g b − i

2h c − i
2r 0

d e f −
√
5

(2πi)2

ig ih ir 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ωc
0

ωc
1

ωc
2

ωc
3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= Tzδ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ωc
0

ωc
1

ωc
2

ωc
3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.10.35)

Six of the real numbers a, . . . , r are only known numerically.83 According to the
prescription outlined in section (2.9.4) we can calculate the new intersection form
ηδ = �δ as

�δ =

⎛

⎜

⎜

⎝

0 0 5
2 0

0 0 − 9
4 −5

− 5
2

9
4 0 0

0 5 0 0

⎞

⎟

⎟

⎠

= (2πi)3T T
zδ�Tzδ . (2.10.36)

Here � is the standard symplectic pairing in the symplectic basis, as determined
in our case at the point of maximal unipotent monodromy. This can be read as
an constraint that special geometry imposes on the entries on Tzδ and leads to the
Legendre relations

√
5d = 2π(bd − qh)

5 = 16

5
π3(ra − cg)

9

4
= 8π3(

√
5

2π
f + ch− br) ,

(2.10.37)

which can be solved for example to yield

h = 2πbg −√5d

2πa
, r = 16π3cg + 5

16π3a
f = 9a + 10b + 16

√
5π2cd

16
√
5π2a

.

(2.10.38)

The new mirror map at δ = 0 should be invariant under the conifold monodromy
and vanishing at the conifold. The vanishing period has D6 brane charge and is
singled out to appear in the numerator of the mirror map. The numerator is not fixed

83a = 6.19501627714957 . . ., b = 1.016604716702582 . . ., c = −0.140889979448831 . . . , d =
1.07072586843016 . . ., e = −0.0247076138044847 . . . , g = 1.29357398450411 . . .
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up to the fact that ωc
3 should not appear. The simplest mirror map compatible with

symplectic form (2.10.36) is

tD(δ) := ωc
1

ωc
0
= δ − 3δ2

10
+ 11δ3

75
− 9δ4

100
+ 5839t5D

93750
+O(t6D) (2.10.39)

δ(tD) = tD + 3t2D
10
+ t3D

30
+ t4D

200
+ 169t5D

375000
+O(t6D) (2.10.40)

We call this new mirror map the dual mirror map and denote it tD to distinguish
from the large complex structure modulus mirror map. Note that here we changed
the parametrization of the discriminant locus in way to make contact to the notation
in [191] to δc = δ

1+δ
.

In the holomorphic limit δ̄→ 0, the Kahler potential andmetric should behave as
e−K ∼ ωc

0 and Gδδ̄ ∼ ∂δtD . Remarkably it turns out that shifts ωc
0 → ωc

0 + b1ω
c
1 +

b2ω
c
2 does not affect the structure we are interested in. The fact that the b1 shifts do

not affect the amplitudes is reminiscent of the SL(2,C) orbit theorem [293]. It is
therefore reasonable to state the results in the more general polarization and define
ω̂c
0 = ωc

0 + b1ω
c
1 + b2ω

c
2. We first determine the genus 0 prepotential checking

consistency of the solutions with special geometry. Defining t̂D = ωc
1

ω̂c
0
and %con =

(ω̂c
0, ω

c
1,

5
2ω

c
2,−5ωc

3)
T we get

%̂conif = ω̂0

⎛

⎜

⎜

⎜

⎝

1
t̂D

2F (0)
conif. − t̂D∂t̂DF

(0)
conif.

∂t̂DF
(0)
conif.

⎞

⎟

⎟

⎟

⎠

. (2.10.41)

with

F
(0)
conif. = −

5

2
log(t̂D)t̂2D+

5

12
(1− 6b1) t̂

3
D+
(

5

12
(b1 − 3b2)− 89

1440
− 5

4
b21

)

t̂4D+O(t̂5D) .

(2.10.42)

The Monodromies of the Quintic

Let us shortly discuss the monodromies of the quintic. Originally in the paper
by [61] the construction of the integral basis has been performed by calculating
local bases at large radius—the orbifold—and the conifold point and using analytic
continuation as well as the fact that the monodromy has to be a subgroup of Sp(4,Z)
to find the integral basis. In this process it was realized that the vanishing cycle
at the conifold correspond to the D6 brane i.e. the first entry in the period in
(2.6.30). Therefore by the Picard-Lefshetz monodromy (2.6.13) the monodromy
Mδc=0 around δc = 0 in the integral basis is determined. Like wise the monodromy
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z=5−5 z=01/z=0

complex moduli space

Ginzburg/Gepner−
point

Orbifold/Landau− Conifold point 
point
Large volume

Family of Quintics 

Fig. 5 The family of quintics over the moduli space P1 \ {z = 0, z = 5−5, z = ∞}

around z = 0 is just given by the B-field shift i.e. t → t − 1 due to the logarithms
in the periods in (2.10.15)84 and therefore trivial to determined from the classical
intersection data. Finally since the moduli space is an P1 without the three points in
Fig. 5, we get immediately that the orbifold or Gepner point monodromy is given by
Mw=0 = M−1

z=0Mδc=0, i.e. we can summarise the monodromy matrices

Mδc=0 =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

, M−1
z=0 =

⎛

⎜

⎜

⎝

1 1 −5 2
0 1 −3 5
0 0 1 0
0 0 −1 1

⎞

⎟

⎟

⎠

,Mw=0 =

⎛

⎜

⎜

⎝

−4 1 −5 2
−3 1 −3 5
1 0 1 0
−1 0 −1 1

⎞

⎟

⎟

⎠

,

(2.10.43)

84We define it in the negative mathematical sense, i.e. we report M−1
z=0, see the contours in Fig. 5.
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with relations

M5
w=0 = 1, Mw=0 = M−1

z=0Mδc=0 . (2.10.44)

2.10.4 Further Hypergeometric One Parameter Families

There are thirteen one parameter models which are realised as smooth hypersurfaces
or complete intersection in weighted projective spaces, which have been analysed,
also at higher genus in [191] and the fourteens one which is not generically smooth.
All these example have hypergeometric Picard-Fuchs operators of the form

L = θ4 − μz
∏

i=1
(θ + ai) . (2.10.45)

The factor λ is given in the Table 2 and so that the discriminant whose vanishing
indicates a conifold singularity is given by δc = (1 − μz). Using (2.9.14) and the
triple intersection given also in Table 2 one gets the triple intersection as

Czzz = D3

z3(1− μz)
. (2.10.46)

With the classical data in Table 2 we can calculate the monodromyat the maximal
unipotent point z = 0 from (2.6.31), (2.6.30) as for the quintic. The hypergeometric
systems have three regular singular points at z = 0, z = 1

μ
,w = 1

z
= 0 and

the one at the conifold z = 1
μ

has the form of the Seidel-Thomas twist, i,e, is

always of the form as Mδc=0 in (2.10.43). The one at w = 1
z
= 0 follows from

Mw=0 = M−1
z=0Mδc=0. In other words the generators of the monodromy follow

immediately from the data in Table 2. The one at w = 1
z
= 0 follows from

Mw=0 = M−1
z=0Mδc=0. The ∗ indicate families whose monodromy group � inside

Sp(4,Z) is not arithmetic, but thin according to [294, 295]. If no * is indicated
the monodromy group � is arithmetic inside Sp(4,Z), further properties of these
arithmetic subgroups were investigated in [179].

Likewise the genus zero instantons follow from the generalized l(1) vectors

l(1) = (−d1, . . . ,−ds;w0, . . . , w4+s ) (2.10.47)

by (2.9.58) and (2.9.59). The latter algorithm has been implemented in the Mathe-
matica program INSTANTON.m, which is available on request from the author.

As mentioned special geometry implies strong constraints on the transitions
matrices. For example for the one parameter families in [236] the following Lemma
that can be generalised to the transition matrices of arbitrary Calabi-Yau 3-folds has
been proven.
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Lemma 1 For any CY 3-fold hypergeometric system as in Table 2 let δ = 1−μz the
conifold variable and (%̃c)T = (1+O(δ)3, ν = δ+O(δ2), δ2+O(δ3), ν log(δ)+
O(δ3)) a normalization of the periods at the conifold point. Then the transition
matrix Tzδ between the integral symplectic basis % (2.10.17) and the periods at the
conifold % = Tzδ%̃

c (2.10.35) fulfills the following quadratic relation

1

(2πi)3

⎛

⎜

⎜

⎝

0 0 κ
2 0

0 0 −ακ −κ

− κ
2 ακ 0 0
0 κ 0 0

⎞

⎟

⎟

⎠

= T T
zδ

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞

⎟

⎟

⎠

Tzδ (2.10.48)

with

α = 3

4

⎛

⎝

4
∑

i=1
ai −

4
∑

i<j

aiaj

⎞

⎠ . (2.10.49)

2.10.5 One Parameter Calabi-Yau Families with Non Hypergeometric
Calabi-Yau Operators

There are Calabi-Yaumanifolds embedded as hypersurfaces, complete intersections,
determinantal or even more general embeddings into Grassmannians and Flag
varieties that have more general and in particular non-hypergeometric order four
Picard Fuchs operators then we saw in the last section. For examples of geometric
realisations one has complete intersections in Grassmannians G(k, n) = (U(k) ×
U(n−k))withU(n) are the unitary groups, and denotes the complete intersection as

(G(k, n)|d1, . . . , dl) . (2.10.50)

There are five well studied examples, whose data we list in Table 3. The differential
operators of the mirror were found in [32], by a three step chain of transitions over
an intermediate torically embedded Calabi-Yau space in which the mirror operation
explained in Sect. 2.7.3 could be performed. The connections between the last two
was discovered by Rodland [282]. He realised that the one parameter family, which
starts out as the complete intersections in a Grassmannians has a second large
volume phase in a Paffian Phase with different C.T.C. Wall data as shown in the
Table 3. The higher genus invariants have been calculated for the Rodland case in
[184] and for all cases in [161]. Let us report on the Yukawa couplings for the
models whose numerator also contain the discriminants

CG(2,5|1,22)
zzz = 15

z3(1− 176z − 256z2)
, CG(2,5|12,3)

zzz = 20

z3(1 − 297z − 729z2)
,

CG(2,6|14,2)
zzz = 28

z3(1+ 4z)(1 − 108z)
, CG(3,6|16)

zzz

42

z3(1 − z)(1 − 64z)
(2.10.51)
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The model G(3, 6|16) has the interesting feature that at (1 − z) a Lense space
L(2, 1) = S3/Z2 shrinks all other points are conifolds points where an S3 shrinks.

CG(2,7|17)
zzz = 14(3 − z)

z3
(

z3 − 289z2 − 57z + 1
) , C

Paff.Ph.)
zzz

14(1 − 3z)

z3
(

z3 − 57z2 − 289z + 1
)

(2.10.52)

The moduli space are P1 \{P1 . . . , Ps} where in the examples we have s ≤ 6 points.
The Riemann symbol can be used to distinguish actual from apparent singularities.
One finds moreover that the conifold closest to z = 0 corresponds to the vanishing
of the D6 brane and determines the growth of BPS states, while at the other points
spheres in different homology classes vanish [161].

While these non-hypergeometric families have actually known Calabi-Yau rep-
resentations [14] generate a list of 403 so called Calabi-Yau differential operators,
with a maximal unipotent point at z = 0 which implies the form (2.9.26)
and condition (2.9.20), which as explained is equivalent to the flat coordinate
form (2.9.18). Further it is required that the coefficients of X0 at this points and the
genus zero instantons are integer. There are more complicated conditions at z = ∞.
Namely that the indicials α(1)

1 ≤ α
(2)
1 ≤ α

(2)
1 ≤ α

(4)
1 at z = ∞ are rational numbers

satisfying α
(1)
1 +α

(4)
1 = α

(2)
1 +α

(3)
1 = s ∈ Q and the eigenvalues exp(2πiαk) of the

monodromy are a product of cyclotomic polynomials.

2.11 Two Parameter Examples

According to our discussion of the fibration structure discussed in Sect. 2.7.5 there
are two possibilities for a fibration in a Calab-Yau 3 fold: either a K3 fibration over
P1 or an elliptic fibration over a surface. The K3 fibrations have been much studied
in the context of the duality of the heterotic string on K3 × T 2 and the type IIA
string on K3 fibred Calabi-Yau spaces while the elliptic fibration were studied in
the context of F theory compactifications to six dimensions. We give therefore the
simplest example of each kind.

2.11.1 The X18=2(1, 1, 2, 2, 6) 3-Fold, an K3 Fibration Over P1

As one example of this type consider the hypersurface of degree 12 in
P(1, 1, 2, 2, 6), which has h1,1(M) = 2 and h2,1(M) = 128. We mod M out
by an Z12 × Z6 × Z6 acting as

xi → exp(2πig
(α)
i /12)xi, α = 1, 2, 3, i = 1, . . . , 5 , (2.11.1)
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with g(1) = (1, 11, 0, 0, 0), g(2) = (2, 0, 10, 0, 0) and g(3) = (2, 0, 0, 10, 0). The
invariant constraint, which we interpret as mirror admits two complex structure
deformations h2,1(W) = 2

P = a1x
12
1 + a2x

12
2 + a3x

6
3 + a4x

6
4 + a5x

2
5 + a0

5
∏

i=1
xi + a6(x1x2)

6 (2.11.2)

It is convenient to express the multiplicative relation between the monomials
in (2.11.2) in vectors85

l(1) = (−6; 0, 0, 1, 1, 3, 1) l(2) = (0; 1, 1, 0, 0, 0,−2) (2.11.3)

such that equations corresponding to (2.12.17) are now written as

∏

l
(b)
i <0

(

∂

∂ai

)−l
(b)
i �(a)

a0
=
∏

l
(b)
i <0

(

∂

∂ai

)l
(b)
i �(a)

a0
b = 1, 2 . (2.11.4)

Similar symmetry considerations as above lead to the conclusion that%(z) depends
only on

zb = (−1)l(b)0
∏

i

a
l
(b)
i

i , b = 1, 2 (2.11.5)

and the reduction of (2.11.4) leads after factorization to the differential operators
θi = zi

d
dzi

L1 = θ21 (θ
2
1 − 2θ2)−∏2

i=0(6θ1 − (2i + 1))z1

L2 = θ22 −
∏2

i=1(2θ2 − θ1 − i)z2 .
(2.11.6)

The periods in the integral basis of this model can be immediately obtained
from (2.9.58) and the monodromies of this example have been calculated in
[63, 205]. Further information about this model is given in Sect. 5.1.1.

85They will identified with the generators of the Mori cone in section “The Monodromies of the
Quintic”.
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2.11.2 The X18(1, 1, 1, 6, 9) 3-Fold, an Elliptic Fibration over P2

Here we complete the main example for elliptic fibration whose polyhedron was
given in (2.7.35) by supplementing the B-model data. This example has been
discussed in [186] and in greater detail in [64].

The mirror manifold is given by the zero locus

P
Δ̂
= x0(z

6(x181 + x182 + x183 − b(x1x2x3)
6)− 2

1
3
√
3azx1x2x3x4x5 + x3 + y2) = 0

(2.11.7)

in the space P. Note that z := x4, x := x5 = and y := x6 are the conventional
names of variables in the Weierstrass form of the elliptic fibre. In P there are toric
C∗ actions on the coordinates xi , i = 1, . . . , 6, which can be used to eliminate all ai ,
but the two complex structure variables (a, b) of W . This is because two C∗ actions

xi → μ
l
(r)
i
r xi, with μr ∈ C

∗ , (2.11.8)

are divided out from the coordinate ring of P. One can introduce manifestly C
∗

invariant combinations the ai as complex structure variables of W , namely

zi = (−1)l(i)0
∏

k=1
a
l
(i)
k

k , i = 1, . . . , h21(W3) = h11(M3) . (2.11.9)

In the case at hand z1 := zE = a4a
2
5a

3
6

a60
and the corresponding mirror map tE =

log(zE)

2πiX0 +O(z) corresponds to the elliptic fibre and similarly z2 := zB = a1a2a3
a34

and

tB to the base class. Using the C∗ actions given by the l(i) vectors in (2.7.35) on the
period integrals%(z) = ∫γ3 � with (a = a0)

� =
∮

γε

aμ

P
Δ̂

, (2.11.10)

given by a residuum integral around P
Δ̂
with the measure μ =∑5

i=1(−1)iwidx1∧
. . . ̂dxi . . . ∧ dx5, one can derive two Picard-Fuchs (PF) differential equations by
reducing (2.11.4) to the z1, z2 variables and get

L1 = θ1(θ1 − 3θ2)− 12z1(6θ1 + 1)(6θ1 + 5),

L2 = θ32 + z2

2
∏

i=0
(3θ2 − θ1 + i) (2.11.11)
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determining the periods from Li%(z) = 0, i = 1, 2. Here θi = zi
∂
∂zi

. The
discriminants of the operators are

1 = (1− 432z1)3 − 27z2(432z1)3,

2 = 1+ 27z2 (2.11.12)

The 3-point couplings can be computed from the PF operators as in Sect. 2.9.2
or in [186]

C111 = 9

z311
, C112 = C121 = C211 = 33

z21z21
,

C122 = C212 = C221 = 2
3

z1z
2
21

, C222 = 9(3
3 + (432z1)3)

z2212
, (2.11.13)

where for convenience we can define the factor3 = 1− 432z1. Again the periods
in the integral basis are obtained from (2.9.58). The monodromy group contains as a
subgroup Sl(2,Z) [64]. This has the consequence that the amplitudes have modular
properties w.r.t. the fibre modulus. The strongest result in this direction so far has
been obtained in [195], where it was shown that the all genera results for given base
degree are meromorphic Jacobi-Forms.

2.11.3 Integrality of the Mirror Map

While the integrality of instanton expansion of the F (g) has found, at least
physically, a completely satisfactory explanation as counting of BPS states, see
Sect. 4.3.3, the integral expansion of all known mirror maps at the point of maximal
unipotent monodromy remains physically more mysterious.

We exponentiate (2.9.53) for the quintic, invert it and expand z(q) in Q = e2πit .
Call jq = 1

z(q)
in analogy with the normalized je(q) Sl(2,Z) invariant function of

the elliptic curve. Both expansions have positive integral coefficients

je = 1
q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 + 20245856256 q4 + . . .

jq = 1
q
+ 770 + 421375 q + 274007500 q2 + 236982309375 q3 + 251719793608904 q4 + . . .

(2.11.14)

The integrality of jq should be related to monodromy group � ∈ Sp(4,Z) generated
by M0 and M1, but it is unknown what the integer coefficients are counting. For the
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K3 fibred example discussed in we get for each of the two functions j1 = 1
z1

and

j2 = 1
z2

an integral two parameter expansion

j1 = 1
q1
+ 744+ 196884 q1+ 21493760 q21 + 864299970 q31 + . . .

q2

(

− 1
q1
+ 480+ 1403748 q1+ 1203172608 q21 + . . .

)

...

j2 = 1
q2
+ 2+ q2 + q1

(

1
q2
240− 240− 240 q + 240 q2

)

+
q21

(

1
q2
70920− 57600− 26640 q2 − 57600 q22 + 70920 q32

)

. . .

(2.11.15)

The occurrence of the j -function [63] at je = j1|q2=0 has been related to string
duality between type II on to the heterotic string on K3× T 2 [204, 205], see [221]
for a review. These primitive observations may point towards number theoretic
applications of topological string theory. Intriguing observations for Calabi-Yau
manifolds over finite fields have been made in [65].

2.12 Mirror Geometries Related to Elliptic Curves

In this section we want to describe the local mirror symmetries related to elliptic
curves. In particular these are the local mirrors to local Del Pezzo Calabi-Yau
spaces, which we describe in the next subsection. Before we recall a couple of
elementary fact about elliptic curves.

2.12.1 Elliptic Curves, Modular Functions and Differential Equations

Every family of elliptic curves can be written in the Weierstrass form, which reads
in affine complex coordinates x, y as

y2 − 4x3 + f (s)x + g(s) = 0, (2.12.1)

where  = f 3 − 27g2 is the discriminant of the curve. The complex structure of
the elliptic curve τ ∈ H+ is related to f and g by86

j (τ ) = 123
f 3


. (2.12.2)

86See section “Modular Forms of �1 = Sl(2,Z)” in Appendix 4 for notations.



240 A. Klemm

Defining q = exp(2πiτ) we have as central quantity the modular invariant j

function

j (τ ) = (12E4)
3

E3
4 − E2

6

= 1

q
+ 744+ 196884q + . . . . (2.12.3)

This is invariant under the PSL(2,Z) action defined in (A4.3) and is therefore well
defined on the fundamental region of complex structures of the elliptic curve

F = PSL(2,Z)/H+ . (2.12.4)

For k ∈ 2N+ we defined with

Ek(τ) = 1

2ζ(k)

∑

n,m∈Z
(n,m) �=(0,0)

1

(mτ + n)k
= 1+ (2πi)k

(k − 1)!ζ(k)
∞
∑

n=1
σk−1(n)qn ,

(2.12.5)
the normalized (and regularized by the second equal sign for k = 2) Eisenstein
series, with σk(n) the sum of the k-th power of the positive divisors of n and

ζ(k) =
∑

r≥0

1

rk
= − (2πi)kBk

(2k(k − 1)!) (2.12.6)

for k ∈ 2N+. Here the Bernoulli numbersBk can be defined by the generating series

∞
∑

k=0

Bkx
k

k! := x

ex − 1
. (2.12.7)

The Eisenstein series are modular forms of weight k whose properties we shortly
explain in section “Modular Forms of �1 = Sl(2,Z)” in Appendix 4.

For a family of elliptic curves f and g depend on one complex modulus say s.
For instance for instance the Legendre curve discussed in Sect. 2.4.3 in Eq. (2.4.24)
is a projective embedding of a cubic in P2

P = zy2 − x3 + zx2(1+ s)− xz2s = 0 (2.12.8)

into P2. Now by the automorphism of P2 namely Aut(P2) = PGL(3) transfor-
mations of P2 we can bring any cubic as e.g. the Legendre cubic (2.12.8) into the
Weierstrassform (2.12.1). This problem arises for any embedding of an elliptic curve
into an ambient variety and has been solved systematically for all hypersurfaces in
toric ambient spaces, for which the automorphism have been described generally
in (2.7.16), (2.7.17). One just has to look at the Newton polynomial of the
hypersurfaces in Fig. 6, keep track of the coefficients, most of which are zero
for (2.12.8), and then the f = g∗2 and the g = g∗3 are given in (A1.1) of Appendix 1,
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which yields

f = 1

3
(1− s + s2) g = 1

54
(2− 3s − 3s2 + 2s3), j (z) = 4

27

1− s + s2

(1− s2)2s2
.

(2.12.9)

By (2.4.50) τ gets related to ratios of periods and by (2.12.2), (2.12.3) to the modular
forms given in the case of Sl(2,Z) by the Eisenstein series. One can make this very
concrete and express the vanishing period in terms of the f = g2(s) g = g3(s) as
well as E4 and E6 as in (2.12.16). Moreover periods as we know fulfill differential
equations in the family parameter s of the elliptic curve, which is in turn very simply
related to the j -function by (2.12.9) and (2.12.3).

How is that differential equation related to modular forms, when expressed in
j (τ )? The answer is a proposition, quite simple to proof [54], which Zagier calls
in [4] the ‘perhaps single most important source of applications of modular forms
in other branches of mathematics’ and which states the following

Proposition 2 Let f (τ) be a holomorphic or meromorphic modular form of
positive weight (see section “Modular Forms of �1 = Sl(2,Z)” in Appendix 4)
on some modular group � and s(τ ) a modular function on �. Express f (τ) locally
as �(s(τ )) then the function �(s) satisfies a linear differential equation of order
k+1 with algebraic coefficients, or with polynomial coefficients if �/H+ has genus
zero and s(τ ) generates the field of modular functions on �.

A simple example which illustrates many aspects of this is that the meromorphic
weight k = 1 function is given by

4
√

E4(τ ) =2 F1

(

1

12
,
5

12
; 1; s(τ )

)

, (2.12.10)

i.e. the standard hypergeometric function, solving a second order differential
equation in s(τ ) = 123/j (τ ). We see that (2.12.16) is another application of the
proposition and that the Picard-Fuchs equations that

∫

A ω fulfills can be seen as
consequence of modularity of the elliptic curve.

2.12.2 The Mirror Geometry of Local Toric del Pezzo Surfaces

In this section we describe as an example for the powerful tools that exists for mirror
geometries related to elliptic curves the B-model geometry that arises for local del
Pezzo Calabi-Yau spaces. Local del Pezzo Calabi-Yau spaces are defined as the
total space M̌of the anti-canonical line bundle over del Pezzo surfaces S, which we
denote as

(2.12.11)
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We saw in Sects. 2.7.4 and 2.7.5 examples mirror of a local toric Pezzo surface
and concluded that they are elliptic curves. More precisely the toric del Pezzo
surfaces can be described in terms of two dimensional reflexive pairs of polyhedra,
which in turn can be all embedded in the polyhedra depicted in Fig. 6. In this case
H(X, Y, z) in (2.8.15) is the Newton polynomial of the reflexive polyhedron and
H(X, Y, z) = 0 is a family ε of genus one curves. We homogenize the Newton
polynom as indicated in Fig. 6. For example the most general cubic in P2 is given
by the vanishing locus

P = m1x
3+m2x

2y +m3xy
2 +m4y

3 +m5y
2z+m6yz

2 +m7z
3 +m8xz

2+m9x
2z+ uxyz .

(2.12.12)

If we would be interested in the variation of the complex structure deformations of
the cubic as encoded in the periods over the holomorphic (1, 0) forms ω, we could
use all automorphism of P2 to set the parameters except for u to constant values.
But as the local mirror description for the anti-canonical line bundle over the del
Pezzo given by the global embedding of curve in a non-compact 3 fold leads to two
data [E, λ = limloc �] that are only invariant under an restricted automorphism we
are only allowed to fix 3 parameters to non-zero constants, while the others describe
the residue of the meromorphic differential of the third kind λ.

As was explained in [193] it is straightforward to get periods in a suitable
symplectic basis (A,B) ∈ H1(E,Z)

&π =
(

a(u,m)

aD(u,m)

)

=
(∫

A λ
∫

B
λ

)

(2.12.13)

w.r.t. the holomorphic differential of the third kind λ directly from the Weierstrass
form of the curve

y2 = 4x3 − xg2(u,m)− g3(u,m) . (2.12.14)

The latter is obtained for all forms of the elliptic curves corresponding to the Newton
polynomials that derive from the polyhedra in fig 6 using Nagell’s algorithm. The
resulting g2(u,m) and g3(u,m) are given for the three choices for convenience
in Appendix 1.

The important point is to note that the interior point is special in the A- as well
as in the B-model. In the toric description of the A-model it corresponds to the
canonical class of the del Pezzo surface and in the B-model it corresponds to the
only dynamical deformation of special geometry. The latter fact implies that

∂u

∫

A

λ = ∂ut =
∫

A

ω, (2.12.15)

where ω is the holomorphic differential of the family Eu,m. By the theory of families
of elliptic curves an integral of the holomorphic (1, 0) form over a vanishing cycle
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near any cusp is given by

∂ut =
√

E6(τ )g2(u,m)

E4(τ )g3(u,m)
. (2.12.16)

The function g2 and g3 can be rescaled by

g2(u,m)→ g2(u,m)f 3(u,m)

g3(u,m)→ g3(u,m)f 2(u,m) .
(2.12.17)

However we can fix the normalization by requiring that = g32(u,m)−27g23(u,m)

contains only the geometric components of the discriminant and ∂ut ∼ 1
2πi

u−1 at
the cusps. The latter normalisation implies that we can express the mirror map by

u(t,m) = Qt + . . . , (2.12.18)

with Q = exp(2πit). This is the leading behaviour of the mirror map, which is
fixed to all orders by (2.12.16). In (2.12.16) τ (u,m) is a function of u and the m’s,
which is simply derived by equating the algebraic and the modular definition of the
j invariant

1728g32(u,m)

g32(u,m)− 27g23(u,m)
= 1

q
+ 744+ 192688q + . . . (2.12.19)

where q = exp(2πiτ), and solving for τ (u,m).
The second period can be derived since special geometry predicts that the period

over dual cycle to A fulfills the relation

∂2

∂2t
F = ∂t tD = ∂t

∫

B

λ = − 1

2πi
τ(t,m) . (2.12.20)

This relation also allows to obtain the holomorphic prepotential and therefor the
instanton numbers up to constants w.r.t the integration in t .

F(Q) = −cijk

3! +
cij

2
t i tj + cit

i + c+
∑

β∈H2(M,Z)

n
β
0 Li3(Q

β) (2.12.21)

The latter can be inferred from the A-model using the �̂ class after choosing an
appropriate basis for the Kähler class parameters ti in the Kähler cone. Here we
denote the special class defined in (2.12.16), which is related to the canonical class
by t = t0 and the ones related to the masses mi by ti . The actual construction of
the Kähler cone was done in [235] and allows in general for different phases that
involve linear changes in the basis of the ti , corresponding to the different cones
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in the secondary fan of the nonlocal toric Calabi-Yau. From the point of view of
Gromov-Witten theory classes that do not involve the canonical class count curves
in the classes that come from the edges of the toric polyhedra. This lead indeed
to a Gromov-Witten theory problem in two complex dimensions, which is trivially
solved.

As it is pointed out in [193] also the B-model for higher genus amplitudes for the
elliptic families of curves ε with the differential of the third kind λ can be solved
very explicitly using the modular expression introduced in this section.

3 The World-Sheet Point of View

The worldsheet point follows simply from the elementary definition of string theory
as the map

X : � → M . (3.0.1)

Here we focus on those maps, which embed the worldsheet into the non-trivial
part of the space time, i.e. the internal space M , as the maps into the flat space
have no interesting non-trivial topology and the worldsheet theory is that of free
fields, which is solvable and discussed in early chapters of standard string books.
This map comes with an action, which is known as non-linear σ -model action and
a curved manifold M is only then a stable background if the non-linear σ -model
is conformally invariant. This means in particular that the scale dependence of all
couplings to the metric and its derivatives must vanish.

The special holomony target manifolds play an important role again because
they lead to extended supersymmetry on the worldsheet. In particular for Riemann
manifolds one can have N = (1, 1) worldsheet supersymmetry, for Kähler
manifolds one can haveN = (2, 2) worldsheet supersymmetry.

However general Kähler metrics do not lead to conformally invariant worldsheet
theories. For Calabi-Yau 3-folds, it has been established by direct calculations, that
there is a choice of metric with c1(TM) = 0 for which the worldsheet theory of the
type II superstring is an N = (2, 2) superconformal theory.

For the heteroric string on CY 3-folds the worldsheet supersymmetry is N =
(2, 0) and additional consistency conditions have to be met for the choices of the
gauge bundles to make the theory conformal. In the E8×E8 heterotic string theory
is a standard embedding of the tangent bundle into one E8 so that the SU(3)
holomomy breaks the gauge group to E6. This heterotic theory is stable and has
some of the simplifying features of theN = (2, 2) compactifications.

It has been also argued that the question of stability is related to spacetime
supersymmetry. As was explained in Sect. 1.1.6 one gets N = 2 and N = 1 space
time supersymmetry for Calabi-Yau 3-folds in four dimensions and no enhanced
supersymmetry for general Kähler manifolds.
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3.1 TheN = 2Worldsheet Superconformal Theories

More precisely the compactifications of the type II superstring on Calabi-Yau
threefolds have a globalN = (2, 2) worldsheet susy. An N = (1, 1) subsymmetry
is gauged in the superstring. We assume some familiarity with two dimensional
confirmed field theory, see e.g. [90].

3.1.1 The N = 2 Superconformal Algebra

Let us discuss the chiral N = 2 part of the superconformal algebra on the
worldsheet, which has the following chiral currents with the indicated mode
expansions:

• The chiral component of energy momentum tensor87

T (z) =
∑

n∈Z

Ln

zn+2
(3.1.1)

with conformal dimension h and U(1) chargeQ given by (h,Q) = (2, 0).
• An U(1) current

J (z) =
∑

n∈Z

Jn

zn+1
(3.1.2)

with (h,Q) = (1, 0)
• Two super currents

G±(z) =
∑

r∈Z±ν

G±r
zr+ 3

2

(3.1.3)

with (h,Q) = ( 32 ,±1). Hence
G±(e2πiz) = −e∓2πiνG±(z) , (3.1.4)

where 0 ≤ ν < 1. Since G±(z) is fermionic, ν = 0 Ramond- (anti-periodic on
the z-plane)88 and ν = 1

2 Neveu-Schwarz boundary conditions (periodic on the
z-plane) are particularly natural. However the N = 2 current algebra admits an

87The standard notation in CFT is quite different then the one common in the discussion of σ

models that we used in Sect. 3.2. One uses in CFT z = σ 1+iσ 2 and z̄ = σ 1+iσ 2 where σ 2 = iσ 0

is the euclidean time. Correspondingly one indicates the left moving sector which carried a+ index
in Sect. 3.2 by quantities without bar and the right moving carrying before − with quantities with
bar. Moreover the unbarred or barred super charges are now distinguished by− and+ respectively,
e.g. Q+ ↔ G−0 , Q̄+ ↔ G+0 , Q− ↔ Ḡ−0 and Q̄− ↔ Ḡ+.
88Or more naturally periodic on the cylinder.
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U(1) rotation on the super currents as it is seen below. One can therefore consider
the more general boundary condition (3.1.4), which leads to the spectral flow on
the representations.

The short distance operator expansion reads

T (z)T (w) = c

2(z−w)4
+ 2

(z−w)2
T (w)+ 1

z−w
∂wT (w)+ reg,

T (z)G±(w) = 3

2(z−w)2
G±(w)+ 1

z−w
∂wG±(w)+ reg,

T (z)J (w) = 1

(z− w)2
J (w)+ 1

z −w
∂wJ (w)+ reg,

G±(z)G∓(w) = 2c

3(z−w)3
± 2

(z−w)2
J (w)+ 2T (w)± ∂wJ (w)

z −w
+ reg,

G+(z)G+(w) = G−(z)G−(w) = 0+ reg,

J (z)G±(w) = ± 1

z−w
G±(w)+ reg,

J (z)J (w) = c

3(z−w)2
+ reg,

(3.1.5)

where C ∈ R is the central charge.
From this algebra it is clear that there is a continuous O(2) rotation defined in

the canonical way on a real basis of supercharges Gx = G+ + G− and Gy =
i(G+ −G−). Parametrized by the angle ν its acts like the internal U(1) on the G±
used in (3.1.4) to define general twisted boundary conditions. In addition there is an
exterior Z2 : Gy →−Gy action.

Let us recapitulate the standard procedure in 2d QFT which recovers the algebra
of charge operators from an operator algebra such as (3.1.5). To the operator A(z)

we assign charge operators Aξ =
∮

C0
dz ξ(z)A(z), where C0 is a contour around

the origin 0 and
∮

C0
dz := ∫

C0

dz
2πi

. In particular for ξ(z) = zn+h(A)−1 the charges
are the modes An of A(z). The transformation of the operator B(w) under (δAξ ) is
generated by the commutator with Aξ . In radial time ordering the commutator is
given by the following contour integrals

(δAξ )B(w) = [Aξ,B(w)]± =
∮

C0|z|>|w|
dz ξ(z)A(z)B(w)±

∮

C0|z|<|w|
dz ξ(z)A(z)B(w)

=
∮

Cw

dz ξ(z)A(z)B(w) , (3.1.6)

see figure. Here [·, ·]± stands for the commutator (−) [·, ·] and anticommutator (+)
{·, ·}.
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w

z

=
w

w

z z

C C

Cw

0 > 0 <

The spatial transformations δξ corresponding to conformal transformations89 z →
z + ξ(z) are generated by T (z), i.e. δξ = δTξ . One can integrate (3.1.6) with
∮

C ′w=0
dw zm+h(B)−1 to recover as residuum the mode algebra from (3.1.5)

[Lm,Ln] = (m− n)Lm+n + c
12m(m2 − 1)δm,−n,

[Lm,G±r ] =
(

m
2 − r

)

G±m+r ,

[Lm, Jn] = −nJm+n,

{G+r ,G−s } = 2Lr+s + (r − s)Jr+s + c
3

(

r2 − 1
4

)

δr,−s,

{G+r ,G+s } = {G−r ,G−s } = 0,

[Jn,G
±
r ] = ±G±r+n,

[Jm, Jn] = c
3δm,−n .

(3.1.7)

In case that the N = (2, 2) CFT theory is the internal part of an 10d superstring
compactification it must have c = c̄ = 9 to cancel the Weyl anomaly. This
contributions comes from the worldsheet fields which represent coordinates on the
internal manifold M . In particular we can identify n = dimC(M) = c

3 .

3.1.2 The Spectral Flow and the Chiral Ring

At this point we review some elementary representation theory of conformal field
theories. The Hilbert space of states of a conformal field theory can be organized
into highest weight representations. To define them one fixes a highest weight state
|ψ〉 which fulfills

Ln|ψ〉 = 0, Jm|ψ〉 = 0, G±r |ψ〉 = 0 ∀m,n, r > 0 . (3.1.8)

The representations is then generated by applying negative modes of all operators
in the algebra. In general there will be null states |χ〉, whose norm 〈φ, χ〉 = 0 with

89These are functions only of z, which can at most be meromorphic in 2d.
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all other states 〈φ| = |φ〉† in the Hilbert space generated in this way, which will be
discarded from the physical Hilbert space. Note that

L†
n = L−n, J †

n = J−n and (G±r )† = G∓−r . (3.1.9)

Any state in the highest weight space can then be classified by it eigenvalues, with
respect to the maximal commuting sub algebra. In the case at hand that is generated
by the conformal weight operator L0 and the charge operator J0, so that a state |φ〉
will have

L0|φ〉 = hφ |φ〉, J0|φ〉 = qφ|φ〉 (3.1.10)

a conformal weight hφ and an U(1) charge qφ . The operator state correspondence
allows to associate these quantum numbers also to the currents or to general fields.
Any 2d conformal field theory has a vacuum state |vac〉 with hvac = 0. The norm
for the vacuum state and the other highest weight states is 〈ψ,ψ〉 = 1. In an unitary
theory 〈φ, φ〉 > 0 for all fields, this implies c > 0 and all hφ values have to fulfill
hφ ≥ 0. Note that the modes G±0 do not raise the conformal weight. This means in
particular that the Ramond ground states will be degenerate. One has

G±
′

0 G±
′

0 = 0, {G+0 ,G−0 } = 2
(

L0 − c

24

)

. (3.1.11)

Unitarity then implies that hφ ≥ c
24 in the Ramond sector. When hφ = c

24 ,
then G±0 |φ〉 are a null states and one has one groundstate |φ〉, called a Ramond
groundstate. When hφ > c

24 the G±0 generate four states that are degenerate in the
conformal weight. In topological considerations an important role is played by the
fermion operator.

(−1)F , where F |φ〉 =
{ |φ〉 on fermions

0 on bosons
(3.1.12)

Note that the trace of (−1)F receives only contributions form the Ramond ground
states as the contribution of states with hφ > c

24 cancels due to the different fermion
numbers of the four states.

One can write explicitly the algebra isomorphism associated to the U(1) rotation
on the super currents on the modes as [286]

Ln → L′n = Ln + νJn + 1
6ν

2cδn,0

Jn → J ′n = Jn + 1
3νcδn,0

G±r → (G±r )′ = G±r∓ν .

(3.1.13)
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In particular the algebra isomorphism allows for a continuous flow from ν = 0 to
ν = 1

2 that exchanges Neveu-Schwarz (NS) and Ramond (R) boundary conditions
on one chiral half and commutes with the GSO projection. Since space time bosons
and space fermions have a different association of the R and the N sector on one
chiral half the above flow can be identified with the supersymmetry generator on
the spacetime spectrum. Note that the outer Z2 automorphism allows to consider
0 ≤ |ν| < 1 in (3.1.13).

In fact any operator O(z) with U(1) charge q can be decomposed into a part
Ô(z) which is neutral under the U(1) current and a charge carrying part, i.e.

Oq(z) = Ô(z)e
iq

√

3
c φ(z)

. (3.1.14)

Here we bosonized the U(1) current as J (z) =
√

c
3∂φ(z). Hence using the

vertex algebra formalism one can construct an actual spectral flow operator Sν ∼
ei
√

c
3 νφ(z), which shifts the U(1) charge and the conformal dimension according

to (3.1.13). Such an operator S 1
2
is used in the construction of the actual super

symmetry operator on the world sheet see [252, 286].
If we consider (3.1.13) with ν = ±′ 12 we get on the spectrum the shift

h→ h′ = h±′ 1
2
q + 3

8
, q → q ′ = q ±′ 3

2
. (3.1.15)

In particular the Ramond-Ramond ground states which fulfill [252]

G±0 |ψ〉 = 0. (3.1.16)

with (3.1.7)

h = c

24
= 3

8
, (3.1.17)

due to (3.1.7), flow into states in the NS sector into primary fields, which fulfill

G±
′
− 1

2
|φ〉 = 0 , (3.1.18)

and by (3.1.15)

h = ±′ q
2
. (3.1.19)

States with the plus in (3.1.18) and hence h = q
2 are called chiral states and such

with the minus in (3.1.18) and hence h = − q
2 are called anti-chiral states.

In a conformal field theory the leading short distance singularity of an operator
product expansion is determined by the conformal dimension of the fields on the
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right and the left Oa(z)Ob(w) = (z − w)hc−ha−hbCc
abOc + less sing. Since one

has charge conservations and the charge is correlated for chiral with the conformal
dimension the chiral and anti-chiral operators form a regular ring under the operator
product expansion

OaOb = Cc
abOc + reg. (3.1.20)

The operator product expansion contains regular terms, i.e. more information then
the (anti-) chiral rings. One has to establish a consistent projection of it to the chiral
ring states. First one notice that the positivity of

||G±′− 1
2
φ〉|2 = 〈φ|G∓1

2
G±

′
− 1

2
|φ〉 = 〈φ|2L0 ±′ J0|φ〉 (3.1.21)

implies

hφ ≥ 1

2
|qφ|, ∀φ (3.1.22)

Here the equality holds for the (anti-)chiral states, while the regular terms in (3.1.20)
represent states with do not satisfy the bound. One can show that eachNS state has a
chiral primary representative in the sense that there exists an unique decomposition

|φ〉 = |φ0〉 +G+− 1
2
|φ1〉 +G−1

2
|φ2〉 (3.1.23)

with |φ0〉 a chiral primary. This the analog of the Hodge decomposition (2.3.33) and
the (anti-)chiral states are the analogs of harmonic forms. The decomposition has
been argued in [252] in fact using the relation between the zero modes of the super
currents and the exterior derivatives on a target space

G+0 ∼ ∂, Ḡ+0 ∼ ∂̄ (3.1.24)

in the Ramond sector and the spectral flow arguments. It is obvious that in
correlation functions involving only (anti-)chiral fields the terms in the image
of G+− 1

2
or G−+ 1

2
do not matter, just like the choice of the representative of a

cohomology class does not matter in an integral of forms over a closed cycle. In
this sense (3.1.20) can be viewed as defining a cohomology ring.

It is further easy to show that the charge in the (anti-)chiral ring is bounded by
the positivity of

||G±′− 3
2
φ〉|2 = 〈φ|G∓3

2
G±

′
− 3

2
|φ〉 = 〈φ|2L0 ±′ 3J0 + 2

3
c|φ〉 (3.1.25)
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which implies

|q| ≤ c

3
= d, ∀ (anti−)chiral states . (3.1.26)

That truncates the (anti-) chiral ring to a finite ring if the changes are discrete. In fact
the (anti-)chiral rings have the important property of defining a Frobenius algebra.
The grading is of course the charge grading and all axioms of the Frobenius algebra
follow from the axioms of conformal field theory and its consistent truncation.

Massless space-time scalars have (Q, Q̄) = (±1,±1). The states in the chiral-
and anti chiral rings with this property are related to the cohomology of M .
The (c, c) ring corresponds to the Hd−1,1(M) cohomology and the (c, a) ring
corresponds90 to the H 1,1(M) cohomology.

In order to define a topological version of the N = 2 algebra one needs to
define nilpotent globally define super charge operators Q with Q2 = 0. Of course
one wants to define them using the fermionic super charges G±, which have the
nilpotency property (3.1.5). However being fermions they are not globally defined
on general worldsheets of genus g �= 1. The reason is that Riemann surfaces are
just Kähler and there are no covariant constant spinors unless the surfaces are also
Calabi-Yau manifolds, which leaves in one complex dimension just the torus with
g = 1. For general Riemann surfaces one can still define a topological theory using
the fact that there is the U(1) current algebra generated by the currents J (z). The
euclidian Lorentz group in two dimensions is just a SO(2) ∼= U(1) rotation. For
this reason it is possible to combine the U(1) spinor connection from the Lorentz
group with the U(1) symmetry connection to define a scalar super charge. This has
to be discussed on two chiral halfs of the theory.

For preparation of this we consider first the (+,−) twisting on one chiral half91

[92, 105]

T̂ (z) = T (z)±′ 1
2
∂J (z) → L̂0 = L0 ±′ 1

2
J0 (3.1.27)

then the modifications of (3.1.5) occur in the following short distance expansions

T̂ (z)T̂ (w) ∼ 2
(z−w)2

T̂ (w)+ 1
z−w

∂wT̂ (w)

T̂ (z)G±(w) ∼ 3±′1
2(z−w)2

G±(w)+ 1
z−w

∂wG±(w)

T̂ (z)J (w) ∼ 1
(z−w)2

J (w)+ 1
z−w

∂wJ (w)∓′ c

3(z−w)3
,

G+(z)G−(w) ∼ 2c
3(z−w)3

+ 2
(z−w)2

J (w)+ 2
z−w

T̂ (w)+ 1∓′1
z−w

∂wJ (w).

(3.1.28)

90The (a, a) and (a, c) rings correspond to conjugated fields and contain no independent
information.
91±′ marked by a prime are correlated in (3.3.4), (3.1.28).
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Let us point out the salient features of the operator product expansions in (3.1.28)

• Since the central term in the first OPE vanishes, no ghost system is required to
quantize the world sheet theory.

• By the second OPE either G+ (+-twist) or G− (−-twist) become a spin one
currents, so either Q = G+0 =

∮

G+ or G−0 =
∮

G− becomes conformal, i.e.
scalars that are defined on every genus world sheet. The opposite super currents
G− (+-twist) or G+ (−-twist), become spin 2 fields.

• The above conformal zero modes are recognized as building blocks for nilpotent
operators QA/B . QA = G+0 + Ḡ−0 in the case of the (+,−) twist defining the
(c, a) twisted chiral ring as cohomology.QB = G+0 + Ḡ+0 for the (+,+) twist
defining the (c, c) chiral ring. The relation to geometry of M is92 for the A-
model QA ↔ d and the for the B-modelQB ↔ ∂̄ as discussed in more detail in
Sects. 3.4.1, 3.5.1.

• The third OPE shows that J (z) has an anomalous transformation. By arguments
familiar from the BRST quantization of the bosonic string this gives rise to an
anomaly in the divergence of the current, see [122–124] for a derivation, which
can be covariantly written as

∫

∇μJμ = −
∫

d

2π

√
hR = −d

∫

c1(�g) = d(2g − 2). (3.1.29)

For d = c
3 = 3 this comes precisely with the same anomalous coefficient −3 as

the ghost current in the BRST quantization of the bosonic string jg = − : bc :,
see [279]. Integration of the anomaly in the divergence of the current leads to a
U(1)-charge violation of d(2g − 2) units on a genus g Riemann surface.

• The last OPE finally is like the one between the BRST current and the b ghost.
Integration around a contour to isolate G+0 , yields for the + twist

{Q,G−(z)} = T (z) , (3.1.30)

which echos the main equation {QBRST , b(z)} = T g+m(z) in the BRST
quantization of the bosonic string. We have seen already that G− has (h,Q) =
(2,−1), which are precisely the conformal dimension and ghost charges of the
b(z) ghost.

To summarize we have for the (+,+) twist [40] exactly the same structure as in the
bosonic string if we identify

(G+(z), J (z), T (z),G−(z))↔ (JBRST (z), jg = − : bc : (z), T m+g(z), b(z))

(3.1.31)

92For Calabi-Yau manifolds this identifications can be viewed as convention and is reversed in
[40].
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and similar for the anti chiral half. This implies also QB ↔ QBRST and the ghost
number becomes U(1)A charge.

Let us finally discuss a concrete realisation of this structure proposed by Gepner,
which provides exact conformal field theory descriptions at special moduli values
of Calabi-Yau-families. These values are called Gepner points. The main point in
Gepners construction is to identify the internal c = c̄ = 9 theory with an orbifold of
a tensor product of minimal (2, 2) superconformal field theories. The factor theories
are constructed as cosets of supersymmetric, WZW models, see [220] for a general
discussion. WZW models and cosets are an important source of rational CFT’s
beyond c > 1. In the simplest case based on a (SU(2) × U(1))/U(1) coset the
central charge is

ck = 3k

k + 3
, k ∈ N . (3.1.32)

Primary states |l, q, s〉 of the algebra (3.1.5) are labeled in the minimal models by
integers which have the following standard range93

0 ≤ l ≤ k,

0 ≤ |q − s| ≤ l

s =
{

0, 2 Neveu− Schwarz− sector
±1 Ramond− sector

}

l + q + s = 0 mod 2

(3.1.33)

and have conformal dimension and charge

h = l(l + 2)

4(k + 2)− q2
+ s2

8
, Q = − q

k + 2
+ s

2
. (3.1.34)

Above we discussed only the right moving part of the theory. There is a remarkable
A − D − E classification behind the question how to combine the χl,q,s and
χl̄,q,s characters to a modular invariant one loop partition function [66]. Note that

we consider only l �= l̄ in the left and right combination of characters. That is
because all possible shifts of q, s w.r.t. q̄, s̄ are obtainable in a separate step by
orbifold constructions w.r.t. to simple current symmetries. The simplest way to get
a modular invariant theory is to start with a left right symmetric theory with states
|l, q, s; l, q, s〉, this corresponds to the A-series. Considering only this series there
are 145 possibilities to build a tensor product theory with c̄ = c = ∑5

i=1 cki = 9.
Note that at most one kj is allowed to be zero, because of the c = 9 condition. The
145 is the same number as the one of c1(TM) = 0 Fermat hypersurfaces in WCP 4,
i.e. with

∑

i=1 wi = d , see Appendix 3. In fact identifying mi = d/wi = ki + 2 it

93For the orbifold procedure the following equivalences are important q ∼ q mod 2(k + 2), s =
s mod 4 and |l, q, s; l̄, q̄, s̄〉 ∼ |k − l, q, s; k − l̄, q̄ + k + 2, s̄ + 2〉.
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is easy to see that the second enumeration lead to the same diophantic problem and
yields Fermat type polynomial constraints in WCP 4

P =
5
∑

i=1
aix

mi

i = 0 , (3.1.35)

which define CY 3-folds. The simplest possibility is ki = 3 for i = 1, . . . , 5. This
leads to d = 5, wi = 1, i = 1, . . . 5, the in P

4. Gepners orbifold construction
divides the symmetric tensor product by a symmetry group which is generically
the subgroup G = Zleast com. mult.{ki } × (Z2)

r+1 among the group generated by
the simple currents and constructs a modular invariant orbifold. The effect is that
the factor theories and the space-time part are either all in the NS-NS sector or
all in the R-R sector and that the charges in the internal NS-NS sector become
odd integers [132, 133]. It is then easy to see that states in (c, c) ring from the
invariant sector94 of the orbifold are of the form

⊗

i |li , li , 0; li , li , 0〉. For the
tensor product model that corresponds to the quintic this leads in view of (3.1.33) to
101 elements. The counting is the same that leads to the 101 independent complex
structure deformations under Eq. (2.10.4), which are identified with elements in
H 2,1(M). All states in the (a, c) ring are from the twisted sector. They are more
complicated to count but one checks that they yield the number of independent
elements in H 1,1(M). It is also straightforward to identify the orbifold action, like
e.g. (2.10.2), (2.11.1), that leads to the mirrors W of the manifolds M in (3.1.35) in
the conformal field theory context and to check that it indeed exchanges the (c, c)

with (c, a) ring [121, 144]. A fascinating idea has been to use Cardy states [280] to
classify D-branes as boundary conditions in the rational CFT at the Gepner-point
and compare with geometric pictures of D-branes [55] in particular the triangulated
category of coherent sheaves over M for the B-branes or the category of special
Lagrangian submanifolds of M for the A-branes respectively.

3.2 Supersymmetric Nonlinear σ -Models

A 1d (supersymmetric) σ -model is simply a 1d field theory associated to a manifold
M such that the fields are coordinates (and supercoordinates) of M , which depend
only on one variable. It is natural to think this one variable as the time and the
whole setup as (supersymmetric) quantum mechanics on M . In 2d dimensional σ
models, the case relevant to string theory, the coordinates (and supercoordinates) of
M depend on two variables the WS coordinates of the string and σ -model fields can
be viewed as a map x : � → M from the worldsheet� to the target space M .

94In general there might be (c, c) states in the twisted sectors but for the smooth hypersurfaces,
such as the quintic, there are none.
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We search in these models for field configurations which are fixpoints under
some super symmetry transformation. The super symmetry generators become
nilpotent operators Q on the Hilbert space of the field theory. The cohomology of
Q is a natural structure to extract topological invariants of the classical bosonic
configuration space. In more interesting situations indices can occur, which are
invariant under some deformations, but are family indices w.r.t. others. Physically
the family indices can be particular correlation functions. Their dependence on
certain geometrical deformation parameters, e.g. of the target space metric, can
often be exactly calculated e.g. in an all genera string loop expansion. This is the
main physical benefit from topological theories. Apart form this more interesting
geometry there is only one new conceptual issue in the 2d case and that are potential
anomalies of the 2d quantum field theory on the WS.

The original references for the following are [247, 317] and especially [319]. We
have adopted the conventions from the review [182]. There is a well known dictio-
nary between properties of the worldsheet theory and properties of M . In particular
if M is a Kähler manifold the σ -model will have (2, 2) worldsheet supersymmetry
[336]. The inverse statement is not quite true, i.e. one can construct more general
geometric backgrounds that allow for (2, 2) worldsheet supersymmetric σ -models
[128].

In order to have superconformal invariance M has to be a Calabi-Yau manifold.
A Calabi-Yau manifold is Kähler manifold with vanishing first Chern class of its
tangent bundle c1(TM) = 0. As we have seen in Sect. 2.4.1 this is equivalent to
the statement that there exists a hermitian metric g for which the Ricci curvature
vanishes Rij̄ = 0. This in turn is equivalent to the statement that the holomomy
group ofM is contained in SU(3). We call a Calabi-Yau threefold a manifold where
the holonomy is the full SU(3) (or a least SU(2) × Z2), which implies that there
are exactly two covariant constant spinors on M . This leads to N = 2 supergravity
theories in 4d for the compactification of type II on M . We will start the discussion
of the symmetries of the actions at the classical level and comment then on the
potential anomalies and their cancellation.

3.2.1 N = (1, 1) Nonlinear σ -Model

Let us first treat the N = (1, 1) case. For this case the target space needs to have
just a Riemannian metric. We parametrize the map x : � → M by xI , where
I . . . , d where d is the real dimension of M . The worldsheet is parametrized by
z, z̄, hence x is given in local coordinates as xI (z, z̄) The fields of the σ model
have the following transformation properties under worldsheet and target space
reparametrizations.WithK and K̄ the canonical and anti-canonical bundle of� and
TM the complexified tangent bundle ofM one hasWS-fermionswhich transform as
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ψI+ ∈ �(K̄
1
2 ⊗x∗(TM)) andψI− ∈ �(K

1
2 ⊗x∗(TM)), where � denotes sections of

the indicated bundles. The Lagrangian of the non-linear 2d σ -model is then given by

L = 2t
∫

�

d2z

(

1

2
gIJ (x)∂zx

I ∂z̄x
J+ i

2
gIJ ψ

I−Dzψ
J−+

i

2
gIJψ

I+Dz̄ψ
J++

1

4
RIJKLψ

I+ψJ+ψK− ψL−
)

.

(3.2.1)

The covariant derivativesDz̄ (Dz) are obtained using the pullback of the Levi-Civita
connection from M as

Dz̄ψ
I+ =

∂

∂z̄
ψI+ +

∂xJ

∂z̄
�I
JKψK+ (3.2.2)

and RIJKL is the Riemann-Tensor ofM .95 Here we assumed a flat world-sheet or a
local trivialization of K

1
2 , so that no spin connection appears in (3.2.2). Soon global

properties of K
1
2 and K̄

1
2 become all important.

With Grassmann valued supersymmetry parameters ε− ∈ �(K− 1
2 ) and ε+ ∈

�(K̄− 1
2 ) one checks at the classical level that (3.2.1) is invariant under the following

supersymmetry transformations

δxI = −ε−ψI+ + ε+ψI−
δψI+ = iε−∂xI + ε+ψK− �I

KMψM+
δψI− = −iε+∂xI + ε−ψK+ �I

KMψM− .

(3.2.3)

From these Eq. (3.2.3) we would like to define nilpotent operators. The obstruc-

tion is that there are no global trivial sections of K− 1
2 or K̄− 1

2 unless g = 1.
This means that there no global supersymmetry transformations on the worldsheet
unless96 g = 1.

In the case of the worldsheet being a torus one can chose globally defined sections

ε− ∈ �(K− 1
2 ) and ε+ ∈ �(K̄− 1

2 ) to obtain globally defined supersymmetry
generators Q2− = 0 and Q2+ = 0 on the Hilbert space H. E.g. we can chose ε±
both to be in trivial sections of K− 1

2 and K̄− 1
2 respectively. In view of (3.2.3)

we have to chose corresponding trivializations for ψI+ ∈ �(K̄
1
2 ⊗ x∗(TM)) and

ψI− ∈ �(K
1
2 ⊗x∗(TM)) and this simply means that the fermions will have periodic

boundary conditions on T 2. These boundary conditions are called twisted boundary
conditions.Q− and Q+ are globally defined andQ+|�〉 = Q−|�〉 = 0 for � ∈ H

95By x∗(TM) we denoted the pullback of TM to �.
96The quest for covariant constant spinors is familiar on the target space in order to obtain space-
time supersymmetric compactifications as discussed in Sect. 1. It requires restricted holonomies,
see Sect. 1.1.5, which is equivalent to the familiar c1(TM) = 0 condition for N = 2 (N = 1) II
(heterotic) compactifications 6d internal manifolds.
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forces the cohomological states to be in the E = 0 super symmetric ground state of
the Hamiltonian [315]

H = 1

2
{Q+,Q−} = 1

2
(dd∗ + d∗d) . (3.2.4)

Generically the non-trivial information in the double twisted model is the Witten
index. It is simplest written in the operator formalism

χ(M) = Tr(−1)F qH+ q̄H− = Tr(−1)F , (3.2.5)

where F = F+ + F− and F+/F− count the left/right moving fermion numbers
so that {(−)F±,Q±} = 0 while [(−)F∓,Q±] = 0. The σ model cohomology is
equivalent to the cohomology ofM , much in the same way as we will made explicit
in Sects. 3.4.1 and 3.5.1 for the N = (2, 2) case. Since (3.2.4) is the Laplacian
and the fermion number, measured by (−1)F , corresponds to the form degree and
the Witten index is equal to the Euler number χ(M) of M [315]. The insertion
of (−1)F kills the information about the time evolution and spatial excitation of
the string. The latter fact reduces the model to constant maps, i.e. supersymmetric
quantum mechanics on M , i.e. the index can also be obtained starting with a
1d supersymmetric σ model on M . The consideration that leads to the index is
referred to as quantizing the zero mode sector. If further global quantum numbers
are present one can get finer information then just the Euler number, by inserting
the corresponding charge operator in the trace. These ideas play a rôle in extracting
BPS numbers for instance associated to branes see Sect. 4.3.4.

Much more detailed information survives for example in the string context if one
chooses only ε+ to be in a trivial section. The corresponding index is called the
elliptic genus97

E(M) = Tr(−1)F+qH+ q̄H− = Tr(−1)F+ q̄H− . (3.2.6)

Here only the left moving states are forced in the left moving groundstate. The trace
over the right moving states explores informationwhich goes beyond cohomological
information of M . It can be defined for 2d supersymmetric field theories and is
conformally invariant even if the underlying field theory is not [323]. It requires
(−)F+ not to be anomalous, which is essentially equivalent to M being spin [322].
It carries information, which is robust under certain deformations. In the case of the
σ model on M , E(M) is the Dirac index of the loop space of M [314, 316]. This
index varies with the volume parameters of M , but is independent of the complex
structure of M and is the first example of the promised family indices. There are
further simple refinements possible, if as below in theN = (2, 2) theories F− comes

97Unfortunately there many notations common to distinguish the left- and right moving sectors in
this context unbarred/barred for euclidean worldsheets, R/L, +/− and without tilde/with tilde are
maybe most often used.
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from an U(1)L current F− =
∮

JL. If the latter is not anomalous one can insert
(−1)θF− in the trace in (3.2.6) and even if the U(1)L is broken to ZK Eq. (3.2.6)
with exp( iπ

k
F−) inserted is still an index. A theme of the lecture is to explore more

sophisticated family indices mainly in theN = (2, 2) context and even at genus one
there are further refinements such as (4.1.20).

3.2.2 Compactifications with N = (2, 2) World Sheet Supersymmetry

The additional structure that allows to define more general family indices for the
(2, 2) worldsheet theories are right and left U(1)R/L symmetries, so called R-
symmetries. Since the nilpotent Q operators are derived from the supersymmetry
transformations and since there are no covariant constant spinors for world sheets
of genus g �= 1 there will be no well defined supersymmetry operators on general�g

without further modifications. For the topological theory to make sense at all genera
g we “change” the transformation properties of the fields, so that the supersymmetry
transformation becomes a scalar operator on the world sheet. This modification
is implemented by twisting the world sheet Lorentz group either by the vector
U(1)V = U(1)L + U(1)R or the axial U(1)A = U(1)L − U(1)R symmetry. To do
this we first gauge the R-symmetries. Then we combine the U(1) gauge connection
with the spin connection to a twisted world sheet spin connection. Contrary to
the U(1)V , the U(1)A current develops an quantum anomaly proportional to
∫

� x∗(c1(TM)). Therefore the B model, which is obtained by twisting with the
U(1)A connection, is only well defined on Calabi-Yau manifolds (c1(TM) = 0),
while theAmodel, which is obtained by twisting with the U(1)V connection can be
considered on any Kähler manifold.

3.2.3 The (2, 2) Non-linear σ -Model

Let us now study this twisting mechanism in the Kähler case, which has at
the classical level a N = (2, 2) supersymmetry and hence the necessary U(1)
symmetries. The action is given by

S = 2t
∫

�

d2z

(

− gij̄ ∂μx
i∂μxj̄ + igī iψ

ī−Dzψ
i− + igī iψ

ī+Dz̄ψ
i+ + Riīj j̄ψ

i+ψī+ψ
j
−ψ

j̄
−
)

.

(3.2.7)

Here we have split the index I into i and ī according to the Kähler decomposition
of the CY metric. Such a metric can locally be written as gij̄ = ∂i∂j̄K(xi, xı̄) and
its Levi-Civita connection in Kähler geometry is pure in the indices �i

jk = gij̄ ∂j gkj̄

as discussed in more detail in Sect. 2.3.1. On a non-flat Riemann surface � one has
the connection

Dz̄ψ
i+ = ∂z̄ψ

i+ + i
2ωz̄ψ

i+ + �i
kl∂z̄x

kψl+
Dzψ

i− = ∂zψ
i− − i

2ωzψ
i+ + �i

kl∂zx
kψl− ,

(3.2.8)
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where ωz and ωz̄ are the components of the spin connection of �.
In superfield formalism one can write L = 2t

∫

dθ4K(Xi , X̄ı̄ ), where the
chiral field Xi has components xi, ψi±, F i . F i is an auxiliary field that has has
no kinetic terms and can be eliminated from the action by its equation of motion
F = �i

ijψ
j
+ψk−. This offshell superfield formalism is particularly useful when one

couples a holomorphic superpotential W(xi) to the action, which only possible for
non-compact target spaces M . This formalism is worked out in detail including
the off-shell supersymmetry transformations in [247] and reviewed in [182]. For
notational brevity we restrict ourselves to the onshell formalism.

Classically there are now twice as many super symmetries, one set for the
holomorphic and one set for the antiholomorphic space time indices. They are

generated by ε+ ∈ �(K
1
2 ), ε− ∈ �(K̄

1
2 ) and ε̄±. The latter are sections of the same

bundles but have opposite charges under U(1)A and U(1)V . The super symmetry
transformations are

δxi = −ε−ψi+ + ε+ψi−
δxī = ε̄−ψī+ − ε̄+ψī−

δψi+ = 2iε̄−∂+xi + ε+ψj
+�i

jmψm−
δψī+ = −2iε−∂+xī + ε̄+ψj̄

−�ī
j̄m̄ψm̄+

δψi− = −2iε̄+∂−xi + ε−ψj
+�i

jmψm−
δψī− = 2iε+∂−xī + ε̄−ψj̄

−�ī
j̄m̄ψm̄+ .

(3.2.9)

The relation between the existence of two supersymmetries and the decomposition
of the exterior derivative on Kähler manifolds into a holomorphic and antiholo-
morphic derivative d = ∂̄ + ∂ , which gives rise to the Hodge decomposition of
cohomology groups into Hp,q(M), has been discussed first by [336]. The fields xi ,
xı̄ , ψi± and ψī± transform as before under WS transformations. W.r.t. the spacetime
transformations one has now simply a splitting of TMC into T 1,0M ⊕ T 0,1M with

i referring to T 1,0M and ı̄ referring to T 0,1M , so e.g. ψi+ ∈ �(K̄
1
2 ⊗ x∗(T 1,0M))

e.t.c. All transformation properties are summarized in Table 4.
The action of the U(1)V and U(1)A symmetries are conveniently formulated in

superfield formalism, i.e. we expand any field in Grassmann valued θ+, θ−, θ̄+, θ̄−
complex fermionic spinor coordinates on which complex conjugation is given by
(θ±)∗ = θ̄±. The WS Lorentz transformation acts on t = x0 and s = x1 (with
(1, 1) signature) and on spinors as

(

x0

x1

)

→
(

cosh γ sinh γ

sinh γ cosh γ

)(

x0

x1

)

θ± → e±
γ
2 θ±

θ̄± → e±
γ
2 θ̄±

(3.2.10)
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Table 4 Space time transformation of the non linear σ -model fields after + and − twist

Section before twisting Section (+) twist Section (−) twist
x x∗(TM) x∗(TM) x∗(TM)

ψi− x∗(T 1,0)⊗K
1
2 x∗(T 1,0) x∗(T 1,0)⊗K

ψ̄ı̄− x∗(T 0,1)⊗K
1
2 x∗(T 0,1)⊗K x∗(T 0,1)

ψi+ x∗(T 1,0)⊗ K̄
1
2 x∗(T 1,0) x∗(T 1,0)⊗ K̄

ψ̄ ı̄+ x∗(T 0,1)⊗ K̄
1
2 x∗(T 0,1)⊗ K̄ x∗(T 0,1)

Classically and in non-anomalous theories one can chose the twisting on the left movers ψi−, ψī−
and the right movers ψi+, ψī+ independently

Since the fermionic variables anticommute w.r.t. to each other the Taylor expansion
in them contains only 24 terms

�(x, θ±, θ̄±) = x(t, s)+ θ+ψ+(t, s)+ θ−ψ−(t, s)+ θ̄+ψ̄+(t, s)

+ θ̄−ψ̄−(t, s)+ θ+θ−A+−s, t + . . . (3.2.11)

In this sense one can think superspace as a thin space in the fermionic directions,
which contains no second order derivative information in any fermionic direction.
The relation to calculus with differential forms is very obvious. The action of the
vector U(1)V and axial U(1)A symmetries on all component fields is induced from

eiαFV : �(x, θ±, θ̄±) �→ eiαqV �(x, e−iαθ±, eiαθ̄±)

eiβFA : �(x, θ±, θ̄±) �→ eiβqA�(x, e∓iβθ±, e±iβ θ̄±) .
(3.2.12)

Let us denote now the four supersymmetry operators corresponding to ε±
and ε̄± transformations by Q∓ and Q̄∓ respectively. A general supersymmetry
transformation is then generated by the operator

δ̂ = iε+Q− − iε−Q+ − iε̄−Q̄− + iε̄+Q̄+ , (3.2.13)

where (Q±)† = Q̄± and δ̂† = −δ̂.
More generally for any infinitesimal field transformation δQφ we will denote

the infinitesimal transformation on the field operator δOφ by δQOφ = [Q,Oφ]±,
where Q is the corresponding generating operator. Let M be the generator of two
dimensional Lorentz rotations SO(1, 1). It is convenient to make the Wick rotation
x0 = −ix2 and we call ME = iM the generator of the compact Euclidean rotation
group U(1)E . Beside the supersymmetry generators one has on the WS: H the
generator of (euclidean) time translations, P generator of translations. Furthermore
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there are the R-charge operators associated to the U(1)V and U(1)A currents called
FV and FA. These generators fulfill the algebra

Q2+ = Q2− = Q̄2+ = Q̄2− = 0,

{Q±, Q̄±} = H ± P, {Q̄+, Q̄−} = {Q+,Q−} = {Q−, Q̄+} = {Q+, Q̄−} = 0,

[ME,Q∓] = ∓Q±, [ME, Q̄±] = ∓Q̄±,

[FV ,Q±] = −Q±, [FV , Q̄±] = Q̄±,

[FA,Q±] = ∓Q±, [FV , Q̄±] = ±Q̄±,
(3.2.14)

It becomes soon important that Q± and Q̄± have opposite charges under the R

symmetry groups. As already stated FA is present at the quantum level only for
Calabi-Yau manifolds, the conformal case, while FV is generically present. See
[247] for a further discussion of this algebra.

3.3 Twisting the N = (2, 2) Theories and Cohomological Field
Theories

Twisting amounts to a modification the Euclidean rotation group U(1)E by a
generator of the global U(1) R-symmetry groups and defines the new generator
of the Euclidean rotation group U(1)E′ as M ′

E = ME + R. As explained our goal
is to make some of fermionic Q operators scalar w.r.t. M ′

E , so that they are well
defined on all genera world-sheets. These “scalar” operators can then be used to
define a cohomological theory on an arbitrary Riemann surface. The term twisting
is familiar in the orbifold context, where it means to modify the boundary conditions
of a field along cycles of the worldsheet by an element g of a global symmetry group
G, e.g. for the torus with a A cycle of length 2π a field is periodically identified by
φ(x + 2π) = gφ(x). The analogy is appropriate since also in the above case we
change the boundary conditions of some fermionic fields to become periodic. We
encountered such twisting already in the discussion of Witten index and the elliptic
genus.

Here the twisting is implemented by gauging the U(1)-R symmetry group and
adding the corresponding gauge connection AR

μ to the spin connection, so that the
transformation property of the spinor fields depend now on their R charge. An
important consequence of gauging the U(1)-R symmetry is that the gauge field
modifies the energy momentum tensor, see (3.3.4). Since we are dealing with a 2d
quantum field theory this program of gauging the R symmetry might be obstructed
by anomalies. The potentially dangerous terms in the action are the fermion kinetic
terms igī iψ

ī−Dzψ
i−+igī iψ

ī+Dz̄ψ
i+ in (3.2.7). As explained in reviews on anomalies

such as [43] the vector U(1)V will never be anomalous. The anomaly density for
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the axial current is calculated also in [43] and from (3.2.8) we see that we have a
Dirac operator on �g coupled to a connection of a bundle, which is the pullback by
x of the holomorphic tangent bundle to � written as x∗(T 0,1M). The Atiyah-Singer
index theorem [26] for the twisted spin complex, see [267] for a review, gives us
then the answer that the axial U(1)A current violation is
∫

�

∂μj
μ
A = 2

∫

�

c1(x
∗(T 1,0M)) = 2

∫

�

x∗(c1(T 1,0M)) = 2[C] · c1(TM) .

(3.3.1)

This breaks the U(1)A symmetry generically to a Z2. For a discussion of the U(1)A
anomaly in the linear σ -model context see [322]. By [C] we denote the curve class
to which � maps.

The most important consequence of the above result is that on a Calabi-Yau
manifold where c1(TM) = 0 we can twist by the U(1)A and the U(1)V symmetry
as both are anomaly free. In the (2, 2) theory we have therefore two fundamentally
different possibilities to twist

A− Twist : ME′ =ME + FV

B− Twist : ME′ =ME + FA .
(3.3.2)

The tables below record how the twisting changes the WS transformation properties
of the fields. We do this first for the the so + and the − twist first. In the above
notation of Table 4 the A twist corresponds to a (−,+) twist, i.e. to a combination
of the (−) twist onψ−, ψ̄− and the (+)-twist onψ+, ψ̄+, while theB twist is (+,+)

twist, i.e. a combination of the (+) twist on ψ−, ψ̄− and the (+)-twist on ψ+, ψ̄+.
There are the possibilities of an (+,−) twist and an (−,−) twist making Q̄A and
Q̄B nilpotent operators. They lead to the definition of conjugated cohomological
sectors and considered for themselves not to new theories. However as explained in
Sect. 3.6.1 the combined geometry of the sectors conjugated to each other leads to
an interesting geometry, the so called tt∗ geometry.

The effects of the twisting on the fields and the supersymmetry transformation
can be summarized in the Tables 5 and 6 respectively.

As it is clear from Table 6 and (3.2.14) the following combinations

QA = Q− + Q̄+

QB = Q̄− + Q̄+
(3.3.3)

are now scalar, nilpotent operators which can be used to define two different coho-
mological theories, the topological A- and the topological B-model respectively.
Mirror symmetry exchanges the − twist with the + twist on the ψ−, ψ̄− side. Even
before twisting QA and QB define cohomological theories on the plane and the
torus, where covariantly constant spinors exist. One can also choose to twist only
the say ψ−, ψ̄− side. The indices of so called half-twisted models are the closest
analogs of the elliptic genus (3.2.6) at higher genus [319, 329]. This indices are
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Table 5 Space time transformation of the non linear σ -model fields and charges after A and B

twist

Before twisting A twist (−,+) B twist (+,+)

U(1)V U(1)A U(1)E spin U(1)′E spin U(1)′E spin

x 0 0 0 1C x 0 1C x 0 1C

ψi− −1 1 1 K
1
2 χi 0 1C ρi

z 2 K

ψ̄ı̄+ 1 1 −1 K̄
1
2 χı̄ 0 1C − 1

2 (θ
ı̄ + ηı̄ ) 0 1C

ψ̄ ı̄− 1 −1 1 K
1
2 ρı̄

z 2 K 1
2 (θ

ı̄ − ηı̄ ) 0 1C

ψi+ −1 −1 −1 K̄
1
2 ρi

z̄ −2 K̄ ρi
z̄ −2 K̄

We also indicate the names of the fields in the A and B model

Table 6 Space time transformation of the supersymmetry generators after the A and B twist

Before Twisting A-twist B-twist

U(1)V U(1)A U(1)E spin U(1)′E spin U(1)′E spin

Q− −1 1 1 K
1
2 0 1C 2 K

Q̄+ 1 1 −1 K̄
1
2 0 1C 0 1C

Q̄− 1 −1 1 K
1
2 2 K 0 1C

Q+ −1 −1 −1 K̄
1
2 −2 K̄ −2 K̄

shared between the A and the B model and contain information about the couplings
of 1272̄7 in the heterotic string with standard embedding.

We denote the gauge current, which corresponds to the gauge variations δAR
μ by

JR
μ . The twisting modifies the energy momentum tensor to

T̂μν = Tμν + 1

4

(

ελμ∂λJ
R
ν + ελν ∂λJ

R
μ

)

. (3.3.4)

In the action of the gauged theory of covariant theory the world sheet emerges a
coupling

S =
∫

�

Jμωμ = 1

2

∫

�

J ω̄ + J̄ ω = 1

2

∫

�

Rφ + total der. , (3.3.5)

to the spin connection ω. In the third equality we bosonized the U(1)R current
∂φ = J and integrated partially. Contact terms of operators with the this expression
will play a rôle in determining properties of the correlation functions.

3.3.1 Generalities on the Physical Observables

One calls an operator a chiral operator or (c, c) operator φ if

[QB, φ] = 0 . (3.3.6)
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Chiral and twisted chiral superfields play an important rôle in formulating the
general (2, 2) worldsheet theory, see [322]. The lowest component φ of chiral
superfield � obeys [Q̄±, φ] = 0 and is a hence a chiral operator. An operator φ
is called twisted chiral or (a, c) if

[QA,φ] = 0 . (3.3.7)

The lowest component v of a twisted chiral superfield � obeys [Q̄+, v] =
[Q−, v] = 0 and is hence a twisted chiral operator. [Q̄−, φ−] = 0 and [Q−, φ−] =
0 define left chiral- and antichiral operators while [Q̄+, φ+] = 0 and [Q+, φ+] = 0
define right chiral- and antichiral operators.

The key concept is now to define a cohomological theory whose observables are
the equivalence classes [φ] of Q closed operators. To be closed the operators have
to fulfill [Q,φ] = 0 and the equivalence relation is as usually up to exact operators
E = [Q,
]±, i.e.

φ ∼ φ + [Q,
]± . (3.3.8)

If the vacuum is annihilated by Q, which is the case if Q comes from a unbroken
symmetry as above, then the correlation function of theQ closed operators does not
depend on the representative of the class

〈φ1 . . . (φk + {Q,
}) . . . φn〉 = 〈φ1 . . . φn〉 ± 〈0|φ1, . . . φk−1
φk+1 . . . φnQ|0〉
±〈0|Qφ1, . . . φk−1
φk+1 . . . φn|0〉

= 〈φ1 . . . φn〉
(3.3.9)

Above the ± signs are uncorrelated and the two terms vanish independently if the
vacuum is Q invariant. The analogy of the definition of topological correlators with
cohomological intersections

∫

M ω1 ∧ . . . ∧ (ωk + dλ) ∧ . . . ∧ ωn =
∫

M ω1 ∧ . . . ∧
ωk ∧ . . .∧ωn is not just formal in the case of the (2, 2)-sigma model as we will see.

An important property of these operators is that they form position independent
rings. Using the algebra (3.2.14), the properties of the twisted chiral operators and
[{A,B}, C] = {[A,C], B} + {A, [B,C]} it is easy to see that e.g.

i
2

(

∂

∂x0
+ ∂

∂x1

)

φ = [(H + P), φ] = [{Q+, Q̄+}, φ] = . . . = {QB, [Q+, φ]}
i
2

(

∂
∂x0
− ∂

∂x1

)

φ = [(H − P), φ] = [{Q−, Q̄−}, φ] = . . . = {QB, [Q−, φ]}
(3.3.10)

and similar for the A model. Combining (3.3.9) and (3.3.10) one sees that the
correlation functions of the twisted chiral operators do not depend on the position
of the insertions of the operators, which is also true for the chiral operators. The
ring structure comes from the operator product expansion see (3.1.20). It is obvious



266 A. Klemm

respects the symmetry that the OPE of two (twisted) chiral fields is (twisted) chiral
again and by (3.3.10) position independent. One defines the structure constants of
the ring in a basis of the ring φk as

φiφj = Ck
ij φk + [Q,
]± , (3.3.11)

i.e. identifying an element on the right hand side up to exacts term. The ring satisfies
the usual associativity Cm

jlC
l
ik = Cm

lkC
l
ij . The unit φ0 = 1 is always (twisted) chiral,

so Ck
0j = Ck

j0 = δkj .
The position independence (3.3.10) and its realization on p-form operators can

be formulated in a covariant way as the so called descend equations, see [92] for a
review. If O(0) = φ is a Q closed position independent 0-form operator, one can
define the following non-local n-form operators

0 = [Q,O(0)]
dO(0) = {Q,O(1)}
dO(1) = [Q,O(2)]
dO(2) = 0 .

(3.3.12)

Using (3.3.10) and the corresponding relation for the A-model one can find the
descend operators for the (a, c) and the (c, c) ring states explicitly noting thatQ−dz
(Q̄−dz) and Q+dz̄ (Q̄+dz̄) are covariant combinations

A−mod. O(1)
A = idz[Q̄−,O(0)

A ] − idz̄[Q+,O(0)
A ], O(2)

A = dzdz̄{Q+, [Q̄−,O(0)
A ]},

B−mod. O(1)
B = idz[Q−,O(0)] − idz̄[Q+,O(0)

B ], O(2)
B = dzdz̄{Q+, [Q−,O(0)

B ]} .
(3.3.13)

The descend equations truncate, because of the anti symmetrization in the world-
sheet indices. The Q̄B and Q̄A operators define the (a, a) and (c, a) ring states
which we call Ō(0)

B and Ō(0)
A respectively. Their descendants Ō(1,2)

B and Ō(1,2)
A are

defined as in (3.3.13) with the barred and unbarred Q operators exchanged. As an
easy exercise one checks thatO(2)

B (Ō(2)
B ) andO(2)

A Ō(2)
A are Q̄B (QB ) and Q̄A (QA)

exact.
The significance of the descend p-form operators is that one can integrate them

over closed p-cycles Cp of the WS (or more general the topological field theory
space-time) to obtain non-local operators O(Cp) =

∫

Cp
O(p), which are automat-

ically Q closed, because of Stokes theorem [Q,O(Cp)]± =
∫

Cp
[Q,O(p)]± =

∫

Cp
dO(p−1) = ∫∂Cp

O(p−1) = 0. Reversed use of Stokes theorem shows that the
topological equivalence class ofO(Cp) depends only the homology class ofCp. For
a p− 1 chain S with Cp −C′p = ∂S the differenceO(Cp)−O(C′p) =

∫

∂S
O(p) =

∫

S
dO(p) = [Q,

∫

S
O(p+1)]± is Q exact.
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What is of importance is that integrals of the two form operators
∫

� O(2)
i defined

above can be added to the topological action as deformations preserving the (2, 2)
world-sheet supersymmetry formally as

S =
∫

�

dz2L0 +
r
∑

i=1
t i
∫

�

O(2)
i . (3.3.14)

After the A twist we can define zero form operators O(0)
wij̄

= wij̄χ
iχ j̄ , which

have (U(1)V , U(1)A) charges (0, 2), see Table 5. This charge is offset by Q+, Q̄−
in (3.3.13), as seen from Table 6 so that O(2)

wij̄
is neutral. As we shall see these

operators are associated to elements in H 1,1(M) (3.4.3), (3.4.4). Similarly the
operators associated to elements in A ∈ H 1(M, TM) (3.5.9) in the B-model
O(0)

A = wi
j̄ η

j̄ θi have (U(1)V , U(1)A) charge (2, 0) which is offset by Q+,Q−
so that O(2)

A in (3.3.13) is neutral. Derivatives w.r.t. to t i bring down such operators
in the correlation functions and neutrality implies that arbitrary derivatives do no
violate any selection rule. Generically this extends the theory to a family of theories.
In the above discussion we omitted the consideration ofwijχ

iχj ↔ H 2,0(M) in the
A-model and bi-vectors wij θiθj ↔ H 0(M,
2TM) as these cohomology groups
are trivial on manifolds with strict SU(3) holonomy.98 Perturbations w.r.t. the full
set of operators have been considered in [27, 319].

3.3.2 A First Look at the Metric (In)dependence and Topological String
Theory

In a topological theory the correlation functions are not only formally position
independent, but decouple formally from variations of the worldsheet metric hμν .
Classically the energy momentum tensor Tμν = 1√

h

δS
δhμν is the generator of

those variations. From the first order variation of the weight factor eS one gets a
dependence of a correlation function on metric variations δhμν

δh〈O〉g = 〈O
∫

�g

√
hd2σδhμνTμν〉g. (3.3.15)

In a topological theory δh〈O〉g = 0 does not require that Tμν = 0, but in virtue
of (3.3.9) that it is exact

Tμν = {Q,Gμν} . (3.3.16)

98A slight modification of the twisting procedure makes the descend operators to these fields
neutral [210].
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This structure ensures general covariance or topological invariance. It plays a key
role in covariant quantization of string theory, where Q2 = 0 is the BRST operator
and the part of Gμν is played by the antighost field bμν . It is also is the starting
point of closed string field theory formulations [324]. One can have topological
invariance independently of conformal invariance and also independently of the
decoupling between ghost and matter sector [324]. For instance the A model relies
on this structure and can be defined on Kähler manifolds on which the σ model is
not conformally invariant.

In string theory we integrate the world-sheet metric h of �g over all possible
choices Hg . Some review references for the following short account of the metric
dependence are [91, 119, 279] from the physical and [10] from the mathematical
perspective. Classically the integral over h is invariant under diffeomorphism and
Weyl- and conformal transformations of the metric

h̃ab(σ̃ ) = exp[2ω(σ)]∂σ
c

∂σ̃a

∂σ d

∂σ̃b
hcd . (3.3.17)

These “gauge” invariances are present at quantum level in critical string theory,
which requires an anomaly cancellation for the latter. The integral over the metric
hence contains huge gauge orbits over the diffeomorphism- and the Weyl group,
which we divide from the path integral measure and consider

Mg = LGT\Hg/(diff0 ×Weyl)g = LGT\Tg . (3.3.18)

Large gauge transformations (LGT) refer to discrete diffeomorphism of �g not
connected to the identity the so calledmapping class group LGT = diff

diff0
, which does

not affect the dimension or other local properties in the interior of Mg. Focussing
on the latter means considering the Teichmüller space Tg = Hg/(diff0 ×Weyl).
Locally near a reference metric h0ab we can linearize the problem and once this is
done it is easy to see the key property that this moduli space is finite dimensional.
Infinitesimal Weyl and diffeomorphism transformations are read of from (3.3.17)

δ̃hab = 2δωhab −∇aδσb −∇bδσa

= (2δω −∇cδσ
c)hab − 2(P1δσ )ab

(3.3.19)

with (P1δσ )ab = 1
2 (∇aδσb + ∇bδσa − hab∇cδσ

c). The scalar product for the

linearized metric deformations δihab near h
(0)
ab is

Gij = 〈δihab|δjhab〉 =
∫

�

d2σ
√
h δihab δ

jhab , (3.3.20)

where δihab := h(0)ach(0)bdδihcd is compatible with the first order approximation.
It has a straightforward generalization for other tensors on � transforming in
(⊗q

i=1T�)⊗(⊗p
i=1T ∗�) and allows us to define the adjoint of linear operators such
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h
~

ab

ker P
1

h ab
ker P

1

gauge orbits

moduli space

Fig. 7 Schematic of the objects in the linearisation of the metric variations

as P1, see [257]. Locally Tg is parametrized by the linear changes δhab of the metric,
which are orthogonal to δ̃hab of (3.3.19), i.e. 0 = 〈δhab|δ̃hab〉 = 〈δhab|(2δω − ∇ ·
δσ )hab〉 − 2〈δhab|(P1δσ )ab〉 = 〈habδhab|(2δω − ∇ · δ)σ 〉 − 2〈(P †

1 δh)b|δσa〉. Up
to a small subtlety (dependence), which we discuss below, the free variation of δσa

and (2δω − ∇ · δσ ) span T ∗� and the space of functions on � so that the required
orthogonality enforces the conditions

habδhab = 0, (P
†
1 δh)b = 0 . (3.3.21)

The first is tracelessness of δhab and in a hermitian gauge choice h0zz̄ we see in
[257] that the second means holomorphicity of δhab. I.e. δhzz(z) = φ(z)zz are
components of holomorphic quadratic differentials. Holomorphicity of a quadratic
differentials in one complex dimension is equivalent to harmonicity and the spec-
trum of the Laplacian is finite on compact�, which establishes this key property.

It is easy to connect this to the discussion in section “First Order Complex
Structure Deformations”. If we pick a metric h0zz̄ we can define from φ∗ the
components of the so called Beltrami differentials μz

z̄ = hz̄zφ∗̄zz̄. Holomorphicity

of φ implies that μz
z̄dz̄

∂
∂z
∈ H 1(T �) is a harmonic representatives. Section “First

Order Complex Structure Deformations” uses Čech-cohomology to ignore trivial
changes of the metric by complex reparametrizations, which relates by (2.3.34) to
the gauge condition (P

†
1 δh)b = 0. To summarize can span the tangent space TMg

of the complex moduli space by μk z
z̄ (z)dz̄ ∂

∂z
and the cotantgent space T ∗Mg by

φ
(k)
zz dzdz with k = 1, . . . , h1(T �). For the a hermitian choice hzz̄ of the metric

the pairing (3.3.20) becomes a Kähler metric Gij̄ = ∫� d2z(hzz̄)2φiφ∗ j̄ called the
Weil-Peterson metric. We depict the objects used in the definition ofMg in Fig. 7.

Let us come to the small subtlety mentioned above. If δσa is in the kernel
of P1, i.e. (P1δσ )ab = 0 we may pick a δω so that 〈δhab|δ̃hab〉 = 0, without
restricting δhab. Such vector fields δσa in the kernel of P1 are elements ofH 0(T�),
appropriately called conformal Killing fields, as they don’t change the conformal
class of hab. So apart from restricting changes of the metric to complex structure
changes only, which is the main effect of the division by the gauge group, we have
to subtract these null vectors because they appear in the numerator of (3.3.18).
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Hence the expected dimension of Mg is h1(T �) − h0(T�), which we calculate
in Appendix 2 by Hirzebruch-Riemann-Roch (A2.11) to be 3g − 3.

To avoid the peculiarities of h0(T �) �= 0 (3 and 1 for g = 0 and g = 1) consider
g > 1 and let za =: ma , a = 1, . . . , 3g − 3 the complex structure variables of
�. We can describe then a first order deformation of the metric modulo Weyl and
diffeomorphisms as

∫

� d2σ
√
hδ̃habTab =

∫

� d2zμ(a) z
z̄ δmaTzz + μ̄a z̄

z δm̄aT̄z̄z̄ and if
we insert that in (3.3.15) we conclude that

∂

∂ma
〈O〉g = 〈O

∫

�

d2zμa z
z̄ Tzz〉g =: 〈OT a〉g (3.3.22)

and similarly ∂
∂m̄a = 〈OT̄ a〉g . Equation (3.3.16) is strictly true, so the argument

that cohomological states and the vacuum are Q closed would make topological
string theory completely metric independent and therefore trivial! However the
argument involving the invariance of the vacuum fails, because the measure on
the moduli space of higher genus Riemann surfaces, which is part of the vacuum
definition is not Q closed. It is a real 6g − 6 form μg for surfaces of g > 1 and
the argument fails in a very specific way. If we act with Q on it, it gives an exact
form, as we will see in detail in Sect. 4.1. This is like a descend equation, but with
the exterior derivative acting in the moduli space direction. By Stokes or rather
Dolbeaults theorem the contribution to the integral can then only come from the
boundary of Mg, which represents degenerate Riemann surfaces. If the vacuum is
notQ closed we cannot trust the argument about position independence either. In the
moduli spaceMg,n with insertion of n operators the codimension one locus, where
two operators coincide is part of the boundary components. Its contribution has to be
taken into account by so called contact terms. Most of what topological string theory
is about is the organizing of the contributions of these boundaries. The questions
which boundaries do give contributions leads to the stable compactifications on
Mg,n in which only the boundary components are included, which are in complex
codimension one. These facts will govern the coupling of the A and the B-model to
WS gravity as discussed in Sect. 4.1.

This section sketched the leap that one can take in topological string theory from
a hopeless looking path integral over Dh to essentially a combinatorial problem.
The linear approximations to the moduli space of �g scratched the surface of this
subject by one ε to be exact. We have not established global properties including
existence. We will say more about that for Calabi-Yau manifold in Sect. 2.4.2 and
leave the reader in the case of Riemann surfaces with the literature [10].

3.4 The Topological A-Model

As mentioned above the gauged U(1)V symmetry becomes never anomalous and
this topological model can be defined on any Kähler manifold.



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 271

3.4.1 A Model Without Worldsheet Gravity

In this section we want to describe the operators and correlation functions of
topological A topological and their relation to the geometry of the target space M .
We denote the anticommuting scalars from Table 5 χi := ψi− and χı̄ := ψ̄ ı̄+ and the
one forms i.e. sections ofK and K̄ by ρı̄

z = ψ̄ ı̄− and ρz̄ := ψi+. The action becomes
then

L = 2t
∫

d2z
(

gij̄ ∂νx
i∂νxj̄ + iεμνbij̄ ∂μx

i∂νx
j̄ − igij̄ ρ

j̄
z Dz̄χ

i

+ igij̄ ρ
i
z̄Dzχ

j̄ − 1

2
Rik̄j l̄ρ

i
z̄χ

j ρk̄
z χ

l̄

)

, (3.4.1)

where we added the term involving the antisymmetric 2-form bij̄ ∈ H2(M,Z),
which plays an important rôle in the bosonic sector of the topological A model.
Supersymmetry δ = ε̄−Q̄+ + ε+Q− acts by

δxi = ε+χi, δxı̄ = ε̄−χı̄

δρi
z̄ = 2iε̄−∂z̄xi + ε+�i

jkρ
j

z̄ χ
k, ∂χ ı̄ = 0

δχi = 0, δρı̄
z = −2iε̄+∂zxı̄ + ε̄−�ı̄

j̄ k̄
ρk̄
z χ

j̄

(3.4.2)

with δ2 = 0. There is a fixpoint of δ on the fermionic zero mode configuration with
xi a holomorphic map x : �g → M , i.e. ∂zx̄j̄ = ∂z̄x

i = 0, on which the path
integral will localize by the fermionic zero mode integration, so that the bosonic
integration reduced to a integration over the moduli space M of such holomorphic
maps.99 This moduli space will be labeled by the following topological data: the
genus g of �g and the homology class β = [x∗(�g)] ∈ H2(M,Z) of the image of
�g in M . The 0-form correlation observables are combinations of xi, xı̄ and χi, χ ı̄

the latter are anticommutating operators and can be identified with the forms on M ,
i.e χi ↔ dxi and χı̄ ↔ dxı̄ One checks that under this correspondence Q− and
Q̄+ are identified with the exterior derivatives of Dolbeault cohomology ∂ and ∂̄ .
Since then Q = Q− + Q̄+ is identified with the deRham operator d = ∂ + ∂̄ one
can summarize the correspondence between the BRST cohomology of the QA and
the deRham cohomology of M as follows. For each form

W = wI1,...,In(x)dx
I1 ∧ . . . ∧ dxIn (3.4.3)

on M there is a topological operator

O(0)
W(P ) = wI1,...,In(x)χ

I1 . . . χIn(P ) (3.4.4)

99In considering only QA = Q̄+ +Q−, i.e. setting ε+ = ε̄− one neglects structure, which would
give information about the individual cohomology groups of M.
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of the A-model and the operation of QA is identified with the exterior derivative

{QA,OW } = −OdW , (3.4.5)

where the form degree n of W is identified with the ghost number of OW , since χ

has ghost number+1.
The action can be written as

S = it

∫

�

d2z{Q,V } + t

∫

�

x∗(ω), with V = gij̄

(

ρı̄
z∂z̄x

j + ∂zx
ı̄ρ

j
z̄

)

(3.4.6)

and
∫

�

x∗(ω) =
∫

�

d2z
(

∂zx
i∂z̄x

j̄ gij̄ − ∂z̄x
i∂zx

j̄ gij̄

)

= ω · β ≥ 0, (3.4.7)

where ω is the Kähler form ω = igij̄dzidzj̄ and β is the cohomology class [x∗(�)]
of the image of � and the positivity holds if ω is in the Kähler cone. If the
antisymmetric tensor field is B is non-zero we replace ω by a complexified Kähler
form ωc = iB − ω = i(bij̄ − gij̄ )dzidzj̄ .

The correlation function of the physical operators

〈
n
∏

i=1
Oi〉β = e−itβ·ω

∫

Mβ

DxDχLρe−it{Q,
∫

V }
n
∏

i=1
Oi (3.4.8)

depends on the metric of M only via the Kähler class ω (or on the complexified
Kähler class ωC). Other metric dependence in particular on the complex structure
of M as well as on �g appears in V . However this dependence appears only as
a Q exact expression in (3.4.8) and decouples by (3.3.9) from the topological
correlation function. Moreover taking the derivative w.r.t. t implies by (3.3.9) that
the second factor is independent of t and the correlation can be calculated for ω in
the Kählercone for Re t > 0 in limit of infinite t i.e. at the classical minimum of
the action. This is another way to understand the supersymmetric localization to the
fixpoints of the Grassmann symmetries. If we write

SB =
∫

�

gij̄

(

∂zx
i∂z̄x

j̄ + ∂z̄x
i∂zx

j̄
)

= 2
∫

�

gij̄ ∂z̄x
i∂zx

j̄ +
∫

�

x∗(ω)

(3.4.9)

it is obvious that this minimum is taken at holomorphic maps ∂z̄x
i = ∂zx

j̄ = 0.
This equation requires to specify a holomorphic structure j on �g and one J on
M . For fixed J and fixed j there will no maps for g > 0. Only if we couple the
theory to gravity and integrate over j we have a chance to get contributions from
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finite dimensional integrals over an infinite series of components of moduli spaces
of holomorphic maps, which are labeled by g and the class β ∈ H 2(M,Z). I.e.
the path integral collapses to these integrals. It should be stressed that the A model
does not require an integrable complex structure J . A symplectic structure and a
compatible almost complex structure are sufficient for the above arguments.

Let us discuss the selection rules for g = 0 correlators 〈∏n
k=1 OWk 〉β . We note

from Table 5 and the identification of χi and χī that χi has charge ql = −1 and
qr = 0 under the left and right U(1)l/r respectively, while χı̄ has ql = 0 and
qr = 1. Because of the splitting of the tangent bundle of M = T (1,0) ⊕ T (0,1) we
can associate toOWk an element in the Dolbeault cohomology groupH(pk,qk). Since
the vector U(1)V is unbroken in the quantum theory we get a charge conservation
constraint qV =∑n

k=1 pk−∑n
k=1 qk = 0 for the correlator to respect vector charge

conservation. For the classical axial charge we would get naively qA =∑n
k=1 pk +

∑n
k=1 qk = 0. However the U(1)A is anomalous. Looking at the kinetic terms of ρ

and χ we see that its anomaly is given by the index of the twisted Dolbeault complex
on � (A2.27) which is calculated by the Hirzebruch-Riemann-Roch theorem as
explained at the end of Appendix 2 to be

qA = #(χ0 modes)− #(ρ 0 modes) = 2(h0(x∗(TM))− h1(x∗(TM)))

= 2
∫

�

ch(x∗(TM(1,0)))td(T �) = 2(c1(TM) · β + dimCM (1− g)) .

(3.4.10)

Combining the constraints we get

n
∑

k=1
qk =

n
∑

k=1
pk = c1(TM) · β + dimC M(1− g) . (3.4.11)

In particular for g = 0 we can have a non-vanishing coupling 〈OWiOWjOWk 〉,
where all the Wl are (1, 1)-forms.

With two non-degenerate pairings we can associate a divisor Dk ∈ H4(M) to
each W

(k)
(1,1). One can pick a (2, 2) form W(l) (2,2) so that

∫

M W
(k)
(1,1) ∧W(l) (2,2) = δkl

as well as
∫

Di
W(j) (2,2) = δij . If β denotes the cohomology class of the image C of

the worldsheet in M then we can write the product β · ω = 2π
∑h1,1

k=1 tkdk , where
dk = C ∩Dk is the number of intersections of C with Dk or the degree of C w.r.t.
Dk . The degree 0 map with dk = 0 for all k is special. It maps the three punctured
sphere �0,3 to a point in M . One can always find a representative of W

(k)
(1,1) that

has δ-function support on Dk . This implies that the point in OWk(Pk) maps to Dk .
If �0,3 maps to a point in M the path integral collapses hence to the intersection
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Fig. 8 This figure shows instanton corrections to the coupling C123 with D1 ∩D2 ∩D3 = O(1)
and C124 with D1 ∩ D2 ∩ D4 = 0. From the left to the right we pictured an instanton of
degree 0 contributing of O(1) to C123, an instanton of degree d1 = 5, d2 = 3, d3 = 4
contributing ∼ q51q

3
2q

4
3 to C123 and an instanton of degree d1 = 5, d2 = 4, d4 = 3 contributing

∼ q51q
4
2q

3
4 to C124. Roughly speaking for large radii second the coupling C124 is expected to be

exponentially suppressed against the first C123. The precise statement depends on the growth of
r
g=0
{di } (Di,Dj ,Dk). Such collective effects of the intantons can be analyzed best in the B-model

number of Di ∩Dj ∩Dk . We defineQk = e−2πitk , then the correlation function100

is

Cijk(t) = 〈OWiOWjOWk 〉 = Di ∩Dj ∩Dk +
∑

{di }�={0}
r
g=0
{di } (Di,Dj ,Dk)

h1,1
∏

i=1
Q

di
i .

(3.4.12)

This deformed intersection is piece of the structure known as quantum cohomology
ring of M . It is a deformation of the classical cohomology ring on M by the
parametersQk . One needs in general the deformations of all pairings [m] : H⊗n →
H indexed by m ∈ H ∗(M0,n+1), see [258] and [78] for a review, which we can
be provided on the mirror side. Note that the relation to classical intersections in
the limit picks a natural normalization of the operators OW and of their two-point
functions, see Fig. 8.

One collective effect of the instantons corrections is that the correlation functions
Cijk(t) behaves smoothly at singularities in codimension two in M as for instance
through flop transitions [25, 322].

We note from table 2 and 3 and from (3.3.13) that the U(1)V as well as the
U(1)A charge of the operator O(2)

Wj
vanishes. In view of (3.3.14) this means that

non-vanishing derivatives of Cjkl(t) such as

∂

∂ti
〈OwjOwkOwl 〉

∣

∣

∣

∣

t i=0
= 〈OwjOwkOwl

∫

�

O(2)
wi 〉 (3.4.13)

100We abbreviate
∏h1,1

i=1 q
di
i = qβ in the following.
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do exist according to the selection rules. This non-vanishing correlators signal that
a non-trivial deformation family exist, but do not contain new information once
cjkl(t) is known as function after summing up all intantons or easier from a B-model
calculation. By SL(2,C) invariance on S2 there is a symmetry between fixing any
three of the {i, j, k, l} points and integrating over the fourth. This implies that

∂iCjkl(t) = ∂jCikl (t) (3.4.14)

which is the integrability condition for the existence of a function F (0)(t) with the
property that

Cijk(t) = ∂i∂j ∂kF (0)(t) , (3.4.15)

where we defined ∂i = ∂
∂t i

. This is in perfect accordance with facts concerningF(t)

from the analysis of the vector moduli space of N = 2 supergravity in 4d, which
is identified in type IIA compactifications with complexified Kähler moduli space.
This facts can also be established in the complex structure deformation space, see
Sect. 2.10.17, which again is identified by mirror symmetry with the complexified
Kähler moduli space of the A-model. We should finally note that Eqs. (3.4.13)–
(3.4.15) are not written covariantly, but rather in special flat coordinates. Covariant
derivatives are discussed in the B-model section.

3.4.2 The A-Model Coupled to Gravity

We will not say much of the A-model coupled to world-sheet gravity except that we
explain some of the index theoretical calculations in Appendix 2. In particular the
important formula for the virtual dimension of the moduli spaces of higher genus
maps in to the class β ∈ H2(M,Z) has been motivated there as

dim virMg,n(M, β) =
∫

β

c1(TM)+ (dimM − 3)(1− g)+ n . (3.4.16)

Physically on Calabi-Yau n-folds there are no insertion operators within the (2, 2)
super conformal world sheet theories on higher genus world sheets.101 The inte-
grated operators like in (3.4.13) do of course not kill any automorphism in (A2.15)
and hence do not contribute to the n in (3.4.16), but rather describe the moduli
dependence of the corresponding amplitude. Hence n = 0 for the topological
string on Calabi-Yau manifolds. This highlights the important role that Calabi-
Yau manifolds play in this theory, as for them dim vir Mg,n(M, β) = 0. This

101It does make sense to deform the theory by descend operators away from the (2, 2) super
conformality. This is used e.g. in the calculation of relative Gromov-Witten invariants in the
mathematical context.
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implies that in generic situations one has a zero dimensional moduli space of maps,
which means that one literally counts maps, with finite orders of automorphism of
automorphism divided out, which can make the result of the “counting” rational. In
particular non-zero results can be expected in this case for all classes and genera.
The generic situation in which the actual dimension is the virtual dimension, i.e.
zero, is rarely realised, but there is a virtual obstruction theory which guarantees that
the actual dimension is always positive and that there is always a virtual fundamental
class against which on can integrate on this positive dimensional space to get a
number.

3.5 The Topological B-Model

Since the axial U(1)A, whose gauge connection is added to the spin connection to
define the B-model, develops an anomaly of its current proportional to

∫

� ∂μj
μ
A ∼∫

� x∗(c1(TM)) the twisted B-model is only consistent for Kähler manifold with
vanishing first Chern class, i.e. Calabi-Yau manifolds.

3.5.1 The Topological B Without Worldsheet Gravity

The scalar BRST operator is in this case,

QB = Q̄− + Q̄+ , (3.5.1)

see Table 6. The scalar fields on the worldsheet are conveniently chosen as

ηı̄ := −(ψı̄− + ψı̄+), θj := gj ı̄ (ψ
ı̄+ − ψı̄−) , (3.5.2)

while the one form fields are

ρi
z := ψi− of type (1, 0), ρi

z̄ := ψi+ of type (0, 1). (3.5.3)

The supersymmetry transformation δ = ε̄Q̄+ + ε̄Q̄− is obtained by setting ε̄+ =
−ε̄− = ε̄ and ε± = 0 in (3.2.9) and using the above field identifications

δxi = 0, δxı̄ = ε̄ηı̄

δθi = 0, δηı̄ = 0
δρi

μ = ±iε̄∂μx
i .

(3.5.4)

The zero form observables O(0) are now related to forms in �(0,p)(M,
qT 0,1M)

with the identification of the scalar Grassmann fields on the worldsheet to forms and
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vectors on M ηı̄ ↔ dxı̄ and θi ↔ ∂
∂xi . I.e. to each form on M of type

W = ω
j1...jq
ı̄1...ı̄p

dxı̄1 ∧ . . . ∧ dxı̄p
∂

∂xj1
∧ . . .∧ ∂

∂xjq
(3.5.5)

we associate a 0-form operator on �

O(0)
W = ω

j1...jq
ı̄1...ı̄p

ηı̄1 . . . ηı̄pθj1 . . . θjq . (3.5.6)

One checks that the QB operator is identified with the Dolbeault operator ∂̄ which
increases the anti holomorphic form degree

0
∂̄−→ �00(M,
qT 1,0M)

∂̄−→ �01(M,
qT 1,0M)
∂̄−→ . . .

∂̄−→ �0d(M,
qT 1,0M)
∂̄−→ 0 .

(3.5.7)

and one has with {QB,O(1)
W } = −O(0)

∂̄W
the identification

H ∗
QB
= Ker QB

Im QB

=
d
⊕

p,q=0
H 0,p(M,
qT 1,0M) . (3.5.8)

The selection rules from theR-symmetries are as before
∑

i pi =∑i qi = d(1−
g). It follows that for g = 0 we have again only one possibility of a non-vanishing
three point function 〈OA(i)OA(j)OA(k)〉, if we consider three local operators OA(k)

associated to

A(k) = ω
(k) i
j̄ dxj̄ ∂

∂xi
∈ H 1(M, T 1,0M) . (3.5.9)

Equation (3.5.4) shows that there is a fixpoint of the fermionic symmetry at the
constant maps

∂μx
i = 0 . (3.5.10)

We expect therefore that all contributions to the path integral are localized to
constant maps. This is the main simplification in the B-model. For constant maps
�g is mapped to a point inM . These maps are of course much easier to control then
the holomorphic maps of the A-model and in particular they are not affected by the
sizes, i.e. Kähler parameter ofM . The B-model without worldsheet gravity is rather
like a Kaluza-Klein reduction of a point particle theory. By writing the action in the
form

S = it

∫

σ

{QB,V } + tW (3.5.11)
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with

V = gij̄ (ρz∂z̄x
j̄ + ρi

z̄∂zx
j̄ ) (3.5.12)

and

W =
∫

�g

(−θiDρi − i

2
Riı̄j j̄ ρ

i ∧ ρjηı̄θkg
j̄k) (3.5.13)

one can conclude the following: W does not depend on the complex structure of
�, which decouples from the B-model at genus 0. The Kähler variations of W are
QB exact and decouple likewise. It is also t independent as t can be absorbed in a
field redefinition in W . For more details see [319]. In the off shell formulation of
[247, 249] one can simply write the complete action asQ commutator S = {QB, Ṽ }
which makes the above points more obvious.

Since the fixpoints of the fermionic maps of the B-model are constant maps,
mapping all� to a point in the Calabi-Yau manifoldM , their moduli space contains
M and in the special case of the three punctured sphere, i.e. in the case of the three
point function it is actually M , since these three points can be fixed on S2 by an
SL(2,C) transformation and the sphere itself has no complex deformations. For
this reason all we have to find is a canonical measure on M , which we integrate
over M to get the three point function. Using Kaluza Klein reduction methods this
measure has been found in [298]

Cijk(z) = 〈O(0)
Ai O(0)

Aj O(0)
Ak 〉 =

∫

M

� ∧ A
(i) i1
j̄1

A
(j) i2
j̄2

A
(k) i3
j̄3

�i1i2i3dx
j̄1 ∧ dxj̄2 ∧ dxj̄3 .

(3.5.14)

Here�(z) is the unique non-vanishing holomorphic (3, 0) form, which exists on
every Calabi-Yau, see Sect. 2.4.1. Using the isomorphism (2.4.15) A(j) �→ Â(j) we
can define a non-holomorphic two point function

igij̄ =
∫

M

Â(i) ∧ Â
(j̄ )

. (3.5.15)

The definitions (3.5.14) and (3.5.15) are a special case of (2.5.10) and (2.5.6)
respectively.

3.6 The tt∗ Structure

In this section we want to discuss the tt∗ structure, which combines the geometrical
structure of special geometry of Sect. 2.5 with the structure of the N = (2, 2)
world-sheet theories, which is more general, and prepares for the structures we need
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to understand the properties of higher genus world-sheet theories that lead to the
holomorphic anomaly equations in Sect. 4.

3.6.1 tt∗ Equations, Special Geometry and Contact Terms

The t t∗ equations describe the geometry of the ground states of N = (2, 2)
two dimensional theories. The construction does not require necessarily conformal
invariance, but rather the following structure. A nilpotent operator Q and its
adjointQ†

{Q,Q†} = H (3.6.1)

and a conserved fermion number.Q and its adjoint Q† define rings of cohomologi-
cal operatorsR andR∗ respectively. The advantage of the approach is that it derives
the relevant geometry with minimal assumptions. E.g. special Kähler geometry
follows just with an additional requirement on integral charge conservation for the
A-model the B-model and even the more exotic cases introduced in [128] follow
from the construction. To make contact with the previous sections this can be
realized as

Q =
{

QA = Q− + Q̄+, R = (a, c)

QB = Q̄− + Q̄+, R = (c, c)
Q† =

{

Q
†
A = Q̄− +Q+, R∗ = (c, a)

Q
†
B = Q− +Q+, R∗ = (a, a)

(3.6.2)

As explained we have to twist the theories by identifying the corresponding AR

gauge connection with the spin connection. Since only the fermion number must be
conserved [68] one needs only a Z2 anomaly free subgroup of the U(1)R-currents.
The t t∗ geometry is applicable to N = (2, 2) 2d field theories with marginal
(conformal) but also relevant (non-conformal) deformations. While these theories
might not have a geometrical target space realization, it is still102 useful to think of
a formal correspondence to the deRham (Dolbeault) cohomology on a manifold M

with (Q,Q†,H) ∼ (d, d∗,)

The Ramond vacuum states, compare (3.1.16), are defined by

Q|α〉 = 0, |α〉 ∼ |α〉 +Q|λ〉. (3.6.3)

Such states play the rôle of harmonic forms.We call the space of these vacuaH. The
operator state correspondence of 2d QFT associates to every operator φ ∈ R acting
on a any vacuum state α a state |φ〉α = φ|α〉. In order to avoid too many indices
we call the zero-form operatorsO(0) = φ and the two form operatorsO(2) = O. If

102For σ model on M this formal correspondence becomes an actual correspondence.
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Q+|α〉 = 0 then |φ〉α = φ|α〉 is closed, the Hodge decomposition (2.3.33) applies
|φ〉α = |φ0〉α +Q|φ−〉α +Q†|φ+〉α and by that we get a map

%h : |φ〉α �→ |φ0〉α (3.6.4)

fromR toH. If α is fixed and as will soon see there is preferred choice, we can find
a canonical map from the ring R to the Ramond-Ramond groundstates. Moreover
every φ ∈ R induces a map

φ : |α〉 �→ |φ0〉α (3.6.5)

fromH toH. Everythingwe said from Eq. (3.6.3) on, could have been said verbatim
for the conjugated sector defined by Q†. In particular we get for the same choice
of α a second basis of H, which we call |ı̄〉, j̄ = 1, . . . , r . If one has unbroken
U(1)R/L symmetries as in Sect. 3.1 one could single out |α〉 as the lowest charge
state in the Ramond-Ramond groundstate.

The following path integral argument requires only conserved fermion number.
In the operator approach [17, 92] to 2d field theory one defines a state in the Hilbert
space H of 2d theory by the path integral over a half sphere HS2 bounding an S1.
Parametrize the S1 by θ and denote the fields generically by φ(θ). The path integral
is a functional of the boundary field configuration φ(θ) ∈ L2 on the S1 and defines
a state |φ〉 in H as in (3.6.7). Anti periodic boundary conditions for fermionic states
on contractible loops as S1 on HS2 are the natural boundary conditions in the
path integral so that (3.6.7) does not yield periodic Ramond-Ramond states in H .
However the connectionAR

μ of the gaugedU(1)R-symmetry couples to the fermion

number with charge 1
2 , i.e. acts like a spin connection ωμ. When one transports the

fermion along the S1, the connection is integrated to a Wilson loop phase rotation
acting on the fermionic state as

eπi
∮

S1 ωdx = eπi
∫

HS2 dω = eπi
∫

HS2
R
2πi

√
h = eπi

∫

HS2 c1(T ) = −1, (3.6.6)

which rectifies the periodicity. A projection to the Ramond-Ramond groundstates
at the boundary can now be achieved by attaching a cylinder of length T to HS2,
see Fig. 9. Call the combined surface HT S

2. The “evolution” of a state |φ〉 defined
by the original boundary S1 of HS2 to the far boundary is described by e−HT |φ〉.
If the length T of the cylinder goes to infinity only the groundstates in H survive,
because they have 0 as energy eigenvalue of H , cff (3.1.17).

After this preparationwe can define the path integral version of a projector (3.6.4)

|i〉 = lim

T →∞
∫

Dφe
− ∫

HT S2 L(φ)
φi = %p(φi) . (3.6.7)

The T →∞ limit makes the projector only sensitive to cohomological information
of ring states φ ∈ R or φ̄ ∈ R∗. Exact pieces have non-zero energy and are
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Fig. 9 Path integral projectors to the Ramond-Ramond ground states H

completely suppressed. Note that %(1) = |0〉 defines a preferred vacuum state.
We call the image of a basis φi ∈ R, i = 0, . . . , r with �0 = 1 inH the topological
basis |i〉 = %p(φi). By the operator state correspondence we can also represent the
rings (3.3.11) on the vacuum states

φi |j 〉 = Ck
ij |k〉 (3.6.8)

The path integral (3.6.7) with insertions of φ̄i ∈ R∗ defines the anti-topological
basis |ı̄〉 = %p(φ̄i). The two basis of H namely |i〉 and |ı̄〉 must be related by a
linear transformation, the real structure,

|i〉 = Mı̄
i |ı̄〉 . (3.6.9)

The CPT theorem of the 2d field theory states that the effect of complex conjugating
all expressions in (3.6.7) sends |i〉 → |ı̄〉, i.e. |ı̄〉 = M

j
ı̄ |j 〉which impliesMM∗ = 1.

One has a topological bilinear pairing

〈i|j 〉 = ηij (3.6.10)

and an hermitian bilinear pairing called the tt∗ metric

〈ı̄|j 〉 = gı̄j , (3.6.11)

which are in an obvious way related by the real structure

gl̄iηij = Ml̄
j . (3.6.12)

Note that 〈i| �= (|i〉)†. Both bilinear pairings can be defined by the path integral
as in Fig. 10. These objects are topological to different extend. Changing the
representative of the Q cohomology class |i〉 �→ |i〉 + Q|λ〉 or 〈j | �→ 〈j | + 〈λ|Q
will do nothing in 〈i|j 〉 as |j 〉 and 〈i| are Q closed. Due to (3.3.10) the pairing
ηij is independent of the position. That is true for all length/diameter ratios of the
cylinder, i.e. the cylinder is not needed at all in the definition. For the pairing gı̄j with
〈ı̄| �→ 〈ı̄| + 〈λ|Q† and |i〉 �→ |i〉 +Q|λ〉 the argument does not apply as |j 〉 is not
Q† and 〈ı̄| not Q closed. However from (3.6.1) and Q|λ〉 �= 0 (〈λ|Q† �= 0) follows
that these exact states have positive energy. The only states with zero energy are
R-R vacua. I.e. in the case of gı̄j we need the T →∞ limit to define a topological
quantity.
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T

T
8

Fig. 10 Path integral representation of the topological pairing ηij and the topological-
antitopological pairing gı̄j

Locally the tangent space of the (t, t∗) moduli space is spanned by elements
fromR(t) and R∗(t∗). It is clear that the pairing ηij depends only on the t moduli.
Moreover one shows that as metric it is completely flat, i.e. all components of the
curvature tensor vanish similar as in d < 1 strings [95]. One can therefore find
coordinates which make the metric ηij constant. This defines the moduli dependent
basis of R. As it is clear from the construction of the basis |i〉 and |ı̄〉 via the
projection of moduli dependent elements in the rings R and R∗ they will depend
on the moduli m = (t, t∗). In the Landau-Ginzburg approach [305] ηij is explicitly
defined in terms of the Landau Ginzburg superpotential as ηij = ResW [φiφj ] with

ResW [Φ] = 1

(2πi)n

∫

�

Φ(X)dX1 ∧ . . .∧ dXn

∂1W . . . ∂nW
=
∑

dW

Φ(X)det−1[∂i∂jW ] .
(3.6.13)

Another approach to define ηij is via the supersymmetric Schroedinger equation
[67]. We will not dwell deeper into the derivation of (3.6.13), except for remarking
that it is a zero dimensional analog of the Griffith residuum expressions (2.8.3),
(2.8.8) used in Sect. 2.8.1 to define the periods, with the identification W = P .

The t t∗ equations describe how the vacuum states in H vary over the moduli
space or deformation space of the theory parametrized by m. One calls the
corresponding bundle also H. Let eγ be a basis, i.e. a section in H, and denote
its connection

Aα
βγ = gακ〈eκ |∂β |eγ 〉. (3.6.14)

If the basis ofH changes by a “gauge” transformation |eγ 〉 �→ |e′γ 〉 = 
γδ|eδ〉 then
the connection undergoes a gauge transformation A �→ 
−1A
+ 
−1d
. Let us
consider the perturbation

S =
∫

�

d2zL0 +
∑

i

t i
∫

�

d2zOi +
∑

ı̄

t∗ ı̄
∫

�

d2zŌı̄ , (3.6.15)
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where the two-form descendants are called Oi := O(2)
i . It is easy to show that

the following mixed indices of this connection vanish in the holomorphic basis.
Consider e.g. Ai

ı̄j using (3.6.42) we can write Ai
ı̄j = gik̄〈k̄|∂ı̄ |j 〉 = ηik〈k|∂ı̄ |j 〉.

By (3.3.12) we can write
∫

�
Ōı̄ = [Q,
] and since φj is Q closed we can write

∂ı̄ |j 〉 = %h([Q,
]φj ) = Q%h(
φj ) = Q(
|j 〉). Since 〈k|Q = 0 is closed this
expression vanishes

Ai
ı̄j = 0 . (3.6.16)

Similarly one shows that Ai
kj̄ = ηil〈l|∂k |j̄〉 = 0.

The metric connection is characterized by

0 = Dkgij̄ = ∂kgij̄ − (∂k〈i|)|j̄ 〉 − 〈i|∂k̄|j̄ 〉 = (∂k〈i|)|j̄ 〉 . (3.6.17)

From this and the D̄k̄ derivative, we get formulas for Aj

km and A
j̄

k̄m̄

A
j
km = gjj̄ ∂kgmj̄ , A

j̄

k̄m̄
= gmj̄ ∂k̄gmm̄ . (3.6.18)

as hermitian connection of g. Indeed the topological basis |i〉 and the anti-
topological basis |ı̄〉 form holomorphic and antiholomorphic sections of the vacuum
bundle over the moduli m and one gets the vanishing of the following components
of the curvature

[Di,Dj ] = [D̄ı̄ , D̄j̄ ] = 0 . (3.6.19)

The most important relation comes from analyzing the [Di, D̄ı̄ ] curvature term.
Let us do this for definiteness for the B model. Since the twisting (3.1.28) is so that
Q̄+(z) ∼ G+(z) and Q̄−(z) ∼ Ḡ+(z) have dimension one, we can define

Q̄+ =
∮

dzG+(z), Q̄− =
∮

dzḠ+(z) . (3.6.20)

Here we adopt the notation to use the CFT conventions for the twisted currents. The
commutators and anticommutators in the definition of the descendants (3.3.13) can
be represented by (3.1.6) as

Oi : = O(2)
i = {Q+, [Q−, φi(u)]} ∼

∮

Cu

dzG−(z)
∮

C ′u
dwḠ−(w)φ̄ı̄ (u) ,

Ōı̄ : = Ō(2)
ı̄ = {Q̄+, [Q̄−, φ̄ı̄ (u)]} ∼

∮

Cu

dzG+(z)
∮

C ′u
dwḠ+(w)φ̄ı̄ (u)

(3.6.21)
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We calculate [Di, D̄ı̄ ] in the topological |l〉 basis i.e.

[Di, D̄j̄ ]lk = ∂iA
l
j̄ k − ∂j̄A

l
i k = ηlp[(∂i〈p|)∂̄j̄ |k〉 − (∂̄j̄ 〈p|)∂i |k〉]

= ηlp%
(

φp

∫

HS2L
{Q+, [Q−, φi ]}

)

%
(

∫

HS2R
{Q̄+, [Q̄−, φ̄j̄ ]}φk

)

−ηlp%
(

φp

∫

HS2L
{Q̄+, [Q̄−, φ̄j̄ ]}

)

%
(

∫

HS2R
{Q+, [Q−, φi ]}φk

)

= ηlp
[

%
(

φp

∫

HS2L
∂∂̄φi

)

%
(

∫

HS2R
φ̄j̄ φk

)

−%
(

φp

∫

HS2L
φ̄j̄

)

%
(

(
∫

HS2R
∂∂̄φi)φk

)]

= ηlp
[

%
(

φp

∫

HS2L
φ̄j̄

)

%
(

∫

CR
(∂τ2φi)φk

)

−%
(

φp

∮

CL
∂τ2φi

)

%
(

(
∫

HS2R
φ̄j̄ )φk

)]

= ηlp
[

%
(

φp

∫

HS2L
φ̄j̄

)

%
(

(
∮

� H(z)
∮

CR
φi )φk

)

− %
(

φp

∮

� H(z)
∫

CL
φi

)

%
(

(
∫

HS2R
φ̄j̄ )φk

)]

,

(3.6.22)

where the contours of theG−(z), Ḡ−(z) G+(z), Ḡ+(z) integration are as in Fig. 11.
Moreover we consider operators φ in the (c, c) and φ̄ in the (a, a) ring, e.g. φ is
Q̄+ and Q̄− closed. In the language of current algebras that means that the short
distance expansion of φ(v) with Q̄+(z) ∼ G+(z) and Q̄−(w) ∼ Ḡ+(z) has no pole
and φ(v) can be ignored when deforming �z and �w. The contours e.g. of the term
in the third line can be deformed as in Fig. 11 and the contours of G−(z), Ḡ−(z)
encircling G+(z), Ḡ+(z) give the L−1 and L̄−1 acting as ∂ and ∂̄ derivatives on φi

by (3.3.10). Similar manipulations apply to the term in the second line of (3.6.22).
Applying Gauss’s law in both terms gives the integral over the normal derivative
−∂τ2 . The minus sign is due to the orientation of τ2. The normal direction is “time”
evolution by H , i.e. ∂τ2 = ∂nφi = [H,φi], which is used in the last line of (3.6.22),
where H(z) is integrated around φi From now on we exploit the topological nature
of the theory and take ordered limits of �

first : TR, TL →∞, second : T →∞ (3.6.23)

as depicted Fig. 12. The tubes are all normalized to have perimeter 1. Elongation
TR and TL projects φp and φk to the Ramond-Ramond vacuum state 〈p| and |k〉
respectively. The procedure of the limits is a prescription how to deal with short
distance singularities and the only such issue in topological field theory are contact
terms see (3.6.31).

The action of H on these states yields zero. The two terms in the last line
of (3.6.22) are transformed into each other by exchanging the left- and right infinity.

We discuss the −%
(

φp

∫

HS2
L
φ̄j̄

)

%
(

(
∮

�
H(z)

∮

CR
φi)φk

)

explicitly. Vanishing of

H |k〉 means that H may considered as acting on the full state %
(

(
∮

CR
φi)φk

)

. In

Hilbert space notation is denoted as H |(∮CR
φi)|k〉 and similar %

(

φp

∫

HS2
L
φ̄j̄

)

as
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Fig. 11 Contour manipulation on � in the evaluation of [Di, D̄j̄ ]lk
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Fig. 12 Limits taking in the evaluation of [Di, D̄j̄ ]lk

〈p| ∫HS2
L
φ̄j̄ |. We can move the H integral to the left and since φp is projected to

the groundstate the non-vanishing contribution comes from its action on
∫

HS2
L
φ̄j̄ .

If the insertion of φ̄j̄ is on the most left part in Fig. 12 it will also be projected to
the groundstate in the T → ∞ limit and annihilated by H . Therefore is remains
to consider the contribution from integral over the middle tubus whose length is
parametrized by T . This integral is

∫

tube
φ̄j̄ =

∫ T

0 dτ2
∮

CL
dθφ̄j̄ . H creates τ2

translations, so [H, φ̄j̄ ] = −∂τ2 φ̄j̄ and the integration over τ2 becomes trivial. Note
that only the lower boundary τ2 = 0 contributes. The upper boundaries, where φ̄j̄ is
near φi in both contributions see Fig. 12, cancels. Therefore

[Di, D̄j̄ ]lk = ηlp lim
TL/R→∞

[

%
(

φp

∫

HS2
L
φ̄j̄

)

%
(

(
∮

� H
∮

CR
φi)φk

)

−%
(

φp

∮

� H
∫

CL
φi

)

%
(

∫

HS2
R
φ̄j̄ φk

)]

= ηlp[〈p| (∫
T u

φ̄j̄

)

H
(

∮

CR
φi

)

|k〉 − 〈p|
(

∫

CL
φi

)

H
(∫

T u
φ̄j̄

) |k〉]

= ηlp lim
T→∞[〈p|

(

∮

CL
φ̄j̄

)

e−HT
(

∮

CR
φi

)

|k〉

−〈p|
(

∫

CL

)

φie
−HT

(

∮

CR
φ̄j̄

)

|k〉]
= (C̄j̄ Ci)

l
k − (CiC̄j̄ )

l
k = −[Ci, C̄j̄ ]lk

(3.6.24)
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This is the main identity within the tt∗ equations. The others are easier to derive and
all are summarised below in the topological basis as

[Di, D̄j̄ ] = −[Ci, C̄j̄ ]
[Di,Dj ] = [D̄ı̄ , D̄j̄ ] = [Di, C̄j̄ ] = [D̄ı̄ , Cj ] = 0

DiCj = DjCi D̄ı̄ C̄j̄ = D̄j̄ C̄ı̄

(3.6.25)

We can now define a flat [∇i ,∇j ] = [∇i , ∇̄j̄ ] = [∇̄ı̄ , ∇̄j̄ ] = 0 connection

∇i = Di + αCi , ∇̄j̄ = D̄j̄ + α−1C̄j̄ . (3.6.26)

The sections of the vacuum bundle are identified with the periods in the Calabi-Yau
σ model context. The above flat connection can be identified with the Gauss Manin
connection, see Sect. 2.10.17.

Since it is flat it seems that the theory is trivial! However flat connections can still
have monodromies, over non simply connected manifolds, see Fig. 5, which are the
essential data of our theories. Where do these monodromies come from? The key is
that (2.4.63), which is based on a local consideration of the tangent spaces of metric
deformations at a generic point of the moduli space fails at singular degenerations
of the space time Calabi-Yau manifold. At these loci charged Ramond-Ramond
states become light, the simplest example is the charged black hole at the conifold
[297], which sits in a hyper multiplet. In the presence of massless charged states
the supergravity argument for the factorization (2.4.63) into hyper- and vector
multiplets does not apply either. In fact the logarithm in third period that produces
the monodromyM1 in (2.10.43) can be interpreted as the one loop correction of the
vector multiplet gauge coupling due to the massless hypermultiplet. An intriguing
experimentally verifiable occurrence of monodromies of flat connections is the
Berry Phase in quantum mechanics [38] see [267] for a review.

The t t∗ equations describe the essence of the WS super symmetry constraints on
the topological correlators. These equations have in general to be supplementedwith
information about the structure constants Cl

ij and boundary conditions. But already
with one U(1) i.e. R symmetry charge constraints they become powerful. E.g. for
d < 1 (3.1.22) implies |Q| < 1 moreover these theories are rational and have
finitely many chiral primaries in this charge range. We assign to the t i of say the
(c, c) ring (3.6.15) the weight wi = (1−Qi) > 0. The last equation (3.6.25) called
associativity guarantees the existence of a potential F with Cijk = DiDjDkF . As
discussed one can chose flat coordinates, which we call for convenience also t i such
thatCijk = ∂i∂j ∂kF . Charge conservation implies thatF is homogeneous of degree
2 in the weights wi of the t i , i.e. a finite polynomial and associativity determines
its coefficients up to an overall normalization. These constraints imply indeed that
there is a completely solvable discrete infinite set of d < 1 N = (2, 2) theories
with anADE classification, that can be identified with the classification of Kleinian
singularities. For d > 1 there are zero and negative weight t i and this simple way
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of approaching the problem loses its grip. The bordering case d = 1 are elliptic
singularities.

However if d ∈ Z and the R charges are also integer, we expect from Sect. 3.1
that beside world-sheet super symmetry also space-time super symmetry constrains
the correlators. Let us show that (3.6.25) implies for the Calabi-Yau σ models
on threefolds d = 3 and odd integer R charges special Kähler geometry. In the
holomorphic basis we use (3.6.16) to write [Di, D̄j̄ ]kl = −∂̄j̄A

k
il = −[Ci, C̄j̄ ].

With (Ck
il )

† = C̄l̄

ī k̄
and hence Ck

j̄m = gkk̄Cm̄

j̄ k̄
gm̄m we write

∂̄j̄A
k
il = [Ci, C̄j̄ ]kl = [Ci, g

−1C†
j g]kl . (3.6.27)

In the case of Calabi-Yau σ model the R charge conservation law forbids many
correlators, see Sects. 3.4.1 and 3.5.1. In particular g0k̄ = g0k̄ = 0 for k̄ �= 0̄ and

Ck
i0 = δki and Ck̄

ı̄0̄
= δk̄ı̄ . If we specialize (3.6.27) to k = l = 0 we can write

∂̄j̄A
0
i0 = ∂̄j̄ (g

0k̄∂ig0,k̄) = [Ci, g
−1(Cj )

†g]00
∂̄j̄ ∂i log(g00̄) = −g00̄Ck̄

j̄ 0̄
gk̄i

= − gj̄i

g00̄
.

(3.6.28)

As follows from the identification (3.5.5), (3.5.6) in the B-model and (2.4.16) or
Serre duality (2.4.7) the vacuum states |0〉 and |0̄〉 are associated to the holomorphic
(n, 0) and anti-holomorphic (0, n) forms. In particular

e−K = i

∫

M

� ∧ �̄ = 〈0̄|0〉 (3.6.29)

and comparing (2.5.25), (2.5.24) with (3.6.28), (3.6.29) we identify the Weil-
Peterson metric with a sub-block of the tt∗ metric

Gij̄ = gij̄ e
K . (3.6.30)

In (3.6.24) we have related the curvature of gij̄ to a bilinear in the 3-point functions
and with (3.6.30) this becomes the special geometry relation (2.5.21). In other words
tt∗ in genus 0 implies special Kähler geometry, but the main virtue of the formalism
is that it generalized special Kähler geometry to higher genus. This will become
essential to solve the B-model.

It is worth mentioning the closely related contact term approach to the definition
of the connection (3.6.17), see e.g. [246] for a short introduction. It does use
conformal invariance and restricts the analysis to exactly marginal ring operators.
If the operators are exactly marginal for all values of t = (t, t̄ ) of marginal
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perturbation parameters as (3.6.15) then the most general short distance expansion
in the basis eγ of them is

Oα(z)Oβ(0) ∼ Gαβ

|z|4 + �
γ
αβδ

2(z)Oγ (0) . (3.6.31)

Clearly this expansion is compatible with dimensional analysis as δ2(z) = ∂
∂z

1
z̄
.

Marginality implies in first order in t that
∫

d2z〈Oα(z)Oβ(1)Oγ (0)〉 gets only
contributions from z = 1 and z = 0, which explains that only the δ-function
appears on the right of (3.6.31) in this order. Exact marginality means that scale
independence, i.e. vanishing β functions, are maintained to all orders in t . To next
order follows the closing on exactly marginal operators, as opposed to arbitrary
(1, 1) operators, on the right in (3.6.31). The Zamolodchikov metric is defined as the
sphere correlator

Gαβ = 〈Oα(1)Oα(0)〉 (3.6.32)

and because of conformal invariance it does not require a limit as in the t t∗ case.
Taking the derivatives with respect to perturbations one gets

∂Gαβ

∂tγ
=
∫

d2z〈Oα(z)Oβ(1)Oβ(0)〉 = �δ
αγGδβ + �δ

γβGδα , (3.6.33)

which establishes �δ
αγ as connection of the Zamolodchikov metric. So far the

discussion of the contact terms has been about a general ansatz and in particular
all �δ

αγ could have been zero. However [141] observed first that in order to ensure

marginality in superconformal theories with non trivial triple couplings Ck
ik the

contact terms have to be present, which is of course required to get (3.6.25). The
virtue of the t t∗ equations is to generalize this analysis to all ring states replacing
�δ
αβ with Aδ

αβ and non-conformal theories.
As an exercise one may derive the special geometry relation in N = (2, 2)

SCFT using the contact term approach as a specialisation of the derivation of the t t∗
equations. The decomposition of α, β into j j̄ comes from the possibility of picking
the holomorphic basis in N = (2, 2)WS theories. Of course the real challenge is to
understand the occurrence of the monodromies, which we identified as the data of
the theory, which however requires to understand the spacetime Ramond-Ramond
states.

Mathematically the tt∗-structure is related to the TERP-structure, see review of
Hertling and Sabbah [174], and the non-commutative Hodge structure [217]. It was
in the latter context that the �̂ classes were found in [217].
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3.6.2 The Frobenius Algebra, tt∗ Structure and Gauss Manin Connection

In this section we discuss the Frobenius structure, which is associated naturally
to any topologically twisted (2, 2) supersymmetric world-sheet theory. In view
of the relation of the cohomology ring of the topological field theory and the
cohomology103 of the target spaceM , this chapter further links the two dimensional
description given above with the target space descriptions of the horizontal104

cohomology that was discussed in Sect. 2.4.
A Frobenius algebra has the following elements. It is a graded vector spaceA =

⊕A(i), i ≥ 0 with a symmetric non-degenerate bilinear form η and a cubic form

C(i,j,k) : A(i) ⊗A(j) ⊗A(j) → C. (3.6.34)

Here is the list of defining properties:

(FAs) Symmetry: C(i,j,k)
abc = C

(σ(i,j,k))

σ (abc) under any permutation of indices.

(FAd) Degree:105 C(i,j,k) = 0 unless i + j + k = n.
(FAu) Unit: C(0,i)

1ab = η
(i)
ab .

(FAnd) Non-degeneracy:C(1,j) is non-degenerate in the second slot.
(FAa) Associativity: C(i,j)

abp η
pq

(n−i−j)C
(i+j,k)
qcd = C

(i,k)
acq η

qp

(n−i−k)C
(i+k,j)
pbd .

Here the latin indices a, b, c, . . . refer to a choice of basis A(i)
a , a =

1, . . . , dim(A(i)) ofA(i). The above defines a commutative algebra as follows

A(i)
a ·A(j)

b = C
(i,j)
abq η

qp

(i+j)A
(i+j)
p = C

(i,j)p
ab A(i+j)

p . (3.6.35)

These structures are intrinsic to the (c, c)- and (a, c)-rings of the worldsheet
(2, 2) superconformal theory. The charges of the U(1)A and U(1)V currents in
the (2, 2) supersymmetry algebra define the grading in the (c, c)- and the (a, c)

rings respectively and the rest of the Frobenius structure follows from the axioms
of conformal field theory and the closing of the rings up to QB , QA exact terms,
see Sect. 3.3.1 and [182]. Note that in families of Frobenius algebras η

(p)
ab is a

constant topological pairing, while the general C(i,j)

abc (t) varies with the deformation
parameter.

In the B-model the (c, c) ring is identified for fixed complex structure with the
elements B

(p,q)
a in Hp(M,∧qTM). We consider only those elements which are

mapped by contraction with � to elements B(p) = �(B) in Hn
prim(Mn), i.e. in

particular for p = q . The Hodge type for this complex structure, which can be
taken at the point of maximal unipotent monodromy, defines the grading, so that

103Quantum cohomology in the A-model.
104Vertical in the A model.
105Because of this property the last index indicating the degree dropped in the following.
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one gets, compare (3.5.14) and (2.5.10) with 〈x, y〉 = Q(y, x),

C
(p,q)

abc = Q(�(B
(p)
a ∧ B

(q)

b ∧ B
(n−p−q)
c ),�) , (3.6.36)

which depends also on the Kählergauge of �. For complex families, i.e. defor-
mations w.r.t. elements with (p = q = 1), the grade of B(p) is encoded in the
Hodge filtration parameter of Fn−p See (2.4.32) and we give a covariant definition
of (3.6.36) below.

The (a, c) ring is mapped to the quantum cohomology extension of H ∗
deRham.

On the vertical cohomology in Hp,p(Mn) the grading of the A-model is simply
identified with the form degree. We allow again only the complexified Kähler
deformation family w.r.t. to elements with p = 1. These deformation families
of rings are pairwise identified by mirror symmetry on M and W and at the
point of maximal unipotent monodromy the gradings can be matched using the
monodromy weight filtration. This gives important information about the basis of
the cohomology and homology groups in Hn

prim(Mn).

One can chose a basis AI
(p) of the homologyHn(Mn,Z) and a dual one α

(p)
I for

cohomology of the primary horizontal subspace so that

∫

AI
(p)

α
(q)
J = δIJ δ

q
p,

∫

Mn

α
(q)
I ∧ α

(p)
J =

{

0 if p + q > n,

η
(q)
IJ if p + q = n .

(3.6.37)

Here p = 0, . . . , n denotes a grading which can be related to the Hodge type given
a point in the moduli space. As mentioned above the most useful one is the large
complex structure point.

The information in the Gauss-Manin connection (2.4.33) and in the Picard Fuchs
ideal IPF is equivalent. Combined with Griffiths transversality this information
determines the Frobenius structure. From IPF and the differential and algebraic
relations that follow from Griffiths transversality one can calculate the Frobenius
structure constants explicitly, see Sect. 2.9.2 as well as [61] for the quintic and [186]
for any Calabi-Yau manifold. More abstractly the Frobenius structure can be
identified on the B-model cohomology ring by choosing appropriate basis vectors
B(p)

a in Fn−p with the properties

η
(p)
ab = Q(B(p)

a ,B(n−p)
b ), C

(1,p)
abc = Q(∇aB(p)

b ,B(n−p−1)
c ) . (3.6.38)

The last equation of the two equations defining the ring homomorphism may be by
comparing with (3.6.36) stated shortly as

A(1)
α · ↔ ∇α · . (3.6.39)

FAs) is fulfilled because the Gauss-Manin connection is flat [∇a,∇b] = 0, FAnd)
because of the Tian-TodorovLemma and the rest of the axioms follow fromGriffiths
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transversality. Note that associativity determines all possible couplings and that
B(p)

a can be readily expanded in the α
(p)
I basis with the following upper triangular

property

∫

AI
(p)

B(q)
J =

{

0 if p < q

δIJ if p = q
. (3.6.40)

We can restate the Gauss-Manin connection in an easy form. Using
the operator state correspondence in 2d field theory we write (B(0) =
�n,B(1)

α1 ,B
(2)
α2 , . . . ,B

(n−1)
αn−2 ,B(n)) as (|0〉, |α1〉, |α2〉, . . ., |αn−2〉, |n〉). Since the

the Gauss-Manin connection becomes the ordinary derivative in flat coordinates,
which are given by a ratio of tκ = Xκ/X0 of the projective complex coordinates
XI see (2.5.26) for 3-folds and (2.4.40) in general, as e.g. the mirror map at large
complex structure. Using the Griffiths-Frobenius structure on the B-model one can
write the Gauss Manin connection as

∂tκ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

|0〉
|α1〉
|α2〉
...

|αn−3〉
|αn−2〉
|n〉

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 δκ,α1 0 0 . . . 0 0

0 0 C
(1,1) α2
κ,α1 0 . . . 0 0

0 0 0 C
(1,2) α3
κ,α2 . . . 0 0

0 0 0 0 . . . C
(1,n−2) αn−2
κ,αn−3 0

0 0 0 0 . . . 0 δκ,αn−2
0 0 0 0 . . . 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

|0〉
|α1〉
|α2〉
...

|αn−2〉
|αn−2〉
|n〉

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.6.41)

for κ = 1, . . . , hn−1,1(Mn). This specializes to the 3-fold case given in Sect. 2.5.5
and [88], see also [78] section 5.6 and [71] for a physics derivation from N = 2
special geometry.

The real structure

g
(q)

αβ̄
= 〈β̄, q|n− q, α〉 = R(B(n−q)

α ,B(q)
β ) , (3.6.42)

and the worldsheet parity operation

〈ᾱ, q| = 〈β|M(q)β
ᾱ , (3.6.43)

which fulfills the worldsheet CPT constraints MM∗ = 1, extend the Griffiths-
Frobenius package on the mixed Hodge structure to the t t∗- structure [40].

In particular one can chose the basis B(p)
α compatible with the real structure, i.e.

B(p)
α = B(n−p)

ᾱ . (3.6.44)
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The degree one elements are the well known tangents vectors to the complex
deformation space of Tian and Todorov

B(1)
α = Dα�, B(1)

ᾱ = D̄ᾱ�̄ . (3.6.45)

Note that g(q)

αβ̄
is the Zamolodichkov metric, gij̄ is related to the Weil-Petersson

metric Gij̄ by g
(1)
ij̄ = e−KGij̄ = 〈0̄|0〉Gij̄ and has blockform w.r.t. to the grading.

The higher degree operators are given for p = 2, . . . , !n2 " by

Bp
α = D(p)

α �, B(p)
ᾱ = D

(p)

ᾱ �̄, (3.6.46)

with D
(p)
α = 1

p!κα;i1,...,ipDi1 . . .Dip . These operators are closely related to the

Frobenius operator D(p)(ρ) and as the latter determined at the point of maximal
unipotent monodromy from the symbol of the Picard-Fuchs differential ideal IPF

onMn as in (2.9.66) or equivalently from the information in the Chow ring ofWn. In
order to fix them completely cases one has to construct the integer basis, which we
do in section “The �̂ Classes and Homological Mirror Symmetry” and Sect. 2.9.8.
The formalism of the �̂ class generalized to arbitrary CY n-folds, see e.g. for 4-
folds [46].

3.7 Kodaira-Spencer Gravity as Space-Time Action for the
B-Model

There are three space time actions known, which reproduce as classical equa-
tions of motion the unobstructedness of complex structures on the Calabi-Yau:
Kodaira-Spencer gravity [40], Hitchins three-form action [177] and Hitchins general
threeform action [178]. The first [40] and the last [134, 278] reproduce the B-model
also at one loop. But even Einstein’s gravity poses no problem up to one loop [299].
While it is not clear how the suggested spacetime descriptions make sense as full
quantum theory, the worldsheet B-model approach makes remarkable predictions at
higher loops.

Kodaira-Spencer theory of gravity is theory on M which couples exclusively to
the complex moduli of M . Its tree level result reproduces the B-model without the
coupling to worldsheet gravity, i.e. its genus zero sector [40]. It is a space time
gravity theory in the sense that is does couple to the Calabi-Yau metric as far as
complex structure dependence is concerned. It reproduces the Eq. (2.4.13) in the
form ∂̄A(z) + 1

2∂
̂(A(z) ∧A(z)) = 0 as its equation of motion and its Feynman

graph expansion corresponds to the iterative solution to that equation exactly in
the form as given Sect. 2.4.2. In fact by the ∂, ∂̄-Lemma we have shown e.g. in the
second induction step that one has anψ1 with ∂∂̄ψ1 = ̂[A1, A1], hence Â2 = 1

2∂ψ1.
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By (2.4.19) the first statement means also ∂̄ψ = ̂(A1 ∧A1). Combining the two
facts one gets a solution for Â2 in the form

Â2 = − 1

2∂̄
∂ ̂(A1 ∧A1) = P ̂(A1 ∧A1) . (3.7.1)

We have used a “gauge” ∂Âk = 0 and it is easy to see that the recursive solution
comes with the freedom Âk+ ∂̄λ, which one can fix be requiring ∂̄∗Ak = 0. We can
then define the “propagator” asP = − 1

2∂̄
∂ = −∂̄∗ 1

2∂̄
∂ . With this “propagator” one

can recursively write the solutions to Âk. E.g. Â3 = 2P(A1 ∧ (P ̂(A1 ∧ A1))
∨)∧. It

follows from the construction ofAk that only Â1 fulfills the Laplace equation, while
Ak for k > 1 correspond to “massive modes” (Fig. 13).

It is not hard to see [40], that the Kodaira-Spencer action

λ2S(Â1, Âm, z0) =
∫

M

1

2
Âm

1

∂
∂̄Âm+ 1

6
((A1+Am) ∧ (A1 +Am))∧ ∧ (A1 + Am)∧

(3.7.2)

has ∂̄(Â1+ Âm)+ 1
2∂((A1 + Am) ∧ (A1 + Am))∧ = 0 as e.o.m. and reproduces the

Feynman graph expansion above. Here we have defined as Am the massive part of
A(z) and z0 is background value of the complex structure. It has further be shown
that (3.7.2) is the reduction of closed string field theory to the topological modes
and it has been argued that its path integral defines the generating function for
all correlators of the topological B-model coupled to worldsheet gravity. However
the action has not been made sense of as quantum theory. So its solution is
indirect by means of the holomorphic anomaly equation of the topological B-model.
Nevertheless the divergent factors in the graph expansion of (3.7.2) lead to an
analysis of the leading behavior at the boundaries of the complex moduli space
of the Calabi-Yau space once the ones of the three point couplings are known. For
one modulus t one gets [40]

Fg ∼ [∂
3
t Ctt t ]2g−2
[∂tCtt t ]

A

A

A

A2A2
A

A

A

1

1

1
1

1

3

Fig. 13 Perturbative solution of the Kodaira-Spence equation in Tians form ∂̄A(z) +
1
2 ∂

̂(A(z)∧ A(z)) = 0 by Feynmann graphs with massless fields (weavy lines) and massive fields
(solid lines)
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This result will be useful to fix the holomorphic ambiguity as it predicts the leading
behaviour at the conifold, see Sect. 4.5.

4 The B-model at Higher Genus

In this chapter we use the world-sheet formalism on higher genus Riemann surfaces
to couple the B-model to topological gravity. From the boundary strata in the
moduli space of these Riemann surfaces comes the holomorphic anomaly, that we
derive next following [40]. Note that in this derivation the formalism of special
geometry, discussed in Sect. 2.5, which like the closely related t t∗ formalism is
a genus zero story, gets extended to higher genus. The holomorphic anomaly
equations are recursive equations for the higher genus F (g), roughly the higher
genus generalisations of the prepotential106 F (0) = F (0), that need as starting
data the genus zero amplitude F (0), all the special geometry data associated to
it and the genus one amplitude F (1). The holomorphic anomaly equations can be
solved up to kernel, the holomorphic or modular ambiguity, once the propagators
are defined, either using repetitively the special geometry algebra (2.5.21) by a
simple integration-by-parts procedure [40] or by the Feynman rules of an auxiliary
action [40]. Both methods lead expression for the F (g) in which the number of
terms grow exponentially. We review these methods shortly but focus on a third
method which is known as direct integration. This uses the idea hat all holomorphic
dependence is in certain almost modular generators of a ring of automorphic forms
that close under a holomorphic derivative, known as Serre derivative, and that the
F (g) are generated by the generators a ring of meromorphic and an-holomorphic
building blocks, which closes under the full covariant derivatives (4.2.33). In this
formalism which uses more efficiently the modular invariances of the F (g) the terms
to be calculated grow only polynomial. Strictly speaking this formalism can only
proved in the local cases where the rings are rings of quasi modular forms. We
exemplify it therefore first for the local P2 in Sect. 4.2.4.

The holomorphic anomaly equations determine the F (g) only up to meromorphic
sections of L2−2g over the complex moduli space Mcs of the Calabi-Yau 3-fold
called fg(z). We discuss the important question of how to fix these sections in
Sect. 4.5.

4.1 Coupling the B Model to Topological Gravity

We consider again the moduli space introduced in Sect. 3.3.2

Mg = large gauge transf.\Hg/(diff×Weyl)g .

106Holomorphic quantities are in the following denote by calligraphic characters.
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with expected dimension 3g − 3 (A2.12). In the covariant quantization of string
theory the metric independence of the theory, up to this finite dimensional
space (3.3.18) we presently discuss, is expressed by a nilpotent BRST operator
just like in (3.3.16). Conformal invariance is maintained for σ models on Calabi-
Yau spaces. To take advantage of this extra bonus of the B-model note that in a
conformal fields theory T

μ
μ = 0 and (3.3.16) splits in the following two components

corresponding to Tzz = T (z) and Tz̄z̄ = T̄ (z). Now we can borrow literally the
treatment of the measure from the critical bosonic string. In the case of the bosonic
string the situation is exactly as in the topological B-model on a Calabi-Yau 3
fold (3.1.31), where the ghost number is identified with the U(1) axial charge of the
B-model. The geometrical reason for this equivalence is that (A2.13) and (A2.14)
give the same anomaly if dimC(M) = 3 and c1(TM) = 0. As we saw in Sect. 3.1.2
the b(z) and theQBRST operator have ghost number−1 and 1 respectively and there
is a ghost number anomaly of 6g − 6 = −3χ(�g) on a higher genus worldsheet,
which corresponds to the axial current anomaly 6g − 6 = −3χ(�g).We can use
therefore the same measure over the complex moduli space as in the bosonic string.
From the Beltrami-Differentials μk = μk z

z̄ dz̄∂z, k = 1, . . . , 3g − 3 in H 1(T�g),
which represent tangent directions ofMg, we define

Bk :=
∫

�g

√
hhαγ hβδδ(k)hαβGγ δ =

∫

�g

d2z(Gzzμ
k z
z̄ +Gz̄z̄μ̄

k z̄
z ) = βk + β̄k.

(4.1.1)

The definition of B(k) in itself does not require conformal invariance but
just (3.3.16). We used after the second equality the standard metric in a conformal
gauge and the expressions for the Beltrami-Differentials. In the last equality we
used (2, 2) supersymmetry and the fact that after the B-twist theG−, Ḡ− are h = 2
fields to define

βk =
∫

�g

d2z G−μk, β̄k =
∫

�g

d2z Ḡ−μ̄k . (4.1.2)

Because of the antisymmetry ofG and the Kähler structure on the moduli spaceMg

the quantity

μg = 〈
6g−6
∏

k=1
Bk〉 · [dM] =

〈3g−3
∏

k=1
βkβ̄k

〉

· [dm∧ dm̄] (4.1.3)

is a top-form on Mg. Here ·[dM] or ·[dm ∧ dm̄] means contraction with dMi1 ∧
. . .∧ dMi6g−g or dmi1 ∧ dm̄i1 ∧ . . .∧ dmi3g−3 ∧ dm̄i3g−3 and suitable normalization.
That is we inserted 6g − 6 times β(k) to compensate the ghost or axial anomaly,
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which is by the index theorems (cff Appendix 2) identified with the dimension of
Mg. The integral

F (g) =
∫

Mg

μg (4.1.4)

is the central observable of the topological B model.
How does this discussion of the dimension of the moduli space relate to

dimension of the moduli space in the A-model? In the A-model one can compute the
geometrical virtual dimension of the moduli space of non-trivial holomorphic maps
using the Riemann Roch theorem and finds that the expected or virtual complex
dimension of the moduli of stable maps is [182]

vdimCMg,n(M,β) = h0(x∗(TM))− h1(x∗(TM))+ dim Def(�,p)− dim Aut(�,p)

= c1(TM) · β + (dimC M − 3)(1− g)+ n , (4.1.5)

where one calculates the first two terms by (A2.14) and the last two by (A2.13) with
addition of moduli for marked points. The upshot is that the deformations of the
metricMg are offset by the obstructions of having a nontrivial holomorphic map to
M , so that the virtual dimension of the moduli space of maps is zero. In the B-model
we kill the deformation space ofMg by viewing the B-model fields as ghost system
fromwhich we construct a top form to integrate overMg. The topologicalB-model
is one of those examples of string theories, where general covariance (3.3.16) is
maintained by an QBRST operator, whose charge violation measure the dimension
of the moduli space, but the decoupling of ghost and matter sector is not imposed
[324].

As part of the prerequisite for coupling topological theories to gravity [318] the
measure μg must be closed dμg = 0. To see that consider

0 = 〈{Q,

6g−5
∏

k=1
Bk}〉 =

6g−5
∑

j=1
(−1)j−1〈B1 . . . {Q,Bj }, . . . B5g−5〉 (4.1.6)

and use the fact that {Q,Bi} yields the T i = ∫

�g
d2zT μi , whose insertions can

be interpreted as derivative on Mg according to (3.3.22). A second prerequisite
is that μg is basic, i.e. that it vanishes for all variations of the metric induced by
infinitesimal diffeomorphism. These correspond to the last two terms in (3.3.19)
and the property is easily checked. We will show below explicitly by manipulations
similar to the one that lead to (4.1.6) that theQ commutator of the measure is exact.
The metric dependence comes hence from the boundaries of Mg. Combinatorial
the calculation is similar non-topological higher string loop calculations, apart from
the fact that the latter involved much more sophisticated integrals, whose nature
in the case of the super moduli spaces have became only clear recently [99]. The
compactifications of Mg,n is identical to the one discussed in topological grav-
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ity [320]. Its boundary components come from pairwise collision of inserted points
and nodes. In 2d gravity one gets from these boundaries the topological recursion
relations. In the case of the B-model there is an interesting modification namely
that the boundary components contribute only in anti-holomorphic derivatives of
Fg, which gives rise to recursion relations involving anti-holomorphic derivatives.
Since without boundary component contributions the F (g) would be holomorphic
one calls these recursions the holomorphic anomaly equations. They are no more
anomalous then the topological recursion relations.

4.1.1 The Holomorphic Anomaly

We want to consider in this section perturbations of a more general form then in
Sect. 3.3.1 namely

S =
∫

�

d2zL0 +
∑

i

t i
∫

�

Oi +
∑

i

t̄ i
∫

�

Ōi . (4.1.7)

Here the WS two-form field O = O(2) is the B-model field (3.3.13) which
comes from a φ = O(0) in the (c, c) ring. We will use here the CFT notation
introduced in Sect. 3.3.1, i.e. Oi := {Q+, [Q−, φi ]} ∼ {G−0 , [Ḡ−0 , φi ]} and Ōı̄ :=
{Q̄+, [Q̄−, φ̄ı̄ ]} ∼ {G+0 , [Ḡ+0 , φ̄ı̄]}. In an unitary theory t̄ i = (ti )∗, but it will be
important in the following to view t̄ i as an independent parameter. As explained in
Sect. 3.3.1 the WS two-form fields in (4.1.7) are neutral. Therefore we can expect
that arbitrary n− point functions like for g > 1

C
(g)
i1,...,in

=
∫

Mg

〈
∫

Oi1 . . .

∫

Oin

3g−3
∏

k=1
βkβ̄k〉 (4.1.8)

do not vanish. Is it stands (4.1.8) is not well defined. We first have to specify
how to deal with the contact terms, which are necessarily present in an interacting
supersymmetric theory, see (3.6.24) or (3.6.31). Now in the case g = 0 there
are the three PSL(2,C) conformal Killing fields. The zero mode integral of their
superpartners compensates for three descendant operations and with the PSL(2,C)

symmetry we set three points to 0, 1,∞. The generic genus zero correlation is then

C
(0)
i1,...,in

=
∫

M0

〈φi1(0)φi2(1)φi3(∞)

∫

Oi4 . . .

∫

Oin〉 (4.1.9)

This has no contact interaction among the first 3 fields. It is natural to make this
function symmetric in its indices. Thereforewe exclude all contact interactions from
the regions of the integrations. This the regularization we adopt for general g.
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In view of (4.1.7) we can insert
∫

�
Oi operators by taking t i derivatives ∂i of

C
(g)

i1,...,in
in an attempt to obtain C

(g)

i,i1,...,in
. In order to achieve our short distance

regularization we have to subtract the would be contact terms in the integration over
�. This is very naturally achieved by taking covariant derivatives w.r.t. the Weil-
Peterson metric, i.e. ∂i → ∂i − �i . In the tt∗ formalism we can isolate the contact
term as the difference between ∂i(Q+Q−|j 〉)−Oj ∂i |0〉 = [(Ai)

k
jOk−(Ai)

0
0Oj ]|0〉.

The logic is that in the term ∂i(Q+Q−|j 〉) the fieldOi in the integral
∫

� Oi explores
the region near Oj in (3.6.7), while in the second it does not. The Q+Q− generate
the descendant field from φj in (3.6.7) that are needed in order to compare the
two terms. In particular applying this to |j 〉 = |0〉 and using (3.6.28), (3.6.29) we
get a contact term with the 1 operator (Ai)

0
0 · 1 = −∂K · 1. Roughly speaking

this non triviality of the vacuum comes from the coupling of φj to the U(1)R
current (3.3.5). One can argue that the above contact term is proportional to the
integral of R integrated over the Riemann surface. The above consideration for the
half sphere (3.6.7) , fixes the normalization and in general gives the Euler number
χ of �. Subtracting both contact terms one concludes that the insertion of

∫

� O(2)
i

into on a genus g correlation function with the right short distance prescription is
given by the covariant derivative of C(g)

i1,...,in

Di = ∂i − �i − (2− 2g)∂iK, (4.1.10)

This implies the fact that C(g)

i1,...,in
is a section of a tensor bundle over the complex

moduli spaceM of the Calabi-Yau manifoldM transforming in

C
(g)
i1...in

(z) ⊂ L2−2g ⊗ Symn(T ∗1,0(Mcs)). (4.1.11)

in as a generalisation of the genus zero discussion in Sect. 2.5 see (2.5.11). First note
that the contact algebra analysis yields that all correlators can be obtained from the
vacuum correlators Fg as

C
(g)

i1,...,in
= Di1 . . .DinF

(g) . (4.1.12)

In particular they are symmetric, because of the vanishing of the corresponding
curvature terms in Kähler connections. The line bundle factor L2−2g in (4.1.11) can
be understood by building the higher genus Riemann surface �g by sewing it from
spheres. This involves g + 1 of “propagator” insertions Sij ∈ L−2. The insertion
of the propagator follows from the ∂̄k̄ integrated version of (4.1.17) and (4.2.7) and
the transformation w.r.t. to the Kähler line bundle form (4.2.7) or the relations in
Section in (3.6.1). Further we have seen from Griffiths transversality that F (0)(X)

is homogenous of degree 2 in Xa or said differently a section F (0)(X) ∈ L2. By
the rules of sewing rules of topological field theory it follows that the genus g

amplitudes F (g)(X) are of homogeneous of degree 2 − 2g i.e. F (g)(X) ∈ L2−2g.
Concretely this can be seen as follows: the n-point Ci1,...,ig+1 = Di1 . . . ,DinF ∈
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g+1g+1

S ji

ji

Fig. 14 A degenerate genus g curve made from two degree 2 genus zero g+ 1 function and g+ 1
propagators

Symn(T ∗(1,0)) ⊗ L2 and the simplest degenerate genus g curve can be build by
Fig. 14, which involves (g + 1) propagators and hence the F (g)(X) and their
derivatives transforms as claimed.

Let us therefore investigate similarly as in Sect. 3.6.22 the derivative w.r.t. t̄i of
the correlator

∂

∂t̄i
Fg =

∫

Mg

〈

∮

Cw

G+
∮

C ′w
Ḡ+φ̄ī (w)

3g−3
∏

k,k̄=1
βkβk̄

〉

· [dm ∧ dm̄]

=
∫

Mg

4
3g−3
∑

iı̄=1

∂2

∂mi∂m̄i

〈

φī(w)
∏

k �=i

βk
∏

k̄ �=ı̄

βk̄

〉

· [dm∧ dm̄]

=
∫

Mg

∂∂̄λ6g−8 =
∫

∂Mg

λ6g−8

(4.1.13)

The contour of G+, Ḡ+ are originally as in Fig. 11 encircling φ̄(w). The deforma-
tion and splitting of the contour yields a sum of terms in which theG+ and Ḡ+ encir-
cle one

∮

Cu
dwG+(w)G−(u)μk = 2T (u)μk and one

∮

Cu
dwḠ+(w)Ḡ−(u)μk̄ =

2T̄ (u)μk̄ in each summand. Together with the integral in the definition of the βk

and β̄k and the charges Q̄+(Q+) and Q̄−(Q−) associated to G+(z)(G−(z)) and
Ḡ+(z)(Ḡ−(z)) we can write the result of the contour deformation as

{Q̄−, βk} =
∫

�g

d2zT μk =: T k

{Q̄+, β̄k} =
∫

�g

d2zT̄ μ̄k =: T̄ k .

(4.1.14)

In Sect. 3.6.1 where the G−(u), Ḡ−(u) are integrated over a contour we got the
L−1 mode of the T , which corresponds to derivative of a insertion position. Here
we get the T k and T̄ k , which convert according to (3.3.22) into a derivative in the
moduli space. Both effects are related and lead to exact forms on Mg and Mg,n.
The boundary components ∂Mg, where the integral in the last line of (4.1.13)
contributes according to Cauchy’s theorem are in real codimension two as indicated
by the form degree of λ. They are the standard stable degenerations [182]. The whole
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point specific of the B-model is to now figure out what boundary contributions
are. This turns out to be easier then in the 2d gravity case. It is a bosonic string
higher loop sewing consideration [279] with simplifications. There will be no new
information in the contributions from colliding points above what we summarized
in (4.1.12).

It remains to analyze the A and B degeneration depicted in Figs. 15 and 16
respectively. Near the boundary component in the moduli space corresponding to
the degenerate surface in the Figs. 15 and 16, the normal direction to the boundary
can be parametrized by the length of the tube τ2. The moduli space of the boundary
components consist of the 3g−6 dimensional moduli space of the irreducible curves
of genus g − 1 in case A or h and g − h in case B respectively with measure
[dm̂ ∧ d ˆ̄m]. That is we loose three complex dimensions in the moduli space of the
irreducible components and hence three ββ̄. As we make the tube infinitely long
or equivalently infinitesimal thin the data remembered about the shape are merely
the two insertion points w and u, the length and the twist of the tube. In particular
two ββ̄ are replaced by (

∮

Cx
G−

∮

C ′x G−φX(x)) with x = u,w and since we want
calculate a string amplitude we have to insert a complete set of states for the φX.
The contribution of the boundary is hence

∫

∂Mg

[d̂m ∧ d̂m̄][dw][du] ∂

∂τ2

〈

∫

φ̄j̄ (

∮

Cu

G−
∮

C′u
G−φi)η

ij (

∮

Cw

G−
∮

C′w
G−φj )

3g−6
∏

a=1
β̂a ˆ̄βa

〉

(4.1.15)

The integration over [du] and [dw] is over the fibre �g of the universal curve.
We can hence convert, e.g. the

∮

Cu
G−

∮

C ′u G−φi insertions in a descendant field

O(2)
j integrated over �g . Only if the

∫

φ̄j̄ integral extends over the tube one gets a
contribution proportional to τ2 which does not cancel under the derivative in (4.1.15)
and one can focus on this integration domain. The correlation function factorizes

Fig. 15 A-type sewing

d x
2

O
(2)G

GG
G

2

Fig. 16 B-type sewing

d x
2

O
(2)

G G G G

2
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upon complete insertion of states in operator approach, which gives

∫

∂Mg

[dm̂∧ d ˆ̄m] ∂

∂τ2
〈k|
∫

tube

φ̄j̄ |l〉ηikηlj

〈

(

∫

�

Oi )(

∫

�

Oj )

3g−6
∏

a=1
β̂a ˆ̄βa

〉

. (4.1.16)

Here we also used the fact that propagation on the tube projects on the groundstate.
With the manipulations from Sect. 3.6.1 and the normalizing the perimeter of the
tube to one we get

〈k|
∫

tube

φ̄j̄ |l〉ηikηlj = 〈k̄|
∫

tube

φ̄j̄ |l̄〉Mk̄
k η

ikMl̄
l η

lj

= τ2〈k̄|φ̄j̄ |l̄〉e2KGik̄Gj l̄ = τ2C̄k̄j̄ l̄e
2KGik̄Gj l̄ =: τ2C̄ij

k̄

(4.1.17)

Using this result in the boundary contribution of the A or B type degeneration
and (4.1.12) one gets the holomorphic anomaly equation [40]

∂̄k̄F
(g) = 1

2
C̄

ij

k̄

⎛

⎝DiDjF
(g−1) +

g−1
∑

r=1
DiF

(r)DjF
(g−r)

⎞

⎠ (4.1.18)

The factor 1
2 comes the fact that we over count the integration over Oi and Oj

in (4.1.16) by two in the A degeneration, as the Oi ↔ Oj does not change the
complex structure and in the B degeneration we doubled the non symmetric terms.

For g = 1 the situation is more tricky and interesting. Because of h0(T 2) = 1
we have to kill the infinite automorphism by the insertion of one operator to start
with a stable curve. Hence we have to consider ∂̄k̄∂mF (1). That leads in addition to
the A degeneration to a contact term between OiŌj̄

∂̄k̄∂mF (1) = 1

2
C̄

ij

k̄
Cmij +

( χ

24
− 1
)

Gk̄m . (4.1.19)

The first term above is from the A type degeneration. The second contact term sees
global properties of the Calabi-Yau which is quite interesting. There are two ways
to normalize this contact term. Compare with the operator

F1(t, t̄ ) = 1

2

∫

d2

τ2
Tr(−1)FFLFRqH q̄H̄ . (4.1.20)

formulation F (1) [39] and calculate the t t̄ term as in [69]. Or relate it to the Ray-
Singer torsion107 [40] and use the family index theorem of [44, 45].

107See [278] for an application to Hitchins action.
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4.1.2 Wave Function and Background Independence

The topological string partition function Z is given by the exponential

Z = exp(F ) (4.1.21)

of the all genera free energy

F(λ, z) =
∞
∑

g=0
λ2g−2F (g)(z) . (4.1.22)

Here it must be assumed that the topological string coupling λ ∈ L2g−2 so that
the exponential is invariant under Kähler gauge transformations. Witten [321] re-
interprets the holomorphic anomaly equations of (4.1.18) and (4.1.19) as a special
realisation of background independence in string theory. In this formulation Z is
interpreted as a wave function Z = � on the complex moduli spaceM ofM which
arises from the quantization of the middle cohomologyH 3(M,R). The latter space
is equipped with the necessary symplectic form via its intersection pairing. The
holomorphic anomaly equations are interpreted as an infinitesimal consequence of
the freedom to choose a polarisation onH3(M,R), i.e.to fix a choice of holomorphic
coordinates or in the symplectic language to fix a choice of coordinates as positions
and dual momenta. The form in which this infinitesimal change of polarization is
realized is according to [321] in form of heat equation type of operator acting on the
wave function

(

∂

∂z̄ā
+ λ2

2
Cbc

ā

D

Dzb

D

Dzc

)

� = 0 . (4.1.23)

In the (4.1.23) the za , a = 1, . . . , h21(W) are generic complex coordinates on
M and the derivatives Db = D

Dzb
are meant to be taken covariantly in the inner

derivative of the exponential. A derivative Db is in general covariant w.r.t. to the
Weil-Petersson metric, which derives from the Kähler potential (2.5.24) as well
as to connection the Kähler line bundle L, see (4.1.10). The coupling Cbc

ā =
e2KC̄āb̄c̄G

āaGb̄b is a section of L−2 ⊗ Sym2(T
(1,0)
M ) ⊗ T

∗(0,1)
M . Equation (4.1.23)

almost but unfortunately not quite reproduces the holomorphic anomaly equations.
Changing the range of the genus index and allowing for additional terms to
reproduce the genus one holomorphic anomaly in a fairly obvious way [40] write
down a closely relatedmaster equation, which does reproduce (4.1.18) and (4.1.19),
but whose relation to background independence is not quite clear. One problem are
the projective coordinates for the global Calabi-Yau spaces that force one to interpret
λ as a non-trivial section of L2g−2. This problem evaporates in the local cases. A
concrete application of the idea that Z is fulfils a wave function equation in the
local case has been found in [5]. It was shown in [6] likewise in the local case
that the wave function transformation property for the change of polarisation and
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analytic continuation allows to expand the topological string partition function at
various loci in the moduli space that require different coordinates choices t∗ compare
Eq. (4.3.1). In the Nekrasov-Shatashvili limit see Sect. 4.4 the quantum mechanical
interpretation has been studied in [7] and many subsequent works that can be found
in [115]. Because of the simplification in the rigid supergravity formalism in the
large moduli space that resembles the local case the authors [96, 151, 309] set up
the formalism in the large moduli space. In [96, 160] the heat equation is studied in
global Calabi-Yau cases in which the moduli is a symmetric space, which is likewise
similar to the local case.

4.2 Integration of the Holomorphic Anomaly Equation

The integration of the holomorphic anomaly equation up to holomorphic terms is
a relatively straightforward application of the special geometry relations that we
derived in Sect. 2.5.2. The key object is an an-holomorphic potential S for the an-
holomorphic triple couplings C̄āb̄c̄, w.r.t. to the covariant derivatives D̄ā defined as

D̄āD̄b̄D̄c̄S = e2KC̄āb̄c̄ , D̄āD̄b̄S = Sāb̄ , D̄āS = Sā. (4.2.1)

4.2.1 Propagators and Non-holomorphic Prepotential

The close relation between the propagators and the metric in the large moduli space
has been pointed out in [151]. In order to solve the holomorphic anomaly equation
in the big moduli discussed in Sect. 2.5.4 space one introduces propagatorsIJ that
has to satisfy the equation

∂̄KIJ = i

4
C̄IJ

K = i

4
C̄KLMGILGJM (4.2.2)

This equation has a very simply solution

IJ = −1

2
GIJ +AIJ = ̂IJ +AIJ , (4.2.3)

where AIJ = AJ I is a holomorphic ambiguity, i.e. holomorphic functions, which
do not affect the defining property (4.2.2). Note that the non-holomorphic part of the
propagator ̂IJ = − 1

2G
IJ is proportional to the metric in the big moduli space and

the property (4.2.2) is a simple consequence of the covariance of the latter D̄KGIJ =
0 and (2.5.38). Another consequence of its covarianceDKGIJ = 0 and (2.5.38) is

∂K̂IJ = −iCKLM̂IL̂JM (4.2.4)
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The latter equation can be viewed as the generalisation of the an-holomorphic
piece of Ramanujans identity for the weight two almost holomorphic modular form
Ê2 = of SL(2,Z), cff (A4.13). Indeed we note, due to ̂IJ = − 1

2 (Im(τ )−1)IJ

and (2.6.7), that the propagator ̂IJ transforms almost but not quite as a second
rank tensor with two holomorphic indices under modular transformations. The shift
in (2.6.7) should be cancelled by an appropriate choice of AIJ , which transforms
inhomogeneous under modular transformations as E2 see (A4.9), so that (4.2.6)
yields a modular invariant definition of Sαβ .

The metric in the homogeneous coordinates is easily related to the expressions
in the inhomogeneous coordinates using Griffiths tranversality and (2.5.35) one has

(Gαβ̄) =
(−1 0

0 Gab̄

)

=
(

−〈�α, �̄β̄〉
〈�, �̄〉

)

= (2eKXI
αGIJ X̄

J

β̄
) (4.2.5)

and equivalentlyGαβ̄ = e−K

2 Xα
I GIJ X̄

β̄
J . The negative eigenvalue corresponds to the

entry G00̄ = G00̄ = −1, while Gab̄ is the positive definite metric for the complex
structure moduli with signature +h12(W). Similarly it was observed in [151] that

(Sαβ) =
(

2S −Sb

−Sa Sab

)

= (iXα
I 

IJX
β
J ) . (4.2.6)

This relation been established in [151] by using (4.2.5) and (2.5.19) to show that the
propagators S, Sa, Sab fulfill the defining relations of the propagators. To see this
note that

∂c̄S = Gac̄S
a, ∂c̄S

a = Gbc̄S
ab, ∂c̄S

ab = Cab
c̄ := e2KC̄āb̄c̄G

āaGb̄b,

(4.2.7)

is equivalent to

D̄āS = Sā, D̄āD̄b̄S = Sāb̄, D̄āD̄b̄D̄c̄S = e2KC̄āb̄c̄ , (4.2.8)

where Sā = GaāS
a etc. We can focus on the an-holomorphic part ̂IJ in (4.2.6)

and use (4.2.5) to lower the indices to get

(Sᾱβ̄ ) =
(

2S Sb̄

Sā Sāb̄

)

= (4ie2KX̄I
ᾱ̂IJ X̄

J

β̄
) = (e2KX̄I

ᾱ(F̄IJ − FIJ )X̄
J

β̄
) (4.2.9)

The first equation in (4.2.8) is immediate, because F̄IJKX̄K = 0 and when D̄ā

acts on X̄I the covariant derivative in the complex conjugate of (2.5.19) under
the AI integral that defines X̄I gives X̄ā which produces as result Sā . The second
covariant derivate D̄ā in the second equation produces likewise zero, when acting
on F̄IJ . It can also act on X̄J

b̄
. Then it produces by the conjugate of (2.5.19) a term
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propotional toXJ
k which vanishes however due to the zeros in (4.2.5). The covariant

derivative D̄ā in the third equation of (4.2.8) gives by the conjugate of (2.5.29) a
term proportional to C̄āb̄c̄ when acting on F̄IJ and also by the conjugate of (2.5.19)
and (4.2.5) when acting on X̄I

b̄
, X̄I

c̄ . Together this gives (4.2.8), which proves (4.2.6),
(4.2.9). In the same way we can consider holomorphic covariant derivatives Dk on
Sαβ = GαᾱGββ̄Sᾱβ̄ and get by (2.5.19)

DkS
αβ = −CijkS

αiSβj + δ
β
k S

α0 + δαk S
β0 (4.2.10)

We see that from the metric in the large moduli space one gets immediately a
solution for the an-holomorphic prepotential S

S = −e−2KS̄ = i

2
X̄0

I ̂
IJ X̄0

J = −
1

2
XI (FIJ − F̄IJ )X

J . (4.2.11)

S transforms as section of L2 and by the complex conjugate of the last equation
in (4.2.8) it can be viewed as an an-holomorphic potential for the triple intersection
w.r.t. to the covariant derivatives

Cabc = −DaDbDcS . (4.2.12)

However since (4.2.6), (4.2.9) are contracted with two holomorphic or two anti-
holomorphic period matrices, the propagator matrices just based on ̂IJ , ̂IJ are
not modular invariant. This is unlike the Gαβ̄ (or its inverse), which by (2.6.6) are

modular invariant. We should therefore construct IJ as a tensor that transforms
as under modular transformation by finding a modular invariant quantity that
depends on Im(τIJ ) and whose derivative w.r.t τIJ produces ̂IJ and something
holomorphic. The resolution to this problem comes from the consideration of the
genus one amplitude or Ray-Singer torsion.

4.2.2 Propagators and Ray-Singer Torsion

The genus one amplitude F (1) can be integrated [39] from its holomorphic anomaly
equation (4.1.19) with Ckl

j̄ := e2KCiklCj̄ k̄l̄G
ll̄Gkk̄ and Gij̄ = ∂i ∂̄j̄K

∂i ∂̄j̄ F
(1) = 1

2
CiklC

kl
j̄ −

( χ

24
− 1
)

Gij̄ (4.2.13)

using the general formula for the Ricci-curvature Rij̄ = ∂i ∂̄j̄ log det(Gab̄) and the

special geometry relation (2.5.21). This implies Rij̄ = Rij̄ ll̄G
ll̄ = Gij̄ (h11 + 1)−

CiklC
lk
j̄ hence 1

2CiklC
kl
j̄ = 1

2∂i ∂̄j̄
( 1
2 (h11 + 1)K − log det(Gab̄)

)

from which one
gets

F (1) = −1

2
log det(Gab̄)+

(

1

2
(h11 + 1)− χ

24
+ 1

)

K + log(f (z))+ log(f (z̄)) .

(4.2.14)



306 A. Klemm

Here the topological Euler number χ = χ(M) = −χ(W) and h11 = h11(M) =
h21(W) are the ones of the original manifold M . The f (z) are meromorphic
functions in the modular invariant parameters z and hence by (2.5.27), (4.2.5) we
see that F (1) is modular invariant. In [40] relations of (4.2.14) to other objects
have been pointed out. It is shown to be the weighted sum of logarithms F (1) =
1
2

∑dim(W)
q=0 I (∧qT ∗W) of the Ray-Singer torsions I (V ) of the vector bundle V , where

all vector bundles over taken to be ones of the universal family of Calabi-Yau
spaces over their complex structure moduli space [44, 45]. It has also been argued
in [40] that it is the one loop free energy of Kodaira spencer gravity whose action
was identified with the Hitchin functional. This statement has been made more
precise in the sense that F (1) is the one loop free energy the generalized Hitchin
functional [278].

To lift expressions like (4.2.13), (4.2.14) from the small to the big moduli space
one notes that on tensors on the big moduli space one has [151]

Di = XI
i DI , D̄j̄ = X̄I

ı̄ D̄I . (4.2.15)

Useful for this purpose is also the identity

XL
l X

M
m Clm

ı̄ = 1

4
X̄I

ı̄ C̄
LM
I . (4.2.16)

So (4.2.13) lifts to

∂XI ∂̄X̄J F
(1) = 1

8
CILMC̄LM

J −
( χ

24
− 1
)

∂XI ∂̄X̄J K (4.2.17)

Using the special geometry relation in the big moduli space RIJ = ∂XI ∂̄X̄J log det
(Imτ ) = − 1

4CILMC̄LM
J one gets

F (1) = −1

2
log
(

det(Im(τ ))|�(τ)|2
)

+
(

1− χ

24

)

K + log
(

|f (z)|2
)

(4.2.18)

Here we dropped possible constant terms, and splitted the holomorphic ambiguity,
which is of course not fixed in the integration of (4.2.17) in two terms f (z) and
�(τ). The terms can be identified by comparing with (4.2.14) and noting by (4.2.5)
that

det(Gab̄) = −e(h11+1)K det(2Im(τIJ ))det(XI
α)det(X̄

I
β̄
) . (4.2.19)

The factor e(h11+1)K absorbs the (h11 + 1) factor in (4.2.14) and we identify

�(τ) = det(XI
α) = (X0)h11+1 det

(

∂

∂zi

Xj

X0

)

. (4.2.20)
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The second equal sign implies that � is purely holomorphic. The non-holomorphic
line bundle connection in XI

a drops out in the determinant [72].
Note now that all terms in (4.2.18) are individually symplectically invariant. Let

us focus on the on the first one F
(1)
trunc = − 1

2 log
(

det(Im(τ ))|�(τ)|2). This comes

from integrating ∂XI ∂̄X̄J F
(1)
trunc = 1

8CILMC̄LM
J without integration constant. If we

integrate w.r.t. X̄J and use ∂
∂XI = CILM

∂
τLM

we get 2i ∂
∂τIJ

F
(1)
trunc = IJ . By

applying this to the first term in (4.2.18) we get

IJ = −1

2
GIJ +AIJ , (4.2.21)

with

AIJ = i

∂�(τ)
∂τIJ

�(τ)
. (4.2.22)

Since F
(1)
trunc(τ ) was modular invariant this IJ (τ ) transforms as IJ (τγ ) =

(cτ + d)IJ (cτ + d)T . In view of the transformation property of (2.6.7) we see
that AIJ has to transform like a quasimodular tensor form of weight two, so that
the inhomogenous term in the AIJ transformation cancels the inhomogenous term
in (2.6.7). Because of (2.6.4) ,(4.2.6) the Sαβ are now modular invariants. This
derivation of the propagator is analogous to the derivation of the propagator on an
elliptic curve as almost holomorphic Eisentein series Ê2(τ ). From (A4.33) we get

Stt = c2

12

(

E2 − 3

πIm(τ )

)

= c2

12
Ê2 = −2c2DτF

(1). (4.2.23)

I.e. the function �(τ) is here identified with the η(τ) invariant of the elliptic curve.
For genus two mirror curves with Im(τ )pq , p, q = 1, 2 one obtains a very similar
formular

Sij = 1

2πi

Ci
pC

i
q

10

(

∂

∂τpq

log(χ10(τ ))− 5

2π
(Im(τ )−1)pq

)

, (4.2.24)

where now χ10 is the Igusa cusp form and the constants Ci
p are related to the

intersection numbers in the A model but can also be calculated as the χα
I in (4.2.6)

in the local limit of the B-model.
One can also derive expressions for the propagators and Eq. (4.2.10)

using (2.5.21). First we can integrate (2.5.21) w.r.t. z̄j̄ by noting that all terms can
be written as ∂̄j̄ derivative using Gij̄ = ∂i ∂̄j̄K and the last equation in (4.2.8) as

�k
il = δkl Ki + δki Kl − CilnS

kn + ak
il (4.2.25)
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This equation can be solved for Skn by inverting the triple coupling Ciln to C(p)il =
(

(C(p))
−1)il , so that C(p)ilC(p)lk = δik

Skl = C(p)km
(

δlmK(p) + δl(p)Km − �l
(p)m + al

(p)m

)

(4.2.26)

A priori there is such a determining equation for every p with p = 1, . . . , h12(W).
However the non-degeneracy of the triple coupling guarantees only that there is
at least one p in this range. In particular for the elliptically fibred Calabi-Yau
spaces, the algebraic triple couplings are not invertible over the index p = e = 1
which corresponds to the elliptic fibre. In (4.2.25) ak

il = ak
li is holomorphic and

undetermined. However for Skl to become a tensor Sym2
(

T (1,0)
) ⊗ L−2 it has

to compensate the inhomogeneous transformation of the Christoffel symbol. This
property can be guaranteed by the definition (4.2.2), (4.2.6). It is tedious, but
straightforward to derive (4.2.10) with the ambiguities ak

il and further ones alm
k ,

alk , ak and akl occurring due to further integration of ∂̄kDkS
lm ∂̄kDkS

l , ∂̄kDkS and
∂̄kDkKl with respect to z̄k̄ . The number of these ambiguities adds up modulo their
obvious symmetries to h21(h

2
21 + 2h21 + 2). They are not independent, but are all

related to the symmetric (h21+1)× (h21+1) tensor of ambiguities (4.2.22), which
provides also right modular properties.

In the first step of the rederivation of (4.2.10) one considers ∂̄j̄DkS
lm,

applies (4.1.10) to evaluate the covariant derivative and uses (2.5.21), when ∂̄j̄

hits the Christoffel symbols. Using also DkC
lm
j̄ = Dk(e

2KC̄j̄m̄l̄G
ll̄Gmm̄) = 0,

because C̄j̄ m̄l̄ is anti-holomorphic, the mixed Christoffel symbols vanish and Gll̄

as well as e2K are covariantly constant, Gij̄ = ∂i ∂̄j̄K = ∂̄j̄Ki , one arrives at
∂̄j̄DkS

lm = δlkS
m
j̄ + δmk Sl

j̄ − Clc
j̄ CackS

am − Ccm
j̄ CackS

al . Using (4.2.7) and the

holomorphicity of Cabc the r.h.s can also written as a total derivative w.r.t. ∂̄j̄ , which
can be integrated to (4.2.10) plus a holomorphic ambiguity. This and the similar
evaluation of ∂̄j̄DkS

l , ∂̄j̄DkS and ∂̄j̄ ∂kKl = Gaj̄�
a
kl yields

DkS
lm = −CabkS

laSmb + δlkS
m + δmk Sl + alm

k ,

DkS
l = −CkabS

aSbl + 2δlkS +Kaa
al
k + al

k ,

DkS = − 1
2CkabS

aSb + 1
2KaKba

ab
k +Kaa

a
k + ak ,

DkKl = −KkKl − SaCkla + CklaS
abKb + akl .

(4.2.27)
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4.2.3 Propagators and Direct Integration Formulas

Aswas reviewed in Sect. 4.1.1, the generalisation of holomorphic anomaly for genus
one (4.2.13) to arbitrary genus was found in [40] to be

∂̄j̄ F
(g) = 1

2
Ckl

j̄

⎛

⎝DkDlF
(g−1) +

g−1
∑

h=1
DlF

(h)DlF
(g−h)

⎞

⎠ (4.2.28)

With (4.2.15), (4.2.16) this can be written in the large moduli space as

∂̄X̄I F
(g) = − i

8
CKL

Ī

⎛

⎝DK∂LF
(g−1) +

g−1
∑

h=1
∂KF (h)∂LF

(g−h)

⎞

⎠ , (4.2.29)

Using (4.2.2) and hence ∂̄Ī F
(g) = i

4C
KL

J̄

∂F (g)

∂KL this can be written immediately
written in a form suitable for direct integration

∂F (g)

∂KL
= 1

2

⎛

⎝DK∂X̄LF
(g−1) +

g−1
∑

h=1
∂KF (h)∂LF

(g−h)

⎞

⎠ . (4.2.30)

In the small moduli space {S,Ki} = {Sij , Si , S,Ki } are viewed as a redundant
set of non-holomorphic generators similar to the Eisenstein series Ê2 for Sl(2,Z),
with respects to one wishes to integrate in the recursive direct integration step. To
implement this direct integration in the small moduli space is convenient redefine
the propagators [11, 330] as

S̃ij = Sij , S̃i = Si − SiaKa, S̃ = S − SaKa + SabKaKb (4.2.31)

The motivation is that their derivatives w.r.t to z̄c̄ contain all Cab
c̄ . i.e. ∂̄c̄ S̃ij =

∂̄c̄S
ij = C

ij

c̄ , ∂̄c̄S̃i = −Cia
c̄ Ka , ∂̄c̄S̃ = 1

2C
ab
c̄ KaKb , by (4.2.8) and Gab̄ = ∂ā ∂̄b̄K =

∂̄b̄Ka . Hence if one changes the independent generators as in F̃ (g)(S̃,Ki,G) =
F (g)(S(S̃),Ki,G), where G are holomorphic generators similar to the Eisenstein
series E4, E6 for Sl(2,Z), and dropping all tildes again one finds

∂̄j̄ F
(g) = Cab

j̄

∂F (g)

∂Sab
+Gaj̄

(

∂F (g)

∂S
Sa + ∂F (g)

∂Sb
Sab + ∂F (g)

∂Ka

)

= Cab
j̄

(

∂F (g)

∂Sab
− ∂F (g)

∂Sa
Kb + ∂F (g)

∂S
KaKb

)

+Gaj̄
∂F (g)

∂Ka

(4.2.32)
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In view of (4.2.28) the proportionality to Cab
j̄ is useful to write (4.2.28) in the

same form as (4.2.30), namely as derivative w.r.t. to the propagators. Hence one
proves inductively that ∂Fg

∂Ka
= 0 as in (4.2.28) there is no term proportional to

Gaj̄ on the r.h.s. Therefore the independent non-holomorphic generators of the Fg

are {S̃} [11, 330]. To evaluate the r.h.s. one transforms (4.2.27), for convenience to
normal derivatives, of the {S̃} as in [11]

∂kS̃
lm = CkabS̃

laS̃mb + δlkS̃
m + δmk S̃l − al

kaS̃
am − am

kaS̃
la + alm

k ,

∂kS̃
l = CkabS̃

laS̃b + 2δlkS̃ − al
kaS̃

a − akaS̃
la + al

k,

∂kS̃ = 1

2
CkabS̃

aS̃b − akaS̃
a + ak,

∂kKl = KkKl − CklaS̃
abKb + aa

klKa − CklaS̃
a + akl. (4.2.33)

This equations together with the fact that we can solve for S̃ij = Sij (4.2.26) implies
the formulas [12],

S̃i = 1
2

(

∂iS̃
ii − CimnS̃

mi S̃ni + 2ai
imS̃mi − aii

i

)

,

S̃ = 1
2

(

∂iS̃
i − CimnS̃

mS̃ni + ai
imS̃m + aimS̃mi − ai

i

)

,
(4.2.34)

where there is no sum over equal indices.
Under the assumption that the propagators are functionally independent and

that the F (g) are independent of Ka , which is proven recursively, we can now
use (4.2.32) to the l.h.s of (4.2.28) and (4.2.33) to evaluate the r.h.s. of these
equations respectively and by comparing then coefficients of (Ka)

0,Ka,KaKb and
arrive at equations for partial derivative, which are

∂F (g)

∂Sij
= 1

2
∂i(∂

′
jF

(g−1))+ 1

2
(CijlS

lk − skij )∂
′
kF

(g−1) + 1

2
(CijkS

k − hij )cg−1

+1

2

g−1
∑

h=1
∂ ′iF (h)∂ ′jF (g−h),

∂F (g)

∂Si
= (2g − 3)∂ ′iF (g−1) +

g−1
∑

h=1
ch∂

′
iF

(g−h),

∂F (g)

∂S
= (2g − 3)cg−1 +

g−1
∑

h=1
chcg−h, (4.2.35)
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where the cg is defined as

cg =
{ χ

24 − 1, g = 1;
(2g − 2)F (g), g > 1.

(4.2.36)

We have also used the notation ∂ ′ to denote

∂ ′iF (g) =
{

∂iF
(g) + (

χ
24 − 1)Ki, g = 1;

∂iF
(g), g > 1,

(4.2.37)

i.e. on the right hand in (4.2.35), we use the integrated version of (4.2.13) w.r.t. ∂̄j̄
and the definition of the Sij in (4.2.7) for ∂iF (1) omitting the −(

χ
24 − 1)Ki term.

Similar equations in the big moduli space have been derived in [167].
Since the propagators are symmetric Sij = Sji , we can choose to use only the Sij

with i ≤ j . In the case of i �= j , the right hand side of first equation in (4.2.35) need
to be multiplied by an extra factor of 2 to take account of the double contribution.

The advantage of formulating the holomorphic anomaly equation in the
form (4.2.35) is that if we assume that the Sij , Si = Siϕ and S = Sϕϕ are
functionally independent modular generators then the equations can be integrated
directly recursively to reach the following conjecture

Conjecture 3 Integration of (4.2.36) yields for each F (g) a minimal in-homogenous
polynomial of degree 3g − 3 with the weighted degree (1, 2, 3) for the propagators
Sij , Si and S respectively and whose coefficients are meromorphic functions in the
complex moduli z.

The latter two points are already clear, because given the type of degenerations
of the world-sheet Riemann surface [40] found an action whose Feynman graphs
reproduces precisely those degenerations. The propagators are literally the once
derived above and the vertices are the derivatives of the F (g) with the following
additional rules n,m = 0, 1, 2 . . .

F
(0)
ϕn = 0, F

(0)
iϕn = 0, F

(0)
ijϕn = 0, F

(g)

i1,...im,ϕn+1 = (2g − 2+ n+m) · F (g)
i1,...im,ϕn

The graph contribution is divided by the following symmetry factors: k! for k equal
(self)links joining the same vertices, 2 for each selflink Sϕϕ , Sij times the order of
the graph automorphism obtained by permuting the vertices. For example form this
actions one gets purely by Feynman graph combinatorics for the genus 2 amplitude
those degeneration are captured by the 12 graphs in Fig. 17. As it is clear from
Fig. 17, e.g. the first two, the second two the third, e.t.c two graphs give rise to
the same contributions in the polynomial for F (g). The advantage of the direct
integration method, is that the terms in the polynomial grow of course polynomial,
while the number of Feynman graphs growth exponentially. In a sense the closing
of the rings of propagators (4.2.33) and (4.2.28) induce all Ward identities among
the Feynman amplitudes.
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1

1

+ f2(t

1

1

1

1

1

= -S

= -S

1

1

Fig. 17 Contributions of degenerate world-sheets to the genus two amplitude after [40]

The above Feynman term expansion for the F (g) can also be obtained by
integration-by-parts method using recursively (4.2.28) and using the commutator
[∂̄ı̄ , Dj ] to pull out a ∂̄ı̄ on the r.h.s., as described in [40].

Of course the methods of direct integration relies on the assumption that there
is a ring of modular forms which generate the F (g) and that in particular the an-
holomorphic elements in this ring are in dependent and behave like (4.2.33) under
derivation. That is exactly what happens in the local case for which the ring is the
ring of almost holomorphic modular forms and Conjecture 3 can be proven in local
examples as we will show in the next Sect. 4.2.4.

4.2.4 Calculation and Checks from the Local Toric Calabi-Yau Cases

Indeed all expressions that are needed in the direct integration of the holomorphic
anomaly equations can be written in terms of modular forms of �(3), which are
summarised in section “Modular Forms of �(3)” in Appendix 4 as was first spelled
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out in [6]. The complex deformation parameter of the family of mirror curves that
is equivalent to (2.7.31) with z = −(1/3ψ)3 is

{
3
∑

i=1
x3i − 3ψ

3
∏

i=1
xi = 0|(x1 : x2 : x3) ∈ P

2} . (4.2.38)

is given as function of the complex structure parameter τ ∈ H+ by

ψ(τ) = a − c − b

d
, (4.2.39)

where a,b,c and d are defined in section “Modular Forms of �(3)” in Appendix 4.
The flat Kähler parameter of the A-model can be found by integrating

∂t

∂ψ
= −√3

d

η
(4.2.40)

and the discriminant can be written as

 = 1− ψ3 = −33 η
12

d4
.

From the expression (4.2.14) in the local limit in which the Kähler-potential K
becomes an irrelevant constant F1(τ ) = − log(

√
Im(τ )|η(τ)|2)+ 1

24 log() we get
in the holomorphic limit up to an infinite constant

F1(τ ) = − log(η(τ ))+ 1

24
log() = −1

6
log(dη3),

The 3-point function Cttt = ∂3

∂t3
F (0) can be written as

Cttt = −1

3

∂τ

∂t
= −1

3

∂ψ

∂t

∂τ

∂ψ

and using the modular expressions for ψ , for ∂t
∂ψ

, and the formulae for logarithmic
derivatives in section “Modular Forms of �(3)” in Appendix 4, we get

Cttt = − 1

35/2
d

η9
. (4.2.41)

Also the �(3)-invariant Yukawa coupling, expressed in terms of the globally defined
variable ψ is easily obtained from (2.9.17), where we note that X0 = 1 in the local
limit

Cψψψ =
(

∂t

∂ψ

)3

Cttt = − 9


. (4.2.42)
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We note that in the local limit the only propagator is given by (4.2.23).
Consequently only the first equation in (4.2.35) with the additional simplification
in the local limit that cg = 0 and ∂ ′i = ∂i is relevant. Hence the general form of the
higher genus amplitudes reads

Fg = Cg−1
3(g−1)
∑

k=0
Êk
2h

(3g−3−k)
g (K2,K4,K6), (4.2.43)

where we defined the weight −6 object

C = d2

2934η18
= 1

1536
C2

t t t

and the ring of modular forms of �(3) generating the weight 2d forms h
(d)
g is

given by

K2 = −α2
(a − αc)2

η2
, K4 = 1

α2 − 1

ac(a + c)(α2a − c)

η4
, K6 = (ac)2(a + c)2

η6
.

The coefficients h(k>0)
g of Ê2 are fixed either by the direct integration of (4.2.35) or

by the Feynman graph expansion and we obtain for example for the holomorphic
ambiguity

h
(0)
2 = F2 −X

(

5Ê3
2 + Ê2

2K2 + 1
3 Ê2K

2
2

)

,

h
(0)
3 = F3 −X2(180Ê6

2 + 240Ê5
2K2 + 4Ê4

2(145K
2
2 − 1008K4)

+ 32
9 Ê3

2(199K
3
2 − 1908K2K4 + 648K6)+ 4

5 Ê
2
2(563K

4
2 − 7936K2

2K4 + 26496K2
4)

+ 16
15 Ê2(149K5

2 − 2536K3
2K4 + 11952K2K

2
4 − 3456K4K6)).

(4.2.44)

As was pointed out in [163] the conifold gap condition (4.5.8) and the regularity at
the orbifold points are sufficient to fix this ambiguity completely in the local models
and in the case at hand we get

h
(0)
2 = 11

69120 + 1
34560 − 1

76802 ,

h
(0)
3 = 17

6289280 + 269
46448640 − 19393

2786918402 + 337
22118403 − 373

41287684 .
(4.2.45)

Note that the holomorphic limit is simply given by Im(τ ) → ∞ which has
the effect of replacing the propagator, i.e. the almost holomorphic Eisenstein
series Ê2, with the quasi modular Eisenstein series E2 see (A4.11). As discussed
in section “Differentiable Rings of Modular Forms” in Appendix 4 the ring of
almost holomorphic forms generated by (Ê2, E4, E6) and almost holomorphic
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forms (E2, E4, E6) are isomorphic as differential rings when the Masss derivative
is replaced by the Serre derivative. Constructing the an-holomorphic F (g) or the
holomorphic F (g) from (4.2.35) gives formally the same polynomials (4.2.43) in
the generators (Ê2,K2,K4,K6) or (E2,K2,K4,K6) respectively. It was shown
in [151] that the same is true for general Calabi-Yau 3 folds, i.e. the holomorphic
limit can always be described by replacing the an-holomorphic propagators, which
are transform modular, with their holomorphic limit which transform quasimodular.
Note further that the B-model expressions (4.2.43) contain the exact moduli
dependence and using the wave function transformation property of Z they can be
evaluated everywhere in the moduli space. That was used in [6] to predict orbifold
Gromov-Witten invariants and in [163] to fix the ambiguities (4.2.45) to genus 105.
As we mentioned above the model is completely solvable by the gap conditions and
the orbifold regularity.

Of course the mirrormap defined by the modular expression (4.2.39) and (4.2.39)
can be also obtained using the Picard-Fuchs operator, which due to (2.9.43)
and (2.12.15) (3ψ = u) is given by

D = [θ2z + 3z(3θz + 1)(3θz + 2)]θz (4.2.46)

or since this is hypergeometric from l̄(3) = (−3, 1, 1, 1) from (2.9.53) noting that
there are no l0,m in the definition of c(n, ρ) in (2.9.48) and hence no numerators.

4.3 The Integer Structure of the BPS Invariants

To see the integer structure of the BPS invariants requires to make a physically
or geometrically motivated gauge choice in the Kähler line bundle and to take a
holomorphic limit for the suitable polarisation inH3(W,R) for the singular point in
moduli space under consideration. First we describe these two concepts, and after
completing the example of theO(−3)→ P2 local geometry, we come to the general
physical and mathematical arguments for the BPS integrality structure.

4.3.1 Physical Gauge and Holomorphic Limit

The integer structure and the BPS invariants are obtained from the F (g) calculated
from the holomorphic anomaly in a physical gauge and after taking an holomorphic
limit. This physical gauge corresponds to a choice of the section L2−2g and depends
on the locus in Mcs in question. For the Gromov-Witten invariants the relevant
locus is the maximal unipotent point where one has always a holomorphic solution
X0

m = 1+O(z). The physical gauge is given by

F
(g)
p (t) = (X0

m)2g−2F (g)(z(t)) = (X0
m)2g−2F (g)(X(z(t))) , (4.3.1)
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where we also passed to the in-homogeneous coordinates chosen by the mirror
map ta = Xa

m/X0
m. Here we stressed by the index m that both choices depend

on the point in the moduli space under consideration. I.e. there are physical gauge
choices at other points in the moduli space, which involve different choices of in-
homogenous coordinates. The choice of these coordinates is dictated by the flatness
condition and a simple behaviour under the local monodromy. E.g. at the maximal
unipotent point there are h11(M) = h21(W) variables ti which have simple shift
monodromies (2.9.54) so that the Qa defined in (2.9.55) are monodromy invariant.
Generally one picks ta = Xa∗/X0∗, such that they become locally flat coordinates
w.r.t. to the Weil-Petersson connection and that they have the simplest possible
monodromy transformation, i.e. minimal shift symmetry at the maximal unipotent
monodromy point or minimal phase rotation for the eigenvectors of X0

o,X
a
o for

irreducible orbifold monodromy action, as for example in Sect. 2.10.2. The choice
for Xa at the conifold is given by the vanishing cycle, but the choice of X0 =
1+O(δ) in Sect. 2.10.3 is ambiguous and also do not change e.g. the gap properties
as discussed in [191].

In addition the generating function for the Gromov-Witten invariants are holo-
morphic functions, so a holomorphic limit at the base point in the ta coordinate ta0
that corresponds to point in the moduli space.

F (g)(t) = limt̄ a→t̄ a0
F

(g)
p (t) . (4.3.2)

Here F
(g)
p (t) is an an-holomorphic and F (g)(t) is a holomorphic or in general

a meromorphic function.108 The holomorphic limit is defined by the canonical
coordinates ta and one can infer further properties for this choice from the existence
of a well defined limit. In particular one can show that in the holomorphic limit the
leading behaviour the metric data is a follows

e−K ∼ X0∗, Gjı̄ ∼ ∂zj t
i∗Ciı̄ , (4.3.3)

whereCiı̄ is a constant matrix, that can be chosen to be diagonal. Note that from this
expressionswe get the connection�i

jk with the holomorphic indices and by (4.2.26),
(4.2.34) we can calculate the holomorphic limit of the propagators at each point
∗. Since the coefficients in the polynomials in Conjecture 3 are globally defined
rational functions in z, it is indeed the fastest to evaluate the F (g)(t∗) by replacing
in the F (0)(Sij , Si , S, z) the propagators by the local holomorphic expressions and
perform the physical gauge choice (4.3.1). It was shown in [6] more conceptional
that this corresponds to change in the polarisation of the wave function Z.

108F (g)(t) for g > 1 only has poles. F (0) and F (1) have logarithmic branch points.
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4.3.2 The A-Model Results for the Local P1 and P2 Geometry

Mathematically Gromov-Witten invariants of higher genus can be calculated by
localisation, but only in non-compact toric Calabi-Yau manifolds. For example
using special weights and closed expressions for certain classes of Hodge integral
[111] prove the following all genera result for the blown up conifold geometry
O(−1)⊕O(−1)→ P1 as

F(λ, t) =
∞
∑

g=0
λ2g−2F (g)(t) =

∞
∑

g=0

∞
∑

d=1
r
g
d λ

2g−2Qd , (4.3.4)

where the r
g
d are the Gromov-Witten invariants defined physically in (3.4.12),

for mathematical definition see [182], d ∈ Z specifies the degree in H2(M,Z),
which is generated just by the P1 and q := exp(2πt). The result of Faber and
Pandharipande [111] gives all rgd by the formula

F(λ, t) =
∞
∑

d=1

Qd

d
(

sin dλ
2

)2 . (4.3.5)

In this simple geometry we can understand all contributions as the multicovering
of the rigid P1, which is the only non-trivial holomorphic curve in this geometry,
by maps of various degree and genus. This calculation includes a proof of the
Aspinwall-Morrison formula [24] and extends it to higher genus for rigid P1 curves.

In general non-compact toric Calabi-Yau can support holomorphic curves of
arbitrary genera in infinitely many classes β where these multi-covering formulas
and their generalisations, discussed in the next sections can be tested. E.g. for the
closed string amplitudes onO(−3)→ P2 [228] obtain by localisation

F (0) = − t3

18 + 3Q− 45Q2

8 + 244Q3

9 − 12333Q4

64 + 211878Q5

125 . . .

F (1) = − t
12 + Q

4 − 3Q2

8 − 23Q3

3 + 3437Q4

16 − 43107Q5

10 . . .

F (2) = χ
5720 + Q

80 + 3Q3

20 − 514Q4

5 + 43497Q5

8 . . .

F (3) = − χ
145120 + Q

2016 + Q2

336 + Q3

56 + 1480Q4

63 − 1385717Q5

336 . . .

F (4) = χ
87091200 + Q

57600 + Q2

1920 + 7Q3

1600 − 2491Q4

900 + 3865234Q5

1920 . . .

F (5) = − χ
2554675200 + Q

1774080 + Q2

14080 + 61Q3

49280 + 4471Q4

22176 − 65308319Q5

98560 . . . .

(4.3.6)
and by the general multicovering formulas (4.3.18) one extracts the integer BPS
numbers n(g)

β=d reported in Table 7.
The combinatoric of theA-model localisation calculation is involved. E.g. for the

genus 5 degree 5 terms one has to sum over∼ 104 graphs, however the localisation
procedure is completely algorithmic an will determine all invariants for all toric
Calabi-Yau spaces. Another method to obtain the r

g
d or from then the n

(g)
d is the

topological vertex [4].
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Table 7 The (weighted) number of BPS states ng

d for the local P2 case

d g=0 g=1 g=2 g=3 g=4

1 3 0 0 0 0

2 −6 0 0 0 0

3 27 −10 0 0 0

4 −192 231 −102 15 0

5 1695 −4452 5430 −3672 1386

6 −17064 80948 −194022 290853 −290400
7 188454 −1438086 5784837 −1536990 29056614

8 −2228160 25301295 −155322234 649358826 −2003386626
9 27748899 −443384578 3894455457 −23769907110 109496290149

10 −360012150 7760515332 −93050366010 786400843911 −5094944994204

Due to the non-trivial holomorphic curves in all degrees it is hard to give F(λ, t)

in closed form, even though closed expressions for the F (g)(t) can be given using
mirror symmetry and the B-model [228] and described by the B-model analysis in
terms of modular forms as explained in Sect. 4.2.43.

4.3.3 Schwingerloop Calculation of BPS Invariants from Branes
Wrapping Curves

Many fascinating topological and physical ideas enter the reinterpretation ofF (g)(t)

as BPS counting function [140]. The argument splits in a supergravity consideration
and a geometrical part

• The N = 2 supergravity action contains terms
∑

g>0

∫

M4 d4xF (g)(t, t̄)T
2g−2
−

R− ∧ R−, which couple the anti-selfdual part of the curvature R+ with the anti-
selfdual part of the graviphoton field strength T−. The above terms are part of the
component form of

∫

M4 d4xd4θF (g)(t, t̄ )(W 2)g−1, where W 2 = εij εklW
ij
μνW

kl
μν

and W
ij
μν = εij Tμν − Rμνηδθ

iσ ηδθj + . . . is a chiral multiplet. The structure of
N = 2 supergravity in Type II string on M implies that in the topological limit
F (g)(t) = limt̄→t̄0 F (g)(t, t̄) in the one loop contribution

SN=2
1−loop =

∫

d4xR2−F(λ, t) , (4.3.7)

is identified with the topological string free energy (4.3.18) [18, 40] after a
suitable identification of T− with λ. It depends only on vector multiplets. This
statements require like (2.4.63) a certain genericity assumptions. Moreover
supergravity puts the following restriction on this amplitude [18]. It is generated
at one-loop and at one-loop only, the corresponding graph is shown in Fig. 18.
The only particles which can contribute in the loop are BPS states. Their mass is
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Fig. 18 BPS saturated
one-loop graph contribution
to T

2g−2
− R2− T–T–

T–T–

R–R

determined by their charge. Once mass and spin of the BPS particle is known is
contribution to F (g)(t) can be evaluated by a Schwinger-loop calculation.

• In the geometrical consideration one has to identify the mass and spin of BPS
particle with the geometrical properties of the embedded branes. The mass is easy
and will be discussed below. The spin part is more complicated and is discussed
in Sect. 4.3.4

Because the type II string coupling gs is in a hyper multiplet and the above
decoupling one expects that the strongly coupled M-theory- gs � 1 and the
weakly coupling IIA description gs � 1 are equivalent points of view. The former
description involves BPS states as coming fromM2 branes the latter as coming from
D2 −D0 bound states. In both cases the extended branes wrapping curves C in M

in the class β. The mass is given straightforwardly as

m(β, k) = 1

λ
2πiβ · t + 2πik = 1

λ

h1,1
∑

i=1
ti

∫

Cβ

ωi + 2πik, β ∈ H 2(M,Z), k ∈ Z ,

(4.3.8)

were the first term is the minimal volume of the curve on which the extended brane
wraps. The second can be either viewed as the momentum k ofM2 on theM theory
circle or as the number k of D0 branes. The latter form in arbitrary numbers k a
bound states with the D2 brane.

Consider now an M-theory compactification on M to five dimensions. The space
time BPS states fall into representations R = [j−, j+] of the Little Group of the
5d Lorentz group L = SO(4) * SU(2)− × SU(2)+ and have a mass m related
to their charge by the BPS formula. As mentioned the low energy interpretation
of the free energy F in 4d relates it to the 5d BPS spectrum through a Schwinger
one loop calculation of the 4d

∫

M4 T
2g−2
− R2− effective terms.109 Note that these 4d

calculations are sensitive to the off shell quantum numbers, i.e. to SU(2)−×SU(2)+.
Only BPS particles annihilated by the supercharges in the (0, 1

2 ) representation
contribute to the loop. They couple to the anti-selfdual graviphoton field strength
T− and the anti-selfdual curvature R− only via their left spin eigenvalues of their
representation under L. The right + representation content enters solely via its

109A similar one loop calculation corrects the effective gauge coupling 1
g2(G,p2)

through threshold
effects in heterotic strings [209].
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multiplicity and a sign (−1)2j3+ , in particular any contribution of long multiplets
is projected out by these signs. To summarize, the dependence of F on the BPS
spectrum is via a supersymmetric index

I (α, τ ) = TrH(−1)F e−αj3−−τH , (4.3.9)

where F = 2j3− + 2j3+, and all spin information entering F is carried by
[

(

1
2

)

− + 2(0)−
]

times the following combination

∑

j3−,j3+

(−1)2j3R(2j3+ + 1)Nβ

j3−,j3+
[j−] =

∞
∑

g=0
n
(g)
β Ig . (4.3.10)

The multiplicities of the BPS states N
β

j3−,j3+
enters only via the index like quantity

n
(g)
β . Indeed the basis change of the left spin from [j−] to

Ig =
(

2[0]− +
[

1

2

]

−

)⊗g

(4.3.11)

relates the left spin − to the genus g of C as explained in Sect. 4.3.4 and defines
the integer Gopakumar-Vafa invariants ng

β associated to a holomorphic curve C of
genus g in the class β. It is sometimes convenient to change from the irreducible
highest weight representations

[

i
2

]

to the above basis by

(

2[0] +
[

1

2

])⊗n

=
∑

i

((

2n

n− i

)

−
(

2n

n− i − 2

))[

i

2

]

, (4.3.12)

because

TrIn(−1)2σ3e−2σ3s = (−1)n
(

2 sinh
s

2

)2n
. (4.3.13)

Reduction on the circle leads to a four dimensional theory with N = 2
supersymmetry arising from the type IIA reduction on M . The superalgebra and
the symmetry acting on it does not change. Only now the 4d mass gets shifted by a
Kaluza-Klein momentum on the circle. After this compactification the charge lattice
of the BPS states is naturally identified with theK-theory charge of the type IIAD2k
branes

� = (q0, qA, p
A, p0) ∈ ⊕3

i=0H
2i(M) . (4.3.14)
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For particles at rest in 4d the eigenvalues of the Hamiltonian H are the BPS masses
M = |� ·%|. The vector % is the instanton corrected in the type IIA theory, but it
can be mapped by mirror symmetry to the period vector of the holomorphic 3-form
of the mirror of M and calculated exactly by the period. The relation between the
left spin and the D0 and brane charge q0 is [127]

q0 = 2
j−

(p0)2
. (4.3.15)

At large radius in the A-model and if we assume there are no or at least no
light D4 branes the relevant BPS states are D-brane bound states with charge
(Q6,Q4,Q2,Q0) = (1, 0, β, k) where β ∈ H2(M,Z). Their mass is given
by (4.3.8). As explained in [140], see [182] for review, the one-loop integral (4.3.7)
is calculated in a constant graviphoton background, which depends only on the
left spin j− of particles in the loop. The calculation is very similar to the normal
Schwinger-loop calculation. The latter computes the one-loop effective action in
an U(1) gauge theory, which comes from integrating out massive particles P

coupling to a constant background U(1) gauge field. For a self-dual background
field T12 = T34 = T it leads to the following one-loop determinant evaluation:

SS
1−loop = log det

(

∇ +m2 + 2e σ−F
)

=
∫ ∞

ε

ds

s

Tr(−1)f exp(−sm2) exp(−2seσ−F)

4 sin2 (seF/2)
.

(4.3.16)

Here the (−1)f takes care of the sign of the log of the determinant depending on
whether P is a boson or a fermion, and σ− is the Cartan element in the left Lorentz
representation of P . To apply this calculation to the N = 2 supergravity case
one notes, that the graviphoton field couples to the mass, i.e., we have to identify
e = m. The loop has two R− insertions and an arbitrary, (for the closed string
action even) number F− of graviphoton insertions. It turns out [140] that the only
supersymmetric BPS states in the Lorentz representation

[(

1
2
, 0
)

+ 2(0, 0)
]

⊗R (4.3.17)

contribute to the loop. Here R is an arbitrary Lorentz representation of SO(4).
Moreover the two R− insertions are absorbed by the first factor in the Lorentz
representation (4.3.17), and the coupling of the particles in the loop to F− insertions
in the N = 2 evaluation works exactly as in the non-supersymmetric Schwinger-
loop calculation above for P in the representationR. In performing it for allm(β, k)
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and g we note that Ig is a very convenient basis as TrIg (−)F e−2iτj3−λ = (sin τλ
2

)2g

and that the sum over k gives a δ function, which makes the dτ integration trivial,
so that we get quite straightforwardly

F(λ, t) =
∞
∑

g=0
λ2g−2F (g)(t)

= c(t)

λ2
+ l(t) +

∞
∑

g=0

∑

β∈H2(M,Z)

∞
∑

m=1
n
(g)
β

1

m

(

2 sin
mλ

2

)2g−2
Qβm

= c(t)

λ2
+ l(t) +

∞
∑

g=0

∑

β∈H2(M,Z)

∞
∑

m=1
n
(g)
β (−1)g−1 [m]

(2g−2)

m
Qβm,

(4.3.18)
with

Qβ = e
i
∑h1,1

i=1 ti
∫

Cβ
ωi
, [x] := q

x
2
λ − q

− x
2

λ , qλ = eiλ.

The cubic term c(t) in the Kähler parameters ti is the classical part of the prepoten-
tial F (0) given in (2.6.31) without the constant term, and l(t) =∑h

i=1
ti
24

∫

M
c2∧ωi

is the classical part110 of F (1). Using the expansion

1

m

1
(

2 sin mλ
2

)2 =
∑

g=0
λ2g−2(−1)g+1 B2g

2g(2g − 2)!m
2g−3 (4.3.19)

and a ζ(x) =∑∞
m=1 1

mx regularization of the sum overm with ζ(−n) = −Bn+1
n+1 , we

see that for g ≥ 2 the β = 0 constant map terms from localisation [111]

〈1〉Mg,0 = (−1)g χ
2

∫

Mg

c3g−1 = (−1)g χ
2

|B2gB2g−2|
2g(2g − 2)(2g − 2)! (4.3.20)

are reproduced if we set n
(0)
0 = −χ

2 . This choice also reproduces the constant
term proportional to ζ(3) in F (0). In F (1) there is a ζ(1) term which requires an
additional regularization. More importantly expanding (4.3.18) in λ and comparing

110These terms do not follow entirely from the Schwinger-loop calculation and added here for
completeness.
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with (4.3.4) predicts the multicovering formulas at all genera. Specialized to one
Kähler class such that β is identified with the degree d ∈ Z we get

F (0) = D3t3

3! + t

∫

M

c2 ∧ ω − i
χ

2(2π)3
ζ(3)+

∞
∑

d=1
n
(0)
d Li3(Qd) ,

F (1) = t
∫

M
c2 ∧ ω

24
+

∞
∑

d=1

(

1

12
n
(0)
d + n

(1)
d

)

Li1(Qd) ,

F (2) = χ

5760
+

∞
∑

d=1

(

1

240
n
(0)
d + n

(2)
d

)

Li−1(Qd),

F (g) = (−1)gχ |B2gB2g−2|
4g(2g − 2)!(2g − 2)

+
∞
∑

d=1

(

|B2g|n0d
2g(2g − 2)! +

2(−1)gn2d
(2g − 2)! ±. . .− g − 2

12
n
g−1
d + n

g
d

)

Li3−2g(Qd).

(4.3.21)

Using resummations like (4.3.19) one checks that the partition function Z =
exp(F) has the following product form111

ZGV(M, λ,Q) =
∏

β

⎡

⎣

( ∞
∏

r=1
(1− qr

λQ
β)

rn
(0)
β

) ∞
∏

g=1

2g−2
∏

l=0
(1− q

g−l−1
λ Qβ)

(−1)g+r
(

2g−2
l

)

n
(g)
β

⎤

⎦

(4.3.22)

in terms of the invariants n
(g)
β . This product form resembles the Hilbert scheme

of symmetric products written in terms of partition sums over free fermionic and
bosonic fields with an integer U(1) charge as well as the closely related product
form for the elliptic genus of symmetric products. As it has already been pointed
out in [139], it is also reminiscent of the Borcherds product form of automorphic
forms ofO(2, n,Z), see [48] and [239] for a review. In the Borcherds multiplicative
lift the idea is that integrality of the n

(g)
β is related to the fact that they are Fourier

coefficients of other (quasi)automorphic Jacobi form, see also [219].

4.3.4 Geometric Interpretation of the BPS Numbers

As usual in theory of BPS solitons the degeneracy of the BPS states comes from
the cohomology of the moduli space of the solitonic solutions, in this case of the
brane solution. This moduli space is the vacuummanifold of the brane world volume
theory, which is parametrized by the zero modes and the cohomological information
is extracted by quantizing this zero mode sector as shortly discussed in Sect.3.2.1.

111Here we dropped the exp( c(t)
λ2
+ l(t)) factor of the classical terms at genus 0, 1.
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In the following we will discuss only single wrapped branes. For the M2 brane
the eleven dimensional tangent space splits 0 → N8 → T11 → TM2 → 0. The
normal space N8 is decomposed into N × N , where N is the normal direction
in the CY M and N are the spacial directions of 5d Minkowski space. The CY
tangent space splits as well 0 → N → TM → TC → 0. The unbroken space-
time symmetries GN8 = SO(4)N × U(2)N transversal to the brane become
R-symmetries of the fields on the brane-world-volume. For holomorphic curves
in n complex dimensional Kähler manifolds the generic structure group of normal
bundle SO(2(n− 1)) restricts because of property (2) in Bergers list, Sect.1.1.5, to
U(n−1)N . For Calabi-Yaumanifolds it follows from the adjunction formula (A3.8)
and the vanishing of the first Chern-class that c1(det(U(n− 1))N ) = c1(T

∗C), i.e.
overC theU(1)N ∈ U(n−1)N can be identified with theU(1)N connection in the
canonical bundleKC = T ∗C. This identification of the R-symmetry transformation
of the normal bundle with the WS transformations on C leads to a natural twisting
of the brane-world-volume theory [41].

Let us describe the transformation properties of theses fields on the brane under
GT = SO(2, 1) the Lorentzgroup on the brane and GN8 = SO(4)N × U(1)L,N ×
SU(2)R,N the R-symmetry from the normal direction

• Before twisting the eight fermions112 ψ ∈ [s, 8s ] transforms as spinor with
helitity s = ± 1

2 under GT and as spinor under GN = SU(2)L, N ×
SU(2)R, N ×U(1)L,N ×SU(2)R,N . The U(1)L,N connection is identified with
the connection in KC . It changes the helicity of fields in

√
K therefore by 0,± 1

2
depending on their U(1)L,N charge

ψ ∈
[

s, [(0, 1
2 )N ⊗ (0, 1

2 )N ] ⊕ [( 12 , 0)N ⊗ (±1, 0)N ]
]

ψT ∈
[

± 1
2 , (0,

1
2 )N ⊗ ( 12 )R ,N

]

⊕
[

2(0), ( 12 , 0)N ⊗ (0)R ,N
]

⊕
[

±1, ( 12 , 0)N ⊗ (0)R ,N
]

(4.3.23)

here the U(1)L,N charge is combined with the helicity in GT to the first entry
h = ± 1

2 , 0,±1 in the twisted representation ψT , which implies that the field is a
section of Kh

C .
• For the eight bosons φ corresponding to the coordinates of the normal directions

φ ∈
[

0, [( 12 , 1
2 )N ⊗ (0, 0)N ] ⊕ [(0, 0)N ⊗ (±1, 1

2 )N ]
]

φT ∈
[

0, ( 12 ,
1
2 )N ⊗ (0)RN

]

⊕
[

± 1
2 , (0, 0)N ⊗ ( 12 )RN

] (4.3.24)

Clearly the zero modes of the bosons transforming as
[

± 1
2 , (0, 0)N ⊗ ( 12 )RN

]

and

the fermions transforming as
[

± 1
2 , (0,

1
2 )N ⊗ ( 12 )RN

]

correspond to deformations

112In this section we set denote the left spin index − by L and the right spin index + by R.
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(and superdeformations) of C in the CY direction and parametrize the moduli space
MC of movements of C within M . Fermionic and bosonic zero modes form the
field content of a supersymmetric σ model on MC and after quantization one
gets the cohomology of the moduli space of MC weighted in addition with the
R quantum number of the fermions modes from their SU(2)N,R transformation.
The corresponding representations are identified with the Lefshetz decomposition
of the cohomology of the Kähler manifold (2.3.35) MC . Other fermionic modes
in ψT transform as 2 scalars the (0, 0) and (1, 1) form and g holomorphic and g

antiholomorphic one forms on the genus g curve C if the latter does not degenerate.
The corresponding zero modes are then forms on a (2g + 2) dimensional Jacobian
torus, which form SU(2)N, L representations [( 12 , 0)+2(0, 0)]g+1, cff. (2.3.35). By
the definition (4.3.10) only the multiplicity (2j3R + 1) and the sign (−1)2j3R of the
cohomology of MC are relevant for the determination of ng

β . This alternating sum
is just the Euler number (−1)mχ(MC), with m = dimC(MC). For classes β in M

with non degenerate genus g curves we get therefore as coefficient of Ig+1

n
g
β = (−1)mχ(MC) . (4.3.25)

An instructive example is a that of a ruled surface (RS) inside M . Familiar ruled
surfaces are the Hirzebruch surfaces Fn fibrations of a P1 bundle over P1. More
generally the base can be a higher genus surface �g . We want to calculate the n0β

for β the class of the fibre. The genus zero fibre curveC = P1 is smoothly embedded
and zero is the maximal genus of a curve in the class. Due to the fibration structure
of the RS the moduli spaceMC = �g is identified with the base. Therefore (4.3.25)
applies and gives n

g
β = (−1)1χ(�g) = 2g − 2. The embedding of �g is locally

described byO(r)⊗O(s)→ �g with r + s = 2g− 2. Unless g = 0 (r = s = −1)
the curve �g is not rigid in M and for g > 0 the curve �g can be deformed to
2(g − 1) points in M , as in Fig. 19.

P1 P1

complex structure

deformation

Fig. 19 The index n
g
β of the D2-D0 moduli space of the fibre in a ruled surface is constant under

complex deformations, while the N
g

j3
L
,J 3

R

jump
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The SU(2)N,R content before the deformation is R = 2g[0] −
[

1
2

]

with χ(R) =
2g − 2 = −χ(�g) and after deformation R′ = (2g − 2)[0] with χ(R′) = 2g −
2 = +χ(2(g − 1) pts). I.e. the total BPS numbers N

g

j3L,j
3
R

change by states with
[

2[0] −
[

1
2

]]

right representation content, when the complex structuremoduli space

of M is deformed. In particular in contrast to the n
(g)
β , the N

β

j3L,j
3
R

are not invariant

under the change of the complex structure. Notice that the successful microscopic
interpretation of the 5d black hole entropy requires deformation invariance and relies
on the index-like quantity n

g
β and not on N

g

j3R,j3L
.

Example Such ruled surfaces appear typically if one embeds the Calabi-Yau in a
weighted projective space. E.g. the degree 14 hypersurface in WCP 4(1, 2, 2, 2, 7),
see Appendix 3, contains a ruled surface with a genus 15 curve as base.113 The genus
g = 15 curve is semi stable because the relevant complex deformation moduli are
frozen as an artifact of the embedding. For other realization of the same family that
is not necessarily the case.

Above situation of a ruled surface is a good example to get a rough idea of
some concepts of virtual intersection theory. The virtual dimension of the brane
moduli space on CY 3-folds is expected to be zero by (4.1.5) or here equivalently
by (4.3.30). In this preferred situation the intersection problem is reduced to point
counting, but the situation might not be achievable as in the example of the ruled
surface above and the dimension of the moduli space remains positive. In this
particular case the excess intersection calculation amounts to integrate c1(T �g)

over �g.
In the type IIA picture one transversal direction parametrized previously by a

scalar in
[

0, ( 12 ,
1
2 )N ⊗ (0)R ,N

]

is dualized on the 3d World-Volume to a U(1)

gauge field. The flat U(1) connection has 2g zero modes on C exactly as the
[

±1, ( 12 , 0)N ⊗ (0)R ,N
]

fermions in ψT . Since these zero-modes parametrize the

2g dimensional torus Jac(C), called the Jacobian of C see [148] Chap 2.7, one
gets a supersymmetric quantum mechanics (SQM) on the moduli space M with a
fibration structure Jac(C) → M → MC , see Fig. 20. The proposal [140] for the
SU(2)N L × SU(2)N R action on M is that H ∗(M) = N

β

j3L,j
3
R

[j3L=f ibre, j
3
R=base].

Again one can conclude that the contribution n
g
β of smooth genus curves in the

class β is the (−1)2j3R weighted sum of the right representations multiplying the
non degenerate fibre contribution Ig in the decomposition of the left representation.
This is

n
g
β = (−1)dimC(MC)χ(MC). (4.3.26)

113Such case have been investigated [213, 223], because there have interesting gauge symmetry
enhancements, when the P1 shrinks.
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Jac(C)

smooth C
2 nodal curve

M
C

I

Ig

g–2

degenerate Jac(C)

I
g–1

1 nodal curve

Fig. 20 Moduli space of D2-D0 brane bound states as a Jacobian fibration over the deformation
space MC

On the other extreme are the curves which are maximally degenerate. They have
genus zero and come from genus g curves with g nodes. The Euler number of the
fibres with δ nodes is χ(Ig−δ) =: δg,δ. Due to the fibration structure the, Euler
number of χ(M) is calculated as the Euler number of the locus in the base where
the completely degenerate fibres sit. This is the (−1)2j3R weighted sum of the right
representations on the cohomology of this locus and therefore

n0β = (−1)dimC(M)χ(M) . (4.3.27)

In [215] a calculational scheme for the intermediate cases was given. E.g. if no
reducible fibres contribute one obtains

n
g−δ

β = (−1)(dim(MC)+δ)

δ
∑

p=0
bg−p,δ−pχ(C(p)), bg,k := 2

k!
k−1
∏

i=1
(2g − (k + 2)+ i), bg,0 := 1 .

(4.3.28)

Here C(p) is the moduli space of the curve C with p points, e.g. C(0) =MC . In the
case that C lies in a surface S in M , one can use similarly as in (5.1.2) formulas for
the cohomology of Hilbert scheme to calculate χ(C(p)), see [215] for examples.

Donaldson-Thomas Invariants

As we saw above we obtain BPS states by wrapping D-branes on supersymmetric
cycles inM . More generally we can wrap 6-branes onM itself, 4-branes on divisors
and 2-branes on a curvesC ⊂M , possibly bound to some 0-branes.We leave out the
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4-branes as we don’t know an index yet carrying deformation invariant information.
At the level of RR charges a configuration of the other branes can be cast into a
short exact sequence of the form

0 −→ I −→ OM −→ OZ −→ 0 (4.3.29)

where I is the ideal sheaf describing this configuration of one D6 brane onM , a D2
brane on the curve C and k D0 branes and Z is the subscheme of M consisting of
the curveC and the points at which the 0-branes are supported. Counting BPS states
therefore leads to the study of the moduli space Ik(M, β) of such ideal sheaves I,
which has two discrete invariants: the class β = [Z] ∈ H2(M,Z) and the number of
0-branes k = χ(OZ) plus an integral contribution form C. With the analogue of the
Hirzebruch-Riemann-Roch theorem for sheaves, the Grothendieck-Riemann-Roch
theorem,114 one can calculate the virtual dimension of the deformations of ideal
sheaves I inside a threefoldM as [261]

dimvir = dim Ext10(I,I)− dim Ext20(I,I) = c1 · β . (4.3.30)

This reflects again the special rôle of Calabi–Yau threefolds and one expects that
the number of BPS states with these charges is obtained by counting points. As is in
the case of Gromov–Witten invariants, these configurations can appear in families,
and one has to work with the virtual fundamental class. However the situation for
Donaldson–Thomas invariants is considered easier in many respects. For example
there is no finite automorphism group acting on Ik(M, β) so one expects directly
integer BPS numbers as result. This number is called the Donaldson–Thomas
invariant ñ(k)

β [101, 300].
Since both invariants, Gopakumar–Vafa and Donaldson–Thomas, keep track

of the number of BPS states, they should be related. The relation is in fact a
consequence of the S-duality in topological strings [268], and takes the form
reported in (4.3.22). The factor on the r.h.s of (4.3.22) comes from the constant
maps and gives the McMahon function M (qλ) = ∏

n≥0 1
(1−qn

λ)
n to the power χ

2 .

This function appears also in Donaldson–Thomas theory [261], calculable on local
toric Calabi–Yau spaces e.g. with the vertex [4]. However, in Donaldson–Thomas
theory the power of the McMahon function is χ . Note also that if (4.3.18) holds
then F or Z restricted to a class β is always a finite degree rational function in qλ
symmetric in qλ → 1

qλ
, since the genus is finite in a given class β. Thanks to this

observation one can read from the comparison of the expansion of Z in terms of
Donaldson–Thomas invariants ñ(m)

β ∈ Z

Zhol
DT (M, qλ,Q) =

∑

β,k∈Z
ñ
(k)
β qk

λQ
β (4.3.31)

114For Calabi-Yau 3 folds there is an even simpler argument that the difference below vanishes.
Serre duality applies the Ext groups and relates Ext10 and Ext20 on three folds with trivial canonical
bundle.
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with the expansion in terms of Gopakumar–Vafa invariants [261]

Zhol
GV(M, qλ,Q)M(qλ)

χ(M)
2 = Zhol

DT(M,−qλ,Q) (4.3.32)

the precise relation between ñ
(m)
β and n

(g)
β . Equation (4.3.18) and (4.3.22) then relate

the two types of invariants to the Gromov–Witten invariants r(g)β ∈ Q as in (4.3.4).

Pandharipande-Thomas Invariants

The geometrical interpretation of the BPS invariants introduced by [140, 215] as
reviewed above can be used to deal with fairly smooth Jacobian fibrations. It found
a rigorous mathematical definition in terms stable pairs due to Pandharipande and
Thomas [273, 275]. The basic ideas are similar then in section “Donaldson-Thomas
Invariants”, but the setup of stable pairs was made specifically to clarify the
assertions made in [215] and also in order to the provide mathematical proofs. Let
us shortly review the main ingredients and results and start with the definition of
stable pairs.

Definition 4 A stable pair on a smooth threefoldX consists of a sheaf F on X and
a section s ∈ H 0(F) such that

• F is pure of dimension 1
• s generates F outside of a finite set of points

A stable pair is a D6-D2-D0 brane bound state, and can be written as a complex

I• : OM
s→ F .

Let Pn(M, β) denote the moduli space of stable pairs with ch2(F) = β, χ(F) =
n. Then if X is Calabi-Yau, Pn(M, β) supports a symmetric obstruction theory. See
[34] for the definitions and basic properties of symmetric obstruction theories.

There are only a few things that we need to know about symmetric obstruction
theories. The basic idea of a symmetric obstruction theory is that the obstructions
are dual to their deformations. For stable pairs, the space of first order deformations
is Ext1(I•,I•) and the space of obstructions is Ext2(I•,I•). These are dual by
Serre duality.

An important feature of symmetric obstruction theories is that they have virtual
dimension 0, since deformations and obstructions have the same dimension.

If M is the moduli space associated with a symmetric obstruction theory and
M is smooth, then the corresponding virtual number is (−1)dim(M)e(M), where
e(M) is the topological euler characteristic. This is because the bundle describing
the deformations is the tangent bundle of M, so the obstruction bundle must
be the cotangent bundle of M, and the euler class of the cotangent bundle is
(−1)dim(M)e(M).
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In general, the virtual number is a weighted euler characteristic. See [34] for
more details.

Now let M be Calabi-Yau and let Pn(M, β) be the moduli space of stable pairs
with ch2(F ) = β and χ(F) = n, and let Pn,β be the associated invariant, i.e.
the degree of the virtual fundamental class of Pn(M, β). These invariants can be
arranged in a generating function

Zhol
pt =

∑

n,β

Pn,βq
nQβ. (4.3.33)

We let ZGW be the generating function for disconnected Gromov-Witten invari-
ants:

Zhol
GW = exp

(

F ′GW(λ,Q)
)

, F ′GW(λ,Q) =
∑

β �=0

∑

g

Γ β
g λ2g−2Qβ, (4.3.34)

where Γ
β
g is the Gromov-Witten invariant. The fundamental conjecture from which

everything will follow is

Conjecture 5 After the change of variables q = −eiλ, we have Zhol
PT = Zhol

GW .

Conjecture 5 is known to be true in the toric case [274].

Remarks on More General Integral Structures on Calabi-Yau n-Folds

We will discuss the refined integral structure in Sect. 4.4 and as we have seen the
refined invariants are in general not invariant under complex structure of Calabi-
Yau 3-folds as we saw in the example of the ruled surface. Integral structures appear
also in the open string sectors. The corresponding formula is given in (5.2.7). In
particular the disk amplitude enjoys an integral structure given by (5.2.8). This is
the same integral structure then for the three point function of Calabi-Yau fourfolds.
In particular for α a fourcycle in the vertical homology (3.6.36) evaluates as analog
to (2.9.60) as [46, 146, 232, 262]

C
(2,1)
α,b,c = C

0 (2,1)
α,b,c +

∑

β∈H2(M4,Z)

βaβbn
(0) α
β

1−∏h1,1

i=1 Q
di
i

h1,1
∏

i=1
Q

di
i . (4.3.35)

This implies that there exist potentials F (0)α of the form

F (0)α = 1

2
C
0 (2,1)
α,b,c tatb + class +

∑

β∈H2(M4,Z)

n
(0) α
β Li2(Q

β) . (4.3.36)

The sub leading classical terms have been determined in [46] and further properties
of the F (0)α in [46, 262].
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As the formula (3.4.16) shows the genus one contributions are expected to
be non-trivial for all Calabi-Yau n-folds irrespectively of their dimensions. The
corresponding analog of the Ray-Singer formula and the genus one multi covering
contributions that lead to integer genus one invariants have been worked out in [224]
together with a proof of (4.3.35) for fourfolds and in [276] analogous formulas for
five folds.

4.4 Refined Topological Invariants

The BPS interpretation of the amplitude is obtained by computing it via a Schwinger
loop integral with BPS states running in the loop [140] as discussed in Sect. 4.3.3.

4.4.1 Refined Integral Structure

At least formally it makes sense to couple the representation R = [j−, j+] to the
insertions of the self- and the anti-self-dual part of a background gravi-photon field
strength T = ε1dx

1 ∧ dx2 + ε2dx
3 ∧ dx4 and two insertions of the background

curvature 2-form R respectively. Passing to spinor notation for the field T , one gets
ε2− = − detTαβ and ε2+ = detTα̇β̇ , with ε± = 1

2 (ε1 ± ε2). Then the anti-self-dual
and self-dual parts of the field strength couple to the left and right spin j− and j+ of
the BPS particle respectively. The Schwinger loop calculation for these amplitudes
yields, with q± = e−2ε± is given by

Ss
1−loop(ε±) = −

∫ ∞

ε

ds

s

TrR(−1)σ 3++σ 3−e−smq
sσ 3−− q

sσ 3++
4
(

sinh2
( sε−

2

)− sinh2
( sε+

2

)) . (4.4.1)

If gravity can be decoupled, i.e. a rigid limit of supergravity exists then there
emerges a further SU(2)R symmetry acting on the algebra as symmetry group.
In this case the individual degeneracies Nβ

j−j+ are protected and it makes sense to
define a 5d BPS super trace which keeps track of both j− and j+ as

ZBPS (ε−, ε+, t) = TrBPS (−1)2(J−+J+)e−2ε−J−e−2ε+J+e−2εRJReβH . (4.4.2)

In [74] it was shown that the presence of an U(1)R ∈ SU(2)R isometry in the non-
compact toric Calabi-Yau manifold allows to define and calculate the individual
N

β
j−j+ by localisation.
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The Schwinger-Loop integral (4.4.1) is analogously calculated as in Sect. 4.3.3
and yields

F(ε, t) =
∞
∑

2j−,2j+=0
k=1

∑

β∈H2(M,Z)

(−1)2(j−+j+)
N

β
j−j+
k

j−
∑

m−=−j−
q
km−−

2 sinh
(

kε1
2

)

j+
∑

m+=−j+
q
km++

2 sinh
(

kε2
2

) e−k β·t

= lim
E→E0

1

ε1ε2

∞
∑

g=0

2g
∑

m=0
ε
2g−m

1 εm2 F (+)
m,g =

∞
∑

n,g=0
(ε1 + ε2)

2n(ε1ε2)
g−1F (n,g)(t) .

(4.4.3)

The sum over m± is taken in integral increments both for j± integral and half-
integral. The main difference to the unrefined integrality is that the n

g
β are only

indices given by (4.3.10) and can hence be in Z, while the physical interpretation of
the N

β
j−j+ as the number of BPS states implies of course that they are all positive

integers and in fact dimensions of vectors spaces. In particular if there is a symmetry
group acting on the BPS states the degeneraciesNβ

j−j+ must fall into dimensions of
representations of that group.

Formula (4.4.3) can easily be exponentiated upon expanding the sinh(x). This
yields the following expression for the partition function [198],

Z =
∏

β

∞
∏

2j±=0

j±
∏

m±=−j±

∞
∏

m1,m2=1

(

1− q
m−− q

m++ eε1(m1− 1
2 )eε2(m2− 1

2 )e−β·t)(−1)
2(j−+j+)+1Nβ

j−j+
.

(4.4.4)

4.4.2 The Refined Holomorphic Anomaly Equation

The refined holomorphic anomaly equations are obtained for the F (m,g) in [192,
243]115

F(s, t, gs ) = logZ =
∞
∑

m,g=0
smg

2g−2
s F (m,g)(t) , (4.4.5)

where s = (ε1 + ε2)
2 and g2s = ε1ε2 as

∂̄īF
(n,g) = 1

2
C̄

jk

ī

(

DjDkF
(n,g−1) +

∑

m,h

′
DjF

(m,h)DkF
(n−m,g−h)

)

, n+ g > 1 ,

(4.4.6)

115The equations in [243] were derived in the gauge theory context and differ from the one in
[192]. The difference was explained in [242].
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where the prime denotes omission of (m, h) = (0, 0) and (m, h) = (n, g) in the
sum and the first term on the right hand side is set to zero if g = 0. Beside of
F (0,0) = F (0) and F (0,1) = F (1), the holomorphic anomaly conditions have to be
supplemented by

F (1,0) = 1

24
log(con

∏

i

z
ai
i ) (4.4.7)

as initial conditions. Here con is the complete conifold discriminant and the
exponents ai can be determined by vanishing of BPS invariants at the large radius.

Examples of Refined Invariants

For example for the O(−3) → P2 geometry one can refine the B-model solutions
discussed in Sect. 4.2.43 to solve the B-model amplitudes F (m,g) using the refined
gap condition discussed in Sect. 4.5.4 and obtain in the holomorphic limit the BPS
invariants that refine the ones given in Table 7 to the ones given in Table 8.

This number coincide with the ones defined by localisation [74] or obtained by
the refined topological vertex [198]. Using direct integration techniques developed
in [192–194] the refined theory on all del Pezzo Surfaces and on the 1

2 K3 surface
[158] can be solved.

Refining (1.1.16) and other heterotic/Type II predictions like the KKV formula
for K3 × T 2 [215] and the all genera predictions of the n

g
β for fiber classes of K3

fibrations [260] is also possible [192, 216] and definitions for the refined invariants
in these cases have been suggested in [216] (Table 9).

As an example we exposit the refinement of the Yau and Zaslow predictions for
the K3 surface (1.1.16) from [192, 216]. Let [j ]x := x−j+x−j+1+· · ·+xj−1+xj .

Then we can obtain the refined invariants from a refinement of the Hilbert-Scheme
formula in [215] as

∞
∑

h=0

∑

j−

∑

j+
Nh

j−,j+ [j−]u2[j+]y2 qh =

∞
∏

n=1

1

(1− u−1y−1qn)(1− u−1yqn)(1− qn)20(1− uy−1qn)(1− uyqn)
,

(4.4.8)

where the sums over j− and j+ are both taken over 1
2Z≥0. The relation above

determines the Nh
j−,j+ for h ≥ 0 listed in Table 9. As an example for the possible

detection of a symmetry action by recognising the dimension of its representations
in “simple” decomposition of the refined BPS states, we note the following. The
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Table 8 Non vanishing BPS numbers Nd
j−,j+ of local O(−3)→ P

2 up to d = 6

d j−\j+ 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 11

2 6 13
2 7 15

2 8 17
2 9 19

2 10 21
2 11 23

2 12 25
2 13 27

2

1 0 1

2 0 1

3 0 1
1
2 1

4 0 1 1 1
1
2 1 1 1

2 1
3
2 1

5 0 1 1 1 2 2 2 1
1
2 1 1 2 2 3 2 1

1 1 1 2 2 2 1
3
2 1 1 2 1 1

2 1 1 1
5
2 1

3 1

6 0 1 1 3 2 6 4 8 5 7 2 2
1
2 1 2 3 5 6 9 9 10 7 5 1 1

1 1 1 3 3 7 7 11 9 9 4 2
3
2 1 1 3 4 7 7 10 6 4

2 1 1 3 4 7 6 6 2 1
5
2 1 1 3 3 5 3 2

3 1 1 3 3 3 1
7
2 1 1 2 1 1

4 1 1 1
9
2 1

5 1

d j−/j+ 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 11

2 6 13
2 7 15

2 8 17
2 9 19

2 10 21
2 11 23

2 12 25
2 13 27

2

candidate is the Mathieu group M24 acting on the category of coherent sheaves on
K3 and whose representations are

1, 23, 45, 231, 252, 253, 483, 770, 990, 1035, 1265,
1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395 ,

where the representations of dimension 45, 231, 770, 990, 1035 come in complex
conjugated pairs and there is an extra real representation of dimension 1035. Note
that apart from the 20 all numbers decompose in dimensions of representations in a
relatively simple way

N3
0,0 = 1981 = 2 · 990+ 1, N4

0,0 = 13938 = 2 · 5313+ 3312
N4

1
2 ,

1
2
= 2233 = 2 · 990+ 253, N5

1,1 = 2254 = 1771+ 483

N6
3
2 ,

3
2
= 2255 = 1265+ 990,
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Table 9 The nonvanishing
Rh

j−,j+ for h ≤ 4 for the K3
surface

N0
i
2 ,

j
2

i=0

j=0 1

N1
i
2 ,

j
2

j=0 1

i=0 20

1 1

N2
i
2 ,

j
2

j=0 1 2

i=0 231

1 21

2 1

N3
i
2 ,

j
2

j=0 1 2 3

i=0 1981 1

1 252

2 1 21

3 1

N4
i
2 ,

j
2

j=0 1 2 3 4

i=0 13938 21

1 2233 1

2 21 253

3 1 21

1

a fact that has been further analysed in [170].

4.5 Fixing the Holomorphic Ambiguity

As it is evident from (4.1.18) each new F (g) for g > 1 is determined only up to a
meromorphic section fg(z) of L2−2g called the holomorphic ambiguity at genus g.
It that depends on the invariant parameters complex structure parameters z. These
sections are restricted by the fact that for physical and mathematical reasons the
total F (g) have a quite restricted pole and regularity structure at the critical divisors
of Mcs . Most notably at each conifold divisor there is in the local transversal
coordinate tc a pole of order t

2−2g
c and regularity in the sub-leading terms in the

F (g). This pole structure can be calculated with a Schwinger loop computation since
there is an effective action with massless particle spectrum at the singularity, which
is at finite distance from the interior of the moduli space. Generically and even at
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orbifold divisors the F
(g)

phys in the physical gauge have to be regular. At the point of

maximal unipotent monodromy the F (g) for g ≥ 1 have to be regular and for g = 0
there are only logarithmic singularities given by the intersection numbers (2.6.31)
for g = 0 and by (4.5.3) for g = 1. In addition F (1) has a pre described logarithmic
singularity at the conifold by (4.5.4).

These are the types of singularities that occur in the one parameter families
discussed in Sects. 2.10.4 and 2.10.5. However in more generic multi parameter
models there are other types of singularities. In particular interesting are the
singularities in the FHSV model [113] discussed [151, 222] where a fourbrane
becomes light and one has a dual integral BPS expansion. If an effective action
exists one can figure out the leading behaviour ofF (g), but even in some case like the
shrinking del Pezzo surfaces there is information as we can solve the latter in their
entire moduli space [193]. The canonical threefold singularities are non classified
however many things are known for hypersurface [281] and quotient singularities
[332]. Generally the expected pole behaviour and the regularity condition leads to
an ansatz for the fg(z) that we discuss in the next section.

4.5.1 The Ansatz for the Holomorphic Ambiguity

The counting function for the GW invariants is obtained as a holomorphic limit of
the result of the integrationF(t) = limt̄→∞ Fg(t, t̄ ) of (4.1.19), (4.1.18). It depends
strongly on the possible holomorphic ambiguities fg(z) and gives together with the
other boundary divisors general constraints on the latter. In view of the conifold
singularities one makes for the holomorphic ambiguities the following ansatz

fg(z) =
D
∑

i=1

t (i)
∑

k=0

p
(k)
i (z)

i
k

, (4.5.1)

where D is the number of components i of the discriminant and t (i) gives the
maximal singularity that one has at the corresponding type of divisor. In particular
for the conifold divisors t (i) = 2g−2. If in the large complex structure variables the
point zi → ∞ is regular the p

(k)
i (z) are polynomials that are generically bounded

to have highest degree

t (i)× ord(i)+ σ t (i).

Here the shift σ is due to the fact that the regularity condition holds for the physical
F

(g)

phys . It is therefore determined by the vanishing of e−K ∼ X0∗ = σ∗ +O(a>σ∗ )

at the corresponding divisor ∗. In particular if σ > 0 then the regularity condition
is weaker and higher order poles are allowed for the fg at this divisor ∗ and

consequently the p
(k)
i (z) are less constrained. Note that the number of conifold

divisors in the one moduli cases is the order ord(c) of the unreduced conifold
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discriminant and from each conifold component we get from the gap condition
(4.5.8) 2g − 1 independent conditions. Hence the condition would be sufficient
if the only singular behaviour is from conifolds and σ = 0 for other divisors.
This precisely the case in the local models as e−K ∼ X0 = c becomes globally
constant and the Mirror Riemann surface have generically no worse singularities
then conifolds, also called nodes. This was used in [163] to argue that the topological
string B-model is completely solvable in the local case and in [194] the same was
shown for the refined topological B-model.

In general for compact Calabi-Yau 3 folds the discussion is more complicated
because there more general types of singularities and the fact that e−K varies in a
non-trivial way. For the quintic the only singular behaviour is the gap at the conifold,
but at z→∞ there is the orbifold and X0 has local vanishing order σ = 1/5 Using
the expansion (4.5.8) and the regularity leaves therefore a moderate grow in the
undetermined unknowns in fg(z) of order

σ [2g − 2] =
[

2g − 2

5

]

. (4.5.2)

This is supplemented by the vanishing of the BPS invariants n
g
β=d in good

approximation for d <
√
g due to the adjunction formula. Hence one gets roughly√

g additional constraints. The point where the linear growth (4.5.2) majorizes the
curve d = √g is the point where one runs out of boundary conditions can be seen
in Fig. 21. The conclusion is that the topological string on the quintic is solvable
for g ≤ 51. Using the topological data of the quintic discussed in section “The
Monodromies of the Quintic” one obtains the BPS numbers in Table 10.

4.5.2 Boundary Conditions from Light BPS States

Boundaries in the moduli space Mcks(M) correspond to degenerations of the
manifold M and general properties of the effective action can be inferred from the
physics of the lightest states. More precisely the light states relevant to the F (g)

terms in the N = 2 actions are the BPS states. Let us first discuss the boundary
conditions for F (1) at the singular points in the moduli space.

• At the point of maximal unipotent monodromy in the mirror manifold W , the
Kähler areas, four, and six volumes of the original manifold M are all large.
Therefore the lightest string states are the constant maps �g → pt ∈ M . For
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Table 10 BPS invariants ng

d on the Quintic hypersurface in P4 [191]

g d=1 d=2 d=3 d=4 d=5 d=6

0 2875 609250 317206375 242467530000 229305888887625 248249742118022000

1 0 0 609250 3721431625 12129909700200 31147299733286500

2 0 0 0 534750 75478987900 871708139638250

3 0 0 0 8625 −15663750 3156446162875

4 0 0 0 0 49250 −7529331750
5 0 0 0 0 1100 −3079125
6 0 0 0 0 10 −34500
7 0 0 0 0 0 0

g d=7 d=8 d=9

0 295091050570845659250 375632160937476603550000 503840510416985243645106250

1 71578406022880761750 154990541752961568418125 324064464310279585657008750

2 5185462556617269625 22516841063105917766750 81464921786839566502560125

3 111468926053022750 1303464598408583455000 9523213659169217568991500

4 245477430615250 25517502254834226750 507723496514433561498250

5 −1917984531500 46569889619570625 10280743594493108319750

6 1300955250 −471852100909500 30884164195870217250

7 4874000 2876330661125 −135197508177440750
8 0 −1670397000 1937652290971125

9 0 −6092500 −12735865055000
10 0 0 18763368375

11 0 0 5502750

12 0 0 60375

13 0 0 0

g d=10 d=11

0 704288164978454686113488249750 1017913203569692432490203659468875

1 662863774391414096742406576300 1336442091735463067608016312923750

2 261910639528673259095545137450 775720627148503750199049691449750

3 52939966189791662442040406825 245749672908222069999611527634750

4 5646690223118638682929856600 44847555720065830716840300475375

5 302653046360802682731297875 4695086609484491386537177620000

6 6948750094748611384962730 267789764216841760168691381625

7 40179519996158239076800 7357099242952070238708870000

8 −25301032766083303150 72742651599368002897701250

9 1155593062739271425 140965985795732693440000

10 −17976209529424700 722850712031170092000

11 150444095741780 −18998955257482171250
12 −454092663150 353650228902738500

13 50530375 −4041708780324500
14 −286650 22562306494375

15 −5700 −29938013250
16 −50 −7357125
17 0 −86250
18 0 0
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these Kaluza-Klein reduction, i.e. a zero mode analysis of the A-twisted non-
linear σ -model is sufficient to calculate the leading behaviour116 of F (1) as [40]

F (1) = ti

24

∫

c2 ∧ Ji +O(e2πit ) . (4.5.3)

Here 2πi ti = Xi

X0 are the canonical Kähler parameters, c2 is the second Chern
class, and Ji is the basis for the Kähler cone dual to 2-cycles Ci defining the
ti :=

∫

Ci
Ĵ = ∫

Ci

∑

i tiJi .
• At the conifold divisor in the moduli space Mcs(W), W develops a nodal

singularity, i.e., a collapsing cycle with S3 topology. As discussed in Sect. 2.10.3
this corresponds to the vanishing of the total volume ofM . The leading behaviour
at this point is universally [187]

F (1) = 1

12
log(tc)+O(tc) . (4.5.4)

This leading behaviour has been physically explained as the effect of integrating
out a non-perturbative hypermultiplet, namely the extremal black hole of [297].
Its mass ∼ tc, see (4.5.6), goes to zero at the conifold and it couples to the U(1)
vector in the N = 2 vector multiplet, whose lowest component is the modulus tc.
The factor 1

12 comes from the gravitational one-loop β-function, which describes
the running of the U(1) coupling [306]. A closely related situation is the one of
a shrinking lense space S/G. As explained in [138] one gets in this case several
BPS hyper multiplets as the bound states of wrapped D-branes, which modifies
the factor 1

12 → |G|
12 in the one loop β-function (4.5.4).

• The gravitational β-function argument extends also to non-perturbative spectra
arising at more complicated singularities, e.g. with gauge symmetry enhance-
ment and adjoint matter [223].

For the case of the one parameter families the above boundary information and the
fact is sufficient to fix the holomorphic ambiguity in F (1).

4.5.3 The Gap Condition

To learn from the effective action point of view about the higher genus boundary
behaviour, let us recall that the F (g) as in F(λ, t) = ∑∞

g=1 λ2g−2F (g)(t) give rise
the one loop term (4.3.7) where R− is the anti self-dual part of the curvature and we
identify λ with T−, the anti self-dual part of the graviphoton field strength.

What are the microscopic BPS states that run in the loop? They are related
to non-perturbative RR states, which are the only charged states in the Type II
compactification. They come from branes wrapping cycles in the Calabi-Yau, and

116The leading of F (0) at this point is similarly calculated and given in (2.12.21).
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as BPS states their masses are proportional to their central charge (2.5.52), (2.6.19).
For example, in the large radius in the type IIA string on M , the mass is determined
by integrals of complexified volume forms over even cycles. E.g., as we saw in
Sect. 4.3.3 the mass of a 2 brane wrapping a holomorphic curve Cβ ∈ H 2(M,Z) is
given by117

mβ = 1

gs

∫

Cβ∈H 2(M,Z)

(iJ + B) = 1

gs

2πit · β =: 1

gs

tβ . (4.5.5)

We note that H 2(M,Z) plays here the role of the charge lattice. In the type IIB
picture the charge is given by integrals of the normalized holomorphic (3, 0)-form
�. In particular the mass of the extremal black hole that vanishes at the conifold is
given by

mBH =
∣

∣

∣

∣

∣

1

gs

∫

Ac
�

∫

S3
�

∣

∣

∣

∣

∣

=:
∣

∣

∣

∣

1

gs

tc

∣

∣

∣

∣

, (4.5.6)

where Ac is a suitable non-vanishing cycle at the conifold. It follows from the
discussion in the Sect. 4.3.3 that with the identification e = m and after a rescaling
s → sλ/e in (4.3.18), as well as absorbing F into λ, one gets a result for (4.3.7)

Ss
1−loop(λ, t) =

∫ ∞

ε

ds

s

Tr(−1)f exp(−st) exp(−2sσLλ)

4 sin2 (sλ/2)
. (4.5.7)

Here t are the regularized masses, c.f. (4.5.5), (4.5.6) of the light particles P that
are integrated out, f is their spins in R, and σL is the Cartan element in the
representationR.

Let us turn to type IIB compactifications near the conifold. As it was checked
with the gravitational β-function in [306] there is precisely one BPS hypermultiplet
with the Lorentz representation of the first factor in (4.3.17) becoming massless at
the conifold. In this case the Schwinger-Loop calculation (4.5.7) simply becomes

F(λ, tc) =
∫ ∞

ε

ds

s

exp(−stc)

4 sin2 (sλ/2)
+O(t0c ) =

∞
∑

g=2

(

λ

tc

)2g−2 (−1)g−1B2g

2g(2g − 2)
+O(t0c ) .

(4.5.8)

Since there are no other light particles, the above Eq. (4.5.8) encodes all singular
terms in the effective action. There will be regular terms coming from other massive
states. This property of (4.5.8) is called the gap condition. The gap condition was
first observed in N=2 Seiberg-Witten theory and matrix models [189] where one has
additional independent checks on the Fg .

117Here we choose a phase so that tβ is real.
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As mentioned an interesting singularity appears in the FHSVmodel [113] models
discussed [151, 222] where a 4-cycle shrinks in the IIA picture and one has a
shortened gap and dual integral BPS expansion.

4.5.4 The Refined Gap Condition

Performing the refined Schwinger loop integral (4.4.1) with a single dyon of
vanishing mass |tc| and expanding it in ε1, ε2, and 1

tc
gives us the leading behavior

of each F (n,g) near the conifold point from the corresponding coefficients of
(λ2 = (ε1ε2) and s = (ε1 + ε2)

2) [192]

F(s, λ, tc) =
∫ ∞

0

ds

s

exp(−stc)

4 sinh(sε1/2) sinh(sε2/2)
+O(t0c ) (4.5.9)

= [− 1

12
+ 1

24
(ε1 + ε2)

2(ε1ε2)
−1] log(tc)

+ 1

ε1ε2

∞
∑

g=0

(2g − 3)!
t
2g−2
c

g
∑

m=0
B̂2gB̂2g−2mε

2g−2m
1 ε2m2 + . . .

= [− 1

12
+ 1

24
sg−2s

]

log(tc)+
[− 1

240
g2s +

7

1440
s − 7

5760
s2g−2s

] 1

t2c

+[ 1

1008
g4s −

41

20160
sg2s +

31

26880
s2 − 31

161280
s3g−2s

] 1

t4c
+O(t0c )

+ contributions to 2(g + n)− 2 > 4 .

Hence, e.g.,

F (0,2) = − 1

240

1

t2c
+O(t0c ), F (1,1) = 7

1440

1

t2c
+O(t0c ), F (2,0) = − 7

5760

1

t2c
+O(t0c ) .

(4.5.10)

The leading behavior of (4.5.9) is the same as that of the S1 compactification of the
c = 1 string,118 where the same integral appears [154].

The fact that near conifold points in moduli space, the relation

F (n,g) = N(n,g)

t
2(g+n)−2
c

+O(t0c ) (4.5.11)

118As was noted for ε1 = −ε2 in [135].
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holds, i.e. the absence of subleading poles in the tp expansion, is referred to as the
refined gap condition of the F (n,g) at these points [189, 191]. We note that these
refined gap conditions are sufficient to fix the refined holomorphic ambiguity also
for the local models. For the global cases they will be not sufficient and because of
the absence of the U(1)R symmetry it is not clear what the calculation precisely
means.

4.5.5 Bounds on the BPS Numbers from Castelnuovo Theory

The basic idea of the Castelnouvo bound for the n
g
β is that in a certain class β ∈

H2(M,Z) it is generically not possible to have an embedded curve C of arbitrary
high genus g in M . For the Gromov-Witten invariants if there was a map at genus
g′ then there will by multi coverings of this map n

g
β in (4.3.4) at all genera g > g′

as the formula (4.3.5) predicts even for the simplest case of an isolated genus zero
curve. The formula (4.3.18) is supposed to give the multi coverings for maps with
arbitrary genus. If the geometric interpretation of Sect. 4.3.4 or rather the definition
of Pandharipande-Thomas invariants reproduces (4.3.18), then in each class β ∈
H2(M,Z) there will be a gmax beyond which n

g≥gmax

β = 0 because there is no
curve of higher genus and all contributions from lower genus curves are already
subtracted. At least qualitatively it is easy to understand why such a bound is there
from the adjunction formula

C2 +K · C = (2g − 2) . (4.5.12)

On the Calabi-Yau manifold M and K = 0 and in one class specified by β one gets
roughly

g(β) = β2 + 2

2
. (4.5.13)

However not all curves are smooth and generic, e.g. in the quintic, so the bound
might be violated and in particular not saturated. As explained in [215] curves in
projective within the quintic are either plane curves in P2, curves in P3, or P4.
In all case one gets from Castelnuovo theory a bound on g, which grows still for
large d = β like g(d) ∼ d2/2. For a detailed exposition of curves in projective
space see [167]. Using this information one can determine which curves above
are realised and contribute to the BPS numbers. These statements generalize to
the hypersurfaces and complete intersections with one Kähler modulus in weighted
projective spaces. In fact if there is a smooth curve one cannot only determine the
exact bound, but using (4.3.26) or the specialized versions of (4.3.28)
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Fig. 21 The points that follow roughly the g = d2/2 curve represent the known Castelnouvo
bounds, while the line represent the number of unknowns in the holomorphic ambiguity fg after
imposing the regularity at the orbifold and the gap condition [191]

n
g̃−1
d = (−1)dim(M)+1 (e(C)+ (2g̃ − 2)e(M))

n
g̃−2
d = (−1)dim(M)+1

(

e(C(2))+ (2g̃ − 4)e(C)+ 1
2 (2g̃ − 2)(2g̃ − 5)e(M)

)

.

(4.5.14)

one can make nontrivial checks on the curve counts in Table 10. The most detailed
information on the bound we have is in Fig. 21. As it turns out there is a smooth
curve at genus 51 and for g ≤ 51 the vanishing of the n

g
β and the bounds that we

get from the orbifold regularity and the gap condition are sufficient to solve the
topological string on the quintic.

4.5.6 Higher Genus Results for the Quintic

In Table 10 we present the non-vanishing n
g
d for the quintic in P4 up to degree

d = 11. Similar results for hypergeometric one parameter Calabi-Yau manifolds can
be found in [191]. An analysis of the asymptotic growth of the BPS numbers relevant
for the comparison of the mirco state—and the Bekenstein Hawking entropy was
performed in [190].

5 Further Higher Genus Techniques

This chapter is much less self contained then the other parts of the lecture. Its
intention is to give an overview over further techniques to solve the topological
string at high genus. While these techniques give beautiful all genera results,
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especially when combined with automorphic symmetries that lead to modular or
automorphic forms, these techniques are all restricted so far to lower dimensional
sub-geometries of the Calabi-Yau manifolds.

The techniques fall basically in two types:

• The modular techniques119 rely on an understanding of the discrete symmetries
that govern the theory and in particular its correlation functions. Due to the
finiteness of the ring of modular forms, once the weight and other indices of
the correlation function is know then, if the latter is sufficiently restricted by
physical or geometrical boundary conditions, it can be reconstructed. In a sense
the solution of the B-model discussed in Sect. 4 follows the same logic. The
problem was in part that the knowledge of the generators of the ring of modular
forms is incomplete on a compact Calabi-Yau 3-fold and more severely that
the boundary conditions are not sufficient. Both objections as we already saw
evaporate in the local case, as the gap is sufficient and the forms become either
modular forms or Siegel forms.

• Another good situation is if the global Calabi–Yau has a fibration structure either
by K3 or elliptic curves, so that the modular generators at least in this directions
restrict to easier automorphic forms or even strictly modular forms. Moreover
in the case of K3 fibrations there is duality between Type II and the heterotic
string, preserving all discrete symmetries of course. In the heteroric string these
symmetries combined with world sheet techniques provide powerful methods to
calculate the one-loop amplitude which provides all genera information in the
K3 fiber. In the case of elliptic fibrations there has been recently a lot of progress
inspired also by world-sheet techniques of auxiliary dual string quiver theories in
which the topological string partition function is calculated as an elliptic genus.
Further six and five dimensional non-trivial QFT theories from F-theories on
elliptic Calabi-Yau spaces provide further structures that help to determine the
topological string partition function.

• The large N techniques use ’t Hooft’s idea of gauge theory/string theory duality.
The problem is that for string theory on the compact Calabi-Yau the dual gauge
theory is not yet known. However in the local Calabi-Yau cases the gauge theory
is often known. In particular for all local toric Calabi-Yau spaces and is either a
matrix model or a 3d-Chern Simons theory.

With start our discussion with the modular approach.

119We use the word modular loosely not only to refer subgroups of the modular group SL(2,Z)

and the corresponding ring of modular forms, but also to other automorphic group and automorphic
forms and functions.
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5.1 Modularity from Fibration Structures and Dualities

Here we address modular techniques whose modularity originates either from
duality with the heterotic string and is associated to an K3 fibred Calabi-Yau 3 fold
or to six dimensional super conformal theories associated elliptically fibred Calabi-
Yau 3-folds or more general geometries which have a dual quiver gauge linear sigma
model description.

5.1.1 K3 Fibrations and Heterotic Type II String Dualities

As the above ideas originate to some extend from the duality between N=2 Type II
string and the heterotic string, some of the strongest predictions for the ng

β invariants
on compact Calabi-Yau manifolds can be made if dual pairs of heterotic/type II
compactifications are known (1.1.14). The relevant Calabi-Yau manifolds are K3
fibrations over P1 [204, 229] and under the moduli identification the heterotic weak
coupling limit translates to infinite volume limit of the base P1. The heterotic string
prediction relies on a perturbative WS one-loop calculation in the weak coupling
limit and makes therefore only predictions for ng

β if β is a class entirely in the K3

fibre. Information about other classes β̂ is suppressed, because for them one has

qβ̂ → 0 in the weak coupling/infinite base limit. The one-loop (torus) amplitude
is [19]

Fg =
∫

F
dττ 2g−32

1

|η|4
∑

even

i

π
∂τ

(

θ
[

a
b

]

(τ )

η(τ)

)

Zint
g

[a

b

]

, Zint
g

[a

b

]

= 〈: (∂X)2g :〉 .
(5.1.1)

The integrand can be understood as an index on the heteroticWS theory very similar
to (4.1.20) [169] and the integral over the fundamental region F of the torus can
be calculated using the modular properties of the integrand in an ingeneous way
[48, 97, 169, 222, 260]. For the K3 fibrations without reducible fibres one finds in
the holomorphic limit [233]

Fhol(FibreK3 , λ, q) =
�(q)

q

(

1

2 sin( λ2 )

)2
∏

n≥1

1

(1− qλqn)2(1− qn)20(1− q−1λ qn)2
.

(5.1.2)

Similar as in the case of elliptic Del-Pezzo surfaces S embedded in Calabi-Yau
manifolds [188] the product factor can be interpreted as the Goettsches formula for
the cohomology of the resolved Hilbert scheme of points on the surface S or theK3
respectively. The formula (5.1.2) can also be viewed as an extension of the analysis
of [333] to a situation with less supersymmetry.
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Example The degree 12 hypersurface in the weighted projective space
WCP(1, 1, 2, 2, 6), see Appendix 3 is a K3 fibration, which is dual to the
ST heterotic string discussed in [204]. In this case �(q) is [218] �(q)

η24
=

− 2σE4F6
η24

= − 2
q
+ 252 + 2496q

1
4 + 223752q + . . ., where σ(q) = ∑

n∈Z q
n2
4

and F2(q) = ∑

n∈Z>0,odd σ1(n)q
n
4 generate the ring of modular forms for the

congruence subgroup �0(4), and F6 = E6 − 2F2(σ
4 − 2F2)(σ

4 − 16F2). The
embedding of the Picard lattice of the K3 into the Calabi-Yau M is specified by
the replacement of λ2g−2ql → 1

(2πi)3−2g
∑

n2/4=l Li3−2g(qβn) in (5.1.2), where β

is the single class in the K3 fibre. Comparing with (4.3.18) one gets predictions in
a closed form for ng

β for all g and all β. Below the first few are listed

g β = 1 2 3 4 . . .

0 2496 223752 38637504 9100224984 . . .

1 0 −492 −1465984 −1042943520 . . .

2 0 −6 7488 50181180 . . .

3 0 0 0 −902328 . . .

4 0 0 0 1164 . . .

5 0 0 0 12 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

Many of these predictions from string duality have been checked in [233]
using geometrical techniques. Using the direct integration technique described in
Sect. 4.2.3 for this two parameter model this model has been to large extend solved
by B-model techniques confirming the higher genus invariants in the K3 fibre but
also supplementing them with such that have non trivial degree on the base [162].

Moreover in a closed related elliptic fibration the STUmodel, an K3 fibration that
is also an elliptic fibration over P1 × P

1 the results for the invariant in the K3 fibre
have been mathematically proven and used to prove the SYZ conjecture (1.1.16) for
non-primitive classes [234].

Particular strong results have been obtained for the FHSV model [113] in [222].
This is special K3 fibration obtained as an Z2 orbifold of K3× T2 that acts like the
Enriques involution on the K3 and as hyperelliptic involution on the two torus T2
and has Z2 × SU(2) holonomy leading for type II to N = 2 in four dimensions
theory with strong simplifications. In particular the prepotential is purely classical
without instanton corrections or equivalently the moduli space is a symmetric group
space [222]. However the g ≥ 1 instanton sectors are non-trivial and in [151, 222]
a direct integration formalism has been developed that allows to calculate all higher
genus instanton up to base degree 5.
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5.1.2 Elliptic Fibrations and Elliptic Genus

Here we report on recent progress on the topological string on elliptically fibered
Calabi-Yau spaces, which implies that for given base degree the all genus BPS
invariants in all fibre classes are given by certain meromorphic Jacobi Forms.
This was first observed in local models based on an elliptic surface, first for
smooth fibrations [164], then for singular fibrations [166] and finally also in global
models [195]. In the local case in particular in [166] there are easy 2d gauge linear σ -
model quiver description and the higher genus invariants are captured by the elliptic
genus of the σ model, which makes the occurrence of Jacobi forms very natural. We
focus on the global case.

Let us denote by M the elliptically Calabi-Yau manifold, by B its base and by E
its fibre with B as section

E → M

↓ π

B

. (5.1.3)

We will first assume that the fibration has only I1 fibres over the base as for example
in the model discussed in Sect. 2.11.2 where the base is P2 or in the elliptic fibration
phase in the example in which the flop is described (2.7.38), where the base is the
Hirzebruch surface F1. We start with some features of the classical geometry.

Denote by {[C̃k]}, k = 1, . . . , h11(B) = h11(M) − 1 the generators of the Mori
cone of B, and by {[D′k]} the dual basis for the Kähler cone of B. Since B is a
section, [C̃k] are curve classes on M . Further [C̃e] denotes the class of the elliptic
fiber. To summarize {[C̃e], [C̃k]} are generators for the Mori cone ofM and the dual
basis of the Kähler cone of M is generated by

[D̃k] = π∗[D′k], [D̃e] = [E] + π∗c1(B), (5.1.4)

where [E] is the divisor class of the section. The complexified Kähler areas of the
curves in the base and the fibre are T̃ k = 1

2πi

∫

C̃k ib − ω and τ̃ = 1
2πi

∫

C̃e ib − ω

respectively.
We assume that c1(B) = −KB of B is semi-positive.120 One can then easily

calculate the following classical intersections on M [235]

D̃3
e =

∫

B

c1(B)2, D̃2
e · D̃k = ak, D̃e · D̃i · D̃j = cij (5.1.5)

with

ak = c1(B) ·D′k, ak = c1(B) · C̃k . cij = D′i ·D′j . (5.1.6)

120This is fulfilled for all bases given by the 2d reflexive lattice polytopes shown in Fig. 1.
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To exhibit the modular properties it is convenient to transform the complexified
Kähler parameter to

τ = τ̃ , T k = T̃ k + ak

2
τ (5.1.7)

and the curve classes accordingly. We denote the exponentiated variables by q =
exp(2πiτ), and Qk = exp(2πiT k). The point is that in this basis there is a
subgroup of the monodromy group of the mirror �W , which after identification
by the mirror map generates an PSL(2,Z) action on τ and does not act, up to
exponentially small terms in Qk , on the modified base classes T k . For example the
S transformation monodromy in the basis defined from the classical intersection
numbers by (2.6.30) is [196]

X0 Xe X̃k F0 Fe Fk

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 . . . 0 0 . . . 0
−1 0 0 . . . 0 0 . . . 0
ak 0 0 . . . 0 0 −ckj

−1 0 0 . . . 0 1 −aj

0 c21(B)+ 1 aj −1 0 −aj

ak −ak ckj 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

X0

Xe

X̃k

F0

Fe

Fk .

(5.1.8)

The T transformation is given by the b shift in the τ parameter. We defined a Kähler
gauged partition function

Z = exp(F) = exp

⎛

⎝

∞
∑

g=0
g
2g−2
s F(g)(t)

⎞

⎠ , with F(g)(t) = (X0)2g−2(t)F (g)(X) .

(5.1.9)

and expand the latter in the base classes as

Z(τ, T , gs) = Zβ=0

⎛

⎜

⎝1+
∑

β∈H2(B,Z)

β �=0

Zβ(τ, gs)Q
β

⎞

⎟

⎠ , (5.1.10)

then the Zβ(τ, gs) have the following properties121:

121The definitions for the Jacobi forms are collected in section “Jacobi Forms” in Appendix 4. In
the section gs = λ is the topological string coupling.
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Property 1 Zβ(τ, gs ) is a meromorphic Jacobi form of weight zero k = 0 and index

mβ = 1

2
β · (β − c1(B)), (5.1.11)

where the topological string coupling λ = gs is identified up to multiple with the
elliptic argument z of the Jacobi form

gs = 2πz . (5.1.12)

Property 2

Zβ(τ, z) = 1

η12β·c1(B)

ϕβ(τ, z)
∏b2(B)

l=1
∏βl

s=1 A(τ, sz)
(5.1.13)

where ϕβ(τ, z) is a weak Jacobi form of weight

wβ = 6β · c1(B)− 2
b2(B)
∑

l=1
βl (5.1.14)

and index

mβ = 1

6

b2(B)
∑

l=1
βl(1+ βl)(1+ 2βl)+ 1

2
β · (β − c1(B)) . (5.1.15)

Property 3 The Castelnouvo bounds that predict the vanishing of BPS indices n
β
g

for g ≥ O(de) in the classes κ = (de, β) for β = kβ̃ and β̃a primitive class,
determine together with the genus zero and one results the weak Jacobi form ϕβ for
all positive k ∈ N, if

mβ ≤ 0 . (5.1.16)

This properties can be shown using the holomorphic anomaly (4.1.23) and the
expected pole structure in (4.3.18). Property 3 and the finiteness of the ring of weak
Jacobi forms that generate ϕβ(τ, z) is strong enough to solve many local models.
For example the E-string can be solved completely and very efficiently [196]. The
corresponding ϕ are (Q = E4, R = E6 and the definition of the weak Jacobi forms
A and B is given in A4.49)

ϕ1 = −Q,

ϕ2 = 1
288(A

2(5R2 −Q3)− 8ABQR + 4B2Q2),

etc

(5.1.17)

yielding the BPS invariants in Tables 11 and 12.
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Table 11 The GV invariants ng

(dE,1), i.e. for the base degree β = 1

g\dE 0 1 2 3 4 5 6

0 1 252 5130 54760 419895 2587788 13630694

1 0 −2 −510 −11780 −142330 −1212930 −8207894
2 0 0 3 772 19467 257796 2391067

3 0 0 0 −4 −1038 −28200 −403530
4 0 0 0 0 5 1308 37991

5 0 0 0 0 0 −6 −1582
6 0 0 0 0 0 0 7

7 0 0 0 0 0 0 0

Table 12 The GV invariants ng

(dE,2), i.e. for the base degree β = 2

g\dE 0 1 2 3 4 5 6

0 0 0 −9252 −673760 −20534040 −389320128 −5398936120
1 0 0 760 205320 11361360 317469648 5863920760

2 0 0 −4 −25604 −3075138 −135430120 −3449998524
3 0 0 0 1296 494144 38004700 1400424188

4 0 0 0 −6 −45172 −7279258 −416416202
5 0 0 0 0 1844 918292 90943340

6 0 0 0 0 −8 −69026 −14214528
7 0 0 0 0 0 2408 1505880

8 0 0 0 0 0 −10 −97272
9 0 0 0 0 0 0 2988

10 0 0 0 0 0 0 −12
11 0 0 0 0 0 0 0

The formalism can be also refined and extended to all classes in the surfacewithin
the local geometry using of course more generalised rings of Jacobi Forms. For
smooth cases, i.e. the refined E-string and chains of E- and M-strings, this is done
in [158]. In the refined case ε1 and ε2 feature as elliptic arguments of the Jacobi-
forms, similar as the mass parameters for the E-string, for which the corresponding
Weyl-invariant Jacobi-Forms were given in [284]. Singular geometries have been
treated in [85], where the results exhibits an affineWeyl-Invariance that corresponds
to the affine Weyl Invariance ĝ in the Kodaira resolution diagram of a singularity at
co-dimension one in B that leads to a gauge theory g in F -theory.

In the compact X18(1, 1, 1, 6, 9) manifold the condition mβ ≤ 0 is violated
for all curve classes in the base. Nevertheless using the Castelnouvo bound, the
gap condition and the specific form (5.1.13) of the amplitudes very high genus (all
degrees and g ≤ 189) and base degree (all genera and fibre degrees and base degree
β ≤ 20) computations can be performed [195].
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with A−branes

Matrix Model 

H(x,p)=uv =0,

spectral curve, resolvent 

λ

Open string B−brane on

Closed String on def−

formed local geometry W

Open Mirror−Symmetry 

Closed Mirror−Symmetry 
up local geometry M

gauge/ string duality gauge/ string duality

large N large N limit limit

Fig. 22 Scheme of the relations and dualities in large N approaches to the topological string on
local Calabi-Yau threefolds

5.2 Open String Amplitudes and Large N Techniques

Large N-techniques that rely on the duality between gauge theory with high rank
gauge group are extremely powerful tools to get higher genus information for open
and closed topological string theory on local Calabi Yau spaces. Let us start then
with a small overview over the A- and B− model applications in Fig. 22. In the
preparation for the large N techniques in the B model we start then with some
review on the disk amplitude.

5.2.1 Chain Integrals and Open String Disk Amplitudes

Formulas for the open string amplitudes can be derived from the super potential
W [328]. The latter can be obtained by reducing the holomorphic Chern Simons
action [324]

W =
∫

W

� ∧ Tr[A ∧ ∂̄A+ 2

3
A ∧A ∧ A] (5.2.1)

that extends over the hole Calabi-Yau manifold to lower dimensional branes. The
action can be reduced in particular to curvesC ∈ M and evaluated in the geometries
discussed in Sect. 2.7.4, as has been described in [1].

The tangent bundle ofM split over C as

T (M) = T (C)⊕N (C) . (5.2.2)
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Parameterizing the independent sections in the normal bundle N (C) with two
complex parameters φ1,2(z) that depend on the coordinate z of C and using the
fact that due to triviality of the canonical class of W the determinant bundle on
N (C) is isomorphic to T ∗(C), i.e. each Vz = T ∗(C) can be identified with
Vz = �ijzφ

i ∧ φj , one gets the reduction of (5.2.1) to C for a single brane as

W(C) =
∫

C

�ijzφ
i∂zφ

j dzdz. (5.2.3)

Here one chooses a coordinate system in which �ijz is constant. Moreover locally
one can write � = dμ, i.e. �ijz = ∂zμij + perms and rewrite (5.2.3) as [1]

W(C) =
∫

C

μ, (5.2.4)

which as μ is not exact is well defined as long as C has no boundary. This is not
directly a meaningful physical quantity in space time. Rather one has to consider two
curves C and C∗. The correct physical picture comes from a D5 brane wrapping a
curve and filling space time. Assume in the left half space of the spacial R3 it wraps
C∗ and in the right C. Then along the 2 + 1 dimensional subspace that constitute
the boundary one has a domain wall in space time whose tension is given as

W(C) =
∫

C

μ−
∫

C∗
μ =

∫

�

� (5.2.5)

by the period integral over a 3-chain � whose boundaries are ∂� = C − C∗. C∗ is
viewed as a reference curve. If W would have been an elliptic curve �1 and C/


its Jacobian122 J (�1), the map (5.2.5) would be just the Abel-Jacobi map

w : �g → J (�1), w(p) =
∫ p

p∗
ω1 . (5.2.6)

I.e. the super potential can be viewed as a higher dimensional analog of the
Abel-Jacobi map, where the points p∗, p are replaced by curves constituting the
boundaries of a chain. If C∗ and C lie in a holomorphic family of curvesW(C) = 0
and in this sense W(C) measured the obstruction to deform C∗ holomorphically.
The order of the obstruction can be in simple situation calculated by algebra
geometry and yields the order of the leading terms in W(C) in the considered
perturbation [206, 207]. The corresponding evaluation of the chain integrals is a
complicated by in principle mathematically well understood subject, see [265] for a
review with physical applications. It leads typically to Picard-Fuchs like equations
with non-homogenous terms as for example in the pioneering work [311].

122In this case it is also an 2 torus, but in the obvious general generalization to �g using all ωi ,
i = 1, . . . , g holomorphic one forms, it is a T2g torus.
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Mirror symmetry maps on Calabi-Yau 3 folds maps holomorphic sub-manifold to
special Lagrangian 3-cycles L and can applied in any situation in which the W and
M and the corresponding sub-manifolds are known, i.e. in particular for the Batyrev
mirrors. Using the correspondence of Chern-Simons theory as String theory and a
similar integral as (4.3.18) [271] find the multi covering formula

F(t, Yi) = i

∞
∑

m=1

∑

β,R,g

Nβ,R,s

2msin(mλ/2)
en(t ·β+igλ)TrR

b1(S)
∏

i=1
Ym
i (5.2.7)

where Y parametrises the open string moduli and R is a representation basis that
encodes the boundary topology of the open string. In particular for super potential
generated by disk contributions one has

W =
∞
∑

m=0

∑

β, &w

Nβ, &w
m2 Qmβym &w =

∑

β, &w
Nβ, &wLi2(Qβy &w), (5.2.8)

where &w keeps track of the winding123 in the relative homologyHrel
2 (M,L,Z).

First concrete evaluations of such disk instanton superpotentials have been
performed in the local mirror symmetry context where the mirror geometry (2.7.28)
is captured by the mirror curve H(x, p, z) = 0 [1, 2]. As the x, p are C∗ variables
it is natural to parametrize them as x = eu and p = ev , with the reduction124 of
� = du ∧ dv ∧ dz

z
to H = 0 described in (2.8.16) the action (5.2.3) becomes

W(C) =
∫

C

dzdz

z
u∂zv (5.2.9)

After performing the dz/z ∼ dθ integral one is left with a radial integral in the z

plane given by

W(v) =
∫ v

v∗
λ =

∫ v

v∗
udv, (5.2.10)

which readily fixes W up to a constant because from (5.2.10)

∂vW = u(v) (5.2.11)

we see that the non compact geometry the chain integral (5.2.5) has really been
reduced to an Abel-Jacobi map albeit with respect to the meromorphic differential

123The transitions between winding and representation basis is discussed in [4].
124z in (2.7.28) is a closed string modulus and not a coordinate of C is in this section.
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λ = udv on a punctured Riemann surface, which parametrizes the open string
moduli space.

The question how to define the open/close mirror map, i.e v(Q, y) and z(Q) for
non-trivial geometries was answered in [2]. The closed string map is always given
by (2.9.53) see also the discussion at the end of Sect. 4.2.43, but the open string
mirror is generally defined in form

log(y) = v +
k
∑

α=1
rαv (log(z

α)− tα) , (5.2.12)

where the rαv ∈ Q are determined in [2]. This information allows to make disk
instanton prediction for the Harvey-Lawson special Lagrangian [168] in all toric
local geometries as we show in our running example O(−3) → P2. Simultane-
ously localisation calculation by mathematicians of disk instanton invariants [212]
confirmed the results but also observed that the invariants depend on an integer
f parametrizing the weight choice of the toric C∗ action used in the localisation.
Given the fact that after a conifold transition with branes, described [271], the A-
model geometry with Harvey Lawson Branes is described in the simplest case by a
real Chern-Simons theory on the S3 in the T ∗S3 geometry with branes ending on a
knot (the unknot) in S3, the integer ambiguity f ∈ Z was interpreted as the framing
choice of that knot [2].

To be explicit the mirror curve � given by the affine equation in C∗ variables as
H(x, p) = 0 one has the reparameterisation groupG�

G� = SL(2,C)×
(

0 1
1 0

)

, (5.2.13)

acting on the coordinates (x, p) by

(x, p) �→ (xapb, xcpd),

(

a b

c d

)

∈ G�. (5.2.14)

These transformations preserve the symplectic form

∣

∣

∣

∣

dx

x
∧ dp

p

∣

∣

∣

∣

(5.2.15)

on C∗ × C∗. In particular the shift subgroup The action of G§ is given by

(x, p) �→ (xpf , p), f ∈ Z (5.2.16)

corresponds to the discrete framing choice.
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Disks on Harvey-Lawson Branes in the O(−3)→ P2 Geometry

The O(−3)→ P2 geometry is defined the C∗ action l(1) = (−3, 1, 1, 1) according
to the gauge linear sigma model description compare (2.7.8) the F-term potential for
this case reads

U = |x1|2 + |x2|2 + |x3|2 − 3|x0|2 = r (5.2.17)

and defines the three dimensional subspace in R3 above the four 2-faces shown in
Fig. 23. This this subspace is the base of the 3-torus fibration defining the toric
Calabi-Yau space.

The charges defining the Harvey-Lawson special Lagrangian L are q1 =
(1, 0,−1, 0), q2 = (0, 1,−0,−1). The corresponding half line

|x1|2 − |x0|2 = c1, |x2|2 − |x0|2 = c2

defines one dimension of L, the other two are given by two circles in the torus
fibration selected by the slope of the half line, so that L is special Lagrangian and
h1(L,Z) = 1. The latter fact implies that there is non-trivial circle in L on which
the disks can end with winding w, see [2, 168] for more detailed explanations.

There are three phases for the special Harvey-Lawson Lagrangian in the
O(−3) → P2 geometry depending on the classical open string parameters
c1, c2 ∈ R depicted in Fig. 23125

Phase I: rt > c1 > 0, c2 = 0
Phase II: c1 = 0, rt > c2 > 0
Phase III: c1 = c2, 0 < c1

Using the form of the mirror curve (2.7.31) as well as (5.2.10) and (2.9.53),
(5.2.12) and (5.2.8) it is straight forward to evaluate theNβ,w as in Tables 13 and 14.

5.2.2 Remodelling the B-Model by Matrix Model Techniques

As it is visible in Fig. 22 there are two large N approaches to the open topological
string theory on non-compact Calabi-Yau geometries. The left its large N three
dimensional Chern-Simons theory and the right are large N matrix model tech-
niques. These approaches are related by mirror symmetry [3].

While the former approach leads via conifold like transition to the topological
vertex [4] that solves the open/closed topological A-model on all local toric Calabi-
Yau manifolds in the large radius limit, the second one can by understood as an

125The complex parameter v̂ in y = ev̂ in (5.2.8)comes due to a complexification by the A field
on L.
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Fig. 23 Three phases of the
A−brane on O(−3)→ P2.
Phases I and II are related
by Z3 symmetry of the P2

from [2]

Phase I : rt > c1 > 0, c2 = 0
Phase II : c1 = 0, rt > c2 > 0
Phase III : c1 = c2, 0 < c1

I

II

III

Table 13 Integer disk invariants Nβ,w for brane I or II in the O(K) → P2 geometry in the
canonical framing

w β = 0 1 2 3 4 5 6 7 8

−5 0 0 0 0 0 5 −84 1200 −16854
−4 0 0 0 0 −2 28 −344 4360 −57760
−3 0 0 0 1 −10 102 −1160 14274 −185988
−2 0 0 −1 4 −32 326 −3708 45722 −598088
−1 0 1 −2 12 −104 1085 −12660 159208 −2112456
1 1 −1 5 −40 399 −4524 55771 −729256 9961800

2 0 −1 7 −61 648 −7661 97024 −1293185 17921632

3 0 −1 9 −93 1070 −13257 173601 −2371088 33470172

4 0 −1 12 −140 1750 −22955 312704 −4396779 63460184

5 0 −1 15 −206 2821 −39315 559787 −8136830 120497011

extension of the B-model techniques to the open string, likewise only for local B-
model Calabi-Yau geometries specified by the Riemann surface H(x, p, z) = 0 in

Table 14 Integer disk invariants Nβ,w for brane III in the O(K) → P2 geometry in the
canonical framing

w β = 0 1 2 3 4 5 6 7 8

1 −1 2 −5 32 −286 3038 −35870 454880 −6073311
2 0 1 −4 21 −180 1885 −21952 275481 −3650196
3 0 1 −3 18 −153 1560 −17910 222588 −2926959
4 0 1 −4 20 −160 1595 −17976 220371 −2869120
5 0 1 −5 26 −196 1875 −20644 249120 −3205528
6 0 1 −7 36 −260 2403 −25812 306095 −3889116
7 0 1 −9 52 −365 3254 −34089 397194 −4981102
8 0 1 −12 76 −528 4578 −46812 535639 −6627840
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the B-model geometry. According to the theme of the lecture we outline here shortly
the second approach.

As in Sect. 4 these B-model techniques give answers for the amplitudes that are
analytic in the moduli and hence valid everywhere in the moduli space. For example
using them it is possible to evaluate open higher genus amplitudes at orbifold
points [3, 51].

The question is simply formulated: given formal expansion of the open string
free energy (5.2.7)

F(Q, y, λ) =
∑

β∈Hrel
2 (X,L)

g,w

Nβ,w,gQ
βywλg−1 =

∑

g,w

Fg,w(Q)ywλg−1 (5.2.18)

with w = (w1, . . . , wh). Can we find an analytic expression for the amplitude

A
(g)
h (z, p) =

∑

w

Fg,w(z)p
w1
1 . . . p

wh

h ? (5.2.19)

Here the B-model closed string moduli z and open string variable pi = log(vi) are
related to theQ and yi by the open/closed string mirror map (5.2.12). Of course one
of the most important amplitude is the disk amplitude that we calculated in the last
section

W = A
(0)
1 (z, p) =

∫ v

v∗
udv =

∫ p

p∗
log(x)

dp

p
=:
∫ p

p∗
λ (5.2.20)

The relation between matrix models and local geometries in particular N=2 and
N=1 Seiberg-Witten geometries has been pointed out in [3, 93, 94]. These works
started with a concrete matrix model and set up the geometry as its spectral curve,
but it is has been long realised that at least the perturbative large 1/N or equivalently
large genus expansion can be also reconstructed from the spectral curve�, the disk
amplitude or more precisely the corresponding meromorphic differential and the
annulus amplitude or more precisely the Bergmann Kernel [9, 20, 110].

It was first suggested in [259] and further developed in [50] to use this matrix
model recursion to reconstruct the amplitudes (5.2.19). The main difference in the
normal set up considered usually in the matrix model literature [9, 20, 110] is that the
matrix model spectral curve is normally an affine curve inC2 while the mirror curve
is defined in (C∗)2 and that therefore the meromorphic differential λ = log(x) dp

p
is different then the one φ = ydp used in usual matrix model application. For
completeness we give the starting data for the curve in (C∗)2 and the recursion
relations as set up in [110]:

The starting data are

• the ramification points on the spectral curve Σ ri ∈ � of the projection map
� → C∗ onto the x-axis, i.e. , the points qi ∈ � such that ∂H

∂p
(ri) = 0. Near
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a ramification point, there is again two points r, r̄ ∈ � with the same projection
x(r) = x(r̄);

• the meromorphic differential

λ(s, z) = logp(s)
dx(s)

x(s)
(5.2.21)

on �, which descends from the symplectic form

dx

x
∧ dp

p
(5.2.22)

on C∗ ×C∗.
• the Bergmann kernel B(r, s) on C, which is the unique meromorphic differential

with a double pole at r = s with no residue and no other pole, and normalized
such that

∮

aI

B(r, s) = 0, (5.2.23)

where (aI , b
I ) is a canonical basis of cycles for C. The Bergmann kernel is

related to the prime form E(p, q) by

B(r, s) = ∂r∂sE(r, s). (5.2.24)

We will also need the closely related one-form

dEs(r) = 1

2

∫ r̄

r

B(s, ξ), (5.2.25)

which is defined locally near a ramification point ri .

The recursion [110] defines an infinite sequence of meromorphic differentials on
� called W

(g)
h (s1, . . . , sh), g, h ∈ Z+, h ≥ 1. By definition

W
(0)
1 (r1) = 0, W

(0)
2 (r1, r2) = B(r1, r2), (5.2.26)

while the remaining differentials are generated recursively by taking residues at the
ramification points:

W
(g)
h+1(r, r1 . . . , rh) =

∑

qi

Res
r=ri

dEr(s)

�(r)−�(r̄)

(

W
(g−1)
h+2 (r, r̄, s1, . . . , sh)

+
g
∑

l=0

∑

J⊂H

W
(g−l)

|J |+1(r, sJ )W
(l)
|H |−|J |+1(r̄, sH\J )

)

.

(5.2.27)
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Here we denoted the set H = {1, · · · , h}, and given any subset J = {i1, · · · , ij } ⊂
H we defined sJ = {si1 , · · · , sij }. The root φ(r) is defined as φ(r) = ∫ r

0 ydx.
The annulus amplitude, (g, k) = (0, 2), is given by removing the double pole

from the Bergmann kernel:

A
(0)
2 =

∫ (

B(s1, s2)− ds1ds2

(s1 − s2)2

)

. (5.2.28)

The closed string amplitudes F (g), except for the prepotential can be obtained as
follows: Let φ(r) be an arbitrary anti-derivative of λ(r), i.e. dφ(r) = λ(r). Then the
F (g), g ≥ 1

F (g) = 1

2− 2g

∑

ri

Res
r=ri

φ(r)W
(g)

1 (r). (5.2.29)

The above amplitudes are in the B-model coordinates and to extract the Nβ,w,g

via (5.2.7), (5.2.18), (5.2.19) the closed (2.9.53) and open (5.2.12)mirror maps
have to be used. An important fact is that the closed string amplitudes (5.2.29) are
invariant underG defined in (5.2.13). The reason is that the differentG choices lead
to λ’s which differ by exact terms, irrelevant for closed cycle integrals but crucial for
open chain integrals, which do change. The latter fact was used e.g. in [53] to use
the recursion (5.2.27) to calculate colored HOMFLY polynomials of torus knots. In
general one has to use the augmentation variety and construct λ and the Bergman
kernel to perform similar calculations of the colored HOMFLY polynomials for
arbitrary knots [157]. This example might show how many concrete applications
the remodelling of the B-model [50, 259] has.
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Appendix 1: Weierstrassforms

Here we provide the data for the Weierstrass forms for all local toric del Pezzo
surfaces discussed in Sect. 2.12.2.

Weierstrass Form of the Cubic in P
2

12gC
2 = 144(m1m3m5m7 +m1m4m6m8+m2m4m7m9)

−16(m2m3m6m8+m2m5m6m9+m3m5m8m9)+16(m2
2m

2
6+m2

3m
2
8+m2

5m
2
9)

−48(m1m3m
2
6+m2

2m5m7+m1m
2
5m8+m2m4m

2
8+m2

3m7m9+m4m6m
2
9)

+(24(m1m5m6+m2m3m7+m2m5m8+m3m6m9+m4m8m9)−216m1m4m7)u

−8(m2m6+m3m8+m5m9)u
2+u4

216gC
3 = 48m2m3m5m6m8m9−5832m2

1m
2
4m

2
7−1296(m1m2m3m5m6m7+m1m2m4m5m7m8

+m1m3m4m6m7m9+m1m4m5m6m8m9+m2m3m4m7m8m9)

+3888(m2
1m4m5m6m7+m1m2m3m4m

2
7 +m1m
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2m4m6m
2
8+m2
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2
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2
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2
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2
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2
3m6m7m9+m2m4m5m
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8m9+m3m4m6m8m

2
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1m

2
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2
6+m2
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2
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2
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2
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3m
2
6m

2
9+m2

4m
2
8m

2
9)

−64(m3
2m

3
6+m3

3m
3
8+m3

5m
3
9)+288(m1m2m3m

3
6+m3

2m5m6m7+m2m3m4m
3
8

+m1m
3
5m8m9+m3

3m7m8m9 +m4m5m6m
3
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1m4m
3
6

+m2
1m

3
5m7+m1m

3
3m

2
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2m4m
2
7+m1m

2
4m

3
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3
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2
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2
6

+m2
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9))u + (24(m2m3m6m8+m2m5m6m9+m3m5m8m9)
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2m5m7+m1m
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5m8+m2m4m

2
8+m2

3m7m9+m4m6m
2
9))u

2

+(540m1m4m7+36(m1m5m6+m2m3m7+m2m5m8+m3m6m9

+m4m8m9))u
3 − 12(m2m6+m3m8+m5m9)u

4+u6

(A1.1)

Weierstrassform of the Biquadric in P
1 × P

1

12gB
2 = 224m10m5m7m9−48(m2

2m5m7+m10m5m
2
8+m10m

2
6m9+m2

3m7m9)
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2+u4
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216gB
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2m3m5m7m8+m10m2m5m6m
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(A1.2)

Weierstrassform of the Quartic in P2(1, 1, 2)
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(A1.3)

Appendix 2: Characteristic Classes of Holomorphic Vector
Bundles

In this section we provide background on holomorphic vector bundles, Chern classes
and index theorems.
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Index Theorems for Holomorphic Vector Bundles

The holomorphic tangent bundle ofM is an example of a holomorphic vector bundle
E with a hermitian metric, which we call hab in the general case. The connection
one form

Ak = (∂kh)h
−1, Ak̄ = 0 (A2.1)

defines the unique affine connection, which is compatible with the hermitian metric,
i.e ∇h = 0, and compatible with the complex structure. One defines the curvature
two form as F = dA+A∧A. The differential geometry approach to Chern classes
ci(E) ∈ H 2i(M,R) of a rank r holomorphic vector bundle is to define them in
terms of symmetric function of the eigenvalues of the curvature form as

c(E) = det(1+ i

2π
F) = 1+

∑

i

ci(E) = 1+ i

2π
TrF + . . . (A2.2)

and to prove then that they do not depend on the metric [42, 302].
Topologically one can represent the Chern class ck as the Poincaré dual to the

degeneracy cycle

Dr−k+1(σ ) = {x : σ1(x)∧ . . . σr−k+1(x) = 0}, (A2.3)

where r − k + 1 generic C∞-sections σi of E become linearly dependent. This is
described as Gauss Bonnet formula II in Chap 3.3 of [150], see also [126, 176]
for the approach using classifying spaces. The simplest example of the above dual
descriptions arise for line bundles L. Let |σ |2 be a metric on a line bundle L, where
σ is a section of L. Local trivialization of L are φ : L|U → U × C, where sU
is a holomorphic function and |σ |2 = h(x)|sU |2 for some function h(x), which is
positive if the metric is. The curvature 2-form given by

R = ∂̄∂ logh(x) (A2.4)

defines the Chern-class of L represented by c1(L) = i
2π [R] ∈ H 2(M). This class

is Poincaré dual to the divisor class [D] which defines L and is uniquely recovered
fromL as the locus where the generic section vanishes. As a corollary the first Chern
class of a holomorphic vector bundle is also the first Chern class of the determinant
bundle LD = ∧rE

c1(E) = c1(LD) . (A2.5)

For the tangent bundle we identify the curvature 2-form F with �
j

ī
=

gjp̄Rip̄kl̄dx
k ∧ dxl̄ and get a representative for c1(TM) (which we also call c1(M))

c1(M) = i

2π
�i

i =
i

2π
Rkl̄dx

k ∧ dxl̄ = − i

2π
∂∂̄ log det(gkl̄) . (A2.6)
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The canonical line bundle is the determinant line bundle of the holomorphic
tangent bundleKM = ∧nT ∗ 1,0M . By (A2.5) and (A2.10) we have therefore

−2πc1(KM) := −2πc1(∧nT ∗ 1,0M) = −2πc1(T
∗M) = 2πc1(TM) . (A2.7)

Let us derive this also using as an explicit representative of the Chern class the curva-
ture 2-form. Given an complex structure and a Kähler metric gij̄ we have a connec-

tion on T ∗ 1,0M described by the holomorphicChristoffel symbols. This connection
induces a connection on the line bundleKM and a straightforward calculation shows
on total antisymmetric forms [∇i ,∇j̄ ]ωi1...,in = −Rij̄ωi1...,in Therefore we can

identify h(x) of (A2.4) with det−1(gij̄ ) and by (A2.4) the first Chern class ofKM is

− 2πc1(KM) = −i[R] = 2πc1(TM) . (A2.8)

If one uses the Poincaré Hopf theorem that the Euler number χ(M) of a manifold of
dim n is given by the sum of indices of zeros of a generic vector field, i.e. a section
of the tangent bundle, then by (A2.3) the dual to cn(TM) is D1. Counting these
zeros leads then to the Gauss-Bonnet formula

χ(M) = D1 ∩M =
∫

M

cn(TM) . (A2.9)

Let us discuss further properties of the Chern classes. By (A2.2) one has c0(E) =
1, ck>r(E) = 0 and the Whitney product formula c(E ⊕ F) = c(E)c(F ) from the
properties of the determinant, see [49] for a proof from the topological definition. It
is also easy to see [150] that for the dual bundle E∗

ck(E
∗) = (−1)kck(E) (A2.10)

and ck(f (E)) = f ∗ck(E) for f : M → M ′ a differentiable mapping. A
further important property is the splitting principle [49]. For an exact sequence of
holomorphic vector bundles or sheaves one has 0 → E → F → G → 0 one has
c(F ) = c(E)c(G). One considers often classes xi such that c(E) = ∏r

i=1(1 + xi)

where xi are Chern classes of line bundles. One reason that this is useful is that the
splitting principle implies that if one wants to derive polynomial identities among
Chern classes of vector bundles, one may replace the vector bundles by direct sums
of line bundles. This opens up a calculational machinery with classes, which behave
e.g. more natural on direct products as the Chern character Ch(E) =∑r

i=1 exi . All
expression are polynomial, defined by expanding up to degree r in xi . Obviously
Ch(E ⊕ F) = Ch(E) + Ch(F ) and Ch(E ⊗ F) = Ch(E)Ch(F ). A little playing
with symmetric functions reveals Ch(E) = r + c1 + 1

2 (c
2
1 − 2c2) + 1

6 (c
3
1 −

3c1c2 + 3c3) + . . ., where we set ck = ck(E). Similar is the Todd genus defined
td(E) =∏r

i=1
xi

1−e−xi
= 1+ 1

2c1+ 1
12 (c

2
1+ c2)+ 1

24c1c2+ . . .. A central theorem is
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the Hirzebruch-Riemann-Roch formula, which gives the arithmetic genus χ(E) =
∑

k(−1)khk(E) of a vector bundle over a manifold M , see [176] for the proof

χ(E) =
∫

M

ch(E) ∧ td(TM) . (A2.11)

A close variant of this index using the Λ̂-class instead of the Todd class has been
discussed in (2.6.25).

In Sects. 3.4.1 and 4.1 we needed applications of (A2.11). Namely to count the
deformation space (3.3.18) of a Riemann surface126 �g . As seen in section “First
Order Complex Structure Deformations” the complex structure moduli of the metric
are given by elements in the Čech cohomology groupH 1(T ) with T = T� and for
g > 1 there are no conformal Killing vectors generating global diffeomorphisms i.e.
one has h0(T ) = 0. However for g = 1 the shift z → z + λ on the torus accounts
for h0 = 1 and for g = 0 the three generators of PSL(2,C) z → az+c

cz+d
on S2

account for h0 = 3. For a vector bundle V of rank rover the Riemann surface � the
formula (A2.11) gives

h0(�, V )− h1(�, V ) =
∫

�

ch(V ) ∧ td(T ) =
∫

�

(r + c1(V ))(1+ 1

2
c1(T ))

=
∫

�

c1(V )+ r(1− g) . (A2.12)

The virtual dimension of the deformation space is obtained by setting V = T with
rank 1

dimMg = h1(T )− h0(T ) = −
∫

�

ch(T ) ∧ td(T ) = 3g − 3 . (A2.13)

In the integral over the metric moduli space in string amplitudes one sacrifices in
the g = 0, 1 cases h0 = 3, 1 additional parameters, the position of insertion points,
to offset the negative contributions to (A2.13) from the conformal Killing fields.
Another application leads to the formula (3.4.10) describing the dimension of the
deformation space of holomorphic maps x : � → M . The movement of the curve
in M is described infinitesimal by a vector field xi → xi + εξ i on M . The vector
field must be holomorphic ∂z̄ξ = 0 so that the deformed map stays holomorphic.
Also we are not counting vector fields which correspond to reparametrizations of�.

126This related by the Atiayh-Singer index formula to the index of the Dirac operator and hence to
the ghost zero modes. An overview about index formulas for physicist can be found in [106] and
the connections to the zero modes is in explained e.g. in [279].



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 365

That is we look at elements of H 0
∂̄
(�, x∗(TM)) = H 0(x∗(TM)) and (A2.11) gives

us

h0(x∗(TM))− h1(x∗(TM)) =
∫

�

(dimM + x∗(c1(TM)))(1+ 1

2
c1(T ))

= c1(TM) · β + dimM(1− g) . (A2.14)

Generically the movement of the map is unobstructed and H 1(x∗(TM)) = 0. In
the case the above is also the dimension of the deformation space. In the case of
Calabi-Yau three folds we get for genus 0 that the dimension of the deformation
space is 3. We can think about this in two ways. Either we don’t fix points on S2,
then we have to mod out by the 3 dim automorphism group PL(2,C) of S2 and
the expected dimension of the moduli space is 0. That is the way the corrections
in F (0) are interpreted. Or we kill PL(2,C) by marking three points on the S2

required to map into three divisors, which put three constraints and yields again a
zero dimensional moduli space. Counting genus zero maps with three marked points
and zero dimensional moduli space is the interpretation of corrections in Cijk(t)

in (3.4.12).
To get the virtual complex dimension of the moduli space Mg,n(M, β) of

arbitrary genus g maps in a class β ∈ H2(M,Z) one has to add, according to the
deformation exact sequence [182] Chapter 24,

0→ Aut(�, p1, . . . , pn; x)→ Aut(�, p1, . . . , pn; x)→
Def(x)→ Def(�, p1, . . . , pn; x)→ Def(�, p1, . . . , pn)→
Ob(x)→ Ob(�, p1, . . . , pn; x)→0

(A2.15)

the difference of dim(Def,Aut) = dim Def(�, p1, . . . ,

pn)− dim Aut(�, p1, . . . , pn) to (A2.14) and calculate

dimMg,n(M, β) = h0(x∗(TM))− h1(x∗(TM))+dim(Def,Aut)
∫

β

c1(TM)+ (dimM − 3)(1− g)+ n .
(A2.16)

Let us introduce the Pontrjagin classes for real vector bundles V as the Chern
class of the complexification of VC of V [176]

pk(V ) = (−1)kc2k(VC) (A2.17)

The Euler class of the real vector rank r bundle V can now be defined as e2(V ) =
p r

2
(V ). The Gauss-Bonnet formula, e.g.

∫

M e(TM) = χ(M) fixes the sign. The
Pontrjagin class of a complex vector bundle E is defined via the Pontrjagin of its
realization ER = E ⊕ Ē as pk(E) = (−i)kc2k(ER). By the splitting principle
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and Whitneys formula [49] one gets cr (E) = e(ER). The A-roof or Dirac genus is
defined as symmetric polynomial in x2i and can therefore be expressed in terms of

the Pontrjagin classes Â(E) =∏r
j=1

xj /2
sinh(xj /2)

= 1− 1
24p1+ 1

5760(7p
2
1−4p2)+ . . ..

A useful formula with applications to the Calabi-Yau tangent bundle is that td(E) =
ec1(E)Â(E).

Let us explore some consequences. Let V is a vector bundle over X,
χ(X,W) = ∑n

i=0(−1)idimHi(M,V ) and c0[X], . . . , cn[X], Chern classes of
X and d0[W ], . . . , dr [V ] Chern classes of W and write (A2.11) as in [176]

χ(M,V ) = κn

[

q
∑

i=1
eδi

n
∏

i=1

γi

1− e−γi

]

. (A2.18)

where κn[] means taking the coefficient of the n’th homogeneous form degree,
the γi and δi are the formal roots of the total Chern classes:

∑n
i=0 ci[M] =

∏n
i=1(1− γi) and

∑q
i=0 di[M] =

∏q
i=1(1− δi). We want to use the index formula

to compute the arithmetic genera χq = ∑

p(−1)pdimHp(M,�q). First we will
evaluate (A2.18) for V = TM . This is done by expressing the formal roots, via
symmetric polynomial, in terms of the Chern classes ci and yields for the two,three
and four dimensional cases the following formulas for χq =∑dim(M)

p=1 (−1)php,q :

dim(M) = 2 : χ0 = 1

12

∫

M

(c21 + c2), (A2.19)

dim(M) = 3 : a.) χ0 = 1
24

∫

X
(c1c2)

b.) χ1 = 1
24

∫

X(c1c2 − 12c3),
(A2.20)

dim(X) = 4 :
a.) χ0 = 1

720

∫

X(−c4 + c1c3 + 3c22 + 4c21c2 − c41)

b.) χ1 = 1
180

∫

X
(−31c4 − 14c1c3 + 3c22 + 4c21c2 − c41)

c.) χ2 = 1
120

∫

X(79c4 − 19c1c3 + 3c22 + 4c21c2 − c41)

(A2.21)

For Calabi-Yaumanifolds we have c1 = 0 and χ0 = 2. Using this in (A2.21) implies
a relation among the Hodge numbers of fourfolds say

h2,2 = 2(22+ 2h1,1 + 2h3,1 − h2,1). (A2.22)

The Euler number of the fourfold can thus be written as

χ(X) = 6(8+ h1,1 + h3,1 − h2,1). (A2.23)
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Atiyah-Singer Index Theorem and Anomalies

One can generalize the proof for (A2.11) in [176] to obtain [26]

index D = (−1)n
∫

M

1

e(TM)

∑

p

(−1)pch(Ep) ∧ td(TMC) . (A2.24)

Examples:

• De Rham complex: If Ei = 
iT ∗M on an even m = 2l dimensional manifold
and D = d is the exterior derivative, then using the relation of the Euler class to
the top Chern class e(TM) =∏l

i=1 xi(TMC), see cff (A2.17), we get

index d =
∫

M

e(M) = χ(M) . (A2.25)

• Dolbeault complex: If Ei = �0,i on a complex m dimensional manifold and
D = ∂̄ then

index ∂̄ =
m
∑

k=1
(−1)kh0,k =

∫

M

td(TM) . (A2.26)

is the arithmetic genus.
• Twisted Dolbeault complex: If Ei = �0,i ⊗ E with E a holomorphic vector

bundle on a complexm dimensional manifolds and D = ∂̄V then

index ∂̄V = χ(E) =
∑

k

(−1)khk(E) =
∫

M

ch(E)td(TM) . (A2.27)

is the Hirzebruch-Riemann-Roch formula.
• Spin complex: If E is the 2-complex E± = P × S± over a 2n dimensional

manifold, where P is the principal Spin(2n) bundle and D+ = P+D, with D is
the Dirac operator coupled to the spin connection then

index D+ =
∫

M

Â(TM) . (A2.28)

• Twisted Spin complex: IfE±E = E±×E, whereE is a gauge bundleD+E = P+D,
with connection Aμ and D is the Dirac operator coupled to the spin connection
and E, i.e. D = iγ αe

μ
α (∂μ + ωμ + Aμ)

index D+E =
∫

M

Â(TM)ch(E) . (A2.29)
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• bc system: The following standard example from bosonic string theory [91, 279]
uses techniques of this and the last section. Let T n = T q−p be a section of
(⊗q

i=1T�)⊗ (⊗p
i=1T ∗�) over a Riemann surface and compare [47]

∇z
n : T n → T n+1, ∇z

n = hzz̄∂z̄T , (∇z
n)

† = −∇n+1
z ,

∇n
z : T n → T n−1, ∇n

z = (hzz̄)n∂z[(hzz̄)
nT ], (∇n

z )
† = −∇n−1

z ,
(A2.30)

where the inner product is 〈T1, T2〉 =
∫

� d2z
√
h(hzz̄)nT ∗1 T2. In a conformal

theory real traceless symmetric tensors transforming as a subbundle of Sn =
T n ⊕ T −n are of special interest and of the form � = (φ, (hzz̄)

nφ∗) with

φ = φ

n
︷ ︸︸ ︷

z, . . . z . One defines on them

Pn = ∇z
n ⊕∇−n

z : Sn → Sn+1
P

†
n = −(∇n+1

z ⊕∇z
−n−1) : Sn+1 → Sn .

(A2.31)

where the inner product is= 〈�1,�2〉
∫

�
d2z
√
h(hzz̄)n(φ∗1φ2 + φ∗2φ1). Note

that the choice of the metric is hzz̄ = hz̄z = 1
2e

2σ , hzz̄ = hz̄z = 2e−2σ
with vanishing pure components. P1 above is as in (3.3.19). In particular the
b = (bzz, (hzz̄)

2bz̄z̄), c = (cz, hzz̄c
z̄) system has the action S = 1

π
〈n, P1c〉 =

1
π

∫

d2z(bzz∂z̄cz + bz̄z̄∂zc
z̄). We want to calculate the anomaly density of the

U(1) cz → e−iθzcz, cz̄ → eiθz̄cz̄, bz̄z̄ → e−iθz̄bz̄z̄ and bzz → eiθz̄bzz ghost
number current. The Laplacians above become 1 = P

†
1 P1 and 2 = P1P

†
1

with σ(δi) : π∗Si → π∗Si is an isomorphism outside the zero section. One
expands c =∑n cnψn and b =∑n bnφ

n as eigenfunctions of1/2 orthonormal
w.r.t. the inner product 〈�1,�2〉 applies the Noether procedure as well as the
analysis of the transformation of the fermionic measure as in [123] and one finds
the anomalies of the ghost currents jz = bzzc

z and jz̄ = bz̄z̄c
z̄ is ∂z̄jz = πA(z, z̄)

and ∂zjz̄ = πA(z, z̄) with
∫

�
A(z, z̄) = ∑

n〈ψn,ψn〉 −∑m〈φm, φm〉. Again
these sums contribute only if the eigen functionsψn of1 and φm of2 are zero
modes. E.g. if 1ψn = λnψn, λ > 0 then λn(P1ψn) = P11ψn = 2(P1ψn) is
a eigenfunction of 2, so the corresponding contributions to the sum cancel and
the integral over the anomaly density is ker1 − ker2 = kerP1 − cokerP1 =
indexP1 = index∇z

1 + index∇−1z = 3
2χ(�) + 3

2χ(�). Here we used in the last

step (A2.24) with index∇−1z = index∇z
1 = −

∫

�
ch(T�)−ch(T �⊗T�)

e(�)
Td(T �C)

with e(�) = c1(T�) and the expressions of Appendix 2. Hence the anomaly
density must be A(z, z̄) = 3

2π

√
hR and the current anomaly in covariant form is

∂μj
μ = 3

√
hR (A2.32)

A physics approach to proof (A2.24 is to evaluate the anomaly density

∂μj
μ
5 + 2iA(x) = 0, with

∫

d2nxA(x) =
∫

d2nx
∑

n

ψ†
nγ5ψn =

∑

n

〈ψn|γ5|ψn〉 ,
(A2.33)
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by a heat kernel regularization, see [124] for a review. Here the quantity A(x) is
called the anomaly density. For the vector U(1)V symmetry the contribution of the
an and bn cancels. Now since iD is hermitian the eigen spaces spanned by |ψn〉with
iD|ψn〉 = λn|ψn〉 are orthogonal to each other. On the other hand as {iD, γ5} = 0,
the eigenvalues of the states |ψn〉 and γ5|ψn〉 are negatives of each other. Therefore
the sum in A(x) has only contributions from the zero modes λl = 0. With the γ5 in
the trace the total current violation evaluates to

index D+ = ∫ d2nxA(x) = #(+0 modes)− #(−0 modes)

= dim Ker ∂ − dim Ker ∂† = dim Ker ∂ − dim coker ∂ ,

(A2.34)

where the last equality used that ∂ = D+ = P+D (∂† = P−D) is a Fredholm
operator, i.e. kernel and cokernel are finite dimensional, and linear algebra. Nothing
about the above principal setting will change if in addition to the spin connection
we couple to a gauge bundle as well and consider D = iγ αe

μ
α (∂μ + ωμ + Aμ).

For instance the calculation of our last example using the heat kernel i.e. without
resorting to the index theorem is an exercise whose solution is found in Appendix
B2 of [91]. Interesting are also the proofs by supersymmetric localisation [16, 120].

Appendix 3: Simple Examples of Calabi-Yau Spaces

In this Appendix we discuss concrete examples of CY-hypersurfaces in (weighted)
projective spaces.

Toric CY-hypersurfaces

The tool that makes constructing of Calabi-Yau spaces easy is the perfect control
over the first Chern class in algebraic geometry. As an application of some
statements in Appendix 2 we want to calculate the first Chern class of Pn, following
[49]. As every projective space Pn has a tautological sequence

0→ H ∗ → P
n × C

n+1 → Q→ 0 . (A3.1)

H ∗ = {(l, x) ∈ Pn × Cn+1|x ∈ l̂}, where l̂ is the line in Cn+1, which defines l as
point in Pn, and the quotient space Q is defined by (A3.1). H ∗ is parametrized by
the homogeneous variables [x1 : . . . : xn+1], which, as maps to C, are section of the
dual space H , called the hyperplane bundle. We can write tangent vectors in TPn

as linear combinations of (
∑n+1

k=1 ai
kxk)

∂
∂xi

, which is scaling invariant under the C∗

action and maps H⊕(n+1) to TPn. There is a kernel C of that map, namely we have
∑

xi
∂
∂xi
= 0 ∈ T Pn as it just generates the scaling action. These facts are expressed
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in the Euler sequence

0→ C→ H⊕(n+1) → T P
n → 0 . (A3.2)

The Chern class of C is 1 and the Whitney formula and (trivial) splitting principle
gives

c(TPn) = (1+ x)n+1 , (A3.3)

where we denoted x = c1(H).
A weighted projective space WCPn is defined similarly as Pn cff. (2.2.2), only

that C∗ acts now by (λ ∈ C
∗)

(z1, . . . , zn+1) ∼ (λw1z1, . . . , λ
wn+1zn+1) , (A3.4)

where the integral weights wi contain no common factor. Common factors k in
subsets of the weights lead to Zk quotient singularities of WCPn . A similar
argument as before shows that [98]

c(TWCPn) =
n+1
∏

i=1
(1+wix) , (A3.5)

All weights are in Z and order to be compact wi > 0. This prevents us to define
compact WCP with c1(TWCPn) = 0, but WCP(−2, 1, 1) is a well known
example of a non-compact Calabi-Yau two manifold, better know as O(−2) line
bundle over P1 called O(−2)→ P1. The notion O(n)→ P1 means the following.
If we introduce local coordinates on P1, i.e. according to (2.2.3) z(1) = z2/z1 in
U (1) and z(2) = z1/z2 = 1/z(1) in U (2), we have local coordinates (l(i), z(i)) on
O(n)→ P1 with the transition function

(l(2), z(2)) =
(

l(1)

(z(1))n
,

1

z(1)

)

. (A3.6)

O(−2) can be viewed as the cotangent bundle over P1 parametrized by ldx and
� = dl ∧ dx is a non-vanishing (2, 0) form. Note that c1(O(n) = nH .

Compact examples as easily obtained, e.g. as hypersurfaces in the projective
spaces above. Let us consider a smooth degree d hypersurfaceM in Pn.M is defined
as zero locus of a degree d polynomialP , which is sufficiently general so that P = 0
and dP = 0 has no common solution. It is a section of Hd = OPn(d). Since P is
smooth we have a splitting of the tangent bundle T P

n as follows

0→ TM → T P
n|M → NM → 0 , (A3.7)
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where NM is the normal bundle to M , which is identified with O(d)|M because
P is a coordinate of N near M . Ch(Hd) = edx = 1 + c1(H

d) = 1 + dx, i.e.
c1(H

d) = dx and the adjunction formula gives

c(M) = (1+ x)n+1

(1+ dx)
= 1+ (n+ 1− d)x + . . . , (A3.8)

i.e. a Calabi-Yau hypersurface in Pn has to have degree d = n + 1. In this case P

is a section O(KPn ) of the canonical line bundle K = −[c1(Pn)]. This gives in for
dimension three one case, the quintic in P4. For weighted projective spaces one has

c(M) =
∏n+1

i=1 (1+wix)

(1+ dx)
= 1− (d −

∑

i

wi)x + . . . , (A3.9)

where the degree d of a quasihomogeneous polynomial P is defined by the scaling
P(λw

1 z1, . . . , λwn+1zn+1) = λdP (z1, . . . , zn+1). Together with the transversality
condition dP = 0 at P = 0 it leads 7555 examples of Calabi-Yau threefolds [225].
This sample contains many mirror pairs.

This in turn has a fairly obvious generalisation to hypersurfaces and complete
intersections, which live over coordinate ring of a general toric varieties Pand
enjoy an explicit mirror construction given by Batyrev as discussed in Sect. 2.7.3 .
The reflexive polyhedra  in four dimensions relevant for the CY threefold case
have been classified [244]. This class of Calabi-Yau manifolds exihibits about
30.000 different Hogde numbers. As explained previously h11 and h21 are the only
independent ones and the corresponding distribution for the sample is shown127 in
Fig. 24.

Appendix 4: Modular Forms

In this appendix, we collect some facts regarding the ring of modular forms.
Of particular importance for the holomorphic anomaly equation is the theory of
differentiation on these rings which leads to the notation quasi modular—and almost
holomorphic modular forms, which is connected to the theory of Jacobi forms. A
good reference for the modular forms is the book of [54]. For the Jacobi forms we
refer to [107] and [82].

127Special thanks to Maximillian Kreuzer for sending me this figure.
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Fig. 24 Hodge numbers of hypersurface in toric varieties

Modular Forms of �1 = Sl(2,Z)

In this appendix we give an account of the ring of holomorphic modular forms, as
well as derivative structures including quasi modular forms and almost holomorphic
modular forms. We also comment on the relation to the topological B-model. Finely
we include some useful facts regarding the Hecke operations. Most of our formulas
are for �1 = Sl(2,Z) even though qualitatively many statements generalise to finite
index subgroups of �1 as we point out occasionally.

The Eisenstein Series and the Ring of Holomorphic Modular Forms

We define q := e2πiτ , with

τ ∈ H+ = {τ ∈ C | Im(τ ) = 1

2i
(τ − τ̄ ) > 0} (A4.1)
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and the projective action PSL(2,Z) of

�1 = SL(2,Z) =
{

γ =
(

a b

c d

) ∣

∣

∣

∣

ad − bc = 1, a, b, c, d ∈ Z

}

(A4.2)

on H+ by

τ �→ τγ = aτ + b

cτ + d
, (A4.3)

for γ ∈ �1. We like to study expression, which have easy transformation properties
under the transformation (A4.3), for example geometrically it is desirable to define
functions which are well defined on the fundamental region of the complex structure
F = PSL(2,Z)/H+, compare (2.12.4). Particular relevant objects are modular
forms of �1 that transform as

fk(τγ ) = (cτ + d)kfk(τ ) (A4.4)

with weight k ∈ Z for all τ ∈ H+ and γ ∈ �1, are meromorphic for τ ∈ H+ and
grow like O(eCIm(τ )) for Im(τ )→∞ andO(eC/Im(τ )) for Im(τ )→ 0 with C > 0.
A strategy to build modular forms of weight k is to sum over orbits of �1

Gk = 1

2

∑

m,n∈Z
(m,n) �=(0,0)

1

(mτ + n)k
. (A4.5)

It is easy to see that this expression transforms like (A4.4), converges absolutely for
k > 2 and vanishes for k odd. One can proof [54] the central fact

Proposition 6 G4,G6, or E4, E6 which are just a more convenient normalisation
of G4,G6 explained below, generate freely the, by k, graded ring of holomorphic
modular forms M(�1) = ⊕kMk(�1).

The decisive step in the proof is to show the dimension of the ring at weight k is
bounded in a way that becomes an equality for the polynomials in E4, E6 modulo
possible relations. In fact holomorphicmodular forms can only exist if k even, k ≥ 0
and the dimension is then given by

dimMk =
{ . k

12/ + 1 if k �= 2mod 12 ,

. k
12/ if k = 2mod 12 .

(A4.6)

One writes M(�1)[E4, E6] to indicate that this ring of holomorphic modular forms
is generated by E4, E6. The statement is very powerful, for if one knows that a
quantity is a modular form of a given weight k, one has only to fix finite coefficient
of a polynomial in E4, E6 to anchor it.
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Still onemay spot two shortcomings. Firstly the ringM(�1) does not close under
ordinary differentiation. Since Dτ = d

2πidτ
has weight 2, one needs a ‘modular

form’ of weight 2 to achieve such a closure. We will discuss the closure more
in the next subsection and end the section with the construction of a weight 2
object, with a formalism that also leads to general convenient forms for (A4.5) in
all cases. The definition of G2 is achieved by an ε regularization in the sum G2,ε =
1
2

∑

m,n∈Z
(m,n) �=(0,0)

1
(mτ+n)k |mτ+n|ε after which it is possible to define G2 = limε→0 G2,ε .

Then all Gk , k ∈ 2Z, k ≥ 2 have a Fourier expansion128 in q = exp(2πiτ)

Gk(τ ) = (2πi)k

(k − 1)!

(

−Bk

2k
+

∞
∑

n=1
σk−1(n)qn

)

, (A4.7)

with σk(n) = ∑

p|n pk the sum of kth powers of positive divisors of n and
∑∞

k=0
Bkx

k

k! = x
ex−1 defining the Bernoulli numbers Bk , e.g. B2 = 1

6 , B4 = − 1
30 ,

B6 = 1
42 , B8 = − 1

30 , B10 = 5
66 , B12 = − 691

2730 , B14 = 7
6 etc.

In the standard definition of the Eisenstein series Ek the sum runs over coprime
(m, n), which yields a proportionalityGk(τ) = ζ(k)Ek(τ ), where ζ(k) =∑n≥1 1

nk .
Therefore the Eisenstein series are just a different normalization of (A4.7) and given
for k = 2m as

E2m(τ) = 1+ 2

ζ(1− 2m)

∞
∑

n=1

n2m−1qn

1− qn
m ≥ 1 , (A4.8)

Very much like in QFT the regularization for k = 2 introduces an anomaly in the
symmetry transformation so that E2 transforms

E2(τγ ) = (cτ + d)2E2(τ )− 6ic

π
(cτ + d) (A4.9)

with an inhomogeneous term. This inhomogenoeus transformation behaviour is
called quasi modular. It follows by an elementary calculation from (A4.3) that

1

Im(τγ )
= (cτ + d)2

Im(τ )
− 2ic(cτ + d) = |cτ + d|2

Im(τ )
(A4.10)

transforms also quasi modular. Using (A4.10) and (A4.9) we can arrange it that the
inhomogeneous terms cancel so that

Ê2(τ ) = E2(τ )− 3

πIm(τ )
(A4.11)

transforms like a modular form of weight 2, albeit not a holomorphic one.

128Note that the Eisenstein series start with coefficient 1.
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Differentiable Rings of Modular Forms

In this section we like to study rings of differential forms which closes under
derivatives. Many of the mentioned properties of these can be found in [208] and in
the review [54]. Lets us denote the normal derivative by

D = Dτ = d

2πidτ
= q

d

dq
. (A4.12)

We start with an remarkable observation attributed to Ramanujan.

Proposition 7 The generators (E2, E4, E6) form a ring of quasi modular forms,
which by the Ramanujan identities

DE2 = 1

12
(E2

2 − E4), DE4 = 1

3
(E2E4 − E6), DE6 = 1

2
(E2E6 − E2

4) .

(A4.13)

closes under differentiation the D = q d
dq .

To understand the structure of differential rings a more systematic, we look now
closer at the properties of the derivatives. For any function f defined on the upper
half plane H+ it is convenient to introduce the notation of a modular weight k

transformation

f |kγ = (cτ + d)−kf (τγ ) . (A4.14)

It does not imply any additional property of f , but if f is a modular function of
weight k then

f |kγ = f . (A4.15)

One also uses for γ, γ ′ ∈ � the notation129 (A4.14) as

f |k(γ + γ ′) = fkγ + fkγ
′ . (A4.16)

Since

dτγ
dτ
= 1

(cτ + d)2
(A4.17)

129This should be obvious as γγ ′ is the group operation and γ + γ ′ makes no sense in �.
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the derivative of a weight zero modular modular form becomes a weight k = 2
modular form or D : M0(�) → M2(�), but D does not map in general modular
forms of weight k into modular forms of weight k + 2 as one can see from

Dτγ fk(τγ ) = (cτ + d)2Dτ (cτ + d)kfk(τ) = (cτ + d)k+2Dτfk(τ) + c(cτ + d)k−1fk(τ)

(A4.18)

or in a shorter notation using (A4.14)

Dfk |k+2γ = Dfk + c

cτ + d
fk . (A4.19)

In order to define a covariant derivative one can use the inhomogeneous terms
in (A4.9) or (A4.10) to cancel the inhomogeneous term in (A4.19) and to define
covariant derivative operators of weight two. At the same time we have to modify
the ring of holomorphic modular forms M(�1)[E4, E6] either to the one of quasi
modular forms M !(�1)[E2, E4, E6] by adding the Eisenstein series E2 to the
generators or to the one of almost holomorphic forms M̂(�1)[Ê2, E4, E6] by adding
Ê2. This allows to defined covariant operators operators to act on these rings called
the

• TheMaass derivative

DMfk =
(

D − k

4πIm(τ )

)

fk (A4.20)

• or the Serre derivative

DSfk =
(

D − k

12
E2

)

fk . (A4.21)

The derivatives have the following properties

D : M !
k(�1)→ M !

k+2(�1), DM : M̂k(�1)→ M̂k+2(�1), DS : Mk(�1)→ Mk+2(�1) .

(A4.22)

Note that Eq. (A4.13) hold with D replaced by DM and E2(τ ) replaced by Ê2(τ ).
In particular the ringsM !(�1) and M̂(�) are isomorphic and behave identical under
the corresponding derivatives. The isomorphic identification is achieved just by
replacing E2 ↔ Ê2. Of course DS operators close also on M !(�1) and it naturally
restricts to M(�). We further note that for finite index subgroups � of SL(2,Z) one
has in similar ring structures for the modular forms but M(�) has more generators
then just E4 and E6. Nevertheless M̂(�) as well as M !(�) can be defined as before
just by adding Ê2 or E2 respectively. The formulas (A4.43) are important examples



The B-Model Approach to Topological String Theory on Calabi-Yau n-Folds 377

of such generalisations. In view of the importance of the ring of quasi modular forms
shorter notions for the generators are common

P := E2, Q := E4, and R := E6 . (A4.23)

Something special happens if we correlate the number of derivatives with
the weight the transformation. Then even without modifying anything about the
derivative or the rings one can show by an elementary calculation Bol’s identity,
which holds on any holomorphic function on the upper half plane F : H→ H.

Proposition 8 Bol’s identity states that the k − 1 derivative of the weight 2 − k

modular transfomation of F equals modular wight k transformation of its k − 1’s
derivative, i.e.

Dk−1(F |2−kγ ) = (Dk−1F)|kγ . (A4.24)

Defining Hl as the space of holomorphic functions on the the upperhalf plane
with the action of SL(2,R) on it as defined in (A4.14) we have hence an Sl(2,R)

invariant operation (or intertwinner)

Dk−1 : H2−k → Hk . (A4.25)

The Relation to the More General Formalism of the Topological B-Model

From the physical point of view there is a story behind the above well known
mathematical facts, which are best understood starting from the genus one torus
amplitude of the bosonic string. The latter can be of course calculated using the
interesting unfolding technique that uses space time—and world sheet modularity
to integrate over the fundamental domain of the world sheet torus [97] and the result
is mirror symmetric

F (1) = − log
(
√

Im(τ )|η(τ)|2
)

− log
(
√

Im(T )|η(T )|2
)

. (A4.26)

in the complex parameter and the complexified Kähler parameter of the space time
torus respectively.

The holomorphic propagator, which can be made proportional to E2, com-
pare (4.2.23) in the Im(τ ) → ∞ limit needs some regularization, which breaks
T duality. The latter is restored by adding the non-holomorphic term (A4.11).
The modular anomaly and the holomorphic anomaly are in this sense counterparts,
which cannot both be realized at least perturbatively. T -duality is physically better
motivated. Attempts in the literature, e.g. in an interesting paper [109], to define
a holomorphic and modular non-perturbative completion by summing over orbits
seem to make sense only if absolute convergence in the moduli is established.
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F (1) is an index, which is finite for smooth compact spaces. It diverges therefore
only from singular configurations, that occur if e.g. the discriminant of the elliptic
curve given for theWeierstrass form of the elliptic curve as

y2 = 4x3 − 4

3
xE4 − 8

27
E6 (A4.27)

as

(τ) = η24(τ ) = q

∞
∏

n=1
(1− qn)24 = 1

1728
(E3

4(τ )− E2
6(τ )) , (A4.28)

vanishes. Here η is the Dedekind η function which can be defined as an infinite
product

η(τ) = q
1
24

∞
∏

n=1
(1− qn) . (A4.29)

Note that the absolute modular invariant, called j -invariant, for the curve (A4.27)
is

j = 1728
E3
4

E3
4 − E2

6

= 1

q
+ 744+ 196884q + 21493760q2+O(q3) . (A4.30)

The Dedekin η function transforms130 as

η(τ + 1) = e
πi
12 η(τ), η

(

−1

τ

)

= √−iτη(τ ) , (A4.31)

i.e. with weight 1
2 , but additional phases, which are called a multiplier system.

From (A4.13), (A4.28) one calculates

dτ log(η(τ )) = 1

24
E2(τ ). (A4.32)

Further from (A4.10) we see that
√
Im(τ )|η(τ)|2 is an almost holomorphic modular

invariant and from (A4.13), (A4.11), (A4.28) that

Dτ log(
√

Im(τ )|η|2) = dτ log(
√

Im(τ )|η|2) = Ê2

24
. (A4.33)

130As can be seen from (A4.29) and (A4.41), (A4.38).
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Theta Functions and Modular Forms

Theta functions are examples of Jacobi forms, which are more abstractly discussed
in the next section. Our conventions for the theta functions associated to the spin
structure on the torus are

�
[a

b

]

(τ, z) =
∑

n∈Z
eπi(n+a)2τ+2πi(z+b)(n+a) . (A4.34)

The Jacobi theta functions are then θ1 = −�

[

1
2
1
2

]

, θ2 = �
[ 1

2
0

]

, θ3 = �
[

0
0

]

and

θ4 = �
[

0
1
2

]

. In particular, we have

θ1(τ, z) = z · η(τ)3 exp
( ∞
∑

k=1

B2k

2k(2k)!(iz)
2kE2k(τ )

)

. (A4.35)

For convenience we give the expansion for the individual Jacobi theta functions

ϑ1(τ, z) = ϑ[11](τ, z) = i
∑

n∈Z
(−1)nq 1

2 (n+1/2)2eiπ(2n+1)z,

ϑ2(τ, z) = ϑ[10](τ, z) =
∑

n∈Z
q

1
2 (n+1/2)2eiπ(2n+1)z,

ϑ3(τ, z) = ϑ[00](τ, z) =
∑

n∈Z
q

1
2n

2
eiπ2nz,

ϑ4(τ, z) = ϑ[01](τ, z) =
∑

n∈Z
(−1)nq 1

2n
2
eiπ2nz,

(A4.36)

where q = e2πiτ . When z = 0 we will simply denote ϑ2(τ ) = ϑ2(0|τ ) (notice
that ϑ1(0|τ ) = 0). The theta functions ϑ2(τ ), ϑ3(τ ) and ϑ4(τ ) have the following
product representation:

ϑ2(τ ) = 2q1/8
∞
∏

n=1
(1− qn)(1+ qn)2,

ϑ3(τ ) =
∞
∏

n=1
(1− qn)(1+ qn− 1

2 )2, (A4.37)

ϑ4(τ ) =
∞
∏

n=1
(1− qn)(1− qn− 1

2 )2



380 A. Klemm

and under modular transformations they behave as vector valued modular forrms of
weight 1

2 :

ϑ2(−1/τ) =
√

τ

i
ϑ4(τ ),

ϑ3(−1/τ) =
√

τ

i
ϑ3(τ ),

ϑ4(−1/τ) =
√

τ

i
ϑ2(τ ),

ϑ2(τ + 1) =eiπ/4ϑ2(τ ),

ϑ3(τ + 1) =ϑ4(τ ),

ϑ4(τ + 1) =ϑ3(τ ).

(A4.38)

The theta function ϑ1(τ, z) has the product representation

ϑ1(τ, z) = −2q 1
8 sin(πz)

∞
∏

n=1
(1− qn)(1− 2 cos(2πz)qn + q2n). (A4.39)

We also have the following useful identities:

ϑ4
3 (τ ) = ϑ4

2 (τ )+ ϑ4
4 (τ ), (A4.40)

and

ϑ2(τ )ϑ3(τ )ϑ4(τ ) = 2 η3(τ ). (A4.41)

One has the following doubling formulae,

η(2τ ) =
√

η(τ)ϑ2(τ )

2
, ϑ2(2τ ) =

√

ϑ2
3 (τ )− ϑ2

4 (τ )

2
,

ϑ3(2τ ) =
√

ϑ2
3 (τ )+ ϑ2

4 (τ )

2
, ϑ4(2τ ) =

√

ϑ3(τ )ϑ4(τ ),

η(τ/2) =√η(τ)ϑ4(τ ).

(A4.42)

The formulae for the derivatives of the theta functions are also useful:

q
d

dq
log ϑ4 = 1

24

(

E2 − ϑ4
2 − ϑ4

3

)

,

q
d

dq
log ϑ3 = 1

24

(

E2 + ϑ4
2 − ϑ4

4

)

,

q
d

dq
log ϑ2 = 1

24

(

E2 + ϑ4
3 + ϑ4

4

)

,

(A4.43)
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and from these one finds

q
d

dq
log η = 1

24
E2(τ ) (A4.44)

Modular Forms of �(3)

Here we summarise the modular forms of �(3), that are relevant to solve the B-
model of O(−3) → P2 [6]. For the congruence subgroup �(3) of Sl(2,Z), the
relevant theta constants (taking their third powers) are

a := θ3

[

1
6
1
6

]

(τ, 0), b := θ3

[

1
6
1
2

]

(τ, 0), c := θ3

[

1
6
5
6

]

(τ, 0), d := θ3

[

1
2
1
6

]

(τ, 0),

satisfying the identities

b = a + c, d = a + αb,

with α = e
2πi
3 . Moreover, the Dedekind η-function is given by η12 = i

33/2
abcd .

We need derivative formulae for these theta constants as well. Let us first define
the six following modular forms of weight 2:

t1 = ac
η2

, t2 = ab
η2

, t3 = bc
η2

,

t4 = bd

η2
, t5 = ad

η2
, t6 = cd

η2
.

Then we found the relations:

8q d
dq

log a = 1
3E2

(

τ+1
3

)

= E2(τ )− 2
3 (t4 + t6 + αt3),

8q d
dq

log b = 1
3E2

(

τ
3

) = E2(τ )+ 2
3 (t1 − t5 + t6),

8q d
dq

log c = 1
3E2

(

τ+2
3

)

= E2(τ )+ 2
3 (t4 + t5 − α2t2),

8q d
dq

log d = 3E2(3τ ) = E2(τ )+ 2
3 (−t1 + α2t2 + αt3) .

Note that the second equality in each line are ‘triple’ analogs of the doubling
identities for the Eisenstein series E2(τ ).

Jacobi Forms

Jacobi forms [107] are functions φ : H × C → C that depend on a modular
parameter τ ∈ H and an elliptic parameter z ∈ C. They transform under the action
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of the modular group on H×C, given by

τ �→ τγ = aτ + b

cτ + d
, z �→ zγ = z

cτ + d
with

(

a b

c d

)

∈ SL(2;Z) ,
(A4.45)

as

φ
(

τγ , zγ
) = (cτ + d)ke

2πimcz2
cτ+d φ(τ, z) . (A4.46)

Furthermore, they enjoy the property of quasi-periodicity,

φ(τ, z + λτ + μ) = e−2πim(λ2τ+2λz)φ(τ, z) ∀λ,μ ∈ Z . (A4.47)

k ∈ Z is called the weight and m ∈ N the index of the Jacobi form.
Due to the periodicity under τ �→ τ + 1, z �→ z + 1, the Jacobi forms enjoy a

double Fourier expansion

φ(τ, z) =
∑

n,r

c(n, r)qnyr , where q = e2πiτ , y = e2πiz . (A4.48)

It is in fact more appropriate to write the coefficients as c(n, r) = C(4nm − r2, r)

as the combination 4nm − r2 is invariant under the transformation (A4.47) and
C(4nm− r2, r) has a periodicity of 2m in r . Holomorphic Jacobi forms satisfy the
constraint c(n, r) = 0 unless 4mn ≥ r2, cusp forms satisfy c(n, r) = 0 unless
4mn > r2, while for weak Jacobi forms, one imposes the condition c(n, r) = 0
unless n ≥ 0.

According to [107], the ring of weak Jacobi forms of integer index is freely
generated over the ring of modular forms by the two generators φ−2,1(τ, z) and
φ0,1(τ, z) of index 1. Introducing the notation

A(τ, z) = φ−2,1(τ, z) and B(τ, z) = φ0,1(τ, z) , (A4.49)

we see that the vector space of weak Jacobi forms of weight k and indexm is equal to

Jweak
k,m =

m
⊕

j=0
Mk+2j (�1)A

jBm−j . (A4.50)

The generatorsA and B are of indexm = 1 and weight−2 and 0 respectively. They
can be defined as

A(τ, z) = −θ1(τ, z)
2

η6(τ )

B(τ, z) = 4

(

θ2(τ, z)
2

θ2(τ, 0)2
+ θ3(τ, z)

2

θ3(τ, 0)2
+ θ4(τ, z)

2

θ4(τ, 0)2

)

. (A4.51)
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In order to accommodate our convention for the normalization of εi , we will also
use the notation

A(τ, 2πz) := A(τ, z) , B(τ, 2πz) := B(τ, z) , ϑi(τ, 2πz) := θi(τ, z), i = 1, . . . , 4 .

(A4.52)

Using the Jacobi triple product for θ1 and the notation

xm = (2 sinπmz)2 = −(y
m
2 − y−

m
2 )2 , y = exp(2πiz) , (A4.53)

one finds that the weak Jacobi form A has a simple product form

A(τ, z) = (y
1
2 − y−

1
2 )2

∞
∏

n=1

(1− qny)2(1− qn

y
)2

(1− qn)4
(A4.54)

= −x1

∞
∏

n=1

(1+ x1q
n − 2qn + q2n)2

(1− qn)4
. (A4.55)

The weight zero index one weak Jacobi form B is one half of the elliptic genus
of K3,

χ(K3; q, y) = 2B(τ, z) =
(

2y + 20+ 2

y

)

+
(

20

y2
− 128

y
+ 216− 128y + 20y2

)

q +O(q2) ,

(A4.56)

and it enjoys the following expansion in x1

B(τ, z) = −x1(1− 10x1q + x21q
2)+

∞
∑

n=0
qngn(x1) , (A4.57)

with gn(x1) a polynomial in x1 of order n. Note that A(τ, z) vanishes when z = 0,
while B(τ, 0) = 12, as can be seen from the expansion of these Jacobi forms in z

with quasi modular coefficients

A(τ, z) = −z2 + E2

12
z4 + −5E

2
2 + E4

1440
z6 + 35E3

2 − 21E2E4 + 4E6

362880
z8 +O(z10),

B(τ, z) = 12− E2z
2 + E2

2 + E4

24
z4 + −5E

3
2 − 15E2E4 + 8E6

4320
z6 +O(z8).

(A4.58)

The real zeros ofA coincide with the zeros of x1. All complex zeros are obtained
as SL(2,Z) images of these zeros.
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The weak Jacobi formsA(τ, nz) of index n2 will play an important role in string
theory on elliptic fibrations. A(τ, n1z) is divisible by A(τ, n2z) if the integer n1 is
divisible by n2. Based on this observation, it is convenient to define a more primitive
weak Jacobi form, due to Zagier,

Pd(τ, z) =
∏

k|d
A(τ, kz)μ(d/k), (A4.59)

where μ(n) is the Möbius function. The first few Pd are given by

P1 = A1 , P2 = A2

A1
, P3 = A3

A1
. . . . (A4.60)

For any d , one can show that Pd(τ, z) has no poles and vanishes only at primitive
d-torsion points, i.e. at z = 2π(n1 + τn2)/d for integers n1, n2 with the greatest
common divisor gcd(n1, n2, d) = 1. So Pd(τ, z) is a weak Jacobi form and can
be written as a polynomial in A(τ, z), B(τ, z), E4, E6. We can express A(τ, nz) in
terms of these more basic building blocks via

A(τ, nz) =
∏

k|n
Pk(τ, z). (A4.61)
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Abstract In the physics literature, geometric quantization is an operation that
arises from an attempt to make sense of the passage from a classical theory to
the corresponding quantum theory. In mathematics, on the other hand, the work
of Alexander Givental and others has revealed quantization to be a powerful tool
for studying Gromov–Witten-type theories in higher genus. For example, if the
quantization of a symplectic transformationmatches two total descendent potentials,
then the original symplectic transformationsmatches their genus-zero theories, and,
at least when a semisimplicity condition is satisfied, the converse is also true.
In these notes, we give a mathematically-minded presentation of quantization of
symplectic vector spaces, and we illustrate how quantization appears in specific
applications to Gromov–Witten theory.
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1 Preface

The following notes were prepared for the “IAS Program onGromov-Witten Theory
and Quantization” held jointly by the Department of Mathematics and the Institute
for Advanced Study at the Hong Kong University of Science and Technology in
July 2013. Their primary purpose is to introduce the reader to the machinery of
geometric quantization with the ultimate goal of computations in Gromov-Witten
theory. These notes are expository, and the authors make no claim to originality of
any of the material appearing in them.

First appearing in this subject in the work of Alexander Givental and his students,
quantization provides a powerful tool for studying Gromov-Witten-type theories
in higher genus. For example, if the quantization of a symplectic transformation
matches two total descendent potentials, then the original symplectic transformation
matches the Lagrangian cones encoding their genus-zero theories; we discuss this
statement in detail in Sect. 5.5. Moreover, according to Givental’s Conjecture (see
Sect. 6.2), the converse is true in the semisimple case. Thus, if one wishes to
study a semisimple Gromov-Witten-type theory, it is sufficient to find a symplectic
transformation identifying its genus-zero theory with that of a finite collection of
points, which is well-understood. The quantization of this transformation will carry
all of the information about the higher-genus theory in question.

In addition, quantization is an extremely useful combinatorial device for orga-
nizing information. Some of the basic properties of Gromov-Witten theory, for
instance, can be succinctly expressed in terms of equations satisfied by quantized
operators acting on the total descendent potential. To give another example, even
if one is concerned only with genus zero, the combinatorics of expanding the
relation between two theories into a statement about their generating functions
can be unmanageable, but when it is expressed via quantization this unwieldy
problem obtains a clean expression. The relationship between a twisted theory and
its untwisted analogue, discussed in Sect. 6.3, is a key instance of this phenomenon.

At present, there are very few references on the subject of quantization as it is
used in this mathematical context.While a number of texts exist (such as [4, 10, 26]),
these tend to focus on the quantization of finite-dimensional, topologically non-
trivial symplectic manifolds. Accordingly, they are largely devoted to explaining the
structures of polarization and prequantization that one must impose on a symplectic
manifold before quantizing, and less concerned with explicit computations. These
precursors to quantization are irrelevant in applications to Gromov-Witten theory,
as the symplectic manifolds one must quantize are simply symplectic vector spaces.
However, other technical issues arise from the fact that the symplectic vector spaces
in Gromov-Witten theory are typically infinite-dimensional. We hope that these
notes will fill a gap in the existing literature by focusing on computational formulas
and addressing the complications specific to Givental’s set-up.

The structure of the notes is as follows. In Sect. 2, we give a brief overview
of preliminary material on symplectic geometry and the method of Feynman
diagram expansion. We then turn in Sect. 3 to a discussion of quantization of
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finite-dimensional vector spaces. We obtain formulas for the quantizations of
functions on such vector spaces by three main methods: direct computation via the
canonical commutation relations (which may also be expressed in terms of quadratic
Hamiltonians), Fourier-type integrals, and Feynman diagram expansion. All three
methods yield equivalent results, but this diversity of derivations is valuable in
pointing to various generalizations and applications. We then include, Sect. 4,
an interlude on basic Gromov-Witten theory. Though this material is not strictly
necessary until Sect. 6, it provides motivation and context for the material that
follows.

Section 5, is devoted to quantization of infinite-dimensional vector spaces, such
as arise in applications to Gromov-Witten theory. As in the finite-dimensional case,
formulas can be obtained via quadratic Hamiltonians, Fourier integrals, or Feynman
diagrams, and for the most part the computations mimic those of Sect. 3. The major
difference in the infinite-dimensional setting though, is that issues of convergence
arise, which we make an attempt to discuss whenever they come up. Finally, in
Sect. 6, we present several of the basic equations of Gromov-Witten theory in the
language of quantization, and mention a few of the more significant appearances of
quantization in the subject.

2 Preliminaries

Before we begin our study of quantization, we will give a quick overview of some
of the prerequisite background material. First, we review the basics of symplectic
vector spaces and symplectic manifolds. This material will be familiar to most of
our mathematical audience, but we collect it here for reference and to establish
notational conventions; for more details, see [8] or [25]. Less likely to be familiar
to mathematicians is the material on Feynman diagrams, so we cover this topic in
more detail. The section concludes with the statement of Feynman’s theorem, which
will be used later to express certain integrals as combinatorial summations. The
reader who is already experienced in the methods of Feynman diagram expansion is
encouraged to skip directly to Sect. 3.

2.1 Basics of Symplectic Geometry

2.1.1 Symplectic Vector Spaces

A symplectic vector space (V , ω) is a vector space V together with a nondegenerate
skew-symmetric bilinear form ω. We will often denote ω(v,w) by 〈v,w〉.

One consequence of the existence of a nondegenerate bilinear form is that V
is necessarily even-dimensional. The standard example of a real symplectic vector
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space is R2n, with the symplectic form defined in a basis {eα, eβ}1≤α,β≤n by

〈

eα, eβ
〉 = 〈eα, eβ

〉 = 0,
〈

eα, eβ
〉 = δαβ . (1)

In other words, 〈 , 〉 is represented by the (skew-symmetric) matrix

J =
(

0 I

−I 0

)

.

In fact, any finite-dimensional symplectic vector space admits a basis in which the
symplectic form is expressed this way. Such a basis is called a symplectic basis,
and the corresponding coordinates are known as Darboux coordinates.

If U ⊂ V is a linear subspace of a symplectic vector space (V , ω), then the
symplectic orthogonalUω of U is

Uω = {v ∈ V | ω(u, v) = 0 for all u ∈ U}.

One says U is isotropic if U ⊂ Uω and Lagrangian if U = Uω, which implies in
particular that, if V is finite-dimensional, dim(U) = 1

2dim(V ).
A symplectic transformation between symplectic vector spaces (V , ω) and

(V ′, ω′) is a linear map σ : V → V ′ such that

ω′(σ (v), σ (w)) = ω(v,w).

In what follows, we will mainly be concerned with the case V = V ′, and it will be
useful to express the symplectic condition on a linear endomorphism σ : V → V

in terms of matrix identities in Darboux coordinates. Choose a symplectic basis for
V and express σ in this basis via the matrix

σ =
(

A B

C D

)

.

Then σ is symplectic if and only if σT Jσ = J , which in turn holds if and only if
the following three identities are satisfied:

ABT = BAT (2)

CDT = DCT (3)

ADT−BCT = I. (4)

Using these facts, one obtains a convenient expression for the inverse:

σ−1 =
(

DT −BT

−CT AT

)

.
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An invertible matrix satisfying (2)–(4) is known as a symplectic matrix, and the
group of symplectic matrices is denoted Sp(2n,R).

2.1.2 Symplectic Manifolds

Symplectic vector spaces are the simplest examples of the more general notion
of a symplectic manifold, which is a smooth manifold equipped with a closed
nondegenerate two-form, called a symplectic form.

In particular, such a 2-form makes the tangent space TpM at any point p ∈ M

into a symplectic vector space. Just as every symplectic vector space is isomorphic
to R2n with its standard symplectic structure, Darboux’s Theorem states that every
symplectic manifold is locally isomorphic toR2n = {(x1, . . . , xn, y1, . . . , yn)} with
the symplectic form ω =∑n

i=1 dxi ∧ dyi .
Perhaps the most important example of a symplectic manifold is the cotangent

bundle. Given any smooth manifold N (not necessarily symplectic), there is a
canonical symplectic structure on the total space of T ∗N . To define the symplectic
form, let π : T ∗N → N be the projection map. Then one can define a one-form λ

on T ∗N by setting

λ|ξx = π∗(ξx)

for any cotangent vector ξx ∈ T ∗x N ⊂ T ∗N . This is known as the tautological one-
form. The canonical symplectic form on T ∗N is ω = −dλ. The choice of sign
makes the canonical symplectic structure agree with the standard one in the case
where N = Rn, which sits inside of T ∗N ∼= R2n as Span{e1, . . . , en} in the basis
notation used previously.

In coordinates, the tautological one-form and canonical two-form appear as
follows. Let q1, . . . , qn be local coordinates on N . Then there are local coordinates
on T ∗N in which a point in the fiber over (q1, . . . , qn) can be expressed as a local
system of coordinates (q1, . . . , qn, p1, . . . , pn), and in these coordinates,

λ =
∑

α

pαdqα

and

ω =
∑

α

dqα ∧ dpα.

The definitions of isotropic and Lagrangian subspaces generalize to symplectic
manifolds, as well. A submanifold of a symplectic manifold is isotropic if the
restriction of the symplectic form to the submanifold is zero. An isotropic sub-
manifold is Lagrangian if its dimension is as large as possible—namely, half the
dimension of the ambient manifold.
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For example, in the case of the symplectic manifold T ∗N with its canonical
symplectic form, the fibers of the bundle are all Lagrangian submanifolds, as is the
zero section. Furthermore, if μ : N → T ∗N is a closed one-form, the graph of μ is
a Lagrangian submanifold. More precisely, for any one-form μ, one can define

Xμ = {(x, μ(x)) | x ∈ N} ⊂ T ∗N,

and Xμ is Lagrangian if and only if μ is closed. In case N is simply-connected,
this is equivalent to the requirement that μ = df for some function f , called a
generating function of the Lagrangian submanifoldXμ.

Finally, the notion of symplectic transformation generalizes in an obvious way.
Namely, given symplectic manifolds (M,ω1) and (N,ω2) a symplectomorphism
is a smooth map f : M → N such that f ∗ω2 = ω1.

2.2 Feynman Diagrams

The following material is drawn mainly from [12]; another reference on the subject
of Feynman diagrams is Chapter 9 of [19].

Consider an integral of the form

h̄−
d
2

∫

V

e−S(x)/h̄dx, (5)

where V is a d-dimensional vector space, h̄ is a formal parameter, and

S(x) = 1

2
B(x, x)+

∑

m≥0

gm

m!Bm(x, . . . , x) (6)

for a bilinear form B and m-multilinear forms Bm on V , where gm are constants.
The integral (5) can be understood as a formal series in the parameters h̄ and gm.

2.3 Wick’s Theorem

We begin by addressing the simpler question of computing integrals involving an
exponential of a bilinear form without any of the other tensors.

Let V be a vector space of dimension d over R, and let B be a positive-definite
bilinear form on V . Wick’s theorem will relate integrals of the form

∫

V

l1(x) · · · lN (x)e−B(x,x)/2dx,
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in which l1, . . . , lN are linear forms on V , to pairings on the set [2k] =
{1, 2, . . . , 2k}. By a pairing on [2k], we mean a partition of the set into k disjoint
subsets, each having two elements. Let %2k denote the set of pairings on [2k]. The
size of this set is

|%2k| = (2k)!
(2!)kk! ,

as the reader can check as an exercise.
An element σ ∈ %k can be viewed as a special kind of permutation on the set

[2k], which sends each element to the other member of its pair. Write [2k]/σ for the
set of orbits under this involution.

Theorem 1 (Wick’s Theorem) Let l1, . . . , lN ∈ V ∗. If N is even, then

∫

V

l1(x) . . . lN (x)e
−B(x,x)

2 dx = (2π)d/2√
detB

∑

σ∈%N

∏

i∈[N]/σ
B−1(li, lσ (i)).

If N is odd, the integral is zero.

Proof First, apply a change of variables such that B is of the form B(x, x) = x21 +
· · · + x2d . The reader should check that this change of variables changes both sides
of the equation by a factor of det(P ), where P is the change-of-basis matrix, and
thus the equality prior to the change of variables is equivalent to the result after
the change. Furthermore, since both sides are multilinear in elements of V ∗ and
symmetric in x1, . . . , xd , we may assume l1 = l2 = · · · = lN = x1. The theorem is
then reduced to computing

∫

V

xN
1 e

−(x21+···+x2d )

2 dx.

This integral indeed vanishes when N is odd, since the integrand is an odd function.
If N is even, write N = 2k. In case k = 0, the theorem holds by the well-known
fact that

∫ ∞

−∞
e
−x2

2 dx = √2π.

For k > 0, we can use this same fact to integrate out the last d − 1 variables, by
which we see that the claim in the theorem is equivalent to

∫ ∞

−∞
x2ke

−−x2

2 dx = √2π
(2k)!
2kk! . (7)
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To prove (7), we first make the substitution y = x2

2 . Recall that the gamma
function is defined by

�(z) =
∫ ∞

0
yz−1e−ydy

and satisfies �( 12 ) =
√
π , as well as

�(z+ k) = (z + k − 1)(z+ k − 2) · · · z · �(z)

for integers k. Thus, we have:

∫ ∞

−∞
x2ke

−x2

2 dx = 2
∫ ∞

0
x2ke

−x2

2 dx

= 2
∫ ∞

0
(2y)k−1/2e−y dy

= 2k+1/2�(k + 1
2 )

= 2k+1/2(k − 1
2 )(k − 3

2 ) . . . (
1
2 )�( 12 )

= √2π
(2k)!
2kk! ,

which proves the claim. ��

2.3.1 Feynman’s Theorem

Now let us return to the more general integral

Z = h̄−
d
2

∫

V

e−S(x)/h̄dx,

which, for reasons we will mention at the end of the section, is sometimes called
a partition function. Recall that S has an expansion in terms of multilinear forms
given by (6).

Because a pairing can be represented by a graph all of whose vertices are 1-
valent, Wick’s theorem can be seen as a method for expressing certain integrals as
summations over graphs, in which each graph contributes an explicit combinatorial
term. The goal of this section is to give a similar graph-sum expression for the
partition function Z.

Before we can state the theorem, we require a bit of notation. If n = (n0, n1, . . .)

is a sequence of nonnegative integers, all but finitely many of which are zero, let
G(n) denote the set of isomorphism classes of graphs with ni vertices of valence
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i for each i ≥ 0. Note that the notion of “graph” here is very broad: they may be
disconnected, and self-edges and multiple edges are allowed. If � is such a graph, let

b(�) = |E(�)| − |V (�)|,

where E(�) and V (�) denote the edge set and vertex set, respectively. An
automorphism of � is a permutation of the vertices and edges that preserves the
graph structure, and the set of automorphisms is denoted Aut(�).

We will associate a certain number F� to each graph, known as the Feynman
amplitude. The Feynman amplitude is defined by the following procedure:

1. Put the m-tensor−Bm at each m-valent vertex of �.
2. For each edge e of �, take the contraction of tensors attached to the vertices of e

using the bilinear form B−1. This will produce a number F�i for each connected
component �i of �.

3. If � = ⊔

i �i is the decomposition of � into connected components, define
F� =∏i F�i .

By convention, we set the Feynman amplitude of the empty graph to be 1.

Theorem 2 (Feynman’s Theorem) One has

Z = (2π)d/2√
det(B)

∑

n=(n0,n1,...)

( ∞
∏

i=0
g
ni

i

)

∑

�∈G(n)

h̄b(�)

|Aut(�)|F�,

where the outer summation is over all sequences of nonnegative integers with almost
all zero.

Before we prove the theorem, let us compute a few examples of Feynman
amplitudes to make the procedure clear.

Example 3 Let � be the following graph:

Given B : V ⊗V → R, we have a corresponding bilinear form B−1 : V ∨ ⊗V ∨ →
R. Moreover,B1 ∈ V ∨, and so we can write the Feynman amplitude of this graph as

F� = (B−1(−B1,−B1))
2.

Example 4 Consider now the graph
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Associated to B is a mapB : V → V ∨, and in this notation, the Feynman amplitude
of the graph can be expressed as

F� = −B3(B
−1

(−B1), B
−1

(−B1), B
−1

(−B1)).

Proof of Feynman’s Theorem After a bit of combinatorial fiddling, this theorem
actually follows directly from Wick’s theorem. First, perform the change of
variables y = x/

√
h̄, under which

Z =
∫

V

e−B(y,y)/2e
∑

m≥0 gm(
−h̄

m
2 −1Bm(y,...,y)

m! )dy.

Expanding the exponential as a series gives

Z =
∫

V

e−B(y,y)/2
∏

i≥0

∑

ni≥0

g
ni

i

(i!)ni ni !
(− h̄

i
2−1Bi(y, . . . , y)

)ni dy

=
∑

n=(n0,n1,...)

(

∏

i≥0

g
ni

i

(i!)ni ni ! h̄
ni (

i
2−1)

)∫

V

e−B(y,y)/2
∏

i≥0

(− Bi(y, . . . , y)
)ni dy.

Denote

Zn =
∫

V

e−B(y,y)/2
∏

i≥0
(−Bi(y, . . . , y))

ni dy.

Each of the factors −Bi(y, . . . , y) in this integral can be expressed as a sum of
products of i linear forms on V . After unpacking the expression in this way, Zn
becomes a sum of integrals of the form

∫

V

e−B(y,y)/2 (one linear form
)n1
(

product of two linear forms
)n2 · · · ,

each with an appropriate coefficient, so we will be able to apply Wick’s theorem.
Let N = ∑i i · ni , which is the number of linear forms in the above expression

for Zn. We want to express the integral Zn using graphs. To this end, we draw
n0 vertices with no edges, n1 vertices with 1 half-edge emanating from them,
n2 vertices with 2 half-edges, n3 vertices with 3 half-edges, et cetera; these are
sometimes called “flowers”. We place −Bi at the vertex of each i-valent flower.
A pairing σ ∈ %N can be understood as a way of joining pairs of the half-edges to
form full edges, which yields a graph �(σ), and applying Wick’s theorem we get
a number F(σ) from each such pairing σ . One can check that all of the pairings
σ giving rise to a particular graph � = �(σ) combine to contribute the Feynman
amplitude F�(σ). In particular, by Wick’s theorem, only even N give a nonzero
result.
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At this point, we have

Z = (2π)d/2√
det(B)

∑

n

(

∏

i≥0

g
ni

i

(i!)ni ni !
)

∑

σ∈%N

h̄b(�(σ )F�(σ),

where we have used the straightforward observation that the exponent
∑

ni(
i
2 −

1) = N
2 −

∑

ni on h̄ is equal to the number of edges minus the number of vertices
of any of the graphs appearing in the summand corresponding to n. All that remains
is to account for the fact that many pairings can yield the same graph, and thus we
will obtain a factor when we re-express the above as a summation over graphs rather
than over pairings.

To compute the factor, fix a graph �, and consider the set P(�) of pairings on
[N] yielding the graph �. Let H be the set of half-edges of �, which are attached
as above to a collection of flowers. Let G be the group of permutations of H that
preserve flowers; this is generated by permutations of the edges within a single
flower, as well as swaps of two entire flowers with the same valence. Using this, it
is easy to see that

|G| =
∏

i≥0
(i!)ni ni !.

The group G acts transitively on the set P(�), and the stabilizer of this action is
equal to Aut(�). Thus, the number of distinct pairings yielding the graph � is

∏

i (i!)ni ni !
|Aut(�)| ,

and the theorem follows. ��
We conclude this preliminary section with a bit of “generatingfunctionology”

that motivates the term “partition function” for Z.

Theorem 5 Let Z0 = (2π)d/2

det(B)
. Then one has

log(Z/Z0) =
∑

n=(n0,n1,...)

( ∞
∏

i=0
g
ni

i

)

∑

�∈Gc(n)

h̄b(�)

|Aut(�)|F�,

where the outer summation is over n as before, and Gc(n) denotes the set of
isomorphism classes of connected graphs in G(n).

The proof of this theorem is a combinatorial exercise and will be omitted. Note
that if we begin from this theorem, then the terms in Feynman’s Theorem can
be viewed as arising from “partitioning” a disconnected graph into its connected
components. This explains the terminology for Z in this particular situation.
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3 Quantization of Finite-Dimensional Symplectic Vector
Spaces

From a physical perspective, geometric quantization arises from an attempt to make
sense of the passage from a classical theory to the corresponding quantum theory.
The state space in classical mechanics is represented by a symplectic manifold, and
the observables (quantities like position and momentum) are given by smooth real-
valued functions on that manifold. Quantum mechanics, on the other hand, has a
Hilbert space as its state space, and the observables are given by self-adjoint linear
operators. Thus, quantization should associate a Hilbert space to each symplectic
manifold and a self-adjoint linear operator to each smooth real-valued function, and
this process should be functorial with respect to symplectic diffeomorphisms.

By considering certain axioms required of the quantization procedure, we show
in Sect. 3.1 that the Hilbert space of states can be viewed as a certain space of
functions. Careful study of these axioms leads, in Sect. 3.2, to a representation of
a quantized symplectic transformation as an explicit expression in terms of multi-
plication and differentiation of the coordinates. However, as is explained in Sect. 3.4,
it can also be expressed as a certain integral over the underlying vector space.
This representation has two advantages. First, the method of Feynman diagrams
allows one to re-write it as a combinatorial summation, as is explained in Sect. 3.5.
Second, it can be generalized to the case in which the symplectic diffeomorphism
is nonlinear. Though the nonlinear case will not be addressed in these notes, we
conclude this section with a few comments on nonlinear symplectomorphisms and
other possible generalizations of the material developed here.

3.1 The Set-Up

The material of this section is standard in the physics literature, and can be found,
for example, in [4] or [10].

3.1.1 Quantization of the State Space

Let V be a real symplectic vector space of dimension 2n, whose elements are
considered to be the classical states. Roughly speaking, elements of the associated
Hilbert space of quantum states will be square-integrable functions on V . It is
a basic physical principle, however, that quantum states should depend on only
half as many variables as the corresponding classical states; there are n position
coordinates and n momentum coordinates describing the classical state of a system,
whereas a quantum state is determined by either position or momentum alone. Thus,
before quantizing V it is necessary to choose a polarization, a decomposition
into half-dimensional subspaces. Because these two subspaces should be thought
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of as position and momentum, which mathematically are the zero section and the
fiber direction of the cotangent bundle to a manifold, they should be Lagrangian
subspaces of V .

The easiest way to specify a polarization in the context of vector spaces is to
choose a symplectic basis e = {eα, eβ }1≤α,β≤n. Recall, such a basis satisfies

〈

eα, eβ
〉 = 〈eα, eβ

〉 = 0,
〈

eα, eβ
〉 = δαβ ,

where 〈·, ·〉 is the symplectic form on V . The polarization may be specified by fixing
the subspace R = Span{eα}1≤α≤n and viewing V as the cotangent bundle T ∗R in
such a way that 〈·, ·〉 is identified with the canonical symplectic form.1 An element
of V will be written in the basis e as

∑

α

pαe
α +

∑

β

qβeβ.

For the remainder of these notes, we will suppress the summation symbol in
expressions like this, adopting Einstein’s convention that when Greek letters appear
both up and down, they are automatically summed over all values of the index. For
example, the above summation would be written simply as pαe

α + qβeβ .
Let V ∼= R2n be a symplectic vector space with symplectic basis e =

{eα, eβ}1≤α,β≤n. Then the quantization of (V , e) is the Hilbert spaceHe of square-
integrable functions on R which take values in C[[h̄, h̄−1]]. Here, h̄ is considered
as a formal parameter, although physically, it denotes Plank’s constant.

It is worth noting that, while it is necessary to impose square-integrability in order
to obtain a Hilbert space, in practice one often needs to consider formal functions
on R that are not square-integrable. The space of such formal functions from R to
C[[h̄, h̄−1]] is called the Fock space.

3.1.2 Quantization of the Observables

Observables in the classical setting are smooth functions f ∈ C∞(V ), and the
result of a measurement is the value taken by f on a point of V . In the quantum
framework, observables are operators U on He, and the result of a measurement is
an eigenvalue of U . In order to ensure that these eigenvalues are real, we require
that the operators be self-adjoint.

There are a few other properties one would like the quantization Q(f ) of
observables f to satisfy. We give one possible such list below, following Section 3

1Note that in this identification, we have chosen for the fiber coordinates to be the first n

coordinates. It is important to keep track of whether upper indices or lower indices appear first
in the ordering of the basis to avoid sign errors.
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of [4]. Here, a set of observables is called complete if any function that “Poisson-
commutes” (that is, has vanishing Poisson bracket) with every element of the set is
a constant function. Likewise, a set of operators is called complete if any operator
that commutes with every one of them is the identity.

The quantization procedure should satisfy:

1. Linearity: Q(λf + g) = λQ(f )+Q(g) for all f, g ∈ C∞(V ) and all λ ∈ R.
2. Preservation of constants: Q(1) = id.
3. Commutation: [Q(f ),Q(g)] = h̄Q({f, g}), where { , } denotes the Poisson

bracket.2

4. Irreducibility: If {f1, . . . , fk} is a complete set of observables, then
{Q(f1), . . . ,Q(fk)} is a complete set of operators.

However, it is in general not possible to satisfy all four of these properties
simultaneously. In practice, this forces one to restrict to quantizing only a certain
complete subset of the observables, or to relax the properties required. We will
address this in our particular case of interest shortly.

One complete set of observables on the state space V is given by the coordinate
functions {pα, q

β}α,β=1,...,n, and one can determine a quantization of these observ-
ables by unpacking conditions (1)–(4) above. Indeed, when f and g are coordinate
functions, condition (3) reduces to the canonical commutation relations (CCR),
where we write x̂ for Q(x):

[p̂α, p̂β ] = [q̂α, q̂β ] = 0, [p̂α, q̂
β ] = h̄δβα .

The algebra generated by elements q̂α and p̂β subject to these commutation
relations is known as the Heisenberg algebra. Thus, the above can be understood as
requiring that the quantization of the coordinate functions defines a representation
of the Heisenberg algebra. By Schur’s Lemma, condition (4) is equivalent to
the requirement that this representation be irreducible. The following definition
provides such a representation.

The quantization of the coordinate functions3 is given by

q̂α� = qα�,

p̂α� = h̄
∂�

∂qα

for � ∈He.

2This convention differs by a factor of i from what is taken in [4], but we choose it to match with
what appears in the Gromov-Witten theory literature.
3To be precise, these operators do not act on the entire quantum state space He, because elements
of He may not be differentiable. However, this will not be an issue in our applications, because
quantized operators will always act on power series.
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In fact, the complete set of observables we will need to quantize for our intended
applications consists of the quadratic functions in the Darboux coordinates. To
quantize these, order the variables of each quadratic monomial with q-coordinates
on the left, and quantize each variable as above. That is:

Q(qαqβ) = qαqβ

Q(qαpβ) = h̄qα ∂

∂qβ

Q(pαpβ) = h̄2
∂2

∂qα∂qβ
.

There is one important problem with this definition: the commutation condition
(3) holds only up to an additive constant when applied to quadratic functions. More
precisely,

[Q(f )Q(g)] = h̄Q({f, g})+ h̄2C(f, g),

where C is the cocycle given by

C(pαpβ, q
αqβ) =

{

1 α �= β

2 α = β
(8)

and C(f, g) = 0 for any other pair of quadratic monomials f and g. This ambiguity
is sometimes expressed by saying that the quantization procedure gives only a
projective representation of the Lie algebra of quadratic functions in the Darboux
coordinates.

3.1.3 Quantization of Symplectomorphisms

All that remains is to address the issue of functoriality. That is, a symplectic
diffeomorphism T : V → V should give rise to an operator UT : He → Hẽ.
In fact, we will do something slightly different: we will associate to T an operator
UT : He → He. In certain cases, there is a natural identification between He and
Hẽ, so our procedure does the required job. More generally, the need for such an
identification introduces some ambiguity into the functoriality of quantization.

Furthermore, we will consider only the case in which T is linear and is the
exponential of an infinitesimal symplectic transformation, which is simply a linear
transformationwhose exponential is symplectic. For applications to Gromov-Witten
theory later, such transformation are the only ones we will need to quantize.

The computation of UT is the content of the next three sections.
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3.2 Quantization of Symplectomorphisms via the CCR

The following section closely follows the presentation given in [27].
Let T : V → V be a linear symplectic isomorphism taking the basis e to a new

basis ẽ = {ẽα, ẽβ} via the transformation

ẽα = Aα
βe

β + Cβαeβ,

ẽα = Bβαe
β +Dβ

αeβ.

Let p̃α and q̃β be the corresponding coordinate functions for the basis vectors ẽα

and ẽβ . Then̂p̃β and̂q̃α are defined in the same way as above. The relation between
the two sets of coordinate functions is:

pα = Aβ
αp̃β + Bαβ q̃

β (9)

qα = Cαβp̃β +Dα
β q̃

β,

and the same equations give relations between their respective quantizations. We
will occasionally make use of the matrix notation

p = Ap̃ + Bq̃

q = Cp̃ +Dq̃

to abbreviate the above.
To define the operator He → He associated to the transformation T , observe

that by inverting the relationship (9) and quantizing, one can view both p̂α, q̂
β and

̂p̃α,
̂q̂β as representations ofHe. The operatorUT will be defined by the requirement

that

ˆ̃qαUT = UT q̂α (10)

ˆ̃pαUT = UT p̂α. (11)

As the computation will show, these equations uniquely specify UT up to a
multiplicative constant.

To obtain an explicit formula for UT , we restrict as mentioned above to the case
in which

T =
(

A B

C D

)

= exp

(

a b

c d

)

.
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In other words, if

Tt =
(

A(t) B(t)

C(t) D(t)

)

= exp

(

ta tb

tc td

)

,

then
(

a b
c d

)

is the derivative at t = 0 of the family of transformations Tt . The
infinitesimal symplectic relations

bT = b, cT = c, aT = −d (12)

follow from the relations defining T by differentiation.
This family of transformations yields a family of bases {eαt , etα} defined by

eαt = A(t)αβe
β + C(t)βαeβ

etα = B(t)βαe
β +D(t)βαeβ,

with corresponding coordinate functions {pt
α, q

α
t }. Note that we obtain the original

transformation T , as well as the original basis ẽ and coordinate functions p̃α, q̃
β , by

setting t = 1.
Using the fact that

T −1t = exp

(−at −bt

−ct −dt

)

=
(

I − ta −tb

−tc I − td

)

+O(t2),

we obtain the relations

eα = eαt − taα
βe

β
t − tcβαetβ +O(t2),

eα = etα − tbβαe
β
t − tdβ

α e
t
β +O(t2).

This implies

pt
α = pα − taβ

αpβ − tbαβq
β +O(t2)

qα
t = qα − tcαβpβ − tdα

β q
β +O(t2)

and consequently

p̂t
α = p̂α − taβ

α p̂β − tbαβ q̂β +O(t2) (13)

q̂α
t = q̂α − tcαβ p̂β − tdα

β q̂
β +O(t2).
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Let Ut = UTt , so that

p̂t
αUt = Utp̂α (14)

q̂α
t Ut = Ut q̂α.

Denote by u the infinitesimal variation of UT ,

u = d

dt

∣

∣

∣

∣

t=0
Ut .

By plugging (13) into the above equations and taking the derivative at t = 0, we
derive commutation relations satisfied by u:

[p̂α, u] = aβ
α p̂β + bαβq̂β

[q̂α, u] = cαβp̂β + dα
β q̂

β .

These equations allow us to determine the infinitesimal variation of U up to a
constant:

u = − 1

2h̄
cαβp̂αp̂β + 1

h̄
aβ
α q̂

αp̂β + 1

2h̄
bαβ q̂αq̂β + C.

After identifying p̂α and q̂α with the operators h̄ ∂
∂qα and qα, respectively, we obtain

u = − h̄

2
cαβ

∂

∂qα

∂

∂qβ
+ aβ

αq
α ∂

∂qβ
+ 1

2h̄
bαβq

αqβ + C. (15)

Expanding (14) with respect to t yields formulas for
[

p̂α,
(

( d
dt
)kUt

)∣

∣

t=0
]

and
[

q̂α,
(

( d
dt
)kUt

)∣

∣

t=0
]

. Using these, one can check that if Tt takes the form Tt =
exp

(

t
(

a b
c d

))

, then Ut will take the form Ut = exp(tu), so in particular, UT =
exp(u). Thus, Eq. (15) gives a general formula for UT .

The formula simplifies significantly when T takes certain special forms. Let us
look explicitly at some particularly simple cases.

Example 6 Consider first the case where b = c = 0. In this case, we obtain

(UT ψ)(q) = exp

(

aβ
α q

α ∂

∂qβ

)

ψ(q) = ψ(AT q).

Let us verify this formula in a very easy case. Suppose that a has only one
nonzero entry, and that this entry is off the diagonal, so that aβ

α = δiαδ
β
j for some

fixed i �= j . Assume furthermore that ψ is a monomial:

ψ(q) =
∏

α

(qα)cα .
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Then

(UT ψ)(q) = exp

(

a
j
i q

i ∂

∂qj

)

∏
(

qα
)cα

=
cj
∑

k=0

1

k!
(

a
j
i q

i ∂

∂qj

)k
∏
(

qα
)cα

=
cj
∑

k=0

cj !
(k!)(cj − k)!

(

a
j
i

)k

(qi)k(qj )cj−k
∏

α �=j

(

qα
)cα

=
∏

α �=j

(

qα
)cα
(

qj + a
j
i q

i
)cj

= ψ(AT q),

where we use that A = exp(a) = I + a in this case.

Example 7 In the case where a = c = 0, the formula above directly implies4

(UT ψ)(q) = exp

(

1

2h̄
bαβq

αqβ

)

ψ(q).

However, in this case, it is easy to check that B = b, and we obtain

(UT ψ)(q) = exp

(

1

2h̄
Bαβq

αqβ

)

ψ(q).

Example 8 Finally, consider the case where a = b = 0. Then

(UT ψ)(q) = exp

(

− h̄

2
Cαβ ∂

∂qα

∂

∂qβ

)

ψ(q).

Remark 9 It is worth noting that this expression can be evaluated using Feynman
diagram techniques, in which each diagram corresponds to a term in the Taylor
series expansion of the exponential; we will discuss this further in Sect. 3.5.4.

4The analogue of this case in the infinite-dimensional situation is referred to in the Gromov-
Witten theory literature as “lower-triangular”, although the matrix representing T is in fact
upper-triangular in our chosen ordering of the basis. To minimize confusion, we will avoid the
terminology “upper-triangular” and “lower-triangular” in these notes.
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In fact, the above three examples let us compute UT for any symplectic matrix

T =
(

A B

C D

)

= exp

(

a b

c d

)

for which the lower-right submatrix D is invertible.5

To do so, decompose T as

T =
(

A B

C D

)

=
(

I BD−1
0 I

)

·
(

I 0
DCT I

)

·
(

D−T 0
0 D

)

.

Each of the matrices on the right falls into one of the cases we calculated above.
Furthermore, the quantization procedure satisfies UT1◦T2 = UT1 ◦ UT2 (up to
a constant), since both sides satisfy (10) and (11). Thus, the formula for the
quantization UT of any such T is as follows:

(UT ψ)(q) = exp

(

1

2h̄
(BD−1)αβqαqβ

)

exp

(

− h̄

2
(DCT )αβ

∂

∂qα

∂

∂qβ

)

ψ((D−T )αβq),

or, in matrix notation,

(UT ψ)(q) = exp

(

1

2h̄
(BD−1q) · q

)

exp

(

− h̄

2

(

DCT ∂

∂q

)

· ∂

∂q

)

ψ(D−1q).

One should be somewhat careful with this expression, since the two exponentials
have, respectively, infinitely many negative powers of h̄ and infinitely many positive
powers of h̄, so a priori their composition may have some powers of h̄ whose
coefficients are divergent series. Avoiding this issue requires one to apply each
quantized operator to ψ(D−1q) in turn, verifying at each stage that the coefficient
of every power of h̄ converges. A similar issue will arise when dealing with powers
of the variable z in the infinite-dimensional setting; see Sect. 5.3.

3.3 Quantization via Quadratic Hamiltonians

Before moving on to other expressions for the quantizationUT , let us briefly observe
that the formulas obtained in the previous section can be described in a much
simpler fashion by referring to the terminology of Hamiltonian mechanics. We
have preferred the longer derivation via the CCR because it more clearly captures
the “obvious” functoriality one would desire from the quantization procedure, but
the Hamiltonian perspective is the one that is typically taken in discussions of
quantization in Gromov-Witten theory (see, for example, [6] or [16]).

5Throughout this text, we will assume for convenience that D is invertible. However, if this is not
the case, one can still obtain similar formulas by decomposing the matrix differently.
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Let T = exp(F ) be a symplectomorphism as above, where

F =
(

a b

c d

)

is an infinitesimal symplectic transformation. Because the tangent space to a
symplectic vector space at any point is canonically identified with the vector space
itself, we can view F : V → V as a vector field on V . If ω is the 2-form giving the
symplectic structure, the contraction ιF ω is a 1-form on V . Since V is topologically
contractible, we can write ιF ω = dhF for some function hF : V → R. This
function is referred to as the Hamiltonian of F . Concretely, it is described by the
formula

hF (v) = 1

2
〈Fv, v〉

for v ∈ V , where 〈 , 〉 is the symplectic pairing.
Being a classical observable, the quantization of the function hF : V → R has

already been defined. Define the quantization of F by

F̂ = 1

h̄
ĥF .

The quantization of the symplectomorphism T is then defined as

UT = exp(F̂ ).

It is an easy exercise to check that F̂ agrees with the general formula given
by (15), so the two definitions of UT coincide.

One advantage of the Hamiltonian perspective is that it provides a straight-
forward way to understand the noncommutativity of the quantization procedure
for infinitesimal symplectic transformations. Recall, the quantization of quadratic
observables obeys the commutation relation

[Q(f ),Q(g)] = h̄Q({f, g})+ h̄2C(f, g)

for the cocycle C defined in (8). It is easy to check (for example, by working
in Darboux coordinates) that the Hamiltonian hA associated to an infinitesimal
symplectic transformation satisfies

{hA, hB} = h[A,B].

Thus, the commutation relation for infinitesimal symplectic transformations is

[Â, B̂] = [̂A,B] + C(hA, hB).
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For an explicit computation of this cocycle in an (infinite-dimensional) case of
particular interest, see Example 1.3.4.1 of [6].

3.4 Integral Formulas

The contents of this section are based on lectures given by Xiang Tang at the RTG
Workshop on Quantization at the University of Michigan in December 2011. In a
more general setting, the material is discussed in [3].

Our goal is to obtain an alternative expression for UT of the form

(UT ψ)(q) = λ

∫

Rn

∫

Rn

e
1
h̄ (φ(q,p′)−q ′·p′)ψ(q ′)dq ′dp′ (16)

for a function φ : R2n → R and a constant λ ∈ R[[h̄, h̄−1]] to be determined. Such
operators, since they generalize the Fourier transform of ψ , are known as Fourier
integral operators.

The advantage of this alternate expression for UT is twofold. First, they allow
quantized operators to be expressed as sums over Feynman diagrams, and this
combinatorial expansion will be useful later, especially in Sect. 5.5. Second, the
notion of a Fourier integral operator generalizes to the case when the symplectic
diffeomorphism is not necessarily linear, as well as to the case of a Lagrangian sub-
manifold of the cotangent bundle that is not the graph of any symplectomorphism;
we will comment briefly on these more general settings in Sect. 3.6 below.

To define φ, first let �T be the graph of T :

�T =
{

(p, q, p̃, q̃)

∣

∣

∣

∣

∣

pα = A
β
αp̃β + Bαβq̃

β

qα = Cαβp̃β +Dα
β q̃

β

}

⊂ R2n ×R2n.

Here, R2n denotes the symplectic vector space obtained by equippingR2n with the
opposite of the standard symplectic form, so that the symplectic form on the product
is given by

〈(p, q, p̃, q̃), (P,Q, P̃ , Q̃)〉 =
∑

i

(− piQ
i + Piq

i + p̃iQ̃
i − P̃i q̃

i
)

.

Under this choice of symplectic form, �T is a Lagrangian submanifold of the
product.

There is an isomorphism of symplectic vector spaces

R2n ×R2n ∼−→ T ∗(R2n)

(p, q, p̃, q̃) �→ (q, p̃, p, q̃),
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where T ∗(R2n) is equipped with the canonical symplectic form

〈(q, p, π, ξ), (Q,P,%,&)〉 =
∑

i

(

qi%i + pi&
i −Qiπi − Piξ

i
)

.

Thus, one can view �T as a Lagrangian submanifold of the cotangent bundle.
Define φ = φ(q, p′) as the generating function for this submanifold. Explicitly,
this says that

{

(q, p̃, p, q̃))

∣

∣

∣

∣

∣

pα = A
β
αp̃β + Bαβ q̃

β

qα = Cαβp̃β +Dα
β q̃

β

}

=
{(

q, p′, ∂φ
∂q

,
∂φ

∂p′

)}

.

Let us restrict, similarly to Sect. 3.2, to the case in which D is invertible. The
relations defining �T can be rearranged to give

q̃ = D−1q −D−1Cp̃

p = BD−1q +D−T p̃.

Therefore, φ(q, p′) is defined by the system of partial differential equations

∂φ

∂q
= BD−1q +D−T p′

∂φ

∂p′
= D−1q −D−1Cp′.

These are easily solved; up to an additive constant, one obtains

φ(q, p′) = 1

2
(BD−1q) · q + (D−1q) · p′ − 1

2
(D−1Cp′) · p′.

The constant λ in the definition of UT is simply a normalization factor, and is
given by

λ = 1

h̄n ,

as this will be necessary to make the integral formulas match those computed in the
previous section. We thus obtain the following definition for UT :

(UT ψ)(q) = 1

h̄n

∫

Rn

∫

Rn

e
1
h̄ (

1
2 (BD−1q)·q+(D−1q)·p′− 1

2 (D
−1Cp′)·p′−q ′·p′)

ψ(q ′)dq ′dp′.

(17)
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We should verify that this formula agrees with the one obtained in Sect. 3.2. This
boils down to properties of the Fourier transform, which we will define as

ψ̂(y) =
∫

Rn

e−ix·yψ(x)dx.

Under this definition,

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄n

∫

Rn

∫

Rn

e
1
h̄ (D

−1q)·p′
e
− 1

2h̄ (D
−1Cp′)·p′

e
− 1

h̄ q
′·p′

ψ(q ′)dq ′dp′

= ine
1
2h̄ (BD−1q)·q

∫

iRn

ei(D
−1q)·p′′e

h̄
2 (D

−1Cp′′)·p′′ψ̂(p′′)dp′′

= e
1
2h̄ (BD−1q)·q

∫

Rn

eiQ·p′′′e−
h̄
2 (D

−1Cp′′′)·p′′′ψ̂ ◦ i(p′′′)dp′′′

= e
1
2h̄ (BD−1q)·q

∫

Rn

eiQ·p′′′
(

e
− h̄

2 (D
−1C ∂

∂q′ )· ∂
∂q′ (ψ) ◦ i

)∧
(p′′′)dp′′′

= e
1
2h̄ (BD−1q)·q

e
− h̄

2

(

DCT ∂
∂q

)

· ∂
∂q ψ(D−1q),

where we use the changes of variables 1
h̄
p′ = ip′′, ip′′ = p′′′, andD−1q = iQ. The

integral formula therefore matches the one defined via the CCR.

3.5 Expressing Integrals via Feynman Diagrams

The formula given for UT ψ in (17) bears a striking resemblance to the type of
integral computed by Feynman’s theorem, and in this section, we will make the
connection precise.

3.5.1 Genus-Modified Feynman’s Theorem

In order to apply Feynman’s theorem, the entire integrand must be an exponential,
so we will assume that

ψ(q) = e
1
h̄
f (q)

.

Furthermore, let us assume that f (q) is h̄−1 times a power series in h̄, so ψ is of
the form

ψ(q) = e
∑

g≥0 h̄g−1Fg(q).
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Then

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄−n

∫

R2n
e
− 1

h̄ S(p
′,q ′)

dp′dq ′

with

S(p′, q ′) =
(

− (D−1q) · p′ + 1

2
(D−1Cp′) · p′ + q ′ · p′

)

−
∑

g≥0
h̄gFg(q

′).

Note that if we let y = (p′, q ′), then the bilinear leading term of S(p′, q ′) (in
parentheses above) is equal to

1

2
(D−1Cp′)·p′+1

2
(q ′−D−1q)·p′+1

2
p′·(q ′−D−1q) = B(y −D−1q, y −D−1q)

2
,

where B(y1, y2) is the bilinear form given by the block matrix

(

D−1C I

I 0

)

and q = (0, q) ∈ R2n.
Changing variables, we have

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄−n

∫

R2n
e
− 1

h̄

(−B(y,y)
2 −∑g≥0 h̄gFg(q

′+D−1q)
)

dy.

Each of the terms −Fg(q
′ + D−1q) can be decomposed into pieces that are

homogeneous in q ′:

−Fg(q
′ +D−1q) =

∑

m≥0

1

m!
(

−∂m Fg

∣

∣

q ′=D−1q · (q ′)m
)

,

where−∂mFg|q ′=−D−1q · (q ′)m is short-hand for the m-tensor

Bg,m = −
∑

|m|=m

m!
m1! · · ·mn!

∂mFg

(∂q ′1)m1 · · · (∂q ′n)mn

∣

∣

∣

∣

q ′=D−1q
(q ′1)m1 · · · (q ′n)mn,

in which the sum is over all n-tuples m = (m1, . . . ,mn) ∈ Zn
≥0 such that |m| =

m1+· · ·+mn = m. We consider this as anm-tensor in q ′ whose coefficients involve
a formal parameter q .
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Thus, we have expressed the quantized operator as

(UT ψ)(q) = e
1
2h̄ (BD−1q)·q

h̄−n

∫

R2n
e
− 1

h̄

(−B(y,y)
2 +∑g,m≥0 h̄g

m!Bg,m(q ′,...,q ′)
)

dy.

This is essentially the setting in which Feynman’s theorem applies, but we must
modify Feynman’s theorem to allow for the presence of powers of h̄ in the exponent.
This is straightforward, but nevertheless interesting, as it introduces a striking
interpretation of g as recording the “genus” of vertices in a graph.

Theorem 10 Let V be a vector space of dimension d , and let

S(x) = 1

2
B(x, x)+

∑

g,m≥0

h̄g

m!Bg,m(x, . . . , x),

in which eachBg,m is anm-multilinear form andB0,0 = B0,1 = B0,2 = 0. Consider
the integral

Z = h̄−
d
2

∫

V

e−S(x)/h̄dx.

Then

Z = (2π)d/2√
det(B)

∑

n=(n0,n1,...)

∑

�∈G′(n)

h̄−χ�

|Aut(�)|F�,

where F� is the genus-modified Feynman amplitude, defined below.

Here, G′(n) denotes the set of isomorphism classes of graphs with ni vertices of
valence i for each i ≥ 0, in which each vertex v is labeled with a genus g(v) ≥
0. Given � ∈ G′(n), the genus-modified Feynman amplitude is defined by the
following procedure:

1. Put the m-tensor−Bg,m at each m-valent vertex of genus g in �.
2. For each edge e of �, take the contraction of tensors attached to the vertices of e

using the bilinear form B−1. This will produce a number F�i for each connected
component �i of �.

3. If � = ⊔

i �i is the decomposition of � into connected components, define
F� =∏i F�i .

Furthermore, the Euler characteristic of � is defined as

χ� = −
∑

v∈V (�)

g(v)+ |V (�)| − |E(�)|.

Having established all the requisite notation, the proof of the theorem is actually
easy.
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Proof of Theorem 10 Reiterate the proof of Feynman’s theorem to obtain

Z =
∑

n=(ng,m)g,m≥0

⎛

⎝

∏

g,m≥0

h̄gng,m+( m
2 −1)ng,m

(m!)ng,mng,m!

⎞

⎠

∫

V

e−B(y,y)/2
∏

g,m≥0
(−Bg,m)ng,mdy.

As before, Wick’s theorem shows that the integral contributes the desired sum-
mation over graphs, modulo factors coming from over-counting. A similar orbit-
stabilizer argument shows that these factors precisely cancel the factorials in the
denominator. The power of h̄ is

∑

g≥0
g

⎛

⎝

∑

m≥0
ng,m

⎞

⎠+
∑

m≥0

(m

2
− 1
)

⎛

⎝

∑

g≥0
ng,m

⎞

⎠ ,

which is the sum of the genera of the vertices plus the number of edges minus the
number of vertices, or in other words, −χ� , as required. ��

It should be noted that for the proof of the theorem, there is no particular reason
to think of g as recording the genus of a vertex—it is simply a label associated to the
vertex that records which of the m-tensors Bg,m one attaches. The convenience of
the interpretation of g as genus comes only from the fact that it simplifies the power
of h̄ neatly.

3.5.2 Feynman Diagram Formula for UT

We are now ready to give an expression for UT ψ in terms of Feynman diagrams.
In order to apply Theorem 10, we must make one more assumption: that F0 has
no terms of homogeneous degree less than 3 in q ′. Assuming this, we obtain the
following expression by directly applying the theorem:

(UT ψ)(q) = (2π)ne
1
2h̄ (BD−1q)·q

√

det(D−1C)

∑

n=(n0,n1,...)

∑

�∈G′(n)

h̄−χ�

|Aut(�)|F�(q), (18)

where F�(q) is the genus-modified Feynman amplitude given by placing the m-
tensor

∑

|m|=m

m!
m1! · · ·mn!

∂mFg

(∂q ′1)m1 · · · (∂q ′n)mn

∣

∣

∣

∣

q ′=D−1q
(q ′1)m1 · · · (q ′n)mn
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at each m-valent vertex of genus g in � and taking the contraction of tensors using
the bilinear form

(

D−1C I

I 0

)−1
= −

(

0 I

I D−1C

)

.

In fact, since this bilinear form is only ever applied to vectors of the form (0, q ′), we
are really only taking contraction of tensors using the bilinear form−D−1C onRn.

3.5.3 Connected Graphs

Recall from Theorem 5 that the logarithm of a Feynman diagram sum yields the
sum over only connected graphs. That is:

(UT ψ)(q) = (2π)ne
1
2h̄ (BD−1q)·q

√

det(D−1C)
exp

⎛

⎝

∑

�∈G′c

h̄−χ�

|Aut(�)|F�(q)

⎞

⎠ ,

where G′c denotes the set of isomorphism classes of connected genus-labeled
graphs. Thus, writing

F g(q) =
∑

�∈G′c(g)

1

|Aut(�)|F�(q)

with G′c(g) collecting connected graphs of genus g, we have:

(UT ψ)(q) = (2π)ne
1
2h̄ (BD−1q)·q

√

det(D−1C)
exp

⎛

⎝

∑

g≥0
h̄g−1F g(q)

⎞

⎠ .

For those familiar with Gromov-Witten theory, this expression should be salient—
we will return to it in Sect. 5 of the book.

3.5.4 Another Diagram Expansion

At this point, we can return to a remark made previously (Remark 9), regarding the
computation of UT ψ in the case where a quadratic differential operator appears in
the formula. In that case, we may express the quantization formula obtained via the
CCR as a graph sum in a rather different way. We explain how to do this below,
and show that we ultimately obtain the same graph sum as that which arises from
applying Feynman’s Theorem to the integral operator.
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Let

T =
(

I 0
C I

)

.

We showed in Sect. 3.2 that

(UT ψ)(q) = exp

(

− h̄

2
Cαβ ∂

∂qα

∂

∂qβ

)

ψ(q).

Suppose that ψ(q) = e
∑

g≥0 h̄g−1Fg(q) as above and expand both exponentials in
Taylor series. Then (UT ψ)(q) can be expressed as:

∑

{iα,β },{�g}

h̄
∑

iαβ+∑ �g(g−1)
∏

iαβ !∏ �g!
∏

α,β

(

−Cαβ

2

)iαβ ( ∂

∂qα

∂

∂qβ

)iαβ ∏

g

(Fg(q))
�g . (19)

Whenever a product of quadratic differential operators acts on a product of
functions, the result can be written as a sum over diagrams. As an easy example,
suppose one wishes to compute

∂2

∂x∂y
(fgh)

for functions f, g, h in variables x and y. The product rule gives nine terms, each of
which can be viewed as a way of attaching an edge labeled

to a collection of vertices labeled f, g, and h. (We allow both ends of an edge to be
attached to the same vertex.)

Applying this general principle to the expression (19), one can write each of

the products
∏

(−Cαβ

2 )iαβ
∏

(

∂
∂qα

∂
∂qβ

)iαβ Fg(q) as a sum over graphs obtained by

taking �g vertices of genus g for each g, with vertices of genus g labeled Fg, and
attaching iαβ edges labeled

in all possible ways. Each possibility gives a graph �̂. It is a combinatorial exercise
to check that the contributions from all choices of �̂ combine to give a factor of
∏

iαβ !·∏ �g!
|Aut(�̂)| .
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Thus, we have expressed (UT ψ)(q) as

∑

{iαβ },{�g},�̂

h̄−χ
�̂

|Aut(�̂)|Gi,�,�̂(q),

where Gi,�,�̂(q) is obtained by way of the above procedure. This is essentially the
Feynman amplitude computed previously, but there is one difference: Gi,�,�(q) is
computed via edges whose two ends are labeled, whereas Feynman diagrams are
unlabeled. By summing up all possible labelings of the same unlabeled graph �, we
can rewrite this as

(UT ψ)(q) =
∑

�

h̄−χ�

|Aut(�)|G�,

whereG� is the Feynman amplitude computed by placing the m-tensor

∑

|m|=m

m!
m1! · · ·mn!

∂mFg

(∂q ′1)m1 · · · (∂q ′n)mn

∣

∣

∣

∣

q ′=q

(q ′1)m1 · · · (q ′n)mn

at each m-valent vertex of genus g in � and taking the contraction of tensors using
the bilinear form − 1

2 (C + CT ) = −C. Up to a multiplicative constant, which we
can ignore, this matches the Feynman diagram expansion obtained previously.

3.6 Generalizations

As remarked in Sect. 3.4, one advantage of the integral formula representation of
a quantized operator is that it generalizes in at least two ways beyond the cases
considered here.

First, if T is a symplectic diffeomorphism that is not necessarily linear, one can
still define φ as the generating function of the graph of T , and under this definition,
the integral in (16) still makes sense. Thus, in principle, integral formulas allow one
to define the quantization of an arbitrary symplectic diffeomorphism. As it turns
out, the formula in (16) is no longer quite right in this more general setting; the
constant λ should be allowed to be a function b = b(q, p′, h̄) determined by T and
its derivatives. Nevertheless, an integral formula can still be obtained. This is very
important from a physical perspective, since the state space of classical mechanics
is typically a nontrivial symplectic manifold. While one can reduce to the case of
R2n by working locally, the quantization procedure should be functorial with respect
to arbitrary symplectic diffeomorphisms, which can certainly be nonlinear even in
local coordinates.
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A second possible direction for generalization is that the function φ need not be
the generating function of the graph of a symplectomorphism at all. Any Lagrangian
submanifold L ⊂ T ∗(R2n) has a generating function, and taking φ to be the
generating function of this submanifold, (16) gives a formula for the quantization
of L.

4 Interlude: Basics of Gromov-Witten Theory

In order to apply the formulas for UT ψ to obtain results in Gromov-Witten theory,
it is necessary to quantize infinite-dimensional symplectic vector spaces. Thus, we
devote Sect. 5 to the infinite-dimensional situation, discussing how to adapt the
finite-dimensional formulas and how to avoid issues of convergence. Before doing
this, however, we pause to give a brief overview of the basics of Gromov-Witten
theory. Although this material will not be strictly necessary until Sect. 6, we include
it now to motivate our interest in the infinite-dimensional case and the specific
assumptions made in the next section.

4.1 Definitions

The material of this section can be found in any standard reference on Gromov-
Witten theory, for example [7] or [19].

Let X be a projective variety. Roughly speaking, the Gromov-Witten invariants
of X encode the number of curves passing through a prescribed collection of
subvarieties. In order to define these invariants rigorously, we will first need to define
the moduli spaceMg,n(X, d) of stable maps.

Definition 11 A genus-g, n-pointed pre-stable curve is an algebraic curve C with
h1(C,ØC) = g and at worst nodal singularities, equipped with a choice of n distinct
ordered marked points x1, . . . , xn ∈ C.

Fix non-negative integers g and n, and a cycle d ∈ H2(X;Z).

Definition 12 A pre-stable map of genus g and degree d with n marked points
is an algebraic map f : C → X whose domain is a genus-g, n-pointed pre-
stable curve, and for which f∗[C] = d . Such a map is stable if it has only finitely
many automorphisms as a pointed map; concretely, this means that every irreducible
component collapsed to a point by f has at least three special points (marked points
or nodes) if its genus is zero and at least one special point if its genus is one.

As eluded to in this definition, there is a suitable notion of isomorphism of stable
maps. Namely, stable maps f : C → X and f ′ : C′ → X are isomorphic if there
is an isomorphism of curves s : C → C′ which preserves the markings and satisfies
f ′ ◦ s = f .
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There is a moduli space Mg,n(X, d) whose points are in bijection with isomor-
phism classes of stable maps of genus g and degree d with n marked points. To
be more precise, Mg,n(X, d) is only a coarse moduli scheme, but it can be given
the structure of a Deligne-Mumford stack, and with this extra structure it is a fine
moduli stack. In general, this moduli space is singular and may possess components
of different dimensions. However, there is always an “expected” or “virtual”
dimension, denoted vdim, and a class [Mg,n(X, d)]vir ∈ H2vdim(Mg,n(X, d)),
called the virtual fundamental class, which plays the role of the fundamental class
for the purpose of intersection theory. The following theorem collects some of the
important (and highly non-trivial) properties of this moduli space.

Theorem 13 There exists a compact moduli space Mg,n(X, d), of virtual dimen-
sion equal to

vdim = (dim(X)− 3)(1− g)+
∫

d

c1(TX)+ n.

It admits a virtual fundamental class [Mg,n(X, d)]vir ∈ H2vdim(Mg,n(X, d)).

Virtual dimension can be given a precise meaning in terms of deformation theory,
which we will omit. In certain easy cases, though, the moduli space is smooth and
pure-dimensional, and in these cases the virtual dimension is simply the ordinary
dimension, and the virtual fundamental class is the ordinary fundamental class. For
example, this occurs when g = 0 and X is convex (such as the case X = Pr ) or
when g = 0 and d = 0.

Gromov-Witten invariants will be defined as integrals over the moduli space of
stable maps. The classes we will integrate will come from two places. First, there
are evaluation maps

evi :Mg,n(X, d)→ X

for i = 1, . . . , n, defined by sending (C; x1, . . . , xn; f ) to f (xi). In fact, these set-
theoretic maps are morphisms of schemes (or stacks). Second, there are ψ classes.
To define these, let Li be the line bundle on Mg,n(X, d) whose fiber over a point
(C; x1, . . . , xn; f ) is the cotangent line6 to the curve C at xi . Then

ψi = c1(Li )

for i = 1, . . . , n.

6Of course, this is only a heuristic definition, as one cannot specify a line bundle by prescribing
its fibers. To be more precise, one must consider the universal curve π : C → Mg,n(X, d). This
carries a relative cotangent line bundle ωπ . Furthermore, there are sections si :Mg,n(X, d) → C
sending (C; x1, . . . , xn; f ) to xi ∈ C ⊂ C. We define Li = s∗i ωπ .
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Definition 14 Fix cohomology classes γ1, . . . , γn ∈ H ∗(X) and integers
j1, . . . , jn ∈ Z≥0. The correspondingGromov-Witten invariant (or correlator) is

〈γ1ψj1
1 , · · · , γnψjn

n 〉Xg,n,d =
∫

[Mg,n(X,d)]vir
ev∗1(γ1)ψ

j1
1 · · · ev∗n(γn)ψjn

n .

Often in what follows, the indices on ψ class insertions will be dropped. We will
also sometimes make use of the physics notation

〈τj1(γ1), · · · , τjn(γn)〉Xg,n,d
for the above invariant, in which τ is a formal symbol recording the powers of ψ .

While the enumerative significance of this integral is not immediately obvious,
there is an interpretation in terms of curve-counting in simple cases. Indeed,
suppose that Mg,n(X, d) is smooth and its virtual fundamental class is equal to its
ordinary fundamental class. Suppose, further, that the classes γi are Poincaré dual to
transverse subvarieties Yi ⊂ X, and that ji = 0 for all i. Then the Gromov-Witten
invariant above is equal to the number of genus-g, n-pointed curves inX whose first
marked point lies on Y1, whose second marked point lies on Y2, et cetera. Thus, the
invariant indeed represents (in some sense) a count of the number of curves passing
through prescribed subvarieties.

In order to encode these invariants in a notationally parsimonious way, we write

ai(z) = ai
0 + ai

1z+ ai
2z

2 + · · ·
for ai

j ∈ H ∗(X). Then, given a1, . . . , an ∈ H ∗(X)[[z]], define

〈a1(ψ), . . . , an(ψ)〉Xg,n,d =
∫

[Mg,n(X,d)]vir

⎛

⎝

∞
∑

j=0
ev∗1 (a1j )ψ

j

1

⎞

⎠ · · ·
⎛

⎝

∞
∑

j=0
ev∗n(an

j )ψ
j
n

⎞

⎠ .

Arbitrary Gromov-Witten invariants ofX are determined by those in which every
insertion is the same. Thus, making use of the above notation, we can describe all
of the genus-g invariants of X via the generating function

F g
X(t(z)) =

∑

n,d≥0

Qd

n! 〈t(ψ), . . . , t(ψ)〉Xg,n,d ,

which is a formal function of the variable t(z) ∈ H ∗(X)[[z]] taking values in the
Novikov ring C[[Q]]. Introducing another parameter h̄ to record the genus, we can
combine all of the genus-g generating functions into one:

DX = exp

(

∑

g

h̄g−1F g
X

)

.

This is referred to as the total descendent potential of X.
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It is convenient to sum invariants with certain fixed insertions over all ways of
adding additional insertions, as well as all choices of degree. Thus, we define:

〈〈a1(ψ), . . . , an(ψ)〉〉Xg,n(s) =
∑

m,d

Qd

m! 〈a
1(ψ), . . . , an(ψ), s, . . . , s〉Xg,n+m,d

for specified s ∈ H ∗(X).

4.2 Basic Equations

In practice, Gromov-Witten invariants are usually very difficult to compute by hand.
Instead, calculations are typically carried out combinatorially by beginning from a
few easy cases and applying a number of relations. We state those relations in this
section. The statements of the relations can be found, for example, in [19], while
their expressions as differential equations are given in [23].

4.2.1 String Equation

The string equation addresses invariants in which one of the insertions is 1 ∈ H 0(X)

with no ψ classes. It states:

〈τa1(γ1), · · · , τan(ψn) 1〉Xg,n+1,d =
(20)

n
∑

i=1
〈τa1(γ1), · · · , τai−1(γi−1), τai−1(γi), τai+1(γi+1), · · · , τan (γn)〉Xg,n,d

wheneverMg,n(X, d) is nonempty.
The proof of this equation relies on a result about pullbacks of ψ classes under

the forgetful morphism Mg,n+1(X, d) → Mg,n(X, d) that drops the last marked
point. Because this morphism involves contracting irreducible components ofC that
become unstable after the forgetting operation, ψ classes on the target do not pull
back to ψ classes on the source. However, there is an explicit comparison result,
and this is the key ingredient in the proof of (20). See [19] for the details.

It is a basic combinatorial fact that differentiation of the generating function with
respect to the variable t ij corresponds to adding an additional insertion of τj (φi).
Starting from this, one may express the string equation in terms of a differential
equation satisfied by the Gromov-Witten generating function. To see this, fix a basis
{φ1, . . . , φk} for H ∗(X), and write

tj = t ij φi .
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Then

∂

∂t10

∑

g

h̄g−1F g
X =

∑

g,n,d

Qdh̄g−1

n! 〈t(ψ), . . . , t(ψ), 1〉Xg,n+1,d

=
∑

g,n,d

Qdh̄g−1

(n− 1)!

〈

t(ψ), . . . , t(ψ),
∑

i,j

t ij+1τj (φi)

〉X

g,n,d

+ 1

2h̄
〈t(ψ), t(ψ), 1〉X0,3,0 + 〈1〉1,1,0

=
∑

i,j

t ij+1
∂

∂tij

∑

g

h̄g−1F g
X +

1

2h̄
〈t(ψ), t(ψ), 1〉X0,3,0 + 〈1〉1,1,0.

The “exceptional” terms at the end arise from reindexing the summation, because
the moduli spacesMg,n(X, d) do not exist for (g, n, d) = (0, 2, 0) or (1, 0, 0). The
first exceptional term is equal to

1

2h̄
〈t0, t0〉X,

where 〈 , 〉X denotes the Poincaré pairing onX, because the ψ classes are trivial on
M0,3(X, 0). The second exceptional term vanishes for dimension reasons.

Taking the coefficient of h̄−1, we find that F 0
X satisfies the following differential

equation:

∂F 0
X

∂t10

= 1

2
〈t0, t0〉X +

∑

i,j

t ij+1
∂F 0

X

∂tij

. (21)

Before we continue, let us remark that the total-genus string equation can be
presented in the following alternative form:

∑

g,n,d

Qdh̄g−1

(n− 1)! 〈1, t(ψ), . . . , t(ψ)〉Xg,n,d =
∑

g,n,d

Qdh̄g−1

(n− 1)!
〈[

t(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

+ 1

2h̄
〈t0, t0〉X. (22)

This expression will be useful later.
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4.2.2 Dilaton Equation

The dilaton equation addresses the situation in which there is an insertion of
1∈H ∗(X) with a first power of ψ attached to it:

〈τa1(γ1), · · · , τanτ1(T0)〉Xg,n,d = (2g − 2+ n)〈τa1(γ1), . . . , τan(γn)〉Xg,n,d .

Again, it can be expressed as a differential equation on the generating function. In
genus zero, the equation is:

∂F 0
X

∂t11

=
∑

1≤i≤k
j≥0

t ij
∂F 0

X

∂tij

− 2F 0
X. (23)

The proof is similar to the above, so we omit it.
A simple but extremely important device known as the dilaton shift allows us to

express this equation in a simpler form. Define a new parameter q(z) = q0 + q1z+
· · · ∈ H ∗(X)[[z]] by

q(z) = t(z)− z, (24)

so that qi = ti for i �= 1 and q1 = t1 − 1. If we perform this change of variables,
then the dilaton equation says precisely that

∑

1≤i≤k
j≥0

qi
j

∂F 0
X

∂qi
j

= 2F 0
X,

or in other words that F 0
X(q(z)) is homogeneous of degree two.

4.2.3 Topological Recursion Relations

A more general equation relating Gromov-Witten invariants to ones with lower
powers of ψ is given by the topological recursion relations. In genus zero, the
relation is:

〈〈τa1+1(γ1), τa2(γ2),τa3(γ3)〉〉X0,3(τ )
=
∑

a

〈〈τa1(γ1), φa〉〉X0,2〈〈φa, τa2(γ2), τa3(γ3)〉〉X0,3,

where, as above, {φa} is a basis for H ∗(X), and {φa} denotes the dual basis under
the Poincaré pairing. There are also topological recursion relations in higher genus
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(see [11, 14, 15]), but we omit them here as they are more complicated and not
necessary for our purposes.

In terms of a differential equation, the genus-zero topological recursion relations
are given by

∂3F 0
X

∂t
i1
j1
∂t

i2
j2
∂t

i3
j3

=
∑

μ,ν

∂2F 0
X

∂t
i1
j1
∂t

μ
0

gμν ∂F 0
X

∂t
i2
j2
∂t

i3
j3
∂tν0

. (25)

Here, we use gμν to denote the matrix for the Poincaré pairing on H ∗(X) in the
basis {φα} and gμν to denote the inverse matrix.

4.2.4 Divisor Equation

The divisor equation describes invariants in which one insertion lies inH 2(X) (with
no ψ classes) in terms of invariants with fewer insertions. For ρ ∈ H 2(X), it states:

〈τa1(γ1), · · · , τan (γn) ρ〉Xg,n+1,d = 〈ρ, d〉〈τa1 (γ1), · · · , τan (γn)〉Xg,n,d

+
n
∑

i=1
〈τa1(γ1), · · · , τai−1(γi−1), τai−1(γiρ), τai+1(γi+1), · · · , τan (γn)〉Xg,n,d ,

or equivalently,

〈a1(ψ), . . . , an−1(ψ), ρ〉Xg,n,d = 〈ρ, d〉〈a1(ψ), . . . , an−1(ψ)〉Xg,n−1,d (26)

+
n−1
∑

i=1

〈

a1(ψ), . . . ,

[

ρai (ψ)

ψ

]

+
, . . . , an−1(ψ)

〉X

g,n−1,d
.

This equation, too, can be expressed as a differential equation on the generating
function. The resulting equation is not needed for the time being, but we will return
to it in Sect. 6.

4.3 Axiomatization

Axiomatic Gromov-Witten theory attempts to formalize the structures which arise
in a genus-zero Gromov-Witten theory. One advantage of such a program is that
any properties proved in the framework of axiomatic Gromov-Witten theory will
necessarily hold for any of the variants of Gromov-Witten theory that share the
same basic properties, such as the orbifold theory or FJRW theory. See [23], for a
more detailed exposition of the subject of axiomatization.
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Let H be an arbitrary Q-vector space equipped with a distinguished element 1
and a nondegenerate inner product ( , ). Let

H = H((z−1)),

which is a symplectic vector space with symplectic form � defined by

�(f, g) = Resz=0
(

(f (−z), g(z))

)

.

An arbitrary element ofH can be expressed as

∑

k≥0
pk,αφ

α(−z)−1−k +
∑

�≥0
q
β
� φβz

�, (27)

in which {φ1, . . . , φd } is a basis forH with φ1 = 1. Define a subspaceH+ = H [[z]]
of H, which has coordinates qi

j . Elements of H+ are identified with t(z) ∈ H [[z]]
via the dilaton shift

t ij = qi
j + δi1δj1.

Definition 15 A genus-zero axiomatic theory is a pair (H,G0), where H is as
above and G0 = G0(t) is a formal function of t(z) ∈ H [[z]] satisfying the
differential equations (21), (23), and (25).

In the case where H = H ∗(X;
) equipped with the Poincaré pairing and
G0 = F 0

X, one finds that the genus-zero Gromov-Witten theory ofX is an axiomatic
theory.

Note that we require an axiomatic theory to satisfy neither the divisor equation
(for example, this fails in orbifold Gromov-Witten theory), nor the WDVV equa-
tions, both of which are extremely useful in ordinary Gromov-Witten theory. While
these properties are computationally desirable for a theory, they are not necessary
for the basic axiomatic framework.

5 Quantization in the Infinite-Dimensional Case

Axiomatization reduces the relevant structures of Gromov-Witten theory to a special
type of function on an infinite-dimensional symplectic vector space

H = H((z−1)). (28)

As we will see in Sect. 6, the actions of quantized operators on the quantization of
H have striking geometric interpretations in the case where H = H ∗(X;
) for a
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projective variety X. Because our ultimate goal is the application of quantization to
the symplectic vector space (28), we will assume throughout this section that the
infinite-dimensional symplectic vector space under consideration has that form.

5.1 The Symplectic Vector Space

Let H be a vector space of finite dimension equipped with a nondegenerate inner
product ( , ) and letH be given by (28). As explained in Sect. 4.3,H is a symplectic
vector space under the symplectic form � defined by

�(f, g) = Resz=0
(

(f (−z), g(z))

)

.

The subspaces

H+ = H [z]
and

H− = z−1H [[z−1]]
are Lagrangian. A choice of basis {φ1, . . . , φd } for H yields a symplectic basis for
H, in which the expression for an arbitrary element in Darboux coordinates is

∑

k≥0
pk,αφ

α(−z)−1−k +
∑

�≥0
q
β
� φβz

�.

Here, as before, {φα} denotes the dual basis to {φα} under the pairing ( , ). We can
identifyH as a symplectic vector space with the cotangent bundle T ∗H+.

Suppose that T : H→ H is an endomorphism of the form

T =
∑

m

Bmzm, (29)

where Bm : H → H are linear transformations. Let T ∗ denote the endomorphism
given by taking the adjointB∗m of each transformationBm with respect to the pairing.
Then the symplectic adjoint of T is

T †(z) = T ∗(−z) =
∑

m

B∗m(−z)m.

As usual, a symplectomorphism is an endomorphism T of H that satisfies
�(Tf, T g) = �(f, g) for any f, g ∈ H. When T has the form (29), one can
check that this is equivalent to the condition

T ∗(−z)T (z) = Id .
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We will specifically be considering symplectomorphisms of the form

T = exp(A)

in which A also has the form (29). In this case, we will require thatA is an infinites-
imal symplectic transformation, or in other words that �(Af, g) + �(f,Ag) = 0
for any f, g ∈ H. Using the expression for A as a power series as in (29), one finds
that this condition is equivalent to A∗(−z)+ A(z) = 0, which in turn implies that

A∗m = (−1)m+1Am. (30)

There is another important restriction we must make: the transformation A (and
hence T ) will be assumed to contain either only nonnegative powers of z or only
nonpositive powers of z. In the Gromov-Witten theory literature, a transformation

R =
∑

m≥0
Rmzm

with only nonnegative powers of z is typically referred to as upper-triangular, while
a transformation

S =
∑

m≤0
Smzm

with only nonpositive powers of z is referred to as lower-triangular. We will avoid
this terminology for the most part, because (as remarked previously) it disagrees
with the ordering of basis elements used in Sect. 3; however, we will occasionally
refer to these two situations collectively as “upper-triangular and lower-triangular”,
simply meaning that positive and negative powers of z do not both appear.

The reason for restricting to upper- and lower-triangular transformations is that
if A had both positive and negative powers of z, then exponentiatingA would yield
a series in which a single power of z could have a nonzero contribution from
infinitely many terms, and the result would not obviously be convergent. There
are still convergence issues to be addressed when one composes the two types of
operators, but we defer discussion of this to Sect. 5.3.

5.2 Quantization via Quadratic Hamiltonians

Although in the finite-dimensional case we needed to start by choosing a symplectic
basis, by expressing our symplectic vector space asH = H((z−1)) we have already
implicity chosen a polarization H = H+ ⊕ H−. Thus, the quantization of the
symplectic vector space H should be thought of as the Hilbert space H of square-
integrable functions onH+ with values in C[[h̄, h̄−1]]. As in the finite-dimensional
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case, we will sometimes in practice allowH to contain formal functions that are not
square-integrable, and the space of all such formal functions will be referred to as
the Fock space.

5.2.1 The Quantization Procedure

Observables, which classically are functions on H, are quantized the same way as
in the finite-dimensional case, by setting

q̂α
k = qα

k

p̂k,α = h̄
∂

∂qα
k

,

and quantizing an arbitrary analytic function by expanding it in a Taylor series
and ordering the variables within each monomial in the form q

α1
k1
· · · qαn

kn
p�1,β1 · · ·

p�m,βm .
In order to quantize a symplectomorphism T = exp(A) of the form discussed in

the previous section, we will mimic the procedure discussed in Sect. 3.3. Namely,
define a function hA onH by

hA(f ) = 1

2
�(Af, f ).

Since hA is a classical observable, it can be quantized by the above formula. We
define the quantization of A via

Â = 1

h̄
̂hA,

and UT is defined by

UT = exp(Â).

The next section is devoted to making this formula more explicit.

5.2.2 Basic Examples

Before turning to the case of a general upper- or lower-triangular symplectomor-
phism, we will begin with two simple but crucial examples. These computations
follow Example 1.3.3.1 of [6].
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Example 16 Suppose that the infinitesimal symplectic transformation A is of the
form

A = Amzm,

where Am : H → H is a linear transformation and m > 0.
To compute Â, one must first compute the Hamiltonian hA. Let

f (z) =
∑

k≥0
pk,αφ

α(−z)−1−k +
∑

�≥0
q
β

� φβz
� ∈ H.

Then

hA(f ) = 1

2
�(Af, f )

= 1

2
Resz=0

⎛

⎝(−z)m
∑

k1≥0
pk1,α(Amφα) z−1−k1 + (−z)m

∑

�1≥0
q
β

�1
(Amφβ)(−z)�1,

∑

k2≥0
pk2,αφ

α(−z)−1−k2 +
∑

�2≥0
q
β

�2
φβz

�2

⎞

⎠

Since only the z−1 terms contribute to the residue, the right-hand side is equal to

1

2

m−1
∑

k≥0
(−1)kpk,αpm−k−1,β(Amφα, φβ)+ 1

2

∑

k≥0
(−1)mpm+k,αq

β
k (Amφα, φβ)

− 1

2

∑

k≥0
q
β
k pm+k,α(Amφβ, φ

α).

By (30), we have

(φα,Amφβ) = (−1)m+1(Amφα, φβ).

Thus, denoting (Am)αβ = (Amφα, φβ) and (Am)αβ = (Amφα, φβ), we can write

hA(f ) = 1

2

m−1
∑

k=0
(−1)kpk,αpm−k−1,β(Am)αβ + (−1)m

∑

k≥0
pm+k,αq

β
k (Am)αβ .

This implies that

Â = h̄

2

m−1
∑

k=0
(−1)k(Am)αβ

∂

∂qα
k

∂

∂q
β

m−k−1
+ (−1)m

∑

k≥0
(Am)αβq

β
k

∂

∂qα
m+k

.
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Example 17 Similarly to the previous example, let

A = Amzm,

this time withm < 0. Let (Am)αβ = (Amφα, φβ). An analogous computation shows
that

Â = 1

2h̄

−m−1
∑

k=0
(−1)k+1(Am)αβq

α
−m−k−1q

β

k + (−1)m
∑

k≥−m

(Am)αβq
β

k

∂

∂qα
k+m

.

Example 18 More generally, let

A =
∑

m<0

Amzm

be an infinitesimal symplectic endomorphism. Then the quadratic Hamiltonian
associated to A is

hA(f ) = 1

2

∑

k,m

(−1)m+1(A−k−m−1)αβqα
k q

β
m +

∑

k,m

(−1)m(Am)αβpk+m,αq
β
k .

Thus, after quantization, we obtain

Â = 1

2h̄

∑

k,m

(−1)m+1(A−k−m−1)αβqα
k q

β
m +

∑

k,m

(−1)m(Am)αβq
β
k

∂

∂qα
k+m

. (31)

It is worth noting that some of the fairly complicated expressions appearing in
these formulas can be written more succinctly, as discussed at the end of Example
1.3.3.1 of [6]. Indeed, the expression

∂A :=
∑

k

(Am)αβq
β
k

∂

∂qα
k+m

(32)

that appears in Â for both m > 0 and m < 0 acts on q(z) ∈ H+ by

(

∑

k

(Am)αβq
β
k

∂

∂qα
k+m

)(

∑

�

q
γ

� φγ z
�

)

=
[

∑

k

(Am)αβq
β
k φαz

k+m

]

+
,

where [·]+ denotes the power series truncation with only nonnegative powers of z.
In other words, if q =∑� q

i
�φiz

�, then

∂Aq = [Aq]+. (33)
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By the same token, consider the expression

∑

k≥0
(−1)k(Am)αβ

∂

∂qα
k

∂

∂q
β
m−k−1

appearing in Â for m > 0. The quadratic differential operator ∂
∂qα

k

∂

∂q
β
m−k−1

can be

thought of as a bivector field on H+, and since H+ is a vector space, a bivector
field can be identified with a tensor product of two maps H+ → H+. Specifically,
∂

∂qα
k

∂

∂q
β
m−k−1

is the bivector field corresponding to the constant map

φαz
k+ ⊗ φβz

m−k−1− ∈ H [z+] ⊗H [z−] ∼= H+ ⊗H+.

Using the identity

m−1
∑

k=0
(−1)kzk+zm−1−k− = zm+ + (−1)m−1zm−

z+ + z−
,

then, it follows that

∑

k≥0
(−1)k(Am)αβ

∂

∂qα
k

∂

∂q
β

m−k−1
=
[

A(z+)+ A∗(z−)
z+ + z−

]

+
, (34)

where we use the pairing to identify (Am)αβφα ⊗ φβ ∈ H+ ⊗ H+ with Am ∈
End(H). Here, the power series truncation is included to ensure that (34) is trivially
valid when m is negative.

The modified expressions (33) and (34) can be useful in recognizing the
appearance of a quantized operator in computations. For example, (33) will come
up in Proposition 19 below, and both (33) and (34) arise in the context of Gromov-
Witten theory in Theorem 1.6.4 of [6].

5.2.3 Formulas for the General Cases

Extending the above two examples carefully, one obtains formulas for the quantiza-
tion of any upper-triangular or lower-triangular symplectomorphism. The following
results are quoted from [16]; see also [24] for an exposition.

Proposition 19 Let S be a symplectomorphism ofH of the form S = exp(A), with

S(z) = I + S1/z+ S2/z
2 + · · · .
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Define a quadratic form WS onH+ by the equation

WS(q) =
∑

k,�≥0
(Wk�qk,q�),

where qk = qα
k φα and Wk� is defined by

∑

k,�≥0

Wk�

zkw�
= S∗(w)S(z)− I

w−1 + z−1
.

Then the quantization of S−1 acts on the Fock space by

(US−1�)(q) = exp

(

WS(q)
2h̄

)

�([Sq]+)

for any function � of q ∈ H+. Here, as above, [Sq]+ denotes the truncation of
S(z)q to a power series in z.

Proof Let A =
∑

m<0

Amzm. Introduce a real parameter t and denote

G(t,q) = e−t Â�(q).

Define a t-dependent analogue of WS via

Wt(q) :=
∑

k,�≥0
(Wk�(t)qk,q�), (35)

where

∑

k,�≥0

Wk�(t)

zkw�
= et ·A∗(w)et ·A(z) − 1

z−1 +w−1
.

Note that Wk�(t) = W∗
�k(t).

We will prove that

G(t,q) = exp

(

Wt(q)
2h̄

)

ψ

(

[

etAq
]

+

)

(36)

for all t . The claim follows by setting t = 1.
To prove (36), let

g(t,q) = log(G(t,q))
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and write � = exp(f ). Then, taking logarithms, it suffices to show

g(t,q) = Wt(q)
2h̄

+ f

(

[

etAq
]

+

)

. (37)

Notice that

d

dt
G(t,q) = −Â G(t,q)

= 1

2h̄

∑

k,�

(−1)�(A−k−�−1)αβqα
k q

β
� G(t,q)

+
∑

k,�

(−1)�−1(A�)
α
βq

β
k

∂

∂qα
k+�

G(t,q),

using Example (18). This implies that g(t,q) satisfies the differential equation

d

dt
g(t,q) = 1

2h̄

∑

k,�

(−1)�A−k−�−1,αβqα
k q

β
� +

∑

k,�

(−1)�−1(A�)
α
βq

β
k+�

∂g

∂qα
k

(38)

We will prove that the right-hand side of (37) satisfies the same differential equation.
The definition of Wk�(t) implies that

d

dt
Wk�(t) =

�
∑

�′=0
A∗�′−�Wk�′(t)+

k
∑

k′=0
Wk′�(t)Ak′−k + (−1)kA−k−�−1.

Therefore,

1

2h̄

d

dt
Wt (q) = 1

2h̄

∑

k,�

(

∑

�′

(

A∗�′−�Wk�′ (t)qk,q�

)+
∑

k′

(

Wk′�(t)Ak′−kqk,q�

)

+ (−1)k (A−k−�−1qk,q�)

)

= 1

2h̄

∑

k,�

(

2
∑

�′

(

Wk�′(t)qk, A�′−�q�

)+ (−1)k (A−k−�−1q�,qk)

)

= 1

2h̄

∑

k,�

(

2
∑

�′
(−1)�′−�−1(A�′−�)

α
βq

β

� (Wk�′ (t)qk, φα)

(−1)k (A−k−�−1q�,qk)

)



Geometric Quantization with Applications to Gromov-Witten Theory 445

= 1

2h̄

∑

k,�

(−1)�(A−k−�−1)αβqα
k q

β

�

+ 1

h̄

∑

k,�,�′
(−1)�′−�−1(A�′−�)

α
βq

β
�

(

Wk�′ (t)qk,
∂

∂qα
�′
q�′
)

= 1

2h̄

∑

k,�

(−1)�(A−k−�−1)αβqα
k q

β

� +
∑

k,�

(−1)�−1(A�)
α
βq

β

k

∂

∂α
k+�

(

Wt(q)
2h̄

)

.

Furthermore, using Eq. (33), it can be shown that

df
(

[

etAq
]

+
)

dt
=
∑

k,�

(−1)�−1(A�)
α
βq

β
k

∂

∂qα
k+�

f

(

[

etAq
]

+

)

.

Thus, both sides of (37) satisfy the same differential equation. Since they agree
when t = 0, and each monomial in q and h̄ depends polynomially on t , it follows
that the two sides of (37) are equal. ��

The other case has an analogous proposition, but we omit the proof.

Proposition 20 Let R be a symplectomorphism ofH of the form R = exp(B), with

R(z) = I + R1z+ R2z
2 + · · · .

Define a quadratic form VR onH− by the equation

VR(p0(−z)−1 + p1(−z)−2 + p2(−z)−3 + · · · ) =
∑

k,�≥0
(pk, Vk�p�),

where Vk� is defined by

∑

k,�≥0
(−1)k+�Vk�w

kz� = R∗(w)R(z)− I

z+w
.

Then the quantization of R acts on the Fock space by

(UR�)(q) =
[

exp

(

h̄VR(∂q)

2

)

�

]

(R−1q),

where VR(∂q) is the differential operator obtained from VR(p) by replacing pk

by ∂
∂qk

.
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5.3 Convergence

In Sect. 3, we expressed the quantization of an arbitrary symplectic transformation
by decomposing it into a product of upper-triangular and lower-triangular trans-
formations, each of whose quantizations was known. In the infinite-dimensional
setting, however, such a decomposition is problematic, because composing a series
containing infinitely many nonnegative powers of z with one containing infinitely
many nonpositive powers will typically yield a divergent series. This is why we
have only defined quantization for upper-triangular or lower-triangular operators,
not products thereof.

It is possible to avoid unwanted infinities if one is vigilant about each application
of a quantized operator to an element of H. For example, while the symplectomor-
phism S ◦R may not be defined, it is possible that (Ŝ ◦ R̂)� makes sense for a given
� ∈H if Ŝ(R̂�) has a convergent contribution to each power of z. This verification
can be quite complicated; see Chapter 9, Section 3 of [24] for an example.

5.4 Feynman Diagrams and Integral Formulas Revisited

In this section, we will attempt to generalize the integral formulas and their resulting
Feynman diagram expansions computed in Sect. 3 to the infinite-dimensional case.
This is only interesting for symplectomorphisms with nonnegative powers of z,
since for transformations with nonpositive powers, the Feynman amplitude of any
graph with at least one edge vanishes.

To start, we must compute the analogues of the matrices A, C, and D that
describe the transformation in Darboux coordinates. Suppose that

R =
∑

m≥0
Rmzm

is a symplectomorphism. If

ek,α = φα(−z)−1−k, e�α = φαz
�,

then it is easily check that

ẽk,α = R · ek,α =
∑

k′≥0
(−1)k−k′(Rk−k′)

α
γ e

k′,γ +
∑

�′≥0
(−1)−1−k(R�′+k+1)αγ e�

′
γ ,

ẽ�β = R(e�β) =
∑

�′≥0
(R∗�′−�)

γ
βe

�′
γ .
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Let p̃k,α and q̃
β
� be defined by

∑

k≥0
pk,αe

k,α +
∑

�≥0
q
β
� e

�
β =

∑

k≥0
p̃k,αẽ

k,α +
∑

�≥0
q̃
β
� ẽ

�
β .

Then the relations among these coordinates are:

pk,α =
∑

k′≥0
(−1)k′−k(Rk′−k)

γ
α p̃k′,γ ,

q
β
� =

∑

k′≥0
(−1)−1−k′(R�+k′+1)γβp̃k′,γ +

∑

�′≥0
(R∗�−�′)

β
γ q̃

γ

�′ .

That is, if we define matricesA, C, and D by

(A ∗)(k
′,γ )

(k,α) = (−1)k′−k(Rk′−k)
γ
α ,

C(�,β),(k′,γ ) = (−1)−1−k′(R�+k′+1)γβ,

D
(�,β)

(�′,γ )
= (R∗�−�′)

β
γ ,

then the coordinates are related by

p = A p̃

q = C p̃+D q̃.

These matrices have rows and columns indexed by

(k, α) ∈ Z≥0 × {1, . . . , d},

but the entries vanish when k is sufficiently large.
As in Sect. 3.4, the integral formula will be expressed in terms of a function

φ : H→ R defined by

φ(q, p′) = (D−1q) · p′ − 1

2
(D−1Cp′) · p′.

It is not necessary to invert D, as one has D−1 = AT in this case. Thus, the above
gives an explicit formula for φ.

Equipped with this, we would like to define

(URψ)(q) = λ

∫

e
1
h̄ (φ(q,p′)−q ′·p′)

ψ(q ′)dq ′dp′, (39)
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where λ is an appropriate normalization constant. The problem with this, though, is
that the domain of the variables q = q

β
� and p′ = p′k,α over which we integrate is

an infinite-dimensional vector space. We have not specified a measure on this space,
so it is not clear that (39) makes sense.

Our strategy for making sense of (39) will be to define it by its Feynman diagram
expansion, as given by (18). Modulo factors of 2π , which are irrelevant because UR

is defined only up to a real multiplicative constant, the answer is:

(URψ)(q) = 1
√

det(D−1C)

∑

n=(n0,n1,...,)

∑

�∈G′(n)

h̄−χ�

|Aut(�)|F�(q),

where, as before,G′(n) is the set of isomorphism classes of genus-labeled Feynman
diagrams, and F�(q) is the genus-modified Feynman amplitude given by placing
the m-tensor

∑

m
∑

m�,β=m

m!
∏

m�,β !
∂mFg(s)
∏

(∂s�β)
m�,β

∣

∣

∣

∣

∣

∣

∣

∣

s=D−1q

·
∏

(s
β
� )

m�,β

at each m-valent vertex of genus g and taking the contraction of tensors using the
bilinear form−D−1C. Here, as before, Fg is defined by the expansion

ψ(q) = e
∑

g≥0 h̄g−1Fg(q).

Note that det(D−1C) is well-defined because, although these matrices have indices
ranging over an infinite indexing set, they are zero outside of a finite range.

5.5 Semi-classical Limit

The most important feature of quantization for our purposes that it relates higher
genus information to genus-zero information. We will return to this principle in
the next section in the specific context of Gromov-Witten theory. Before we do
so, however, let us give a precise statement of this idea in the abstract setting of
symplectic vector spaces.

Let H be a symplectic vector space, finite- or infinite-dimensional. Fix a
polarizationH = H+ ⊕H−, and suppose that for each g ≥ 0,

F g

X : H+ → R, F g

Y : H+ → R
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are functions onH+. Package each of these two collections into the total descendent
potentials:

DX = exp

⎛

⎝

∑

g≥0
h̄g−1F g

X

⎞

⎠ , DY = exp

⎛

⎝

∑

g≥0
h̄g−1F g

Y

⎞

⎠ .

Let LX and LY be the Lagrangian subspaces of H that, under the identification of
H with T ∗H+, coincide with the graphs of dF 0

X and dF 0
Y , respectively. That is,

LX = {(p, q) | p = dqF 0
X} ⊂ H,

and similarly for LY .

Theorem 21 Let T be a symplectic transformation such that

UTDX = DY .

Then

T (LX) = LY .

(The passage from DX to LX is sometimes referred to as a semi-classical limit.)

Proof We will prove this statement in the finite-dimensional setting, but all of
our arguments should carry over with only notational modifications to the infinite-
dimensional case. To further simplify, it suffices to prove the claim when T is of one
of the three basic types considered in Sect. 3.2.

Case 1: T =
(

I B

0 I

)
Using the explicit formula for UT obtained in Sect. 3, the

assumption UTDX = DY in this case can be written as

exp

⎛

⎝

∑

g≥0
h̄g−1F g

Y

⎞

⎠ = exp

(

1

2h̄
Bαβq

αqβ

)

exp

⎛

⎝

∑

g≥0
h̄g−1F g

X

⎞

⎠ .

Taking logarithms of both sides, picking out the coefficient of h̄−1, and taking
derivatives with respect to q , we find

dqF 0
Y = Bq + dqF 0

X. (40)

Now, choose a point (p, q) ∈ LX, so that dqF 0
X = p. Explicitly, the point in

question is pαe
α + qαeα , so its image under T is

pα
˜eα + qαẽα = (p + Bq)αe

α + qαeα,
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using the expressions for ˜eα and ẽα in terms of the e basis obtained in Sect. 3. Thus,
the statement that T (p, q) ∈ LY is equivalent to

dqF 0
Y = p + Bq.

Since p = dqF 0
X by assumption, this is precisely Eq. (40). This proves that

T (LX) ⊂ LY , and the reverse inclusion follows from the analogous claim applied
to T −1.

Case 2: T =
(

A 0
0 A−T

)
This case is very similar to the previous one, so we omit

the proof.

Case 3: T =
(

I 0
C I

)
Consider the Feynman diagram expression for UTDX

obtained in Sect. 3.5. Up to a constant factor, the assumption UTDX = DY in this
case becomes

exp

⎛

⎝

∑

g≥0
h̄g−1F g

Y (q)

⎞

⎠ =
∑

�

h̄−χ�

|Aut(�)|F
X
� (q), (41)

where FX
� (q) is the Feynman amplitude given by placing the m-tensor

∑

|m|=m!

1

m1! · · ·mn!
∂mF X

g

(∂q ′1)m1 · · · (∂q ′n)mn

∣

∣

∣

∣

∣

q ′=q

(q ′1)m1 · · · (q ′n)mn

at each m-valent vertex of genus g in � and taking the contraction of tensors using
the bilinear form −C.

Recall that if one takes the logarithm of a sum over Feynman diagrams, the result
is a sum over connected graphs only, and in this case, −χ� = g − 1. Thus, if one
takes the logarithm of both sides of (41) and picks out the coefficient of h̄−1, the
result is

F 0
Y (q) =

∑

� connected, genus 0

F�(q)

|Aut(�)| .

Let us give a more explicit formulation of the definition of F�(q). For conve-
nience, we adopt the notation of Gromov-Witten theory and write

F X
0 (q) = 〈 〉 + 〈eα〉Xqα + 1

2
〈eα, eβ〉Xqαqβ + · · · = 〈〈 〉〉X(q),
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where 〈〈φ1, . . . , φn〉〉X(q) := ∑k≥0 1
k! 〈φ1, . . . , φn, q, . . . , q〉X (k copies of q) and

the brackets are defined by the above expansion. Then derivatives of F 0
X are given

by adding insertions to the double bracket. It follows that

FX
� (q) =

∑

{ih}

∏

v∈V (�)

〈〈

∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)∈E(�)

(−Ciaib ).

Here, V (�) and E(�) denote the vertex sets and edge sets of �, respectively, while
H(v) denotes the set of half-edges associated to a vertex v. The summation is over
all ways to assign an index ih ∈ {1, . . . , d} to each half-edge h, where d is equal
to the dimension of H+. For an edge e, we write e = (a, b) if a and b are the two
half-edges comprising e.

Thus, we have re-expressed the relationship between F Y
0 and F X

0 as

F Y
0 (q) =

∑

� connected, genus 0

1

|Aut(�)|
∑

{ih}

∏

v∈V (�)

〈〈

∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)∈E(�)

(−Ciaib ).

Now, to prove the claim, choose a point (p, q) ∈ LY . We will prove that
T −1(p, q) ∈ LX. Applying the same reasoning used in Case 1 to the inverse matrix

T −1 =
(

I 0
−C I

)

, we find that

T −1(p, q) = pαe
α + (−Cp + q)αeα.

Therefore, the claim is equivalent to

dqF Y
0 = d−CdqF Y

0 +qF X
0 .

From the above, one finds that the ith component of the vector dqF 0
Y is equal to

∑

�

1

|Aut(�)|
∑

{ih},w∈V (�)

〈〈

ei
∏

h∈H(w)

eih

〉〉X

(q)
∏

v �=w∈V (�)

〈〈

∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)∈E(�)

(−Cia ib ).

On the other hand, the same equation shows that the ith component of the vector
d−CdqF Y

0 +qF 0
X is equal to

〈〈ei 〉〉X(−CdqF Y
0 + q)

=〈〈ei 〉〉X
⎛

⎝

∑

�

1

|Aut(�)|
∑

{ih},w∈V (�),j,k

〈〈

ej
∏

h∈H(w)

eih

〉〉X

(q)
∏

v �=w∈V (�)

〈〈

∏

h∈H(v)

eih

〉〉X

(q)

∏

e=(a,b)∈E(�)

(−Cia ib )(−C)kj ek + q�e�

⎞

⎠
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=
∑

�1,...,�n

1

n!|Aut(�1)| · · · |Aut(�n)|
∑

{ih}
w1∈V (�1),...,wn∈V (�n)

j1,...,jn
k1,...,kn
�1,...,�m

n
∏

c=1

〈〈

ejc

∏

h∈H(wc)

eih

〉〉X

(q)

∏

v �=w1,...,wn

〈〈

∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)

(−Cia ib )(−C)kc jc
〈ei , ek1 , . . . , ekn , q�1e�1 , . . . , q

�me�m 〉
m!

=
∑

�1,...,�n

1

n!|Aut(�1)| · · · |Aut(�n)|
∑

{ih}
w1∈V (�1),...,wn∈V (�n)

j1,...,jn
k1,...,kn

n
∏

c=1

〈〈

ejc

∏

h∈H(wc)

eih

〉〉X

(q)

∏

v �=w1,...,wn

〈〈

∏

h∈H(v)

eih

〉〉X

(q)
∏

e=(a,b)

(−Cia ib )(−C)kcjc 〈〈ei , ek1 , . . . , ekn 〉〉(q)

Upon inspection, this is equal to the sum of all ways of starting with a distinguished
vertex (where ei is located) and adding n spokes labeled k1, . . . , kn, then attaching n

graphs �1, . . . , �n to this vertex via half-edges labeled j1, . . . , jn. This procedures
yields all possible graphs with a distinguished vertex labeled by ei—the same
summation that appears in the expression for dqF Y

0 . Each total graph appears in
multiple ways, corresponding to different ways of partitioning it into subgraphs
labeled �1, . . . , �n. However, it is a combinatorial exercise to verify that, with this
over-counting, the automorphism factor in front of each graph� is precisely 1

|Aut(�)| .
Thus, we find that d−CdqF0Y+qF X

0 = dqF Y
0 , as required. ��

6 Applications of Quantization to Gromov-Witten Theory

In this final section, we will return to the situation in whichH = H ∗(X;
)((z−1))
for X a projective variety. In Sect. 6.1, we show that many of the basic equations
of Gromov-Witten theory can be expressed quite succinctly as equations satisfied
by the action of a quantized operator on the total descendent potential. More
strikingly, according to Givental’s conjecture, there is a converse in certain special
cases to the semi-classical limit statement explained in Sect. 5.5; we discuss this in
Sect. 6.2 below. In Sect. 6.3, we briefly outline the machinery of twisted Gromov-
Witten theory developed by Coates and Givental. This is a key example of the way
quantization can package complicated combinatorics into a manageable formula.

Ultimately, these notes only scratch the surface of the applicability of the
quantization machinery to Gromov-Witten theory. There are many other interesting
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directions in this vein, so we conclude the book with a brief overview of some of
the other places in which quantization arises. The interested reader can find much
more in the literature.

6.1 Basic Equations via Quantization

Here we give a simple application of quantization as a way to rephrase some of the
axioms of Gromov-Witten theory. This section closely follows Examples 1.3.3.2
and 1.3.3.3 of [6].

6.1.1 String Equation

Recall from (22) that the string equation can be expressed as follows:

∑

g,n,d

Qdh̄g−1

(n− 1)! 〈1, t(ψ), . . . , t(ψ)〉Xg,n,d =
∑

g,n,d

Qdh̄g−1

(n− 1)!
〈[

t(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

+ 1

2h̄
〈t0, t0〉.

Applying the dilaton shift (24), this is equivalent to

− 1

2h̄
(q0, q0)−

∑

g,n,d

Qdh̄g−1

(n− 1)!
〈[

q(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

= 0.

From Example 17 with m = −1, one finds
̂1

z
= − 1

2h̄
〈q0, q0〉 −

∑

k

qα
k+1

∂

∂qα
k

= − 1

2h̄
〈q0, q0〉 − ∂1/z.

Thus, applying (33), it follows that the string equation is equivalent to

̂1

z
DX = 0.
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6.1.2 Divisor Equation

In a similar fashion, the divisor equation can be expressed in terms of a quantized
operator. Summing over g, n, d and separating the exceptional terms, Eq. (26) can
be stated as

∑

g,n,d

Qdh̄g−1

(n− 1)! 〈t(ψ), . . . , t(ψ), ρ〉Xg,n,d =
∑

g,n,d

Qdh̄g−1

n! (ρ, d)〈t(ψ), . . . , t(ψ)〉g,n,d

+
∑

g,n,d

Qdh̄g−1

(n − 1)!
〈[

ρt(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

+ 1

2h̄
〈t(ψ), t(ψ), ρ〉0,3,0 + 〈ρ〉1,1,0. (42)

The left-hand side and the second summation on the right-hand side combine
to give

−
∑

g,n,d

Qdh̄g−1

(n− 1)!
〈[

ρ(t(ψ)− ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉X

g,n,d

.

After the dilaton shift, this is equal to ∂ρ/z(
∑

h̄g−1F X
g ).

As for the first summation, let τ1, . . . , τr be a choice of basis for H2(X;Z),
which yields a set of generatorsQ1, . . . ,Qr for the Novikov ring. Write

ρ =
r
∑

i=1
ρiτ

i

in the dual basis {τ i} for {τi}. Then the first summation on the right-hand side of (42)
is equal to

r
∑

i=1
ρiQi

∂

∂Qi

(

∑

g

h̄g−1F X
g

)

.

The first exceptional term is computed as before:

〈t(ψ), t(ψ), ρ〉0,3,0 = (q0ρ, q0).

The second exceptional term is more complicated in this case. We require the
fact that

M1,1(X, 0) ∼= X ×M1,1,
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and that under this identification

[M1,1(X, d)]vir = e(TX ×L−11 ) = e(TX)− ψ1cD−1(TX),

where L1 is the cotangent line bundle (whose first Chern class is ψ1) and D =
dim(X). Thus,

〈ρ〉X1,1,0 =
∫

X

e(TX) · ρ −
∫

M1,1

ψ1

∫

X

cD−1(TX) · ρ = − 1

24

∫

X

cD−1(TX) · ρ.

Putting all of these pieces together, we can express the divisor equation as

− 1

2h̄
(q0ρ, q0)− ∂ρ/z

(

∑

g

h̄g−1F X
g

)

=
(

∑

i

ρiQi
∂

∂Qi

− 1

24

∫

X

cD−1(TX) · ρ
)(

∑

g

h̄g−1F X
g

)

,

or in other words, as

̂

(

ρ

z

)

·DX =
(

∑

i

ρiQi

∂

∂Qi

− 1

24

∫

X

cD−1(TX) · ρ
)

DX.

It should be noted that the left-hand side of this equality makes sense because
multiplication by ρ is a self-adjoint linear transformation on H ∗(X) under the
Poincaré pairing, and hence multiplication by ρ/z is an infinitesimal symplectic
transformation.

6.2 Givental’s Conjecture

The material in this section can be found in [17] and [23].
Recall from Sect. 4.3 that an axiomatic genus zero theory is a symplectic

vector space H = H((z−1)) together with a formal function G0(t) satisfying the
differential equations corresponding to the string equation, dilaton equation, and
topological recursion relations in genus zero.

The symplectic (or twisted) loop group is defined as the set {M(z)} of
End(H)-valued formal Laurent series in z−1 satisfying the symplectic condition
M∗(−z)M(z) = I . There is an action of this group on the collection of axiomatic
genus zero theories. To describe the action, it is helpful first to reformulate
the definition of an axiomatic theory in a more geometric, though perhaps less
transparent, way.
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Associated to an axiomatic genus zero theory is a Lagrangian subspace

L = {(p,q) | p = dqG0} ⊂ H,

where (p,q) are the Darboux coordinates on H defined by (27) and we are
identifying H ∼= T ∗H+ by way of this polarization. Note, here, that G0(t) is
identified with a function of q ∈ H+ via the dilaton shift, and that this is the same
Lagrangian subspace discussed in Sect. 5.5.

According to Theorem 1 of [18], a function G0(t) satisfies the requisite dif-
ferential equations if and only if the corresponding Lagrangian subspace L is a
Lagrangian cone with the vertex at the origin satisfying

L ∩ TfL = zTfL

for each f ∈ L.
The symplectic loop group can be shown to preserve these properties. Thus, an

element T of the symplectic loop group acts on the collection of axiomatic theories
by sending the theory with Lagrangian cone L to the theory with Lagrangian cone
T (L).

There is one other equivalent formulation of the definition of axiomatic genus-
zero theories, in terms of abstract Frobenius manifolds. Roughly speaking, a
Frobeniusmanifold is a manifold equippedwith a product on each tangent space that
gives the tangent spaces the algebraic structure of Frobenius algebras. A Frobenius
manifold is called semisimple if, on a dense open subset of the manifold, these
algebras are semisimple. This yields a notion of semisimplicity for axiomatic genus
zero theories. Given this, we can formulate the statement of the symplectic loop
group action more precisely:

Theorem 22 ([18]) The symplectic loop group acts on the collection of axiomatic
genus-zero theories. Furthermore, the action is transitive on the semisimple theories
of a fixed rank N .

Here, the rank of a theory is the rank of H .
The genus-zero Gromov-Witten theory of a collection of N points gives a

semisimple axiomatic theory of rank N , which we denote by HN . The theorem
implies that any semisimple axiomatic genus-zero theory T = (H,G0) can be
obtained from HN by the action of an element of the twisted loop group. Via the
process of Birkhoff factorization, such a transformation can be expressed as S ◦ R
in which S has only nonpositive powers of z and R has only nonnegative powers.

Definition 23 The axiomatic τ -function of an axiomatic theory T is defined by

τT
G = Ŝ(R̂DN),
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where S ◦R is the element of the symplectic loop group taking the theoryHN of N
points to T , andDN is the total descendent potential for the Gromov-Witten theory
of N points.

If T is in fact the genus-zero Gromov-Witten theory of a space X, then we have
two competing definitions of the higher-genus potential: DX and τT

G . Givental’s
conjecture is the statement that these two agree:

Conjecture 24 (Givental’s Conjecture [17]) If T is the semisimple axiomatic
theory corresponding to the genus-zero Gromov-Witten theory of a projective
variety X, then τT

G = DX.

In other words, the conjecture posits that in the semisimple case, if an element
of the symplectic loop group matches two genus zero theories, then its quantization
matches their total descendent potentials. Because the action of the symplectic loop
group is transitive on semisimple theories, this amounts to a classification of all
higher-genus theories for which the genus-zero theory is semisimple.

Givental proved his conjecture in case X admits a torus action and the total
descendent potentials are taken to be the equivariant Gromov-Witten potentials. In
2005 Teleman announced a proof of the conjecture in general:

Theorem 25 ([28]) Givental’s conjecture holds for any semisimple axiomatic
theory.

One important application of Givental’s conjecture is the proof of the Virasoro
conjecture in the semisimple case. The conjecture states:

Conjecture 26 For any projective manifold X, there exist “Virasoro operators”
{̂LX

m}m≥−1 satisfying the relations

[̂LX
m,̂LX

n ] = (m− n)̂LX
m+n, (43)

such that

̂LX
mDX = 0

for all m ≥ −1.
In the case where X is a collection of N points, the conjecture holds by setting

̂LX
m equal to the quantization of

Lm := −z−1/2Dm+1z−1/2,

where

D := z

(

d

dz

)

z = z2
d

dz
+ z.
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The resulting operators {̂Lm}m≥−1 are the same as N copies of those used in
Witten’s conjecture [29], and the relations (43) indeed hold for these operators.

Thus, by Witten’s conjecture, the Virasoro conjecture holds for any semisimple
Gromov-Witten theory by setting

̂LX
m = ̂S(̂R̂Lm

̂R−1)̂S−1

for the transformation S ◦ R taking the theory of N points to the Gromov-Witten
theory of X.7

6.3 Twisted Theory

The following is due to Coates and Givental; we refer the reader to the exposition
presented in [6].

LetX be a projective variety equippedwith a holomorphic vector bundleE. Then
E induces a K-class onMg,n(X, d),

Eg,n,d = π∗f ∗E ∈ K0(Mg,n(X, d)),

where

is the universal family over the moduli space. Consider an invertible multiplicative
characteristic class

c : K0(Mg,n(X, d))→ H ∗(Mg,n(X, d)).

Any such class can be written in terms of Chern characters

c(·) = exp

⎛

⎝

∑

k≥0
skchk(·)

⎞

⎠ ,

for some parameters sk .

7In fact one must check that ̂LX
m defined this way agrees with the Virasoro operators of the

conjecture, but this can be done.
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A twisted Gromov-Witten invariant is defined as

〈τ1(γ1) · · · τn(γn); c(Eg,n,d)〉Xg,n,d =
∫

[Mg,n(X,d)]vir
ev∗1 (γ1)ψ

a1
1 · · · ev∗n(γn)ψan

n c(Eg,n,d).

These fit into a twisted genus-g potential F g
c,E and a twisted total descendent

potentialDc,E in just the way that the usual Gromov-Witten invariants do.
There is also a Lagrangian cone Lc,E associated to the twisted theory, but a bit

of work is necessary in order to define it. The reason for this is that the Poincaré
pairing on H(X;
) should be given by three-point correlators. As a result, when
we replace Gromov-Witten invariants by their twisted versions we must modify the
Poincaré pairing, and hence the symplectic structure onH, accordingly. Denote this
modified symplectic vector space byHc,E . There is a symplectic isomorphism

Hc,E → H

x �→ √

c(E)x.

We define the Lagrangian cone Lc,E of the twisted theory by

Lc,E =
√

c(E) · {(p,q) | p = dqF 0
c,E} ⊂ H,

where we use the usual dilaton shift to identify F 0
c,E(t) with a function of q ∈

(Hc,E)+.
The quantum Riemann-Roch theorem of Coates-Givental gives an expression

for Dc,E in terms of a quantized operator acting on the untwisted Gromov-Witten
descendent potentialDX of X:

Theorem 27 ([6]) The twisted descendent potential is related to the untwisted
descendent potential by

exp

⎛

⎝− 1

24

∑

�>0

s�−1
∫

X
ch�(E)cD−1(TX)

⎞

⎠ exp

⎛

⎝

1

2

∫

X
e(X) ∧

⎛

⎝

∑

j≥0
sj chj (E)

⎞

⎠

⎞

⎠Dc,E

= exp

⎛

⎜

⎜

⎝

∑

m>0
�≥0

s2m−1+�
B2m

(2m)! (ch�(E)z2m−1)∧

⎞

⎟

⎟

⎠

exp

⎛

⎝

∑

�>0

s�−1(ch�(E)/z)∧
⎞

⎠DX.

Here B2m are the Bernoulli numbers.
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The basic idea of this theorem is to write

c(Eg,n,d) = exp

⎛

⎝

∑

k≥0
skchk(Rπ∗f ∗E)

⎞

⎠

= exp

⎛

⎝

∑

k≥0
sk
(

π∗(ch(f ∗E)Td∨(Tπ))
)

k

⎞

⎠ ,

using the Grothendieck-Riemann-Roch formula. A geometric theorem expresses
Td∨(Tπ) in terms of ψ classes on various strata of the moduli space, and the rest
of the proof of Theorem 27 is a difficult combinatorial exercise in keeping track of
these contributions.

Taking a semi-classical limit and applying the result discussed in Sect. 5.5 of the
previous section, we obtain:

Corollary 28 The Lagrangian cone Lc,E satisfies

Lc,E = exp

⎛

⎝

∑

m≥0

∑

0≤�≤D

s2m−1+�
B2m

(2m)!ch�(E)z2m−1
⎞

⎠LX.

This theorem and its corollary are extremely useful even when one is only
concerned with the genus zero statement. For example, it is used in the proof
of the Landau-Ginzburg/Calabi-Yau correspondence in [5]. In that context, the
invariants under consideration, known as FJRW invariants, are given by twisted
Gromov-Witten invariants only in genus zero. Thus, Theorem 27 actually says
nothing about higher-genus FJRW invariants. Nevertheless, an attempt to directly
apply Grothendieck-Riemann-Roch in genus zero to obtain a relationship between
FJRW invariants and untwisted invariants is combinatorially unmanageable; thus,
the higher-genus statement, while not directly applicable, can be viewed as a clever
device for keeping track of the combinatorics of the Grothendieck-Riemann-Roch
computation.

6.4 Concluding Remarks

There are a number of other places in which quantization proves useful for Gromov-
Witten theory. For example, it was shown in [13, 20, 22] that relations in the
so-called tautological ring, an important subring of H ∗(Mg,n(X, β)), are invariant
under the action of the symplectic loop group. This was used to give one proof
of Givental’s Conjecture in genus g ≤ 2 (see [9, 30]), and can also be used to
derive tautological relations (see [1, 2, 21]). We refer the interested reader to [23]
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for a summary of these and other applications of quantization with more complete
references.
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Abstract We review some classical and quantum geometry of Calabi-Yau moduli
related to B-model aspects of closed string mirror symmetry. This note comes out of
the author’s lectures in the workshop “B-model aspects of Gromov-Witten theory”
held at University of Michigan in 2013.

1 Introduction

Mirror symmetry is a physics-motivated duality between symplectic geometry
(or the A-model) and complex geometry (or the B-model). In contrast to the
A-model, Calabi-Yau condition is necessary for a well-defined B-model. In this
article we discuss several aspects of local geometry on the moduli space in the
B-model related to closed string mirror symmetry, focusing on compact Calabi-Yau
models and Landau-Ginzburg models.

This article consists of two main parts: classical geometry (or the genus zero
theory) and quantum geometry (or the higher genus theory). The geometry of genus
zero theory can be summarized as defining the Frobenius manifold structure [14]
on the local moduli space of Calabi-Yau geometry. It originated (called the flat
structure) around early 1980s from K. Saito’s theory of primitive forms [32, 33]
in his study of period integrals over vanishing cycles associated to an isolated
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singularity. This has now become the geometric content of Landau-Ginzburg
B-model encoding the genus zero correlation functions. K. Saito’s construction
was extended by Barannikov and Kontsevich [5] to compact Calabi-Yau models via
tools of deformation theory, and packaged into the framework of variation of semi-
infinite Hodge structures [2, 3]. The first part will be mainly reviewing this classical
story. The quantum B-model on Calabi-Yau manifolds has a candidate in physics
via the quantization of a gauge theory [6] (Kodaira-Spencer gauge theory) whose
classical limit describes the deformation of complex structures. Geometrically, such
quantization can be obtained as the infinite dimensional Weyl quantization with the
help of renormalization techniques in quantum field theory [11]. This is a realization
of the topological B-twisted closed string field theory in the sense of Zwiebach [38].
The second part will be focused on explaining this subject.

2 Classical Geometry

2.1 Deformation Theory on Calabi-Yau and Local Moduli

We start with the deformation theory on Calabi-Yau manifolds via polyvector fields
following [5].

2.1.1 Polyvector Fields

Let X be a compact Calabi-Yau manifold of dimension d . �X will be a fixed
holomorphic volume form which is unique up to a constant. We consider

PV(X) =
⊕

0≤i,j≤d

PVi,j (X), PVi,j (X) = A0,j (X,∧iTX)

the space of polyvector fields on X. Here TX is the holomorphic tangent bundle,
andA0,j (X,∧iTX) is the space of smooth (0, j)-forms valued in ∧iTX. PV(X) is a
differential bi-graded commutative algebra: the differential is

∂̄ : PVi,j (X)→ PVi,j+1(X),

and the algebra structure arises from wedge product. Our degree convention is that
elements of PVi,j (X) are of degree j − i. The graded-commutativity says

αβ = (−1)|α||β|βα
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where |α|, |β| denote the degree of α, β respectively. �X induces an identification
between the space of polyvector fields and differential forms

PVi,j (X)
��X∼= Ad−i,j (X)

α → α��X

where � is the contraction, and Ai,j (X) denotes smooth differential forms of type
(i, j). The holomorphic de Rham differential ∂ on forms defines an operator on
PV(X) via the above isomorphism, which we still denote by

∂ : PVi,j (X)→ PVi−1,j (X)

i.e.

(∂α)��X ≡ ∂(α��X), α ∈ PV(X).

The definition of ∂ doesn’t depend on the choice of �X on compact Calabi-Yau
manifolds. It induces a bracket on polyvector fields (Bogomolov-Tian-Todorov
lemma)

{α, β} := ∂ (αβ)− (∂α) β − (−1)|α|α(∂β)

which coincides with the Schouten-Nijenhuis bracket (up to a sign). The fun-
damental algebraic structures of polyvector fields on Calabi-Yau geometry can
be summarized by saying that the tuple {(PV(X), ∂̄),∧, ∂, {−,−}} defines a
differential Gerstenhaber-Batalin-Vilkovisky (GBV) algebra.

We can integrate polyvector fields by the trace map Tr : PV(X)→ C

Tr(α) :=
∫

X

(α��X) ∧�X. (2.1)

This is only non-vanishing on PVd,d(X). Let 〈−,−〉 be the induced pairing
PV(X)⊗ PV(X)→ C

α ⊗ β → 〈α, β〉 ≡ Tr (αβ) .

It is easy to see that ∂̄ is (graded) skew self-adjoint for this pairing and ∂ is (graded)
self-adjoint.

2.1.2 Deformation of Complex Structures

We are interested in the moduli space of complex structures on compact Calabi-
Yau manifolds. The main local result is the smoothness of the moduli space



466 S. Li

(Bogomolov-Tian-Todorov Theorem), which is also a direct consequence of the
differential GBV structure.

Let us fix a choice of Kähler metric on X. Locally, the deformation space of
complex structure of X can be described by the space

Mcx :=
{

μ ∈ PV1,1(X), ‖μ‖ < ε

∣

∣

∣

∣

∂̄μ+ 1

2
{μ,μ} = 0, ∂̄∗μ = 0

}

,

where ε is a sufficiently small number. Let μ1 ∈ H 1(X, TX) be a harmonic element
with respect to the Kähler metric. μ1 represents a tangent vector of the moduli
space at the point X, i.e. a first order deformation. It can be extended to a genuine
deformation

μt =
∞
∑

k=1
tkμk ∈ PV1,1(X), |t| << 1

by solving recursively (in order of powers of t)

∂̄μt = −1

2
{μt, μt }, ∂̄∗μt = 0,

or equivalently by solving

∂̄μi = −1

2

i−1
∑

k=1
{μi, μk−i}, i > 1, ∂̄∗μi = 0.

For a general complex manifold, the harmonic part of the RHS may not be
vanishing, representing the obstructions for solving the above equation. However,
this does not happen for Calabi-Yau manifolds. Indeed, we can solve μt with the
additional property that ∂μ = 0. Suppose we have solved μk for k < i, with
∂̄∗μk = ∂μk = 0. Bogomolov-Tian-Todorov lemma implies that

{μk,μi−k} = ∂(μk ∧ μi−k),

which has no harmonic component. It follows that μi can be solved by

μi = −1

2
∂̄∗G∂(

i−1
∑

k=1
μi ∧ μk−i )

which satisfies ∂̄∗μi = ∂μi = 0. Here G = 1


is the Green’s operator for the
Laplacian  = ∂̄ ∂̄∗ + ∂̄∗∂̄ acting on PV(X). It can be further shown that the
power series μt is convergent given t sufficiently small. This implies that the local
deformation of complex structures on Calabi-Yau manifolds is unobstructed.
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2.1.3 Extended Deformation Space and the Formality Theorem

We can consider the extended deformation spaceM [5] by solving

∂̄μ+ 1

2
{μ,μ} = 0

modulo gauge equivalence. Here μ is allowed to be polyvectors of all types. By the
same argument as above, the deformation problem is unobstructed.

Remark 1 In this paper, we treatM as a formal graded manifold [5].

In [5], Barannikov and Kontsevich have introduced a remarkable way to organize
the above argument via the Formality Theorem. The deformation problem is
controlled by the differential graded Lie algebra (DGLA)

(PV(X), ∂̄, {, }).

There are two closely related DGLA’s. The first one is

(ker ∂, ∂̄, {, }),

where ker ∂ ⊂ PV(X) is the subspace of polyvector fields annihilated by ∂ .
Bogomolov-Tian-Todorov lemma implies that {, } is a well-defined Lie bracket on
ker ∂ . In fact,

{, } : ker ∂ × ker ∂ → im ∂ ⊂ ker ∂.

The second DGLA is

(H, 0, 0)

where H ⊂ PV(X) is the subspace of harmonic elements. We associate the trivial
differential and Lie bracket. There is a well-defined diagram of morphisms of
DGLA’s

(ker ∂, ∂̄, {, })
j

�����
���

���
�� π

����
���

���
���

(PV(X), ∂̄, {, }) (H, 0, 0)

where j is the natural embedding, and π is the harmonic projection. By Hodge
theory, both j and π induce isomorphisms on the cohomology of the differential
complex, hence quasi-isomorphisms of DGLA’s. Since quasi-isomorphisms can be
inverted via L∞ morphisms, we obtain the following Formality Theorem
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Theorem 2 ([5]) The DGLA (PV(X), ∂̄, {, }) is L∞ quasi-isomorphic to the DGLA
(H, 0, 0) of its cohomology.

Quasi-isomorphic DGLA’s have equivalent moduli functors. It follows that the
extended deformation space is smooth, being locally parametrized by H.

2.2 Generalized Period Map and Frobenius Manifold Structure

There is a line bundle L over Mcx
X whose fiber parametrizes the holomorphic

volume forms. It gives rise to the period map (locally)

Mcx → P(Hn(X,C))

by sending [Xt ] ∈Mcx to the line in Hn(X,C) representing the fiber of L.
Period map here can be viewed as varying the holomorphic volume form along

with the deformation of the complex structure. The choice of the deformation of the
pair (X,�X) can be described by a pair (μ, ρ) ∈ PV1,1(X)⊕ PV0,0(X) as follows.
μ defines a deformation of complex structure solving

∂̄μ+ 1

2
{μ,μ} = 0.

It is easy to see that eμ��X is of type (n, 0) in the new complex structure μ. It
differs from the new holomorphic volume form by a factor eρ , which solves the
equation

d(eρeμ��X) = 0.

This can be also read by

∂̄μ+ 1

2
{μ,μ} = 0, ∂̄ρ + ∂μ+ {μ, ρ} = 0,

or simply

Q(μ+ zρ)+ 1

2
{μ+ zρ,μ + zρ} = 0,

whereQ = ∂̄ + z∂ and z is a formal parameter.
Barannikov [2, 3] extended the period map to the “generalized period” on the

extended moduli spaceM. It can be viewed as the compact Calabi-Yau analogue of
Saito’s primitive period map [33] for isolated singularities. We briefly review his
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construction here. Consider the new DGLA

(PV(X)[[z]],Q, {, }).

Remark 3 The formal variable z is the same as h̄ in [2, 3].

Notation 4 Given a vector space A, A[[z]] (A((z)) respectively) will denote the
formal power series (Laurent series respectively) in z valued in A. A[[u]] will
denote the formal power series in u = {uα} valued in A. If both sets of variables
are involved, the topology is understood as follows: A((z))[[u]] ≡ B[[u]] for
B = A((z)), while A[[u]]((z)) ≡ C((z)) for C = A[[u]], etc.

There exists universal solutions [2] (modulo gauge equivalence)

μ(u, z) =
∑

α

μα(z)u
α + 1

2

∑

α,β

μαβ(z)u
αuβ + · · · ∈ PV(X)[[z]][[u]]

to the associated Maurer-Cantan equation

Qμ(u, z)+ 1

2
{μ(u, z), μ(u, z)} = 0,

where uα are the deformation parameters as coordinates on M, and μα(z) forms
a C[[z]]-basis of H ∗(PV(X)[[z]],Q). It is direct to check that the Maurer-Cartan
equation is formally equivalent to

Qeμ(u,z)/z = 0.

Note that in our notation, eμ(u,z)/z ∈ PV(X)((z))[[u]].
Notation 5 Given μ ∈ PV(X)[[z]] with Qμ = 0, we will use [μ] to represent
its cohomology class in H ∗(PV(X)[[z]],Q). Similar notations apply to other
cohomologies.

Let us define an isomorphism

�� : PV(X)((z))→ A(X)((z)), zkα → zk+i−1α��X, α ∈ PVi,j (X).

(2.2)

It transfers Q to the de Rham differential

�� ◦Q = d ◦ ��.

As a result, the universal solutions μ(u, z) defines a cohomology class

��(
[

zeμ(u,z)/z
]

) ∈ H ∗(X,C)((z))[[u]].
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Definition 6 For simplicity, let us denote from now on by

S(X) := PV(X)((z)), S+(X) := PV(X)[[z]], S−(X) := z−1 PV(X)[z−1].

Lemma 7 Under the isomorphism ��, we have

��(S+(X)) =
∏

p∈Z
zd−p+1FpA(X),

where FpA(X) = A≥p,∗(X). At the cohomology level we have an isomorphism

�� : H ∗(S+(X),Q)
*→
∏

p∈Z
zd−p+1FpH ∗(X,C).

Similarly

�� : H ∗(S(X),Q)
*→ H ∗(X,C)((z)).

Definition 8 We define a symplectic pairing on S(X) by

ω(f (z)α, g(z)β) := Resz=0 (f (z)g(−z)dz)Tr(αβ).

The differential Q is (graded) skew-symmetric with respect to the symplectic
pairing ω. Therefore ω descends to define a symplectic pairing on the cohomology
H ∗(S(X),Q), where H ∗(S+(X),Q) becomes an isotropic subspace.

Definition 9 An opposite filtration of H ∗(S(X),Q) is a linear isotropic subspace
L ⊂ H ∗(S(X),Q) such that

(1) H ∗(S(X),Q) = H ∗(S+(X),Q) ⊕ L,

(2) L is preserved by the operator z−1 : H ∗(S(X),Q)→ H ∗(S(X),Q).

The subspaces zkH ∗(S+(X),Q) ⊂ H ∗(S+(X),Q), k ≥ 0, defines a decreasing
filtration, whose associated graded space is

GrH ∗(S+(X),Q) ∼= H ∗(X,∧∗TX)[[z]].

It is easy to see that under ��, this filtration can be identified with the Hodge
filtration, and L is equivalent to an opposite splitting filtration. Given an opposite
filtration L, it defines us a splitting projection

πL+ : H ∗(S(X),Q)→ H ∗(S+(X),Q),

and an isomorphism of vector spaces

H ∗(S+(X),Q)/zH ∗(S+(X),Q) ∼= H ∗(S+(X),Q) ∩ zL,
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which further induces an isomorphism of C[[z]]-modules

GrH ∗(S+(X),Q) ∼= H ∗(S+(X),Q).

Definition 10 L leads to a choice of C[[z]]-basis of H ∗(S+(X),Q) by
H ∗(S+(X),Q) ∩ zL. We will let {μL

α }α denote such a basis that

H ∗(S+(X),Q) ∩ zL = SpanC{[μL
α ]}.

Proposition 11 Given an opposite filtration L, there exists a universal solution of
the form

μL(τ, z) =
∑

α

μL
α τα

z +
1

2

∑

α,β

μαβ(z)τ
α
z τβ

z + · · · ∈ PV(X)[[z]][[τ]],

where τ = {τα} are coordinates onM, τα
z = τα +O(τ 2) ∈ C[[z]][[τ]] such that

πL+ (
[

zeμ
L(τ,z)/z − z

]

) =
∑

α

μL
α τα.

Proof Up to a (z-dependent) linear change of coordinates on u, we can assume that
the universal solution μ(u, z) is of the form

μ(u, z) =
∑

α

μL
α uα +O(u2).

Consider the projection

πL+ (
[

zeμ(u,z)/z − z
]

) ∈ H ∗(S+(X),Q)[[u]].

Since μL
α forms a C[[z]]-basis of H ∗(S+(X),Q), we can write

πL+ (
[

zeμ(u,z)/z − z
]

) =
∑

α

μL
α τα(u, z)

where

τα(u, z) = uα +O(u2) ∈ C[[z,u]].

In particular, uα can be solved in terms of τα, z by

uα(τ, z) = τα +O(τ 2) ∈ C[[z, τ ]].

Then μL(τ, z) = μ(u(τ, z), z). ��
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In particular, we find the relation

[

zeμ
L(τ,z)/z

]

∈ z+
∑

α

[

μL
α

]

τα + L[[τ ]], (2.3)

where L = z−1SpanC{
[

μL
α

]}[z−1].
Definition 12 ([2]) Given an opposite filtration L, we define the generalized period
map

%L :M→ H ∗(X,C)

as the map of formal (graded) manifolds from (M, 0) to (H ∗(X,C),�X) by

τα → ��(
[

zeμ
L(τ,z)/z

]

)|z=1.

It is easy to see that %L is an isomorphism of formal graded manifolds.

2.2.1 Frobenius Manifold Structure

Nowwe explain Barannikov’s formulation [2, 3] of Frobenius manifold structure on
M associated to an opposite filtration.

Definition 13 Let H ≡ H ∗(S(X),Q), and let H(0)
M ⊂ H[[τ ]] be the free

C[[z]][[τ]]-module generated by [z∂ταeμ(τ,z)/z]. The symplectic pairing ω extends
C[[τ ]]-linearly to

ω : H[[τ ]] ⊗C[[τ ]] H[[τ ]] → C[[τ ]]

which we denote by the same symbol. τ is the coordinate defined in Proposition 11.

Lemma 14 H[[τ ]] = H(0)
M⊕L[[τ ]]. Moreover, this is an isotropic decomposition,

i.e. ω(H(0)
M,H(0)

M) = 0.

Proof The decomposition H[[τ ]] = H(0)
M ⊕ L[[τ ]] follows from (2.3) since

[

z∂ταeμ(τ,z)/z
] ∈ μL

α + L[[τ ]]. To see H(0)
M is an isotropic subspace,

ω(a(z)z∂ταeμ(τ,z)/z, b(z)z∂τβ eμ(τ,z)/z)

=Resz=0 Tr(a(z)b(−z)∂ταμ(τ, z)∂τβμ(τ,−z)e(μ(τ,z)−μ(τ,−z))/z)dz.

If a(z), b(z) contains only non-negative powers of z, the expression inside Tr has
only non-negative powers of z whose residue vanishes. ��
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Lemma 15 (Transversality) ∂τα : H(0)
M → z−1H(0)

M.

Proof By Lemma 14, we only need to show that ω(z∂ταH(0)
M,H(0)

M) = 0, which
follows from a similar calculation as in Lemma 14. ��
Corollary 16 There exists Aγ

αβ(τ ) ∈ C[[τ ]] such that

(∂τα ∂τβ − z−1Aγ
αβ(τ )∂τγ )

[

eμ(τ,z)/z
]

= 0.

Proof By Eq. (2.3) and Lemma 14, [z∂ταeμ(τ,z)/z] forms a C[[τ ]]-basis of H(0)
M ∩

zL[[τ ]]. By Eq. (2.3) and Lemma 15,

z∂τβ [z∂τα eμ(τ,z)/z] ∈ H(0)
M ∩ zL[[τ ]],

hence a C[[τ ]]-linear combination of {[z∂ταeμ(τ,z)/z]}α. ��
The following corollary is a direct consequence.

Corollary 17 The generalized period satisfies

(∂τα ∂τβ − A
γ
αβ(τ )∂τγ )%L = 0.

Let us define a metric by

gαβ := ω(∂τα eμ(τ,z)/z, z∂τβ eμ(τ,z)/z).

Lemma 18 gαβ is a non-degenerate constant matrix.

Proof It follows from Eq. (2.3) that gαβ = Tr(μL
α ∧ μL

β ). ��
Corollary 19 Let Aαβγ (τ ) :=∑δ A

δ
αβ(τ )gδγ . Then Aαβγ (τ ) is (graded) symmet-

ric in α, β, γ .

Proof This follows from ∂γ gαβ = 0. ��
Lemma 20 A

γ
αβ(τ ) ∈ C[[τ ]] satisfies the WDVV equation.

Proof Define the Dubrovin connection

∇τα = ∂τα − z−1Aα,

where Aα is the C[[z]][[τ ]]-linear transformation onH(0)
M defined on the basis by

Aα :
[

z∂τβ eμ(τ,z)/z
]

→
∑

γ

A
γ
αβ

[

z∂τγ eμ(τ,z)/z
]

.
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Then ∇ [z∂ταeμ(τ,z)/z
] = 0 on the basis. The WDVV equation is equivalent to

∇2 = 0, which follows from the curvature condition. ��
The properties above can be summarized as follows. The triple (∂τα , A

γ
αβ, gαβ)

defines a (formal) Frobenius manifold structure on M, with τα being the flat
coordinates. In particular, there exists a function FL

0 (τ ) satisfying

Aαβγ (τ ) = ∂τα ∂τβ ∂τγ FL
0 (τ ).

There also exists the Euler vector field and identity vector field.
FL
0 (τ ) is called the prepotential, encoding the genus zero correlation functions

in the Calabi-Yau B-model. It depends on the choice of the opposite filtration L.
When X is around the large complex limit, the degeneration leads to an opposite
Monodromyweight filtration, and FL

0 (τ ) is identified with the genus zero Gromov-
Witten invariants of the mirror Calabi-Yau for a large class of examples [2, 16, 29].

2.3 Landau-Ginzburg Model

Now we move to the Landau-Ginzburg B-model. We will focus on an isolated
singularity defined by a weighted homogeneous polynomial

f : X = C
n → C, f (λq1x1, · · · , λqnxn) = λf (x1, · · · , xn).

qi are called the weights of xi , and the central charge of f is defined by

ĉf =
∑

i

(1− 2qi).

Associated to f , K. Saito has introduced the concept of a primitive form [33], which
induces a Frobenius manifold structure (originally called a flat structure) on the
local universal deformation space of f . The construction of primitive forms for
arbitrary isolated singularities is later fully established by M. Saito [34]. See also
[4, 12, 13, 37] for generalizations to certain class of Laurent polynomials. This gives
rise to the genus zero correlation functions in the Landau-Ginzburg B-model. The
generalized period map for compact Calabi-Yau manifolds can be viewed as the
analogue of primitive period map. See [35] also for a summary of primitive form in
the context of mirror symmetry.

In this rest of this section, we will give a brief review of primitive forms. Our
presentation will base on the work [28], which exhibits a unified geometry of
Landau-Ginzburg and Calabi-Yau models. We will also describe the perburbative
formula of primitive forms [28] which is fully developed in [20, 27] to prove the
mirror symmetry conjecture between Landau-Ginzburg models.
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2.3.1 Universal Unfolding

The DGLA controlling the deformation theory has a natural twisting in the Landau-
Ginzburg case

(

PV(X), ∂̄f , {, }
)

, ∂̄f = ∂̄ + df �,

where df � is the contraction with the holomorphic 1-form df . We will be also
working with a subcomplex

PVc(X) ⊂ PV(X)

of polyvector fields with compact support. Since X = Cn is Stein, we have

Lemma 21 The embedding (PVc(X), ∂̄f ) ↪→ (PV(X), ∂̄f ) is quasi-isomorphic.
The cohomology is given by

H ∗(PV(X), ∂̄f ) ∼= Jac0(f ),

where Jac0(f ) = C{xi}/{∂if } is the Milnor ring of the isolated singularity.

It follows that in the Landau-Ginzburg case, the universal solutions of the
associated Maurer-Cartan equation is greatly simplified, and can be represented as
a deformation of f (x) via the universal unfolding:

F : Cn × C
μ → C, F (x, s) := f (x)+

μ
∑

α=1
sαφα(x), s = (s1, · · · , sμ).

where μ = dimC Jac0(f ), and {φα(x)} is a basis of Jac0(f ).
In the case f being weighted homogenous, we can further assume that φα are all

weighted homogeneous with increasing degrees

0 = deg(φ1) ≤ deg(φ2) ≤ · · · ≤ deg(φμ) = ĉf , where deg(xi) = qi.

We will extend our weight degree assignment to the deformation parameter

deg(sα) := 1− deg(φα)

such that F becomes weighted homogeneous of total degree 1. Let us denote by

M := (Cμ, 0)

the germ around 0 ∈ Cμ, parametrizing the local deformation space. {sα} is viewed
as a coordinate system onM.
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Let � := dx1 ∧ · · · ∧ dxn be our fixed holomorphic volume form. Let �k
X,0 be

the germ of holomorphic k-forms at 0.

Definition 22 �f := �n
X,0/df ∧�n−1

X,0 .

With our choice of �, we can identify

Jac0(f )→ �f , [φ] → [φ�].

There exists a classical residue pairing defined on �f :

ηf : �f ⊗�f → C.

This has an alternate geometric description as follows. Recall the trace map

Tr : PVc(X)→ C, μ→
∫

X

μ��∧�

is well-defined on PVc(X). It is easy to see that it descends to cohomologies

Tr : H ∗(PVc(X), ∂̄f )→ C.

Proposition 23 ([28]) Let ι : H ∗(PVc(X), ∂̄f ) → H ∗(PV(X), ∂̄f ) denote the
isomorphism as in Lemma 21. Then the residue pairing is related to the trace map by

ηf ([φ1�], [φ2�]) = Tr(ι−1([φ1]) ∧ ι−1([φ2])), ∀[φi] ∈ Jac0(f ).

2.3.2 Brieskorn Lattice and Higher Residues

Analogous to the Calabi-Yau case, we consider the following extended DGLA

(PV(X)[[z]],Qf , {, }), Qf := ∂̄f + z∂�,

where ∂� is defined with respect to the volume form �.

Definition 24 ([32]) Define H(0)
f := �n

X,0[[z]]/(df + zd)�n−1
X,0 the (formally

completed) Brieskorn lattice associated to f .

Lemma 25 ([28]) The embedding (PVc(X)[[z]],Qf ) ↪→ (PV(X)[[z]],Qf ) is a
quasi-isomorphism. It induces isomorphisms

H ∗(PV(X)[[z]],Qf ) ∼= H 0(PV(X)[[z]],Qf )
z��∼= H(0)

f ,

where �� is defined the same as in (2.2).
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There is a similar semi-infinite Hodge filtration on H(0)
f given by H(−k)

f :=
zkH(0)

f , with graded pieces

H(−k)
f /H(−k−1)

f
∼= �f .

In particular, H(0)
f is a free C[[z]]-module of rank μ. We will also denote the

extension to Laurent series by

Hf := H(0)
f ⊗C[[z]] C((z)).

There is a naturalQ-grading onH(0)
f defined by assigning the weight degrees

deg(xi) = qi, deg(dxi) = qi, deg(z) = 1.

For a homogeneous element of the form ϕ = zkg(xi)dx1 ∧ · · · ∧ dxn, we define

deg(ϕ) = deg(g)+ k +
∑

i

qi .

In [32], K. Saito constructed a higher residue pairing

Kf : H(0)
f ⊗H(0)

f → znC[[z]]

which satisfies the following properties

1. Kf is equivariant with respect to the Q-grading, i.e.,

deg(Kf (α, β)) = deg(α)+ deg(β)

for homogeneous elements α, β ∈ H(0)
f .

2. Kf (α, β) = (−1)nKf (β, α), where the − operator takes z→−z.
3. Kf (v(z)α, β) = Kf (α, v(−z)β) = v(z)Kf (α, β) for v(z) ∈ C[[z]].
4. The leading z-order of Kf defines a pairing

H(0)
f /zH(0)

f ⊗H(0)
f /zH(0)

f → C, α ⊗ β �→ lim
z→0

z−nKf (α, β)

which coincides with the usual residue pairing

ηf : �f ⊗�f → C.

The last property implies that Kf defines a semi-infinite extension of the residue
pairing, which explains the name “higher residue”. An alternate way to understand
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the higher residue pairing is through the trace map in the spirit of Proposition 23.
Let us define a pairing

K̃f : PVc(X)[[z]]×PVc(X)[[z]] → znC[[z]], K̃f (f (z)α, g(z)β) = znf (z)g(−z)Tr(αβ).

It is easy to see that K̃f descends to H ∗(PVc(X)[[z]],Qf ) which is canonically
isomorphic to H ∗(PV(X)[[z]],Qf ).

Proposition 26 ([28]) K̃f coincides with Kf under the isomorphism H ∗(PV(X)

[[z]],Qf ) ∼= H(0)
f as in Lemma 25.

The Brieskorn lattice and the higher residue pairing can be extended to the family
case on the germM associated to the unfolding F . We have

H(0)
F := �n

X×M/M,0[[z]]/(dF + zd)�n−1
X×M/M,0

where �∗
X×M/M,0 is the germ of the sheaf of relative holomorphic differential

forms at 0. It can be viewed as a free sheaf of rank μ on M × ̂, where ̂ is the
formal disk with parameter z.H(0)

F is equipped with a flat Gauss-Manin connection
onM× ̂, denoted by ∇GM . The higher residue pairing extends to

KF : H(0)
F ⊗OM H(0)

F → znOM[[z]]

satisfying the following properties

1. KF (s1, s2) = (−1)nKF (s2, s1), where − is the operator z→−z.
2. KF (g(z)s1, s2) = KF (s1, g(−z)s2) = g(z)KF (s1, s2) for any g ∈ OM[[z]].
3. ∂V KF (s1, s2) = KF (∇GM

V s1, s2)+KF (s1,∇GM
V s2) for any V ∈ TM.

4. z∂zKF (s1, s2) = KF (∇GM
z∂z s1, s2)+KF (s1,∇GM

z∂z
s2).

5. The induced pairing

H(0)
F /zH(0)

F ⊗OM H(0)
F /zH(0)

F → OM

coincides with the classical residue pairing.

2.3.3 Primitive Forms

Definition 27 A section ζ ∈ H(0)
F is called a primitive form if it satisfies the

following conditions:

(1) (Primitivity) The section ζ induces an OM-module isomorphism

z∇GMζ : TM → H(0)
F /zH(0)

F ; V �→ z∇GM
V ζ.
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(2) (Orthogonality) For any local sections V1, V2 of TM,

KF

(∇GM
V1

ζ,∇GM
V2

ζ
) ∈ zn−2OM.

(3) (Holonomicity) For any local sections V1, V2, V3 of TM,

KF

(∇GM
V1
∇GM

V2
ζ,∇GM

V3
ζ
) ∈ zn−3OM ⊕ zn−2OM;

KF

(∇GM
z∂z
∇GM

V1
ζ,∇GM

V2
ζ
) ∈ zn−3OM ⊕ zn−2OM.

(4) (Homogeneity) There is a constant r ∈ C such that

(

∇�
z∂z
+∇�

E

)

ζ = rζ.

where E is the Euler vector field. In the case of weighted homogeneous
singularity, we have r =∑i q

i .

The space of primitive forms has a geometric description. Let us extend the
higher residue pairing to

Kf : Hf ⊗Hf → C((z)).

This defines a symplectic pairing ωf onHf by

ωf (α, β) := Resz=0 z−nKf (α, β)dz,

withH(0)
f being an isotropic subspace. Following [33],

Definition 28 A good section σ is a splitting of the quotientH(0)
f → �f :

σ : �f → H(0)
f ,

such that: (1) σ preserves the Q-grading; (2) Kf (Im(σ ), Im(σ )) ⊂ znC. A basis of

the image Im(σ ) of a good section σ will be called a good basis ofH(0)
f .

Definition 29 A good opposite filtration L is defined by a splitting

Hf = H(0)
f ⊕ L

such that: (1) L preserves the Q-grading; (2) L is an isotropic subspace; (3) z−1 :
L→ L.

Remark 30 Here for f being weighted homogeneous, (1) is equivalent to the
conventional condition that ∇GM

z∂z
preserves L (see e.g. [28] for an exposition).
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The above two definitions are equivalent. In fact, a good opposite filtrationL defines

the splitting σ : �f

∼=→ H(0)
f ∩ zL. Conversely, a good section σ gives rise

to the good opposite filtration L = z−1Im(σ )[z−1]. As shown in [33, 34], the
primitive forms associated to weighted homogeneous singularities are in one-to-
one correspondence with good sections (up to a nonzero scalar). We remark that for
general isolated singularities, we need the notion of very good sections [34, 36] in
order to incorporate with the monodromy.

Theorem 31 ([33]) The space of primitive forms of f up to rescaling by a constant
is isomorphic to the space of good sections.

Remark 32 The generalization of this identification to arbitrary isolated singulari-
ties is established by M. Saito [34, 36].

2.4 Perturbative Theory of Primitive Forms

In this subsection, we describe the algebraic algorithm [27, 28] to compute the
primitive form, flat coordinates and the prepotential with respect to a good basis.

We start with a good basis {[φα�]}μα=1 of H(0)
f , where {φα}μα=1 are weighted

homogeneous polynomials in C[x] that represent a basis of Jac0(f ) and φ1 = 1.

2.4.1 The Exponential Map

Let F be a local universal unfolding of f (x)

F (x, s) := f (x)+
μ
∑

α=1
sαφα(x), s = (s1, · · · , sμ).

Let B := Span
C
{[φα�]} ⊂ H(0)

f be spanned by the chosen good basis. Then

H(0)
f = B[[z]], Hf = B((z)).

Let BF := SpanC{φα�} be the vector space spanned by the forms φα�. We use a
different notation to distinguish it with B, since BF should be viewed as a subspace
of the Brieskorn lattice for the unfolding F . See [27, 28] for more details. Consider
the following exponential operator [27, 28]

e(F−f )/z : BF → B((z))[[s]]
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defined as a C-linear map on the basis of BF as follows. Let

C[s]k := Symk(SpanC{s1, · · · , sμ})

denote the space of k-homogeneous polynomial in s (not to be confused with
the weighted homogeneous polynomials). As elements in Hf ⊗ C[s]k , we can
decompose

[z−k(F − f )kφα�] =
∑

m≥−k

∑

β

h
(k)
αβ,mzm[φβ�],

where h
(k)
αβ,m ∈ C[s]k. Then we define

e(F−f )/z(φα�) :=
∞
∑

k=0

∑

β

∑

m≥−k

h
(k)
αβ,m

zm

k! [φβ�] ∈ B((z))[[s]].

The exponential map extends to a C((z))[[s]]-linear isomorphism

e(F−f )/z : BF ((z))[[s]] → B((z))[[s]],

which plays the role of parallel transport with respect to the Gauss-Manin connec-
tion. Let

Kf : B((z))[[s]] × B((z))[[s]] → C((z))[[s]]

also denote the C[[s]]-linear extension of the higher residue pairing toHf [[s]].
Lemma 33 ([27, 28]) For any ϕ1, ϕ2 ∈ BF , we have

Kf (e
(F−f )/zϕ1, e

(F−f )/zϕ2) ∈ znC[[z, s]]

In particular, e(F−f )/z maps BF [[z]] to an isotropic subspace ofHf [[s]].
Theorem 34 ([27, 28]) Given a good basis {[φαd

nx]}μα=1 ⊂ H(0)
f , there exists a

unique pair (ζ,J ) satisfying the following: (1) ζ ∈ BF [[z]][[s]], (2)J ∈ [�] +
z−1B[z−1][[s]] ⊂ Hf [[s]], and

e(F−f )/zζ = J . (6)

Moreover, both ζ and J are homogeneous of weight
∑

i qi .

This is the analogue of (2.3) for Calabi-Yau. ζ(s) can be solved recursively
with respect to the order in s. We refer to [27] for details, and to [28] for a
compact formula of this algorithm. The decomposition is a formal solution of
the Riemann-Hilbert-Birkhoff problem for primitive forms [33]. The volume form
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ζ =
∞
∑

k=0
∑

α

ζ α
(k)[φα�] gives the power series expansion of a representative of the

primitive form associated to the good basis {[φαd
nx]}μα=1.

2.4.2 Flat Coordinates and Potential Function

Let (ζ,J ) be the unique solution of (6). ζ represents the power series expansion
of a primitive form. However for the purpose of mirror symmetry, it is more
convenient to work with J , which plays the role of Givental’s J-function (see [17]
for an introduction). This allows us to read off the flat coordinates and the potential
function of the associated Frobenius manifold structure.

With the embedding z−1C[z−1][[s]] ↪→ z−1C[[z−1]][[s]], we decompose

J = [dnx] +
−∞
∑

m=−1
zmJm, where Jm =

∑

α

J α
m [φα�],J α

m ∈ C[[s]].

We denote the z−1-term by

tα(s) := J α
−1(s).

It is easy to see that tα = sα + O(s2) and is homogeneous of the same weight as
sα . Therefore tα defines a set of new homogeneous local coordinates on the (formal)
deformation space of f .

Proposition 35 The function J = J (s(t)) in coordinates tα satisfies

∂tα ∂tβJ = z−1
∑

γ

A
γ
αβ(t)∂tγ J

for some homogeneous A
γ
αβ(t) ∈ C[[t]] of weighted degree degφα + degφβ −

degφγ . Moreover, for any α, β, γ, δ,

∂tαA
δ
βγ = ∂tβA

δ
αγ ,

∑

σ

Aδ
ασA

σ
βγ =

∑

σ

Aδ
βσA

σ
αγ

Lemma 36 In terms of the coordinates tα , we have

Kf (z∂tαJ , z∂tβJ ) = zngαβ.

Here gαβ is the constant equal to the residue pairing ηf (φα�, φβ�).
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Similarly, the triple (∂tα , A
γ
αβ, gαβ) defines a (formal) Frobenius manifold struc-

ture on a neighborhood S of the origin with {tα} being the flat coordinates, together
with the potential function F0(t) satisfying

Aαβγ (t) = ∂tα∂tβ ∂tγ F0(t).

It is not hard to see that F0(t) is homogeneous of degree 3 − ĉf . The potential
function F0(t) can also be computed perturbatively.

Remark 37 ζ is in fact an analytic primitive form [28]. Therefore, both tα andF0(t)
are analytic functions of s at the germ s = 0.

Remark 38 The closed formula of primitive forms for weighted homogenous
singularities only exists for ADE (ĉf < 1) and simple elliptic singularities
ĉf = 1 [33]. They can be easily obtained via the perburbative method [28].
For ĉf > 1, expressions of primitive forms are unknown and this has become
long one of the major obstacles toward understanding mirror symmetry between
Landau-Ginzburg models. It turns out that the perturbative formula, together
with the WDVV equation, is enough to compute the full data of the Landau-
Ginzburg B-model. The first non-trivial examples are Arnold’s unimodular
exceptional singularities, whose mirror symmetry with FJRW-theory [15] (Landau-
Ginzburg A-model) is established [27] via the perburbative method. Such
mirror symmetry between singularity theories is fully established in [20] for
almost all weighted homogeneous polynomials when Landau-Ginzburg mirrors
exist.

3 Quantum Geometry

In this section, we will quantize the symplectic structure that appears in the
previous section for the generalized period maps, or the primitive forms.We analyze
Givental’s symplectic loop space formalism in the context of B-model geometry,
and explain the Fock space construction via the renormalization techniques of gauge
theory. It leads to the quantum BCOV theory developed in [11, 23]. This is parallel
to another categorical approach [8, 9, 22] to the quantum B-model associated to
a Calabi-Yau categories of D-branes. Our quantum field theory approach has the
advantage of manifest physics intuitions and is related to methods of background
symmetries and integrable hierarchies.
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3.1 A Toy Model of Weyl Quantization

3.1.1 Weyl Algebra and Fock Space

Let us recall the construction of the Fock module for a finite dimensional dg
symplectic vector space (V , ω, d), where ω is the symplectic pairing on V , and
d is the differential which is skew self-adjoint with respect to ω. Let

W(V ) :=
∏

n≥0
(V ∗)⊗n[[h̄]]/ ∼

be the (formal) Weyl algebra of V , which is the pro-free dg algebra generated by
the linear dual V ∗ and a formal parameter h̄, subject to the relation

[a, b] ∼ h̄ω−1(a, b), ∀a, b ∈ V ∗.

Here ω−1 ∈ ∧2V is the inverse of ω, and [a, b] := a ⊗ b ∓ b ⊗ a is the
graded commutator in the tensor algebra generated by V ∗. Let V+ be a Lagrangian
subcomplex of V , and Ann(V+) ⊂ V ∗ be the annihilator of V+. Then the Fock
module Fock(V+) is defined to be the quotient

Fock(V+) :=W(V )/W(V )Ann(V+).

Since V+ is preserved by the differential,Fock(V+) naturally inherits a dg structure
from d . We will denote it by d̂ .

Let us choose a complementary linear Lagrangian subspace V− ⊂ V such that

V = V+ ⊕ V−.

V− may not be preserved by the differential. It allows us to formally identify

V ∼= T ∗(V+)

Let

O(V+) =
∏

n≥0
Symn(V ∗+)

be the space of formal functions on the graded vector space V+. V− defines a
splitting of the map V ∗ → V ∗+, hence a morphism

O(V+)[[h̄]] ��

∼=

����
���

���
��

W(V )

��
Fock(V+)
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which identifies the Fock module with the algebra O(V+)[[h̄]]. The differential d̂
can be described as follows. Let π+ : V → V+ be the projection corresponding to
the splitting V = V+ ⊕ V−. Consider (d ⊗ 1)ω−1, which is an element of V ⊗ V .
Let P be the projection

P = π+ ⊗ π+
(

(d ⊗ 1)ω−1
)

∈ V+ ⊗ V+

and it is easy to see that P ∈ Sym2(V+). Let ∂P : O(V+)→ O(V+) be the operator
of contracting with the symmetric 2-tensor P

∂P : Symn(V ∗+)→ Symn−2(V ∗+).

Lemma 39 Under the isomorphism Fock(V+) ∼= O(V+)[[h̄]], d̂ takes the form

d̂ = d + h̄∂P

where d here is the induced differential on O(V+) from d on V+.

∂P will be called a BV operator. It induces a bracket on O(V+) by

{�1,�2}P := ∂P (�1�2)− (∂P�1)�2 − (−1)|�1|�1∂P�2, �i ∈ O(V+).

Here |�| is the cohomology degree of �. We will also need a slightly larger Fock
space given by

Fock+(V+) :=
∞
∏

k=0

(
⊕

m≥0,n∈Z
m+2n=k

Symm(V ∗+)h̄n
)

,

i.e. we allow negative powers of h̄ in an appropriate topology.

3.1.2 Lagrangian and Quantization

In the classical geometry, we are interested in a Lagrangian submanifold L of V .
Under the isomorphism

V ∼= T ∗(V+),

L can be represented (locally) as a graph L = Graph(dF0). We impose a symmetry
condition that d is tangent to L, where we treat d as defining a square-zero vector
field on V . This can be viewed as an infinitesimal gauge symmetry.



486 S. Li

Lemma 40 d being tangent to L is equivalent to the following equation for F0

dF0 + 1

2
{F0, F0}P = 0.

This is called the classical master equation. It says that d +{F0,−}P defines a new
square-zero vector field on V+. Geometrically, let

π+|L : L→ V+.

Then d + {F0,−}P = (π+|L)∗(d) is the push-forward of the vector field d on L.
In the quantum theory, we are interested in a vector |F 〉 ∈ Fock+(V+) satisfying

the “gauge invariance condition”: d|F 〉 = 0. To relate |F 〉 to L in the h̄ → 0
classical limit, we consider |F 〉 of the form represented by eF/h̄

|F 〉 ↔ eF/h̄, F =
∑

g≥0
h̄gFg ∈ O(V+)[[h̄]].

By Lemma 39, the gauge invariance becomes (d + h̄∂P )eF/h̄ = 0, or equivalently

(d + h̄∂P )F + 1

2
{F,F }P = 0. (3.1)

This is called the quantum master equation.
In summary of our toy model, the quantization scheme quantizes the Lagrangian

L to a state |F 〉 in the Fock space. Equivalently, it quantizes F0 which satisfies the
classical master equation to F = F0+ h̄F1+· · · which satisfies the quantummaster
equation.

3.2 Symplectic Geometry and BCOV Theory

Following Givental’s symplectic formulation [18, 19] of Gromov-Witten theory in
the A-model and the parallel Barannikov’s work [1, 2] in the B-model, our dg
symplectic vector space is (note that our degree assignment in this article differs
from that in [11])

S(X) = PV(X)((z)),

with differentialQ = ∂̄ + z∂ and symplectic pairing ω by Definition 8.
In [6], Bershadsky et al. introduced a gauge theory for polyvector fields on

Calabi-Yau three-folds. This is further extended to arbitrary Calabi-Yau manifolds
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in [11]. The space of fields of the BCOV theory is

S+(X) ≡ PV(X)[[z]]

which is a linear isotropic subspace of S(X). The classical action functional of the
BCOV theory can be constructed from the following Lagrangian (the embedding is
in the sense of formal scheme via functor of points on Artinian rings [11])

LX =
{

z(eμ/z − 1)|μ ∈ S+(X)
} ⊂ S(X).

This can be viewed as the lifting of that in Proposition 11 to the cochain level. The
geometry of LX can be described by the following

Lemma 41 ([11]) LX is a formal Lagrangian submanifold of S(X), preserved by
the differential Q = ∂̄ + z∂ . Moreover, LX + z is a Lagrangian cone preserved by
the infinitesimal symplectomorphism of S(X) given by multiplying by z−1.

Remark 42 LX + z is called the dilaton shift of LX [18].

Consider the splitting

S(X) = S+(X)⊕ S−(X) (3.2)

where recall S−(X) = z−1 PV(X)[z−1]. It allows us to formally identify

S(X) ∼= T ∗(S+(X)).

The generating functional FLX
is a formal function on S+(X) such that

LX = Graph(dFLX
).

The explicit formula is worked out in [11]

Proposition 43 ([11]) FLX
(μ) = Tr 〈eμ〉0, where

〈−〉0 : Sym(PV(X)[[z]])→ PV(X)

is given by intersection of ψ-classes over the moduli space of marked rational
curves

〈

α1z
k1, · · · , αnz

kn
〉

0
:= α1 · · ·αn

∫

M0,n

ψ
k1
1 · · ·ψkn

n =
(

n− 3

k1, · · · , kn
)

α1 · · ·αn

Definition 44 ([11]) The classical BCOV interaction is defined to be the formal
local functional on S+(X) given by FLX

.
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Remark 45 Our definition of BCOV interaction extends the original Kodaira-
Spencer interaction in [6] by turning on the “gravitational descendants” z. It is also
equivalent to that used by Losev-Shadrin-Shneiberg [30] in the discussion of finite
dimensional toy models of Hodge field theory.

We can transfer the geometry of the Lagrangian LX into properties of FLX
.

Proposition 46 ([11]) FLX
satisfies the classical master equation

QFLX
+ 1

2

{

FLX
,FLX

} = 0

where Q is the induced derivation on the functionals of S+(X), and {−,−} is the
Poisson bracket on local functionals induced from the distribution representing the
operator ∂ (see Remark 52).

This is equivalent to thatLX is preserved byQ (See Lemma 40 for an explanation
in the toy model). The classical master equation implies that Q + {FLX

,−}
is a square-zero operator acting on local functionals. In physics terminology,
it generates the gauge symmetry, and defines the gauge theory in the Batalin-
Vilkovisky formalism.

3.3 Givental’s Formalism via Renormalization

The dg symplectic vector space related to the BCOV theory is (S(X), ω,Q). If
we run the machine to construct the Fock space as in the previous section, we
immediately run into trouble: PV(X) is infinite dimensional! This is a well-known
phenomenon in quantum field theory, which is related to the difficulty of ultra-violet
divergence. The standard way of solving this is to use the renormalization technique.
We will follow the approach developed in [10].

3.3.1 Functionals on the Fields

Let S+(X)⊗n be the completed projective tensor product of n copies of S+(X). It
can be viewed as the space of smooth polyvector fields onXn with a formal variable
z for each factor. Let

O(n)(S+(X)) = Hom
(

S+(X)⊗n,C
)

Sn

denote the space of continuous linear maps (distributions), and the subscript Sn

denotes taking Sn coinvariants. O(n)(S+(X)) will be the space of homogeneous
degree n functionals on the space of fields S+(X), playing the role of Symn(V ∗) in
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our toy model. We will also let

O(n)
loc(S+(X)) ⊂ O(n)(S+(X))

be the subspace of local functionals, i.e. those of the form given by the integration
of a Lagrangian density

∫

X

L(μ), μ ∈ S+(X).

Definition 47 The algebra of functionalsO(S+(X)) on S+(X) is defined to be

O(S+(X)) =
∏

n≥0
O(n)(S+(X))

and the space of local functionals is defined to be the subspace

Oloc(S+(X)) =
∏

n≥0
O(n)

loc(S+(X))

3.3.2 Effective Fock Space

Let g be a Kähler metric on X. Let

K
g
L ∈ PV(X)⊗ PV(X), L > 0

be the heat kernel for the operator e−L
[

∂̄,∂̄∗
]

, where ∂̄∗ is the adjoint of ∂̄ with respect
to the metric g and

[

∂̄ , ∂̄∗
] = ∂̄ ∂̄∗ + ∂̄∗∂̄ is the Laplacian acting on PV(X). It is a

smooth polyvector field on X ×X defined by the equation

(

e−L
[

∂̄,∂̄∗
]

α
)

(x) =
∫

X

(

K
g

L(x, y)α(y) 1 �X(y)
) ∧�X(y)

where we have chosen coordinates (x, y) onX×X, and we integrate over the second
copy of X using the trace map.

Definition 48 The effective inverse ω−1g,L for the symplectic form ω is defined to be
the kernel

ω−1g,L =
∑

k∈Z
K

g

L(−z)k ⊗ z−k−1 ∈ S(X) ⊗ S(X), L > 0.
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Note that lim
L→0

K
g
L is the delta-function distribution, which is no longer a smooth

polyvector field, hence not an element of S(X) ⊗ S(X). ω−1g,L can be viewed as the

regularization of ω−1 in the infinite dimensional setting.
Let S(X)∗ be the continuous linear dual of S(X) (distributions on S(X) with

extra care on the z-adic topology. See [11] for more details).

Definition 49 The effective Weyl algebra W(S(X), g,L) is the quotient of the
completed tensor algebra

⎛

⎝

∏

n≥0

(

S(X)∗
)⊗n

⎞

⎠⊗ C[[h̄]]

by the topological closure of the two-sided ideal generated by

[a, b]− h̄
〈

ω−1g,L, a ⊗ b
〉

, L > 0

for a, b ∈ S(X)∗. Here 〈, 〉 is the natural pairing between S(X) and its dual.

Similarly, the Fock space can also be defined using the regularized kernel ω−1g,L.

Definition 50 The effective Fock space Fock (S+(X), g,L) is the quotient of
W(S(X)) by the left ideal generated topologically by the subspace

Ann(S+(X), g, L) ⊂ S(X)∗.

Similar to the finite dimensional case, the splitting S(X) = S+(X)⊕S−(X) gives
the identification

Fock (S+(X), g, L) ∼= O(S+(X))[[h̄]].

We refer to [11] for detailed discussions.

3.3.3 Effective BV Formalism

We would like to understand the quantized operator Q̂L for Q acting on the Fock
space represented by the above identification. This is completely similar to the toy
model. Let

(∂ ⊗ 1)Kg

L ∈ Sym2(PV(X))

be the kernel for the operator ∂e−L[∂̄,∂̄∗]. It can be viewed as the projection of (Q⊗
1)ω−1L,g ∈ Sym2(S(X)) to Sym2(S+(X)).



Some Classical/Quantum Aspects of Calabi-Yau Moduli 491

Definition 51 We define the effective BV operator

L : O(S+(X))→ O(S+(X))

as the operator of contracting with the smooth kernel (∂ ⊗ 1)Kg
L.

Since L : O(n)(S+(X)) → O(n−2)(S+(X)), it could be viewed as an order
two differential operator on the infinite dimensional vector space S+(X). Note that
L has odd cohomology degree, and (L)

2 = 0. It defines a Batalin-Vilkovisky
structure on O(S+(X)), with the Batalin-Vilkovisky bracket defined by

{S1, S2}L = L (S1S2)− (LS1) S2 − (−1)|S1|S1 (LS2) , L > 0.

Remark 52 If S1, S2 ∈ Oloc(E(X)), then lim
L→0

{S1, S2}L is well-defined, which is

precisely the Poisson bracket in Proposition 46.

Proposition 53 ([11]) Under the isomorphism Fock (S+(X), g,L) ∼= O(S+(X))

[[h̄]], the induced differential Q̂L is Q̂L = Q+ h̄L.

The proof is similar to Lemma 39.

3.3.4 Renormalization Group Flow and Homotopy Equivalence

We need to specify a choice of the metric g and a positive numberL > 0 to construct
the Fock space Fock (S+(X), g,L). However, we are in a bit better situation. The
general machinery of renormalization theory in [10] allows us to show that the
effective Fock spaces are independent of the choice of g and L up to homotopy. This
is discussed in detail in [11]. We will discuss here the homotopy between different
choices of the scaleL, which is related to the renormalization group flow in quantum
field theory.

Definition 54 The effective propagator is defined to be the smooth kernel

PL
ε =

∫ L

ε

du(∂̄∗∂ ⊗ 1)Kg
u ∈ Sym2(PV(X)), L > ε > 0 (3.3)

representing the operator ∂̄∗∂e−L[∂̄,∂̄∗].

Lemma 55 As an operator on O(S+(X))[[h̄]],

Q̂L = e
h̄∂

PL
ε Q̂εe

−h̄∂
PL
ε

where ∂PL
ε
: O(E(X))→ O(E(X)) is the contraction by the smooth kernel PL

ε .
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It follows from this lemma that e
h̄∂

PL
ε defines the chain homotopy

e
h̄∂

PL
ε : (O(S+(X))[[h̄]],Q+ h̄ε)→ (O(S+(X))[[h̄]],Q+ h̄L)

between Fock spaces defined at scales ε and L. It defines a flow on the space of
functionals on the fields, which is called the renormalization group flow in [10]
following the physics terminology.

Proposition 56 ([11]) The cohomologyH ∗(Fock(S+(X), g,L), Q̂L) is indepen-
dent of g and L. There are canonical isomorphisms

H ∗(Fock(S+(X), g,L), Q̂L) ∼= Fock
(

H ∗(S+(X),Q)
)

where Fock (H ∗(S+(X),Q)) is the Fock space for the Lagrangian subspace
H ∗(S+(X),Q) of the symplectic space (H ∗(S(X),Q), ω)

Remark 57 Fock (H ∗(S+(X),Q)) is the mirror of the Fock space of de Rham
cohomology classes for Gromov-Witten theory discussed in [7].

3.4 Quantum BCOV Theory

3.4.1 Perturbative Quantization

Definition 58 ([11]) A perturbative quantization of BCOV theory onX is given by
a family of functionals

F[L] =
∑

g≥0
h̄gFg[L] ∈ O(S+(X))[[h̄]]

for each L ∈ R>0, satisfying the following properties

(1) The renormalization group flow equation

F[L] = W
(

PL
ε ,F[ε]

)

for all L > ε > 0. Here W
(

PL
ε ,F[ε]) is the connected Feynman graph

integrals (connected graphs) with propagator PL
ε (3.3) and vertices F[ε]. This

is equivalent to

eF[L]/h̄ = e
h̄ ∂

∂PL
ε eF[ε]/h̄
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(2) The quantum master equation holds

QF[L] + h̄LF[L] + 1

2
{F[L],F[L]}L = 0, ∀L > 0.

This is equivalent to

(Q+ h̄L) e
F[L]/h̄ = 0

(3) The locality axiom, as in [10]. This says that F[L] has a small L asymptotic
expansion in terms of local functionals.

(4) The classical limit condition

lim
L→0

lim
h̄→0

F[L] ≡ lim
L→0

F0[L] = FLX
.

(5) Degree axiom and Hodge weight axiom (see [11]).

3.4.2 Higher Genus B-Model

Given a quantization {F[L]}L>0 of the BCOV theory, we obtain a state
[

eF[L]/h̄
]

in
the Fock space Fock+ (H ∗(S+(X))) by Proposition 56. We will denote it by ZF.
Let us choose an opposite filtration L (Definition 9), which induces isomorphisms

H ∗(S(X),Q) ∼= H ∗(X,∧∗TX)((z)), H ∗(S+(X),Q) ∼= H ∗(X,∧∗TX)[[z]].

In particular, it induces a natural identification

�L : Fock(H ∗(S(X)))
∼=→ O(H ∗(X,∧∗TX)[[z])[[h̄]].

Definition 59 Let F be a quantization of the BCOV theory on X, and L be
an opposite filtration of H ∗(S+(X),Q). Let α1, · · · , αn ∈ H ∗(X,∧∗TX). The
correlation functions associated to F,L is defined to be

FB,L
X

(

zk1α1, · · · , zknαn

)

:=
(

∂

∂zk1α1
· · · ∂

∂zknαn

)

h̄ log�L (ZF) (0) ∈ C[[h̄]].

Here the superscript “B” refers to the B-model. We can further decompose
FB,L
X = ∑

g≥0
h̄gFB,L

g,X . Then FB,L
g,X will be the candidate for the higher genus B-model

invariants on X. It is conjectured in [11] that there exists a canonical quantization F
(up to homotopy) of the BCOV theory on X which is mirror to the Gromov-Witten
theory on the mirror Calabi-Yau manifold. This proves to be the case for X being
an elliptic curve [25, 26].
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3.4.3 The Opposite Filtrations

There are two natural opposite filtrations of H ∗(S(X),Q).
The first one is given by the complex conjugate splitting of the Hodge filtration,

which we denote by LX̄. In this case the correlation function F
B,LX̄

X can be realized
explicitly as follows. Consider the limit

F[∞] = lim
L→∞F[L]

which is well-defined sinceX is compact, henceP∞L is smooth. The quantummaster
equation at L =∞ says that

QF[∞] = 0

as lim
L→∞L = 0. It follows that F[∞] descends to a functional on H ∗(S+(X),Q)

F[∞] ∈ H ∗(O(S+(X))[[h̄]],Q) ∼= O(H ∗(S+(X),Q))[[h̄]].

The choice of the Kähler metric induces isomorphisms

H ∗(S(X),Q) ∼= H ∗(X,∧∗TX)((z)), H ∗(S+(X),Q) ∼= H ∗(X,∧∗TX)[[z]]

via Hodge theory, hence defining an opposite filtration which is precisely LX̄. Then

F
B,LX̄

X = F[∞].

The second choice is relevant for mirror symmetry, which is defined near a large
complex limit in the moduli space of complex structures on X. Near any such large
complex limit point, there is an associated monodromy weight filtration W which
splits the Hodge filtration. Then the correlation function

FB,W
g,n,X : Symn

(

H ∗(X,∧∗TX)[[z]])→ C

will be the mirror of the descendant Gromov-Witten invariants

〈−〉GW
g,n,X∨ : Symn

(

H ∗(X∨,C)[[z]])→ C

on the mirror Calabi-Yau X∨ under the mirror map.

Note that F
B,LX̄

X doesn’t vary holomorphically due to the complex conjugate
splitting LX̄. This is the famous holomorphic anomaly discovered in [6]. Given a
large complex limit point, the natural way to retain holomorphicity is to consider
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FB,W
g,X , which is usually denoted in physics literature by

FB,W
g,X ≡ lim

τ̄→∞F
B,LX̄

X

as the “τ̄ →∞-limit” [6] near the large complex limit.

3.4.4 Higher Genus Mirror Symmetry

The mirror symmetry for elliptic curves is easy to describe. Let E represent an
elliptic curve. In the A-model, we have the moduli of (complexified) Kähler class
[ω] ∈ H 2(E,C) parametrized by the symplectic volume

q = Trω

where the trace map in the A-model is given by the integration Tr = ∫E . The mirror
in the B-model is the elliptic curve Eτ = C/Z ⊕ Zτ , with complex structure τ

related to q by the mirror map

q = e2πiτ .

Let

�τ :
⊕

i,j

H i(E,∧j T ∗E)[−i − j ] →
⊕

i,j

H i(Eτ ,∧j TEτ )[−i − j ]

be the unique isomorphism of commutative bigraded algebras which is compatible
with the trace on both sides. This is z-linearly extended to an isomorphism

�τ : H ∗(E,C)[[z]] → H ∗(Eτ ,∧∗TEτ )[[z]].

The canonical quantization of BCOV theory was analyzed in [25], and the
explicit solution was presented in [26] via vertex algebra techniques. This leads
to the establishment of higher genus mirror symmetry on elliptic curves.

Theorem 60 ([25]) For all α1, · · · , αn ∈ H ∗(E,C)[[z]], the A-model descendant
Gromov-Witten invariants on E can be identified with the B-model BCOV correla-
tion functions

∑

d

qd 〈α1, · · · , αn〉GW(E)
g,n,d = lim

τ̄→∞F
B,LĒτ
Eτ

(�τ (α1), · · · ,�τ (αn))

where the large complex limit is taken to be Imτ →∞ on the upper half planeH.



496 S. Li

It is proved in [24, 25] that the correlation functions for F
B,LĒτ
Eτ

, before taking
the τ̄ → ∞ limit, are almost holomorphic modular forms exhibiting mild anti-
holomorphic dependence on τ̄ . On the other hand, the correlation functions of
Gromov-Witten theory are given by quasi-modular forms [31]. In this example, the
τ̄ →∞ limit is the well-known identification between almost holomorphicmodular
forms and quasi-modular forms [21].

Acknowledgements The authors would like to thank the organizers and participants of the
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department at University of Michigan.
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Abstract We describe the Eynard-Orantin recursive algorithm on a spectral curve,
and give a biased survey on its roles as B-models which predict various higher genus
A-model invariants via mirror symmetry.

1 Introduction

The Eynard-Orantin topological recursion is a recursive algorithm from the matrix
model theory [24]. Mathematically speaking, it starts with an affine plane curve
� with a choice of a fundamental normalized differential of the second kind, and
then the algorithm recursively produces a series of symmetric meromorphic forms
ωg,n on the product of n copies of �. These ωg,n are called B-model higher genus
invariants. They are genus g correlators with n boundary components. We will
survey two aspects of this recursive algorithm—its relation to a quantization of a
semisimple Frobenius manifold, and its role in mirror symmetry.
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1.1 Relation to Givental’s Quantization and Abstract
Frobenius Structure

The Eynard-Orantin recursion is a recursive algorithm in computing higher genus
invariants of a Frobenius manifold, as shown in [19]. They show that we can
define the recursion formally around each ramification point using the data from a
calibrated Frobenius manifold, the recursion is equivalent to Givental’s quantization
[39, 40]. Another important theorem of [19] is that they express Eynard-Orantin
higher genus invariants as graph sums. This allows us to compare with the graph
sum formula of Gromov-Witten invariants, which is essential in the proof of mirror
symmetry involving Eynard-Orantin recursion.

1.2 Eynard-Orantin Recursion as B-Model in Mirror
Symmetry

Mirror symmetry is the equivalence between the A-model (about the Kähler
structure of a manifold) and the B-model of its mirror (about the complex structure).
When the spectral curve is the B-model mirror to some A-model, like topological
strings on a toric Calabi-Yau threefold, the Eynard-Orantin B-model invariants pre-
dict the A-model strings correctly. This is the Bouchard-Klemm-Mariño-Pasquetti
(BKMP, [11, 12, 55]) remodeling conjecture, proved recently in [25, 31, 32]. There
are also various mirror symmetry statements along this line, as long as one can
have a mirror curve as the B-model, e.g. the case of P1 (Norbury-Scott conjecture
[19, 30, 59]), Bouchard-Mariño conjecture in various settings [9, 10, 13].

These Eynard-Orantin higher genus invariants ωg,n enjoy many nice properties.
In [24], the authors discuss the variation of ωg,n with respect to the moduli of
the spectral curves. Also, the fundamental normalized differential of the second
kind depends on the choice of a Torelli marking. It changes under a modular
transformation. The modularity property of Gromov-Witten invariants for toric
Calabi-Yau threefolds follows from the BKMP conjecture and the modularity
property of the Eynard-Orantin B-model invariants ωg,n.

1.3 Structure of This Paper

We first review the definition of Eynard-Orantin topological recursion in Sect. 2.
In Sect. 3 we will state the equivalence between the Eynard-Orantin topological
recursion on a formal spectral curve and Givental’s quantization on a Frobenius
manifold. In Sect. 4 we will review the applications of Eynard-Orantin recursions
to all genera mirror symmetry. The last section is about the modularity property of
Gromov-Witten invariants from the modularity of Eynard-Orantin invariants, via the
mirror symmetry statement introduced in Sect. 4.
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This survey is far from covering the vast scope of the Eynard-Orantin topological
recursion, which is a very active field of research of late. We do not systematically
cover the fundamental properties of the Eynard-Orantin recursion, like the variations
of ωg,n with respect to the moduli of spectral curves [24]. There are many other
fantastic applications of the recursion, not necessarily along the line of mirror
symmetry for toric Calabi-Yau threefolds, like Weil-Pertersson volume [22, 23, 65].
The recent progress on “quantum curves”, and the application of Eynard-Orantin
recursion to non-semisimple situations by taking non-semisimple limits, are also
beyond the reach of this survey.

2 Spectral Curve and Eynard-Orantin Recursion

2.1 Spectral Curves

Let � be a smooth affine algebraic curve in (C∗)2. The coordinate Y maps � into
the second component of (C∗)2. It is a holomorphic function on �. Let Y = e−y .
We denote the covering map πY

πY : C∗ × C→ (C∗)2,

(a, y) �→ (a, e−y).

Let ˜� be the lift of � under this map, and let � be a choice of smooth
compactification of �, which is a compact Riemann surface.1

Recall that a Torelli marking on � is a choice of cycles A1, . . . , Ag, B1, . . . , Bg

in H1(�;C), such that Ai ∩ Bj = δi,j and Ai ∩ Aj = Bi ∩ Bj = 0, where g is
the genus of �.2 Given such a marking, following the notions [34], we define the
fundamental normalized differential of the second kind (a.k.a. Bergman kernel in
Eynard-Orantin [24]).

Definition 1 The fundamental normalized differential of the second kind (abbrevi-
ated as fundamental differential in this paper) associated to a Torelli marking on �

is the symmetric meromorphic form on (�)2 satisfying the following conditions.

• The only pole is the double pole along the diagonal, i.e. given any local
coordinate ζ near a point p ∈ �, the differential B has the following form near
(p, p) ∈ (�)2

B = dζ1dζ2

(ζ1 − ζ2)2
+ holomorphic part.

1We reserve the variable X = e−x for other purposes. In many but not all examples, it will be the
first coordinate.
2We allow such cycles to be non-geometric, i.e. elements in H1(�;C).
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• It is normalized by the choice of A-cycles

∫

q∈Ai

B(p, q) = 0, for i = 1, . . . , g.

Remark 2 The pairing of cycles inH1(�;C) turns it into a symplectic vector space.
The subspace spanned by A-cycles is a Lagrangian subspace. The fundamental
differential B only depends on the choice of this Lagrangian subspace.

Definition 3 A spectral curve � = (�, x, B) consists of the following data:

• a smooth affine algebraic curve� in (C∗)2 together with a Torelli marking on�;
• a holomorphic Morse function (superpotential) x from the universal cover of �

to C∗, such that dx descends to a meromorphic form on � with poles in � \�;
• a fundamental normalized differential of the second kind B on � with respect to

such choice of A-cycles.

Remark 4 In the applications of the Eynard-Orantin recursion, very often X = e−x

is the first coordinate of the affine curve �.

Fix a spectral curve �. Since x is Morse, the critical points where dx = 0 form
a finite set {pα : α ∈ I�}. Define the Liouville form � = ydx = − logYdx.
It is a well-defined holomorphic form on ˜�, and is meromorphic on the smooth
completion of ˜�.

At each critical point pα , we define the local coordinate ζα by

x = ζ 2α + x0,α,

where x0,α is the critical value of x at pα . For any p near pα , let p̄ be the point on
� such that ζα(p̄) = −ζα(p).

The central topic of this survey, Eynard-Orantin’s topological recursion, is
essentially defined around each critical point of x on the spectral curve. Following
[19], we define formal spectral curves below.3

Definition 5 A formal spectral curve C is a disjoint union of {Cα}α∈IC where each
Cα = SpecC[[ζα]], together with following information.

• A function yα =∑∞
i=0 hα

i (ζα)
i on Cα where hα

1 �= 0.
• A holomorphic Morse function xα = x0,α + ζ 2α on Cα .

3In [19], Eynard-Orantin recursions on such formal spectral curves are called local topological
recursions.
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• The “fundamental normalized differential of the second kind” Bα,β ∈
�(T ∗(Cα × Cβ \ Cα,β))

Bα,β(ζα, ζβ) = δα,β
dζα ⊗ dζβ

(ζα − ζβ)2
+
∑

i,j≥0
B

α,β
i,j (ζα)

i(ζβ)
j dζα ⊗ dζβ,

where Cα,β
∼= SpecC[[ζ ]] is the diagonal. We require B

α,β
i,j = B

β,α
i,j .

Any spectral curve induces a formal spectral curve. We will consider the recursions
for both actual and formal spectral curves in the next subsection.

2.2 Eynard-Orantin’s Topological Recursion

Definition 6 The Eynard-Orantin recursive algorithm defines a sequence of sym-
metric meromorphic forms ωg,n on (�)n for g ∈ Z≥0, n ∈ Z>0 as follows.

• Initial conditions:

ω0,1 = 0, ω0,2 = B.

• Recursive algorithm:

ωg,n(p1, . . . , pn)=
∑

p′∈I�
Resp=p′

∫ p̄

ξ=p
B(pn, ξ)

2(�(p) −�(p̄))

(

ωg−1,n+1(p, p̄, p1, . . . , pn−1)

+
∑

g1+g2=g

∑

I�J={1,...,n−1}
ωg1,|I |+1(p, pI )ωg2,|J |+1(p̄, pJ )

)

.

Proposition 7 When 2g − 2 + n > 0, the poles of ωg,n are at dxi = 0 (critical
points), where dxi is the differential of the superpotential on i-th copy of (�)n.

Proof The proof is in Appendix A of [24]. We repeat it here. Assume the statement
is correct for all (g, n) such that g < g0 or g = g0, n < n0 where 2g0 − 2 + n0 >

0. Then by the recursion, if p1, . . . , pn are not any critical point, all ωg0−1,n0+1,
ωg1,|I |+1 and ωg2,|J |+1 on the RHS are not at their poles, and the residues are well-
defined. Therefore ωg0,n0 is finite at (p1, . . . , pn). Notice that we can always make
the contour around p′ small enough to avoid p1, . . . , pn−1 such that we would not
encounter the diagonal pole of ω0,2.

Definition 6 also applies to any formal spectral curveC=({Cα}, {xα}, {yα}, Bα,β),
and produces a sequence of meromorphic symmetric differential n-forms ωg,n on
(�α∈ICCα)

n.
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2.3 Differential Forms on Spectral Curves

For any spectral curve�, we define the preferred basis of differentials of the second
kind as below

θα
d (p) := (2d − 1)!!2−dResp′→pα

B(p, p′)ζα(p′)−2d−1.

The form θα
d satisfies the following properties.

• θα
d is a meromorphic 1-form on � with a single pole of order 2d + 2 at pα .

• In local coordinate

θα
d = (− (2d + 1)!!

2dζ 2d+2α

+ holomorphic part)dζα.

•
∫

Ai
θα
d = 0 for i = 1, . . .g.

For k > 0, we define

ξ̂α,k = (−1)k( d

dx
)k−1(

θα
0

dx
),

which is a meromorphic function on �q . As a convention, we write dξ̂α,0 = θα
0 ,

although ξ̂α,0 is not a well defined global meromorphic function on �q .
Similarly, for any formal spectral curve C = {Cβ}β∈IC , we define these

meromorphic forms θα
d,β(ζβ) on Cβ

θα
d,β(ζβ) := (2d − 1)!!2−dResζα→0B

α,β(ζα, ζβ)(ζα)
−2d−1.

We have

θα
d,β = (−δα,β(2d + 1)!!

2dζ 2d+2β

+ holomorphic part)dζβ.

We also define

ξ̂α,β,k = (−1)k( d

dx
)k−1(

θα
0,β

dx
), dξ̂α,β,0 = θα

0,β.
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3 Identification of Eynard-Orantin’s Recursion with
Givental’s Quantization

3.1 Frobenius Manifold

In this section, we explain the equivalence of Givental’s quantization of a semisim-
ple Frobenius manifold and the corresponding Eynard-Orantin recursion.

Definition 8 A Frobenius algebra (V , 6) is a finite-dimensional associative algebra
V over a field k with unit 1 equipped with a non-degenerate bilinear pairing (, ) :
V × V → k such that (a 6 b, c) = (a, b 6 c).

We fix the dimension of the Frobenius algebra (or later, manifold) in discussion to
be N . A Frobenius algebra is semisimple if it has a basis {φα}α=1,...,N such that
φα 6 φβ = δα,βφα . Such basis is unique up to a permutation.

Definition 9 A Frobenius manifold V is a k-manifold with a flat pseudo-
Riemannian metric (, ) with the following properties.

• Locally there is a function F whose third covariant derivative Fabc at q defines
a product 6q on the tangent by Fabc|q = (∂a 6q ∂b, ∂c), such that each tangent
space at a point q is a Frobenius algebra with the product 6q and the pairing from
the Riemannian metric.

• The vector field the of unit 1 is covariantly constant and preserves the multipli-
cation.

A Frobenius manifold V is generically semisimple if for generic q ∈ V , TqV is
semisimple. We sometimes write 6 instead of 6q when the context is clear.

Let τa, a = 1, . . . , N be flat coordinates on a Frobenius manifold, and let Ha =
∂

∂τa be the corresponding frames in the tangent bundle. The quantum connection ∇
is given as follows

∇a = z∂a −Ha6

The quantum differential equation (QDE) is

∇η = 0

The QDE is a system of first-order differential equations, and a choice of fundamen-
tal solutions Sτ = (η1(τ ), . . . , ηN(τ )) is called an S-calibration.

Definition 10 Around a semisimple point p ∈ V (we assume τ (p) = τ0), we
define the following notions.

• Canonical basis φα(τ) such that φα(τ) 6 φβ(τ ) = δα,β . We have

(φα(τ ), φβ(τ )) = δα,β

α(τ)
.
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• Canonical coordinates uα(τ ) such that ∂
∂uα(τ )

= φα(τ). They are fixed up to
constants.

• Flat basis φα which is the parallel transport (according to the Levi-Civita
connection of the Riemannian metric on V ) of φα(τ0) at τ = 0. We also denote
α = α(τ0).

• Normalized basis φ̂α(τ ) = φα(τ)
√
α(τ); φ̂α = φα

√
α .

• The dual basis {φα} to {φα}, and the dual basis {φα(τ)} to {φα(τ)}. The
normalized basis are self-dual.

Theorem 11 Around a semisimple point p ∈ V , there exists an S-calibration Sτ =
(η1(τ ), . . . , ηN(τ )). Each ηα(τ ) = ∑N

a=1(Sτ )
α̂
a Ha where Ha is the dual basis to

Ha . One can decompose Sτ as following

(Sτ )
α̂
a = (�τ )

β
a Rτ (z)

α
β e

uα(τ )
z .

Here �τ is the transition matrix from φ̂α(τ ) to Ha

Ha =
N
∑

a=1
(�τ )

α
a φ̂α(τ ),

and

(Rτ )
α
β (z) = δ α

β +O(z)

is a formal power series in z, and it is unitary

(Rτ )
γ
α (z)(Rτ )

γ
β (−z) = δαβ.

Furthermore, Rτ it is uniquely determined by up to a right multiplication of
exp(

∑∞
i=1 a2i−1z2i−1) where a2i−1 are constant diagonal matrices.

Let Sτ be an S-calibration. Define an operator Sτ : TτV → TτV by

(Sτ )
α̂
a = (Ha,Sτ (φ̂

α)).

Define the matrix

(Sτ )
β̂

α = (φ̂β(τ ), Sτ (φα)).
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3.2 Quantizations of a Generically Semi-Simple Frobenius
Manifold

We will introduce Givental’s quantization for semi-simple Frobenius manifolds.
When the Frobenius manifold comes from genus 0 Gromov-Witten theory of a toric
manifold, this quantization matches higher genus Gromov-Witten invariants. First
we introduce the following notations

u(z) = (u1(z),u2(z), . . . ), uj (z) =
N
∑

a=1
ua
j (z)Ha,

ua
j (z) = (ua

j )0 + (ua
j )1z+ (ua

j )2z
2 + . . . ,

t(z) =
N
∑

a=1
ta(z)Ha, ta(z) = (ta)0 + (ta)1z+ (ta2 )z

2 + . . . .

Example 12 Let X be a smooth toric manifold over C, and T ⊂ X be the
dense open torus in X. The equivariant quantum cohomology QH ∗

T
(X;Q) is a

Frobenius algebra over the fractional field Q of H ∗
T
(pt;C), and it is semisimple

around the origin. When X is compact, the non-equivariant quantum cohomology
QH ∗(X;C) is semisimple generically. It is not necessarily semisimple when the
Kähler parameter is zero, i.e. the ordinary non-equivariant cohomology algebra is
not necessarily semisimple. We recall the definition of equivariant Gromov-Witten
invariants for X below. We do not assume X is compact in the equivariant setting.

Let Mg,n(X; β) be the moduli of the stable maps from a genus g, n-marked
curve to X in class β ∈ H2(X;Z). Recall that ψ-class ψi = c1(Li ) where Li is
formed by cotangent lines at i-th marked point on Mg,n(X; β). Let ψ̄i = π∗ψpt,i ,
where ψpt,i is the i-th ψ-class on the moduli space of curves Mg,n, and π :
Mg,n(X; β)→Mg,n is the forgetful map.

The T-equivariant genus g degree d Gromov-Witten invariants of X are defined
by

〈γ1ψ̂a1
1 , · · · , γnψ̂an

n 〉X,T
g,n,β =

∫

[Mg,n(X,d)T]w,T

ι∗
(∏n

j=1 ev∗j (γj )(ψ̂T

j )aj
)

eT(Nvir)
∈ Q.

where the weighted virtual fundamental class [Mg,n(X, d)T]w,T [1, 2] (resp. the
virtual normal bundle Nvir of Mg,n(X, d)T in Mg,n(X, d)) is defined by the
fixed (resp. moving) part of the restriction to Mg,n(X, d)T of the T-equivariant
perfect obstruction theory on Mg,n(X, d) [41], and ι∗ : H ∗

T
(Mg,n(X, d);Q) →

H ∗
T
(Mg,n(X, d)T;Q) is induced by the inclusion map ι : Mg,n(X, d)T ↪→

Mg,n(X, d). Here ψ̂ = ψ or ψ̄ , and these invariants are called ancestors or
descendants, respectively.
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Let τ ∈ H ∗
T
(X;Q). Define the ancestor/descendant (ψ̂ = ψ̄ or ψ) potential with

primary insertions (we suppress the torus symbolT from here in the Gromov-Witten
notations for closed Gromov-Witten invariants)

〈〈u1(ψ̂1), . . . ,un(ψ̂n)〉〉Xg,n =
∞
∑

m=0

∑

β≥0

〈u1(ψ̂1), · · · ,un(ψ̂n), τ
m〉X,T

g,n+m,β

m! .

We always assume this sum converges for a suitable domain of τ .4

The quantum cohomology is defined by

(a ∗τ b, c) = 〈〈a, b, c〉〉X0,3, a, b, c ∈ H ∗
T
(X;Q).

Let t = u1 = u2 = u3 = . . . . We define

FX
g,n(t) = 〈〈t, . . . , t〉〉Xg,n, FX

g = 〈〈〉〉Xg,0.

Here FX
g = FX

g (τ) is a function of τ .

Fix a generically semisimple Frobenius manifold V with dimV = N . Given two
S-calibration Sτ and ˜Sτ where˜Sτ allows such a decomposition

(˜Sτ )
α
a = (�τ )

β
a (Rτ )

α
β e

uα

z ,

we will describe the graph sum formula for higher genus descendant and ancestor
potentials with these choices of S-calibrations. Let � be a connected graph. We
introduce the following notations.

1. V (�) is the set of vertices in �.
2. E(�) is the set of edges in �.
3. H(�) is the set of half edges in �.
4. Lo(�) is the set of ordinary leaves in �. The ordinary leaves are ordered:

Lo(�) = {l1, . . . , ln} where n is the number of ordinary leaves.
5. L1(�) is the set of dilaton leaves in �. The dilaton leaves are unordered.

We also introduce the following labels:

1. (genus) g : V (�)→ Z≥0.
2. (marking) α : V (�)→ {1, . . . , N}. This induces α : L(�) = Lo(�)∪L1(�)→
{1, . . . , N}, as follows: if l ∈ L(�) is a leaf attached to a vertex v ∈ V (�), define
α(l) = α(v).

3. (height) k : H(�)→ Z≥0.

4It should converge near “large radius limit” τ0. We decompose τ = τ ′ + τ ′′, τ ′ ∈ H 2
T
(X;Q) and

τ ′′ ∈ H
�=2
T

(X;Q). Here τ ′0 = −∞ and τ ′′0 = 0. This fact allows us to avoid Novikov variables. It
is a highly non-trivial statement (see [45]). A common practice is to utilize Novikov variables first,
and the convergence follows from the B-model after establishing a mirror symmetry statement.
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Given an edge e, let h1(e), h2(e) be the two half edges associated to e. The order
of the two half edges does not affect the graph sum formula in this paper. Given
a vertex v ∈ V (�), let H(v) denote the set of half edges emanating from v. The
valency of the vertex v is equal to the cardinality of the set H(v): val(v) = |H(v)|.
A labeled graph &� = (�, g, α, k) is stable if

2g(v)− 2+ val(v) > 0

for all v ∈ V (�).
Let �(V ) denote the set of all stable labeled graphs &� = (�, g, α, k), associated

to the Frobenius manifold V . The genus of a stable labeled graph &� is defined to be

g(&�) :=
∑

v∈V (�)

g(v) + |E(�)| − |V (�)| + 1 =
∑

v∈V (�)

(g(v)− 1)+ (
∑

e∈E(�)

1)+ 1.

Define

�g,n(V ) = {&� = (�, g, α, k) ∈ �(V ) : g(&�) = g, |Lo(�)| = n}.

We assign weights to leaves, edges, and vertices of a labeled graph &� ∈ �(V ) as
follows.

1. Ordinary leaves. To each ordinary leaf lj ∈ Lo(�) with α(lj ) = α ∈ {1, . . . , N}
and k(l) = k ∈ Z≥0, we define two kinds of weight:

(Lu
d )

α
k (lj ) = [zk](

N
∑

α,a=1

(

ua
j (z)S

β̂

a(z)

)

+
R(−z) α

β ),

(Lu
a)

α
k (lj ) = [zk](

N
∑

α,a=1

(

ua
j (z)�

β
a

)

R(−z) α
β ).

The notion ()+ discards negative powers of z, i.e. (
∑

n∈Z anz
n)+ =∑n≥0 anzn.

2. Dilaton leaves. To each dilaton leaf l ∈ L1(�) with α(l) = α ∈ I� and 2 ≤
k(l) = k ∈ Z≥0, we assign

(L1)αk (l) = [zk−1](−
N
∑

β=1

1
√

β(τ)
R α

β (−z)).

3. Edges. To an edge connecting two vertices marked by α, β ∈ {1, . . . , N} and
with heights k and l at its two half-edges, we assign

Eα,β
k,l (e) = [zkwl]

( 1

z+ w
(δα,β −

N
∑

γ=1
R α

γ (−z)R β
γ (−w)

)

.
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4. Vertices. To a vertex v with genus g(v) = g ∈ Z≥0 and with marking α(v) = α,
with n ordinary leaves and half-edges attached to it with heights k1, . . . , kn ∈
Z≥0 and m more dilaton leaves with heights kn+1, . . . , kn+m ∈ Z≥0, we assign

(
√

α(v)(τ ))2g(v)−2+val(v)〈
∏

h∈H(v)

τk(h)〉g(v) =
(
√

α(τ)
)2g(v)−2+val(v)

∫

Mg,n+m

ψ
k1
1 · · ·ψkn+m

n+m .

Define the weight of a labeled graph &� ∈ �(V ) to be (the letter F means
“Frobenius”)

wu
F,•(&�) =

∏

v∈V (�)

(
√

α(v)(τ ))2g(v)−2+val(v)〈
∏

h∈H(v)

τk(h)〉g(v)
∏

e∈E(�)

Eα(v1(e)),α(v2(e))
k(h1(e)),k(h2(e))

(e)

(1)

·
n
∏

j=1
(Lu•)

α(ln)
k(lj )

(lj )
∏

l∈L1(�)

(L1)
α(l)
k(l) (l),

where • = a or d .

Definition 13 Suppose that 2g − 2+ n > 0. Define the ancestor potential

〈〈u1(ψ̄1), . . . ,un(ψ̄n)〉〉Vg,n =
∑

&�∈�g,n(V )

wu
F,a(

&�)

|Aut(&�)| .

and the descendant potential

〈〈u1(ψ1), . . . ,un(ψn)〉〉Vg,n =
∑

&�∈�g,n(V )

wu
F,d(

&�)

|Aut(&�)| .

Remark 14 The ψ-classes and ψ̄-classes here are just notations. If X is a toric
manifold, and V = QH ∗

T
(X;Q), one may choose

(Sτ )
α̂
a = (Ha, φ̂α)+ 〈〈Ha,

φ̂α

z− ψ
〉〉X0,2,

and

(˜Sτ )
α
a = (Sτ )

α
a · exp(−

∞
∑

n=1

B2n

2n(2n− 1)
(

z

χα
)2n−1).
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Givental [39, 40] shows the following (when 2g − 2+ n > 0)

〈〈u1(ψ̄1), . . . ,un(ψ̄n)〉〉Vg,n = 〈〈u1(ψ̄1), . . . ,un(ψ̄n)〉〉Xg,n,
〈〈u1(ψ1), . . . ,un(ψn)〉〉Vg,n = 〈〈u1(ψ1), . . . ,un(ψn)〉〉Xg,n.

Let u1 = u2 = · · · = t. One can define the total ancestor potential

Aτ (t) = exp(
∞
∑

g,n=0

h̄g−1

n! 〈〈t(ψ̄1), . . . , t(ψ̄n)〉〉Vg,n).

The graph sum formula for the ancestor potentials is another form of the following
Givental’s quantization process [39] (without (g, n) = (1, 0) information,which is
captured by C(τ) and not defined here)

eF1(τ )Aτ (t) = eC(τ)
̂�̂R(z)e

̂U
z

N
∏

a=1
T (ta).

For a = 1, . . . , N , T (ta) is the Kontsevich tau-function

T (ta) = exp(
∞
∑

g,n=0

h̄g−1

n! 〈t
a(ψpt,1), . . . , ta(ψpt,n)〉ptg,n),

Let

D(t) = exp(
∞
∑

g,n=0

h̄g−1

n! 〈t(ψ1), . . . , t(ψn)〉Xg,n).

It does not depend on τ . Givental’s quantization formula says

D(t) = eC(τ)
̂S−1τ (z)Aτ (t).

It is a consequence of the graph sum formula for the descendant potential.

3.3 A Graph Sum Formula for Eynard-Orantin Recursions

Dunin-Barkowski–Orantin–Shadrin–Spitz express the Eynard-Orantin higher genus
differential forms in terms of a graph sum in [19], and then compare with Givental’s
quantized descendant potentials.
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We expand the fundamental normalized differential around (pα, pβ) where
pα, pβ are critical points of x.

B(ζα, ζβ) = (
δα,β

(ζα − ζβ)2
+

∑

k,l∈Z≥0
B

α,β
k,l (ζα)

k(ζβ)
l)dζαdζβ.

In case of a formal spectral curve, the fundamental normalized differential is defined
by these coefficients Bα,β

i,j . Define the propagators

B̌
α,β
k,l =

(2k − 1)!!(2l − 1)!!
2k+l+1 B

α,β
2k,2l,

and

ȟα
k = 2(2k − 1)!!hα

2k−1.

Here we quote a lemma [21, Equation (D.4)] on the relation between ξ̂α,k and θα
k .

Lemma 15

θα
k = dξ̂α,k −

k−1
∑

i=0

∑

β

B̂
α,β

k−1−i,0dξ̂β,i .

Here β sums over I� or IC for any spectral curve � or formal spectral curve C.

Similarly to �(V ) we define the set of decorated stable graph �(�) (or �(C) if
we are working with a formal spectral curve)—the only difference is the marking as
below.

(2)’ (marking) α : V (�) → I� (or IC). We also define the marking of leaf α(l)
to be the marking of the vertex it attaches to.

Given a labeled graph &� ∈ �g,n(�) with Lo(�) = {l1, . . . , ln}, we define its
weight to be (the letter S means “spectral curves”)

w
p
S(
&�) = (−1)g(&�)−1 ∏

v∈V (�)

( h
α(v)
1√−2

)2−2g−val(v)〈
∏

h∈H(v)

τk(h)〉g(v)
∏

e∈E(�)

B̌
α(v1(e)),α(v2(e))
k(e),l(e)

(2)

·
n
∏

j=1
(Ľp)

α(lj )

k(lj )
(lj )

∏

l∈L1(�)

(− 1√−2 )ȟ
α(l)
k(l) .

Here p = (p1, . . . , pn) ∈ (�)n in case of an actual spectral curve, and the ordinary
leaf is

(Ľp)αk (lj ) = −
1√−2θ

α
k (pj ).
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When we are working with a formal curve, p = (ζβ1, . . . , ζβn) ∈ Cβ1 × · · · × Cβn.

The ordinary leaf is

(Ľp)αk (lj ) = −
1√−2θ

α
k,βj

(ζβj ).

The graph sum formula of ωg,n is the following.

Theorem 16 (Dunin-Barkowski–Orantin–Shadrin–Spitz [19])

ωg,n(p) =
∑

&�∈�(�)

w
p
S(
&�)

Aut(&�)
.

Starting from a generically semisimple Frobenius manifold V with an S and
˜S-calibration, around a semisimple point p ∈ V , we define a family of formal
spectral curves CV (τ ) = {CV,β = SpecC[[zβ ]])}Nβ=1, together with the following
information

hα
2k−1(τ ) = [zk−1]

⎛

⎝

N
∑

β=1

√−2
(2k − 1)!!2k−1√α(τ )

(Rτ )
α
α′ (−z)

⎞

⎠ , k ≥ 0.

B
α,β

2k,2l (τ ) =
2k+l+1

(2k−1)!!(2l−1)!! [z
kwl]

⎛

⎝

1

z+w
(δα,β −

N
∑

γ=1
(Rτ )

α
γ (−z)(Rτ )

β
γ (−w)

⎞

⎠ , k, l ≥ 0.

Notice that they only depend on Rτ , which comes from factorizing ˜S. Even
coefficients of hα

k and odd coefficients of Bα,β
k,l could be arbitrarily chosen.

Define

u
α
j (z) =

∞
∑

z=0
(uα

j )kz
k =

N
∑

b=1
ua
j (z)�

α
a ,

ũα
j (z) =

∞
∑

z=0
(̃uα

j )kz
k =

N
∑

b=1

(

S
α̂

b(z)u
b
j (z)

)

+ ,

where

S
α̂

b(z) = (φ̂α(τ ),S(Hb)).

Theorem 17 ([19]) When 2g − 2+ n > 0,

ωCV (τ )
g,n (z1β1, . . . , z

n
βn

) = (−1)g−1+n〈〈u1(ψ̄), . . . ,un(ψ̄)〉〉Vg,n|(uα
j )k=dξ̂α

k,βj
(z

j
βj

)
,

ωCV (τ )
g,n (z1β1, . . . , z

n
βn

) = (−1)g−1+n〈〈u1(ψ), . . . ,un(ψ)〉〉Vg,n|(̃uα
j )k=dξ̂α

k,βj
(z

j
βj

)
.
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3.4 Oscillatory Integrals on the Spectral Curves

Let � be a spectral curve, and γα be the Lefschetz thimble in � with respect to x

such that pα is the only critical point in γα and

x(γα) = [x0,α,+∞).

We define Ř(z) as the power series in the following asymptotic expansion.
∫

γα

e−
x
z θ

β
0 ∼ 2

√

π

z
e−

x0,α
z Ř α

β (z).

Notice that this definition is also well-defined for formal spectral curves. We have
the following property for B̌α,β

k,l [22, Equation (B.9)]:

B̌
α,β
k,l = [zkwl]

⎛

⎝

1

z+w
(δα,β −

∑

γ∈I�
Ř α

γ (z)Ř β
γ (w))

⎞

⎠ .

We consider the space of differential forms spanned by θα
0 , denoted by V̌τ . It

is isomorphic to TτV by θα
0 �→ φ̂α(τ )√−2 . Denote this isomorphism by r. By [25,

Appendix D], the differential form

d(
dy

dx
) = 1

2

N
∑

β=1
h
β

1 (τ )θ
β

0 .

We have the following correspondence table between the Frobenius manifold V and
the family of formal spectral curves CV (τ ).

Frobenius manifold V Correspondence Family of formal spectral curves CV (τ)

Dimension N = # of formal disks

R-matrix R
β
α (z) = Ř

β
α (−z)

Propagator Eα,β

i,j = Propagator B̌α,β

i,j

Canonical coordinate uα = Critical value x0,α

S-matrix ˜S α̂

β̂
= (φ̂β (τ ), Sτ (φ̂

α)) ∼ Oscillatory integral 1
2
√
πz

∫

γα
e−

x
z θ

β

0

Meromorphic form
θα
0√−2

r�→ Canonical basis φ̂α(τ )

d(
dy
dx

)
r�→ Identity 1

√
α(τ) = −√−2

hα
1 (τ)
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4 Applications of Eynard-Orantin Recursion: Mirror
Symmetry

Mirror symmetry relates the A-model theory on a target space to the B-model
theory on its mirror space. Gromov-Witten invariants are a typical type of A-model
invariants. In order to apply the recursion algorithm and to use Eynard-Orantin
higher genus invariants ωg,n to predict Gromov-Witten invariants, we need a mirror
B-model in the form of a spectral curve. When the target space is a 1-dimensional
toric variety, like P1, the mirror Landau-Ginzburg model is a superpotential on C∗.
After suitable compactification, one may directly regard this as a spectral curve.
Another (much bigger) class of examples is toric Calabi-Yau 3-orbifolds. Their
mirrors, although 3-dimensional, could be reduced to mirror curves by dimensional
reduction. Lying at the intersection of these two classes is the Lambert curve, which
could be regarded as P1 in the large radius limit, or as C3 with limiting equivariant
data (large framing limit). The relations among these examples is summarized in the
following diagram.

4.1 Airy Curve

Let’s look at the easiest case, which is roughly “mirror symmetry of a point”. The
Airy curve, in our notation, is a formal curve C = (C, y, x, B) where

C = Spec[[ζ ]],
y = ζ, x = ζ 2,

B = dζ1dζ2

(ζ1 − ζ2)2
.

Remark 18 We may regard this curve as the parabola x = y2 in C2, which is the
Airy curve in the usual sense. The fundamental normalized differential B is the
unique one on its compactification P1.
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Once we run the Eynard-Orantin recursion for the spectral curve C, we have the
following theorem.

Theorem 19

ωg,n(ζ1, . . . , ζn) = (−2)2−2g−n
∑

d1+···+dn=dg,n

n
∏

i=1

(2di + 1)!!dζi
ζ
2di+2
i

〈
n
∏

i=1
ψ

di
i 〉.

This theorem is a direct consequence of the graph sum formula for Eynard-
Orantin recursions (Theorem 16). There is only one critical point of x, labeled
by 1. It is straightforward to check that all propagators B̌

1,1
i,j = 0 for all i, j . The

differential forms

θ1k (ζ ) = −
(2k + 1)!!dζ
2kζ 2k+2

,

and h11 = 1. There are no dilaton leafs since all of them are zero.

4.2 Lambert Curve

Lambert curve is given by � = (�, x, B) where

� = {0} × C
∗ ∈ (C∗)2, � ∼= P

1

x = e−y + y,

B = dY1dY2

(Y1 − Y2)2
.

Here X = e−x , Y = e−y . The only branch point is at Y = 1. At Y = 0, the
value of X is well defined. Using the Eynard-Orantin recursion, we construct ωg,n

as symmetric meromorphic n-form on (P1)n. Notice that ωg,n is smooth at Y = 0,
and can be expanded in series by X.

Lambert curve predictsHurwitz numbers on the A-side. Consider ramified covers
of P1 by a genus g curve with a specified ramification profile at a special point on
P1. All other branch points in P1 are simple and fixed. The ramification profile is
given by a partition μ of length n := �(μ). The number of such covers is denoted
by Hg,μ.

We collect all Hurwitz numbers at fixed genus g for all ramification profiles μ of
the same length n = �(μ) into a generating function

Hg(X1, . . . , Xn) =
∑

�(μ)=n

mμ(X)|Aut(μ)|∏n
i=1 μiHg,μ

(2g − 2+ n+ |μ|)! ,
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wheremμ(X) is a monomial symmetric function in X1, . . . , Xn defined by

mμ(X) = 1

|Aut(μ)|
∑

σ∈Sn

n
∏

i=1
(Xσ(i))

μi−1

Here Sn is the permutation group.
The Bouchard-Mariño conjecture says the following [10].

Theorem 20 (Bouchard-Mariño Conjecture) When 2g − 2+ n > 0,

Hg(X1, . . . , Xn)dX1 . . . dXn = ωg,n.

The right side should be understood as an power series expansion at X = 0.

We omit the unstable cases (g, n) = (0, 1), (0, 2) for simplicity here. This theorem
is proved in [9, 27, 58]. Here we introduce the ELSV formula [20, 42] for later
use. This relates Hurwitz numbers to Hodge integrals, which are more relevant to
A-model GW theory in mirror symmetry.

Theorem 21 (ELSV Formula)

Hg,μ =
n
∏

i=1

μ
μi

i

μi !
∫

Mg,n


•g(1)
(1− μ1ψ1) . . . (1− μnψn)

Here
•g(u) = ug−λ1u
g−1+· · ·+(−1)gλg , and λi = ci(E) where E is the Hodge

bundle. We will see that from this formula, the Bouchard-Mariño conjecture is a
consequence of all genera equivariant mirror symmetry for P1 (Sect. 4.3), and also
a consequence of the BKMP conjecture for C3 (Sect. 4.4).

4.3 Projective Line

Let X = P1. Its mirror is a Landau-Ginzburg model

W(Y) = t0 + Y + et1

Y
.

To capture the equivariant data of P1, we use a modified equivariant superpotential

˜W = W + w1 logY + w2 log
et1

Y
.

The 2-torus T acts by turning homogeneous coordinates (s1, s2) · (z1 : z2) = (s1z1 :
s2z2). The characters wi are basis in the character lattice wi : (s1, s2) �→ si ∈
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C∗. Let x = ˜W , and � = P1 where (1 : Y ) is its coordinate. There is only one
fundamental differential

B = dY1dY2

(Y1 − Y2)2
.

since there is no choice of A-cycles. The spectral curve is � = (�, x, B). The all
genera mirror symmetry for P1 is the following theorem [30].

Theorem 22 (Fang-Liu-Zong) Let t = t01+t1H where 1 is the unit inH 0
T
(P1;C)

andH is the equivariant lift of the hyperplane class whose restriction at two T-fixed
points gives w1 and w2 respectively.

ωg,n| 1√−2dξα,k(Yj )=(ũ)αk
= (−1)g−1+nFP

1,T
g,n (u1, . . . ,un, t).

Since the proof utilizes the same idea as in the proof of the BKMP conjecture
which will be discussed in more details (see Sect. 4.5), we only briefly remark a few
words here. Notice the similarity between this theorem and Theorem 17—the right
side is the actual Gromov-Witten potential, while the one in Theorem 17 comes
from the quantization for the Frobenius manifold. They agree as shown in [39, 40].

We mention that taking the non-equivariant limit w → 0 and when there is no
primary insertions, this theorem leads to the Norbury-Scott conjecture [19, 59].

Theorem 23 (Norbury-Scott) Near Y = 0, in the non-equivariant limit (w1 =
w2 = 0, t0 = 0), x−1 = (Y + et1

Y
)−1 is a coordinate such that one can expand ωg,n

in power series

ωg,n = (−1)g−1+n
∑

a1,...,an∈Z≥0
〈〈τa1(H) . . . τan(H)〉〉P1g,n

n
∏

j=1

(aj + 1)!
xaj+2 dxj .

Remark 24 The divisor equation says (q = et1)

〈〈τa1(H) . . . τan(H)〉〉P1g,n = q
1
2
∑n

i=1 ai+1−g〈τa1(H) . . . τan(H)〉P1g,n.

The Norbury-Scott conjecture corresponds to setting q = 1, i.e. t1 = 0.

Taking the large radius limit of the equivariant mirror theorem (Theorem 22) for
P1, one could recover the Bouchard-Mariño conjecture. The superpotential becomes
x = Y+w1 logY by setting q = 0. Settingw1 = −1 turns this into a Lambert curve.
The localization calculation of FP

1,T in the limit produces the Hodge integrals,
and ELSV formula turns it into the desired generating function involving Hurwitz
numbers, as shown in [30, Section 5].
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4.4 Mirror of C3 (Topological Vertex)

Let’s switch gears and proceed to toric Calabi-Yau threefolds. The mirror of a
toric 3-(orbi)fold, by the construction of Givental [38], is a Landau-Ginzburg
model W : (C∗)3 → C. A Calabi-Yau should have a Calabi-Yau mirror. A
special feature of a toric Calabi-Yau variety is that its mirror’s superpotential
W = H(X, Y )Z, (X, Y,Z) ∈ (C∗)3. As pointed out in [44], the Calabi-Yau mirror
is {H(X, Y ) = uv, u, v ∈ C, X, Y ∈ C∗} ⊂ (C∗)2×C2. Furthermore, this Calabi-
Yau mirror can be reduced to a mirror curve {H(X, Y ) = 0} ⊂ (C∗)2. All these
different mirrors should be equivalent, carrying the same B-model information.

The simplest toric Calabi-Yau threefold is C
3, equipped with the Calabi-Yau

form dZ1∧dZ2∧dZ3 where (Z1, Z2, Z3) ∈ C
3 are the coordinates. Its mirror is a 3-

dimensional Landau-Ginzburgmodel (C∗)3, with a superpotentialW = XZ+YZ+
Z = H(X, Y )Z, where X,Y,Z ∈ C

∗ [35]. The mirror curve is {H(X, Y ) = 0} as
an affine plane curve in (C∗)2.

We want to consider open Gromov-Witten invariants of C
3, which count

holomorphic maps from bordered Riemann surfaces to C
3 mapping boundaries to a

Lagrangian submanifoldL (an A-brane). The construction of such invariants is very
complicated. Here we require that L is a so-called Aganagic-Vafa brane. This gives
a very important class of open Gromov-Witten invariants. They play central roles
in many interesting topics involving mirror symmetry and the theory of topological
vertex [3–5].

In this particular example C3, an Aganagic-Vafa brane L is given by

L = {(Z1, Z2, Z3) ∈ C
3 : |Z1|2 − |Z2|2 = c, |Z2|2 − |Z3|2 = 0,Arg(Z1Z2Z3)

= const} ∼= S1 ×R
2.

It is a Harvey-Lawson special Lagrangian [43], and c is its “open Kähler parameter”.
Let μ = {μ1, . . . , μn} be a partition of length �(μ) = n. Naïvely, we denote the
numberNC,L

g,n,μ by the counting of the holomorphic maps described below.

{

(C, ∂C), where the genus of
C is g, and ∂C has n com-
ponents

}

f−→ (C3, L),
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The winding number of each boundary component is given by μi , i = 1, . . . , n.
The definition and computation of such maps in symplectic and algebraic settings
can be found in [46, 48, 52–54].

A common phenomenon in open string counting is that the moduli space of such
maps has codimension 1 boundaries (walls). The counting changes across the wall,
thus depends on a particular choice of chamber in the moduli space. In case that L
is an Aganagic-Vafa brane in a toric Calabi-Yau threefold, the result depends on a

framing parameter, an integer f ∈ Z. We denote this number by N
C
3,L,f

g,n,μ .

A simple way to understand this N
C
3,L,f

g,n,μ is to write down the localization
formula—assuming one can actually do the localization (see e.g. [47]). It turns
out that the answer we get depends on the torus we choose to localize, unlike
the case of closed Gromov-Witten invariants. Denote the Calabi-Yau torus by
T′ = {(Z1, Z2, Z3) ∈ (C∗)3, Z1Z2Z3 = 1}, which preserves the Calabi-Yau form.
Let w1 and w2 be the following character in Hom(T′,C∗)

w1(Z1, Z2,
1

Z1Z2
) = Z1, w2(Z1, Z2,

1

Z1Z2
) = Z2.

If we choose T′f = Ker(w2 − fw1) ⊂ T′, we will get NC
3,L,f

g,n,μ by the localization

formula.5 We can assemble these N
C
3,L,f

g,n,μ into a generating function

F
C
3,L,f

g,n =
∞
∑

μ1,...,μn=1
N

C
3,L,f

g,n,μ X
μ1
1 . . . Xμn

n .

The mirror B-model starts from the reparametrized mirror curve

Hf (X, Y ) = X−f Y + Y + 1.

This defines an affine plane curve � ⊂ (C∗)2 whose compactification � ∼= P1.
Define the superpotential and the fundamental differential

W = x, B(Y1, Y2) = dY1dY2

(Y1 − Y2)2
.

Here X = e−x and Y = e−y . The moment map and the mirror curve is illustrated
in Fig. 1.

After running the Eynard-Orantin recursion, we get a sequence of ωg,n. The
famous BKMP remodeling conjecture [11, 55] asserts the following.

5If one insists on algebraic geometry, we can use relative Gromov-Witten invariants as the
definition. This involves partially compactifying C3 into the total space ofOP1 (−1−f )⊕OP1(f ),

and define N
C
3,L,f

g,n,μ as the relative Gromov-Witten invariants on this space relative to the fiber
divisor at the infinity in P1. The tangency condition at the divisor is given by μ. (See [48, 53, 54].)
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LRLp

Fig. 1 Under the moment map of the real Calabi-Yau torus T′
R
, the toric graph is the image of

T
′-invariant 1-dimensional subvariety (left). The image of the Aganagic-Vafa brane is a point on

the toric graph. The mirror curve (right) is P1 with three punctures, and its compactification is P1.
The large radius point is where X = 0

Theorem 25 ([14, 67, 68]) For g ≥ 0, n ≥ 1, 2g − 2+ n > 0,

F
C
3,L,f

g,n =
∫ X1

. . .

∫ Xn

ωg,n.

Remark 26 The cases (g, n) = (0, 1), (0, 2) have special forms which are omitted
here for simplicity. There are also predictions on the free energies Fg which are the
generating functions of closed GW invariants based on ωg,n. We will discuss Fg in
general in the next subsection.

We will postpone the discussion of the proof to the next subsection. The

following theorem relates Hurwitz numbers to F
C
3,L,f

g,n in the large framing limit.

Theorem 27 ([13])

lim
f→∞(−1)nf 2−2g+nF

C
3,L,f

g,n (
X1

f
, . . . ,

Xn

f
) = Hg(X1, . . . , Xn).

We have a localization formula for F
C
3,L,f

g,n . One can write it as a triple Hodge
integral with some disk factors (elementary functions). The proof of this theorem is
a direct calculation, in which one takes the limit f →∞ in the triple Hodge integral
(cf. ELSV formula 21)


•g(1)
•g(f )
•g(−1− f ) = 
•g(1)(−1)g−1f 2g−2(1+O(
1

f
)).

On the other hand, the mirror curve

XY−f + Y + 1 = 0
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reduces to the Lambert curve X′ = Y ′e−Y ′ under the change of variable

X = −(−1)f X′

f
, Y = −1+ Y ′

f
.

and taking limit f → ∞. Theorem 20 is a consequence of Theorem 25 after one
takes limit f →∞, and rewrites the open GW potential in the Hurwitz potential by
Theorem 27.

4.5 Mirror of a Semi-Projective Toric Calabi-Yau Threefold

A toric Calabi-Yau threefold X is a Calabi-Yau 3-dimensional manifold (or more
generally, an orbifold) with a Zariski open and dense algebraic torus T ∼= (C∗)3.
The action of T on itself extends to X. For simplicity, we require X is a smooth
manifold, and will remark briefly on orbifolds in Sect. 4.6. We also require that
X is semi-projective, i.e. it is projective over its affinization. The last condition is
equivalent to that the union of all cones defining X is convex in R3. Let T′ be the
2-dimensional subtorus preserving the Calabi-Yau form.

Let N = Hom(C∗,T) and M = Hom(T,C∗) = N∨. The Calabi-Yau torus
T′ = Ker(w3) for some w3 ∈ M . Being a Calabi-Yau threefold, the fan data to
define X is the cone with vertex at the origin over a triangulated integral convex
polytopeX on {w3(y) = 1|y ∈ NR}. If this triangulation cannot be further refined,
i.e. each triangle has area 1

2 , the resulting X is a smooth manifold (see Fig. 2).

(0,1)

(0,0) (1,0)

(1,0)(0,0) (0,0) (1,0) (0,0) (1,0) (1,0)(0,0)

C3

(0,3) (0,3) (0,3) (0,3)

(1,0)

(0,1) (0,1)

(1,0)(0,0)

(1,1)

conifold

A2

(−1,−1) (−1,−1)

C3Z3KP2

C2Z3

Fig. 2 Defining polytopes of some toric CY 3-(orbi)folds
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X

X1

C3 conifold KP2

Ga

C3Z3

Fig. 3 1-Dimensional T′-invariant subvarieties and toric graphs. We use X since some are
orbifolds

The action of the real torus T′
R
⊂ T

′ is Hamiltonian, and we can consider the
image of all 1-dimensional T′-invariant subvarieties in X under the moment map
μ′. Such image is called the toric graph of X (Fig. 3).

An Aganagic-Vafa brane is a Lagrangian 3-dimensional submanifold inX, given
by the following condition

L ⊂ μ′−1(p), Arg(Z1 . . . Zp+3) = const on L.

where (Z1, . . . , Zp+3) ∈ Cp+3 are homogeneous coordinates, and p is a non-
vertex point on the toric graph. When p is on a finite segment, L is called an inner
braner; when p is on a ray, L is called an outer brane. We restrict to the case of
an outer brane L for simplicity. By suitable arrangement (by some SL(2;Z)-action
and translation of the defining polytope), we always assume that vertex containing
p consists of half-edges in the direction (−1, 0), (0,−1) and (1, 1), and p is on the
half-edge in the direction (−1, 0). This half-edge is a ray since L is outer.

Similar to the case of C3, we consider the open Gromov-Witten invariant
N

X,L,f
g,n,β,μ which counts the maps of the bordered Riemann surface in the topological

type (g, n) to the target (X, (L, f )) in the curve class β. They form a generating
function

F
X,L,f
g,n =

∞
∑

μ1,...,μn=1
N

X,L,f
g,n,β,μX̂1

μ1
. . . X̂μn

n Qβ.

Here we use X̂ as open variables since they might differ from X in B-model by an
open mirror map. The Kähler parameter Qβ = ∏p

a=1 Qa
〈pa,β〉, where pa form an

integral basis in the Kähler cone, and we let Qa = e−τa . The B-model is a mirror
curve �q

H(X, Y ) = XY−f + Y + 1+
N−3
∑

a=1
qaX

maY na−fma = 0.
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A1

p

  LRL

Fig. 4 Defining polytope, toric graph and mirror curve of OP2 (−3). Notice that we’ve arranged
the defining polytope and the toric graph in the desired form such that the half edges of the vertex
adjacent to p are in the desired direction. The point LRL on the mirror curve is the B-model large
radius point, and the period integral around cycle A1 gives the mirror map

In the equation, q1, . . . , qN−3 are complex parameters, and q → 0 at the large
radius point. The number of complex parameter is N − 3, whereN is the number of
integer points inside the defining polytope of X. Under mirror symmetry, N is also
the dimension of the equivariant (quantum) cohomology. The integer points inside
the defining polytope are denoted by (ma, na). The tropicalization of this curve
reduces back to the toric graph (see Fig. 4 as an example). It is also an SYZ dual
to the union of 1-dimensional T′-invariant subvarieties. Depending on the choice
of the Aganagic-Vafa brane, there is a large radius limit point (the LRL-point in
Fig. 4) on the mirror curve where X = 0. We specify e−x = X, e−y = Y (so at
LRL, x =∞ and thus the name large radius). The Landau-Ginzburg superpotential
W and its equivariant version ˜W are

W = H(X, Y )Z, ˜W = W − logX.

The open-closed mirror map is the following

τa = τa(q) = log qa + ha(q), a = 1, . . . , N − 3 (3)

log X̂i = logXi + h0(q),

where ha(q) = O(q) for a = 1, . . . , N − 3. In particular, there are certain choices
of geometric cycles Aa ∈ H1(�q ;Z), a = 1, . . . , N − 3, which can be lifted to
cycles in H1(˜�q ;Z), such that

τa =
∫

Aa

ydx.
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The closed part of this map (first line of Eq. (3)) maps q to a Kähler class τ ∈
H 2(X). Furthermore there is another cycle A0(X) which lifts to a path ˜A0(X) in
the universal cover of �q , such that

log X̂ =
∫

˜A0(X)

ydx = logX + h0(q).

The genus 0 mirror symmetry for closed descendant Gromov-Witten theory is the
celebrated toric mirror theorem of Givental and Lian-Liu-Yau [36, 38, 50, 51], in
which closed mirror maps are also explicitly given. The open-closed mirror maps
are explicitly computed in [49, 57], and the mirror symmetry for disk invariants is
conjectured in [3, 4] and proved in [28, 33] under these mirror maps.

The cycles Aa, a = 1, . . . , N − 3 induce a Lagrangian subspace of H1(�q;C),
and thus defines a fundamental differential form B. Define the spectral curve
�q = (�q, x, B). The Eynard-Orantin recursion gives a sequence of higher genus
B-model invariants ωg,n. The BKMP remodeling conjecture says

Theorem 28 (Fang-Liu-Zong, [31, 32]) When 2g − 2+ n > 0, g ≥ 0, n ≥ 1,

∫ X1

. . .

∫ Xn

ωg,n = F
X,L,f
g,n (X̂1, . . . , X̂n).

In this theorem, we understand that ωg,n as power series in X around the large
radius limit point. When 2g−2 > 0, closed free energy is predicted by the following
formula

FX
g =

∑

p0∈I�q

Resp=p0ωg,1(p)˜�(p),

where I�q is the set of ramification points, and d˜�(p) = � is a function locally
defined around each ramification point.

4.5.1 Sketch of the BKMP Remodeling Conjecture: Graph Sums

We illustrate the idea of using graph sums to give a proof of this conjecture. As we
discussed in Sect. 3, the B-model side could be written as the following graph sums

∫ X1

. . .

∫ Xn

ωg,n =
∑

&�∈�g,n(�q)

wX
B,O(&�)

Aut(&�)
. (4)

The only difference between wX
B,O(&�) and w

p
S(
&�) in Eq. (2) is that the ordinary leaf

term (Ľp)αk (lj ) = − 1√
2
θα
k (pj ) is replaced by its integral

(ĽO)αk (lj ) = −
1√
2

∫ Xj

θα
k (5)
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The first step to deal with the A-model side in Theorem 28 is to reduce it to closed
descendant Gromov-Witten invariants by the technique of localization, as done in
[28, Proposition 3.4] and [33, Proposition 3.1, 3.2].

By this localization formula, we have the graph sum formula

F
X,L,f
g,n =

∑

&�∈�(V (X))

wX̂
A,O(&�)

Aut(&�)
. (6)

The only difference between wX̂
A,O(&�) and wu

F,•(&�) in Eq. (1) is that the ordinary
leaf term (Lu

d )
α
k (lj ) is replaced by

(LO)αk (lj ) = [zk](
N
∑

β,γ=1

(

˜ξβ(z,Xj )S
γ̂

β(z)

)

+
R(−z) β

γ ). (7)

Roughly speaking,˜ξβ(z,X) is the generating function counting 1 interior-pointed
holomorphic disks mapped to (X,L) with no curve class but all winding numbers.
The class φβ is inserted in the interior. In order to compare the graph sum
formulae (4) and (6), we need to identify �(V (X)) and �(�q ) first, and then we

will identify the contribution from each graph wX̂
A,O(&�) and wX

B,O(&�). The sets
�(V (X)) and �(�q) are just sets of stable decorated graphs, and the part of the
decoration that depends on V (X) or �q is the labeling of a vertex by a canonical
basis of the Frobenius algebra V (X) for �(V (X)), or a ramification point of x in the
case of �(�q). The mirror theorem of semi-positive toric manifolds [36, 38, 50, 51],
or later of semi-positive toric orbifolds [17], says the following.

Theorem 29

Jac(˜W) ∼= QH ∗
T
′
f
(X)

in the small phase space τ ∈ H 2(X) and under the closed mirror map (3).

The Jacobian ring is

Jac(˜W) = C[X±, Y±, Z±]
〈 ∂ ˜W
∂X

, ∂ ˜W
∂Y

, ∂ ˜W
∂Z
〉
.

It is a Frobenius algebra for given q . Here we refrain from saying that it is a
Frobenius manifold, i.e. we do not give a metric and discuss the flatness condition.
This theorem already identifies the canonical basis of both sides.

The canonical basis of left hand side Jac(˜W) consists of functions taking value
1 on one critical point of ˜WT′ and vanish on other critical points. A critical point
(X0, Y0, Z0), by direct calculation in [32], is the solution to the following equation

H(X, Y ) = 0,
∂H

∂Y
= 0, ZX

∂H

∂X
= 1.
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We see the critical points of ˜W has a 1-to-1 correspondence to the ramification
points of x : �q → C∗.

Once we identify the set of stable decorated graphs, after looking at the
weights (1) and (2) (the ordinary leaf terms should be replaced by (7) and (5), as
discussed before), we need to show the following:

• Show that R α
β (−z) = Ř α

β (z). Notice that this matches vertices, edges and

dilaton leafs. Both R and Ř are obtained through the decomposition of S-
matrices. Dubrovin and Givental’s results [18, 37, 40] on this decomposition
ensures the uniqueness of R-matrices up to a constant matrix, which can be fixed
at the large radius limit (q = 0). When q = 0, A-side R is computed by the
quantum Riemann-Roch [16, 64] and B-side Ř is computed by direct integral
which produces triple Gamma functions [31], in which we show that they match.

• Show that open leafs (7) and (5) match. By localization, (˜ξβ(z,Xj )S
γ̂

β(z))+ in

Eq. (7) is the generating functions of φ̂γ (τ ) interiorly inserted disk invariants with
all winding numbers and in all possible curve classes. It is shown in [28, 33] that
this corresponds to ξ̂ γ (z,X), which is the B-model counting of disk invariants
with canonical basis inserted.

4.6 Remarks on Orbifolds

Once we adopt the orbifold Gromov-Witten invariants [1, 2, 15], there is no essential
difference to state the BKMP conjecture when the toric Calabi-Yau threefold is a
toric orbifold in the sense of [8]. When the defining polytope contains a triangle with
areas larger than 1

2 , it defines a toric orbifold (with non-trivial orbifold structure).
Some examples in Fig. 2 are orbifolds.

In this paper, all quotients of a smooth variety by a finite group are stacky. Let
X1 = C3/Z3 and X2 = C2/Z3 × C. For X1, the generator of Z3 acts diagonally;
while for X2 the generator of Z3 acts on each piece of C2 with opposite non-trivial
weights. The Aganagic-Vafa Lagrangian brane L is stacky for X2 (Fig. 5).

The mirror curves are

X1 : X3Y−1−3f + Y + 1+ qXY−f = 0,

X2 : XY−f + Y 3 + 1+ q1Y + q2Y
2 = 0.

When the Aganagic-Vafa brane L is not stacky, the orbifold BKMP conjecture is
conjectured by [12]. It takes the same form as in Theorem 28. One needs to make
some adjustment for gerby legs (stacky Lagrangian), as in [31, 32].

The topological vertex algorithm works efficiently for smooth toric Calabi-Yau
threefolds [5, 53, 54, 56] and is extended to hard Lefschetz orbifolds [60–62, 69].
However, this algorithm fails when the orbifold X is non-hard Lefschetz. The
affine orbifold X1 = C3/Z3 is non-hard Lefschetz—the only vertex in the toric
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C3Z3

p

  LRL

p

C2Z2C

Fig. 5 Toric graph and mirror curves of C3/Z3 and C
2/Z3 × C

graph corresponds to a higher genus part of the mirror curve. Thus orbifold BKMP
conjecture is powerful in the sense that it first provides an effective algorithm.

The case of affine toric Calabi-Yau threefolds (C3/G for a Calabi-Yau action by
the abelian groupG) is proved in [31], and the general toric Calabi-Yau 3-orbifolds
is proved in [32]. For affine cases, a particular complication compared to smooth
cases is the A-side orbifold Riemann-Roch calculation [29, 64]. For a general toric
Calabi-Yau 3-orbifold, one cannot rely on Givental’s quantization [39, 40] since his
technique is restricted to the smooth situation if not modified extensively. The paper
[32] uses Zong’s thesis [70], which relies on Teleman’s groundbreaking work [63].
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There is also an orbifold version of Bouchard-Mariño formula [13]. As shown
in [13], it is the large framing limit of the BKMP conjecture for an affine toric
Calabi-Yau 3-orbifold. It should also be the large radius limit of an all genera mirror
symmetry statement about an orbifold P1. However this is not addressed in any
literature as far as the author knows.

5 Modularity of the Topological Recursion and Its
Application

In this section, we will briefly review the modular invariance of ωg,n, and then as an
application, illustrate how BKMP remodeling conjecture implies the modularity of
Gromov-Witten invariants through an example. Themodular invariance is a property
emanating from the modular transformation of the fundamental differentialB(p, q)

on an actual Riemann surface, and thus it is not a feature of formal spectral curves.

5.1 Modular Invariance of Fundamental Normalized
Differentials of the Second Kind

Let (�, x, B) be a spectral curve, and � be its compactification. We fix two sets of
Torelli markings

(Ak, Bk), (A
′
k, B

′
k), k = 1, . . . , g

on �. They differ by an Sp(2g;Z) transformation

(

A

B

)

=
(

a b

c d

)(

A′
B ′
)

,

where a, b, c, d are g × g matrices, and

(

a b

c d

)

∈ Sp(2g;Z). Let θk, k = 1, . . . , g

be linearly independent holomorphic forms on � given by the Torelli marking
(Ak, Bk), i.e.

∫

Ai

θj = δij .

The period matrix τij is given by

τij =
∫

Bj

θi .

We know Im(τ ) > 0 (positive definite), and τij = τji .
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Define the modified cycles

Ai(τ ) = Ai −
∑

j

κijBj (τ ), Bi(τ ) = Bi −
∑

j

τijAj .

Here

κij (τ, τ ) = 1

τ − τ

is a g × g matrix function of τ (not holomorphic). As a convention in this section,
we denote the fundamental differential associated to the A-cyclesAi by BA, and the
fundamental differential associated to the modified A-cycles Ai(τ ) by BA(τ).

By direct calculation, Eynard-Orantin show that in [24]

BA(τ) = BA + 2π
√−1

g
∑

i,j=1
θiκ(τ, τ )θj .

They also show that

BA′ = BA + 2π
√−1

∑

i,j

θi κ̂ij (τ )θj ,

where (κ̂ij ) = bJ and J = (d − τb)−1. Here τ ′ is the period matrix fixed by the
Torelli marking (A′k, B ′k).

τ ′ij =
∫

B ′j
θ ′i ,

∫

A′j
θ ′j = δij .

We have

τ ′ = τa − c

d − τb
, θ ′i =

∑

ij

Jj θj .

The fact that

J tκ(τ ′)J + κ̂(τ ) = 1

τ − τ

implies

BA′(τ ′) = BA(τ).
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Proposition 30 (Eynard-Orantin) Given any Torelli marking (Ak, Bk) for k =
1, . . . , g, the modified fundamental differential BA(τ) given by the modified Torelli
marking (Ak(τ ), Bk(τ )) is independent of the choice of (Ak, Bk).

This property implies that given a fixed spectral curve �, we have a preferred
choice of the fundamental differential BA(τ) independent of the choice of the A-
cycles. We denote this by ˜B . Moreover, under the limit Imτ →∞, ˜B → BA.

From the explicit expression of the Eynard-Orantin recursion (Definition 6), for
any spectral curve �, we can define its modified B-model invariants ω̃g,n based on
this modified fundamental differential ˜B.

5.2 Modularity ofOP2(−3): An Example

The modular invariance of ˜B and ω̃, together with the BKMP remodeling conjec-
ture 28, implies the modularity of the Gromov-Witten invariants of toric Calabi-Yau
3-(orbi)folds. This is a long-expected property of GW invariants. It follows naturally
from the modularity of mirror curves from the view point of the remodeling
conjecture. We illustrate by an example.

5.2.1 Family of Mirror Curves

Let X = O
P2(−3). Its fan is the cone over the defining polytope , as shown in

Fig. 4 in Sect. 4.5.
Its secondary stacky fan S is a complete fan in R, as shown in Fig. 6. The

generators of is 1-cones are

b1 = 1, b2 = 1, b3 = 1, b4 = −3.

The toric orbifoldMB
∼= P(1, 3) defined byS is the moduli space of the B-model,

or conjecturally, is the stringly Kähler moduli space of the mirror A-model on X.
Denote the stacky torus fixed point by porb and the non-stacky smooth torus fixed
point by pLRL.

We now define the following extended secondary fan ˜S as a complete fan in R
3

as in Fig. 7. The generators of its 1-cones are

˜b1 = (0, 0, 1), ˜b2 = (−1, 0, 1), ˜b3 = (0,−1, 1), ˜b4 = (−1,−1,−3),
˜b5 = (1, 1, 0), ˜b6 = (−2, 1, 0), ˜b7 = (1,−2, 0).

Fig. 6 The secondary fan of
O

P2(−3) b1b4
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Fig. 7 The extended
secondary fan of OP2(−3).
The third coordinates of the
generators˜bi are the same if
they are in the same color.
The rays˜b5,˜b6,˜b7 form the
toric graph of C3/Z3. There
is an obvious fan map
˜S→ S

b4

b5

b6

b7

b1

b2

b3

The top dimensional cones are spanned by ˜bi where i ranges from the following
index sets

{4, 5, 6}, {4, 6, 7}, {4, 5, 7}, {5, 1, 2}, {5, 1, 3},
{6, 1, 2}, {6, 2, 3}, {7, 2, 3}, {7, 1, 3}, {1, 2, 3}.

The 2-cones are faces of 3-cones. We denote the toric orbifold associated to the fan
˜S by ˜MB (Fig. 7).

There is an obvious fan map ˜S → S which forgets the first two factors. It
induces a toric map π : ˜MB → MB . The fiber π−1(p) for p �= pLRL is a toric
orbifold defined by the stacky fan given by ˜b5,˜b6,˜b7 (on R2). It is isomorphic
to P2/Z3. Over the smooth torus fixed point, the fiber π−1(pLRL) is three P2

intersecting along three P1 with normal crossing singularities (see Fig. 8). If one
intersects the fan ˜S by a vertical plane, at different horizontal position, we get the
fan of each fiber toric surface. See Fig. 8.

We understand X,Y, q as characters in Hom(TB,C∗) = MB := N∨B , where TB

is the open dense 3-torus in ˜MB , and NB
∼= Z3 is the lattice that˜bi belong to. Then
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porb
    generic plrl

Fig. 8 Over MB , we have a family of toric surfaces given by π . When p �= pLRL, the fiber
π−1(p) ∼= P

2/Z3, given by the stacky fan spanned by ˜b5,˜b6,˜b7. Over pLRL, the toric surface
degenerates to a normal crossing of three P

2, as shown by the “fan” and the polytope. The first
rows are polytopes and the second rows are fans for fiber toric surfaces at different points inMB

X, Y, q corresponds to (1, 0, 0), (0, 1, 0) and (0, 0, 1) in MB respectively. They are
sections of a line bundle ˜L = O

˜MB
(
∑6

i=1 Di). We define a section H ∈ �(˜L)

H = X + Y + 1+ qX−1Y−1.

We define the compactified global mirror curve ˜� = H−1(0) ⊂ ˜MB . It is
parametrized over MB by π

˜� = π |
˜� : ˜� → MB . For any p ∈ MB , the

fiber π−1
˜�

(p) is a compact (possibly singular) curve. Let MB,0 be the part of
MB where the fiber curves are smooth. As shown in Fig. 9, pLRL /∈ MB,0 and
porb ∈ MB,0. There is another point other than pLRL not in MB,0. The fiber has
one nodal singularity. This point is called the conifold point pcon. Thus MB,0 =
MB \ {pLRL, pcon}.

5.2.2 Modularity

The monodromies of the Gauss-Manin connection on the local system
H 1(�q;C) ∼= H1(�q;C) over MB,0 around pLRL and pcon (as computed in
[6]) gives the modular group � of this local system. It is a normal subgroup of the
symplectic group SL(2;Z) of index 3.

OverMB,0, we have a smooth family of mirror curves, and the coordinatesX,Y

are well defined. So X,Y are invariant under the action of the modular group �. If
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porb     generic plrlconifold

Fig. 9 OverMB , we have a family of compactified mirror curves ˜�. At pcon and pLRL the mirror
curves are singular. As before, the sharp ends in the mirror curve picture are the punctures on the
mirror curve. After compactification, they become compact curves in π−1(p). All puncture points
are smooth

we use the modified fundamental differential ˜B to define the higher genus B-model
invariants ω̃g,n, then they are all well-defined global invariants on ˜�|MB,0 . In other
words, if one uses Torelli-marking-sensitive coordinates τ to express these ω̃g,n,
they are invariant under the action of the modular group �.

Using the mirror map (3) we define the open potential in the holomorphic
polarization under A-model flat coordinates.

˜F
X,L,f
g,n (X̂1, . . . , X̂n,Q) =

∫ X1

. . .

∫ Xn

ω̃g,n.

The A-model coordinate Q = Q(p) is well-defined around the LRL point, and is
related to B-model coordiante q around the LRL point under the closed mirror map.
The open potential ˜FX,L,f

g,n has non-holomorphic dependence on Q, in contrast to
the name “holomorphic polarization”. Under the holomorphic limit

lim
Imτ→∞ ω̃g,n = ωg,n.

With the BKMP remodeling conjecture (Theorem 28), we have for 2g − 2+ n > 0
and n ≥ 1

lim
Imτ→∞

˜F
X,L,f
g,n = F

X,L,f
g,n . (8)

If one defines

˜FX
g =

1

2− 2g

∑

p0∈I�q

Resp=p0ω̃g,1(p)˜�(p),
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then for g ≥ 2

lim
Imτ→∞

˜FX
g = FX

g .

The potential ˜FX,L,f
g,n and ˜FX

g are globally defined over MB , although their
expansions in Q are only defined around pLRL since Q is a flat coordinate around
pLRL. Their dependence on p ∈MB is not holomorphic.

Theorem 31 The Gromov-Witten potential FX
g can be completed into an analytic

function ˜FX
g , which under the mirror map (3) is globally defined on MB . If MB is

a modular curve, e.g. when X = OP2(−3), the function ˜FX
g is a function of τ and

modular invariant.

Remark 32 The theorem also holds for unstable cases (g, n) = (0, 0), (0, 1), (0, 2),
(1, 0) but we need to treat these cases separately. We did not very clearly spell
out what this “anti-holomorphic completion” is, as it should be stronger than (8).
Indeed, ω̃g,n can be written as a polynomial in 1

Imτ
with holomorphic coefficients

[24, 26]. The lowest order of Imτ is 2−2g, and each coefficient in non-holomorphic
terms are given by combinations of ωg′,n, g′ < g in a graph sum formula. The
BKMP conjecture allows us to say the same—˜FX

g is a polynomial in 1
Imτ

with the

highest power term ( 1
Imτ

)2g−2 and holomorphic term FX
g . Each coefficient in the

non-holomorphic terms are given by FX
g′ in a graph sum formula where g′ < g.

Remark 33 One could use the modularity property to compute higher genus
Gromov-Witten invariants for certain toric Calabi-Yau 3-(orbi)folds, thanks to the
complete structure theorem of almost holomorphicmodular forms. See [6, 7, 66] for
numerical calculations and closed formulae for some ˜FX

g and FX
g .
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Abstract This is an extended version of a long lecture given on the workshop
“Pedagogical workshop on B-model” held at the University ofMichigan, Ann Arbor
on 3–7 March 2014. The main goal is to prove that the total ancestor potential in
singularity theory depends analytically on the deformation parameters.
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1 Introduction

Motivated by quantum cohomology and Gromov–Witten theory Dubrovin invented
the notion of a Frobenius manifold [4]. Furthermore, he noticed that the Frobenius
manifolds satisfying certain semi-simplicity condition play a key role in the theory
of integrable hierarchies. This lead to the remarkable discovery that every semi-
simple Frobenius manifold gives rise to an integrable hierarchy [5]. Partially
motivated by Dubrovin’s work, Givental discovered a certain higher-genus recon-
struction formalism in Gromov–Witten (GW) theory which lead him to introduce
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the notion of a total ancestor potential in the abstract settings of an arbitrary semi-
simple Frobeniusmanifold S (see [8]). The potential is defined for each semi-simple
point s ∈ S and it has the form

˜As (h̄; t) = exp
(
∞
∑

g=0
h̄g−1

˜F (g)
s (t)

)

where ˜F (g)
s (t) is a formal power series in some formal vector variables t =

(t0, t1, t2, . . . ). Let us denote by B ⊂ S the subset of non-semisimple points. It
is known that B is an analytic hypersurface in S and that the coefficients of the
formal power series ˜F (g)

s (t) depend analytically in s for all s ∈ S \ B.
Givental conjectured that if S is the quantum cohomology of some compact

Kahler manifold, then under the semi-simplicity assumption, the total ancestor
potential of the Frobenius structure is a generating function for the so called ancestor
GW invariants (see Sect. 2.4 for more details). Givental’s conjecture was proved
by Teleman [21] in the more general settings of semi-simple Cohomological Field
Theories (CohFT).

On the other hand, most of the CohFT that we would like to compute satisfy the
semi-simplicity condition only after we deform them, so in order to use Givental’s
higher genus reconstruction it is important to determine whether the total ancestor
potential As (h̄; t) of a given semi-simple Frobenius structure extends analytically
through the non-semisimple locus. For example, if S is the orbit space of the Weyl
group of a non-simply laced simple Lie algebra (i.e., typesB,C,F , orG), then there
is a natural Frobenius structure on S (see [4, 19]), but the total ancestor potential
does not extend analytically. It is a very interesting question to determine whether
the total ancestor potential of the Frobenius structures in that case has a geometric
origin, i.e., it is related in some way to some CohFT of Fan-Jarvis-Ruan-Witten
(FJRW) [7]. In fact, some progress in this direction was recently made by Liu-Ruan-
Zhang [15].

One of the most important examples of a semi-simple Frobenius structure, that
plays a crucial role in mirror symmetry, is Saito’s flat structure [18]. Motivated by
the classical theory of period integrals, K. Saito introduced the notion of a primitive
form. Let S be the base of the universal unfolding of the germ of a holomorphic
function f ∈ OCn+1,0 with an isolated critical point at 0 ∈ Cn+1. A primitive form
is the germ of a holomorphic volume form on Cn+1, possibly depending on the
deformation parameters s ∈ S, with some very special properties. Spelling out the
precise definition is quite difficult, but the main idea is that a primitive form and its
covariant derivatives with respect to the Gauss–Manin connection, provide a frame
for the vanishing cohomology bundle in which the Gauss–Manin connection turns
into a Dubrovin’s connection. In particular, the base S inherits a natural Frobenius
structure, which is always semi-simple, because the critical values provide canonical
coordinates (see [11, 20]). The goal in these notes is to prove the following theorem.
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Theorem 1 Let S be the base of the universal unfolding of some f ∈ OCn+1,0
equipped with a Frobenius structure corresponding to a primitive form; then the
coefficients of the total ancestor potential As(h̄; t) in front of the monomials in t
and h̄ extend analytically across B to analytic functions on the entire Frobenius
manifold S.

Theorem 1 motivates the following question. Given a singularity f ∈ OCn+1,0
and a primitive form, can we identify the total ancestor potential of the singularity
with the generating function of invariants of some CohFT. For example, if the germ
f can be represented by an invertible weighted-homogeneous polynomial and the
primitive form is chosen appropriately, then there is a conjecture that the appropriate
CohFT is a FJRW-CohFT [7].1

The proof of Theorem 1 follows the argument from [17]. We will try to keep
the exposition as self-contained as possible. In particular, up to some linear algebra
exercises, we give an introduction to Givental’s higher-genus reconstruction, define
and prove the properties of the so called propagators from [2], and finally give a
proof of the local Eynard–Orantin recursion [6, 16]. The only requirements for
reading this text is the knowledge of a Frobenius structure (see [4]). However, it
might be useful also to refer from time to time to Givental’s work [10], where the
period integrals were introduced and some of their most fundamental properties
were established.

2 Givental’s Total Ancestor Potential

Let S be a complex semi-simple Frobenius manifold and B ⊂ S be the analytic
hypersurface consisting of non-semisimple points. Motivated by Gromov–Witten
theory, Givental has defined the total ancestor potential As (h̄; q) of the Frobenius
manifold S for every semi-simple point s ∈ S \ B. The goal in this section is to
recall Givental’s construction.

2.1 Givental’s Symplectic Loop Space Formalism

Let H be a complex vector space equipped with a non-degenerate bi-linear pairing
( , ) and with a distinguished vector 1 ∈ H . By definition, Givental’s symplectic
loop space H = H((z−1)) is the space of formal Laurent series in z−1 with
coefficients in H , equipped with the following symplectic structure:

�(f (z), g(z)) = Resz=0(f (−z), g(z))dz,

the residue is interpreted formally as the coefficient in front of z−1.

1One of the pleasant outcomes of the workshop was that this conjecture was confirmed by
generalizing the approach of [14].
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The vector space H viewed as an abelian Lie algebra has a natural central
extensionH ⊕ C in which the symplectic form coincides with the cocycle defining
the extension,

[v1, v2] := �(v1, v2), v1, v2 ∈ H.

SinceH⊕C is a Heisenberg Lie algebra it has a standard Fock space representations.
In our case the construction is as follows. Let us fix bases {φa}Na=1 and {φa}Na=1 of
H dual with respect to ( , ), then

�(φa(−z)−n−1, φbz
m) = δa,bδn,m.

Let us fix a sequence of formal vector variables q = (q0, q1, q2, . . . ), where qk =
∑N

a=1 qk,aφa . We will be interested in the Fock space of formal power series

Ch̄[[q0, q1 + 1, q2, . . . ]],

where Ch̄ is the field of formal Laurent series in h̄
1
2 . The shift by 1 is known as the

dilaton shift. The linear operator of the Fock space representing v ∈ H ⊕ C will
be denote by v̂ or (v)∧. The representation of the Heisenberg algebra on the Fock
space is uniquely defined by

(φaz
m)∧ := h̄

1
2 ∂qm,a , (φa(−z)−m−1)∧ := −h̄−

1
2 qm,a,

where 1 ≤ a ≤ N and m ≥ 0.

2.1.1 Quantization of Quadratic Hamiltonians

Note that the map

H→ H∗, v �→ �( , v)

induces an isomorphism of Lie algebras

H⊕ C ∼= H∗ ⊕ C,

where the RHS is the vector space of constant and linear functions onH and the Lie
bracket is the Poisson bracket corresponding to the symplectic form�. On the other
hand, a linear operator A on H is an infinitesimal symplectic transformation if and
only if the map v �→ Av is a Hamiltonian vector field. Moreover, the Hamiltonian
is given by the quadratic function hA(v) = 1

2�(Av, v). Put

pm,a = �( , φaz
m), qm,a = −�( , φa(−z)−m−1),
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then hA is a quadratic expression in pm,a and qm,a. We define the quantization
̂A :=̂hA by

(pm,apn,b)
∧ = h̄∂qm,a ∂qn,b ,

(pm,aqn,b)
∧ = (qn,bpm,a)

∧ = qn,b∂qm,a ,

(qm,aqn,b)
∧ = h̄−1qm,aqn,b.

We leave it as an exercise to verify the following properties

[̂A, v̂ ] = (Av)∧, {hA, hB} = h[A,B],

for all v ∈ H and all infinitesimal symplectic transformations A and B, where { , }
is the Poisson bracket.

2.1.2 Quantization of Symplectic Transformations

Let us assume that the operator series

R(z) = 1+ R1z+ R2z
2 + · · · , Rk ∈ End(H)

is a symplectic transformation. It will be convenient to identify the sequence q =
(q0, q1, . . . ) with the series q0+q1z+q2z

2+· · · , then the natural action ofR(z) on
H [z] induces an action on the formal sequence: q(z) �→ R(z)q(z), or in components

qn �→ R0qn + R1qn−1 + · · · + Rnq0.

Let us also define Vk� ∈ End(H) by the identity

∞
∑

k,�=0
Vk�z

kw� = RT (z)R(w)− 1

z+w
, (1)

where T is transposition with respect to the bi-linear form ( , ). We can define
formally A(z) = logR(z), so that R(z) = eA(z). By definition the quantization
̂R := e

̂A. The action of ̂R on the Fock space is not well defined in general. We have
the following Lemma.

Lemma 2 If F(h̄; q) is a formal power series in the Fock space and ̂RF is well
defined, then

̂RF(h̄; q) =
(

eh̄V (∂,∂)/2F
)

(h̄;R−1q),
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where V (∂, ∂) is the following 2nd order differential operator

V (∂, ∂) =
∞
∑

k,�=0

N
∑

a,b=1
(φa, Vk�φ

b)∂qk,a ∂q�,b .

2.1.3 Tame Asymptotical Functions

We will be interested in the so called tame functions. To define them let us introduce
first another sequence of formal vector variables t = (t0, t1, t2, . . . ), so that tk =
qk + δk,11. Formal power series in the Fock space of the type

A(h̄; q) = exp
(
∞
∑

g=0
h̄g−1F (g)(t)

)

, F (g) ∈ C[[t]], F (g)(0) = 0

are called formal asymptotical functions.We say that a formal asymptotical function
is tame if its Taylor’s coefficients satisfy the 3g − 3+ r-jet condition

∂rF (g)

dtk1,a1 · · · dtkr ,ar

∣

∣

∣

∣

∣

t=0
= 0 if k1 + · · · + kr > 3g − 3+ r.

Let us recall the following result from [10].

Lemma 3 If A is a tame asymptotical function, then ̂RA is a well defined tame
asymptotical function.

2.1.4 Symplectic Loop Space for a Frobenius Manifold

We fix a flat coordinate system {ta}Na=1 on S, s.t., the Euler vector field takes the
form

E =
N
∑

a=1
da ta∂a +

∑

b:db=1
rb∂b,

where d1, d2, . . . , dN and rb (b : db = 1) are some constants and ∂a := ∂/∂ta.

For simplicity, let us assume that S is simply connected, so that the flat vector fields
give a trivialization of the tangent and the cotangent bundle. More precisely, let us
denote by H the tangent space at some reference point, then we have

T ∗S ∼= T S ∼= S ×H,
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where the first isomorphism is via the non-degenerate bi-linear form of the
Frobenius structure and the second one is via parallel transport with respect to the
corresponding Levi–Civita connection. The vector space H can be viewed also as
the vector space of flat vector fields on S. Note that φa = ∂a and φa := dta

form bases of H dual with respect to the Frobenius pairing. Recalling Givental’s
symplectic loop space formalism applied for H with ( , ) being the Frobenius
pairing, and 1 the unit vector field we get a symplectic loop space and a Fock
space equipped with a representation of the Heisenberg algebra and a projective
representation of the Poisson algebra of quadratic Hamiltonians on H .

2.2 Canonical Coordinates

Let us fix a semi-simple point s ∈ S \ B. By definition, there exists a coordinate
system {ui}Ni=1 defined locally near s in which both the Frobenius multiplication
and the flat metric are diagonal, i.e.,

∂ui • ∂uj = δi,j ∂uj , (∂ui , ∂uj ) =
δi,j

j

,

where {j }Nj=1 are some functions analytic with no zeros in a neighborhood of s.
Coordinates {ui} with the above properties are called canonical. They are unique up
to permutation and a constant shift.

Let us denote by U the diagonal matrix of size N × N whose diagonal entries
are Ui,i = ui . We need also the N × N matrix � corresponding to the linear map

� : CN → TsB ∼= H, ei �→
√

i∂ui .

The matrix of � is constructed by using the standard basis {ei}Ni=1 of CN and the
flat basis {φa}Na=1 of H , so that the entries of � are

�a,i =
√

i

∂ta

∂ui

, 1 ≤ a, i ≤ N.

Let us summarize some of the basic properties of the matrix � . The proofs follow
immediately from the definitions, so they will be left as an exercise.

Proposition 4 The matrix � has the following properties:

(1) If g = (ga,b), ga,b = (φa, φb) is the matrix of the flat pairing, then

� �T = g−1,

where T is the usual transposition of matrices.
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(2) Let A = ∑N
a=1 Aadta be the connection 1-form on S where Aa is the linear

operator of Frobenius multiplication by ∂a , then

�−1A� = dU.

(3) The Euler vector field has the form E =∑N
i=1 ui∂ui . In particular,

�−1(E•)� = U,

where E• is the linear operator of multiplication by the Euler vector field E.

Recall the Dubrovin’s connection ∇ on the trivial bundle S × C∗ × H → S × C∗.
In flat coordinates

∇ = d − Az−1 +
(

− θz−1 + (E•)z−2
)

dz,

where θ is the so called Hodge grading operator defined by

θ : H → H, θ(φa) =
(D

2
+ da − 1

)

φa, 1 ≤ a ≤ N.

Proposition 5 Dubrovin’s connection has an irregular singularity at z = 0 and it
has a unique formal asymptotical solution of the form

�(1+ R1z+ R2z
2 + · · · )eU/z. (2)

Proof Using Proposition 4 we get

�−1∇� = d +�−1d� − dUz−1 + (V z−1 + Uz−2)dz,

where V := −�−1θ� . The asymptotical series (2) is a solution to the Dubrovin’s
connection if and only if {Rk}∞k=0 (we set R0 = 1) satisfies the following system of
differential equations

dRk + (�−1d�)Rk = [dU,Rk+1], ∀k ≥ 0 (3)

and

kRk + [U,Rk+1] = −VRk, ∀k ≥ 0. (4)

We have to prove that the above system has a unique solution. Arguing by induction
on � we will prove that there is a unique sequence R1, . . . , R� satisfying (3) and (4)
for all k ≤ � − 1, the diagonal part of (4) for k = �, and E(Rk) = −kRk for all
k ≤ �.
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Let us first prove the statement for � = 1. Using (3) with k = 0 and comparing
the (i, j)-th entries of the matrices with i �= j we get

(�−1d�)i,j = (dui − duj )(R1)i,j .

The flatness of ∇ implies that [dU,�−1d�] = 0. In particular, (dui − duj ) ∧
(�−1d�)i,j = 0, which by the de Rham lemma implies that (�−1d�)i,j =
αi,j (dui − duj ) for some function αi,j analytic in a neighborhood of s. Hence
(R1)i,j = αi,j . Comparing the diagonal entries in (4) for k = 1 we get

(R1)i,i = −
∑

p �=i

Vi,p(R1)p,i,

so R1 is uniquely determined. Let us check that the R1 satisfies (4) with k = 0. We
need only to compare the off-diagonal entries. Fix i �= j , then by definition we have

(�−1∂up�)i,j = 0, p �= i, j,

and

(R1)i,j = (�−1∂ui�)i,j = −(�−1∂uj�)i,j ,

hence

[U,R1]i,j = (ui − uj )(R1)i,j = (�−1E(�))i,j ,

where E = ∑N
i=1 ui∂ui is the Euler vector field. Since by definition LieE( , ) =

(2−D)( , ) we get that E(i) = Di and

E(�a,i) =
(D

2
+ deg(ta)− 1

)

�a,i = θa,a�a,i.

In other words �−1E(�) = �−1θ� = −V. Finally, note that E(U) = U and
E(V ) = 0, so the identity [U,R1] = −V implies that E(R1) = −R1.

Assume that we have constructed R1, . . . , R�. We would like to construct R�+1
so that the inductive assumption holds. Note that since ∇ is flat we have

(

d +�−1d�
)2 = �−1d2� = 0, [dU, d +�−1d�] = 0,

so

[dU, dR� +�−1d�R�] = (d +�−1d�)[dU,R�] = (d +�−1d�)2R�−1 = 0.
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Now the same argument that we used to constructR1 can be used to constructR�+1.
The details are straightforward and will be left as an exercise. ��

2.3 The Total Ancestor Potential

Let us begin first with the case when S = C is equipped with the natural Frobenius
structure corresponding to the standard multiplication of complex numbers and the
pairing is (1, 1) = 1. The total ancestor potential in this case is defined through the
intersection theory on the Delign–Mumford moduli spaces Mg,n of stable curves.
Let us denote by ψi the 1st Chern class of the orbifold line bundle on Mg,n

corresponding to the cotangent lines at the i-th marked points. Put

〈ψk1
1 , . . . , ψkn

n 〉g,n :=
∫

Mg,n

ψ
k1
1 · · ·ψkn

n . (5)

The Witten-Kontsevich tau-function is a formal series in t = (t0, t1, . . . ) defined by

˜Apt(h̄; t) = exp
(
∞
∑

g=0
h̄g−1

˜F (g)(t)
)

,

where the genus-g potential

˜F (g)(t) =
∞
∑

n=0

1

n! 〈t(ψ1), . . . , t(ψn)〉g,n

is defined as follows. We identify t with the formal series t(z) := t0 + t1z+ · · · and
the n-point genus-g correlator is expanded multilinearly in t0, t1, . . . , so that the
correlators are reduced to expressions of the type (5). The total ancestor potential
Apt is obtained from ˜Apt via the dilaton shift: t(z) = q(z) + z, or in components
tk = qk + δk,1, k = 0, 1, 2, . . . , i.e.,

Apt(h̄; q) = ˜Apt(h̄; q(z)+ z) ∈ Ch̄[[q0, q1 + 1, q2, . . . ]].

Note that in this case B = ∅ and that by definitionApt is independent of the choice
of a semi-simple point.

If S is an arbitrary simply connected semi-simple Frobeniusmanifold, then we fix
a reference tangent space H with a basis {φa}Na=1 that gives rise to a flat coordinate
system t = {ta}Na=1. In a neighborhood of a fixed semi-simple point s ∈ S \ B we
pick canonical coordinates {ui}Ni=1 and fix a branch of

√
i , so that the matrix� is
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uniquely defined. The total ancestor potential is defined by

As (h̄; q) := ̂� ̂R e(U/z)∧
N
∏

i=1
Dpt(h̄i; iq(z)

√

i) ∈ Ch̄[[q0, q1 + 1, q2 . . . ]],
(6)

where iq(z) = ∑∞
k=0 iqkz

k. The expression preceding ̂� is a formal series in the
variables iqk (1 ≤ i ≤ N, k ≥ 0). The quantization ̂� is interpreted as the change
of variables

N
∑

i=1
iq��(ei) =

N
∑

a=1
q�,aφa,

i.e., ̂� transforms a formal series in iq� into a formal series in q�,a via the
substitution

iq� =
N
∑

a=1
(�−1)i,aq�,a.

Proposition 6 The coefficients in the formal series expansion of As (h̄; q) as a
series in q0, q1 + 1, q2, . . . are Laurent series in h̄, whose coefficients extend
analytically to the open subset S \ B of semi-simple points.

Proof In order to prove that the coefficients extend analytically along any path in
S \B, it is enough to prove that the canonical coordinates ui have this property. Let
us denote by L ⊂ T ∗S the characteristic variety of the Frobenius multiplication.
Namely, L is defined as the zero locus of the sheaf of ideals I on T ∗S generated by
the kernel of the map

Sym(TS)→ TS, v1 . . . vk �→ (v1 • · · · • vk). (7)

Here we are using that there is a natural map π∗ Sym(TS) → OT ∗S , where π :
T ∗S → S is the projection, so that the kernel of the map (7) can be mapped toOT ∗S
and it makes sense to define the ideal I generated by the image.

If s is a semi-simple point, then we can choose canonical coordinates
(u1, . . . , uN) around s and fiberwise coordinates x1, . . . , xN on T ∗S, so that all
1-forms in a neighborhood of s are given by

∑N
i=1 xidui . In the local coordinates

(u1, . . . , uN , x1, . . . , xN) the characteristic variety L is given by the equations

xixj − δi,j xj = 0, 1 ≤ i, j ≤ N.

It follows that over a neighborhood of s the subvariety L is a N-sheet covering and
the N sections of T ∗S that define L are precisely the 1-forms dui (1 ≤ i ≤ N).
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It is not hard to see from here that the projection π induces a branched covering
L → S of degree N and moreover the set B of non-semi-simple points coincides
with the branching locus, i.e., with the support of the sheaf of relative differentials
�1

L/S. Since L induces a regular covering on S \B the differential forms dui extend
along any path in S \ B, which proves that ui also extends.

The analytic continuation along a closed loop in S \ B acts as a permutation on
the sequence (u1, . . . , uN), while on the sequence (

√
1, . . . ,

√
N) the action is

given by the same permutation, but with possible sign changes of
√
i . It remains

only to check that formula (6) is independent of the choices of signs in
√
i and

invariant under the permutations of the canonical coordinates. This follows easily
from the definitions. ��

2.4 The Ancestor Correlators

In order to motivate our definition of correlators, let us first recall the definition in the
geometric settings, following [9]. For a given projective manifold V , let us denote
by Mg,n(V , d) the moduli space of degree-d stable maps from a genus-g nodal
Riemann surface, equipped with n marked points, to V . The ancestor correlator
functions are defined by the following intersection numbers:

〈φa1ψ
k1
1 , . . . , φanψ

kn
n 〉g,n(t) :=

∞
∑

m=0

∑

d

Qd

m!
∫

[Mg,n+m(V ,d)]virt
ev∗(φa1 ⊗ · · · ⊗ φan ⊗ t⊗m)

n
∏

a=1
ψ

ka
a ,

where the notation is as follows. The classes {φas }ns=1 and t are cohomology classes
on V , the 2nd sum is over all effective curve classes d ∈ H2(V ;Z) and Qd is an
element of the Novikov ring. Furthermore, evaluating the stable map at the marked
points gives rise to the evaluation map

ev :Mg,n+m(V, d)→ V n+m,

while the operation forgetting the last m marked points, the stable map,
and stabilizing (i.e. contracting the unstable components) gives a map ft :
Mg,n+m(V, d) → Mg,n. The cohomology classes ψs := ft∗(ψs) (1 ≤ s ≤ n).
Finally, [Mg,n+m(V, d)]virt is the virtual fundamental cycle. Let us point out that if
Mg,n is empty, i.e., 2g − 2+ n ≤ 0, then the ancestor correlator is by definition 0.
The total ancestor potential of V has the form

˜At (h̄; t) = exp
(
∞
∑

g=0
h̄g−1

˜F (g)
t (t)

)

, (8)
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where t ∈ H := H ∗(V ;C), t = {tk,a} is a set of formal variables and

˜F (g)
t (t) =

∞
∑

n=0

1

n! 〈t(ψ1), . . . , t(ψn)〉(t)g,n

is the so called genus-g ancestor potential, where t(z) = ∑

k,a tk,aφaz
k and the

definition of the correlator is extended mult-linearly.
Let us return to the settings of an abstract semi-simple Frobenius manifold.

It can be proved that the ancestor potential (6) still has the form (8). Motivated
by Gromov–Witten theory we would like to define the analogues of the ancestor
correlator functions, so that the ancestor potential can be written in the same way.
Put

〈φa1ψ
k1 , . . . , φanψ

kn〉g,n(s; t) := ∂tk1,a1
· · · ∂tkn,an ˜F (g)

s (h̄; t)

and

〈φa1ψ
k1 , . . . , φanψ

kn〉g,n(s) := 〈φa1ψ
k1 , . . . , φanψ

kn 〉g,n(s; 0), (9)

then by the Taylor’s formula we have

˜As (h̄; t) = exp
(

∞
∑

g,n=0

h̄g−1

n! 〈t(ψ), . . . , t(ψ)〉g,n(s)
)

,

where by extending multi-linearly the definition (9) we allow the insertions of the
correlator to be any formal power series from H [[ψ]]. We will refer to (9) as the
ancestor correlators of the Frobenius structure. According to Proposition 6 they are
analytic functions in s ∈ S \ B.

3 The Local Eynard–Orantin Recursion

Let us assume that S is a semi-simple Frobenius manifold. The goal in this section
is to derive a recursion for the ancestor correlators.

3.1 Virasoro Constraints for the Point

Recall that the Witten–Kontsevich tau-function is a vacuum vector for a certain
representation of the Virasoro algebra. The representation can be constructed as
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follows. Put

I
(k)
A1

(u, λ) = (−1)k (2k − 1)!!
2k−1/2

(λ− u)−k−1/2, k ≥ 0

I
(−k−1)
A1

(u, λ) = 2
2k+1/2

(2k + 1)!! (λ− u)k+1/2, k ≥ 0.

These functions are known to be the periods of the A1-singularity. They satisfy the
following crucial property

∂λI
(n)
A1

(u, λ) = I
(n+1)
A1

(u, λ). (10)

We form the generating series

fA1(u, λ; z) =
∑

n∈Z
I
(n)
A1

(u, λ) (−z)n

and define

LA1 (u, λ) :=
1

4
: (∂λfA1 (u, λ; z)∧(∂λfA1 (u, λ; z)∧ : +

1

16
(λ− u)−2 =:

∑

m∈Z
LA1,m(λ− u)−m−2,

where : : is the normal ordering which means that all differentiation operations
precede all multiplication ones. The operators LA1,m form a representation of the
Virasoro algebra (with central charge 1) on the Fock space of the Frobeniusmanifold
S = C. The first few of them have the form

LA1,−1 =
q20

2h̄
+

∞
∑

k=0
qk+1∂qk ,

LA1,0 =
1

16
+ 1

2

∞
∑

k=0
(2k + 1)qk∂qk ,

LA1,1 =
h̄

8

∂2

∂q0
2 +

1

4

∞
∑

k=0
(2k + 3)(2k + 1)qk

∂

∂qk+1
,

LA1,2 =
3h̄

8

∂2

∂q0∂q1
+ 1

8

∞
∑

k=0
(2k + 5)(2k + 3)(2k + 1)qk

∂

∂qk+2
.

It was conjectured by Witten [22] and proved by Kontsevich [13] that ˜Dpt is a
tau-function of the KdV hierarchy. In addition, ˜Dpt satisfies the string equation.
According to Kac and Schwarz [12] there exists a unique tau-function of KdV
satisfying string equation, which can be characterized also as the vacuum vectors
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for the Virasoro algebra. In our notation the Virasoro constraints take the form

LA1,m Apt(h̄; q) = 0, m ≥ −1.

3.2 Virasoro Constraints for the Total Ancestor Potential

Fix a neighborhood of a generic semi-simple point, so that the canonical coordinates
(u1, . . . , uN) are pairwise distinct, i.e., ui �= uj for i �= j . Let us fix a sufficiently
small disk Di near each ui , s.t, Di ∩Dj = ∅ for i �= j . Put

fi (s, λ; z) := � R(z) eU/zfA1(0, λ; z)ei = � R(z) fA1(ui, λ; z)ei ,

where for the 2nd equality we used the translation property (10). Expanding in the
powers of z we get

fi (s, λ; z) =
∑

n∈Z
I
(n)
i (s, λ)(−z)n,

where each I
(n)
i (s, λ) makes sense as a formal Laurent series in λ − ui . However,

using that �ReU/z is a solution for the Dubrovin’s connection, it is easy to prove
that I (n)

i (s, λ) is a solution to the following system of ODEs

∂aI
(n)(s, λ) = −φa • I (n)(s, λ)

∂λI
(n)(s, λ) = I (n+1)(s, λ)

(λ− E•)∂λI (n)(s, λ) =
(

θ − n− 1

2

)

I (n)(s, λ). (11)

Equation (11) has regular singularities at λ = ui (1 ≤ i ≤ N), which implies that
the Laurent series representing I

(n)
i (s, λ) is convergent for all λ ∈ Di and moreover

we can analytically extend in λ along any path in C \ {u1, . . . , uN }.
After a direct computation using Lemma 2 we get the following Lemma.

Lemma 7 The following identities hold:

(fi (s, λ; z))∧ ̂�̂R = ̂�̂R(fA1(ui , λ; z)ei)∧, 1 ≤ i ≤ N.

The symplectic vector space H = H+ ⊕ H−, where H+ = H [z] and H− =
H [[z−1]]z−1 are Lagrangian subspaces. We denote by f �→ f+ and f �→ f− the
corresponding projections.
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Lemma 8 The symplectic pairing

�(f+A1
(ui, λ; z), f−A1

(ui, μ; z)) = 2 log(λ− μ)− 4 log((λ− ui)
1/2 + (μ− ui)

1/2),

where the RHS is expanded into a Laurent series at μ = ui , while keeping λ as a
parameter.

The proof is an easy computation using the explicit formulas for fA1 . The proof of
next Lemma is also a direct computation.

Lemma 9 The symplectic pairing �(f+i (s, λ; z), f−i (s, μ; z)) coincides with

�(f+A1
(ui , λ; z), f−A1

(ui , μ; z))+
∞
∑

�′,�′′=0
(−1)�′+�′′ (V�′,�′′ei , ei ) I

(−�′′−1)
A1

(ui , λ)I
(−�′−1)
A1

(ui , μ),

where V�′,�′′ ∈ End(CN) are defined in terms of R by (1).

Let us define the propagator

Pi,i (s, λ, μ) := ∂λ∂μ�(f+i (s, λ; z), f−i (s, μ; z)). (12)

where the RHS is interpreted as a Laurent series in (μ− ui) whose coefficients are
Laurent series in (λ−ui). In fact, using Lemmas 8 and 9 we get that the propagator
has the form of a singular term 2(λ − μ)−2 plus a Laurent series in (λ − ui) and
(μ− ui). Furthermore, we define

P
(0)
i,i (s, λ) := 1

2! ∂
2
μ

(

(λ− μ)2Pi,i (s, λ, μ)
)

∣

∣

∣

∣

μ=λ

.

It is convenient to define

φj (s, λ; z) := ∂λfj (s, λ; z), ̂φj (s, λ) := (φj (s, λ; z))∧.

Put

Li(s, λ) := :̂φi(s, λ)
2: + P

(0)
i,i (s, λ).

Proposition 10 The following formula holds

Li(s, λ) ̂�̂R = 4 ̂�̂R LA1(ui, λ).

Proof Put

PA1,A1(ui , λ, μ) := ∂λ∂μ�(fA1(ui, λ; z)+, fA1(ui , μ; z)−),
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and define

P
(0)
A1,A1

(ui, λ) := 1

2! ∂
2
μ

(

(λ− μ)2PA1,A1(ui, λ, μ)
)

∣

∣

∣

∣

μ=λ

= 1

4
(λ− ui)

−2.

Note that

4LA1(ui , λ) =: ̂φA1(ui, λ)
2 : +P

(0)
A1,A1

(s, λ).

After this observation the proof is straightforward. Namely, according to Lemma 7
we have

̂φi(s, λ)̂φi(s, μ)̂�̂R = ̂�̂R̂φA1(ui, λ)̂φA1(ui , μ). (13)

On the other hand

̂φi(s, λ)̂φi(s, μ) = :̂φi(s, λ)̂φi(s, μ): + Pi,i (s, λ, μ)

and

̂φA1(ui , λ)̂φA1(ui , μ) = :̂φA1(ui, λ)̂φA1(ui, μ): + PA1,A1(ui, λ, μ).

Also

Pi,i (s, λ, μ) = 2

(λ− μ)2
+ P

(0)
i,i (s, λ) +O(λ− μ)

and

PA1,A1(ui, λ, μ) = 2

(λ− μ)2
+ P

(0)
A1,A1

(ui, λ)+O(λ− μ).

Hence after subtracting the singular term 2(λ−μ)−2 from both sides in (13) we can
set μ = λ. We get precisely the identity that we wanted to prove. ��
Corollary 11 Let

Li(s, λ) =
∑

m∈Z
Li,m(λ− ui)

−m−2

be the Laurent series expansion at λ = ui; then

Li,m As(h̄; q) = 0, 1 ≤ i ≤ N, m ≥ −1.
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3.3 The Local Eynard–Orantin Recursion

By definition, the ancestor potential does not have non-zero correlators in the
unstable range (g, n) = (0, 0), (0, 1), (0, 2) and (1, 0). It is convenient however,
to extend the definition in the unstable range as well in the following two cases:

〈

φ+j (s, λ;ψ1), t
〉

0,2
:= �(t(z), φ−j (s, λ; z)), (14)

〈

φ+j (s, λ;ψ1), φ
+
j (s, λ;ψ1)

〉

0,2
:= P

(0)
j,j (s, λ). (15)

Theorem 12 The ancestor correlators satisfy the following recursion

〈

φaψ
m
1 , t, . . . , t

〉

g,n+1(s) =

1

4

N
∑

j=1
Resλ=uj

�(φaz
m , fj (s, λ; z)−)

(I
(−1)
j (s, λ), 1)

×

⎛

⎜

⎜

⎝

〈

φ+j (s, λ;ψ1), φ
+
j (s, λ;ψ2), t, . . . , t

〉

g−1,n+2(s)+

∑

g′+g′′=g

n′+n′′=n

(

n

n′

)

〈

φ+j (s, λ;ψ1), t, . . . , t
〉

g′,n′+1(s)
〈

φ+j (s, λ;ψ1), t, . . . , t
〉

g′′,n′′+1(s)

⎞

⎟

⎟

⎠

,

for all stable pairs (g, n + 1), i.e., 2g − 2 + n ≥ 0, where all unstable correlators
on the RHS are set to 0, except for the ones of the type (14) and (15).

Proof We will prove that the recursion is equivalent to the Virasoro constraints
stated in Corollary 11. To begin with let us write the generating series Lj(s, λ)

explicitly as the sum of the following three terms

∞
∑

k′,k′′=0

N
∑

a,b=1
(−1)k′+k′′ (I (k′+1)

j (s, λ), φa) (I
(k′′+1)
j (s, λ), φb) h̄∂qk′,a ∂qk′′,b , (16)

∞
∑

k′,k′′=0

N
∑

a,b=1
2(−1)k′′+1 (I (−k′)

j (s, λ), φa) (I
(k′′+1)
j (s, λ), φb) qk′,a∂qk′′,b , (17)

P
(0)
i,i (s, λ)+

∞
∑

k′,k′′=0

N
∑

a,b=1
(I

(−k′)
j (s, λ), φa) (I

(−k′′)
j (s, λ), φb) h̄

−1qk′,a qk′′,b. (18)

Note that the double sum in (18) is analytic at λ = uj , so the sum does not contribute
to the Virasoro constraints, which means that it can be ignored. Let us undo the
dilaton shift, i.e., switch to the variables tk,a = qk,a − δk,1δa,1, where for simplicity
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we assume that φ1 = 1. Note that the only term affected by the change is (see (17)
when k′ = a = 1)

∞
∑

k=0
2(−1)k+1 (I (−1)

j (s, λ), 1) (I (k+1)
j (s, λ), φb) (t1,1 + 1)∂tk,b .

Now we need the following identity:

N
∑

j=1
Resλ=uj (I

(k′)
βj

(s, λ), φa) (I
(k′′)
βj

(s, λ), φb) dλ = 2(−1)k′δa,bδk′+k′′,0,

for all k′, k′′ ∈ Z and a, b = 1, 2, . . . , N. The proof follows from the definitions, so
it is left as an exercise. Fix m ≥ 0 and a ∈ {1, 2, . . . , N}, then

1

4

N
∑

j=1
Resλ=uj

(I
(−m−1)
j (s, λ), φa)

(I
(−1)
j (s, λ), 1)

Lj (s, λ)dλ =

∂

∂tm,a

+ 1

4

N
∑

j=1
Resλ=uj

(I
(−m−1)
j (s, λ), φa)

(I
(−1)
j (s, λ), 1)

(

Lj (s, λ)
∣

∣

q=t
)

dλ. (19)

The Virasoro constraints for the ancestor potential can be stated equivalently as
Lj(s, λ)As (h̄; q) is analytic at λ = uj for all j = 1, 2, . . . , N . Hence the
operator (19) annihilates ˜As (h̄; t). Comparing the coefficients in front of the
monomial expressions in t and h̄ of fixed degree n and genus g − 1 we get the
recursion that we wanted to prove. ��
Remark 13 The recursion in Theorem 12 is the same as the local Eynard–Orantin
recursion introduced in [6].

4 Analyticity of the Total Ancestor Potential in Singularity
Theory

Let us assume now that S is the base of the universal unfolding F of some function
f ∈ O

Cn+1,0 with an isolated critical point at 0. We may assume that S is a small ball
inCN with center at 0, whereN is the multiplicity of the critical point. Furthermore,
we may arrange that the domain of F is an appropriate small contractible Stein
domain X ⊂ S × Cn+1, s.t., (0, 0) ∈ X and F(0, x) = f (x) (see [1] for some
background on singularity theory). Let us fix a primitive holomorphic volume form
ω ∈ �n+1

X/S(X), so that S becomes a Frobenius manifold (see [11, 20]). Moreover,
it can be proved that the critical values provide a canonical coordinate system and
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the non semi-simple points B are precisely those s ∈ S for which at least one of the
critical points of F(s, x) is not of type A1.

4.1 Period Integrals

The map

ϕ : X→ S ×C, (s, x) �→ (s, F (s, x)),

gives rise to a smooth fibration on (S×D)′, called the Milnor fibration. HereD ⊂ C

is a sufficiently small disk with center 0 and ′ denotes removing the points (s, λ) for
which the fiber Xs,λ := ϕ−1(s, λ) is singular. Let us fix a reference point (s0, η0) ∈
S ×D and denote by h := Hn(Xs0,η0C) and by  ⊂ h the set of vanishing cycles.

The definition of a primitive form implies that the functions I (k)
j (s, λ) introduced in

Sect. 3.2 can be identified with period integrals of the following type:

I (k)
α (s, λ) := −d

(

(2π)−�∂k+�
λ

∫

αs,λ

d−1ω
)

∈ T ∗s S ∼= H,

where � := n/2 (by stabilizing the singularity if necessary we may assume that n
is even), α ∈ h is a cycle, and d−1ω denotes an arbitrary n-form ω̃, holomorphic
in a neighborhood of Xs,λ, s.t., ω = dω̃. The period is a multi-valued function on
(S ×D)′ and its value depends on the choice of a path from the reference point to
(s, λ). In particular, we denoted by αs,λ the parallel transport of α along the path. If
s ∈ S \B is semi-simple and λ is in a neighborhoodDj of the critical value uj , then
let us choose α ∈  to be a vanishing cycle and fix the path in such a way that αs,λ

becomes the cycle vanishing over λ = uj , then the period integral coincides with

I
(k)
j (s, λ) (see [10]).

For each fixed s ∈ S, the period vectors I
(n)
α (s, λ) satisfy Fuchsian differential

equation in λ with singularities only at the critical values of F(s, x) and λ = ∞.
Hence using analytic continuation we may assume that the period integrals are
define on (S × C)′. Equivalently, the cohomology groups Hn(Xs,λ;C), (s, λ) ∈
(S × D)′ form a vector bundle equipped with a flat Gauss–Manin connection and
the primitive form determines an extension of this bundle to a vector bundle on
S × P1, s.t., the Gauss–Manin connection has a logarithmic singularity at λ = ∞.

Finally, let us discuss the so called primitive direction. The flat identity of the
Frobenius structure is a vector field δ1, called primitive, s.t., δ1F = 1. We denote by
s �→ s+λ1 the time-λ flow of δ1. Note that if (s, λ) ∈ S×D is such that s−λ1 ∈ S,
then Xs,λ = Xs−λ1,0, so the periods have the following translation symmetry

I (n)
α (s, λ) = I (n)

α (s − λ1, 0).
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Therefore we can extend the Frobenius structure in the primitive direction as well,
i.e., we may assume that S is invariant under the translations s �→ s + λ1 for all
λ ∈ C.

4.2 Propagators and the Monodromy Representation

Recall the propagators (12). In this section we prove that they can be extended
analytically along any path in (S × C)′ and moreover the analytic extension is
compatible with the monodromy action. To begin with let us introduce the following
terminology. Given cycles α, β ∈ h we define a propagator on (S × C)′ from α to
β to be a Laurent series

Pα,β(s, λ, μ) = (α|β)
(λ− μ)2

+
∞
∑

k=0
P

(k)
α,β(s, μ)(λ − μ)k,

where (α|β) up to the sign (−1)� is the intersection pairing of the cycles α and β,
satisfying the following properties.

(1) For every (s, μ) ∈ (S×C)′, the radius of convergence of the series is non-zero.
(2) The functions P (k)

α,β(s, μ) extend analytically along any path in (S×C)′ and the
analytic continuation is compatible with the monodromy representation.

(3) If (s, μ) is such that s is semi-simple, μ is sufficiently close to ui(s), and β is
the cycle vanishing over μ = ui(s), then

Pβ,β(s, λ, μ) = Pi,i (s, λ, μ).

Property (2) means that if C is a closed loop in (S × C)′ based at (s, μ) and w is
the monodromy transformation of h corresponding to the parallel transport of cycles
along C, then the analytic continuation of P (k)

α,β (s, μ) along C is P (k)
w(α),w(β)

(s, μ).

The key to constructing propagators is the so called phase 1-form (see [2, 10])

Wα,β(s, ξ) = I (0)
α (s, ξ) • I (0)

β (s, 0) ∈ T ∗s S,

where the period vectors are interpreted as elements in T ∗s S and the multiplication in
T ∗s S is induced by the Frobenius multiplication via the natural identification T ∗s S ∼=
TsS. The dependence on the parameter ξ is in the sense of a germ at ξ = 0, i.e., we
will be interested in the Taylor’s series expansion about ξ = 0. The phase form is a
power series in ξ whose coefficients are multivalued 1-forms on S′ := (S × {0})′.
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Lemma 14 We have

(α|β) = −ιEWα,β(s, 0) = −(I (0)
α (s, 0), E • I (0)

β (s, 0)).

This is a well known fact due originally to K. Saito [18].

Lemma 15 The phase form is weighted-homogeneous of weight 0, i.e.,

(ξ∂ξ + LE)Wα,β(s, ξ) = 0,

where LE is the Lie derivative with respect to the vector field E.

Proof Note that

Wα,β(s, ξ) = (I (0)
α (s, ξ), dI

(−1)
β (s, 0)).

It is easy to check thatWα,β is a closed 1-form, so using the Cartan’s magic formula
LE = dιE + ιEd , where ιE is the contraction by the vector field E, we get

LEWα,β = d(I (0)
α (s, ξ), (θ + 1/2)I (−1)

β (s, 0)) = −d((θ − 1/2)I (0)
α (s, ξ), I

(−1)
β (s, 0)).

We used that θ is skew-symmetric with respect to the residue pairing and that

ιEdI
(−1)
β (s, 0) = EI

(−1)
β (s, 0)) = (θ + 1/2)I (−1)

β (s, 0),

where the last equality comes from the differential equation (11) with n = −1 and
λ = 0. Furthermore, using the Leibnitz rule we get

−((θ − 1/2)dI (0)
α (s, ξ), I

(−1)
β (s, 0))− ((θ − 1/2)I (0)

α (s, ξ), dI
(−1)
β (s, 0)).

The first residue pairing, using the skew-symmetry of θ and the differential equation
dI

(0)
α = −AI

(1)
α becomes

(AI(1)
α (s, ξ), (θ + 1/2)I (−1)

β (s, 0)) = −(AI(1)
α (s, ξ), E • I (0)

β (s, 0)). (20)

Similarly, the 2nd residue pairing becomes

((ξ∂ξ + E)I (0)
α (s, ξ ), dI

(−1)
β (s, 0)) = ξ∂ξWα,β(s, ξ )+ (E • I (1)

α (s, ξ ), AI
(0)
β (s, 0)).

(21)

On the other hand, recall thatA =∑i (φi•)dti and that the Frobenius multiplication
is commutative. In particular, [A,E•] = 0, so the terms (20) and (21) add up to
ξ∂ξWα,β(s, ξ). The lemma follows. ��
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Given cycles α, β ∈ h, then we define

Pα,β(s, λ, μ) := ∂λ∂μ

∫ s−μ1

s0

Wα,β(s
′, λ − μ), (22)

where the integration is along a path C in (S ×C)′, s.t., s0 is a generic point on the
discriminant and the cycle βs ∈ Hn(Xs,0;C) vanishes along C.

Proposition 16 The integral in definition (22) is convergent, independent of the
choice of path along which β vanishes, and the Laurent series expansion at λ = μ

of Pα,β(s, λ, μ) defines a propagator from α to β on (S ×C)′.

Proof The integral can be computed explicitly in terms of the period integrals,
because according to Lemma 15 we have

∂λWα,β(s
′, λ− μ) = −d

( 1

λ− μ
ιEWα,β(s

′, λ− μ)
)

,

which by definition is

d
( 1

λ− μ
(I (0)

α (s′, λ − μ), (θ + 1/2)I (−1)
β (s′, 0)

)

.

Using that I (−1)
β (s′, 0) vanishes as s′ → s0, we get

Pα,β(s, λ, μ) = ∂μ

( 1

λ− μ
(I (0)

α (s, λ), (θ + 1/2)I (−1)
β (s, μ))

)

.

The above series has a Laurent series expansion at λ = μ with a pole of order 2 and
no residue. The leading order term is

1

(λ− μ)2
(I (0)

α (s, μ), (θ + 1/2)I (−1)
β (s, μ))

= 1

(λ− μ)2
(I (0)

α (s, μ), (μ − E•)I (0)
β (s, μ)) = (α|β)

(λ− μ)2
,

where the last equality follows from Saito’s formula (see Lemma 14).
It remains only to prove that if s is a semi-simple point, λ and μ are sufficiently

close to a critical value ui(s), and α = β is vanishing cycle vanishing over λ =
ui(s), then Pα,β(s, λ, μ) = Pi,i (s, λ, μ). Since in definition (22) we can choose the
generic point s0 and the integration path as we wish, let us pick s0 = s − ui(s)1
and integrate along the straight segment [s0, s − μ1]. Using integration by parts
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together with

(I (k)
α (s′, λ − μ), dI

(−k−1)
β (s′, 0)) =

d(I (k)
α (s′, λ− μ), I

(−k−1)
β (s′, 0))− (I (k+1)

α (s′, λ− μ), dI
(−k−2)
β (s′, 0))

it is easy to see that the integral in (22) coincides with the Laurent series expansion
at μ = ui(s) of the symplectic pairing

�(f+α (s, λ; z), f−β (s, μ; z)) =
∞
∑

k=0
(−1)k+1(I (k)

α (s, λ), I
(−k−1)
β (s, μ)).

This completes the proof. ��
Note that in the course of the proof we derived the following explicit formulas

for the the coefficients P (k)
α,β(s, μ) of the Laurent series expansion in (λ− μ) of the

propagator:

1

(k + 1)! (I
(k+1)
α (s, μ), (θ + 1/2)I (0)

β (s, μ)) + 1

(k + 2)! (I
(k+2)
α (s, μ), (θ + 1/2)I (−1)

β (s, μ)).

In particular,

P
(0)
α,β(s, μ) = 1

2

(

(μ− E•s )I (1)
α (s, μ), I

(1)
β (s, μ)

)

= 1

2

(

(θ − 1/2)I (0)
α (s, μ), I

(1)
β (s, μ)

)

.

(23)

Note that the propagator P (0)
α,β (s, μ) is symmetric with respect to α and β.

4.3 Twisted Representation of the Heisenberg VOA

Let us denote by F = Sym(h[ζ−1]ζ−1). Given a ∈ h it is convenient to put
a(−n−1) := aζ−n−1, then every element in F is a linear combination of elements of
the type

a = α1
(−k1−1) · · ·αr

(−kr−1), αi ∈ h, ki ≥ 0.

Following [2] we define differential operators acting on the Fock space as follows.
First we define

Xs,λ(α) := ̂φα(s, λ), α ∈ h, (24)
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where we identify α ∈ h with α(−1) ∈ F and put ̂φα(s, λ) = (∂λfα(s, λ; z))∧, then
we set

Xs,λ(a) =
∑

J

(
∏

(i,j)∈J
∂
(kj )

λ P
(ki )

αi ,αj (s, λ)
)

:
(
∏

l∈J ′
∂
(kl)
λ Xs,λ(α

l)
)

: , (25)

where ∂
(k)
λ := ∂k

λ

k! and the sum is over all collections J of disjoint ordered pairs
(i1, j1), . . . , (is, js) ⊂ {1, . . . , r} such that i1 < · · · < is and il < jl for all l,
and J ′ = {1, . . . , r} \ {i1, . . . , is, j1, . . . , js}. Although we are not going to use
the theory of vertex algebras here, let us point out that formula (25) is obtained
by the axioms of vertex operator algebra representations. Namely, the vector space
F has a standard structure of a Heisenberg Vertex Operator Algebra (VOA) and
the fields (24) are known to be local to each other. It was proved in [2], that the
definition (24) extends uniquely to a σ -twisted representation of F , where σ is the
classical monodromy corresponding to a big loop that goes around the discriminant.

For (s, λ) ∈ (S ×C)′ and c1, . . . , cr ∈ h we define

�
(g)
c1···cr (s, λ; t) ∈ C[[t0, t1, . . . , ]]

by the following equation

Xs,λ(c1 · · · cr )As (h̄; q) =:
∞
∑

g=0
h̄g− r

2�
(g)
c1···cr (s, λ; q)As (h̄; q), (26)

where in order to define �
(g)
c1···cr (s, λ; t) we replace q by t without using the dilaton

shift. If we denote by W ⊂ GL(h) the monodromy group, then W acts naturally
on F via w(a(−n−1)) := (w(a))(−n−1). Since both the generating fields (24)
and the propagators are compatible with the monodromy representation we get
that the analytic continuation of Xs,λ(a) along a closed loop C in (S × C)′ is
Xs,λ(w(a)), where w ∈ W is the monodromy transformation corresponding to the

loop C. In particular, the analytic continuation in (s, λ) along C of �(g)
c1···cr (s, λ; t)

is �(g)

w(c1)···w(cr )
(s, λ; t).

4.4 Extension Through a Generic Non-semisimple Point

Let b0 ∈ B be a generic point, so that F(b0, x) has N − 2 critical points of type A1
and 1 critical point of type A2. The critical values corresponding to the A1-critical
points will be denoted by ui(b0) (1 ≤ i ≤ N − 2) and we will assume that they are
pairwise distinct. All points b ∈ B that do not satisfy the above property are points
in some codimension 2 analytic subvariety of S. Therefore, according to Hartogue’s
extension theorem, in order to prove that the ancestor potential extends analytically,
it is enough to prove that it extends analytically at s = b0.



564 T. Milanov

4.4.1 Fixing a Neighborhood of b0

We fix pairwise disjoint sufficiently small disks Di, 1 ≤ i ≤ N − 1, in C, s.t., the
center of Di is the critical value ui(b0), where uN−1(b0) is the critical value of the
A2-critical point. Put

S0 = {s ∈ S | ui(s) ∈ Di(1 ≤ i ≤ N − 2), (uN−1(s), uN (s)) ∈ (DN−1 ×DN−1)/Z2},

where Z2 = Z/2Z acts on DN−1 ×DN−1 by permuting the coordinates. Note that
S0 ⊂ S is an open neighborhood of b0 homeomorphic to

D1 × · · · ×DN−2 × (DN−1 ×DN−1)/Z2.

Furthermore, if we restrict the Milnor fibration to (S0×D0)
′, whereD0 = �N−1i=1 Di ,

then the vanishing cycles 0 of the new fibration form a disjoint union

0 = 1 � · · · �N−1,

wherei (1 ≤ i ≤ N−1) is the set of cycles vanishing respectively over λ = ui(b0)

(1 ≤ i ≤ N−1) along some path in (S0×D0)
′. Note thatN−1 is aA2-root system,

while the remaining i’s are A1-root systems.

4.4.2 Extending the Recursion

Let us rewrite the Eynard–Orantin recursion in terms of the operators (25). By
definition

Xs,λ(β
2
i ) =: ̂φβi (s, λ)

2 : +P
(0)
βi ,βi

(s, λ).

Let us denote by ̂φ±α (s, λ) the quantization of φ±α (s, λ; z), then the above operator
becomes

̂φ+βi
(s, λ)2 + 2̂φ−βi

(s, λ)̂φ+βi
(s, λ)+ ̂φ−βi

(s, λ)2 + P
(0)
βi ,βi

(s, λ). (27)

Recalling the definition (26), we get that �(g)
βi,βi

(s, λ; t) can be written as a sum
of 4 type of terms corresponding to the 4 summands in (27). Let us compare
�

(g)
βi,βi

(s, λ, t) with the sum of correlators that appear in the big brackets on the
RHS of the local Eynard–Orantin recursion in Theorem 12. The contributions of
the 1st summand in (27) coincide with the sum of all stable correlators, the 2nd
summand in (27) corresponds to the sum of all products of an unstable correlator of
type (14) and a stable correlator, the third summand depends analytically on λ− ui

so it does not contribute to the residue, and finally the 4th summand corresponds
to the contribution of the unstable correlator (15). Hence, the local Eynard-Orantin
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recursion stated in Theorem 12 can be written conveniently in the following way

〈φa ψm〉g,1(s; t) = −1

4

N
∑

i=1
Resλ=ui

�(φa z
m, f−βi

(s, λ; z))
yβi (s, λ)

�
(g)
βi,βi

(s, λ; t) dλ,
(28)

where βi is a cycle vanishing over λ = ui and

yβ(s, λ) := (I
(−1)
β (s, λ), 1).

Let {α, β} be a basis of simple roots for N−1. Put

χ1 = 2

3
α + 1

3
β, χ2 = −1

3
α + 1

3
β, χ3 = −1

3
α − 2

3
β.

We refer to these as 1-point cycles. Note that the root system N−1 consists of all
differences χi − χj for i �= j . Motivated by the construction of Bouchard–Eynard
[3] we introduce the following integral

− 1

2π
√−1

∮

∑

c1,...,cr

1

(r − 1)!
�(φa z

m, f−c1(s, λ; z))
∏r

k=2 yck−c1(s, λ)
�

(g)
c1···cr (s, λ; t) dλ, (29)

where the integral is along a closed loop in DN−1 that goes once counterclockwise
around the critical values uN−1(s) and uN(s) and the sum is over all r = 2, 3 and
all c1, . . . , cr ∈ {χ1, χ2, χ3} such that ci �= cj for i �= j . Note that the integrand
is monodromy invariant (see Sect. 4.3), hence a single valued analytic 1-form in
DN−1 \ {uN−1(s), uN (s)}, so the integral makes sense.

Theorem 17 The integral (29) coincides with the sum of the last two summands
in (28) corresponding to the residues at λ = uN−1, uN .

4.4.3 Proof of Theorem 17

The proof relies on a certain identity that we would like to present first. Let us
denote by hi (1 ≤ i ≤ N) the vector subspace of h spanned by the root system
i (we assume that N = N−1). Let ui and uj (1 ≤ i, j ≤ N) be two of the
critical values, β := βj be the cycle vanishing over uj , and a ∈ hi . Let us fix
some Laurent series

f (λ,μ) ∈ (λ− ui)
1/2

C((λ− ui, μ− uj ))+ C((λ− ui, μ− uj ))
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where C((λ− ui, μ− uj )) denotes the space of formal Laurent series. We will have
to evaluate residues of the following form:

Resλ=ui Resμ=uj

∑

all branches

�(φ+a (s, λ; z), f−β (s, μ; z))
yβ(s, μ)

f (λ,μ) dμ, (30)

where the sum is over all branches (2 of them) of the multivalued function that
follows.

Lemma 18 If f (λ,μ) does not have a pole at λ = ui; then the residue (30) is
non-zero only if i = j and in the latter case it equals to

(a|β) Resλ=ui

∑

all branches

f (λ, λ)

yβ(s, λ)
dλ.

Proof Put a = a′ + (a|βi)βi/2; then a′ is invariant with respect to the monodromy
around λ = ui . From this we get that φ+

a′ (s, λ; z) is analytic at λ = ui , so it does not
contribute to the residue. In other words, it is enough to prove the lemma only for
a = βi. Let us assume that a = βi . Recall that by definition β = βj , then we get

�(φ+a (s, λ; z), f−β (s, μ; z)) = �(f+βj
(s, μ; z), φ−βi

(s, λ; z))+�(φβi
(s, λ; z), fβj

(s, μ; z)).

The first symplectic pairing on the RHS does not contribute to the residue,
because φ−a (s, λ; z) has a pole of order at most 1

2 so after taking the sum over
all branches, the poles of fractional degrees cancel out and hence the 1-form at
hands is analytic at λ = ui . For the second symplectic pairing, recalling that
fβk(s, λ; z) = �RfA1(uk, λ; z) for k = i, j , we get

�(φA1(ui , λ; z)ei, fA1(uj , μ; z)ej ) = 2δi,j
(μ− uj )

1
2

(λ− ui)
1
2

δ(λ− ui, μ− uj ),

where

δ(x, y) =
∑

n∈Z
xny−n−1

is the formal δ-function. It is an easy exercise to check that for every f (y) ∈ C((y))

we have

Resy=0 δ(x, y) f (y) = f (x).

The lemma follows. ��
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The integral (29) can be written as a sum of two residues: Resλ=uN−1 and
Resλ=uN . We claim that each of these residues can be reduced to the corresponding
residue in the sum (28). Let us present the argument for λ = uN−1. The other case
is completely analogous.

Let α = βN−1 be the cycle vanishing over uN−1. The summands in (29) for
which r = 2 and c1, c2 ∈ {χ1, χ2} give precisely

Resλ=uN−1
�(φa zm, f−χ1−χ2

(s, λ; z))
yχ1−χ2(s, λ)

�(g)
χ1,χ2

(s, λ; t) dλ.

On the other hand, using that α = χ1 − χ2 we get

�(g)
χ1,χ2

(s, λ; t) = −1

4
�(g)

α,α(s, λ; t)+
1

4
�

(g)
χ1+χ2,χ1+χ2

(s, λ; t)

Since (χ1 + χ2|α) = 0, the form �
(g)
χ1+χ2,χ1+χ2

(s, λ; t) is analytic at λ = uN−1,
so it does not contribute to the residue. Therefore we obtain precisely the (N − 1)-
st residue in (28). It remain only to see that the remaining summands with r = 2
cancel out with the summand with r = 3.

There are two types of quadratic summands: c1, c2 ∈ {χ1, χ3} and c1, c2 ∈
{χ2, χ3}. They add up respectively to

�(φa zm, f−χ1−χ3
(s, λ; z))

yχ1−χ3(s, λ)
�(g)

χ1,χ3
(s, λ; t) dλ (31)

and

�(φa zm, f−χ2−χ3
(s, λ; z))

yχ2−χ3(s, λ)
�(g)

χ2,χ3
(s, λ; t) dλ. (32)

By definition

∞
∑

g=0
h̄g−3/2 �(g)

χi,χ3
(s, λ; t)As = h̄−1/2

(

:̂φχi (s, λ)
̂φχ3 (s, λ): + P (0)

χi ,χ3
(s, λ)

)

As .

(33)

We claim that the propagators P (0)
χi ,χ3(s, λ) in (33) do not contribute to the residue

at λ = uN−1. Indeed, their contribution is given by the residue at λ = uN−1 of the
following function

�(φa z
m, f−χ1−χ3

(s, λ; z))
yχ1−χ3(s, λ)

P (0)
χ1,χ3

(s, λ) + �(φa zm, f−χ2−χ3
(s, λ; z))

yχ2−χ3(s, λ)
P (0)
χ2,χ3

(s, λ).
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Note that the above expression is invariant with respect to the local monodromy
around λ = uN−1 and that the coefficients in front of P (0)

χi ,χ3(s, λ) do not have a pole

at λ = uN−1. Recalling formula (23) we get that P (0)
χi ,χ3(s, λ) has a pole of order at

mots 1/2, which implies that the entire expression is analytic at λ = uN−1.
The normally ordered product on the RHS of (33) is by definition

̂φχ3(s, λ)
̂φ+χi

(s, λ) +̂φ−χi
(s, λ)̂φχ3(s, λ). (34)

Since (χ3|α) = 0 the field ̂φχ3(t, λ) is analytic at λ = uN−1. In addition ̂φ−χi
(t, λ)

has a pole of order at most 1
2 at λ = uN−1. It follows that the second summand

in (34) does not contribute to the residue and therefore it can be ignored. For the
RHS of (33) we get

∞
∑

g=0
h̄g−1

̂φχ3(s, λ) 〈φ+χi
(s, λ;ψ)〉g,1(t; t)As,

which after recalling the local recursion (28) becomes

−1

4

N
∑

j=1
Resμ=uj

�(φ+χi
(s, λ; z), f−βj

(s, μ; z))
yβj (s, μ)

̂φχ3(s, λ)X
uj
s,μ(β

2
j ) dμAs ,

whereX
uj
s,μ(a) is the Laurent series expansion ofXs,μ(a) in (μ−uj ). Therefore we

need to compute the residues Resλ=uN−1 Resμ=uj of the following expressions

−1

4

∑

i=1,2

�(φa zm, f−χi−χ3
(s, λ; z))

yχi−χ3(s, λ)

�(φ+χi
(s, λ; z), f−βj

(s, μ; z))
yβj

(s, μ)
̂φχ3(s, λ)X

uj
s,μ(β

2
j ) dμAs .

The operator̂φχ3(s, λ)X
uj
s,μ(β

2
j ) can be written as

: ̂φβj (s, μ)2 ̂φχ3(s, λ) : +2[̂φ+χ3(s, λ),̂φ−βj
(s, μ)] ̂φβj (s, μ)+ P

(0)
βj ,βj

(s, μ)̂φχ3(s, λ).

(35)

Since (χ3|α) = 0 the operator ̂φ+χ3(s, λ) is regular at λ = uN−1. It follows that the
commutator

[̂φ+χ3(s, λ),̂φ−βj
(s, μ)] ∈ C((λ− uN−1, μ− uj ))
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and therefore we may recall Lemma 18. The above residue is non-zero only if j =
N − 1. In the latter case we get

−1

4
Resλ=uN−1

∑

i=1,2
(χi |α)

�(φa zm, f−χi−χ3
(s, λ; z))

yχi−χ3(s, λ) yα(s, λ)
̂φχ3(s, λ)X

uN−1
s,λ (α2) dλAs .

(36)

Note that

[̂φ+χ3(s, λ),̂φ−βj
(s, μ)] = ιλ−uN−1 ιμ−uN−1 Pχ3,βj (s, λ, μ),

where ιλ−uN−1 is the Laurent series expansion at λ = uN−1. Hence

̂φχ3(s, λ)X
uN−1
s,λ (α2) = ιλ−uN−1Xs,λ(χ3α

2).

By definition

−1

4
α2 = χ1 χ2 − 1

4
χ2
3

and since χ3 is invariant with respect to the local monodromy around λ = uN−1,
the field Xs,λ(χ

3
3 ) does not contribute to the residue. We get the following formula

for the residue (36):

Resλ=uN−1
∑

i=1,2
(χi |α)

�(φa z
m, f−χi−χ3

(s, λ; z))
yχi−χ3(s, λ) yα(s, λ)

X
uN−1
s,λ (χ1χ2χ3) dλAs .

Using that α = χ1 − χ2, (χ1|α) = 1, and (χ2|α) = −1 we get

Resλ=uN−1

(

�(φa z
m, f−χ1(s, λ; z))

yχ2−χ1(s, λ) yχ3−χ1(s, λ)
+ �(φa z

m, f−χ2(s, λ; z))
yχ1−χ2(s, λ) yχ3−χ2(s, λ)

+ �(φa z
m, f−χ3(s, λ; z))

yχ1−χ3(s, λ) yχ2−χ3(s, λ)

)

×
∞
∑

g=0
h̄g−3/2�(g)

χ1χ2χ3
(s, λ; t) dλAs .

This sum cancels out the contribution to the residue at λ = uN−1 of the cubic terms
(i.e. the terms with r = 3) of the integral (29). ��

Note that in the integral (29) we may choose the integration contour to be the
boundary of the disk DN−1. Since the integrand in (29) has singularities only at the
critical values uN−1(s) and uN(s), which are inside the disk DN−1 for all s ∈ S0,
we get that the integral (29) depends analytically on s ∈ S0. Using Theorem 17
we can set up a recursion that produces functions analytic in a neighborhood of any
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generic point b0 ∈ B. For example, let us write the recursion for 〈φa〉1,1(s; 0). Since

�(1)
c1,c2

(s, λ; 0) = P (0)
ci ,cj

(s, λ), �(1)
c1,c2,c3

(s, λ; 0) = 0,

we have

〈φa〉1,1(s; 0) = 1

4

N−2
∑

i=1

1

2π
√−1

∮

Ci

(I
(−1)
βi

(s, λ), φa)

(I
(−1)
βi

(s, λ), 1)
P

(0)
βi ,βi

(s, λ)dλ

− 1

2π
√−1

∮

CN−1

∑

1≤i<j≤3

(I
(−1)
χi−χj

(s, λ), φa)

(I
(−1)
χi−χj

(s, λ), 1)
P (0)
χi ,χj

(s, λ)dλ,

where Ci is the boundary of the disk Di , 1 ≤ i ≤ N − 1. By definition if (s, λ) ∈
S0 × Ci , then (s, λ) is not a point on the discriminant. Note that I (−1)

ϕ (s, λ) �= 0
if ϕ is a vanishing cycle and (s, λ) is not on the discriminant, because according to
Lemma 14

2 = (ϕ|ϕ) = (I (0)
ϕ (s, λ), (θ + 1/2)I (−1)

ϕ (s, λ)).

All integrals depend analytically on s ∈ S0, so the correlator 〈φa〉1,1(s; 0) is analytic
in the entire neighborhood S0 of b0 ∈ B. Using induction on the lexicographical
order of the pairs (g, n), where g is the genus and n is the number of insertions, we
can prove by induction that all ancestor correlators are analytic in the neighborhood
S0. Theorem 1 follows from the Hartogues extension theorem.
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Abstract In these lecture notes, we give an introduction to the classification
theorem of semisimple bihamiltonian structures, with as much details as possible.
The equivalence classes of this classification problem are characterized by the so-
called central invariants. In the last section, two examples are given to illuminate the
applications of central invariants in cohomological field theories.

1 Introduction

Let X be a toric Fano variety. It is well known that the quantum cohomology
QH ∗(X) is a semisimple Frobenius manifold, and the generating function of all
its Gromov-Witten invariants, which is usually called the total descendant potential
of X, is given by Givental’s quantization formula (see [25] for more details):

ZX = τI (u)Ŝ
−1
u (z)�̂uR̂u(z)e

(U/z)̂

(

n
∏

i=1
Z

(i)
pt

)
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Givental also proved the Virasoro conjecture in this case, that is, ZX satisfies the
Virasoro constraints

LmZX = 0, m ≥ −1,

where {Lm}m∈Z is a set of linear differential operators satisfying the Virasoro
commuting relations [17, 22].

The preprint version of Givental’s [25] was released in Aug 2001. In the same
month, Dubrovin and Zhang put another preprint [13] on arXiv, which showed
that the total descendant potential of a semisimple Frobenius manifold is uniquely
determined by its genus zero part and the Virasoro constraints. Let F = logZX be
the free energy of X, then expand F with respect to the string coupling constant h̄

F =
∑

g≥0
h̄g−1Fg.

Dubrovin and Zhang derived a series of differential equations for Fg from the
Virasoro constraints, whose generating function is called the loop equation for X,
and showed that one can obtained Fg recursively from these equations. In particular,
they gave an explicit formula of F2 for an arbitrary semisimple Frobenius manifold,
which is not easy to obtain from Givental’s quantization formula.

According to Dubrovin-Zhang’s uniqueness theorem, their approach is equiv-
alent to Givental’s quantization formula. Givental’s formula has drawn much
attention, while Dubrovin-Zhang’s approach is less well known. One possible
reason is that Dubrovin-Zhang’s preprint [13] is too long: it contains more than
180 pages, whose first 150 pages are about an axiomatic framework for integrable
systems that may govern a Gromov-Witten theory. Their loop equation appears in
the last 30 pages, and the main results are also proved in this last part. It seems that
to understand their main results one must read the first 150 pages, which is indeed
a tough work for people not working on integrable systems. But in my personal
opinion, the last 30 pages of Dubrovin-Zhang’s preprint is almost independent of
the first 150 pages, so one can read it directly.

In an informal workshop on Landau-Ginzburg B-model held in University of
Michigan, March 10–14, 2014, I gave a short introduction to Dubrovin-Zhang’s
loop equation, especially on the case with X = point. I planned to give more details
for general cases in the present lecture notes. But Zhang told me that Dubrovin and
he have been working on a similar introductory paper for months, and there is also
a good introduction to this subject in Dubrovin’s new paper [8], so I decide to talk
about something else—something on the first 150 pages of Dubrovin and Zhang’s
preprint [13].

Saying one can skip the first 150 pages of [13] doesn’t mean that this part is
not important. Instead, this part is more general, so it includes not only the cases
in which Givental’s formula or Dubrovin-Zhang’s loop equation work but also
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the cases make these two approaches fail. For example, Dubrovin-Zhang’s axiom
system consists of four axioms (see [13] for more details):

• BH =Bihamiltonian structure
• QT =Quasi-triviality
• TS =Tau structure
• VS=Linearizable Virasoro symmetries

If an integrable system satisfies all these axioms, the corresponding total descendant
potential must be given by Givental’s formula or Dubrovin-Zhang’s loop equation.
But, if it satisfies all but the last axiom, one can also define its total descendant
potential, and this potential is not equivalent to Givental’s one in general. Recently,
Wu showed that the Drinfeld-Sokolov hierarchies of BCFG types are integrable sys-
tems of this kind [34]. Then Ruan, Zhang and I show that the generating functions
of FJRW invariants of boundary singularities of BCFG type gives tau functions
of these integrable systems [30]. In particular, we show that the BCFG Drinfeld-
Sokolov hierarchies must be not equivalent to Dubrovin-Zhang’s hierarchies, so
the generating function of BCFG FJRW invariants must be not given by Givental’s
formula.

To show that two integrable systems are not equivalent is highly nontrivial. One
need to find out the orbits of a class of integrable systems under the action of a
certain transformation group. Such a classification problem is first precisely stated
in Dubrovin-Zhang’s [13] for the integrable systems satisfying the BH axiom. We
introduced the concept of central invariants, which can be regarded as coordinates
on the orbit space, and answered the uniqueness part of this classification problem
[14, 27]. As a byproduct, we also show that the QT axiom is a corollary of the BH
axiom, which is also conjectured and partially proved in [13]. The existence part of
the above classification problem is also resolved recently. In [29], we founded a new
framework for the computation of the cooresponding bihamiltonian cohomologies,
and proved the existence theorem for the simplest case, that is the bihamiltonian
structure of the Korteweg-de Vries hierarchy. We planned to consider the general
cases in [16] by using a similar argument. This is not an easy generalization, because
our computation method, even for the simplified one, is still very complicated. In
a recent preprint [2] (c.f. [1]), Carlet, Posthuma, and Shadrin developed some new
computing techniques based on our approach, several interesting spectral sequences,
and some homotopy formulae, then proved the existence theorem for the general
cases.

The central invariants of a bihamiltonian structure are a set of functions of
one variable. For the integrable systems satisfying Dubrovin-Zhang’s four axioms,
all central invariants must be 1/24. On the other hand, we computed the central
invariants for the bihamiltonian structure for Drinfeld-Sokolov hierarchies [15].
For the BCFG cases, their central invariants are unequal constants, so they are not
equivalent to Dubrovin-Zhang’s integrable hierarchies.

In these lecture notes, I will give an introduction to our results with as much
details as possible. In Sect. 2, I recall some basic facts of finite dimensional Poisson
geometry. We introduce the Schouten-Nijenhuis bracket in an unusual way, which
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can be also used in the infinite dimensional case. Then we give the definition
of Hamiltonian structures for partial differential equations in Sect. 3. In Sects. 4
and 5, we prove some results on the relation between classification problems
of (bi)hamiltonian structures and their cohomologies. We also prove a Darboux
theorem for certain Hamiltonian structures. Then we introduce the notion of central
invariants of a semisimple bihamiltonian structure in Sect. 6. In the last subsection,
we give an introduction to the Drinfeld-Sokolov bihamiltonian structure and their
central invariants.

2 Finite Dimensional Poisson Geometry

2.1 Basic Definition

Let M be a smooth manifold of dimension n, and A0 = C∞(M) be the algebra
of smooth functions on M (we will explain why we use this notation in the next
section). A Poisson bracket on M is, by definition, a bilinear map { , } : A0×A0 →
A0 satisfying the following conditions:

Skew-symmetry: {f, g} + {g, f } = 0, (2.1)

Jacobi identity: {{f, g}, h} + {{g, h}, f } + {{h, f }, g} = 0, (2.2)

Leibniz’s rule: {f · g, h} = f · {g, h} + {f, h} · g, (2.3)

where f, g, h ∈ A0, and · is the multiplication of A0. The manifold M is called a
Poisson manifold if it is equipped with a Poisson bracket.

The condition (2.1) and (2.2) show that (A0, { , }) forms a Lie algebra, and the
condition (2.3) implies (by using Hadamard’s Lemma) that the Poisson bracket is
locally given by 1

{f, g} = Pαβ(u)
∂f

∂uα

∂g

∂uβ
, (2.4)

where (u1, . . . , un) is a set of local coordinates on M . The functions Pαβ(u) are
actually given by

{uα, uβ} = Pαβ(u),

and they are called the components of the Poisson bracket { , } in the local
coordinates system (u1, . . . , un).

1In this paper, summation over repeated Greek indexes is always assumed, and we don’t sum over
Latin indexes.
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The formula (2.4) shows that we can introduce a bivector, i.e. a skew-symmetric
tensor of (2, 0) type,

P = Pαβ(u)
∂

∂uα
∧ ∂

∂uβ
, (2.5)

and then write the Poisson bracket as the following form

{f, g} = 〈P, df ∧ dg〉,

where 〈 , 〉 is the standard pairing between tensors of (2, 0) and (0, 2) types. The
tensor P is called the Poisson tensor or Poisson structure of the Poisson manifold
(M, { , }).

The condition (2.2) of the Poisson bracket { , } is equivalent to the following
condition on the components of P :

∂Pαβ

∂uσ
Pσγ + ∂Pβγ

∂uσ
Pσα + ∂P γα

∂uσ
Pσβ = 0. (2.6)

This condition also has a coordinate-free form, which requires the notion of
Schouten-Nijenhuis bracket.

The Schouten-Nijenhuis bracket is a bilinear operation defined on the space

∗ = � (∧∗T (M)) of polyvectors. There are several equivalent ways to define
this operation. We give two of them, which can be easily generalized to the infinite-
dimensional case.

2.2 Nijenhuis-Richardson Bracket

Let P ∈ 
p be a p-vector. We define its action on p smooth functions f1, . . . , fp ∈
A0 as follow:

P(f1, . . . , fp) = 〈P, df1 ∧ · · · ∧ dfp〉,

so P can be regarded as a linear map from ∧pA0 to A0.
Let V∗ = Hom(∧∗A0,A0), whose elements are called generalized polyvectors.

In particular, we have V0 = 
0 = A0, and V<0 = 0. We regard 
∗ as a subspace
of V∗, and it is easy to see that P ∈ Vp belongs to 
p if and only if

P(f · g, f2, . . . , fp) = f · P(g, f2, . . . , fp)+ P(f, f2, . . . , fp) · g (2.7)

for all f, g, f2, . . . , fp ∈ A0.
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Theorem 1 ([28])

(a) There exists a unique bilinear map [ , ] : Vp × Vq → Vp+q−1 satisfying the
following conditions:

[P, f ](f2, . . . , fp) = P(f, f2, . . . , fp), (2.8)

[P,Q] = (−1)pq[Q,P ], (2.9)

[[P,Q], f ] + (−1)qp[[Q,f ], P ] + [[f, P ],Q] = 0, (2.10)

where P ∈ Vp, Q ∈ Vq , and f, f2, . . . , fp ∈ A0. It is called the Nijenhuis-
Richardson bracket of the generalized polyvectors.

(b) The Nijenhuis-Richardson bracket satisfies the following graded Jacobi iden-
tity:

(−1)pr [[P,Q], R]+ (−1)qp[[Q,R], P ]+ (−1)rq [[R,P ],Q] = 0, (2.11)

where P ∈ Vp, Q ∈ Vq , and R ∈ Vr .

Proof (a) We prove uniqueness first. Let P ∈ Vp, Q ∈ Vq . When p = q = 0,
[P,Q] must vanish, since V−1 = 0. When (p, q) = (1, 0), then the property (2.8)
implies that [P,Q] = P(Q). The (0, 1) case is similar, due to the property (2.9).
When (p, q) = (1, 1), take an f ∈ A0, then we have

[P,Q](f ) = [[P,Q], f ] = [[Q,f ], P ] − [[f, P ],Q]
=P(Q(f ))−Q(P(f )).

In general, take f, f2, . . . , fp+q−1, we have

[P,Q](f, f2, . . . , fp+q−1) = [[P,Q], f ](f2, . . . , fp+q−1)

=− ((−1)qp[[Q,f ], P ] + [[f, P ],Q]) (f2, . . . , fp+q−1),

so the bracket defined on Vp×Vq is determined by the brackets defined on Vp−1×
Vq and Vp × Vq−1. Since we have shown the uniqueness for the 0 ≤ p, q ≤ 1
cases, it also holds true for general cases. The uniqueness is proved.

To prove the existence, we recall the product ∧̄ : Vp × Vq → Vp+q−1 defined
in [31]:

P ∧̄Q(f1, . . . , fp+q−1) =
∑

I∈Sp,q

(−1)|I |P(Q(fi1 , . . . , fiq ), fiq+1 , . . . , fip+q−1 ),
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where Sp,q is the following subset of the symmetry group Sp+q−1:

Sp,q =
{

I = (i1, . . . , ip+q−1) ∈ Sp+q−1
∣

∣

∣

∣

i1 < · · · < iq

iq+1 < · · · < ip+q−1

}

,

and |I | is the parity of the permutation I .
The bracket [ , ] can be defined as

[P,Q] = (−1)(p+1)qP ∧̄Q+ (−1)pQ∧̄P.

We need to show that this bracket satisfies the conditions (2.8)–(2.10). The condi-
tion (2.8) and (2.9) are easy to verify. In particular, if P ∈ Vp, f, f2, . . . , fp ∈ A0,
we have

[P, f ](f2, . . . , fp) = P ∧̄f (f2, . . . , fp) = P(f, f2, . . . , fp).

We denote if (P ) = [P, f ], then one can show that

if (P ∧̄Q) = P ∧̄if (Q)+ (−1)q+1if (P )∧̄Q,

which implies the condition (2.10). The existence is proved.
(b) We prove the identity by induction on p + q + r . When r = 0, it is just the

condition (2.10). When r > 0, we assume that the identity (2.11) holds true for any
p′, q ′, r ′ satisfying p′ + q ′ + r ′ < p + q + r . Let P ∈ Vp, Q ∈ Vq , R ∈ Vr , and
take an f ∈ A0, one can show that

if ([[P,Q], R]) = [[if (P ),Q], R]+(−1)p [[P, if (Q)], R]+(−1)p+q [[P,Q], if (R)].

Then by using the induction assumption, we obtain

if
(

(−1)pr [[P,Q], R] + (−1)qp[[Q,R], P ] + (−1)rq[[R,P ],Q]) = 0,

which implies the identity (2.11). The theorem is proved. ��
Remark 2 The above theorem only used the fact that A0 is a linear space. In next
section, we will replace A0 by another linear space to define the corresponding
bracket operation on that space.

Proposition 3 The Nijenhuis-Richardson bracket can be restricted onto the sub-
space 
∗, that is, if P ∈ 
p, Q ∈ 
q , then [P,Q] ∈ 
p+q−1. The restricted
bracket [ , ] is called the Schouten-Nijenhuis bracket of polyvectors.
Proof We prove the proposition by induction on p + q .



580 S.-Q. Liu

When (p, q) = (0, 0), (1, 0), (0, 1), (2, 0), (0, 2), the proposition is trivially
true. When (p, q) = (1, 1), take f, g ∈ A0, we have

[P,Q](f · g)
=P(Q(f · g))−Q(P(f · g))
=P(f ·Q(g)+ g ·Q(f ))−Q(f · P(g) + g · P(f ))

=(f · P(Q(g)) + P(f ) ·Q(g)+ g · P(Q(f ))+ P(g) ·Q(f ))

− (f ·Q(P(g)) +Q(f ) · P(g) + g ·Q(P(f ))+Q(g) · P(f ))

=f · [P,Q](g)+ g · [P,Q](f ),

so [P,Q] ∈ 
1. From now on we can assume p + q ≥ 3.
Suppose the proposition holds true for any p′, q ′ satisfying p′ +q ′ < p+q , take

f, g, f2, . . . , fp+q−1 ∈ A0, we have

[P,Q](f · g, f2, . . . , fp+q−1)

=([if2(P ),Q] + (−1)p[P, if2(Q)])(f · g, f3, . . . , fp+q−1).

Note that if2(P ) ∈ 
p−1, if2(Q) ∈ 
q−1, so we have

[if2(P ),Q](f · g, f3, . . . , fp+q−1)

=f · [if2(P ),Q](g, f3, . . . , fp+q−1)+ g · [if2(P ),Q](f, f3, . . . , fp+q−1)

[P, if2(Q)](f · g, f3, . . . , fp+q−1)

=f · [P, if2(Q)](g, f3, . . . , fp+q−1)+ g · [P, if2(Q)](f, f3, . . . , fp+q−1),

so we have

[P,Q](f · g, f2, . . . , fp+q−1)

=f · [P,Q](g, f2, . . . , fp+q−1))+ g · [P,Q](f, f2, . . . , fp+q−1)).

The proposition is proved. ��
Lemma 4 Let P ∈ 
2 be a bivector, the following conditions are equivalent

i) P gives the Poisson tensor of a Poisson bracket { , };
ii) [P,P ] = 0;
iii) The map dP : 
∗ → 
∗+1, Q �→ [P,Q] satisfies d2P = 0.
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Proof For any P,Q ∈ V2 and f, g, h ∈ A0, we have

[P,Q](f, g, h)
=P(Q(f, g), h) + P(Q(g, h), f )+ P(Q(h, f ), g)

+Q(P(f, g), h) +Q(P(g, h), f )+Q(P(h, f ), g).

Define {f, g} = P(f, g), then we have

{{f, g}, h} + {{g, h}, f } + {{h, f }, g} = 1

2
[P,P ](f, g, h).

The equivalence of i) and ii) is proved.
For any Q ∈ 
q , we have

[[P,P ],Q] + [[P,Q], P ] + [[Q,P ], P ] = 0,

which implies that

[P, [P,Q]] = −1

2
[[P,P ],Q].

The equivalence of ii) and iii) is proved. ��

2.3 Odd-Symplectic Bracket

The above axiomatic definition of Schouten-Nijenhuis bracket is not very conve-
nient for computation, so we also need another one.

Let M̂ = %(T ∗(M)) be the cotangent bundle of M with fiber’s parity reversed,
that is, the fiber T ∗p (M) at ∀p ∈ M is regarded as a super vector space of dimension

(0|n). Suppose (u1, . . . , un) is a set of local coordinates on M , and (θ1, . . . , θn) be
the coordinates on fibers with respect to the basis du1, . . . , dun. It is easy to see
that, if we change the local coordinate system to another one, say (ũ1, . . . , ũn), the
transformation θ �→ θ̃ is given by the following formula:

θ̃α = ∂uβ

∂ũα
θβ, (2.12)

which is same with the transformation formula for ∂
∂uα . Denote by Â0 = C∞(M̂)

the superalgebra of smooth functions on M̂.

Lemma 5 There is an isomorphism j : Â0 → 
∗.
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Proof The superalgebra Â0 can be decomposed as

Â0 =
n
⊕

p=0
Âp

0 ,

where Âp

0 is the subspace consisting of functions which have the following form in
a local coordinate system:

P = Pα1···αpθα1 · · · θαp ,

where Pα1···αp ’s are components of a skew-symmetric tensor of (p, 0) type. In
particular, Â0

0 = A0.
We regard
∗ as the subspace of V whose elements obey the Leibniz’s rule (2.7),

and then define the isomorphism j as follow:

j : Âp

0 → 
p, P �→ j (P ),

where the action of j (P ) on f1, . . . , fp ∈ A0 is given by

j (P )(f1, . . . , fp) = ∂pP

∂θαp . . . ∂θα1

∂f1

∂uα1
· · · ∂fp

∂uαp
.

Then it is not hard to show that j is an isomorphism. ��
The cotangent bundle T ∗(M) has a canonical symplectic structure, so M̂ has a

canonical odd-symplectic structure. The corresponding odd-Poisson bracket can be
written as

[P,Q]Â0
= ∂P

∂θα

∂Q

∂uα
+ (−1)p ∂P

∂uα

∂Q

∂θα
, (2.13)

where P ∈ Âp

0 , Q ∈ Âq

0 . Note that this bracket has other variants (see [24] for
example). Here we choose the one that is equivalent to the Schouten-Nijenhuis
bracket introduced in the last section.

Proposition 6 We have the following identity:

j ([P,Q]Â0
) = [j (P ), j (Q)]. (2.14)

Proof We only need to show that [ , ]Â0
also satisfies the conditions (2.8)–(2.10).

This is not a hard task, so we left it to readers. The proposition is proved. ��
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From now on, we can identify Â0 and 
∗, then write [ , ]Â0
as [ , ]. A

bivector (2.5) can be written as the following form:

P = 1

2
Pαβθαθβ.

It is a Poisson structure if and only if [P,P ] = 0. Here the bracket [ , ] can be
computed by using (2.13).

If X = Xα ∂
∂uα is a vector field on M , we can identity it with X = Xαθα . Let

H ∈ A0, the Hamiltonian vector field XH of H is defined as XH = [P,H ], then
we have

[XF ,XG] = X{F,G}.

In local coordinates, we have

XH = X
β
H θβ, where X

β
H = Pαβ ∂H

∂uα
,

so the corresponding ODE can be written as

u
β
tH
= X

β
H = {H,uβ}.

3 Infinite Dimensional Poisson Geometry

3.1 Jet Bundles and Differential Polynomials

In this section, we will define the notion of Hamiltonian structure for an evolutionary
partial differential equation of the following form:

uα
t = Xα(u, u′, u′′, . . . ), α = 1, . . . , n, (3.1)

where uα(x, t) are n smooth functions of real variables x and t , and Xα are certain
functions of u = (u1, . . . , un), u′ = (u1x, . . . , u

n
x), . . . , and so on.

A significant difference between the above equation and usual evolutionary PDE
is that it can contain higher derivatives of uα of any orders, because integrable
systems arising from Gromov-Witten theories often take this form. For example,
if X = P1, it is well known that the corresponding integrable system is the Toda
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lattice hierarchy [12, 23, 32, 35], whose first nontrivial member can be written as

u1t =
1

ε

(

eu
2(x+ε) − eu

2(x)
)

= eu
2
u2x +

∑

�≥1
ε�X1

�(u, u
′, . . . , u(�+1)), (3.2)

u2t =
1

ε

(

u1(x)− u1(x − ε)
)

= u1x +
∑

�≥1
ε�X2

�(u, u
′, . . . , u(�+1)). (3.3)

Here ε = √h̄, and Xα
� , which are the Taylor coefficients of the left hand side, are

certain polynomials of uα
x , . . . , u

α
(�+1)x whose coefficients are smooth functions of

uα. If we introduce the following gradation

deg f (u) = 0, deguα
� x = �,

then degXα
� = � + 1. To describe functions Xα with these properties, we need to

introduce the notion of infinite jet spaces and the algebra of differential polynomials
on them.

Let N̂ be a super manifold of dimension (n|m). For any integer k ≥ 0, we define
the k-th jet bundle J k(N̂) of N̂ as follow: the base manifold of the bundle is N̂ ;

the fiber manifold is
(

Rn|m)k; the bundle map is denoted by πk,0 : J k(N̂) → N̂ .

Suppose (z1, . . . , zn+m) is a set of coordinates over an open set U of N̂ , the
corresponding coordinates on the fiber are denoted by

{zα,s | α = 1, . . . , n+m, s = 1, . . . , k}.

In particular, we also take zα,0 = zα, then the coordinates for the corresponding
open set π−1k,0(U) of J k(N̂) can be written as

{zα,s | α = 1, . . . , n+m, s = 0, . . . , k}.

If we turn to another open set Ũ with coordinates (z̃1, . . . , z̃n+m), then the transition
functions of the bundle J k(N̂) are given by

z̃α,1 =zβ,1
∂z̃α

∂zβ
,

z̃α,2 =zβ,2
∂z̃α

∂zβ
+ zβ1,1zβ2,1

∂2z̃α

∂zβ2∂zβ1
,

z̃α,3 =zβ,3
∂z̃α

∂zβ
+ 3zβ1,2zβ2,1

∂2z̃α

∂zβ2∂zβ1

+ zβ1,1zβ2,1zβ3,1
∂3z̃α

∂zβ3∂zβ2∂zβ1
, . . .
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The rule for these transition functions is very simple: if zα,s gives the s-th derivative
of a curve γ : (−ε, ε) → N̂ in the local chart U , then z̃α,s should be the same
derivatives in the local chart Ũ . In general, we have

z̃α,s+1 =
s
∑

t=0
zβ,t+1 ∂z̃

α,s

∂zβ,t
. (3.4)

Note that these transition functions are not linear in zα,s , so jet bundles are not vector
bundle, thought their fibers are vector spaces.

Definition 7

(a) A function f ∈ C∞(J k(N̂)) is called a differential polynomial if it is a
polynomial of jet variables.

More precisely, let U be an open set of N̂ with coordinates (z1, . . . , zn+m),
and π−1k,0(U) be the corresponding open set of J k(N̂) with coordinates

{zα,s | α = 1, . . . , n+m, s = 0, . . . , k},

then we have

f |
π−1k,0 (U)

∈ C∞(U)[zα,s | α = 1, . . . , n+m, s = 1, . . . , k].

This definition is independent of the choice of the open set U because of the
definition of transition functions (3.4).

All differential polynomials form a subalgebra of C∞(J k(N̂)). We denote
this subalgebra bẙ Â(k)(N̂).

(b) We define

deg f (z) = 0 if f (z) ∈ C∞(N̂), deg zα,s = s if s ≥ 1,

and extend it to the whole̊ Â(k)(N̂), then̊ Â(k)(N̂) becomes a graded ring.
For any f ∈̊ Â(k)(N̂), we can uniquely decompose it as follow

f = fdmin + fdmin+1 + · · · + fdmax,

where fdmin, fdmax �= 0 and degfd = d . The number dmin is called the valuation
of f , which is denoted by ν(f ). (The number dmax can be called the degree of
f , but we never use this notion.)

(c) We define a distance function over̊ Â(k)(N̂):

dist(f, g) = e−ν(f−g), ∀f, g ∈̊ Â(k)(N̂).

Then denote by Â(k)(N̂) the completion of̊ Â(k)(N̂) with respect to dist.
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More precisely, let f ∈ Â(k)(N̂), and U be an open set of N̂ , then we have

f |
π−1k,0 (U)

∈ C∞(U)[[zα,s | α = 1, . . . , n+m, s = 1, . . . , k]].

Here the formal power series ring C∞(U)[[zα,s]] is completed by using the distance
function dist.

We are only interested in Â(k)(N̂), and will never use the notation̊ Â(k)(N̂) and
the distance function dist. So, to abuse of language, we will call elements of Â(k)(N̂)

differential polynomials from now on, though they are actually formal power series
in general. To indicate the degrees of every homogeneous components, we may
write f ∈ Â(k)(N̂) as

f = f0 + f1 + f2 + · · · = f0 + ε f1 + ε2 f2 + · · · , where deg fd = d.

Then the topology on Â(k)(N̂) is just the ε-adic topology.
For k ≥ l ≥ 0, there is a projection map πk,l : J k(N̂) → J l(N̂), which just

forgets the coordinates zα,s with s > l. Jet bundles and the projection maps among
them form an inverse system

(

{J k(N̂)}k≥0, {πk,l}k≥l≥0
)

.

We denote the inverse limit of this inverse system by J∞(N̂), and name it the infinite
jet space of N̂ .

The projection πk,l (k ≥ l) induces a pullback map π∗k,l : Â(l)(N̂) → Â(k)(N̂).
The differential polynomial algebras and the pullback maps among them form a
direct system

(

{Â(k)(N̂)}k≥0, {π∗k,l}k≥l≥0
)

.

We denote the direct limit of this direct system by Â(N̂), and name it the differential
polynomial ring of N̂ .

Note that the maps π∗k,l are all injective, so every Â(k)(N̂) can be regarded as a

subalgebra of Â(N̂). These subalgebras define a filtration on Â(N̂):

Â(0)(N̂) ⊂ Â(1)(N̂) ⊂ Â(2)(N̂) ⊂ · · · ⊂ Â(N̂).

The maps π∗k,l preserve the gradation on Â(k)(N̂), so Â(N̂) also has a gradation

Â(N̂) =
⊕

d≥0
Âd(N̂), Âd (N̂) = {f ∈ Â(d)(N̂)| degf = d},

which is called the standard gradation of Â(N̂). In particular, Â0(N̂) = C∞(N̂).



Lecture Notes on Bihamiltonian Structures and Their Central Invariants 587

Let M be a smooth manifold of dimension n, and M̂ = %(T ∗(M)) be the odd-
symplectic cotangent bundle introduced in the last section. We can define J∞(M)

and J∞(M̂) as above, whose differential polynomial algebras are denoted by A =
Â(M) and Â = Â(M̂) respectively. Their local coordinates are written as

{uα,s | α = 1, . . . , n, s ≥ 0}

and

{uα,s, θs
α | α = 1, . . . , n, s ≥ 0}

respectively. The algebra A can be identified with the subalgebra of Â whose
elements don’t depend on any θs

α. The superalgebra Â has another gradation

Â =
⊕

p≥0
Âp, Âp = {f =

∑

s1,...,sp≥0
f

α1,...,αp
s1,...,sp θ s1

α1
· · · θsp

αp | f α1,...,αp
s1,...,sp ∈ A},

which is called the super gradation of Â. We also use the notation Âp
d = Âp ∩ Âd .

In particular, we have Â0 = A, Â0
0 = A0 = C∞(M). This explains the notations

we used in the last section.

3.2 Evolutionary Partial Differential Equations

We can define evolutionary PDEs of the form (3.1) now. Let us prove two lemmas
first.

Lemma 8 The following operator

∂
N̂
=
∑

s≥0
zα,s+1

∂

∂zα,s

defines a global vector field on J∞(N̂), and it also defines a derivation of Â(N̂).

Proof According to the definition (3.4) of transition functions of the bundle J∞(N̂),
we have

∂
N̂
=
∑

s≥0
zα,s+1 ∂

∂zα,s
=
∑

s≥0
z̃α,s+1 ∂

∂z̃α,s
.

The lemma is proved. ��
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When N̂ = M̂ (or M), ∂
N̂
has the following expression

∂
M̂
=
∑

s≥0

(

uα,s+1 ∂

∂uα,s
+ θs+1

α

∂

∂θs
α

)

⎛

⎝or ∂M =
∑

s≥0

(

uα,s+1 ∂

∂uα,s

)

⎞

⎠ ,

Note thatA = Â0, and ∂M = ∂
M̂
|Â0 , so we denote them by ∂ = ∂

M̂
= ∂M to abuse

of notation.

Lemma 9 Let X : Â(N̂) → Â(N̂) be a continuous derivation such that [X, ∂] =
0, then we have

X =
∑

s≥0
∂s(Xα)

∂

∂zα,s
, (3.5)

where Xα ∈ Â(N̂).

Proof Without loss of generality, we can assume that X is homogeneous with
respect to the super gradation of Â(N̂), that is X(Âp(N̂)) ⊂ Âp+|X|(N̂), where
|X| ∈ Z is called the super degree of X. Then a derivation is a linear map
X : Â(N̂)→ Â(N̂) such that

X(f · g) = X(f ) · g + (−1)|X| |f |f ·X(g),

where f ∈ Â|f |(N̂), g ∈ Â(N̂).
If f ∈ Â(n)(N̂) for some n ∈ N, then it is easy to see that

X(f ) =
n
∑

s=0
X(zα,s)

∂f

∂zα,s
=
∑

s≥0
∂s(Xα)

∂f

∂zα,s
,

where Xα = X(zα) ∈ Â(N̂).
If f doesn’t belong to any Â(n)(N̂),

f =
∑

d≥0
fd, where fd ∈ Âd ⊂ Â(d)(N̂),

then we have

X(f ) = X

(

lim
n→∞

n
∑

d=0
fd

)

= lim
n→∞X

(

n
∑

d=0
fd

)

(⇐ X is continuous)
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= lim
n→∞

⎛

⎝

∑

s≥0
∂s(Xα)

∂

∂zα,s

⎞

⎠

(

n
∑

d=0
fd

)

(⇐
n
∑

d=0
fd ∈ Â(n))

=
∑

s≥0
∂s(Xα)

∂f

∂zα,s
.

The last equality holds true because ∂p(Xα) ∂
∂zα,s

: Â(N̂) → Â(N̂) is continuous

for all p, and the summation
∑

p≥0 ∂p(Xα) ∂
∂zα,s

is uniformly convergent, so the
summation itself is also continuous. ��

If we have an evolutionary PDE (3.1) withXα ∈ A, then for any f ∈ A, we have

ft =
∑

s≥0

(

uα,s
)

t

∂f

∂uα,s
=
∑

s≥0
∂s
(

Xα
) ∂f

∂uα,s
,

which is just X(f ) with X given by (3.5), so we have the following definition.

Definition 10

(a) We denote by Der(N̂) the Lie algebra of continuous derivations over Â(N̂), and
define

Ê(N̂) = Der(N̂)∂ = {X ∈ Der(N̂) | [X, ∂] = 0},

whose elements are called evolutionary vector field on J∞(N̂).
(b) According to Lemma 9, an elementX ∈ Ê(N̂) always takes the following form:

X =
∑

s≥0
∂s(Xα)

∂

∂zα,s
.

We denote it by X = (Xα) for short. The differential polynomials Xα’s are
called the components of X.

(c) We denote E = Ê(M) and Ê = Ê(M̂).

It is easy to see that E is a Lie algebra, and Ê is a graded Lie algebra.

3.3 Conserved Quantities

To develop a Hamiltonian formalism for Eq. (3.1), we still need the notion of
conserved quantity. Roughly speaking, a conserved quantity for (3.1) is a functional

I [u] =
∫

R

f (u, u′, u′′, . . . , u(N))dx
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such that if u(x, t) is a solution for (3.1), then

dI

dt
=
∫

R

ft dx =
∫

R

X(f ) dx = 0.

This definition is not very convenient, because we need some conditions on u and

f to ensure that the integrations are convergent. A better choice is to replace R by
S1 = R/Z, and assume that u(x) = (u1(x), . . . , un(x)) is actually the coordinates
of a smooth map φ : S1 → M .

Let L(M) = C∞(S1,M) be the loop space of M . For any φ ∈ L(M), we
can lift it to a map φk : S1 → J k(M) for all k = 1, 2, . . . ,∞. Then for any
f ∈ C∞(J∞(M)), we can define a smooth function (φ∞)∗(f ) : S1 → R, x �→
f (φ∞(x)), and then define the following functional:

If [φ] =
∫

S1

(φ∞)∗(f )(x)dx.

Lemma 11 Let F̊ be the linear space of functionals of the form If , and I :
C∞(J∞(M))→ F̊ be the map f �→ If . Then Ker(I) = Im(∂), hence we have an
isomorphism̊ F ∼= C∞(J∞(M))/∂(C∞(J∞(M))).

Proof By definition,

C∞(J∞(M)) = lim−→
k

C∞(J k(M)),

if f ∈ C∞(J∞(M)), then there exists k ∈ N such that f ∈ C∞(J k(M)).

If f ∈ Im(∂), there exists g ∈ C∞(J k(M)) such that f = ∂g, so we have

If [φ] =
∫

S1
(∂g)(φ∞(x))dx = g(φ∞(x))

∣

∣

1
0 = 0,

that is, Im(∂) ⊂ Ker(I).

Conversely, if If [φ] = 0 for any φ ∈ L(M), we need to construct g ∈
C∞(J k(M)) such that f = ∂g.

Suppose M is connected (otherwise, we can do the following for each of M’s
connected component), fix a point P0 ∈ J k(M), and take Q0 = πk,0(P0) ∈ M . For
any P ∈ J k(M), let Q = πk,0(P ) ∈ M . There exists a path γ : [0, 1/2] → M such
that

γ (0) = Q0, γ (1/2) = Q, γ k(0) = P0, γ k(1/2) = P,
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where γ k : [0, 1/2] → J k(M) is the lifted map. Then define

g : J k(M)→ R, P �→ g(P ) =
∫ 1/2

0
f (γ k(x))dx.

This definition is independent of the choice of γ (because f ∈ Ker(I)), and it is
easy to see that ∂g = f . The lemma is proved. ��

The above lemma shows that, even the loop space is not necessary: we can define
F̊ as the cokernel of ∂ . Inspired by this fact, we give the following definition.

Definition 12

(a) We define F̂(N̂) = Â(N̂)/∂Â(N̂), whose elements are called local functionals
on N̂ . A local functional f + ∂Â(N̂) is usually denoted by

∫

f dx, and the
representative f is called a density of this functional.

(b) The space F̂(N̂) has an natural Ê(N̂)-module structure,

(

X,F =
∫

f dx

)

�→ X(F) =
∫

X(f )dx.

A local functional F ∈ F̂(N̂) is called a conserved quantity of X ∈ Ê(N̂), if
X(F) = 0.

(c) We denote F = F̂(M) and F̂ = F̂(M̂). Note that ∂ preserves the two
gradations on Â, so there are induced standard gradation and super gradation
on F̂ . We denote them by

F̂ =
⊕

d≥0
F̂d =

⊕

p≥0
F̂p,

and F̂p

d = F̂d ∩ F̂p. In particular, F = F̂0.

Lemma 13 Let X = (Xα) ∈ Ê(N̂), F = ∫ f dx ∈ F̂(N̂), then we have

X(F) =
∫ (

Xα δF

δzα

)

dx,

where

δF

δzα
=
∑

s≥0
(−∂)s

∂f

∂zα,s

is the variational derivative of F with respect to zα.
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Proof In the space F̂(N̂), we still have integration by parts, so

X(F) =
∫

⎛

⎝

∑

s≥0
∂s(Xα)

∂f

∂zα,s

⎞

⎠ dx

=
∫

⎛

⎝Xα
∑

s≥0
(−∂)s

∂f

∂zα,s

⎞

⎠ dx.

The lemma is proved. ��

3.4 Hamiltonian Structures

We are ready to define Hamiltonian structures for the evolutionary PDE (3.1).
Similar to the finite-dimensional case, a Hamiltonian structure on M is a Lie
bracket over the space of local functionals (i.e. F ) whose action is given by certain
differential operations in a local chart.

Definition 14

(a) Let V∗ = Hom(∧∗F ,F), whose elements are called generalized variational
polyvector. According to Theorem 1, there is a unique bracket operation [ , ] :
Vp × Vq → Vp+q−1 satisfying the condition (2.8)–(2.10) with A0 replaced by
F and the condition (2.11). We still call it the Nijenhuis-Richardson bracket.

(b) A generalized variational p-vector P ∈ Vp is called a variational p-vector, if
its action on F1, . . . , Fp ∈ F is given by

P(F1, . . . , Fp) =
∫

⎛

⎝

∑

s1,...,sp≥0
P

α1,...,αp
s1,...,sp ∂s1

(

δF1

δuα1

)

· · · ∂sp

(

δFp

δuαp

)

⎞

⎠ dx,

(3.6)

where P
α1,...,αp
s1,...,sp ∈ A. The space of variational p-vectors is denoted by 
p. We

denote by 
∗ =⊕p≥0 
p, which is a subspace of V∗.
(c) A variational bivector P ∈ 
2 is called a Hamiltonian structure, if [P,P ] = 0.

We have an infinite-dimensional analogue of Proposition 3.

Proposition 15 If P ∈ 
p, Q ∈ 
q , then [P,Q] ∈ 
p+q−1.

The definition (3.6) of variational polyvectors is very complicated. It is not easy
to determine whether a generalized variational polyvector P ∈ V∗ belongs to 
∗,
so we cannot prove the above proposition directly. In what follows, we will give
another description of 
∗, then prove the proposition by using the odd-symplectic
bracket on F̂ .
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Lemma 16 Define a map j : F̂p → 
p,

P =
∫

P̃ dx �→j (P )(F1, . . . , Fp)

=
∫

⎛

⎝

∑

s1,...,sp≥0

∂pP̃

∂θ
sp
αp · · · ∂θs1

α1

∂s1

(

δF1

δuα1

)

· · · ∂sp

(

δFp

δuαp

)

⎞

⎠ dx.

Then j (P ) is independent of the choice of the density P̃ , and j is surjective with
Ker(j) = Rω ⊂ F̂1, where ω = ∫

(uα,1θα)dx. So we have the isomorphisms


p ∼= F̂p (p �= 1), and 
1 ∼= F̂1/Rω.

We have to omit the proof of this lemma because of its length. In [28], we proved a
generalization of this lemma in §2.3. One can easily reduce that proof to the present
case.

Define the action of P ∈ F̂p on F1, . . . , Fp ∈ F by

P(F1, . . . , Fp) = j (P )(F1, . . . , Fp).

Then we have the following lemma.

Lemma 17 For P ∈ F̂p, Q ∈ F̂q , define

[P,Q] =
∫ (

δP

δθα

δQ

δuα
+ (−1)p δP

δuα

δQ

δθα

)

dx,

then the operation [ , ] satisfies the condition (2.8)–(2.10) with A0 replaced by F
and the condition (2.11), hence (F̂ , [ , ]) forms a graded Lie algebra. In particular,
its center is given by Rω.

Proof Suppose P = ∫ P̃dx ∈ F̂p, F ∈ F , then

[P,F ] =
∫ (

δP

δθα

δF

δuα

)

dx =
∫

⎛

⎝

∑

s≥0

∂P̃

∂θs
α

∂s

(

δF

δuα

)

⎞

⎠ dx,

so we have

[P,F ](F2, . . . , Fp)

=
∫

⎛

⎝

∑

s2,...,sp≥0

∂p

∂θ
sp
αp · · · ∂θs2

α2

⎛

⎝

∑

s1≥0

∂P̃

∂θ
s1
α1

∂s1

(

δF

δuα1

)

⎞

⎠

∂s2

(

δF2

δuα2

)

· · · ∂sp

(

δFp

δuαp

))

dx
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=
∫

⎛

⎝

∑

s1,...,sp≥0

∂pP̃

∂θ
sp
αp · · · ∂θs1

α1

∂s1

(

δF1

δuα1

)

· · · ∂sp

(

δFp

δuαp

)

⎞

⎠ dx

=P(F, F2, . . . , Fp).

The identity (2.8) is proved.
Suppose P ∈ F̂p, Q ∈ F̂q , then we have

[P,Q] =
∫ (

δP

δθα

δQ

δuα
+ (−1)p δP

δuα

δQ

δθα

)

dx

=
∫ (

(−1)(p−1)q δQ

δuα

δP

δθα
+ (−1)p+p(q−1) δQ

δθα

δP

δuα

)

dx

=(−1)pq

∫ (

δQ

δθα

δP

δuα
+ (−1)q δQ

δuα

δP

δθα

)

dx

=(−1)pq[Q,P ].

The identity (2.9) is proved.
The identity (2.10) is a special case of (2.11), so we only need to prove the latter

one. For any P ∈ F̂p, we define an operator DP : Â→ Â

DP =
∑

s≥0

(

∂s

(

δP

δθα

)

∂

∂uα,s
+ (−1)p∂s

(

δP

δuα

)

∂

∂θs
α

)

, (3.7)

then it is easy to see that DP (Âq ) ⊂ Âp+q−1, [DP , ∂] = 0, and [P,Q] =
∫

DP (Q)dx for any Q ∈ F̂q . The identity (2.11) is equivalent to the following
identity:

(−1)p−1D[P,Q] = DP ◦DQ − (−1)(p−1)(q−1)DQ ◦DP , (3.8)

which is a corollary of the following identity:

δ

δuα
[P,Q] = DP

(

δQ

δuα

)

+ (−1)pqDQ

(

δP

δuα

)

, (3.9)

(−1)p−1 δ

δθα
[P,Q] = DP

(

δQ

δθα

)

− (−1)(p−1)(q−1)DQ

(

δP

δθα

)

. (3.10)
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To prove the identity (3.9), (3.10), we introduce the following operators

δα,s =
∑

t≥0
(−1)t

(

t + s

s

)

∂t ∂

∂uα,s
,

δαs =
∑

t≥0
(−1)t

(

t + s

s

)

∂t ∂

∂θs
α

,

which are called the higher Euler operators. In particular,

δα,0 = δ

δuα
, δα0 =

δ

δθα
,

and they satisfy the following identities:

δα,0(f · g) =
∑

t≥0
(−1)t (δα,t (f )∂t (g)+ ∂t (f )δα,t (g)

)

,

δα,t δβ,0 = (−1)t ∂

∂uβ,t
δα,0, δα,t δ

β
0 = (−1)t ∂

∂θ t
β

δα,0.

Then we have

δα,0[P,Q]
=δα,0

(

δ
β

0 (P )δβ,0(Q)+ (−1)pδβ,0(P )δ
β

0 (Q)
)

=
∑

t≥0
(−1)t

(

δα,t (δ
β
0 (P ))∂t (δβ,0(Q))+ ∂t (δ

β
0 (P ))δα,t (δβ,0(Q))

)

+ (−1)p
∑

t≥0
(−1)t

(

δα,t (δβ,0(P ))∂t (δ
β

0 (Q))+ ∂t (δβ,0(P ))δα,t (δ
β

0 (Q))
)

=
∑

t≥0

(

∂(δα,0(P ))

∂θ t
β

∂t (δβ,0(Q))+ ∂t (δ
β

0 (P ))
∂(δα,0(Q))

∂uβ,t

+(−1)p
(

∂(δα,0(P ))

∂uβ,t
∂t (δ

β
0 (Q))+ ∂t (δβ,0(P ))

∂(δα,0(Q))

∂θ t
β

))

=DP (δα,0(Q))+ (−1)pqDQ(δα,0(P )).

The identity (3.9) is proved. The identity (3.10) can be proved similarly.
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Suppose Q = ∫ Q̃dx ∈ F̂q , we have

[ω,Q] =
∫ (

δω

δθα

δQ

δuα
− δω

δuα

δQ

δθα

)

dx

=
∫ (

uα,1 δQ

δuα
+ θ1α

δQ

δθα

)

dx

=
∫

∑

s≥0

(

uα,s+1 ∂Q̃

∂uα,s
+ θs+1

α

∂Q̃

∂θs
α

)

dx

=
∫

(∂(Q)) dx = 0,

so ω is in the center of the graded Lie algebra (F̂ , [ , ]).
Suppose P ∈ F̂p is in the center of (F̂ , [ , ]), then for any F ∈ F = F̂0 we have

[P,F ] = 0. Consider the action of [P,F ] on F2, . . . , Fp ∈ F ,

[P,F ](F2, . . . , Fp) = j (P )(F, F2, . . . , Fp) = 0,

so P ∈ Ker(j) = Rω. The lemma is proved. ��
For more properties of the higher Euler operators and their generalizations,

please refer to [24, 28] and the references therein.

Proof of Proposition 15 Suppose P ∈ 
p, Q ∈ 
q , take P ′ ∈ F̂p, Q′ ∈ F̂q such
that

P = j (P ′), Q = j (Q′),

then define [P,Q]′ = j ([P ′,Q′]). According to the above two lemmas, this
definition is independent of the choice of P ′ and Q′. Lemma 17 shows that the
operation [ , ]′ must coincides with the Nijenhuis-Richardson bracket [ , ], so we
have [P,Q] ∈ 
p+q−1. The proposition is proved. ��

Lemma 16 shows that F̂p and
p can be identified, except the p = 1 case. When
p = 1, Lemma 13 shows that 
1 ∼= E/Rω, so we can identify E and F̂1 as follow

X = (Xα) ∈ E ↔ X =
∫

(Xαθα)dx ∈ F̂1.

It is easy to see that the action of X ∈ E = F̂1 on F ∈ F = F̂0 is exactly given
by [X,F ]. From now on, we will always working with F̂ , and forget aboutF , E , V ,
and 
∗.

Definition 18 An element X ∈ F̂1 is called an evolutionary PDE. An element
F ∈ F̂0 is called a conserved quantity of X if [X,F ] = 0. An element P ∈ F̂2
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is called a Hamiltonian structure if [P,P ] = 0. An evolutionary PDE X is called
Hamiltonian if there is a Hamiltonian structure P and a conserved quantity F such
that X = [P,F ].

4 Hamiltonian Structures

4.1 Presentations and Examples

Let P = ∫

P̃ dx ∈ F̂2 be a variational bivector, then P̃ satisfies the following
homogeneous condition

P̃ = 1

2

∑

s≥0
θs
α

∂P̃

∂θs
α

,

so we have

P = 1

2

∫

⎛

⎝

∑

s≥0
θs
α

∂P̃

∂θs
α

⎞

⎠ dx = 1

2

∫ (

θα
δP

δθα

)

dx.

Suppose

δP

δθα
=
∑

s≥0
Pαβ
s θs

β =
⎛

⎝

∑

s≥0
Pαβ
s ∂s

⎞

⎠ θβ, (4.1)

then

P = 1

2

∫

⎛

⎝θα

⎛

⎝

∑

s≥0
Pαβ
s ∂s

⎞

⎠ θβ

⎞

⎠ dx, (4.2)

so a variational bivector corresponds to a matrix differential operator

P = (Pαβ
) =

⎛

⎝

∑

s≥0
Pαβ
s ∂s

⎞

⎠ . (4.3)

By computing the variational derivative of both side of (4.2) with respect to θα, one
can show that

P + P† = 0, (4.4)
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where

P† =
(

(P†)αβ
)

=
⎛

⎝

∑

s≥0
(−∂)sP βα

s

⎞

⎠ .

It is easy to see that the variational bivectors are one-to-one corresponding to the
matrix differential operators (4.3) satisfying the condition (4.4), so we have the
following definition.

Definition 19 Let P ∈ F̂2 be a Hamiltonian structure, the matrix differential
operator P defined by (4.1) is called the Hamiltonian operator of P .

In literatures, a Hamiltonian structure is often given by its Hamiltonian operator.
Let P ∈ F̂2 be a Hamiltonian structure, then the bracket operation

{ , }P : F ×F → F , (F,G) �→ {F,G}P = P(F,G)

is a Lie bracket, whose action can be computed explicitly:

{F,G}P = P(F,G) = [[P,F ],G] =
∫ (

δf

δuα
Pαβ

(

δG

δuβ

))

dx.

If we enlarge the space F to contain functionals of the following form

uα(y) =
∫

S1
uα(x)δ(x − y)dx,

then we have

{uα(y), uβ(z)}P =
∫

S1
δ(x − y)Pαβ(u(x))δ(x − z)dx

=
∑

s≥0
Pαβ
s (u(y))δ(s)(y − z).

This is another common way to present a Hamiltonian structure. We can call it the
coordinate presentation.

Example 20 SupposeM = R, so n = 1. We can omit the α index.
Let P = 1

2

∫

g(u)θθ1dx ∈ F̂2, then we have

δP

δu
=1

2
g′(u)θθ1,

δP

δθ
=1

2

(

g(u)θ1 + ∂ (g(u)θ)
)

= g(u)θ1 + 1

2
g′(u)u1θ,
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so we have

[P,P ] = 2
∫

δP

δθ

δP

δu
dx = 0,

so P is a Hamiltonian structure. The Hamiltonian operator reads

P = g(u)∂ + 1

2
g′(u)u1,

and the coordinate presentation reads

{u(y), u(z)} = g(u(y))δ′(y − z)+ 1

2
g′(u(y))u′yδ(y − z).

Consider a deformation of P :

P̃ = P + c

∫

θθ3dx,

then

[P,P ] = 2
∫

δP

δθ

δP

δu
dx = 2c

∫

g′(u)θθ1θ3dx.

It is easy to see that [P,P ] = 0 if and only if g′′(u) = 0. So we obtain a family of
Hamiltonian operators with three parameters a, b, c:

Pa,b,c = (a u+ b)∂ + a

2
u1 + c ∂3.

In particular, the operators

P1 = P0,1,0 = ∂,

P2 = P1,0,h̄/8 = u∂ + 1

2
u1 + h̄

8
∂3

give the two Hamiltonian structures of the Korteweg-de Vries equation:

ut = u ux + h̄

12
uxxx.

And the operators

P1 = P0,1,−1 = ∂ − ∂3,

P2 = P1,0,0 = u∂ + 1

2
u1
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give the two Hamiltonian structures of the Camassa-Holm equation:

ut − uxxt = 3 u ux − 2 ux uxx − u uxxx.

Example 21 Let M = R2, we denote

u1 = u, u2 = v, θ1 = θ, θ2 = φ.

Define a series of shift operators

Sk = ekε∂, k ∈ Z,

and denote by a± = S±1(a), a[k] = Sk(a) for a ∈ Â, k ∈ Z. The Toda
equation (3.2) and (3.3) can be written as

ut = ev
+ − ev, vt = u− u−.

Here we take ε = 1 for convenience.
The second Hamiltonian structure of the Toda equation can be written as

P2 =
∫

(

ev
+
θθ+ + uθ(φ+ − φ)+ φφ+

)

dx.

Its variational derivatives read

δP2

δu
= θ(φ+ − φ),

δP2

δv
= evθ−θ,

δP2

δθ
= ev

+
θ+ − evθ− + u(φ+ − φ),

δP2

δφ
= uθ − u−θ− + φ+ − φ−.

Here we used the identity:

δF

δz
=
∑

k∈Z
S−k ∂f

∂z[k]
,

where F = ∫ f dz ∈ F̂ , z = u, v, θ, φ.
Then, by using the following fact

∫

a dx =
∫

a[k] dx, for all a ∈ Â, k ∈ Z,
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we obtain

1

2
[P2, P2]

=
∫

((

ev
+
θ+ − evθ− + u(φ+ − φ)

)

θ(φ+ − φ)

(

uθ − u−θ− + φ+ − φ−
)

evθ−θ
)

dx

=
∫

(

ev
+
θ+θφ+ − ev

+
θ+θφ + evθ−θφ − evθ−θφ−

)

dx

=
∫

(

evθθ−φ − evθθ−φ− + evθ−θφ − evθ−θφ−
)

dx

=0,

so P2 is indeed a Hamiltonian structure.
The first Hamiltonian structure of the Toda equation can be written as

P1 =
∫

(

θ(φ+ − φ)
)

dx.

One can show its hamiltonianily by using a similar method.
The two Hamiltonian operators read

P1 =
(

0 S − 1
1− S−1 0

)

,

P2 =
(

Sev − evS−1 u(S − 1)
(1− S−1)u S − S−1

)

.

The coordinate presentations can be also written down by acting the above operators
on δ-functions.

4.2 Miura Transformations

Consider the follow equations:

KdV : ut − 6uux + uxxx = 0,

mKdV : vt − 6v2vx + vxxx = 0.

Miura found that if v is a solution to the mKdV equation, then u = v2 + vx gives a
solution of the KdV equation.
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In general, for an evolutionary PDE

uα
t = Xα, where Xα ∈ A,

we can transform it to another equation by using transformations of the following
form:

uα �→ ũα = Fα(u)+ Yα

where Fα(u) is a local diffeomorphism, and Yα ∈ A>0. We also call them Miura
transformations.

Miura transformations are important for Gromov-Witten theory. For example,
when considering the target space P

1, the corresponding integrable system is the
extended Toda hierarchy, whose equations (like (3.2) and (3.3)) contain ε = √h̄.
On the other hand, the free energy and two-point functions of this model should be
formal Laurent series of h̄, so we need to perform certain Miura transformations to
eliminate the terms containing odd powers of ε.

It is easy to see that any Miura transformation can be written as the composition
of a local diffeomorphism and a Miura transformation of the following form:

uα �→ ũα = uα + Yα.

Local diffeomorphisms are just coordinates transformation on the manifold M ,
which is easy to deal with. For Miura transformations of the above form, we have
the following lemmas.

Lemma 22 For any Yα ∈ A>0 (α = 1, . . . , n), there exists a variational vector
Z ∈ F̂1

>0 such that

ũα = uα + Yα = eDZ(uα),

where DZ is the derivation defined by (3.7). Z is called the generator of this Miura
transformation.

Proof Let ν = min{ν(Y α) | α = 1, . . . , n} > 0. Write Yα as sum of its
homogeneous components

Yα = Yα
ν + Yα

ν+1 + · · · .

Take Z(1) =
∫ (

Yα
ν θα

)

dx ∈ F̂1
ν , then we have

e
−DZ(1) (uα + Yα)

=uα + Yα
ν + Yα

ν+1 + · · ·
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− (Yα
ν +DZ(1)(Y

α
ν+1)+ · · ·

)+ · · ·
=uα + Ỹ α,

where ν(Ỹ α) ≥ ν + 1.
For Ỹ α , we can take a Z(2) ∈ F̂1

ν+1, such that

e
−DZ(2) (uα + Ỹ α) = uα + ˜̃Yα,

where ν(
˜̃
Yα) ≥ ν + 2.

So we obtain a series of variational vector Z(1), Z(2), · · · ∈ F̂1 such that

i) ν(Z(1)) < ν(Z(2)) < · · · ,
ii) uα + Yα = e

DZ(1) e
DZ(2) · · · (uα).

Then, by using the Baker-Campbell-Hausdorff formula and the commuting rela-
tion (3.8), one can show that there exist Z ∈ F̂1

>0 such that uα + Yα = eDZ(uα).
The lemma is proved. ��
Lemma 23 Let uα �→ ũα = uα + Yα be a Miura transformation with generator
Z ∈ F̂1, then this Miura transformation transforms P ∈ F̂p to e−adZ(P ). We name
Miura transformations of this form gauge transformations.

This lemma depends on a transformation formula of variational derivatives, whose
proof cannot be given here, so we omit it. One can find a full proof in §2.5 of [28].

In Poisson geometry, Darboux theorem plays an important role, which classifies
the equivalence classes of Poisson structures modulo local coordinates transforma-
tions. We have a similar problem for the infinite dimensional case. Let H be the set
of Hamiltonian structures

H = {P ∈ F̂2 | [P,P ] = 0},

and G be the group of gauge transformations

G = {eadZ | Z ∈ F̂1
>0},

then G acts on H, and the corresponding Darboux theorem is a certain description
of the quotient spaceH/G.

A classification problem is often converted to a deformation problem. For a
Hamiltonian structure P ∈ H, let ν = ν(P ), and write P as

P = P0 +Q, where P0 ∈ F̂2
ν , ν(Q) > ν,
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then P0 must be a Hamiltonian structure. We call it the leading term of P . Then the
equation [P,P ] = 0 can be written as

dP0(Q)+ 1

2
[Q,Q] = 0, (4.5)

where dP0 = adP0 . Equation (4.5) is called the Maurer-Cartan equation for P0, and
a solution to it is called a Maurer-Cartan element for P0.

Let MC(P ) be the set of Maurer-Cartan elements for a homogeneous Hamilto-
nian structure P ∈ F̂2

ν :

MC(P ) = {Q ∈ F̂2
>ν | dP (Q)+ 1

2
[Q,Q] = 0},

then G also acts onMC(P ):

(eadZ ,Q) �→ Q̃ = eadZ (P +Q)− P.

The deformation problem is just to ask the structure of the quotient space
MC(P )/G.

The following definition and lemma are very standard in deformation theory, so
we omit their proof.

Definition 24 Let P ∈ F̂2
ν be a homogeneous Hamiltonian structure.

(a) Q ∈ F̂2
>ν is called a infinitesimal deformation of P if dP (Q) = 0.

(b) Two infinitesimal deformation Q1,Q2 are called equivalent if there exists Z ∈
F̂1

>0 such that Q1 −Q2 = dP (Z).
(c) An infinitesimal deformationQ is called trivial if it is equivalent to 0.
(d) The triple (F̂ , [ , ], dP ) forms a differential graded Lie algebra (DGLA). Its

cohomology is defined as

H(F̂ , dP ) = Ker(dP )/Im(dP ).

Note that P is homogeneous, so we have the following decomposition

H(F̂ , dP ) =
⊕

p≥0

⊕

d≥0
H

p
d (F̂ , P ),

where

H
p
d (F̂ , dP ) = Ker(dP : F̂p

d → F̂p+1
d+ν )

Im(dP : F̂p−1
d−ν → F̂p

d )
.

Lemma 25 Let P ∈ F̂2
ν be a homogeneous Hamiltonian structure.
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(a) The space of equivalence classes of infinitesimal deformations of P is given
by H 2

>ν(F̂ , dP ). In particular, every deformation of P is trivial if and only if
H 2

>ν(F̂ , dP ) vanishes.
(b) Let ν′ be the lowest degree of classes inH 2

>ν(F̂ , dP ). IfH 3
≥2ν ′(F̂ , dP ) vanishes,

then every infinitesimal deformation can be extended to a genuine deformation,
and the space of equivalence classes of deformations of P is just H 2

>ν(F̂ , dP ).

Example 26 Let P = 1
2

∫ (

Pαβ(u)θαθβ
)

dx ∈ F̂2
0 be a Hamiltonian structure.

Then it is easy to see that (Pαβ(u) ∂
∂uα ∧ ∂

∂uα ) gives a Poisson structure on the
manifoldM . We assume that det(Pαβ) �= 0, then, according to the Darboux theorem
in finite dimensional symplectic geometry, there exists a local coordinate system
(u1, . . . , un) such that (Pαβ ) is a constant matrix. Let θα = Pαβθβ , then

δP

δuα
= 0,

δP

δθα
= θα.

The operatorDP (see (3.7)) reads

DP =
∑

s≥0
∂sθα ∂

∂uα,s
.

If we write ∂sθα as duα,s , then DP is just the de Rham differential of J∞(M). In
particular,D2

P = 0, so we have a complex (Â,DP ).
By definition, the following sequence of complex morphisms is exact

0→ (Â/R,DP )
∂−→ (Â,DP )

∫

−→ (F̂ , dP )→ 0,

so we have a long exact sequence of cohomologies

· · · → H
p

d−1(Â/R,DP )→ H
p
d (Â,DP )→ H

p
d (F̂ , dP )

→ H
p+1
d−1 (Â/R,DP )→ H

p+1
d (Â,DP )→ H

p+1
d (F̂ , dP )→ · · · .

Define a map

F : [0, 1] × J∞(M̂), (t, (uα,s, θ s
α)) �→ (ts uα,s, ts θ s

α),

which induces a homotopy equivalence from the complex (Â,DP ) to the de Rham
complex (�∗(M), ddR) of M , so we have

H
p

d (Â,DP ) ∼=
{

H
p
dR(M), d = 0;

0, d > 0.
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Similarly,

H
p
d (Â/R,DP ) ∼=

⎧

⎨

⎩

H 0
dR(M)/R, p = 0, d = 0;

H
p

dR(M), p > 0, d = 0;
0, d > 0.

So we have

H
p

d (F̂, dP ) ∼=

⎧

⎪

⎨

⎪

⎩

H
p
dR(M), d = 0;

H
p+1
dR (M), d = 1;

0, d ≥ 2.

In particular, if H 3
dR(M) ∼= 0, every deformation of P is trivial.

If H 3
dR(M) � 0, there are non-trivial infinitesimal deformations, which can be

always extended to a genuine deformation sinceH 3≥2(F̂ , dP ) ∼= 0. For example, ifG
is a simple compact Lie group, andM = T ∗G, thenM has the canonical symplectic
structure, and H 3

dR(M) ∼= H 3
dR(G) � 0, so there is a non-trivial infinitesimal

deformation with degree one. The Drinfeld-Sokolov Hamiltonian structure can be
regarded as a reduction of this deformation.

4.3 Hydrodynamic Hamiltonian Structures

In this subsection, we consider homogeneous Hamiltonian structures with degree
one.

Lemma 27 ([9]) Let P ∈ F̂2
1 be a variational bivector, the corresponding matrix

differential operator reads

Pαβ = gαβ(u)∂ + �αβ
γ (u)uγ,1.

Suppose det(gαβ) �= 0, then P is a Hamiltonian structure if and only if the following
two conditions hold true:

i) g = (gαβ) = (gαβ)−1 is a flat (not necessary positive definite) metric on M .
ii) �

γ
αβ = −gασ�

σγ
β give the Christoffel symbols of the Levi-Civita connection of

g.

Proof The bivector P ∈ F̂2
1 reads

P = 1

2

∫

(

gαβθαθ
1
β + �αβ

γ uγ,1θαθβ

)

dx.



Lecture Notes on Bihamiltonian Structures and Their Central Invariants 607

The skew-symmetry condition P + P† = 0 gives

gαβ = gβα, (4.6)

�αβ
γ + �βα

γ = ∂gαβ

∂uγ
. (4.7)

The variational derivatives of P read

δP

δuσ
= �βα

σ θαθ
1
β +

1

2
(
∂�

αβ
γ

∂uσ
− ∂�

αβ
σ

∂uγ
)uγ,1θαθβ,

δP

δθσ
= gσβθ1β + �σβ

γ uγ,1θβ.

Let W = 1
2 [P,P ], then we have

W =
∫

(

Aαβγ θαθ
1
βθ

1
γ + Bαβγ

σ uσ,1θαθβθ
1
γ + Cαβγ

σ1σ2
uσ1,1uσ2,1θαθβθγ

)

dx

where

Aαβγ =gγσ�αβ
σ ,

Bαβγ
σ =1

2
gγ δ

(

∂�
αβ
σ

∂uδ
− ∂�

αβ
δ

∂uσ

)

+ �δα
σ �

γβ
δ ,

Cαβγ
σ1σ2

=1

2
�γδ
σ2

(

∂�
αβ
σ1

∂uδ
− ∂�

αβ
δ

∂uσ1

)

.

If W = 0 then δW
δθα
= 0 for all α = 1, . . . , n, so we have

0 = ∂

∂θ2β

δW

δθα
= ∂

∂θ2β

(

∂W̃

∂θα
− ∂

∂W̃

∂θ1α

)

= ∂2W̃

∂θ1α∂θ
1
β

0 = ∂

∂uβ,2

δW

δθα
= ∂

∂uβ,2

(

∂W̃

∂θα
− ∂

∂W̃

∂θ1α

)

= − ∂2W̃

∂θ1α∂u
β,1 ,

where W̃ is the density given above. The above two identities imply that

Aαβγ = Aαγβ, (4.8)

Bαβγ
σ = Bβαγ

σ . (4.9)
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Equation (4.6) shows that g can be regarded as a metric. Equation (4.7) shows
that the metric g is invariant with respect to the connection defined by �

γ
αβ .

Equation (4.8) shows that this connection is torsion-free, so it must be the Levi-
Civita connection of g. The last Eq. (4.9) is equivalent to the flatness of this
connection.

Conversely, if g and � satisfy the condition i) and ii), we can choose a system of
flat coordinates such that g is a constant metric and � vanish, then it is easy to show
that P is a Hamiltonian structure. The lemma is proved. ��
Definition 28 A Hamiltonian structure P ∈ F̂2

1 is called of hydrodynamic type if
it satisfies the conditions in Lemma 27.

According to Lemma 27, we can always choose a coordinate system such that

P = 1

2

∫

(

ηαβθαθ
1
β

)

dx, (4.10)

where (ηαβ) is a constant symmetric non-degenerate matrix.
From now on, we assume thatM is connected and contractible, then consider the

deformation problem of (4.10). The computation is similar to the degree zero case.
The variational derivatives read

δP

δuα
= 0,

δP

δθα
= ηαβθ1β.

We denote θα,s = ηαβθs
β , then the operatorDP reads

DP =
∑

s≥0
θα,s+1 ∂

∂uα,s
.

The algebra Â can be decomposed as Â = Â′ ⊗ Â′′, where

Â′ =A⊗∧∗ (SpanR
{

θα,s | α = 1, . . . , n; s ≥ 1
})

,

Â′′ = ∧∗
(

SpanR
{

θ1,0, . . . , θn,0
})

.

Note that DP (Â′′) = 0, so we have (Â,DP ) = (Â′,DP )⊗ Â′′, and

H ∗(Â,DP ) = H ∗(Â′,DP )⊗ Â′′.

On the other hand, if we replace θα,s+1 by duα,s , then (Â′,DP ) is again the de
Rham complex of J∞(M), so we have

H
p
d (Â′,DP ) =

{

R, (p, d) = (0, 0);
0, (p, d) �= (0, 0),
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which imply

H
p
d (Â,DP ) =

{∧p(Rn), d = 0;
0, d > 0.

Then it is easy to see

H
p
d (Â/R,DP ) =

{∧p(Rn), p > 0, d = 0;
0, otherwise.

Finally, by using the long exact sequence

· · · → H
p

d−1(Â/R,DP )→ H
p

d (Â,DP )→ H
p

d (F̂ , dP )

→ H
p+1
d (Â/R,DP )→ H

p+1
d+1 (Â,DP )→ H

p+1
d+1 (F̂ , dP )→ · · · ,

we obtain

H
p

d (F̂ , dP ) =
{∧p(Rn)⊕∧p+1(Rn), d = 0;
0, d > 0.

In particular, H 2
>0(F̂ , dP ) ∼= 0, so there is no non-trivial deformation of P . This

gives the Darboux theorem for Hamiltonian structures of hydrodynamic type.

Theorem 29 Let P ∈ F̂2
1 be a Hamiltonian structure of hydrodynamic type, then

for any deformation P̃ = P +Q, there exists a gauge transformation eadZ such that
eadZ (P̃ ) = P .

It is interesting to ask whether there are Darboux theorems for Hamiltonian
structures with degrees ≥ 2. For example, a degree two Hamiltonian operator has
the following general form

Pαβ = gαβ∂2 + �αβ
γ uγ,1∂ +

(

Pαβ
γ uγ,2 +Q

αβ
ξζ u

ξ,1uζ,1
)

.

We can assume that g = (gαβ
)

is non-degenerate, then g−1 is a symplectic structure

on M . One can show that �αβ
γ is given by a symplectic connection of g−1, and it

should satisfy a certain flatness condition. But we know nothing about P and Q.
In [6], De Sole and Kac computed certain cohomology groups similar to

H ∗(F̂ , dP ) for Pαβ = gαβ∂N with gαβ being constant and det(gαβ) �= 0. Their
definition is slightly different from ours, but the result is quite comparable (see [5]
for details).
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5 Bihamiltonian Structures

5.1 Definition and Semisimplicity

A bihamiltonian structure (P1, P2) is a pair of Hamiltonian structures such that
[P1, P2] = 0.

Lemma 30 Let P ∈ F̂2 be a Hamiltonian structure, if there is an X ∈ F̂1 such
that [X, [X,P ]] = 0, then (P, [P,X]) is a bihamiltonian structure. Bihamiltonian
structures obtained by this way are called exact bihamiltonian structures.

Proof Let Q = [P,X], then [P,P ] = 0, [P,Q] = 0, and

[Q,Q] = [[P,X],Q] = −[[X,Q], P ] − [[Q,P ],X] = 0.

The lemma is proved. ��
Example 31 The KdV equation has two Hamiltonian structures

P1 =
∫

θθ1dx, P2 =
∫ (

uθθ1 + h̄

8
θθ3
)

dx.

Let X = ∫

θdx, then P1 = [P2,X], and [P1,X] = 0, so (P1, P2) is indeed a
bihamiltonian structure, and it is exact.

Example 32 The Toda equation has two Hamiltonian structures

P1 =
∫

θ(φ+ − φ)dx,

P2 =
∫

(

ev
+
θθ+ + uθ(φ+ − φ)+ φφ+

)

dx.

Let X = ∫

θdx, then P1 = [P2,X], and [P1,X] = 0, so (P1, P2) is also a
bihamiltonian structure, and it is exact.

Example 33 The Camassa-Holm equation has two Hamiltonian structures:

P1 =
∫

θ(θ1 − θ3)dx, P2 =
∫

(

uθθ1
)

dx.

We have shown in the last section that any linear combination of P1 and P2
is a Hamiltonian structure, which implies that [P1, P2] = 0, so (P1, P2) is a
bihamiltonian structure. Note that this bihamiltonian structure is not exact.
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Let (P1, P2) be a bihamiltonian structure, if both P1 and P2 are of hydrodynamic
type, then (P1, P2) is also called of hydrodynamic type. According to Lemma 27,
there exists a pair of flat metric g1 and g2, such that

Pa = 1

2

∫

(

gαβ
a (u)θαθ

1
β + �αβ

γ,au
γ,1θαθβ

)

dx,

where a = 1, 2, and g
αβ
a and �

αβ
γ,a are given by the contravariant metric and the

connection coefficients of ga . In general, one cannot find a coordinate system such
that both g1 and g2 are constant.

Definition 34 Let (P1, P2) be a bihamiltonian structure of hydrodynamic type,
whose contravariant metric are g

αβ
1 (u) and g

αβ
2 (u). If the roots

λ1(u), . . . , λn(u)

of the characteristic equation

det
(

g
αβ

2 (u)− λg
αβ

1 (u)
)

= 0

are not constant and distinct, the bihamiltonian structure (P1, P2) is called semisim-
ple. The roots λ1, . . . , λn are called the canonical coordinates of (P1, P2).

Theorem 35 ([20]) Let (P1, P2) be a semisimple bihamiltonian structure. Its
canonical coordinates can serve as local coordinates near any point on M .
Furthermore, the two metric has the following form in the canonical coordinates

g
ij

1 = δij f i(λ), g
ij

2 = δij λi f i(λ).

Note that we don’t sum over repeated Latin indexes i, j .

In canonical coordinates, the two Hamiltonian structures have the following
forms:

P1 =1

2

∫

⎛

⎝

n
∑

i=1
f i(λ)θiθ

1
i +

n
∑

i,j=1
Aij θiθj

⎞

⎠ dx,

P2 =1

2

∫

⎛

⎝

n
∑

i=1
gi(λ)θiθ

1
i +

n
∑

i,j=1
Bij θiθj

⎞

⎠ dx,
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where gi(λ) = λif i(λ), and

Aij =1

2

(

f i

fj

∂f j

∂λi
λj,1 − f j

fi

∂f i

∂λj
λi,1
)

,

Bij =1

2

(

gi

fj

∂f j

∂λi
λj,1 − gj

fi

∂f i

∂λj
λi,1
)

.

Note that f i �= 0, gi �= 0, and Aij , Bij are skew-symmetric.

Example 36 ([7]) Let M be a Frobenius manifold, then we have a pair of
compatible metric

g
αβ

1 = ηαβ, g
αβ

2 = Eγ cαβγ ,

which define a bihamiltonian structure (P1, P2) of hydrodynamic type. If M is
semisimple, then (P1, P2) is also semisimple, and the canonical coordinates of
(P1, P2) coincide with the ones of M . Bihamiltonian structures of Frobenius
manifolds are always exact, because P1 = [P2, e], where e is the unit vector field.

5.2 Bihamiltonian Cohomology

In this subsection, we consider the deformation problem of a semisimple bihamilto-
nian structure.

Let (P1, P2) be a semisimple bihamiltonian structure, denote by da = adPa (a =
1, 2), then they satisfy

d21 = 0, d1d2 + d2d1 = 0, d22 = 0,

so we have a double complexes (F̂2, d1, d2).
A deformation of (P1, P2) is a bihamiltonian structure of the following form

(P̃1, P̃2) = (P1 +Q1, P2 +Q2),

where Qa ∈ F̂2
>1 (a = 1, 2). According to the results given in Sect. 4.3, there is a

gauge transformation eadZ such that eadZ(P̃1) = P1, so we can take Q1 = 0, and
renameQ2 to Q. Then (P̃1, P̃2) = (P1, P2 +Q) is a bihamiltonian structure if and
only if

d1(Q) = 0, d2(Q)+ 1

2
[Q,Q] = 0.
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A bivectorQ satisfying the above conditions is called a Maurer-Cartan element for
(P1, P2), and we denote the set of Maurer-Cartan elements byMC(P1, P2):

MC(P1, P2) = {Q ∈ F̂2
>1 | d1(Q) = 0, d2(Q)+ 1

2
[Q,Q] = 0}.

Two deformations are equivalent if there exists a gauge transformation that convert
one to another. Note that our P1 is fixed, so the gauge transformations should
preserve P1, we denote such gauge transformations as G(P1) :

G(P1) = {eadZ | Z ∈ F̂1
>0, d1(Z) = 0}.

The deformation problem for the bihamiltonian structure (P1, P2) is just to ask the
structure of the quotient spaceMC(P1, P2)/G(P1).

Definition 37

(a) Q ∈ F̂2
>1 is called a infinitesimal deformation of (P1, P2) if d1(Q) = 0,

d2(Q) = 0.
(b) Two infinitesimal deformationsQ1,Q2 are called equivalent if there exists Z ∈

F̂1
>0 such that d1(Z) = 0, d2(Z) = Q1 −Q2.

(c) An infinitesimal deformationQ is called trivial if it is equivalent to 0.
(d) The bihamiltonian cohomologies of (P1, P2) are defined as

BH
p

d (F̂ , d1, d2) = F̂p

d ∩ Ker(d1) ∩ Ker(d2)

F̂p
d ∩ Im(d1d2)

.

The following lemma is quite standard, so we omit its proof.

Lemma 38 Let (P1, P2) be a semisimple bihamiltonian structure.

(a) The cohomology groupBH 2
>1(F̂ , d1, d2) gives the space of equivalence classes

of infinitesimal deformations of (P1, P2).
(b) Let ν′ be the lowest degree of classes in BH 2

>1(F̂ , d1, d2). If

BH 3
≥2ν ′(F̂ , d1, d2) ∼= 0,

then every infinitesimal deformation of (P1, P2) can be extended to a genuine
deformation, and BH 2

>1(F̂, d1, d2) actually gives the space of equivalence
classes of deformations.

In [27] and [14], we proved the following theorem.

Theorem 39 Let (P1, P2) be a semisimple bihamiltonian structure, then

BH 2
d≥2(F̂ , d1, d2) ∼=

⎧

⎨

⎩

n
⊕

i=1
C∞(R), d = 3;

0, d = 2, 4, 5, . . . .
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The classes in BH 2
3 (F̂) are actually parameterized by n functions of canonical

coordinates {c1(λ1), . . . , cn(λn)}. We will discuss their definition and properties in
the next section.

In [29], we prove the following theorem.

Theorem 40 Let
(

P1 =
∫ (

θθ ′
)

dx, P2 =
∫ (

uθθ ′
)

dx
)

be the leading term of the
bihamiltonian structure of KdV equation, then

BH 3
d≥4(F̂ , d1, d2) ∼= 0.

The proofs of these two theorems are very long, so they cannot be given here.
Combining the above theorems and lemma, we obtain the following corollaries.

Corollary 41 Let (P1, P2) be a semisimple bihamiltonian structure. For any
deformation (P̃1, P̃2) of (P1, P2), one can define n functions

c1(λ1), . . . , cn(λn),

which are called the central invariants of (P̃1, P̃2), such that

(a) Two deformations are equivalent if and only if their central invariants coincide.
(b) Write the deformation (P̃1, P̃2) as the sum of homogeneous components

P̃a = Pa +
∑

k≥1
εkP [k]a , a = 1, 2,

where P
[k]
a ∈ F̂2

k+1, then there exists a gauge transformation eadZ such that

(eadZ (P̃1), e
adZ(P̃2)) doesn’t contain odd powers of ε.

(c) If (P1, P2) is the leading term of the bihamiltonian structure of the KdV
hierarchy, then for any smooth function c(u) there exists a deformation whose
central invariant is given by c(u).

Part (a) is called the uniqueness theorem of the deformation problem. Part (b)
is important for Gromov-Witten theory, because it ensure that the corresponding
integrable hierarchy can be always written as a formal power series of h̄. Part (c)
is called the existence theorem of the deformation problem. We conjecture that it is
true for arbitrary semisimple bihamiltonian structure.

Recently [2] (c.f. [1]), Carlet, Posthuma, and Shadrin proved the following
theorem, which showed that our conjecture is true.

Theorem 42 ([2]) Let (P1, P2) be a semisimple bihamiltonian structure of
hydrodynamic type, then BH

p
d (F̂ , d1, d2) vanishes for most (p, d). In particular,

BH 3
d≥5(F̂ , d1, d2) ∼= 0, which implies that the existence of a full dispersive

deformation of (P1, P2) starting from any its infinitesimal deformation.

The proof of this theorem is sophisticated, so we cannot give it here. Please refer
to [2] for details.
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5.3 Bihamiltonian Vector Fields

Let (P1, P2) be a bihamiltonian structure, X ∈ F̂1 is called a bihamiltonian vector
field, if there exists I, J ∈ F̂0 such that X = d1(I) = d2(J ). Suppose (P1, P2) is
semisimple, and (P̃1, P̃2) is a deformation of (P1, P2). In this subsection, we will
consider their bihamiltonian vector fields.

Lemma 43 The space of bihamiltonian vector fields of (P1, P2) is given by
BH 1≥1(F̂ , d1, d2).

Proof Let X be a bihamiltonian vector field of (P1, P2). Note that deg(Pa) =
1 (a = 1, 2), so ν(X) ≥ 1.

The bihamiltonian cohomology BH 1≥1(F̂ , d1, d2) is defined as

BH 1≥1(F̂ , d1, d2) = {X ∈ F̂1≥1 | d1(X) = 0, d2(X) = 0},

so every bihamiltonian vector field belongs to BH 1≥1(F̂ , d1, d2).

On the other hand, if X ∈ BH 1≥1(F̂ , d1, d2), then there must exist I, J ∈ F̂0

such that X = d1(I) = d2(J ), because H 1≥1(F̂, da) ∼= 0 (a = 1, 2). ��
Lemma 44 We have BH 1≥2(F̂ , d1, d2) ∼= 0.

Proof Suppose X = d1(I) = d2(J ) ∈ F̂1
d (d ≥ 2), where

I =
∫

pdx, J =
∫

qdx,

and p, q ∈ A(N), 1 ≤ N ≤ d . We are to show that one can always choose another
pair of density p′, q ′ ∈ A(N−1) such that I = ∫

p′dx, J = ∫

q ′dx. Then the
theorem can be proved by induction on N .

Let Z = d1(I)− d2(J ) = ∫ (Zαθα) dx. It is easy to see that Zα ∈ A(2N+1). We
introduce a notation a(i,s) = ∂a

∂λi,s for a ∈ A. Then one can obtain that

Zi
(j,2N+1) = (−1)N+1f i

(

p(i,N)(j,N) − λiq(i,N)(j,N)

)

= 0,

so (λi−λj )q(i,N)(j,N) = 0. Since λi �= λj (i �= j), we have q(i,N)(j,N) = 0 (i �= j).
Denote by ri = q(i,N)(i,N), then q(i,N)(j,N) = δij ri , p(i,N)(j,N) = δij λiri .

Next, compute Zi
(j,2N):

0 = Zi
(j,2N) = (−1)N+1

((

N + 1

2

)

f iriλi,1δij + (λiAij − Bij )+

f i
(

p(i,N)(j,N−1) − p(j,N)(i,N−1)
)− gi

(

q(i,N)(j,N−1) − q(j,N)(i,N−1)
)

)

.
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Take i = j , we obtain ri = 0, so p and q are linear in λα,N . For i �= j , we obtain

p(i,N)(j,N−1) = p(j,N)(i,N−1), q(i,N)(j,N−1) = q(j,N)(i,N−1),

which imply that one can choose p̃, q̃ ∈ A(N−1) such that p′ = p − ∂(p̃) and
q ′ = q − ∂(q̃) belong to A(N−1). The lemma is proved. ��

The above proof can be regarded as a demo version of the proofs for Theorem 39
and 40. In the latter cases, we also use an induction onN forA(N). This computation
method can be translated to the language of spectral sequence. In Carlet, Posthuma,
and Shadrin’s new preprints [1, 2], they introduce more spectral sequences, which
help them to compute almost all the bihamiltonian cohomologiesBH

p
d (F̂ , d1, d2).

The above lemma shows that bihamiltonian vector fields of (P1, P2) must have
degree one.

Corollary 45 Let

X =
∫

(

Xαθα
)

dx

be a bihamiltonian vector fields of (P1, P2), thenX must be diagonal hydrodynamic,
i.e. Xi = V i(λ)λi,1.

Proof Suppose X = d1(I) = d2(J ), where I = ∫ pdx, J = ∫ qdx, p, q ∈ A0,
then Xi takes the following form:

Xi =
n
∑

j=1
V i
j (λ)λ

j,1,

where the coefficients read

V i
j = −f iDij (p) = −giDij (q),

and Dij is the following linear differential operator

Dij = ∂2

∂λi∂λj
+ 1

2

∂ log f i

∂λj

∂

∂λi
+ 1

2

∂ log f j

∂λi

∂

∂λj
.

Note thatDij is symmetric, so we have (λi −λj )Dij (q) = 0, which implies V i
j = 0

if i �= j . The corollary is proved. ��
Corollary 46 If X1, X2 are bihamiltonian vector fields of (P1, P2), then
[X1,X2] = 0.

Proof Let Y = [X1,X2], then d1(Y ) = 0, d2(Y ) = 0, so Y = 0, since Y ∈
BH 1

2 (F̂ , d1, d2) ∼= 0. ��
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Now let us consider the bihamiltonian vector fields of (P̃1, P̃2). Let X ∈ F̂1 be
such a vector field, then ν(X) ≥ 1. We expand it with respect the standard gradation

X = X1 +X2 + . . . , Xd ∈ F̂1
d ,

then it is easy to see that X1 must be a bihamiltonian vector field of (P1, P2). We
call X1 the leading term of X.

Theorem 47

(a) IfX1,X2 are bihamiltonian vector fields of (P̃1, P̃2), then [X1,X2] = 0. If they
have the same leading term, then X1 = X2.

(b) For any bihamiltonian vector field X1 of (P1, P2), there exists a bihamiltonian
vector field X of (P̃1, P̃2) such that X’s leading term is just X1.

Proof For Part (a), we only need to show that if the leading term of a bihamiltonian
vector field X of (P̃1, P̃2) vanishes, then X = 0. Expand X as

X = X1 +X2 +X3 + · · · , X1 = 0, Xd ∈ F̂1
d .

We also expand (P̃1, P̃2) in the same way:

P̃1 = P1 +
∑

k≥1
P
[k]
1 , P̃2 = P2 +

∑

k≥1
P
[k]
2 .

Then the condition [P̃a,X] = 0 (a = 1, 2) implies that

da(Xd)+
d−2
∑

k=1
[P [k]a ,Xd−k] = 0, a = 1, 2.

When d = 2, we obtain d1(X2) = 0, d2(X2) = 0, so we have X2 = 0. Then, by
induction on d , one can show that Xd = 0 for d = 2, 3, . . . , so X = 0.

To prove Part (b), we also expandX, P1, and P2 as above. We need to show that
if X1 satisfies d1(X1) = 0, d2(X1) = 0, then there exist X2,X3, . . . such that

da(Xd)+
d−1
∑

k=1
[P [k]a ,Xd−k] = 0, a = 1, 2. (5.1)

Without loss of generality, we can assume that P
[1]
a = 0 (see Part (b) of

Corollary 41), then we can take X2 = 0 directly.
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The existence of Xd (d ≥ 3) can be proved by induction on d . Suppose we have
obtained X2, . . . , Xd−1, and we are to find Xd . Denote by

Wa = −
d−1
∑

k=1
[P [k]a ,Xd−k], a = 1, 2,

then Xd satisfy d1(Xd) = W1 and d2(Xd) = W2.
We assert that d1(W1) = 0. By using the Jacobi identity, we have

d1(W1) =
d−1
∑

k=1

(

[d1(P [k]1 ),Xd−k] + [P [k]1 , d1(Xd−k)]
)

.

Note that P̃1 is a Hamiltonian structure, so we have

d1(P
[k]
1 )+ 1

2

k−1
∑

j=1
[P [j ]1 , P

[k−j ]
1 ] = 0.

From the above identity and (5.1) with Xd replaced by Xd−k , one can show that
d1(W1) = 0. Similarly, we have d2(W2) = 0.

Since H 2
d+1(F̂ , d1) ∼= 0, there exists Y ∈ F̂1

d such that W1 = d1(Y ), then the
general solution to d1(Xd) = W1 can be written as Xd = Y + d1(Z) for arbitrary
Z ∈ F̂0

d−1. Then the equation d2(Xd) = W2 becomes d1d2(Z) = Q, where Q =
d2(Y )−W2.

It is easy to see that d2(Q) = 0. One can also show that d1(Q) = 0 by using the
condition [P̃1, P̃2] = 0, so Q ∈ F̂2

d+1 ∩Ker(d1)∩Ker(d2). Note that d + 1 ≥ 4, so

BH 2
d (F̂ , d1, d2) ∼= 0, so there must exist Z ∈ F̂0

d−1 such that Q = d1d2(Z). The
existence of Xd is proved. ��

6 Central Invariants

6.1 Definition and Properties

In this subsection, we explain how to compute the central invariants of a deformed
semisimple bihamiltonian structure.

Let (P1, P2) be a semisimple bihamiltonian structure, (P̃1, P̃2) be a deformation
of (P1, P2), and Pa, P̃a (a = 1, 2) be the corresponding matrix differential
operators in canonical coordinates. Expand P̃a (a = 1, 2) with respect to the
standard gradation

P̃αβ
a = Pαβ

a +
∑

s≥1

(

s+1
∑

t=0
P

αβ
s,t,a∂

t

)

,
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where a = 1, 2, Pαβ
s,t,a ∈ As+1−t . It is easy to see that P

αβ
s,s+1,a is a tensor onM . The

central invariants of (P̃1, P̃2) are defined as

ci(λ) = 1

3
(

f i
)2

⎛

⎜

⎝P ii
2,3,2 − λiP ii

2,3,1 +
∑

k �=i

(

Pki
1,2,2 − λiP ki

1,2,1

)2

f k(λk − λi)

⎞

⎟

⎠ , (6.1)

where i = 1, . . . , n, λi ’s are the canonical coordinates, and f i’s are the diagonal
entries of the first metric (see Definition 34 and Theorem 35). Note that the
semisimplicity of (P1, P2) plays a crucial role in the definition of central invariants:
(1) λi’s are not constants, so we can use them as coordinates; (2) they are distinct,
so the denominator in the above formula never vanish.

Theorem 48

(a) The central invariants are invariant under gauge transformations.
(b) The i-th central invariant ci(λ) only depends on λi .
(c) The cohomology class corresponding to the infinitesimal deformation of

(P̃1, P̃2) has a representative

Q = d2d1

(

∫

(

n
∑

i=1
ci(λ

i)λi,1 logλi,1

)

dx

)

∈ F̂2
3 .

The proof of this theorem is simple but tedious [14], so we omit it.
In Part (c), we give Q in the form d2d1(J ). This expression looks confusing,

since elements of the form d2d1(J ) = −d1d2(J ) should be exact in the cohomology
group BH 2

3 (F̂ , d1, d2). But Q is indeed not trivial, because the density of the

local functional J given above is not a differential polynomial, so J /∈ F̂0. This
expression shows that if we enlarge the group of gauge transformation, then there
is no nontrivial infinitesimal deformations. This result is called the quasi-triviality
theorem [14].

Theorem 49 Denote by μ =∏n
i=1 λi,1, Ã = Â[μ−1], F̃ = Ã/∂Ã.

(a) For any deformation (P̃1, P̃2) of a semisimple bihamiltonian structure (P1, P2),
there exists Z ∈ F̃1

>0, such that (e
adZ (P̃1), e

adZ (P̃2)) = (P1, P2).

(b) Let X ∈ F̂1 be a bihamiltonian vector field of (P̃1, P̃2) with leading term X1 ∈
F̂1
1 , then eadZ (X) = X1.

This theorem implies that Dubrovin-Zhang’s QT Axiom is a corollary of the BH
Axiom, so the QT Axiom can be removed from their construction.
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6.2 Example: Frobenius Manifolds

Let (P1, P2) be the bihamiltonian structure associated to a semisimple Frobenius
manifold (see Example 36). In [10], Dubrovin and Zhang constructed a genus one
deformation of (P1, P2) satisfying their VS Axiom [11]. Note that a genus one
deformation is exactly an infinitesimal deformation of degree 3. So it is natural
to ask: what are its central invariants?

By checking the expressions given in [10], the tensors used in (6.1) read

f i = 1

ψ2
i1

, P ki
1,2,1 = 0, P ki

1,2,2 = 0,

P ii
2,3,1 =

1

12ψ4
i1

∑

j �=i

γij

(

ψi1

ψj1
+ ψj1

ψi1

)

,

P ii
2,3,2 =

1

72ψ4
i1

+ λi

12ψ4
i1

∑

j �=i

γij

(

ψi1

ψj1
+ ψj1

ψi1

)

,

then we immediately obtain the central invariants

c1 = · · · = cn = 1

24
.

In [36], Zhang showed that if a deformation (P̃1, P̃2) admits a tau function, then
its central invariants must be constant. In this case, the genus one free energy has
the form

F1 =
n
∑

i=1
ci log(λi,1)+G(λ).

When ci = 1/24 (i = 1, . . . , n), we obtain the well-known formula for genus one
free energy of a semisimple cohomological field theory

F1 = 1

24
log

(

n
∏

i=1
λi,1

)

+G(λ).

We conjecture that the converse propositions of the above results are also true.

Conjecture 50 Let (P̃1, P̃2) be a deformation of (P1, P2) with central invariants
c1, . . . , cn.

(a) If ci (i = 1, . . . , n) are all constant, then the corresponding integrable hierarchy
admits a tau structure.
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(b) if ci = 1/24 (i = 1, . . . , n), then the corresponding integrable hierarchy has
linearizable Virasoro symmetries.

If these conjectures hold true, then Dubrovin-Zhang’s TS Axiom and VS Axiom can
be replaced by the above conditions on central invariants.

6.3 Example: Drinfeld-Sokolov Hierarchy

Let g be a simple Lie algebra of dimension m and rank n, and u1, . . . , um be a set
of basis. Suppose

[uα, uβ ] = Cαβ
γ uγ .

Let M = g∗, and v1, . . . , vm be dual basis of u1, . . . , um, then any element q ∈ M

can be written as

q = uαvα, uα ∈ R.

The bracket

{uα, uβ} = Cαβ
γ uγ

defines a Poisson structure on M , which is called the Lie-Poisson structure.
The Lie-Poisson structure defines a Hamiltonian structure P0 ∈ F̂2

0 :

P0 =
∫

(

Cαβ
γ uγ θαθβ

)

dx.

Its action on F,G ∈ F̂0 is given by

{F,G}P0 =
∫ (

Cαβ
γ uγ δF

δuα

δG

δuβ

)

dx. (6.2)

Note that Cαβ
γ uγ = 〈q, [uα, uβ ]〉, where 〈 , 〉 is the pairing between g∗ and g. If we

introduce a notation

grad(F ) = δF

δuα
uα ∈ A⊗ g,

then the Poisson bracket (6.2) becomes

{F,G}P0 =
∫

〈q, [grad(F ), grad(G)]〉dx.
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Let 〈 , 〉g be a invariant non-degenerate symmetric bilinear form on g, we can
identify g∗ and g such that

〈q, ·〉 = 〈q, ·〉g.

We always assume this identification, then the Poisson bracket (6.2) can be also
written as

{F,G}P0 =
∫

〈grad(F ), [grad(G), q]〉gdx.

Define ηαβ = 〈uα, uβ〉g. The Hamiltonian structure P0 admit a degree one
deformation

P =
∫

(

Cαβ
γ uγ θαθβ − ηαβθαθ

1
β

)

dx.

The action of P on F,G ∈ F̂0 reads

{F,G}P =
∫

〈grad(F ), [grad(G), ∂ + q]〉gdx.

Here we assume that [∂, a] = −[a, ∂] = ∂(a) for a ∈ A⊗ g.
Let X0 =

∫ (

uα
0θα
)

dx, where u10, . . . , u
m
0 ∈ R are some fixed constants. Then it

is easy to see that [X0, [X0, P ]] = 0, so ([X0, P ], P ) forms an exact bihamiltonian
structure. We rename P1 = [X0, P ], P2 = P . The bihamiltonian structure (P1, P2)

is called the Zakharov-Shabat bihamiltonian structure.
The second component of the Zakharov-Shabat bihamiltonian structure can be

regarded as a reduction of the deformed Hamiltonian structure mentioned in Exam-
ple 26. The Drinfeld-Sokolov bihamiltonian structure is a further reduction of the
Zakharov-Shabat one. A detailed description of the Drinfeld-Sokolov bihamiltonian
structure would make the present lecture notes too long, so we only give the final
result.

Theorem 51 ([15]) The Drinfeld-Sokolov bihamiltonian structure (Q1,Q2) is an
exact bihamiltonian structure on a submanifold V ⊂ M with dimV = n.

(a) The leading term of (Q1,Q2) coincides with the bihamiltonian structure
associated to the Frobenius structure on the orbit space of the Weyl group of
g. In particular, it is semisimple.

(b) The central invariants of (Q1,Q2) are given by (up to a rearrangement)

ci = 〈α
∨
i , α∨i 〉g
48

, i = 1, . . . , n,

where {α∨1 , . . . , α∨n } is a collection of simple coroots of g.
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(c) If we choose 〈 , 〉g to be the normalized one

〈 , 〉g = 1

2h∨
〈 , 〉K,

where h∨ is the dual Coxeter number of g, and 〈 , 〉K is the Killing form, then
the central invariants for g of type Xn is given by the following table.

Xn c1 . . . cn−1 cn

An
1
24 . . . 1

24
1
24

Bn
1
24 . . . 1

24
1
12

Cn
1
12 . . . 1

12
1
24

Dn
1
24 . . . 1

24
1
24

En, n = 6, 7, 8 1
24 . . . 1

24
1
24

Fn, n = 4 1
24

1
24

1
12

1
12

Gn, n = 2 1
8

1
24

(6.3)

When g is of ADE type, the central invariants are all equal to 1/24, so
the Drinfeld-Sokolov bihamiltonian structure is equivalent to Dubrovin-Zhang’s
deformation [10, 13], and the total descendant potential coincides with the one given
by Givental’s formula. Recently, Fan, Jarvis and Ruan rigorously define the Landau-
Ginzburg A-model for a quasi-homogeneous singularity, which is called the FJRW
theory. They also proved that the total descendant potential of FJRW theory for
an ADE singularity is given by Givental’s formula, so it is a tau function of the
corresponding Drinfeld-Sokolov hierarchy. This result is called the ADE Witten
conjecture. Please see [18, 19, 21, 26, 30, 33, 34] for more details.

When g is of BCFG type, the central invariants are constant, but not all equal to
1/24. Define R = 24

∑n
i=1 ci , then we have

g Bn Cn F4 G2

R n+ 1 2n− 1 6 4

It is well-known that a simple Lie algebra of Bn type can be embedded into a
simple Lie algebra of Dn+1 type as the fixed locus of an order two automorphism.
Similarly, Cn can be embedded into A2n−1, F4 can be embedded into E6, and G2
can be embedded into D4. So the number R gives exactly the rank of the ambient
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Lie algebra. This observation suggests us how to prove the generalized Witten
conjecture of BCFG type [30].

Remark 52 The above two examples both have constant central invariants. There
also exist bihamiltonian structures possessing non-constant central invariats. For
example, the bihamiltonian structure of the Camassa-Holm hierarchy (see Exam-
ple 20) has c(λ) = λ

3 . Its two-component generalization (see [27], [3]) has

c1(λ1) = λ21

24
, c2(λ2) = λ22

24
.

We also considered its multi-components generalization in [4], and more compli-
cated central invariants arose there.

The Camassa-Holm equation and its generalization are very popular recently in
the area like PDE analysis or hydrodynamic, because they often have interesting
weak solutions and wave-breaking phenomena. They are also the main source of
our work [28], whose results play an important role in the present paper. However,
there seems no direct connection between such integrable hierarchies and Gromov-
Witten theories.
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