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Abstract. Facial expression contains a rich variety of affective infor-
mation. Facial Expression Recognition (FER) is an emerging field that
has broad applications in the fields of human-computer interaction, psy-
chological behaviour analysis and image understanding. However, FER
presently is not fully realized due to the lack of an effective facial feature
descriptor. This paper will examine the performance of a novel facial
image descriptor referred to as Local Directional Covariance Matrices
(LDCM). The descriptor will consist of fusing features, such as location,
intensity, filter responses and incorporate local texture patterns. Tests
were done on both posed and spontaneous facial expression datasets to
evaluate the performance of the proposed model on real-world appli-
cations. Results demonstrate the effectiveness of the covariance feature
descriptors compared to standard methods.
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1 Introduction

Affective computing [13] has recently gained momentum in the computer vision
community. Facial expression recognition (FER) contributes towards the foun-
dation of affective computing. The difficulty in automatic FER is the discrimina-
tion of different facial expressions based features extracted from the face. Facial
features from one subject can exhibit similar properties to different expressions;
and facial features from two or more subjects with the same expression may vary
drastically from each other. Additionally, some expressions like sad and fear tend
to be very similar [8]. A simple example is shown in Fig. 1, where six subjects
each displaying a happy expression show considerable variation, not only in the
way that the subjects convey their expression, but also in lighting, brightness,
pose, and background.

Facial features are extracted using two different approaches: geometric-
feature-based and appearance-based methods. Geometric feature based [7] meth-
ods encode the locations and shapes of unique facial components or elements
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Fig. 1. The happy expression among six different subjects. The images are from the
following databases: JAFFE [10], CK+ [9], ISED [3]

such as measuring relative positions between eyes, nose, mouth and ears then
combining it into a single feature vector describing the face. Appearance based
methods differ in that they focus on the individual pixel values rather than rel-
ative distance or shape of feature components [14]. They use image filters to get
features based on a holistic approach, that is, using the whole face or a region
of interest (ROI) of the face to create local features [11]. To strengthen robust-
ness against factors such as occlusion, illumination and pose variations in facial
expression recognition many techniques have been researched, such as Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA), Independent
Component Analysis (ICA) [1]. These methods have been used holistically or
locally to extract facial appearance changes [5]. To overcome the shortcomings
of LBP newer methods such as Local Ternary Pattern(LTP)[6] and Local Direc-
tional Pattern (LDP) were introduced.

Another local feature descriptor that is gaining popularity concerning facial
expression recognition is the Region Covariance Matrix (RCM)[12]. The RCM
fuses multiple pixel-level image features like coordinate, colour, first-order gra-
dient, etc., into a single more robust covariance matrix structure that becomes
the new region descriptor. A benefit to using RCM is that it is scale and illu-
mination independent. In this paper, we integrate RCM and LDP features for
facial expression recognition referred to as Local Directional Covariance Matri-
ces (LDCM). This approach aims to investigate the effectiveness of utilizing the
LDP with the covariance structure.

The paper is structured as follows. Section 2 briefly reviews the principles of
RCM. Section 3 discusses the local patterns encoding and describes the proposed
LDCM algorithm in detail. In Sect. 4, we present the experimental results which
demonstrate the effectiveness of the proposed method, and finally in Sect. 5 the
concluding remarks are drawn.
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2 Region Covariance Matrices

Tuzel et al. originally proposed the RCM feature descriptor [12]. Let I be a one-
dimensional intensity (grayscale) or three-dimensional colour image (rgb, hsv
infrared, depth images) and F be the W × H × d dimensional feature image
extracted from I, we have

F (x, y) = φ(I, x, y), (1)

where the function φ can be any mapping such as intensity, colour, gradients,
filter responses, etc. For a given rectangular region R ⊂ F , let z = {Zi}i=1..S be
the d - dimensional features vector inside R. The region R is represented with
the d × d covariance matrix of feature points

CR =
1

S − 1

S∑

i=1

(zi − μ)(zi − μ)T , (2)

where μ is the mean of the feature vector z,
The covariance matrix structure represents the diagonal entries as the vari-

ance of each feature, and the non-diagonal entries are their respective correla-
tions. This inherent representation provides multiple advantages to region covari-
ance descriptors. It allows the fusing of different types of features that share some
correlation to each other. Its robustness allows matching in different views and
poses from a single covariance matrix extracted from a region. Noise from the
sample is reduced considerably during the computation of the covariance due to
the average filter.

The use of common machine learning methods on a standard covariance
matrix is prohibited as it does not lie on Euclidean space [12]. To overcome this
problem, Forstner and Moonen [2] proposed a method to calculate the distance
between feature points of two covariance matrices C1 and C2, which is defined
as

ρ(C1, C2) =

√√√√
d∑

i=1

ln2λi(C1, C2) (3)

where {λ(C1, C2) | i = 1, 2, . . . , d} are the generalized eigenvalues of C1 and C2,
computed from

λiC1ui = C2ui, i = 1, 2, . . . , d (4)

and ui �= 0 are the generalized eigenvectors.

3 Local Directional Covariance Matrix

In this section, after a brief review of the Local Directional Pattern (LDP), we
introduce the Local Directional Covariance Matrices (LDCM) which incorporate
RCM and LDP into a single descriptor.
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3.1 Local Directional Pattern

The LDP describes local image feature by computing the edge response values to
all its neighbours, i.e. in all 8 directions at each pixel position. It then generates
a code from the relative strength magnitude, from [4] it is established that edge
responses are more stable than intensity values in the presence of noise and
non-monotonic illumination changes. LDP therefore performs superior in these
environments as compared to its predecessor LBP.

The LDP is made up of an eight bit binary code assigned to each pixel of
an input image. This pattern is encoded using edge response value of a pixel in
different directions. There are different edge detectors such as Kirsch, Prewitt
and Sobel that can be used for this regard. The Kirsch edge detector is more
proficient at detecting directional edge responses because it considers all eight
neighbours as compared to the others [4]. Each mask (Mi)i=0,1,...,7 represents a
different orientation. For each mask Mi we compute the response mi, in total we
obtain a response value m0,m1, . . . ,m7, each representing the edge significance
in its respective direction. The higher the response value the more significant
the edge is in that direction. The Local Directional Pattern code is generated
by using the k most prominent directions. The most significant k directional bit
responses |bi| are set to 1 and the remaining bits(8-k) are set to 0. The code
LDPk is then computed as

LDPk =
7∑

i=0

bi(mi − mk) × 2i (5)

bi(n) =

{
1 n ≥ 0
0 n < 0

(6)

where mk is the k-th most significant response.

3.2 Local Directional Covariance Matrix

The success of a region covariance matrix as a descriptor relies on the pixel wise
features chosen for its specified operation. The LDP and RCM operators are
designed to detect textures. Facial expression of a person can be regarded as
a texture of the face. Pixel location and intensity are used in the RCM as it
improves its discrimination ability. The pixelwise mask of the LDP generated
image will also be incorporated into the RCM. Thus, we form a new mapping
function based on local directional feature defined as

φ(I, x, y) = [x y I(x, y) LDP (x, y)]T (7)

The feature vector in region R can now be defined as zk = φ(I, xR, yR),
zk ∈ Rd, k = 1, 2, . . . , n, and the covariance matrix CR can be obtained by
substituting (7) into (2).

The LDCM mapping has a total dimension of d = 4 and the resulting covari-
ance matrices are of size 4 × 4. This feature descriptor is considerably smaller
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than other methods such as LDP or LBP. The advantage of LDCM is that it
is more compact than traditional LBP or LDP, the incorporation of the LDP
features versus LBP makes it more stable in presence of noise, and the inherent
structure of region covariance matrix makes it rotation and scale invariant.

4 Experimental Results

In this section we will review the performance of the proposed algorithm for
facial expression recognition on JAFFE [10], Extended Cohn-Kanade [9] and
ISED [3] facial expression databases. Firstly, we examine the performance of
various covariance based features tested against the whole face region. Then
we conduct a test to determine the impact of segmenting the face into regions
and lastly we focus on using special landmarks on the face. The method used
for classification throughout all tests is a medium KNN classifier using distance
described in (3) and leave one out cross validation per expression class. The
LDCM uses k = 3 for most prominent directions.

4.1 Global Face Covariance Features

In this experiment we use LDCM to analyse the face holistically to deter-
mine its effectiveness against different facial expressions in the above mentioned
databases. We also incorporate other feature patterns into the covariance matrix
like LBP and Sobel mask and compare them to conventional LDP and LBP
methods which use histograms as feature vectors.

JAFFE Database. The Japanese Female Facial Expression (JAFFE) database
contains 213 images of 7 facial expressions (6 basic facial expressions + 1 neutral)
posed by 10 Japanese female models. All experiments carried out on the JAFFE
database use an average of 30 images per class tested against an average of 60
random images consisting of 7 classes. The images are cropped automatically to
make two eyes align at the same position and are then resized to 160 × 160.

Extended Cohn-Kanade Database. The extended Cohn-Kanade Database
(CK+) consists of 593 sequences from 123 subjects. The sequences start from a
neutral position and ends with the peak of the expression. The database comes
with 327 validated emotion labels consisting of six basic (anger, disgust, fear,
happy, sadness and surprise) plus contempt expressions. In our analysis, con-
tempt is left out. We choose 25 images per class and test against an average of
75 random images consisting of 6 classes. The images are cropped to make two
eyes align and are then resized to 256 × 256.

ISED Database. The database consists of 428 segmented video clips of the
spontaneous facial expressions of 50 participants. The database consists of
labelled peak expressions of 4 classes: happy, sadness, disgust and surprise. The
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database features mixed images of people with glasses, non-cohesive pose and
other varying uncontrolled environmental factors. The images are cropped by
using a facial detector and then resized to 256 × 256. An average of 48 images
per class were tested against an average of 93 random images consisting of 4
classes.

Table 1. Global face covariance features FER accuracy across datasets

JAFFE CK+ ISED
Features %Acc. Neut. Hap. Sad Sur. Ang. Dis. Fear %Acc. Ang. Dis. Fear Hap. Sad Sur. %Acc. Hap. Sur. Sad Dis.
LDCM 90 90 100 90 90 87 79 91 71 76 76 84 56 72 64 97 100 100 98 92
LBCM 89 90 100 90 90 87 76 91 73 76 76 88 60 76 60 96 100 96 96 92
LDP+Sobel+COV 88 90 100 87 90 83 72 91 68 60 76 88 64 68 52 96 100 96 96 94
LBP+Sobel+COV 86 87 100 87 83 83 72 91 71 76 76 88 52 76 56 96 100 94 96 94
Sobel+COV 86 90 100 84 83 83 72 91 70 76 72 84 68 76 44 96 100 98 94 94
LDP 92 100 97 81 87 93 100 84 85 100 68 88 96 76 80 94 92 94 96 94
LBP 93 97 100 87 87 93 93 91 87 100 80 88 96 84 72 91 96 83 96 88

Table 2. Segmented image regions FER accuracy across datasets

JAFFE CK+ ISED
Segments%Acc. Neut. Hap. Sad Sur. Ang. Dis. Fear %Acc. Ang. Dis. Fear Hap. Sad Sur. %Acc. Hap. Sur. Sad Dis.
1 x 2 90 90 100 84 87 93 76 97 57 56 72 80 40 56 40 88 90 85 94 83
2 x 1 89 90 94 84 87 83 93 94 53 40 64 64 52 48 52 89 90 92 94 79
2 x 2 96 97 100 100 90 90 97 97 54 36 60 80 44 64 40 88 88 94 94 77
3 x 3 93 100 100 94 87 93 86 91 54 36 64 76 40 60 48 88 90 85 90 85

Table 3. Special landmark regions FER accuracy across datasets

JAFFE CK+ ISED
Method %Acc. Neut. Hap. Sad Sur. Ang. Dis. Fear %Acc. Ang. Dis. Fear Hap. Sad Sur. %Acc. Hap. Sur. Sad Dis.
1 – MinDist 95 97 100 90 97 97 90 94 75 84 76 76 68 80 64 94 96 96 92 92
2 – MinSum 91 93 97 97 97 83 69 100 82 92 88 80 80 76 76 95 96 98 92 94

Table 1 shows the results when using the global face experiment. This experi-
ment establishes the effectiveness of the LDCM method compared to the original
based LBP and LDP methods. The method LDCM gives good performance accu-
racy of 90% and 71% using JAFFE and CK+ datasets, respectively. The LDCM
outperformed by LBP and LDP on CK+ database. With JAFFE database
LDCM is also outperformed, but marginally. The LDCM performs the best with
an impressive 97% in the ISED database, the covariance feature based meth-
ods performed marginally better than LBP and LDP methods. This can be due
to the fact that the ISED database contains more random type images that
have partial occlusions and more pronounced pose variations of the face. The
covariance descriptor proves to be more robust for these conditions. It is also
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Fig. 2. Segmentation of face into different regions

noteworthy that the LBP and LDP feature vector consists of [1× 16348] feature
points versus the [4 × 4] feature descriptor of the covariance matrix. The covari-
ance descriptor is able to produce similar or more effective results at a far lower
computational cost in terms of feature size.

4.2 Segmented Face Regions

In this experiment, we test the component-based approach using LDCM. The
global face image is segmented into equal sized regions of [1 × 2], [2 × 1], [2 × 2],
[3 × 3]. Figure 2 demonstrates a representation of how the face is divided. To
classify between segments each region in the test image is compared to its like
region in the training images and the region with the minimum distance is chosen
for classification.

The results from Table 2 show that the holistic approach performs better
than the component-based approach using LDCM in CK+ and ISED databases.
This could be due to the fact that when the face is divided into smaller random
segments it loses important discriminable information. However, the JAFFE
database performed the best using this method compared to the holistic app-
roach receiving a recognition accuracy of 96%. It is also evident that cer-
tain regions exhibit greater performance than other regions. Across the three
datasets, regions of different segments outperformed. In CK+ the best perform-
ing segment was the [1×2] split whereas in the JAFFE dataset it was the [2×2]
split and the ISED dataset the [2 × 1] split. The information from the random
segments can be improved upon by targeting specific regions of the face.

4.3 Special Landmark Regions

Intuitively certain regions possess more discriminative properties than others.
Based on the later, in this experiment we use a eye, nose and mouth detector to
first extract the regions of interest from the face. The pair of eyes including the
eyebrows is used, the extracted eye region is expanded to get the eyebrows. The
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special regions from the databases are segmented as follows: CK+ dimensions:
Eye-80 × 160, Nose-56 × 60, Mouth-50 × 90 JAFFE dimensions: Eye-60 × 130,
Nose-40 × 50, Mouth-40 × 60 ISED dimensions: Eye-70 × 200, Nose-80 × 80,
Mouth-70 × 120

The LDCM descriptor is then applied to each region. Minimum covariance
distance and minimum sum of total regions of covariance matrices are then use
to perform the classification.

Table 3 shows that the proposed method achieved the best results on CK+
database. Tracking the performance on CK+ dataset, from the global face we get
an accuracy of 71% versus the split segments achieving 57% and finally attaining
82% using special landmark regions. For all datasets a high facial expression
recognition accuracy is achieved using special landmark regions and LDCM.
JAFFE and ISED scored an average of 94% across both classification methods.
The minimum sum classification method achieved a mean of 89% across all
datasets. It outperformed the minimum distance classification method for CK+
and ISED databases shown in Table 3.

5 Conclusion

We have proposed a novel local facial expression feature based on LDP codes
and region covariance matrices. Results obtained establish that the proposed
descriptor achieves high level of performance for FER at a reduced feature size.
It was shown that, focusing on special regions of the face such as eyes, nose and
mouth promising and stable results were achieved across different datasets and
environments. Covariance descriptors are limited with regards to using standard
machine learning methods. Transforming covariance structure to accommodate
standard machine leaning methods is an interesting future research direction.
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