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Abstract. We present a formalization of the first half of Bachmair
and Ganzinger’s chapter on resolution theorem proving in Isabelle/HOL,
culminating with a refutationally complete first-order prover based on
ordered resolution with literal selection. We develop general infrastruc-
ture and methodology that can form the basis of completeness proofs for
related calculi, including superposition. Our work clarifies several of the
fine points in the chapter’s text, emphasizing the value of formal proofs
in the field of automated reasoning.

1 Introduction

Much research in automated reasoning amounts to metatheoretical arguments,
typically about the soundness and completeness of logical inference systems or
the termination of theorem proving processes. Often the proofs contain more
insights than the systems or processes themselves. For example, the superposition
calculus rules [2], with their many side conditions, look rather arbitrary, whereas
in the completeness proof the side conditions emerge naturally from the model
construction. And yet, despite being crucial to our field, today such proofs are
usually carried out without tool support beyond TEX.

We believe proof assistants are becoming mature enough to help. In this
paper, we present a formalization, developed using the Isabelle/HOL system
[16], of a first-order prover based on ordered resolution with literal selection.
We follow Bachmair and Ganzinger’s account [3] from Chap. 2 of the Handbook
of Automated Reasoning, which we will simply refer to as “the chapter.” Our
formal development covers the refutational completeness of two resolution calculi
for ground (i.e., variable-free) clauses and general infrastructure for theorem
proving processes and redundancy, culminating with a completeness proof for a
first-order prover expressed as transition rules operating on triples of clause sets.
This material corresponds to the chapter’s first four sections.
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From the perspective of automated reasoning, increased trustworthiness of
the results is an obvious benefit of formal proofs. But formalizing also helps
clarify arguments, by exposing and explaining difficult steps. Making theorem
statements (including definitions and hypotheses) precise can be a huge gain
for communicating results. Moreover, a formal proof can tell us exactly where
hypotheses and lemmas are used. Once we have created a library of basic results
and a methodology, we will be in a good position to study extensions and variants.
Given that automatic theorem provers are integrated in modern proof assistants,
there is also an undeniable thrill in applying these tools to reason about their own
metatheory. From the perspective of interactive theorem proving, formalization
work constitutes a case study in the use of a proof assistant. It gives us, as
developers and users of such a system, an opportunity to experiment, contribute
to lemma libraries, and get inspiration for new features and improvements.

Our motivation for choosing Bachmair and Ganzinger’s chapter is manyfold.
The text is a standard introduction to superposition-like calculi (together with
Handbook Chaps. 7 [14] and 27 [26]). It offers perhaps the most detailed treat-
ment of the lifting of a resolution-style calculus’s static completeness to a satura-
tion prover’s dynamic completeness. It introduces a considerable amount of gen-
eral infrastructure, including different types of inference systems (sound, reduc-
tive, counterexample-reducing, etc.), theorem proving processes, and an abstract
notion of redundancy. The resolution calculus, extended with a term order and
literal selection, captures most of the insights underlying ordered paramodula-
tion and superposition, but with a simple notion of model.

The chapter’s level of rigor is uneven, as shown by the errors and imprecisions
revealed by our formalization. We will see that the main completeness result
does not hold, due to the improper treatment of self-inferences. Naturally, our
objective is not to diminish Bachmair and Ganzinger’s outstanding achievements,
which include the development of superposition; rather, it is to demonstrate that
even the work of some of the most celebrated researchers in our field can benefit
from formalization. Our view is that formal proofs can be used to complement
and improve their informal counterparts.

This work is part of the IsaFoL (Isabelle Formalization of Logic) project,1

which aims at developing a library of results about logical calculi. The Isabelle
files are available in the Archive of Formal Proofs (AFP).2 They amount to about
8000 lines of source text. Below we provide implicit hyperlinks from theory names.
A better way to study the theory files, however, is to open them in Isabelle/
jEdit [28]. We used Isabelle version 2017, but the AFP is continuously updated
to track Isabelle’s evolution. Due to lack of space, we assume the reader has
some familiarity with the chapter’s content. An extended version of this paper
is available as a technical report [21].

1 https://bitbucket.org/isafol/isafol/wiki/Home
2 https://devel.isa-afp.org/entries/Ordered Resolution Prover.html

https://bitbucket.org/isafol/isafol/wiki/Home
https://devel.isa-afp.org/entries/Ordered_Resolution_Prover.html
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2 Preliminaries

Ordered resolution depends on little background metatheory. Much of it, concern-
ing partial and total orders, well-foundedness, and finite multisets, is provided
by standard Isabelle libraries. We also need literals, clauses, models, terms, and
substitutions.

Clauses and Models. We use the same library of clauses (Clausal Logic.thy)
as for the verified SAT solver by Blanchette et al. [6], which is also part of
IsaFoL. Atoms are represented by a type variable ′a, which can be instantiated
by arbitrary concrete types—e.g., numbers or first-order terms. A literal, of type
′a literal (where the type constructor is written in ML-style postfix syntax), can
be of the form Pos A or Neg A, where A :: ′a is an atom. The literal order >
extends a fixed atom order > by comparing polarities to break ties, with Neg A >
Pos A. A clause is a finite multiset of literals, ′a clause = ′a literal multiset ,
where multiset is the Isabelle type constructor of finite multisets. Thus, the
clause A ∨ B, where A and B are atoms, is identified with the multiset {A,B};
the clause C ∨ D, where C and D are clauses, is C � D; and the empty clause ⊥
is {}. The clause order is the multiset extension of the literal order.

A Herbrand interpretation I is a value of type ′a set , specifying which
ground atoms are true (Herbrand Interpretation.thy). The “models” operator
� is defined on atoms, literals, clauses, sets, and multisets of clauses; for exam-
ple, I � C ⇐⇒ ∃L ∈ C. I � L. Satisfiability of a set or multiset of clauses N is
defined by sat N ⇐⇒ ∃I. I � N.

Multisets are central to our development. Isabelle provides a multiset library,
but it is much less developed than those of sets and lists. As part of IsaFoL, we
have already extended it considerably and implemented further additions in a
separate file (Multiset More.thy). Some of these, notably a plugin for Isabelle’s
simplifier to apply cancellation laws, are described in a recent paper [7, Sect. 3].

Terms and Substitutions. The IsaFoR (Isabelle Formalization of Rewriting)
library—an inspiration for IsaFoL—contains a definition of first-order terms and
results about substitutions and unification [23]. It makes sense to reuse this func-
tionality. A practical issue is that most of IsaFoR is not accessible from the AFP.

Resolution depends only on basic properties of terms and atoms, such as the
existence of most general unifiers (MGUs). We exploit this to keep the develop-
ment parameterized by a type of atoms ′a and an abstract type of substitutions
′s, through Isabelle locales [4] (Abstract Substitution.thy). A locale represents a
module parameterized by types and terms that satisfy some assumptions. Inside
the locale, we can refer to the parameters and assumptions in definitions, lem-
mas, and proofs. The basic operations provided by our locale are application (· ::
′a ⇒ ′s ⇒ ′a), identity (id :: ′s), and composition (◦ :: ′s ⇒ ′s ⇒ ′s), about which
some assumptions are made (e.g., A · id = A). Substitution is lifted to literals,
clauses, sets of clauses, and so on. Many other operations can be defined in terms
of the primitives—for example, is ground A ⇐⇒ ∀σ. A = A · σ.

To complete our development and ensure that our assumptions are legitimate,
we instantiate the locale’s parameters with IsaFoR types and operations and

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Clausal_Logic.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Herbrand_Interpretation.html
http://devel.isa-afp.org/browser_info/current/AFP/Nested_Multisets_Ordinals/Multiset_More.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Abstract_Substitution.html
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discharge its assumptions (IsaFoR Term.thy). This bridge is currently hosted
outside the AFP.

3 Refutational Inference Systems

In their Sect. 2.4, Bachmair and Ganzinger introduce basic conventions for refu-
tational inference systems. In Sect. 3, they present two ground resolution calculi
and prove them refutationally complete in Theorems 3.9 and 3.16. In Sect. 4.2,
they introduce a notion of counterexample-reducing inference system and state
Theorem 4.4 as a generalization of Theorems 3.9 and 3.16 to all such systems.
For formalization, two courses of actions suggest themselves: follow the book
closely and prove the three theorems separately, or focus on the most general
result. We choose the latter, as being more consistent with the goal of providing
a well-designed, reusable library.

We collect the abstract hierarchy of inference systems in a single Isabelle
theory file (Inference System.thy). An inference, of type ′a inference, is a triple
(C,D,E) that consists of a multiset of side premises C, a main premise D, and
a conclusion E. An inference system, or calculus, is a possibly infinite set of
inferences:

locale inference system = fixes Γ :: ′a inference set

We use an Isabelle locale to fix, within a named context (inference system), a
set Γ of inferences between clauses over atom type ′a. Inside the locale, we define
a function infers from that, given a clause set N , returns the subset of Γ infer-
ences whose premises all belong to N. A satisfiability-preserving (or consistency-
preserving) inference system enriches the inference system locale with an assump-
tion, whereas sound systems are characterized by a different assumption:

locale sat preserving inference system = inference system +
assumes sat N =�⇒ sat (N ∪ concl of ‘ infers from N)

locale sound inference system = inference system +
assumes (C,D,E) ∈ Γ =�⇒ I � C ∪ {D} =�⇒ I � E

The notation f ‘X above stands for the image of the set or multiset X under
function f.

Soundness is a stronger requirement than satisfiability preservation. In
Isabelle:

sublocale sound inference system < sat preserving inference system

This command emits a proof goal stating that sound inference system’s assump-
tion implies sat preserving inference system’s. Afterwards, all the definitions
and lemmas about satisfiability-preserving calculi become available about sound
ones.

In reductive inference systems (reductive inference system), the conclusion
of each inference is smaller than the main premise according to the clause order.
A related notion, the counterexample-reducing inference systems, is specified as
follows:

https://bitbucket.org/isafol/isafol/src/master/Ordered_Resolution_Prover/IsaFoR_Term.thy
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Inference_System.html
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locale counterex reducing inference system = inference system +
fixes I of :: ′a clause set ⇒ ′a set
assumes {} /∈ N =�⇒ D ∈ N =�⇒ I of N �� D =�⇒

(∀C ∈ N. I of N �� C =�⇒ D ≤ C) =�⇒
∃C ⊆ N. ∃E. I of N � C ∧ (C,D,E) ∈ Γ ∧ I of N �� E ∧ E < D

The “model functor” parameter I of maps clause sets to candidate models. The
assumption is that for any set N that does not contain {} (i.e., ⊥), if D ∈ N is
the smallest counterexample—the smallest clause in N falsified by I of N—we
can derive a smaller counterexample E using an inference from clauses in N.
This property is useful because if N is saturated (i.e., closed under Γ), we must
have E ∈ N , violating D’s minimality:

theorem saturated model : saturated N =�⇒ {} /∈ N =�⇒ I of N � N
corollary saturated complete: saturated N =�⇒ ¬ sat N =�⇒ {} ∈ N

Bachmair and Ganzinger claim that compactness of clausal logic follows from
the refutational completeness of ground resolution (Theorem 3.12), although
they give no justification. Our argument relies on an inductive definition of
saturation of a set of clauses: saturate :: ′a clause set ⇒ ′a clause set . Most of
the work goes into proving this key lemma, by rule induction on the saturate
function:

lemma saturate finite:
C ∈ saturate N =�⇒ ∃M ⊆ N. finite M ∧ C ∈ saturate M

The interesting case is when C = ⊥. We establish compactness in a locale that
combines counterex reducing inference system and sound inference system:

theorem clausal logic compact : ¬ sat N ⇐⇒ ∃M ⊆ N. finite M ∧ ¬ sat M

4 Ground Resolution

A useful strategy for establishing properties of first-order calculi is to ini-
tially restrict our attention to ground calculi and then to lift the results to
first-order formulas containing terms with variables. Accordingly, the chapter’s
Sect. 3 presents two ground calculi: a simple binary resolution calculus and an
ordered resolution calculus with literal selection. Both consist of a single reso-
lution rule, with built-in positive factorization. Most of the explanations and
proofs concern the simpler calculus. To avoid duplication, we factor out the
candidate model construction (Ground Resolution Model.thy). We then define
the two calculi and prove that they are sound and reduce counterexamples
(Unordered Ground Resolution.thy, Ordered Ground Resolution.thy).

Candidate Models. Refutational completeness is proved by exhibiting a model
for any saturated clause set N that does not contain ⊥. The model is constructed
incrementally, one clause C ∈ N at a time, starting with an empty Herbrand
interpretation. The idea appears to have originated with Brand [10] and Zhang
and Kapur [29].

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Ground_Resolution_Model.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Unordered_Ground_Resolution.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Ordered_Ground_Resolution.html
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Bachmair and Ganzinger introduce two operators to build the candidate
model: IC denotes the current interpretation before considering C, and εC
denotes the set of (zero or one) atoms added, or produced, to ensure that C
is satisfied. The candidate model construction is parameterized by a literal selec-
tion function S :: ′a clause ⇒ ′a clause. We also fix a clause set N . Then we
define two operators corresponding to εC and IC :

function production :: ′a clause ⇒ ′a set where
production C = {A | C ∈ N ∧ C �= {} ∧ Max C = Pos A

∧ (⋃
D<C production D

) �� C ∧ S C = {}}
definition interp :: ′a clause ⇒ ′a set where

interp C =
⋃

D<C production D

To ensure monotonicity of the construction, any produced atom must be maximal
in its clause. Moreover, productive clauses may not contain selected literals. In
the chapter, εC and IC are expressed in terms of each other. We simplified the
definition by inlining IC in εC , so that only εC is recursive. Since the recursive
calls operate on clauses D that are smaller with respect to a well-founded order,
the definition is accepted. Bachmair and Ganzinger’s IC and IN operators are
introduced as abbreviations: Interp C = interp C ∪ production C and INTERP =⋃

C∈N production C.
We then prove a host of lemmas about these concepts. Lemma 3.4 amounts

to six monotonicity properties, including these:

lemma interp imp Interp:
C ≤ D =�⇒ D ≤ D ′ =�⇒ interp D � C =�⇒ Interp D ′ � C

lemma Interp imp INTERP : C ≤ D =�⇒ Interp D � C =�⇒ INTERP � C

Lemma 3.3, whose proof depends on monotonicity, is better proved after 3.4:

lemma productive imp INTERP : production C �= {} =�⇒ INTERP � C

A more serious oddity is Lemma 3.7. Using our notations, it can be stated as
D ∈ N =�⇒ C �= D =�⇒ (∀D ′ < D. Interp D ′ � C) =�⇒ interp D � D ′. However,
the last occurrence of D ′ is clearly wrong—the context suggests C instead. Even
after this amendment, we have a counterexample, corresponding to a gap in the
proof: D = {}, C = {Pos A}, and N = {D,C}. Since this “lemma” is not actu-
ally used, we can simply ignore it.

Unordered Resolution. The unordered ground resolution calculus consists of
a single binary inference rule, with the side premise C ∨ A ∨ · · · ∨ A, the main
premise ¬A ∨ D, and the conclusion C ∨ D. Formally, this rule is captured by a
predicate:

inductive unord resolve :: ′a clause ⇒ ′a clause ⇒ ′a clause ⇒ bool where
unord resolve (C � replicate (n + 1) (Pos A)) ({Neg A} � D) (C � D)

To prove completeness, it suffices to show that the calculus reduces counterexam-
ples (Theorem 3.8). By instantiating the sound inference system and counterex
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reducing inference system locales, we obtain refutational completeness (Theo-
rem 3.9 and Corollary 3.10) and compactness of clausal logic (Theorem 3.12).

Ordered Resolution with Selection. Ordered ground resolution consists of
a single rule, ord resolve. Like unord resolve, it is sound and counterexample-
reducing (Theorem 3.15). Moreover, it is reductive (Lemma 3.13): the conclusion
is always smaller than the main premise according to the clause order. The rule
is given as

C1 ∨ A1 ∨ · · · ∨ A1 · · · Cn ∨ An ∨ · · · ∨ An ¬A1 ∨ · · · ∨ ¬An ∨ D

C1 ∨ · · · ∨ Cn ∨ D

with multiple side conditions whose role is to prune the search space and to
make the rule reductive. In Isabelle, we represent the n side premises by three
parallel lists of length n: CAs gives the entire clauses, whereas Cs and As store
the Ci and the Ai = Ai ∨ · · · ∨ Ai parts separately. In addition, As is the list
[A1, . . . , An]. The following inductive definition captures the rule formally:

inductive ord resolve :: ′a clause list ⇒ ′a clause ⇒ ′a clause ⇒ bool
where

|CAs| = n =�⇒ |Cs| = n =�⇒ |As| = n =�⇒ |As| = n =�⇒ n �= 0 =�⇒
(∀i < n. CAs ! i = Cs ! i � Pos ‘ As ! i) =�⇒ (∀i < n. As ! i �= {}) =�⇒
(∀i < n. ∀A ∈ As ! i. A = As ! i) =�⇒ eligible As (D � Neg ‘ mset As) =�⇒
(∀i < n. strict max in (As ! i) (Cs ! i)) =�⇒ (∀i < n. S (CAs ! i) = {}) =�⇒
ord resolve CAs (D � Neg ‘ mset As) ((

⋃
mset Cs) � D)

The xs ! i operator returns the (i + 1)st element of xs, and mset converts a list
to a multiset. Initially, we tried storing the n premises in a multiset, since their
order is irrelevant. However, due to the permutative nature of multisets, there
can be no such things as “parallel multisets”; the alternative, a single multiset
of tuples, is very unwieldy.

Formalization revealed an error and a few ambiguities in the rule’s state-
ment. References to S (D) in the side conditions should have been to S (¬A1 ∨
· · · ∨ ¬An ∨ D). The ambiguities are discussed in our technical report [21,
Appendix A].

5 Theorem Proving Processes

In their Sect. 4, Bachmair and Ganzinger switch to a dynamic view of saturation:
from clause sets closed under inferences to theorem proving processes that start
with a clause set N0 and keep deriving new clauses until no inferences are possible.
Redundant clauses can be deleted at any point, and redundant inferences need
not be performed.

A derivation performed by a proving process is a possibly infinite sequence
N0 � N1 � N2 � · · · , where � relates clause sets (Proving Process.thy). In
Isabelle, such sequences are captured by lazy lists, a codatatype [5] generated by
LNil :: ′a llist and LCons :: ′a ⇒ ′a llist ⇒ ′a llist , and equipped with lhd (“head”)

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Proving_Process.html
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and ltl (“tail”) selectors that extract LCons’s arguments. The coinductive predi-
cate chain checks that its argument is a nonempty lazy list whose elements are
linked by a binary predicate R:

coinductive chain :: (′a ⇒ ′a ⇒ bool) ⇒ ′a llist ⇒ bool where
chain R (LCons x LNil)

| chain R xs =�⇒ R x (lhd xs) =�⇒ chain R (LCons x xs)

A derivation is a lazy list Ns of clause sets satisfying the chain predicate with
R = �. Derivations depend on a redundancy criterion presented as two functions,
RF and RI:

locale redundancy criterion = inference system +
fixes RF :: ′a clause set ⇒ ′a clause set and

RI :: ′a clause set ⇒ ′a inference set
assumes RI N ⊆ Γ and sat (N \ RF N) =�⇒ sat N and

N ⊆ N ′ =�⇒ RF N ⊆ RF N ′ ∧ RI N ⊆ RI N ′ and
N ′ ⊆ RF N =�⇒ RF N ⊆ RF (N \ N ′) ∧ RI N ⊆ RI (N \ N ′)

By definition, a transition from M to N is possible if the only new clauses added
are conclusions of inferences from M and any deleted clauses would be redundant
in N :

M � N ⇐⇒ N \ M ⊆ concl of ‘ infers from M ∧ M \ N ⊆ RF N

This rule combines deduction (the addition of inferred clauses) and deletion (the
removal of redundant clauses) in a single transition. The chapter keeps the two
operations separated, but this is problematic, as we will see in Sect. 7.

A key concept to connect static and dynamic completeness is that of the
set of persistent clauses, or limit: N∞ =

⋃
i

⋂
j≥i Nj . These are the clauses that

belong to all clause sets except for at most a finite prefix of the sequence Ni.
We also need the supremum of a sequence,

⋃
i Ni. We introduce these missing

functions (Lazy List Liminf.thy):

Liminf xs =
⋃

i<|xs|
⋂

j:i≤j<|xs| xs ! j Sup xs =
⋃

i<|xs| xs ! i

When interpreting the notation
⋃

i

⋂
j≥i Nj for the case of a finite sequence of

length n, it is crucial to use the right upper bounds, namely i, j < n. For i,
the danger is subtle: if i ≥ n, then

⋂
j : i≤j<n Nj collapses to the trivial infimum⋂

j∈{} Nj , i.e., the set of all clauses.
Lemma 4.2 connects the redundant clauses and inferences at the limit to

those of the supremum, and the satisfiability of the limit to that of the initial
clause set. Formally:

lemma Rf limit Sup: chain (�) Ns =�⇒ RF (Liminf Ns) = RF (Sup Ns)
lemma Ri limit Sup: chain (�) Ns =�⇒ RI (Liminf Ns) = RI (Sup Ns)
lemma sat limit iff : chain (�) Ns =�⇒ (

sat (Liminf Ns) ⇐⇒ sat (lhd Ns)
)

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Lazy_List_Liminf.html
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In the chapter, the proof relies on “the soundness of the inference system,” con-
tradicting the claim that “we will only consider consistency-preserving inference
systems” [3, Sect. 2.4]. Thanks to Isabelle, we now know that soundness is unnec-
essary.

Next, we show that the limit is saturated, under some assumptions and for
a relaxed notion of saturation. A clause set N is saturated up to redundancy if
all inferences from nonredundant clauses in N are redundant:

saturated upto N ⇐⇒ infers from (N \ RF N) ⊆ RI N

The limit is saturated for fair derivations, defined by fair clss seq Ns ⇐⇒
concl of ‘ infers from N ′ \ RI N ′ ⊆ Sup Ns ∪ RF (Sup Ns) with N ′ = Liminf Ns
\ RF (Liminf Ns). The criterion must also be effective, meaning γ ∈ Γ =�⇒
concl of γ ∈ N ∪ RF N =�⇒ γ ∈ RI N. Under these assumptions, we have
Theorem 4.3:

theorem fair derive saturated upto:
chain (�) Ns =�⇒ fair clss seq Ns =�⇒ saturated upto (Liminf Ns)

The standard redundancy criterion is an instance of the framework. It relies
on a counterexample-reducing inference system Γ (Standard Redundancy.thy):

RF N = {C | ∃D ⊆ N. (∀I. I � D =�⇒ I � C) ∧ ∀D ′ ∈ D. D ′ < C}
RI N = {(C,D,E) ∈ Γ | ∃D ⊆ N. (∀I. I � D � C =�⇒ I � E) ∧ ∀D ′∈D. D ′ < D}
Standard redundancy qualifies as effective redundancy criterion. In the chapter,
this is stated as Theorems 4.7 and 4.8, which depend on two auxiliary proper-
ties, Lemmas 4.5 and 4.6. The main result, Theorem 4.9, is that counterexample-
reducing calculi are refutationally complete also under the application of stan-
dard redundancy:

theorem saturated upto complete:
saturated upto N =�⇒ (¬ sat N ⇐⇒ {} ∈ N)

The informal proof of Lemma 4.6 applies Lemma 4.5 in a seemingly impossible
way, confusing redundant clauses and redundant inferences and exploiting prop-
erties that appear only in the first lemma’s proof. Our solution is to generalize
the core argument into a lemma and apply it to prove Lemmas 4.5 and 4.6. Inci-
dentally, the informal proof of Theorem 4.9 also needlessly invokes Lemma 4.5.

Finally, given a redundancy criterion (RF,RI) for Γ, its standard exten-
sion for Γ′ ⊇ Γ is defined as (RF,R′

I), where R′
I N = RI N ∪ (Γ′ \ Γ)

(Proving Process.thy). The standard extension preserves effectiveness, satura-
tion up to redundancy, and fairness.

6 First-Order Resolution

The chapter’s Sect. 4.3 presents a first-order version of the ordered resolution
rule and a first-order prover, RP, based on that rule. The first step towards

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Standard_Redundancy.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Proving_Process.html
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lifting the completeness of ground resolution is to show that we can lift individ-
ual ground resolution inferences (FO Ordered Resolution.thy).

Inference Rule. First-order ordered resolution consists of the single rule

C1 ∨ A11 ∨ · · · ∨ A1k1 · · · Cn ∨ An1 ∨ · · · ∨ Ankn ¬A1 ∨ · · · ∨ ¬An ∨ D

C1 · σ ∨ · · · ∨ Cn · σ ∨ D · σ

where σ is the (canonical) MGU that solves all unification problems Ai1
?= · · · ?=

Aiki

?= Ai, for 1 ≤ i ≤ n. As expected, the rule has several side conditions. The
Isabelle representation of this rule is based on that of its ground counterpart,
generalized to apply σ:

inductive ord resolve :: ′a clause list ⇒ ′a clause ⇒ ′s ⇒ ′a clause ⇒ bool
where

|CAs| = n =�⇒ |Cs| = n =�⇒ |As| = n =�⇒ |As| = n =�⇒ n �= 0 =�⇒
(∀i < n. CAs ! i = Cs ! i � Pos ‘ As ! i) =�⇒ (∀i < n. As ! i �= {}) =�⇒
Some σ = mgu (set mset ‘ set (map2 add mset As As)) =�⇒
eligible σ As (D � Neg ‘ mset As) =�⇒
(∀i<n. strict max in (As ! i ·σ) (Cs ! i ·σ)) =�⇒ (∀i<n. S (CAs ! i) = {}) =�⇒
ord resolve CAs (D � Neg ‘ mset As) σ (((

⋃
mset Cs) � D) · σ)

The rule as stated is incomplete; for example, p(x) and ¬ p(f(x)) cannot be
resolved because x and f(x) are not unifiable. In the chapter, the authors circum-
vent this issue by stating, “We also implicitly assume that different premises and
the conclusion have no variables in common; variables are renamed if necessary.”
For the formalization, we first considered enforcing the invariant that all derived
clauses use mutually disjoint variables, but this does not help when a clause is
repeated in an inference’s premises. Instead, we rely on a predicate ord resolve
rename, based on ord resolve, that standardizes the premises apart. The renam-
ing is performed by a function called renamings apart :: ′a clause list ⇒ ′s list
that, given a list of clauses, returns a list of corresponding substitutions to apply.
This function is part of the abstract interface for terms and substitutions (which
we presented in Sect. 2) and is implemented using IsaFoR.

Lifting Lemma. To lift ground inferences to the first-order level, we consider a
set of clauses M and introduce an adjusted version SM of the selection function S .
This new selection function depends on both S and M and works in such a way
that any ground instance inherits the selection of at least one of the nonground
clauses of which it is an instance. This property is captured formally as

lemma S M grounding of clss:
C ∈ grounding of M =�⇒ ∃D ∈ M. ∃σ. C = D · σ ∧ SM C = S D · σ

where grounding of M is the set of ground instances of a set of clauses M.
The lifting lemma, Lemma 4.12, states that whenever there exists a ground

inference of E from clauses belonging to grounding of M , there exists a (possibly)
more general inference from clauses belonging to M :

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution.html
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lemma ord resolve rename lifting :
(∀ρ C . is renaming ρ =�⇒ S (C · ρ) = S C · ρ) =�⇒
ord resolve SM CAs DA As As σ E =�⇒
{DA} ∪ set CAs ⊆ grounding of M =�⇒
∃ηs η θ CAs0 DA0 As0 As0 E0 τ.

ord resolve rename S CAs0 DA0 As0 As0 τ E0 ∧
CAs0 ·ηs = CAs ∧ DA0 ·η = DA ∧ E0 ·θ = E ∧ {DA0} ∪ set CAs0 ⊆ M

The informal proof of this lemma consists of two sentences spanning four lines
of text. In Isabelle, these two sentences translate to 250 lines and 400 lines,
respectively, excluding auxiliary lemmas. Our proof involves six steps:

1. Obtain a list of first-order clauses CAs0 and a first-order clause DA0 that
belong to M and that generalize CAs and DA with substitutions ηs and η,
respectively.

2. Choose atoms As0 and As0 in the first-order clauses on which to resolve.
3. Standardize CAs0 and DA0 apart, yielding CAs ′

0 and DA′
0.

4. Obtain the MGU τ of the literals on which to resolve.
5. Show that ordered resolution on CAs ′

0 and DA′
0 with τ as MGU is applicable.

6. Show that the resulting resolvent E0 generalizes E with substitution θ.

In step 1, suitable clauses must be chosen so that S (CAs0 ! i) generalizes
SM (CAs ! i), for 0 ≤ i < n, and S DA0 generalizes SM DA. By the definition of
SM , this is always possible. In step 2, we choose the literals to resolve upon in
the first-order inference depending on the selection on the ground inference. If
some literals are selected in DA, we define As0 as the selected literals in DA0,
such that (As0 ! i) · η = As ! i for each i. Otherwise, As must be a singleton list
containing some atom A, and we define As0 as the singleton list consisting of an
arbitrary A0 ∈ DA0 such that A0 ·η = A. Step 3 may seem straightforward until
one realizes that renaming variables can in principle influence selection. To rule
this out, our lemma assumes stability under renaming: S (C · ρ) = S C · ρ for
any renaming substitution ρ and clause C. This requirement seems natural, but
it is not mentioned in the chapter.

The above choices allow us to perform steps 4 to 6. In the chapter, the authors
assume that the obtained CAs0 and DA0 are standardized apart from each other
as well as their conclusion E0. This means that they can obtain a single ground
substitution μ that connect CAs0, DA0, E0 to CAs, DA, E. By contrast, we
provide separate substitutions ηs, η, θ for the different side premises, the main
premise, and the conclusion.

7 A First-Order Prover

Modern resolution provers interleave inference steps with steps that delete or
reduce (simplify) clauses. In their Sect. 4.3, Bachmair and Ganzinger introduce
the nondeterministic abstract prover RP that works on triples of clause sets
and that generalizes the Otter-style and DISCOUNT-style loops. RP’s core
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rule, called inference computation, performs first-order ordered resolution as
described above; the other rules delete or reduce clauses or move them between
clause sets. We formalize RP and prove it complete assuming a fair strategy
(FO Ordered Resolution Prover.thy).

Abstract First-Order Prover. The RP prover is a relation � on states of
the form (N ,P,O), where N is the set of new clauses, P is the set of processed
clauses, and O is the set of old clauses. RP’s formal definition is very close to
the original formulation:

inductive � :: ′a state ⇒ ′a state ⇒ bool where
Neg A ∈ C =�⇒ Pos A ∈ C =�⇒ (N ∪ {C},P,O) � (N ,P,O)

| D ∈ P ∪ O =�⇒ subsumes D C =�⇒ (N ∪ {C},P,O) � (N ,P,O)
| D ∈ N =�⇒ strictly subsumes D C =�⇒ (N ,P ∪ {C},O) � (N ,P,O)
| D ∈ N =�⇒ strictly subsumes D C =�⇒ (N ,P,O ∪ {C}) � (N ,P,O)
| D ∈ P ∪O =�⇒ reduces D C L =�⇒ (N ∪{C �{L}},P,O) � (N ∪{C},P,O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P ∪ {C � {L}},O) � (N ,P ∪ {C},O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P,O ∪ {C � {L}}) � (N ,P ∪ {C},O)
| (N ∪ {C},P,O) � (N ,P ∪ {C},O)
| ({},P ∪ {C},O) � (concl of ‘ infers between O C,P,O ∪ {C})

The rules correspond, respectively, to tautology deletion, forward subsumption,
backward subsumption in P and O, forward reduction, backward reduction in
P and O, clause processing, and inference computation.

Initially, N consists of the problem clauses and the other two sets are empty.
Clauses in N are reduced using P ∪O, or even deleted if they are tautological or
subsumed by P∪O; conversely, N can be used for reducing or subsuming clauses
in P ∪ O. Clauses eventually move from N to P, one at a time. As soon as N
is empty, a clause from P is selected to move to O. Then all possible resolution
inferences between this given clause and the clauses in O are computed and put
in N, closing the loop.

The subsumption and reduction rules depend on the following predicates:

subsumes D C ⇐⇒ ∃σ. D · σ ⊆ C

strictly subsumes D C ⇐⇒ subsumes D C ∧ ¬ subsumes C D

reduces D C L ⇐⇒ ∃D′ L′ σ. D = D′ � {L′} ∧ −L = L′ · σ ∧ D′ · σ ⊆ C

The definition of the set infers between O C, on which inference computation
depends, is more subtle. In the chapter, the set of inferences between C and
O consists of all inferences from O ∪ {C} that have C as exactly one of their
premises. This, however, leads to an incomplete prover, because it ignores infer-
ences that need multiple copies of C. For example, assuming a maximal selection
function, the resolution inference

p p ¬ p ∨ ¬ p

⊥
is possible. Yet if the clause ¬ p ∨ ¬ p reaches O earlier than p, the infer-
ence would not be performed. This counterexample requires ternary resolution,

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution_Prover.html
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but there also exists a more complicated one for binary resolution, where both
premises are the same clause. Consider the clause set containing

(1) q(a, c, b) (2) ¬ q(x, y, z) ∨ q(y, z, x) (3) ¬ q(b, a, c)

and an order > on atoms such that q(c, b, a) > q(b, a, c) > q(a, c, b). Inferences
between (1) and (2) or between (2) and (3) are impossible due to order restric-
tions. The only possible inference involves two copies of (2):

¬ q(x, y, z) ∨ q(y, z, x) ¬q(x′, y′, z′) ∨ q(y′, z′, x′)
¬q(x, y, z) ∨ q(z, x, y)

From the conclusion, we derive ¬ q(a, c, b) by (3) and ⊥ by (1). This incomplete-
ness is a severe flaw, although it is probably just an oversight.

Projection to Theorem Proving Process. On the first-order level, a deriva-
tion can be expressed as a lazy list Ss of states, or as three parallel lazy lists
Ns, Ps, Os. The limit state of a derivation Ss is defined as Liminf Ss =
(Liminf Ns, Liminf Ps, Liminf Os), where Liminf on the right-hand side is as
in Sect. 5.

Bachmair and Ganzinger use the completeness of ground resolution to prove
RP complete. The first step is to show that first-order derivations can be pro-
jected down to theorem proving processes on the ground level. This corresponds
to Lemma 4.10. Adapted to our conventions, its statement is as follows:

If S � S ′, then grounding of S �∗ grounding of S ′, with � based on some
extension of ordered resolution with selection function S and the standard
redundancy criterion (RF,RI).

This raises some questions: (1) Exactly which instance of the calculus are we
extending? (2) Which calculus extension should we use? (3) How can we repair
the mismatch between �∗ in the lemma statement and � where the lemma is
invoked?

Regarding question (1), it is not clear which selection function to use. Is the
function the same S as in the definition of RP or is it arbitrary? It takes a close
inspection of the proof of Lemma 4.13, where Lemma 4.10 is invoked, to find
out that the selection function used there is SLiminf Os .

Regarding question (2), the phrase “some extension” is cryptic. It suggests
an existential reading, and from the context it would appear that a standard
extension (Sect. 5) is meant. However, neither the lemma’s proof nor the context
where it is invoked supplies the desired existential witness. A further subtlety
is that the witness should be independent of S and S ′, so that transitions can
be joined to form a single theorem proving derivation. Our approach is to let �
be the extension consisting of all sound derivations: Γ = {(C,D,E) | ∀I. I �
C ∪{D} =�⇒ I � E}. This also eliminates the need for Bachmair and Ganzinger’s
subsumption resolution rule, a special calculus rule that is, from what we under-
stand, implicitly used in the proof of Lemma 4.10 for the subcases associated
with RP’s reduction rules.
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As for question (3), the need for �∗ instead of � arises because one of the cases
requires a combination of deduction and deletion, which Bachmair and Ganzinger
model as separate transitions. By merging the two transitions (Sect. 5), we avoid
the issue altogether and can use � in the formal counterpart of Lemma 4.10.

With these issues resolved, we can prove Lemma 4.10 for single steps and
extend it to entire derivations:

lemma RP ground derive: S � S ′ =�⇒ grounding of S � grounding of S ′

lemma RP ground derive chain:
chain (�) Ss =�⇒ chain (�) (lmap grounding of Ss)

The lmap function applies its first argument elementwise to its second argument.

Fairness and Clause Movement. From a given initial state (N0, {}, {}), many
derivations are possible, reflecting RP’s nondeterminism. In some derivations, we
could leave a crucial clause in N or P without ever reducing it or moving it to
O, and then fail to derive ⊥ even if N0 is unsatisfiable. For this reason, refuta-
tional completeness is guaranteed only for fair derivations. These are defined as
derivations such that Liminf Ns = Liminf Ps = {}, guaranteeing that no clause
will stay forever in N or P.

Fairness is expressed by the fair state seq predicate, which is distinct from the
fair clss seq predicate presented in Sect. 5. In particular, Theorem 4.3 is used in
neither the informal nor the formal proof, and appears to play a purely pedagogic
role in the chapter. For the rest of this section, we fix a lazy list of states Ss, and
its projections Ns, Ps, and Os, such that chain (�) Ss, fair state seq Ss, and
lhd Os = {}.

Thanks to fairness, any nonredundant clause C in Ss’s projection to the
ground level eventually ends up in O and stays there. This is proved informally
as Lemma 4.11, but again there are some difficulties. The vagueness concerning
the selection function can be resolved as for Lemma 4.10, but there is another,
deeper flaw.

Bachmair and Ganzinger’s proof idea is as follows. By hypothesis, the ground
clause C must be an instance of a first-order clause D in Ns ! j ∪ Ps ! j ∪ Os ! j
for some index j. If C ∈ Ns ! j, then by nonredundancy of C, fairness of the
derivation, and Lemma 4.10, there must exist a clause D′ that generalizes C in
Ps ! l ∪ Os ! l for some l > j. By a similar argument, if D′ belongs to Ps ! l,
it will be in Os ! l′ for some l′ > l, and finally in all Os ! k with k ≥ l′. The
flaw is that backward subsumption can delete D′ without moving it to O. The
subsumer clause would then be a strictly more general version of D′ (and of the
ground clause C).

Our solution is to choose D, and consequently D′, such that it is minimal,
with respect to subsumption, among the clauses that generalize C in the deriva-
tion. This works because strict subsumption is well founded—which we also
proved, by reduction to a well-foundedness result about the strict generalization
relation on first-order terms, included in IsaFoR [13, Sect. 2]. By minimality, D′

cannot be deleted by backward subsumption. This line of reasoning allows us to
prove Lemma 4.11, where O of extracts the O component of a state:
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lemma fair imp Liminf minus Rf subset ground Liminf state:
Gs = lmap grounding of Ss =�⇒
Liminf Gs − RF (Liminf Gs) ⊆ grounding of (O of (Liminf Ss))

Completeness. Once we have brought Lemmas 4.10, 4.11, and 4.12 into a
suitable shape, the main completeness result, Theorem 4.13, is not difficult to
formalize:

theorem RP saturated if fair :
saturated upto (Liminf (lmap grounding of Ss))

corollary RP complete if fair :
¬ sat (grounding of (lhd Ss)) =�⇒ {} ∈ O of (Liminf Ss)

A crucial point that is not clear from the text is that we must always use
the selection function S on the first-order level and SLiminf Os on the ground
level. Another noteworthy part of the proof is the passage “Liminf Gs (and
hence Liminf Ss) contains the empty clause” (using our notations). Obviously, if
grounding of (Liminf Ss) contains ⊥, then Liminf Ss must as well. However, the
authors do not explain the step from Liminf Gs, the limit of the grounding, to
grounding of (Liminf Ss), the grounding of the limit. Fortunately, by Lemma 4.11,
the latter contains all the nonredundant clauses of the former, and the empty
clause is nonredundant. Hence the informal argument is fundamentally correct.

8 Discussion and Related Work

Bachmair and Ganzinger cover a lot of ground in a few pages. We found much
of the material straightforward to formalize: it took us about two weeks to reach
their Sect. 4.3, which introduces the RP prover. By contrast, we needed months
to fully understand and formalize that section. While the Handbook chapter
succeeds at conveying the key ideas at the propositional level, the lack of rigor
makes it difficult to develop a deep understanding of ordered resolution proving
on first-order clauses.

There are several reasons why Sect. 4.3 did not lend itself easily to a formaliza-
tion. The proofs often depend on lemmas and theorems from previous sections
without explicitly mentioning them. The lemmas and proofs do not quite fit
together. And while the general idea of the proofs stands up, they have many
confusing flaws that must be repaired. Our methodology involved the following
steps: (1) rewrite the informal proofs to a handwritten pseudo-Isabelle; (2) fill in
the gaps, emphasizing which lemmas are used where; (3) turn the pseudo-Isabelle
into real Isabelle, but with sorry placeholders for the proofs; and (4) replace
the sorrys with proofs. Progress was not always linear. As we worked on each
step, more than once we discovered an earlier mistake.

The formalization helps us answer questions such as, “Is effectiveness of
ordered resolution (Lemma 3.13) actually needed, and if so, where?” It also
allows us to track definitions and hypotheses precisely, so that we always know
the scope and meaning of every definition, lemma, or theorem. If a hypothesis
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appears too strong or superfluous, we can try to rephrase or eliminate it; the
proof assistant tells us where the proof breaks.

Starting from RP, we could refine it to obtain an efficient imperative imple-
mentation, following the lines of Fleury, Blanchette, and Lammich’s verified
SAT solver with the two-watched-literals optimization [12]. However, this would
probably involve a huge amount of work. To increase provers’ trustworthiness, a
more practical approach is to have them generate detailed proofs. Such output
can be independently reconstructed using a proof assistant’s inference kernel.
This is the approach implemented in Sledgehammer [8], which integrates auto-
matic provers in Isabelle. Formalized metatheory could in principle be used to
deduce a formula’s satisfiability from a finite saturation.

We found Isabelle/HOL eminently suitable to this kind of formalization
work. Its logic—based on classical simple type theory—balances expressiveness
and automatability. We benefited from many features of the system, including
codatatypes [5], Isabelle/jEdit [28], the Isar proof language [27], locales [4], and
Sledgehammer [8]. It is perhaps indicative of the maturity of theorem proving
technology that most of the issues we encountered were unrelated to Isabelle.
The main challenge was to understand the informal proof well enough to design
suitable locale hierarchies and state the definitions and lemmas precisely, and
correctly.

Formalizing the metatheory of logic and deduction is an enticing proposition
for many researchers. Two recent, independent developments are particularly
pertinent. Peltier [17] proved static completeness of a variant of the superpo-
sition calculus in Isabelle/HOL. Since superposition generalizes ordered resolu-
tion, his result subsumes our static completeness theorem. It would be interest-
ing to extend his formal development to obtain a verified superposition prover.
We could also consider calculus extensions such as polymorphism [11,25], type
classes [25], and AVATAR [24]. Hirokawa et al. [13] formalized, also in Isabelle/
HOL, an abstract Knuth–Bendix completion procedure as well as ordered (unfail-
ing) completion [1]. Superposition combines ordered resolution (to reason about
clauses) and ordered completion (to reason about equality).

The literature contains many other formalized completeness proofs. Early
work was carried out by Shankar [22] and Persson [18]. Some of our own efforts
are also related: completeness of unordered resolution using semantic trees by
Schlichtkrull [20]; completeness of a Gentzen system by Blanchette, Popescu,
and Traytel [9]; and completeness of CDCL by Blanchette, Fleury, Lammich,
and Weidenbach [6]. We refer to our earlier papers for further discussions of
related work.

9 Conclusion

We presented a formal proof that captures the core of Bachmair and Ganzinger’s
Handbook chapter on resolution theorem proving. For all its idiosyncrasies, the
chapter withstood the test of formalization, once we had added self-inferences
to the RP prover. Given that the text is a basic building block of automated
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reasoning, we believe there is value in clarifying its mathematical content for
the next generations of researchers. We hope that our work will be useful to the
editors of a future revision of the Handbook.

Formalization of the metatheory of logical calculi is one of the many con-
nections between automatic and interactive theorem proving. We expect to see
wider adoption of proof assistants by researchers in automated reasoning, as
a convenient way to develop metatheory. By building formal libraries of stan-
dard results, we aim to make it easier to formalize state-of-the-art research as
it emerges. We also see potential uses of formal proofs in teaching automated
reasoning, inspired by the use of proof assistants in courses on the semantics of
programming languages [15,19].
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