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Abstract. Theories are an essential structuring principle that enable
modularity, encapsulation, and reuse in formal libraries and programs
(called classes there). Similar effects can be achieved by dependent record
types. While the former form a separate language layer, the latter are a
normal part of the type theory. This overlap in functionality can render
different systems non-interoperable and lead to duplication of work.

We present a type-theoretic calculus and implementation of a vari-
ant of record types that for a wide class of formal languages naturally
corresponds to theories. Moreover, we can now elegantly obtain a con-
travariant functor that reflects the theory level into the object level: for
each theory we obtain the type of its models and for every theory mor-
phism a function between the corresponding types. In particular this
allows shallow – and thus structure-preserving – encodings of mathe-
matical knowledge and program specifications while allowing the use of
object-level features on models, e.g. equality and quantification.

1 Introduction

In the area of formal systems like type theories, logics, and specification and
programming languages, various language features have been studied that allow
for inheritance and modularity, e.g., theories, classes, contexts, and records. They
all share the motivation of grouping a list of declarations into a new entity such as
in R = ⟦x1 : A1, . . . , xn : An⟧. The basic intuition behind it is that R behaves like
a product type whose values are of the form �x1 : A1 := a1, . . . , xn : An := an�.
Such constructs are indispensable already for elementary applications such as
defining the algebraic structure of Semilattices (as in Fig. 1), which we will use
as a running example.

Fig. 1. A grouping of declarations for semilattices
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System Name of feature
Stratified Integrated

ML Signature/module Record

C++ Class Class, struct

Java Class Class

Idris [Bra13] Module Record

Coq [Coq15] Module Record

HOL Light [Har96] ML signatures Records

Isabelle [Wen09] Theory, locale Record

Mizar [TB85] Article Structure

PVS [ORS92] Theory Record

OBJ [Gog+93] Theory

FoCaLiZe [Har+12] Species Record

Many systems sup-
port stratified group-
ing (where the language
is divided into a lower
level for the base lan-
guage and a higher level
that introduces the group-
ing constructs) or inte-
grated grouping (where
the grouping construct is
one out of many type-
forming operations with-
out distinguished ontolog-
ical status), or both. The
names of the grouping constructs vary between systems, and we will call them
theories and records in the sequel. An overview of some representative exam-
ples is given in the table on the right. For a discussion of these concepts and a
comprehensive review of the related work we refer the reader to [MRK].

The two approaches have different advantages. Stratified grouping permits
a separation of concerns between the core language and the module system.
It also captures high-level structure well in a way that is easy to manage and
discover in large libraries, closely related to the advantages of the little theo-
ries approach [FGT92]. But integrated grouping allows applying base language
operations (such as quantification or tactics) to the grouping constructs. For
this reason, the (relatively simple) stratified Coq module system is disregarded
in favor of records in major developments such as [Mat].

Allowing both features can lead to a duplication of work where the same hier-
archy is formalized once using theories and once using records. A compromise
solution is common in object-oriented programming languages, where classes
behave very much like stratified grouping but are at the same time normal types
of the type system. We call this internalizing the higher level features. While
combining advantages of stratified and integrated grouping, internalizing is a
very heavyweight type system feature: stratified grouping does not change the
type system at all, and integrated grouping can be easily added to or removed
from a type system, but internalization adds a very complex type system fea-
ture from the get-go. It has not been applied much to logics and similar formal
systems: the only example we are aware of is the FoCaLiZe [Har+12] system. A
much weaker form of internalization is used in OBJ and related systems based
on stratified grouping: here theories may be used as (and only as) the types
of parameters of parametric theories. Most similarly to our approach, OCaml’s
first-class modules internalize the theory (called module type in OCaml) M as
the type moduleM ; contrary to both OO-languages and our approach, this kind
of internalization is in addition and unrelated to integrated grouping.

In any case, because theories usually allow for advanced declarations
like imports, definitions, and notations, as well as extra-logical declarations,
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systematically internalizing theories requires a correspondingly expressive inte-
grated grouping construct. Records with defined fields are comparatively rare;
e.g., present in [Luo09] and OO-languages. Similarly, imports between record
types and/or record terms are featured only sporadically, e.g., in Nuprl [Con+86],
maybe even as an afterthought only.

Finally, we point out a closely related trade-off that is orthogonal to our
development: even after choosing either a theory or a record to define grouping,
many systems still offer a choice whether a declaration becomes a parameter or
a field. See [SW11] for a discussion.

Contribution. We present the first formal system that systematically internalizes
theories into record types. The central idea is to use an operator Mod that turns
the theory T into the type Mod (T ), which behaves like a record type. We take
special care not to naively compute this record type, which would not scale well
to the common situations where theories with hundreds of declarations or more
are used. Instead, we introduce record types that allow for defined fields and
merging so that Mod (T ) preserves the structure of T .

Our approach combines the advantages of stratified and integrated grouping
in a lightweight language feature that is orthogonal to and can be easily com-
bined with other foundational language features. Concretely, it is realized as a
module in the Mmt framework [Rab14], which allows for the modular design of
foundational languages. By combining our new modules with existing ones, we
obtain many formal systems with internalized theories. In particular, our typing
rules conform to the abstractions of Mmt so that Mmt’s type reconstruction
[Rab17] is immediately applicable to our features. We showcase the potential in
a case study based on this implementation, and which is interesting in its own
right: A formal library of elementary mathematical concepts that systematically
utilizes Mod (·) throughout for algebraic structures, topological spaces etc.

Overview. We formulate our approach in the setting of a dependently-typed λ-
calculus, which we recall in Sect. 2. This section also serves as a gentle primer
for defining language features in Mmt. Section 3 introduces our notion of record
types, based on which we introduce the model-operator in Sect. 4. Section 5
presents our implementation and a major case study on elementary mathematics.
This paper is a shortened version of [MRK], which also contains all the proofs.

2 Preliminaries

We introduce the well-known dependently-typed lambda calculus as the starting
point of our development. The grammar is given in Fig. 2. The only surprise here
is that we allow optional definitions in contexts; this is a harmless convenience
at this point but will be critical later on when we introduce records with defined
fields. As usual, we write T → T ′ instead of

∏
x:T T ′ when possible. We also

write T [x/T ′] for the usual capture-avoiding substitution of T ′ for x in T .
Mmt uses a bidirectional type system, i.e., we have two separate judgments

for type inference and type checking. Similarly, we have two equality judgments:
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Fig. 2. Grammar for contexts and expressions

one for checking equality of two given terms and one for reducing a term to
another one. Our judgments are given in Fig. 3.

Adding record types in Sect. 3 will introduce non-trivial subtyping, e.g., ⟦x :
T, y : S⟧ is a subtype of ⟦x : T ⟧.1 Therefore, we already introduce a subtyping
judgment here even though it is not needed for dependent function types yet.
For our purposes, it is sufficient (and desirable) to consider subtyping to be an
abbreviation: Γ � T1 <: T2 iff for all t Γ � t ⇐ T1 implies Γ � t ⇐ T2.

Fig. 3. Judgments

The pre/postconditions of these judgments are as follows: Γ � t ⇐ T
assumes that T is well-typed and implies that t is well-typed. Γ � t ⇒ T implies
that both t and T are well-typed. Γ � t1 � t2 implies that t2 is well-typed iff t1
is (which puts additional burden on computation rules that are called on not-
yet-type-checked terms). Equality and subtyping are only used for expressions
that are assumed to be well-typed, i.e., Γ � t1 ≡ t2 : T implies Γ � ti ⇐ T , and
Γ � T1 <: T2 implies that Ti is a type/kind.

Remark 1 (Horizontal Subtyping and Equality). The equality judgment could
alternatively be formulated as an untyped equality t ≡ t′. That would require
some technical changes to the rules but would usually not be a huge difference.
In our case, however, the use of typed equality is critical.

For example, consider record values r1 = �a := 1, b := 1� and r2 = �a :=
1, b := 2� as well as record types R = ⟦a : nat⟧ and S = ⟦a : nat, b : nat⟧. Due
to horizontal subtyping, we have S <: R and thus both ri ⇐ S and ri ⇐ R.
This has the advantage that the function S → R that throws away the field

1 This is sometimes called horizontal subtyping. In that case, the straightforward
covariance rule for record types is called vertical subtyping.
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b becomes the identity operation. Now our equality at record types behaves
accordingly and checks only for the equality of those fields required by the type.
Thus, r1 ≡ r2 : R is true whereas r1 ≡ r2 : S is false, i.e., the equality of two
terms may depend on the type at which they are compared. While seemingly
dangerous, this makes sense intuitively: r1 can be replaced with r2 in any context
that expects an object of type R because in such a context the field b, where r1
and r2 differ, is inaccessible.

Of course, this treatment of equality precludes downcasts: an operation that
casts the equal terms r1 : R and r2 : R into the corresponding unequal terms of
type S would be inconsistent. But such downcasts are still possible (and valuable)
at the meta-level. For example, a tactic GroupSimp(G, x) that simplifies terms
x in a group G can check if G is commutative and in that case apply more
simplification operations.

The full rules of a lambda calculus can be found in the long version [MRK].
We can now show that the usual variance rule for function types is derivable.

Theorem 1. The following subtyping rule is derivable:

Γ � A <: A′ Γ, x : A � B′ <: B

Γ � ∏
x:A′ B′ <:

∏
x:A B

Moreover, we can show that every well-typed term t has a principal type
T in the sense that (i) Γ � t ⇐ T and (ii) whenever Γ � t ⇐ T ′, then also
Γ � T <: T ′. The principal type is exactly the one inferred by our rules (see
Theorem 2).

3 Record Types with Defined Fields

We now introduce record types as an additional module of our framework by
extending the grammar and the rules. The basic intuition is that ⟦Γ ⟧ and �Γ �
construct record types and terms. We call a context fully typed resp. defined
if all fields have a type resp. a definition. In ⟦Γ ⟧, Γ must be fully typed and may
additionally contain defined fields. In �Γ �, Γ must be fully defined; the types are
optional and usually omitted in practice.

Because we frequently need fully defined contexts, we introduce a notational
convention for them: a context denoted by a lower case letters like γ is always
fully defined. In contrast, a context denoted by an upper case letter like Γ may
have any number of types or definitions.

3.1 Records

We extend our grammar as in Fig. 4, where the previously existing parts are
grayed out.
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Fig. 4. Grammar for records

Remark 2 (Field Names and Substitution in Records). Note that we use the same
identifiers for variables in contexts and fields in records. This allows reusing
results about contexts when reasoning about and implementing records. In par-
ticular, it immediately makes our records dependent, i.e., both in a record type
and — maybe surprisingly — in a record term every variable x may occur in
subsequent fields. In some sense, this makes x bound in those fields. However,
record types are critically different from Σ-types: we must be able to use x in
record projections, i.e., x can not be subject to α-renaming.

As a consequence, capture-avoiding substitution is not always possible. This
is a well-known problem that is usually remedied by allowing every record to
declare a name for itself (e.g., the keyword this in many object-oriented lan-
guages), which is used to disambiguates between record fields and a variable in
the surrounding context (or fields in a surrounding record). We gloss over this
complication here and simply make substitution a partial function.

Before stating the rules, we introduce a few critical auxiliary definition:

Definition 1 (Substituting in a Record). We extend substitution t[x/t′] to
records:

– ⟦x1 : T1, . . . , xn : Tn ⟧ [y/t]

=
{
⟦x1 : T1[y/t], . . . , xi−1 : Ti−1[y/t], xi : Ti, . . . , xn : Tn ⟧ if y = xi

⟦x1 : (T1[y/t]), . . . , xn : (Tn[y/t]) ⟧ else
if none of the xi are free in t. Otherwise the substitution is undefined.

– �x1 := t1, . . . , xn := tn � [y/t] =
{
�x1 := t1, . . . , xn := tn � if y ∈ {x1, . . . , xn}
�x1 := (t1[y/t]), . . . , xn := (tn[y/t]) � else

if none of the xi are free in t. Otherwise the substitution is undefined.
– (r.x)[y/t] = (r[y/t]).x.

Definition 2 (Substituting with a Record). We write t[r/Δ] for the result
of substituting any occurrence of a variable x declared in Δ with r.x

In the special case where r = �δ�, we simply write t[δ] for t[�δ � /δ], i.e., we
have t[x1 := t1, . . . , xn := tn] = t[xn/tn] . . . [x1/t1].

Our rules for records are given in Fig. 5. Their roles are systematically similar
to the rules for functions: three inference rules for the three constructors followed
by a type and an equality checking rule for record types and the (in this case:
two) computation rules. We remark on a few subtleties below.
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Fig. 5. Rules for records

The formation rule is partial in the sense that not every context defines a
record type or kind. This is because the universe of a record type must be as
high as the universe of any undefined field to avoid inconsistencies. For example,
max(a : nat) = type, max(a : type) = kind and max(a : kind) is not defined. If
we switched to a countable hierarchy of universes (which we avoid for simplicity),
we could turn every context into a record type.

The introduction rule infers the principal type of every record term. Because
we allow record types with defined fields, this is the singleton type containing
only that record term. This may seem awkward but does not present a problem
in practice, where type checking is preferred over type inference anyway.

The elimination rule is straightforward, but it is worth noting that it is
entirely parallel to the second computation rule.2

2 Note that it does not matter how the fields of the record are split into Δ1 and Δ2

as long as Δ1 contains all fields that the declaration of x depends on.
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The type checking rule has a surprising premise that r must already be well-
typed (against some type R). Semantically, this assumption is necessary because
we only check the presence of the fields required by ⟦Δ⟧ — without the extra
assumption, typing errors in any additional fields that r might have could go
undetected. In practice, we implement the rule with an optimization: If r is
a variable or a function application, we can efficiently infer some type for it.
Otherwise, if r = �δ�, some fields of δ have already been checked by the first
premise, and we only need to check the remaining fields. The order of premises
matters in this case: we want to first use type checking for all fields for which ⟦Δ⟧
provides an expected type before resorting to type inference on the remaining
fields.

In the equality checking rule, note that we only have to check equality at
undefined fields — the other fields are guaranteed to be equal by the assumption
that r1 and r2 have type ⟦Δ⟧.

Like the type checking rule, the first computation rule needs the premise that
r is well-typed to avoid reducing an ill-typed into a well-typed term. In practice,
our framework implements computation with a boolean flag that tracks whether
the term to be simplified can be assumed to be well-typed or not; in the former
case, this assumption can be skipped.

The second computation rule looks up the definition of a field in the type of
the record. Both computation rules can be seen uniformly as definition lookup
rules — in the first case the definition is given in the record, in the second case
in its type.

Example 1. Figure 6 shows a record type of Semilattices (actually, this is a
kind because it contains a type field) analogous to the grouping in Fig. 1 (using
the usual encoding of axioms via judgments-as-types and higher-order abstract
syntax for first-order logic).

Fig. 6. The (record-)kind of semilattices

Then, given a record r : Semilattice, we can form the record projection
r.∧, which has type r.U → r.U → r.U and r.assoc yields a proof that r.∧ is
associative. The intersection on sets forms a semilattice so (assuming we have
proofs ∩ − assoc, ∩−comm, ∩−idem with the corresponding types) we can give
an instance of that type as

interSL : Semilattice := �U := Set,∧ := ∩, assoc := ∩−assoc, . . . �
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Theorem 2 (Principal Types). Our inference rules infer a principal type for
each well-typed normal term.

In analogy to function types, we can derive the subtyping properties of record
types. We introduce context subsumption and then combine horizontal and ver-
tical subtyping in a single statement.

Definition 3 (Context Subsumption). For two fully typed contexts Δi we
write Γ � Δ1 ↪→ Δ2 iff for every declaration x : T [:= t] in Δ1 there is a
declaration x : T ′[:= t′] in Δ2 such that

– Γ � T ′ <: T and
– if t is present, then so is t′ and Γ � t ≡ t′ : T

Intuitively, Δ1 ↪→ Δ2 means that everything of Δ1 is also in Δ2. That yields:

Theorem 3 (Record Subtyping). The following rule is derivable:

Γ � Δ1 ↪→ Δ2

Γ � ⟦Δ2⟧ <: ⟦Δ1⟧

3.2 Merging Records

We introduce an advanced operation on records, which proves critical for both
convenience and performance: Theories can easily become very large containing
hundreds or even thousands of declarations. If we want to treat theories as record
types, we need to be able to build big records from smaller ones without explod-
ing them into long lists. Therefore, we introduce an explicit merge operator +
on both record types and terms.

In the grammar, this is a single production for terms:

T ::= T + T

The intended meaning of + is given by the following definition:

Definition 4 (Merging Contexts). Given a context Δ and a (not necessarily
well-typed) context E, we define a partial function Δ ⊕ E as follows:

– · ⊕ E = E
– If Δ = d,Δ0 where d is a single declaration for a variable x:

• if x is not declared in E: (d,Δ0) ⊕ E = d, (Δ0 ⊕ E)
• if E = E0, e, E1 where e is a single declaration for a variable x:

∗ if a variable in E0 is also declared in Δ0: Δ ⊕ E is undefined,
∗ if d and e have unequal types or unequal definitions: Δ ⊕ E is
undefined3,

3 It is possible and important in practice to also define Δ ⊕ E when the
types/definitions in d and e are provably equal. We omit that here for simplicity.
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∗ otherwise, (d,Δ0) ⊕ (E0, e, E1) = E0,m, (Δ0, E1) where m arises
by merging d and e.

Note that ⊕ is an asymmetric operator: While Δ must be well-typed (relative
to some ambient context), E may refer to the names of Δ and is therefore not
necessarily well-typed on its own.

We do not define the semantics of + via inference and checking rules. Instead,
we give equality rules that directly expand + into ⊕ when possible:

� Γ, (Δ1 ⊕ Δ2) ctx
Γ � ⟦Δ1 ⟧+ ⟦Δ2⟧� ⟦Δ1 ⊕ Δ2 ⟧

� Γ, (δ1 ⊕ δ2) ctx
Γ � �δ1 �+ � δ2�� �δ1 ⊕ δ2 �

� Γ, (Δ ⊕ δ) ctx
Γ � ⟦Δ ⟧+ � δ�� �Δ ⊕ δ �

In implementations some straightforward optimizations are needed to verify the
premises of these rules efficiently; we omit that here for simplicity. For example,
merges of well-typed records with disjoint field names are always well-typed, but
e.g., ⟦x : nat ⟧+ ⟦ x : bool⟧ is not well-typed even though both arguments are.

In practice, we want to avoid using the computation rules for + whenever
possible. Therefore, we prove admissible rules (i.e., rules that can be added
without changing the set of derivable judgments) that we use preferentially:

Theorem 4. If R1, R2, and R1 + R2 are well-typed record types, then R1 + R2

is the greatest lower bound with respect to subtyping of R1 and R2. In particular,
Γ � r ⇐ R1 + R2 iff Γ � r ⇐ R1 and Γ � r ⇐ R2.

If Γ � ri ⇐ Ri and r1 + r2 is well-typed, then Γ � r1 + r2 ⇐ R1 + R2.

Inspecting the type checking rule in Fig. 5, we see that a record r of type ⟦Δ⟧
must repeat all defined fields of Δ. This makes sense conceptually but would be
a major inconvenience in practice. The merging operator solves this problem
elegantly as we see in the following example:

Example 2. Continuing our running example, we can now define a type of semi-
lattices with order (and all associated axioms) as in Fig. 7.

Fig. 7. Running example

Now the explicit merging in the type SemilatticeOrder allows the pro-
jection interSLO. ≤, which is equal to λx, y : (interSLO.U) . (x .=
x(interSLO.∧)y) and interSLO.refl yields a proof that this order is reflexive
– without needing to define the order or prove the axiom anew for the specific
instance interSL.
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4 Internalizing Theories

4.1 Preliminaries: Theories

We introduce a minimal definition of stratified theories and theory morphisms,
which can be seen as a very simple fragment of the MMT language [RK13]. The
grammar is given in Fig. 8, again graying out the previously introduced parts.

Fig. 8. A simple stratified language

Each of the two levels has its own context: Firstly, the theory level context
Θ introduces names X, which can be either theories X = {Γ} or morphisms
X : P → Q = {Γ}, where P and Q are the names of previously defined theories.
Secondly, the expression level context Γ is as before but may additionally
contain includes includeX of other theories resp. morphisms X. We call a
context flat if it does not contain includes.

All judgments are as before except that they acquire a second context,
e.g., the typing judgment now becomes Θ;Γ � t ⇐ T . With this modification,
all rules for function and record types remain unchanged. However, we add the
restriction that Γ in ⟦Γ ⟧ and �Γ � must be flat.

We omit the rules for theories and morphisms for brevity and only sketch
their intuitions. We think of theories as named contexts and of morphisms as
named substitutions between contexts. Includes allow forming both modularly
by copying over the declarations of a previously named object. While theories
may contain arbitrary declarations, morphisms are restricted: Let Θ contain
P = {Γ} and Q = {Δ}. Then a morphism V : P → Q = {δ} is well-typed if δ
is fully defined (akin to record terms) and contains for each declaration x : T of
P a declaration x = t where t may refer to all names declared in Q. V induces a
homomorphic extension V that maps P -expressions to Q-expressions. The key
property of morphisms is that, if V is well-typed, then Θ;P � t ⇐ T implies
Θ;Q � V (t) ⇐ V (T ) and accordingly for equality checking and subtyping. Thus,
theory morphisms preserve judgments and (via propositions-as-types represen-
tations) truth. Moreover, it is straightforward to extend the above with identity
and composition so that theories and morphisms form a category. We refer to
[Rab14] for details.

4.2 Internalization

We can now add the internalization operator, for which everything so far was
preparation. We add one production to the grammar:

T ::= Mod (X)
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The intended meaning of Mod (X) is that it turns a theory X into a record
type and a morphism X : P → Q into a function Mod (Q) → Mod (P ). For
simplicity, we only state the rules for the case where all include declarations are
at the beginning of theory/morphism:

P = {includeP1, . . . , includePn,Δ} in Θ Δ flat max P defined
Θ;Γ � Mod (P ) � Mod (P1) + . . . + Mod (Pn) + ⟦Δ⟧

V : P → Q = {includeV1, . . . , includeVn, δ} in Θ δ flat

Θ; Γ � Mod (V ) � λr : Mod (Q) . Mod (P ) + (Mod (V1) r) + . . . + (Mod (Vn) r) + �δ[r]�

where we use the following abbreviations:

– In the rule for theories, maxP is the biggest universe occurring in any dec-
laration transitively included into P , i.e., max P = max{max P1, . . . ,max Pn,
max Δ} (undefined if any argument is).

– In the rule for morphisms, δ[r] is the result of substituting in δ every reference
to a declaration of x in Q with r.x.

In the rule for morphisms, the occurrence of Mod (P ) may appear redundant; but
it is critical to (i) make sure all defined declarations of P are part of the record
and (ii) provide the expected types for checking the declarations in δ.

Example 3. Consider the theories in Fig. 9. Applying Mod (·) to these theo-
ries yields exactly the record types of the same name introduced in Sect. 3
(Figs. 6 and 7), i.e., we have interSL ⇐ Mod (Semilattice) and interSLO ⇐
Mod (SemilatticeOrder). In particularly, Mod preserves the modular structure
of the theory.

Fig. 9. A theory of semilattices

The basic properties of Mod (X) are collected in the following theorem:

Theorem 5 (Functoriality). Mod (·) is a monotonic contravariant functor
from the category of theories and morphisms ordered by inclusion to the category
of types (of any universe) and functions ordered by subtyping. In particular,
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– if P is a theory in Θ and max P ∈ {type, kind}, then Θ;Γ � Mod (P ) ⇐
max P

– if V : P → Q is a theory morphism in Θ;Γ � Mod (V ) ⇐ Mod (Q) → Mod (P )
– if P is transitively included into Q, then Θ;Γ � Mod (Q) <: Mod (P ).

An immediate advantage of Mod (·) is that we can now use the expression level
to define expression-like theory level operations. As an example, we consider the
intersection P ∩ P ′ of two theories, i.e., the theory that includes all theories
included by both P and P ′. Instead of defining it at the theory level, which
would begin a slippery slope of adding more and more theory level operations,
we can simply build it at the expression level:

P ∩ P ′ := Mod (Q1) + . . . + Mod (Qn)

where the Qi are all theories included into both P and P ′.4

Note that the computation rules for Mod are efficient in the sense that the
structure of the theory level is preserved. In particular, we do not flatten the-
ories and morphisms into flat contexts, which would be a huge blow-up for big
theories.5

However, efficiently creating the internalization is not enough. Mod (X) is
defined via +, which is itself only an abbreviation whose expansion amounts
to flattening. Therefore, we establish admissible rules that allow working with
internalizations efficiently, i.e., without computing the expansion of +:

Theorem 6. Fix well-typed Θ, Γ and P = {includeP1, . . . , includePn,Δ} in
Θ. Then the following rules are admissible:

1≤i≤n
︷ ︸︸ ︷

Θ;Γ � r ⇐ Mod (Pi)

x:T∈Δ
︷ ︸︸ ︷

Θ;Γ � r.x ⇐ T [r/P ]

x:T :=t∈Δ
︷ ︸︸ ︷

Θ;Γ � r.x ≡ t[r/P ] : T [r/P ] Γ � r ⇒ R

Θ;Γ � r ⇐ Mod (P )

1≤i≤n
︷ ︸︸ ︷

Θ;Γ � ri ⇐ Mod (Pi)

1≤i,j≤n
︷ ︸︸ ︷

Θ;Γ � ri ≡ rj : Pi ∩ Pj Θ;Γ � �δ � [r/P ] ⇐ ⟦Δ ⟧ Γ � r ⇒ R

Θ;Γ � Mod (P ) + r1 + . . . + rn + �δ�
︸ ︷︷ ︸

=:r

⇒ Mod (P )

where [r/P ] abbreviates the substitution that replaces every x declared in a theory
transitively-included into P with r.x.6

The first rule in Theorem6 uses the modular structure of P to check r at
type Mod (P ). If r is of the form �δ�, this is no faster than flattening Mod (P )

4 Note that because P ∩ P ′ depends on the syntactic structure of P and P ′, it only
approximates the least upper bound of Mod (P ) and Mod (P ′) and is not stable under,
e.g., flattening of P and P ′. But it can still be very useful in certain situations.

5 The computation of max P may look like it requires flattening. But it is easy to
compute and cache its value for every named theory.

6 In practice, these substitutions are easy to implement without flattening r because
we can cache for every theory which theories it includes and which names it declares.
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all the way. But in the typical case where r is also formed modularly using a
similar structure as P , this can be much faster. The second rule performs the
corresponding type inference for an element of Mod (P ) that is formed following
the modular structure of P . In both cases, the last premise is again only needed
to make sure that r does not contain ill-typed fields not required by Mod (P ).
Also note that if we think of Mod (P ) as a colimit and of elements of Mod (P ) as
morphisms out of P , then the second rule corresponds to the construction of the
universal morphisms out of the colimit.

Example 4. We continue Example 3 and assume we have already checked
interSL ⇐ Mod (Semilattice) (*).

We want to check interSL + �δ�⇐ Mod (SemilatticeOrder). Applying the
first rule of Theorem 6 reduces this to multiple premises, the first one of which
is (*) and can thus be discharged without inspecting interSL.

Example 4 is still somewhat artificial because the involved theories are so
small. But the effect pays off enormously on larger theories.

5 Implementation and Case Study

We have implemented a variant of the record types and the Mod (·)-operator
described here in the MMT-system (as part of [LFX]). They are used extensively
in the Math-in-the-Middle archive (MitM), which forms an integral part in the
OpenDreamKit [Deh+16] and MaMoRed [Koh+17] projects. In particular the
formalizations of algebra and topology are systematically built on top of the
concepts presented in this paper.

Fig. 10. Theories for R-modules and vector spaces
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The archive sources can be found at [Mit], and its contents can be inspected
and browsed online at https://mmt.mathhub.info under MitM/smglom. Note
that the Mod (·) operator is called ModelsOf here.

For a particularly interesting example that occurs in MitM, consider the
theories for modules and vector spaces (over some ring/field) given in Fig. 10,
which elegantly follow informal mathematical practice. Going beyond the syntax
introduced so far, these use parametric theories. Our implementation extends
Mod to parametric theories as well, namely in such a way that Mod (Module) :∏

R:Mod(Ring) Mod (Module(R)) and correspondingly for fields. Thus, we obtain

Mod (VSpace) = λF : Mod (Field) .((Mod (Module) F ) + . . .)

and, e.g., Mod (VSpace) R <: Mod (Module) R. Because of type-level parameters,
this requires some kind of parametric polymorphism in the type system. For
our approach, the shallow polymorphism module that is available in Mmt is
sufficient.

6 Conclusion

We have presented a formal system that allows to systematically combine the
advantages of stratified and integrated grouping mechanisms found in type the-
ories, logics, and specification/programming languages. Concretely, our system
allows internalizing theories into record types in a way that preserves their
defined fields and modular structure.

Our MitM case study shows that theory internalization is an important
feature of any foundation; especially if it interfaces to differing mathematical
software systems. Our experiments have also shown that (predicate) subtyping
makes internalization even stronger in practice. But type-inference in the com-
bined system induces non-trivial trade-offs; which we leave to future work.
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