
Cops and CoCoWeb:
Infrastructure for Confluence Tools

Nao Hirokawa1(B) , Julian Nagele2 , and Aart Middeldorp3

1 School of Information Science, JAIST, Nomi, Japan
hirokawa@jaist.ac.jp

2 School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK

j.nagele@qmul.ac.uk
3 Department of Computer Science, University of Innsbruck, Innsbruck, Austria

aart.middeldorp@uibk.ac.at

Abstract. In this paper we describe the infrastructure supporting con-
fluence tools and competitions: Cops, the confluence problems database,
and CoCoWeb, a convenient web interface for tools that participate in
the annual confluence competition.

1 Introduction

In recent years several tools have been developed to automatically prove con-
fluence and related properties of a variety of rewrite formats. These tools com-
pete annually in the confluence competition [1] (CoCo).1 Confluence tools run
on confluence problems which are organized in the confluence problems (Cops)
database. Cops is managed via a web interface

http://cops.uibk.ac.at/

that comes equipped with a useful tagging system. Cops has recently been
revamped and we describe its unique features in this paper.

Most of the tools that participate in CoCo can be downloaded, installed,
and run on one’s local machine, but this can be a painful process.2 Only few
confluence tools—we are aware of CO3 [8], ConCon [11], and CSI [7,14]—provide
a convenient web interface to painlessly test the status of a confluence problem
that is provided by the user. In this paper we present CoCoWeb, a web interface
to execute confluence tools on confluence problems. This provides a single entry
point to all tools that participate in CoCo. CoCoWeb is available at

http://cocoweb.uibk.ac.at/

This research is supported by FWF (Austrian Science Fund) project P27528, JSPS
Core to Core Program, and JSPS KAKENHI Grant Nos. 25730004 and 17K00011.

1 http://coco.nue.ie.niigata-u.ac.jp/.
2 StarExec provides a VM image with their environment, which can be helpful in case

a local setup is essential.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 346–353, 2018.
https://doi.org/10.1007/978-3-319-94205-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94205-6_23&domain=pdf
http://orcid.org/0000-0002-8499-0501
http://orcid.org/0000-0002-4727-4637
http://orcid.org/0000-0001-7366-8464
http://coco.nue.ie.niigata-u.ac.jp/
http://cops.uibk.ac.at/
http://cocoweb.uibk.ac.at/
http://coco.nue.ie.niigata-u.ac.jp/

Cops and CoCoWeb: Infrastructure for Confluence Tools 347

The typical use of CoCoWeb is to test whether a given confluence problem
is known to be confluent or not. This is useful when preparing or reviewing an
article, preparing or correcting exams about term rewriting, and when contem-
plating submitting a challenging problem to Cops. In particular, CoCoWeb is
useful when crafting or looking for examples to illustrate a new technique. For
instance, in [4] a rewrite system is presented that can be shown to be conflu-
ent with the technique introduced in that paper. The authors write “Note that
we have tried to show confluence [. . .] by confluence checker ACP and Saigawa,
and both of them failed.” Despite having an easy to use web interface, CSI was
not tried. CoCoWeb could also be useful for the CoCo steering committee when
integrating newly submitted problems into Cops and also when investigating
dubious answers of confluence tools.

The remainder of the paper is organized as follows. In the next section we
describe the functionality of Cops, and in Sect. 3 we present the web interface
of CoCoWeb by means of a number of screenshots. Both sections contain a few
implementation details as well. In Sect. 4 we list some possibilities for extending
the functionality of Cops and CoCoWeb in the future.

2 Cops: Confluence Problems Database

Cops is an online database for confluence problems in term rewriting. It was
created in 2012 to facilitate the organization of CoCo and development of con-
fluence tools. Via its web interface, everyone can retrieve and download conflu-
ence problems, and also upload new problems. Uploaded problems are reviewed
by the CoCo steering committee and then integrated into Cops. Figure 1 shows
the web interface of Cops. Below, we explain basic features of the interface. The
interface is designed in a way that novice users can easily learn problem formats,
and at the same time experts on confluence can retrieve a problem set for their
experiments.

Problems. While there are several variations of rewrite systems, Cops com-
prises the following five rewriting formats: ordinary term rewrite systems (TRS),
extended term rewrite systems (eTRS) that do not impose the variable con-
ditions of TRS, conditional term rewrite systems (CTRS), higher-order term
rewrite systems (HRS), and many-sorted term rewrite systems (MSTRS). In the
database, confluence problems are maintained as text files, and identification
numbers are assigned to them. Currently, Cops contains 765 systems and more
than half of them have been collected from the literature.

The main box in Fig. 1 shows confluence problem number 1 (1.trs), which
consists of five rewrite rules. To increase readability, Cops supports syntax high-
lighting for the above five formats. By clicking the hyperlinked number in brack-
ets in the comment field, the source of the problem with a corresponding BibTEX
entry is displayed. Typically the comment field also includes the name of the per-
son(s) who submitted the problem. This is to acknowledge the effort involved in
locating interesting problems and making these available to the community.

348 N. Hirokawa et al.

Fig. 1. The web interface of Cops.

Tags. Cops has no directory structure. Instead, tags—which can be seen as a
multi-dimensional directory structure—are assigned to problems. Different kinds
of tags are supported. On the one hand, properties of rewrite systems like left-
linearity, groundness, and termination are useful to filter the database for those
problems that are supported by a particular tool or technique. These include the
tags to distinguish the four different input formats, and they are automatically
computed when problems are submitted. A second category of tags refers to tools
that could solve the problem (i.e., prove or disprove confluence) in earlier con-
fluence competitions. An example is acp2017 which is assigned to all problems
selected for CoCo 2017 that were solved by ACP [2].

Finally there is the literature tag that is assigned to problems that appear
in the literature, which includes papers presented at informal workshops like the
International Workshop on Confluence and PhD theses. This tag is important
since CoCo uses problems from the literature, rather than generated problems
that are biased towards one particular tool or technique.

The data of Cops consists of confluence problems and tags. Every tag file
is a list of problem numbers in text format. Most of the tag files are generated
automatically or updated by a collection of scripts that call external tools. The
current collection includes tools to check syntactical properties like left-linearity
or right-groundness, ConCon [11] for tags that are specific to CTRSs, and

Cops and CoCoWeb: Infrastructure for Confluence Tools 349

TTT2 [5] for checking termination and non-termination of TRSs. Since some
properties (e.g. termination) are undecidable, tags like non terminating also
exist. In addition, Felgenhauer’s duplication checker for TRSs (modulo symbol
renaming) is included.3 Duplication is not desirable for fair evaluations. The tag
“duplicate” is assigned to such a problem.

Queries. Problems can be filtered by typing queries in the search box. Queries
are specified by Boolean combinations of tags and problem numbers:

φ ::= tag | number | ! φ | φ φ | φ OR φ | {φ}
Conjunction is denoted by juxtaposition and negation by an exclamation mark.
For instance, the query “left linear trs” yields all problems with the two
tags left linear and trs. In order to search for non-left-linear TRSs whose ter-
mination is not known “!{left linear OR terminating} trs” is used. This
functionality is also useful for comparing tools. The query “csi2017 !acp2017”
shows all confluence problems that were solved by CSI but not by ACP in
CoCo 2017. It is worth noting that advisory board members of CoCo exploit
the tag-based queries (besides random seeds) to compile problem sets used for
the live competitions of CoCo. Problems resulting from search queries can be
downloaded as a zip file. Optionally, tag files and BibTEX files are included too.

The search engine of Cops consists of only 235 lines of Ruby code. This is
implemented as a command-line tool and bundled with a problem set when the
aforementioned download option is selected. The tool name is cops and one can
run it in a Unix environment. For example, the command

./cops ’oriented deterministic 3_ctrs’

outputs all problem numbers of oriented deterministic 3-CTRSs in the down-
loaded problem set. The web interface is built on it. The corresponding code is
about 5, 000 lines of PHP, Ruby, and JavaScript code. Syntax highlighting in
the submission page has been implemented on the top of CodeMirror.4 Finally,
BibTeX2HTML5 is used for generating HTML for the references.

3 CoCoWeb: Web Interface for Confluence Tools

CoCoWeb is a web service to access confluence tools in a web browser. Figure 2
shows a screenshot of the entry page of CoCoWeb. Problems can be entered in
three different ways:

1. using the text box,
2. uploading a file,
3. entering the number of a problem in Cops.
3 https://github.com/haskell-rewriting/canonical-trs.
4 https://codemirror.net/.
5 https://www.lri.fr/∼filliatr/bibtex2html/.

https://github.com/haskell-rewriting/canonical-trs
https://codemirror.net/
https://www.lri.fr/~filliatr/bibtex2html/

350 N. Hirokawa et al.

Fig. 2. The entry page of CoCoWeb.

The problem can be submitted to Cops via the submit button. The tools that
should be executed can be selected from the tools panel on the left. Tools are
grouped into categories, similar to the grouping in CoCo. Multiple tools can be
selected. This is illustrated in Fig. 3. Here we selected CR as property, the CoCo
2016 and 2015 versions of ACPH [9] and the CoCo 2015 version of CSÎ ho [6],
and Cop 500 is chosen is input problem.

The final screenshot (in Fig. 4) shows the output of CoCoWeb after clicking
the check button. The output of the selected tools is presented in separate tabs.
The colors of these tabs reveal useful information: Green means that the tool
answered yes, red (not shown) means that the tool answered no, and a maybe
answer or a timeout is shown in blue. By clicking on a tab, the color is made
lighter and the output of the tool is presented. The final line of the output is
timing information provided by CoCoWeb.

The tools in CoCoWeb run on hardware compatible with a single node of
StarExec [12] that is used for CoCo, allowing for a proper comparison of tools.
By specializing the service to confluence, CoCoWeb offers easy access to all tools
that participated in CoCo without requiring users to register first, and immediate
scheduling of executions as well as syntax highlighting.

Most of CoCoWeb is built using PHP. User input in forms, i.e., rewrite sys-
tems and tool selections, is sent using the HTTP POST method. The dynamic
parts of the website, namely folding and unfolding in the tool selection menu
and the tabs used for viewing tool output are implemented using JavaScript.
To layout the tool selection menu we made extensive use of CSS3 selectors. For
instance, the buttons to select tools are implemented as checkboxes with labels
that are styled according to whether the checkbox is ticked or not:

.tools input[type="checkbox"]:checked + label
{ color: white; background-color: #799BB3; }

Cops and CoCoWeb: Infrastructure for Confluence Tools 351

Fig. 3. Problem and tool selection in CoCoWeb.

Drawing the edges of the tree menu is also done using CSS, relying mainly on
its ::before selector.

Since its second edition, CoCo has adopted StarExec as competition platform.
Competition participants upload binary executables of their tools together with
necessary files to StarExec. Importing and complementing them with missing
software, we reproduce the competition versions of tools on the CoCoWeb server.
The collection of tools is maintained and associated with the web interface with
help of small scripts. The content of the tool menu, i.e., years, the grouping by
categories, and the actual tools, is generated automatically from a directory tree
that has the structure of the menu in CoCoWeb. The directories contain small
configuration files that specify how the tools are to be run, in case they are
selected. Two environment variables are set in such a file, for example the one
for the 2012 version of Saigawa [3] reads as follows:

TOOLDIR="Saigawa-2012/bin"
TOOL="./starexec_run_saigawa -t $TO $FILE"

The variable TOOLDIR specifies the directory that contains the tool binary, while
TOOL gives the tool invocation, which in turn refers to TO, the timeout, and FILE,
the input rewrite system. Using such configuration files tools are run using the
following script, whose first, second, and third argument are the configuration
of the tool, input rewrite system, and timeout respectively:

DIR=$(pwd -P)
FILE=$(readlink -f $2)
TO=$3; TOT=$((TO + 2)); TOK=$((TOT + 2))
source $1
pushd $DIR/bin/$TOOLDIR > /dev/null
/usr/bin/time -f "\\nTook %es" timeout -k $TOK $TOT $TOOL
popd > /dev/null

352 N. Hirokawa et al.

Fig. 4. Testing Example 14 from [4] in CoCoWeb. (Color figure online)

The script uses three different timeouts: TO is the timeout passed to the tool
itself if supported, while after TOT and TOK the signals SIGTERM and SIGKILL are
sent to the tool, using GNU coreutils timeout, in case it did not terminate on
its own.6 When multiple tools are selected, CoCoWeb runs them sequentially, in
order to avoid interference.

4 Conclusion

In this paper we introduced Cops and CoCoWeb, two convenient systems that
provide support for researchers that are interested in (developing tools for) con-
fluence and related properties of rewrite systems. We believe the developed
infrastructure could be useful for other competitions besides CoCo.

Both systems can be extended in several ways, which we plan to address
in future work. For Cops, we are mainly concerned with two issues. One is
about the reorganization of tags. Every year CoCo extends its scope to capture
emerging trends, causing some tags to be redefined or renamed. Another is about
reproducibility of search queries, which is crucial as Cops has been used as a
standard benchmark for confluence techniques. To address these issues, we are
seeking for a way to support versioning the database.

For CoCoWeb, preselection of tools based on the input problem would be a
nice feature. This is not as trivial as it sounds, since different properties share
the same problem format. We plan to investigate the selection method for ATP
systems [13]. Supporting pretty-printing for XML output is another future task.

6 To account for timing imprecisions and tools performing internal cleanup, 2 extra
seconds are granted to the tool before sending SIGTERM and another 2 before SIGKILL

is sent, which turned out to work well in practice.

Cops and CoCoWeb: Infrastructure for Confluence Tools 353

While several tools support output of (non-)confluence proofs in the Certification
Problem Format [10], the current web interface just displays the raw XML code.

Acknowledgments. We thank Harald Zankl, Christian Nemeth, and Takahito Aoto
for their involvement in CoCo and the first release of Cops. Suggestions by the former
helped to improve the paper.

References

1. Aoto, T., Hirokawa, N., Nagele, J., Nishida, N., Zankl, H.: Confluence competition
2015. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195,
pp. 101–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 5

2. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting sys-
tems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4 7

3. Hirokawa, N., Klein, D.: Saigawa: a confluence tool. In: Proceedings of 1st IWC,
p. 49 (2012). http://cl-informatik.uibk.ac.at/iwc/iwc2012.pdf

4. Ishizuki, S., Oyamaguchi, M., Sakai, M.: Conditions for confluence of innermost
terminating term rewriting systems. In: Proceedings of 5th IWC, pp. 70–74 (2016).
http://cl-informatik.uibk.ac.at/iwc/iwc2016.pdf

5. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02348-4 21

6. Nagele, J.: CoCo 2015 participant: CSÎ ho 0.1. In: Proceedings of 4th IWC, p. 47
(2015). http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf

7. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report.
In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 24

8. Nishida, N., Kuroda, T., Yanagisawa, M., Gmeiner, K.: CO3: a COnverter for
proving COnfluence of COnditional TRSs (version 1.2). In: Proceedings of 4th
IWC, p. 42 (2015). http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf

9. Onozawa, K., Kikuchi, K., Aoto, T., Toyama, Y.: ACPH: system description for
CoCo 2016. In: Proceedings of 5th IWC, p. 76 (2016). http://cl-informatik.uibk.
ac.at/iwc/iwc2016.pdf

10. Sternagel, C., Thiemann, R.: The certification problem format. In: Proceedings of
11th UITP, EPTCS, vol. 167, pp. 61–72 (2014). https://doi.org/10.4204/EPTCS.
167.8

11. Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In:
Dowek, G. (ed.) RTA 2014, TLCA 2014. LNCS, vol. 8560, pp. 456–465. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08918-8 31

12. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6 28

13. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem prov-
ing systems. Artif. Intell. 131(1), 39–54 (2001). https://doi.org/10.1016/S0004-
3702(01)00113-8

14. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – a confluence tool. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
499–505. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-
6 38

https://doi.org/10.1007/978-3-319-21401-6_5
https://doi.org/10.1007/978-3-642-02348-4_7
http://cl-informatik.uibk.ac.at/iwc/iwc2012.pdf
http://cl-informatik.uibk.ac.at/iwc/iwc2016.pdf
https://doi.org/10.1007/978-3-642-02348-4_21
http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf
https://doi.org/10.1007/978-3-319-63046-5_24
http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf
http://cl-informatik.uibk.ac.at/iwc/iwc2016.pdf
http://cl-informatik.uibk.ac.at/iwc/iwc2016.pdf
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1007/978-3-319-08918-8_31
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1016/S0004-3702(01)00113-8
https://doi.org/10.1016/S0004-3702(01)00113-8
https://doi.org/10.1007/978-3-642-22438-6_38
https://doi.org/10.1007/978-3-642-22438-6_38

	Cops and CoCoWeb: Infrastructure for Confluence Tools
	1 Introduction
	2 Cops: Confluence Problems Database
	3 CoCoWeb: Web Interface for Confluence Tools
	4 Conclusion
	References

