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Abstract. We present a combination of the Mixed-Echelon-Hermite
transformation and the Double-Bounded reduction for systems of lin-
ear mixed arithmetic that preserve satisfiability and can be computed
in polynomial time. Together, the two transformations turn any system
of linear mixed constraints into a bounded system, i.e., a system for
which termination can be achieved easily. Existing approaches for lin-
ear mixed arithmetic, e.g., branch-and-bound and cuts from proofs, only
explore a finite search space after application of our two transformations.
Instead of generating a priori bounds for the variables, e.g., as suggested
by Papadimitriou, unbounded variables are eliminated through the two
transformations. The transformations orient themselves on the structure
of an input system instead of computing a priori (over-)approximations
out of the available constants. Experiments provide further evidence to
the efficiency of the transformations in practice. We also present a poly-
nomial method for converting certificates of (un)satisfiability from the
transformed to the original system.
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1 Introduction

Efficient linear arithmetic decision procedures are important for various inde-
pendent research lines, e.g., optimization, system modeling, and verification. We
are interested in feasibility of linear arithmetic problems in the context of the
combination of theories, as they occur, e.g., in SMT solving or theorem proving.

The SMT and theorem proving communities have presented several inter-
esting and efficient approaches for pure linear rational arithmetic [18] as well
as linear integer arithmetic [5,8,16,20]. SMT research also starts to extend into
linear mixed arithmetic [12,18] because some applications require both ratio-
nal and integer variables, e.g., planning/scheduling problems and verification of
timed automata and hybrid systems.
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We are interest in decision procedures for mixed arithmetic because of a
possible combination with superposition [1,4,19]. In the superposition context,
arithmetic constraints are part of the first-order clauses. The problems are typi-
cally unbounded due to transformations that turn the input formula into a super-
position specific input format. Since these problems are unbounded, the search
space becomes infinite, which is the case where termination becomes difficult for
most linear arithmetic approaches. Unbounded problems appear also in other
areas of automated reasoning. Either because of bad encodings, necessary but
complicating transformations, e.g., slacking (see Sect. 5), or the sheer complex-
ity of the verification goal. Hence, efficient techniques for handling unbounded
problems are necessary for a generally reliable combined procedure.

It is theoretically very easy to achieve termination for linear integer and
mixed arithmetic because of so called a priori bounds. For example, the a priori
bounds presented by Papadimitriou [22] guarantee that a problem has a mixed
solution if and only if the problem extended by the bounds |xi| ≤ 2n(ma)2m+1 for
every variable xi has a mixed solution. In these a priori bounds, n is the number
of variables, m the number of inequalities, and a the largest absolute value of
any integer coefficient or constant in the problem. By extending a problem with
those a priori bounds, we reduce the search space for a branch-and-bound solver
(and many other mixed arithmetic decision procedures) to a finite search space.
So branch-and-bound is guaranteed to terminate.

However, these bounds are so large that the resulting search space cannot
be explored in reasonable time for many practical problems. One reason for the
impracticability of a priori bounds is that they only take parameter sizes into
account and not actually the structure of each problem. A priori bounds are not
integrated in any state-of-the-art SMT solvers [3,13–15,17] since they are no
help in practice. As far as we know, none of the state-of-the-art SMT solvers use
any method that guarantees termination for linear integer or mixed arithmetic.

In this paper, we present satisfiability preserving transformations that reduce
unbounded problems into bounded problems. On these bounded problems, most
linear mixed decision procedures become terminating, which we show on the
example of branch-and-bound. Our reduction works by eliminating unbounded
variables. First, we use the Double-Bounded reduction (Sect. 4) to eliminate all
unbounded inequalities from our constraint system. Then we use the Mixed-
Echelon-Hermite transformation (Sect. 3) to shift the variables of our system to
ones that are either bounded or do not appear in the new inequalities and are,
therefore, eliminated. With Corollary 14 and Lemma 22 we explain how to effi-
ciently convert certificates of (un)satisfiability between the transformed and the
original system. Our method is efficient because it is fully guided by the struc-
ture of the problem. This is confirmed by experiments (Sect. 5). We also show
how to efficiently determine when a problem is unbounded (Lemma19). This
prevents our solver from applying our transformations on bounded problems.

An extended version of this paper is available on arXiv [7]. It contains an
appendix, where we explain how to implement the presented procedures in an
incrementally efficient way. This is relevant for the implementation of an efficient
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SMT theory solver. The extended version also contains several new examples as
well as additional implementation tricks.

2 Preliminaries

While the difference between matrices, vectors, and their components is always
clear in context, we generally use upper case letters for matrices (e.g., A), lower
case letters for vectors (e.g., x), and lower case letters with an index i or j
(e.g., bi, xj) as components of the associated vector at position i or j, respec-
tively. The only exceptions are the row vectors aT

i = (ai1, . . . , ain) of a matrix
A = (a1, . . . , am)T , which already contain an index i that indicates the row’s
position inside A. We also abbreviate the n-dimensional origin (0, . . . , 0)T as
0n. Moreover, we denote by piv(A, j) the row index of the pivot of a column j,
i.e., the smallest row index i with a non-zero entry aij or m + j if there are no
non-zero entries in column j.

A system of constraints Ax ≤ b is just a set of non-strict inequalities1

{aT
1 x ≤ b1, . . . , a

T
mx ≤ bm} and the rational solutions of this system are exactly

those points x ∈ Qn that satisfy all inequalities in this set. The row coeffi-
cients are given by A = (a1, . . . , am)T ∈ Qm×n, the variables are given by x =
(x1, . . . , xn)T , and the inequality bounds are given by b = (b1, . . . , bm)T ∈ Qm.
Moreover, we assume that any constant rows ai = 0n were eliminated from our
system during an implicit preprocessing step. This is a trivial task and eliminates
some unnecessarily complicated corner cases.

In this paper, we consider mixed constraint systems, i.e., variables are
assigned a type: either rational or integer. Due to convenience, we assume that
the first n1 variables (x1, . . . , xn1) are rational and the remaining n2 variables
(xn1+1, . . . , xn) are integer, where n = n1 + n2. A mixed solution is a point
x ∈ (Qn1 × Zn2) that satisfy all inequalities in Ax ≤ b and we denote by
M(Ax ≤ b) = {x ∈ (Qn1 × Zn2) : Ax ≤ b} the set of mixed solutions to
the system of inequalities Ax ≤ b. We sometimes need to relax the variables to
be completely rational. Therefore, we denote by Q(Ax ≤ b) = {x ∈ Qn : Ax ≤ b}
the set of rational solutions to the system of inequalities Ax ≤ b.

Since Ax ≤ b and A′x ≤ b′ are just sets, we can write their combination as
(Ax ≤ b) ∪ (A′x ≤ b′). A special system of inequalities is a system of equations
Dx = c, which is equivalent to the combined system of inequalities (Dx ≤
c)∪(−Dx ≤ −c). We say that a constraint system implies an inequality hTx ≤ g,
where h ∈ Qn, h �= 0n, and g ∈ Q, if hTx ≤ g holds for all x ∈ Q(Ax ≤ b). In the
same manner, a constraint system implies an equality hTx = g, where h ∈ Qn,
h �= 0n, and g ∈ Q, if hTx = g holds for all x ∈ Q(Ax ≤ b). A constraint implied
by Ax ≤ b is explicit if it does appear in Ax ≤ b. Otherwise, it is called implicit.

Most deductions on linear inequalities are based on Farkas’ Lemma:

1 All techniques discussed in this paper can be extended to strict inequalities with
the help of δ-rationals [18]. We will omit the strict inequalities and focus only on
non-strict inequalities due to lack of space.
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Lemma 1 (Farkas’ Lemma [6]). Q(Ax ≤ b) = ∅ iff there exists a y ∈ Qm with
y ≥ 0m and yTA = 0n so that yT b < 0, i.e., there exists a non-negative linear
combination of inequalities in Ax ≤ b that results in an inequality yTAx ≤ yT b
that is constant and unsatisfiable. If such a y exists, then we call it a certificate
of unsatisfiability.

We also frequently use the following lemma, which is just a reformulation of
Farkas’ Lemma:

Lemma 2 (Linear Implication Lemma). Let Q(Ax ≤ b) �= ∅, h ∈ Qn\{0n},
and g ∈ Q. Then, Ax ≤ b implies hTx ≤ g iff there exists a y ∈ Qm with
y ≥ 0m and yTA = hT so that yT b ≤ g, i.e., there exists a non-negative linear
combination of inequalities in Ax ≤ b that results in the inequality hTx ≤ g.

As we mentioned in the introduction, this paper describes equisatisfiable
transformations for constraint systems. We transform the systems in such a
way that most linear mixed decision procedures become terminating and still
retain their general efficiency. We even show this on the example of branch-and-
bound. Although we do not have the time to discuss all facets of branch-and-
bound [23], we still want to give a short summary of the algorithm. Branch-
and-bound is a recursive algorithm that computes mixed solutions for constraint
systems. In each call of the algorithm, it first computes a rational solution s
to a constraint system Ax ≤ b2. If there are none, then we know that Ax ≤ b
has no mixed solution. We are also done in the case that s is a mixed solution.
Otherwise, we select one of the integer variables xi assigned to a fractional value
si �∈ Z and call branch-and-bound recursively on (Ax ≤ b) ∪ (xi ≥ �si	) and
(Ax ≤ b) ∪ (xi ≤ 
si�). If none of the recursive calls returns a mixed solution,
then Ax ≤ b also does not have a mixed solution. Likewise, if one of them returns
a mixed solution s, then it also is a mixed solution to Ax ≤ b.

Branch-and-bound alone is already complete on bounded constraint systems,
i.e., systems where all directions are bounded:

Definition 3 (Bounded Direction). A direction/vector h ∈ Qn \ {0n} is
bounded in the constraint system Ax ≤ b if there exist l, u ∈ Q such that Ax ≤ b
implies hTx ≤ u and −hTx ≤ −l. Otherwise, it is called unbounded.

Definition 4 (Bounded System). A constraint system Ax ≤ b is bounded if
all directions h ∈ Qn \ {0n} are bounded. Otherwise, it is called unbounded.

For bounded systems, branch-and-bound is one of the most popular and
efficient algorithms. It may, however, diverge if the system has unbounded direc-
tions. Even so, not all unbounded systems are equally difficult. For instance, a
system where all directions are unbounded has always a mixed solution:

Lemma 5 (Absolutely Unbounded [10]). If all directions are unbounded in
a constraint system Ax ≤ b, then the constraint system has an integer solution.

2 A rational solution can be computed in polynomial time [23].
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In a previous article, we described two cube tests that detect and solve
constraint systems with infinite lattice width (another name for absolutely
unbounded systems) in polynomial time [10]. The case of absolutely unbounded
systems is, therefore, trivial and branch-and-bound can be easily extended so it
also becomes complete for absolutely unbounded systems. The actual difficult
case is when some directions are bounded and others unbounded. We call these
systems partially unbounded. Here, branch-and-bound and most other algorithms
diverge or become inefficient in practice. The transformations, which we present,
are designed to efficiently handle this subclass of problems.

3 Mixed-Echelon-Hermite Transformation

Our overall goal is to present an equisatisfiable transformation that turns any
constraint system into a system that is bounded, i.e., a system on which branch-
and-bound and many other arithmetic decision procedures terminate. In this
section, we only present such a transformation for a subset of constraint systems,
which we call double-bounded constraint systems. We then show in the next
section that each constraint system can be reduced to an equisatisfiable double-
bounded system. We also show how to efficiently transform a mixed solution
from the double-bounded reduction to a mixed solution for the original system.

Definition 6 (Double-Bounded Constraint System). A constraint system
Dx ≤ u is double-bounded if Dx ≤ u implies Dx ≥ l for l ∈ Qm. For such
a double-bounded system, we call the bounds u the upper bounds of Dx and
the bounds l the lower bounds of Dx. Moreover, we typically write l ≤ Dx ≤ u
instead of Dx ≤ u although the lower bounds l are only implicit.

Note that only the inequalities in a double-bounded constraint system are
guaranteed to be bounded. Variables might still be unbounded. For instance, in
the constraint system 1 ≤ 3x1 − 3x2 ≤ 2 both inequalities are bounded but the
variables x1 and x2 are not. Moreover, the above constraint system is also an
example where branch-and-bound diverges. This means that even bounding all
inequalities does not yet guarantee termination. So for our purposes, a double-
bounded constraint system is still too complex.

This changes, however, if we also require that the coefficient matrix D of our
constraint system is a lower triangular matrix with gaps:

Definition 7 (Lower Triangular Matrix with Gaps). A matrix A ∈ Qm×n

is lower triangular with gaps if it holds for each column j that piv(A, j) > m or
that piv(A, j) < piv(A, k) for all columns k with j < k ≤ n, i.e., column j either
has only zero entries or all pivoting entries right of j have a higher row index.

A matrix is lower triangular if and only if the row indices of its pivots are
strictly increasing, i.e., piv(A, 1) < . . . < piv(A,n). If we also allow it to have
gaps, only the row indices of pivots with non-zero columns have to be strictly
increasing. Now we get termination for free because of our restrictions:
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Lemma 8 (Lower Triangular Double-Bounded Systems). Let D ∈ Qm×n

be a lower triangular matrix with gaps and l ≤ Dx ≤ u be a double-bounded
constraint system. Then each variable xj is either bounded, i.e., l ≤ Dx ≤ u
implies that l′j ≤ xj ≤ u′

j or its column in D has only zero entries.

Proof. Proof by induction. Assume that the above property already holds for all
variables xk with k < j. Let p = piv(D, j). If p > m, then the column j of D
is zero and we are done. If p ≤ m, then the pivoting entry dpj of column j is
non-zero. Because of Definition 7 and our induction hypothesis, this also means
that each column k with k < j has either a zero entry in row p or the variable xk

is bounded by our induction hypothesis, i.e., l ≤ Dx ≤ u implies l′k ≤ xk ≤ u′
k.

Since Definition 7 also implies that row p has only zero entries to the right of
dpj , the row p has only one unbounded variable with a non-zero entry, viz., xj .
This means we can transform the row lp ≤ dTp x ≤ up into the following two
inequalities: lp − ∑j−1

k=1 dpkxk ≤ dpjxj and up − ∑j−1
k=1 dpkxk ≥ dpjxj , where the

variables xk on the left sides are either bounded or dpk = 0. Hence, we can derive
an upper and lower bound for xj via bound propagation/refinement [21]. �

Corollary 9 (BnB-LTDB-Termination). Branch-and-bound terminates on
every double-bounded system l ≤ Dx ≤ u where D is lower triangular with gaps.

Our next goal is to efficiently transform every double-bounded system l ≤
Dx ≤ u into an equisatisfiable system that also has a lower triangular coefficient
matrix with gaps. We start by defining a class of transformations that do not
only preserve mixed equisatisfiability, but are also very expressive.

Definition 10 (Mixed Column Transformation Matrix [12]). Given a
mixed constraint system. A matrix V ∈ Qn×n is a mixed column transformation
matrix if it is invertible and consists of an invertible matrix V(Q) ∈ Qn1×n1 , a
unimodular matrix V(Z) ∈ Zn2×n2 , and a matrix V(M) ∈ Qn1×n2 such that

V =
(

V(Q) V(M)

0n2×n1 V(Z)

)

.

The inverse of a mixed column transformation matrix V is also a mixed
column transformation matrix and can be used to undo the transformation V :

Lemma 11 (Mixed Column Transformation Inversion [12]). Given a
mixed constraint system. Let V ∈ Qn×n be a mixed column transformation
matrix. Then V −1 is also a mixed column transformation matrix.

This means that each mixed column transformation matrix defines a bijection
from (Qn1 ×Zn2) to (Qn1 ×Zn2). Hence, they guarantee mixed equisatisfiability:

Lemma 12 (Mixed Column Transformation Equisatisfiability [12]). Let
Ax ≤ b be a mixed constraint system. Let V ∈ Qn×n be a mixed column transfor-
mation matrix. Then every solution y ∈ M((AV )y ≤ b)) can be converted into
a solution V y = x ∈ M(Ax ≤ b) and vice versa.
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Moreover, the mixed column transformation matrix V also establishes a
direct relationship between the linear combinations of the original constraint
system and the transformed one:

Lemma 13 (Mixed Column Transformation Implications). Let Ax ≤ b
be a constraint system. Let V ∈ Qn×n be a mixed column transformation matrix.
Let Ax ≤ b imply hTx ≤ g. Then AV z ≤ b implies hTV z ≤ g.

Proof. By Lemma 2, Ax ≤ b implies hTx ≤ g iff there exists a non-negative
linear combination y ∈ Qn such that y ≥ 0, yTA = hT and yT b ≤ g. Multiplying
yTA = hT with V results in yTAV = hTV and thus y is also the non-negative
linear combination of inequalities AV z ≤ b that results in hTV z ≤ g. �

Corollary 14 (Mixed Column Transformation Certificates). Let Ax ≤ b
be a constraint system. Let V ∈ Qn×n be a mixed column transformation matrix.
Then y is a certificate of unsatisfiability for Ax ≤ b iff it is one for AV z ≤ b.

Now we only need a mixed column transformation matrix V for every coeffi-
cient matrix A such that H = AV is lower triangular with gaps. One such matrix
V is the one that transforms A into Mixed-Echelon-Hermite normal form:

Definition 15 (Mixed-Echelon-Hermite Normal Form [12]). A matrix
H ∈ Qm×n is in Mixed-Echelon-Hermite normal form if

H =
(

E 0r×(n1−r) 0r×n2

E′ 0(m−r)×(n1−r) H ′

)

,

where E is an r × r identity matrix (with r ≤ n1), E′ ∈ Q(m−r)×r, and H ′ ∈
Q(m−r)×n2 is a matrix in hermite normal form, i.e., a lower triangular matrix
without gaps, where each entry h′

piv(H′,j)k in the row piv(H ′, j) is non-negative
and smaller than h′

piv(H′,j)j.

The following proof for the existence of the Mixed-Echelon-Hermite normal
form is constructive and presents the Mixed-Echelon-Hermite transformation.

Lemma 16 (Mixed-Echelon-Hermite Transformation). Let A ∈ Qm×n

be a matrix, where the upper left r × n1 submatrix has the same rank r as the
complete left m×n1 submatrix. Then there exists a mixed transformation matrix
V ∈ Qn×n such that H = AV is in Mixed-Echelon-Hermite normal form.

Proof. Proof from [12] with slight modifications so it also works for singular
matrices. We subdivide A into

A =
(

A11 A12

A21 A22

)

such that A11 ∈ Qr×n1 , A12 ∈ Qr×n2 , A21 ∈ Qm−r×n1 , and A21 ∈ Qm−r×n2 .
Then we bring A11 with an invertible matrix V11 ∈ Qn1×n1 into reduced echelon
column form H11 = (E 0r×(n1−r)) = A11V11, where E is an r × r identity
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matrix. We get V11 and H11 by using Bareiss algorithm instead of the better
known Gaussian elimination as it is polynomial in time [2].3 Note that the last
n1 − r columns of H21 = (H ′

21 0(m−r)×(n1−r)) = A21V11 are also zero because all
rows in A21 are linear dependent of A11 (due to the rank). Next we notice that

A12 − A11V11

(
A12

0(n1−r)×n2

)

= A12 − (E 0r×(n1−r))
(

A12

0(n1−r)×n2

)

= 0r×n2

so we can reduce the upper right submatrix A12 to zero by adding multiples of
the n1 columns with rational variables to the n2 columns with integer variables.
However, this also transforms the lower right submatrix A22 into

H ′
22 = A22 − A21V11

(
A12

0(n1−r)×n2

)

.

Finally, we transform this new submatrix H ′
22 into hermite normal form H22

via the algorithm of Kannan and Bachem (or a similar polynomial time algo-
rithm) (see footnote 3). This algorithm also returns a unimodular matrix
V22 ∈ Zn2×n2 such that H22 = H ′

22V22. To summarize: our total mixed transfor-
mation matrix is

V =

⎛

⎝V11 −V11 ·
(

A12

0(n1−r)×n2

)

· V22

0n2×n1 V22

⎞

⎠ and H = AV =
(

H11 0r×n2

H21 H22

)

.

�

It is not possible to transform every matrix A ∈ Qm×n into Mixed-Echelon-

Hermite normal form. We have to restrict ourselves to matrices, where the upper
left r×n1 submatrix has the same rank r as the complete left m×n1 submatrix.
However, this is very easy to accomplish for a system of linear mixed arithmetic
constraints l ≤ Ax ≤ u. The reason is that the order of inequalities does not
change the set of satisfiable solutions. Hence, we can swap the inequalities and,
thereby, the rows of A until its upper left r×n1 submatrix has the desired form.
This also means that there are usually multiple possible inequality orderings
that each have their own Mixed-Echelon-Hermite normal form H.

To conclude this section: whenever we have a double-bounded constraint
system l ≤ Dx ≤ u, we can transform it (after some row swapping) into an
equisatisfiable system l ≤ Hy ≤ u where H = DV is in Mixed-Echelon-Hermite
normal form and V y = x. Since H is also a lower triangular matrix with gaps,
branch-and-bound terminates on l ≤ Hy ≤ u with a mixed solution t or it will
return unsatisfiable (Corollary 9). Moreover, we can convert any mixed solution
t for l ≤ Hy ≤ u into a mixed solution s for l ≤ Dx ≤ u by setting s := V t.
Hence, we have a complete algorithm for double-bounded constraint systems.
3 We do actually use less efficient, Gaussian-elimination-based transformations in our

own implementation [7]. The reason is that these transformations are incrementally
efficient. Our experiments show that the transformation cost still remains negligible
in practice.
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4 Double-Bounded Reduction

In the previous Section, we have shown how to solve a double-bounded constraint
system. Now we show how to reduce any constraint system A′x ≤ b′ to an
equisatisfiable double-bounded system l ≤ Dx ≤ u. Moreover, we explain how
to take any solution of l ≤ Dx ≤ u and turn it into a solution for A′x ≤ b′.

As the first step of our reduction, we reformulate the constraint system into
a so called split system:

Definition 17 (Split System). (Ax ≤ b) ∪ (l ≤ Dx ≤ u) is a split system if:
(i) all directions are unbounded in Ax ≤ b; (ii) all row vectors ai from A are also
unbounded in (Ax ≤ b)∪ (l ≤ Dx ≤ u). Moreover, we call Ax ≤ b the unbounded
part and l ≤ Dx ≤ u the bounded part of the split system.

A split system consists of an unbounded part Ax ≤ b that is guaranteed to
have (infinitely many) integer solutions (see Lemma5) and a double-bounded
part l ≤ Dx ≤ u. Any constraint system can be brought into the above form.
We just have to move all unbounded inequalities into the unbounded part and
all bounded inequalities into the bounded part.

Lemma 18 (Split Equivalence). Let A′x ≤ b′ be a constraint system with
A′ ∈ Qm×n. Then there exists an equivalent split system (Ax ≤ b)∪(l ≤ Dx ≤ u)
where: (i) A ∈ Qm1×n and D ∈ Qm2×n so that m1 + m2 = m; (ii) all rows dTi
of D and aT

k of A appear as rows in A′; and (iii) Dx ≤ u implies l ≤ Dx.

Proof. For (i), (ii), and the equivalence, it is enough to move all bounded
inequalities a′T

i x ≤ b′
i of A′x ≤ b′ into Dx ≤ u and all unbounded inequali-

ties into Ax ≤ b. For (iii), we assume for a contradiction that Dx ≤ u does
not imply li ≤ dTi x but (Dx ≤ u) ∪ (Ax ≤ b) does. By Lemma 2, this means
that there exists a y ∈ Qm2 with y ≥ 0m2 and a z ∈ Qm1 with z ≥ 0m1 so
that yTD + zTA = −dTi and yTu + zT b ≤ −li. We also know that there exists
a zk > 0 because Dx ≤ u alone does not imply li ≤ dTi x. We use this fact to
reformulate yTD + zTA = −dTi into −aT

k = 1
zk

[
yTD + dTi +

∑m1
j=1,j �=k zja

T
j

]
,

and use the bounds of the inequalities in Dx ≤ u and Ax ≤ b to derive a lower
bound for aT

k x: −aT
k x ≤ 1

zk

[
yTu + ui +

∑m1
j=1,j �=k zjbj

]
. Hence, aT

k is bounded
in A′x ≤ b′ and we have our contradiction. �


The above Lemma also shows that the bounded part of a constraint system
is self-contained, i.e., a constraint system implies that a direction is bounded
if and only if its bounded part does. The actual difficulty of reformulating a
system into a split system is not the transformation per se, but finding out
which inequalities are bounded or not. There are many ways to detect whether
an inequality is bounded by a constraint system. Most work even in polynomial
time. For instance, solving the linear rational optimization problem “minimize
aT
i x such that Ax ≤ b” returns −∞ if ai is unbounded, ∞ if Ax ≤ b has no

rational solution, and the optimal lower bound li for aT
i x otherwise. However, it

still requires us to solve m linear optimization problems.
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A, in our opinion, more efficient alternative is based on our previously pre-
sented algorithm for finding equality bases [9]. This is due to the following rela-
tionship between bounded directions and equalities:

Lemma 19 (Bounds and Equalities). Let Q(Ax ≤ b) �= ∅. Then h is bounded
in Ax ≤ b iff Ax ≤ 0m implies that hTx = 0.

Proof. By Definition 3, h is bounded in Ax ≤ b means that there exists l, u ∈ Q

such that Ax ≤ b implies hTx ≤ u and −hTx ≤ −l. By Lemma 2, this is
equivalent to: there exist l, u ∈ Q, y, z ∈ Qm with y, z ≥ 0m, and yTA =
hT = −zTA so that yT b ≤ u and zT b ≤ −l. Symmetrically, Ax ≤ 0 implies
that hTx = 0 is equivalent to: there exist a y, z ∈ Qm with y, z ≥ 0m and
yTA = hT = −zTA so that yT 0m ≤ 0 and zT 0m ≤ 0. Since u and l only have to
exists, we can trivially choose them as u := yT b and l := −zT b. This means that
yT b ≤ u, zT b ≤ −l, yT 0m ≤ 0, and zT 0m ≤ 0 are all trivially satisfied by any pair
of linear combinations y, z ∈ Qm with y, z ≥ 0m such that yTA = hT = −zTA.
Hence, the two definitions are equivalent and our lemma holds. �


It is easy and efficient to compute an equality basis for Ax ≤ 0m and to
determine with it the inequalities in Ax ≤ b that are bounded [9]. The only
disadvantage towards the optimization approach is that we do not derive an
optimal lower bound l for the inequalities. This is no problem because only the
existence of lower bounds is relevant and not the actual bound values.

In a split system (Ax ≤ b) ∪ (l ≤ Dx ≤ u), the unbounded part is actually
inconsequential to the rational/mixed satisfiability of the system. It may reduce
the number of rational/mixed solutions, but it never removes them all. Hence,
(Ax ≤ b)∪ (l ≤ Dx ≤ u) is equisatisfiable to just l ≤ Dx ≤ u. We first show this
equisatisfiability for the rational case:

Lemma 20 (Rational Extension). Let (Ax ≤ b) ∪ (l ≤ Dx ≤ u) be a split
system. Let s ∈ Qn be a rational solution to the bounded part l ≤ Dx ≤ u such
that Ds = g, where g ∈ Qm2 . Then (Ax ≤ b) ∪ (Dx = g) has a solution s′.

Proof. Assume for a contradiction that (Ax ≤ b)∪ (Dx = g) has no solution. By
Lemma 1, this means that there exist a y ∈ Qm1 with y ≥ 0m1 and z, z′ ∈ Qm2

with z, z′ ≥ 0m2 such that yTA + zTD − z′TD = 0n and yT b + zT g − z′T g < 0.
Since Dx = g is satisfiable by itself, there must exist a yi > 0. Now we use this
fact to reformulate the equation yTA + zTD − z′TD = 0n into

−aT
i =

1
yi

[(∑m1

j=1j �=i
yja

T
j

)
+ zTD − z′TD

]
,

from which we deduce a lower bound for aT
i x in (Ax ≤ b) ∪ (l ≤ Dx ≤ u):

−aT
i x ≤ 1

yi

[(∑m1

j=1j �=i
yjbj

)
+ zTu − z′T l

]
.

Therefore, ai is bounded in (Ax ≤ b) ∪ (l ≤ Dx ≤ u), which is a
contradiction. �
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Note that the bounded part l ≤ Dx ≤ u of a split system can still have
unbounded directions (not inequalities). Some of these unbounded directions in
l ≤ Dx ≤ u are the orthogonal directions to the row vectors di, i.e., vectors
vj ∈ Zn such that dTi vj = 0 for all i ∈ {1, . . . , m2}. This also means that the
existence of one mixed solution s ∈ (Qn1 × Zn2) and one unbounded direction
proves the existence of infinitely many mixed solutions. We just need to follow the
orthogonal directions, i.e., for all λ ∈ Z, s′ = λ · vj + s is also a mixed solution
because dTi s′ = λ · dTi vj + dTi s = dTi s. In the next two steps, we prove that
Ax ≤ b cannot cut off all of these orthogonal solutions because it is completely
unbounded. The first step proves that Ax ≤ b remains absolutely unbounded
even if we settle on one set of orthogonal solutions, i.e., enforce Dx = Ds for
some solution s.

Lemma 21 (Persistence of Unboundedness). Let (Ax ≤ b)∪ (l ≤ Dx ≤ u)
be a split system. Let s ∈ Qn be a rational solution for l ≤ Dx ≤ u such that
Ds = g (with g ∈ Qm2). Then all row vectors ai from A are still unbounded in
(Ax ≤ b) ∪ (Dx = g).

Proof. By Lemma 20, (Ax ≤ b) ∪ (Dx = g) has at least a rational solution s∗.
Moreover, (Ax ≤ 0) ∪ (Dx = 0) does not imply aT

i x = 0 because of Lemma 19
and the assumption that the row vectors ai from A are unbounded in (Ax ≤
b) ∪ (l ≤ Dx ≤ u). In reverse, (Ax ≤ b) ∪ (Dx = g) having a real solution,
(Ax ≤ 0) ∪ (Dx = 0) does not imply aT

i x = 0, and Lemma 19 prove together
that the row vectors ai from A are also unbounded in (Ax ≤ b) ∪ (Dx = g). �


The next step proves how to extend the mixed solution from the bounded
part to the complete system with the help of the Mixed-Echelon-Hermite normal
form and the absolute unboundedness of Ax ≤ b.

Lemma 22 (Mixed Extension). Let (Ax ≤ b) ∪ (l ≤ Dx ≤ u) be a split
system. Let s ∈ (Qn1 × Zn2) be a mixed solution for l ≤ Dx ≤ u. Then (Ax ≤
b) ∪ (l ≤ Dx ≤ u) has a mixed solution s′.

Proof. Let g = Ds. Without loss of generality we assume that the upper left
r×n1 submatrix of D has the same rank r as the complete left m1×n1 submatrix
of D. (Otherwise, we just reorder the rows accordingly.) Therefore, there exists a
mixed column transformation matrix V such that H = DV is in Mixed-Echelon-
Hermite normal form (see Lemma 16). By Lemma 12, there exists a mixed vector
t ∈ (Qn1 ×Zn2) such that s = V t and t is a mixed-solution to l ≤ Hy ≤ u as well
as Hy = g. Let U be the set of indices with 0 columns in H and B the column
indices with bounded variables. Then the equation system (Hy = g) fixes each
variable yj with j ∈ B to the value tj because H is lower triangular with gaps.
Hence, ((AV )y ≤ b) ∪ (Hy = g) is equivalent to

A

⎡

⎢
⎣

∑

j∈U

⎛

⎜
⎝

v1j
...

vnj

⎞

⎟
⎠ · yj

⎤

⎥
⎦ ≤ b − A

⎡

⎢
⎣

∑

j∈B

⎛

⎜
⎝

v1j
...

vnj

⎞

⎟
⎠ · tj

⎤

⎥
⎦ . (1)
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Due to Lemmas 13 and 21, all directions are unbounded in (1). This means
(1) has an integer solution (Lemma 5) assigning each variable yj with j ∈ U to a
t′j ∈ Z. (Can be computed via the unit cube test [11]). We extend this solution
to all variables y by setting t′j := tj for j ∈ B and we have a mixed solution
t′ ∈ (Qn1 ×Zn1) for ((AV )y ≤ b) ∪ (l ≤ Hy ≤ u). Hence, we have via Lemma 12
a mixed solution s′ ∈ (Qn1 × Zn2) for (Ax ≤ b) ∪ (l ≤ Dx ≤ u) with s′ = V t′.�

Corollary 23 (Double-Bounded Reduction). The split system (Ax ≤ b) ∪
(l ≤ Dx ≤ u) is mixed equisatisfiable to (l ≤ Dx ≤ u).
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Fig. 1. Horizontal axis: # of solved instances; vertical axis: time (seconds)

5 Experiments

We integrated the Double-Bounded reduction and the Mixed-Echelon-Hermite
transformation into our own theory solver SPASS-IQ v0.2 4 and ran it on four
4 Available on http://www.spass-prover.org/spass-iq.

http://www.spass-prover.org/spass-iq
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Fig. 2. Horizontal axis: # of solved instances; vertical axis: time (seconds)

families of newly constructed benchmarks (see footnote 4). Once with the trans-
formations turned on (SPASS-IQ) and once with the transformations turned off
(SPASS-IQ-Off ). If SPASS-IQ encounters a system Ax ≤ b that is not explicitly
bounded, i.e., where not all variables have an explicit upper and lower bound,
then it computes an equality basis for Ax ≤ 0m. This basis is used to deter-
mine whether the system is implicitly bounded, absolutely unbounded or par-
tially bounded, as well as which of the inequalities are bounded. Our solver
only applies our two transformations if the problem is partially unbounded. The
resulting equisatisfiable but bounded problem is then solved via branch-and-
bound. The other two cases, absolutely unbounded and implicitly bounded, are
solved respectively via the unit cube test [11] and branch-and-bound on the
original system. Our solver also converts any mixed solutions from the trans-
formed system into mixed solutions for the original system following the proof
of Lemma 22. Rational conflicts are converted between the two systems by using
Corollary 14.
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We tried to restrict our benchmarks to partially unbounded problems since we
only apply our transformations on those problems. We even found some partially
unbounded problems in the SMT-LIB benchmarks for QF LIA (quantifier free
linear arithmetic). However, there are not many such benchmarks: only one in
CAV-2009, five in cut lemmas, and three in slacks. So we created in addition
four new benchmark families:

SlackedQFLIA: are linear integer benchmarks based on the SMT-LIB classes
CAV-2009 [16], cut lemmas [20], and dillig [16]. We simply took all of the unsat-
isfiable benchmarks and replaced in them all variables x with x+ − x− where
x+ and x− are two new variables such that x+, x− ≥ 0. This transformation,
called slacking, is equisatisfiable and the slacked version of the dillig-benchmarks,
called slacked [21], is already in the SMT-LIB. Slacking turns any unsatisfiable
problem into a partially unbounded one. Hence, all problems in SlackedQFLIA
are partially unbounded. Slacking is commonly used to integrate absolute values
into linear systems or for solvers that require non-negative variables [23].

RandomUnbd : are linear integer benchmarks that are all partially unbounded
and satisfiable with 10, 25, 50, 75, and 100 variables. All problems are randomly
created via a sagemath script (see footnote 4).

FlippedQFLIA and FlippedRandomUnbd : are linear mixed benchmarks that
are all partially unbounded. They are based on SlackedQFLIA and RandomUnbd.
We constructed them by first copying ten versions of the integer benchmarks and
then randomly flipping the type of some of the variables to rational (probability
of 20%). Some of the flipped instances of SlackedQFLIA became satisfiable.

We compared our solver with some of the state-of-the-art SMT solvers cur-
rently available for linear mixed arithmetic: cvc4-1.5 [3], mathsat5-5.1 [14],
SMTInterpol 2.1-335-g4c543a5 [13], yices2.5.4 [17], and z3-4.6.0 [15]. Most of
these solvers employ a branch-and-bound approach with an underlying dual sim-
plex solver [18], which is also the basis for our own solver. As far as we are aware,
none of them employ any techniques that guarantee termination.

SMTInterpol extends branch-and-bound via the cuts from proofs approach,
which uses the Mixed-Echelon-Hermite transformation to find more versatile
branches and cuts [12]. Although the procedure is not complete, the similarities
to our own approach make an interesting comparison. Actually, the Double-
Bounded reduction alone would be sufficient to make SMTInterpol terminating
since it already builds branches via a Mixed-Echelon-Hermite transformation.

We also compared our solver with the ctrl-ergo solver [5] although it is
restricted to pure integer arithmetic. Ctrl-ergo is complete over linear integer
arithmetic and uses the most similar approach to our transformations that we
found in the literature. It dynamically eliminates one linear independent bounded
direction at a time via transformation. The disadvantages of the dynamic app-
roach are that it is very restrictive and does not leave enough freedom to change
strategies or to add complementing techniques. Moreover, ctrl-ergo uses this
transformation approach for all problems and not only the partially unbounded
ones, which sometimes leads to a massive overhead on bounded problems.
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For the experiments, we used a Debian Linux cluster and allotted to each
problem and solver combination 2 cores of an Intel Xeon E5620 (2.4 GHz) pro-
cessor, 4 GB RAM, and 40 min. The only solver benefiting from multiple cores is
SMTInterpol. The plots in Figs. 1 and 2 depict the results of the different solvers.
In the legends of the plots, the numbers behind the solver names are the number
of solved instances. For FlippedQFLIA, there are two numbers to indicate the
number of satisfiable/unsatisfiable instances solved. This is only necessary for
FlippedQFLIA because it is the only tested benchmark family with satisfiable
and unsatisfiable instances. (We verified that the results match if two solvers
solved the same problem.)

Although our solver could not solve all problems (due to time and memory
limits) it was still able to solve more problems than the other solvers. It was
also faster on most instances than the other solvers. In some of the unsatisfiable,
partially unbounded benchmarks ctrl-ergo is better than SPASS-IQ. This is due
to its conflict focused, dynamic approach. For the same reason, ctrl-ergo is slower
on the satisfiable, partially unbounded benchmarks. Only SPASS-IQ, ctrl-ergo,
and yices solved all of the ten original SMT-LIB benchmarks that are partially
unbounded, though the complete methods were still a lot faster (SPASS-IQ took
23 s, ctrl-ergo took 42 s, and yices took 1273 s). On one of these benchmarks, 20-
14.slacks.smt2 from slacks, all other solvers seem to diverge. Another interesting
result of our experiments is that relaxing some integer variables to rational vari-
ables seems to make the problems harder instead of easier. We expected this for
our transformations because the resulting systems become more complex and
less sparse, but it is also true for the other solvers. The reason might be that
bound refinement, a technique used in most branch-and-bound implementations,
is less effective on mixed problems.

The time SPASS-IQ needs to detect the bounded inequalities and to apply
our transformations is negligible. This is even true for the implicitly bounded
problems we tested. As mentioned before, we do not have to apply our trans-
formations to terminate on bounded problems. This is also the only advantage
we gain from detecting that a problem is implicitly bounded. Since there is no
noticeable difference in the run time, we do not further elaborate the results on
bounded problems, e.g. with graphs.

An actual disadvantage of our approach is that the Mixed-Echelon-Hermite
transformation increases the density of the coefficient matrix as well as the abso-
lute size of the coefficients. Both are important factors for the efficiency of the
underlying simplex solver. Moreover, SPASS-IQ reaches more often the memory
limit than the time limit because it needs a (too) large number of branches and
bound refinements before terminating.

6 Conclusion

We have presented the Mixed-Echelon-Hermite transformation (Lemma 16) and
the Double-Bounded reduction (Lemma18 and Corollary 23). We have shown
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that both transformations together turn any constraint system into an equisat-
isfiable system that is also bounded (Lemma 8). This is sufficient to make branch-
and-bound, and many other linear mixed decision procedures, complete and ter-
minating. We have also shown how to convert certificates of (un)satisfiability
efficiently between the transformed and original systems (Corollary 14 and
Lemma 22). Moreover, experimental results on partially unbounded benchmarks
show that our approach is also efficient in practice.

Our approach can be nicely combined with the extensive branch-and-bound
framework and its many extensions, where other complete techniques cannot be
used in a modular way [5,8]. For future research, we plan to test our transfor-
mations in combination with other algorithms, e.g., cuts from proofs, or as a
dynamic version similar to the approach used by ctrl-ergo [5]. We also want to
test whether our transformations are useful preprocessing steps for select con-
straint system classes that are bounded.
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