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Preface

This volume contains the papers presented at the 9th International Joint Conference on
Automated Reasoning, IJCAR 2018, held during July 14–17, 2018 in Oxford, UK, as
part of the Federated Logic Conference, FLoC 2018.

There were 125 abstracts submitted to IJCAR, resulting in 108 complete submis-
sions. Each submission was assigned to three Program Committee members and
received at least three reviews. The committee accepted 46 papers in total, 38 full
papers and eight system descriptions. In addition, the program included two invited
talks by Erika Abraham and Martin Giese, and accommodated a number of FLoC
central events.

IJCAR is the premier international joint conference on all aspects of automated
reasoning, including foundations, implementations, and applications, comprising sev-
eral leading conferences and workshops. It was first held in Sienna, Italy, in 2001,
uniting CADE, the Conference on Automated Deduction, TABLEAUX, the Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, and FTP, the Workshop on First-Order Theorem Proving. Since 2004, IJCAR
has been held every second year, alternating with separate meetings of its constituent
conferences. In 2018, IJCAR united CADE, TABLEAUX, and FroCoS, the Interna-
tional Symposium on Frontiers of Combining Systems, and, for the fourth time, was
part of the Federated Logic Conference. IJCAR also hosted the CADE ATP System
Competition and 11 workshops.

IJCAR acknowledges the generous sponsorship of EurAI, the European Association
for Artificial Intelligence (https://www.eurai.org/), for supporting in part our invited
speakers.

We would like to thank the organizers of IJCAR, FLoC, and associated events, but
in particular the members of the IJCAR Program Committee (PC) and the additional
external reviewers. They provided high-quality reviews.

The PC chairs also would like to acknowledge EasyChair. The system was extre-
mely supportive for most major tasks, including the reviewing and selection of papers,
the organization of the program, and creating this proceedings volume.

May 2018 Didier Galmiche
Stephan Schulz

Roberto Sebastiani
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Industrial Data Access

What are the Reasoning Problems?
And is Reasoning the Problem?

Martin Giese

University of Oslo
martingi@ifi.uio.no

Optique (http://optique-project.eu) [2] was an EU FP7 project that ran from November
2012 to October 2016. The main objective was to test the idea of “Ontology Based
Data Access” (OBDA) on real industrial applications. Concretely: to support the work
of geologists and geophysicists in the oil & gas company Statoil, and the work of
turbine engineers at Siemens AG. This line of work now continues in the nationally
funded ‘Centre for Research-based Innovation’ SIR-IUS (http://sirius-labs.no) at the
University of Oslo, with participation from the Universities of Oxford and Trondheim,
as well a large number of participating companies.

The software produced by the project features elaborate user interfaces, and no 8 or
9 can be seen on the surface. Still, most of the functionality is controlled by an
ontology, which is nothing more than a set of axioms in a particular description logic.
As a consequence, a variety of reasoning tasks takes place under the hood, all the way
from query optimisation [1], via entity alignment [4] and up to the user interface
control code [3]. This talk presents a selection of these problems, both solved and
as-yet unsolved.

Though logic and reasoning are close to the hearts of many of the researchers
involved, the success of the project was also dependent on other factors:
inter-disciplinary communication, usability considerations, and many pragmatic com-
promises, to name some. And sometimes, these would again lead to ‘nice’ research.
The talk also covers some of these extra-logical aspects of the project.

References

1. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational databases.
Semant. Web, 8(3), 471–487 (2017)

2. Giese, M., Soylu, A., Vega-Gorgojo, G., Waaler, A., Haase, P., Jiménez-Ruiz, E., Lanti, D.,
Rezk, M., Xiao, G., Ozçep, Ö., Rosati, R.: Optique: zooming in on big data. IEEE Comput.
48(3), 60–67 (2015)

3. Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez Ruiz, E., Giese, M., Skjaeveland, M.G.,
Hovland, D., Schlatte, R., Brandt, S., Lie, H., Horrocks, I.: OptiqueVQS: a visual query
system over ontologies for industry. Semant. Web (2017, in press)

4. Xiao, G., Hovland, D., Bilidas, D., Rezk, M., Giese, M., Calvanese, D.: Efficient
ontology-based data integration with canonical IRIs. In: Navigli, R., Vidal, M.-E. (eds.)
Proceedings of 15th International Extended Semantic Web Conference (ESWC) (2018. to
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Symbolic Computation Techniques
in SMT Solving: Mathematical Beauty

Meets Efficient Heuristics

Erika Ábrahám

RWTH Aachen University, Germany

Checking the satisfiability of quantifier-free real-arithmetic formulas is a practically
highly relevant but computationally hard problem. Some beautiful mathematical
decision procedures implemented in computer algebra systems are capable of solving
such problems, however, they were developed for more general tasks like quantifier
elimination, therefore their applicability to satisfiability checking is often restricted.

In computer science, recent advances in satisfiability-modulo-theories
(SMT) solving led to elegant embeddings of such decision procedures in SMT sol-
vers in a way that combines the strengths of symbolic computation methods and
heuristic-driven search techniques. In this talk we discuss such embeddings and show
that they might be quite challenging but can lead to powerful synergies and open new
lines of research.
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An Assumption-Based Approach
for Solving the Minimal S5-Satisfiability

Problem

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima,
and Valentin Montmirail(B)

CRIL, Artois University and CNRS, 62300 Lens, France
{lagniez,leberre,delima,montmirail}@cril.fr

Abstract. Recent work on the practical aspects on the modal logic S5
satisfiability problem showed that using a SAT-based approach outper-
forms other existing approaches. In this work, we go one step further
and study the related minimal S5 satisfiability problem (MinS5-SAT),
the problem of finding an S5 model, a Kripke structure, with the small-
est number of worlds. Finding a small S5 model is crucial as soon as the
model should be presented to a user, displayed on a screen for instance.
SAT-based approaches tend to produce S5-models with a large number of
worlds, thus the need to minimize them. That optimization problem can
obviously be solved as a pseudo-Boolean optimization problem. We show
in this paper that it is also equivalent to the extraction of a maximal sat-
isfiable set (MSS). It can thus be solved using a standard pseudo-Boolean
or MaxSAT solver, or a MSS-extractor. We show that a new incremen-
tal, SAT-based approach can be proposed by taking into account the
equivalence relation between the possible worlds on S5 models. That
specialized approach presented the best performance on our experiments
conducted on a wide range of benchmarks from the modal logic com-
munity and a wide range of pseudo-Boolean and MaxSAT solvers. Our
results demonstrate once again that domain knowledge is key to build
efficient SAT-based tools.

Keywords: Modal logic · S5 · Incremental SAT · Minimisation

1 Introduction

Over the last twenty years, modal logics have been used in various areas of arti-
ficial intelligence like formal verification [1], database theory [2] and distributed
computing [3] for example. More recently, the modal logic S5 was used for knowl-
edge compilation [4] and in contingent planning [5]. Different solvers for different
modal logics have been designed to decide the satisfiability of modal formulas
since the 90’s [6,7]. Some of them have been designed quite recently [8–11].
Despite the variety of techniques employed, none of them formally guarantees
that, when a model is found, it is the smallest model possible (in number of
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 1–18, 2018.
https://doi.org/10.1007/978-3-319-94205-6_1
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2 J.-M. Lagniez et al.

worlds) for the input formula, in fact many of them do not even output a model
but simply answer yes/no.

Providing a model, a certificate of satisfiability, is important to check the
answer given by the solver. This is true both for the author of the solver or a
user of that solver. This is mandatory nowadays in many solver competitions,
among them the SAT competition [12]. It has also been shown that those mod-
els can help improving NP-oracle based procedures [13]: a procedure requiring a
polynomial number of calls to a yes/no oracle can be transformed into a proce-
dure requiring only a logarithmic number of calls when the oracle can provide
a model. Another example of the importance for an oracle to provide a model
may be found in the model rotation technique [14], a method for the detection
of clauses that are included in all MUSes (Minimal Unsatisfiable Sets) of a given
formula via the analysis of models returned by a SAT oracle. Even if the theory
does not guarantee a reduction of the number of oracle calls, in practice it pro-
vides a huge performance gain (up to a factor of 5) [15]. Finding the smallest
model may be even more important in some contexts. The provided model usu-
ally has a meaning for the user, like in Hardware Verification [1] where the model
is in fact an explanation of the bug found in the design of the hardware. The
smaller the model, the more precise could be the location of the bug. It could
also be the case that the model should be inspected by the user or displayed
on a screen. Thus, the smaller, the better. There is a huge literature on mini-
mizing models for SAT [16–18]. We are interested here in minimizing models for
S5-SAT.

Our goal in this paper is to propose techniques to compute the smallest
S5-model, in number of worlds, for a given input formula. We call this problem
MinS5-SAT. We focus exclusively on the modal logic S5, for which the satisfiabil-
ity problem is NP-complete [19] as for the classical propositional logic (CPL) [20].
We propose and compare different techniques. (1) The first obvious technique is
based on a translation into CPL. The parameter given to the translation is the
number n of possible worlds that the solution model is assumed to have. Linear
or dichotomous search can be used to minimize the S5-model. (2) The second
technique adds to the previous encoding selector-variables in order to activate or
deactivate worlds. Finding a minimal S5-model in this case amounts to an equiv-
alent MaxSAT problem [21], or, more surprisingly, to a MSS problem. Thus we
can rely on off-the-shelves MaxSAT solvers or MSS-extractors to solve the origi-
nal problem. (3) The last technique goes one step further from the two previous
approaches. Thanks to a specific property of modal logic S5, we interpret the
set of selectors causing the inconsistency of the formula to reach the theoretical
upper bound faster. We compare these different techniques and show empirically
which one better suits the benchmarks used. All benchmarks we could find for
mono-agent S5 are randomly generated or created automatically following a pat-
tern (“crafted”). (Note that reasoning about knowledge problems, such as those
in [22], are all multi-agents.) However, we know from the SAT community [12]
that the performance of a solver can be significantly different when the problem
is randomly generated, when it is “crafted” or when it models a “real” problem
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which has some kind of “structure”. Thus, we generated new S5 benchmarks
translated from planning problems with incomplete information about the ini-
tial state (with sensing and full observability) [23] to complete the picture. We
choose planning problems to obtain structured benchmarks requiring relatively
large Kripke models.

In the reminder of this article, we first present the modal logic S5 and define
the MinS5-SAT problem. Then, we provide a first approach to solve MinS5-SAT
using a SAT-oracle and selector variables. We provide a translation from MinS5-
SAT problems to equivalent MSS-extraction problems. We present a specific
property of modal logic S5 that speed up our initial SAT-based approach. Finally,
we present the experimental results and conclude.

2 Preliminaries

2.1 Modal Logic S5

A central problem associated with any logic is the satisfiability problem, that
is to decide whether a given formula has a model. The first complexity results
for satisfiability in modal logic were achieved by Ladner [19]. He showed that
the satisfiability problem in modal logic K (K-SAT) is in PSPACE and that the
satisfiability problem in modal logic S5 (S5-SAT) is NP-complete. In this paper,
we are interested in S5. In what follows, let P be a countably infinite non-empty
set of propositional variables. The language L of modal logic is the set of formulas
φ defined by the following grammar in BNF, where p ranges over P:

φ:: = � | p | ¬φ | φ ∧ φ | φ ∨ φ | �φ | ♦φ

The operators → and ↔, defined by the usual abbreviations, are also used. A
formula of the form �φ (box phi) means ‘φ is necessarily true’. A formula of the
form ♦φ (diamond phi) means ‘φ is possibly true’.

Example 1. Let P = {a, b}. φ = ((�¬a∨♦b)∧♦a∧�b) is a modal logic formula.

Formulas in L are interpreted using S5-structures [24], which are defined as
follows:

Definition 1 (S5-Structure). A S5-structure is a triplet M = 〈W,R, I〉,
where:
W is a non-empty set of possible worlds;
R is a binary relation on W which is an equivalence relation (∀w.∀v. (w, v) ∈ R);
I is a function associating, to each p ∈ P, the set of worlds from W where p is
true.

Note that because R is an equivalence relation, we will omit it in the rest of this
paper.

Definition 2 (Pointed S5-Structure). A pointed S5-structure is a pair
〈M,ω〉, where M is a S5-Structure and ω, called the actual world, is a possible
world in W .
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In the remainder of this article, ‘structure’ means ‘pointed S5-structure’. We
define the size of a structure 〈M,ω〉, noted |M |, as its number of worlds.
Below, the satisfaction relation between such structures and formulas in L is
defined.

Definition 3 (Satisfaction Relation). Let M = 〈W,R, I〉, an S5-structure.
The satisfaction relation � between formulas and structures is recursively defined
as follows:

〈M,ω〉 � � 〈M,ω〉 � p iff ω ∈ I(p)
〈M,ω〉 � ¬φ iff 〈M,ω〉 � φ

〈M,ω〉 � φ ∧ ψ iff 〈M,ω〉 � φ and 〈M,ω〉 � ψ

〈M,ω〉 � φ ∨ ψ iff 〈M,ω〉 � φ or 〈M,ω〉 � ψ

〈M,ω〉 � �φ iff for all v ∈ W we have 〈M,v〉 � φ

〈M,ω〉 � ♦φ iff there exists v ∈ W such that 〈M,v〉 � φ

Definition 4 (Satisfiability). A formula φ is satisfiable if and only if there
exists a structure 〈M,ω〉 that satisfies φ. Such a structure is called a ‘model
of φ’.

Example 2. Here is a structure 〈M,ω0〉 satisfying the formula φ from Example 1:
W = {w0, w1, w2}, I = {〈a, {w0}〉, 〈b, {w0, w1, w2}〉}. The size of 〈M,ω0〉
equals 3.

As S5-SAT is NP-complete [19], we proposed a reduction from this problem to
SAT in [10]. The reduction function takes as parameter the number of worlds n
and is defined as follows:

Definition 5 (Translation Function tr). Let φ ∈ L.

tr(φ, n) = tr′(φ, 1, n)
tr′(p, i, n) = pi tr′(¬ψ, i, n) = ¬tr′(ψ, i, n)
tr′(ψ ∧ χ, i, n)=tr′(ψ, i, n) ∧ tr′(χ, i, n) tr′(ψ ∨ χ, i, n) = tr′(ψ, i, n) ∨ tr′(χ, i, n)

tr′(�ψ, i, n) =
n∧

j=1

(tr′(ψ, j, n)) tr′(♦ψ, i, n) =
n∨

j=1

(tr′(ψ, j, n))

The function ‘tr’ is satisfiability preserving if n is large enough. Moreover, some
additional simplifications are performed to avoid outputting a very large formula
(e.g., the Tseitin algorithm). See [10] for more details.

Example 3. Let φ the formula in Example 1. Its translation tr(φ, 2) is
((¬a1 ∨ b1 ∨ b2) ∧ (¬a2 ∨ b1 ∨ b2) ∧ (a1 ∨ a2) ∧ (b1 ∧ b2)).
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2.2 Unsatisfiable Cores

Recent SAT solvers are incremental, i.e., they are able to check the satisfiability
of a formula “under assumptions” [25] and are able to output a core (a “reason”
for the unsatisfiablity of the formula). The use of unsatisfiable cores is key to
many applications, such as MaxSAT [21], MCS (Minimal Correction Set) [26],
MUS (Minimal Unsatisfiable Set) [27]. The unsatisfiable core is defined as follows:

Definition 6 (Unsatisfiable Core Under Assumptions). Let Σ be a satis-
fiable CPL formula in CNF built using Boolean variables from P. Let A be a con-
sistent set of literals built using Boolean variables from P such that (Σ ∧∧

a∈A a)
is unsatisfiable. C ⊆ A is an unsatisfiable core (UNSAT core) of Σ under
assumptions A if and only if (Σ ∧ ∧

c∈C c) is unsatisfiable.

Definition 7 (SAT Solver Under Assumptions). Let Σ be a CPL formula
in CNF. A SAT solver for Σ, given assumptions A, is a procedure which provides
a pair 〈r, s〉 with r ∈ {SAT,UNSAT} such that if r = SAT then s is a model of
Σ, else if r = UNSAT then s is an UNSAT core of Σ under assumptions A.

2.3 MSS and co-MSS

The problem of computing a Maximal Satisfiable Set of clauses (MSS problem)
consists of extracting a maximal set of clauses from a formula in CNF that are
consistent together [28]. The minimal correction subset (MCS or co-MSS) is the
complement of its MSS.

Definition 8. Let Σ be a given unsatisfiable formula in CNF. S ⊆ Σ is a
Maximal Satisfiable Subset (MSS) of Σ if and only if S is satisfiable and ∀c ∈
Σ \ S, S ∪ {c} is unsatisfiable.

Definition 9. Let an unsatisfiable formula Σ in CNF be given. C ⊆ Σ is a Min-
imal Correction Subset (MCS or co-MSS) of Σ if and only if Σ \C is satisfiable
and ∀c ∈ C, Σ \ (C \ {c}) is unsatisfiable.

3 The MinS5-SAT Problem

As pointed in [10], the necessary number of worlds to S5-satisfy a formula is
bound by dd(φ) + 1, where dd(φ) is given in Definition 10 below.

Definition 10 (Diamond-Degree). The diamond degree of φ ∈ L, noted
dd(φ), is defined recursively, as follows:

dd(φ) = dd′(nnf(φ))
dd′(�) = dd′(¬�) = dd′(p) = dd′(¬p) = 0

dd′(φ ∧ ψ) = dd′(φ) + dd′(ψ)
dd′(φ ∨ ψ) = max(dd′(φ),dd′(ψ))

dd′(�φ) = dd′(φ) dd′(♦φ) = 1 + dd′(φ)
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We denote by nnf(φ) the formula φ in negation normal form (the negation
applies only to propositional variables). Thus, we have that tr(φ,dd(φ) + 1)
is equisatisfiable to φ. Even if, in practice, we obtain very good results using
this value as upper-bound, it seems far from the optimal value in all cases. For
instance, in the model of Example 1, we can see redundancies: two worlds contain
the same valuation. In contexts where the size of the returned model is critical,
it makes sense to try to minimize it.

Consequently, in this article, we are interested in finding a model for a formula
in S5 with the smallest number of worlds in its S5-structure. We call this problem
the minimal S5 satisfiability problem and we define it as follows:

Definition 11 (Minimal S5 Satisfiability). A formula φ is min-S5-satisfied
by a structure 〈M,ω〉 (noted 〈M,ω〉 |=min φ) if and only if 〈M,ω〉 |= φ and φ
has no model 〈M ′, ω′〉 such that |M ′| < |M |.
Definition 12 (Minimal S5 Satisfiability Problem). Let a formula φ in L
be given. The minimal S5 satisfiability problem (MinS5-SAT) is the problem of
finding a structure 〈M,ω〉 such that 〈M,ω〉 |=min φ.

Let us remark that obtaining the minimal model for φ is not as simple as
merging the worlds with the same valuations into only one world in any model
of φ. The minimality cannot be guaranteed that way. Let us go back to the
Example 2 to illustrate this. There, we have dd(φ) + 1 = 3. If we remove the
redundancy, we obtain a model of size 2. However, φ is also satisfied by the follow-
ing structure containing only one world: W = {w0}, I = {〈a, {w0}〉, 〈b, {w0}〉},
which is a minimal model.

A very simple way to tackle this problem is to use the solver S52SAT [10]
with a linear search strategy. Roughly, the procedure starts by trying structures
of size b = 1. If no model is found, it iterates the process, each time increasing
the value of b by 1. It iterates until a model of φ is found or the upper bound
dd(φ) + 1 is reached. This strategy is called 1toN. It is of course also possible to
do it in reverse order: the procedure starts with b = dd(φ)+1 and decreases the
value of b by 1 (this is called Nto1). Yet another possibility is to use a binary
search (called Dico).

However, these approaches are very naive. If we take, for instance, 1toN when
the solution is a model of size m, it will perform m translations from S5 to SAT
and then m calls to a SAT solver. The problem here is that such strategy does
not take advantage of the previous UNSAT answer of the SAT solver to solve
the new formula.

Modern SAT solvers are able to take advantage of previous calls when they
are used incrementally [29]. The usual way to do that is to add selectors (assump-
tions) to the input formula and to get as output, on the suitable cases, some kind
of “reason” for its unsatisfiability, in terms of these selectors. We propose here
a way to add such selectors in the translation from S5 to SAT.
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4 Preliminary Step: An Assumption-Based Translation

The translation ‘tr’ proposed in [10] is based on a simple, yet effective, idea:
let φ be the input formula, every sub-formula of the form �ψ is translated
to

∧n
i=1 tr(ψ, i, n), whereas sub-formulas of the form ♦ψ are translated to∨n

i=1 tr(ψ, i, n). The number n is the number of possible worlds of the model
being constructed. If we set n = dd(φ) + 1, we are guaranteed to have an equi-
satisfiable formula on the output.

In order to take advantage of the ability of modern SAT solvers to return a
reason for unsatisfiability, we can add selector variables si to enable or disable
worlds wi. We update the translation of �ψ to

∧n
i=1(¬si∨tr(ψ, i, n)) and the one

of ♦ψ to
∨n

i=1(si ∧ tr(ψ, i, n)). Worth noticing that due to the simplifications
authorized in S5, the modalities cannot be embedded modalities. The modal
depth equals 1. While the resulting CNF is be bigger than the original one, the
size of the S5-model will now be decided by the number of satisfied selector
variables. The complete translation function is given below:

Definition 13 (Translation with Selectors). Let φ ∈ L.

trs(φ, n) = tr′
s(φ, 1, n)

tr′
s(p, i, n) = pi tr′

s(¬ψ, i, n) = ¬tr′
s(ψ, i, n)

tr′
s(ψ ∧ δ, i, n) = tr′

s(ψ, i, n) ∧ tr′
s(δ, i, n) tr′

s(ψ ∨ δ, i, n)= tr′
s(ψ, i, n) ∨ tr′

s(δ, i, n)

tr′
s(�ψ, i, n) =

n∧

j=1

(¬sj ∨ (tr′
s(ψ, j, n)) tr′

s(♦ψ, i, n) =
n∨

j=1

(sj ∧ (tr′
s(ψ, j, n))

An S5-model has to have at least one possible world (the current world).
W.l.o.g., we consider that the current world is the world number 1, thus s1 is
always set to true. In the remainder of this article, we denote by trs(φ) the
formula (trs(φ,dd(φ) + 1) ∧ s1) and the set of all selectors of trs(φ) is denoted
by S(φ) (i.e., S(φ) = {si | 1 ≤ i ≤ dd(φ) + 1}).

Example 4 (Example of ‘trs’). Let us go back to Example 1 and reuse the formula
φ = ((�¬a ∨ ♦b) ∧ ♦a ∧ �b). Its translation trs(φ, 3) is:

(¬s1 ∨ (¬a1 ∨ (s1 ∧ b1) ∨ (s2 ∧ b2) ∨ (s3 ∧ b3))) ∧
(¬s2 ∨ (¬a2 ∨ (s1 ∧ b1) ∨ (s2 ∧ b2) ∨ (s3 ∧ b3))) ∧
(¬s3 ∨ (¬a3 ∨ (s1 ∧ b1) ∨ (s2 ∧ b2) ∨ (s3 ∧ b3))) ∧
((s1 ∧ a1) ∨ (s2 ∧ a2) ∨ (s3 ∧ a3)) ∧ ((¬s1 ∨ b1) ∧ (¬s2 ∨ b2) ∧ (¬s3 ∨ b3)) ∧ s1

Intuitively, every formula with subscript i is a formula that is true at the possible
world i. If the selector si is false, then the world i is not present in the model
(and we do not care about the valuation of the propositions there in). Below,
a formula that is equivalent to trs(φ, 3) but with s1 and s2 activated and s3
deactivated.
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(¬� ∨ (¬a1 ∨ (� ∧ b1) ∨ (� ∧ b2) ∨ (⊥ ∧ b3))) ∧
(¬� ∨ (¬a2 ∨ (� ∧ b1) ∨ (� ∧ b2) ∨ (⊥ ∧ b3))) ∧
(¬⊥ ∨ (¬a3 ∨ (� ∧ b1) ∨ (� ∧ b2) ∨ (⊥ ∧ b3))) ∧
((� ∧ a1) ∨ (� ∧ a2) ∨ (⊥ ∧ a3)) ∧ ((¬� ∨ b1) ∧ (¬� ∨ b2) ∧ (¬⊥ ∨ b3)) ∧ �

This formula is equivalent to (¬a1∨b1∨b2) ∧(¬a2∨b1∨b2) ∧(a1∨a2) ∧(b1∧b2),
which is the same as the one presented in Example 3. It corresponds to the
problem of deciding if φ is satisfiable in a model with 2 worlds.

As we can see, the problem of solving the minimal S5 satisfiability problem
is now equivalent to the problem of satisfying trs(φ, n) and minimize the number
of si, for i > 1, assigned to true (or, equivalently, maximize the number of si

assigned to false). Obviously, it can be seen as a pseudo-Boolean optimization
problem [30], where the optimization function to be minimized is the number
of selectors assigned to true. This problem is also often solved nowadays as an
instance of the Partial MaxSAT problem [21], which consists in satisfying all the
hard clauses (clauses that MUST be satisfied) and the maximum number of soft
clauses (the clauses that are not mandatory). In our case, the hard clauses are
those generated by the translation function, and the soft-clauses are the unit
clauses {¬si | si ∈ S(φ) and i > 1} built from the selector variables.

We can thus use state-of-the-art Partial MaxSAT solvers. However, it is not
the only way, as we show in the following section. By considering the structure
of S5-models, extracting a MSS can also be used to decide the problem.

W.l.o.g., in the following sections, we represent a set of unit soft clauses as
the set of selectors composing it (eg.: {s2, s3, s4} rather than {¬s2,¬s3,¬s4}).

5 First Insight: Cardinality Optimality Equals Subset
Optimality

In the Sect. 2.3, we defined the MSS problem. It is also possible to define a
partial version of the MSS problem, where the objective is to compute a MSS
such that some given subset of the clauses (the hard clauses) must be satisfied.
This problem is related to the Partial MaxSAT problem. In fact, a solution to
a Partial MaxSAT problem is one of the biggest MSS that satisfies the set of
hard-clauses. In general, a partial MSS is not a solution to a Partial MaxSAT
problem but, in the specific case of MinS5-SAT, a partial MSS is also a solu-
tion to its corresponding Partial MaxSAT problem, which means that in that
specific context, subset optimality (MSS) is equivalent to cardinality optimality
(MaxSAT).

Proposition 1. Let Σ = trs(φ,dd(φ) + 1) a CNF, and let χ be the formula∧dd(φ)+1
i=2 ¬si. An MSS of (Σ ∧ χ), where Σ is the set of hard clauses, is also a

solution to the Partial MaxSAT problem (Σ ∧ χ).

The proof of Proposition 1 uses the following lemma.
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Lemma 1. Let Σ = trs(φ, n), and let χ be the formula
∧

si∈S′ ¬si, where S ′ ⊆
S(φ). If (Σ∧χ) is satisfiable then so is the formula (Σ∧χ′), where χ′ is obtained
from χ by replacing the occurrences of one selector s ∈ S ′ by another selector
s′ ∈ S(φ) \ S ′.

Proof (sketch). The proof is done by an induction on the length of the formula
φ. In the induction base, Σ = p, for some p ∈ P. We have Σ = p1, χ = ¬s1 and
S(φ) = {s1}, which means that the claim is true (because S(φ) \ S ′ = ∅). We
have several cases on the induction step. Since their proofs are all similar, we
show only one them here. Let φ = �φ′. We have Σ =

∧n
i=1(¬si ∨ trs(φ′, i, n)),

χ =
∧

si∈S′ ¬si, and S(φ) = {s1, . . . , sn}. Now, let χ′ be obtained from χ where
si is replaced by sj ∈ S(φ) \ S′. If (Σ ∧ χ) is satisfied by a model M then we
construct a new model M ′, which equals M except that the truth assignment of
all propositional variables with subscript i are the same as those with subscript
j. We immediately have that if M |= χ then M ′ |= χ′. We also have that if
M |= ¬si then M ′ |= ¬sj . Finally, for each 1 ≤ i ≤ n, if M |= trs(φ′, i, n))
then M ′ |= trs(φ′, j, n)), by the induction hypothesis (since the length of φ′ is
strictly smaller than that of φ). Therefore, M ′ |= Σ ∧ χ′.

Proof (of Proposition 1). Towards a contradiction, assume that there exists a
MSS δ1 = (Σ ∧ χ1), where χ1 =

∧
s∈S1

¬s, which is not the biggest one. Thus,
there exists another MSS δ2 = (Σ ∧ χ2), where χ2 =

∧
s∈S2

¬s and such that
|S1| < |S2|. Now, let S3 = S2\{s}∪{s′}, where s ∈ S2 and s′ ∈ S1. By Lemma 1,
the formula δ3 = (Σ ∧ χ3), where χ3 =

∧
s∈S3

¬s is satisfiable, because it is δ2
with one of the selectors of S2 in χ2 replaced by another selector. It is easy to see
that one can keep replacing selectors in this set until we have the set Sk, such
that S1 ⊆ Sk. The formula δk = (Σ∧χk), where χk =

∧
s∈Sk

¬s, is satisfiable, by
applying Lemma 1 |S1| times. Then δk a MSS that includes δ1, which contradicts
the assumption. This means that every MSS of the initial formula is one of the
biggest ones. Therefore, any MSS of (Σ ∧ χ) is also a solution to the partial
MaxSAT problem (Σ ∧ χ). ��

As a direct consequence of Proposition 1, we can always find a MSS such
that the indexes of the selectors inside it are contiguous. This means that we can
consider an optimisation that reduces the search space (breaks the symmetries),
by adding the following:

(
n−1∧

i=1

¬si → ¬si+1) (1)

By giving as input trs(φ, n) plus S(φ), we can solve the MinS5-SAT problem
with a MaxSAT solver, or a Pseudo Boolean (PB) solver. If we also add Eq. 1
to the input, we can then use a MSS-extractor. However, we demonstrate in
the following section that we can push the envelope by considering a dedicated
approach using an incremental SAT solver with unsatisfiable cores.
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6 Second Insight: Only Core Size Matters

Consider the following example: let φ be the input formula and let dd(φ) + 1 =
10. We translate φ using selectors and start looking for a model for it. Assume
that, after some computation, we conclude that 4 worlds cannot be deactivated
altogether, i.e., if the selectors si, sj , sk and sl are set to false, we have an
inconsistency. We can infer from that information that we will need at least
7 worlds in the S5-model for φ. This comes from the fact that the ‘4 worlds
which cannot be deactivated altogether’ can be, in fact, any group of 4 worlds.
Indeed, in the sequel, we demonstrate that if we have a group of m selectors
forming an unsatisfiable core and the upper-bound equals n, then we need at
least (n − m + 1) worlds in the S5-model of the input formula.

Proposition 2. Let φ ∈ L such that dd(φ) + 1 = n. If C is an UNSAT core of
φ under assumptions S(φ) then trs(φ, n′) is unsatisfiable for all n′ ∈ {1, . . . , (n−
|C|)}.
Lemma 2. If C is an UNSAT core of φ with assumptions S(φ) then any set of
literals C ′ = {¬s | s ∈ S(φ)} such that |C ′| = |C| is an UNSAT core of φ.

Proof. Assume that C is an UNSAT core of φ with assumptions S(φ). We have
that (φ∧∧

l∈C l) is unsatisfiable. Now, towards a contradiction, also assume that
there exists a set C ′ = {¬s | s ∈ S(φ)} such that |C ′| = |C| and (φ ∧ ∧

s∈C ¬s)
is satisfiable. By Lemma 1, we can obtain a new set D from C ′ by replacing
the selectors in C ′ by those in C such that (φ ∧ ∧

s∈D ¬s) is satisfiable. Because
D = C, we have a contradiction. Therefore, any set of literals C ′ obtained as
such is an UNSAT core of φ. ��
Proof (of Proposition 2). The formula has n worlds. The SAT solver returns a
core C of size m. So one of the selector has to be true. But due to Lemma 2,
we have to put at least one selector to true to all the possible unsatisfiable
cores of size m. Said otherwise, we must have (n − m + 1) selectors to be true
together, or the formula will be necessarily unsatisfiable. This also means that
∀b′ ∈ [1 . . . (n − m)] trs(φ, b′) is unsatisfiable. ��
Using this property, it is possible to construct an iterative algorithm which is
based on incremental SAT. The SAT solver will be able to return an unsatisfiable
core, and by interpreting it in the specific case of S5 as explained in Proposition 2,
we can refine the bound used in the translation. The procedure starts by trying
structures of size b = 1. If no model is found, it iterates the process, each time
increasing the value of b by (dd(φ) + 1 − |s| + 1) (where |s| is the size of the
core). It iterates until a model of φ is found or the upper bound dd(φ) + 1 is
reached. Note that |s| strictly decreases at each step, because we strictly increase
the number of satisfied selectors. The approach Dichoc is similar.
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7 Experimental Results

We compared several different approaches to the MinS5-SAT problem: S52SAT
[10] with five different strategies: 1toNc, 1toN, Nto1, Dichoc, Dicho. CNF plus
MaxSAT solver: maxHS-b [31], mscg2015b [32], and MSUnCore [33]. Pseudo-
Boolean (PB) translation plus PB solver: NaPS [34], SAT4J-PB [35], SCIP [36].
CNF plus symmetry breaking plus MCS extraction with the LBX solver [37].

To see the impact of our minimisation, we use the state-of-the-art modal
logic S5 solver S52SAT with glucose (4.0) as embedded SAT solver [29] (with its
caching activated). We selected MaxSAT solver which have shown good perfor-
mances in the MaxSAT competition 2016 [38]. We also considered LMHS-2016
[39] but, unfortunately, we did not manage to compile it due its multiple links
to other software and our configuration environment.

Despite our through research, we could not find benchmarks for modal logic
S5. Due to this fact, we chose to use the following benchmarks for modal logics
K, KT and S4: TANCS-2000 modalised random QBF (MQBF) formulae [40]
complemented by additional MQBF formulae provided by [41]; LWB K, KT and
S4 formulae [42], with 56 formulae chosen from each of the 18 parametrized
classes, generated from the script given by the authors of [9]; and Randomly
generated 3CNFKSP formulae [43] of modal depths 1 and 2. The benchmarks
are classified as SAT or UNSAT in [9,42]. However, we kept only the benchmarks
satisfied in their original logic to see the impact of a potential use of a S5-
solving as a preprocessor for other modal logics. We have no interest with the
UNSAT benchmarks because the unsatisfiability in K,KT and S4 implies the
unsatisfiability in S5. We also proposed new benchmarks based on planning
with uncertainties in the initial states, to check the performance of the different
approaches on structured benchmarks. In such planning problems, some fluent
f may be initially true, initially false, or neither. I the latter case, two different
initial situations are possible. As a result, instead of a single initial state s0,
we may have several different initial states, which are consistent with available
knowledge about the system (see [23] for more details and applications). By
construction, all instances considered here have a plan to minimize. Modal logic
S5 formulas are generated with a CEGAR approach [44]. We increase the value
of the bounded-horizon until we reach the smallest value for which there exists
a plan as explained in [45].

We performed experimental evaluations on a variety of planning benchmarks.
It includes the traditional conformant benchmarks, namely: Bomb-in-the-toilet,
Ring, Cube, Omelet and Safe (see [46] for more details) modeled here as planning
with uncertainties in the initial state. We also performed evaluations on classi-
cal benchmarks: Blocksworld, Logistics, and Grid, in which the authors of [47]
introduced uncertainty about the initial state. All the benchmarks are available
for download1.

To select the “minimalizable” benchmarks, we set a time-out of 1500 s. We
managed to solve 28 benchmarks out of the 119 available. We tried other solvers:

1 https://fai.cs.uni-saarland.de/hoffmann/ff/cff-tests.tgz.

https://fai.cs.uni-saarland.de/hoffmann/ff/cff-tests.tgz
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Spartacus [48] solved 15 instances and SPASS [49] solved 5, with both being a
subset of the 28 solved by S52SAT. Our generator has negligible execution times
and is available for download2. Each of these benchmarks has a plan of size N
(where N can be different for each benchmark) which has been verified. We then
generated modal logic benchmarks from these instances by fixing the horizon at
N , N + 1, . . . , N + 9 having thus 280 benchmarks, all S5-satisfiable, to test our
minimisation techniques.

The benchmarks and the different solvers (especially S52SAT, which is the
one translating the formulas into propositional logic) are available3. The exper-
iments ran on a cluster of Xeon 4 cores, 3.3 GHz, running CentOS 6.4. The
memory limit is set to 32 GB and the runtime limit is set to 900 s per solver per
benchmark. In the following tables, we provide the number of benchmarks for
which a minimal S5 model is found. In bold face, the best result for each row/-
column. The VBS (Virtual Best Solver) represents the union of the benchmarks
solved by all the approaches.

7.1 State-of-the-Art Modal Logics Benchmarks

Logic WorkBench (LWB) Benchmarks. All the results are reported in the
Table 1. The difference in the results between the approaches using S52SAT and
the MaxSAT solvers came from the fact that MaxSAT solvers cannot take into
account inherent properties of modal logic S5. They have embedded cardinality
constraints used to count the number of satisfied/falsified clauses to return the
smallest model. By comparing the results of 1toN and 1toNc in number of bench-
marks solved, one could think that selectors do not make much difference. But
the runtime provides a different picture, as in the scatter plot depicted in Fig. 1.
The x-axis corresponds to the time used by 1toNc while the y-axis corresponds
to the time used by 1toN to solve these problems. As expected, 1toNc performs
less iterations and thus calls the SAT solver fewer times. We remark that the
solver took less than 10 s for the majority of the instances. It turns out that
it makes sense to consider this approach as a pre-processing for a more generic
minimal modal logic SAT solver (eg., for logics K, KT and S4). Indeed if we find
a minimal model in S5, we obtain in the same way an upper-bound on the size
of the minimal model in K, KT and S4.

3CNFKSP Benchmarks. The randomly generated 3CNFKSP formulae [43]
of depths 1 and 2 consist of 1000 formulae, where 457 are satisfiable in modal
logic K and 89 are satisfiable in S5. All the results are reported in the Table 2.
As for LWB, 1toN and Dicho are better than Nto1 because the minimal models
found are relatively small. It is interesting to notice that the modal depth of the
formulas influences the result. This is surprising due to the fact that, in S5, all
formulae can be reduced to modal depth 1. In fact, many instances with modal
depth 2, that are SAT in modal logic K, are UNSAT in modal logic S5.

2 http://www.cril.fr/∼montmirail/planning-to-s5/.
3 http://www.cril.fr/∼montmirail/s52SAT.

http://www.cril.fr/~montmirail/planning-to-s5/
http://www.cril.fr/~montmirail/s52SAT
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Table 1. #Instances solved in
LWB

Method
# benchs

K
(185)

KT
(279)

S4
(160)

Total
(624)

1toN 185 279 160 624
Nto1 17 34 2 53
Dicho 119 175 78 372
1toNc 185 279 160 624
Dichoc 135 201 100 436
maxHS 17 25 72 114
MSCG 74 65 103 242
MSUn
Core

19 30 80 129

NaPS 126 64 71 261
SAT4J 18 27 58 103
SCIP 104 158 112 374
LBX 118 173 92 383
VBS 185 279 160 624

Fig. 1. Scatter-plot of 1toN vs 1toNc

Randomly Modalized QBF (MQBF) Benchmarks. Originally, this bench-
mark set contains 1016 formulas, among them 617 are SAT while 399 are UNSAT
in K. All the results are reported in the Table 3. Dicho, Dichoc, 1toN and 1toNc

approaches are better than the other ones. Moreover, it is interesting to see that
the whole qbf family is in fact S5-satisfiable, even though they are normally used
to evaluate modal logic K solvers. It is worth noticing that the performance of
a MaxSAT or a PB approach are globally worse than the MSS-extraction app-
roach. However, if we add the symmetry breaking from Eq. 1 then the perfor-
mances become equivalent.

Structured Benchmarks: Planning with Uncertainties. As in the random
and crafted benchmarks before, we can see in Fig. 2c that the use of selectors
allows us to solve more benchmarks. But, surprisingly, here the best approach is
to use a dichotomic search instead of a linear search from 1 to N. This is mainly
due to the size of the smallest model, which is rarely a small number, as it was
the case in LWB for example. Moreover, each call to the SAT solver is more
time-consuming because the instances are harder to solve in practice. This again
reminds us that the benchmarks considered can influence the result obtained.

Minimization Overhead. We can see on Fig. 2a that it requires only an accept-
able over-head computation to get the smallest model possible instead of the first
one returned by the solver (from less than 10 s to less than 40 s). On the other
hand, as we can see on Fig. 2b the minimization can reduce drastically the size of
the returned model. Moreover, we can also see the structural difference between
randomly generated instances, that can finally be solved with only few worlds,
and ‘real-world’ applications instances that need a larger number of worlds to be
solved. There is also a gain against other solvers able to output a model (Fig. 2d),
such as Spartacus [48]. Note that we could only compare Spartacus models on
planning problems because Spartacus is dedicated to modal logics K, KT and
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Table 2. #instances solved 3CNFKSP

Benchs 1toN Nto1 Dicho 1toNc Dichoc maxHS MSCG MSUnCore NaPS SAT4J SCIP LBX VBS

md=1 (62) 55 0 26 62 40 40 30 38 42 35 42 47 62

md=2 (27) 17 0 9 27 17 12 12 12 17 12 20 17 27

Total (89) 72 0 35 89 57 52 42 50 59 47 62 64 89

Table 3. #instances solved in MQBF

Benchs 1toN Nto1 Dicho 1toNc Dichoc maxHS MSCG MSUnCore NaPS SAT4J SCIP LBX VBS

qbf (56) 56 55 56 56 56 56 56 56 55 48 56 56 56

qbfS (171) 171 0 171 171 171 0 156 0 144 140 155 167 171

Total (227) 227 55 227 227 227 56 212 56 199 188 211 223 227

(a) S52SAT vs S52SAT-1toNc (time) (b) S52SAT vs S52SAT-1toNc (size)

Method block bomb cube omelet ring safe Total
# Benchs (20) (30) (100) (30) (40) (60) 280
1toN 10 25 100 0 40 0 175
Nto1 5 10 20 0 20 0 55
Dicho 20 20 70 0 40 0 150

1toNc 20 25 100 10 40 30 225
Dichoc 20 30 100 18 40 34 242

maxHS 17 22 82 0 40 5 166
MSCG 20 25 72 0 40 4 161
MSUnCore 10 22 68 0 38 0 138

NaPS 20 30 74 2 40 8 174
SAT4J 20 20 58 0 33 0 131
SCIP 20 30 100 5 40 10 200

LBX 12 26 79 0 40 0 157

VBS 20 30 100 18 40 34 242

(c) #instances solved in Planning

(d) Spartacus vs S52SAT-1toNc (size)

Fig. 2. Results on planning and analysis of the overhead

S4, not S5. However, on those specific benchmarks, since the modal depth is one
and all K-models on those benchmarks are S5 models, we can compare their size.
Note also that Spartacus outputs an open-saturated tableau (which indicates the
existence of a model) and not a full model which should be even larger (see [50]
for more details).
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8 Conclusion

We defined in this article a new optimisation problem that we call the minimal S5
satisfiability problem (MinS5-SAT). It is the problem of finding the smallest S5-
model w.r.t. the number of possible worlds. We demonstrated that this problem
can be reduced to the problem of extracting a Maximal Satisfiability Set of
clauses (MSS) and thus, can be solved with a MSS-extractor or one of the state-
of-the-art PB or MaxSAT solvers. We also showed that, thanks to an inherent
property of modal logic S5, this problem can also be solved using unsatisfiable
cores in an incremental SAT procedure. The latter approach is the one that
obtained the best performance in our experiments.

We applied these different techniques to various benchmarks: randomly gen-
erated formulas and also formulas expressing planning with uncertainties prob-
lems. Experimental results showed that the best technique for one set of bench-
marks is not necessarily the best technique for the other, reminding us the impor-
tance of the choice of benchmarks in experimental evaluations. The technique
used obtained huge gains in the size of the output models, when compared to
the other approaches that do not try minimisation. In addition, the overhead
imposed by the minimisation is acceptable. Therefore, we believe that finding
minimal models for modal logic formulas is an interesting task. We can also
mention that smaller models are more user-friendly, they permit to speedup
the model checking phase and, in addition, some real-applications may prefer
“smaller solutions” (smaller plans, for instance).

One possible future work is the application of these techniques to other NP-
complete modal logics such as KD45 which is the belief counterpart of S5. More-
over, one could also try to solve the Minimal Satisfiability Problem without the
use of a SAT solver, e.g. To compute the auto-bisimilar of a model retured by a
Tableau proved such as Spartacus [48]. Also, one could try to solve the more gen-
eral Minimal Modal Logic Satisfiability Problem (MinML-SAT), for which the
standard satisfiability problem is typically PSPACE-hard. For instance, it would
be interesting to try to filter the Minimal modal logic K satisfiability problem
with the Minimal S5 satisfiability problem. It is known that satisfiability in S5
entails the satisfiability in K. If one finds a minimal S5-model of size n for a
formula φ then the minimal K-model for φ has at most n possible worlds. This
insight may help improving a naive search for the minimal K-model, because the
only known bound b for modal logic K is an exponential function on the length
the input formula.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
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Abstract. In this paper, we describe a high-performance reasoning tool,
called Fame, for semantic forgetting in expressive description logics. For-
getting is a non-standard reasoning service that seeks to create restricted
views of ontologies by eliminating concept and role names from ontolo-
gies in such a way that all logical consequences up to the remaining
signature are preserved. Fame is a Java-based implementation of an
Ackermann-based method for forgetting concept and role names from
ontologies expressible in the description logic ALCOIH. ALCOIH is
the extension of the basic description logic ALC with nominals, inverse
roles and role inclusions. Fame can be used as a standalone tool or a
Java library for forgetting or related tasks. Results of an evaluation of
Fame on a corpus of 396 biomedical ontologies have shown that: (i) in
more than 90% of the test cases Fame was successful (i.e., eliminated
all specified concept and role names) and (ii) the elimination was done
within one second in more than 70% of the successful cases.

1 Introduction

Ontologies, exploiting description logics as the representational underpinning,
provide a logic-based data model for knowledge representation thereby support-
ing effective reasoning of domain knowledge for a range of real-world appli-
cations, most evidently for applications in life sciences, text mining and the
semantic web. However, with their growing utilisation, not only has the number
of available ontologies increased considerably, but they are often large in size
and are becoming more complex to manage. Capturing domain knowledge in
the form of ontologies is moreover labour-intensive work. There is therefore a
strong demand for techniques and automated tools for creating restricted views
of ontologies. Forgetting is a non-standard reasoning service that seeks to create
restricted views of ontologies by eliminating concept and role names from ontolo-
gies in such a way that complete information is preserved up to the remaining
signature. Forgetting allows users to focus on specific parts of ontologies that
can be easily reused, or to zoom in on ontologies for in-depth analysis of cer-
tain subparts. It is also useful for information hiding, ontology summarisation,
explanation generation (abduction), ontology debugging and repair, as well as
computing the logical difference between ontology versions [3–5,8,10].
c© Springer International Publishing AG, part of Springer Nature 2018
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Forgetting can be defined in two closely related ways; it can be defined syn-
tactically as the dual of uniform interpolation [5] and it can be defined model-
theoretically as semantic forgetting [10,13]. The two notions differ in the sense
that uniform interpolation preserves all logical consequences up to certain names,
whereas semantic forgetting preserves equivalence up to certain names. Hence,
semantic solutions are in general stronger than the uniform interpolants; they
often require the target language to be extended to express them.

Fame is the first automated tool for semantic forgetting in description log-
ics. It is a Java-based implementation of a semantic forgetting method devel-
oped in our recent work [11,12]. Being based on non-trivial generalisations of a
monotonicity property, namely, Ackermann’s Lemma [1], the method can elimi-
nate concept and role names from ontologies expressible in the description logic
ALCOIH, i.e., the basic ALC extended with nominals, inverse roles and role
inclusions. The universal role � and role conjunction � are included in the tar-
get language, making the language more expressive to represent the forgetting
solutions. For example, the semantic solution of forgetting the role name r from
the ontology {A1 � ∃r.B1, A2 � ∀r.¬B1} is {A1 � ∃�.B1, A1 � A2 � ⊥}, whereas
the uniform interpolant is {A1 � A2 � ⊥}, which is weaker.

The current version of Fame includes several significant improvements, as
well as a number of minor ones, over the prototypes used in [11,12]. It has
been evaluated on a corpus of biomedical ontologies, including SNOMED CT and
NCIT, with the results showing that: (i) in more than 90% of the test cases Fame
was successful (i.e., eliminated all specified concept and role names) and (ii) the
elimination was done within one second in more than 70% of the successful cases.

In this paper, we describe the top-level design of Fame, the main algorithm
used by Fame, and details of an evaluation on a corpus of biomedical ontologies.

2 Semantic Forgetting for ALCOIH
Let NC, NR and NI be countably infinite and pairwise disjoint sets of concept
names, role names and individual names, respectively. Roles in ALCOIH(�,�)
can be a role name r ∈ NR, the inverse r− of a role name r, the universal role �, or
a conjunction of a finite number of role names. Concepts in ALCOIH(�,�) can
be of the following forms: � | ⊥ | a | A | ¬C | C�D | C�D | ∃R.C | ∀R.C, where
a ∈ NI, A ∈ NC, C and D are any concepts and R is any role. The forgetting
method used by Fame works with TBox and ABox axioms in clausal normal
form. A TBox literal is a concept of the form a, ¬a, A, ¬A, ∃R.C, or ∀R.C. A
TBox clause is a disjunction of a finite number of TBox literals. An RBox atom
is a role name, an inverted role name, or the universal role. An RBox clause is a
disjunction of an RBox atom and a negated RBox atom. TBox and RBox clauses
are obtained from (TBox and RBox) axioms using the standard clausal normal
form transformation, where in the case of role axioms role negation is introduced.
Let S ∈ NC ∪ NR be a designated concept or role name. An occurrence of S is
assumed to be positive (negative) in a clause if it is under an even (odd) number
of negations. The semantics of ALCOIH(�,�) is as expected. For more details
of the logics considered in this paper, we refer the reader to [12]
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Parse into own
data structure Role forgetting

Concept forgettingParse into
Owl/Xml file

Load ontology

Save ontology

Fig. 1. The top-level design of Fame

By sigC(X) and sigR(X) we denote respectively the sets of the concept names
and role names occurring in X, where X ranges over concepts, clauses, sets of
clauses and ontologies. By sig(X) we denote the union of sigC(X) and sigR(X).

Definition 1 (Semantic Forgetting for ALCOIH). Let O be an ALCOIH-
ontology and let F be a subset of sig(O). An ontology O′ is a semantic solution
of forgetting F from O iff the following conditions hold: (i) sig(O′) ⊆ sig(O)\F
and (ii) for any interpretation I: I |= O′ iff I ′ |= O, for some interpretation I ′

F-equivalent to I, i.e., I and I ′ coincide but differ possibly in the interpretations
of the names in F .

In this paper, the notation F is used to denote the forgetting signature, i.e.,
the set of concept and role names to be forgotten. FC and FR are used to denote
respectively the concept names and role names in F .

3 Implementation

The top-level design of Fame is shown in Fig. 1. Fame uses the OWL API Version
3.5.61 for the tasks of loading, parsing and saving ontologies. The ontology to
be loaded must be specified as an Owl/Xml file, or as a URL pointing to an
Owl/Xml file, but internally Fame uses own data structure for efficiency.

Fame defaults to eliminating role names first because during the role forget-
ting process concept definer names may be introduced (to facilitate the normal-
isation of the input ontology). These definer names, regarded as regular concept
names, can thus be eliminated as part of subsequent concept forgetting. Given an
ALCOIH-ontology O and a forgetting signature F = {r1, . . . , rm, A1, . . . , An},
where ri ∈ sigR(O) (1 ≤ i ≤ m) and Aj ∈ sigC(O) (1 ≤ j ≤ n), the forgetting
process in Fame includes four main phases: (i) the conversion of O into a set of
clauses (clausification), (ii) the role forgetting phase, (iii) the concept forgetting
phase, and (iv) the conversion of the resulting clause set into an ontology O′

(declausification). The role (concept) forgetting phase is an iteration of several

1 http://owlcs.github.io/owlapi/.

http://owlcs.github.io/owlapi/
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Algorithm 1. forget(r sig, c sig, clause set)
Input : a set r sig of role names to be forgotten

a set c sig of concept names to be forgotten
a set clause set of clauses

Output: a set clause set of clauses (after forgetting)
1 do
2 if r sig is empty and c sig is empty then

// clause set does not contain any names in r sig or c sig; in

this case, clause set is a forgetting solution

3 return clause set

4 end
5 initialising final int sig size before to (r sig.size() + c sig.size())
6 initialising Set〈Name: 〉 pure sig to null

// get from r sig and c sig all names that are pure in clause set
7 pure sig := getPureNames(r sig, c sig, clause set)

// apply Purify to clause set to eliminate names in pure sig
8 clause set := purify(pure sig, clause set)

// simplify all axioms in clause set
9 clause set.getSimplified()

10 initialising Set〈Clause〉 sub clause set to null
11 foreach RoleName role in r sig do

// get from clause set all axioms that contain role

12 sub clause set := getSubset(role, clause set)
// remove from clause set all axioms in sub clause set

13 clause set.removeAll(sub clause set);
// attempt to transform sub clause set into r-reduced form

14 sub clause set.getRReducedForm(role, sub clause set);
// check whether sub clause set is in r-reduced form

15 if isRReducedForm(role, role clause set) then

// apply AckermannR to sub clause set to eliminate role

16 sub clause set := ackermann(role, sub clause set)
// simplify all axioms in sub clause set

17 sub clause set.getSimplified()
// add the resulting set sub clause set back to clause set

18 clause set.addAll(sub clause set)
// remove role from r sig

19 r sig.remove(role)
// add all introduced definer names to c sig

20 c sig.addAll(sub clause set.getDefiners())

21 else
// add the unchanged set sub clause set back to clause set

22 clause set.addAll(sub clause set)

23 end
24 Similar for loop over the concept names in the present c sig
25 initialising final int sig size after to (r sig.size() + c sig.size())

26 while sig size before != sig size after
// clause set still contains names in r sig or c sig

27 return clause set
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rounds in which the role (concept) names in F are eliminated. The elimination
is based on the calculi AckR and AckC, described in detail in [12].

The calculus AckR includes four types of rules: (i) two PurifyR rules, (ii) one
AckermannR rule, (iii) two rewriteR rules, and (iv) definer introduction rules.
The PurifyR rules eliminate a role name when the name occurs only positively
or only negatively in the current clause set (i.e., in this case, the name is said to
be pure in the clause set). The AckermannR rule eliminates a role name when the
name occurs both positively and negatively in the current clause set in r-reduced
form, where r is the current role name to be forgotten. The r-reduced form is
a specialised normal form suitable for application of the AckermannR rule. The
rewriteR rules and definer introduction transform a clause set (not in r-reduced
form) into r-reduced form.

The calculus AckC includes three types of rules: (i) two PurifyC rules, (ii) one
AckermannC rule, and (iii) two rewriteC rules. The purifyC rules eliminate a con-
cept name when the name is pure in the current clause set. The AckermannC rule
eliminates a concept name when the name occurs both positively and negatively
in the current clause set in A-reduced form, a specialised normal form suitable
for application of the AckermannC rule, where A is the current concept name to
be forgotten. The rewriteC rules transform a clause set (not in A-reduced form)
into A-reduced form. Note that using the rules in AckR (AckC), a role (concept)
name cannot always be eliminated. This is because there is a gap in the scope
of the rewrite rules: transforming a clause set into r-reduced form or A-reduced
form is not always possible.

The main algorithm used by Fame is shown in Algorithm 1. Fame performs
purification prior to other steps (lines 6–9). This is because the Purify rules do
not require the clause set to be normalised or in reduced form, and they can
be applied at any time (purification is relatively cheap). Moreover, applying the
Purify rules to a clause set often results in numerous syntactic redundancies,
tautologies and contradictions inside the clauses which are immediately simpli-
fied or eliminated, leading to a much reduced set with fewer clauses and fewer
names. The getSubset(S, O) method extracts from the clause set O all axioms
that contain the name S. S can thus be eliminated from this subset, rather than
from the entire set O. Subsequent simplifications are performed on the resulting
subset (i.e., the elimination and the simplification are performed locally). This
significantly reduces the search space and has improved the efficiency of Fame
compared to the early prototypes used in [11,12]. It is found that a name that
could not be eliminated by Fame might become eliminable after the elimination
of another name [12]. We therefore impose a do-while loop on the iterations of
the elimination rounds. The breaking condition checks if there were names elim-
inated during the previous elimination rounds. If so, Fame repeats the iterations
again, attempting to eliminate the remaining names. The loop terminates when
the forgetting signature becomes empty or no names were eliminated during the
previous elimination rounds.
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Table 1. Types of axioms that can be handled by Fame

Type of axiom Representation

TBox SubClassOf(C1 C2) SubClassOf(C1 C2)

EquivalentClasses(C1 C2) SubClassOf(C1 C2), SubClassOf(C2 C1)

DisjointClasses(C1 C2) SubClassOf(C1 ObjectComplementOf(C2))

DisjointUnion(C C1. . . Cn) EquivalentClasses(C ObjectUnionOf(C1. . . Cn))

DisjointClasses(C1. . . Cn)

SubObjectPropertyOf(R1 R2) SubObjectPropertyOf(R1 R2)

EquivalentObjectProperties(R1 R2) SubObjectPropertyOf(R1 R2)

SubObjectPropertyOf(R2 R1)

ObjectPropertyDomain(R C) SubClassOf(ObjectSomeValuesFrom(R owl:Thing), C)

ObjectPropertyRange(R C) SubClassOf(owl:Thing ObjectAllValuesFrom(R C))

ABox ClassAssertion(C a) SubClassOf(a C)

ObjectPropertyAssertion(R a1 a2) SubClassOf(a1 ObjectSomeValuesFrom(R a2))

Table 2. Statistics of ontologies used for evaluation of Fame

Maximum Minimum Mean Median 90th percentile

#(O) 1833761 100 4651 1096 12570

#sigC(O) 847760 36 2110 502 5598

#sigR(O) 1390 0 54 12 144

#sigI(O) 87879 0 216 0 206

What Fame outputs at the end of the forgetting process is an ontology O′

(i.e., a set of TBox and ABox axioms). If O′ does not contain any names in F ,
then Fame was successful and O′ is a solution of forgetting F from O.

4 Evaluation

We evaluated the current version of Fame on a corpus of real-world ontologies
taken from the NCBO BioPortal repository,2 a resource that currently includes
more than 600 ontologies originally developed for clinical research. The reposi-
tory covers a range of topics in biomedicine such as genomics, organology, and
anatomy. Differing in size, structure, and expressivity, the BioPortal ontologies
offer a rich, diverse and realistic test data set for the evaluation of Fame. The
corpus used for our evaluation was based on a snapshot of the repository taken
in March 2017 [9], containing 396 OWL API compatible ontologies.

The expressivity of the ontologies in the snapshot ranges from EL and ALC
to SHOIN and SROIQ. Since Fame can handle ontologies as expressive as

2 https://bioportal.bioontology.org/.

https://bioportal.bioontology.org/
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Table 3. Results of forgetting 10%, 40% and 70% of concept names

Settings Results

#FC (avg) Time (sec) Timeouts Success rate Nominal Clause growth

211 (10%) 0.307 1.8% 94.9% 7.6% -10.3%

844 (40%) 0.895 3.4% 93.4% 17.4% -41.2%

1477 (70%) 1.364 6.6% 90.2% 24.7% -72.4%

Table 4. Results of forgetting 10%, 40% and 70% of role names

Settings Results

#FR (avg) Time (sec) Timeouts Success rate Definer Clause growth

5 (10%) 0.309 0.0% 100.0% 0.0% 0.9%

22 (40%) 0.977 2.5% 97.5% 0.0% 3.5%

38 (70%) 1.891 6.6% 93.4% 0.0% 6.7%

ALCOIH, we adjusted these ontologies to the language of ALCOIH. This
involved easy reformulations as summarised in Table 1, which also lists the types
of axioms that Fame can handle. Concepts not expressible in ALCOIH were
replaced by �. Table 2 shows statistical information about the adjusted ontolo-
gies, where #(O) denotes the number of axioms in the test ontologies, and
#sigC(O), #sigR(O) and #sigI(O) denote respectively the numbers of the con-
cept names, role names and individual names in the test ontologies.

To reflect real-world application scenarios, we evaluated the performance of
Fame for forgetting different numbers of concept names and role names from
each test ontology. In particular, we considered the cases of forgetting 10%, 40%
and 70% of concept names and role names in their signatures. The names to
be forgotten were randomly chosen. The experiments were run on a desktop
computer with an Intel� Coretm i7-4790 processor, four cores running at up to
3.60 GHz and 8 GB of DDR3-1600 MHz RAM. We ran the experiments 100
times on each ontology and averaged the results in order to verify the accuracy
of our findings. A timeout of 1000 seconds was imposed on each run.

The results obtained for forgetting different numbers of concept names from
the ontologies are shown in Table 3. The column headed ‘Success Rate’ shows
that Fame was successful in more than 90% of the test cases (i.e., eliminated all
concept names in F within the timeout). In the cases of forgetting 10% and 40%
of concept names the elimination was done within one second and in the cases of
forgetting 70% the elimination was done within two seconds (on average); see the
Time column. Because of the nature of one rewrite rule in the AckC calculus [12],
fresh nominals might be introduced during the forgetting process. The column
headed Nominal shows that forgetting solutions containing fresh nominals only
occurred in a small number of cases (≤ 25%). Compared to the input ontologies,
there was a decrease in the number of clauses in the forgetting solutions; see the
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Clause Growth column. It can be observed that the forgetting solutions consisted
of fewer clauses when more concept names were forgotten.

The results obtained from forgetting different numbers of role names from
the ontologies are shown in Table 4. The column headed ‘Success Rate’ shows
that Fame was successful in more than 93% of the test cases (i.e., eliminated
all role names in F within the timeout). In the cases of forgetting 10% and 40%
of role names the elimination was done within one second and in the cases of
forgetting 70% of role names the elimination was done within two seconds (on
average). The column headed Definer shows that all introduced definer names
were eliminated from the results in all test cases. Compared to concept forgetting,
(i) an increase in the number of clauses in the forgetting solutions was observed;
see the Clause Growth column, and (ii) when more role names were forgotten,
the forgetting solutions consisted of more clauses.

The most closely related tools to Fame are Lethe [6,7] and the tool devel-
oped by [8]. Both use resolution-based methods to compute uniform interpolants
for ALC TBoxes, and in the case of Lethe several extensions of ALC TBoxes.
A preliminary comparison of a previous version of Fame and Lethe has shown
that Fame is considerably faster than Lethe [2]. The current version of Fame
can be downloaded via http://www.cs.man.ac.uk/∼schmidt/fame/.

Acknowledgements. We would like to thank the EPSRC IAA 204 (AR4MO) and
Babylon Health for funding.
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Abstract. We introduce refutationally complete superposition calculi
for intentional and extensional λ-free higher-order logic, two formalisms
that allow partial application and applied variables. The calculi are
parameterized by a term order that need not be fully monotonic, mak-
ing it possible to employ the λ-free higher-order lexicographic path and
Knuth–Bendix orders. We implemented the calculi in the Zipperposition
prover and evaluated them on TPTP benchmarks. They appear promis-
ing as a stepping stone towards complete, efficient automatic theorem
provers for full higher-order logic.

1 Introduction

Superposition is a highly successful calculus for reasoning about first-order logic
with equality. We are interested in graceful generalizations to higher-order logic:
calculi that, as much as possible, coincide with standard superposition on first-
order problems and that scale up to arbitrary higher-order problems.

As a stepping stone towards full higher-order logic, in this paper we restrict
our attention to a λ-free fragment of higher-order logic that supports partial
application and application of variables (Sect. 2). This formalism is expressive
enough to permit the axiomatization of higher-order combinators such as powτ :
nat → (τ→ τ) → τ→ τ:

pow 0 h ≈ id pow (S n) h x ≈ h (pow n h x)

Conventionally, functions are applied without parentheses and commas, and vari-
ables are italicized. Notice the variable number of arguments to pow and the
application of h. The expressiveness of full higher-order logic can be recovered
by introducing SK-style combinators to represent λ-abstractions and proxies for
the logical symbols [24,32].

A widespread technique to support partial application and application of
variables in first-order logic is to make all symbols nullary and to represent
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 28–46, 2018.
https://doi.org/10.1007/978-3-319-94205-6_3
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application of functions of type τ→ υ by a family of binary symbols appτ,υ. Fol-
lowing this scheme, the higher-order term f (h f) is translated to app(f, app(h, f)),
which can be processed by first-order methods. We call this the applicative encod-
ing. The existence of such a reduction explains why λ-free higher-order terms
are also called “applicative first-order terms.” Unlike for full higher-order logic,
most general unifiers are unique for our λ-free fragment, just as they are for
applicatively encoded first-order terms.

Although the applicative encoding is complete [24] and is employed fruitfully
in tools such as Sledgehammer [9,27], it suffers from a number of weaknesses, all
related to its gracelessness. Transforming all the function symbols into constants
considerably restricts what can be achieved with term orders; for example, argu-
ment tuples cannot be compared using different methods for different symbols.
In a prover, the encoding also clutters the data structures, slows down the algo-
rithms, and neutralizes the heuristics that look at the terms’ root symbols. But
our chief objection is the sheer clumsiness of encodings and their poor integration
with interpreted symbols. And they quickly accumulate; for example, using the
traditional encoding of polymorphism relying on a distinguished binary function
symbol t [8, Sect. 3.3] in conjunction with the applicative encoding, the term S x
becomes t(nat, app(t(fun(nat, nat),S), t(nat, x))).

Hybrid schemes have been proposed to strengthen the applicative encoding:
If a given symbol always occurs with at least k arguments, these can be passed
directly [27]. However, this relies on a closed-world assumption: that all terms
that will ever be compared arise in the input problem. This noncompositionality
conflicts with the need for complete higher-order calculi to synthesize arbitrary
terms during proof search [6]. As a result, hybrid encodings are not an ideal
basis for higher-order automated reasoning. Instead, we propose to generalize the
superposition calculus to intensional and extensional λ-free higher-order logic.
In the extensional version of the logic, the property (∀x. h x ≈ k x) −�→ h ≈ k
holds for all functions h,k of the same type. For each logic, we present two calculi
(Sect. 3). The intentional calculi perfectly coincide with standard superposition
on first-order clauses; the extensional calculi depend on an extra axiom.

Superposition is parameterized by a term order, which prunes the search
space. If we assume that the term order is a simplification order enjoying totality
on ground terms, the standard calculus rules and completeness proof can be lifted
verbatim. The only necessary changes concern the basic definitions of terms
and substitutions. However, there is one monotonicity property that is hard to
obtain unconditionally: compatibility with arguments. It states that s′ � s implies
s′ t � s t for all terms s, s′, t such that s t and s′ t are well typed. We recently
introduced graceful generalizations of the lexicographic path order (LPO) [11]
and the Knuth–Bendix order (KBO) [3] with argument coefficients, but they
both lack this property. For example, given a KBO with g � f, it may well be
that g a ≺ f a if f has a large enough multiplier on its argument.

Our calculi are designed to be refutationally complete for such nonmonotonic
orders (Sect. 4). To achieve this, they include an inference rule for argument con-
gruence, which derives C ∨ s x ≈ t x from C ∨ s ≈ t. The redundancy criterion
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is defined in such a way that the larger, derived clause is not subsumed by the
premise. In the completeness proof, the most difficult case is the one that nor-
mally excludes superposition at or below variables using the induction hypothe-
sis. With nonmonotonicity, this approach no longer works, and we propose two
alternatives: Perform some superposition inferences onto higher-order variables,
or “purify” the clauses to circumvent the issue. We refer to the corresponding
calculi as nonpurifying and purifying. Detailed proofs are included in a technical
report [5], together with more explanations and examples.

The calculi are implemented in the Zipperposition prover [17] (Sect. 5).
We evaluate them on TPTP benchmarks [39,40] and compare them with the
applicative encoding (Sect. 6). We find that there is a substantial cost associated
with the applicative encoding and that the nonmonotonicity is not particularly
expensive.

2 Logic

Refutational completeness of calculi for higher-order logic (also called simple
type theory) is usually stated with respect to Henkin semantics [6,22], in which
the universes used to interpret functions need only contain the functions that
can be expressed as terms. Since the terms of λ-free higher-order logic exclude
λ-abstractions, in “λ-free Henkin semantics” the universes interpreting functions
can be even smaller. Unlike other higher-order logics, there are no comprehen-
sion principles, and we disallow nesting of Boolean formulas inside terms, as a
convenient intermediate step on our way towards full higher-order logic.

Problematically, in a logic with applied variables but without Hilbert choice,
skolemization is unsound, unless we make sure that Skolem symbols are suitably
applied [28]. We achieve this using a hybrid logic that supports both manda-
tory (uncurried) and optional (curried) arguments. Thus, if symbol sk takes two
mandatory and one optional arguments, sk(x, y) and sk(x, y) z are valid terms.
Nevertheless, as in our earlier work [3,11], we use the adjective “graceful” in the
strong sense that we can exploit optional arguments, identifying the first-order
term f(x, y) with the curried higher-order term f x y.

A type τ, υ of λ-free higher-order logic is either an element ι of a fixed set of
atomic types or a function type τ→ υ of functions from type τ to type υ. In our
hybrid logic, a type declaration for a symbol is an expression of the form τ̄n ⇒ τ
(or simply τ if n = 0). We write ān or ā to abbreviate the tuple (a1, . . . , an) or
product a1 × · · · × an, for n ≥ 0.

We fix a set V of typed variables, denoted by x : τ or x. A signature consists
of a nonempty set Σ of symbols with type declarations, written as f : τ̄⇒ τ or f.
We reserve the letters s, t, u, v for terms and x, y, z for variables and write : τ to
indicate their type. The set of λ-free higher-order terms T X

Σ over X is defined
inductively. Every variable in X ⊆ V is a term. If f : τ̄n ⇒ τ and ui : τi for all
i ∈ {1, . . . , n}, then f(ūn) : τ is a term. If t : τ → υ and u : τ, then t u : υ is a
term, called an application. Non-application terms ζ are called heads. Terms can
be decomposed in a unique way as a head ζ applied to zero or more arguments:
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ζ s1 . . . sn or ζ s̄n (abusing notation). Substitution and unification are generalized
in the obvious way, without the complexities associated with λ-abstractions; for
example, the most general unifier of x b z and f a y c is {x �→ f a, y �→ b, z �→ c},
and that of h (f a) and f (h a) is {h �→ f}.

Formulas ϕ, ψ are of the form ⊥, �, ¬ϕ, ϕ∨ψ, ϕ∧ψ, ϕ −�→ ψ, t ≈τ s, ∀x. ϕ, or
∃x. ϕ, where t, s are terms and x is a variable. We let s �≈ t abbreviate ¬ s ≈ t.
We normally view equations s ≈ t as unordered pairs and clauses as multisets of
such (dis)equations.

Loosely following Fitting [20], an interpretation J = (U,E , J ) consists of a
type-indexed family of nonempty sets Uτ, called universes; a family of functions
Eτ,υ : Uτ→υ → (Uτ → Uυ), one for each pair of types τ, υ; and a function J that
maps each symbol with type declaration τ̄n ⇒ τ to an element of Uτn → Uτ. An
interpretation is extensional if Eτ,υ is injective for all τ, υ. Both intensional and
extensional logics are widely used. The semantics is standard if Eτ,υ is bijective.
A valuation ξ is a function that maps variables x : τ to elements of Uτ.

For an interpretation (U,E , J ) and a valuation ξ, the denotation of a term
is defined as follows: �x�ξJ = ξ(x); �f(t̄)�ξJ = J (f)(�t̄�ξJ ); �s t�ξJ = E(�s�ξJ )(�t�

ξ
J ). The

truth value �ϕ�ξJ ∈ {0, 1} of a formula ϕ is defined as in first-order logic. The
interpretation J is a model of ϕ, written J |= ϕ, if �ϕ�ξJ = 1 for all valuations ξ.

3 The Inference Systems

We introduce four versions of the superposition calculus, varying along two axes:
intentional versus extensional, and nonpurifying versus purifying. To avoid rep-
etitions, our presentation unifies them into a single framework.

3.1 The Inference Rules

The calculi are parameterized by a partial order � on terms that is well founded,
total on ground terms, and stable under substitutions and that has the subterm
property. It must also be compatible with function contexts, meaning that t′ � t
implies both f(s̄, t′, ū) v̄ � f(s̄, t, ū) v̄ and s t′ ū � s t ū. On the other hand, it
need not be compatible with optional arguments: s′ � s need not imply s′ t � s t.
Function contexts are built around argument subterms, defined as the reflexive
transitive closure of the relation inductively specified by f(s̄) t̄ � si and ζ t̄ � ti for
all i. We write s〈u〉 to indicate that the subterm u of s[u] is an argument subterm.
For example, f and f a are subterms of f a b, but not argument subterms. The
literal and clause orders are defined as multiset extensions in the usual way.

Literal selection is supported. The selection function maps each clause C to
a subclause of C consisting of negative literals. A literal L is (strictly) eligible in
C if it is selected in C or there are no selected literals in C and L is (strictly)
maximal in C.
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We start with the extensional nonpurifying calculus, which consists of
five rules:

D
︷ ︸︸ ︷

D′ ∨ t ≈ t′
C

︷ ︸︸ ︷

C′ ∨ [¬] s〈u 〉 ≈ s′
Sup

(D′ ∨C′ ∨ [¬] s〈t′〉 ≈ s′)σ

C′ ∨ s′ ≈ t′ ∨ s ≈ t
EqFact

(C′ ∨ t �≈ t′ ∨ s ≈ t′)σ

C′ ∨ s �≈ s′
EqRes

C′σ

C′ ∨ s ≈ s′
ArgCong

C′ ∨ s x̄ ≈ s′ x̄

C′ ∨ s x̄ ≈ s′ x̄
PosExt

C′ ∨ s ≈ s′

In the first three rules, σ denotes the most general unifier of the two grayed
terms. For Sup, we assume that D’s and C’s variables have been standardized
apart. For Sup, EqFact, and EqRes, the following standard order conditions
apply on the premises after the application of σ: The last literal in each premise
is eligible and even strictly eligible for positive literals of Sup. For the last literal
of each premise of Sup and the last two literals of the premise of EqFact, the
left-hand sides are not smaller than or equal to (��) the respective right-hand
sides. For Sup, Cσ �� Dσ.

Definition 1. A term of the form x s̄n, for n ≥ 0, jells with a literal t ≈ t′ ∈ D
if t = t̃ ȳn and t′ = t̃ ′ ȳn for some t̃, t̃ ′ and distinct variables ȳn that do not occur
elsewhere in D.

We add the following variable condition as a side condition to Sup, to further
prune the search space, using the naming convention from Definition 1 for t̃ ′:

If u has a variable head x and jells with the literal t ≈ t′ ∈ D, there must
exist a ground substitution θ with tσθ � t′σθ and Cσθ ≺ C′′σθ, where
C′′ = C[x �→ t̃ ′].

This condition generalizes the standard condition that u /∈ V. The two coincide if
C is first-order. In some cases involving nonmonotonicity, the variable condition
effectively mandates Sup inferences at variable positions, but never below.

The last two rules are nonstandard. For ArgCong, s ≈ s′ must be strictly
eligible in the premise, and x̄ is a tuple of fresh variables. For PosExt, s x̄ ≈ s′ x̄
must be strictly eligible in the premise, and x̄ is a tuple of distinct variables
that occur nowhere else in the premise. Furthermore, for every function type
τ → υ occurring in the input problem, we introduce a Skolem symbol diffτ,υ :
(τ→ υ)2 ⇒ τ characterized by the following extensionality axiom: h (diff(h, k)) �≈
k (diff(h, k)) ∨ h ≈ k.

The second calculus is the intensional nonpurifying variant. We obtain
it by removing the PosExt rule and the extensionality axiom and by replacing
the variable condition with “if u ∈ V, there exists a ground substitution θ with
tσθ � t′σθ and Cσθ ≺ C[u �→ t′]σθ.” For monotone term orders, this condition
amounts to u /∈ V.

By contrast, the purifying calculi never perform superposition at variables.
Instead, they rely on purification [14,35] (also called abstraction) to circumvent
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nonmonotonicity. The idea is to rename apart problematic occurrences of a vari-
able x in a clause to x1, . . . , xn and to add purification literals x1 �≈ x, . . . , xn �≈ x
to connect the new variables. We must then purify the initial clauses and all
derived clauses.

In the extensional purifying calculus, the purification pure(C) of clause C
is defined as the result of the following iterative procedure. Consider the literals
of C excluding those of the form y �≈ z. If these literals contain both x ū and x v̄ as
distinct argument subterms, replace all argument subterms x v̄ with xi v̄, where
xi is fresh, and add the purification literal xi �≈ x. This calculus variant contains
the PosExt rule and the extensionality axiom. The conclusion E of each rule is
changed to pure(E), except for PosExt, which preserves purity. Moreover, the
variable condition is replaced by “either u has a non-variable head or u does not
jell with the literal t ≈ t′ ∈ D.”

In the intensional purifying calculus, we define pure(C) iteratively as fol-
lows. Consider the literals of C excluding those of the form y �≈ z. If these literals
contain a variable x both applied and unapplied, replace all unapplied occur-
rences of x in C by a fresh variable xi and add the purification literal xi �≈ x. We
remove the PosExt rule and the extensionality axiom. The variable condition
is replaced by “u /∈ V.” The conclusion C of ArgCong is changed to pure(C);
the other rules preserve purity.

Finally, we impose some additional restrictions on literal selection. In the
nonpurifying variants, a literal may not be selected if x ū is a maximal term
of the clause and the literal contains an argument subterm x v̄ with v̄ �= ū. In
the extensional purifying calculus, a literal may not be selected if it contains a
variable that is applied to different arguments in the clause. In the intensional
purifying calculus, a literal may not be selected if the literal contains an unap-
plied variable that also appears applied in the clause.

3.2 Rationale for the Inference Rules

A key restriction of all four calculi is that they superpose only onto argument
subterms, mirroring the requirement that the term order enjoy compatibility
with function contexts. The ArgCong rule then makes it possible to simulate
superposition onto non-argument subterms. However, in conjunction with the
Sup rule, ArgCong can exhibit an unpleasant behavior, which we call argument
congruence explosion:

g ≈ f
ArgCong

g x ≈ f x h a �≈ b
Sup

f a �≈ b

g ≈ f
ArgCong

g x y z ≈ f x y z h a �≈ b
Sup

f x y a �≈ b

In both cases, the higher-order variable h is effectively the target of a Sup infer-
ence. Such derivations essentially amount to superposition at variable positions
(as shown on the left) or even superposition below variable positions (as shown
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on the right), both of which can be extremely prolific. In standard superposi-
tion, the explosion is averted by the condition on the Sup rule that u /∈ V . In
the extensional purifying calculus, the variable condition tests that either u has
a non-variable head or u does not jell with the literal t ≈ t′ ∈ D, which pre-
vents derivations such as the above. In the corresponding nonpurifying variant,
some such derivations may need to be performed when the term order exhibits
nonmonotonicity for the terms of interest.

In the intensional calculi, the explosion can arise even for monotonic orders,
and it must be tamed by heuristics. The reason is connected to the absence
of the PosExt rule (which would be unsound). The variable condition in the
extensional calculi is designed to prevent derivations such as those shown above,
but since it only considers the shape of the clauses, it might also block Sup
inferences whose side premises do not originate from ArgCong. Consider a
left-to-right LPO [11] instance with precedence h � g � f � b � a, and consider
the following unsatisfiable clause set:

g (x b) x ≈ a g (f b) h �≈ a h x ≈ f x

The only possible inference from these clauses is PosExt, showing its necessity.
It is unclear whether PosExt is necessary for the extensional purifying variant as
well, but our completeness proof suggests that it is. Our proof also suggests that
to achieve refutational completeness, due to nonmonotonicity, we need either
to purify the clauses or to allow some superposition at variable positions, as
mandated by the respective variable conditions. However, we have yet to find an
example that demonstrates the necessity of these measures.

A significant advantage of our calculi over the use of standard superposition
on applicatively encoded problems is the flexibility they offer in orienting equa-
tions. The following example gives two definitions of addition on Peano numbers:

addL 0 y ≈ y addR x 0 ≈ x
addL (S x) y ≈ addL x (S y) addR x (S y) ≈ addR (S x) y

Let addL (S100 0) n �≈ addR n (S100 0) be the negated conjecture. With LPO,
we can use a left-to-right comparison for addL’s arguments and a right-to-left
comparison for addR’s arguments to orient all four equations from left to right.
Then the negated conjecture can be simplified to S100 n �≈ S100 n by rewriting
(demodulation), and ⊥ can be derived with a single inference. If we use the
applicative encoding instead, there is no instance of LPO or KBO that can
orient both recursive equations from left to right. For at least one of the two
sides of the negated conjecture, the rewriting is replaced by 100 Sup inferences,
which is much less efficient, especially in the presence of additional axioms.

3.3 Redundancy Criterion

For our calculi, a redundant (or composite) clause cannot simply be defined as
a clause whose ground instances are entailed by smaller (≺) ground instances of
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existing clauses, because this would make all ArgCong inferences redundant.
Our solution is to base the redundancy criterion on a weaker ground logic in
which argument congruence does not hold. This logic also plays a central role
in our completeness proof, to reason about the nonmonotonicity emerging from
the lack of compatibility with optional arguments.

The weaker logic is defined via an encoding � � of ground hybrid λ-free higher-
order terms into uncurried terms, with � � as its inverse. Accordingly, we refer
to clausal λ-free higher-order logic as the ceiling logic and to its weaker relative
as the floor logic. Essentially, the encoding indexes each symbol occurrence with
its argument count. Thus, �f� = f0 and �f a� = f1(a0). This is enough to disable
argument congruence; for example, {f ≈ g, f a �≈ g a} is unsatisfiable, whereas
its encoding {f0 ≈ g0, f1(a0) �≈ g1(a0)} is satisfiable. For clauses built from fully
applied ground terms, the two logics are isomorphic, as we would expect from a
graceful generalization.

Given a signature Σ in the ceiling logic, we define a signature Σ↓ in the floor
logic as follows. For each higher-order type τ, we introduce an atomic type �τ�
in the floor logic. For each symbol f : τ̄k ⇒ τk+1 → · · · → τn → υ in Σ, where
υ is atomic, we introduce symbols fm : �τ̄m� ⇒ �τm+1 → · · · → τn → υ� for
m ∈ {k, . . . , n}. The translation of ground terms is given by �f(ūk) uk+1 . . . um� =
fm(�ūm�). We extend this mapping to literals and clauses by applying it to each
side of a literal and to each literal of a clause. Using � �, the clause order � can
be transferred to the floor logic by defining t � s as equivalent to �t� � �s�. The
property that � on clauses is the multiset extension of � on literals, which in
turn is the multiset extension of � on terms, is maintained because � � maps the
multiset representations elementwise.

Crucially, argument subterms in the ceiling logic correspond to argument
subterms in the floor logic, whereas non-argument subterms in the ceiling logic
are not subterms at all in the floor logic. Well-foundedness, totality on ground
terms, compatibility with all contexts, and the subterm property hold for � in
the floor logic.

In standard superposition, redundancy relies on the entailment relation |=
on ground clauses. We define redundancy of ceiling clauses in the same way, but
using the floor logic’s entailment relation: A ground ceiling clause C is redundant
with respect to a set of ceiling ground clauses N if �C� is entailed by clauses from
�N� that are smaller than �C�. This notion of redundancy gracefully generalizes
the first-order notion without making all ArgCong inferences redundant.

For Sup, EqFact, and EqRes, we can use the more precise notion of redun-
dancy of inferences instead of redundancy of clauses, a ground inference being
redundant if the conclusion follows from existing clauses that are smaller than
the largest premise. For ArgCong and PosExt, we must use redundancy of
clauses.

3.4 Skolemization

A problem expressed in λ-free higher-order logic must be transformed into clausal
normal form before the calculi can be applied. This process works as in the
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first-order case, except for skolemization. The issue is that skolemization, when
performed naively, is unsound for λ-free higher-order logic with a Henkin seman-
tics. For example, given f : τ→ υ, the formula (∀y. ∃x. f x ≈ y) ∧ (∀z. f (z a) �≈ a)
has a model with Uτ = Uυ that interprets f as the identity function and ensures
that none of the functions in the image of Eυ,τ map J (a) to J (a). Yet, naive
skolemization would yield the clause set {f (sk y) ≈ y, f (z a) �≈ a}, whose unsat-
isfiability can be shown by taking y := a and z := sk. The crux of the issue is
that sk denotes a new function that can be used to instantiate z.

Inspired by Miller [28, Sect. 6], we adapt skolemization as follows. An existen-
tially quantified variable x : τ in a context with universally quantified variables
x̄n of types τ̄n is replaced by a fresh symbol sk : τ̄n ⇒ τ applied to the tuple x̄n.
For the example above, we obtain {f (sk(y)) ≈ y, f (z a) �≈ a}. Syntactically, z
cannot be instantiated by sk, which is not even a term. Semantically, the clause
set is satisfiable because we can have J (sk)(J (a)) = J (a) even if the image of Eτ,τ
contains no such function.

4 Refutational Completeness

The proof of refutational completeness of the four calculi introduced in Sect. 3.1
follows the same general idea as for standard superposition [2,42]. Given a clause
set N �� ⊥ saturated up to redundancy, we construct a term rewriting system R
based on the set of ground instances GΣ(N). From R, we define an interpretation.
We show, by induction on the clause order, that this interpretation is a model
of GΣ(N) and hence of N.

To circumvent the term order’s potential nonmonotonicity, our Sup inference
rule only considers the argument subterms u of a maximal term s〈u〉. This is
reflected in our proof by the reliance of the floor logic from Sect. 3.3. In that logic,
the equation g0 ≈ f0 cannot be used directly to rewrite the clause g1(a0) �≈ f1(a0);
instead, we first need to apply ArgCong to derive g1(x) ≈ f1(x) and then use
that equation. The floor logic is a device that enables us to reuse the traditional
model construction almost verbatim, including its reliance on a first-order term
rewriting system.

Following the traditional proof, we obtain a model of �GΣ(N)�. Since N is
saturated up to redundancy with respect to ArgCong, the model �GΣ(N)� can
easily be turned into a model of GΣ(N) by conflating the interpretations of the
members fk, . . . , fn of a same symbol family. For this section, we fix a set N �� ⊥ of
λ-free higher-order clauses that is saturated up to redundancy. For the purifying
calculi, we additionally require that all clauses in N are purified. To avoid empty
Herbrand universes, we assume that the signature Σ contains, for each type τ,
a symbol of type τ.

4.1 Candidate Interpretation

The construction of the candidate interpretation is as in the first-order proof,
except that it is based on �GΣ(N)�. We first define sets of rewrite rules EC and



Superposition for Lambda-Free Higher-Order Logic 37

RC for all C ∈ �GΣ(N)� by induction. Assume that ED has already been defined
for all D ∈ �GΣ(N)� with D ≺ C. Then RC =

⋃

D≺C ED. Let EC = {s → t} if the
following conditions are met: (a) C = C′ ∨ s ≈ t; (b) s ≈ t is strictly maximal
in C; (c) s � t; (d) C is false in RC; (e) C′ is false in RC ∪ {s → t}; and (f)
s is irreducible with respect to RC . Otherwise, EC = ∅. Finally, R∞ =

⋃

D ED.
A rewrite system R defines an interpretation T ∅

Σ /R such that for every ground
equation s ≈ t, we have T ∅

Σ /R |= s ≈ t if and only if s ↔∗
R t. Moreover, T ∅

Σ /R is
term-generated. To lighten notation, we will write R to refer to both the term
rewriting system R and the interpretation T ∅

Σ /R.

4.2 Lifting Lemmas

Following Waldmann’s version of the first-order proof [42], we proceed by lift-
ing inferences from the ground to the nonground level. We also need to lift
ArgCong. A complication that arises when lifting purifying inferences is that
the nonground conclusions may contain purification literals (corresponding to
applied variables) not present in the ground conclusions. Given an inference I
of the form C̄ � pure(E), we refer to the ground instances of C̄ � E as ground
instances of I up to purification.

Lemma 2 (Lifting of non-Sup inferences). Let Cθ ∈ GΣ(N), where θ is a
substitution and the selected literals in C ∈ N correspond to those in Cθ. Then
every EqRes or EqFact inference from Cθ and every ground instance of an
ArgCong inference from Cθ is a ground instance of an inference from C up to
purification.

The conditions of the lifting lemma for Sup differ slightly from the first-order
version. For standard superposition, the lemma applies if the superposed term is
not at or under a variable. This condition is replaced by the following criterion.

Definition 3. We call a ground Sup inference from Dθ and Cθ liftable if the
superposed subterm in Cθ is not under a variable in C and the corresponding
variable condition holds for D and C.

Lemma 4 (Lifting of Sup inferences). Let Dθ,Cθ ∈ GΣ(N) where the
selected literals in D ∈ N and C ∈ N correspond to those in Dθ and Cθ, respec-
tively. Then every liftable Sup inference between Dθ and Cθ is a ground instance
of a Sup inference from D and C up to purification.

4.3 Main Result

The candidate interpretation R∞ is a model of �GΣ(N)�. Like in the first-order
proof, this is shown by induction on the clause order. For the induction step,
we fix some clause �Cθ� ∈ �GΣ(N)� and assume that all smaller clauses are true
in RCθ. We distinguish several cases, most of which amount to showing that Cθ
can be used in a certain inference. Then we deduce that �Cθ� is true in RCθ to
complete the induction step.
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The next two lemmas are slightly adapted from the first-order proof. The jus-
tification for Lemma 5, about liftable inferences, is essentially as in the first-order
case. The proof of Lemma 6, about nonliftable inferences, is more problematic.
The standard argument involves defining a substitution θ′ such that Cθ′ and
Cθ are equivalent and Cθ′ ≺ Cθ. But due to nonmonotonicity, we might have
Cθ′ � Cθ, blocking the application of the induction hypothesis. This is where
the variable conditions, purification, and the PosExt rule come into play.

Lemma 5. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in
C ∈ N correspond to those in Dθ and Cθ, respectively. We consider a liftable
Sup inference from Dθ and Cθ or an EqRes or EqFact inference from Cθ.
Let E be the conclusion. Assume that Cθ and Dθ are nonredundant with respect
to GΣ(N). Then �E� is entailed by clauses from �GΣ(N)� that are smaller than
�Cθ�.
Lemma 6. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in
C ∈ N correspond to those in Dθ and Cθ, respectively. We consider a nonliftable
Sup inference from Dθ and Cθ. Assume that Cθ and Dθ are nonredundant with
respect to GΣ(N). Let D′θ be the clause Dθ without the literal involved in the
inference. Then �Cθ� is entailed by ¬�D′θ� and the clauses in �GΣ(N)� that are
smaller than �Cθ�.

Using these two lemmas, the induction argument works as in the first-order
case.

Lemma 7 (Model construction). Let �Cθ� ∈ �GΣ(N)�. We have

(i) E
Cθ� = ∅ if and only if R
Cθ� |= �Cθ�;
(ii) if Cθ is redundant with respect to GΣ(N), then R
Cθ� |= �Cθ�;
(iii) �Cθ� is true in R∞ and in RD for every D ∈ �GΣ(N)� with D � �Cθ�; and
(iv) if Cθ has selected literals, then R
Cθ� |= �Cθ�.

Given a model R∞ of �GΣ(N)�, we construct a model R↑
∞ of GΣ(N). The key

properties are that R∞ is term-generated and that the interpretations of the
members fk, . . . , fn of a same symbol family behave in the same way.

Lemma 8 (Argument congruence). For all ground terms fm(s̄) and gn(t̄), if
�fm(s̄)�ξR∞ = �gn(t̄)�

ξ
R∞ , then �fm+1(s̄, u)�

ξ
R∞ = �gn+1(t̄, u)�

ξ
R∞ for all u.

The proof relies on the saturation of N up to redundancy with respect to
ArgCong.

Definition 9. Define an interpretation R↑
∞ = (U↑,E↑, J ↑) in the ceiling logic

as follows. Let (U,E , J ) = R∞. Let U↑
τ = U
τ� and J ↑(f) = J (fk), where k is

the number of mandatory arguments of f. Since R∞ is term-generated, for every
a ∈ U
τ→υ�, there exists a ground term s : τ→ υ such that ��s��ξR∞ = a. Without
loss of generality, we write s = f(s̄k) sk+1 . . . sm. Then we have a = �fm(�s̄m�)�ξR∞
and define E↑ by

E↑
τ,υ(a)(b) = J (fm+1)(��s̄m��ξR∞ , b) for all b ∈ Uτ
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It follows that E↑
τ,υ(a)

(

�u�ξR∞

)

= �fm+1(�s̄m�, u)�ξR∞ for any term u. This inter-
pretation is well defined if the definition of E↑ does not depend on the choice of
the ground term s. To show this, we assume that there exists another ground
term t = g(t̄l) tl+1 . . . tn such that ��t��ξR∞ = a. By Lemma 8, it follows from
��s��ξR∞ = ��t��ξR∞ that

�fm+1(�s̄m�, u)�ξR∞ = �gn+1(�t̄n�, u)�ξR∞

indicating that the definition of E↑ is independent of the choice of s.
Since R∞ is a term-generated model of �GΣ(N)�, we can show that R↑

∞ is also
term-generated. And using the same argument as in the first-order proof, we can
lift this result to nonground clauses. For the extensional variants, we also need
to show that R↑

∞ is an extensional interpretation.

Lemma 10 (Model transfer to ceiling logic). R↑
∞ is a term-generated model

of GΣ(N).

Lemma 11 (Model transfer to nonground clauses). R↑
∞ is a model of N.

Lemma 12 (Completeness of the extensionality axioms). If N contains
the extensionality axioms, R↑

∞ is extensional.

We summarize the results of this section in the following theorem.

Theorem 13 (Refutational completeness). Let N be a clause set that is
saturated by any of the four calculi, up to redundancy. For the purifying calculi,
we additionally assume that all clauses in N are purified. Then N has a model if
and only if ⊥ /∈ N. Such a model is extensional if N contains the extensionality
axioms.

5 Implementation

Zipperposition [16,17] is an open source superposition-based theorem prover
written in OCaml.1 It was initially designed for polymorphic first-order logic with
equality, as embodied by TPTP TFF [10]. We will refer to this implementation
as Zipperposition’s first-order mode. Recently, we extended the prover with a
pragmatic higher-order mode with support for λ-abstractions and extensionality,
without any completeness guarantees. Using this mode, Zipperposition entered
the 2017 edition of the CADE ATP System Competition [38]. We have now
also implemented a complete λ-free higher-order mode based on the four calculi
described in this paper, extended with polymorphism.

The pragmatic higher-order mode provided a convenient basis to implement
our calculi. It includes higher-order term and type representations and orders.
Its ad hoc calculus extensions are similar to our calculi. Notably, they include
an ArgCong rule and a PosExt-like rule, and Sup inferences are performed

1 https://github.com/c-cube/zipperposition

https://github.com/c-cube/zipperposition
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only at argument subterms. In the term indexes, which are imperfect (overap-
proximating), terms whose heads are applied variables and λ-abstractions are
treated as fresh variables. This could be further optimized to reduce the number
of unification candidates.

To implement the λ-free mode, we restricted the unification algorithm to
non-λ-terms, and we added support for mandatory arguments to make skolem-
ization sound, by associating the number of mandatory arguments to each sym-
bol and incorporating this number in the unification algorithm. To satisfy the
requirements on selection, we avoid selecting literals that contain higher-order
variables. Finally, we disabled rewriting of non-argument subterms to comply
with our redundancy notion.

For the purifying calculi, we implemented purification as a simplification rule.
This ensures that it is applied aggressively on all clauses, whether initial clauses
from the problem or clauses produced during saturation, before any inferences
are performed.

For the nonpurifying calculi, we added the possibility to perform Sup infer-
ences at variable positions. This means that variables must be indexed as well.
In addition, we modified the variable condition. However, it is in general impos-
sible to decide whether there exists a ground substitution θ with tσθ � t′σθ and
Cσθ ≺ C′′σθ. We overapproximate the condition as follows: (1) check whether
x appears with different arguments in the clause C; (2) use an order-specific
algorithm (for LPO and KBO) to determine whether there might exist a ground
substitution θ and terms ū such that tσθ � t′σθ and tσθ ū ≺ t′σθ ū; and (3) check
whether Cσ �� C′′σ. If these three conditions apply, we conclude that there might
exist a ground substitution θ witnessing nonmonotonicity.

For the extensional calculi, we added a single extensionality axiom based on a
polymorphic symbol diff : ∀α β. (α→ β)2 ⇒ α. To curb the explosion associated
with extensionality, this axiom and all clauses derived from it are penalized by
the clause selection heuristic. We also added a negative extensionality rule that
resembles Vampire’s [21].

Using Zipperposition, we can quantify the disadvantage of the applicative
encoding on the problem given at the end of Sect. 3.2. Well-chosen LPO and
KBO instances allow Zipperposition to derive ⊥ in 4 iterations of the prover’s
main loop and 0.04 s. KBO or LPO with default settings needs 203 iterations
and 0.5 s, whereas KBO or LPO on the applicatively encoded problem needs
203 iterations and almost 2 s.

6 Evaluation

We evaluated Zipperposition’s implementation of our four calculi on TPTP
benchmarks. We compare them with Zipperposition’s first-order mode on the
applicative encoding with and without the extensionality axiom. Our experi-
mental data is available online.2 Since the present work is only a stepping stone

2 http://matryoshka.gforge.inria.fr/pubs/lfhosup data/

http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/
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towards a prover for full higher-order logic, it is too early to compare this pro-
totype to state-of-the-art higher-order provers that support a stronger logic.

We instantiated all variants with LPO [11] (which is nonmonotonic) and KBO
[3] without argument coefficients (which is monotonic). This gives us a rough
indication of the cost of nonmonotonicity. However, when using a monotonic
order, it may be more efficient (and also refutationally complete) to superpose
at non-argument subterms directly instead of relying on the ArgCong rule.

We collected 671 first-order problems in TFF format and 1114 higher-order
problems in THF, both groups containing monomorphic and polymorphic prob-
lems. We excluded all problems containing λ-expressions, the quantifier constants
!! (∀) and ?? (∃), arithmetic types, or the $distinct predicate, as well as problems
that mix Booleans and terms. Figures 1 and 2 summarize, for various configura-
tions, the number of solved satisfiable and unsatisfiable problems within 300 s.
The average time and number of main loop iterations are computed over the
problems that all configurations for the respective logic and term order found to
be unsatisfiable within the timeout. The evaluation was carried out on StarExec
[37] using Intel Xeon E5-2609 0 CPUs clocked at 2.40 GHz.

Our approach targets large, mildly higher-order problems—a practically rele-
vant class of problems that is underrepresented in the TPTP library. The exper-
imental results confirm that our calculi handle first-order problems gracefully.
Even the extensional calculi, which include (graceless) extensionality axioms,
are almost as effective as the first-order mode. This indicates that our calculi
will perform well on mildly higher-order problems, too, where the proving effort
is dominated by first-order reasoning. In contrast, the applicative encoding is
comparatively inefficient on problems that are already first-order. For LPO, the
success rate drops by 16%–18%; for both orders, the average time to show unsat-
isfiability roughly quadruples.

Many of the higher-order problems in the TPTP library are satisfiable for
our λ-free logic, even though they may be unsatisfiable for full higher-order
logic and labeled as such in the TPTP. This is a reason why we postpone a
comparison with state-of-the-art higher-order provers until we have developed
a prover for full higher-order logic. On higher-order problems, the nonpurifying
calculi outperform their purifying relatives. The comparison of the applicative
encoding and the nonpurifying calculi, however, is not entirely conclusive. In the
light of the results of this evaluation, in future work, we would like to collect
benchmarks for large, mildly higher-order problems and to investigate whether
we can weaken the selection restrictions of our calculi.

The nonpurifying calculi perform slightly better with KBO than with LPO.
This confirms our expectations, given that KBO is generally considered the
more robust default option for superposition and that the nonmonotonic LPO
triggers Sup inferences at variable positions—which is the price to pay for
nonmonotonicity.
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Fig. 1. Evaluation of the intensional calculi

Fig. 2. Evaluation of the extensional calculi

7 Discussion and Related Work

Our calculi join a long list of extensions and refinements of superposition. Among
the most closely related is Peltier’s [30] Isabelle formalization of the refutational
completeness of a superposition calculus that operates on λ-free higher-order
terms and that is parameterized by a monotonic term order. Extensions with
polymorphism and induction, developed by Cruanes [16,17] and Wand [43], con-
tribute to increasing the power of automatic provers. Detection of inconsistencies
in axioms, as suggested by Schulz et al. [34], is important for large axiomatiza-
tions. Also of interest is Bofill and Rubio’s [13] integration of nonmonotonic
orders in ordered paramodulation, a precursor of superposition. Their work is a
veritable tour de force, but it is also highly complicated and restricted to ordered
paramodulation. Lack of compatibility with arguments being a mild form of non-
monotonicity, it seemed preferable to start with superposition, enrich it with an
ArgCong rule, and tune the side conditions until we obtained a complete cal-
culus.

Most complications can be avoided by using a monotonic order such as KBO
without argument coefficients, but we suspect that the coefficients will play an
important role to support λ-abstractions. For example, the term λx. x+ x could
be treated as a constant with a coefficient of 2 on its argument and a heavy
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weight to ensure (λx. x + x) y � y + y. LPO can also be used to good effect.
This technique could allow provers to perform aggressive β-reduction in the vast
majority of cases, without compromising completeness.

Many researchers have proposed or used encodings of higher-order logic con-
structs into first-order logic, including Robinson [32], Kerber [24], Dowek et al.
[19], Meng and Paulson [27], and Czajka [18]. Encodings of types, such as those
by Bobot and Paskevich [12] and Blanchette et al. [8], are also crucial to obtain
a sound encoding of higher-order logic. These ideas are implemented in proof
assistant tools such as HOLyHammer and Sledgehammer [9].

Another line of research has focused on the development of automated proof
procedures for higher-order logic. Robinson’s [31] and Huet’s [23] pioneering
work stands out. Andrews [1] and Benzmüller and Miller [6] provide excellent
surveys. The competitive higher-order automatic theorem provers include LEO-
II [7] (based on unordered paramodulation), Satallax [15] (based on a tableau
calculus and a SAT solver), AgsyHOL [26] (based on a focused sequent calcu-
lus and a generic narrowing engine), and Leo-III [36] (based on a pragmatic
extension of superposition with no completeness guarantees). The Isabelle proof
assistant [29] and its Sledgehammer subsystem also participate in the higher-
order division of the CADE ATP System Competition [38].

Zipperposition is a convenient vehicle for experimenting and prototyping
because it is easier to understand and modify than highly-optimized C or C++
provers. Our middle-term goal is to design higher-order superposition calculi,
implement them in state-of-the-art provers such as E [33], SPASS [44], and
Vampire [25], and integrate these in proof assistants to provide a high level
of automation. With its stratified architecture, Otter-λ [4] is perhaps the clos-
est to what we are aiming at, but it is limited to second-order logic and offers
no completeness guarantees. In preliminary work supervised by Blanchette and
Schulz, Vukmirović [41] has generalized E’s data structures and algorithms to
λ-free higher-order logic, assuming a monotonic KBO [3].

8 Conclusion

We presented four superposition calculi for intensional and extensional λ-free
higher-order logic and proved them refutationally complete. The calculi nicely
generalize standard superposition and are compatible with our λ-free higher-
order LPO and KBO. Our experiments partly confirm what one would naturally
expect: that native support for partial application and applied variables outper-
forms the applicative encoding.

The new calculi reduce the gap between proof assistants based on higher-
order logic and superposition provers. We can use them to reason about arbitrary
higher-order problems by axiomatizing suitable combinators. But perhaps more
importantly, they appear promising as a stepping stone towards complete, highly
efficient automatic theorem provers for full higher-order logic.
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Abstract. Codd’s rule of entity integrity stipulates that every table
in a database has a primary key. Hence, the attributes that form the
primary key carry no missing information and have unique value combi-
nations. In practice, data records cannot always meet such requirements.
Previous work has proposed the notion of a key set, which can identify
more data records uniquely when information is missing. Apart from the
proposal, key sets have not been investigated much further. We outline
important database applications, and investigate computational limits
and techniques to reason automatically about key sets. We establish a
binary axiomatization for the implication problem of key sets, and prove
its coNP-completeness. We show that perfect models do not always exist
for key sets. Finally, we show that the implication problem for unary
key sets by arbitrary key sets has better computational properties. The
fragment enjoys a unary axiomatization, is decidable in time quadratic
in the input, and perfect models can always be generated.

1 Introduction

Keys provide efficient access to data in database systems. They are required
to understand the structure and semantics of data. For a given collection of
entities, a key refers to a set of column names whose values uniquely identify
an entity in the collection. For example, a key for a relational table is a set of
columns such that no two different rows have matching values in each of the key
columns. Keys are fundamental for most data models, including semantic mod-
els, object models, XML, RDF, and graphs. They advance many classical areas
of data management such as data modeling, database design, and query opti-
mization. Knowledge about keys empowers us to (1) uniquely reference entities
across data repositories, (2) reduce data redundancy at schema design time to
process updates efficiently at run time, (3) improve selectivity estimates in query
processing, (4) feed new access paths to query optimizers that can speed up the
evaluation of queries, (5) access data more efficiently via physical optimization
such as data partitioning or the creation of indexes and views, and (6) gain new
insight into application data. Modern applications create even more demand for
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keys. Here, keys facilitate data integration, help detect duplicates and anoma-
lies, guide the repair of data, and return consistent answers to queries over dirty
data. The discovery of keys from data sets is a core task of data profiling.

Due to the demand in real-life applications, data models have been extended
to accommodate missing information. The industry standard for data manage-
ment, SQL, allows occurrences of a null marker to model any kind of missing
value. Occurrences of the null marker mean that no information is available about
an actual value of that row on that attribute, not even whether the value exists
and is unknown nor whether the value does not exist. Codd’s principle of entity
integrity suggests that every entity should be uniquely identifiable. In SQL, this
has led to the notion of a primary key. A primary key is a collection of attributes
which stipulates uniqueness and completeness. That is, no row of a relation must
have an occurrence of the null marker on any columns of the primary key and
the combination of values on the columns of the primary key must be unique.
The requirement to have a primary key over every table in the database is often
inconvenient in practice. Indeed, it can happen easily that a given relation does
not exhibit any primary key. This is illustrated by the following example.

Example 1. Consider the following snapshot of data from an accident ward at
a hospital [15]. Here, we collect information about the name and address of a
patient, who was treated for an injury in some room at some time.

room name address injury time
1 Miller ⊥ cardiac infarct Sunday, 19
⊥ ⊥ ⊥ skull fracture Monday, 19
2 Maier Dresden leg fracture Sunday, 16
1 Miller Pirna leg fracture Sunday, 16

Evidently, the snapshot does not satisfy any primary key since each column
features some null marker occurrence, or a duplication of some value.

In response, several researchers proposed the notion of a key set. As the term
suggests, a key set is a set of attribute subsets. Naturally, we call the elements
of a key set a key. A relation satisfies a given key set if for every pair of distinct
rows in the relation there is some key in the key set on which both rows have
no null marker occurrences and non-matching values on some attribute of the
key. The formal definition of a key set will be given in Definition 1 in Sect. 3.
The flexibility of a key set over a primary key can easily be recognized, as a
primary key would be equivalent to a singleton key set, with the only element
being the primary key. Indeed, with a key set different pairs of rows in a relation
may be distinguishable by different keys of the key set, while all pairs of rows
in a relation can only be distinguishable by the same primary key. We illustrate
the notion of a key set on our running example.

Example 2. The relation in Example 1 satisfies no primary key. Nevertheless, the
relation satisfies several key sets. For example, the key set {{room}, {time}} is
satisfied, but not the key set {{room, time}}. The relation also satisfies the key sets
X1 = {{room, time}, {injury, time}} and X2 = {{name, time}, {injury, time}}, as
well as the key set X = {{room,name, time}, {injury, time}}.
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It is important to point out a desirable feature that primary keys and key
sets share. Both are independent of the interpretation of null marker occurrences.
That is, any given primary key and any given key set is either satisfied or not,
independently of what information any of the null marker occurrences represent.
Primary keys and key sets are only dependent on actual values that occur in the
relevant columns. This is achieved by stipulating the completeness criterion. The
importance of this independence is particularly appealing in modern applications
where data is integrated from various sources, and different interpretations may
be associated with different occurrences of null markers.

Given the flexibility of key sets over primary keys, and given their indepen-
dence of null marker interpretations, it seems natural to further investigate the
notion of a key set. Somewhat surprisingly, however, neither the research commu-
nity nor any system implementations have analyzed key sets since their original
proposal in 1989. The main goal of this article is to take first steps into the
investigation of computational problems associated with key sets. In database
practice, one of the most fundamental problems is the implication problem. The
problem is to decide whether for a given set Σ ∪ {ϕ} of key sets, every relation
that satisfies all key sets in Σ also satisfies ϕ. Reasoning about the implication of
any form of database constraints is important because efficient solutions to the
problem enable us to facilitate the processing of database queries and updates.

Example 3. Recall the key sets X1, X2, and X from Example 2. An instance of
the implication problem is whether Σ = {X1,X2} implies the key set ϕ = X , and
another instance is whether Σ implies ϕ′ = {{room}, {name}, {address}, {time}}.

Contributions. Our contributions can be summarized as follows.

– We compare the notion of a key set with other notions of keys. In particular,
primary keys are key sets with just one element, and certain keys are unary
key sets, for which every key is a singleton.

– We illustrate how automated reasoning tools for key sets can facilitate efficient
updates and queries in database systems.

– We establish a binary axiomatization for the implication problem of key sets.
Here, binary refers to the maximum number of premises that any inference
rule in our axiomatization can have. This is interesting as all previous notions
of keys enjoy unary axiomatizations, in particular primary keys. What that
means semantically is that every given key set that is implied by a set of key
sets is actually implied by at most two of the key sets.

– We establish that the implication problem for key sets is coNP -complete.
Again, this complexity is quite surprising in comparison with the linear time
decidability of other notions of keys.

– An interesting notion in database theory is that of Armstrong databases. A
given class of constraints, such as keys, key sets, or other data dependencies
[13], is said to enjoy Armstrong databases whenever for every given set of
constraints in this class there is a single database with the property that
for every constraint in the class, the database satisfies this constraint if and
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only if the constraint is implied by the given set of constraints. This is a
powerful property as multiple instances over the implication problem reduce
to validating satisfaction over the same Armstrong database. Consequently,
the generation of Armstrong databases would create ‘perfect models’ of a
given constraint set, which has applications in the acquisition of requirements
in database practice. We show that key sets do not enjoy Armstrong relations,
as opposed to other classes of keys known from the literature.

– We then identify an expressive fragment of key sets for which the associated
implication problem can be characterized by a unary axiomatization and a
quadratic-time algorithm. The fragment also enjoys Armstrong relations and
we show how to generate them with conservative use of time and space.

Organization. We discuss related work in Sect. 2. Basic notions and notation
are fixed in Sect. 3. Section 4 discusses applications of key sets in the processing
of queries and updates. An axiomatization for key sets is established in Sect. 5.
The coNP -completeness of the implication problem is settled in Sect. 6. The gen-
eral existence of Armstrong relations is dis-proven in Sect. 7. A computationally
friendly fragment of key sets is identified in Sect. 8. We conclude and briefly
discuss future work in Sect. 9.

2 Related Work

We provide a concise discussion on the relationship of key sets with other notions
of keys over relations with missing information.

Codd is the inventor of the relational model of data [4]. He proposed the rule
of entity integrity, which stipulates that every entity in every table should be
uniquely identifiable. In SQL that led to the introduction of primary keys, which
stipulate uniqueness and completeness on the attributes that form the primary
key. The primary key is a distinguished candidate key. We call an attribute set a
candidate key for a given relation if and only if every pair of distinct tuples in the
relation has no null marker occurrences on any of the attributes of the candidate
key and there is some attribute of the candidate key on which the two tuples
have non-matching values. The notions of primary and candidate keys have been
introduced very early in the history of database research [12]. Candidate keys
are singleton key sets, that is, key sets with just one element (namely the can-
didate key). Hence, instead of having to be complete and unique on the same
combination of columns in a candidate key, key sets offer different alternatives
of being complete and unique for different pairs of tuples in a relation. Candi-
date keys were studied in [7]. In that work, the associated implication problem
was characterized axiomatically and algorithmically, the automatic generation
of Armstrong relations was established, and extremal problems associated with
families of candidate keys were investigated. As Example 1 shows, there are rela-
tions on which no candidate key holds, but which satisfy key sets.

Lucchesi and Osborn studied computational problems associated with can-
didate keys [12]. However, their focus was an algorithm that finds all candidate
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keys implied by a given set of functional dependencies. They also proved that
deciding whether a given relation satisfies some key of cardinality not greater
than some given positive integer is NP-complete. Recently, this problem was
shown to be W[2]-complete in the size of the key [2]. The discovery which key
sets hold on a given relation is beyond the scope of this paper and left as an
open problem for future work.

Key sets were introduced by Thalheim [14] as a generalization of Codd’s rule
for entity integrity. He studied combinatorial problems associated with unary
key sets, such as the maximum cardinality that non-redundant families of unary
key sets can have, and which families attain them [13,15]. Key sets were further
discussed by Levene and Loizou [11] where they also generalized Codd’s rule for
referential integrity. Somewhat surprisingly, the study of the implication problem
for key sets has not been addressed by previous work. This is also true for other
automated tasks which require reasoning about key sets.

More recently, the notions of possible and certain keys were proposed [8].
These notions are defined for relations in which null marker occurrences are
interpreted as ‘no information’, and possible worlds of an incomplete relation are
obtained by independently replacing null marker occurrences by actual domain
values (or the N/A marker indicating that the value does not exist). A key is said
to be possible for an incomplete relation if and only if there is some possible world
of the incomplete relation on which the key holds. A key is said to be certain
for an incomplete relation if and only if the key holds on every possible world
of the incomplete relation. For example, the relation in Example 1 satisfies the
possible key p〈room, name, address〉, since the key {room,name,address} holds
on the possible world:

room name address injury time
1 Miller Dresden cardiac infarct Sunday, 19
2 Maier Pirna skull fracture Monday, 19
2 Maier Dresden leg fracture Sunday, 16
1 Miller Pirna leg fracture Sunday, 16

of the relation. In contrast, the key {room,name} is not possible for the relation
because the first and last tuple will have matching values on room and name
in every possible world of the relation. The key {address} is possible, but not
certain, and the key {room,time} is certain for the given relation. Now, it is not
difficult to see that an incomplete relation satisfies the certain key c〈A1, . . . , An〉
if and only if the relation satisfies the key set {{A1}, . . . , {An}}. In this sense,
certain keys correspond to key sets which have only singleton keys as elements.
The papers [8] investigate computational problems for possible and certain keys
with NOT NULL constraints. In the current paper we investigate a different class
of key constraints, namely key sets. In particular, the computationally-friendly
fragment of key sets we identify in Sect. 8 subsumes the class of certain keys as
the special case of unary key sets.

Recently, contextual keys were introduced as a means to separate complete-
ness from uniqueness requirements [16]. A contextual key is an expression (C,X)
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where X ⊆ C. These are different from key sets since X ⊆ C is a key for only
those tuples that are complete on C. In particular, the special case where C = X
only requires uniqueness on X for those tuples that are complete on X. This
captures the UNIQUE constraint of SQL. We leave it as future work to investigate
contextual key sets.

3 Preliminary Definitions

In this section, we give some basic definitions and fix notation.
A relation schema is a finite non-empty set of attributes, usually denoted by

R. A relation r over R consists of tuples t that map each A ∈ R to Dom(A)∪{⊥}
where Dom(A) is the domain associated with attribute A and ⊥ is the unique
null marker. Given a subset X of R, we say that a tuple t is X-total if t(A) �= ⊥
for all A ∈ X. Informally, a relation schema represents the column names of
database tables, while each tuple represents a row of the table, so a relation
forms a database instance. Moreover, Dom(A) represents the possible values
that can occur in column A of a table, and ⊥ represents missing information.
That is, if t(A) = ⊥, then there is no information about the value t(A) of tuple
t on attribute A.

In our running example, we have the relation schema

Ward = {room, name, address, injury, time}.

Each of these attributes comes with a domain, which we do not specify any
further here. Each row of the table in Example 1 represents a tuple. The second
row, for example, is {injury, time}-total, but not total on any proper superset of
{injury, time}. The four tuples together constitute a relation over Ward.

The following definition introduces the central object of our studies. It was
first defined by Thalheim in [14].

Definition 1. A key set is a finite, non-empty collection X of subsets of a given
relation schema R. We say that a relation r over R satisfies the key set X if and
only if for all distinct t, t′ ∈ r there is some X ∈ X such that t and t′ are X-total
and t(X) �= t′(X). Each element of a key set is called a key. If all keys of a key
set are singletons, we speak of a unary key set.

In the sequel we write X ,Y,Z, . . . for key sets and X,Y,Z, . . . for attribute
sets, and A,B,C, . . . for attributes. We sometimes write A instead of {A} to
denote the singleton set consisting of only A. If X is a sequence, then we may
sometimes write simply X for the set that consists of all members of X.

As already mentioned in Example 2, the relation in Example 1 satisfies the
key sets X1, X2, and X . It also satisfies the unary key set {{room}, {time}}, but
not the singleton key set {{room, time}}.

A fundamental problem in automated reasoning about any class of con-
straints is the implication problem. For key sets, the problem is to decide whether
for an arbitrary relation schema R, and an arbitrary set Σ ∪{ϕ} of key sets over
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R, Σ implies ϕ. Indeed, Σ implies ϕ if and only if every relation over R that
satisfies all key sets in Σ also satisfies the key set ϕ. The following section illus-
trates how solutions to the implication problem of key sets can facilitate the
efficient processing of queries and updates.

4 Applications for Automated Reasoning

The most important applications of data processing are updates and queries.
We briefly describe in this section how automated reasoning about key sets can
facilitate each of these application areas.

4.1 Efficient Updates

When databases are updated it must be ensured that the resulting database sat-
isfies all the constraints that model the business rules of the underlying applica-
tion domain. Violations of the constraints indicate sources of inconsistency, and
an alert of such inconsistencies should at least be issued to the database admin-
istrator. This is to ensure that appropriate actions can be taken, for example, to
disallow the update. This quality assurance process incurs an overhead in terms
of the time it takes to validate the constraints. As such, users of the database
expect that such overheads are minimized. In particular, the time on validating
constraints increases with the volume of the database. As a principal, the set of
constraints that are specified on the database and therefore subject to validation
upon updates, should be non-redundant. That is, no constraints should be spec-
ified that are already implied by other specified constraints. The simple reason
is that the validation of any implied constraints is a waste of time because the
validity of the other constraints already ensures that any implied constraint is
valid as well. This is a strong real-life motivation for developing tools that can
decide implication. In our running example, the set Σ = {X1,X2,X} of key sets
is redundant because the subset Σ′ = {X1,X2} implies the key set X . Automated
solutions to the implication problem can thus automatize the minimization of
overheads in validating constraints under database updates.

4.2 Efficient Queries

We are interested in the names of patients that can be identified uniquely based
on information about their name and the room and time at the accident ward,
or based on information about their injury and the time at the accident ward.
In SQL, this may be expressed as follows.
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SELECT name
FROM ward

WHERE room IS NOT NULL AND name IS NOT NULL AND
time IS NOT NULL

GROUP BY room, name, time
HAVING count(room,name, time) ≤ 1
UNION

SELECT name
FROM ward

WHERE injury IS NOT NULL AND time IS NOT NULL
GROUP BY injury, time

HAVING count(injury, time) ≤ 1 ;

Knowing that the underlying relation over Ward satisfies the two key sets X1

and X2 and that the key set X = {{room,name, time}, {injury, time}} is implied
by X1 and X2, one can deduce that every tuple of Ward must be in at least
one of the sub-query results of the UNION query. That is, the query above can be
simplified to

SELECT DISTINCT name
FROM ward ;

Note that the DISTINCT word is necessary since the UNION operator eliminates
duplicates. When evaluated on the example from the introduction, each query
will return the result {(name: Miller), (name: ⊥), (name: Maier)}.

Motivated by the applications of key sets for data processing and the lack of
knowledge on automated reasoning tasks associated with key sets, the following
sections will investigate the implication problem for key sets.

Table 1. An axiomatization A for key sets

X
X ∪ Y

X ∪ {XY }
X ∪ {X,Y }

X1 X2

{Z(X1,X2) | (X1, X2) ∈ X1 × X2}
Z(X1,X2) ⊆ X1 ∪ X2, and

X1 ⊆ Z(X1,X2) or X2 ⊆ Z(X1,X2)

Upward closure Refinement Composition

5 Axiomatizing Key Sets

In this section we establish axiomatizations for arbitrary key sets as well as unary
ones. This will enable us to effectively enumerate all implied key sets, that is, to
determine the semantic closure Σ∗ = {σ | Σ |= σ} of any given set Σ of key sets.
A finite axiomatization facilitates human understanding of the interaction of the
given constraints, and ensures all opportunities for the use of these constraints
in applications can be exploited.
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In using an axiomatization we determine the semantic closure by applying

inference rules of the form
premise

conclusion
. For a set R of inference rules let Σ 
R ϕ

denote the inference of ϕ from Σ by R. That is, there is some sequence σ1, . . . , σn

such that σn = ϕ and every σi is an element of Σ or is the conclusion that results
from an application of an inference rule in R to some premises in {σ1, . . . , σi−1}.
Let Σ+

R = {ϕ | Σ 
R ϕ} be the syntactic closure of Σ under inferences by
R. R is sound (complete) if for every set Σ over every R we have Σ+

R ⊆ Σ∗

(Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both sound

and complete.
Table 1 shows a finite axiomatization A for key sets. A non-trivial rule is

Composition which is illustrated by our running example.

Example 4. Recall Example 1 from the introduction, in particular Σ = {X1,X2}
and ϕ = X . It turns out that ϕ is indeed implied by Σ, since ϕ can be inferred
from Σ by an application of the Composition rule, and the rule is sound for the
implication of key sets. Indeed, X1 × X2 consists of:

({room,time}, {name,time}),
({room,time}, {injury,time}),

({injury,time}, {name,time}), and
({injury,time}, {injury,time}) .

and for each element X = (X1,X2) we need to pick one attribute set ZX that
is contained in the union X1 ∪ X2 and contains either X1 or X2. For the first
element we pick {room, time,name}, and for the remaining three elements we
pick {injury, time}. That results in the key set X .

We now proceed with the completeness proof for the axiom system A of
Table 1. The proof proceeds in three stages. First in Lemma 1, we show a char-
acterization of the implication problem. This is applied in Lemma 2 to show that
A extended with n-ary Composition for all n ∈ N is complete (see Table 2). At
last, we show in Lemma 3 that n-ary Composition can be simulated with the
binary Composition of A.

Table 2. The n-ary Composition rule

X1 . . . Xn

{ZX | X ∈ X1 × . . . × Xn}
ZX ⊆ ⋃

X and
∨

i Xi ⊆ ZX

Lemma 1. {X1, . . . ,Xn} |= Y iff for all (X1, . . . , Xn) ∈ X1 × . . . × Xn there is
Z ⊆ Y such that

⋃
Z ⊆

⋃
i Xi, and Xi ⊆

⋃
Z for some i.
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Proof. Assume first that one finds such an Z. We show that any relation r that
satisfies each Xi satisfies also Y. Let t, t′ be two tuples from r. Then for some
(X1, . . . , Xn) ∈ X1 × . . . × Xn, t and t′ are both

⋃
i Xi-total and disagreeing on

each Xi. Assume that i is such that Xi ⊆
⋃

Z, and let A ∈ Xi be such that
t(A) �= t′(A). Then selecting some Z ∈ Z such that it also contains A, we have
that t and t′ are Z-total and deviate on Z. Thus Z is witness for r |= Y.

For the other direction we assume that no such Z exists. Then there is
(X1, . . . , Xn) ∈ X1 × . . . × Xn such that for Z := {Z ∈ Y | Z ⊆

⋃
i Xi},

Xi �⊆
⋃

Z for all i. Then, selecting an attribute Ai from Xi \
⋃

Z for all i, we
may construct a relation r satisfying {X1, . . . ,Xn,¬Y}. This relation r consists
of two tuples t, t′ where t is a constant function mapping all of R to 0, and t′

maps
⋃

i Ai to 1,
⋃

i Xi \
⋃

i Ai to 0, and all the remaining attributes to ⊥. Now,
obviously r satisfies all Xi. Furthermore, for Y ∈ Y \ Z, t′ is not Y -total, and
for Y ∈ Y ∩ Z both t and t′ are Y -total but with constant values 0. Therefore,
r is a witness of {X1, . . . ,Xn} �|= Y which concludes the proof. �
Notice that the latter condition of Lemma 1 can be equivalently stated as Xi ⊆⋃

{Y ∈ Y | Y ⊆
⋃

i Xi} for some i.

Lemma 2. The axiomatization A extended with n-ary Composition is complete
for key sets.

Proof. Assume {X1, . . . ,Xn} |= Y. Then we obtain by Lemma 1 for all X =
(X1, . . . , Xn) ∈ X1 × . . . × Xn a subset ZX ⊆ Y such that

⋃
ZX ⊆

⋃
X,

and Xi ⊆
⋃

ZX for some i. Then by Composition we may derive {
⋃

ZX |
X ∈ X1 × . . . × Xn}. With repeated applications of Refinement we then derive⋃

{ZX | X ∈ X1 × . . . × Xn}. Since this set is a subset of Y, we finally obtain Y
with a single application of Upward closure. �
Lemma 3. n-ary Composition is derivable in A.

Proof. Assume that K = {ZX | X ∈ X1 × . . .×Xn} is obtained from X1, . . . ,Xn

by an application of n-ary Composition. We will perform consecutive applica-
tions of (binary) Composition until we have obtained K. Composition is applied
incrementally so that the first application of this rule combines X1 and X2 to
obtain a new key set X , the second combines X and X3 to obtain the next key
set X ′, the third X ′ and X4 to obtain X ′′, and so forth. Once Xn is reached the
cycle is started again from X1.

At each step of the aforementioned procedure we have deduced a key set
X such that each X ∈ X either is a union

⋃
Y1 ∪ . . . ∪

⋃
Yn for Yi ⊆ Xi, or

belongs to the required key set K. In the previous case, provided that each Yi is
the maximal subset of Xi such that

⋃
Yi ⊆ X, we refer to Y1 ∪ . . . ∪ Yn as the

maximal decomposition of X and |Y1 ∪ . . . ∪ Yn| as the decomposition size of X.
Furthermore, given a set ZX ∈ K where X ∈ X1 × . . . × Xn we say that a set
Xi ∈ X is full in ZX if Xi ⊆ ZX . By the prerequisite of the n-ary Composition
some member of X is always guaranteed to be full in ZX .

Initialization. Consider an instance of n-ary Composition. We initialize the
procedure by applying Composition n− 1 many times so that we obtain the key
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set {
⋃
X | X ∈ X1 × . . . × Xn}. This is done by letting U1 := X1 and taking the

key set Ui+1 = {X1 ∪ X2 | (X1,X2) ∈ Ui × Xi+1} for i = 1, . . . , n − 1.

Inductive Step. After the initial step we have reached a key set V1 := Un such
that all X ∈ V1 \ K have decomposition size at least 1. Assume now that we
have reached a key set Vm such that all X ∈ Vm \ K have decomposition size at
least m. As the induction step we show how to obtain a key set Vm+1 such that
every member of Vm+1 \ K has decomposition size at least m + 1. This is done
by taking a single round of applications of Composition to Vm and X1, . . . ,Xn.
That is, Vm and X1 are first combined using Composition, then the outcome is
combined with X2, and its outcome with X3, and so forth until we have applied
this procedure to Xn. All these applications keep the members of Vm ∩ K fixed.
For instance, at the first step Z(X,Y ) for X ∈ Vm ∩ K and any Y ∈ X1 is defined
as X. We show how this deduction handles an arbitrary X ∈ Vm \ K.

By induction assumption each X ∈ Vm \ K has decomposition size at least
m. Let

⋃
Y1 ∪ . . . ∪

⋃
Yn be the maximal decomposition of X. Now, assume

towards a contradiction that for each i there is Yi ∈ Yi such that Yi is not full
in any ZY ∈ K where Y ∈ Y1 × . . . × Yn and Yi is the ith member of Y . Then,
however, the diagonal Y ′ = (Y1, . . . , Yn) must have a member that is full in ZY ′ .
This is a contradiction and hence there is i such that all Yi ∈ Yi are full in some
ZY ∈ K where Y ∈ Y1 × . . . × Yn and Yi is the ith member of Y . With regards
to X, Composition is then applied as follows. For the first i−1 applications X is
kept fixed. For the ith application that considers Xi, each pair of X and Y ∈ Yi

is transformed to that ZY ∈ K in which Y is full. Furthermore, each pair of X
and Y ∈ Xi \ Yi is transformed to XY . Take note that the decomposition size
of XY is at least n+1. At last, the remaining applications of Composition keep
the obtained sets fixed. Since this procedure is applied to all X ∈ Vm \ K, we
obtain that Vm+1 \ K has only sets with decomposition size at least m + 1. This
concludes the induction step.

Now, VM+1 where M = |X1 ∪ . . . ∪ Xn| is a subset of K. Hence, we conclude
that VM+1 yields K with one application of Upward closure. �

Note that a simulation of one application of n-ary of Composition to
{X1, . . . ,Xn} takes at most (n + 1) · |

⋃n
i=1 Xi| applications of binary Compo-

sition plus one application of Upward Closure.
The previous three lemmata now generate the following axiomatic character-

ization of key set implication. We omit the soundness proof which is straightfor-
ward to check.

Theorem 1. The axiomatization A is sound and complete for key sets.

Another Important Application. A direct application of an axiomatization
is the efficient representation of collections of key sets. Similar to the computa-
tion of non-redundant covers during update operations, removing any redundant
constraints makes the result easier to understand by humans. This is, for exam-
ple, important for the discovery problem of key sets in which one attempts to
efficiently represent all those key sets that a given relation satisfies. Even more
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directly, one can understand any sound inference rule as an opportunity to apply
pruning techniques as part of a discovery algorithm. A complete axiomatization
ensures all opportunities for the pruning of a search space can be exploited.

6 Complexity of Key Set Implication

In this section we settle the exact computational complexity of the implication
problem for key sets. While the implication problem for most notions of keys
over incomplete relations is decidable in linear time, the implication problem for
key sets is likely to be intractable. This should also be seen as evidence for the
expressivity of key sets.

Theorem 2. The implication problem for key sets is coNP-complete.

Proof. Consider first the membership in co−NP. By Lemma 1, for determining
whether {X1, . . . ,Xn} �|= Y, it suffices to choose X1, . . . , Xn respectively from
X1, . . . ,Xn, and then deterministically check that Xi �⊆

⋃
Z for all i, where Z

is selected deterministically as Z := {Z ∈ Y | Z ⊆
⋃

i Xi}.
For the hardness, we reduce from the complement of 3-SAT. Let C1, . . . , Cn

be a collection of clauses, each consisting of three literals, i.e., propositions of
the form p or negated propositions of the form ¬p. Let P be the set of all
proposition symbols that appear in some Ci, and let P consist of their negations.
Letting P ∪ P be our relation schema, we show that

∧
i

∨
Ci has a solution iff

{{p,¬p} | p ∈ P} �|= {C1, . . . , Cn}. Notice that the antecedent is a set of singleton
key sets, each of size two.

Assume first that there is a solution. Let S ⊆ P(P ) encode the complement
of that solution, i.e., S is such that each Ci contains some p /∈ S or some ¬p for
p ∈ S. Let S = {¬p | p �∈ S}, and define singleton sets Xp = {p,¬p} ∩ (S ∪ S),
encoding those literals that are set false by the solution. Then Ci �⊆

⋃
p Xp for

all i, implying be Lemma 1 that {{p,¬p} | p ∈ P} �|= {C1, . . . , Cn}.
Assume then that {{p,¬p} | p ∈ P} �|= {C1, . . . , Cn}. By Lemma 1 we find

Xp ∈ {p,¬p} such that for no Z ⊆ {C1, . . . , Cn} we have that
⋃

Z ⊆
⋃

p Xp

and
∨

p Xp ⊆
⋃

Z. Now, Ci ⊆
⋃

p Xp implies Xp ⊆ Ci for three distinct p, and
therefore we must have Ci �⊆

⋃
p Xp for all i. It is now easy to see that the sets

Xp give rise to a solution to the satisfiability problem. �

7 Armstrong Relations

In this section we ask the basic question whether key sets enjoy Armstrong
relations. These are special models which are perfect for a given collection of key
sets. More formally, a given relation r is said to be Armstrong for a given set Σ
of key sets if and only if for all key sets ϕ it is true that r satisfies ϕ if and only
if Σ implies ϕ. Indeed, an Armstrong relation is a perfect model for Σ since it
satisfies all keys sets implied by Σ and does not satisfy any key set that is not
implied by Σ. Armstrong relations have important applications in data profiling
[1] and the requirements acquisition phase of database design [10].
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Unfortunately, arbitrary sets of key sets do not enjoy Armstrong relations as
the following result manifests.

Theorem 3. There are sets of key sets for which no Armstrong relations exist.

Proof. An example is Σ = {{{A}, {B}}, {{C}, {D}}} with attributes A,B,
C,D. Then σ1 = {{A,C}, {A,D}, {B,C}} and σ2 = {{A,D}, {B,C}, {B,D}}
are two non-consequences of Σ, respectively exemplified by the two 2-tuple rela-
tions on the left of Fig. 1, where “d” refers to any distinct total value.

These are the only possible types of tuple pairs that satisfy Σ ∪ {¬σ1} and
Σ ∪ {¬σ2}, respectively. Therefore, we observe that any relation r satisfying Σ
and refuting both σ1 and σ2 has a homomorphism from a relation of the form on
the right of Fig. 1 to a subset of r with the condition that this homomorphism
preserves nulls and maps domain values to domain values. However, then neither
{{A}, {B}} nor {{C}, {D}} is a key set anymore. �

A B C D

d d ⊥ d
⊥ d d d

A B C D

d d d ⊥
d ⊥ d d

A B C D

d d ⊥ d
⊥ d d d
d d d ⊥
d ⊥ d d

Fig. 1. Relations used in the proof of Theorem 3

8 Implication for Unary by Arbitrary Key Sets

In this section we identify a fragment of key sets for which automated reasoning
is efficient. This is strongly motivated by the results of the previous sections
in which the coNP-completeness of the implication problem, and the lack of
general Armstrong relations has been established. Indeed, the fragment is the
implication of unary key sets by arbitrary key sets. We show that this fragment
is captured axiomatically by the Refinement and Upward Closure rules, can be
decided in time quadratic in the input, and Armstrong relations always exist
and can be computed with conservative use of time and space.

8.1 An Algorithmic Characterization

Our first result establishes that unary key sets must be implied by a single key
set from the given collection of key sets.

Theorem 4. Let Σ = {X1, . . . ,Xn} be a collection of arbitrary key sets, and
let ϕ = {{A1}, . . . , {Ak}} be a unary key set over relation schema R. Then
Σ implies ϕ if and only if there is some i ∈ {1, . . . , n} such that

⋃
Xi ⊆

{A1, . . . , Ak}.
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Proof. If
⋃

Xi ⊆ X for some i ∈ {1, . . . , n}, Refinement and Upward Closure
infer ϕ from Σ. Due to the rules’ soundness, ϕ is implied by Σ.

Vice versa, assume that
⋃

Xi �⊆ X holds for all i = 1, . . . , n. Let r be defined
as r = {t, t′} where t and t′ are two total tuples that agree on X = {A1, . . . , Ak}
and disagree elsewhere. It follows that r violates ϕ. Since

⋃
Xi �⊆ X for all

i = 1, . . . , n, t1 and t2 must differ on some attribute in
⋃

Xi for i = 1, . . . , n.
This means, r satisfies all key sets in Σ. Consequently, Σ does not imply ϕ. �

A direct consequence of Theorem 4 is the quadratic time complexity of the impli-
cation problem for unary by arbitrary key sets. For a collection Σ of key sets let
|Σ| denote the total number of attribute occurrences in elements of Σ.

Corollary 1. The implication problem of unary key sets by arbitrary key sets
is decidable in time O(|Σ| × |ϕ|) in the input Σ ∪ {ϕ}.

8.2 A Finite Axiomatization

Our next result establishes a finite axiomatization for the implication of unary
by arbitrary key sets that consists of the Refinement and Upward Closure rules.
As this fragment is decidable in time quadratic in the input, and the general case
is coNP -complete, the Composition rule is the source of likely intractability.

Corollary 2. The implication problem of unary key sets by arbitrary key sets
has a sound and complete axiomatization in Refinement and Upward Closure.

Proof. Let Σ = {X1, . . . ,Xn} be a set of key sets, and let ϕ = {{A1}, . . . , {Ak}}
be a unary key set over relation schema R. If ϕ can be inferred from Σ by
a sequence of applications of the Refinement and Upward Closure rules, the
soundness of these rules ensures that ϕ is also implied by Σ.

For completeness we assume that ϕ cannot be inferred from Σ by means of
applications using the Refinement and Upward Closure rules. Hence,

⋃
Xi �⊆ X

holds for all i = 1, . . . , n. Theorem 4 shows that Σ does not imply ϕ. �

8.3 Existence and Computation of Armstrong Relations

Armstrong models relative to unary consequences are also easy to obtain. It
merely suffices to take a disjoint union of all of the two tuple relations mentioned
in the proof of Theorem4.

Corollary 3. The implication problem of unary key sets by arbitrary key sets
has Armstrong relations. �

While the existence of perfect models is easy to come by the disjoint union
construction, an actual generation of Armstrong relations by this construction
is not efficient. Smaller Armstrong relations can be constructed as follows. The-
orem 4 shows that the implication problem of unary key sets X by a collection
Σ = {X1, . . . ,Xn} of arbitrary key sets only depends on the attributes contained
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in each given key set of Σ, and not on how they are grouped as sets in a key set.
We thus identify, without loss of generality, X with

⋃
X and each Xi with

⋃
Xi.

The idea is then to compute so-called anti-keys, which are the maximal sub-
sets of the underlying relation schema which are key sets not implied by Σ.
Given the anti-keys, an Armstrong relation for Σ can be generated by starting
with a single complete tuple, and introducing for each anti-key a new tuple that
has matching total values on the attributes of the anti-key and unique values on
attributes outside the anti-key. This construction ensures that all non-implied
(unary) key sets are violated and all given key sets are satisfied. The computation
of the anti-keys from Σ can be done by taking the complements of the minimum
transversals of the hypergraph formed by the elements of Σ. A transversal for a
given set of attribute subsets Xi is an attribute subset T such that T ∩ Xi �= ∅
holds for all i. While many efficient algorithms exist for the computation of all
hypergraph transversals, it is still an open problem whether there is an algorithm
that is polynomial in the output [5]. We can show that this construction always
generates an Armstrong relation whose number of tuples is at most quadratic in
that of an Armstrong relation that requires a minimum number of tuples.

Corollary 4. Armstrong relations that are at most quadratic in that of a min-
imum Armstrong relation can be generated for unary by arbitrary key sets.

Proof (Sketch). One can show first that a given relation is Armstrong for a
given set of key sets if and only if for every anti-key the relation has two tuples
which have matching values on exactly those attributes that form the anti-key
and for no union over the elements of a key set there is a pair of tuples with
matching values on all attributes in the union. Subsequently, one can show that
the number of tuples in a minimum-sized Armstrong relation is bounded from
below by one half of the square root of 1 plus 8 times the number of anti-keys, and
bounded upwards by the increment of the number of anti-keys. Consequently,
our construction generates an Armstrong relation that is at most quadratic in a
minimum-sized Armstrong relation. �

Our construction can also be viewed as a construction of Armstrong relations
for certain keys by key sets. Note that [8] constructed Armstrong relations for
sets of possible and certain keys under NOT NULL constraints, whenever they
exist. Our construction here does not require null markers.

Example 5. Consider the set Σ = {X1,X2} with X1 and X2 from Example 2
over the relation schema Ward. Then

⋃
X1 = {room, time, injury} and

⋃
X2 =

{name, time, injury}. The minimum transversals would be T1 = {time}, T2 =
{injury}, and T3 = {room,name}, and their complements on Ward are the anti-
keys A1 = {room,name, address, injury}, A2 = {room,name, address, time}, and
A3 = {address, injury, time}. The following relation is Armstrong for Σ.

room name address injury time
1 Miller 24 Queen St leg fracture Sunday, 16
1 Miller 24 Queen St leg fracture Monday, 19
1 Miller 24 Queen St arm fracture Monday, 19
2 Maier 24 Queen St arm fracture Monday, 19
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The relation satisfies X1 and X2, but the relation violates the unary key set
ϕ′ = {{room}, {name}, {address}, {time}}, so ϕ′ is not implied by Σ.

9 Conclusion and Future Work

We took first steps in investigating limits and opportunities for automated rea-
soning about key sets in databases. Key sets provide a more general and flexible
implementation of entity integrity than Codd’s notion of a primary key. We
showed that the implication problem for general key sets enjoys a binary axiom-
atization, is coNP -complete, and lacks Armstrong relations. The implication
problem of unary key sets by arbitrary key sets enjoys a unary axiomatization,
is decidable in quadratic input time, and Armstrong relations can always be
generated using hypergraph transversals such that the number of tuples is guar-
anteed to be at most quadratic in the minimum number of tuples required.

Interesting questions arise in theory and practice. Our coNP -completeness
result calls for fixed-parameter solutions. A characterization for the existence of
Armstrong relations in the general case would be interesting, and their efficient
construction whenever possible. The validation of key sets in databases is an
important practical issue, for which effective index structures need to be found.
The problem of computing all key sets that hold in a given relation is important
for data profiling [1]. Automated reasoning about foreign key sets is interesting as
they generalize referential integrity [11]. Similar to how functional and inclusion
dependencies and independence atoms interact [3,9], automated reasoning for
functional, multivalued, and inclusion dependency sets is interesting [6].
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Abstract. A tableau calculus is proposed, based on a compressed rep-
resentation of clauses, where literals sharing a similar shape may be
merged. The inferences applied on these literals are fused when possible,
which can reduce the size of the proof. It is shown that the obtained
proof procedure is sound, refutationally complete and can reduce the
size of the tableau by an exponential factor. The approach is compatible
with all usual refinements of tableaux.

1 Introduction

Tableau methods (see for instance [2] or [6]) always played a crucial role in the
development of new techniques for automated theorem proving. They are easy to
comprehend and implement, well-adapted to interactive theorem proving, and,
therefore, normally form the basis of the first proof procedure for any newly
defined logic [4]. Nonetheless, they cannot compete with resolution-based calculi
both in terms of efficiency and deductive power (i.e. proof length, see for instance
[3]). This is partly due to the ability of resolution-based methods to generate
lemmas and to simulate atomic cuts1 in a feasible way. There have been attempts
to integrate some restricted forms of cut into tableau methods, improving both
efficiency and proof size (see for instance [6,11]). But, for more general forms
of cuts, it is difficult to decide whether an application of the cut rule is useful
or not, thus the rule is not really applicable during proof search. Instead, cuts
may be introduced after the proof is generated, to make it more compact by
introducing lemmas and fusing recurring patterns [8,9].

In this paper, rather than trying to integrate cuts into the tableau calculus,
we devise a new tableau procedure in which a proof compression, that is sim-
ilar to the compressive power of a Π2-cut, is achieved by employing a shared
representation of literals. Formal definitions will be given later, but we now pro-
vide a simple example to illustrate our ideas. Consider the schema of clause sets:

M.P. Lettmann—Funded by FWF project W1255-N23.
1 We recall that the cut rule consists in expanding a tableau by adding two branches

with ¬φ and φ respectively, where φ is any formula (intuitively φ can be viewed as
a lemma). A cut is atomic if φ is atomic.
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{
∨n

i=1 p0(ai),∀y.¬pn(y)}∪{∀x.¬pi−1(x)∨pi(x) | i ∈ [1, n]}. A closed tableau can
be constructed by adding n copies of the clauses ¬pn(yj) and ¬pi−1(x

j
i )∨pi(x

j
i )

(for i, j ∈ [1, n]) and unifying all variables xj
i and yj with aj . One gets a tableau

of size O(n2). To make the proof more compact, we may merge the inferences
applied for each aj , since each of these constants are handled in the same way.
This can be done by first applying the cut rule on the formula ∃x.p0(x). The
branch corresponding the ¬∃x.p0(x) can be closed by using the first clause. In
the branch corresponding to ∃x.p0(x) a constant c is generated by skolemization
and the branch can be closed by unifying xi and y with c. This yields a tableau
of size O(n). Since it is hard to guess in advance whether such an application of
the cut rule will be useful or not, we investigate another solution allowing the
same proof compression. We represent the disjunction

∨n
i=1 p0(ai) by a single

literal p0(α), together with a set of substitutions {[α\ai] | i ∈ [1, n]}. Intuitively,
this literal states that p0(α) holds for some term α, and the given set of substi-
tutions specifies the possible values of α. In the following, we call such variables
α abstraction variables. The clauses are kept as compact as possible by grouping
all literals with the same heads and in some cases inferences may be performed
uniformly regardless of the value of α. In our example we get a tableau of size
O(n) by unifying xj

i and yj with α, this tableau may be viewed as a compact
representation of an ordinary tableau, obtained by making n copies of the tree,
with α = a1, . . . , an. If we find out that an inference is applicable only for some
specific value(s) of α (e.g., if one wants to close a branch by unifying p0(α)
with a clause ¬p0(a1)), then one may “separate” the literal by isolating some
substitution (or sets of substitutions) before proceeding with the inference.

In this paper, we formalize these ideas into a tableau calculus called M-
tableau. Basic inference rules are devised to construct M -tableaux and a strategy
is provided to apply these rules efficiently, keeping the tableau as compact as
possible. We prove that the procedure is sound and refutationally complete and
that it may reduce the size of the proofs by an exponential factor. Our approach
may be combined with all the usual refinements of the tableau procedure.2

2 Notations

We briefly review usual definitions (we refer to, e.g., [13] for details). Terms,
atoms and clauses are built as usual over a (finite) set of function symbols Σ
(including constants, i.e. nullary function symbols), an (infinite and countable)
set of variables V and a (finite) set of predicate symbols Ω. The set of variables
occurring in an expression (term, atom or clause) e is denoted by V(e). For
readability, a term f(t) is sometimes written ft. Ordinary (clausal) tableaux are
trees labelled by literals and built by applying Expansion and Closure rules, the
Expansion rule expands a leaf by n children labelled by literals l1, . . . , ln, where
a copy of l1 ∨· · ·∨ ln occurs in the clause set at hand, and the Closure rule closes

2 Due to the limited number of pages, we omit proofs that are not necessary for the
understanding of the method. A full version can be found in [10].
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a branch by unifying the atoms of two complementary literals. A substitution
is a function (with finite domain) mapping variables to terms. A substitution
mapping xi to ti (for i ∈ [1, n]) is written [(x1, . . . , xn)\(t1, . . . , tn)]. The identity
substitution (for n = 0) is denoted by id . The image of an expression e by a
substitution σ is defined inductively as usual and written eσ.

3 A Shared Representation of Literals

We introduce the notion of an M -literal, that is a compact representation of a
disjunction of ordinary literals with the same shape. The interest of this repre-
sentation is that it will allow us to perform similar inferences in parallel on all
these literals. We assume that V is partitioned into two (infinite) sets Vo and Va.
The variables in Vo are ordinary variables. They may be either universally quan-
tified variables in clauses, or rigid variables in tableaux. The variables in Va are
called abstraction variables. These are not variables in the standard sense, but
can been seen rather as placeholders for a term that may take different values
in different literals or branches. These variables will permit to share inferences
applied on different literals. The set of ordinary variables (resp. abstraction vari-
ables) that occur in a term t is denoted by Vo(t) (resp. Va(t)). A renaming is an
injective substitution σ such that x ∈ Vo ⇒ xσ ∈ Vo and α ∈ Va ⇒ ασ ∈ Va.

Definition 1 (Syntax of M-Clauses). An M-literal is either true or a triple
〈L, t̄,S〉, where:

– L is either a predicate symbol P or the negation of a predicate symbol ¬P ,
– t̄ is an n-tuple of terms, where n is the arity of P ,
– and S is a set of substitutions σ with the same domain D ⊆ Va(t̄) (by con-

vention D is empty if S = ∅) and such that V(t̄σ) ∩ D = ∅.

An M-clause is a set of M -literals, often written as a disjunction.

With a slight abuse of words, we will call the set D in the above definition
the domain of S (denoted by dom(S)). The semantics of M -clauses is defined
by associating each M -literal with an ordinary clause (or true):

Definition 2 (Semantics of M-clauses). For every M -literal l, we denote
by formula(l) the formula defined as follows (with the convention that empty
disjunctions are equivalent to false):

formula(〈L, t̄,S〉) def=
∨

θ∈S L(t̄θ)
formula(true) def= true

For every M -clause C, we denote by formula(C) the clause
∨

l∈C formula(l). For
every set of M -clauses C, we denote by formula(C) the formula (in conjunctive
normal form)

∧
C∈C formula(C).

We write E  E′ iff formula(E) = formula(E′) (up to the usual properties
of ∨ and ∧: associativity, commutativity and idempotence).
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Example 1. Let P be a unary predicate, Q be a binary predicate, c be a constant,
f be a unary function, x be an ordinary variable, and α, β, γ be abstraction
variables. The triples l1 = 〈P, α, {[α\f(c)]}〉 and

l2 = 〈Q, (β, f(γ)), {[(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}〉

are M -literals, and

formula(l1) = P (f(c))
formula(l2) = Q(f(c), f(c)) ∨ Q(c, f(f(c)))

The common shape Q(·, f(·)) is shared between the two literals in the second
clause.

Remark 1. Observe that if S = ∅ then formula(〈L, t̄,S〉) = false, i.e. 〈L, t̄,S〉
denotes an empty clause. Moreover, any ordinary literal may be encoded as an
M -literal where the set of substitutions is a singleton, e.g., the formula corre-
sponding to 〈P, (a, x), {[α\a]}〉 is P (a, x). Also, an M -literal 〈L, t̄, {σ}〉 is always
equivalent to 〈L, t̄σ, {id}〉.

The application of a substitution σ to an M -literal is defined as follows:

(true)σ def= true
〈L, t̄,S〉σ def= 〈L, t̄σ′, {θσ | θ ∈ S}〉

where σ′ denotes the restriction of σ to the variables not occurring in dom(S).

Example 2. Let l = 〈P, (α, x), {[α\x], [α\y]}〉 and σ = [x\a]. Then:

lσ = 〈P, (α, a), {[α\a], [α\y]}〉

Let l′ = 〈Q, (α), {[α\a], [α\b]}〉 and θ = [α\a]. Then l′θ = l′.

Proposition 1. Let l = 〈L, t̄,S〉 be an M -literal. If dom(S) = ∅, then one of
the following conditions hold:

– S = ∅ and formula(l) = false;
– S = {id} and formula(l) = L(t̄).

Proof. The identity is the only substitution with empty domain.

A given ordinary clause may be represented by many different M -clauses,
for instance P (a) ∨ P (b) may be represented as 〈P, (a), {id}〉 ∨ 〈P, (b), {id}〉 or
〈P, (α), {[α\a], [α\b]}〉, or even 〈P, (α), {[α\a], [α\b]}〉∨ 〈Q, (β), ∅〉. In practice it
is preferable to start with a representation in which useless literals are deleted
and in which the remaining literals are grouped when possible. This motivates
the following:

Definition 3. An M -clause C is in bundled normal form (short: BNF) if it
satisfies the following conditions.
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– For every M -literal 〈L, t̄,S〉 ∈ C, S �= ∅.
– If true ∈ C then C = {true}.
– For all distinct literals 〈L1, t̄1,S1〉, 〈L2, t̄2,S2〉 ∈ C, L1 is distinct from L2.

An M -clause set C is in BNF if all M -clauses of C are in BNF.

Example 3. Let

l1
def= 〈P, α, {[α\f(c)]}〉,

l2
def= 〈P, β, {[β\f(c)]}〉,

l3
def= 〈Q, (β, fγ), {[(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}〉,

and

l4
def= 〈Q, (β, γ), {[(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}〉

be M -literals. The M -clause {l3, l4} is not in BNF while the M -clauses {l1, l4}
and {l2, l4} are in BNF.

Definition 4. An M -clause C is well-formed if for all distinct literals l =
〈L1, t̄1,S1〉 and m = 〈L2, t̄2,S2〉 in C, dom(S1) ∩ dom(S2) = ∅.

Example 4. Consider the two M -clauses C1 := {l1, l4} and C2 := {l2, l4} of
Example 3. C1 is well-formed, C2 is not well-formed. By renaming, C2 can be
transformed into C1.

It is clear that every M -clause can be transformed into an equivalent well-
formed M -clause by renaming. In the following, we shall implicitly assume that
all the considered M -clauses are well-formed.

Lemma 1. Let F be a formula in conjunctive normal form. Then there is an
M -clause set C in BNF such that formula(C)  F.

Example 5. Consider the clause {l3, l4} of Example 3. It can be written in BNF
as 〈Q, (β, γ),S〉, where S denotes the following set of substitutions:

{[(β, γ)\(f(c), f(c))], [(β, γ)\(c, f(f(c)))], [(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}

4 A Tableaux Calculus for M -Clauses

In this section, we devise a tableaux calculus for refuting sets of M -clauses. This
calculus is defined by a set of inference rules, that, given an existing tableau T ,
allow one to:

1. Expand a branch with new children, by introducing a new copy of an M -
clause of the set at hand.
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2. Instantiate some of the (rigid) variables occurring in the tableau.
3. Separate shared literals inside an M -clause, so that different inferences can

be applied on each of the corresponding branches. The rule can be applied
on nodes that are not leaves.

Steps 1 and 2 are standard, but Step 3 is original.

Definition 5 (Pre-Tableau). A pre-tableau is a tree T where vertices are
labelled by M -literals or by false. We call the direct successors of a node its
children. The root is the (unique) node that is not a child of any node in T and
a leaf is a node with no child. A path P is a sequence of nodes (ν1, . . . , νn) such
that νi+1 is a child of νi for i ∈ [1, n − 1]. Furthermore, we call ν1 the initial
node of P and νn the last node of P . A branch is a path such that the initial
node is the root and the last node is a leaf. With a slight abuse of words we say
that a branch contains an M -literal l if it contains a node labelled by l.

The descendants of a node ν are inductively defined as ν and the descendants
of the children of ν. The subtree of root ν in T is the subtree consisting of all
the descendants of ν, as they appear in T .

If ν is a non-leaf node with exactly n > 0 children ν1, . . . , νn labelled by M -
literals l1, . . . , ln respectively, then the formula associated with ν is defined as:∨n

i=1 formula(li).
We say that an M -literal 〈L, t̄,S〉 (resp. a node ν labelled by 〈L, t̄,S〉) intro-

duces an abstraction variable α if α ∈ dom(S) (as shown in Proposition 2, the
abstraction variables are introduced by exactly one M -literal or node in an M -
tableau).

Definition 6. Let T be a pre-tableau and σ be a substitution. Then T σ denotes
the result of applying σ to all M -literals labelling the nodes of T .

Definition 7 (Tableau for a Set of M-Clauses). An M-tableau T for a
set of M -clauses C is a pre-tableau built inductively by applying the rules Expan-
sion, Instantiation and Separation to an initial tableau containing only one node,
labelled by true (also called the initial M -literal).

In the following, the word “tableau” always refers to an M -tableau, unless spec-
ified otherwise (we use the expression “ordinary tableau” for standard ones).

The rules are defined as follows (in each case, T denotes a previously con-
structed tableau for a set of M -clauses C).

Expansion Rule. Let λ be a leaf of T , and C be an element of C not containing
true. Let C ′ be a copy of C where all variables that occur also in T are renamed
such that C ′ share no variable3 with T . The pre-tableau T ′ constructed by
adding a new child labelled by l to λ for each l ∈ C ′ is a tableau for C.

3 Note that both ordinary and abstraction variables are renamed.
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Instantiation Rule. Let t be a term and x ∈ Vo such that for all nodes ν, ν′, if ν
is labelled by an M -literal containing x and ν′ introduces an abstraction variable
α ∈ Va(t), then ν is a proper descendant of ν′. Then T [x\t] is a tableau for C.

Remark 2. Observe that if t contains no abstraction variables then the condition
always holds, since no node ν′ satisfying the above property exists. In practice,
the Instantiation rule should of course not be applied with an arbitrary variable
and term. Unification will be used instead to find the most general instantiations
closing a branch. A formal definition will be given later (see Definition 11).

Example 6. Let

T1
def=

true

〈¬P, x, {id}〉

〈P, α, {[α\a], [α\b]}〉
T2

def=

true

〈P, α, {[α\a], [α\b]}〉

〈¬P, x, {id}〉

be two tableaux for some set of M -clauses C. The pre-tableau T1[x\α] is not a
tableau, because x is substituted by a term containing an abstraction variable
α, and x occurs above the literal introducing α. On the other hand, T2[x\α] is a
tableau.

Separation Rule. The rule is illustrated in Fig. 1 towards Fig. 3. Let ν be a non-
leaf node of T . Let μ be a child of ν, labelled by l = 〈L, t̄,S〉. Let r̄ = t̄θ
be an instance of t̄, with dom(θ) = dom(S) and Va(t̄θ) ∩ dom(S) = ∅. Let S1

be the set of substitutions σ ∈ S such that there exists a substitution σ′ with
t̄σ = r̄σ′ and every variable in dom(σ′) is an abstraction variable not occurring
in T , and let S2

def= S \ S1. Assume that S1 �= ∅. We define the new literal
l′ def= 〈L, r̄, {σ′ | σ ∈ S1}〉. The Separation rule is defined as follows:

1. We apply the substitution θ to T 4.
2. We replace the label l of μ by l′.
3. We add a new child to the node ν, labelled by a literal 〈L, t̄,S2〉.

Observe that if S2 = ∅ then formula(〈L, t̄,S2〉) = false hence the third step may
be omitted, since the added branch is unsatisfiable anyway. The rule does not
apply if S1 is empty.

Example 7. Let

l1 := 〈P, α, {[α\fc]}〉,
l2 := 〈¬P, α′, {[α′\fc]}〉,
l3 := 〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉, and
l4 := 〈Q, (β, γ), {[(β, γ)\(fc, c)], [(β, γ)\(z, fc)], [(β, γ)\(fz, fc)]}〉

be M -literals and C = {{l1, l4}, {l2}, {l3}} be an M -clause set in BNF. Applying
three times the Expansion rule, we can derive the tableau.
4 Actually, due to the above conditions, the variables in dom(θ) only occur in the

subtree of root μ, hence θ only affects this subtree.
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Fig. 1. The initial
subtree in the Sep-
aration rule.

Fig. 2. The subtree after
an application of the Sep-
aration rule.

Fig. 3. The subtree with-
out redundant substitu-
tions after an application
of the Separation rule.

true

〈¬P, α′, {[α′\fc]}〉

〈Q, (β, γ), {[(β, γ)\(fc, c)], [(β, γ)\(z, fc)], [(β, γ)\(fz, fc)]}〉

〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉

〈P, α, {[α\fc]}〉

Now, we apply two times the Separation rule. First we choose m of Fig. 1 to be
true and l to be 〈¬P, α′, {[α′\fc]}〉, where the substitution θ is [α′\fc] (hence
we get S1 = {id}). Afterwards, we choose analogously 〈¬P, fc, {id}〉 (which is
the result of the first application) and 〈P, α, {[α\fc]}〉, with the substitution
[α\fc]. Both times, the tuple r̄ of the Separation rule is fc (with S2 = ∅ in both
cases). This leads to the tableau:

true

〈¬P, fc, {id}〉

〈Q, (β, γ), {[(β, γ)\(fc, c)], [(β, γ)\(z, fc)], [(β, γ)\(fz, fc)]}〉

〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉

〈P, fc, {id}〉

Afterwards, we again apply the Separation rule, to modify the node labelled
with l4 where r̄ = (fδ, γ∗) and S2 = {[(β, γ)\(z, fc)]}.

true

〈¬P, fc, {id}〉

〈Q, (fδ, γ∗), {[(δ, γ∗)\(c, c)], [(δ, γ∗)\(z, fc)]}〉

〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉

〈Q, (β, γ), {[(β, γ)\(z, fc)]}〉 〈P, fc, {id}〉
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After some further applications of the Separation and Expansion rules, we are
able to construct the following tableau by applying the Instantiation rule with
the substitutions [z\fx′], [y\fc], [x\δ], [y\γ∗].

true

〈¬P, fc, {id}〉

〈Q, (fδ, γ∗), {[(δ, γ∗)\(c, c)], [(δ, γ∗)\(fx′, fc)]}〉

〈¬Q, (fδ, γ∗), {id}〉

〈Q, (fx′, fc), {id}〉

〈¬Q, (fx′, fc), {id}〉

〈P, fc, {id}〉

5 Soundness

Definition 8. Let T be a pre-tableau or a tableau. A branch B of T is closed
if it contains false or two nodes labelled by literals 〈L1, t̄1,S1〉, 〈L2, t̄2,S2〉 such
that t̄1 = t̄2, L1 = P , L2 = ¬P for some predicate symbol P . The (pre)-tableau
T is closed iff all branches of T are closed.

Example 8. The final tableau of Example 7 contains three branches, i.e.

{〈¬P, fc, ∅〉, 〈Q, (fδ, γ∗), {[(δ, γ∗)\(c, c)], [(β, γ)\(c, ffx′)]}〉, 〈¬Q, (fδ, γ∗), ∅〉},
{〈¬P, fc, ∅〉, 〈Q, (fx′, fc), ∅〉, 〈¬Q, (fx′, fc), ∅〉}, and
{〈¬P, fc, ∅〉, 〈P, fc, ∅〉}.

All of them are closed and so the tableau is closed. Observe that the inferences
closing the branches corresponding to the literals Q(f(c), c) and Q(f(z), f(c))
in {l1, l4} are shared in the constructed tableau (both branches are closed by
introduced suitable instances of l3), whereas the literal Q(z, f(c)) is handled
separately (by instantiating z by f(x′) and using yet another instance of l3).

Proposition 2. Let T be a tableau. If ν1 and ν2 are distinct nodes in T , labelled
by the M -literals 〈L1, t̄1,S1〉 and 〈L2, t̄2,S2〉 respectively, then S1 and S2 have
disjoint domains.

Proposition 3. Let T be a tableau for a set of M -clauses C. For every non-leaf
node ν in T , the formula associated with ν (as defined in Definition 5) is an
instance of a formula formula(C), where C is a renaming of an M -clause in C.

Proof. It suffices to show that all the construction rules preserve the desired
property.

– Expansion. The property immediately holds for the nodes on which the rule
is applied, by definition of the rule. The other nodes are not affected.

– Instantiation. By definition, the formula associated with a node ν in the
final tableau is an instance of the formula associated with ν in the initial one.
Thus the property holds.
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– Separation. The nodes occurring outside of the subtree of root μ are not
affected. By definition, the formula associated with the descendants of μ in
the new tableau are instances of formulas associated with nodes of the initial
tableau. Thus it only remains to consider the node ν. The formula associ-
ated with ν in the final tableau is obtained from that of the initial one by
removing the formula corresponding to an M -literal l = 〈L, t̄,S〉 and replac-
ing it by formula(l′) ∨ formula(〈L, t̄,S2〉). Since l′ = 〈L, r̄, {σ′ | σ ∈ S1}〉,
we have formula(l′) =

∨
σ∈S1

L(r̄σ′) =
∨

σ∈S1
L(t̄σ) (since t̄σ = r̄σ′ by

definition of the Separation rule). Thus formula(l′) ∨ formula(〈L, t̄,S2〉) =
formula(〈L, t̄,S〉) and the proof is completed.

Proposition 4. Let T be a tableau for C. Let α ∈ Va be a variable introduced
in a node ν and assume that α occurs in an M -literal labelling a node μ. Then
μ is a descendant of ν.

Lemma 2. Let T be a closed tableau for C and let T ′ be the tableau after apply-
ing once the Separation rule to a node ν of T with a child μ labelled with l. Then
there is at most one branch B in T ′ that is not closed. Moreover, this branch
necessarily contains the node labelled by 〈L, t̄,S2〉 (see Fig. 3). In particular, if
S2 is empty then 〈L, t̄,S2〉 is false and T ′ is closed.

Theorem 1 (Soundness). If a set of M -clauses C admits a closed tableau T
then C is unsatisfiable.

Proof. We prove soundness by transforming T into a closed tableau that contains
only M -literals where the substitution set is {id} or ∅. Due to Proposition 3, the
resulting tableau then corresponds to an ordinary tableau. The soundness of
ordinary tableau then implies the statement.

We transform the tableau T by an iterative procedure. We always take an
arbitrary topmost node ν labelled with an M -literal l = 〈L, t̄,S〉 where S �= {id}
and S �= ∅. Then we consider a substitution θ ∈ S and we apply the Separation
rule with the tuple t̄θ. We have t̄θ = t̄θid and if σ ∈ S \{θ}, then t̄σ �= t̄θ, hence
there is no substitution σ′ with t̄σσ′ = t̄θ, such that dom(σ′) only contains
fresh variables. Consequently, the rule splits S into a singleton S1 = {θ} and
S2 = S1\{θ}. The literal l gets replaced by l′ = 〈L, t̄θ, {id}〉 and we add the node
μ labelled with 〈L, t̄,S2〉. By Lemma 2, there is at most one non-closed branch,
i.e. the branch ending with the node μ is the only open branch. We consider a
copy Tν of the subtree of root ν in T , renaming all variables introduced in Tν

by fresh variables. We replace the root node of Tν by 〈L, t̄,S2〉 and replace the
subtree of root μ in the tableau by Tν . It is easy to check that the obtained
tableau is a closed tableau for C. Furthermore, the length of the branches does
not increase, the number of non-empty substitutions occurring in the M -literals
does not increase, and it decreases strictly in l′ and 〈L, t̄,S2〉. This implies that
the multiset of multisets {|{σ ∈ S ′

1 | σ �= id}|, . . . , |{σ ∈ S ′
n | σ �= id}|} of natural

numbers, where {〈Li, t̄i,S ′
i〉 | i ∈ [1, n]} is a branch in T is strictly decreasing

according to the multiset extension of the usual ordering. Since this ordering
is well-founded, the process eventually terminates, and after a finite number of
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applications of this procedure we get a tableau only containing nodes labelled
with M -literals whose substitution set is equal to {id} or ∅.

Remark 3. As a by-product of the proof, we get that the size of the minimal
ordinary tableau for a clause set formula(C) is bounded exponentially by the
size of any closed tableau for C. Indeed, we constructed an ordinary tableau
from an M -tableauT in which every branch (l1, . . . , ln) in T is replaced by (at
most) kn branches, where k is the maximal number of substitutions in li. In
Sect. 7, we shall prove that this bound is precise, i.e. that our tableau calculus
allows exponential reduction of proof size w.r.t. ordinary (cut-free) tableaux.

6 Completeness

Proving completeness of M -tableauis actually a trivial task, since one could
always apply the Separation rule in a systematic way on all M -literals to trans-
form them into ordinary literals (as it is done in the proof of Theorem1), and
then get the desired result by completeness of ordinary tableau. However, this
strategy would not be of practical use. Instead, we shall devise a strategy that
keeps the M -tableau as compact as possible and at the same time allows one to
“simulate” any application of the ordinary expansion rules. In this strategy, the
Separation rule is applied on demand, i.e. only when it is necessary to close a
branch. No hypothesis is assumed on the application of the ordinary expansion
rules, therefore the proposed strategy is “orthogonal” to the usual refinements of
ordinary tableaux, for instance connection tableaux5 [12] or hyper-tableaux6 [1].
Thus our approach can be combined with any refutationally complete tableau
procedure [6].

The main idea denoted by simulate a strategy is to do the same steps as in
ordinary tableau, while keeping M -clauses as compressed as possible. If ordinary
tableau expands the tableau by a clause, we expand the tableau with the corre-
sponding M -clause, and if a branch is closed in the ordinary tableau, then the
corresponding branch is closed in the M -tableau. This last step is not trivial:
Given two ordinary literals P (t̄) and ¬P (r̄) the ordinary tableau might compute
the most general unifier (mgu) of t̄ and r̄. But in the presented formalism, the
two literals might not appear as such, i.e. there are no literals m = 〈P, t̄, {id}〉
and k = 〈¬P, r̄, {id}〉. In general, there are only M -literals m′ = 〈P, t̄′,S1〉 and
k′ = 〈¬P, r̄′,S2〉 such that t̄′θ = t̄ and r̄′ϑ = r̄, where θ and ϑ denote the compo-
sitions of the substitutions occurring in the M -literals in the considered branch.
Note also that, although t̄′ and r̄′ are unifiable, the Instantiation rule cannot
always be applied to unify them and close the branch. Indeed, the domain of

5 Connection tableaux can be seen as ordinary tableaux in which any application of
the Expansion rule must be followed by the closure of a branch, using one of the
newly added literals and the previous literal in the branch.

6 Hyper-tableaux may be viewed in our framework as ordinary tableaux in which the
Expansion rule must be followed by the closure of all the newly added branches
containing negative literals.
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the mgu may contain abstraction variables, whereas the Instantiation rule only
handles universal variables. For showing completeness, it would suffice to apply
the Separation rule on each ancestor of k′ and m′ involved in the definition of θ
or ϑ, to create a branch where the literals m and k appear explicitly. Thereby, we
would lose a lot of the formalisms benefit. Instead, we shall introduce a strategy
that uses the Separation rule only if this is necessary for making the unification
of t̄′ and r̄′ feasible (by mean of the Instantiation rule). Such applications of the
Separation rule may be seen as preliminary steps for the Instantiation rule. This
follows the maxim to stay as general as possible because a more general proof
might be more compact.

In the formalisation of the Instantiation rule we ensured soundness by allow-
ing abstraction variables only to occur in descendants of the literal that intro-
duced the variable. This has a drawback to our strategy: The unification process
that we try to simulate can ask for an application of the Instantiation rule which
would cause a violation of this condition for abstraction variables if we follow
the procedure in the former paragraph. We thus have to add further applications
of the Separation rule to ensure that this condition is fulfilled.

Definition 9. Let B = (ν0, ν1, . . . , νn) be a path in a tableau T where ν0 is the
initial node of T and each node νi (with i > 0) is labelled by 〈Li, t̄i,Si〉.

An abstraction substitution for B is a substitution ηn . . . η1 with ηi ∈ Si, for
i = 1, . . . , n.

A conflict in a branch B is a pair (t̄i, t̄j) with i, j ∈ [1, n], Li and Lj are
dual and t̄i and t̄j are unifiable. A conflict is η-realizable if η is an abstraction
substitution for B such that t̄iη and t̄jη are unifiable.

In practice, we do not have to check that a conflict is realizable (this would
be costly since we have to consider exponentially many substitutions).

If (t̄, t̄′) is a conflict then t̄ and t̄′ are necessarily unifiable, with some mgu
θ. As mentioned before, this does not mean that a branch with conflict can
be closed. Moreover, according to the restriction on the Instantiation rule, a
variable x cannot be instantiated by a term containing an abstraction variable
α, if x occurs in some ancestor of the literal introducing α in the tableau. This
motivates the following:

Definition 10. A variable α ∈ Va is blocking for a conflict (t̄, t̄′), where θ =
mgu(t̄, t̄′) if α ∈ dom(θ) or α occurs in a term xθ, where x ∈ Vo and x occurs
in a literal labelling an ancestor of the node introducing α.

Finally, we introduce a specific application of the Separation rule which allows
one either to “isolate” some literals in order to ensure that they have a specific
“shape” (as specified by a substitution), or to eliminate abstraction variables
completely if needed.

Definition 11. If σ is a substitution, we denote by doma(σ) the set of variables
α ∈ Va such that ασ �∈ Va.

A tableau is compact if it is constructed by a sequence of applications of the
tableau rule in which:
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– The Instantiation rule is applied only if the tableau contains a branch with a
conflict (t̄, t̄′), with no blocking variable. Each variable x ∈ dom(σ) is replaced
by a term tσ, where σ = mgu(t̄, t̄′) (since there is no blocking variable it
is easy to check that the conditions on the Instantiation rule are satisfied).
Afterwards, it is clear that the branch is closed.

– The Separation rule is applied on a node labelled by 〈L, t̄,S〉, using a substi-
tution θ only if there exists a conflict (t̄, t̄′) with σ = mgu(t̄, t̄′) such that one
of the following conditions holds:
1. dom(S) contains a blocking variable in doma(σ) and θ is defined as fol-

lows: dom(θ) = dom(S)∩doma(σ), xθ = xσ if xσ is a variable, otherwise
xθ is obtained from xσ by replacing all variables by pairwise distinct fresh
abstraction variables.

2. Or dom(S) contains a blocking variable not occurring in doma(σ), and
θ ∈ S.

The applications of the Separation rule in Definition 11 are targeted at mak-
ing the closure of the branch possible by getting rid of blocking variables, while
keeping the tableau as compact as possible (thus useless separations are avoided).

Example 9. For instance, assume that we want to close a branch containing two
literals l = 〈L, (α), {[α\f(a)], [α\f(b)], [α\a]}〉 and l′ = 〈¬L, f(x), {id}〉. To this
aim, we need to ensure that α is unifiable with f(x). This is done by applying
the separation rule (Case 1 of Definition 11) with the substitution [α\f(β)], so
that α has the desired shape. This yields: 〈L, (f(β)), {[β\a], [β\b]}〉 Afterwards,
if x does not occur before l in the branch then the branch is closed by unifying x
with β. If x occurs before l, then this is not feasible since this would contradict
the condition on the Instantiation rule, and we have to apply the Separation
rule again (Case 2) to eliminate β, yielding (for instance) 〈L, (f(a)), {id}〉. The
direct application of the Separation rule with, e.g., θ = [α\f(a)] is forbidden in
the strategy.

Theorem 2 (Completeness). Let C be a clause set and C be an M -clause set
with formula(C)  C. If C is unsatisfiable, then there is a closed compact tableau
for C.

Proof. For an M -clause, Ci ∈ C, we denote by Ci the ordinary clause in C with
formula(Ci)  formula(Ci). W.l.o.g. we can assume that clauses do not appear
twice, neither in C nor in C. Now, we can perform a proof search based on ordinary
tableau starting with C (using any complete strategy) yielding a closed tableau,
built by applying the usual Expansion and Closure rules. In the following, T will
denote an already constructed ordinary tableau for C and T will represent the
corresponding M -tableaufor C. More precisely, the tableau T is constructed in
such a way that there exists an injective mapping h from the nodes in T to those
in T, a function ν �→ ην mapping each node ν in T labelled by some literal 〈L, t̄,S〉
to an abstraction substitution η and a substitution ϑ (with dom(ϑ) ⊆ Vo) such
that the following property holds (denoted by (�)):

1. The root of T is mapped to the root of T.
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2. If ν is a child of ν′ then h(ν) is a child of h(ν′).
3. For any path (ν0, . . . , νn), if νn is labelled by an M -literal 〈L, t̄,S〉, then h(νn)

is labelled by a literal L(t̄)ηνn
. . . ην1ϑ.

4. If a branch of the form (h(ν0), . . . , h(νn)) is closed in T, then (ν0, . . . , νn) is
closed in T .

Note that the mapping is not surjective in general (T may be bigger than T ).
By (�), if T is closed then T is also closed, which gives us the desired result.
It is easy to check that applying the Separation rule on a node νi in a branch
(ν0, . . . , νn) in T preserves (�), provided it is applied using a substitution θ (as
defined in the Separation rule) that is more general than ηνn

◦ · · · ◦ ην1 .
The tableau T is constructed inductively as follows. For the base case, we

may take T = T = true and (�) trivially holds.

Expansion: The Expansion rule of ordinary tableaux allows one to expand the
tableau by an arbitrary clause Ci of C. We define the corresponding tableau for
C as the tableau expanded by Ci. The mappings h and ην may be extended in a
straightforward way so that (�) is preserved (the unique new node ν in T may
be mapped to an arbitrary chosen new node in T).

Closure: Assume that a branch in T is closed by applying some substitution σ,
using two literals L(t̄) and ¬L(r̄), where σ = mgu(t̄, r̄). If one of these literals
do not occur in the image of a branch of T then it is clear that the opera-
tion preserves (�) (except that the substitution ϑ is replaced by ϑσ), hence no
further transformation is required on T . Otherwise, by (�), there is a branch
B = (ν0, . . . , νn) in T where for every i ∈ [1, n], νi is labelled by li = 〈Li, t̄

′
i,Si〉,

two numbers j, k ∈ N such that Lj = L, Lk = ¬L, t̄′jηϑ = t̄ and t̄′kηϑ = r̄, with
η = ηνn

. . . ην1 .
By definition, (t̄′j , t̄

′
k) is an η-realizable conflict. Let σ′ be the mgu of t̄′j and

t̄′k. If there is no blocking variable for (t̄′j , t̄
′
k), then the Instantiation rule applies,

replacing every variable x ∈ dom(σ′) by xσ′, and the branch may be closed. By
definition ηϑσ is a unifier of t̄ and r̄, hence ηϑσ = σ′θ′, for some substitution
θ′. By definition, the co-domain of η contains no abstraction variables, thus
θ′ = ηϑ′, with dom(ϑ′) ⊆ Vo, and ϑσ = σ′ϑ′. The application of the rule
preserves (�), where ϑ is replaced by the substitution ϑ′. Indeed, consider a
node ν in T , initially labelled by a literal 〈L, t̄,S〉, where h(ν) is labelled by
L(t̄)ηνn

. . . ην1ϑ. After the rule application, ν is labelled by 〈L, t̄σ′,Sσ′〉, h(ν)
is labelled by L(t̄)ηνn

. . . ην1ϑσ, and the substitutions ηνi
are replaced by ηνi

σ′.
Since dom(σ′) ∩ Va = ∅, it is clear that σ′ηνn

. . . ην1σ
′ϑ′ = ηνn

. . . ην1σ
′ϑ′ =

ηνn
. . . ην1ϑσ.
Otherwise, the set of blocking variables is not empty, and since all abstraction

variables occurring in the tableau must be introduced in some node, there exists
l ∈ [1, n] such that dom(Sl) contains a blocking variable. According to Defini-
tion 11, the Separation rule may be applied on νl (it is easy to check that all the
application conditions of the rule are satisfied). In Case 1 (of Definition 11), θ is
more general than σ′ by definition, and since ηνn

◦ · · · ◦ ην1ϑσ is a unifier of t̄′j
and t̄′k, the mgu σ′ must be more general than ηνn

◦ · · · ◦ ην1 . In Case 2, we can
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take θ = ηνl
, which is more general than ηνn

◦ · · · ◦ ην1 (since the substitutions
ην have disjoint domains). Thus the property (�) is preserved.

This operation is repeated until the set of blocking variables is empty, which
allows us to apply the Instantiation rule as explained before. The process nec-
essarily terminates since each application of the Separation rule either increases
the size of the tableau (either by adding new nodes, or by instantiating a variable
by a non variable term), or does not increase the size of the tableau but strictly
reduces the number of abstraction variables. Furthermore, by (�), the size of T
is smaller than that of T.

7 An Exponentially Compressed Tableau

In this section, we will show that the presented method is able to compress
tableaux by an exponential factor. This corresponds to an introduction of a
single Π2-cut7 (see [9]). As a simplified measurement of the size of a tableau
we consider the number of nodes. Let us consider the schema of M -clause sets
Cn def= {{ln1 }, {l2, l3}, {ln4 }} with

ln1 = 〈P, ᾱ, [ᾱ\(x, f1x)], . . . , [ᾱ\(x, fnx)]〉
l2 = 〈¬P, β̄, [β̄\(x, y)]〉
l3 = 〈P, γ̄, [γ̄\(x, fy)]〉
ln4 = 〈¬P, δ̄, [δ̄\(fx1, fx2)], . . . , [γ̄\(fxn−1, fxn)]〉

where ᾱ = (α1, α2), β̄ = (β1, β2), γ̄ = (γ1, γ2), and δ̄ = (δ1, δ2) for n ∈ N. Then
we can construct a closed tableau for Cn whose size is linear w.r.t. n:

〈P, (fx1, α1
2), {[α1

2\f1fx1], . . . , [α1
2\fnfx1]}〉

〈¬P, (fx1, α1
2), {id}〉 〈P, (fx1, fα1

2), {id}〉

〈P, (fα1
2, α2

2), {[α2
2\f1fα1

2], . . . , [α2
2\fnfα1

2]}〉

〈¬P, (fα1
2, α2

2), {id}〉 〈P, (fα1
2, fα2

2), {id}〉

〈P, (fα
n−2
2 , α

n−1
2 ), {[αn−1

2 \f1fα
n−2
2 ], . . . , [αn−1

2 \fnfα
n−2
2 ]}〉

〈¬P, (fα
n−2
2 , α

n−1
2 ), {id}〉 〈P, (fα

n−2
2 , fα

n−1
2 ), {id}〉

〈¬P, (fx1, fα1
2), {id}〉 . . . 〈¬P, (fα

n−2
2 , fα

n−1
2 ), {id}〉

The clause set schema Cn is a simplified variant of the example in [9, Sects. 3
and 9] and one can easily verify that an ordinary tableau method is of exponen-
tial size of n. Just consider the term instantiations which are necessary for an
ordinary tableau:

7 In a Π2-cut, the cut formula is of the form ∀x∃yA where A is a quantifier-free
formula.
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x ← {fx1, ffi1fx1, . . . , ffin−2f . . . fi1fx1|i1, . . . , in−2 ∈ [1, n]} in ln1 ,

(x, y) ← {(t, fit)|i ∈ [1, n] ∧ t is a substitution for x in ln1 } in l2 and l3, and
(x1, . . . , xn) ← {(x1, fi1fx1, . . . , fin−1f . . . fi1fx1)|i1, . . . , in−1 ∈ [1, n]} in ln4 .

Obviously, xn in ln4 is substituted with nn−1 terms. These correspond to the
instantiations defined in [9, Theorem 13].

8 Future Work

From a practical point of view, algorithms and data-structures have to be devised
to apply the above rules efficiently, especially to identify conflicts and blocking
substitutions in an incremental way. In the wake of this, experimental evaluations
based on an implementation are reasonable. While the procedure is described
for first-order logic, we believe that the same ideas could be profitably applied
to other logics, and even to other calculi, including saturation-based procedures.
It would also be interesting to combine this approach with other techniques for
reducing proof size, for instance variable splitting [7], or with techniques for the
incremental construction of closures [5].

A current restriction of the calculus is that no abstraction variables may occur
above their introduction (see the condition on the Instantiation rule in Sect. 4).
This restriction is essential for soundness: without it, one could for instance
construct a closed tableau for the (satisfiable) set of M -clauses {{l}, {l′}}, with
l = 〈L, (x, α), {[α\a, α\b]}〉 and l′ = 〈L, (β, y), {[β\a, β\b]}〉, by replacing x by α
and y by β. We think that this condition can be relaxed by defining an order over
the abstraction variables. This would yield a more flexible calculus, thus further
reducing proof size. It would be interesting to know whether the exponential
bound of Remark 3 still holds for the relaxed calculus. An ambitious long-term
goal is to devise extensions of M -tableaux with the same deductive power of
cuts, i.e. enabling a non-elementary reduction of proof size.
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Abstract. FORT is a tool that implements the first-order theory of
rewriting for the decidable class of left-linear right-ground rewrite sys-
tems. It can be used to decide properties of a given rewrite system and to
synthesize rewrite systems that satisfy arbitrary properties expressible in
the first-order theory of rewriting. In this paper we report on the exten-
sions that were incorporated in the latest release (2.0) of FORT. These
include witness generation for existentially quantified variables in formu-
las, support for combinations of rewrite systems, as well as an extension
to deal with non-ground terms for properties related to confluence.

1 Introduction

In a recent paper [6] we introduced FORT, a decision and synthesis tool for the first-
order theory of rewriting induced by finite left-linear right-ground rewrite systems.
In this theory one can express well-known properties like termination, normaliza-
tion, and confluence, but also properties like strong confluence (∀ s ∀ t ∀u (s →
t ∧ s → u =⇒ ∃ v (t →= v ∧ u →∗ v))) and the normal form property
(∀ s ∀ t ∀u (s → t ∧ s →! u =⇒ t →! u)). The decision procedure implemented in
FORTis based on tree automata techniques (Dauchet and Tison [3]).

In this paper we present several extensions designed to make the tool more
useful. First of all, we added support for combinations of rewrite systems. This is
required to express properties like commutation (∀ s∀ t∀u(s →∗

0 t ∧ s →∗
1 u =⇒

∃ v (t →∗
1 v ∧ u →∗

0 v))) and equivalence (∀ s ∀ t (s ↔∗
0 t ⇐⇒ s ↔∗

1 t)) that
refer to two or more rewrite systems. Tree automata operate on ground terms.
Consequently, variables in formulas range over ground terms and hence the prop-
erties that FORT is able to decide are restricted to ground terms. Whereas for
termination and normalization this makes no difference, for other properties it
does, even for the restricted class of left-linear right-ground rewrite systems as
will be shown below. This brings us to the second extension: How can one use
FORT to decide properties on open terms? We show that for properties related to
confluence it suffices to add one or two fresh constants. We furthermore provide
sufficient conditions which obviate the need for additional constants. The third
extension is concerned with increasing the understanding of the yes/no answer
provided by FORT in decision mode. For logical formulas with free variables we
are not only interested whether they are satisfied by a particular rewrite system,
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but also which terms act as witnesses. Witness generation is also of interest for
existentially quantified variables appearing in formulas.

We assume familiarity with term rewriting. A command-line version of FORT
is available.1 We refer to [6] and the description on the website for the syntax of
the commands and formulas that can be passed to FORT.

2 Witness Generation

The usual output of FORT consists of tree automata (or their size) corresponding
to subformulas of the given formula, which is hard to read. To help the user in
understanding why a property holds or does not hold, we have now implemented
witness generation, which provides evidence by generating an n-tuple of ground
terms for free variables or (implicitly) existentially quantified ones. For instance,
if a given or synthesized TRS is not ground-confluent (¬∀ s ∀ t ∀u : (s →∗ t ∧
s →∗ u =⇒ ∃ v (t →∗ v ∧ u →∗ v)), it is interesting to provide witnessing terms
for the variables s, t, and u. Given the TRS consisting of the rules a → f(a, b) and
f(a, b) → f(b, a), FORT produces the following terms as witnesses: s = f(a, b),
t = f(b, a), and u = f(f(a, b), b).

To cope with n-ary relations on terms, FORT uses bottom-up tree automata
that operate on encodings of n-tuples of ground terms, subsequently called RRn

automata. Given a signature F we let F (n) = (F ∪ {⊥})n with ⊥ /∈ F a fresh
constant. The arity of a symbol f1 · · · fn ∈ F (n) is the maximum of the arities of
f1, . . . , fn. Given terms t1, . . . , tn ∈ T (F), the encoding 〈t1, . . . , tn〉 ∈ T (F (n)) is
best illustrated on a concrete example. For the ground terms s = f(g(a), f(b, b)),
t = g(g(a)), and u = f(b, g(a)) we have 〈s, t, u〉 = fgf(ggb(aa⊥), f⊥g(b⊥a, b⊥⊥)).
So for each position occurring in one of the terms, function symbols of all terms
are put together, where the fresh symbol ⊥ is used for missing positions. We
refer to [6] for a formal definition.

The recursive algorithm depicted in Fig. 1 generates (encoded) witnesses that
reach a given state α of an RRn automaton. As a side condition, it does not make
use of the given set Qv of visited states to avoid non-termination. In the outer
call, Qv = ∅. The set C of candidates contains all transition rules ending in
the given state α such that the states in the left-hand side of the rule were
not visited before. Furthermore, in the outermost call (Qv = {α}) rules having
a ⊥ in their list of function symbols are excluded as well, since they do not
produce encodings of terms over the original signature F . Then a rule with
minimal number of arguments (to obtain small witnesses) is chosen from C and
the function find terms is called recursively for each argument position to get
witnesses for the argument states. This might fail in case the automaton was not
normalized beforehand and we end up in non-reachable states, in which case we
move on to the next candidate rule from C.

In order to apply this algorithm to generate an n-tuple of terms accepted by
an RRn automaton, one has to call the function find terms with a final state
of the automaton and decode the resulting term over F (n).
1 http://cl-informatik.uibk.ac.at/software/FORT.

http://cl-informatik.uibk.ac.at/software/FORT
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Input: • RRn automaton A = (F (n), Q, Qf , Δ)
• state α ∈ Q, set of states Qv ⊆ Q

Output: • term accepted in α not using states in Qv

Qv := Qv ∪ {α};
C := { fs(α1, . . . , αm) → α ∈ Δ | α1, . . . , αm /∈ Qv ∧ (Qv = {α} =⇒ ⊥ /∈ fs) };
while C 	= ∅ do

select fs(α1, . . . , αm) → α ∈ C with minimal m and remove it from C;
if (ti := find terms(A, αi, Qv) for i = 1, . . . , m) does not fail then

return fs(t1, . . . , tm)
od;
fail

Fig. 1. Function find terms for witness generation.

Example 1. Consider the signature F = {a: 0, b: 0, g: 1, f: 2, h: 3} and the RR2

automaton A over F (2) with final state � and transition rules

aa → α ⊥a → α′ fg(α, β′) → γ fh(α, β, α′) → � ff(α, γ) → �
bb → β b⊥ → β′ gf(β, α′) → γ gg(γ) → γ ff(�, α) → �

We compute find terms(A,�, ∅). We have C ={fh(α, β, α′) → �,ff(α, γ) → �}.
Note that ff(�, α) → � does not belong to C. We select the rule ff(α, γ) → �
having the least number of arguments. The recursive call find terms(A, α, {�})
returns aa, since aa → α is the only rule ending in α. Depending on the selected
transition rule ending in γ, after further recursive calls we obtain fg(aa, b⊥) or
gf(bb,⊥a). The latter term gives rise to ff(aa, gf(bb,⊥a)), which encodes the pair
of witnessing terms f(a, g(b)) and f(a, f(b, a)).

3 Combinations

Several important properties, like (normalization) equivalence, commutation,
and relative termination, refer to two or more TRSs. Inspired by Zantema’s
work on Carpa [10], we added support for combinations of rewrite systems in
FORT 2.0. For instance, the commutation property can be written as

forall s, t, u ([0] s ->* t & [1] s ->* u =>

exists v ([1] t ->* v & [0] u ->* v))

in FORT syntax. Here the indices 0 and 1 refer to different TRSs (provided
by the user in decision mode). Lists of indices (e.g. [0,2,3]) are also supported,
indicating that the subsequent (sub)formula is checked for the union of the TRSs
corresponding to the listed indices. If no index is specified, the union of all
involved TRSs is taken. We return to commutation in Sect. 6. Here we compare
FORT with Carpa. The following task is mentioned in the Carpa distribution.2

2 https://www.win.tue.nl/∼hzantema/carpa.html.

https://www.win.tue.nl/~hzantema/carpa.html
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Example 2. If we want to generate two terminating abstract rewrite sys-
tems (ARSs) such that their union is non-terminating, the formula
([0] SN & [1] SN & ∼SN) can be used. The additional requirement that the com-
position of both relations is a subset of the transitive closure of one of them is
expressed as

forall s, t, u ([0] s -> t & [1] t -> u => [0] s ->+ u | [1] s ->+ u)

FORT synthesizes the following two ARSs satisfying the conjunction of these
requirements: A0 = {a → b, c → a} and A1 = {a → b, b → c}. Using completely
different techniques, the same ARSs are generated by Carpa.

Whereas Carpa is restricted to ARSs, its successor Carpa+ can synthesize
TRSs that admit rules of the shape a → b, a → f(b), and f(a) → b with
exactly one unary function symbol f . The properties supported by Carpa+ are
restricted to those that can be encoded into the conjunctive fragment of SMT-
LRA (linear real arithmetic). For this reason properties like (local) confluence
are only approximated. In Carpa these and many others properties were encoded
exactly in SAT, which is possible since the number of different terms (constants)
is finite in the case of ARSs.

Small ARSs as in Example 2 are easily synthesized by FORT. Checking the
examples from the Carpa website for correctness poses no problem for the decision
mode of FORT, but the method does not scale very well in synthesis mode.

4 Properties on Open Terms

Since the decision algorithm implemented in FORT is based on tree automata,
variables in formulas range over ground terms and hence the properties that
FORT is able to decide are restricted to ground terms. Whereas for properties
like termination and normalization (restricted to right-ground rewrite systems)
this makes no difference, for most properties it does, even for left-linear right-
ground rewrite systems, as illustrated by the following example.

Example 3. The TRS R consisting of the rewrite rules a → b, f(x, a) → b, and
f(b, b) → b is ground confluent since all ground terms rewrite to the normal form
b. However, R is not confluent as b ← f(x, a) → f(x, b) with normal forms b and
f(x, b).

In this section we consider the following properties of single TRSs:

CR : ∀ s ∀ t ∀u (s →∗ t ∧ s →∗ u =⇒ t ↓ u)
WCR : ∀ s ∀ t ∀u (s → t ∧ s → u =⇒ t ↓ u)
SCR : ∀ s ∀ t ∀u (s → t ∧ s → u =⇒ ∃ v (t →= v ∧ u →∗ v))
UN : ∀ s ∀ t ∀u (s →! t ∧ s →! u =⇒ t = u)

UNC : ∀ t ∀u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)
NFP : ∀ s ∀ t ∀u (s → t ∧ s →! u =⇒ t →! u)
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The results stated for confluence below apply to commutation as well. Let P =
{CR,WCR,SCR,UN,UNC,NFP}. For P ∈ P we write GP to denote the property
P restricted to ground terms. Let R consist of all pairs (F ,R) where R is a finite
left-linear right-ground TRSs over the finite signature F (containing at least one
constant).

For all properties P ∈ P, GP does not imply P . Example 3 gives a coun-
terexample to the implication for all properties except SCR. For SCR the TRS
consisting of the rules a → b, b → f(a, a), and f(a, x) → a can be used. The peak
f(b, x) ← f(a, x) → a cannot be joined using →= · ∗← but any ground instance
of f(b, x) can be reached from a. Nevertheless, according to the following result
(whose proof can be found in [7]), it is possible to check a property P ∈ P using
tree automata techniques.

Lemma 4. If (F ,R) ∈ R then

1. (F ,R) � P ⇐⇒ (F ∪ {c},R) � GP for all P ∈ P \ {UNC}
2. (F ,R) � UNC ⇐⇒ (F ∪ {c, c′},R) � GUNC

with fresh constants c and c′. ��

The following example shows that adding a single fresh constant is not suf-
ficient for UNC.

Example 5. The left-linear right-ground TRS R consisting of the rules

a → b f(x, a) → f(b, b) f(b, x) → f(b, b) f(f(x, y), z) → f(b, b)

does not satisfy UNC since f(x, b) ← f(x, a) → f(b, b) ← f(y, a) → f(y, b) is a
conversion between distinct normal forms. Adding a single fresh constant c is
not enough to violate GUNC as f(c, b) is the only ground instance of f(x, b) that
is a normal form. The latter is ensured by the last two rewrite rules. Adding
another fresh constant c′ solves the issue. FORT 2.0 generates the witnessing
terms f($, b) and f(%, b): f($, b) ← f($, a) → f(b, b) ← f(%, a) → f(%, b). Here $
and % are the fresh constants added by FORT.

Lemma 4 does not generalize to arbitrary properties that are expressible in
the first-order theory of rewriting. Consider for example the formula ϕ:

¬∃ s ∃ t ∃u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

which is satisfied on open terms (with respect to any (F ,R) ∈ R). For the TRS
consisting of the rule f(x) → a and two additional constants c and c′, ϕ does not
hold for ground terms because every ground term is convertible to a, c or c′.

The following result (whose proof can be found in [7]) shows that for prop-
erties in P it is not always necessary to add fresh constants. Here a monadic
signature consists of constants and unary function symbols.

Lemma 6. Let (F ,R) ∈ R such that R is ground or F is monadic. For all
P ∈ P, (F ,R) � P if and only if (F ,R) � GP . ��
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FORT indeed benefits from this optimization. For instance, deciding GCR of
Cops #506 whose signature is monadic takes 1.73 s if a fresh constant is added,
compared to 0.85 s if Lemma 6 is used.

We now report on some synthesis experiments that we performed in FORT,
based on the following diagram which summarizes the relationships between
properties P and GP for P ∈ P:

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

The following TRSs were produced by FORT on the given formulas when restrict-
ing the signature (using the command-line option -f “f:2 a:0 b:0”) to a binary
function symbol f and two constants a and b:

GWCR & ∼WCR & ∼GCR a → b f(x, a) → a a → f(a, a)
GCR & ∼CR & ∼GSCR a → b f(x, a) → b b → f(a, a)
GNFP & ∼NFP & ∼GCR a → b f(x, a) → f(a, a) f(b, b) → f(a, a)
GUNC & ∼UNC & ∼GNFP a → a f(x, a) → a f(b, x) → b

We do not know whether there exist TRSs over the restricted signature that
satisfy GUN & ∼UN & ∼GUNC. Human expertise was used to produce a witness over
a larger signature, which was subsequently simplified using the decision mode of
FORT:

b → a c → c d → c f(x, a) → A f(x,A) → A

b → c d → e f(x, e) → A f(c, x) → A

FORT produces the following terms as witnesses for the fact that UN is not
satisfied: s = f(d, $), t = A, and u = f(e, $). Indeed both A and f(e, $) are normal
forms reachable from f(d, $). Moreover, we obtain witnesses t = a and u = e
showing that GUNC does not hold. (The rule c → c is needed to satisfy GUN.)

Since the previous release (1.0) of FORT, many-sorted TRSs are supported.
As the set of many-sorted ground terms is accepted by a tree automaton, this
extension was mostly straightforward. However, concerning confluence-related
properties on non-ground terms, one has to add one (or two for UNC) fresh
constant(s) for every sort that variables appearing in the rules can take.

5 Other Extensions

Apart from the extensions detailed before, the efficiency of FORT was improved
(in FORT 1.0) using the multithreading features of Java for parallelizing both

http://cops.uibk.ac.at/?q=506
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synthesis and decision. Furthermore, we now also admit variables in right-hand
sides of rewrite rules, provided they appear only once in the rule. This extension
opens up the possibility of using FORT to compute dependency graphs based on
the non-variable approximation for termination analysis [5], check infeasibility
of conditional critical pairs for confluence analysis of conditional TRSs [9], and
compute needed redexes based on the strong and non-variable approximations
for the analysis of optimal normalizing strategies [4]. Even inside FORT this
extension was already useful. We previously used (−→‖ R ∪ −→‖ −1

R )+ to construct
an RR2 automaton for the conversion relation (↔∗) but now we can use −→‖ +

R∪R−1

which results in smaller automata for many TRSs. For instance, the conversion
relation ↔∗ induced by the TRS

g(f(a)) → f(g(f(a))) g(f(a)) → f(f(a)) f(f(a)) → f(a)

is modeled as an RR2 automaton consisting of 118 transitions, down from 427.

6 Experimental Results

In this section we report on the experiments we performed to compare FORT 2.0
with AGCP [1,2] and CoLL [8]. As starting point we consider the 121 left-linear
right-ground TRSs in the latest version (765) of the Cops database.3

AGCP is a ground confluence tool for many-sorted TRSs based on rewriting
induction. In Table 1 we compare FORT and AGCP v0.03 on one-sorted versions
of the selected problems. Internally, FORT computes a compatible many-sorted
signature with maximal number of sorts, when faced with a ground TRS. This
is beneficial to reduce the set of possible ground terms, resulting in smaller
automata. We used a 60 s time limit. FORT subsumes AGCP on our collection,
with one exception. On Cops #741 AGCP reports “no” whereas FORT does not
deliver an answer within 60 s. Increasing the time limit to 150 s enables FORT
to report “no” as well.

Table 1. AGCP versus FORT on 121 ground confluence problems.

Tool Yes (∅ time) No (∅ time) Maybe Timeout Total time

AGCP 24 (0.02 s) 78 (0.06 s) 15 4 276 s

FORT 37 (0.45 s) 81 (0.70 s) – 3 253 s

Table 2. CoLL versus FORT on 7381 commutation problems.

Tool Yes (∅ time) No (∅ time) Maybe Timeout Total time

CoLL 623 (0.21 s) – 276 6482 390682 s

FORT 761 (0.25 s) 6567 (0.60 s) – 36 6308 s

3 http://cops.uibk.ac.at/.

http://cops.uibk.ac.at/?q=741
http://cops.uibk.ac.at/
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CoLL is a confluence tool for left-linear TRSs based on commutation and it
can establish commutation of multiple TRSs. In Table 2 we compare FORT 2.0
and the latest version4 of CoLL on 7381 =

(
121
2

)
+ 121 commutation problems

stemming from the selected 121 TRSs. To ensure compatibility of the signatures
of the separate TRSs, we consistently renamed all function symbols (c0, c1, . . .
for constants, g0, g1, . . . for unary symbols, etc.). Also for this comparison we
used a 60 s time limit. FORT fully subsumes CoLL on our collection.

Detailed results can be obtained from the FORT website. AGCP and CoLL are
not restricted to left-linear right-ground TRSs, but we believe that our research
can help to make these (and other) tools stronger.

Acknowledgments. We are grateful to Bertram Felgenhauer, Nao Hirokawa, and
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reviewers helped to improve the presentation.
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Abstract. We present a formalization of the first half of Bachmair
and Ganzinger’s chapter on resolution theorem proving in Isabelle/HOL,
culminating with a refutationally complete first-order prover based on
ordered resolution with literal selection. We develop general infrastruc-
ture and methodology that can form the basis of completeness proofs for
related calculi, including superposition. Our work clarifies several of the
fine points in the chapter’s text, emphasizing the value of formal proofs
in the field of automated reasoning.

1 Introduction

Much research in automated reasoning amounts to metatheoretical arguments,
typically about the soundness and completeness of logical inference systems or
the termination of theorem proving processes. Often the proofs contain more
insights than the systems or processes themselves. For example, the superposition
calculus rules [2], with their many side conditions, look rather arbitrary, whereas
in the completeness proof the side conditions emerge naturally from the model
construction. And yet, despite being crucial to our field, today such proofs are
usually carried out without tool support beyond TEX.

We believe proof assistants are becoming mature enough to help. In this
paper, we present a formalization, developed using the Isabelle/HOL system
[16], of a first-order prover based on ordered resolution with literal selection.
We follow Bachmair and Ganzinger’s account [3] from Chap. 2 of the Handbook
of Automated Reasoning, which we will simply refer to as “the chapter.” Our
formal development covers the refutational completeness of two resolution calculi
for ground (i.e., variable-free) clauses and general infrastructure for theorem
proving processes and redundancy, culminating with a completeness proof for a
first-order prover expressed as transition rules operating on triples of clause sets.
This material corresponds to the chapter’s first four sections.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 89–107, 2018.
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From the perspective of automated reasoning, increased trustworthiness of
the results is an obvious benefit of formal proofs. But formalizing also helps
clarify arguments, by exposing and explaining difficult steps. Making theorem
statements (including definitions and hypotheses) precise can be a huge gain
for communicating results. Moreover, a formal proof can tell us exactly where
hypotheses and lemmas are used. Once we have created a library of basic results
and a methodology, we will be in a good position to study extensions and variants.
Given that automatic theorem provers are integrated in modern proof assistants,
there is also an undeniable thrill in applying these tools to reason about their own
metatheory. From the perspective of interactive theorem proving, formalization
work constitutes a case study in the use of a proof assistant. It gives us, as
developers and users of such a system, an opportunity to experiment, contribute
to lemma libraries, and get inspiration for new features and improvements.

Our motivation for choosing Bachmair and Ganzinger’s chapter is manyfold.
The text is a standard introduction to superposition-like calculi (together with
Handbook Chaps. 7 [14] and 27 [26]). It offers perhaps the most detailed treat-
ment of the lifting of a resolution-style calculus’s static completeness to a satura-
tion prover’s dynamic completeness. It introduces a considerable amount of gen-
eral infrastructure, including different types of inference systems (sound, reduc-
tive, counterexample-reducing, etc.), theorem proving processes, and an abstract
notion of redundancy. The resolution calculus, extended with a term order and
literal selection, captures most of the insights underlying ordered paramodula-
tion and superposition, but with a simple notion of model.

The chapter’s level of rigor is uneven, as shown by the errors and imprecisions
revealed by our formalization. We will see that the main completeness result
does not hold, due to the improper treatment of self-inferences. Naturally, our
objective is not to diminish Bachmair and Ganzinger’s outstanding achievements,
which include the development of superposition; rather, it is to demonstrate that
even the work of some of the most celebrated researchers in our field can benefit
from formalization. Our view is that formal proofs can be used to complement
and improve their informal counterparts.

This work is part of the IsaFoL (Isabelle Formalization of Logic) project,1

which aims at developing a library of results about logical calculi. The Isabelle
files are available in the Archive of Formal Proofs (AFP).2 They amount to about
8000 lines of source text. Below we provide implicit hyperlinks from theory names.
A better way to study the theory files, however, is to open them in Isabelle/
jEdit [28]. We used Isabelle version 2017, but the AFP is continuously updated
to track Isabelle’s evolution. Due to lack of space, we assume the reader has
some familiarity with the chapter’s content. An extended version of this paper
is available as a technical report [21].

1 https://bitbucket.org/isafol/isafol/wiki/Home
2 https://devel.isa-afp.org/entries/Ordered Resolution Prover.html

https://bitbucket.org/isafol/isafol/wiki/Home
https://devel.isa-afp.org/entries/Ordered_Resolution_Prover.html
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2 Preliminaries

Ordered resolution depends on little background metatheory. Much of it, concern-
ing partial and total orders, well-foundedness, and finite multisets, is provided
by standard Isabelle libraries. We also need literals, clauses, models, terms, and
substitutions.

Clauses and Models. We use the same library of clauses (Clausal Logic.thy)
as for the verified SAT solver by Blanchette et al. [6], which is also part of
IsaFoL. Atoms are represented by a type variable ′a, which can be instantiated
by arbitrary concrete types—e.g., numbers or first-order terms. A literal, of type
′a literal (where the type constructor is written in ML-style postfix syntax), can
be of the form Pos A or Neg A, where A :: ′a is an atom. The literal order >
extends a fixed atom order > by comparing polarities to break ties, with Neg A >
Pos A. A clause is a finite multiset of literals, ′a clause = ′a literal multiset ,
where multiset is the Isabelle type constructor of finite multisets. Thus, the
clause A ∨ B, where A and B are atoms, is identified with the multiset {A,B};
the clause C ∨ D, where C and D are clauses, is C � D; and the empty clause ⊥
is {}. The clause order is the multiset extension of the literal order.

A Herbrand interpretation I is a value of type ′a set , specifying which
ground atoms are true (Herbrand Interpretation.thy). The “models” operator
� is defined on atoms, literals, clauses, sets, and multisets of clauses; for exam-
ple, I � C ⇐⇒ ∃L ∈ C. I � L. Satisfiability of a set or multiset of clauses N is
defined by sat N ⇐⇒ ∃I. I � N.

Multisets are central to our development. Isabelle provides a multiset library,
but it is much less developed than those of sets and lists. As part of IsaFoL, we
have already extended it considerably and implemented further additions in a
separate file (Multiset More.thy). Some of these, notably a plugin for Isabelle’s
simplifier to apply cancellation laws, are described in a recent paper [7, Sect. 3].

Terms and Substitutions. The IsaFoR (Isabelle Formalization of Rewriting)
library—an inspiration for IsaFoL—contains a definition of first-order terms and
results about substitutions and unification [23]. It makes sense to reuse this func-
tionality. A practical issue is that most of IsaFoR is not accessible from the AFP.

Resolution depends only on basic properties of terms and atoms, such as the
existence of most general unifiers (MGUs). We exploit this to keep the develop-
ment parameterized by a type of atoms ′a and an abstract type of substitutions
′s, through Isabelle locales [4] (Abstract Substitution.thy). A locale represents a
module parameterized by types and terms that satisfy some assumptions. Inside
the locale, we can refer to the parameters and assumptions in definitions, lem-
mas, and proofs. The basic operations provided by our locale are application (· ::
′a ⇒ ′s ⇒ ′a), identity (id :: ′s), and composition (◦ :: ′s ⇒ ′s ⇒ ′s), about which
some assumptions are made (e.g., A · id = A). Substitution is lifted to literals,
clauses, sets of clauses, and so on. Many other operations can be defined in terms
of the primitives—for example, is ground A ⇐⇒ ∀σ. A = A · σ.

To complete our development and ensure that our assumptions are legitimate,
we instantiate the locale’s parameters with IsaFoR types and operations and

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Clausal_Logic.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Herbrand_Interpretation.html
http://devel.isa-afp.org/browser_info/current/AFP/Nested_Multisets_Ordinals/Multiset_More.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Abstract_Substitution.html
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discharge its assumptions (IsaFoR Term.thy). This bridge is currently hosted
outside the AFP.

3 Refutational Inference Systems

In their Sect. 2.4, Bachmair and Ganzinger introduce basic conventions for refu-
tational inference systems. In Sect. 3, they present two ground resolution calculi
and prove them refutationally complete in Theorems 3.9 and 3.16. In Sect. 4.2,
they introduce a notion of counterexample-reducing inference system and state
Theorem 4.4 as a generalization of Theorems 3.9 and 3.16 to all such systems.
For formalization, two courses of actions suggest themselves: follow the book
closely and prove the three theorems separately, or focus on the most general
result. We choose the latter, as being more consistent with the goal of providing
a well-designed, reusable library.

We collect the abstract hierarchy of inference systems in a single Isabelle
theory file (Inference System.thy). An inference, of type ′a inference, is a triple
(C,D,E) that consists of a multiset of side premises C, a main premise D, and
a conclusion E. An inference system, or calculus, is a possibly infinite set of
inferences:

locale inference system = fixes Γ :: ′a inference set

We use an Isabelle locale to fix, within a named context (inference system), a
set Γ of inferences between clauses over atom type ′a. Inside the locale, we define
a function infers from that, given a clause set N , returns the subset of Γ infer-
ences whose premises all belong to N. A satisfiability-preserving (or consistency-
preserving) inference system enriches the inference system locale with an assump-
tion, whereas sound systems are characterized by a different assumption:

locale sat preserving inference system = inference system +
assumes sat N =�⇒ sat (N ∪ concl of ‘ infers from N)

locale sound inference system = inference system +
assumes (C,D,E) ∈ Γ =�⇒ I � C ∪ {D} =�⇒ I � E

The notation f ‘X above stands for the image of the set or multiset X under
function f.

Soundness is a stronger requirement than satisfiability preservation. In
Isabelle:

sublocale sound inference system < sat preserving inference system

This command emits a proof goal stating that sound inference system’s assump-
tion implies sat preserving inference system’s. Afterwards, all the definitions
and lemmas about satisfiability-preserving calculi become available about sound
ones.

In reductive inference systems (reductive inference system), the conclusion
of each inference is smaller than the main premise according to the clause order.
A related notion, the counterexample-reducing inference systems, is specified as
follows:

https://bitbucket.org/isafol/isafol/src/master/Ordered_Resolution_Prover/IsaFoR_Term.thy
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Inference_System.html
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locale counterex reducing inference system = inference system +
fixes I of :: ′a clause set ⇒ ′a set
assumes {} /∈ N =�⇒ D ∈ N =�⇒ I of N �� D =�⇒

(∀C ∈ N. I of N �� C =�⇒ D ≤ C) =�⇒
∃C ⊆ N. ∃E. I of N � C ∧ (C,D,E) ∈ Γ ∧ I of N �� E ∧ E < D

The “model functor” parameter I of maps clause sets to candidate models. The
assumption is that for any set N that does not contain {} (i.e., ⊥), if D ∈ N is
the smallest counterexample—the smallest clause in N falsified by I of N—we
can derive a smaller counterexample E using an inference from clauses in N.
This property is useful because if N is saturated (i.e., closed under Γ), we must
have E ∈ N , violating D’s minimality:

theorem saturated model : saturated N =�⇒ {} /∈ N =�⇒ I of N � N
corollary saturated complete: saturated N =�⇒ ¬ sat N =�⇒ {} ∈ N

Bachmair and Ganzinger claim that compactness of clausal logic follows from
the refutational completeness of ground resolution (Theorem 3.12), although
they give no justification. Our argument relies on an inductive definition of
saturation of a set of clauses: saturate :: ′a clause set ⇒ ′a clause set . Most of
the work goes into proving this key lemma, by rule induction on the saturate
function:

lemma saturate finite:
C ∈ saturate N =�⇒ ∃M ⊆ N. finite M ∧ C ∈ saturate M

The interesting case is when C = ⊥. We establish compactness in a locale that
combines counterex reducing inference system and sound inference system:

theorem clausal logic compact : ¬ sat N ⇐⇒ ∃M ⊆ N. finite M ∧ ¬ sat M

4 Ground Resolution

A useful strategy for establishing properties of first-order calculi is to ini-
tially restrict our attention to ground calculi and then to lift the results to
first-order formulas containing terms with variables. Accordingly, the chapter’s
Sect. 3 presents two ground calculi: a simple binary resolution calculus and an
ordered resolution calculus with literal selection. Both consist of a single reso-
lution rule, with built-in positive factorization. Most of the explanations and
proofs concern the simpler calculus. To avoid duplication, we factor out the
candidate model construction (Ground Resolution Model.thy). We then define
the two calculi and prove that they are sound and reduce counterexamples
(Unordered Ground Resolution.thy, Ordered Ground Resolution.thy).

Candidate Models. Refutational completeness is proved by exhibiting a model
for any saturated clause set N that does not contain ⊥. The model is constructed
incrementally, one clause C ∈ N at a time, starting with an empty Herbrand
interpretation. The idea appears to have originated with Brand [10] and Zhang
and Kapur [29].

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Ground_Resolution_Model.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Unordered_Ground_Resolution.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Ordered_Ground_Resolution.html
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Bachmair and Ganzinger introduce two operators to build the candidate
model: IC denotes the current interpretation before considering C, and εC
denotes the set of (zero or one) atoms added, or produced, to ensure that C
is satisfied. The candidate model construction is parameterized by a literal selec-
tion function S :: ′a clause ⇒ ′a clause. We also fix a clause set N . Then we
define two operators corresponding to εC and IC :

function production :: ′a clause ⇒ ′a set where
production C = {A | C ∈ N ∧ C �= {} ∧ Max C = Pos A

∧ (⋃
D<C production D

) �� C ∧ S C = {}}
definition interp :: ′a clause ⇒ ′a set where

interp C =
⋃

D<C production D

To ensure monotonicity of the construction, any produced atom must be maximal
in its clause. Moreover, productive clauses may not contain selected literals. In
the chapter, εC and IC are expressed in terms of each other. We simplified the
definition by inlining IC in εC , so that only εC is recursive. Since the recursive
calls operate on clauses D that are smaller with respect to a well-founded order,
the definition is accepted. Bachmair and Ganzinger’s IC and IN operators are
introduced as abbreviations: Interp C = interp C ∪ production C and INTERP =⋃

C∈N production C.
We then prove a host of lemmas about these concepts. Lemma 3.4 amounts

to six monotonicity properties, including these:

lemma interp imp Interp:
C ≤ D =�⇒ D ≤ D ′ =�⇒ interp D � C =�⇒ Interp D ′ � C

lemma Interp imp INTERP : C ≤ D =�⇒ Interp D � C =�⇒ INTERP � C

Lemma 3.3, whose proof depends on monotonicity, is better proved after 3.4:

lemma productive imp INTERP : production C �= {} =�⇒ INTERP � C

A more serious oddity is Lemma 3.7. Using our notations, it can be stated as
D ∈ N =�⇒ C �= D =�⇒ (∀D ′ < D. Interp D ′ � C) =�⇒ interp D � D ′. However,
the last occurrence of D ′ is clearly wrong—the context suggests C instead. Even
after this amendment, we have a counterexample, corresponding to a gap in the
proof: D = {}, C = {Pos A}, and N = {D,C}. Since this “lemma” is not actu-
ally used, we can simply ignore it.

Unordered Resolution. The unordered ground resolution calculus consists of
a single binary inference rule, with the side premise C ∨ A ∨ · · · ∨ A, the main
premise ¬A ∨ D, and the conclusion C ∨ D. Formally, this rule is captured by a
predicate:

inductive unord resolve :: ′a clause ⇒ ′a clause ⇒ ′a clause ⇒ bool where
unord resolve (C � replicate (n + 1) (Pos A)) ({Neg A} � D) (C � D)

To prove completeness, it suffices to show that the calculus reduces counterexam-
ples (Theorem 3.8). By instantiating the sound inference system and counterex
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reducing inference system locales, we obtain refutational completeness (Theo-
rem 3.9 and Corollary 3.10) and compactness of clausal logic (Theorem 3.12).

Ordered Resolution with Selection. Ordered ground resolution consists of
a single rule, ord resolve. Like unord resolve, it is sound and counterexample-
reducing (Theorem 3.15). Moreover, it is reductive (Lemma 3.13): the conclusion
is always smaller than the main premise according to the clause order. The rule
is given as

C1 ∨ A1 ∨ · · · ∨ A1 · · · Cn ∨ An ∨ · · · ∨ An ¬A1 ∨ · · · ∨ ¬An ∨ D

C1 ∨ · · · ∨ Cn ∨ D

with multiple side conditions whose role is to prune the search space and to
make the rule reductive. In Isabelle, we represent the n side premises by three
parallel lists of length n: CAs gives the entire clauses, whereas Cs and As store
the Ci and the Ai = Ai ∨ · · · ∨ Ai parts separately. In addition, As is the list
[A1, . . . , An]. The following inductive definition captures the rule formally:

inductive ord resolve :: ′a clause list ⇒ ′a clause ⇒ ′a clause ⇒ bool
where

|CAs| = n =�⇒ |Cs| = n =�⇒ |As| = n =�⇒ |As| = n =�⇒ n �= 0 =�⇒
(∀i < n. CAs ! i = Cs ! i � Pos ‘ As ! i) =�⇒ (∀i < n. As ! i �= {}) =�⇒
(∀i < n. ∀A ∈ As ! i. A = As ! i) =�⇒ eligible As (D � Neg ‘ mset As) =�⇒
(∀i < n. strict max in (As ! i) (Cs ! i)) =�⇒ (∀i < n. S (CAs ! i) = {}) =�⇒
ord resolve CAs (D � Neg ‘ mset As) ((

⋃
mset Cs) � D)

The xs ! i operator returns the (i + 1)st element of xs, and mset converts a list
to a multiset. Initially, we tried storing the n premises in a multiset, since their
order is irrelevant. However, due to the permutative nature of multisets, there
can be no such things as “parallel multisets”; the alternative, a single multiset
of tuples, is very unwieldy.

Formalization revealed an error and a few ambiguities in the rule’s state-
ment. References to S (D) in the side conditions should have been to S (¬A1 ∨
· · · ∨ ¬An ∨ D). The ambiguities are discussed in our technical report [21,
Appendix A].

5 Theorem Proving Processes

In their Sect. 4, Bachmair and Ganzinger switch to a dynamic view of saturation:
from clause sets closed under inferences to theorem proving processes that start
with a clause set N0 and keep deriving new clauses until no inferences are possible.
Redundant clauses can be deleted at any point, and redundant inferences need
not be performed.

A derivation performed by a proving process is a possibly infinite sequence
N0 � N1 � N2 � · · · , where � relates clause sets (Proving Process.thy). In
Isabelle, such sequences are captured by lazy lists, a codatatype [5] generated by
LNil :: ′a llist and LCons :: ′a ⇒ ′a llist ⇒ ′a llist , and equipped with lhd (“head”)

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Proving_Process.html
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and ltl (“tail”) selectors that extract LCons’s arguments. The coinductive predi-
cate chain checks that its argument is a nonempty lazy list whose elements are
linked by a binary predicate R:

coinductive chain :: (′a ⇒ ′a ⇒ bool) ⇒ ′a llist ⇒ bool where
chain R (LCons x LNil)

| chain R xs =�⇒ R x (lhd xs) =�⇒ chain R (LCons x xs)

A derivation is a lazy list Ns of clause sets satisfying the chain predicate with
R = �. Derivations depend on a redundancy criterion presented as two functions,
RF and RI:

locale redundancy criterion = inference system +
fixes RF :: ′a clause set ⇒ ′a clause set and

RI :: ′a clause set ⇒ ′a inference set
assumes RI N ⊆ Γ and sat (N \ RF N) =�⇒ sat N and

N ⊆ N ′ =�⇒ RF N ⊆ RF N ′ ∧ RI N ⊆ RI N ′ and
N ′ ⊆ RF N =�⇒ RF N ⊆ RF (N \ N ′) ∧ RI N ⊆ RI (N \ N ′)

By definition, a transition from M to N is possible if the only new clauses added
are conclusions of inferences from M and any deleted clauses would be redundant
in N :

M � N ⇐⇒ N \ M ⊆ concl of ‘ infers from M ∧ M \ N ⊆ RF N

This rule combines deduction (the addition of inferred clauses) and deletion (the
removal of redundant clauses) in a single transition. The chapter keeps the two
operations separated, but this is problematic, as we will see in Sect. 7.

A key concept to connect static and dynamic completeness is that of the
set of persistent clauses, or limit: N∞ =

⋃
i

⋂
j≥i Nj . These are the clauses that

belong to all clause sets except for at most a finite prefix of the sequence Ni.
We also need the supremum of a sequence,

⋃
i Ni. We introduce these missing

functions (Lazy List Liminf.thy):

Liminf xs =
⋃

i<|xs|
⋂

j:i≤j<|xs| xs ! j Sup xs =
⋃

i<|xs| xs ! i

When interpreting the notation
⋃

i

⋂
j≥i Nj for the case of a finite sequence of

length n, it is crucial to use the right upper bounds, namely i, j < n. For i,
the danger is subtle: if i ≥ n, then

⋂
j : i≤j<n Nj collapses to the trivial infimum⋂

j∈{} Nj , i.e., the set of all clauses.
Lemma 4.2 connects the redundant clauses and inferences at the limit to

those of the supremum, and the satisfiability of the limit to that of the initial
clause set. Formally:

lemma Rf limit Sup: chain (�) Ns =�⇒ RF (Liminf Ns) = RF (Sup Ns)
lemma Ri limit Sup: chain (�) Ns =�⇒ RI (Liminf Ns) = RI (Sup Ns)
lemma sat limit iff : chain (�) Ns =�⇒ (

sat (Liminf Ns) ⇐⇒ sat (lhd Ns)
)

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Lazy_List_Liminf.html
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In the chapter, the proof relies on “the soundness of the inference system,” con-
tradicting the claim that “we will only consider consistency-preserving inference
systems” [3, Sect. 2.4]. Thanks to Isabelle, we now know that soundness is unnec-
essary.

Next, we show that the limit is saturated, under some assumptions and for
a relaxed notion of saturation. A clause set N is saturated up to redundancy if
all inferences from nonredundant clauses in N are redundant:

saturated upto N ⇐⇒ infers from (N \ RF N) ⊆ RI N

The limit is saturated for fair derivations, defined by fair clss seq Ns ⇐⇒
concl of ‘ infers from N ′ \ RI N ′ ⊆ Sup Ns ∪ RF (Sup Ns) with N ′ = Liminf Ns
\ RF (Liminf Ns). The criterion must also be effective, meaning γ ∈ Γ =�⇒
concl of γ ∈ N ∪ RF N =�⇒ γ ∈ RI N. Under these assumptions, we have
Theorem 4.3:

theorem fair derive saturated upto:
chain (�) Ns =�⇒ fair clss seq Ns =�⇒ saturated upto (Liminf Ns)

The standard redundancy criterion is an instance of the framework. It relies
on a counterexample-reducing inference system Γ (Standard Redundancy.thy):

RF N = {C | ∃D ⊆ N. (∀I. I � D =�⇒ I � C) ∧ ∀D ′ ∈ D. D ′ < C}
RI N = {(C,D,E) ∈ Γ | ∃D ⊆ N. (∀I. I � D � C =�⇒ I � E) ∧ ∀D ′∈D. D ′ < D}
Standard redundancy qualifies as effective redundancy criterion. In the chapter,
this is stated as Theorems 4.7 and 4.8, which depend on two auxiliary proper-
ties, Lemmas 4.5 and 4.6. The main result, Theorem 4.9, is that counterexample-
reducing calculi are refutationally complete also under the application of stan-
dard redundancy:

theorem saturated upto complete:
saturated upto N =�⇒ (¬ sat N ⇐⇒ {} ∈ N)

The informal proof of Lemma 4.6 applies Lemma 4.5 in a seemingly impossible
way, confusing redundant clauses and redundant inferences and exploiting prop-
erties that appear only in the first lemma’s proof. Our solution is to generalize
the core argument into a lemma and apply it to prove Lemmas 4.5 and 4.6. Inci-
dentally, the informal proof of Theorem 4.9 also needlessly invokes Lemma 4.5.

Finally, given a redundancy criterion (RF,RI) for Γ, its standard exten-
sion for Γ′ ⊇ Γ is defined as (RF,R′

I), where R′
I N = RI N ∪ (Γ′ \ Γ)

(Proving Process.thy). The standard extension preserves effectiveness, satura-
tion up to redundancy, and fairness.

6 First-Order Resolution

The chapter’s Sect. 4.3 presents a first-order version of the ordered resolution
rule and a first-order prover, RP, based on that rule. The first step towards

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Standard_Redundancy.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Proving_Process.html


98 A. Schlichtkrull et al.

lifting the completeness of ground resolution is to show that we can lift individ-
ual ground resolution inferences (FO Ordered Resolution.thy).

Inference Rule. First-order ordered resolution consists of the single rule

C1 ∨ A11 ∨ · · · ∨ A1k1 · · · Cn ∨ An1 ∨ · · · ∨ Ankn ¬A1 ∨ · · · ∨ ¬An ∨ D

C1 · σ ∨ · · · ∨ Cn · σ ∨ D · σ

where σ is the (canonical) MGU that solves all unification problems Ai1
?= · · · ?=

Aiki

?= Ai, for 1 ≤ i ≤ n. As expected, the rule has several side conditions. The
Isabelle representation of this rule is based on that of its ground counterpart,
generalized to apply σ:

inductive ord resolve :: ′a clause list ⇒ ′a clause ⇒ ′s ⇒ ′a clause ⇒ bool
where

|CAs| = n =�⇒ |Cs| = n =�⇒ |As| = n =�⇒ |As| = n =�⇒ n �= 0 =�⇒
(∀i < n. CAs ! i = Cs ! i � Pos ‘ As ! i) =�⇒ (∀i < n. As ! i �= {}) =�⇒
Some σ = mgu (set mset ‘ set (map2 add mset As As)) =�⇒
eligible σ As (D � Neg ‘ mset As) =�⇒
(∀i<n. strict max in (As ! i ·σ) (Cs ! i ·σ)) =�⇒ (∀i<n. S (CAs ! i) = {}) =�⇒
ord resolve CAs (D � Neg ‘ mset As) σ (((

⋃
mset Cs) � D) · σ)

The rule as stated is incomplete; for example, p(x) and ¬ p(f(x)) cannot be
resolved because x and f(x) are not unifiable. In the chapter, the authors circum-
vent this issue by stating, “We also implicitly assume that different premises and
the conclusion have no variables in common; variables are renamed if necessary.”
For the formalization, we first considered enforcing the invariant that all derived
clauses use mutually disjoint variables, but this does not help when a clause is
repeated in an inference’s premises. Instead, we rely on a predicate ord resolve
rename, based on ord resolve, that standardizes the premises apart. The renam-
ing is performed by a function called renamings apart :: ′a clause list ⇒ ′s list
that, given a list of clauses, returns a list of corresponding substitutions to apply.
This function is part of the abstract interface for terms and substitutions (which
we presented in Sect. 2) and is implemented using IsaFoR.

Lifting Lemma. To lift ground inferences to the first-order level, we consider a
set of clauses M and introduce an adjusted version SM of the selection function S .
This new selection function depends on both S and M and works in such a way
that any ground instance inherits the selection of at least one of the nonground
clauses of which it is an instance. This property is captured formally as

lemma S M grounding of clss:
C ∈ grounding of M =�⇒ ∃D ∈ M. ∃σ. C = D · σ ∧ SM C = S D · σ

where grounding of M is the set of ground instances of a set of clauses M.
The lifting lemma, Lemma 4.12, states that whenever there exists a ground

inference of E from clauses belonging to grounding of M , there exists a (possibly)
more general inference from clauses belonging to M :

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution.html


Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 99

lemma ord resolve rename lifting :
(∀ρ C . is renaming ρ =�⇒ S (C · ρ) = S C · ρ) =�⇒
ord resolve SM CAs DA As As σ E =�⇒
{DA} ∪ set CAs ⊆ grounding of M =�⇒
∃ηs η θ CAs0 DA0 As0 As0 E0 τ.

ord resolve rename S CAs0 DA0 As0 As0 τ E0 ∧
CAs0 ·ηs = CAs ∧ DA0 ·η = DA ∧ E0 ·θ = E ∧ {DA0} ∪ set CAs0 ⊆ M

The informal proof of this lemma consists of two sentences spanning four lines
of text. In Isabelle, these two sentences translate to 250 lines and 400 lines,
respectively, excluding auxiliary lemmas. Our proof involves six steps:

1. Obtain a list of first-order clauses CAs0 and a first-order clause DA0 that
belong to M and that generalize CAs and DA with substitutions ηs and η,
respectively.

2. Choose atoms As0 and As0 in the first-order clauses on which to resolve.
3. Standardize CAs0 and DA0 apart, yielding CAs ′

0 and DA′
0.

4. Obtain the MGU τ of the literals on which to resolve.
5. Show that ordered resolution on CAs ′

0 and DA′
0 with τ as MGU is applicable.

6. Show that the resulting resolvent E0 generalizes E with substitution θ.

In step 1, suitable clauses must be chosen so that S (CAs0 ! i) generalizes
SM (CAs ! i), for 0 ≤ i < n, and S DA0 generalizes SM DA. By the definition of
SM , this is always possible. In step 2, we choose the literals to resolve upon in
the first-order inference depending on the selection on the ground inference. If
some literals are selected in DA, we define As0 as the selected literals in DA0,
such that (As0 ! i) · η = As ! i for each i. Otherwise, As must be a singleton list
containing some atom A, and we define As0 as the singleton list consisting of an
arbitrary A0 ∈ DA0 such that A0 ·η = A. Step 3 may seem straightforward until
one realizes that renaming variables can in principle influence selection. To rule
this out, our lemma assumes stability under renaming: S (C · ρ) = S C · ρ for
any renaming substitution ρ and clause C. This requirement seems natural, but
it is not mentioned in the chapter.

The above choices allow us to perform steps 4 to 6. In the chapter, the authors
assume that the obtained CAs0 and DA0 are standardized apart from each other
as well as their conclusion E0. This means that they can obtain a single ground
substitution μ that connect CAs0, DA0, E0 to CAs, DA, E. By contrast, we
provide separate substitutions ηs, η, θ for the different side premises, the main
premise, and the conclusion.

7 A First-Order Prover

Modern resolution provers interleave inference steps with steps that delete or
reduce (simplify) clauses. In their Sect. 4.3, Bachmair and Ganzinger introduce
the nondeterministic abstract prover RP that works on triples of clause sets
and that generalizes the Otter-style and DISCOUNT-style loops. RP’s core
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rule, called inference computation, performs first-order ordered resolution as
described above; the other rules delete or reduce clauses or move them between
clause sets. We formalize RP and prove it complete assuming a fair strategy
(FO Ordered Resolution Prover.thy).

Abstract First-Order Prover. The RP prover is a relation � on states of
the form (N ,P,O), where N is the set of new clauses, P is the set of processed
clauses, and O is the set of old clauses. RP’s formal definition is very close to
the original formulation:

inductive � :: ′a state ⇒ ′a state ⇒ bool where
Neg A ∈ C =�⇒ Pos A ∈ C =�⇒ (N ∪ {C},P,O) � (N ,P,O)

| D ∈ P ∪ O =�⇒ subsumes D C =�⇒ (N ∪ {C},P,O) � (N ,P,O)
| D ∈ N =�⇒ strictly subsumes D C =�⇒ (N ,P ∪ {C},O) � (N ,P,O)
| D ∈ N =�⇒ strictly subsumes D C =�⇒ (N ,P,O ∪ {C}) � (N ,P,O)
| D ∈ P ∪O =�⇒ reduces D C L =�⇒ (N ∪{C �{L}},P,O) � (N ∪{C},P,O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P ∪ {C � {L}},O) � (N ,P ∪ {C},O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P,O ∪ {C � {L}}) � (N ,P ∪ {C},O)
| (N ∪ {C},P,O) � (N ,P ∪ {C},O)
| ({},P ∪ {C},O) � (concl of ‘ infers between O C,P,O ∪ {C})

The rules correspond, respectively, to tautology deletion, forward subsumption,
backward subsumption in P and O, forward reduction, backward reduction in
P and O, clause processing, and inference computation.

Initially, N consists of the problem clauses and the other two sets are empty.
Clauses in N are reduced using P ∪O, or even deleted if they are tautological or
subsumed by P∪O; conversely, N can be used for reducing or subsuming clauses
in P ∪ O. Clauses eventually move from N to P, one at a time. As soon as N
is empty, a clause from P is selected to move to O. Then all possible resolution
inferences between this given clause and the clauses in O are computed and put
in N, closing the loop.

The subsumption and reduction rules depend on the following predicates:

subsumes D C ⇐⇒ ∃σ. D · σ ⊆ C

strictly subsumes D C ⇐⇒ subsumes D C ∧ ¬ subsumes C D

reduces D C L ⇐⇒ ∃D′ L′ σ. D = D′ � {L′} ∧ −L = L′ · σ ∧ D′ · σ ⊆ C

The definition of the set infers between O C, on which inference computation
depends, is more subtle. In the chapter, the set of inferences between C and
O consists of all inferences from O ∪ {C} that have C as exactly one of their
premises. This, however, leads to an incomplete prover, because it ignores infer-
ences that need multiple copies of C. For example, assuming a maximal selection
function, the resolution inference

p p ¬ p ∨ ¬ p

⊥
is possible. Yet if the clause ¬ p ∨ ¬ p reaches O earlier than p, the infer-
ence would not be performed. This counterexample requires ternary resolution,

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution_Prover.html
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but there also exists a more complicated one for binary resolution, where both
premises are the same clause. Consider the clause set containing

(1) q(a, c, b) (2) ¬ q(x, y, z) ∨ q(y, z, x) (3) ¬ q(b, a, c)

and an order > on atoms such that q(c, b, a) > q(b, a, c) > q(a, c, b). Inferences
between (1) and (2) or between (2) and (3) are impossible due to order restric-
tions. The only possible inference involves two copies of (2):

¬ q(x, y, z) ∨ q(y, z, x) ¬q(x′, y′, z′) ∨ q(y′, z′, x′)
¬q(x, y, z) ∨ q(z, x, y)

From the conclusion, we derive ¬ q(a, c, b) by (3) and ⊥ by (1). This incomplete-
ness is a severe flaw, although it is probably just an oversight.

Projection to Theorem Proving Process. On the first-order level, a deriva-
tion can be expressed as a lazy list Ss of states, or as three parallel lazy lists
Ns, Ps, Os. The limit state of a derivation Ss is defined as Liminf Ss =
(Liminf Ns, Liminf Ps, Liminf Os), where Liminf on the right-hand side is as
in Sect. 5.

Bachmair and Ganzinger use the completeness of ground resolution to prove
RP complete. The first step is to show that first-order derivations can be pro-
jected down to theorem proving processes on the ground level. This corresponds
to Lemma 4.10. Adapted to our conventions, its statement is as follows:

If S � S ′, then grounding of S �∗ grounding of S ′, with � based on some
extension of ordered resolution with selection function S and the standard
redundancy criterion (RF,RI).

This raises some questions: (1) Exactly which instance of the calculus are we
extending? (2) Which calculus extension should we use? (3) How can we repair
the mismatch between �∗ in the lemma statement and � where the lemma is
invoked?

Regarding question (1), it is not clear which selection function to use. Is the
function the same S as in the definition of RP or is it arbitrary? It takes a close
inspection of the proof of Lemma 4.13, where Lemma 4.10 is invoked, to find
out that the selection function used there is SLiminf Os .

Regarding question (2), the phrase “some extension” is cryptic. It suggests
an existential reading, and from the context it would appear that a standard
extension (Sect. 5) is meant. However, neither the lemma’s proof nor the context
where it is invoked supplies the desired existential witness. A further subtlety
is that the witness should be independent of S and S ′, so that transitions can
be joined to form a single theorem proving derivation. Our approach is to let �
be the extension consisting of all sound derivations: Γ = {(C,D,E) | ∀I. I �
C ∪{D} =�⇒ I � E}. This also eliminates the need for Bachmair and Ganzinger’s
subsumption resolution rule, a special calculus rule that is, from what we under-
stand, implicitly used in the proof of Lemma 4.10 for the subcases associated
with RP’s reduction rules.
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As for question (3), the need for �∗ instead of � arises because one of the cases
requires a combination of deduction and deletion, which Bachmair and Ganzinger
model as separate transitions. By merging the two transitions (Sect. 5), we avoid
the issue altogether and can use � in the formal counterpart of Lemma 4.10.

With these issues resolved, we can prove Lemma 4.10 for single steps and
extend it to entire derivations:

lemma RP ground derive: S � S ′ =�⇒ grounding of S � grounding of S ′

lemma RP ground derive chain:
chain (�) Ss =�⇒ chain (�) (lmap grounding of Ss)

The lmap function applies its first argument elementwise to its second argument.

Fairness and Clause Movement. From a given initial state (N0, {}, {}), many
derivations are possible, reflecting RP’s nondeterminism. In some derivations, we
could leave a crucial clause in N or P without ever reducing it or moving it to
O, and then fail to derive ⊥ even if N0 is unsatisfiable. For this reason, refuta-
tional completeness is guaranteed only for fair derivations. These are defined as
derivations such that Liminf Ns = Liminf Ps = {}, guaranteeing that no clause
will stay forever in N or P.

Fairness is expressed by the fair state seq predicate, which is distinct from the
fair clss seq predicate presented in Sect. 5. In particular, Theorem 4.3 is used in
neither the informal nor the formal proof, and appears to play a purely pedagogic
role in the chapter. For the rest of this section, we fix a lazy list of states Ss, and
its projections Ns, Ps, and Os, such that chain (�) Ss, fair state seq Ss, and
lhd Os = {}.

Thanks to fairness, any nonredundant clause C in Ss’s projection to the
ground level eventually ends up in O and stays there. This is proved informally
as Lemma 4.11, but again there are some difficulties. The vagueness concerning
the selection function can be resolved as for Lemma 4.10, but there is another,
deeper flaw.

Bachmair and Ganzinger’s proof idea is as follows. By hypothesis, the ground
clause C must be an instance of a first-order clause D in Ns ! j ∪ Ps ! j ∪ Os ! j
for some index j. If C ∈ Ns ! j, then by nonredundancy of C, fairness of the
derivation, and Lemma 4.10, there must exist a clause D′ that generalizes C in
Ps ! l ∪ Os ! l for some l > j. By a similar argument, if D′ belongs to Ps ! l,
it will be in Os ! l′ for some l′ > l, and finally in all Os ! k with k ≥ l′. The
flaw is that backward subsumption can delete D′ without moving it to O. The
subsumer clause would then be a strictly more general version of D′ (and of the
ground clause C).

Our solution is to choose D, and consequently D′, such that it is minimal,
with respect to subsumption, among the clauses that generalize C in the deriva-
tion. This works because strict subsumption is well founded—which we also
proved, by reduction to a well-foundedness result about the strict generalization
relation on first-order terms, included in IsaFoR [13, Sect. 2]. By minimality, D′

cannot be deleted by backward subsumption. This line of reasoning allows us to
prove Lemma 4.11, where O of extracts the O component of a state:
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lemma fair imp Liminf minus Rf subset ground Liminf state:
Gs = lmap grounding of Ss =�⇒
Liminf Gs − RF (Liminf Gs) ⊆ grounding of (O of (Liminf Ss))

Completeness. Once we have brought Lemmas 4.10, 4.11, and 4.12 into a
suitable shape, the main completeness result, Theorem 4.13, is not difficult to
formalize:

theorem RP saturated if fair :
saturated upto (Liminf (lmap grounding of Ss))

corollary RP complete if fair :
¬ sat (grounding of (lhd Ss)) =�⇒ {} ∈ O of (Liminf Ss)

A crucial point that is not clear from the text is that we must always use
the selection function S on the first-order level and SLiminf Os on the ground
level. Another noteworthy part of the proof is the passage “Liminf Gs (and
hence Liminf Ss) contains the empty clause” (using our notations). Obviously, if
grounding of (Liminf Ss) contains ⊥, then Liminf Ss must as well. However, the
authors do not explain the step from Liminf Gs, the limit of the grounding, to
grounding of (Liminf Ss), the grounding of the limit. Fortunately, by Lemma 4.11,
the latter contains all the nonredundant clauses of the former, and the empty
clause is nonredundant. Hence the informal argument is fundamentally correct.

8 Discussion and Related Work

Bachmair and Ganzinger cover a lot of ground in a few pages. We found much
of the material straightforward to formalize: it took us about two weeks to reach
their Sect. 4.3, which introduces the RP prover. By contrast, we needed months
to fully understand and formalize that section. While the Handbook chapter
succeeds at conveying the key ideas at the propositional level, the lack of rigor
makes it difficult to develop a deep understanding of ordered resolution proving
on first-order clauses.

There are several reasons why Sect. 4.3 did not lend itself easily to a formaliza-
tion. The proofs often depend on lemmas and theorems from previous sections
without explicitly mentioning them. The lemmas and proofs do not quite fit
together. And while the general idea of the proofs stands up, they have many
confusing flaws that must be repaired. Our methodology involved the following
steps: (1) rewrite the informal proofs to a handwritten pseudo-Isabelle; (2) fill in
the gaps, emphasizing which lemmas are used where; (3) turn the pseudo-Isabelle
into real Isabelle, but with sorry placeholders for the proofs; and (4) replace
the sorrys with proofs. Progress was not always linear. As we worked on each
step, more than once we discovered an earlier mistake.

The formalization helps us answer questions such as, “Is effectiveness of
ordered resolution (Lemma 3.13) actually needed, and if so, where?” It also
allows us to track definitions and hypotheses precisely, so that we always know
the scope and meaning of every definition, lemma, or theorem. If a hypothesis
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appears too strong or superfluous, we can try to rephrase or eliminate it; the
proof assistant tells us where the proof breaks.

Starting from RP, we could refine it to obtain an efficient imperative imple-
mentation, following the lines of Fleury, Blanchette, and Lammich’s verified
SAT solver with the two-watched-literals optimization [12]. However, this would
probably involve a huge amount of work. To increase provers’ trustworthiness, a
more practical approach is to have them generate detailed proofs. Such output
can be independently reconstructed using a proof assistant’s inference kernel.
This is the approach implemented in Sledgehammer [8], which integrates auto-
matic provers in Isabelle. Formalized metatheory could in principle be used to
deduce a formula’s satisfiability from a finite saturation.

We found Isabelle/HOL eminently suitable to this kind of formalization
work. Its logic—based on classical simple type theory—balances expressiveness
and automatability. We benefited from many features of the system, including
codatatypes [5], Isabelle/jEdit [28], the Isar proof language [27], locales [4], and
Sledgehammer [8]. It is perhaps indicative of the maturity of theorem proving
technology that most of the issues we encountered were unrelated to Isabelle.
The main challenge was to understand the informal proof well enough to design
suitable locale hierarchies and state the definitions and lemmas precisely, and
correctly.

Formalizing the metatheory of logic and deduction is an enticing proposition
for many researchers. Two recent, independent developments are particularly
pertinent. Peltier [17] proved static completeness of a variant of the superpo-
sition calculus in Isabelle/HOL. Since superposition generalizes ordered resolu-
tion, his result subsumes our static completeness theorem. It would be interest-
ing to extend his formal development to obtain a verified superposition prover.
We could also consider calculus extensions such as polymorphism [11,25], type
classes [25], and AVATAR [24]. Hirokawa et al. [13] formalized, also in Isabelle/
HOL, an abstract Knuth–Bendix completion procedure as well as ordered (unfail-
ing) completion [1]. Superposition combines ordered resolution (to reason about
clauses) and ordered completion (to reason about equality).

The literature contains many other formalized completeness proofs. Early
work was carried out by Shankar [22] and Persson [18]. Some of our own efforts
are also related: completeness of unordered resolution using semantic trees by
Schlichtkrull [20]; completeness of a Gentzen system by Blanchette, Popescu,
and Traytel [9]; and completeness of CDCL by Blanchette, Fleury, Lammich,
and Weidenbach [6]. We refer to our earlier papers for further discussions of
related work.

9 Conclusion

We presented a formal proof that captures the core of Bachmair and Ganzinger’s
Handbook chapter on resolution theorem proving. For all its idiosyncrasies, the
chapter withstood the test of formalization, once we had added self-inferences
to the RP prover. Given that the text is a basic building block of automated
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reasoning, we believe there is value in clarifying its mathematical content for
the next generations of researchers. We hope that our work will be useful to the
editors of a future revision of the Handbook.

Formalization of the metatheory of logical calculi is one of the many con-
nections between automatic and interactive theorem proving. We expect to see
wider adoption of proof assistants by researchers in automated reasoning, as
a convenient way to develop metatheory. By building formal libraries of stan-
dard results, we aim to make it easier to formalize state-of-the-art research as
it emerges. We also see potential uses of formal proofs in teaching automated
reasoning, inspired by the use of proof assistants in courses on the semantics of
programming languages [15,19].
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Abstract. The automated theorem prover Leo-III for classical higher-
order logic with Henkin semantics and choice is presented. Leo-III is
based on extensional higher-order paramodulation and accepts every
common TPTP dialect (FOF, TFF, THF), including their recent exten-
sions to rank-1 polymorphism (TF1, TH1). In addition, the prover
natively supports almost every normal higher-order modal logic. Leo-III
cooperates with first-order reasoning tools using translations to many-
sorted first-order logic and produces verifiable proof certificates. The
prover is evaluated on heterogeneous benchmark sets.

1 Introduction

Leo-III is an automated theorem prover (ATP) for classical higher-order logic
(HOL) with Henkin semantics and choice.1 It is the successor of the well-known
LEO-II prover [1], whose development significantly influenced the build-up of
the TPTP THF infrastructure [2]. Leo-III exemplarily utilizes and instantiates
the associated LeoPARD system platform [3] for higher-order (HO) deduction
systems implemented in Scala.

In the tradition of the cooperative nature of the LEO prover family, Leo-III
collaborates with external theorem provers during proof search, in particular,
with first-order (FO) ATPs such as E [4]. Unlike LEO-II, which translated proof
obligations into untyped FO languages, Leo-III, by default, translates its HO
clauses to (monomorphic or polymorphic) many-sorted FO formulas. That way
clutter is reduced during translation, resulting in a more effective cooperation.

Leo-III supports all common TPTP [2,5] dialects (CNF, FOF, TFF, THF) as
well as the polymorphic variants TF1 and TH1 [6,7]. The prover returns results
according to the standardized SZS ontology and additionally produces a TSTP-
compatible (refutation) proof certificate, if a proof is found. Furthermore, Leo-III
natively supports reasoning for almost every normal HO modal logic, including
(but not limited to) logics K, D, T, S4 and S5 with constant, cumulative or
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varying domain quantifiers [8]. These hybrid logic competencies make Leo-III,
up to the authors’ knowledge, the most widely applicable ATP available to date.

The most current release of Leo-III (version 1.2) comes with several novel fea-
tures, including specialized calculus rules for function synthesis, injective func-
tions and equality-based simplification. An evaluation of Leo-III 1.2 confirms
that it is on a par with other current state-of-the-art HO ATP systems.

This paper outlines the base calculus of Leo-III and highlights the features
of version 1.2. As a pioneering contribution this also includes Leo-III’s native
support for reasoning in HO modal logics (which, of course, includes proposi-
tional and FO modal logics). Finally, an evaluation of Leo-III is presented for all
monomorphic and polymorphic THF problems from the TPTP problem library
and for all mono-modal logic problems from the QMLTP library [9].

Related ATP systems. These include TPS, Satallax, cocATP and agsyHOL.
Also, some interactive proof assistants such as Isabelle/HOL can be used for
automated reasoning in HOL. More weakly related systems include the various
recent attempts to lift FO ATPs to the HO domain, e.g. Zipperposition.

Higher-Order Logic. HOL as addressed here has been proposed by Church,
and further studied by Henkin, Andrews and others, cf. [10,11] and the references
therein. It provides lambda-notation, as an elegant and useful means to denote
unnamed functions, predicates and sets (by their characteristic functions). In
the remainder a notion of HOL with Henkin semantics and choice is assumed.

2 Higher-Order Paramodulation

Leo-III extends a complete, paramodulation based calculus for HOL with practi-
cally motivated, heuristic inference rules, cf. Fig. 1. They are grouped as follows:

Clause normalization. Leo-III employs definitional clausification to reduce the
number of clauses. Moreover, miniscoping is employed prior to clausification.
Further normalization rules are straightforward.

Primary inferences. The primary inference rules of Leo-III are paramodula-
tion (Para), equality factoring (EqFac) and primitive substitution (PS) as
displayed in Fig. 1. The first two introduce unification constraints that are
encoded as negative literals. Note that these rules are unordered and produce
numerous redundant clauses. Leo-III uses several heuristics to restrict the
number of inferences, including a HO term ordering. While these restrictions
sacrifice completeness in general, recent evaluations confirm practicality of
this approach (cf. evaluation in §4); complete search may be retained though.
PS instantiates free variables at top-level with approximations of predicate
formulas using so-called general bindings GBC

τ [1, §2].
Unification. Unification in Leo-III uses a variant of Huet’s pre-unification rules.

Negative equality literals are interpreted as unification constraints and are
attempted to be solved eagerly by unification. In contrast to LEO-II, Leo-III
uses pattern unification whenever possible. In order to ensure termination,
the pre-unification search is limited to a configurable depth.
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Primary inferences

C ∨ [l � r]tt D ∨ [s � t]α
(Para)

C ∨ D ∨ [s[r]π � t]α ∨ [s|π � l]ff
C ∨ [l � r]α ∨ [s � t]α

(EqFac)
C ∨ [l � r]α ∨ [l � s]ff ∨ [r � t]ff

C ∨ [Xτi→o ti
τi
]α p ∈ GB{¬,∨}∪{Πτ, =τ |τ∈T }

τi→o
(PS)

C ∨ [Xτi→o ti
τi
]α

){X/p}
Further rules

(Choice): E is a choice operator or a free variable; X is a fresh variable.
(INJ): sk is a fresh constant symbol of appropriate type.

C ∨ [s[E t]]α
(Choice)

[t X]ff ∨ [t (ε t)]tt
[f X � f Y ]tt ∨ [X � Y ]ff

(INJ)
[sk (f X) � X]tt

C := C′ ∨ [Fτj→τ s1,j
1≤j≤n � t1τ ]ff ∨ · · · ∨ [F sm,j

1≤j≤n � tm
τ ]ff

(FS)

C
{

F/λXj
τj . εZτ .

∧m
k=1

( ∧n
j=1 Xj = sk,j

) −→ Z = tk
)}

Fig. 1. Examples of Leo-III’s calculus rules. Technical preliminaries: s � t denotes an
equation of HOL terms, where � is assumed to be symmetric. A literal � is a signed
equation, written [s � t]α where α ∈ {tt, ff} is the polarity of �. Literals of form [so]

α are
a shorthand for [so � �]α. A clause C is a multiset of literals, denoting its disjunction.
For brevity, if C, D are clauses and � is a literal, C ∨ � and C ∨D denote the multi-union
C ∪ {�} and C ∪ D, respectively. s|π is the subterm of s at position π, and s[r]π denotes
the term that is created by replacing the subterm of s at position π by r.

Extensionality rules. Dedicated extensionality rules are used in order to eliminate
the need for extensionality axioms in the search space. The rules are similar
to those of LEO-II [1].

Clause contraction. In addition to standard simplification routines, Leo-III
implements are variety of (equational) simplification procedures, including
subsumption, destructive equality resolution, heuristic rewriting and contex-
tual unit cutting (simplify-reflect).

Defined Equalities. Leo-III scans for common definitions of equality predicates
and heuristically instantiates (or replaces) them with primitive equality.

Choice. Leo-III supports HOL with choice (ετ
(τ→o)→τ being a choice operator

for type τ). Rule (Choice) instantiates choice predicates for subterms that
represent either concrete choice operator applications (if E ≡ ε) or potential
applications of choice (if E is a free variable of the clause).

Function synthesis. If plain unification fails for a set of unification constraints,
Leo-III may try to synthesise function specifications by rule (FS) using special
choice instances that simulate suitable if-then-else terms. In general, this rule
tremendously increases the search space. However, it also enables Leo-III to
solve some hard problems (with TPTP rating 1.0). Also, Leo-III supports
improved reasoning with injective functions by postulating the existence of
left-inverses, cf. rule (INJ).
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Heuristic instantiation. Prior to clause normalization, Leo-III might instantiate
universally quantified variables. This include exhaustive instantiation of finite
types as well as partial instantiation for otherwise interesting types.

3 Modal Logic Reasoning

Modal logics have many relevant applications in computer science, artificial intel-
ligence, mathematics and computational linguistics. They also play an important
role in many areas of philosophy, including ontology, ethics, philosophy of mind
and philosophy of science. Many challenging applications, as recently explored
in metaphysics, require FO or HO modal logics (HOMLs). The development of
ATPs for these logics, however, is still in its infancy.

Leo-III is addressing this gap. In addition to its HOL reasoning capabilities,
it is the first ATP that natively supports a very wide range of normal HOMLs.
To achieve this, Leo-III internally implements a shallow semantical embeddings
approach [12,13]. The key idea in this approach is to provide and exploit faith-
ful mappings for HOML input problems to HOL that encode its Kripke-style
semantics. An example is as follows:

A The user inputs a HOML problem in a suitably adapted TPTP syntax, e.g.
thf(1,conjecture,( ! [P:$i>$o,F:$i>$i, X:$i]: (? [G:$i>$i]:

(($dia @ ($box @ (P @ (F @ X)))) => ($box @ (P @ (G @ X))))))).

which encodes ∀Pι→o∀Fι→ι∀Xι∃Gι→ι(♦�P (F (X)) ⇒ �P (G(X))), with
$box and $dia representing the (mono-)modal operators. This example for-
mula (an instance of a corollary of Becker’s postulate) is valid in S5.

B In the header of the input file the user specifies the logic of interest, say S5
with rigid constants, constant domain quantifiers and a global consequence
relation. For this purpose the TPTP language has been suitably extended:2

thf(simple_s5, logic, ($modal := [

$constants := $rigid, $quantification := $constant,

$consequence := $global, $modalities := $modal_system_S5 ])).

C When being called with this input file, Leo-III parses and analyses it, auto-
matically selects and unfolds the corresponding definitions of the semantical
embedding approach, adds appropriate axioms and then starts reasoning in
(meta-logic) HOL. Subsequently, it returns SZS compliant result information
and, if successful, also a proof object just as for standard HOL problems.
Leo-III’s proof for the embedded example is verified by GDV [5] in 356 s.

As of version 1.2, Leo-III supports (but is not limited to) FO and HO exten-
sions of the well known modal logic cube. When taking the different parame-
ter combinations into account (constant/cumulative/varying domain semantics,
rigid/non-rigid constants, local/global consequence relation, and further seman-
tical parameters) this amounts to more than 120 supported HOMLs.3 The exact

2 Cf. http://www.cs.miami.edu/∼tptp/TPTP/Proposals/LogicSpecification.html.
3 Cf. [13, §2.2]; we refer to the literature [8] for more details on HOML.

http://www.cs.miami.edu/~tptp/TPTP/Proposals/LogicSpecification.html
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number of supported logics is in fact much higher, since Leo-III also supports
multi-modal logics with independent modal system specification for each modal-
ity. Also, user-defined combinations of rigid and non-rigid constants and differ-
ent quantification semantics per type domain are possible. Related provers are
in contrast limited to propositional logics or support a small range of FO modal
logics only [14–16]. In the restricted logic settings of the related systems, the
embedding approach used by Leo-III is still competitive; cf. evaluation below.

4 Evaluation

In order to quantify the performance of Leo-III, an evaluation based on various
benchmarks was conducted. Three benchmark data sets were used:

– TPTP TH0 (2463 problems) is the set of all monomorphic HOL (TH0) prob-
lems from the TPTP library v7.0.0 [5] that are annotated as theorems. The
TPTP library is a de-facto standard for the evaluation of ATP systems.

– TPTP TH1 (442 problems) is the subset of all 666 polymorphic HOL (TH1)
problems from TPTP v7.0.0 that are annotated as theorems and do not con-
tain arithmetic. The problems mainly consist of HOL Light core exports and
Sledgehammer translations of various Isabelle theories.

– QMLTP (580 problems) is the subset of all mono-modal benchmarks from the
QMLTP library 1.1 [9]. The QMLTP library only contains propositional and
FO modal logic problems. Since each problem may have a different validity
status for each semantics of modal logic, all problems (and not only those
marked as theorem) are selected. The total number of tested problems thus is
580 (raw problems) × 5 (logics) × 3 (domain conditions). QMLTP assumes
rigid constant symbols and a local consequence relation.

The evaluation measurements were taken on the StarExec cluster in which
each compute node is a 64 bit Red Hat Linux (kernel 3.10.0) machine fea-
turing 2.40 GHz Intel Xeon quad-core processors and a main memory of 128
GB. For each problem, every prover was given a CPU time limit of 240 s. The
following theorem provers were employed in one or more of the experiments:
Leo-III 1.2 (TH0/TH1/QMLTP) used in conjuction with E, CVC4 and iProver,
Isabelle/HOL 2016 (TH0/TH1) [17], Satallax 3.0 (TH0) [18], Satallax 3.2 (TH0),
LEO-II 1.7.0 (TH0), Zipperposition 1.1 (TH0) and MleanCoP 1.3 [19] (QMLTP).

The experimental results are discussed next:
TPTP TH0. Table 1 (a) displays each system’s performance on the TPTP

TH0 data set. For each system the absolute number (Abs.) and relative share
(Rel.) of solved problems is displayed. Solved here means that a system is able
to establish the SZS status Theorem and also emits a proof certificate that sub-
stantiates this claim. All results of the system, whether successful or not, are
counted and categorized as THM (Theorem), CAX (ContradictoryAxioms),
GUP (GaveUp) and TMO (TimeOut) for the respective SZS status of the returned



The Higher-Order Prover Leo-III 113

Table 1. Detailed result of the benchmark measurements

(a) TPTP TH0 data set (2463 problems)

Systems Solved SZS results Avg. time [s] Σ time [s]

Abs. Rel. THM CAX GUP TMO CPU WC CPU WC

Satallax 3.2 2140 86.89 2140 0 2 321 12.26 12.31 26238 26339

Leo-III 2053 83.39 2045 8 16 394 15.39 5.61 31490 11508

Satallax 3.0 1972 80.06 2028 0 2 433 17.83 17.89 36149 36289

LEO-II 1788 72.63 1789 0 43 631 5.84 5.96 10452 10661

Zipperposition 1318 53.51 1318 0 360 785 2.60 2.73 3421 3592

Isabelle/HOL 0 0.00 2022 0 1 440 46.46 33.44 93933 67610

(b) TPTP TH1 data set (442 problems)

Systems Solved SZS results Avg. Time [s] Σ time [s]

Abs. Rel. THM CAX GUP TMO CPU WC CPU WC

Leo-III 185 41.86 183 2 8 249 49.18 24.93 9099 4613

Isabelle/HOL 0 0.00 237 0 23 182 93.53 81.44 22404 19300

result.4 Additionally, the average and sum of all CPU times and wall clock (WC)
times over all solved problems is presented.

Leo-III successfully solves 2053 of 2463 problems (roughly 83.39%) from the
TPTP TH0 data set. This is 735 (35.8%) more than Zipperposition, 264 (12.86%)
more than LEO-II and 81 (3.95%) more than Satallax 3.0. The only ATP sys-
tem that solves more problems is the most recent version of Satallax (3.2) that
successfully solves 2140 problems, which is approximately 4.24% more than Leo-
III. Isabelle currently does not emit proof certificates (hence zero solutions).
Even if results without explicit proofs are counted, Leo-III would still have a
slightly higher number of problems solved than Satallax 3.0 and Isabelle/HOL
with 25 (1.22%) and 31 (1.51%) additional solutions, respectively. Leo-III, Satal-
lax (3.2), Zipperposition and LEO-II produce 18, 17, 15 and 3 unique solutions,
respectively. Evidently, Leo-III currently produces more unique solutions than
any other ATP system in this setting. Leo-III solves twelve problems that are
currently not solved by any other system indexed by TPTP.5

Satallax, LEO-II and Zipperposition show only small differences between
their individual CPU and WC time on average and sum. A more precise measure
for a system’s utilization of multiple cores is the so-called core usage. It is given
by the average of the ratios of used CPU time to used wall clock time over

4 Remark on CAX: In this special case of THM (theorem) the given axioms are incon-
sistent, so that anything follows, including the given conjecture. Unlike most other
provers, Leo-III checks for this special situation.

5 This information is extracted from the TPTP problem rating information
that is attached to each problem. The unsolved problems are NLP004^7,
SET013^7, SEU558^1, SEU683^1, SEV143^5, SYO037^1, SYO062^4.004, SYO065^4.001,
SYO066^4.004, MSC007^1.003.004, SEU938^5 and SEV106^5.
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Fig. 2. Comparison of Leo-III and MleanCoP on the QMLTP data set (580 problems)

all solved problems. The core usage of Leo-III for the TPTP TH0 data set is
roughly 2.52. This means that, on average, two to three CPU cores are used
during proof search by Leo-III. Satallax (3.2), LEO-II and Zipperposition show
a quite opposite behavior with core usages of 0.64, 0.56 and 0.47, respectively.

TPTP TH1. Currently, there exist only few ATP systems that are capable of
reasoning within polymorphic HOL as specified by TPTP TH1. The only excep-
tions are HOL(y)Hammer and Isabelle/HOL that schedule proof tactics within
HOL Light and Isabelle/HOL, respectively. Unfortunately, only Isabelle/HOL
was available for instrumentation in a reasonably recent and stable version.
Table 1 (b) displays the measurement results for the TPTP TH1 data set. When
disregarding proof certificates, Isabelle/HOL finds 237 theorems (53.62%) which
is roughly 28.1% more than the number of solutions founds by Leo-III. Leo-III
and Isabelle/HOL produce 35 and 69 unique solutions, respectively.

QMLTP. For each semantical setting supported by MleanCoP, which is the
strongest FO modal logic prover available to date [16], the number of theorems
found by both Leo-III and MleanCoP in the QMLTP data set is presented in
Fig. 2. Leo-III is fairly competitive with MleanCoP (weaker by maximal 14.05%,
minimal 2.95% and 8.90% on average) for all D and T variants. For all S4
variants, the gap between both systems increases (weaker by maximal 20.00%,
minimal 13.66% and 16.18% on average). For S5 variants, Leo-III is very effec-
tive (stronger by 1.36% on average) and it is ahead of MleanCoP for S5/const
and S5/cumul (which coincide). This is due to the encoding of the S5 acces-
sibility relation in Leo-III 1.2 as the universal relation between possible worlds
as opposed to its prior encoding (cf. [13,16]) as an equivalence relation. Leo-III
contributes 199 solutions to previously unsolved problems.

For HOML there exist no competitor systems with which Leo-III could be
compared. However, Leo-III can e.g. prove all problems from [20].
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5 Summary

Leo-III is a state-of-the-art higher-order reasoning system offering many relevant
features and capabilities. Due to its wide range of natively supported classical
and non-classical logics, which include polymorphic HO logic and numerous FO
and HO modal logics, the system has many topical applications in computer
science, AI, maths and philosophy. Additionally, an evaluation on heterogeneous
benchmark sets shows that Leo-III is also one of the most effective HO ATP
systems to date. Leo-III complies with existing TPTP/TSTP standards, gives
detailed proof certificates and plays a pivotal role in the ongoing extension of
the TPTP library and infrastructure to support modal logic reasoning.
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Abstract. Given two or more well-founded (terminating) binary rela-
tions, when can one be sure that their union is likewise well-founded? We
suggest new conditions for an arbitrary number of relations, generalising
known conditions for two relations. We also provide counterexamples to
several potential weakenings. All proofs have been machine checked.

1 Introduction

A binary relation R (which need not be an ordering) over some under-
lying set is well-founded (or terminating) if there is no infinite descend-
ing chain x0Rx1R · · · Rxn−1RxnR · · · .1 Given well-founded binary relations
R0, R1, . . . , Rn over some common (fixed) underlying set X, under what con-
ditions is their union R0 ∪ R1 ∪ · · · ∪ Rn also well-founded?

For two well-founded relations A and B, their union A ∪ B is well-founded
(Corollary 6 below) if the following relatively powerful condition holds [11]: see
also [12]. It is called Jumping in [7]:

BA ⊆ A(A ∪ B)∗ ∪ B . (∗)

Juxtaposition is being used for composition (xBAz iff there’s a y such that xBy
and yAz) and the asterisk for the reflexive-transitive closure (xB∗z iff there are
y0, y1, . . . , yn, n ≥ 0, such that x = y0By1B · · · Byn = z).

Jumping (∗) generalises simpler ways of showing well-foundedness of the
union of two relations. Eliding the rightmost B possibility gives quasi-
commutation [2], which is relevant to many rewriting situations (e.g. [2,5,6,15]):

BA ⊆ A(A ∪ B)∗ . (1)

Likewise, the simple A option also suffices for the well-foundedness of the union:

BA ⊆ A ∪ B . (2)

Based on preliminary work reported in [4,8].
J. Dawson—Supported by Australian Research Council Discovery Project
DP140101540.

1 We choose to view the forward direction as descent.
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To gain purchase on the manner of reasoning, let R = A ∪ B and imagine a
minimal infinite descending chain in R: x0Rx1R · · · Rxn−1RxnR · · · . By “min-
imal” we mean that its elements are as small as possible vis-à-vis A, which –
as it is well-founded – always enjoys minimal elements. Thus x0 is the smallest
element in the underlying set from which an infinite chain in R ensues. By the
same token, x1 is the smallest possible y such that x0RyR · · · . And so on. By
the well-foundedness of both A and B, any such chain must have (indeed, must
have infinitely many) adjacent BA-steps: · · · xBx′Ax′′R · · · . Now, if (2) holds,
we could have taken a giant step xRx′′, instead, before continuing down the infi-
nite path from x′′. But this would imply that the chain is not actually minimal
because x′′ is less than x′ with respect to A, and should have been next after x.

Similarly, to show that (1) suffices, we choose a “preferred” infinite coun-
terexample, in the sense that an A-step is always better than a B-step, given
the choice. Again, an infinite chain containing a pair of steps xBx′Ax′′ could
not be right since there is a preferred alternative, xAyR · · · Rx′′R · · · , dictated
by (1).

Combining these two arguments gives the sufficiency of the combined jumping
condition (∗). Among preferred counterexamples, always choose B-steps, xBx′,
having minimal x′ with respect to A. Preference precludes taking an A-first
detour instead of a BA pair xBx′Ax′′, while minimality precludes a B-shortcut
xBx′′.

To garner further insight, we first tackle – in the next two sections – the easier
case of just three relations. Then, in Sect. 4, we extend the tripartite results and
describe the general pattern for an arbitrary number of relations. We also show in
Sect. 5 that under the same conditions any chain in the union can be rearranged
so that the individual relations appear contiguously. This is followed in Sect. 6
by an example of the use of Preferential Commutation for four relations involved
in the dependency-pair method [1].

Letting Ri:n =
⋃n

j=i Rj be the union of well-founded relations Ri, Ri+1 .. Rn,
and letting R+

i be the transitive closure of Ri, our efforts culminate in Sect. 7
with the following sufficient condition (Theorem 28) for the well-foundedness
and rearrangeability of R0:n: There is some k, 0 ≤ k ≤ n, such that

Ri+1:nRi ⊆ R0R
∗
0:n ∪ R+

i ∪ Ri+1:n for i = 0 .. k − 1 (∗∗)

Ri+1:nRi ⊆ RiR
∗
i:n ∪ Ri+1:n for i = k .. n − 1. (∗∗∗)

In the quadripartite case (n = 3), with k = 2, this amounts to the following:

(B ∪ C ∪ D)A ⊆ A(A ∪ B ∪ C ∪ D)∗ ∪ B ∪ C ∪ D (3a)

(C ∪ D)B ⊆ A(A ∪ B ∪ C ∪ D)∗ ∪ B+ ∪ C ∪ D (3b)
DC ⊆ C(C ∪ D)∗ ∪ D . (3c)

All proofs have been machine-checked using Isabelle/HOL; see Sect. 8.
We conclude with an open quadripartite problem and ideas for future work.
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2 Tricolour Unions

We now study the three-relation case n = 2. We will refer to the relations A, B,
and C as “colours”. Ramsey’s Theorem may be applied directly:

Theorem 1 (d’après Ramsey). The union A∪B∪C of well-founded relations
A, B, and C is well-founded if it is transitive:

(A ∪ B ∪ C)(A ∪ B ∪ C) ⊆ A ∪ B ∪ C . (4)

Proof. The infinite version of Ramsey’s Theorem applies when the union is tran-
sitive, so that every two (distinct) nodes within an infinite chain in the union of
the colours have a (directed) edge that is coloured in one of the three colours.
Then, there must lie an infinite monochromatic subchain within any infinite
chain, contradicting the well-foundedness of each colour alone. ��

The suggestion to use Ramsey’s Theorem for such a purpose is due to Franz
Baader in 1989 [16, items 38–41]; see [13, Sect. 3.1]. Its use in a termination
prover was pioneered in the TermiLog system [10]. Other uses followed; see [3].

Only three of the nine cases implicit in the left-hand side of (4) are actually
needed for the limited outcome that we are seeking, an infinite monochromatic
path, rather than a clique as in Ramsey’s Theorem – as we observe next.

Theorem 2. The union A ∪ B ∪ C of well-founded relations A, B, and C is
well-founded if

BA ∪ CA ∪ CB ⊆ A ∪ B ∪ C . (5)

Proof. When the union is not well-founded, there are infinite chains Y = {xi}i

with each xi being connected to its neighbor xi+1 by one of the relations A,
B, or C. Extract a maximal (noncontiguous) subsequence Z ={xij}j of Y that
consists of “hops” xijAxij+1 via A for each j. If it’s finite and ends at some xk,
then at the first opportunity in the tail of Y beginning xk+1, xk+2, . . . extract
another such sequence {xi′

j
}j . Tack on to Z the intervening steps from xk+1 to

the start xi′
1

of the second maximal subsequence, followed by the rest, xi′
2
, xi′

3
,

etc. Repeat and repeat. If any such subsequence turns out to be infinite, we
have a contradiction to well-foundedness of A. If they’re all finite, then consider
xi′

1−1(B ∪ C)xi′
1
Axi′

2
in Z. Since we could not take an A-step from xi′

1−1 or
else we would have, condition (5) tell us that xi′

1−1(B ∪ C)xi′
2
. Swallowing up

all such (non-initial) A-steps in this way, we are left with an infinite chain in
B ∪ C, for which we also know that no A-hops are possible anywhere. Now
extract maximal B-chains in the same fashion and then erase them, replacing
xCyBz with xCz (A- and B-steps having been precluded), leaving an infinite
chain coloured purely C. ��

Condition (5) above is better than what we get by just iterating the simple
condition (2) as shown below, with the difference being the option BA ⊆ C:

BA ⊆ A ∪ B

CA ∪ CB ⊆ A ∪ B ∪ C .
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To guarantee an infinite clique, not just well-foundedness, instead of (4), one
can insist on the three transitivity cases (AA ⊆ A, BB ⊆ B, CC ⊆ C), too:

Corollary 3. If A, B, and C are transitive relations satisfying (5) and there is
an infinite path in A ∪ B ∪ C, then there is an infinite monochromatic clique.

Proof. By Theorem 2, (at least) one of A, B, C is not well-founded. By tran-
sitivity, the elements of any infinite chain in that non-well-founded colour form
an infinite clique in the underlying undirected graph. ��

Let’s refer to the elements in any infinite descending chain in the union
A∪B∪C as immortal. We can do considerably better than the previous theorem:

Theorem 4 (Tripartite). The union A ∪ B ∪ C of well-founded relations A,
B, and C is well-founded if

(B ∪ C)A ⊆ A(A ∪ B ∪ C)∗ ∪ B ∪ C (6a)

CB ⊆ A(A ∪ B ∪ C)∗ ∪ B+ ∪ C . (6b)

Proof (sketch). First construct an infinite chain Y = {xi}i, in which an A-step is
always preferred over B or C, as long as immortality is maintained. To do this,
start with an immortal element x0 in the underlying set. At each stage, if the
chain so far ends in xi, check if there is any y such that xiAy and from which
proceeds some infinite chain in the union, in which case y is chosen to be xi+1.
Otherwise, xi+1 is any immortal element z such that xiBz or xiCz.

If there are infinitely many B’s and/or C’s in Y , use them – by means of the
first condition – to remove all subsequent A-steps, leaving only B- and C-steps,
which go out of points from which A leads of necessity to mortality. From what
remains, if there is any C-step at a point where one could take one or more B-
steps to any place later in the chain, take the latter route instead. What remains
now are C-steps at points where B+ detours are also precluded. If there are
infinitely many such C-steps, then applying the condition for CB will result in
a pure C-chain, because neither A(A ∪ B ∪ C)∗ nor B+ are options. ��

Dropping C from the conditions of the previous theorem, one gets the Jump-
ing criterion, which we explored in the introduction:

Definition 5 (Jumping criterion [11,12]). Binary relation A jumps over
binary relation B if

BA ⊆ A(A ∪ B)∗ ∪ B . (∗)

Corollary 6 (Jumping [11,12]). The union A∪B of well-founded relations A
and B is well-founded whenever A jumps over B.

Applying this Jumping criterion twice, one gets somewhat different (incom-
parable) conditions for well-foundedness of the union of three relations.
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Theorem 7 (Jumping I). The union A ∪ B ∪ C of well-founded relations A,
B, and C is well-founded if

BA ⊆ A(A ∪ B)∗ ∪ B (7a)
C(A ∪ B) ⊆ (A ∪ B)(A ∪ B ∪ C)∗ ∪ C . (7b)

Proof. The first inequality is the Jumping criterion (∗). The second is the same
with C for B and A ∪ B in place of A. ��

For two relations, Jumping provides a substantially weaker well-foundedness
criterion than does Ramsey. For three, whereas Jumping allows more than one
step in lieu of BA (in essence, AA∗B∗), it doesn’t allow for C, as does Ramsey.

Switching rôles, start with Jumping for B ∪ C before combining with A, we
get slightly different conditions yet:

Theorem 8 (Jumping II). The union A ∪ B ∪ C of well-founded relations A,
B, and C is well-founded if

(B ∪ C)A ⊆ A(A ∪ B ∪ C)∗ ∪ B ∪ C (8a)
CB ⊆ B(B ∪ C)∗ ∪ C . (8b)

Both this version of Jumping and our tripartite condition allow

(B ∪ C)A ⊆ A(A ∪ B ∪ C)∗ ∪ B ∪ C (6a, 8a)

CB ⊆ B+ ∪ C . (cf. 6b, 8b)

They differ in that Jumping also allows the condition shown below on the left
whereas tripartite has the one shown on the right instead:

Jumping allows Tripartite allows
CB ⊆ B(B ∪ C)∗ . CB ⊆ A(A ∪ B ∪ C)∗ .

Example 9. (a) Sadly, we cannot have the best of both worlds. Let’s colour
edges A, B, and C with (solid) azure, (dashed) black, and (dotted) crimson ink,
respectively. The graph below only has multicoloured loops despite satisfying
the inclusions below.

• •
•

•
(B ∪ C)A ⊆ C

CB ⊆ A ∪ B(B ∪ C)∗ .

(b) Even the conditions shown below are insufficient since the double loop in the
graph below harbours no monochromatic subchain:

(B ∪ C)A ⊆ C

CB ⊆ B(A ∪ B)∗ • • •
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(c) By the same token, the putative hypothesis that the conditions shown below
suffice is countered by the graph at its side:

BA ∪ CB ⊆ C

CA ⊆ BA∗ • • •

3 Tripartite Proof

In preparation for the general case, we decompose the proof of the Tripartite
Theorem 4 of the previous section into a sequence of notions and lemmata.

Definition 10 (Immortality [7]). Let R ⊆ X × X be a binary relation over
some underlying set X. The set R∞ ⊆ X of R-immortal elements are those
elements x0 ∈ X that head infinite (descending) R-chains, x0Rx1R · · · .

So, a relation R is well-founded if and only if every element of the underlying
set is mortal (R∞ = ∅).

Two trivial observations, first.

Proposition 11. If R ⊆ S+, for binary relations R and S, then perforce R∞ ⊆
S∞, that is, every R-immortal is also S-immortal.

It follows that

Proposition 12. Binary relation R is well-founded if it is contained in a well-
founded relation S, and, more generally, if R ⊆ S+.

As usual, the (forward) image Q[Y ] of a set Y under relation Q consists of
those z such that yQz for some y ∈ Y , and the inverse (or pre-) image Q−1[Y ]
of Y under Q are those y such that yQz for some z ∈ Y .

If yRz for (R-)immortal z, then y is also immortal:

Proposition 13. The inverse image of immortals is immortal: R−1[R∞] =
R∞.

We will make repeated use of the Jumping criterion (∗), BA ⊆ A(A∪B)∗∪B.
By induction (on the number of A’s), Jumping extends to the transitive closure:

Lemma 14. If binary relation A jumps over relation B, then

BA∗ ⊆ A(A ∪ B)∗ ∪ B . (9)

A central tool will be the following concept:

Definition 15 (Constriction). The constriction B� of binary relation B over
X (with respect to relation A) excludes from B all steps of the form zBw for
which there is an A ∪ B-immortal y such that zAy:

B� = B \ {(z, w) | z ∈ A−1[(A ∪ B)∞], w ∈ X} .
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The idea of constriction is inspired by its use by Plaisted [17] for subterms.

Lemma 16. The union A ∪ B of binary relations A and B is well-founded
whenever A ∪ B� is.

Proof. Construct an infinite descending A ∪ B-chain, using A when it leads to
immortality, and using B only when needed (making it a constricted step). ��
Lemma 17. If binary relation A jumps over relation B and both A and B� are
well-founded, then A ∪ B� is well-founded.

Proof. Consider any infinite descending A ∪ B�-chain. As A is well-founded, it
must contain infinitely many B�-steps. As A jumps over B, Lemma 14 tells us
that B�A∗ ⊆ A(A ∪ B)∗ ∪ B�. We have B� on the right, because that position
is constricting on the left. But in any infinite A ∪ B�-chain, we cannot replace
B�A∗ by A(A∪B)∗ since that would mean that A leads to immortality, violating
constriction. Hence, all (non-initial) A-steps may be removed from the chain,
leaving an impossible infinite B�-chain. ��

Combining the previous two lemmata, we can improve on Corollary 6.

Corollary 18. If binary relation A jumps over relation B and both A and B�

are well-founded, then A ∪ B is well-founded.

When there are more than three relations, as in the next section, we will
need to revise the following lemma with a more flexible notion of constriction.
For now, let C� be like C� except that B-steps may be needed for immortality.
Thus C� excludes all C-steps zCw with an A∪B ∪C-immortal y such that zAy.

Lemma 19. The union B ∪ C� is well-founded if well-founded binary relations
B and C� satisfy

CB ⊆ A(A ∪ B ∪ C)∗ ∪ B+ ∪ C . (6b)

Proof. Suppose that B and C� are well-founded, but B ∪ C� is not. So there
exist B ∪ C�-immortal elements. Choose z to be a B-minimal such element, and
also to be C�-minimal among all possible B-minimal choices.

As z is B-minimal, the first step of an infinite B ∪ C�-chain must be zC�y,
for some y. Since B is well-founded, let y be B-minimal among possible choices
for such a y. By the aforementioned C�-minimality of z, although y is B ∪ C�-
immortal, it is not B-minimal among B ∪C�-immortals. So we have yBx, where
x is B ∪ C�-immortal.

Relying on (6b), we could replace zCyBx in the putative infinite chain by
any one of the following:

– zAy′(A ∪ B ∪ C)∗x, for some y′ – but x heads an infinite descending B ∪ C-
chain, contradicting the constriction of zC�y; or

– zB+x, which would contradict our choice of z to be B-minimal; or
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– zCx, and so zC�x, which would contradict our choice of y to be B-minimal,
since yBx and x could have been chosen in place of y.

Since each alternative leads to a contradiction, B ∪ C� must be well-founded. ��
Everything is in place now for a modular proof of the Tripartite Theorem.

Proof (of Theorem 4). Since A jumps over B ∪ C (6a), by Corollary 18, it is
enough to show that (B ∪ C)� is well-founded. Given (6b), by Lemma 19, we
have that B∪C� is well-founded. Clearly (B∪C)� ⊆ B∪C�, because constricted
B is in B and C is constricted to the same degree in both (B ∪ C)� and B ∪ C�,
namely that A does not lead to immortality in the full union. By Proposition 12,
the required well-foundedness of (B ∪ C)� follows. ��

4 Preferential Commutation

The two three-relation conditions, Jumping I and Jumping II, can each be
straightforwardly extended by induction to arbitrarily many relations.

Corollary 20 (Jumping I). The union R0:n of well-founded relations
R0, R1, . . . , Rn is well-founded if

Ri+1R0:i ⊆ R0:iR
∗
0:i+1 ∪ Ri+1 for all i = 0 .. n − 1 .

Proof. Since B = Ri+1 is well-founded, assume A = R0:i is well-founded by
induction. Jumping (Corollary 18) then implies that so is A ∪ B = R0:i+1. ��
Corollary 21 (Jumping II). The union R0:n of well-founded relations
R0, R1, . . . , Rn is well-founded if

Ri+1:nRi ⊆ RiR
∗
i:n ∪ Ri+1:n for all i = 0 .. n − 1 . (10)

Proof. Let A = Ri and B = Ri+1:n in Corollary 18, and reason by induction. ��
We next extend Theorem 4 to an arbitrary number of relations and show the

sufficiency of what we call Preferential Commutation.

Theorem 22 (Preferential Commutation). The union R0:n of well-founded
relations R0, R1, . . . , Rn is well-founded if it satisfies the following Preferential
Commutation Condition:

Ri+1:nRi ⊆ R0R
∗
0:n ∪ R+

i ∪ Ri+1:n for all i = 0 .. n − 1 . (11)

Preferential Commutation (11) specializes to the two conditions (6a, 6b) of
Theorem 4 in the tripartite case. In the quadripartite case (n = 3), it asserts
that A ∪ B ∪ C ∪ D is well-founded if

(B ∪ C ∪ D)A ⊆ A(A ∪ B ∪ C ∪ D)∗ ∪ B ∪ C ∪ D (11a)

(C ∪ D)B ⊆ A(A ∪ B ∪ C ∪ D)∗ ∪ B+ ∪ C ∪ D (11b)

DC ⊆ A(A ∪ B ∪ C ∪ D)∗ ∪ C+ ∪ D . (11c)
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Notice the inclusion of the options B+ and C+ in (11b) and (11c), respectively,
when compared with the Jumping criteria. The A+ has been omitted from (11a)
on account of its inclusion in A(A ∪ · · · )∗.

We apply Preferential Commutation to four relations in Sect. 6.
Foremost to the argument for the above theorem is a general “detour” con-

dition given below: replacing R0 in Preferential Commutation with arbitrary P
and R0:n with any S. Consider conditions (11a, 11b, 11c) on A,B,C,D in the
case of four relations. The point is that we require the union of B,C,D to be
well-founded so as to apply Jumping in conjunction with A, but were we to sim-
ply use the same method of jumping to establish that, we would not be allowed
to introduce any A-steps in the inclusions for compositions of pairs from B,C,D.

We first generalise the notion of constriction (Definition 15).

Definition 23 (Constriction). For arbitrary binary relation S, the S-
constriction BQ�S of binary relation B over X, with respect to Q, excludes
from B all steps of the form zBw where there exists some S-immortal element
in the Q-image of z:

BQ�S = B \ (
Q−1[S∞] × X

)
.

Think of this as B minus cases where Q could have granted S-immortality.
The basic constriction B� of Definition 15 in the previous section is BA�A∪B,

while C� of Lemma 19 is CA�A∪B∪C .
We note that B ⊆ C, Q ⊆ PR∗ and S ⊆ R+ imply BP�R ⊆ CQ�S .

Definition 24 (Detour). Binary relations A,B, P, S satisfy the detour condi-
tion ΔP�S

B;A if

BA ⊆ PS∗ ∪ A+ ∪ B . (12)

Our central lemma is next; it generalises Lemma 19 of the previous section.
Though it does have a proof very similar to the latter, we give here an alternative,
distinct argument, one we find quite interesting. Contrary to earlier proofs, here
we modify relations to include only immortal points – if any!

Lemma 25. For all binary relations A,B, P, S, such that A∪B ⊆ S+ and both
A and BP�S are well-founded, if the detour condition ΔP�S

B;A holds, then the union
A ∪ BP�S is well-founded, as is the more constricted union (A ∪ B)P�S.

Proof. Let A and B be relations A and B, respectively, restricted to those pairs
(x, y) for which y is an A ∪ B-immortal element (of X). Assuming A and BP�S

are well-founded, so are A and BP�S . Consider any pair of adjacent steps

x BP�S y A z .

By constriction, the detour xPy′S∗z allowed by (12) in place of xBAz is not a
viable option, since z is immortal in A∪B ⊆ S+, and hence y′ is immortal in S.
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Thus, xBy would not actually be constricting with respect to P . So, we always
have the following special case of the Jumping criterion (∗):

BP�SA ⊆ A+ ∪ BP�S .

Note that the B-step on the right is constricting because it is on the left. By
Corollary 6, A ∪ BP�S is well-founded, and so is A ∪ BP�S , as claimed, since it
surely terminates for the excluded mortal elements of A ∪ B.

Finally, (A ∪ B)P�S = AP�S ∪ BP�S ⊆ A ∪ BP�S , so, a fortiori, (A ∪ B)P�S is
well-founded (per Proposition 12). ��

For binary relations R0, . . . , Rn, let R = R0:n, and let Δj = ΔR0�R
Rj+1:n;Rj

be
the detour Rj+1:nRj ⊆ R0R

∗ ∪ R+
j ∪ Rj+1:n. Preferential Commutation (11) is:

Δ0 ∧ Δ1 ∧ · · · ∧ Δn−1 . (11)

Lemma 26. The constricted unions RR0�R
j:n , j = 0 .. n, of preferentially-

commuting well-founded binary relations R0, . . . , Rn are all well-founded.

Proof. By induction, starting with j = n (when the conclusion holds by assump-
tion) and working our way to j = 0. For the inductive step, given Δj and the
well-foundedness of RR0�R

j+1:n, and substituting A = Rj , B = Rj+1:n, P = R0, and
S = R in the previous lemma, we obtain that (Rj ∪ Rj+1:n)R0�R = RR0�R

j:n is
likewise well-founded. The side condition A ∪ B ⊆ S+ of the lemma is satisfied
by all the detours, as Rj ∪ Rj+1:n ⊆ R+ for all j. ��

We are ready for our main result, namely that the union R of well-founded
R0, R1, . . . , Rn is well-founded when the detour conditions (11) hold for them.

Proof (of Theorem 22). Let A = R0 and B = R1:n. Lemma 26 tells us in partic-
ular (j = 1) that RR0�R

1:n = B� is well-founded. Since Δ0 means precisely that A
jumps over B, Corollary 18 gives the well-foundedness of A ∪ B = R. ��

5 Preferential Rearrangement

As with Jumping with two relations [7, Thm. 54], Preferential Commutation
also means that any chain in the union can be rearranged from “a to z”, so to
speak.

Theorem 27 (Preferential Rearrangement). If well-founded relations
R0, R1, . . . , Rn satisfy

Ri+1:nRi ⊆ R0R
∗
0:n ∪ R+

i ∪ Ri+1:n for all i = 0 .. n − 1 . (11)

then finite chains can always be rearranged:

R∗
0:n ⊆ R∗

0R
∗
1 · · · R∗

n . (13)
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Proof. By our main theorem (Theorem 22), the union R = R0:n is well-founded,
so we can argue by induction on it. Were this theorem false, there would be
counterexamples xR+t containing an inversion xR∗RjRiR

∗t with j > i, and
such that no alternative properly ordered chain xR∗

0R
∗
1 · · · R∗

nt would be possible.
Now, let xRyR∗t be a minimal counterexample, in the sense that each element
in the chain is minimal vis-à-vis R: there is no smaller head than x for any
counterexample; y is minimal among chains with irreparable inversions that
begin with x; and so on.

The counterexample must possess an inversion, hence must comprise at least
two steps xRjyR+t. By minimality, x being larger than y, the lesser chain yR+t
must be rearrangeable, so there is a chain xRjyRizR∗

i R
∗
i+1 · · · R∗

nt for some par-
ticular i and j (y �= t for sure). If j ≤ i, all is fine and dandy, meaning that
the example was not in fact a counterexample. Otherwise, j > i, and by (11)
one of the following should hold true: (i) xR0vR∗z; (ii) xR+

i z; or (iii) xRi+1:nz.
But (i) is impossible, because vR∗zR∗t itself would of necessity be a better
counterexample, as were it resolvable, so too would be the original example,
starting with xR0v. Also, (ii) is impossible, because xR+

i zR∗
i:nt is a perfectly

good rearrangement. Lastly, (iii) is impossible, since goodness (no inversions)
of xRi+1:nzR∗

i · · · R∗
nt would provide a viable rearrangement, while badness of

xRi+1:nzR∗
i · · · R∗

nt would make it a smaller counterexample than xRjyR∗t, z
being less than y in R. ��

Well-foundedness is necessary [7, Note 43].
It follows that Preferential Commuting (11) of well founded-relations is equiv-

alent to an ordered version of the condition:

Ri+1:nRi ⊆ R+
0 R∗

1 · · · R∗
n ∪ R+

i ∪ Ri+1:n for all i = 0 .. n − 1 . (11′)

6 Example: Preferential Dependencies

Term-rewriting systems (see [9]) compute by applying equations to terms left-
to-right, replacing arbitrary subterms when they match the left-hand side of an
equation. If � = r is such an oriented equation, it is used to rewrite a term s
by replacing a subterm of s that is an instance �σ of � with the corresponding
right-hand side rσ, resulting in some new term t. We write s → t.

Termination of the rewriting relation → of a given system is normally estab-
lished by showing that each such rewrite results in a decrease in some well-
founded term ordering, or, in other words, that → ⊆ > for some well-founded
relation >. A popular method [1] extends the given system of equations with
additional replacement rules, called dependency pairs, in a way that can make
the overall proof easier. Strict decrease in > is only required for top-level appli-
cations of rules or their extensions. But only a “quasi-decrease” is needed for
applications of (original) rules at proper subterms, for some quasi-ordering �
that is compatible with > in the sense that >� ⊆> and �> ⊆>. (See the ver-
sion in [14].) We very briefly sketch the use of Preferential Commuting to justify
variants of this approach.
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Given a rewriting system, we deal with four relations: instances D =
{(�σ, rσ) | � = r is a rule, σ is a substitution} of original and extended rules; the
immediate subterm relation � [f(. . . s . . . )�s]; the intersection > of →+ (for the
original rules) with some well-founded partial order (think of it as “decreasing
rewriting”); and inner-rewriting ⇒, which is → applied to a proper (not nec-
essarily immediate) subterm [f(. . . s . . . )⇒ f(. . . t . . . ) if s → t]. It can be seen
without difficulty that if there exists any infinite rewrite chain with →, then
there also is an infinite (D ∪ � ∪ ⇒)-chain, wherein D occurs infinitely often.

Preferred Commutation for the union E of A: ⇒, B: >, C: �, and D is
achieved by ensuring the following detours:

>⇒ ⊆ ⇒+ >∗ ∪ > �⇒ ⊆ ⇒ � D ⇒ ⊆ ⇒E∗ ∪ > (ba/ca/da)

�> ⊆ ⇒+ � D> ⊆ > (cb/db)

D � ⊆ ⇒∗ �+ ∪ D . (dc)

Conditions (ba) and (db) are usually guaranteed by showing that applying a rule
can, if anything, only cause a decrease with respect to > (because D ⊆� and
⇒⊆�, for example). Condition (ba) holds automatically when > is on account of
an inner step. Conditions (ca) and (cb) hold by the nature of rewriting (recalling
that >⊆→+). For (da) we require a strict decrease in > for each extended rule
(D ⊆>), except perhaps for some instances that allow inner rewriting) and then
rely on (ba) for an overall decrease. Condition (dc) is what guides the addition
of rules: if there is a directed equation � = r ∈ D and r � s, but s is not also
a subterm of � (� � �+s), or of an inner reduct of � (after some ⇒ steps), then
include � = s as an extended rule in D. For each extended rule, a strict decrease
in the ordering > ensures (da) and (db). Extended rules may engender additional
extended rules, per (dc).

Since > and � are well-founded, and ⇒ may be assumed well-founded by
an inductive argument, all that remains to be shown is that D on its own is
well-founded, which it is if D ⊆>.

7 Preferential Jumping

Preferential Commutation (11) generalises the conjunction of conditions (6a, 6b)
of the Tripartite Theorem 4. Its beauty lies in that it allows initial “preferred”
R0-steps and multiple Ri-steps. It does not, however, generalise condition con-
dition (8b) of Jumping II (Theorem 8).

We can, however, extend Theorem 22 to allow a mix of Preferential Commu-
tation and Jumping, with Jumping taking over from Commuting at some point.

Theorem 28 (Preferential Jumping). The union R0:n of well-founded rela-
tions R0, R1, . . . , Rn is well-founded if, for some k, 0 ≤ k ≤ n,

Ri+1:nRi ⊆ R0R
∗
0:n ∪ R+

i ∪ Ri+1:n for i = 0 .. k − 1 (∗∗)
Ri+1:nRi ⊆ RiR

∗
i:n ∪ Ri+1:n for i = k .. n − 1 . (∗∗∗)
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When k = n this leaves only (∗∗), which is pure Preferential Commutation
(Theorem 22); when k = 0 this leaves (∗∗∗), which is Jumping II (Corollary 21).

Proof. By (∗∗∗) and Jumping II, Rk:n is well-founded. Taking that into account,
by (∗∗) and Preferential Commuting, R1:n is. ��

By iterating the similar result for Jumping for two relations [7, Theorem.
54], we get a rearrangement theorem with conditions as for Corollary 21, that
is, (∗∗∗) for k = 0. Interestingly, this seems to require an inductive proof, unlike
Theorem 27. Then, combining that with Theorem 27, we get the following result.

Theorem 29. Well-founded relations R0, R1, . . . , Rn satisfying the Preferential
Jumping conditions (∗∗, ∗∗∗) for some k have re-arrangeable finite chains:

R∗
0:n ⊆ R∗

0R
∗
1 · · · R∗

n . (13)

8 Formalising the Proof

All the results of the preceding sections have been verified using Isabelle/HOL
2005.2 When formalising this work in Isabelle, we faced a problem in defin-
ing “well-foundedness” and “relational composition” since these are defined in
exactly opposite ways in the term-rewriting and interactive theorem-proving
communities. Fortunately, the two notions are almost always used together,
meaning that the two effects cancel each other out, as we explain next.

In Isabelle, the well-foundedness and composition of relations are as follows:
Relation R is well-founded if there is no infinite descending chain where x <R y
means (x, y) ∈ R, and descent goes to the left:

· · · <R xn <R xn−1 <R · · · <R x1 <R x0 .

The Isabelle definition below is the positive form: a relation R is well-founded
iff the principle of well-founded induction over R holds for all properties P :

wf ?R == ALL P.

(ALL x. (ALL y. (y, x) : ?R --> P y) --> P x)

--> (ALL x. P x)

We display Isabelle code explicitly so that readers can make a visual connection
with our repository. In this definition, the question mark symbol ? indicates
implicit universal quantification and so ?R is a free variable (parameter) that is
instantiated. The explicit quantifiers are ALL and EX.

Next, we give its equivalent, which says that a relation R is well-founded if
every non-empty set Y has an R-minimal member:
2 After 2005, it became too onerous to keep pace with changes in Isabelle. This does
not detract from our verification in any way since Isabelle 2005 is a trusted system.
Instructions on running the proofs are at http://users.cecs.anu.edu.au/∼jeremy/
isabelle/2005/gen/tripartite-README.

http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/gen/tripartite-README
http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/gen/tripartite-README
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wf ?R = (ALL Y x. x : Y --> (EX z:Y. ALL y. (y, z) : ?R --> y ~: Y))

Then the Isabelle expression that states precisely that wf R iff there are no infi-
nite descending chains is as follows, where Suc signifies successor in the naturals:

wf ?R = (~ (EX f. ALL i. (f (Suc i), f i) : ?R))

The symbol ~ encodes classical negation and infix : encodes ∈, so ~: encodes /∈.
In Isabelle, the composition of relations R and S (denoted O) is defined by

?R O ?S == {(x, z). EX y. (x, y) : ?S & (y, z) : ?R}

R ◦ S = {(x, z) | ∃y. (x, y) ∈ S & (y, z) ∈ R} .

Our notation RS from Sect. 2 and the Isabelle notation R ◦ S for “relational
composition” are inverses, obeying RS = (R−1 ◦ S−1)−1:

RS = S ◦ R = {(a, c) | ∃b. (a, b) ∈ R & (b, c) ∈ S}
(RS)−1 = R−1 ◦ S−1 = {(c, a) | ∃b. (c, b) ∈ S−1 & (b, a) ∈ R−1} .

Since the Isabelle definitions of composition O and wf of well-founded are both
mirror images of those from this paper, our Isabelle theorems and the theorems
in this paper correspond exactly: if only one were different, we would have to
reverse the order of relation composition to make the two notions coincide. For
example, the Jumping theorem for two relations [11] appears in our repository
as below, where binary Un encodes union (∪) and ^* encodes transitive closure:

[| ?S O ?R <= (?R O (?R Un ?S)^*) Un ?S; wf ?R; wf ?S |]

==> wf (?R Un ?S)

Using the positive definition of well-foundedness leads to Isabelle proofs
rather different from our original pen-and-paper proofs. Consider, on the one
hand, the arguments given in Sect. 1 and in the proof of Theorem 4, involving
infinite sequences in which A is preferred, and in which members are A-minimal,
with – on the other hand – the argument in the proof of Lemma 19, which
chooses a C�-minimal B-minimal immortal element. This latter proof reflects
much better the flavour of the arguments used in the Isabelle proofs.

We have formulated two distinct Isabelle proofs of the crucial Lemma 25,
one along the lines of that of Lemma 19 and another that follows the proof in
Sect. 4, with relations restricted to immortal elements.

9 Conclusion and Prospects

Previous work provided sufficient conditions for the union of two well-founded
orderings to be well-founded. We discovered a corresponding result for the union
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of three well-founded orderings and discussed how our sufficient conditions differ
from those (viz. Jumping) that result from repeatedly applying the result for
two orderings.

We then repackaged the proof of this result for three orderings to extend it
to the union of any number of well-founded orderings – in a condition called
Preferential Commutation. We showed that whenever there is a finite chain in
the union, then there is also one between its two endpoints that takes steps
from the relations one after the other, in order. We also gave an example of its
use in proofs of termination of rewriting. Finally, we combined Jumping with
Preferential Commutation. We expect these results to have significant and varied
applications, concomitant with the versatility of binary Jumping.

Usually, when formalising a result, the pen-and-paper proofs have been com-
pleted, but in our case, the situation was the opposite. We actually found some
proofs using Isabelle and have reworded them for presentation here. The proofs
in Isabelle all use “positive” notions (wf) rather than “negative” notions (“no
infinite chains”). In this case, formalising Theorem 4 involved splitting the proof
up into lemmas, which in fact led us to Lemmas 19 and 25, and thence to for-
mulating and proving Theorem 22. As always, formalising a proof confirms that
no details have been overlooked or other errors made.

The answer to the question whether the following conditions suffice in the
quadripartite case has so far eluded us:

(B ∪ C ∪ D)A ⊆ A(A ∪ B ∪ C ∪ D)∗ ∪ B ∪ C ∪ D (3a, 11a)

(C ∪ D)B ⊆ A(A ∪ B ∪ C ∪ D)∗ ∪ B+ ∪ C ∪ D (3b, 11b)

DC ⊆ B(B ∪ C ∪ D)∗ ∪ C+ ∪ D . (cf. 3c, 11c)

All we can say is the following about any counterexample (where these con-
ditions hold, the individual relations are well-founded, but their union is not):

– A ∪ B is not well-founded; for, were it, then Theorem 4 (for relations A ∪ B,
C and D) would give us well-foundedness of the union.

– (C ∪ D)A�A∪B∪(C∪D) is not well-founded; for, if it were, then (B ∪ (C ∪
D))A�A∪B∪(C∪D) = (B ∪ C ∪ D)� would also be well-founded by Lemma 25,
whence the union would also be by Corollary 18.

Unfortunately, these considerations have not yielded a counterexample.
Further matters worth exploring include:

– What effect would transitivity of the individual relations have on the condi-
tions for well-foundedness? It is known to allow weakening of the Jumping
criterion [7]. This suggests a weakening of the first Tripartite condition (6a):

(B ∪C)A ⊆ A(A∪B ∪C)∗ ∪ (B ∪C)+ . (6a+)

– Can we obtain a better understanding of the detour condition Δ that might
allow the results reported here to be extended even further? For example,
can we exploit the fact that the proof of the crucial Lemma 25 holds with
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A(A ∪ BP�S)∗ on the right of Eq. (12), not just A+? This has the effect of
weakening the second Tripartite condition (6b) to

CB ⊆ A(A∪B∪C)∗ ∪B(B∪C�)∗ ∪C , (6b�)

which is why, in Example 9(a), there had to be an immortalising A-step out
of what would otherwise have been a perfectly nice BC�BB detour in place
of the offending CB cycle, and not the unacceptable BCBB cycling detour.

– Can one “extract” any code (semi-) automatically? For example, if we express
results in the contrapositive, then given an infinite descending chain in one
relation, can we derive an infinite descending chain in another, as in the
manual proof of Lemma 16?

– Focussing on the infinite descending chains, do these results have applications
in terms of liveness?

– One of the motivations for this work is the search for novel termination order-
ings, particularly for term rewriting. The conditions herein may be applicable
to a path ordering based on Takeuti’s ordinal diagrams [18], for which ramified
jumping conditions play a rôle.
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Abstract. Solving optimization problems with SAT has a long tradi-
tion in the form of MaxSAT, which maximizes the weight of satisfied
clauses in a propositional formula. The extension to maximum satisfia-
bility modulo theories (MaxSMT) is less mature but allows problems to
be formulated in a higher-level language closer to actual applications. In
this paper we describe a new approach for solving MaxSMT based on
lifting one of the currently most successful approaches for MaxSAT, the
implicit hitting set approach, from the propositional level to SMT. We
also provide a unifying view of how optimization, propositional reason-
ing, and theory reasoning can be combined in a MaxSMT solver. This
leads to a generic framework that can be instantiated in different ways,
subsuming existing work and supporting new approaches. Experiments
with two instantiations clearly show the benefit of our generic framework.

1 Introduction

SMT solvers have become indispensable tools for solving a wide range of prob-
lems in many areas. Such solvers provide either a satisfying assignment (e.g., a
witness for a bug) or a proof of unsatisfiability (e.g., proving that a particular
abstraction does not display a bug). However, in many applications the problem
to be solved is more naturally cast as an optimization problem: find an assign-
ment that minimizes some cost function. Li et al. [1], for instance, give a range of
applications where optimization is critical. The need to solve such applications
has led to a range of work addressing optimization in SMT (e.g., [1–8]).

Work on SMT optimization varies in the generality of the objective functions
that can be modeled. For example, [1,4] address optimizing objective functions
stated in the theory of linear real arithmetic, while [7] can deal with linear
objective functions in which some variables are restricted to be integer. MaxSMT
[2] is a restricted but important sub-problem in which the objective functions
are linear expressions over Boolean variables (Pseudo Boolean expressions).

In this paper we focus on MaxSMT. Although MaxSMT is not as general as
some other optimization approaches, MaxSMT specific solvers are often more
efficient on problems where Pseudo Boolean objectives suffice [8], and recent
rapid progress in the efficiency of MaxSAT solvers [9] indicates that this special
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case may more likely scale to practical problems than more general optimization
approaches. Furthermore, MaxSAT already has a wide and growing range of
applications including planning, fault localization in C code, design debugging,
and a variety of problems in data analysis (see [10]). This indicates that Pseudo
Boolean objectives are sufficient in a range of applications, and hence MaxSMT,
with its addition of theories, is likely to have even greater applicability.

The implicit hitting set (IHS) approach [11] for solving MaxSAT has seen
considerable recent progress and is now one of the most effective ways of solving
MaxSAT. For example, IHS solvers have been the top performing solvers on
weighted problems in the most recent 2016 and 2017 evaluations of MaxSAT
solvers [9]. One of the key benefits of the IHS approach is that it provides a
clear separation between optimization and propositional reasoning. In particular,
in IHS solvers optimization is performed by a separate minimum cost hitting
set solver, while the SAT solver is used solely for propositional reasoning. This
separation of concerns supports the observed improved performance by allowing
the exploitation of more efficient specialized solvers for each component.

Since MaxSAT and MaxSMT are quite similar problems, this naturally leads
to the question of how MaxSMT can be similarly separated into optimization,
propositional reasoning, and theory reasoning. In this paper we provide a general
view of how these separate components can be combined to solve MaxSMT by
providing a formal reasoning calculus [12] for MaxSMT solvers that achieves a
clear separation of these different components. The calculus formalizes a notion
of state that abstracts the more complex notions of state used in implemented
solvers, and a set of inference rules for transforming the state that abstracts the
operations performed by implemented solvers. The power of the calculus is that
almost any scheme for scheduling the application of these rules leads to a solu-
tion. Hence, it supports the design of a wide range of different implementations
of the basic inferences and of control structures for scheduling their applica-
tion. It also provides a formal framework for effective harvesting of advances in
MaxSAT for improving MaxSMT and vice versa.

2 Preliminaries

We consider formulas F in conjunctive normal form (CNF) consisting of a set
of clauses, where each clause C is a disjunction of literals, which are first-order
atoms or propositional variables, or their negation. MaxSAT problems are spec-
ified by a purely propositional CNF F , without first-order atoms, partitioned
into hard and soft clauses, hard(F ) and soft(F ). A feasible solution to the
MaxSAT problem is a truth assignment that satisfies all of the hard clauses. A
core in MaxSAT solving is a set of soft clauses (a subset of soft(F )) that when
combined with the hard clauses forms an unsatisfiable set of clauses.

Each soft clause C has a positive weight, denoted by cost(C), which spec-
ifies the cost of falsifying it. The cost of a set of soft clauses S is the sum of
the costs of the soft clauses it contains: cost(S) =

∑
C∈S cost(C). The cost

of a feasible solution π is the sum of the costs of the soft clauses it falsifies:
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cost(π) = cost({C ∈ S | π �|= C}). An optimal solution for a MaxSAT prob-
lem is a feasible solution with minimum cost among all feasible solutions. Solving
a MaxSAT problem is the task of finding an optimal solution.

We can restrict our attention, w.l.o.g, to formulas F in which all soft clauses
are unit. In particular, any non-unit soft clause C can be converted to a unit
soft clause by (i) adding a new (relaxed) hard clause C ∨ v where v is a new
propositional variable (called a relaxing or selector variable), and (ii) replacing
the soft clause C with a new unit soft clause (¬v) with cost((¬v)) = cost(C).
This transformation is sound since any optimal solution satisfies C ↔ ¬v.

Considering ground first-order atoms generalizes MaxSAT to MaxSMT [2],
as SMT [13] generalizes SAT. As in MaxSAT, a MaxSMT problem consists of a
set of hard and soft clauses with each soft clause having a weight. However, in
MaxSMT literals can be formed from theory atoms as well as from propositional
variables. For example, over the theory of linear real arithmetic (LRA) we could
form clauses like (p ∨ ¬(1 ≤ y) ∨ (x + y ≥ 2)), with a propositional variable p
and LRA theory atoms (1 ≤ y) and (x + y ≥ 2).

Let atoms(F ) be the set of atoms in F , which range over propositional vari-
ables as well as theory atoms. We extend this notion to literals, clauses, and
sequences of literals accordingly. A (partial truth) assignment over atoms(F )
is a sequence of literals from atoms(F ) that (i) does not contain both x and
¬x for any x ∈ atoms(F ) and (ii) has no repeated literals. If A and M are two
sequences of literals we write AM to indicate their concatenation. An assignment
π over atoms(F ) is called a propositional model of F , denoted by π |=F , if it
satisfies the Boolean abstraction of F in which theory atoms are treated simply
as new independent propositional variables. A propositional model of F , π, is
also a theory consistent model of F if the conjunction of theory literals made
true by π is consistent with all theory axioms, denoted π |=T F .

A feasible solution π for a MaxSMT formula F is required to be theory
consistent model of hard(F ) (π |=T hard(F )). The cost of π is defined as in
MaxSAT. Accordingly, solving MaxSMT means finding an optimal (minimum
cost) feasible solution. Again, w.l.o.g., we can assume that all soft clauses are
unit clauses. Similarly, a core in MaxSMT is a subset of soft clauses that when
combined with the hard clauses does not have a theory consistent model.

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of
K is a set of soft clauses that has a non-empty intersection with every set in K:
∀κ ∈ K. η ∩ κ �= ∅. As defined above cost(η) =

∑
C ∈ η cost(C).

3 Abstract Hitting Set Based MaxSMT Solving

The main contribution of our paper is to introduce and formalize a calculus for
the implicit hitting set (IHS) approach for MaxSMT, which at the same time
provides the first formal calculus for the IHS approach to MaxSAT [11]. Our
calculus captures a flexible separation between optimization, propositional rea-
soning, and theory reasoning, supporting a number of different implementation
strategies. The separation between optimization and propositional reasoning is
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Table 1. Transition rules for solving SAT under assumptions (A-Sat)

UnitProp
A | M | F =⇒ A | M � | F if

{
There is a clause (C ∨ �) ∈ F s.t.
AM |= ¬C and atom(�) /∈ atoms(AM)

Decide
A | M | F =⇒ A | M �d | F if atom(�) ∈ atoms(F ) \ atoms(AM)

)
Backjump
A | M�dN | F =⇒ A | M �′ | F if

⎧⎨
⎩

There is a clause C ∈ F s.t. AM�dN |= ¬C
and a clause C′ ∨ �′ s.t. F |= C′ ∨ �′,

AM |= ¬C′ and atom(�′) ∈ atoms(�dN)
Learn
A | M | F =⇒ A | M | F, C if

{
F |= C and C �∈ F
atoms(C) ⊆ atoms(F ) ∪ atoms(AM)

)
Forget
A | M | F, C =⇒ A | M | F if F |= C

SatModel
A | M | F =⇒ SAT (AM, F ) if AM |= F

UnSat
A | M | F =⇒ conflict(F, C) if

{
There is a clause D ∈ F s.t. AM |= ¬D
M contains no decision literals
and C is a clause s.t. F |= C and A |= ¬C

achieved by exploiting the IHS approach for solving MaxSAT/MaxSMT. Other
approaches to MaxSAT solving, e.g., [14–16], employ exclusively propositional
reasoning, doing optimization by solving a sequence of SAT decision problems.

Our calculus can be modified to model such approaches by combining the
optimization and propositional reasoning components into a single “MaxSAT”
component. This would provide a formal model of MaxSMT approaches like [3].
However, as we will demonstrate below, even without such a formal model our
calculus still provides a framework for understanding the approach of [3].

IHS and the above cited approaches to solving MaxSAT use propositional
reasoning to find cores by exploiting SAT solving under assumptions [17]. In
particular, for any subset of soft clauses S we can determine if S and the hard
clauses are satisfiable by assuming that the literal of each (unit) soft clause in S
is true. If the conjunction of these literals with the hard clauses is unsatisfiable,
the SAT solver assumption mechanism returns a clause falsified by the assump-
tions. Hence, this clause contains only negations of assumed literals, identifying
a subset of S that, with the hard clauses, is unsatisfiable (i.e., a core).

Hence, as a first step towards a formal calculus for IHS MaxSMT solving, we
provide a calculus for assumption based SAT and SMT reasoning. To the best of
our knowledge, such a calculus has not been specified before. This contribution
should be useful independent of MaxSMT since assumption based reasoning is
used in many different applications besides optimization.

3.1 SAT/SMT Solving Under Assumptions

To formalize assumption based incremental SAT solving [17] and lift it to SMT,
we extend the DPLL(T) calculus originally presented in [12]. As above let F
be a first-order quantifier-free CNF formula over theory T . The states of our
calculus are specified by a triple A | M | F , where F is a CNF formula (initially
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Table 2. Additional rules for solving SMT under assumptions (A-Smt)

T -Backjump
A | M�dN | F =⇒ A | M �′ | F if

There is a clause C ∈ F s.t. AM�dN |= ¬C
and a clause C′ ∨ �′ s.t. F |=T C′ ∨ �′,

AM |= ¬C′ and atom(�′) ∈ atoms(�dN)
T -Learn
A | M | F =⇒ A | M | F, C if

{
F |=T C and C �∈ F
atoms(C) ⊆ atoms(F ) ∪ atoms(AM)

)
T -Forget
A | M | F, C =⇒ A | M | F if F |=T C

T -Model
A | M | F =⇒ T -SAT (AM, F ) if AM |=T F

⎧⎨
⎩

the input formula), A and M are non-overlapping assignments over atoms(F ).
A is the given set of assumptions, and M is the solver’s current set of implied
and decided (noted by a superscript d, e.g., �d) literals.

The transition rules given in Table 1 specify an abstract assumption based
SAT solver (A-Sat). These rules follow [12] but are adapted to handle assump-
tions; the main changes are as follows. First, the abstract states and rules
have been extended with a (possibly empty) set of assumption literals A over
atoms(F ). For example, Learn is the same, but UnitProp requires AM |=¬C,
instead of M |=¬C. Second, we modified the rule Fail to obtain a new rule UnSat
that transitions into a conflict(F,C) state when M has no decision literals and
AM |= ¬D for some D ∈ F . In that case, F ∧ A must be unsatisfiable, and we
can always find a clause C implied by F and falsified by A (e.g., by resolving all
literals negated by M from the clause D). And third, we introduce a transition
rule that leads to an explicit SAT (AM,F ) state when AM |=F holds. This facil-
itates combining the assumption based transitions with a MaxSAT or MaxSMT
transition system. It can be noted that our calculus captures the technique of
[17] which uses one particular control scheme to derive the clauses D and C used
in the UnSat rule (it is irrelevant that [17] intermixes A and M).

Abstract assumption based SMT solving (A-Smt) is specified by the rules
of Table 2 along with the rules UnitProp, Decide and UnSat of Table 1.
Note that T -entailment subsumes propositional entailment, i.e., F |= C implies
F |=T C. Hence, T -Learn can learn any clauses that Learn can, and T -Learn
need not always employ theory reasoning (it can also use propositional reason-
ing to perform learning). This can be important in practice if reasoning in T is
expensive. The same remark holds for T -Backjump and T -Forget.

It can also be noted that UnSat requires a falsified clause D to be in F .
Hence, when F ∧A is propositionally satisfiable but T -unsatisfiable our calculus
requires sufficient theory lemmas from T -Learn so as to obtain a falsified clause
in F and to derive a clause C falsified by A.

We say that a state S in a transition system is final when no rules are
applicable to it. Given a set of assumed literals A and a formula F , the ini-
tial state of assumption based SAT/SMT solving is A | ∅ | F . Deciding
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Table 3. Transition rules for optimization (∗ is any SAT/SMT state) (A-MaxSMT)

SAT/SMT-Transition
(LB ,UB , μ) | K | 〈∗〉 =⇒

(LB ,UB , μ) | K | 〈∗′〉
if

{ ∗′ is reachable from ∗ by
a single A-Sat/A-Smt transition step
(see Table 1 and Table 2)

Core
(LB ,UB , μ) | K | 〈conflict(F, C)〉 =⇒

(LB ,UB , μ) | K, κ | 〈conflict(F, C)〉
if

{
κ = {(¬�) | � ∈ C} and κ �∈ K
(κ is set of soft clauses)

HS
(LB ,UB , μ) | K | 〈∗〉 =⇒

(LB ,UB , μ) | K | 〈A′ | ∅ | F 〉
if

{
η = HS(K)
A′ = {� | (�) ∈ (soft(F ) − η)}

MinHS
(LB ,UB , μ) | K | 〈∗〉 =⇒

(LB ′,UB , μ) | K | 〈A′ | ∅ | F 〉
if

{
η = minHS(K)
A′ = {� | (�) ∈ (soft(F ) − η)}
LB ′ = max(LB , cost(η))

ImprovedSolution
(LB ,UB , μ) | K | 〈T -SAT (AM,F )〉 =⇒

(LB , cost(AM), AM) | K | 〈T -SAT (AM,F )〉
if cost(AM) < UB

OptimalSolution
(LB ,UB , μ) | K | 〈∗〉 =⇒ optSoln(μ) if LB ≥ UB

the satisfiability/T -satisfiability of F assuming A is a derivation of the form
A | ∅ | F =⇒ · · · =⇒ Sn, where Sn is a final state in the A-Sat/A-Smt system.

Theorem 1 (Termination). Any sequence of transitions A | ∅ | F =⇒ · · · in
A-Sat (A-Smt) that contains no infinite subsequence consisting only of rules
from the set {Learn, Forget} ({T -Learn, T -Forget}), is finite.

Theorem 2 (Soundness). For any derivation A | ∅ | F =⇒ · · · =⇒ S in
A-Sat (A-Smt) where S is final with respect to A-Sat (A-Smt) we have

1. S = conflict(F ′, C) with F ′ |=C, A |= ¬C iff F ∧ A is (T -)unsatisfiable.
2. S = (T-)SAT (AM,F ′) with AM |=(T ) F ′ iff F ∧ A is (T -)satisfiable.

We can treat A as a prefix of decision literals of M that can not be changed
by backjumping. Under this interpretation the results of [12] can be extended to
obtain proofs for Theorems 1 and 2. We omit the details due to space constraints.

3.2 IHS MaxSAT/MaxSMT Solving

To obtain an abstract IHS based MaxSMT solver we add the rules given in
Table 3. These rules extend the states of A-Smt by adding K and the triple
(LB ,UB , μ), where K is a set of cores, LB and UB are lower and upper bounds
on the cost of an optimal solution to the input CNF F , and μ is a feasible
solution, represented as a sequence of literals over atoms(F ), with cost(μ) = UB .
Let A-MaxSMT be the transition system defined by the rules in Table 3 along
with the rules A-Smt.1 The initial state of A-MaxSMT is always the state
IS = (0,∞, undef ) | ∅ | 〈{� | (�) ∈ soft(F )} | ∅ | hard(F )〉, i.e., we start with valid
1 IHS MaxSAT solvers can be obtained by using the A-Sat rules and replacing
T -SAT (AM,F ) in ImprovedSolution with SAT (AM,F ).
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lower and upper bounds, an empty set of cores, an initial assumption that all
soft clauses are satisfied, and all of the hard clauses of F .

The calculus computes a growing set of cores K, each obtained from assump-
tion based SMT solving, and uses the two subroutines, minHS (K) which returns
a minimum cost hitting set of K, and HS (K) which returns an arbitrary hitting
set of K. It can be noted that the assumptions (initially and after the rules HS
or MinHS) are always asserting that some subset of the soft clauses along with
the hard clauses are satisfied. Hence, as explained above, the subset of soft(F )
identified by the returned conflict and added to K by rule Core must be a core.
Furthermore, the assumptions always specify that all soft clauses except those in
some hitting set η of K are true. Thus, the returned conflict must identify a new
core κ that cannot already be in K. In particular, κ is a subset of soft(F ) − η
(it is a subset of the assumed true soft clauses) but no s ∈ K is a subset of
soft(F ) − η since s contains a non-empty subset s ∩ η not in soft(F ) − η.

We say that S1 =⇒ · · · =⇒ Sn is a progressing subsequence if (a) S1 is
the result of applying the MinHS rule, (b) all transitions in the sequence arise
from applying one of the A-Smt rules (i.e. are SAT/SMT-Transition steps),
and (c) Sn is final with respect to the rules of A-Smt (i.e., no SAT/SMT-
Transition is applicable).

Theorem 3 (Termination). If hard(F ) is T -satisfiable then any derivation
IS ⇒ S1 ⇒ · · · of A-MaxSMT is finite if it satisfies the following conditions:

1. contains no infinite subsequence of rules from the set {T -Learn,T -Forget}
2. contains no infinite subsequence not containing a progressing subsequence
3. always applies the transitions OptimalSolution, ImprovedSolution and

Core whenever they are applicable (with OptimalSolution being applied
first).

Theorem 4 (Soundness). If hard(F ) is T -satisfiable, IS ⇒ · · · ⇒ Sn is a
finite sequence of transitions in A-MaxSMT, and Sn is final in A-MaxSMT,
then Sn is optSoln(μ) and μ is an optimal solution of F .

Theorem 4 is immediate from the fact that (a) optSoln(μ) is the only final state
in A-MaxSMT, (b) LB and UB are always valid bounds, and (c) cost(μ) = UB .

Hence, the main result is that the calculus terminates under the conditions
of Theorem 3. A sketch of the proof follows. First, from Theorem 1 it can be
seen that all progressing subsequences must be finite, and thus any infinite
sequence of transitions must contain an infinite number of progressing subse-
quences. Theorem 2 shows that every progressing subsequence must reach either
a T -SAT or a conflict final state. If a conflict state is reached, then Core
must be applied next. As explained above this must add a new core to K. Each
core is a subset of soft(F ) so only a finite number of cores exist. Hence, only
a finite number of progressing subsequences can end in conflict . Otherwise, the
progressing subsequence reaches T -SAT . But this can happen only once since
the feasible solution found, AM , must be an optimal solution. AM satisfies
all clauses except those in a minimum cost hitting set η of K (obtained from
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SMT Solver

MaxSAT Solver

SATOPT Theories

optSoln(AM )

hard(F ) atoms(F )
cost over
soft(F ) K = ∅

κ/AM

Core/Sol.

A

Assume
AM

Lemma
C

Opt. Sol.

Fig. 1. General architecture for an IHS based MaxSMT solver

MinHS), and hence cost(AM) ≤ cost(η). Every feasible solution π satisfies
hard(F ) and every core is unsatisfiable when added to hard(F ). Hence, π must
falsify at least one soft clause in every core; i.e., the set of clauses falsified by
π is a hitting set of K. So by the definition of cost and the minimality of η,
cost(η) ≤ cost(π), and thus cost(AM) ≤ cost(π) for every feasible solution π.
Once AM is found, ImprovedSolution must be applicable and the condition
cost(AM) = UB ≤ cost(η) ≤ LB is achieved (MinHS ensures cost(η) ≤ LB).
Then OptimalSolution must be applied and the derivation terminates. In sum,
under the stated conditions only a finite number of progressing subsequences can
be executed and so the derivation must be finite.

4 Generic Hitting Set Based MaxSMT

Here we present a general framework that realizes the previously introduced
ideas for IHS based MaxSMT solving. Following the desiderata presented in our
introduction, we decompose the problem of MaxSMT into three sub-problems:
optimization (over Boolean atoms), Boolean satisfiability, and theory reasoning.
Although modern SMT solvers are equipped with efficient engines for arithmetic
reasoning, in MaxSMT the optimization problem depends purely on the Boolean
abstraction of the formula and thus delegating the task of optimization to a spe-
cialized solver can be more efficient [8]. Figure 1 shows a general architecture
to solve MaxSMT as an implicit hitting set problem [18,19]. The method com-
bines three components that are responsible for our three subtasks: OPT, an
optimizer for hitting set computation; SAT, a SAT solver for Boolean reasoning;
and Theories, a set of theory solvers to perform theory reasoning. The framework
expects as input a MaxSMT formula (F ) with a satisfiable set of hard clauses.
The SAT and Theory solvers consider only the hard clauses, while the soft (unit)
clauses and their costs are only considered by the optimizer. Note that we can
initially check the hard clauses for satisfiability. If they are unsatisfiable there is
no optimal solution.
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SMTMIP

optSoln(AM )

hard(F )
cost over
soft(F ) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

MaxSAT Theories

optSoln(AM )

F atoms(F )
AM

Lemma
C

Opt. Sol.

Fig. 2. Example merged (i.e. single-SAT) instantiations of our framework

The evaluation starts with OPT, which computes a (potentially optimal)
hitting set η of the current set of unsatisfiable cores (K). This is translated into
a set of assumptions (noted as A in Fig. 1) that requires the satisfaction of all
soft clauses not in η (see HS and MinHS steps of A-MaxSMT).

The SAT solver can then decide if there exists a feasible solution satisfying
hard(F ) and the assumptions. Theory solvers can be invoked at various points to
check the T -consistency of the SAT solver’s current partial assignment AM and
to perform T -learning. As in [12] there are a range of flexible (e.g., more eager
or more lazy) strategies for deciding when theory reasoning should be invoked.

For a given conjunction of theory literals, a theory solver might return a
subset that is T -unsatisfiable forming a conflict clause after negation, or addi-
tional theory clauses for T -learning. In both cases the returned clauses are valid
lemmas of the theory (C in Fig. 1). The SAT and theory solvers continue their
collaboration under the assumption of A until either a theory consistent model
of hard(F )∧A is found (i.e. state T -SAT (AM,F ) is reached), or hard(F )∧A is
found to be unsatisfiable (i.e. state conflict(F,C) is reached). In the latter case,
the SAT solver constructs an unsatisfiable core (κ in Fig. 1) that consists of a
subset of the soft clauses assumed to be satisfied in A. After that, the optimizer
can compute a new hitting set that hits κ as well. Note that the new hitting
set need not be of minimum cost. From the new hitting set, a new A is con-
structed and a new iteration starts. Any theory consistent model that is found
for hard(F ) ∧ A is a feasible solution of the MaxSMT problem. The optimality
of these solutions can be decided by the optimizer component based on their
costs. In case the found solution is not optimal, a new hitting set is computed
in order to find a better solution. Otherwise, the model is returned as a final
optimal solution.

4.1 Possible Instantiations

A practical tool following our proposed general architecture can be achieved in
various ways. Based on Fig. 1, one could combine a hitting set calculator with a
SAT solver and a set of theory solvers. However, this implementation would not
automatically benefit from the advanced techniques implemented in MaxSAT
and SMT solvers nor from any future improvements to such solvers. So a more
practical question is how to combine already existing tools to obtain a MaxSMT
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SMTMaxSAT

optSoln(AM )

F hard(F )

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

SMTMaxSAT

optSoln(AM )

F hard(F )

C

Lemma

AM

Opt. Sol.

Fig. 3. Example combined (i.e. double-SAT) instantiations of our framework

solver. Here we consider mixed integer programming solvers (MIP), for example
CPLEX, for solving the minimum hitting set problem since they are widely
available and display state of the art performance on a range of instances.

As Fig. 1 hints, some MaxSAT solvers already implement efficient collabora-
tion between MIP and SAT solvers, while SMT solvers combine SAT and theory
solvers. Combining these solvers as black-boxes results in an engine that contains
two SAT solvers, while merging these engines results in a tool with a single SAT
solver. Figure 2 shows two possible instances of the latter case. On the left, we
keep an SMT solver as a black-box and combine it with a MIP solver that is
responsible for the hitting sets (and so the assumptions) in each iteration. A ben-
efit of this instance is efficient SMT solving and the ability to use the full power
of the MIP solver to express complex objective functions (e.g., multi-objective
optimization). One disadvantage is the lack of MaxSAT preprocessing and sim-
plifications. A tighter combination could replace the SAT solver in an IHS based
MaxSAT solver with an SMT solver. However, in IHS MaxSAT solving SAT
calls are considered relatively cheap compared to MIP calls [20], but SMT calls
can be more expensive, so the tradeoffs of some techniques would have to be
reevaluated. The instance on the right side of Fig. 2 considers a (not necessarily
IHS based) MaxSAT solver as a black-box to find an optimal solution for the
abstraction of the problem, and forms a lazy lemmas on demand structure with
a set of theory solvers for theory consistency checks. The benefit here is efficient
optimization solving, but the disadvantage is delayed theory support.

Instantiations in Fig. 3 present possibilities for combining black-box (i.e. not
necessarily IHS based) MaxSAT and SMT solvers, providing the advantage of
efficient optimization and SMT solving at the same time. These combinations
contain multiple SAT solvers where the connecting interface determines the work
distribution among them. On the left side, the solvers communicate via assump-
tions and cores or solutions. Whenever the MaxSAT solver finds an optimal
propositional model for its current problem, the SMT solver has to verify that
the soft clauses satisfied in that model are also T -satisfiable (via a set of assump-
tions that forces their satisfaction). If not, it returns a new core to refine the
MaxSAT problem. In practice, the effectiveness of this instance would be com-
promised if many iterations are needed to refine the MaxSAT model. Another
possible disadvantage of this instance is that the SMT solver could learn lemmas
that would be useful to the MaxSAT engine but are never passed to it.
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An alternate instance (right side in Fig. 3) involves the MaxSAT solver giving
to the SMT solver the complete propositional model it found (the optimal model
for its current problem). If that model is not theory consistent the SMT solver
can return any number of lemmas to refine the MaxSAT problem. In this instance
the MaxSAT solver can learn theory related constraints from the SMT solver
beyond unsatisfiable cores. The approach introduced in [3] can be seen as a
combination of the instances in Fig. 3. There the MaxSAT optimal model is
used to provide assumptions to the SMT solver (as in the left-hand instance),
but the SMT solver can return many lemmas to the MaxSAT solver not just
cores (as in the right-hand instance). A potential drawback of that approach is
that the returned lemmas might or might not be useful to the MaxSAT solver,
and there is a risk of overloading the MaxSAT solver.

Based on these instances, it appears that support of assumption based incre-
mental solving and efficient extraction of small cores are important features of
the involved tools. Thus techniques that improve these aspects of solvers (e.g.,
[21]) have the potential to improve modular MaxSMT solvers as well. Further,
note that our calculus allows the interruption of SMT calls in certain cases (see
conditions in Theorem 3), which may be worth considering in practice.

5 Related Work

As argued in the introduction the focus of this paper is on the important class
of MaxSMT solvers. Thus this section will concentrate on the closest related
approaches. Additional experimental results are provided in the next section.

We modify and extend a general DPLL(T) framework introduced in [12] to
formalize our MaxSMT solving approach. Another extension of DPLL(T) by
Nieuwenhuis and Oliveras in [2] represents the optimization task explicitly as a
set of theory constraints and progressively strengthens this theory by deriving
tighter bounds. Our extension of DPLL(T) focuses only on MaxSMT problems
and separates the optimization task from theory reasoning.

A modular approach was proposed by Cimatti et al. in [3] where MaxSAT and
SMT solvers are employed as black-boxes for MaxSMT solving. As we showed
in Sect. 4.1, our framework includes this approach. In Sect. 6 we present some
empirical results comparing their approach with other instantiations.

In the context of core-guided MaxSAT solving, SMT solvers have been used
instead of SAT, e.g., [22], to handle cardinality constraints more efficiently. We
focus on IHS based MaxSMT solving in which no cardinality constraints are
introduced into the SMT sub-problems.

Manolios et al. introduced the theoretical underpinnings of a Branch and Cut
Modulo Theories framework and developed an optimization procedure where
integer linear programming (ILP) and stably-infinite theories are combined [7].
Our approach delegates Boolean reasoning to a SAT solver, while in their con-
struction this is done by the ILP solver.
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6 Experimental Evaluation

We implemented two instantiations of our framework. Both use MathSAT5 [23]
version 5.5.1 as the SMT component. Our first implementation maxhs-msat
follows the architecture proposed on the left side of Fig. 3. It combines maxHS
3.0 as the optimizer with MathSAT5. To evaluate the potential of lifting theory
lemmas to the MaxSAT level, as proposed in [3] and described in Sect. 4.1 as a
combination of the instances in Fig. 3, the configuration maxhs-msat-ll lifts and
adds all used theory lemmas to the MaxSAT solver in addition to unsatisfiable
cores. Our second solver cplex-msat implements the architecture shown on
the left of Fig. 2 which combines MathSAT5 directly with a hitting set solver
(CPLEX 12.7 as in maxHS 3.0) as the optimizer. In this implementation the
components interface only with assumptions and unsatisfiable cores.

In both solvers the optimizers compute an optimal hitting set η. In maxhs-
msat maxHS computes an optimal solution to its current Boolean abstraction,
but the clauses falsified by that solution form an optimal hitting set. The SMT
solver then tests if the other soft clauses (soft(F ) − η) are T -satisfiable. If not,
a new core is added to the optimizer (along with additional theory lemmas
in maxhs-msat-ll). Following [20], rather than calling the optimizer in each
iteration we allow non-optimal hitting sets. In particular, the new SMT core can
be added to the previous hitting set (-djnt), or a single minimum weight clause
from the new core can be added to the hitting set (-min). In both cases we
obtain a new (non-minimum) hitting set covering the new core. For cplex-msat
only, we can also use CPLEX to compute a linear programming solution of the
hitting set problem which when rounded up yields a new hitting set (-lp). In
these cases we continue to use non-minimum hitting sets η′ until soft(F ) − η′

becomes T -satisfiable, and then we again use the optimizer to compute a hitting
set with minimum cost.

We compare against two state-of-the-art MaxSMT solvers. OptiMathSAT
(version 1.4.5) [6] is a general purpose Optimization Modulo Theories (OMT)
solver that we use in two different configurations. The default configuration is
denoted by optimathsat-omt, while optimathsat-maxres employs the maxi-
mum resolution approach of [14]. We also compare against z3 (version 4.6.0) with
two different MaxSAT engine configurations (z3-maxres and z3-wmax). Note,
that the hitting set based engine in z3 has been deprecated and was removed.

We considered three sets of benchmarks from three different sources. The
LL-benchmark set consists of all 398 quantifier free MaxSMT benchmarks used
in [3] with annotations replaced by soft assertions, split into 212 benchmarks
over the theory of linear integer arithmetic and 186 benchmarks over linear
real arithmetic. For each theory, half the instances have Unit weight for soft
assertions, while the other half contains Random weights in the interval of 1
and 100. The runtime limit on these instances was set to 20 min.

Our second benchmark set LEX-benchmark, consisting of equalities over
propositional atoms, are lexicographically-optimum realization problems used
in [8]. We only considered the 6098 instances where three groups of soft asser-
tions (Time, Cost and Weight) have different priorities and the objective is to
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Table 4. Results of various solvers and configurations on LL-benchmarks from [3].

Solver LIA (212) LRA (186) Total SMT% OPT%

U R U R

cplex-msat 82 90 85 85 342 99.22% 0.13%

cplex-msat-djnt 85 91 85 85 346 98.83% 0.33%

cplex-msat-min 83 86 85 85 339 99.22% 0.04%

cplex-msat-lp 84 89 85 85 343 98.26% 0.97%

maxhs-msat 85 87 85 85 342 88.15% 11.20%

maxhs-msat-djnt 86 89 85 85 345 83.85% 15.36%

maxhs-msat-min 84 89 85 85 343 92.31% 7.04%

maxhs-msat-ll 80 84 83 78 325 82.57% 15.45%

maxhs-msat-ll-djnt 78 84 83 77 322 87.97% 10.37%

maxhs-msatll-min 79 86 82 85 332 80.13% 17.03%

optimathsat-maxres 87 90 85 86 348 – –

optimathsat-omt 75 72 85 85 317 – –

z3-maxres 73 79 86 85 323 – –

z3-wmax 69 77 88 88 322 – –

lexicographically minimize the sum of the falsified assertions with respect to a
given priority order of T, C, W). The time limit was set to 100 s.

Finally, in order to further exercise the strengths of the different approaches,
we generated a set of scaled problems from one (arbitrarily chosen) QF-LIA
SMT-LIB benchmark family (Bofill-scheduling waste water treatment schedul-
ing problems from [24]). The original family contained 156 randomly generated
(referred as rand-wwtp) and 251 industrial (ind-wwtp) satisfiable SMT problems.
We derived instances from these SMT problems by adding randomly chosen the-
ory atoms with random polarity as unit soft clauses. The four groups of derived
instances introduced four different percentages (10%, 25%, 50% and 100%) of
the atoms in the original problem as soft assertions. All instances were gener-
ated once with unit weights and once more with random weights between 1 and
the total number of atoms. Due to space constraints, we only present results on
instances derived from rand-wwtp problems, where we observed an interesting
pattern. The time limit was set to 5 min.

The experiments were performed on a cluster in which each computing node
consisted of two Intel(R) Xeon(R) E5-2620 v4 @ 2.10 GHz CPUs and 128 GB of
main memory. We limited memory usage of each tool to 7 GB on each instance
and used different time limits as described above.

Table 4 presents results on the LL-benchmarks. For each solver configuration
the first two columns list the number of solved instances with linear integer
arithmetic as background theory, where the soft assertions have Unit weights
in the first column and Random weights in the second. Analogously, the next
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Table 5. Results of various solvers and configurations on LEX-benchmarks from [8].

Solver CTW Time[s] WTC Time[s] Cores Opt. HS

cplex-msat 3499 27825 2399 1942 1610031 1615150

cplex-msat-djnt 3687 5936 2399 1455 920387 137339

cplex-msat-min 3699 2479 2399 1391 909828 27245

cplex-msat-lp 3699 4564 2399 1493 1260683 19056

maxhs-msat 3699 2401 2399 1367 0 5319

maxhs-msat-djnt 3699 2224 2399 1359 0 5319

maxhs-msat-min 3699 2451 2399 1409 0 5319

maxhs-msat-ll 3699 2302 2399 1518 0 5319

maxhs-msat-ll-djnt 3699 2394 2399 1406 0 5319

maxhs-msatll-min 3699 2441 2399 1437 0 5319

optimathsat-maxres 3410 13851 1850 10209 – –

optimathsat-omt 3481 9710 2068 10483 – –

z3-maxres 3699 4555 2399 2231 – –

z3-wmax 3651 5566 2295 9513 – –

two columns present results in linear real arithmetic. The fifth column contains
the total sum of solved instances in the previous four columns. The last two
columns show the percentage of time spent in the SMT and in the optimization
component (considering only solved instances). The optimization component in
cplex-msat is CPLEX, while in maxhs-msat it is maxHS.

It turns out that optimathsat-maxres outperforms the other tools and
configurations on these instances, but our implementations remain competitive.
Furthermore, lemma lifting (maxhs-msat-ll and its different configurations)
reduces the percentage time spent in SMT solving, but has a negative effect
with respect to the number of solved instances compared to maxhs-msat and
its different configurations. None of the involved tools appears to be sensitive
to the type of weights (Uniform vs. Random). Although cplex-msat does not
contain any MaxSAT preprocessing or simplification technique, the results of
that tool in this experiment are similar to maxhs-msat.

Results on the LEX-benchmark are shown in Table 5. The 6098 problems
contained two groups of problems. The first group of 3699 instances used the
lexicographic preference ordering Cost, Time and then Weight, and are shown in
the first two columns which list the number of solved instances and the total run
time used to solve them. The second group of 2399 instances used the reversed
lexicographic preference and are shown in the next two columns. For our tools
we also give the total number of unsatisfiable cores and of optimal hitting set
calculations (considering again only solved instances) in the last two columns.

On these instances most versions of our approach solve at least as many
problems as the state-of-the-art tools and in significantly less time. Due to the
background theory of these instances it is enough to find a propositional model,
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Table 6. Results of considered solvers and configurations on rand-wwtp family with
10%-100% random unit soft clauses. Each percentage group consists of 312 problems.

Solver 10% 25% 50% 100% Total SMT% OPT%

cplex-msat 289 271 203 4 767 60.85% 38.46%

cplex-msat-djnt 286 247 114 2 649 97.35% 1.96%

cplex-msat-min 282 244 142 16 684 91.46% 7.68%

cplex-msat-lp 287 262 184 13 746 83.4% 15.27%

maxhs-msat 288 270 179 0 737 42.28% 57.31%

maxhs-msat-djnt 289 249 112 1 651 93.91% 5.69%

maxhs-msat-min 281 242 132 15 670 87.99% 11.59%

maxhs-msat-ll 266 166 16 0 448 7.69% 84.93%

maxhs-msat-ll-djnt 266 161 9 0 436 11.30% 77.59%

maxhs-msatll-min 263 166 27 0 456 11.36% 68.11%

optimathsat-maxres 291 258 123 0 672 – –

optimathsat-omt 240 130 0 0 370 – –

z3-maxres 280 224 103 0 607 – –

z3-wmax 304 288 4 0 596 – –

i.e., solve a MaxSAT problem, since every propositional solution also happens to
be T -satisfiable. This is reflected in the last two columns, where the two instan-
tiations of our framework show different behaviour. For maxhs-msat, which
combines maxHS with the SMT solver, the number of iterations is always one
(in all 5319 satisfiable instances). In this case maxHS finds an optimal Boolean
model (through several iterations of its internal SAT solver), which the SMT
solver then verifies to be theory consistent in one call. In case of cplex-msat
there is no additional SAT solver between the SMT and the optimization com-
ponents. Therefore it has to learn all the necessary transitivity properties of the
equalities in form of cores from the SMT solver. Thus the number of unsatis-
fiable cores is higher for cplex-msat, which can significantly increase solving
time depending on the type of hitting sets used.

These benchmarks in essence allow us to compare the effectiveness of the
optimization components independently of the SMT component. This benefits
our hitting set based methods, while other solvers rely on alternative approaches.
Another important difference is that our prototypes solve lexicographic problems
as single objective functions in one run by aggregating the cost functions [25].

The last table (Table 6) presents results for the randomized rand-wwtp bench-
marks on which cplex-msat performs better than maxhs-msat. Using non-
minimum hitting sets measurably reduces the performance of both implementa-
tions on these instances. From the last two columns we can deduce that the best
performing methods are those where more time was spent within the optimiza-
tion component. Although lemma lifting does result in significant more time
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spent in maxHS calls, some part of it is spent in the SAT solver, and not in
actual optimization. This might explain its bad performance.

To summarize, the experiments support the need for a generic framework
for MaxSMT. More concretely we make the following three observations. First,
there is no overall best configuration. Performance depends on the distribution
of the workload among the involved components, since in general the difficulty
of the optimization and SMT problems differ. For instance, improved MaxSAT
performance does not necessarily translate into improved MaxSMT performance,
simply because of different relative costs between SMT calls and SAT calls.
Accordingly, non-minimum hitting sets (like disjoint cores or LP relaxation)
usually reduce the workload of the optimizer but put more stress on the SMT
solver.

Second, the number of extracted unsatisfiable cores or calculated optimal
hitting sets is not always an expedient metric to measure the performance of
MaxSMT. Finally, most of the time, lemma lifting does not improve but actually
seems to reduce performance of a modular MaxSMT solver, particularly with an
implicit hitting set based approach.

All of our experimental results as well as the evaluated benchmarks are avail-
able at http://fmv.jku.at/maxsmt/.

7 Conclusion

We have proposed an abstract framework to gain a unifying view of how opti-
mization, propositional reasoning, and theory reasoning can be combined in IHS
based MaxSMT solving. Our framework is very flexible supporting a rich space
of possible implementation architectures all of which are provably sound. Our
empirical results show that different architectures yield quite different perfor-
mance on different problems sets. This implies that there is considerable poten-
tial in more fully exploiting the flexibility of our framework to obtain improved
and more robust performance in MaxSMT solvers.
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(FWF) under projects W1255-N23 and S11408-N23.
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9. Ansótegui, C., Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT evaluation 2017
(2017). http://mse17.cs.helsinki.fi/

10. Bacchus, F., Järvisalo, M.: Algorithms for maximum satisfiability with appli-
cations to AI. In: AAAI-2016 Tutoral (2016). https://www.cs.helsinki.fi/group/
coreo/aaai16-tutorial/

11. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7 19

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Lovel and procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

13. Sebastiani, R.: Lazy satisability modulo theories. JSAT 3(3–4), 141–224 (2007)
14. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT

resolution. In: AAAI, pp. 2717–2723. AAAI Press (2014)
15. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-

straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 39
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24. Bofill, M., Muñoz, V., Murillo, J.: Solving the wastewater treatment plant problem
with SMT. CoRR abs/1609.05367 (2016)

25. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Ann. Math. AI 62(3–4), 317–343 (2011)

https://doi.org/10.1007/978-3-642-36742-7_7


Cubicle-W: Parameterized Model
Checking on Weak Memory

Sylvain Conchon1,2, David Declerck1,2(B), and Fatiha Zäıdi1
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Abstract. We present Cubicle-W, a new version of the Cubicle model
checker to verify parameterized systems under weak memory models.
Its main originality is to implement a backward reachability algorithm
modulo weak memory reasoning using SMT. Our experiments show that
Cubicle-W is expressive and efficient enough to automatically prove
safety of concurrent algorithms, for an arbitrary number of processes,
ranging from mutual exclusion to synchronization barriers.

Keywords: Parameterized model checking · MCMT · SMT
Weak memory

1 Introduction

Concurrent algorithms are usually designed under the sequential consistency
(SC) memory model [20] which enforces a global-time linear ordering of (read or
write) accesses to shared memories. However, modern multiprocessor architec-
tures do not follow this SC semantics. Instead, they implement several optimiza-
tions which lead to relaxed consistency models on shared memory where read
and write operations may be reordered. For instance, in x86-TSO [21,22] writes
can be delayed after reads due to a store buffering mechanism. Other relaxed
models (PowerPC [6], ARM) allow even more types of reorderings.

The new behaviors induced by these models may make out-of-the-shelf algo-
rithms incorrect for subtle reasons mixing interleaving and reordering of events.
In this context, finding bugs or proving the correctness of concurrent algorithms
is very challenging. The challenge is even more difficult if we consider that most
algorithms are parameterized, that is designed to be run on architectures con-
taining an arbitrary (large) number of processors.

One of the most efficient technique for verifying concurrent systems is
model checking. While this technique has been used to verify parameterized
algorithms [2,4,5,9,12,16] and systems under some relaxed memory assump-
tions [2,3,7,10,11], hardly any state-of-the-art model checker support both
parameterized verification and weak memory models [2].
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In this paper, we present Cubicle-W [1], the new version of the Cubicle [13–
15] model checker for verifying safety properties of parameterized array-based
transition systems on weak memory. Cubicle-W is a conservative extension which
allows the user to manipulate both SC and weak variables. Its relaxed consistency
model is similar to x86-TSO : each process has a FIFO buffer of pending store
operations whose side effect is to delay the outcome of its memory writes to all
processes.

Like Cubicle, Cubicle-W is based on the MCMT framework of Ghilardi and
Ranise [17]. Its core extends the SMT-based backward reachability procedure
with a new pre-image computation which takes into account the delays between
write and read operations. In order to consider only coherent read/write pairs,
Cubicle-W relies on a buffer-free memory model inspired by the logical frame-
work of [8] which is implemented as a new theory in its SMT solver. Cubicle-W
is an open-source software freely available at http://cubicle.lri.fr/cubiclew.

2 Tool Presentation

The syntax of Cubicle-W extends Cubicle’s with new constructs for manipulating
weak memories. The reader can refer to [13] for the description of Cubicle’s input
language.

Variable and array declarations can now be prefixed by the keyword weak for
defining weak memories.

weak var X : int
weak array A[proc] : bool

Transitions in Cubicle-W have the same syntactic guard/action form as in
Cubicle and they are also supposed to be executed atomically. The new feature is
that they must now have at least one parameter which represents the process that
performs the operations. This parameter is identified using the [.] notation. For
instance, in the following example, the parameter [i] of transition t1 represents
the process performing all read/write operations on X, A[i] and A[j] when t1
is triggered.

transition t1 ([i] j)
requires { X = 42 && A[i] = False }
{ A[j] := False }
Even if there is no use of parameter [i] in transitions’ guards and actions, this
parameter is still mandatory, as in the transition t2 below, to indicate which
process performs the operations.

transition t2 ([i]) { X := 42 }
Note that, as Cubicle-W’s transitions are atomic, having several processes per-
forming reads or writes operations in the same transition would require an unre-
alistic powerful synchronization mechanism between processes.

http://cubicle.lri.fr/cubiclew
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The main aspect of our relaxed memory semantics is that, from a global
viewpoint, the effect of a write operation on a weak memory is not immediately
visible to all processes. It is only locally visible to the process that performs it.
For instance, if some process i executes the transition t2 above, then X = 42
is true for i after the transition (as the effect of the assignment is immediately
locally visible), while all other processes can still read a different value for X.

To enforce the global visibility of a write operation, one has to use a memory
barrier. In Cubicle-W, barriers are provided as a new built-in predicate fence().
When used in the guard of a transition, fence is true only when the FIFO buffer
of the parameter [i] of the transition is empty. For instance, if a process executes
t2 then the following transition t3:

transition t3 ([i]) requires { fence() }{ ... }

The fence predicate in t3’s guard ensures that the effect of all previous assign-
ments done by i are visible to all processes after t3. Note that fence is not an
action: it does not force buffers to be flushed on memory, but just waits for a
buffer to be empty. As a consequence, it can only be used in a guard.

Implicit memory barriers are also activated when a transition contains both
a read and a write to weak variables (not necessarily the same). For instance,
the execution of the following transition t4 guarantees that the buffer of process
i is empty before and after t4.

transition t4 ([i])
requires { A[i] = False }
{ X := 1 }

Because there is no unique view of the contents of weak variables, one can
not talk about the value of X, but rather the value of X from the point of view of
a process i, denoted i@X in Cubicle-W. This notation is used when describing
unsafe states. For instance, in the following formula, a state is defined as unsafe
when there exist two (distinct) processes i and j reading respectively 42 and 0
in the weak variable X:

unsafe (i j) { i@X = 42 && j@X = 0 }

This notation is not used for describing initial states as Cubicle-W implicitly
assumes that all processes have the same view of each weak variable in those
states. For instance, the following formula defines initial states where, for all
processes, X equals 0 and all cells of array A contain False.

init (i) { X = 0 && A[i] = False }

Finally, it is important to note that non weak arrays are restricted to be used
only locally by processes: given a non weak array T, only i can read or write to
T[i].
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3 Backward Reachability Modulo Weak Memory

The core of Cubicle-W is an extension of Cubicle’s symbolic backward reacha-
bility algorithm [13,14]. We first briefly recall how the original Cubicle works,
then we give details about our new algorithm.

States in Cubicle are represented by cubes, i.e., formulas of the form ∃ī.(Δ∧
F ), where ī is a set of process variables, Δ is the conjunction of all disequations
between the variables in ī and F is a conjunction of literals. Each literal in F is a
comparison (=, �=, <, ≤) between two terms. A term can be a constant (integer,
boolean, real, constructor), a process variable (i), a variable (X) or an array
access (A[i], where i is a process variable). All process variables in a state are
implicitly existentially quantified. Initial states are represented by a universally
quantified formula I of the form ∀ī.(Δ ∧ F ), where Δ and F are as described
above.

The core of Cubicle is a symbolic backward reachability loop that maintains
two collections of states: Q contains the states to visit (it is initialized with
the states declared as unsafe), and V is filled with the visited states (initially
empty). Each iteration of the loop performs the following operations:

1. (pop) retrieve and remove a formula ϕ from Q
2. (safety test) check the satisfiability of ϕ ∧ I, i.e. determine if the states

described by ϕ intersect with the initial states I. If so, the system is declared
as unsafe

3. (fixpoint test) check if ϕ |= V is valid, i.e. determine if the states described
by ϕ have already been visited. If so, discard ϕ and go back to 1

4. (pre-image computation) compute the pre-image pre(ϕ, t) of ϕ for all
instances of transitions t, i.e. determine the set of states that can reach ϕ
in one step by applying t with the processes identifiers #1, . . . , #n as param-
eters, add these states to Q and add ϕ to V.

If Q is empty at step 1, then all the states space has been explored and the
system is declared safe. Note that the (non-trivial) fixpoint and safety tests are
discharged to an embedded SMT solver.

Cubicle-W uses the same procedure but some operations have been extended
to reason modulo an axiomatic description of our weak memory model. This
axiomatization uses the notion of events to describe weak memory accesses and
a global-happens-before (ghb) relation defined as a partial order relation over
these events. This relation is used to determine if an execution is valid.

Our logic is extended with new literals to represent read and write operations
on weak memories. We assume given a (countable) set of events E . A literal of
the form e:RdX(i) denotes a read access on variable X by a process i labeled
with an event identifier e ∈ E . Similarly, literals of the form e:WrX(i) represent
write accesses. The value returned by a read (resp. assigned by a write) is given
by the term val(e), where e is the event identifier associated to the operation.
Operations on weak arrays are represented by literals of the form e:RdA(i, j) and
e:WrA(i, j), which represent an access by a process i to the cell j of an array A.
Last, there is also literals of the form e:fence(i) which indicate that a process
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i has a memory barrier on the event e, where e is an event identifier associated
to a read by the same process.

The reachability loop of Cubicle-W implements a new pre-image computa-
tion. At step 4, pre(ϕ, t) is modified so that read and write operations from t give
rise to Rd and Wr literals labeled with fresh event identifiers. These new events
are ordered w.r.t the older ones in the ghb relation expressed by predicates of
the form ghb(e1, e2), indicating that event e1 is ghb-before (i.e., occurs before)
event e2. The ghb-ordering of events is built w.r.t. the following rules:
• New read events are ghb-before old read and write events from the same

process.
• New write events are ghb-before old write events from the same process, how-

ever they are ghb-before old reads events from the same process only if there
is a fence on these reads.

• New write events are ghb-before all the old write events to the same variable.
• New read events are ghb-before all the old write events to the same variable.

Finally, when a memory fence is encountered, a literal e:fence(i) is added on all
old reads events e which belong to the process i executing the transition.

The treatment of write events is also specific when we have to consider the
delays introduced by store buffers: when a new write event e is produced, all
possible combinations of e with older compatible reads are considered (unlike in
SC), as a write operation may or may not satisfy subsequent reads. By compatible
read, we mean a read on the same variable or array cell as the write, though we
may also consider the constant values associated to these events in order to
obtain a more accurate set of compatible reads. The connection between a write
and an older read obeys the following rules:
• When the write event satisfies an old read event from a different process, the

write is ghb-before the read.
• When the write event does not satisfy an old read event from a different

process, the read is ghb-before the write.
• When the write and the read events belong to the same process, none of them

is considered ghb-before the other (unless there is a fence on the read event).

In order to show how our reachability procedure works, we consider the sim-
ple parameterized mutual exclusion algorithm and the exploration graph given
below. Cubicle-W starts with the unsafe formula in node 1. Then, each node
represents the result of a pre-image computation by an instance of a transition
(denoted by the label of the edge). Remark that formulas in the graph’s nodes
are implicitly existentially quantified and that a process identifier i is written #i.

type loc = Idle | Want | Crit

weak array X[proc] : bool
array PC[proc] : loc

init (i) {PC[i] = Idle && X[i] = False}

unsafe (i j) {PC[i] = Crit && PC[j] = Crit}

transition t_req ([i])
requires { PC[i] = Idle }
{ X[i] := True ; PC[i] := Want }

transition t_enter ([i])
requires { PC[i] = Want && fence() &&

forall other k. X[k] = False }
{ PC[i] := Crit }

transition t_exit ([i])
requires { PC[i] = Crit }
{ X[i] := False ; PC[i] := Idle }
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We focus on node 3 which results from the pre-image of node 1 by
t enter(#2) then t enter(#1). In this state, both processes have read False in
X (events e1 and e2). Also, since there is a memory barrier in t enter, both reads
are associated to a fence literal. The pre-image of node 3 by t req(#2) intro-
duces a new write event e3:WrX(#2,#2) with an associated value val(e3) =
True. Since there is a memory barrier e1:fence(#2) on e1 by the same process
#2, we add ghb(e3,e1) in the formula. Now, this new write event may or may
not satisfy the read e2, so we must consider both cases (node 4 and 5).

In node 4, event e3 satisfies e2. The equality val(e2) = val(e3) is then
added to the formula which obviously makes it inconsistent. In node 5, the
write e3 does not satisfy the read e2, then the value val(e3) is discarded
and ghb(e2,e3) is added to the formula. Similarly, the pre-image of node 5
by t req(#1) yields the formula in state 6 where the new write e4 does not sat-
isfy the read e1. Now, the ghb relation is not a valid partial order as the sequence
ghb(e2, e3), ghb(e3, e1), ghb(e1, e4), ghb(e4, e2) forms a cyclic relation. There-
fore, this state is discarded and the program is declared safe.

Remark that if we removed the fence predicate in t enter, then we would
only have ghb(e3, e1), ghb(e4, e2) in state 6, which is a valid partial order rela-
tion, so the formula would intersect with the initial state and the program would
be unsafe.

4 Benchmarks and Conclusion

We have evaluated Cubicle-W on some classical parameterized concurrent algo-
rithms (available on the tool’s webpage [1]). Most of these algorithms are abstrac-
tion of real world protocols, expressed with up to eight transitions and up to four
weak variables or two unbounded weak arrays. The spinlock example is a man-
ual translation of an actual x86 implementation of a spinlock from the Linux
2.6 kernel. We compared Cubicle-W’s performances with state-of-the-art model
checkers supporting the TSO weak memory model, since our model is similar.
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The model checkers we used are CBMC [7], Trencher [10,11], MEMORAX [3]
and Dual-TSO [2]. As most of these tools do not support parameterized sys-
tems, we used them on fixed-size instances of our benchmarks and increased the
number of processes until we obtained a timeout (or until we reached a high
number of processes, i.e. 11 in our case). Dual-TSO supports a restricted form
of parameterized systems, but does not allow process-indexed arrays, which are
often needed to express parameterized programs. When it was possible, we used
it on both parameterized and non parameterized versions of our benchmarks.

The table above gives the running time for each benchmark, with the number
of processes between square brackets, where N indicates the parametric case. The
second column indicates whether the program is expected to be unsafe (US) or
safe (S). Unsafe programs have a second version that was fixed by adding fence
predicates. indicates that a tool gave a wrong answer. KO means that a tool
crashed. NT indicates a benchmark that was not translatable to Dual-TSO.

The tests were run on a MacBook Pro with an Intel Core i7 CPU @ 2,9 Ghz
and 8GB of RAM, under OSX 10.11.6. The timeout (TO) was set to 15 min.

These results show that in spite of the relatively small size of each benchmark,
state-of-the-art model checkers suffer from scalability issues, which justifies the
use of parameterized techniques. Cubicle-W is thus a very promising approach to
the verification of concurrent programs that are both parameterized and oper-
ating under weak memory. We have yet to tackle larger programs, which can
be achieved by adapting Cubicle’s invariant generation mechanism to our weak
memory model.
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Abstract. The QRAT (quantified resolution asymmetric tautology)
proof system simulates virtually all inference rules applied in state of
the art quantified Boolean formula (QBF) reasoning tools. It consists
of rules to rewrite a QBF by adding and deleting clauses and univer-
sal literals that have a certain redundancy property. To check for this
redundancy property in QRAT, propositional unit propagation (UP) is
applied to the quantifier free, i.e., propositional part of the QBF. We
generalize the redundancy property in the QRAT system by QBF spe-
cific UP (QUP). QUP extends UP by the universal reduction operation
to eliminate universal literals from clauses. We apply QUP to an abstrac-
tion of the QBF where certain universal quantifiers are converted into
existential ones. This way, we obtain a generalization of QRAT we call
QRAT+. The redundancy property in QRAT+ based on QUP is more
powerful than the one in QRAT based on UP. We report on proof theo-
retical improvements and experimental results to illustrate the benefits
of QRAT+ for QBF preprocessing.

1 Introduction

In practical applications of propositional logic satisfiability (SAT), it is necessary
to establish correctness guarantees on the results produced by SAT solvers by
proof checking [7]. The DRAT (deletion resolution asymmetric tautology) [23]
approach has become state of the art to generate and check propositional proofs.

The logic of quantified Boolean formulas (QBF) extends propositional logic
by existential and universal quantification of the propositional variables. Despite
the PSPACE-completeness of QBF satisfiability checking, QBF technology is
relevant in practice due to the potential succinctness of QBF encodings [4].

DRAT has been lifted to QBF to obtain the QRAT (quantified RAT) proof
system [8,10]. QRAT allows to represent and check (un)satisfiability proofs of
QBFs and compute Skolem function certificates of satisfiable QBFs. The QRAT
system simulates virtually all inference rules applied in state of the art QBF
reasoning tools, such as Q-resolution [15] including its variant long-distance
Q-resolution [13,25], and expansion of universal variables [3].

Supported by the Austrian Science Fund (FWF) under grant S11409-N23.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 161–177, 2018.
https://doi.org/10.1007/978-3-319-94205-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94205-6_12&domain=pdf


162 F. Lonsing and U. Egly

A QRAT proof of a QBF in prenex CNF consists of a sequence of inference
steps that rewrite the QBF by adding and deleting clauses and universal literals
that have the QRAT redundancy property. Informally, checking whether a clause
C has QRAT amounts to checking whether all possible resolvents of C on a literal
l ∈ C (under certain restrictions) are propositionally implied by the quantifier-
free CNF part of the QBF. The principle of redundancy checking by inspecting
resolvents originates from the RAT property in propositional logic [12] and was
generalized to first-order logic in terms of implication modulo resolution [14].
Instead of a complete (and thus computationally hard) propositional implication
check on a resolvent, the QRAT system relies on an incomplete check by proposi-
tional unit propagation (UP). Thereby, it is checked whether UP can derive the
empty clause from the CNF augmented by the negated resolvent. Hence redun-
dancy checking in QRAT is unaware of the quantifier structure, which is entirely
ignored in UP.

We generalize redundancy checking in QRAT by making it aware of the quan-
tifier structure of a QBF. To this end, we check the redundancy of resolvents
based on QBF specific UP (QUP). It extends UP by the universal reduction
(UR) operation [15] and is a polynomial-time procedure like UP. UR is central
in resolution based QBF calculi [1,15] as it shortens individual clauses by elim-
inating universal literals depending on the quantifier structure. We apply QUP
to abstractions of the QBF where certain universal quantifiers are converted
into existential ones. The purpose of abstractions is that if a resolvent is found
redundant by QUP on the abstraction, then it is also redundant in the original
QBF.

Our contributions are as follows: (1) by applying QUP and QBF abstractions
instead of UP, we obtain a generalization of the QRAT system which we call
QRAT+. In contrast to QRAT, redundancy checking in QRAT+ is aware of the
quantifier structure of a QBF. We show that (2) the redundancy property in
QRAT+ based on QUP is more powerful than the one in QRAT based on UP.
QRAT+ can detect redundancies which QRAT cannot. As a formal foundation,
we introduce (3) a theory of QBF abstractions used in QRAT+. Redundancy
elimination by QRAT+ or QRAT can lead to (4) exponentially shorter proofs in
certain resolution based QBF calculi, which we point out by a concrete example.
Note that here we do not study the power of QRAT or QRAT+ as proof systems
themselves, but the impact of redundancy elimination. Finally, we report on
experimental results (5) to illustrate the benefits of redundancy elimination by
QRAT+ and QRAT for QBF preprocessing. Our implementation of QRAT+ and
QRAT for preprocessing is the first one reported in the literature.

2 Preliminaries

We consider QBFs φ := Π.ψ in prenex conjunctive normal form (PCNF) with a
quantifier prefix Π :=Q1B1 . . . QnBn and a quantifier free CNF ψ not containing
tautological clauses. The prefix consists of quantifier blocks QiBi, where Bi are
blocks (i.e., sets) of propositional variables and Qi ∈ {∀,∃} are quantifiers. We
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have Bi ∩ Bj = ∅, Qi �= Qi+1 and Qn = ∃. The CNF ψ is defined precisely over
the variables vars(φ) = vars(ψ) := B1 ∪ . . . ∪ Bn in Π so that all variables are
quantified, i.e., φ is closed. The quantifier Q(Π, l) of literal l is Qi if the variable
var(l) of l appears in Bi. The set of variables in a clause C is vars(C) := {x | l ∈
C, var(l) = x}. A literal l is existential if Q(Π, l) = ∃ and universal if Q(Π, l) = ∀.
If Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k iff i ≤ j. We extend the ordering
≤Π to an arbitrary but fixed ordering on the variables in every block Bi.

An assignment τ : vars(φ) → {�,⊥} maps the variables of a QBF φ to truth
constants � (true) or ⊥ (false). Assignment τ is complete if it assigns every
variable in φ, otherwise τ is partial. By τ(φ) we denote φunder τ , where each
occurrence of variable x in φ is replaced by τ(x) and x is removed from the prefix
of φ, followed by propositional simplifications on τ(φ). We consider τ as a set of
literals such that, for some variable x, x ∈ τ if τ(x) = � and x̄ ∈ τ if τ(x) = ⊥.

An assignment tree [10] T of a QBF φ is a complete binary tree of depth
|vars(φ)| + 1 where the internal (non-leaf) nodes of each level are associated
with a variable of φ. An internal node is universal (existential) if it is associated
with a universal (existential) variable. The order of variables along every path
in T respects the extended order ≤Π of the prefix Π of φ. An internal node
associated with variable x has two outgoing edges pointing to its children: one
labelled with x̄ and another one labelled with x, denoting the assignment of x
to false and true, respectively. Each path τ in T from the root to an internal
node (leaf) represents a partial (complete) assignment. A leaf at the end of τ is
labelled by τ(φ), i.e., the value of φ under τ . An internal node associated with
an existential (universal) variable is labelled with � iff one (both) of its children
is (are) labelled with �. The QBF φ is satisfiable (unsatisfiable) iff the root of
T is labelled with � (⊥).

Given a QBF φ and its assignment tree T , a subtree T ′ of T is a pre-model [10]
of φ if (1) the root of T is the root of T ′, (2) for every universal node in T ′ both
children are in T ′, and (3) for every existential node in T ′ exactly one of its
children is in T ′. A pre-model T ′ of φ is a model [10] of φ, denoted by T ′ |=t φ,
if each node in T ′ is labelled with �. A QBF φ is satisfiable iff it has a model.
Given a QBF φ and one of its models T ′, T ′′ is a rooted subtree of T ′ (T ′′ ⊆ T ′)
if T ′′ has the same root as T ′ and the leaves of T ′′ are a subset of the leaves
of T ′.

We consider CNFs ψ defined over a set B of variables without an explicit
quantifier prefix. A model of a CNF ψ is a model τ of the QBF ∃B.ψ which
consists only of the single path τ . We write τ |= ψ if τ is a model of ψ. For
CNFs ψ and ψ′, ψ′ is implied by ψ (ψ |= ψ′) if, for all τ , it holds that if τ |= ψ
then τ |= ψ′. Two CNFs ψ and ψ′ are equivalent (ψ ≡ ψ′), iff ψ |= ψ′ and
ψ′ |= ψ. We define notation to explicitly refer to QBF models. For QBFs φ
and φ′, φ′ is implied by φ (φ |=t φ′) if, for all T , it holds that if T |=t φ then
T |=t φ′. QBFs φ and φ′ are equivalent (φ ≡t φ′) iff φ |=t φ′ and φ′ |=t φ, and
satisfiability equivalent (φ ≡sat φ′) iff φ is satisfiable whenever φ′ is satisfiable.
Satisfiability equivalence of CNFs is defined analogously and denoted by the
same symbol ‘≡sat ’.
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3 The Original QRAT Proof System

Before we generalize QRAT, we recapitulate the original proof system [10] and
emphasize that redundancy checking in QRAT is unaware of quantifier structures.

Definition 1 ([10]). The outer clause of clause C on literal l ∈ C with respect
to prefix Π is the clause OC(Π,C, l) := {k | k ∈ C, k ≤Π l, k �= l}.

The outer clause OC(Π,C, l) ⊂ C of C on l ∈ C contains only literals that
are smaller than or equal to l in the variable ordering of prefix Π, excluding l.

Definition 2 ([10]). Let C be a clause with l ∈ C and D be a clause with l̄ ∈ D
occurring in QBF Π.ψ. The outer resolvent of C with D on l with respect to Π
is the clause OR(Π,C,D, l) := (C \ {l}) ∪ OC(Π,D, l̄).

Example 1. Given φ := ∃x1∀u∃x2.(C ∧D) with C := (x1 ∨u∨x2) and D := (x̄1 ∨
ū ∨ x̄2), we have OR(Π,C,D, x1) = (u ∨ x2), OR(Π,C,D, u) = (x1 ∨ x̄1 ∨ x2),
OR(Π,C,D, x2) = (x1 ∨ u ∨ x̄1 ∨ ū), and OR(Π,D,C, ū) = (x1 ∨ x̄1 ∨ x̄2). Com-
puting outer resolvents is asymmetric since OR(Π,C,D, u) �= OR(Π,D,C, ū).

Definition 3 ([10]). Clause C has property QIOR (quantified implied outer
resolvent) on literal l ∈ C with respect to QBF Π.ψ iff ψ |= OR(Π,C,D, l) for
all D ∈ ψ with l̄ ∈ D.

Property QIOR relies on checking whether every possible outer resolvent OR
of some clause C on a literal is redundant by checking if OR is propositionally
implied by the quantifier-free CNF ψ of the given QBF Π.ψ. If C has QIOR on
literal l ∈ C then, depending on whether l is existential or universal and side
conditions, either C is redundant and can be removed from QBF Π.ψ or l is
redundant and can be removed from C, respectively, resulting in a satisfiability-
equivalent QBF.

Theorem 1 ([10]). Given a QBF φ := Π.ψ and a clause C ∈ ψ with QIOR on
an existential literal l ∈ C with respect to QBF φ′ := Π.ψ′ where ψ′ := ψ \ {C}.
Then φ ≡sat φ′.

Theorem 2 ([10]). Given a QBF φ0 := Π.ψ and φ := Π.(ψ∪{C}) where C has
QIOR on a universal literal l ∈ C with respect to φ0. Let φ′ := Π.(ψ ∪{C ′}) with
C ′ := C \ {l}. Then φ ≡sat φ′.

Note that in Theorems 1 and 2 clause C is actually removed from the QBF
for the check whether C has QIOR on a literal. Checking propositional implica-
tion (|=) as in Definition 3 is co-NP hard and hence intractable. Therefore, in
practice a polynomial-time incomplete implication check based on propositional
unit propagation (UP) is applied. The use of UP is central in the QRAT proof
system.
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Definition 4 (propositional unit propagation, UP). For a CNF ψ and
clause C, let ψ∧C �1 ∅ denote the fact that propositional unit propagation (UP)
applied to ψ ∧ C produces the empty clause, where C is the conjunction of the
negation of all the literals in C. If ψ ∧C �1 ∅ then we write ψ �1 C to denote that
C can be derived from ψ by UP (since ψ |= C).

Definition 5 ([10]). Clause C has property AT (asymmetric tautology) with
respect to a CNF ψ iff ψ �1 C.

AT is a propositional clause redundancy property that is used in the QRAT
proof system to check whether outer resolvents are redundant, thereby replacing
propositional implication (|=) in Definition 3 by unit propagation (�1 ) as follows.

Definition 6 ([10]). Clause C has property QRAT (quantified resolution asym-
metric tautology) on literal l ∈ C with respect to QBF Π.ψ iff, for all D ∈ ψ
with l̄ ∈ D, the outer resolvent OR(Π,C,D, l) has AT with respect to CNF ψ.

Example 2. Consider φ := ∃x1∀u∃x2.(C ∧ D) with C := (x1 ∨ u ∨ x2) and
D := (x̄1 ∨ ū ∨ x̄2) from Example 1. C does not have AT with respect to
CNF D, but C has QRAT on x2 with respect to QBF ∃x1∀u∃x2.(D) since
OR(Π,C,D, x2) = (x1 ∨ u ∨ x̄1 ∨ ū) has AT with respect to CNF D.

QRAT is a restriction of QIOR, i.e., a clause that has QRAT also has QIOR
but not necessarily vice versa. Therefore, the soundness of removing redundant
clauses and literals based on QRAT follows right from Theorems 1 and 2.

Based on the QRAT redundancy property, the QRAT proof system [10] con-
sists of rewrite rules to eliminate redundant clauses, denoted by QRATE, to add
redundant clauses, denoted by QRATA, and to eliminate redundant universal
literals, denoted by QRATU. In a QRAT satisfaction proof (refutation), a QBF is
reduced to the empty formula (respectively, to a formula containing the empty
clause) by applying the rewrite rules. The QRAT proof systems has an additional
rule to eliminate universal literals by extended universal reduction (EUR). We do
not present EUR because it is not affected by our generalization of QRAT, which
we define in the following. Observe that QIOR and AT (and hence also QRAT)
are based on propositional implication (|=) and unit propagation (�1 ), i.e., the
quantifier structure of the given QBF is not exploited.

4 QRAT+: A More Powerful QBF Redundancy Property

We make redundancy checking of outer resolvents in QRAT aware of the quan-
tifier structure of a QBF. To this end, we generalize QIOR and AT by replacing
propositional implication (|=) and unit propagation (�1 ) by QBF implication
(|=t) and QBF unit propagation, respectively. Thereby, we obtain a more gen-
eral and more powerful notion of the QRAT redundancy property, which we call
QRAT+.

First, in Proposition 2 we point out a property of QIOR (Definition 3) which
is due to the following result from related work [21]: if we attach a quantifier
prefix Π to equivalent CNFs ψ and ψ′, then the resulting QBFs are equivalent.
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Proposition 1 ([21]). Given CNFs ψ and ψ′ such that vars(ψ) = vars(ψ′) and
a quantifier prefix Π defined precisely over vars(ψ). If ψ ≡ ψ′ then Π.ψ ≡t Π.ψ′.

Proposition 2. If clause C has QIOR on literal l ∈ C with respect to QBF Π.ψ,
then Π.ψ ≡t Π.(ψ ∧ OR(Π,C,D, l)) for all D ∈ ψ with l̄ ∈ D.

Proof. Since C has QIOR on literal l ∈ C with respect to QBF Π.ψ, by Defini-
tion 3 we have ψ |= OR(Π,C,D, l) for all D ∈ ψ with l̄ ∈ D, and further also ψ ≡
ψ ∧ OR(Π,C,D, l). Then Π.ψ ≡t Π.(ψ ∧ OR(Π,C,D, l)) by Proposition 1. ��

By Proposition 2 any outer resolvent OR of some clause C that has QIOR
with respect to some QBF Π.ψ is redundant in the sense that it can be added to
the QBF Π.ψ in an equivalence preserving way (≡t), i.e., OR is implied by the
QBF Π.ψ (|=t). This is the central characteristic of our generalization QRAT+

of QRAT. We develop a redundancy property used in QRAT+ which allows to,
e.g., remove a clause C from a QBF Π.ψ in a satisfiability preserving way (like
in QRAT, cf. Theorem 1.) if all respective outer resolvents of C are implied by
the QBF Π.(ψ \ {C}). Since checking QBF implication is intractable just like
checking propositional implication in QIOR, in practice we apply a polynomial-
time incomplete QBF implication check based on QBF unit propagation.

In the following, we develop a theoretical framework of abstractions of QBFs
that underlies our generalization QRAT+ of QRAT. Abstractions are crucial for
the soundness of checking QBF implication by QBF unit propagation.

Definition 7 (nesting levels, prefix/QBF abstraction). Let φ := Π.ψ
be a QBF with prefix Π := Q1B1 . . . QiBiQi+1Bi+1 . . . QnBn. For a clause C,
levels(Π,C) := {i | ∃l ∈ C,Q(Π, l) = Qi} is the set of nesting levels in
C.1 The abstraction of Π with respect to i with 0 ≤ i ≤ n produces the
abstracted prefix Abs(Π, i) := Π for i = 0 and otherwise Abs(Π, i) := ∃(B1∪. . .∪
Bi)Qi+1Bi+1 . . . QnBn. The abstraction of φ with respect to i with 0 ≤ i ≤ n
produces the abstracted QBF Abs(φ, i) :=Abs(Π, i).ψ with prefix Abs(Π, i).

Example 3. Given the QBF φ := Π.ψ with prefix Π := ∀B1∃B2∀B3∃B4. We have
Abs(φ, 0) = φ, Abs(φ, 1) = Abs(φ, 2) = ∃(B1 ∪ B2)∀B3∃B4.ψ, Abs(φ, 3) =
Abs(φ, 4) = ∃(B1 ∪ B2 ∪ B3 ∪ B4).ψ.

In an abstracted QBF Abs(φ, i) universal variables from blocks smaller than
or equal to Bi are converted into existential ones. If the original QBF φ has a
model T , then all nodes in T associated to universal variables must be labelled
with �, in particular the universal variables that are existential in Abs(φ, i).
Hence, for all models T of φ, every model TA of Abs(φ, i) is a subtree of T .

Proposition 3.
Given a QBF φ := Π.ψ with prefix Π := Q1B1 . . . QiBi . . . QnBn and Abs(φ, i)
for some arbitrary i with 0 ≤ i ≤ n. For all T and TA we have that if T |=t φ
and TA ⊆ T is a pre-model of Abs(φ, i), then TA |=t Abs(φ, i).

1 In general, clauses C are always (implicitly) interpreted under a quantifier prefix Π.
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Proof. By induction on i. The base case i := 0 is trivial.
As induction hypothesis (IH), assume that the claim holds for some i with

0 ≤ i < n, i.e., for all T and TA we have that if T |=t φ and TA ⊆ T is a pre-
model of Abs(φ, i), then TA |=t Abs(φ, i). Consider Abs(φ, j) for j = i+1, which
is an abstraction of Abs(φ, i). We have to show that, for all T and TB we have
that if T |=t φ and TB ⊆ T is a pre-model of Abs(φ, j), then TB |=t Abs(φ, j).
We distinguish cases by the type of Qj in the abstracted prefix Abs(Π, i) =
∃(B1 ∪ . . . ∪ Bi)QjBj . . . QnBn of Abs(φ, i).

If Qj = ∃ then Abs(Π, i) = Abs(Π, j) = ∃(B1 ∪ . . . Bi ∪ Bj) . . . QnBn. Since
Abs(φ, i) = Abs(φ, j), the claim holds for Abs(φ, j) by IH.

If Qj = ∀ then, towards a contradiction, assume that, for some T and TB,
T |=t φ and TB ⊆ T is a pre-model of Abs(φ, j), but TB �|=t Abs(φ, j). Then
the root of TB is labelled with ⊥, and in particular the nodes of all the vari-
ables which are existential in Bj with respect to Abs(Π, j) are also labelled
with ⊥. These existential variables appear along a single branch τ ′ in TB, i.e.,
τ ′ is a partial assignment of the variables in Bj . Since TB ⊆ TA and Qj = ∀
in Abs(Π, i), the root of TA is labelled with ⊥ since there is the branch τ ′

containing the variables in Bj whose nodes are labelled with ⊥ in TA. Hence
TA �|=t Abs(φ, i), which is a contradiction to IH. Therefore, we conclude that
TB |=t Abs(φ, j). ��

If an abstraction Abs(φ, i) is unsatisfiable then also the original QBF φ is
unsatisfiable due to Proposition 3. We generalize Proposition 1 from CNFs to
QBFs and their abstractions. Note that the full abstraction Abs(φ, i) for i := n
of a QBF φ is a CNF, i.e., it does not contain any universal variables.

Lemma 1. Let φ := Π.ψ and φ′ := Π.ψ′ be QBFs with the same prefix
Π := Q1B1 . . . QiBi . . . QnBn. Then for all i, if Abs(φ, i) ≡t Abs(φ′, i) then
φ ≡t φ′.

Proof. By induction on i := 0 up to i := n. The base case i := 0 is trivial.
As induction hypothesis (IH), assume that the claim holds for some i with

0 ≤ i < n, i.e., if Abs(φ, i) ≡t Abs(φ′, i) then φ ≡t φ′. Let j = i + 1
and consider Abs(φ, j) and Abs(φ′, j), which are abstractions of Abs(φ, i)
and Abs(φ′, i). We have Abs(Π, i) = ∃(B1 ∪ . . . ∪ Bi)QjBj . . . QnBn and
Abs(Π, j) = ∃(B1 ∪ . . . ∪ Bj) . . . QnBn. We show that if Abs(φ, j) ≡t Abs(φ′, j)
then Abs(φ, i) ≡t Abs(φ′, i), and hence also φ ≡t φ′ by IH. Assume that
Abs(φ, j) ≡t Abs(φ′, j). We distinguish cases by the type of Qj in Abs(Π, i).
If Qj = ∃ then Abs(Π, i) = Abs(Π, j) = ∃(B1 ∪ . . . Bi ∪Bj) . . . QnBn, and hence
Abs(φ, i) ≡t Abs(φ′, i).

If Qj = ∀, then towards a contradiction, assume that Abs(φ, j) ≡t Abs(φ′, j)
but Abs(φ, i) �≡t Abs(φ′, i). Then there exists T such that T |=t Abs(φ, i) but
T �|=t Abs(φ′, i). Since T �|=t Abs(φ′, i) there exists a pre-model TA ⊆ T of
Abs(φ′, j) such that the root of TA is labelled with ⊥, and in particular the nodes
of all the variables which are existential in Bj with respect to Abs(Π, j) (and
universal with respect to Abs(Π, i)) are also labelled with ⊥. These existential
variables appear along a single branch τ ′ in TA, i.e., τ ′ is a partial assignment of
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the variables in Bj . Therefore we have TA �|=t Abs(φ′, j). Since T |=t Abs(φ, i)
and TA ⊆ T , we have TA |=t Abs(φ, j) by Proposition 3, which contradicts the
assumption that Abs(φ, j) ≡t Abs(φ′, j). ��

The converse of Lemma 1 does not hold. From the equivalence of two QBFs
φ and φ′ we cannot conclude that the abstractions Abs(φ, i) and Abs(φ′, i) are
equivalent. In our generalization QRAT+ of the QRAT system we check whether
an outer resolvent of some clause C is implied (|=t) by an abstraction of the
given QBF. If so then by Lemma1 the outer resolvent is also implied by the
original QBF. Below we prove that this condition is sufficient for the soundness
of redundancy removal in QRAT+. To check QBF implication in an incomplete
way and in polynomial time, in practice we apply QBF unit propagation, which
is an extension of propositional unit propagation, to abstractions of the given
QBF.

Definition 8 (universal reduction, UR [15]). Given a QBF φ := Π.ψ and
a non-tautological clause C, universal reduction (UR) of C produces the clause
UR(Π,C) := C \ {l ∈ C | Q(Π, l) = ∀,∀l′ ∈ C,Q(Π, l′) = ∃ : var(l′) ≤Π var(l)}.
Definition 9 (QBF unit propagation, QUP). QBF unit propagation
(QUP) extends UP (Definition 4) by applications of UR. For a QBF φ := Π.ψ
and a clause C, let Π.(ψ∧C) �1∀ ∅ denote the fact that QUP applied to Π.(ψ∧C)
produces the empty clause, where C is the conjunction of the negation of all the
literals in C. If Π.(ψ∧C) �1∀ ∅ and additionally Π.ψ |=t Π.(ψ∧C) then we write
φ �1∀ C to denote that C can be derived from φ by QUP.

In contrast to UP (Definition 4), deriving the empty clause by QUP by prop-
agating C on a QBF φ is not sufficient to conclude that C is implied by φ.

Example 4. Given the QBF Π.ψ with prefix Π := ∀u∃x and CNF ψ := (u ∨ x̄) ∧
(ū ∨ x) and the clause C := (x). We have Π.((u ∨ x̄) ∧ (ū ∨ x) ∧ (x̄)) �1∀ ∅ since
propagating C = (x̄) produces (ū), which is reduced to ∅ by UR. However,
Π.ψ �|=t Π.(ψ ∧ C) since Π.ψ is satisfiable whereas Π.(ψ ∧ C) is unsatisfiable.
Note that Abs(Π.((u ∨ x̄) ∧ (ū ∨ x) ∧ x̄), 2) �1∀ ∅.

To correctly apply QUP for checking whether some clause C (e.g., an outer
resolvent) is implied by a QBF φ := Π.ψ and thus avoid the problem illustrated in
Example 4, we carry out QUP on a suitable abstraction of φ with respect to C. Let
i = max(levels(Π,C)) be the maximum nesting level of variables that appear in
C. We show that if QUP derives the empty clause from the abstraction Abs(φ, i)
augmented by the negated clause C, i.e., Abs(Π.(ψ ∧ C), i) �1∀ ∅, then we can
safely conclude that C is implied by the original QBF, i.e., Π.ψ |=t Π.(ψ ∧ C).
This approach extends failed literal detection for QBF preprocessing [16].

Lemma 2. Let Π.ψ be a QBF with prefix Π := Q1B1 . . . QnBn and C a clause
such that vars(C) ⊆ B1. If Π.(ψ ∧ C) �1∀ ∅ then Π.ψ ≡t Π.(ψ ∧ C).
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Proof. By contradiction, assume T |=t Π.ψ but T �|=t Π.(ψ ∧ C). Then there is
a path τ ⊆ T such that τ(C) = ⊥. Since vars(C) ⊆ B1 and Π.(ψ ∧ C) �1∀ ∅, the
QBF Π.(ψ∧C) is unsatisfiable and in particular T �|=t Π.(ψ∧C). Since τ(C) = ⊥,
we have τ(C) = � and hence T |=t Π.(ψ ∧ C), which is a contradiction. ��
Lemma 3. Let Π.ψ be a QBF, C a clause, and i = max(levels(Π,C)). If
Abs(Π.(ψ ∧ C), i) �1∀ ∅ then Abs(Π.ψ, i) ≡t Abs(Π.(ψ ∧ C), i).

Proof. The claim follows from Lemma 2 since all variables that appear in C are
existentially quantified in Abs(Π.(ψ ∧ C), i) in the leftmost quantifier block. ��
Lemma 4. Let Π.ψ be a QBF, C a clause, and i = max(levels(Π,C)). If
Abs(Π.(ψ ∧ C), i) �1∀ ∅ then Π.ψ ≡t Π.(ψ ∧ C).

Proof. By Lemmas 1 and 3. ��
Lemma 4 provides us with the necessary theoretical foundation to lift AT

(Definition 5) from UP, which is applied to CNFs, to QUP, which is applied to
suitable abstractions of QBFs. The abstractions are constructed depending on
the maximum nesting level of variables in the clause we want to check.

Definition 10 (QAT). Let φ be a QBF, C a clause, and i = max(levels(Π,C))
Clause C has property QAT (quantified asymmetric tautology) with respect to φ
iff Abs(φ, i) �1∀ C.

As an immediate consequence from the definition of QUP (Definition 9) and
Lemma 3, we can conclude that a clause C has QAT with respect to a QBF
Π.ψ if QUP derives the empty clause from the suitable abstraction of Π.ψ with
respect to C (i.e., Abs(Π.(ψ ∧ C), i) �1∀ ∅). Further, if C has QAT then we have
Π.ψ ≡t Π.(ψ ∧ C) by Lemma 4, i.e., C is implied by the given QBF Π.ψ.

Example 5. Given the QBF φ := Π.ψ with Π := ∀u1∃x3∀u2∃x4 and ψ := (u1 ∨
x̄3)∧(u1∨ x̄3∨x4)∧(ū2∨ x̄4). Clause (u1∨ x̄3) has QAT with respect to Abs(φ, 2)
with max(levels(C)) = 2 since ∀u2 is still universal in the abstraction. By QUP
clause (u1 ∨ x̄3 ∨ x4) becomes unit and clause (ū2 ∨ x̄4) becomes empty by UR.
However, clause (u1 ∨ x̄3) does not have AT since ∀u2 is treated as an existential
variable in UP, hence clause (ū2 ∨ x̄4) does not become empty by UR.

In contrast to AT, QAT is aware of quantifier structures in QBFs as shown in
Example 5. We now generalize QRAT to QRAT+ by replacing AT by QAT. Simi-
larly, we generalize QIOR to QIOR+ by replacing propositional implication (|=)
and equivalence (Proposition 1), by QBF implication and equivalence (Lemma 4).

Definition 11 (QRAT+). Clause C has property QRAT+ on literal l ∈ C
with respect to QBF Π.ψ iff, for all D ∈ ψ with l̄ ∈ D, the outer resolvent
OR(Π,C,D, l) has QAT with respect to QBF Π.ψ.

Definition 12 (QIOR+). Clause C has property QIOR+ on literal l ∈ C with
respect to QBF Π.ψ iff Π.ψ ≡t Π.(ψ ∧OR(Π,C,D, l)) for all D ∈ ψ with l̄ ∈ D.
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If a clause has QRAT then it also has QRAT+. Moreover, due to Proposition 2,
if a clause has QIOR then it also has QIOR+. Hence QRAT+ and QIOR+ indeed
are generalizations of QRAT and QIOR, which are strict, as we argue below. The
soundness of removing redundant clauses and universal literals based on QIOR+

(and on QRAT+) can be proved by the same arguments as original QRAT, which
we outline in the following. We refer to an appendix for full proofs [18].

Definition 13 (prefix/suffix assignment [10]). For a QBF φ := Π.ψ and a
complete assignment τ in the assignment tree of φ, the partial prefix and suffix
assignments of τ with respect to variable x, denoted by τx and τx, respectively,
are defined as τx := {y �→ τ(y) | y ≤Π x, y �= x} and τx := {y �→ τ(y) | y �≤Π x}.

For a variable x from block Bi of a QBF, Definition 13 allows us to split a
complete assignment τ into three parts τxlτx, where the prefix assignment τx

assigns variables (excluding x) from blocks smaller than or equal to Bi, l is a
literal of x, and the suffix assignment τx assigns variables from blocks larger
than Bi.

Prefix and suffix assignments are important for proving the soundness of
satisfiability-preserving redundancy removal by QIOR+ (and QIOR). Soundness
is proved by showing that certain paths in a model of a QBF can safely be
modified based on prefix and suffix assignments, as stated in the following.

Lemma 5 (cf. Lemma 6 in [10]). Given a clause C with QIOR+ with respect
to QBF φ := Π.ψ on literal l ∈ C with var(l) = x. Let T be a model of φ and
τ ⊆ T be a path in T . If τ(C \ {l}) = ⊥ then τx(D) = � for all D ∈ ψ with
l̄ ∈ D.

Proof (sketch, see appendix [18]). Let D ∈ ψ be a clause with l̄ ∈ D and
R :=OR(Π,C,D, l) = (C \ {l})∪OC(Π,D, l̄). By Definition 12, we have Π.ψ ≡t

Π.(ψ ∧OR(Π,C,D, l)) for all D ∈ ψ with l̄ ∈ D. The rest of the proof considers
a path τ in T and works in the same way as the proof of Lemma 6 in [10]. ��
Theorem 3. Given a QBF φ := Π.ψ and a clause C ∈ ψ with QIOR+ on an
existential literal l ∈ C with respect to QBF φ′ := Π.ψ′ where ψ′ := ψ\{C}. Then
φ ≡sat φ′.

Proof (sketch, see appendix [18]). The proof relies on Lemma 5 and works in the
same way as the proof of Theorem 7 in [10]. A model T of φ is obtained from a
model T ′ of φ′ by flipping the assignment of variable x = var(l) on a path τ in
T ′ to satisfy clause C. All D ∈ ψ with l̄ ∈ D are satisfied by such modified τ . ��
Theorem 4. Given a QBF φ0 := Π.ψ and φ := Π.(ψ∪{C}) where C has QIOR+

on a universal literal l ∈ C with respect to φ0. Let φ′ := Π.(ψ ∪ {C ′}) with
C ′ := C \ {l}. Then φ ≡sat φ′.

Proof (sketch, see appendix [18]). The proof relies on Lemma 5 and works in the
same way as the proof of Theorem 8 in [10]. A model T ′ of φ′ is obtained from
a model T of φ by modifying the subtree under the node associated to variable
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x = var(l). Suffix assignments of some paths τ in T are used to construct modified
paths in T ′ under which clause C ′ is satisfied. All D ∈ ψ with l̄ ∈ D are still
satisfied after such modifications. ��

Analogously to the QRAT proof system that is based on the QRAT redun-
dancy property (Definition 6), we obtain the QRAT+ proof system based on
property QRAT+ (Definition 11). The system consists of rewrite rules QRATE+,
QRATA+, and QRATU+ to eliminate or add redundant clauses, and to elimi-
nate redundant universal literals. On a conceptual level, these rules in QRAT+

are similar to their respective counterparts in the QRAT system. The extended
universal reduction rule EUR is the same in the QRAT and QRAT+ systems. In
contrast to QRAT, QRAT+ is aware of quantifier structures of QBFs because it
relies on the QBF specific property QAT and QUP instead of on propositional
AT and UP.

The QRAT+ system has the same desirable properties as the original QRAT
system. QRAT+ simulates virtually all inference rules applied in QBF reasoning
tools and it is based on redundancy property QRAT+ that can be checked in
polynomial time by QUP. Further, QRAT+ allows to represent proofs in the
same proof format as QRAT. However, proof checking, i.e., checking whether a
clause listed in the proof has QRAT+ on a literal, must be adapted to the use
of QBF abstractions and QUP. Consequently, the available QRAT proof checker
QRATtrim [10] cannot be used out of the box to check QRAT+ proofs.

Notably, Skolem functions can be extracted from QRAT+ proofs of satisfiable
QBFs in the same way as in QRAT (consequence of Theorem 3, cf. Corollar-
ies 26 and 27 in [10]). Hence like QRAT, QRAT+ can be integrated in complete
QBF workflows that include preprocessing, solving, and Skolem function extrac-
tion [5].

5 Exemplifying the Power of QRAT+

In the following, we point out that the QRAT+ system is more powerful than
QRAT in terms of redundancy detection. In particular, we show that the rules
QRATE+ and QRATU+ in the QRAT+ system can eliminate certain redundancies
that their counterparts QRATE and QRATU cannot eliminate.

Definition 14. For n ≥ 1, let ΦC(n) := ΠC(n).ψC(n) be a class of QBFs with
prefix ΠC(n) and CNF ψC(n) defined as follows.

ΠC(n) := ∃B1∀B2∃B3∀B4∃B5:
B1 := {x4i+1, x4i+2 | 0 ≤ i < n}
B2 := {u2i+1 | 0 ≤ i < n}
B3 := {x4i+3 | 0 ≤ i < n}
B4 := {u2i+2 | 0 ≤ i < n}
B5 := {x4i+4 | 0 ≤ i < n}

ψC(n):=
∧n−1

i:=0 C(i) with C(i):=
∧6

j:=0 Ci,j :

Ci,0:= (x4i+1 ∨ u2i+1 ∨ ¬x4i+3)
Ci,1:= (x4i+2 ∨ ¬u2i+1 ∨ x4i+3)
Ci,2:= (¬x4i+1 ∨ ¬u2i+1 ∨ ¬x4i+3)
Ci,3:= (¬x4i+2 ∨ u2i+1 ∨ x4i+3)
Ci,4:= (u2i+1 ∨ ¬x4i+3 ∨ x4i+4)
Ci,5:= (¬u2i+2 ∨ ¬x4i+4)
Ci,6:= (¬x4i+1 ∨ u2i+2 ∨ ¬x4i+4)
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Example 6. For n:=1, we have ΦC(n) with prefix ΠC(n):=∃x1, x2∀u1∃x3∀u2∃x4

and CNF ψC(n):=C(0) with C(0):=
∧6

j:=0 C0,j as follows.

C0,0:= (x1 ∨ u1 ∨ ¬x3)
C0,1:= (x2 ∨ ¬u1 ∨ x3)
C0,2:= (¬x1 ∨ ¬u1 ∨ ¬x3)
C0,3:= (¬x2 ∨ u1 ∨ x3)

C0,4:= (u1 ∨ ¬x3 ∨ x4)
C0,5:= (¬u2 ∨ ¬x4)
C0,6:= (¬x1 ∨ u2 ∨ ¬x4)

Proposition 4. For n ≥ 1, QRATE+ can eliminate all clauses in ΦC(n) whereas
QRATE cannot eliminate any clause in ΦC(n).

Proof (sketch). For i and k with i �= k, the sets of variables in C(i) and C(k) are
disjoint. Thus it suffices to prove the claim for an arbitrary C(i). Clause Ci,0 has
QRAT+ on literal x4i+1 and can be removed. The relevant outer resolvents are
OR0,2 = OR(ΠC(n), Ci,0, Ci,2, x4i+1) and OR0,6 = OR(ΠC(n), Ci,0, Ci,6, x4i+1),
and we have OR0,2 = OR0,6 = (u2i+1 ∨ ¬x4i+3). Since max(levels(OR0,2)) =
max(levels(OR0,6)) = 3, we apply QUP to the abstraction Abs(ΦC(n), 3). Note
that variable u2i+2 from block B4 still is universal in the prefix of Abs(ΦC(n), 3).
Propagating OR0,2 and OR0,6, respectively, in either case makes Ci,4 unit, finally
Ci,5 becomes empty under the derived assignment x4i+4 since UR reduces the
literal ¬u2i+2. After removing Ci,0, clauses Ci,2 and Ci,6 trivially have QRAT+ on
¬x4i+1. Then Ci,1 has QRAT+ on x4i+3. Finally, the remaining clauses trivially
have QRAT+. In contrast to that, QRATE cannot eliminate any clause in ΦC(n).
Clause Ci,5 does not become empty by UP since all variables are existential. The
claim can be proved by case analysis of all possible outer resolvents. ��
Definition 15. For n ≥ 1, let ΦL(n):=ΠL(n).ψL(n) be a class of QBFs with
prefix ΠL(n) and CNF ψL(n) defined as follows.

ΠL(n):=∀B1∃B2∀B3∃B4:
B1:={u3i+1, u3i+2 | 0 ≤ i < n}
B2:={x3i+1, x3i+2 | 0 ≤ i < n}

B3:={u3i+3 | 0 ≤ i < n}
B4:={x3i+3 | 0 ≤ i < n}

ψL(n) :=
∧n−1

i:=0 C(i) with C(i) :=
∧7

j:=0 Ci,j:
Ci,0 := (¬u3i+2 ∨ ¬x3i+1 ∨ ¬x3i+2)
Ci,1 := (¬u3i+1 ∨ ¬x3i+1 ∨ x3i+2)
Ci,2 := (u3i+1 ∨ x3i+1 ∨ ¬x3i+2)
Ci,3 := (u3i+2 ∨ x3i+1 ∨ x3i+2)

Ci,4 := (¬x3i+1 ∨ ¬x3i+2 ∨ x3i+3)
Ci,5 := (u3i+3 ∨ ¬x3i+3)
Ci,6 := (¬x3i+1 ∨ x3i+2 ∨ ¬x3i+3)
Ci,7 := (¬u3i+3 ∨ x3i+3)

Proposition 5. For n ≥ 1, QRATU+ can eliminate the entire quantifier block
∀B1 in ΦL(n) whereas QRATU cannot eliminate any universal literals in ΦL(n).

Proof (sketch, see appendix [18]). Formulas ΦL(n) are constructed based on
a similar principle as ΦC(n) in Definition 14. E.g., clauses Ci,0 and Ci,1 have
QRAT+ but not QRAT on literals ¬u3i+2 and ¬u3i+1. During QUP, clauses Ci,5

and Ci,7 become empty only due to UR, which is not possible when using UP. ��
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6 Proof Theoretical Impact of QRAT and QRAT+

As argued in the context of interference-based proof systems [6], certain proof
steps may become applicable in a proof system only after redundant parts of the
formula have been eliminated. We show that redundancy elimination by QRAT+

or QRAT can lead to exponentially shorter proofs in the resolution based LQU+-
resolution [1] QBF calculus. Note that we do not compare the power of QRAT or
QRAT+ as proof systems themselves, but the impact of redundancy elimination
on other proof systems. The following result relies only on QRATU, i.e., it does
not require the more powerful redundancy property QRATU+ in QRAT+.

LQU+-resolution is a calculus that generalizes traditional Q-resolution [15].
It allows to generate resolvents on both existential and universal variables and
admits tautological resolvents of a certain kind. LQU+-resolution is among the
strongest resolution calculi currently known [1,2], yet the following class of QBFs
provides an exponential lower bound on the size of LQU+-resolution proofs.

Definition 16 ([2]). For n > 1, let ΦQ(n):=ΠQ(n).ψQ(n) be the QUPar-
ity QBFs with ΠQ(n):=∃x1, . . . , xn∀z1, z2∃t2, . . . , tn and ψQ(n):=C0 ∧ C1 ∧
∧n

i:=2 C(i) where C0:=(z1 ∨ z2 ∨ tn), C1:=(z̄1 ∨ z̄2 ∨ t̄n), and C(i):=
∧7

j:=0 Ci,j:
C2,0:= (x̄1 ∨ x̄2 ∨ z1 ∨ z2 ∨ t̄2)
C2,1:= (x1 ∨ x2 ∨ z1 ∨ z2 ∨ t̄2)
C2,2:= (x̄1 ∨ x2 ∨ z1 ∨ z2 ∨ t2)
C2,3:= (x1 ∨ x̄2 ∨ z1 ∨ z2 ∨ t2)
C2,4:= (x̄1 ∨ x̄2 ∨ z̄1 ∨ z̄2 ∨ t̄2)
C2,5:= (x1 ∨ x2 ∨ z̄1 ∨ z̄2 ∨ t̄2)
C2,6:= (x̄1 ∨ x2 ∨ z̄1 ∨ z̄2 ∨ t2)
C2,7:= (x1 ∨ x̄2 ∨ z̄1 ∨ z̄2 ∨ t2)

Ci,0:= (t̄i−1 ∨ x̄i ∨ z1 ∨ z2 ∨ t̄i)
Ci,1:= (ti−1 ∨ xi ∨ z1 ∨ z2 ∨ t̄i)
Ci,2:= (t̄i−1 ∨ xi ∨ z1 ∨ z2 ∨ ti)
Ci,3:= (ti−1 ∨ x̄i ∨ z1 ∨ z2 ∨ ti)
Ci,4:= (t̄i−1 ∨ x̄i ∨ z̄1 ∨ z̄2 ∨ t̄i)
Ci,5:= (ti−1 ∨ xi ∨ z̄1 ∨ z̄2 ∨ t̄i)
Ci,6:= (t̄i−1 ∨ xi ∨ z̄1 ∨ z̄2 ∨ ti)
Ci,7:= (ti−1 ∨ x̄i ∨ z̄1 ∨ z̄2 ∨ ti)

Any refutation of ΦQ(n) in LQU+-resolution is exponential in n [2]. The
QUParity formulas are a modification of the related LQParity formulas [2]. An
LQParity formula is obtained from a QUParity formula ΦQ(n) by replacing
∀z1, z2 in prefix ΠQ(n) by ∀z and by replacing every occurrence of the literal
pairs z1∨z2 and z̄1∨z̄2 in the clauses in ψQ(n) by the literal z and z̄, respectively.

Proposition 6. QRATU can eliminate either variable z1 or z2 from a QUParity
formula ΦQ(n) to obtain a related LQParity formula in polynomial time.

Proof. We eliminate z2 (z1 can be eliminated alternatively) in a polynomial
number of QRATU steps. Every clause C with z2 ∈ C has QRAT on z2 since
{z1, z̄1} ⊆ OR for all outer resolvents OR. UP immediately detects a conflict
when propagating OR. After eliminating all literals z2, the clauses containing z̄2
trivially have QRAT on z̄2, which can be eliminated. Finally, z1 including all of
its occurrences is renamed to z. ��

In the proof above the universal literals can be eliminated by QRATU in
any order. Hence in this case the non-confluence [9,14] of rewrite rules in the
QRAT and QRAT+ systems is not an issue. LQU+-resolution has polynomial
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proofs for LQParity formulas [2]. Hence the combination of QRATU and LQU+-
resolution results in a calculus that is more powerful than LQU+-resolution.
A related result [13] was obtained for the combination of QRATU and the weaker
QU-resolution calculus [22].

7 Experiments

We implemented QRAT+ redundancy removal in a tool called QRATPre+ for QBF
preprocessing.2 It applies rules QRATE+ and QRATU+ to remove redundant
clauses and universal literals. We did not implement clause addition (QRATA+)
or extended universal reduction (EUR). QRATPre+ is the first implementation of
QRAT+ and QRAT for QBF preprocessing. The preprocessors HQSpre [24] and
Bloqqer [10] (which generates partial QRAT proofs to trace preprocessing steps)
do not apply QRAT to eliminate redundancies. The following experiments were
run on a cluster of Intel Xeon CPUs (E5-2650v4, 2.20 GHz) running Ubuntu
16.04.1. We used the benchmarks from the PCNF track of the QBFEVAL’17
competition. In terms of scheduling the non-confluent (cf. [9,14]) rewrite rules
QRATE+ and QRATU+, we have not yet optimized QRATPre+. Moreover, in
general large numbers of clauses in formulas may cause run time overhead. In
this respect, our implementation leaves room for improvements.

We illustrate the impact of QBF preprocessing by QRAT+ and QRAT on the
performance of QBF solving. To this end, we applied QRATPre+ in addition to the
state of the art QBF preprocessors Bloqqer and HQSpre. In the experiments, first
we preprocessed the benchmarks using Bloqqer and HQSpre, respectively, with a
generous limit of two hours wall clock time. We considered 39 and 42 formulas
where Bloqqer and HQSpre timed out, respectively, in their original form. Then
we applied QRATPre+ to the preprocessed formulas with a soft wall clock time
limit of 600 seconds. When QRATPre+ reaches the limit, it prints the formula
with redundancies removed that have been detected so far. These preprocessed
formulas are then solved. Table 1 shows the performance of our solver DepQBF
[17] in addition to the top-performing solvers3 RAReQS [11], CAQE [20], and Qute
[19] from QBFEVAL’17, using limits of 7 GB and 1800 s wall clock time. The
solvers implement different solving paradigms such as expansion or resolution-
based QCDCL. The results clearly indicate the benefits of preprocessing by
QRATPre+. The number of solved instances increases. Qute is an exception to
this trend. We conjecture that QRATPre+ blurs the formula structure in addition
to Bloqqer and HQSpre, which may be harmful to Qute.

We emphasize that we hardly observed a difference in the effectiveness of
redundancy removal by QRAT+ and QRAT on the considered benchmarks. The
benefits of QRATPre+ shown in Table 1 are due to redundancy removal by QRAT
already, and not by QRAT+. However, on additional 672 instances from class
Gent-Rowley (encodings of the Connect Four game) available from QBFLIB,
QRATE+ on average removed 54% more clauses than QRATE. We attribute
2 Source code of QRATPre+: https://github.com/lonsing/qratpreplus.
3 We excluded the top-performing solver AIGSolve due to observed assertion failures.

https://github.com/lonsing/qratpreplus
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Table 1. Solved instances (S), solved unsatisfiable (⊥) and satisfiable ones (�),
and total wall clock time in kiloseconds (K) including time outs on instances from
QBFEVAL’17. Different combinations of preprocessing by Bloqqer, HQSpre, and our
tool QRATPre+.

this effect to larger numbers of quantifier blocks in the Gent-Rowley instances
(median 73, average 79) compared to QBFEVAL’17 (median 3, average 27).
The advantage of QBF abstractions in the QRAT+ system is more pronounced
on instances with many quantifier blocks.

8 Conclusion

We presented QRAT+, a generalization of the QRAT proof system, that is based
on a more powerful QBF redundancy property. The key difference between the
two systems is the use of QBF specific unit propagation in contrast to proposi-
tional unit propagation. Due to this, redundancy checking in QRAT+ is aware
of quantifier structures in QBFs, as opposed to QRAT. Propagation in QRAT+

potentially benefits from the presence of universal variables in the underlying
formula. This is exploited by the use of abstractions of QBFs, for which we
developed a theoretical framework, and from which the soundness of QRAT+

follows. By concrete classes of QBFs we demonstrated that QRAT+ is more pow-
erful than QRAT in terms of redundancy detection. Additionally, we reported
on proof theoretical improvements of a certain resolution based QBF calculus
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made by QRAT (or QRAT+) redundancy removal. A first experimental evaluation
illustrated the potential of redundancy elimination by QRAT+.

As future work, we plan to implement a workflow for checking QRAT+ proofs
and extracting Skolem functions similar to QRAT proofs [10]. In our QRAT+

preprocessor QRATPre+ we currently do not apply a specific strategy to handle
the non-confluence of rewrite rules. We want to further analyze the effects of non-
confluence as it may have an impact on the amount of redundancy detected. In
our tool QRATPre+ we considered only redundancy removal. However, to get
closer to the full power of the QRAT+ system, it may be beneficial to also add
redundant clauses or universal literals to a formula.
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15. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

16. Lonsing, F., Biere, A.: Failed literal detection for QBF. In: Sakallah, K.A., Simon,
L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 259–272. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21581-0 21

17. Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 23

18. Lonsing, F., Egly, U.: QRAT+: Generalizing QRAT by a more powerful QBF redun-
dancy property. CoRR abs/1804.02908 (2018). https://arxiv.org/abs/1804.02908,
IJCAR 2018 proceedings version with appendix

19. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3 19

20. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: FMCAD, pp. 136–
143. IEEE (2015)

21. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006). https://
doi.org/10.1007/11889205 37

22. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 47

23. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

24. Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – An effective preprocessor
for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 373–390. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 21

25. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)

https://doi.org/10.1007/978-3-319-66263-3_18
https://doi.org/10.1007/978-3-319-63046-5_17
https://doi.org/10.1007/978-3-642-21581-0_21
https://doi.org/10.1007/978-3-319-63046-5_23
https://arxiv.org/abs/1804.02908
https://doi.org/10.1007/978-3-319-66263-3_19
https://doi.org/10.1007/11889205_37
https://doi.org/10.1007/11889205_37
https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-662-54577-5_21
https://doi.org/10.1007/978-3-662-54577-5_21


A Why3 Framework for Reflection Proofs
and Its Application to GMP’s Algorithms

Guillaume Melquiond1(B) and Raphaël Rieu-Helft2,1

1 Inria, Université Paris-Saclay, 91120 Palaiseau, France
guillaume.melquiond@inria.fr

2 TrustInSoft, 75014 Paris, France

Abstract. Earlier work showed that automatic verification of GMP’s
algorithms using Why3 exceeds the current capabilities of automatic
solvers. To complete this verification, numerous cut indications had to
be supplied by the user, slowing the project to a crawl. This paper shows
how we have extended Why3 with a framework for proofs by reflection,
with minimal impact on the trusted computing base. This framework
makes it easy to write dedicated decision procedures that make full use
of Why3’s imperative features and are formally verified. We evaluate how
much work could have been saved when verifying GMP’s algorithms, had
this framework been available. This approach opens the way to efficiently
tackling the further verification of GMP’s algorithms.

Keywords: Decision procedures · Proofs by reflection
Deductive program verification · Nonlinear integer arithmetic

1 Introduction

The Why3 software-verification tool1 offers an ML-like language (WhyML) that
makes it possible to write programs and to specify the functional behavior of
these programs using pre- and post-conditions, and loop invariants [7]. The tool
then turns programs and specifications into theorem statements that can be sent
to external provers, be they automated (e.g., SMT or TPTP solvers) or inter-
active (e.g., Coq, Isabelle/HOL, PVS). Once these theorems have been proved,
and assuming that Why3 and the external provers are sound, the programs are
known to satisfy their specification.

In an earlier work, we used Why3 to implement algorithms from the GNU
Multi-Precision library,2 GMP for short, to prove them correct, and to generate
a compatible C library [12]. The proofs were done using automated provers only,
mostly SMT ones. While some algorithms are extremely intricate (e.g., divi-
sion [11]), we ended up having to litter the code with many more assertions than

1 http://why3.lri.fr/.
2 http://gmplib.org/.
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we initially envisioned, as exemplified on Fig. 4, line 24. Seemingly trivial theo-
rems were confusing solvers to no end. Indeed, they involved nonlinear integer
arithmetic and large proof contexts. For some theorems (e.g., for the naive mul-
tiplication algorithm), we had to write several 100-line assertions, which defeats
the point of using automated tools rather than an interactive theorem prover.
Thus, we decided to put that experiment on hold, until we got a way to make
the proof of these theorems straightforward.

When one wants to extends a theorem prover with new capabilities (e.g., an
inference rule dedicated to the problem at hand), one way is to “incorporate
a reflection principle, so that the user can verify within the existing theorem
proving infrastructure that the code implementing a new rule is correct, and
to add that code to the system” [9]. This article shows how we have modified
Why3 to offer computational reflection. It was especially important to make the
user process straightforward, so that reflection can be routinely used whenever
external provers get lost. As an illustration, this paper shows how we made use
of our approach to design and prove a decision procedure suitable for verifying
GMP-like algorithms.

In Sect. 2, we illustrate computational reflection on the correctness of
Strassen’s algorithm for matrix multiplication in Why3. While straightforward to
verify by hand, this algorithm already exceeds the capabilities of SMT solvers [5].
So we perform a reflection-based proof in a traditional way: we represent logical
propositions about matrix polynomials by inductive objects, we define functions
over these objects in the logical system, we prove some lemmas about them,
and we use these functions and lemmas to prove the correctness property of
Strassen’s algorithm.

This approach does not require any modification to Why3 or to the external
provers, but we have not yet explained how to reify logical propositions into
inductive objects that can be manipulated inside Why3’s logic. Section 3 shows
how we have extended Why3 to do so.

Traditionally, computational reflection performs proofs by evaluating some
pure terms occurring in logical propositions. Yet, Why3’s programming language
is much richer: mutable variables, arrays, exceptions, loops, and so on. Section 4.1
shows how the designer of decision procedures can benefit from the whole extent
of WhyML. This required us to add a WhyML interpreter to Why3 (Sect. 4.2).

While the reification component does not extend the trusted computing base
of Why3 at all, the interpreter does, albeit in a minimal way. We discuss the
soundness of our approach in Sect. 5.

Given the ability to write decision procedures in WhyML, to verify them
using Why3, and to execute them inside Why3 on reified logical propositions,
we have all the tools to design and use a decision procedure dedicated to veri-
fying GMP’s algorithms. Section 6 presents this procedure. While it might look
like a naive procedure for solving systems of linear equalities, the coefficients it
manipulates are not simple rationals, they are products of rationals by powers
with symbolic exponents, e.g., −5/3 ·βi+j−2. These powers occur because we are
proving the soundness of algorithms manipulating power series

∑
aiβ

i.
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This work is part of Why3 and the examples presented in this article are
available at http://toccata.lri.fr/gallery/reflection.en.html.

2 Computational Reflection Proofs

When designing a decision procedure by reflection, one first finds an embedding
of the propositions P of interest into the logical language of the formal system.
Let us denote �P� the resulting term, e.g., the abstract syntax tree of P . Then
one proves that, if �P� satisfies some property ϕ, then P holds. Thus, when one
wants to prove that some proposition P holds, one just has to check that ϕ(�P�)
does. If ϕ is designed so that ϕ(�P�) can be validated just by computations, then
we have a proof procedure by computational reflection. This approach has been
used in various contexts [1,3–5,8,9].

Let us illustrate this process on a toy example: the correctness of Strassen’s
matrix multiplication algorithm. Among other properties, one has to prove four
matrix equalities such as the following one:

A1,1B1,1 + A1,2B2,1 = M1,1,

with

M1,1 = (A1,1 + A2,2) · (B1,1 + B2,2) + A2,2 · (B2,1 − B1,1)
− (A1,1 + A1,2) · B2,2 + (A1,2 − A2,2) · (B2,1 + B2,2).

By the group laws of matrix addition and by distributivity of matrix multi-
plication, one easily shows that the right-hand side of the equality can be turned
into the left-hand side. Unfortunately, in practice, SMT solvers (Alt-Ergo, CVC4,
Z3) and TPTP solvers (Eprover) fail to prove such a proposition. There are two
reasons. First, a solver should instantiate the above algebraic laws on the order of
one hundred times, assuming they apply them in an optimal way. Second, when
verifying programs, the proof context is usually filled with hundreds of other
instantiable theorems, which will delay applying the algebraic laws. As a conse-
quence, unless an automated prover implements a dedicated decision procedure
for this kind of property, there is no way its proof can be found.

Let us see how to supplement the lack of such a dedicated decision procedure.
While this paper presents it in the context of Why3, the exact same process could
be followed in any formal system with some computational capabilities.

2.1 Embedding Terms

The first step is to embed M1,1 into the logical language of Why3. We define
the following inductive type t to represent its abstract syntax tree:

type t = Var int | Add t t | Mul t t | Sub t t | Ext r t

http://toccata.lri.fr/gallery/reflection.en.html
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Fig. 1. Interpreting the abstract syntax tree of a polynomial

Matrices appearing at the leaves of the expression (e.g., A2,1) are assigned a
unique integer identifier and are represented using the Var constructor. The sum,
product, and differences of two matrices, are represented using the constructors
Add, Mul, and Sub. Finally, the Ext constructor represents the external product
(by a value of type r), which is not needed in the case of Strassen’s algorithm.

Note that the function M �→ �M� cannot be expressed in the logical lan-
guage, but its inverse can. We thus define a function that maps a term of type t
into a matrix, as shown in Fig. 1. That definition causes Why3 to create a recur-
sive function interp inside the logical system, since its termination is visibly
guaranteed by the structural decrease of its argument x.

When aplus, resp. atimes, is instantiated using matrix sum, resp. product,
one can prove that the Why3 term

interp (Mul (Add (Var 0) (Var 1)) (Var 7)) y

is equal to (A1,1 + A1,2) · B2,2, assuming that y maps 0 to A1,1, 1 to A1,2,
and 7 to B2,2. This proof can be done by unfolding the definition of interp, by
reducing the match with constructs, and by substituting the applications of y
by the corresponding results. Why3 provides a small rewriting engine that is
powerful enough for such a proof, but one could also use an external prover.

2.2 Normalizing Terms

Let us suppose that we now have two concrete expressions x1 and x2 of type t
and a single map y of type vars and that we want to prove the following equality:

goal g: interp x1 y = interp x2 y

The actual value of y does not matter, but the facts that aplus is a group
operation and that amult is distributive do. In other words, we want to see x1
and x2 as non-commutative polynomials and we want to prove that they have
the same monomials with the same coefficients. To do so, let us turn them into
weighted lists of monomials. Figure 2 shows an excerpt of the code. For example,
the term (A1,1 + A1,2) · B2,2 gets turned into the list

Cons (M 1 (Cons 0 (Cons 7 Nil))) (Cons (M 1 (Cons 1 (Cons 7 Nil))) Nil)
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Fig. 2. Converting a polynomial to a list of monomials

Note that we have introduced a new interpretation function interp’ and we
have stated the postcondition of conv accordingly. Why3 requires us to prove
that this postcondition holds. The proof is straightforward, even in the multi-
plication case. Once done, we obtain the following lemma in the context:

lemma conv_def: forall x y. interp x y = interp’ (conv x) y

We define one last function, norm, which sorts a weighted list of monomials
by insertion using a lexicographic order, merging contiguous monomials along
the way. Its postcondition, once proved, leads to

lemma norm_def: forall x y. interp’ x y = interp’ (norm x) y

Note that we do not even need to prove that norm actually sorts the input list
or that it merges monomials, so the proof is again trivial. If there is some bug
in norm, it only endangers the completeness of the approach, not its soundness.
For example, defining norm as the identity function would ultimately be fine but
pointless.

By composing norm and conv and equality, we get our decision procedure ϕ
dedicated to verifying Strassen’s algorithm. Indeed, to prove the goal g above,
we just need to prove the following intermediate lemma:

lemma g_aux: norm (conv x1) = norm (conv x2)

As with interp before, norm and conv are logic functions defined by induc-
tion on their argument, so there is no difficulty in proving g_aux using the
rewriting engine of Why3 or an external automated prover.

2.3 Advantages

There are several advantages to this approach. The most important one is that
the user can easily design a decision procedure dedicated to the problem at hand.
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Indeed, the inductive type for representing expressions does not have to handle
the full extent of the language, but can focus on the constructions that mat-
ter (e.g., addition). Moreover, the soundness of the system is not endangered,
since the user has to prove the correctness of the procedure (e.g., the lemmas
conv_def and norm_def). Finally, since the procedure is ad hoc, performances
in the general case do not matter much, so one can write it so that both the
code and the proof are straightforward. For instance, in the example above, the
sorting algorithm has quadratic complexity and one only has to prove that the
interpretation of the list is left unchanged. Thus, SMT solvers quickly discharge
all the verification conditions that Why3 generates to guarantee that the imple-
mentation of the decision procedure satisfies its specification.

Even if this normalization procedure is dedicated to proving Strassen’s algo-
rithm, we took advantage of Why3’s module system to make it generic: coeffi-
cients are in an arbitrary commutative ring and variables are in a (noncommu-
tative) ring. Both rings are potentially different, as in the case of matrices. The
genericity of the presented decision procedure does not extend to supporting
variables in a commutative ring, but it is just a matter of duplicating the code
of the decision procedure to modify the ordering relation, which we did.

A very similar reflection-based tactic is used by the Coq proof assistant to
formally verify equalities in a commutative ring or semi-ring [8]. This tactic was
implemented, part as an OCaml plugin for Coq, part in the meta-language Ltac
of Coq. Rather than lists of monomials, that work uses Horner’s representation
of polynomials: p0 + x1 · (p1 + x1 · (p2 + x1 · · · )) with (pi)i being polynomials
where variable x1 does not occur.

3 Reification

We have not yet explained how one obtains the inductive objects used to instan-
tiate the decision procedure. Without modifying Why3, it is up to the user to
provide them. Even for an algorithm as simple to verify as Strassen’s, the user
might forfeit before finishing to translate all the terms of the algorithm.

3.1 Possible Approaches

To circumvent this issue, the original Why3 proof of Strassen’s algorithm uses
a clever approach [5]. The type of matrices has been modified so that a matrix
contains not only the values of its cells but also the normalized list of monomials
representing all the operations performed to obtain the matrix. In other words,
the decision procedure has been split and embedded into all the matrix opera-
tions and it is executed symbolically along them. The lists of monomials (and
the operations to build them) are declared ghost, so they do not interfere with
actual matrix computations and can be erased from the final algorithm, which
is therefore still fundamentally the same. Nonetheless, this approach forces the
user to instrument the matrix operations, and while these modifications are suit-
able to prove Strassen’s algorithm, they might be useless when verifying another
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matrix algorithm, if not detrimental by polluting the proof context with all the
symbolic computations.

Thus, for a reflection-based decision procedure to be useful, we have to pro-
vide some ways to automate the reification process, that is, the conversion of
expressions into their inductive representation.

As mentioned above, one difficulty lies in defining ��, which is an inverse
function of interp. This inverse is usually written using the meta-language of
a formal system to parse the term and to produce the corresponding inductive
object. Since Why3 can load plugins written in OCaml, one could certainly use
OCaml as a meta-language for Why3. This unfortunately requires the user to
learn the inner workings of Why3.

Another possibility would be to use WhyML as a meta-language by providing
some primitives to visit the abstract syntax trees of expressions and by making
Why3 able to interpret it. As is the case for other formal systems [6,13], any
WhyML function using such primitives would no longer be meaningful for the
remainder of the logical system, so as to avoid inconsistencies. The user would
thus no longer need to leave the confines of WhyML, but this is still not com-
pletely satisfactory. Indeed, as written before, �� is the inverse of interp, so any
explicit definition seems superfluous. Instead, we could have some OCaml code,
e.g., a Why3 plugin, that inverts interp on the fly.

3.2 Inversion of the Interpretation Function

Consider the following function, which is just a variant of the decision procedure
for Strassen’s algorithm:

let norm_f (x1 x2: t) : bool

ensures { forall y:vars. result = True → interp x1 y = interp x2 y }

= match norm (conv (Sub x1 x2)) with

| Nil → True (* the difference evaluates to the empty polynomial *)

| _ → False

end

Whenever the user wants to use this decision procedure to prove a goal, we
would like Why3 to automatically find x1, x2, and y, so that the right-hand
side of the post-condition matches the goal. This is done by a straightforward
recursive walk of the goal. Let us illustrate this walk with foo a + b = c. This
goal is an equality, and so is the right-hand side of the postcondition of norm_f, so
Why3 proceeds recursively on each side of the equality. The left-hand side starts
with an addition, while there is an application of interp in the postcondition,
so Why3 assumes that interp is an interpretation function.

This function starts with a pattern matching on its first argument, so Why3
looks at all of the branches. The second branch starts with an addition (i.e.,
aplus, which we assume was instantiated with +). So Why3 registers that x1
should start with the constructor Add. And so on, recursively. Eventually, Why3
has to match foo a against a branch. None of them matches, but the one for the
Var constructor returns y n, with y a variable of type arrow. So Why3 selects
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a fresh integer for n, e.g., 0, and remembers that it should choose y so that it
maps 0 to foo a.

3.3 Extensions

The previous process works fine when a goal has to be proved in isolation,
irrespective of the proof context. To remove this limitation, Why3 also recognizes
the presence of an implication inside a branch of an interpretation function. In
that case, it tries to match a hypothesis of the proof context against the left-
hand side of the implication, and it does so recursively until all the hypotheses
of the context have been tried. The following functions illustrate this behavior.
They serve as interpretation functions of a decision procedure that needs to
consider all the equalities from the proof context. In this example taken from
the verification of GMP’s algorithms, the fact that the goal also has to be an
equality is a coincidence.

function interp_eq (g:equality) (y:vars) (z:C.cvars) : bool

= match g with (g1, g2) → interp g1 y z = interp g2 y z end

function interp_ctx (l:list equality) (g:equality) (y:vars) (z:C.cvars)

: bool

= match l with

| Nil → interp_eq g y z (* goal *)

| Cons h t → (interp_eq h y z) → (interp_ctx t g y z)

end

Notice that, since Why3’s logical system does not permit functions returning
logical propositions, we have defined these interpretation functions as returning
Boolean values. But this has no impact on the way reification proceeds.

While the decision procedures presented in this paper ignore quantified
formulas, our reification transformation does support them. For example, the
excerpt below would handle universal quantifiers in a nameless fashion, using
negative indices to store the depth of the quantifier:

function interp_fmla (f:fmla) (l:int) (b:vars) : bool

= match f with

| Forall f’ → forall v. interp_fmla f’ (l-1) b[l ← v]

| ...

end

A current limitation of our approach is the purely syntactic nature of the reifi-
cation step. For example, for an uninterpreted function foo, the terms foo (a+b)
and foo (b+a) are mapped to distinct variables, even though they are provably
equal. This requires a significant amount of extra work from the user. However,
we are optimistic that this can be mitigated either in the reification step itself
or by composition with another decision procedure (as shown in Sect. 6.3).
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4 Effectful Decision Procedures

Computations in the reflection-based proof from Sect. 2 are all done in logic
functions, which are unfolded by automated provers or Why3’s rewriting engine.
A limitation of this approach is that Why3’s language of logic functions is not
very expressive, as they must be side effect-free and their termination must be
guaranteed by a structurally decreasing argument.

In this section, we show how we can instead write decision procedures as
regular WhyML programs, making full use of the language’s imperative features
such as loops, references, arrays, and exceptions. These decision procedures are
proved correct using Why3 and some automated theorem provers. Their contract
can then be instantiated by reification of the goal and context, and used as a
cut indication.

4.1 Running Example: Systems of Linear Equalities

As an example, let us consider a decision procedure for linear equation systems
in an arbitrary field (code excerpts in Fig. 3). Given some assumed-valid linear
equalities in the context, the procedure attempts to prove a linear equality by
showing that it is a linear combination of the context.

This is done by representing the context and goal by a matrix and performing
a Gaussian elimination (function gauss_jordan). In case of success, we obtain a
vector of coefficients and we check whether the corresponding linear combination
of the context is equal to the goal (function check_combination). Otherwise,
the procedure returns False and proves nothing, since its postcondition has
result = True as premise.

As is done in Coq with the tactics lia and lra [1], this is a proof by certificate,
since we check if the linear combination of the context returned by gauss_jordan
matches the goal. There is no need to prove the Gaussian elimination algorithm
itself, nor to define a semantics for the matrix passed to it as a parameter. In
fact, we do not prove anything about the content of any matrix in the program.
This makes the proof of the decision procedure very easy in relation to its length
and intricacy.

Let us now examine the contract of the decision procedure. The postcondi-
tion states that the goal holds if the procedure returns True, for any valuations y
and z of the variables such that the equalities in the context hold. The valid_ctx
and valid_eq preconditions state that the integers used as variable identifiers
(second argument of the Term constructor) in the context and goal are all non-
negative. This is needed to prove the safety of array accesses. The nature of
the reification procedure ensures that these preconditions will always be true in
practice, but as reification is not trusted, the user has to verify them explicitly;
SMT solvers do this very easily. Finally, the raises clause expresses that an
exception may escape the procedure (typically an arithmetic error, as we allow
the field operations to be partial). In that case, nothing is proven.

Notice that the decision procedure is independent from Why3 (apart from
the fact that it is formally verified), in the sense that it does not contain
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Fig. 3. Decision procedure for linear equation systems

meta-instructions for reification or anything linked to Why3 internals. One could
easily imagine finding the same kind of code in an automatic prover.

4.2 Interpreter

Due to their side effects, functions from WhyML programs only have abstract
declarations in the logical world (as opposed to the concrete logic functions
used in Sect. 2). Therefore, they cannot be unfolded by automatic provers or by
Why3’s rewriting engine. In order to compute the results of decision procedures
such as the previous one, we have added an interpreter to Why3. It operates on
an ML-like intermediate language that corresponds to WhyML programs from
which logic terms, assertions, and ghost code, were erased, thereby assuming
that the program was proved beforehand and that the preconditions are met.
This intermediate code is produced by the existing extraction mechanism, which
is used to produce OCaml and C programs from proved WhyML programs.

Our interpreter provides built-in implementations for some axiomatized parts
of the Why3 standard library, such as integer arithmetic and arrays. For perfor-
mances purposes, we also chose to implement references as a builtin rather than
interpret their WhyML definition (records with a single mutable field), in order
to reduce the number of indirections. To ease debugging decision procedures, we
have added to Why3’s standard library a print function of type ’a → unit
and without effects. It is interpreted as a polymorphic printf function.

There have been few works on computational reflections using effectful deci-
sion procedures. One may cite Claret et al. [4]. They use a monadic encoding of
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effectful computations in Coq (e.g., non-termination). Monadic decision proce-
dures are turned into impure programs that are executed outside of Coq. The
result of these external computations is used as a “prophecy” to simulate the
execution of the decision procedure inside of Coq. Since we are working with
Why3, which natively supports impure computations, we sidestep the need for
a heavyweight simulation mechanism.

5 Soundness

The implementation of our framework requires two additions to Why3: a reifica-
tion transformation and an interpreter of WhyML programs. Let us discuss the
soundness of our approach.

First, the rather large and intricate code needed for reification is not part
of the trusted computing base of Why3. Indeed, the reification merely guesses
values for all the relevant variables and asks Why3 to instantiate the contract
of the decision procedure with them. Assuming the user has proved the sound-
ness of the decision procedure, this instantiated proposition holds, whether the
reification algorithm is correct or not. A reification failure would either prevent
a well-typed instantiation of the post-condition, or the resulting cut would be
useless for proving the current goal.

Contrarily to the reification code, our interpreter is part of the trusted com-
puting base. Fortunately, it is very simple, since it only manipulates concrete
values. There is no need for partial evaluation nor symbolic execution nor poly-
morphic equality, which makes this new interpreter much simpler than the exist-
ing rewriting engine. Another reason for its simplicity is that the intermediate
language has relatively few constructions, since program transformations per-
formed by the existing extraction mechanism eliminate potentially confusing
behaviors from the surface language such as parallel assignation.

6 Application: GMP

In this section, we briefly present our verified multiprecision library [12] and show
how we eliminated a large number of assertions by implementing a dedicated
reflection-based decision procedure.

6.1 A GMP Function

In GMP, natural integers are represented as little-endian buffers of unsigned
machine integers called limbs. We set a radix β (typically 264). Any natural
number N has a unique radix-β decomposition

∑n−1
k=0 akβ

k, which is represented
as the buffer a0a1 . . . an−1.

In the low-level functions, there is almost no memory management; operands
are specified as pointers to their least significant limb and a size of type int32.
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Fig. 4. Addition of two integers

Given such a pointer a and a size n, provided the pointer is valid over the size n,
we denote

value a n = a0 . . . an−1 =
n−1∑

k=0

akβ
k.

As an example, Fig. 4 shows the function that adds two natural integers of
identical limb count. Part of the specification and most invariants and assertions
have been omitted for readability. The algorithm is the schoolbook addition:
starting from the least significant limb, the input numbers are added limb by
limb, keeping track of the carry.

Unfortunately, even such a simple algorithm somewhat stumps the SMT
solvers. In order to prove the loop invariant, we needed the assertion at line 24.
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Its proof consists in a sequence of about ten rather simple steps (rewrite an
equality in the context, use distributivity, etc.) but the large search space
prevents the automatic provers from succeeding. Therefore, we had to provide
many cut indications by hand using the by construct.

Yet, with a judicious choice of coefficients, this goal (and many others in
the proofs of our library) can be seen as a linear combination of the context.
Therefore, we should be able to use the decision procedure from Sect. 4 to prove
the assertion in one go.

6.2 Coefficients

The following is a simplified version of the context and goal obtained for the
assertion of the main loop of add_limbs (Fig. 4, line 24). Variables r1 and c1
denote the values of r and c at the start of the loop (before the modifications
that occur at lines 22 and 23).

axiom H: value r1 i + (power radix i) * c1 = value x i + value y i

axiom H1: res + radix * c = lx + ly + c1

axiom H2: value r i = value r1 i

axiom H3: value x (i+1) = value x i + (power radix i) * lx

axiom H4: value y (i+1) = value y i + (power radix i) * ly

axiom H5: value r (i+1) = value r i + (power radix i) * res

goal g: value r (i+1) + power radix (i+1) * c

= value x (i+1) + value y (i+1)

Notice that the linear combination H5 − H4 − H3 + H2 + βi · H1 + H simplifies
to an equality equivalent to g. In order to prove this, our decision procedure has
to include powers of β (radix in the WhyML code) in its coefficients, and to
support symbolic exponents (as i is a variable).

More precisely, the coefficients of our decision procedure are the product of
a rational number and a (symbolic) power of β. Figure 5 is an excerpt of the
WhyML implementation of the coefficients. The decision procedure of Fig. 3 is
instantiated with type coeff = t.

One can define addition, multiplication, and multiplicative inverse over these
coefficients. Addition is partial, since one may only add two coefficients with
equal exponents. If this is not the case, the addition raises an exception, which is
accounted for in the specification of the decision procedure (exception C.Unknown
in Fig. 3). Note that exponents do not have to be structurally equal, only to have
equal interp_exp interpretations for all values of y, which can be automatically
proved within the decision procedure.

6.3 Modular Decision Procedures

The coefficients above are expressive enough to prove assertions such as the one
in Fig. 4. However, notice that their interpretation (function interp in Fig. 5) is
expressed in terms of real numbers (this is needed because the Gaussian elimina-
tion algorithm used in the decision procedure needs to compute the multiplicative
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Fig. 5. Definition of the coefficients

inverse of some coefficients), while the context and goal consist in equalities over
integers. Moreover, the inductive type for expressions that is used in the decision
procedure (type expr in Fig. 3) is quite restrictive, which avoids repetitions in
the code of the decision procedure. However, this is problematic for the user,
since a term such as 2 * 3 * x cannot be reified by inversion of interp.

These constraints can be lifted thanks to an approach similar to the conv
function in Sect. 2. We compose the decision procedure linear_decision with a
function that converts integer-valued coefficients to real-valued coefficients, and
a function that converts from a more expressive expression type to the expr type
(code excerpts in Fig. 6).

The conversion procedure from integer-valued to real-valued coefficients is
only sound when the exponents of β are nonnegative. This is always the case for
GMP algorithms. Due to the symbolic exponents, it is not yet possible to auto-
matically prove this property within the decision procedure, so we instead add
it as an extra precondition (the pos_* predicates in mp_decision). In practice,
SMT solvers prove it easily.

While the final decision procedure is specialized for GMP goals, almost all
the reasoning is done in the generic linear decision procedure linear_decision,
which we did not modify at all. We expect that, for other use cases than GMP,
users will also be able to develop their own interpretation and conversion layers
and reuse the primary linear decision procedure as is.
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Fig. 6. Composition of decision procedures

7 Conclusion

This paper presents two contributions. First, we have developed a framework for
proofs by reflection that uses effectful WhyML programs as decision procedures.
Second, we have implemented and verified a procedure for automatically solving
systems of linear equalities with symbolic coefficients. We have used this decision
procedure to prove many goals throughout our formalization of GMP algorithms.

As a point of comparison, we have revisited all our existing proofs of addition,
subtraction, and multiplication algorithms, which previously required numerous
user-supplied assertions. The decision procedure was able to discharge all the
large assertions (in the vein of Fig. 4, line 24). This section of our library was
previously about 1660 lines long. The 660 lines of program code were obviously
left unchanged, but the 1000 lines of specifications and proofs were halved. More-
over, a large part of the remaining 500 lines consists in function contracts and
loop invariants, which are essentially incompressible.

The hardest goal we have successfully used our decision procedure on (an
assertion in the proof of the generic-case long division) involves Gaussian elimi-
nation on a matrix of size about 150 × 90, and it terminates in about 3 s, which
is acceptable from a user-experience standpoint. Should larger matrices become
problematic, one option to improve performance would be, instead of using a
WhyML interpreter, to extract the decision procedure to OCaml and execute
the resulting binary.

Note that while our decision procedure only deals with linear equation sys-
tems, we have successfully used it to prove goals in the proofs of multiplication,
division, and logical shifts that, at first glance, are completely nonlinear. In these
cases, we had to supply one or two cut indications that took care of the nonlinear
part of the reasoning, but this is very acceptable considering that many of these
goals previously required more than fifty user-supplied cut indications each. We
are optimistic that this new tool will allow us to verify new GMP algorithms
much more efficiently than we used to.
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The approach presented in this article is not limited to Why3 in principle.
All that is required to develop a similar framework is the capability to specify
and prove the correctness of decision procedures, and the capability to execute
verified programs. As such, it would likely not take much work to adapt our
framework to verification platforms such as Leon [2] and Dafny [10]. For example,
Leon is already able to compile ground terms to Java bytecode and execute them.
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12. Rieu-Helft, R., Marché, C., Melquiond, G.: How to get an efficient yet verified
arbitrary-precision integer library. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017.
LNCS, vol. 10712, pp. 84–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-72308-2 6

13. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a
monad for typed tactic programming in Coq. J. Funct. Program. 25, 1–59 (2015)

https://doi.org/10.1007/978-3-540-74464-1_4
https://doi.org/10.1007/978-3-642-39634-2_8
https://doi.org/10.1007/978-3-642-39634-2_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-72308-2_6
https://doi.org/10.1007/978-3-319-72308-2_6


Probably Half True: Probabilistic
Satisfiability over �Lukasiewicz

Infinitely-Valued Logic

Marcelo Finger(B) and Sandro Preto

Department of Computer Science, University of São Paulo, São Paulo, Brazil
{mfinger,spreto}@ime.usp.br

Abstract. We study probabilistic-logic reasoning in a context that
allows for “partial truths”, focusing on computational and algorithmic
properties of non-classical �Lukasiewicz Infinitely-valued Probabilistic Lo-
gic. In particular, we study the satisfiability of joint probabilistic assign-
ments, which we call LIPSAT. Although the search space is initially
infinite, we provide linear algebraic methods that guarantee polynomial
size witnesses, placing LIPSAT complexity in the NP-complete class. An
exact satisfiability decision algorithm is presented which employs, as a
subroutine, the decision problem for �Lukasiewicz Infinitely-valued (non
probabilistic) logic, that is also an NP-complete problem. We develop
implementations of the algorithms described and discuss the empirical
presence of a phase transition behavior for those implementations.

1 Introduction

This paper deals with the problem of determining the consistency of proba-
bilistic assertions allowing for “partial truths” considerations. This means that
we depart from the classical probabilistic setting and instead employ a many-
valued underlying logic. In this way we enlarge our capacity to model situa-
tions in which a gradation of truth may be closer to the perceptions of agents
involved. We employ �Lukasiewicz Infinitely-valued logic as it is one of the best
studied many-valued logics, having interesting properties which lead to amenable
computational treatment. Notably, it has been shown that foundational proper-
ties of probabilistic theory such as de Finetti coherence criteria also applies to
�Lukasiewicz Infinitely-valued probabilistic theories [27].

We provide theoretical presentation leading to algorithms that decide the sat-
isfiability of probabilistic assertions in which the underlying logic is �Lukasiewicz
logic with infinity truth values in the interval [0, 1]. For that, we employ tech-
niques from linear programming and many-valued logics. In the latter case
we need to solve several instances of the satisfiability problem in �Lukasiewicz
Infinitely-valued logic. This problem has been shown to be NP-complete [25]
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and there are some implementations discussed in the literature [3], but there are
many implementation options with considerable efficiency differences which we
also analyze in this work.

To understand the kind of situation in which our techniques can be applicable
consider the following example.

Example 1. Three friends have the habit of going to a bar to watch their soccer
team’s matches. Staff at the bar claims that at every such match at least two of
the friends come to the premises, but if you ask them, they will say that each of
them comes to watch at most 60% of the games.

In classical terms, the claims of the staff and of the three friends are in
contradiction. In fact, if there are always two of the three friends present at
matches, someone must attend to least two-thirds of the team’s matches.

However, one may allow someone to arrive for the second half of the match,
and consider his attendance only “partially true”, say, a truth value of 0.5 in
that case. Then it may well be the case that staff and customers are both telling
the truth, that is, their claims are jointly satisfiable. ��

It turns out that the example above is unsatisfiable in classical probabilistic
logic, but it is satisfiable in �Lukasiewicz Infinitely-valued Probabilistic logic. In
this work we are going to formalize such problems and present techniques and
algorithms to solve them.

1.1 Classical and Non-classical Probabilistic Logic

Classical probabilistic logic combines classical propositional inference with clas-
sical (discrete) probability theory. The original formulation of such a mix of
logic and probability is due to George Boole who, in his seminal work introduc-
ing what is now known as Boolean Algebras, already discussed the problem [4].
Among the foundational works on classical probabilistic theory we highlight that
provided by de Finetti’s notion of coherent probabilities [9,11].

The decision problem over classical probabilistic logic is called Probabilistic
Satisfiability (PSAT). PSAT has been extensively discussed in the literature [18,
20,28], and has recently received a lot of attention due to the improvements in
SAT solving and linear programming techniques, having generated a variety of
algorithms, for which the empirical phenomenon of phase-transition is by now
established [14,15].

�Lukasiewicz Infinitely-valued Logic is widely used in the literature to model
situations that require the notion of “partial truth”, seen as a many-valued logic
and algebra [8]. A probability theory over such a many-valued context, including
a notion of coherent probabilities in line with de Finetti’s original work, was
developed as a sound basis for non-classical probability theory [27]. The problem
of deciding whether a set of probabilistic assignments over �Lukasiewicz Infinitely-
valued Logic is coherent was shown to be NP-complete by [6]. It is the goal of
this paper to explore equivalent formulations and algorithmic ways to solve this
problem and study the existence of a phase transition in its empirical behavior.
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The rest of this paper is organized as follows. In Sect. 2 we describe
the notions pertaining �Lukasiewicz Infinitely-valued Logic and �Lukasiewicz
Infinitely-valued Probabilistic Logic and the notion of coherent probability over
such logic. In Sect. 3 we study the theoretical relationship between linear alge-
braic methods and the solution of the LIPSAT problem. In Sect. 4 we develop
a column generation algorithm for LIPSAT solving and show its correctness.
Finally, we discuss implementation issues and the phase transition behavior of
the solvers in Sect. 5.

Due to space restrictions, proofs of some results have been omitted. Source
code of the solvers developed are publicly available.

2 Preliminaries

�Lukasiewicz Infinitely-valued Logic (�L∞) is arguably one of the best studied
many-valued logics [8]. It has several interesting properties, such as a truth-
functional semantics that is continuous, having classical logic as a limit case
and possessing well developed proof-theoretical and algebraic presentations.
The semantics of �L∞-formulas represent all piecewise linear functions and only
those [23,26].

The basic �L∞-language is built from a countable set of propositional symbols
P, and disjunction (⊕) and negation (¬) operators. For the semantics, define a
�L∞-valuation v : P → [0, 1], which maps propositional symbols to a value in the
rational interval [0, 1]. Then v is extended to all �L∞-formulas as follows

v(ϕ ⊕ ψ) = min(1, v(ϕ) + v(ψ))
v(¬ϕ) = 1 − v(ϕ)

From those operations one usually derives the following:

Conjunction: ϕ � ψ =def ¬(¬ϕ ⊕ ¬ψ) v(ϕ � ψ) = max(0, v(ϕ) + v(ψ) − 1)

Implication: ϕ → ψ =def ¬ϕ ⊕ ψ v(ϕ → ψ) = min(1, 1 − v(ϕ) + v(ψ))

Maximum: ϕ ∨ ψ =def ¬(¬ϕ ⊕ ψ) ⊕ ψ v(ϕ ∨ ψ) = max(v(ϕ), v(ψ))

Minimum: ϕ ∧ ψ =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Bi-implication: ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ) v(ϕ ↔ ψ) = 1 − |v(ϕ) − v(ψ)|

A formula ϕ is �L∞-valid if v(ϕ) = 1 for every valuation v. A formula ϕ is �L∞-
satisfiable if there exists a v such that v(ϕ) = 1; otherwise it is �L∞-unsatisfiable.
A set of formulas Φ is satisfiable if there exists a v such that v(ϕ) = 1 for all
ϕ ∈ Φ. Note that v(ϕ → ψ) = 1 iff v(ϕ) ≤ v(ψ); similarly, v(ϕ ↔ ψ) = 1 iff
v(ϕ) = v(ψ).

�L∞ also serves as a basis for a well-founded non-classical probability the-
ory [24]. Define a convex combination over a finite set of valuations v1, · · · , vm

as a function on formulas into [0, 1] such that

C(ϕ) = λ1v1(ϕ) + · · · + λmvm(ϕ) (1)
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where λi ≥ 0 and
∑m

i=1 λi = 1. So a �L∞-probability distribution λ =
[λ1, · · · , λm] is a set of coefficients that form the convex combination of �L∞-
valuations. To distinguish �L∞-probabilities from classical ones, we use the nota-
tion C(·), following [24]; it is important to note that C is defined over any finite
set of valuations1. Note that classical discrete probabilities are also convex com-
binations of {0, 1}-valuations.

This notion of probability associates non-zero values only to a finite number
of �L∞-valuations; thus the notion of �L∞-probability is intrinsically discrete. As
there are infinitely many possible �L∞-valuations, the remaining ones are assumed
to be zero. In this work we are interested in deciding the existence of convex
combinations of the form (1) given a set of constraints. So, in theory, the search
space is infinite.

It follows immediately from this definition that C(α) = 1 if there is a convex
combination over v1, · · · , vm where vi(α) = 1, 1 ≤ i ≤ m.

Lemma 1. C(α → β) = 1 iff C(α) ≤ C(β). ��
Lemma 1 is a direct consequence from the fact that v(ϕ → ψ) = 1 iff v(ϕ) ≤

v(ψ).
We define a �Lukasiewicz Infinitely-valued Probabilistic (LIP) assignment as

an expression of the form

Σ =
{

C(αi) = qi | qi ∈ [0, 1], 1 ≤ i ≤ k
}

.

As a foundational view of probabilities, it is possible to define a coherence
criterion over LIP-assignments, in analogy to the de Finetti classical notion of
coherent assignment of probabilities [10,11]. Thus, define the �L∞-coherence of a
LIP-assignment {C(αi) = qi | 1 ≤ i ≤ k} in terms of a bet between two players,
Alice the bookmaker and Bob the bettor. The outcome on which the players
bet is a �L∞-valuation describing an actual “possible world”. For each formula
αi, Alice states her betting odd C(αi) = qi ∈ [0, 1] and Bob chooses a “stake”
σi ∈ Q; Bob pays Alice

∑k
i=1 σi · C(αi) with the promise that Alice will pay

back
∑k

i=1 σi · v(αi) if the outcome is the possible world (or valuation) v. As in
the classical case, the chosen stake σi is allowed to be negative, in which case
Alice pays Bob |σi| · C(αi) and gets back |σi| · v(αi) if the world turns out to be
v. Alice’s total balance in the bet is

k∑

i=1

σi(C(αi) − v(αi)).

We say that there is a LIP-Dutch Book against Alice’s LIP-assignment if
there is a choice of stakes σi such that, for every possible outcome v, Alice’s
total balance is always negative, indicating a bad choice of betting odds made
by Alice.
1 Thus C is more restrictive than the full class of states of an MV-algebra, in the sense

of [24], which will not be discussed here.
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Definition 1. Given a probability assignment to propositional formulas
{C(αi) = qi | 1 ≤ i ≤ k}, the LIP-assignment is coherent if there are no Dutch
Books against it.

While the coherence of an assignment provides a foundational view to deal
with �L∞-probabilities, a more computational view is possible, based on the satis-
fiability of assignments. Such a view will allow a more operational way of dealing
with �L∞-probabilistic assignments.

Definition 2. A LIP-assignment is satisfiable if there exists a convex combina-
tion C and a set of valuations that jointly verifies all restrictions in it.

Example 2. Consider again Example 1, let x1, x2, x3 be variables representing
the presence at the bar of each of the three friends. An �L∞-valuation assigns to
each variable a value in [0, 1]. The probabilistic constraint expressing that each
friend comes at most 60% of the games can be expressed as

C(x1) = C(x2) = C(x3) ≤ 0.6, (∗)

and the fact that at least two of them are present is expressed by the constraints

C(x1 ⊕ x2) = C(x1 ⊕ x3) = C(x2 ⊕ x3) = 1 (∗∗)

which means that no two of them are simultaneously absent. There are infinitely
many ways of obtaining a convex combination of �L∞-valuations that satisfy all
six conditions, the simplest of which is achieved with a single �L∞-valuation v,
v(x1) = v(x2) = v(x3) = 0.6; in fact, v(x1 ⊕ x2) = v(x1 ⊕ x3) = v(x2 ⊕ x3) =
min(1, 0.6 + 0.6) = 1, so we can attribute 100% of probability mass to v.

A similar result can be obtained with three “classical” valuations vi(xi) =
0, vi(xj) = vi(xk) = 1, for pair-wise distinct i, j, k ∈ {1, 2, 3} and a fourth
valuation v4(x1) = v4(x2) = v4(x3) = 0.5. Note all four valuation satisfy the
formulas in (∗∗). The convex valuation assigns probability 0.2 to v1, v2, v3 and
0.4 to v4, satisfying all constraints (∗) and (∗∗). ��

The following result is the characterization of coherence for �Lukasiewicz
Infinitely-valued Probabilistic Logic.
Proposition 1 (Mundici [27]). Given a LIP-assignment Σ = {C(αi) =
qi | 1 ≤ i ≤ k}, the following are equivalent:
(a) Σ is a coherent LIP-assignment.
(b) Σ is a satisfiable LIP-assignment.

Proposition 1 asserts that deciding LIP coherence is the same as determin-
ing LIP-assignment satisfiability, which we call LIPSAT. This result is the �L∞
analogous to de Finetti’s characterization of coherence of classical probabilistic
assignment as equivalent to the probabilistic satisfiability (PSAT) of the assign-
ment, which was shown to be an NP-complete problem that can be solved using
linear algebraic methods [18,28]. It has also been shown by Bova and Flaminio [6]
that deciding the coherence of a LIP-assignment is also an NP-complete problem.

Our goal here is to explore efficient ways to decide the coherence of LIP-
assignments. In analogy to the algorithms used for deciding PSAT [14,15], we
explore a linear algebraic formulation of the problem.
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3 Algebraic Formulation of LIPSAT

We consider an extended version of LIP-assignments of the form

Σ =
{

C(αi) 
�i qi | qi ∈ [0, 1], 
�i∈ {=,≤,≥}, 1 ≤ i ≤ k
}

. (2)

Extended LIP-assignments may have both inequalities and equalities. Such
an assignment is satisfiable if there is a �L∞-probability distribution λ that verify
all inequalities and equalities in it.

Given an extended LIP-assignment Σ = {C(αi) 
�i qi}, let q = (q1, . . . , qk)′

be the vector of probabilities in Σ, 
� the “vector” of (in)equality symbols.
Suppose we are given �L∞-valuations v1, . . . , vm and let λ = (λ1, . . . , λm)′ be
a vector of convex weights. Consider the k × m matrix A = [aij ] where aij =
vj(αi). Then an extended LIP-assignment of the form (2) is satisfiable if there
are v1, . . . , vm and λ such that the set of algebraic constrains (3) has a solution:

A · λ 
� q
∑

λj = 1 (3)

λ ≥ 0

The condition
∑

λj = 1 can be incorporated as an all-1 row k + 1 in matrix
A, q = (q1, . . . , qk, 1)′ and 
�k+1 is “=”. Note that the number m of columns in
A is in principle unbounded, but the following consequence of Carathéodory’s
Theorem [13] yields that a if (3) has a solution, than it has a “small” solution.

Proposition 2 (Carathéodory’s Theorem for LIP). If a set of restrictions
of the form (3) has a solution, then it has a solution in which at most k + 1
elements of λ are non-zero. ��

Given the algebraic formulation in (3), NP-completeness of LIP satisfiability,
originally shown by Bova and Flaminio [6], can be seen as a direct corollary of
Proposition 2. In fact, that LIPSAT is NP-hard comes from the fact that when
all qi = 1, the problem becomes �L∞-satisfiability, which is NP-complete [25];
and Proposition 2 asserts the existence of a polynomial size witness for LIPSAT,
hence is in NP; so LIPSAT is NP-complete. See Corollary 1.

However, to apply linear algebraic methods to efficiently solve LIPSAT, first
we need to provide a normal form for it.

3.1 A Normal Form for LIP-Assignments

An extended assignment may seem more expressive than regular LIP-
assignments, but we show that no expressivity is gained by this extension. In
fact, we define a normal form LIP assignment as a pair 〈Γ,Θ〉, where Γ is a set
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of �L∞-formulas and Θ is a set of LIP restrictions over propositional symbols of
the form

Θ =
{

C(pi) = qi | qi ∈ [0, 1], pi ∈ P, 1 ≤ i ≤ k
}

. (4)

The formulas γ ∈ Γ represent LIP-assignments of the form C(γ) = 1, that
is, a set of hard constrains in the form of �L∞-formulas which must be satis-
fied by all valuations in the convex combination that compose a �L∞-probability
distribution.

A normal form assignment 〈Γ,Θ〉 is satisfiable if there are �L∞-valuations
v1, · · · , vm such that vi(γ) = 1 for every γ ∈ Γ and there is a �L∞-probability
distribution λ1, · · · , λm, such that for each assignment C(pi) = qi ∈ Θ,

∑m
j=1 λj ·

vj(pi) = qi.
The satisfiability of extended LIP-assignments reduces to that of normal form

ones, as follows.

Theorem 1 (Atomic Normal Form). For every extended LIP-assignments
Σ there exists a normal form LIP-assignment 〈Γ,Θ〉 such that Σ is a satisfiable
iff 〈Γ,Θ〉 is; the normal form assignment can be built from Σ in polynomial time.

Proof. Start with Γ = Θ = ∅. Given Σ, first transform it into Σ′ in which all
assignments are of the form C(α) ≤ p; for that, if Σ contains a constraint of the
form C(α) 
� 1, 
� ∈ {=,≥} (resp. C(α) = 0, C(α) ≤ 0) we insert α (resp. ¬α)
in Γ and do not insert the constraint in Σ′. If C(α) = q ∈ Σ we insert C(α) ≤ q
and C(α) ≥ q in Σ′. Then all assignments of the latter form are transformed
into C(¬α) ≤ 1 − q. All transformation steps preserve satisfiability and can be
made in linear time, so Γ ∪ Σ′ is satisfiable iff Σ is.

For every C(αi) ≤ qi ∈ Σ′, 0 < qi < 1, consider a new symbol yi; insert
αi → yi in Γ and C(yi) = qi in Θ. Clearly 〈Γ,Θ〉 is in normal form and is
obtained in linear time. The fact that Σ is satisfiable iff 〈Γ,Θ〉 is follows from
Lemma 1. ��
Example 3. Note that the formalization presented in Example 2 is already in
normal form, witnessing that this format is quite a natural one to formulate
LIP-assignments. ��

3.2 Algebraic Methods for Normal Form LIP-Assignments

For the rest of this paper we assume that LIP-assignments are in normal form.
Here we explore their algebraic structure as it allows for the interaction between
a LIP problem Θ and a �L∞-SAT instance Γ , such that solutions satisfying the
normal form assignment can be seen as probabilistic solutions to Θ constrained
by the SAT instance Γ .

Furthermore, to construct a convex combination of the form (1) we will only
consider Γ -satisfiable valuations. Given a LIP-assignment 〈Γ,Θ = {C(pi) = qi}〉,
a partial assignment v over pi, . . . , pk is Γ -satisfiable if it can be extended to a
full assignment that satisfies all formulas in Γ . Let q be a k + 1 dimensional
vector (q1, . . . , qk, 1)′. The following is a direct consequence of Theorem 1.
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Lemma 2. A normal form instance 〈Γ,Θ〉 is satisfiable iff there is a (k + 1) ×
(k + 1)-matrix AΘ, such that all of its columns are Γ -satisfiable, AΘ last row is
all 1’s, and AΘλ = q has a solution λ ≥ 0.

Lemma 2 leads to a linear algebraic PSAT solving method as follows. Let V
be the set of partial valuations over the symbols in Θ; consider a |V |-dimensional
vector c such that

cj =
{

0, vj ∈ V is Γ -satisfiable
1, otherwise (5)

The vector c is a boolean “cost” associated to each partial valuation vj ∈ V ,
such that the cost is 1 iff vj is Γ -unsatisfiable. Consider a matrix A whose
columns are the valuations in V . Now consider linear program (6) which aims
at minimizing that cost, weighted by the corresponding probability value λj .

min c′ · λ
subject to A · λ = q∑

λi = 1
λ ≥ 0
A′s columns are partial valuations in V

(6)

Theorem 2. A normal form instance 〈Γ,Θ = {C(pi) = qi | 1 ≤ i ≤ k}〉 is sat-
isfiable iff linear program (6) reaches a minimal solution c′ ·λ = 0. Furthermore,
if there is a solution, then there is a solution in which at most k + 1 values of λ
are not null.

Proof. If linear program (6) reaches 0, we obtain v1, . . . , vm by selecting only the
Γ -satisfiable columns Aj for which λj > 0, obtaining a convex combination sat-
isfying Θ. So 〈Γ,Θ〉 is satisfiable. Conversely, if 〈Γ,Θ〉 is satisfiable, by Lemma 2
there exists a matrix AΘ such that all of its columns are Γ -satisfiable partial
valuations and AΘ · λ = q; clearly AΘ is a submatrix of A; make λj = 0 when
Aj is a AΘ column and thus c′ ·λ = 0. Again by Lemma 2, AΘ has at most k +1
columns so at most k + 1 values of λ are not null. ��

The following consequence of Theorem 2 was originally proven by Bova and
Flaminio [6] as the decision of LIP-assignment coherence, which is equivalent to
LIP satisfiability by Proposition 1.

Corollary 1 (LIPSAT Complexity). The problem of deciding the satisfia-
bility of a LIP-assignment is NP-complete.

Despite the fact that solvable linear programs of the form (6) always have
polynomial size solutions, with respect to the size of the corresponding normal
form LIP-assignment, the elements of linear program itself (6) may be expo-
nentially large, rendering the explicit representation of matrix A impractical. In
the following, we present an algorithmic technique that avoids that exponential
explosion.
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4 A LIPSAT-Solving Algorithm

Based on the results of the previous section we are going to present an algorithm
employing a linear programming technique called column generation [21,22],
to obtain a decision procedure for �Lukasiewicz Infinitely-valued Probabilistic
Logic, which we call LIPSAT solving. This algorithm solves the potentially large
linear program (6) without explicitly representing all columns and making use
of an extended solver for �L∞-satisfiability as an auxiliary procedure to generate
columns.

To avoid the exponential blow of the size of matrix in (6), the algorithm basic
idea is to employ the simplex algorithm [2,29] over a normal form LIP-assignment
〈Γ,Θ〉, coupled with a strategy that generates cost decreasing columns without
explicitly representing the full matrix A. In this process, we start with a feasible
solution, which may contain several �L∞ Γ -unsatisfiable columns. We minimize
the cost function consisting of the sum of the probabilities associated to Γ -
unsatisfiable columns, such that when it reaches zero, we know that the problem
is satisfiable; if no column can be generated and the minimum achieved is bigger
than zero, a negative decision is reached.

The general strategy employed here is similar to that employed to PSAT
solving [14,15], but the column generation algorithm is considerably distinct
and requires an extension of �L∞ decision procedure.

From the input 〈Γ,Θ〉, we implicitly obtain an unbounded matrix A and
explicit obtain the vector of probabilities q mentioned in (6). The basic idea of
the simplex algorithm is to move from one feasible solution to another one with
a decreasing cost. The feasible solution consists of a square matrix B, called
the basis, whose columns are extracted from the unbounded matrix A. The pair
〈B, λ〉 consisting of the basis B and a LIP probability distribution λ is a feasible
solution if B · λ = q and λ ≥ 0. We assume that qk+1 = 1 such that the last
line of B we will force

∑
G λj = 1, where G is the set of B columns that are Γ -

satisfiable. Each step of the algorithm replaces one column of the feasible solution
〈B(s−1), λ(s−1)〉 at step s − 1 obtaining a new feasible solution 〈B(s), λ(s)〉. The
cost vector c(s) is a {0, 1} vector such that c

(s)
j = 1 iff Bj is Γ -unsatisfiable. The

column generation and substitution is designed such that the total cost is never
increasing, that is c(s)′ · λ(s) ≤ c(s−1)′ · λ(s−1).

Algorithm 4.1 presents the top level LIPSAT decision procedure. Lines 1–3
present the initialization of the algorithm. We assume the vector q is in ascending
order. Let the Dk+1 be a k + 1 square matrix in which the elements on the
diagonal and below are 1 and all the others are 0. At the initial step we make
B(0) = Dk+1, this forces λ

(0)
1 = q1 ≥ 0, λ

(0)
j+1 = qj+1 − qj ≥ 0, 1 ≤ j ≤ k; and

c(0) = [c1 · · · ck+1]′, where ck = 0 if column j in B(0) is Γ -satisfiable; otherwise
cj = 1. Thus the initial state s = 0 is a feasible solution.

Algorithm 4.1 main loop covers lines 5–12 which contains the column gener-
ation strategy described above. Column generation occurs at beginning of the
loop (line 5) which we are going to detail bellow. If column generation fails
the process ends with failure in line 7. Otherwise a column is removed and the
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Algorithm 4.1. LIPSAT-CG: a LIPSAT solver via Column Generation
Input: A normal form LIPSAT instance 〈Γ, Θ〉.
Output: No, if 〈Γ, Θ〉 is unsatisfiable. Or a solution 〈B, λ〉 that minimizes (6).

1: q := [{qi | C(pi) = qi ∈ Θ, 1 ≤ i ≤ k} ∪ {1}] in ascending order;
2: B(0) := Dk+1;
3: s := 0, λ(s) = (B(0))−1 · q and c(s) = [c1 · · · ck+1]

′;
4: while c(s)′ · λ(s) �= 0 do
5: y(s) = GenerateColumn(B(s), Γ, c(s));
6: if y(s) column generation failed then
7: return No; \\ LIPSAT instance is unsatisfiable
8: else
9: B(s+1) = merge(B(s), b(s))

10: s++, recompute λ(s) and c(s);
11: end if
12: end while
13: return 〈B(s), λ(s)〉; \\ LIPSAT instance is satisfiable

generated column is inserted in a process we called merge at line 9. The loop ends
successfully when the objective function (total cost) c(s)′ · λ(s) reaches zero and
the algorithm outputs a probability distribution λ and the set of Γ -satisfiable
columns in B, at line 13.

The procedure merge is part of the simplex method which guarantees that
given a k+1 column y and a feasible solution 〈B, λ〉 there always exists a column
j in B such that if B[j := y] is obtained from B by replacing column j with y,
then there is λ′ such that 〈B[j := y], λ′〉 is a feasible solution.

Lemma 3. Let 〈B, λ〉 be a feasible solution of (6), such that B is non-
singular, and let y be a column. Then there always exists a column j such that
〈B[j := y], λ′〉 is a non-singular feasible solution.

Lemma 3 guarantees the existence of a column which may not be unique and
further selection heuristic is necessary; in our implementation we give priority to
remove columns which are associated to probability zero on a left-to-right order.

We now describe the column generation method, which takes as input the
current basis B, the current cost c, and the �L∞ restrictions Γ ; the output is
a column y, if it exists, otherwise it signals No. The basic idea for column
generation is the property of the simplex algorithm called the reduced cost of
inserting a column y with cost cy in the basis. The reduced cost is given by
equation

ry = cy − c′B−1y (7)

and the simplex method guarantees that the objective function is non increasing
if ry ≤ 0. Furthermore the generation method is such that the column y is
Γ -satisfiable so that cy = 0. We thus obtain

c′B−1y ≥ 0 (8)
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which is an inequality on the elements of y. To force λ to be a probability
distribution, we make yk+1 = 1, the remaining elements yi are valuations of
the variables in Θ, so that we are searching for solution to (8) such that 0 ≤
yi ≤ 1, 1 ≤ i ≤ k. To finally obtain column y we must extend a �L∞-solver that
generates valuations satisfying Γ so that it also respects the linear restriction (8).
In fact this is not an expressive extension of �L∞ as the McNaughton property
guarantees that (8) is equivalent to some �L∞-formula on variables y1, . . . , yk [8].
In practice, we tested two ways of obtaining a joint solver for Γ and (8):

– Employ an SMT (SAT modulo theories) solver that can handle linear alge-
braic equations such as (8) and the linear inequalities generated by the �L∞-
semantics. �L∞-solvers based on SMT can be found in the literature, see [3];

– Use a MIP (mixed integer programming) solver that encodes �L∞-semantics.
Equation (8) is simply a new linear restriction to be dealt by the MIP solver.
�L∞-solvers based on MIP solvers have been proposed by [19].

In both cases, the restrictions posed by Γ -formulas and (8) are jointly handled
by the semantics of the underlying solver. Note that both MIP solving and
SMT(linear algebra) are NP-complete problems. We have thus the following
result.

Lemma 4. There are algorithmic solutions to the problem of jointly satisfying
�L∞-formulas and inequalities with common variables.

We now deal with the problem of termination. Column generation as above
guarantees that the cost is never increasing. The simplex method ensures that a
solvable problem always terminates if the costs always decrease, we are left with
the problem of guaranteeing that the objective function does not become sta-
tionary. This is guaranteed in the implementation by a column selection strategy
that respects Bland’s Rule and also by plateau escaping strategies such as Tabu
search [2,29].

Lemma 5. There are column selection strategies that guarantee that the Algo-
rithm4.1 always terminates.

We know that there are no column selection heuristics that guarantee that
the simplex method terminates in a polynomial number of steps. However, the
simplex method performs very well in most practical cases and its average com-
plexity is known to be polynomial [5].

By placing all the results above together we can state the correction of Algo-
rithm4.1.

Theorem 3. Consider the output of Algorithm4.1 with normal form input
〈Γ,Θ〉. If the algorithm succeeds with solution 〈B, λ〉, then the input problem
is satisfiable with distribution λ over the valuations which are columns of B. If
the program outputs no, then the input problem is unsatisfiable. Furthermore,
there are column selection strategies that guarantee termination.
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Proof. Lemma 3 guarantees that all steps 〈B(s), λ(s)〉 is a feasible solution to
the problem. If Algorithm 4.1 terminates with success, than cost zero has been
reached, so by Theorem 2 the input problem is satisfiable. On the other hand, if
column generation fails, this fails with a positive cost, this means there are no
Γ -satisfiable columns that can reduce the cost. So, the problem in unsatisfiable.
Finally, a suitable column selection strategy by Lemma 5 guarantees termination.

Example 4. We show the steps for the solution of Example 2. Initially, we have

q =

[
0.6
0.6
0.6
1

]

, B(0) =

[
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

]

, λ(0) = (B(0))−1 · q =

[
0.6
0
0
0.4

]

, c(0) =

[
0
0
1
1

]

.

c(0) expresses that the first two columns of B(0) are Γ -satisfiable. The total cost
cost(0) = c(0)′ · λ(0) = 0.4. At this point, column y(1) is generated substituting
B(0)’s column 3 in the merge procedure:

y(1) =

[
1
0
1
1

]

, B(1) =

[
1 0 1 0
1 1 0 0
1 1 1 0
1 1 1 1

]

, λ(1) =

[
0.6
0
0
0.4

]

, c(1) =

[
0
0
0
1

]

.

cost(1) = 0.4. Again, column generation provides y(2) in place of column 1:

y(2) =

[
1
1
0
1

]

, B(2) =

[
1 0 1 0
1 1 0 0
0 1 1 0
1 1 1 1

]

, λ(2) =

[
0.3
0.3
0.3
0.1

]

, c(2) =

[
0
0
0
1

]

.

cost(2) = 0.1. Finally, column generation provides y(3) in place of column 4:

y(3) =

[
0.5
0.5
0.5
1

]

, B(3) =

[
1 0 1 0.5
1 1 0 0.5
0 1 1 0.5
1 1 1 1

]

, λ(3) =

[
0.2
0.2
0.2
0.4

]

, c(3) =

[
0
0
0
0

]

.

cost(3) = 0, so that the problem is satisfiable with solution 〈B(3), λ(3)〉. ��

5 Implementation and Results

The mere development of a solver over a handful of tests is, in our opinion, an
insufficient way to assess the quality of an implementation. In this section we
explore a qualitative behavior of solvers, called phase transition, over a large
class of randomly generated formulas.

A decision problem displays a phase transition when there is an ordering
of classes of problems that presents a transition from predominantly satisfiable
instances (answer “yes”) to predominantly unsatisfiable instances (answer “no”),
which is called a first order phase transition. Furthermore the decision problem
displays a peak in average execution time around the middle of that transition in
which fifty percent of answers “yes” and fifty percent of answers “no”, which is
called a second order phase transition, following the terminology of mechanical
statistics [7].
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It is conjectured that there is a (second order) phase transition for every
NP-complete decision problem [7]. Empirical phase transition behavior are well
established for classical SAT [17] and PSAT [14], among many others. In fact, the
empirical verification of phase transition for solvers of an NP-complete problem
can be perceived as a quality test for its implementation. In the following we
present our empirical results, searching for a phase transition behavior, for �L∞-
solvers and LIPSAT solver.

5.1 Phase Transition for �L∞-Solvers

In a classical setting one usually employs 3-SAT format to obtain a phase tran-
sition diagram. The randomly generated formulas are clauses with three literals
each, the number of symbols n is fixed and the rate between the number n of
clauses and the rate m

n is used as the control parameter, where m is the number
of clauses. In classical 3-SAT, the shape of the curve and the phase transition
point is maintained when n is changed. Unfortunately for �L∞ Logic there is no
clausal normal form. So instead we employ a set of formulas which are used
by [3] consisting of

l1 ⊕ l2 ⊕ l3 (9)
¬(l4 ⊕ l5) ⊕ l6 (10)

where li are literals (negated or non-negated symbols). The generation of the
formulas is parametrized by the number n of propositional symbols and the
number m of formulas, which define the class of randomly generated formulas.
Following [3], formulas are generated as follows: 70% of formulas are of format
(9) and 30% of the format (10). Each literal is randomly chosen from the n
possible symbols with equal probability, then there is a 50% chance of being a
positive or negative literal.

Two implementations were developed using publicly available open source
software2:

– a C++-implementation using the C++ interface to the YICES SMT(LA)
solver [12];

– a C++-implementation using the C++ interface to the SCIP MIP solver [1].

For each implementation, the experiment proceed as follows: with a fixed n = 100
we varied the value of m such that the rate m

n varies from 0.2 to 8 in 0.2 steps.
For each pair 〈n,m〉 we construct a set of 100 randomly generated formulas as
described above. And for each set we compute the percentage of �L∞-satisfiable
formulas and the average decision time (user time).

All the experiments in this section were run on a UNIX machine with a i7-
6900K CPU @ 3.20 GHz with 16 processors. The results of the experiments using
two �L∞-solvers are shown in Fig. 1. In Fig. 1a we see the results of an SMT(LA)

2 The source code for all experiments under license GPLv3 are publicly available at
http://lipsat.sourceforge.net.

http://lipsat.sourceforge.net
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(a) Based on SMT(LA) using YICES (b) Based on MIP solver using SCIP

Fig. 1. �L∞-solvers performance, randomly gen. instances: n = 100, m = 20 to 780

�L∞-solver using YICES which presents a first-order phase transition from SAT
to unSAT with a middle point occurring at rate m

n ≈ 2; however the average
decision time peak occurs at m

n ≈ 5, unlike what is expected. Furthermore, the
peak time for solving a �L∞ problem is about 35 s. This unexpected behavior may
be credited to the fact that YICES converts internally all floating point numbers
to pair of integers, which impacts the efficiency of problems whose formulation
involves a lot of floating point numbers as is the case of �L∞ decision.

Figure 1b presents an �L∞-solver build with using MIP solver SCIP, in which
we can see a phase transition from SAT to unSAT also at m

n ≈ 2, with an average
time peak also around m

n ≈ 2, as expected. Furthermore, the peak time is 0.35 s,
two orders of magnitude more efficient than the YICES solver. Observing the
average time, we note an always increasing right tail, which can be credited
to the fact that MIP solvers are not implemented with a “fail early” strategy
commonly used in logic based solvers, which normally employ what is called
restriction learning strategies; furthermore, the size of the matrices used by the
MIP solver increases with m. Another possibility to explain such a behavior is
the fact that the choice of the family of formulas may be inappropriate, however
no such increasing tail was observed in the SMT based method, which reinforces
the hypothesis that this behavior is due to the MIP solver. Due to its superior
efficiency we only use the SCIP solver as an auxiliary procedure for the LIPSAT
solver described next.

5.2 Phase Transition for LIPSAT

The input for the LIPSAT solver is a normal form 〈Γ,Θ〉. We developed a C++-
implementation for Algorithm 4.1 using the C++ interface of the SoPlex linear
algebra solver which is part of the SCIP suite of optimizers. We used the �L∞-
solver based on SCIP MIP.

The experiments were obtained as follows. The input �L∞-formula Γ was
generated in the form we describe above, with a fixed number of symbols n and
a varying number of clauses of format (9) and (10) as described above. The
probabilistic Θ-restrictions of the form {C(yi) = qi | i ≤ i ≤ k} were generated
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Fig. 2. Phase transition for LIPSAT solver: k = 20, n = 100 and m = 20 to 780

fixing k ≤ n and randomly choosing the probabilities qi uniformly over the
interval [0, 1].

The results of the experiment can be seen in Fig. 2. We clearly see a second
order phase transition with a peak average time execution that overlaps the
decreasing part of the percentage SAT curve. Note that no increasing tail is
observed, so that the “fail early” mechanism is achieved in the combination of
logic and linear algebra. The peak is near but does not coincide with the fifty
percent point of the first order phase transition which may be credited to the
increasing shape of the right tail in the �L∞-solver presented in Fig. 2. Also, there
is a left shift of the phase transition point m

n ≈ 1, similar to the shift of PSAT
phase transition point with respect to SAT [16]. Overall the phase transition
format can be considered satisfactory.

6 Conclusion and the Future

We provided the theoretical basis for the development and implementation of
probabilistic reasoning over “partial truth” that respect �Lukasiewicz Infinitely-
valued Logic restricts. A phase transition behavior could be empirically observed.
For the future we hope to develop better solvers for the logics employed having
the analysis of the phase transition as a qualitative guideline; and hope to employ
the mechanisms developed here to linearly approximate generic functions.
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In: Börger, E., Kleine Büning, H., Richter, M.M., Schönfeld, W. (eds.) CSL 1990.
LNCS, vol. 533, pp. 248–260. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-54487-9 62

20. Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Kohlas, J., Moral, S. (eds.)
Handbook of Defeasible Reasoning and Uncertainty Management Systems. HAND,
vol. 5, pp. 321–367. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-
017-1737-3 8

21. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Com-
puting 44, 279–303 (1990). https://doi.org/10.1007/BF02241270

22. Kavvadias, D., Papadimitriou, C.H.: A linear programming approach to reasoning
about probabilities. AMAI 1, 189–205 (1990)

23. McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symb. Log.
16, 1–13 (1951)

24. Mundici, D.: Advanced �Lukasiewicz calculus and MV-algebras. Trends in Logic.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-94-007-0840-2

25. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor.
Comput. Sci. 52(1–2), 145–153 (1987)

http://www.gutenberg.org/etext/15114
https://doi.org/10.1007/978-3-642-61578-8
https://doi.org/10.1007/978-3-642-61578-8
https://doi.org/10.1007/978-94-015-9480-6
https://doi.org/10.1007/978-94-015-9480-6
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/3-540-54487-9_62
https://doi.org/10.1007/3-540-54487-9_62
https://doi.org/10.1007/978-94-017-1737-3_8
https://doi.org/10.1007/978-94-017-1737-3_8
https://doi.org/10.1007/BF02241270
https://doi.org/10.1007/978-94-007-0840-2


210 M. Finger and S. Preto

26. Mundici, D.: A constructive proof of McNaughton’s theorem in infinite-valued logic.
J. Symb. Log. 59(2), 596–602 (1994)

27. Mundici, D.: Bookmaking over infinite-valued events. Int. J. Approx. Reason.
43(3), 223–240 (2006)

28. Nilsson, N.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
29. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Dover, Mineola (1998)



Uniform Substitution for
Differential Game Logic
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Abstract. This paper presents a uniform substitution calculus for dif-
ferential game logic (dGL). Church’s uniform substitutions substitute a
term or formula for a function or predicate symbol everywhere. After
generalizing them to differential game logic and allowing for the substi-
tution of hybrid games for game symbols, uniform substitutions make it
possible to only use axioms instead of axiom schemata, thereby substan-
tially simplifying implementations. Instead of subtle schema variables
and soundness-critical side conditions on the occurrence patterns of logi-
cal variables to restrict infinitely many axiom schema instances to sound
ones, the resulting axiomatization adopts only a finite number of ordinary
dGL formulas as axioms, which uniform substitutions instantiate soundly.
This paper proves soundness and completeness of uniform substitutions
for the monotone modal logic dGL. The resulting axiomatization admits
a straightforward modular implementation of dGL in theorem provers.

1 Introduction

Church’s uniform substitution is a classical proof rule for first-order logic [2,
§35/40]. Uniform substitutions uniformly instantiate function and predicate sym-
bols with terms and formulas, respectively, as functions of their arguments. If φ
is valid, then so is any admissible instance σφ for any uniform substitution σ:

(US)
φ

σφ

Uniform substitution σ = {p(·) �→ x + ·2 ≥ ·}, e.g. turns φ ≡ (p(4y)→
∃y p(x2+y)) into σφ ≡ (x + (4y)2 ≥ 4y → ∃y x + (x2 + y)2 ≥ x2 + y). The
introduction of x is sound, but introducing variable y via σ = {p(·) �→ y+·2 ≥ ·}
would not be. The occurrence of the variable y of the argument x2 + y that was
already present previously, however, can correctly continue to be used in the
instantiation.

Differential game logic (dGL), which is the specification and verification
logic for hybrid games [5], originally adopted uniform substitution for pred-
icates, because they streamline and simplify completeness proofs. A subse-
quent investigation of uniform substitutions for differential dynamic logic (dL)

This material is based upon work supported by the National Science Foundation
under NSF CAREER Award CNS-1054246.
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for hybrid systems [6] confirmed how impressively Church’s original moti-
vation for uniform substitutions manifests in significantly simplifying prover
implementations.

Church developed uniform substitutions to relate the study of (object-level)
axioms to that of (meta-level) axiom schemata (which stand for an infinite fam-
ily of axioms). Beyond their philosophical considerations, uniform substitutions
significantly impact prover designs by eliminating the usual gap between a logic
and its prover. After implementing the recursive application of uniform substitu-
tions, the soundness-critical part of a theorem prover reduces to providing a copy
of each concrete logical formula that the logic adopts as axioms. Uniform substi-
tutions provide a modular interface to the static semantics of the logic, because
they are the only soundness-critical part of the prover that needs to know free
or bound variables of an expression. This simplicity is to be contrasted with
the subtle soundness-critical side conditions that usually infest axiom schema
and proof rule schema implementations, especially for the more involved bind-
ing structures of program logics. The beneficial impact of uniform substitutions
on provers made it possible to reduce the size of the soundness-critical core of
the differential dynamic logic prover KeYmaera X [3] down to 2% compared to
the previous prover KeYmaera [9] and formally verify dL in Isabelle and Coq [1].

This paper generalizes uniform substitution to the significantly more expres-
sive differential game logic for hybrid games [5]. The modular structure of the
soundness argument for dL is sufficiently robust to work for dGL: (i) prove correct-
ness of the static semantics, (ii) relate syntactic effect of uniform substitution to
semantic effect of its adjoint interpretation, (iii) conclude soundness of rule US,
and (iv) separately establish soundness of each axiom. The biggest challenge is
that hybrid game semantics cannot use state reachability, so correctness notions
and their uses for the static semantics need to be phrased as functions of winning
condition projections. The interaction of game operators with repetitions causes
transfinite fixpoints instead of the arbitrary finite iterations in hybrid systems.
Relative completeness follows from previous results, but exploits the new game
symbols to simplify the proof. After new soundness justifications, the resulting
uniform substitution mechanism and axioms for dGL end up close to those for
hybrid systems [6] (apart from the ones that are unsound for hybrid games [5]).
The modularity caused by uniform substitutions explains why it was possible to
generalize the KeYmaera X prover kernel from hybrid systems to hybrid games
with about 10 lines of code.1 All proofs are inline or in the report [8].

2 Preliminaries: Differential Game Logic

This section reviews differential game logic (dGL), a specification and verification
logic for hybrid games [5,7]. Hybrid games support the discrete, continuous, and
1 The addition of games to the previous KeYmaera prover was more complex [10],

with an implementation effort measured in months not minutes. Unfortunately, this
is not quite comparable, because both provers implement markedly different flavors
of games for hybrid systems. The game logic for KeYmaera [10] was specifically tuned
as an exterior extension to be more easily implementable than dGL in KeYmaera.
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adversarial dynamics of two-player games in hybrid systems between players
Angel and Demon. Compared to previous work [5], the logic is augmented to
form (differential-form) differential game logic with differentials and function
symbols [6] and with game symbols a that can be substituted with hybrid games.

2.1 Syntax

Differential game logic has three syntactic categories. Its terms θ are polynomial
terms, function symbols interpreted over R, and differential terms (θ)′. Its hybrid
games α describe the permitted player actions during the game in program
notation. Its formulas φ include first-order logic of real arithmetic and, for each
hybrid game α, a modal formula 〈α〉φ, which expresses that player Angel has a
winning strategy in the hybrid game α to reach the region satisfying dGL formula
φ. In the formula 〈α〉φ, the dGL formula φ describes Angel’s objective while the
hybrid game α describes the moves permitted for the two players, respectively.

The set of all variables is V. Variables of the form x′ for a variable x ∈ V
are called differential variables, which are just independent variables associated
to variable x. For any subset V ⊆ V is V ′ def= {x′ : x ∈ V } the set of differential
variables x′ for the variables in V . The set of all variables is assumed to contain
all its differential variables V ′ ⊆ V (although x′′, x′′′ are not usually used).

Definition 1 (Terms). Terms are defined by this grammar (with θ, η, θ1, . . . , θk

as terms, x ∈ V as variable, and f as function symbol of arity k):

θ, η ::= x | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

As in dL [6], differentials (θ)′ of terms θ are exploited for the purpose of
axiomatically internalizing reasoning about differential equations. The differen-
tial (θ)′ describes how the value of θ changes locally depending on how the values
of its variables x change, i.e., as a function of the values of the corresponding dif-
ferential variables x′. Differentials reduce reasoning about differential equations
to reasoning about equations of differentials [6] with their single-state semantics.

Definition 2 (Hybrid games). The hybrid games of differential game logic
dGL are defined by the following grammar (with α, β as hybrid games, a as game
symbol, x as variable, θ as term, and ψ as dGL formula):

α, β ::= a | x := θ | x′ = θ &ψ | ?ψ | α ∪ β | α;β | α∗ | αd

Atomic games are the following. Game symbols a are uninterpreted. The
discrete assignment game x := θ evaluates term θ and assigns it to variable x. The
continuous evolution game x′ = θ &ψ allows Angel to follow differential equation
x′ = θ for any real duration during which the evolution domain constraint ψ is
true (x′ = θ stands for x′ = θ & true). If ψ is not true in the current state, then
no solution exists and Angel loses the game. Test game ?ψ has no effect except
that Angel loses the game prematurely unless ψ is true in the current state.
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Compound games are the following. The game of choice α∪β allows Angel to
choose whether she wants to play game α or, instead, play game β. The sequential
game α;β first plays α and then plays β (unless a player lost prematurely during
α). The repeated game α∗ allows Angel to decide how often to repeat game α
by inspecting the state reached after the respective α game to decide whether
she wants to play another round. The dual game αd makes the players switch
sides: all of Angel’s decisions are now Demon’s and all of Demon’s decisions
are now Angel’s. Where Angel would have lost prematurely in α (for failing a
test or evolution domain) now Demon does in αd, and vice versa. This makes
game play interactive but semantically quite rich [5]. All other operations are
definable, e.g., the game where Demon chooses between α and β as (αd ∪ βd)d.

Definition 3 (dGL formulas). The formulas of differential game logic dGL
are defined by the following grammar (with φ, ψ as dGL formulas, p as predicate
symbol of arity k, θ, η, θi as terms, x as variable, and α as hybrid game):

φ, ψ ::= θ ≥ η | p(θ1, . . . , θk) | ¬φ | φ ∧ ψ | ∃x φ | 〈α〉φ

The box modality [α] in formula [α]φ describes that the player Demon has a win-
ning strategy to achieve φ in hybrid game α. But dGL satisfies the determinacy
duality [α]φ ↔ ¬〈α〉¬φ [5, Theorem 3.1], which we now take as its definition to
simplify matters. Other operators are definable as usual, e.g., ∀x φ as ¬∃x¬φ.
The following dGL formula, for example, expresses that Angel has a winning
strategy to follow the differential equation x′ =v to a state where x>0 even after
Demon chooses v := 2 or v := x2 + 1 first: 〈(v := 2 ∪ v := x2 + 1)d;x′ =v〉 x>0.

2.2 Semantics

While the syntax of dGL is close to that of dL (with the only change being the
addition of the duality operator d), its semantics is significantly more involved,
because it needs to recursively support interactive game play, instead of mere
reachability. Variables may have different values in different states of the game.
A state ω is a mapping from the set of all variables V to the reals R. Also, ωr

x

is the state that agrees with state ω except for variable x whose value is r ∈ R.
The set of all states is denoted S. The set of all subsets of S is denoted ℘(S).

The semantics of function, predicate, and game symbols is independent from
the state. They are interpreted by an interpretation I that maps each arity k
function symbol f to a k-ary smooth function I(f) : Rk → R, and each arity k
predicate symbol p to a k-ary relation I(p) ⊆ R

k. The semantics of differential
game logic in interpretation I defines, for each formula φ, the set of all states
I[[φ]], in which φ is true. Since hybrid games appear in dGL formulas and vice
versa, the semantics I[[α]]

(
X

)
of hybrid game α in interpretation I is defined by

simultaneous induction (Definition 5) as the set of all states from which Angel
has a winning strategy in hybrid game α to achieve X. The real value of term
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θ in state ω for interpretation I is denoted Iω[[θ]] and defined as usual.2 An
interpretation I maps each game symbol a to a function I(a) : ℘(S) → ℘(S),
where I(a)(X) ⊆ S are the states from which Angel has a winning strategy to
achieve X ⊆ S.

Definition 4 (dGL semantics). The semantics of a dGL formula φ for each
interpretation I with a corresponding set of states S is the subset I[[φ]] ⊆ S of
states in which φ is true. It is defined inductively as follows

1. I[[θ ≥ η]] = {ω ∈ S : Iω[[θ]] ≥ Iω[[η]]}
2. I[[p(θ1, . . . , θk)]] = {ω ∈ S : (Iω[[θ1]], . . . , Iω[[θk]]) ∈ I(p)}
3. I[[¬φ]] = (I[[φ]])� = S \ I[[φ]] is the complement of I[[φ]]
4. I[[φ ∧ ψ]] = I[[φ]] ∩ I[[ψ]]
5. I[[∃x φ]] = {ω ∈ S : ωr

x ∈ I[[φ]] for some r ∈ R}
6. I[[〈α〉φ]] = I[[α]]

(
I[[φ]]

)

A dGL formula φ is valid in I, written I |= φ, iff it is true in all states, i.e.,
I[[φ]] = S. Formula φ is valid, written � φ, iff I |= φ for all interpretations I.

Definition 5 (Semantics of hybrid games). The semantics of a hybrid
game α for each interpretation I is a function I[[α]]

(·) that, for each set of
Angel’s winning states X ⊆ S, gives the winning region, i.e., the set of states
I[[α]]

(
X

) ⊆ S from which Angel has a winning strategy to achieve X in α (what-
ever strategy Demon chooses). It is defined inductively as follows

1. I[[a]]
(
X

)
= I(a)(X)

2. I[[x := θ]]
(
X

)
= {ω ∈ S : ω

Iω[[θ]]
x ∈ X}

3. I[[x′ = θ &ψ]]
(
X

)
= {ω ∈ S : ω = ϕ(0) on {x′}� and ϕ(r) ∈ X for some

function ϕ : [0, r]→S of some duration r satisfying I, ϕ |= x′ =θ ∧ ψ} where
I, ϕ |= x′ = θ ∧ ψ iff ϕ(ζ) ∈ I[[x′ = θ ∧ ψ]] and ϕ(0) = ϕ(ζ) on {x, x′}� for
all 0≤ζ≤r and dϕ(t)(x)

dt (ζ) exists and equals ϕ(ζ)(x′) for all 0≤ζ≤r if r>0.
4. I[[?ψ]]

(
X

)
= I[[ψ]] ∩ X

5. I[[α ∪ β]]
(
X

)
= I[[α]]

(
X

) ∪ I[[β]]
(
X

)

6. I[[α;β]]
(
X

)
= I[[α]]

(
I[[β]]

(
X

))

7. I[[α∗]]
(
X

)
=

⋂{Z ⊆ S : X ∪ I[[α]]
(
Z

) ⊆ Z}
8. I[[αd]]

(
X

)
= (I[[α]]

(
X�))�

The semantics I[[x′ = θ &ψ]]
(
X

)
is the set of all states from which there is a

solution of the differential equation x′ = θ of some duration that reaches a state
in X without ever leaving the set of all states I[[ψ]] where evolution domain
constraint ψ is true. The initial value of x′ in state ω is ignored for that solution.
It is crucial that I[[α∗]]

(
X

)
gives a least fixpoint semantics to repetition [5].

Lemma 6 (Monotonicity [5, Lemma 2.7]). The semantics is monotone, i.e.,
I[[α]]

(
X

) ⊆ I[[α]]
(
Y

)
for all X ⊆ Y .

2 Even if not critical here, differentials have a differential-form semantics [6] as the
sum of all partial derivatives by x ∈ V multiplied by the corresponding values of x′:
Iω[[(θ)′]] =

∑
x∈V ω(x′) ∂I[[θ]]

∂x
(ω) =

∑
x∈V ω(x′) ∂Iω[[θ]]

∂x
.
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3 Static Semantics

The central bridge between a logic and its uniform substitutions is the definition
of its static semantics via its free and bound variables. The static semantics cap-
tures static variable relationships that are more tractable than the full nuances
of the dynamic semantics. It will be used in crucial ways to ensure that no
variable is introduced free into a context within which it is bound during the
uniform substitution application. It is imperative for the soundness of uniform
substitution that the static semantics be sound, so expressions only depend on
their free variables and only their bound variables change during hybrid games.

The most tricky part for the soundness justification for dGL is that the seman-
tics of hybrid games is not a reachability relation, such that the usual semantic
characterizations of free and bound variables from programs do not work for
hybrid games. Hybrid games have a more involved winning region semantics.

The first step is to define upward projections X↑V that increase the winning
region X ⊆ S from the variables V ⊆ V to all states that are “on V like X”, i.e.,
similar on V to states in X (and arbitrary on complement V �). The downward
projection X↓ω(V ) shrinks the winning region X and selects the values of state
ω on variables V ⊆ V to keep just those states of X that agree with ω on V .

Definition 7. The set X↑V = {ν ∈ S : ∃∃ ω ∈ X ω = ν on V } ⊇ X extends
X ⊆ S to the states that agree on V ⊆ V with some state in X (written ∃∃ ). The
set X↓ω(V ) = {ν ∈ X : ω = ν on V } ⊆ X selects state ω on V ⊆ V in X ⊆ S.

Remark 8. It is easy to check these properties of up and down projections:

1. Composition: X↑V ↑W = X↑(V ∩ W )
2. Antimonotone: X↑W ⊆ X↑V for all W ⊇ V
3. X↑∅ = S (unless X = ∅) and X↑V = X, where V is the set of all variables
4. Composition: X↓ω(V )↓ω(W ) = X↓ω(V ∪W )

5. Antimonotone: X↓ω(W ) ⊆ X↓ω(V ) for all W ⊇ V
6. X↓ω(∅) = X and X↓ω(V) = X ∩ {ω}. Thus, ω ∈ X↓ω(V ) for any V iff ω ∈ X.

Projections make it possible to define (semantic! ) free and bound variables of
hybrid games by expressing suitable variable dependence and ignorance. Variable
x is free iff two states that only differ in the value of x have different membership
in the winning region for hybrid game α for some winning region X↑{x}� that is
insensitive to the value of x. Variable x is bound iff it is in the winning region for
hybrid game α for some winning condition X but not for the winning condition
X↓ω({x}) that limits the new value of x to stay at its initial value ω(x).

Definition 9 (Static semantics). The static semantics defines the free vari-
ables, which are all variables that the value of an expression depends on, as well
as bound variables, BV(α), which can change their value during game α, as:

FV(θ) =
{
x ∈ V : ∃∃ I, ω, ω̃ such that ω = ω̃ on {x}� and Iω[[θ]] �= Iω̃[[θ]]

}

FV(φ) =
{
x ∈ V : ∃∃ I, ω, ω̃ such that ω = ω̃ on {x}� and ω ∈ I[[φ]] �� ω̃

}
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FV(α) =
{
x ∈ V : ∃∃ I, ω, ω̃,X with ω = ω̃ on {x}� and ω ∈ I[[α]]

(
X↑{x}�) �� ω̃

}

BV(α) =
{
x ∈ V : ∃∃ I, ω,X such that I[[α]]

(
X

) � ω �∈ I[[α]]
(
X↓ω({x})

)}

The signature, i.e., set of function, predicate, and game symbols in φ is denoted
Σ(φ); accordingly Σ(θ) for term θ and Σ(α) for hybrid game α.

The static semantics from Definition 9 satisfies the coincidence property (the
value of an expression only depends on the values of its free variables) and bound
effect property (a hybrid game only changes the values of its bound variables).

Lemma 10 (Coincidence for terms). FV(θ) is the smallest set with the coin-
cidence property for θ: If ω = ω̃ on FV(θ) and I = J on Σ(θ) then Iω[[θ]] = Jω̃[[θ]].

Lemma 11 (Coincidence for formulas). FV(φ) is the smallest set with the
coincidence property for φ: If ω = ω̃ on FV(φ) and I = J on Σ(φ), then
ω ∈ I[[φ]] iff ω̃ ∈ J [[φ]].

From which states a hybrid game α can be won only depends on α, the winning
region, and the values of its free variables, as X↑FV(α) is only sensitive to FV(α).

Lemma 12 (Coincidence for games). The set FV(α) is the smallest set with
the coincidence property for α: If ω = ω̃ on V ⊇ FV(α) and I = J on Σ(α), then
ω ∈ I[[α]]

(
X↑V

)
iff ω̃ ∈ J [[α]]

(
X↑V

)
.

X↑V

X
I[[α]]

(
X

)ω

ω̃

on V ⊇ FV(α)

α

α

Proof. Let M be the set of all sets M ⊆ V satisfying for all I, ω, ω̃,X that ω = ω̃
on M� implies: ω ∈ I[[α]]

(
X↑V

)
iff ω̃ ∈ I[[α]]

(
V

)
. One implication suffices.

1. If x �∈ V , then {x} ∈ M: Assume ω = ω̃ on {x}� and ω ∈ I[[α]](X↑V )⊆
I[[α]](X↑V ↑{x}) by Lem. 6, Def. 7. Then, as x �∈ FV(α), ω̃ ∈ I[[α]]

(
X↑V ↑{x})

= I[[α]]
(
X↑(V ∩{x}�)

)
by Rem. 8(1). Finally, X↑(V ∩{x}�) = X↑V as x �∈ V .

2. If Mi ∈ M is a sequence of sets in M, then
⋃

i∈N
Mi ∈ M: Assume ω = ω̃

on (
⋃

i Mi)� and ω ∈ I[[α]]
(
X↑V

)
. The state ωn defined as ω̃ on

⋃
i<n Mi and

as ω on (
⋃

i<n Mi)� satisfies ωn ∈ I[[α]]
(
X↑V

)
by induction on n. For n = 0,

ω0 = ω. Since ωn = ωn+1 on M�
n and Mn ∈ M, ωn ∈ I[[α]]

(
X↑V

)
implies

ωn+1 ∈ I[[α]]
(
X↑V

)
. Finally, ω = ω̃ = ωn on (

⋃
i Mi)� already.

This argument succeeds for any V ⊇ FV(α), so FV(α)� ∈ M as a (count-
able) union of {x} for all x �∈ FV(α). Finally, if I = J on Σ(α) then also
ω̃ ∈ J [[α]]

(
X↑V

)
by a simple induction, since I gives meaning to function, pred-

icate, and game symbols, but only those that occur in α are relevant.
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No set W �⊇ FV(α) has the coincidence property for α, because there, then,
is a variable x ∈ FV(α) \ W , which implies there are I,X, ω = ω̃ on {x}� ⊇ W

such that ω ∈ I[[α]]
(
X↑{x}�) �� ω̃. But for the set V

def= {x}� ⊇ W it is, then,
the case that ω ∈ I[[α]]

(
X↑V

)
but ω̃ �∈ I[[α]]

(
X↑V

)
.

By Definition 7 and Lemma 6, ω ∈ I[[α]]
(
X

)
implies ω ∈ I[[α]]

(
X↑V

)
for all

V ⊆ V. All supersets of FV(θ) or FV(φ) or FV(α) have the respective coincidence
property.

Only its bound variables BV(α) change their values during hybrid game α,
because from any state from which α can be won to achieve X, one can already
win α to achieve X↓ω(BV(α)�), which stays at ω except for the values of BV(α).

Lemma 13 (Bound effect). The set BV(α) is the smallest set with the bound
effect property: ω ∈ I[[α]]

(
X

)
iff ω ∈ I[[α]]

(
X↓ω(BV(α)�)

)
.

X

X↓ω

I[[α]]
(
X↓ω(BV(α) �

)
)

ω
α

α

All supersets V ⊇ BV(α) have the bound effect property, as I[[α]]
(
X↓ω(V �)

) ⊇
I[[α]]

(
X↓ω(BV(α)�)

)
by Remark 8(5) because V � ⊆ BV(α)�. Other states that agree

except on the bound variables share the same selection of the winning region: if
ω = ω̃ on BV(α)�, then ω̃ ∈ I[[α]]

(
X

)
iff ω̃ ∈ I[[α]]

(
X↓ω(BV(α)�)

)
.

Since all supersets of the free variables have the coincidence property and
all supersets of the bound variables have the bound effect property, algorithms
that syntactically compute supersets FV and BV of free and bound variables
[6, Lemma 17] can be soundly augmented by FV(αd) = FV(α) and BV(αd) =
BV(α).

4 Uniform Substitution

The static semantics provides, in a modular way, what is needed to define
the application σφ of uniform substitution σ to dGL formula φ. The dGL
axiomatization uses uniform substitutions that affect terms, formulas, and
games, whose application σφ will be defined in Definition 14 using Fig. 1.
A uniform substitution σ is a mapping from expressions of the form f(·) to
terms σf(·), from p(·) to formulas σp(·), and from game symbols a to hybrid
games σa. Vectorial extensions are accordingly for other arities k ≥ 0. Here · is
a reserved function symbol of arity 0, marking the position where the respective
argument, e.g., argument θ to p(·) in formula p(θ), will end up in the replacement
σp(·) used for p(θ).

Definition 14 (Admissible uniform substitution). A uniform substitu-
tion σ is U -admissible for φ (or θ or α, respectively) with respect to the variables
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σ(x) = x for variable x ∈ V
σ(f(θ)) = (σf)(σθ) def= {· σθ}σf(·) for function symbol f

σ(θ + η) = σθ + ση
σ(θ · η) = σθ · ση
σ((θ)′) = (σθ)′ if σ is V-admissible for θ

σ(θ ≥ η) = σθ ≥ ση

σ(p(θ)) = (σp)(σθ) def= {· σθ}σp(·) for predicate symbol p
σ(¬φ) = ¬σφ

σ(φ ∧ ψ) = σφ ∧ σψ
σ(∃x φ) = ∃x σφ if σ is {x}-admissible for φ
σ(〈α〉φ) = 〈σα〉σφ if σ is BV(σα)-admissible for φ

σ(a) = σa for game symbol a
σ(x := θ) = x := σθ

σ(x′ = θ&ψ) = (x′ = σθ&σψ) if σ is {x, x′}-admissible for θ, ψ
σ(?ψ) = ?σψ

σ(α ∪ β) = σα ∪ σβ
σ(α;β) = σα;σβ if σ is BV(σα)-admissible for β
σ(α∗) = (σα)∗ if σ is BV(σα)-admissible for α

σ(αd) = (σα)d

Fig. 1. Recursive application of uniform substitution σ

U ⊆ V iff FV(σ|Σ(φ)) ∩ U = ∅, where σ|Σ(φ) is the restriction of σ that only
replaces symbols that occur in φ, and FV(σ) =

⋃
f FV(σf(·)) ∪ ⋃

p FV(σp(·)) are
the free variables that σ introduces. A uniform substitution σ is admissible for φ
(θ or α, respectively) iff the bound variables U of each operator of φ are not free
in the substitution on its arguments, i.e., σ is U -admissible. These admissibility
conditions are listed in Fig. 1, which defines the result σφ of applying σ to φ.

The remainder of this section proves soundness of uniform substitution for dGL.
All subsequent uses of uniform substitutions are required to be admissible.

4.1 Uniform Substitution Lemmas

Uniform substitution lemmas equate the syntactic effect that a uniform substi-
tution σ has on a syntactic expression in a state ω and interpretation I with
the semantic effect that the switch to the adjoint interpretation σ∗

ωI has on the
original expression. Adjoints make it possible to capture in semantics the effect
that a uniform substitution has on the syntax.

Let Id· denote the interpretation that agrees with interpretation I except for
the interpretation of arity 0 function symbol · which is changed to d ∈ R.

Definition 15 (Substitution adjoints). The adjoint to substitution σ is the
operation that maps I, ω to the adjoint interpretation σ∗

ωI in which the inter-
pretation of each function symbol f , predicate symbol p, and game symbol a are
modified according to σ (it is enough to consider those that σ changes):



220 A. Platzer

σ∗
ωI(f) : R → R; d �→ Id·ω[[σf(·)]]

σ∗
ωI(p) = {d ∈ R : ω ∈ Id· [[σp(·)]]}

σ∗
ωI(a) : ℘(S) → ℘(S); X �→ I[[σa]]

(
X

)

Corollary 16 (Admissible adjoints). If ω = ν on FV(σ), then σ∗
ωI = σ∗

νI.
If ω = ν on U� and σ is U -admissible for θ (or φ or α, respectively), then

σ∗
ωI[[θ]] = σ∗

νI[[θ]] i.e., σ∗
ωIμ[[θ]] = σ∗

νIμ[[θ]] for all states μ ∈ S
σ∗

ωI[[φ]] = σ∗
νI[[φ]]

σ∗
ωI[[α]] = σ∗

νI[[α]] i.e., σ∗
ωI[[α]]

(
X

)
= σ∗

νI[[α]]
(
X

)
for all sets X ⊆ S

Substituting equals for equals is sound by the compositional semantics of dL.
The more general uniform substitutions are still sound, because the semantics of
uniform substitutes of expressions agrees with the semantics of the expressions
themselves in the adjoint interpretations. The semantic modification of adjoint
interpretations has the same effect as the syntactic uniform substitution.

Lemma 17 (Uniform substitution for terms). The uniform substitution
σ and its adjoint interpretation σ∗

ωI, ω for I, ω have the same semantics for all
terms θ:

Iω[[σθ]] = σ∗
ωIω[[θ]]

The uniform substitute of a formula is true in an interpretation iff the formula
itself is true in its adjoint interpretation. Uniform substitution lemmas are proved
by simultaneous induction, since formulas and games are mutually recursive.

Lemma 18 (Uniform substitution for formulas). The uniform substitu-
tion σ and its adjoint interpretation σ∗

ωI, ω for I, ω have the same semantics for
all formulas φ:

ω ∈ I[[σφ]] iff ω ∈ σ∗
ωI[[φ]]

Proof. The proof is by structural induction on φ and the structure of σ, simul-
taneously with Lemma 19. It is in [8] with this case for modalities:

6. ω ∈ I[[σ(〈α〉φ)]] iff ω ∈ I[[〈σα〉σφ]] = I[[σα]]
(
I[[σφ]]

)
(provided σ is BV(σα)-

admissible for φ) iff (by Lemma 13) ω ∈ I[[σα]]
(
I[[σφ]]↓ω(BV(σα)�)

)
.

Starting conversely: ω ∈ σ∗
ωI[[〈α〉φ]] = σ∗

ωI[[α]]
(
σ∗

ωI[[φ]]
)

iff (by Lemma 19) ω ∈
I[[σα]]

(
σ∗

ωI[[φ]]
)

iff (by Lemma 13) ω ∈ I[[σα]]
(
σ∗

ωI[[φ]]↓ω(BV(σα)�)
)
.

Consequently, it suffices to show that both winning conditions are equal:

I[[σφ]]↓ω(BV(σα)�) = σ∗
ωI[[φ]]↓ω(BV(σα)�)

For this, consider any ν = ω on BV(σα)� and show: ν ∈ I[[σφ]] iff ν ∈ σ∗
ωI[[φ]].

By induction hypothesis, ν ∈ I[[σφ]] iff ν ∈ σ∗
νI[[φ]] iff ν ∈ σ∗

ωI[[φ]] by Corol-
lary 16, because ν = ω on BV(σα)� and σ is BV(σα)-admissible for φ.
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The uniform substitute of a game can be won into X from state ω in an interpre-
tation iff the game itself can be won into X from ω in its adjoint interpretation.
The most complicated part of the uniform substitution lemma proofs is the case
of repetition α∗, because it has a least fixpoint semantics. The proof needs to be
set up carefully by transfinite induction (instead of induction along the number
of program loop iterations, which is finite for hybrid systems).

Lemma 19 (Uniform substitution for games). The uniform substitution
σ and its adjoint interpretation σ∗

ωI, ω for I, ω have the same semantics for all
games α:

ω ∈ I[[σα]]
(
X

)
iff ω ∈ σ∗

ωI[[α]]
(
X

)

Proof. The proof is by structural induction on α, simultaneously with Lemma 18,
simultaneously for all ω and X.

1. ω ∈ I[[σ(a)]]
(
X

)
= I[[σa]]

(
X

)
= σ∗

ωI(a)(X) = σ∗
ωI[[a]]

(
X

)
for game symbol a

2. ω ∈ I[[σ(x := θ)]]
(
X

)
= I[[x := σθ]]

(
X

)
iff X � ω

Iω[[σθ]]
x = ω

σ∗
ωIω[[θ]]

x by using
Lemma 17, which is, thus, equivalent to ω ∈ σ∗

ωI[[x := θ]]
(
X

)
.

3. ω ∈ I[[σ(x′ = θ &ψ)]]
(
X

)
= I[[x′ = σθ &σψ]]

(
X

)
(provided that σ is {x, x′}-

admissible for θ, ψ) iff ∃∃ ϕ : [0, T ] → S with ϕ(0) = ω on {x′}�, ϕ(T ) ∈ X

and for all t ≥ 0: dϕ(s)
ds (t) = Iϕ(t)[[σθ]] = σ∗

ϕ(t)Iϕ(t)[[θ]] by Lemma 17 and
ϕ(t) ∈ I[[σψ]], which, by Lemma18, holds iff ϕ(t) ∈ σ∗

ϕ(t)I[[ψ]].
Conversely, ω ∈ σ∗

ωI[[x′ = θ &ψ]]
(
X

)
iff ∃∃ ϕ : [0, T ] → S with ϕ(0) = ω

on {x′}� and ϕ(T ) ∈ X and for all t ≥ 0: dϕ(s)
ds (t) = σ∗

ωIϕ(t)[[θ]] and
ϕ(t) ∈ σ∗

ωI[[ψ]]. Both sides agree since σ∗
ωI[[θ]] = σ∗

ϕ(t)I[[θ]] and σ∗
ϕ(t)I[[ψ]] =

σ∗
ωI[[ψ]] by Corollary 16 as σ is {x, x′}-admissible for θ and ψ and ω = ϕ(t)

on BV(x′ = θ &ψ)� ⊇ {x, x′}� by Lemma 13.
4. ω ∈ I[[σ(?ψ)]]

(
X

)
= I[[?σψ]]

(
X

)
= I[[σψ]] ∩ X iff, by Lemma 18, it is the case

that ω ∈ σ∗
ωI[[ψ]] ∩ X = σ∗

ωI[[?ψ]]
(
X

)
.

5. ω ∈ I[[σ(α ∪ β)]]
(
X

)
= I[[σα ∪ σβ]]

(
X

)
= I[[σα]]

(
X

) ∪ I[[σβ]]
(
X

)
, which, by

induction hypothesis, is equivalent to ω ∈ σ∗
ωI[[α]]

(
X

)
or ω ∈ σ∗

ωI[[β]]
(
X

)
,

which is ω ∈ σ∗
ωI[[α]]

(
X

) ∪ σ∗
ωI[[β]]

(
X

)
= σ∗

ωI[[α ∪ β]]
(
X

)
.

6. ω ∈ I[[σ(α;β)]]
(
X

)
= I[[σα;σβ]]

(
X

)
= I[[σα]]

(
I[[σβ]]

(
X

))
(provided σ is

BV(σα)-admissible for β), which holds iff ω ∈ I[[σα]]
(
I[[σβ]]

(
X

)↓ω(BV(σα)�)
)

by Lemma 13.
Starting conversely: ω ∈ σ∗

ωI[[α;β]]
(
X

)
= σ∗

ωI[[α]]
(
σ∗

ωI[[β]]
(
X

))
, iff, by IH,

ω ∈ I[[σα]]
(
σ∗

ωI[[β]]
(
X

))
iff, by Lemma 13, ω ∈ I[[σα]]

(
σ∗

ωI[[β]]
(
X

)↓ω(BV(σα)�)
)
.

Consequently, it suffices to show that both winning conditions are equal:

I[[σβ]]
(
X

)↓ω(BV(σα)�) = σ∗
ωI[[β]]

(
X

)↓ω(BV(σα)�)

Consider any ν = ω on BV(σα)� to show: ν ∈ I[[σβ]]
(
X

)
iff ν ∈ σ∗

ωI[[β]]
(
X

)
.

By IH, ν ∈ I[[σβ]]
(
X

)
iff ν ∈ σ∗

νI[[β]]
(
X

)
iff ν ∈ σ∗

ωI[[β]]
(
X

)
by Corollary 16,

because ν = ω on BV(σα)� and σ is BV(σα)-admissible for β.



222 A. Platzer

7. The case ω ∈ I[[σ(α∗)]]
(
X

)
= I[[(σα)∗]]

(
X

)
(provided σ is BV(σα)-admissible

for α) uses an equivalent inflationary fixpoint formulation [5, Theorem 3.5]:

τ0(X) def= X

τκ+1(X) def= X ∪ I[[σα]]
(
τκ(X)

)
κ + 1 a successor ordinal

τλ(X) def=
⋃

κ<λ

τκ(X) λ �= 0 a limit ordinal

where the union τ∞(X) =
⋃

κ<∞ τκ(X) over all ordinals is I[[(σα)∗]]
(
X

)
.

Define a similar fixpoint formulation for the other side σ∗
ωI[[α∗]]

(
X

)
= �∞(X):

�0(X) def= X

�κ+1(X) def= X ∪ σ∗
ωI[[α]]

(
�κ(X)

)
κ + 1 a successor ordinal

�λ(X) def=
⋃

κ<λ

�κ(X) λ �= 0 a limit ordinal

The equivalence ω ∈ I[[σ(α∗)]]
(
X

)
= τ∞(X) iff ω ∈ σ∗

ωI[[α∗]]
(
X

)
= �∞(X)

follows from a proof that:

for all κ and all X and all ν = ω on BV(σα)� : ν ∈ τκ(X) iff ν ∈ �κ(X)

This is proved by induction on ordinal κ, which is either 0, a limit ordinal
λ �= 0, or a successor ordinal.
κ = 0: ν ∈ τ0(X) iff ν ∈ �0(X), because both sets equal X.

λ: ν ∈ τλ(X) =
⋃

κ<λ τκ(X) iff there is a κ < λ such that ν ∈ τκ(X) iff,
by IH, ν ∈ �κ(X) for some κ < λ, iff ν ∈ ⋃

κ<λ �κ(X) = �λ(X).
κ + 1: ν ∈ τκ+1(X) = X ∪ I[[σα]]

(
τκ(X)

)
, which, by Lemma 13, is equivalent

to ν ∈ X ∪ I[[σα]]
(
τκ(X)↓ν(BV(σα)�)

)
.

Starting from the other end, ν ∈ �κ+1(X) = X ∪ σ∗
ωI[[α]]

(
�κ(X)

)
iff, by

Corollary 16using ν = ω onBV(σα)� ⊇ BV(α)�, ν ∈ X∪σ∗
νI[[α]]

(
�κ(X)

)

iff, by induction hypothesis on α, ν ∈X∪I[[σα]]
(
�κ(X)

)
iff, by Lemma 13,

ν ∈ X ∪ I[[σα]]
(
�κ(X)↓ν(BV(σα)�)

)
Consequently, it suffices to show that

both winning conditions are equal: τκ(X)↓ν(BV(σα)�)=�κ(X)↓ν(BV(σα)�).
Consider any state μ = ω on BV(σα)�, then μ ∈ τκ(X) iff μ ∈ �κ(X) by
induction hypothesis on κ < κ + 1.

8. ω ∈ I[[σ(αd)]]
(
X

)
= I[[(σα)d]]

(
X

)
=

(
I[[σα]]

(
X�))� iff ω �∈ I[[σα]]

(
X�), which,

by IH, is equivalent to ω �∈ σ∗
ωI[[α]]

(
X�), which is, in turn, equivalent to

ω ∈ (
σ∗

ωI[[α]]
(
X�))� = σ∗

ωI[[αd]]
(
X

)
.

4.2 Soundness

Soundness of uniform substitution for dGL now follows from the above uniform
substitution lemmas with the same proof that it had from corresponding lemmas
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[·] [a]p(x̄) a〉¬p(x̄)

〈:=〉 〈x := f〉p(x) p(f)

DS 〈x′ = f〉p(x) t≥0 〈x := x + ft〉p(x)

〈?〉 〈?q〉p q ∧ p

〈∪〉 〈a ∪ b〉p(x̄) a〉p(x̄) ∨ 〈b〉p(x̄)

〈;〉 〈a; b〉p(x̄) a〉〈b〉p(x̄)

〈∗〉 〈a∗〉p(x̄) p(x̄) ∨ 〈a〉〈a∗〉p(x̄)

〈d〉 〈ad〉p(x̄)

¬〈

∃

〈

〈

¬〈a〉¬p(x̄)

M
p(x̄) q(x̄)

〈a〉p(x̄) 〈a〉q(x̄)

FP
p(x̄) ∨ 〈a〉q(x̄) q(x̄)

〈a∗〉p(x̄) q(x̄)

MP
p p q

q

∀ p(x)
∀x p(x)

Fig. 2. Differential game logic axioms and axiomatic proof rules

in dL [6] (see [8]). Due to the modular setup of uniform substitutions, the change
from dL to dGL is reflected in how the uniform substitution lemmas are proved,
not in how they are used for the soundness of proof rule US. A proof rule is
sound iff validity of all its premises implies validity of its conclusion.

Theorem 20 (Soundness of uniform substitution). Proof rule US is
sound.

(US)
φ

σφ

As in dL, uniform substitutions can soundly instantiate locally sound proof rules
or proofs [6] just like proof rule US soundly instantiates axioms or other valid
formulas (Theorem 20). An inference or proof rule is locally sound iff its conclu-
sion is valid in any interpretation I in which all its premises are valid. All locally
sound proof rules are sound. The use of Theorem 21 in a proof is marked USR.

Theorem 21 (Soundness of uniform substitution of rules). If FV(σ) = ∅,
all uniform substitution instances of locally sound inferences are locally sound:

φ1 . . . φn

ψ
locally sound implies

σφ1 . . . σφn

σψ
locally sound

5 Axioms

Axioms and axiomatic proof rules for differential game logic are listed in
Fig. 2, where x̄ is the (finite-dimensional) vector of all relevant variables. The
axioms are concrete dGL formulas that are valid. The axiomatic proof rules
are concrete formulas for the premises and concrete formulas for the conclu-
sion that are locally sound. This makes Fig. 2 straightforward to implement by
copy-and-paste. Theorem 20 can be used to instantiate axioms to other dGL
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formulas. Theorem 21 can be used to instantiate axiomatic proof rules to other
concrete dGL inferences. Complete axioms for first-order logic from elsewhere [6]
and a proof rule (written R) for decidable real arithmetic [11] are assumed as a
basis.

The axiom 〈;〉, for example, expresses that Angel has a winning strategy in
game a; b to achieve p(x̄) if and only if she has a winning strategy in game a to
achieve 〈b〉p(x̄), i.e., to reach the region from which she has a winning strategy
in game b to achieve p(x̄). Rule US can instantiate axiom 〈;〉, for example, with
σ = {a �→ (v := 2 ∪ v := x+1)d, b �→ x′ = v, p(x̄) �→ x > 0} to prove

〈(v := 2 ∪ v := x+1)d;x′ = v〉x > 0 ↔ 〈(v := 2 ∪ v := x+1)d〉〈x′ = v〉x > 0

The right-hand formula can be simplified when using US again to instantiate
axiom 〈d〉 with σ = {a �→ v := 2 ∪ v := x+1, p(x̄) �→ 〈x′ = v〉x > 0} to prove

〈(v := 2 ∪ v := x+1)d〉〈x′ = v〉x > 0 ↔ ¬〈v := 2 ∪ v := x+1〉¬〈x′ = v〉x > 0

When eliding the equivalences and writing down the resulting formula along
with the axiom that was uniformly substituted to obtain it, this yields a proof:

j(x) →¬(¬∃t≥0x + 2t > 0 ∨ ¬∃t≥0x + (x+1)t > 0)
〈:=〉j(x) →¬(¬∃t≥0 〈x := x + 2t〉x > 0 ∨ 〈v := x+1〉¬∃t≥0 〈x := x + vt〉x > 0)
DS j(x) →¬(¬〈x′ = 2〉x > 0 ∨ 〈v := x+1〉¬〈x′ = v〉x > 0)
〈:=〉j(x) →¬(〈v := 2〉¬〈x′ = v〉x > 0 ∨ 〈v := x+1〉¬〈x′ = v〉x > 0)
〈∪〉 j(x) →¬〈v := 2 ∪ v := x+1〉¬〈x′ = v〉x > 0
〈d〉 j(x) →〈(v := 2 ∪ v := x+1)d〉〈x′ = v〉x > 0
〈;〉 j(x) →〈(v := 2 ∪ v := x+1)d;x′ = v〉x > 0

It is soundness-critical that US checks velocity v is not bound in the ODE when
substituting it for f in DS, since x + vt is not, otherwise, the correct solution of
x′ = v. Likewise, the velocity assignment v := x+1 cannot soundly be substituted
into the differential equation via 〈:=〉, which US prevents as x is bound in x′ = v.
Instead, axiom 〈:=〉 for v := x+1 needs to be delayed until after solving by DS. If
it were v := x2+1 instead of v := x+1, then rule R would finish the proof. But for
the above proof with v := x+1 to finish, extra assumptions need to be identified.

With σ = {a �→ (v := 2 ∪ v := x+1)d;x′ = v, p(x̄) �→ x>0, q(x̄) �→ x2>0},
USR instantiates axiomatic rule M to prove an inference continuing the proof:

USR,M
x>0 → x2>0

〈(v := 2 ∪ v := x+1)d;x′ = v〉x>0 → 〈(v := 2 ∪ v := x+1)d;x′ = v〉x2>0

Variable x can be used in the postconditions despite being bound in the game.
Likewise, rule USR can instantiate the above proof with σ = {j(·) �→ ·>−1} to:

R x > −1 →¬(¬∃t≥0x + 2t > 0 ∨ ¬∃t≥0x + (x+1)t > 0)
USRx > −1 →〈(v := 2 ∪ v := x+1)d;x′ = v〉x > 0
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USR soundly instantiates the inference from premise to conclusion of the proof
without having to change or repeat any part of the proof. Uniform substitutions
enable flexible but sound reasoning forwards, backwards, on proofs, or mixed [6].
Without USR, these features would complicate soundness-critical prover cores.

Since the axioms and axiomatic proof rules in Fig. 2 are themselves instances
of axiom schemata and proof rule schemata that axiomatize dGL [5], they are
(even locally!) sound. Axiom DS stems from dL [6] and is for solving constant
differential equations. Now that differentials are available, all differential axioms
such as the Leibniz axiom (f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′ and all
other axioms for differential equations [6] can be added to dGL. Furthermore,
hybrid games make it possible to equivalently replace differential equations with
evolution domains by hybrid games without domain constraints [5, Lemma 3.4].

The converse challenge for completeness is to prove that uniform substi-
tutions are flexible enough to prove all required instances of dGL axioms and
axiomatic proof rules. A dGL formula φ is called surjective iff rule US can instan-
tiate φ to any of its axiom schema instances, which are those formulas that are
obtained by just replacing game symbols a uniformly by any hybrid game etc.
An axiomatic rule is called surjective iff USR can instantiate it to any of its proof
rule schema instances. The axiom 〈?〉 is surjective, as it does not have any bound
variables, so its instances are admissible. Similarly rules MP and rule ∀ become
surjective [6]. The proof of the following lemma transfers from prior work [6,
Lemma 39], since any hybrid game can be substituted for a game symbol.

Lemma 22 (Surjective axioms). If φ is a dGL formula that is built only
from game symbols but no function or predicate symbols, then φ is surjective.
Axiomatic rules consisting of surjective dGL formulas are surjective.

Unfortunately, none of the axioms from Fig. 2 satisfy the assumptions of
Lemma 22. While the argument from previous work would succeed [6], the trick
to simplify the proof is to consider p(x̄) to be 〈c〉true for some game symbol c.
Then any formula ϕ can be instantiated for p(x̄) alias 〈c〉true by substituting the
game symbol c with the game ?ϕ and subsequently using the surjective axiom 〈?〉
to replace the resulting 〈?ϕ〉true by ϕ∧ true or its equivalent ϕ as intended. This
makes axioms [·], 〈?〉, 〈∪〉, 〈;〉, 〈∗〉, 〈d〉 and all axiomatic rules in Fig. 2 surjective.

With Lemma 22 to show that all schema instantiations required for complete-
ness are provable by US, USR from axioms or axiomatic rules, relative complete-
ness of dGL follows immediately from a previous schematic completeness result
for dGL [5] and relative completeness of uniform substitution for dL [6].

Theorem 23 (Relative completeness). The dGL calculus is a sound and
complete axiomatization of hybrid games relative to any differentially expressive
logic3 L, i.e., every valid dGL formula is provable in dGL from L tautologies.

3 A logic L closed under first-order connectives is differentially expressive (for dGL) if
every dGL formula φ has an equivalent φ� in L and all differential equation equiva-
lences of the form 〈x′ = θ〉G ↔ (〈x′ = θ〉G)� for G in L are provable in its calculus.
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6 Related Work

Since the primary impact of uniform substitution is on conceptual simplicity
and a significantly simpler prover implementation, this related work discussion
focuses on hybrid games theorem proving. A broader discussion of both hybrid
games and uniform substitution themselves is provided in the literature [5,6].
The approach presented here also helps discrete game logic [4], but that is only
challenging after a suitable generalization beyond the propositional case.

Prior approaches to hybrid games theorem proving are either based on differ-
ential game logic [5,7] or on an exterior game embedding of differential dynamic
logic [10]. This paper is based on prior findings on differential game logic [5] that
it complements by giving an explicit construction for uniform substitution. This
enables a purely axiomatic version of dGL that does not need the axiom schemata
or proof rule schemata from previous approaches [5,7]. This change makes it sub-
stantially simpler to implement dGL soundly in a theorem prover. The exterior
game embedding of differential dynamic logic [10] was implemented with proof
rule schemata in KeYmaera and was, thus, significantly more complex.

The primary and significant challenge of this paper compared to previous uni-
form substitution approaches [1,2,6] arose from the semantics of hybrid games,
which need a significantly different set-valued winning region style. The root-
cause is that, unlike the normal modal logic dL, dGL is a subregular modal logic
[5]. Especially, Kripke’s axiom [α](φ → ψ) → ([α]φ → [α]ψ) is unsound for dGL.

7 Conclusion and Future Work

This paper provides an explicit construction of uniform substitutions and proves
it sound for differential game logic. It also indicates that uniform substitutions
are flexible when a logic is changed. The modularity principles of uniform substi-
tution hold what they promise, making an implementation in a theorem prover
exceedingly straightforward. The biggest challenge was the semantic generaliza-
tion of the soundness proofs to the subtle interactions caused by hybrid games.

In future work it could be interesting to devise a framework for the general
construction of uniform substitutions for arbitrary logics from a certain family.
The challenge is that such an approach partially goes against the spirit of uniform
substitution, which is built for flexibility (straightforward and easy to change),
not necessarily generality (already preequipped to reconfigure for all possible
future changes). Such generality seems to require a schematic understanding,
possibly self-defeating for the simplicity advantages of uniform substitutions.
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Abstract. Logical frameworks allow the specification of deductive sys-
tems using the same logical machinery. Linear logical frameworks have
been successfully used for the specification of a number of computa-
tional, logics and proof systems. Its success relies on the fact that formu-
las can be distinguished as linear, which behave intuitively as resources,
and unbounded, which behave intuitionistically. Commutative subexpo-
nentials enhance the expressiveness of linear logic frameworks by allow-
ing the distinction of multiple contexts. These contexts may behave as
multisets of formulas or sets of formulas. Motivated by applications in
distributed systems and in type-logical grammar, we propose a linear
logical framework containing both commutative and non-commutative
subexponentials. Non-commutative subexponentials can be used to spec-
ify contexts which behave as lists, not multisets, of formulas. In addition,
motivated by our applications in type-logical grammar, where the weak-
enening rule is disallowed, we investigate the proof theory of formulas
that can only contract, but not weaken. In fact, our contraction is non-
local. We demonstrate that under some conditions such formulas may be
treated as unbounded formulas, which behave intuitionistically.

1 Introduction

Logical frameworks [7,8,13,23,33] have been proposed to specify deductive sys-
tems, such as proof systems [7,13,24,26,33], logics [7,22] and operational seman-
tics [25,27,29,33]. The systems that can be encoded depend on the expressive
power of the logical framework. Linear logical frameworks, based on Linear
Logic [6], allow the encoding of, for example, stateful systems [22,33]. Logical
Frameworks with subexponentials allow the encoding of, for example, distributed
systems [25,27], authorization logics [22]. Ordered Logical Frameworks [29] allow
the specification of systems whose behavior respects some order, for example,
evaluation strategies.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 228–245, 2018.
https://doi.org/10.1007/978-3-319-94205-6_16
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One key idea [2] of logical frameworks is to distinguish formulas according to
the structural rules (weakening, contraction and exchange rules) that are appli-
cable. For example, linear logical frameworks distinguish two types of formulas:
Unbounded Formulas which behave intuitionistically, that is, can be considered
as a set of formulas and Linear Formulas which behave linearly, that is, should
be considered as a multiset of formulas. Ordered logical frameworks also consider
Ordered Formulas which are non-commutative, that is, can be considered as a
list, not multiset, of formulas. This distinction is reflected in the syntax. Linear
logical frameworks have two contexts Θ : Γ , where Θ is a set of unbounded
formulas and Γ a multiset of linear1 formulas. Ordered linear logic, on the other
hand, has three contexts Θ : Γ : Δ where Δ is a list of ordered formulas.

Logical Frameworks with Subexponentials refine Linear Logical Frameworks
by distinguishing different types of unbounded and linear formulas. They work,
therefore, on sequents with multiple contexts. This increased expressiveness
allows for the specification of a greater number of proof systems [26] and dis-
tributed systems [27] when compared to logical frameworks without subexpo-
nentials. However, existing logical frameworks with subexponentials do not allow
ordered formulas.

Our main contribution is the logical framework SNILLF which has the follow-
ing two innovations:

1. Non-commutative Subexponentials: SNILLF allows both commutative
and non-commutative subexponentials [10]. This means that SNILLF works
not only with multiple contexts for unbounded and linear formulas, but also
multiple ordered contexts. As an illustration of the power of this system,
we encode a distributed system where machines have FIFO buffers storing
messages received from the network;

2. Proof Search with formulas that can contract, but not weaken: Moti-
vated by applications in type-logical grammar, where weakening of formulas is
not allowed, SNILLF allows formulas to be marked with subexponentials that
can contract, but not weaken. We classify such formulas as relevant. Relevant
formulas lead to complications for proof search because contracting a formula
implies that it should be necessarily used in the proof. Thus the contraction
of relevant formulas involves a “don’t know” non-determinism. This paper
investigates the proof theory of relevant formulas. We demonstrate that in
some situations it is safe (sound and complete) to consider relevant formu-
las as unbounded, that is, formulas that can both weaken and contract. We
illustrate the use relevant formulas by using SNILLF in type-logical grammar
applications.

In Sect. 2, we review the basic proof theory of non-commutative proof sys-
tems, namely Lambek Calculus, and subexponentials. Then in Sect. 3 we moti-
vate the use of non-commutatitive subexponentials and relevant formulas with
some concrete examples. Section 4 investigates the proof theory of relevant

1 Or affine which can be weakened.
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formulas. The Logical Framework SNILLF is introduced in Sect. 5 as a focused
proof system. We revisit our main examples in Sect. 6. Finally, we comment on
related and future work in Sects. 7 and 8.

2 Lambek Calculus with Subexponentials

While we assume some familiarity with Lambek Calculus [12], we review some
of its proof theory. Its rules are depicted in Fig. 1 contaning atomic formulas,
the unit constant 1, universal quantifier ∀, and binary connectives: · (product),
\ (left division) and / (right division). The formulas in the sequent should be
seen as lists, not multisets, of formulas. For example, the Γ, F1, F2,Δ−→G and
Γ, F2, F1,Δ−→G are not equivalent in general as there may be a proof for one,
but not for the other.

Fig. 1. Cut-free proof system Lambek proof system. Here {t/x} denotes the capture
avoiding substitution of x by t. Moreover, e is a fresh eigenvariable, that is, not appear-
ing in Π and F .

In our previous work [10], we proposed the proof system SNILLΣ (Subexpo-
nential Non-Commutative Intuitionistic Linear Logic)2 which extends proposi-
tional Lambek Calculus with subexponentials. Subexponentials derive from an
observation from Linear Logic [5,6,23]. Namely, the linear logic exponentials, !,
are non-canonical. That is, LL allows for an unbounded number of subexponen-
tials, !s, indexed by elements in a set of indexes s ∈ I.

Formally, SNILLΣ contains all rules in Fig. 1. Furthermore, it is parametrized
by a subexponential signature Σ = 〈I,�,W, C, E〉, where W, C, E ⊆ I and � is
a pre-order over the elements of I upwardly closed with respect to W, C, E , that
is, if s1 ∈ W and s1 � s2, then s2 ∈ W and similar for C, E . SNILLΣ contains the
following rules:

– For each s ∈ I, SNILLΣ contains the dereliction and promotion rules:

Γ1, F, Γ2 → G

Γ1, !sF, Γ2 → G
Der

!s1F1, . . . , !snFn−→F

!s1F1, . . . , !snFn−→!sF
!sR,provided, s � si, 1 ≤ i ≤ n

2 In that paper, the system was called SMALC.



A Logical Framework with Subexponentials 231

– For each w ∈ W and c ∈ C, SNILLΣ contains the rules:

Γ,Δ−→G

Γ, !wF,Δ−→G
W

Γ1, !cF,Δ, !cF, Γ2 → G

Γ1, !cF,Δ, Γ2 → G
C1

Γ1, !cF,Δ, !cF, Γ2 → G

Γ1,Δ, !cF, Γ2 → G
C2

– For each e ∈ E , SNILLΣ contains the rules:

Γ1,Δ, !eF, Γ2 → C

Γ1, !eF,Δ, Γ2 → C
E1

Γ1, !eF,Δ, Γ2 → C

Γ1,Δ, !eF, Γ2 → C
E2

Intuitively, the set I specifies the subexponential names, W the subexponentials
that are allowed to weaken, C the subexponentials that allow to contract, and E
the subexponentials that allow to exchange.

Notice additionally that contraction is non-local, that is, the contracted for-
mula can appear anywhere in left hand side of the premise.

In [10], we proved that the propositional fragment of SNILLΣ (with additive
connectives), admits cut-elimination. The following extends this result to first-
order SNILLΣ .

Theorem 1. For any subexponential signature Σ, SNILLΣ admits cut-
elimination.

The proof is essentially the same as in [10], since in the interesting cases a
formula of the form ∀x.F is never the active one, and the ∀ rules just permute
with the mix rule.

For our applications, we will consider subexponential signatures Σ = 〈I,�,
W, C, E〉 with the following restrictions:

W ⊆ E and C ⊆ E

That is, all subexponentials that can be weakened or contracted can also be
exchanged. This restriction on subexponentials will be used to establish con-
ditions for reducing “don’t know” non-determinism as we describe in Sect. 4.
Moreover, they are enough to specify our intended applications as described in
Sect. 6.

In the remainder of this paper, we will elide the subexponential signature Σ
whenever it is clear from the context.

Given the restriction above on subexponential signtures, we can classify for-
mulas of the form !sF according to the structural rules that are applicable to s:

– Linear Formulas: These formulas are not allowed to be contracted nor
weakened, that is, subexponentials s /∈ W ∪ C. Linear subexponentials range
over l, l1, l2, . . .. They can be commutative when l ∈ E or non-commutative
otherwise;

– Unbounded Formulas: These formulas can be both weakened and con-
tracted, that is, subexponentials s ∈ W ∩ C. Unbounded subexponentials
range over u, u1, u2, . . .. As W ⊆ E , these formulas are always commutative
that is u ∈ E ;
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– Affine Formulas: These formulas can only be weakened and not contracted,
that is, subexponentials s ∈ W and s /∈ C; Affine subexponentials range over
a, a1, a2, . . .. As W ⊆ E , these formulas are always commutative that is a ∈ E ;

– Relevant Formulas: These formulas cannot be weakened but can be con-
tracted, that is, subexponentials s ∈ C, s /∈ W. Relevant subexponentials
range over r, r1, r2, . . .. As C ⊆ E , these formulas are always commutative that
is r ∈ E .

Logical frameworks have been proposed with unbounded, linear and affine
formulas, but without relevant formulas. To illustrate the difficulty involving
relevant formulas, consider the following derivations with an instance of the dot
rule and contraction rules. In the derivation to the left, only the formula !uF is
contracted, while in the right the formula !rH is also contracted.

!uF, !rH,Γ−→G1 !uF,Δ−→G2

!uF, !rH,Γ, !uF,Δ−→G1 · G2

⊗R

!uF, !rH,Γ,Δ−→G1 · G2
C

!uF, !rH,Γ−→G1 !uF, !rH,Δ−→G2

!uF, !rH,Γ, !uF, !rH,Δ−→G1 · G2

⊗R

!uF, !rH,Γ,Δ−→G1 · G2
2 × C

As unbounded formulas can always be weakened, it is always safe to contract
them. If the contracted formula is needed then it can be used and if it turns
out not to be needed, the unbounded formula can be weakened before applying
the initial rule. Thus, a collection of unbounded formulas can be safely treated
as a set of formulas. This means that the non-determinism due to unbounded
formulas is a don’t care non-determinism.

The same is not the case for relevant formulas. As these formulas cannot be
weakened, provability may depend on whether one contracts a relevant formula
or not. For example, in the derivation to the right, the formula !rH has to be
necessarily used in both premises, while in the derivation to the left, the formula
!rH can only be used in the left premise. This means that the choice of contracting
a relevant formula or not involves a don’t know non-determinism.

3 Examples

We detail two different domain applications for which SNILLF can be applied.
The first is on the specification of distributed systems. The second is on type-
logical grammar.

3.1 Distributed Systems Semantics

Computer systems work with data structures which behave as sets, multisets and
as lists. As an example, consider a system with n machines called m1, . . . ,mn.
Assume that each machine has an input FIFO buffer. Whenever a machine
receives a message, it is stored at the beginning of the buffer, and the message
at the end of the buffer is processed first by a machine.

A buffer at machine mi with elements Γi is specified as the list of formulas
where start and end mark the start and end of the list [start, Γi, end]mi. Thus a
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system with n machines is specified as the collection of contexts of the form which
are associated to non-commutative subexponentials m1, . . . ,mn, respectively:

[start, Γ1, end]m1 [start, Γ2, end]m2 · · · [start, Γn, end]mn

As we describe in detail in Sect. 6, since these contexts behave as lists, the order
of the elements of the buffers allows to specify the correct FIFO behavior of such
buffers.

3.2 Type-Logical Grammar

The Lambek calculus was initially designed by Joachim Lambek [12] as a basic
logic in a framework for describing natural language syntax. The idea of such
frameworks goes back to works of Ajdukiewicz [1] and Bar-Hillel [3]; nowadays
formal grammars of such sort are called type-logical, or categorial grammars.

The idea of a type-logical grammar is simple: the central part of the grammar
is the lexicon, a finite binary correspondence � between words of the language
and formulae of the basic logic (such as Lambek Calculus). These formulae are
also called syntactic categories, or types. Thus, in this framework the grammar
is fully lexicalised, i.e., all syntactic information is kept in the types associated
to words, and one does not need to formulate “global” syntactic rules like “a
sentence is a combination of a noun phrase and a verb phrase.” The second
component of a type-logical grammar is the goal type. Usually it is a designated
variable (primitive type) S (meaning “sentence”).

A sentence w = a1 a2 . . . an is accepted by the grammar, if there exist
such formulae F1, F2, . . . , Fn that ai � Fi for 1 ≤ i ≤ n and the sequent
F1, F2, . . . , Fn → S is derivable. The language generated by the grammar is
defined as the set of all accepted sentences.

As shown by Pentus [28], grammars based on the Lambek calculus can gen-
erate only context-free languages. It is known, however, that certain natural
language structures are beyond the context-free formalism (as discussed, for
example, by Shieber [31] on Swiss German material). This also served as moti-
vation for extending the Lambek calculus with extra connectives, in particular,
subexponential modalities.

In order to show how a subexponential connective can be useful in type-
logical grammar, let us consider the following series of examples. The syntactic
analysis shown in these examples is due to Morrill and Valent́ın [19]. In our toy
grammar for a small fragment of English we associate the following types to
words:

John, Mary � N (noun phrase)
loves, signed � N \ S / N (transitive verb)

girl, paper � CN (common noun)
the � N / CN (article: transforms a common noun into a noun phrase)

without � (N \ S) \(N \ S) / GC
reading � GC / N (“reading the paper” is a gerund clause, GC)

that, whom � (CN \ CN) /(S / !sN) (dependent clause coordinator)
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The simplest example, “John loves Mary,” is justified as a correct sentence
(of type S) by the following derivation in Lambek calculus:

N → N
N → N S → S

N,N \ S → S

N,N \ S / N,N → S

There are more sophisticated syntactic constructions for which the contrac-
tion rule is used. First consider the following sentence: “John signed the paper
without reading it” (of type S), supported by the following Lambek derivation:

CN → CN

N → N

GC / N,N → GC N,N \ S, (N \ S) \(N \ S) → S

N,N \ S, (N \ S) \(N \ S) /GC,GC /N,N → S

N,N \ S / N,N, (N \ S) \(N \ S) /GC,GC /N,N → S

N,N \S / N,N / CN,CN, (N \ S) \(N \ S) /GC,GC /N,N → S

Now let us transform this sentence into a dependent clause: “the paper that
John signed without reading” (this phrase should be of type N , noun phrase).
Notice that here we removed not only “the paper,” but also “it,” forming two
gaps which should be filled with the same !sN . This phenomenon is called para-
sitic extraction and can be handled using dereliction, exchange and contraction:

N,N \ S / N,N, (N \ S) \(N \ S) / GC,GC / N, N → S

N,N \ S / N, !sN, (N \ S) \(N \ S) / GC,GC / N, !sN → S
Der

N,N \ S / N, (N \S) \(N \ S) / GC,GC / N, !sN → S
CL

N,N \ S / N, (N \ S) \(N \ S) / GC,GC / N → S / !sN N / CN,CN,CN \ CN → N

N / CN,CN, (CN \ CN) /(S / !sN), N,N \ S / N, (N \ S) \(N \ S) / GC,GC / N → N

Contraction can be used several times, generating examples like “the paper
that the editor of received, but left in the office without reading.”

Finally, the last example shows that weakening should not be allowed. Con-
sider “the girl whom John loves Mary.” This should not be a legal noun phrase,
but can be derived using weakening:

N, N \ S / N, N → S

N, N \ S / N, N, !sN → S
WL

N, N \ S / N, N → S / !sN N / CN, CN, CN \ CN → N

N / CN, CN, (CN \ CN) /(S / !sN), N, N \ S / N, N → N

Thus, the subexponential used for type-logical grammar is a relevant one; in
other words, s ∈ E , s ∈ C, s /∈ W.

4 Treating Relevant Formulas as Unbounded Formulas

Given that contraction of relevant formulas involves “don’t know non-
determinism”, during proof search, we would like to postpone (from a bottom-up
perspective) as much as possible the application of contraction of relevant formu-
las. The following lemma provides us with insight on which rules are problematic:
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Lemma 1. Contraction rules permute over all rules except rules ·R, \L, /L and
Der.

For proof search, this means that for rules R other than ·R, \L, /L and Der, it is
safe to not contract relevant formulas. This is because from the lemma above, if
there is a proof where a formula is contracted before the application of R, then
there is also a proof where the formula is contracted after R.

However, the same is not the case for ·R, \L, /L and Der. For example, it is
not possible to permute contraction over \L in the following derivation as the
occurrences of !rF are split among the premises:

Π1, !rF,Π2−→F1 Γ1, !rF, Γ2, F2, Γ3−→G

Γ1, !rF, Γ2,Π1, !rF,Π2, F1\F2, Γ3−→G
\L

Γ1, Γ2,Π1, !rF,Π2, F1\F2, Γ3−→G
CL

We analyse the rules ·R, \L, /L and Der individually and investigate how to
reduce don’t know non-determinism.

Consider the following derivation to the left containing an instance of ·R rule
where r is a relevant formula and the relevant formula !rH is moved to the right
premise. The symmetric reasoning applies if !rH is moved to the left premise.

Γ1 → F Γ2, !rH,Γ3 → G

Γ1, Γ2, !rH,Γ3 → F · G
·R

Γ ′
1 → F Γ2, !rH,Γ3 → G

Γ ′
1, Γ2, !rH,Γ3 → F · G

·R

Γ1, Γ2, !rH,Γ3 → F · G
n × CL

As !rH cannot be weakened, it should be necessarily used in the right premise.
That is, it behaves as a linear formula. How about the left premise? Since con-
traction is not local, it is possible to contract !rH as many times such that the
contracted formulas are moved to the left premise. This means that during proof
search, it is safe to consider the formula H unbounded in the left premise. If n
copies of H are used in the proof of the left premise, where n ≥ 0, we can con-
tract it as illustrated by the derivation above to the right where Γ ′

1 contains the
contracted occurrences of the formula !rH.

Similarly, consider the following instance of \L to the left where the relevant
formula !rH is moved to the left premise. A symmetric observation can be carried
out for /L.

Π1, !rH,Π2 → F Γ1, G, Γ2 → C

Γ1,Π1, !rH,Π2F \ G,Γ2 → C
\L

Π1, !rH,Π2,→ F Γ ′
1, G, Γ ′

2 → C

Γ ′
1,Π1, !rH,Π2, F \ G,Γ ′

2 → C
\L

Γ1,Π1, !rH,Π2, F \ G,Γ2 → C
n × CL

As before, since !rH cannot be weakened, it should be necessarily used in the left
premise. That is, it behaves like a linear non-commutative formula. By similar
reasoning as for ·, we can treat this formula as unbounded in the right premise.
Since contractions are non-local, we can copy !rH so that they are moved to the
right premise as illustrated by the derivation above to the right where Γ ′

1, Γ
′
2

contain the contracted occurrences of the formula !rH.
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The same reasoning applies for relevant formulas moved to the right premise.
It is safe to consider the formula H as unbounded in the left premise.

The leads to the our first key observation:

Key Observation 1: During proof search, any relevant formula moved to one
premise of ·R, \L, /L can be considered unbounded in the other premise.

Finally, consider the following instance of DerL on a relevant formula:

Γ1,H, Γ2−→G

Γ1, !rH,Γ2−→G
Der

Applying the same reasoning as above, the formula !rH can be treated as
unbounded as one can make as many copies as needed before the dereliction.
This leads to the following key observation:

Key Observation 2: During proof search, any relevant formula derelicted by
Der can be considered unbounded in its premise.

Example 1. Consider the derivation below left with the relevant formula !rA:

!rA−→A
Der, I

A′−→A · A′ · A

!rA, A \ A′−→A · A′ · A
\L

!rA−→A
Der, I

!rA, A′−→A · A′ · A

!rA, A \ A′−→A · A′ · A
\L

Following the Key Observation 1 above, as !rA is moved to the left premise, we
can treat !rA as unbounded in the right premise. This is denoted by the formula
!rA as shown in the derivation to the right. We can now prove the right premise
using !rA as illustrated by the derivation Ξ below. (Recall unbounded formulas
can be contracted safely):

Ξ =

!rA−→A
Der, I A′−→A′ I

!rA,A′−→A′ WL !rA−→A
Der, I

!rA,A′−→A · A′ · A
2 × ·R

Notice that it may seem unsound to weaken !rA in the middle branch. How-
ever, as we can control the number of times !rA is contracted, we can transform
this derivation into a SNILL proof: In particular, we can infer from Ξ that we
require two copies of !rA. Thus the corresponding SNILL proof starts with two
contractions:

!rA−→A
Der, I

!rA,A′, !rA−→A · A′ · A

!rA, !rA,A \ A′, !rA−→A · A′ · A
\L

!rA,A \ A′−→A · A′ · A
2 × CL

It remains to construct a proof based on Ξ.
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Example 2. Given that we allow non-local contractions, one could expect that
Key Observation 1 would also work for non-commutative relevant subexponen-
tials s such that s ∈ C and s /∈ E ∪ W. However this is not true in general.
Consider the following derivation where we attempt to use Key Observation 1,
that is, where !sA is treated as an unbounded formula:

!sA−→A

!sA,A1, A2−→A1 · A · A2

!sA,A1 · A2−→A1 · A · A2

!sA−→(A1 · A2 /A1 · A · A2)
!sA−→A · (A1 · A2 / A1 · A · A2)

In the open premise, it would be tempting to move !sA to the place between
A1 and A2 and finish the “proof”. However, the resulting derivation would not
correspond to a valid SNILL proof as it is not possible to contract the original
!sA so that it is placed exactly between A1 and A2. While we conjecture that
this could be solved by also recalling the places where relevant formulas can
be contracted, we leave this investigation for future work. Moreover, such non-
commutative relevant formulas are not needed for our applications here.

5 Focused Proof System for SNILL

Logical frameworks are defined proof theoretically by a focused proof system.
This section introduces the focused proof system SNILLF for SNILL. We prove
that SNILLF is sound and complete with respect to SNILL.

First proposed by Andreoli [2] for Linear Logic, focused proof systems
reduce proof search space by distinguishing rules which have don’t know non-
determinism, classified as positive, from rules which have don’t care non-
determinism, classified as negative. For SNILL, the rules ·R, \L, /L,∀L are positive
rules and the rules ·L, \R, /R,∀R are negative. Formulas of the form F · G and
!sF and 1 are classified as positive while the remaining formulas as negative.

SNILLF sequents are constructed using the following four types of contexts:

– Commutative Contexts (K): A commutative context K maps a commu-
tative subexponentials s ∈ E to a set of formulas if s ∈ W ∩ C, that is, it is
unbounded, and to a multiset of formula otherwise. Intutively, such a context
K denotes the formulas: K[s1],K[s2], . . . ,K[sn] where {s1, . . . , sn} = E ;

– Unrestricted Relevant Context (Ru): An unrestricted context Ru maps
relevant subexponentials r ∈ C and r /∈ W to sets of formulas. Intuitively,
this context stores the relevant formulas which can be treated as unbounded.
Using the notation in Sect. 4, Ru represents the formulas Ru[r1], . . . ,Ru[rn],
where {r1, . . . , rn} is the set of all relevant subexponentials;

– Subexponential Boxes: [F1, . . . , Fk]s where s /∈ E and F1, . . . , Fk is a list,
not a multiset, of formulas. This box should be interpreted as the list of
formulas !sF1, . . . , !sFk;
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– Unmarked Boxes: [F1, . . . , Fk ⇑ G1, . . . , Gm], where F1, . . . , Fk and
G1, . . . , Gm are both lists, not multisets, of formulas. This box should be
interpreted as the list of formulas F1, . . . , Fk, G1, . . . , Gm. When m = 0, we
write such box as [F1, . . . , Fk]�.

We use NC and its variants to denote a sequence of boxed formulas (Subexponen-
tial Boxes and Unmarked Boxes). We write NC� whenever all unmarked boxes
are of the form [F1, . . . , Fk]�. We define the set NC[s] = {F | [Γ1, F, Γ2]s ∈ NC}.
Also, if NC1 = [Γ1]s1 · · · [Γ ]si and NC2 = [Δ]si · · · [Γ ]sn , then NC1·NC2 is defined
to be [Γ1]s1 · · · [Γi,Δ]si · · · [Γn]sn . Empty boxes [·]s, [·]� are always elided. These
also act as identity elements, that is [F1, . . . , Fn]s · []s = [F1, . . . , Fn]s and sim-
ilarly for unmarked boxes. Finally, we define the following auxiliary operations
on commutative contexts:

K[S] =
⋃

s∈S K[s] (K +s F )[s′] =
{K[s′] � {F} if s′ = s

K[s′] otherwise

(K1⊗K2)[s] =
{K1[s] � K2[s] if s /∈ W ∩ C

K1[s] otherwise K ≤s=
{K[s1] if s � s1

∅ otherwise

(K1 � K2) |S is true if and only if for all s ∈ S,K1[s] � K2[s], for � ∈ {⊂,⊆,=}
Similar operations are also defined (mutatis mutandis) for Unrestricted Relevant
Contexts (Ru). These operations are similar to the ones proposed in [23] used
in the formalization of the side conditions of the rules for proof systems with
subexponentials.

The rules for the focused proof system SNILLF for SNILL are depicted in
Fig. 2. They contain the following types of sequents:

– Negative: K : Ru : NC1, [Δ ⇑ Γ ],NC2−→G and K : Ru : NC−→[⇑ F ]. Here
G can be either [⇑ F ] or [F ]. Moreover, Γ,Δ are lists of formulas.

– Positive: K : Ru : NC�−→[⇓ F ] and K : Ru : NC�
1 [⇓ F ] NC�

2−→[G]s. In
the former, the formula F on the r.h.s. is focused on and the latter on the
l.h.s.;

– Decision: K : Ru : NC�−→[G]: Sequents at the border of negative and
positive phases.

During the negative phase, formulas (Δ) to the right of Unmarked Boxes
([Γ ⇑ Δ]) are introduced or moved to the left (Γ ) or to other contexts using the
Reaction rules ⇑L,⇑R. Notice the negative rule !ne. There since the formulas Δ
are all not marked with subexponentials, the rule creates a new box [Δ]�.

Once a negative phase ends, that is, all unmarked boxes are of the form
[Γ ]�, one should decide in a formula to focus on using one of the Decide Rules.
Decide rules implicitly apply the Dereliction rule whenever applicable. The rules
Du,Dnc,Dr choose a formula marked with a subexponential for which exchange
rule applies. Therefore, one can place F any where in the context. This Dnc

which forces the formula F to be where it is. It also causes the box where the
formula is to be split. Finally, notice that if an unbounded formula is focused
on then it is contracted (as in Andreoli’s original system). Moreover following
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Fig. 2. SNILLF: focused proof system for SNILL. Here P is a positive formula; Na is a
negative or atomic formula; Pa is a positive or atomic formula; e is a fresh eigenvariable,
not appearing in K, Ru, NC, F ; e ∈ E ; ne /∈ E ; u ∈ W ∩ C ∩ E ; nc /∈ C; r ∈ C and r /∈ W.



240 M. Kanovich et al.

Key Observation 2 described Sect. 4, whenever a relevant formula is added to
the context Ru and is treated as an unbouded formula.

In the positive phase, one can only introduce the formula that is focused on.
The rules \L, /L, ·R implement the Key Observation 1 described in Sect. 4. That
is, all relevant formula moved to one premise are added to the Ru context of
the other premise and treated as unbounded formulas in that premise. This is
specified by the side conditions of that rule.

For soundness of SNILLF with respect to SNILL, we rely on the transforma-
tions described in Sect. 4, namely, that is sound to consider relevant formulas
as unbounded in some premises. Given this result, soundness just amounts to
erasing the focusing annotations and replacing contexts by formulas. For com-
pleteness of focusing, we use the modular technique proposed in [14] based on
the following permutation lemmas. Lemma 2 justifies the eager application of
negative rules (negative phase). Lemma 3 justifies the preservation of focusing
in the positive phase.

Lemma 2. All positive rules permute over all negative rules.

Lemma 3. All positive rules permute over all positive rules.

Theorem 2. Let Σ = 〈I,�,W, C, E〉 be a subexponential signature with C,W ⊆
E. Let K∅ and Ru

∅ be the empty contexts, that is, K[s] = Ru[s] = ∅ for all s. For
any subexponential signature, the sequent Γ−→G is provable in SNILLΣ if and
only if the sequent K∅ : Ru

∅ : [· ⇑ Γ ]−→[⇑ G] is provable in SNILLFΣ.

6 Applications

We illustrate the power of SNILLF by revisiting the examples described in Sect. 3.

6.1 Distributed Systems

Assume a subexponential signature Σ = 〈I,�,W, C, E〉 where I =
{u,N,m1, . . . ,mn}, � is the reflexive relation, that is i � j, then i = j, E = {u,N}
and C = W = {u}. Intuitively, we use the subexponential mi to specify machine
mi’s buffer, N to specify the messages sent on the network and u to specify
the behavior of the system. Notice that as there are no relevant formulas Ru is
always empty and therefore elided.

A buffer at machine mi with elements Γi is specified as the list of formulas
where start and end mark the start and end of the list [start, Γi, end]mi. Thus a
system with n machines is specified as the collection of formulas:

NC = [start, Γ1, end]m1 [start, Γ2, end]m2 · · · [start, Γn, end]mn

For a better presentation, instead of using the context K, we show the formulas
in the sequent explicitly where K[u] = U and K[N] = N :

U : N : NC−→G
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Notice that since buffers are lists of formulas, we use non-commutative subex-
ponentials to specify them. However, messages on the network are not necessarily
delivered in a particular order. Moreover, messages should be consumed exactly
once. Therefore, we use the commutative subexponential N to mark these mes-
sages.

We now describe how to specify the transmission of messages between
machines. For our example, assume two collections of messages synmj, ackmj spec-
ifying, respectively, a synchronization message from mj and an acknowledgement
message to mj. Whenever a machine mi processes the message synmj, it sends the
message ackmj to mj.

The following two clauses specifies this behavior:

Deq(i, j) = !misynmj · !miend \ !miend · !N ackmj

Enq(i, j) = !mjstart · !mjackmj / !Nackmj · !mjstart

Deq(i, j) specifies the processing of synmj sending ackmj to the network and
Enq(i, j) the receival of ackmj.

The correctness of this encoding can be easily visualized using focusing. Con-
sider two machines 1, 2. The focused derivation introducing Deq = Deq(1, 2)
is necessarily of the following form where M2 = [start, Γ2, end]m2 and Θ =
Deq(1, 2),Enq(1, 2):

Θ : · : [synm2, end]m1−→[⇓ !m1synm2 · !m1end]

Θ : N , ackm2 : [start, Γ1, end]m1 M2−→[G]

Θ : N : [start, Γ1]m1, [⇑ !m1end · !N ackm2] M2−→[G]

Θ : N : [start, Γ1]m1, [⇓ !m1end · !N ackm2] M2−→[G]
Θ : N : [start, Γ1, synm2, end]m1, [⇓ Deq] M2−→[G]

Θ : N : [start, Γ1, synm2, end]m1,M2−→[G]

Notice that the messages in the network N are necessarily moved to the
right premise, i.e., no message is lost. Otherwise, the introduction of !m1 to the
left would fail since N does not allow weakening and m1 � N. Moreover, notice
that Deq can only be focused on at the location shown above (to the left of
M2). Otherwise, the formula !m1end would not be provable: if it is focused not
adjacent to a end atom then it would not be provable, and if it is focused to the
right of M2, then one could not introduce !m1. Finally, the message synm2 should
necessarily appear at the end m1’s buffer.

A similar exercise can be carried out when focusing on Enq = Enq(1, 2). In
this case, the message ackm2 should be necessarily in N and moreover, an element
is added to the beginning of the buffer of m2. The corresponding derivation is
elided.

6.2 Type-Logical Grammar

We return to the sentence “the paper that John signed without read-
ing” described in Sect. 3. The focused proof system SNILLF consider-
ably reduces the proof search space for validating this sentence. Assume
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just a single relevant subexponential r. The corresponding focused proof
is as follows where Γ = CN, (CN \ CN) /(S / !rN), Γ1 and Γ1 =
N,N \ S / N, (N \ S) \(N \ S) / GC,GC / N . Moreover, we write explicitly the
elements of K and Ru as in the previous section.

· : · : [⇓ N ] → [N ] I

· : · : [Γ1]� → [⇓ S / !rN ] · : · : [CN ]� [⇓ CN \ CN)] → [CN ]
· : · : [CN ]� [⇓ (CN \ CN) /(S / !sN)] [Γ1]� → [CN ]

/L

· : · : [Γ ]� → [CN ]
DL

· : · : [⇓ N \ CN ] [Γ ]� → [N ]
/L

· : · : [⇑ N \ CN,Γ ] → [N ]
7× ⇑L,DL

Continuing the left premise, we obtain the following derivation, we release
focus and apply /R. At this point, the relevant formula !rN is moved to the
commutative context:

N : · : [GC / N ] → [GC]

· : N : [N \ S / N ]� → [⇓ (N \ S)] · : N : [N ]�[⇓ N \ S] → [S]

· : N : [N,N \S / N ]� [⇓ (N \ S) \(N \ S)] → [S]
2 × /L

N : · : [N,N \ S / N ]� [⇓ (N \ S) \(N \ S) / GC] [GC / N ]� → [S]
N : · : [Γ1]� → [S]

DL

· : · : [Γ1]� [⇑ !rN ] → [S]
!rL

When compared to the derivation in Sect. 3, focusing reduces proof search in
two different ways. First, the proof follows a “back-chaining” strategy [8]. This
means that one decides on a formula that can immediately prove the goal. For
example, decide on the formula N \ GC. Search fails immediately if one decides
on other formulas. The second way is on deciding when to contract the formula
!rN . Indeed, in the derivation above, when the formula N is moved to the left-
most branch, it is treated as unbounded in the remaining two branches. This
means that one can freely use it as in the middle branch or not as in the right
branch.

7 Related Work

Logical Frameworks. When compared to existing logical frameworks, SNILLF
has an increased expressiveness. When compared to Intuitionistic Linear Logical
(ILL) Frameworks [8,33], SNILLF also allows ordered and relevant formulas. It
also seem possible to encode Ordered Logical Frameworks [29,30] in SNILLF. In
particular, one should only consider three subexponentials, one unbounded, one
linear (or affine) and another non-commutative. The resulting system behaves
similarly to Ordered Logical Frameworks. Moreover, ILL frameworks with subex-
ponentials do not consider relevant formulas. It seems possible to apply the ideas
here for reducing “don’t know non-determinism” in the same way as done here. A
proof of the focusing completeness theorem for the ordered logic [29] is detailed
in the technical report [32]. We believe that work could also be extended to prove
the completeness of SNILLF.
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Finally, as SNILLF is intuitionistic, it cannot be directly compared to classical
logical frameworks such as Forum [13] and Classical Linear Logic with Subex-
ponentials [21]. We leave the proposal of a classical version of SNILLF to future
work.

Type-Logical Grammar. A structural modality closely related to the relevant
subexponential discussed above is used in the CatLog theorem prover and type-
logical grammar parser, which is an ongoing project of Glyn Morrill and his group
in Barcelona [17,18]. The difference of the calculus used in CatLog in comparison
to our system is the use of bracket modalities that introduce controlled non-
associativity and also interact with the relevant subexponential in a non-trivial
fashion (see [19] for more details). Bracket modalities are used to block unwanted
derivations like “the girl whom John loves Mary and Pete loves” or “the paper
that John signed the article without reading.” (Both examples are incorrect from
the point of view of English grammar, but accepted by the grammar discussed
above.) As shown by Kanovich et al. [9], the derivability problem for the Lambek
calculus with bracket and subexponential modalities is undecidable. There exists,
however, a natural decidable fragment, which is actually used in CatLog. This
fragment belongs to the NP class, and CatLog utilises several techniques and
heuristics in order to speed-up the parsing procedure. In particular, it uses count-
invariants for pruning proof search [11] (which generalise multiplicative count-
invariants by van Benthem [4]) and focusing for reducing spurious ambiguity. For
the multiplicative-additive fragment focusing for the system used in CatLog is
discussed in detail in [20]; completeness of focusing for the full set of connectives
used in CatLog, including subexponential, is left by Morrill as a topic for further
research [18].

There also exist other type-logical grammar frameworks based on different
variants of the Lambek calculus. A notable one is the Grail system developed by
Moot [16] on the basis of Moortgat’s multi-modal extension of the non-associative
Lambek calculus [15]. Like the subexponential extension of the Lambek calculus
discussed in this paper, Moortgat’s system uses an indexed family of structural
connectives.

8 Conclusions

This paper introduced the logical framework SNILLF which allows for both com-
mutative and non-commutative subexponentials. We demonstrate the power of
SNILLF by specifying the structural semantics of distributed systems with buffers
and specifying type-logical grammars. For the latter, SNILLF uses commutative
relevant formulas, that is, formulas !sF that can contract, but not weaken. We
investigate the proof theory of such formulas in order to reduce “don’t know non-
determinism” involved demonstrating that under some conditions, these formu-
las can be treated as unbouded. We believe that this paper lays the foundations
for the development of concrete systems for, e.g., type-logical grammars.
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We are currently investigating a number of future work directions. We intend
to investigate through prototype implementations the impact of SNILLF for cat-
egorial parsers. Such an implementation will help us investigate possible further
uses of subexponentials for capturing other grammatical constructions. From the
proof theory, we are investigating how to reduce the “don’t know non-determism”
of non-commutative relevant formulas. We are also investigating classical ver-
sions for SNILLF following our previous work [10].
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Abstract. We consider the problem of solving floating-point constraints
obtained from software verification. We present UppSAT—an new imple-
mentation of a systematic approximation refinement framework [21] as
an abstract SMT solver. Provided with an approximation and a deci-
sion procedure (implemented in an off-the-shelf SMT solver), UppSAT
yields an approximating SMT solver. Additionally, UppSAT includes a
library of predefined approximation components which can be combined
and extended to define new encodings, orderings and solving strategies.
We propose that UppSAT can be used as a sandbox for easy and flexi-
ble exploration of new approximations. To substantiate this, we explore
encodings of floating-point arithmetic into reduced precision floating-
point arithmetic, real-arithmetic, and fixed-point arithmetic (encoded
into the theory of bit-vectors in practice). In an experimental evaluation
we compare the advantages and disadvantages of approximating solvers
obtained by combining various encodings and decision procedures.

1 Introduction

The construction of satisfying assignments of a formula, or showing that no
such assignments exist, is one of the most central tasks in automated reasoning.
Although this problem has been addressed extensively in research fields includ-
ing constraint programming, and more recently in Satisfiability Modulo Theories
(SMT), there are still constraint languages and background theories where effec-
tive model construction is challenging. Such theories are, in particular, arithmetic
domains such as bit-vectors, nonlinear real arithmetic (or real-closed fields), and
floating-point arithmetic; even when decidable, the high computational complex-
ity of such problems turns model construction into a bottleneck in applications
such as model checking, test-case generation, or hybrid systems analysis.

In several recent papers, the notion of approximation has been proposed
as a means to speed up the construction of (precise) satisfying assignments.
Generally speaking, approximation-based solvers follow a two-tier strategy to
find a satisfying assignment of a formula φ. First, a simplified or approximated
version φ̂ of φ is solved, resulting in an approximate solution m̂ that (hopefully)

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 246–262, 2018.
https://doi.org/10.1007/978-3-319-94205-6_17
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lies close to a precise solution. Second, a reconstruction procedure is applied
to check whether m̂ can be turned into a precise solution m of the original
formula φ. If no precise solution m close to m̂ can be found, refinement can be
used to successively obtain better, more precise, approximations.

This high-level approach opens up a large number of design choices, some of
which have been discussed in the literature. The approximations considered have
different properties; for instance, they might be over- or under-approximations
(in which case they are commonly called abstractions), or be non-conservative
and exhibit neither of those properties. The approximated formula φ̂ can be
formulated in the same logic as φ, or in some proxy theory that enables more
efficient reasoning. The reconstruction of m from m̂ can follow various strate-
gies, including simple re-evaluation, precise constraint solving on partially eval-
uated formulas, or randomised optimisation. Refinement can be performed with
the help of approximate assignments m̂, using proofs or unsatisfiable cores, or
be independent of the actual reason for failure. The only requirement is that
approximations are improved in such a way that finally a most precise approxi-
mation is reached (a “non-approximation” so to speak), in which case UppSAT
will fall back on a back-end, thus guaranteeing that the final result is correct.

In this paper we focus on the case of (quantifier-free) floating-point arith-
metic (FPA) constraints, a particularly challenging domain that has been studied
extensively in the SMT context over the past few years [4,13,14,19–21]. To enable
uniform exploration of approximation, reconstruction, and refinement methods,
as well as simple prototyping and comparative studies, we present UppSAT1 as a
general framework for building approximating solvers. UppSAT is implemented
in Scala, open-sourced under the GPL license, and allows the implementation of
approximation schemes in a modular and high-level fashion, such that different
components can easily be combined with various back-ends. At this point, we
exclusively focus on satisfiable benchmarks, and note that in the current ver-
sion of UppSAT unsatisfiable benchmarks will never be solved faster than by
the chosen back-end. This is because a definite statement about unsatisfiability
can only be made after reaching the most precise approximation, which means
that the back-end has to show unsatisfiability of the original, non-approximated
formula. Techniques for unsatisfiable problems are given in [21].

With the help of the UppSAT framework we explore several ways of approx-
imating SMT reasoning for FPA. The main contributions of this paper are:

– a conceptual framework for defining approximations in a modular way, with
the help of a library of approximation components that can easily be instan-
tiated and combined, and which are implemented in the UppSAT tool.

– detailed definition of three concrete FPA approximations within the UppSAT
framework: reduced-precision approximation [21]; fixed-point approximation;
and real arithmetic approximation.

– an extensive experimental evaluation of all three approximations, considering
as back-end solvers the decision procedures available in Z3 [11] and Math-
SAT5 [7]. This evaluation confirms that approximations can significantly

1 https://github.com/uuverifiers/uppsat/releases/tag/v0.5-alpha.

https://github.com/uuverifiers/uppsat/releases/tag/v0.5-alpha
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boost the performance of bit-blasting-based FPA solvers, but interestingly
do not help much in combination with the ACDCL solver of MathSAT5.

1.1 Related Work

The SMT solvers MathSAT5 [7], Z3 [11], and Sonolar [17] feature bit-precise
conversions from FPA to bit-vector constraints, known as bit-blasting, and rep-
resent the currently most commonly used solvers in program verification. As
we show in our experiments, the performance of bit-blasting can be boosted
significantly with the help of our approximation approach. An alternative, con-
straint programming-based approach to solve FPA constraints is implemented in
COLIBRI [1]. We became aware of this solver only late and have thus not been
able to make a thorough experimental comparison, but note that it does display
competitive performance. As future work, it would in particular be interesting
to experiment with COLIBRI as a back-end solver in UppSAT.

A general framework for decision procedures is Abstract CDCL, introduced
by D’Silva et al. [12], which was also instantiated for FPA [3,13]. This approach
relies on the definition of suitable abstract domains (as defined for abstract
interpretation [8]) for constraint propagation and learning.

The work presented in this paper builds on previous research on the use of
approximations for solving FPA constraints [20,21]. UppSAT is also close in spirit
to the framework presented by Ramachandran and Wahl [19] for efficiently solv-
ing FPA constraints based on the notion of ‘proxy’ theories, which correspond to
our ‘output theories’. This framework applies a sophisticated method of recon-
struction, by applying a fall-back FPA solver to a version of the input constraint
in which all but one variables have been substituted by their value in a failing
candidate model. Such reconstruction could also be realized in UppSAT, and an
implementation in UppSAT is planned as future work.

A further recent approximation-based solver for FPA is XSat [14]. In XSat,
reconstruction of models is implemented with the help of randomized optimiza-
tion, which results in good performance, but does not give rise to a decision
procedure (incorrect sat/unsat results can be produced).

Specific instantiations of abstraction schemes in related areas also include
the bit-vector abstractions by Bryant et al. [6] and Brummayer and Biere [5], as
well as the (mixed) floating-point abstractions by Brillout et al. [4].

There is a long history of formalization and analysis of FPA concerns using
proof assistants, among others in Coq by Melquiond [18] and in HOL Light by
Harrison [15]. Coq has also been integrated with a dedicated FPA prover called
Gappa by Boldo et al. [2], which is based on interval reasoning and forward error
propagation to determine bounds on arithmetic expressions in programs [10].
The ASTRÉE static analyzer [9] features abstract interpretation-based analyses
for FPA overflow and division-by-zero problems in ANSI-C programs.

2 Reduced-Precision FPA by Example

We begin by illustrating key notions of the UppSAT framework using the
reduced-precision floating-point approximation (RPFP). This approximation
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Fig. 1. The approximation refinement algorithm implemented by UppSAT.

uses floating-point operations of reduced precision, i.e., with fewer bits for the
exponent and significand. Approximations of this kind have previously been
studied in [20,21], and found to be an effective way to boost the performance
of bit-blasting-based SMT solvers, since the size of FPA circuits tends to grow
quickly with the bit-width. The approximation encodes the same floating-point
constraints, but over smaller floating-point domains, resulting in a smaller propo-
sitional formula.

The UppSAT framework implements an abstract approximating SMT solver
with the solving algorithm shown in Fig. 1. The framework relies on a back-
ground solver providing the checkSAT routine, reasoning about approximated
formulas, while the other (green) boxes have to be implemented in order to
specify an approximation. We showcase these elements using an example on
the RPFP approximation with the following floating-point formula φ over two
single-precision floating-point variables x and y:

y = x + 1.75 ∧ y ≥ 0 ∧ (x = 2.0 ∨ x = −4.0) (1)

The rounding mode of the addition operation is omitted and assumed to be
RoundTowardZero in this example. The formula can be satisfied by the model
m = {x �→ 2.08,24, y �→ 3.758,24}, mapping to single-precision values which use
8 bits to represent the exponent and 24 bits for the significand, denoted FP8,24.

The RPFP approximation initially encodes the formula in the FP3,3

floating-point format, i.e., the format using 3 bits for the exponent, and 3 bits for
the significand. The approximate formula φ̂3,3 is obtained by replacing the single-
precision variables x and y with re-typed variants x3,3, y3,3, casting all floating-
point literals to the new format, and replacing the addition operator + and
comparison predicates = and ≤ with the operator +3,3 and the predicates =3,3
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and ≥3,3 for reduced-precision arguments (we omit the subscripts for the oper-
ators and predicates for aesthetic reasons, except where relevant):

y3,3 = x3,3 + 1.753,3 ∧ y3,3 ≥ 03,3 ∧ (x3,3 = 2.03,3 ∨ x3,3 = −4.03,3) (2)

Though φ̂3,3 is satisfiable, its models might not be models of the original
formula. The models might satisfy the reduced-precision formula only because
of over/under-flows and rounding errors in the FP3,3 domain, e.g.:

m̂ = {x �→ 2.0, y �→ 3.5} (3)

satisfies φ̂3,3 because 2.03,3 + 1.753,3 = 3.53,3 when the rounding mode is
RoundTowardZero.

To determine whether the approximate solution is indeed a solution for the
original formula, we decode the model m̂ into a candidate model m, by cast-
ing the model values from the FP3,3 representation to their FP8,24 represen-
tation. The represented values do not change, but the number of bits used to
represent them does. Model reconstruction checks whether the original con-
straints are satisfied by the decoded model and can even make adjustments to
the model. A näıve model reconstruction strategy would determine that the can-
didate model m based on m̂ does not satisfy formula φ, because 2.0+1.75 �= 3.5
in single-precision floating-point arithmetic, and would not attempt to correct
the failed model. Therefore we need to refine the approximation, and a simple
strategy is to increase the precision of every node by the same amount, yielding
for instance (after encoding):

y5,5 = x5,5 + 1.755,5 ∧ y5,5 ≥ 05,5 ∧ (x5,5 = 2.05,5 ∨ x5,5 = −4.05,5) (4)

This formula has sufficient bit-width to avoid rounding errors, and the model:

m̂2 = {x �→ 2.0, y �→ 3.75} (5)

which is also a model for the original formula. As a side remark, another pos-
sibility would be to identify that the cause of the imprecision is that the value
y is not correctly represented. Thus it would be necessary only to increase the
precision of y (along with predicates and operators involving y):

y5,5 = x3,3 +5,5 1.753,3 ∧ y5,5 ≥ 03,3 ∧ (x3,3 = 2.03,3 ∨ x3,3 = −4.03,3) (6)

This example shows how the solving proceeds when an approximate solution
is found, depicted by the left cycle in Fig. 1, and exiting with a SAT answer. The
right cycle in Fig. 1 corresponds to the case when the approximation does not
have a model. The satRefine and unsatRefine can implement different refine-
ment strategies, based on models and proofs/unsatisfiable cores, respectively. In
general, the algorithm might take a number of iterations before finding a model
(or concluding that the problem is unsatisfiable).

Theorem 1 (Correctness, paraphrased from [21]). The framework pre-
serves termination, soundness, and completeness of the back-end procedure, pro-
vided that: 1. maximal precision 	 is reached within a finite amount of steps;
and 2. no approximation takes place at maximal precision.
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AppContext

ModelReconstruction
def reconstruct (...)

Codec
def encode (...)

def decode (...)

ModelGuidedRefinement
def satRefine (...)

ProofGuidedRefinement
def unsatRefine(...)

Fig. 2. The basic traits necessary to specify an approximation in UppSAT

0 object RPFPApp
1 extends RPFPContext
2 with RPFPCodec
3 with EAAReconstruction
4 with RPFPModelRefinement
5 with RPFPProofRefinement

Fig. 3. RPFP as a Scala object.

0 trait RPFPContext extends AppContext {
1 val inTheory = FPTheory
2 val outTheory = FPTheory
3 type Prec = Int
4 val pOrdering = new IntPOrder (0 ,5)
5 }

Fig. 4. Approximation context for RPFP.

3 Specifying Approximations in UppSAT

In this section we show how to specify approximations in UppSAT, using the
example of the RPFP approximation from Sect. 2 and [20,21]. It should be
remarked that one of the design goals of UppSAT is the ability to define approxi-
mations in a convenient, high-level way; the code we show in this section is mostly
identical to the actual implementation in UppSAT, modulo a small number of
simplifications for the purpose of presentation.

Reduced-Precision FPA Approximation in UppSAT. An approximation
consist of: an approximation context, a codec, a model reconstruction strategy,
and a refinement strategy for model- and proof-guided refinement. In UppSAT
these components are implemented using several Scala mix-in traits that agree
on the signature of the approximation, represented by the shared AppContext
trait in Fig. 2. The traits are simply combined into an approximation object
which will be used by the UppSAT solver. The Fig. 3 shows the object RPFPApp
implementing the reduced-precision floating-point approximation by combining
instances of the traits shown in Fig. 2 that all extend the RPFPAppContext.
Using traits enables the modular mix-and-match approximation design. In the
following paragraphs, we present the key points of reduced precision floating-
point approximation through its component traits.

Approximation Context. An approximation context specifies input and output
theory, a precision domain and a precision ordering. Figure 4 shows the specifi-
cation of RPFPContext, the approximation context object for the reduced pre-
cision floating-point (RPFP) approximation, which approximates floating-point
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constraints by scaling them down to a smaller floating-point sort, as presented
in Sect. 2. Therefore, both the input and the output theories are the quantifier-
free theory of FPA (FPTheory). The precision is associated with each node in
the formula tree and uniformly affects both the exponent and the significand,
so a scalar data type Prec = Int is sufficient to represent precision. In particular,
we choose integers in the range [0, 5] with the usual ordering as the precision
domain, thus yielding a linear sort scaling which consists of 6 sorts, starting
with FP3,3 and scaling up to (and including) the original sort (implemented by
scaleSort in Fig. 5). In general, a precision domain can range over tuples of
any size, but in order to preserve completeness and termination, for the case of
decidable theories, we assume that every precision domain contains a top ele-
ment 	, and that precision domains satisfy the ascending chain condition (every
ascending chain is finite) [21].

Codec. The RPFPCodec trait implements the encoding of the formula and the
decoding of the approximate model. UppSAT provides general traits that imple-
ment the encode and decode methods using a post-order visitor pattern over
formulas (PostOrderCodec). This allows the codec to be implemented by imple-
menting the two hook functions that work over nodes in the formula tree.

The function encodeNode, shown in Fig. 5 shows how the approximation
scales-down the sort of floating-point variables and operations, while keeping
the high-level structure of the formula. Scaling is performed based on precision
values, with the exception of predicates, which are scaled dynamically based
on the maximum sort of its arguments. Constant literals and rounding modes
remain unaffected by this encoding. There is no guarantee that the sorts of
nodes of different precisions will match, so cast operations are used to ensure
well-sortedness. To ensure consistency of the approximate models, all occurrences
of a variable share the same precision.

After the back-end solver returns a model of the approximate constraints,
the decodeNode function casts variable assignments to their sort in the original
formula. For example, the formula φ from Sect. 2 over single-precision floating-
point variables is encoded as the formula φ̂3,3. A checkSAT call returns a model
m̂ = {x �→ 2.03,3; y �→ 3.53,3}. Decoding will cast the values of the approximate
model to their original sort (the values will not change, only their sorts), resulting
in m = {x �→ 2.08,24; y �→ 3.58,24}.

Model Reconstruction Strategy. A model reconstruction strategy specifies how to
obtain a model of the input constraints starting from the decoded model. Since
the RPFP approximation retains the Boolean structure of the original formula,
a simple strategy to obtain a reconstructed model is by ensuring that the same
atomic constraints are satisfied. Reconstruction chooses a subset of the atoms
occurring in the formula, called the critical atoms, which if evaluated identically
as in the approximate model guarantee that the formula is satisfied; this means,
the conjunction of the critical atoms is an implicant of the formula.
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0 trait RPFPCodec extends RPFPContext with PostOrderCodec {
1 def scaleSort ( node : AST , p : Int , children : List [ AST ] ) = {
2 node . symbol match {
3 case _ : FloatingPointPredicateSymbol => {
4 val sorts = children . filterNot (_ . isLiteral ) . map (_ . symbol . sort )
5 sorts . foldLeft ( sorts . head ) ( fpsortMaximum (_ , _ ) )
6 }
7 case _ : FloatingPointFunSymbol => {
8 val FPSort ( eBitWidth , sBitWidth ) = sort
9 val eBits = 3 + (( eBitWidth − 3) ∗ p ) /pOrder . maxPrecision

10 val sBits = 3 + (( sBitWidth − 3) ∗ p ) /pOrder . maxPrecision
11 FPSort ( eBits , sBits )
12 }
13 case _ => sort
14 }
15 }
16 def encodeNode ( node : AST , children : List [ AST ] , p : Int ) = {
17 val sort = scaleSort ( node , p , children )
18 val castChildren = children . map ( cast (_ , sort ) )
19 val symbol = encodeSymbol ( node . symbol , sort , castChildren )
20 AST ( symbol , node . label , castChildren )
21 }
22 def decodeNode ( args : ( Model , PrecMap [ Prec ] ) , decodedModel : Model ,
23 node : AST ) = {
24 val ( appModel , pmap ) = args
25 val AST ( symbol , label , _ ) = node
26 val decodedValue = decodeFPValue ( symbol , appModel ( node ) , pmap ( label ) )
27 decodedModel . set (ast , Leaf ( decodedValue ) )
28 decodedModel
29 }
30 }

Fig. 5. Reduced-precision encoding and decoding.

Due to the difference in semantics (e.g., rounding error), when evaluating
the original formula, errors accumulate. This can result in critical atoms chang-
ing values under the original semantics. Therefore, evaluation of critical atoms
under the original semantics is necessary to ensure that the model satisfies the
original formula. UppSAT provides a bottom-up reconstruction strategy, which
is specified on a node-by-node basis and applied using a post-order visitor. To
specify this reconstruction strategy only the reconstructNode hook function
needs to be implemented, shown in Fig. 6.

Equality as Assignment. An important heuristic used in the RPFP model recon-
struction is equality-as-assignment. The idea is that given an equality constraint
y = f(x1, . . . , xn) in which the arguments x1, . . . , xn are fixed (see below), but
y is not, we can calculate the value of f(x1, . . . , xn) and use it as the value of
y in the reconstructed model; this is indeed the only way to satisfy the equality
constraint. To put this observation to use, variables are not fixed to a value in
the reconstructed model until they are used to evaluate an expression or atom.
When a predicate is evaluated, if some its arguments are not fixed, it means
that they have not been used yet and can be safely modified at this point. To
ensure maximal utilisation of this heuristic, the atoms are topologically sorted
to process implicating atoms, such as equalities, before the other critical atoms.
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0 def reconstructNode ( decodedM : Model , candidateM : Model , node : AST ) = {
1 val AST ( symbol , label , children ) = node
2 if ( children . length > 0)
3 if ( equalityAsAssignment (ast , decodedM , candidateM ) ) {
4 return candidateM
5 } else {
6 val args =
7 for (c <- children ) yield getCurrentValue (c , decodedM , candidateM )
8 val expr = AST ( symbol , label , args . toList )
9 val value = ModelEvaluator . evalAST ( expr , inputTheory )

10 candidateM . set ( node , value )
11 }
12 }
13 candidateM
14 }

Fig. 6. Post-order reconstruction using equality-as-assignment

Example 1. Consider the reconstruction outlined in Sect. 2. It reconstructed the
model m̂ = {x �→ 2.03,3, y �→ 3.53,3} by just up-casting the values, yielding
m = {x �→ 2.08,24, y �→ 3.58,24}, which did not satisfy the original formula.
Here equalityAsAssignment can be applied to the critical atoms x = 2.0,
y = x + 1.75 and y ≥ 0. Processing them from left to right, the first atom
(x = 2.0) is satisfied by m, but not the second one (y = x + 1.75). This is
an equality constraint with an unfixed variable on the left-hand side and the
right-hand side is fixed (x + 1.75 = 3.75). Therefore, the model is updated m
with y �→ 3.758,24 (ignoring the value of y in the candidate model), yielding
me = {x �→ 2.08,24, y �→ 3.758,24} which is a model for the original formula.

Model-guided refinement strategy. A model-guided refinement strategy increases
the precision of the formula, based on the decoded model and a failed model.
When an approximate model can not be reconstructed to a solution, the refine-
ment strategy increases the precision of certain operations, to refine parts of the
approximate formula that were too coarse.

Comparing the evaluation of the formula under the decoded and the failed
models identifies the critical atoms to be refined. These atoms evaluate as true
in the approximate model and as false in the candidate model. Since FPA is
a numerical domain, it is possible to apply some notion of error to determine
which nodes contribute the most to the discrepancies in evaluation and use them
to rank the sub-expressions. After ranking, only a portion of them is refined, in
our case 30%. Refinement is achieved by increasing the precision by one (in the
range [0, 5], as described above). In general, one could use the error to determine
by how much to increase the precision. Since error-based refinement can be
applied to any numerical domain, UppSAT implements an abstract error-based
refinement strategy, which allows us to specify refinement by only instantiating
the nodeError hook function, shown in Fig. 7.

Proof-guided refinement strategy. If we fail to find an approximate model,
the proof-guided refinement strategy can use unsatisfiable cores to refine the
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0 trait RPFPMGRefinementStrategy extends RPFPContext
1 with ErrorBasedRefinementStrategy {
2 def nodeError ( decodedM : Model , failedM : Model
3 acc : Map [ AST , Double ] , node : AST ) = {
4 node . symbol match {
5 case literal : FloatingPointLiteral => acc
6 case fpfs : FloatingPointFunSymbol => {
7 val Some ( outErr ) = relativeError ( node , decodedM , failedM )
8 val argErrors =
9 node . children . map{relativeError (_ , decodedM , failedM )}

10 val inErrors = argErrors . collect{case Some (x ) => x}
11 val sumInErrors = inErrors . fold ( 0 . 0 ) {(x , y ) => x + y}
12 val avgInErr = sumInErrors / inErrors . length
13 acc + ( ast −> outErr / (1 + avgInErr ) )
14 }
15 case _ => acc
16 }
17 }
18 }

Fig. 7. Model-guided refinement strategy based on relative errors

formula [21]. At the moment UppSAT has no support for obtaining proofs from
the back-end solvers. Instead, a näıve refinement strategy is used, which increases
all the precisions by a constant.

4 Other Approximations of FPA

We have shown in detail the RPFP approximation of FPA, and discussed dif-
ferent components that can be used in general. In this section we outline two
further approximations of FPA that have been implemented in UppSAT: the
fixed-point approximation BV, encoded as bit-vectors, and the real-arithmetic
approximation RA. Both approximations are currently implemented as a proof-
of-concept for cross-theory approximations. Despite their lack of maturity these
approximations show promising results (see Sect. 5).

BV—the Fixed-Point Approximation of FPA. The idea behind the BV
approximation is to avoid the overhead of the rounding semantics and special
values of FPA, by encoding all the FPA values and operations as values and
operations in fixed-point arithmetic.

The BV Context. The input theory is the theory of FPA, and the intended
output theory is the theory of fixed-point arithmetic. However, since fixed-point
arithmetic is not commonly supported by SMT solvers, we encode fixed-point
constraints in the theory of fixed-width bit-vectors. The precision determines the
number of integer and fractional binary digits in the fixed-point representation
of a number. For simplicity, at this point we do not mix multiple fixed-point
formats in one formula, but instead apply uniform precision in the BV approx-
imation; as a result, all operations in a constraint are encoded using the same
fixed-point sort. As a proof of concept, the precision domain is two-dimensional,
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with the first component pi in a pair (pi, pf ) denoting the number of integral, and
the second component pf the number of fractional bits in the encoding, respec-
tively. The precision domain ranges from (5, 5) to (25, 25), with the maximum
element (25, 25) = 	 being interpreted as sending the original, unapproximated
FPA constraint to Z3 as a fall-back solver. As an example, given a variable of
precision (5, 5), we will have a domain of numbers between 10000.000002 and
01111.111112, which when interpreted in two’s-complement notation are num-
bers between −16 and 15.96875. Returning to the formula φ in Sect. 2, it would
be encoded with a precision of (5, 5) into the formula φ̂F

5,5:

y10 = x10 ⊕10 00001 110002 ∧ y10 ≥s 00000 000002 ∧
(x10 = 00010 000002 ∨ x10 = 11100 000002)

We can note that fixed-point (5, 5)-addition is exactly implemented by bit-
vector addition ⊕10 over 10 bits, and fixed-point comparison ≥ by signed bit-
vector comparison ≥s over 10 bits, so that the translation becomes relatively
straightforward.

Constants are interpreted as 2’s complement numbers with 5 fractional and
5 integral bits, e.g., 11100 000002 represents the binary number −00100.000002,
which is −4.0 in decimal notation. It can be seen that the constraint φ̂F

5,5 is
satisfied by the model m̂ = {x10 �→ 00010 000002, y10 �→ 00011 110002}, which
corresponds to the fixed-point solution x = 2.0 and y = 3.75, which is equal to
the floating point model found earlier.

BV Reconstruction and Refinement. The model reconstruction strategy in the
BV approximation is the same as in the RPFP approximation. The refinement
strategy is very simple: it increases precision along both dimensions by 4, adding
4 more bits to both the integral and fractional bits in the encoding.

RA—the Real Arithmetic Approximation of FPA. The third approxi-
mation of FPA we consider, is by encoding it into real arithmetic constraints.
We briefly present a simple implementation of this approximation.

Ramachandran and Wahl [19] describe a topological notion of refinement,
that requires a back-end solver that handles the combined theory of real arith-
metic and FPA. However, solving constraints over this combination of theories
is challenging in itself, and efficient SMT solvers are not publicly available, to
the best of our knowledge. Therefore, in this paper we only us a binary preci-
sion domain of {⊥,	}, where either the entire formula is translated into real
arithmetic, or the original formula is solved.

The encoding is fairly straightforward: the FPA operations are translated
as their real counter-parts, omitting the rounding modes in the process. While
the special values can be encoded, currently they are not supported by the RA
approximation. Decoding will translate a real number to the closest FPA numeral
under the given rounding mode. As discussed above, the refinement is trivial and
the reconstruction is the same as in the the RPFP approximation.
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5 Experimental Evaluation

In this section we evaluate the effectiveness of the discussed approximations. We
instantiate the framework for the three presented approximations. The RPFP
approximation is instantiated with three back-ends: Z3, MathSAT5 and Math-
SAT5 using ACDCL. The BV approximation is instantiated with the bit-vector
solver of Z3 as a back-end, and the RA approximation uses Z3’s nlsat tactic [16].

Experimental Setup. We evaluate UppSAT on the satisfiable benchmarks of the
QF FP category of the SMT-LIB2. Currently, none of the approximations have a
meaningful proof-based refinement strategy, so the performance on unsatisfiable
problems is left for future work. All experiments were performed on an AMD
Opteron 2220 SE machine, running 64-bit Linux, with memory limited to 1.0
GB, and with a timeout of one hour.

Table 1. Comparison of the three back-ends and five instantiations of UppSAT, show-
ing # of benchmarks solved within 1 hour, # of timeouts, # of instances for which
the solver was fastest, average # of refinement iterations on solved problems, # of
benchmarks where refinement reached maximum precision, average time to process all
benchmarks (excluding timeouts), and # of instances only solved by the respective
solver.

ACDCL MathSAT Z3 BV RPFP RPFP RPFP RA

(Z3) (ACDCL) (MathSAT) (Z3) (nlsat)

Solved 86 99 97 91 78 101 101 90

Timeouts 44 31 33 39 52 29 29 40

Best 65 4 6 9 3 9 9 4

Avg. iterations - - - 2.69 3.59 3.16 3.02 1.85

Max precision - - - 23 2 1 2 110

Avg. time (s) 117.10 169.17 355.94 131.64 108.30 81.97 148.43 301.87

Only solver 1 0 2 0 0 1 0 0

We compare the performance of the back-ends and the UppSAT instances on
130 non-trivial satisfiable benchmarks. The results are summarized in Table 1,
and a more detailed view of this data is provided by the cactus plot in Fig. 8.

Table and Cactus Plot. Looking at Table 1, we observe that the RPFP approxi-
mation combined with bit-blasting, either in Z3 or MathSAT, solves the largest
number of instances. When comparing average runtime, MathSAT comes out as
the marginally better choice of back-end. This is expected, based on the perfor-
mance on the back-ends themselves. All the configurations shine on at least a
few benchmarks, indicating that the approximations do offer an improvement.
Furthermore, the ACDCL algorithm outperforms all the other solvers on 65

2 The regression tests in the wintersteiger family were ignored for the evaluation.
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benchmarks, but it solves fewer benchmarks that the bit-blasting approaches in
total. This is corroborated in the cactus plot, where in the left part of the graph
ACDCL is solving many benchmarks, however, eventually it gets overtaken by
the other solvers. Looking more closely at the RPFP approximation, we can
conclude that it improves performance of bit-blasting considerably, regardless
of the implementation (MathSAT or Z3). On the other hand, RPFP seems to
hinder, rather than help, the already very efficient ACDCL algorithm.3

Looking only at the approximations, we can see that on average the bench-
marks are solved using around three iterations (the RA always performs at most
two iterations, the RA approximation and the FPA semantics). This indicates
that for many of the benchmarks, full-precision encoding is not really necessary,
since the RPFP approximation rarely reaches maximum precision.

Table 2. Virtual portfolio performance.

VP (Back-ends) VP (All)
Solved 110 112
T/O 20 18
Total time (s) 25135 12516
Avg. time (s) 228.50 111.75

Virtual Portfolios. In Table 2, we
compare the virtual best portfo-
lio over all approximating solvers
against the baseline of the virtual
best portfolio over back-end solvers.
Inclusion of UppSAT instances in the
portfolio cuts the average solving
time in half.

Scatter Plots. Figure 9 shows the runtime comparison of the RPFP and BV
approximations against the bit-blasting back-end Z3. The x-axis denotes the
runtime of UppSAT instances, while the y-axis denotes the runtime of Z3. Maxi-
mum value along either axes denotes a timeout. Data points above the diagonal
indicate that UppSAT takes less time and below the diagonal that Z3 takes
less time on an instance. The left plot shows a comparison of the RPFP(Z3)
instance against the bit-blasting approach in Z3. The majority of benchmarks
are solved faster by the UppSAT instance, and the plot is in line with previously
published results, but the trend suggests a super-linear speedup in performance
which was not as pronounced before. The right plot comparing the runtime of
BV(Z3) to that of Z3 is similar to that of RPFP(Z3), with the difference that
gains and losses in runtime are even greater with the RPFP approximation.
The greater speed-ups are due to even simpler propositional encodings, since
the exponent is implicit and fixed upfront. The losses in solving time are due
to the fact the BV approximation is not yet mature, since it lacks a fine-tuned
precision order, tailor-made refinement and simply re-uses the strategies used by
the RPFP approximation. With this in mind, we believe that these results are
very promising.

3 Earlier experiments using the stable version 5.4.1 of MathSAT have shown similar
effects of the RPFP approximation to those on the bit-blasting methods. However,
overall the performance results were not consistent with performance of MathSAT in
previous publications, and indicated a bug. We thank Alberto Griggio for promptly
providing us with a corrected version of MathSAT, which we use in the evaluation.
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Fig. 8. The X axis shows how many instances can be solved in the amount of time
shown on the Y axis, by each of the solvers and the portfolios. The UppSAT instances are
shown using full lines, while the back-ends are presented using dashed lines. The colors
denote the same back-end, e.g., MathSAT and RPFP(MathSAT) are both colored
green.
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Fig. 9. Runtime comparison of RPFP(Z3) with Z3 (left) and BV(Z3) with Z3.
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We omit scatter plots for other UppSAT instances4, but offer a brief summary
of the results. The comparison of RPFP(MathSAT) instance against MathSAT
is very similar to that of RPFP(Z3) against Z3. The RPFP(ACDCL) did not
improve on the runtime of the ACDCL solver. This appears to be due to the
fact that RPFP approximation does not make formulas significantly easier to
solve for ACDCL, in contrast to the situation with bit-blasting. The RA(nlsat)
instance does currently not show satisfactory results; the approximation is a
proof of concept, and is an on-off approximation, since there is no space for
refinement in the absence of a back-end that would support the combination of
non-linear real arithmetic and floating-point arithmetic.

Overall, these results show that the RPFP and BV approximations can
indeed speed up the performance of the bit-blasting back-ends, and in case of
the BV approximation with not much effort.

6 Conclusion and Future Work

We have presented a methodology and new framework, UppSAT, for implement-
ing approximating SMT solvers. UppSAT enables simple and high-level definition
of approximations, can be combined with different back-ends (at the moment Z3
and MathSAT, but further back-ends can be added with little effort), and is use-
ful both for rapid prototyping and for tailoring solvers to particular use-cases.

The experimental evaluation demonstrates the efficacy of approximations.
The approximation instances presented here (RPFP(z3), RPFP(MathSAT)) are
shown to be state-of-the art in handling formulas in FPA, where they improve
their performance of the respective back-end to a even greater extent than pre-
vious work. For ACDCL this is not the case, indicating that perhaps a different
method of approximation should be utilized.

The fixed point and real arithmetic approximations are presented here as a
proof of concept. They are simple and not much effort went into instantiating
the framework for these approximations. However, the results shows that even
uncomplicated approaches can be competitive; this opens up the line of future
work to design tailored refinement and reconstruction strategies.

The clear direction for improving UppSAT is to extend the general framework
with more abstract strategies, e.g., retrieve multiple models from an approximate
formula and/or apply multiple different reconstruction strategies on approximate
models. Currently, much time is spent on looking for models which means there is
plenty of room to make more sophisticated strategies in the framework. UppSAT
could also be extended to allow approximations to be written in a high-level
domain specific language, and allow them to be loaded as dynamic libraries.

Another big challenge is to extend UppSAT to be able to handle unsatisfiable
formulas efficiently. Currently, the proof refinement is naive uniform refinement,
but there is a potential to do much more intelligent refinement.

4 Detailed plots of all approximations and back-ends can be found at https://github.
com/uuverifiers/uppsat/wiki/Scatter-Plots---IJCAR-2018.

https://github.com/uuverifiers/uppsat/wiki/Scatter-Plots---IJCAR-2018
https://github.com/uuverifiers/uppsat/wiki/Scatter-Plots---IJCAR-2018
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Abstract. The CSP of a first-order theory T is the problem of deciding
for a given finite set S of atomic formulas whether T ∪S is satisfiable. Let
T1 and T2 be two theories with countably infinite models and disjoint sig-
natures. Nelson and Oppen presented conditions that imply decidability
(or polynomial-time decidability) of CSP(T1 ∪T2) under the assumption
that CSP(T1) and CSP(T2) are decidable (or polynomial-time decid-
able). We show that for a large class of ω-categorical theories T1, T2 the
Nelson-Oppen conditions are not only sufficient, but also necessary for
polynomial-time tractability of CSP(T1 ∪ T2) (unless P = NP).

1 Introduction

Two independent proofs of the finite-domain constraint satisfaction tractability
conjecture have recently been published by Bulatov and Zhuk [20,31], settling
the Feder-Vardi dichotomy conjecture. In contrast, the computational complex-
ity of constraint satisfaction problems over infinite domains cannot be classified
in general [8]. However, for a restricted class of constraint satisfaction problems
that strictly all finite-domain CSPs and captures the vast majority of the prob-
lems studied in qualitative reasoning (see the survey article [9]) there also is a
tractability conjecture (see [3–5,17]). The situation is similar to the situation for
finite-domain CSPs before Bulatov and Zhuk: there is a formal condition which
provably implies NP-hardness, and the conjecture is that every other CSP in the
class is in P.

For finite domain CSPs, it turned out that only few fundamentally differ-
ent algorithms were needed to complete the classification; the key in both the
solution of Bulatov and the solution of Zhuk was a clever combination of
the existing algorithmic ideas. An intensively studied method for obtaining
(polynomial-time) decision procedures for infinite-domain CSPs is the Nelson-
Oppen combination method; see, e.g., [2,30]. The method did not play any role
for the classification of finite-domain CSPs, but is extremely powerful for com-
bining algorithms for infinite-domain CSPs.
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In order to conveniently state what type of combinations of CSPs can be
studied with the Nelson-Oppen method, we slightly generalise the notion of a
CSP. The classical definition is to fix an infinite structure B with finite relational
signature τ ; then CSP(B) is the computational problem of deciding whether a
given finite set of atomic τ -formulas (i.e., formulas of the form x1 = x2 or of the
form R(x1, . . . , xn) for R ∈ τ and variables x1, . . . , xn) is satisfiable in B. Instead
of fixing a τ -structure B, we fix a τ -theory T (i.e., a set of first-order τ -sentences).
Then CSP(T ) is the computational problem of deciding for a given finite set S of
atomic τ -formulas whether T ∪S has a model. Clearly, this is a generalisation of
the classical definition since CSP(B) is the same as CSP(Th(B)) where Th(B)
is the first-order theory of B, i.e., the set of all first-order sentences that hold
in B. The definition for theories is strictly more expressive (we give an example
in Sect. 2 that shows this).

Let T1 and T2 be two theories with disjoint finite relational signatures τ1
and τ2. We are interested in the question when CSP(T1 ∪ T2) can be solved
in polynomial time; we refer to this problem as the combined CSP for T1 and
T2. Clearly, if CSP(T1) or CSP(T2) is NP-hard, the CSP(T1 ∪ T2) is NP-hard,
too. Suppose now that CSP(T1) and CSP(T2) can be solved in polynomial-time.
In this case, there are examples where CSP(T1 ∪ T2) is in P, and examples
where CSP(T1 ∪ T2) is NP-hard. Even if we know the complexity of CSP(T1)
and of CSP(T2), a classification of the complexity of CSP(T1 ∪ T2) for arbitrary
theories T1 and T2 is too ambitious (see Sect. 4 for a formal justification). But
such a classification should be feasible at least for the mentioned class of infinite-
domain CSPs for which the tractability conjecture applies.

1.1 Qualitative CSPs

The idea of qualitative formalisms is that reasoning tasks (e.g. about space and
time) is not performed with absolute numerical values, but rather with quali-
tative predicates (such as within, before, etc.). There is no universally accepted
definition in the literature that defines what a qualitative CSP is, but a proposal
has been made in [9]; the central mathematical property for this proposal is
ω-categoricity. A theory is called ω-categorical if it has up to isomorphism only
one countable model. A structure is called ω-categorical if and only if its first-
order theory is ω-categorical. Examples are (Q;<), Allen’s Interval Algebra, and
more generally all homogeneous structures with a finite relational signature (a
structure B is called homogeneous if all isomorphisms between finite substruc-
tures can be extended to an automorphism; see [6,25]). The class of CSPs for
ω-categorical theories arguably coincides with the class of CSPs for qualitative
formalisms studied e.g. in temporal and spatial reasoning; see [9].

For an ω-categorical theory T , the complexity of CSP(T ) can be studied
using the universal-algebraic approach that led to the proof of the Feder-Vardi
dichotomy conjecture. One of the central concepts for this approach is the con-
cept of a polymorphism of a structure B, i.e., a homomorphism from Bk to B for
k ∈ N. It is known that the polymorphisms of a finite structure B fully capture
the complexity of CSP(B) up to P-time reductions (in fact, up to Log-space
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reductions; see [24] for a collection of survey articles about the complexity of
CSPs), and the same is true for structures B with an ω-categorical theory. For
an ω-categorical relational structure Γ , the relations that are primitive positive
definable in Γ are uniquely determined by the polymorphisms of Γ and vice
versa [15]. The possibility to use relations and polymorphisms exchangeably,
to study their interplay and to combine known solutions with polymorphisms
make the universal algebraic approach a versatile tool. In order to understand
when we can apply the universal-algebraic approach to study the complexity of
CSP(T1 ∪ T2), we need to understand the following fundamental question.

Question 1: Suppose that T1 and T2 are theories with disjoint finite relational
signatures τ1 and τ2. When is there an ω-categorical (τ1∪τ2)-theory T such that
CSP(T ) equals1 CSP(T1 ∪ T2)?

Note that ω-categorical theories are complete, i.e., for every first-order sen-
tence φ either T implies φ or T implies ¬φ. In general, it is not true that
CSP(T1 ∪ T2) equals CSP(T ) for a complete theory T (we present an exam-
ple in Sect. 2).

Question 1 appears to be very difficult. However, we present a broadly appli-
cable condition for ω-categorical theories T1 and T2 with infinite models that
implies the existence of an ω-categorical theory T such that CSP(T1 ∪T2) equals
CSP(T ) (Proposition 1 below). The theory T that we construct has many utile
properties, in particular:

1. T1 ∪ T2 ⊆ T ;
2. if φ1(x̄) is a τ1-formula and φ2(x̄) is a τ2-formula, both with free variables

x̄ = (x1, . . . , xn), then T |= ∃x̄(φ1(x̄) ∧ φ2(x̄) ∧
∧

i<j xi �= xj) if and only if
T1 |= ∃x̄(φ1(x̄) ∧

∧
i<j xi �= xj) and T2 |= ∃x̄(φ2(x̄) ∧

∧
i<j xi �= xj);

3. For every τ1 ∪ τ2 formula φ there exists a Boolean combination of τ1 and τ2
formulas that is equivalent to φ modulo T .

In fact, T is uniquely given by these three properties (up to equivalence of theo-
ries; see Lemma 2) and again ω-categorical, and we call it the generic combination
of T1 and T2. Let B1 and B2 be two ω-categorical structures whose first-order
theories have a generic combination T ; then we call the (up to isomorphism
unique) countably infinite model of T the generic combination of B1 and B2.

1.2 The Nelson-Oppen Criterion

Let T1, T2 be theories with disjoint finite relational signatures τ1, τ2 and suppose
that CSP(T1) is in P and CSP(T2) is in P. Nelson and Oppen gave sufficient con-
ditions for CSP(T1∪T2) to be solvable in polynomial time, too. Their conditions
are:

1. Both T1 and T2 are stably infinite: a τ -theory T is called stably infinite if
for every quantifier-free τ -formula φ(x1, . . . , xn), if φ is satisfiable over T ,

1 In other words: for all sets S of atomic (τ1 ∪ τ2)-formulas, we have that S ∪ T is
satisfiable if and only if S ∪ (T1 ∪ T2) is satisfiable.
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then there also exists an infinite model A and elements a1, . . . , an such that
A |= φ(a1, . . . , an).

2. for i = 1 and i = 2, the signature τi contains a binary relation symbol �=i

that denotes the inequality relation, i.e., Ti implies the sentence
∀x, y (x �=i y ⇔ ¬(x = y));

3. Both T1 and T2 are convex (here we follow established terminology). A τ -
theory T is called convex if for every finite set S of atomic τ -formulas the set
T ∪ S ∪ {x1 �= y1, . . . , xm �= ym} is satisfiable whenever T ∪ S ∪ {xj �= yj} is
satisfiable for each j ≤ m.

The assumption that a relation symbol denoting the inequality relation is part
of the signatures τ1 and τ2 is often implicit in the literature treating the Nelson-
Oppen method. It would be interesting to explore when it can be dropped, but
we will not pursue this here. The central question of this article is the following.

Question 2. In which settings are the Nelson-Oppen conditions (and in par-
ticular, the convexity condition) not only sufficient, but also necessary for
polynomial-time tractability of the combined CSP?

Again, for general theories T1 and T2, this is a too ambitious research goal;
but we will study it for generic combinations of ω-categorical theories T1, T2

with infinite models. In this setting, the first condition that both T1 and T2

are stably infinite is trivially satisfied. The third condition on Ti, convexity, is
equivalent to the existence of a binary injective polymorphism of the (up to
isomorphism unique) countably infinite model of Ti (see Sect. 5). We mention
that binary injective polymorphisms played an important role in several recent
infinite-domain complexity classifications [10,11,27].

1.3 Results

To state our results concerning Question 1 and Question 2 we need basic termi-
nology for permutation groups. A permutation group G on a set A is called

– n-transitive if for all tuples b̄, c̄ ∈ An having pairwise distinct entries there
exists a permutation g ∈ G such that g(b̄) = c̄ (where permutations are
applied to tuples componentwise). G is called transitive if it is 1-transitive.

– n-set-transitive if for all subsets B,C of A with |B| = |C| = n there exists a
permutation g ∈ G such that g(B) := {g(b) | b ∈ B} = C.

A structure is called n-transitive (or n-set-transitive) if its automorphism group
is. The existence of generic combinations can be characterised as follows (see
Sect. 3 for the proof).

Proposition 1. Let B1 and B2 be countably infinite ω-categorical structures
with disjoint relational signatures. Then B1 and B2 have a generic combination
if and only if both B1 and B2 do not have algebraicity (in the model-theoretic
sense; see Sect. 3) or at least one of B1 and B2 has an automorphism group
which is n-transitive for all n ∈ N.
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Our main result concerns Question 2 for generic combinations B of count-
ably infinite ω-categorical structures B1 and B2; as we mentioned before, if
the generic combination exists, it is up to isomorphism unique, and again ω-
categorical. Note that a structure A that is 2-set-transitive gives rise to a directed
graph (A;E): fix two distinct elements b1, b2 of A; then two vertices c1, c2 are
joined by a directed edge iff there exists an automorphism α with α(b1) = c1 and
α(b2) = c2. Note that by 2-set-transitivity, it does not matter which elements b1
and b2 we choose, there are at most two resulting graphs and they are always iso-
morphic. Also note that if the structure is 2-set-transitive and not 2-transitive,
then the resulting directed graph is a tournament, i.e., it is without loops and
for any two distinct vertices a, b either (a, b) ∈ E or (b, a) ∈ E, but not both.
Examples of 2-set-transitive tournaments are the order of the rationals (Q;<),
the countable random tournament (see, e.g., Lachlan [28]), and the countable
homogeneous local order S(2) (also see [23]). If ā = (a1, . . . , an) ∈ Bn and G
is a permutation group on B then Gā := {(α(a1), . . . , α(an)) | α ∈ G} is called
the orbit of ā (with respect to G); orbits of pairs (i.e., n = 2) are also called
orbitals. Orbitals of pairs of equal elements are called trivial. To simplify the
presentation, we introduce the following shortcut.

Definition 1. A structure has property J if it is a countably infinite ω-
categorical structure which is 2-set-transitive, but not 2-transitive, and contains
binary symbols for the inequality relation and for one of the two non-trivial
orbitals.

We give some examples of structures with property J .

Example 1. The structure (Q; �=, <,Rmi) where

Rmi := {(x, y, z) ∈ Q
3 | x ≥ y ∨ x > z}.

Polynomial-time tractability of the CSP of this structure has been shown in [12].

Example 2. The structure (Q; �=, <,Rll) where

Rll := {(x, y, z) ∈ Q
3 | x < y ∨ x < z ∨ x = y = z}.

Polynomial-time tractability of the CSP of this structure has been shown in [13].

Further examples of structure with property J come from expansions of the
countable random tournament and the countable homogeneous local order men-
tioned above. The proof of the following theorem can be found in Sect. 5.

Theorem 3. Let B be the generic combination of two structures B1 and B2

with property J such that CSP(B1) and CSP(B2) are in P. Then one of the
following applies:

– Th(B1) or Th(B2) is not convex; in this case, CSP(B) is NP-hard.
– Each of Th(B1) and Th(B2) is convex, and CSP(B) is in P.
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In other words, either the Nelson-Oppen conditions apply, and CSP(B) is in
P, or otherwise CSP(B) is NP-complete.

Example 4. Let B1 be the relational structure (Q;<, �=, Rmi) where Rmi is
defined as above. Let B2 := (Q;≺, �≈) where ≺ also denotes the strict order of the
rationals, and �≈ also denotes the inequality relation (we chose different symbols
than < and �= to make the signatures disjoint). It is easy to see that B1 and B2

satisfy the assumptions of Proposition 1, so they have a generic combination B.
It is also easy to see that B1 and B2 are 2-set-transitive, but not 2-transitive.
We have already mentioned that they also have polynomial-time tractable CSPs.
However, B1 does not have a convex theory, and hence our result implies that
the CSP of the combined structure is NP-complete (we invite the reader to find
an NP-hardness proof without using our theorem!).

A structure B1 is called a reduct of a structure B2, and B2 is called an
expansion of B1, if B1 is obtained from B2 by dropping some of the relations of
B1. If B1 is a reduct of B2 with the signature τ then we write Bτ

2 for B1. An
expansion B2 of B1 is called a first-order expansion if all additional relations in
B2 have a first-order definition in B1. A structure B1 is called a first-order reduct
if B1 is a reduct of a first-order expansion of B2. Note that if a structure B is
2-set-transitive then so is every first-order reduct of B (since its automorphism
group contains the automorphisms of B).

The CSPs for first-order reducts of Q have been called temporal CSPs; their
computational complexity has been classified completely [12]. There are many
interesting polynomial-time tractable temporal CSPs that have non-convex theo-
ries, which makes temporal CSPs a particularly interesting class for understand-
ing the situation where the Nelson-Oppen conditions do not apply. Generic com-
binations of temporal CSPs are isomorphic to first-order reducts of the countable
random permutation introduced in [22] and studied in [29]; a complexity classifi-
cation of the CSPs of all reducts of the random permutation (as e.g. in [10,12,27]
for simpler structures than the random permutation) is out of reach for the cur-
rent methods (in particular, the classification method via a reduction to the
finite-domain CSP dichotomy from [14] cannot be applied).

Examples of ω-categorical structures with 2-transitive automorphism groups
can be found in phylogenetic analysis; see [10]. A generic combination of a struc-
ture with a 2-transitive automorphism with (Q;<) is no longer 2-transitive, but
still 2-set-transitive (this will become obvious from the results in Sect. 3). So
any 2-transitive structure without algebraicity can be used to produce further
interesting examples that satisfy the conditions of Theorem3.

2 Combinations of CSPs

We already mentioned that our definition of CSPs for theories is a strict gener-
alisation of the notion of CSPs for structures, and this will be clarified by the
following proposition which is an immediate consequence of Proposition 2.4.6
in [6].
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Proposition 2. Let T be a first-order theory with finite relational signature.
Then there exists a structure B such that CSP(B) = CSP(T ) if and only if T
has the Joint Homomorphism Property (JHP), that is, for any two models A, B
of T there exists a model C of T such that both A and B homomorphically map
to C.

Example 5. A simple example of two theories T1, T2 with the JHP such that
T1 ∪ T2 does not have the JHP is given by

T1 := {∀x, y ((O(x) ∧ O(y)) ⇒ x = y)}
T2 := {∀x. ¬(P (x) ∧ Q(x)}

Suppose for contradiction that T1 ∪ T2 has the JHP. Note that

T1 ∪ T2 ∪ {∃x(O(x) ∧ P (x))} and T1 ∪ T2 ∪ {∃y(O(y) ∧ Q(y))}

are satisfiable. The JHP implies that

T1 ∪ T2 ∪ {∃x(O(x) ∧ P (x)),∃y(O(y) ∧ Q(y))}

has a model A, so A has elements u, v satisfying O(u) ∧ O(v) ∧ P (u) ∧ Q(v).
Since A |= T1 we must have u = v, and so A does not satisfy the sentence
∀x. ¬(P (x) ∧ Q(x)) from T2, a contradiction.

3 Generic Combinations

For general theories T1, T2 even the question whether T1 ∪T2 has the JHP might
be a difficult question. But if both T1 and T2 are ω-categorical with a countably
infinite model that does not have algebraicity, then T1 ∪ T2 always has the JHP
(a consequence of Lemma 1 below). A structure B (and its first-order theory)
does not have algebraicity if for all first-order formulas φ(x0, x1, . . . , xn) and all
elements a1, . . . , an ∈ B the set {a0 ∈ B | B |= φ(a0, a1, . . . , an)} is either
infinite or contained in {a1, . . . , an}; otherwise, we say that the structure has
algebraicity.

It is a well-known fact from model theory that the concept of having no
algebraicity is closely related to the concept of strong amalgamation (see [25], p.
138f). The age of a relational τ -structure B is the class of all finite τ -structures
that embed into B. A class K of structures has the amalgamation property if for
all A,B1,B2 ∈ K and embeddings fi : A → Bi, for i = 1 and i = 2, there exist
C ∈ K and embeddings gi : Bi → C such that g1 ◦ f1 = g2 ◦ f2. It has the strong
amalgamation property if additionally g1(B1)∩g2(B2) = g1(f1(A)) = g2(f2(A)).
If K is a class of structures with finite relational signature which is closed under
isomorphism, substructures, and has the amalgamation property, then there
exists an (up to isomorphism unique) countable homogeneous structure B whose
age is K (see [26]). Moreover, in this case B has no algebraicity if and only if K
has the strong amalgamation property (see, e.g., [21]). The significance of strong
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amalgamation in the theory of combining decision procedures has already been
pointed out by Bruttomesso et al. [19]. By the theorem of Ryll-Nardzewski,
Engeler, and Svenonius (see [25]) a homogeneous structure with finite relational
signature is ω-categorical, and the expansion of an ω-categorial structure by all
first-order definable relations is homogeneous.

When K is a class of structures, we write I(K) for the class of all structures
isomorphic to a structure in K. Let τ1 and τ2 be disjoint relational signatures,
and let Ki be a class of finite τi-structures, for i ∈ {1, 2}. Then K1 ∗ K2 denotes
the class of (τ1 ∪ τ2)-structures given by {A | Aτ1 ∈ I(K1) and Aτ2 ∈ I(K2)}. If
B is a set and n ∈ N, we write B(n) for the set of tuples from Bn with pairwise
distinct entries.

Lemma 1. Let T1 and T2 be ω-categorical theories with disjoint relational sig-
natures τ1 and τ2, with infinite models without algebraicity. Then there exists an
ω-categorical model B of T1 ∪ T2 without algebraicity such that

for all k ∈ N, ā, b̄ ∈ B(k) : Aut(Bτ1)ā ∩ Aut(Bτ2)b̄ �= ∅ (1)

and for all k ∈ N, ā ∈ B(k) : Aut(Bτ1)ā ∩ Aut(Bτ2)ā = Aut(B)ā. (2)

The proof works via expansion with all first-order definable relations and a
Fräıssé-limit. It can be found in the extended version [7].

Note that by the facts on ω-categorical structures mentioned above, the Prop-
erties (1) and (2) for B, Bτ1 , Bτ2 are equivalent to items (2) and (3) in Sect. 1.1
for T = Th(B), T1 = Th(Bτ1), T2 = Th(Bτ2), respectively. Lemma 1 motivates
the following definition.

Definition 2 (Generic Combination). Let B1 and B2 be countably infinite
ω-categorical structures with disjoint relational signatures τ1 and τ2, and let B
be a model of Th(B1) ∪ Th(B2). If B satisfies item (1) then we say that B is a
free combination of B1 and B2. If B satisfies both item (1) and item (2) then
we say that B is a generic combination (or random combination; see [1]) of B1

and B2.

The following can be shown via a back-and-forth argument.

Lemma 2. Let B1 and B2 be countable ω-categorical structures. Then up to
isomorphism, there is at most one generic combination of B1 and B2.

In later proofs we need the following lemma.

Lemma 3 (Extension Lemma). For i = 1 and i = 2, let Bi be an ω-
categorical structure with signature τi such that B1 and B2 have a generic com-
bination. Let ā, b̄1, b̄2 be tuples such that the tuples (ā, b̄1) and (ā, b̄2) have
pairwise distinct entries and equal length. Then there exist αi ∈ Aut(Bi, ā) such
that α2(α1(b̄1)) = b̄2.
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Proof. By the definition of free combinations (Property (1)) there exist α ∈
Aut(B1) and β ∈ Aut(B2) such that β(α(ā, b̄1)) = (ā, b̄2). Note that α(ā) lies
in the same orbit as ā both with respect to B1 and with respect to B2, so by
Property (2) of generic combinations there exists an automorphism δ ∈ Aut(B)
that maps α(ā) to ā. Then α1 := δ ◦ α and α2 := β ◦ δ−1 have the desired
properties.

We now prove Proposition 1 that we already stated in the introduction, and
which states that two countably infinite ω-categorical structures with disjoint
relational signatures have a generic combination if and only if both have no
algebraicity, or at least one of the structures has an automorphism group which
is n-transitive for all n ∈ N. Note that the countably infinite structures whose
automorphism group is n-transitive for all n ∈ N are precisely the structures
that are isomorphic to a first-order reduct of (N; =).

Proof. If both B1 and B2 do not have algebraicity then the existence of an ω-
categorical generic combination follows from Lemma 1. If on the other hand B1

is n-transitive for all n then an ω-categorical generic combination trivially exists
(it will be a first-order expansion of B2). The case that B2 is n-transitive for all
n is analogous.

For the converse direction, let B be the generic combination of the τ1-
structure B1 and the τ2-structure B2. Recall that Bτi is isomorphic to Bi, for
i ∈ {1, 2}. By symmetry between B1 and B2, we will assume towards a contradic-
tion that Bτ1 has algebraicity and Aut(Bτ2) is not n-transitive for some n ∈ N.
Choose n to be smallest possible, so that Aut(Bτ2) is not n-transitive. Therefore
there exist tuples (b0, . . . , bn−1) and (c0, . . . , cn−1), each with pairwise distinct
entries, that are in different orbits with respect to Aut(Bτ2). By the minimality
of n, there exists α ∈ Aut(Bτ2) such that α(b1, . . . , bn−1) = (c1, . . . , cn−1). Alge-
braicity of Bτ1 implies that there exists a first-order τ1-formula φ(x0, x1, . . . , xm)
and pairwise distinct elements a1, . . . , am of B such that φ(x, a1, . . . , am) holds
for precisely one element x = a0 other than a1, . . . , am in B. By adding unused
extra variables to φ we can assume that m ≥ n − 1. Choose elements bn, . . . , bm

such that the entries of (b0, . . . , bn−1, bn, . . . , bm) are pairwise distinct and define
ci := α(bi) for i ∈ {n, . . . ,m}. Since B is a free combination, there exist tuples
(b′

0, . . . , b
′
m), (c′

0, . . . , c
′
m) and β1, γ1 ∈ Aut(Bτ1) and β2, γ2 ∈ Aut(Bτ2) such

that

β2(b0, . . . , bm) = (b′
0, . . . , b

′
m), β1(b′

0, . . . , b
′
m) = (a0, . . . , am),

γ2(c0, . . . , cm) = (c′
0, . . . , c

′
m), γ1(c′

0, . . . , c
′
m) = (a0, . . . , am).

Because γ−1
1 ◦β1 ∈ Aut(Bτ1) and γ2 ◦α◦β−1

2 ∈ Aut(Bτ2) both map (b′
1, . . . , b

′
m)

to (c′
1, . . . , c

′
m), and due to the second condition for generic combinations, there

exists μ ∈ Aut(B) such that μ(b′
1, . . . , b

′
m) = (c′

1, . . . , c
′
m). Since any operation in

Aut(Bτ1) preserves φ, we have γ1◦μ◦β−1
1 (a0, . . . , am) = (a0, . . . , am). Therefore

μ must map b′
0 to c′

0. Hence, γ−1
2 ◦ μ ◦ β2 ∈ Aut(Bτ2) maps (b0, . . . , bn−1) to

(c0, . . . , cn−1), contradicting our assumption that they lie in different orbits with
respect to Aut(Bτ2).
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4 Difficulties for a General Complexity Classification

Let T1 and T2 be ω-categorical theories with disjoint finite relational signatures
such that CSP(T1) is in P and CSP(T2) is in P. The results in this section
suggest that in general we cannot hope to get a classification of the complex-
ity of CSP(T1 ∪ T2). We use the result from [8] that there are homogeneous
directed graphs B such that CSP(B) is undecidable. There are even homoge-
neous directed graphs B such that CSP(B) is coNP-intermediate, i.e., in coNP,
but neither coNP-hard nor in P [8] (unless P = coNP). All of the homogeneous
graphs B used in [8] can be described by specifying a set of finite tournaments
T . Let C be the class of all finite directed loopless graphs A such that no tourna-
ment from T embeds into A. It can be checked that C is a strong amalgamation
class; the Fräıssé-limits of those classes are called the Henson digraphs.

Proposition 3. For every Henson digraph B there exist ω-categorical convex
theories T1 and T2 with disjoint finite relational signatures such that CSP(T1) is
in P, CSP(T2) is in P, and CSP(T1 ∪ T2) is polynomial-time Turing equivalent
to CSP(B).

The proof is omitted for reasons of space, but can be found in [7]. Note
that the Nelson-Oppen conditions do not apply here because it is crucial for our
construction that T1 does not contain a symbol for inequality. We mention that
another example of two theories such that CSP(T1) and CSP(T2) are decidable
but CSP(T1 ∪ T2) is not can be found in [18].

5 On the Necessity of the Nelson-Oppen Conditions

In this section we introduce a large class of ω-categorical theories where the con-
dition of Nelson and Oppen (the existence of binary injective polymorphisms)
is not only a sufficient, but also a necessary condition for the polynomial-time
tractability of generic combinations (unless P = NP); in particular, we prove
Theorem 3 from the introduction. We need the following characterisation of con-
vexity of ω-categorical theories.

Theorem 6 (Lemma6.1.3 in [6]).
Let B be an ω-categorical structure and let T be its first-order theory. Then

the following are equivalent.

– T is convex;
– B has a binary injective polymorphism.

Moreover, if B contains the relation �=, these conditions are also equivalent to
the following.

– for every finite set S of atomic τ -formulas such that S ∪ T ∪ {x1 �= y1} is
satisfiable and S ∪T ∪{x2 �= y2} is satisfiable, then T ∪S ∪{x1 �= y1, x2 �= y2}
is satisfiable, too.
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The following well-known fact easily follows from many published results,
e.g., from the results in [16]. An operation f : Bk → B is called essentially unary
if there exists an i ≤ k and a function g : B → B such that f(x1, . . . , xk) = g(xi)
for all x1, . . . , xk ∈ B. The operation f is called essential if it is not essentially
unary.

Proposition 4 (see [16]). Let B be an infinite ω-categorical structure with
finite relational signature containing the relation �= and such that all polymor-
phisms of B are essentially unary. Then CSP(B) is NP-hard.

Hence, we want to show that the existence of an essential polymorphism of
the generic combination of two countably infinite ω-categorical structures B1 and
B2 implies the existence of a binary injective polymorphism. The key technical
result, which we prove at the end of this section, is the following proposition.

Proposition 5. Let B1,B2 be ω-categorical structures with generic combina-
tion B so that

– each of B1 and B2 has a relation symbol that denotes the relation �=;
– B has a binary essential polymorphism;
– B1 is 2-set-transitive; and
– B2 is 1-transitive and contains a binary antisymmetric irreflexive relation.

Then B1 must have a binary injective polymorphism.

To apply Proposition 5, we therefore need to prove the existence of binary
essential polymorphisms of generic combinations B. For this, we use an idea
that first appeared in [12] and was later generalized in [6], based on the following
concept. A permutation group G on a set B has the orbital extension property
(OEP) if there is an orbital O such that for all b1, b2 ∈ B there is an element
c ∈ B where (b1, c) ∈ O and (b2, c) ∈ O. The relevance of this property comes
from the following lemma.

Lemma 4 (Kára’s Lemma; see [6], Lemma5.3.10). Let B be a structure
with an essential polymorphism and an automorphism group with the OEP. Then
B must have a binary essential polymorphism.

To apply this lemma to the generic combination B of B1 and B2, we have
to verify that Aut(B) has the OEP.

Lemma 5. Any 2-set-transitive permutation group action on a set with at least
3 elements has the OEP.

Lemma 6. Let B be a generic combination of two ω-categorical structures B1

and B2 with the OEP. Then B has the OEP.

Now, we proof Theorem 3. Property J from Definition 1 is needed in order to
apply Proposition 5 twice.
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Proof (Proof of Theorem 3). If all polymorphisms of B are essentially unary
then Proposition 4 shows that CSP(B) is NP-hard. Otherwise, B has a binary
essential polymorphism by Lemma 4, because B has the OEP by Lemmas 5 and
6. Property J implies that Bi, for i = 1 and i = 2, is 2-set-transitive and contains
a binary relation symbol that denotes �= and a binary relation symbol that
denotes the orbital of Bi, which is a binary antisymmetric irreflexive relation.
Thus, B1 and B2 satisfy the assumptions of Proposition 5. It follows that B1

has a binary injective polymorphism. By Theorem6, this shows that Th(B1)
is convex. Since we have the same assumptions on B1 and on B2, we can use
Proposition 5 again to show that also Th(B2) is convex. Now, the Nelson-Oppen
combination procedure implies that CSP(B) is in P.

Proof (Proof of Proposition 5). Since B1 and B2 have a generic combination,
by Proposition 1 either both B1 and B2 have no algebraicity or at least one
of B1,B2 is n-transitive for all n ∈ N. The structure B2 is not 2-transitive.
Suppose that B1 is n-transitive for all n ∈ N. Since B has a binary essential
polymorphism, so has B1. Since B1 also contains a symbol that denotes the
relation �=, it must also have a binary injective polymorphism (see [11]) and
we are done. So we assume in the following that both B1 and B2 do not have
algebraicity. Since B1 and B2 are isomorphic to reducts of B, we may assume
that they actually are reducts of B. Let φ be a primitive positive formula over
the signature of B1 and suppose that φ∧x1 �= y1 has a satisfying assignment s1
over B1 and φ ∧ x2 �= y2 has a satisfying assignment s2 over B2. By Theorem 6
it suffices to show that in B1 there exists a satisfying assignment to

φ ∧ x1 �= y1 ∧ x2 �= y2. (3)

If s1(x2) �= s1(y2) or if s2(x1) �= s2(y1) then there is nothing to be shown, so
we assume that this is not the case. Let f be the binary essential polymorphism
of B. Then there are a1, a2, a3, b1, b2, b3 ∈ B such that f(a2, b1) �= f(a3, b1)
and f(a1, b2) �= f(a1, b3). It is easy to see that then there also exist elements
u1, u2, v1, v2 ∈ B such that f(u1, v1) �= f(u2, v1) and f(u1, v1) �= f(u1, v2)
(choose u1 = a1, v1 = b1 and suitable u2 ∈ {a2, a3} , v2 ∈ {b2, b3}). Note that
in particular u1 �= u2 and v1 �= v2. By the 2-set-transitivity of B1, there exist
α1, α2 ∈ Aut(B1) such that

α1({s1(x1), s1(y1)}) = {u1, u2} and α2({s2(x2), s2(y2)}) = {v1, v2} .

By renaming variables if necessary we may assume that α1(s1(x1), s1(y1)) =
(u1, u2) and α2(s2(x2), s2(y2)) = (v1, v2).
Note that |s1({x1, y1, x2, y2})|, |s2({x1, y1, x2, y2})| ∈ {2, 3}.

Case 1. |s1({x1, y1, x2, y2})| = |s2({x1, y1, x2, y2})| = 3. In other words,
s1(x2) = s1(y2) /∈ {s1(x1), s1(y1)} and s2(x1) = s2(y1) /∈ {s2(x2), s2(y2)}.

By the transitivity of Aut(B1) there exist β1, β2 ∈ Aut(B1) such that
β1(s1(x2)) = u1 and β2(s2(y1)) = v1. We can choose β1 ∈ Aut(B1) such that
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β1(s1(x1)), β1(s1(y1)) are distinct from α1(s1(x2)) and u2: to see this, note that
Aut(B1, u1) has no finite orbits other than {u1} because B1 has no algebraicity,
and by Neumann’s lemma (see e.g. [25], p. 141, Corollary 4.2.2) there exists a
g ∈ Aut(B1, u1) such that

g({β1(s1(x1)), β1(s1(x1))}) ∩ {α1(s1(x2)), u2} = ∅.

We can thus replace β by g ◦ β. Hence, u1, u2, β1(s1(x1)), α1(s1(x2)), β1(s1(y1))
are pairwise distinct. Likewise, we can choose β2 ∈ Aut(B2) such that v1, v2,
β2(s2(x2)), α2(s2(x1)), β2(s2(y2)) are pairwise distinct.

Let R be the binary antisymmetric irreflexive relation of B2, choose any
(a, b) ∈ R, and let α ∈ Aut(B2) be such that α(a) = b. Define c := α(b) and
note that c �= a since otherwise (a, b), (b, a) ∈ R contrary to our assumptions.
Since B is a generic combination and B1, B2 are transitive, B is transitive as
well and we can choose a, b, c disjoint from u1, u2, v1, v2 by Neumanns Lemma as
above. Then the Extension Lemma (Lemma 3) asserts the existence of elements
u3, u4, u5 and automorphisms δi,1 ∈ Aut(Bi), for i ∈ {1, 2}, such that

δ1,1(u1, u2, u3, u4, u5) = (u1, u2, β1(s1(x1)), α1(s1(x2)), β1(s1(y1)))
and δ2,1(u1, u2, u3, u4, u5) = (u1, u2, a, b, c) .

Similarly, there are elements v3, v4, v5 and δi,2 ∈ Aut(Bi), for i ∈ {1, 2}, such
that

δ1,2(v1, v2, v3, v4, v5) = (v1, v2, β2(s2(x2)), α2(s2(x1)), β2(s2(y2)))
and δ2,2(v1, v2, v3, v4, v5) = (v1, v2, a, b, c) .

See Fig. 1. If f(u4, v3) �= f(u4, v5), then

s := f(δ−1
1,1α1s1, δ

−1
1,2β2s2)

s1(x2)
s1(y2)

s1(x1) s1(y1)
s1

s2(y1)
s2(x1)

s2(x2)

s2(y2)

s2

u1 u2 u3 u4 u5

v1

v2

v3

v4

v5

q

p

Fig. 1. An illustration of the first case in the proof of Proposition 5. Dashed edges
indicate (potential) inequalities between function values.
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is a solution to (3):

s(x1) = f(δ−1
1,1α1s1(x1), δ−1

1,2β2s2(x1)) = f(δ−1
1,1(u1), δ−1

1,2(v1)) = f(u1, v1)

�= f(u2, v1) = f(δ−1
1,1(u2), δ−1

1,2(v1)) = f(δ−1
1,1α1s1(y1), δ−1

1,2β2s2(y1)) = s(y1)

s(x2) = f(δ−1
1,1α1s1(x2), δ−1

1,2β2s2(x2)) = f(u4, v3)

�= f(u4, v5) = f(δ−1
1,1α1s1(x2), v5) = f(δ−1

1,1α1s1(y2), δ−1
1,2β2s2(y2)) = s(y2).

So let us assume that p := f(u4, v3) = f(u4, v5). If f(u3, v4) �= f(u5, v4), then

s := f(δ−1
1,1β1s1, δ

−1
1,2α2s2)

is a solution to (3), by similar reasoning as above. Thus, we also assume that
q := f(u3, v4) = f(u5, v4). As (a, b) ∈ R, (b, c) ∈ R, δ2,1, δ2,2 ∈ Aut(B2), and f
preserves R,

(p, q) = (f(u4, v3), f(u5, v4)) = (f(δ−1
2,1(b), δ

−1
2,2(a)), f(δ−1

2,1(c), δ
−1
2,2(b))) ∈ R.

Similarly,

(q, p) = (f(u3, v4), f(u4, v5)) = (f(δ−1
2,1(a), δ−1

2,2(b)), f(δ−1
2,1(b), δ

−1
2,2(c))) ∈ R.

Hence, both (p, q) ∈ R and (q, p) ∈ R, contradicting our assumptions.

Case 2. |s1({x1, y1, x2, y2})| = |s2({x1, y1, x2, y2})| = 2.

Case 2a. s1(x2) = s1(y2) = s1(x1) and s2(x1) = s2(y1) = s2(x2).
In this case, it is easy to verify that

s := f(α1(s1), α2(s2))

is a solution to (3).

Case 2b. s1(x2) = s1(y2) = s1(y1) and s2(x1) = s2(y1) = s2(x2). This case can
be proven similarly to Case 1 and is written out in [7].

Case 2c. s1(x2) = s1(y2) = s1(x1) and s2(x1) = s2(y1) = s2(y2). This case can
be shown analogously to case 2b (swap x and y).

Case 2d. s1(x2) = s1(y2) = s1(y1) and s2(x1) = s2(y1) = s2(y2). This case can
be shown analogously to case 2a (swap x and y).

Case 3. |s1({x1, y1, x2, y2})| = 3 and |s2({x1, y1, x2, y2})| = 2.

Case 3a. s1(x2) = s1(y2) /∈ {s1(x1), s1(y1)} and s2(x1) = s2(y1) = s2(x2). The
proof is similar to the first and to the second case.

Case 3b. s1(x2) = s1(y2) /∈ {s1(x1), s1(y1)} and s2(x1) = s2(y1) = s2(y2). The
proof is analogous to Case 3a.

Case 4. |s1({x1, y1, x2, y2})| = 2 and |s2({x1, y1, x2, y2})| = 3. This case is
symmetric to Case 3 (swap s1 and s2).
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6 Conclusion and Future Work

For many theories T1 and T2 we have shown that the Nelson-Oppen conditions
are not only a sufficient, but also a necessary condition for the polynomial-time
tractability of the combined constraint satisfaction problem CSP(T1 ∪ T2). Our
results imply for example the following complexity classification for combinations
of temporal CSPs.

Corollary 1. Let B1 and B2 be two first-order expansions of (Q;<, �=); rename
the relations of B1 and B2 so that B1 and B2 have disjoint signatures. Then
CSP(Th(B1) ∪ Th(B2)) is in P if CSP(B1) and CSP(B2) are in P and if both
Th(B1) and Th(B2) are convex. Otherwise, CSP(Th(B1) ∪ Th(B2)) is NP-hard.

This follows from Proposition 1 which characterises the existence of a generic
combination of T1 and T2, and from Theorem 3 which classifies the computational
complexity of the generic combination.

It would be interesting to show our complexity result for even larger classes
of ω-categorical theories T1 and T2. It would also be interesting to drop the
assumption that the signatures of T1 and T2 contain a symbol for the inequality
relation.
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A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 184–196. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 16

9. Bodirsky, M., Jonsson, P.: A model-theoretic view on qualitative constraint rea-
soning. J. Artif. Intell. Res. 58, 339–385 (2017)

https://doi.org/10.1007/3-540-45406-3_3
https://doi.org/10.1007/3-540-45406-3_3
http://arxiv.org/abs/1612.07551
http://arxiv.org/abs/1510.04521
http://arxiv.org/abs/1602.04353
http://arxiv.org/abs/1201.0856
http://arxiv.org/abs/1801.05965
https://doi.org/10.1007/978-3-540-70583-3_16


278 M. Bodirsky and J. Greiner

10. Bodirsky, M., Jonsson, P., Pham, T.V.: The complexity of phylogeny constraint
satisfaction problems. ACM Trans. Comput. Log. (TOCL) 18(3), 23 (2017). An
extended abstract appeared in the conference STACS 2016
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Abstract. The clausal logical consequences of a formula are called its
implicates. The generation of these implicates has several applications,
such as the identification of missing hypotheses in a logical specification.
We present a procedure that generates the implicates of a quantifier-
free formula modulo a theory. No assumption is made on the considered
theory, other than the existence of a decision procedure. The algorithm
has been implemented (using the solvers MiniSAT, CVC4 and Z3) and
experimental results show evidence of the practical relevance of the pro-
posed approach.

1 Introduction

We present a novel approach based on the usage of a generic SMT solver as a
black box to generate ground implicates of a formula modulo a theory. Formally,
the implicates of a formula φ modulo a theory T are the ground clauses C such
that every model of T that satisfies φ also satisfies C; in other words, these
are the clausal T -consequences of φ. The problem of generating such implicates
(up to logical entailment) is of great practical relevance, since for any implicate∨n

i=1 li, the formula
∧n

i=1 ¬li ∧ φ is T -unsatisfiable. The set {¬li | i ∈ [1, n]}
can thus be viewed as a set of hypotheses under which φ is T -unsatisfiable
or, dually, ¬φ is provable. This means that generating implicates can permit
to identify missing hypothesis in a theorem, such as omitted lemmata or side
conditions. Such hypotheses are useful to correct mistakes in specifications, but
also to quickly spot why a given statement is not provable. They can be far more
informative than counter-examples in this respect, since the latter are hard to
analyze and can be clouded with superfluous information.

Consider for example the simple program over an array defined in Algo-
rithm1. It turns out that the postcondition of the program is not verified. This
can be evidenced by translating the preconditions, the algorithm and the nega-
tion of the post-condition into a conjunction of logical formulas, and using an
SMT solver to construct a model for this conjunction; this model can then be
analyzed to determine what precondition is missing. The obtained model, how-
ever, will generally contain a hard to read array definition, and the missing
precondition will not be explicitly returned. For instance, the model returned by
the Z3 SMT solver [6] is (using our notations):
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 279–294, 2018.
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Algorithm 1. Example(Array[Int] T , Int a, Int b)
1 requires ∀x, y ∈ [a, b], x ≤ y =⇒ T [x] ≤ T [y];
2 requires T [a] ≥ 0;
3 let T [b + 1] = T [b − 1] + T [b] ;
4 ensures ∀x, y ∈ [a, b + 1], x ≤ y =⇒ T [x] ≤ T [y];

a : 533, b : 533,
f : x �→ x ≥ 533 ? (x ≥ 534 ? 534 : 533) : 532,
g : x �→ x = 533 ? 535 : (x = 534 ? 19 : −516),
T : x �→ g(f(x)).

Implicate generation on the other hand permits to identify the missing precon-
dition in a more efficient manner. The first step consists in selecting the literals
that can be used to generate potential explanations; these are called abducible
literals. In this example, the natural literals to consider are all the (negations of)
equalities and inequalities constructed using constants a and b, along with addi-
tional predefined constants such as 0 and 1. The second step simply consists in
invoking our system, GPiD, to generate the potential missing preconditions. For
this example, GPiD plugged with Z3 generates the missing precondition a �= b
in less than 0.2 s. If abducible literals can be constructed using also the function
symbol T , then our tool generates the other potential precondition T [b − 1] ≥ 0
in the same amount of time.

In previous work [8–10,12], we devised refinements of the superposition cal-
culus specially tuned to derive such implicates for quantifier-free formula mod-
ulo equality with uninterpreted function symbols. We proved the soundness and
deductive-completeness of the obtained procedures, i.e., we showed that the pro-
cedure derives all implicates up to redundancy. In the present work, we inves-
tigate a different approach. We provide a generic algorithm for generating such
implicates, relying only on the existence of a decision procedure for the underly-
ing theory, possibly augmented with counter-example generation capabilities to
further restrict the search space. The main advantage of this approach is that
it is possible to use efficient SMT solvers as black boxes, instead of having to
develop specific systems for the purpose of implicate generation. Our method
is based on decomposition, in the spirit of the DPLL approach. The generated
implicates are constructed on a given set of candidate literals, called abducible
literals, which is assumed to be fixed before the beginning of the search, e.g.,
by a human user. As far as flexibility is concerned, the algorithm also permits
to only generate implicates satisfying so-called ⊆-closed predicates without any
post-processing step. We show that the algorithm is sound and complete, and
we provide experimental results showing that the obtained system is much more
efficient than the previous one based on superposition. We also devise generic
approaches to store sets of implicates efficiently, while removing implicates that
are redundant modulo the considered theory. Again, the proposed procedure
relies only on the possibility of deciding validity in the underlying theory.
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Related Work. The implicate generation problem has been thoroughly inves-
tigated in the context of propositional logic (see for instance [19]). Earlier
approaches are based mainly on refinements of the Resolution rule [15,16,26,30],
and they focus on the definition of efficient strategies to generate saturated
clause sets and of compact data structures for storing the generated sets of
implicates [5,14,23,29]. Other approaches use decomposition-based methods, in
the style of the DPLL procedure, for generating trie-based representations of
sets of prime implicates [20,21]. Recently [25], a new approach that outperforms
previous algorithms has been proposed, based on max-satisfiability solving and
problem reformulation. Our algorithm can be used for propositional implicate
generation but it is not competitive with this new approach. Our aim with this
work was rather to extend the scope of implicate generation to more expres-
sive logics. Indeed, there have been only very few approaches dealing with logics
other than propositional. Some extensions have been considered in modal logics
[3,4], and algorithms have been proposed for first-order formulas, based on first-
order resolution [17,18] or tableaux [22,24]. However, none of these approaches
is capable of handling equality efficiently. More recently, algorithms were devised
to generate sets of implicants of formulas interpreted in decidable theories [7],
by combining quantifier-elimination for discarding useless variables, with model
building to construct sufficient conditions for satisfiability.

The rest of the paper is structured as follows. In Sect. 2, basic definitions
and notations are introduced. Section 3 contains the definition of the algorithm
for generating implicates, starting with a straightforward, naive algorithm and
refining it to make it more efficient. In Sect. 4 data-structures and algorithms are
presented to store implicates efficiently modulo redundancy. Section 5 contains
the description of the implementation and experimental results, and Sect. 6 con-
cludes the paper. Due to space restrictions, some of the proofs are omitted. The
full version is available on arXiv.

2 Preliminary Notions

Ground terms and non-quantified formulas are built inductively as usual on a
sorted signature Σ. The notions of validity, models, satisfiability, etc. are defined
as usual. The set of literals built on Σ is denoted by L. Let T be a theory. A set
of formulas S is T -satisfiable if there exists an interpretation I such that I |= S
and I |= T . We assume that the T -satisfiability problem is decidable, i.e., that
there exists an SMT solver that, given a formula φ with no quantifier, can decide
whether φ is T -satisfiable.

We consider clauses as unordered disjunctions of literals with no repetition.
Thus, when we write C ∨D, we implicitly assume that C and D share no literal.
We also identify unit clauses with the literal they contain. For every literal l, l
denotes the literal complementary of l. The empty clause is denoted by false.
If Q = {l1, . . . , ln} is a set of literals, then we denote by Q the clause l1 ∨· · ·∨ ln.
Conversely, given a clause C = l1 ∨ · · · ∨ ln, we denote by C the set of literals
(or unit clauses)

{
l1, . . . , ln

}
.
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We consider a finite set of abducible literals A. We assume that each of these
literals is T -satisfiable. Given a set of clauses S, we call a clause C a (T ,A)-
implicate of S if C ⊆ A and S |=T C. We say that C is a prime (T ,A)-implicate
of S if C is a (T ,A)-implicate of S and for every (T ,A)-implicate D of S, if
D |=T C then C |=T D. The set of (T ,A)-implicates of S is denoted by IA(S),
and the set of prime (T ,A)-implicates of S is denoted by PA(S).

Given a set of clauses S and a clause C, we write S �T C if there is a clause
D ∈ S such that D |=T C. If S′ is a set of clauses, then we write S �T S′ if for
all C ∈ S′, we have S �T C. We write S ∼ S′ if S �T S′ and S′ �T S (i.e., S
and S′ are identical modulo T -equivalence).

Proposition 1. Let l be a literal and let C,D be clauses. The following state-
ments hold:

1. l ∨ C |=T D iff l |=T D and C |=T D.
2. C |=T l ∨ D iff C ∧ l |=T D.

We assume an order ≺ is given on clauses built on A that agrees with inclu-
sion, i.e., such that C � D ⇒ C ≺ D.

Definition 2. A T -tautology is a clause that is satisfied by every model of T .
Given a set of clauses S, we denote by SubMin(S) the set obtained by deleting
from S all clauses D such that either D is a T -tautology, or there exists C ∈ S
such that C |=T D and (D �|=T C or C ≺ D).

Note that in particular, we have PA(S) ∼ SubMin(IA(S)).

3 On the Generation of Prime (T ,A)-Implicates

3.1 A Basic Algorithm

We present a simple and intuitive algorithm that permits to generate the (T ,A)-
implicates of a set of formulas S. This algorithm is based on the fact that a clause
C is a (T ,A)-implicate of S if and only if C ⊆ A and S ∪ C |=T false. It will
thus basically consist in enumerating the subsets of A and searching for those
whose union with S is T -unsatisfiable. This may be done by starting with an
empty set of hypotheses M and repeatedly and nondeterministically adding new
abductible literals to M until S ∪ M is T -unsatisfiable. This algorithm is naive,
as the same clauses will be produced multiple times, but it forms the basis of
the more efficient algorithm in Sect. 3.2.

Definition 3. Let S be a set of formulas. Let M,A be sets of literals such that
M ∪ A ⊆ A. We define

IM,A(S) =
{
C ∈ IA(S)

∣
∣ ∃Q ⊆ A, C = M ∨ Q

}
,

PM,A(S) = SubMin(IM,A(S)).
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Intuitively, a clause M ∨Q thus belongs to IM,A(S) if and only if Q is a (T ,A)-
implicate of S ∪ M .

Proposition 4. Let S be a set of formulas, M and A be sets of literals such that
M ∪ A ⊆ A. If M is T -satisfiable, then S ∪ M is T -unsatisfiable iff PM,A(S) =
{M}. If M is T -unsatisfiable, then PM,A(S) = ∅.

It is clear that it is useless to add a new hypothesis l into M both if M ∪{l} is
T -unsatisfiable (because the obtained (T ,A)-implicate would be a T -tautology),
or if this set is equivalent to M (because the (T ,A)-implicate would not be
minimal). This motivates the following definition:

Definition 5. Let S be a set of formulas and let M,A be two sets of literals.
We denote by fix(S,M,A) a set obtained by deleting from A some literals l such
that either M ∪ S |=T l or M |=T l.

The use of this definition aims to reduce the number of abducible hypotheses
to try, and thus the search space of the algorithm. Still, we do not assume that
all the literals l satisfying the condition above are deleted because, in practice,
such literals may be hard to detect. However, we assume that no element from
M is in fix(S,M,A).

Proposition 6. Consider a set of formulas S and two sets of literals M,A such
that PM,A(S) �=

{
M

}
. The following equalities hold:

1. PM,A(S) = SubMin(
⋃

l∈A PM∪{l},A(S)).
2. PM,A(S) = PM,fix(S,M,A)(S).

The results above lead to a basic algorithm for generating (T ,A)-implicates
which is described in Algorithm 2. As explained above, the algorithm works by
adding literals from A as hypotheses until a contradiction can be derived. The
return statement at Line 5 avoids enumerating the subsets that contain M ,
once it is known that S ∪ M is T -unsatisfiable.

Algorithm 2. bp(S,M,A)
1 if M is T -unsatisfiable then
2 return ∅;

3 else
4 if S ∪ M is T -unsatisfiable then

5 return
{
M

}
;

6 else
7 B = fix(S,M,A);
8 foreach l ∈ B do
9 let Pl = bp(S,M ∪ {l} , B);

10 return SubMin(
⋃

l∈B Pl);
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Lemma 7. PM,A(S) = bp(S,M,A).

Proof. The result is proved by a straightforward induction on card(A \ M). By
Proposition 4, PM,A(S) = ∅ if M is T -unsatisfiable, and PM,A(S) =

{
M

}
if M

is T -satisfiable and S ∪M is T -unsatisfiable. Otherwise, by Proposition 6(2), we
have PM,A(S) = PM,fix(S,M,A)(S) = PM,B(S). By the induction hypothesis,
for each l ∈ A, Pl = PM∪{l},B(S), and by Proposition 6(1), Pl = PM∪{l},A(S);
we deduce that PM,A(S) = SubMin(

⋃
l∈A Pl). Note that at each recursive call,

a new element is added to M , since fix(S,M,A) is assumed not to contain any
element from M .

Theorem 8. If S is a set of formulas then PA(S) = bp(S, ∅,A).

Although the algorithm described above computes all the prime (T ,A)-
implicates of any clause set as required, it is very inefficient, in particular because
of the large number of useless and redundant recursive calls that are made. In
what follows we present several improvements to the algorithm in order to gen-
erate implicates as efficiently as possible.

3.2 Restricting the Set of Candidate Hypotheses

It is obvious that the algorithm bp makes a lot of redundant calls: for example,
if l1 ∨ l2 is a prime (T ,A)-implicate of a clause set S, then this (T ,A)-implicate
will be generated twice, first as l1∨l2, and then as l2∨l1. Such redundant calls are
quite straightforward to avoid by ensuring that every invocation of the algorithm
contains a distinct set of literals M . This can be done by fixing an ordering <
among literals in A, and by assuming that hypotheses are always added in this
order. Another way of restricting the set of candidate hypotheses is to exploit
information extracted from the previous satisfiability test. For example, if S∪{l1}
is satisfiable for some literal l1, and that a model of this set satisfies another
literal l2, then S ∪ {l2} is also satisfiable and it is not necessary to consider l2
as a hypothesis. In particular, if a model of S ∪ {l1} validates all the literals in
A, then PM,A(S) is necessarily empty and no literal should be selected. We can
thus take advantage of the existence of a model of S ∪ M in order to guide the
choice of the next literals in A. However, observe that this refinement interferes
with the previous one based on the order <. Indeed, non-minimal hypotheses
will have to be considered if all the smaller hypotheses are dismissed because
they are true in the model. We formalize these principles below.

Definition 9. In what follows, we consider a total ordering1 < on the elements
of A. For A ⊆ A and l ∈ A, we define A[l]

def
= {l′ ∈ A | l < l′}. If I is a set of

literals then we denote by AI [l] the set
{
l′ ∈ A

∣
∣ l′ < l ∧ l′ �∈ I

}
∪ A[l].

Example 10. Assume that A = {pi,¬pi | i = 1, . . . , 6} and that for all literals
l ∈ {pi,¬pi} and l′ ∈ {pj ,¬pj}, l < l′ if and only if either i < j or (i = j,
l = pi and l′ = ¬pi). Then A[p4] = {¬p4, p5,¬p5, p6,¬p6}. If I = {p1,¬p2}, then
AI [p4] = {p1,¬p2, p3,¬p3,¬p4, p5,¬p5, p6,¬p6}.
1 Note that this ordering is not necessarily related to the ordering ≺ on clauses.
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Definition 11. Let S be a set of clauses. A set of literals I is S-compatible
with respect to A (or simply S-compatible) if every prime (T ,A)-implicate of
S contains a literal l such that l ∈ I.

Intuitively, an S-compatible set I consists of literals l such that l will be
allowed to be added as a hypothesis to generate (T ,A)-implicates of S (see
Lemma 16 below). The set I can always be defined by taking the negations of
all the abducible literals from A. In this case, all literals will remain possible
hypotheses. It is possible, however, to restrict the size of I when a model of S is
known, as evidenced by the following proposition:

Proposition 12. If S is a set of clauses and J is a model of S, then the set
I

def
= {l ∈ L | J |= l} is S-compatible.

Proof. Let Q be a set of literals such that Q is a prime (T ,A)-implicate of S,
and assume that for all l ∈ Q, l �∈ I, i.e., that for all l ∈ Q, J �|= l. Then J |= l
holds for every l ∈ Q, hence J |= S ∪Q and Q cannot be a (T ,A)-implicate of S.

Note that the condition of having a model of S was not added to Definition 11
because in practice, such a model cannot always be constructed efficiently.

Being able to derive unit consequences of the set of axioms (for instance by
using unit propagation), can pay off if this additional information can be used
to simplify the formula at hand. This motivates the following definition.

Definition 13. Let S be a set of formulas and M ⊆ A. We denote by UM (S)

the set of unit clauses logically entailed by S ∪ M modulo T , i.e., UM (S)
def
=

{l ∈ L | S ∪ M |=T l}. Given a set U such that M ⊆ U ⊆ UM (S), we denote by
SU,M the formula obtained from S by replacing some (arbitrarily chosen) literals
l′ by false if U |=T l′ and by true if M |=T l′.

Note that U is not necessarily identical to UM (S), because in practice the latter
set is hard to generate. Similarly we do not assume that all literals l′ are replaced
in Definition 13 since testing logical entailment may be costly. Lemma 14 shows
that the (T ,A)-implicates of a set S and those of SU,M are identical.

Lemma 14. Let S be a set of formulas and M ⊆ A. Consider a set of literals
U such that M ⊆ U ⊆ UM (S). Then IM,A(S) = IM,A(SU,M ).

Definition 15. Let U,M,A be sets of literals. We define: GU,A,M (S)
def
={

M ∨ l
∣
∣ l ∈ A ∧ l ∈ U

}
.

The lemma below can be viewed as a refinement of Proposition 6. It is based
on the previous results, according to which, when adding a new hypothesis l,
it is possible to remove from the set of abducible literals A every literal that
is strictly smaller than l, provided its complementary is in I (because we can
always assume that the smallest available hypothesis is considered first). This is
why the recursive call is on AI [l] instead of A. Note also that the use of semantic
guidance interferes with the use of the ordering <: the smaller the set I, the
larger AI [l].
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Lemma 16. Assume that S ∪ M is T -satisfiable and let I be an (S ∪ M)-
compatible set of literals. Let U be a set of literals such that M ⊆ U ⊆ UM (S).
We have

PM,A(S) = SubMin

⎛

⎝GU,A,M (S) ∪
⋃

l∈A,l∈I

PM∪{l},AI [l](S)

⎞

⎠ .

Proof. First note that PM,A(S) �=
{
M

}
, since S ∪ M is T -satisfiable. We first

prove that PM,A(S) ⊆ GU,A,M (S)∪
⋃

l∈A,l∈I PM∪{l},AI [l](S). Let C ∈ PM,A(S).
By hypothesis, C is of the form M ∨ Q, where ∅ �= Q ⊆ A. Since I is (S ∪ M)-
compatible, Q necessarily contains a literal l ∈ A such that l ∈ I. Assume that l
is the smallest literal in Q satisfying this property. We distinguish the following
cases.

Assume that Q contains a literal l′ such that l′ ∈ U . In this case, since U ⊆
UM (S), S∪M |=T l′. Since Q ⊆ A, we also have l′ ∈ A, and since PM,A(S) �={
M

}
, we deduce that M ∨ l′ ∈ PM,A(S). Since M ∨ l′ |=T C and C ∈

PM,A(S), C must be smaller or equal to M ∨ l′, which is possible only if
C = M ∨ l′. We deduce that C ∈ GU,A,M (S).

Otherwise, we show that Q \ {l} ⊆ AI [l]. By Definition 9, we have A[l] =
{l′ ∈ A | l < l′} and AI [l] = {l′ ∈ A | l′ < l ∧ l′ �∈ I} ∪ A[l]. Let l′ ∈ Q, with
l′ �= l. If l′ > l then l′ ∈ A[l] ⊆ AI [l]. If l′ �> l, then since > is total and
l �= l′, necessarily l > l′. Since l is the smallest literal in Q such that l ∈ I,
we deduce that l′ �∈ I. Thus l′ < l and l′ �∈ I, which entails that l′ ∈ AI [l].
Consequently, Q \ {l} ⊆ AI [l]. Since C = M ∪ {l} ∨ Q \ {l}, this entails that
C ∈ PM∪{l},AI [l](S).

We now prove that GU,A,M (S) ∪
⋃

l∈B,l∈I PM∪{l},BI [l](S) ⊆ IM,A(S).

Let C ∈ GU,A,M (S). By definition, C is of the form M ∪ l with l ∈ A ∩ U . Since
U ⊆ UM (S), we deduce that S ∪ M |=T l, i.e., that S |=T M ∨ l. Since
l ∈ A, this entails that M ∨ l ∈ IM,A(S), hence C ∈ IM,A(S).

Let C ∈ PM∪{l},AI [l](S) with l ∈ A, l ∈ I. By definition, C = M ∨ l ∨ Q, with
Q ⊆ AI [l] and C ∈ IA(S). But AI [l] ⊆ A by definition, thus Q∪{l} ⊆ A and
C = M ∨ (Q ∨ l) ∈ IM,A(S).

Similarly to cSP (see [12, Sect. 4.2]), we parameterize our algorithm by a
predicate in order to filter the implicates that are generated. The goal of this
parametrization is to allow the user to restrict the form of the generated impli-
cates. Typically, one could want to generate implicates only up to a given size
limit, or only those satisfying some specific semantic constraints.

Definition 17. A predicate P on sets of literals is ⊆-closed if for all sets of
literals A such that P(A) holds, if B ⊆ A then P(B) also holds.

Examples of ⊆-closed predicates include cardinality constraints: Pk
def
=

λA. card(A) ≤ k, where k ∈ N, or implicant constraints: Pφ
def
= λA. φ |= A,
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where φ is a formula. Note that ⊆-closed predicates can safely be combined by
the conjunction and disjunction operators.

An important feature of ⊆-closed predicates is that implicates verifying such
predicates can be generated on the fly without any post-processing step, thanks
to the following result:

Proposition 18. If P is ⊆-closed and P(M) does not hold, then for all sets of
literals A, P(M ∪ A) does not hold either.

The inclusion of these improvements to the original algorithm results in the
one described in Algorithm 3.

Algorithm 3. imp(S,M,A,P)
1 if M is T -unsatisfiable or ¬P(M) then
2 return ∅;

3 if S ∪ M is T -unsatisfiable then

4 return
{
M

}
;

5 let U ⊆ UM (S) such that M ⊆ U ;
6 let S = SU,M ;
7 let A = fix(S,M,A) ;
8 let I be an (S ∪ M)-compatible set of literals ;

9 foreach l ∈ A such that l ∈ I do
10 let Pl = imp(S,M ∪ {l} , AI [l],P);

11 return SubMin(GU,A,M (S) ∪
⋃

l∈A Pl);

Lemma 19. If P is ⊆-closed then imp(S,M,A,P) = PM,A(S) ∩
{
A

∣
∣ A ∈ P

}
.

Proof. If one of M or S ∪ M is T -unsatisfiable, or P(M) does not hold, then
the result follows from Propositions 4 and 18. Otherwise the result is proved by
induction on card(A \ M), using Proposition 6 and Lemmata 16 and 14.

Theorem 20. If P is ⊆-closed then PA(S) ∩
{
A

∣
∣ A ∈ P

}
= imp(S, ∅,A,P).

4 On the Storage of (T ,A)-Implicates

The number of implicates of a given formula may be huge, hence it is essential in
practice to have appropriate data structures to store them in a compact way and
efficient algorithms to check that a newly generated implicate C is not redundant
(forward subsumption modulo T ), and if so, to delete all the already generated
implicates that are less general than C (backward subsumption modulo T ),
before inserting C into the stored implicates. In this section, we devise a trie-
like data-structure to perform these tasks. As in the previous section, we only
rely on the existence of a decision procedure for testing T -satisfiability.
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Definition 21. Let <t be an order on the literals in A, possibly, but not neces-
sarily, equal to the order < used for literal ordering in the implicate generation
algorithm. An A-tree is inductively defined as ⊥ or a possibly empty set of pairs
{l1 : τ1, . . . , ln : τn}, where l1, . . . , ln are pairwise distinct literals in A and τi

(for i = 1, . . . , n) is an A-tree only containing literals that are strictly <t-greater
than li. An A-tree is associated with a set of A-clauses inductively defined as
follows:

S(⊥)
def
= {false} ,

S({l1 : τ1, . . . , ln : τn})
def
=

⋃n
i=1{li ∨ C | C ∈ S(τi)}.

In particular, S(∅) = ∅. Intuitively an A-tree may be seen as a tree in which the
edges are labeled by literals and the leaves are labeled by ∅ or ⊥, and represents
a set of clauses corresponding to paths from the root to ⊥. We introduce the
following simplification rule (which may be applied at any depth inside a tree,
not only at the root level):

Simp : τ ∪ {l : ∅} → τ

Informally, the rule deletes all leaves labeled by ∅ except for the root. It may be
applied recursively, for instance {l : {l1 : ∅, . . . , ln : ∅}} →n+1

Simp ∅. Termination is
immediate since the size of the tree is strictly decreasing.

Proposition 22. If τ →Simp τ ′ then τ ′ is an A-tree and S(τ) = S(τ ′).

The algorithm permitting the insertion of a clause in an A-tree is straight-
forward and thus omitted. The following lemma provides a simple algorithm to
check whether a clause is a logical consequence modulo T of some clause in S(τ)
(forward subsumption). The algorithm proceeds by induction on the A-tree.

Lemma 23. Let C be a clause and let τ be an A-tree. We have S(τ) �T C iff
one of the following conditions hold:

– τ = ⊥.
– τ = {l1 : τ1, . . . , ln : τn} and there exists i ∈ [1, n] such that li |=T C and

S(τi) �T C.

Proof. If τ = ⊥ then S(τ) = {false} �T C hence the equivalence holds. Oth-
erwise, let τ = {l1 : τ1, . . . , ln : τn}. By definition, S(τ) �T C holds iff there
exists a clause D ∈ S(τ) such that D |=T C. Since S({l1 : τ1, . . . , ln : τn}) =⋃n

i=1{li ∨ E | E ∈ S(τi)}, the previously property holds iff there exists i ∈ [1, n]
and E ∈ S(τi) such that li ∨ E |=T C, i.e., such that li |=T C and E |=T C
by Proposition 1(1). By definition, ∃E (E |=T C ∧ E ∈ S(τi)) iff (S(τi) �T C).
Furthermore, li �T C holds iff C ∪ {li} is T -unsatisfiable, hence the result.

The following definition provides an algorithm to remove, in a given A-tree,
all branches corresponding to clauses that are logical consequences of a given
formula modulo T (backward subsumption).
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Definition 24. Let φ be a formula and let τ be an A-tree. rm(τ, φ) denotes the
A-tree defined as follows:

– If φ is T -unsatisfiable, then rm(τ, φ)
def
= ∅.

– If φ is T -satisfiable, then:
• rm(⊥, φ)

def
= ⊥,

• rm({l1 : τ1, . . . , ln : τn}, φ)
def
=

⋃n
i=1{li : rm(τi, φ ∧ li)}.

Intuitively, starting with some clause C, the algorithm incrementally adds literals
l1, . . . , ln occurring in the clauses D = l1 ∨ · · · ∨ ln ∈ S(τ) and invokes the
SMT solver after each addition. If a contradiction is found then this means that
C |=T D, hence the branch corresponding to D can be removed. The calls
are shared among all common prefixes. Of course, this algorithm is interesting
mainly if the SMT solver is able to perform incremental satisfiability testing,
with “push” and “pop” commands to add and remove formulas from the set of
axioms (which is usually the case).

Lemma 25. Let φ be a formula and let τ be an A-tree. Then rm(τ, φ) is an
A-tree, and S(rm(τ, φ)) = {C ∈ S(τ) | φ �|=T C}.

Remark 26. The A-trees may be represented as dags instead of trees. In this
case, it is clear that the complexity, defined as the number of satisfiability tests
of forward subsumption (as defined in Lemma23) is of the same order as the
size of the dag, since the recursive calls only depend on the considered subtree.
For backward subsumption (see Definition 24) the situation is different since the
recursive calls have an additional parameter that is the formula φ, which depends
on the path in the A-tree. The maximal number of satisfiability tests is therefore
equal to the size of underlying tree, and not that of the dag. Note that it would
be necessary to make copies of some of the subtrees, if two pruning operations
are applied on the same (shared) subtree with different formulas.

5 Experimental Evaluation

Algorithm 3 has been implemented in a C++ framework called GPiD. The SMT
solver is used as a black box and GPiD can thus be plugged with any tool
serving this purpose, provided an interface is written for it. As a consequence,
the handled theory is only restricted by the SMT solver. Three interfaces were
implemented, respectively for MiniSAT [13], CVC4 [1] and Z3 [6]. The impli-
cate generator used in the reported experiments is the one based on Z3, which
turned out to be more efficient on the considered benchmarks. All the tests
were run on one core of an Intel(R) Core(TM) i5-4250U machine running at
1.9 GHz with 1 GiB of RAM. The benchmarks are extracted from the SMTLib
[2] library, the considered theories are quantifier-free uninterpreted functions
(QF UF) and quantifier-free linear integer arithmetic with uninterpreted func-
tions (QF UFLIA). For obvious reasons, only satisfiable examples have been kept
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Table 1. Number of problems for which at least one (T ,A)-implicate of a given max-
imal size can be generated in a given amount of time (in seconds), for the QF UF
SMTLib benchmark (2549 examples).

Size Time

[0, 0.5[ [0.5, 1[ [1, 1.5[ [1.5, 2[ [2, 5[ [5, 10[ [10, 35[ None

1 2235 75 28 16 33 32 61 69

2 2236 81 27 16 30 23 67 69

3 2236 79 27 16 34 23 65 69

4 2230 84 23 18 33 24 68 69

5 2231 79 27 12 36 22 73 69

6 2234 73 29 15 30 24 75 69

7 2231 81 23 15 33 22 75 69

8 2233 78 23 16 33 21 76 69

Table 2. Number of problems for which at least one (T ,A)-implicate of a given max-
imal size can be generated in a given amount of time (in seconds), for the QF UFLIA
SMTLib benchmark (400 examples).

Size Time

[0, 0.5[ [0.5, 1[ [1, 1.5[ [1.5, 2[ [2, 5[ [5, 10[ [10, 35[ None

1 120 23 46 76 100 6 25 4

2 120 23 6 0 0 0 247 4

3 120 23 6 0 96 4 147 4

4 120 23 6 0 0 0 247 4

5 120 23 6 0 0 0 247 4

6 120 22 7 0 0 0 247 4

7 121 22 6 0 0 0 247 4

8 116 24 6 3 0 0 247 4

for analysis. Abducible literals are part of the problem input, they are generated
by considering all ground equalities and disequalities with a maximal depth pro-
vided by the user; all the experiments were conducted using a maximal depth
of 1 and the average number of abducible literals is around 13397 (min. 1741,
max. 17.106). We chose not to apply unit propagation simplifications to the con-
sidered sets of clauses. More precisely, this means that we let U = M at line 5
of Algorithm 3 and delegate the simplifications that could occur in the following
line to the satisfiability checker. The reason for this decision is that efficiently
performing such simplifications can be difficult and strongly depends on the the-
ory. We also define fix(, , ) as the complementation on literals and P as either
true or a predicate ensuring card(M) ≤ n to generate (T ,A)-implicates of size
at most n. In all the experiments, the prime implicates filter (SubMin) was not
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active, so that implicates can be generated on the fly. Finally, if available, we
recover models of S ∪ M from the SMT solver in order to further prune the set
of abducibles (see Line 8 of Algorithm 3). Tables 1 and 2 show the number of
examples for which our tool generates at least one (T ,A)-implicate for a given
timespan, for the QF UF and QF UFLIA benchmarks respectively. The results
show that our tool is quite efficient, since it fails to generate any (T ,A)-implicate
within 35 s for only 2% (resp. 1%) of the QF UF (resp. QF UFLIA) benchmarks.
Figure 1 shows the proportion of the QF UFLIA set for which GPiD generates
an implicate in less than 15 s, depending on the maximal size constraint. For
the QF UF benchmark, the proportion decreases from 97% for a maximal size
constraint of 1 to 95% when there are no size restrictions. We also point out
that for 57% of the QF UF benchmark, we are actually able to generate all the
(T ,A)-implicates of size 1 in less than 15 s.

Fig. 1. Proportion (out of 100) of
examples of the QF UFLIA bench-
mark where GPiD generates at
least one implicate under 15 s.

We ran additional experiments to com-
pare this approach with a previous one based
on a superposition-based approach [11,12]
and implemented in the cSP tool. As far as
we are aware, cSP is the only other available
tool for implicate generation in the theory
of equality with uninterpreted function sym-
bols. Previous experiments (see, e.g., [11,12])
showed that cSP is already more efficient
than approaches based on a reduction to
propositional logic for generating implicates
of ground equational formulas, which is why
we did not run comparisons against tools
for propositional implicate generation. cSP
is based on a constrained calculus defined by
the usual inference rules of the superposition calculus together with additional
rules to dynamically assert new abducible hypotheses on demand into the search
space. The asserted hypotheses are attached to the clauses as constraints and,
when an empty clause is generated, the negation of these hypotheses yields
a (T ,A)-implicate. We chose to compare the tools by focusing on their abil-
ity to generate at least one (T ,A)-implicate of a given size. Indeed, generat-
ing all (prime) (T ,A)-implicates is unfeasible within a reasonable amount of
time except for very simple formulas, and comparing the raw number of (T ,A)-
implicates generated is not relevant because some of these may actually be redun-
dant w.r.t. non-generated ones2. We believe in practice, being able to efficiently
compute a small number of (T ,A)-implicates for a complex problem is more
useful than computing huge sets of (T ,A)-implicates but only for simple formu-
las. The following experiments are only based on benchmarks that can be solved
by both prototypes, as cSP is not capable of handling integer arithmetics. We
represented on Fig. 2 the number of examples for which both tools can generate

2 A refined comparison of the set of generated (T ,A)-implicates modulo theory entail-
ment is left for future work.



292 M. Echenim et al.

)b()a(

Fig. 2. Number of examples from the QF UF benchmark set for which GPiD (on the
left, darker color) and cSP (on the right, lighter color) generate at least one (T ,A)-
implicate within a given time (a) and generate at least one implicate of a given maximal
size under 15 s (b) (Color figure online)

at least one (T ,A)-implicate with a given maximal size constraint for various
timeouts (a) and generate at least one (T ,A)-implicate within a given time limit
for various maximal size constraints (b).

6 Conclusion

We devised a generic algorithm to generate implicates modulo theories and
showed that the corresponding implementation is more efficient than a previ-
ous attempt based on superposition. This result was to be expected since the
DPLL(T ) approach is more efficient than engines based on the Superposition
Calculus for testing the satisfiability of quantifier-free formulas with a large
combinatorial structure. Furthermore, the used superposition engine had to be
specifically tuned for implicate generation, and it is far less efficient than state-
of-the-art systems such as Vampire [27], E [28] or Spass [31] (this is of course
the advantage of having a generic algorithm using decision procedures as black
boxes). While our aim was to be completely generic, it is clear than the efficiency
of the procedure could be improved in practice by integrating theory-specific
algorithms for deriving consequences and normalizing formulas. For instance,
in the case of the theory of equality with uninterpreted function symbols, the
implicates could be normalized by replacing each term by its minimal represen-
tative, as is done in [12]. Efficient, theory-dependent simplification procedures
will also be explored in future work. A combination between the superposition-
based approach [12], in which the assertion of hypotheses is guided by the proof
procedure could also be beneficial. Our approach could also be combined with
that of [7], which is based on model building and quantifier-elimination.
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Abstract. We introduce a sound and complete coinductive proof system
for reachability properties in transition systems generated by logically
constrained term rewriting rules over an order-sorted signature modulo
builtins. A key feature of the calculus is a circularity proof rule, which
allows to obtain finite representations of the infinite coinductive proofs.

1 Introduction

We propose a framework for specifying and proving reachability properties of
systems whose behaviour is modelled using transition systems described by log-
ically constrained term rewriting systems (LCTRSs). By reachability properties
we mean that a set of target states are reached in all terminating system compu-
tations starting from a given set of initial states. We assume transition systems
are generated by constrained term rewriting rules of the form

l � r if φ,

where l and r are terms and φ is a logical constraint. The terms l, r may con-
tain both uninterpreted function symbols and function symbols interpreted in
a builtin model, e.g., the model of booleans and integers. The constraint φ is a
first-order formula that limits the application of the rule and which may contain
predicate symbols interpreted in the builtin model. The intuitive meaning of a
constrained rule l � r if φ is that any instance of l that satisfies φ transitions
in one step into a corresponding instance of r.

Example 1. The following set of constrained rewrite rules specifies a procedure
for compositeness:

init(n) � loop(n, 2) if �,
loop(i × k, i) � comp if k > 1,
loop(n, i) � loop(n, i + 1) if ¬(∃k.k > 1 ∧ n = i × k).

If n is not composite, the computation of the procedure is infinite.

c© Springer International Publishing AG, part of Springer Nature 2018
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Given a LCTRS, which serves as a specification for a transition system, it is
natural to define the notion of constrained term 〈t | φ〉, where t is an ordinary
term (with variables) and φ is a logical constraint. The intuitive meaning of such
a term is the set of ground instances of t that satisfy φ.

Example 2. The constrained term 〈init(n) | ∃u.1 < u < n ∧ n mod u = 0〉 defines
exactly the instances of init(n) where n is composite.

A reachability formula is a pair of constrained terms 〈t | φ〉 ⇒ 〈t′ | φ′〉. The
intuitive meaning of a reachability formula is that any instance of 〈t | φ〉 reaches,
along all terminating paths of the transition system, an instance of 〈t′ | φ′〉 that
agrees with 〈t | φ〉 on the set of shared variables.

Example 3. The reachability formula

〈init(n) | ∃u.1 < u < n ∧ n mod u = 0〉 ⇒ 〈comp | �〉
captures a functional specification for the algorithm described in Example 1: each
terminating computation starting from a state in which n is composite reaches
the state comp. Computations that start with a negative number (composite or
not) are infinite and therefore vacuously covered by the specification above.

We propose an effective proof system that, given a LCTRS, proves valid
reachability formulas such as the one above, assuming an oracle that solves
logical constraints. In practice, we use an SMT solver instead of the oracle.

Contributions. 1. As computations can be finite or infinite, an inductive app-
roach for reachability is not practically possible. In Sect. 2, we propose a coinduc-
tive approach for specifying transition systems, which is an elegant way to look at
reachability, but also essential in handling both finite and infinite executions. 2.
We formalize the semantics of LCTRSs as a reduction relation over a particular
model that combines order-sorted terms with builtin elements such as integers,
booleans, arrays, etc. The new approach, introduced in Sect. 3, is simpler than
the usual semantics for constrained term rewriting systems [14,18–20], but it
also lifts several technical restrictions that are important for our case studies. 3.
We introduce a sound and complete coinductive proof system for deriving valid
reachability formulas for transition systems specified by a LCTRS. We present
our proof system in two steps: in the first step, we provide a three-rule proof
system (Fig. 1) for symbolic execution of constrained terms. When interpreting
the proof system coinductively, its proof trees can be finite or infinite. The finite
proof trees correspond to reachability formulas 〈t | φ〉 ⇒ 〈t′ | φ′〉 where there is
a bounded number of symbolic steps between 〈t | φ〉 and 〈t′ | φ′〉. The infinite
proof trees correspond to proofs of reachability formulas 〈t | φ〉 ⇒ 〈t′ | φ′〉 that
hold for an unbounded number of symbolic steps between 〈t | φ〉 and 〈t′ | φ′〉
(obtained, e.g., by unrolling loops). Symbolic execution has similarities to nar-
rowing, but unlike narrowing, where each step computes a possible successor,
symbolic execution must consider all successors of a state at the same time.
4. The infinite proof trees above cannot be obtained in finite time in practice.
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In order to derive reachability formulas that require an unbounded number of
symbolic steps in finite time, we introduce a fourth proof rule to the system that
we call circularity. The circularity proof rule can be used to compress infinite
proof trees into finite proof trees. The intuition is to use as axioms the goals that
are to be proven, when they satisfy a guardedness condition. This compression
of infinite coinductive trees into finite proof trees via the guardedness condition
nicely complements our coinductive approach. This separation between symbolic
execution and circularity answers an open question in [21]. 5. We introduce the
RMT tool, an implementation of the proof system that validates our approach on
a number of examples. RMT uses an SMT solver to discharge logical constraints.
The tool is expressive enough for specifying various transition systems, including
operational semantics of programming languages, and proving reachability prop-
erties of practical interest and is intended to be the starting point of a library
for rewriting modulo builtins, which could have more applications.

Related Work. A number of approaches [1,2,14,25,29] to combining rewriting
and SMT solving have appeared lately. The rewrite tool Maude [12] has been
extended with SMT solving in [25] in order to enable the analysis of open sys-
tems. A method for proving invariants based on an encoding into reachability
properties is presented in [29]. Both approaches above are restricted to topmost
rewrite theories. While almost any theory can be written as a topmost theory [22],
the encoding can significantly increase the number of transitions, which raises
performance concerns. Our definition for constrained term is a generalization
of that of constructor constrained pattern used in [29]. In particular [29] does
not allow for quantifiers in constraints, but quantifiers are critical to obtaining
a complete proof system, as witnessed by their use in the subsumption rule in
our proof system ([subs], Fig. 1). The approach without quantifiers is therefore
not sufficient to prove reachabilities in a general setting.

A calculus for reachability properties in a formalism similar to LCTRSs is
given in [1]. However, the notion of reachability in [1] is different from ours: while
we show reachability along all terminating paths of the computation, [1] solves
reachability properties of the form ∃x̃.t(x̃) →∗ t′(x̃) (i.e. does there exists an
instance of t that reaches, along some path, an instance of t′).

Work on constrained term rewriting systems appeared in [14,18–20]. In con-
trast to this approach to constrained rewriting, our semantics is simpler (it does
not require two reduction relations), it does not have restrictions on the terms
l, r in a rule l � r if φ and the constraint is an arbitrary first-order formula
φ, possibly with quantifiers, which are crucial to obtain symbolic execution in
its full generality. Constrained terms are generalized to guarded terms in [2], in
order to reduce the state space.

Reachability in rewriting is explored in depth in [13]. The work by Kirch-
ner and others [17] is the first to propose the use of rewriting with symbolic
constraints for deduction. Subsequent work [14,20,25] extends and unifies pre-
vious approaches to rewriting with constraints. The related work section in [25]
includes a comprehensive account of literature related to rewriting modulo con-
straints.
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Our previous work [10,21] on proving program correctness was in the con-
text of the K framework [27]. K, developed by Roşu and others, implements
semantics-based program verifiers [11] for any language that can be speci-
fied by a rewriting-based operational semantics, such as C [15], Java [4] and
JavaScript [23]. Our formalism is not more expressive than that of reachability
logic [10] for proving partial correctness of programs in a language-independent
manner, but it does have several advantages. Firstly, we make a clear separation
between rewrite rules (used to define transition systems), for which it makes no
sense to have constraints on both the lhs and the rhs, and reachability formulas
(used to specify reachability properties), for which there can be constraints on
both the lhs and the rhs. We provide clear semantics of both syntactic constructs
above, which makes it unnecessary to check well-definedness of the underlying
rewrite system, as required in [10]. Additionally, this separation, which we see
as a contribution, makes it easy to get rid of the top-most restriction in previous
approaches. Another advantage is that the proposed proof system is very easy
to automate, while being sufficiently expressive to specify real-world applica-
tions. Additionally, we work in the more general setting of LCTRSs, not just
language semantics, which enlarges the possible set of applications of the tech-
nique. We also have several major technical improvements compared to [21],
where the proof system is restricted to the cases where unification can be reduced
to matching and topmost rewriting. The totality property required for languages
specifications, which was quite restrictive, was replaced by a local property in
proof rules and all restrictions needed to reduce unification to matching were
removed.

In contrast to the work on partial correctness in [11], the approach on reach-
ability discussed here is meant for any LCTRS, not just operational semantics.
The algorithm in [11] contains a small source of incompleteness, as when prov-
ing a reachability property it is either discharged completely through implica-
tion or through circularities/rewrite rules. We allow a reachability rule to be
discharged partially by subsumption and partially by other means. Constrained
terms are a fragment of Matching Logic (see [26]), where no distinction is made
between terms and constraints. Coinduction and circular or cyclic proofs have
been proposed in other contexts. For example, circular proof systems have been
proposed for first-order logic with inductive predicates in [6] and for separation
logic in [5]. In the context of interactive theorem provers, circular coinduction
has been proposed as an incremental proof method for bisimulation in process
calculi (see [24]). A compositional and incremental approach to coinduction that
uses a semantic guardedness check instead of a syntactic check is given in [16].

Paper Structure. We present coinductive definitions for execution paths and
reachability predicates in Sect. 2. In Sect. 3, we introduce logically constrained
term rewriting with builtins in an order-sorted setting. In Sect. 4, we propose a
sound and complete coinductive calculus for reachability and a circularity rule
for compressing infinite proof trees into finite proof trees. Section 6 discusses the
implementation before concluding. The proofs can be found in [8].
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2 Reachability Properties: Coinductive Definition

In this section we introduce a class of reachability properties, defined coinduc-
tively. A state predicate is a subset of states. A reachability property is a pair
P ⇒ Q of state predicates. Such a reachability property is demonically valid iff
each execution path starting from a state in P eventually reaches a state in Q,
or if it is infinite. Since the set of finite and infinite executions is coinductively
defined, the set of valid predicates can be defined coinductively as well. Formally,
consider a transition system (M,�), with � ⊆ M × M . We write γ � γ′ for
(γ, γ′) ∈ �. An element γ ∈ M is irreducible if γ �� γ′ for any γ′ ∈ M .

Definition 1 (Execution Path). The set of (complete) execution paths is
coinductively defined by the following rules:

γ
γ ∈ M,γ irreducible

τ

γ0 ◦ τ
γ0 � hd(τ)

where the function hd is defined by hd(γ) = γ and hd(γ0 ◦ τ) = γ0.

The above definition includes both the finite execution paths ending in a
irreducible state and the infinite execution paths, defined as the greatest fixed
point of the associated functional (see [8]).

Definition 2 (State and Reachability Predicates). A state predicate is a
subset P ⊆ M . A reachability predicate is a pair of state predicates P ⇒ Q. The
predicate P is runnable if P �= ∅ and for all γ ∈ P there is γ′ ∈ M s.t. γ � γ′.

A derivative measures the sensitivity to change of a quantity. For the case of
transition systems, the change of states is determined by the transition relation.

Definition 3 (Derivative of a State Predicate). The derivative of a state
predicate P is the state predicate ∂(P ) = {γ′ | γ � γ′ for some γ ∈ P}.
As a reachability predicate specifies reachability property of execution paths, we
define when a particular execution path satisfies a reachability predicate.

Definition 4 (Satisfaction of a Reachability Predicate). An execution
path τ satisfies a reachability predicate P ⇒ Q, written τ �∀ P ⇒ Q, iff
〈τ, P ⇒ Q〉 ∈ ν ̂EPSRP, where EPSRP consists of the following rules:

〈τ, P ⇒ Q〉 hd(τ) ∈ P ∩ Q
〈τ, ∂(P ) ⇒ Q〉
〈γ0 ◦ τ, P ⇒ Q〉 γ0 ∈ P, γ0 � hd(τ).

The notation ̂EPSRP stands for the functional of EPSRP and ν ̂EPSRP stands for
its greatest fixed point (see [8]). We coinductively define the set of demonically
valid reachability predicates over (M,�). This allows to use coinductive proof
techniques to prove validity of reachability predicates.
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Definition 5 (Valid Reachability Predicates, Coinductively). We say
that P ⇒ Q is demonically valid, and we write

(M,�) �∀ P ⇒ Q,

iff P ⇒ Q ∈ ν ̂DVP, where DVP consists of the following rules:

[[Subsumption]]
P ⇒ Q

P ⊆ Q [[Step]]
∂(P \ Q) ⇒ Q

P ⇒ Q
P \ Q runnable.

The condition P \ Q runnable in the second rule is essential to avoid the cases
where execution is stuck. These blocking states have no successor in ∂(P \ Q)
and, in the absense of the condition, we would wrongly conclude that they satisfy
P ⇒ Q. The terminating executions are captured by [[Subsumption]].

The following proposition justifies our definition of demonically valid reach-
ability predicates.

Proposition 1. Let P ⇒ Q be a reachability predicate. We have (M,�) �∀

P ⇒ Q iff any execution path τ starting from P (hd(τ) ∈ P ) satisfies P ⇒ Q.

3 Logically Constrained Term Rewriting Systems

In this section we introduce our formalism for LCTRSs. We interpret LCTRSs in
a model combining order-sorted terms with builtins such as integers, booleans,
etc. Logical constraints are first-order formulas interpreted over the fixed model.

We assume a builtin model Mb for a many-sorted builtin signature Σb =
(Sb, F b), where Sb is a set of builtin sorts that includes at least the sort Bool
and F b is the Sb-sorted set of builtin function symbols. We assume that the
set interpreting the sort Bool in the model Mb is Mb

Bool = {�,⊥}. We use
the standard notation Mo for the interpretation of the sort/symbol o in the
model M . The set CFb, defined as the set of (many-sorted) first-order formulas
with equality over the signature Σb, is the set of builtin constraint formulas.
Functions returning Bool play the role of predicates and terms of sort Bool are
atomic formulas. We will assume that the builtin constraint formulas can be
decided by an oracle (implemented as an SMT solver).

A signature modulo builtins is an order-sorted signature Σ = (S,≤, F ) that
includes Σb as a subsignature and such that the only builtin constants in Σ
are elements of the builtin model ({c | c ∈ Fε,s, s ∈ Sb} = Mb

s ) – therefore
the signature might be infinite. By Fw,s we denoted the set of function symbols
of arity w and result sort s. Σb is called the builtin subsignature of Σ and
Σc = (S,≤, (F \ F b) ∪ ⋃

s∈Sb Fε,s) the constructor subsignature of Σ. We let X
be an S-sorted set of variables.

We extend the builtin model Mb to an (S,≤, F )-model MΣ defined as fol-
lows: • MΣ

s = TΣc,s, for each s ∈ S \ Sb (MΣ
s is the set of ground constructor

terms of sort s, i.e. terms built from constructors applied to builtin elements);
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• MΣ
f = Mb

f for each builtin function symbol f ∈ F b; • MΣ
f is the term con-

structor MΣ
f (t1, . . . , tn) = f(t1, . . . , tn), for each non-builtin function symbol

f ∈ F \ F b. By fixing the interpretation of the non-builtin function symbols,
we can reduce constraint formulas to built-in constraint formulas by relying on
an unification algorithm described in detail in [7]. We also make the standard
assumption that Ms �= ∅ for any s ∈ S.

Example 4. Let Σb = (Sb, F b), where Sb = {Int ,Bool} and F b include the
usual operators over Booleans (∨,∧, . . .) and over the Integers (+,−,×, . . .).
The builtin model Mb interprets the above sorts and operations as expected.

We consider the signature modulo builtins Σ = (S,≤, F ), where the set of
sorts S = {Cfg , Int ,Bool} consists of the builtin sorts and an additional sort
Cfg , where the subsorting relation ≤ ⊆ S × S = ∅ is empty, and where the set
of function symbols F includes, in addition to the builtin symbols in F b, the
following function symbols: init : Int → Cfg , loop : Int × Int → Cfg , comp : Cfg .
We have that MΣ

Cfg = {init(i) | i ∈ Z} ∪ {loop(i, j) | i, j ∈ Z} ∪ {comp}.

The set CF of constraint formulas is the set of first-order formulas with
equality over the signature Σ. The subset of the builtin constraint formulas is
denoted by CFb. Let var(φ) denote the set of variables freely occurring in φ.
We write MΣ , α � φ when the formula φ is satisfied by the model MΣ with a
valuation α : X → MΣ .

Example 5. The constraint formula φ � ∃u.1 < u < n ∧ n mod u = 0 is satisfied
by the model MΣ defined in Example 4 and any valuation α such that α(n) is
a composite number.

Definition 6 (Constrained Terms). A constrained term ϕ of sort s ∈ S is a
pair 〈t | φ〉, where t ∈ TΣ,s(X ) and φ ∈ CF.

Example 6. Continuing the previous example, the following is a constrained
term: 〈init(n) | ∃u.1 < u < n ∧ n mod u = 0〉 .

We consistently use ϕ for constrained terms and φ for constraint formulas.

Definition 7 (Valuation Semantics of Constraints). The valuation
semantics of a constraint φ is the set ��φ�� � {α : X → MΣ | MΣ , α � φ}.
Example 7. Continuing the previous example, we have that

��∃u.1 < u < n ∧ n mod u = 0�� = {α : X → MΣ | α(n) is composite}.

Definition 8 (State Predicate Semantics of Constrained Terms). The
state predicate semantics of a constrained term 〈t | φ〉 is the set

[[〈t | φ〉]] � {α(t) | α ∈ ��φ��}.

Example 8. Continuing the previous example, we have that

[[〈init(n) | ∃u.1 < u < n ∧ n mod u = 0〉]] = {init(n) | n is composite}.
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We now introduce our formalism for logically constrained term rewriting sys-
tems. Syntactically, a rewrite rule consists of two terms (the left hand side and
respectively the right hand side), together with a constraint formula. As the two
terms could share some variables, these shared variables should be instantiated
consistently in the semantics:

Definition 9 (LCTRS). A logically constrained rewrite rule is a tuple (l, r, φ),
often written as l � r if φ, where l, r are terms in TΣ(X ) having the same sort,
and φ ∈ CF. A logically constrained term rewriting system R is a set of logically
constrained rewrite rules. R defines an order-sorted transition relation �R on
MΣ as follows: t �R t′ iff there exist a rule l � r if φ in R, a context c[·], and
a valuation α : X → MΣ such that t = α(c[l]), t′ = α(c[r]) and MΣ , α � φ.

Example 9. We recall the LCTRS given in the introduction:

R =

⎧

⎨

⎩

init(n) � loop(n, 2) if �,
loop(i × k, i) � comp if k > 1,
loop(n, i) � loop(n, i + 1) if ¬(∃k.k > 1 ∧ n = i × k)

⎫

⎬

⎭

.

A LCTRS R defines a sort-indexed transition system (MΣ ,�R). As each
constrained term ϕ defines a state predicate [[ϕ]], it is natural to specify reacha-
bility predicates as pairs of constrained terms sharing a subset of variables. The
shared variables must be instantiated in the same way by the execution paths
connecting states specified by the two constrained terms.

Definition 10 (Reachability Properties of LCTRSs). A reachability for-
mula ϕ ⇒ ϕ′ is a pair of constrained terms, which may share variables. We say
that a LCTRS R demonically satisfies ϕ ⇒ ϕ′, written

R �∀ ϕ ⇒ ϕ′,

iff (MΣ ,�R) �∀ [[σ(ϕ)]] ⇒ [[σ(ϕ′)]] for each σ : var(ϕ) ∩ var(ϕ′) → MΣ.

Since the carriers sets of MΣ consist of ground terms, σ is both a substitution
and a valuation in the definition above. Its role is critical: to ensure that the
shared variables of ϕ and ϕ′ are instantiated by the same values.

Example 10. Continuing the previous example, we have that the reachability
formula 〈init(n) | ∃u.1 < u < n ∧ n mod u = 0〉 ⇒ 〈comp | �〉 is demonically sat-
isfied by the constrained rule system R defined in Example 9:

R �∀ 〈init(n) | ∃u.1 < u < n ∧ n mod u = 0〉 ⇒ 〈comp | �〉.
We have checked the above reachability formula against R mechanically, using
an implementation of the approach described in this paper.
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4 Proving Reachability Properties of LCTRSs

We introduce two proof systems for proving reachability properties in transi-
tion systems specified by LCTRSs. The first proof system formalizes symbolic
execution in a LCTRS, in the following sense: a reachability formula ϕ ⇒ ϕ′

can be proven if any execution path starting with ϕ either reaches a state that
is an instance of ϕ′, or is divergent. Note that this intuition holds when the
proof system is interpreted coinductively, where infinite proof trees are allowed.
Unfortunately, these infinite proof trees have a limited practical use because they
cannot be obtained in finite time.

In order to solve this limitation, we introduce a second proof system, which
contains an additional inference rule, called circularity. The circularity rule
allows to use the reachability formula to be proved as an axiom. This allows
to fold infinite proof trees into finite proof trees, which can be obtained in finite
time. Adding the reachability formulas that are to be proved as axioms seems
at first to be unsound, but it corresponds to a natural intuition: when reach-
ing a proof obligation that we have handled before, there is no need to prove
it again, because the previous reasoning can be reused (possibly leading to an
infinite proof branch). However, the circularity rule must be used in a guarded
fashion in order to preserve soundness. We introduce a simple criterion to select
the sound proof trees.

4.1 Derivatives of Constrained Terms

Our proof system relies on the notion of derivative at the syntactic level:

Definition 11 (Derivatives of Constrained Terms). The set of derivatives
of a constrained term ϕ � 〈t | φ〉 w.r.t. a rule l � r if φlr is

Δl,r,φlr
(ϕ) � {〈c[r] | φ′〉 | φ′ � φ ∧ t = c[l] ∧ φlr ,

c[·] an appropriate context and φ′ is satisfiable}, (1)

where the variables in l � r if φlr are renamed such that var(l, r, φlr ) and
var(ϕ) are disjoint. If R is a set of rules, then ΔR(ϕ) =

⋃

(l,r,φlr )∈R Δl,r,φlr
(ϕ).

A constrained term ϕ is R-derivable if ΔR(ϕ) �= ∅.
Example 11. Continuing the previous examples, we have that

ΔR(〈init(n) | ∃u.1 < u < n ∧ n mod u = 0〉) =
{〈loop(n, 2) | ∃u.1 < u < n ∧ n mod u = 0〉}.

In the above case, ΔR includes only the derivative computed w.r.t. the first
rule in R, because the constraints of the ones computed w.r.t. the other rules
are unsatisfiable. Intuitively, the derivatives of a constrained term denote all its
possible successor configurations in the transition system generated by R.

The symbolic derivatives and the concrete ones are related as expected:
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[axiom]
tl | tr | φr

[subs]
tl | φl ∧ ¬(∃x̃.tl = tr ∧ φr) tr | φr

tl | φl tr | φr

x var(tr, φr) \ var(tl, φl)
∃x̃.tl = tr ∧ φr satisfiable

[der∀]
tj φj tr | φr , j ∈ {1, . . . , n}

tl | φl tr | φr

tl | φl is R−derivable and
φl → j∈{1,...,n} ∃yj .φj is valid

where ΔR( tl | φl ) = { t1 φ1 , . . . , tn | φn and
yj = var(tj , φj) \ var(tl, φl)

Fig. 1. The DSTEP(R) Proof System

Theorem 1. Let ϕ � 〈t | φ〉 be a constrained term, R a constrained rule system,
and (MΣ ,�R) the transition system defined by R. Then [[ΔR(ϕ)]] = ∂([[ϕ]]).

Our proof systems allow to replace any reachability formula by an equivalent
one. Two reachability formulas, ϕ1 ⇒ ϕ′

1 and ϕ2 ⇒ ϕ′
2, are equivalent, written

ϕ1 ⇒ ϕ′
1 ≡ ϕ2 ⇒ ϕ′

2, if, for all LCTRSs R,

R �∀ ϕ1 ⇒ ϕ′
1 iff R �∀ ϕ2 ⇒ ϕ′

2.

We write [[ϕ]] ⊆shared [[ϕ′]] iff for each σ : var(ϕ) ∩ var(ϕ′) → MΣ , we have
[[σ(ϕ)]] ⊆ [[σ(ϕ′)]]. The next result, used in our proof system, shows that inclusion
of the state predicate semantics of two constrained terms can be expressed as a
constraint formula, when the shared variables are instantiated consistently.

Proposition 2. The inclusion [[〈t | φ〉]] ⊆shared [[〈t′ | φ′〉]] holds if and only if
MΣ � φ → (∃x̃)(t = t′ ∧ φ′), where x̃ � var(t′, φ′) \ var(t, φ).

4.2 Proof System for Symbolic Execution

The first proof system, DSTEP, derives sequents of the form 〈tl | φl〉 ⇒ 〈tr | φr〉.
The proof system consists of three proof rules presented in Fig. 1 and an implicit
structural rule that allows to replace reachability formulas by equivalent reach-
ability formulas. The instances of this implicit structural rule are not included
in the proof trees. We explain the three rules in the proof system.

• The [axiom] rule discharges goals where the left hand side of the goal does
not match any state. As our structural rule identifies equivalent reachability
formulas, this rule can be applied to any left-hand side where the constraint
is unsatisfiable (equivalent to ⊥). This rule discharges reachability formulas
where there are no execution paths starting from the left-hand side, and
therefore there is no need to continue the proof process along this branch.

• The [subs] rule discharges the cases where the left-hand side is an instance
of the right-hand side. The constraint ∃x̃.tl = tr ∧ φr is true exactly when
the left-hand side is an instance of the right-hand side, which is ensured by
Proposition 2. The proof of the current goal continues only for the cases where
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the negation of this constraint holds (i.e., the cases where the left-hand side
is not included in the right-hand side).

• The [der∀] rule allows to take a symbolic step in the left-hand side of the
current goal. It computes all derivatives of the left-hand side; the proof process
must continue with each such derivative. Let ψ � φl → ∨{∃ỹj .φj} be the
logical constraint that occurs in the condition of [der∀]. The formula ψ is
valid iff, for any instance of 〈tl | φl〉, there is at least one rule of R that can be
applied to it, meaning that R is total for 〈tl | φl〉. Summarising, the condition
of [der∀] says that [[〈tl | φl〉]] must have at least one successor and furthermore
that any instance γ ∈ [[〈tl | φl〉]] has a �R-successor.

The following result shows that DSTEP(R) is sound and complete, modulo
an oracle for solving logical constraints.

Theorem 2. Let R be a LCTRS. For any reachability formula ϕ ⇒ ϕ′, we have

R �∀ ϕ ⇒ ϕ′ iff ϕ ⇒ ϕ′ ∈ ν ̂DSTEP(R).

Example 12. Consider the LCTRS R defined in Example 9. The proof tree for
the reachability formula 〈init(n) | ψ〉 ⇒ ϕr, where ψ � ∃u.1 < u < n ∧ n mod
u = 0 denotes the fact that n is composite and ϕr � 〈comp | �〉, is infinite:

[axiom]〈comp | ⊥〉 ⇒ ϕr
[subs]〈comp | ψ ∧ φa〉 ⇒ ϕr

[axiom]〈comp | ⊥〉 ⇒ ϕr
[subs]〈comp | ψ ∧ φ2 ∧ φb〉 ⇒ ϕr

...
[der∀]〈loop(n, 3) | ψ ∧ φ2〉 ⇒ ϕr

[der∀]〈loop(n, 2) | ψ〉 ⇒ ϕr
[der∀]〈init(n) | ψ〉 ⇒ ϕr

The right branch of the above proof tree is infinite, and:

φ2 � ¬∃k.k > 1 ∧ n = 2 × k φa � loop(n, 2) = loop(i′ × k′, i′) ∧ k′ > 1

φ3 � ¬∃k.k > 1 ∧ n = 3 × k φb � loop(n, 3) = loop(i′ × k′, i′) ∧ k′ > 1
. . .

Note that in the presentation of the tree above, we used the structural rule
to replace reachability formulas by equivalent reachability formulas as follows:

〈comp | ψ ∧ φa ∧ ¬(comp = comp ∧ �)〉 ⇒ ϕr ≡ 〈comp | ⊥〉 ⇒ ϕr,

〈comp | ψ ∧ φ2 ∧ φb ∧ ¬(comp = comp ∧ �)〉 ⇒ ϕr ≡ 〈comp | ⊥〉 ⇒ ϕr,
〈
loop(n′, 2)

∣
∣ � ∧ init(n′) = init(n) ∧ ψ

〉 ⇒ ϕr ≡ 〈loop(n, 2) | ψ〉 ⇒ ϕr,
〈
loop(n′, i′ + 1)

∣
∣ ψ ∧ φ′

2

〉 ⇒ ϕr ≡ 〈loop(n, 3) | ψ ∧ φ2〉 ⇒ ϕr,

where φ′
2 � loop(n, 2) = loop(n′, i′)∧¬∃k.k > 1∧n′ = i′ ×k. The ticks appear in

the formulas above because, to compute derivatives, we used the following fresh
instance of R:
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R =

⎧

⎨

⎩

init(n′) � loop(n′, 2) if �,
loop(i′ × k′, i′) � comp if k′ > 1,
loop(n′, i′) � loop(n′, i′ + 1) if ¬(∃k.k > 1 ∧ n′ = i′ × k)

⎫

⎬

⎭

.

4.3 Extending the Proof System with a Circularity Rule

As we said at the beginning of the section, the use of DSTEP is limited because
of the infinite proof trees. The next inference rule is intended to use the initial
goals as axioms to fold infinite DSTEP-proof trees into sound finite proof trees.

Definition 12 (Demonic circular coinduction). Let G be a finite set of
reachability formulas. Then the set of rules DCC(R, G) consists of DSTEP(R),
together with

[circ]

〈tcr | φl ∧ φ ∧ φc
r〉 ⇒ ϕr,

〈tl | φl ∧ ¬φ〉 ⇒ ϕr

〈tl | φl〉 ⇒ ϕr

φ is ∃var(tcl , φ
c
l ).tl = tcl ∧ φc

l ,
〈tcl | φc

l 〉 ⇒ 〈tcr | φc
r〉 ∈ G

where 〈tcl | φc
l 〉 ⇒ 〈tcr | φc

r〉 is a rule in G whose variables have been renamed with
fresh names.

The idea is that G should be chosen conveniently so that DCC(R, G) proves
G itself. We call such goals G (that are used to prove themselves) circularities.
The intuition behind the rule is that the formula φ defined in the rule holds when
a circularity can be applied. In that case, it is sufficient to continue the current
proof obligation from the rhs of the circularity 〈tcr | φc

r ∧ φl ∧ φ〉. The cases when
φ does not hold (the circularity cannot be applied) are captured by the proof
obligation 〈tl | φl ∧ ¬φ〉 ⇒ ϕr.

Of course, not all proof trees under DCC(R, G) are sound. The next two
definitions identify a class of sound proof trees (cf. Theorem 3).

Definition 13. Let PT be a proof tree of ϕ ⇒ ϕ′ under DCC(R, G). A [circ]
node in PT is guarded iff it has as ancestor a [der∀] node. PT is guarded iff all
its [circ] nodes are guarded.

Definition 14. We write (R, G) �∀ ϕ ⇒ ϕ′ iff there is a proof tree of ϕ ⇒ ϕ′

under DCC(R, G) that is guarded. If F is a set of reachability formulas, we write
(R, G) �∀ F iff (R, G) �∀ ϕ ⇒ ϕ′ for all ϕ ⇒ ϕ′ ∈ F .

The criterion stated by Definition 13 can be easily checked in practice. The
following theorem states that the guarded proof trees under DCC are sound.

Theorem 3 (Circularity Principle). Let R be a constrained rule system and
G a set of goals. If (R, G) �∀ G then R �∀ G.

Theorem 3 can be used by finding a set of circularities and using them in a
guarded fashion to prove themselves. Then the circularity principle states that
such circularities hold.
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Example 13. In order to prove 〈init(n) | ψ〉 ⇒ 〈comp | �〉, we choose the following
set of circularities

G =
{ 〈init(n) | ψ〉 ⇒ 〈comp | �〉,

〈loop(n, i) | 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0〉 ⇒ 〈comp | �〉
}

.

The second circularity is inspired by the infinite branch of the proof tree
under DSTEP. We will show that (R, G) �∀ G, and by Theorem 3, it follows
that all reachability formulas in G hold in R.

First Circularity. To obtain a proof of the circularity 〈init(n) | ψ〉 ⇒ 〈comp | �〉,
we replace the infinite subtree rooted at 〈loop(n, 2) | ψ〉 ⇒ ϕr in Example 12 by
the following finite proof tree (that uses [circ]):

[axiom]〈comp | ⊥〉 ⇒ ϕr
[subs]〈comp | ψ ∧ φ ∧ �〉 ⇒ ϕr

[axiom]〈loop(n, 2) | ψ ∧ ¬φ〉 ⇒ ϕr
[circ]〈loop(n, 2) | ψ〉 ⇒ ϕr

where φ � ∃n′, i′.loop(n, 2) = loop(n′, i′)∧2 ≤ i′ ∧∃u.i′ ≤ u < n′ ∧n′ mod u = 0.

Second Circularity. To complete the proof of G, we have to find a finite proof
tree for

〈loop(n, i) | 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0〉 ⇒ 〈comp | �〉

as well. This is also obtained using [circ] as follows:

[axiom]〈comp | ⊥〉 ⇒ ϕr
[subs]〈comp | ψi ∧ ψa〉 ⇒ ϕr

T1 T2 [circ]〈loop(n, i + 1) | ψi ∧ ψb〉 ⇒ ϕr
[der∀]〈loop(n, i) | ψi〉 ⇒ 〈comp | �〉

where
ψa � k′ > 1 ∧ loop(n, i) = loop(i′ × k′, i′),

ψb � ¬∃k.k > 1 ∧ n = i × k,

ψi � 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0.

The subtree

T1 T2 [circ]〈loop(n, i + 1) | ψi ∧ ψb〉 ⇒ ϕr

is:

[axiom]〈comp | ⊥〉 ⇒ ϕr
[subs]〈comp | ψi ∧ ψb ∧ ψc〉 ⇒ ϕr

[axiom]〈loop(n, i + 1) | ψi ∧ ψb ∧ ¬ψc〉 ⇒ ϕr
[circ]〈loop(n, i + 1) | ψi ∧ ψb〉 ⇒ ϕr,
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where

ψc � ∃n′, i′.loop(n, i + 1) = loop(n′, i′) ∧ 2 ≤ i′ ∧ ∃u.i′ ≤ u < n′ ∧ n′ mod u = 0.

The constraint ψc holds when the circularity can be applied and therefore
this branch is discharged immediately by [subs] and [axiom]. The other branch,
when the circularity cannot be applied, is discharged directly by [axiom], as
ψi ∧ ψb ∧ ¬ψc is unsatisfiable (ψi says that n has a divisor between i and n, ψb

says that i is not a divisor of n, and ψc that n has a divisor between i+1 and n).
Note that in both proof trees of the two circularities in G, in order to apply

the [circ] rule, we used the following fresh instance of the second circularity:

〈loop(n′, i′) | 2 ≤ i′ ∧ ∃u.i′ ≤ u < n′ ∧ n′ mod u = 0〉 ⇒ 〈comp | �〉.
The proof trees for both goals (circularities) in G are guarded. We have shown

therefore that (R, G) �∀ G. By the Circularity Principle (Theorem 3), we obtain
that R �∀ G and therefore

R �∀
{ 〈init(n) | ∃u.1 < u < n ∧ n mod u = 0)〉 ⇒ 〈comp | �〉,

〈loop(n, i) | 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0〉 ⇒ 〈comp | �〉
}

which includes what we wanted to show of our transition system defined R in
the running example.

5 Implementation

We have implemented the proof system for reachability in a tool called RMT
(for rewriting modulo theories). RMT is open source and can be obtained from
http://github.com/ciobaca/rmt/.

To prove a reachability property, the RMT tool performs a bounded search
in the proof system given above. The bounds can be set by the user. We have
also tested the tool on reachability problems where we do not use strong enough
circularities. In these cases, the tool will not find proofs. A difficulty that appears
when a proof fails, difficulty shared by all deductive approaches to correctness,
is that it is not known if the specification is wrong or if the circularities are not
strong enough. Often, by analyzing the failed proof attempt, the user may have
the chance to find a hint for the missing circularities, if any. In addition, proofs
might also fail because of the incompleteness of the SMT solver. In addition to
the running example, we have used RMT on a number of examples, summarized
in the table below:
LCTRS Reachability Property

Computation of 1 + . . . + n Result is n ∗ (n + 1)/2

Comp. of gcd(u, v) by rptd. subtractions Result matches builtin gcd function

Comp. of gcd(u, v) by rptd. divisions Result matches builtin gcd function

Mult. of two naturals by rptd. additions Result matches builtin × function

Comp. of 12 + . . . + n2 Result is n(n + 1)(2n + 1)/6

Comp. of 12 + . . . + n2 w/out multiplications Result is n(n + 1)(2n + 1)/6

Semantics of an IMPerative language Program computing 1 + . . . + n is correct

Semantics of a FUNctional language Program computing 1 + . . . + n is correct

Semantics of a FUNctional language Program computing 12 + . . . + n2 is correct

http://github.com/ciobaca/rmt/
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Implementation Details. RMT contains roughly 5000 lines of code, including com-
ments and blank lines. RMT depends only on the standard C++ libraries and it
can be compiled by any relatively modern C++ compiler out of the box. At
the heart of RMT is a hierarchy of classes for representing variables, function
symbols and terms. Terms are stored in DAG format, with maximum structure
sharing. The RMT tool relies on an external SMT solver to check satisfiability
of constraints. By default, the only dependency is the Z3 SMT solver, which
should be installed and its binary should be in the system path. A compile time
switch allows to use any other SMT solver that supports the SMTLIB inter-
face, such as CVC4 [3]. In order to reduce constraints over the full signature
to constraints over the builtin signature, RMT uses a unification modulo builtins
algorithm (see [7]), which transforms any predicate t1 = t2 (where the terms
t1, t2 can possibly contain constructor symbols) into a set of builtin constraints.

6 Conclusion and Future Work

We introduced a coinduction based method for proving reachability properties
of logically constrained term rewriting systems. We use a coinductive definition
of transition systems that unifies the handling of finite and infinite executions.
We propose two proof systems for the problem above. The first one formalizes
symbolic execution in LCTRSs coinductively, with possibly infinite proof trees.
This proof system is complete, but its infinite proof trees cannot be used in
practice as proofs. In the second proof system we add to symbolic execution a
circularity proof rule, which allows to transform infinite proof trees into finite
trees. It is not always possible to find finite proof trees, and we conjecture that
establishing a given reachability property is higher up in the arithmetic hierarchy.

We also proposed a semantics for logically constrained term rewriting systems
as transition systems over a model combining order-sorted terms with builtin
elements such as booleans, integers, etc. The proposed semantics has the advan-
tage of being simpler than the usual semantics of LCTRSs defined in [20], which
requires two reduction relations (one for rewriting and one for computing). The
approach proposed here also removes some technical constraints such as variable
inclusion of the rhs in the lhs, which is important in modelling open systems,
where the result of a transition is non-deterministically chosen by the environ-
ment. In addition, working in an order-sorted setting is indispensable in order
to model easily the semantics of programming languages.

In fact, proving program properties, like correctness and equivalence, is one
application of our method. A tool such as C2LCTRS (http://www.trs.cm.is.
nagoya-u.ac.jp/c2lctrs/) can be used to convert the semantics of a C program
into a LCTRS and then RMT can prove reachability properties of the C pro-
gram. Additionally, the operational semantics of any language can be encoded as
a LCTRS [28] and then program correctness is reducible to a particular reach-
ability formula. But our approach is not limited to programs, as any system
that can be modelled as a LCTRS is also amenable to our approach. We define
reachability in the sense of partial correctness (i.e., nonterminating executions

http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
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vacuously satisfy any reachability property). Termination should be established
in some other way [18], as it is an orthogonal concern. Our approach to reacha-
bility and LCTRSs extends to working modulo AC (or more generally, modulo
any set of equations E), but we have not formally presented this to preserve
brevity and simplicity. For future work, we would like to test our approach on
other interesting problems that arrise in various domains. In particular, it would
be interesting to extend our approach to reachability in the context of program
equivalence [9]. An interesting challenge is to add defined operations to the alge-
bra underlying the constrained term rewriting systems, which would allow a user
to define their own functions, which are not necessarily builtin.
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Abstract. Constrained counting is important in domains ranging from
artificial intelligence to software analysis. There are already a few
approaches for counting models over various types of constraints.
Recently, hashing-based approaches achieve success but still rely on solu-
tion enumeration. In this paper, a new probabilistic approximate model
counter is proposed, which is also a hashing-based universal framework,
but with only satisfiability queries. A dynamic stopping criteria, for the
new algorithm, is presented, which has not been studied yet in previ-
ous works of hashing-based approaches. Although the new algorithm
lacks theoretical guarantee, it works well in practice. Empirical evalu-
ation over benchmarks on propositional logic formulas and SMT(BV)
formulas shows that the approach is promising.

1 Introduction

Constrained counting, the problem of counting the number of solutions for a
set of constraints, is important in theoretical computer science and artificial
intelligence. Its interesting applications in several fields include program anal-
ysis [17,18,20,21,28,30], probabilistic inference [12,31], planning [14] and pri-
vacy/confidentiality verification [19]. Constrained counting for propositional for-
mulas is also called model counting, to which probabilistic inference is easily
reducible. However, model counting is a canonical #P-complete problem, even
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for polynomial-time solvable problems like 2-SAT [37], thus it presents fascinat-
ing challenges for both theoreticians and practitioners.

There are already a few approaches for counting solutions over propositional
logic formulas and SMT(BV) formulas. Recently, hashing-based approximate
counting achi-eves both strong theoretical guarantees and good scalability [29].
The use of universal hash functions in counting problems began in [34,36], but
the resulting algorithm scaled poorly in practice. A scalable approximate counter
ApproxMC in [10] scales to large problem instances, while preserving rigorous
approximation guarantees. ApproxMC has been extended to finite-domain discrete
integration, with applications to probabilistic inference [4,7,15]. It was improved
by designing efficient universal hash functions [8,25] and reducing the use of NP-
oracle calls from linear to logarithmic [11].

The basic idea in ApproxMC is to estimate the model count by randomly and
iteratively cutting the whole space down to a small “enough” cell, using hash
functions, and sampling it. The total model count is estimated by a multipli-
cation of the number of solutions in this cell and the ratio of the whole space
to the small cell. To determine the size of the small cell, which is essentially a
small-scale model counting problem with the model counts bounded by some
thresholds, a model enumeration in the cell is adopted. In previous works, the
enumeration query was handled by transforming it into a series of satisfiability
queries, which is much more time-consuming than a single satisfiability query.
An algorithm called MBound [23] only invokes satisfiability query once for each
cut. Its model count is determined with high precision by the number of cuts
down to the boundary of being unsatisfiable. However, this property is not strong
enough to give rigorous guarantees, and MBound only returns an approximation
of upper or lower bound of the model count.

In this paper, a new hashing-based approximate counting algorithm, with
only satisfiability query, is proposed. Dynamic stopping criterion for the algo-
rithm to terminate, once meeting the criterion of accuracy, is presented, which
has not been proposed yet in previous works of hashing-based approaches. The-
oretical insights over the efficiency of a prevalent heuristic strategy called leap-
frogging are also provided. The new algorithm works well in practice but does
not provide theoretical guarantees, since it builds on an assumption of a corre-
lation between the model count and the probability of the hashed formula being
unsatisfiable, which has not been proved yet.

The proposed approach is a general framework easy to handle various types
of constraints. Prototype tools for propositional logic formulas and SMT(BV)
formulas are implemented. An extensive evaluation on a suite of benchmarks
demonstrates that (i) the approach significantly outperforms the state-of-the-
art approximate model counters, including a counter designed for SMT(BV)
formulas, and (ii) the dynamic stopping criterion is promising.

The rest of this paper is organized as follows. Preliminary material is in
Sect. 2, related works in Sect. 3, the algorithm in Sect. 4, analysis in Sect. 5,
experimental results in Sect. 6, and finally, concluding remarks in Sect. 7.



314 C. Ge et al.

2 Preliminaries

Let F (x) denote a propositional logic formula on n variables x = (x1, . . . , xn).
Let S and SF denote the whole space (the space of assignments) and the solution
space of F , respectively. Let #F denote the cardinality of SF , i.e. the number
of solutions of F .

(ε, δ)-bound To count #F , an (ε, δ) approximation algorithm, ε > 0 and δ > 0,
is an algorithm which on every input formula F , outputs a number Ỹ such that
Pr[(1 + ε)−1#F ≤ Ỹ ≤ (1 + ε)#F ] ≥ 1 − δ. Such an algorithm is called a
(ε, δ)-counter and the bound is called a (ε, δ)-bound [26].

Hash Function. Let HF be a family of XOR-based bit-level hash functions
on the variables of a formula F . Each hash function H ∈ HF is of the form
H(x) = a0

⊕n
i=1 aixi, where a0, . . . , an are Boolean constants. In the hashing

procedure Hashing(F), a function H ∈ HF is generated by independently and
randomly choosing ais from a uniform distribution. Thus for an assignment α,
it holds that PrH∈HF

(H(α) = true) = 1
2 . Given a formula F , let Fi denote a

hashed formula F ∧H1 ∧· · ·∧Hi, where H1, . . . , Hi are independently generated
by the hashing procedure.

Satisfiability Query. Let Solving(F) denote the satisfiability query of a for-
mula F . With a target formula F as input, the satisfiability of F is returned by
Solving(F).

Enumeration Query. Let Counting(F, p) denote the bounded solution enu-
meration query. With a constraint formula F and a threshold p (p ≥ 2) as inputs,
a number s is returned such that s = min(p − 1,#F ). Specifically, 0 is returned
for unsatisfiable F , or p = 1 which is meaningless.

SMT(BV) Formula. SMT(BV) formulas are quantifier-free and fixed-size that
combine propositional logic formulas with constraints of bit-vector theory. For
example, ¬(x + y = 0) ∨ (x = y << 1), where x and y are bit-vector variables,
<< is the shift-left operator. It can be regarded as a propositional logic formula
¬A∨B that combines bit-vector constraints A ≡ (x+y = 0) and B ≡ (x = y <<
1). To apply hash functions to an SMT(BV) formula, a bit-vector is bit-blasted
to a set of Boolean variables.

3 Related Works

[3] showed that almost uniform sampling from propositional constraints, a closely
related problem to constrained counting, is solvable in probabilistic polynomial
time with an NP oracle. Building on this, [10] proposed the first scalable approx-
imate model counting algorithm ApproxMC for propositional formulas. ApproxMC
is based on a family of 2-universal bit-level hash functions that compute XOR
of randomly chosen propositional variables. In the current work, this family of
hash functions is adopted, which was shown to be 3-independent in [24], and is
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Algorithm 1
1: function ApproxMC(F , T , pivot)
2: for 1 to T do
3: c ← ApproxMCCore(F , pivot)
4: if (c �= 0) then AddToList(C, c)
5: end for
6: return FindMedian(C)
7: end function
8: function ApproxMCCore(F , pivot)
9: F0 ← F

10: for i ← 0 to ∞ do
11: s ← Counting(Fi, pivot + 1)
12: if (0 ≤ s ≤ pivot) then return 2is
13: Hi+1 ← Hashing(F )
14: Fi+1 ← Fi ∧ Hi+1

15: end for
16: end function

revealed to potentially possess better properties than expected by the experi-
mental results and the theoretical analysis in the current work.

The sketch framework of ApproxMC [10,13] is listed as Algorithm 1. Its inputs
are a formula F and two accuracy parameters T and pivot, where T determines
the number of times ApproxMCCore is invoked, and pivot determines the thresh-
old of the enumeration query. The function ApproxMCCore starts from the for-
mula F0, iteratively calls Counting and Hashing over each Fi, to cut the space
(cell) of all models of F0 using random hash functions, until the count of Fi is
no larger than pivot, then breaks out of the loop and adds the approximation
2is into list C. The main procedure ApproxMC repeatedly invokes ApproxMCCore
and collects the returned values, at last returning the median number of list C.
The general algorithm in [8] is similar to Algorithm 1, but cuts the cell with
dynamically determined proportion instead of the constant 1

2 , due to the word-
level hash functions. [11] improves ApproxMCCore via binary search to reduce the
number of enumeration queries from linear to logarithmic. This binary search
improvement is orthogonal to our approach.

A recent work [1] considered a special family of shorter XOR-constraints to
improve the efficiency of SAT solving while preserving rigourous guarantee. This
improvement of hash functions is also orthogonal to our approach as we use hash
functions and SAT solving as black boxes. However, it is unknown whether there
exist similar theoretical results like [1].

4 Algorithm

In this section, a new hashing-based algorithm for approximate model counting,
with only satisfiability queries, will be proposed, building on an assumption
of a probabilistic approximate correlation between the model count and the
probability of the hashed formula being unsatisfiable.
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Let Fd = F ∧H1∧· · ·∧Hd be a hashed formula resulted by iteratively hashing
d times independently over a formula F . Fd is unsatisfiable if and only if no
solution of F satisfies Fd, thus PrFd

(Fd is unsat) = PrFd
(Fd(α) = false, α ∈

SF ). Assume we have

Pr
Fd

(Fd is unsat) ≈ (1 − 2−d)#F . (1)

Then based on Eq. (1), an approximation of #F is achieved by taking logarithm
on the value of PrFd

(Fd is unsat), which is estimated in turn by sampling Fd.
This is the general idea of our approach. The pseudo-code is presented in Algo-
rithm 2. The inputs are the target formula F and a constant T which determines
the number of times GetDepth invoked. GetDepth calls Solving and Hashing
repeatedly until an unsatisfiable formula Fdepth is encountered, and returns the
depth. Every time GetDepth returns a depth, the value of C[i] is increased, for
all i < depth. At line 9, the algorithm picks a number d such that C[d] is close
to T/2, since the error estimation fails when C[d]/T is close to 0 or 1. The final
result is returned by the formula log1−(1/2)d

counter
T at line 11.

Algorithm 2. Satisfiability Testing based Approximate Counter (STAC)
1: function STAC(F , T )
2: initialize C[i]s with zeros
3: for t ← 1 to T do
4: depth ← GetDepth(F )
5: for i ← 0 to depth − 1 do
6: C[i] ← C[i] + 1
7: end for
8: end for
9: pick a number d such that C[d] is closest to T/2

10: counter ← T − C[d]
11: return log1−2−d

counter
T

/* return 0 when d = 0 */
12: end function
13: function GetDepth(F )
14: F0 ← F
15: for i ← 0 to ∞ do
16: b ← Solving(Fi)
17: if (b is false) then return i
18: Hi+1 ← Hashing(Fi)
19: Fi+1 ← Fi ∧ Hi+1

20: end for
21: end function

Note that our approach is based on Eq. (1) which is only an assumption. In
Sect. 5, we provide theoretical analysis, including the bound of the approxima-
tion and the correctness of algorithm, based on the hypothesis. Then in Sect. 6,
experimental results on an extensive set of benchmarks show that the approx-
imation given by our approach fits the bound well. It indicates that Eq. (1) is
probably true as it is a reasonable explanation to the positive results.
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Dynamic Stopping Criterion. The essence of Algorithm 2 is a randomized sam-
pler over a binomial distribution. The number of samples is determined by the
value of T , which is pre-computed for a given (ε, δ)-bound, and we loosen the
value of T to meet the guarantee in theoretical analysis. However, it usually
does not loop T times in practice. A variation with dynamic stopping criterion
is presented in Algorithm 3.

Algorithm 3. STAC with Dynamic Stopping Criterion
1: function STAC DSC(F , T , ε, δ)
2: initialize C[i]s with zeros
3: for t ← 1 to T do
4: depth ← GetDepth(F )
5: for i ← 0 to depth − 1 do
6: C[i] ← C[i] + 1
7: end for
8: for each d that C[d] > 0 do

9: q ← t−C[d]
t

10: M ← log1−2−d q

11: U ← log1−2−d(q − z1−δ

√
q(1−q)

t
)

12: L ← log1−2−d(q + z1−δ

√
q(1−q)

t
)

13: if U < (1 + ε)M and L > (1 + ε)−1M then
14: return M
15: end if
16: end for
17: end for
18: end function

Lines 2 to 7 is the same as Algorithm 2, still setting T as a stopping rule
and terminating whenever t = T . Line 8 to 16 is the key part of this variation,
calculating the binomial proportion confidence interval [L,U ] of an intermediate

result M for each cycle. A commonly used formula q ± z1−δ

√
q(1−q)

t [5,38] is
adopted, which is justified by the central limit theorem to compute the 1 − δ
confidence interval. However, it becomes invalid for small sample size or propor-
tion close to 0 or 1. In practice, we also considered some improvements, e.g.,
Wilson score interval [40]. The exact count #F lies in the interval [L,U ] with
probability 1 − δ. Combining the inequalities presented in line 13, the interval
[(1+ε)−1M, (1+ε)M ] is the (ε, δ)-bound (if the assumption of Formula 1 holds).
So the algorithm terminates when the condition in line 13 comes true. The time
complexity of Algorithm 3 is still the same as the original algorithm, though it
usually terminates earlier.

Satisfiability and Enumeration Query. The bounded counting can be done by
negating solution and calling SAT oracle repeatedly, which is employed by
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ApproxMC. In practice, enumerating solutions in this way is not very efficient.
In evaluation section, experimental results show that the average number of SAT
calls of ApproxMC is usually 20 to 30 times to STAC. It may also cause problems
while extending to other kinds of formulas. For example, for linear integer arith-
metic formula, inserting solution negation clauses will exponentially increase the
number of calls of LIP solver.

Leap-frogging Strategy. Recall that GetDepth is invoked T times with the same
arguments, and the loop of line 15 to 20 in the pseudo-code of GetDepth in
Algorithm 2 is time consuming for large i. A heuristic called leap-frogging to
overcome this bottleneck was proposed in [9,10]. Their experiments indicate
that this strategy is extremely efficient in practice. The average depth d̄ of each
invocation of GetDepth is recorded. In all subsequent invocations, the loop starts
by initializing i to d̄ − k · offset, where k ≥ 1. Note that if Fi is unsatisfiable, the
algorithm repeatedly decreases i by increasing k and check the satisfiability of
the new Fi, until a proper initialization i is found for satisfiable Fi. In practice,
the constant offset is usually set to 5. Theorem 3 in Sect. 5 shows that the depth
computed by GetDepth lies in an interval [d, d + 7] with probability over 90%.
So it suffices to invoke Solving in constant time since the second iteration.

5 Analysis

In this section, we assume Eq. (1) holds. Based on this assumption, theoretical
results on the error estimation of our approach are presented. For lack of space,
we omit proofs in this section.

Recall that in Algorithm 2, #F is approximated by a value log1−2−d
counter

T .
Let qd denote the value of (1 − 2−d)#F . We obtain that Pr(Fd is unsat) = qd

for a randomly generated formula Fd. This is justified by Eq. (1). Since the ratio
counter

T in Algorithm 2 is a proportion of successes in a Bernoulli trial process,
which is used to estimate the value of qd. Then counter is a random variable
following a binomial distribution B(T, qd).

Theorem 1. Let z1−δ be the 1 − δ quantile of N(0, 1) and

T = max

(

	( z1−δ

2qd(1 − qε
d)

)2
, 	( z1−δ

2(q(1+ε)−1

d − qd)
)2)


)

. (2)

Then Pr[#F
1+ε ≤ log1−2−d

counter
T ≤ (1 + ε)#F ] ≥ 1 − δ.

Proof. By above discussions, the ratio counter
T is the proportion of successes

in a Ber-noulli trial process which follows the distribution B(T, qd). Then we
use the approximate formula of a binomial proportion confidence interval qd ±
z1−δ

√
qd(1−qd)

T , i.e., Pr[qd − z1−δ

√
qd(1−qd)

T ≤ counter
T ≤ qd + z1−δ

√
qd(1−qd)

T ] ≥
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1 − δ. The log function is monotone, so we only have to consider the following
two inequalities:

log1−2−d (qd − z1−δ

√
qd(1 − qd)

T
) ≤ (1 + ε)#F, (3)

(1 + ε)−1#F ≤ log1−2−d (qd + z1−δ

√
qd(1 − qd)

T
). (4)

We first consider Eq. (3). By substituting log1−2−d qd for #F , we have

log1−2−d (qd − z1−δ

√
qd(1 − qd)

T
) ≤ (1 + ε) log1−2−d qd

⇔ qd − z1−δ

√
qd(1 − qd)

T
≥ q

(1+ε)
d

⇔ qd(1 − qε
d) ≥ z1−δ

√
qd(1 − qd)

T

⇔ T ≥ (
z1−δ

qd(1 − qε
d)

)2qd(1 − qd).

Since 0 ≤ qd ≤ 1, we have
√

qd(1 − qd) ≤ 1
2 . Therefore, T = 	( z1−δ

2qd(1−qε
d)

)2
 ≥
( z1−δ

qd(1−qε
d)

)2qd(1 − qd).
We next consider Eq. (4). Similarly, we have

log1−2−d (qd + z1−δ

√
qd(1 − qd)

T
) ≥ (1 + ε)−1 log1−2−d qd

⇔ qd + z1−δ

√
qd(1 − qd)

T
≤ q

1/(1+ε)
d

⇔ T ≥ (
z1−δ

q
1/(1+ε)
d − qd

)2qd(1 − qd).

So Eq. (2) implies Eqs. (3) and (4).

Theorem 1 shows that the result of Algorithm 2 lies in the interval [(1 +
ε)−1#F, (1 + ε)#F ] with probability at least 1 − δ when T is set to a proper
value. So we focus on the possible smallest value of T in subsequent analysis.

The next two lemmas are easy to show by derivations.

Lemma 1. z1−δ

2x(1−xε) is monotone increasing and monotone decreasing in [(1 +

ε)− 1
ε , 1] and [0, (1 + ε)− 1

ε ] respectively.

Lemma 2. z1−δ

2(x1/(1+ε)−x)
is monotone increasing and monotone decreasing in

[(1 + ε)− 1+ε
ε , 1] and [0, (1 + ε)− 1+ε

ε ] respectively.

Theorem 2. If #F > 5, then there exists a proper integer value of d such that
qd ∈ [0.4, 0.65].
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Proof. Let x denote the value of qd = (1 − 1
2d )#F , then we have (1 − 1

2d+1 )#F =

(12 + x
1

#F

2 )#F . Consider the derivation

d
d#F ( 12 + x

1
#F

2 )#F = (
1
2

+
x

1
#F

2
)#F ln (

1
2

+
x

1
#F

2
)
x

1
#F

2
ln x

d

d#F
(#F−1).

Note that (12 + x
1

#F

2 )#F and x
1

#F

2 are the positive terms and ln (12 + x
1

#F

2 ), lnx

and d
d#F (#F−1) are the negative terms. Therefore, the derivation is negative,

i.e., (12 + x
1

#F

2 )#F is monotone decreasing with respect to #F . In addition,

( 12 + x
1
5

2 )5 is the upper bound when #F ≥ 5.

Let x = 0.4, then (1 − 1
2d+1 )#F ≤ ( 12 + 0.4

1
5

2 )5 ≈ 0.65. Since (1 − 1
20 )#F = 0

and limd→+∞(1 − 1
2d )#F = 1 and (1 − 1

2d )#F is continuous with respect to
d, we consider the circumstances close to the interval [0.4, 0.65]. Assume there
exists an integer σ such that (1 − 1

2σ )#F < 0.4 and (1 − 1
2σ+1 )#F > 0.65.

According to the intermediate value theorem, we can find a value e > 0 such
that (1 − 1

2σ+e )#F = 0.4. Obviously, we have (1 − 1
2σ+e+1 )#F ≤ 0.65 which is

contrary with the monotone decreasing property.

From Theorem 2 and Lemmas 1 and 2, it suffices to consider the results of
Eq. (2) when qd = 0.4 and qd = 0.65. For example, T = 22 for ε = 0.8 and
δ = 0.2, T = 998 for ε = 0.1 and δ = 0.1, etc. We therefore pre-computed a table
of the value of T . The proof of next theorem is omitted.

Theorem 3. There exists an integer d such that qd < 0.05 and qd+7 > 0.95.

Let depth denote the result of GetDepth in Algorithm 2. Then Fd is unsat-
isfiable only if d ≥ depth. Theorem 3 shows that there exists an integer
d such that Pr(depth < d) < 0.05 and Pr(depth < d + 7) > 0.95, i.e.,
Pr(d ≤ depth ≤ d + 7) > 0.9. So in most cases, the value of depth lies in
an interval [d, d + 7]. Also, it is easy to see that log2 #F lies in this interval as
well. The following theorem is obvious now.

Theorem 4. Algorithm 2 runs in time linear in log2 #F relative to an NP-
oracle.

6 Evaluation

To evaluate the performance and effectiveness of our approach, two prototype
implementations STAC CNF and STAC BV with dynamic stopping criterion for
propositional logic formulas and SMT(BV) formulas are built respectively. We
considered a wide range of benchmarks from different domains: grid networks,
plan recognition, DQMR networks, Langford sequences, circuit synthesis, ran-
dom 3-CNF, logistics problems and program synthesis [8,10,27,33]1. For lack of
1 Our tools STAC CNF and STAC BV and the suite of benchmarks are available at

https://github.com/bearben/STAC.

https://github.com/bearben/STAC
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space, we only list a part of results here. All our experiments were conducted on
a single core of an Intel Xeon 2.40 GHz (16 cores) machine with 32 GB memory
and CentOS6.5 operating system.

6.1 Quality of Approximation

Recall that our approach is based on Eq. (1) which has not been proved. So we
would like to see whether the approximation fits the bound. We experimented
100 times on each instance.

Table 1. Statistical results of 100-times experiments on STAC CNF (ε = 0.8, δ = 0.2)

Instance n #F [1.8−1#F, 1.8#F ] Freq. t̄ (s) T̄ Q̄

special-1 20 1.0 × 106 [5.8 × 105, 1.9 × 106] 82 0.3 12.2 86.7

special-2 20 1 [0.6, 1.8] 86 0.6 12.6 37.6

special-3 25 3.4 × 107 [1.9 × 107, 6.0 × 107] 82 11.2 11.8 90.1

5step 177 8.1 × 104 [4.5 × 104, 1.5 × 105] 90 0.1 11.9 80.5

blockmap 05 01 1411 6.4 × 102 [3.6 × 102, 1.2 × 103] 84 1.1 12.0 73.8

blockmap 05 02 1738 9.4 × 106 [5.2 × 106, 1.7 × 107] 89 12.7 11.8 87.7

blockmap 10 01 11328 2.9 × 106 [1.6 × 106, 5.2 × 106] 83 80.3 12.0 85.0

fs-01 32 7.7 × 102 [4.3 × 102, 1.4 × 103] 80 0.02 12.6 76.2

or-50-10-10-UC-20 100 3.7 × 106 [2.0 × 106, 6.6 × 106] 77 7.7 12.0 86.1

or-60-10-10-UC-40 120 3.4 × 106 [1.9 × 106, 6.1 × 106] 91 3.5 12.1 86.0

In Table 1, column 1 gives the instance name, column 2 the number of
Boolean variables n, column 3 the exact counts #F , and column 4 the inter-
val [1.8−1#F, 1.8#F ]. The frequencies of approximations that lie in the interval
[1.8−1#F, 1.8#F ] in 100 times of experiments are presented in column 5. The
average time consumptions, average number of iterations, and average number
of SAT query invocations are presented in columns 6, 7 and 8 respectively, which
also indicate the advantages of our approach.

Under the dynamic stopping criterion, the counts returned by our approach
should lie in an interval [1.8−1#F, 1.8#F ] with probability 80% for ε = 0.8 and
δ = 0.2. The statistical results in Table 1 show that the frequencies are around
80 for 100-times experiments which fit the 80% probability. The average number
of iterations T̄ listed in Table 1 is smaller than the loop termination criterion
T = 22 which is obtained via Formula 2, indicating that the dynamic stopping
technique significantly improves the efficiency. In addition, the values of T̄ appear
to be stable for different instances, hinting that there exists a constant upper
bound on T which is irrelevant to instances.

Intuitively, our approach may start to fail on “loose” formulas, i.e., with
an “infinitesimal” fraction of non-models. Instance special-1 and special-3 are
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such “loose” formulas where special-1 has 220 models with only 20 variables
and special-3 has 225 − 1 models with 25 variables. Instance special-2 is another
extreme case which only has one model. The results in Table 1 demonstrate that
STAC CNF also works fine on these extreme cases.

Table 2. Statistical results of 100-times experiments on STAC CNF (ε = 0.2, δ = 0.1)

Instance n #F [1.2−1#F, 1.2#F ] Freq. t̄ (s) T̄ Q̄

special-1 20 1.0 × 106 [8.7 × 105, 1.3 × 106] 86 4.0 179 1023

special-2 20 1 [0.8, 1.2] 91 0.1 179 540

special-3 25 3.4 × 107 [2.8 × 107, 4.0 × 107] 91 138 178 1029

5step 177 8.1 × 104 [6.8 × 104, 9.8 × 105] 96 1.9 190 1078

blockmap 05 01 1411 6.4 × 102 [5.3 × 102, 7.7 × 102] 94 17.1 190 1069

blockmap 05 02 1738 9.4 × 106 [7.9 × 106, 1.1 × 107] 87 281 193 1088

blockmap 10 01 11328 2.9 × 106 [2.4 × 106, 3.5 × 106] 93 1371 180 1034

fs-01 32 7.7 × 102 [6.4 × 102, 9.2 × 102] 91 0.1 172 975

or-50-10-10-UC-20 100 3.7 × 106 [3.1 × 106, 4.4 × 106] 90 140 166 925

or-60-10-10-UC-40 120 3.4 × 106 [2.8 × 106, 4.1 × 106] 92 66 167 949

Table 3. Statistical results of 100-times experiments on STAC BV (ε = 0.8, δ = 0.2)

Instance TB #F [1.8−1#F, 1.8#F ] Freq t̄ (s) T̄ Q̄

FINDpath1 32 4.1 × 106 [2.3 × 106, 7.3 × 106] 83 27.5 12.4 88.0

queue 16 8.4 × 10 [4.7 × 10, 1.5 × 102] 75 1.7 12.0 70.6

getopPath2 24 8.1 × 103 [4.5 × 103, 1.5 × 104] 88 2.7 12.2 79.5

coloring 4 32 1.8 × 109 [1.0 × 109, 3.3 × 109] 76 51.9 12.0 96.1

FISCHER2-7-fair 240 3.0 × 104 [1.7 × 104, 5.4 × 104] 79 149 11.8 79.8

case2 24 4.2 × 106 [2.3 × 106, 7.6 × 106] 79 16.5 12.4 89.3

case4 16 3.3 × 104 [1.8 × 104, 5.9 × 104] 87 2.2 12.5 85.2

case7 18 1.3 × 105 [7.3 × 104, 2.4 × 105] 83 2.9 12.4 84.1

case8 24 8.4 × 106 [4.7 × 106, 1.5 × 107] 82 14.4 12.1 91.1

case11 15 1.6 × 104 [9.1 × 103, 2.9 × 104] 76 2.1 12.0 81.2

We considered another pair of parameters ε = 0.2, δ = 0.1. Then the interval
should be [1.2−1#F, 1.2#F ] and the probability should be 90%. Table 2 shows
the results on such parameter setting. The frequencies that the approximation
lies in interval [1.2−1#F, 1.2#F ] are all around or over 90 which fits the 90%
probability.

We also conducted 100-times experiments on SMT(BV) problems and the
results show that STAC BV is also promising. Table 3 similarly shows the results
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of 100-times experiments on STAC BV. Its column 2 gives the sum of widths of
all bit-vector variables (Boolean variable is counted as a bit-vector of width 1)
instead. The statistical results demonstrate that the dynamic stopping criterion
is also promising on SMT(BV) problems.

6.2 Performance Comparison with (ε, δ)-counters

We compared our tools with ApproxMC2 [11] and SMTApproxMC [8] which are
hashing-based (ε, δ)-counters. Both STAC CNF and ApproxMC2 use CryptoMini-
SAT [35], an efficient SAT solver designed for XOR clauses. STAC BV and SMT-
ApproxMC use the state-of-the-art SMT(BV) solver Boolector [6].

0.03

0.3

3

30

300

3000

30000

0.03 0.3 3 30 300 3000 30000

Ap
pr
ox
M
C2

STAC_CNF

Fig. 1. Performance comparison
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Fig. 2. Performance comparison
between STAC BV and SMTApproxMC

We first conducted experiments with ε = 0.8, δ = 0.2 and 8 hours timeout
which are also used in evaluation in previous works [8,11]. Figure 1 presents a
comparison on performance between STAC CNF and ApproxMC2. Each point rep-
resents an instance, whose x-coordinate and y-coordinate are the running times
of STAC CNF and ApproxMC2 on this instance, respectively. The figure is in loga-
rithmic coordinates and demonstrates that STAC CNF outperforms ApprxMC2 by
about one order of magnitude. Figure 2 presents a similar comparison on perfor-
mance between STAC BV and SMTApproxMC, showing that STAC BV outperforms
SMTApproxMC by one or two orders of magnitude. Furthermore, the advantage
enlarges as the scale grows.

Table 4 presents more experimental results with (ε, δ) parameters other than
(ε = 0.8, δ = 0.2). Nine pairs of parameters were experimented. “Time Ratio”
represents the ratio of the running times of ApproxMC2 to STAC CNF. “#Calls
Ratio” represents the ratio of the number of SAT calls of ApproxMC2 to STAC CNF.
The results show that ApproxMC2 gains advantage as ε decreases and STAC CNF
gains advantage as δ decreases. On the whole, ApproxMC2 gains advantage when



324 C. Ge et al.

Table 4. Performance comparison between STAC CNF and ApproxMC2 with different
pairs of (ε, δ) parameters

(ε, δ) Instance

blockmap fs-01 5step ran5 ran6 ran7

05 01 05 02 10 01

(0.8, 0.3) Time Ratio 1.11 3.99 1.22 3.00 3.83 6.53 8.24 5.57

#Calls Ratio 22.60 39.02 17.91 19.12 23.11 22.53 21.28 23.68

(0.8, 0.2) Time Ratio 1.84 6.16 2.44 2.80 6.05 9.61 15.41 7.37

#Calls Ratio 26.70 34.68 25.16 33.46 27.24 33.35 38.22 30.94

(0.8, 0.1) Time Ratio 2.27 7.36 3.72 5.25 12.62 9.60 9.54 8.19

#Calls Ratio 44.88 48.26 40.01 49.40 43.03 46.12 44.84 52.63

(0.4, 0.3) Time Ratio 0.75 1.37 0.42 3.00 5.04 1.97 2.31 2.74

#Calls Ratio 17.75 36.20 14.69 16.40 27.63 21.07 27.34 21.63

(0.4, 0.2) Time Ratio 0.77 1.44 0.86 4.50 7.70 2.82 1.77 3.02

#Calls Ratio 20.91 26.35 29.16 26.72 40.66 26.49 27.82 28.94

(0.4, 0.1) Time Ratio 1.08 2.57 1.29 4.90 7.09 3.84 3.43 3.11

#Calls Ratio 37.16 46.28 39.40 31.99 39.36 41.02 35.88 34.11

(0.2, 0.3) Time Ratio 0.42 0.47 0.23 5.08 3.79 1.26 1.14 1.81

#Calls Ratio 13.75 20.82 24.35 13.37 19.74 25.20 19.19 20.06

(0.2, 0.2) Time Ratio 0.57 0.92 0.26 8.42 3.37 2.07 1.50 2.45

#Calls Ratio 21.80 29.62 25.60 21.83 21.59 25.88 22.72 22.98

(0.2, 0.1) Time Ratio 0.87 0.92 0.44 16.69 3.17 3.61 2.27 2.60

#Calls Ratio 27.86 29.91 33.36 34.17 31.58 40.81 29.01 29.90

ε and δ both decrease. Note that the numbers of SAT calls represent the com-
plexity of both algorithms. In Table 4, #Calls Ratio is more stable than Time
Ratio among different pairs of parameters and also different instances. It indi-
cates that the difficulty of NP-oracle is also an important factor of running time
performance.

6.3 Performance Comparison with Bounding and Guarantee-Less
Counters

Since our approach is not a (ε, δ)-counter in theory, we also com-
pared STAC CNF with bounding counters (SampleCount [22], MBound [23]) and
guarantee-less counters (ApproxCount [39], SampleTreeSearch [16]). Table 5
shows the experimental results.

For SampleCount, we used α = 2 and t = 3.5 so that αt = 7, giving a correct-
ness confidence of 1 − 2−7 = 99%. The number of samples per variable setting,
z, was chosen to be 20. Our results show that the lower-bound approximated by
SampleCount is smaller than exact count #F by one or more orders of magni-
tude. We tried larger z, such as z = 100 and z = 1000, but still failed to obtain
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a lower-bound larger than #F/10. Moreover, there are some wrong approxima-
tions on DQMR networks problems, e.g., or-100-20-6-UC-60 only has 2.8×107

models but SampleCount returns a lower-bound ≥ 1.1 × 1029. SampleCount is
more efficient on Langford problems and random 3-CNF problems, but weaker
on problems with a large number of variables, such as blockmap problems.

For MBound, we used α = 1 and t = 7 so that αt = 7, also giving a correctness
confidence of 1 − 2−7 = 99%. MBound also employs a family of XOR hashing
functions which is similar to the function used by our approach. The size of
XOR constraints k should be no more than half of the number of variables n,
i.e., k ≤ n/2. We found that XOR constraints start to fail as k << n/2. So
in our experiments, k was chosen to be close to n/2. Since MBound can only
check the bound and may return failure as the bound is too close to the exact
count, we implemented a binary search to find the best lower-bound verified by
MBound. The results in Table 5 are the best lower-bounds and the running times
of the whole binary search procedure. Though the lower-bounds are better than
SampleCount, they are still around #F/10. Similar to our approach, the running
times of MBound are also quite relevant to the size of #F .

For ApproxCount, we manually increased the value of “cutoff” as Approx-
Count requires. Note that ApproxCount calls exact model counter Cachet [32]
and Relsat [2] after formula simplifications, so it sometimes returns the exact
counts, such as blockmap 05 01, blockmap 05 02, 5step and tire-1. On Lang-
ford problems and DQMR networks problems, wrong approximations were pro-
vided. On other instances, the results show that STAC CNF usually outperforms
ApproxCount.

For SampleTreeSearch, we used its default setting about the number of sam-
ples, which is a constant. The results show that it is very efficient and provides
good approximations. Our approach only outperforms SampleTreeSearch on
blockmap problems which consist of a large number of variables. However, there
is a lack of analysis on the accuracy of the approximation of SampleTreeSearch,
i.e., no explicit relation between the number of samples and the accuracy.

7 Conclusion

In this paper, we propose a new hashing-based approximate algorithm with
dynamic stopping criterion. Our approach has two key strengths: it requires only
one satisfiability query for each cut, and it terminates once meeting the criterion
of accuracy. We implemented prototype tools for propositional logic formulas
and SMT(BV) formulas. Extensive experiments demonstrate that our approach
is efficient and promising. Despite that we are unable to prove the correctness
of Eq. (1), the experimental results fit it quite well. This phenomenon might
be caused by some hidden properties of the hash functions. To fully understand
these functions and their correlation with the model count of the hashed formula
might be an interesting problem to the community. In addition, extending the
idea in this paper to count solutions of other formulas is also a direction of future
research.
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Abstract. We present a combination of the Mixed-Echelon-Hermite
transformation and the Double-Bounded reduction for systems of lin-
ear mixed arithmetic that preserve satisfiability and can be computed
in polynomial time. Together, the two transformations turn any system
of linear mixed constraints into a bounded system, i.e., a system for
which termination can be achieved easily. Existing approaches for lin-
ear mixed arithmetic, e.g., branch-and-bound and cuts from proofs, only
explore a finite search space after application of our two transformations.
Instead of generating a priori bounds for the variables, e.g., as suggested
by Papadimitriou, unbounded variables are eliminated through the two
transformations. The transformations orient themselves on the structure
of an input system instead of computing a priori (over-)approximations
out of the available constants. Experiments provide further evidence to
the efficiency of the transformations in practice. We also present a poly-
nomial method for converting certificates of (un)satisfiability from the
transformed to the original system.

Keywords: Linear arithmetic · Integer arithmetic
Mixed arithmetic · SMT · Linear Transformations · Constraint solving

1 Introduction

Efficient linear arithmetic decision procedures are important for various inde-
pendent research lines, e.g., optimization, system modeling, and verification. We
are interested in feasibility of linear arithmetic problems in the context of the
combination of theories, as they occur, e.g., in SMT solving or theorem proving.

The SMT and theorem proving communities have presented several inter-
esting and efficient approaches for pure linear rational arithmetic [18] as well
as linear integer arithmetic [5,8,16,20]. SMT research also starts to extend into
linear mixed arithmetic [12,18] because some applications require both ratio-
nal and integer variables, e.g., planning/scheduling problems and verification of
timed automata and hybrid systems.
c© Springer International Publishing AG, part of Springer Nature 2018
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We are interest in decision procedures for mixed arithmetic because of a
possible combination with superposition [1,4,19]. In the superposition context,
arithmetic constraints are part of the first-order clauses. The problems are typi-
cally unbounded due to transformations that turn the input formula into a super-
position specific input format. Since these problems are unbounded, the search
space becomes infinite, which is the case where termination becomes difficult for
most linear arithmetic approaches. Unbounded problems appear also in other
areas of automated reasoning. Either because of bad encodings, necessary but
complicating transformations, e.g., slacking (see Sect. 5), or the sheer complex-
ity of the verification goal. Hence, efficient techniques for handling unbounded
problems are necessary for a generally reliable combined procedure.

It is theoretically very easy to achieve termination for linear integer and
mixed arithmetic because of so called a priori bounds. For example, the a priori
bounds presented by Papadimitriou [22] guarantee that a problem has a mixed
solution if and only if the problem extended by the bounds |xi| ≤ 2n(ma)2m+1 for
every variable xi has a mixed solution. In these a priori bounds, n is the number
of variables, m the number of inequalities, and a the largest absolute value of
any integer coefficient or constant in the problem. By extending a problem with
those a priori bounds, we reduce the search space for a branch-and-bound solver
(and many other mixed arithmetic decision procedures) to a finite search space.
So branch-and-bound is guaranteed to terminate.

However, these bounds are so large that the resulting search space cannot
be explored in reasonable time for many practical problems. One reason for the
impracticability of a priori bounds is that they only take parameter sizes into
account and not actually the structure of each problem. A priori bounds are not
integrated in any state-of-the-art SMT solvers [3,13–15,17] since they are no
help in practice. As far as we know, none of the state-of-the-art SMT solvers use
any method that guarantees termination for linear integer or mixed arithmetic.

In this paper, we present satisfiability preserving transformations that reduce
unbounded problems into bounded problems. On these bounded problems, most
linear mixed decision procedures become terminating, which we show on the
example of branch-and-bound. Our reduction works by eliminating unbounded
variables. First, we use the Double-Bounded reduction (Sect. 4) to eliminate all
unbounded inequalities from our constraint system. Then we use the Mixed-
Echelon-Hermite transformation (Sect. 3) to shift the variables of our system to
ones that are either bounded or do not appear in the new inequalities and are,
therefore, eliminated. With Corollary 14 and Lemma 22 we explain how to effi-
ciently convert certificates of (un)satisfiability between the transformed and the
original system. Our method is efficient because it is fully guided by the struc-
ture of the problem. This is confirmed by experiments (Sect. 5). We also show
how to efficiently determine when a problem is unbounded (Lemma19). This
prevents our solver from applying our transformations on bounded problems.

An extended version of this paper is available on arXiv [7]. It contains an
appendix, where we explain how to implement the presented procedures in an
incrementally efficient way. This is relevant for the implementation of an efficient
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SMT theory solver. The extended version also contains several new examples as
well as additional implementation tricks.

2 Preliminaries

While the difference between matrices, vectors, and their components is always
clear in context, we generally use upper case letters for matrices (e.g., A), lower
case letters for vectors (e.g., x), and lower case letters with an index i or j
(e.g., bi, xj) as components of the associated vector at position i or j, respec-
tively. The only exceptions are the row vectors aT

i = (ai1, . . . , ain) of a matrix
A = (a1, . . . , am)T , which already contain an index i that indicates the row’s
position inside A. We also abbreviate the n-dimensional origin (0, . . . , 0)T as
0n. Moreover, we denote by piv(A, j) the row index of the pivot of a column j,
i.e., the smallest row index i with a non-zero entry aij or m + j if there are no
non-zero entries in column j.

A system of constraints Ax ≤ b is just a set of non-strict inequalities1

{aT
1 x ≤ b1, . . . , a

T
mx ≤ bm} and the rational solutions of this system are exactly

those points x ∈ Q
n that satisfy all inequalities in this set. The row coeffi-

cients are given by A = (a1, . . . , am)T ∈ Q
m×n, the variables are given by x =

(x1, . . . , xn)T , and the inequality bounds are given by b = (b1, . . . , bm)T ∈ Q
m.

Moreover, we assume that any constant rows ai = 0n were eliminated from our
system during an implicit preprocessing step. This is a trivial task and eliminates
some unnecessarily complicated corner cases.

In this paper, we consider mixed constraint systems, i.e., variables are
assigned a type: either rational or integer. Due to convenience, we assume that
the first n1 variables (x1, . . . , xn1) are rational and the remaining n2 variables
(xn1+1, . . . , xn) are integer, where n = n1 + n2. A mixed solution is a point
x ∈ (Qn1 × Z

n2) that satisfy all inequalities in Ax ≤ b and we denote by
M(Ax ≤ b) = {x ∈ (Qn1 × Z

n2) : Ax ≤ b} the set of mixed solutions to
the system of inequalities Ax ≤ b. We sometimes need to relax the variables to
be completely rational. Therefore, we denote by Q(Ax ≤ b) = {x ∈ Q

n : Ax ≤ b}
the set of rational solutions to the system of inequalities Ax ≤ b.

Since Ax ≤ b and A′x ≤ b′ are just sets, we can write their combination as
(Ax ≤ b) ∪ (A′x ≤ b′). A special system of inequalities is a system of equations
Dx = c, which is equivalent to the combined system of inequalities (Dx ≤
c)∪(−Dx ≤ −c). We say that a constraint system implies an inequality hTx ≤ g,
where h ∈ Q

n, h �= 0n, and g ∈ Q, if hTx ≤ g holds for all x ∈ Q(Ax ≤ b). In the
same manner, a constraint system implies an equality hTx = g, where h ∈ Q

n,
h �= 0n, and g ∈ Q, if hTx = g holds for all x ∈ Q(Ax ≤ b). A constraint implied
by Ax ≤ b is explicit if it does appear in Ax ≤ b. Otherwise, it is called implicit.

Most deductions on linear inequalities are based on Farkas’ Lemma:

1 All techniques discussed in this paper can be extended to strict inequalities with
the help of δ-rationals [18]. We will omit the strict inequalities and focus only on
non-strict inequalities due to lack of space.
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Lemma 1 (Farkas’ Lemma [6]). Q(Ax ≤ b) = ∅ iff there exists a y ∈ Q
m with

y ≥ 0m and yTA = 0n so that yT b < 0, i.e., there exists a non-negative linear
combination of inequalities in Ax ≤ b that results in an inequality yTAx ≤ yT b
that is constant and unsatisfiable. If such a y exists, then we call it a certificate
of unsatisfiability.

We also frequently use the following lemma, which is just a reformulation of
Farkas’ Lemma:

Lemma 2 (Linear Implication Lemma). Let Q(Ax ≤ b) �= ∅, h ∈ Q
n\{0n},

and g ∈ Q. Then, Ax ≤ b implies hTx ≤ g iff there exists a y ∈ Q
m with

y ≥ 0m and yTA = hT so that yT b ≤ g, i.e., there exists a non-negative linear
combination of inequalities in Ax ≤ b that results in the inequality hTx ≤ g.

As we mentioned in the introduction, this paper describes equisatisfiable
transformations for constraint systems. We transform the systems in such a
way that most linear mixed decision procedures become terminating and still
retain their general efficiency. We even show this on the example of branch-and-
bound. Although we do not have the time to discuss all facets of branch-and-
bound [23], we still want to give a short summary of the algorithm. Branch-
and-bound is a recursive algorithm that computes mixed solutions for constraint
systems. In each call of the algorithm, it first computes a rational solution s
to a constraint system Ax ≤ b2. If there are none, then we know that Ax ≤ b
has no mixed solution. We are also done in the case that s is a mixed solution.
Otherwise, we select one of the integer variables xi assigned to a fractional value
si �∈ Z and call branch-and-bound recursively on (Ax ≤ b) ∪ (xi ≥ �si	) and
(Ax ≤ b) ∪ (xi ≤ 
si�). If none of the recursive calls returns a mixed solution,
then Ax ≤ b also does not have a mixed solution. Likewise, if one of them returns
a mixed solution s, then it also is a mixed solution to Ax ≤ b.

Branch-and-bound alone is already complete on bounded constraint systems,
i.e., systems where all directions are bounded:

Definition 3 (Bounded Direction). A direction/vector h ∈ Q
n \ {0n} is

bounded in the constraint system Ax ≤ b if there exist l, u ∈ Q such that Ax ≤ b
implies hTx ≤ u and −hTx ≤ −l. Otherwise, it is called unbounded.

Definition 4 (Bounded System). A constraint system Ax ≤ b is bounded if
all directions h ∈ Q

n \ {0n} are bounded. Otherwise, it is called unbounded.

For bounded systems, branch-and-bound is one of the most popular and
efficient algorithms. It may, however, diverge if the system has unbounded direc-
tions. Even so, not all unbounded systems are equally difficult. For instance, a
system where all directions are unbounded has always a mixed solution:

Lemma 5 (Absolutely Unbounded [10]). If all directions are unbounded in
a constraint system Ax ≤ b, then the constraint system has an integer solution.

2 A rational solution can be computed in polynomial time [23].
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In a previous article, we described two cube tests that detect and solve
constraint systems with infinite lattice width (another name for absolutely
unbounded systems) in polynomial time [10]. The case of absolutely unbounded
systems is, therefore, trivial and branch-and-bound can be easily extended so it
also becomes complete for absolutely unbounded systems. The actual difficult
case is when some directions are bounded and others unbounded. We call these
systems partially unbounded. Here, branch-and-bound and most other algorithms
diverge or become inefficient in practice. The transformations, which we present,
are designed to efficiently handle this subclass of problems.

3 Mixed-Echelon-Hermite Transformation

Our overall goal is to present an equisatisfiable transformation that turns any
constraint system into a system that is bounded, i.e., a system on which branch-
and-bound and many other arithmetic decision procedures terminate. In this
section, we only present such a transformation for a subset of constraint systems,
which we call double-bounded constraint systems. We then show in the next
section that each constraint system can be reduced to an equisatisfiable double-
bounded system. We also show how to efficiently transform a mixed solution
from the double-bounded reduction to a mixed solution for the original system.

Definition 6 (Double-Bounded Constraint System). A constraint system
Dx ≤ u is double-bounded if Dx ≤ u implies Dx ≥ l for l ∈ Q

m. For such
a double-bounded system, we call the bounds u the upper bounds of Dx and
the bounds l the lower bounds of Dx. Moreover, we typically write l ≤ Dx ≤ u
instead of Dx ≤ u although the lower bounds l are only implicit.

Note that only the inequalities in a double-bounded constraint system are
guaranteed to be bounded. Variables might still be unbounded. For instance, in
the constraint system 1 ≤ 3x1 − 3x2 ≤ 2 both inequalities are bounded but the
variables x1 and x2 are not. Moreover, the above constraint system is also an
example where branch-and-bound diverges. This means that even bounding all
inequalities does not yet guarantee termination. So for our purposes, a double-
bounded constraint system is still too complex.

This changes, however, if we also require that the coefficient matrix D of our
constraint system is a lower triangular matrix with gaps:

Definition 7 (Lower Triangular Matrix with Gaps). A matrix A ∈ Q
m×n

is lower triangular with gaps if it holds for each column j that piv(A, j) > m or
that piv(A, j) < piv(A, k) for all columns k with j < k ≤ n, i.e., column j either
has only zero entries or all pivoting entries right of j have a higher row index.

A matrix is lower triangular if and only if the row indices of its pivots are
strictly increasing, i.e., piv(A, 1) < . . . < piv(A,n). If we also allow it to have
gaps, only the row indices of pivots with non-zero columns have to be strictly
increasing. Now we get termination for free because of our restrictions:
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Lemma 8 (Lower Triangular Double-Bounded Systems). Let D ∈ Q
m×n

be a lower triangular matrix with gaps and l ≤ Dx ≤ u be a double-bounded
constraint system. Then each variable xj is either bounded, i.e., l ≤ Dx ≤ u
implies that l′j ≤ xj ≤ u′

j or its column in D has only zero entries.

Proof. Proof by induction. Assume that the above property already holds for all
variables xk with k < j. Let p = piv(D, j). If p > m, then the column j of D
is zero and we are done. If p ≤ m, then the pivoting entry dpj of column j is
non-zero. Because of Definition 7 and our induction hypothesis, this also means
that each column k with k < j has either a zero entry in row p or the variable xk

is bounded by our induction hypothesis, i.e., l ≤ Dx ≤ u implies l′k ≤ xk ≤ u′
k.

Since Definition 7 also implies that row p has only zero entries to the right of
dpj , the row p has only one unbounded variable with a non-zero entry, viz., xj .
This means we can transform the row lp ≤ dTp x ≤ up into the following two
inequalities: lp − ∑j−1

k=1 dpkxk ≤ dpjxj and up − ∑j−1
k=1 dpkxk ≥ dpjxj , where the

variables xk on the left sides are either bounded or dpk = 0. Hence, we can derive
an upper and lower bound for xj via bound propagation/refinement [21]. �
Corollary 9 (BnB-LTDB-Termination). Branch-and-bound terminates on
every double-bounded system l ≤ Dx ≤ u where D is lower triangular with gaps.

Our next goal is to efficiently transform every double-bounded system l ≤
Dx ≤ u into an equisatisfiable system that also has a lower triangular coefficient
matrix with gaps. We start by defining a class of transformations that do not
only preserve mixed equisatisfiability, but are also very expressive.

Definition 10 (Mixed Column Transformation Matrix [12]). Given a
mixed constraint system. A matrix V ∈ Q

n×n is a mixed column transformation
matrix if it is invertible and consists of an invertible matrix V(Q) ∈ Q

n1×n1 , a
unimodular matrix V(Z) ∈ Z

n2×n2 , and a matrix V(M) ∈ Q
n1×n2 such that

V =
(

V(Q) V(M)

0n2×n1 V(Z)

)

.

The inverse of a mixed column transformation matrix V is also a mixed
column transformation matrix and can be used to undo the transformation V :

Lemma 11 (Mixed Column Transformation Inversion [12]). Given a
mixed constraint system. Let V ∈ Q

n×n be a mixed column transformation
matrix. Then V −1 is also a mixed column transformation matrix.

This means that each mixed column transformation matrix defines a bijection
from (Qn1 ×Z

n2) to (Qn1 ×Z
n2). Hence, they guarantee mixed equisatisfiability:

Lemma 12 (Mixed Column Transformation Equisatisfiability [12]). Let
Ax ≤ b be a mixed constraint system. Let V ∈ Q

n×n be a mixed column transfor-
mation matrix. Then every solution y ∈ M((AV )y ≤ b)) can be converted into
a solution V y = x ∈ M(Ax ≤ b) and vice versa.
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Moreover, the mixed column transformation matrix V also establishes a
direct relationship between the linear combinations of the original constraint
system and the transformed one:

Lemma 13 (Mixed Column Transformation Implications). Let Ax ≤ b
be a constraint system. Let V ∈ Q

n×n be a mixed column transformation matrix.
Let Ax ≤ b imply hTx ≤ g. Then AV z ≤ b implies hTV z ≤ g.

Proof. By Lemma 2, Ax ≤ b implies hTx ≤ g iff there exists a non-negative
linear combination y ∈ Q

n such that y ≥ 0, yTA = hT and yT b ≤ g. Multiplying
yTA = hT with V results in yTAV = hTV and thus y is also the non-negative
linear combination of inequalities AV z ≤ b that results in hTV z ≤ g. �
Corollary 14 (Mixed Column Transformation Certificates). Let Ax ≤ b
be a constraint system. Let V ∈ Q

n×n be a mixed column transformation matrix.
Then y is a certificate of unsatisfiability for Ax ≤ b iff it is one for AV z ≤ b.

Now we only need a mixed column transformation matrix V for every coeffi-
cient matrix A such that H = AV is lower triangular with gaps. One such matrix
V is the one that transforms A into Mixed-Echelon-Hermite normal form:

Definition 15 (Mixed-Echelon-Hermite Normal Form [12]). A matrix
H ∈ Q

m×n is in Mixed-Echelon-Hermite normal form if

H =
(

E 0r×(n1−r) 0r×n2

E′ 0(m−r)×(n1−r) H ′

)

,

where E is an r × r identity matrix (with r ≤ n1), E′ ∈ Q
(m−r)×r, and H ′ ∈

Q
(m−r)×n2 is a matrix in hermite normal form, i.e., a lower triangular matrix

without gaps, where each entry h′
piv(H′,j)k in the row piv(H ′, j) is non-negative

and smaller than h′
piv(H′,j)j.

The following proof for the existence of the Mixed-Echelon-Hermite normal
form is constructive and presents the Mixed-Echelon-Hermite transformation.

Lemma 16 (Mixed-Echelon-Hermite Transformation). Let A ∈ Q
m×n

be a matrix, where the upper left r × n1 submatrix has the same rank r as the
complete left m×n1 submatrix. Then there exists a mixed transformation matrix
V ∈ Q

n×n such that H = AV is in Mixed-Echelon-Hermite normal form.

Proof. Proof from [12] with slight modifications so it also works for singular
matrices. We subdivide A into

A =
(

A11 A12

A21 A22

)

such that A11 ∈ Q
r×n1 , A12 ∈ Q

r×n2 , A21 ∈ Q
m−r×n1 , and A21 ∈ Q

m−r×n2 .
Then we bring A11 with an invertible matrix V11 ∈ Q

n1×n1 into reduced echelon
column form H11 = (E 0r×(n1−r)) = A11V11, where E is an r × r identity
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matrix. We get V11 and H11 by using Bareiss algorithm instead of the better
known Gaussian elimination as it is polynomial in time [2].3 Note that the last
n1 − r columns of H21 = (H ′

21 0(m−r)×(n1−r)) = A21V11 are also zero because all
rows in A21 are linear dependent of A11 (due to the rank). Next we notice that

A12 − A11V11

(
A12

0(n1−r)×n2

)

= A12 − (E 0r×(n1−r))
(

A12

0(n1−r)×n2

)

= 0r×n2

so we can reduce the upper right submatrix A12 to zero by adding multiples of
the n1 columns with rational variables to the n2 columns with integer variables.
However, this also transforms the lower right submatrix A22 into

H ′
22 = A22 − A21V11

(
A12

0(n1−r)×n2

)

.

Finally, we transform this new submatrix H ′
22 into hermite normal form H22

via the algorithm of Kannan and Bachem (or a similar polynomial time algo-
rithm) (see footnote 3). This algorithm also returns a unimodular matrix
V22 ∈ Z

n2×n2 such that H22 = H ′
22V22. To summarize: our total mixed transfor-

mation matrix is

V =

⎛

⎝V11 −V11 ·
(

A12

0(n1−r)×n2

)

· V22

0n2×n1 V22

⎞

⎠ and H = AV =
(

H11 0r×n2

H21 H22

)

.

�
It is not possible to transform every matrix A ∈ Q

m×n into Mixed-Echelon-
Hermite normal form. We have to restrict ourselves to matrices, where the upper
left r×n1 submatrix has the same rank r as the complete left m×n1 submatrix.
However, this is very easy to accomplish for a system of linear mixed arithmetic
constraints l ≤ Ax ≤ u. The reason is that the order of inequalities does not
change the set of satisfiable solutions. Hence, we can swap the inequalities and,
thereby, the rows of A until its upper left r×n1 submatrix has the desired form.
This also means that there are usually multiple possible inequality orderings
that each have their own Mixed-Echelon-Hermite normal form H.

To conclude this section: whenever we have a double-bounded constraint
system l ≤ Dx ≤ u, we can transform it (after some row swapping) into an
equisatisfiable system l ≤ Hy ≤ u where H = DV is in Mixed-Echelon-Hermite
normal form and V y = x. Since H is also a lower triangular matrix with gaps,
branch-and-bound terminates on l ≤ Hy ≤ u with a mixed solution t or it will
return unsatisfiable (Corollary 9). Moreover, we can convert any mixed solution
t for l ≤ Hy ≤ u into a mixed solution s for l ≤ Dx ≤ u by setting s := V t.
Hence, we have a complete algorithm for double-bounded constraint systems.
3 We do actually use less efficient, Gaussian-elimination-based transformations in our

own implementation [7]. The reason is that these transformations are incrementally
efficient. Our experiments show that the transformation cost still remains negligible
in practice.
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4 Double-Bounded Reduction

In the previous Section, we have shown how to solve a double-bounded constraint
system. Now we show how to reduce any constraint system A′x ≤ b′ to an
equisatisfiable double-bounded system l ≤ Dx ≤ u. Moreover, we explain how
to take any solution of l ≤ Dx ≤ u and turn it into a solution for A′x ≤ b′.

As the first step of our reduction, we reformulate the constraint system into
a so called split system:

Definition 17 (Split System). (Ax ≤ b) ∪ (l ≤ Dx ≤ u) is a split system if:
(i) all directions are unbounded in Ax ≤ b; (ii) all row vectors ai from A are also
unbounded in (Ax ≤ b)∪ (l ≤ Dx ≤ u). Moreover, we call Ax ≤ b the unbounded
part and l ≤ Dx ≤ u the bounded part of the split system.

A split system consists of an unbounded part Ax ≤ b that is guaranteed to
have (infinitely many) integer solutions (see Lemma5) and a double-bounded
part l ≤ Dx ≤ u. Any constraint system can be brought into the above form.
We just have to move all unbounded inequalities into the unbounded part and
all bounded inequalities into the bounded part.

Lemma 18 (Split Equivalence). Let A′x ≤ b′ be a constraint system with
A′ ∈ Q

m×n. Then there exists an equivalent split system (Ax ≤ b)∪(l ≤ Dx ≤ u)
where: (i) A ∈ Q

m1×n and D ∈ Q
m2×n so that m1 + m2 = m; (ii) all rows dTi

of D and aT
k of A appear as rows in A′; and (iii) Dx ≤ u implies l ≤ Dx.

Proof. For (i), (ii), and the equivalence, it is enough to move all bounded
inequalities a′T

i x ≤ b′
i of A′x ≤ b′ into Dx ≤ u and all unbounded inequali-

ties into Ax ≤ b. For (iii), we assume for a contradiction that Dx ≤ u does
not imply li ≤ dTi x but (Dx ≤ u) ∪ (Ax ≤ b) does. By Lemma 2, this means
that there exists a y ∈ Q

m2 with y ≥ 0m2 and a z ∈ Q
m1 with z ≥ 0m1 so

that yTD + zTA = −dTi and yTu + zT b ≤ −li. We also know that there exists
a zk > 0 because Dx ≤ u alone does not imply li ≤ dTi x. We use this fact to
reformulate yTD + zTA = −dTi into −aT

k = 1
zk

[
yTD + dTi +

∑m1
j=1,j �=k zja

T
j

]
,

and use the bounds of the inequalities in Dx ≤ u and Ax ≤ b to derive a lower
bound for aT

k x: −aT
k x ≤ 1

zk

[
yTu + ui +

∑m1
j=1,j �=k zjbj

]
. Hence, aT

k is bounded
in A′x ≤ b′ and we have our contradiction. �

The above Lemma also shows that the bounded part of a constraint system
is self-contained, i.e., a constraint system implies that a direction is bounded
if and only if its bounded part does. The actual difficulty of reformulating a
system into a split system is not the transformation per se, but finding out
which inequalities are bounded or not. There are many ways to detect whether
an inequality is bounded by a constraint system. Most work even in polynomial
time. For instance, solving the linear rational optimization problem “minimize
aT
i x such that Ax ≤ b” returns −∞ if ai is unbounded, ∞ if Ax ≤ b has no

rational solution, and the optimal lower bound li for aT
i x otherwise. However, it

still requires us to solve m linear optimization problems.
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A, in our opinion, more efficient alternative is based on our previously pre-
sented algorithm for finding equality bases [9]. This is due to the following rela-
tionship between bounded directions and equalities:

Lemma 19 (Bounds and Equalities). Let Q(Ax ≤ b) �= ∅. Then h is bounded
in Ax ≤ b iff Ax ≤ 0m implies that hTx = 0.

Proof. By Definition 3, h is bounded in Ax ≤ b means that there exists l, u ∈ Q

such that Ax ≤ b implies hTx ≤ u and −hTx ≤ −l. By Lemma 2, this is
equivalent to: there exist l, u ∈ Q, y, z ∈ Q

m with y, z ≥ 0m, and yTA =
hT = −zTA so that yT b ≤ u and zT b ≤ −l. Symmetrically, Ax ≤ 0 implies
that hTx = 0 is equivalent to: there exist a y, z ∈ Q

m with y, z ≥ 0m and
yTA = hT = −zTA so that yT 0m ≤ 0 and zT 0m ≤ 0. Since u and l only have to
exists, we can trivially choose them as u := yT b and l := −zT b. This means that
yT b ≤ u, zT b ≤ −l, yT 0m ≤ 0, and zT 0m ≤ 0 are all trivially satisfied by any pair
of linear combinations y, z ∈ Q

m with y, z ≥ 0m such that yTA = hT = −zTA.
Hence, the two definitions are equivalent and our lemma holds. �

It is easy and efficient to compute an equality basis for Ax ≤ 0m and to
determine with it the inequalities in Ax ≤ b that are bounded [9]. The only
disadvantage towards the optimization approach is that we do not derive an
optimal lower bound l for the inequalities. This is no problem because only the
existence of lower bounds is relevant and not the actual bound values.

In a split system (Ax ≤ b) ∪ (l ≤ Dx ≤ u), the unbounded part is actually
inconsequential to the rational/mixed satisfiability of the system. It may reduce
the number of rational/mixed solutions, but it never removes them all. Hence,
(Ax ≤ b)∪ (l ≤ Dx ≤ u) is equisatisfiable to just l ≤ Dx ≤ u. We first show this
equisatisfiability for the rational case:

Lemma 20 (Rational Extension). Let (Ax ≤ b) ∪ (l ≤ Dx ≤ u) be a split
system. Let s ∈ Q

n be a rational solution to the bounded part l ≤ Dx ≤ u such
that Ds = g, where g ∈ Q

m2 . Then (Ax ≤ b) ∪ (Dx = g) has a solution s′.

Proof. Assume for a contradiction that (Ax ≤ b)∪ (Dx = g) has no solution. By
Lemma 1, this means that there exist a y ∈ Q

m1 with y ≥ 0m1 and z, z′ ∈ Q
m2

with z, z′ ≥ 0m2 such that yTA + zTD − z′TD = 0n and yT b + zT g − z′T g < 0.
Since Dx = g is satisfiable by itself, there must exist a yi > 0. Now we use this
fact to reformulate the equation yTA + zTD − z′TD = 0n into

−aT
i =

1
yi

[(∑m1

j=1j �=i
yja

T
j

)
+ zTD − z′TD

]
,

from which we deduce a lower bound for aT
i x in (Ax ≤ b) ∪ (l ≤ Dx ≤ u):

−aT
i x ≤ 1

yi

[(∑m1

j=1j �=i
yjbj

)
+ zTu − z′T l

]
.

Therefore, ai is bounded in (Ax ≤ b) ∪ (l ≤ Dx ≤ u), which is a
contradiction. �
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Note that the bounded part l ≤ Dx ≤ u of a split system can still have
unbounded directions (not inequalities). Some of these unbounded directions in
l ≤ Dx ≤ u are the orthogonal directions to the row vectors di, i.e., vectors
vj ∈ Z

n such that dTi vj = 0 for all i ∈ {1, . . . , m2}. This also means that the
existence of one mixed solution s ∈ (Qn1 × Z

n2) and one unbounded direction
proves the existence of infinitely many mixed solutions. We just need to follow the
orthogonal directions, i.e., for all λ ∈ Z, s′ = λ · vj + s is also a mixed solution
because dTi s′ = λ · dTi vj + dTi s = dTi s. In the next two steps, we prove that
Ax ≤ b cannot cut off all of these orthogonal solutions because it is completely
unbounded. The first step proves that Ax ≤ b remains absolutely unbounded
even if we settle on one set of orthogonal solutions, i.e., enforce Dx = Ds for
some solution s.

Lemma 21 (Persistence of Unboundedness). Let (Ax ≤ b)∪ (l ≤ Dx ≤ u)
be a split system. Let s ∈ Q

n be a rational solution for l ≤ Dx ≤ u such that
Ds = g (with g ∈ Q

m2). Then all row vectors ai from A are still unbounded in
(Ax ≤ b) ∪ (Dx = g).

Proof. By Lemma 20, (Ax ≤ b) ∪ (Dx = g) has at least a rational solution s∗.
Moreover, (Ax ≤ 0) ∪ (Dx = 0) does not imply aT

i x = 0 because of Lemma 19
and the assumption that the row vectors ai from A are unbounded in (Ax ≤
b) ∪ (l ≤ Dx ≤ u). In reverse, (Ax ≤ b) ∪ (Dx = g) having a real solution,
(Ax ≤ 0) ∪ (Dx = 0) does not imply aT

i x = 0, and Lemma 19 prove together
that the row vectors ai from A are also unbounded in (Ax ≤ b) ∪ (Dx = g). �

The next step proves how to extend the mixed solution from the bounded
part to the complete system with the help of the Mixed-Echelon-Hermite normal
form and the absolute unboundedness of Ax ≤ b.

Lemma 22 (Mixed Extension). Let (Ax ≤ b) ∪ (l ≤ Dx ≤ u) be a split
system. Let s ∈ (Qn1 × Z

n2) be a mixed solution for l ≤ Dx ≤ u. Then (Ax ≤
b) ∪ (l ≤ Dx ≤ u) has a mixed solution s′.

Proof. Let g = Ds. Without loss of generality we assume that the upper left
r×n1 submatrix of D has the same rank r as the complete left m1×n1 submatrix
of D. (Otherwise, we just reorder the rows accordingly.) Therefore, there exists a
mixed column transformation matrix V such that H = DV is in Mixed-Echelon-
Hermite normal form (see Lemma 16). By Lemma 12, there exists a mixed vector
t ∈ (Qn1 ×Z

n2) such that s = V t and t is a mixed-solution to l ≤ Hy ≤ u as well
as Hy = g. Let U be the set of indices with 0 columns in H and B the column
indices with bounded variables. Then the equation system (Hy = g) fixes each
variable yj with j ∈ B to the value tj because H is lower triangular with gaps.
Hence, ((AV )y ≤ b) ∪ (Hy = g) is equivalent to

A

⎡

⎢
⎣

∑

j∈U

⎛

⎜
⎝

v1j
...

vnj

⎞

⎟
⎠ · yj

⎤

⎥
⎦ ≤ b − A

⎡

⎢
⎣

∑

j∈B

⎛

⎜
⎝

v1j
...

vnj

⎞

⎟
⎠ · tj

⎤

⎥
⎦ . (1)
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Due to Lemmas 13 and 21, all directions are unbounded in (1). This means
(1) has an integer solution (Lemma 5) assigning each variable yj with j ∈ U to a
t′j ∈ Z. (Can be computed via the unit cube test [11]). We extend this solution
to all variables y by setting t′j := tj for j ∈ B and we have a mixed solution
t′ ∈ (Qn1 ×Z

n1) for ((AV )y ≤ b) ∪ (l ≤ Hy ≤ u). Hence, we have via Lemma 12
a mixed solution s′ ∈ (Qn1 × Z

n2) for (Ax ≤ b) ∪ (l ≤ Dx ≤ u) with s′ = V t′.�
Corollary 23 (Double-Bounded Reduction). The split system (Ax ≤ b) ∪
(l ≤ Dx ≤ u) is mixed equisatisfiable to (l ≤ Dx ≤ u).
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Fig. 1. Horizontal axis: # of solved instances; vertical axis: time (seconds)

5 Experiments

We integrated the Double-Bounded reduction and the Mixed-Echelon-Hermite
transformation into our own theory solver SPASS-IQ v0.2 4 and ran it on four
4 Available on http://www.spass-prover.org/spass-iq.

http://www.spass-prover.org/spass-iq
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Fig. 2. Horizontal axis: # of solved instances; vertical axis: time (seconds)

families of newly constructed benchmarks (see footnote 4). Once with the trans-
formations turned on (SPASS-IQ) and once with the transformations turned off
(SPASS-IQ-Off ). If SPASS-IQ encounters a system Ax ≤ b that is not explicitly
bounded, i.e., where not all variables have an explicit upper and lower bound,
then it computes an equality basis for Ax ≤ 0m. This basis is used to deter-
mine whether the system is implicitly bounded, absolutely unbounded or par-
tially bounded, as well as which of the inequalities are bounded. Our solver
only applies our two transformations if the problem is partially unbounded. The
resulting equisatisfiable but bounded problem is then solved via branch-and-
bound. The other two cases, absolutely unbounded and implicitly bounded, are
solved respectively via the unit cube test [11] and branch-and-bound on the
original system. Our solver also converts any mixed solutions from the trans-
formed system into mixed solutions for the original system following the proof
of Lemma 22. Rational conflicts are converted between the two systems by using
Corollary 14.
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We tried to restrict our benchmarks to partially unbounded problems since we
only apply our transformations on those problems. We even found some partially
unbounded problems in the SMT-LIB benchmarks for QF LIA (quantifier free
linear arithmetic). However, there are not many such benchmarks: only one in
CAV-2009, five in cut lemmas, and three in slacks. So we created in addition
four new benchmark families:

SlackedQFLIA: are linear integer benchmarks based on the SMT-LIB classes
CAV-2009 [16], cut lemmas [20], and dillig [16]. We simply took all of the unsat-
isfiable benchmarks and replaced in them all variables x with x+ − x− where
x+ and x− are two new variables such that x+, x− ≥ 0. This transformation,
called slacking, is equisatisfiable and the slacked version of the dillig-benchmarks,
called slacked [21], is already in the SMT-LIB. Slacking turns any unsatisfiable
problem into a partially unbounded one. Hence, all problems in SlackedQFLIA
are partially unbounded. Slacking is commonly used to integrate absolute values
into linear systems or for solvers that require non-negative variables [23].

RandomUnbd : are linear integer benchmarks that are all partially unbounded
and satisfiable with 10, 25, 50, 75, and 100 variables. All problems are randomly
created via a sagemath script (see footnote 4).

FlippedQFLIA and FlippedRandomUnbd : are linear mixed benchmarks that
are all partially unbounded. They are based on SlackedQFLIA and RandomUnbd.
We constructed them by first copying ten versions of the integer benchmarks and
then randomly flipping the type of some of the variables to rational (probability
of 20%). Some of the flipped instances of SlackedQFLIA became satisfiable.

We compared our solver with some of the state-of-the-art SMT solvers cur-
rently available for linear mixed arithmetic: cvc4-1.5 [3], mathsat5-5.1 [14],
SMTInterpol 2.1-335-g4c543a5 [13], yices2.5.4 [17], and z3-4.6.0 [15]. Most of
these solvers employ a branch-and-bound approach with an underlying dual sim-
plex solver [18], which is also the basis for our own solver. As far as we are aware,
none of them employ any techniques that guarantee termination.

SMTInterpol extends branch-and-bound via the cuts from proofs approach,
which uses the Mixed-Echelon-Hermite transformation to find more versatile
branches and cuts [12]. Although the procedure is not complete, the similarities
to our own approach make an interesting comparison. Actually, the Double-
Bounded reduction alone would be sufficient to make SMTInterpol terminating
since it already builds branches via a Mixed-Echelon-Hermite transformation.

We also compared our solver with the ctrl-ergo solver [5] although it is
restricted to pure integer arithmetic. Ctrl-ergo is complete over linear integer
arithmetic and uses the most similar approach to our transformations that we
found in the literature. It dynamically eliminates one linear independent bounded
direction at a time via transformation. The disadvantages of the dynamic app-
roach are that it is very restrictive and does not leave enough freedom to change
strategies or to add complementing techniques. Moreover, ctrl-ergo uses this
transformation approach for all problems and not only the partially unbounded
ones, which sometimes leads to a massive overhead on bounded problems.
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For the experiments, we used a Debian Linux cluster and allotted to each
problem and solver combination 2 cores of an Intel Xeon E5620 (2.4 GHz) pro-
cessor, 4 GB RAM, and 40 min. The only solver benefiting from multiple cores is
SMTInterpol. The plots in Figs. 1 and 2 depict the results of the different solvers.
In the legends of the plots, the numbers behind the solver names are the number
of solved instances. For FlippedQFLIA, there are two numbers to indicate the
number of satisfiable/unsatisfiable instances solved. This is only necessary for
FlippedQFLIA because it is the only tested benchmark family with satisfiable
and unsatisfiable instances. (We verified that the results match if two solvers
solved the same problem.)

Although our solver could not solve all problems (due to time and memory
limits) it was still able to solve more problems than the other solvers. It was
also faster on most instances than the other solvers. In some of the unsatisfiable,
partially unbounded benchmarks ctrl-ergo is better than SPASS-IQ. This is due
to its conflict focused, dynamic approach. For the same reason, ctrl-ergo is slower
on the satisfiable, partially unbounded benchmarks. Only SPASS-IQ, ctrl-ergo,
and yices solved all of the ten original SMT-LIB benchmarks that are partially
unbounded, though the complete methods were still a lot faster (SPASS-IQ took
23 s, ctrl-ergo took 42 s, and yices took 1273 s). On one of these benchmarks, 20-
14.slacks.smt2 from slacks, all other solvers seem to diverge. Another interesting
result of our experiments is that relaxing some integer variables to rational vari-
ables seems to make the problems harder instead of easier. We expected this for
our transformations because the resulting systems become more complex and
less sparse, but it is also true for the other solvers. The reason might be that
bound refinement, a technique used in most branch-and-bound implementations,
is less effective on mixed problems.

The time SPASS-IQ needs to detect the bounded inequalities and to apply
our transformations is negligible. This is even true for the implicitly bounded
problems we tested. As mentioned before, we do not have to apply our trans-
formations to terminate on bounded problems. This is also the only advantage
we gain from detecting that a problem is implicitly bounded. Since there is no
noticeable difference in the run time, we do not further elaborate the results on
bounded problems, e.g. with graphs.

An actual disadvantage of our approach is that the Mixed-Echelon-Hermite
transformation increases the density of the coefficient matrix as well as the abso-
lute size of the coefficients. Both are important factors for the efficiency of the
underlying simplex solver. Moreover, SPASS-IQ reaches more often the memory
limit than the time limit because it needs a (too) large number of branches and
bound refinements before terminating.

6 Conclusion

We have presented the Mixed-Echelon-Hermite transformation (Lemma 16) and
the Double-Bounded reduction (Lemma18 and Corollary 23). We have shown
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that both transformations together turn any constraint system into an equisat-
isfiable system that is also bounded (Lemma 8). This is sufficient to make branch-
and-bound, and many other linear mixed decision procedures, complete and ter-
minating. We have also shown how to convert certificates of (un)satisfiability
efficiently between the transformed and original systems (Corollary 14 and
Lemma 22). Moreover, experimental results on partially unbounded benchmarks
show that our approach is also efficient in practice.

Our approach can be nicely combined with the extensive branch-and-bound
framework and its many extensions, where other complete techniques cannot be
used in a modular way [5,8]. For future research, we plan to test our transfor-
mations in combination with other algorithms, e.g., cuts from proofs, or as a
dynamic version similar to the approach used by ctrl-ergo [5]. We also want to
test whether our transformations are useful preprocessing steps for select con-
straint system classes that are bounded.
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Abstract. In this paper we describe the infrastructure supporting con-
fluence tools and competitions: Cops, the confluence problems database,
and CoCoWeb, a convenient web interface for tools that participate in
the annual confluence competition.

1 Introduction

In recent years several tools have been developed to automatically prove con-
fluence and related properties of a variety of rewrite formats. These tools com-
pete annually in the confluence competition [1] (CoCo).1 Confluence tools run
on confluence problems which are organized in the confluence problems (Cops)
database. Cops is managed via a web interface

http://cops.uibk.ac.at/

that comes equipped with a useful tagging system. Cops has recently been
revamped and we describe its unique features in this paper.

Most of the tools that participate in CoCo can be downloaded, installed,
and run on one’s local machine, but this can be a painful process.2 Only few
confluence tools—we are aware of CO3 [8], ConCon [11], and CSI [7,14]—provide
a convenient web interface to painlessly test the status of a confluence problem
that is provided by the user. In this paper we present CoCoWeb, a web interface
to execute confluence tools on confluence problems. This provides a single entry
point to all tools that participate in CoCo. CoCoWeb is available at

http://cocoweb.uibk.ac.at/
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The typical use of CoCoWeb is to test whether a given confluence problem
is known to be confluent or not. This is useful when preparing or reviewing an
article, preparing or correcting exams about term rewriting, and when contem-
plating submitting a challenging problem to Cops. In particular, CoCoWeb is
useful when crafting or looking for examples to illustrate a new technique. For
instance, in [4] a rewrite system is presented that can be shown to be conflu-
ent with the technique introduced in that paper. The authors write “Note that
we have tried to show confluence [ . . . ] by confluence checker ACP and Saigawa,
and both of them failed.” Despite having an easy to use web interface, CSI was
not tried. CoCoWeb could also be useful for the CoCo steering committee when
integrating newly submitted problems into Cops and also when investigating
dubious answers of confluence tools.

The remainder of the paper is organized as follows. In the next section we
describe the functionality of Cops, and in Sect. 3 we present the web interface
of CoCoWeb by means of a number of screenshots. Both sections contain a few
implementation details as well. In Sect. 4 we list some possibilities for extending
the functionality of Cops and CoCoWeb in the future.

2 Cops: Confluence Problems Database

Cops is an online database for confluence problems in term rewriting. It was
created in 2012 to facilitate the organization of CoCo and development of con-
fluence tools. Via its web interface, everyone can retrieve and download conflu-
ence problems, and also upload new problems. Uploaded problems are reviewed
by the CoCo steering committee and then integrated into Cops. Figure 1 shows
the web interface of Cops. Below, we explain basic features of the interface. The
interface is designed in a way that novice users can easily learn problem formats,
and at the same time experts on confluence can retrieve a problem set for their
experiments.

Problems. While there are several variations of rewrite systems, Cops com-
prises the following five rewriting formats: ordinary term rewrite systems (TRS),
extended term rewrite systems (eTRS) that do not impose the variable con-
ditions of TRS, conditional term rewrite systems (CTRS), higher-order term
rewrite systems (HRS), and many-sorted term rewrite systems (MSTRS). In the
database, confluence problems are maintained as text files, and identification
numbers are assigned to them. Currently, Cops contains 765 systems and more
than half of them have been collected from the literature.

The main box in Fig. 1 shows confluence problem number 1 (1.trs), which
consists of five rewrite rules. To increase readability, Cops supports syntax high-
lighting for the above five formats. By clicking the hyperlinked number in brack-
ets in the comment field, the source of the problem with a corresponding BibTEX
entry is displayed. Typically the comment field also includes the name of the per-
son(s) who submitted the problem. This is to acknowledge the effort involved in
locating interesting problems and making these available to the community.
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Fig. 1. The web interface of Cops.

Tags. Cops has no directory structure. Instead, tags—which can be seen as a
multi-dimensional directory structure—are assigned to problems. Different kinds
of tags are supported. On the one hand, properties of rewrite systems like left-
linearity, groundness, and termination are useful to filter the database for those
problems that are supported by a particular tool or technique. These include the
tags to distinguish the four different input formats, and they are automatically
computed when problems are submitted. A second category of tags refers to tools
that could solve the problem (i.e., prove or disprove confluence) in earlier con-
fluence competitions. An example is acp2017 which is assigned to all problems
selected for CoCo 2017 that were solved by ACP [2].

Finally there is the literature tag that is assigned to problems that appear
in the literature, which includes papers presented at informal workshops like the
International Workshop on Confluence and PhD theses. This tag is important
since CoCo uses problems from the literature, rather than generated problems
that are biased towards one particular tool or technique.

The data of Cops consists of confluence problems and tags. Every tag file
is a list of problem numbers in text format. Most of the tag files are generated
automatically or updated by a collection of scripts that call external tools. The
current collection includes tools to check syntactical properties like left-linearity
or right-groundness, ConCon [11] for tags that are specific to CTRSs, and
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TTT2 [5] for checking termination and non-termination of TRSs. Since some
properties (e.g. termination) are undecidable, tags like non terminating also
exist. In addition, Felgenhauer’s duplication checker for TRSs (modulo symbol
renaming) is included.3 Duplication is not desirable for fair evaluations. The tag
“duplicate” is assigned to such a problem.

Queries. Problems can be filtered by typing queries in the search box. Queries
are specified by Boolean combinations of tags and problem numbers:

φ ::= tag | number | ! φ | φ φ | φ OR φ | {φ}
Conjunction is denoted by juxtaposition and negation by an exclamation mark.
For instance, the query “left linear trs” yields all problems with the two
tags left linear and trs. In order to search for non-left-linear TRSs whose ter-
mination is not known “!{left linear OR terminating} trs” is used. This
functionality is also useful for comparing tools. The query “csi2017 !acp2017”
shows all confluence problems that were solved by CSI but not by ACP in
CoCo 2017. It is worth noting that advisory board members of CoCo exploit
the tag-based queries (besides random seeds) to compile problem sets used for
the live competitions of CoCo. Problems resulting from search queries can be
downloaded as a zip file. Optionally, tag files and BibTEX files are included too.

The search engine of Cops consists of only 235 lines of Ruby code. This is
implemented as a command-line tool and bundled with a problem set when the
aforementioned download option is selected. The tool name is cops and one can
run it in a Unix environment. For example, the command

./cops ’oriented deterministic 3_ctrs’

outputs all problem numbers of oriented deterministic 3-CTRSs in the down-
loaded problem set. The web interface is built on it. The corresponding code is
about 5, 000 lines of PHP, Ruby, and JavaScript code. Syntax highlighting in
the submission page has been implemented on the top of CodeMirror.4 Finally,
BibTeX2HTML5 is used for generating HTML for the references.

3 CoCoWeb: Web Interface for Confluence Tools

CoCoWeb is a web service to access confluence tools in a web browser. Figure 2
shows a screenshot of the entry page of CoCoWeb. Problems can be entered in
three different ways:

1. using the text box,
2. uploading a file,
3. entering the number of a problem in Cops.
3 https://github.com/haskell-rewriting/canonical-trs.
4 https://codemirror.net/.
5 https://www.lri.fr/∼filliatr/bibtex2html/.

https://github.com/haskell-rewriting/canonical-trs
https://codemirror.net/
https://www.lri.fr/~filliatr/bibtex2html/
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Fig. 2. The entry page of CoCoWeb.

The problem can be submitted to Cops via the submit button. The tools that
should be executed can be selected from the tools panel on the left. Tools are
grouped into categories, similar to the grouping in CoCo. Multiple tools can be
selected. This is illustrated in Fig. 3. Here we selected CR as property, the CoCo
2016 and 2015 versions of ACPH [9] and the CoCo 2015 version of CSÎ ho [6],
and Cop 500 is chosen is input problem.

The final screenshot (in Fig. 4) shows the output of CoCoWeb after clicking
the check button. The output of the selected tools is presented in separate tabs.
The colors of these tabs reveal useful information: Green means that the tool
answered yes, red (not shown) means that the tool answered no, and a maybe
answer or a timeout is shown in blue. By clicking on a tab, the color is made
lighter and the output of the tool is presented. The final line of the output is
timing information provided by CoCoWeb.

The tools in CoCoWeb run on hardware compatible with a single node of
StarExec [12] that is used for CoCo, allowing for a proper comparison of tools.
By specializing the service to confluence, CoCoWeb offers easy access to all tools
that participated in CoCo without requiring users to register first, and immediate
scheduling of executions as well as syntax highlighting.

Most of CoCoWeb is built using PHP. User input in forms, i.e., rewrite sys-
tems and tool selections, is sent using the HTTP POST method. The dynamic
parts of the website, namely folding and unfolding in the tool selection menu
and the tabs used for viewing tool output are implemented using JavaScript.
To layout the tool selection menu we made extensive use of CSS3 selectors. For
instance, the buttons to select tools are implemented as checkboxes with labels
that are styled according to whether the checkbox is ticked or not:

.tools input[type="checkbox"]:checked + label
{ color: white; background-color: #799BB3; }
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Fig. 3. Problem and tool selection in CoCoWeb.

Drawing the edges of the tree menu is also done using CSS, relying mainly on
its ::before selector.

Since its second edition, CoCo has adopted StarExec as competition platform.
Competition participants upload binary executables of their tools together with
necessary files to StarExec. Importing and complementing them with missing
software, we reproduce the competition versions of tools on the CoCoWeb server.
The collection of tools is maintained and associated with the web interface with
help of small scripts. The content of the tool menu, i.e., years, the grouping by
categories, and the actual tools, is generated automatically from a directory tree
that has the structure of the menu in CoCoWeb. The directories contain small
configuration files that specify how the tools are to be run, in case they are
selected. Two environment variables are set in such a file, for example the one
for the 2012 version of Saigawa [3] reads as follows:

TOOLDIR="Saigawa-2012/bin"
TOOL="./starexec_run_saigawa -t $TO $FILE"

The variable TOOLDIR specifies the directory that contains the tool binary, while
TOOL gives the tool invocation, which in turn refers to TO, the timeout, and FILE,
the input rewrite system. Using such configuration files tools are run using the
following script, whose first, second, and third argument are the configuration
of the tool, input rewrite system, and timeout respectively:

DIR=$(pwd -P)
FILE=$(readlink -f $2)
TO=$3; TOT=$((TO + 2)); TOK=$((TOT + 2))
source $1
pushd $DIR/bin/$TOOLDIR > /dev/null
/usr/bin/time -f "\\nTook %es" timeout -k $TOK $TOT $TOOL
popd > /dev/null
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Fig. 4. Testing Example 14 from [4] in CoCoWeb. (Color figure online)

The script uses three different timeouts: TO is the timeout passed to the tool
itself if supported, while after TOT and TOK the signals SIGTERM and SIGKILL are
sent to the tool, using GNU coreutils timeout, in case it did not terminate on
its own.6 When multiple tools are selected, CoCoWeb runs them sequentially, in
order to avoid interference.

4 Conclusion

In this paper we introduced Cops and CoCoWeb, two convenient systems that
provide support for researchers that are interested in (developing tools for) con-
fluence and related properties of rewrite systems. We believe the developed
infrastructure could be useful for other competitions besides CoCo.

Both systems can be extended in several ways, which we plan to address
in future work. For Cops, we are mainly concerned with two issues. One is
about the reorganization of tags. Every year CoCo extends its scope to capture
emerging trends, causing some tags to be redefined or renamed. Another is about
reproducibility of search queries, which is crucial as Cops has been used as a
standard benchmark for confluence techniques. To address these issues, we are
seeking for a way to support versioning the database.

For CoCoWeb, preselection of tools based on the input problem would be a
nice feature. This is not as trivial as it sounds, since different properties share
the same problem format. We plan to investigate the selection method for ATP
systems [13]. Supporting pretty-printing for XML output is another future task.

6 To account for timing imprecisions and tools performing internal cleanup, 2 extra
seconds are granted to the tool before sending SIGTERM and another 2 before SIGKILL

is sent, which turned out to work well in practice.
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While several tools support output of (non-)confluence proofs in the Certification
Problem Format [10], the current web interface just displays the raw XML code.

Acknowledgments. We thank Harald Zankl, Christian Nemeth, and Takahito Aoto
for their involvement in CoCo and the first release of Cops. Suggestions by the former
helped to improve the paper.
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Abstract. In this paper, we describe a method for solving some open
problems in design theory based on SAT solvers. Modern SAT solvers
are efficient and can produce unsatisfiability proofs. However, the state-
of-the-art SAT solvers cannot solve the so-called large set problem of
idempotent quasigroups. Two idempotent quasigroups over the same set
of elements are said to be disjoint if at any position other than the main
diagonal, the two elements from the two idempotent quasigroups at the
same position are different. A collection of n−2 idempotent quasigroups
of order n is called a large set if all idempotent quasigroups are mutually
disjoint, denoted by LIQ(n). The existence of LIQ(n) satisfying certain
identities has been a challenge for modern SAT solvers even if n = 9.
We will use a finite-model generator to help the SAT solver avoiding
symmetric search spaces, and take advantages of both first order logic
and the SAT techniques. Furthermore, we use an incremental search
strategy to find a maximum number of disjoint idempotent quasigroups,
thus deciding the non-existence of large sets. The experimental results
show that our method is highly efficient. The use of symmetry breaking
is crucial to allow us to solve some instances in reasonable time.

1 Introduction

In recent decades, automated reasoning tools have been applied to some com-
binatorial problems which are difficult for conventional mathematical methods.
For example, Heule et al. solved the boolean pythagorean triples problem via a
parallelized SAT solver with 800 cores in about 2 days [10]. Generally, these com-
binatorial problems are hard to solve. The quasigroup problem is among these
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problems and it has attracted much focus by researchers in the field of com-
binatorics and automated reasoning. The improvement of automated reasoning
techniques made computer search play an important role in the study of quasi-
groups [24]. For example, many open problems of the type from QG2 to QG9
have been solved by some finite-model generators such as MGTP, FINDER,
SEM, MACE4 and propositional satisfiability provers SATO, DDPP, respec-
tively [6,19,23,25,27].

The large set problem, which seeks to find a set of combinatorial objects
rather than one, is a classic and challenging research topic in combinatorial
design theory. Sylvester first proposed the existence of large sets of Kirkman
triple systems in the 1850s [3]. In the late last century, the large set of idempotent
quasigroups were proposed. Due to its difficulty in construction, the research
progress is quite slow in the mathematics field. So, any progress of the large set
is something expected [2,13,22].

Investigating the existence of large sets of moderate order via computer can
provide support for mathematicians to further explore general issues. Sometimes
they can use mathematical construction to produce large objects from smaller
ones recursively. Besides, many hard combinatorial problems related to quasi-
groups also have potential value in the field of cryptography [7,12].

A collection of n − 2 idempotent quasigroups (IQs) of order n is called a
large set if any two of them are disjoint, denoted by LIQ(n). Ma et al. applied
SEM [27] to some open cases about large sets of idempotent quasigroups with
certain identities summarized by Zhu [28,29], and solved LIQ(n) (n ≤ 8) [14].

In this paper, we attempt to further study the open cases of LIQ(n) for
n ≥ 9. Unlike LIQ(n) (n ≤ 8), it is difficult to solve these cases via encoding
them directly as SAT, SMT, CSP or first order logic formulae, even though
n = 9 is just one more than n = 8. We tested direct encoding ways and used
SAT solvers like MiniSat, Glucose, Treengeling (1st in SAT 2016 competition in
parallel track), SMT solver like Z3 [5], CSP solver like Minizinc [17] and finite-
model generators like SEM, SEMD, MACE4 [15] and they all failed to produce
a result in a week for many instances. However, LIQ(n) (n ≤ 8) can be solved
in seconds. These challenging problems, LIQ(n) (n ≥ 9), promote us to seek for
more powerful search strategies.

There have been much progress in SAT solving during the past 20 years;
and the state-of-the-art SAT solvers can make very efficient low-level inferences.
They have become the core search engine in many tools used for combinational
[8,16] and sequential equivalence checking [1,11]. Apart from high efficiency, the
state-of-the-art SAT solvers can make a claim that the formula is unsatisfiable
with a formal proof. One can verify the proof emitted by a SAT solver and ensure
the result is correct [9,21]. Yet when other kinds of solvers claim that a formula
is unsatisfiable, one has to trust that the solver fully exhausted the search space
for the problem. However, SAT solvers are weak in dynamic symmetry breaking,
hence may revisit a lot of redundant search space. Usually, when a problem is
encoded as Boolean formulae, its structural characteristics may be hidden.
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On the other hand, when a problem is encoded as first order logic formu-
lae, the structural information and some properties are well preserved. The
finite-model generator can make use of this information to break symmetries.
Finite-model generators such as SEM, SEMD and MACE4 are good at dynamic
symmetry breaking and enumerating all solutions. A benefit of using SEM-style
finite-model generators is that the search process can exploit high-level struc-
tural information in the formulas (e.g., symmetries) to reduce the search space.
The core dynamic symmetry breaking method is a heuristic called least number
heuristic (LNH) [27]. The basic idea is that many element names, which have
not yet been used in the search, are essentially the same. Furthermore, MACE4
can eliminate isomorphic solutions statically.

A question naturally arises: would it be helpful to combine these two paradig-
ms? In 2001, Zhang proposed to combine automatic symmetry breaking with
SAT [26]. The experimental results in [26] showed the advantage of this method.
We employ a similar search strategy in solving the LIQ problem: Use the first
order model generator to generate some asymmetric partial potential solutions;
with the help of these partial solutions as candidates, a SAT solver can avoid
a lot of symmetric search spaces. This simple combination can take advantages
of their respective strengths. In addition to that, we also statically add some
symmetry breaking constraints. Adding constraints to the basic model has been
most used historically by constraint programmers [18]. The experimental results
show that this combination can greatly improve the solving efficiency. We found
some instances, which cannot be solved with a single solver in a week before,
can be solved in minutes now. Due to these strategies, a number of open cases
of LIQ(n) have been solved. We not only establish the non-existence of these
cases, but also find the maximum number of disjoint IQ(n)s, and some other
interesting mathematical results.

This paper is organized as follows: in Sect. 2, we introduce some preliminaries
about LIQ; In Sects. 3 and 4, we present the encoding method and how to break
symmetry and speed up the search process; In Sects. 5 and 6, we present the
results about LIQ and the experiments. Furthermore, we evaluate and discuss
the experimental results; In the final section, conclusions are drawn.

2 Preliminaries

2.1 Definitions

Let us recall some notations.
A quasigroup is denoted as an ordered pair (Q,⊕), where Q is a set and ⊕

is a binary operation on Q. For all constants a, b ∈ Q and variables x, y ∈ Q
equations a ⊕ x = b and y ⊕ a = b are uniquely solvable. |Q| is said be the order
of (Q,⊕).

It is well-known that the multiplication table of quasigroup (Q,⊕) is a
Latin square. Thus, Latin square and quasigroup are often treated as syn-
onyms. Figure 1 shows the multiplication table of a quasigroup (Q,⊕) where
Q = {0, 1, 2, 3}.
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Fig. 1. A quasigroup of order 4

For all x ∈ Q, if x ⊕ x = x (briefly x2 = x), the quasigroup (Q,⊕) is
idempotent. We denote an idempotent quasigroup of order n as IQ(n).

Two quasigroups (Q,⊕) and (Q, ·) are said to be disjoint if for all x, y ∈ Q,
x ⊕ y �= x · y whenever x �= y.

Definition 1 (Large Set). A collection of idempotent quasigroups (Q,⊕1),
(Q,⊕2), . . ., (Q,⊕n−2), where n = |Q|, is called a large set, if any two of the
idempotent quasigroups are disjoint.

A large set of idempotent quasigroups of order n is denoted by LIQ(n). Figure 2
shows a large set of idempotent quasigroups of order 4, i.e., LIQ(4), which
consists of two disjoint IQ(4)s.

Fig. 2. Two disjoint IQ(4)s in LIQ(4)

Besides the existence of LIQ(n), the maximum number of disjoint IQ(n)s
for non-existent instances is also concerned.

Definition 2 (Orthogonal). Two quasigroups (Q,⊕) and (Q, ·) are said to be
orthogonal, if for all x1, x2, y1, y2 ∈ Q, the ordered pair (x1⊕x2, y1 ·y2) is unique.

L1 and L2 in Fig. 2 are also orthogonal. Ordered pairs are shown in Fig. 3
and every ordered pair appears only once.

A LIQ is said to have orthogonality, if any two quasigroups in the LIQ
are orthogonal. In general, for idempotent quasigroups, orthogonality implies
disjointness, but the reverse does not hold.
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Fig. 3. The ordered pair of L1 and L2

2.2 The Problems

Teirlinck and Lindner [20], and Chang [4] have already established the existence
of LIQ(n). In [4], Chang concluded that there exists an LIQ(n) for any n ≥ 3
with the exception n = 6. The spectrums of some large sets in which the IQs
satisfy certain identities have not been explored extensively up to now. The
existence of idempotent quasigroups satisfying the seven “short identities” has
been studied systematically. These identities are:

1. xy ⊕ yx = x Schröder quasigroup
2. yx ⊕ xy = x Stein’s third law
3. (xy ⊕ y)y = x C3-quasigroup
4. x ⊕ xy = yx Stein’s first law; Stein quasigroup
5. (yx ⊕ y)y = x
6. yx ⊕ y = x ⊕ yx Stein’s second law
7. xy ⊕ y = x ⊕ xy Schröder’s first law

In the above equations, xy is an abbreviation of (x ⊕ y). That means xy has
higher precedence than x ⊕ y. Let LIQ(i)(n) denote the large set of idempotent
quasigroups of order n satisfying identity (i). The existence of LIQ(i)(n) is still
an open problem. In [28], Zhu listed several open cases. Since the search spaces
of the problem grow exponentially with order n, we pick out some open cases of
moderate orders which may be suitable for computer search. In Table 1, we list
these open cases where n ≤ 13.

Table 1. Open cases for LIQ of moderate sizes

1. LIQ(1)(12) LIQ(1)(13) 2. LIQ(2)(9) LIQ(2)(12)

3. LIQ(3)(10) LIQ(3)(13) 4. LIQ(4)(9) LIQ(4)(11)

5. LIQ(5)(11) 6. LIQ(6)(9) LIQ(6)(13)

7. LIQ(7)(9) LIQ(7)(13)

In [14], Ma et al. studied LIQ(i)(n)s with n no more than 8 in Table 1. They
modeled LIQ(i)(n) via first order formulae and used the finite-model generator
SEM. However, using the direct method is impracticable for LIQ(i)(n)s where
n is more than 8. So LIQ(i)(n)s, where n ≥ 9, are still open cases.
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The search space grows exponentially with the size of the problem. In prac-
tice, we encoded LIQ(i)(n)s, where n ≥ 9, as a SAT instance, using uninterpreted
functions and first order formulae in a naive way. However, we could not get any
result via SAT solvers like MiniSat, glucose, Treengeling, the SMT solver like
Z3, the CSP solver like Minizinc and finite-model generators like SEM, MACE4
in a week for some instances with n = 9. However, for LIQ(n)s (n ≤ 8), results
could be obtained in a few seconds to minutes.

3 Encoding

In the introduction we have expounded the reason why we choose SAT as
core engine. First, a notation ExactOne(x1, x2, ..., xn) will be introduced.
x1, x2, ..., xn are Boolean variables and ExactOne(x1, x2, ..., xn) is a formula
composed of x1, x2, ..., xn. ExactOne(x1, x2, ..., xn) expresses the fact that
exactly one of these Boolean variables is true for any satisfying assignment to
this formula.

ExactOne(x1, x2, ..., xn) = (x1 ∨ x2∨, ...,∨xn) ∧
(x1 ∨ x2) ∧ (x1 ∨ x3), ...,∧(xn−1 ∨ xn)
︸ ︷︷ ︸

(n2)

Without loss of generality, we assume the domain Q to be the set {0, 1, . . . , n−
1}. ⊕f is actually a function Lf : Q × Q 	→ Q satisfying the constraints of
idempotent quasigroup and identity (i). LIQ(n) = {L1, L2, . . . , Ln−2}, where
n = |Q|, denotes a large set. Lf (x, y) denotes x ⊕f y in quasigroup Lf . In
Sect. 2, we mentioned that a quasigroup can be seen as a multiplication table
(or a matrix called Latin square). Then we can use Boolean variable Pf,x,y,v

to denote that the position(x, y) of fth IQ in the large set is v.
According to the definition of quasigroup, it is easy to know that each

element in Q occurs exactly once in each row and exactly once in each column
in the matrix. So for each row x of fth IQ, we add formula:

∧

0≤v≤n−1

ExactOne(Pf,x,0,v, Pf,x,1,v, ..., Pf,x,n−1,v)

For each column y of fth IQ, we add formula:
∧

0≤v≤n−1

ExactOne(Pf,0,y,v, Pf,1,y,v, ..., Pf,n−1,y,v)

For each cell (x, y) of fth IQ, we add formula:

Pf,x,y,1 ∨ Pf,x,y,2∨, ...,∨Pf,x,y,n−1

For fth IQ in the large set, The idempotent property (x2 = x) can be
encoded as:

∧

0≤x≤n−1

Pf,x,x,x
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The disjoint property depicts that for any two latin squares Lj and Lk (1 ≤
j, k ≤ n−2), Lj(x, y) �= Lk(x, y) except for x = y. So the encoding for m disjoint
latin squares is:

∧

1≤j<k≤m

∧

x�=y

∧

0≤v≤n−1

Pj,x,y,v ∨ Pk,x,y,v

The encoding for the seven identities:

(1) For (xy ⊕ yx = x) :
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1 ∨ Pf,y,x,v2 ∨ Pf,v1,v2,x

(2) For (yx ⊕ xy = x) :
∧

0≤x,y,v1,v2≤n−1

Pf,y,x,v1 ∨ Pf,x,y,v2 ∨ Pf,v1,v2,x

(3) For (xy ⊕ y)y = x :
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1 ∨ Pf,v1,y,v2 ∨ Pf,v2,y,x

(4) For (x ⊕ xy = yx) :
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1 ∨ Pf,y,x,v2 ∨ Pf,x,v1,v2

(5) For (yx ⊕ y)y = x :
∧

0≤x,y,v1,v2≤n−1

Pf,y,x,v1 ∨ Pf,v1,y,v2 ∨ Pf,v2,y,x

(6) For yx ⊕ y = x ⊕ yx :
∧

0≤x,y,v1,v2≤n−1

Pf,y,x,v1 ∨ Pf,v1,y,v2 ∨ Pf,x,v1,v2

(7) For xy ⊕ y = x ⊕ xy :
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1 ∨ Pf,v1,y,v2 ∨ Pf,x,v1,v2

Actually, there is a lot of redundancy in the encoding. For example, Pf,x,x,x

must be assigned true and Pf,x,x,v(v �= x) must be assigned false. So there are
many redundant clauses like Pf,1,1,2 ∨ Pf,1,1,3 ∨ Pf,2,3,1. These clauses can be
eliminated in the encoding phase. Besides redundant clauses, many clauses can
be simplified. For instance, known Pf,0,1,2(we will explain it in the next section ),
Pf,0,1,2∨Pf,1,0,v2 ∨Pf,2,v2,0 can be simplified as Pf,1,0,v2 ∨Pf,2,v2,0. Although the
state-of-the-art SAT solvers can simplify these during the preprocessing phase,
it is better to remove them in the encoding phase.

4 Search Strategies

Arguably, many hard combinatorial problems allow isomorphic solutions, and we
say these problems have symmetries. The search may revisit equivalent states
over and over again. Exploiting symmetry can reduce the search time to solve
the problem. It is common to identify three main approaches to break symmetry.
The first method is to reformulate the problem so it has a reduced number of
symmetries. The second is to add symmetry breaking constraints before search
starts, thereby making some symmetric solutions unacceptable while leaving at
least one solution in each symmetric equivalence class. The final approach is
to break symmetry dynamically during search, adapting the search procedure
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appropriately. Although symmetry breaking technique and automatic identifi-
cation of the symmetry have been concerned by researchers in the past, state-
of-the-art SAT solvers do not have the ability to identify and break symmetry
automatically. So, it is vital for us to handle the symmetries of the problem at
hand.

4.1 Symmetry Breaking via Adding Constraints

First, we examine the structure of the problem to identify symmetries.

Lemma 1. If there is a large set LIQ(n) = {L1, L2, . . . , Ln−2}, then there exists
a large set such that Lj(0, 1) = j + 1.

Proof. According to x2 = x, we know that Lj(0, 0) = 0 and Lj(1, 1) = 1. Since
a ⊕j x = b and y ⊕j a = b are uniquely solvable, Li(0, 1) can not be 0 or 1. All
candidates for it include 2, 3, ..., n − 1(n − 2 elements). Due to the property of
disjoint, for any 1 ≤ j1, j2 ≤ n − 2, Lj1(0, 1) �= Lj2(0, 1) but the cardinality of
collection of Lj(0, 1) is n − 2. So they must be exactly {2, 3, ...n − 1}. ��

Obviously, if {L1, L2, . . . , Ln−2} is a large set then any permutation of L1,
L2, . . ., Ln−2 is also a large set. The permutation may not affect search time
when a large set exists. However, when the large set does not exist, the solver
will nearly enumerate all permutations and conclude that it is unsatisfiable. In
other words, ∀f1, f2 ∈ {1, 2, ...n − 2} there is no essential difference between
Boolean variable Pf1,x,y,v and Pf2,x,y,v.

We can take advantage of Lemma 1 to fix the order of {L1, L2, . . . , Ln−2}.
Since Lj(0, 1) must be exactly {2, 3, ...n − 1}, we specify its order by assigning

L1(0, 1) = 2 < L2(0, 1) = 3 < ... < Ln−2(0, 1) = n − 1

So, by Lemma 1, we can add the following unit clauses:
∧

1≤f≤n−2

Pf,0,1,f+1

then Boolean variable Pf1,x,y,v and Pf2,x,y,v are different in a way and (n−3)!−1
isomorphic cases eliminated.

Now that the sequence of IQ(n)s is fixed, we use DIQ
(i)
(n)(l) to denote the

first l disjoint IQ(s)s satisfying identity (i).

DIQ
(i)
(n)(l) = {L1, L2, ..., Ll | Lj(0, 1) = j + 1}(1 ≤ l ≤ n − 2)

Proposition 1. If DIQ
(i)
(n)(l) does not exist and DIQ

(i)
(n)(l − 1) exists, then the

maximum number of disjoint IQ(i)(n)s is l − 1.
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Proof. Suppose there exist m (m ≥ l) disjoint IQs when DIQ
(i)
(n)(l) does not

exist and DIQ
(i)
(n)(l − 1) exists. Then we know that l disjoint IQs also exist.

We assume they are {Lj1 , Lj2 , ..., Ljl} where j1 < j2 <, ..., < jl. According to
Lemma 1 we know Lj1(0, 1) = j1 + 1, Lj2(0, 1) = j2 + 1,...,Ljl(0, 1) = jl + 1. We
can define a permutation in Cauchy form:

σ :
(

0 1 2 3 . . . l l + 1 . . . n − 1
0 1 j1 + 1 j2 + 1 . . . jl + 1 ∗ . . . ∗

)

The ‘*’ can be any legitimate number. We can perform σ−1 on {Lj1 , Lj2 , ..., Ljl}.
It is easy to know that all constraints still hold under permutation σ−1 and
{Lj1 , Lj2 , ..., Ljl}σ−1

= {L1, L2, ..., Ll} = DIQ
(i)
(n)(l). Thus DIQ

(i)
(n)(l) must exist

however it contradicts with the known conditions. So the assumptions can not
be true. ��

Proposition 1 reveals that any l disjoint IQ(i)(n)s must be isomorphic to some
DIQ

(i)
(n)(l). When l = n − 2, DIQ

(i)
(n)(l) is exactly LIQ(i)(n). So we can search

for DIQ
(i)
(n)(l)s successively, increasing l step by step. Once for some l DIQ

(i)
(n)(l)

is unsatisfiable we can conclude that LIQ(i)(n) doesn’t exist and the maximum
number of disjoint IQs is l − 1. The reason why DIQ

(i)
(n)(l)s are searched by

increasing l instead of decreasing l is that it usually takes much more time to
solve an unsatisfiable case than a satisfiable one.

The framework of incremental search for LIQ(i)(n) is shown in Algorithm 1.
At each step, DIQ(i)(n)(l) is encoded as a set of Boolean formulas, denoted by
Encode(DIQ

(i)
(n)(l)), and solved by a SAT solver.

Algorithm 1. Incremental search for LIQ(i)(n)
Input: n is order, i is identity (i)
Output: The existence of LIQ and the maximum number of disjoint IQs

1 for l ← 2 to n − 2 do

2 result ← Solve Encode(DIQ
(i)

(n)(l)) ;

3 if result is UNSAT then
4 return NONEXISTENT AND max = l − 1;
5 end

6 end
7 return EXISTENT

4.2 Combine Solvers to Break Symmetry

Due to adding constraints, some apparent symmetries have been eliminated but
there still remains a lot. Although the state-of-the-art SAT solvers are very
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efficient for constraint propagation and conflict analysis, they are not good at
breaking symmetry dynamically during search. Thus, we can use other solvers,
which can break symmetry dynamically during search, to enumerate a small
subspace and then add these candidate partial solutions to the clauses set to
help a SAT solver to eliminate a lot of symmetric states.

It is easy to know that if there is a large set {L′
1, L

′
2, ..., L

′
n−2} then there

exists an isomorphic DIQ
(i)
(n)(n − 2) = {L1, L2, ..., Ln−2} where L1(0, 1) =

L′
1(0, 1) = 2. In Sect. 4.1, the search process can be seen as expanding L1 to

Ln−2 step by step. So, if we find all non-isomorphic L1s as a candidate set
and test whether they can be expanded to a large set, then a lot of isomorphic
search spaces can be avoided. In this case, all non-isomorphic L1s can be seen
as candidate partial solutions. So, we use the first order logic solver to generate
all non-isomorphic L1s. C(i)(n) is used to denote the candidate set formed by
all non-isomorphic L1s which satisfy identity (i) of order n. We use ΣC(i)(n) to
denote the first order logic formula encoding.

ΣC(i)(n) = {∀x∀y∀z(y = z
∨

P (x, y) �= P (x, z)),

∀x∀y∀z(x = z
∨

P (x, y) �= P (z, y)),

∀xP (x, x) = x,

Identity(i)
P (0, 1) = 2,

∀x∀y(x = y
∨

P (x, y) �= P (x, y))}

The (un)satisfiability of the problem is preserved. We summarize this process
as Algorithm 2.

We only implemented the sequential version of Algorithm2; it is easy to
implement a parallel version. This also can be seen as an example of the divide
and conquer method with symmetry breaking.

The search framework of Algorithm 2 can help us get the result about a
LIQ(n) quickly but it may fail in getting the maximum number of disjoint IQs.
A small modification can make it capable of getting the maximum number of
disjoint IQs. One just needs to delete the symmetry breaking constraints which
are introduced in Sect. 4.1. However, this will be slower than the original version.
In addition, C(i)(n) can also be extended to denote more non-isomorphic disjoint
IQs. We use Hybrid search to denote the original version, Hybrid search1 to
denote the version without symmetry breaking constraints and Hybrid search2
to denote the version extending the concept of C(i)(n).

5 New Results

Table 2 lists the results about investigating the existence of large sets of idempo-
tent quasigroups. The column of ‘Maximum’ presents the maximum number of
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Algorithm 2. Hybrid search for LIQ(i)(n)
Input: n is order, i is identity (i)
Output: The existence of LIQ and the maximum number of disjoint IQs

1 max ← 1;

2 Generate C(i)(n) by ΣC(i)(n) with a finite model generator which can break

symmetry.;

3 for all L1 ∈ C(i)(n) do
4 for l ← 2 to n − 2 do

5 result ← Solve {Encode(DIQ
(i)

(n)(l)) + Encode(L1)} with SAT solver ;

6 if result is UNSAT then Break ;
7 else if l > max then max ← l ;

8 end
9 if max == n − 2 then return EXISTENT ;

10 end
11 if max < n − 3 then max = unknown ;
12 return NONEXISTENT AND max

disjoint IQ(n)s for a non-existent instance. And the fifth column marks whether
the second strategy, hybrid search, was used. The maximum number of dis-
joint IQ(n)s for LIQ(2)(9), LIQ(4)(11) and LIQ(5)(11) are obtained by Hybrid
search1 which is a modified version of Algorithm2 without symmetry breaking
constraints.

Table 2. The result about LIQ

Order n Identity i Existence of LIQ Maximum Hybrid

9 2 NO 6 �
4 NO 6 -

6 NO 6 -

7 NO 6 -

11 4 NO 4 �
5 NO 2 �

The current generation of SAT solvers support emission of unsatisfiability
proofs. And standards for such proofs exist, as well as checkers. When the hybrid
method was applied we should check the proof file and C(i)(n), although C(i)(n)
may be hard to be verified by a formal method. C(i)(n) is a small fraction of the
whole problem which can be double checked by different solvers. If one wants to
verify the result, one just need to check DIQ

(i)
(n)(max + 1), where max denotes

the maximum number of disjoint IQs.
In addition to investigating the existence of large sets, we also check the

orthogonality of some LIQs. The definition of the orthogonality (Definition 2) of
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LIQs has been introduced in Sect. 2.1. While LIQ cannot imply orthogonality,
all small order LIQs we found so far do have the orthogonality. This is also true
for all LIQ(i)(n), where n ≤ 8, found by Ma et al. Only LIQ(1)(8), LIQ(3)(4),
LIQ(4)(4), LIQ(7)(8) exist according to [14]. LIQ(3)(4) and LIQ(4)(4) can be
constructed simply by hand, and they have been checked by mathematicians.
Our work is to check LIQ(1)(8) and LIQ(7)(8). We enumerate all large sets
of LIQ(1)(8) and LIQ(7)(8). The number of LIQ(1)(8)s and LIQ(7)(8)s are 240
(some isomorphic solutions are eliminated). We examined all the LIQ(1)(8)s and
LIQ(7)(8)s and concluded that all large sets of LIQ(1)(8)s and LIQ(7)(8)s have
orthogonality.

6 Experimental Evaluation

In this section, we will use some experimental data to show the efficiency of our
method. The experiment is performed on a Dell laptop with Intel(R) Core(TM)
i7-6500U CPU(2.50 GHz), operating system Ubuntu 16.04 and 16 GB memory.

The first strategy of adding symmetry breaking constraints will not be dis-
cussed in this section, because it is a universal method to save search time. The
search framework also can help us avoid some isomorphic search spaces when
getting the maximum number of disjoint IQs for nonexistent instance according
to Proposition 1. It may prove that the large set does not exist when l is small.
Due to the first search strategy, we can use the SAT solver Glucose 4.1 to prove
that LIQ(4)(9), LIQ(6)(9) and LIQ(7)(9) do not exist.

However, LIQ(2)(9), LIQ(3)(10), LIQ(4)(11) and LIQ(5)(11) are still hard for
the first search strategy. We used Treengeling and parallel version of Glucose 4.1
to solve these hard instances on a computer server with 100 cores (Intel Xeon
CPU E7-8870 @ 2.40GHz 32M Cache). However, these instances exhausted a
week without any results. Owing to the hybrid method we prove that they do
not exist within several minutes except for LIQ(3)(10).

In order to evaluate the efficiency of the hybrid method, we compared the
running times of using the hybrid method against just using a single SAT solver
or a finite-model generator. The results are shown in Table 3. The first three
columns show the search time of only using Algorithm 1 and the fourth column
shows search time of using the hybrid method. SEM and MACE4 did almost
the same in our experiment. We used Glucose 4.1 and MACE4 in Hybrid search.
All the implementations are in github1.

From Table 3, we know that combining SAT and first order logic can signif-
icantly improve the efficiency of search for LIQ. In particular, for some hard
instances that finite-model generators and SAT solvers cannot solve in a week,
the hybrid method can solve it in minutes.

Table 4 shows the results of different versions of the hybrid method which
have been introduced in Sect. 4.2. Hybrid search is the original version and Hybrid
search1 is the version that can find the maximum number of disjoint IQ(n)s.

1 https://github.com/huangdiudiu/LIQ-search.

https://github.com/huangdiudiu/LIQ-search
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Table 3. The running times of different methods in solving LIQ(i)(n)

Instance Glucose 4.1 Glucose(Parallel) MACE 4 Hybrid search

Time Result Time Result Time Result Time Result

LIQ(2)(9) >1 week - >1 week - >1 week - 51.88 s UNSAT

LIQ(4)(9) 14.372 s UNSAT 10.60 s UNSAT >24 h - 0.25 s UNSAT

LIQ(6)(9) 889.23 s UNSAT 616.735 s UNSAT >24 h - 0.94 s UNSAT

LIQ(7)(9) 1020.74 s UNSAT 560.07 s UNSAT >24 h - 0.32 s UNSAT

LIQ(4)(11) >1 week - >1 week - >1 week - 8.19 s UNSAT

LIQ(5)(11) >1 week - >1 week - >1 week - 12.88 s UNSAT

Hybrid search2 extends the concept of C(i)(n), which is trying to find all non-
isomorphic {L1, L2} by the finite-model generator.

Table 4. Comparison of different versions of the hybrid method

Instance Hybrid search Hybrid search1 Hybrid search2

MACE SAT Total(s) MACE SAT Total(s) MACE SAT Total(s)

LIQ(2)(9) 4.79 12.18 16.97 4.79 282.52 241.46 921.33 21.00 942.33

LIQ(4)(9) 0.01 0.28 0.29 0.01 1.06 0.39 1.45 1.19 2.03

LIQ(6)(9) 0.08 0.55 0.63 0.08 20.78 20.86 >3000 - >3000

LIQ(7)(9) 0.03 0.50 0.53 0.03 2.15 2.18 32.84 1.97 34.81

LIQ(4)(11) 0.01 10.83 10.84 0.01 211.17 211.27 731.11 13.62 744.73

LIQ(5)(11) 1.01 23.06 24.07 1.01 95.84 96.85 >3000 - >3000

It is easy to know that fixing the sequence of IQs can improve the search pro-
cess from the comparison between Hybrid search and Hybrid search1. However,
it will sacrifice the ability of getting the maximum number of disjoint IQ(n)s.
From the comparison of Hybrid search and Hybrid search2, we know that finding
all non-isomorphic L1s as candidate set C(i)(n) is more efficient than finding two
disjoint IQs as candidate set.

The hybrid method divides the problem into two parts. One part, C(i)(n),
is solved by a finite-model generator (first order logic) and the other part is
solved by a SAT solver. So the hybrid ratio of first order logic formulae and SAT
encoding will affect the performance. Actually, we observe that finding all non-
isomorphic L1s as candidate set C(i)(n) is the most efficient in our experiment.
We take LIQ(7)(9) and LIQ(4)(11) as examples to show that how the hybrid ratio
affects the performance. If m denotes the number of IQ(n)s that are encoded
as first order logic formulae, then we use m/(n − 2) to denote the hybrid ratio
of first order logic formulae. Figure 4 shows the relationship between the hybrid
ratio m/(n− 2) and search time. We find that m/(n− 2) = 1/(n− 2) is the best
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hybrid ratio for almost all instances. When m/(n− 2) = 0, that means all of the
problems are solved by a SAT solver. When m/(n − 2) = 1, that means all of
the problems are solved by a finite-model generator.

Fig. 4. The relationship between the hybrid ratio m/(n−2) and run time. The abscissa
axis displays the value of m/(n − 2).

7 Conclusion

This paper describes an application of automated reasoning techniques and tools
to an interesting problem in combinatorics: the large set of idempotent quasi-
groups (LIQs) satisfying the short identities. The LIQs of moderate orders
which are difficult for mathematical methods can also be quite challenging for
computer search. We present some effective search strategies for this problem,
and the core idea is symmetry breaking. We find that combining the power of
SAT solving and finite model generation is far more efficient than using a single
solver. As a result, a number of open cases have been solved. Besides, we find
that all LIQ(1)(8)s and LIQ(7)(8)s have orthogonality.
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Abstract. The absence of a finite axiomatization of the first-order the-
ory of datatypes and codatatypes represents a challenge for automatic
theorem provers. We propose two approaches to reason by saturation in
this theory: one is a conservative theory extension with a finite num-
ber of axioms; the other is an extension of the superposition calculus,
in conjunction with axioms. Both techniques are refutationally com-
plete with respect to nonstandard models of datatypes and nonbranch-
ing codatatypes. They take into account the acyclicity of datatype val-
ues and the existence and uniqueness of cyclic codatatype values. We
implemented them in the first-order prover Vampire and compare them
experimentally.

1 Introduction

The ability to reason about inductive and coinductive datatypes has many appli-
cations in program verification, formalization of the metatheory of program-
ming languages, and even formalization of mathematics. Inductive datatypes,
or simply datatypes, consist of finite values freely generated from constructors.
Coinductive datatypes, or codatatypes, additionally support infinite values. Non-
freely generated (co)datatypes are also useful. All of these variants can be seen
as members of a single unifying framework (Sect. 2).

It is well known that the first-order theory of datatypes cannot be finitely
axiomatized. Distinctness, injectivity, and exhaustiveness of constructors are
easy to axiomatize, but acyclicity is more subtle, and for induction we would
need an axiom schema or a second-order axiom. Codatatypes are also problem-
atic: Besides a coinduction principle that is dual to induction, they are charac-
terized by the existence of all possible infinite values, corresponding intuitively
to infinite ground terms. Both datatypes and codatatypes represent a challenge
for automatic theorem provers.

Superposition [2] is a highly successful calculus for reasoning about first-
order clauses and equality. There has been some work on extending superposi-
tion with induction [10,24], including by Kersani and Peltier [11], and on the
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 370–387, 2018.
https://doi.org/10.1007/978-3-319-94205-6_25
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axiomatization of datatypes, including by Kovács, Robillard, and Voronkov [12].
In this paper, we propose both axiomatizations and extensions of the superpo-
sition calculus to support freely and non-freely generated datatypes as well as
codatatypes.

We first focus on a conservative extension of the theory with a finite number
of first-order axioms that capture the basic properties of constructors, acyclicity
of datatype values, uniqueness of cyclic (ω-regular) codatatype values, and exis-
tence of all codatatype cyclic values (Sect. 3). These axioms admit nonstandard
models; for example, for the Peano-style natural numbers freely generated by
zero : nat and suc : nat → nat , we cannot exclude the familiar nonstandard
models of arithmetic, in which arbitrarily many copies of Z may appear besides
N. Similarly, the domains interpreting codatatypes are not guaranteed to contain
all infinite acyclic values.

The axiomatization of codatatypes up to a suitable notion of nonstandard
models constitutes the first theoretical contribution of this paper. Our second
theoretical contribution is an extension of superposition with inference rules to
reason about datatypes and codatatypes (Sect. 4). This is inspired by an acyclic-
ity rule that Robillard presented at the Vampire 2017 workshop [22]. The main
distinguishing feature of our rules is that they are (in combination with a few
axioms) refutationally complete and their side conditions have some new order
restrictions, helping prune the search space. On the other hand, our approach
also requires a relaxation of the side conditions of the superposition rule: For
clauses of the form c(s̄) ≈ t ∨ C, where c is a constructor and the first literal
is maximal, inferences onto t must be performed, as in ordered paramodulation
[1]. In addition, we propose calculus extensions to reason about codatatypes.

Both the theory extension and the calculus extension are designed to be
refutationally complete with respect to nonstandard models of datatypes and
nonbranching codatatypes—codatatypes whose constructors have at most one
corecursive argument (Sect. 5). Due to space restrictions, we can only briefly
sketch the proof in this paper. We refer to our technical report [8] for detailed
justifications and further explanations.

The calculus extension can be integrated into the given clause algorithm that
forms the core of a prover’s saturation loop (Sect. 6). The inference partners for
the acyclicity and uniqueness rules can be located efficiently. We implemented
both the axiomatic and the calculus approaches in the first-order prover Vampire
[13] and compare them empirically on Isabelle/HOL [17] benchmarks and on
crafted benchmarks (Sect. 7).

2 Syntax and Semantics

Our setting is a many-sorted first-order logic. We let τ, υ range over simple types
(sorts), s, t, u, v range over terms, a, b, c, . . . range over function symbols, x, y, z
range over variables, and C, D, E range over clauses. Literals are atoms of the
form s ≈ t or ¬ s ≈ t, also written s �≈ t. Clauses are finite disjunctions of
literals, viewed as multisets. Substitutions are written in postfix notation, with
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sσθ = (sσ)θ. The notation x̄ represents a tuple (x1, . . . , xm), and [m,n] denotes
the set {m,m + 1, . . . , n}, where m ≤ n + 1.

A position p of type τ in t is a position in t such that t|p is of type τ . If s, t are
terms and P is a set of positions of the same type as s in t, then t[s]P denotes the
term obtained from t by replacing the subterms occurring at a position in P by
s: t[s]P := s if ε ∈ P ; t[s]P := t if P = ∅; and f(t1, . . . , tn)[s]P := f(ti[s]Pi

)i∈[1,n],
with Pi = {q | i.q ∈ P} otherwise. Given two positions p and q, we write p < q if
p is a proper prefix of q. Let Ctr be a distinguished finite set of function symbols,
called constructors. We reserve the letters c, d, e for constructors. A constructor
position in t is a position q in t such that for every p < q, the head symbol of t|p
is a constructor.

Definition 1. The set of constructor contexts of profile τ → υ is defined induc-
tively as follows: (1) if t is a term of type υ, then t is a constructor context of
profile τ → υ; (2) if Γ1, . . . ,Γn are constructor contexts of profile τ → τi and
c : τ1 ×· · ·× τn → υ is a constructor, then c(Γ1, . . . ,Γn) is a constructor context
of profile τ → υ; (3) the hole • is a constructor context of profile υ → υ.

Every constructor context can be written as Γ[•]P , where P is a set of con-
structor positions of the same type in Γ, denoting the positions of • in Γ. It
is empty if ε ∈ P , and constant if P = ∅. We write Γ[•]p as an abbreviation
for Γ[•]{p}, and we write Γ[t]P to denote the term obtained by replacing every
position of P by the term t in the context Γ[•]P . Moreover, we write τ � υ
(“υ depends on τ”) if there exists a constructor of profile τ1 ×· · ·× τn → υ, with
τ = τi for some i ∈ [1, n], and τ ∼ υ if τ �∗ υ and υ �∗ τ .

The axioms and rules in this paper are parameterized by the following sets.
Let Tind and Tcoind be disjoint sets of types, intended to model datatypes and
codatatypes, respectively, and assume that the codomain of every constructor
is in Tind ∪ Tcoind. Let Ctr inj ⊆ Ctr be a set of constructors, denoting injective
constructors. Let �	 be a binary symmetric and irreflexive relation among con-
structors; c �	 d indicates that terms with head symbol c are always distinct
from terms with head symbol d.

We introduce some properties of interpretations that are intended to capture
some of the properties of (co)datatypes. An interpretation I satisfies

• Exh (exhaustiveness) iff, for every type τ ∈ Tind ∪ Tcoind, I |=
∨m

i=1 ∃x̄i. x ≈
ci(x̄i), where x is a variable of type τ , {c1, . . . , cm} is the set of constructors of
codomain τ , and x̄i is a vector of pairwise distinct variables of the appropriate
length and types;

• Inf (infiniteness) iff, for every type τ ∈ Tind∪Tcoind, the domain of τ is infinite;
• Acy (acyclicity, for datatypes) iff, for every type τ ∈ Tind and for every

nonempty constructor context Γ[•]p of profile τ → τ , where p is a position,
we have I |= Γ[x]p �≈ x, where x is a variable of type τ not occurring in Γ;

• FP (existence and uniqueness of fixpoints, for codatatypes) iff, for every
type τ ∈ Tcoind, for every nonempty constructor context Γ[•]P : τ → τ ,
I |= (∃x. Γ[x]P ≈ x) ∧ (Γ[x]P ≈ x ∧ Γ[y]P ≈ y =�⇒ x ≈ y), where x, y are fresh
variables of type τ ;
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• Dst (distinctness of constructors) iff, for every pair of constructors c, d of the
same codomain such that c �	 d, I |= c(x̄) �≈ d(ȳ) where x̄ and ȳ are disjoint
vectors of pairwise distinct variables of the appropriate length and types;

• Inj (injectivity) iff, for every n-ary constructor c ∈ Ctr inj and pairwise distinct
variables x1, . . . , xn, y1, . . . , yn of the appropriate types, I |= c(x1, . . . , xn) ≈
c(y1, . . . , yn) =�⇒

∧n
i=1 xi ≈ yi.

Most datatypes occurring in practice are recursive, so condition Inf is usu-
ally satisfied. In particular, it is the case for any nonempty freely generated
(co)datatype τ such that τ �+ τ . Conditions Dst and Inj are defined by finite
sets of axioms, but not conditions Acy and FP. In Sect. 3, we introduce conser-
vative extensions of the considered formula so that conditions Acy and FP are
satisfied. Then in Sect. 4, we replace some of these axioms by inference rules.

We assume that τ �∼ υ whenever τ ∈ Tind and υ ∈ Tcoind. Intuitively, this
condition means that a datatype cannot be defined by mutual recursion with
a codatatype, which is a very natural restriction [7]. If this condition does not
hold, it is easy to see that there is no interpretation that satisfies both Acy and
FP. On the other hand, we may have τ �+ υ or υ �+ τ with τ ∈ Tind and
υ ∈ Tcoind. There may also exist types not belonging to Tind ∪ Tcoind, and the
types in Tind ∪Tcoind may depend on them. Finally, we assume that for each type
τ , there exists a ground term t of type τ .

3 Axioms

The axioms Exhaust for exhaustiveness, Dist for distinctness, and Inj for injec-
tivity correspond to the formulas used to express the properties Exh, Dst, and
Inj in Sect. 2. The other axioms are introduced below.

For all types τ ∼ υ, we introduce a predicate symbol subτ
υ on τ × υ together

with the following axioms, where τ ∼ υ ∼ υ′ and c : · · · × υ × · · · → υ′ is a
constructor:

Sub1: subτ
τ (x, x) Sub2: ¬ subτ

υ(x, y) ∨ subτ
υ′(x, c(z̄, y, z̄′))

NSub: ¬ subυ′
τ (c(z̄, x, z̄′), x) if τ ∈ Tind

Let Sub = Sub1 ∧ Sub2. The least fixpoint model of Sub is the usual subterm
relation for constructor terms. The axiom NSub states that no term of a type in
Tind may occur at a nonempty constructor position in itself.

Definition 2. An interpretation I is sub-minimal if, for all τ ∼ υ, it
satisfies the equivalence subτ

υ(x, y)⇐⇒
∨

{∃z̄. y ≈ Γ[x]p | Γ[•]p is a constructor
context of profile τ → υ}, where z̄ denotes the vector of variables in Γ that are
distinct from x, y.

For every pair of types τ, υ ∈ Tcoind with τ ∼ υ, we introduce a type τ υ

to denote contexts Γ[•]P of profile υ → τ . Let holeυ be a constant of type υ υ,
denoting an empty context. All constructors c : τ1×· · ·×τn → τ and types υ such
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that ∃i υ �∗ τi are associated with new n-ary constructors c υ : υ1 × · · · × υn →
τ υ, where for every i ∈ [1, n], υi = τi υ if υ �∗ τi and υi = τi otherwise. Let
appτ

υ : τ υ ×υ → τ , cycυ : υ υ → υ, and cstτυ : τ → τ υ be new function symbols.
Intuitively, if y denotes the context Γ[•]P , then app(y, x) denotes the term Γ[x]P ,
cyc(y) denotes the fixpoint of Γ[•]P , and cstτυ denotes a constant context (i.e., a
context Γ[•]P with P = ∅).

We consider the following axioms, where υ ∈ Tcoind and x, y, xi, zi are
pairwise distinct variables of the appropriate types:

App1: appτ
υ(cstτυ(x), y) ≈ x App2: appυ

υ(holeυ, y) ≈ y

App3: appτ
υ( c υ(x1, . . . , xn), y) ≈ c(t1, . . . , tn)
if c : τ1 × · · · × τn → τ is a constructor and ∃i υ �∗ τi

with ti = appτi
υ (xi, y) if υ �∗ τi and ti = xi otherwise

Uniq: x ≈ holeυ ∨ y �≈ appυ
υ(x, y) ∨ z �≈ appυ

υ(x, z) ∨ y ≈ z

Cycl: cycυ(x) ≈ appυ
υ(x, cycυ(x))

Hole1: holeυ �≈ cstυυ(x) Hole2: holeυ �≈ c υ(x1, . . . , xn) if c : · · · → υ

Let App = App1 ∧ App2 ∧ App3 and Hole = Hole1 ∧ Hole2.

Example 3. Let c : τ0 × υ → τ be a constructor, with υ �∗ τ0. Then the profile
of c υ is τ0 υ × υ υ → τ υ. The term t := c υ(cstτ0υ (x), holeυ) encodes the
constructor context c(x, •). If a : υ, then appτ

υ(t, a) =App c(x, a), where =App

denotes equality modulo App (i.e., s =App t ⇐⇒ App |= s ≈ t).

Lemma 4 (Soundness of the Axioms). If interpretation I satisfies Acy
and FP, there exists a sub-minimal extension of I validating Sub, NSub, App,
Uniq, Cycl, and Hole.

Lemma 5 (Completeness of the Axioms). Any model of the set of axioms
{Sub,NSub,App,Uniq,Cycl,Hole} fulfills Acy and FP.

Lemma 6 (Completeness of the Theory). Let T be the theory of free con-
structors, as defined by the properties Exh, Inf , Acy, FP, Dst, and Inj, with
Ctr inj = Ctr and c �	 d for all distinct constructors c and d. If S is a first-order
sentence in which the only symbols occurring are constructors and equality (≈),
then either T |= S or T |= ¬S.

Comon and Lescanne [9] provide a decision procedure for equational formu-
las over finite and infinite trees, which correspond respectively to freely gen-
erated datatypes and codatatypes. It is based on a collection of equivalence-
preserving transformation rules for eliminating quantifiers and normalizing the
formulas. The set of formulas T = {Dist, Inj,Exhaust,Sub,NSub,App,Uniq,Cycl,
Hole} forms the axiomatization of a conservative extension of the theory of
(co)datatypes. We can thus derive a decision procedure for testing satisfiability
of first-order sentences S containing only constructors symbols and the equality
predicate in the above theory. By interleaving the steps of two fair saturation
procedures of the superposition calculus, the first over S ∪T and the second over
¬S ∪ T , one of the two attempts is guaranteed to derive a refutation in finite
time.
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4 Inference Rules

As an alternative to the above axiomatization, we propose an extension of the
superposition calculus [2] with dedicated rules. Unless otherwise noted, the usual
conventions of superposition apply. The standard notion of redundancy is used,
with respect to the theory of equality. The notation s �≈ t indicates that the
literal is selected, or that it is maximal in its clause, after the substitution σ has
been applied, and nothing is selected, whereas s ≈ t indicates that the literal is
strictly maximal in its clause, after σ, and no literal is selected. We let [¬] s ≈ t
stand for either s ≈ t or s �≈ t.

Superposition. We denote by SP the usual rules of the superposition calculus
with a slight relaxation: Superposition inside the nonmaximal term of an equa-
tion is allowed if the head of the maximal term is a constructor. This ensures
that in the rewrite system built from saturated clause sets for defining a model,
the right-hand side of every rule is irreducible if the head of the left-hand side
is a constructor. Thus, our superposition rule is as follows:

u ≈ v ∨ D [¬] s[u′] ≈ t ∨ C
Sup

σ([¬] s[v] ≈ t ∨ D ∨ C)

where σ = mgu {u
?= u′}, u′ is not a variable, and σ(u) �� σ(v); moreover,

σ(s[u′]) �� σ(t) if [¬] is ¬ or if the head symbol of t is not a constructor. The
equality resolution and equality factoring rules are the standard ones.

Infiniteness. The next rule captures infiniteness of (co)datatypes:
(∨n

i=1 x ≈ ti
)

∨ C
InfC

if x is a variable of a type τ ∈ Tind ∪ Tcoind and does not occur in C or t1, . . . , tn.

Lemma 7 (Soundness of Inf). Let N be a clause set, and let I be a model of
N satisfying Inf . If C is derived from N by Inf, then I |= C.

Distinctness. The distinctness property of constructors takes the form of two
rules:

c(s̄) ≈ t ∨ C
Dist1Cσ

if σ = mgu {t
?= d(x̄)}, where c �	 d and x̄ are fresh pairwise distinct variables;

and

d(t̄) ≈ u′ ∨ D c(s̄) ≈ u ∨ C
Dist2

(C ∨ D)σ

if c �	 d, σ = mgu {u
?= u′}, c(s̄)σ �� uσ, and d(t̄)σ �� u′σ.
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Proposition 8 (Soundness of Dist1 and Dist2). Let N be a clause set, and
let I be a model of N satisfying Dst. If a clause C is derived from N by Dist1
or Dist2, then I |= C.

Remark 9. If t is not a variable, the premise of Dist1 is redundant after the rule
is applied. Unifying t with c(x̄) can be useful when t is a variable. For example,
from the clause c(x) ≈ x, we can derive � by unifying x with d(ȳ), where d �	 c.

Injectivity. The injectivity property of constructors is also captured by two
rules:

c(s1, . . . , sm) ≈ t ∨ C
Inj1(si ≈ xi ∨ C)σ

if i ∈ [1,m], c ∈ Ctr inj, σ = mgu {t
?= c(x1, . . . , xm)}, and x1, . . . , xm are fresh;

and
c(s1, . . . , sm) ≈ u′ ∨ D c(t1, . . . , tm) ≈ u ∨ C

Inj2(si ≈ ti ∨ C ∨ D)σ

if i ∈ [1,m], c ∈ Ctr inj, σ = mgu {u
?= u′}, uσ �� c(s̄)σ, and u′σ �� c(t̄)σ.

Proposition 10 (Soundness of Inj1 and Inj2). Let N be a clause set, and let
I be a model of N satisfying Inj. If a clause C is derived from N by Inj1 or Inj2,
then I |= C.

Remark 11. If Inj1 is applied on every argument i ∈ [1,m] and t is not a vari-
able, the premise becomes redundant and can be removed. Unifying t with the
term c(x1, . . . , xm) is useful when t is a variable. For example, given the clause
c(x, a) ≈ x, we can derive a ≈ x2 by Inj1, from which � can be derived by Inf.

Acyclicity. The acyclicity rule attempts to detect constraints that would force a
datatype value to be cyclic. The simplest example is a clause of the form Γ[s] ≈ s,
where Γ is a nonempty constructor context. More generally, the clauses

s1 ≈ Γ1[s2] s2 ≈ Γ2[s3] · · · sn−1 ≈ Γn−1[sn] sn ≈ Γn[s1]

entail a constraint s1 ≈ Γ1[Γ2[· · · [Γn−1[Γn[s1]]] · · · ]]. Moreover, the rule must
support variables and nonunit clauses, and it should be finitely branching if
we want to incorporate it in saturation-based provers—i.e., the set of clauses
derivable from a given finite set of premises by a single rule should be finite.
Finally, clauses of the form Γ[x] ≈ s ∨ C, where x occurs in C, are problematic,
because there are infinitely many instantiations of x that can result in a cyclic
constraint: s, c(s), c(c(s)), etc. To cope with all these subtleties, we first need
to develop a considerable theoretical apparatus.

Definition 12. A chain built on a nonempty sequence of clauses (C1, . . . , Cn)
under condition D is a sequence (t1, . . . , tn+1) of terms satisfying the following
conditions:
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1. for every i ∈ [1, n], Ci is of the form si ≈ Γi[s′
i+1]pi

∨ C ′
i, where pi is a

nonempty constructor position in Γi;
2. there exists a substitution σ such that either σ is an mgu of E = {s′

i
?= si |

i ∈ [2, n]} or σ is an mgu of {s′
n+1

?= s1} ∪ E;
3. ti = siσ for i ∈ [1, n] and tn+1 = s′

n+1σ;
4. D =

∨n
i=1 C ′

iσ;
5. type(t1) ∼ · · · ∼ type(tn+1);
6. (Γi[s′

i+1]pi
≈ si)σ is strictly maximal in Ciσ, and no literal is selected in Ciσ;

7. siσ �� Γi[s′
i+1]p1σ, for i ∈ [1, n];

8. for every i ∈ [2, n], s′
i is not a variable.

The expression Γ1[· · · [Γn[•]pn
] · · · ]p1σ is the chain’s constructor context, σ is

its mgu, and p1. · · · .pn is its constructor position. If t1 = tn+1, the sequence is
called a cycle. A chain is direct if ti �= tj for all i, j ∈ [1, n + 1] with i �= j and
{i, j} �= {1, n + 1}, and variable-ended if s′

n+1 is a variable.

Remark 13. Conditions 5 to 8 are optional. They help prune the search space.

Definition 14. A chain (t1, . . . , tn+1) built on a clause sequence (C1, . . . , Cn)
is an extension of an acyclic chain (s1, . . . , sm+1) if n ≥ m, the latter chain is
built on (C1, . . . , Cm), and the same literals and positions are considered in each
clause Ci in both chains.

Since chains can be arbitrarily long, we need to impose some additional
conditions to prune them and ensure that the rules are finitely branching. Let
Keep be a property of chains that fulfills the following requirements:

(i) if a chain t̄ does not satisfy Keep, no extension of t̄ satisfies Keep;
(ii) for every finite clause set N , the set of chains built on a sequence of renam-

ings of clauses in N and satisfying Keep is finite;
(iii) for every cycle (t1, . . . , tn, t1), there exists a chain (s1, . . . , sm) with m ≤ n

satisfying Keep such that for some k, the cycle (t1+k, . . . , tn+k, t1+k) (with
ti := ti−n if i > n) is an extension of (s1, . . . , sm).

For example, Keep can be defined as the set of chains built on clauses Ci

that are pairwise distinct modulo renaming and such that C1 is the most recently
processed clause. This is the definition we use in our description of the extended
saturation loop (Sect. 6) and in the implementation in Vampire.

Remark 15. Condition (i) is essential in practice, to ensure that the chains can
be incrementally constructed in an efficient way, because it ensures that the con-
struction can be stopped when a prefix not satisfying Keep is obtained. Con-
dition (ii) ensures that the rule is finitely branching. Condition (iii) is essential
for completeness.

Definition 16. A chain of length n is eligible if it is variable-ended and n = 1,
or if it is not variable-ended, it satisfies Keep, and either it is a cycle or there
exists an extension of length n + 1 that does not satisfy Keep.
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Remark 17. The conditions on eligible chains are the strongest ones preserving
completeness, but they are not necessary for soundness.

The acyclicity rule follows:

C1 · · · Cn
Acycl

D ∨ E
if there exists a direct, eligible chain (t1, . . . , tn+1) built on (C1, . . . , Cn) under
condition D and either t1 = tn+1 and E = ∅ or t1 �= tn+1 and E =
¬ sub(t1, tn+1).

Intuitively, the existence of the chain guarantees (if D is false) that there
exists a nonempty constructor context Γ[•]p such that t1 ≈ Γ[tn+1]p holds. If
t1 = tn+1, this contradicts acyclicity. Otherwise, we deduce that t1 cannot occur
at a constructor position inside the constructor term corresponding to tn+1;
hence sub(t1, tn+1) is false.

Lemma 18 (Soundness of Acycl). Let N be a clause set, and let I be a
sub-minimal model of N satisfying Acy. If C is derived from N by Acycl, then
I |= C.

Uniqueness of Fixpoints. The uniqueness rule also depends on the notion of
chain:

C1 · · · Cn
Uniq

D ∨
(∨

p∈P u|p �≈ app(sp, t1)
)

∨ u′ �≈ z ∨ z ≈ t1

if there exists an eligible chain (t1, . . . , tn+1) of constructor context Γ[•]q built
on (C1, . . . , Cn) under condition D and the following requirements are met:

1. u = Γ[tn+1]q;
2. P is the set of prefix-minimal positions p of some type τ ∼ type(t1) in u with

p �< q;
3. for every p ∈ P , sp is a fresh variable of the appropriate context type;
4. u′ is obtained from u by replacing all terms at a position p ∈ P by app(sp, z).

Intuitively, the existence of the chain ensures (if D is false) that t1 ≈ Γ[tn+1]q.
If t1 = tn+1, we could derive y �≈ Γ[y]q ∨ y ≈ t1 by uniqueness. However, this
would not be sufficient for completeness. First, t1 may be distinct from tn+1,
but we may have tn+1 = Δ[t1]Q, for some constructor context Δ, in which case
we should derive y �≈ Γ[Δ[y]Q]q ∨ y ≈ t1 instead. Second, t1 may also occur at
other positions in Γ. To capture all these cases using a finitely branching rule,
we introduce new variables sp whose purpose is to denote the context Γp such
that Γp[t1] = u|p. (If t1 does not occur inside u|p, then Γp is constant.)

Example 19. From the clause a ≈ c(b, x), using the chain (a, x), with the con-
structor context c(b, •), we derive

b �≈ app(x1, a) ∨ x �≈ app(x2, a) ∨ z �≈ c(app(x1, z), app(x2, z)) ∨ z ≈ a

Then u = c(b, x) and P = {1, 2}.
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From the clauses a ≈ c(b, a) and b ≈ d(a, a), using the chain (a, b, a), with
the constructor context c(d(a, •), a), we derive

a �≈ app(x1.1, a) ∨ a �≈ app(x1.2, a) ∨ a �≈ app(x2, a)
∨ z �≈ c(c(app(x1.1, z), app(x1.2, z)), app(x2, z)) ∨ z ≈ a

In this case, u = c(d(a, a), x) and P = {1.1, 1.2, 2}.

Lemma 20 (Soundness of Uniq). Let N be a clause set, and let I be a model
of N ∪ {App,Hole} satisfying FP. If C is derived from N by Uniq, then I |= C.

We also introduce the following optional simplification rule:

Γn[· · · [Γ1[s′]P ] · · · ]P ≈ s ∨ C
Compr

(Γ1[s]P ≈ s ∨ C)σ

where s and s′ are terms of the same type τ ∈ Tcoind and P is a nonempty set
of constructor positions in Γi, for i ∈ [1, n], such that ε �∈ P , and σ = mgu {s

?=
s′, Γ1

?= · · · ?= Γn}.

Proposition 21 (Soundness of Compr). Let N be a clause set, and let I be
a model of N satisfying FP. If D is derived from N by Compr, then I |= D.

5 Refutational Completeness

We establish the refutational completeness of the calculus presented in Sect. 4.
This result ensures that the axioms for distinctness, injectivity, and acyclicity
(NSub) may be omitted. The axiom Uniq may also be omitted in some cases,
formally defined below. The axiom Sub is still needed since it is used in the
completeness proof for Acycl.

If N �� � is a clause set saturated under SP , then RN denotes the set of
rewrite rules constructed as usual from N and →RN

denotes the (one-step) reduc-
tion relation. We refer to the literature [2,16] for details about the construction
of RN . The notation MN denotes the model of N defined by the congruence
∗←→RN

on ground terms.
We first establish some results about the form of the rules in RN .

Proposition 22. Let N be a clause set saturated under SP and Inf. Let u ≈
v ∨ C ∈ N , and let θ be a substitution such that uθ � vθ, (u ≈ v)θ � Cθ, and
MN �|= Cθ. If type(u) ∈ Tind ∪ Tcoind, then u is not a variable.

Corollary 23. Let N be a clause set saturated under SP and Inf. For every
rule c(t̄) →RN

s in RN , where c is a constructor, s is RN -irreducible.

Lemma 24 (Infiniteness). Let N be a clause set saturated under SP and Inf.
If � /∈ N , then MN satisfies Inf .
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Lemma 25 (Distinctness). Let N be a clause set saturated under SP , Dist1,
Dist2, and Inf. For all ground terms a = c(ā) and b = d(b̄) such that c �	 d, we
have a � ∗←→RN

b.

Lemma 26 (Injectivity). Let N be a clause set saturated under SP , Inf,
Inj1, and Inj2. For all ground terms a = c(a1, . . . , an) and b = c(b1, . . . , bn) with
c ∈ Ctr inj and such that ai � ∗←→RN

bi for some i ∈ [1, n], we have a � ∗←→RN
b.

The completeness proof for acyclicity requires further definitions and results.

Definition 27. Let I be an interpretation and t be a term. A constructor con-
text Γ[•]p is a minimal cyclicity witness for t and I if it is of the same type as t,
p is a position of the same type as t in Γ, I |= t ≈ Γ[t]p, and |q| ≥ |p| for every
position q �= ε and constructor context Δ[•]q such that I |= t ≈ Δ[t]q.

Proposition 28. Let (t1, . . . , tn, t1) be a cycle of constructor context Γ[•]p for
a clause set N under condition D. If I |= N ∪ {¬ Dσ}, and Γ[•]p is a minimal
cyclicity witness for t1σ and I, then (t1, . . . , tn, t1) is direct.

Lemma 29. Let t : τ and s : υ be ground terms with τ ∼ υ. Let Γ[•]p be a ground
constructor context of type τ , where p is a position of type υ in Γ. Let N be a
clause set saturated under SP and Inf. Assume that t, s, and Γ|p′ are RN -irred-
ucible, for every position p′ �≤ p. If MN |= Γ[s]p ≈ t, then RN contains n rules
Γi[ai+1]pi

→RN
ai, for i ∈ [1, n], with Γ[s]p = Γ0[Γ1[· · · [Γn[an+1]pn

] · · · ]p1 ]p0 ,
p0.p1. · · · .pn = p, an+1 = s, and t = Γ0[a1]p0 .

Lemma 30 (Acyclicity). If Sub ⊆ N and N �� � is saturated under SP ,
Acycl, and Inf, then MN satisfies condition Acy.

Remark 31. The Inf rule is needed for completeness. For example, it is clear
that the clause x ≈ a ∨ x ≈ b contradicts acyclicity, but no contradiction can
be derived without using Inf. The relaxation of the application conditions of Sup
is also essential. Consider the set N = {a1 ≈ c(a2), a2 ≈ a3, a3 ≈ c(a1)}, with
c(. . . ) � ai+1 � ai. It is clear that N is saturated without the relaxation, and N
contradicts acyclicity, since N |= a1 ≈ c(c(a1)). With the relaxation, Sup derives
the clause a2 ≈ c(a1); then Acycl exploits the cycle (a1, a2, a1) to derive �.

For the Uniq rule, we provide a restricted completeness result, under the
assumption that the considered constructor context contains at most one occur-
rence of •.

Lemma 32 (Uniqueness of Fixpoints). If App ⊆ N and N �� � is saturated
under SP , Uniq, and Inf, then MN |= x ≈ Γ[x]r ∧ y ≈ Γ[y]r ⇒ x ≈ y for every
constructor context of the form Γ[•]r of type τ ∈ Tcoind, where r is a nonempty
position of type τ in Γ.

Definition 33. A signature is coinductively nonbranching if for every construc-
tor c : τ1 × · · · × τn → τ such that τ ∈ Tcoind, there exists at most one i ∈ [1, n]
such that τi ∼ τ .
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For example, the signature is coinductively nonbranching for infinite streams
and possibly infinite lists, but not for infinite binary trees.

Corollary 34 (Fixpoints). Assume that the signature is coinductively non-
branching. If Cycl ∪ App ⊆ N and N �� � is saturated under SP , Uniq, and Inf,
then MN satisfies condition FP.

Example 35. Corollary 34 does not hold for arbitrary signatures. The clause set
{a ≈ c(d(a, b)), b ≈ e(d(a, b)), a′ ≈ c(d(a′, b′)), b′ ≈ e(d(a′, b′)), d(a, b) �≈
d(a′, b′)} contradicts FP, because d(a, b) and d(a′, b′) are both solutions of x ≈
d(c(x), e(x)). However, the Uniq rule applies only with constructor contexts of
head symbol c (if the chain starts with a or a′) or e (if it starts with b or b′).

6 Saturation Procedure

The inference rules of the calculus presented in Sect. 4 are all finitely branching,
provided that the eligibility criterion is applied for the Acycl and Uniq rules. As
a result, saturation of a clause set can be carried out using standard saturation
procedures. These generally work by maintaining a set of passive clauses that
initially contains all the clauses to saturate and a set of active clauses that is ini-
tially empty. The algorithm heuristically chooses a passive clause that becomes
the given clause, moves it to the active clauses, and performs all possible infer-
ences between it and the active clauses. Conclusions are added to the set of
passive clauses, and the procedure is iterated until � is derived, or until the set
of passive clauses is empty.

To improve search, it is useful to distinguish between simplifying rules and
generating rules. In simplifying rules, at least one of the premises is redundant
with respect to the conclusion. The Inf rule is simplifying, as well as the Dist1
and Inj1 rules when the term t is not a variable, and the Acycl rule when there
is only one premise and t1 = tn.

In addition to the calculus, we propose the following simplifying rules to
eliminate theory tautologies:

c(s̄) �≈ d(t̄) ∨ C
Dist−

∅

s �≈ Γ[s] ∨ C
Acycl−

∅

where c �	 d, Γ[•] is a nonempty constructor context, and type(s) ∈ Tind. More-
over, the following rule applies injectivity of c ∈ Ctr inj to simplify literals:

c(s1, . . . , sn) �≈ c(t1, . . . , tn) ∨ C
Inj−(∨n

i=1 si �≈ ti
)

∨ C

The soundness of Inj− follows from c’s being a function symbol, but since
it is also injective, the premise is redundant with respect to the theory. We
conjecture that the addition of these simplification rules preserves refutational
completeness.



382 J. C. Blanchette et al.

If all constructors are free (i.e., Ctr inj = Ctr and c �	 d holds for all distinct
constructors c and d), by applying the above rules eagerly, we also guarantee
that in any literal [¬]s ≈ t in an active clause, at most one of s or t has a
constructor for head symbol, as (dis)equalities between constructor terms will
have been simplified directly after clause generation. This invariant enables a
few optimizations in the implementation of the generating rules, notably during
the detection of chains.

The relaxation of the application conditions of the Sup rule increases the
number of clauses it must generate and may hence be detrimental to the search.
We can reduce the incidence of this scenario by choosing a term order that
considers constructors as smaller than non-constructors. For path orders, we can
choose a symbol precedence � such that f � c for all non-constructor symbols f
and constructors c.

To implement the Acycl and Uniq rules, we must be able to efficiently detect
eligible chains among the set of active clauses. Testing all subsets of the active
clauses is impractical, and the detection of a chain requires the computation
of an mgu over a set of equations, instead of a single equation. We present a
procedure that takes the given clause C1 as input and applies the two rules to
all subsets of clauses containing C1 and upon which an eligible chain can be
built. There are three cases in which the rules must be applied: when the chain
is a cycle, when it is variable-ended and has length 1, and when there exists
an extension of the chain that violates Keep. The procedure relies on a data
structure that provides a nextLinks(s′) operation, where s′ is a term. For each
literal s ≈ t in an active clause C such that s is unifiable with s′ under an
mgu σ and sσ �� tσ, the operation returns the tuple (C, σ, T ), where T is the
set of terms under nonempty constructor positions in t. This operation can be
implemented using term indexing techniques already found in state-of-the-art
provers [22, Sect. 5.1].

The procedure considerGiven(C1) applies the rule Acycl or Uniq to all subsets
of actives clauses that contain the given clause C1 and form an eligible chain:

Procedure considerGiven(C1) is
for s′

2 such that C1 = s1 ≈ Γ[s′
2] ∨ D1 do

extendChain(s1, s′
2, {}, {C1})

Procedure extendChain(s1, s′
i, θ,Ch) is

if s1θ = s′
iθ then

apply rule Acycl or Uniq to chain Ch under mgu θ
else if s′

i is a variable then
if |Ch| = 1 then

apply rule Acycl or Uniq to chain Ch under mgu θ
else if exists (Ci, σ, T ) ∈ nextLinks(s′

iθ) such that Ci ∈ Ch then
apply rule Acycl or Uniq to chain Ch under mgu θ

else
for (Ci, σ, T ) ∈ nextLinks(s′

iθ) do
for s′

i+1 ∈ T do
extendChain(s1, s′

i+1, σθ,Ch � {Ci})
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7 Evaluation

We implemented the calculus presented above in the first-order theorem prover
Vampire [13]. Our source code is publicly available.1 The new rules are added to
the existing calculus, which includes other sound rules and a sophisticated redun-
dancy elimination mechanism. Vampire can process input files in SMT-LIB [4]
format and recognizes both the declare-datatypes command and the non-
standard declare-codatatypes command. These commands trigger the addi-
tion of relevant axioms or the activation of inference rules, according to user-
specified options. This implementation is an extension of previous work done in
Vampire [12]. The behavior of this older implementation can be replicated by
enabling only the simplification rules of the calculus and adding the axioms Dist,
Inj, Exhaust, Sub, and NSub to the initial clause set.

We evaluated the implementation on 4170 problems that were used previously
by Reynolds and Blanchette [20] to evaluate CVC4. These were generated by
translating Isabelle problems to SMT-LIB using the Sledgehammer bridge [18].
We also used synthetic problems that exercise the properties of cyclic values.
Both benchmark sets and detailed results are available online.2

All the experiments in this section were carried out on a cluster on which
each node is equipped with two quad-core Intel processors running at 2.4 GHz,
with 24 GiB of memory. A 60 s time limit per problem was enforced. We used a
single basic saturation strategy relying on the DISCOUNT saturation algorithm.
The calculus was parameterized by a Knuth–Bendix term order, unless otherwise
noted. This simple approach provides a homogeneous basis on which to compare
the performance of the different procedures. It typically solves fewer problems
than the portfolio approach commonly used with Vampire, in which several
different strategies are tried in short time slices.

We first compare the performance of three configurations of the prover on the
Isabelle problems. The first configuration corresponds to the axiomatic approach
presented in Sect. 3: the axioms Dist, Inj, Exhaust, Sub, NSub, App, Uniq, Cycl,
and Hole are added to the set of clauses to saturate, and only standard inferences
rules are used by the prover. Superposition need not rewrite the nonmaximal side
of an equation.

The second configuration implements part of the calculus presented in Sect. 4.
Only the axioms Exhaust, Sub, NSub, App, Uniq, Cycl, and Hole are added to the
clauses, and the rules Dist1, Dist2, Inj1, and Inj2 are used during the search, in
addition to the simplification rules described in Sect. 6. The side conditions of
Sup are also relaxed. The rules Acycl and Uniq are not used; instead, reasoning
on the properties of cyclic terms is based on axioms.

The third configuration uses all the rules described in Sect. 4. Only the axioms
Sub and App are added, on which the Acycl and Uniq rules depend, and the
axioms Cycl and Exhaust. This configuration is the only one which does not

1 http://github.com/vprover/vampire/releases/tag/ijcar2018-data.
2 http://matryoshka.gforge.inria.fr/pubs/supdata data.tar.gz.

http://github.com/vprover/vampire/releases/tag/ijcar2018-data
http://matryoshka.gforge.inria.fr/pubs/supdata_data.tar.gz
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ensure refutational completeness, since Uniq is incomplete with respect to the
uniqueness of fixpoints for branching codatatypes.

The first two configurations both solved 1114 problems and the third one
solved 1113 problems; 1116 problems are solved by at least one configuration.
These homogeneous results do not reveal significant differences between the
approaches. To assess the role of the acyclicity property of datatypes and the
properties of codatatype fixpoints in the benchmarks, we also tested a system
that did not include any axioms and rules related to these properties. With such
an incomplete system, we found that 12 problems could not be solved. This is
roughly in line with the results of Reynolds and Blanchette using CVC4 on the
same problems [20]. No new problems were solved by this configuration, sug-
gesting that reasoning about properties of cyclic terms does not lead to worse
performance even when these properties are not needed for refutation.

We also tested variants of the last two configurations in which the calculus
was parameterized by a lexicographic path order, to assess whether this term
order could improve the performance when used with the relaxed superposi-
tion rule. These configurations solved a total of 1104 problems, including 5 new
problems.

Since properties of cyclic values are seldom used in the Isabelle benchmarks,
we crafted a set of (refutable) problems to assess the performance of the rules
Acycl and Uniq. For a term s and a nonconstant context Γ[•], let exchain(s,Γ[•])
denote any sentence ∃s2, . . . sn∀t1, . . . tm. s ≈ Γ1[s2] ∧ . . . ∧ sn ≈ Γn[s], where
t1, . . . , tm all occur in Γ and such that Γ1[. . . [Γn[•]] . . . ] = Γ[•]. The formula
∃s.exchain(s,Γ[•]), where type(s) ∈ Tind, forms an acyclicity problem. The set of
acyclicity problems used in our experiments is denoted AC. If m = 0, the clausi-
fied form of this problem is ground (ACG). The formula ∃s1, s2. exchain(s1,Γ[•])
∧ exchain(s2,Γ[•]) ∧ s1 �≈ s2, where type(s1) ∈ Tcoind, forms a uniqueness prob-
lem (U). Note that in such a problem, the two chains may not be formed upon
the same equalities, although they build the same constructor context. Similarly,
if m = 0, we obtain a ground uniqueness problem (UG). Finally, the sentence
∀s. ¬ exchain(s,Γ[•]), for type(s) ∈ Tcoind, forms an existence problem (EX).

We generated 100 instances of each type of problem. The number of problems
solved by Vampire (V) on these problems are presented in the following table,
along with the results obtained using CVC4’s [3] and Z3’s [15] native support
for datatypes and, in CVC4’s case, for codatatypes:

AC ACG U UG EX

V CVC4 Z3 V CVC4 Z3 V CVC4 V CVC4 V CVC4

Axioms 65 – – 100 – – 14 – 10 – 40 –

Calculus 82 100 59 100 100 100 14 12 13 100 35 0

The number of problems solved shows that the Acycl rule performs better
than the axioms for acyclicity problems with variables. Only one of these prob-
lems could be solved by the axiomatic approach and not by the Acycl rule. Both
approaches managed to solve all of the ground acyclicity problems. Z3 solved all
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of the ground problems, performing slightly less well on those featuring universal
quantifiers. CVC4 was able to solve all of the acyclicity problems, including those
with universal quantifiers, a notable improvement over previous results obtained
on similar problems [22, Sect. 6].

On uniqueness problems, the Uniq rule solved a superset of the ground prob-
lems solved by the axiomatic approach, whereas on nonground problems each
approach uniquely solved 3 problems, for a total of 17 problems solved. Again,
CVC4 performed remarkably well on ground problems, while the presence of vari-
ables in the problem led to a marked degradation of its performance. Finally,
for existence problems, the refutation relies mostly on the Cycl axiom, which
is included in the clause set in both Vampire configurations. Yet, the purely
axiomatic approach was able to solve 6 problems that could not be solved when
the Uniq rule was activated, indicating that the rule might lead the search in
a suboptimal direction. The theory solver in CVC4 does not take into account
the existence of fixpoints for codatatypes, which is a nonground property. Con-
sequently, none of the existence problems were solved by CVC4.

From the results, it appears that the calculus supersedes the axiomatic app-
roach for problems with datatypes. For codatatypes, both approaches solve dif-
ferent problems, suggesting that they should both be included in a strategy
portfolio. However, the conceptual simplicity and easy implementation of the
axiomatic approach may outweigh these differences in performance.

8 Related Work

The potential of (co)datatypes for automated reasoning has been studied mostly
in the context of satisfiability modulo theories (SMT). Datatypes are parts of
the SMT-LIB 2.6 standard [4]. They were implemented in CVC3 by Barrett
et al. [5], in Z3 [15] by de Moura, and in CVC4 by Reynolds and Blanchette
[20]. The CVC4 work also includes a decision procedure for the ground theory of
codatatypes. Moreover, CVC4 supports automatic structural induction [21] and
dedicated reasoning support for selectors.

Structural induction has also been added to superposition by Kersani and
Peltier [11], Cruanes [10], and Wand [24]. In unpublished work, Wand imple-
mented incomplete inference rules for datatypes, including acyclicity, in his
superposition prover Pirate. Robillard’s earlier Acycl rule [22] has inspired our
Acycl rule, but it suffered from many forms of incompleteness. For example,
given the unsatisfiable clause set {a ≈ c(x) ∨ p(x), ¬ p(c(a))}, the old Acycl rule
derived only p(a) before reaching saturation. Another issue concerned cycles
built from multiple copies of the same premise.

In the context of program verification, Bjørner [6] introduced a decision pro-
cedure for (co)datatypes in STeP, the Stanford Temporal Prover. The program
verification tool Dafny provides both a syntax for defining (co)datatypes and
some support for automatic (co)induction proofs [14]. Other verification tools
such as Leon [23] and RADA [19] also include (semi-)decision procedures for
datatypes. We refer to Barrett et al. [5] and Reynolds and Blanchette [20] for
further discussions of related work.
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9 Conclusion

We presented two approaches to reason about datatypes and codatatypes in first-
order logic: an axiomatization and an extension of the superposition calculus. We
established completeness results about both. We also showed how to integrate
the new inference rules in a saturation prover’s main loop and implemented them
in the Vampire prover. The empirical results look promising, although it is not
clear from our benchmarks how often the most difficult properties—acyclicity
for datatypes, existence and uniqueness of fixpoints for codatatypes—are useful
in practice.

This work is part of a wider research program that aims at bridging the gap
between automatic theorem provers and their applications to program verifica-
tion and interactive theorem proving. In future work, we want to reconstruct the
new proof rules in Isabelle, to make it possible to enable datatype reasoning in
Sledgehammer. We also believe that further tuning and evaluations could help
improve the calculus and the heuristics.
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Abstract. We present several translations from first-order Horn for-
mulas to equational logic. The goal of these translations is to allow
equational theorem provers to efficiently reason about non-equational
problems. Using these translations we were able to solve 37 problems of
rating 1.0 (i.e. which had not previously been automatically solved) from
the TPTP.

1 Introduction

Equational theorem provers such as Waldmeister [14] and Twee [20] are highly
effective on equational problems, and often outperform first-order theorem
provers. But they are also quite limited: while many problems require heavy
use of equational reasoning, few problems consist purely of unit equations.

Take, for example, problem LAT224-1 from the TPTP [21]. In many ways
this problem is perfect for equational theorem provers. It is about lattice theory,
and includes all the usual lattice axioms such as associativity, commutativity,
idempotence and absorption. It also has the rather juicy-looking axiom

x � (y � (x � z)) = (x � y) � (x � (y � (z � (x � (y � z)))))

which any equational prover would love to reason about. Unfortunately, it has
exactly one non-unit axiom,

x � y =⊥ ∧ x � y =� → x̄ = y, (1)

so we can not use an equational prover. No theorem prover is able to automati-
cally prove LAT224-1: it has always had rating 1.0 on the TPTP.

It is possible to prove LAT224-1 if we encode the non-unit axiom as a unit
equation. Suppose we add a new function ifeq together with the axiom

ifeq(x, x, y, z) = y.

The idea is that ifeq(x, y, z, w) represents the expression “if x = y then z else
w”. We can then reformulate axiom (1) as the equation

ifeq(x � y,⊥, ifeq(x � y,�, x̄, y), y) = y

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 388–404, 2018.
https://doi.org/10.1007/978-3-319-94205-6_26
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and now we have a unit equality problem. When we present this transformed
problem to the equational prover Twee, it solves it in 5 s.

This encoding works for any Horn formula, it is easy to automate, and it does
not alter unit clauses. Thus we can use it to cheaply add Horn clause reasoning
to an equational prover without weakening its equational reasoning powers.

The idea of using ifeq to encode clauses as equations is not new: it originated
as a way of encoding full first-order logic as equations [7,16]. The fact that all
first-order formulas can be encoded as equations is remarkable, but the cited
encoding needs many axioms for ifeq, as well as congruence axioms for each
function in the input problem, so it is not a practical way of proving theorems.

On the other hand, as LAT224-1 shows, if we take advantage of the simple
nature of Horn formulas, we can come up with encodings that are simple and
practical for theorem proving. These encodings let an equational theorem prover
reason efficiently about Horn formulas, and turn it into a powerful theorem
prover for mostly-equational problems.

This paper introduces several such encodings, and shows that they work in
theory and in practice.

Contributions. We describe and prove correct four efficient encodings of Horn
formulas into equational logic. The first two encodings are inspired by existing
(but impractical) encodings for full first-order logic [7,16], and the last two are
our own invention. We evaluate our encodings on the TPTP and are able to
solve 37 problems of rating 1.0, in other words problems that no existing prover
could automatically solve.

Notation and Definitions. A Horn clause is a clause with at most one positive
literal, for example ¬A∨¬B ∨C or ¬A, where A,B and C are atomic formulas;
a Horn formula is a set of Horn clauses. As in first-order logic, an atomic formula
is either a predicate or an equation. A Horn clause with a positive literal is a
definite clause; a Horn clause with no positive literal is a goal clause. We freely
write Horn clauses as implications; for example, instead of ¬A ∨ ¬B ∨ C, we
often write A ∧ B → C, and we also write goal clauses as A ∧ B → false. When
given a Horn formula, as is usual in theorem proving, the problem is to prove
the conjunction of the clauses unsatisfiable.

When writing formulas, we adopt the convention that x, y, z and w are vari-
ables and s, t, u and v stand for terms.

2 Encoding Equational Horn Clauses as Equations

In this section we present four encodings from equational Horn formulas to unit
equations. The encodings take as input a Horn formula with no predicate symbols
(other than equality), and produce a set of unit equalities plus a set of goal
clauses. In fact, the goal clauses from the input formula are passed through
unchanged. In Sect. 3 we discuss how to handle predicate symbols, and in Sect. 4
we discuss different ways to handle the goal clauses.
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Each of the encodings in this section consists of:

– A set of axioms which are unconditionally added to the input formula.
– A rule which eliminates one negative literal from a clause, by replacing a

clause of the form C ∧ s = t → u = v with a clause of the form C → u′ = v′.
The rule can also add new unit clauses to the problem.

To apply the encoding, we must add the axioms specified by the encoding, and
then repeatedly apply the prescribed rule until no negative literals remain, except
those that are in goal clauses.

We demonstrate all the encodings on the following example clauses:

f(x) = f(y) → x = y

f(a) = b ∧ f(c) = d → a = c

2.1 Encoding 1: if-then-else

We start with the encoding described in the introduction. To recap, the idea is
to have a function ifeq(x, y, z, w) which is supposed to mean “if x = y then z
else w”, and to encode Horn clauses using if-then-else.

First we add to the input formula the axiom

ifeq(x, x, y, z) = y

where ifeq must of course be a fresh symbol.
The rule we use to eliminate a negative literal is: given a clause of the form

C ∧ s = t → u = v, replace it with the clause

C → ifeq(s, t, u, v) = v.

Since the term v is duplicated, if v has a greater size than u, we swap u and
v before applying the encoding rule, in order to reduce formula size.

Example. The example formula above is encoded as the following three
equations:

ifeq(x, x, y, z) = y

ifeq(f(x), f(y), x, y) = y

ifeq(f(a), b, ifeq(f(c), d, a, c), c) = c

The third clause above is derived as follows:

f(a) = b ∧ f(c) = d → a = c

≡ f(a) = b → ifeq(f(c), d, a, c) = c

≡ ifeq(f(a), b, ifeq(f(c), d, a, c), c) = c
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Efficiency. An efficient encoding should have several characteristics:

1. It should not alter unit equations, so that the prover can deal efficiently with
the equational part of the problem.

2. It should increase the size of the problem as little as possible.
3. Discharging a condition should not require lots of book-keeping inferences. In

other words, from the encoded versions of s = t and s = t → u = v it should
be easy to deduce u = v.

4. It should not increase the search space by allowing needless or unproductive
inferences. If possible, any valid inference in the encoded problem should
correspond to a reasonable inference in the original Horn problem.

The if-then-else encoding does well on most of those fronts:

1. It does not alter unit equations.
2. The term v is duplicated during encoding, so the problem may blow up. In

practice, the fact that we pick v to be smaller than u helps.
3. Discharging a condition takes at most two inferences: from s = t we can

deduce ifeq(s, s, u, v) = v and from that and ifeq(x, x, y, z) = y we get u = v.
4. Assuming that the prover uses a simplification ordering, in the equation

ifeq(s, t, u, v), the only inferences allowed will be paramodulations into s,
t, u and v. The first two are useful but the last two are not; we fix this in
encoding 3.

Proof of Correctness. Suppose that we are encoding the formula φ. We start
by adding the function ifeq and the axiom ifeq(x, x, y, z) = y to obtain the
formula φ0. We then eliminate negative literals one at a time to obtain a sequence
of formulas φ1, . . . , φn. That is, we obtain φi+1 from φi by replacing one clause
C ∧ s = t → u = v with C → ifeq(s, t, u, v) = v. Our goal is to show that φ and
φn are equisatisfiable. A note on notation: in this paper, given a model M and
a variable assignment σ, we write M, σ |= φ for the valuation of a formula, and
Mσ(t) for the valuation of a term.

Soundness. Given a model M of φ, we extend it to a model M0 of φ0 by
interpreting ifeq as follows:

ifeq(x, y, z, w) =

{
z, if x = y

w, otherwise

This definition clearly satisfies the axiom ifeq(x, x, y, z) = z, so we have M0 |=
φ0. From the following lemma, it follows immediately by induction that M0 |= φi

for all i, so in particular M0 |= φn.

Lemma 1 (Single step soundness). If M0 |= s = t → u = v then M0 |=
ifeq(s, t, u, v) = v.
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Proof. Let σ be a variable assignment such that M0, σ |= s = t → u = v. We
show that M0, σ |= ifeq(s, t, u, v) = v by case analysis on the values of s, t, u and
v in Mσ

0 :

– If s 
= t,1 then ifeq(s, t, u, v) = v by definition of ifeq in M0.
– If s = t and u = v, then ifeq(s, t, u, v) = ifeq(s, s, v, v) = v. ��

Completeness. Since φ0 is stronger than φ, any model of φ0 is a model of φ. It
remains to show that if M |= φn then M |= φ0. This follows immediately by
induction from the following lemma and the fact that ifeq(x, x, y, z) = y is an
axiom of φn:

Lemma 2 (Single step completeness). Suppose that M |= ifeq(x, x, y, z) =
y. If M |= ifeq(s, t, u, v) = v then M |= s = t → u = v.

Proof. Given a variable assignment σ, and assuming that M, σ |= s = t, we
prove that M, σ |= u = v. Again we drop the heavy “M, σ |=” notation. From
s = t and ifeq(x, x, y, z) = z we get ifeq(s, t, u, v) = u. Combined with the
assumption ifeq(s, t, u, v) = v this gives u = v. ��

2.2 Encoding 2: if-then

The if-then-else encoding is asymmetric: when encoding the clause s = t → u =
v, the term v is duplicated but u is not. The if-then encoding is a symmetric
variant. The encoding uses a function ifeq(x, y, z) which is intended to mean “if
x = y then z else unspecified”. We add the following axiom to the input formula:

ifeq(x, x, y) = y.

The rule we use to eliminate a negative literal is: given a clause of the form
C ∧ s = t → u = v, replace it with

C → ifeq(s, t, u) = ifeq(s, t, v).

Example. The example clause set becomes:

ifeq(x, x, y) = y

ifeq(f(x), f(y), x) = ifeq(f(x), f(y), y)
ifeq(f(a), b, ifeq(f(c), d, a)) = ifeq(f(a), b, ifeq(f(c), d, c))

Efficiency. Compared to the if-then-else encoding, the if-then encoding is likely
to produce bigger equations, as the equation ifeq(s, t, u) = ifeq(s, t, v) duplicates
both s and t. It also requires more inference steps to discharge a condition, as
both sides of the equation must be rewritten. However, if u and v are large terms,
it may produce smaller equations than the if-then-else encoding.
1 Really we mean Mσ

0 (s) �= Mσ
0 (t), but we leave out the heavy notation in this proof.
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Proof of Correctness. Almost identical to the if-then-else encoding. The only
change is that φ0 is now φ together with the axiom ifeq(x, x, y) = y, and we
construct its model differently. Given a model M of φ, we extend it to a model
M0 of φ0 by interpreting ifeq as follows, where a is an arbitrary domain element
of M:

ifeq(x, y, z) =

{
z, if x = y

a, otherwise

2.3 Encoding 3: Specialised if-then-else

The third encoding is designed to work well with Knuth-Bendix completion.
The aim is to encode s = t → u = v in such a way that the resulting equations
become rewrite rules in which u and v only appear on the right-hand side. This
means that only s and t participate in critical pairs, not u and v.

The rule we use is: given a clause of the form C ∧ s = t → u = v, replace it
with the two clauses

freshi(y, y, x1, . . . , xn) = u

C → freshi(s, t, x1, . . . , xn) = v

where freshi is a fresh function symbol and x1, . . . , xn is the union of the free
variables of u and v.2 We introduce a new symbol freshi each time the rule
is applied. The idea is that freshi(x, y, x1, . . . , xn) represents the expression “if
x = y then u else v”.3 Once the prover derives s = t, the two equations can
be combined to yield u = v. Thus, freshi is really the function symbol ifeq from
before (which is not used in this encoding), specialised to the implication at
hand, which removes the need to have u and v as an argument to ifeq.

In our testing, the encoding works best if we always let u be the smaller term
and v the bigger term of the positive literal, ordering by weight—that is, the
opposite way to the if-then-else encoding. We are not sure why.

Efficiency. If the two equations above are oriented left-to-right, the only infer-
ence a prover can make is to paramodulate into s and t in order to make them
equal. Once s and t are made equal, the two rules can be combined to derive
u = v. Thus the search space is reduced: the theorem prover effectively simulates
a first-order prover working forward from positive unit literals.

Example. Take the example clause set. The first clause is encoded as

fresh1(z, z, x, y) = x

fresh1(f(x), f(y), x, y) = y.

2 Since we are working with clauses, free variables are universally quantified.
3 The arguments x1, . . . , xn help to unambiguously identify u and v. Without them,

this interpretation of freshi would not make sense and the encoding would be
unsound.
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The second clause is first transformed into

fresh2(x, x) = a

f(a) = b → fresh2(f(c), d) = c

and this latter clause becomes

fresh3(x, x) = fresh2(f(c), d)
fresh3(f(a), b) = c.

The final result is five equations:

fresh1(z, z, x, y) = x

fresh1(f(x), f(y), x, y) = y

fresh2(x, x) = a

fresh3(x, x) = fresh2(f(c), d)
fresh3(f(a), b) = c

We argued above that we would like each of these equations to be oriented
left-to-right, but for the fourth equation it is not clear if that will happen. This
suggests that the encoding could be improved if we could give the prover an
appropriate ordering for the fresh symbols. See Sect. 2.5 for another solution.

Proof of Correctness. We first introduce some notation. We write −→x for
(x1, . . . , xn), the sequence of all free variables of u and v. If σ is a variable
assignment, we write σ(−→x ) for (σ(x1), . . . , σ(xn)). If M is an interpretation and
(c1, . . . , cn) are domain elements then we write M−→c (u) or M−→c (v) for the value
of u or v under the variable assignment {x1 �→ c1, . . . , xn �→ cn}. Note that if
σ(−→x ) = −→c then Mσ(u) = M−→c (u) and Mσ(v) = M−→c (v).

It is enough to show that a single application of the encoding rule is sound
and complete. In other words, if φ is a formula which contains the clause

C ∧ s = t → u = v,

and φenc is φ with that clause replaced by the following two clauses:

fresh(y, y,−→x ) = u

C → fresh(s, t,−→x ) = v,

then we must show that φ and φenc are equisatisfiable.

Soundness. Suppose M is a model of φ. We extend M to a model Menc of φenc

by interpreting fresh as follows:

fresh(a, b,−→c ) =

{
M−→c (u), if a = b

M−→c (v), otherwise
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Note that M and Menc agree on the truth of any formula not involving fresh,
and that since fresh was freshly generated, it does not occur in s, t, u, v or C.

We need to check that both of the new clauses of φenc hold. First we show
that Menc |= fresh(y, y,−→x ) = u: given a variable assignment σ, let −→c = σ(−→x );
then Mσ

enc(fresh(y, y,−→x )) = fresh(σ(y), σ(y),−→c ) = M−→c
enc(u) = Mσ

enc(u).
Then we assume that σ is a variable assignment such that Menc, σ |= C, and

show that Menc, σ |= fresh(s, t,−→x ) = v. Let −→c = σ(−→x ). Note that since fresh
does not occur in C, we must have M, σ |= C. Recalling that M, σ |= C ∧ s =
t → u = v, the proof proceeds by case analysis:

– If M, σ 
|= s = t, then Mσ
enc(fresh(s, t,

−→x )) = fresh(Mσ(s),Mσ(t),−→c ) =
M−→c (v) = Mσ

enc(v), since Mσ(s) 
= Mσ(t).
– If M, σ |= s = t and M, σ |= u = v, then Mσ

enc(fresh(s, t,
−→x )) =

fresh(Mσ(s),Mσ(t),−→c ) = M−→c (u) = Mσ(u) = Mσ
enc(v).

Completeness. To go from a model of φenc to a model of φ, we show that if
(i) M |= fresh(y, y,−→x ) = u and (ii) M, σ |= C → fresh(s, t,−→x ) = v, then
M, σ |= C ∧ s = t → u = v.

Assume that M, σ |= C ∧ s = t. From (i) and Mσ(s) = Mσ(t)
we get Mσ(fresh(s, t,−→x )) = Mσ(u). From (ii) and M, σ |= C we get
Mσ(fresh(s, t,−→x )) = Mσ(v). Therefore Mσ(u) = Mσ(fresh(s, t,−→x )) = Mσ(v)
and M, σ |= u = v.

2.4 Encoding 4: Split if

When using Knuth-Bendix completion, the equation fresh(s, t,−→x ) = u has the
disadvantage that the number of critical pairs it creates is the product of the
number of critical pairs created using s and using t. The fourth encoding solves
this problem by having two equations, one for s and one for t.

The rule we use is: replace a clause of the form C ∧ s = t → u = v with the
two clauses

freshi(s, x1, . . . , xn) = u

C → freshi(t, x1, . . . , xn) = v,

where x1, . . . , xn consists of the union of the free variables of s, t, u and v (not
just u and v as in encoding 3) and freshi is a fresh function symbol. Just as in
encoding 3, we introduce a new symbol freshi each time the rule is applied.

Example. For the example clause set, the first clause is encoded as:

fresh1(f(x), x, y) = x

fresh1(f(y), x, y) = y

The second clause becomes:

fresh2(f(c)) = a

f(a) = b → fresh2(d) = c
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and the latter clause in turn is encoded as:

fresh3(f(a)) = fresh2(d)
fresh3(b) = c

Efficiency. The chief gain compared to encoding 3 is the reduced number of
critical pairs. One disadvantage is that we must include the free variables of all
four terms, s, t, u and v, which may lead to rather large equations.

Proof of Correctness. We use the same setup and notation, and indeed most
of the same proof, as for encoding 3. Suppose that φ is a formula which contains
the clause

C ∧ s = t → u = v,

and that in φenc that clause has been replaced by the following two:

fresh(s,−→x ) = u

C → fresh(t,−→x ) = v.

We show that φ and φenc are equisatisfiable.

Soundness. Suppose that M is a model of φ. We extend M to a model Menc of
φenc by interpreting fresh as follows:

fresh(a,
−→
b ) =

{
M−→

b (u), if M−→
b (s) = a

M−→
b (v), otherwise

As before, M and Menc agree on the truth of any formula not involving fresh,
and fresh does not occur in s, t, u, v or C.

First we check that Menc |= fresh(s,−→x ) = u. Given a variable assign-
ment σ, let

−→
b = σ(−→x ). Then Mσ

enc(fresh(s,
−→x )) = fresh(Mσ(s),

−→
b ) =

fresh(M−→
b (s),

−→
b ) = M−→

b (u) = Mσ
enc(u).

Then we show that if Menc |= C then Menc |=→ fresh(t,−→x ) = v. Take a
variable assignment σ such that Menc |= C, which implies that M |= C, and let−→
b = σ(−→x ). Since M, σ |= C ∧ s = t → u = v, we can do a case split:

– If M, σ 
|= s = t, then Mσ
enc(fresh(t,

−→x )) = fresh(Mσ(t), σ(−→x )) =
fresh(M−→

b (t),
−→
b ) = M−→

b (v) = Mσ
enc(v), since Mσ(t) 
= Mσ(s).

– If M, σ |= s = t and M, σ |= u = v, then Mσ
enc(fresh(t,

−→x )) =
fresh(Mσ(t), σ(−→x )) = fresh(Mσ(s), σ(−→x )) = fresh(M−→

b ,
−→
b ) = M−→

b (v) =
Mσ

enc(v).

Completeness. To go from a model of φenc to a model of φ, we show that if
(i) M |= fresh(s,−→x ) = u and (ii) M, σ |= C → fresh(t,−→x ) = v, then M, σ |=
C ∧ s = t → u = v.

Assume that M, σ |= C ∧ s = t. From (i) and Mσ(s) = Mσ(t) we get
Mσ(fresh(t,−→x )) = Mσ(u). From (ii) and M, σ |= C we get Mσ(fresh(t,−→x )) =
Mσ(v). Therefore Mσ(u) = Mσ(fresh(t,−→x )) = Mσ(v) and M, σ |= u = v.
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2.5 Tupling, an Optional Transformation

In encodings 3 and 4, nested implications become rather messy. For example, in
encoding 4, the implication

a = b ∧ c = d → e = f

turns into the following equations:

fresh1(c) = e

fresh2(a) = fresh1(d)
fresh2(b) = f

In Sect. 2.3, we argued that for efficiency the encoded equations should always be
oriented with freshi on the left, but this is not possible for the middle equation,
and efficiency may suffer.

If we introduce a function symbol tuple, we can transform the above impli-
cation into the following binary clause:

tuple(a, c) = tuple(b, d) → e = f

This exploits the fact that the only way to prove tuple(a, c) = tuple(b, d) is to
prove a = b and c = d, because there are no extra axioms about tuple4.

Applying encoding 4 now gives a much cleaner translation, and the equations
will be oriented correctly:

fresh(tuple(a, c)) = e

fresh(tuple(b, d)) = f

In fact, we can fuse the function symbol fresh with tuple, because fresh is never
used without tuple, and the result is:

fresh(a, c) = e

fresh(b, d) = f

In general, tupling transforms the clause t1 = u1 ∧ . . . ∧ tn = un → t = u
into the clause tuplen(t1, . . . , tn) = tuplen(u1, . . . , un) → t = u, where tuplen is
a function symbol of arity n.

If the input problem is sorted, the result sort of tuple should be a fresh sort,
otherwise we risk unsoundness. If the input problem is unsorted, then it is safe
for tuple to be unsorted too. To show this, we require two lemmas.

Lemma 3 (Safe sort erasure). Let φ be a sorted formula and φerased be the
same formula with all sorts erased. Suppose that φ has the property that, if it
is satisfiable, it has a model where (i) all domains have the same cardinality, or
(ii) all domains are infinite. Then φ and φerased are equisatisfiable.
4 Also, no special support for tuples is needed in the theorem prover.
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Proof. For (i), see Lemma 1 of [8]. For (ii), use the Löwenheim–Skolem theorem
to get a model where all domains are countably infinite, then use (i). ��
Lemma 4 (The cardinality of Horn formula models). If an unsorted Horn
formula has a model of cardinality at least 2, it also has an infinite model.

Proof. Suppose that φ is such a Horn formula. Since it has a model of cardinality
at least 2, we know that φ 
� x = y. We now make use of the fact that every
satisfiable Horn formula has a minimal model. Take the signature of φ and adjoin
a countably infinite set of constant symbols c1, c2, . . .; this preserves satisfiability,
and we claim that the resulting minimal model M is infinite.

Since none of the constants ci occurs in φ, any resolution proof of φ � ci = cj

(for i 
= j) also proves φ � x = y. Since φ 
� x = y, this implies that φ 
� ci = cj ,
and hence in any minimal model ci 
= cj . Since M is minimal, none of the ci are
equal in M, and so M is infinite. ��

After these two lemmas, we are ready to prove the satefy of tupling for
unsorted Horn formulas.

Lemma 5 (Safety of unsorted tupling for Horn formulas). Let φ be an
unsorted Horn formula and φenc be a transformed version in which we have
applied (sorted) tupling. Then φenc and its sort erasure are equisatisfiable, i.e.,
the sorts can safely be erased.

Proof. φenc has two sorts; let us call them ι and τ (for tuple). Since τ is a tuple
sort it may always be interpreted by a tuple of domain elements of ι; in that
case, if the cardinality of ι is κ, the cardinality of τ is κn for some n.

We are going to invoke Lemma 3. There are three cases, and in all of them
the requirements of Lemma 3 hold:

– φ is unsatisfiable. In this case φenc is unsatisfiable too.
– φ has a model of cardinality 1. In this case, φenc has a model where ι has

cardinality 1 and τ has cardinality 1n = 1.
– φ only has models of cardinality greater than 1. By Lemma4, it has an infinite

model, so φenc has a model where ι and τ are both infinite. ��

3 Eliminating Predicates

Equational provers do not usually support predicates. Before using the encodings
of the previous section, we eliminate predicates in the standard way, by replacing
them with functions: we introduce a new sort bool and a constant true : bool, and
we replace each atomic formula p(t1, . . . , tn) with the equation p(t1, . . . , tn) =
true (p is now a function of result sort bool). We assume without proof that this
well-known transformation, which we call sorted predicate elimination, is correct.

We would like to avoid introducing sorts if the input problem is unsorted. This
suggests that we should do unsorted predicate elimination: the same transforma-
tion as above, but without introducing the bool sort. Unfortunately, this is not
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sound: the set of clauses {x = y,¬p(a)} is satisfiable, but {x = y, p(a) 
= true}
is unsatisfiable because x = y implies p(a) = true. In fact, unsoundness occurs
only when the input problem implies x = y, as the following lemma implies:

Lemma 6. Let φenc be obtained from an unsorted formula φ by sorted predi-
cate elimination. If φ has no model of size 1 then φenc and its sort erasure are
equisatisfiable, i.e., the sorts can safely be erased.

Proof (rather similar to Lemma 5). The formula φenc has two sorts; let us call
them bool and ι. We show that either φenc is unsatisfiable or it has a model
where bool and ι are infinite, and then invoke Lemma3. There are two cases:

– If φ is unsatisfiable, then so is φenc.
– If φ is satisfiable, then by assumption it has a model of cardinality greater

than 1. By Lemma 4, φ has an infinite model. Therefore φenc has a model
where ι is infinite. This model can be extended to one where bool is also
infinite, since the monotonicity test of [8] is satisfied. ��
We can exploit Lemma 6 to eliminate predicates without introducing sorts,

if the input problem is unsorted:

– Check if the input problem has a model of size 1. If so, abort the encoding
and report that the formula is satisfiable.

– Otherwise, perform unsorted predicate elimination.

If the input problem is sorted, Lemma 6 does not help, so for sorted problems
we always introduce the sort bool.

This leaves the problem of checking if the input formula has a model of size 1,
which is easy to solve by observing that, in a model of size 1, all terms are equal
and all predicates are constant-valued. To check if φ has a model of size 1, we
replace all equality literals t = u with true, and all predicates p(t1, . . . , tn) with
a Boolean variable p. We then check if the resulting propositional Horn formula
is satisfiable, for example by doing unit propagation or using a SAT solver.

Example. Given the Horn clauses {x = y,¬p(a)}, we check if the set of clauses
{true,¬p} is satisfiable. It is, so the original problem has a model of size 1. Given
the clauses {f(x) = f(y), p(a),¬p(b)}, we check if {true, p,¬p} is satisfiable. It is
not, so we eliminate the predicates to get {f(x) = f(y), p(a) = true, p(b) 
= true}.

4 Encoding Goal Clauses

The goal clauses of a Horn formula are negated conjectures. By having several
goal clauses of several literals each, a formula can have a conjecture which is
an arbitrary Boolean combination (without negation) of positive literals. Most
equational provers do not accept such expressive goals; some require the goal to
be a single ground unit equation.

To solve this, we introduce two new constants false, true : bool, where bool is
the sort introduced by predicate elimination. We then replace each goal clause
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C → false with the clause C → false = true, and add one goal clause, false 
=
true.

Some provers accept slightly more general goals, and the goal encoding can
be adapted to the situation. For example, a Twee goal can be a disjunction of
ground equations, so the transformation of this section is only used for non-
ground conjectures, and tupling (Sect. 2.5) is used for ground conjectures that
use conjunction. A Waldmeister goal can be a conjunction of ground equations,
and so the transformation of this section must be used for disjunctions.

5 Evaluation

We evaluated our encodings on two equational theorem provers, Waldmeister [14]
and Twee [20], and one first-order prover, E 2.0 [19], using the 2159 unsatisfiable
Horn problems available in TPTP v7.0.0 [21]. We tried all four encodings, with
tupling enabled and disabled. Each prover was allowed to run for five minutes.
We ran Waldmeister with the flag --auto and E with the flag --auto-schedule.
We ran Twee with a heuristic designed for Horn clauses, which we describe below.

The results are shown in Table 1, with the best result of each prover marked
in bold. To provide a baseline for the comparison, we also gave the original
unencoded problems to E, which solved 1972, and SPASS [22], which solved
1370.

We see that Twee solved more problems than Waldmeister, but both provers
have respectable performance: as a prover for Horn problems, Waldmeister is
about as powerful as SPASS, while Twee lies in between SPASS and E. Nonethe-
less, E is clearly better than Twee or Waldmeister at solving typical Horn prob-
lems. The results also show that the encoding has a cost: E solves about 300
fewer problems when the problems are encoded.

Table 1. Number of problems solved using each encoding.

Prover Tupling? Encoding

1 2 3 4

Twee No 1621 1596 1671 1683

Yes 1534 1465 1493 1648

Waldmeister No 1340 1246 1088 1151

Yes 1378 1281 1176 1173

E No 1698 1710 1672 1701

Yes 1673 1676 1579 1615

We also see that Twee and Waldmeister prefer entirely different encodings.
Since the two provers use a similar proof procedure, the difference may lie in the
heuristics used. Special heuristics for encoded Horn formulas are future work.
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Rating 1 Problems. Together, the three provers solved the following 37 prob-
lems of rating 1.0, i.e., problems which are not currently solved by any auto-
matic prover. All three provers solved several rating 1.0 problems; see Table 2
for details.

ALG212+1 ALG213+1 KLE077+1 KLE156+2 LAT064-1 LAT178-1
LAT180-1 LAT181-1 LAT184-1 LAT185-1 LAT186-1 LAT187-1
LAT188-1 LAT189-1 LAT190-1 LAT191-1 LAT193-1 LAT202-1
LAT203-1 LAT206-1 LAT207-1 LAT221-1 LAT224-1 LAT225-1
LAT226-1 LAT228-1 LAT229-1 LAT231-1 LAT242-1 LAT256-1
LCL147-1 LCL148-1 LCL151-1 REL020+1 REL040+3 REL040-4
REL041+1

These problems come from several domains of the TPTP, but all consist
mostly of equations, and most involve an algebraic structure having a rich equa-
tional theory. This suggests that the encodings are most effective on problems
where the bulk of the reasoning is equational—as we might expect.

Table 2. Number of rating-1 problems solved using each encoding.

Prover Tupling? Encoding

1 2 3 4

Twee No 29 19 24 18

Yes 22 23 5 17

Waldmeister No 9 10 5 5

Yes 8 7 15 13

E No 3 4 1 3

Yes 3 5 1 7

A Heuristic for Twee. Twee employed a special heuristic designed to let it eagerly
discharge preconditions of equations. Twee decides which critical pair to join next
by picking the one with the lowest score, which is computed based on, among
other things, the size of the critical pair. The heuristic is that, if we are scoring
a term like ifeq(s, t, u, v) = v, and s and t happen to be unifiable, we perform
the unification but then count s and t as having zero size.

We use this heuristic in encodings 1, 2 and 3. In encoding 4, there is no way
to apply it, since s and t are never present in the same term. With the heuris-
tic enabled, Twee solves more rating 1 problems—but slightly fewer problems
overall.

Satisfiable Problems. We also evaluated our encodings on the 312 satisfiable,
Horn, non-unit equality problems in the TPTP. The results were that, regardless
of the prover or the encoding used, we always solved 210–220 problems. The
only exception was if-then without tupling, which solved about 190 problems
depending on the prover; the problems lost were a large collection of rating-0
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problems from NLP, such as NLP002-1.p. As a baseline, E with no encoding
solved 195 problems, so we gained about 20 problems.

On closer inspection, it turned out that most of the problems gained had no
goal clauses. Any such problem has a model of size 1, and our translation imme-
diately reports it as satisfiable without even running the prover (see Sect. 3).
This explains why the choice of encoding had almost no effect.

Twee was able to complete a few problems that E could not (such as
GRP112-1.p, of rating 0.62), but all the problems that we inspected could be
solved by Paradox [9] in under a second. Thus our translations are not very
helpful for showing satisfiability. (We did not evaluate them on Paradox, but as
the translations do not alter the size of any model we do not expect any effect.)

6 Discussion and Related Work

The proof search of a superposition-based prover working on a Horn problem, and
a completion-based prover working on an encoded Horn problem, is quite simi-
lar. Superposition [4,18] incorporates almost all the deduction rules of unfailing
completion [3], only having a slightly stricter condition for backwards simpli-
fication. Thanks to literal selection, a superposition prover working on a Horn
problem can work by forward reasoning from positive unit literals alone, much
like a completion prover will do when using the “split if” encoding.

One important difference is that equational provers use more powerful redun-
dancy tests. For example, ordered completion [2] allows a critical pair to be dis-
carded if all of its ground instances can be joined (see e.g. [15]). A superposition
prover would typically implement only a small subset of this feature, e.g., for
handling commutative functions. Connectedness testing [1] is another powerful
technique. Equational logic has a well-developed theory of proof orderings [2,5,6]
which can be used to prove the correctness of many redundancy criteria.

There have been many and varied attempts to apply equational reasoning to
first-order and Horn logic. As mentioned in the introduction, our first two encod-
ings are inspired by work in universal algebra on encoding first-order logic as
equations [7,16]. Completion has been generalised to Horn clauses [3,10,13,17].
Other term rewriting approaches to first-order logic include one using Boolean
rings [11] and one using Gröbner bases [12].

7 Conclusion and Future Work

We have demonstrated that by encoding Horn formulas as equations, we can
transform an equational theorem prover into a practical prover for Horn formu-
las. The resulting prover is strong on problems that combine difficult equational
reasoning with some Horn clause reasoning. The encodings have a number of pos-
sible applications, including reasoning about functional programs, and reasoning
about abstract algebra.

The encodings we presented do have some overhead. To eliminate this over-
head, we plan to investigate hybrid approaches, where Horn clauses are encoded
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but the prover’s strategy is specially tailored for reasoning about them—for
example, by building certain equations into the prover or discarding unneces-
sary inferences. We hope that equational encodings of first-order logic [7,16] can
perhaps be made practical using such a hybrid approach.

Acknowledgements. This work was supported by the Swedish Research Council
(VR) grant 2016-06204, Systematic testing of cyber-physical systems (SyTeC).
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Abstract. Automated theorem provers are routinely used in program
analysis and verification for checking program properties. These prop-
erties are translated from program fragments to formulas expressed in
the logic supported by the theorem prover. Such translations can be
complex and require deep knowledge of how theorem provers work in
order for the prover to succeed on the translated formulas. Our previous
work introduced FOOL, a modification of first-order logic that extends
it with syntactical constructs resembling features of programming lan-
guages. One can express program properties directly in FOOL and leave
translations to plain first-order logic to the theorem prover. In this paper
we present a FOOL encoding of the next state relations of imperative
programs. Based on this encoding we implement a translation of imper-
ative programs annotated with their pre- and post-conditions to partial
correctness properties of these programs. We present experimental results
that demonstrate that program properties translated using our method
can be efficiently checked by the first-order theorem prover Vampire.

1 Introduction

Automated program analysis and verification requires discovering and proving
program properties ensuring program correctness. These program properties are
usually expressed in combined theories of various data structures, such as inte-
gers and arrays. SMT solvers and first-order theorem provers that are used to
check these properties need efficient handling of both theories and quantifiers.
Moreover, formalisation of the program properties in the logic supported by the
SMT solver or theorem prover plays a crucial role in making the prover succeed
proving program correctness.

The translation of program properties into logical formulas accepted by a
theorem prover is not straightforward. The reason for this is a mismatch between
the semantics of the programming language constructs and that of the input
language of the theorem prover. If program properties are not directly expressible
in the input language, one needs to implement a translation of these properties to
the language of the theorem prover. Such translations can be complex and error
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 405–421, 2018.
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prone. Furthermore, one might need deep knowledge of how theorem provers
work to obtain formulas in a form that theorem provers can handle efficiently.

Program verification systems reduce the mismatch between program proper-
ties and their formalisation as logical formulas from two ends. On the one hand,
intermediate verification languages, such as Boogie [12] and WhyML [5], are
designed to represent programs and their properties in a way that is friendly for
translations to logic. On the other hand, theorem provers extend their supported
logics with syntactic constructs that mirror those of programming languages.

Our previous work introduced FOOL [8], a modification of many-sorted first-
order logic (FOL). FOOL extends FOL with syntactical constructs such as if-
then-else and let-in expressions. These constructs can be used to naturally
express program properties about conditional statements and variable updates.
Users of a theorem prover that supports FOOL do not need to invent translations
for these features of programming languages and can use features of FOOL
directly. It allows the theorem prover to apply its own translation to FOL that
it can use efficiently. We extended the Vampire theorem prover [10] to support
FOOL [6] and designed an efficient clausification algorithm VCNF [7] for FOOL.

In summary, FOOL extends FOL with the following constructs.

– First-class boolean sort—one can define function and predicate symbols with
boolean arguments and use quantifiers over the boolean sort.

– Boolean variables used as formulas.
– Formulas used as arguments to function and predicate symbols.
– Expressions of the form if ϕ then s else t, where ϕ is a formula, and s and

t are either both terms or formulas.
– Expressions of the form let D1; . . . ;Dk in t, where k > 0, t is either a term

or a formula, and D1, . . . , Dk are simultaneous definitions, each of the form
1. f(x1 : σ1, . . . , xn : σn) = s, where n ≥ 0, f can be a function or a predicate

symbol, and s is either a term or a formula;
2. (c1, . . . , cn) = s, where n > 1, c1, . . . , cn are constant symbols of the sorts

σ1, . . . , σn, respectively, and s is a tuple expression. A tuple expression is
inductively defined to be either
(a) (s1, . . . , sn), where s1, . . . , sn are terms of the sorts σ1, . . . , σn, respec-

tively;
(b) if ϕ then s1 else s2, where ϕ is a formula, and s1 and s2 are tuple

expressions; or
(c) let D1; . . . ;Dk in s′, where D1; . . . ;Dk are definitions, and s′ is a

tuple expression.

To our knowledge, no other logic, efficiently implemented in automated theo-
rem provers, contains these constructs. Some constructs of FOOL have been pre-
viously implemented in interactive and higher-order theorem provers. However,
there was no special emphasis on the efficiency or friendliness of the translation
for the following processing by automatic provers.

In this paper, we extend our previous work on FOOL by demonstrating the
efficient use of FOOL for program analysis. To this end, we give an efficient
encoding of the next state relations of imperative programs in FOOL. Let us
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Fig. 1. An imperative program
with an if statement.

Fig. 2. A FOOL encoding of the program
assertion on Fig. 1.

motivate our work with the simple program on Fig. 1. This program contains
an if statement and assignments to integer variables. The assert statement
ensures that x is never greater than y after execution of the if statement.

To check that the given program assertion holds using an automated theorem
prover, one has to express this assertion as a logical formula. For that, one has
to express the updated values of x and y after the sequence of assignments.
For example, one can compute the updated value of each individual variable
separately for each possible execution trace. However, this approach suffers from
a bloated resulting formula that will contain duplicating parts of the program. A
more common technique is to first convert a program to a static single assignment
(SSA) form. This conversion introduces a new intermediate variable for each
assignment and creates a smaller translated formula.

Both excessive naming and excessive duplication of program expressions can
make the resulting logical formula very hard for a first-order theorem prover.
The encoding of the next state relations of imperative programs given in this
paper avoids both by using a FOOL formula that closely matches the structure
of the original program (Sect. 3). This way the decision between introducing new
symbols and duplicating program expressions is left to the theorem prover that
is better equipped to make it. The assertion of the program in Fig. 1 is concisely
expressed with our encoding as the FOOL formula on Fig. 2.

While FOOL offers a concise representation of some programming constructs,
the efficient implementation of FOOL poses a challenge for first-order theorem
provers since their performance on various translations to CNF can be hampered
by the (unintended) use of constructs interfering with their internal implementa-
tion, including the use of orderings, selection and the saturation algorithm. For
example, to deal with the boolean sort, it is not uncommon to add an axiom like
(∀x)(x = 0∨x = 1) for this sort. Even this simple axiom can cause a considerable
growth of the search space, especially when used with certain term orderings. To
address the challenge of dealing with full FOOL, one needs experimental com-
parison of various translations or various implementations of FOOL. Our paper
is the first one to make such an experimental comparison.

Our encoding uses tuple expressions and let-in expressions with tuple defi-
nitions, available in FOOL. We extend and generalise the use of tuples in first-
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order theorem provers by introducing a polymorphic theory of first class tuples
(Sect. 2). In this theory one can define tuple sorts and use tuples as terms.

Our encoding can be efficiently used in automated program analysis and ver-
ification. To demonstrate this, we report on our experimental results obtained by
running Vampire on program verification problems (Sect. 4). These verification
problems are partial correctness properties that we generated from a collection
of imperative programs using an implementation of our encoding to FOOL as
well as other tools.

Contributions. We summarise the main contributions of this paper below.

1. We define an encoding of the next state relation of imperative programs in
FOOL and show that it is sound (Sect. 3). Using this encoding, we define a
translation of certain properties of imperative programs to FOOL formulas.

2. We present a polymorphic theory of first class tuples and its implementation
in Vampire (Sect. 2). To our knowledge, Vampire is the only superposition-
based theorem prover to support this theory.

3. We present experimental results obtained by running Vampire on a collection
of benchmarks expressing partial correctness properties of imperative pro-
grams (Sect. 4). We generated these benchmarks using an implementation of
our encoding to FOOL and other tools. Our results show Vampire is more
efficient on the FOOL encoding of partial correctness properties, compared
with other translations.

2 Polymorphic Theory of First Class Tuples

The use of tuple expressions in FOOL is limited. They can only occur on the
right hand side of a tuple definition in let-in. One cannot use a tuple expression
elsewhere, for example, as an argument to a function or predicate symbol.

In this section we describe the theory of first class tuples that enables a more
generic use of tuples. This theory contains tuple sorts and tuple terms. Both of
them are first class—one can define function and predicate symbols with tuple
arguments, quantify over the tuple sort, and use tuple terms as arguments to
function and predicate symbols. Tuple expressions in FOOL, combined with the
polym orphic theory of tuples, are tuple terms.

Definition. The polymorphic theory of tuples is the union of theories of tuples
parametrised by tuple arity n > 0 and sorts τ1, . . . , τn.

A theory of first class tuples is a first-order theory that contains a sort
(τ1, . . . , τn), function symbols t : τ1 × . . . × τn → (τ1, . . . , τn), π1 : (τ1, . . . , τn) →
τ1, . . . , πn : (τ1, . . . , τn) → τn, and two axioms. The function symbol t con-
structs a tuple from given terms, and function symbols π1, . . . , πn project a
tuple to its individual elements. For simplicity we will write (t1, . . . , tn) instead
of t(t1, . . . , tn) to mean a tuple of terms t1, . . . , tn. The tuple axioms are

1. exhaustiveness

(∀x1 : τ1) . . . (∀xn : τn)(π1((x1, . . . , xn)) .= x1 ∧ . . . ∧ πn((x1, . . . , xn)) .= xn);
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2. injectivity

(∀x1 : τ1) . . . (∀xn : τn)(∀y1 : τ1) . . . (∀yn : τn)
((x1, . . . , xn) .= (y1, . . . , yn) ⇒ x1

.= y1 ∧ . . . ∧ xn
.= yn).

Tuples are ubiquitous in mathematics and programming languages. For
example, one can use the tuple sort (R,R) as the sort of complex numbers.
Thus, the term (a, b), where a : R and b : R represents a complex number a+ bi.
One can define the addition function plus : (R,R)×(R,R) → (R,R) for complex
numbers with the formula

(∀x : (R,R))(∀y : (R,R))
(plus(x, y) .= (π1(x) + π1(y), π2(x) + π2(y))),

(1)

where + denotes addition for real numbers.
Tuple terms can be used as tuple expressions in FOOL. If (c1, . . . , cn) = s is

a tuple definition inside a let-in, where c1, . . . , cn are constant symbols of sorts
τ1, . . . , τn, respectively, then tuple expression s is a term of the sort (τ1, . . . , τn).

It is not hard to extend tuple definitions to allow arbitrary tuple terms of
the correct sort on the right hand side of =. For example, one can use a variable
of the tuple sort. With such extension, Formula 1 can be equivalently expressed
using a let-in with two simultaneous tuple definitions as follows

(∀x : (R,R))(∀y : (R,R))
(plus(x, y) .= let (a, b) = x; (c, d) = y in (a + c, b + d)).

(2)

Implementation. Vampire implements reasoning with the polymorphic theory
of tuples by adding corresponding tuple axioms when the input uses tuple sorts
and/or tuple functions. For each tuple sort (τ1, . . . , τn) used in the input, Vam-
pire defines a term algebra [9] with the single constructor t and n destructors
π1, . . . , πn. Then Vampire adds the corresponding term algebra axioms, which
coincide with the tuple theory axioms.

Vampire reads formulas written in the TPTP language [16]. The TFX sub-
set1 of TPTP contains a syntax for tuples and let-in expressions with tuple
definitions. The sort (R,R) is represented in TFX as [$real,$real] and the
term (a + c, b + d) is represented as [$sum(a,c),$sum(b,d)]. Formula 2 can be
expressed in TPTP as

tff(plus,type,plus:([$real,$real]*[$real,$real])>[$real,$real]).
tff(plus_def,axiom,

![X:[$real,$real],Y:[$real,$real]]:
(plus(X,Y)=$let([[a:$real,b:$real],[c:$real,d:$real]],

[a,b]:=X;[c,d]:=Y,
[$sum(a,c),$sum(b,d)]))).

Vampire translates let-in with tuple definitions to clausal normal form of
first-order logic using the VCNF clausification algorithm [7].
1 http://www.cs.miami.edu/∼tptp/TPTP/Proposals/TFXTHX.html.

http://www.cs.miami.edu/~tptp/TPTP/Proposals/TFXTHX.html
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3 Imperative Programs to FOOL

In this section we discuss an efficient translation of imperative programs to
FOOL. To formalise the translation we define a restricted imperative program-
ming language and its denotational semantics in Sect. 3.1. This language is capa-
ble of expressing variable updates, if-then-else, and sequential composition.
Then, we define an encoding of the next state relation for programs of this lan-
guage, and state the soundness property of this encoding in Sect. 3.2. Finally, in
Sect. 3.3 we show a translation that converts a program, annotated with its pre-
conditions and post-conditions, to a FOOL formula that expresses the partial
correctness property of that program.

We give (rather standard) definitions of our programming language and its
semantics and use them to define the main contributions of this section: the
encoding of the next state relation (Definition 6) and soundness of this encoding
(Theorem 1).

3.1 An Imperative Programming Language

We define a programming language with assignments to typed variables, if-
then-else, and sequential composition. We omit variable declarations in our
language and instead assume for each program a set of program variables V and
a type assignment η. η is a function that maps each program variable into a
type. Each type is either int, bool, or array(σ, τ), where σ and τ are types of
array indexes and array values, respectively. In the sequel we will assume that
V and η are arbitrary but fixed.

Programs in our language select and update elements of arrays, including
multidimensional arrays. We do not introduce a distinguished type for multidi-
mensional arrays but instead use nested arrays. We write array(σ1, . . . , σn, τ),
n > 1, to mean the nested array type array(σ1, array(. . . , array(σn, τ) . . .)).

Definition 1. An expression of the type τ is defined inductively as follows.

1. An integer n is an expression of the type int.
2. Symbols true and false are expressions of the type bool.
3. If η(x) = τ , then x is an expression of the type τ .
4. If η(x) = array(σ1, . . . , σn, τ), n > 0, e1, . . . , en are expressions of types σ1,

. . . , σn, respectively, then x[e1, . . . , en] is an expression of the type τ .
5. If e1 and e2 are expressions of the type τ , then e1

.= e2 is an expression of
the type bool.

6. If e1 and e2 are expressions of the type int, then −e1, e1 +e2, e1 −e2, e1 ×e2
are expressions of the type int.

7. If e1 and e2 are expressions of the type int, then e1 < e2 is an expression of
the type bool.

8. If e1 and e2 are expression of the type bool, then ¬e1, e1 ∨ e2, e1 ∧ e2 are
expressions of the type bool. �	

Definition 2. A statement is defined inductively as follows.
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1. skip is an empty statement.
2. If η(x1) = τ1, . . . , η(xn) = τn, n ≥ 1 and e1, . . . , en are expressions of the

types τ1, . . . , τn, respectively, then x1, . . . , xn := e1, . . . , en is a statement.
3. If η(x) = array(σ1, . . . , σn, τ), n ≥ 1, and e1, . . . , en, e are expressions of

types σ1, . . . , σn, τ , respectively, then x[e1, . . . , en] := e is a statement.
4. If e is an expression of the type bool, s1 and s2 are statements, and at least

one of s1, s2 is not skip, then if e then s1 else s2 is a statement.
5. If s1 and s2 are statements and neither of them is skip, then s1 ; s2 is a

statement. �	

We say that x1, . . . , xn in the statement x1, . . . , xn := e1, . . . , en and x in the
statement x[e1, . . . , en] := e are assigned program variables. For each statement
s we denote by updates(s) the set of all assigned program variables that occur
in s.

We define the semantics of the programming language by an interpretation
function �− � for types, expressions and statements. The interpretation of a type
is a set: � int � = Z, � bool � = {0, 1}, and � array(τ, σ) � = � τ � → �σ �. The
interpretation of expressions and statements is defined using program states, that
is, mappings of program variables x ∈ V , η(x) = τ to elements of � τ �.

Definition 3. Let e be an expression of the type τ . The interpretation � e � is
a mapping from program states to � τ � defined inductively as follows.

1. �n � maps each state to n, where n is an integer.
2. � true � maps each state to 1.
3. � false � maps each state to 0.
4. �x � maps each st to st(x).
5. �x[e1, . . . , en] � maps each st to st(x)(� e1 �(st)) . . . (� en �(st)).
6. � e1 ⊕ e2 � maps each st to � e1 �(st) ⊕ � e2 �(st),where ⊕ ∈ { .=,+,−,×, <

,∨,∧}.
7. �¬e � maps each st to ¬� e �(st). �	

Definition 4. Let s be a statement. The interpretation � s � is a mapping
between program states defined inductively as follows.

1. � skip � is the identity mapping.
2. �x1, . . . , xn := e1, . . . , en � maps each st to st ′ such that st ′(xi) = � ei �(st) for

each 1 ≤ i ≤ n and otherwise coincides with st.
3. �x[e1, . . . , en] := e � maps each st to st ′ such that

st ′(x)(� e1 �(st)) . . . (� en �(st)) = � e �(st)

and otherwise coincides with st.
4. � if e then s1 else s2 � maps each st to � s1 �(st) if � e �(st) = 1 and to

� s2 �(st) otherwise.
5. � s1 ; s2 � is � s2 � ◦ � s1 �. �	
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3.2 Encoding the Next State Relation

Our setting is FOOL extended with the theory of linear integer arithmetic,
the polymorphic theory of arrays [6], and the polymorphic theory of first class
tuples (Sect. 2). The theory of linear integer arithmetic includes the sort Z, the
predicate symbol <, and the function symbols +, −, and ×. The theory of arrays
includes the sort array(τ, σ) for all sorts τ and σ, and function symbols select
and store. The function symbol select represents a binary operation of extracting
an array element by its index. The function symbol store represents a ternary
operation of updating an array at a given index with a given value. We point
out that sorts bool , Z, and array(σ, τ) mirror types bool, int and array(σ, τ)
of our programming language, and have the same interpretations.

We represent multidimensional arrays in FOOL as nested arrays2. To
this end we (i) inductively define select(a, i1, . . . , in), where n > 1, to be
select(select(a, i1), i2, . . . , in); and (ii) inductively define store(a, i1, . . . , in, e),
where n > 1, to be store(a, i1, store(select(a, i1), i2, . . . , in, e)).

Our encoding of the next state relation produces FOOL terms that use pro-
gram variables as constants and do not use any other uninterpreted function
or predicate symbols. In the sequel we will only consider such FOOL terms.
For these FOOL terms, η is a type assignment and each program state can be
extended to a η-interpretation, the details of this extension are straightforward
(we refer to [8] for the semantics of FOOL). We will use program states as η-
interpretations for FOOL terms. For example we will write evalst(t) for the value
of t in st , where t is a FOOL term and st is a program state. We will say that
a program state st satisfies a FOOL formula ϕ if evalst(ϕ) = 1.

To define the encoding of the next state relation we first define a translation
of expressions to FOOL terms. Our encoding applies this translation to each
expression that occurs inside a statement.

Definition 5. Let e be an expression of the type τ . T (e) is a FOOL term of
the sort τ , defined inductively as follows.

T (n) = n,where n is an integer.
T (true) = true.

T (false) = false.

T (x) = x.

T (x[e1, . . . , en]) = select(x, T (e1), . . . , T (en)).
T (e1 ⊕ e2) = T (e1) ⊕ T (e2),where ⊕ ∈ { .=,+,−, <,×,∨,∧}.

T (−e) = −T (e).
T (¬e) = ¬T (e).

�	

2 Multidimensional arrays can be represented in FOOL also as arrays with tuple
indexes. We do not discuss such representation in this work.
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Lemma 1. evalst(T (e)) = � e �(st) for each expression e and state st. �	

Proof. By structural induction on e. �	

Definition 6. Let s be a statement. N (s) is a mapping between FOOL terms
of the same sort, defined inductively as follows.

1. N (skip) is the identity mapping.
2. N (x1, . . . , xn := e1, . . . , en) maps t to

let (x1, . . . , xn) = (T (e1), . . . , T (en)) in t.

3. N (x[e1, . . . , en] := e) maps t to

let x = store(x, T (e1), . . . , T (en), T (e)) in t.

4. N (if e then s1 else s2) maps t to

let (x1, . . . , xn) = if T (e) then N (s1)((x1, . . . , xn))
else N (s2)((x1, . . . , xn))

in t,

where updates(s1) ∪ updates(s2) = {x1, . . . , xn}.
5. N (s1 ; s2) is N (s1) ◦ N (s2). �	

The following theorem is the soundness property of translation N . Essen-
tially, it states that N encodes the semantics of a given statement as a FOOL
formula.

Theorem 1. evalst(N (s)(t)) = eval� s �(st)(t) for each statement s, state st and
FOOL term t. �	

Proof. By structural induction on s. �	

3.3 Encoding the Partial Correctness Property

We use the encoding of the next state relation to generate partial correctness
properties of programs annotated with their pre-conditions and post-conditions.

We define an annotated program to be a Hoare triple {ϕ} s {ψ}, where s is a
statement, and ϕ and ψ are formulas in first-order logic. We say that {ϕ} s {ψ}
is correct if for each program state st that satisfies ϕ, � s �(st) satisfies ψ. We
translate each annotated program {ϕ} s {ψ} to the FOOL formula ϕ ⇒ N (s)(ψ).

Theorem 2. Let {ϕ} s {ψ} be an annotated program. The FOOL formula ϕ ⇒
N (s)(ψ) is valid iff {ϕ} s {ψ} is correct. �	

Proof. Directly follows from Theorem 1. �	
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We point out the following two properties of the encoding N . First, the size
of the encoded formula is O(v · n), where v is the number of variables in the
program and n is the program size as each program statement is used once with
one or two instances of (x1, . . . , xn). Second, the encoding does not introduce
any new symbols. When we translate program correctness properties to FOL,
both an excessive number of new symbols and an excessive size of the translation
might make the encoded formula hard for a theorem prover. Instead of balancing
between the two, encoding to FOOL leaves the decision to the theorem prover.

4 Experiments

In this section we describe our experiments on comparing the performance of the
Vampire theorem prover [10] on FOOL and on translations of program proper-
ties to FOL. We used a collection of 50 programs written in the Boogie veri-
fication language [12]. Each of these programs uses only variable assignments,
if-then-else statements, and sequential composition and is annotated with its
pre-conditions and post-conditions, expressed in first-order logic. From this col-
lection of programs we generated the following three sets of benchmarks.

1. 50 problems in first-order logic written in the SMT-LIB language [2]. We
generated these problems by running the front end of the Boogie [1] verifier.

2. 50 FOOL problems with tuples generated by running our implementation of
the translation from Sect. 3.3, named Voogie.

3. 50 FOOL problems generated by running the BLT [3] translator.

We point out that in our experiments we do not aim to compare methods of
program verification or specific verification tools. Rather, we compare different
ways of translating realistic verification problems for theorem provers.

In what follows, we describe the collection of imperative programs used in
our experiments (Sect. 4.1) and discuss our set of benchmarks (Sect. 4.2). All
properties that we deal with use integers and arrays, as well as universal and
existential quantifiers. To verify these properties one has to reason in the combi-
nation of theories and quantifiers. We briefly describe how Vampire implements
this kind of reasoning in Sect. 4.3. Our experimental results are summarised in
Tables 1, 2 and 3 and discussed in Sect. 4.4.

4.1 Examples of Imperative Programs

We demonstrate the work of our translation on a collection of imperative pro-
grams that only use variable assignments, if-then-else statements, and sequen-
tial composition. Unfortunately, no large collections of such programs are avail-
able. There are many benchmarks for software verification tools, but most of
them use control flow statements not covered in this work, such as gotos and
exceptions. We also cannot use benchmarks from the hardware verification and
model checking communities, because they are mostly about boolean values and
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bit-vectors. For our experiments we generated our own imperative programs in
two steps described below.

First, we crafted 10 programs that implement textbook algorithms and solu-
tions to program verification competitions. Each program uses variables of the
integer, boolean, and array type. Each program contains a single while loop of
the form while e do s, where e is a boolean expression and s is a statement. In
addition, each program contains variable assignments, if-then-else statements,
and sequential composition. We annotated each program with its pre-condition
ϕ and each loop with its invariant ψ. The formulas ϕ and ψ are expressed in
first-order logic.

Then, we unrolled the loop of each program k times, where k is an integer
between 1 and 5. This resulted in 50 loop-free programs that retain the annotated
properties. Each program encodes the loop invariant property of the original
program. Multiple unrollings provide us with programs with long sequences of
variables updates, if-then-else statements and compositions, which are conve-
nient for our experiments. Our loop unrolling program transformation consisted
of the following steps.

1. Introduce a fresh boolean variable bad that encodes the under-specified state
of the program.

2. Construct a guarded loop iteration i as if ¬e then bad := true else skip ; s.
3. Construct a sequence of iterations i ; . . . ; i, where i is repeated k times.
4. Finally, construct the annotated program {ϕ ∧ ψ} i ; . . . ; i {¬bad ⇒ ψ}.

It is not hard to show that if a program with a loop satisfies its specification,
then the Hoare triple resulting in step 4 of the above transformation also holds.

We wrote our example programs with loops as well as their loop-free unrolled
versions in the Boogie language. Boogie can unroll loops automatically, but intro-
duces goto statements that our translation does not support. For this reason,
we used the loop unrolling described above.

An example of our loop unrolling is available at http://www.cse.chalmers.
se/∼evgenyk/ijcar18/. It shows the maxarray program with a loop from our
collection and a program generated from maxarray by unrolling its loop twice.

4.2 Benchmarks

We used the 50 annotated loop-free programs and generated their partial correct-
ness statements using Boogie, Voogie and BLT. These statements are encoded as
unsatisfiable problems in first-order logic and FOOL. Our collection of impera-
tive programs with loops, their loop-free unrollings and benchmarks expressed in
the TPTP language [15] is available at http://www.cse.chalmers.se/∼evgenyk/
ijcar18/. The TPTP benchmarks are also available, along with other FOOL
problems, on the TPTP website http://tptp.org.

The Boogie verifier generates verification conditions as formulas in first-order
logic written in the SMT-LIB language and uses the SMT solver Z3 [4] to check
these formulas. We ran Boogie with the option /proverLog to print the generated

http://www.cse.chalmers.se/~evgenyk/ijcar18/
http://www.cse.chalmers.se/~evgenyk/ijcar18/
http://www.cse.chalmers.se/~evgenyk/ijcar18/
http://www.cse.chalmers.se/~evgenyk/ijcar18/
http://tptp.org
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formulas on each of our annotated loop-free programs and in this way obtained
a collection of 50 SMT-LIB benchmarks.

Voogie is our implementation of the translation described in Sect. 3. It takes
as input programs written in a fragment of the Boogie language and generates
FOOL formulas written in the TPTP language. The source code of Voogie is
available at https://github.com/aztek/voogie.

The fragment of the Boogie language supported by Voogie can be seen as the
smallest fragment that is sufficient to represent the loop-free programs in our
collection. This fragment consists of (i) top level variable declarations; (ii) a single
procedure main annotated with its pre- and post-conditions; (iii) assignments to
variables, including parallel assignments, and assignments to array elements; (iv)
if-then-else statements; and (v) arithmetic and boolean operations. Running
Voogie on each loop-free program in our collection gave us 50 TPTP benchmarks.
An example of the TPTP benchmark obtained from running Voogie on the
maxarray program with its loops unrolled twice is available at http://www.cse.
chalmers.se/∼evgenyk/ijcar18/.

BLT (Boogie Less Triggers) [3] is an automatic tool that takes Boogie pro-
grams as input and generates their verification conditions in first-order logic
written in the TPTP language. BLT has an experimental feature of generating
FOOL formulas with tuple let-in and tuple expressions to represent next state
values of program variables in a style similar to Voogie. At the time of our exper-
iments, this feature was not stable enough, and we did not enable it. Running
BLT with its default configuration on each of the 50 loop-free programs in our
collection gave us 50 TPTP benchmarks.

The representation of program expressions coincides in all three translations.
All translations use the theory of linear integer arithmetic and the theory of
arrays as realised in their respective languages.

4.3 Theories and Quantifiers in Vampire

Vampire’s main algorithm is saturation of a set of first-order clauses using the
resolution and superposition calculus. Vampire also implements the AVATAR
architecture [17] for splitting clauses. The idea behind AVATAR is to use a
SAT or an SMT solver to guide proof search. AVATAR selects sub-problems for
the saturation-based prover to tackle by making decisions over a propositional
abstraction of the clause search space. The -sas option of Vampire selects the
SAT solver.

Vampire handles theories by automatically adding theory axioms to the
search space whenever an interpreted sort, function, or predicate is found in
the input. This approach is incomplete for theories such as linear and non-linear
integer and real arithmetic, but shows good results in practice. The -tha option
of Vampire with values on and off controls whether theory axioms are added.

A recent work [13] lifted AVATAR to be modulo theories by replacing the SAT
solver by an SMT solver, ensuring that the sub-problem is theory-consistent in
the ground part. The result is that the saturation prover and the SMT solver deal

https://github.com/aztek/voogie
http://www.cse.chalmers.se/~evgenyk/ijcar18/
http://www.cse.chalmers.se/~evgenyk/ijcar18/
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with the parts of the problem to which they are best suited. Vampire implements
AVATAR modulo theories using Z3.

Our experience with running Vampire on theory- and quantifier-intensive
problems shows that some of the theory axioms can degrade the performance
of Vampire. These axioms make Vampire infer many theory tautologies making
the search space larger. We found that, among others, axioms of commutativity,
associativity, left and right identity, and left and right inverse of arithmetic
operations are in this sense “expensive”. Our solution to this problem is a more
refined control over which theory axioms Vampire adds to the search space.
We added to the -tha option of Vampire a new value named some that makes
Vampire only add “cheap” axioms to the search space. some implements our
empirical criterion for choosing theory axioms. Designing other criteria for axiom
selection is an interesting task for future work.

4.4 Experimental Results

For our experiments, we compared the performance of Vampire on the Boogie,
Voogie, and BLT translations of our benchmarks.

We ran Vampire on all three sets of benchmarks with options -tha some
and -sas z3. Vampire supports both TPTP and SMT-LIB syntax, the input
language is selected by setting the --input syntax option to tptp and smtlib2,
respectively. We performed our experiments on the StarExec compute cluster [14]
using the time limit of 5 min per problem. The detailed experimental results are
available at http://www.cse.chalmers.se/∼evgenyk/ijcar18/.

Table 1. Runtimes in seconds of Vampire on the Boogie translation of the benchmarks.

Benchmark Number of loop unrollings

1 2 3 4 5

binary-search 0.884 2.420 3.364 10.709 27.648

bubble-sort – – – – –

dutch-flag 24.789 – – – –

insertion-sort 122.354 – – – –

matrix-transpose 1.311 – 1.078 – –

maxarray 0.205 0.587 1.197 1.702 1.692

maximum 0.066 0.078 0.082 0.095 0.129

one-duplicate – – – – –

select-k 96.993 – – – –

two-way-sort 0.191 0.205 0.647 1.384 1.344

Tables 1 and 2 summarise the results of Vampire on the Boogie and Voogie
translations of the benchmarks, respectively. A dash means that Vampire does
not solve the problem within the given time limit.

http://www.cse.chalmers.se/~evgenyk/ijcar18/
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Table 2. Runtimes in seconds of Vampire on the Voogie translation of the benchmarks.

Benchmark Number of loop unrollings

1 2 3 4 5

binary-search 1.979 25.135 6.560 – 163.803

bubble-sort 0.394 53.192 2.073 – –

dutch-flag 11.384 – – – –

insertion-sort 18.262 38.169 3.369 21.698 11.639

matrix-transpose 0.266 8.362 – – –

maxarray 0.170 0.587 0.489 2.635 6.325

maximum 0.062 0.065 0.070 0.087 0.102

one-duplicate 0.125 2.402 2.231 93.746 145.243

select-k 0.216 0.612 203.655 – –

two-way-sort 0.464 5.360 – – –

– Vampire solves 25 of the problems, translated by Boogie, and 36 problems,
translated by Voogie.

– For 16 benchmark programs, Vampire solves their Voogie translations, but
not the Boogie translations.

– For 5 benchmark programs, Vampire solves their Boogie translations, but not
the Voogie translations.

– For 20 benchmark programs, Vampire solves both of their translations, and
is faster on the Voogie translations for 12 of them.

Table 3 summarises the results of Vampire on the BLT translations of the
benchmarks.

– Vampire solves 19 of the problems, translated by BLT.
– For all benchmark programs whose BLT translation Vampire is able to solve,

Vampire also solves their Voogie translations. There are 3 benchmark pro-
grams for which Vampire solves their BLT translations but not their Boogie
translations.

Based on the results presented in Tables 1, 2 and 3 we make the following
observation. The problems translated from our benchmarks by Voogie are easier
for Vampire than the problems translated by Boogie and BLT. Vampire is more
efficient both in terms of the number of solved problems and runtime on the
problems translated by Voogie. This confirms our conjecture that the use of
(efficient translations of) FOOL is better for saturation theorem provers than
translations to FOL designed for other purposes. It would be interesting to run
these experiments for theorem provers other than Vampire, however Vampire is
currently the only prover implementing FOOL.
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Table 3. Runtimes in seconds of Vampire on the BLT translation of the benchmarks.

Benchmark Number of loop unrollings

1 2 3 4 5

binary-search 0.821 163.790 – – –

bubble-sort 3.511 – – – –

dutch-flag 4.049 – – – –

insertion-sort 1.780 – – – –

matrix-transpose 0.465 12.437 – – –

maxarray 0.174 1.567 47.724 – –

maximum 0.069 0.140 0.724 12.234 –

one-duplicate 0.307 10.039 – – –

select-k 3.142 – – – –

two-way-sort 0.319 24.622 – – –

5 Related Work

Our previous work introduced FOOL [8], its implementation in Vampire [6], and
an efficient clausification algorithm for FOOL formulas [7].

In [6] we sketched a tuple extension of FOOL and an algorithm for computing
the next state relations of imperative programs that uses this extension. This
paper extends and improves the algorithm. In particular, (i) we described an
encoding that uses FOOL in its current form, available in Vampire, (ii) we refined
the encoding to only use in let-in the variables updated in program statements,
(iii) we gave the definition of the encoding formally and in full detail, and (iv)
we presented experimental results that confirm the described benefits of the
encoding.

Boogie is used as the name of both the intermediate verification language [12]
and the automated verification framework [1]. The Boogie verifier encodes the
next state relations of imperative programs in first-order logic by naming inter-
mediate states of program variables [11].

BLT [3] is a tool that automatically generates verification conditions of Boo-
gie programs. The aim of the BLT project is to use first-order theorem provers
rather than SMT solvers for checking quantified program properties. BLT pro-
duces formulas written in the TPTP language and uses if-then-else and let-
in constructs of FOOL. BLT has an experimental option that introduces tuples
for encoding of the next state relation. This option implements the encoding
described in our earlier work [6].

6 Conclusion and Future Work

We presented an encoding of the next state relations of imperative programs in
FOOL. Based on this encoding we defined a translation from imperative pro-
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grams, annotated with their pre- and post-conditions, to FOOL formulas that
encode partial correctness properties of these programs. We presented experi-
mental results obtained by running the theorem prover Vampire on such prop-
erties. We generated these properties using our translation and verification tools
Boogie and BLT. We described a polymorphic theory of first class tuples and its
implementation in Vampire.

The formulas produced by our translation can be efficiently checked by auto-
mated theorem provers that support FOOL. The structure of our encoding
closely resembles the structure of the program. The encoding contains neither
new symbols nor duplicated parts of the program. This way, the efficient repre-
sentation of the problem in plain first-order logic is left to the theorem prover
that is better equipped to do it.

Our encoding is useful for automated program analysis and verification. Our
experimental results show that Vampire was more efficient in terms of the number
of solved problems and runtime on the problems obtained using our translation.

FOOL reduces the gap between programming languages and languages of
automated theorem provers. Our encoding relies on tuple expressions and let-
in with tuple definitions, available in FOOL. To our knowledge, these constructs
are not available in any other logic efficiently implemented in automated theorem
provers.

The polymorphic theory of first class tuples is a useful addition to a first-order
theorem prover. On the one hand, it generalises and simplifies tuple expressions
in FOOL. On the other hand, it is a convenient theory on its own, and can be
used for expressing problems of program analysis and computer mathematics.

For future work we are interested in making automated first-order theorem
provers friendlier to program analysis and verification. One direction of this
work is design of an efficient translation of features of programming languages
to languages of automated theorem provers. Another direction is extensions of
first-order theorem provers with new theories, such as the theory of bit vectors.
Finally, we are interested in further improving automated reasoning in combi-
nation of theories and quantifiers.
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Abstract. We give a constructive account of Kripke-Curry’s method
which was used to establish the decidability of Implicational Relevance
Logic (R→). To sustain our approach, we mechanize this method in
axiom-free Coq, abstracting away from the specific features of R→ to
keep only the essential ingredients of the technique. In particular we
show how to replace Kripke/Dickson’s lemma by a constructive form
of Ramsey’s theorem based on the notion of almost full relation. We
also explain how to replace König’s lemma with an inductive form of
Brouwer’s Fan theorem. We instantiate our abstract proof to get a con-
structive decision procedure for R→ and discuss potential applications
to other logical decidability problems.

Keywords: Constructive decidability · Relevance logic
Redundancy-free proof-search · Almost full relations

1 Introduction

In this paper, we give a fully constructive/inductive account of Kripke’s decid-
ability proof of implicational relevance logic R→, fulfilling the program out-
lined in [17]. The result is known as Kripke’s but it crucially relies on Curry’s
lemma [18] which states that if a sequent S2 is redundant over a sequent S1

and S2 has a proof, then S1 has a shorter proof. Our account of Kripke-Curry’s
method is backed by an axiom-free mechanized proof of the result in the Coq
proof assistant. However, their method and our constructivized implementation
is in no way limited to that particular logic. As explained in [19], “Kripke’s proce-
dure for deciding R→ can be seen as a precursor for many later algorithms that
rely on the existence of a well quasi ordering (WQO).” From a logical perspective,
Kripke-Curry’s method has been adapted to implicational ticket entailment [2]
and the multiplicative and exponential fragment of linear logic [1]. However, both
of these recent papers are now contested inside the community because of deeply
hidden flaws in the arguments [9, footnote 1], [20, footnote 4] and [6, pp 360–
362]. This illustrates that the beauty of Kripke-Curry’s method should not hide
its subtlety and justifies all the more the need to machine-check such proofs.
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From a complexity perspective, S. Schmitz recently gave a 2-ExpTime com-
plexity characterization [19] of the entailment problem for R→, implying a deci-
sion procedure. However, the existence of a complexity characterization does not
automatically imply a constructive proof of decidability. Indeed, the decision
procedure itself or its termination proof might involve non-constructive argu-
ments. In the case of R→, the result of [19] “relies crucially” on the 2-ExpTime-
completeness of the coverability problem in branching vector addition systems
(BVASS) [7]. Checking the constructive acceptability of such chains of results
implies checking that property for every link in the chain, an intimidating task,
all the more problematic when considering mechanization.1

Our interest in the entailment problem for R→ lies in the inherent simplicity
and genericity of Kripke-Curry’s argumentation. It is centered around the notion
of redundancy avoidance. But compared to e.g. intuitionistic logic (IL), the case
of R→ is specific because redundancy is not reduced to repetition: the redundancy
relation is not the identity. The case of repetition is not so interesting: Curry’s
lemma is trivial for repetition; and the sub-formula property and the pigeon hole
principle ensure that Gentzen’s sequent system LJ has a finite search space.

In the case of R→, the sequent S2 is redundant over S1 if they are cognate
and S1 is included into S2 for multiset inclusion [18]. In [17], Dickson’s lemma
is identified as the main difficulty for transforming Kripke-Curry’s method into
a constructive proof. Dickson’s lemma2 is a consequence of Ramsey’s theorem
which, stated positively, can be viewed as the following result [23]: the intersec-
tion of two WQOs is a WQO. The closure of the class of WQOs under direct
products follows trivially and so does Dickson’s lemma. We think that the use
of König’s lemma in Kripke’s proof is also a potential difficulty w.r.t. construc-
tivity. Admittedly, there are many variants of this lemma and indeed, we will
use one which is suited in a constructive argumentation.

Let us now present the content of this paper. In Sect. 2, we propose an
overview of Kripke-Curry’s argumentation focusing on the two issues of Dick-
son’s lemma and König’s lemma. To constructivize that proof, we approached
the problem posed by Dickson’s lemma by using Coquand’s [3] direct intuition-
istic proof of Ramsey’s theorem through an intuitionistic formulation of WQOs
as almost full relations (AF) [24]. These results are recalled in Sect. 3. We also
give a constructive version of König’s lemma based on AF relations.

In Sect. 4, we give an account of what could be called the central ingredi-
ents of Kripke-Curry’s proof by outlining the essential steps of our construc-
tive mechanization in the inductive type theory on which Coq is based. Our
proof_decider of Fig. 3 abstracts away from the particular case of R→, by
isolating the essential ingredient: an almost full redundancy relation which sat-
isfies Curry’s lemma. Finally, in Sect. 4.6, we instantiate the proof_decider
into a constructive decision procedure for R→. We also discuss the potential
applications to other sub-structural logics.

1 As for coverability in BVASS, it seems that the arguments developed in [7] cannot
easily be converted to constructive ones (private communication with S. Demri).

2 Dickson’s lemma states that under pointwise order, Nk is a WQO for any k ∈ N.
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� A ⊃ A � (A ⊃ B) ⊃ (C ⊃ A) ⊃ (C ⊃ B)
� (A ⊃ A ⊃ B) ⊃ (A ⊃ B) � (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C)

� A ⊃ B � A

� B

Fig. 1. Hilbert’s style proof system for implicational relevance logic R→.

The technical aspects of our proofs are sustained by a Coq v8.6 mechanization
which is available under a Free Software license [14]. The size of this development
is significant—around 15 000 lines of code,—but most of the code is devoted to
libraries and the implementations of the proof systems R→, LR1→ and LR2→
and the links between them: soundness/completeness results, cut-elimination,
sub-formula property, finitely branching proof-search, etc. The case of implica-
tional intuitionistic logic J→ is treated as well in this mechanization. The core
of our constructivization of Kripke-Curry’s proof can be found in the file proof.v
and is only around 800 lines long (including comments).

2 Constructive Issues in Kripke’s Decidability Proof

In this section, we recall the main aspects of Kripke’s decidability proof for the
implicational fragment of relevance logic R→, described with Hilbert style proof
rules in Fig. 1. We sum up the description of [18] while focusing on the aspects of
the arguments that were challenging from a constructive perspective. Among the
many research directions later suggested by Riche in [17] for solving the missing
link—a constructive proof of IDP or of Dickson’s lemma,—the use of Coquand’s
approach [4] to Bar induction turned out as a solution.

Notice that in the notation R→, the symbol → represents the logic-level
implication to stay coherent with [17–19]. But in this paper, we rather use ⊃
to denote logical implications to avoid conflicting with the Coq notation for
function types T1 → T2 (see e.g. the below definition of HR_proof).

2.1 What Is a Constructive Proof of Relevant Decidability?

Let us formalize the high-level question that we solve in this paper. Before we
give a mechanized constructive proof of decidability for R→, we need to formally
define provability or proofs, at least for R→. This can easily be done in Coq using
the (informative) inductive predicate:

Inductive HR_proof : Form → Set :=
| id : ∀A, � A ⊃ A
| pfx : ∀A B C, � (A ⊃ B) ⊃ (C ⊃ A) ⊃ (C ⊃ B)
| comm : ∀A B C, � (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C)
| cntr : ∀A B, � (A ⊃ A ⊃ B) ⊃ (A ⊃ B)
| mp : ∀A B, � A ⊃ B → � A → � B

where “ � A ” := (HR_proof A).

https://github.com/DmxLarchey/Relevant-decidability/blob/master/proof.v
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A � A
〈AX〉 Γ, A, A � B

Γ, A � B
〈�W〉 Γ � A A, Δ � B

Γ, Δ � B
〈CUT〉

A, Γ � B

Γ � A ⊃ B
〈�⊃〉 Γ � A B, Δ � C

Γ, Δ, A ⊃ B � C
〈⊃�〉

Fig. 2. The LR1→ sequent calculus rules for R→.

i.e. HR_proof A or (� A for short) encodes the type of proofs of the formula A
in the Hilbert system for R→ of Fig. 1. A constructive decidability proof for R→
would then be given by a term HR_decidability of type:

HR_decidability : ∀A : Form, {inhabited(� A)} + {¬inhabited(� A)}

i.e. a total computable function which maps every formula A to a boolean value
which if true, ensures that there is a proof of A, and if false ensures that there
is no proof of A. A constructive decider is a stronger result of type:

HR_decider : ∀A : Form, (� A) + (� A → False)

that is a total computable function that maps every formula A to either a proof
of A or else ensures that no such proof exists. In other words, a constructive
decider is an (always terminating) constructive proof-search algorithm. Obvi-
ously, adding axioms to Coq might hinder the computability of its terms (ensured
by the normalization property of Coq). Hence, we allow no axiom and we aim
at defining HR_decidability or HR_decider in axiom-free Coq.

2.2 Sequent Calculi for R→

Hilbert’s R→ formulation is (unsurprisingly) not really suited to designing
decision procedures based on proof-search. A standard approach is to con-
vert Hilbert’s systems into sequent rules such as those of LR1→ in Fig. 2 (see
also [18]). In this particular system, a sequent Γ � A is composed of a multiset
Γ of formulæ on the left of the � symbol and exactly one formula A on the right
of the � symbol. There are three structural rules: 〈AX〉, 〈�W〉 and 〈CUT〉, and
two logical rules: 〈�⊃〉 and 〈⊃�〉. The soundness/completeness of this conversion
to sequent calculus is ensured by the following result: a formula A has a Hilbert
proof � A if and only if the sequent ∅ � A has a proof in LR1→ (with ∅ as the
empty multiset). That result is mechanized in the file relevant_equiv.v.

Although designed for proof-search, the sequent system LR1→ still suffers
two major problems when considering fully automated procedures: one is the
〈CUT〉 rule and the other is the more problematic contraction rule 〈�W〉. Cut-
elimination is one of the central questions of proof-theory, partly because 〈CUT〉
makes proof-search infinitely branching. Fortunately, the 〈CUT〉 rule is admissi-
ble in LR1→ so we can safely remove that rule from LR1→. Cut-admissibility
is proved using a relational phase semantic in the file sem_cut_adm.v.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_equiv.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/sem_cut_adm.v
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On the other hand 〈�W〉 needs to be handled much more carefully. The trick
of Curry, which is well described in [18] is to absorb several instances of 〈�W〉
in the rule 〈�⊃〉 but in a tightly controlled way.3 This is done by replacing both
rules 〈�W〉 and 〈�⊃〉 with the rule 〈�⊃2〉:

Γ � A B,Δ � C

Θ,A ⊃ B � C
〈�⊃2〉 with LR2_condition(A ⊃ B,Γ,Δ,Θ)

obtaining the system LR2→ composed of 〈AX〉, 〈⊃�〉 and 〈�⊃2〉. The side
LR2_condition(A ⊃ B,Γ,Δ,Θ) is a bit complicated to express formally so we
will informally sum up its central idea: while applying 〈�⊃2〉 top-down, some
controlled/bounded form of contraction is allowed on every formula: the prin-
cipal formula A ⊃ B can be contracted at most twice while side formulæ in
Γ,Δ can be contracted at most once. See the definition of LR2_condition in
file relevant_contract.v for a precise characterization.

2.3 Irredundant Proofs in LR2→

Before using LR2→ for deciding R→, LR2→ must of course be proved equivalent
to LR1→ and this is not a trivial task (see file relevant_equiv.v for the technical
details). The cornerstone of the equivalence between LR2→ and LR1→ lies in
a critical property of LR2→ called Curry’s lemma. It ensures both:

– the admissibility of the contraction rule 〈�W〉 in LR2→;
– the completeness of irredundant proof-search in LR2→.

We say that a sequent Δ � B is redundant over a sequent Γ � A and we
denote Γ � A ≺r Δ � B if Γ � A can be obtained from Δ � B by repeated top-
down applications of the contraction rule 〈�W〉. We also characterize redundancy
using the number of occurrences |Γ |X of the formula X in the multiset Γ :

Γ � A ≺r Δ � B ⇐⇒ A = B ∧ ∀X, |Γ |X ≺N

r |Δ|X (≺r)

where the binary relation n ≺N
r m on N is defined by n � m ∧ (n = 0 ⇔ m = 0).

Now we can state Curry’s lemma.

Lemma 1 (Curry [5], 1950). Consider two sequents such that Δ � B is
redundant over Γ � A, i.e. Γ � A ≺r Δ � B. Then any LR2→-proof of Δ � B
can be contracted into a LR2→-proof of Γ � A, that is, a proof of lesser height.

The Coq proof term is LR2_Curry in the file relevant_LR2.v. Admissibility of
contraction follows trivially from Curry’s lemma and hence the completeness of
LR2→ w.r.t. 〈CUT〉-free LR1→. Another critical consequence of Curry’s lemma
is related to irredundant proofs.

3 Unrestricted contraction would generate infinitely branching proof-search.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_contract.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_equiv.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_LR2.v
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Definition 1 (Irredundant proof). A proof is redundant if there is a redun-
dant pair in one of its branches, i.e. Γ � A ≺r Δ � B where Δ � B occurs in
the sub-proof of Γ � A. A proof is irredundant if none of its branches contain
a redundant pair.

By Curry’s lemma, any sequent provable in LR2→ has an irredundant proof
in LR2→ (the argument is not completely trivial, see Sect. 4). Hence, while
searching for proofs in LR2→, one can safely stop at redundancies.

2.4 Kripke’s Decidability Proof

Building on Curry’s lemma, the key insight of Kripke’s proof of decidability is the
following result. As explained in [8,17], it was discovered many times in different
fields of mathematics, as e.g. Hilbert’s finite basis theorem, the infinite division
principle (IDP by Meyer [15]), Dickson’s lemma, etc. We express Kripke’s lemma
with a concept that was not clearly spotted at that time but was popularized
later on, that of well quasi order.

Definition 2 (Well Quasi Order). A binary relation � over a set X is a
well quasi order (WQO) if it is reflexive, transitive and any infinite sequence
x : N → X contains a good pair (i, j), which means both i < j and xi � xj.

Lemma 2 (Kripke [12], 1959). Given a finite set of (sub-)formulæ S, the
redundancy relation ≺r is a WQO when it is restricted to sequents composed
exclusively of formulæ in S.

Proof. We give a “modernized” account of the proof. By Ramsey’s theorem, the
product (or intersection) of two WQOs is WQO.4 Hence, the relation ≺N

r over
N is a WQO as the intersection of two WQOs. By finiteness of S, the identity
relation =S on S is also a WQO (this is an instance of the pigeon hole principle).

Denoting ≺S
r as the restriction of ≺r to the sequents composed of formulæ

in the finite set S, we can derive the equivalence

Γ � A ≺S
r Δ � B ⇐⇒ A =S B ∧

∧
X∈S |Γ |X ≺N

r |Δ|X

hence ≺S
r is a WQO as a finite intersection of WQOs. ��

Kripke’s proof of decidability of LR2→ (and hence R→) can be summarized
in the following steps:

– consider a start sequent Γ � A and let S be its finite set of sub-formulæ;
– launch backward proof-search for irredundant proofs of Γ � A in LR2→, i.e.

search stops when no rule is applicable or at a redundancy. We denote by T
the corresponding (potentially infinite) proof-search tree;

4 This result is known as Dickson’s lemma when restricted to N
k with the point-wise

product order. The inclusion relation between multisets built from the finite set S
is a particular case of the product order N

k where k is the cardinal of S.
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– by the sub-formula property, no formula outside of S can occur in T ;
– T is finitely branching (critically relies on the side condition of rule 〈�⊃2〉);
– T cannot have an infinite branch (by Kripke’s lemma);
– hence by König’s lemma, the proof-search tree T is finite.

In [17], Riche focuses on Kripke/Dickson’s lemma as the main difficulty to
get an argumentation that could be accepted from a constructive point of view.
We think that König’s lemma is also a potentially non-constructive result [21],
depending on its precise formulation. In Sect. 4, we explain how to overcome these
two difficulties and transform this method into a mechanized HR_decider.

3 Inductive Well Quasi Orders

In this section we describe an inductive formulation of the notion of WQO. We
are now going to use the language of Inductive Type Theory instead of Set theo-
retical language. Type theoretically, Definition 2 becomes: a WQO is a reflexive
and transitive predicate ≺r : X →X →Prop such that for any f : nat→X, there
exists i, j : nat s.t. i < j and fi ≺r fj (good pair). We can say that any infinite
sequence is bound to be redundant. We recall the inductive characterization of
WQO due to Fridlender and Coquand [10] and the constructive Ramsey theo-
rem [24], from which we derive a constructive proof of Kripke’s lemma. Using
the inductive Fan theorem [10], we derive a constructive König’s lemma. The
corresponding Coq code can be found in the library file almost_full.v.

3.1 Good Lists, Almost Full Relations and Bar Inductive Predicates

Much like well founded relations can be defined inductively by accessibility predi-
cates (see module Wf of Coq standard library), WQOs can inductively be defined
either by the almost full inductive predicate (AF) or by bar inductive predi-
cates. Notice that these equivalent inductive characterizations are constructively
stronger than the usual classical definition (like in the case of well-foundedness).

Let us consider a type X : Type and a redundancy relation ≺r : X→X→Prop.
We define the good ≺r : list X → Prop predicate that characterizes the (finite)
lists which contain a good pair:

good ≺r [xn−1; . . . ;x0] ⇐⇒ ∃ i j, i < j < n ∧ xi ≺r xj (good)

Hence the list [. . . ; b; . . . ; a; . . .] is good when a ≺r b. The list is read from right to
left because we represent the n-prefix of a sequence f : nat→X by [fn−1; . . . ; f0].

Definition 3 (Ir/redundant). Given a relation ≺r : X → X → Prop called
redundancy, a list of values l : list X is redundant if good ≺r l holds and is
irredundant if ¬(good ≺r l) holds.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/almost_full.v
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We write bad ≺r l when the list l satisfies ¬(good ≺r l). The lifting of a
relation R : X → X → Prop by x : X is denoted R ↑ x and characterized by:

u (R ↑ x) v ⇐⇒ u R v ∨ x R u for any u, v : X

The disjunct x R u prohibits any u which is R-greater than x to occur in (R↑x)-
bad sequences. AF relations are defined as those satisfying the aft predicate:5

Inductive aft {X : Type} (R : X → X → Prop) : Type :=
| in_af_t0 : (∀x y, x R y) → aft R
| in_af_t1 : (∀x, aft (R ↑ x)) → aft R.

Hence any full relation (i.e. ∀x y, x R y) is AF, and if every lifting of R is AF, then
so is R. Notice that the predicate aft is informative: it contains a well-founded
tree of liftings until the relation becomes full (see [24]). This information is
important to compute bounds for proof-search. Reflexive and transitive relations
which satisfy aft are WQOs in the classical interpretation. But constructively
speaking, they are stronger in the following sense: any sequence f : nat → X
can effectively be transformed into an upper-bound n under which there exists
a good pair, upper-bound obtained by finite inspection of the prefixes of f :

Lemma af_t_inf_chain (X : Type) (≺r : X → X → Prop) :
aft(≺r) → ∀(f : nat → X), {n : nat | ∃ i j, i < j < n ∧ fi ≺r fj}.

The constructive Ramsey theorem [24] states that almost full relations are closed
under (binary) intersection, and as a consequence, under direct products:

Theorem af_t_prod (X Y : Type) (R : X →X →Prop) (S : Y →Y →Prop) :
aft R → aft S → aft (R × S).

Notice that reflexivity and transitivity of WQOs are completely orthogonal to
almost fullness in these results. They play no important role in our development.

The aft(≺r) property can alternatively be defined by bar inductive predi-
cates [10] as bart (good ≺r) [ ] with the following inductive definition:6

Inductive bart {X : Type} (P : list X → Prop) (l : list X) : Type :=
| in_bar_t0 : P l → bart P l
| in_bar_t1 : (∀x, bart P (x :: l)) → bart P l.

Hence, bart P l means that regardless of the repeated extensions of the list l
by adding elements at its head, the predicate P is bound to be reached at some
point. With this definition, we can derive the (informative) equivalence:

Theorem bar_t_af_t_eq X ≺r l : aft(≺r ↑↑ l) ⇐⇒ bart (good ≺r) l.

where R ↑↑ [x1, . . . , xn] := R ↑ xn . . . ↑ x1 (see file af_bar_t.v for details). And
we deduce the equivalence aft(≺r) iff bart (good ≺r) [ ] as the particular case.
5 The braces around {X : Type} specify an implicit argument.
6 [ ] and _ :: _ are shorthand notations for the two list constructors.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/af_bar_t.v
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3.2 A Constructive Form of König’s lemma

Brouwer’s Fan theorem can be proved equivalent to the binary form of König’s
lemma [21]. So one could wrongfully be led to the conclusion that both of these
results cannot be constructively established. Here we explain that using suitable
inductive definitions, such results can perfectly be established constructively.

For the rest of this section, we assume a type X : Type. We recall the inductive
interpretation of the Fan theorem [10]. Given a list of lists ll : list (list X),
we define the list of choice sequences (or fan) of ll denoted list_fan ll

Definition list_fan : list (list X) → list (list X).

The precise definition of list_fan uses auxiliary functions (see list_fan.v) but
this is unimportant here. Only the following specification which characterizes the
elements of list_fan [l1; . . . ; ln] as choices sequences for [l1; . . . ; ln] matters.7

[x1; . . . ;xn] ∈l list_fan [l1; . . . ; ln] ⇐⇒ x1 ∈l l1 ∧ · · · ∧ xn ∈l ln (FAN)

These are the lists composed of one element of l1, then one element of l2, . . .
and one element of ln. The following result [10] states that if P is monotonic and
bound to be reached by successive extensions starting from [ ], then P is bound
to be reached uniformly over the finitary fan represented by choices sequences.

Theorem fan_t_on_list (P : list X → Prop)
(
HP : ∀x l, P l →P (x :: l)

)
:

bart P [ ] → bart (fun ll �→ ∀l, l ∈l list_fan ll → P l) [ ].

The proof of this result is recalled in bar_t.v. Combining fan_t_on_list with
bar_t_af_t_eq and af_t_inf_chain, we derive the following strong form of
König’s lemma. Given an almost full redundancy relation ≺r : X→X→Prop and
a sequence of finitary choices f : nat→list X, beyond an effective lower-bound
n, every finite prefix of a choice sequence for f is redundant (see koenig.v).

Theorem Constructive_Koenigs_lemma ≺r (f : nat → list X) :
aft(≺r) → {n | ∀m l, n � m → l ∈l list_fan [fm−1; . . . ; f0] → good ≺r l}.

In Sect. 4.5, we over-approximate the branches of the proof-search tree as the
choice sequences of f : nat → list stm which collects in f n the finitely many
sequents that occur at height n in the proof-search tree. Thus we get a uniform
upper-bound of the length of irredundant (i.e. bad ≺r) proof-search branches.

4 Decision via Redundancy-Free Proof-Search

In this section, we describe the mechanization of a generic constructive decider
based on redundancy-avoiding proof-search. We first give an informal account of
the main arguments, then we proceed with a more formal description of these
steps in the language of Coq. Except for the tree.v and almost_full.v libraries,
all the following development is contained in the file proof.v.
7 The notation x ∈l l is a shortcut for In x l, the (finitary) membership predicate.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/list_fan.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/bar_t.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/koenig.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/tree.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/almost_full.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/proof.v
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4.1 Overview of the Assumptions and Main Arguments

Let us consider a type stm of statements representing logical propositions. These
statements could, depending on the intended application, be formulæ like in
Hilbert style proof systems, or sequents in sequent proof systems or in some
versions of natural deduction, or more generally structures like nested sequents.

H1 . . . Hn

C

Statements are items to be proved or refuted (by showing
the impossibility of a proof as a term of type has_proof s →
False). For this, we describe a proof system as a set of valid
rule instances. These instances are generally represented as in the right figure
where C : stm is the conclusion of the instance and [H1; . . .;Hn] : list stm
is the list of premises. We collect the set of valid rule instances into a binary
relation rules : stm → list stm → Prop between individual statements (stm
viewed as conclusions) and list of statements (list stm viewed as premises).
Hence, the validity of the above rule instance in the proof system is expressed
by the predicate rules C [H1; . . . ;Hn]. When dealing with proof-search based
decision, infinite horizontal branching of proof-search is usually forbidden. Hence,
for a given C : stm, only finitely many rule instances exist with C as conclusion.
Moreover, that finite set of instances must be computable to be able to enumerate
the next steps of backward proof-search. We denote this property by rules_fin
and we say that rules has finite inverse images.8

Valid rules instances are combined to form proof trees. A proof tree is a finite
tree of statements where each node is a valid rule instance. Proofs are proof trees
of their root node and n-bounded proofs are proofs of height bounded by n.
Because of the finite inverse images property rules_fin, the set of n-bounded
proofs of a given statement s0 is finite and computable. We define the notion of
minimal proof, which is a proof of minimal height among the proofs of the same
statement. Every proof can effectively be transformed into a minimal proof by
searching among the finitely many proofs of lesser height. An everywhere minimal
proof is such that each of its sub-proof is minimal. Every proof can effectively
be transformed into an everywhere minimal proof.

Our generic constructive technique assumes a binary redundancy relation ≺r

between statements which satisfies Curry’s lemma 1: every proof containing a
redundancy can be contracted into a lesser proof. As a consequence, everywhere
minimal proofs are redundancy free. If we moreover assume that the binary rela-
tion ≺r is almost full (i.e. a constructive WQO), then every infinite sequence of
statements contains a redundancy. However, remember that in Kripke’s lemma 2
for LR2→, only the restriction of ≺r to finitely generated sequents is a WQO.
Hence we only assume ≺r to be almost full on the set of sub-statements of
an initial statement s0.9 By using the constructive version of König’s lemma

8 Typically, systems which include a cut-rule do not satisfy the rules_fin property
which is why cut-elimination is viewed as a critical requisite to design sequent-based
decision procedures. The same remark holds for the modus-ponens rule of Hilbert
systems, usually making them unsuited for decision procedures.

9 For this, we need a notion of sub-statement that is reflexive, transitive and such that
valid rules instances possess the sub-statement property.
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of Sect. 3.2, we show that every sequence of sub-statements of s0 longer than
a bound n0 contains a redundancy. The bound n0 can be computed from s0
only. As a consequence, every irredundant proof of s0 is a n0-bounded proof.
And deciding the provability of s0 is reduced to testing whether the set of n0-
bounded proofs of s0 is empty or not.

4.2 Finiteness, Trees and Branches

In this section, we consider a fixed X : Type. The predicate finitet P expresses
that a sub-type P : X → Prop of X is finite and computable into a list:

Definition finitet (P : X → Prop) := {l : list X | ∀x, x ∈l l ⇐⇒ P x}.

We will use this predicate to encode the rules_fin property. We will also need
a type of finitely branching (oriented) trees:

Inductive tree X := in_tree : X → list (tree X) → tree X.

where we denote 〈x|l〉 for (in_tree x l). The root root : tree X → X of a
tree verifies root 〈x|l〉 = x and the height ht : tree X → nat of a tree verifies
ht 〈_|l〉 = 1 + max (map ht l). Branches of trees are represented as specific lists
of elements of X. We inductively define a branch predicate:

Inductive branch : tree X → list X → Prop :=
| in_tb0 : ∀t, branch t [ ]
| in_tb1 : ∀x, branch 〈x|[ ]〉 (x :: [ ])
| in_tb2 : ∀ b x l t, t ∈l l → branch t b → branch 〈x|l〉 (x :: b).

s.t. the lists b which satisfy branch t b collect all the nodes encountered on paths
from the root of t to one of its internal nodes. The empty list [ ] is among them.

4.3 Proofs, Minimal Proofs and Everywhere Minimal Proofs

We consider a type stm of logical statements and a collection of valid rule
instances rules which has the finite inverse image property.

Variables (stm : Type) (rules : stm → list stm → Prop).
Hypothesis

(
rules_fin : ∀c : stm, finitet (rules c)

)
.

Hence, not only are there finitely many rule instances for a given conclusion c
but the predicate rules_fin c contains llc : list (list stm), an effective list
of those instances which verifies the property:

[h1; . . . ;hn] ∈l llc ⇐⇒ rules c [h1; . . . ;hn] for any [h1; . . . ;hn] : list stm

This effective aspect of finite branching is often implicit in studies on proof-
search, because if one cannot even compute the valid instances for a given con-
clusion, then there is no way to implement backward proof-search.
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The notion of proof is based on that of proof tree. We define a predicate
proof_tree that satisfies the below (recursive) characteristic property:

Definition proof_tree : tree stm → Prop.

∀s l, proof_tree 〈s|l〉 ⇐⇒ rules s (map root l) ∧ ∀t, t ∈l l→proof_tree t.

i.e. trees of statements where each node is a valid rule instance, the conclusion
being the node itself and the premises being the children of the node. Given a
statement s, a proof of s is a proof tree t with root s, and a n-bounded proof is
a proof of height bounded by n:

Definition proof (s : stm) (t : tree stm) := proof_tree t ∧ root t = s.
Definition bproof (n : nat) (s : stm) (t : tree stm) := proof s t ∧ ht t � n.

Proofs of a given statement s are not necessarily finitely many but because of
the finite inverse image property rules_fin, n-bounded proofs are:

Proposition bproof_finite_t (n : nat) (s : stm) : finitet (bproof n s).

We introduce the notion of minimal proof, that is a proof of minimal height
among the proofs with a given root s. We show that every proof t can be trans-
formed into a minimal proof by a simple search of the shortest among the (ht t)-
bounded proofs of s, of which a list can be computed using bproof_finite_t.

Definition min_proof s t := proof s t ∧ ∀t′, proof s t′ → ht t � ht t′.
Proposition proof_minimize s t : proof s t → {tmin | min_proof s tmin}.

But to exploit Curry’s lemma, we need a much stronger minimality property: this
is the notion of everywhere minimal proof tree, where every sub-tree is a minimal
proof of its own root. We show that every proof can effectively be transformed
into an everywhere minimal proof.

Definition emin_ptree : tree stm → Prop.
∀s l, emin_ptree 〈s|l〉 ⇐⇒ min_proof s 〈s|l〉 ∧ ∀t, t ∈l l → emin_ptree t.
Definition emin_proof s t := proof s t ∧ emin_ptree t.
Proposition proof_eminimize s t : proof s t → {tem | emin_proof s tem}.

Proof. The argument proceeds by induction on the height ht t of the proof tree t.
It uses proof_minimize to compute a minimal proof t1 for s and then proceeds
inductively on every immediate sub-proof of t1. ��

4.4 The Completeness of Irredundant Proofs via Curry’s Lemma

We assume a notion of redundancy on statements, that is a binary relation
≺r : stm → stm → Prop. A list of statements l : list stm is redundant if it
contains a good pair for ≺r, which is denoted by good ≺r l (see Sect. 3.1).
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The list l is irredundant if it contains no good pair, i.e. bad ≺r l. A tree
t : tree stm is an irredundant proof if it is a proof and every branch of the
tree is irredundant.10

Definition irred_proof s t := proof s t ∧ ∀b, branch t b → bad ≺r (rev b).

We now state the assumption Curry abstracting Curry’s lemma:

Hypothesis Curry : ∀s1 s2 t, proof s2 t → s1 ≺r s2 → ∃t′, ∧
{
proof s1 t′

ht t′ � ht t.

assumption under which everywhere minimal proofs become irredundant:

Lemma proof_emin_irred s t : emin_proof s t → irred_proof s t.

Proof. Given any branch b of an everywhere minimal proof tree t, we show that
b cannot contain a redundancy. Let s1 ≺r s2 be a good pair in b and let t1/t2
be the sub (proof) trees of roots s1/s2. As s2 occurs after s1 in b, t2 is a strict
sub-tree of t1 and thus ht t2 < ht t1. Using Curry, we get a proof t′1 of s1 with
ht t′1 � ht t2. We derive ht t′1 < ht t1, and thus t1 is not a minimal proof of s1,
contradicting the everywhere minimality of t. ��

As a consequence, every proof can be transformed into an irredundant one
by direct combination of proof_eminimize and proof_emin_irred.

Theorem proof_reduce s t : proof s t → {tirr | irred_proof s tirr}.

4.5 Bounding the Height of Irredundant Proofs

Kripke used König’s lemma to prove the finiteness of the finitely branching
irredundant proof-search tree by showing that it cannot have infinite branches.
The constructive argument works positively by showing that one can compute a
uniform upper-bound over the length of irredundant proof-search branches. We
use the constructive version of König’s lemma of Sect. 3.2.

To capture the sub-formula property in our setting, we assume an abstract
notion of sub-statement denoted by s1 ⊇sf s2 and which intuitively reads as
the sub-formulæ of s2 are also sub-formulæ of s1. We postulate that ⊇sf is both
reflexive (sf_refl) and transitive (sf_trans) and more importantly, that every
rule instance preserves sub-statements bottom-up (sf_rules):

Variables (⊇sf : stm → stm → Prop) (sf_refl : ∀s, s ⊇sf s)
(sf_trans : ∀s1 s2 s3, s1 ⊇sf s2 → s2 ⊇sf s3 → s1 ⊇sf s3)
(sf_rules : ∀c l, rules c l → ∀s, s ∈l l → c ⊇sf s).

10 Branches are read from the root to leaves, hence the use of rev to reverse lists.
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Starting from an initial statement s0 : stm, we build the proof-search sequence
from s0 as the sequence of iterations fun n �→ rules_nextn [s0] of the operator

Let rules_next : list stm → list stm.

∀ l h, h ∈l rules_next l ⇐⇒ ∃ c m, c ∈l l ∧ h ∈l m ∧ rules c m.

i.e. rules_next l is the (finite) inverse image of l by valid rules instances. By
sf_rules, the proof-search sequence is composed of sub-statements of s0:

Proposition proof_search_sf s0 n s : s ∈l rules_nextn [s0] → s0 ⊇sf s.

We can cover all the proof-search branches of length n starting from s0 using
the choices sequences over the proof-search sequence fun n �→ rules_nextn [s0].
Indeed, we establish the following covering property:

Let FAN n s0 := list_fan
[
rules_nextn−1 [s0]; . . . ; rules_next0 [s0]

]
.

Lemma ptree_proof_search (t : tree stm) (b : list stm) :
branch t b → proof_tree t → rev b ∈l FAN (length b) (root t).

Beware that this fan is a strict upper-approximation of proof-search branches.
We postulate our redundancy hypothesis denoted Kripke which states that

the relation ≺r is almost full when restricted to sub-statements of the initial
statement s0 (of which the provability is tested). Using constructive König’s
lemma of Sect. 3.2 (Constructive_Koenigs_lemma), we derive:

Hypothesis Kripke : ∀s0 : stm, aft
(
≺r restr (fun s �→ s0 ⊇sf s)

)
.

Proposition irredundant_max_length (s0 : stm) :
{n0 : nat | ∀ml, n0 � m → l ∈l FAN m s0 → good ≺r l}.

Notice that we need the informative predicate aft to effectively compute the
upper-bound. We conclude that irredundant proofs are bounded proofs:

Lemma proof_irred_bounded s0 : {n0 | irred_proof s0 ⊆ bproof n0 s0}.

Hence, given a starting statement s0, we can compute (from s0 only) an upper-
bound n0 such that every irredundant proof of s0 is n0-bounded.

4.6 A Constructive Decider Based on Redundancy-Free
Proof-Search

The proof decider follows trivially. Indeed, the corresponding algorithm uses
proof_irred_bounded to first compute a bound n0 such that every irredundant
proof of s0 has height bounded by n0. Second, the algorithm computes the list
of n0-bounded proofs of s0 using bproof_finite_t. If that list is non-empty,
then s0 has a proof. Otherwise, there is no n0-bounded proofs for s0, thus there
is no irredundant proof for s0 (this is the property of the upper-bound n0), and
then there is no proof for s0 at all using proof_reduce. The full abstract result
proof_decider is displayed in Fig. 3 and established in the file proof.v.

https://github.com/DmxLarchey/Relevant-decidability/blob/master/proof.v
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Theorem proof decider (stm : Type) (rules : stm → list stm → Prop)
(rules fin : ∀c, finitet (rules c)

)

(⊇sf : stm → stm → Prop) (sf refl : ∀s, s ⊇sf s)
(sf trans : ∀ r s t, r ⊇sf s → s ⊇sf t → r ⊇sf t)
(sf rules : ∀ c l, rules c l → ∀h, h ∈l l → c ⊇sf h)
(≺r : stm → stm → Prop)
(Curry : ∀ s t p, pf t p → s ≺r t → ∃q, pf s q ∧ ht q � ht p)
Kripke : ∀s0, aft (≺r restr (fun s → s0 ⊇sf s))

)
:

∀s0 : stm,
{
p : tree stm | pf s0 p

}
+

{∀p : tree stm, ¬(pf s0 p)
}
.

Fig. 3. Constructive decider by redundancy-free proof-search (pf := proof rules).

We instantiate the proof_decider on the LR2→ sequent calculus in the
file relevant_LR2_dec.v:

Theorem LR2_decider (s : Seq) :
{
t | proof LR2_rules s t

}
+

{
∀t, ¬(proof LR2_rules s t)

}
.

Using soundness and completeness results between R→ � LR1→ � LR2→
(see the summary file relevant_equiv.v), we get the constructive decider for R→
specified in Sect. 2.1, the proof of which can be found in logical_deciders.v:

Theorem HR_decider : ∀A : Form, HR_proof A + (HR_proof A → False).

5 Conclusion and Perspectives

We present an abstract and constructive view of Kripke-Curry’s method for
deciding Implicational Relevance Logic R→. We get an axiom-free Coq imple-
mentation [14] that we instantiate on LR2→ to derive a constructive decider for
R→. Although not presented in this paper, our implementation includes a con-
structive decider for implicational intuitionistic logic J→ which shares the same
language for formulæ as R→. It is based on a variant of Gentzen’s sequent cal-
culus LJ. Unlike what happens which richer fragments of Relevance Logic [22],
extensions of this method to full propositional IL would present no difficulty.

From a complexity perspective, Kripke’s decidability proof for R→ based on
Dickson’s lemma might be analyzed using control functions as in [8] to classify its
complexity in the Fast Growing Hierarchy. Notice however that these techniques
involve classical formulations of WQOs and their conversion to a constructive
setting is far from evident. Furthermore, the 2-ExpTime complexity character-
ization of [19] was not obtained that via control functions nor Dickson’s lemma.

Kripke-Curry’s method has a potential use well beyond R→ or Dickson’s
lemma and might be able to provide decidability for logics of still unknown and
presumably high complexities. A very difficult case would be to get a construc-
tive proof of decidability for the logic of Bunched Implications BI [11] based

https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_LR2_dec.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/relevant_equiv.v
https://github.com/DmxLarchey/Relevant-decidability/blob/master/logical_deciders.v
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on Kripke-Curry’s method. Indeed, as is the case for LR1→, contraction (and
weakening) cannot be completely removed from the bunched sequent calculus
LBI. It is not obvious what notion of redundancy should be used in that case.

Analyzing the “glitches” in the decidability proof of ticket entailment [6] is
another obvious perspective of this work. Indeed, the attempt of [2] is also based
on Kripke-Curry’s method. This decidability result was independently obtained
by Padovani [16] with seemingly much more involved techniques such as the
use of Kruskal’s tree theorem. Still, Kruskal’s tree theorem is also a result about
WQOs of which we do already have a mechanized constructive proof in Coq [13].
The mechanization of ticket entailment might not be completely out of reach.
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Abstract. We investigate a logic of an algebra of trees including the
update operation, which expresses that a tree is obtained from an input
tree by replacing a particular direct subtree of the input tree, while leav-
ing the rest unchanged. This operation improves on the expressivity of
existing logics of tree algebras, in our case of feature trees. These allow
for an unbounded number of children of a node in a tree.

We show that the first-order theory of this algebra is decidable via a
weak quantifier elimination procedure which is allowed to swap existen-
tial quantifiers for universal quantifiers. This study is motivated by the
logical modeling of transformations on UNIX file system trees expressed
in a simple programming language.

1 Introduction

Feature trees are trees where nodes have an unbounded number of children,
and where edges from nodes to their children carry names such that no node
has two different outgoing edges with the same name. Hence, the names on the
edges can be used to select the different children of a node. Feature trees have
been used in constraint-based formalisms in the field of computational linguistics
(e.g. [14]) and constrained logic programming [1,15]. This work is motivated by
a different application of feature trees: they are a quite accurate model of UNIX
file system trees. The most important abstraction in viewing a file structure as a
tree is that we ignore multiple hard links to files. Our mid-term goal is to derive,
using symbolic execution techniques, from a shell script a logical formula that
describes the semantics of this script as a relation between the initial file tree
and the one that results from execution of the script.

Feature tree logics have at their core basic constraints like x[f ]y, expressing
that y is a subtree of x accessible from the root of x via feature f , and x[f ] ↑,
expressing that the tree x does not have a feature f at its root node. This is
already sufficient to describe some tree languages that are useful in our context.
For instance, the script consisting of the single command mkdir /home/john,
which creates a directory john under the directory home, succeeds on a tree if the
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tree satisfies the formula ∃d.(r[home]d ∧ d[john] ↑), which expresses that home
is a subdirectory of the root, which does itself not have a subdirectory john.
We ignore here the difference between directories and regular files, as well as file
permissions.

Update Constraints. In order to describe the effect of executing the above script
we need more expressivity. A first idea is to introduce an update constraint
y

.= x[f �→ z], which states that the tree y is obtained from the tree x by setting
its child f to z, and creating the child when it does not exist. Using this, the
semantics of mkdir /home/john could be described by

∃d, d′, e. (in[home]d ∧ d[john] ↑ ∧out
.= in[home �→ d′] ∧ d′ .= d[john �→ e] ∧ e[∅])

Here, e[∅] expresses that e is an empty directory. Note that this formula, by
virtue of the update constraint, expresses that any existing directories under
home different from john are not touched.

Programming constructs translate to combinations of logical formula. For
instance, if φp(in, out), resp. φq(in, out) describe the semantics of script frag-
ments p and q, then their composition is described by ∃t.(φp(in, t) ∧ φq(t, out)).
The reality of our use case is more complex than that due to the hairy details
of error handling in shell scripts [10], and is up to future work.

Formulas with more complex quantification structure occur when we express
interesting properties of scripts. For instance, p and q are equivalent if

∀in, out. (φp(in, out) ↔ φq(in, out))

Debian requires in its policy [7] so-called maintainer scripts to be idempotent,
which can be expressed for a script p as

∀in, out. (φp(in, out) ↔ ∃t.(φp(in, t) ∧ φp(t, out))

Since we are interested in verifying these kinds of properties on scripts we need a
logic of feature trees including update constraints, and which enjoys a decidable
first-order logic.

Related Work. The first decidability result of a full first-order theory of Herbrand
trees (i.e., based on equations x = f(x1, . . . , xn)) is due to Malc’ev [13], this
result has later been extended by [6,12]. A first decidability result for the first-
order theory of feature trees was given for the logic FT [1], which comprises the
predicates x[f ]y and x[f ] ↑, by [4]. This was later extended to the logic CFT
[15], which in addition to FT has an arity constraint x[F ] for any finite set F
of feature symbols, expressing that the root of x has precisely the features F , in
[3,5]. Note that in these logics one can only quantify over trees, not over feature
symbols. The generalization to a two-sorted logic which allows for quantification
over features is undecidable [16], but decidability can be recovered if one restricts
the use of feature variables to talk about existence of features only [17]. All these
decidable logics of trees have a non-elementary lower bound [18]. The case of a
feature logic with update constraints was open up to now.
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Choosing the Right Predicates. The difficulty in solving update constraints stems
from the fact that an update constraint involves three trees: the original tree,
the final tree and the sub-tree that gets grafted on the original tree.

There are no symmetries between these three arguments, and a conjunction of
several update constraints may become quite involved. Our approach to handle
this rather complex update constraint is to replace it by a more elementary
constraint system which is based on the classical x[f ]y, and the new similarity
constraint x ∼f y. The latter constraint expresses that x and y have the same
children with the same names, except for the name f where they may differ.
This system has the same expressive power as update constraints since on the
one hand z

.= x[f �→ y] is equivalent to x ∼f z ∧ z[f ]y, and on the other hand
x ∼f y is equivalent to ∃z, v.(z .= x[f �→ v] ∧ z

.= y[f �→ v]). In order to
simplify these constraints one needs the generalization x ∼F y where F is a
finite set of features. For each set of features F , similarities ∼F are equivalence
relations, which is very useful when designing simplification rules, and these
relations have useful properties, like (x ∼F y ∧ x ∼G y) ↔ x ∼F∩G y and
(x ∼F y ∧ y ∼G z) → x ∼F∪G z.

Eliminating Quantifiers. Our theory of feature trees does not have the property
of quantifier elimination in the strict sense [9]. This is already the case without
the update (or similarity) constraints, as we can see in the following example:
∃x.(y[f ]x∧x[g] ↑). This formula means that there is a tree denoted by x such that
y points to x through the feature f , and that x does not have the feature g. A
quantifier elimination procedure would have to conserve this information about
the global variable y. This situation is not unusual when designing decision
procedures. There are basically two possible remedies: the first one is to extend
the logical language by new predicates which express properties which otherwise
would need existential quantifiers to express. This approach of achieving the
property of quantifier elimination by extension of the logical language is well-
known from Presburger arithmetic, it was also used in [3,4].

However, in the case of feature tree logics, the needed extension of the
language is substantial and requires the introduction of path constraints. For
instance, the above formula would be equivalent to the path constraint y[f ][g] ↑
stating that the variable y has a feature f pointing towards a tree where there
is no feature g. Unfortunately, this extension entails the need of quite complex
simplification rules for these new predicates.

The alternative solution is to our knowledge due to [13] and consists in
exploiting the fact that certain predicates of the logic behave like functions.
This solution was also used in [6] for Herbrand trees. When switching to fea-
ture trees this solution becomes quite elegant [17], the above formula would be
replaced by ¬y[f ] ↑ ∧∀x.(y[f ]x → x[g] ↑) stating that y has a feature f (by
¬y[f ] ↑) and that for each variable x such that y points towards x via f (in fact,
there is only one), x has no feature g. The price is that existential quantifiers
are not completely eliminated but swapped for universal ones. This is, however,
sufficient, since one can now apply this transformation to a formula in prenex
normal form, and successively reduce the number of quantifier eliminations.
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Structure of this Paper. We summarize some notions from logic that will be used
in the rest of the paper in Sect. 2. Our model of trees as well as the syntax and
semantics of our logic are defined formally in Sect. 3. The quantifier elimination
procedure in given in Sect. 4. We conclude in Sect. 5. Proofs are only sketched,
full proofs are to be found in the companion technical report [11].

2 Preliminaries

We assume logical conjunction and disjunction to be associative and commu-
tative, and equality to be symmetric. For instance, we identify the formula
x

.= y ∧ (x[f ] ↑ ∨x[g]z) with (x[g]z ∨ x[f ] ↑) ∧ y
.= x.

The set of free variables of a formula φ is written V(φ). We write φ{x �→ y}
for the formula obtained by replacing in φ all free occurrences of x by y. We
write ∃̃φ for the existential closure ∃V(φ).φ, and similarly ∀̃φ for ∀V(φ).φ.

A conjunctive clause with existential quantifiers, or in short clause, is
either ⊥, or a finite set of literals prefixed by a string of existential quanti-
fiers. Note that such a clause may still contain free variables, that is we do not
require all its variables to be quantified. If ∃X.(a1 ∧ . . . ∧ an) is such a clause,
then we can partition its set of literals c = gc ∪ lc such that gc contains all the
literals of c that contain no variable of X, and lc the set of literals of c that
contain at least one variable of X. We have the following logical equivalence:

|= (∃X.c) ↔ (gc ∧ ∃X.lc)

We call (gc, lc) the decomposition of ∃X.c. gc is the global part and lc the
local part of c, X is the set of local variables and V(∃X.c) ⊇ V(gc) the set of
global variables.

A disjunctive normal form (dnf) is a finite set of clauses, all of which are
different from ⊥.

A formula is in prenex normal form (pnf) if it is of the form Q1x1 . . . Qnxn.φ
where φ is quantifier-free, and where the Qi are existential or universal quan-
tifiers. If all Qi are ∃ (resp. ∀) then the formula is called a Σ1-formula (resp.
Π1-formula).

A � B denotes the set of partial functions from the set A to the set B
with a finite domain. The domain of a partial function f is written dom(f). The
complement of a set is written Xc. We write X \ Y for {x ∈ X | x �∈ Y }.

3 A Logic for an Algebra of Trees with Similarities

3.1 Decorations

In addition to what has been said in the introduction, our model of feature trees
also has information attached to the nodes of the trees. In our application to
UNIX filesystems, these could be records containing the usual file attributes like
various timestamps and access permission bits, owner and group, and so on. This
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work abstracts from the details of the information attached to tree nodes: we
take the definition of node decorations, and the pertaining logic as a parameter.
We hence assume given an arbitrary set D of decorations.

We assume given a set D of predicate symbols for decorations, and an inter-
pretation D for D with universe D. These predicate symbols are of course
assumed to be disjoint from the predicate symbols that will be introduced in
Subsect. 3.3. We also require that D contains a binary predicate x � y express-
ing the disequality of two information items.

We also assume that we have a quantifier elimination procedure for D: we can
compute for any Σ1 formula ψ over the language D, possibly with free variables,
a quantifier-free formula D-elim(ψ) that is equivalent in D to ψ and has the
same free variables. Furthermore, we can decide for any closed and quantifier-
free D-formula whether in holds in D.

3.2 Feature Trees

We assume given an infinite set F of features. The letters f , g, h will always
denote features.

The set FT of feature trees is inductively defined as

FT = D × (F � FT )

Here, the case of a partial function with empty domain serves as base case
of the induction. Hence, this amounts to saying that a feature tree is a finite
unordered tree where nodes are labeled by decorations, and edges are labeled by
features. Each node in a feature tree has a finite number of outgoing edges, and
all outgoing edges of a node carry different names. We write t̂ for the decoration
of the root node of t and we write

→
t for its mapping at the root, i.e. t = (t̂,

→
t ).

Our notion of equality on trees is structural equality, i.e. t = s iff t̂ = ŝ and
→
t = →

s , that is dom(
→
t ) = dom(→

s ) and
→
t (f) = →

s (f) for every f ∈ dom(
→
t ).

Examples of feature trees are given in Fig. 1.

t1 : d
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d
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Fig. 1. Examples of feature trees. d ∈ D is some arbitrary node decoration.

For the reasons explained in the introduction, our logical language does not
contain y

.= z[x �→ f ] but the simpler x ∼F y for any finite set F ⊆ F . If
F ⊆ F then we say that t is similar to s outside F, written t ∼F s, if for all
f ∈ F c = F \ F we have that
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– either f /∈ dom(
→
t ) ∪ dom(→

s )
– or f ∈ dom(

→
t ) ∩ dom(→

s ), and
→
t (f) = →

s (f).

In other words, t and s are similar outside F if they have precisely the same
children except maybe for the features in F .

3.3 Constraints and Their Interpretation

The set of predicate symbols (or atomic constraints) of our logic is

x
.= y Equality A(x1 . . . xn) Decoration predicate A ∈ D

x[f ]y Feature f from x to y x[f ] ↑ Absence of feature f from x
x[F ] Fence constraint x ∼F y Similarity outside F

In fences and similarities, the sets F are finite. We will use the usual syntactic
sugar and write x � .= y for ¬(x .= y), and x �∼F y for ¬(x ∼F y). As with equality,
we consider similarity predicates to be symmetric, that is we identify x ∼F y
with y ∼F x.

We have one model which has as universe the set FT . As usual, we use the
same symbol FT for the model and for its universe. The predicate symbols are
interpreted as follows, where ρ is a valuation of the free variables of the formula
in the model FT :

FT , ρ |= x
.= y iff ρ(x) = ρ(y)

FT , ρ |= x[f ]y iff f ∈ dom(
−−→
ρ(x)) and

−−→
ρ(x)(f) = ρ(y)

FT , ρ |= x[f ] ↑ iff f /∈ dom(
−−→
ρ(x))

FT , ρ |= x[F ] iff dom(→
x) ⊆ F

FT , ρ |= x ∼F y iff ρ(x) ∼F ρ(y)
FT , ρ |= A(x1, . . . , xn) iff D, (λxi.ρ̂(xi)) |= A(x1, . . . , xn)

Example 1. Let ρ be the valuation [x → t1, y → t2, z → t3] for the trees defined
in Fig. 1. The following formulas are satisfied in FT , ρ:

z[f ]x, x[i] ↑, x[{f, g, h, i}], x ∼{i} y

Similarity constraints are actually only of interest in case of an infinite set
of features. In case of a finite set F , the similarity constraint could already be
expressed in the logic FT that was mentioned in Sect. 1:

x ∼G y ⇔
∧

f∈F\G
((x[f ] ↑ ∧y[f ] ↑) ∨ ∃z(x[f ]z ∧ y[f ]z))

Note the difference between our fence constraint, which states an upper
bound on the root features of a tree, and the arity constraint of [3,15] which
states a precise set of root features of a tree. Both are equivalent, since one can
express a fence F as a disjunction of all the arities that are subsets of F . Recip-
rocally, in our logic, we can express that x has arity F as x[F ] ∧

∧
f∈F ¬x[f ] ↑.

Also note that decoration predicates behave in FT as in D:
Proposition 1. If ψ is a formula using only symbols of D then

FT , α |= ψ ⇔ D, λx.α̂(x) |= ψ.
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4 Quantifier Elimination

4.1 Clashing Clauses

We say that a clause c that is not ⊥ clashes if one of the patterns of Fig. 2
matches (modulo associativity and commutativity of ∧) a sub-clause c′ ⊆ c.

C-Cycle x1[f1]x2 ∧ . . . ∧ xn[fn]x1 (n ≥ 1)
C-Feat-Abs x[f ]y ∧ x[f ] ↑
C-Feat-Fen x[f ]y ∧ x[F ] (f /∈ F )
C-Neq-Refl x � .= x
C-NSim-Refl x �∼F x

Fig. 2. Clash patterns

Remark that C-Cycle is a clash since our model allows for finite feature trees
only, the other clash cases should be obvious.

Lemma 1. If a clause c clashes then FT |= (c → ⊥).

4.2 Positive Clauses with Local Variables

As a preparation for the general case we first consider only one single clause
∃X.(a1 ∧ . . . ∧ an) containing only positive atoms, prefixed by some existential
quantifiers.

S-Eq ∃X,x.(x .= y ∧ c) ⇒ ∃X.c{x 
→ y} (x �= y)
S-Feats ∃X, z.(x[f ]y ∧ x[f ]z ∧ c) ⇒ ∃X.(x[f ]y ∧ c{z 
→ y})

(y �= z, and if z ∈ Vo then y ∈ Vo)
S-Feats-Glob ∃X,x.(x[f ]y ∧ x[f ]z ∧ c) ⇒ ∃X,x.(x[f ]y ∧ y

.= z ∧ c) (y, z �∈ X)
S-Sims x ∼F y ∧ x ∼G y ∧ c ⇒ x ∼F∩G y ∧ c
P-Feat x ∼F y ∧ x[f ]z ∧ c ⇒ x ∼F y ∧ x[f ]z ∧ y[f ]z ∧ c (f /∈ F )
P-Abs x ∼F y ∧ x[f ] ↑ ∧c ⇒ x ∼F y ∧ x[f ] ↑ ∧y[f ] ↑ ∧c (f /∈ F )
P-Fen x ∼F y ∧ x[G] ∧ c ⇒ x ∼F y ∧ x[G] ∧ y[F ∪ G] ∧ c
P-Sim x ∼F y ∧ x ∼G z ∧ c ⇒ x ∼F y ∧ x ∼G z ∧ y ∼F∪G z ∧ c

(if
⋂

(y∼Hz)∈c H �⊆ F ∪ G)

Fig. 3. Transformation rules for the positive case. Existential quantifiers are only writ-
ten were relevant. Rule S-Feats is parameterized by a set Vo of variables.

In this subsection and the following, we will use transformation rules as
the ones in Fig. 3. These rules describe transformations that map a clause to a
formula (in this subsection the resulting formula is also a clause, but that will no
longer be the case in the next subsection). We say that such a rule left ⇒ right
applies to a clause c if:
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1. The pattern left matches the complete clause c modulo associativity and
commutativity of conjunction.

2. The side conditions of the rule, if any, are met.
3. The transformation yields a formula which is different from c.

If c is a clause and r a transformation rule then we write r(c) for the formula
obtained by applying r to c.

Each of the rules of Fig. 3 describes an equivalence transformation in the
model FT . Equation elimination (S-Eq) is a logical equivalence. S-Feats imple-
ments the fact that features are functional. This rule is parameterized by a
set Vo of variables that will be the set of variables (local or global) of the input
clause. The variable replacement is Vo-oriented in the sense that we never replace
a variable in Vo by a variable outside Vo. S-Feat-Glob is similar to S-Feat for the
case that y and z are both global variables. S-Sims allows us to contract multiple
similarities between the same pair of variables into one. P-Feats, P-Abs and P-Fen

propagate constraints along a similarity, taking into account the index of the
similarity. Finally, P-Sim is a kind of transitivity of similarity, where we take care
not to add a similarity which is subsumed by already existing similarities.

The propagations play two important roles in that system. First, they move
information, possibly leading to a clash. This is the case in the following example
where a fence moves through similarities to clash with a feature constraint:

x[f ]v ∧ x ∼{g} y ∧ y ∼{h} z ∧ z[∅]
P-Fen x[f ]v ∧ x ∼{g} y ∧ y[{h}] ∧ y ∼{h} z ∧ z[∅]
P-Fen x[f ]v ∧ x[{g, h}] ∧ x ∼{g} y ∧ y[{h}] ∧ y ∼{h} z ∧ z[∅]

Second, they take information from local variables and move it to global vari-
ables. This mechanism is at the core of the elimination of existential quantifi-
cations, the idea being that once all the propagations took place, all interesting
information is explicit in the global part, and we can hence drop the local part.

y[h] ↑ ∧ ∃z.(x ∼{f} z ∧ z ∼{g} y)
P-Sim y[h] ↑ ∧ x ∼{f,g} y ∧ ∃z.(x ∼{f} z ∧ z ∼{g} y)
P-Abs x[h] ↑ ∧ y[h] ↑ ∧ x ∼{f,g} y ∧ ∃z.(x ∼{f} z ∧ z ∼{g} y)

The following function computes a normal form with respect to the rules of
Fig. 3:

function normalize -positive(c: positive clause)
Vo := V(c1) where c = ∃X.c1
while c does not clash and some rule r of Fig. 3 applies to c:

c := r(c)
return(c)

Lemma 2. For a positive clause c, the function normalize-positive termi-
nates and yields a positive clause that is equivalent in FT to c.
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Given a quantifier-free clause c, we define D-part(c) as the conjunction of all
D-literals of c.

Lemma 3. Let the function normalize-positive return a clause ∃X.c that
does not clash and (gc, lc) be its decomposition. Let d = D-elim(∃X.D-part(c)).
If c contains no atom x[f ]y with x /∈ X and y ∈ X then

FT |= ∀̃((∃X.c) ↔ (gc ∧ d))

Actually, both lemmas are special cases of the forthcoming Lemmas 5 and 6 of
Sect. 4.3.

Lemma 3 can serve for quantifier elimination in the positive case, at least
when there is no feature constraint from a global variable to a local one. We will
see in Sect. 4.4 what can be done if this is not the case.

4.3 General Clauses with Local Variables

In case of clauses containing both positive and negative literals we have to con-
sider transformation rules that introduce negations or disjunctions. However, our
rules will continue to take a single clause as input. As a consequence, we have
to transform the result obtained by a transformation into disjunctive normal
form. We assume given a function dnf that takes a formula without universal
quantifiers and containing only positive occurrences of existential quantifiers,
and returns an equivalent dnf that does not contain any clashing clauses. This
can be achieved by using a standard dnf transformation and then purging all
clashing clauses, or alternatively by applying the clash rules on the fly.

Syntactic Sugar. In the transformation rules to be presented below we will use
several abbreviations that allow us to write the rules more concisely. First we
have

x〈F 〉 :=
∨

f∈F

∃z.x[f ]z

where F ⊂ F is a finite set. This formula states that x has at least one feature in
the set F , it can be seen as a dual to the fence constraint x[F ] which states that x
has at most the features in the set F . Note that x〈F 〉 introduces a disjunction,
so introducing such a formula requires the result to be put into dnf.

The formula x � .=f y states that x and y differ at feature f , that is either one
of them has f and the other one does not, or their children at f are different.
The formula x � .=F y generalizes this to a finite set F ⊂ F , stating that x and y
differ at at least one of the features in F .

x � .=f y := ∃z′.(x[f ] ↑ ∧y[f ]z′) ∨ ∃z.(x[f ]z ∧ y[f ] ↑)
∨∃z, z′.(x[f ]z ∧ y[f ]z′ ∧ (z � z′ ∨ z �∼∅ z′))

x � .=F y :=
∨

f∈F

x � .=f y
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We use (z � z′ ∨ z �∼∅ z′) instead of (z � .= z) to denote a difference between
two variables in order to avoid problems with the termination. These formulas
introduce disjunctions. They also introduce negated similarities at some newly
created children of x and y, so we have to take care in the termination proof
when these formulas are introduced by a transformation.

R-NEq x � .= y ∧ c ⇒ (x � y ∨ x �∼∅ y) ∧ c
R-NFeat ¬x[f ]y ∧ c ⇒ (x[f ] ↑ ∨∃z.(x[f ]z ∧ (y � z ∨ y �∼∅ z))) ∧ c
R-NAbs ¬x[f ] ↑ ∧c ⇒ ∃z.x[f ]z ∧ c
R-NFen-Fen x[F ] ∧ ¬x[G] ∧ c ⇒ x[F ] ∧ x〈F \ G〉 ∧ c
R-NSim-Sim x ∼F y ∧ x �∼G y ∧ c ⇒ x ∼F y ∧ x � .=F\G y ∧ c
R-NSim-Fen x[F ] ∧ x �∼G y ∧ c ⇒ x[F ] ∧ ¬y[F ∪ G] ∨ x � .=F\G y

) ∧ c
E-NFen x ∼F y ∧ ¬x[G] ∧ c ⇒ x ∼F y ∧ (¬x[F ∪ G] ∨ x〈F \ G〉) ∧ c

(F �⊆ G)
E-NSim x ∼F y ∧ x �∼G z ∧ c ⇒ x ∼F y ∧ x �∼F∪G z ∨ x � .=F\G z

) ∧ c
(F �⊆ G)

Fig. 4. Replacement and enlargement rules for the general case. � is the disequality
of decorations.

New Rules. Figure 4 extends the previously defined set of rules by adding several
replacement rules and two enlargement rules. First, we have R-NEq, R-NFeat and
R-NAbs that eliminate occurrences of the negated constraints x � .= y, ¬x[f ]y and
¬x[f ] ↑ respectively. Since no other rule introduces any of these negated con-
straints we can ignore these two negated constraints in the rest of the section.

Then we have three rules that combine a positive with a negative constraint.
R-NFen-Fen applies to the case where we have both a positive fence F and a
negated fence G for x. We simplify this by keeping the positive fence F , and
replacing the negative fence by saying that x must have a feature that is in F
(since that is all it can have), but not in G. Similarly, R-NSim-Sim applies when
we have between x and y both a positive similarity except in F , and a negated
similarity except in G. We simplify this by keeping the positive similarity, and
replacing the negated similarity by stating that x and y differ at a feature that
is in F (since these are the only features where they may differ) but not in G.
Finally, R-NSim-Fen applies when we have a fence F for x, and a negated similarity
with y except in G. Note that for any F and G, Gc = (F ∪G)c ∪ (F \G). Hence,
the negated similarity is equivalent to saying that either y has a feature outside
F ∪ G, which is the only possibility to have a difference with x outside F ∪ G
since x has already fence F , or the difference is in the finite set F \ G.

Finally, we have the two enlargement rules E-NFen and E-NSim. Their sole
purpose is to ensure (by enlarging the negated fence or the index of a negated
similarity) that the rules in Fig. 5 can be applied when we have a similarity in
conjunction with a negated fence or a negated similarity. The correctness proof of
these rules is similar to the three previous rules. In fact, the similarity between x
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and y is not needed for the correctness of these two rules and serves only for the
termination proof since the requirement of a context x ∼F y excludes arbitrary
enlargements.

P-NFen x ∼F y ∧ ¬x[G] ∧ c ⇒ x ∼F y ∧ ¬x[G] ∧ ¬y[G] ∧ c (F ⊆ G)
P-NSim x ∼F y ∧ x �∼G z ∧ c ⇒ x ∼F y ∧ x �∼G z ∧ y �∼G z ∧ c (F ⊆ G)

Fig. 5. Propagation rules for the general case.

The two rules in Fig. 5 may propagate a negated fence or a negated similarity
through a similarity. In fact, if x and y coincide outside F and F ⊆ G, then x
and y also coincide outside G. Hence, if x has a feature outside G then so does y
(P-NFen), and if x differs from z at some feature outside G then so does y (P-NSim).

We define the set of rules R1 as the union of all the transformation rules of
Figs. 3 and 4, and R2 as the set of the two transformation rules of Fig. 5.

function normalize(c: clause)
d := {c}
Vo := V(c1) where c = ∃X.c1
while exists c ∈ d to which some rule r ∈ R1 applies

d := (d \ {c}) ∪ dnf(r(c))
while exists c ∈ d to which r ∈ R2 applies

d := (d \ {c}) ∪ {r(c)}
return(d)

The function normalize normalizes first by rule set R1, and then by rule
set R2. This decomposition is necessary to ensure termination. It also makes
sense since application of rules R2 conserves normal forms with respect to R1.

Lemma 4. The output of normalize is a dnf where each conjunction is in nor-
mal form for R1 ∪ R2.

Proof (sketch). We have to prove that the application of one of the rules in R2

to a normal form with respect to R1 does not produce a redex for any of the
rules in R1. Assume, for instance that the application of P-NFen to c introduces a
redex of R-NFen-Fen. This means that the negative fence constraint introduced for
y will react with a positive fence constraint (for y) that was already present in
c. Since c is in normal form with respect to P-Fen, x must have a fence constraint
in c. This yields a contradiction since then c is not in normal form with respect
to R-NFen-Fen. The other cases are similar (details can be found in [11]).

Lemma 5. The function normalize, when applied to a clause c, terminates and
yields a dnf d such that FT |= ∀̃(c ↔ d).

Proof (sketch). Equivalence of c and d follows from the fact that each trans-
formation rule is an equivalence in FT . Termination is shown by defining a
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well-founded order on clauses such that each rule transforms a clause into a set
of stricter smaller clauses. The termination order on dnf formulas is the multiset
extension [8] of this order.

This order is a lexicographic order over twelve different measures that
decrease with the applications of the rules. We can for instance handle the
rules R-NEq, R-NFeat and R-NAbs first by saying that they decrease the number
of negated equalities, feature constraints or absences. Since nothing introduces
those literals, this is already a good start.

The first main difficulty in finding that order comes from the fact that all
the propagation rules are trying to saturate the clause. A good measure that
decreases with them is then the set of all possible atoms that are not in the
formula. For P-Feat, for instance: {(x[f ]y) | x, y ∈ V(c); f ∈ F(c); (x[f ]y) /∈ c}.
That would make a good measure if V(c) could not increase with the application
of other rules such as R-NSim-Fen. We have thus to handle these other rules first,
which leads us to another main difficulty.

The second main difficulty comes from the negated similarities. Indeed, while
all other literals may only move “horizontally” following the similarities, negated
similarities may “descend” in the constraint, creating variables and feature con-
straints if needed. It is not obvious when it will stop, and in particular to find a
bound on the number of variables introduced.

Let us consider the following example constraint and one of its reduction
paths (that is, the reduction may create several branches in the dnf, and we take
only the one we are interested in):

x0[f ]x1 ∧ x1[f ]y0 ∧x0[{f}] ∧ x1[{f}] ∧x0 �∼∅ y0
By R-NSim-Fen:

∃y1, z1. x0[f ]x1 ∧ x1[f ]y0 ∧ x0[f ]z1 ∧ y0[f ]y1 ∧x0[{f}] ∧ x1[{f}] ∧z1 �∼∅ y1
By S-Feats:

∃y1. x0[f ]x1 ∧ x1[f ]y0 ∧ y0[f ]y1 ∧x0[{f}] ∧ x1[{f}] ∧x1 �∼∅ y1

In two rules, we created a new variable y1, and removed a negated similarity
just to put it again somewhere else. Note in particular that R-NSim-Fen can still
apply, because x1 has now a fence and a negative similarity. In fact, if, instead
of two, we take a number n of variables xi, we can extend that example into one
that always doubles the number of variables.

The key to our solution to this problem is that rules that make negative
similarities descend, thus introducing feature constraints and new variables, need
some “fuel”, which is the presence of positive fences or similarities. We define
the original variables as the variables that were in the clause at the beginning
of normalize. Then, we show that

1. the number of original variables cannot grow;
2. there are never feature constraints from non-original variables towards origi-

nal ones;
3. the positive fences and similarities can only be present on original variables.

It remains the problem that negative similarities can descend. At some point,
they will necessarily go too deep and leave the area where the original variables
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may live. By doing so, they loose the positive fences and similarities that they
need to keep descending, and the process stops.

The full proof, including the lemmas corresponding to the points (1), (2) and
(3), the definition of the measures and the technical details can be found in [11].

This is also where we make use of the quantifier elimination procedure for D-
formulas. Given a quantifier-free clause c, we define D-part(c) as the conjunction
of all D-literals of c.

Lemma 6. Let the function normalize return a dnf which contains a clause
∃X.c. Let (gc, lc) be the decomposition of c, and d = D-elim(∃X.D-part(c)). If c
contains no atom x[f ]y with x /∈ X and y ∈ X then

FT |= ∀̃((∃X.c) ↔ gc ∧ d)

The proof can be found in [11].
We call a clause normalized when it is an element of a dnf returned as result

of function normalize.

4.4 Quantifier Elimination

In order to eliminate a block of existential quantifiers from a clause we apply
iteratively the following rule:

Feat-Fun ∃X,x.(y[f ]x ∧ c) ⇒ ¬y[f ] ↑ ∧∀x. (y[f ]x → ∃X. (y[f ]x ∧ c))
(y /∈ X, y �= x)

This rule follows the idea of [13], and was already applied to feature constraints
in [17]. The correctness of this transformation is shown by the following chain
of equivalences in the model FT :

∃X,x.(y[f ]x ∧ c)
∃x.(y[f ]x ∧ ∃X.c) since x, y �∈ X
¬y[f ] ↑ ∧∀x. (y[f ]x → ∃X.c) since features are functional
¬y[f ] ↑ ∧∀x. (y[f ]x → ∃X. (y[f ]x ∧ c))

The last step is very important, because it ensures that, if y[f ]x ∧ c is in
normal form, then the right part of the implication is also in normal form. This
will be important for the function defined below.

The function switch defined below iterates this replacement for all local
variables x that occur in the form y[f ]x where y is not local: the function applies
the transformation Feat-Fun, and then recursively applies itself on the result.
When there remains no more feature constraint y[f ]x from a global variable to
a local variable in the normalized clause c, we meet the hypotheses of Lemma 6.
We then return the conjunction of the global part gc of the normalized clause,
and of the D-part of the local part lc from which we have eliminated the block
of existential quantifiers.
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recursive function switch(c: normalized clause)
if ∃X,x.(y[f ]x ∧ c′) matches c and y �∈ X:

return(¬y[f ] ↑ ∧ ∀x.(y[f ]x → switch(∃X.y[f ]x ∧ c′)))
else:

(gc,lc) := decomposition(c)
d := D-elim(∃X.D-part(lc))
return(gc ∧ d)

Example 2. When given the following formula

∃v, w.(y[f ]v ∧ v[f ]w ∧ w[f ]z ∧ w[{f, g}] ∧ y ∼∅ z)

the function switch returns

¬y[f ] ↑ ∧∀v.(y[f ]v → (¬v[f ] ↑ ∧∀w.(v[f ]w → (w[f ]z ∧ y ∼∅ z))))

Lemma 7. Given a normalized clause c, switch(c) terminates and yields a
formula ψ such that

1. FT |= ∀̃(c ↔ ψ);
2. V(ψ) ⊆ V(c);
3. ψ contains no existential quantifiers and only positive occurrences of universal

quantifiers;
4. If V(c) = ∅ then ψ is quantifier-free.

We can now write a function that transforms a Σ1 formula into an equivalent
Π1 formula. For this we assume given a function pnf that transforms any formula
into its prenex normal form.

function solve(p: Σ1 formula)
let ∃X.q = p where q is quantifier -free
d := dnf(q)
dt :=

∨
c∈d normalize(∃X.c)

u :=
∨

c∈dt switch(c)
return(pnf(u))

Finally, the function decide takes a formula in prenex normal form and
returns an equivalent (in FT ) formula without any quantifiers. If Q is a string
of quantifiers, then Q is the string of quantifiers obtained from Q by changing ∃
into ∀ and vice-versa. For instance, ∃x∀y∃z = ∀x∃y∀z.

recursive function decide(p: pnf)
if p is quantifier -free:

return(p)
else if p is Q.∃X.q

where q quantifier -free , Q does not end on ∃:
return(decide(Q. solve(∃X.q)))

else if p is Q.∀X.q
where q quantifier -free , Q does not end on ∀:
return(¬ decide(Q. solve(∃X.¬q)))
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Theorem 1. Given a formula p in prenex normal form, decide(p) terminates
and yields a formula q such that

– FT |= ∀̃(p ↔ q)
– V(q) ⊆ V(p)
– q is a Π1 formula, and quantifier-free in case V(p) = ∅

Proof (sketch). Termination follows from the fact that at each call to decide,
the number of quantifier alternations in the pnf decreases.

If we apply decide to a closed formula, we hence obtain an equivalent (in
FT ) formula that contains no free variables and no quantifiers. Since the only
tree-terms are variables, we have obtained formula of the language D, for which
we can decide by assumption validity in D.

Corollary 1. The first order theory of FT is decidable.

5 Conclusion

We have presented a quantifier elimination procedure for a first-order theory
of feature trees with similarity constraints. Since update constraints can be
expressed by similarity and feature constraints, this implies in particular that
the first-order theory of feature trees with update constraints is decidable.

Our model of feature trees is in several respects an abstraction of UNIX file
systems [2]. First, real file systems make a distinction between different kinds of
files (directories, regular files, various kinds of device files). This distinction is
omitted here just for the sake of presentation. More importantly, real file systems
are not really trees as they allow for multiple paths from the root to regular files
(which must be sinks), and they provide for symbolic links. Since extending the
model by any of these may lead to undecidability of the full first-order theory we
might have to look for smaller fragments which are sufficient for our application
to the symbolic execution of scripts.
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the anonymous reviewers for their useful remarks and suggestions, and the members
of the CoLiS project for numerous discussions on tree constraints and their use in
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Abstract. Separation logic has become a stock formalism for reasoning
about programs with dynamic memory allocation. We introduce a vari-
ant of separation logic that supports lists and trees as well as inductive
constraints on the data stored in these structures. We prove that this
logic has the small model property, meaning that for each satisfiable for-
mula there is a small domain in which the formula is satisfiable. As a
consequence, the satisfiability and entailment problems for our fragment
are in NP and coNP, respectively. Leveraging this result, we describe
a polynomial SMT encoding that allows us to decide satisfiability and
entailment for our separation logic.

1 Introduction

Separation logic is a popular formalism to describe the state and shape of dynam-
ically allocated data structures and is used for the verification of programs that
manipulate the heap. The formalism prominently features in Facebook’s static
analyzer Infer [6], which is successfully deployed on an industrial scale to ana-
lyze the memory safety of millions of lines of imperative code. This impressive
scalability is facilitated by the logic’s separating conjunction operator (∗), which
allows the decomposition of the program heap into disjoint regions and thus
enables compositional reasoning by isolating data structures modified by a given
code fragment from unaffected portions of the memory (the frame). Moreover,
separation logic provides recursive predicates which describe the shape of dynam-
ically allocated data structures such as linked lists and trees and thus enable
reasoning about programs with unbounded heap.

The high expressiveness of separation logic, however, comes at the cost of
undecidability [7]. Consequently, the use of separation logic in deductive verifi-
cation [19,20] and symbolic execution [4] is often restricted to decidable frag-
ments. To obtain decidability, most of these fragments adhere to at least one
of the following restrictions: they only support lists [1,3,8,12,18]; they can only
express structural constraints but not constraints on data stored in structures
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[3,5,10,11]; or they are not closed under Boolean operators, but only under sepa-
rating conjunction [3,5,10,13]. Yet, the computational complexity is still daunt-
ing in many cases: deciding satisfiability is ExpTime-hard for the fragments in
[5,13], for instance, and [10] and the Strand logic [14] rely on a reduction of
structural constraints to monadic second-order logic. Other separation logics and
related formalisms are undecidable altogether [22].

We present a decidable separation logic that aims to strike a balance between
expressiveness and computational complexity. Our logic supports list and tree
segments as well as arbitrary data constraints, allowing us to describe common
data structures such as binary search trees and max-heaps. Notably, the spatial
formulas of our fragment are closed under classical Boolean operators including
negation, allowing us to decide satisfiability and entailment.

This decidability result is established by showing that the structural part of
our separation logic has the small-model property. In particular, we provide a
bound that is linear in the number of variables in the formula. As a consequence,
the satisfiability problem of our fragment is in NP and entailment in coNP
(exploiting closure under negation). Moreover, the explicit bound provided by
our small-model theorem enables a range of SAT/SMT-encodings of our separa-
tion logic. We characterize the properties that such encodings must satisfy and
provide a complete polynomial-size encoding of our logic.

While we are not the first to propose an encoding of separation logic into
SMT ([12] implements a reachability theory in SMT, lists with length constraints
are encoded in [18], and an encoding supporting the magic wand operator but
not recursive predicates is described in [23]), our approach lifts a number of
requirements of encodings of comparable expressiveness and complexity [19,20].

First, the encodings in [19,20] are based on theories for reachability in func-
tion graphs [12,25] as well as a theory of finite sets, whereas we rely only on
theories supported by off-the-shelf SMT solvers. Second, in [20], reasoning about
trees relies on ghost variables representing pointers to parent nodes. Reachabil-
ity predicates are restricted to these parent fields. In our approach, we support
reasoning about left and right descendants. Third, our encoding can be easily
combined with arbitrary data theories, whereas the data constraints in [19,20]
are harder to generalize, since they depend on local theory extensions. Fourth,
our logic supports reasoning about tree segments via a notion of stop points,
thus generalizing the structural properties about tree-like structures that can be
expressed in the logic compared to [20].

The paper is structured as follows. In Sect. 2, we introduce SLdata, a sepa-
ration logic with support for lists, trees, and data, but without constraints on
the data stored inside the lists and trees. We prove the small-model property for
SLdata in Sect. 3. In Sect. 4, we introduce SL∗

data, an extension of SLdata in which
the data inside of list and tree structures can be constrained by formulas from
the data theory. We show how to lift the small-model property to this extended
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setting. In Sect. 5, we present a polynomial encoding of SL∗
data into SMT. We

conclude in Sect. 6.1

2 Separation Logic with Lists, Trees, and Data

In this section we introduce the core fragment of our separation logic of lists,
trees, and data. Our approach is parametric with respect to a background theory
Tdata of the data domain, and a background theory Tloc of the location domain.
We denote with Fdata and Floc the sets of all quantifier-free Tdata-formulas and
Tloc-formulas, respectively. The background theories can be instantiated with
any first-order theory with equality, as usual in satisfiability modulo theories
(see, e.g., [2]). We denote this logic with SLdata.

Syntax. We work in a many-sorted logic with equality. The signature of SLdata

contains the sorts S = {loc, data}, representing locations and data, respectively.
We assume a countable infinite set of (sorted) variables X and a dedicated con-
stant null of sort loc. We denote with s a vector 〈s1, . . . , sn〉 of variables from X ,
and write ε for an empty vector, and s1 · s2 for the concatenation of two vectors.

Let Fld = {n, l, r, d} be the set of field identifiers corresponding to the next
element of a list node, the left and the right child of a binary tree node, and the
data field. To each field f ∈ Fld we associate a binary points-to predicate →f

with the following signatures:

→n : loc × loc �→ Bool, →l : loc × loc �→ Bool,

→r : loc × loc �→ Bool, →d : loc × data �→ Bool.

The logic includes two inductive predicates list and tree with signatures

list : loc × loc∗ �→ Bool, tree : loc × loc∗ �→ Bool.

The syntax of SLdata is presented in Fig. 1. A formula in SLdata is a well-
sorted Boolean combination of spatial formulas (FSpatial). Spatial formulas are
constructed by applying the separating conjunction ∗ to the spatial atoms. The
spatial atoms are Tloc and Tdata formulas, the points-to predicate x →f y, the list
predicate list(x, s) and the tree predicate tree(x, s). To ease notation, we denote
a separating conjunction of several points-to predicates over the same variable
x with x →p1,...,pn (y1, . . . , yn). The vector s is a vector of structural stop points
delineating the data structure. By abuse of notation, we omit s when it is empty.

Our logic departs from standard presentations of separation logic (see, e.g.,
[24]) in several details. First, we do not have emp, the empty heap. It can be
introduced as syntactic sugar, e.g. emp := (null = null). Second, we include
an independent points-to predicate for each field of lists and trees to facilitate
extensions of the logic to doubly-linked and/or overlaid data structures, see

1 Due to lack of space some proofs and additional material are omitted and can be
found in the extended version.
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t := null | x ∈ X
ASpatial ::= t →f t | list(t, s) | tree(t, s) | Floc | Fdata Spatial atoms
FSpatial ::= ASpatial | FSpatial ∗ FSpatial Spatial formulas

F ::= FSpatial | ¬F | F ∨ F | F ∧ F SLdata formulas

Fig. 1. Syntax of the core separation logic SLdata with lists, trees, and data.

e.g. [9]. Third, our lists and tree fragments represent data structures that start
from x and end in stop points s in an ordered fashion. Additionally—unlike in
many decidable separation logics [3,10]—we allow arbitrary Boolean structure
outside of the spatial conjunction.

Example 1 (Syntax). Let x, y, z be variables of sort loc, and w be of sort data.

– list(x, 〈y〉) ∗ list(y) are disjoint list segments from x to y and from y to null.
– tree(x, 〈y, z〉) ∗ tree(y) ∗ tree(z) represents a binary tree rooted in x that

contains two subtrees y and z ordered from left to right, as specified by 〈y, z〉.
– (x →n,d (y, w)) ∗ list(y) ∗ (w > 0) (where Tdata is an arithmetic theory) states

that x is a list node with data w > 0 pointing to a list with head y.

Semantics. We denote with f = {x1, . . . , xn �→ y1, . . . , yn} a partial function
that maps xi to yi and is otherwise undefined, and write f = ∅ if f is undefined
everywhere. We write dom(f) and img(f) for the domain and image of f .

The semantics of SLdata formulas are defined in terms of heap interpretations.
Let X ⊆ X be a set of variables. A heap interpretation M over X is a map that
interprets each sort σ ∈ S as a non-empty domain σM, each x ∈ X ∪ {null}
of sort σ as an element xM ∈ σM, and each points-to predicate →f of sort
σ1 × σ2 �→ Bool is interpreted as a partial function fM : σ1 ⇀ σ2 with finite
domain such that fM(null) is undefined (i.e., null may never be allocated) and
such that dom(n) ∩ (dom(l) ∪ dom(r)) = ∅, i.e., a location cannot be both a list
and a tree location.

We denote with M[x1, . . . , xn �→ v1, . . . , vn] a heap interpretation over X ∪
{x1, . . . , xn} that differs from M only by interpreting the variables xi as values
vi. Let �1, �2 ∈ locM. We write �1 →M �2 if �2 = fM(�1) for some f ∈ Fld. We
extend this notation to variables and write x →M y if for two variables x, y ∈ X
it holds that xM →M yM. We denote with →∗

M and →+
M the usual Kleene

closures of →M and say that �2 is reachable from �1 if �1 →∗
M �2.

A location � ∈ locM is an allocated location in M if there exists an f ∈
{n, l, r} such that � ∈ dom(fM). We define locM

list :=
{

� ∈ locM | � ∈ dom(n)
}

and locM
tree :=

{
� ∈ locM | � ∈ dom(l) ∪ dom(r)

}
. Location � is fully allocated in

M if it allocates data and either the next pointer or both the left and right
pointer, i.e., if � ∈ (dom(nM) ∪ (dom(lM) ∩ dom(rM))) ∩ dom(dM). Location
� is labeled in M if there exists an x ∈ X ∪ {null} with xM = �. Otherwise, �
is unlabeled.
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The size of M, denoted |M |, is the number of allocated locations in M.2

The size of a formula F , denoted |F |, is defined as the numbers of terms, atomic
formulas, and operators in F (including symbols from Tloc and Tdata).

Let M1 and M2 be heap interpretations over X that agree on the interpreta-
tion of all sorts, variables, and constants. We say that M1 is a sub-interpretation
of M2, written M1 ⊆ M2, if fM1 ⊆ fM2 for all fields f ∈ Fld. M1 and M2 are
disjoint interpretations if for all f ∈ Fld, dom(fM1) ∩ dom(fM2) = ∅. If M1

and M2 are disjoint, we denote with M1 ⊕ M2 the composition of M1 and M2

defined by taking the point-wise union of the functions f for each field f ∈ Fld.

M |= x →f y iff fM =
{
xM �→ yM} ∧ ∀h ∈ Fld . h 	= f =⇒ h = ∅

M |= Floc iff (M |=loc Floc) ∧ ∀h ∈ Fld . h = ∅
M |= Fdata iff (M |=data Floc) ∧ ∀h ∈ Fld . h = ∅
M |= F ∗ G iff M = M1 ⊕ M2 ∧ M1 |= F ∧ M2 |= G
M |= F ∧ G iff M |= F ∧ M |= G
M |= F ∨ G iff M |= F ∨ M |= G
M |= ¬F iff not M |= F
M |= x /∈ s iff

∧
y∈s M |= x 	= y

M |= pred(x, s) iff ∃i . M |= predis(x, s) ∧ ∧
y1 �=y2∈s M |= y1 	= y2

M |= pred0t(x, ε) iff M |= x = null
M |= pred0t(x, 〈y〉) iff M |= x = y
M |= listit(x, s) iff ∃� ∈ locM, d ∈ dataM .

M[z, w �→ �, d] |= x /∈ t ∗ x →n,d (z, w) ∗ listi−1
t (z, s)

M |= treeit(x, s) iff s = s1 · s2 ∧ i = i1 + i2 + 1
∧ ∃�1, �2 ∈ locM, d ∈ dataM . M′ = M[z1, z2, w �→ �1, �2, d]
∧ M′ |= x 	∈ t ∗ x →l,r,d (z1, z2, w) ∗ treei1t (z1, s1) ∗ treei2t (z2, s2)

Fig. 2. Semantics of the core separation logic SLdata. Variable z is a fresh variable of
sort loclist, z1 and z2 are fresh variables of sort loctree, and w is a fresh variable of sort
data. For brevity we denote with pred either list or tree.

The semantics of a formula F ∈ SLdata with respect to a heap interpretation
M is defined inductively over the structure of F , as presented in Fig. 2. The
semantics of location and data formulas Floc ∈ Floc and Fdata ∈ Fdata is defined
by their interpretation in Tloc and Tdata (denoted with M |=loc Floc and M |=data

Fdata), respectively. Our semantics is precise in the usual separation-logic sense
(see e.g. [3]), meaning M |= x1 →f x2 implies that x1 →f x2 is the only pointer
that is defined in M.

Example 2 (Semantics). Consider the following graphical representations of
three heap interpretations.

2 This size notion captures the amount of allocated memory rather than the amount
of addressable memory (which is determined by the interpretation of the location
domains).
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Each field interpretation corresponds directly to the edges of the graph labeled
with that field. For example, in M2, the next fields of lists are interpreted as
nM2 =

{
xM2 , yM2 �→ yM2 , yM2

}
. In these interpretations we have that

M1 |= list(x, 〈y〉), M2 |= list(x, 〈y〉), M2 |= list(x, 〈y〉) ∗ list(y, 〈y〉),
M2 |= list(x, 〈y〉) ∗ (y →n,d (y, z)), M3 |= tree(x, 〈y〉) ∗ (x = y).

3 A Small Model Property for SLdata

In this section, we show that every satisfiable SLdata formula F is satisfiable by a
model with a small interpretation of the loc domain. More precisely, we will derive
a size bound that is linear in the number of variables in F . This result has two
implications. First, the satisfiability problem for SLdata is in NP if satisfiability
for Tloc and Tdata is in NP, as we can guess and check a polynomially-sized
model.3 Second, as we will argue in Sect. 5, the size bound enables encodings of
SLdata into SMT without the need to reason about unbounded reachability.

To derive a tight bound, we distinguish between the list variables and the
tree variables in F . A variable is a list variable if it appears in at least one atom
of the form x1 →n x2 or list(x1, 〈x2, . . . , xk〉); a variable is a tree variable if it
appears in an atom of the form x1 →l x2, x1 →r x2 or tree(x1, 〈x2, . . . , xk〉). The
main result in the current section is the following:

Theorem 1 (Small-model property for SLdata). Let F be a satisfiable
SLdata formula with nlist list variables, ntree tree variables, and at most k ≥ 1
stop locations per tree predicate. Then there is a heap interpretation M that
satisfies F such that |M| ≤ max(4, 2nlist + (2 + k)ntree).

Example 3. To illustrate the bound of Theorem1, let x1, . . . , xn be tree variables,
s = 〈s1, . . . , sn〉, for n = 2k. Consider the formula tree(x1, s) ∗ · · · ∗ tree(xn, s). A
heap that satisfies this formula needs to accommodate n separate trees that all
end in n stop points. The smallest such heap M would therefore include n full
binary trees with n leaves and have the allocated size |M| = n(n− 1). Although
this size is quadratic in n, this is only because we are using n stop points. In
practice, the number of (program) variables pointing into a tree structure will be
an upper bound for the number of stop points. This number is generally low—for
example at most 2 for many typical tree traversal and tree update algorithms. ��

To prove Theorem 1, we take an arbitrary model M |= F and transform it
into a small model M′ such that M′ |= F . We define separate transformations

3 This is the case, e.g., in the common case when Tloc is the theory of equality and
Tdata is the theory of linear arithmetic.
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for positive and negative heap interpretations. A positive heap interpretation is
one that satisfies a positive spatial formula. More precisely, a heap interpretation
M over X is positive if there exists a formula F = A1∗· · ·∗Ak such that M |= F .
A heap interpretation that is not positive is negative.

Positive heap interpretations are well behaved. In particular, every unlabeled
location in a positive interpretation M is contained in exactly one list or tree
in M, as the separating conjunction precludes sharing of unlabeled allocated
locations between multiple data structures. The semantics of the list and tree
predicates additionally enforce acyclicity within each data structure and full
allocation of all unlabeled locations. We formalize these and related observations
in the following lemma.

Lemma 1. In a positive heap interpretation M the following holds:

1. Every unlabeled allocated location is fully allocated.
2. If M = M1 ⊕ M2, with both M1 and M2 positive, then every unlabeled and

allocated location of M is allocated in exactly one of M1 and M2.
3. For every unlabeled allocated location �, there is exactly one x such that � is

reachable from xM without going through another labeled location, i.e., such
that x →+

M �′ →∗
M � implies that �′ is unlabeled.

4. Every loop in M must contain a labeled location: if �1 →+
M �1, then every

such closed path can be split into �1 →∗
M xM →∗

M �1 for some x ∈ X.

Note that by definition, all negative heap interpretations falsify all spatial
formulas. So if M is negative and M |= F , we know that M falsifies all spatial
subformulas of F , as would any negative heap interpretation. For example, we
can replace M by a small model that contains a loop, because such a model is
negative by Lemma 1. Intuitively, this is why all formulas that are satisfied by
negative heap interpretations have the small model property.

Lemma 2. There exists a heap interpretation M0, with |M0| = 4, that falsifies
all spatial formulas A1 ∗ · · · ∗An. Moreover, for any negative heap interpretation
M and formula F , if M |= F then M0 |= F .

For the remainder of this section, we assume that F is a formula that is
satisfiable in a positive interpretation M over variables X. First, we define a
transformation of heap interpretations that removes a single location from the
field interpretations. We then show that, using this transformation, we can min-
imize M to a model that is still positive and satisfies F . Finally, we show that
the size of this positive minimal model is bounded as in Theorem1.

Location Removal. Let � ∈ locM be an allocated location, i.e., there is at least
one field f ∈ {n, l, r} with � ∈ dom(fM). We say that such a location �0 is
removable through its field f if the field f is defined (allocated) at �0 and for all
other fields g = d, gM(�) is either null or undefined. (Note that this does not
preclude that also fM(�) = null.) If � is a location removable through its field
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f , we write M′ = M \ {�} for the interpretation that mimics M apart from
avoiding the location �, i.e., for all g ∈ {n, l, r} and for all locations �′, we define

gM′
(�′) =

⎧
⎪⎨
⎪⎩

gM(�′) if �′ = � and gM(�′) = �,

gM(�) if �′ = � and gM(�′) = �

⊥ if �′ = �

In addition, location � is removed from the data interpretation, i.e., we set dM′
=

dM \ {� �→ d}. Figure 3 illustrates location removal for lists and trees.

xM0 : �1 �2 �3 null
n n n n

xM1 : �1 �2 null
n n n

xM2 : �1 null
n n

xM3 :

�1y0

�2y1

y2 null

xM4 :

�1y0

y1 y2

Fig. 3. Subsequent removal of removable non-essential list locations �3 and �2 and tree
location �2, transforming M0 via M1 into M2 and M3 into M4. Essential locations
are displayed in green. (Color figure online)

Essential Locations. Location removal reduces the allocated size of M. We now
characterize the locations that can safely be removed from M without falsifying
the formula F . Assume two distinct labeled locations �1 and �2 from locM. We
call a location � ∈ locM an induction indicator for (�1, �2) if �1 →M � →+

M �2.
Intuitively, a location is an induction indicator if it is a potential witness of a first
step of a longer unrolling of an inductive predicate. An induction indicator cannot
be removed as such a removal might change the interpretation of a predicate
x →f y from false to true. An allocated location � is an essential location iff � is
a labeled location or � is an induction indicator.

Model Minimization. We now proceed to show that if M′ = M \ {�} for a
non-essential, removable location �, then M |= F if and only if M′ |= F .

Lemma 3. Let M be a positive heap interpretation over X and let A be a spatial
atom. Let � be a non-essential, removable location and let M′ = M \ {�}. Then
A |= M if and only if M′ |= A.

If F = A1 ∗ · · · ∗ An is a separating conjunction, we use that M = M1 ⊕
· · · ⊕ Mk for some Mi such that Mi |= Ai. By Lemma 1, � is fully allocated in
exactly one Mi, has no direct predecessors outside of Mi, and is removable in
Mi. This lets us reduce the case for the separating conjunction to Lemma 3 and
conclude:
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Lemma 4. Let F = A1 ∗ · · · ∗ An be a conjunction of spatial atoms Ai, and let
M be a positive heap interpretation. Let � be a non-essential removable location
of M, and let M′ = M \ {�}. Then M |= F if and only if M′ |= F .

Finally, by a simple induction proof over the Boolean structure of F that relies
on Lemma 4, we conclude:

Lemma 5. Let M be a positive heap interpretation over X, � be a non-essential
removable location, and let M′ = M\{�}. Then M |= F if and only if M′ |= F .

It remains to be shown that by iterating location removal, we eventually
terminate with a model of a size that satisfies the bound in Theorem1.

Proof (of Theorem 1). Let M |= F . If F is also satisfied in the small model
M0 from Lemma 2, we are done. Otherwise, consider the DNF form of F . Since
M |= F , there is at least one conjunct L1∧. . .∧Lm of the DNF such that M |= Li,
for all i. If all Li are negated, then M0 satisfies them, and therefore M0 |= F ,
contrary to assumption. Therefore, there is at least one positive Li = A1∗· · ·∗An,
with M |= A1 ∗ · · · ∗ An. We iterate location removal until we end in a positive
model M′ |= F and M′ |= A1∗· · ·∗An, that has no more removable non-essential
locations. We estimate the size of M′. An allocated location from M′ is either
essential or non-essential.

There are at most N1 = 2nlist + 3ntree allocated essential locations in M′:
In M′, every list location has at most one successor location, and every tree
location has at most two direct successors (with respect to →M). These are
potential induction indicators which, taken together with labeled locations, give
a total of at most N1 essential locations.

Now, let � be an allocated but non-essential location in M′. Since M′ |=
A1 ∗ · · · ∗ An. Location � must be allocated by one of the Ai atoms. Ai cannot
be a →f predicate as � would otherwise be labeled and therefore essential. Ai

cannot be a list predicate either, as � would be removable. Ai must therefore be a
tree(x, s) predicate. We claim that both left and right subtree of � must contain
(distinct) stop variables s1 and s2. If not, then one of the descendants of � would
be removable. The location � is therefore the lowest common ancestor of s1 and
s2. Assuming that the number of stop points in s is at most k, for a tree starting
at x, there are at most k −1 such common ancestors. Since there can be at most
ntree non-empty tree predicates among Ai, there are at most N2 = ntree(k − 1)
allocated non-essential locations in M′. We can thus bound the size of M′ with
N1 + N2 = 2nlist + (2 + k)ntree. ��

4 Extending SLdata with Data Constraints

In this section we add to SLdata the possibility to constrain the data values in
lists and trees by means of passing Tdata formulas as additional parameter to the
list and tree predicates. We call the extended logic SL∗

data. Our goal is to reason
about data properties of inductive structures that appear frequently in practice,
e.g., a list being sorted, or a tree being a binary search tree.
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We assume two dedicated fresh variables α and β from X of sort data to
be used exclusively in data predicates. We call a formula P (α) a unary data
predicate, and a pair (f, P (α, β)), for f ∈ {n, l, r}, a binary data predicate. Both
types of predicates may also contain other variables from X \ {α, β}. We pass
a set of data predicates P as additional parameter to the predicates, obtaining
ternary predicates list(x, s,P) and tree(x, s,P). As before, for brevity, if either
of s or P is empty, we omit them. Semantics of an inductive data predicate
pred(x, s,P), in a heap interpretation M, are as follows:

1. The predicate holds in M only if it holds without the data constraints, i.e.,
pred(x, s) must be true in M and therefore M describes a pred structure.

2. For each unary data predicate P (α) ∈ P, all allocated data in M must satisfy
P . More precisely, for all (�, d) ∈ dM, we have that M[α �→ d] |=data P holds.

3. For each binary predicate (f, P (α, β)) ∈ P, all allocated data must be
related with all of its f -descendants through P . More precisely, for all
(�1, d1), (�2, d2) ∈ dM such that fM(�1) →∗

M �2, M[α, β �→ d1, d2] |=data P
holds.

Example 4 (Data Predicates). We illustrate the inductive predicates through
representative examples of data predicates over lists and trees. The predicates

list(x, {(α = 0)}), list(x, {(n, α = β)}), list(x, {(n, α < β)}),

describe a list with all data values equal to 0, a list with all data values distinct,
and a list with data values increasing. The predicates

tree(x, {(l, β < α), (r, β > α)}), tree(x, {(l, β < α), (r, β < α)}),

describe a binary search tree, and a max-heap. Formula list(x, 〈m〉, {(α < M)})∗
m →n,d (y,M) ∗ list(y, {(α > M)}) describes a partitioned list where the left
partition contains elements smaller than the pivot m, and the right partition
contains elements larger than the pivot m. Formula list(x) ∗ list(y, {(α = a)}) ∧
¬(list(x, {(α = a)}) ∗ list(y)) describes a list x that contains a data value a, and
a list y that does not contain a, meaning that the sets of values in the lists x
and y are different. ��

We now lift the small-model property to full SL∗
data.

Theorem 2 (Small-model property for SL∗
data). Let F be a satisfiable

SL∗
data formula with nlist list variables, ntree tree variables, mlist list predicates

with data constraints, mtree tree predicates with data constraints, and at most
k ≥ 1 stop locations per tree predicate. Then there is a heap interpretation M
that satisfies F such that |M| ≤ max(4, 2nlist + (3 + k)ntree + 2mlist + 2mtree).

Intuitively, the changes to the reasoning are minimal since the data predicates
are universal, and the location removal does not invalidate predicates that are
true. We only must be careful to ensure that location removal does not change
the value of a data predicate from false to true.
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Example 5. Let F = list(x1, 〈x2〉, {(n, P1)}) ∧ ¬list(x1, 〈x2〉 , {(n, P2)}), where
P1 = (α < β) and P2 = (2α ≤ β), and consider the following model M0.

2

x1M0 :

4

�1

5

�2

8

�3 x2
n n n nd d d d

We have that M0 |= F . In addition, locations �2 and �3 are not essential and
can be removed. But, in models M1 = M0 \{�2} and M2 = M0 \{�3}, we have
that M1 |= F but M2 |= F . ��

To avoid the situation described above, we must ensure that for each data
predicate pred(x, s,P) that is falsified due to some P ∈ P being false, we have a
designated pair of locations that witness the reason why P is false.

Proof (of Theorem 2). As in the proof of Theorem1, assume that F has a positive
model M, i.e., M |= A1 ∗ · · · ∗ An for some Ai from F . In this model, for each
falsified data predicate, we designate at most 2 additional locations as essential
and proceed with reducing M to M′ by removing all removable non-essential
locations. The model M′ therefore contains at most N1 = 2nlist+3ntree+2mlist+
2mlist locations marked as essential. We now count the number of allocated non-
essential locations � in M′. As in the proof of Theorem 1, location � must be
allocated as part of a predicate pred(x, s), whose interpretation can also contain
two associated witness locations w1 and w2 with w1 →+

M′ w2. Location � is
then either the lowest common ancestor of two stop location sM

′
i and sM

′
j , or

a lowest common ancestor of some stop locations sM
′

i and w2. Assuming that
the number of stop points in s is at most k, for a tree starting at x there are
at most k such common ancestors. Since there can be at most ntree non-empty
tree predicates among Ai, there are at most N2 = kntree allocated non-essential
locations in M′. We can thus bound the size of M′ with |M′| ≤ N1 + N2 =
2nlist + (3 + k)ntree + 2mlist + 2mtree. ��

As opposed to the symbolic-heap family of separation logics (e.g. [3,5]), the
logic SL∗

data is closed under negation, and we can solve the entailment problem
F |= G by checking whether F ∧ ¬G is unsatisfiable.

Corollary 1. If the satisfiability problem for Tdata is in NP then the satisfiability
problem for SL∗

data is in NP, and the entailment problem for SL∗
data is in coNP.

5 Encoding SL∗
data into SMT

We now present an encoding of SL∗
data formulas into SMT. We show that every

formula F ∈ SL∗
data can be encoded in polynomial time (and size) as a formula in

the SMT theory of arrays that is satisfiable iff F is satisfiable. Our approach relies
on the theory of arrays extended with combinators that can express constant
arrays and express point-wise array operations [16]. We denote this theory by
Tarray. In Tarray, it is possible to express universal statements about array elements
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without relying on quantifiers. Moreover, the satisfiability of generalized array
formulas is decidable in NP with effective decision procedures implemented in
popular SMT solvers such as Z3 [17] and Boolector [21].

The basic theory of arrays defines functions store and ·[·], as usual (see, e.g.
[15]). The generalized theory adds a constant combinator K and a map combi-
nator map such that K(c)[i] = c, for a constant c, and mapf (A1, . . . , An)[i] =
f(A1[i], . . . , An[i]), for a function f . The array combinators are expressive enough
to express basic set-theoretic operations. For example, we can view a set of loca-
tions as an array mapping loc to Bool and define set operations as follows

{x} = store(K(⊥), x,�) x ∈ X = X[x] empty(X) = (X = K(⊥))
X ⊆ Y = map⇒(X,Y ) X ∪ Y = map∨(X,Y ) X ∩ Y = map∧(X,Y )

In the following, we use the set notation as a shorthand for the equivalent array
encoding. We denote array variables that represent sets in capital letters (e.g.,
X), and vectors of array variables in boldface (e.g., X = 〈X1, . . . Xn〉). To ease
notation we overload predicates over sets to predicates over vectors of sets in a
point-wise manner and write, e.g., empty(X) for

∧
empty(Xi), and X = Y ∪ Z

for
∧

Xi = Yi ∪ Zi.
To each SL∗

data interpretation Msl, of size N , we associate an equivalent first-
order model Msmt in the theory Tarray ⊕ Tdata ⊕ Tloc as follows. Msmt interprets
each sort from Msl as the same sort; each partial function f ∈ Fld in Msl as
an array f of the same sort; and the domain of each partial function f ∈ Fld
in Msl as a dedicated set variable Xf . The interpretation fMsmt of a field is
an array mapping each � ∈ dom(fMsl) to fMsl(�), and to an arbitrary well-
sorted value otherwise. The interpretation of XMsmt

f is an array representing
the set dom(fMsl). The interpretation Msmt also includes N dedicated location
variables x1, . . . , xN , and a set of locations X interpreted so that X = Xn ∪ Xl ∪
Xr and X ⊆ {x1, . . . , xN} holds. Other variables and constants are interpreted
in Msmt as they are in Msl.

The following SMT formula ΔN
SL defines SL∗

data heap interpretations of size
at most N .

ΔN
SL

def= X =
⋃

f∈Fld

Xf ∧ X ⊆ {x1, . . . , xN} ∧ null ∈ X ∧ empty(Xn ∩ (Xl ∪ Xr))

Formula ΔN
SL makes sure that the allocated heap size is at most N , that

null is not allocated, and that no variable is treated as both a list and a tree
location. In the following we always denote with X = 〈Xn,Xl,Xr,Xd〉 the vector
of dedicated set variables denoting field footprints.

SMT Translation. The encoding function TN that translates basic SL∗
data formu-

las to SMT is shown in Fig. 4. We start without inductive predicates, following
the approach from [19]. The function TN takes an SL∗

data formula F and trans-
lates F into an SMT formula F ′ = TN (F ) so that F ′ is satisfiable if and only if
F is satisfiable in a model of size at most N . The translation relies on two aux-
iliary functions: Tb

N (F ), that translates the Boolean structure of F recursively;
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Ts
N (Floc,Y) = 〈Floc, empty(Y), ∅〉

Ts
N (Fdata,Y) = 〈Fdata, empty(Y), ∅〉

Ts
N (x →f y,Y) = 〈f(x) = y, Yf = {x} ∧ empty(Y \ Yf ), ∅〉

Ts
N (F1 ∗ F2,Y) = let Y1,Y2 be fresh in

let 〈A1, B1, Z1〉 = Ts
N (F1,Y1), 〈A2, B2, Z2〉 = Ts

N (F2,Y2) in

let Z = Z1 ∪ Z2 ∪ Y1 ∪ Y2 in

〈A1 ∧ A2 ∧ empty(Y1 ∩ Y2), B1 ∧ B2 ∧ Y = Y1 ∪ Y2, Z〉
Tb

N (F ) = let Y be fresh, 〈A, B, Z〉 = Ts
N (F,Y) in 〈A ∧ X = Y, B, Z ∪ Y〉

Tb
N (¬F ) = let 〈A, B, Z〉 = Tb

N (F ) in 〈¬A, B, Z〉
Tb

N (F1 ∧ F2) = let 〈A1, B1, Z1〉 = Tb
N (F1), 〈A2, B2, Z2〉 = Tb

N (F2) in

〈A1 ∧ A2, B1 ∧ B2, Z1 ∪ Z2〉
Tb

N (F1 ∨ F2) = let 〈A1, B1, Z1〉 = Tb
N (F1), 〈A2, B2, Z2〉 = Tb

N (F2) in

〈A1 ∨ A2, B1 ∧ B2, Z1 ∪ Z2〉
TN (F ) = let Tb

N (F ) = 〈A, B, Z〉 in A ∧ B ∧ ΔN
SL

Fig. 4. SMT encoding for the core fragment of SLdata without inductive predicates.

and Ts
N (F,Y), that translates spatial formulas. Both functions take as input a

formula (and a footprint Y to define) and return a triple 〈A,B,Z〉, where A and
B together define the semantics of F and Z is the set of all fresh variables intro-
duced by the translation. The encoding is straightforward, with the exception
of negation. Let Tb

N (F ) = 〈A,B,Z〉. In order for our encoding to be correct, we
make sure that the following properties hold.

Correctness: MN
sl |= F iff MN

smt |= ∃Z . A ∧ B;
Z-Existence: ∃Z . B is valid; and
Z-Equivalence: B(Z1) ∧ B(Z2) ⇒ A(Z1) = A(Z2) is valid.

The correctness property ensures that the encoding correctly encodes the SL∗
data

semantics: F is true in a heap interpretation of size N iff it is true in the corre-
sponding SMT model. Z-Existence and Z-Equivalence make sure that the encod-
ing can accommodate negation: the B part of the translation is a “definition” of
the fresh variables Z: variables Z can be assigned in each model to satisfy B, in
a way that the A part cannot distinguish. These properties allow us to ensure
correctness of the translation of negation ¬F . Assuming that Tb

N (F ) = 〈A,B,Z〉,
we can derive the encoding of negation as

MN
sl |= ¬F iff MN

sl |= F iff (1)

MN
smt |= ∃Z.A ∧ B iff MN

smt |= ¬∃Z.A ∧ B iff (2)

MN
smt |= ∀Z.B ⇒ ¬A iff MN

smt |= ∃Z.B ∧ ¬A, (3)

where the equivalence (3) follows from Z-existence and Z-equivalence.
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Lists and Trees. The translation of an inductive predicate Ts
N (pred(x, s,P),Y),

with s = 〈s1, . . . , sk〉, for model sizes of at most N , introduces fresh binary
predicates rZ1 , . . . , rZN , and a fresh location set Z. These fresh predicates are
meant to represent reachability in up to N steps within the set Z. Location
set Z will represent all nodes reachable from x allocated within the predicate.
Throughout the remainder of the section, we assume that x, s, P, Y, Z, rZi and
N are fixed and in scope of all definitions. We also assume sets of fields Fpred and
F d
pred, defined as Flist = {n} and F d

list = {n, d}, or Ftree = {l, r} and F d
tree = {l, r, d}.

To fully define translation function Ts
N , we will define auxiliary helper formu-

las. To start with, we define the following functions for convenience: isstop(x) def=
x = null∨

∨
s∈s x = s, defining stop nodes; S(x, y) def=

∨
f∈Fpred

f [x] = y, defining

a successor node; and defineY
def=

∧
f∈F d

pred
Yf = Z ∧

∧
f∈Fld\F d

pred
Yf = ∅, defining

pred-relevant elements of Y in terms of the footprint Z.
Although reachability is not expressible in first-order logic, since we are only

interested in finite reachability with respect to the model elements x1, . . . , xN ,
we can define the reachability predicates rZK , for 1 ≤ K ≤ N , as follows.

R1
def=

∧
1≤i,j≤N

rZ1 (xi, xj) ⇔ (xi ∈ Z ∧ ¬isstop(xj) ∧ S(xi, xj))

RK
def=

∧
1≤i,j≤N

rZK(xi, xj) ⇔ (rZK−1(xi, xj) ∨
∨

1≤k≤n

(rZK−1(xi, xk) ∧ rZ1 (xk, xj))

reachability
def= R1 ∧ R2 ∧ · · · ∧ RN

In addition, we define the function rZN (x, y, f) def= f [x] = y ∨ (f [x] ∈ Z ∧
rZN (f [xi], xj)) to denote that y is reachable from x through f as the first step.
We can now define the formula footprint that asserts that the set Z (the footprint
of pred) is defined as the set of locations reachable from x.

emptyZ
def= isstop(x) ∨ (

∧
1≤i≤N x = xi)

footprint
def= Z ⊆ {x1, . . . , xN} ∧ (emptyZ ⇒ Z = ∅) ∧
∧

(
¬emptyZ ⇒

∧
1≤i≤N

(
(xi ∈ Z) ⇔

(
(xi = x) ∨ rZN (x, xi)

)))

Next, the formula structure ensures that the elements of the pred are part of an
acyclic data structure, starting at x, with no sharing of non-null nodes.

oneparent
def=

∧
1≤i≤N

xi ∈ Z ⇒
∧

f 
=g∈Fpred

(f [xi] = g[xi] ⇒ f [xi] = null)

∧
∧

1≤j≤N

xj ∈ Z ∧ xi = xj ⇒
∧

f,g∈Fpred

(f [xi] = g[xj ] ⇒ f [xi] = null)

structure
def= (¬isstop(x) ⇒ x ∈ Z) ∧ oneparent ∧ ¬rZN (x, x)

For ensuring stop node properties, we assert that the stop nodes of pred are
pairwise different, occur exactly once, are the only leaves of the structure, and,
for trees, are ordered the same way as prescribed by the vector s = 〈s1, . . . , sk〉.
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stopseq
def= (isstop(x) ⇒

∧
s∈s

x = s) ∧
∧

1≤i<j≤k

si = sj

stopsoccur
def= ¬isstop(x) =⇒

∧
s∈s

∨
1≤p≤N

(xp ∈ Z ∧ S(xp, s))

stopleaves
def=

∧
1≤i≤N

∧
f∈Fpred

(xi ∈ Z ∧ f [xi] /∈ Z) ⇒ isstop(f [xi])

fstop(xp, f, s) def= f [xp] = s ∨
∨

1≤c≤N

rZN (xp, xc, f) ∧ xc ∈ Z ∧ S(xc, s)

ordered
def=

∧
1≤i<k

∨
1≤p≤N

xp ∈ Z ∧ fstop(xp, l, si) ∧ fstop(xp, r, si+1)

We combine the above constraints into stopslist
def= stopsoccur ∧ stopseq ∧

stopleaves and stopstree
def= stopsoccur ∧ stopseq ∧ stopleaves ∧ ordered. Finally,

we define the data formula that ensures that the data allocated in the predicate
respects the given (unary and binary) data predicates.

udata(P ) def= map⇒(Z,mapP (d)) = K(�)

bdata(f, P ) def=
∧

1≤i,j≤N

xi, xj ∈ Z ∧ rZN (xi, xj , f) ⇒ P (xi, xj)

data
def=

∧
P∈P

udata(P ) ∧
∧

(f,P )∈P
bdataN (f, P )

Putting all the auxiliary formulas together, we define the translation of induc-
tive predicates pred ∈ {list, tree} to SMT as follows.

Ts
N (pred(x, s,P),Y) = let rZ1 , . . . , rZN , Z be fresh

let A = structure ∧ stopspred ∧ data

let B = reachability ∧ footprint ∧ defineY in

〈A,B,
{
rZ1 , . . . , rZN , Z

}
〉

It is important to note that the formulas RK only ensure that the predicates
rZK are fully defined on the set {x1, . . . , xN} and can be interpreted arbitrarily
elsewhere. Nevertheless, this is sufficient for the translation to be correct. By
inspection, it can be seen that the A part of the translation cannot distinguish
two interpretations of rZK that differ only outside of {x1, . . . , xN}. This is crucial
for the correctness of the encoding as it supports the Z-Equivalence property of
the translation.

Theorem 3. Let F be a SL∗
data formula and N be the bound given by Theorem2.

Then F is SL∗
data-satisfiable if and only if the SMT translation F ′ = TN (F ) is

satisfiable. Moreover, the translation F ′ is polynomial in the size of F .

As Tarray is in NP, this yields an NP decision procedure for SL∗
data if Tdata is in

NP, matching the complexity result from Sect. 4.
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6 Conclusion

We defined a new fragment of separation logic, SL∗
data, which supports lists, trees,

and data constraints. SL∗
data allows us to formalize common data structures such

as max-heaps and binary search trees. Despite this expressiveness, satisfiability
and entailment of SL∗

data formulas are decidable in NP and coNP, respectively.
This follows from the logic’s small-model property: Every model of an SL∗

data

formula can be converted into a small model by removing unnecessary locations.
We derived a bound that is linear in the number of variables and thus enables a
polynomial encoding into SMT. An implementation, which remains future work,
can be based on off-the-shelf SMT solvers. In addition, we plan to extend our
approach to doubly-linked and nested data structures, as well as to abduction.
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Abstract. The equational reasoning tool MædMax implements maxi-
mal ordered completion. This new approach extends the maxSMT-based
method for standard completion developed by Klein and Hirokawa (2011)
to ordered completion and equational theorem proving. MædMax incor-
porates powerful ground completeness checks and supports certification
of its proofs by an Isabelle-based certifier. It also provides an order gen-
eration mode which can be used to synthesize term orderings for other
tools. Experiments show the potential of our approach.

1 Introduction

Equational reasoning has been one of the main research areas of theorem prov-
ing endeavors ever since Knuth and Bendix proposed completion [8]. To remedy
the fact that completion may fail if unorientable equations are encountered,
ordered completion was developed [3]. The ideas of this method have since
been pervasive in automated deduction whenever equations are involved. Com-
pletion and paramodulation procedures are typically based on a given-clause-
algorithm [9,14], which implies that facts are processed one at a time. The
reduction order—a notoriously critical parameter—is typically fixed once and
for all.

Maximal completion follows a very different approach. The idea is to main-
tain a single pool of equations. One then tries to orient as many equations as
possible, by solving a maxSMT problem. If a terminating rewrite system R
obtained in this way joins all its critical pairs as well as the input equalities, it
is complete. Otherwise the critical pairs of R are added to E and the procedure
is reiterated, as sketched in Fig. 1(a). In this way the proof search is guided by
a maxSMT solver and steered towards systems with desirable properties. Maxi-
mal completion gave rise to the simple yet efficient and powerful completion tool
Maxcomp [7]. It was later shown that the tool’s search process can be signifi-
cantly improved by using more complex objective functions, instead of merely
maximizing the number of oriented equations [11].

The tool MædMax is an ordered completion and equational theorem proving
tool based on a similar approach. As input it takes a set of equalities E0 and a
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find
R ⊆ E ∪ E−1

R
complete for E0?

E := E ∪ CP(R)

R

no

E

R

yes

SMT solver

(a) standard completion

find
R ⊆ E ∪ E−1

∃ joinable goal in G, or
system ground complete for E0?

E := E ∪ CP(R ∪ E)
G := G ∪ CP(R ∪ E ,G)

R

no

(E ,G)

YES/NO

yes

SMT solver

(b) theorem proving

Fig. 1. Maximal completion.

goal equality, and tries to decide whether the goal follows from E0. To this end, it
attempts to derive the goal from E0 or generate an equivalent ground-complete
system. It is known that such a system can in particular be used to disprove the
goal [1].

Figure 1(b) visualizes our approach (for the common case of a goal without
variables). We maintain a set of equalities E and a set of goals G, which is
considered a disjunction. By orienting equations in E we find a terminating
rewrite system R. If a goal in G can be joined using R, or the system is ground
complete then the goal can be decided. Otherwise, critical pairs are added to
both E and G and the procedure is repeated. Thus in contrast to the given clause
algorithm many equations are processed at once, and the proof search is steered
towards systems that have desirable properties.

Our experiments show that MædMax is particularly suited to prove (ground)
completeness and satisfiability, due to sophisticated joinability criteria. If a proof
is found then MædMax can output an equational proof that is checkable by the
Isabelle-based verifier CeTA, thus offering a high degree of reliability. The tool
also provides an order generation mode, where the reduction order deemed most
suitable according to the optimized criteria is displayed. Finally, we illustrate
practical relevance by means of examples in recent applications to data integra-
tion [12].

The remainder of this paper is organized as follows. In Sect. 2 we recall some
relevant concepts and notations. Ordered maximal completion is presented in
Sect. 3. Implementation details are highlighted in Sect. 4. In Sect. 5 we report on
experimental results and conclude.

2 Preliminaries

In the sequel standard notation from term rewriting is used [2]. We consider the
set of terms T (F ,V) over a signature F and a set of variables V, while T (F)
denotes the set of all ground terms. An equational system (ES) E is a set of
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equations � ≈ r over T (F ,V), and a term rewrite system (TRS) R is a set of
equations denoted as � → r, where � �∈ V and Var(r) ⊆ Var(�). For an ES E we
write E± to denote E ∪ {t ≈ s | s ≈ t ∈ E}. A TRS R is terminating if there are
no infinite rewrite sequences t0 →R t1 →R t2 →R . . ., and (ground) confluent if
s ∗

R← · →∗
R t implies s →∗

R · ∗
R← t for all (ground) terms s and t. A TRS which

is terminating and (ground) confluent is (ground) complete.
One common method to establish termination of a TRS R is to find a reduc-

tion order > which is compatible with R. A reduction order > is ground total if
s > t, t > s, or s = t holds for all ground terms s and t. It is known that LPO
and KBO are reduction orders enjoying this property whenever they are based
on a total precedence, and polynomial interpretations can be extended to such
an order. For a reduction order > and an ES E , the TRS E> consists of all rules
sσ → tσ such that s ≈ t ∈ E± and sσ > tσ [3]. A TRS R is moreover ground
complete for an ES E0 if R is ground complete and the relations ↔∗

R and ↔∗
E0

coincide when restricted to ground terms. Given a terminating TRS R and a
term t, we write t↓R to denote some normal form of t. For an ES E , we write E↓R
for the set of all equations s↓R ≈ t↓R such that s ≈ t ∈ E and s↓R �= t↓R. An
equation s ≈ t is ground joinable in R if sσ ↓R tσ for all grounding substitutions
σ, where ↓R abbreviates →∗

R · ∗
R←.

We use the following notion of extended critical pairs [3]: Given a reduction
order > and �1 ≈ r1 and �2 ≈ r2 in E±, the equation �2σ[r1σ]p ≈ r2σ is an
extended critical pair if p is a function symbol position in �2, the terms �2|p and
�1 are unifiable with most general unifier σ, and neither r1σ > �1σ nor r2σ > �2σ
hold. The set of extended critical pairs of an ES E with respect to > is denoted
by CP>(E).

3 Maximal Ordered Completion

We now formalize the approach of maximal ordered completion and theorem
proving sketched in Fig. 1(b).

Let R be a function mapping an ES E to a set of terminating TRSs such that
for all R ∈ R(E) we have (1) R ⊆ E± and (2) there is a ground total reduction
order > extending →R. Moreover, let S be a function from ESs to ESs such that
S(E) ⊆ ↔∗

E for every ES E . We consider define maximal ordered completion
without goals. Our procedure is defined via the following relation ϕ which maps
an ES E to a tuple (R, E ′, >) consisting of a TRS R, an ES E ′, and a reduction
order >.

Definition 1. Given a set of input equalities E0 and an ES E, let

ϕ(E) =

⎧
⎪⎨

⎪⎩

(R, E↓R, >) if R ∪ (E↓R)> is ground complete for E0

for some R ∈ R(E), and
ϕ(E ∪ S(E)) otherwise.

The idea is to recursively apply Definition 1 to a set of initial equations E0. Note
that in general ϕ may be neither defined nor unique. In MædMax the set S(E)
is chosen such that S(E) ⊆

⋃
R∈R(E) CP>(R ∪ E↓R)↓R.
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Example 1. Consider the following ES E0 axiomatizing a Boolean ring, where
multiplication is denoted by concatenation.

(1) (x + y) + z ≈ x + (y + z) (2) x + y ≈ y + x (3) 0 + x ≈ x

(4) x(y + z) ≈ xy + xz (5) (xy)z ≈ x(yz) (6) xy ≈ yx

(7) (x + y)z ≈ xz + yz (8) xx ≈ x (9) x + x ≈ 0

(10) 1x ≈ x

Let R1 be the TRS {(1), (3), (4), (5), (7), (8), (9), (10)} obtained by orienting dis-
tributivity from right to left and all other equations (except for commutativity)
from left to right, and R(E0) the singleton set containing R1. This choice orients
a maximal number of equations. Now the set S(E0) may consist of the following
extended critical pairs of rules among R1 and the unorientable commutativity
equations:

(11) x + (y + z) ≈ y + (x + z) (12) x(yz) ≈ y(xz) (13) x + 0 ≈ x

(14) y + (x + y) ≈ x (15) x(yx) ≈ xy (16) x1 ≈ x

(17) y + (y + x) ≈ x (18) x(xy) ≈ xy (19) 0x ≈ 0

Note that R1-joinable critical pairs such as x + (x + 0) ≈ 0 or x0 ≈ y0 are
not included. We have ϕ(E0) = ϕ(E1) for E1 = E0 ∪ S(E0). Now R(E1) may
contain R2 = {(1), (3), (4), (5), (7), . . . , (10), (13), . . . , (19)}. This TRS is LPO-
terminating, so there is a ground-total reduction order > that contains →R2 .
We have E1↓R2 = {(2), (6), (11), (12)}, and it can be shown that for E = E1↓R2

the system R2 ∪ E> is ground complete. Despite its simplicity, neither WM [1]
nor E [14] or Vampire [9] can show satisfiability of this example (considering E0

as a set of axioms in first-order logic with equality, in the case of the latter).

We next extend our approach to theorem proving, akin to Fig. 1(b). Let SG

be a binary function on ESs such that SG(G, E) ⊆ ↔∗
E∪G \ ↔∗

E for all ESs E and
G. In our implementation, SG(G, E) contains extended critical pairs between an
equation in G and an equation in E . The following relation ψ maps a pair of ESs
E and G to YES or NO.

Definition 2. Given a set of input equalities E0, an initial ground goal s0 ≈ t0
and ESs E and G, let

ψ(E ,G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

YES if s ↓R∪E> t for some s ≈ t ∈ G and R ∈ R(E),
NO if R ∪ E↓R> is ground complete for E0

but s0 �↓R∪E> t0, for some R ∈ R(E), and
ψ(E ′,G′) for G′ = SG(G,R ∪ E) and E ′ = S(E).

For a set of input equations E0 and an initial goal s0 ≈ t0, the procedure is
started with the initial call ψ(E0, {s0 ≈ t0}). Note that the parameter G of ψ
denotes a disjunction of goals, not a conjunction. Due to the declarative nature
of the completion and theorem proving procedures described by Definitions 1
and 2 the following correctness result is straightforward.
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Theorem 1. Let E0 be an ES and s0 ≈ t0 be a ground goal.

1. If ϕ(E0) = (R, E , >) then R ∪ E> is ground complete for E0.
2. If ψ(E0, {s0 ≈ t0}) is defined then ψ(E0, {s0 ≈ t0}) = YES if and only if

s0 ↔∗
E0

t0. ��

4 Implementation

MædMax is available as a command-line tool and via a web interface.1 It is
implemented in OCaml and accepts input problems in the TPTP [17] as well
as the trs format.2 We describe how the three main phases of our approach
are implemented (see Definitions 1 and 2): (1) finding the terminating TRSs
R(E), (2) success checks, and (3) selection of new equations and goals, i.e.,
computation of S(E) and SG(G, E). Also some further particular features of the
tool get highlighted. Many settings can be controlled via a command line option,
we refer to the website for details. In the default auto mode the settings are
determined heuristically.

Finding Rewrite Systems. In phase (1), MædMax computes the set of TRSs R(E)
for a given ES E by solving an optimization problem whose objective function
can be controlled via a strategy. Assuming we want to find a TRS R ∈ R(E)
the search may involve the following criteria, as well as their (possibly weighted)
sums:

(a) maximize the oriented equations in E (i.e., the size of R),
(b) maximize the equations in E that are reducible by R,
(c) minimize critical pairs among rules in R, or
(d) maximize reducible critical pairs among rules in R.

Maxcomp relied on criterion (a), and later a combination of (a), (b), and (c)
was found most suitable for standard completion [11]. Our tool uses by default
criterion (b), which was most effective in experiments, but switches to (a) in
cases where the proof search is considered stuck.

In practice the optimization problem is solved by encoding the optimization
constraints in SMT and solving a maxSMT problem using Yices [5]. In order
to orient equations, MædMax uses (SMT encodings of) LPO, KBO, and linear
polynomial interpretations, as well as a dynamic choice among these at runtime
depending on which satisfies the criteria best.

Success Checks. In phase (2), MædMax succeeds if (a) a goal can be joined or
(b) a ground complete system was found. In the latter case, a ground goal is
decided by checking syntactic equality of the two term’s normal forms. For non-
ground goals basic and normalizing narrowing is supported. MædMax establishes

1 http://cl-informatik.uibk.ac.at/software/maedmax/.
2 https://www.lri.fr/∼marche/tpdb/format.html.

http://cl-informatik.uibk.ac.at/software/maedmax/
https://www.lri.fr/~marche/tpdb/format.html
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ground confluence by verifying ground joinability of extended critical pairs. How-
ever, depending on the signature this may be nontrivial: while the property is
decidable for some orders when enriching the signature with infinitely many con-
stants, it is undecidable for a finite given signature [4]. Our tool supports the
criteria of [10,18] to that end, and both kinds of signatures.

Selection. In the selection phase (3), MædMax picks new equations and goals,
given the current set of equations E and a TRS R ∈ R(E). To that end, it
computes the set S(E) containing n new equations and SG(G, E) containing m
new goals, where by default n = 12 and m = 2. In the auto mode the number
n gets adjusted depending on the current state to avoid dealing with too many
equations. The selection heuristic prefers small equations and old, but not yet
reducible equations.

Order Generation Mode. MædMax can also be run for a couple of iterations and
output the term ordering that is deemed best according to the criteria mentioned
above (maximal number of oriented equations, etc.).

Certification. MædMax can output proofs in an XML format (CPF) that are
checkable by the Isabelle-based certifier CeTA. For the case where a goal is proven
(answer YES), certification follows the approach of [16]: The XML certificate
gives a stepwise derivation of the goal from the input equations [16] which is
checked by CeTA. Due to recent work [6] also some NO answers are checkable,
though ground joinability support in CeTA is limited since the criterion from [18]
is not supported.

Optimizations. Fingerprint indexing [13] is used to speed up both rewriting
and overlap computation. In order to deal with associative and commutative
symbols, the approach of [1] is incorporated. In the auto mode the tool also
triggers restarts: if a current state is considered stuck, the procedure is restarted
but where the input problem is extended by a number of small lemmas found so
far.

5 Evaluation

All details of the following experiments can be obtained from the website. The
tests were run single threaded on an Intel R© Core

TM
i7-5930K CPU at 3.50 GHz

with 12 cores, with varying timeouts as indicated below.
Table 1 compares MædMax with Waldmeister (WM) [1], E [14], and Vampire

[9] on different problem sets. The first two lines refer to satisfiable/unsatisfiable
problems in TPTP’s unit equality division [17]. The third row refers to the 23
problems for which a ground complete system is given in [10] (which are hence
all satisfiable, in the TPTP terminology). The fourth row refers to 731 problems
generated by the conditional confluence tool ConCon to check infeasibility of
critical pairs [15, Sect. 7.5], which are partially satisfiable and partially unsatisfi-
able. The last row refers to 139 satisfiable problems for standard completion [11].
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Table 1. Experimental results.

MædMax WM E Vampire

TPTP UEQ SAT (600 s) 14 9 12 11

TPTP UEQ UNSAT (600 s) 621 832 692 724

Examples in [10] (60 s) 7 4 4 3

ConCon examples (60 s) 704 657 705 704

KB examples (60 s) 91 45 84 48

For TPTP problems the timeout was set to 600 s; for the latter two data sets
60s were chosen since larger timeouts did not induce any changes. Table 1 shows
that MædMax outperforms other tools on satisfiable examples.3 On unsatisfiable
examples MædMax does not prevail, but all CPF proofs of unsatisfiability pro-
duced by MædMax have been certified by CeTA, they can be found on-line. For
14 problems the proof output for CeTA cannot be accomplished within a timeout
of 1200 s, though.

On average, MædMax spends most of its running time on finding the TRSs
R(E) (20%), critical pair computation (33%), and overlap computation (33%).
Only about 1% of the time is actually spent in the SMT solver.

We tested the order generation mode of MædMax with E since it accepts
precedence and weight parameters for LPO and KBO as command line options.
To that end MædMax was run for 10 s, and the devised reduction order was
passed to E. In this way, E solved 605 unsatisfiable and 10 satisfiable TPTP
UEQ problems. Though the number of solved examples is lowered wrt. Table 1
the average time is reduced, and different problems could be solved.

We conclude with a practical application example. The tool AQL4 performs
functorial data integration by means of a category-theoretic approach [12], taking
advantage of (ground) completion. The following example problem was commu-
nicated by the authors.

Example 2. We consider database tables yIsAL and yIsAW relating amphibians
to land and water animals, respectively. They are described by 400 ground equa-
tions over symbols yIsAL, yIsALL, yIsAW, yIsAWW and 449 constants of the form
ai,wi, li representing data entities. We give six example equations to convey an
impression:

yIsAW(a1) ≈ w29 yIsAW(a78) ≈ w16 yIsAW(a61) ≈ w30

yIsAL(a37) ≈ l80 yIsAL(a84) ≈ l6 yIsAL(a29) ≈ l47

In addition, the equation yIsALL(yIsAL(x)) ≈ yIsAWW(yIsAW(x)) describes a
mapping to a second database schema. A ground complete presentation of the
3 The Maxcomp version presented in [11] solves 91KB examples within 60 s, too, but

98 problems in 600 s. For the other tools the numbers hardly change with a larger
timeout. Maxcomp is not applicable to the other problem sets though.

4 http://categoricaldata.net/aql.html.

http://categoricaldata.net/aql.html
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entire system thus constitutes a representation of the data, translated to the sec-
ond schema. MædMax discovers a complete presentation of 889 rules in less then
20 s, while AQL’s internal completion prover fails. MædMax’ automatic mode
switches to linear polynomials for such systems with many symbols, which turned
out to be faster than LPO or KBO in this situation.

For Example 2 even a complete system can be found. In general ground com-
pleteness is achieved by MædMax for those problems encountered by AQL, as
required. Further details can be found on the website.

6 Conclusion

We presented the tool MædMax implementing maximal ordered completion, a
novel approach to ordered completion and equational theorem proving. Our
experiments show that this approach outperforms other tools on satisfiable prob-
lems. For unsatisfiable problems MædMax can produce output verifiable by the
trusted proof checker CeTA, thus offering a very high degree of reliability. We
believe that MædMax is particularly suited to problems with large signatures
like Example 2, due to its ability to search for a reduction order which induces
a small number of critical pairs and hence fewer steps to completion.

Acknowledgements. The authors thank Ryan Wisnesky for sharing AQL problems,
and the anonymous referees for their helpful comments.
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Abstract. In this paper we investigate Hughes’ combinatorial proofs as
a notion of proof identity for classical logic. We show for various syntactic
formalisms including sequent calculus, analytic tableaux, and resolution,
how they can be translated into combinatorial proofs, and which notion
of identity they enforce. This allows the comparison of proofs that are
given in different formalisms.

1 Introduction

Proof theory plays an important role in many areas of computer science. How-
ever, unlike many other mathematical fields, it is not able to identify its objects.
We do not have a clear understanding of when two proofs are the same. The
standard proof theoretical answer to this question is normalization: two proofs
are the same, if they have the same normal form. This certainly makes perfect
sense from the viewpoint of functional programming and the Curry-Howard-
correspondence, where proofs are programs and the proof normalization is the
execution of the program. However, from the viewpoint of logic programming
and proof search, this only makes little sense, since all considered proofs are
already in normal form.

An alternative approach to the question of proof identity is based on rule
permutations. Two proofs are considered the same if they can be transformed
into each other by a series of simple rule permutation steps. The fundamental
problem with this approach is that both proofs have to be presented in the same
proof system. In fact, one can say that proof theory, in its current form, is not
the theory of proofs but the theory of proof systems. The question of comparing
two proofs that are given in two different proof systems (for example, analytic
tableaux and resolution) does not even make sense. And most of the important
theorems of proof theory, like soundness, completeness, cut admissibility, proof
complexity, or focusing, are not about proofs but about proof systems.

Combinatorial proofs [10,11] have been introduced by Hughes to address this
problem. They are graphical presentations of proofs, independent from the syn-
tactic restrictions of proof formalisms. Nonetheless, combinatorial proofs form a
proof system in the sense of Cook and Reckhow [3], the correctness of a combina-
torial proof can be checked in polynomial time in the size of the proof. However,
the precise relation between combinatorial proofs and syntactic proofs has so
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 481–497, 2018.
https://doi.org/10.1007/978-3-319-94205-6_32
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far been been discussed only on a superficial level. In [11], Hughes shows the
relation between combinatorial proofs and a nonstandard version of the sequent
calculus LK, and in [18], the relation to the deep inference system SKS is shown.

In this paper we explore the relation between combinatorial proofs and syn-
tactic proofs in various formalisms, in particular, we look at a one-sided variant
of LK [8] which has an explicit contraction and weakening rule and in which the
conjunction rule is multiplicative, and at G3p [19] in which the conjunction rule
is additive and there are no contraction and weakening rules. Then we also look
at analytic tableaux [15], and resolution. We will show how a syntactic proof in
each of these formalisms is translated into a combinatorial proof, and when a
combinatorial proof can be translated back. Note that this is not always possible.
Even though all systems are semantically complete, i.e., can prove all theorems,
they do not see all proofs.

We will also define for analytic tableaux and for resolution a syntactic equiv-
alence on proofs, and then show that this equivalence coincides with the one
imposed by combinatorial proofs. This justifies the use of combinatorial proofs
for proof identity: two proofs are the same if they are mapped to the same com-
binatorial proof.1 To our knowledge, this is the first proposal for a notion of
proof identity that allows us to compare syntactic proofs in different formalisms.

The paper is organized as follows: We first give some preliminaries on com-
binatorial proofs in Sect. 2. Then we discuss the relation between combinatorial
proofs and sequent calculus in Sect. 3, and finally, in Sects. 4 and 5, we investigate
the translation from tableaux and resolution into combinatorial proofs.

2 Preliminaries on Combinatorial Proofs

For simplicity, we consider formulas (denoted by capital Latin letters A,B,C, . . .)
in negation normal form2, generated from a countable set V = {a, b, c, . . .} of
propositional variables by the following grammar: ,
where ā is the negation of a. The negation can then be defined for all formulas
using the De Morgan laws ¯̄A = A, and and . An
atom is a variable or its negation. We use A to denote the set of all atoms.
A sequent Γ is a multiset of formulas, written as a list separated by comma:
Γ = A1, A2, . . . , An. We write Γ̄ to denote the sequent Ā1, Ā2, . . . , Ān. We define
the size of a sequent Γ , denoted by |Γ |, to be the number of atom occurrences in
it. We write Ź

Γ (resp. Ž
Γ ) for the conjunction (res. disjunction) of the formulas

in Γ and F∨k := F ∨ · · · ∨ F
︸ ︷︷ ︸

k

(F∧k := F ∧ · · · ∧ F
︸ ︷︷ ︸

k

) the disjunction (conjunction)

of k copies of F .
A graph G = 〈VG, EG〉 consists of a set of vertices VG and a set of edges EG

which are two-element subsets of VG. We omit the index G when it is clear from

1 However, this paper does not speak about normalization of combinatorial proofs.
For this topic, the reader is referred to [11,17,18].

2 Note that this is only a cosmetic limitation. The theory of combinatorial proofs can
easily be extended to the full language including implication and general negation.
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context. For v, w ∈ V we write vw for {v, w}. For two graphs G = 〈V,E〉 and
G′ = 〈V ′, E′〉, we define the operations union and
join . For a set L, a graph G
is L-labeled if every vertex of G is associated with an element L, called its label.

If we associate to each atom a a single vertex labeled with a then every
formula A uniquely determines an (A-labeled) graph G(A) that is constructed
via the operations and . We define G(Γ ) = G(Ž

Γ ). It is easy to see that for
two formulas A and B, we have G(A) = G(B) iff A and B are equivalent modulo
associativity and commutativity of and .

Example 2.1. Let then .

The two graphs G(A) and G(Ā) = G(A) are:
b c

a
c̄ d̄

and
b̄ c̄

ā
c d

.

A graph 〈V,E〉 is called a cograph if V does not contain four distinct vertices
u, v, w, z with uv, vw,wz ∈ E and vz, zu, uw /∈ E. We have the following well-
known proposition, which can already be found in [6].

Proposition 2.2. A graph is equal to G(A) for some A iff it is a cograph.

The following definitions are due to Retoré [14]. An R&B-graph G = 〈V,R,B〉
is a triple such that 〈V,R〉 and 〈V,B〉 are graphs and such that B is a perfect
matching on V , i.e., no two edges in B are adjacent and every vertex v ∈ VG

is incident to an edge in B. We write G↓ for 〈V,R〉. An R&B-cograph is an
R&B-graph G = 〈V,R,B〉 where G↓ = 〈V,R〉 is a cograph.

A cordless æ-cycle in G = 〈V,R,B〉 is a set {v1, . . . , v2n} ⊆ V of vertices
such that v2nv1, v2v3, . . . , v2n−2v2n−1 ∈ B and vivj ∈ R if and only if i = 2k + 1
an j = 2k + 2 for some 0 ≤ k ≤ n − 1. We say an R&B-graph is æ-acyclic if it
has no cordless æ-cycle. Following [14] we will draw B-edges in blue/bold, and
R-edges in red/regular. Below are four examples:

The first one is not an R&B-cograph, the other three are. The second one
has a chordless æ-cycle, and the last two are æ-acyclic.

A homomorphism f : G → G′ is a function from VG to VG′ such that vw ∈ EG

implies f(v)f(w) ∈ EG′ . A skew fibration, denoted as f : G � G′, is a graph
homomorphism such that for every v ∈ VG and w′ ∈ VG′ with f(v)w′ ∈ E′

G

there is a w ∈ VG with vw ∈ EG and f(w)w′ /∈ E′
G.

Let C = 〈V,R,B〉 be an R&B-graph and f : C↓ → G be a homomorphism and
let G be A-labeled (where A is the set of atoms). We say f is axiom preserving
iff xy ∈ B implies that the labels of f(w) and f(v) are dual to each other. We
are now ready to give the definition of a combinatorial proof.

Definition 2.3. A combinatorial proof of a sequent Γ consists of a non-empty
æ-acyclic R&B-cograph C and an axiom preserving skew fibration f : C↓ �
G(Γ ).
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In [10], Hughes has shown that combinatorial proofs form a proof system in
the sense of Cook and Reckhow [3], i.e., correctness can be checked in polyno-
mial time, that is, given a formula A and a R&B-graph 〈V,R,B〉 and a map
f : 〈V,R〉 → G(A), it can be checked in polynomial time in the size of the input
whether (1) 〈V,R〉 is a cograph, (2) 〈V,R,B〉 is æ-acyclic, and (3) f is axiom
preserving and a skew fibration.

We follow the notational convention of [17,18] and write φ : Γ 
 Δ, to denote
a combinatorial proof for the sequent Γ̄ ,Δ, and say that Γ is its premise and
Δ its conclusion. We write φ : ◦ 
 Δ (resp. φ : Γ 
 ◦) if Γ (resp. Δ) is empty.3

Note that if φ : Γ 
 Σ,Δ is a combinatorial proof then so is φ = φ′ : Σ̄, Γ 
 Δ.

Fig. 1. A combinatorial
proof

Following [18], we draw combinatorial proofs as fol-
low: let φ : Γ 
 Δ be a combinatorial proof with skew
fibration , and let F (CΓ )
and F (CΔ) be the formula trees corresponding to the
cographs CΓ and CΔ respectively. We write Γ , F (CΓ ),
F (CΔ), and Δ above each other, and we draw the
B-edges in bold/blue and the map f by thin/purple
arrows (see Fig. 1).

The relation between combinatorial proofs and
deep inference proofs in system SKS [2] has been
detailed out in [17,18]. We will not go into details here,
but we will make heavy use of the following theorem, originally shown in [11,16]:

Theorem 2.4. Let A and B be formulas. Then the following are equivalent:
– There is a skew fibration f : G(A) � G(B);
– There is a derivation Φ from A to B using only deep contraction

and deep weakening , modulo associativity
and commutativity of and , denoted as A �w↓,c↓ B;

– There is a derivation Φ̄ from B̄ to Ā using only deep cocontraction and
deep coweakening , modulo associativity and commutativity
of and , denoted as B̄ �w↑,c↑ Ā.

This suggests the following definition:

Definition 2.5. A formula F ′ is a skew of a formula F iff F �c↑,w↑ F ′.

3 Sequent Calculus

We recall in Fig. 2 the formulation of LK cut-free sequent calculus that we use in
this paper. Moreover, we refer to MLL as the fragment of LK calculus consisting
of the rules ∧,∨,AX only. We speak of MLL + mix if we additionally allow mix.

Theorem 3.1. ([14]) Let A and B be formulas. There is an æ-acyclic R&B-
cograph C with C↓ = G(Γ ) iff there is a proof of Γ in MLL + mix.

3 It cannot happen that both Γ and Δ are empty.
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Fig. 2. Left: sequent system LK (cut free) for classical logic, Right: the mix rule

Fig. 3. Rules of cut-free G3p sequent calculus

Fig. 4. From left to right: a G3p proof, the corresponding LK proof, the naive (incorrect)
translation, and finally, the correct combinatorial proof

Fig. 5. G3p proof equivalence

In [11], Hughes has shown how to translate an LK-proof into a combinatorial
proof. In this paper we also consider the (cut-free) sequent calculus G3p [19],
shown in Fig. 3, which has no explicit contraction and weakening rules.

Theorem 3.2. If d(F ) is a derivation of the formula F in G3p, then there is a
combinatorial proof φd(F ) : ◦ 
 F , such that every B-edges in φd(F ) correspond
to an instance of the AX-rule in d(F ).

Proof. This follows from the result on LK in [11] and the observation that any
G3p derivation can be simulated in LK by making heavy use of C and W, but
without changing the AX-instances in the proof. �

Remark 3.3. Observe that the relation between B-edges in φd(F ) and AX-
instances in d(F ) is not a bijection, as can be seen by the example (due to
Hughes) shown in Fig. 4 where the naive translation is not a combinatorial proof
because the induced mapping is not a skew fibration. In the correct combinatorial
proof the B-edge coming from the AX-instance on b, b̄ is deleted.

In sequent calculus, the standard notion of proof identity is defined via rule
permutations. The generating permutation we use for G3p are shown in Fig. 5.

Theorem 3.4. If d(Γ ) and d′(Γ ) are two G3p derivations that are equivalent
modulo the rule permutations in Fig. 5, then φd(Γ ) = φd′(Γ ).
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To prove this theorem, we will prove a stronger result for analytic tableaux in
the next section and then reflect it back to the sequent calculus. For LK, such a
statement is less trivial, since due to the presence of weakening and contraction,
there are permutations that delete or duplicate subproofs, and such operations
are not preserved by combinatorial proofs (see Remark 3.3 above).

4 Analytic Tableaux

Analytic tableaux are a formalism for refutations based on the decomposition
of the negation F̄ of a formula in order to find contradictions between its sub-
formulas and conclude, by completeness, the provability of F . This is done by
expanding a formula F̄ over a tree of its subformulas via expansion rules until
all branches contain a formula and its negation. The resulting tree with root
F̄ is related to the disjunctive normal form DNF(F̄ ) as follows: each branch
represents the conjunction of the formulas appearing in its nodes and the tree
represents the disjunction of its branches.

We work here with a non-cumulative formulation of the tableaux formalism.

Definition 4.1 (Tableau). A tableau is a rooted binary tree with nodes labeled
by sets of occurrences of formulas according with the following conditions:

– The tree consisting of a single node with formula set {F̄} is a tableau of F ;
– If TF is a tableau of F , then the tree obtained by the application of one of

the following tableau expansion rules is a tableau of F :
• If � is a leaf of TF with formula set L containing a conjunction A ∧ B,

then the tree obtained extending TF with a leaf �1 attached to � with
fomula set L ∪ {A,B} \ {A ∧ B} is a tableau of F ;

• If � is a leaf of TF with formula set L containing a disjunction A∨B, then
the tree obtained by extending TF with two leaves �1 and �2 attached to
� with respective formula sets L ∪ {A} \ {A ∧ B} and L ∪ {B} \ {A ∧ B}
is a tableau of F .

A branch of a tableau is closed if its leaf contains a formula and its negation,
otherwise it is open. A tableau is closed if all its branches are. A branch is atomic
closed if the closing formulas are atoms. A tableau is full if no expansion rule
can be applied to its open branches, non-expandable if no expansion rule can be
applied to any branch.

If TΓ is a tableau of Γ , we denote TΓ , A the tableau obtained by adding to
TΓ the formula A to each node. A redundant tableau TF is a full tableau of F
such that there is a closed tableau TΓ such that TF has two closed branches
TΓ , A and TΓ,B̄. Figures 8 and 9 show some examples.

There is a one-to-one correspondence between atoms in the leaves of a full
tableau of with root labeled by a formula F̄ and occurrences of atoms in its dis-
junctive normal form (denoted DNF) clauses due to the correspondence between
tableau expansion rules and dual clause form algorithm [7].
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Fig. 6. A tableau of and its associate G3p derivation

Proposition 4.2. If TF is a full tableau of F with a non-closed branch, then

DNF(F̄ ) =
ł

Li leaves of TF

( ľ

Aij formulas in Li

Aij

)

.

There is a close correspondence between G3p proofs and tableaux, which has
been established in [7], and which allows to define a flipping translation (here
denoted as the function FlipG3p), which associates to any full tableau TF a G3p
derivation tree dT (F ) “by tuning it upside-down and negating everything” and
viceversa. In particular, we associate an axiom-rule AXT

Li
with conclusions 


A1, . . . An whenever there is a non-closed leaf Li (with formulas Ā1, · · · , Ān); we
define the theory of TF (denoted TTF

) to be the set of such axioms. An example
is shown in Fig. 6. This translation suggests the definition of an equivalence
relation, shown in Fig. 7, over tableaux derived from the G3p proof equivalence
(Fig. 5). The last equation does not occur in the G3p equivalence because it
cannot be written as a rule permutation. Its interpretation is the following: if
TΓ̄ is closed, then so is any tableau with root Γ,A ∨ B. Hence, any full tableau
TΓ̄ ,B̄ �= TΓ̄ , B is closed, and we consider the contribution given by the formula
B̄ to be superfluous to the closure of TΓ̄ , A ∨ B. However, if B is not a closing
formula, we can not discard the corresponding tableau branch because otherwise
we lose the information about the branch leaves (see Fig. 8).

In order to keep track of the information about branching and avoid mis-
matching in translation, we consider different occurrences a1, . . . , an of the same
atom a in F as different atoms for the following definitions.

Definition 4.3 (Tableaux oversaturation, Sprout). If TF is a tableau of F ,
its oversaturation is a tree T ∗

F obtained by updating the formula sets of each
vertex of TF inductively from the leaves to the root as follows:

– If a leaf is closed, the formulas of this vertex in T ∗
F are only the two closing

formulas;
– If a vertex of TF has two children then its formulas are A ∨ B,F1, . . . , Fn. If

both its children have been updated then:
• If one child contains A and the other contains B then they contain two

skews F ′
i and F ′′

i (it can be F ′
i = F ′′

i ) of Fi, then we replace Fi by
F ′

i ∧ F ′′
i in T ∗

F . If only one of the children contains a skew F ′
i of Fi, then

we replace Fi by F ′
i ;

• If no child contains A (similary if no child contains B), we replace the
vertex and the subtree having this vertex as root with the child contain-
ing neither A nor B and its corresponding subtree;
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Fig. 7. Expansion rules permutation generating tableaux standard equivalence

Fig. 8. Tableaux equivalences in case of redundant tableaux

Fig. 9. A redundant tableau and a non-redundant one of the same formula

Fig. 10. The oversaturation of tableau in Fig. 6 and the associated MLL derivation.

– If a vertex of TF has one child then its formulas are F1 ∧ F2, F3, . . . , Fn. If
the child contains a skew F ′

i of Fi, then we replace Fi by F ′
i in T ∗

F .
The root formula of T ∗ is called the sprout of TF , denoted sprT (F ).

Lemma 4.4. If TF is a tableau of F , then sprT (F ) is a skew of F̄ .
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Fig. 11. Rosetta stone of tableaux translation

Proof. By induction over the structure of TF . If TF has no branching then F̄
is either a conjunction of formulas or F̄ = (A ∧ Ā) ∧ F̄ ′; then F̄ is respectively
spr∗

T (F ) or F̄ �w↑ (A ∨ Ā). If TF has branchings we can assume without loosing
generalities TF expandable with root F̄ = (A ∨ B) ∧ C and leaves {A,C} and
{B,C}. Then sprT (F ) = (A ∧ B) ∨ (C ∧ C), and therefore F̄ �c↑ sprT (F ). We
conclude by composition that F̄ �c↑,w↑ sprT (F ). �

Definition 4.5 (Harvest of T ). We define the harvest of a tableau TF , denoted
HT (F ), as as the conjunction over the non-closed leaves of T ∗

F of the disjunction
of the formulas in each of these leaves:

HT (F ) =
ł

Li non-closed leaves of T ∗
F

( ľ

Aij formulas in Li

Aij

)

.

If TF is a tableau and we define the theory of TF (denoted T (TF )) as a set
of additional axiom-rules AXT

Li
with conclusions 
 A1, . . . An where Ā1, · · · , Ān

are the formulas in the non-closed leaf Li, we have the following:

Lemma 4.6. For everty tableau TF , the formula sprT (F ) is derivable in MLL+
T (TF ). Furthermore, if TF is closed then sprT (F ) is provable in MLL + mix, and
finally, if TF is non-redundant and closed then sprT (F ) is provable in MLL.

Proof. By the FlipG3p operation we have a G3p proof that we translate induc-
tively via a procedure that we call linear saturation into an proof in MLL + mix+
T (TF ) of sprT (F ):

– a G3p axiom with conclusion 
 A, Ā, Γ is translated into an axiom 
 A, Ā;
– a T (TF )-axiom in G3p remains the same T (TF )-axiom (in LK);
– a ∨G3p instance is translated into a ∨LK and formulas are replaces with their

relative skews if both principal formulas occurs. If one or both principal
formulas are missed, this inference disappears during the translation.
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– a ∧G3p instance is translated into a ∧LK instance (respectively mix instance)
on the relative formulas skews if both principal formulas occur (if none of its
principal formulas occur) followed by ∨LK instances on whenever two skews
of a same formula Fi appear in both premises. If one of the two principal
formula is missed, we consider the ∧G3p inference premises in which this
should belong, we keep this branch in our derivation, we discard the other
one and the inference disappears.

The other statements follow immediately by case inspection. �

Figure 10 shows an example for Lemma 4.6. Its proof suggests that analo-
gously to the operation FlipG3p that relates tableaux and G3p derivations, we
can define and operation FlipMLL that relates oversaturated tableaux and deriva-
tions MLL + mix+T (TF ) “by flipping it upside-down and negating everything”.
The interactions between the two flipping translation, the oversaturation and
the sprouting procedure can be summarized by the diagram in Fig. 11.

We can now give a polynomial translation from tableaux into combinatorial
proofs.

Theorem 4.7. Let TF be a full tableau for F . If TF is closed then there is a
combinatorial proof φTF

: F̄ 
 ◦. Otherwise, φTF
: F̄ 
 HT (F ). In either case, if

TF is non-redundant the atoms pairs in the formula pairs that close the branches
are mapped to the B-edges in φTF

. If TF is closed, then this is a bijection.

Proof. We define φTF
: F̄ 
 HT (F ) as follows:

– The R&B-cograph CTF
of φTF

is given by the cograph C↓
TF

= G(sprT (F )) ∨
G(HT (F )) enriched with a matching BTF

constructed as follows:
• For each closed branch of TF we consider its closing pair of formulas

(G,G) in its leaf label. For each atom ai in G and ai in G, we define an
edge between their corresponding vertices in G(spr(T ));

• For each non-closed branch of TF , the associate clause of sprT (F ) occurs
in its harvest HT (F ). We define an edge between the vertices correspond-
ing the associated atoms in G(HT (F )) and G(spr(T )).

– The skew fibration f : C↓ � GTF
where GTF

= C(F̄ )∨C(HT (F )) is given by
the disjunction f = f↑ ∨ 1HT (F ) of the identity skew fibration 1HT (F ) over
G(HT (F )) and the skew fibration f↑ defined by the sprouting derivation
F̄ � sprT (F ).

Similarly if TF is closed, then the R&B-cograph CTF
of φTF

is the cograph
C↓

TF
= G(sprT (F )) enriched with the corresponding matching BTF

while the
skew fibration f : C↓ � GTF

where GTF
= C(F̄ ) is given by the sprouting

derivation from F̄ to sprT (F ). �

Examples for this construction are shown in Fig. 12.

Theorem 4.8. If TF and T ′
F are two equivalent tableaux of F , φTF

= φT ′
F
.
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Fig. 12. The combinatorial proofs associate to the tableaux in Figs. 6 and 9

Proof. The two tableaux TF and T ′
F are equivalent if and only if their correspond-

ing derivations d∗
T (F ) and d∗

T ′(F ) in MLL + mix+ T (TF ) are. By the canonicity
of MLL proof nets [1,14] we conclude that φTF

and φT ′
F

have the same R&B-
cograph. Furthermore, from the work in [5,11,16], we know that skew fibrations
are canonical. Hence, φTF

= φT ′
F
. �

Via the flipping operation FlipG3p we can now immediately obtain the proof
of Theorem 3.4.

In order to translate a combinatorial proofs back into a tableau, we associate
to a CP φ : F 
 ◦ with skew fibration f : C↓ � GTF

the MLL derivation dT ∗(F ′)
represented by the cograph C↓ where F ′ = sprT (F ) is obtained by labeling
the vertices of C↓ with their images under f . Then, by FlipMLL we have an
oversaturated tableau T ∗

F . If mix is absent, T ∗
F contains all the information to

invert the oversaturation and reconstruct TF . However, in the presence of mix,
even if we can translate any instance of rule mix-rule into a ∧-expansion, we can
not recover the structure of TF in general.

5 Resolution

Resolution is a refutation system related to conjunctive normal forms. A reso-
lution proof consist of applying resolution rule on clauses of conjunctive normal
form of a formula F in order to produce an empty clause. However, the resolution
technique does not require the full conversion of a formula to its conjunctive nor-
mal form, in the same way tableaux can be closed before a complete expansion.
A general resolution proof consist of a sequence of expansion rules intercutted by
resolution rules terminating with the production of an empty clause or a clause
form formula.

In resolution we also denote formulas in Davis-Putnam’s block notation used
in [2,7,9] which interprets lists (X1, . . . , Xn) and [X1, . . . , Xn] as respectively the
conjunction X1 ∧ · · · ∧ Xn and the disjunction X1 ∨ · · · ∨ Xn of their elements.

Definition 5.1. If F = (C1, . . . , Cn, C) is a formula with C = [X1, . . . , Xn], we
define the following (resolution) expansion rules:

– if Xi = A∨B, then F →A∨B
∨ (C1, . . . , Cn, C ′) and we say that the clause C ′

is generated by the clause C where C ′ = [X1, . . . , Xi−1, A,B,X1+1, . . . , Xn];
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Fig. 13. A resolution expansion of one of
and a resolution proof of

– if Xi = A∧B then F →A∧B
∧ (C1, . . . , Cn, C ′, C ′′) and we say that the clauses

C ′ and C ′′ are generated by the clause C where C ′ and C ′′ are respectively
[X1, . . . , Xi−1, A,X1+1, . . . , Xn] and [X1, . . . , Xi−1, B,X1+1, . . . , Xn];

An expansion of F is the last formula F ′ produced by a sequence of application
of expansion rules starting from F .

Definition 5.2 (Resolution Rule). If F = (C1, C2, Σ), C1 = [Γ,X1, . . . , Xn]
and C2 = [Δ,X1, . . . ,Xm] where Xi and X̄i are respectively occurrences of X
and X̄, we say F ′ = ([Γ,Δ], Σ) is the result of resolving C1 and C2 on the
resolving formula X (denoted F →R

X F ′) and that the clause [Γ,Δ] is generated
by the clauses C1 and C2.

Definition 5.3 (Resolution Proof) A resolution expansion RF of a formula
F is a sequence of formulas F = F0 → · · · → Fn such that Fi+1 is obtained by
Fi by applying an expansion rule or a resolution rule. We call Fn the result of
the resolution expansion RF .

A resolution expansion is closed if Fn contains an empty clause [ ], non-
expandable if no expansion rules can be applied to Fn and full if is non-
expandable and no resolution rule can be applied to Fn.

A resolution proof of F is a closed resolution expansion of F . Figure 13 shows
some examples. If a clause C generates after a certain number of expansions and
resolution a clause C ′ we say that C ′ is derived by C. As for the other proof and
refutation systems in this paper, we want to define a notion of equivalence on
resolution expansions.

Definition 5.4. We define the resolution derivation equivalence to be the small-
est equivalence relation over resolution expansions generated by the following
relations for any formulas F and G:

– Resolution rule inferences commute with resolution rule and ∨-expansions
inferences;

– ∨-expansions inferences commute with both resolution rule and ∨-expansions
inferences;

– If F and G do not belong to the same clause then →∨
F →∧

G=→∧
G→∨

F ;
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– If F and G and also F̄ and Ḡ do not belong to the same clause then
→∨

F →R
G=→R

G→∨
F ;

– If G does not belong to the same clause of the resolving formula F or its
corresponding F̄ then →R

F →∧
G=→∧

G→R
F ;

– If F and G belong to the same clause then →∨
F →∧

G=→∧
G→∨

F1
→∨

F2
where F1

and F2 are the two copies of F belonging in the two clauses produced by the
∧-expansion of G.

Moreover, we ask the following condition: if F0 → . . . → Fk−1 → Fk →
Fk+1 . . . → Fn is a resolution expansion such that Fk−1 → Fk is a resolution
inference which generate an empty clause, then

F0 → . . . → Fk−1 → Fk → Fk+1 . . . → Fn = F0 → . . . → Fk−1 → Fk.

Lemma 5.5. If a formula F ′ is obtained by applying an expansion rule to a
formula F , then F ′ is a skew of F .

Proof. The first transformation given in Definition 5.1 corresponds to the asso-
ciativity of ∨, and the second transformation corresponds to

where A ∧ B = Xi and Δ =
Ź

j 	=i Xj . �

Definition 5.6 (Pseudo-resolution expansion). If F = (Γ, [Δ]) is a formula,
we define the following (resolution) pseudo-expansion rules:

– clause duplication: F →δ
[Δ] (Γ, [Δ], [Δ]);

– clause erasing : F →ε
[Δ] (Γ ).

A pseudo-resolution expansion of F is a sequence of formulas F = F0 → · · · →
Fn such that Fi+1 is obtained by Fi by applying an expansion rule, a resolution
rule or a pseudo-expansion rule.

As for tableaux, we associate to any resolution expansion RF a formula sprR

which admits a linear derivation from sprR to the result of the resolution RF .
We introduce an oversaturation procedure to give a pseudo-resolution expansion
in which all the resolution rule inference are applied after the expansions and no
superfluous information such as non-empty clauses in a closed resolution is kept.
We observe that during the oversaturation some clauses may be duplicated if
some ∧-expansion and resolution inferences are permuted.

Definition 5.7 (Oversaturation of RF ). We define the oversaturation of RF

as a pseudo-resolution R∗
F obtained by the following procedure:

– R∗
F = RF and we say that all its resolution rule inference are active;

– We proceed by induction over the number of active resolution rule inferences
in R∗

F . We start from the last resolution rule inferences Fk →X
R Fk+1 in the

pseudo-expansion R∗
F and we deactivate it as follows:

• if it generates the empty clause, then we apply to any clause in Fk which
do not contain the resolving formulas a clause erasing rule;
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• if no rule inference is applied to the clause generated by an active reso-
lution inference, then move the application of this inference at the end
the pseudo-expansion and we deactivate it;

• if a ∨-expansion is applied to the clause [X1, . . . , A ∨ B, . . . Xn] of Fk+1

generated by an active resolution inference resolving on a formula Y ,
then we permute them: we apply a ∨-expansion to the unique clause C1

in Fk containing A ∨ B and then resolve on Y ;
• if a ∧-expansion is applied to the clause [X1, . . . , A ∧ B, . . . Xn] of Fk+1

generated by an active resolution inference, then we permute them: we
apply the ∧-expansion to the unique clause C1 in Fk containing A ∧ B
and the resolving formula X, we apply a clause duplication on the clause
C2 containing the corresponding resolving formula X̄ and then we apply
two resolution inferences to the corresponding pairs of clause. These two
resolution rule inferences are active.

Figure 14 shows two examples.

Fig. 14. The oversaturation of the resolution expansions of
and of in Fig. 13 with their relative combinatorial proofs

Lemma 5.8. The oversaturation procedure terminates.

Proof. We define the weight of a resolution rule generating a clause C in a
resolution expansion RF as the number of all the ∨- and ∧-expansion inferences
applied to any clause derived by C. The weight of a resolution expansion is the
sum of the weight of its resolution rules. This decreases at each step. �

Remark 5.9. Any oversaturatation of RF is a sequence of the form F →∗
exp

Fn−k →∗
R Fn where the sequence F →∗

exp Fn−k is made only of expansion and
pseudo-expansion rules and Fn−k →∗

R Fn is made of k resolution rules.

Definition 5.10 (Sprout of RF ). If R∗
F = F →∗ Fn is an oversaturation of

RF , the sprout of RF is the formula sprR(F ) obtained by deeply apply w↓ to
Fn for each resolution inference in R∗

F in the following way: if C is the clause of
Fn generated (directly or inderectly) by resolving k copies of X and h copies of
X̄, then we weak C with (X ∧ X̄)∨kh.
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Fig. 15. Interpretation of rules inferences in pseudo-resolution

Fig. 16. Combinatorial proofs for the oversaturated resolutions in Fig. 14

Lemma 5.11 (Sprouting fibration). If RF is a resolution expansion and
sprR(F ) its sprouting, then there is a skew fibration f : G(sprR(T )) � G(F ).

Proof. By composition of the interpretations of expansions, pseudo-expansion
and resolution rules (see Fig. 15). �

Theorem 5.12. If RF is a resolution expansion of F with result RF (F ), then
there is a combinatorial proof representing RF of the form φRF

: F 
 RF (F ). In
particular, we have φRF

: F 
 ◦ if RF is closed.

Proof. We define φRF
: F 
 RF (F ) as follows:

– The R&B-cograph CRF
of φRF

is given by the cograph C↓
RF

= G(sprR(F ))∨
G(RF (F )) enriched with a matching BRF

constructed as follows:
• For each resolution rule application in RF we consider its resolving for-

mula X. For each atom ai in X and ai in X, we define an edge between
their corresponding vertices in G(sprR(F ));

• We define an edge between each vertex in G(sprR(F )) and the corre-
sponding vertex in G(RF (F ));

– The skew fibration f : C↓ � GRF
where GTF

= C(F ) ∨ C(RF (F )) is given
by the disjunction f = f↑ ∨ 1G(RF (F )) where f↑ is the sprouting fibration of
sprR(F ) and 1G(RF (F )) is the identity over G(RF (F )).

Similarly. if RF is closed, then the R&B-cograph CRF
of φRF

is the cograph
C↓

RF
= G(spr(T )) enriched with the corresponding matching BTF

and the skew
fibration f : C↓ � GTF

where GTF
= C(F ) is given by the sprouting fibration

from F to spr(T ) (see Fig. 16). �

Remark 5.13. The number of B-edges in φRF
is equal to the sum of the number

of atoms occurring in resolved formulas, each of which is counted as many times
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as the product of positive and negative occurrences of the resolved formula to
which the atom belongs. This size explosion can be avoided in the special case
where resolution inferences resolve the same number of formulas occurrences.
Then we can adapt the translation suggested by Das in [4], by replacing the
interpretation of resolution rule in Fig. 15 with the following:

Theorem 5.14. If RF and R′
F are equivalent, then φRF

= φR′
F
.

Proof. The permutation of expansion rules does not change the number of for-
mula occurrences in the resolution rule instances. Hence, we can conclude by the
same reasoning as in the proof of Theorem4.8. �

It is possible to associate to φ : F 
 ◦ with skew fibration f : C↓ � GF a
resolution expansion as follows. If F ′ is the formula associated to C↓ by labeling
its vertices according to f , then we can transform F ′ to its conjunctive normal
form by applying c↑ and w↑. By Lemma 5.5 the composition of this expansion
with f represents the expansion part of the pseudo-resolution, while the perfect
matching of the R&B-cograph C↓ takes track of the resolution rule instances.
If multiple matchings connect atoms in the same clause this correspond to a
unique resolution rule inference, otherwise a clause duplication has been per-
formed during the resolution expansion oversaturation, which means that the
some ∧-expansions have been performed after the corresponding resolution rule.

6 Conclusions

In this paper we tried to make a case that combinatorial proofs can serve as
canonical representation for proofs in classical propositional logic, by showing
how natural notions of proof identity in various syntactic formalisms are reflected
by combinatorial proofs. We extended the investigation by Hughes [11] from
sequent calculus to other formalisms that are employed in automatic reasoning.

There is ongoing research investigating the possible structure for combinato-
rial proofs for intuitionistic logic, and in future research we plan to investigate
combinatorial proofs for first-order logic, based on Hughes’ unification nets [12],
and for modal logics, based on the recent development on nested sequents [13].
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Abstract. The vast majority of modal theorem provers implement
modal tableau, or backwards proof search in (cut-free) sequent calculi.
The design of suitable calculi is highly non-trivial, and employs nested
sequents, labelled sequents and/or specifically designated transitional
formulae. Theorem provers for first-order logic, on the other hand, are
by and large based on resolution. In this paper, we present a resolution
system for preference-based modal logics, specifically Burgess’ system S.
Our main technical results are soundness and completeness. Conceptu-
ally, we argue that resolution-based systems are not more difficult to
design than cut-free sequent calculi but their purely syntactic nature
makes them much better suited for implementation in automated rea-
soning systems.

1 Introduction

Theorem-provers for First-Order logic, such as E [20], Vampire [17] and SPASS
[22] are typically based on resolution, often augmented with elements of the
superposition calculus [1] to deal with equality. This is in sharp contrast with
Modal (or Description Logic) reasoners which are typically based on variants
of analytic tableau. Examples are the FACT++ reasoner [21], LoTREC [7],
LeanTAP [2] and Racer [11]. The situation is similar for non-normal modal
logics, such as Alternating Temporal Logic [5] and various forms of conditional
logics [14,15] as well as various logics that can be subsumed under co-algebraic
semantics [10]. Modal theorem provers based on resolution, on the other hand,
are thin on the ground, but compare favourably with Tableau-based approaches
in terms of efficiency [12,13].

As part of an ongoing investigation into resolution theorem-proving for
modal logics, this paper presents a resolution system for Burgess’ system S
[3], a conditional logic that extends classical propositional logic with a binary
modal connective, written ⇒, and read as ‘if . . . then typically . . . ’. The binary
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connective ⇒ is interpreted over models having a set W of possible worlds, and
a preorder relation ≤w at each world w ∈ W . The preorder relation can be inter-
preted as local plausibility relation, where w′ ≤w w′′ is interpreted as w′ being as
plausible as w′′ (from the perspective of w). In finite models, the modal formula
φ ⇒ ψ can then be interpreted at w by stipulating that every ≤w-minimal world
that satisfies φ must also satisfy ψ. The dual of ⇒ is denoted by �⇒, that is,
ϕ �⇒ ψ is defined as ¬ϕ ⇒ ¬ψ. The interpretation of ϕ �⇒ ψ is, thus, that there
exists a minimal ¬ϕ-world which satisfies ψ.

The ensuing logic is part of a family of conditional logics [4] for which sequent,
or tableau calculi are notoriously hard to construct, and often require addi-
tional syntactic structure. Various conditional logics require nested sequents
[14], labelled sequents [8,9] or special transition formulae [15], together with
non-trivial proofs of either semantic completeness or cut elimination. Again,
this is in sharp contrast to modal calculi based on resolution, where the only
extra machinery needed is a global modality.

Our main technical contribution is the design of a resolution calculus for
Burgess’ system S, together with proofs of soundness and completeness. As with
other resolution-based systems found in the literature (including First-Order
resolution calculi), our procedure consists of two phases. In the first phase, an
input formula is translated into an equisatisfiable set of clauses. Then a set
of inference rules is applied to the clause set. There are two types of rules:
one corresponding to the usual modal propagation, as seen in modal tableaux
calculi; and a set of resolution-based rules. Although the method presented here is
essentially clausal, the formula ϕ in a modal formula of the form ϕ �⇒ ψ partially
retains the structure of the original problem on the left-hand side of the modal
operator. This allows for a simpler set of rules for modal propagation based
on the set of axioms for S. Besides the resolution-based rules for dealing with
the propositional fragment of the logic, the resolution rules operate on modal
formulae and propagate potential inconsistencies between modal formulae to the
propositional level.

Conceptually, we argue that resolution-based systems are not more difficult
to design than cut-free sequent calculi but their purely syntactic nature makes
them much better suited for implementation in automated reasoning systems.

The paper is organised as follows. In the next section, the language of S
is given, following the presentation in [6]. The resolution-based calculus for S,
named RESS, is detailed in Sect. 3: we present the transformation rules for trans-
lating a formula into the normal form and the inference rules of RESS, together
with a non-trivial example involving nested conditional formulae. In Sect. 4, we
show that RESS is sound, complete, and terminating. We summarise and discuss
our results in Sect. 5.

2 Language

In this section we introduce the language of S, following closely the presentation
in [6]. Let P = {p, q, r, . . . , p′, q′, r′, . . .} be a denumerable set of propositional
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symbols. Formulae are built from P, the usual classical connectives for negation
(¬) and conjunction (∧), and the conditional implication (⇒). The set of well-
formed formulae of S, denoted by WFFS , is inductively defined as follows:

– for all p ∈ P, p ∈ WFFS ;
– if ϕi, 0 ≤ i ≤ n, n ∈ N, are in WFFS , then so are ¬ϕ1, (ϕ1 ∧ . . . ∧ ϕn), and

ϕ1 ⇒ ϕ2.

The empty conjunction is denoted by true (verum). Let ϕi, 0 ≤ i ≤ n, n ∈ N, be
formulae in WFFS . The following connectives are introduced as abbreviations:
false = ¬true (falsum), (ϕ1 ∨ . . . ∨ ϕn) = ¬(¬ϕ1 ∧ . . . ∧ ¬ϕn) (disjunction),
(ϕ1 → ϕ2) = (¬ϕ1 ∨ϕ2) (implication), and (ϕ1 ↔ ϕ2) = (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1)
(double implication). We denote the dual of ⇒ by �⇒, that is, ϕ1 �⇒ ϕ2 is defined
as ¬(¬ϕ1 ⇒ ¬ϕ2). Parentheses are omitted if the reading is not ambiguous. We
set the precedence order of operators as ¬ < {∧, ∨} < → < ↔ < {⇒, �⇒}, that
is ¬ binds stronger than ∧ and ∨, which bind stronger than →, as usual.

A literal is a proposition or its negation. We denote the set of all literals by
L. The set of subformulae of a formula is defined in the usual way. As we take
the conjunction as an n-ary operator, for a formula ϕ of the form ϕ1 ∧ . . . ∧ ϕn,
any conjunction formed by the subformulae occurring in ϕ is a subformula of ϕ.
For instance, p, q, r, p ∧ q, p ∧ r, q ∧ r, and p ∧ q ∧ r are all the subformulae of
p ∧ q ∧ r.

A complete axiomatisation for S is given in [3] and comprises the following
axiom schemata (where ϕ,ψ, χ ∈ WFFS):

A0 all propositional tautologies;
A1 ϕ ⇒ ϕ (reflexivity);
A2 ((ϕ ⇒ ψ) ∧ (ϕ ⇒ χ)) → (ϕ ⇒ (ψ ∧ χ));
A3 (ϕ ⇒ (ψ ∧ χ)) → (ϕ ⇒ ψ) (monotonicity on the right-hand side of ⇒);
A4 ((ϕ ⇒ ψ) ∧ (ϕ ⇒ χ)) → ((ϕ ∧ ψ) ⇒ χ) (cautious monotonicity);
A5 ((ϕ ⇒ χ) ∧ (ψ ⇒ χ)) → ((ϕ ∨ ψ) ⇒ χ) (or);

together with uniform substitution and the following inference rules: modus
ponens [MP] if 
 ϕ and 
 (ϕ → ψ), then 
 ψ; and replacement of provable
equivalents [RPE] if 
 (ϕ1 ↔ ϕ2) and 
 ψ, then 
 ψ′, where ψ′ only differs from
ψ by replacing some subformulae of ψ of the form ϕ1 by ϕ2.

The semantics of S is given in terms of Kripke structures with a ternary
relation over worlds. Let (W,w0, π,R) be a Kripke structure where W �= ∅ is a
set (of worlds) with a distinguished world w0; π : W −→ (P −→ {true, false})
is an evaluation function which maps every world to a truth assignment over P;
and R is a ternary relation over W , where ≤w= {(w′, w′′) | (w,w′, w′′) ∈ R},
for which ≤w is a preorder (i.e. a reflexive and transitive relation). We say that
≤w is a preferential order over the worlds in W from the point of view of w. We
define Ww, for w ∈ W , to be the set {w′ | (w′, w′′) ∈ ≤w, for some w′′}, that
is, Ww is the set of worlds considered at least as plausible as some world in W
according to the preferential order given by ≤w.
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Let M = (W,w0, π,R) be a Kripke structure. Truth of a formula at a world
w ∈ W in M , denoted by |=, is defined as follows (where ϕi ∈ WFFS , for all
0 ≤ i ≤ n, n ∈ N):

– 〈M,w〉 |= p if, and only if, π(w)(p) = true, for all p ∈ P;
– 〈M,w〉 |= ¬ϕ1 if, and only if, 〈M,w〉 �|= ϕ1;
– 〈M,w〉 |= (ϕ1 ∧ . . . ∧ ϕn) if, and only if, 〈M,w〉 |= ϕi, for all 1 ≤ i ≤ n;
– 〈M,w〉 |= ϕ1 ⇒ ϕ2 if, and only if, for all w′ ∈ Ww, if 〈M,w′〉 |= ϕ1, then

there is w′′ ∈ W such that w′′ ≤w w′ and 〈M,w′′〉 |= ϕ1 ∧ ϕ2; and there is
no world w′′′ ∈ Ww such that w′′′ ≤w w′′ and 〈M,w′′′〉 |= ϕ1 ∧ ¬ϕ2.

Satisfiability of a formula is given with respect to the distinguished world w0 in a
structure (W,w0, π,R). A formula ϕ is satisfied in a structure M if 〈M,w0〉 |= ϕ.
In this case, we say that 〈M,w0〉 is a model for ϕ. A formula ϕ is satisfiable if
there is a model for ϕ. A formula ϕ is valid if it is satisfiable in all structures. A
set of formulae Γ = {γ1, . . . , γn}, n ∈ N, is satisfiable if, and only if,

∧n
i=1 γi is

satisfiable.
Some further conditions can be imposed on the class of Kripke structures that

characterise the semantics of S without affecting the set of valid formulae. For
instance, only finite structures need to be considered, as the finite model property
for preferential logics holds [3,6]. For finite structures, the interpretation of ⇒
is much simpler: ϕ ⇒ ψ is satisfiable at a world w if, and only if, all minimal
ϕ-worlds in Ww satisfy ϕ ∧ ψ. Let Sn be the sublanguage of S with bounded
nesting of at most n preferential operators. We recall the following lemma:

Lemma 1 [6, Lemma 3.1]. Let ϕ be a formula of the form (ψ0 �⇒ ψ′
0) ∧

∧k
i=1(ψi ⇒ ψ′

i) where ψi, ψ
′
i ∈ S0, for all i, 0 ≤ i ≤ k, k ∈ N. If ϕ is satis-

fiable, then ϕ is satisfiable in a Kripke structure with at most k +1 worlds which
are totally ordered by ≤.

The proof of Lemma 1, as given in [6], shows that only total orderings over the
set of worlds need to be considered when checking the satisfiability of a formula
with only one occurrence of the dual of the conditional implication. For formulae
with more occurrences of the dual operator, a disjoint set of total orderings over
the set of worlds needs to be considered, one for each negated conditional. Still,
a structure satisfying such a formula is polynomially bounded in the size of the
formula [6, Proposition 3.2]. For the language of Sn, with bounded nesting of
at most n preferential operators, n > 1, testing the satisfiability of a formula
can be restricted to structures which are polynomial in the size of the formula,
where the degree of the polynomial is bounded by 2 × n [6, Proposition 3.6]. As
given in [6], the satisfiability problem for S is PSPACE-complete.

3 Calculus

In this section, we present the clausal resolution-based calculus RESS for checking
the satisfiability of formulae in the language of S. A clause is a disjunction of
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Table 1. NFF transformation rules

literals or modal formulae of the form (ϕ ⇒ ϕ′) or (ϕ �⇒ ϕ′), where ϕ and ϕ′

have no subformulae whose main operator is ⇒ or �⇒. A literal clause is a clause
with no occurrences of modal operators, that is, it is a disjunction of literals. A
formula is in Conjunctive Normal Form (CNF) if, and only if, it is a conjunction
of initial and global clauses, defined as follows:

initial clause:
∨n

a=1 la
global clause: �∗ (

∨m1
b=1 l′b ∨ ∨m2

c=1(ϕc ⇒ ψc) ∨ ∨m3
d=1(ϕ

′
d �⇒ ψ′

d))

where n,m1,m2,m3 ∈ N, la, l′b ∈ L, ϕc, ψc, ψ
′
d are literal clauses, ϕ′

d is in Nega-
tion Normal Form (NNF), no formulae contains nested modal operators, and
�∗ is the universal operator. We introduce the universal operator because the
translation into the normal form requires that the definition of formulae being
renamed is available throughout the whole model. The universal operator is inter-
preted as usual: if M = (W,w0, π,R) is a Kripke structure and w ∈ W , then
〈M,w〉 |= �∗ ϕ if, and only if, for all w′ ∈ W , 〈M,w′〉 |= ϕ. The empty clause
is denoted by false. The transformation into the normal form uses rewriting and
renaming, where the renaming technique is used to replace complex formulae in
the scope of the disjunctions (except for the left-hand side of the dual operator)
and the nesting of conditional operators by new propositional symbols. Clauses
and formulae within the scope of modal operators are required to be in simplified
form, that is, ϕ∨ϕ, ϕ∧ϕ, ϕ∨false, and ϕ∧true simplify to ϕ; ϕ∨¬ϕ, ϕ∨true,
and �∗ true simplify to true; and ϕ ∧ ¬ϕ, ϕ ∧ false, and �∗ false simplify to
false.

The transformation of a formula ϕ in the language of S into CNF is given
as follows. We denote the NNF of ϕ by nnf(ϕ), which is obtained by applying
the function nnf : WFFS −→ WFFS to ϕ, whose definition is given in Table 1,
where l is a literal, ϕ,ϕi, ψ ∈ WFFS and i ∈ N. Let ϕ be a well-formed formula
in NNF. The translation of ϕ into Conjunctive Normal Form is defined as

cnf(ϕ) = t0 ∧ τ(�∗ (t0 → ϕ))
where t0 is a new propositional symbol and the transformation function τ :
WFFS −→ WFFS is defined as follows (where ϕ,ϕi, ψ, χ ∈ WFFS , i ∈ N, t is a
literal, and t′ is a new propositional symbol). For the base case, the right-hand
side of the implication is a disjunction where each disjunct is a literal, or it is of
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the form (ϕ′ ⇒ ϕ′′) or (ψ′ �⇒ ψ′′), where ψ′ is a propositional formula (i.e. with
no occurrences of subformulae whose main operator is either ⇒ or �⇒), and the
formulae ϕ′, ϕ′′ and ψ′′ are literal clauses:

τ(�∗ (t → ϕ)) = �∗ (¬t ∨ ϕ)
If the right-hand side of the implication or the right-hand side of a conditional
is a conjunction, then rewriting is applied:

τ(�∗ (t → ∧
ϕi)) =

∧
τ(�∗ (t → ϕi))

τ(�∗ (t → (ϕ ⇒ ∧
ϕi))) =

∧
τ(�∗ (t → (ϕ ⇒ ϕi)))

If any of the disjuncts on the right-hand side of the implication is not a literal,
then renaming is applied:

τ(�∗ (t → ∨
ϕi ∨ ψ)) = τ(�∗ (t → ∨

ϕi ∨ t′)) ∧ τ(�∗ (nnf(t′ ↔ ψ)))
Conjunctions on the left-hand side of conditionals and on the right-hand side of
the dual operator are renamed as follows:

τ(�∗ (t → (
∧

ϕi ⇒ χ))) = τ(�∗ (t → (t′ ⇒ χ))) ∧ τ(�∗ (nnf(t′ ↔ ∧
ϕi)))

τ(�∗ (t → (ϕ �⇒ ∧
ϕi))) = τ(�∗ (t → (ϕ �⇒ t′))) ∧ τ(�∗ (nnf(t′ ↔ ∧

ϕi)))
If any of the disjuncts on the left-hand side of the conditional or on the right-
hand side of a (negated) conditional is not a literal, that is, if ψ in the following
is not a literal, then renaming is also applied.

τ(�∗ (t → ((
∨

ϕi ∨ ψ) ⇒ χ))) = τ(�∗ (t → ((
∨

ϕi ∨ t′) ⇒ χ))) ∧ τ(�∗ (nnf(t′ ↔ ψ)))
τ(�∗ (t → (ϕ ⇒ (ψ ∨ ∨

ϕi)))) = τ(�∗ (t → (ϕ ⇒ (t′ ∨ ∨
ϕi)))) ∧ τ(�∗ (nnf(t′ ↔ ψ)))

τ(�∗ (t → (ϕ �⇒ (ψ ∨ ∨
ϕi)))) = τ(�∗ (t → (ϕ �⇒ (t′ ∨ ∨

ϕi)))) ∧ τ(�∗ (nnf(t′ ↔ ψ)))

If the left hand-side of the negated conditional is not a propositional formula,
that is, if ψ is of the form (ψ′ ⇒ ψ′′) or (ψ′ �⇒ ψ′′), then renaming is also applied.
Let ϕ[ψ �→ t′] denote the result of replacing some occurrences of the subformula
ψ in ϕ by t′:

τ(�∗ (t → (ϕ �⇒ χ))) = τ(�∗ (t → (ϕ[ψ �→ t′] �⇒ χ))) ∧ τ(�∗ (nnf(t′ ↔ ψ)))

Although the resolution-based method for S is essentially clausal, note that
formulae on the left-hand side of the modal operator �⇒ are not required to be
literal clauses. This helps preserving more of the structure of the original formula
and, as so, to identifying the cases where the axioms A4 and A5 should be
propagated. We also note that, for a formula ϕ being renamed by a propositional
symbol t, if ϕ occurs only with positive (resp. negative) polarity, then only the
implication t → ϕ (resp. (ϕ → t)) is needed [16]. As formulae on the left-
hand side of conditionals occur with both polarities, in order to simplify our
presentation, we have chosen to introduce both sides of the definition of ϕ, i.e.
(t → ϕ) and (ϕ → t), into the clause set.

As checking the satisfiability of a conjunction
∧n

i=1 ϕi, n ∈ N, is equivalent
to checking the satisfiability of the set {ϕ1, . . . , ϕn}, we refer to a formula into
CNF as a set of clauses. Given a set of clauses in CNF, the resolution procedure
is applied until a contradiction, in the form of false, is found or no new clauses
can be derived. The inference rules can be divided into two sets: a set of rules
for propagation of formulae whose main operator are either the conditional or
its dual; and a set of resolution-based rules.
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Table 2. Inference Rules

The inference rules used for propagation given in Table 2 are closely related
to the axioms of S. The inference rule [L-OR-2] is related to cautious monotonicity
(axiom A4). The inference rule [L-AND-2] is related to the disjunction property
on the left-hand side of a conditional (axiom A5). The inference rules [REF-1]

and [REF-2] correspond to reflexivity, that is, the axiom A1. Finally, the [SIMP-1]

corresponds to simplification, as ϕ �⇒ false is unsatisfiable.
The resolution-based inference rules are also given in Table 2, where [I-RES-1]

and [I-RES-2], the resolution rules related to initial clauses, and [RES] are syntacti-
cal variations of the classical binary resolution rule given in [18]. The remaining
resolution-based inference rules are justified by the axioms A2 and A3. The
resolution-based rule [R-RES-⇒-1] says that when the left-hand side of the condi-
tionals in the premises are equivalent, then the standard binary resolution rule
can be applied to the right-hand side of those conditionals. Note that in the
case of [R-RES-�⇒-1], which is similar, the negated conditional in the premises
is of the form (ϕ′ �⇒ χ′) and, from the definition of the dual, we have that
this conditional is equivalent to ¬(¬ϕ′ ⇒ ¬χ′). The disjunct ¬(¬ϕ ↔ ϕ′) in
the conclusion then states that either ϕ′ is not equivalent to the negation of ϕ
(from the other premise) or resolution can be applied to the right-hand side of
those conditionals. The inference rule [L-RES-�⇒] says that if a formula ϕ can-
not be satisfied in any ordering, as given by the premise ϕ ⇒ false, then any
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negated conditional whose left-hand side is equivalent to ¬ϕ cannot be satisfied
either. The inference rules [R-RES-⇒-2] and [R-RES-�⇒-2] apply resolution to a
literal occurring in a global literal clause with its complement occurring on the
right-hand side of conditionals.

The inference rules in Table 2 are presented in simplified form, as some of
their conclusions are not transformed into the normal form. For the inference
rules [R-RES-⇒-1], [R-RES-�⇒-1], and [L-RES-�⇒] the resolvent should be rewritten
into the normal form. In these cases, distribution can be used to avoid further
renaming: a formula as D∨(ϕ∨(ψ∧χ)) can be rewritten as the clauses (D∨ϕ∨ψ)
and (D∨ϕ∨χ), for a disjunction D, and formulae ϕ, ψ, and χ. However, for the
resolvents of [REF-1] and [REF-2], further renaming may need to be applied. For
instance, if (ϕ ∨ ψ) �⇒ χ is a subformula in the clause set, then an application of
[REF-2] would generate (¬ϕ∧¬ψ) ⇒ (¬ϕ∧¬ψ). However, as from the definition of
the normal form, conjunctions are not allowed on the left-hand side of conditional
clauses. Instead of (¬ϕ ∧ ¬ψ) ⇒ (¬ϕ ∧ ¬ψ), the clauses corresponding to t ⇒ t
and t ↔ (¬ϕ ∧ ¬ψ), where t is a new propositional symbol, are introduced in
the clause set. This is not problematic from the point of view of termination, as
[REF-1] and [REF-2] are only applied to formulae which can possibly occur in the
clause set. As we show later, because the number of such formulae is finite, so it
is the number of new propositional symbols that can be introduced as a result
of the application of either inference rule.

The soundness of all inference rules follows almost immediately from the
axiomatisation of S, as shown in Sect. 4. The following is the formal definition
of a derivation.

Definition 1. Let Φ be a set of clauses. A derivation in RESS for Φ is a sequence
of clause sets Φ0, Φ1, . . . where Φ0 = Φ and, for each i > 0, Φi+1 = Φi ∪ {D},
where D is the conclusion obtained from Φi by an application of one of the infer-
ence rules given in Table 2 to premises in Φi. We require that D is in simplified
form, D �∈ Φi, and that D is not a propositional tautology.

Note that the inference rules [REF-1] and [REF-2] introduce tautologies of the form
ϕ ⇒ ϕ, where ϕ or ¬ϕ occurs on the left-hand side of (negated) conditionals.
Those tautologies are needed for completeness. Thus, the constraint for including
the resolvent D into the clause set is restricted to classical tautologies, that is,
of the form ϕ ∨ ¬ϕ, for a formula ϕ.

Definition 2. Let Φ be a set of clauses. A refutation in RESS for Φ is a finite
derivation Φ0, Φ1, . . . , Φk, k ∈ N, where false in Φk. We write Φ 
RESS

false, if
there is a refutation from Φ in RESS.

Definition 3. Let Φ be a set of clauses. We say that Φ is saturated if any
further application of the inference rules given in Table 2 to clauses in Φ only
generates a clause already in Φ.

As derivations require progress, a saturated set is a point where a derivation
cannot progress any further.
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Definition 4. Let Φ be a set of clauses. A derivation Φ0, Φ1, . . . in RESS for Φ
terminates if there is k ∈ N such that Φk is saturated or false ∈ Φk.

Before showing the correctness results concerning our calculus, we present an
example of a refutation involving a validity with nested conditionals.

Example 1. We show that ϕ = ((a ⇒ b)∧(a ⇒ c)∧(d ⇒ c)) ⇒ (((a∧b)∨d) ⇒ c)
is a valid formula in S. The negation normal form of the ¬ϕ is ((¬a �⇒ ¬b)∨(¬a �⇒
¬c) ∨ (¬d �⇒ ¬c)) �⇒ (((¬a ∨ ¬b) ∧ ¬d) �⇒ ¬c). Clauses 1 to 6 correspond to
the normal form of ¬ϕ, noting that Clauses 4 to 6 only show the side of the
definitions of the propositional symbols introduced by renaming that are needed
in the proof.

1. t0
2. �∗ (¬t0 ∨ ((t1 ∨ t2 ∨ t3) �⇒ t4))
3. �∗ (t1 ∨ (a ⇒ b))

4. �∗ (t2 ∨ (a ⇒ c))
5. �∗ (t3 ∨ (d ⇒ c))
6. �∗ (¬t4 ∨ (((¬a ∨ ¬b) ∧ ¬d) �⇒ ¬c))

The following refutation follows from the above set of clauses:

7. �∗ (¬t4 ∨ ((¬a ∨ ¬b) �⇒ ¬c) ∨ (¬d �⇒ ¬c)) [L-AND-2,6]
8. �∗ (t3 ∨ ¬t4 ∨ ((¬a ∨ ¬b) �⇒ ¬c)) [R-RES-�⇒-1,7,5]
9. �∗ (t3 ∨ ¬t4 ∨ (¬a �⇒ ¬b) ∨ (¬a �⇒ ¬c)) [L-OR-2,8]

10. �∗ (t2 ∨ t3 ∨ ¬t4 ∨ (¬a �⇒ ¬b)) [R-RES-�⇒-1,9,4]
11. �∗ (t1 ∨ t2 ∨ t3 ∨ ¬t4) [SIMP-1,R-RES-�⇒-1,10,3]
12. �∗ (t5 ⇒ t5) [REF-2,2, where t5 ↔ ¬(t1 ∨ t2 ∨ t3)]
13. �∗ (t5 ∨ t1 ∨ t2 ∨ t3) [REF-2,2]
14. �∗ (¬t5 ∨ ¬t1) [REF-2,2]
15. �∗ (¬t5 ∨ ¬t2) [REF-2,2]
16. �∗ (¬t5 ∨ ¬t3) [REF-2,2]
17. �∗ (¬t5 ∨ t2 ∨ t3 ∨ ¬t4) [RES,11,14]
18. �∗ (¬t5 ∨ t3 ∨ ¬t4) [RES,17,15]
19. �∗ (¬t5 ∨ ¬t4) [RES,18,16]
20. �∗ (¬t0 ∨ ((t1 ∨ t2 ∨ t3) �⇒ ¬t5)) [R-RES-�⇒-2,19,2]
21. �∗ (¬t0 ∨ ¬(¬t5 ↔ (t1 ∨ t2 ∨ t3))) [SIMP-1,R-RES-�⇒-1,20,12]
22. �∗ ¬t0 [RES,21,13,14,15,16]
23. false [I-RES-2,22,1]

We note that Clause 8 (resp. Clauses 10 and 11) is in simplified form, as
nnf(¬(¬d ↔ ¬d)) (resp. nnf(¬(¬a ↔ ¬a))) simplifies to false. The justification
of Clause 22 abbreviates several applications of the inference rule [RES] between
Clause 21 and the clauses corresponding to the definition of t5, i.e. Clauses 13
to 16.

4 Correctness

In this section we provide the proofs that RESS is a sound, complete, and termi-
nating calculus for S. First, we show that given a formula ϕ, the transformation
into CNF is satisfiability preserving.

Theorem 1. Let ϕ be a formula in WFFS . Then, ϕ is satisfiable if, and only if,
t0 ∧ τ(�∗ (t0 → ϕ)) is satisfiable.
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Proof (sketch). The proof is very standard. We first show that ϕ is satisfiable if,
and only if, t0 ∧ �∗ (t0 → ϕ) is satisfiable, as the evaluation of ϕ does not depend
on the evaluation of t0 and that the operator �∗ does not occur in ϕ. Then, we
show that each of the transformation rules is satisfiability preserving, that is,
a formula of the form �∗ (t → ϕ′) is satisfiable if, and only if, τ(�∗ (t → ϕ′))
is satisfiable. Rewriting is justified by equivalences. For transformation steps
which require renaming, let ψ be the subformula of ϕ′ which is being renamed
by the transformation function and t′ a new propositional symbol. Given the
satisfiability of �∗ (t → ϕ′), then there is a model M = (W,w0, π,R) such that
〈M,w〉 |= (t → ϕ′), for all w ∈ W . We then build a model M ′ = (W,w0, π

′, R),
which is exactly as M except by the evaluation function. We define π′(w)(p) =
π(w)(p) for all worlds w ∈ W and propositional symbols p, such that p �= t′;
and π′(w)(t′) = true if, and only if, 〈M,w〉 |= ψ. We then show that, for all
worlds w ∈ W , we have that 〈M ′, w〉 |= (t → ϕ′[ψ �→ t′]) ∧ (t′ ↔ ψ), where
ϕ′[ψ �→ t′] is the result of replacing some occurrences of the subformula ψ in
ϕ′ by t′. The if part follows easily by taking into account that, by construction,
t′ and ψ are satisfied at the same worlds in a model; hence (t → ϕ′[t′ �→ ψ])
is satisfiable in all worlds w ∈ W . It follows that τ(�∗ (t → ϕ′)) is satisfiable.
Finally, by induction on the number of steps of a transformation, we obtain that
ϕ and t0 ∧ τ(�∗ (t0 → ϕ)) are equisatisfiable. ��
We note that the transformation into the normal form results in a formula which
is polynomial in the size of the original formula, as the number of subformulae
of a formula is linear in the size of the original formula and also because the
renaming procedure introduces at most two copies of every subformula (plus
a constant number of connectives). The procedure is also terminating, as only
complex subformulae of a formulae are either rewritten or renamed.

Lemma 2. Let Φ be a set of clauses. Then, any derivation in RESS from Φ
terminates.

Proof. Let P+
Φ be the set of propositional symbols occurring in Φ. We define

P−
Φ = {¬p | p ∈ PΦ} and LΦ = P+

Φ ∪ P−
Φ . Let Sub+Φ be the set of all

propositional subformulae occurring in Φ, Sub−
Φ = {nnf(¬ϕ) | ϕ ∈ Sub+Φ},

and Sub±
Φ = Sub+Φ ∪ Sub−

Φ . As only propositional formulae can occur on the
left-hand side of the conditional implications and its dual, then the num-
ber of additional literals that might be introduced during the application of
[REF-1] and [REF-2] is bounded by |Sub±

Φ |. As PΦ and Sub±
Φ are finite, so it is

P(LΦ ∪ Sub±
Φ

⋃
ϕ∈Sub±

Φ
{tϕ ⇒ tϕ, t ↔ ϕ}), where tϕ is a new propositional sym-

bol. Let CΦ be the largest set of clauses that can be constructed from LΦ, Sub±
Φ ,

and the conditionals introduced by [REF-1] and [REF-2] together with the double-
implications introduced for renaming of formulae in Sub±

Φ . From Definition 1, for
all derivations Φ0, Φ1, . . . from Φ, we have that Φi ⊂ CΦ and also that Φi ⊂ Φi+1,
for all i > 0. Thus, every derivation must terminate. ��
For soundness of RESS, we need to show that, for each of the inference rules
given in Table 2, if the premises of the inference rules are satisfiable, so it is
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their conclusion. We omit most of the easy cases, but note that soundness of
[L-AND-2] and [L-OR-2] follow almost immediately from the contrapositive forms
of the axioms A5 and A4, that is, ((ϕ ∧ ψ) �⇒ χ) → (ϕ �⇒ χ) ∨ (ψ �⇒ χ)) and
((ϕ ∨ ψ) �⇒ χ) → (ϕ �⇒ ψ) ∨ (ϕ �⇒ χ)), respectively. The inference rules [REF-1]

and [REF-2] are obviously sound, as they introduce instances of the axiom A1
into the clause set. It is also very easy to see that [I-RES-1], [I-RES-2], and [RES]

are only variations of the classical binary resolution: the fact they are sound
follows also almost immediately from the results in [18]. The next lemmas show
the soundness of [R-RES-�⇒-1] and [L-RES-�⇒].

Lemma 3. Let Φ be a set of clauses with {�∗ (D∨ (ϕ ⇒ (ψ ∨ l))), �∗ (D′ ∨ (ϕ′ �⇒
(χ ∨ ¬l)))} ⊆ Φ. If Φ is satisfiable, then Φ ∪ {�∗ (D ∨ D′ ∨ ¬(¬ϕ ↔ ϕ′) ∨ (ϕ′ �⇒
ψ ∨ χ)} is satisfiable.

Proof. If Φ is satisfiable, as {�∗ (D∨(ϕ ⇒ (ψ∨l))), �∗ (D′∨(ϕ′ �⇒ (χ∨¬l)))} ⊆ Φ,
from the definition of satisfiability of sets, there is a model M = (W,w0, π,R)
such that (1) 〈M,w0〉 |= �∗ (D∨(ϕ ⇒ (ψ∨l))) and (2) 〈M,w0〉 |= �∗ (D′∨(ϕ′ �⇒
(χ ∨ ¬l))). From (1) and the semantics of the universal operator, for all w ∈ W ,
we have that (3) 〈M,w〉 |= (D ∨ (ϕ ⇒ (ψ ∨ l))). Analogously, from (2), for all
w ∈ W , we have that (4) 〈M,w〉 |= (D′∨(ϕ′ �⇒ (χ∨¬l))). Let w be any world in
W . From (3) and (4), by distribution, there are four cases: (i) 〈M,w〉 |= (D∧D′);
(ii) 〈M,w〉 |= (D ∧ (ϕ′ �⇒ (χ ∨ ¬l)); (iii) 〈M,w〉 |= (D′ ∧ (ϕ ⇒ (ψ ∨ l)); or (iv)
〈M,w〉 |= (ϕ ⇒ (ψ∨l))∧(ϕ′ �⇒ (χ∨¬l)). It is easy to see that if Cases (i), (ii), or
(iii) hold, then we have that (5) 〈M,w〉 |= (D∨D′). For the fourth case, there are
two possibilities: either (6) 〈M,w〉 |= ¬(¬ϕ ↔ ϕ′); or (7) 〈M,w〉 |= (¬ϕ ↔ ϕ′).
From (7) and from the fact that 〈M,w〉 |= (ϕ′ �⇒ (χ ∨ ¬l)), by soundness of
[RPE], we obtain that (8) 〈M,w〉 |= (¬ϕ �⇒ (χ ∨ ¬l)). From (8), the fact that
〈M,w〉 |= (ϕ ⇒ (ψ ∨ l)), the semantics of conjunctions, and the soundness of
A2, by the soundness of [MP], we obtain that 〈M,w〉 |= (¬ϕ �⇒ (ψ∨l)∧(χ∨¬l)).
By the soundness of resolution, applied on the right-hand side of the preferential
conditional, we obtain that (9) 〈M,w〉 |= (¬ϕ �⇒ (ψ ∨ χ)). From (9) and (7),
we obtain that (10) 〈M,w〉 |= (ϕ′ �⇒ (ψ ∨χ)). From (5), (6), (10), and from the
semantics of disjunction, we finally have that 〈M,w〉 |= (D∨D′ ∨¬(¬ϕ ↔ ϕ′)∨
(ϕ′ �⇒ ψ∨χ)). As this holds for any world w, from the semantics of the universal
operator, it follows that 〈M,w0〉 |= �∗ (D ∨ D′ ∨ ¬(¬ϕ ↔ ϕ′) ∨ (ϕ′ �⇒ ψ ∨ χ)).
We conclude that Φ ∪ {�∗ (D ∨ D′ ∨ ¬(¬ϕ ↔ ϕ′) ∨ (ϕ′ �⇒ ψ ∨ χ))} is satisfiable.

��
Lemma 4. Let Φ be a set of clauses with {�∗ (D ∨ (ϕ ⇒ false)), �∗ (D′ ∨ (ϕ′ �⇒
ψ))} ⊆ Φ. If Φ is satisfiable, then Φ ∪ {�∗ (D ∨ D′ ∨ ¬(¬ϕ ↔ ϕ′))} is satisfiable.

Proof (Sketch). The proof follows from the fact that �∗ (D ∨ (ϕ ⇒ false)) is
semantically equivalent to �∗ (D ∨ (ϕ ⇒ ψ ∧ ¬ψ)) and, from A3, this implies
that �∗ (D ∨ (ϕ ⇒ ¬ψ)) is satisfiable. By Lemma 3 taking Φ with {�∗ (D ∨ (ϕ ⇒
¬ψ)), �∗ (D′ ∨ (ϕ′ �⇒ ψ))} ⊆ Φ, together with the soundness of [SIMP-1], we
obtain that Φ ∪ {�∗ (D ∨ D′ ∨ ¬(¬ϕ ↔ ϕ′))} is satisfiable. ��
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The proof that [R-RES-⇒-1] is sound is pretty similar to that of Lemma 3. Sound-
ness of [R-RES-⇒-2] and [R-RES-�⇒-2] follow easily from the fact that the right-
hand side of the operators ⇒ and �⇒ are monotonic. Thus resolution can be
applied on the the right-hand side of modal formulae, taking into account that
the other premise is also in the scope of the universal operator. The next theorem
shows that RESS is sound, the proof of which follows from our argumentation,
as above, and Lemmas 3 and 4.

Theorem 2. Let Φ be a set of clauses and Φ0, Φ1, . . . be a derivation in RESS
for Φ. If Φ is satisfiable, then every Φi, i ≥ 0, is satisfiable.

The soundness proof, given above, shows that if Φ is satisfiable, then there is
no refutation from Φ, that is: if there is a structure M such that M |= Φ,
then Φ �
RESS

false. In the following, we prove the completeness of RESS: if
Φ �
RESS

false, then there is a structure M such that M |= Φ. The proof follows
the standard construction of canonical models for modal logics and is heavily
based on that given in [6].

Given a set of clauses Φ, we construct a structure (W,S), where W is a set
(of worlds) and S is a binary relation over W , as follows. Let I and G denote the
set of initial and global clauses in Φ, respectively. Let G′ = {ϕ | �∗ ϕ ∈ G}. Let
ϕI , ϕG, and ϕG′ denote the conjunction of formulae in I, G and G′, respectively.
Let Cl(Φ) be the closure of Φ under subformulae and simple negation. That is,
Cl(Φ) is the least set such that:

– ϕI ∧ ϕG ∧ ϕG′ ∈ Cl(Φ);
– If ϕ ∈ Cl(Φ) and ϕ′ ∈ Subf(ϕ), then ϕ′ ∈ Cl(Φ);
– If ϕ ∈ Cl(Φ) and then nnf(¬ϕ) ∈ Cl(Φ);

where Subf(ϕ) denotes the set of subformulae of ϕ. (Recall that we consider
sub-conjunctions of subformulae as subformulae.) Let A ,B ∈ P(Cl(Φ)) be sets
of formulae in the powerset of the closure of Φ. A set of formulae A is RESS-
consistent if, and only if, (i) for all ϕ ∈ A , ¬ �∗ ϕ �∈ A ; and (ii) A �
RESS

false.
A consistent set of formulae A is maximal with respect to Cl(Φ) if, and only
if, (i) G ⊆ A (in order to ensure that all global clauses are in all sets); and (ii)
there is no consistent B ∈ P(Cl(Φ)) such that A ⊂ B. Although there is no
specific inference rules for dealing with formulae of the form ¬ �∗ ϕ, as they do
not occur in the normal form, a set containing such a formula cannot be maximal
consistent, as G is a subset of all maximal sets.

An atom is a maximal consistent set in P(Cl(Φ)), the powerset of Cl(Φ).
Let AtomsΦ be the set of all atoms constructed from Φ. In the following, we
denote atoms by a, b, c, d, and set of atoms by A,B,C,D. For an atom a, we
write

∧
a (resp.

∨
a) as an abbreviation for the conjunction (resp. disjunction)

of the formulae in a. A world is defined as a pair (a,A), where a is an atom and
A a set of atoms. Given two atoms a and b, and a set of atoms B, we define that
Prefer(a, b,B) holds if, and only if,

∧
a ∧ ¬((

∧
b ∨ ∨ ∧

b′∈B b′) ⇒ ∨∧
b′∈B b′) is

RESS-consistent. We define the structure M = (W,w0, π,R) as follows:
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– W = {(a,A) | a ∈ AtomsΦ, A ⊆ (AtomsΦ \ {a})};
– w0 = (a, ∅) ∈ W , with Φ ⊆ a;
– For all propositional symbols p ∈ P, let π((a,A))(p) = true if, and only if,

p ∈ a;
– For all worlds (a,A) ∈ W , let W(a,A) = {(b,B) ∈ W | Prefer(a, b,B)} and set

(b,B) <(a,A) (c, C), if C ∪ {c} ⊆ B. For all worlds w′, w′′ ∈ Ww, set ≤w such
that, w′ ≤w w′; and, if w′ <w w′′, then w′ ≤w w′′.

Intuitively, a in (a,A) is a world satisfying
∧

a which is strictly preferred to all
worlds in A. The evaluation function assigns truth values to propositional sym-
bols according to their value in a. The set W(a,A) contains all worlds (b,B) such
that it is consistent with a that b is strictly preferred to worlds satisfying atoms
in B. Note that the construction of W(a,A) depends on the set of conditionals in
a, as defined by the predicate Prefer(·). Thus, if two atoms a and b share the same
set of conditional formulae, then W(a,A) and W(b,A′) are exactly the same. It is
easy to check that the relation ≤w is indeed a preorder. Given those definitions,
we establish the completeness of RESS. First, we note that the construction of a
model from a saturated set of clauses is closed under the inference rules of RESS
and also that the following two properties hold.

Lemma 5. Let Φ be a saturated set of clauses, G be the set of global clauses
in Φ, Cl(Φ) be the closure of Φ, and a be an atom in AtomsΦ, the set of all
atoms constructed from Φ. For any formula ϕ ∈ Cl(Φ) ∪ G, ϕ ∈ a if, and only
if, nnf(¬ϕ) �∈ a.

Lemma 6. Let Φ be a saturated set of clauses, G be the set of global clauses in
Φ, and a be an atom in AtomsΦ, the set of all atoms constructed from Φ. For
any formula �∗ ϕ ∈ G, �∗ ϕ ∈ a if, and only if, ϕ ∈ a.

The proof of the truth lemma depends on the following two results. For ϕ ⇒
ψ ∈ (a,A), as an additional (induction) hypotheses, we assume that for all
subformulae ϕ′ of ϕ ⇒ ψ and all worlds (a′, A′), we have that ϕ′ ∈ a′ if, and
only if, 〈M, (a′, A′)〉 |= ϕ′.

Lemma 7. Let Φ be a saturated set of clauses, M = (W,w0, π,R) be the struc-
ture constructed as above for Φ, (a,A) ∈ W be a world in M , and ϕ,ψ be
formulae in Cl(Φ). If ϕ ⇒ ψ ∈ a in (a,A) then 〈M, (a,A)〉 |= ϕ ⇒ ψ.

Proof. For the purpose of contradiction, assume ϕ ⇒ ψ ∈ (a,A), but that
〈M, (a,A)〉 �|= ϕ ⇒ ψ. If 〈M, (a,A)〉 �|= ϕ ⇒ ψ, then, from the semantics of
⇒, there is a world (b,B) ∈ W(a,A) such that (b,B) is a minimal ϕ-world and
〈M, (b,B)〉 |= ϕ∧¬ψ. It follows that (i) 〈M, (b,B)〉 |= ϕ and (ii) 〈M, (b,B)〉 |=
¬ψ. By induction hypotheses, from (i), we have that ϕ ∈ b and, from (ii), that
ψ �∈ b (or, equivalently, that nnf(¬ψ) ∈ b). If (b,B) ∈ W(a,A), then, from the
definition of W(a,A), we have that Prefer(a, b,B) holds, that is, a∧¬((b∨∨

B) ⇒∨
B) is RESS-consistent. However, we can show that for ϕ,¬ψ ∈ b, we have that

Prefer(a, b,B) and ϕ ⇒ ψ ∈ (a,A) is not RESS-consistent (see Appendix A for
the detailed proof), which contradicts with having (b,B) ∈ W(a,A). Thus, it
cannot be the case that 〈M, (a,A)〉 �|= ϕ ⇒ ψ. Hence, 〈M, (a,A)〉 |= ϕ ⇒ ψ. ��
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Lemma 8. Let Φ be a saturated set of clauses, M = (W,w0, π,R) be the struc-
ture constructed as above for Φ, (a,A) ∈ W be a world in M , and ϕ,ψ be
formulae in Cl(Φ). If 〈M, (a,A)〉 |= ϕ ⇒ ψ, then ϕ ⇒ ψ ∈ a in (a,A).

Proof. We show the contrapositive, i.e. if ϕ ⇒ ψ �∈ a in (a,A), then 〈M, (a,A)〉 �|=
ϕ ⇒ ψ. If ϕ ⇒ ψ �∈ a, then a ∧ (ϕ ⇒ ψ) is not RESS-consistent. By Lemma
5, nnf((¬ϕ �⇒ ¬ψ)) ∈ (a,A). For the purpose of contradiction, assume that
〈M, (a,A)〉 |= ϕ ⇒ ψ. Thus, for all (b,B) in W(a,A) such that (b,B) is a minimal
ϕ-world, 〈M, (b,B)〉 |= ϕ∧ψ. It follows that 〈M, (b,B)〉 |= ϕ and 〈M, (b,B)〉 |=
ψ. By inductive hypothesis, ϕ ∈ (b,B) and ψ ∈ (b,B). As (b,B) ∈ W(a,A), from
the definition of W(a,A), Prefer(a, b,B) holds, i.e. a ∧ ¬((b ∨ ∨

B) ⇒ ∨
B) is

RESS-consistent. We can show however that, for ϕ,ψ ∈ b, we have that ¬((b ∨∨
B) ⇒ ∨

B) and ¬(ϕ ⇒ ψ) is not RESS-consistent (see Appendix A for the
detailed proof). Thus, it cannot be the case that 〈M, (a,A)〉 |= ϕ ⇒ ψ. Hence,
〈M, (a,A)〉 �|= ϕ ⇒ ψ. ��
Lemma 9. Let Φ be a saturated set of clauses, M = (W,w0, π,R) be the struc-
ture constructed as above for Φ, (a,A) ∈ W be a world in M , and ϕ a formula
in Cl(Φ). Then, ϕ ∈ a in (a,A) if, and only if, 〈M, (a,A)〉 |= ϕ.

The proofs for the classical connectives make use of Lemmas 5 and 6 and is
routine. For formulae of the form (ϕ ⇒ ψ), the proof follows from Lemmas 7
and 8. Completeness of RESS follows immediately from the truth lemma (Lemma
9), as stated above.

5 Discussion and Further Work

We have presented a sound and complete resolution calculus for Burgess’ system
S. Our main motivation is to present a purely syntactic calculus that is both
easy and efficient to implement. The only other calculus for S we are aware of is
that of [19] which heavily relies on semantic arguments for the definition of proof
rules, and is therefore non-trivial to both implement and optimise. In contrast,
the resolution system here is purely given in syntactic terms. The design of the
resolution rules, while not generated from the axioms by means of an algorithmic
procedure, closely follows the axiomatisation. A different axiomatisation would
lead to a different set of inference rules, in particular those related to propagation
([L-AND-2], [L-OR-2], [REF-1] and [REF-2]). The main technical challenge was the
completeness proof, for which we have adapted a canonical model construction
to the resolution setting, obtaining a direct proof (without translating to other
calculi) where the main obstacle in the proof was to integrate the construction
with pre-processing of formulae into normal form.

To fully substantiate our claim regarding ease of implementation and effi-
ciency, we plan to implement and compare both our calculus and that of [19].
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A Proofs

The next two proofs were automatically generated by a prototype prover which
implements the calculus given in this paper. Only clauses needed in the refu-
tation are shown. Also the inference rule [SIMP-1] is always applied together
with [R-RES-�⇒-1], so clauses are already in simplified form. First, as part of the
proof of Lemma 7, we show that for ϕ,¬ψ ∈ b, we have that Prefer(a, b,B) and
ϕ ⇒ ψ ∈ (a,A) is contradictory.

1. t1 [Assumption]
2. (¬t1 ∨ (ϕ ⇒ ψ)) [Assumption, ϕ ⇒ ψ ∈ a]
3. (¬t1 ∨ (((¬ϕ ∨ ψ) ∧ ¬B) �⇒ ¬B)) [Assumption, ϕ, ¬ψ ∈ b, (b, B) ∈ W(a,A)]
4. (¬t1 ∨ (¬B �⇒ ¬B) ∨ ((¬ϕ ∨ ψ) �⇒ ¬B) [L-AND-2,3]
8. (B ∨ ¬t3 ∨ t2) [REF-2,3]
9. (¬t2 ∨ t3) [REF-2,3]

11. (ϕ ∨ ¬t2) [REF-2,3]
12. (¬ψ ∨ ¬t2) [REF-2,3]
14. ((B ⇒ B)) [REF-2,4]
15. ((t2 ⇒ t2)) [REF-2,4]
25. (B ∨ ¬ψ ∨ ¬t3) [RES,8,12,t2]
26. (B ∨ ϕ ∨ ¬t3) [RES,8,11,t2]
38. (¬B ∨ ¬t4) [R-RES-�⇒-1,3,14]
39. (B ∨ ¬t4 ∨ t2) [R-RES-�⇒-1,3,14]
40. (B ∨ t4 ∨ t5) [R-RES-�⇒-1,3,14]
41. (ψ ∨ ¬ϕ ∨ ¬t5) [R-RES-�⇒-1,3,14]
42. (¬B ∨ ¬t5) [R-RES-�⇒-1,3,14]
44. (¬t1 ∨ t4) [R-RES-�⇒-1,3,14,B]
49. (ϕ ∨ ¬t3 ∨ ¬t5) [RES,42,26,B]
50. (¬ψ ∨ ¬t3 ∨ ¬t5) [RES,42,25,B]

254. (ψ ∨ ¬t3 ∨ ¬t5) [RES,41,49,ϕ]
276. (¬t3 ∨ ¬t5) [RES,254,50,ψ]
292. (¬t2 ∨ ¬t5) [RES,276,9,¬t3]
493. (B ∨ ¬t2 ∨ t4) [RES,40,292,t5]
540. (B ∨ ¬ψ ∨ ¬t4) [RES,39,12,t2]
547. (¬t4 ∨ t2) [RES,39,38,B]
557. (ϕ ∨ ¬t4) [RES,547,11,t2]
558. (¬t4 ∨ t3) [RES,547,9,t2]
559. (¬t1 ∨ t2) [RES,547,44,¬t4]
560. (¬t4 ∨ ¬t5) [RES,547,292,t2]
814. (¬t1 ∨ (((¬ϕ ∨ ψ) ∧ ¬B) �⇒ ¬ψ ∨ ¬t4)) [R-RES-�⇒-2,540,3,B]
834. (¬ϕ ∨ ¬t6 ∨ t5) [R-RES-�⇒-1,814,2]
837. (B ∨ ¬t7 ∨ t2) [R-RES-�⇒-1,814,2]
838. (ϕ ∨ ¬t7) [R-RES-�⇒-1,814,2]
839. (¬ϕ ∨ ¬t3 ∨ t7) [R-RES-�⇒-1,814,2]

1333. (¬ϕ ∨ ¬t4 ∨ t7) [RES,839,558,¬t3]
1361. (¬t4 ∨ t7) [RES,1333,557,ϕ]
1372. (¬t1 ∨ t7) [RES,1361,44,¬t4]
1374. (B ∨ ¬t2 ∨ t7) [RES,1361,493,¬t4]
1885. (B ∨ ¬t7 ∨ t4) [RES,837,493,t2]
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1911. (¬t5 ∨ ¬t7 ∨ t4) [RES,1885,42,B]
1981. (¬t5 ∨ ¬t7) [RES,1911,560,t4]
2915. (¬ϕ ∨ ¬t6 ∨ ¬t7) [RES,834,1981,t5]
2942. (¬t6 ∨ ¬t7) [RES,2915,838,ϕ]
2984. (¬t1 ∨ ¬t6) [RES,2942,1372,¬t7]
2985. (B ∨ ¬t2 ∨ ¬t6) [RES,2942,1374,¬t7]
3123. (¬t1 ∨ (((¬ϕ ∨ ψ) ∧ ¬B) �⇒ ¬t2 ∨ ¬t6)) [R-RES-�⇒-2,2985,3,B]
3901. (¬t2 ∨ ¬t9 ∨ t5) [R-RES-�⇒-1,3123,15]
3904. (B ∨ ¬t10 ∨ t2) [R-RES-�⇒-1,3123,15]
3906. (¬t2 ∨ t10) [R-RES-�⇒-1,3123,15]
6854. (¬t1 ∨ (((¬ϕ ∨ ψ) ∧ ¬B) �⇒ ¬t10 ∨ t2)) [R-RES-�⇒-2,3904,3,B]

10225. (¬t2 ∨ ¬t9) [RES,3901,292,t5]
10314. (¬t1 ∨ ¬t9) [RES,10225,559,¬t2]
22010. (¬t1 ∨ (((¬ϕ ∨ ψ) ∧ ¬B) �⇒ ¬t10 ∨ ¬ψ)) [R-RES-�⇒-2,6854,12,t2]
23844. (¬t1 ∨ (((¬ϕ ∨ ψ) ∧ ¬B) �⇒ ¬ψ ∨ ¬t2)) [R-RES-�⇒-2,22010,3906,¬t10]
23923. (¬t1 ∨ t6 ∨ (((¬ϕ ∨ ψ) ∧ ¬B) �⇒ ¬t2)) [R-RES-�⇒-1,23844,2,¬ψ]
24001. (¬t1 ∨ t6 ∨ t9) [R-RES-�⇒-1,23923,15,¬t2]
24126. (¬t1 ∨ t6) [RES,24001,10314,t9]
24194. (¬t1) [RES,24126,2984,t6]
24242. false [I-RES-2,1,24194]

The following refutation is part of the proof of Lemma 8, where we show that,
for ϕ,ψ ∈ b, we have that ¬((b ∨ ∨

B) ⇒ ∨
B) and ¬(ϕ ⇒ ψ) ∈ a is not

RESS-consistent

1. t1
2. (¬t1 ∨ (((¬ϕ ∨ ¬ψ) ∧ ¬B) �⇒ ¬B)) [Assumption, b ∈ W(a,A)]
3. (¬t1 ∨ (¬ϕ �⇒ ¬ψ)) [Assumption, ¬(ϕ ⇒ ψ) ∈ a]
4. (¬t1 ∨ (¬B �⇒ ¬B) ∨ ((¬ϕ ∨ ¬ψ) �⇒ ¬B)) [L-AND-2,2]

11. (ϕ ∨ ¬t2) [REF-2,2]
12. (ψ ∨ ¬t2) [REF-2,2]
13. (¬ϕ ∨ ¬ψ ∨ t2) [REF-2,2]
15. (B ⇒ B) [REF-2,4]
16. (t2 ⇒ t2) [REF-2,4]
44. (¬t1 ∨ (¬ϕ �⇒ ¬t2)) [R-RES-�⇒-2,3,12,¬ψ]
55. (¬ϕ ∨ ¬t2 ∨ ¬t6) [R-RES-�⇒-1,44,16]
56. (ϕ ∨ ¬t6 ∨ t2) [R-RES-�⇒-1,44,16]
64. (¬t1 ∨ t6) [R-RES-�⇒-1,44,16,¬t2]

318. (¬ψ ∨ ¬t6 ∨ t2) [RES,56,13,ϕ]
578. (¬t2 ∨ ¬t6) [RES,55,11,¬ϕ]
627. (¬ψ ∨ ¬t6) [RES,578,318,¬t2]
630. (¬ψ ∨ ¬t1) [RES,627,64,¬t6]

2580. (¬B ∨ ¬t9 ∨ t10) [R-RES-�⇒-1,2,15]
2582. (¬B ∨ ¬t10) [R-RES-�⇒-1,2,15]
2584. (B ∨ ¬t9 ∨ t2) [R-RES-�⇒-1,2,15]
2592. (¬t1 ∨ t9) [R-RES-�⇒-1,2,15,¬B]
3769. (B ∨ ψ ∨ ¬t9) [RES,2584,12,t2]

11984. (¬B ∨ ¬t9) [RES,2580,2582,t10]
12128. (ψ ∨ ¬t9) [RES,11984,3769,¬B]
12165. (ψ ∨ ¬t1) [RES,12128,2592,¬t9]
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12205. ¬t1 [RES,12165,630,ψ]
12230. false [I-RES-2,1,12205,t1]
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Abstract. We prove that extended resolution—a well-known proof sys-
tem introduced by Tseitin—polynomially simulates DRAT, the standard
proof system in modern SAT solving. Our simulation procedure takes as
input a DRAT proof and transforms it into an extended-resolution proof
whose size is only polynomial with respect to the original proof. Based on
our simulation, we implemented a tool that transforms DRAT proofs into
extended-resolution proofs. We ran our tool on several benchmark formu-
las to estimate the increase in size caused by our simulation in practice.
Finally, as a side note, we show how blocked-clause addition—a gener-
alization of the extension rule from extended resolution—can be used
to replace the addition of resolution asymmetric tautologies in DRAT
without introducing new variables.

1 Introduction

Propositional logic presents us with an intricate problem: Does there exist a
polynomially-bounded proof system for the unsatisfiable propositional formulas?
In other words, can the unsatisfiability of formulas be certified in a compact way?
Although we still don’t know the answer, the attempts to solve this problem
have led to a variety of interesting results in the area of proof complexity (for
an excellent survey, see [18]). Many of these results had, and continue to have,
a direct impact on automated reasoning.

Already in 1985, Haken [6] proved that the resolution proof system, which
is well-suited for mechanization, does not admit polynomial-size proofs for all
unsatisfiable formulas. However, by adding a simple rule that allows the intro-
duction of definitions over new variables, Tseitin [17] turned resolution into an
exponentially stronger proof system known as extended resolution. Up to this day,
there are no known exponential lower-bounds on the size of extended-resolution
proofs and so it is seen as one of the most powerful proof systems.

While this might convince a theoretician, it seemingly hasn’t impressed the
practitioners in SAT solving. These practitioners aim at developing tools that
can decide the satisfiability of propositional formulas as efficiently as possible,
and for this, they need proof systems that succinctly express the techniques used

This work has been supported by the National Science Foundation under grant CCF-
1618574, by the Austrian Science Fund (FWF) under project W1255-N23, and by
Microsoft Research through its PhD Scholarship Programme.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 516–531, 2018.
https://doi.org/10.1007/978-3-319-94205-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94205-6_34&domain=pdf


Extended Resolution Simulates DRAT 517

by their tools. Skeptical that extended resolution could meet their needs, they
came up with several proof systems of which DRAT [21] has become their de-
facto standard. For instance, participants in the annual SAT competition must
produce DRAT proofs and also recent proofs of open mathematical problems,
including the Erdős Discrepancy Conjecture [12], were provided in DRAT.

The DRAT proof system generalizes extended resolution insofar as every
extended-resolution proof can be seen as a DRAT proof, but beyond that, DRAT
allows additional techniques. While in extended resolution we show the unsat-
isfiability of a formula by successively deriving more and more consequences, in
DRAT we iteratively modify a formula in satisfiability-preserving ways. To keep
proof checking practical, DRAT allows only the derivation of specific facts that
fulfill an efficiently-checkable syntactic criterion—so-called resolution asymmet-
ric tautologies [10] (see Definition 4 on page 520).

Although its additional features make DRAT suitable for SAT solving, it
remained unclear whether these features can indeed cause exponential gains in
expressivity. In this paper, we show that they do not. To this end, we prove in
a constructive way that extended resolution simulates DRAT polynomially, i.e.,
we show how every DRAT proof can be feasibly transformed into an extended-
resolution proof. This confirms the expected proof-complexity landscape where
all top-tier proof systems—including extended resolution, DRAT, and extended
Frege systems [18]—are essentially equivalent.

Rounding off the picture, we show how blocked-clause addition [13]—a gener-
alization of the extension rule from extended resolution—can be used to replace
the addition of resolution asymmetric tautologies in DRAT without introducing
new variables. In combination with recent simulation results regarding DRAT
and newer proof systems [7,8], our paper thus bridges the gap between proof
systems from the present and from the past.

The main contributions of this paper are as follows: (1) We prove that
extended resolution simulates DRAT polynomially. (2) We implemented our sim-
ulation as a tool that transforms DRAT proofs into extended-resolution proofs.
(3) We present an empirical evaluation of our simulation tool. (4) We show how
blocked-clause addition can be used as an alternative for resolution-asymmetric-
tautology addition in DRAT.

2 Preliminaries

Here we present the background required for understanding this paper. We
consider propositional formulas in conjunctive normal form (CNF), which are
defined as follows. A literal is either a variable x (a positive literal) or the nega-
tion x̄ of a variable x (a negative literal). The complementary literal ā of a literal
a is defined as ā = x̄ if a = x and ā = x if a = x̄. For a literal l, we denote
the variable of l by var(l). A clause is a disjunction of literals; we assume that
clauses do not contain repeated literals. A unit clause is a clause that contains
exactly one literal; a tautology contains complementary literals. A formula is a
conjunction of clauses. We view clauses as sets of literals and formulas as sets of
clauses. A clause C subsumes a clause D if C ⊆ D.
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An assignment is a function from a set of variables to the truth values 1 (true)
and 0 (false). An assignment is total with respect to a formula if it assigns a
truth value to every variable occurring in the formula, otherwise it is partial. We
often denote assignments by the sequences of literals they satisfy. For instance,
x ȳ denotes the assignment that assigns 1 to x and 0 to y. A literal l is satisfied
by an assignment α if l is positive and α(var(l)) = 1 or if it is negative and
α(var(l)) = 0. A literal is falsified by an assignment if its complement is satisfied
by the assignment. A clause is satisfied by an assignment α if it contains a literal
that is satisfied by α. Finally, a formula is satisfied by an assignment α if all its
clauses are satisfied by α. A formula is satisfiable if there exists an assignment
that satisfies it. Two formulas are logically equivalent if they are satisfied by
the same total assignments. Two formulas are satisfiability-equivalent if they are
either both satisfiable or both unsatisfiable.

Given a clause C and an assignment α, we define C |α as the clause obtained
from C by removing all literals that are falsified by α. If F is a formula, we define
F |α = {C |α | C ∈ F and α does not satisfy C}. The result of applying the
unit-clause rule to a formula F is the formula F |a with (a) being a unit clause
in F . We also refer to applications of the unit-clause rule as unit-propagation
steps. The iterated application of the unit-clause rule to a formula, until no
unit clauses are left, is called unit propagation. If unit propagation on F yields
the empty clause ⊥, we say that it derives a conflict on F . For example, unit
propagation derives a conflict on F = (ā ∨ b) ∧ (b̄) ∧ (a) since F |a = (b) ∧ (b̄)
and F |ab = ⊥.

We define proof systems and polynomial simulations following Cook and
Reckhow [5]:

Definition 1. A proof system for propositional formulas in CNF is a surjective
polynomial-time-computable function f : Σ∗ → F where Σ is some alphabet and
F is the set of all unsatisfiable formulas.

A proof system can thus be seen as a proof-checking function f that takes a proof
candidate P (which is a string over Σ) together with an unsatisfiable formula
F and checks in polynomial time if P is a correct proof of F . The requirement
that f is surjective means that there must exist a proof for every unsatisfiable
formula. We sometimes use the word proof system in a more colloquial way to
denote the rules that define what constitutes a correct proof of a certain type.
The size of a proof is the number of symbols occurring in it.

Definition 2. A proof system f1 : Σ∗
1 → F polynomially simulates a proof

system f2 : Σ∗
2 → F if there exists a polynomial-time-computable function

g : Σ∗
2 → Σ∗

1 such that f1(g(x)) = f2(x).

In other words, f1 polynomially simulates f2 if there exists a polynomial-time-
computable function that transforms f2-proofs into f1-proofs. We next present
the proof systems extended resolution and DRAT.
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3 Extended Resolution (ER) and DRAT

An extended-resolution proof as well as a DRAT proof of a formula F are se-
quences of the form C1, . . . , Cm, Im+1, . . . , In where C1, . . . , Cm are clauses of F
and Im+1, . . . , In are instructions as defined in the following. There are three
different kinds of instructions: addition, deletion, and extension. An addition is
a pair 〈a, C〉 where C is a clause; a deletion is a pair 〈d, C〉 where C is a clause;
and an extension (also called a definition introduction) is a pair 〈e, ϕ〉 where ϕ is
a propositional definition of the form x ↔ p∨ (c1 ∧ · · ·∧ ck) where x is a variable
not occurring in any earlier instructions of the proof and p, c1, . . . , ck are literals
where var(x), var(p), var(c1), . . . , var(ck) are pairwise distinct. Converting such
a definition to CNF yields the clause set cnf(ϕ) = {x ∨ p̄, x ∨ c̄1 ∨ · · · ∨ c̄k,
x̄∨p∨c1, . . . , x̄∨p∨ck}; in the particular case k = 0 we have cnf(ϕ) = {x∨p̄, x}.
The sequence C1, . . . , Cm, Im+1, . . . , In gives rise to formulas F0, F1, . . . , Fn as
follows:

Fi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{C1, . . . , Ci} if i ≤ m

Fi−1 ∪ {C} if i > m and Ii = 〈a, C〉
Fi−1 \ {C} if i > m and Ii = 〈d, C〉
Fi−1 ∪ cnf(ϕ) if i > m and Ii = 〈e, ϕ〉

We call Fi the accumulated formula corresponding to the i-th instruction. Based
on this, we can now define the details of extended resolution and DRAT. In both
proof systems, a correct proof of a formula F must derive the empty clause ⊥,
i.e., ⊥ ∈ Fn. They differ only in the instructions they permit.

3.1 Extended Resolution

Extended resolution combines resolution with the extension rule: A sequence
C1, . . . , Cm, Im+1, . . . , In is a correct extended-resolution proof of a formula F
if every instruction Ii ∈ Im+1, . . . , In is either (1) an addition 〈a, C ∨ D〉 where
C ∨ D is the resolvent (C ∨ p) ⊗p (D ∨ p̄) of two clauses C ∨ p and D ∨ p̄
occurring in Fi−1, or (2) an extension 〈e, ϕ〉. When Tseitin originally introduced
the extension rule [17], he only allowed definitions of the form x ↔ ā ∨ b̄ where
a and b are variables. These definitions correspond to the clauses x ∨ a, x ∨ b,
and x̄ ∨ ā ∨ b̄. However, more general definitions can be derived from these basic
definitions in a simple but tedious way. Because of this, more general extension
rules are common in the literature, some even allowing definitions x ↔ ψ where
ψ is an arbitrary propositional formula over previous variables (cf. [4,6,16]).

3.2 DRAT

A sequence C1, . . . , Cm, Im+1, . . . , In is a correct DRAT proof of a formula F if
every instruction Ii ∈ Im+1, . . . , In is either (1) a deletion 〈d, C〉 where C is an
arbitrary clause, or (2) an addition 〈a, C〉 where C is a RAT or a RUP in Fi−1;
we now proceed to introduce these notions. We start by defining RUPs (short
for reverse unit propagation) [20]:
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Definition 3. A clause C = c1 ∨ · · · ∨ ck is a RUP in a formula F if unit
propagation derives a conflict on F ∧ (c̄1) ∧ · · · ∧ (c̄k). If C is a RUP in F , we
say that F implies C via unit propagation.

As an example, F = (ā∨c)∧(b̄∨ c̄) implies (ā∨ b̄) via unit propagation since unit
propagation on F ∧ (a) ∧ (b) derives both (c) and (c̄), which leads to a conflict.
Observe that if C is a resolvent of two clauses in a formula F , or if F contains
a clause D that subsumes C, then C is a RUP in F . Now, a RAT is a clause for
which all resolvents upon one of its literals are RUPs [10]:

Definition 4. A clause C ∨ p is a resolution asymmetric tautology (RAT) on p
in a formula F if for every clause D ∨ p̄ ∈ F , the resolvent C ∨ D is implied by
F via unit propagation.

Example 1. Consider the formula F = (p̄ ∨ ā) ∧ (p̄ ∨ b) ∧ (b ∨ c) ∧ (c̄ ∨ a) and
the clause C = a ∨ p. There are two resolvents of C upon p: The resolvent a ∨ ā
(obtained by resolving with p̄ ∨ ā) is a tautology and thus trivially a RUP in F ;
the resolvent a ∨ b (obtained by resolving with p̄ ∨ b) is a RUP in F since unit
propagation derives a conflict on F ∧ (ā) ∧ (b̄). It follows that C is a RAT on p
in F . ��
Observe that if C is a non-empty RUP in F , it is a RAT in F on any literal p ∈ C
(the empty clause ⊥ cannot be a RAT as it contains no literals). In the rest of
the paper, we thus call a clause a proper RAT if it is a RAT on some literal p
but not a RUP. The addition of definition clauses, as with the extension rule,
is a special case of blocked-clause addition [9] (see Sect. 6), which itself is a
particular case of RAT addition. We thus regard DRAT as a generalization of
extended resolution.

4 Simulating DRAT with Extended Resolution

We perform the transformation of a DRAT proof into an extended-resolution
proof in four stages. In the first stage, we use the extension rule together with
RUP addition and clause deletion to eliminate all additions of proper RATs.
In the second stage, we get rid of all clause deletions. In the third stage, we
then replace all RUP additions by resolution inferences and subsumed-clause
additions. Finally, in the fourth stage, we also eliminate the subsumed-clause
additions to obtain a correct extended-resolution proof.

4.1 Eliminating Additions of Proper RATs

Given a DRAT proof C1, . . . , Cm, Im+1, . . . , In, we iterate over the instructions
Im+1, . . . , In and replace every addition Ii = 〈a, p ∨ C〉 of a clause p ∨ C that
is a proper RAT on p in the accumulated formula Fi−1 by a sequence πi of
instructions. As illustrated in Fig. 1, such a sequence πi consists of a single
definition introduction followed first by several RUP additions and then by
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. . . RAT . . .

. . . Def RUP . . . RUP Del . . . Del . . .

Fig. 1. We transform a RAT addition into a definition introduction (Def), fol-
lowed by RUP additions and clause deletions (Del).

several clause deletions. In the case where Ii is not the addition of a proper
RAT, we simply let πi be Ii. At the end of this iterative process, we obtain
a sequence C1, . . . , Cm, πm+1, . . . , πn, where every πi is a sequence of instruc-
tions corresponding to the instruction Ii from the original proof. The sequence
C1, . . . , Cm, πm+1, . . . , πn contains no additions of proper RATs, but instead con-
tains definition introductions.

Each iteration of this process performs the following transformation, where
Ii is an addition instruction of a clause C = p ∨ c1 ∨ · · · ∨ ck which is a RAT on
literal p in the accumulated formula Fi−1 before Ii.

C1, . . . , Cm, πm+1, . . . , πi−1,Ii , Ii+1, . . . , In�

C1, . . . , Cm, πm+1, . . . , πi−1,πi, I
′
i+1, . . . , I

′
n

We first use the extension rule to introduce a clause x ∨ c1 ∨ · · · ∨ ck as well as
some other definition clauses, where x is a new variable in the sense that it is
not used anywhere else in the proof. Note that x∨c1∨· · ·∨ck differs from C only
on the literal p, which is replaced by the variable x. We then use RUP additions
and clause deletions to replace all occurrences of p in Fi−1 by x. Our procedure
guarantees that the formula accumulated after πi in the resulting sequence is
exactly Fi[x/p], obtained from Fi = Fi−1 ∪ {C} (the accumulated formula after
Ii in the original proof) by simultaneously replacing occurrences of p by x and
occurrences of p̄ by x̄.

As a consequence, the correctness of the whole proof is preserved by simply
renaming p to x, and p̄ to x̄, in all later instructions, resulting in the instructions
I ′
i+1, . . . , I

′
n. It is thus clear that the size of the accumulated formula after πi in

the new proof is the same as that of Fi in the original proof; this property will
be crucial for the complexity analysis in Sect. 4.5. We now explain in detail how
the sequence πi is obtained, and provide an example to illustrate the procedure.

(1) Use the extension rule to introduce the definition x ↔ p∨(c̄1∧· · ·∧ c̄k). This
adds the clause set {x ∨ c1 ∨ · · · ∨ ck, x ∨ p̄, x̄ ∨ p ∨ c̄1, . . . , x̄ ∨ p ∨ c̄k}. The
first clause will be our replacement of the RAT p ∨ c1 ∨ · · · ∨ ck. Intuitively,
this definition follows the correctness proof of RAT clause addition from
[10]: given any interpretation satisfying Fi−1, we can construct another
interpretation satisfying Fi by conditionally changing the truth value of
p, precisely as given by the definition of x. The rest of the transformation
simply replaces occurrences of p by x.
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(2) Replace the literal p in all clauses of Fi−1 by the new variable x:

(a) Add for every clause D ∨ p ∈ Fi−1 the clause D ∨ x. This is a correct
RUP addition since D ∨ x is a resolvent of D ∨ p and x ∨ p̄.

(b) Add for every clause D ∨ p̄ ∈ Fi−1 the clause D ∨ x̄. To show that
this is a correct RUP addition, we show that unit propagation derives a
conflict on Fi−1 ∧ D̄ ∧ (x), where D̄ is the conjunction of the negated
literals of D. As C is a RAT on p in Fi−1, we know that the resolvent
c1∨· · ·∨ck∨D of C and D∨ p̄ is a RUP in Fi−1. Now, by propagating the
unit clauses of D̄, we derive (p̄) because the clause D∨ p̄ is in Fi−1. After
this, we propagate x and p̄ to derive all the unit clauses (c̄1), . . . , (c̄k)
from the clauses x̄ ∨ p ∨ c̄j with j ∈ 1, . . . , k. But then we have derived
the negations of all literals in the resolvent c1 ∨ · · · ∨ ck ∨ D, and since
this resolvent is a RUP in Fi−1, unit propagation must eventually derive
a conflict.

(c) Delete all clauses containing p or p̄, including those added in step 1.
Note that this does not delete the clause x ∨ c1 ∨ · · · ∨ ck.

Example 2. Suppose we are given a proof C1, . . . , Cm, Im+1, . . . , Ii, . . . , In and
we want to eliminate the addition Ii = 〈a, C〉 where C = p∨a is a proper RAT on
p in the accumulated formula Fi−1 = {p̄ ∨ b, a ∨ b ∨ c, c̄ ∨ d, d̄, ā ∨ p}. Observe
that C is a RAT on p because the resolvent a ∨ b, obtained by resolving C with
p̄ ∨ b upon p, is a RUP in Fi−1.

We first use the extension rule to add the definition x ↔ p ∨ ā. This adds
the clauses x ∨ a, x ∨ p̄, and x̄ ∨ p ∨ ā. Next, we need to replace the literal p in
Fi−1 by x. To do so, we first resolve x ∨ p̄ with ā ∨ p to derive ā ∨ x. Then, we
introduce the RUP x̄ ∨ b for the existing clause p̄ ∨ b. (It can be easily seen that
x̄ ∨ b is a RUP in Fi−1 ∪ {x̄ ∨ p ∨ ā, x ∨ p̄, x ∨ a}: By propagating b̄, we derive p̄
from p̄ ∨ b. After this, the propagation of x and p̄ derives ā from x̄ ∨ p ∨ ā. But
then further propagation will eventually lead to a conflict because a∨ b, which is
the resolvent of p ∨ a and p̄ ∨ b, is a RUP in Fi−1.) Finally, we delete all clauses
containing p or p̄. We thus obtain the proof C1, . . . , Cm, Im+1, . . . , Ii−1, πi, . . . , In
where πi is the sequence 〈e, x ↔ p∨ ā〉, 〈a, ā∨x〉, 〈a, x̄∨b〉, 〈d, p̄∨b〉, 〈d, ā∨p〉,
〈d, x̄ ∨ p ∨ ā〉, 〈d, x ∨ p̄〉. After the last instruction of πi, we get the accumulated
formula {x̄ ∨ b, a ∨ b ∨ c, c̄ ∨ d, d̄, ā ∨ x, x ∨ a}, which is precisely Fi[x/p]. We
then just need to replace p by x and p̄ by x̄ in Ii+1, . . . , In to obtain a correct
proof C1, . . . , Cm, Im+1, . . . , Ii−1, πi, I

′
i+1, . . . , I

′
n. ��

4.2 Eliminating Clause Deletions

At this point, our proof is a sequence of (1) clauses from the original formula,
(2) definition introductions, (3) RUP additions, and (4) clause deletions. Since
no additions of proper RATs remain in the proof, the elimination of a deletion
instruction does not affect the correctness of other proof instructions: The addi-
tion of RUPs depends only on the existence of clauses in the accumulated formula
but not on their non-existence (if C is a RUP in F , it is also a RUP in every



Extended Resolution Simulates DRAT 523

. . . RUP . . .

. . . Res . . . Res Sub . . .

Fig. 2. We transform a RUP addition into a sequence of resolution steps (Res)
followed by a single subsumed-clause addition (Sub).

superset of F ). Likewise, the extension rule is not affected by additional clauses.
By simply eliminating all deletions, we thus end up with a correct proof. Note
that this would not work if proper RAT additions were still present, because they
depend on the non-existence of certain clauses (a clause C is a RAT in a formula
F only if F contains no resolvents with C that are not RUPs).

4.3 Eliminating RUP Additions

Similar to the first stage of our simulation, we again iterate over the proof from
the beginning. In this stage, we now replace all additions of RUPs that are neither
resolvents nor subsumed clauses. In the following, we show how the addition of
such a RUP can be transformed into a sequence of resolution steps followed by a
single subsumed-clause addition. This is illustrated in Fig. 2. We note that this
has already been explained on a high level in the literature [15,19].

Let us first observe that, given a correct proof containing only RUP additions
and definition introductions, the RUP additions of tautological clauses can be
directly eliminated. To see this, simply observe that definition introductions are
never affected by the presence of tautologies. Furthermore, if a clause C is a
RUP in F , and F contains a tautology a∨ ā∨D, the latter never becomes a unit
clause in F |α under any assignment α; therefore, C is also a RUP in the formula
resulting from removing tautologies from F . In the following, we thus consider
only proofs without tautological clauses.

If a non-tautological clause C is a RUP in a formula F , we know that unit
propagation derives a conflict on F ∧C̄ where C̄ is the conjunction of the negated
literals in C. This is equivalent to saying that unit propagation derives a con-
flict on F |C̄, viewing C̄ as the assignment that satisfies C̄. Hence, there exists
a (possibly empty) sequence of literals a1, . . . , an such that the unit clause (ai)
occurs in F |C̄a1 . . . ai−1 for each 1 ≤ i ≤ n, and the empty clause ⊥ occurs in
F |C̄a1 . . . an. Intuitively, (ai) is the unit clause propagated at the i-th propaga-
tion step after all unit clauses in C̄ have been propagated. These unit clauses
and the empty clause stem from clauses D1, . . . , Dn+1 ∈ F with the following
properties: (I) the clause Di |C̄a1 . . . ai−1 is the unit clause (ai) for 1 ≤ i ≤ n,
(II) Di is not satisfied by C̄a1 . . . ai−1 for 1 ≤ i ≤ n + 1, and (III) the clause
Dn+1 |C̄a1 . . . an is the empty clause.

Algorithm 1 uses the clauses D1, . . . , Dn+1 as follows: It starts with the last
clause, Dn+1, and step-by-step resolves it with the clauses Dn, . . . , D1 until it
obtains a clause C1 that subsumes C. Using C1, we can then derive C with a
subsumed-clause addition. Example 3 illustrates the execution of the algorithm.
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1 Cn+1 ← Dn+1

2 for i = n, . . . , 1 do
3 if āi ∈ Ci+1 then Ci ← Di ⊗ai

Ci+1

4 else Ci ← Ci+1

Algorithm 1. Given a RUP C, the algorithm derives a clause C1 ⊆ C.

Example 3. Consider the clause C = a ∨ b and F = D1 ∧ D2 ∧ D3 ∧ D4 where:

D1 = a ∨ c D2 = a ∨ c̄ ∨ d D3 = d̄ ∨ e D4 = d̄ ∨ ē

The clause C is a RUP in F because unit propagation derives a conflict on
F ∧ (ā) ∧ (b̄), or equivalently, it derives a conflict on F |āb̄. To illustrate this, we
perform the unit propagation:

D1 |āb̄ = (c) D2 |āb̄c = (d) D3 |āb̄cd = (e) D4 |āb̄cde = ⊥
Our algorithm now performs resolution steps as follows (∗ marks unit literals):

D1︷ ︸︸ ︷
a ∨ c∗

D2︷ ︸︸ ︷
a ∨ c̄ ∨ d∗

D3︷ ︸︸ ︷
d̄ ∨ e∗

D4︷ ︸︸ ︷
d̄ ∨ ē

d̄
a ∨ c̄

a︸︷︷︸
C1

As we can see, the resulting clause C1 = (a) subsumes C = a ∨ b. ��
Lemma 1. If a formula F implies a non-tautological clause C via unit propa-
gation, then the clause C1, computed by Algorithm1, subsumes C.

Proof. We show by induction that, for every 1 ≤ i ≤ n + 1, the clause Ci

computed by Algorithm 1 satisfies Ci |C̄a1 . . . ai−1 = ⊥. The claim then follows
from C1 |C̄ = ⊥, which is equivalent to C1 ⊆ C.

Base case (i = n + 1): Follows from Cn+1 = Dn+1 and property (III).

Induction step (1 ≤ i ≤ n): Assume the claim holds for i + 1. Then, we have
Ci+1 |C̄a1 . . . ai = ⊥, and from property (I) we know Di |C̄a1 . . . ai−1 = (ai).
Now, if Ci+1 does not contain āi, then Ci+1 |C̄a1 . . . ai−1 = ⊥. In this case,
the algorithm sets Ci = Ci+1 and so the claim holds for i. In contrast, if Ci+1

contains āi, then the algorithm sets Ci = Di ⊗ai
Ci+1. But then, as Ci contains

only literals of Di and Ci+1 except for ai and āi, the claim also follows for i. ��
The following statement, which is a variant of Theorem 2 in [15] as well as of
the Theorem of Lee [14], is a consequence of Lemma 1; it allows us to repeatedly
eliminate all additions of RUPs that are not resolvents or subsumed clauses.

Theorem 2. If a formula F implies a non-tautological clause C via unit prop-
agation using n propagation steps, we can derive C from F via at most n reso-
lution steps followed by one subsumed-clause addition.
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4.4 Eliminating Subsumed-Clause Additions

At this point, every instruction is either a definition introduction or it adds
a resolvent or a subsumed clause. Since the extension rule does not depend on
previous clauses, we can reorder the instructions of our proof so that all definition
introductions occur before all addition instructions.

Now, by a well-known method (e.g., [1]) we can eliminate all subsumed-clause
additions from the latter part of our proof. The procedure works by recursively
labeling every clause in the proof with a subclause. These labels give a resolution
proof, possibly with unnecessary inferences. The labeling proceeds as follows:

1. We label every leaf clause by itself.
2. For each resolvent of two clauses C1 ∨ x and C2 ∨ x̄, which are labeled by

D1 and D2 respectively, we label the resolvent by D1 if x /∈ D1; by D2 if
x̄ /∈ D2; and by D1 ∨ D2 if x ∈ D1 and x̄ ∈ D2.

3. For each subsumption inference from a clause C that is labeled by D, we
label the subsumed clause by D.

It is straightforward to check that the labels define a resolution derivation with-
out subsumed-clause additions; in fact, a refutation, as the only subclause of ⊥
is ⊥ itself. This is polynomial, and can only reduce the size of the input. The
resulting derivation may contain redundant parts such as unused subderivations,
but these do not affect our analysis and can be easily removed. After eliminating
all subsumed-clause additions, we finally obtain an extended-resolution proof.

Example 4. The following proof tree includes the subsumed-clause additions 1
and 2.

a ∨ b [a ∨ b]
b̄ [b̄]

1
a ∨ b̄ [b̄]∗

a [a]

ā ∨ c [ā ∨ c]∗
d [d]

2
c̄ ∨ d [d]∗

ā ∨ d [d]∗ ā ∨ d̄ [ā ∨ d̄]
ā [ā]

⊥ [⊥]

After dropping the marked (∗) clauses, the result is the following proof:

a ∨ b b̄
a

d ā ∨ d̄
ā

⊥

4.5 Complexity of the Simulation

We show now that our simulation only involves a polynomial blow-up. To sim-
plify the presentation, we use the number of literals (with repetitions) in a proof
P as the measure for its size, denoted by ‖P‖. After we have shown that the size
of the resulting extended-resolution proof is polynomial compared to the original
DRAT proof, it should be clear that the computation of the simulation is also
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polynomial, given the simplicity of the used techniques. Let the original DRAT
proof be P = C1, . . . , Cm, Im+1, . . . , In. Note first that for every m + 1 ≤ i ≤ n,
the size ‖Ii‖ of the instruction Ii, and the size ‖Fi‖ of the accumulated formula
Fi are both bounded by O(‖P‖). Note also that the elimination of clause dele-
tions and subsumed-clause additions shrinks the proof. Hence, out of the four
stages in the simulation, we only need to consider the first stage (elimination of
RAT additions) and the third stage (elimination of RUP additions) to obtain an
upper bound on the proof size.

Elimination of RAT Additions. For the following, remark that for i∈ m+1, . . . , n,
the size of the accumulated formula after the i-th proof fragment πi (obtained
by transforming the instruction Ii) in the new proof is the same as that of Fi

in the original DRAT proof (we explained this on page 521). For the elimination
of a single RAT addition of a clause p ∨ c1 ∨ · · · ∨ ck, we first add the definition
x ↔ p ∨ (c̄1 ∧ · · · ∧ c̄k). This step is clearly O(‖P‖). After this, we add for each
clause D∨p ∈ Fi−1 the clause D∨x, and we add for each clause D∨ p̄ ∈ Fi−1 the
clause D ∨ x̄. This leads to at most O(‖Fi−1‖) = O(‖P‖) new literals. Finally,
we delete all clauses containing p or p̄. These deletions together are again of
size at most O(‖Fi−1‖) = O(‖P‖). Overall, the size of the proof generated by
eliminating a single RAT addition is thus bounded by 3 × O(‖P‖) = O(‖P‖).
Finally, as we perform at most n such RAT eliminations and since n = O(‖P‖),
the size of the resulting proof after eliminating all RATs is bounded by O(‖P‖2).
Elimination of RUP Additions. Before we eliminate RUPs, we have a proof whose
size is O(‖P‖2). We thus eliminate at most O(‖P‖2) RUP additions. It remains to
determine a bound for the size of the proof instructions obtained by eliminating a
single RUP addition. Theorem 2 tells us that if C is a RUP that is implied via unit
propagation using k propagation steps, we can derive C with at most k resolution
steps followed by a single subsumed-clause addition. Clearly, the number of unit-
propagation steps is bounded by the number of variables occurring in the proof
(every variable can be propagated at most once). Now, the number of variables
in the original proof P is clearly bounded by ‖P‖ and since the elimination of
RAT additions has introduced at most one new variable for every RAT, we have
O(‖P‖) variables. Hence, a single RUP elimination leads to at most O(‖P‖)
instructions. As the size of a single instruction is bounded by O(‖P‖) (a clause
can contain at most two literals per variable), every RUP elimination results in
a proof of size O(‖P‖2). We conclude that the size of the resulting extended-
resolution proof is O(‖P‖4).
Note that our analysis is very conservative. For instance, representing resolvents
implicitly (just pointing to their two parent clauses) instead of representing them
explicitly shrinks the resulting extended-resolution proof significantly. As we will
see in Sect. 5, the increase in size on practical DRAT proofs is way smaller than
the theoretical bound we obtain here. Combining our result with the recent
result that DRAT polynomially simulates DPR (a generalization of DRAT) [7],
we obtain the complexity landscape depicted in Fig. 3.
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DPR [8] DRAT [21,10] ER [17]
[7]

Fig. 3. A dashed line from X to Y means that X simulates Y polynomially. A
solid line from X to Y means that every Y proof can be regarded as an X proof.

5 Experimental Evaluation

We implemented our simulation procedure as an extension of the proof checker
DRAT-trim.1 We then evaluated the simulation tool on existing DRAT proofs
for the pigeon-hole formulas, two-pigeons-per-hole formulas [2], and Tseitin for-
mulas [3,17]. The pigeon-hole formulas (hole*) ask whether n + 1 pigeons can
be placed into n holes such that each hole contains at most one pigeon. Simi-
larly, the two-pigeons-per-hole formulas (tph*) ask whether 2n + 1 pigeons can
be placed into n holes with at most two pigeons per hole. Finally, the Tseitin
formulas (Urquhart*) encode a parity problem on graphs.

We selected the DRAT proofs of these formulas for three reasons. First, out of
all DRAT proofs we are aware of, they have the highest ratio of proper-RAT-to-
RUP-instructions and so the transformation from DRAT to extended resolution
can offer insight into a worst-case scenario regarding existing proofs. Second, the
proofs originate from a transformation of DPR proofs to DRAT proofs [7]. We
thus also see what happens when we transform the more general DPR proofs, and
not only DRAT proofs, to extended resolution. Third, all three formula families
are hard for resolution, meaning that they admit only resolution proofs whose
size is exponential with respect to the formula [6,18].

Table 1 shows the results of our experiments. Although the extended-
resolution proofs are clearly larger than the correspondingDRAT proofs, the blow-
up is far from the theoretical worst case. As we already selected proofs with many
proper RAT instructions, we imagine that the growth is even smaller on proofs
with a modest number of RAT instructions. For a pigeon-hole formula holeX, the
increase in size is roughly the factor X. For the two-pigeons-per-hole formulas,
the growth is larger. This can be explained by the high clauses-to-variables ratio.
Finally, for the Tseitin formulas, the growth lies between a factor of 20 and 30.

As a comparison, Table 2 shows the smallest extended-resolution proofs of
the pigeon-hole formulas and of the Tseitin formulas known to us. The proofs
of the pigeon-hole formulas were manually constructed by Cook [4] whereas the
proofs of the Tseitin formulas were produced using the tool EBDDRES 1.2 [11].
To the best of our knowledge, there is only one tool supporting extended reso-
lution that was able to solve one of the selected two-pigeons-per-hole formulas:
EBDDRES 1.1 [16]. It generated an extended-resolution proof with 2 638 385
definitions and 18 848 004 resolution steps for the formula tph8.

1 The simulation tool, checkers, formulas, and proofs discussed in this section are
available on http://www.cs.utexas.edu/∼marijn/drat2er.

http://www.cs.utexas.edu/~marijn/drat2er
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Table 1. A size comparison of DPR, DRAT, and ER proofs of formulas that are
hard for resolution. We generated the ER proofs from existing DRAT proofs [7].
Column headers refer to the numbers of variables (#var), clauses (#cls), clause
additions (#add), added definitions (#def), and resolution steps (#res).

input DPR DRAT ER
formula #var #cls #add #add #def #res

hole20 420 4221 2870 26 547 18 162 282 471
hole30 930 13 981 9455 89 827 61 962 1 393 411
hole40 1640 32 841 22 140 213 107 147 562 4 344 126
hole50 2550 63 801 42 925 416 387 288 962 10 517 116
tph8 136 5457 1156 25 204 13 931 1 093 959
tph12 300 27 625 3950 127 296 68 645 11 688 956
tph16 528 87 329 9416 401 004 212 847 63 391 635
tph20 820 213 241 18 450 976 376 512 841 236 415 141
Urquhart-s5-b1 106 714 620 28 189 8320 102 293
Urquhart-s5-b2 107 742 606 32 574 9020 123 943
Urquhart-s5-b3 121 1116 692 41 230 11 404 188 875
Urquhart-s5-b4 114 888 636 37 978 10 497 171 576

Table 2. Small existing ER proofs of pigeon-hole formulas and Tseitin formulas.

ER by Cook [4]
formula #def #res
hole20 2660 160 151
hole30 8990 810 161
hole40 21 320 2 560 171
hole50 41 650 6 250 181

ER by EBDDRES [11]
formula #def #res

Urquhart-s5-b1 11 054 39 702
Urquhart-s5-b2 12 684 45 389
Urquhart-s5-b3 28 358 100 585
Urquhart-s5-b4 16 295 58 552

6 Replacing RAT Addition with Blocked-Clause Addition

In our polynomial simulation, we needed to introduce a new variable for every
proper RAT addition. This cannot be avoided because extended resolution with-
out new variables is just ordinary resolution, and ordinary resolution is exponen-
tially weaker than both DRAT and extended resolution [6]. We now show how
blocked-clause addition, introduced by Kullmann [13] as a generalization of the
extension rule from extended resolution, can be used to replace RAT addition
without introducing new variables. This shows that a simple generalization of
the extension rule is essentially as powerful as RAT addition, even when no new
variables are introduced. Informally, a clause is blocked if all resolvents upon one
of its literals are tautologies [13]:

Definition 5. A clause C is blocked by a literal p ∈ C in a formula F if all
resolvents of C upon p with clauses in F are tautologies.
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Example 5. Consider the formula F = (p̄ ∨ b̄) ∧ (p̄ ∨ ā) ∧ (p ∨ c) ∧ (a ∨ c) and the
clause a∨ b∨ p. There are two resolvents of a∨ b∨ p upon p: The clause a∨ b∨ b̄,
obtained by resolving with p̄ ∨ b̄, and the clause a ∨ b ∨ ā, obtained by resolving
with p̄ ∨ ā. As both resolvents are tautologies, a ∨ b ∨ p is blocked by p in F . ��
Blocked clauses are thus more restricted than RATs: While the RAT property
only requires all the resolvents to be implied via unit propagation, blocked clauses
require them to be tautologies, which are trivially implied via unit propagation.
Hence, every blocked clause is also a RAT but not vice versa.

We follow an iterative procedure similar to the one presented in Sect. 4. Sup-
pose C = c1 ∨ · · · ∨ ck ∨ p is a proper RAT on p in a formula F . To replace
the addition of C to F , we first turn C into a blocked clause by replacing the
resolution partners that do not lead to tautological resolvents. We then add
the clause with blocked-clause addition and afterwards derive all the original
resolution partners again. As illustrated in Fig. 4, this leads to a sequence con-
sisting of RUP additions, clause deletions, and a single blocked-clause addition.
Specifically, we perform the following steps:

(1) For every clause D ∨ p̄ ∈ Fi−1 such that the resolvent R = c1 ∨ · · · ∨ ck ∨D
with C upon p is not a tautology, add R with RUP addition. The resolvent
R is guaranteed to be a RUP because C is a RAT on p in Fi−1.

(2) For every clause D∨ p̄ ∈ Fi−1 such that the resolvent with C upon p is not
a tautology, replace D∨ p̄ by the clause set Dp = {(c̄j ∨D∨ p̄) | 1 ≤ j ≤ k}.
Since all the clauses in Dp are subsumed by D∨ p̄, this replacement results
in a sequence of deletions and RUP additions. Note that in case C is a unit
clause, the set Dp is empty and so all resolution partners are deleted.

(3) Add C with blocked-clause addition. This is a correct addition because
after step 2, every clause that contains p̄ contains a literal c̄j with cj ∈ C.
Hence, by resolving such a clause with C we obtain a tautology.

(4) Use RUP addition to add all the clauses D∨ p̄, which we replaced in step 2,
again. The addition of such a clause D ∨ p̄ is a correct RUP addition: If C
is a unit clause, we have added R = D (which subsumes D∨ p̄) in step 1. If
C is not a unit clause, then Dp ∪ {R} implies D ∨ p̄ via unit propagation:
By propagating p and the negated literals of D, we derive the unit clauses
(c̄1), . . . , (c̄k) from the clauses in Dp = {(c̄j ∨ D ∨ p̄) | 1 ≤ j ≤ k}. But

. . . RAT . . .

. . . RUP . . . RUP Del . . . Del BC RUP . . . RUP Del . . . Del . . .

Fig. 4. We transform a RAT addition into a sequence consisting of RUP addi-
tions, clause deletions (Del), and a single blocked-clause addition (BC).
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these unit clauses lead to a conflict with the clause c1 ∨ · · · ∨ ck, which we
derive by propagating the negated literals of D on R = c1 ∨ · · · ∨ ck ∨ D.

(5) Delete all the RUPs added in step 1 and the clause sets Dp added in step 2.

Example 6. Consider the formula F = {p̄, a ∨ b ∨ c, c̄ ∨ d, d̄, ā ∨ e, b̄ ∨ e} and
the clause C = a ∨ b ∨ p. The clause C is not blocked but it is a RAT on p in F ,
meaning that F implies the resolvent a ∨ b of C and p̄ via unit propagation. To
turn C into a blocked clause, we first add a ∨ b with RUP addition. We next
replace p̄ by the clauses p̄ ∨ ā and p̄ ∨ b̄ (both clauses are subsumed by p̄ and
thus they are RUPs). Now p̄ ∨ ā and p̄ ∨ b̄ contain literals whose complements
occur in C. We can thus add C with blocked-clause addition.

After this, we use RUP addition to add the original resolution partner p̄ again:
This is a correct RUP addition because a∨b, p̄∨ ā, and p̄∨ b̄ together imply p̄ via
unit propagation (to see this, observe that making p true forces ā and b̄ to be
true which leads to a conflict with a∨b). This step is actually the reason why we
derived a ∨ b in the beginning. Finally, we delete the intermediate clauses a ∨ b,
p̄ ∨ ā, and p̄ ∨ b̄ to obtain the formula F ∪ {C}. ��

7 Conclusion

We showed how every DRAT proof can be feasibly transformed into an extended-
resolution proof. To evaluate the increase in size caused by our simulation, we
implemented it and performed experiments on existing DRAT proofs for hard
formulas. The experiments revealed that the obtained proofs are far smaller than
the theoretical worst case and that they are also not much larger than existing
extended-resolution proofs of the same formulas. We imagine that the size of
the proofs could be reduced even further by performing additional compression
steps, which is a direction for future work.

In addition, we showed how blocked-clause addition can be used to simulate
the addition of resolution asymmetric tautologies (RATs) without the introduc-
tion of new variables. Our results provide us with a better understanding of
both DRAT and extended resolution. We now know how extended resolution can
mimic the reasoning steps of DRAT. Moreover, our transformations illustrate
that the addition of RATs in DRAT combines in an elegant way the benefits
of resolution, subsumption, and blocked-clause addition. We thus believe that
DRAT is still the preferable proof system for practical SAT solving, even though
it offers no exponential gains in expressivity compared to extended resolution.
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Abstract. We present a framework in Isabelle for verifying asymptotic
time complexity of imperative programs. We build upon an extension
of Imperative HOL and its separation logic to include running time.
Our framework is able to handle advanced techniques for time complex-
ity analysis, such as the use of the Akra–Bazzi theorem and amortized
analysis. Various automation is built and incorporated into the auto2
prover to reason about separation logic with time credits, and to derive
asymptotic behaviour of functions. As case studies, we verify the asymp-
totic time complexity (in addition to functional correctness) of impera-
tive algorithms and data structures such as median of medians selection,
Karatsuba’s algorithm, and splay trees.

Keywords: Isabelle · Time complexity analysis · Separation logic
Program verification

1 Introduction

In studies of formal verification of computer programs, most of the focus has been
on verifying functional correctness of a program. However, for many algorithms,
analysis of its running time can be as difficult, or even more difficult than the
proof of its functional correctness. In such cases, it is of interest to verify the
run-time analysis, that is, showing that the algorithm, or a given implementation
of it, does have the claimed asymptotic time complexity.

Interactive theorem provers are useful tools for performing such a verifica-
tion, as their soundness is based on a small trusted kernel, hence long derivations
can be made with a very high level of confidence. So far, the work of Guéneau
et al. [6,12] appears to be the only general framework for asymptotic time com-
plexity analysis of imperative programs in an interactive theorem prover. The
framework is built in Coq, based on Charguéraud’s CFML package [5] for veri-
fying imperative programs using characteristic formulas.

We present a new framework1 for asymptotic time complexity analysis in
Isabelle/HOL [19]. The framework is an extension of Imperative HOL [2], which

1 Available online at https://github.com/bzhan/Imperative HOL Time.
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represents imperative programs as monads. Compared to [12], we go further
in two directions. First, we incorporate the work of Eberl [11] on the Akra–
Bazzi theorem to analyze several divide-and-conquer algorithms. Second, we
extend the auto2 prover [21] to provide substantial automation in reasoning
about separation logic with time credits, as well as deriving asymptotic behaviour
of functions.

We also make use of existing work by Nipkow [18] on analysis of amortized
complexity for functional programs. Based on this work, we verify the amortized
complexity of imperative implementations of two data structures: skew heaps
and splay trees.

Throughout our work, we place a great deal of emphasis on modular develop-
ment of proofs. As the main theorems to be proved are concerned with asymp-
totic complexity rather than explicit constants, they do not depend on imple-
mentation details. In addition, by using an ad-hoc refinement scheme similar
to that in [21], the analysis of an imperative program is divided into clearly-
separated parts: proof of functional correctness, analysis of asymptotic behaviour
of runtime functions, and reasoning about separation logic. Further separation
of concerns is used in amortized analysis.

In summary, the main contributions of this paper are as follows:

• We extend Imperative HOL and its separation logic to reason about running
time of imperative programs (Sect. 2.1).

• We introduce a methodology to organize the verification so that proofs can
be divided cleanly into orthogonal parts (Sect. 3).

• We extend the existing setup of the auto2 prover for separation logic to also
work with time credits. We also set up various automation for proving asymp-
totic behaviour of functions in one or two variables (Sect. 4).

• We demonstrate the broad applicability of our framework with several case
studies (Sect. 5), including those involving advanced techniques for runtime
analysis such as the use of the Akra–Bazzi theorem (for merge sort, median
of medians selection, and Karatsuba’s algorithm) and amortized analysis (for
dynamic arrays, skew heaps, and splay trees). We also provide an example
(Knapsack problem) illustrating asymptotic complexity on two variables.

2 Background

In this section, we review some background material needed in our work. First, we
briefly describe the extension of Imperative HOL to reason about running time
of imperative programs. Then, we recapitulate the existing theory of asymptotic
complexity in Isabelle, and Eberl’s formalization of the Akra–Bazzi theorem.

2.1 Imperative HOL with Time

Imperative HOL [2] is a framework for reasoning about imperative programs in
Isabelle. Lammich and Meis later constructed a separation logic for this frame-
work [17]. More details on both can be found in [16].
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Atkey [1] introduced the idea of including time credits in separation logic to
enable amortized resource analysis, in particular analysis of the running time of
a program. He also provided a formalization of the logic in Coq. In this section,
we describe how this idea is implemented by modifying Imperative HOL and its
separation logic.

Basic Definitions. In ordinary Imperative HOL, a procedure takes a heap (of
type heap) as input, and can either fail, or return a pair consisting of a return
value and a new heap. In Imperative HOL with time, a procedure returns in
addition a natural number when it succeeds, specifying the number of compu-
tation steps used. Hence, the type ’a Heap for a procedure with return type ’a

is given by heap ⇒ (’a × heap × nat) option .
In the separation logic for ordinary Imperative HOL, a partial heap is defined

to be a heap together with a subset of used addresses (type heap × nat set).
In our case, a partial heap can also contain a number of time credits. Hence, the
new type for partial heaps is given by pheap = (heap × nat set) × nat .

An assertion (type assn) is, as before, a mapping from pheap to bool that
does not depend on values of the heap outside the address set. The notation
((h, as), n) � P means the partial heap ((h, as), n) satisfies the assertion P . The
basic assertions have the same meaning as before, except they also require the
partial heap to contain zero time credits. In addition we define the assertion $n,
to specify a partial heap with n time credits and nothing else.

The separating conjunction of two assertions is defined as follows (differences
from original definition are marked in bold):

P ∗ Q = λ((h, as),n).∃u v n1 n2.

{
u ∪ v = as ∧ u ∩ v = ∅ ∧ n1 + n2 = n ∧
((h, u),n1) � P ∧ ((h, v),n2) � Q.

That is, time credits can be split in a separation conjunction in the same way
as sets of addresses on the heap. In particular $(n + m) = $n ∗ $m.

Hoare Triples. A Hoare triple <P> c <Q> is a predicate of type

assn ⇒ ’a Heap ⇒ (’a ⇒ assn) ⇒ bool,

defined as follows: <P> c <Q> holds if for any partial heap ((h, as), n) satisfying
P , the execution of c on h is successful with new heap h′, return value r, and
time consumption t, such that n ≥ t, and the new partial heap ((h′, as′), n − t)
satisfies Q(r), where as′ is as together with the newly allocated addresses. With
this definition of a Hoare triple with time, the frame rule continues to hold.

Most basic commands (e.g. accessing or updating a reference, getting the
length of an array) are defined to take one unit of computation time. Commands
that operate on an entire array, for example initializing an array, or extracting
an array into a functional list, are defined to take n + 1 units of computation
time, where n is the length of the array. From this, we can prove Hoare triples
for the basic commands. We give two examples (here p �→a xs asserts that p

points to the array xs and ↑ b asserts that b is true):
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<p �→a xs * $1> Array.len xs <λr. p �→a xs * ↑(r = length xs)>

<$(n + 1)> Array.new n x <λr. r �→a replicate n x>

We define the notation <P> c <Q>t as a shorthand for <P> c <Q * true> .
The assertion true holds for any partial heap, and in particular can include any
number of time credits. Hence, a Hoare triple of the form <P*$n> c <Q>t implies
that the procedure c costs at most n time credits. We very often state Hoare
triples in this form, and so only prove upper bounds on the computation time
of the program.

2.2 Asymptotic Analysis

Working with asymptotic complexity informally can be particularly error-prone,
especially when several variables are involved. Some examples of fallacious rea-
soning are given in [12, Sect. 2]. In an interactive theorem proving environment,
such problems can be avoided, since all notions are defined precisely, and all
steps of reasoning must be formally justified.

For the definition of the big-O notation, or more generally Landau symbols,
we use the formalization by Eberl [9], where they are defined in a general form
in terms of filters, and therefore work also in the case of multiple variables.

In our work, we are primarily interested in functions of type nat⇒real (for
the single variable case) and nat × nat⇒real (for the two-variable case). Given
a function g of one of these types, the Landau symbols O(g), Ω(g) and Θ(g) are
sets of functions of the same type. In the single variable case, using the standard
filter (at top for limit at positive infinity), the definitions are as follows:

f ∈ O(g) ←→ ∃c > 0. ∃N. ∀n ≥ N. |f(n)| ≤ c · |g(n)|
f ∈ Ω(g) ←→ ∃c > 0. ∃N. ∀n ≥ N. |f(n)| ≥ c · |g(n)|
f ∈ Θ(g) ←→ f ∈ O(g) ∧ f ∈ Ω(g)

In the two-variable case, we will use the product filter at top ×F at top through-
out. Expanding the definitions, the meaning of the Landau symbols are as
expected:

f ∈ O2(g) ←→ ∃c > 0. ∃N. ∀n,m ≥ N. |f(n,m)| ≤ c · |g(n,m)|
f ∈ Ω2(g) ←→ ∃c > 0. ∃N. ∀n,m ≥ N. |f(n,m)| ≥ c · |g(n,m)|
f ∈ Θ2(g) ←→ f ∈ O2(g) ∧ f ∈ Ω2(g)

2.3 Akra–Bazzi Theorem

A well-known technique for analyzing the asymptotic time complexity of divide
and conquer algorithms is the Master Theorem (see for example [7, Chap. 4]).
The Akra–Bazzi theorem is a generalization of the Master Theorem to a wider
range of recurrences. Eberl [11] formalized the Akra–Bazzi theorem in Isabelle,
and also wrote tactics for applying this theorem in a semi-automatic manner.
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Notably, the automation is able to deal with taking ceiling and floor in recursive
calls, an essential ingredient for actual applications but often ignored in informal
presentations of the Master theorem.

In this section, we state a slightly simpler version of the result that is sufficient
for our applications. Let f : N → R be a non-negative function defined recursively
as follows:

f(x) = g(x) +
k∑

i=1

ai · f(hi(x)) for all x ≥ x0 (1)

where x0 ∈ N, g(x) ≥ 0 for all x ≥ x0, ai ≥ 0 and each hi(x) ∈ N is either �bi ·x�
or �bi · x� with 0 < bi < 1, and x0 is large enough that hi(x) < x for all x ≥ x0.

The parameters ai and bi determine a single characteristic value p, defined
as the solution to the equation

k∑
i=1

ai · bpi = 1 (2)

Depending on the relation between the asymptotic behaviour of g and Θ(xp),
there are three main cases of the Akra–Bazzi theorem:

Bottom-heavy: if g ∈ O(xq) for q < p and f(x) > 0 for sufficiently large x,
then f ∈ Θ(xp).
Balanced: if g ∈ Θ(xp lna x) with a ≥ 0, then f ∈ Θ(xp lna+1 x).
Top-heavy: if g ∈ Θ(xq) for q > p, then f ∈ Θ(xq).

All three cases are demonstrated in our examples (in Karatsuba’s algorithm,
merge sort, and median of medians selection, respectively).

3 Organization of Proofs

In this section, we describe our strategy for organizing the verification of an
imperative program together with its time complexity analysis. The strategy is
designed to achieve the following goals:

– Proof of functional correctness of the algorithm should be separate from the
analysis of memory layout and time credits using separation logic.

– Analysis of time complexity should be separate from proof of correctness.
– Time complexity analysis should work with asymptotic bounds Θ most of the

time, rather than with explicit constants.
– Compositionality: verification of an algorithm should result in a small number

of theorems, which can be used in the verification of a larger algorithm. The
statement of these theorems should not depend on implementation details.

We first consider the general case and then describe the additional layer of
organization for proofs involving amortized analysis.
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3.1 General Case

For a procedure with name f, we define three Isabelle functions:

f fun : The functional version of the procedure.
f impl : The imperative version of the procedure.
f time : The runtime function of the procedure.

The definition of f time should be stated in terms of runtime functions of
procedures called by f impl, in a way parallel to the definition of f impl. If
f impl is defined by recursion, f time should also be defined by recursion in the
corresponding manner.

The theorems to be proved are:

1. The functional program f fun satisfies the desired correctness property.
2. A Hoare triple stating that f impl implements f fun and runs within f time.
3. The running time f time satisfies the desired asymptotic behaviour.
4. Combining 1 and 2, a Hoare triple stating that f impl satisfies the desired

correctness property, and runs within f time.

Here the proof of Theorem 2 is expected to be routine, since the three def-
initions follow the same structure. Theorem 3 should involve only analysis of
asymptotic behaviour of functions, while Theorem 1 should involve only reason-
ing with functional data structures. In the end, Theorems 3 and 4 present an
interface for external use, whose statements do not depend on details of the
implementation or of the proofs.

We illustrate this strategy on the final step of merge sort. The definitions of
the functional and imperative programs are shown side by side below. Note that
the former is working with a functional list, while the latter is working with an
imperative array on the heap.

merge sort fun xs =

(let n = length xs in

(if n ≤ 1 then xs

else

let as = take (n div 2) xs;

bs = drop (n div 2) xs;

as’ = merge sort fun as;

bs’ = merge sort fun bs;

r = merge list as’ bs’

in r

)

)

merge sort impl X = do {
n ← Array.len X;

if n ≤ 1 then return ()

else do {
A ← atake (n div 2) X;

B ← adrop (n div 2) X;

merge sort impl A;

merge sort impl B;

mergeinto (n div 2)

(n - n div 2) A B X

}
}

The runtime function of the procedure is defined as follows:

n ≤ 1 =⇒ merge sort time n = 2

n > 1 =⇒ merge sort time n = 2 + atake time n + adrop time n +

merge sort time (n div 2) + merge sort time (n - n div 2) +

mergeinto time n
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The theorems to be proved are as follows. First, correctness of the functional
algorithm merge sort fun:

merge sort fun xs = sort xs

Second, a Hoare triple asserting the agreement of the three definitions:

<p �→a xs * $(merge sort time (length xs))>

merge sort impl p

<λ . p �→a merge sort fun xs>t

Third, the asymptotic time complexity of merge sort time:

merge sort time ∈ Θ(λn. n * ln n)

Finally, Theorems 1 and 2 are combined to prove the final Hoare triple for exter-
nal use, with merge sort fun xs replaced by sort xs.

3.2 Amortized Analysis

In an amortized analysis, we fix some type of data structure and consider a
set of primitive operations on it. For simplicity, we assume each operation has
exactly one input and output data structure (extension to the general case is
straightforward). A potential function P is defined on instances of the data
structure and represents time credits that can be used for future operations.
Each procedure f is associated an actual runtime ft and an amortized runtime
fat. They are required to satisfy the following inequality: let a be the input data
structure of f and let b be its output data structure, then2

fat + P (a) ≥ ft + P (b). (3)

The proof of inequality (3) usually involves arithmetic, and sometimes the
correctness of the functional algorithm. For skew heaps and splay trees, the
analogous results are already proved in [18], and only slight modifications are
necessary to bring them into the right form for our use.

The organization of an amortized analysis in our framework is as follows. We
define two assertions: the raw assertion raw assn t a stating that the address a
points to an imperative data structure refining t, and the amortized assertion,
defined as

amor assn t a = raw assn t a * $(P(t)),

where P is the potential function.
For each primitive operation implemented by f, we define f fun, f impl, and

f time as before, where f time is the actual runtime. We further define a function
f atime to be the proposed amortized runtime. The theorems to be proved are
as follows (compare to the list in Sect. 3):
2 In many presentations, the amortized runtime fat is simply defined to be ft +P (b)−

P (a). Our approach is more flexible in allowing fat to be defined by a simple formula
and isolating the complexity to the proof of (3).
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1. The functional program f fun satisfies the desired correctness property.
2. A Hoare triple using the amortized assertion stating that f impl implements

f fun and runs within f atime, which is a consequence of the following:
2a. A Hoare triple using the raw assertion stating that f impl implements

f fun and runs within f time.
2b. The inequality between amortized and actual runtime.

3. The amortized runtime f atime satisfies the desired asymptotic behaviour.
4. Combining 1 and 2, a Hoare triple stating that f impl satisfies the desired

correctness property and runs within f atime.

In the case of data structures (and unlike merge sort), it is useful to state
Theorem 4 in terms of yet another, abstract assertion which hides the concrete
reference to the data structure. This follows the technique described in [21,
Sect. 5.3]. Theorems 3 and 4 are the final results for external use.

We now illustrate this strategy using splay trees as an example. The raw
assertion is called btree. The basic operation in a splay tree is the “splay” oper-
ation, from which insertion and lookup can be easily defined. For this operation,
the functions splay, splay impl, and splay time are defined by recursion in a
structurally similar manner. Theorem 2a takes the form:

<btree t a * $(splay time x t)>

splay impl x a

<btree (splay x t)>t

Let splay tree P be the potential function on splay trees. Then the amortized
assertion is defined as:

splay tree t a = btree t a * $(splay tree P t)

The amortized runtime for splay has a relatively simple expression:

splay atime n = 15 * (	3 * log 2 n
 + 2)

The difficult part is showing the inequality relating actual and amortized runtime
(Theorem 2b):

bst t =⇒ splay atime (size1 t) + splay tree P t ≥
splay time x t + splay tree P (splay x t),

which follows from the corresponding lemma in [18]. Note the requirement that
t is a binary search tree. Combining 2a and 2b, we get Theorem 2:

bst t =⇒
<splay tree t a * $(splay atime (size1 t))>

splay impl x a

<splay tree (splay x t)>t

The asymptotic bound on the amortized runtime (Theorem 3) is:

splay atime ∈ Θ(λx. ln x)



540 B. Zhan and M. P. L. Haslbeck

The functional correctness of splay (Theorem 1) states that it maintains sorted-
ness of the binary search tree and its set of elements:

bst t =⇒ bst (splay a t), set tree (splay a t) = set tree t

The abstract assertion hides the concrete tree behind an existential quantifier:

splay tree set S a = (∃At. splay tree t a * ↑(bst t) * ↑(set tree t = S))

The final Hoare triple takes the form (card S denotes the cardinality of S):

<splay tree set S a * $(splay atime (card S + 1))>

splay impl x a

<splay tree set S>t

4 Setup for Automation

In this section, we describe automation to handle two of the steps mentioned in
the previous section: one working with separation logic (for Theorem 2), and the
other proving asymptotic behaviour of functions (for Theorem 3).

4.1 Separation Logic with Time Credits

First, we discuss automation for reasoning about separation logic with time
credits. This is an extension of the setup discussed in [21] for reasoning about
ordinary separation logic. Here, we focus on the additional setup concerning time
credits.

The basic step in the proof is as follows: suppose the current heap satisfies
the assertion P * $T and the next command has the Hoare triple

<P ′ * $$T ′ * ↑ b> c <Q>

where b is the pure part of the precondition, apply the Hoare triple to derive
the successful execution of c, and some assertion on the next heap. In ordinary
separation logic (without $T and $T ′), this involves matching P ′ with parts
of P , proving the pure assertions b, and then applying the frame rule. In the
current case, we additionally need to show that T ′ ≤ T , so $T can be rewritten
as $T = $(T ′ + T ′′) = $T ′ ∗ $T ′′.

In general, proving this inequality can involve arbitrarily complex arguments.
However, due to the close correspondence in the definitions of f time and f impl,
the actual tasks usually lie in a simple case, and we tailor the automation to
focus on this case. First, we normalize both T and T ′ into polynomial form:

T = c1p1 + · · · + cmpm, T ′ = d1q1 + · · · + dnqn, (4)

where each ci and dj are constants, and each pi and qj are non-constant terms
or 1. Next, for each term djqj in T ′, we try to find some term cipi in T such that
pi equals qj according to the known equalities, and dj ≤ ci. If such a term is
found, we subtract djpi from T . This procedure is performed on T in sequence
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(so d2q2 is searched on the remainder of T after subtracting d1q1, etc.). If the
procedure succeeds with T ′′ remaining, then we have T = T ′ + T ′′.

The above procedure suffices in most cases. For example, given the parallel
definitions of merge sort impl and merge sort time in Sect. 3.1, it is able to show
that merge sort impl runs in time merge sort time. However, in some special
cases, more is needed. The extra reasoning often takes the following form: if s is
a term in the normalized form of T , and s ≥ t holds for some t (an inequality
that must be derived during the proof), then the term s can be replaced by t
in T .

In general, we permit the user to provide hints of the form

@have "s ≥t t",

where the operator · ≥t · is equivalent to · ≥ ·, used only to remind auto2 that the
fact is for modification of time credit only. Given this instruction, auto2 attempts
to prove s ≥ t, and when it succeeds, it replaces the assertion hi � P ∗ $T on
the current heap with hi � P ∗ $T ′ ∗ true, where the new time credit T ′ is the
normalized form of T − s + t. This technique is needed in case studies such as
binary search and median of medians selection (see the explanation for the latter
in Sect. 5).

4.2 Asymptotic Analysis

The second part of the automation is for analysis of asymptotic behaviour of
runtime functions. Eberl [9] already provides automation for Landau symbols in
the single variable case. In addition to incorporating it into our framework, we
add facilities for dealing with function composition and the two-variable case.

Because side conditions for the Akra–Bazzi theorem are in the Θ form, we
mainly deal with Θ and Θ2, stating the exact asymptotic behaviours of running
time functions. However, since running time functions themselves are very often
only upper bounds of the actual running times, we are essentially still proving
big-O bounds on running times of programs.

In our case, the general problem is as follows: given the definition of f time (n)

in terms of some g time (s(n)) (runtime of procedures called by f impl), sim-
ple terms like 4n or 1, or recursive calls to f time, determine the asymptotic
behaviour of f time.

To begin with, we maintain a table of the asymptotic behaviour of previously
defined runtime functions. The attribute asym bound adds a new theorem to this
table. This table can be looked-up by the name of the procedure.

We restrict ourselves to asymptotic bounds of the form

polylog(a, b) = (λn. na(ln n)b),

where a and b are natural numbers. In the two-variable case, we work with
asymptotic bounds of the form

polylog2(a, b, c, d) = (λ(m,n). polylog(a, b)(m) · polylog(c, d)(n)).
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This suffices for our present purposes and can be extended in the future.
Note that this restriction does not mean our framework cannot handle other
complexity classes, only that they will require more manual proofs (or further
setup of automation).

Non-recursive Case. When the runtime function is non-recursive, the analysis
proceeds by determining the asymptotic behaviour in a bottom-up manner.

To handle terms of the form g time (s(n)) where s is linear, we use the
following composition rule: if u ∈ Θ(polylog(a, b)), and v ∈ Θ(λn. n), then
u ◦ v ∈ Θ(polylog(a, b)). Composition in general is quite subtle: the analogous
rule does not hold if u is the exponential function3.

The asymptotic behaviour of a sum is determined by the absorption rule: if
g1 ∈ O(g2), then Θ(g1 + g2) = Θ(g2). Here, we make use of existing automation
in [9] for deciding inclusion of big-O classes of polylog functions. The rule for
products is straightforward.

The combination of these three rules can solve many examples automatically.
E.g. this (artificial) example: if f1 ∈ Θ(λn. n) and f2 ∈ Θ(λn. ln n), then

(λn. f1(n + 1) + n · f2(2n) + 3n · f2(n div 3)) ∈ Θ(λn. n ln n).

Analogous results are proved in the two-variable case (note that unlike in
the single variable case, not all pairs of polylog2 functions are comparable. e.g.
O(m2n+mn2)). For example, the following can be automatically solved: if addi-
tionally f3 ∈ Θ(λ(m,n). mn) and f4 ∈ Θ(λ(m,n). m + n), then

(λ(m,n). f1(n) + f2(m) + mn + f3(m div 3, n + 1)) ∈ Θ(λ(m,n). mn).
(λ(m,n). 1 + f1(n) + f2(m) + f4(m + 1, n + 1)) ∈ Θ(λ(m,n). m + n).

Recursive Case. There are two main classes of results for analysis of
recursively-defined runtime functions: the Akra–Bazzi theorem and results about
linear recurrences. For both classes of results, applying the theorem reduces the
analysis of a recursive runtime function to the analysis of a non-recursive func-
tion, which can be solved using automation described in the previous part.

The Akra–Bazzi theorem is discussed in Sect. 2.3. Theorems about linear
recurrences allow us to reason about for-loops written as recursions. They include
the following: in the single variable case, if f is defined by induction as

f(0) = c, f(n + 1) = f(n) + g(n),

where g ∈ Θ(λn. n), then f ∈ Θ(λn. n2).
In the two-variable case, if f satisfies

f(0,m) ≤ C, f(n + 1,m) = f(n,m) + g(m)

3 https://math.stackexchange.com/questions/761006/big-o-and-function-
composition.

https://math.stackexchange.com/questions/761006/big-o-and-function-composition
https://math.stackexchange.com/questions/761006/big-o-and-function-composition
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where g ∈ Θ(λn. n), then f ∈ Θ2(λ(n,m). nm).
As an example, consider the problem of showing Θ(λn. n * ln n) complexity

of merge sort time, defined in Sect. 3.1. This applies the balanced case of the
Akra–Bazzi theorem. Using this theorem, the goal is reduced to:

(λn. 2 + atake time n + adrop time n + mergeinto time n) ∈ Θ(λn. n)

(the non-recursive calls run in linear time). This can be shown automatically
using the method described in the previous section, given that atake time,
adrop time, and mergeinto time have already been shown to be linear.

5 Case Studies

In this section, we present the main case studies verified using our framework.
The examples can be divided into three classes: divide-and-conquer algorithms
(using the Akra–Bazzi theorem), algorithms that are essentially for-loops (using
linear recurrences), and amortized analysis.

We measure the complexity of a proof by counting the number of steps in
the proof: each lemma statement counts as one step and each hint provided by
the user as an additional step. In the table below, #Hoare counts the number
of steps for proving the Hoare triples (Theorems 2 and 4). #Time counts the
number of steps for reasoning about runtime functions (Theorem 3). We also
list the ratio (Ratio) between the sum of #Hoare and #Time to the number of
lines of the imperative program (#Imp). This ratio measures the overhead for
verifying the imperative program with runtime analysis. In particular this does
not include verifying the correctness of the functional program (Theorem 1). In
addition we list the total lines of code for each case study.

#Imp #Time #Hoare Ratio LOC

Binary search 11 10 14 2.18 82

Merge sort 38 11 12 0.61 121

Karatsuba 58 18 28 0.79 250

Select 51 41 31 1.41 447

Insertion sort 15 3 4 0.47 42

Knapsack 27 9 8 0.63 113

Dynamic array 55 19 37 1.02 424

Skew heap 25 38 21 2.36 257

Splay tree 120 51 37 0.73 447

Using our automation the average overhead ratio is slightly over 1. On a dual-core
laptop with 2 GHz each, processing all the examples takes around ten minutes.
The development of the case studies, together with the framework itself, took
about 4 person months.

Next we give details for some of the case studies.
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Karatsuba’s Algorithm. The functional version of Karatsuba’s algorithm for
multiplying two polynomials is verified in [8]. To simplify matters, we further
restrict us to the case where the two polynomials are of the same degree.

The recursive equation is given by:

T (n) = 2 · T (�n/2�) + T (�n/2�) + g(n). (5)

Here g(n) is the sum of the running times corresponding to non-recursive
calls, which can be automatically shown to be linear in n. Then the Akra–Bazzi
method gives the solution T (n) ∈ Θ(nlog23) (bottom-heavy case).

Median of Medians Selection. Median of medians for quickselect is a worst-
case linear-time algorithm for selecting the i-th largest element of an unsorted
array [7, Sect. 9.3]. In the first step of the algorithm, it chooses an approximate
median p by dividing the array into groups of 5 elements, finding the median
of each group, and finding the median of the medians by a recursive call. In
the second step, p is used as a pivot to partition the array, and depending on i
and the size of the partitions, a recursive call may be made to either the section
x < p or the section x > p. This algorithm is particularly interesting because its
runtime satisfies a special recursive formula:

T (n) ≤ T (�n/5�) + T (�7n/10�) + g(n), (6)

where g(n) is linear in n. The Akra–Bazzi theorem shows that T is linear (top-
heavy case).

Eberl verified the correctness of the functional algorithm [10]. There is one
special difficulty in verifying the imperative algorithm: the length of the array
in the second recursive call is not known in advance, only that it is bounded
by �7n/10�. Hence, we need to prove monotonicity of T , as well as provide the
hint T (�7n/10�) ≥t T (l) (where l is the length of the array in the recursive call)
during the proof.

Knapsack. The dynamic programming algorithm solving the Knapsack prob-
lem is used to test our ability to handle asymptotic complexity with two vari-
ables. The time complexity of the algorithm is Θ2(nW ), where n is the number of
items, and W is the capacity of the sack. Correctness of the functional algorithm
was proved by Simon Wimmer.

Dynamic Array. Dynamic Arrays [7, Sect. 17.4] are one of the simpler amor-
tized data structures. We verify the version that doubles the size of the array
whenever it is full (without automatically shrinking the array).

Skew Heap and Splay Tree. For these two examples, the bulk of the analysis
(functional correctness and justification of amortized runtime) is done in [18].
Our work is primarily to define the imperative version of the algorithm and
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verifying its agreement with the functional version. Some work is also needed to
transform the results in [18] into the appropriate form, in particular rounding
the real-valued potentials and runtime functions into natural numbers required
in our framework.

6 Related Work

We compare our work with recent advances in verification of runtime analysis of
programs, starting from those based on interactive theorem provers to the more
automatic methods.

The most closely-related is the impressive work by Guéneau et al. [12] for
asymptotic time complexity analysis in Coq. We now take a closer look at the
similarities and differences:

– Guéneau et al. give a structured overview of different problems that arise
when working informally with asymptotic complexity in several variables,
then solve this problem by rigorously defining asymptotic domination (which
is essentially f ∈ O(g)) with filters and develop automation for reasoning
about it. We follow the same idea by building on existing formalization of
Landau symbols with filters in Isabelle [9], then extend automation to also
handle the two-variable case.

– While they package up the functional correctness together with the complex-
ity claims into one predicate specO, we choose to have two separate theorems
(the Hoare triple and the asymptotic bound).

– While their automation assists in synthesizing recurrence equations from pro-
grams, they leave their solution to the human. In contrast, we write the recur-
rence relation by hand, which can be highly non-obvious (e.g. in the case of
median of medians selection), but focus on solving the recurrences for the
asymptotic bounds automatically (e.g. using the Akra–Bazzi theorem).

– Their main examples include binary search, the Bellman–Ford algorithm and
union-find, but not those requiring applications of the Master theorem or the
Akra–Bazzi method. We present several other advanced examples, includ-
ing applications of the Akra–Bazzi method, and those involving amortized
analysis.

Wang et al. [20] present TiML, a functional programming language which
can be annotated by invariants and specifically also with time complexity anno-
tations in types. The type checker extracts verification conditions from these
programs, which are handled by an SMT solver. They also make the observa-
tion that annotational burden can be lowered by not providing a closed form
for a time bound, but only specifying its asymptotic behaviour. For recursive
functions, the generated VCs include a recurrence (e.g. T (n − 1) + 4n ≤ T (n))
and one is left to show that there exists a solution for T which is additionally
in some asymptotic bound, e.g. O(n2). By employing a recurrence solver based
on heuristic pattern matching they make use of the Master Theorem in order
to discharge such VCs. In that manner they are able to verify the asymptotic
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complexity of merge sort. Additionally they can handle amortized complexity,
giving Dynamic Arrays and Functional Queues as examples. Several parts of
their work rely on non-verified components, including the use of SMT solvers
and the pattern matching for recurrence relations. In contrast, our work is veri-
fied throughout by Isabelle’s kernel.

On the other end of the scale we want to mention Automatic Amortized
Resource Analysis (AARA). Possibly the first example of a resource analysis
logic based on potentials is due to Hofmann and Jost [15]. They pioneer the use
of potentials coded into the type system in order to automatically extract bounds
in the runtime of functional programs. Hoffmann et al. successfully developed
this idea further [13,14]. Carbonneaux et al. [3,4] extend this work to imperative
programs and automatically solve extracted inequalities by efficient off-the-shelf
LP-solvers. While the potentials involved are restricted to a specific shape, the
analysis performs well and at the same time generates Coq proof objects certi-
fying their resulting bounds.

7 Conclusion

In this paper, we presented a framework for verifying asymptotic time complexity
of imperative programs. This is done by extending Imperative HOL and its sep-
aration logic with time credits. Through the case studies, we demonstrated the
ability of our framework to handle complex examples, including those involv-
ing advanced techniques of time complexity analysis, such as the Akra–Bazzi
theorem and amortized analysis. We also showed that verification of amortized
analysis of functional programs [18] can be converted to verification of imperative
programs with little additional effort.

One major goal for the future is to extend Imperative HOL with while and for
loops, and add facilities for reasoning about them (both functional correctness
and time complexity). Ultimately, we would like to build a single framework in
which all deterministic algorithms typically taught in undergraduate study (for
example, those contained in [7]) can be verified in a straightforward manner.

The Refinement Framework by Lammich [16] is a framework for stepwise
refinement from specifications via deterministic algorithms to programs writ-
ten in Imperative HOL. It would certainly be interesting to investigate how to
combine this stepwise refinement scheme with runtime analysis.
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Abstract. Existing techniques for Craig interpolation for the quantifier-
free fragment of the theory of arrays are inefficient for computing
sequence and tree interpolants: the solver needs to run for every parti-
tioning (A,B) of the interpolation problem to avoid creating AB-mixed
terms. We present a new approach using Proof Tree Preserving Interpo-
lation and an array solver based on Weak Equivalence on Arrays. We
give an interpolation algorithm for the lemmas produced by the array
solver. The computed interpolants have worst-case exponential size for
extensionality lemmas and worst-case quadratic size otherwise. We show
that these bounds are strict in the sense that there are lemmas with no
smaller interpolants. We implemented the algorithm and show that the
produced interpolants are useful to prove memory safety for C programs.

1 Introduction

Several model-checkers [1,2,8,14,16,17,20,25,26] use interpolants to find candi-
date invariants to prove the correctness of software. They require efficient tools to
check satisfiability of a formula in a decidable theory and to compute interpolants
(usually sequence or tree interpolants) for unsatisfiable formulas. Moreover, they
often need to combine several theories, e.g., integer or bitvector theory for rea-
soning about numeric variables and array theory for reasoning about pointers. In
this paper we present an interpolation procedure for the quantifier-free fragment
of the theory of arrays that allows for the combination with other theories and
that reuses an existing unsatisfiability proof to compute interpolants efficiently.

Our method is based on the array solver presented in [10], which fits well into
existing Nelson-Oppen frameworks. The solver generates lemmas, valid in the
theory of arrays, that explain equalities between terms shared between different
theories. The terms do not necessarily belong to the same formula in the inter-
polation problem and the solver does not need to know the partitioning. Instead,
we use the technique of Proof Tree Preserving Interpolation [13], which produces
interpolants from existing proofs that can contain propagated equalities between
symbols from different parts of the interpolation problem.
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The contribution of this paper is an algorithm to interpolate the lemmas
produced by the solver of the theory of arrays without introducing quantifiers.
The solver only generates two types of lemmas, namely a variant of the read-
over-write axiom and a variant of the extensionality axiom. However, the lemmas
contain array store chains of arbitrary length which need to be handled by the
interpolation procedure. The interpolants our algorithm produces summarize
array store chains, e.g., they state that two shared arrays at the end of a sub-
chain differ at most at m indices, each satisfying a subformula. Bruttomesso
et al. [6] showed that adding a diff function to the theory of arrays makes the
quantifier-free fragment closed under interpolation, i.e. it ensures the existence of
quantifier-free interpolants for quantifier-free problems. We use the diff function
to obtain the indices for store chains and give a more efficient algorithm that
exploits the special shape of the lemmas provided by the solver.

Nevertheless, the lemma interpolants produced by our algorithm may be
exponential in size (with respect to the size of the input lemma). We show that
this is unavoidable as there are lemmas that have no small interpolants.

Related Work. The idea of computing interpolants from resolution proofs goes
back to Kraj́ıček and Pudlák [22,27]. McMillan [24] extended their work to
SMT with a single theory. The theory of arrays can be added by including quan-
tified axioms and can be interpolated using, e.g., the method by Christ and
Hoenicke [9] for quantifier instantiation, or the method of Bonacina and Johans-
son [4] for superposition calculus. Brillout et al [5] apply a similar algorithm to
compute interpolants from sequent calculus proofs. In contrast to our approach,
using such a procedure generates quantified interpolants.

Equality interpolating theories [7,30] allow for the generation of quantifier-
free interpolants in the combination of quantifier-free theories. A theory is equal-
ity interpolating if it can express an interpolating term for each equality using
only the symbols occurring in both parts of the interpolation problem. The
algorithm of Yorsh and Musuvathi [30] only supports convex theories and is not
applicable to the theory of arrays. Bruttomesso et al. [7] extended the framework
to non-convex theories. They also present a complete interpolation procedure
for the quantifier-free theory of arrays that works for theory combination in [6].
However, their solver depends on the partitioning of the interpolation problem.
This can lead to exponential blow-up of the solving procedure. Our interpola-
tion procedure works on a proof produced by a more efficient array solver that
is independent of the partitioning of the interpolation problem.

Totla and Wies [29] present an interpolation method for arrays based on com-
plete instantiations. It combines the idea of [7] with local theory extension [28].
Given an interpolation problem A and B, they define two sets, each using only
symbols from A resp. B, that contain the instantiations of the array axioms
needed to prove unsatisfiability. Then an existing solver and interpolation pro-
cedure for uninterpreted functions can be used to compute the interpolant. The
procedure causes a quadratic blow-up on the input formulas. We also found that
their procedure fails for some extensionality lemmas, when we used it to create
candidate interpolants. We give an example for this in Sect. 6.
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The last two techniques require to know the partitioning at solving time.
Thus, when computing sequence [24] or tree interpolants [19], they would require
either an adapted interpolation procedure or the solver has to run multiple times.
In contrast, our method can easily be extended to tree interpolation [11].

2 Basic Definitions

We assume standard first-order logic. A theory T is given by a signature Σ and
a set of axioms. The theory of arrays TA is parameterized by an index theory
and an element theory. Its signature ΣA contains the select (or read) function
·[·] and the store (or write) function ·〈· � ·〉. In the following, a, b, s, t denote
array terms, i, j, k index terms and v, w element terms. For array a, index i and
element v, a[i] returns the element stored in a at i, and a〈i�v〉 returns a copy of
a where the element at index i is replaced by the element v, leaving a unchanged.
The functions are defined by the following axioms proposed by McCarthy [23].

∀a i v. a〈i � v〉[i] = v (idx)

∀a i j v. i �= j → a〈i � v〉[j] = a[j] (read-over-write)

We consider the variant of the extensional theory of arrays proposed by Brut-
tomesso et al. [6] where the signature is extended by the function diff(·, ·). For
distinct arrays a and b, it returns an index where a and b differ, and an arbitrary
index otherwise. The extensionality axiom then becomes

∀a b. a[diff(a, b)] = b[diff(a, b)] → a = b. (ext-diff)

The authors of [6] have shown that the quantifier-free fragment of the theory
of arrays with diff, TAxDiff , is closed under interpolation. To express the inter-
polants conveniently, we use the notation from [29] for rewriting arrays. For
m ≥ 0, we define a

m� b for two arrays a and b inductively as

a
0� b := a a

m+1� b := a〈diff(a, b) � b[diff(a, b)]〉 m� b.

Thus, a
m� b changes the values in a at m indices to the values stored in b. The

equality a
m� b = b holds if and only if a and b differ at up to m indices. The

indices where they differ are the diff terms occurring in a
m� b.

An interpolation problem (A,B) is a pair of formulas where A∧B is unsatis-
fiable. A Craig interpolant for (A,B) is a formula I such that (i) A implies I in
the theory T , (ii) I and B are T -unsatisfiable and (iii) all non-theory symbols
occurring in I are shared between A and B. Given an interpolation problem
(A,B), the symbols shared between A and B are called shared, symbols only
occurring in A are called A-local and symbols only occurring in B, B-local. A
literal, e.g. a = b, that contains A-local and B-local symbols is called mixed.
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3 Preliminaries

Our interpolation procedure operates on theory lemmas instantiated from par-
ticular variants of the read-over-write and extensionality axioms, and is designed
to be used within the proof tree preserving interpolation framework. In the fol-
lowing, we give a short overview of this method and revisit the definitions and
results about weakly equivalent arrays.

3.1 Proof Tree Preserving Interpolation

The proof tree preserving interpolation scheme presented by Christ et al. [13]
allows to compute interpolants for an unsatisfiable formula using a resolution
proof that is unaware of the interpolation problem.

For a partitioning (A,B) of the interpolation problem, two projections · �A
and ·�B project a literal to its A-part resp. B-part. For a literal � occurring in A,
we define � �A ≡ �. If � is A-local, � �B ≡ true. For � in B, the projections are
defined analogously. These projections are canonically extended to conjunctions
of literals. A partial interpolant of a clause C occurring in the proof tree is defined
as the interpolant of A ∧ (¬C)�A and B ∧ (¬C)�B. Partial interpolants can be
computed inductively over the proof tree and the partial interpolant of the root
is the interpolant of A and B. For a theory lemma C, a partial interpolant is
computed for the interpolation problem ((¬C)�A, (¬C)�B).

The core idea of proof tree preserving interpolation is a scheme to handle
mixed equalities. For each a = b where a is A-local and b is B-local, a fresh
variable xab is introduced. This allows to define the projections as follows.

(a = b)�A ≡ (a = xab) (a = b)�B ≡ (xab = b)

Thus, a = b is equivalent to ∃xab.(a = b)�A∧ (a = b)�B and xab is a new shared
variable that may occur in partial interpolants. For disequalities we introduce
an uninterpreted predicate EQ and define the projections for a �= b as

(a �= b)�A ≡ EQ(xab, a) (a �= b)�B ≡ ¬EQ(xab, b).

For an interpolation problem (A ∧ (¬C) � A,B ∧ (¬C) � B) where ¬C contains
a �= b, we require as additional symbol condition that xab only occurs as first
parameter of an EQ predicate which occurs positively in the interpolant, i.e.,
the interpolant has the form I[EQ(xab, s1)] . . . [EQ(xab, sn)]1. For a resolution
step on the mixed pivot literal a = b, the following rule combines the partial
interpolants of the input clauses to a partial interpolant of the resolvent.

C1 ∨ a = b : I1[EQ(xab, s1)] . . . [EQ(xab, sn)] C2 ∨ a �= b : I2(xab)
C1 ∨ C2 : I1[I2(s1)] . . . [I2(sn)]

1 One can show that such an interpolant exists for every equality interpolating theory
in the sense of Definition 4.1 in [7]. The terms si are the terms v in that definition.
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3.2 Weakly Equivalent Arrays

Proof tree preserving interpolation can handle mixed literals, but it cannot deal
with mixed terms which can be produced when instantiating (read-over-write) on
an A-local store term and a B-local index. The lemmas produced in the decision
procedure for the theory of arrays presented by Christ and Hoenicke [10] avoid
such mixed terms by exploiting weak equivalences between arrays.

For a formula F , let V be the set of terms that contains the array terms in
F and in addition the select terms a[i] and their indices i and for each store
term a〈i � v〉 in F the terms i, v, a[i] and a〈i � v〉[i]. Let ∼ be the equivalence
relation on V representing equality. The weak equivalence graph GW is defined
by its vertices, the array-valued terms in V , and its undirected edges of the form
(i) s1 ↔ s2 if s1 ∼ s2 and (ii) s1

i↔ s2 if s1 has the form s2〈i � ·〉 or vice versa.
If two arrays a and b are connected in GW by a path P , they are called weakly
equivalent. This is denoted by a

P⇔ b. Weakly equivalent arrays can differ only
at finitely many positions given by Stores (P ) := {i | ∃s1 s2. s1

i↔ s2 ∈ P}. Two
arrays a and b are called weakly equivalent on i, denoted by a ≈i b, if they are
connected by a path P such that k �∼ i holds for each k ∈ Stores (P ). Two arrays
a and b are called weakly congruent on i, a ∼i b, if they are weakly equivalent
on i, or if there exist a′[j], b′[k] ∈ V with a′[j] ∼ b′[k] and j ∼ k ∼ i and a′ ≈i a,
b′ ≈i b. If a and b are weakly congruent on i, they must store the same value
at i. For example, if a〈i + 1 � v〉 ∼ b and b[i] ∼ c[i], arrays a and b are weakly
equivalent on i while a and c are only weakly congruent on i.

We use Cond(a P⇔ b),Cond(a ≈i b),Cond(a ∼i b) to denote the conjunction
of the literals v = v′ (resp. v �= v′), v, v′ ∈ V , such that v ∼ v′ (resp. v �∼ v′)
is necessary to show the corresponding property. Instances of array lemmas are
generated according to the following rules:

a ≈i b i ∼ j a[i], b[j] ∈ V

Cond(a ≈i b) ∧ i = j → a[i] = b[j]
(roweq)

a
P⇔ b ∀i ∈ Stores (P ) . a ∼i b a, b ∈ V

Cond(a P⇔ b) ∧
∧

i∈Stores(P )

Cond(a ∼i b) → a = b
(weq-ext)

The first rule, based on (read-over-write), propagates equalities between select
terms and the second, based on extensionality, propagates equalities on array
terms. These rules are complete for the quantifier-free theory of arrays [10]. In
the following, we describe how to derive partial interpolants for these lemmas.

4 Interpolants for Read-Over-Weakeq Lemmas

A lemma generated by (roweq) explains the conflict (negation of the lemma)

Cond(a ≈i b) ∧ i = j ∧ a[i] �= b[j].
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a[i] b[j]

a · · · b

i j

|

k1 k2 km−1 km

\ — / /

Fig. 1. A read-over-weakeq conflict. Solid lines represent strong (dis-)equalities, dotted
lines function-argument relations, and zigzag lines represent weak paths consisting of
store steps and array equalities.

The weak equivalence a ≈i b ensures that a and b are equal at i = j which
contradicts a[i] �= b[j] (see Fig. 1).

The general idea for computing an interpolant for this conflict, similar to [15],
is to summarize maximal paths induced by literals of the same part (A or B),
relying on the fact that the terms at the ends of these paths are shared. If a
shared term is equal to the index i, we can express that the shared arrays at the
path ends coincide or must differ at the index. There is a shared term for i = j
if i or j are shared or if i = j is mixed. If there is no shared term for i = j, the
interpolant can be expressed using diff chains to capture the index. We identify
four basic cases: (i) there is a shared term for i = j and a[i] = b[j] is in B or
mixed, (ii) there is a shared term for i = j and a[i] = b[j] is A-local, (iii) both i
and j are B-local, and (iv) both i and j are A-local.

4.1 Shared Term for i = j and a[i] = b[j] is in B or Mixed

If there exists a shared term x for the index equality i = j, the interpolant can
contain terms s[x] for shared array terms s occurring on the weak path between
a and b. The basic idea is to summarize the weak A-paths by applying rule
(roweq) on their end terms.

Example 1. Consider the following read-over-weakeq conflict:

a = s1 ∧ s1〈k1 � v1〉 = s2 ∧ s2〈k2 � v2〉 = s3 ∧ s3 = b

∧ i �= k1 ∧ i �= k2 ∧ i = j ∧ a[i] �= b[j]

where a, k2, v2, i are A-local, b, k1, v1, j are B-local, and s1, s2, s3 are shared.
Projecting the mixed literals on A and B as described in Sect. 3.1 yields the
interpolation problem

A : a = s1 ∧ s2〈k2 � v2〉 = s3 ∧ EQ(xik1 , i) ∧ i �= k2 ∧ i = xij ∧ EQ(xa[i]b[j], a[i])
B : s1〈k1 � v1〉 = s2 ∧ s3 = b ∧ ¬EQ(xik1 , k1) ∧ xij = j ∧ ¬EQ(xa[i]b[j], b[j]).

An interpolant is I ≡ EQ(xa[i]b[j], s1[xij ]) ∧ s2[xij ] = s3[xij ] ∧ EQ(xik1 , xij).
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Algorithm. The first step is to subdivide the weak path P : a ≈i b into A- and
B-paths. An equality edge ↔ is assigned to either an A- or B-path depending
on whether the corresponding equality is in A or B. A mixed equality a′ = b′

is split into the A-local equality a′ = xa′b′ and the B-local equality xa′b′ = b′.
Store edges i↔ are assigned depending on which part contains the store term. If
an equality or store term is shared between both parts, the algorithm can assign
it to A or B arbitrarily. The whole path from a to b is then an alternation of A-
and B-paths, which meet at shared boundary terms.

Let x be the shared term for i = j, i.e. x stands for i if i is shared, for j if i
is not shared but j is, and for the auxiliary variable xij if i = j is mixed.
(i) An inner A-path π : s1 ≈i s2 of P starts and ends with a shared term.
The summary is s1[x] = s2[x]. For a store edge on π with index k, add the
disjunct x = k if the corresponding disequality i �= k is B-local, and the disjunct
EQ(xik, x) if the disequality is mixed. The interpolant of the subpath is

Iπ ≡ s1[x] = s2[x] ∨ FA
π (x) where FA

π (x) ≡
∨

k∈Stores(π)
i�=k B-local

x = k ∨
∨

k∈Stores(π)
i�=k mixed

EQ(xik, x).

(ii) If a[i] �= b[j] is mixed and a[i] is A-local, the first A-path on P starts with
a or a is shared, i.e. π : a ≈i s1 (where s1 can be a). For the path π, build the
term EQ(xa[i]b[j], s1[x]) and add FA

π (x) as in case (i).

Iπ ≡ EQ(xa[i]b[j], s1[x]) ∨ FA
π (x)

(iii) Similarly in the case where a[i] �= b[j] is mixed and b[j] is A-local, the last
A-path on P ends with b or b is shared, π : sn ≈i b. In this case the disjunct
i �= j needs to be added if i = j is B-local and i, j are both shared.

Iπ ≡ EQ(xa[i]b[j], sn[x]) ∨ FA
π (x) [ ∨ i �= j]

(iv) For every B-path π, add the conjunct x �= k for each A-local index disequal-
ity i �= k, and the conjunct EQ(xik, x) for each mixed index disequality i �= k on
π. We define

FB
π (x) ≡

∧

k∈Stores(π)
i�=k A-local

x �= k ∧
∧

k∈Stores(π)
i�=k mixed

EQ(xik, x).

The lemma interpolant is the conjunction of the above path interpolants. If
i, j are shared, b[j] is in B, and i = j is A-local, add the conjunct i = j.

Lemma 1. If x is a shared term for i = j and a[i] = b[j] is in B or mixed, a
partial interpolant of the lemma Cond(a ≈i b) ∧ i = j → a[i] = b[j] is

I ≡
∧

π∈A-paths

Iπ ∧
∧

π∈B-paths

FB
π (x) [ ∧ i = j].
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Proof. The interpolant only contains the shared boundary arrays, the shared
term x for i = j, auxiliary variables for mixed disequalities under an EQ predi-
cate, and shared store indices k where the store term is in a different part than
the corresponding index disequality.

¬C � A implies I: For a B-path π, we show that FB
π (x) follows from the

A-part. If i is B-local, there are no A-local or mixed index disequalities and
FB

π (x) holds trivially. Otherwise i = x follows from A, since either i is shared
and x is i, i = j is A-local and x is j, or i = x is the A-projection of the mixed
equality i = j. Then FB

π (x) follows by replacing i by x in A-local disequalities
and A-projections of mixed disequalities on π. For an A-path π, if FA

π (x) does
not hold, we get s1[x] = s2[x] by applying rule (roweq). Note that x �= k fol-
lows from i = x if i �= k is A-local, and from EQ(xik, k) and ¬FA

π (x) in the
mixed case. For the outer A-path in case (ii), a[x] = s1[x] is combined with the
A-projection of the mixed disequality a[i] �= b[j] using i = x, which yields the
EQ term. Analogously we get the EQ term for (iii), but to derive j = x in the
case where both i and j are shared but i = j is B-local, we need to exclude
i �= j.

¬C �B ∧ I is unsat: Again if i is in B then i = x follows from B by the choice
of x. For a B-path π, we can conclude s1[x] = s2[x] by applying rule (roweq) and
using the index disequalities in ¬C �B and FB

π (x). For an A-path π, s1[x] = s2[x]
(or, in cases (ii) and (iii), EQ(xa[i]b[j], s[x])) follows from Iπ using the B-local
index disequalities and i = x to show that FA

π (x) cannot hold. Transitivity and
the B-projection of a[i] �= b[j] lead to a contradiction. If i = j is A-local, i is the
shared term, and b[j] is in B, the conjunct i = j in I is needed here. ��

4.2 Shared Term for i = j and a[i] = b[j] is A-local

If there exists a shared index for i = j and a[i] = b[j] is A-local, we build
disequalities for the B-paths instead of equalities for the A-paths. This corre-
sponds to obtaining the interpolant of the inverse problem (B,A) by Sect. 4.1
and negating the resulting formula. Only the EQ terms are not negated because
of the asymmetry of the projection of mixed disequalities.

Lemma 2. Using the definitions of FA
π and FB

π from the previous section, if x
is a shared term for i = j and a[i] = b[j] is A-local, then a partial interpolant of
the lemma Cond(a ≈i b) ∧ i = j → a[i] = b[j] is

I ≡
∨

(π:s1≈is2)∈B-paths

(s1[x] �= s2[x] ∧ FB
π (x)) ∨

∨

π∈A-paths

FA
π (x) [ ∨ i �= j].

4.3 Both i and j are B-local

When both i and j are B-local (or both A-local), we may not find a shared term
for the index where a and b should be equal. Instead we use the diff function to
express all indices where a and b differ. For instance, if a = b〈i � v〉〈j � w〉 for
arrays a, b with a[j] �= b[j], then diff(a, b) = j or diff(a 1� b, b) = j hold.
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Example 2. Consider the following conflict:

a = s1 ∧ s1〈k � v〉 = s2 ∧ s2 = b ∧ i �= k ∧ i = j ∧ a[i] �= b[j]

where a, b, i, j are B-local, k, v are A-local, and s1, s2 are shared. Splitting the
mixed disequality i �= k as described in Sect. 3.1 yields the interpolation problem

A : s1〈k � v〉 = s2 ∧ EQ(xik, k)
B : a = s1 ∧ s2 = b ∧ ¬EQ(xik, i) ∧ i = j ∧ a[i] �= b[j].

An interpolant should reflect the information that s1 and s2 can differ at most
at one index satisfying the EQ term. Using diff, we can express the interpolant

I ≡ (s1 = s2 ∨ EQ(xik,diff(s1, s2))) ∧ s1
1� s2 = s2.

To generalize this idea, we define inductively over m ≥ 0 for the arrays a and
b, and a formula F (·) with one free parameter:

weq(a, b, 0, F (·)) ≡ a = b

weq(a, b,m + 1, F (·)) ≡ (a = b ∨ F (diff(a, b))) ∧ weq(a 1� b, b,m, F (·)).

The formula weq(a, b,m, F (·)) states that arrays a and b differ at most at m
indices and that each index i where they differ satisfies the formula F (i).

Algorithm. For an A-path π : s1 ≈i s2, we count the number of stores |π| :=
|Stores (π) |. Each index i where s1 and s2 differ must satisfy FA

π (i) as defined
in Sect. 4.1. There is nothing to do for B-paths.

Lemma 3. A partial interpolant of the lemma Cond(a ≈i b)∧i = j → a[i] = b[j]
with B-local i and j is

I ≡
∧

(π:s1≈is2)∈A-paths

weq
(
s1, s2, |π|, FA

π (·)
)
.

Proof. The symbol condition holds by the same argument as in Lemma1.
¬C � A implies I: Let π : s1 ≈i s2 be an A-path on P . The path π shows

that s1 and s2 can differ at most at |π| indices, hence s1
|π|� s2 = s2 follows from

¬C � A. If s1
m� s2 �= s2 holds for m < |π|, then diff(s1

m� s2, s2) = k for some
k ∈ Stores (π). If i �= k is A-local, then k = k holds trivially, if i �= k is mixed,
then EQ(xik, k) is part of ¬C � A. Hence, s1

m� s2 = s2 ∨ FA
π (diff(s1

m� s2, s2))
holds for all m < |π|. This shows weq(s1, s2, |π|, FA

π (·)).
¬C �B ∧ I is unsat: For every B-path π : s1 ≈i s2 on P , we get s1[i] = s2[i]

with (roweq). For every A-path π : s1 ≈i s2, I implies that s1 and s2 differ at
finitely many indices which all satisfy FA

π (·). The disequalities and B-projections
in B imply that i does not satisfy FA

π (i), and therefore s1[i] = s2[i]. Then
a[i] = b[i] holds by transitivity, in contradiction to a[i] �= b[j] and i = j in B. ��
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4.4 Both i and j are A-local

The interpolant is dual to the previous case and we define the dual of weq for
arrays a, b, a number m ≥ 0 and a formula F :

nweq(a, b, 0, F (·)) ≡ a �= b

nweq(a, b,m + 1, F (·)) ≡ (a �= b ∧ F (diff(a, b))) ∨ nweq(a 1� b, b,m, F (·)).
The formula nweq(a, b,m, F (·)) expresses that either one of the first m indices i
found by stepwise rewriting a to b satisfies the formula F (i), or a and b differ at
more than m indices. Like in Sect. 4.2, the lemma interpolant is dual to the one
computed in Sect. 4.3.

Lemma 4. A partial interpolant of the lemma Cond(a ≈i b)∧i = j → a[i] = b[j]
with A-local i and j is I ≡

∨
(π:s1≈is2)∈B-paths nweq(s1, s2, |π|, FB

π (·)).
Theorem 1. For all instantiations of the rule (roweq), quantifier-free inter-
polants can be computed as described in Sects. 4.1–4.4.

5 Interpolants for Weakeq-Ext Lemmas

A conflict corresponding to a lemma of type (weq-ext) is of the form

Cond(a P⇔ b) ∧
∧

i∈Stores(P )

Cond(a ∼i b) ∧ a �= b.

The main path P shows that a and b differ at most at the indices in Stores (P ),
and a ∼i b (called i-path as of now) shows that a and b do not differ at index i.

To compute an interpolant, we summarize the main path by weq (or nweq)
terms to capture the indices where a and b can differ, and include summaries
for the i-paths that are similar to the interpolants in Sect. 4. The i-paths can
contain a select edge a′ k1, k2 b′ where a′[k1] ∼ b′[k2], i ∼ k1, and i ∼ k2. In the B-
local case, Sect. 4.3, B-local select edges make no difference for the construction,
as the weq formulas are built over A-paths, and analogously for the A-local
case, Sect. 4.4. However, if there are A-local select terms a′[k] in the B-local case
or vice versa, then k is shared or the index equality i = k is mixed and we can
use k or the auxiliary variable xik and proceed as in the cases where there is a
shared term.

We have to adapt the interpolation procedures in Sects. 4.1 and 4.2 by adding
the index equalities that pertain to a select edge, analogously to the index dise-
quality for a store edge. More specifically, we add to FA

π (x) a disjunct x �= k for
each B-local i = k on an A-path, and x �= xik for each mixed i = k. Here, x is
the shared term for the i-path index i. For B-paths we add to FB

π (x) a conjunct
x = k for each A-local i = k and x = xik for each mixed i = k. Moreover,
if there is a mixed select equality a′[k1] = b′[k2] on the i-path, the auxiliary
variable xa′[k1]b′[k2] is used in the summary for the subpath instead of s[x], i.e.,
we get a term of the form s1[x] = xa′[k1]b′[k2] in Sect. 4.1, and analogously for
Sect. 4.2.

For (weq-ext) lemmas, we distinguish three cases: (i) a = b is in B, (ii) a = b
is A-local, or (iii) a = b is mixed.
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5.1 a = b is in B

If the literal a = b is in B, the A-paths both on the main store path and on the
weak paths have only shared path ends. Hence, we summarize A-paths similarly
to Sects. 4.1 and 4.3.

Algorithm. Divide the main path a
P⇔ b into A-paths and B-paths. For each

i ∈ Stores (P ) on a B-path, summarize the corresponding i-path as in Sects. 4.1
or 4.3. The resulting formula is denoted by Ii. For an A-path s1

π⇔ s2 use a weq
formula to state that each index where s1 and s2 differ satisfies Ii(·) for some
i ∈ Stores (π) where Ii is computed as in Sect. 4.1 with the shared term · for
i = j. If i is also shared we add i = · to the interpolant.

Lemma 5. The lemma Cond(a P⇔ b)∧
∧

i∈Stores(P ) Cond(a ∼i b) → a = b where
a = b is in B has the partial interpolant

I ≡
∧

i∈Stores(π)
π∈B-paths

Ii ∧
∧

(s1
π⇔s2)∈A-paths

weq
(
s1, s2, |π|,

∨

i∈Stores(π)

(
Ii(·) [ ∧ i = ·]

))
.

Proof. The path summaries Ii fulfill the symbol conditions, and the boundary
terms s1, s2 used in the weq formulas are guaranteed to be shared.

¬C � A implies I: By Sects. 4.1 and 4.3, Cond(a ∼i b) � A implies Ii for
i ∈ Stores (π) where π is a B-path on P . For an A-path s1

π⇔ s2 on P , we
know that s1 and s2 differ at most at |π| positions, namely at the indices
i ∈ Stores (π). Each index satisfies the corresponding Ii by Sect. 4.1. Hence,
weq(s1, s2, |π|,

∨
i∈Stores(π) Ii(·)[ ∧ i = ·]) holds.

¬C �B ∧ I is unsat: We first note that if a and b differ at some index i, there
must be an A-path or a B-path s1

π⇔ s2 on the main path, such that s1 and s2
also differ at index i. We show that no such index exists. For a B-path s1

π⇔ s2,
s1 and s2 can only differ at i ∈ Stores (π). But for every i ∈ Stores (π), we get
a[i] = b[i] from Ii as in Lemma 1 resp. 3. For an A-path s1

π⇔ s2, the interpolant
contains weq(s1, s2, |π|,

∨
i∈Stores(π)(Ii(·)[ ∧ i = ·])). Thus, if s1 and s2 differ at

some index i′, the interpolant implies Ii(i′) for some index i ∈ Stores (π) and
additionally i = i′ if i is shared. Together with Cond(a ∼i b) � B this implies
a[i′] = b[i′] as in the proof of Lemma 1. This shows that there is no index where
a and b differ, but this contradicts a �= b in ¬C �B. ��

5.2 a = b is A-local

The case where a = b is A-local is similar with the roles of A and B swapped. For
each i ∈ Stores (π) on an A-path π on P , interpolate the corresponding i-path
as in Sects. 4.2 or 4.4 and obtain Ii. For each i ∈ Stores (π) on a B-path π on P ,
interpolate the corresponding i-path as in Sect. 4.2 using · as shared term and
obtain Ii(·).
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Lemma 6. The lemma Cond(a P⇔ b)∧
∧

i∈Stores(P ) Cond(a ∼i b) → a = b where
a = b is A-local has the partial interpolant

I ≡
∨

i∈Stores(π)
π∈A-paths

Ii ∨
∨

(s1
π⇔s2)∈B-paths

nweq
(
s1, s2, |π|,

∧

i∈Stores(π)

(
Ii(·) [ ∨ i �= ·]

))
.

5.3 a = b is Mixed

If a = b is mixed, where w.l.o.g. a is A-local, the outer A- and B-paths end with
A-local or B-local terms respectively. The auxiliary variable xab may not be used
in store or select terms, thus we first need to find a shared term representing a
before we can summarize A-paths.

Example 3. Consider the following conflict:

a = s〈i1 � v1〉 ∧ b = s〈i2 � v2〉 ∧ a �= b (main path)
∧ a[i1] = s1[i1] ∧ b = s1〈k1 � w1〉 ∧ i1 �= k1 (i1-path)
∧ a = s2〈k2 � w2〉 ∧ i2 �= k2 ∧ b[i2] = s2[i2] (i2-path)

where a, i1, v1, k2, w2 are A-local, b, i2, v2, k1, w1 are B-local and s, s1, s2 are
shared.
Our algorithm below computes the following interpolant for the conflict.

I ≡ I0(s) ∨ nweq
(
s, s1, 2, I0(s〈· � s1[·]〉) ∧ EQ(xi1k1 , ·)

)

where I0(s̃) = EQ(xab, s̃) ∧ weq(s̃, s2, 1,EQ(xi2k2 , ·))

Algorithm. Identify in the main path P the first A-path a
π0⇔ s1 and its store

indices Stores (π0) = {i1, . . . i|π0|}. To build an interpolant, we rewrite s1 by
storing at each index im the value a[im]. We use s̃ to denote the intermediate
arrays. We build a formula Im(s̃) inductively over m ≤ |π0|. This formula is an
interpolant if s̃ is a shared array that differs from a only at the indices i1, . . . , im.

For m = 0, i.e., a = s̃, we modify the lemma by adding the strong edge s̃ ↔ a
in front of all paths and summarize it using the algorithm in Sect. 5.1, but drop
the weq formula for the path s̃ ↔ a

π0⇔ s1. This yields I5.1(s̃). We define

I0(s̃) ≡ EQ(xab, s̃) ∧ I5.1(s̃).

For the induction step we assume that s̃ only differs from a at i1, . . . , im, im+1.
Our goal is to find a shared index term x for im+1 and a shared value v for a[x].
We use the im+1-path to conclude that s̃〈x � v〉 is equal to a at im+1. Then we
can include Im(s̃〈x � v〉) computed using the induction hypothesis.

(i) If there is a select edge on a B-subpath of the im+1-path or if im+1 is itself
shared, we immediately get a shared term x for im+1. If the last B-path πm+1

on the im+1-path starts with a mixed select equality, then the corresponding
auxiliary variable is the shared value v. Otherwise, πm+1 starts with a shared
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array sm+1 and v := sm+1[x]. We summarize the im+1-path from a to the start
of πm+1 as in Sect. 4.2 and get I4.2(x). Finally, we set

Im+1(s̃) ≡ I4.2(x) ∨ (Im(s̃〈x � v〉) ∧ FB
πm+1(x)).

(ii) Otherwise, we split the im+1-path into a ∼im+1 sm+1 and sm+1 πm+1

⇔ b,
where πm+1 is the last B-subpath of the im+1-path. If s1 and a are equal at
im+1 then also s̃ and a are equal and the interpolant is simply Im(s̃). If a and
sm+1 differ at im+1, we build an interpolant from a ∼im+1 sm+1 as in Sect. 4.4
and obtain I4.4. Otherwise, s1 and sm+1 differ at im+1. We build the store path

s1
P ′
⇔ sm+1 by concatenating P and πm+1. Using nweq on the subpaths s

π⇔ s′ of
P ′ we find the shared term x for im+1. If π is in A we need to add the conjunct

s
|π|� s′ = s′ to obtain an interpolant. We get

Im+1(s̃) ≡ Im(s̃) ∨ I4.4 [for a ∼im+1 sm+1] ∨
∨

s
π⇔s′ in P ′

nweq
(
s, s′, |π|, Im(s̃〈· � sm+1[·]〉) ∧ FB

πm+1(·)
)

[ ∧ s
|π|� s′ = s′].

Lemma 7. The lemma Cond(a P⇔ b)∧
∧

i∈Stores(P ) Cond(a ∼i b) → a = b where
a = b is mixed has the partial interpolant I ≡ I|π0|(s1).

A proof by induction over the length of the path π0 can be found in [21].

Theorem 2. Sections 5.1–5.3 give interpolants for all cases of rule (weq-ext).

6 Complexity

Expanding the definition of an array rewrite term a
k� b näıvely already yields

a term exponential in k. This is avoided by using let expressions for common
subterms. With this optimization the interpolants for read-over-weakeq lemmas
are quadratic in the worst case. The interpolants of Sects. 4.1 and 4.2 contain
at most one literal for every literal in the lemma, so the interpolant is linear in
the size of the lemma. The interpolants of Sects. 4.3 and 4.4 are quadratic, since
expanding the definition of weq will copy the formula FA

π (·) resp. FB
π (·), for each

local store edge and instantiate it with a different shared term.

Example 4. The following interpolation problem has only quadratic interpolants.

A : b = a〈i1 � v1〉 · · · 〈in � vn〉 ∧ p1(i1) ∧ · · · ∧ pn(in)
B : a[j] �= b[j] ∧ ¬p1(j) ∧ . . . ¬pn(j)
I ≡ let a0 = a let d1 = diff(a0, b) let a1 = a0〈d1 � b[d1]〉

. . . let dn = diff(an−1, b) let an = an−1〈dn � b[dn]〉
(p1(d1) ∨ · · · ∨ pn(d1) ∨ a0 = b) ∧ · · ·
(p1(dn) ∨ · · · ∨ pn(dn) ∨ an−1 = b) ∧ an = b
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There is no interpolant that is not quadratic in n. The interpolant has to imply
that pk(ik) is true for every k. There are no shared index-valued terms in the
lemma. Hence, the only way to express the ik values using shared terms is by
applying the diff operator on a and b and constructing diff chains as in the
interpolant I. The diff operator returns one of the i1, . . . , in in every step, but it
is not determined which one. Consequently, every combination pk(dl) is needed.

The algorithms in Sects. 5.1 and 5.2 produce a worst-case quadratic inter-
polant as they nest the linear interpolants of Sects. 4.1 and 4.2 in a weq resp.
nweq formula, which expands this term a linear number of times. However, the
algorithm in Sect. 5.3 is worst-case exponential in the size of the extensionality
lemma.

The following example explains why this bound is strict. This example also
shows that the method of Totla and Wies [29] is not complete. In particular,
for n = 1 their preprocessing algorithm produces a satisfiable formula from the
original interpolation problem.

Example 5. The following interpolation problem of size O(n2) has only inter-
polants of exponential size in n.

A : a = s〈iA1 � vA
1 〉 · · · 〈iAn � vA

n 〉 ∧ p(a) ∧
n∧

j=1

pj(iAj ) ∧
n∧

j=1

a[iAj ] = sj [iAj ] ∧

n∧

j=1

n∧

l=0,l �=j

qj(iAl ) ∧
n∧

j=1

tj = a〈iA0 � wA
j0〉 . . .����������〈iAj � wA

jj〉 . . . 〈iAn � wA
jn〉

B : b = s〈iB1 � vB
1 〉 · · · 〈iBn � vB

n 〉 ∧ ¬p(b) ∧
n∧

j=1

n∧

l=0,l �=j

¬pj(iBl ) ∧
n∧

j=1

sj = b〈iB0 � wB
j0〉 . . .����������〈iBj � wB

jj〉 . . . 〈iBn � wB
jn〉 ∧

n∧

j=1

¬qj(iBj ) ∧
n∧

j=1

b[iBj ] = tj [iBj ]

The first line of A and the first line of B ensure that there is a store-chain from a
over s to b of length 2n and p(a) and ¬p(b) are used to derive the contradiction
from the extensionality axiom. To prove that a and b are equal, the formulas
show that they are equal at the indices iAj , j = 1, . . . , n (second line of A and B).
Here pj is used to ensure that iAj is distinct from all iBl , l �= j. Analogously the
last line of A and B shows that a and b are equal at the indices iBj , j = 1, . . . , n.

Since p(a) ∧ ¬p(b) is essential to prove unsatisfiability, the interpolant needs
to contain the term p(·) for some shared array term that is equal to a and b.
This can only be expressed by store terms of size n, e.g., p(s〈i1 � ·〉 · · · 〈in � ·〉)
(alternatively some store term starting on sj or tj can be used). As in the
previous example, the store indices ij can only be expressed using diff chains
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between shared arrays. For each index there is only one shared array that is
guaranteed to contain the right value. The diff function returns the indices in
arbitrary order. Therefore, the interpolant needs a case for every combination of
diff term and value, as it is done by the interpolant computed in Sect. 5.3. This
means the interpolant contains exponentially many p(·) terms.

7 Evaluation

We implemented the presented algorithms into SMTInterpol [12], an SMT
solver computing sequence and tree interpolants. Our implementation verifies at
run-time that the returned interpolants are correct. To evaluate the interpola-
tion algorithm we used the Ultimate Automizer software model-checker [17]
on the memory safety track of the SV-COMP 20182 benchmarks. This track
was chosen because Ultimate uses arrays to model memory access. We ran our
experiments using the open-source benchmarking software benchexec [3] on a
machine with a 3.4 GHz Intel i7-4770 CPU and set a 900 s time and a 6 GB
memory limit. As comparison, we ran Ultimate with Z33 and SMTInterpol
without array interpolation using Ultimate’s built-in theory-independent inter-
polation scheme based on unsatisfiable cores and predicate transformers [18].

Table 1 shows the result. From the 326 benchmarks we removed 50 bench-
marks which Ultimate could not parse. The unknown results come from non-
linear arithmetic (SMTInterpol), quantifiers (due to incomplete elimination in
the setting SMTInterpol-NoArrayInterpol), or incomplete interpolation engine
(Z3). Our new algorithm solves 12.6% more problems, and both helps to verify
safety and guide the counterexample generation for unsafe benchmarks.

Table 1. Evaluation of Ultimate Automizer on the SV-COMP benchmarks for mem-
safety running with our new interpolation engine, without array interpolation, and Z3.

Setting Tasks Safe Unsafe Timeout Unknown

SMTInterpol-ArrayInterpol 276 101 96 66 13

SMTInterpol-NoArrayInterpol 276 92 83 75 26

Z3 276 32 44 13 187

8 Conclusion

We presented an interpolation algorithm for the quantifier-free fragment of the
theory of arrays. Due to the technique of proof tree preserving interpolation,
our algorithm also works for the combination with other theories. Our algorithm
operates on lemmas produced by an efficient array solver based on weak equiv-
alence on arrays. The interpolants are built by simply iterating over the weak
2 https://sv-comp.sosy-lab.org/2018/.
3 https://github.com/Z3Prover/z3 in version 4.6.0 (2abc759d0).

https://sv-comp.sosy-lab.org/2018/
https://github.com/Z3Prover/z3
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equivalence and weak congruence paths found by the solver. We showed that the
complexity bound on the size of the produced interpolants is optimal.

In contrast to most existing interpolation algorithms for arrays, the solver
does not depend on the partitioning of the interpolation problem. Thus, our
technique allows for efficient interpolation especially when several interpolants
for different partitionings of the same unsatisfiable formula need to be com-
puted. Although it remains to prove formally that the algorithm produces tree
interpolants, during the evaluation all returned tree interpolants were correct.

Acknowledgement. We would like to thank Daniel Dietsch for running the experi-
ments.
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Abstract. ATPboost is a system for solving sets of large-theory prob-
lems by interleaving ATP runs with state-of-the-art machine learning
of premise selection from the proofs. Unlike many approaches that use
multi-label setting, the learning is implemented as binary classification
that estimates the pairwise-relevance of (theorem, premise) pairs. ATP-
boost uses for this the fast state-of-the-art XGBoost gradient boost-
ing algorithm. Learning in the binary setting however requires negative
examples, which is nontrivial due to many alternative proofs. We discuss
and implement several solutions in the context of the ATP/ML feedback
loop, and show significant improvement over the multi-label approach.

1 Introduction: Machine Learning for Premise Selection

Assume that c is a conjecture which is a logical consequence of a large set of
premises P . The chance of finding a proof of c by an automated theorem prover
(ATP) often depends on choosing a small subset of P relevant for proving c. This
is known as the premise selection task [1]. This task is crucial to make ATPs
usable for proof automation over large formal corpora created with systems
such as Mizar, Isabelle, HOL, and Coq [4]. Good methods for premise selection
typically also transfer to related tasks, such as internal proof guidance of ATPs [8,
10,13,17] and tactical guidance of ITPs [7].

The most efficient premise selection methods use data-driven/machine-
learning approaches. Such methods work as follows. Let T be a set of theorems
with their proofs. Let C be a set of conjectures without proofs, each associated
with a set of available premises that can be used to prove them. We want to
learn a (statistical) model from T , which for each conjecture c ∈ C will rank its
available premises according to their relevance for producing an ATP proof of c.
Two different machine learning settings can be used for this task:

1. multilabel classification: we treat premises used in the proofs as opaque labels
and we create a model capable of labeling conjectures based on their features,
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2. binary classification: here the aim of the learning model is to recognize
pairwise-relevance of the (conjecture, premise) pairs, i.e. to decide what is
the chance of a premise being relevant for proving the conjecture based on
the features of both the conjecture and the premise.

Most of the machine learning methods for premise selection have so far used
the first setting [3,9,11]. This includes fast and robust machine learning algo-
rithms such as naive Bayes and k-nearest neighbors (k-NN) capable of multilabel
classification with many examples and labels. This is needed for large formal
libraries with many facts and proofs. There are however several reasons why the
second approach may be better:

1. Generality: in binary classification it is easier to estimate the relevance of
(conjecture, premise) pairs where the premise was so far unseen (i.e., not in
the training data).

2. State-of-the-art ML algorithms are often capable of learning subtle aspects of
complicated problems based on the features. The multilabel approach trades
the rich feature representation of the premise for its opaque label.

3. Many state-of-the-art ML algorithms are binary classifiers or they struggle
when performing multilabel classification for a large number of labels.

Recently, substantial work [2] has been done in the binary setting. In particular,
applying deep learning to premise selection has improved state of the art in
the field. There are however modern and efficient learning algorithms such as
XGBoost [5] that are much less computationally-intensive then deep learning
methods. Also, obtaining negative examples for training the binary classifiers is
a very interesting problem in the context of many alternative ATP proofs and a
feedback loop between the ATP and the learning system.

1.1 Premise Selection in Binary Setting with Multiple Proofs

The existence of multiple ATP proofs makes premise selection different from con-
ventional machine learning applications. This is evident especially in the binary
classification setting. The ML algorithms for recognizing pairwise relevance of
(conjecture, premise) pairs require good data consisting of two (typically bal-
anced) classes of positive and negative examples. But there is no conventional
way how to construct such data in our domain. For every true conjecture there
are infinitely many mathematical proofs. The ATP proofs are often based on
many different sets of premises. The notions of useful or superfluous premise are
only approximations of their counterparts defined for sets of premises.

As an example, consider the following frequent situation: a conjecture c can
be ATP-proved with two sets of axioms: {p1, p2} and {p3, p4, p5}. Learning only
from one of the sets as positives and presenting the other as negative (conjecture,
premise) pairs may considerably distort the learned notion of a useful premise.
This differs from the multilabel setting, where negative data are typically not
used by the fast ML algorithms such as naive Bayes and k-NN. They just aggre-
gate different positive examples into the final ranking.
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Therefore, to further improve the premise selection algorithms it seems useful
to consider learning from multiple proofs and to develop methods producing
good negative data. The most suitable way how to do that is to allow multiple
interactions of the machine learner with the ATP system. In the following section
we present the ATPboost system, which implements several such algorithms.

2 ATPboost: Setting, Algorithms and Components

ATPboost
1 is a system for solving sets of large-theory problems by interleaving

ATP runs with learning of premise selection from the proofs using the state-
of-the-art XGBoost algorithm. The system implements several algorithms and
consists of several components described in the following sections. Its setting
is a large theory T , extracted from a large ITP library where facts appear in a
chronological order. In more detail, we assume the following inputs and notation:

1. T – names of theorems (and problems) in a large theory T .
2. P – names of all facts (premises) in T . We require P ⊇ T .
3. StatementsP of all p ∈ P in the TPTP format [15] .
4. FeaturesP – characterizing each p ∈ P . Here we use the same features as

in [11] and write f p for the (sparse) vector of features of p.
5. OrderP (<P ) – total order on P ; p may be used to prove t iff p <P t. We

write At for {p : p <P t}, i.e. the set of premises allowed for t.
6. ProofsT ′ for a subset T ′ ⊆ T . Each t ∈ T ′ may have many proofs – denoted

by Pt. Pt denotes the premises needed for at least one proof in Pt.

2.1 Algorithms

We first give a high-level overview and pseudocode of the algorithms imple-
mented in ATPboost. Section 2.2 then describes the used components in detail.

Algorithm 1 is the simplest setting. Problems are split into the train/test
sets, XGBoost learns from the training proofs, and its predictions are ATP-
evaluated on the test set. This is used mainly for parameter optimization.

Algorithm 2 evaluates the trained XGBoost also on the training part, possi-
bly finding new proofs that are used to update the training data for the next
iteration. The test problems and proofs are never used for training. Negative
mining may be used to find the worst misclassified premises and to corre-
spondingly update the training data in the next iteration.

Algorithm 3 begins with no training set, starting with ATP runs on random
rankings. XGBoost is trained on the ATP proofs from the previous itera-
tion, producing new ranking for all problems for the next iteration. This is a
MaLARea-style [16] feedback loop between the ATP and the learner.

1 The Python package is at https://github.com/BartoszPiotrowski/ATPboost.

https://github.com/BartoszPiotrowski/ATPboost
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2.2 Components

Below we describe the main components of the ATPboost algorithms and the
main ideas behind them. As discussed in Sect. 1, they take into account the
binary learning setting, and in particular implement the need to teach the system
about multiple proofs by proper choice of examples, continuous interaction with
the ATP and intelligent processing of its feedback. The components are available
as procedures in our Python package.

Algorithm 1. Simple training/test split.
Require: Set of theorems T , set of premises P ⊇ T , ProofsT , FeaturesP , StatementsP , OrderP ,

paramsset, paramsmodel.
1: Ttrain, Ttest ← RandomlySplit(T )
2: D ← CreateTrainingSet(ProofsTtrain ,FeaturesP ,OrderP , paramsset)

3: M ← TrainModel(D, paramsmodel)
4: R ← CreateRankings(Ttest,M,FeaturesP ,OrderP )
5: P ← ATPevaluation(R,StatementsP )

Algorithm 2. Incremental feedback-loop with training/test split.
Require: Set of theorems T , set of premises P ⊇ T , FeaturesP , StatementsP , ProofsT , OrderP ,

paramsset, paramsmodel, paramsnegmin (optionally).
1: Ttrain, Ttest ← RandomlySplit(T )
2: D ← CreateTrainingSet(ProofsTtrain ,FeaturesP ,OrderP , paramsset)

3: repeat
4: M ← TrainModel(D, paramsmodel)
5: Rtrain ← CreateRankings(Ttrain,M,FeaturesP ,OrderP )
6: Rtest ← CreateRankings(Ttest,M,FeaturesP ,OrderP )
7: Ptrain ← ATPevaluation(Rtrain,StatementsP )
8: Ptest ← ATPevaluation(Rtest,StatementsP )
9: Update(Proofstrain,Ptrain)
10: Update(Proofstest,Ptest)
11: if paramsnegmin then
12: D ← NegativeMining(R,Proofstrain,FeaturesP ,OrderP , paramsnegmin)
13: else
14: D ← CreateTrainingSet(Proofstrain,FeaturesP ,OrderP , paramsset)

15: until Number of Proofstest increased after Update.

Algorithm 3. Incremental feedback-loop starting with no proofs.
Require: Set of theorems T , set of premises P ⊇ T , FeaturesP , StatementsP , OrderP , paramsset,

paramsmodel, paramsnegmin (optionally).
1: ProofsT ← ∅
2: R ← CreateRandomRankings(T )
3: P ← ATPevaluation(R,StatementsP )
4: Update(ProofsT ,P)
5: D ← CreateTrainingSet(ProofsT ,FeaturesP ,OrderP , paramsset)
6: repeat
7: M ← TrainModel(D, paramsmodel)
8: R ← CreateRankings(T,M,FeaturesP ,OrderP )
9: P ← ATPevaluation(R,StatementsP )
10: Update(ProofsT ,P)
11: if paramsnegmin then
12: D ← NegativeMining(R,ProofsT ,FeaturesP ,OrderP , paramsnegmin)
13: else
14: D ← CreateTrainingSet(ProofsT ,FeaturesP ,OrderP , paramsset)

15: until Number of ProofsT increased after Update.
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CreateTrainingSet (ProofsT , FeaturesP , OrderP , params).
This procedure constructs a TrainingSet for a binary learning algorithm. This
is a sparse matrix of positive/negative examples and a corresponding vector of
binary labels. The examples (matrix rows) are created from ProofsT and Fea-

turesP , respecting OrderP . Each example is a concatenation of f t and f p,
i.e., the features of a theorem t and a premise p. Positive examples express that
p is relevant for proving t, whereas the negatives mean the opposite.

The default method (simple) creates positives from all pairs (t, p) where
p ∈ Pt. Another method (short) creates positives only from the short proofs of
t. These are the proofs of t with at most m+1 premises, where m is the minimal
number of premises used in a proof from Pt. Negative examples for theorem t
are chosen randomly from pairs (t, p) where p ∈ At \ Pt. The number of such
randomly chosen pairs is ratio · Npos, where Npos is the number of positives
and ratio∈ N is a parameter that needs to be optimized experimentally. Since
|At \ Pt| is usually much larger than |Pt|, it seems reasonable to have a large
ratio. This however increases class imbalance and the probability of presenting
to the learning algorithm a false negative. This is a pair (t, p) where p /∈ Pt, but
there is an ATP proof of t using p that is not yet in our dataset.

TrainModel (TrainingSet, params). This procedure trains a binary
learning classifier on the TrainingSet, creating a Model. We use XGBoost [5]
– a state-of-the-art tree-based gradient boosting algorithm performing very well
in machine learning competitions. It is also much faster to train compared to
deep learning methods, performs well with unbalanced training sets, and is opti-
mized for working with sparse data. XGBoost has several important parameters,
such as numberOfTrees, maxDepth (of trees) and eta (learning rate). These
parameters have significant influence on the performance and require tuning.

CreateRankings (C, Model, FeaturesP , OrderP ). This procedure
uses the trained Model to construct RankingsC of premises from P for con-
jectures c ∈ C ⊆ T . Each conjecture c is paired with each premise p <P c and
concatenations of f c and f p are passed to the Model. The Model outputs a
real number in [0, 1], which is interpreted as the relevance of p for proving c. The
relevances are then used to sort the premises into RankingsC .

ATPevaluation (Rankings, Statements). Any ATP can be used for
evaluation. By default we use E [14]2. As usual, we construct the ATP problems
for several top slices (lengths 1, 2, . . . , 512) of the Rankings. To remove redun-
dant premises we pseudo-minimize the proofs: only the premises needed in the
proofs are used as axioms and the ATP is rerun until a fixpoint is reached.

Update (OldProofs, NewProofs). The Update makes a union of the
new and old proofs, followed by a subsumption reduction. I.e., if premises of two
proofs of t are in a superset relation, the proof with the larger set is removed.

2 The default time limit is 10 s and the memory limit is 2 GB. The exact default
command is: ./eprover –auto-schedule –free-numbers -s -R –cpu-limit=10
–memory-limit=2000 –print-statistics -p –tstp-format problem_file.
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NegativeMining (ProofsT , FeaturesP , OrderP , params). This is
used as a more advanced alternative to CreateTrainingSet. It examines the
last RankingsT for the most misclassified positives. I.e., for each t ∈ T we create
a set MP t of those p that were previously ranked high for t, but no ATP proof
of t was using p. We define three variants:

1. negmin_all: Let mt be the maximum rank of a t-useful premise (p ∈ Pt) in
RankingsT [t]. Then MP1

t = {p : rankt(p) < mt ∧ p /∈ Pt}.
2. negmin_rand: We randomly choose into MP2

t only a half of MP1
t .

3. negmin_1: MP3
t = {p : rankt(p) < |Pt| ∧ p /∈ Pt}.

The set MP i
t is then added as negatives to the examples produced by the Cre-

ateTrainingSet procedure. The idea of such negative mining is that the learner
takes into account the mistakes it made in the previous iteration.

3 Evaluation

We evaluate3 the algorithms on a set of 1342 MPTP2078 [1] large (chainy)
problems that are provable in 60 s using their small (bushy) versions.

Parameter Tuning: First we run Algorithm 1 to optimize the parameters.
The dataset was randomly split into a train set of 1000 problems and test set
of 342. For the train set, we use the proofs obtained by the 60 s run on the
bushy versions. We tune the ratio parameter of CreateTrainingSet, and
the numberOfTrees, maxDepth and eta parameters of TrainModel. Due
to resource constraints we a priori assume good defaults: ratio = 16, num-

berOfTrees = 2000, maxDepth = 10, eta = 0.2. Then we observe how
changing each parameter separately influences the results. Table 1 shows the
ATP results for the ratio parameter, and Fig. 1 for the model parameters.

Table 1. Influence of the ratio of randomly generated negatives to positives.

ratio 1 2 4 8 16 32 64

Proved (%) 74.0 78.4 79.0 78.7 80.1 79.8 80.1

It is clear that a high number of negatives is important. Using ratio = 16
proves 6% more test problems than the balanced setting (ratio = 1). It is
also clear that a higher number of trees – at least 500 – improves the results.
However, too many trees (over 8000) slightly decrease the performance, likely
due to overfitting. The eta parameter gives best results with values between
0.04 and 0.64, and the maxDepth of trees should be around 10.

3 All the scripts we used for the evaluation are available at https://github.com/
BartoszPiotrowski/ATPboost/tree/master/experiments.

https://github.com/BartoszPiotrowski/ATPboost/tree/master/experiments
https://github.com/BartoszPiotrowski/ATPboost/tree/master/experiments
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Fig. 1. ATP performance of different parameters of the XGBoost model.

We evaluate Algorithm 1 also on a much bigger ATP-provable part of MML
with 29271 theorems in train part and 3253 in test. With parameters ratio = 20,
numberOfTrees = 4000, maxDepth = 10 and eta = 0.2 we proved 58.78%
theorems (1912). This is a 15.7% improvement over k-NN, which proved 50.81%
(1653) theorems. For a comparison, the improvement over k-NN obtained (with
much higher ATP time limits) with deep learning in [2] was 4.3%.

Incremental Feedback Loop with Train/Test Split: This experiment eval-
uates Algorithm 2, testing different methods of negative mining. The train/test
split and the values of the parameters ratio, numberOfTrees, maxDepth,
eta are taken from the previous experiment. We test six methods in parallel.
Two XGB methods (simple and short) are the variants of the CreateTrain-

ingSet procedure, three XGB methods (negmin_all, negmin_rand and
negmin_1) are the variants of NegativeMining, and the last one is a k-NN
learner similar to the one from [11], used here for comparison. The experiment
starts with the same proofs for training theorems as in the previous one, and we
performed 30 rounds of the feedback loop. Figure 2 shows the results.

Fig. 2. Number of proved theorems in subsequent iterations of Algorithm 2.
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Fig. 3. Number of proved theorems (left) and number of all found proofs (right) in
subsequent rounds of the experiment corresponding to Algorithm3.

All the new methods largely outperform k-NN, and XGB_short is much
better than XGB_simple. I.e., positives from too many proofs seem harmful,
as in [12] where this was observed with k-NN. The differences between the XGB

variants short, negmin_1, negmin_all, and negmin_rand do not seem
significant and all perform well. At the end of the loop (30th round) 315–319
theorems of the 342 (ca 93%) are proved.

Incremental Feedback-loop with no Initial Proofs: The final experiment
corresponds to Algorithm 3. There is no train/test split and no initial proofs.
The first ATP evaluation is done on random rankings, proving 335 theorems
out of the 1342. Then the loop starts running with the same options as in the
previous experiment. Figure 3 shows the numbers of theorems that were proved
in the subsequent rounds, as well as the growth of the total number of different
proofs. This is important, because all these proofs are taken into account by
the machine learning. Again, k-NN is the weakest and XGB_simple is worse
than the rest of the methods, which are statistically indistinguishable. In the
last round XGB_negmin_rand proves 1150 (86%) theorems. This is a 26.8%
improvement over k-NN (907) and 7.7% more than XGB_simple (1068).
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Abstract. Theories are an essential structuring principle that enable
modularity, encapsulation, and reuse in formal libraries and programs
(called classes there). Similar effects can be achieved by dependent record
types. While the former form a separate language layer, the latter are a
normal part of the type theory. This overlap in functionality can render
different systems non-interoperable and lead to duplication of work.

We present a type-theoretic calculus and implementation of a vari-
ant of record types that for a wide class of formal languages naturally
corresponds to theories. Moreover, we can now elegantly obtain a con-
travariant functor that reflects the theory level into the object level: for
each theory we obtain the type of its models and for every theory mor-
phism a function between the corresponding types. In particular this
allows shallow – and thus structure-preserving – encodings of mathe-
matical knowledge and program specifications while allowing the use of
object-level features on models, e.g. equality and quantification.

1 Introduction

In the area of formal systems like type theories, logics, and specification and
programming languages, various language features have been studied that allow
for inheritance and modularity, e.g., theories, classes, contexts, and records. They
all share the motivation of grouping a list of declarations into a new entity such as
in R = ⟦x1 : A1, . . . , xn : An⟧. The basic intuition behind it is that R behaves like
a product type whose values are of the form �x1 : A1 := a1, . . . , xn : An := an�.
Such constructs are indispensable already for elementary applications such as
defining the algebraic structure of Semilattices (as in Fig. 1), which we will use
as a running example.

Fig. 1. A grouping of declarations for semilattices

c© Springer International Publishing AG, part of Springer Nature 2018
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System Name of feature
Stratified Integrated

ML Signature/module Record

C++ Class Class, struct

Java Class Class

Idris [Bra13] Module Record

Coq [Coq15] Module Record

HOL Light [Har96] ML signatures Records

Isabelle [Wen09] Theory, locale Record

Mizar [TB85] Article Structure

PVS [ORS92] Theory Record

OBJ [Gog+93] Theory

FoCaLiZe [Har+12] Species Record

Many systems sup-
port stratified group-
ing (where the language
is divided into a lower
level for the base lan-
guage and a higher level
that introduces the group-
ing constructs) or inte-
grated grouping (where
the grouping construct is
one out of many type-
forming operations with-
out distinguished ontolog-
ical status), or both. The
names of the grouping constructs vary between systems, and we will call them
theories and records in the sequel. An overview of some representative exam-
ples is given in the table on the right. For a discussion of these concepts and a
comprehensive review of the related work we refer the reader to [MRK].

The two approaches have different advantages. Stratified grouping permits
a separation of concerns between the core language and the module system.
It also captures high-level structure well in a way that is easy to manage and
discover in large libraries, closely related to the advantages of the little theo-
ries approach [FGT92]. But integrated grouping allows applying base language
operations (such as quantification or tactics) to the grouping constructs. For
this reason, the (relatively simple) stratified Coq module system is disregarded
in favor of records in major developments such as [Mat].

Allowing both features can lead to a duplication of work where the same hier-
archy is formalized once using theories and once using records. A compromise
solution is common in object-oriented programming languages, where classes
behave very much like stratified grouping but are at the same time normal types
of the type system. We call this internalizing the higher level features. While
combining advantages of stratified and integrated grouping, internalizing is a
very heavyweight type system feature: stratified grouping does not change the
type system at all, and integrated grouping can be easily added to or removed
from a type system, but internalization adds a very complex type system fea-
ture from the get-go. It has not been applied much to logics and similar formal
systems: the only example we are aware of is the FoCaLiZe [Har+12] system. A
much weaker form of internalization is used in OBJ and related systems based
on stratified grouping: here theories may be used as (and only as) the types
of parameters of parametric theories. Most similarly to our approach, OCaml’s
first-class modules internalize the theory (called module type in OCaml) M as
the type moduleM ; contrary to both OO-languages and our approach, this kind
of internalization is in addition and unrelated to integrated grouping.

In any case, because theories usually allow for advanced declarations
like imports, definitions, and notations, as well as extra-logical declarations,
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systematically internalizing theories requires a correspondingly expressive inte-
grated grouping construct. Records with defined fields are comparatively rare;
e.g., present in [Luo09] and OO-languages. Similarly, imports between record
types and/or record terms are featured only sporadically, e.g., in Nuprl [Con+86],
maybe even as an afterthought only.

Finally, we point out a closely related trade-off that is orthogonal to our
development: even after choosing either a theory or a record to define grouping,
many systems still offer a choice whether a declaration becomes a parameter or
a field. See [SW11] for a discussion.

Contribution. We present the first formal system that systematically internalizes
theories into record types. The central idea is to use an operator Mod that turns
the theory T into the type Mod (T ), which behaves like a record type. We take
special care not to naively compute this record type, which would not scale well
to the common situations where theories with hundreds of declarations or more
are used. Instead, we introduce record types that allow for defined fields and
merging so that Mod (T ) preserves the structure of T .

Our approach combines the advantages of stratified and integrated grouping
in a lightweight language feature that is orthogonal to and can be easily com-
bined with other foundational language features. Concretely, it is realized as a
module in the Mmt framework [Rab14], which allows for the modular design of
foundational languages. By combining our new modules with existing ones, we
obtain many formal systems with internalized theories. In particular, our typing
rules conform to the abstractions of Mmt so that Mmt’s type reconstruction
[Rab17] is immediately applicable to our features. We showcase the potential in
a case study based on this implementation, and which is interesting in its own
right: A formal library of elementary mathematical concepts that systematically
utilizes Mod (·) throughout for algebraic structures, topological spaces etc.

Overview. We formulate our approach in the setting of a dependently-typed λ-
calculus, which we recall in Sect. 2. This section also serves as a gentle primer
for defining language features in Mmt. Section 3 introduces our notion of record
types, based on which we introduce the model-operator in Sect. 4. Section 5
presents our implementation and a major case study on elementary mathematics.
This paper is a shortened version of [MRK], which also contains all the proofs.

2 Preliminaries

We introduce the well-known dependently-typed lambda calculus as the starting
point of our development. The grammar is given in Fig. 2. The only surprise here
is that we allow optional definitions in contexts; this is a harmless convenience
at this point but will be critical later on when we introduce records with defined
fields. As usual, we write T → T ′ instead of

∏
x:T T ′ when possible. We also

write T [x/T ′] for the usual capture-avoiding substitution of T ′ for x in T .
Mmt uses a bidirectional type system, i.e., we have two separate judgments

for type inference and type checking. Similarly, we have two equality judgments:
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Fig. 2. Grammar for contexts and expressions

one for checking equality of two given terms and one for reducing a term to
another one. Our judgments are given in Fig. 3.

Adding record types in Sect. 3 will introduce non-trivial subtyping, e.g., ⟦x :
T, y : S⟧ is a subtype of ⟦x : T ⟧.1 Therefore, we already introduce a subtyping
judgment here even though it is not needed for dependent function types yet.
For our purposes, it is sufficient (and desirable) to consider subtyping to be an
abbreviation: Γ � T1 <: T2 iff for all t Γ � t ⇐ T1 implies Γ � t ⇐ T2.

Fig. 3. Judgments

The pre/postconditions of these judgments are as follows: Γ � t ⇐ T
assumes that T is well-typed and implies that t is well-typed. Γ � t ⇒ T implies
that both t and T are well-typed. Γ � t1 � t2 implies that t2 is well-typed iff t1
is (which puts additional burden on computation rules that are called on not-
yet-type-checked terms). Equality and subtyping are only used for expressions
that are assumed to be well-typed, i.e., Γ � t1 ≡ t2 : T implies Γ � ti ⇐ T , and
Γ � T1 <: T2 implies that Ti is a type/kind.

Remark 1 (Horizontal Subtyping and Equality). The equality judgment could
alternatively be formulated as an untyped equality t ≡ t′. That would require
some technical changes to the rules but would usually not be a huge difference.
In our case, however, the use of typed equality is critical.

For example, consider record values r1 = �a := 1, b := 1� and r2 = �a :=
1, b := 2� as well as record types R = ⟦a : nat⟧ and S = ⟦a : nat, b : nat⟧. Due
to horizontal subtyping, we have S <: R and thus both ri ⇐ S and ri ⇐ R.
This has the advantage that the function S → R that throws away the field

1 This is sometimes called horizontal subtyping. In that case, the straightforward
covariance rule for record types is called vertical subtyping.



Theories as Types 579

b becomes the identity operation. Now our equality at record types behaves
accordingly and checks only for the equality of those fields required by the type.
Thus, r1 ≡ r2 : R is true whereas r1 ≡ r2 : S is false, i.e., the equality of two
terms may depend on the type at which they are compared. While seemingly
dangerous, this makes sense intuitively: r1 can be replaced with r2 in any context
that expects an object of type R because in such a context the field b, where r1
and r2 differ, is inaccessible.

Of course, this treatment of equality precludes downcasts: an operation that
casts the equal terms r1 : R and r2 : R into the corresponding unequal terms of
type S would be inconsistent. But such downcasts are still possible (and valuable)
at the meta-level. For example, a tactic GroupSimp(G, x) that simplifies terms
x in a group G can check if G is commutative and in that case apply more
simplification operations.

The full rules of a lambda calculus can be found in the long version [MRK].
We can now show that the usual variance rule for function types is derivable.

Theorem 1. The following subtyping rule is derivable:

Γ � A <: A′ Γ, x : A � B′ <: B

Γ � ∏
x:A′ B′ <:

∏
x:A B

Moreover, we can show that every well-typed term t has a principal type
T in the sense that (i) Γ � t ⇐ T and (ii) whenever Γ � t ⇐ T ′, then also
Γ � T <: T ′. The principal type is exactly the one inferred by our rules (see
Theorem 2).

3 Record Types with Defined Fields

We now introduce record types as an additional module of our framework by
extending the grammar and the rules. The basic intuition is that ⟦Γ ⟧ and �Γ �
construct record types and terms. We call a context fully typed resp. defined
if all fields have a type resp. a definition. In ⟦Γ ⟧, Γ must be fully typed and may
additionally contain defined fields. In �Γ �, Γ must be fully defined; the types are
optional and usually omitted in practice.

Because we frequently need fully defined contexts, we introduce a notational
convention for them: a context denoted by a lower case letters like γ is always
fully defined. In contrast, a context denoted by an upper case letter like Γ may
have any number of types or definitions.

3.1 Records

We extend our grammar as in Fig. 4, where the previously existing parts are
grayed out.
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Fig. 4. Grammar for records

Remark 2 (Field Names and Substitution in Records). Note that we use the same
identifiers for variables in contexts and fields in records. This allows reusing
results about contexts when reasoning about and implementing records. In par-
ticular, it immediately makes our records dependent, i.e., both in a record type
and — maybe surprisingly — in a record term every variable x may occur in
subsequent fields. In some sense, this makes x bound in those fields. However,
record types are critically different from Σ-types: we must be able to use x in
record projections, i.e., x can not be subject to α-renaming.

As a consequence, capture-avoiding substitution is not always possible. This
is a well-known problem that is usually remedied by allowing every record to
declare a name for itself (e.g., the keyword this in many object-oriented lan-
guages), which is used to disambiguates between record fields and a variable in
the surrounding context (or fields in a surrounding record). We gloss over this
complication here and simply make substitution a partial function.

Before stating the rules, we introduce a few critical auxiliary definition:

Definition 1 (Substituting in a Record). We extend substitution t[x/t′] to
records:

– ⟦x1 : T1, . . . , xn : Tn ⟧ [y/t]

=
{
⟦x1 : T1[y/t], . . . , xi−1 : Ti−1[y/t], xi : Ti, . . . , xn : Tn ⟧ if y = xi

⟦x1 : (T1[y/t]), . . . , xn : (Tn[y/t]) ⟧ else
if none of the xi are free in t. Otherwise the substitution is undefined.

– �x1 := t1, . . . , xn := tn � [y/t] =
{
�x1 := t1, . . . , xn := tn � if y ∈ {x1, . . . , xn}
�x1 := (t1[y/t]), . . . , xn := (tn[y/t]) � else

if none of the xi are free in t. Otherwise the substitution is undefined.
– (r.x)[y/t] = (r[y/t]).x.

Definition 2 (Substituting with a Record). We write t[r/Δ] for the result
of substituting any occurrence of a variable x declared in Δ with r.x

In the special case where r = �δ�, we simply write t[δ] for t[�δ � /δ], i.e., we
have t[x1 := t1, . . . , xn := tn] = t[xn/tn] . . . [x1/t1].

Our rules for records are given in Fig. 5. Their roles are systematically similar
to the rules for functions: three inference rules for the three constructors followed
by a type and an equality checking rule for record types and the (in this case:
two) computation rules. We remark on a few subtleties below.
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Fig. 5. Rules for records

The formation rule is partial in the sense that not every context defines a
record type or kind. This is because the universe of a record type must be as
high as the universe of any undefined field to avoid inconsistencies. For example,
max(a : nat) = type, max(a : type) = kind and max(a : kind) is not defined. If
we switched to a countable hierarchy of universes (which we avoid for simplicity),
we could turn every context into a record type.

The introduction rule infers the principal type of every record term. Because
we allow record types with defined fields, this is the singleton type containing
only that record term. This may seem awkward but does not present a problem
in practice, where type checking is preferred over type inference anyway.

The elimination rule is straightforward, but it is worth noting that it is
entirely parallel to the second computation rule.2

2 Note that it does not matter how the fields of the record are split into Δ1 and Δ2

as long as Δ1 contains all fields that the declaration of x depends on.
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The type checking rule has a surprising premise that r must already be well-
typed (against some type R). Semantically, this assumption is necessary because
we only check the presence of the fields required by ⟦Δ⟧ — without the extra
assumption, typing errors in any additional fields that r might have could go
undetected. In practice, we implement the rule with an optimization: If r is
a variable or a function application, we can efficiently infer some type for it.
Otherwise, if r = �δ�, some fields of δ have already been checked by the first
premise, and we only need to check the remaining fields. The order of premises
matters in this case: we want to first use type checking for all fields for which ⟦Δ⟧
provides an expected type before resorting to type inference on the remaining
fields.

In the equality checking rule, note that we only have to check equality at
undefined fields — the other fields are guaranteed to be equal by the assumption
that r1 and r2 have type ⟦Δ⟧.

Like the type checking rule, the first computation rule needs the premise that
r is well-typed to avoid reducing an ill-typed into a well-typed term. In practice,
our framework implements computation with a boolean flag that tracks whether
the term to be simplified can be assumed to be well-typed or not; in the former
case, this assumption can be skipped.

The second computation rule looks up the definition of a field in the type of
the record. Both computation rules can be seen uniformly as definition lookup
rules — in the first case the definition is given in the record, in the second case
in its type.

Example 1. Figure 6 shows a record type of Semilattices (actually, this is a
kind because it contains a type field) analogous to the grouping in Fig. 1 (using
the usual encoding of axioms via judgments-as-types and higher-order abstract
syntax for first-order logic).

Fig. 6. The (record-)kind of semilattices

Then, given a record r : Semilattice, we can form the record projection
r.∧, which has type r.U → r.U → r.U and r.assoc yields a proof that r.∧ is
associative. The intersection on sets forms a semilattice so (assuming we have
proofs ∩ − assoc, ∩−comm, ∩−idem with the corresponding types) we can give
an instance of that type as

interSL : Semilattice := �U := Set,∧ := ∩, assoc := ∩−assoc, . . . �
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Theorem 2 (Principal Types). Our inference rules infer a principal type for
each well-typed normal term.

In analogy to function types, we can derive the subtyping properties of record
types. We introduce context subsumption and then combine horizontal and ver-
tical subtyping in a single statement.

Definition 3 (Context Subsumption). For two fully typed contexts Δi we
write Γ � Δ1 ↪→ Δ2 iff for every declaration x : T [:= t] in Δ1 there is a
declaration x : T ′[:= t′] in Δ2 such that

– Γ � T ′ <: T and
– if t is present, then so is t′ and Γ � t ≡ t′ : T

Intuitively, Δ1 ↪→ Δ2 means that everything of Δ1 is also in Δ2. That yields:

Theorem 3 (Record Subtyping). The following rule is derivable:

Γ � Δ1 ↪→ Δ2

Γ � ⟦Δ2⟧ <: ⟦Δ1⟧

3.2 Merging Records

We introduce an advanced operation on records, which proves critical for both
convenience and performance: Theories can easily become very large containing
hundreds or even thousands of declarations. If we want to treat theories as record
types, we need to be able to build big records from smaller ones without explod-
ing them into long lists. Therefore, we introduce an explicit merge operator +
on both record types and terms.

In the grammar, this is a single production for terms:

T ::= T + T

The intended meaning of + is given by the following definition:

Definition 4 (Merging Contexts). Given a context Δ and a (not necessarily
well-typed) context E, we define a partial function Δ ⊕ E as follows:

– · ⊕ E = E
– If Δ = d,Δ0 where d is a single declaration for a variable x:

• if x is not declared in E: (d,Δ0) ⊕ E = d, (Δ0 ⊕ E)
• if E = E0, e, E1 where e is a single declaration for a variable x:

∗ if a variable in E0 is also declared in Δ0: Δ ⊕ E is undefined,
∗ if d and e have unequal types or unequal definitions: Δ ⊕ E is
undefined3,

3 It is possible and important in practice to also define Δ ⊕ E when the
types/definitions in d and e are provably equal. We omit that here for simplicity.
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∗ otherwise, (d,Δ0) ⊕ (E0, e, E1) = E0,m, (Δ0, E1) where m arises
by merging d and e.

Note that ⊕ is an asymmetric operator: While Δ must be well-typed (relative
to some ambient context), E may refer to the names of Δ and is therefore not
necessarily well-typed on its own.

We do not define the semantics of + via inference and checking rules. Instead,
we give equality rules that directly expand + into ⊕ when possible:

� Γ, (Δ1 ⊕ Δ2) ctx
Γ � ⟦Δ1 ⟧+ ⟦Δ2⟧� ⟦Δ1 ⊕ Δ2 ⟧

� Γ, (δ1 ⊕ δ2) ctx
Γ � �δ1 �+ � δ2�� �δ1 ⊕ δ2 �

� Γ, (Δ ⊕ δ) ctx
Γ � ⟦Δ ⟧+ � δ�� �Δ ⊕ δ �

In implementations some straightforward optimizations are needed to verify the
premises of these rules efficiently; we omit that here for simplicity. For example,
merges of well-typed records with disjoint field names are always well-typed, but
e.g., ⟦x : nat ⟧+ ⟦ x : bool⟧ is not well-typed even though both arguments are.

In practice, we want to avoid using the computation rules for + whenever
possible. Therefore, we prove admissible rules (i.e., rules that can be added
without changing the set of derivable judgments) that we use preferentially:

Theorem 4. If R1, R2, and R1 + R2 are well-typed record types, then R1 + R2

is the greatest lower bound with respect to subtyping of R1 and R2. In particular,
Γ � r ⇐ R1 + R2 iff Γ � r ⇐ R1 and Γ � r ⇐ R2.

If Γ � ri ⇐ Ri and r1 + r2 is well-typed, then Γ � r1 + r2 ⇐ R1 + R2.

Inspecting the type checking rule in Fig. 5, we see that a record r of type ⟦Δ⟧
must repeat all defined fields of Δ. This makes sense conceptually but would be
a major inconvenience in practice. The merging operator solves this problem
elegantly as we see in the following example:

Example 2. Continuing our running example, we can now define a type of semi-
lattices with order (and all associated axioms) as in Fig. 7.

Fig. 7. Running example

Now the explicit merging in the type SemilatticeOrder allows the pro-
jection interSLO. ≤, which is equal to λx, y : (interSLO.U) . (x .=
x(interSLO.∧)y) and interSLO.refl yields a proof that this order is reflexive
– without needing to define the order or prove the axiom anew for the specific
instance interSL.
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4 Internalizing Theories

4.1 Preliminaries: Theories

We introduce a minimal definition of stratified theories and theory morphisms,
which can be seen as a very simple fragment of the MMT language [RK13]. The
grammar is given in Fig. 8, again graying out the previously introduced parts.

Fig. 8. A simple stratified language

Each of the two levels has its own context: Firstly, the theory level context
Θ introduces names X, which can be either theories X = {Γ} or morphisms
X : P → Q = {Γ}, where P and Q are the names of previously defined theories.
Secondly, the expression level context Γ is as before but may additionally
contain includes includeX of other theories resp. morphisms X. We call a
context flat if it does not contain includes.

All judgments are as before except that they acquire a second context,
e.g., the typing judgment now becomes Θ;Γ � t ⇐ T . With this modification,
all rules for function and record types remain unchanged. However, we add the
restriction that Γ in ⟦Γ ⟧ and �Γ � must be flat.

We omit the rules for theories and morphisms for brevity and only sketch
their intuitions. We think of theories as named contexts and of morphisms as
named substitutions between contexts. Includes allow forming both modularly
by copying over the declarations of a previously named object. While theories
may contain arbitrary declarations, morphisms are restricted: Let Θ contain
P = {Γ} and Q = {Δ}. Then a morphism V : P → Q = {δ} is well-typed if δ
is fully defined (akin to record terms) and contains for each declaration x : T of
P a declaration x = t where t may refer to all names declared in Q. V induces a
homomorphic extension V that maps P -expressions to Q-expressions. The key
property of morphisms is that, if V is well-typed, then Θ;P � t ⇐ T implies
Θ;Q � V (t) ⇐ V (T ) and accordingly for equality checking and subtyping. Thus,
theory morphisms preserve judgments and (via propositions-as-types represen-
tations) truth. Moreover, it is straightforward to extend the above with identity
and composition so that theories and morphisms form a category. We refer to
[Rab14] for details.

4.2 Internalization

We can now add the internalization operator, for which everything so far was
preparation. We add one production to the grammar:

T ::= Mod (X)
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The intended meaning of Mod (X) is that it turns a theory X into a record
type and a morphism X : P → Q into a function Mod (Q) → Mod (P ). For
simplicity, we only state the rules for the case where all include declarations are
at the beginning of theory/morphism:

P = {includeP1, . . . , includePn,Δ} in Θ Δ flat max P defined
Θ;Γ � Mod (P ) � Mod (P1) + . . . + Mod (Pn) + ⟦Δ⟧

V : P → Q = {includeV1, . . . , includeVn, δ} in Θ δ flat

Θ; Γ � Mod (V ) � λr : Mod (Q) . Mod (P ) + (Mod (V1) r) + . . . + (Mod (Vn) r) + �δ[r]�

where we use the following abbreviations:

– In the rule for theories, maxP is the biggest universe occurring in any dec-
laration transitively included into P , i.e., max P = max{max P1, . . . ,max Pn,
max Δ} (undefined if any argument is).

– In the rule for morphisms, δ[r] is the result of substituting in δ every reference
to a declaration of x in Q with r.x.

In the rule for morphisms, the occurrence of Mod (P ) may appear redundant; but
it is critical to (i) make sure all defined declarations of P are part of the record
and (ii) provide the expected types for checking the declarations in δ.

Example 3. Consider the theories in Fig. 9. Applying Mod (·) to these theo-
ries yields exactly the record types of the same name introduced in Sect. 3
(Figs. 6 and 7), i.e., we have interSL ⇐ Mod (Semilattice) and interSLO ⇐
Mod (SemilatticeOrder). In particularly, Mod preserves the modular structure
of the theory.

Fig. 9. A theory of semilattices

The basic properties of Mod (X) are collected in the following theorem:

Theorem 5 (Functoriality). Mod (·) is a monotonic contravariant functor
from the category of theories and morphisms ordered by inclusion to the category
of types (of any universe) and functions ordered by subtyping. In particular,
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– if P is a theory in Θ and max P ∈ {type, kind}, then Θ;Γ � Mod (P ) ⇐
max P

– if V : P → Q is a theory morphism in Θ;Γ � Mod (V ) ⇐ Mod (Q) → Mod (P )
– if P is transitively included into Q, then Θ;Γ � Mod (Q) <: Mod (P ).

An immediate advantage of Mod (·) is that we can now use the expression level
to define expression-like theory level operations. As an example, we consider the
intersection P ∩ P ′ of two theories, i.e., the theory that includes all theories
included by both P and P ′. Instead of defining it at the theory level, which
would begin a slippery slope of adding more and more theory level operations,
we can simply build it at the expression level:

P ∩ P ′ := Mod (Q1) + . . . + Mod (Qn)

where the Qi are all theories included into both P and P ′.4

Note that the computation rules for Mod are efficient in the sense that the
structure of the theory level is preserved. In particular, we do not flatten the-
ories and morphisms into flat contexts, which would be a huge blow-up for big
theories.5

However, efficiently creating the internalization is not enough. Mod (X) is
defined via +, which is itself only an abbreviation whose expansion amounts
to flattening. Therefore, we establish admissible rules that allow working with
internalizations efficiently, i.e., without computing the expansion of +:

Theorem 6. Fix well-typed Θ, Γ and P = {includeP1, . . . , includePn,Δ} in
Θ. Then the following rules are admissible:

1≤i≤n
︷ ︸︸ ︷

Θ;Γ � r ⇐ Mod (Pi)

x:T∈Δ
︷ ︸︸ ︷

Θ;Γ � r.x ⇐ T [r/P ]

x:T :=t∈Δ
︷ ︸︸ ︷

Θ;Γ � r.x ≡ t[r/P ] : T [r/P ] Γ � r ⇒ R

Θ;Γ � r ⇐ Mod (P )

1≤i≤n
︷ ︸︸ ︷

Θ;Γ � ri ⇐ Mod (Pi)

1≤i,j≤n
︷ ︸︸ ︷

Θ;Γ � ri ≡ rj : Pi ∩ Pj Θ;Γ � �δ � [r/P ] ⇐ ⟦Δ ⟧ Γ � r ⇒ R

Θ;Γ � Mod (P ) + r1 + . . . + rn + �δ�
︸ ︷︷ ︸

=:r

⇒ Mod (P )

where [r/P ] abbreviates the substitution that replaces every x declared in a theory
transitively-included into P with r.x.6

The first rule in Theorem6 uses the modular structure of P to check r at
type Mod (P ). If r is of the form �δ�, this is no faster than flattening Mod (P )

4 Note that because P ∩ P ′ depends on the syntactic structure of P and P ′, it only
approximates the least upper bound of Mod (P ) and Mod (P ′) and is not stable under,
e.g., flattening of P and P ′. But it can still be very useful in certain situations.

5 The computation of max P may look like it requires flattening. But it is easy to
compute and cache its value for every named theory.

6 In practice, these substitutions are easy to implement without flattening r because
we can cache for every theory which theories it includes and which names it declares.
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all the way. But in the typical case where r is also formed modularly using a
similar structure as P , this can be much faster. The second rule performs the
corresponding type inference for an element of Mod (P ) that is formed following
the modular structure of P . In both cases, the last premise is again only needed
to make sure that r does not contain ill-typed fields not required by Mod (P ).
Also note that if we think of Mod (P ) as a colimit and of elements of Mod (P ) as
morphisms out of P , then the second rule corresponds to the construction of the
universal morphisms out of the colimit.

Example 4. We continue Example 3 and assume we have already checked
interSL ⇐ Mod (Semilattice) (*).

We want to check interSL + �δ�⇐ Mod (SemilatticeOrder). Applying the
first rule of Theorem 6 reduces this to multiple premises, the first one of which
is (*) and can thus be discharged without inspecting interSL.

Example 4 is still somewhat artificial because the involved theories are so
small. But the effect pays off enormously on larger theories.

5 Implementation and Case Study

We have implemented a variant of the record types and the Mod (·)-operator
described here in the MMT-system (as part of [LFX]). They are used extensively
in the Math-in-the-Middle archive (MitM), which forms an integral part in the
OpenDreamKit [Deh+16] and MaMoRed [Koh+17] projects. In particular the
formalizations of algebra and topology are systematically built on top of the
concepts presented in this paper.

Fig. 10. Theories for R-modules and vector spaces
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The archive sources can be found at [Mit], and its contents can be inspected
and browsed online at https://mmt.mathhub.info under MitM/smglom. Note
that the Mod (·) operator is called ModelsOf here.

For a particularly interesting example that occurs in MitM, consider the
theories for modules and vector spaces (over some ring/field) given in Fig. 10,
which elegantly follow informal mathematical practice. Going beyond the syntax
introduced so far, these use parametric theories. Our implementation extends
Mod to parametric theories as well, namely in such a way that Mod (Module) :∏

R:Mod(Ring) Mod (Module(R)) and correspondingly for fields. Thus, we obtain

Mod (VSpace) = λF : Mod (Field) .((Mod (Module) F ) + . . .)

and, e.g., Mod (VSpace) R <: Mod (Module) R. Because of type-level parameters,
this requires some kind of parametric polymorphism in the type system. For
our approach, the shallow polymorphism module that is available in Mmt is
sufficient.

6 Conclusion

We have presented a formal system that allows to systematically combine the
advantages of stratified and integrated grouping mechanisms found in type the-
ories, logics, and specification/programming languages. Concretely, our system
allows internalizing theories into record types in a way that preserves their
defined fields and modular structure.

Our MitM case study shows that theory internalization is an important
feature of any foundation; especially if it interfaces to differing mathematical
software systems. Our experiments have also shown that (predicate) subtyping
makes internalization even stronger in practice. But type-inference in the com-
bined system induces non-trivial trade-offs; which we leave to future work.
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Jacques Carette and William Farmer who have experimented with theory internaliza-
tions into record types in the scope of their MathScheme system. We acknowledge
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Abstract. We introduce a new theory of algebraic datatypes where
selector symbols can be shared between multiple constructors, thereby
reducing the number of terms considered by current SMT-based solving
approaches. We show that the satisfiability problem for the traditional
theory of algebraic datatypes can be reduced to problems where selec-
tors are mapped to shared symbols based on a transformation provided
in this paper. The use of shared selectors addresses a key bottleneck for
an SMT-based enumerative approach to the Syntax-Guided Synthesis
(SyGuS) problem. Our experimental evaluation of an implementation
of the new theory in the SMT solver cvc4 on syntax-guided synthe-
sis and other domains provides evidence that the use of shared selec-
tors improves state-of-the-art SMT-based approaches for constraints over
algebraic datatypes.

1 Introduction

Algebraic datatypes, also known as inductive or recursive datatypes, are com-
posite types commonly used for expressing finite data structures in computer
science applications, such as lists or trees. Reasoning efficiently about (algebraic)
datatypes is thus paramount in such fields as program analysis and verification,
which has led to numerous approaches for automating solving in this setting. In
this paper, we follow the semantic approach introduced by Barrett et al. [10],
which is generally the basis for datatype decision procedures in satisfiability
modulo theories (SMT) solvers [11].

In semantic presentations of the theory of algebraic datatypes [10,22], a
datatype is an absolutely free algebra over a signature of function symbols
called constructors; the immediate subterms of a datatype value are accessed
with function symbols called selectors, or projections, which are specific for each
constructor and its arguments. Datatypes also have discriminators, or testers,
associated with each constructor. They are predicates indicating whether a given
datatype value was built with a specific constructor.

The satisfiability of quantifier-free formulas in the theory of algebraic
datatypes is decidable. A basic decision procedure for this problem [10,22] used
by a number of SMT solvers operates by progressively unrolling datatypes: it
tries to satisfy constraints by guessing top-level constructors in order to build
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 591–608, 2018.
https://doi.org/10.1007/978-3-319-94205-6_39
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values for the constraint variables incrementally. Concretely, if x is a datatype
variable and c is an n-ary constructor for the datatype, the procedure may guess
the equality constraint x ≈ c(x1, . . . , xn) where x1, . . . , xn are fresh variables. If
such a choice leads to an inconsistency, the procedure backtracks and tries differ-
ent constructors until it determines that the constraints are satisfiable or no more
choices are possible. During this process, lemmas in the form of quantifier-free
clauses may be learned by the procedure that prevent the procedure from mak-
ing guesses already shown to be infeasible. However, these lemmas may include
selectors, and because each selector is associated with only a single constructor,
the generality and hence the usefulness of such lemmas is limited.

To address this limitation we introduce a new (formulation of the) theory
of datatypes that allows certain selectors to be shared by multiple constructors.
This way, information previously acquired when reasoning with a constructor,
i.e., the learned lemmas on the applications of its selectors, can be reused when
an argument of the same type is considered in another constructor. We illustrate
this point with the following example.

Example 1. Consider a binary tree whose internal nodes store either one or two
integer values, and whose leaves store both a Boolean and an integer value.

A datatype Tree modeling this data structure has three constructors: one
(N1) taking an integer and two Tree elements as arguments, another (N2) taking
two integers and two Tree elements as arguments, and a third (L) taking as
arguments a Boolean and an integer element. We write this datatype in the
following BNF-style notation:

Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

We assume each constructor has selectors associated with them. The subfields
(i.e., the immediate subterms) of terms constructed by N1 are accessed, respec-
tively, by the selectors SN1, 1, SN1, 2, and SN1, 3 of type Tree → Int, Tree → Tree
and Tree → Tree. The selectors for the other constructors are similar. We also
assume each constructor is associated with a tester predicate, i.e. isN1, isN2, and
isL, each of which takes a Tree as an argument. Given term t of type Tree,
consider the following set of clauses:

{¬isN1(t) ∨ SN1, 1(t) ≥ 0, ¬isL(t) ∨ SL, 2(t) ≥ 0 } (1)

The first clause states that when t has top symbol N1, its first subfield (which
is of type Int) is non-negative. Similarly, the second says that when t has top
symbol L, its second subfield is non-negative.

Consider now a different kind of selector symbol SInt, 1 of type Tree → Int
which maps each value of type Tree to the first (i.e., leftmost) subfield of t of type
Int, regardless of the top constructor symbol of t. We will refer to such selectors
as shared selectors. While nine selectors in the standard sense are necessary for
Tree, five shared selectors suffice to access all possible subfields of a value of type
Tree: two to access the Tree subfields, two to access the Int subfields, and one
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to access the Bool subfield of L. In particular, clause set (1) can be rewritten as
follows using only one shared selector:

{¬isN1(t) ∨ SInt, 1(t) ≥ 0, ¬isL(t) ∨ SInt, 1(t) ≥ 0 } (2)

stating that when t has top symbol N1 or L, its first integer child is non-negative.
•

In Example 1, the second set of clauses has one unique arithmetic constraint
whereas the first set has two. In practice, reducing the number of unique con-
straints can substantially improve the performance of SMT solvers. Our exper-
iments show that shared selectors lead to a significant reduction in the number
of unique constraints for several classes of benchmarks from real applications,
with resulting SMT solver performance improvements that are proportional to
the magnitude of this reduction.

Contributions. We introduce a conservative extension of the (generic) theory of
algebraic datatypes that features shared selectors. We show how using shared
selectors instead of standard (unshared) selectors can improve the performance
of current satisfiability procedures for the theory and also, as a result, the per-
formance of procedures for syntax-guided synthesis. Specifically:

1. We formalize the new theory and show that constraints in the original sig-
nature can be reduced to equisatisfiable constraints whose selectors are all
shared selectors. We present a decision procedure for the satisfiability of
quantifier-free formulas in this theory as a natural modification of an ear-
lier procedure for datatypes [22].

2. We provide details on an SMT-based approach for syntax-guided synthe-
sis [24], and demonstrate how it can significantly benefit from native support
in the SMT solver for a theory of datatypes with shared selectors.

3. We present an extensive experimental evaluation of our implementation in the
SMT solver cvc4 [7] on benchmarks from SMT-LIB [8] and from the most
recent edition of SyGuS-COMP [3], the syntax-guided synthesis competition.
This evaluation shows that shared selectors can reduce the number of terms
introduced during solving, thus leading to more solved problems with respect
to the state of the art.

2 Preliminaries

Our setting is a many-sorted classical first-order logic similar in essence to the
one adopted by the SMT-LIB standard [9]. A signature Σ = (Y,F) consists of a
set Y of first-order types, or sorts, and a set F of first-order function symbols over
these types. Each symbol f ∈ F is associated with a list τ1, . . . , τn of argument
types and a return type τ , written f : τ1 × · · · × τn → τ or just f : τ if n = 0.
The function arity(f) returns n. We assume that any signature contains a Bool
type and constants true, false : Bool; a family (≈ : τ × τ → Bool)τ∈Y of equality
symbols; a family (ite : Bool × τ × τ → τ)τ∈Y of if-then-else symbols; and the
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Boolean connectives ¬, ∧, ∨ with their expected types. Function symbols of Bool
return type play the role of predicate symbols.

Typed terms are built as usual over function symbols from F and typed
variables from a fixed family (Vτ )τ∈Y of pairwise-disjoint infinite sets. Formulas
are terms of type Bool. The syntax t �≈ u is short for ¬(t ≈ u). We reserve
the names x, y, z for variables; r, s, t, u for terms (which may be formulas); and
ϕ,ψ for formulas. We use the symbol = for equality at the meta-level. The set
of all terms occurring in a term t is denoted by T(t). When convenient, we
write an enumeration of (meta)symbols a1, . . . , an as ā. If b1, . . . , bk is another
enumeration, āb̄ denotes the enumeration a1, . . . , an, b1, . . . , bk.

Given a signature Σ = (Y,F), a Σ-interpretation I maps: each τ ∈ Y to a
non-empty set τI , the domain of τ in I, with BoolI = {	,⊥}; each x ∈ Vτ

to an element of τI ; each f ∈ F s.t. f : τ1 × · · · × τn → τ to a total function
uI : τI

1 × · · · × τI
n → τI when n > 0 and to an element of τI when n =

0. A satisfiability relation between Σ-interpretations and Σ-formulas is defined
inductively as usual.

A theory is a pair T = (Σ, I) where Σ is a signature and I is a non-empty class
of Σ-interpretations, the models of T , that is closed under variable reassignment
(i.e., every Σ-interpretation that differs from one in I only in how it interprets the
variables is also in I) and isomorphism. A Σ-formula ϕ is T -satisfiable (respec-
tively T -unsatisfiable) if it is satisfied by some (resp., no) interpretation in I. A
satisfying interpretation for ϕ models (or is a model of) ϕ. A formula ϕ is valid
in T (or T -valid) if every model of T is a model of ϕ.

3 Theory of Datatypes with Shared Selectors

In this section, we consider a theory D of algebraic datatypes over some sig-
nature Σ = (Y,F) and then extend it conservatively to an expanded signature
with shared selectors. The terms of D are quantifier-free. As a technical conve-
nience, we treat free variables as constants in a suitable expansion of Σ. The
types of D are partitioned into a set of datatypes Ydt, and a set of other types
Yord. We use the metavariables δ, ε to refer to datatypes and τ, υ for arbitrary
first-order types. Each datatype δ is equipped with one or more constructors,
distinguished function symbols from F with return type δ. For every argument
k of a constructor C : τ1 . . . , τn → δ for δ, we assume F contains a (standard)
selector SC, k

δ : δ → τk. We omit δ from the selector name when it is understood
or not important. We refer the reader to the SMT-LIB 2 reference document [9]
or Barrett et al. [10] for a formal definition of this theory.1 We recall salient
properties of its symbols as needed.

To start, each model of the theory, when reduced to the constructors of
a datatype in the theory, is isomorphic to a term (or Herbrand) algebra.
Concretely, this means that if δ ∈ Ydt is a datatype whose constructors

1 The two references differ on how they make selectors (which are naturally partial
functions) total. We follow the SMT-LIB 2 standard here.



Datatypes with Shared Selectors 595

are {C1, . . . ,Cm}, then the following formulas are all D-valid for all distinct
i, j ∈ {1, . . . ,m}

∀x1, . . . , xpi , z1, . . . , zqi . Ci(x1, . . . , xpi) �≈ Cj(z1, . . . , zqi) (Distinctness)
∀x1, . . . , xpi , z1, . . . , zpi .

Ci(x1, . . . , xpi) ≈ Ci(z1, . . . , zpi) → x1 ≈ z1 ∧ . . . ∧ xpi ≈ zpi

(Injectivity)

∀x. isC1(x) ∨ · · · ∨ isCm(x) (Exhaustiveness)

Above, we write isCi(t) to denote the predicate that holds if and only if the
top symbol of t is Ci. Strictly speaking, we do not need to extend our signature
with the tester symbols isC since a term of the form isC(t) can be considered an
abbreviation for the equality t ≈ C(SC, 1(t), . . . ,SC, n(t)) where n = arity(C).

Interpretations must also respect acyclicity, which states that constructor
terms cannot be equal to any of their proper subterms.

Since all models of D interpret a datatype δ in the same way modulo isomor-
phism, we will say that δ is finite if its interpretation is a finite set. For simplicity,
we will assume that every type τ in D that is not a datatype is interpreted as
an infinite set in every model of D. This is not a strong restriction in practice,
since types with some fixed, finite cardinality k can be treated as datatypes with
k nullary constructors.

The relationship between an n-ary constructor C and each of its selectors
SC, k with k = 1, . . . , n is captured by the following D-valid formula:

∀x1, . . . , xni . S
C, k
δ (C(x1, . . . , xni)) ≈ xk (Standard selection)

3.1 Shared Selectors

We extend the signature of D with additional selectors which we call shared
selectors and denote as Sτ , k

δ , for each datatype δ and type τ in D and each
natural number k. Intuitively, a shared selector Sτ , k

δ for δ, when applied to a
δ-term C(t1, . . . , tn) returns the k-th argument of C that has type τ , if one exists.

Example 2. Consider again the Tree datatype introduced in Example 1. For
term

t = N1(1, N2(2, 3, L(true, 4), L(false, 5)), L(true, 6))

the equalities SInt, 1(t) ≈ 1, SInt, 2(STree, 1(t)) ≈ 3, and SInt, 1(STree, 2(STree, 1(t))) ≈
6 are all valid in our extension of D to shared selectors. •

To define shared selectors formally, let us first define a partial function stoa
(for selector to argument) that takes as input a natural number k, a type τ , and
a constructor C, and returns the index of the k-th argument of C of type τ . We
leave stoa undefined if C has fewer than k arguments of type τ .

Example 3. For the Tree datatype, stoa(1, Int, N1) = 1, stoa(2, Tree, N1) =
3 and stoa(1, Int, L) = 2, whereas stoa(2, Int, N1), stoa(1, Bool, N2), and
stoa(1, Tree, L) are undefined. •
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More formally, in our extension of theory D with shared selectors, which we also
refer to as D for convenience, the following holds for all datatypes δ, constructors
C of δ, and shared selectors Sτ , k, whenever stoa(k, τ , C) is defined:

∀x1, . . . , xn. S
τ , k
δ (C(x1, . . . , xn)) ≈ xi, where i = stoa(k, τ , C) (Shared selection)

It is not difficult to argue that every Σ-formula ϕ without shared selectors is
valid in the extended theory if and only if it is valid in the original theory.

3.2 From Standard Selectors to Shared Selectors

The satisfiability problem for constraints, i.e., finite sets of literals, over the
original theory of datatypes (without shared selectors) is decidable [10]. In this
section, we introduce a transformation H that reduces arbitrary constraints in
our extended theory D, which may have both standard and shared selectors,
to constraints with no standard selectors. Applying this transformation as an
initial step allows us to determine the satisfiability of arbitrary Σ-constraints by
means of a decision procedure for Σ-constraints without standard selectors.

To define this transformation, let maxΣ denote some natural number that is
greater than the arity of all constructors in Σ. We define the dual of the stoa
function from Subsect. 3.1 as the partial function atos (for argument to selector)
that takes as input a type τ , a constructor C : τ1 × · · · × τn → δ, and a natural
number k ≤ n, and returns the number of times τ occurs in τ1, . . . , τk.

Figure 1 defines the transformation H, which takes as arguments a Σ-term t
and a mapping M . The latter consists of one entry of the form s �→ C for each
datatype term s in T(t) where C is one of the constructors for the type of s. With-
out loss of generality, we assume that all applications of shared selectors Sτ, k

δ

occurring in t are such that k < maxΣ. The transformation H leaves variables
unchanged; for terms whose top symbol is a constructor or a shared selector, H
behaves homorphically. For terms t with a standard selector SC, k

δ : δ → τ as top
symbol, we distinguish whether the argument t1 is mapped to C by M or not. In
the first case, we replace SC, k

δ by the shared selector Sτ , atos(τ ,C, k)
δ . In the second

case, we replace SC, k
δ by the shared selector S

τ , err(C, k)
δ , where err is a function

that takes as arguments a constructor and a k such that 1 ≤ k ≤ arity(C), and
returns a natural number. Additionally, err has the properties:

1. If C1 �= C2 or k1 �= k2, then err(C1, k1) �= err(C2, k2), and
2. err(C1, k) ≥ maxΣ.

We use the function err in this transformation to introduce shared selectors that
are unique to the pair (C, k), as guaranteed by Property 1 above, and whose
return value is undefined, as guaranteed by Property 2. In either case, H is
applied recursively to t1.

We extend H to sets of equalities and disequalities E as follows:

H(E, M) = {H(t1, M) ≈ H(t2, M) | t1 ≈ t2 ∈ E } ∪
{H(t1, M) �≈ H(t2, M) | t1 �≈ t2 ∈ E } ∪ { isC(t) | t �→ C ∈ M }
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Fig. 1. Definition of H(t, M)

In other words, for each (dis)equality, we include the corresponding constraint
where the transformation is applied to both its terms. We add to this set an
application of the discriminator for C to t for each t �→ C in the mapping M .

Example 4. Consider again the Tree datatype from Example 1. Let:

E = {x ≈ N1(2, y, S
N1, 2(x)), SN1, 1(x) ≈ 2, SL, 2(x) �≈ 0} and M = {x �→ N1, y �→ L}

Then, H(E, M) is the set:

{x ≈ N1(2, y, S
Tree, 1(x)), SInt, 1(x) ≈ 2} ∪ {SInt, err(L, 2)(x) �≈ 0} ∪ {isN1(x), isL(y)}

Since M maps x to N1, the standard selector application SN1, 2(x) is converted
to the shared selector application STree, 1(x), whereas SL, 2(x) is converted to
SInt, err(L, 2)(x). •

The following theorem states the key property of the transformation H,
namely that a set of arbitrary Σ-constraints E is satisfiable if and only if there
exists some mapping M for which H(E, M) is satisfiable. The full proof of this
statement is available in an extended version of this paper [26].

Theorem 1. E is D-satisfiable iff H(E, M) is D-satisfiable for some M .

Proof (Sketch). We split the statement into its two implications. The proof relies
on the construction of a mapping M from a model of E.

“⇒”: If E is satisfied by some Σ-model I of D, there exists a mapping MI and Σ-
model J of D such that H(E, MI) is satisfied by J . We show this by a particular
construction for MI and J . Let the mapping MI be {t �→ C | I |= isC(t), t ∈
T(E)}. Construct J as follows. First, all types τ and constructors are interpreted
by J the same way as in I. Furthermore, we interpret all variables and standard
selectors in J the same as in I. It remains to state how shared selectors are
interpreted in J . Notice that our transformation generates shared selectors of
the form S

τ , err(C, k)
δ . We distinguish these in the following construction.

S
τ , err(C, k)
δ

J
= SC, k

δ

I
, and Sτ , k

δ

J
= Sτ , k

δ

I
for all other shared selectors.
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The above construction is well-defined due to our definition of err. In particular,
err(C, k) is defined uniquely for each (constructor, natural number) pair. By this
construction, it can be shown that H(t,MI)J = tI by structural induction on
t for all t ∈ T(E). Since I satisfies E and since H(t, MI)J = tI for all terms
t ∈ T(E), we have that J satisfies the equalities and disequalities in H(E, MI)
of the form (¬)H(t1, MI) ≈ H(t2, MI). By construction of MI , we have that
J satisfies the constraints in H(E, MI) of the form isC(t) where t �→ C ∈ MI .
Hence, J satisfies H(E, MI).

“⇐”: If H(E, M) is satisfied by some Σ-model J of D for some mapping M ,
then E is satisfied by some Σ-model I of D. We show this by constructing I as
follows. First, all types, constructors, variables and have the same interpretation
in I as in J . Furthermore, all shared selectors have the same interpretation in
I as in J . We interpret standard selectors in I as follows.

SC, k
δ (t)I =

{
S

τ, atos(τ ,C, k)
δ (t)I if M(t) = C

S
τ, err(C, k)
δ (t)I otherwise

Similar to the first part, it can be shown that tI = H(t, M)J by structural
induction on t for all t ∈ T(E). Since J satisfies H(E,M) and tI = H(t, M)J

for all t ∈ T(E), we have that I satisfies the equalities and disequalities in
H(E, MI) of the form (¬)H(t1, M) ≈ H(t2, M). Furthermore, since J satisfies
the constraints isC(t) for all t �→ C ∈ M and since tI = tJ , we have that I
satisfies these constraints as well. Thus, I satisfies H(E,M). ��

Corollary 1. For some index sets I and J , and set E of Σ-literals without
standard selectors, let

E0 = E ∪ { SCji
, ki (xi) ≈ yi | i ∈ I, j ∈ J } and

E1 = E ∧ { ite(isCji (xi), S
τ, atos(τ , Cji

, ki)(xi), S
τ, err(Cji

, ki)(xi)) ≈ yi | i ∈ I, j ∈ J } .

The sets E0 and E1 are equisatisfiable in D.

Using this corollary, we can reduce (possibly after some literal flattening) the
satisfiability of an arbitrary set of Σ-constraints E0 to a set of Σ-constraints
E1 not containing standard selectors. In particular, our implementation in
cvc4 replaces each application of the form SCji

, ki(xi) by the term ite(isCji(xi),
Sτ, atos(τ ,Cji

, ki)(xi), Sτ, err(Cji
, ki)(xi)) during a preprocessing pass on the input

formula.

4 Decision Procedure for Datatypes with Shared
Selectors

This section describes a tableau-like calculus for deciding constraint satisfia-
bility in D, with constraint variables interpreted existentially. The calculus is
parametrized by the theory’s signature Σ. By the results of the previous section,
we can restrict with no loss of generality the input language to sets of equalities
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Fig. 2. Derivation rules.

and disequalities between Σ-terms with no standard selectors and no discrim-
inators. Since our calculus is based on similar calculi for datatypes that have
been presented in detail in previous work [10,22], we focus on our modifications
to accommodate shared selectors.

The derivation rules of the calculus operate on a current set E of constraints
as specified in Fig. 2. A derivation rule can be applied to E if its premises are
met. Some of those premises check membership in the congruence closure E∗ of
E, the smallest superset of E that is closed under entailment in the theory of
equality.2 A rule’s conclusion either modifies E or replaces it by ⊥ to indicate
unsatisfiability. There, the notation E, t ≈ s abbreviates E∪{t ≈ s}; the notation
t̄ ≈ ū stands for the set of equalities between the corresponding elements of t̄
and ū. The Split rule has multiple alternative conclusions, denoting branching.

A rule application is redundant if (one of) its conclusion(s) leaves E
unchanged. The rules are applied to build a derivation tree, i.e., a tree whose
nodes are finite sets of (dis)equalities, with an initial constraint set E0 as its root
and child nodes obtained by a non-redundant rule application to their parent.
We say that E0 has a derivation tree D if D is a derivation tree with root E0. A
node is saturated if it admits only redundant rule applications. A derivation tree
is closed if all of its leaf nodes are ⊥. Intuitively, a derivation tree is generated
progressively from E0 by applying a derivation rule to a leaf node. The rules are
applied until the derivation tree becomes closed (indicating that the initial set
E0 is D-unsat) or contains a saturated leaf node (indicating that E0 is D-sat).

2 Such tests are effective by well-known results about the theory of equality [6].
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In the calculus, all reasoning based on the general properties of equality is
encapsulated in the rule Conflict, which detects that congruent terms are
forced to be distinct. The remaining rules perform datatype reasoning proper,
with Decompose computing a downward equality closure based on the injec-
tivity of constructors and Clash detecting failures based on their distinctness.
The Cycle rule recognizes when a constructor term must be equivalent to one
of its subterms, which is forbidden in all models of the theory.

The calculus also incrementally unrolls terms by branching on different con-
structors, with the Split rule performing case distinctions on constructors for
various terms occurring in E. The main modification from the previous calculi
for the theory of datatypes is that this Split rule operates on shared selectors.
Its application can be seen as an on-the-fly transformation from standard to
shared selectors as described in Sect. 3.2. Indeed, for each constructor Ci in its
conclusion, the following holds with a mapping M such that M(t) = Ci:

S
τ1, atos(τ1,Ci, 1)
δ (t) = H(SCi, 1

δ (t), M), . . . , S
τni , atos(τni

,Ci, ni)

δ (t) = H(SCi, n
δ (t), M)

Any derivation strategy for the calculus that does not stop until it generates a
closed tree or a saturated node yields a decision procedure for the D-satisfiability
of sets of Σ-literals. We prove this similarly to previous work [10,22], but using
shared selectors and in the simpler setting obtained by assuming the availability
of a congruence closure procedure. The full proofs are available in an extended
version of this paper [26].

Proposition 1 (Termination). All derivation trees in the calculus are finite.

Proposition 2 (Refutation Soundness). If a constraint set E0 has a closed
derivation tree, then it is D-unsatisfiable.

Proposition 3 (Solution Soundness). If a constraint set E0 has a derivation
tree with a saturated node, then it is D-satisfiable.

Theorem 2. Constraint satisfiability in the theory D of datatypes with (stan-
dard and) shared selectors is decidable.

5 Using Shared Selectors for Syntax-Guided Synthesis

In this section, we show how the theory of datatypes with shared selectors can
substantially improve the performance of an approach by Reynolds et al. [24] for
performing syntax-guided synthesis (SyGuS) [1] directly within an SMT solver.

Syntax-guided synthesis is the problem of automatically synthesizing a func-
tion that satisfies a given specification, but with the addition of explicit syntactic
restrictions on the solution space. These restrictions specify that the function
must be built with selected operators over basic types (such as arithmetic and
Boolean operators) and belong to the language generated by a given grammar.
Grammars allow users to specify formally a set of candidates for the desired
function, thus reducing the search effort of a SyGuS solver.

More technically, a syntax-guided synthesis problem for a function f in a
background theory T of the basic types consists of:
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1. a set of semantic restrictions, or specification, given by a (second-order) T -
formula of the form ∃f.∀x̄. ϕ[f, x̄], and

2. a set of syntactic restrictions on the solutions for f , given by a grammar R.

A solution for f is a lambda term λȳ. e of the same type as f , such that (i)
∀x̄.ϕ[λȳ.e, x̄] is valid in T (modulo beta-reductions) and (ii) e is in the language
generated by R.

cvc4 incorporates a SyGuS solver that automatically encodes the solution
space of a SyGuS problem as a set of algebraic datatypes mirroring the problem’s
syntactic restrictions [24]. A deep embedding of the datatypes in the problem’s
background theory T , realized as a set of automatically generated axioms, pro-
vides a semantics for datatype values in terms of the semantic values in T .

Example 5. Consider the problem of synthesizing a binary function f over the
integers such that f is commutative (i.e., ∃f ∀xy. f(x, y) ≈ f(y, x)), and with
the solution space for f defined by a context-free grammar R with start symbol
A and production rules:

A → x | y | 0 | 1 | A + A | A − A | ite(B, A, A) B → A ≥ A | A ≈ A | ¬B

The following mutually recursive datatypes capture the grammar R. The
datatypes themselves correspond to R’s non-terminals (e.g., a corresponds to
A), their constructors correspond to production rules (e.g., X corresponds to
A → x):

a = X | Y | Zero | One | Plus(a, a) | Minus(a, a) | Ite(b, a, a)
b = Geq(a, a) | Eq(a, a) | Neg(b)

Datatypes like the ones above are associated with the programs they represent
through evaluation functions that map datatype values, expressed as variable-
free constructor terms, to expressions over the basic types. For example, the
evaluation function for a is denoted by a function symbol evala : a× Int× Int →
Int, and the specific term evala(Plus(X,X), 2, 3) is interpreted as (x + x){x �→
2, y �→ 3} = 2 + 2 = 4. The evaluation functions are defined axiomatically by a
set of quantified formulas that, in this case, can be handled by any SMT solver
that, like cvc4, supports the combined theory of datatypes, linear arithmetic,
and uninterpreted functions. The SyGuS problem for f in this example can then
be stated as the first-order formula:

∀xy. evala(d, x, y) ≈ evala(d, y, x) (3)

where d is a fresh constant of type a. This formula has models in which d is
interpreted as Zero or Plus(X,Y), which correspond to solutions f = λxy. 0 and
f = λxy. x + y for the original problem, respectively.3 •

3 For a thorough description of this approach, see [24].
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Since cvc4 is a DPLL(T )-based solver [11], for a problem like the one in
the example above, it will find a possible solution for d by first guessing its top
constructor symbol with an application of the Split rule from Fig. 2. The effect
of the rule is achieved in practice with the generation of splitting lemmas such
as the following, which we write here with discriminators and standard selectors
for simplicity:

isX(d) ∨ isY(d) ∨ · · · ∨ isIte(d) (4)

isX(SPlus, 1(d)) ∨ isY(SPlus, 1(d)) ∨ · · · ∨ isIte(SPlus, 1(d)) (5)

isGeq(SIte, 1(d)) ∨ isEq(SIte, 1(d)) ∨ isNeg(SIte, 1(d)) (6)

isX(SIte, 2(d)) ∨ isY(SIte, 2(d)) ∨ · · · ∨ isIte(SIte, 2(d)) (7)

The solver will subsequently guess the top constructor for other subterms of d’s
value. These guesses are represented symbolically by selector chains, i.e. zero or
more applications of selectors to d; for example, SPlus, 1(d) is a selector chain that
corresponds to the first child of d (if we think of the value of d as a tree) when d
is an application of Plus; SPlus, 1(SPlus, 1(d)) is a selector chain that corresponds to
the first child of the first child of d when d and its first child are both applications
of Plus; and so on.

The bottleneck in solving (3) is the large number of splitting lemmas for selec-
tor chains introduced during search which, depending on the datatypes involved,
is often highly exponential. Our key observation is that datatypes generated by
the SyGuS approach sketched above very often include constructors with argu-
ments of the same type. In Example 5, both a and b have multiple constructors
with arguments of type a. Using shared selectors, we can reduce the number of
selectors in the example from 7 to 3 for a and from 5 to 3 for b. Moreover, using
shared selectors in selector chains makes splitting lemmas relevant in multiple
contexts. For example, a splitting lemma for a selector chain Sa, 1(d) is relevant
when d is either Plus, Minus or Ite; likewise Sa, 1(Sa, 1(d)) is relevant when d and
its first child of type a are applications of either Plus, Minus or Ite. Notice that
by using the decision procedure for shared selectors from Sect. 4, lemmas (5) and
(7) would be instead both provided to the SAT engine as:

isX(SInt, 1(d)) ∨ isY(SInt, 1(d)) ∨ · · · ∨ isIte(SInt, 1(d))

Using shared selectors can lead to a reduction in the number of other kinds
of lemmas as well. For instance, during synthesis cvc4 implements symmetry
breaking techniques to avoid spending time on multiple candidates that are all
equivalent in T [24,25]. Redundant candidates are avoided by adding blocking
clauses to the SAT engine that are also expressed in terms of discriminators
applied to selector chains.

Example 6. Consider again the function f , grammar R, and datatypes a and
b from Example 5. Assume that the solver considers X as a candidate solution
for d, and later considers another candidate solution, Plus(X,Zero). Since the



Datatypes with Shared Selectors 603

corresponding arithmetic terms x and x+0 are equivalent in integer arithmetic,
the solver infers a lemma template of the form:

¬isPlus(z) ∨ ¬isX(SInt, 1(z)) ∨ ¬isZero(SInt, 2(z))

to block a redundant candidate solution like (the one corresponding to) x + 0.
This is achieved by instantiating the template with the substitution {z �→ d} for
variable z. More interestingly, z can be instantiated with other selector chains
to rule out entire families of redundant candidate solutions. For instance, the
lemma obtained with {z �→ SInt, 1(d)} rules out all terms that have x + 0 as
their first child of type a, such as the terms (x + 0) + y, ite(x ≥ y, x + 0, y)
and (x + 0) − 1, which are equivalent to the smaller expressions x + y, ite(x ≥
y, x, y) and x − 1, respectively, and hence redundant as candidate solutions.
Sharing selectors allows the same blocking clause to be reused for the different
constructors, whereas standard selectors would require three different clauses in
this case, with z �→ SPlus, 1(d), z �→ SIte, 2(d), and z �→ SMinus, 1(d), respectively. •

A majority of SyGuS problems can be encoded as datatypes that have significant
sharing of selectors across multiple constructors, thus making the use of shared
selectors particularly effective in this domain. The next section measures the
impact of shared selections when solving SyGuS problems in cvc4.

6 Experiments

We implemented our calculus for the theory of datatypes with shared selectors in
cvc4 Version 1.5, together with a preprocessing pass to convert standard selec-
tors in input formulas to shared ones and other modifications to the existing
decision procedure for datatypes, as described in Sects. 3.2 and 4. We discuss
here our evaluation of two configurations of cvc4, one with and one without
support for shared selectors, on two different sets of benchmarks: the SyGuS
benchmark suite from the 2017 SyGuS competition [4]; and SMT-LIB [8] bench-
marks containing datatypes. Our experiments4 were performed on the StarExec
logic solving service [28].

6.1 Syntax-Guided Synthesis Benchmarks

The benchmarks from the 2017 SyGuS competition are divided into five families
across four tracks: (i) the General track, with problems over the theories of
linear integer arithmetic (LIA) or bit-vectors; (ii) the conditional linear integer
arithmetic track (CLIA), with problems over LIA; (iii) the Invariant synthesis
track, also over LIA; and (iv) the Programming-by-examples track [17,18], with
a family over bit-vectors and another over strings. We measured the impact

4 The data and details on how to reproduce our results are available at https://cvc4.
cs.stanford.edu/papers/IJCAR2018-shsel/.

https://cvc4.cs.stanford.edu/papers/IJCAR2018-shsel/
https://cvc4.cs.stanford.edu/papers/IJCAR2018-shsel/
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Fig. 3. Performance of cvc4 on benchmarks from five families of SyGuS Comp 2017.

Fig. 4. Impact of shared selectors on solving time and number of SAT decisions.

of shared selectors by comparing for the two configurations of cvc4 the total
number of solved problems and the average solving time, number of decisions
performed by the SAT engine, quantifier-free terms generated, and number of
selectors in the signature. Averages were computed over the set of problems
solved by both configurations. We used a timeout of 30 min per benchmark.

A summary of the results is given in Fig. 3. The first two columns show the
evaluated family and the number of benchmarks in it, while the other columns
present the statistics listed above, with average times expressed in seconds. The
number of problems solved by both configurations is given in parentheses in the
third column. The results clearly show that sharing selectors reduces the number
of selectors in the signature, which generally leads to fewer terms and SAT deci-
sions, with a positive impact on solving speed and number of problems solved.
Except for the invariant family, the cvc4 configuration with shared selectors
solves more problems than the one without. The impact of shared selectors is
particularly significant for the bit-vector benchmark suite (PBE BV), with a
reduction of over 80% in the average number of selectors. In that case, cvc4

is over eight times faster with shared selectors than without, solving 412 more
problems, thus reducing the percentage of unsolved problems in this category
from over 65% to less than 12%. Significant improvements can also be observed
in the PBE Strings and General families, with the percentages of unsolved prob-
lems being reduced from over 40% to almost 13% and from over 55% to almost
40%, respectively.
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Fig. 5. Performance of cvc4 on benchmarks from three families of SMT LIB.

We present a per-problem comparison in the scatter plots of Fig. 4, which
clearly shows that for the vast majority of the benchmarks, sharing selectors
reduces the number of SAT decisions and improves the solving time, often by
orders of magnitude.

Comparison Against Other SyGuS Solvers. We also compared cvc4’s perfor-
mance with the state-of-the-art SyGuS solver EUSolver [2,5]. For fairness, in
this comparison we combine the results of the above configurations of cvc4

with its other approach for solving single-invocation synthesis problems (see [24]
for details), which impacts the CLIA and General families of benchmarks.
We obtained the following results for the problems solved by EUSolver and
cvc4 with and without shared selectors: 71/73/73 for CLIA, 404/391/334 for
General, 42/46/46 for Invariant, 739/665/253 for PBE BV, and 68/93/64 for
PBE Strings. These numbers show that overall cvc4 is significantly more com-
petitive with shared selectors than without, surpassing EUSolver’s perfor-
mance in three of the five families.

6.2 Datatype Benchmarks from SMT LIB

We also considered all SMT-LIB benchmarks containing datatypes. Among
these, we excluded from consideration 14, 387 benchmarks that do not have any
shareable selectors, as cvc4 with and without shared selectors perform the same
on these benchmarks. The remaining 889 benchmarks are divided into three
families: (i) the Leon set contains benchmarks generated by Leon [12] for verifi-
cation of Scala programs (AUFBVDTLIA logic); (ii) the Sledgehammer set has
benchmarks from Isabelle [21] generated by Sledgehammer [14] (UFDT logic);
and (iii) the Nunchaku set has benchmarks generated for higher order theorem
provers by Nunchaku [23] (UFDT logic).

We summarize our results over the two configurations of cvc4, with and
without shared selectors, in Fig. 5, following the same schema as in Fig. 3. We
used a timeout of 60 s, since in this setting we evaluate SMT solvers as backends
of verification and ITP tools, which require fast answers. The configuration with
shared selectors solved at least all the benchmarks as the one without. The Leon
benchmark set shows the most significant impact of sharing selectors, with a
reduction of over 60% in the average number of selectors, and 4 more problems
solved.

Comparison Against Other SMT Solvers. To put the shared selector version of
cvc4 in context with the state of the art, we also compared it with the only
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two provers that can reason about datatypes and support the SMT-LIB format:
z3 [16] and Vampire [19]. On the Nunchaku and Sledgehammer benchmarks, the
number of problems solved by cvc4/z3/Vampire is 67/29/30 and 113/119/138,
respectively. The comparison on the Leon set excludes Vampire, since it does not
support the theory of bit-vectors; the split between cvc4 and z3 is 179/173 on
that set. The results show that cvc4 compares favorably with the other tools.

7 Related Work

The motivation of our work is to reduce the number of terms considered by a
decision procedure for the theory of algebraic of datatypes, based on procedures
introduced in previous work [10,22]. Thus, our contributions apply to other
systems that handle datatypes semantically, such as smbc [15] and the SMT
solver z3 [16]. On systems that reason about datatypes axiomatically, such as
the first-order theorem prover and SMT solver Vampire [19], and the higher-order
systems Isabelle [21] and Dafny [20], whether to share selectors and how to handle
them is simply a matter of axiomatizing the datatypes theory accordingly. For
example, the axiomatization in Vampire avoids selectors altogether [19, Sect. 4.3],
while in Isabelle users are encouraged to write specifications directly with shared
selectors [13, Sect. 3].

Most SyGuS solvers employ a variation of counter-example guided induc-
tive synthesis (CEGIS), introduced by Solar-Lezama [27]. While cvc4 benefits
from sharing selectors by representing syntax restrictions with datatypes, other
systems use an outer layer with an underlying reasoning engine, for instance
using an SMT solver to verify the correctness of candidate solutions, but not for
performing the enumerative search [5].

8 Conclusion

We have presented an extension of the theory of algebraic datatypes that adds
shared selectors. We have discussed and proved correct a calculus for deciding the
constraint satisfiability problem in the new theory. Moreover, we have described
how algebraic datatypes can be leveraged in an SMT solver to solve syntax-
guided synthesis problems and explained how the use of shared selectors in this
setting can lead to significant performance gains. Our experiments demonstrate
that an implementation of the new calculus in the cvc4 solver significantly
enhances its performance on syntax-guided synthesis problems and is responsible
for making cvc4 the best known solver for certain classes of problems.

In future work, we plan to generalize our approach so that distinct selector
chains can be compressed to a single application of the same selector symbol.
This requires more sophisticated criteria for recognizing when two selector chains
for a datatype cannot be simultaneously constrained for arbitrary values of that
datatype. We believe that this further extension can be done in a manner similar
to the one presented here and expect that this will lead to further performance
improvements.
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Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

8. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

9. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa (2017)

10. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. JSAT 3(1–2), 21–46 (2007)

11. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 11

12. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verification
system: verification by translation to recursive functions. In: Proceedings of the
4th Workshop on Scala, pp. 1:1–1:10. ACM (2013)

13. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08970-6 7

14. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
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Abstract. If a conclusion follows from a set of axioms, then its justi-
fication is a minimal subset of axioms for which the entailment holds.
An entailment can have several justifications. Such justifications are com-
monly used for the purpose of debugging of incorrect entailments in
Description Logic ontologies. Recently a number of SAT-based methods
have been proposed that can enumerate all justifications for entailments
in light-weight ontologies languages, such as EL. These methods work by
encoding EL inferences in propositional Horn logic, and finding minimal
models that correspond to justifications using SAT solvers. In this paper,
we propose a new procedure for enumeration of justifications that uses
resolution with answer literals instead of SAT solvers. In comparison to
SAT-based methods, our procedure can enumerate justifications in any
user-defined order that extends the set inclusion relation. The procedure is
easy to implement and, like resolution, can be parametrized with ordering
and selection strategies. We have implemented this procedure in PULi—a
new Java-based Proof Utility Library, and performed an empirical com-
parison of (several strategies of) our procedure and SAT-based tools on
popular EL ontologies. The experiments show that our procedure provides
a comparable, and often better performance than those highly optimized
tools. For example, using one of the strategies, we were able for the first
time to compute all justifications for all entailed concept subsumptions in
one of the largest commonly used medical ontology Snomed CT.

1 Introduction and Motivation

Axiom pinpointing, or computing justifications—minimal subsets of axioms of
the ontology that entail a given logical consequence—has been a widely stud-
ied research topic in ontology engineering [1–12]. Most of the recent methods
focus on the so-called EL family of Description Logics (DLs), in which logical
consequences can be proved by deriving new axioms from existing ones using
inference rules. The resulting inferences are usually encoded as propositional
(Horn) clauses, and justifications are computed from them using (modifications
of) SAT solvers. To ensure correctness, the input inference set must be complete,
that is, the inferences are enough to derive the consequence from any subset of
the ontology from which it follows.

In this paper, we present a new resolution-based procedure that enumerates
all justifications of an entailment given a complete set of inferences. Apart from
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 609–626, 2018.
https://doi.org/10.1007/978-3-319-94205-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94205-6_40&domain=pdf


610 Y. Kazakov and P. Skočovský

requiring completeness, the form of inferences can be arbitrary and does not
depend on any logic. For example, our method can be used with the inferences
provided by existing consequence-based procedures [13–16]. The procedure can
enumerate justifications in any given order, provided it extends the proper subset
relation on sets of axioms. Performance of the procedure depends on the strategy
it follows while enumerating justifications. We have empirically evaluated three
simple strategies and experimentally compared our procedure with other highly
optimized justification computation tools.

The paper is organized as follows. In Sect. 2 we describe related work.
Section 3 introduces background on DLs, justifications, and resolution. In Sect. 4
we present the new procedure, and in Sect. 5 we describe its implementation and
empirical evaluation.

2 Related Work

There are, generally, two kinds of procedures for computing justifications [9]
using a DL reasoner. Black-Box procedures use a reasoner solely for entailment
checking, and thus can be used for any reasoner and DL. Glass-Box procedures
require additional information from a reasoner, such as inferences that the rea-
soner has used, and thus can only work with reasoners that can provide such
information.

In a nutshell, Black-Box procedures [4,6,7,10] systematically explore sub-
sets of axioms and check using a reasoner, which of these subsets entail the
given logical conclusion, and which not. Unnecessary tests are avoided using the
monotonicity property of the entailment.

Finding one justification is relatively easy. Starting from the set of all axioms
that entail the conclusion, one tries to remove axioms one by one. If after the
removal the entailment does not hold, the axiom is inserted back. This results in a
subset from which no axiom can be further removed without breaking the entail-
ment, i.e., a justification for the entailment. This justification, however, may be
not unique as the result depends on the order in which the axioms are considered
for removal. In the worst case, there can be exponentially-many different justi-
fications. So, unsurprisingly, there is no polynomial procedure for computing all
justifications even in languages such as EL, for which entailment checking is poly-
nomially decidable [17]. Further, computing all justifications is even hard in the
number of justifications: it is already NP-hard to verify, given a set of justifica-
tions, if there exists another justification not in this set [4]. Hence, in practice,
one is interested in algorithms for enumeration of justifications, i.e., algorithms
that can return justifications without necessarily finishing computing all of them.

Most existing algorithms for enumeration of justifications rely, in one way or
the other, on the hitting set duality that was introduced in the field of Model
Based Diagnosis [18,19] and later adapted for DLs [5,7]. A hitting set for a col-
lection of sets is a set containing at least one element from each set in the collec-
tion. A minimal hitting set of all justifications for an entailment is a repair—a
minimal set of axioms, removal of which breaks the entailment. Dually, every
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minimal hitting set of all repairs is a justification. Existing justification enu-
meration algorithms, in fact, also (implicitly) enumerate repairs in addition to
justifications.

Suppose that one has computed some justifications and repairs for an entail-
ment. To find a new justification or a repair, it is sufficient to find a set M of
axioms that has at least one axiom from each repair and misses at least one
axiom from each justification. I.e., M is a hitting set of the computed repairs,
and its complement (within the set of all axioms) is a hitting set of the com-
puted justifications. If no such set M exists, then there are no new justifications
or repairs, for otherwise a new justification or the complement of a new repair
would satisfy this requirement. Now, if M entails the conclusion, then a justi-
fication can be extracted from M by repeatedly removing axioms as described
before. This justification will be different from all previously computed justi-
fications because M is not a super-set of any of them. On the other hand, if
M does not entail the conclusion, then a new repair can be extracted from the
complement of M similarly, by removing axioms until the set is no longer a
repair. Likewise, this will be a new repair since the complement of M is not a
super-set of any previously computed repairs. By repeating this procedure, one
can enumerate all repairs and all justifications.

Finding a suitable set M satisfying the requirements above can be accom-
plished using a propositional SAT solver. Specifically, for each computed repair,
we add a clause consisting of atoms corresponding to the axioms in the repair.
Similarly, for each computed justification, we add a clause consisting of the nega-
tions of atoms corresponding to the axioms in the justification. Then for every
model of these clauses, the set M consisting of the axioms whose atoms are true,
satisfies the requirements. SAT solvers can also be used to optimize the entail-
ment tests, which are usually main bottleneck of Black-Box procedures. For
example, in the case of EL, all necessary information about entailments from
subsets of axioms can be represented by (a polynomial number of) inferences.
Every EL inference can be translated to a propositional (Horn) clause with the
negative atoms corresponding to the premises of the inference, and the posi-
tive atom corresponding to its conclusion. A conclusion is derivable from axioms
using the inferences iff the translation of the inferences entails the (Horn) clause
whose negative atoms correspond to axioms and the positive atoms corresponds
to the conclusion.

The above Glass-Box procedure was first proposed and implemented in
EL+SAT [11,12], and later improved in EL2MUS [3] and SATPin [8]. These
tools differ mainly in the way how they enumerate models corresponding to the
candidate sets M , and further optimizations employed. EL+SAT and EL2MUS
use two instances of a SAT solver—one for enumeration of candidate models, and
another for verifying derivability using inferences—whereas SATPin [8] uses one
(modified) SAT solver for both of these tasks. The encoding for finding the can-
didate set M described above is most close to the implementation of EL2MUS.
EL+SAT and SATPin do not explicitly enumerate repairs, but each time a
model is found that corresponds to a set M that does not entail the conclusion,
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Table 1. The syntax and semantics of EL

Syntax Semantics

Roles

Atomic role R RI

Concepts

Atomic concept A AI

Top � ΔI

Conjunction C � D CI ∩ DI

Existential restriction ∃R.C {x | ∃y ∈ CI : 〈x, y〉 ∈ RI}
Axioms

Concept inclusion C 	 D CI ⊆ DI

Fig. 1. The inference rules for reasoning in EL

a “blocking” clause is added to ensure that such a model is not returned again.
However, the number of such blocking clauses is at least as large as the number of
repairs. Further differences are that in EL2MUS the entailment checking solver
is specialized in Horn clauses, and that EL+SAT and SATPin extract justifica-
tions by a deletion-based procedure (as outlined above), while EL2MUS uses an
insertion-based procedure. Another tool EL2MCS [2] uses MaxSAT [20,21] to
compute all repairs and extracts justifications from them using the hitting set
duality, but it cannot return any justification before all repairs are computed.
Further, BEACON [1] is a tool that integrates the justification procedure of
EL2MUS.

Up to a few optimizations, the mentioned SAT-based tools use EL inferences
only for the entailment checks. Had they delegated the entailment checks to a
separate DL reasoner, they could be regarded as Black-Box. Our approach uses a
similar encoding of inferences in propositional logic, however, it relies neither on
a SAT solver nor on the hitting set duality. In particular, our method does not
enumerate repairs (explicitly or implicitly). As we operate on inferences directly,
a Black-Box version of our procedure would not be possible.

3 Preliminaries

3.1 The Description Logic EL
The syntax of EL is defined using a vocabulary consisting of countably infi-
nite sets of (atomic) roles and atomic concepts. Complex concepts and axioms
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are defined recursively using Table 1. We use letters R,S for roles, C,D,E for
concepts, and A,B for atomic concepts. An ontology is a finite set of axioms.

An interpretation I = (ΔI , ·I) consists of a nonempty set ΔI called the
domain of I and an interpretation function ·I that assigns to each role R a
binary relation RI ⊆ ΔI × ΔI , and to each atomic concept A a set AI ⊆ ΔI .
This assignment is extended to complex concepts as shown in Table 1. I satisfies
an axiom α (written I |= α) if the corresponding condition in Table 1 holds. I is
a model of an ontology O (written I |= O) if I satisfies all axioms in O. We say
that O entails an axiom α (written O |= α), if every model of O satisfies α. A
concept C is subsumed by D w.r.t. O if O |= C � D. The ontology classification
task requires to compute all entailed subsumptions between atomic concepts
occurring in O.

Reasoning in EL can be performed by applying inference rules that derive
subsumptions between concepts [17]. We use a variant of EL rules shown in
Fig. 1 that do not require normalization [14]. As usual, the premises of the rules
(if any) are given above the horizontal line, and the conclusions below. Note that
rule R� can only use D � E from the ontology O. This side condition should
be distinguished from the premises of the rules, where one can use any derived
axiom. This restriction has been made for efficiency reasons: if to use D � E as
the second premise of R�, like for rule R∃, there would be too many unnecessary
inferences.

The rules in Fig. 1 are sound and complete for entailment checking, i.e., the
entailment O |= α holds iff α is derivable from O using the rules.1 Further-
more, for deriving α, it is sufficient to use inferences that contain only concepts
appearing in O or α [14]. I.e., it is not necessary to apply R+

� if D1 � D2 does
not appear in O or α. This so-called subformula property implies that checking
the EL entailment O |= α can be performed in polynomial time [14,17] since
there are at most polynomially-many different rule applications that can use
only concepts appearing in O or α.

3.2 Inferences, Support, and Justifications

Although our experimental evaluation is concerned about EL, our method can
be used with a large class of inference systems of which the system in Fig. 1 is
just one example. In general, we assume that the rules manipulate with objects
that we call axioms, and an ontology is any finite set of such axioms. An inference
is an expression inf of the form 〈α1, . . . , αn � α〉 where α1, . . . , αn is a (possibly
empty) sequence of axioms called the premises of inf, and α is an axiom called
the conclusion of inf.

Let I be a set of inferences. An I-derivation from O is a sequence of inferences
d = 〈inf1, . . . , infk〉 from I such that for every i with (1 ≤ i ≤ k), and each premise

1Actually, w.l.o.g., one can also assume that the axioms in O are only used in the
side conditions of rule R�. Indeed, any axiom D 	 E ∈ O can be derived in this way
by first deriving a tautology D 	 D by R0 and then deriving D 	 E by R� from
D 	 D using D 	 E ∈ O.
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Fig. 2. Propositional resolution and factoring rules

α of infi that is not in O, there exists j < i such that α is the conclusion of
infj . An axiom α is derivable from O using I (notation: O �I α) if either α ∈ O
or there exists an I-derivation d = 〈inf1, . . . , infk〉 from O such that α is the
conclusion of infk. A support for O �I α is a subset of axioms O′ ⊆ O such that
O′ �I α. A justification for O �I α is a subset-minimal support for O �I α.

Suppose that |= is an entailment relation between ontologies and axioms. A
justification for O |= α (also sometimes called a minimal axiom set MinA [4])
is a minimal subset O′ ⊆ O such that O′ |= α. An inference 〈α1, . . . , αn � α〉 is
sound if {α1, . . . , αn} |= α. A set of inferences I is complete for the entailment
O |= α if O′ |= α implies O′ �I α for every subset O′ ⊆ O. Note that if I is
complete for O |= α then O′ |= α iff O′ �I α for every O′ ⊆ O. In particular,
justifications for O �I α coincide with justifications for O |= α.

Example 1. Consider the following applications of rules R−
� and R+

� in Fig. 1: Ie
=

{〈A � B � C � A � B〉, 〈A � B � C � A � C〉, 〈A � C,A � B � A �
C � B〉}. Thus, Ie is a set of inferences over EL axioms. Let Oe =
{A � B � C;A � B;A � C} be an EL ontology and αe = A � C � B an EL
axiom. Note that Oe �Ie αe.

It is easy to see that O′
e = {A � B;A � C} �Ie αe and O′′

e = {A � B � C} �Ie

αe, but {A � B} 
�Ie αe and {A � C} 
�Ie αe. Hence, O′
e and O′′

e are justifications
for Oe �Ie αe. All inferences in Ie are also sound for the EL entailment relation |=.
Since O′

e and O′′
e are the only two justifications for Oe |= αe, the inference set Ie

is complete for the entailment Oe |= αe.

3.3 Resolution with Answer Literals

Our procedure for enumeration of justifications is based on the resolution cal-
culus, which is a popular method for automated theorem proving [22]. We will
mainly use resolution for propositional Horn clauses. A (propositional) literal is
either an atom l = a (positive literal) or a negation of atom l = ¬a (negative
literal). A (propositional) clause is a disjunction of literals c = l1 ∨ · · · ∨ ln,
n ≥ 0. As usual, we do not distinguish between the order of literals in clauses,
i.e., we associate clauses with multisets of literals. Given two clauses c1 and c2,
we denote by c1 ∨ c2 the clause consisting of all literals from c1 plus all literals
from c2. A clause is Horn if it has at most one positive literal. The empty clause
� is the clause with n = 0 literals. The inference rules for the propositional
resolution calculus are given in Fig. 2. We say that a set of clauses S is closed
under the resolution rules if S contains every clause derived by the rules in Fig. 2
from S. The resolution calculus is refutationally complete: every set of clauses S
closed under the resolution rules is satisfiable if and only if it does not contain
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the empty clause. This means that for checking satisfiability of the input set of
clauses, it is sufficient to deductively close this set under the resolution rules and
check if the empty clause is derived in the closure.

To reduce the number of resolution inferences (and hence the size of the clo-
sure) several refinements of the resolution calculus were proposed. The rules in
Fig. 2 can be restricted using orderings and selection functions [22]. In partic-
ular, for Horn clauses, it is sufficient to select one (positive or negative) literal
in each clause, and require that the resolution inferences are applied only on
those (Theorem 7.2 in [22]).2 This strategy is called resolution with free selec-
tion. In addition to rule restrictions, one can also use a number of simplification
rules that can remove or replace clauses in the closure S. We will use two such
rules. Elimination of duplicate literals removes all duplicate literals from a clause
(including duplicate negative literals). Subsumption deletion removes a clause c
from S if there exists another sub-clause c′ of c in S, i.e., c = c′ ∨ c′′ for some
(possibly empty) clause c′′. In this case we say that c′ subsumes c.

Example 2. Consider the set of Horn clauses 1–7 below. We apply resolution
with free selection that selects the underlined literals in clauses. Clauses 8–10
are obtained by resolution inferences from clauses shown in angle braces on the
right.

1: ¬p1 ∨ p2

2: ¬p1 ∨ p3

3: ¬p2 ∨ ¬p3 ∨ p4

4: p1

5: p2

6: p3

7: ¬p4 8: ¬p3 ∨ p4 〈3, 5〉
9: p4 〈6, 8〉

10: � 〈7, 9〉
Note that the resolution rule was not applied, e.g., to clauses 3 and 6 because

literal ¬p3 in clause 3 is not selected. Also note that many clauses in the closure
above can be derived by several resolution inferences. For example, clause 5
can be obtained by resolving clauses 1 and 4 and clause 6 by resolving 2 and 4.
Therefore the empty clause 10 can be derived from several subsets of the original
clauses 1–7.

The resolution calculus is mainly used for checking satisfiability of a clause
set, and is not directly suitable for finding unsatisfiable subsets of clauses. To
solve the latter problem, we use an extension of resolution with so-called answer
literals [23]. To determine, which subsets of the input clauses are unsatisfiable,
we add to every input clause a fresh positive answer literal. Resolution rules can
then be applied to the extended clauses on the remaining (ordinary) literals using
the usual orderings and selection functions. If some clause with answer literals
is derived, then this clause with the answer literals removed, can be derived
from the clauses for which the answer literals were introduced. In particular, if
a clause containing only answer literals is derived, then the set of clauses that
corresponds to these answer literals is unsatisfiable. Completeness of resolution
means that all such unsatisfiable sets of clauses can be found in this way. If
answer literals are added to some but not all clauses and a clause with only
answer literals is derived, then the set of clauses that corresponds to the answer
literals plus clauses without answer literals is unsatisfiable.

2Note that the factoring rule cannot apply to Horn clauses.
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Example 3. Consider the clauses 1–7 from Example 2. Let us add answer literals
a1-a3 to clauses 4–6 and apply the resolution rules on the remaining (under-
lined) literals like in Example 2, eliminating duplicate literals if they appear.

1: ¬p1 ∨ p2

2: ¬p1 ∨ p3

3: ¬p2 ∨ ¬p3 ∨ p4

4: p1 ∨ a1

5: p2 ∨ a2

6: p3 ∨ a3

7: ¬p4

8: p2 ∨ a1 〈1, 4〉
9: p3 ∨ a1 〈2, 4〉

10: ¬p3 ∨ p4 ∨ a2 〈3, 5〉
11: ¬p3 ∨ p4 ∨ a1 〈3, 8〉
12: p4 ∨ a2 ∨ a3 〈6, 10〉
13: p4 ∨ a1 ∨ a2 〈9, 10〉
14: p4 ∨ a1 ∨ a3 〈6, 11〉

15: p4 ∨ a1 〈9, 11〉
16: a2 ∨ a3 〈7, 12〉
17: a1 ∨ a2 〈7, 13〉
18: a1 ∨ a3 〈7, 14〉
19: a1 〈7, 15〉

The framed clauses 16–19 contain only answer literals, so the corresponding
sets of clauses are unsatisfiable in conjunction with the input clauses without
answer literals. For example, clause 16 means that clauses 1–3, 5–7 are unsatis-
fiable and clause 19 means that clauses 1–4, 7 are also unsatisfiable. Note that
clause 19 subsumes clauses 17–18; if subsumed clauses are deleted, we obtain
only clauses with answer literals that correspond to minimal subsets of clauses
4–6 that are unsatisfiable in conjunction with the remaining input clauses 1–3, 7.

4 Enumerating Justifications Using Resolution

In this section, we present a new procedure that, given an ontology O, an infer-
ence set I and a goal axiom αg, enumerates justifications for O �I αg. It uses
the usual reduction of the derivability problem O �I αg to satisfiability of propo-
sitional Horn clauses [2,8,11,12] in combination with the resolution procedure
with answer literals.

Given a derivability problem O �I αg, we assign to each axiom αi occurring
in I a fresh propositional atom pαi

. Each inference 〈α1, . . . , αn � α〉 ∈ I is then
translated to the Horn clause ¬pα1 ∨ · · ·∨¬pαn

∨pα. In addition, for each axiom
α ∈ O that appears in I, we introduce a (unit) clause pα. Finally, we add the
clause ¬pαg

encoding the assumption that αg is not derivable. It is easy to see
that O �I αg if and only if the resulting set of clauses is unsatisfiable.

We now extend this reduction to find justifications for O �I αg. Recall that a
subset O′ ⊆ O is a support for O �I αg if O′ �I αg. Hence, the subset of clauses
pα for α ∈ O′ is unsatisfiable in combination with the clauses for the encoding
of inferences and ¬pαg

. We can find all such minimal subsets (corresponding to
justifications) by adding a fresh answer literal to every clause pα with α ∈ O, and
applying resolution on non-answer literals together with elimination of redundant
clauses.

Example 4. Consider the ontology Oe, inferences Ie and axiom αe from Exam-
ple 1. To encode the derivability problem Oe �Ie αe we assign atoms p1–p4 to the
axioms occurring in Ie as follows:

p1 : A � B � C, p2 : A � B, p3 : A � C, p4 : A � C � B.
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Algorithm 1. Enumeration of justifications using resolution
Enumerate(O �I α, �): enumerate justifications for O �I α
input : O �I α – the problem for which to enumerate justifications,

� – an admissible preorder on clauses

1 Q ← createEmptyQueue(�) ; // for unprocessed clauses

2 Q.addAll(encode(O �I α)); // add the clause encoding of the problem

3 S ← createEmptyList() ; // for processed clauses

4 while Q �= ∅ do
5 c ← Q.remove(); // take one minimal element out of the queue

6 c ← simplify(c); // remove duplicate literals from c
7 if c is not subsumed by any c′ ∈ S then
8 S.add(c);
9 if c contains only answer literals then

10 report decode(c); // a new justification is found

11 else // apply resolution rules to c and clauses in S
12 for c′ ∈ resolve(c,S) do
13 Q.add(c′);

The encoding produces clauses 1–7 from Example 3: the inferences Ie are encoded
by clauses 1–3, the axioms in Oe result in clauses 4–6 with answer literals, and the
assumption that αe is not derivable is encoded by clause 7. The derived clauses
16–19 correspond to supports of Oe �Ie αe, and by eliminating redundant clauses
17–18, we obtain clauses 16 and 19 that correspond to justifications O′

e and O′′
e

from Example 1.

One disadvantage of the described procedure is that it requires the closure
under the resolution rules to be fully computed before any justification can
be found. Indeed, since derived clauses may be subsumed by later clauses, one
cannot immediately see whether a clause with only answer literals corresponds
to a justification. For example, clause 19 in Example 3 subsumes clauses 17–18
derived before, thus 17–18 do not correspond to justifications. We address this
problem by using non-chronological application of resolution inferences. Intu-
itively, instead of applying the rules to clauses in the order in which they are
derived, we apply the rules to clauses containing fewer answer literals first. Thus,
in Example 3, we apply the rules to clause 15 before clauses 12–14.

The improved procedure can enumerate justifications, i.e., return justifica-
tions one by one without waiting for the algorithm to terminate. This procedure
is described in Algorithm 1. It is a minor variation of the standard saturation-
based procedure for computing the closure under (resolution) rules, which uses
a priority queue to store unprocessed clauses instead of an ordinary queue. Let
� be a total preorder on clauses (a transitive reflexive relation for which every
two clauses are comparable). As usual, we write c1 ≺ c2 if c1 � c2 but c2 
� c1.
We say that � is admissible if c1 ≺ c2 whenever the set of answer literals of c1
is a proper subset of the set of answer literals of c2. For example, it is required
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that ¬p3 ∨ p4 ∨ a1 ≺ p4 ∨ a1 ∨ a2, but not necessary that p4 ∨ a1 ≺ p4 ∨ a2 ∨ a3.
Note that if c is derived by resolution from clauses c1 and c2 then c1 � c and
c2 � c since c contains the answer literals of both c1 and c2.

We say that a clause d (not necessarily occurring in Q) is minimal w.r.t. Q
if there exists no clause c ∈ Q such that c ≺ d. A priority queue based on � is
a queue in which the remove operation returns only a minimal element w.r.t.
Q.3 Given such a queue Q, Algorithm 1 initializes it with the translation of the
input problem O �I α (line 2) and then repeatedly applies resolution between
minimal clauses taken out of this queue (loop 4–13) and the clauses in S that were
processed before. Specifically, the removed minimal clause c is first simplified by
removing duplicate literals (line 6) and then checked if it is subsumed by any
previously processed clauses in S (in particular, if c was processed before). If c
is subsumed by some c′ ∈ S, it is ignored and the next (minimal) clause is taken
from the queue Q. Otherwise, c is added to S (line 8). If c contains only answer
literals, then it corresponds to a justification (as we show next), which is then
reported by the algorithm (line 10). Otherwise, resolution inferences are then
applied on the selected non-answer literal in c (line 12). The new clauses derived
by resolution are then added to Q (line 13) and the loop continues until Q is
empty.

We now prove that Algorithm1 in line 10 always returns a (new) justification.
It is easy to see that if a clause d was minimal w.r.t. Q in the beginning of the
while loop (line 4) then it remains minimal w.r.t. Q at the end of the loop
(line 13). Indeed, for the clause c taken from the queue (line 5), we have c 
≺ d.
For all clauses c′ obtained by resolving c with clauses from S (line 12) we have
c � c′. Hence c′ 
≺ d for all c′ added to Q (line 13) (for otherwise, c � c′ ≺ d).
This, in particular, implies that each clause in S is always minimal w.r.t. Q and,
consequently, if c1 was added to S before c2 then c1 � c2 (for otherwise c2 ≺ c1
and c1 would not be minimal w.r.t. Q when c2 ∈ Q). Hence, there cannot be two
clauses c1 and c2 in S that contain only answer literals such that c1 is a proper
sub-clause of c2 since in this case c1 ≺ c2, thus c2 must have been added to S
after c1, but then c2 would be subsumed by c1 (see line 7). Hence each result
returned in line 10 is a (new) justification.

Since clauses are added to S in the order defined by �, the justifications are
also returned according to this order. Hence Algorithm 1 can return justifications
in any user-defined order � on subsets of axioms as long as s1 � s2 implies
s1 ≺ s2. Indeed, any such an order � can be lifted to an admissible order on
clauses by comparing the sets of answer literals of clauses like the corresponding
sets of axioms. For example, one can define s1 � s2 by ||s1|| ≤ ||s2|| where ||s|| is
the cardinality of s. Instead of ||s|| one can use any other measure m(s) that is
monotonic over the proper subset relation (i.e., s1 � s2 implies m(s1) < m(s2)),
for example, the length of s—the total number of symbols needed to write down
all axioms in s.

3If there are several minimal elements in the queue, one of them is chosen arbitrarily.
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5 Implementation and Evaluation

We have implemented Algorithm 1 as a part of the new Java-based Proof Utility
Library (PULi).4 In our implementation, we used the standard Java priority
queue for Q, and employed a few optimisations to improve the performance of
the algorithm.

First, we have noticed that our implementation spends over 95% of time on
checking subsumptions in line 7. To improve subsumption checks, we developed
a new datastructure for storing sets of elements and checking if a given set is a
superset of some stored set. In a nutshell, we index the sets by 128 bit vectors,
represented as a pair of 64 bit integers, where each set element assigns 1 to
one position of the bit vector based on its hash value. This idea is reminiscent
of Bloom filters5 and can be also seen as a simple version of a feature vector
indexing [24]. We store the sets in a trie6 with the bit vector as the key, and
use bitwise operations to determine if one vector has all bits of the other vector,
which gives us a necessary condition for set inclusion. Using this datastructure,
we were able to significantly improve the subsumption tests.

We have also noticed that the queue Q often contains about 10 times more
elements than the closure S. To improve the memory consumption, we do not
create the resolvents c′ immediately (see line 12), but instead store in the queue
Q the pairs of clauses (from S) from which these resolvents were obtained. This
does not reduce the number of elements in the queue, but reduces the mem-
ory consumed by each element to essentially a few pointers plus an integer for
determining the priority of the element.

We have evaluated our implementation on inferences computed for entailed
axioms in some large EL ontologies, and compared performance with SAT-based
tools for enumeration of justifications EL2MUS [3], EL2MCS [2] and SATPin [8].
The inferences were extracted using EL+SAT [11] (in the following called sat
inferences) and ELK reasoner [25] (in the following called elk inferences). Both
are capable of computing small inference sets that derive particular entailed
axioms and are complete for these entailments (see Sect. 3.2).

For our evaluation, we chose ontologies GO-Plus, Galen and Snomed,
which contain (mostly) EL axioms. GO-Plus is a recent version of Gene Ontol-
ogy,7 which imports a number of other ontologies. The provided distribution
included subsumption axioms that were inferred (annotated with is inferred),
which we have removed. Galen is the version 7 of OpenGALEN.8 We did not use
the more recent version 8, because the other tools were running out of memory.
Snomed is the 2015-01-31 version of Snomed CT.9 From the first two ontologies
we removed non-EL axioms, such as functional property axioms, and axioms that

4https://github.com/liveontologies/puli.
5https://en.wikipedia.org/wiki/Bloom filter.
6https://en.wikipedia.org/wiki/Trie.
7http://geneontology.org/page/download-ontology.
8http://www.opengalen.org/sources/sources.html.
9http://www.snomed.org/.

https://github.com/liveontologies/puli
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Trie
http://geneontology.org/page/download-ontology
http://www.opengalen.org/sources/sources.html
http://www.snomed.org/
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Table 2. Summary of the input
ontologies

GO-Plus Galen Snomed

# axioms 105557 44475 315521

# concepts 57173 28482 315510

# roles 157 964 77

# queries 90443 91332 468478

Table 3. Summary of sizes of inference sets

GO-Plus Galen Snomed

sat Average 470.3 59140.0 997.8

Median 39.0 110290.0 1.0

Max 15915.0 152802.0 39381.0

elk Average 166.9 3602.0 110.3

Median 43.0 3648.0 8.0

Max 7919.0 81501.0 1958.0

contain inverse property expressions and disjunctions. We have also adapted the
input ontologies, so that they could be processed by (the reasoner of) EL+SAT.
We removed disjointness axioms and replaced property equivalences with pairs
of property inclusions. Duplicate axioms were removed by loading and saving
the ontologies with OWL API.10 With these ontologies, we have computed jus-
tifications for the entailed direct subsumptions between atomic concepts (in the
following called the queries) using various tools. Table 2 shows the numbers of
axioms, atomic concepts, atomic roles, and queries of each input ontology, and
Table 3 the statistics about the sizes of inference sets obtained for these queries.
All queries were processed by tools in a fixed random order to achieve a fair
distribution of easy and hard problems. We used a global timeout of one hour for
each tool and a local timeout of one minute per query.11 To run the experiments
we used a PC with Intel Core i5 2.5 GHz processor and 8 GiB RAM operated
under 64-bit OS Ubuntu 16.04. For Java tools, we used OpenJDK v. 1.80 151
with a 7.7 GiB heap space limit.

As an admissible order on clauses for our implementation of Algorithm1,
we chose the relation � that compares the number of different answer literals
in clauses. When using this order, cardinality-minimal justifications are found
first. To control resolution inferences, we used three different selection strategies
(for Horn clauses) that we detail next. For a propositional atom p, let #(p) be
the number of input clauses in which p appears as a (positive) literal. Given a
clause c, the BottomUp strategy, selects a negative literal ¬p of c whose value
#(p) is minimal; if there are no negative literals, the (only) positive literal of
c is selected. The TopDown strategy selects a positive literal, if there is one,
and otherwise selects a negative literal like in BottomUp. Finally, the Threshold
strategy selects a negative literal ¬p with the minimal value #(p) if #(p) does
not exceed a given threshold value or there is no positive literal in c; otherwise the
positive literal is selected. In our experiments we used the threshold value of 2.

10http://owlcs.github.io/owlapi/.
11The project for conducting the experiments can be found at https://github.com/

liveontologies/pinpointing-experiments; a docker image is available at https://github.
com/liveontologies/docker-pinpointing-experiments.

http://owlcs.github.io/owlapi/
https://github.com/liveontologies/pinpointing-experiments
https://github.com/liveontologies/pinpointing-experiments
https://github.com/liveontologies/docker-pinpointing-experiments
https://github.com/liveontologies/docker-pinpointing-experiments
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Table 4. Number of queries attempted in 1h/number of 60s timeouts/% of attempted
queries in the number of all queries/% of 60s timeouts in the number of queries
attempted in 1h

Intuitively, the BottomUp strategy simulates the Unit resolution, the TopDown
simulates the SLD resolution, and Threshold is some combination thereof.

Table 4 shows for how many queries all justifications were computed within
the global and local timeouts.12 The first six rows correspond to experiments on
sat inferences and the other six rows to experiments on elk inferences. Note that,
generally, the tools processed more queries and had fewer percentage of timeouts
for elk inferences. Also, the Threshold strategy performed best in almost all cases.
In particular, it could process all queries of Snomed without timeouts. None of
the SAT-based tools was able to find all justifications for all queries of Snomed
even after running for 24 h. We have then further verified (on a slightly faster PC
with more memory) that Threshold without timeouts could process all 5415670
(not necessarily direct) entailed subsumptions of Snomed in about 21 h using
10 GiB of java heap space. The hardest query took about 17 min and returned
658932 justifications. The largest number of justifications 942658 was returned
by the third-hardest query in about 5 min.

To have an idea which strategy was best for which query, we have plotted
in Fig. 3 the distributions of the query times for all strategies. Each point 〈x, y〉
of a plot represents the proportion x of queries that were solved by the method
in under the time y. For instance, TopDown solved about 90% of the queries
of GO-Plus for sat inferences in under 0.01 s. Each plot considers only queries
attempted by all tools on that plot. Since each plot represents the distribution
of times and not a direct comparison of times for each query, even if one line
is completely below another one, this does not mean that the corresponding
method is faster for every query. To get a more detailed comparison, we have
also plotted the distribution of minimum query times with a thin black line.
For each query, the minimum time is the time spent by the tool that was the

12The raw experimental data is available at https://osf.io/4q6a9/.

https://osf.io/4q6a9/
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Fig. 3. Distribution of query times for SAT tools and resolution strategies, on sat and
elk inference sets. The BottomUp strategy for sat is missing due too few processed
queries.
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fastest on that query (among the tools on the same plot). If a plot for some
tool coincides with this black line at point (x, y), then all queries solved within
time y by some tool were also solved within time y by this tool. In particular,
this tool is the fastest for all queries with the minimal time y. This analysis
shows, for example, that TopDown was often the best resolution tool for easy
queries (solved under 0.1 s by some tool), and Threshold was the best tool for
hard queries (solved over 1 s by all tools) on all ontologies. The sat-based tool
EL2MUS was often the winner on medium-hard queries. Note that the time scale
is logarithmic, so the times below 1 ms are not displayed.

Fig. 4. Distribution of sizes (above) and computation times (below) for first and last
justifications computed by Threshold and first justifications computed by EL2MUS on
elk inferences

As mentioned before, one important difference between SAT tools and
resolution-based tools, is that the latter allow one to enumerate justifications
in any admissible order. In particular, it is possible to find cardinality-minimal
justifications without computing all justifications, which is useful, e.g., for ontol-
ogy debugging. Since deciding whether there exists a justification within a given
size bound is an NP-complete problem [4], finding a cardinality-minimal jus-
tification is not as easy as finding one (arbitrary) justification. To determine
whether the difference is significant in practice, we compare computations of
the first justification by EL2MUS, the first (cardinality-minimal) justification
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by Threshold, and the last (before timeout, cardinality-maximal) justification
by Threshold. In Fig. 4, we plot distributions of the sizes for these justifications
and of times spent on computing them. Interestingly, the sizes of first justifica-
tions found by EL2MUS are very close to the minimal sizes. This is probably
because small justifications are more likely to be obtained when minimizing sets
of axioms for which the entailment holds. Unsurprisingly, EL2MUS can consis-
tently compute the fist justifications in a few milliseconds. Although the times for
computing a cardinality-minimal justification can be significantly higher (espe-
cially for Galen, which has large inference sets), they can still be a few orders
of magnitude smaller than for computing all (= the last) justifications for the
hard cases. In particular, Threshold was able to compute a cardinality-minimal
justification for all queries of GO-Plus, Galen and Snomed respectively in
about 6 min, 1.5 h, and 25 min.

6 Summary

We presented a new procedure that enumerates justifications using inferences
that derive the goal consequence from an ontology. The inferences are encoded
as Horn clauses and resolution with answer literals is applied. Our procedure can
be parameterized by an ordering in which the justifications should be enumerated
(as long as it extends the subset relation) and by a strategy that selects literals for
resolution. The algorithm is relatively easy to implement and can be also easily
used with non-Horn and non-propositional clauses. Our empirical evaluation
shows that the procedure provides comparable, if not better performance than
other tools that also use inferences as input. For example, for Snomed CT we
were able to compute all justifications for all direct subsumptions in less than
1 h, and for all (possibly indirect) subsumptions in less than 1 day. Currently,
we cannot explain the difference in the performance of the evaluated selection
strategies. We hope to explore this question in the future.
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Abstract. The successes of machine learning in recent years have trig-
gered a fast growing range of applications. In important settings, includ-
ing safety critical applications and when transparency of decisions is
paramount, accurate predictions do not suffice; one expects the machine
learning model to also explain the predictions made, in forms under-
standable by human decision makers. Recent work proposed explainable
models based on decision sets which can be viewed as unordered sets
of rules, respecting some sort of rule non-overlap constraint. This paper
investigates existing solutions for computing decision sets and identifies
a number of drawbacks, related with rule overlap and succinctness of
explanations, the accuracy of achieved results, but also the efficiency
of proposed approaches. To address these drawbacks, the paper devel-
ops novel SAT-based solutions for learning decision sets. Experimental
results on computing decision sets for representative datasets demon-
strate that SAT enables solutions that are not only the most efficient,
but also offer stronger guarantees in terms of rule non-overlap.

1 Introduction

Machine learning (ML) has witnessed remarkable progress and important suc-
cesses in recent years [18,22,28]. In some settings, predictions made by machine
learning algorithms should provide explanations, preferably explanations that
can be interpreted (or understood) by human decision makers. Concrete exam-
ples include safety-critical situations, but also when transparency of deci-
sions is paramount. The importance of explainable AI (XAI), i.e. the prob-
lem of associating explanations with ML predictions, is underscored by recent
research [2,21,42], by ongoing research programs [9], by EU-level legislation
which is expected to enforce the automated generation of explanations [11], and
also by a number of meetings on computing explainable ML models [16,17,30].
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An often used approach to provide explanations for ML predictions is
to resort to some sort of logic-related model, including rule/decision lists,
rule/decision sets, and decision trees [2,21]. These logic-related models can in
most cases associate explanations with predictions, represented as conjunctions
of literals, that follow from the actual model representation. Clearly, the smaller
the model representation, the simpler the explanations are likely to be, and so
easier to understand by human decision makers.

Recent approaches include the computation of (smaller or smallest) rule
lists [2,42], the computation of decision sets [21], but also the computation of
decision trees [3]. Rule lists impose an order of the rules [35], whereas decision
sets do not. Clearly, from an interpretability perspective, decision sets are the
most appealing since each prediction depends only on the literals associated with
each rule. On the negative side, decision sets can exhibit rule overlap, and so
may require decisions to be made when more than one class is predicted. Fur-
thermore, even restricted forms of rule learning are well-known to be hard for
NP [35].

This paper analyzes recent work on computing interpretable decision sets [21].
The paper highlights a number of drawbacks of the proposed approach, related
with rule overlap, the generation of explanations, but also with the scalability
of the approach. The paper then investigates three main topics. The first topic
is the proposal of a rigorous definition of rule overlap. The paper relates this
new definition with earlier work, and conjectures that solving the problem of
overlap when learning optimal (in size) decision sets is hard for the second level
of the polynomial hierarchy. The paper then proposes a number of variants of
learning decision sets with less demanding constraints on overlap, and shows
that these variants are instead hard for NP. The second topic is the issue of
generating explanations for predictions. The paper shows that different models
for learning decision sets provide different forms of computing explanations, thus
enabling the generation of explanations in most settings. The third topic is to
develop different propositional models for learning optimal decision sets. The
proposed models build on earlier work on inductive inference [19], but introduce
a number of variants, allowing for multiple classes, and also accommodating
different overlap constraints. Moreover, the paper shows that all these models
exhibit symmetries in the problem formulation, and so predicates breaking these
symmetries can be used for improving performance.

The paper is organized as follows. Section 2 introduces the definitions and
notation used in the remainder of the paper. The issue of overlap and explanation
generation is investigated in Sect. 3. Propositional models for learning decision
sets subject to different constraints on overlap are proposed in Sect. 4. Section 5
analyzes the performance of the proposed approach on representative datasets,
and compares with earlier work [21]. Section 6 concludes the paper.

2 Preliminaries

This section briefly overviews Boolean Satisfiability (SAT), the classification
problem in ML, and the learning of decision sets (DS). Throughout the paper, the



A SAT-Based Approach to Learn Explainable Decision Sets 629

Fig. 1. A classification example and its decision set

notation [R] is used to denote the set of natural numbers {1, . . . , R}, moreover,
for a point f in some K-dimensional space, the rth coordinate is given by f [r].

Boolean Satisfiability (SAT). We assume notation and definitions standard
in the area of SAT [4]. Formulas are represented in Conjunctive Normal Form
(CNF) and defined over a set of variables X = {x1, . . . , xn}. A formula F is
a conjunction of clauses, a clause is a disjunction of literals, and a literal is
a variable xi or its complement ¬xi. Where appropriate, formulas are viewed
as sets of sets of literals. CNF encodings of cardinality constraints have been
studied extensively, and will be assumed throughout [4]. Moreover, standard
classification techniques are assumed [39].

Classification Problems. We follow the notation used in earlier work [3,21].
We consider a set of features F = {f1, . . . , fK}, all of which are assumed to be
binary, taking a value in {0, 1}. When necessary, the fairly standard one-hot-
encoding [32] is assumed for handling non-binary categorical features. Numeric
features can be handled with standard techniques as well. Since all features are
binary, a literal on a feature fr will be represented as fr, denoting that the feature
takes value 1, i.e. fr = 1, or as ¬fr, denoting that the feature takes value 0, i.e.
fr = 0. Hence, the space of features (or feature space [14]) is U �

∏K
r=1{fr,¬fr}.

To learn a classifier, one starts from given training data (also referred to as
examples or samples) E = {e1, . . . , eM}. Examples are associated with classes
taken from a set of classes C. The paper focuses mostly on binary classification,
i.e. C = {c0, c1}. (We will associate c0 with 0 and c1 with 1, for simplicity.)
Thus, E is partitioned into E+ and E−, denoting the examples classified as pos-
itive (c1 = 1) and as negative (c0 = 0), respectively. Each example eq ∈ E is
represented as a 2-tuple (πq, ςq), where πq ∈ U denotes the literals associated
with the example and ςq ∈ {0, 1} is the class to which the example belongs. We
have ςq = 1 if eq ∈ E+ and ςq = 0 if eq ∈ E−. A literal lr on a feature fr,
lr ∈ {fr,¬fr}, discriminates an example eq iff πq[r] = ¬lr, i.e. the feature takes
the value opposite to the value in the set of literals of the example. Moreover,
we assume a mapping from feature values to classes, μ : U → C, i.e. we require



630 A. Ignatiev et al.

consistency in the examples. Alternatively, we could allow for possible incon-
sistencies in the examples, by associating examples with elements of a relation
ρ ⊆ U × C.

Details on how to handle the extensions to this basic formulation, including
non-binary features, the handling of non-binary classes, and allowing for incon-
sistent examples, are beyond the scope of this paper but are discussed in later
sections. Furthermore, in this paper we assume that all features are specified for
all examples; the work can be generalized for situations where the value of some
features for some examples is left unspecified.

In the remainder of the paper, we will also consider non-conflicting subsets of
L � ∪K

r=1{fr,¬fr}, such that a subset of L is non-conflicting if for all features
fr, the literals fr and ¬fr do not both occur in that subset. When referring to
the actual data points representing the examples in E , we use the notation f ,
with f ∈ ∏K

r=1{fr,¬fr}.

Example 1. Figure 1 shows a simple classification example. The set of binary
features is F = {f1, f2, f3, f4} with f1 � V, f2 � C, f3 � M, and f4 � E.
Example e1 is represented by the 2-tuple (π1, ς1), with π1 = (¬V,¬C,M,¬E)
and ς1 = 0. Moreover, the literals V, C, ¬M and E discriminate e1. For this
classification example, we have U = {V,¬V} × {C,¬C} × {M,¬M} × {E,¬E}.

The objective of classification is to learn some function φ̂ which matches the
actual function φ on the training data and generalizes suitably well on unseen
test data [13,14,27,34]. In this paper, we seek to learn representations of φ̂ cor-
responding to decision sets (DS). Many other representations have been studied,
including decision trees [34], rule lists [2], and sums of terms (i.e. DNF) [15,41],
among others. These are of interest, including for XAI, but are beyond the scope
of this work.

Related Work. Rule learning, as a form of covering problem, can be traced
back to the 1960s [26]. Rule learning finds important applications in ML
and Data Mining (DM), and it is a standard topic in ML and DM text-
books [13,14,27]. Although rule learning has been investigated at the propo-
sitional and predicate levels, in different settings, the focus of this paper is the
optimal learning of propositional rules. Rules can be organized as lists, being
referred to as rule (or decision) lists, or as sets, being also referred to as rule (or
decision) sets. The difference between the two representations is that lists impose
an order on the rules, and sets do not. It is well-known that learning optimal rule
lists is NP-hard [20]. As a result, most algorithms for learning rule lists or sets are
heuristic [7,8,33,34], being in general efficient to run, but providing essentially
no guarantees in terms of the quality of the computed rules. Recent work has
focused on developing small or optimal rule (or decision) lists [2], but also rule
(or decision) sets [21]. The focus of the paper is the learning of decision sets,
and so we investigate in more detail the recently proposed IDS (interpretable
decision sets) approach [21].
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3 Learning Explainable Decision Sets

This section introduces, but also generalizes, the definitions proposed in earlier
work [21] for the problem of learning decision sets.

Definition 1 (Itemset). Given F , an itemset π is an element of I �
∏K

r=1{fr,¬fr, u}, where u represents a don’t care value. Where applicable, an
itemset π is also interpreted as the conjunction of the coordinates different from
u, i.e. the specified literals of π.

Clearly, an itemset represents a cube in the K-dimensional feature space.
Moreover, a K-dimensional point in feature space is also a (completely specified)
itemset.

Definition 2 (Clashing itemsets). Given two itemsets π1, π2 ∈ I, the two item-
sets clash, written π1 ∩ π2 = ∅, if and only if there exists a coordinate r such
that π1[r] = fr and π2[r] = ¬fr, or π1[r] = ¬fr and π2[r] = fr.

Definition 3 (Rule). A rule is a 2-tuple (π, ς), where π ∈ I is an itemset, and
ς ∈ C is a class. Moreover, a rule (π, ς) is to be interpreted as follows:

IF the specified literals in π are true, THEN pick class ς

Rules can and have been used in different settings [13,14,27]. This paper
considers the use of rules as the building block of decision sets.

Definition 4 (Decision Sets). Given a set of (binary) features F , defining a
feature space U , and a set of classes C, a decision set S is a finite set of rules.

Given a decision set S, there may exist points in feature space not covered by
S. An often used (optional) solution is to consider a default rule, which applies
whenever the disjunction of the conjunctions of literals associated with each rule
of S takes value 0.

Definition 5 (Default rule D). A rule of the form D � (∅, ς) denotes the default
rule of a decision set S, applicable when all the other rules take value 0 on a
given point of feature space. The class selected is ς.

Example 2. Referring back to Example 1, Fig. 1b shows an example of a deci-
sion set for the dataset of 1a, whereas Fig. 1c shows a different decision set. (The
difference between the two relates with the notion of overlap to be introduced
below.) Moreover, for the first decision set (see Fig. 1b), a (necessary) default
rule could be (∅, 0). For example, for the feature space point (V,C,M,E) we can
now say that the class, due to the default rule, is 0.

In contrast with earlier work [21], we consider generalized forms of cover,
subject to subsets of the feature space.
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Definition 6 (X -Cover). Given X ⊆ U and an itemset, the X -cover of the
itemset is the set of feature space points in X with a non-empty intersection
with the itemset. The cover of the default rule D is the set of points in feature
space not covered by any of the other rules of a decision set.

Earlier work [21] considers a less general definition of cover, where X cor-
responds to the training data E . Overlap between two rules assesses whether
the set of points covered by two rules intersect. Overlap has been investigated
recently in the context of learning decision sets [21]. This earlier work focused on
overlap solely with respect to the training data, i.e. the starting set of examples,
providing no guarantees on any other point of feature space. As a result, and in
contrast with earlier work [21], we consider generalized forms of overlap, subject
to subsets of the feature space.

Definition 7 (X -overlap). Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap in
X ⊆ U iff,

∃f ∈ X . f ∩ π1 	= ∅ and f ∩ π2 	= ∅ (1)

Observe that the simpler definition, requiring π1 ∩ π2 	= ∅, would not enable
restricting overlap to specific subsets of U . Furthermore, the definition of overlap
considered in earlier work [21] corresponds to E-overlap.

The above definition can be qualified with ⊕ or �, depending if we are
concerned with overlap where the classification agrees (⊕), i.e. all rules whose
bodies are not false predict the same class, or disagrees (�), i.e. there exist rules
whose bodies are not false that do not predict the same class.

More importantly, the proposed formulation of overlap enables investigating
the quality of decision sets in points of feature space not covered by the initial
set of examples. We will be mostly concerned with U�-overlap between pairs of
rules with different classifications, aiming to eliminate such overlap. We will be
less concerned with U⊕-overlap, but this can also be deemed of interest [21].

Example 3. With respect to Example 1 and the decision set shown in Figure 1b
there is no E-overlap, but there is overlap in feature space. For the point
(¬V,¬C,¬M,¬E) ∈ U we have � overlap. Moreover, the decision set in Figure 1c
exhibits no overlap.

Generating Succinct Explanations. For a rule (π, ς), its explanation is the
conjunction of literals in π. Thus, for any point in feature space for which there
exists no � overlap, we can simply pick one of the rules consistent with that
point as the explanation for the prediction. In this situation, we refer to the
explanation as offline (or explicit). Moreover, assuming there is no � overlap
and that all points in feature space are covered by some rule, then the set of rules
provides a succinct representation of the explanations of the predictions made.
If there exists � overlap, then one can simply pick one of the rules for which
the itemset takes value 1, and list the itemset as an explanation. One additional
case, is when some point in feature space is not covered by any rule in a decision
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set. In this case, one resorts to a default rule D = (∅, ς), which has no immediate
explanation. Nevertheless, it is still possible to provide explanations, albeit the
set of justifications can no longer be represented succinctly. We consider a point
f in feature space such that no rule is applicable, and so the default rule is
used. For each rule ri = (πi, ςi), there must exist one literal li,k that falsifies
the itemset πi. As a result, an explanation for selecting the default rule can be
constructed by picking one falsified literal from each itemset of each rule with a
class that is not consistent with the class associated with the default rule. We
refer to these explanations as online (or implicit). Clearly, the explanation will
depend on each point on feature space not covered by the other rules, but we
are still able to produce explanations.

Example 4. We consider again Example 1 and the decision set in Fig. 1b,
assuming a default rule (∅, 0). For the point in feature space (V,C,M,E) the
prediction will be 0 (i.e. ¬H), due to the default rule. Moreover, since the pre-
diction will be 0, then we pick a 0-valued literal from the rules that would
predict a different class, M in this case for the first rule. Thus, we can provide
the explanation {M}; i.e. any time there is a meeting, then we will not take the
hike.

4 Learning Decision Sets with SAT

This section develops different SAT models for learning decision sets. We can
associate a Boolean function E0 with E−, which takes value 1 for each point
in feature space associated with E−, i.e. each combination of binary features
that represents an example in E− is a minterm of E0. Similarly, we associate a
Boolean function E1 with E+, which takes value 1 for each point in the feature
space associated with E+. Moreover, each combination of binary features that
represents an example in E+ is a minterm of E1. Clearly, our working hypothesis
is that E0 ∧E1 � ⊥, i.e. the examples represent a mapping. As shown below, the
minimum decision set problem can be formalized in different ways. This paper
considers a general formalization of the minimum decision set problem, in terms
of computing two sets of terms F 0 and F 1, i.e. two DNF representations, and is
defined as follows:

Definition 8 [MinDSet, MinDS0]. Let 〈E−, E+〉 be a 2-tuple of examples asso-
ciated with two distinct classes, c0 and c1, and each represented by Boolean func-
tions E0 and E1, respectively. MinDS0 is the problem of finding the smallest
DNF representations of Boolean functions F 0 and F 1, measured in the number
of terms, such that: (i) E0 � F 0; (ii) E1 � F 1; and (iii) F 1 ↔ F 0 � ⊥.

Observe that condition (iii) above ensures that a decision set is computed
(1) exhibiting no U�-overlap and (2) covering the complete feature space U .
This should be compared with the substantially less demanding constraint of
E-overlap investigated in earlier work [21]. Moreover, the cost of the DNF rep-
resentation could be measured in terms of the number of literals. The paper
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considers the cost in terms of the number of terms (or rules), but it is straight-
forward to extend to considering also literals. Alternatives to take the number
of literals into account are investigated in Sect. 5.

Lemma 1. For any decision set respecting Definition 8, it holds that (i) F 0 ∧
E1 � ⊥; and (ii) F 1 ∧ E0 � ⊥.

Proposition 1. The decision version of MinDS0 is in Σp
2 .

Proof. (Sketch) Given some size threshold T , simply guess the terms of the two
DNFs, F 0 and F 1, using no more than T terms, and then check that, for every
assignment, the values of F 0 and F 1 differ. Clearly, this can be encoded as a
2QBF formula. ��

Furthermore, the decision version of the MinDS0 problem is apparently hard
for Σp

2 . For example, if we minimize E0 to a DNF F 0, then computing the
smallest DNF F 1 subject to F 0 is a well-known Σp

2-hard problem [40].

Conjecture 1. MinDS0 is hard for Σp
2 .

The proof (or disproof) of this conjecture is left as future work. Given the
above, we can envision the following optimization problems, studied in the
remainder of the paper, which result from relaxing the constraint F 1 ↔ F 0 � ⊥
of MinDS0, thus achieving hardness for NP:

1. MinDS4: Minimize F 0, given F 1 ≡ E1 constant, and such that (i) E0 � F 0;
and (ii) F 0 ∧ E1 � ⊥.

2. MinDS3: Same as above, but for F 1 given F 0 ≡ E0 constant.
3. MinDS2: Minimize both F 0 and F 1, such that (i) E0 � F 0; (ii) E1 � F 1;

(iii) F 0 ∧ E1 � ⊥; and (iv) F 1 ∧ E0 � ⊥.
4. MinDS1: Minimize F 0 and F 1, such that (i) E0 � F 0; (ii) E1 � F 1; and (iii)

F 1 ∧ F 0 � ⊥.

Observe that all of the above problems are weakened versions of MinDS0,
the main difference being the constraints on the functions associated with E0

and E1. Among MinDSi, i 	= 0, MinDS1imposes the most severe constraint,
ensuring no U�-overlap takes place, although there may be points for which
both F 0 and F 1 take value 0.

Proposition 2. The decision versions of the optimization problems MinDS1,
MinDS2, MinDS3 and MinDS4above are complete for NP.

Proof (Sketch). The simplest solution is to use earlier results [36,40] to argue
that the decision versions of MinDS3 and MinDS4are complete for NP. (Earlier
work [19] claims NP-hardness, but citing references that do not actually prove
the result.)

It is easy to reduce MinDS3 or MinDS4 to MinDS1 or MinDS2; i.e. simply
ignore the other computed function. Moreover, we show below that the decision
versions of MinDS1 and MinDS2 are in NP, by reducing these problems to SAT.
Thus, completeness of MinDS1 and MinDS2 follows. ��
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Example 5. With respect to Example 1, the decision set shown in Fig. 1b
respects MinDS2, MinDS3 and MinDS4, whereas the decision set of Fig. 1b
also respects MinDS1 and MinDS0.

In the sections below we investigate SAT-based models for computing deci-
sion sets, under one of the relaxed optimization models MinDS1, MinDS2,
MinDS3 or MinDS4. Moreover, we investigate symmetry breaking properties
of the problem formulation, which can be used for constraining any of these
models.

4.1 SAT Models for MINDS3 and MINDS4

This section details SAT models for solving MinDS3. With minor modifications,
similar models can be devised for MinDS4. The purpose of MinDS3 is to find a
minimum-size representation of F 1, subject to a non-U�-overlap constraint with
respect to E0. To solve this problem, a number of propositional models can be
envisioned. We first investigate a model proposed in the literature [19,37,38].
Afterwards, we detail a new model, aiming at better performance when using
SAT solvers. Both propositional models encode the decision problem of MinDS3:
can F 1 be represented with N terms? The model considers a grid of N by K
entries, each row of K entries denoting the representation of the condition of a
rule or, alternatively, a term in the DNF representation of F 1, for a total of N
terms. Throughout this section, it holds that 1 ≤ j ≤ N and 1 ≤ r ≤ K, with q
associated with some example eq from E , E− or E+.

An Existing SAT Model. One model, proposed by Kamath et al. [19],
assumes the representation of a Boolean function in terms of K-dimensional
points describing the functions ON-set and the OFF-set, respectively E1 and
E0 in our case.

The variables used in the propositional representation are:

– pjr = 1 iff xi not included in term j.
– p′

jr = 1 iff ¬xi not included in term j.
– slqjr: replace either with p′

jr if feature fr occurs positively in eq ∈ E+, or with
pjr if feature fr occurs negatively in eq ∈ E+.

– crjq = 1 iff rule j covers eq ∈ E+.

Furthermore, the constraints proposed in [19] can be translated as follows:

1. One of pjr and p′
jr must be true:

(pjr ∨ p′
jr) j ∈ [N ] ∧ r ∈ [K] (2)

2. Each negative example eq ∈ E−, with a set of positive features Pq and a set
of negative features Nq, must be discriminated by every term:

(∨
r∈Pq

¬p′
jr ∨ ∨

r∈Nq
¬pjr

)
j ∈ [N ] ∧ eq ∈ E− (3)
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3. Each positive example must be covered:
– Constraint for a term not covering a positive example:

(slqjr ∨ ¬crjq) j ∈ [N ] ∧ r ∈ [K] ∧ eq ∈ E+ (4)

– Each positive example must be covered by some term:
(

N∨

j=1

crjq

)

eq ∈ E+ (5)

Analysis of the constraints yields the following:

Proposition 3. The model uses O(N × M × K) clauses and literals.

An Alternative Model. In contrast with the model of Kamath et al. [19], we
propose a model with a different semantics for some of the variables, and a few
additional clauses, to elicit propagation. As shown by the experimental results,
the motivation has been to devise a model for which the computed solutions are
(heuristically) easier to interpret, by specifying fewer literals.

The sets of variables to use are the following:

– sjr: whether for rule j, a literal in feature r is to be skipped.
– ljr: literal on feature r for rule j, in the case the feature is not skipped.
– d0jr: whether feature r of rule j discriminates value 0.
– d1jr: whether feature r of rule j discriminates value 1.
– crjq: whether (used) rule j covers eq ∈ E+.

(Observe that this variable is also used in the existing model [19].)

The constraints encoding MinDS3 are:

1. Each term must have some literals:
(

K∨

r=1
¬sjr

)

j ∈ [N ] (6)

2. One must be able to account for which literals are discriminated by which
rules:

d0jr ↔ ¬sjr ∧ ljr j ∈ [N ] ∧ r ∈ [K]
d1jr ↔ ¬sjr ∧ ¬ljr j ∈ [N ] ∧ r ∈ [K] (7)

3. In addition, one must be able to discriminate all the negative examples in
each term. Let eq ∈ E− be a negative example, and σ(r, q) denote the sign of
feature fr for eq. Then,

(
K∨

r=1
d

σ(r,q)
j,r

)

j ∈ [N ] ∧ eq ∈ E− (8)

4. We must also ensure that each positive example is covered by some rule,
associated with its class.
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– First, define whether a rule covers some specific positive example:

crjq ↔
(

K∧

r=1
¬d

σ(r,q)
j,r

)

j ∈ [N ] ∧ eq ∈ E+ (9)

– Second, each eq ∈ E+ must be covered by some rule. This corresponds
to (5).

Proposition 4. The propositional encoding uses O(N × M × K) clauses and
literals.

4.2 SAT Models for MINDS1 and MINDS2

The models analyzed in the previous section, MinDS3 and MinDS4, learn one
function for one class, e.g. F 1 for c1. For the other class, e.g. c0, only the original
minterms are available, and a default rule that may opt to pick this other class
for points of feature space not covered by F 1. It is in general possible to have
more accurate representations of the two classes, by considering some of the
models described earlier in this paper, concretely MinDS2 and MinDS1. This
section develops propositional models for MinDS2 and MinDS1.

The Case of MINDS2. It is immediate to generalize MinDS3 (or MinDS4) to
the case of MinDS2. Essentially, the constraints for discriminating classes and
for covering classes must be replicated for the target classes1.

The Case of MINDS1. We consider a grid of N by K entries, each row of
K entries denoting the organization of a rule. The (basic) sets of variables to
use are the same as for MinDS3, with the addition of cj , representing a class
variable, which is 0 if the class of rule j is false (or negative), and 1 otherwise.
Moreover, the constraints encoding MinDS1 are:

1. Every term must be used. This constraint corresponds to (6).
2. We must also be able to account for which literals are discriminated by which

rules. This constraint corresponds to (7).
3. In addition, we must be able to discriminate positive examples in rules of the

negative class and vice-versa. Let eq ∈ E+ be a positive example, and σ(r, q)
be defined as above. Then,

¬cj →
(

K∨

r=1
d

σ(r,q)
j,r

)

j ∈ [N ] ∧ eq ∈ E+

cj →
(

K∨

r=1
d

σ(r,q)
j,r

)

j ∈ [N ] ∧ eq ∈ E−
(10)

4. We must also ensure that each example is covered by some rule, associated
with its class.

1 The generalization from MinDS3 to MinDS2 is straightforward, and omitted due to
space constraints. Moreover, the model for MinDS1 follows a similar approach.
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– First, the constraint for a rule to cover some example:

crjq ↔
(

¬cj ∧
K∧

r=1
¬d

σr,q

j,r

)

j ∈ [N ] ∧ eq ∈ E−

crjq ↔
(

cj ∧
K∧

r=1
¬d

σr,q

j,r

)

j ∈ [N ] ∧ eq ∈ E+

(11)

– Second, all examples no matter the class must be covered, and so we
generalize (5) to get:

(
N∨

j=1

crjq

)

eq ∈ E (12)

Thus, every element is covered.
5. Finally, two terms associated with different classes must not exhibit U�-

overlap:

¬(ci ↔ cj) →
(

K∨

r=1
¬sir ∧ ¬sjr ∧ ¬(lir ↔ ljr)

)

i, j ∈ [N ] ∧ i < j (13)

4.3 Breaking Symmetries

The propositional models proposed in earlier sections essentially capture
(unordered) sets of terms. The lack of order reveals a symmetry. If the num-
ber of terms is large, this can impact performance significantly. A standard
technique to eliminate such symmetries in the problem formulation is to impose
an order in the representation. The approach we take is to sort the terms, such
that the number of each feature is inverse to the weight of the feature in the
binary representation of the number associated with the term. Unspecified fea-
tures have the largest weight. Clearly, imposing an order on the terms does not
affect correctness of the propositional model.

We describe next the constraints for the alternative model proposed in
Sect. 4.1. For the other models, a similar solution is used. The additional vari-
ables used are the following:

– eqj,r = 1 iff term j equals term j − 1 until feature r.
– gtj,r = 1 iff term j is greater than term j − 1 by feature r.

For the constraints below j ∈ [N ] and r ∈ [K]. The constraints for eqj,r are
the following, with eqj,0 = 1:

eqj,r ↔ eqj,r−1 ∧ (
sj−1,r ∧ sj,r ∨ d1j−1,r ∧ d1j,r ∨ d0j−1,r ∧ d0j,r

)
(14)

The constraints for gtjr, with gtj0 = 0, are the following:

gtj,r ↔ gtj,r−1 ∨ eqj,r−1 ∧ ¬sj−1,r ∧ sj,r ∨ eqj,r−1 ∧ d1j−1,r ∧ d0j,r (15)
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Observe that distinguishing a positive literal corresponds to accepting a neg-
ative literal. Clearly, additional variables can be introduced to enable clausifi-
cation [39]. Finally, for the last feature, each term must be greater than the
preceeding one:

N∧

j=2

(gtj,K) (16)

5 Experimental Results

This section evaluates the ideas studied in the paper given a variety of datasets.

5.1 Experimental Setup

The proposed models were implemented in a prototype as a Python script instru-
menting calls to the MiniSat 2.2 SAT solver [10]. More precisely, the weakened
models MinDSi, i ∈ [4], were implemented. Although all these models tar-
get binary classification, most of the practical benchmark datasets require non-
binary classification. Therefore, the implemented prototype supports non-binary
classification as well. As a result, we deem interesting for the evaluation to check
the performance of models MinDS2 and MinDS1 generalized to an arbitrary
number of classes, and so we do not test models MinDS3 and MinDS4, as they
are expected to be easier to deal with. Also note that the implementation sup-
ports both encodings of MinDS3 (and, thus, of generalized MinDS2) studied in
the paper: (1) the existing encoding [19] and (2) the alternative encoding pro-
posed above. In the following, the novel encoding of MinDS2 is simply called
MinDS2 while the encoding from [19] is referred to as MP92. Additionally and
for testing how helpful the proposed symmetry breaking predicates (SBPs) are,
the basic models were augmented with SBPs resulting in the following configu-
rations: MinDS2+SBP, MinDS1+SBP, and MP92+SBP. Finally, IDS2, a recent
approach [21] based on smooth local search [12], was also tested in the evalua-
tion. IDS uses the Apriori algorithm [1] for generating candidate itemsets, with
the default support threshold3 equal to 0.2. For simplifying the problem solved
by IDS, we increased this value to 0.5, which resulted in two configurations of
IDS to run: IDS-supp0.2 and IDS-supp0.5.

The experiments were performed on a subset of datasets of the PMLB repos-
itory4 [31]. The number of samples in the selected datasets varies from 87 to
496215 (≈1651.1 on average) while the number of original (i.e. non-binary)
2 https://github.com/lvhimabindu/interpretable decision sets/.
3 A support threshold parameter ε in the Apriori algorithm ensures that the candidate

itemsets are present in at least ε data points.
4 https://github.com/EpistasisLab/penn-ml-benchmarks/.
5 Some of the PMLB datasets are inconsistent, i.e. they have multiple occurrences

of the same samples marked by different labels. Since the proposed models assume
consistent data, the datasets were replaced by their largest consistent subsets. The
number of samples shown above corresponds to the size of the resulting consistent
datasets.

https://github.com/lvhimabindu/interpretable_decision_sets/
https://github.com/EpistasisLab/penn-ml-benchmarks/
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Table 1. Number of solved instances per model (out of 49 in total).

MP92 MP92+SBP MinDS2 MinDS2+SBP MinDS1 MinDS1+SBP IDS-supp0.2 IDS-supp0.5

42 45 42 45 6 6 0 2

features varies from 4 to 59 (≈15.1 on average). Applying the one-hot encod-
ing results in 6 to 2232 binary features (≈353.1 on average). The total number
of selected datasets is 49.

All the conducted experiments were performed in Ubuntu Linux on an Intel
Xeon E5-2630 2.60 GHz processor with 64 GB of memory. The time limit was
set to 600s and the memory limit to 10 GB for each individual process to run.
The experimental evaluation was divided into two parts detailed below.

5.2 Testing Scalability

The number of benchmarks solved by each competitor is shown in Table 1. Given
the large number of binary features in the datasets, the performance of both
MP92 and MinDS2 can be regarded as quite positive. As expected, symmetry
breaking improves it further: MP92+SBP and MinDS2+SBP solve all but 4
instances. Observe that MinDS1 and MinDS1+SBP perform significantly worse:
these models can solve only 6 instances. However, this is not surprising given
that MinDS1 targets computing decision sets exhibiting no U�-overlap, which is
in general significantly harder to solve.

Assessing the Performance of IDS [21]. As shown in Table 1, and in contrast
to the SAT-based models studied, IDS [21] performs quite poorly in practice.
With the default support threshold 0.2, IDS is unable to solve (within 600 s) any
instance, and it can solve only 2 instances if the support threshold is increased
to 0.5. Moreover, and although IDS aims at maximizing the number of covered
training samples and minimizing the rule overlap, the rules produced by IDS
exhibit significant overlap, even on examples taken from the training data6.
Given the poor performance of IDS and the weak guarantees in terms of rule
overlap, the rest of this section focuses solely on the SAT-based models.

Performance on Subsampled Datasets. To investigate the performance of
the models further, we (1) discarded the 6 instances solved by all models and
(2) subsampled the remaining 43 (49 − 6) benchmarks in the following way. For
each dataset, we randomly selected 5%, 10%, 20%, and 50% of training samples
and repeated this procedure 20 times for each percentage value. This resulted
in 80 randomly subsampled datasets for each of the 43 benchmarks. The total
number of subsampled benchmarks is 3440.
6 These surprising results motivated in part our detailed analysis of overlap. It should

be noted that the authors of IDS [21] have been informed of IDS’s poor performance
and poor ability to avoid rule overlap, but have been unable to justify the results of
IDS.
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Fig. 2. Performance of the considered models on subsampled datasets.

Figure 2 depicts the performance of the proposed models on the subsam-
pled benchmarks. As shown in Fig. 2a, MP92 and MinDS2 demonstrate almost
the same performance and solve successfully 3404 benchmarks. Enabling sym-
metry breaking proves itself helpful allowing them to solve 33 more instances,
i.e. 3437 overall. This is, however, not the case for MinDS1, which solves 2374
instances (2346 instances, resp.) if SBPs are disabled (enabled, resp.). This can
be explained by the benchmarks’ nature as they have a large number of classes
and training samples while the solutions are not large enough for SBPs to pay
off. Note that although MinDS1 performs significantly worse than MP92 and
MinDS2, it can still solve ≈70% of the subsampled benchmarks. These results
should be regarded as significant given the size and the properties of the tested
datasets, as well as the fact that MinDS1 targets no � overlap on the complete
feature space. To our best knowledge, these results are far beyond the state of
the art [21], and enable solving to optimality a whole new range of challenging
datasets.

5.3 Assessing Quality

Observe that the proposed models target minimizing the number of rules in the
target decision sets, rather than their total size, i.e. the total number of literals
used. Hence, it is of interest to compare the “quality” of solutions reported by
MP92 and the novel model MinDS2. One option is to simply compare the number
of literals in the decision sets reported by the two models. Alternatively, one can
try to minimize the number of literals in the resulting decision sets, by applying
Boolean lexicographic optimization (BLO) [23], as soon as a decision set with the
smallest number of rules is computed. For this, as soon as the number of rules in
the decision set is minimized (i.e. the corresponding CNF formula is satisfiable),
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Fig. 3. Quality of solutions computed with the considered models.

a simple MaxSAT problem can be devised by augmenting the formula with unit
soft clauses, which force all literals of the decision set to be unused. This can
be applied to any model MinDSi, i ∈ [4]. Afterwards, the minimum number
of literals can be computed by a standalone MaxSAT solver or approximated
with the use of an MCS (minimal correction subset) enumerator [24]. While the
former approach is exact, it is often outperformed by the latter one. For the
purpose of the evaluation, we tried both options with every model considered.
The MaxSAT solver used for computing exact solutions was MSCG [29] while
the approximation of MaxSAT solutions was done by computing first 10 MCSes
with the LBX algorithm [25].

Evaluation of the quality of solutions was done in the following way. Addi-
tionally to the tested configurations of MinDS2 and MP92, all of them were ran
in the BLO mode with literal minimization done by (1) a MaxSAT solver and
(2) an MCS enumerator. Among all configurations, a virtual best solver (VBS)
was constructed w.r.t. the total number of literals in the solution. Afterwards,
we measured how much larger the decision sets for each tested configuration are
w.r.t. the VBS, i.e. given the number of literals L in the solution produced by the
configuration and the number of literals L∗ in the VBS solution, we considered
value L/L∗. A similar study was done for MinDS1.

Figure 3 shows the quality of solutions for all tested models. (Y-axis here is
scaled logarithmically.) Here, the configurations marked by *+A10 compute 10
MCSes to approximate the solution. All configurations that use a MaxSAT solver
represent a constant f(x) = 1 and, thus, are omitted in Fig. 3. However, note
that they participate in the VBS. In general, our experiments suggest that the
MaxSAT-based literal minimization is expensive and results in only ≈85% of the
instances solved. One surprising observation is how much worse the quality of
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MP92’s solutions is when compared to MinDS2 (see Fig. 3a). In some cases, deci-
sion sets learned by MP92 have 3 orders of magnitude more literals than the VBS
decision sets and 1–2 orders of magnitude more literals than solutions computed
by MinDS2. On the other hand, these results indicate that approximate literal
number minimization after learning a target decision set is feasible and does not
degrade the performance of the overall procedure if done by enumerating a fixed
number of MCSes. This is confirmed for the case of MinDS1 (see Fig. 3b). Note
that efficient minimization of the total number of literals in the target decision
sets is crucial given the requirement that they must be interpretable.

6 Conclusions and Research Directions

Decision (or rule) sets represent a promising approach for providing explanations
in different ML settings. This paper shows that learning optimal decision sets
raises a number of difficulties, related with overlap of rules, especially when the
rules are associated with different classes. The paper conjectures that the exact
solution for the learning problem of decision sets, while ensuring no overlap, is
hard for the second level of the polynomial hierarchy. Moreover, the paper pro-
poses a number of alternative problem formulations, all of which are shown to be
hard for NP, and develops SAT-based solutions, relating with earlier work [19].
The experimental results, obtained on representative datasets, confirm the rele-
vance of the approach, and yield a number of conclusions. Compared with earlier
work [21], that exploits a variant of local search, the proposed SAT-based app-
roach is not only far more accurate, but also remarkably more efficient. The
results provide evidence that SAT-based learning of optimal decision sets can
handle practical datasets of interest, when the goal is to devise ML models that
associate explanations with predictions.

The promising results in the paper motivate a number of lines of work, includ-
ing proving (or disproving) the paper’s main conjecture, developing more efficient
propositional encodings, but also to consider other approaches that enable find-
ing an optimal solution to the learning problem for decision sets. Also and as
mentioned on the paper, the proposed approach can be adapted to study the
problem from another perspective, i.e. by minimizing the total number of liter-
als in a decision set instead the number of rules, or alternatively refer to multi-
objective optimization. This approach may result in smaller and, thus, better
interpretable solutions, in which case it would be appealing to compare it again
heuristic rule-based classifiers targeting this same problem, e.g. CN2 [6,7] and
PRISM [5] among others. One additional natural line of work will be to extend
the work to rule lists [2], but also to more expressive function representation
languages, while preserving the ability to provide explanations for predictions.
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Abstract. We introduce an automatic method for producing stateful
ML programs together with proofs of correctness from monadic func-
tions in HOL. Our mechanism supports references, exceptions, and I/O
operations, and can generate functions manipulating local state, which
can then be encapsulated for use in a pure context. We apply this app-
roach to several non-trivial examples, including the type inferencer and
register allocator of the otherwise pure CakeML compiler, which now
benefits from better runtime performance. This development has been
carried out in the HOL4 theorem prover.

1 Introduction

This paper is about bridging the gap between programs verified in logic and ver-
ified implementations of those programs in a programming language (and ulti-
mately machine code). As a toy example, consider computing the nth Fibonacci
number. Here is a recursion equation for a function, fib, in higher-order logic
(HOL) that does the job.

fib n = if n < 2 then n else fib (n − 1) + fib (n − 2)

A hand-written implementation (shown here in CakeML [9], which has similar
syntax and semantics to Standard ML) would look something like this:

fun fiba i j n = if n = 0 then i else fiba j (i+j) (n-1);

(print (n2s (fiba 0 1 (s2n (hd (CommandLine.arguments())))));

print "\n")
handle _ => print_err ("usage:" ^ CommandLine.name() ^ "<n>\n");

In moving from mathematics to a real implementation, some issues are apparent:

(1) We use a tail-recursive linear-time algorithm, rather than the exponential-
time recursion equation.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 646–662, 2018.
https://doi.org/10.1007/978-3-319-94205-6_42
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(2) The whole program is not a pure function: it does I/O, reading its argument
from the command line and printing the answer to standard output.

(3) We use exception handling to deal with malformed inputs (if the arguments
do not start with a string representing a natural number, hd or s2n may
raise an exception).

The first of these issues (1) can easily be handled in the realm of logical
functions: We define the tail-recursive version in logic

fiba i j n = if n = 0 then i else fiba j (i + j ) (n − 1)

then produce a correctness theorem, � ∀n. fiba 0 1 n = fib n, with a simple
inductive proof (a 5-line tactic proof in HOL4, not shown).

Now, because fiba is a logical function with an obvious computational coun-
terpart, we can use proof-producing synthesis techniques [13] to automatically
synthesise code verified to compute it. We thereby produce something like the
first line of the CakeML code above, along with a theorem relating the semantics
of the synthesised code back to the function in logic.

But when it comes to handling the other two issues, (2) and (3), and produc-
ing and verifying the remaining three lines of CakeML code, our options are less
straightforward. The first issue was easy because we were working with a shal-
low embedding, where one writes the program as a function in logic and proves
properties about that function directly. Shallow embeddings rely on an analogy
between mathematical functions and procedures in a pure functional program-
ming language. Effects, however, like state, I/O, and exceptions, can stretch this
analogy too far. The alternative is a deep embedding : one writes the program
as an input to a formal semantics, which can accurately model computational
effects, and proves properties about its execution under those semantics.

Proofs about shallow embeddings are relatively easy since they are in the
native language of the theorem prover, whereas proofs about deep embeddings
are filled with tedious details because of the indirection through an explicit
semantics. Still, the explicit semantics make deep embeddings more realistic.
An intermediate option that is suitable for the effects we are interested in—
state/references, exceptions, and I/O—is to use monadic functions: one writes
(shallow) functions that represent computations, aided by a composition oper-
ator (monadic bind) for stitching together effects. The monadic approach to
writing effectful code in a pure language may be familiar from the Haskell lan-
guage which made it popular.

For our nth Fibonacci example, we can model the effects of the whole pro-
gram with a monadic function, fibm, that calls the pure function fiba to do the
calculation. Figure 1 shows how fibm can be written using do-notation familiar
from Haskell. This is as close as we can get to capturing the effectful behaviour
of the desired CakeML program while remaining in a shallow embedding. Now
how can we produce real code along with a proof that it has the correct seman-
tics? If we use the proof-producing synthesis techniques mentioned above [13],
we produce pure CakeML code that exposes the monadic plumbing in an explicit
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Fig. 1. The Fibonacci program written using do-notation in logic.

state-passing style. But we would prefer verified effectful code that uses native
features of the target language (CakeML) to implement the monadic effects.

In this paper, we present an automated technique for producing verified
effectful code that handles I/O, exceptions, and other issues arising in the
move from mathematics to real implementations. Our technique systematically
establishes a connection between shallowly embedded functions in HOL with
monadic effects and deeply embedded programs in the impure functional lan-
guage CakeML. The synthesised code is efficient insofar as it uses the native
effects of the target language and is close to what a real implementer would
write. For example, given the monadic fibm function above, our technique pro-
duces essentially the same CakeML program as on the first page (but with a let
for every monad bind), together with a proof that the synthesised program is a
refinement.

Contributions. Our technique for producing verified effectful code from monadic
functions builds on a previous limited approach [13]. The new generalised method
adds support for the following features:

– global references and exceptions (as before, but generalised),
– mutable arrays (both fixed and variable size),
– input/output (I/O) effects,
– local mutable arrays and references, which can be integrated seamlessly with

code synthesis for otherwise pure functions, and,
– composable effects, whereby different state and exception monads can be

combined using a lifting operator.

As a result, we can now write whole programs as shallow embeddings and obtain
real verified code via synthesis. Prior to this paper, whole program verification
in CakeML involved manual deep embedding proofs for (at the very least) the
I/O wrapper. To exercise our toolchain, we apply it to several examples:



Proof-Producing Synthesis of CakeML 649

– the nth Fibonacci example already seen (exceptions, I/O)
– the Floyd Warshall algorithm for finding shortest paths (arrays)
– the CakeML compiler’s type inferencer (local refs, exceptions)
– the CakeML compiler’s register allocator (local refs, arrays)
– the Candle theorem prover’s kernel [8] (global refs, exceptions)
– an OpenTheory [7] article checker (global refs, exceptions, I/O).

In Sect. 5, we compare runtimes with the previous non-stateful versions of
CakeML’s register allocator and type inferencer; and for the OpenTheory reader
we compare the amount of code/proof required before and after using our tech-
nique.

The HOL4 development is at https://code.cakeml.org; our new synthesis tool
is at https://code.cakeml.org/tree/master/translator/monadic.

2 High-Level Ideas

This paper combines the following three concepts in order to deliver the con-
tributions listed above. The main ideas will be described briefly in this section,
while subsequent sections will provide details. The three concepts are:

(i) synthesis of stateful ML code as described in our previous work [13],
(ii) separation logic [15] as used by characteristic formulae for CakeML [5], and
(iii) a new abstract synthesis mode for the CakeML synthesis tools [13].

Our previous work on proof-producing synthesis of stateful ML (i) was
severely limited by the requirement to have a hard-coded invariant on the pro-
gram’s state. There was no support for I/O and all references had to be declared
globally. At the time of developing (i), we did not have a satisfactory way of
generalising the hard-coded state invariant.

In this paper we show (in Sect. 3) that the separation logic of CF (ii) can
be used to neatly generalise the hard-coded state invariant of our prior work
(i). CF-style separation logic easily supports references and arrays, including
resizable arrays, and, supports I/O too because it allows us to treat I/O compo-
nents as if they are heap components. Furthermore, by carefully designing the
integration of (i) and (ii), we retain the frame rule from the separation logic. In
the context of code synthesis, this frame rule allows us to implement a lifting
feature for changing the type of the state-and-exception monads. Being able to
change types in the monads allows us to develop reusable libraries—e.g. verified
file I/O functions—that users can lift into the monad that is appropriate for
their application.

The combination of (i) and (ii) does not by itself support synthesis of code
with local state due to inherited limitations of (i), wherein the generated code
must be produced as a concrete list of global declarations. For example, if
monadic functions, say foo and bar, refer to a common reference, say r, the
reference r must be defined globally:

https://code.cakeml.org
https://code.cakeml.org/tree/master/translator/monadic
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val r = ref 0;

fun foo n = ...; (* code that uses r *)

fun bar n = ...; (* code that uses r and calls foo *)

In this paper (in Sect. 4), we introduce a new abstract synthesis mode (iii)
which removes the requirement of generating code that only consists of a list of
global declarations, and, as a result, we are now able to synthesise code such as
the following, where reference r is a local variable.

fun pure_bar k n =

let

val r = ref k

fun foo n = ... (* code that uses r *)

fun bar n = ... (* code that uses r and calls foo *)

in Success (bar n) end

handle e => Failure e;

In the input to the synthesis tool, this declaration and initialisation of local
state corresponds to applying the state-and-exception monad. Expressions that
fully apply the state-and-exception monad can subsequently be used in the syn-
thesis of pure CakeML code: the monadic synthesis tools can prove a pure spec-
ification for such expressions, thereby encapsulating the monadic features.

3 Generalised Approach to Synthesis of Stateful ML
Code

This section describes how our previous approach to proof-producing synthe-
sis of stateful ML code [13] has been generalised. In particular, we explain
how the separation logic from our previous work on characteristic formulae [5]
has been used for the generalisation (Sect. 3.3); and how this new approach
adds support for user-defined references, fixed- and variable-length arrays, I/O
functions (Sect. 3.4), and a handy feature for reusing state-and-exception mon-
ads (Sect. 3.5).

In order to make this paper as self-contained as possible, we start with a
brief look at how the semantics of CakeML is defined (Sect. 3.1) and how our
previous work on synthesis of pure CakeML code works (Sect. 3.2), since the new
synthesis method for stateful code is an evolution of the original approach for
pure code.

3.1 Preliminaries: CakeML Semantics

The semantics of the CakeML language is defined in the functional big-step
style [14], which means that the semantics is an interpreter defined as a functional
program in the logic of a theorem prover.

The definition of the semantics is layered. At the top-level the semantics
function defines what the observable I/O events are for a given whole program.
However, more relevant to the presentation in this paper is the next layer down:
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a function called evaluate that describes exactly how expressions evaluate. The
type of the evaluate function is shown below. This function takes as arguments a
state (with a type variable for the I/O environment), a value environment, and
a list of expressions to evaluate. It returns a new state and a value result.

evaluate : δ state →
v sem_env → exp list → δ state × (v list, v) result

The semantics state is defined as the record type below. The fields relevant
for this presentation are: refs, clock and ffi. The refs field is a list of store values
that acts as a mapping from reference names (list index) to reference and array
values (list element). The clock is a logical clock for the functional big-step style.
The clock allows us to prove termination of evaluate and is, at the same time,
used for reasoning about divergence. Lastly, ffi is the parametrised oracle model
of the foreign function interface, i.e. I/O environment.

δ state = <| clock : num ; refs : store_v list ; ffi : δ ffi_state ; . . . |>

where store_v = Refv v | W8array (word8 list) | Varray (v list)

A call to the function evaluate returns one of two results: Rval res for suc-
cessfully terminating computations, and Rerr err for stuck computations.

Successful computations, Rval res, return a list res of CakeML values.
CakeML values are modelled in the semantics using a datatype called v. This
datatype includes (among other things) constructors for (mutually recursive)
closures (Closure and Recclosure), datatype constructor values (Conv), and lit-
eral values (Litv) such as integers, strings, characters etc. These will be explained
when needed in the rest of the paper.

Stuck computations, Rerr err , carry an error value err that is one of the
following. For this paper, Rraise exc is the most relevant case.

– Rraise exc indicates that evaluation results in an uncaught exception exc.
These exceptions can be caught with a handle in CakeML.

– Rabort Rtimeout error indicates that evaluation of the expression consumes all
of the logical clock. Programs that hit this error for all initial values of the
clock are considered diverging.

– Rabort Rtype error, for other kinds of errors, e.g. when evaluating ill-typed
expressions, or attempting to access unbound variables.

3.2 Preliminaries: Synthesis of Pure ML Code

Our previous work [13] describes a proof-producing algorithm for synthesising
CakeML functions from functions in higher-order logic. Here proof-producing
means that each execution proves a theorem (called a certificate theorem) guar-
anteeing correctness of that execution of the algorithm. In our setting, these
theorems relate the CakeML semantics of the synthesised code with the given
HOL function.
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The whole approach is centred around a systematic way of proving theorems
relating HOL functions (i.e. HOL terms) with CakeML expressions. In order
for us to state relations between HOL terms and CakeML expressions, we need
a way to state relations between HOL terms and CakeML values. For this we
use relations (int, list , −→ , etc.) which we call refinement invariants. The
definition of the simple int refinement invariant is shown below: int i v is true if
CakeML value v of type v represents the HOL integer i of type int.

int i = (λ v . v = Litv (IntLit i))

Most refinement invariants are more complicated, e.g. list (list int) xs v states
that CakeML value v represents lists of int lists xs of HOL type int list list.

We now turn to CakeML expressions: we define a predicate called Eval
in order to conveniently state relationships between HOL terms and CakeML
expressions. The intuition is that Eval env exp P is true if exp evaluates (in
environment env) to some result res (of HOL type v) such that P holds for res,
i.e. P res. The formal definition below is cluttered by details regarding the clock
and references: there must be a large enough clock and exp may allocate new
references, refs ′, but must not modify any existing references, refs. We express
this restriction on the references using list append ++. Note that any list index
that can be looked up in refs has the same look up in refs ++ refs ′.

Eval env exp P ⇐⇒
∀ refs.

∃ res refs ′ ck .
(evaluate (empty with <|refs := refs; clock := ck|>) env [exp] =
(empty with refs := refs ++ refs ′,Rval [res])) ∧ P res

The use of Eval and the main idea behind the synthesis algorithm is most
conveniently described using an example. The example we consider here is the
following HOL function:

add1 = λ x . x + 1

The main part of the synthesis algorithm proceeds as a syntactic bottom-up
pass over the given HOL term. In this case, the bottom-up pass traverses HOL
term λ x . x + 1. The result of each stage of the pass is a theorem stated in terms
of Eval in the format shown below. Such theorems state a connection between a
HOL term t and some generated code w.r.t. a refinement invariant ref _inv that
is appropriate for the type of t .

general format: assumptions ⇒ Eval env code (ref _inv t)

For our little example, the algorithm derives the following theorems for the
subterms x and 1, which are the leaves of the HOL term. Here and elsewhere in
this paper, we display CakeML abstract syntax as concrete syntax inside 	 · · · 
,
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i.e. 	1
 is actually the CakeML expression Lit (IntLit 1) in the theorem prover
HOL4; similarly 	x
 is actually displayed as Var (Short “x”) in HOL4. Note that
both theorems below are of the required form.

� T ⇒ Eval env 	1
 (int 1)

� Eval env 	x
 (int x ) ⇒ Eval env 	x
 (int x )
(1)

The algorithm uses theorems (1) when proving a theorem for the compound
expression x + 1. The process is aided by an auxiliary lemma for integer addition,
shown below. The synthesis algorithm is supported by several such pre-proved
lemmas for various common operations.

� Eval env x1 (int n1) ⇒
Eval env x2 (int n2) ⇒
Eval env 	x1 + x2
 (int (n1 + n2))

By choosing the right specialisations for the variables, x1, x2, n1, n2, the algo-
rithm derives the following theorem for the body of the running example. Here
the assumption on evaluation of 	x
 was inherited from (1).

� Eval env 	x
 (int x ) ⇒ Eval env 	x + 1
 (int (x + 1)) (2)

Next, the algorithm needs to introduce the λ-binder in λ x . x + 1. This can
be done by instantiation of the following pre-proved lemma. Note that the lemma
below introduces a refinement invariant for function types, −→, which combines
refinement invariants for the input and output types of the function [13].

� (∀ v x . a x v ⇒ Eval (env [n �→ v ]) body (b (f x ))) ⇒
Eval env 	fn n => body
 ((a −→ b) f )

An appropriate instantiation and combination with (2) produces the following:

� T ⇒ Eval env 	fn x => x + 1
 ((int −→ int) (λ x . x + 1))

which, after only minor reformulation, becomes a certificate theorem for the
given HOL function add1:

� Eval env 	fn x => x + 1
 ((int −→ int) add1)

Additional Notes. The main part of the synthesis algorithm is always a bottom-
up traversal as described above. However, synthesis of recursive functions
requires an additional post-processing phase which involves an automatic induc-
tion proof. We omit a description of such induction proofs since the solution
described previously in [13] is not important for understanding this paper, and
works in essentially the same way for synthesis of recursive stateful functions.
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3.3 Synthesis of Stateful ML Code

Our algorithm for synthesis of stateful ML is very similar to the algorithm
described above for synthesis of pure CakeML code. The main differences are:

– the input HOL terms must be written in a state-and-exception monad, and
– instead of Eval and −→, the derived theorems use EvalM and −→M ,

where EvalM and −→M relate the monad’s state to the references and foreign
function interface of the underlying CakeML state (fields refs and ffi). These
concepts will be described below.

Generic State-and-Exception Monad. The new generalised synthesis work-flow
uses the following state-and-exception monad (α, β, γ) M, where α is the state
type, β is the return type, and γ is the exception type.

(α, β, γ) M = α → (β, γ) exc × α

where (β, γ) exc = Success β | Failure γ

We define the following interface for this monad type. Note that syntactic
sugar is often used: in our case, we write do n ← foo; return (bar n) od (as was
done in Sect. 1) when we mean bind foo (λn. return (bar n)).

return x = (λ s. (Success x ,s))

bind x f =
(λ s. case x s of (Success y ,s) ⇒ f y s | (Failure x ,s) ⇒ (Failure x ,s))

x otherwise y =
(λ s. case x s of (Success v ,s) ⇒ (Success v ,s) | (Failure e,s) ⇒ y s)

Functions that update the content of state can only be defined once the state
type is instantiated. A function for changing a monad M to have a different state
type is introduced in Sect. 3.5.

Definitions and Lemmas for Synthesis. We define EvalM as follows. A CakeML
source expression exp is considered to satisfy an execution relation P if for any
CakeML state s, which is related by state rel to the state monad state st and state
assertion H , the CakeML expression exp evaluates to a result res such that the
relation P accepts the transition and state rel frame holds for state assertion H .
The auxiliary functions state rel and state rel frame will be described below. The
first argument ro can be used to restrict effects to references only, as described
a few paragraphs further down.

EvalM ro env st exp P H ⇐⇒
∀ s.

state rel H st s ⇒
∃ s2 res st2 ck .

(evaluate (s with clock := ck) env [exp] = (s2,res)) ∧
P st (st2,res) ∧ state rel frame ro H (st ,s) (st2,s2)
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In the definition above, state rel and state rel frame are used to check that the
user-specified state assertion H relates the CakeML states and the monad states.
Furthermore, state rel frame ensures that the separation logic frame rule is true.
Both use the separation logic set-up from our previous work on characteristic
formulae for CakeML [5], where we define a function st2heap which, given a pro-
jection p and CakeML state s, turns the CakeML state into a set representation
of the reference store and foreign-function interface (used for I/O).

The H in the definition above is a pair (h,p) containing a heap assertion h and
the projection p. We define state rel (h,p) st s to state that the heap assertion
produced by applying h to the current monad state st must be true for some
subset produced by st2heap when applied to the CakeML state s. Here (*) is the
separating conjunction and T is true for any heap.

state rel (h,p) st s ⇐⇒ (h st * T) (st2heap p s)

The relation state rel frame states: any frame F that is true separately from
h st1 for the initial state is also true for the final state; and if the references-only
ro configuration is set, then the only difference in the states must be in the refer-
ences and clock, i.e. no I/O operations are permitted. The ro flag is instantiated
to true when a pure specification (Eval) is proved for local state Sect. 4.

state rel frame ro (h,p) (st1,s1) (st2,s2) ⇐⇒
(ro ⇒ ∃ refs. s2 = s1 with refs := refs) ∧
∀F . (h st1 * F ) (st2heap p s1) ⇒ (h st2 * F * T) (st2heap p s2)

We prove lemmas to aid the synthesis algorithm in construction of proofs.
The lemmas shown in this paper use the following definition of monad.

monad a b x st1 (st2,res) ⇐⇒
case (x st1,res) of
((Success y ,st),Rval [v ]) ⇒ (st = st2) ∧ a y v

| ((Failure e,st),Rerr (Rraise v ′)) ⇒ (st = st2) ∧ b e v ′

| _ ⇒ F

Synthesis makes use of the following two lemmas in proofs involving monadic
return and bind. For return x , synthesis proves an Eval-theorem for x . For bind,
it proves a theorem that fits the shape of the first four lines of the lemma and
returns a theorem consisting of the last two lines, appropriately instantiated.

� Eval env exp (a x ) ⇒ EvalM ro env st exp (monad a b (return x )) H

� ((assums1 ⇒ EvalM ro env st e1 (monad b c x ) H ) ∧
∀ z v .

b z v ∧ assums2 z ⇒
EvalM ro (env [n �→ v ]) (snd (x st)) e2 (monad a c (f z )) H ) ⇒

assums1 ∧ (∀ z . (fst (x st) = Success z ) ⇒ assums2 z ) ⇒
EvalM ro env st 	let n = e1 in e2
 (monad a c (bind x f )) H
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3.4 References, Arrays and I/O

The synthesis algorithm uses specialised lemmas when the generic state-and-
exception monad has been instantiated. Consider the following instantiation of
the monad’s state type to a record type. The programmer’s intention is that the
lists are to be synthesised to arrays in CakeML and the I/O component IO_fs
is a model of a file system (taken from a library).

example_state =
<| ref1 : int; farray1 : int list; rarray1 : int list; stdio : IO_fs |>

With the help of getter- and setter-functions and library functions for file I/O,
users can conveniently write monadic functions that operate over this state type.

When it comes to synthesis, the automation instantiates H with an appro-
priate heap assertion, in this instance: ASSERT. The user has informed the
synthesis tool that farray1 is to be a fixed-size array and rarray1 is to be a
resizable-size array. A resizable-array is implemented as a reference that contains
an array, since CakeML (like SML) does not directly support resizing arrays.
Below, REF REL int ref1 loc st .ref1 asserts that int relates the value held in a
reference at a fixed store location ref1 loc to the integer in st .ref1. Similarly,
ARRAY REL and RARRAY REL specify a connection for the array fields. Lastly,
STDIO is a heap assertion for the file I/O taken from a library.

ASSERT st =
REF REL int ref1 loc st .ref1 * RARRAY REL int rarray1 loc st .rarray1 *
ARRAY REL int farray1 loc st .farray1 * STDIO st .stdio

Automation specialises pre-proved EvalM lemmas for each term that might
be encountered in the monadic functions. As an example, a monadic func-
tion might contain an automatically defined function update farray1 for updat-
ing array farray1. Anticipating this, synthesis automation can, at set-up time,
automatically derive the following lemma which it can use when it encounters
update farray1.

� Eval env e1 (num n) ∧ Eval env e2 (int x ) ∧
(lookup var 	farray1
 env = Some farray1 loc) ⇒
EvalM ro env st 	Array.update (farray1,e1,e2)

(monad unit exc (update farray1 n x )) (ASSERT,p)

3.5 Changing Monad Types

The possibility to change the types of the monad is useful when previously
developed monadic functions (e.g. from an existing library) are to be used as part
of a larger context. Consider the case of the file I/O in the example from above.
The following EvalM theorem has been proved in the CakeML basis library.

� Eval env e (string x ) ∧
(lookup var 	print
 env = Some print v) ⇒
EvalM F env st 	print e
 (monad unit b (print x )) (STDIO,p)
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This can be used directly if the state type of the monad is the IO_fs type.
However, our example above uses example_state as the state type.

To overcome such type mismatches, we define a function liftM which can
bring a monadic operation defined in libraries into the required context. The
type of liftM r w is (α, β, γ) M → (ε, β, γ) M, for appropriate r and w .

liftM read write op = (λ s. (let (ret ,new) = op (read s) in (ret ,write new s)))

Our liftM function changes the state type. A simpler lifting operation can be
used to change the exception type.

For our example, we define stdio f as a function that performs f on the
IO_fs-part of a example_state. (The fib example Sect. 1 used a similar stdio.)

stdio = liftM (λ s. s.stdio) (λn s. s with stdio := n)

For synthesis, we prove a lemma that can transfer any EvalM result for the
file I/O model to a similar EvalM result wrapped in the stdio function. Such
lemmas are possible because of the separation logic frame rule that is part of
EvalM. The generic lemma is the following:

� (∀ st . EvalM ro env st exp (monad a b op) (STDIO,p)) ⇒
∀ st . EvalM ro env st exp (monad a b (stdio op)) (ASSERT,p)

And the following is the transferred lemma, which enables synthesis of HOL
terms of the form stdio (print x ) for Eval-synthesisable x .

� Eval env e (string x ) ∧
(lookup var 	print
 env = Some print v) ⇒
EvalM F env st 	print e
 (monad unit exc (stdio (print x ))) (ASSERT,p)

4 Local State and the Abstract Synthesis Mode

This section explains how we have adapted the method described above to also
support generation of code that uses local state and local exceptions. These fea-
tures enable use of stateful code (EvalM) in a pure context (Eval). We used these
features to significantly speed up parts of the CakeML compiler (see Sect. 5).

In the monadic functions, users indicate that they want local state to be
generated by using the following run function. In the logic, the run function
essentially just applies a monadic function m to an explicitly provided state st .

run : (α, β, γ) M → α → (β, γ) exc
run m st = fst (m st)

In the generated code, an application of run to a concrete monadic function,
say bar, results in code of the following form:
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fun run_bar k n =

let

val r = ref ... (* allocate, initialise, let-bind all local state *)

fun foo n = ... (* all auxiliary funs that depend on local state *)

fun bar n = ... (* define the main monadic function *)

in Success (bar n) end (* wrap normal result in Success constructor *)

handle e => Failure e; (* wrap any exception in Failure constructor *)

Synthesis of locally effectful code is made complicated in our setting for two
reasons: (1) there are no fixed locations where the references and arrays are
stored, e.g. we cannot define ref1 loc as used in the definition of ASSERT in
Sect. 3.4; and (2) the local names of state components must be in scope for all
of the function definitions that depend on local state.

Our solution to challenge (1) is to leave the location values as variables
(loc1, loc2, loc3) in the heap assertion when synthesising local state. To illustrate,
we will adapt the example_state from Sect. 3.4: we omit IO_fs in the state
because I/O cannot be made local. The local-state enabled heap assertion is:

LOCAL ASSERT loc1 loc2 loc3 st =
REF REL int loc1 st .ref1 * RARRAY REL int loc2 st .rarray1 *
ARRAY REL int loc3 st .farray1

The lemmas referring to local state now assume they can find the right variable
locations with variable look-ups.

� Eval env e1 (num n) ∧ Eval env e2 (int x ) ∧
(lookup var 	farray1
) env = Some loc3) ⇒
EvalM ro env st 	Array.update (farray1,e1,e2)

(monad unit exc (update farray1 n x )) (LOCAL ASSERT loc1 loc2 loc3,p)

Challenge (2) was caused by technical details of our previous synthesis meth-
ods. The previous version was set up to only produce top-level declarations,
which is incompatible with the requirement to have local (not globally fixed)
state declarations shared between several functions. The requirement to only
have top-level declarations arose from our desire to keep things simple: each
synthesised function is attached to the end of a concrete linear program that is
being built. It is beneficial to be concrete because then each assumption on the
lexical environment where the function is defined can be proved immediately on
definition. We will call this old approach the concrete mode of synthesis, since
it eagerly builds a concrete program.

In order to support having functions access local state, we implement a new
abstract mode of synthesis. In the abstract mode, each assumption on the lexical
environment is left as an unproved side condition as long as possible. This allows
us to define functions in a dynamic environment.

To prove a pure specification (Eval) from the EvalM theorems, the automation
first proves that the generated state-allocation and -initialisation code estab-
lishes the relevant heap assertion (e.g. LOCAL ASSERT); it then composes the
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abstractly synthesised code while proving the environment-related side condi-
tions (e.g. presence of loc3). The final proof of an Eval theorem requires instan-
tiating the references-only ro flag to true, in order to know that no I/O occurs
(Sect. 3.3).

5 Case Studies and Experiments

In this section we present the runtime and proof size results of applying our
method to some case studies. Performance experiments were carried out on an
Intel i7-2600 running at 3.4 GHz with 16 GB of RAM. Full data is available at
https://cakeml.org/ijcar18.zip.

Type Inference and Register Allocation. Both of these phases of the CakeML
compiler are written with a state (and exception) monad, but were previously
synthesised into pure CakeML code. We updated them to use the new synthesis
tool, resulting in performant, stateful CakeML code. The allocator underwent
more significant changes, because we could now use CakeML arrays via the
synthesis tool. It was previously confined to using tree-like functional arrays for
its internal state, leading to logarithmic access overheads. This is not a specific
issue for the CakeML compiler; a verified register allocator for CompCert [3] also
reported log-factor overheads due to (functional) array accesses.

Tests were carried out using versions of the bootstrapped CakeML compiler.
We ran each test 50 times on the same input program, recording time elapsed
in each compiler phase. For each test in the register allocation benchmark, we
also compared the resulting executables 10 times, to confirm that both compilers
generated code of comparable quality (i.e. runtime performance).

In the largest program (knuth-bendix), the new register allocator ran 15
times faster (with a wide 95% CI of 11.76–20.93 due in turn to a high standard
deviation on the runtimes for the old code). In the smaller pidigits benchmark,
the new register allocator ran 9.01 times faster (95% CI of 9.01–9.02). Across
6 example input programs, we saw ratios of runtimes between 7.58 and 15.06.
Register allocation was previously such a significant part of the compiler runtime
that this improvement results in runtime improvements for the whole compiler
(on these benchmark programs) of factors between 2 and 9 times.

In contrast, the type inferencer became slower. We compared the performance
of commit 28aba93 (incorporating the monadic inference code) against the same
baseline. The slowdowns ranged between factors of approximately 3 and 1.17.
However, the case with the most dramatic slowdown as a ratio still only repre-
sents a tiny proportion of the total time spent compiling. In this case (pidigits),
the new code takes 10 ms out of a total elapsed time of 2.05s (roughly 0.5% of
the total). The best (least bad) case was in an artificial program exemplifying
the worst-case for Hindley-Milner where types grow exponentially. There, the
old code took 251 ms and the new took 295 ms. The extra indirection through
references in the new code seems to cost performance. We intend to keep using
the purely synthesised version until the compiler optimises the references better.

https://cakeml.org/ijcar18.zip
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OpenTheory Article Checker. The type changing feature from Sect. 3.5 enabled
us to produce an OpenTheory [7] article checker with our new synthesis app-
roach, and reduce the amount of manual proof required in a previous version. The
checker reads articles from the file system, and performs each logical inference
in the OpenTheory framework using the verified Candle kernel [8]. Previously,
the I/O code for the checker was implemented in stateful CakeML, and verified
manually using characteristic formulae. By replacing the manually verified I/O
wrapper by monadic code we removed 400 lines of tedious manual proof.

6 Related Work

Effectful Code Using Monads. Our work on encapsulating stateful computations
(Sect. 4) in pure programs is similar in purpose to that of the ST monad [11].
The main difference is how this encapsulation is performed: the ST monad relies
on parametric polymorphism to prevent references from escaping their scope,
whereas we utilise lexical scoping in synthesised code to achieve a similar effect.

Imperative HOL by Bulwahn et al. [4] is a framework for implementing
and reasoning about effectful programs in Isabelle/HOL. Monadic functions are
used to describe stateful computations which act on the heap, in a similar way
as Sect. 3 but with some important differences. Instead of using a state monad,
the authors introduce a polymorphic heap monad – similar in spirit to the ST
monad of Launchbury and Jones [11], but without encapsulation – where poly-
morphism is achieved by mapping HOL types to the natural numbers. Contrary
to our approach, this allows for heap elements (e.g. references) to be declared
on-the-fly and used as first-class values. The drawback, however, is that only
countable types can be stored on the heap; in particular, the heap monad does
not admit function-typed values, which our work supports.

More recently, Lammich [10] has built a framework for the refinement of pure
data structures into imperative counterparts, in Imperative HOL. The refinement
process is automated, and refinements are verified using a program logic based
on separation logic, which comes with proof-tools to aid the user in verification.

Both developments [4,10] differ from ours in that they lack a verified mecha-
nism for extracting executable code from shallow embeddings. Although stateful
computations are implemented and verified within the confines of higher-order
logic, Imperative HOL relies on the unverified code-generation mechanisms of
Isabelle/HOL. Moreover, neither work presents a way to deal with I/O effects.

Verified Compilation. Mechanisms for synthesising programs from shallow
embeddings defined in the logics of interactive theorem provers exist as compo-
nents of several verified compiler projects [1,6,12,13]. Although the main con-
tribution of our work is proof-producing synthesis, comparisons are relevant as
our synthesis tool plays an important part in the CakeML compiler [9]. To the
best of our knowledge, ours is the first work combining effectful computations
with proof-producing synthesis and fully verified compilation.

CertiCoq by Anand et al. [1] strives to be a fully verified optimising compiler
for functional programs implemented in Coq. The compiler front-end supports
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the full syntax of the dependently typed logic Gallina, which is reified into a
deep embedding and compiled to Cminor through a series of verified compila-
tion steps [1]. Contrary to the approach we have taken [13] (see Sect. 3.2), this
reification is neither verified nor proof-producing, and the resulting embedding
has no formal semantics (although there are attempts to resolve this issue [2]).
Moreover, as of yet, no support exists for expressing effectful computations (such
as in Sect. 3.4) in the logic. Instead, effects are deferred to wrapper code from
which the compiled functions can be called, and this wrapper code must be
manually verified.

The Œuf compiler by Mullen et al. [12] is similar in spirit to CertiCoq in
that it compiles pure Coq functions to Cminor through a verified process. Sim-
ilarly, compiled functions are pure, and effects must be performed by wrapper
code. Unlike CertiCoq, Œuf supports only a limited subset of Gallina, from
which it synthesises deeply embedded functions in the Œuf-language. The Œuf
language has both denotational and operational semantics, and the resulting syn-
tax is automatically proven equivalent with the corresponding logical functions
through a process of computational denotation [12].

Hupel and Nipkow [6] have developed a compiler from Isabelle/HOL to
CakeML AST. The compiler satisfies a partial correctness guarantee: if the gen-
erated CakeML code terminates, then the result of execution is guaranteed to
relate to an equality in HOL. Our approach proves termination of the code.

7 Summary

This paper describes a technique that makes it possible to synthesise whole
programs from monadic functions in HOL, with automatic proofs relating the
generated effectful code to the original functions. Using the separation logic
from characteristic formulae for CakeML, the synthesis mechanism supports ref-
erences, exceptions, I/O, reusable library developments, and encapsulation of
locally stateful computations inside pure functions. To our knowledge, this is
the first proof-producing synthesis technique with the aforementioned features.
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Abstract. In this paper we present an approach to reasoning with
large theories which is based on the abstraction-refinement framework.
The proposed approach consists of the following approximations: the
over-approximation, the under-approximation and their combination. We
present several concrete abstractions based on subsumption, signature
grouping and argument filtering. We implemented our approach in a the-
orem prover for first-order logic iProver and evaluated over the TPTP
library.

Keywords: Automated reasoning · Large theories
Abstraction-refinement

1 Introduction

Efficient reasoning with large theories is one of the main challenges in auto-
mated theorem proving arising in many applications ranging from reasoning
with ontologies to proof assistants for mathematics. Current methods for rea-
soning with large theories are based on different axiom selection methods. Some
of them are based on the syntactic or semantic structure of the axioms and
conjecture formulas [15,30]. These methods select relevant axioms based on syn-
tactic or semantic relationship between axioms and conjectures. Other methods
for axiom selection use machine learning to take advantage of previous knowl-
edge about proved conjectures [16,32,33]. What those methods have in common
are two phases of the whole process for proving a conjecture: one is the axiom
selection phase, and the other one is the reasoning phase. Those phases are per-
formed in a sequential way. First, the axiom selection takes place, then using the
selected axioms the reasoning process starts.

Our proposed approach based on abstraction-refinement framework [8] has
the purpose of interleaving the axioms selection and reasoning phases, having
a more dynamic interaction between them. This proposed approach encom-
passes two ways for approximating axioms: one is called over-approximation
and the other one under-approximation. Those approximations are combined
to converge more rapidly to a proof if it exists or to a model otherwise. There
are a number of related works which consider different specific types of under
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and/or over approximations in different contexts [1,5,7,9,12,19,22–24,31]. Nev-
ertheless, abstraction-refinement is largely overlooked in state-of-the-art auto-
mated theorem provers, with an exception of SPASS which was extended with
abstraction-refinement into a very specialised decidable fragment to approximate
general first-order reasoning [31]. Another relevant example is the Inst-Gen calcu-
lus [19] which under-approximates first-order formulas by propositional/ground
abstractions and refines these approximations by model-guided instantiations.
In the SMT setting, ground approximations are used in conflict and model-
based instantiation methods [11,25]. In higher-order logic, over-approximations
are used for efficient encodings into first-order logic [2–4], propositional logic [6]
and also in higher-order patterns [10].

In this paper we take a pragmatic approach. Instead of targeting a spe-
cific decidable fragment as an abstract domain we use abstraction-refinement to
simplify problems by different over and under approximations and their combi-
nations. We present a general abstraction-refinement framework for refutation
theorem proving which allows one to compare and combine different abstractions.
Our framework is general enough to represent abstractions not only within the
same language but also abstractions that extend or modify the language, in par-
ticular abstractions based on signature transformations. We present a number of
concrete abstractions based on subsumption, signature grouping and argument
filtering and discuss their combinations. In this paper we consider many-sorted
first-order logic in the context of first-order theorem proving but the approach
is applicable to SMT as well.1

2 Abstraction Functions and Refinements

Let us consider a set of formulas F which we call a concrete domain and a set of
formulas F̂ which we will call an abstract domain. For example F can be the set
of all first-order formulas and F̂ can be a fragment of first-order logic. Concrete
and abstract domains can coincide.

An abstraction function is a mapping α : F �→ F̂ . When there is no ambi-
guity we will call an abstraction function just an abstraction of F . The identity
function is an abstraction which will be called the identity abstraction αid .

A concretisation function for α is the inverse mapping γ : F̂ �→ 2F , i.e.,
γ(F̂ ) = {F | α(F ) = F̂} for F̂ ∈ F̂ .

An abstraction α is called over-approximating abstraction (wrt. refutation)
if for every F ∈ F , F |= ⊥ implies α(F ) |= ⊥. An abstraction α is called
under-approximating abstraction (wrt. refutation) if for every F ∈ F , α(F ) |= ⊥
implies F |= ⊥.

We can compose abstractions as mappings. In particular, if α1 : F �→ F1 and
α2 : F1 �→ F2 then α1α2 is an abstraction of F .

Proposition 1. Composition of over-approximating abstractions is an over-
approximating abstraction. Likewise, composition of under-approximating
abstractions is an under-approximating abstraction.
1 Preliminary version of this work was presented at the IWIL workshop [13].
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In this paper we will define several atomic abstractions and we use this propo-
sition to compose them to obtain a large range of combined abstractions.

We define an ordering on abstractions � called abstraction refinement order-
ing as follows: α � α′ if for all F ∈ F , α(F ) |= ⊥ implies α′(F ) |= ⊥. Two
abstractions are equivalent, denoted by α ≡ α′ if α � α′ and α′ � α. The strict
part � of � is defined as α � α′ if α � α′ and α �≡ α′. An abstraction is pre-
cise if it is equivalent to the identity abstraction. An example of a non-trivial
precise abstraction can be obtained by renaming function and predicate sym-
bols. We have that every over-approximating abstraction αs is above and every
under-approximation abstraction αw is below the identity abstraction wrt. the
abstraction refinement ordering, i.e., αw � αid � αs.

Weakening abstraction refinement of an over-approximating abstraction α is
an abstraction α′ which is below α and above the identity abstraction in the
abstraction refinement ordering, i.e., αid � α′ � α. Strengthening abstraction
refinement of an under-approximating abstraction α is an abstraction α′ which
is above α and below the identity abstraction in the abstraction refinement
ordering, i.e., α � α′ � αid .

An over-approximation abstraction-refinement process is a possibly infinite
sequence of weakening abstraction refinements α0, . . . , αn, . . . such that αid �
. . . � αn � . . . � α0. Similar, an under-approximation abstraction-refinement
process is a possibly infinite sequence of strengthening abstraction refinements
α0, . . . , αn, . . . such that α0 � . . . � αn � . . . � αid .

3 Over-Approximation Procedure

We use ATPS to denote an automated theorem prover which is sound but pos-
sibly incomplete (wrt. refutation) [14]. On the other hand, we use ATPC to
make a reference to an automated theorem prover which is complete but not
necessary sound [5,22]. Hence, if ATPS returns UNSAT then the conjecture is
proved and if ATPC returns SAT then the conjecture is disproved. The purpose
of these ATPs is to prove or disprove conjectures more efficiently than a sound
and complete ATP but with a possible loss of precision.

We consider a theory A which is a collection of axioms which we call concrete
axioms and a set of formulas Âs called abstract axioms. We will assume that the
negation of the conjecture is included in A, so proving the conjecture corresponds
to proving unsatisfiability of A.

The over-approximating procedure starts by applying an over-approximating
abstraction function αs to A, to obtain an abstract representation of axioms Âs,
Âs = αs(A). First, the procedure tries to prove unsatisfiability of the abstract
axioms Âs using an ATPC . If ATPC proves unsatisfiability of Âs, the proce-
dure extracts an abstract unsat core Âs

uc from Âs, which can be obtained by,
e.g., collecting all axioms involved in the abstract proof. Next, the procedure
tries to prove unsatisfiability of the concretisation of the abstract unsat core
Auc = γs(Âs

uc) using ATPS . If the ATPS proves unsatisfiability of Auc , the
process stops as this proves unsatisfiability of A. Otherwise, if Auc is shown
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to be satisfiable, the set of axioms A is abstracted using a new abstraction α′
s

obtained by weakening abstraction refinement of αs. In practice, the refinement
procedure refines αs until α′

s(Auc) becomes satisfiable, which is always possible
as at this point we assume Auc is satisfiable. The procedure is repeated utilis-
ing the refined set of abstract axioms. This loop finishes when the conjecture
is proved or disproved or the time limit of the whole procedure is reached. The
diagram of the over-approximating procedure is shown in Fig. 1.

Fig. 1. The over-approximation procedure

The main parameters of this procedure are an over-approximating abstrac-
tion function and weakening abstraction refinement.

Next we define several concrete over-approximating abstractions and discuss
abstraction refinement for these abstractions.

3.1 Subsumption-Based Abstraction

In this section we present abstraction-refinement based on subsumption. Infor-
mally, we partition concrete axioms based on joint literal occurrences and for
each partition we define an abstract clause which subsumes all clauses in the
partition.

We define the initial abstraction of A as follows. With each set of clauses A′,
we associate a literal �k in A′ which we call a partition literal for A′. An initial
partition of A is defined as A = A�+1 ∪ A�−1 where �1 is a partition literal for A,
members of A�+1 are all clauses containing �1 and A�−1 = A \A�+1 . We recursively
continue partitioning A�−1 in the same way until we obtain the empty set. The
result of this process is the following partition of A:

A =
n⋃

k=1

A�−1 ...�−k−1�+k ,
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where �k is the partition literal for A�−1 ...�−k−1 , we assume A�−1 ...�−n is empty and
A�−1 ...�−k−1�+k = A�+1 for k = 1.

For each partition A�−1 ...�−k−1�+k literals �1, . . . , �k−1 do not occur in any clause
in the collection and �k occurs in all clauses in A�−1 ...�−k−1�+k . Figure 2 shows an
example of such partition.

We say that �k is a leading literal in A�−1 ...�−k−1�+k and each leading literal is
the abstraction of their corresponding set. These abstractions form the set of
abstract axioms Âs. In practice, we can select the leading literal based on a
heuristic criteria, e.g., the number of occurrences of a literal in the clause set.

Example 1. Consider the following set of concrete clauses A and its partition
consisting of A�+1 , A�−1 �+2 and A�−1 �−2 �+3 . Where the leading literals are �1, �2, �3
and they form the abstract set of clauses Âs, Âs = {�1, �2, �3}.

Fig. 2. Partitions of A are in bold

The mapping from sets of the form A�−1 ...�−k−1�+k to the leading literals gives
us the abstraction function αs, which is defined as

αs(D) = �k for D ∈ A�−1 ...�−k−1�+k .

Consequently, the concretisation function γs is defined as

γs(�k) = A�−1 ...�−k−1�+k .

We use the set of abstract axioms to try to prove a conjecture. If the con-
jecture is proved, we consider the abstract axioms from the unsat core. Those
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abstract axioms are refined and then replaced by their refined versions. Then,
the proving process is repeated using the refined set of abstract axioms. This
process continues until we get a concrete proof of the conjecture.

The refinement of abstract axioms will be defined further in this section, but
first consider the following definitions. During the refinement process we will
partition A into sets of the form Aσ where σ is a sequence of signed literals
σ = �s1

1 . . . �sn
n , where sj is either + or − for 1 ≤ j ≤ n. A literal �

sj

j occurs in
all clauses of Aσ if sj = + and does not occur in any of the clauses in the set if
sj = −.

In Fig. 2, the leaves different to the empty set are the partition of A and
they have the form Aσ. The set of literals in σ with positive signs is defined
as σ+ = {� : �s ∈ σ and s is +}. The set Aσ is abstracted with the clause
Cσ+

=
∨

�∈σ+ �. Therefore, the abstraction function αs is defined as

αs(D) = Cσ+
,

where D ∈ Aσ. Then, concretisation function is γs(Cσ+
) = Aσ. The set Aσ is

fully concretised if Aσ = {Cσ+}.
For a set of clauses A′, let L(A′) denote the set of all literals occurring in

clauses in A′. The refinement process is applied to an unsat core Âs
uc consisting

of abstract clauses. The refinement process subpartitions one of Aσ = γs(Cσ+
),

where Cσ+ ∈ Âs
uc , such that Aσ is not fully concretised. Let σ = �s1

1 . . . �sk

k . This
process starts by selecting a new partition literal �k such that

�k+1 ∈ L(Aσ) \ σ+.

Note, that since Aσ is not fully concretised, L(Aσ) \ σ+ is not empty. Using the
literal �k+1, we obtain the starting partition Aσ = Aσ�+k+1 ∪ Aσ�−k+1 . Then, we
continue recursively partitioning Aσ�−k+1 as before until we obtain the empty set.
The result of this recursive process is the partition of Aσ defined as follows:

Aσ =
m⋃

j=1

Aσ�−k+1...�−k+j−1�+k+j ,

where �k+j is the partition literal for Aσ�−k+1...�−k+j−1�+k+j and Aσ�−k+1...�−k+m−1�−k+m

is the empty set. Denote σi = σ�−
k+1 . . . �−

k+j−1�
+
k+j for 1 ≤ i ≤ m. Then refined

abstraction α′
s is defined as:

α′
s(D) =

{
Cσ+

i if D ∈ Aσi for some 1 ≤ i ≤ m,
αs(D) if D �∈ Aσ.

An example of this refinement is shown in Fig. 3, where the refined abstraction
of A consists of {�1, �3, �2 ∨ �4, �2 ∨ �5}.

Let us note that the subsumption abstraction is an over-approximation
abstraction and subsumption abstraction refinement is a weakening abstraction
refinement, in particular, αid � α′

s � αs.
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Fig. 3. Refinement of A�−1 �+2 (dotted circle); partitions of A are in bold

3.2 Generalisation Abstraction

In the generalisation abstraction we abstract clauses with their generalisations.
A clause D is a generalisation of a clause C if C = Dσ for a substitution σ.
Generalisation ordering on clauses can be defined as C �g D if C = Dσ. A
generalisation abstraction αg is a function that maps clauses to their generali-
sations, so we have C �g αg(C). One example of the generalisation abstraction
would be replacing certain non-variable terms by variables. For example, using a
generalisation abstraction one can abstract the set of clauses into the Effectively
PRopositional (EPR) fragment. Another abstraction strategy can be based on
targeting inference positions eligible for superposition.
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Example 2. Consider the following set of clauses:

S = {p(g(x), g(x)) ∨ q(f(g(x))); g(f(f(x))) � g(f(x))}.

A possible generalisation abstraction of S can be:

αg(S) = {p(x, x) ∨ q(f(x)); g(f(x)) � g(x)}.

Let us note that, e.g., superposition inference is applicable from the second
into the first clause in S under any simplification ordering, which can easily
lead to non-termination. On the other hand, there is no eligible superposition
inferences between two abstracted clauses due to abstraction of terms headed
with g in the first clause and the fact that superposition is not applied into the
variable positions.

The generalisation abstraction refinement α′ of α can be based on restoring
abstracted terms in abstract clauses from the unsat core, i.e., C �g α′

g(C) �g

αg(C) for C ∈ Âs
uc and α′

g(C) = αg(C) for C �∈ Âs
uc . We note that the

generalisation abstraction is an over-approximation abstraction and generalisa-
tion abstraction refinement is a weakening abstraction refinement, in particular,
αid � α′

g � αg .
In practice, the generalisation abstraction can be naturally combined with

the subsumption abstraction, by first generalising and then applying the sub-
sumption abstraction.

3.3 Argument Filtering Abstraction

In this section we present the argument filtering abstraction. Informally, argu-
ment filtering abstraction is based on removing certain arguments in signature
symbols.

Consider a signature Σ consisting of predicate and function symbols. We
will represent argument selection using bit-vectors. Consider a bit-vector bv . We
denote the length of bv by |bv |, the number of 1s in bv by |bv|1 and 0s by |bv|0.
Let 1̄n, 0̄n denote bit-vectors of length n, consisting of 1s and 0s, respectively.
Let Bn denote the set of all bit-vectors of length n. We will omit index n when
the bit-vector length is clear from the context or irrelevant.

With each signature (i.e., predicate or function) symbol f of arity n and
a bit-vector bv of length n we associate an abstract symbol fbv with the arity
|bv|1. An abstract domain for a signature symbol f , denoted fB is the set of all
abstract symbols fbv , where |bv | = arity(f). An abstract signature is defined as
ΣB = ∪f∈ΣfB. A signature abstraction is a function: αf : Σ �→ ΣB such that
αf (f) ∈ fB.

A signature abstraction can be extended to terms and atoms recursively:

αf (t) =

⎧
⎨

⎩

x if t = x,
fbv (αf (ti1), . . . , αf (tik

)) if t = f(t1, . . . , tn), αf (f) = fbv , and
bv(i) = 1 iff i ∈ {i1, . . . , ik}.



An Abstraction-Refinement Framework for Reasoning with Large Theories 671

In turn, αf is extended to clauses and sets of clauses in an obvious way by
applying αf to atoms.

If we abstract every signature symbol f to f 1̄ then we obtain a precise
abstraction, i.e., equivalent to the identity abstraction. Therefore, w.l.o.g., we
will identify every signature symbol f with its f 1̄ abstraction.

Let us consider some special cases. If we abstract every predicate symbol p
to p0̄ then we obtain a pure propositional abstraction, which we denote αprop

f . If
we abstract every function symbol f to f 0̄ and every predicate symbol p to p1̄

then we obtain an EPR abstraction, which we denote αEPR
f . If we abstract every

signature symbol f to f 1̄ then we obtain a precise abstraction, i.e., equivalent
to the identity abstraction.

Example 3. Let us consider the following set of clauses

S = {p(x, f(x, g(y))) ∨ ¬p(c, x);¬p(g(f(x, y)), g(y)); p(c, x)}.

Then pure propositional abstraction will result in the following set of clauses:

αprop
f (S) = {p0̄ ∨ ¬p0̄;¬p0̄; p0̄},

which is unsatisfiable. One the other hand the EPR abstraction is:

αEPR
f (S) = {p(x, f 0̄) ∨ ¬p(c, x);¬p(g0̄, g0̄); p(c, x)}.

It is easy to see that the EPR abstraction is satisfiable and therefore the original
set of clauses is also satisfiable.

In order to define abstraction-refinement we introduce a partial ordering on
abstract symbols: fbv0 �af fbv1 iff bv1(i) ≤ bv0(i), for all 0 ≤ i < arity(f).
Then we extend this ordering on abstractions by defining α0

f �af α1
f iff α0

f (f) �af

α1
f (f) for all f ∈ Σ. We call �af argument filtering ordering. The top element

in this ordering is the pure propositional abstraction.
The following proposition implies that argument filtering abstraction is an

over-approximation abstraction and abstraction refinement based on the argu-
ment filtering ordering is a weakening abstraction refinement.

Proposition 2. The argument filtering ordering is compatible with the abstrac-
tion refinement ordering, i.e., if α0

f �af α1
f then α0

f � α1
f . Moreover, every

argument filtering abstraction is above the identity abstraction, i.e., αid � αf .

In the example above, the EPR abstraction is a refinement of the propo-
sitional abstraction. In practice, one can start with a propositional or EPR
abstraction and define the weakening refinement process by restoring arguments
of abstract symbols occurring in the unsat core, as described in the Sect. 3.
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Abstracting Variable Dependencies. Let us observe how argument filtering can
be used to abstract variable dependencies. As an example we consider clause
splitting without backtracking [26], which can be defined as follows. Given a
clause C(x̄, ȳ) ∨ D(x̄, z̄) one can split this clause into two clauses by introducing
a fresh splitting predicate over joint variables sp(x̄) and replacing this clause
with two clauses C(x̄, ȳ) ∨ sp(x̄) and ¬sp(x̄) ∨ D(x̄, z̄). In this way the splitting
predicate represents variable dependencies between different subclauses. We can
abstract such variable dependencies by restricting argument filtering abstraction-
refinement to the splitting predicates. In the same way we can target formula
definitions introduced during clausification and Skolem functions which encode
existential variable dependencies.

3.4 Signature Grouping Abstraction

Consider a finite signature Σ and let T be the set of all types of symbols in
Σ. In many-sorted first-order logic, a type of a symbol can be represented as a
sequence of sorts in a standard way. We partition Σ into groups Σ =

⋃
τ∈T Στ ,

such that symbols in Στ are all symbols in Σ of type τ . With each non-empty
subset of στ ⊆ Στ we associate an abstract symbol fστ of type τ . The abstract
signature ΣS is defined as the union of all abstract symbols.

Consider partitioning Σ into groups Σ = ∪n
i=1σi, such that all symbols in σi

have the same type. We define a signature grouping abstraction αsig as a function:
αsig : Σ �→ ΣS such that αsig(f) = fσi if f ∈ σi for some 1 ≤ i ≤ n. In a similar
way to Sect. 3.3, we extend αsig to an abstraction over terms, atoms and clauses.
We can also define an ordering on abstract symbols: fσ0 �sig fσ1 iff σ0 ⊆ σ1

and extend this ordering to abstractions: α0
sig �sig α1

sig iff α0
sig(f) �sig α1

sig(f)
for all f ∈ Σ. We call �sig the signature grouping ordering. Let us note that
the top element in this ordering is the abstraction corresponding to the maximal
partitioning Σ =

⋃
τ∈T Στ and the bottom element is a precise abstraction

corresponding to the partitioning into singleton sets.

Example 4. Consider the following set of clauses over a signature consisting of
a single non-Boolean sort:

{q(f(c)) ∨ p(f(c));¬p(f(x)) ∨ s(g(z), f(a));¬p(g(x)) ∨ r(f(z), g(a));¬r(x, y)},

we can group symbols of the same type such as q and p which are replaced by
q′. Predicates s and r are replaced by s′; functions symbols f and g are replaced
by f ′. The resulting abstract set is:

{q′(f ′(c));¬q′(f ′(x)) ∨ s′(f ′(z), f ′(a));¬s′(x, y)}.

This abstraction is unsatisfiable and we can refine it by concretising certain
abstract symbols occurring in the unsat core, e.g.,

{q(f ′(c)) ∨ p(f ′(c));¬p(f ′(x)) ∨ s′(f ′(z), f ′(a));¬s′(x, y)},

where q′ is concretised.
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Proposition 3. The signature grouping ordering is compatible with the abstrac-
tion refinement ordering, i.e., if α0

sig �sig α1
sig then α0

sig �sig α1
sig . More-

over, every signature grouping abstraction is above the identity abstraction, i.e.,
αid � αsig .

Let us note that signature grouping can be naturally combined with the argu-
ment filtering abstraction. In particular, argument filtering can reduce symbol
types which in turn can be used to produce larger groups of abstract symbols.

4 Abstraction by Under-Approximation

The process starts by applying the weakening abstraction function to the set of
concrete axioms A, Âw = αw(A). This set Âw of weaker axioms is used to prove
the conjecture, using an ATPS . If the conjecture is proved the procedure stops
and provides the proof. Otherwise, a model I of Âw and the negated conjecture
is obtained. This model is used to refine the set of weaker axioms Âw. During
this refinement (strengthening abstraction refinement), the procedure tries to
find a set of axioms Ă that turns the model into a countermodel but are still
implied by A, i.e., I �|= Ă and A |= Ă. If the set of axioms Ă is empty, Ă = ∅,
the procedure stops and disproves the conjecture. Otherwise, the obtained set
of axioms is added to the set of weaker axioms, Âw := Âw ∪ Ă. Using this new
set of abstract axioms Âw, another round for proving the conjecture starts. The
process finishes when the conjecture is proved or disproved or the time limit for
the quest of a proof is reached. The diagram of this procedure is shown in Fig. 4.

Fig. 4. Under-approximation

4.1 Weakening Abstraction Function

In the case of under-approximation, we propose two weakening abstractions:
instantiation abstraction and deletion abstraction. In the case of instantiation
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abstraction, abstraction function generates ground instances of the concrete
axioms as it is done in the Inst-Gen framework [19]. In the case of deletion
abstraction we delete certain concrete axioms from the theory. This abstraction
can be used to incorporate other axioms selection methods into this framework,
which are based on removing irrelevant axioms. In particular, we incorporated
SInE [15] which selects axioms based on syntactic relevance. In practice, different
abstractions can be recombined.

4.2 Strengthening Abstraction Refinement

In the case of deletion abstraction, refinement can be done by adding concrete
axioms Ă that turn the model I, which is obtained form ATPS , into a coun-
termodel, Ă ⊆ {ă | ă ∈ A, I �|= ă}. In the case of instantiation abstraction,
refinement can be done by generating a set of ground instances of axioms Aσ
such that I �|= Aσ, Ă := Aσ.

5 Combined Approximation

We can combine over- and under-approximations as follows. We use under-
approximation in the outer-loop and over-approximation in the place of ATPS

(see Fig. 4). Let us note that abstractions can be shared between approxima-
tion loops. This combination allows us incorporate other axiom selection meth-
ods [15,30,32,33] as part of the under-approximation abstraction and combine
them with over-approximation abstractions described in this paper.

6 Evaluation and Experimental Results

We implemented the abstraction-refinement framework described in this paper
as part of the current version of iProver v2.7 [18,19]2, which is also the ATP
that we utilised in our experiments.

We evaluated our implementation of the abstraction-refinement frame-
work on the standard benchmark for first-order theorems provers: the TPTP
library [29] with the set of problems from the Large Theory Batch (LTB) cat-
egory in CASC-26 [17,21,28], during the competition the wall clock time limit
was 90000 s per batch. All experiments described in this section were performed
using a cluster of computers with the following characteristics: Linux v3.13, cpu
3.1 GHz and memory 125 GB. We used a time limit of 240 s for each attempt to
solve a problem.

We experimented with different types of over-approximation abstractions:
(i) subsumption abstraction, (ii) argument filtering abstraction, (iii) argument
filtering restricted to Skolem functions and splitting predicates, (vi) signature
grouping abstraction, and (v) signature grouping restricted to Skolem functions.

2 iProver is available at: http://www.cs.man.ac.uk/∼korovink/iprover/.

http://www.cs.man.ac.uk/~korovink/iprover/
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We implemented arbitrary combinations of these abstractions, which can be
specified as a command line option to iProver, e.g.,

--abstr ref "[subs;sig;arg filter]".

For under-approximation abstractions we used the SInE axiom selection algo-
rithm [15] and the Inst-Gen calculus which is the backbone of iProver. SInE is
included with Vampire’s [20] clausifier, which we also used for clausification.

The first set of experiments were performed over 1500 problems out of which:
716 were solved by signature grouping, 704 by signature grouping of Skolem sym-
bols and constants, 637 by subsumption and 627 by argument filtering. Results
are shown in Table 1.

Table 1. Problems solved by over-approximation abstractions with SInE.

Abstraction Solutions

Signature grouping 716

Signature grouping Skolem/constants 704

Subsumption 637

Argument filter 627

In the next set of experiments we combined different over-approximation
abstractions. In Table 2, we present the results obtained from combining different
abstractions. Abstractions were applied in the same order as they are presented.

From these results, we can conclude that combination of abstractions con-
siderably improves the performance. The best combination of abstractions is
subsumption, signature grouping and argument filtering which solves around
the 55% of the 1500 problems.

Table 2. Problems solved by iProver combination of abstractions and SInE

Abstraction Solutions

subs; sig grouping; arg filter 826

subs; sig grouping 798

subs; sig grouping Skolem/constants; arg filter 733

subs; sig grouping Skolem/constants 719

subs; arg filter 630

We experimented with the top 3 strategies by restricting argument filtering
and signature grouping to Skolem functions and splitting predicates and com-
pared these to unrestricted versions. In this experiments the option --schedule
was set to default. The results are shown in Table 3.
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Table 3. Problems solved by iProver default schedule with abstractions and SInE

Abstraction Solutions

subs; sig grouping; arg filter Skolem/splitting 957

subs; sig grouping; arg filter 942

subs; sig grouping Skolem/constants; arg filter 930

Table 4. Top strategies after removing overlapping solutions with default schedule.
Where subs stands for subsumption, sig for signature, arg-filt for argument filtering,
SK restriction to Skolem functions and splitting symbols in iProver.

Abstractions Signature Arg-filter Until SAT Solutions

subs, sig, arg-filt SK False 957

subs, sig, arg-filt SK Default False 38

subs Default True 27

subs, sig, arg-filt Default True 11

subs, sig, arg-filt Default False 8

subs Default False 2

subs, sig, arg-filt SK Default True 1

Total 1044

Table 4 shows the number of solutions found by each strategy but excluding
the problems solved by the previous ones. The total number of solved problems
is 1044. There are several strategies from other combinations of abstractions,
which solved small number of problems but turned out that those solutions are
unique. If we combine these solutions with solutions shown in Table 4, the total
number of solutions increases to 1070. Finally, in Table 5 we compare iProver
and recent CASC-26 results. From this table we can conclude that integration
of combinations of over-approximation abstractions considerably improves per-
formance of iProver. Overall iProver considerably outperforms E-LTB [27] and
gets close to the top systems Vampire [20] and MaLARea [32].

Table 5. Comparison with CACS-26 LTB results

Vampire-LTB MaLARea iProver-v2.7-all iProver-v2.7 iProver-LTB-v2.6 E-LTB

1156 1131 1070 957 777 683

7 Conclusion and Further Work

In this paper, we presented a theoretical framework to abstraction-refinement for
reasoning with large theories. We presented a number of concrete abstractions
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based on subsumption, argument filtering and signature grouping and discussed
their combinations. We implemented the abstraction-refinement framework in
iProver and evaluated different abstractions over the large theory problems in the
TPTP library. The results are encouraging and show considerable improvements
in the number of overall solved problems in the LTB category. Overall, the
number of solved problems is 1070 problems out of 1500 which is considerably
larger than the number of problems solved by the previous version of iProver-
LTB-2.6 (777) and E-LTB-2.1 (683). Although still below the CASC winner
Vampire-LTB-4.2 (1156) and MaLARea-0.6 (1144). We believe that fine-tuning
abstraction parameters will help to further improve the performance.

Acknowledgements. We would like to thank anonymous reviewers for many helpful
suggestions.
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4. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic
and polymorphic types. Log. Methods Comput. Sci. 12(4:13), 1–52 (2016)

5. Bonacina, M.P., Lynch, C., de Moura, L.M.: On deciding satisfiability by theorem
proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)

6. Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT prob-
lems. J. Autom. Reason. 51(1), 57–77 (2013)

7. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 28

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

9. Conchon, S., Goel, A., Krstic, S., Majumdar, R., Roux, M.: Far-cubicle - a
new reachability algorithm for cubicle. In: Stewart, D., Weissenbacher, G. (eds.)
FMCAD 2017, pp. 172–175. IEEE (2017)

10. Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL light proof knowledge. In:
Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol.
9450, pp. 372–386. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48899-7 26

11. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25


678 J. C. Lopez Hernandez and K. Korovin

12. Glimm, B., Kazakov, Y., Liebig, T., Tran, T., Vialard, V.: Abstraction refine-
ment for ontology materialization. In: Bienvenu, M., Ortiz, M., Rosati, R., Simkus,
M. (eds.) Informal Proceedings of the 27th International Workshop on Descrip-
tion Logics. CEUR Workshop Proceedings, vol. 1193, pp. 185–196. CEUR-WS.org
(2014)

13. Hernandez, J.C.L., Korovin, K.: Towards an abstraction-refinement framework for
reasoning with large theories. In: Eiter, T., Sands, D., Sutcliffe, G., Voronkov, A.
(eds.) IWIL@LPAR 2017. Kalpa Publications in Computing, vol. 1. EasyChair
(2017)

14. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti,
N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 313–329. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 22

15. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6 23

16. Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: DeepMath
- deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., von
Luxburg, U., Guyon, I., Garnett, R. (eds.) NIPS 2016, pp. 2235–2243 (2016)

17. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light. Math.
Comput. Sci. 9(1), 5–22 (2015)

18. Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic
(system description). In: Proceedings of the IJCAR 2008, pp. 292–298 (2008)

19. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37651-1 10
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Abstract. We extend the Datalog engine VLog to develop a column-
oriented implementation of the skolem and the restricted chase – two
variants of a sound and complete algorithm used for model construction
over theories of existential rules. We conduct an extensive evaluation
over several data-intensive theories with millions of facts and thousands
of rules, and show that VLog can compete with the state of the art,
regarding runtime, scalability, and memory efficiency.

1 Introduction

Rules of inference are a fundamental building block of many important algo-
rithms in automated reasoning, and in related fields, such as artificial intelligence,
data analytics, information integration, and knowledge management. They are at
the core of leading tools and methods in many areas, ranging from logic program-
ming, tableaux-based model construction, and “consequence-driven” approaches
to ontological reasoning [13,14], over data integration [11] and query answering
under constraints [7], to reasoning over knowledge graphs [16], and even social
network analysis [18]. The optimisation of rule-based inferencing is therefore of
crucial interest to automated reasoning.

In the recent past, there has been significant progress in this area, and many
new rule-based systems have been presented [2,3,5,6,12,17,20]. At the core of
these implementations is the most basic rule language Datalog, which syntacti-
cally corresponds to Horn logic without functions or existential quantifiers, while
semantically it might be viewed either as a query language (reasoning = second-
order model checking) or as a knowledge representation language (reasoning =
first-order entailment checking) [1]. Systems nevertheless may exhibit strong dif-
ferences due to the different use cases they have been designed for, which often
also leads to different extensions and limitations.
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One of the most important such extensions is support for value invention,
manifested in the ability to handle either existential quantifiers or function
terms in the consequences of rules. Equivalent formalisms are existential rules in
ontological modelling, tuple-generating dependencies in database query answer-
ing, and Horn logic programs with function symbols in logic programming. The
ability to create new terms during reasoning is crucial in many applications, e.g.,
for capturing incomplete information in databases [1], or for creating auxiliary
structures in knowledge modelling [15]. But it is also much harder to imple-
ment since the resulting logic may no longer admit finite universal models, and
reasoning becomes undecidable [10].

In this system description, we present our recent implementation of existen-
tial rule reasoning support in the Datalog engine VLog [20]. VLog differs from
many other systems because of its column-based (“vertical”) approach for storing
inferred facts. This leads to high memory efficiency and competitive runtimes,
but also requires specific implementation strategies and data structures. To the
best of our knowledge, existential rule reasoning has never been implemented or
studied in such an architecture.

Rule engines typically implement the so-called chase procedure – a
saturation-based bottom-up model construction akin to a Horn logic tableau
procedure. We implement it in two variants, the skolem chase and the restricted
chase, of which the latter is more complicated but can produce smaller models in
many cases. Indeed, it has recently been demonstrated that the restricted chase
can compute models for many real-world ontologies where the skolem chase fails
to terminate altogether [8]. This often requires Datalog rules to be preferred over
existential rules, which we ensure in VLog.

We conduct an extensive evaluation to gauge the performance of our tool
in comparison to the state of the art. In a recent evaluation of several chase
implementations, Benedikt et al. found RDFox to be the most efficient tool in
many contexts [4]. RDFox is also similar to VLog in that both conduct most
of their computation in memory. We therefore compare VLog against RDFox,
repeating many experiments of Benedikt et al. and adding several more using
further real-world datasets. We find that, for reasoning with plain existential
rules on a reasonably powerful laptop, VLog can often deliver comparable or even
better performance than RDFox, while consistently needing much less memory.
The former came as a surprise, since RDFox could take full advantage of its
highly parallel algorithms, whereas VLog ran on a single thread on one CPU.

2 Preliminaries

We give a brief account of the relevant basic definitions and notation. Existential
rules are based on a standard predicate logic vocabulary consisting of infinite,
mutually disjoint sets of predicates P (each with a fixed arity), constants C,
and variables V. A term is a variable x ∈ V or a constant c ∈ C. An atom is
a formula of the form p(t1, . . . , tn) where t1, . . . , tn are terms, and p ∈ P is a
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predicate of arity n. An existential rule (or simply rule in the context of this
paper) is a formula of the form

∀x∀y.
(
B1 ∧ . . . ∧ Bk → ∃v.H1 ∧ . . . ∧ Hl

)
, (1)

where x, y, and v are mutually disjoint lists of variables, and B1, . . . , Bk are
atoms with variables from x and y, H1, . . . , Hl are atoms with all variables from
y and v, l ≥ 1, and all variables in y occur in B1, . . . , Bk. The premise of a
rule is called the body, while its conclusion is called the head. A Datalog rule
is a rule without existential quantifiers, and a rule with k = 0 is called a fact
(a conclusion that is unconditionally true). A finite set of facts is a database.
Since all variables in rules are quantified, we often omit the explicit preceding
universal quantifiers.

Example 1. The following rules capture basic part-whole relationships (meron-
omy), and are a typical pattern in many ontologies.

Bicycle(x) → ∃v.hasPart(x, v) ∧ Wheel(v) (2)
Wheel(x) → ∃w.properPartOf(x,w) ∧ Bicycle(w) (3)

properPartOf(x, y) → partOf(x, y) (4)
hasPart(x, y) → partOf(y, x) (5)
partOf(x, y) → hasPart(y, x) (6)

A major reasoning task of rule engines is (conjunctive) query answering. A
conjunctive query (CQ) is a formula ∃v.B1 ∧ . . . ∧ Bk, where Bi are atoms.
Free variables (not in v) are called answer variables. A substitution is a partial
mapping σ : V → V∪C. It is ground if it only maps to constants. Its application
to terms and formulae is defined as usual. An answer to a CQ q over a set of rules
R and database D is a ground substitution σ defined on the answer variables of
q such that R,D |= qσ under the usual semantics of first-order logic. Existential
variables can be replaced by function terms. The skolemisation of a rule ρ as in
(1) is obtained by replacing each variable v ∈ v by the term fρ,v(y), where fρ,v

is a fresh skolem function symbol specific to ρ and v.

3 The Chase

The chase is a class of sound and complete reasoning algorithms that are widely
used to implement query answering [4]. Rules are applied bottom-up until satu-
ration, resulting in a universal model, which matches exactly those queries that
are entailed by the original rules (and given data). For existential rules, the chase
may fail to terminate (approximating an infinite universal model instead), and
detecting termination is undecidable [1]. However, many decidable criteria that
are sufficient for termination have been proposed and shown to be applicable in
many practical cases [9]. There are many variants of the chase, depending, e.g.,
on which conditions are checked to determine whether the consequence of an
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Algorithm 1. applyRule(rule ρ = ∀x,y.ϕ → ∃v.ψ)

Global variables : index i, index prevρ, previous derivations (Δk)k≤i, bool
changed

1.1 Δi+1 = ∅ � = prevρ

1.2 foreach match σ of ρ over Δ[0,i] with ϕσ ∩ Δ[�,i] �= ∅ do

1.3 if Δ[0,i+1] �|= ∃v.ψσ then
1.4 σ′ = σ ∪ {v �→ n} where n ⊆ Nulls is fresh

1.5 Δi+1 = Δi+1 ∪ {ψσ′}
1.6 prevρ = i + 1

1.7 i = i + 1

1.8 if Δi+1 �= ∅ then changed = true

Algorithm 2. restrictedChase(rule set R, database D)
2.1 i = 0 Δ0 = D changed = true prevρ = −1 for all rules ρ ∈ R
2.2 while changed do
2.3 changed = false
2.4 foreach ρ ∈ R do applyRule(ρ)

2.5 return Δ[0,i] // final result: union of all derived facts

applicable rule should be added. In this section, we explain the restricted and
skolem chase since these are among the most studied variants.

Any chase produces a sequence of databases D0,D1, . . ., beginning from the
initially given database. In the cases we consider, we have Di+1 = Di ∪Δi+1, for
the set Δi+1 of facts derived in step i+1. We use abbreviations Δ[i,j] =

⋃j
k=i Δk,

Δ0 = D (the initial database), and Δ−1 = ∅. In the chase variants we consider,
only one rule is applied in each chase step, and consecutive chase steps consider
different rules. We therefore store, for each rule ρ, the index prevρ of the chase
step when it was last applied.

Algorithm 1 shows how one rule ρ is applied during the chase to compute
Δi+1. Line 1.2 iterates over all matches of ρ: a match of a rule ∀x,y.ϕ → ∃v.ψ
over a database D is a ground substitution σ defined on x∪y such that D |= ϕσ.
The additional requirement ϕσ∩Δ[�,i] �= ∅ ensures that we only consider matches
that were not found up to the previous application of ρ. This corresponds to a
semi-naive materialisation strategy; we omit the details of how the matches σ
can be found in practice [20]. Line 1.3 verifies that the entailments under a given
match are logically relevant. Line 1.4 selects fresh labelled nulls for instantiating
the newly derived fact(s), which then get(s) added. After finishing, we update ρ’s
step counter (Line 1.6) and global chase step (Line 1.7). Global variable changed
records if any fact was derived (Line 1.8).

Algorithm 2 now shows the overall restricted chase procedure. It is named
after the check in Line 1.3, which restricts the application of rules – when omit-
ting this check, one obtains the oblivious chase instead. The restricted chase can
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Algorithm 3. restrictedOrderedChase(rule set R, database D)
3.1 i = 0 Δ0 = D changed = true prevρ = −1 for all rules ρ ∈ R
3.2 while changed do
3.3 changed = false
3.4 foreach Datalog rule ρ ∈ R do applyRule(ρ)
3.5 if ¬changed then
3.6 foreach Non-Datalog rule ρ ∈ R do applyRule(ρ)

3.7 return Δ[0,i] // final result: union of all derived facts

reduce the number of derived facts, which may allow it to terminate in more
cases than the oblivious chase.

Example 2. Consider the restricted chase over the rules from Example 1 with
database D = {Bicycle(c)}. Applying rules in the given order, the first
iteration of Line 2.4 yields Δ0 = D, Δ1 = {hasPart(c, n1),Wheel(n1)},
Δ2 = {properPartOf(n1, n2),Bicycle(n2)}, Δ3 = {partOf(n1, n2)}, Δ4 =
{partOf(n1, c)}, and Δ5 = {hasPart(n2, n1)}. Note that, when computing Δ2,
the check in Line 1.3 finds that Δ[0,2] �|= ∃w.partOf(n1, w) ∧ Bicycle(w). No
further derivations are produced thereafter; specifically the previous inferences
already entail ∃v.hasPart(n2, v),Wheel(v). In contrast, the oblivious chase in this
case would not terminate, since it would continue to apply rule (2) to new nulls.

Example 3. In contrast to the oblivious chase, the restricted chase is sensi-
tive to the order of rules. For Example 2, if we apply rules in order (2),
(3), (5), (6), (4), then we obtain Δ0 = D, Δ1 = {hasPart(c, n1),Wheel(n1)},
Δ2 = {properPartOf(n1, n2),Bicycle(n2)}, Δ3 = {partOf(n1, c)}, Δ4 = ∅, and
Δ5 = {partOf(n1, n2)}. Rule (3) can then be applied to match {x �→ n2} before
hasPart(n2, n1) gets inferred. The chase does not terminate.

Finally, the skolem chase is obtained by initially applying skolemisation to
the rules in R. This eliminates all existential variables, so that we have σ = σ′ in
Line 1.4. Moreover, Line 1.3 in this case is merely a syntactic check for duplicates:
since ψσ is ground, Δ[0,i+1] |= ψσ holds only if ψσ ⊆ Δ[0,i+1]. The skolem chase
terminates in significantly more cases than the oblivious chase, but it is still
inferior to the restricted chase in this respect.

4 Chasing in VLog

VLog adopts the distinctive approach of computing each set Δi in bulk using
an efficient “set-at-a-time” processing, storing the set of derivations column-by-
column rather than row-by-row. Recent literature on columnar databases has
shown that columnar data structures are very memory efficient and enable fast
data access, but cannot be updated easily [20]. To avoid this problem, VLog
works in an append-only mode and stores each set Δi into a dedicated data
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Table 1. Rules and databases used in benchmarks (MA is maximal predicate arity)

Dataset Number of rules Number of facts MA

Uniprot-005/ 010 531 4,713,207/ 9,252,708 2

Reactome-040/ 060/ 080 601 3,144,962/ 4,400,913/ 5,604,133 2

UOBM-10/ 20 / 40 426 1,926,879/ 3,980,967/ 7,843,543 2

STB-128 198 1,109,037 10

Ontology-256 529 2,146,490 11

doctors-10K/ 1M 16 10,837/ 951,500 6

LUBM-010/ 100/ 1K 136 1,272,575/ 13,405,381/ 133,573,854 2

deep-100/ 200/ 300 1,100/ 1,200/ 1,300 1,000 4

structure. This strategy avoids the problem of updates altogether, and in practice
has resulted in significantly shorter runtimes and lower memory consumption
than the state-of-the-art – sometimes up to an order of magnitude.

The rest of this section sums up some of our main insights on implementing
the restricted and the skolem chase efficiently in VLog. For the restricted chase,
we make two further adjustments. First, we do not consider facts that were
derived in the current (ongoing) chase step for checking if a rule application is
restricted. Line 1.3 therefore checks if Δ[0,i] �|= ∃v.ψσ. This leads to what is
called the 1-parallel restricted chase [4].

Second, we ensure that Datalog rules are applied exhaustively before con-
sidering existential rules, as shown in Algorithm 3. This is motivated by recent
studies of Carral et al., who proposed a criterion that uses this order to detect
chase termination in more cases than previous works [8]. In fact, Example 1
shows a case for which VLog’s restricted chase terminates, while other restricted
chase implementations (e.g., of RDFox) do not.

From an implementation perspective, the execution of a rule can be split into
the computation of all matches of the rule and the consequent computation of
instantiations of the head. The first operation is the same regardless whether the
rule contains existential quantifiers or not. Thus, we can reuse the same efficient
algorithms developed for non-existential rule execution. The second operation, in
contrast, requires ad-hoc operations due to the existence of unbound variables.

The exact operations differ depending on whether a restricted or a skolem
chase is being computed. In the first case, we perform a series of merge joins
between the set of matches and the columnar data structures that store the
existing facts to remove partly instantiated matches. A merge join is very efficient
here because the columnar data structures are already sorted [20]. Notice that
if the head of the rule is a conjunction of multiple atoms, this procedure must
be repeated for each head atom. Whenever the merge join finds a substitution
to remove, it adds an entry into a positional index and use this index to skip to-
be-removed matches. This strategy is adopted to avoid costly in-place removals.
In the second case, we do not need to remove matches but we must retrieve the
correct skolem terms. To support this operation, the system maintains a series
of hash maps in main memory (one per rule/variable) with the arguments of the
function and use it to return fresh IDs with average constant time.
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5 Evaluation

We conducted an evaluation to gauge the performance and correctness of VLog.1

We compared to RDFox, which emerged as a leading tool in [4]. Experiments
were conducted in a laptop system (2.2 GHz Intel Core i7 (4 CPUs), 16 GB
1600 MHz DDR3, 512 GB SSD, MacOS High Sierra v10.13.3). The benchmark
inputs we use are shown in Table 1. UOBM, Reactome, and Uniprot are based on
data-intensive OWL ontologies,2 which we converted to rules after removing non-
deterministic axioms that do not correspond to Horn logic rules. The remaining
benchmarks are as given by Benedikt et al., where we omitted the rules with
equality, which are not supported by VLog [4].

For all tests, we measured the time and peak memory used for computing (a)
the restricted chase and (b) the skolem chase. We also verified that the size of
the skolem chase was the same for VLog and RDFox in all cases (the restricted
chase shows minor fluctuations, as expected for the different implementations).
The results are shown in Fig. 1. VLog could finish deep-300 on our laptop, but
using some OS swap space. Since we cannot measure this reliably, we only report
a lower bound.

Fig. 1. Memory usage (left) and materialisation time (right) for VLog and RDFox

1 All files used in this section are available at https://github.com/karmaresearch/
Chasing-VLog.

2 Source http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/, accessed 2 Feb
2018.

https://github.com/karmaresearch/Chasing-VLog
https://github.com/karmaresearch/Chasing-VLog
http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/
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VLog generally used much less memory, on average 40% of what was used
by RDFox in either chase. This is expected since VLog uses highly optimised
compressed data structures. In cases where only VLog finished (LUBM-1K and
deep-300), RDFox ran out of memory. The times taken by VLog ranged from
5.8% (deep-100, rest.) to 137.5% (doctors-1M, rest.) of what was needed by
RDFox. This is surprising, since VLog used only a single thread, whereas RDFox
used maximal parallelism and often achieved above 700% CPU utilisation. Com-
paring the chase variants, VLog used significantly less time and memory for the
restricted chase, except on deep-100, deep-200, and Ontology-256. RDFox shows
similar behaviour, though the additional cost on deep is more pronounced. Nev-
ertheless, the restricted chase seems to be the more efficient algorithm in general.

6 Conclusions

VLog is a fast and memory-efficient system for constructing models for Horn
Logic. We extended its set-at-a-time and columnar approach to handle existential
rules and discussed our implementation of the chase, which exhibits excellent
performance.

The system is free and open source,3 with only few dependencies for optional
database connectors. Pre-compiled Docker images enable quick installation on
major platforms (Docker repository karmaresearch/vlog). Users can control
VLog through a command-line tool, a web interface (useful for demonstrating
the system), and through the Java bindings of the companion project VLog4j.4

The latter is available as a Maven package that includes the necessary binaries
for major operating systems. In the future, we plan to add further expressive
features, such as equality, negation, or aggregation. This can make VLog useful
in even more scenarios, and thereby further advance our understanding of the
potential of this architecture for automated reasoning in general.
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9. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B.,
Wang, Z.: Acyclicity notions for existential rules and their application to query
answering in ontologies. J. Artif. Intell. Res. 47, 741–808 (2013)

10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

11. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

12. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: That’s all folks! LLUNATIC goes
open source. PVLDB 7(13), 1565–1568 (2014)

13. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pp. 2040–2045. IJCAI (2009)
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Abstract. We investigate how to extract alternating time bounds from
‘focussed’ proofs, treating non-invertible rule phases as nondeterministic
computation and invertible rule phases as co-nondeterministic computa-
tion. We refine the usual presentation of focussing to account for deter-
ministic computations in proof search, which correspond to invertible
rules that do not branch, more faithfully associating phases of focussed
proof search to their alternating time complexity.

As our main result, we give a focussed system for MALLw (MALL with
weakening) with encodings to and from true quantified Boolean formulas
(QBFs): in one direction we encode QBF satisfiability and in the other we
encode focussed proof search. Moreover we show that the composition of
the two encodings preserves quantifier alternation, yielding natural frag-
ments of MALLw complete for each level of the polynomial hierarchy.
This refines the well-known result that MALLw is PSPACE-complete.

1 Introduction and Motivation

Proof systems are often a source of optimal decision algorithms for logics, the-
oretically speaking. We now know how to extract bounds for proof search in
terms of various properties of the proof system at hand. E.g. we may compute:

– nondeterministic time bounds via proof complexity, e.g. [6,7,12];
– (non)deterministic space bounds via the depth of proofs or search spaces, and

loop-checking, e.g. [3,11,22];
– deterministic or co-nondeterministic time bounds via systems of invertible

rules, see e.g. [20,26].

However, despite considerable progress in the field, there still remains a gap
between the obtention of (co-)nondeterministic time bounds, such as NP or
coNP, and space bounds such as PSPACE (equivalently, alternating polyno-
mial time, cf. [4]). Phrased differently, while we have many logics we know to
be PSPACE-complete (intuitionistic propositional logic, various modal logics,
etc.), we have very little understanding of their fragments corresponding to sub-
classes of PSPACE. In particular, in this work we are interested in the levels of

While conducting this research, the author was supported by a Marie Sk�lodowska-
Curie fellowship, ERC project 753431.
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the polynomial hierarchy (PH) [25], which correspond to alternating polynomial-
time Turing machines with boundedly many alternations.

One relevant development in structural proof theory in the last 20–30 years
has been the notion of focussing, e.g. [1,13,15]. Focussed systems elegantly delin-
eate the phases of invertible and non-invertible inferences in proofs, allowing the
natural obtention of alternating time bounds for a logic. Furthermore, they sig-
nificantly constrain the number of local choices available, resulting in reduced
nondeterminism during proof search, while remaining complete (the ‘focussing
theorem’). Such systems thus serve as a natural starting point for identifying
fragments of PSPACE-complete logics complete for levels of PH.

In this work we will consider the case of multiplicative additive linear
logic (MALL) [10], often seen as the prototypical system for PSPACE since
its proof rules constitute the abstract templates of terminating proof search.
(Indeed, MALL is well-known to be PSPACE-complete [16,17].) By considering
a focussed presentation of the affine variant, MALLw, which admits weakening,
we analyse proof search to identify classes of theorems belonging to each level
of PH.1 To demonstrate the accuracy of this method, we also show that these
classes are, in fact, complete for their respective levels, via encodings from true
quantified Boolean formulas (QBFs) of appropriate quantifier complexity, cf. [4].

One shortfall of focussed systems is that, in their usual form, they unfor-
tunately do not make adequate consideration for deterministic computations,
which correspond to invertible rules that do not branch, and so the natural
measure of complexity there (‘decide depth’) can considerably overestimate the
alternating time complexity of a theorem. In the worst case this can lead to rather
degenerate bounds, exemplified in [8] where an encoding of SAT in intuitionistic
logic requires a linear decide depth, despite being NP-complete.2 In this work
we keep the same abstract notion of focussing, but split the usual invertible, or
‘asynchronous’, phase into a ‘deterministic’ phase, with non-branching invertible
rules, and a ‘co-nondeterministic’ phase, with branching invertible rules. In this
way, when expressing proof search as an alternating predicate, a ∀ quantifier
needs only be introduced in a co-nondeterministic phase. It turns out that this
adaptation suffices to obtain the tight bounds we are after.

This paper is structured as follows. In Sect. 2 we present preliminaries on
QBFs and alternating time complexity, and in Sect. 3 we present preliminar-
ies on MALL and focussing. In Sect. 4 we present an encoding of true QBFs
into MALLw, tracking the association between quantifier complexity and ‘decide
depth’ in focussed proof search. In Sect. 5 we briefly explain how provability
predicates for focussed systems may be obtained as QBFs, with quantifier com-
plexity calibrated appropriately with decide depth (the ‘focussing hierarchy’). In
Sect. 6 we show how this depth measure can be feasibly approximated to yield
a bona fide encoding of MALLw back into true QBFs. Furthermore, we show
that the composition of the two encodings preserves quantifier complexity, and
yields fragments of MALLw complete for each level of the polynomial hierarchy.

1 MALLw is also PSPACE-complete, a folklore result subsumed by this work.
2 In fact the same phenomenon presents in this work, cf. Fig. 3.
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Finally, in Sect. 7 we give some concluding remarks regarding the case of (non-
affine) MALL, and further perspectives on our presentation of focussing.

2 Preliminaries on Logic and Computational Complexity

We will recall some basic theory of Boolean logic, and its connections to alternat-
ing time complexity. Throughout this paper we omit constants (or ‘units’), both
for classical and linear logic, to simplify exposition and avoid clashing notations.

2.1 Second-Order Boolean Logic

Quantified Boolean formulas (QBFs) are obtained from the language of classical
propositional logic by adding (second-order) quantifiers varying over proposi-
tions. Formally, let us fix some set Var of propositional variables, written x, y
etc. QBFs, written ϕ,ψ etc., are generated as follows:

ϕ : := x | x | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ

The formula x stands for the negation of x, and all formulas we deal with will
be in De Morgan normal form, i.e. with negation restricted to variables as in
the grammar above. Nonetheless, we may sometimes write ϕ to denote the De
Morgan dual of ϕ, generated by the following identities:

x := x
(ϕ ∨ ψ) := ϕ ∧ ψ

(ϕ ∧ ψ) := ϕ ∨ ψ

∃x.ϕ := ∀x.ϕ

∀x.ϕ := ∃x.ϕ

A formula is closed if all its variables are bound by a quantifier (∃ or ∀). We
write |ϕ| for the number of occurrences of literals (i.e. x or x) in ϕ.

An assignment is a subset α ⊆ Var. We define the satisfaction relation
between an assignment α and a formula ϕ, written α � ϕ, in the usual way:

– α � x if x ∈ α.
– α � x if x /∈ α.
– α � ϕ ∨ ψ if α � ϕ or α � ψ.
– α � ϕ∧ψ if α � ϕ and α � ψ.

– α � ∃x.ϕ if α \ {x} � ϕ or α ∪ {x} � ϕ.
– α � ∀x.ϕ if α \ {x} � ϕ and α ∪ {x} � ϕ.

Definition 1 (Second-order Boolean logic). A QBF ϕ is satisfiable if there
is some assignment α ⊆ Var such that α � ϕ. It is valid if α � ϕ for every
assignment α ⊆ Var. If ϕ is closed, then we may simply say that it is true,
written � ϕ, when it is satisfiable and/or valid.3

Second-order Boolean logic (CPL2) is the set of true QBFs.

3 Notice that, by definition of satisfaction these two notions coincide for closed QBFs.
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In practice, when dealing with a given formula ϕ, we will only need to consider
assignments α that contain variables occurring in ϕ. We will assume this later
when we discuss predicates (or ‘languages’) computed by open QBFs.

We point out that, from the logical point of view, it suffices to work with only
closed QBFs, with satisfiability recovered by prenexing ∃ quantifiers and validity
recovered by prenexing ∀ quantifiers; in the presence of units/constants, the
definition of ‘truth’ above could be adapted with no reference to α. However we
will also make use of open formulas in this work to describe languages/predicates,
so it will be useful to have the notion of satisfaction available.

Definition 2 (QBF hierarchy). For k ≥ 0 we define the following classes:

– Σq
0 = Πq

0 is the set of quantifier-free QBFs.
– Σq

k+1 ⊇ Πq
k and, if ϕ ∈ Σq

k+1, then so is ∃x.ϕ.
– Πq

k+1 ⊇ Σq
n and, if ϕ ∈ Πq

k+1, then so is ∀x.ϕ.

Notice that ϕ ∈ Σq
k if and only if ϕ ∈ Πq

k , by the definition of De Morgan duality.
We have only defined the classes above for ‘prenexed’ QBFs, i.e. with all

quantifiers at the front. It is well known that any QBF is equivalent to such a
formula. For this reason we will systematically assume that any QBF we deal
with is in prenex form. In this case we call its quantifier-free part, i.e. its largest
quantifier-free subformula, the matrix.

In this work we will not need to formally deal with any deduction system
for CPL2, although we point out that there is a simple system, semantic trees,
whose proof search dynamics closely match quantifier complexity [14].

2.2 Alternating Time Complexity

In computation we are used to the distinction between deterministic and non-
deterministic computation. Intuitively, co-nondeterminism is just the ‘dual’ of
nondeterminism: at the machine level it is captured by ‘nondeterministic’ Tur-
ing machines where every run is accepting, not just some run as in the case of
usual nondeterminism. From here alternating Turing machines generalise both
the nondeterministic and co-nondeterministic models by allowing both univer-
sally branching states and existentially branching states.

Intuitions aside, we will introduce the concepts we need here assuming only
a familiarity with deterministic and nondeterministic Turing machines and their
complexity measures, to limit the formal prerequisites. Our exposition is infor-
mal, but the reader may find comprehensive details in, e.g., [23].

For a language L, we write NP(L) to mean the class of languages accepted
in polynomial time by some nondeterministic Turing machine which may, at any
point, query in constant time whether some word is in L or not. We extend this
to classes of languages C, writing NP(C) for

⋃

L∈C
NP(L). We also write coC for

the class of languages whose complements are in C.
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Definition 3 (Polynomial hierarchy, [25]). We define the following classes:

– Σp
0 = Πp

0 := P.
– Σp

k+1 := NP(Σp
k).

– Πp
k+1 := coΣp

k+1.

The polynomial hierarchy (PH) is
⋃

k≥0

Σp
k =

⋃

k≥0

Πp
k .

We may more naturally view the polynomial hierarchy as the bounded-
quantifier-alternation fragments of QBFs we introduced earlier. For this we con-
strue Σq

k and Πq
k as classes of finite languages, by associating with a QBF ϕ(�x)

the class of (finite) assignments α ⊆ �x satisfying it. (Assignments themselves
may be seen as binary strings of length |�x| which encode their characteristic
functions.) Σq

k-evaluation (Πq
k-evaluation) is the problem of deciding, given a

Σq
k (resp. Πq

k) formula ϕ(�x) and an assignment α ⊆ �x, whether α � ϕ(�x).

Theorem 4 ([cf. [4]). For k ≥ 1, the Σq
k-evaluation (Πq

k-evaluation) problem
is Σp

k-complete (resp. Πp
k -complete).

Corollary 5. For k ≥ 1, the class of true closed Σq
k QBFs is Σp

k-complete, and
the class of true closed Πq

k QBFs is Πp
k -complete.

Proof (Idea). Membership is immediate, evaluating under the assignment ∅. For
hardness, we may simplify a QBF under an assignment to a closed formula. ��

3 Linear Logic and Proof Search

In this section we introduce multiplicative additive linear logic (MALL) and its
proof theory [10], in particular a certain focussed proof system for it, cf. [1,5,9].

3.1 Multiplicative Additive Linear Logic

For convenience, we work with the same set Var of variables that we used for
QBFs and, as for classical logic, we omit constants/units for simplicity (though
their inclusion would not affect our results). To distinguish them from QBFs, we
use the metavariables A,B, etc. for MALL formulas, generated as follows:

A : := x | x | A � B | A � B | A � B | A � B

�,� are called multiplicative connectives, and �,� are called additive connec-
tives. Like for QBFs, we have restricted negation to the variables, thanks to De
Morgan duality in MALL. Again we may write A for the De Morgan dual of A,
which is generated similarly to the case of QBFs:

A := A
(A � B) := A � B

(A � B) := A � B

(A � B) := A � B

(A � B) := A � B

Due to De Morgan duality, we will work only with ‘one-sided’ calculi for
MALL, where all formulas occur to the right of the sequent arrow. This means
we will have fewer cases to consider for formal proofs, although later we will also
informally adopt a two-sided notation when it is convenient, cf. Notation 11.



694 A. Das

Definition 6 (MALL(w)). A cedent, written Γ,Δ etc., is a multiset of formulas,
delimited by commas ‘,’, and a sequent is an expression  Γ . The system (cut-
free) MALL is given in Fig. 1. MALLw, a.k.a. affine MALL, is defined in the same
way, only with the (id) rule replaced by:

wid  Γ, x, x
(1)

Notice that, following the tradition in linear logic, we write ‘’ for the sequent
arrow, though we point out that the deduction theorem does not actually hold
w.r.t. linear implication. For the affine variant, we have simply built weakening
into the identity step, since it may always be permuted upwards in a proof:

Fig. 1. The system (cut-free) MALL.

Proposition 7 (Weakening admissibility). The following rule, called weak-
ening, is (height-preserving) admissible in MALLw:

 Γ
wk  Γ,A

Notice also that we have not included the ‘cut’ rule, thanks to cut-elimination
for linear logic [10]. It will play no role in this paper.

3.2 (Multi-)focussed Systems for Proof Search

Focussed systems for MALL (and linear logic in general) have been widely stud-
ied [1,5,9,13]. The idea is to associate polarities to the connectives based on
whether their introduction rule is invertible (negative) or their dual’s introduc-
tion rule is invertible (positive). Now bottom-up proof search can be organised
in a manner where, once we have chosen a positive principal formula to decom-
pose (the ‘focus’), we may continue to decompose its auxiliary formulas until
the focus becomes negative. The main result herein is the completeness of such
proof search strategies, known as the focussing theorem (a.k.a. the ‘focalisation
theorem’).

It is known that ‘multi-focussed’ variants, where one may have many foci in
parallel, lead to ‘canonical’ representations of proofs for MALL [5]. Furthermore,
the alternation behaviour of focussed proof search can be understood via a game
theoretic approach [9]. However, such frameworks unfortunately fall short of
characterising the alternating complexity of proof search in a faithful way. The
issue is that the usual focussing methodology does not make any account for
deterministic computations, which correspond to invertible rules that do not
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branch. Such rules are usually treated just like the other invertible rules, and
so ‘morally’ introduce extraneous quantifiers when encoding proof search as an
alternating time predicate.

For these reasons we introduce a bespoke presentation of (multi-)focussing for
MALL, with a designated deterministic phase allowing invertible non-branching
rules, in this case the � rule. To avoid conflicts with more traditional presenta-
tions, we call the other two phases as nondeterministic and co-nondeterministic
rather than ‘synchronous’ and ‘asynchronous’ respectively; at the same time this
reinforces the intended connections to computational complexity.

In what follows, we use a, b, etc. to vary over literals. We also use the following
metavariables to vary over formulas with the corresponding top-level connectives:

M : ‘negative and not deterministic’ �

N : ‘negative’ �,�
O : ‘deterministic’ �,�, a
P : ‘positive’ �,�
Q : ‘positive and not deterministic’ �

‘Vectors’ are used to vary over multisets of associated formulas, e.g. �P varies
over multisets of P -formulas. Sequents may now contain the delimiters ⇓ or ⇑.

Definition 8 (Multi-focussed proof system). We define the (multi-
focussed) system FMALL in Fig. 2. The system FMALLw is the same as FMALL
but with the (id) rule replaced by the rule (wid) from (1).

Fig. 2. The system FMALL.

Note that the determinism of � plays no role in this one-sided calculus, but in
a two-sided calculus we would have a full symmetry of rules. A proof of a formula
A is simply a proof of the sequent  A, i.e. there is no need to pre-decorate with
arrows, as opposed to usual presentations, thanks to the deterministic phase.



696 A. Das

The rules D and D̄ are called decide and co-decide respectively, while R and
R̄ are called release and co-release respectively. We have not included a ‘store’
rule, for simplicity, but if we did we would also recover a dual ‘co-store’ rule.

As usual for multi-focussed systems, the analogous focussed system can be
recovered by restricting to only one focussed formula in a nondeterministic phase.
Moreover, in our presentation, we may also impose the dual restriction, that
there is only one formula in ‘co-focus’ during a co-nondeterministic phase:

Definition 9 (Simply (co-)focussed subsystems). A FMALL proof is
focussed if �P in D is always a singleton. It is co-focussed if �M in D̄ is always a
singleton. If a proof is both focussed and co-focussed then we say it is bi-focussed.

The notion of ‘co-focussing’ is not usually possible for (multi-)focussed systems
since the invariant of being a singleton is not usually maintained in an asyn-
chronous phase, due to the � rule. However we treat � as deterministic rather
than co-nondeterministic, and we can see that the �-rule indeed maintains the
invariant of having just one formula on the right of ⇑.

Theorem 10 (Focussing theorem). The class of bi-focussed FMALL-proofs
(FMALLw-proofs) is complete for MALL (resp. MALLw).

Evidently, this immediately means that FMALL (FMALLw), as well as its focussed
and co-focussed subsystems, are also complete for MALL (resp. MALLw). The
proof of Theorem 10 follows routinely from any other completeness proof for
focussed MALL, e.g. [1,13]; our only change is at the level of notation.

To aid our exposition, we will sometimes use a ‘two-sided’ notation and extra
connectives so that the intended semantics of sequents are clearer. Strictly speak-
ing, this is just a shorthand for one-sided sequents: the calculi defined in Figs. 1
and 2 are the formal systems we are studying.

Notation 11. We write Γ  Δ as shorthand for the sequent  Γ ,Δ, where Γ
is {A : A ∈ Γ}. We extend this notation to sequents with ⇑ or ⇓ symbols in the
natural way, writing Γ ⇑ Δ  Σ ⇑ Π for  Γ ,Σ ⇑ Δ,Π and Γ ⇓ Δ  Σ ⇓ Π for
 Γ ,Σ ⇓ Δ,Π. In all cases, (co-)foci are always written to the right of ⇓ or ⇑.

We write A � B as shorthand for the formula A � B, and A �+ B as
shorthand for the formula A � B. Sometimes we will write, e.g., a step,

Γ  Δ ⇓ A Γ ′ ⇓ B  Δ′
�l

Γ, Γ ′ ⇓ A � B  Δ,Δ′

which, by definition, corresponds to a correct application of � in FMALL(w).

4 An Encoding from CPL2 to MALLw

From now on we will work only with MALLw, i.e. affine MALL. In this section we
present an encoding of true QBFs into MALLw. The former were also used for the
original proof that MALL is PSPACE-complete [16,17], though our encoding
differs considerably from theirs and leads to a more refined result, cf. Sect. 6.
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4.1 Positive and Negative Encodings of Quantifier-Free Evaluation

The base cases of our translation from QBFs to MALLw will be quantifier-
free Boolean evaluation. This is naturally a deterministic computation, being
polynomial-time computable.4 However one issue is that this determinism can-
not be seen from the point of view of MALLw, since the only deterministic
connective (�, on the right) is not expressive enough to encode evaluation.

Nonetheless we are able to circumvent this problem since MALLw is at least
able to ‘see’ quantifier-free evaluation as a problem in NP ∩ coNP, via a pair
of corresponding encodings. For non-base levels of PH this is morally the same
as being deterministic. Indeed, the availability of both types of encodings is the
main reason why we consider MALLw rather than MALL in this work.

Definition 12 (Positive and negative encodings). For a quantifier-free
Boolean formula ϕ0, we define ϕ−

0 (ϕ+
0 ) as the result of replacing every ∧ in

ϕ0 for � (resp. �) and every ∨ in ϕ0 by � (resp. �).
For an assignment α and list of variables �x = (x1, . . . , xk), we write α(�x) for

the cedent {xi : xi ∈ α, i ≤ k} ∪ {xi : xi /∈ α, i ≤ k}. We write αn(�x) for the
cedent consisting of n copies of each literal in α(�x).

Proposition 13. Let ϕ0 be a quantifier-free Boolean formula with free variables
�x and let α be an assignment. For n ≥ |ϕ0|, the following are equivalent:

1. α � ϕ0.
2. MALLw proves α(�x)  ϕ−

0 .
3. MALLw proves αn(�x)  ϕ+

0 .

Proof. 2 =⇒ 1 and 3 =⇒ 1 are immediate from the ‘soundness’ of MALLw
with respect to classical logic, by interpreting � or � as ∧ and � or � as ∨.

1 =⇒ 2 and 1 =⇒ 3 are both proved by induction on |ϕ0|. In the former
case, this follows directly from the invertibility of rules, while in the latter case we
appeal to the properties of satisfaction: for �-formulas we choose an appropriate
disjunct satisfied by α, and for �-formulas we split αn(�x) into αk(�x) and αl(�x)
s.t. k and l bound the size of their respective conjuncts, reducing to the inductive
hypothesis. For both arguments we must appeal to affinity for the base case. ��

4.2 Encoding Quantifiers in MALLw

As we said before, we do not follow the ‘locks-and-keys’ approach of [16,17].
Instead we follow a similar approach to Statman’s proof that intuitionistic propo-
sitional logic is PSPACE-hard [24], modulo some improvements that are dis-
cussed, for the intuitionistic setting, in [8]. One of the main differences is that we
use ‘Tseitin extension variables’, necessary to avoid an exponential blowup dur-
ing translation, only in positive positions, not under negation, and this allows
our encodings to admit similar proofs to the ‘semantic trees’ of the QBF we
started with.
4 In fact, quantifier-free Boolean formula evaluation is known to be NC1-complete [2].
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Definition 14 (CPL2 to MALLw). Given a QBF ϕ = Qkxk. · · · .Q1x1.ϕ0 with
|ϕ0| = n, we define [ϕ] by induction on k ≥ 1 as follows,

[ϕ0] :=

{
ϕ+
0 if Q1 is ∃

ϕ−
0 if Q1 is ∀

[Qkxk.ϕ
′] :=

{
([ϕ′] � yk) � ((xn

k � yk) � (xn
k � yk)) if Qk is ∃

([ϕ′] �+ yk) � ((xn
k � yk) � (xn

k � yk)) if Qk is ∀

where yk is always fresh.

Lemma 15. Let ϕ(�x) be a QBF with all free variables displayed and matrix ϕ0.
Then α � ϕ if and only if MALLw proves αn(�x)  �y, [ϕ] for any n ≥ |ϕ0|, any
assignment α and any �y disjoint from �x.

Fig. 3. Proof of ∃ case for left-right direction of Lemma 15.

Proof (sketch). We proceed by induction on the quantifier complexity of ϕ. For
the base case, when ϕ is quantifier-free, we appeal to Proposition 13. The left-
right direction follows directly by weakening (cf. Proposition 7), while the right-
left direction follows after observing that �y does not occur in [ϕ] or αn(�x); thus
�y may be deleted from a proof (along with its descendants) while preserving
correctness.

For the inductive step, in the left-right direction we give appropriate bi-
focussed proofs in Figs. 3 and 4, where: ±x in Fig. 3 is chosen to be x if x ∈ α and
x otherwise; the derivations marked IH are obtained by the inductive hypothesis;
and the derivation marked . . . in Fig. 4 is analogous to the one on the left of it.5

5 Note that, for the derivations for the innermost quantifier (∃ or ∀), the topmost R
or R̄ step of Figs. 3 or 4 (resp.) does not occur.
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Fig. 4. Proof of ∀ case for left-right direction of Lemma 15.

For the right-left direction, we need only consider the other possibilities that
could occur during bi-focussed proof search, by the focussing theorem, Theo-
rem 10. For the ∃ case, bottom-up, one could have chosen to first decide on
[ϕ] � y in the antecedent. The associated �l step would have to send the for-
mula (xn � y) � (xn � y) to the right premiss (for y), since otherwise every
variable occurrence in that premiss would be distinct and there would be no way
to correctly finish proof search. Thus, possibly after weakening, we may apply
the inductive hypothesis to the left premiss (for [ϕ]). A similar analysis of the
upper �l step in Fig. 3 means that any other split will allow us to appeal to
the inductive hypothesis after weakening. For the ∀ case the argument is much
simpler, since no matter which order we ‘co-decide’, we will end up with the
same leaves.6 ��
Theorem 16. A closed QBF ϕ is true if and only if MALLw proves [ϕ].

Proof. Follows immediately from Lemma 15, setting �y = ∅. ��

5 Focussed Proof Search as Alternating Time Predicates

In this section we show how to express focussed proof search as an alternating
polynomial-time predicate that will later allow us to calibrate the complexity of
proof search with levels of the QBF and polynomial hierarchies. The notions we
develop apply equally to either MALL or MALLw.

The following definition generalises the notions of ‘decide depth’ and ‘release
depth’ found in other works, e.g. [21];

6 This is actually exemplary of the more general phenomenon that invertible phases
of rules are ‘confluent’.
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Definition 17 ((Co-)nondeterministic complexity). The nondeterministic
complexity of a FMALL(w) proof P, written σ(P), is the maximum number of
alternations between D and D̄ steps in a branch through P, starting with D. Its
co-nondeterministic complexity, π(P), is defined similarly, only starting with D̄.

For a cedent Γ , we write σ(Γ ) (π(Γ )) for the least k ∈ N such that there is
a FMALL(w) proof P of  Γ with σ(P) ≤ k (resp. π(P) ≤ k).

Notice that the above notions of complexity are robust under the choice of multi-
focussed, (co-)focussed or bi-focussed proof systems: while the number of D or D̄
steps may increase, the number of alternations remains constant. This robustness
will also apply to the other concepts we introduce in this section.

We will now introduce ‘provability predicates’ that delineate the complexity
of proof search in a similar way to the QBF and polynomial hierarchies we
presented earlier. Recall the notions of deterministic, nondeterministic and co-
nondeterministic rules from Definition 8, cf. Fig. 2.

Definition 18 (Focussing hierarchy). A cedent Γ of MALL(w) is:

– Σf
0 -provable, equivalently Πf

0 -provable, if  Γ is provable using only deter-
ministic rules.

– Σf
k+1-provable if there is a derivation of  Γ , using only deterministic and

nondeterministic rules, from sequents  Γi which are Πf
k -provable.

– Πf
k+1-provable if every maximal path from  Γ , bottom-up, through deter-

ministic and co-nondeterministic rules ends at a Σf
k -provable sequent.

As expected, we may directly link the (co-)nondeterministic complexity of a
cedent with its position in the ‘focussing hierarchy’:

Proposition 19. A cedent Γ of MALL(w) is Σf
k -provable (Πf

k -provable) if and
only if σ(Γ ) ≤ k (resp. π(Γ ) ≤ k).

Moreover, we have a natural correspondence between the focussing hierarchy
and the other hierarchies we have discussed:

Theorem 20. Σf
k -provability (Πf

k -provability) for MALL(w) is computable in
Σp

k (resp. Πp
k). Moreover, for k ≥ 1, there are Σq

k (resp. Πq
k) formulas Σf

k -Provn
(resp. Πf

k -Provn), constructible in time polynomial in n ∈ N, that compute Σf
k -

provability (resp. Πf
k -provability) on all formulas A such that |A| = n.

We omit a proof of this, which is routine albeit technical, due to space con-
straints, but direct the reader to the analogous construction in previous work,
[8]. We point out that, for the � rule, even though there are two premisses, the
rule is context-splitting, and so a nondeterministic machine may simply split
into two parallel threads with no blowup in complexity.
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6 An ‘inverse’ Encoding from MALLw into CPL2

From Theorem 20, let us henceforth fix appropriate QBFs Σf
k -Provn and

Πf
k -Provn, for k ≥ 1, computing Σf

k -provability and Πf
k -provability, resp., for

MALLw formulas of size n. Given these formulas, we will in this section give an
explicit encoding from MALLw to CPL2, i.e. a polynomial-time mapping from
MALLw-formulas to QBFs whose restriction to theorems has image in CPL2.
Moreover, we will show that this encoding acts as an ‘inverse’ to the one we gave
in Sect. 4, and finally identify natural fragments of MALLw complete for each
level of PH.

To this end, the issue with the complexity functions σ, π introduced earlier
is that they are hard to compute. Instead we give an ‘over-estimate’ here that
will suffice for the encodings we are after.

So that the notions we define below are well defined, we will assume some
arbitrary total order on formulae. The precise choice is unimportant, as long
as it is polynomial-time computable; this way our ultimate encoding remains
computable in polynomial time.

Definition 21 (Approximating the complexity of a sequent). We define
the functions �σ� and �π� on sequents in Fig. 5.

Fig. 5. Approximating (co-)nondeterminstic complexities.
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It is not hard to see that we have:

Proposition 22 (Over-estimation). σ ≤ �σ� and π ≤ �π�.
Notice that the over-estimation for the � case is particularly extreme: in the
worst case we have that the entire context is copied to one branch. This, along
with the fact that the base case applies to only atomic cedents, means that it
does not actually matter which order we compute an approximation.

Moreover, we have the following:

Proposition 23. �σ� and �π� are polynomial-time computable.

Finally, we have that these approximations are in fact tight for the translation
[·] from MALLw-formulas to QBFs (cf. Sect. 4) by an inspection of its definition:

Proposition 24. �σ�([ϕ]) = σ([ϕ]) and �π�([ϕ]) = π([ϕ]).

We are now ready to define our ‘inverse’ encoding to [·]:
Definition 25 (MALLw to CPL2). For a MALLw formula A, we define:

〈A〉 :=

{
Σf

k -Prov|A|(A) if k = �σ�(A) ≤ �π�(A)
Πf

k -Prov|A|(A) if k = �π�(A) < �σ�(A)

Finally, we are able to present our main result:

Theorem 26. We have the following:

1. [·] is an encoding from CPL2 to MALLw.
2. 〈·〉 is an encoding from MALLw to CPL2.
3. The composition 〈·〉 ◦ [·] : CPL2 → CPL2 preserves quantifier complexity, i.e.

it maps Σq
k (Πq

k) theorems to Σq
k (resp. Πq

k) theorems, for k ≥ 1.

Proof. We have already proved 1 in Theorem16. 2 follows from the definitions
of Σf

k -Prov and Πf
k -Prov (cf. Theorem 20), under Propositions 19 and 22. Finally

3 then follows by tightness of the approximations �σ�, �π� in the image of [·],
Proposition 24.

Consequently, we may identify polynomial-time recognisable subsets of
MALLw-formulas whose theorems are complete for levels of the polynomial
hierarchy:

Corollary 27. We have the following, for k ≥ 1:

1. {A ∈ MALLw : �σ�(A) ≤ k} is Σp
k-complete.

2. {A ∈ MALLw : �π�(A) ≤ k} is Πp
k -complete.
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7 Conclusions and Further Remarks

We gave a refined presentation of (multi-)focussed systems for multiplicative-
additive linear logic, and its affine variant, that accounts for deterministic com-
putations in proof search, cf. Sect. 3. We showed that it admits rather controlled
normal forms in the form of bi-focussed proofs, and highlighted a duality between
focussing and ‘co-focussing’ that emerges thanks to this presentation.

The main reason for using focussed systems such as ours was to better reflect
the alternating time complexity of bottom-up proof search, cf. Sect. 5. We jus-
tified the accuracy of these bounds by showing that natural measures of proof
search complexity for FMALLw tightly delineate the theorems of MALLw accord-
ing to associated levels of the polynomial hierarchy, cf. Sects. 4 and 6. These
results exemplify how the capacity of proof search to provide optimal decision
procedures for logics extends to important subclasses of PSPACE. As far as we
know, this is the first time such an investigation has been carried out.

It is natural to wonder whether a similar result to Theorem26 could be
obtained for (non-affine) MALL. The reason we chose MALLw is that it allows
for a robust and uniform approach that highlights the ability of focussed systems
to realise tight alternating time bounds for logics, without too many extrane-
ous technicalities. Nonetheless, we briefly discuss how a similar result could be
obtained for MALL, although stop short of giving formal results due to space
constraints.

The main issue for MALL is the fact that there does not seem to be any
‘negative’ encoding of quantifier-free satisfaction, apparently only allowing char-
acterisations of the levels Σp

2k+1 and Πp
2k in the same way. Apart from this, the

rest of the argument can be recovered for MALL with some local adaptations.
One may redefine [∀x.ϕ] as (x�x) � [ϕ], in order to avoid the need for weaken-
ing, and the associated coding of assignments also needs to be more structured,
combining � and � to reflect the precise choices made in proof search. The proof
of the corresponding form of Lemma15 requires a more global analysis, for the
right-left direction, due to the absence of weakening. For the inverse encoding,
the definition of 〈·〉 remains the same, and our main inversion result, Theorem26,
goes through as before.

In fact, by enriching the proof system with a deterministic ‘evaluation’ rule
for positive encodings of quantifier-free satisfaction, we may recover fragments
of MALL complete for each level of PH. A similar approach was followed for
fragments of intuitionistic logic in [8], although this leads to further technicalities
when approximating (co-)nondeterministic complexity of a sequent.

Our presentation of FMALL should extend to logics with units/constants,
quantifiers and exponentials, following traditional approaches to focussed linear
logic, cf. [1,13]. It would be interesting to see what could be said about the
complexity of proof search for such logics. For instance, the usual ∀ rule becomes
deterministic in our analysis, since it does not branch:

Γ,A(y)
∀ y is fresh

Γ,∀x.A(x)
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As a result, the alternation complexity of proof search is not affected by the
∀-rule, but rather interactions between positive connectives, including ∃, and
negative connectives such as �. Interpreting this over a classical setting might
give us new ways to delineate true QBFs according to the polynomial hierarchy,
determined by the alternation of ∃ and propositional connectives rather than ∀.

Much of the literature on logical frameworks via focussed systems is based
around the idea that an inference rule may be simulated by a ‘bi-pole’, i.e. a
single alternation between an invertible and non-invertible phase of inference
steps. However, accounting for determinism might yield more refined simula-
tions, where non-invertible rules are simulated by phases of deterministic and
nondeterministic rules, but not co-nondeterministic ones, cf. Definition 18. In
particular we envisage this to be possible for certain translations between modal
logic and first-order logic, cf. [18,19].

Acknowledgements. I would like to thank Taus Brock-Nannestad, Kaustuv Chaud-
huri, Sonia Marin and Dale Miller for many fruitful discussions about focussing, in
particular on the presentation of it herein.
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Abstract. Array access out of bounds is a typical programming error.
From the ’70s, static analysis has been used to identify where such
errors actually occur at runtime, through abstract interpretation into
linear constraints. However, feasibility and scalability to modern object-
oriented code has not been established yet. This article builds on previous
work on linear constraints and shows that the result does not scale, when
polyhedra implement the linear constraints, while the more abstract
zones scale to the analysis of medium-size applications. Moreover, this
article formalises the inclusion of symbolic expressions in the constraints
and shows that this improves its precision. Expressions are automati-
cally selected on-demand. The resulting analysis applies to code with
dynamic memory allocation and arrays held in expressions. It is sound,
also in the presence of arbitrary side-effects. It is fully defined in the
abstract interpretation framework and does not use any code instrumen-
tation. Its proof of correctness, its implementation inside the commercial
Julia analyzer and experiments on third-party code complete the work.

1 Introduction

Arrays are extensively used in computer programs since they are a compact
and efficient way of storing and accessing vectors of values. Array elements are
indexed by their integer offset, which leads to a runtime error if the index is neg-
ative or beyond the end of the array. In C, this error is silent, with unpredictable
results. The Java runtime, instead, mitigates the problem since it immediately
recognizes the error and throws an exception. In both cases, a definite guarantee,
at compilation time, that array accesses will never go wrong, for all possible exe-
cutions, is desirable and cannot be achieved with testing, that covers only some
execution paths. Since the values of array indices are not computable, compil-
ers cannot help, in general. However, static analyses that find such errors, and
report some false alarms, exist and are an invaluable support for programmers.

Abstract interpretation has been applied to array bounds inference, from
its early days [5,8], by abstracting states into linear constraints on the possible
values of local variables, typically polyhedra [3,4]. Such inferred constraints let
then one check if indices are inside their bounds. For instance, in the code:
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 706–722, 2018.
https://doi.org/10.1007/978-3-319-94205-6_46
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1 public DiagonalMatrix inverse(double[] diagonal) {

2 double[] newDiagonal = new double[diagonal.length]; // local var.

3 for (int i = 0; i < diagonal.length; i++)

4 newDiagonal[i] = 1 / diagonal[i]; ... }

the analysis in [5,8], at line 4, infers 0 � i < diagonal = newDiagonal ; i.e., index
i is non-negative and is smaller than the length of the array diagonal, which
is equal to that of newDiagonal. This is enough to prove that both accesses
newDiagonal[i] and diagonal[i] occur inside their bounds, always.

Programming languages have largely evolved since the ’70s and two prob-
lems affect the application of this technique to modern software. First, code is
very large nowadays, also because object-oriented software uses large libraries
that must be included in the analysis. The actual scalability of the technique,
hence, remains unproved. Second, the limitation to constraints on local variables
(such as i, diagonal and newDiagonal above) is too strict. Current programming
languages allow arrays to be stored in expressions built from dynamically heap-
allocated object fields and other arrays, which are not local variables. For instance,
the previous example is actually a simplification of the following real code from
class util.linalg.DiagonalMatrix of a program called Abagail (Sect. 7):

1 private double[] diagonal; // object field, not local variable

2 public DiagonalMatrix inverse() {

3 double[] newDiagonal = new double[this.diagonal.length];

4 for (int i = 0; i < this.diagonal.length; i++)

5 newDiagonal[i] = 1 / this.diagonal[i]; ... }

The analysis in [5,8] infers 0 � i , 0 � newDiagonal at line 5 above, since
this.diagonal is not a local variable and consequently cannot be used in
the constraint. The latter does not entail that the two array accesses are
safe now, resulting in two false alarms. Clearly, one should allow expressions
such as this.diagonal in the constraint and infer 0 � i < this.diagonal =
newDiagonal . But this is challenging since there are (infinitely) many expres-
sions (potentially affecting scalability) and since expressions might change their
value by side-effect (potentially affecting soundness). In comparison, at a given
program point, only finitely many local variables are in scope, whose value can
only be changed by syntactically explicit assignment to the affected variable.
Hence, this challenge is both technical (the implementation must scale) and the-
oretical (the formal proof of correctness must consider all possible side-effects).

One should not think that it is enough to include object fields in the con-
straints, to improve the expressivity of the analysis. Namely, fields are just exam-
ples of expressions. In real code, it is useful to consider also other expressions. For
instance, the following code, from class util.linalg.LowerTriangularMatrix
of Abagail, performs a typical nested loop over a bidimensional array:

1 UpperTriangularMatrix result = new UpperTriangularMatrix(...);

2 for (int i = 0; i < this.data.length; i++)

3 for (int j = 0; j < this.data[i].length; j++) {

4 // any extra code could occur here

5 result.set(j, i, this.data[i][j]); }
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To prove array accesses safe at line 5 above, one should infer that 0 � i <
this.data, 0 � j < this.data[i ]. The analysis in [5,8] cannot do it, since it con-
siders local variables and abstracts away fields (this.data) and array elements
(this.data[i]). Moreover, safeness of these accesses can be jeopardised by extra
code at line 4 modifying this.data or this.data[i]: side-effects can affect
soundness. That does not happen for arrays held in local variables, as in [5,8].

For an example of approximation of even more complex expressions, consider
the anonymous inner class of java.net.sf.colossus.tools.ShowBuilderHex-
Map from program Colossus (Sect. 7). It iterates over a bidimensional array:

1 clearStartListAction = new AbstractAction(...) {

2 public void actionPerformed(ActionEvent e) {

3 for (int i = 0; i < h.length; i++)

4 for (int j = 0; j < h[i].length; j++)

5 if ((h[i][j] != null) && (h[i][j].isSelected())) {

6 h[i][j].unselect();

7 h[i][j].repaint(); }}};

Here, h is a field of the outer object i.e., in Java, shorthand for this.this$0.h
(a field of field this$0, the synthetic reference to the outer object); h[i] stands
for this.this$0.h[i] (an element of an array in a field of a field). In order to
prove the array accesses at lines 4, 5, 6 and 7 safe, the analyser should prove
that the constraint 0 � i < this.this$0 .h, 0 � j < this.this$0 .h[i ] holds at those
lines. The analysis in [5,8] cannot do it, since it abstracts away the expressions
this.this$0.h and this.this$0.h[i]. This results in false alarms. Note that,
to prove the access at line 7 safe, an analyser must prove that isSelected()
and unselect() do not affect h nor h[i]. That is, it must consider side-effects.

The contribution of this article is the extension of [5,8] with specific program
expressions, in order to improve its precision. It starts from the formalisation
of [5,8] for object-oriented languages with dynamic heap allocation, known as
path-length analysis [19]. It shows that its extension with expressions, using
zones [10] rather than polyhedra [3,4], scales to real code and is more precise
than [5,8]. This work is bundled with a formal proof of correctness inside the
abstract interpretation framework. This analysis, as that in [19], is interproce-
dural, context and flow-sensitive and deals with arbitrary recursion.

This article is organised as follows. Section 2 reports related work. Sections 3
and 4 recall semantics and path-length from [19] and extend it to arrays. Section 5
introduces the approximation of expressions. Section 6 defines the new static
analysis, with side-effect information for being sound. Section 7 describes its
implementation inside the Julia analyser and experiments of analysis of open-
source Java applications. The latter and the results of analysis can be found
in [14]. Analyses can be rerun online at https://portal.juliasoft.com (instructions
in [14]).

2 Related Work and Other Static Analysers

Astrée [6] is a state of the art analyser that infers linear constraints. For scal-
ability, it uses octagons [12] rather than polyhedra [7]. It targets embedded C

https://portal.juliasoft.com
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software, with clear limitations [6]: no dynamic memory allocation, no unbound
recursion, no conflicting side-effects and no use of libraries. Fields and arrays are
dealt under the assumption that there is no dynamic memory allocation, which
limits the analysis to embedded C software [11]. These assumptions simplify the
analysis since, in particular, no dynamic memory allocation means that there is
a finite number of fields or array elements, hence they can be statically grouped
and mapped into linear variables; and the absence of conflicting side-effects sim-
plifies the generation of the constraints between such variables. However, such
assumptions conflict with the reality of Java code. Even a minimal Java program
uses dynamic memory allocation and a very large portion of the standard Java
library, which is much more pervasive that the small standard C library: for
instance, a simple print statement reaches library code for formatting and local-
ization and the collection library contains hundreds of intensively used classes.
The recent 2018 competition on software verification showed that a few tools
can already perform bound verification for arrays in C, with good results1.

A type system has been recently defined for array bounds checking in
Java [15]. It infers size constraints but uses code annotation. Thus, it is not
fully automatic.

Facebook has built the buffer overflow analyser Inferbo2 on top of Infer3.
Inferbo uses symbolic intervals for approximating indices of arrays held in local
variables. We ran Inferbo on Java code but the results were non-understandable.
After personal communication with the Infer team, we have been confirmed that
Infer does work also on Java code, but Inferbo is currently limited to C only.

We also ran FindBugs4 at its maximal analysis effort. It spots only very
simple array access bounds violations. For instance it warns at the second state-
ment of int t[] = new int[5]; t[9] = 3. However, in the programs analysed
in Sect. 7, it does not issue any single warning about array bounds violations,
missing all the true alarms that our analysis finds.

Previous work [19] defined a path-length analysis for Java, by using linear
constraints over local variables only. It extends [5,8] to deal with dynamically
heap-allocated data structures and arbitrary side-effects. It uses a bottom-up,
denotational fixpoint engine, with no limits on recursion. It was meant to support
a termination prover. This article leverages its implementation inside the Julia
analyser for Java bytecode [17], by adding constraints on expressions.

This work has been inspired by [1,2], which, however, has the completely
different goal of termination analysis. It identifies fields that are locally constant
inside a loop and relevant for the analysis, by using heuristics, then performs
a polyvariant code instrumentation to translate such fields into ghost variables.
That analysis is limited to fields and there is no formalisation of path-length with
arrays. In this article, instead, path-length with arrays is formalised, applied to

1 https://sv-comp.sosy-lab.org/2018/results/results-verified/META MemSafety.
table. See, in particular, the results for tools Map2Check, Symbiotic and Ultimate.

2 https://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer.
3 http://fbinfer.com.
4 http://findbugs.sourceforge.net.

https://sv-comp.sosy-lab.org/2018/results/results-verified/META_MemSafety.table
https://sv-comp.sosy-lab.org/2018/results/results-verified/META_MemSafety.table
https://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer
http://fbinfer.com
http://findbugs.sourceforge.net
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array bounds checking with an evaluation of its scalability. Our analysis identi-
fies, on-demand, expressions that need explicit approximation and can be much
more complex than fields e.g., array elements of variables or fields, or fields
of array elements; moreover, it does not need any code instrumentation, since
expressions only exist in the abstract domain, where linear variables symboli-
cally stand for expressions. As a consequence, it has a formal correctness proof,
completely inside the abstract interpretation framework. As far as we can infer
from the papers, the analysis in [1,2] has no formal correctness proof.

3 Concrete Domain

We extend [19] with arrays. Namely, an array arr of type t and length n ∈ N is
a mapping from [0, . . . , n − 1] to values of type t; it has type arr .t and length
arr .length. A memory maps locations to reference values i.e., objects or arrays.
The set of locations is L, the set of arrays is A. A multidimensional array is just
an array of locations, bound to arrays, exactly as in Java. The set of classes of
our language is K and the set of types is T = K ∪ {int} ∪ T [ ]. The domain of a
function f is dom(f), its codomain or range is rng(f). By f(x)↓ we mean that f
is defined at x; by f(x)↑, that it is undefined at x. The composition of functions
f and g is f ◦ g = λx.g(f(x)), undefined when f(x)↑ or g(f(x))↑.

A state is a triple 〈l || s || μ〉 that contains the values of the local variables l,
those of the operand stack elements s, and a memory μ. Local variables and
stack elements are bound to values compatible with their static type. Dangling
pointers are not allowed. The size of l is denoted as #l, that of s as #s. The
elements of l and s are indexed as lk and sk, where s0 is the base of the stack
and s#s−1 is its top. The set of all states is Σ, while Σi,j is the set of states
with exactly i local variables and j stack elements. The concrete domain is
〈℘(Σ),⊆〉 i.e., the powerset of states ordered by set inclusion. Denotations are
the functional semantics of a single bytecode instruction or of a block of code.

Definition 1. A denotation is a partial function Σ → Σ from a pre-state to a
post-state. The set of denotations is Δ, while Δli,si→lo,so , stands for Σli,si →
Σlo,so . Each instruction ins, occurring at a program point p, has semantics insp ∈
Δli,si→lo,so where li, si, lo, so are the number of local variables and stack elements
in scope at p and at the subsequent program point, respectively. Figure 1 shows
those dealing with arrays and fields. Others can be found in [19].

Figure 1 assumes runtime types correct. For instance, arrayloadp t finds on the
stack a value � which is either null or a location bound to an array of type
t′ � t. Such static constraints must hold in legal Java bytecode [9], hence are not
checked in Fig. 1. Others are dynamic and checked in Fig. 1: for instance, index
v must be inside the array bounds (0 � v < μ(�).length). Figure 1 shows explicit
types for instructions, when relevant in this article, such as t in arrayloadp t. They
are implicit in real bytecode, for compactness, but can be statically inferred [9].
Figure 1 assumes that runtime violations of bytecode preconditions stop the Java
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Fig. 1. The concrete semantics of a fragment of Java bytecode, with arrays and fields.
The semantics of an instruction is implicitly undefined if its preconditions do not hold.

Virtual Machine, instead of throwing an exception. Exceptions can be accomo-
dated in this fragment (and are included in our implementation), at the price of
extra complexity. This is explained and formalised in [13]. Instruction newarray
allocates an array of n dimensions and leaves its pointer � on top of the stack.
When n > 1, a multidimensional array is allocated. In that case, the array at �
is the spine of the array, while its elements are arrays themselves, held at fur-
ther newly allocated locations. Instructions arrayload, arraystore and arraylength
operate on the array μ(�), where � is provided on the stack. The first two check
if the index is inside its bounds. getfield and putfield are similar, but μ(�) is an
object. Objects are represented as functions from field names to field values. call
plugs the denotation δ of the callee(s) at the calling point.

4 Path-Length Abstraction with Arrays

Path-length [19] is a property of local and stack variables, namely, the length of
the maximal chain of pointers from the variable. It leads to an abstract interpre-
tation of Java bytecode, reported below, after extending path-length to arrays:
their path-length is their length. This is consistent with the fact that the length
of the arrays is relevant for checking array bounds and for proving the termi-
nation of loops over arrays. Hence the elements of an array are irrelevant w.r.t.
path-length and only the first dimension of a multidimensional array matters.

Definition 2. Let μ be a memory. For every j ≥ 0, let (1) lenj(null, μ) = 0,
(2) lenj(i, μ) = i if i ∈ N, (3) lenj(�, μ) = μ(�).length if � ∈ dom(μ) and
μ(�) ∈ A, (4) len0(�, μ) = 0 if � ∈ dom(μ) and μ(�) �∈ A, (5) lenj+1(�, μ) =
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1 + max
{
lenj(�′, μ) | �′ ∈ rng(μ(�)) ∩ L

}
if � ∈ dom(μ) and μ(�) �∈ A, with the

assumption that the maximum of an empty set is 0. The path-length of a value
v in μ is len(v, μ) = limj→∞ lenj(v, μ).

In the last case of the definition of lenj , the intersection with L selects only
the non-primitive fields of object μ(�). If i ∈ Z then len(i, μ) = lenj(i, μ) = i
for every j ≥ 0 and memory μ. Similarly, len(null, μ) = lenj(null, μ) = 0.
Moreover, if location � is bound to a cyclical data-structure, then len(�, μ) = ∞.

A state can be mapped into a path-length assignment i.e., into a function
specifying the path-length of its variables. This comes in two versions: in the
pre-state version |len, the state is considered as the pre-state of a denotation. In
the post-state version xlen, it is considered as the post-state of a denotation.

Definition 3. Let 〈l || s || μ〉 ∈ Σ#l,#s. Its pre-state path-length assignment is
|len(〈l || s || μ〉) = [qlk �→ len(lk, μ) | 0 ≤ k < #l] ∪ [qsk �→ len(sk, μ) | 0 ≤ k < #s].
Its post-state path-length assignment is xlen(〈l || s || μ〉) = [plk �→ len(lk, μ) | 0 ≤
k < #l] ∪ [psk �→ len(sk, μ) | 0 ≤ k < #s].

Definition 4. Let li, si, lo, so ∈ N. The path-length constraints PLli,si→lo,so are
all finite sets of integer linear constraints over variables {qlk | 0 � k < li} ∪ {qsk |
0 � k < si} ∪ {plk | 0 � k < lo} ∪ {psk | 0 � k < so} with the � operator.

One can also use constraints such as x = y, standing for both x � y and y � x.
A path-length assignment fixes the values of the variables. When those values

satisfy a path-length constraint, they are a model of the constraint.

Definition 5. Let pl ∈ PLli,si→lo,so and ρ be an assignment from a superset of
the variables of pl into Z ∪ {∞}. Then ρ is a model of pl , written as ρ |= pl,
when plρ holds i.e., when, by substituting, in pl , the variables with their values
provided in ρ, one gets a tautological set of ground constraints.

The concretisation of a path-length constraint is the set of denotations that
induce pre- and post-state assignments that form a model of the constraint.

Definition 6. Let pl ∈ PLli,si→lo,so . Its concretisation γ(pl) is
{
δ ∈

Δli,si→lo,so | for all σ ∈ Σli,si such that δ(σ)↓ we have
(

|len(σ) ∪ xlen(δ(σ))
) |=

pl
}
.

In [19] it is proved that γ is the concretisation map of an abstract interpre-
tation [5] and sound approximations are provided for some instructions such
as const, dup, new, load, store, add, getfield, putfield, ifeq and ifne, as well as
for sequential and disjunctive composition. For instance, there is an abstrac-
tion getfieldPL

p f , sound w.r.t. the concrete semantics of getfield f at p (Fig. 1).
They remain sound after introducing arrays to the language. Figure 2 reports
the abstraction of array instructions. This defines a denotational fixpoint static
analysis of Java bytecode, that approximates the path-length of local variables.
We cannot copy from [19] the complete definition of the abstract semantics. We
only observe that the analysis uses possible sharing [16] and reachability [13]
analyses for approximating the side-effects of field updates and method calls.
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Fig. 2. Path-length abstraction of the bytecodes from Fig. 1 that deal with arrays.
#l,#s are the number of local variables and stack elements at program point p.
Id(x, y) = {qli = pli | 0 � i < x} ∪ {qsi = psi | 0 � i < y}.

Proposition 1. The maps in Fig. 2 are sound w.r.t. those in Fig. 1. ��
We do not copy the abstract method call from [19], since it is complex but

irrelevant here. Given the approximation pl of the body of a method m of class
κ, it is a constraint (callPLp κ.m)(pl), sound w.r.t. call κ.m at program point p.
Method calls in object-oriented languages can have more dynamic target meth-
ods, hence pl is actually the disjunction of the analysis of all targets. A restricted
subset of targets can be inferred for extra precision [18].

Sequential composition of path-length constraints pl1 and pl2 matches the
post-states of pl1 with the pre-states of pl2, through temporary, overlined vari-
ables. Disjuctive composition is used to join more execution paths.

Definition 7. Let pl1 ∈ PLli,si→lt,st , pl2 ∈ PLlt,st→lo,so and T = {l
0
, . . . ,

l
lt−1

, s0, . . . , sst−1}. The sequential composition pl1;PL pl2 ∈ PLli,si→lo,so

is the constraint ∃T (pl1[pv �→ v | v ∈ T ] ∪ pl2[qv �→ v | v ∈ T ]). Let pl1, pl2 ∈
PLli,si→lo,so . Their disjunctive composition pl1 ∪PL pl2 is the polyhedral hull
of pl1 and pl2.

5 Path-Length with Expressions

Definition 4 defines path-length as a domain of numerical constraints over local
or stack elements, which are the only program expressions that one can use in
the constraints. That limitation can be overcome by adding variables that stand
for more complex expressions, that allow the selection of fields or array elements.

Definition 8. Given l ≥ 0, the set of expressions over l local variables is El =
{lk | 0 � k < l} ∪ {e.f | e ∈ El and f is a field name} ∪ {e1[e2] | e1, e2 ∈ El}.
Given also s ≥ 0, the expressions or stack elements are ESl,s = El ∪ {si | 0 �
i < s}. When we want to fix a maximal depth k > 0 for the expressions, we use
the set E

k
l = {e ∈ El | e has depth at most k}.

Definition 9. Given σ = 〈l || s || μ〉 ∈ Σ#l,#s and e ∈ ES#l,#s, the evaluation
[[e]]σ of e in σ is defined as [[lk]]σ = lk and [[sk]]σ = sk (lk and sk is an expression
on the left and the value of the kth local variable or stack element on the right);
moreover, [[e.f ]]σ = μ([[e]]σ)(f) if [[e]]σ ∈ L (undefined, otherwise); [[e1[e2]]]σ =
μ([[e1]]σ)([[e2]]σ) if [[e1]]σ ∈ L and [[e2]]σ ∈ Z (undefined, otherwise).
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Section 4 can now be generalised. Path-length assignments refer to all possible
expressions, not just to local variables and stack elements (compare with Defi-
nition 3).

Definition 10. Let σ = 〈l || s || μ〉 ∈ Σ#l,#s. Its pre-state path-length assign-
ment is |len(σ) = [qe �→ len([[e]]σ, μ) | e ∈ ES#l,#s]. Its post-state path-length
assignment is xlen(σ) = [pe �→ len([[e]]σ, μ) | e ∈ ES#l,#s].

Path-length can now express constraints over the value of expressions (compare
with Definition 4); such expressions are actually numerical variables of the con-
straints.

Definition 11. Let li, si, lo, so ∈ N. The set PLli,si→lo,so of the path-length
constraints contains all finite sets of integer linear constraints over the variables
{qe | e ∈ ESli,si} ∪ {pe | e ∈ ESlo,so}, using only the � comparison operator.

Definitions 5, 6 and 7 remain unchanged; the abstractions in Fig. 2 and from [19]
work over this generalised path-length domain, but do not exploit the possibility
of building constraints over expressions. Such expressions must be selected, since
El,s is infinite, in general. The analysis adds expressions on-demand, as soon as
the analysed code uses them. Namely, consider the abstractions of the instruc-
tions that operate on the heap. They are refined by introducing expressions, as
follows, by using definite aliasing, a minimum requirement for a realistic static
analyser: e1 ∼p e2 means that e1 and e2 are definitely alias at program point p.

Definition 12. Let k > 0 be a maximal depth for the expressions considered
below. From now on, the approximations on PL of getfieldPL

p f and putfieldPL

p f

from [19] and arrayloadPL

p and arraystorePL
p from Fig. 2 will be taken as refined

by adding the following constraints:

to getfieldPL

p f :{ps#s−1 = |e.f = xe.f | e.f ∈ E
k
#l and e ∼p s#s−1}

to putfieldPL

p f :
{

qs#s−1 = xe.f

∣
∣
∣
∣
e.f ∈ E

k
#l, f does not occur in e,

e ∼p s#s−2 and f has type int or array

}

to arrayloadPL

p t :
{

ps#s−2 = e1[e2] = {e1[e2]
∣
∣
∣
∣
e1[e2] ∈ E

k
#l,

e1 ∼p s#s−2 and e2 ∼p s#s−1

}

to arraystorePL

p t :
{

qs#s−1 = {e1[e2]
∣
∣
∣
∣
e1[e2] ∈ E

k
#l, e1 ∼p s#s−3, e2 ∼p s#s−2,

e1, e2 do not contain array subexpressions

}

Definition 12 states that getfield f pushes on the stack the value of e.f , where e
is a definite alias of its receiver. Bytecode putfield f stores the top of the stack in
e.f , where e is, again, a definite alias of its receiver. Similarly for arrayload and
arraystore. Bytecodes putfield and arraystore avoid the introduction of expressions
whose value might be modified by their same execution.

Proposition 2. The maps in Definition 12 are sound w.r.t. those in Fig. 1. ��
Example 1. In the snippet of code from util.linarg.DiagonalMatrix at
page 2, the compiler translates the expression this.diagonal.length at line 4
into
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1 load 0 // load local variable this

2 getfield diagonal // load field diagonal of this

3 arraylength double // compute the length of this.diagonal

At the beginning #s = 1, local 0 is this, local 1 is newDiagonal and local 2 is
i, hence the latter is a definite alias of stack element 0, going to be compared
against the value of this.diagonal.length. The next table reports the number
#s of stack elements (#l = 3 always), definite aliasing just before the execution
of each instruction (self-aliasing is not reported) and its resulting abstraction:

instruction #s definite aliasing abstraction

load 0 1 {l2 ∼ s0} {ql0 = pl0 = ps1,ql1 = pl1,ql2 = pl2, qs0 = ps0}
getfield diagonal 2 {l2 ∼ s0, l0 ∼ s1}

{
ql0 = pl0,ql1 = pl1,ql2 = pl2, qs0 = ps0

ps1 = l0.diagonal = {l0.diagonal

}

(pl1)

arraylength double 2 {l2 ∼ s0}
{

ql0 = pl0,ql1 = pl1,ql2 = pl2

qs0 = ps0, qs1 = ps1

}
(pl2)

The abstraction of getfield diagonal uses the definite aliasing information
l0 ∼ s1 to introduce the constraint ps1 = l0.diagonal = {l0.diagonal on expres-
sion this.diagonal (Definition 12). The sequential composition of the three
constraints approximates the execution of the three bytecode instructions:
ql0 = pl0,ql1 = pl1,ql2 = pl2, qs0 = ps0. Unfortunately, it loses information about
this.diagonal.

The approximation in Example 1 is imprecise since pl1 (see Example 1) refers
to {l0.diagonal , but pl2 does not refer to l0.diagonal at all: hence their sequen-
tial composition does not propagate any constraint about it. To overcome this
imprecision, one can include frame constraints in the abstraction of each instruc-
tion ins, stating, for each expression e whose value is not affected by ins, that
its path-length does not change: qe = pe. But this is impractical since, in general,
there are infinitely many such expressions. Next section provides an alternative,
finite solution.

6 Expressions and Side-Effects Information

Let us reconsider the sequential composition of pl1 and pl2 from Exam-
ple 1. Since pl1 refers to the expression l0.diagonal , not mentioned in pl2, we
could define pl ′2 = pl2 ∪ { l0.diagonal = {l0.diagonal} and compute pl1;PL pl ′2
instead of pl1;PL pl2. The composition will then propagate the constraints on

{l0.diagonal . This redefinition of ;PL is appealing since it adds the frame condi-
tion l0.diagonal = {l0.diagonal only for l0.diagonal i.e., for the expressions that
are introduced on-demand during the analysis. However, it is unsound when pl2
is the abstraction of a piece of code that affects the value of l0.diagonal (for
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instance, it modifies l0 or diagonal): the constraint l0.diagonal = {l0.diagonal
would not hold for all its concretisations. This leads to the addition of side-effect
information to PL.

Side-effects are modifications of leftvalues, that is, local variables, object
fields or array elements. A local variable is modified when its value changes. A
field f is modified when at least an object in memory changes its value for f . An
array of type t is modified when at least an array of type t in memory changes.

Definition 13. Let δ ∈ Δli,si→lo,so and σ = 〈l || s || μ〉 ∈ Σli,si . Then δ modifies
local k in σ iff 5 σ′ = 〈l′ || s′ || μ′〉 = δ(σ)↓ and either l′k does not exist or lk �= l′k.
It modifies f in σ iff σ′ = 〈l′ || s′ || μ′〉 = δ(σ)↓ and there exists � ∈ dom(μ) where
μ(�) is an object having a field f and either μ′(�) ↑, or μ′(�) is not an object
having a field f , or μ(�)(f) �= μ′(�)(f). It modifies an array of type t in σ iff
σ′ = 〈l′ || s′ || μ′〉 = δ(σ) ↓ and there exists � ∈ dom(μ) where μ(�) is an array
of type t and either μ′(�) ↑, or μ′(�) is not an array of type t, or μ(�).length �=
μ′(�).length, or μ(�)(i) �= μ′(�)(i) for some index 0 � i < μ(�).length.

It is now possible to define a more concrete abstract domain than in Defini-
tion 11, by adding information on local variables, fields and arrays that might
be modified.

Definition 14. Let li, si, lo, so ∈ N. The abstract domain PLSEli,si→lo,so

for path-length and side-effects contains tuples 〈pl || L || F || A〉 where pl ∈
PLli,si→lo,so (Definition 11), L is a set of local variables, F is a set of fields
and A is a minimal set of types i.e., for all t, t′ ∈ A it is never the case that
t < t′.

A tuple 〈pl || L || F ||A〉 represents denotations that are allowed to modify locals
in L, fields in F and arrays whose elements are compatible with some type in A:

Definition 15. Let 〈pl || L || F || A〉 ∈ PLSEli,si→lo,so . Its concretisation func-
tion is γ(〈pl ||L || F || A〉) = {δ ∈ Δli,si→lo,so | (1) δ ∈ γ(pl) [Definition 6],
(2) if δ modifies local k in σ then lk ∈ L, (3) if δ modifies f in σ then f ∈ F ,
(4) if δ modifies an array of type t in σ then t � t′ for some t′ ∈ A}.
Proposition 3. PLSEli,si→lo,so is a lattice and the map γ of Definition 15 is
the concretisation of a Galois connection from Δli,si→lo,so to PLSEli,si→lo,so . ��

The abstract semantics uses now Fig. 2, [19] and Definition 12 and adds side-
effects. For method calls, callees in Java cannot modify the local variables of the
caller.

Definition 16. The approximations insPLSE are defined as insPLSEp k =
〈insPLp ||{lk} || ∅ || ∅〉 if ins is store k or inc k c; putfieldPLSE

p f =
〈putfieldPL

p f || ∅ ||{f} || ∅〉; arraystorePLSE
p t = 〈arraystorePL

p t || ∅ || ∅ ||{t}〉;
5 In Java bytecode, local variables are identified by number and their amount varies

across program points. Source code variable names are not part of the bytecode.
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(callPLSEp κ.m)(〈pl || L || F || A〉) = 〈(callPLp κ.m)(pl) || ∅ || F || A〉; insPLSEp =
〈insPLp || ∅ || ∅ || ∅〉 for all other ins.

Proposition 4. The maps in Definition 16 are sound w.r.t. those in Fig. 1. ��
Definition 17. Let a = 〈pl || L || F || A〉 ∈ PLSEli,si→lo,so . Then e ∈ Eli is
affected by a iff (1) e = lk and lk ∈ L, or (2) e = e′.f and f ∈ F or e′ is
affected by a, or (3) e = e1[e2], the type of e1� t ∈A or e1 or e2 is affected by a.

Abstract compositions over PLSE use side-effect information to build frame
conditions for expressions used in one argument and not affected by the other.

Definition 18. Let abstract elements a1 = 〈pl1 || L1 || F1 || A1〉 ∈ PLSEli,si→lt,st ,
a2 = 〈pl2 || L2 || F2 ||A2〉 ∈ PLSElt,st→lo,so , U1 = {qe = pe | e ∈ Eli is used in pl2
and not affected by a1} and U2 = {qe = pe | e∈Elt is used in pl1 and not affected
by a2}. The sequential composition a1;PLSE a2 ∈ PLSEli,si→lo,so is 〈(pl1 ∪
U1);PL (pl2 ∪ U2) || L1 ∪ L2 || F1 ∪ F2 ||maximize(A1 ∪ A2)〉, where maximize(A) =
{t ∈ A | ¬∃t′ ∈ A such that t < t′}. Let a1 = 〈pl1 || L1 || F1 || A1〉, a2 = 〈pl2 || L2 ||
F2 || A2〉 be in PLSEli,si→lo,so and U1, U2 be as above. The disjunctive composi-
tion a1∪PLSEa2 is 〈(pl1∪U1)∪PL(pl2∪U2) || L1∪L2 || F1∪F2 ||maximize(A1∪A2)〉.
Proposition 5. The compositions in Definition 18 are sound w.r.t. the corre-
sponding concrete compositions on denotations [19]. ��
Example 2. In Example 1, no instruction has side-effects, hence the last case
of Definition 16 applies. The abstraction of getfield diagonal is now a1 =
〈pl1 || ∅ || ∅ || ∅〉. That of the subsequent arraylength double is now a2 =
〈pl2 || ∅ || ∅ || ∅〉 (pl1 and pl2 are given in Example 1). Expression l0.diagonal
is used in pl1 and is not affected by a2. Hence (Definition 18) U1 = ∅,
U2 = { l0.diagonal = {l0.diagonal} and a1;PLSE a2 = 〈pl1 || ∅ || ∅ || ∅〉;PLSE 〈pl2 ∪
{ l0.diagonal = {l0.diagonal} || ∅ || ∅ || ∅〉 = {ql0 = pl0,ql1 = pl1,ql2 = pl2, qs0 = ps0, ps1 =

l0.diagonal = {l0.diagonal}. The result refers to l0.diagonal now: the imprecision
in Example 1 is overcome.

7 Experiments

Implementation. PLSE (Definition 14) needs to implement its elements
〈pl || L || F || A〉, its abstract operations (Definition 16) and a fixpoint engine for
denotational, bottom-up analysis. We have used the Julia analyser [17] and its
fixpoint engine. Elements of PLSE use bitsets for L, F and A, since they are
compact and with fast union (Definition 18). The pl component has been imple-
mented twice: as bounded differences of variable pairs, by using zones (Chap. 3
of [10]) and as a hybrid implementation of zones and polyhedra, by using the
Parma Polyhedra Library [3] for polyhedra. We use zones rather than the poten-
tially more precise octagons, only for engineering reasons: zones are already
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Fig. 3. The programs analyzed. LoC are the non-blank non-commented lines of source
code; LoC w. Libs includes the lines of the libraries reachable and analyzed; Watch-
points is the number of arrayload or arraystore, whose bounds must be checked; True
Alarms are index bound violations found by the analysis (i.e., actual bugs).

available, tested and optimised in Julia. They cannot accomodate constraints
such as those for add or sub, that refer to three variables (two operands and the
result) and are dropped with zones. This keeps the analysis sound but reduces
its precision. In the hybrid representation, instead, polyhedra represent them. A
fixpoint is run for each strongly-connected code component. Polyhedra and zones
have infinite ascending chains, hence widening [3,5,10] is used after 8 iterations.
The cost of operations on polyhedra and zones depends on their dimensions i.e.,
variables (locals, stack elements and expressions, in pre-state (qv), post-state (pv)
and overlined v, see Definition 7). We have limited zones to 200 dimensions and
polyhedra to 110; variables beyond that limit are projected away. This does not
mean that the analysed programs have only up to 200 (or 110) variables: the
limit applies at each given program point, not to the program as a whole. Since
there are infinitely many expressions (Definition 12), we fixed a limit of 9. This
does not mean that the analysis of a program considers 9 expressions only: it
applies to each given program point. We fixed k = 3 in Definition 12. When,
nevertheless, abstraction (Definition 12) or composition (Definition 18) generate
more than 9 expressions, the implementation prefers those from a2 in a1;PLSE a2

and drops those beyond the 9th.

Results. We used an Intel 8-core i7-6700HQ at 2.60 Ghz, OpenJDK Java
1.8.0 151 and 15 GB of RAM. Small to medium-size open-source third-party
programs have been analysed, up to 195000 lines of code, cloneable from [14].
Figure 3 reports their size, characteristics and number of index bound violations
found by the analysis. The reachable libraries have been included and analysed,
together with the application code. This is needed for the approximation of
method calls to the library. However, warnings have been generated only on the
application code. Figure 4 reports the results. Programs have been first analysed
as in [5,8], with zones only (column Zones Only). Each alarm has been manu-
ally classified as true (i.e., an array index bug) or false. True alarms range from 1
to 173 per program. If classification was impossible, since we do not fully under-
stand the logic of the code or its invariants, alarms have been conservatively
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Fig. 4. Analysis results for the programs in Fig. 3. Zones Only uses zones only;
Zones+Poly zones and polyhedra; Zones+Exps zones with expressions (Sects. 5
and 6). Julia issues index bound Alarms, bounded by Watchpoints in Fig. 3. Time
is full analysis time, in seconds. Mem is the peak memory usage, in gigabytes.

classified as false. Thus, column True Alarms in Fig. 3 is a lower bound on
actual bugs. Comparing Alarms of Zones Only with True Alarms shows
a major precision gap. To close it, we tried to exploit the extra precision of
polyhedra through the hybrid use of zones and polyhedra. Column Alarms of
Zones+Poly in Fig. 4 deceives our hopes: polyhedra hardly improve the pre-
cision, at the price of higher analysis time and memory footprint, up to an out
of memory. Instead, columns Zones+Exps show that the technique of Sect. 6,
with zones only, scales to all programs, with fewer alarms: precision benefits
more from expressions than from polyhedra and expressions are cheaper than
polyhedra w.r.t. memory usage. Figure 4 reports full analysis times and peak
memory usage during parsing of the code, construction of the control-flow graph
and of the strongly-connected components, heap, aliasing and path-length anal-
ysis. The alarms are in [14], annotated as TA when they classify as true alarms.
Note that the analysis has false positives but no false negatives (true bugs that
the analysis does not find), since it is provably sound.

False Alarms that Disappear by Using Expressions. Zones Only issues
false alarms for all examples in Sect. 1. They disappear with Zones + Exps. In
the first example, the analyser uses a variable for the expression this.diagonal;
in the second, for this.data and this.data[i]; in the third, for this.this$0.h
and this.this$0.h[i]. Expressions are chosen automatically and on-demand.

True Alarms. In jxl.biff.BaseCompoundFile of JExcelAPI, Julia issues a
true alarm at line 3 below6, since the constructor is public and its argument d
is arbitrary, hence might have less than SIZE+1 elements7:

6 Line numbers, conveniently starting at 1, do not correspond to the actual line num-
bering of the examples, which are simplified and shortened w.r.t. their original code.

7 We assume that public entries can be called with any values, as also done in [15].
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1 public PropertyStorage(byte[] d) {

2 this.data = d;

3 int s = IntegerHelper.getInt(this.data[SIZE], this.data[SIZE+1]); }

Julia issues a true alarm at line 2 of class domain.Farm of FarmTycoon, for
a public method whose argument options is hence arbitrary. Very likely, the
programmer should have written options[pos] here, instead of options[1]:

1 public static void objPrinter(String[] options) {

2 Storm[] objStorm = new Storm[options.length];

3 for (int pos = 0; pos < options.length; pos++)

4 objStorm[pos] = new Storm(Long.parseLong(options[1])); }

Julia issues a true alarm at line 5 of edu.cmu.sv.ws.ssnoc.common.logging.
Log in EmergencySNRest, since the stack trace might be shorter than 4 elements
(the documentation even allows getStackTrace() to be empty):

1 private static Logger getLogger() {

2 ... = Thread.currentThread().getStackTrace()[3].getClassName(); }

Julia issues true alarms from line 5 of java.net.sf.colossus.webclient.Web-
ClientSocketThread in Colossus, where fromServer comes from a remote
server and might contain too few tokens: it should be sanitised first:

1 String fromServer = getLine();

2 String[] tokens = fromServer.split(sep, -1)

3 String command = tokens[0]; // ok: split() returns at least one token

4 if (command.equals(IWebClient.userInfo)) {

5 int loggedin = Integer.parseInt(tokens[1]);

6 int enrolled = Integer.parseInt(tokens[2]);

7 ... String text = tokens[6]; ... }

False Alarms: Limitations of the Analysis. In func.svm.SingleClass-
SequentialMinimalOptimization of Abagail, Julia issues false alarms at line 8:

1 public SingleClass...Optimization(DataSet examples, ..., double v) {

2 v = Math.min(v, 1); ...

3 this.a = new double[examples.size()];

4 this.vl = v * examples.size(); int ivl = (int) this.vl;

5 int[] indices = ABAGAILArrays.indices(examples.size());

6 ABAGAILArrays.permute(indices);

7 for (int i = 0; i < ivl; i++)

8 this.a[indices[i]] = 1 / vl; }

It is 0 � i < ivl = �v ∗ examples.size()� � examples.size() and ABAGAIL-
Arrays.indices(x) yields an array of size x. Thus indices[i] is safe. Also
this.a[indices[i]] is safe, since the elements of ABAGAILArrays.indices(x)
range from 0 to x (excluded) and permute() shuffles them. Such reasonings are
beyond the capabilities of our analysis.

Julia issues false alarms at lines 3 and 4 of net.sf.colossus.util.Static-
ResourceLoader in Colossus:
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1 while (r > 0) {

2 byte[] temp = new byte[all.length + r];

3 for (int i = 0; i < all.length; i++) temp[i] = ...;

4 for (int i = 0; i < r; i++) temp[i + all.length] = ...; }

Here, Julia builds a constraint temp = all + r. Since r > 0, then i in the first
loop is inside temp; since 0 � i < r, the same holds in the second loop. Zones
cannot express a constraint among three variables. Polyhedra can do it, but do
not scale to the analysis of Colossus (Fig. 4).

8 Conclusion

The extension of path-length to arrays (Sect. 4) scales to array index bounds
checking of real Java programs, but only with weaker abstractions than poly-
hedra, such as zones. Precision improves with explicit information about some
expressions (Sects. 5 and 6). Experiments (Sect. 7) are promising. The analy-
sis has limitations: it is unsound with unconstrained reflection or side-effects
due to concurrent threads, as it is typical of the current state of the art of
static analysers for full Java; also remaining false alarms (Sect. 7) show space for
improvement.
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10. Miné, A.: Weakly relational numerical abstract domains. Ph.D. thesis, École Poly-
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