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Abstract. Deep Recurrent Neural Networks (RNNs) achieve state-of-
the-art results in many sequence-to-sequence modeling tasks. However,
deep RNNs are difficult to train and tend to suffer from overfitting.
Motivated by the Data Processing Inequality (DPI) we formulate the
multi-layered network as a Markov chain, introducing a training method
that comprises training the network gradually and using layer-wise
gradient clipping. In total, we have found that applying our methods
combined with previously introduced regularization and optimization
methods resulted in improvement to the state-of-the-art architectures
operating in language modeling tasks.
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1 Introduction

Several forms of deep Recurrent Neural Network (RNN) architectures, such as
LSTM [7] and GRU [2], have achieved state-of-the-art results in many sequential
classification tasks [3,5,6,14,15,17] during the past few years. The number of
stacked RNN layers, i.e. the network depth, has key importance in extending
the ability of the architecture to express more complex dynamic systems [1,12].
However, training deeper networks poses problems that are yet to be solved.

In this paper, we suggest an approach that breaks the optimization process
into several learning phases. Each learning phase includes training an increas-
ingly deeper architecture than the previous ones. In this way, we gradually train
and extend the network depth, reducing the deleterious effects of degradation
and backpropagation problems. Additionally, by adjusting the appropriate train-
ing scheme (mainly the regularization) at every learning phase, we are able to
maximize the network performance even further.

2 Gradual Learning

2.1 Notation

Let us represent a network with l layers as a mapping from an input sequence
X ∈ X to an output sequence Ŷl ∈ Y by Ŷl = Sl ◦ fl ◦ fl−1 ◦ · · · ◦ f1(X;Θl),
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where the term Θl = {θ1, . . . , θl, θSl
} denotes the network parameters, such that

θk are the parameters of the kth layer. We also define the lth layer cost function
by J(Θl) = cost(Ŷl, Y ), where θl = {θ1, . . . , θl}. Next, we define the gradient
vector with respect to J(Θ) by g = ∂

∂ΘJ(Θ), and the gradient vector of the
kth layer parameters with respect to J(Θ) by gk = ∂

∂θk
J(Θ).

2.2 Theoretical Motivation

The structure of a neural network comprises a sequential processing scheme of
its input. This structure constitutes the Markov chain Y −X −T1−T2−· · ·−TL.
The goal is to estimate PY |TL

(y|t) by QΘ
Y |TL

(y|t). Driven by the Markov relation
we state two theorems (without proofs due to space constraints).

Theorem 1 (Maximum Likelihood Estimator (MLE) and minimal
negative log-likelihood). Given a training set of N examples S =
{(xi, yi)}N

i=1 drawn i.i.d from an unknown distribution PX,Y = PXPY |X , the
MLE of QΘ

Y |TL
is given by PY |X and the optimal value of the criteria is H(Y |X).

Theorem 2. If QΘ
Y |TL

satisfies the optimality conditions of Theorem1, then
I(X;Y ) = I(Tl;Y ) ∀l = 1, . . . , L.

We show that by satisfying the optimality criteria of Theorem1 we necessarily
did not lose relevant information of Y by processing X to TL. In particular, we
show that a necessary condition to achieve the MLE is that the network states,
namely {Tl}L

l=1, will satisfy I(Y ;X) = I(Y ;Tl).

2.3 Implementation

Due to the fact that shallow networks are easier to train, we propose a greedy
training scheme, where we break the optimization process into L phases (as the
number of layers), optimizing J(Θl) sequentially as l increases from 1 to L. The
training scheme is depicted in Fig. 1.

3 Layer-Wise Gradient Clipping (LWGC)

Previous studies [4,8,13] have shown that covariate shift has a negative effect
on the training process among deep neural architectures. Covariate shift is the
change in a layer’s input distribution during training, also manifested as inter-
nal covariate shift. We suggest that treating each layer weights’ gradient vector
individually and clipping the gradients vector layer-wise can reduce internal
covariate shift significantly. LWGC for a network with L different layers is for-
mulated as

[
ĝT
1 , . . . , ĝT

L

]T
:=

[
μ1

max(μ1, ‖g1‖)
gT
1 , . . . ,

μN

max(μN , ‖gN‖)
gT

N

]T

. (1)
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Fig. 1. Depiction of our training scheme for a 3 layered network. At phase 1
we optimize the parameters of layer 1 according to cost 1. At phase 2, we add layer 2
to the network, and then we optimize the parameters of layers 1, 2, when layer 1 is
copied from phase 1 and layer 2 is initialized randomly. At phase 3, we add layer 3 to
the network, and then we optimize all of the network’s parameters, when layers 1, 2
are copied from phase 2 and layer 3 is initialized randomly.

4 Experiments

We present results on a dataset from the field of natural language processing,
the PTB, conducted as a word-level dataset.

We conducted two models in our experiments, a reference model and a
GL-LWGC LSTM model that was used to check the performance of our meth-
ods. Our GL-LWGC LSTM model compared the state-of-the-art results with
only two layers and 19M parameters, and achieved state-of-the-art results with
the third layer phase. Results of the reference model and GL-LWGC LSTM
model are shown in Table 1.

Table 1. Single model validation and test perplexity of the PTB dataset

Model Size Valid Test

Zoph and Le [18] - NAS 25M - 64.0

Melis et al. [10] - 2-layer skip connection LSTM 24M 60.9 58.3

Merity et al. [11] - AWD-LSTM 24M 60.0 57.3

Yang et al. [16] - AWD-LSTM-MoS + finetune 22M 56.54 54.44

Ours - 2-layers GL-LWGC-AWD-MoS-LSTM + finetune 19M 55.18 53.54

Ours - GL-LWGC-AWD-MoS-LSTM + finetune 26M 54.24 52.57

Krause et al. [9] AWD-LSTM + dynamic evaluation 24M 51.6 51.1

Yang et al. [16] AWD-LSTM-MoS + dynamic evaluation 22M 48.33 47.69

Ours - GL-LWGC-AWD-MoS-LSTM + dynamic evaluation 26M 46.64 46.34
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