
Intercepting a Stealthy Network

Mai Ben Adar Bessos1(B) and Amir Herzberg1,2

1 Bar-Ilan University, 5290002 Ramat Gan, Israel
mai.bessos@gmail.com, amir.herzberg@gmail.com

2 University of Connecticut, Storrs, CT 06269-2157, USA

Abstract. We investigate an understudied threat: networks of stealthy
routers (S-Routers), communicating across a restricted area. S-Routers
use short-range, low-energy communication, detectable only by nearby
devices.

We examine algorithms to intercept S-Routers, using one or more
mobile devices, called Interceptors. We focus on Destination-Search sce-
narios, in which the goal of the Interceptors is to find a (single) destina-
tion S-Router, by detecting transmissions along one or more paths from
a given (single) source S-Router. We evaluate the algorithms analytically
and experimentally (simulations), including against a parametric, opti-
mized S-Routers algorithm.

Our main result is an Interceptors algorithm which bounds the

expected time until the destination is found to O
(

N

B̂
log2(N)

)
, where

N is the number of S-Routers and B̂ is the average rate of transmission.

1 Introduction

Stealthy wireless communication channels have been widely deployed and stud-
ied, already since World War I, and mainly for (human) intelligence. Stealthy
channels involve a stealthy source, communicating to a remote destination.
Advanced stealthy transmission and encoding methods were developed to hide
the transmissions and location of the source, while ensuring reliable communica-
tion to the remote destination. Counter-intelligence efforts involved deployment
of intercepting-devices (Interceptors), deploying advanced techniques to detect
the communication and locate the stealthy source. See details in [5–7,10,15,20]
(additional related topics are surveyed in the draft of the full version of this
work [3]).

Recent advances in Wireless Sensor Networks (WSNs) introduce a new vari-
ant of stealthy communication: a stealthy network. In a stealthy network, com-
munication is relayed along a path consisting of stealthy devices, which we refer
to as S-Routers. The S-Routers are covert devices, ‘hidden’ within a restricted-
access area; the source and destination are simply (special) S-Routers. Since
adjacent S-Routers are physically near, they can use low-energy, short-range,
communication. Energy savings are important; however, it is even more benefi-
cial that such low-energy communication can be hard to detect and localize by
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 188–205, 2018.
https://doi.org/10.1007/978-3-319-94147-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_16&domain=pdf

Intercepting a Stealthy Network 189

remote Interceptors. On the other hand, S-Router may not be able to deploy
the most stealthy techniques, due to size, cost and energy considerations. As a
result, an Interceptor would often succeed in detecting and locating a nearby
transmitting S-Router.

Prevention of stealthy communication, and interception of S-Routers, is
important for many scenarios, including commercial (prevention of industrial
espionage) and personal/political, as well as the ‘classical’ military, counter-
intelligence and counter-terrorism. Stealthy networks have been studied and
deployed since roughly 2006 [17–19].

The proliferation of Wireless Sensor Networks (WSN), based on low-
cost, miniature networked devices [2,8,12,14], may facilitate extensive use of
stealthy networks, including commercial and private privacy-intrusive applica-
tions. Examples include outdoor or indoor eavesdropping [4,16], industrial espi-
onage, and a command-and-control channel for physical attacks e.g. against com-
munication or energy infrastructure.

In spite of the wide-ranging implications of stealthy networks, this is the first
work which presents defense mechanisms to efficiently intercept the stealthy
network, using a set of mobile Interceptors, which can detect an S-Router trans-
mitting nearby. We present, analyze and experimentally evaluate algorithms for
ensuring efficient search by a set of Interceptors, to intercept and locate the
destination of a stealthy communication network (e.g. a base station of a WSN).

Model. To study the problem analytically, we introduce a model for evaluating
stealthy routing algorithms, as well as stealthy network interception algorithms.

The model is a round-based process between two parties: S-Routers and
Interceptors, both operating on the plane (two-dimensions space). Our focus
is on a protocol for the Interceptors party, which defines the operation of all
Interceptors, and whose goal is to find the destination S-Router.

We focus on Destination-Search scenarios, where the S-Routers route all
information from one special S-Router, called the source, to another special S-
Router, called the destination, and denoted by D; the goal of the Interceptors is
to find D. A single round of the process is illustrated in Fig. 1.

We assume a single, known source of the stealthy communication, which,
WLOG, we fix at the center of coordinates, i.e., (0, 0). There are N S-Routers,
one of which is the destination D; the other S-Routers relay information from the
source (0, 0) to D. S-Routers may transmit up to one data unit at each round.
Out model assumes that an Interceptor exposes an S-Router if the S-Router
transmits within the interception range of the Interceptor.

S-Routers transmit data at a certain average rate, denoted B̂. Intuitively, it
seems easier to find D when the rate is high; indeed, we show that when the
rate B̂ is 1, the Interceptors can use a more optimized algorithm which improves
their performance. Note that B̂ = 1 means that the S-Routers have to transmit
data at every round.

Algorithms are measured by their impact on the lifetime, which is the number
of rounds that pass before the destination is exposed by Interceptors; S-Routers

190 M. Ben Adar Bessos and A. Herzberg

Fig. 1. Illustration of one round, with a single Interceptor searching for destination D,
located at (7, 5) (in 2D, i.e., R2). Two routes of S-Routers connect the source (0, 0) to
D (at (7, 5)); the first (via (0, 7)) transmits at this round (black diamonds), the other
not (white diamonds). Several other S-Routers (from (6, 4) to (11, 4) and to (9, 0))
transmit ‘dummy’ messages, to divert the Interceptor from the real routes, and lead it
to two ‘dead ends’: (11, 4) and (9, 0).

attempt to maximize the lifetime, while Interceptors attempt to minimize it.
The Interceptors may utilize up to M separate agents simultaneously.

In the particular scenario we study, Interceptors do not ‘disable’ non-
destination S-Routers, even if they ‘know’ their location. Our model may be
extended to consider scenarios/models where the Interceptors can disable an
S-Router, e.g. by installing a nearby jamming device or by physical elimination.
However, we prefer, in this work, to focus on the scenario where S-Routers are not
disabled, both for simplicity and since such scenarios may be important. In par-
ticular, in the expected case where there is a large network of multiple S-Router
paths, sources and destinations, the Interceptors may prefer not to disable an
S-Router, since this may alert the S-Routers network and foil detection of the
rest of the stealthy network. Disabling S-Routers before exposing end-points
may trigger defensive and evasive reactions by S-Routers e.g. temporarily shut-
ting down nearby communication, alternating communication routes and even
activating nearby disconnected S-Routers in order to mislead Interceptors.

Video illustration. A video illustration of the algorithms presented in this work
is available online in [1].

Contributions.

– We introduce the threat of stealthy networks, with a flexible model facilitating
analysis of algorithms.

– We study two approaches for Interceptors: network graph search and spatial
search, and explore advantages and disadvantages of each approach.

– We present a Divide and Conquer (D&C) Algorithm: a spatial search
algorithm for Interceptors which ensures that the expected lifetime is in
O(N

MB̂
· log2(N)).

– We introduce a parametric algorithm for S-Routers, and use it to exper-
imentally evaluate the Interceptors algorithms presented in this work, via
simulations.

Intercepting a Stealthy Network 191

2 The 2D Stealthy Network Model

In this section, we present a model for studying problems involving S-Routers,
whose goal is to route data without discovery of D, and Interceptors, whose goal
is to find D.

The model is round-based; i.e., it operates in consecutive, discrete rounds
t ∈ N of equal duration, starting from t = 1. At each round, the model invokes
two algorithms, ΠI for the Interceptors and ΠS for the S-Routers. We model both
as centralized algorithms; see [3] for discussion on this simplification. To end a
round, the model invokes a third algorithm, ΠE , which models the environment.

The environment algorithm ΠE determines the results of the actions of the
Interceptors and S-Routers, including the inputs for next round. We believe that
the modeling of the environment by an algorithm ΠE gives significant flexibility
to the model. For example, in the scope of this work we study two environ-
ments, one of which enforces that S-Routers transmit continuously throughout
the process, i.e., where B̂ = 1, and another which does not enforce B̂ = 1. Other
variants of the problem may be modeled by other environments. For example,
our model does not restrict the movement of Interceptors from one round to
the next; but only a minor change in the environment is required to limit the
movement of each Interceptor.

The initial input to all three algorithms are the number of Interceptors,
denoted M, and the number of S-Routers, denoted N .

We next define the Interceptors algorithm ΠI . The input for ΠI combines
the observations of all Interceptors into a list of points from which transmissions
were detected at the previous round (up to one point per Interceptor), and the
output is the joint list of locations at the following round. That is, the output
for each Interceptor is an encoding of the location, in R

2, for the corresponding
Interceptor. The algorithm also has a state as input and output, modeled as
binary string.

Next, we define the S-Routers algorithm ΠS . In this work, S-Routers do not
move; we denote the location of S-Router i ∈ {0, ...N} by SL(i) ∈ R, where 0
is the destination and 1 . . . N are the (other) S-Routers. Furthermore, in this
work, the model does not include any input to the S-Routers, in particular,
S-Routers do not have any way to detect Interceptors, and S-Routers are never
impacted in any way; hence, their entire behavior can be determined initially.
Their ‘behavior’ only consists of a transmission schedule, ST (t) ⊂ {0, ..., N},
identifying the S-Routers that transmit at round t ∈ N, and by the (fixed)
location of the destination D. The S-Routers algorithm ΠS implements ST ;
details omitted.

In most of the paper, we refer directly to SL, ST and D, instead of to ΠS . One
of the S-Routers serves as the source, which is always at (0, 0); i.e. (0, 0) ∈ ∪SL.
The set of S-Routers must ensure connectivity from source (0, 0) to destination;
see definition of connectivity below.

We next model the environment, ΠE . ΠE models the behavior of the envi-
ronment, as a (probabilistic) algorithm, allowing analysis of different stealthy-
network scenarios and goals. The inputs to ΠE are the outputs of ΠI , and

192 M. Ben Adar Bessos and A. Herzberg

the locations of the S-Routers that transmit at the current round. The outputs
are the interceptions to be provided, in the next step, to ΠI . In addition, the
environment has a state of its own as input and output. Upon termination,
the environment also outputs the average rate of transmission; B̂, as defined in
Definition 2.

The values returned at the end of the execution of the process are B̂, as
returned by ΠE , and the lifetime of the process, i.e., the number of rounds until
the process terminates. If the process never ends, then lifetime is ∞.

2.1 Destination-Search Environments

In this subsection define two environments ΠE used in this work. In the
destination-search scenario, the goal of the S-Routers is to maintain a connection
between (0, 0) and D using the available S-Routers. Therefore, we begin with
the notion of connectivity.

Definition 1 (Connectivity). Two points p1, p2 ∈ R
2 are connected iff their

Euclidean distance is at most one, i.e., ||p1−p2|| ≤ 1. Let Connected(p1, p2) = 1
if p1, p2 are connected, and 0 otherwise. A list of points is connected if every pair
of two consecutive points is connected. Two points p1, p2 ∈ R

2 are connected via
a list of points P if there is a list of points in P , say (l1, ...lk)|(∀i)(li ∈ P), s.t.
the list (p1, l1, . . . , lk, p2) is connected.

The value of lifetime represents the success/reward of the S-Routers. This
value is also the cost/penalty for the Interceptors, whose goal is to minimize the
time needed for intercepting D. However, measuring performance using lifetime
alone may be misleading, as S-Routers are often able to increase it simply by
decreasing the number of transmissions.

Therefore, we define an additional criteria, the transmission rate B̂, which
indicates how often S-Routers transmit. For denoting whether a data unit was
transmitted at a specific round t ∈ N, we use b(t).

Definition 2 (Transmission rate measurement b(), B̂). Let b(t) = 1 if data
is transmitted from (0, 0) to D at round t. That is, b(t) = 1 if exists is a list
of S-Routers S = (r1, r2 . . .) s.t. the source (0, 0) and D are connected via their
locations {SL(ri) : ri ∈ S}, and all S-Routers in the list transmit at round t i.e.
S ⊆ ST (t). Otherwise, let b(t) = 0.

The average transmission rate of S-Routers, denoted with B̂, is
∑

t
b(t) divided

by the lifetime.

Note that in this work, S-Routers can not buffer messages and deliver them
later. Future work may remove this restriction, to allow for delay-tolerant net-
working by S-Routers. One reason for this (simplifying) restriction, is that each
round represents a (potential) physical movement by the Interceptors, and move-
ments are normally much slower than communication.

Intercepting a Stealthy Network 193

Initialization. Upon initialization, ΠE is provided with an indication of whether
the continuous transmission constraint has to be enforced (the constraint is
defined in Definition 3).

Termination. The environment ΠE will terminate the execution if either party
acts in a way forbidden for that execution or if one of the Interceptors is directly
connected to the destination D.

The process terminates when Interceptors visit a point near D, due to the
assumption that D is a long-range transmitter, which is expected to be larger
cf. to S-Routers and therefore easier to localize.

For simplicity, we also assume that Interceptors are able to expose D even
while S-Routers do not transmit. Note that for the algorithms presented in this
work, this assumption does not affect their performance asymptotic complexity
(with an exception for the Naive Disc Search algorithm).

As previously mentioned, if the process never ends, the lifetime is ∞; however,
in this work, Interceptors may always avoid this, since D necessarily may be
reached after a finite number of rounds.

Transmission rate constraints. As presented so far, the model allows rounds
t in which there no transmission-path from source (0, 0) to D (i.e., b(t) = 0).
However, it seems that in many scenarios, Interceptors will transmit continuously
to D. We refer to this as the continuous transmission constraint/assumption.

Definition 3 (Continuous Transmission Constraint). We say that the
Continuous transmission constraint holds for an execution, if for every round
t in the execution, b(t) = 1 holds, i.e., (0, 0) and D are connected via some set
of S-Routers at that round. We say that ΠE Enforces Continuous Transmission if
ΠE terminates the execution, with B̂ = 0, upon a round in which the constraint
does not hold.

3 Introducing Interceptors Algorithms

We found that the design of efficient Interceptors algorithm is more challeng-
ing than appears initially, with resulting algorithm being somewhat counter-
intuitive. Obviously, we cannot repeat here all the variations we experimented
with; however, we present few basic algorithms, which we believe will help the
reader understand the problem better, preparing the ground for the more effi-
cient - but less intuitive - algorithms presented in the following sections.

In this section we present three Interceptors algorithms. We begin with an
observation that the Interceptors may limit their search to a bounded area,
specifically, a disc. We then present an algorithm which essentially searches this
disc. Afterwards, we present two naive attempts to find D by ‘following the path’
from the source (0, 0) to D, which are reminiscent of graph-search algorithms.

To our disappointment, we did not yet find an efficient graph-search algo-
rithm, that works in the general case. However, it is possible that future work
would find better ways to use the graph-search approach. For a more thorough

194 M. Ben Adar Bessos and A. Herzberg

discussion on this topic, and for proofs of the Propositions and Lemma presented
in this section, see the draft of the full version of this work [3].

Naive Disc Search Algorithm. We begin with a very simple algorithm that we
call Naive Disc Search. Basically, the Naive Disc Search algorithm exhaustively
searches for D in a bounded disc. We first show in Lemma 1 that it suffices to
search for D within a disc, specifically, the disc of radius N whose center is the
source (0, 0); this simple bound may also used by the more advanced algorithms.
The lemma uses the following notation.

Notation: Disc. Given a point c ∈ R
2 and a distance r ∈ R, let DiscDiscDisc(r, c) =

{p ∈ R
2| ||p − c|| ≤ r} denote the region of a disc whose center is c and whose

radius is r.

Lemma 1. If D is connected to the source (0, 0) via any list of S-Routers S ⊂
∪SL, then D ∈ Disc(N, (0, 0)).

Since it suffices to search for D within Disc(N, (0, 0)), a simple, naive app-
roach is to exhaustively search this disc. More precisely, such algorithm will visit
different points within the disc, where each point results in covering a disc of
radius 1 centered in that point, until the entire disc was covered - or D found.

The order of visitations may affect the performance of the algorithm. For
example, if all S-Routers are located ‘densely’ around (0, 0), as illustrated in
Fig. 2(a), Interceptors may sort all points by (increasing) distance from (0, 0)
then visit them in that order in order to find D efficiently in O(N) rounds.
However, if the search is deterministic and known in advance, D may be placed
so it is found only by the very last searched points. For example, if Interceptors
keep visiting points with increasing distance from (0, 0) but S-Routers are located
as illustrated in Fig. 2(b), roughly the entire disc Disc(N2 , (0, 0)) will be covered
before D is found. Hence, a random order is slightly preferable for Interceptors.

The Naive Disc Search Algorithm uses a predefined set of points to search,
i.e., the covering of a disc of radius N by discs of radius 1. Let DiscCoverage(N)DiscCoverage(N)DiscCoverage(N)
denote the set of points that cover Disc(N, (0, 0)). It is difficult to minimize
the size of DiscCoverage(N) [11], but its complexity is necessarily O(N2), and
efficient implementations for DiscCoverage(N) can achieve it [9].

In the The Naive Disc Search Algorithm, the Interceptors search for D by vis-
iting every point in DiscCoverage(N) in random order. At each invocation, the
algorithm keeps all previously visited points, and outputs a list of M previously
unvisited points to visit next.

Proposition 2. The expected lifetime of the Naive Disc Search algorithm is in
O(N2/M).

Naive Graph Search Algorithm. The Naive Disc Search Algorithm does
not use the interceptions (detections), which seems wasteful. Surely, we can use
interceptions to find D more efficiently. One natural idea is to exploit the fact
that D must receive transmissions from the source (0, 0); we can try to ‘follow’
these transmissions, by always searching in the vicinity of one of the points where

Intercepting a Stealthy Network 195

we intercepted a transmission, plus the source (0, 0). This Naive Graph Search
Algorithm keeps a set of locations from which a transmission was intercepted
(initialized to the source {(0, 0)}), then visits at each round at points that are
within distance ≤ 3 from one of the points in the vicinity of previously successful
search locations, chosen at random with uniform probability.

Proposition 3. The expected lifetime of the Naive Graph Search algorithm is
in O(N2

B̂·M).

Uniform Graph Search Algorithm. Since the Naive Graph Search algorithm
selects points with uniform probability at each step, points in the vicinity of
earlier interceptions have more opportunities for being selected. Intuitively, if
newly discovered interceptions will be visited more frequently, the performance of
the algorithm may be significantly improved. In order to examine this approach,
we have designed the Uniform Graph Search algorithm. The algorithm assumes
that only a single Interceptor is available, i.e., M = 1. The algorithm is defined
similarly to the Naive Graph Search Algorithm, with the following modifications:

1. For each point in DiscCoverage(N), initialize a counter to 0.
2. Each time a point is visited by the algorithm, increase its counter by 1.
3. When selecting a point to visit, select points with minimal counter value.

Namely, all points that the algorithm may visit will be roughly visited an
equal number of times, and for each interception, the new points and its vicinity
will be visited repeatedly, until their associated counter value is no longer mini-
mal. For example, if S-Routers use the network illustrated in Fig. 2(b), and the
continuous transmission constraint, as defined in Definition 3, holds, then the
Uniform Graph Search will frequently intercept new S-Routers (and eventually
D) at the ‘front’ of the few routes, since data is transmitted through at least one
of the routes at each step, and the algorithm will repeatedly visit points near
the ‘front’ after each interception. This scenario is handled far less efficiently by
the Naive Disc Search and the Naive Graph Search algorithms.

Unfortunately, in the worst case, the performance of this algorithm is not
significantly better (compared to the naive algorithm). Even if the continuous
transmission constraint holds, if the network graph includes many separate alter-
nate routes that connect (0, 0) and D, the transmission rate in each route may
be reduced proportionally (as illustrated in Fig. 2(c)), and interception of new
S-Routers will be infrequent.

Proposition 4. If the continuous transmission constraint holds, the expected
lifetime of the Uniform Graph Search is in Ω(N2/log(N)).

Note that in the above result, the term used for bounding on the lifetime
excludes B̂, since the continuous transmission constraint ensures that B̂ = 1.

In the following sections we present Interceptors algorithms and prove their
expected performance is significantly better (assymptocially) compared to the
Uniform Graph Search algorithm. However, for many cases, where S-Routers

196 M. Ben Adar Bessos and A. Herzberg

Fig. 2. Examples of different S-Router networks: (a) All S-Routers are located ‘densely’
around the source (0, 0). An exhaustive search around (0, 0) may reach D efficiently.
(b) Only few separate ‘long’ alternate routes connect (0, 0) and D. If Continuous Trans-
mission Assumption holds, the rate of transmission in at least one of these routes is
relatively high, which allows the Uniform Graph Search algorithm to expose S-Routers
efficiently. (c) A network which uses numerous separate alternate routes. The transmis-
sion rates in different points may vary significantly; in particular, this prevents Uniform
Graph Search algorithm from exposing new S-Routers efficiently even if the Continu-
ous Transmission Assumption holds. (d) A network with few paths but numerous ‘dead
ends’. Even if a graph-search algorithm can efficiently cope with routes which transmit
slowly, it is difficult to discern such routes from actual ‘dead ends’. Since most ‘walks’
in the network lead to a ‘dead end’ and S-Routers may make ‘dead end’ routes appear
exactly like other routes, it is also difficult to avoid them

is small enough, the Uniform Graph Search algorithm outperforms all other
algorithms, as illustrated in Fig. 6. A more detailed performance comparison is
given in Sect. 5.

4 Divide and Conquer Interceptors Algorithm

In this section we present an algorithm for the Interceptors, the Divide And
Conquer Algorithm, which bounds the expected lifetime to O(N

B̂·M log2(N)) for
M Interceptors. Counter-intuitively, and in contrast to the less efficient graph
search algorithms of the previous section, this algorithm does not try to ‘search’
the graph of S-Routers from (0, 0) to D. Instead, this algorithm takes a ‘divide
and conquer’ method, to find the destination D ‘directly’ - without exposing the
entire path to it.

We begin with few a preliminaries in Sect. 4.1, then describe the algorithm in
Sect. 4.2. For a thorough analysis of the algorithm, proofs, and additional topics,
see the draft of the full version of this work [3].

4.1 Preliminaries: Ranges and Walls

We begin this section with few additional topological concepts which are used
in this section.

Intercepting a Stealthy Network 197

First, given a location l ∈ R
2, let Range(l) denote its range, i.e., the set of

points whose communication would be intercepted by an Interceptor located at
location l. Formally, RangeRangeRange(l) = {x ∈ R

2|Connected(l, x)}. The range notation
extends to a set of points L, namely we denote Range(L) =

⋃
l∈L Range(l).

The Divide And Conquer Algorithm uses the fact that D must be within
Disc(N, (0, 0)), as shown in Lemma 1. The algorithm partitions Disc(N, (0, 0))
into smaller regions, then examines these regions by visiting points on their
boundaries. If the boundaries ‘separate’ between (0, 0) and D, and considering
the S-Routers transmit from (0, 0) to D, it follows that these transmissions must
‘cross’ one or more of the boundaries which are visited by the algorithm. If the
points of a boundary are sufficiently-close, then the algorithm may intercept
transmissions from at least one of these points.

We define two topological notions which are important in this algorithm: a√
3-spaced wall and closed wall.

Definition 4 (Wall, closed wall, and In/Out regions). An
√

3-spaced wall
is a list of points L = {l1, l2, . . . , lk} ∈ (

R
2
)k such that the distance between

every two consecutive points li, li+1 is at most
√

3. A
√

3-spaced closed wall L
(abbreviated to closed wall), is a wall where the distance between l1 and lk is
at most

√
3. We denote the outer region by OutOutOut(L), and the internal region,

excluding Range(L) itself, by InInIn(L).

In the definition above, to define the inner and outer region, we use basic topolog-
ical notions such as boundary and region, which are quite intuitive and standard;
precise definitions can be found, e.g., in [13].

We focus on
√

3-spaced walls and closed walls, since a
√

3-spaced closed
wall separates between (points in) its internal region, In(L), and (points in) its
outer region, Out(L). The formal statement is given in the next Lemma, and
illustrated in Fig. 3. Therefore, we write walls and closed walls, always referring
to

√
3-spaced walls and closed walls (an x-spaced closed wall with x >

√
3 may

fail to provide the separation property referred to in the Lemma).

Lemma 5. Given a (
√

3-spaced) closed wall L, no pair of points pIn ∈ In(L)
and pOut ∈ Out(L) are connected. Namely, for all pIn ∈ In(L) and pOut ∈
Out(L) holds ||pIn − pOut|| > 1.

The Divide And Conquer Algorithm generates closed walls, then instructs the
Interceptors to visit them in a random order. In order to calculate the probability
of interception when visiting a point in a closed wall that ‘separates’ (0, 0) and
D (such as the closed wall illustrated in Fig. 3).

Definition 5 (Separating closed walls). We use separating closed wall to
refer to a closed wall that contains D but excludes (0, 0), namely a closed wall
L for which D ∈ In(L) ∪ Range(L) and (0, 0) ∈ Out(L) ∪ Range(L) hold.

Proposition 6. Let L be a separating closed wall, and let t ∈ N be a round s.t.
b(t) = 1. There exist v ∈ L and x ∈ ST (t) s.t. Connected(SL(x), v).

198 M. Ben Adar Bessos and A. Herzberg

Fig. 3. The closed wall L = {v1, v2, . . .} ∪ {h1, h2, . . .} ∪ . . . separates the plane into
the the inner and outer regions In(L), Out(L) and its range Range(L). Note that all
points in L rest on the boundary of the same square. Any point from region In(L) is
not connected to any point in region Out(L). This property is used by our algorithms:
Interceptors inspect, randomly, the points in closed walls separating D (inside) from
the source (0, 0).

Finally, we define leading square walls, which are the ‘smallest’ separating square
walls; by dividing these walls, the algorithm ‘zooms in’ on D.

Definition 6 (Leading square walls). Let L = {L1, L2, . . .}, where Li is a
subset of the ‘watched’ points, be the set of all separating square walls in the
‘watched’ points. We refer to a separating square wall L ∈ L as a leading square
wall if no other separating square wall is contained in L i.e. ∀L′ ∈ L : L′
⊆
(In(L) ∪ Range(L)).

4.2 Divide And Conquer Algorithm

We now present the Divide And Conquer Algorithm. The algorithm visits at
each round M distinct points out of a set of ‘watched’ points. These ‘watched’
points are placed as a closed wall around squares containing D; we begin with
very large squares and repeatedly divide them into smaller squares, until we find
D. Let us first present our notation for a square.

Notation. (Square). Given a point (x, y) ∈ R
2, and a length w ∈ R, let

SquareSquareSquare(w, (x, y)) = [−w
2 + x, w

2 + x] × [−w
2 + y, w

2 + y] denote the region of a
square whose center is (x, y) and each of its edges are of length w. For example,
Fig. 3 gives a visualization of the closed wall L, where all points in L rest on the
boundary of the square Square(w, (x, y)).

The algorithm searches for D in Square(2N, (0, 0)) (which contains
Disc(N, (0, 0)) and D in particular). The algorithm partitions Square(2N, (0, 0))
into smaller squares and places Interceptors at several random points along walls
on their boundaries. That is, a closed wall is kept per square, s.t. one of these
‘watched’ closed walls contains the destination D; we refer to these square-shaped
closed walls as square wall.

Intercepting a Stealthy Network 199

When a square wall shows signs of possibly containing D, namely when a
transmission was intercepted from one of it’s points, the algorithm further divides
the corresponding square into four quarters, and repeats the process for these
smaller squares, until finding D. For efficiency, the total size of walls of ‘watched’
squares should be small; to find D, the regions must contain it. The algorithm
carefully ensures both properties.

It is crucial to randomize the location of the squares, to foil S-Router place-
ments that exploit predictable locations of square walls. S-Routers may lead the
algorithm into ‘watching’ many additional regions that do not contain D, due to
S-Routers that deliberately expose themselves at specific locations. Hence, we
first select a random point o from Square(2N, (0, 0)). From the beginning, we
‘watch’ the four 2N × 2N squares shown in Fig. 4(a), s.t. o is a shared corner.
From Lemma 1, we can assume that D is within one of these four squares.

At each round, we put the Interceptors at distinct random points in the walls
of ‘watched’ squares. We try to detect the transmissions by S-Routers crossing
these walls, from source (0, 0) to D; this identifies ‘suspect’ squares, worthy of
further decomposing into four sub-squares. From Lemma1, it suffices, however,
to put Interceptors at points which are within Disc(N, (0, 0)); see our ‘focus’ on
Disc(N, (0, 0)) in Fig. 4(b).

If we use only large squares, e.g., the four large, 2N × 2N squares shown in
Fig. 4(a), then it is quite possible that no path from (0, 0) to D will cross their
walls at all - since D will be within the same large square. Indeed, in Fig. 4(a),
we see that D and (0, 0) are both in the lower-right large square (shown more
closely in Fig. 4(b)). To ensure that each path of S-Routers from (0, 0) to D will
cross one of the ‘watched walls’, we divide, from the very beginning, each of
the ‘watched squares’ containing (0, 0) into its four sub-squares, until reaching
squares small enough to ensure localization of D. This is not that wasteful: the
additional length of all these initial sub-squares is less than the length of the
initial 2N × 2N squares.

Assuming D is in Disc(N, (0, 0)), at least one of the initial square walls
includes D and excludes (0, 0) i.e. the algorithm begins with at least one leading
square wall; this ensures Proposition 6 holds, and at least one point in one of the
initial square walls will allow the Interceptor to detect a transmission. Points to
search are selected at random with uniform probability from all square walls,
such that the probability of selecting a point from any certain square wall is
proportional to its size. For each successful search, on top of the square walls
associated with that search point, four smaller square walls that encircle the
same region are added, in an attempt to decrease the size of the leading square
wall. Sufficiently small squares are covered by a single visit.

Theorem 7. The expected lifetime of Divide And Conquer Algorithm is O(N
B̂·M ·

log2(N)).

Theorem 7 holds since the algorithm has to divide a leading square wall at most
�log2(N) − 1�, until D is found, and since the expected number of transmitted
data units until the algorithm divides a leading square wall is O(N

M log(N)).

200 M. Ben Adar Bessos and A. Herzberg

Fig. 4. Illustration of the operation Divide And Conquer Algorithm. The algorithm
begins by visiting points on square walls generated upon initialization, and with each
interception it generates additional square walls which potentially include D. (a) Illus-
trates the initialization of the algorithm, where four square walls of size 2N × 2N are
generated with random offset such that the entire searched region Disc(N, (0, 0)) is
contained by them. (b) Illustrates the next initialization step. The square wall that
includes (0, 0) is repeatedly divided for log(N) times. Note that one of the square
walls includes D, but excludes (0, 0) (c) Illustrates the first detection of a transmis-
sion while visiting a point in one of the square walls (the red circle). The two square
walls adjacent to the point of detection(s) are divided into four. After this division,
the smallest square wall which includes the destination and excludes (0, 0) (the leading
square wall) is smaller. (d) Illustrates the second and third transmission detection. The
second detection occurs at the same point, which leads to additional division. The third
transmission detection (the red circle) will lead to another division (excluded from this
illustration), and then to the detection of D. (Color figure online)

Intercepting a Stealthy Network 201

As previously mentioned, a more thorough discussion and analysis of the
algorithm is given in the draft of the full version of this work [3]. In particular,
we present a modified version of the Divide And Conquer Algorithm, referred to
as D&CCTA, which achieves better performance if the continuous assumption
holds (the difference in performance is illustrated in Fig. 6).

5 Evaluation and Results

There is always a challenge in evaluating the practical performance of a defensive
mechanism, whose results depend completely on the behaviour of the adversary
- in our case, the S-Routers. Our approach was to use a set of S-Routers algo-
rithms, each one ‘optimized’ for per each Interceptors algorithm. Of course, we
do not really know how to produce the ‘best’ S-Router algorithm (in general,
or for a particular Interceptors algorithm). Instead, we tried our best to develop
good S-Routers algorithms, in two steps.

In the first step, we developed a parametric heuristic S-Routers algorithm,
the Parametric Segmented Network algorithm, based on our analysis of different
Interceptors algorithms, and on ‘trial and error’, using a simulation and visual-
ization environment we developed for this purpose. We will make this tool freely
available in [1], to allow further research and reproducibility.

In the second step, we used genetic programming to optimize the parameters
of Parametric Segmented Network algorithm for each of the Interceptors algo-
rithms, and then compared the results of the different Interceptors algorithms
- each running against the ‘best’ parameters (of the parametrized S-Routers
algorithm). We begin with a description of the Parametric Segmented Network
algorithm, then present simulation results.

The Parametric Segmented Network Algorithm. The algorithm receives as input
parameters for selecting the number of segments, the number of S-Routers that
compose each segment, the number of parallel paths in each segment, and what
portion of these paths lead to a ‘dead end’.

Figure 5 illustrates a network composed of N = 128 S-Routers which are
separated into three segments. The segments are composed of 0.35N, 0.3N, 0.3N
S-Routers (from left to right), where N = 128. D is the leftmost S-Router, while
(0, 0) is the rightmost S-Router. Parallel paths of the same segment begin and
end with a joint path (perpendicular to the parallel paths), and adjacent seg-
ments share one S-Router that connects the joint paths. The remaining 0.05N
S-Routers that are disconnected transmit continuously, in order to mislead non-
graph search algorithms (such as the Divide And Conquer Algorithm). The left-
most segment transmits into one additional ‘dead end’ parallel route.

The Parametric Segmented Network algorithm satisfies the continuous-
transmission constraint. At each round, every segment transmits data through
one of its paths, and S-Routers of joint (perpendicular) paths transmit continu-
ously. In Fig. 5, the top path in each segment transmits.

More specific details on the implementation of the Parametric Segmented
Network algorithm are given in the full version of this paper in [3].

202 M. Ben Adar Bessos and A. Herzberg

Fig. 5. The Parametric Segmented Network algorithm as visualized by the simulation,
for 128 S-Routers that are separated to three segments, at a specific round. At each
step, one of the parallel paths in each segment transmits. The S-Routers connecting
adjacent segments transmit continuously. Hence, data may flow from the rightmost
S-Router in the network, (0, 0) to the leftmost S-Router, D.

Results. We now compare results obtained by simulations. In Fig. 6, S-Routers
use the Parametric Segmented Network algorithm. In order to limit the dimen-
sion of optimization, the number of segments was limited to four. The parameters
for the algorithm were optimized separately for each scenario i.e. for each Inter-
ceptor algorithm and each N pairing. After the selection of the best parameters
for each scenario, we ran the process enough times to ensure the evaluation of
the parameter set is accurate. The results are displayed in Fig. 6. A confidence
interval of 99% is used. All Interceptors algorithms utilize a single Interceptor.
Due to the high computational costs, we used the genetic algorithm only for
N ≤ 128. For larger N values, the parameter sets were selected according to the
conclusions found from smaller values.

Fig. 6. Performance comparison of different Interceptors algorithms. Performance is
estimated against Parametric Segmented Network S-Routers algorithm - optimized for
each Interceptor algorithm (using a single Interceptor) and each N value separately.
Confidence interval is displayed as vertical lines.

Intercepting a Stealthy Network 203

The genetic algorithm consistently keeps a population size of 500. At each
epoch, the algorithm applies standard roulette selection. Crossovers are done
until for 75% of the population is replaced, and then mutation is applied to 20%
of the population where on average two elements of each mutated parameter
set change. Changes are done by adding a Gaussian distributed random value.
Since the S-Routers algorithms are making extensive use of randomization, the
value of a given parameter set was the average lifetime when running the pro-
cess repeatedly for 15 times. We allocated 24 h of CPU time for each scenario.
Running a larger scenario takes significantly more time; therefore, the number
of generations varied from several hundreds (for N ≤ 64) to 48 (for N = 128).

Discussion. After examining the parameter sets that resulted from optimization,
we discovered that certain properties consistently maximize the outcome for S-
Routers. S-Routers that were disconnected from (0, 0) and ‘dead end’ paths were
not useful, and optimized solutions did not express them.

When S-Routers face the Uniform Graph Search algorithm, only two seg-
ments are needed. The segment adjacent to (0, 0) is composed of single route,
with 0.1N to 0.4N of the S-Routers, which is always intercepted in its entirety
by the algorithm. The segment adjacent to D uses the remaining S-Routers for
composing parallel paths. The number of parallel paths increases with N . Addi-
tionally, these routes are spread with distance of three from each other, in order
to minimize the number of distinct ‘watched’ points.

A result we did not expect was that when S-Routers face the Divide and
Conquer algorithm, the lifetime is maximized when only a single, long route
was used, i.e., all segments express a single transmission route. In hindsight,
we understood this; if using multiple routes than the Interceptors algorithms
will eventually generate square walls that are too small to intersect all parallel
paths of the same segment. As a consequence, these square walls have a lower
probability for being divided, the total number of points that are ‘watched’ by
the Interceptors algorithms decreases, and their performance improves (lower
outcome). This may motivate an S-Routers algorithm that combines the graph-
search approach with the divide-and-conquer approaches.

6 Conclusions and Extensions

Stealthy networks, comprised of hard-to-locate devices, are becoming a part of
reality; we use the term S-Routers for such devices, who can relay information,
to form large networks. Stealthy networks will be used for different applications;
many of the applications may represent threats to privacy of individuals and
organizations. Hence, it is important to develop efficient countermeasures. Due
to the small size of the devices and their use of short-range communication, we
envision the use of mobile devices, Interceptors, to localize the S-Routers.

In this work, we investigated algorithmic issues related the interception of
stealthy networks. Our focus was on developing efficient algorithms for Inter-
ceptors, to expose the destination of stealthy network; we believe that such

204 M. Ben Adar Bessos and A. Herzberg

algorithms may be deployed as part of the design of countermeasures to stealthy
networks.

There are many directions for improvements, extensions/variations, and fur-
ther research. For example, if Interceptors may predict the S-Routers’ transmis-
sion schedule, they may be able to accelerate their search significantly.

Improvements may also be possible for the analysis. The current results pro-
vide an upper bound for the expected lifetime in the studied environment, but
a lower bound is yet to be found. While it is relatively simple to prove that S-
Routers may ensure the expected lifetime is bounded from by O(N), developing
additional algorithms for S-Routers may be required in order to find the exact
bounds, or at least for narrowing the gap between O(N) and O(N

MB̂
log2(N)).

The presented model is general enough, to allow investigation of several
related problems, including (1) multiple sources and/or destinations, (2) allowing
S-Routers to buffer data, (3) introducing mobility, and much more.

Finally, note that the current model does not support decentralized algo-
rithms. We expect that in some practical scenarios, S-Routers may have to risk
exposure in order to coordinate. An extension to the model is necessary for
studying such scenarios.

Acknowledgments. This work is supported by the Israeli Ministry of Science and
Technology.

References

1. Herzberg, A., Ben Adar Bessos, M.: Intercepting a stealthy network - simulation
demonstration (2018). https://sites.google.com/view/stealthynetinterception/
home

2. Baisch, A.T., Ozcan, O., Goldberg, B., Wood, R.J.: High speed locomotion for a
quadrupedal microrobot. Int. J. Robot. Res. 33(8), 1063–1082 (2014)

3. Herzberg, A., Ben Adar Bessos, M.: Intercepting a stealthy network.
vixra.org/abs/1712.0510

4. Bobic, I.: Ted cruz wants police to ‘patrol and secure’ U.S. Muslim communities
after brussels, March 2016. www.huffingtonpost.com. Accessed 21 Nov 2017

5. Bash, B.A., Goeckel, D., Towsley, D.: Hiding information in noise: fundamental lim-
its of covert wireless communication. IEEE Commun. Mag. 53(12), 26–31 (2015)

6. Che, P.H., Bakshi, M., Jaggi, S.: Reliable deniable communication: hiding mes-
sages in noise. In: 2013 IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 2945–2949. IEEE (2013)

7. Chen, O., Meadows, C., Trivedi, G.: Stealthy protocols: metrics and open problems.
In: Gibson-Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and
Puzzles. LNCS, vol. 10160, pp. 1–17. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-51046-0 1

8. Chen, X., Purohit, A., Pan, S., Ruiz, C., Han, J., Sun, Z., Mokaya, F., Tague, P.,
Zhang, P.: Design experiences in minimalistic flying sensor node platform through
sensorfly. ACM Trans. Sensor Netw. (TOSN) 13(4), 33 (2017)

9. Das, G.K., Das, S., Nandy, S.C., Sinha, B.P.: Efficient algorithm for placing a given
number of base stations to cover a convex region. J. Parallel Distrib. Comput.
66(11), 1353–1358 (2006)

https://sites.google.com/view/stealthynetinterception/home
https://sites.google.com/view/stealthynetinterception/home
www.huffingtonpost.com
https://doi.org/10.1007/978-3-319-51046-0_1
https://doi.org/10.1007/978-3-319-51046-0_1

Intercepting a Stealthy Network 205

10. Hu, J., Yan, S., Zhou, X., Shu, F., Wang, J.: Covert communication in wireless
relay networks (2017). CoRR abs/1704.04946

11. Kershner, R.: The number of circles covering a set. Am. J. Math. 61(3), 665–671
(1939)

12. MacGregor, A.: Russian scientists create cockroach spy robot. thestack.com.
Accessed 2 May 2018

13. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)
14. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system

for collective behaviors. In: 2012 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3293–3298. IEEE (2012)

15. Shabsigh, G.: Covert Communications in the RF Band of Primary Wireless Net-
works. Ph.D. thesis, University of Kansas (2017)

16. Sidahmed, M.: NYPD’s muslim surveillance violated regulations as recently as
2015: report, August 2016. www.theguardian.com. Accessed 21 Nov 2017

17. Bokareva, T., Hu, W., Kanhere, S.S., Jha, S.: Wireless sensor networks for battle-
field surveillance. In: Proceedings of the Land Warfare Conference, pp. 1–8 (2006)

18. He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao,
Q., Vicaire, P., Stankovic, J.A., Abdelzaher, T.F., Hui, J., Krogh, B.: VigilNet:
an integrated sensor network system for energy-efficient surveillance. ACM Trans.
Sensor Netw. (TOSN) 2(1), 1–38 (2006)

19. He, T., Vicaire, P., Cao, Q., Yan, T., Zhou, G., Gu, L., Luo, L., Stoleru, R.,
Stankovic, J.A., Abdelzaher, T.F.: Achieving long-term surveillance in vigilnet.
Technical report. Department of Computer Science, Virginia Univ Charlottesville
(2006)

20. Wang, L., Wornell, G.W., Zheng, L.: Fundamental limits of communication with
low probability of detection. IEEE Trans. Inf. Theory 62(6), 3493–3503 (2016)

https://thestack.com
www.theguardian.com

	Intercepting a Stealthy Network
	1 Introduction
	2 The 2D Stealthy Network Model
	2.1 Destination-Search Environments

	3 Introducing Interceptors Algorithms
	4 Divide and Conquer Interceptors Algorithm
	4.1 Preliminaries: Ranges and Walls
	4.2 Divide And Conquer Algorithm

	5 Evaluation and Results
	6 Conclusions and Extensions
	References

