
Itai Dinur · Shlomi Dolev
Sachin Lodha (Eds.)

 123

LN
CS

 1
08

79

Second International Symposium, CSCML 2018
Beer Sheva, Israel, June 21–22, 2018
Proceedings

Cyber Security
Cryptography and
Machine Learning

Lecture Notes in Computer Science 10879

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Itai Dinur • Shlomi Dolev
Sachin Lodha (Eds.)

Cyber Security
Cryptography and
Machine Learning
Second International Symposium, CSCML 2018
Beer Sheva, Israel, June 21–22, 2018
Proceedings

123

Editors
Itai Dinur
Ben-Gurion University of the Negev
Beer Sheva
Israel

Shlomi Dolev
Ben-Gurion University of the Negev
Beer Sheva
Israel

Sachin Lodha
Tata Consultancy Services (India)
Chennai, Tamil Nadu
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94146-2 ISBN 978-3-319-94147-9 (eBook)
https://doi.org/10.1007/978-3-319-94147-9

Library of Congress Control Number: 2018947568

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

CSCML, the International Symposium on Cyber Security, Cryptography, and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners
working in the theory, design, analysis, implementation, or application of cyber
security, cryptography, and machine learning systems and networks, and, in particular,
of conceptually innovative topics in the scope.

Information technology became crucial to our everyday life in indispensable
infrastructures of our society and therefore a target for attacks by malicious parties.
Cyber security is one of the most important fields of research today because of this
phenomenon. The two, sometimes competing, fields of research, cryptography and
machine learning, are the most important building blocks of cyber security, as cryp-
tography hides information by avoiding the possibility to extract any useful information
pattern while machine learning searches for meaningful information patterns.

The subjects include cyber security design; secure software development method-
ologies; formal methods, semantics and verification of secure systems; fault tolerance,
reliability, availability of distributed secure systems; game-theoretic approaches to
secure computing; automatic recovery, self-stabilizing and self-organizing systems;
communication, authentication and identification security; cyber security for mobile
and Internet of Things; cyber security of corporations; security and privacy for cloud,
edge and fog computing; cryptocurrency; blockchain; cryptography; cryptographic
implementation analysis and construction; secure multi-party computation;
privacy-enhancing technologies and anonymity; post-quantum cryptography and
security; machine learning and big data; anomaly detection and malware identification;
business intelligence and security; digital forensics, digital rights management; trust
management and reputation systems; and information retrieval, risk analysis, DoS.

The second edition of CSCML took place during June 21–22, 2018, in Beer-Sheva,
Israel. This year the symposium was held in cooperation with the International
Association for Cryptologic Research (IACR), and there was a dedicated special issue
of selected papers in the Information and Computation journal.

This volume contains one invited paper, 16 contributions selected by the Program
Committee, and six brief announcements. All submitted papers were read and evalu-
ated by the Program Committee members, assisted by external reviewers. We are
grateful to the EasyChair system for assisting in the reviewing process.

The support of Ben-Gurion University of the Negev (BGU), in particular the BGU
Lynne and William Frankel Center for Computer Science, the BGU Cyber Security
Research Center, ATSMA, the Department of Computer Science, Tata Consultancy
Services, IBM and BaseCamp, is also gratefully acknowledged.

April 2018 Sitaram Chamarty
Itai Dinur

Shlomi Dolev
Sachin Lodha

Organization

CSCML, the International Symposium on Cyber Security Cryptography and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in
the theory, design, analysis, implementation, or application of cyber security,
cryptography, and machine learning systems and networks, and, in particular, of
conceptually innovative topics in the scope.

Founding Steering Committee

Orna Berry DELLEMC, Israel
Shlomi Dolev (Chair) Ben-Gurion University, Israel
Yuval Elovici Ben-Gurion University, Israel
Ehud Gudes Ben-Gurion University, Israel
Jonathan Katz University of Maryland, USA
Rafail Ostrovsky UCLA, USA
Jeffrey D. Ullman Stanford University, USA
Kalyan Veeramachaneni MIT, USA
Yaron Wolfsthal IBM, Israel
Moti Yung Columbia University and Snapchat, USA

Organizing Committee

General Chairs

Shlomi Dolev Ben-Gurion University of the Negev, Israel
Sachin Lodha Tata Consultancy Services, India

Program Chairs

Sitaram Chamarty Tata Consultancy Services, India
Itai Dinur Ben-Gurion University of the Negev, Israel

Organizing Chair

Timi Budai Ben-Gurion University of the Negev, Israel

Program Committee

Yehuda Afek Tel Aviv University, Israel
Adi Akavia Tel Aviv Yaffo Academic College, Israel
Amir Averbuch Tel Aviv University, Israel
Roberto Baldoni Università di Roma La Sapienza, Italy
Michael Ben-Or Hebrew University, Israel
Anat Bremler-Barr IDC Herzliya, Israel

Ran Canetti Boston University, USA and Tel Aviv University, Israel
Itai Dinur (Chair) Ben-Gurion University, Israel
Karim ElDefrawy SRI International, USA
Bezalel Gavish Southern Methodist University, USA
Yossi Gilad Boston University and MIT, USA
Niv Gilboa Ben-Gurion University, Israel
Shafi Goldwasser Weizmann Institute of Science and MIT, USA
Ehud Gudes Ben-Gurion University, Israel
Shay Gueron University of Haifa, Israel
Carmit Hazay Bar-Ilan University, Israel
Danny Hendler Ben-Gurion University, Israel
Amir Herzberg Bar-Ilan University, Israel
Stratis Ioannidis Northeastern University, USA
Gene Itkis MIT Lincoln Laboratory, USA
Nathan Keller Bar-Ilan University, Israel
Sarit Kraus Bar-Ilan University, Israel
Mark Last Ben-Gurion University, Israel
Guy Leshem Ashkelon Academic College, Israel
Ximing Li South China Agricultural University, China
Yin Li Fudan University, China
Michael Luby Qualcomm, USA
Avi Mendelson Technion, Israel
Aikaterini Mitrokosta Chalmers University of Technology, Sweden
Benny Pinkas Bar-Ilan University, Israel
Ely Porat Bar-Ilan University, Israel
Dan Raz Technion, Israel
Christian Riess FAU, Germany
Elad M. Schiller Chalmers University of Technology, Sweden
Galina Schwartz UC Berkeley, USA
Gil Segev Hebrew University, Israel
Haya Shulman Fraunhofer SIT, Germany
Paul Spirakis Univ. of Liverpool, UK and Univ. of Patras, Greece
Naftali Tishby Hebrew University, Israel
Ari Trachtenberg Boston University, USA
Philippas Tsigas Chalmers University of Technology, Sweden
Doug Tygar UC Berkeley, USA
Kalyan Veeramachaneni MIT LIDS, USA
Michael Waidner Fraunhofer SIT and TU Darmstadt, Germany
Rebecca Wright Rutgers University, USA
Moti Yung Columbia University and Snapchat, USA

VIII Organization

Additional Reviewers

Eran Amar
Mai Ben Adar-Bessos
Rotem Hemo
Yu Zhang

Sponsors

Organization IX

Contents

Optical Cryptography for Cyber Secured and Stealthy Fiber-Optic
Communication Transmission: Invited Paper. 1

Tomer Yeminy, Eyal Wohlgemuth, Dan Sadot, and Zeev Zalevsky

Efficient Construction of the Kite Generator Revisited 6
Orr Dunkelman and Ariel Weizman

Using Noisy Binary Search for Differentially Private Anomaly Detection. . . . 20
Daniel M. Bittner, Anand D. Sarwate, and Rebecca N. Wright

Distributed Web Mining of Ethereum . 38
Trishita Tiwari, David Starobinski, and Ari Trachtenberg

An Information-Flow Control Model for Online Social Networks
Based on User-Attribute Credibility and Connection-Strength Factors 55

Ehud Gudes and Nadav Voloch

Detecting and Coloring Anomalies in Real Cellular Network Using
Principle Component Analysis . 68

Yoram Segal, Dan Vilenchik, and Ofer Hadar

Self-stabilizing Byzantine Tolerant Replicated State Machine
Based on Failure Detectors. 84

Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis,
and Elad M. Schiller

Brief Announcement: Providing End-to-End Secure Communication
in Low-Power Wide Area Networks . 101

Ioannis Chatzigiannakis, Vasiliki Liagkou, and Paul G. Spirakis

Privacy via Maintaining Small Similitude Data for Big Data
Statistical Representation . 105

Philip Derbeko, Shlomi Dolev, and Ehud Gudes

Highway State Gating for Recurrent Highway Networks:
Improving Information Flow Through Time . 120

Ron Shoham and Haim Permuter

Secured Data Gathering Protocol for IoT Networks 129
Alejandro Cohen, Asaf Cohen, and Omer Gurewitz

Towards Building Active Defense Systems for Software Applications 144
Zara Perumal and Kalyan Veeramachaneni

Secure Non-interactive User Re-enrollment in Biometrics-Based
Identification and Authentication Systems . 162

Ivan De Oliveira Nunes, Karim Eldefrawy, and Tancrède Lepoint

Brief Announcement: Image Authentication Using Hyperspectral Layers 181
Guy Leshem and Menachem Domb

Brief Announcement: Graph-Based and Probabilistic Discrete
Models Used in Detection of Malicious Attacks . 184

Sergey Frenkel and Victor Zakharov

Intercepting a Stealthy Network . 188
Mai Ben Adar Bessos and Amir Herzberg

Privacy in e-Shopping Transactions: Exploring and Addressing
the Trade-Offs . 206

Jesus Diaz, Seung Geol Choi, David Arroyo, Angelos D. Keromytis,
Francisco B. Rodriguez, and Moti Yung

Detection in the Dark – Exploiting XSS Vulnerability in C&C Panels
to Detect Malwares . 227

Shay Nachum, Assaf Schuster, and Opher Etzion

A Planning Approach to Monitoring Computer Programs’ Behavior 243
Alexandre Cukier, Ronen I. Brafman, Yotam Perkal,
and David Tolpin

One-Round Secure Multiparty Computation of Arithmetic Streams
and Functions (Extended Abstract) . 255

Dor Bitan and Shlomi Dolev

Brief Announcement: Gradual Learning of Deep Recurrent
Neural Network . 274

Ziv Aharoni, Gal Rattner, and Haim Permuter

Brief Announcement: Adversarial Evasion of an Adaptive
Version of Western Electric Rules . 278

Oded Margalit

Brief Announcement: Deriving Context for Touch Events 283
Moran Azran, Niv Ben Shabat, Tal Shkolnik, and Yossi Oren

Author Index . 287

XII Contents

Optical Cryptography for Cyber Secured
and Stealthy Fiber-Optic Communication

Transmission

Invited Paper

Tomer Yeminy1, Eyal Wohlgemuth1, Dan Sadot1,
and Zeev Zalevsky2(&)

1 Department of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel

2 Faculty of Engineering, Bar Ilan University, 52900 Ramat Gan, Israel
Zeev.Zalevsky@biu.ac.il

Abstract. We propose a method for stealthy, covert, fiber-optic communica-
tion. In this method, the power of the transmitted signal is spread and lowered
below the noise level both in time as well as in frequency domains which makes
the signal “invisible”. The method is also efficient in jamming avoidance.

1 Short Description

Short “laymen” description of the proposed approach can be as follows: The concept
described in this paper aims to encode the optical information by doing it in the
“photon” level before it is being sampled and converted into a “digital electron” of
information. Since the encryption is done in the analog domain it can be added in
parallel to all the existing digital encryption techniques which can add strength to the
proposed concept and which are completely orthogonal to what we are doing. Since in
optics conventional sensors capture only intensity and not phase of the arriving
wavefront, then the process of capturing the information and converting the analog
photon into a digital electron that can be processed and decoded already destroys large
portion of the information that is needed for the decoding process. The analog encoding
that we do in the photon level properly plays with the phase and the sampling scheme
both in the time domain as well as in the Fourier domain such that in both domains the
signal is lowered below the noise level. Thus, the information signal is below the noise
existing in the system and thus it is unseen by the intruder and when the intruder
attempts to capture the analog “photon” and to convert it into a digital one in order to
try to see if there is an encrypted information, then the sampling process which destroys
the phase (captures only intensity) and adds quantization noise completely erases the
information that is being hidden below the noise. A more elaborated description
including both theoretical mathematical background as well as numerical and experi-
mental validation can be found in Refs. [1–4].

If we now adopt a more mathematical description methodology, then the proposed
stealthy communications system is illustrated in the attached Fig. 1. While in Fig. 1(a)

© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 1–5, 2018.
https://doi.org/10.1007/978-3-319-94147-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_1&domain=pdf

one may see the schematic system configuration and in Fig. 1(b) one can see the
constructed experimental setup. The temporal phase of the pulses at the transmitted
pulse sequence is encrypted in order to reduce its power spectral density (PSD) below
the noise level. The PSD reduction occurs since each pulse in the sequence has different
phase, hence, the pulses are added incoherently in frequency domain. Then, the spectral
amplitude of the signal is deliberately spread wide, essentially enabling to transmit a
signal with low PSD (lowering the signal below the noise level in the frequency
domain).

The spectral spreading is achieved by optically sampling the signal (this can be
implemented by an optical amplitude modulator), which generates replicas of the signal
in frequency domain. The spectral phase of the sampled signal is subsequently
encrypted. The spectral phase encryption has two goals. The first is signal spreading
below the noise level in time domain. The second goal is to prevent signal detection in
frequency domain by coherent addition of the various spectral replicas of the signal.

(a).

(b).

Laser
source

Modulator

DAC
ADC

Receiver

Filter

AmplifiersAmplifiers

Fig. 1. (a). Proposed covert communication system. Mod.-Modulator, TPE-Temporal Phase
Encoder, SPE-Spectral Phase Encoder, EDFA-Erbium Doped Fiber Amplifier, AWGN-Additive
White Gaussian Noise, SPD-Spectral Phase Decoder, MF-Matched Filter, TPD-Temporal Phase
Decoder. (b). The established experimental setup. ADC and DAC are analog to digital converter
and vice versa respectively.

2 T. Yeminy et al.

Only an authorized user having the temporal and spectral encrypting phases in hand
can raise the signal above the noise level and detect it. The encrypted signal is then
amplified and sent to the receiver.

At the receiver, the spectral phase of the signal is decrypted and the signal is
subsequently coherently detected. Then, all the spectral replicas of the signal are folded
to the baseband by means of electrical sampling, therefore the PSD of the signal is
reconstructed and in turn, the signal to noise ratio (SNR) is improved. This is achieved
by coherently adding all the signal’s spectral replicas at the baseband (hence the signal
is reinforced) whereas the spectral replicas of the noise are added incoherently (con-
sequently they are averaged to a low value). Then, a matched filter is applied and the
temporal phase of the signal is decrypted. Thus, the signal is raised above the noise
level in both time and frequency domains. A decision circuit is subsequently used to
recover the original transmitted symbol sequence.

It should be noted that an eavesdropper cannot decrypt the transmitted signal since
using wrong decrypting temporal and spectral phases does not raise the signal above

(a).

10 20 30 40 50 60 70 80
-10

-5

0

5

10

15

20

Transmission Bandwidth [GHz]

SN
R

[d
B]

Theory
Measurement
Eavesdopper

(b).

10 20 30 40 50 60 70 80
10-6

10-5

10-4

10-3

10-2

10-1

100

Transmission Bandwidth [GHz]

BE
R

Theory
Calculated from SNR
Measured
Eavesdopper

Fig. 2. Estimated performance. (a) SNR after decoding. (b) BER after decoding.

Optical Cryptography for Cyber Secured and Stealthy Fiber-Optic 3

the noise level. Hence, very low SNR and high bit error rate (BER) are experienced by
the eavesdropper, being unable to reveal the transmission’s existence.

The SNR and BER performance of an authorized user and an eavesdropper are
shown in Figs. 2(a) and (b), respectively, as a function of the communication systems
transmission bandwidth (higher transmission bandwidth requires higher transmission
power but also results in better SNR and BER performance since more spectral replicas
of the signal are added coherently at the baseband while the noise is added incoherently).

Figure 3 shows the original and decrypted signal in time and frequency domains for
an authorized user and an eavesdropper. It is clearly seen that while the authorized user
properly decrypts the received signal, the eavesdropper does not succeed to reveal the
signal as it remains below the noise level in both time and frequency domains due to
the usage of incorrect temporal and spectral decrypting phases. The parameters used for
the simulations presented in the figures are common in optical communication systems.

Our stealthy communications fiber optic system can also efficiently cope with
jamming. When an opponent tries to jam our secure transmitted signal by occupying its
temporal and spectral domains with a high power signal, the jamming signal will be
lowered by the decryption module below the noise level due to its spreading in time
and frequency domains. However, our secure transmitted signal will be properly
decrypted and raised above the noise level since it has the right encrypting temporal
and spectral phase.

The required resources needed for our proposed encryption method are standard
fiber optical communication system, optical amplitude modulators (to implement the
optical sampling), temporal phase modulators and spectral phase modulators. All of the
above can easily be integrated in a given photonic communication link by using

Fig. 3. Decoded signal, authorized user and eavesdropper. (a) Original noiseless pulse sequence
and authorized user noisy decoded pulse sequence. (b) Original noiseless pulse sequence and
eavesdropper noisy decoded pulse sequence. (c) Authorized user pulse sequence and noise power
spectral density. (d) Eavesdropper pulse sequence and noise power spectral density.

4 T. Yeminy et al.

currently available optics communication hardware. Therefore, we also do not require
any special external interfaces and we are fully compatible with existing photonic
hardware and protocols [3, 4].

2 Conclusions

This short paper gives an insight on a new way of analog photonic encryption that can
strengthen the existing encryption concepts working on top of the digital electrons of
information. The analog photon of information is lowered below the noise level both in
the time as well as in the Fourier domain by performing temporal and spectral phase
encoding and by properly sampling the signal in the time domain such the encoding
phases uniquely redistribute the energy of the signal over both time and spectral
domain and lower them below the noise level to make then un-visible and un-
detectable as much as possible. Due to its properties the proposed scheme has high
applicability in commercial cyber based configurations [5].

References

1. Yeminy, T., Sadot, D., Zalevsky, Z.: Spectral and temporal stealthy fiber-optic communi-
cation using sampling and phase encoding. Opt. Exp. 19, 20182–20198 (2011)

2. Yeminy, T., Sadot, D., Zalevsky, Z.: Sampling impairments influence over stealthy fiber-optic
signal decryption. Opt. Commun. 291, 193–201 (2013)

3. Wohlgemuth, E., Yoffe, Y., Yeminy, T., Zalevsky, Z., Sadot, D.: Demonstration of coherent
stealthy and encrypted transmission for data center interconnection. Opt. Exp. 26, 7638–7645
(2018)

4. Wohlgemuth, E., Yeminy, T., Zalevsky, Z., Sadot, D.: Experimental demonstration of
encryption and steganography in optical fiber communications. In: Proceedings of the
European Conference on Optical Communication (ECOC 2017), Gothenburg, Sweden, 17–21
September 2017

5. Sadot, D., Zalevsky, Z., Yeminy, T.: Spectral and temporal stealthy fiber optic communi-
cation using sampling and phase encoding detection systems. US patent No. 9288045;
EP2735111A1

Optical Cryptography for Cyber Secured and Stealthy Fiber-Optic 5

Efficient Construction of the Kite
Generator Revisited

Orr Dunkelman1(B) and Ariel Weizman2

1 Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il

2 Department of Mathematics, Bar-Ilan University,

Ramat Gan, Israel

Abstract. The kite generator, first introduced by Andreeva et al. [1],
is a strongly connected directed graph that allows creating a message
of almost any desired length, connecting two chaining values covered by
the kite generator. The kite generator can be used in second pre-image
attacks against (dithered) Merkle-Damg̊ard hash functions.

In this work we discuss the complexity of constructing the kite gener-
ator. We show that the analysis of the construction of the kite generator
first described by Andreeva et al. is somewhat inaccurate and discuss its
actual complexity. We follow with presenting a new method for a more
efficient construction of the kite generator, cutting the running time of
the preprocessing by half (compared with the original claims of Andreeva
et al. or by a linear factor compared to corrected analysis). Finally, we
adapt the new method to the dithered Merkle-Damg̊ard structure.

1 Introduction

One of the important fundamental primitives in cryptography is cryptographic
hash functions. They are widely used in digital signatures, hashing passwords,
message authentication code (MAC), etc. Hence, their security has a large impact
on the security of many protocols.

Up until the SHA3 competition, the most widely used hash function con-
struction was the Merkle-Damg̊ard one [5,11]. The Merkle-Damg̊ard structure
extends a compression function f : {0, 1}n ×{0, 1}m → {0, 1}n into a hash func-
tion MDHf : {0, 1}∗ → {0, 1}n. Indeed, the Merkle-Damg̊ard structure is still
widespread, as can be seen from the wide use of the SHA2 family [12]. However,
in the last fifteen years, a series of works pointed out several structural weak-
nesses in the Merkle-Damg̊ard construction and its dithered variant [1,6–9].

One way for comparing between different structures of cryptographic hash
functions is considering generic attacks. Naturally, generic attacks use complex
algorithms and data structures, and often become used as subroutines in other
attacks. In such cases, the accurate analysis of these algorithms and data struc-
tures becomes very important. For example, Kelsey and Kohno suggest a special
data structure, called the diamond structure, which is a complete binary tree

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 6–19, 2018.
https://doi.org/10.1007/978-3-319-94147-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_2&domain=pdf
http://orcid.org/0000-0001-5799-2635
http://orcid.org/0000-0001-7177-0473

Efficient Construction of the Kite Generator Revisited 7

with 2� leaves, to support the herding attack [8]. Blackburn et al. [4] point out
an inaccuracy in Kelsey-Kohno’s analysis and fix it, resulting in an increased
time complexity. Later work presented new algorithms for more efficient con-
structions of the diamond structure [10,14].

A different second pre-image attack is based on the kite generator. This
is a long message (with 2k blocks) second pre-image attack due to Andreeva
et al. [1] on the Merkle-Damg̊ard structure and its dithered variant [13]. The
kite generator is a strongly connected directed graph of 2n−k chaining values
that for each two chaining values a1, a2 covered by the kite generator, there exist
a sequence of message blocks of almost any desired length that connects a1 to
a2. Their analysis claims that the kite generator ’s construction takes about 2n+1

compression function calls.
We start this paper by pointing out an inaccuracy in their construction based

on some theorems from the Galton-Watson branching process field: We show
that the resulting graph, using the original construction, is not strongly con-
nected and therefore is unusable in the online phase. We proceed by offering cor-
rected analysis that shows that the construction of the kite generator takes about
(n − k) · 2n compression function calls.

We then show a completely different method to build the kite generator.
This new method allows constructing the kite generator in time of 2n compres-
sion function calls, i.e., it takes half the time of the originally inaccurate claim.
Finally, we adapt all these issues to the dithered variant of the Merkle-Damg̊ard
structure.

This paper is organized as follows: Sect. 2 gives notations and definitions
used in this paper. In Sect. 3 we quickly recall Andreeva et al.’s second pre-
image attack, and most importantly, the construction of the kite generator. We
identify and analyze the real complexity of constructing a usable kite generator in
Sect. 4. We introduce a new method for constructing kite generators in Sect. 5.
We treat the analysis of the kite generator and the new construction in the
case of dithered Merkle-Damg̊ard in Sect. 6. Finally, we conclude the paper in
Sect. 7.

2 Notations and Definitions

Definition 1. A cryptographic hash function is a function H : {0, 1}∗ →
{0, 1}n, that takes an arbitrary length input and transforms it to an n-bit output
such that H(x) can be computed efficiently, while the function has three main
security properties:

1. Collisions resistance: It is hard to find (with high probability) an adversary
that could produce two different messages M,M ′ such that H(M) = H(M ′)
in less than O(2n/2) calls to H(·).

2. Second pre-image resistance: Given M such that H(M) = h, an adversary
cannot produce (with high probability) an additional message M ′ �= M such
that H(M ′) = h in less than O(2n) calls to H(·).

8 O. Dunkelman and A. Weizman

3. Pre-image resistance: Given a hash value h, an adversary cannot produce
(with high probability) any message M such that H(M) = h in less than
O(2n) calls to H(·).

Definition 2 (Merkle-Damg̊ard structure (MDH)). TheMerkle-Damg̊ard
structure [5,11] is a structure of an iterative hash function. Given a compression
function f : {0, 1}n × {0, 1}m → {0, 1}n that takes an n-bit chaining value and an
m-bit message block and transforms them into a new n-bit chaining value, MDHf

is defined as follow: For an input message M :

1. Padding step1

(a) Concatenate ‘1’ at the end of the message.
(b) Let b be the number of bits in the message, and � be the number of bits

used to encode the message length in bits.2 Pad a sequence of 0 ≤ k < m
zeros, such that b + 1 + k + � ≡ 0 (mod m).

(c) Append the message with the original message length in bits, encoded in
� bits.

2. Divide the message to blocks of m bits, so if the length of padded message is
L · m then

M = m0||m1|| . . . ||mL−1.

3. The iterative process starts with a constant IV , denoted by h−1, and it
updated in every iteration, according to the appropriate message block mi

(for 0 ≤ i ≤ L − 1), to new chaining value:

hi = f(hi−1,mi).

4. The output of this process is:

MDHf (M) = hL−1

The process is depicted in Fig. 1.

IV
f

m0

f

m1

h0

. . . f

mL−2

hL−3

f

mL−1

hL−2
hL−1 = MDHf (M)

Fig. 1. The Merkle-Damg̊ard Structure

1 We describe here the standard padding step done in many real hash functions such
as MD5 and SHA1. Other variants of this step exist, all aiming to achieve prefix-
freeness.

2 It is common to set 2� − 1 as the maximal length of a message.

Efficient Construction of the Kite Generator Revisited 9

Merkle [11] and Damg̊ard [5] proved that if the compression function is
collision-resistant then the whole structure (when the padded message includes
the original message length) is also collision-resistant. Although the Merkle-
Damg̊ard structure is believed to be secure also from second pre-image attacks,
in practice it is not [1,2,6,9].

Definition 3. Let G = (V,E) be a directed graph. A directed edge from v to u is
denoted by (v, u). For each v ∈ V we define the in-degree of v, denoted by din(v),
to be the number of edges that ingoing to v, and the out-degree of v, denoted by
dout(v), to be the number of edges that outgoing from v.

Definition 4 (Galton-Watson Branching Process). A Galton-Watson
branching process is a stochastic process that illustrates a population increasing,
which starts from one individual in the first state S0, and for each t ∈ N ∪ {0}
each individual from St produces i ∈ N ∪ {0} offsprings for the next state St+1

according to a fixed probability distribution. Formally, a Galton-Watson branch-
ing process is defined as a Markov chain {Zt}t∈N∪{0}:

1. Let Z0 := 1.
2. For each (i, t) ∈ N×N let Xt

i be a random variable follows a fixed probability
distribution P : N ∪ {0} → [0, 1] with expected value μ < ∞.

3. Define inductively:
∀t ∈ N : Zt :=

∑

1≤i≤Zt−1

Xt
i .

The random variable Xt
i represents the number of offspring produced by the i’th

element (if there is one) of the Zt−1 elements from the time t − 1.
A central issue in the theory of branching processes is ultimate extinction,

i.e., the event of some Zt = 0. One can see that E(Zt) = μt. Still, even for
μ ≥ 1 as long as Pr[Xi = 0] > 0 the ultimate extinction is an event with a
positive probability. To study such events of ultimate extinction we need to study
their probability, given by

lim
t→∞Pr[Zt = 0] = Pr[∃t ∈ N : Zt = 0].

In [3] Athreya and Ney show that the probability of ultimate extinction is the
smallest fixed point x ∈ [0, 1] of the P ’s moment-generating function fP (x).
For example, if Xt

i ∼ Poi(λ), then the probability of ultimate extinction is the
smallest solution x ∈ [0, 1] of eλ(x−1) = x.

3 The Kite Generator

In [1] Andreeva et al. suggest a method to generate second pre-images for long
messages of 2k blocks. Using an expensive precomputation of 2n+1 compression
function calls, the online complexity of their attack is max(O(2k),O(2

n−k
2)) time

and O(2n−k) memory.

10 O. Dunkelman and A. Weizman

3.1 The Attack’s Steps

The Precomputation. In the precomputation the adversary constructs a data
structure called the kite generator, which is a strongly connected directed graph
with 2n−k vertices. The vertices are labeled by chaining values and the directed
edges by message blocks which lead one chaining value to another. Given two
chaining values a1, a2 covered by the kite generator, this structure allows to
create a message of almost any desired length that connects a1 to a2.

To construct the kite generator, the adversary picks a set A of 2n−k different
chaining values, containing the IV . For each chaining value a ∈ A he finds two
message blocks ma,1,ma,2 such that f(a,ma,1), f(a,ma,2) ∈ A. We note that for
each chaining value a ∈ A, dout(a) = 2, and therefore ∀a ∈ A : E[din(a)] = 2.

The Online Phase. In the online phase, given a long message M , the adversary
computes H(M) and finds, with high probability, a chaining value hi, for n−k <
i < 2k, such that hi ∈ A. Now the adversary creates, using the kite generator, a
sequence of i message blocks, starting from the IV , that leads to hi. It is done
in the following steps:

1. The adversary performs a random walk in the kite generator of i − (n − k)
message blocks, from the IV . To do so, the adversary starts from the IV
and chooses an arbitrary message block m ∈ {mIV,1,mIV,2} and traverse
to the next chaining value h1 = f(IV,m). The adversary continues in the
same manner i − (n − k) − 1 times, until hi−(n−k) is reached. Denote the
concatenation of the chosen message blocks by s1.

2. The adversary computes all the 2
n−k

2 chaining values reachable from hi−(n−k)

by walking n−k
2 steps in the kite generator.

3. The adversary computes all the expected 2
n−k

2 chaining values that may lead
to hi by walking back in the kite generator n−k

2 steps from hi.
4. The adversary looks for a collision between these two lists (due to the birth-

day paradox, such a collision is expected with high probability). Denote the
concatenation of the message blocks yielding from hi−(n−k) to the common
chaining value by s2, and the concatenation of the message blocks yielding
from the common chaining value to hi by s3.

The concatenation s1||s2||s3 is a sequence of i message blocks that leads from
the IV to hi, as desired. Now, the adversary creates a second pre-image:

M ′ = s1||s2||s3||mi+1|| · · · ||mk.

Figure 2 illustrates the attack.

3.2 The Attack Complexity

The Precomputation Complexity. As described in Sect. 3.1, to construct the kite
generator, the adversary has to find, for each chaining value a ∈ A, two message

Efficient Construction of the Kite Generator Revisited 11

Fig. 2. A second pre-image using a kite generator.

blocks ma,1,ma,2 such that f(a,ma,1), f(a,ma,2) ∈ A. To do so, he generates
2 · 2k message blocks, each leads to one of the 2n−k chaining values of A with
probability of 2−k. Hence, is expected to find two such message blocks, and the
total complexity is about 2 · 2k · 2n−k = 2n+1 compression function calls.3

The online Complexity. First of all, the memory used to store the kite generator
is O(2n−k). Second, the online phase has two steps:

1. The adversary should compute the M ’s chaining values to find the common
chaining value with the kite generator’s chaining values. This step requires
O(2k) compression function calls.

2. The adversary should find a collision between the two lists described in
Sect. 3.1. Since each list contains about 2

n−k
2 chaining values, this step

requires O(2
n−k

2) time and memory.4

Thus, the online time complexity is

max(O(2k),O(2
n−k

2)),

and the online memory complexity is

O(2n−k).
3 Note that using this method dout(a) follows a Poi(2) distribution, and about 13%

of the chaining values are expected to have dout(a) = 0. To solve this issue, it is
possible to generate for each chaining value as many message blocks as needed to
find two out-edges. Now, the average time complexity needed for a chaining value
a is 2k+1. The actual running time for a given chaining value is the sum of two
geometric random variables with mean 2k each. Hence, the total running time is the

sum of 2n−k+1 geometric random variables Xi ∼ Geo(2−k). Since
∑2n−k+1

i=1 (Xi−1) ∼
NB(2n−k+1, 1−2−k), then

∑2n−k+1

i=1 Xi ∼ 2n−k+1+NB(2n−k+1, 1−2−k). Therefore,

E[
∑2n−k+1

i=1 Xi] = 2n−k+1 + (1−2−k)2n−k+1

2−k = 2n+1 with a standard deviation of√
2n−k+1(1−2−k)

2−k ≤ 2
n+k+1

2 .
4 Andreeva et al. [1] note that it is possible to find the common chaining value by a

more sophisticated algorithm which requires the same time but negligible additional
memory, using memoryless collision finding. Our findings affect these variants as
well.

12 O. Dunkelman and A. Weizman

4 A Problem in the Construction of the Kite Generator

4.1 On the Inaccuracy of Andreeva et al.’s Analysis

As described in Sect. 3.1, for constructing the kite generator Andreeva et al. [1]
suggest to find from each chaining value of A two message blocks, each of them
leads to a chaining value of A. They claim that as ∀a ∈ A : E[din(a)] = 2, the
resulting graph is strongly connected.

We agree with their claim that due to the fact that dout(a) = 2 then
∀a ∈ A : E[din(a)] = 2, but we claim that their conclusion, that the result-
ing graph is strongly connected, is wrong. The actual distribution of din(a) can
be approximated by din(a) ∼ Poi(2), as the number of entering edges follows
a Poisson distribution with a mean value of 2. Hence, for each chaining value
a ∈ A:

Pr[din(a) = 0] =
e−2 · 20

0!
= e−2.

Thus, about 2n−k · e−2 ≈ 13% of the chaining values in the kite generator are
expected to have din(a) = 0. Obviously, the resulting graph is not strongly
connected.

Moreover, there are more hi’s in the kite generator for which the attack
fails. The construction of the “backwards” tree from hi is a branching process
with Poi(2) offspring (see Definition 4). Therefore, an ultimate extinction of
the branching process suggests that hi cannot be connected to, and the online
phase fails. According to the branching process theorems [3], the probability of
ultimate extinction in a branching process with offspring distribute according a
distribution P is the smallest fixed point x ∈ [0, 1] of the moment-generating
function of P . In our case the distribution is Poi(2), and the moment-generating
function is f(x) = e2(x−1). Hence, the probability of ultimate extinction is the
smallest solution x ∈ [0, 1] of e2(x−1) = x. Using numerical computation we get
that x ≈ 0.2032. It means that in about 20% of the cases the “backwards” tree is
limited. We note that usually this extinction happens very quickly. For example,
about 85% of the “extinct” hi do so in one or zero steps (i.e., their backwards
tree is of depth of at most 1).

To fix this problem we need that E[din(a)] = n − k, and then the expected
number of chaining values a ∈ A with din(a) = 0 is 2n−k · e−(n−k) � 1. The
naive approach to do so, is to generate from each chaining value a ∈ A, n − k
message blocks, ma,1,ma,2, . . . ,ma,n−k, for which f(a,ma,i) ∈ A \ {a}. Using
this approach, the complexity of the precomputation increases to (n − k) · 2n

compression function calls.
A different approach for fixing the problem is to increase the kite generator

by adding vertices such that the intersection between a message of length 2k and
the kite generator is sufficiently large (i.e., that there are several joint chaining
values). Hence, even if some of the pairs of the joint chaining values fail to
connect through the kite generator, there is a sufficient number of pairs that do
connect. This approach does not increase the precomputation time beyond 2n+1

(as the additional vertices in the kite generator reduce the “cost” of connecting

Efficient Construction of the Kite Generator Revisited 13

any vertex). At the same time, it increases the memory complexity of the attack.
We do not provide a full analysis of this approach given the improved attack of
Sect. 5 which does not require additional memory, and enjoys a smaller time
complexity.

5 A New Method for Constructing Kite Generators

In the construction described in Sect. 3.1, the set A of the chaining values is
chosen arbitrarily. We now suggest a new method for choosing the chaining
values in order to optimize the complexity of constructing a kite generator.
Our main idea is to define the set A iteratively in a manner that ensures that
din(a) ≥ 1 (for all but one chaining value, the IV).

Construction. For the reading convenience we consider two different message
blocks m1,m2.5 The following steps are required:

1. Let L0 := {h0 = IV }.
2. Set the second layer L1 = {h1 = f(IV,m1), h2 = f(IV,m2)}.
3. Continue by the same method to set

Li = {f(h,m) | h ∈ Li−1,m ∈ {m1,m2}},∀1 ≤ i ≤ n − k − 1

until Ln−k−1 is generated.
4. Set

A =
n−k−1⋃

i=0

Li.

Note that6 |A| =
∑n−k−1

i=0 2i = 2n−k − 1.
5. Finally, for each chaining value a reached in the last layer Ln−k−1, look for

two message blocks ma,1,ma,2 (probably different than m1,m2) that lead to
some chaining value b ∈ A.

Figure 3 illustrates the construction of A.
The advantage of this method is that for each chaining value IV �= a ∈ A,

there exists another chaining value b ∈ A and a message block mb such that

f(b,mb) = a

5 It is not necessary to use only two different message blocks in the setting, but it is
possible since they are used for different chaining values.

6 With high probability we expect some collisions in A. This can be easily solved
during the construction: If a chaining value f(hi,mj) is already generated, replace
the message block mj one by one until a new chaining value is reached. It is easy to
see that the additional time complexity is negligible.

14 O. Dunkelman and A. Weizman

Fig. 3. An example for an iterative construction of A

i.e.,
din(a) ≥ 1.

The case of din(IV) = 0 is not problematic, since we need the IV in the kite
generator only as the source of the random walking, and it is done only with
the out-edges. In addition, In this method of constructing A, each chaining value
a �= IV follows din(a) ∼ 1+Poi(1). It implies that ∀a �= IV : Pr[din(a) = 0] = 0,
and therefore the probability of ultimate extinction in the branching process
defined by the backwards tree is 0.

Analysis. Steps 1–4 generate arbitrary message blocks for each reached chaining
value until about 2n−k chaining values are reached. They require about 2n−k

compression function calls. Step 5, of finding two out-edges from each chaining

Efficient Construction of the Kite Generator Revisited 15

value that reached in the last layer Ln−k−1, requires about 2 · 2n−k−1 · 2k = 2n

compression function calls.7 Thus, the precomputation complexity is about

2n + 2n−k ≈ 2n

compression function calls. It means that our method not only ensures that the
resulting graph is strongly connected, but is also more efficient than the original
method.

Improvement I. As additional improvement, we can reduce the complexity of
Step 5 described above by finding only one out-edge from each chaining value
in the last layer Ln−k−1. Now, each chaining value a �= IV follows din(a) ∼ 1 +
Poi(0.5), and the branching process does not extinct. To use this improvement,
we need to slightly change the online phase: We need to increase the length of the
sequences s2, s3 mentioned in Sect. 3.1 to about log 3

2
(2) · n−k

2 (instead of n−k
2) to

find, with high probability, a common chaining value. Using this improvement,
the complexity of the precomputation is reduced by a factor of 2 to about 2n−1

compression function calls. There is no change in the online time complexity.

6 Adapting Our New Method to Dithered
Merkle-Damg̊aRd

6.1 Dithered Merkle-Damg̊aRd

The main idea of the dithered Merkle-Damg̊ard structure [13] is to perturb the
hashing process by using an additional input to the compression function. This
additional input is formed by taking elements of a fixed dithering sequence.
Using this additional input, the compression of a message block depends on
its position in the whole message. Thus, it decreases the adversary’s control
on the input of the compression function. Using the dithered Merkle-Damg̊ard
structure, some attacks such as the Dean’s attack [6] and the Kelsey-Schneier’s
expandable-messages attack [9] are mitigated.

In order to use the dithered sequence for any message with the maximal
number of message blocks in the hash function, it is reasonable to consider an
infinite sequence. Let B be a finite alphabet, and let z be an infinite sequence
over B and let zi be the i’th symbol of z. The dithered Merkle-Damg̊ard con-
struction is obtained by replacing the iterative chaining value defined in the
original Merkle-Damg̊ard structure (see Definition 2) with

hi = f(hi−1,mi, zi).
7 Again, in this step we actually need to generate for each chaining value as many

message blocks as needed to find two out-edges. Now, the average time complexity
needed for a chaining value a is 2k+1. The actual running time for a given chaining
value is the sum of two geometric random variables with mean 2k each. Hence, the
total running time is the sum of 2n−k geometric random variables Xi ∼ Geo(2−k).

Since
∑2n−k

i=1 (Xi −1) ∼ NB(2n−k, 1−2−k), then
∑2n−k

i=1 Xi ∼ 2n−k +NB(2n−k, 1−
2−k). Therefore, E[

∑2n−k

i=1 Xi] = 2n−k + (1−2−k)2n−k

2−k = 2n with a standard deviation

of

√
2n−k(1−2−k)

2−k ≤ 2
n+k

2 .

16 O. Dunkelman and A. Weizman

6.2 Adapting the Kite Generator to Dithering Sequence

As described in Sect. 3.1, the adversary could not know in advance the position
of the message blocks to be used in the second pre-image. Thus, in order to
allow the use of the kite generator at each position of the message, the adver-
sary should consider any factor of z. To do so, Andreeva et al. [1] adapt the
precomputation phase as follows: For each chaining value a ∈ A and for each
symbol α ∈ B the adversary looks for two message blocks ma,α,1,ma,α,2 s.t.
f(a,ma,α,1, α), f(a,ma,α,2, α) ∈ A. Hence, The complexity of the precomputa-
tion using the original method is about

2 · |B| · 2n

compression function calls.
The same problem mentioned in Sect. 4.1 carries over to this case as well. As

described in Sect. 4.1, in order to fix the inaccuracy that the resulting graph is
not strongly connected, the adversary should generate about n − k such mes-
sage blocks for each chaining value and for each dithered symbol. Hence, the
complexity of the precomputation is increased to about

(n − k) · |B| · 2n

compression function calls.

6.3 Adapting Our Method

Construction. As described in Sect. 5, the main idea of our new method is
to choose the chaining values of A by generating two message blocks for each
reached chaining value, starting from the IV . In order to adapt it to the dithered
Merkle-Damg̊ard structure, the following steps are required:

1. Choose an arbitrary symbol α ∈ B, and construct the kite generator using
this symbol only, according to our new method.

2. Use the original method to complete the kite generation for the remain-
ing symbols of B, i.e., for each chaining value a ∈ A and for each symbol
α �= β ∈ B, look for n − k message blocks that lead to another chaining
value of A.

Analysis. The complexity of the first step, of constructing the kite generator
using one symbol, is similar to the one in Sect. 5, i.e., about 2n−1 compres-
sion function calls (using the improved method). The complexity of the sec-
ond step, of completing the kite generator for the remaining symbols, is about
(n − k) · (|B| − 1) · 2n compression function calls. Thus, the total complexity of
the precomputation is about

((n − k) · (|B| − 1) + 0.5) · 2n

compression function calls.

Efficient Construction of the Kite Generator Revisited 17

6.4 Improvement II

In Sect. 6.3 we adapted our new method while considering the probability of
ultimate extinction in the construction of the “backwards” tree tends to zero.
We now show that by allowing a small probability of ultimate extinction, denoted
by p, we can reduce the complexity as follows. We look for a λ(p) such that the
probability of ultimate extinction in a branching process with Poi(λ(p)) offspring
is p. According to the branching process theorems [3] we need that

eλ(p)(1−p) = p

that implies

λ(p) =
ln(p)
1 − p

.

For examples, λ(0.01) ≈ 4.65, and λ(0.001) ≈ 6.91. It means that in the con-
struction described in Sect. 6.3, we can replace the second step of looking for n−k
message blocks per symbol for each chaining value, by looking for such a con-
stant number. Thus, consider p = 0.001, the complexity of the precomputation
is reduced to about

(6.91 · (|B| − 1) + 0.5) · 2n

compression function calls.

7 Summary

As a concluding discussion, we note that when the kite generator has 2n−k

chaining values and the message is of length 2k blocks, one should expect the
kite generator to contain one of the message’s chaining values with probability
63%, which translates to about 50% success rate. The way to fix this issue is
trivial — increase the size of the kite generator. Multiplying the number of nodes
in the kite generator by a factor of 2, reduces the probability of disjoint sets of
chaining values from 1/e ≈ 37% to merely 1/e2 ≈ 13.5%, and this rate can be
further reduced to as small probability as the adversary wishes.8 However, when
the kite generator is not strongly connected, as our analysis shows, the success
probability of the original is upper bounded by 80%, no matter how large the
kite generator is taken to be.

To conclude, in this work we pointed out an inaccuracy in the analysis of the
construction of the kite generator suggested by Andreeva et al. [1]: The kite gen-
erator is not strongly connected, and thus the online phase fails in probability
of at least 20%. We showed that to fix the inaccuracy, we need to increase the
complexity of the construction phase by a factor of n−k

2 . We then suggested a

8 This issue happens also in the online phase, when the adversary looks for common
chaining values between the two lists described in Sect. 3.1. The fixing is similarly –
increase the size of these lists accordingly.

18 O. Dunkelman and A. Weizman

Table 1. Comparing the complexities of the different methods.

Method Complexity

Merkle-Damg̊ard Dithered Merkle-Damg̊ard

Andreeva et al. [1] a 2n+1 |B| · 2n+1

Our fixed analysis (n − k) · 2n (n − k) · |B| · 2n

Our new method 2n ((n − k) · (|B| − 1) + 1) · 2n

Improvement I 2n−1 ((n − k) · (|B| − 1) + 0.5) · 2n

Improvement II Not relevant (6.91 · (|B| − 1) + 0.5) · 2n

a — Andreeva et al.’s analysis is inaccurate.

new method to optimize the construction of the kite generator that is both cor-
rect and more efficient than the original method. Finally, we adapted the fixing
analysis and our new method to the dithered Merkle-Damg̊ard construction.

For comparison, we present in Table 1 the number of required compression
function calls to construct a kite generator, using the different methods, for the
Merkle-Damg̊ard structure and its dithered variant.

Acknowledgements. The research of Ariel Weizman was supported by the European
Research Council under the ERC starting grant agreement n. 757731 (LightCrypt)
and by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

References

1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Hoch, J., Kelsey,
J., Shamir, A., Zimmer, S.: New second-preimage attacks on hash functions. J.
Cryptol. 29(4), 657–696 (2016)

2. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second preimage attacks on dithered hash functions. In: Smart, N.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 16

3. Athreya, K.B., Ney, P.E.: Dover books on mathematics. In: Branching Processes,
pp. 1–8. Dover Publications, New York (2004). Chap. 1

4. Blackburn, S.R., Stinson, D.R., Upadhyay, J.: On the complexity of the herding
attack and some related attacks on hash functions. Des. Codes Crypt. 64(1–2),
171–193 (2012)

5. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

6. Dean, R.D.: Formal aspects of mobile code security. Ph.D. thesis, Princeton Uni-
versity, Princeton (1999)

7. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 19

https://doi.org/10.1007/978-3-540-78967-3_16
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-540-28628-8_19

Efficient Construction of the Kite Generator Revisited 19

8. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 12

9. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 28

10. Kortelainen, T., Kortelainen, J.: On diamond structures and trojan message
attacks. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
524–539. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 27

11. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

12. National Institute of Standards and Technology: Secure hash standard. FIPS, PUB
17, 3–180 (1995)

13. Rivest, R.L.: Abelian square-free dithering for iterated hash functions. In: ECrypt
Hash Function Workshop, vol. 21, June 2005

14. Weizmann, A., Dunkelman, O., Haber, S.: Efficient construction of diamond struc-
tures. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp.
166–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71667-1 9

https://doi.org/10.1007/11761679_12
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/978-3-642-42045-0_27
https://doi.org/10.1007/978-3-642-42045-0_27
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-319-71667-1_9

Using Noisy Binary Search
for Differentially Private Anomaly

Detection

Daniel M. Bittner1(B), Anand D. Sarwate2, and Rebecca N. Wright3

1 Department of Computer Science, Rutgers University, Piscataway, NJ, USA
dbittner@cs.rutgers.edu

2 Department of Electrical and Computer Engineering, Rutgers University,
Piscataway, NJ, USA

anand.sarwate@rutgers.edu
3 Department of Computer Science and DIMACS, Rutgers University,

Piscataway, NJ, USA
rebecca.wright@rutgers.edu

Abstract. In this paper, we study differential privacy in noisy search.
This problem is connected to noisy group testing: the goal is to find a
defective or anomalous item within a group using only aggregate group
queries, not individual queries. Differentially private noisy group testing
has the potential to be used for anomaly detection in a way that provides
differential privacy to the non-anomalous individuals while still helping
to allow the anomalous individuals to be located. To do this, we introduce
the notion of anomaly-restricted differential privacy. We then show that
noisy group testing can be used to satisfy anomaly-restricted differential
privacy while still narrowing down the location of the anomalous samples,
and evaluate our approach experimentally.

1 Introduction

We consider the problem of privacy-sensitive anomaly detection—screening to
detect individuals, behaviors, areas, or data samples of high interest. What
defines an anomaly is context-specific: examples include a spoofed rather than
genuine user attempting to log in to a web site, a fraudulent credit card transac-
tion, or a suspicious traveler in an airport. The unifying assumption is that the
number of truly anomalous points is quite small with respect to the population,
so that deep screening of all individual data points would potentially be time-
intensive, costly, and unnecessarily invasive of privacy. Anomaly detection is well
studied (see the survey of Chandola et al. [11]), but methods to provide anomaly
detection along with privacy are less well studied. In this paper we provide a
framework for identifying anomalous data while guaranteeing quantifiable pri-
vacy in a rigorous sense. Once identified, such anomalies could warrant further
data collection and investigation, depending on the context and relevant policies.

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 20–37, 2018.
https://doi.org/10.1007/978-3-319-94147-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_3&domain=pdf

Using Noisy Binary Search for Differentially Private Anomaly Detection 21

While anomaly detection is important for many applications, it can also raise
privacy concerns when the underlying data is sensitive. Search algorithms on pri-
vate data can violate data use agreements and can make people uncomfortable
with potential anomaly detection methods. In this paper, we focus on guarantee-
ing privacy during the deployment of anomaly detection. To achieve this, we take
as our starting point the notion of group testing [14], which was most famously
proposed for screening US military draftees for syphilis during World War II.
In group testing, individuals are tested in groups to limit the number of tests.
Using multiple rounds of screenings, a small number of positive individuals can
be detected very efficiently. Group testing has the added benefit of providing
privacy to individuals through plausible deniability—since the group tests use
aggregate data, individual contributions to the test are masked by the group.

Our work takes the first steps toward strengthening and formalizing these
privacy guarantees to achieve differential privacy. Differential privacy is a sta-
tistical measure of disclosure risk that was introduced in 2006 [18] and cap-
tures the intuition that an individual’s privacy is protected if the results of a
computation have at most a very small and quantifiable dependence on that
individual’s data. In the last decade, there has been an explosion of research in
differential privacy, with many techniques and algorithms poised for practical
application [20,27,31] and adoption underway by high-profile companies such as
Apple [21] and Google [20].

Potential anomaly detection applications for group testing would rely on
existing or new sensing technologies that can perform (reasonably accurate)
queries in aggregate to reveal and isolate anomalous outliers. Applications might
include privacy-sensitive methods for searching for outlying cell phone activity
patterns or Internet activity patterns in a geographic location. These techniques
are also in line with the US Department of Homeland Security’s visionary goal
of “screening at speed” [13]—unobtrusive screening of people, baggage, or cargo.

Our main contribution is a differentially private access mechanism for narrow-
ing down the location of anomalies in a set of samples using noisy group testing.
Our goal is to guarantee privacy for non-anomalous individuals while identify-
ing anomalous samples. To formalize this we introduce the notion of anomaly-
restricted differential privacy. By adding noise to group query results, we can
guarantee differential privacy while allowing efficient and accurate detection of
non-anomalous individuals. The adaptive sequential query design is an active
learning algorithm for noisy binary search that is connected to information-
theoretic models of communication with feedback.

A summary of our contributions is as follows:

– We introduce a new notion of anomaly-restriction differential privacy, which
may be of independent interest.

– We provide a noisy group-based search algorithm that satisfies the anomaly-
restricted differential privacy definition.

– We provide both theoretical and empirical analysis of our noisy search algo-
rithm, showing that it performs well in some cases and exhibits the usual
privacy/accuracy tradeoff of differentially private mechanisms.

22 D. M. Bittner et al.

2 Related Work

Machine learning methods have found widespread use in anomaly detection due
to their ability to analyze and extract patterns from large amounts of data. Sev-
eral surveys cover the wide variety of anomaly detection techniques and appli-
cations. For example, Hodge and Austin [23] and Agyemang et al. [2] survey
anomaly detection techniques in the context of outlier detection via proximity
and statistical approaches. Chandola et al. [11] provide a comprehensive survey
addressing techniques in these categories as well as covering information theo-
retic and spectral approaches and techniques used in range of applicable fields
including popular applications such as intrusion detection and fraud detection,
as well as medical, industrial, image, and text anomalies.

Group testing describes a set of techniques for detection of anomalies from
sets primarily containing non-anomalous items by performing testing on groups
rather than querying individual items. Group testing was initially conceived
during World War II as a cost-efficient method to test for syphilis by grouping
multiple individuals’ blood into a single sample [14]. A negative result for the
single sample would imply all the individuals were negative, while a less-common
positive result would require further follow up. The technique was not put into
practice due to the limited number of individuals that could be tested at any
one time, and group testing languished for several years before eventually being
revived for industrial testing purposes [15].

Group testing has received more recent interest in the statistics and infor-
mation theory communities. In particular, classical connections between group
testing and error control coding have led to relaxations of the group testing prob-
lem, as surveyed in a recent paper by Mazumdar [29]. Group testing has also
been used for multiaccess communications [5,37], data mining [28], molecular
biology [12], and DNA screening [32]. Related concepts have been explored in
constructing compressed sensing matrices [9,30].

Introduced by Dwork et al. in 2006 [18], differential privacy has become
a widely studied framework for providing privacy-sensitive results from data
analyses. Differential privacy for anomaly detection has been studied previously
in the context of training classifiers using machine learning [22]. In contrast, our
work addresses differential privacy during the deployment of an anomaly search
algorithm by using differentially private group testing.

Our method of differentially private group testing makes use of noisy group
testing [3,8,10], which provides methods that successfully identify anomalies
using group queries among a set of items even if the answers to the group queries
are not completely accurate. Specifically, we use a probabilistic binary search [4,
25,33–35], which is intimately connected to the problem of communication over
noisy channels with feedback. The classical scheme by Horstein [24] uses what
we would now call a Bayesian active learning approach to learn a threshold
with noisy labels. In our case, the noise is used (and may even be deliberately
introduced) to provide differential privacy.

Using Noisy Binary Search for Differentially Private Anomaly Detection 23

3 Problem Formulation

The main idea behind our approach is to query individuals in groups and use
noise to provide differential privacy. For this to work, we must have a group
query which can detect the presence of an anomalous sample. As in active learn-
ing algorithms, we use multiple adaptive queries to locate the anomalies. In
particular, we use a Bayesian formulation in which the algorithm maintains a
probability distribution, or posterior belief, over the point representing its belief
about where the anomaly lies. The number of queries can be controlled by either
a stopping rule based on the belief or limits on overall privacy risk.

Notation: We generally use calligraphic script to denote sets. For any positive
integer K, we denote the set {1, 2, . . . ,K} by [K].

3.1 Data Model

In this paper, we analyze a simplified version of the full problem with a single
anomaly: for this setting, we can characterize the performance theoretically.

The data is a vector X = (x1,x2, . . . ,xn+1) of n + 1 individuals, where
xi ∈ R

+. With some abuse of notation we write this as an ordered multiset
{xi : i ∈ [n + 1]}. The i-th element xi represents the output of some anomaly
score function applied to individual i: larger x denotes a higher anomaly level.
One of the data points is an anomaly x∗. Let i∗ be the index of the anomaly,
so that xi∗ = x∗. Two thresholds t� and th separate the anomaly value of the
anomalous points from the other points such that

x ∈
{

[0, t�] x �= x∗

[th,∞) x = x∗ (1)

for a set of two thresholds t�, th ∈ R
+ where t� < th. This corresponds to a

scenario where there is some measurement that can distinguish the anomaly
from the non-anomalous values.

The data is held by an oracle that has access to X and can answer queries
about X . The search algorithm knows the number of points n + 1 and the index
set [n+1], the levels t� and th separating anomalous from non-anomalous values,
and that X contains a single anomalous point. However, it does not know the
actual values {x1, . . . ,xn+1}. We wish to model a situation in which the oracle
can only query groups of points. This could correspond to a situation where
there is a measurement or sensor which can access aggregates (for example, all
items in a given area) but not individual records.

3.2 Differential Privacy

The search algorithm queries the oracle, which provides differentially private
responses. Traditional differential privacy protects privacy for every individual
in the database [18]. The key difference in our model is that we only require that
the oracle provide differential privacy for the non-anomalous points: we define a
new notion of anomaly-restricted neighbors.

24 D. M. Bittner et al.

Definition 1 (Anomaly-Restricted Neighbors). We say that two data sets
D and D′ are anomaly-restricted neighbors (and write D ∼ D′) if x∗ ∈ D ∩ D′

and |D ∩ D′| = n.

Definition 2 (Differential Privacy [18]). A randomized mechanism A(·) is
ε-differentially private if for any set of measurable outputs Y and any two
databases D and D′ with D ∼ D′,

Pr [A(D) ∈ Y] ≤ eε Pr [A (D′) ∈ Y] . (2)

A differentially private algorithm A(·) guarantees that neighboring databases
create similar outputs: for anomaly-restricted neighbors this means that adding
or removing a single non-anomalous individual does not significantly alter the
output of the mechanism. The privacy parameter ε is the privacy risk: larger
values of ε allow larger differences between the distributions of A(D) and A(D′)
[16–18]. Differential privacy controls the error probabilities in the hypothesis test
between D and D′ given the output of the mechanism [26,36].

The Laplace mechanism [18] is a common approach to making differentially
private approximation to scalar functions H(·). This approach adds Laplace
noise with a parameter that is a function of the privacy risk ε and the global
sensitivity Δg of H(·). Corresponding to our new neighbor definition, we also
need a model for anomaly-restricted global sensitivity.

Definition 3 (Anomaly-Restricted Global Sensitivity). Let H(·) be a
scalar-valued function. The anomaly-restricted global sensitivity of H(·) is

Δg = max
D,D′:D∼D′

|H (D) − H (D′)| . (3)

Given ε and H(·), the Laplace mechanism computes A(D) = H(D)+Z where
Z ∼ Lap (Δg/ε) where the Laplace distribution Lap(λ) has density

p (z;λ) =
1
2λ

exp
(
− z

λ

)
. (4)

Differential privacy satisfies several composition properties.

Definition 4 (Simple Sequential Composition [18]). Given a series of
n independent differentially private mechanisms A1,A2, . . . ,An with privacy
parameters ε1, ε2, . . . , εn computed on D, the resulting function is differentially
private with privacy parameter

∑n
i=1 εi.

Definition 5 (Parallel Composition [18]). Given a series of n indepen-
dent differentially-private mechanisms A1,A2, . . . ,An with privacy parameters
ε1, ε2, . . . , εn computed on disjoint subsets of D, then the resulting function is
differentially private with privacy parameter maxi εi.

In this paper, we restrict our attention to ε-differentially private methods.
For approximate (ε, δ)-differential privacy there are stronger composition results
in which the total privacy risk for sequential composition grows sublinearly with
the number of terms [6,19,26], including the so-called “moments accountant” [1].

Using Noisy Binary Search for Differentially Private Anomaly Detection 25

4 Algorithms

At each time t the search algorithm issues a query Qt ⊂ [n+1] to the oracle that
depends on the responses to past queries. A search algorithm consists of rules
for sequentially selecting sets Q1,Q2, . . . with privacy risks ε1, ε2, . . . where Qt ⊂
[n+1]. A standard (noiseless) bisection search algorithm receives accurate queries
and can then discard non-anomalous data points with certainty. When the oracle
responses are noisy, we cannot fully discard any data points. We use a discretized
version [4,7] of a probabilistic bisection algorithm [24] to adaptively determine
the location of the anomaly. In particular, the algorithm uses a Bayesian inference
step to update a probability mass function on [n + 1] that represents the belief
about i∗.

4.1 Warmup: Randomized Response

A baseline algorithm for privacy binary search is noisy binary search using ran-
domized response. At each time t the algorithm chooses a query Qt and sends
it to the oracle, which responds with

Yt = 1 (i∗ ∈ Qt) ⊕ zt (5)

where ⊕ is addition modulo 2 and zt ∼ Bernoulli(p).

Proposition 1. The response in (5) guarantees log 1−p
p -differential privacy.

Given a response Yt and noise parameter p, the algorithm can compute a
posterior distribution on the location of the anomaly. Given Q̄t = [n + 1] \ Qt,
let Rt = Qt if Yt = 1 and Rt = Q̄t if Yt = 0. Given an initial estimate ft−1 on
[n + 1], the Bayesian update is given by

ft (i) =

⎧⎨
⎩

ft−1(i)(1−p)∑
j∈Rt

ft−1(j)(1−p)+
∑

k/∈Rt
ft−1(k)p

i ∈ Rt

ft−1(i)p∑
j∈Rt

ft−1(j)(1−p)+
∑

k/∈Rt
ft−1(k)p

i /∈ Rt

. (6)

Because p < 1
2 , this rule increases ft−1(i) for i ∈ Rt and decreases ft−1(i)

for i /∈ Rt and eventually concentrates the posterior on i∗. If at each itera-
tion the algorithm chooses a query Qt with posterior probability close to 1/2
(i.e. a median split) this is a classic algorithm first analyzed by Burnashev and
Zigangirov [7] (see also Horstein [24]) for i∗ chosen uniformly in [n + 1]; we can
initialize by uniformly permuting the indices to use their result.

4.2 Proposed Algorithm: Differentially Private Binary Search

Before presenting the search algorithm, we introduce a modified oracle. Ran-
domized response forces the oracle to determine whether i∗ ∈ Qt or i∗ ∈ Q̄t

and then obfuscates that value. In some cases, the oracle may simply be a noisy

26 D. M. Bittner et al.

privacy-preserving sensor that instead returns noisy estimates A(Qt;X) of some
function H(Qt;X). Consider an oracle that computes

Yt = A (Qt;X) Ȳt = A (Q̄t;X
)
, (7)

where the oracle splits the data set into Qt and Q̄t = [n + 1] \ Qt and returns
anomaly-restricted differentially private approximation to both components.
Notationally, we suppress X from H(Qt;X) when it is clear from context.

There are many choices for the aggregation function H(·) used to calculate
A. For example, we could take the average H(Q) = 1

|Q|
∑

i∈Q xi. The anomaly-
restricted global sensitivity is Δg = t�

|Q| , so we can hypothetically add Laplace
noise Z ∼ Lap(t�

|Q|ε), Z̄ ∼ Lap(t�

|Q̄|ε) to form Y = H(Q) + Z and Ȳ = H(Q̄) + Z̄,
respectively.

In this work, we consider instead the max function:

H (Q) = max{xi : i ∈ Q}. (8)

Due to our definition of anomaly-restricted sensitivity, averages that include the
anomaly can “dilute” the effect of the anomaly level. The max function can
show the difference between Y and Ȳ in a way the depends less strongly on the
distribution of the non-anomalous population. It has a higher sensitivity than
the average function but we demonstrate its effectiveness empirically.

Lemma 1. The anomaly-restricted global sensitivity of the aggregation function
H(Q;X) = max{xi : i ∈ Q} in (8) is Δg(H) = t�.

Proof. Let Q be any query. Consider two anomaly-restricted neighboring data
sets X and X ′ and let i∗ be the index of the anomalous point. If i∗ ∈ Q then
|H(Q;X) − H(Q;X ′)| = 0 and |H(Q̄;X) − H(Q̄;X ′)| ≤ t�. If i∗ ∈ Q̄ then
|H(Q;X)−H(Q;X ′)| ≤ t� and |H(Q̄;X)−H(Q̄;X ′)| = 0. Thus max |H(Q;X)−
H(Q;X ′)| = t�.
�

The oracle can then provide a differentially private query mechanism A for
H(Q) = max{xi : i ∈ Q} by generating

A (Q) = max{xi : i ∈ Q} + Z and A (Q̄)
= max{xi : j /∈ Q} + Z̄, (9)

where Z and Z̄ are independent random variables with distribution Lap(t�/ε).
Given this revised oracle, we can turn to the search algorithm. The search is

greedy: the searcher picks a query set which yields the most information (mea-
sured with respect to its belief) about the location of the anomaly. To represent
our relative certainty about whether a given point is the anomaly, our search pro-
cedure updates a probability mass function ft on [n+1] where ft(i) = Pr(i∗ = i).
At each iteration we treat the previous posterior as a new prior and use ft−1 to
determine the new query Qt. Since we do not have any prior knowledge about
what element of X is the anomaly, at t = 0, we assume that each point is equally
likely to be the anomaly: the initial prior distribution f0 is uniformly distributed
on [n + 1], so f0(i) = 1

n+1 .

Using Noisy Binary Search for Differentially Private Anomaly Detection 27

The algorithm uses the probability mass function ft−1 in order to select a
query at each iteration Qt. First, the algorithm chooses a uniformly chosen
random permutation σ on [n + 1]. The corresponding permutation of the prior
distribution is f̃t−1(σ(i)) = ft−1(i). For a probability mass function on [n + 1]
define the median M(f) = max{m :

∑m
i=1 f(i) <

∑n+1
i=m+1 f(i)}.

The algorithm selects a query that maximizes information gain by dividing
each query along the median of the permuted probability mass function.

At each iteration t the algorithm queries the oracle with

Qt =
{

i : σ (i) ≤ M
(
f̃t−1

)}
. (10)

Let qt−1 =
∑M(f̃t−1)

i=0 f̃t−1(i) be the probability mass of the query set Qt. Note
that q ≤ 1

2 . Correspondingly, randomly choosing σ prevents reductions in infor-
mation gain when q deviates significantly from 1

2 .
The oracle returns noisy values Yt and Ȳt using (7) and (9) and the algorithm

updates using a Bayesian update step similar to the case of randomized response.
Given a prior belief ft−1(i) that i∗ = i, the likelihood of observing (Yt, Ȳt) is
approximated by

φ
(Yt, Ȳt | i∗ = i

)
=

⎧⎨
⎩

ε2

4t�
2 exp

(
− ε

t�
|Yt − th|

)
exp

(
− ε

t�
|Ȳt − t�|

)
i ∈ Qt

ε2

4t�
2 exp

(
− ε

t�
|Yt − t�|

)
exp

(
− ε

t�

∣∣Ȳt − th
∣∣) i ∈ Q̄t

.

(11)

We can use this approximation in the Bayes update:

ft (i) =
ft−1 (i) φ

(Yt, Ȳt | i∗ = i
)

∑
j∈[n+1] ft−1 (j) φ

(Yt, Ȳt | i∗ = j
) . (12)

There are two ways in which this procedure can halt. The first is if the
algorithm expends the privacy budget. From the composition results, after T
queries with ε-differentially private responses, the algorithm has incurred privacy
risk Tε. Given a total privacy budget b, we therefore halt the algorithm when
(T + 1)ε > b.

The second halting condition is on the estimated posterior distribution ft. If
the posterior has concentrated around a single point or small interval, we can
halt the procedure and output the posterior distribution. This is characterized
by computing some stopping time τ(ft). For example, Ben-Or and Hassidim [4]
proposed a multi-epoch recursive search strategy and suggest taking τ(f) =
1(maxi ft(i) > εpar) for εpar = (24 log n)−1/2 to prune the initial set [n+1] into a
smaller set of indices with larger posterior probability. In the approach studied by
Burnashev and Zigangirov [7], the algorithm terminates when maxi log ft(i)

1−ft(i)
>

log(1/δ) for a target error probability δ. In this case, the goal is to guarantee
that the largest posterior probability is ft(i∗) with probability 1 − δ.

Pseudocode for the algorithm is shown in Algorithm1.

28 D. M. Bittner et al.

Algorithm 1. PrivateBinarySearch(X , ε, b, t�, th, εpar)
1: f0 ← 1

|X| for i = 1, 2, . . . , |X |, t = 1

2: while τ(ft−1) �= 1 and tε < b do
3: Draw σ uniformly at random from permutations on [n + 1].
4: Qt ← {i : σ(i) ≤ M(f̃t−1)}
5: YQt ← A(Qt) and YQ̄t

← A(Q̄t) from (9)
6: Update ft using (12)
7: t ← t + 1
8: end while
9: return ft−1

4.3 Finding the Output

The search algorithm uses a halting condition based on ft−1 and then outputs
ft−1, leaving open the question of how to determine the location of the anomaly
i∗. If the algorithm waits for ft−1 to concentrate significantly, then with high
probability the largest value in ft−1 corresponds to i∗. If instead it prioritizes
the privacy budget, then it could pass a list of the largest entries of ft−1 for
further processing. More issues regarding practical deployment of this algorithm
are discussed in Sect. 7.

5 Analysis

The sensitivity of the max query in Lemma 1 immediately implies that each
iteration guarantees ε-differential privacy.

Proposition 2. Each query in Algorithm1 is ε-differentially private. After t
iterations of the loop, the overall privacy risk is tε.

Proof. The result follows from the fact that the noisy computation in (9) guar-
antees ε-differential privacy for Z, Z̄ ∼ Lap(t�/ε). Fix neighboring anomaly-
restricted datasets X and X ′ and queries Q ⊂ [|X |] and Q′ ⊂ [|X ′|]. Since each
iteration of the algorithm splits the dataset into disjoint subsets and applies A to
each independently, by demonstrating that each A is ε-differentially private, we
can apply the parallel composition theorem of differential privacy in Definition 5.

If Q = Q′, then clearly

Pr [A (Q) = Y] = Pr [A (Q′) = Y] , (13)

so the application of A is ε-differentially private. We are therefore left with
the case where Q and Q′ differ in a single non-anomalous point. By the post-
processing invariance of differential privacy [18], it is sufficient to show that Y =
A(Q) is ε-differentially private. This follows from Lemma 1 and the differential
privacy of the Laplace mechanism.
�

Using Noisy Binary Search for Differentially Private Anomaly Detection 29

Analyzing the convergence of Algorithm 1 is challenging because using
Laplace noise means the amount of “progress” made by the algorithm using (12)
varies from iteration to iteration. Furthermore, because we only know bounds
on the non-anomalous and anomalous values, the update rule is performing an
approximation to a Bayes update.

To understand the convergence of the method, we show that a modified
version of the update reduces the problem to a noisy binary search. There are
two changes: firstly, we do away with the random permutation and secondly, we
compute a binary response from (Yt, Ȳt) and then apply the same Bayes update
as randomized response update in (6). More specifically, the algorithm computes
Zt = 1

(Yt > Ȳt

)
and performs a Bayesian update of the prior distribution ft−1

to form the posterior ft. Because the determination of the subset containing
the anomaly Zt may be inaccurate, in order to perform the update, we must
determine p = Pr(i∗ ∈ Zt).

Lemma 2.

Pr (i∗ ∈ Zt) ≥ 1 −
(

1
2

+
th − t�

t�
· ε

4

)
exp

(
−ε

th − t�
t�

)
. (14)

Proof. Without loss of generality, let us assume i∗ ∈ Q. We want to find the
probability that the following difference is positive:

Y − Ȳ = max{xi : i ∈ Q} + Z − max{xi : i ∈ Q̄} − Z ′. (15)

By assumption, H(Q) ≥ th and H(Q̄)} ≤ t�, thus H(Q) − H(Q̄) ≥ th − t�.
Therefore Pr(Z ′ − Z) > th − t� serves as a lower bound on the probability of
that the query will return an erroneous result due to noise.

Since the Z and Z ′ both have zero mean, the distribution of W = Z ′ − Z is
the same as that of Z + Z ′, which can be found by convolving the two Laplace
densities given by (4) with parameter λ = t�/ε. By assumption, th − t� > 0, so
the probability density function for w > 0 is

f (w) =
∫ ∞

−∞

1
2λ

exp (−|z|/λ)
1
2λ

exp (− |z − w| /λ) dz (16)

=
∫ 0

−∞

1
4λ2

exp ((2z − w) /λ) dz +
∫ w

0

1
4λ2

exp (−w/λ) dz

+
∫ ∞

w

1
4λ2

exp (− (2z − w) /λ) dz (17)

=
1
8λ

exp (−w/λ) +
w

4λ2
exp (−w/λ) +

1
8λ

exp (−w/λ) (18)

=
λ + w

4λ2
exp (−w/λ) . (19)

30 D. M. Bittner et al.

The cumulative distribution function for w > 0 is

F (W ≤ w) =
1
2

+
∫ w

0

λ + u

4λ2
exp (−u/λ) du (20)

=
1
2

+
[
−1

4
exp (−u/λ)

]w

u=0

+
[
− u

4λ
exp (−u/λ)

]w

u=0

−
∫ w

0

− 1
4λ

exp (−u/λ) du (21)

=
1
2

− 1
4

exp (−w/λ) +
1
4

− w

4λ
exp (−w/λ) − 1

4
exp (−w/λ) +

1
4

(22)

= 1 −
(

1
2

+
w

4λ

)
exp (−w/λ) . (23)

Now, plugging in λ = t�

ε and w = th − t� we have (14).
�
Thus, we define

p =
(

1
2

+
th − t�

t�
· ε

4

)
exp

(
−ε

th − t�
t�

)
. (24)

from (14) and apply the Bayes update in (6).

Proposition 3. Suppose the anomaly i∗ is uniformly distributed in [n+1]. For
any δ ∈ (0, 1), let

T = min
{

t : max
i

log
ft(i)

1 − ft(i)
> log

1
δ

}
. (25)

Set the stopping time τ(ft−1) = 1(t = T). Then the modified version of
Algorithm1 using Zt = 1

(Yt > Ȳt

)
and (24) with update (6) satisfies

E [T] ≤ log(n + 1) + log(1/δ) + ε

1 − hb(p)
(26)

where hb(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.

Proof. The result follows by mapping the algorithm to the interval estimation
problem studied by Burnashev and Zigangirov [7]. The main difference is that
when using Zt, (24) is only an upper bound on the error probability of the oracle
for randomized response. However, this means that the oracle is only potentially
less noisy than the randomized response oracle. Using the stopping rule in (25),
we get the upper bound on the expected number of queries [7, Theorem 3].
�

6 Experimental Results

We demonstrate the practical performance of our approach through experiments
on a data set for anomaly detection. The experiments investigate how different

Using Noisy Binary Search for Differentially Private Anomaly Detection 31

configurations of input parameters and constraints on the datasets can affect
accuracy and total privacy risk. Specifically, we are interested in the impact
of the thresholds th and t�, the oracle response configuration, and the halting
conditions τ and privacy budget b.

6.1 Dataset

The experiments use the A1 Benchmark from the Yahoo Labeled Anomaly
Detection Dataset, part of the Yahoo Webscope reference library [38]. Each
dataset in the benchmark is preprocessed down to single anomaly by selecting
the largest anomalous point in each dataset and selecting thresholds by letting
xj = max{xi : i �= i∗} and setting th = xi∗−.1(xi∗−xj) and t� = xj+.1(xi∗−xj).
Some experiments are run specifically on datasets 6 and 8 in order to explore the
effects of the non-anomalous point distribution on the algorithm performance.
These two datasets exemplify the two primary distributions for sets contained
in benchmark: datasets that are a mixture of normal distributions, and datasets
where points are heavily skewed toward 0.

6.2 Procedure

Because we are interested in approximate detection of the anomaly, we declare
that the algorithm succeeds if it halts and can output a small set S of indices such
that i∗ ∈ S. In particular, we choose |S| = 4 and set S to be the indices with the 4
largest posterior probabilities. This selection is to capture the difference between
f(i∗) being the close to the largest posterior probability and being much smaller.
Cases where f(i) = f(j) for i �= j are prevented in practice by the randomized
permutation of the probability mass function after each iteration. For these
experiments, τ = 1(max{f(i) : i ∈ [n + 1]} > 0.5) is used as a halting condition
when not otherwise specified. Each configuration of the algorithm parameters
are run for a set number of cycles c. The approximate average error rate for the
configuration is (1−

∑c
i=1 1(i∗∈Si)

c) and the average total privacy risk is
∑c

i=1(tε)i

c .
For these experiments, we take c = 100.

6.3 Results

We demonstrate the algorithm’s performance as a function of the privacy param-
eter ε. Smaller ε values result in noisier responses from the oracle which require
more iterations to reach the halting condition. Correspondingly, larger values
of ε decrease noise which requires fewer total iterations, but at greater privacy
cost per iteration. The tradeoff between error rate and total privacy risk forms
a concave upward curve. Lower values of the privacy parameter are more costly
in total privacy risk as the noise at each iteration strongly decreases Pr(i∗ ∈ R).
Increasing the privacy parameter increases Pr(i∗ ∈ R) at a greater rate than the
privacy cost per iteration increases, thus decreasing total privacy risk. However,
these improvements have diminishing returns. Eventually, increasing the privacy

32 D. M. Bittner et al.

parameter no longer improves the error rate as Pr(i∗ ∈ R) → 1. At this point,
increasing the privacy parameter doesn’t improve the error rate, but continues
to increase total privacy risk.

Threshold Ratios. Figure 1 demonstrates the effect of the thresholds on the
algorithm’s performance. Each point in the figure depicts the error rate as a func-
tion of that dataset’s threshold ratio th−t�

t�
with privacy parameter set to ε = 1. A

dataset with a higher threshold ratio tends to perform better than an equivalent
dataset with a lower threshold ratio for a given value of the privacy parameter.
This is due to Δg = t�, which causes smaller differences between thresholds th−t�
to be more likely to be overcome by noise. The steep improvement in error rate
for small changes in the threshold ratio highlight the importance of tuning the
privacy parameter to the thresholds of the dataset. (Note that datasets 6 and 8
were selected to have similar threshold ratios at 0.647 and 0.701 respectively).

Fig. 1. Error rate for each dataset as a function of the threshold ratio th−t�
t�

.

Oracle Response Constructions. Figure 2 demonstrates how different con-
structions of the oracle response and Bayesian update methods affect the error
rate. The proposed oracle response approaches include the randomized response
oracle (5), the binarized noisy response oracle (14) and the direct noisy result
oracle (11). Despite all constructions achieving tε-differential privacy, there is a
strong difference in effect on the error rate and total privacy risk.

Randomized response has the worst error rate because the oracle error prob-
ability is fixed. This contrasts with the oracle mechanisms that use the noisy
aggregations: the actual noisy response depend on the values (Y, Ȳ), which can
be more informative depending on the noise. For example, when the actual dif-
ference between Y or Ȳ exceeds the difference between th and t�, added noise
is less likely to cause incorrect responses than in randomized response. Simi-
larly, the oracle that directly uses the noisy response performs better than the

Using Noisy Binary Search for Differentially Private Anomaly Detection 33

Fig. 2. The error rate and total privacy risk as a function of the privacy parameter ε
for different oracle response constructions on data sets 6 and 8.

binary oracle construction as the likelihood for the binary oracle at each iter-
ation is a lower bound given by (14) which gives up some information gain on
each iteration. Because the binarized construction is a lower bound on the actual
likelihood, more updates become required to achieve the same effect as the other
constructions and thus ends up having greater total privacy risk.

Algorithm Halting Conditions. The algorithm’s two termination conditions,
τ and total privacy risk exceeding budget b, are explored in Figs. 3 and 4. Figure 3
depicts the algorithm’s error rate with varying budget constraints where the
halting constraint τ has been removed. When the total privacy risk passes pre-
assigned budget checkpoints, S is checked for the presence of the anomaly and the
algorithm continues. Similarly Fig. 4 depicts various halting constraints where
the budget constraint has been removed and again checks S at pre-assigned halt-
ing checkpoints. When the algorithm is forced to preemptively halt because total
privacy risk exceeds the budget, errors are excessively high. This is due to the
increased chance that not enough iterations have been run to allow the algorithm
to overcome noisy oracle responses. When the privacy parameter ε is larger, the

Fig. 3. Error rates for varying inputs of the privacy parameter ε with differing maxi-
mum budget constraints b for datasets 6 and 8.

34 D. M. Bittner et al.

Fig. 4. Error rates and total privacy risk across varying halting constraints τ for data
sets 6 and 8.

algorithm is more likely to suffer errors from the algorithm terminating early.
Correspondingly, when total privacy risk does not prevent early termination due
to budget b, larger values of ε result in fewer errors. Thus, a proper privacy
budget should be allocated to perform enough iterations to prevent errors due
to halting early.

Figure 4 demonstrates how different halting conditions τ affect the error rate
with unlimited privacy budget. Specifically, the figure depicts the effect of alter-
ing α for τ = 1(max{f(i) : i ∈ [n + 1]} > α). As the halting condition serves
as a requirement of convergence of the probability mass toward a single point,
the algorithm can steadily improve the error rates by increasing α. This requires
correspondingly more iterations to achieve, incurring greater total privacy risk
for any run of the algorithm.

7 Discussion

We have described a differentially private search algorithm using noisy binary
search with applications to anomaly detection. For this application, we defined
a new notion of anomaly-restricted neighboring databases to capture the idea
that anomalous points (which potentially merit scrutiny even if it is privacy-
invasive) are not given privacy guarantees. The noise in the algorithm provides
quantifiable privacy during the search. We showed theoretically and empirically
that the greedy Bayesian search strategy can quickly narrow down a small set
of samples that contain the anomaly.

There are a number of practical considerations that must be further addressed
for our work to be useful in particular applications. For example, in most cases, it
will be necessary to handle multiple anomalies rather than only a single anomaly.
If a good upper bound is known on the expected maximum number of anomalous
points, then one approach for using our method would be to first divide the set
into disjoint subsets that with high probability contain only a single anomaly,
and then proceeding to apply our method to each of those subsets individually.

Using Noisy Binary Search for Differentially Private Anomaly Detection 35

In any particular application, it is also necessary to specify what points the
algorithm should return. This depends on various factors, including what will
be done with those points. We envision a scenario in which the points returned
undergo some further screening, presumably after appropriate policies are fol-
lowed. However, this creates a tradeoff between false positives and false nega-
tives. To provide the most privacy, it would be desirable for the returned set to
be as small as possible. However, narrowing down too far increases the chance
of returning a set that misses the anomalous point. In very large search spaces
or problems with many anomalies, one option would be to recursively prune
out non-anomalous points: while this should work well in practice, theoretically
analyzing the corresponding privacy-utility tradeoffs may be quite complex.

Our method uses a fixed privacy loss εt per iteration, not without loss of
generality. Varying εt across iterations in a decaying manner could correspond to
active learning or noisy search under the Tsybakov noise condition. Results from
active learning can yield bounds on convergence to interpret the error/privacy
tradeoff. A key difference between our search model and standard noisy search
is that we can design the noise to optimize the privacy-utility tradeoff.

In order to provide privacy without relying on a trusted party, our method
relies on the existence of a sensor or other measurement device that carries out
the noisy aggregate queries directly, without carrying out individual queries and
computing a noisy aggregate result from them. Practical use of our techniques
therefore depends on the practical creation and deployment of such sensors.

Acknowledgements. This work was partially supported by NSF under award
CCF-1453432, DARPA and SSC Pacific under contract N66001-15-C-4070, and DHS
under award 2009-ST-061-CCI002 and contract HSHQDC-16-A-B0005/HSHQDC-16-
J-00371.

References

1. Abadi, M., Chu, A., Goodfello, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communication Security (CCS 2016),
Vienna, Austria, 24–28 October 2016, pp. 303–318. ACM (2016). https://doi.org/
10.1145/2976749.2978318

2. Agyemang, M., Barker, K., Alhajj, R.: A comprehensive survey of numeric and
symbolic outlier mining techniques. Intell. Data Anal. 10(6), 521–538 (2006)

3. Atia, G.K., Saligrama, V.: Boolean compressed sensing and noisy group testing.
IEEE Trans. Inf. Theory 58(3), 1880–1901 (2012). https://doi.org/10.1109/TIT.
2011.2178156

4. Ben-Or, M., Hassidim, A.: The Bayesian learner is optimal for noisy binary search
(and pretty good for quantum as well). In: 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2008), pp. 221–230 (2008). https://doi.
org/10.1109/FOCS.2008.58

5. Berger, T., Mehravari, N., Towsley, D., Wolf, J.: Random multiple-access commu-
nication and group testing. IEEE Trans. Commun. 32(7), 769–779 (1984). https://
doi.org/10.1109/TCOM.1984.1096146

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1109/TIT.2011.2178156
https://doi.org/10.1109/TIT.2011.2178156
https://doi.org/10.1109/FOCS.2008.58
https://doi.org/10.1109/FOCS.2008.58
https://doi.org/10.1109/TCOM.1984.1096146
https://doi.org/10.1109/TCOM.1984.1096146

36 D. M. Bittner et al.

6. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions,
and lower bounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
635–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 24

7. Burnashev, M.V., Zigangirov, K.S.: An interval estimation problem for controlled
observations. Probl. Inf. Transm. 10, 223–231 (1974)

8. Cai, S., Jahangoshahi, M., Bakshi, M., Jaggi, S.: GROTESQUE: noisy group test-
ing (quick and efficient). Technical report arXiv:1307.2811 [cs.IT], ArXiV, July
2013. http://arxiv.org/abs/1307.2811

9. Calderbank, R., Howard, S., Jafarpour, S.: Construction of a large class of deter-
ministic sensing matrices that satisfy a statistical isometry property. IEEE J. Sel.
Topics Sig. Process. 4(2), 358–743 (2010). https://doi.org/10.1109/JSTSP.2010.
2043161

10. Chan, C.L., Jaggi, S., Saligrama, V., Agnihotri, S.: Non-adaptive group testing:
explicit bounds and novel algorithms. IEEE Trans. Inf. Theory 60(5), 3019–3035
(2014). https://doi.org/10.1109/TIT.2014.2310477

11. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

12. Chen, H.B., Hwang, F.K.: A survey on nonadaptive group testing algorithms
through the angle of decoding. J. Comb. Optim. 15(1), 49–59 (2008). https://
doi.org/10.1007/s10878-007-9083-3

13. Department of Homeland Security: Screening at speed (2017). https://www.dhs.
gov/science-and-technology/apex-screening-speed. Accessed 3 Aug 2017

14. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943). http://www.jstor.org/stable/2235930

15. Du, D.Z., Hwang, F.K.: Combinatorial group testing and its applications, vol. 12,
2nd edn. World Scientific (1999). https://doi.org/10.1142/4252

16. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1. https://www.microsoft.com/en-us/research/
publication/differential-privacy/

17. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1),
86–95 (2011)

18. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

19. Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: 2010
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), Las
Vegas, NV, pp. 51–60, October 2010. https://doi.org/10.1109/FOCS.2010.12

20. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2014), pp. 1054–
1067 (2014). https://doi.org/10.1145/2660267.2660348

21. Evans, J.: What Apple users need to know about differential privacy. IComput-
erWorld, June 2016. http://www.computerworld.com/article/3088179/apple-mac/
what-apple-users-need-to-know-about-differential-privacy.html

22. Ghassemi, M., Sarwate, A.D., Wright, R.N.: Differentially private online active
learning with applications to anomaly detection. In: Proceedings of the 9th ACM
Workshop on Artificial Intelligence and Security (AISec), Vienna, Austria, pp.
117–128, October 2016

https://doi.org/10.1007/978-3-662-53641-4_24
https://doi.org/10.1007/978-3-662-53641-4_24
http://arxiv.org/abs/1307.2811
http://arxiv.org/abs/1307.2811
https://doi.org/10.1109/JSTSP.2010.2043161
https://doi.org/10.1109/JSTSP.2010.2043161
https://doi.org/10.1109/TIT.2014.2310477
https://doi.org/10.1007/s10878-007-9083-3
https://doi.org/10.1007/s10878-007-9083-3
https://www.dhs.gov/science-and-technology/apex-screening-speed
https://www.dhs.gov/science-and-technology/apex-screening-speed
http://www.jstor.org/stable/2235930
https://doi.org/10.1142/4252
https://doi.org/10.1007/11787006_1
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://doi.org/10.1007/11681878_14
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1145/2660267.2660348
http://www.computerworld.com/article/3088179/apple-mac/what-apple-users-need-to-know-about-differential-privacy.html
http://www.computerworld.com/article/3088179/apple-mac/what-apple-users-need-to-know-about-differential-privacy.html

Using Noisy Binary Search for Differentially Private Anomaly Detection 37

23. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.
Rev. 22(2), 85–126 (2004)

24. Horstein, M.: Sequential transmission using noiseless feedback. IEEE Trans. Inf.
Theory 9(3), 136–143 (1963). https://doi.org/10.1109/TIT.1963.1057832

25. Jedynak, B., Frazier, P.I., Sznitman, R.: Twenty questions with noise: Bayes opti-
mal policies for entropy loss. J. Appl. Probab. 49(1), 114–136 (2012). https://doi.
org/10.1239/jap/1331216837

26. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential pri-
vacy. IEEE Trans. Inf. Theory 63(6) (2017). https://doi.org/10.1109/TIT.2017.
2685505

27. Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy:
theory meets practice on the map. In: IEEE 24th International Conference on
Data Engineering (ICDE), pp. 277–286 (2008). https://doi.org/10.1109/ICDE.
2008.4497436

28. Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data.
Discrete Appl. Math. 144(1–2), 149–157 (2004). https://doi.org/10.1016/j.dam.
2003.07.009

29. Mazumdar, A.: Nonadaptive group testing with random set of defectives.
IEEE Trans. Inf. Theory 62(12), 7522–7531 (2016). http://ieeexplore.ieee.org/
document/7577749/

30. Mazumdar, A., Barg, A.: Sparse-recovery properties of statistical RIP matrices. In:
Proceedings of the 49th Allerton Conference on Communication, Control and Com-
puting, pp. 9–12, September 2011. https://doi.org/10.1109/Allerton.2011.6120142

31. Mir, D.J., Isaacman, S., Cáceres, R., Martonosi, M., Wright, R.N.: DP-WHERE:
differentially private modeling of human mobility. In: Proceedings of the 2013
IEEE International Conference on Big Data, October 2013. https://doi.org/10.
1109/BigData.2013.6691626

32. Ngo, H.Q., Du, D.Z.: A survey on combinatorial group testing algorithms with
applications to DNA library screening. In: Du, D.Z., Pardalos, P.M., Wang, J.
(eds.) Discrete Mathematical Problems with Medical Applications. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 55. AMS (2000)

33. Nowak, R.: Generalized binary search. In: 2008 46th Annual Allerton Conference
on Communication, Control, and Computing, pp. 568–574. IEEE (2008)

34. Nowak, R.: Noisy generalized binary search. In: Advances in Neural Information
Processing Systems, pp. 1366–1374 (2009)

35. Waeber, R., Frazier, P.I., Henderson, S.G.: Bisection search with noisy responses.
SIAM J. Control Optim. 51(3), 2261–2279 (2013)

36. Wasserman, L., Zhou, S.: A statistical framework for differential privacy. J. Am.
Stat. Assoc. 105(489), 375–389 (2010). https://doi.org/10.1198/jasa.2009.tm08651

37. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf.
Theory 31(2), 185–191 (1985). https://doi.org/10.1109/TIT.1985.1057026

38. Yahoo Labs: S5 - a labeled anomaly detection dataset, version 1.0 (2016). https://
webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

https://doi.org/10.1109/TIT.1963.1057832
https://doi.org/10.1239/jap/1331216837
https://doi.org/10.1239/jap/1331216837
https://doi.org/10.1109/TIT.2017.2685505
https://doi.org/10.1109/TIT.2017.2685505
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1016/j.dam.2003.07.009
https://doi.org/10.1016/j.dam.2003.07.009
http://ieeexplore.ieee.org/document/7577749/
http://ieeexplore.ieee.org/document/7577749/
https://doi.org/10.1109/Allerton.2011.6120142
https://doi.org/10.1109/BigData.2013.6691626
https://doi.org/10.1109/BigData.2013.6691626
https://doi.org/10.1198/jasa.2009.tm08651
https://doi.org/10.1109/TIT.1985.1057026
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

Distributed Web Mining of Ethereum

Trishita Tiwari(B), David Starobinski, and Ari Trachtenberg

Department of Electrical and Computer Engineering,
Boston University, Boston, MA 02215, USA

{trtiwari,staro,trachten}@bu.edu

Abstract. We consider the problem of mining crytocurrencies by har-
nessing the inherent distribution capabilities of the World Wide Web.
More specifically, we propose, analyze, and implement WebEth, a browser-
based distributed miner of the Ethereum cryptocurrency. WebEth handles
Proof-of-Work (PoW) calculations through individualized code that runs
on the client browsers, and thereafter collates them at a web server to
complete the mining operation. WebEth is based on a lazy evaluation
technique designed to function within the expected limitations of the
clients, including bounds on memory, computation and communication
bandwidth to the server. We provide proofs-of-concept of WebEth based
on JavaScript and WebAssembly implementations, with the latter reach-
ing hash rates up to roughly 40 kiloHashes per second, which is only 30%
slower than the corresponding native C++-based implementation. Finally,
we explore several applications of WebEth, including monetization of web
content, rate limitation to server access, and private Ethereum networks.
Though several distributed web-based cryptominers have appeared in the
wild (for other currencies), either in malware or in commercial trials, we
believe that WebEth is the first open-source cryptominer of this type.

Keywords: Crypto-currency · Ethereum · Distributed computing
Web-browser computing · Mining

1 Introduction

Cryptocurrencies are increasingly gaining traction as a viable form of currency.
This has been accompanied by a correspondingly increasing interest in the effi-
cient validation of cryptocurrency transactions. Whereas initial efforts in this
domain have focused on creating dedicated hardware for this task [30], more
recent approaches have examined repurposing existing infrastructure. Indeed,
one such class of efforts has focused on the use of client web browsers as a plat-
form for distributed computing [11]. The growing popularity of CoinHive [13] is
a case in point of the potential success of distributed in-browser cryptocurrency
mining as a commercial (if malicious) enterprise.

In this work, we propose WebEth, a browser-based distributed miner for the
popular Ethereum block chain [28]. WebEth tackles the challenge of achieving a
profitable hash rate within a distributed ensemble of browsers under constrained
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 38–54, 2018.
https://doi.org/10.1007/978-3-319-94147-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_4&domain=pdf

Distributed Web Mining of Ethereum 39

memory, computation and network usage. Indeed, every browser needs to store
a data structure of at least 1 GB in memory in order to mine Ethereum. Clearly,
it is unfeasible to transfer this entire data structure every time a browser loads a
web page. Instead, WebEth employs a lazy approach to generate this data struc-
ture while mining. Through our experiments, we show that this approach takes
at most five minutes to reach a steady state hash rate – making it ideal for
web applications where users spend time, such as gaming and video streaming.
Our experiments also show that WebEth yields a hashing rate of up to 40 kilo-
Hashes/s, which, despite the overhead from running the algorithm in a browser,
is only 30% smaller than the performance of a corresponding miner running
natively.

The main contributions of this work are as follows:

– We propose WebEth [1], an open-source implementation of a distributed web-
based Ethereum cryptominer in both JavaScript and WebAssembly that can
operate under relatively resource constrained environments. Though miners
for other currencies exist in the wild (e.g. CoinHive [13]), they are all propri-
etary and closed-source.

– We provide theoretical analysis and experimental evidence of the potential
efficacy of the lazy approach adopted by WebEth to achieve high hashing rates.

– We propose a number of potential applications built upon WebEth, including
rate-limiting server access, usage tracking, and content monetization.

Related Work: Distribution of a common task is hardly a new concept
[7–9], but the growing popularity and efficiency of dynamic web content and
client-side scripting languages like JavaScript and WebAssembly have made
web browsers an enticing implementation option [10,11,14]. Coinhive [13] has
built into this environment a proprietary method for mining the Monero cryp-
tocurrency, but this is often done on the browsers of unsuspecting users. A
more ethical, open-sourced alternative, the Basic Attention Token [32], is an
Ethereum-based ERC20 token [35] currently in development to be used in con-
junction with the Brave browser [4] to generate ad revenue for website publishers
by measuring a user’s attention on an advertisement. This platform promises to
balance the ties between website users, publishers, and advertisers to ensure that
users get only ads they would accept, advertisers pay for actual users (instead of
click bots), and publishers actually get revenue instead of begging users to turn
off their ad blockers.

Roadmap: The remainder of the paper is organized as follows. In Sect. 2 we cover
the relevant background and related literature for our work. In particular, we
provide a self-contained description of Ethash, the Ethereum mining Proof-of-
Work (PoW), and WebAssembly, the language in which we implement an efficient
miner. Section 3 describes WebEth, including its lazy approach to distributing
the Ethash PoW over numerous, resource-constrained browsers. This section
also includes a performance analysis. We present the experimental results of our
implementations in Sect. 4. In Sect. 5 we discuss several potential applications of
our mining platform. We conclude in Sect. 6.

40 T. Tiwari et al.

2 Background

2.1 Cryptocurrencies: A General Overview

Most cryptocurrencies like Ethereum involve storing transactions in blocks, and
the entire history of transactions is collated in a data structure known as a block
chain. The block chain is managed by dedicated machines called client nodes;
where each client node typically stores the entire block chain. However, because
each client node operates on its own copy of the block chain, the block chains on
different nodes may go out of sync. Hence, there needs to be an accepted mech-
anism to decide the order in which new transaction blocks are appended to this
block chain. For this, every time a new transaction takes place, the transaction
is pooled together with all other transactions that have been broadcasted to the
network, but haven’t been added to the block chain yet. For most currencies, the
data structure that stores these unconfirmed transactions is known as the mem
pool. A miner picks valid transactions from his mem pool and creates a new block
out of these transactions. Once this happens, the goal of the miner is to have
his/her block appended to the block chain, which is achieved through a process
called mining. Mining involves a race amongst miners to solve a Proof-of-Work
(PoW) puzzle, which is usually an energy intensive computation. The winner of
this race gets to have his block appended to the block chain. The winner also
receives a payout, which acts as an incentive to mine.

Ethereum uses Ethash as its PoW algorithm, which is explained in detail
below.

2.2 Ethereum Proof of Work

Ethereum is a crypto-currency that was released in July 2015 by Vitalik Buterin,
Gavin Wood and Jeffrey Wilcke. Ethereum uses the Ethash algorithm (derived
from the Dagger and Hashimoto algorithms [6]) for its PoW for mining blocks.
Before we discuss how mining works with Ethash, we first establish basic termi-
nology about the data structures involved in the PoW.

A block header contains meta-data related to the transactions of the corre-
sponding block, and it is provided as an input to the Ethash algorithm together
with an integer nonce. The nonce is chosen in a brute-force fashion in order
to hash, together with the block header, into a value that matches a specific
pattern (based on a predefined difficulty threshold). The process of finding an
appropriate nonce for a given block is known as mining.

Once a block has been mined, it is propagated to other client nodes so that
they can update their copies of the block chain. However, before each client
node does so, it must validate whether the miner is submitting a legitimate
block – i.e., check whether the miner genuinely solved the hash as claimed.
This is easily done by putting the block header and nonce associated with the
block through the Ethash algorithm and checking whether the output follows
the pattern prescribed by the difficulty threshold. Light weight client nodes do
not mine new blocks, but rather only verify whether any new block submitted

Distributed Web Mining of Ethereum 41

by a miner is valid or not. Full client nodes, on the other hand, both mine and
verify new blocks.

An epoch is a unit of “time” that spans 30,000 blocks. All of the data struc-
tures in Ethash (mentioned below) need a 256 bit seed, which differs for every
epoch. For the first epoch the seed is a Keccak-256 [29] hash of a series of 32
bytes of zeros. For every other epoch it is always the Keccak-256 hash of the
previous seed hash. The seed for a particular epoch is used to compute a data
structure known as the Cache, which is an array of 4 byte integers [16]. The
Cache production process involves using the seed hash to first sequentially fill
up the Cache, then performing two passes of the RandMemoHash algorithm [12]
on top of it to get the final Cache value.

Light weight clients may use this Cache for verifying hashes, while full node
clients can use it to calculate a Directed Acyclic Graph (DAG) dataset, as
described below. A Ethereum Directed Acyclic Graph is stored as a large byte
array (around 1 GB in size on the private Ethereum Network used for our exper-
iments) and has the following two attributes:

1. Node: Each DAG node in this byte array spans 64 bytes, and node indices
are therefore aligned at a 64 byte boundary.

2. Page: Each DAG page spans 2 nodes, however, page accesses are not aligned
at a 2 node boundary. The mining process involves accessing some DAG pages
and hashing them together with the block header and nonce.

Each node in the DAG is generated by combining data from 256 pseudo-
randomly selected Cache nodes and hashing them together. This process is
repeated to generate all nodes in the DAG. Finally, intermediate byte arrays
used to store temporary results in the Ethash algorithm are known as Mixes.

We must point out that as time goes on, mining Ethereum becomes more
and more difficult, as the size of the Cache and DAG increases with every epoch.

Mining is performed by starting with the current block header hash and
nonce, which are combined to get a 128-byte wide Mix, as seen in step 1 of
Fig. 1. The Mix is then used to fetch a specific page of the DAG from memory.
After this, the Mix is updated with the fetched page of the DAG (step 2). Then,
this updated Mix is used to fetch a new page of the DAG (step 3). This process
of sequentially fetching parts of the DAG is repeated 64 times (step 4), and the
final value of the Mix is put through a transformation to obtain a 32 byte digest
(step 5). This digest is then compared to the threshold (step 6). If it is smaller
than the threshold, the nonce is valid and the block is successfully mined and can
be broadcast to the network. However, if the digest is greater than the threshold,
the nonce is unsuccessful, and the entire process must be repeated with a new
nonce [16].

It is important to note that the pages of the DAG that are used to compute
the hash for a particular block depend on the nonce used, hence there is no way
to pre-determine which pages will be useful to have in memory. This therefore
forces miners to store entire DAG in memory, making Ethereum mining “Memory
Hard”.

42 T. Tiwari et al.

Fig. 1. Ethash

Whereas mining is memory intensive, verification is relatively lightweight.
This is because of the property that each node in the DAG depends on a set
of pseudo-randomly selected items from the Cache. Hence, the Cache is used
to regenerate only the specific pages of the DAG that are needed to recalculate
the hash for the particular nonce. And so, only the Cache needs to be stored by
light weight clients that only perform verification. In fact, as we will see in the
next section, we use this property of being able to generate parts of the DAG as
needed to our advantage in order to alleviate some of the memory and network
bandwidth restrictions that browsers typically face.

2.3 JavaScript and WebAssembly

Introduced in 1995 by Netscape Communications Corporation [31], JavaScript
was a meant to be a light scripting language in order to make web content
dynamic. Over the span of 23 years, it has grown to become one of the most
popular client-side web development languages used to make dynamic user
interfaces.

Distributed Web Mining of Ethereum 43

In fact, up to recently, JavaScript has been the only language available
to make dynamic client-side web content. However, the situation has changed
since the advent of WebAssembly in 2016. As per its creators, WebAssembly is
a “binary instruction format for a stack-based virtual machine” [18]. WASM is
designed to be compiled from high-level languages like C/C++/Rust, and is sup-
ported by 4 major browser platforms – Firefox, Safari, IE, and Chrome [18]. The
WebAssembly stack machine is designed to be encoded in a “size-and load-time-
efficient binary format” [18], and aims to execute near native speed by utilizing
common hardware capabilities present on a wide variety of platforms [18]. The
language is meant to improve performance for computationally intensive use
cases such as image/video editing, games, streaming, etc. [18]. This makes it the
language of choice to implement a miner within a browser.

3 WebEth

In this Section, we present our Web mining architecture for Ethereum. A diagram
of the WebEth architecture is depicted in Fig. 2. The architecture of the miner
itself involves the browser connecting to a central node as soon as the web page
loads (Steps 1 and 2 in Fig. 2). On connecting, the browser then receives the
current block header hash and Cache (Step 3), using which it begins mining
using the lazy evaluation algorithm discussed below (Step 4). Then, the browser
could take one of two paths – it could either have solved the block (Step 5a), in
which case it sends the solution to the central node and asks for the next block
to solve. Or it could timeout (Step 5b), in which case it polls the central node
again for the current block header hash and Cache and then resumes mining.
This architecture, including the lazy evaluation mining algorithm, is described
in detail below.

Mine

Get current
block

header,
and cache

Connect to
central
node

Load Web-
page

Time out

Found
Result

Submit
Result

1 2 3 4

5b

5a

Fig. 2. WebEth architecture

44 T. Tiwari et al.

3.1 Lazy Evaluation

The mining itself (Step 3) in WebEth is based on a lazy evaluation to alleviate the
network and memory requirements for mining Ethereum in a distributed scenario
on browsers. Specifically, as soon as each browser connects to the webserver, the
server sends to the browser the current block header hash and the Cache. Once
the browser receives the Cache, it allocates an array buffer to store the DAG
nodes.

Once the buffer is allocated, the browser can start iterating over nonces to
compute hashes. Since, to begin with, the browser does not store any nodes of
the DAG, it must compute each node on the fly using the Cache. However, every
node that the browser computes is stored in the buffer, for quicker access in the
future. Hence, as time passes, the buffer starts filling up, such that more and
more nodes are quickly accessed from the buffer rather than being computed
from the ground-up, which makes hash computations faster with time. This has
the effect that the longer the user remains on the web-page, the better the hash
rate gets for that user.

3.2 Implementation

The WebEth architecture is centered around a central node and client-side
Ethereum miners.

We have two implementation for the client-side miners: in JavaScript and
in WebAssembly. For our miner, we model the JavaScript implementation after
the node.js implementation of Ethash [3]. The WebAssembly version is the
JavaScript version transpiled to C++, which in turn is compiled to WebAssembly
using the Emscripten compiler [19].

The central node itself coordinates all workers (browsers). Its implementation
is based on a modified version of geth [17], a real world Ethereum miner written
in Go. geth typically runs as a standalone miner that mines on the machine on
which it is running. We modify the code so that instead of doing all the mining
all by itself, the node sends over the necessary data (namely, the hash of the
Block Header and the Cache) to any client that connects to it on port 9000
(Steps 1, 2 and 3 in Fig. 2).

After receiving the necessary data, per the lazy evaluation algorithm, each
browser allocates a buffer for the DAG in order to store future DAG nodes.
(Note that the buffer for the DAG is implemented as an array of ints, so as to
make each lookup in the buffer constant in time.) Now, the client-side miner can
begin to mine (Step 4). At the beginning, the miner creates a random nonce and
computes the hash (using the Cache and the buffered DAG) as discussed in the
previous section. It continues to perform this action on new nonces until one of
two following scenarios occur (Steps 5a and 5b).

In the first scenario (Step 5a), the miner finds a nonce such that the computed
hash is below the given threshold. In that case, the browser submits the result
back to the central node and then asks the central node for the new block header
hash and the Cache. It then uses these new inputs and continues to mine.

Distributed Web Mining of Ethereum 45

In the second scenario (Step 5b), the algorithm times out without finding a
result. In that case, the miner polls the central node for the current versions of
the block header hash and Cache and continues to mine using the new inputs.
This process continue until the user moves away from the website or closes the
browser. This time out is necessary since the browser should work with the
most recent block header and Cache. The block header can become stale if that
particular block has already been mined, and the Cache can become stale if the
Ethereum network transitions into a new epoch (this happens once every 30,000
blocks).

Finally, we must point out that both our current implementations in
JavaScript and WebAssembly require no external dependencies, and therefore
can be directly embedded into any website. Furthermore, the fact that the cen-
tral server does not have to keep track of each client makes the system quite
scalable.

3.3 Performance Analysis

In this section, we perform a back-of-the envelope calculation for the number
of hashes needed till WebEth fills up almost all the buffer. This is important
because the hash rate reaches its maximum steady-state only once the buffer in
the browser is almost full. Specifically, we show that filling a buffer the size of
the DAG till only 5 ∗ 10−7% of it is empty should take on average about 1.85
million hashes, while filling it up till 5 ∗ 10−1% of this buffer is empty takes
much lesser – about 700 thousand hashes. The approach we take is based on the
Coupon Collector problem [24].

For simplicity, we assume that 128 nodes in the DAG are randomly sampled
in order to compute each hash, whereas, in reality, this is not entirely true. This
is because Ethash samples 128 pages per hash (rather than 128 nodes). Since
each page is two nodes wide, two neighboring DAG nodes are sampled for each
page computation. Hence, the DAG nodes are not accessed completely randomly.
Nonetheless, this estimation still provides us a good approximation.

For our analysis, we introduce the following notation. We denote by N the
total number of nodes in the DAG, by a the number of DAG nodes needed to
compute a hash, by δ the failure probability of finding a specific node in the
buffer (i.e., the buffer miss rate), by ω the failure probability of computing a
hash using nodes already stored in the buffer, by E(X) the expected number of
hashes to fill the buffer with a failure probability δ, and by Hn the n-th Harmonic
number.

Claim. For δ � 1, E(X) ≈ N
a (HN − HNδ).

Proof: The number of nodes needed in the buffer to achieve a failure probability
δ is �N(1 − δ)�. This means that even though we are allocating a buffer that can
hold N nodes, we are willing to forgo �Nδ� nodes (to simplify notation, from
now and on, we assume Nδ is an integer).

Using results from the Coupon Collector’s problem [24], we know that the
expected number of trials for obtaining the i-th new node after having buffered

46 T. Tiwari et al.

i − 1 nodes is N/(N − (i − 1)). Thus, the expected number of trials in order to
fill up the buffer with N(1 − δ) nodes is given by

E(t) = N

N(1−δ)∑

i=1

1
N − i + 1

. (1)

Splitting this expression into two sums, we get

E(t) = N

⎛

⎝
N∑

i=1

1
N − i + 1

−
N∑

i=N(1−δ)+1

1
N − i + 1

⎞

⎠ , (2)

or

E(t) = N(HN − HNδ). (3)

We now relate the failure probability of calculating a hash using nodes already
stored in the buffer ω with the failure probability of having a specific node in
the buffer δ. By the independence assumption,

1 − ω = (1 − δ)a

For δ � 1, we have (1 − δ)a ≈ 1 − aδ. Hence,

δ ≈ ω

a
. (4)

Hence, it follows from Eq. (4) that

E(X) ≈ E(t)
a

. (5)

Finally, from Eqs. (3) and (5) and, we obtain

E(X) ≈ N

a
(HN − HNδ). (6)

�
We use the following approximation on the Harmonic Numbers to compute

Eq. (6):

Hn ≈ ln n + γ + o(1) (7)

where γ = 0.57721566... is the Euler-Mascheroni constant.
Specifically, using Eqs. (6) and (7), and setting N = 16777186 (the number

of nodes in the DAG for our experiments), a = 128 and δ = 5 ∗ 10−9, we
get E(X) ≈ 1.85 million hashes. However, if we increase δ to 5 ∗ 10−3, we get
E(X) ≈ 700 thousand hashes. Hence, we see that even computing merely 700
thousand hashes fills a DAG buffer as large as the entire DAG within a margin

Distributed Web Mining of Ethereum 47

of 5 ∗ 10−1%, as opposed to calculating 1.85 million to fill it within a margin of
5 ∗ 10−7%.

In fact, as we will see in the results, filling up 99.5% of a buffer as large as
the DAG already starts giving us good hash rates for a browser – 35 kH/s for
the WebAssembly miner. This shows that we need to have the buffer almost –
but not completely – full in order to do well in terms of hash rates. And as
we have seen, making the buffer almost full is not nearly as hard as filling it
up entirely. This means that reaching a reasonably steady state is not as hard
as it seems at face value, making WebEth viable for web settings where users
might not stay on websites for long. However, given this, we would also like to
point out that in reality, while it takes a lot more hashes to fill up the buffer, it
does not take a lot more time to fill it up. This is because as discussed in the
next section, when the buffer gets closer and closer to being full, the hash rate
spikes up and so computing the remaining number of hashes to fill the buffer
becomes quite fast. Hence, it does not take too long to completely fill up the
buffer (around five minutes in our experimental setup), which is practical for
many web applications, such as streaming.

4 Results

4.1 Experimental Set up

Our experimental set up consisted of a machine with an Intel i7-7700HQ
processor with 8 cores and 16 GB ram. These results were obtained from
a private Ethereum test network at epoch 0. The DAG size was 16777186
nodes (1.074 GB). The cache size was 1.677 MB. We ran the implementations
in JavaScript and WebAssembly in the browser, and a native miner written
in C++ that employs the same lazy evaluation approach outside of the browser
for control results. Each miner was run till 800 kHashes were computed and the
hash rate and buffer hit rate were sampled every 10k hashes. (Note that both the
hash rate and buffer hit rate sampled at a particular time reflected the values
over the 10k most recent hashes).

4.2 Implementation Results

Figures 4, 5 and 6 below shows a heat-map of how the hash rate varies for each of
the three implementations as a function of both the size of the buffer allocated to
store the DAG (as a percentage of the size of the entire DAG) and the number
of hashes computed in the browser. Further, Fig. 7 then shows a heat-map of
how the DAG buffer hit-rate varies as a function of both these parameters. As
expected, both the hash rate and the buffer hit rate increases with the buffer
size and the number of hashes computed for all three miners. We must also note
that the experimental results suggest that it takes 700 kHashes to reach a buffer
hit rate of 99.5%, which agrees with our predicted value from the mathematical
analysis in the previous section. In fact, we can validate that our experimental

48 T. Tiwari et al.

Fig. 3. All miners’ hash rate

Fig. 4. WASM miner log(HashRate) Fig. 5. JS miner log(HashRate)

results are typically in agreement with the predicted results for all other hit rates
as well.

In order to closely examine the relationship between the hash rate and the
hit rate, we show the correlations between the two parameters for all 3 miners
in Fig. 3. It is interesting to see how the hash rate drastically spikes after the
hit rate surpasses 95%. This suggests that accessing DAG pages from the buffer
is orders of magnitude faster than computing them, so much so that even a
few computations bring down the hash rate drastically. Most importantly, from
the experiments, the time it takes to reach this steady state hash rate is not
long (about 5 min) thereby making this approach ideal for streaming/gaming
websites. Furthermore, WebEth is also ideal as a web miner as it is not very
resource intensive – throughout the experiments, it did not use more than 12.5%
of the CPU of our testing machine (the utilization value is normalized over 8
cores).

One might think that a way to reach the steady state hash rate faster for a
given sized buffer would be to start out with a partially filled out buffer instead of
an empty one. The only way this could work is by sending over part of the DAG

Distributed Web Mining of Ethereum 49

over the network to the client. However, as it turns out, this is not feasible since,
for a DAG with 16777186 nodes (1.074 GB) sending even 10% of the DAG would
be sending roughly 100 MB of data. With the global average download speed
for desktops and smart phones being around 5.34 MBps and 2.77 MBps respec-
tively [20], the web page load time would be in the order of 20 s to a minute –
which is too long to get a mere 10% boost in the buffer storage.

Fig. 6. Native C++ miner log(HashRate) Fig. 7. All miners’ hit rate

Table 1 shows us how the performance of each of the miners compare. Inter-
estingly, the performance variation between different implementations is not
uniform across different buffer sizes and hit rates. For instance, the variation
between the WebAssembly and JavaScript miners is only 35.9% when the buffer
hit rate is 0, but the performance difference increases to 73.2% when the hit rate
becomes greater than 0.99. We also see that for obvious reasons, the native
miner outperforms both the JavaScript and the WebAssembly miner. However,
the WebAssembly miner is at most 40.5% slower than the native miner – which is
not very far off considering the overhead of running programs within browsers.
The JavaScript miner, on the other hand, is at least 47.2% slower (and at
most 82.0% slower), making WebAssembly the better of the two candidates for
WebEth.

Table 1. Performance variations across different Implementations

WASM/JS Native/JS Native/WASM

% Diff in smallest hash rates 35.9% 55.0% 38.9%

% Diff in peak hash rates 73.2% 81.3% 30.2%

Min perf % diff 24.4% 47.2% 23.9%

Max perf % diff 73.3% 82.0% 40.5%

Avg. hash rate % diff
(averaged over all buffer sizes
and buffer hit rates)

30.6% 55.6% 35.9%

50 T. Tiwari et al.

Finally, we tabulate the most important results from our analysis in Table 2.
We see that it takes all miners only a few hundred seconds to fill the buffer up,
which is good considering the fact that most users don’t stay on a particular
website for very long. Furthermore, we see that the WebAssembly miner is the
better of the two miners, since it gives a better terminal hash rate of 40 kH/s.

Table 2. Main results

Native JavaScript WebAssembly

Median hash rate
(for a buffer the size of the DAG)

15278 H/s 5290 H/s 10504 H/s

Peak hash rate 56800 H/s 10626 H/s 39651 H/s

Time taken to 99.76% buffer hit rate 163.601 s 879.857 s 257.7692 s

Avg. hash rate % diff with Native Miner
(averaged over all buffer sizes)

NA 55.6% 35.9%

5 Potential Applications

We envision that WebEth could be used for a variety of applications.

Web Content Monetization: With the growth in global Internet usage, hosting
websites has become a lucrative business. As a result, new methods of monetiz-
ing electronic content have surfaced with time. Though some are more successful
than others, all of them have associated issues. For instance, selling advertise-
ment space is now resulting in declining revenue for website owners due to the
advent of new technologies such as AdBlock [2], Brave Browser [4,5]; when cou-
pled with an increased load time, browser slow-down, and placement challenges,
online ads adversely affect user experience. Thus, we envision that website con-
tent can be monetized through client-size coin mining, utilizing techniques such
as those presented in this work. Note though that earning real cash requires a
significant subscriber base or a large amount of time spent on the website, mak-
ing this an ideal approach for video streaming/gaming websites. In fact, with a
hash rate of 40 kH/s, a website would need to have around 8000 users at any
given time in order to obtain around $500 per month [36].

Web Authentication Rate Limiting: Another potential application relates to rate
limiting of web-authentication. Many tools are openly available for brute forcing
web login pages [21,22]. Currently, the way website owners mitigate these attacks
is by locking out a user for a certain amount of time after a fixed number of
unsuccessful login attempts or presenting a captcha [25]. Lock out presents a
Denial of Service potential by locking out legitimate users as a consequence
of an attack. Captcha techniques can be used for third-party value [26] and

Distributed Web Mining of Ethereum 51

have been successfully attacked through machine learning techniques [33] and
crowdsourcing [34].

We posit a more user-friendly approach to this problem involving embed-
ding a Proof-of-Work computation in a web page, e.g., using WebEth, that the
user’s browser needs to successfully solve in order to be able to login. The PoW
would amplify the computational power needed for brute force attempts, thereby
selectively thwarting any attacker that attempts to brute force the login without
significantly penalizing the legitimate user. WebEth is an especially good candi-
date for such an implementation because one could manually set the difficulty
to obtain a balance between user experience and security.

Proof of Web Traffic: Another use-case of WebEth involves website advertisement
companies. Today, website advertising sponsors decide on the remuneration for
a website based on summarized server logs as a measure for site traffic. These
logs can be manipulated by a website owner to generate the impression of a large
amount of traffic [23] or by ad injectors [27]. As a solution to this, WebEth could
be embedded by a website owner within the website, thereby making the site
visitors compute PoW hashes. The advertiser would then ask the website owner
to submit hashes that pass a certain difficulty threshold (i.e., the value of the
hash being less than a certain number), and the larger the number of hashes
that the website owner can provide, the more the remuneration the site receives.
This would be more difficult for the website owners to fake since they would
have to compute hashes themselves, an endeavor that might be more expensive
than the potential ad payout.

Private Ethereum Test Networks: Finally, we would also like to note that
Ethereum is an extremely flexible currency in the sense that it allows for private
coin networks – i.e., networks that do not mine the public Ethereum block-chain,
but rather a private (and often smaller) instance of the cryptocurrency. WebEth
can be used on any such private network to serve the network owner’s specific
interests.

6 Conclusion

We have designed and implemented WebEth, an open-source and distributed web-
based Ethereum miner, with potential applications toward monetizing electronic
content, rate limiting, private test networks, user tracking for advertisers, and the
like. WebEth is standalone, implemented in both JavaScript and WebAssembly,
and requires no external dependencies, meaning that both of these implemen-
tations can be readily embedded within many existing websites. We have also
provided analyses and experimental data to help in engineering our proposed
applications.

Future Work: Many interesting issues remain open. For one, our current imple-
mentation is still slower than traditional mining methods. One way to speed this

52 T. Tiwari et al.

process up is to tap into the client machine’s GPU. There is a JavaScript library
called WebCL that binds to the OpenCL library which allows JavaScript to
interact directly with the GPU to achieve better parallel performance. Know-
ing that Ethereum was created for GPU mining, it should provide a substantial
improvement.

Another interesting issue is whether the server should notify the clients once
a new valid hash is found. One may expect that with a sufficiently large number
of clients, this may lead to better performance than waiting for a timeout. In
fact, experimenting with the length of the period before timeout might also be
an interesting avenue to pursue.

The Ethereum Foundation is also currently developing Casper, a Proof-of-
Stake algorithm, which has already been deployed in private testnets. Since
Casper is open-source, it should be possible to create a Proof-of-Stake distributed
browser miner implementation. However, users would most likely have to provide
“stakes” in order for such an implementation to be possible [15]. Further research
will be necessary to determine whether browser mining for Casper is viable or
not, as the final form of Casper is still uncertain and exactly how much “stake”
is required to successfully mine is unknown.

Acknowledgment. The authors would like to thank Dennis Your for his contributions
during the early stages of this research. This research was supported in part by NSF
under grant CCF-1563753. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the NSF.

References

1. Tiwari, T., et al.: WebEth. GitHub, 1.0, GitHub, 10 April 2018. github.com/
trishutiwari/web-ethereum-mining

2. Gundlach, M.: AdBlock browser extension. AdBlock. Software (2009)
3. Wampler, M., et al.: Ethash. Computer software. GitHub. Vers. 23.1. GitHub, 11

January 2015. https://github.com/ethereum/ethash. Accessed 24 Feb 2018
4. Eich, B., Bondy, B.: Brave Browser. Brave Software. Software (2015)
5. Hern, A.: Adblock Plus: the Tiny Plugin Threatening the Internet’s

Business Model. The Guardian, Guardian News and Media, 14 October
2013. www.theguardian.com/technology/2013/oct/14/the-tiny-german-company-
threatening-the-internets-business-model

6. Buterin, V., et al.: Ethereum/Wiki. GitHub, 9 February 2014. https://github.com/
ethereum/wiki/wiki/Dagger-Hashimoto

7. Ramamritham, K., Stankovic, J.A.: Dynamic task scheduling in hard real-time
distributed systems. IEEE Softw. 1(3), 65 (1984)

8. Shirazi, B.A., Kavi, K.M., Hurson, A.R.: Scheduling and Load Balancing in Parallel
and Distributed Systems. IEEE Computer Society Press, Los Alamitos (1995)

9. Bal, H.E., Frans Kaashoek, M., Tanenbaum, A.S.: Orca: a language for paral-
lel programming of distributed systems. IEEE Trans. Softw. Eng. 18(3), 190–205
(1992)

http://github.com/trishutiwari/web-ethereum-mining
http://github.com/trishutiwari/web-ethereum-mining
https://github.com/ethereum/ethash
http://www.theguardian.com/technology/2013/oct/14/the-tiny-german-company-threatening-the-internets-business-model
http://www.theguardian.com/technology/2013/oct/14/the-tiny-german-company-threatening-the-internets-business-model
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto

Distributed Web Mining of Ethereum 53

10. Bhatia, D., Burzevski, V., Camuseva, M., Fox, G.C.: WebFlow - A Visual Pro-
gramming Paradigm for Web/Java Based Coarse Grain Distributed Computing.
Northeast Parallel Architecture Center (1997)

11. Cushing, R., et al.: Distributed computing on an ensemble of browsers.
IEEE Internet Comput. 17(5), 54–61 (2013). www.computer.org/csdl/mags/
ic/2013/05/mic2013050054.html

12. Lerner, S.D.: Strict Memory Hard Hashing Functions (Preliminary V0. 3, 01-19-14)
13. The Coinhive Team: Coinhive browser extension. Coinhive. Software (2017)
14. Duda, J., D�lubacz, W.: Distributed evolutionary computing system based on

web browsers with JavaScript. In: Manninen, P., Öster, P. (eds.) PARA 2012.
LNCS, vol. 7782, pp. 183–191. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36803-5 13. ACM Digital Library. dl.acm.org/citation.cfm?
id=2451764.2451780

15. Dale, O.: Beginner’s Guide to Ethereum Casper Hardfork: What You Need to Know.
Blocknomi, 7 November 2017. (https://blockonomi.com/ethereum-casper/)

16. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Pap. 151, 1–32 (2014)

17. Szilgyi, P., et al.: Geth. Computer software. GitHub. Vers. 1.8.1. GitHub, 22
December 2013. https://github.com/ethereum/go-ethereum. Accessed 24 Feb 2018

18. W3C Team. WebAssembly. Program documentation. WebAssembly. Vers. 1.0.
WebAssembly, 17 March 2017. http://webassembly.org. Accessed 28 Mar 2018

19. Emscripten Community. Emscripten. Vers. 1.37.36. Emscripten, 11 Novem-
ber 2012. http://kripken.github.io/emscripten-site/docs/getting started/Tutorial.
html. Accessed 28 Mar 2018

20. Ookla. Speedtest Global Index Monthly Comparisons of Internet Speeds from
around the World. Speedtest Global Index, Ookla, 25 March 2018. www.speedtest.
net/global-index

21. Fogerlie, G.: Brute Force Website Login Attack Using Hydra - Hack Websites
- Cyber Security. Brute Force Website Login Attack Using Hydra - Hack Web-
sites - Cyber Security, YouTube, 24 September 2013. www.youtube.com/watch?v=
ZVngjGp-oZo

22. Mahmood, O.: Brute Force Website Login Page Using Burpsuite. Secu-
rityTraning, 5 February 2018. securitytraning.com/brute-force-website-login-
page-using-burpsuite/

23. FoxBrewster, T.: ‘Biggest Ad Fraud Ever’: Hackers Make $5M A Day By
Faking 300M Video Views. Forbes, Forbes Magazine, 20 December 2016.
https://www.forbes.com/sites/thomasbrewster/2016/12/20/methbot-biggest-ad-
fraud-busted/

24. Neal, P.: The Generalised coupon collector problem. J. Appl. Probab. 45(3), 621–
629 (2008). https://doi.org/10.1239/jap/1222441818

25. Google Recaptcha. https://www.google.com/recaptcha/intro/
26. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: Recaptcha:

human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008)

27. Thomas, K., et al.: Ad injection at scale: assessing deceptive advertisement modi-
fications. In: IEEE Symposium on Security and Privacy (2015)

28. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper. http://gavwood.com/paper.pdf

29. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

http://www.computer.org/csdl/mags/ic/2013/05/mic2013050054.html
http://www.computer.org/csdl/mags/ic/2013/05/mic2013050054.html
https://doi.org/10.1007/978-3-642-36803-5_13
https://doi.org/10.1007/978-3-642-36803-5_13
http://dl.acm.org/citation.cfm?id=2451764.2451780
http://dl.acm.org/citation.cfm?id=2451764.2451780
https://blockonomi.com/ethereum-casper/
https://github.com/ethereum/go-ethereum
http://webassembly.org
http://kripken.github.io/emscripten-site/docs/getting_started/Tutorial.html
http://kripken.github.io/emscripten-site/docs/getting_started/Tutorial.html
http://www.speedtest.net/global-index
http://www.speedtest.net/global-index
http://www.youtube.com/watch?v=ZVngjGp-oZo
http://www.youtube.com/watch?v=ZVngjGp-oZo
http://securitytraning.com/brute-force-website-login-page-using-burpsuite/
http://securitytraning.com/brute-force-website-login-page-using-burpsuite/
https://www.forbes.com/sites/thomasbrewster/2016/12/20/methbot-biggest-ad-fraud-busted/
https://www.forbes.com/sites/thomasbrewster/2016/12/20/methbot-biggest-ad-fraud-busted/
https://doi.org/10.1239/jap/1222441818
https://www.google.com/recaptcha/intro/
http://gavwood.com/paper.pdf
https://doi.org/10.1007/978-3-642-38348-9_19

54 T. Tiwari et al.

30. Taylor, M.B.: The evolution of bitcoin hardware. Computer 50(9), 58–66 (2017)
31. Peyrott, S.: A brief history of JavaScript. Auth0 - Blog, Auth 0, 16 January 2017.

auth0.com/blog/a-brief-history-of-javascript/
32. Brave Software. Basic Attention Token. Basic Attention Token, 1.0, Brave Soft-

ware, 13 March 2018. basicattentiontoken.org/
33. Geitgey, A.: How to break a CAPTCHA system in 15 minutes with machine

learning. Medium, 13 December 2017. medium.com/@ageitgey/how-to-break-a-
captcha-system-in-15-minutes-with-machine-learning-dbebb035a710

34. Danchev, D.: Inside India’s CAPTCHA solving economy. ZDNet, 4 December 2015.
www.zdnet.com/article/inside-indias-captcha-solving-economy/

35. ERC20 Token Standard. https://theethereum.wiki/w/index.php/ERC20 Token
Standard

36. CryptoCompare. Mining Calculator Bitcoin, Ethereum, Litecoin, Dash and Mon-
ero. CryptoCompare. www.cryptocompare.com/mining/calculator/eth

http://auth0.com/blog/a-brief-history-of-javascript/
http://basicattentiontoken.org/
http://medium.com/@ageitgey/how-to-break-a-captcha-system-in-15-minutes-with-machine-learning-dbebb035a710
http://medium.com/@ageitgey/how-to-break-a-captcha-system-in-15-minutes-with-machine-learning-dbebb035a710
http://www.zdnet.com/article/inside-indias-captcha-solving-economy/
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
http://www.cryptocompare.com/mining/calculator/eth

An Information-Flow Control Model
for Online Social Networks Based
on User-Attribute Credibility

and Connection-Strength Factors

Ehud Gudes and Nadav Voloch(&)

Ben-Gurion University of the Negev, P.O.B. 653, 8410501 Beer-Sheva, Israel
voloch@post.bgu.ac.il

Abstract. During the last couple of years there have been many researches on
Online Social Networks (OSN). The common manner of representing an OSN is
by a user-based graph, where the vertices are different OSN users, and the edges
are different interactions between these users, such as friendships, information-
sharing instances, and other connection types. The question of whether a certain
user is willing to share its information to other users, known and less known, is a
question that occupies several researches in aspects of information security,
sharing habits and information-flow models for OSN. While many approaches
take into consideration the OSN graph edges as sharing-probability factors, here
we present a novel approach, that also combines the vertices as well-defined
attributed entities, that contain several properties, in which we seek a certain
level of credibility based on the user’s attributes, such as number of total friends,
age of user account, etc. The edges in our model represent the connection-
strength of two users, by taking into consideration the attributes that represent
their connection, such as number of mutual friend, friendship duration, etc. and
the model also recognizes resemblance factors, meaning the number of similar
user attributes. This approach optimizes the evaluation of users’ information-
sharing willingness by deriving it from these attributes, thus creating an accurate
flow-control graph that prevents information leakage from users to unwanted
entities, such as adversaries or spammers. The novelty of the model is mainly its
choice of integrated factors for user credibility and connection credibility,
making it very useful for different OSN flow-control decisions and security
permissions.

Keywords: Online Social Networks security
Information-flow networks control � Trust-based security models

1 Introduction

Handling Online Social Networks (OSN) security and information flow issues as an
analytic graph problem is a well-known method, presented in different papers over the
past couple of years. In [1] a sharing-habits privacy control model is established, where
a community directed and weighted graph with an Ego-node is defined, and the other
graph vertices are defined in three other closeness categories (close friend,

© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 55–67, 2018.
https://doi.org/10.1007/978-3-319-94147-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_5&domain=pdf

acquaintance, and adversary). The edges are directed since they describe information-
sharing instances, where a certain user gives information (outflow) to another user.

The edges’ weights are defined by the probability that the Ego node user is willing
to share information with the connected user node, as defined in [2]. This probability is
calculated by the ratio of outflow and inflow instances between the two users.

The main problem OSN privacy models deal with is the information leakage issue,
in which data shared by a certain user can be reached by an adversary, that could be a
spammer, a professional foe, or just an unknown user, depending on the type of data
and the preferences of the data sharing user. In [3] different types of these information
leakage scenarios are described. Most of these vulnerabilities occur from discretionary
privacy policies of OSN users, that create a misleading knowledge of the number and
type of users exposed to this shared data. Most of the solutions suggested demand
changes in these specific policies. This paper presents a novel model for information
flow control in an OSN, in which the factors taken into consideration in the information
sharing decision are both user credibility factors, calculated by the single-user attri-
butes, and connection-based factors, estimating the level of trust between two users.

The rest of this paper is structured as follows: Sect. 2 discusses the background for
our work, with explanations on the related papers it relies on, Sect. 3 describes and
defines our model thoroughly with several examples of its operation, Sect. 4 discusses
the model’s implementation and connection to the work done in [1], and Sect. 5 is the
conclusion of the paper, with future prospect on further research on this subject.

2 Background and Related Work

OSN and general networks flow control and access control models have been studied
extensively over the past decade. [4] gives an interesting analysis of organizational
networks, using threat vulnerability assessments based on the network’s topology,
using a clustering criterion (average clustering coefficient – denoted CC) that helps
define information leaks potential. The threat defined is specifically harvesting sensitive
organizational information by an attacker using social-bots. The data used in this
research is specifically from Twitter and Flickr. An important addition to these
researches is treating the OSN user attributes and connection attributes as significant
factors for access and flow control of the OSN as presented in the following parts of
this paper.

In [5] an important novel approach is presented, in which the OSN graph is not
necessarily a user-relationship graph. The OSN is manifested as a multi-functional
graph, in which the nodes are described as “things” such as users, photos, posts, pages
etc., whilst the edges are connections between these things, such as friendships between
users. Another important feature that is presented in this research is the fields of the
things, meaning information attributes of users, posts, etc. The analysis done on these
graphs takes into consideration the dynamic modularity of a social graph, by presenting
instances of these graphs in several timestamps. This approach is one of the most close-
to-real-life models of OSN, and is done specifically about Facebook, being a multi-
functional OSN, serving as a professional and social OSN, and with other purposes and
features as well. More data about the above-mentioned user-fields can be found in [6],

56 E. Gudes and N. Voloch

that elaborates on this specific subject, and gives a 30-item list of attributes, some direct
and some derived, that define the user information in an OSN. An important ranking is
given to these attributes, based on information gaining from each attribute, assessing
their importance in the closeness approximation between users, thus evaluating their
willingness to share information.

A more exact approach of specifically detecting users that we want to deny from
our information is the spammer detection approach. Basing the detection on user
attributes is handled in [7] specifically for Twitter, where several important user
attributes, such as age of user account, fraction of tweets with spam words and fraction
of followers per followees, were checked on real data from Twitter, and with these
values a spammer profile could be characterized.

In [8] this detection is also done on real data, and generalized to all OSN, though it
is mainly relevant to Facebook-like networks, where it is shown that spammers usually
have noticeable differences in values of certain attributes such as number of likes,
hashtags and mentions. [9] shows an interesting cross-platform evaluation of user
behavior, based on attributes such as name, location, date of creation of account, etc.
The data is cross-referenced for three main networks: Twitter, Instagram and Four-
square, and used to detect and evaluate spammer behaviors. In the following parts of
this paper, we use the evaluations and methods mentioned above to create a more
accurate and elaborate model for information flow control in OSN, that combines both
single-user attributes for credibility evaluation, and user-connection attributes for
creating a resemblance factor that will help us evaluate whether the information should
or should not be shared with a certain user. In [10] an interesting algorithm for Early
Detection of Spamming accounts (ErDOS) in service provider networks is presented, in
which both user (spammer) characteristics and interaction (internal/external behavior)
characteristics are taken into consideration in identifying potential spammers, while
[11] defines novel features of malware propagation patterns, by analyzing webmail
attachments and their attributes such as number of distinct file names, number of
countries, etc. These works are the basis for our model, presented in the following
section.

3 OSN Information-Flow Control Model

3.1 Description of the Flow-Control Problem

For creating our information-flow model, the main issue we wish to figure is whether a
certain user (our Ego-node) is willing to share information with another user (our
Target-node). At this point we do not describe friends, acquaintances or adversaries,
since this information is derived from the model itself, as we intend to discover whether
our Target-node is an acquaintance or an adversary. Our only connection definition for
adjacent vertices is the pure OSN friend definition, meaning a direct edge between two
user-nodes. A friend of a friend, or any other vertex that is in a distance >1 is of an
unknown definition at the time, and it is either an acquaintance or an adversary,
depending on the attribute values of both the user itself, and the connections towards it
from the Ego-node.

An Information-Flow Control Model for Online Social Networks 57

In Fig. 1 we can see a simple six-node graph instance, in which Alice is the Ego
node, Bob, Charlie and David are here friends (direct edges connect her to them), and
Eve is the Target node, also connected to Bob, Charlie and David, but not directly to
Alice, making her a “Friend of a Friend” to Alice. Frank is also a “Friend of a Friend”,
and at this point still not checked. We need to determine whether Eve is an acquain-
tance or an adversary, meaning whether Alice is willing to share information with her.
This is, of course, only a minimal manifestation for the simplicity purpose of the
example, whilst the actual problem covers much more connections and bigger distances
from source to target. Here we need to formally define the problem attended in the
model, and its suggested approach.

3.2 OSN Graph Definitions for the Model

Let G = (V, E) be a directed graph that describes OSN activities, where V is the set of
users and E is their connected social activities. vsrc 2 V is the Ego source node, that
holds the information to be shared, and vtrgt 2 V is the Target node, meaning the user
that should or should not get the information from vsrc. For 1 � i � n, PATHsrc!trgt

i
is defined as the set {vsrc, E

src!1, v1, E
1!2, ….., E k!trgt, vtrgt}, where the number of

intertwined user-nodes is k, and the number of all paths from vsrc to vtrgt is n.

Fig. 1. Graph instance of six OSN users, where the outflow checked is from Alice to Eve. Eve
(and Frank) could be either an acquaintance or an adversary, depending on the attribute values,
that are still not shown.

58 E. Gudes and N. Voloch

For example, in Fig. 1 we can easily see n = 3, and k = 1, since there are 3 possible
paths from Alice to Eve: Alice ! Charlie ! Eve, Alice ! David ! Eve, and
Alice ! Bob ! Eve. In these 3 paths k = 1 since there is a single node between The
Source (Alice) and Target (Eve).

For finding all possible paths between source and target nodes, there are several
efficient algorithms, such as the Ford-Fulkerson algorithm [12], the Edmonds–Karp
algorithm [13] for computing the maximum flow in a flow network in O (V E2) time,
and the Dinic algorithm [14], also for a maximum flow network, that achieves a better
time of O (V2 E). In our model we need to find all the paths to determine whether an
information instance will be passed from the Ego-node to the Target node, which is the
same problem covered by the Dinic algorithm mentioned above.

3.3 The User-Credibility and Connection-Strength Attributes

The set {vsrc, E
src!1, v1, E

1!2, ….., E k!trgt, vtrgt} that represents PATHsrc!trgt
i is

divided to V and E in this manner: V holds the independent user-credibility attributes,
and E holds the attributes that involve the connection between two users. In Table 1 we
denote the different variables by the attributes they represent.

Here we need to explain the choice of these specific variables.
Total number of Friends (TF) is an attribute handled in [6] and presented there as

the most important user-credibility feature for information gain of a user profile.
Spammers or fake users usually have an allotted number of friends, if any.

OSN seniority - Age of User Account (AUA) is also a very important feature
shown in [8] and refers to the duration of account existence. This feature is meaningful
since fake profiles and spammers are usually created and then deleted after a while, by
the user itself or due to OSN security policies, detecting new accounts with suspicious
activity forms.

Followers/Followees Ratio (FFR) also appears in [8], and the rational behind this
attribute is that data-harvesting is usually done by the action of following, meaning a
social-bot will follow users, and not be followed by them.

Mutual Friends (MF) and Friendship Duration (FD) are the two most important
connection-based features shown in [6], excluding the attribute of “Amount seen together”,

Table 1. User and Connection attribute variables for the model

Variable Attribute User/Connection

TF Total number of friends User (V)
AUA Age of user account (OSN seniority) User (V)
FFR Followers/Followees ratio User (V)
MF Mutual friends Connection (E)
FD Friendship duration Connection (E)
OIR Outflow/Inflow ratio Connection (E)
RA Resemblance attributes Connection (E)

An Information-Flow Control Model for Online Social Networks 59

that was not taken into consideration here since it only refers to Facebook-like OSN, whilst
the general pattern of OSN does not necessarily include such features.

Outflow/Inflow Ratio (OIR) is presented in [2] and used in [1] as a good indication
of sharing willingness of a source node to a target one, given the fact that more outflow
than inflow instances usually portray a high probability of data sharing approval of the
source node.

Resemblance Attributes (RA) is a generalization of attributes presented in [6],
estimating similarity between users by their common features, assuming user friend-
ships often have common grounds.

3.4 Values for the Variables

Setting the values for the variables is done in this model in a probability form scale of 0
to 1, since the decision of sharing information with a certain user is defined as a
probability variable, 0 being no sharing willingness at all, 1 being definite sharing
willingness, for clarification purposes we use c (credibility) for user attributes and
p (probability) for connection attributes, though both represent the user’s sharing
willingness probability.

For calculating the variables’ values, the following notations are given:

• c is the credibility value of a user (node) attribute. For example, cTF is the credibility
value for the Total Friends attribute.

• p is the probability value of a connection (edge) attribute. For example, pMF is the
probability value for the Mutual Friends attribute.

The values given in the following assignments are partly debatable. Some, as FFR,
are based on previous researches (for FFR, it is [8]), and some are based on given
estimations for the purpose of this model, making them flexible for rendering and
justifications.

These values are as follows:

cTF ¼
TF
100 TF\100ð Þ;
1 TF� 100ð Þ:

(
ð1Þ

cTF value is based on the estimation of the TF attribute of [6], having fake profiles,
social-bots, etc., with an allotted number of friends. A profile of 100 friends and above
is with a high probability of being a genuine user profile.

cAUA ¼
AUA
365 AUA\365ð Þ;
1 AUA� 365ð Þ:

(
ð2Þ

cAUA value is calculated in days. It is based on the estimation of the AUA attribute
of [8], that an active spammer profile will not remain active for more than a year, due to
OSN security updating policies, usually done annually.

60 E. Gudes and N. Voloch

cFFR ¼ FFR FFR\1ð Þ;
1 FFR� 1ð Þ:

(
ð3Þ

cFFR value is derived directly from [8]. It is a given ratio from the FFR attribute
itself, and its rational is that spammers and fake profiles follow more users and are
usually less followed themselves.

pMF ¼
MF
20 MF\20ð Þ;
1 MF� 20ð Þ:

(
ð4Þ

pMF value is based on the estimation of the MF attribute of [6], having fake profiles,
social-bots, or even adversaries, with a small number of mutual friends, if any.
A profile of 20 mutual friends and above is with a high probability of being an
acquaintance profile, with a high probability of an actual friend potential.

pFD ¼
FD
365 FD\365ð Þ;
1 FD� 365ð Þ:

(
ð5Þ

pFD value is calculated in days. It is based on the estimation of the FD attribute of
[6], having an acquaintance, or even a fake profile or spammer, being friends with a
certain user less than a year, is of an adversary potential, like the time estimation of
cAUA.

pOIR ¼ OIR OIR\1ð Þ;
1 OIR� 1ð Þ:

(
ð6Þ

pOIR value is derived directly from [1, 2]. It is a given ratio from the OIR attribute
itself, and its rational is that spammers and fake profiles give the user much more
inflow actions (advertisement, data-harvesting, etc.), than outflow actions from the user
itself.

For the pRA value a preliminary explanation is necessary. In [6] there is a list of user
attributes such as gender, hometown, etc. These attributes are meaningful in the
resemblance factor calculation, and only non-null attributes can be taken into consid-
eration (if the user did not define a value for a certain attribute, it is not counted).

The independent (not derived from the connection) user attributes taken from [6] are:

• Hometown.
• Current country.
• Current city.
• Home country.
• Gender.

An Information-Flow Control Model for Online Social Networks 61

• Language.
• Religion.

These are the most important attributes mentioned in [6], excluding the ones that
we did not take into consideration for two reasons: Facebook-like OSN attributes (such
as events, movies, etc.) were omitted since we need a more general OSN definition, and
the ones that are difficult to estimate (such as music, age, etc.) were also omitted.

Let us denote the following factors:

• TAsrc is the total number of non-null attributes (from the list of 7 attributes men-
tioned above) of the source user. The values of these attributes must be defined by
non-null values.

• TRAsrc, trgt is the total number of non-null resembling attributes (from the list of 7
attributes mentioned above) of the source user and the target user. The values of
these attributes must be defined by non-null values.

Now we can define pRA:

pRA ¼ TRAsrc; trgt
TAsrc

ð7Þ

This value cannot be larger than 1, since the maximal number of common attributes
could be the total number of source attributes at most. In [6] it is shown that a good
sharing probability estimation can be done by similarity checking between users by
their common features, assuming user friendships often have common grounds.

For these resemblance cases, the Pearson Correlation Coefficient [15] is often used
for ratio calculation, but it defines a symmetric value for both ends of the connection,
whilst our model describes an asymmetric one, since the target node is the one being
checked for credibility, in relevance to the source one, and not vice versa.

Now we can define for every user the total value of credibility and for every
connection the total value of sharing probability, by averaging the different factors
noted above.

c ¼ WcTFþWcAUAþWcFFR
3

ð8Þ

p ¼ WpMFþWpFDþWpOIRþWpRA
4

ð9Þ

These averages indicate the same effect for every attribute-factor in c and p,
assuming initially that all attribute-weights (W) are equal and can now be assigned to
the OSN graph of users and their connections.

Assigning these values will be done to each path of the graph from the source
vertex to the target one. The user credibility attribute c is assigned to the vertices and
the connection probability p is assigned to the edges connecting the vertices.

62 E. Gudes and N. Voloch

3.5 Assigning the Values to the OSN Graph

As denoted before, for 1 � i � n, PATHsrc!trgt
i is defined as the set {vsrc, E

src!1, v1,
E 1!2, ….., E k!trgt, vtrgt}, where the number of intertwined user-nodes is k, and the
number of all paths from vsrc to vtrgt is n.

For every path we now need to define the total sharing-probability value, that will
be the indicator for the choice of sharing the information from source to target. We take
into consideration that c for the vsrc is omitted since the Ego-user does not need to be
checked for credibility. We denote this Total Sharing Probability value as TSP, and this
value is calculated for a single PATH from the source note to the target node.

TSPðPATHsrc!trgtÞ ¼
Yk

i¼1
ci pi ð10Þ

We can easily see that since i begins in 1, vsrc is omitted, and the product is of every
node property of c and every edge property of p in PATHsrc!trgt

i .
Table 2 shows example values assigned to the graph shown in Fig. 1. c and p are

calculated by Eqs. 8 and 9 shown above.

Table 3 shows the TSP calculation (Eq. 10) of all the PATHs in the graph, using the
values of Table 2.

The graph with these attributes of Tables 2 and 3 is shown in Fig. 2, having Eve as
the target node that is an adversary and Frank as the target node than is an
acquaintance.

Table 2. User and Connection attribute variables values for the graph in Fig. 2

User/Connection cTF cAUA cFFR pMF pFO pOIR pRA c p

Bob 0.89 0.54 0.91 – – – – 0.78 –

Charlie 0.78 0.34 0.92 – – – – 0.68 –

David 0.97 0.98 0.96 – – – – 0.97 –

Eve 0.76 0.14 0.78 – – – – 0.56 –

Frank 0.95 0.92 0.98 – – – – 0.95 –

Alice ! Bob – – – 0.31 0.81 0.34 0.86 – 0.58
Alice ! Charlie – – – 0.44 0.84 0.33 0.71 – 0.58
Alice ! David – – – 1 0.46 1 0.86 – 0.83
Bob ! Eve – – – 0.28 0.26 0.19 0.43 – 0.29
David ! Eve – – – 0.62 0.9 0.58 0.86 – 0.74
Charlie ! Eve – – – 0.22 0.11 0.16 0.43 – 0.23
David ! Frank – – – 0.81 0.95 0.88 1 – 0.91
Charlie ! Frank – – – 0.5 0.64 0.72 0.86 – 0.68

An Information-Flow Control Model for Online Social Networks 63

Table 3. TSP values for all the PATHs of the graph

PATH TSP

Alice ! Bob ! Eve 0.58 * 0.78 * 0.29 * 0.56 = 0.07
Alice ! Charlie ! Eve 0.58 * 0.68 * 0.23 * 0.56 = 0.05
Alice ! David ! Eve 0.83 * 0.97 * 0.74 * 0.56 = 0.33
Alice ! David ! Frank 0.83 * 0.97 * 0.91 * 0.95 = 0.7
Alice ! Charlie ! Frank 0.58 * 0.68 * 0.68 * 0.95 = 0.25

Fig. 2. Graph instance of six OSN users, with vertices’ and edges’ values, where the outflow
checked is from Alice to Eve and Frank. Eve is detected as an adversary since none of the PATHs
TSP values achieve the MSP. Frank is detected as an acquaintance since the TSP value of the
PATH Alice-David- Frank achieves the MSP.

64 E. Gudes and N. Voloch

3.6 Algorithm for Determining an Acquaintance or an Adversary

For deciding whether the target node is an acquaintance or an adversary, we first need
to set a threshold numeric value for PATH, thus including the decision of information
sharing, by defining the PATH as safe or not safe. This threshold of Minimum Sharing
Probability value is denoted here as MSP. The value chosen for this model is the
median value of 0.5, having TSP � 0.5 meaning that the PATH is safe, and that the
target node is necessarily an acquaintance, not an adversary. This value is of course
debatable and flexible for rendering and justifications.

The algorithm is as follows:

isAnAcquaintanceNotAnAdversary (Graph G, Vertex vsrc, Vertex vsrgt)

1. MSP 0.5

2. {AllPathssrctrgt} Dinic (G) // |{AllPaths}| = n

3. for 1 ≤ i ≤ n

o if TSP(PATHi
srctrgt) ≥ MSP

 return true

4. return false

The first step, as mentioned above, is setting MSP. The second stage is finding all
possible paths between the source and target nodes. This is done, as mentioned in
previous parts of this paper, by the Dinic algorithm [14] for a maximum flow network,
that achieves a time of O(V2 E). The third step is finding all the TSPs of the PATHs,
and if a certain TSP is �MSP, returning true, the node is set as an acquaintance, not an
adversary. If such TSP is not found, then we return false in the last step. Since the
attribute values calculated in TSP are consisted of given OSN user-attribute and
connection-attribute values, this calculation is of constant complexity, giving the
algorithm a total complexity of O(V2 E).

Figure 2 shows the examples of detecting an adversary (Eve) and an acquaintance
(Frank). All the PATHs from Alice to Eve do not achieve the needed MSP, necessarily
making her an adversary. The PATH Alice – David - Frank achieves the needed MSP,
necessarily making him an acquaintance.

We can clearly see that if a certain PATH has a TSP value � MSP, it is then noted
as safe for information flow from source to target, making the target node declared as
an acquaintance, to which we are willing to share information with.

4 Discussion

Our model, described in the previous section, was initially based on the model pre-
sented in [1], that showed a novel approach of privacy control in OSN. This model was
primarily based on a Min-Cut algorithm that blocked several edges in the Ego-user

An Information-Flow Control Model for Online Social Networks 65

community graph, thus preventing information leakage to potential adversaries. This
approach has some disadvantages since it has a large overhead for every information
sharing action and, more importantly, cuts the information-flow between users, that are
not necessarily adversaries (the intertwined non-Ego user nodes). The main problem [1]
addresses is preventing information leakage from a certain OSN user to other users,
adversaries or acquaintances. The method presented in [1] is cutting edges in the OSN
graph, thus preventing this leakage, but without any discernment of the users being cut
off. This problem can and does result in an unwanted information prevention. Our
model solves this problem by deciding which user gets the data. No unnecessary edge
cuts are done, and no information is being denied from non-adversary users, and the
problem of [1] is handled in a manner that improves the information sharing decisions
by taking into consideration many factors based both on the single-user credibility and
the connection strength between two users. With these factors we optimize the
assumptions of information sharing preferences and decisions done by the Ego node,
thus achieving a more reliable and accurate form of privacy control in the information
flow of OSN. This model gives every Ego node a graph-map for every connected user,
that indicates whether it is an adversary or an acquaintance. This map is then trans-
ferred as a label with the information itself to the other approved nodes (acquaintances-
having permission to this information), thus creating a clear privacy picture for every
information instance, preventing leakage of this instance to potential adversaries, and
by that implementing sharing-based privacy control in OSN.

5 Conclusion and Future Work

In this paper we have presented a Flow-Control model for OSN. The novelty of the
model is its combination of user credibility and connection strength. The attributes of
this model were carefully picked, but there could be flexibility in these choices, as well
as in the values of these attributes, that are debatable. This model is now being tested
by statistical data and examined on a prototype system we have built for this research,
since the question of detecting an adversary is not necessarily the problem of spammer
detection. An unknown user could be a regular user we do not wish to share infor-
mation with. Other modeling aspects of this problem are currently a work in progress.

References

1. Levy, S., Gudes, E., Gal-Oz, N.: Sharing-habits based privacy control in social networks. In:
Ranise, S., Swarup, V. (eds.) DBSec 2016. LNCS, vol. 9766, pp. 217–232. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41483-6_16

2. Ranjbar, A., Maheswaran, M.: Using community structure to control information sharing in
online social networks. Comput. Commun. 41, 11–21 (2014)

3. Li, Y., Li, Y., Yan, Q., Deng, R.H.: Privacy leakage analysis in online social networks.
Comput. Secur. 49, 239–254 (2015)

4. Bokobza, Y., Paradise, A., Rapaport, G., Puzis, R., Shapira, B., Shabtai, A.: Leak sinks: the
threat of targeted social eavesdropping. In: 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), pp. 375–382. IEEE (2015)

66 E. Gudes and N. Voloch

http://dx.doi.org/10.1007/978-3-319-41483-6_16

5. Patil, V.T., Shyamasundar, R.K.: Undoing of privacy policies on Facebook. In: Livraga, G.,
Zhu, S. (eds.) DBSec 2017. LNCS, vol. 10359, pp. 239–255. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61176-1_13

6. Misra, G., Such, J.M., Balogun, H.: Improve-identifying minimal profile vectors for
similarity-based access control. In: 2016 IEEE Trustcom/BigDataSE/I SPA, pp. 868–875.
IEEE (2016)

7. Benevenuto, F., et al.: Detecting spammers on Twitter. In: Collaboration, Electronic
Messaging, Anti-abuse and Spam Conference (CEAS), vol. 6 (2010)

8. Zheng, X., et al.: Detecting spammers on social networks. Neurocomputing 159, 27–34
(2015)

9. Han Veiga, M., Eickhoff, C.: A cross-platform collection of social network profiles. In:
Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM (2016)

10. Cohen, Y., Gordon, D., Hendler, D.: Early detection of spamming accounts in large-scale
service provider networks. Knowl. Based Syst. 142, 241–255 (2017)

11. Cohen, Y., Hendler, D., Rubin, A.: Detection of malicious webmail attachments based on
propagation patterns. Knowl. Based Syst. 141, 67–79 (2018)

12. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404
(1956)

13. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network
flow problems. J. ACM. 19(2), 248–264 (1972). Association for Computing Machinery

14. Dinic, Y.: Algorithm for solution of a problem of maximum flow in a network with power
estimation. Doklady Akademii nauk SSSR 11, 1277–1280 (1970)

15. Benesty, J., et al.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J.,
Benesty, J.: Noise Reduction in Speech Processing, pp. 1–4. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00296-0_5

An Information-Flow Control Model for Online Social Networks 67

http://dx.doi.org/10.1007/978-3-319-61176-1_13
http://dx.doi.org/10.1007/978-3-319-61176-1_13
http://dx.doi.org/10.1007/978-3-642-00296-0_5

Detecting and Coloring Anomalies in Real Cellular
Network Using Principle Component Analysis

Yoram Segal(✉), Dan Vilenchik, and Ofer Hadar

Communication Systems Engineering Department, Ben Gurion University of the Negev (BGU),
84105 Beer-Sheva, Israel

yoramse@post.bgu.ac.il

Abstract. Anomaly detection in a communication network is a powerful tool
for predicting faults, detecting network sabotage attempts and learning user
profiles for marketing purposes and quality of services improvements. In this
article, we convert the unsupervised data mining learning problem into a super‐
vised classification problem. We will propose three methods for creating an asso‐
ciative anomaly within a given commercial traffic data database and demonstrate
how, using the Principle Component Analysis (PCA) algorithm, we can detect
the network anomaly behavior and classify between a regular data stream and a
data stream that deviates from a routine, at the IP network layer level. Although
the PCA method was used in the past for the task of anomaly detection, there are
very few examples where such tasks were performed on real traffic data that was
collected and shared by a commercial company.

The article presents three interesting innovations: The first one is the use of
an up-to-date database produced by the users of an international communications
company. The dataset for the data mining algorithm retrieved from a data center
which monitors and collects low-level network transportation log streams from
all over the world. The second innovation is the ability to enable the labeling of
several types of anomalies, from untagged datasets, by organizing and prear‐
ranging the database. The third innovation is the abilities, not only to detect the
anomaly but also, to coloring the anomaly type. I.e., identification, classification
and labeling some forms of the abnormality.

Keywords: Anomaly detection · PCA · Data mining · Machine learning

1 Introduction

Anomaly detection which is based on Network traffic analysis tools are the foundation
stones for network upgrades, protecting against cyber-attacks, and are a marketing tool
for analyzing user profiles. Many heuristics can serve as starting points for filtering out
data that flows at extremely high speeds. Analysis of network traffic is the most effective
means of reducing search within the amount of information required for further analysis.

This work was supported by the Israel Innovation Authority (Formerly the Office of the Chief
Scientist and MATIMOP).

© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 68–83, 2018.
https://doi.org/10.1007/978-3-319-94147-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_6&domain=pdf

Business companies use network traffic testing tools as the primary means of their solu‐
tion architecture for intelligence and law enforcement bodies that monitor national
internet services providers (ISP). It is also a significant focus on the solution concept of
companies that offer optimization and advertising solutions based on network transpor‐
tation.

Traffic anomaly detection has received a great deal of attention in the research liter‐
ature. While there has been some work that leverages data structures to find heavy-hitters
[1, 2], most papers have utilized statistical-analysis techniques to detect outliers in traffic
time series. Numerous methods have been evaluated, including wavelets [3], moving
average variants, Fourier transforms [4, 5], Kalman filters [6], and PCA [7]. Early work
in this area often analyzed data from a single link [3], whereas more recent papers have
shown promising results by examining network-wide measurements [8]. With such a
large body of work, it becomes increasingly important to be able to compare presented
approaches. While there have been a few papers that analyzed a subset of the statistical-
analysis techniques [4, 5], researchers have only very recently begun investigating how
data-reduction technologies impact the ability to detect traffic anomalies [9]. Much in
the same way that early papers on traffic anomaly detectors had a limited scope, this
new line of work has analyzed the impact of only one form of data-reduction [10], on
only one type of traffic anomaly [11], or analyzed data from a small number of links [12].

We are focusing on unsupervised techniques for big cellular data set. Our observation
vectors have 97 different parameters. In the literature, various strategies proposed for
dimensionality reduction [13]. The actual dimensionality reduction methods can classify
into two classes: Feature extraction and Feature selection. Feature selection aims to seek
optimally or suboptimal subsets of the original features [14], by preserving the main
information carried by the collected complete data, to facilitate future analysis for high-
dimensional problems. Another approach is the opposite approach, instead of reducing
the dimensionality, Breiman [15] suggested to increase the dimensionality by adding
many functions of the predictor variables. Two outstanding examples of work in this
direction are the AmitGeman method [16] and support vector machines [17]. In feature
extraction model [18], the original features in the measurement space initially trans‐
formed into a new dimension-reduced space via some specified transformation. Signif‐
icant characteristics determined in the new axis.

Viswanath et al. [19] used PCA to classify Facebook users as either “normal” or
“anomalous” (user considered anomalous if its behavior was tagged as such by Face‐
book). Other papers that applied PCA successfully for anomaly detection include [20–
24].

The ability to enable the labeling of several types of anomalies, from untagged data‐
sets presented in some other works such as [25]. In [25] the validation data is split into
two sets, one set that represents nominal data, and the other that represents potentially
anomalous data. In some instances, benign anomalies may appear in the validation of
nominally categorized data where there was no prior suspicion of them. In our case, we
are adding external knowledge such as geographical location or period which allows us
to classify the data without mixing between anomalies and regular sets.

Our study in this article identifies and evaluates three main challenges: (1) Identi‐
fying anomalies from logs of real network traffic. (2) Development of new statistical

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 69

algorithms to identify anomalies that are adapted to the unique problem. (3) Verification
of the quality of results by breaking the data into normal and the rest according to some
parameter: cell congestion, time rather than statistical methods only.

2 Anomaly Detection Technics

The article deals with two main challenges: The first one is that there is no definition of
what an anomaly is, no training sets for anomalies. In practice the data is unlabeled. The
second challenge is handling big-data stream, off-line and certainly in an online situation
is a complicated technological challenge. The techniques for identifying anomalies can
be divided into two types: Techniques, which are unsupervised and assume that most of
the database observations represent normal or normal cases. For example, cluster anal‐
ysis techniques can be used to characterize typical representation. A representation that
does not belong to any cluster defined as an anomaly. Supervised techniques in which
database observations were pre-categorized for “normal” or “abnormal” observations.
In this case, computational learning methods can use for categorized training, which
enables the classification of new observation that we have not encountered in the learning
process.

We will use the PCA method which trained on normal behavior and identifies devi‐
ations from this behavior. We are showing characteristics that best explain the normal
behavior. PCA will do this by projecting on a base with a smaller or the same dimension
on which we will perform statistical analyzes.

Now we are going to explain the PCA model. The first principal component (PC) is
defined to be the direction (unit vector) V1 ∈ ℝ

p in which the variance of x is maximal.
The variance of x in direction v is given by the expression vT𝜮v. Therefore
V1 = argmaxV ∈ℝp ∈ vT𝜮v. The latter is the Rayleigh Quotient definition of the largest
eigenvalue of a matrix, therefore V1 is the leading eigenvector of 𝜮 and 𝝀1 = vT

1𝜮v1 is
the variance explained by V1. The remaining PCs are defined in a similar way and
together they form an orthonormal basis of ℝp. The sample PCs v̂1,… , v̂p are the eigen‐
vectors of the sample covariance matrix �̂�. Under various reasonable assumptions it was
proven that the principal components V1,… , Vp converge to the sample ones v̂1,… v̂p

[26, 27]. We assume that this is true in our case, and we justify it by the fact that we are
in the “fixed p large n” regime, where the ratio p/n tends to 0.

3 Creating an Anomaly Database

This research deals with the study of traffic of a cellular communication network to
discover anomaly based on traffic data. A cellular network contains many access points
to the Internet. Designated routers serve as a bridge between the Internet and the cellular
data flow. These routers regularly monitored so that the traffic information through them
is centralized into an information center, allowing a holistic, international view of the
behavior of network traffic (Fig. 1).

70 Y. Segal et al.

Fig. 1. Block diagram to preserve data confidentiality

Naturally, this information center (which based on the Log Center) generates signif‐
icant data at the rate of tens of gigabytes per second. It should emphasize that the stream
of information and information content is not constant and changes according to use.
Therefore, we averaged each measured parameter, separately, in time units. Such as
averaging over an hour of HTTP request size. Another problem we had to deal with was
maintaining anonymity and confidentiality. The cellular networks traffic logs contain
private user information. There is a need for log anonymization platform scalable for
big-data. As a result, we defined a batch based anonymization tool (Fig. 2).

Fig. 2. Data center architecture

The database fields divided into three types: Anonymous fields- Those fields used
as is; Fields that reveal user information- Those fields have been deleted; Fields that can
be used but still have indirect information about the user and therefore have a low risk
of user exposure. For those fields, we used at the beginning the well-known PBKDF2
anonymization algorithm. PBKDF2 is very secure and used for protecting password on
almost every server. The drawback is that the algorithm is slow. It makes the anonym‐
ization process to be prolonged. Therefore, currently, we are working with SHA-256
due to resource constraints. It takes one minute to anonymize a log of 1 Gb while almost
a day with PBKDF2.

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 71

Our database includes fields of the complete set of transaction log records and their
formats, but the transaction log fields in any specific geographical location depend on
its local configuration. HTTPS records contain data per connection, as transactions not
identified. HTTPS and HTTP Tunneled transactions records include only fields that
captured during their limited processing (e.g., timing, data amounts IP addresses, etc.)

4 Experiments and Results

This section describes our PCA model, methodology and software for detecting and
coloring the traffic anomaly by manipulate the same database in three major ways.

4.1 Time-Period Traffic Analysis

The first method for discovering anomaly based on different time-period traffic analysis.
The information divided into three-periods categories: Night\Early Morning, Morning
and Evening from all geographical locations. The motivation was to examine whether
traffic congestion can discover based on the assumption that each time profile has a
unique pattern. Based on the observed time profile, we injected vector information
belonging to other time profiles, and tried to discover them as an anomaly.

Initially, the time profiles tested naively, and elementary statistical parameters such
as mean and standard deviation were measured to characterize each period by mean and
standard deviation of its bytes stream volume. Sample results presented in Table 1.

Table 1. Elementary parameters from some data sets examples

Log file Records Date Time Hours
reordered

Mean Std.dev.

#1 (1 GB) 890,650 Sunday,
08.05.16

Night\Early
Morning 00:00–
07.59

6 35,105.823 700,800

#2 (1 GB) 20,131,028 Tuesday,
06.12.16

Morning 08:00–
11.59

1 36,531.608 639,683.435

#2 (3 GB) 28,676,280 Monday,
05.12.16

Eveing, 21:00–
23:59

3 40,428.878 820,315.637

Table 1 demonstrates the fact that an attempt to classify periods via first and second
order statistical characteristics does not allow proper classification. The average plus
the variance of each period creates an overlap that does not allow sufficient separation.

Since the naive method of detecting the anomaly of different time periods is not
relevant, we used the PCA method to identify an anomaly in datasets gathered in one
period and reached the system at a different time.

As a conclusion from Fig. 3, the PC effect is negligibly starting from the fourth
eigenvalue. Table 2 presents some of the eigenvectors components for each relevant
eigenvalue and associates them to the original dataset components.

72 Y. Segal et al.

Fig. 3. Time-periods major PCs

Table 2. Eigenvectors and time-periods components association table

PC3 PC2 PC1 Original vector components
2.60E-06 −7 69E-07 7.99E-08 RESPONSE CODE
−0.50005 0 006683 −0.00453 RESPONSE_ORIG_SIZE
−0.49974 0.006682 −0.00453 DOWNLOAD DATA SIZE
−8.35E-10 −2.65E-09 7.30E-10 COMPRESSION_LVL
−1.95E-07 4.41E-08 −8.84E-09 CONTENT TYPE
−9 77E-05 −1.32E-05 8.88E-07 UPSTREAM SIZE
−0.49975 0.006689 −0.00453 DOWNSTREAM SIZE

To colored anomaly, compare to the Weekday Night Hours (WNH) dataset, we
transformed all time-periods datasets into a new PCA space. We used the Normal State
Transformation Matrix (NSTM), calculated by performing principal components anal‐
ysis on the WNH dataset. We extracted the two independent eigenvectors and performed
the projection of the datasets of all time-periods on a single shared two-dimensional
graph (Fig. 4). We received a reduction of the dimension of information from a space
of 97 dimensions to a 2-dimensional space that allows us to present a point of view that
represents the distribution in a state without anomaly (Night hours). Similarly, we carried
out the information with Weekend hours, and Evening hours and these points were
marked in Yellow and Red respectively.

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 73

Fig. 4. Colored time-periods classes

After transforming each time-period dataset, separately, by the NSTM, we figured,
per time-period dataset, the average absolute value of projections, in the direction of
each eigenvector, individually. The following graph (Fig. 5) shows the average absolute
values of the projection on each PC.

Significant PCs for Weekday Night hours (Blue color) in importance order: 1. PC1,
2. PC2, 3. PC3
Significant PCs for Weekend hours (Orange color) in importance order: 1. PC56, 2.
PC54, 3. PC55

Fig. 5. Comparing average absolute values of time-periods projections on all PCs (Color figure
online)

With PCA model and NSTM, we rotate the original dataset axis system so that the
eigenvectors become the basis of the new axial system. The PC column in Table 3
indicates the sequence number of the most relevant eigenvectors which the dataset
vectors projected on it (most relevant PC’s are the PCs with the highest average absolute
values after projections into the PC direction). Our dataset eigenvectors are in dimension
97, meaning that each eigenvector has 97 components that can be interpret as eigenvector

74 Y. Segal et al.

weights. In Table 3, the weight column presents the X highest eigenvector weights per
PC. A projection toward a PC is a linear combination (inner product) between original
dataset vectors and eigenvector weights. Therefore, the eigenvector weights can inter‐
pret as the importance of the dataset vectors components (before projection). The last
column in Table 3 connects between the PCA space and the real dataset log components.
It allows us to interpret more efficient our log data and to characterize the most relevant
features that have the highest influence on the data transportation during different time-
periods.

Table 3. Eigenvectors components weights interpretation

PC Weight Original dataset columns description
1 0.998 The payload size only (from cache)

0.049 The estimated connection bandwidth at session beginning
0.004 The size of response from WEB without the headers
0.004 Size of original response on WEB containing headers
0.004 Size of the response data on the RAN side, including headers.

2 0.998 The estimated connection bandwidth at session beginning
0.049 The payload size only (from cache)

3 0.500 The size of response from WEB without the headers
0.500 Size of original response on WEB containing headers
0.499 Size of the response data on the RAN side, including headers.

54 0.514 When a Media file or Software download file is requested in range requests,
this field holds the full resource length

0.437 The number of times the video stopped playing
0.410 The time it took the video to start playing in milliseconds
0.261 This field indicates the method by which the file was processed for Multi-

Level Transcoding and Dynamic Rate Adaptation
55 0.659 The stalls average time in milliseconds

0.409 When a Media file or Software download file is requested in range requests,
this field holds the full resource length

0.398 This field indicates the method by which the file was processed for Multi-
Level Transcoding and Dynamic Rate Adaptation

56 0.700 The stalls average time in milliseconds
0.591 When a Media file or Software download file is requested in range requests,

this field holds the full resource length
0.287 The time it took the video to start playing in milliseconds

When examining anomaly at different times of the week, it is easy to see that the
distribution of the evening and morning hours is almost identical. But when compared
to the weekend we got an extreme deviation, when in fact all significant PCs that belong
to the “normal traffic” dataset are not substantial in the weekend traffic. The significant
PC’s for the weekend hours focused mainly on watching the video, and moreover, it
was noticeable that most of the video views had been interrupted (indicating a traffic
load).

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 75

4.2 Congestion Traffic Analysis

Second data structure: classification by congestion fields. The database contains some
columns describing the level of transportation load. That refers to three levels of the
number of Bytes per second passing through the examined network junction. 0 - low
load level, 1 - medium load level and 2 - high load level.

After computing the PCA model on the low-level congestion dataset (level 0), sorting
them and selecting the 3 with the highest eigenvalues, we extracted the three independent
eigenvectors (the ones that belong to the three highest eigenvalues) and performed the
projection of the datasets of all levels on a single shared three-dimensional graph. If to
be more precise, our 97 × 3 matrix operator transformed each vector that belongs to level
0 into a three-dimensional vector and colored them as a blue dot in the graph. We
received a reduction of the dimension of information from a space of 97 dimensions to
a 3-dimensional space that allows us to present a point of view that represents the distri‐
bution in a state without anomaly. Similarly, we carried out the information with a
congestion level 1, and a congestion level 2 and these points were marked in purple and
red respectively. Since the base is three dimensions we could display the results in a 3D
graph, and we obtained the following results:

To colored anomaly, compare to the conjunction 0 dataset principle components
(PCs), we transformed all conjunctions levels (0, 1, 2) into a new PCA space. We used
the Normal State Transformation Matrix (NSTM), obtained by performing principal
components analysis on the level 0 conjunction dataset. After transforming each
conjunction level dataset, separately, by the NSTM, we calculated, per conjunction level
dataset, the average absolute value of projections, in the direction of each eigenvector,
separately. The following graph shows the average conjunction of the projection on each
PC (Fig. 6).

Fig. 6. Congestion levels via PCA (Color figure online)

76 Y. Segal et al.

PC-s significant for conj1 (Level 0 - Blue color) in importance order: 1. PC17, 2. PC41,
3. PC38. PC-s are significant for conj2 (Level 1 - Orange color) in importance order:
1. PC41, 2. PC38, 3. PC32 (Fig. 7).

Fig. 7. Comparing average absolute values of congestion projections on all PCs. (Color figure
online)

The PCA method allows us to distinguish between different conjunctions levels by
performing a linear transformation of a new incoming measurement vector to the trained
PC’s space. If the new vector components (after transformation) will present in its
component 41, 28 and 32 values which are significantly higher compare to its other
components, then we know that there is an abnormal state and the reason for the anomaly
is that we have moved from level 0 to congestion level 1.

It is important to emphasize that the level of congestion does not represent a single
parameter whose value has exceeded a specific threshold value, that can interpret as a
sole conjunction criterion. The conjunction criteria is a linear combination of 97 different
measurements (components), each of which can be at its normal values range. Only the
linear combination indicates an increase in the level of congestion. Therefore, a naïve
and manual attempt to detected and recognize an anomaly in a vector of 97 dimensions
is in the range of difficult to the point of impossible. The PCA method allows us to lower
the vector dimension and also introduces interpretation that can detect and recognize
congestion anomalies in low-level network transportation.

4.3 Geographical Traffic Analysis

The third data structure deals with geographical location. Routers that spread all over
the world collected data stream flow from anonymous internet domains (150 different
domains - one column per domain, each line is one hour aggregated bytes flow). Those

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 77

datasets contain three months transportation log data. It divided into three continents
groups: Africa, North America, and South America. The aim was to reveal information
coming from one mainland within another mainland (for example, learning about the
African continent, injecting vectors from the North American continent, and coloring
such vectors as anomalies).

Remark: The original database was 97 dimensions and at a size that required analysis
with big-data tools such as SPARC and HADOOP. One of the ways to reduce big-data
is the use of preliminary network traffic expert knowledge. Therefore, based on the
expert’s guidance, which explained that hour resolution and domains transportation load
is enough to detect a geographic anomaly, we performed preliminary processing on the
original 97-dimensional database. Instead of doing machine learning with heavy-duty
distributed cloud processing power, we conducted pre-processing utility that reduced
the data into several tens of gigabytes without compromising the quality and ability to
detect and classify anomalies. We extracted only columns with domain loads (The
domain names converted to symbols for to preserve user confidentiality). Additionally,
we reduced our dataset from 97 to 10 dimensions by selecting the top ten domains
(classified by traffic average) on each of the three continents.

Figure 8 expose the common variance between African samples (X-axis) and North
American samples (Y-axis) as obtained by the Canonical Component Analysis (CCA)
operation. (The correlation coefficient is 0.82). It can understand that there is a great
deal of commonality between the two sources of information and therefore we cannot
expect to identify anomaly naively (as it presented with time-periods or conjunctions
level).

Fig. 8. Canonical Component Analysis (CCA) between Africa and North America, correlation =
0.82

The attempt to use the method used for time-period and congestion level, in a way
that each class has other PCs that describe the specific type is inappropriate for the
geographical case because here there is a strong correlation between the different PCs
(see Figs. 8, 9 and 10). So, in the geographical situation, we look at the visual graph

78 Y. Segal et al.

form, obtained after the projection. It can see that in the PC space each geographic region
is placed elsewhere in the graph. And therefore, it is possible to perform separation using
a linear regression line in the PC domain as a threshold between the different locations.

Fig. 9. CCA of N. America vs. S. America, correlation = 0.72

Fig. 10. CCA plot of Africa vs. S. America, correlation = 0.93

The geographical dataset is an example of analyzing different utilization mixtures
with different locations and the ability to detect context (geographical) according to its
pattern in the PCA space.

In Fig. 11 PCs trained on N. America data as normal dataset. We found in the training
set that two eigenvalues can explain most of the variance (Explained variance for PC1
is 84% and for PC2 is 13%). Of the two eigenvectors belonging to the most explanatory
eigenvalues (above eigenvalues), we extracted the eigenvectors components with the
highest weights. The domains that multiplied during the PCA transformation with those
most upper weights are the most dominant domain in the North American continent -
Domains marked as 0, 1 and 2 were dominant in the North American continent.

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 79

Fig. 11. PCS that trained on N. America domains Explained variance: PC1 = 84%, PC2 = 13%

In addition to extracting the 150 dominant domains, the pre-processing utility allows
us to produce another query on the geographical dataset. It enabled the extraction of
traffic classification by 80 different types of communications protocols (HTTP, AAC,
UDP, F4V, etc.). The protocols arranged in columns. Each table row is the amount of
traffic per hour. (Each table is a different continent, each column in the table is a different
protocol, each line is the amount of traffic at a given time.

In Fig. 12 PCs trained on N. America protocol as normal datasets (vector of 80
dimensions). After the PCA transformation, two eigenvalues in the training set can
explain most of the variance (Explained variance: 84%,13%). From the two eigenvectors
belonging to the most explanatory eigenvalues, we extracted, once again, the eigenvec‐
tors components with the highest weights. The protocols that multiplied during the PCA
transformation with those most upper weights are the most dominant protocol in the
North American continent - the top 5 features of PC1 are HTTP.Other, Image.WebP,
HTTPS.Web Messaging, and Torrent.

Fig. 12. PCs are trained on N. America Protocols Explained variance: PC1 = 81%, PC2 = 13%

80 Y. Segal et al.

The summary of the results of the PCA transformation of the cellular network trans‐
portation, in favor of the geographical investigation, by the cross-domain and by the
cross-protocol queries, is summarized in Table 4.

Table 4. Summary of PCA geographical projections

5 Reliability and Validity

The t-tests have used for verifying the accuracies. Statistical analyses are used to
conclude if the accuracies taken with the proposed approach are significantly distinct
from the others (whereas both the distribution of values were normal). The test for
assessing whether the data come from normal distributions with unknown, but equal,
variances is the Lilliefors test. Obtaining results by comparing the results produced by
100 trials (at each trial we used a different split of the data). Obtaining a test decision
for the null hypothesis that the data comes from independent random samples from
normal distributions with equal means and equal but unknown variances. Results show
a statistical significant effect in performance (p-value < 0.05, Lilliefors test H = 0).

6 Conclusions and Future Directions

In this article, we convert the unsupervised learning problem into a supervised classifi‐
cation problem. We proposed four methods for creating an associative anomaly within
a given commercial traffic data database. We demonstrated how, using the PCA

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 81

algorithm, we can detect the network anomaly behavior and classify between a regular
data stream and a data stream that deviates from a routine, at the IP network layer level.
The experiments we performed showed high and stable results, for example, it obtained
that the detection and coloring of the time-period anomaly was PD = 90.2% and PF =
0.5%. and PD = 89.9% and PF = 1.5% for the detection of a geographical domains
anomaly. Similar results obtained for the detection of anomalies in traffic congestions
and for the geographical protocols anomalies.

The next direction that this study can take is the usage of advanced time series tools
such as Facebook’s Prophet tool. With time series tools, we expect to find trends and
cycles in the dataset that will enable us to make an expectation forecast graph that any
deviation from a predefined threshold around the forecasting graph will be defined as
an anomaly.

References

1. Estan, C., Savage, S., Varghese, G.: Automatically inferring patterns of resource consumption
in network traffic. In: ACM SIGCOMM, Karlsruhe, Germany, pp. 137–148 (2003)

2. Zhang, Y., Singh, S., Sen, S., Duffield, N., Lund, C.: Online identification of hierarchical
heavy hitters: algorithms, evaluation, and applications. In: ACM Internet Measurement
Conference, Taormina, Sicily, Italy, pp. 101–114 (2004)

3. Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic anomalies. In:
ACM Internet Measurement Workshop, Marseille, France, pp. 71–82 (2002)

4. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection: methods,
evaluation, and applications. In: ACM Internet Measurement Conference, Miami Beach, FL,
USA, pp. 234–247 (2003)

5. Zhang, Y., Ge, Z., Greenberg, A., Roughan, M.: Network anomography. In: ACM Internet
Measurement Conference, Berkeley, California, USA, October 2005

6. Soule, A., Salamatian, K., Taft, N.: Combining filtering and statistical methods for anomaly
detection. In: ACM Internet Measurement Conference, Berkeley, California, USA, October
2005

7. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions. In:
ACM SIGCOMM, Philadelphia, Pennsylvania, USA, pp. 217–228 (2005)

8. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In: ACM
SIGCOMM, Portland, Oregon, USA, pp. 219–230 (2004)

9. Soule, A., Ringberg, H., Silveira, F., Rexford, J., Diot, C.: Detectability of traffic anomalies
in two adjacent networks. In: Passive and Active Measurement Conference (2007)

10. Mai, J., Chuah, C.-N., Sridharan, A., Ye, T., Zang, H.: Is sampled data sufficient for anomaly
detection? In: ACM Internet measurement Conference, Rio de Janeriro, Brazil, pp. 165–176
(2006)

11. Mai, J., Sridharan, A., Chuah, C.-N., Zang, H., Ye, T.: Impact of packet sampling on portscan
detection. IEEE J. Sel. Areas Commun. 24, 2285–2298 (2006)

12. Brauckhoff, D., Tellenbach, B., Wagner, A., May, M., Lakhina, A.: Impact of packet sampling
on anomaly detection metrics. In: ACM Internet Measurement Conference, Rio de Janeriro,
Brazil, pp. 159–164 (2006)

13. Fodor, I.K.: A Survey of Dimension Reduction Techniques, Technical report UCRL-
ID-148494, Lawrence Livermore Nat’l Laboratory, Center for Applied Scientific Computing,
June 2002

82 Y. Segal et al.

14. Mao, K.Z.: Identifying critical variables of principal components for unsupervised feature
selection. IEEE Trans. Syst. Man Cybern. Part B 35, 339–344 (2005)

15. Breiman, L.: Statistical modeling: the two cultures. Stat. Sci. 16(3), 199–215 (2001)
16. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural

Comput. 9(7), 1545–1588 (1997)
17. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using

support vector machines. Mach. Learn. 46, 389–422 (2002)
18. Webb, A.R.: Statistical Pattern Recognition, 2nd edn. Wiley, Chichester (2002)
19. Viswanath, B., Bashir, M., Crovella, M., Guha, S., Gummadi, K., Krishnamurthy, B.,

Mislove, A.: Towards detecting anomalous user behavior in online social networks. In: 23rd
USENIX Security Symposium (USENIX Security 14), pp. 223–238 (2014)

20. Bian, L.X., Crovella, F., Diot, M., Govindan, C., Iannaccone, R., Lakhina, A.: Detection and
identification of network anomalies using sketch subspaces. In: Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement, pp. 147–152 (2006)

21. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies in traffic
flows. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement,
pp. 201–206, (2004)

22. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. SIGCOMM
Comput. Commun. Rev. 34(4), 219–230 (2004)

23. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions.
SIGCOMM Comput. Commun. Rev. 35(4), 217–228 (2005)

24. Lakhina, A., Papagiannaki, K., Crovella, M., Diot, C., Kolaczyk, E., Taft, N.: Structural
analysis of network traffic flows. SIGMETRICS Perform. Eval. Rev. 32(1), 61–72 (2004)

25. Martin, R.A., Schwabacher, M., Oza, N., Srivastava, A.: Comparison Of Unsupervised
Anomaly Detection Methods For Systems Health Management Using Space Shuttle Main
Engine Data. Researchgate (2007)

26. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley Series in
Probability and Mathematical Statistics, 2nd edn. Wiley, New York (1984)

27. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

Detecting and Coloring Anomalies in Real Cellular Network Using PCA 83

Self-stabilizing Byzantine Tolerant
Replicated State Machine Based on

Failure Detectors

Shlomi Dolev1, Chryssis Georgiou2, Ioannis Marcoullis2(B),
and Elad M. Schiller3

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

dolev@cs.bgu.ac.il
2 Department of Computer Science, University of Cyprus, Nicosia, Cyprus

{chryssis,imarco01}@cs.ucy.ac.cy
3 Department of Computer Science and Engineering,

Chalmers University of Technology, Gothenburg, Sweden
elad@chalmers.se

Abstract. Byzantine Fault Tolerant (BFT) replication leverages highly
available cloud services and can facilitate the implementation of dis-
tributed ledgers, e.g., the blockchain. Systems providing BFT State
Machine Replication (SMR) work under severe system assumptions, for
example, that less than a third of replicas may suffer a Byzantine fail-
ure. Infrequent arbitrary violations of such design assumptions, may lead
the system to an unintended state, and render it unavailable thereafter,
requiring human intervention. Self-stabilization is a highly desirable sys-
tem property that can complement Byzantine fault tolerant systems, and
allow them to both tolerate Byzantine-failures and automatically recov-
ery from any unintended state that assumption violations may lead to.

This paper contributes the first self-stabilizing State Machine Repli-
cation service that is based on failure detectors. We suggest an imple-
mentable self-stabilizing failure detector to monitor both responsiveness
and the replication progress. We thus encapsulate weaker synchroniza-
tion guarantees than the previous self-stabilizing BFT SMR solution.
We follow the seminal paper by Castro and Liskov of Practical Byzan-
tine Fault Tolerance and focus on the self-stabilizing perspective. This
work can aid towards building distributed blockchain system infrastruc-
ture enhanced with the self-stabilization design criteria.

A technical report of this work appears on https://arxiv.org/.
S. Dolev—Partially supported by the Rita Altura Trust Chair in Computer Sciences;
the Lynne and William Frankel Center for Computer Science; the Ministry of For-
eign Affairs, Italy; the grant from the Ministry of Science, Technology and Space,
Israel, and the National Science Council (NSC) of Taiwan; the Ministry of Science,
Technology and Space, Infrastructure Research in the Field of Advanced Computing
and Cyber Security; and the Israel National Cyber Bureau.
I. Marcoullis—Partially supported by a Doctoral Scholarship program of the Uni-
versity of Cyprus.

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 84–100, 2018.
https://doi.org/10.1007/978-3-319-94147-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_7&domain=pdf
https://arxiv.org/

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 85

Keywords: Byzantine Fault-Tolerance · Self-stabilization
State Machine Replication · Fault detection

1 Introduction

Motivation and Prior Work. Modern Cloud systems offering data storage
achieve high availability by employing redundancy of processors (servers or repli-
cas) to store data and provide service. This facilitates robust services that can
withstand either stop-fail (crash) failures or Byzantine failures that are more
severe. The latter are usually modeled as an adversary that does not follow the
protocol, and sends faulty messages that aim at hindering the system’s progress,
polluting the non-faulty replicas’ state, or stopping service provision all together.
The State Machine Replication (SMR) [13] paradigm provides fault tolerant
replication and replica consistency by imposing an ordering of state transitions
to every correct replica in the system.

Byzantine Fault Tolerance (BFT) [6] allows replication in the presence of
Byzantine processors. It takes the form of repeated consensus to reach agree-
ment on an ordering of state transitions. Besides providing high availability to
cloud systems, BFT was also shown to enable the construction of distributed
ledgers [1], e.g., blockchains. Systems providing BFT require liveness assump-
tions such as synchronization of stronger or weaker forms, failure detection, or
randomization to overcome the FLP impossibility [12] (which states that agree-
ment cannot be reached in asynchrony, in the face of even one crash fault).

BFT requires a series of assumptions. A standard safety assumption is that
only less than one third of the system’s processors may experience Byzantine
faults [14]. Most existing systems also assume a consistent initial replica state
and system variables. Temporal violation of system assumptions can drive the
system to an illegal state, rendering it indefinitely unavailable. Systems that do
not facilitate recovery mechanisms from such transient faults, depend on human
intervention to return the system back to its intended behavior, i.e., to a legal
state. Self-stabilizing systems [7] are designed to automatically drive the system
back to a legal state. As such, self-stabilization is a desired system property that
adds value and enforces fault tolerance.

The only work available on self-stabilizing Byzantine Fault Tolerant replica-
tion is by Binun et al. [4] that assumes a semi-synchronous setting and employs a
self-stabilizing byzantine-tolerant clock synchronization algorithm [10] to enforce
a new instance of Byzantine agreement upon every clock pulse.

Our Approach. In this work, we follow the classic BFT protocol of Castro
and Liskov [6], but enhanced and modified to handle transient faults along with
Byzantine behavior. Replicas operate within a view, identified by an integer
number, in which a primary replica acts as the coordinator. In particular, each
replica in view i considers pi as the primary. The primary must ensure that client
requests are totally ordered, so that the other replicas execute them in this order
and maintain identical state.

86 S. Dolev et al.

Transient faults can corrupt the replica state and views and hence lead correct
(non-Byzantine) replicas in stale, conflicting replica states and perceived views.
This is a serious challenge not faced by [6] and the other works on BFT (with
the exception of [4]), since they assume a consistent initial state from which the
replication progresses. Furthermore, a faulty (Byzantine) primary may hinder
the replication progress, and in this case it must be changed by the correct
processors (by changing the view). Identifying a faulty primary becomes even
more challenging in the presence of stale information (due to transient faults), as
faulty replicas can take advantage of correct processors’ corrupted information
and mislead them in believing that the primary is behaving correctly, or accuse
a correct primary of being faulty.

Our Contribution. We provide a novel asynchronous self-stabilizing BFT SMR
service that addresses the above challenges (Sect. 3). Diverging from [4], we do
not use clock synchronization and timeouts, but rather, we base our solution on a
self-stabilizing failure detector (discussed below) and an automaton-based coor-
dination technique (Sect. 3.1). This is the first work to combine self-stabilization
and BFT replication that is based on failure detectors, thus encapsulating weaker
synchronization guarantees than [4]. In view of [1], we consider our work as an
important step towards realizing self-stabilizing BFT-based infrastructure for
blockchain systems.

Overview of Our Solution. Our solution is composed of three modules:

View Establishment Module: This is the most critical and challenging module.
It establishes a consistent view (and state) among n − f replicas, where n is the
number of replicas and f an upper bound on the number of faulty replicas. Man-
aging convergence to a consistent view in the presence of Byzantine processors
injecting arbitrary messages, and in the existence of other stale information in
local states and communication channels is very demanding and it is impossible
without a series of assumptions [3]. To this respect, we present an automaton-
based solution where convergence requires a fragment of the computation to be
free of failures (still, note that even under this constraint, view establishment is
very challenging as one infers from Sect. 3.1). In Sect. 4, we relax this constraint
by introducing, for the first time, an event-driven (unreliable) failure detector
that can be tuned to ensure (in all reasonable executions) that enough responses
from non-byzantine processors are received.

Replication Module: The replication module follows the replication scheme by
Castro and Liskov [6], but adjusted to also cope with stale information. When
there appears to be a common view and hence a primary, the replicas progress
the replication. In case an inconsistent replica state is detected (due to stale
information), then this module requests a view establishment and falls back to
a default state (whereas the scheme in [6] would require human intervention).
In [6], clients sent requests to the primary using signed messages, so that the pri-
mary cannot tamper with the content of the message and hence affect the repli-
cation progress. Then the primary essentially coordinated a three-phase-commit

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 87

protocol for establishing the request ordering. As we prefer to use information
theoretically secure schemes, rather than computationally cryptographic secure
schemes based on message signing, we require that clients contact all replicas.
The primary is still the one to decide the order, but the replicas, through a
self stabilizing all-to-all exchange procedure, validate the requests suggested to
be processed by the primary; a request is valid if it has been seen by a strong
majority of correct ((n − f)/2 + f) replicas (see Sect. 3.2).

Primary Monitoring Module: The primary is monitored by a view change mech-
anism, employing a failure detector (FD) to decide when a primary is suspected
and, thus, a view change is required (Sect. 3.3). A faulty primary may hinder
the replication progress by (i) not responding to messages from the replicas, (ii)
not processing requests, or (iii) processing invalid requests. In case the primary
is found to impede the replication progress, it is considered faulty and the mod-
ule proceeds to change the primary, by installing the next view. Following the
approach of Baldoni et al. [2], we propose an implementation of a self-stabilizing
FD that checks both the responsiveness of the replicas (including the primary),
and whether the primary is progressing the state machine. Our responsiveness
FD can be seen as a self-stabilizing version of the muteness FD given in [11]
but adapted to an asynchronous environment following the technique discussed
in [15]; our self-stabilizing implementation follows [5].

To cover case (iii) above, our FD monitors the requests processed by the
primary to check whether they are valid or not. Stale information gives rise to
certain subtle issues that our implementation needed to address (see Sect. 3.3.1).
Note that the work in [6] did not use a FD, but instead, for (i) and (ii) timeouts
where used (under a liveness assumption that communication delay between
the primary and the replicas is bounded); for (iii), as mentioned above, signed
messages were used. The liveness assumption imposed on our FD (to overcome
the FLP result [12]) is that a correct primary is never suspect by a majority of
correct ((n − f)/2) replicas.

Following the approach of [1], to facilitate the presentation of our solution,
in Sect. 3 we consider n = 5f +1 replicas. In Sect. 4 we explain how our solution
can be adjusted to obtain the optimal resilience of n = 3f + 1.

2 System Settings

Consider an asynchronous message-passing system with a fixed set of processors
P , where |P | = n, and each processor pi ∈ P has a unique integer identifier,
i ∈ [0, n−1]. At most f = (n−1)/5 processors may exhibit malicious (Byzantine)
behavior, i.e., fail to follow the protocol. This includes fail-stop failures (crashes).
(In Sect. 4 we increase f to (n − 1)/3). A correct processor is one not exhibiting
malicious behavior. Processors have hard-coded (incorruptible) knowledge of n
and f . Transient faults (i.e., short-term violations of system assumptions) may
also take place. These may corrupt local variables and program counters of any
number of processors, as well as data links, thus introducing stale information.

88 S. Dolev et al.

Communication. The network topology is a fully connected graph, with links
of bounded capacity cap in message packets. Processors exchange low-level mes-
sages called packets to enable a reliable delivery of high level messages. Packets
may be lost, reordered, or duplicated but not arbitrarily created, although chan-
nels may initially (after transient faults) contain stale packets. Due to the bound-
edness of the channels, the number of stale packets in the system’s communica-
tion links is also bounded O(n2cap). We assume the availability of self-stabilizing
protocols for reliable FIFO end-to-end message delivery over bounded-capacity
unreliable channels, such as the ones of [9]. We also assume that messages reach-
ing pj from pi are guaranteed to have originated from pi, unless they are the
result of a transient fault. I.e., a malicious processor pk (where i �= j �= k) cannot
impersonate pi sending a message to pj [8].

When processor pi sends a packet, pkt1, to processor pj , the operation send()
inserts a copy of pkt1 into the FIFO queue representing the communication chan-
nel from pi to pj . To respect the channel’s capacity bound, packets may be lost.
Nevertheless, a packet sent infinitely often is received infinitely often. Packet
pkt1 is retransmitted until more than cap acknowledgments arrive, and then
pkt2 starts being transmitted. This forms an abstraction of token carrying mes-
sages between the two processors, implementing a token exchange. This token
exchange technique facilitates a heartbeat to detect whether a processor is respon-
sive; if its is not, the token will not be returned. Applications may piggyback
information on tokens.

The Interleaving Model and Self-stabilization. A program is a sequence
of (atomic) steps. Each step starts with local computations and ends with a
communication operation, i.e., packet send or receive. We assume the standard
interleaving model where at most one step is executed in every given moment. An
input event can either be the arrival of a packet or a periodic timer triggering
pi to resend. The system is asynchronous and the rate of the timer is totally
unknown. The system state, si, consists of pi’s variable values and the content
of pi’s incoming communication channels. A step executed by pi can change the
state of pi. We name the tuple of states (s1, s2, · · · , sn) as the system state.
An execution (or run) R = c0, a0, c1, a1, . . . is an alternating sequence of states
cx and steps ax, such that each cx+1 is obtained from cx by the execution of
ax. An execution is fair when every correct processor that has an applicable
step ai infinitely often, executes ai infinitely often. The system’s task is a set of
executions called legal executions (LE) in which the task’s requirements hold.
An algorithm is self-stabilizing with respect to LE when every (unbounded)
execution of the algorithm has a suffix that is in LE. An iteration of an algorithm
formed as a do–forever loop is a complete run of the algorithm starting at the
loop’s first line and ending at the last line, regardless of entering branches.

Complexity Metric. We define an asynchronous round, a.r., of an execution
R as the shortest prefix of R in which every correct processor pi completes an
iteration Ii, and all messages pi sent during Ii were received.

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 89

3 Self-stabilizing BFT State Machine Replication

Our solution comprises of three modules: View Establishment, BFT Replication,
and Primary Monitoring (composed of the Failure Detector (FD) and the View
Change mechanism). Along with their interfaces they appear in Fig. 1.

A view is a bounded integer counter in [0, n − 1]. A processor in view i
considers processor pi as the view’s primary. If stale information or conflicting
views are detected, the system establishes a view by moving to a known hard-
coded view (e.g., view 0). A view common to 3f+1 processors is called serviceable
and allows processors to proceed with replication. Upon detecting a replica state
conflict, the replication module requires a view establishment while it moves
to a default state. If 3f + 1 processors suspect the primary, the view change
mechanism drives the system to a view change. to view i + 1. There are at most
f faulty processors, so there can be at most f faulty primary changes before
reaching to a correct one, if such processors have consecutive identities.

Failure
Detector

View
Change

BFT Replication

View Establishment

viewChange()

suspected()

getV iew()
flushState()

needStF lush()

Primary Monitoring

noV iewChange()

getPendReq()

getV iew()

getV iew()

Fig. 1. (Information flow A
to−→ B .) Call-

ing getV iew(i) returns pi’s current view pair or
� if no such exists, and getV iew(j) (j �= i),
returns pj ’s last reported view. If state conflict is
detected, needStflush() triggers a view establish-
ment. flushState() resets the state of the repli-
cation algorithm. getPendReqs() returns a set of
pending client requests that need to be executed by
the current primary. suspected() returns True if the
primary is suspected. noV iewChange() returns
False when a view change is taking place.

Thresholds. Following [1], we define
important thresholds required to take
decisions, based on n = 5f + 1 pro-
cessors. Section 4 suggests how these
thresholds can be adjusted for the
optimal n = 3f + 1. The benefit of
n = 5f + 1 is that it gives a sim-
pler solution requires less processors
to progress the replication. A proces-
sor pi considers a view v as: (i) Estab-
lishable, if n − f processors require
its establishment, the maximal possi-
ble support to be demanded. A view
that was indeed established (and was
not the result of an arbitrary ini-
tial state), must be held by at least
n− 2f correct processors, (ii) Adopt-
able, (implying that correct proces-
sors can adopt it) if it is supported
by max(n − 2f, n/2) processors, (iii)
Serviceable, if a majority of correct processors appear to have this view, i.e.,
�(n − f)/2� + f . This allows for the replication service to continue. Notably, for
n = 5f + 1, the two properties coincide on 3f + 1.

3.1 View Establishment

This module provides a unique view to the correct processors, and conducts view
changes upon the instruction of the primary monitoring module (Sect. 3.3.2). We
start with a description of the algorithm and continue the correctness outline.

90 S. Dolev et al.

3.1.1 Algorithm Description

Overview. The algorithm is implemented as a two state (or phase) automaton
(see Fig. 2). Phase 0 is a monitoring phase that checks for view change requests
or view and replica state conflicts, the latter of which are detected by the Repli-
cation module. Conflicts indicate the existence of stale information. Upon finding
a conflict or seeing a view change instruction, the automaton moves to Phase
1. Upon seeing evidence that the new view or replica state is established, the
processor moves back to Phase 0. This allows replication to continue.

Local Variables and Information Exchange. We use the subscript notation
vari to indicate a variable var of a processor pi. If the owner of the variable
is deduced from the description we omit it. The algorithm uses the variable
type vPair which is a pair of views 〈cur, next〉, where each view is an integer
in {0, 1, . . . , n − 1} ∪ {⊥}. Processors, have a common hard-coded fallback view
DF VIEW (say 0) and a reset vPair RST PAIR = 〈⊥,DF VIEW〉 used in case of
corruption. Processor pi maintains an array of vPairs called viewsi[n][n].

The field viewsi[i][i] is pi’s current vPair. Specifically, viewsi[i][i].cur is pi’s
current view and next only differs to cur if a view transition is taking place (i.e.,
the automaton is in Phase 1). Using the token passing mechanism described in
Sect. 2, pi sends viewsi[i][i] to the other processors. When pi receives the token
from pj it stores pj ’s piggybacked vPair in viewsi[i][j]. In every iteration pi

sends viewsi[i] to the other processors and stores a received copy of viewsj [j]
from pj in viewsi[j]. The phase array phs[n] contains fields with 0 or 1 indicating
automaton Phases 0 or 1. Field phsi[i] is pi’s phase and phsi[j] is the last reported
phase by pj sent. Boolean vChange records a request by the primary monitoring
mechanism to change the view when vChange = True.

There exists adoptable view
that pi does not have.

No adoptable view for pi, or the
reset triple is adoptable.

A view change was instructed by
the application

The next view is establishable.

Staleness or an adoptable view different
than the expected was detected.

0 1

Monitor

Fig. 2. View establishment automaton for
pi ∈ P .

Witnessing. Algorithm 1 uses
the alias echoi[j] for the triple
〈viewsi[i][j], phsi[j], witnessesi[j]〉.
The boolean array witnessesi[n]
stores witnessesi[j] = True if pj has
sent a copy of echoj [i] identical to
echoi[i] with regards to view pair and
phase. A processor pj that returns
pi’s current values is called a witness.
If the copy of echoj [i] is also the
identical to echoi[j], i.e., towards the
witnessesi[j] value pj is also added
to the witnesSeen set. The above
facilitates an echo mechanism, that pi uses to learn if others are aware of its
current values. The echoing mechanism of pi, logs all those that have confirmed
that they have witnessed pi in its most recent view transition.

Detailed Description. The algorithm follows the states and transitions of
the automaton of Fig. 2. When monitoring the existence of a unique view, the

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 91

Algorithm 1. Self-stabilizing View Establishment; code for processor pi
1 Macros: flushV E() = {viewsi[i][i] ← RST PAIR; flushState(); }
2 updated(k) = return (viewsi[i][k] = viewsi[k][k])
3 typeCheck(vPair vp) = return ((∀x ∈ vp.〈cur, next〉 : x ∈ [0, n − 1] ∪ {⊥}) ∧

(vp.next �= ⊥))
4 legitPhsZero(vPair vp) = return (((vp.cur = vp.next) ∨ (vp = DF VIEW)) ∧

typeCheck(vp))
5 legitPhsOne(vPair vp) = return ((vp.cur �= vp.next) ∧ typeCheck(vp))
6 stale(k) = return ((phs[k] = 0 ∧ ¬legitPhsZero(views[i][k])) ∨ (phs[k] = 1 ∧

¬legitPhsOne(views[i][k])))
7 staleM(m, k) = return ((m.phs = 0 ∧¬legitPhsZero(m.views[k]))∨ (m.phs = 1

∧¬legitPhsOne(m.views[k])))
8 goodVHold(view x, j) = return (updated(j) ∧ ¬stale(j) ∧ (viewsi[i][j].cur = x));
9 adoptSet(vPair vp) = {pj ∈ P : phs[j] = 0 ∧ goodVHold(vp.cur, j)};

10 adoptable(vPair vp) = return (|adoptSet(vp)| ≥ 3f + 1))
11 transitAdopble(vPair vp) = return(|adoptSet(vp) ∪ {pj ∈ P : phs[j] = 1 ∧

goodVHold(vp.next, j)}| ≥ 3f + 1)
12 adopt(vPair v) = {vpi.〈cur, next〉 ← v.〈cur, next〉};
13 estable(vPair vp) = return (|{pj ∈ P : goodVHold(vp.cur, j) ∧ (viewsi[i][j].next =

vp.next))}| ≥ 4f + 1)
14 existsCatchUpSet() = return ((|adoptSet(vpi)| ≥ 3f + 1) ∧ (|adoptSet(vpi) ∪ {pk ∈ P :

goodVHold(vpi.cur, k) ∧ phs[k] = 1 ∧ (views[i][j].next = vpi.next)}| ≥ 4f + 1))
15 establish() = {vpi.cur ← vpi.next};
16 echo(j) = return (echo[i] = echo[j])
17 echoNoWitn(k) = return (〈vpi, phs[i]〉 = 〈echo[k].views, echo[k].phs〉)
18 witnesSeen() = return (|witnesSeen ∪ {pi : witnesses[i]}| ≥ 4f + 1)
19 nextV iew() = {views[i][i].next ← views[i][i].cur + 1};
20 nextPhs() = {〈phs[i], witnesSeen, vChange〉 ← 〈(phs[i] + 1 mod 2), ∅, False〉};
21 Interface functions: viewChange() = {vChange ← True};
22 getV iew(j) = {if (j = i) ∧ (phs[i] = 0 ∧ witnesSeen()) then {if (adoptable(view)) then

return (view.cur) else return (�)} else return (views[i][j].cur)};
23 do forever begin
24 if stale(i) then flushV E; phs[i] ← 0;witnesSeen ← ∅;
25 witnesses[i] ← (∃S ⊆ P : (pk ∈ S ⇐⇒ echoNoWitn(k)) ∧ |S| ≥ 4f + 1);
26 witnesSeen ← witnesSeen ∪ {pj ∈ P : (echo(j) ∧ witnesses[j])};
27 if phs[i] = 0 ∧ witnesSeen() then
28 if (needStF lush() ∨ (adoptable(RST PAIR) ∨ ((�vp′ ∈ views[i] : adoptable(vp′))

∧¬transitAdoble(vpi))) then flushV E();nextPhs();

29 else if ((∃vp′ ∈ views[i] : adoptable(vp′)) ∧ (vpi.cur �= vp′.cur)) then

adopt(vp′);nextPhs();
30 else if (vChange ∧ adoptable(vpi)) then nextV iew();nextPhs();

31 else if phs[i] = 1 ∧ witnesSeen() then
32 if ((estable(vpi) ∨ existsCatchUpSet()) ∧ ¬stale(i)) then establish();nextPhs();

33 else if stale(i) ∨ (∃vp′ ∈ views[i] : adoptable(vp′) ∧ vp′.cur �= vpi.next) then
flushV E();nextPhs();

34 foreach pj ∈ P do send 〈views[i], phs[i], witnesses[i], (views[i][j], phs[j],
witnesses[j])〉;

35 upon receive m from pj do if (¬staleM(m, j)) then 〈views[j], phs[j], witnesses[j],
echo[j]〉 ← m;

algorithm first checks whether pi has a view that is not stale with respect to the
phase and the view pair’s integrity (line 24). It then proceeds to renew the set
of witnesses, the processors that have echoed its most recent values of vpi and
phs[i] (line 25), and then updates its witnesSeen set with processors that have
observed the whole echo[i] (line 26). Before describing the phases, we note that
every iteration completes with a broadcast of local variables (line 34).
Phase 0 – Monitoring. Lines 27–30 monitors the current view and initiates either
a view establishment, or view change, given at least 4f + 1 processors belong
to its witnesSeen set, i.e., they are aware of pi’s recent values and pi is aware

92 S. Dolev et al.

of this. If pi considers that the RST PAIR is adoptable or that no view has enough
support, it moves to RST PAIR, and Phase 1 (line 28). If it considers that there
exists an adoptable view that it does not have, it adopts this and moves to
Phase 1 (line 29). If a view change is requested by the view change module,
and pi has an adoptable view, then it increments its view and moves to Phase 1
(line 30).
Phase 1 – View Transition. Lines 31–33 control the completion of transiting
to a new view and to Phase 0. Again witnesSeen() needs to hold (line 31). If
the view being installed (vpi.next) is establishable, or enough processors appear
to be transiting to this, then pi proceeds to vpi.next and Phase 0 (line 32).
Otherwise, if it appears as the result of stale information, then pi moves to
RST PAIR.

3.1.2 Correctness

Definitions. A fair execution R is mal-admissible if, throughout R, the set of
faulty processors obeys the bound f . A fair execution is mal-free if throughout
R every processor acts as a correct one. A message is a threat to pi ∈ P if its
receipt can cause the overthrow of pi’s view. A stable view cannot be overthrown
by malicious processors, and thus characterizes a legal system state.

Task Description. The view establishment task VE includes all the system
states of mal-admissible executions in which there is a stable view, or where a
stable view is followed by a view change leading to a new stable view.

Proof Outline. The proof starts by establishing a stale-free local state with a
legit (possibly default) view. Within O(n) a.r., and in the absence of a stable
view (due to an initial arbitrary state), a mal-free execution reaches a safe system
state c ∈ VE , which has a stable view, either the default one or one that existed
in the system. This concludes the convergence proof. We then prove closure. In
the absence of view changes, no correct processor holding a stable view ever
switches to a different view, but if there is a view change, then a new stable view
is installed within O(n) a.r.

Lemma 3.1. Consider a mal-admissible execution R of Algorithm 1 starting in
an arbitrary system state. Within O(1) a.r., there are no messages from correct
processors that encode a threat.

Lemma 3.2. Consider a mal-free execution starting without a stable view.
Within O(n) a.r., either a stable view v �= DF VIEW is reached, or a view reset
is initiated.

Lemma 3.3. In a mal-admissible execution starting with a stable view v, for
every pk ∈ C : viewsk[k][k] �= v, within O(1) a.r. viewsk[k][k] = v holds.

Theorem 3.1 (Convergence). Consider a mal-free execution of Algorithm 1
starting in an arbitrary state. Within O(n) a.r., the system reaches a state with
a stable view v, and every correct processor adopts view v.

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 93

Theorem 3.2 (Closure). Consider a mal-admissible execution R, starting
with a state encoding a stable view v. Either, v remains stable throughout R,
or ∃c ∈ R, which encodes a view change that results in a new stable view v′.

3.2 State Replication Algorithm

The replication module (Algorithm 2) conducts SMR if there is a serviceable
view. Our protocol follows Castro and Liskov [6], deviating only when catering
for self-stabilization. In particular, (i) we introduce specific bounds for all our
structures, (ii) we require that clients communicate their requests to all replicas.
We proceed with a description of our solution and its correctness.

3.2.1 Algorithm Description

Clients and Requests. Processors receive requests from a known fixed set
of clients C, where |C| = K. Following the typical well-formedness condition,
clients do not send a new request before a previous one is complete, i.e., until it
receives f + 1 identical responses. It is beyond the scope of this work to establish
whether the content of a given request is malicious, as we concentrate on the
server side [6].

The BFT Replication Task. Consider the set of correct processors C ⊂ P ,
and a set of client requests K = {κ1, κ2, · · · , κK}. The BFT replication task
requires all processors in C agree on a total order of execution of the requests of
K. Moreover, the client that issued the request eventually receives f +1 identical
request responses. After a transient fault takes place, safety (i.e., identical replica
state) may be violated, until the system converges back to a legal state.

Ordering Requests. To impose a total order in the execution of requests, the
primary assigns a unique sequence number sq ∈ [0,MAXINT] to each received
request. This is an integer incremented from a practically inexhaustible counter
e.g., a 64-bit one1. A transient fault may corrupt the counter to attain its max-
imum value abruptly. In this case we reset the view, the state and sq to 0.
During view changes we do not reset the sequence number. While we cope with
transient faults corrupting the request counter, we may still have a malicious
primary that tries to propose arbitrarily high sequence numbers to the requests
in order to exhaust the counter. We follow [6] in restricting a faulty primary
from exhausting the counter by imposing an upper and lower bound on the
sequence numbers that other processors will accept from the primary. We bound
the sequence numbers sq that the primary can use for a request in any given
instance of the execution to σK, where σ is a system defined integer constant.
Under this bound, the primary can only assign a sequence number to a pending
request if (i) this is the locally lowest unassigned one, and (ii) if this sequence
number is not σK away from the sequence number of the last executed request.
1 A 64-bit counter incremented per nanosecond, can last for 500 years (virtually an

infinity).

94 S. Dolev et al.

Algorithm 2. Self-stabilizing Byzantine Replication; code for processor pi
1 Definitions: lsn is the sequence number of the last executed request. nextSeqn is the next

unassigned sequence number. A request is known to pi if another 3f processors report an
identical copy of this request.

2 Interface functions:
3 getPendReqs() = returns the set of pending requests reported to pi by another 3f

processors;
4 needStF lush() = return (needF lush);
5 flushState() = {flush ← True}
6 do forever begin
7 if Conflicting replica state or local stale information then Reset the replica;

needF lush ← True;
8 if flush = True then Reset the replica;
9 if No view establishment taking place then

10 if No view change then
11 if pi is primary then
12 while ∃ known pending request r ∧ nextSeqn < lsn + σK do
13 Assign nextSeqn to r and move to status pre-prepared requests

14 else
15 foreach known pending request r ∧ primary has assigned seq. num.

sq : sq < lsn + σK do Place r in pre-prepared requests;

16 foreach request r known as pre-prepared do Move to status prepared;
17 foreach request r known as prepared do Move to status commit;
18 foreach request r known as commit ∧ q.sq = lsn + 1 do Apply r and move to

executed;

19 else Reset replica state;
20 foreach Client c do Send c’s last processed request;
21 foreach Processor p do Send pi’s replica state and requests’ queue;

22 Upon receipt of message m from pj ∧ No view establishment do if No view change
then Store pj ’s replica state and request queue else Only store replica state.

23 Upon receipt of request q from client c store as pending;

Description. Algorithm 2 implements the replication procedure by first check-
ing and handling replica state conflicts (line 7). It then processes messages that
have not been assigned a sequence number (line 12 for the primary and line 15 for
non primary), and then proceeds to maintain the queues of prepared and com-
mitted requests (lines 16–17), and applying effects to the replica for committed
requests (lines 18). Line 21 propagates its replica state to other processors and
line 20 the last executed request of each client. It handles received information
accordingly (lines 22–23).

3.2.2 Correctness
Outline. We first establish that locally detectable stale information is removed by
resetting the local state to a default one. We then prove that correct processors
sustain a consistent common state prefix, or if no such exists, they proceed to
a view establishment (Lemma 3.4). Processors pi, pj ∈ C with replica states
Si, Sj have a common state prefix (CSP), if the processor state that applied
the least number of transitions (say, pi’s) is a prefix of the other processor, i.e.,
Si = S′

j : Sj = S′
j ◦S′′

j . They also have a consistent common state prefix (CCSP)
if they have a CSP, their transitions history is identical, and their state does not
encode stale information that can make the two states to divert. A safe system
state is one in which 3f + 1 correct processors have a mutually known CCSP.

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 95

If a processor does not locally see such a state prefix, it declares a conflict via
needStF lush(). The convergence theorem proof shows that Algorithm 2 manages
to install a CCSP within O(n) a.r. Closure ensures that the BFT replication task
is satisfied once the system has converged.

Lemma 3.4. Within O(1) a.r. of Algorithm 2’s execution, a processor pi ∈ C
has no local stale information, and upon a conflict, it calls needStF lush().

Theorem 3.3 (Convergence). Consider an execution R of Algorithm 2.
Within O(n) a.r., the system reaches a safe system state.

Theorem 3.4 (Closure). Consider an execution R starting in a safe system
state. The system remains in a safe state where it either conducts replication or
it proceeds with a view change.

3.3 Primary Monitoring

The primary is monitored by a view change mechanism, which employs a failure
detector to decide when a primary is suspected and, thus, a view change is
required. View change facilitates the liveness of the system, since if a malicious
processor does not correctly progress the replication it is changed. We proceed
to present the two parts of the module.

3.3.1 Failure Detection
We base our FD (Algorithm 3) on the token-passing mechanism described in
Sect. 2, and follow the approach of [2] to check both: (i) the responsiveness of
processors, (ii) that the primary is progressing the state machine.

Responsiveness Check (lines 8–10). Every processor pi maintains a heart-
beat integer counter for every other processor pj . Whenever processor pi receives
the token from processor pj over their data link, processor pi resets pj ’s counter
to zero and increments all the counters associated with the other processors by
one, up to a predefined threshold value T . Once the heartbeat counter value of
a processor pj reaches T , the FD of processor pi considers pj as unresponsive.
In other words, the FD at processor pi considers processor pj to be live and
connected if and only if the heartbeat associated with pj is strictly less than T .
Note that malicious processors can intentionally remain unresponsive and then
become responsive again. A correct processor cannot distinguish this behavior
from inaccuracies of the FD (due to packet delays) that make a correct pro-
cessor appear briefly unresponsive but eventually appear as responsive when its
delayed packets are received. Nevertheless, the use of the FD is to suggest which
processors are responsive at a given time.

Primary Progress Check (lines 11–23). To achieve liveness, processors need
to be able to check whether the primary is progressing the state machine by
imposing order on the requests received. The responsiveness FD only suspects a
non-responsive primary. A faulty primary can be very responsive at the level of

96 S. Dolev et al.

Algorithm 3. Self-stabilizing Failure Detector; code for processor pi
1 Constants: T an integer threshold.
2 Variables: beat[n] is an integer heartbeat array where beat[j] corresponds to pj ’s heartbeat

and beat[i] is unmodified and remains 0. FDset is the set of processors that are responsive
according to their heartbeat, cnt is a counter related to the primary or a proposed primary
of pi’s current view. primSusp[n] is a boolean array of {True/False} where primSusp[j]
indicates whether processor pj suspects the primary of its current view or not.
curCheckReq the requests’ set (of size at most σK) that is currently being checked for
progress. prim holds the most recently read primary from the view establishment module.

3 The token passing mechanism (Sect. 2) piggybacks FDset[i] and primSusp[i] when sent to
other processors, and updates fields FDset[j] and primSusp[j] upon receipt of the token
from pj .

4 reset() sets all fields of primSusp[•] to False, set curPendReqs to ∅ and beat[•] and cnt to 0.
5 Interface function:
6 suspected() = (|{pj ∈ P : (getV iew(j) = getV iew(i)) ∧ (primSusp[j])}| ≥ 3f + 1))

7 Upon receipt of tokenj from pj begin

8 beat[j] ← 0; beat[i] ← 0
9 foreach pk ∈ P \ {pj , pi} do beat[k] ← beat[k] + 1;

10 FDset ← {p� ∈ P : beat[�] < T};
11 if prim �= getV iew(i) then foreach pj ∈ P do reset();
12 prim ← getV iew(i);
13 if (noV iewChange() ∧ (prim ∈ {j : pj ∈ P})) then
14 if (j = prim) then
15 if (∃x ∈ curCheckReqs : x �∈ getPendReqs()) ∨ (curCheckReq = ∅) then
16 cnt ← 0; curCheckReq ← getPendReqs()
17 else cnt ← cnt + 1;
18 // if pi, pj in same view then store pj ’s verdict on the primary

19 else if (prim = getV iew(j)) then primSusp[j] ← tokenj .primSusp;
20 foreach {pk ∈ P \ {prim}} do {cnt ← 0}; // reset all counters except primary’s;
21 if prim = i then cnt[i] ← 0;
22 if ¬(primSusp[i]) then

primSusp[i] ← ((prim ∈ {k : pk ∈ P}) ∧ (prim /∈ FDset) ∧ (cnt > T));

23 else if prim �∈ {j : pj ∈ P} then curCheckReq ← ∅; cnt ← 0;

packets, and thus evade suspicion by sending messages that are unrelated to the
requests of the clients. The primary can be detected to hinder progress when not
progressing requests that are locally reported to be known by 3f +1 processors.

To this end, the primary’s progress check enhances the heartbeat FD to pro-
vide liveness but not safety as follows. The failure detector holds a set of requests
curCheckReq that it drew from the replication module the last time the pro-
cessor removed a request from curCheckReq using the interface getPendReqs()
(line 16). If at least one request of curCheckReq was removed from the cur-
rently pending requests, then the counter is reset to 0, and curCheckReqs is
updated by getPendReqs (line 16). Note that the approach is self-stabilizing,
since if curCheckReqs is the result of an arbitrary initial state this is cleaned
within one iteration of the algorithm. If there was no progress then the primary’s
counter cnt is incremented (line 17). Line 22 determines whether a primary pj

is locally suspected if its counter is beyond the threshold for responsiveness or
request progress and sets primSusp[j] = True. The interface suspected() (line 6)
considers the primary as suspected if 3f + 1 processors consider it as suspected.

Liveness Assumption. We assume that a correct primary is never suspected
by more than 2f correct processors.

Suspicion of Primary. If processor pi suspects its primary, then primSusp[i] =
True permanently. So a malicious primary will either be suspected by correct

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 97

Algorithm 4. Self-stabilizing View Change; code for processor pi
1 Variables: Tuple vcm[n] = 〈vStatus, prim, needChange, needChgSet〉 where vStatus ∈

{OK, noService, vChange}, needChange is a boolean and needChgSet a set of processors
that appear to require a view change. vcm[i] holds pi’s values and vcm[j] holds pj ’s last
gossiped value to pi. DEF STATE is a default value for vcm = 〈OK, getV iew(), False, ∅〉.

2 Macros: cleanState() = {foreach pj ∈ P do vcm[j] ← DEF STATE; }
3 existsV iew(prim) = return (prim ∈ {j : pj ∈ P});
4 supChange(x) = return (∃X ⊆ P : (∀pj , pj′ ∈ X : vcm[j].prim = vcm[j′].prim) ∧

(| ⋂
pk∈X vcm[k].needChgSet| ≥ 3f + 1) ∧ (|X| ≥ x))

5 Interface function: noV iewChange() = (vStatus = OK);

6 do forever begin
7 let needChange ← suspected();
8 if existsV iew(getV iew(i)) then
9 if (prim = getV iew(i)) ∧ (vStatus �= vChange) then

10 needChgSet ← needChgSet ∪ {pj ∈ P : getV iew(i) = getV iew(j) ∧
vcm[j].needChange = True};

11 if ((|{vcm[j].vStatus = noService}pj∈P | < 2f + 1)) then vStatus ← OK;

12 if (vStatus = OK) ∧ (supChange(3f + 1)) then vStatus ← noService;
13 else if (supChange(4f + 1)) then vStatus ← vChange; viewChange();

14 else if (prim = getV iew(i)) ∧ (vStatus = vChange) then viewChange();
15 else cleanState();

16 else cleanState();
17 foreach pj ∈ P do send vcm;

18 Upon receive m from pj do vcm[j] ← m;

processors, or be forced to progress the replication, and changing behavior is not
tolerated by correct processors. Notice that the liveness assumption discussed
above ensures that no more than 2f correct processors will set their suspicion
to True for a correct primary.

Correctness Outline. The proof shows that Algorithm 3 is stabilizing. The
responsiveness check stabilizes within O(1) a.r., requiring an exchange with
every one of the correct processors to reset the beat[j] field for every correct
processor pj . If the primary progress check has stale information, then either
(i) field primSusp[i] = True, or (ii) set curCheckRes contains requests that
never existed. These do not force a stop of service, but both are reset after a call
for a view change (possibly triggered by stale information). Thus the algorithm
stabilizes within O(1) a.r.

3.3.2 View Change upon Suspected Primary

Algorithm Outline. In a nutshell, a processor propagates messages about
which processors have reported to require a view change. If 3f + 1 processors
appear to have suspected the primary, then the processor stops providing ser-
vice even if itself has not suspected the primary itself. The above guarantees that
since f of 3f + 1 processors may be malicious, at least 2f + 1 correct processors
have firmly suspected the primary. The replication mechanism is left with 3f
processors, which is not enough to make progress, so the view change is forced
upon the system by the 2f + 1 correct processors who are the majority of cor-
rect processors. The view change is initiated upon seeing that the intersection
of those that require view change becomes 4f + 1.

98 S. Dolev et al.

Detailed Description. Processor pi executing Algorithm 1 first reads the FD
(line 7), and then checks whether the view establishment module returns a cur-
rent view (line 8). If not, it sets the algorithm’s local variables to their default
values (line 16). If the primary has changed (line 9), pi resets the status and vari-
ables only if the status is not yet vChange. If any of these two conditions fail,
it adds processors that have their needChange flag to True to the needChgSet
(line 10). Line 11 resets the status to OK if there is no support to change the view,
and it copes with arbitrary changes to the status. The algorithm then moves from
status OK to noService if there are more than 3f + 1 processors in needChgSet
(line 12). If the processor sees 4f +1 processors in needChgSet it moves to status
vChange and calls the veiwChange() interface function of the view establish-
ment module to initiate the view change procedure to the next view (line 13).
While a view does not change, it holds a set of processors needChgSet, and it
adds to this any processors that report having seen suspected(). While in status
vChange and the view not having changed, the algorithm renews its request to
the view establishment module (line 14). Line 15 captures the case where the
view change has finished and the local variables are set to their defaults. Lines 17
and 18 implement the communication between the processors.

Correctness. The convergence proof follows from careful observation of the
algorithm suggesting that stale information in variables and data links is removed
after O(1) a.r. After this, there is no arbitrary initiation of a view change. We
prove closure by suggesting that if the primary’s activity (i.e., messages) lead
2f + 1 processors to mutually reach to the noService status, then the system
will move to a view change, and within the O(n) a.r. required by the view
establishment module, a new primary is installed.

Theorem 3.5 (Closure). Consider an execution R where the primary pj’s
activity leads to the encoding of a view change. Within O(n) rounds, a new pri-
mary pj+1 is installed, and the view change mechanism returns to monitoring.

4 Extensions

4.1 Relaxing the Assumption of Mal-Free Execution in View
Establishment

Recall that the convergence proof for view establishment (Sect. 3.1) assumed mal-
free executions (that is, a view is guaranteed to be established in the absence of
Byzantine behavior). We now discuss how we can relax this assumption.

Tolerating Malicious Behavior During View Establishment. As
expected, to be able to establish a view in the presence of both malicious behav-
ior and stale information, stronger assumptions are required (cf. [3]).

Such a liveness assumption would be k-admissibility: Assume a ratio k
between the fastest token round trips in a data link to the fastest non-
faulty processors and the slowest non-faulty processors. In other words, under

Self-stabilizing Byzantine Tolerant SMR Based on Failure Detectors 99

k-admissibility, a ratio of k is assumed between the fastest and the slowest non-
faulty processor (when a fast correct processor exchanges k tokens, then at least
one token is exchanged by the slowest correct processor). We can consider an
event-driven FD implemented as follows: When pi broadcasts a message over the
data-link token to all its neighbors, pi resets a counter for each attached link and
starts counting the number of tokens arriving back to it, until at least n − 2f
distinct counters reach a value that is at least k. Then, under k-admissibility, pi

can safely assume that values from all non-faulty processors (i.e., n−f) arrived.
In other words, given k, the above simple FD can be tuned to ensure correct

processors get replies from all correct processors. (In a synchronous system k
would be small, and as asynchrony increases, k would need to increase.) Also, if
a solution takes decisions based on a threshold (fraction) of processors (as in our
solution), then k can be reduced, hence making the liveness assumption requir-
ing “less synchrony”. In some sense, this FD can be considered as an on-demand
failure detector than can be tuned based on the “level” of synchrony of the sys-
tem. The introduction of this FD, allows, for the first time, to avoid the constant
overhead of background bookkeeping. One can see that our view establishment
convergence proofs hold (i.e., establishing a view under both Byzantine behav-
ior and stale information is still guaranteed) in k-admissible executions, if our
view establishment algorithm of Sect. 3.1 is equipped with the aforementioned
FD (parameterized with k).

4.2 Optimality

Our solution presented in Sect. 3 assumes that at most f = (n − 1)/5 of the
processors are faulty. As discussed there, to establish a view, we require the
agreement of n − f processors (i.e., 4f + 1), to adopt an established view and
correct processors to sustain it, max{n − 2f, n/2} processors must support it
(i.e., 3f + 1), whereas in order to make decisions regarding the progress of the
replication (servicable view) we need �(n − f)/2� + f processors (i.e., 3f + 1) to
agree (strong majority of correct processors). This is also the threshold we need
for a primary to be suspected, and n − f to proceed to change the view.

We have parameterized our solution so that these thresholds can be adjusted
for different ratios between faulty and correct processors (as explained, we used
n = 5f + 1 as it makes the presentation easier to follow). In particular, for the
optimal resilience (cf. [1]) ratio of f ′ = (n− 1)/3, and going over the correctness
proofs of our solution, it follows that establishing a view will require agreement of
2f ′ +1 processors, adopting a view will require the support of 3

2f ′ +1 processors,
whereas serviceabilty requires 2f ′ + 1 processors to agree (the same threshold
required in [6]).

100 S. Dolev et al.

5 Conclusion

We presented the first self-stabilizing BFT algorithm based on failure detection
to provide liveness. The approach is modular and allows for suggested exten-
sions and to achieving optimal resilience. The result paves the way towards
self-stabilizing distributed blockchain system infrastructure.

References

1. Abraham, I., Malkhi, D.: The blockchain consensus layer and BFT. Bull. EATCS
3(123), 74–95 (2017)

2. Baldoni, R., Hélary, J., Raynal, M., Tanguy, L.: Consensus in Byzantine asyn-
chronous systems. J. Discrete Algorithms 1(2), 185–210 (2003)

3. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impos-
sibility results and solutions using self-stabilizing failure detectors. Int. J. Syst. Sci.
28(11), 1177–1187 (1997)

4. Binun, A., Coupaye, T., Dolev, S., Kassi-Lahlou, M., Lacoste, M., Palesandro, A.,
Yagel, R., Yankulin, L.: Self-stabilizing Byzantine-tolerant distributed replicated
state machine. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083,
pp. 36–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 4

5. Blanchard, P., Dolev, S., Beauquier, J., Delaët, S.: Practically self-stabilizing Paxos
replicated state-machine. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS,
vol. 8593, pp. 99–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09581-3 8

6. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the
OSDI 1999, pp. 173–186 (1999)

7. Dolev, S.: Self-stabilization. The MIT Press, Cambridge (2000)
8. Dolev, S., Eldefrawy, K., Garay, J., Kumaramangalam, M.V., Ostrovsky, R., Yung,

M.: Brief announcement: secure self-stabilizing computation. In: Proceedings of the
PODC 2017, pp. 415–417 (2017)

9. Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-
end communication in (bounded capacity, omitting, duplicating and non-FIFO)
dynamic networks. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol.
7596, pp. 133–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33536-5 14

10. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
Byzantine faults. J. ACM 51(5), 780–799 (2004)

11. Doudou, A., Garbinato, B., Guerraoui, R., Schiper, A.: Muteness failure detectors:
specification and implementation. In: Hlavička, J., Maehle, E., Pataricza, A. (eds.)
EDCC 1999. LNCS, vol. 1667, pp. 71–87. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48254-7 7

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

14. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

15. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: Proceedings of DSN 2003, pp. 351–360 (2003)

https://doi.org/10.1007/978-3-319-49259-9_4
https://doi.org/10.1007/978-3-319-09581-3_8
https://doi.org/10.1007/978-3-319-09581-3_8
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/3-540-48254-7_7
https://doi.org/10.1007/3-540-48254-7_7

Brief Announcement: Providing
End-to-End Secure Communication
in Low-Power Wide Area Networks

Ioannis Chatzigiannakis1(B), Vasiliki Liagkou2, and Paul G. Spirakis3,4

1 Sapienza University of Rome, Rome, Italy
ichatz@dis.uniroma1.it

2 Computer Technology Institute and Press “Diophantus”, Patras, Greece
liagkou@cti.gr

3 Computer Science Department, University of Liverpool, Liverpool, UK
p.spirakis@liverpool.ac.uk

4 Computer Engineering and Informatics Department,

Patras University, Patras, Greece

Abstract. Recent technologies for low-rate, long-range transmission in
unlicensed sub-GHz frequency bands enables the realization of Long-
range Wide Area Network. Despite the rapid uptake of LPWANs, secu-
rity concerns arising from the open architecture and usage of the unli-
censed band are also growing. While the current LPWAN deployments
include basic techniques to deal with end-to-end encryption there are
specific security issues that arise due to the overall architecture and pro-
tocol layer design. In this paper, a new scheme to establish end-to-end
secure communication in long-range IoT deployments is introduced. The
advantages over the existing approaches and architectural design are pre-
sented in the context of typical smart cities application scenarios.

1 Introduction to Security Issues and Vulnerabilities
in LPWAN

In the past few years, the approach of exploiting sub-GHz was proposed in order
to increase the transmission range of nodes by trading-off data transmission rate
while keeping power consumption at low levels [1]. This so-called Low-Power
Wide Area Networks (LPWANs) allow IoT devices to connect to Concentra-
tors (also called a collector) over distances in the range of several kilometres.
Concentrators forward data received from the IoT devices to a Network Server
(over for example Ethernet or 3G/4G/5G) that manages all the decoding of the
packets and handles redundant transmissions. Overall, LPWANs are considered
promising candidates for IoT applications, since they allow high energy auton-
omy of the connected devices, low device and deployment costs, high coverage
capabilities and support large number of devices [2].

Recently some technical papers concentrated on the security vulnerabil-
ities in LPWANs providing alternative solutions for the used cryptographic
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 101–104, 2018.
https://doi.org/10.1007/978-3-319-94147-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_8&domain=pdf

102 I. Chatzigiannakis et al.

primitives [3], focus on application server vulnerabilities [4] or introduce alter-
native key management [5].

In LPWANs the encryption of the payload is by default enabled in every
transmission. The data frame of an end-node has a 32-bit identifier, a 7-bit
network identifier and a 25-bit network address and the maximum payload is
250 Bytes. Since IoT devices are not assigned to a specific concentrator, the data
frames do not include any concentrator identifier. In this way, it is possible for
anyone to receive the encrypted data packets. In order to prevent from replaying
packets, a frame counter is used both for upstream and downstream messages
which will block a transmission from being sent more than once.

Two different 128-bit AES keys are used for a two-step message chain for both
upstream and downstream message exchanges. In the first step, an Application
Session Key (AppSKey) is used to encrypt the data frame between the IoT
device and the application server. In the second step, a Network Session Key
(NwkSKey) is used to verify the authenticity of the nodes. The data frame
exchanged between the IoT device and the Network server is encrypted with the
NwkSKey. Therefore, each message is encrypted by using the XOR operation
with the corresponding key.

Currently in LPWAN there are specific security issues that arise due to the
overall architecture and protocol layer design:

Keys Storage. Keys need to be safely stored by the IoT devices, the Network
Server and the Application Server. Moreover in LPWAN network the IoT
device is placed to an unprotected external or internal environment for very
long time thus its impractical and costly to increase the physical security level
of the IoT devices.

Symmetric Encryption Factors. AES is operating in counter mode (CTR) and
not in electronic codebook (ECB) mode. In this mode of operation, IoT
devices generate cyphertexts which are output of the XOR procedure on
the string that contains a counter, the AppSkey and the plaintext. As a
result, encryptions are vulnerable to chosen cyphertext attack since if an
attacker changes the payload data she can figure out which bit position in
the encrypted payload corresponds to the same bit position in the plaintext.
Major security flaw.

Authentication. The Network Server and the intermediate concentrator (or
an attacker on the intermediate network) are in a position to modify the
encrypted payload without the Application server being able to notice the
change. If an adversary could posses the session key, then he can generate a
LoRaWAN message that will pass the signature checking procedure at the
network server.

Compromised IoT Device. LPWANs are suitable for large deployments of bat-
tery operated static IoT devices that remain for long periods of times (in
many cases spanning several years) in semi-controlled environments or even
uncontrolled areas.

Untrusted Concentrators. Traffic passing through this point can be easily
recorded and even manipulated.

Brief Announcement: Providing End-to-End Secure Communication 103

2 An End-to-End Secure Communication Scheme

The LoRa LPWAN architecture is extended by introducing the so-called Median
Server that complements the functionality of the Network Server and Applica-
tion Server by taking over the role of the Registration Authority of the sys-
tem both for IoT devices and concentrators. A PKI Credential Authority (CA)
is introduced to ensure that only authenticated IoT devices interact with the
system and connect only to an authenticated concentrator that issued their
certificates.

The overall security is further reinforced by establishing a VPN network for
the communication between the concentrators, the median server and the net-
work server. The VPN connections use SSL sessions with bidirectional authen-
tication (i.e., each side must present its own certificate). A block cypher and
fingerprint (hash value) for encrypting/decrypting packets are activated along
with the HMAC construction to authenticate them. In this way, passive attacks
(packet sniffing, eavesdropping) are eliminated. However, even if packet encryp-
tion is unbreakable, it does not prevent active attackers to insert into a commu-
nication channel and add, modify or delete packets. Active attacks are thwarted
by embedding Device Identifier (DevEUI) (timestamps) on packets and make
IoT devices able to keep track of timestamps in order to make sure that they
never accept a packet with the same timestamp twice.

Furthermore, the critical data like symmetric keys, private-public keys and
IoT device credentials are protected using a HMAC before they are stored into
the Network server and Application server to further assure their integrity. In
particular, the HMAC-MD5 is used within the Application server on IoT device
credentials (username, password). In this way, critical data disclosure is pre-
vented in situations like database server thefts or unscrupulous administrators.

In terms of preventing modifications on payload data, a MAC is used to
authenticate transmitted payload data against any modification. The Applica-
tion server verifies that the message was received from an authenticated IoT
device and subsequently decrypts it and locks it in order to detect possible post-
modifications and illicit manipulations.

A fundamental requirement for the proposed model is to strictly link IoT
device tasks with system’s application data. The proposed architecture is asso-
ciated with a workflow mechanism that guarantees data transmission thought
heterogenous parties whereas supervising user’s device interaction. In LPWAN
the data rate transitions between the IoT device and LPWAN infrastructure is
low and makes the security synchronization interaction mechanisms impractical
thus the flow control determines a certain lifecycle for payload application data,
from its insertion into the LPWAN till the time that is ready to be stored and
utilized by the application server. IoT device payload passes through certain
phases introduced by the mechanism. Each phase has its own predefined tasks
committed by the user. The mechanism introduces associations between phases
(i.e., each phase depends on the successful completion of its previous one) and
executes them in a linear fashion (1st, 2nd, . . .), making a discrete workflow for
each payload.

104 I. Chatzigiannakis et al.

References

1. Centenaro, M., Vangelista, L., Zanella, A., Zorzi, M.: Long-range communications in
unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel.
Commun. 23, October 2016

2. Chatzigiannakis, I., Vitaletti, A., Pyrgelis, A.: A privacy-preserving smart parking
system using an IoT elliptic curve based security platform. Comput. Commun. 89–
90, 165–177 (2016)

3. Kim, J., Song, J.: A simple and efficient replay attack prevention scheme for
LoRaWAN. In: ICCNS (2017)

4. Michorius, J.: What’s mine is not yours: Lora network and privacy of data on pub-
lishing devices (2016)

5. Naoui, S., Elhdhili, M.E., Saidane, L.A.: Enhancing the security of the IoT
LoRaWAN architecture. In: 2016 International Conference on Performance Evalua-
tion and Modeling in Wired and Wireless Networks (PEMWN), pp. 1–7, November
2016

Privacy via Maintaining Small
Similitude Data for Big Data
Statistical Representation

Philip Derbeko(B), Shlomi Dolev, and Ehud Gudes

Computer Science Department, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

philip.derbeko@gmail.com, {dolev,ehud}@cs.bgu.ac.il

Abstract. Despite its attractiveness, Big Data oftentimes is hard, slow
and expensive to handle due to its size. Moreover, as the amount of
collected data grows, individual privacy raises more and more concerns:
“what do they know about me?” Different algorithms were suggested
to enable privacy-preserving data release with the current de-facto stan-
dard differential privacy. However, the processing time of keeping the
data private is inhibiting and currently not practical for every day use.
Combined with the continuously growing data collection, the solution is
not seen on a horizon.

In this research, we suggest replacing the Big Data with a much
smaller similitude model. The model “resembles” the data with respect
to a class of query. The user defines the maximum acceptable error and
privacy requirements ahead of the query execution. Those requirements
define the minimal size of the similitude model. The suggested method is
demonstrated by using a wavelet transform and then by pruning the tree
according to both the data reduction and the privacy requirements. We
propose methods of combining the noise required for privacy preserva-
tion with noise of similitude model, that allow us to decrease the amount
of added noise thus, improving the utilization of the method.

Keywords: Big Data · Privacy · Wavelets · Differential privacy
Similitude model

1 Introduction

Data privacy is an important requirement and continues to grow in importance
and public awareness as more data is gathered. A current leading method of
privacy is differential privacy [9]. The idea of differential privacy is to hide the
existence of a single record in the dataset, such that the adversary who queries
the data cannot tell with high probability whether any given record is present
in the database or not. A common method of providing differential privacy is
adding a random noise to the result of the query or to the data itself. The level
of the added noise should be large enough to hide the absence or presence of any
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 105–119, 2018.
https://doi.org/10.1007/978-3-319-94147-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_9&domain=pdf

106 P. Derbeko et al.

record and it is related to the sensitivity of the function [10], i.e. how much does
the function change if the database differs by a single record.

Data reduction is a technique that is used to decrease the amount of data
required for calculations. Obviously, the goal of data reduction is to minimize
the size while at the same time maximizing the utilization of the saved data. For
instance, in streaming data, the goal of is to keep a small synopsis of the data
to answer a previously defined query. The synopsis uses a limited-sized memory
to approximate potentially unlimited streaming data [11].

There is a substantial difference between data compression and reduction.
While both techniques reduce the size of the saved data, the difference is in the
amount of work required to answer a query. Compressed methods first require
to inflate all or part of the data to its original size. This process has a compu-
tation complexity proportional to the dataset size. On the contrary, the data
reduction technique builds a similitude model that represents the dataset and
uses it to answer given queries. Thus, queries are answered much faster with
processing time proportional to the similitude model size. On the other hand,
data reduction introduces errors into the query results that are not present in
lossless compression methods.

The wavelet transformation decomposes the data into a set of decreasing
coefficients. If only the large coefficients are retained, the data is represented
using a limited and smaller transformation model. Different number of techniques
were developed to choose which coefficients to retain depending on the error
measure. For instance, [22] shows that retaining the largest coefficients minimizes
Mean Square Error (MSE), while using L∞ error measure requires different
techniques.

Similarly to differential privacy, data reduction introduces an error in query
results. While differential privacy adds a random noise to hide the presence of
specific records, the data reduction techniques introduce noise as a result of
dropping part of the records. Thus, in a näıve privacy-preserving data release of
similitude model, the noise is added twice which reduces utilization. The idea of
the paper it to use one source of error complimentary for the second one, and
thus, to improve the utilization of the similitude model.

The similitude model concept, a demonstration of a practical technique to
implement the data reduction concept and a method of reducing the amount
of required noise for privacy-preserving data release of similitude model are the
main themes of the paper. The rest of the paper is structured as follows. Section 2
defines a problem and presents the basic terminology. Section 3 overviews the rel-
evant existing research. Our basic approach is presented in Sect. 4 and discusses
how to handle various types of queries. Lastly, the paper is concluded in Sect. 5.

2 Problem Definition

The input is a set of data points X = x1, x2, . . . xn where the data points are
numerical and belong to a specific range: xi ∈ [a, b]. Our goal is to replace the full
dataset with a reduced model of the data. The reduced model should represent

Privacy via Maintaining Small Similitude Data 107

the entire dataset and it is used to answer statistical queries. The model is called
the similitude model of the data.

Since every data reduction loses information, the goal is to build a model
such that the error of data representation is minimized. In addition, the privacy
of the data should be protected, thus the similitude model should ensure privacy-
preserving data release.

Privacy requirements are defined using ε-differential privacy, i.e. for any two
data sets X and Y that differ in a single record

Pr(Q(x) = O) ≤ eε · Pr(Q(y) = O), (1)

where O is an output of queries Q.
Our contributions in this paper are:

– The observation that a similitude model is sufficient to answer statistical
queries, which saves space and processing time. At the same time, keeping
only similitude model also reduces the risk of (non statistical) information
leakage.

– The idea of combination of data reduction (using wavelet transform) with
differential privacy to reduce overall added noise.

– A specific and provable method to combine the above mentioned techniques.

3 Related Work

As our work relates to a number of fields, this section briefly covers relevant
previous work.

Wavelets are a good fit for data reduction [13,22]. While the total number
of wavelet coefficients equals to the size of the data, the larger coefficients are
making the largest impact on the accuracy of the transform while all other
coefficients are approximated with zero. Thus, it is possible to keep only a limited
number of coefficient and effectively reduce the data size while keeping the error
small.

Another data reduction (compression) technique is the Fourier transform.
The usage of Fourier transform for compression of time-series data is initiated
in [21]. This approach was extended to histograms by [3] where histograms were
presented as time-series data. The data was first lossy compressed and then sani-
tized. The method takes advantage of the reduced sensitivity of compressed data.
The compression is done by using Fourier transform, suited for real-valued data,
and it shows utility improvement by a factor of 10 compared to the standard
method where noise is added to each entry in the frequency matrix [10]. [21] pre-
sented a similar idea for time-series data distributed across multiple locations.
The noise is added to the first k coefficients of Fourier Perturbation Algorithm
and in many practical cases k << n, where n is the size of the dataset.

An approach similar in spirit to our work, i.e. building a smaller rep-
resentation of the data, was presented in [28]. The work suggests to deal
with a high-dimensionality of the data by constructing a low-dimensional

108 P. Derbeko et al.

Bayesian network, which models correlations between data attributes. The
method is shown to be effective for private data release and achieves good
utilization/accuracy as compared to previous methods, such as addition of
Laplace noise to each dataset row [10] and adding noise to the result of Fourier
transform [5].

A significant research considered non-interactive, private data release for
range queries [3,17,20,27]. Privacy-preserving data release research focused
mainly on the minimization of the added noise, regardless of the amount of the
released data. In [27] it is shown that the amount of added noise can be reduced,
which increases the utility of the method, by performing wavelet transforma-
tion, adding random noise to the wavelet coefficients, and then mapping back to
the data. Since the wavelet coefficients are a linear combination of the data, the
noise added to them is shared, which allows the reduction of the amount of added
noise by polylogarithmic factor. A similar method is privacy-preserving release of
histograms [17]. Hierarchical methods for differentially private histograms were
considered in [20]. The paper considered one-dimensional and multi-dimensional
histograms with different privacy budget allocations per level.

The requirements of differential privacy can be met by releasing a synthetic
data that has similar statistical properties as the real dataset [6,7]. Unfortu-
nately, in the worst case scenario, those algorithms require a very high pre-
processing time, linear in the number of possible kinds of records which is expo-
nential in a number of data attributes [23,24]. Despite the theoretical results,
there have been a number of practical attempts of differential data release based
on synthetic data, see below.

An algorithm that generates synthetic data was described in [15]. The algo-
rithm starts with a crude approximation of the data, which is improved iter-
atively using Multiplicative Weights approach [16]. In each iteration, the algo-
rithm chooses the worst query, i.e. a query with the biggest mistake with respect
to the original data. The algorithm (MWEM) is based on the combination of
Multiplicative Weights update rule and Exponential Mechanism that was first
considered in [15]. Improvements are made by finding a query whose answer on a
real data differs considerably from its answer on an approximate data. The query
is then incorporated into data approximation with adaptive weights mechanism.
Even though the algorithm performs quite well from computational point of
view, it still depends on the size of the query domain, which grows exponentially
with the number of data attributes.

To deal with high-dimensional data, a variant of the algorithm was proposed
in [12]. The method, DualQuery, is dual to MWEM in a sense that it main-
tains distribution over queries instead of distribution over data. DualQuery also
uses MW approach to update the maintained distribution. While experimen-
tally, MWEM outperforms the DualQuery algorithm for low-dimension data,
DualQuery complements MWEM algorithm by allowing a private analysis of
high-dimensional data.

Privacy via Maintaining Small Similitude Data 109

MWEM and DualQuery both output synthetic dataset from the same domain
as an input data. This is a major difference from our proposed method of building
a similitude model, which is not confined to be from the same domain.

Opposite to other methods, our suggested method works both on single-node
queries, adjacent range queries and general multi-range queries. Another distinct
requirement is to keep reduced data, thus, an error is added prior to the addition
of a privacy-driven random noise.

Despite an extensive ongoing research of privacy-preserving data release, we
believe that our method uniquely answers some specific needs. While previous
research compressed or replaced an original data with a model, most of those
works did not consider privacy-preserving release. On the other hand, privacy-
preserving data release does not consider a reduction of the amount of data.
Even methods that generate synthetic data, do not usually generate a smaller
and data representative model. Our proposal of using similitude model while
ensuring privacy of the data combines the above approaches in a practical and
efficient way.

4 Privacy Preserving Data Reduction

This section discusses the privacy preserving data reduction that uses wavelet
transformation. We start with a short explanation of Haar wavelet transform
that is used in the section. As the presented techniques are not specific to the
specific type of transform, we use Haar transform both because it is intuitive to
understand and fast to compute.

4.1 Haar Wavelet Transform

Wavelet transform is a method of decomposing data into a hierarchical set of
functions. Each function approximately describes the data. The approximation
changes from coarse to fine-grained as the hierarchy advances. We use Haar
wavelet where at each step the data is replaced with an “average” value and the
deltas from the average using convolution with high-pass and low-pass filters.
The delta values are the coefficients of the wavelet. The process then is repeated
for deltas of high-pass and for deltas of low-pass until the entire data is replaced
with wavelet coefficients.

In the following examples, we use the Adult dataset from UCI [18] as an
example dataset, data processing packages Pandas [1], PyWavelet [2] for the
wavelet processing and Graphviz [4] for drawing. The dataset contains 32,562
records with partial missing values from the census bureau, where each record
has data about a different person. As the data itself is only used as an exam-
ple, the missing values are cleaned by simply dropping the rows with any such
values resulting in 30,162 records. For the simplicity, the person’s age values
(continuous) were used as a data dimension for the wavelet transform.

Figure 1 presents an example of wavelet decomposition of the first 16 values
from the dataset. Only 16 values were chosen to show the wavelet, as larger trees

110 P. Derbeko et al.

Fig. 1. Wavelet Coefficients tree of the 16 first entries of the Adult dataset. Age is used
as a wavelet transform dimension. The root value is the approximation coefficient and
the values on the edges are detail coefficients.

are harder to understand. The root value is the approximation coefficient and
the values on the edges are detail coefficients. Only those values are saved in the
wavelet transform. The values in other nodes are reconstructed from the root
and detail coefficients.

The nodes are numbered from the top to bottom and from the left to right.
Thus, the root node is v1, its left child is v2 and its right child is v3, etc. The
tree is constructed bottom-up, where each couple of values is convolved with
high and low filters. The result of convolution is the value of the node at the
next level (ci) and the difference of the data from the convolution results is
kept as a coefficient. Notice that the difference is the same for the nodes with a
different sign, thus, it is enough to keep only the absolute value: φi for node vi.
The process continues until a single value is left, which is the root coefficient:
c1. In order to reconstruct the values, the process is reversed and starts from
the top. Each pair of values is reconstructed with its difference applied, with a
relative sign, to the root node. In the tree-like hierarchical representation of the
data, each level provides an approximation of the data with improving error, i.e.
an approximation error at the top level is higher and it gets refined with the
node depth.

The amount of wavelet coefficients equals to the amount of the data points,
n in our case. Thus, the wavelet transform in itself does not result in data reduc-
tion. To reduce the amount of saved data, only a part of the wavelet coefficients
have to be kept. By definition of the transform, each subsequent level of the coef-
ficients have smaller and smaller contribution to the accuracy of the estimation.
This property of wavelet coefficients was used to approximate the answering of
point and range queries in [8,14,19]. We use a similar technique while connecting
the decision on which coefficients to keep to the differential privacy requirements.

As the differential privacy mechanism is built for statistical queries, the rest
of the paper deals with counting queries. Range (count) queries are an extremely
common statistical and data analysis tool. Given a range of values, those queries
count the number of items with values in this range. The common way of han-
dling range queries is to build a frequency matrix (F) or a histogram, where
each value, or a range of values in case of a histogram, has a separate cell that
contains the number of appearance of this value.

Privacy via Maintaining Small Similitude Data 111

For the sake of clarity, we have limited the number of bins of frequency
matrix to 16. Table 1 shows a frequency matrix for the ages column of the entire
Adult dataset. As the queries are performed on F , the wavelet transform is also
performed on the frequency matrix.

Table 1. Frequency matrix of the Adult dataset

Age range Count Age range Count Age range Count

17–21 1998 21–27 4415 27–31 3184

31–37 4993 37–41 3170 41–47 4374

47–51 2336 51–57 2597 57–61 1289

61–67 1077 67–71 345 71–77 244

77–81 65 81–87 37 87–90 38

4.2 Single-Node Queries: Pruning with Differential Privacy in Mind

The first type of queries that we consider is a single-node query, i.e. the counting
queries that are answered by a single node of a wavelet transform.

At first, a frequency matrix F (see table above) is build from the input data
X. Then it is transformed by a wavelet to get a set of coefficients C. The data
reduction is then performed by pruning of the tree at a tree level according to
the required error. The value of the coefficients is highest at the root and then
it decreases towards the leaves. For node v the pruning is replacing its direct
children by an average value and keeping the range of the node. Thus, the error
of pruning is:

e(v) =
l∑

i=1

E(vi), (2)

where v1, v2, . . . vl are children nodes of v.
Every node v is pruned, i.e. replaced with its average value if the e(v) intro-

duced by the pruning is less than λ, which is an error threshold required by
differential privacy. As opposite to [25] for sparse data and [26] for dense data,
our threshold is derived from privacy and not from storage requirements.

Differential privacy requires to add a random noise to “hide” the presence
or absence of any individual record. According to [10], adding noise according
to Laplace distribution, with standard deviation of S(f)/ε is enough to satisfy
differential privacy depends. The density function of Laplace distribution with
a 0 mean is f(x) = 1

2λe−|x|/λ and λ being a standard deviation or a scale
parameter. S(f) is defined to be the sensitivity of a function f - as a smallest
number that is larger than the maximum changes in the function value as a
result of a deletion of a single input record:

||f(x) − f(x′)|| ≤ S(f), (3)

112 P. Derbeko et al.

where x and x′ differ in a single entry and S(f) is the sensitivity of f . In the
case of a single-range query over F , the sensitivity of the function is 1, and thus,
adding noise according to Lap(1/ε) will ensure differential privacy.

As the pruning of the wavelet transform tree introduces noise to the data, our
idea is to use the error introduced by the data reduction to reduce the amount of
added noise in order to preserve differential privacy. The smaller the sensitivity
of the function, the less noise is added and the higher is the utilization of the
released data. Data reduction in wavelet trees prunes a sub-tree, or in other
words, replaces it with the average values. The impact of a single value on
an average of a pruned sub-tree is smaller than the impact without pruning.
Moreover, the larger is the pruned tree, the smaller is the impact (sensitivity)
and the smaller is the added noise.

Let T (vi) be a sub-tree of a given node vi and t = |T (vi)| be the size of the
sub-tree. If T (vi) is pruned, the coefficient of vi is replaced by an average value:

φ̃i. The sensitivity of the nodes in T (vi) is S(T (vi)) =
maxvj∈T (vi)|V (vj)−V (ṽj)|

t ,
where V () is the re-constructed value of a node in a wavelet transform tree. In
case of counting queries the sensitivity reduces to S(T (vi)) = 1

t . The total added
error for a pruned node vi then will be:

E(vi) = Lap(S(T (vi))/ε) +
∑

vj∈T (vi)

|V (vj) − V (φ̃j)|. (4)

where the data reduction savings are DR(vi) = t · |vi|.
Now, we can define the pruning algorithm.

1. Iterate over all leaf nodes in the transform tree. For each node vi:
2. Calculate T (vi), S(T (vi)), DR(vi) and E(vi).
3. Draw Xi according to Laplace distribution: Xi ∼ Lap(S(T (vi))/ε).
4. If the sum of the pruning error and Xi is larger then required error, then the

node vi is pruned [27].

Notice that the noise is added to all leaf nodes. The added noise is either pruning
noise together with a random noise or only a random noise.

Lemma 1. For a data set X, the described above data reduction preserves
ε-differential privacy.

Proof: The proof is trivial, as the random noise is added according to the
sensitivity function as in [10], the resulting tree is differentially private.

4.3 Simulation Results

Figure 2 shows the tree of a wavelet transformation of a 16-bins frequency matrix
of the Adult dataset with ε = 0.1. We chose to show 16-bins matrix in the paper
for the sake of clarity of the graph. In reality the amount of bins will be much
larger. This is the same frequency matrix as shown in Table 1 with added empty

Privacy via Maintaining Small Similitude Data 113

range of ages 0 to 17. Notice that the frequency matrix in itself provides a com-
pression of the data, as items in the same bin are replaced by an average value
that represents the bin. Each node shows both the pruning error of its sub-tree
(PErr) and the amount of required ransom noise (RNoise). In the paper we use
L1 error measure. The combined error in this case is clearly dominated by the
pruning error, however, keep in mind that this 16-bins frequency matrix repre-
sents a dataset of 30,162 records. As each bin contains many records, pruning of
any node results in a big error.

Fig. 2. Wavelet transform tree of 16-bins frequency matrix of the Adult dataset. Each
node shows the wavelet coefficient, L1 pruning error (PErr) and privacy-preserving
random noise (RNoise with ε = 0.1).

Fig. 3. Average privacy-preserving noise per level of the wavelet transform tree. The
root level is marked as 3 and the leaves level is 0 with ε = 0.1

Figure 3 shows the amount of the added noise per wavelet transform level.
The shown amount of the noise is the average over the nodes of that level. The
graph shows the success of our method of noise reduction as the amount of noise
reduces considerably towards the root of the tree.

Figure 4 compares the amount of added noise by MWEM algorithm with
the amount of added noise by our similitude model. It can be seen that both
algorithms has significant error, again due to the size of the dataset and the

114 P. Derbeko et al.

Fig. 4. Comparison between Pruning error of wavelet similitude model and MWEM
algorithm.

fact that frequency matrix is already compressed. Similitude model presents a
better error than MWEM even when the first level is pruned. After that the error
increases dramatically. This example shows an addition weak point of MWEM
algorithm. As the algorithm iterates over the domain of possible queries, the
size of the domain is significant for convergence of the algorithm. However, in
a case of frequency matrix, as can be seen in the Adult dataset, the size of
the matrix is small and thus, also the number of single-node queries. Thus,
MWEM algorithm does not have enough data to converge and has a relatively big
error.

The following section generalizes the idea of combining data reduction noise
with random noise for differential privacy for multi-node range queries.

4.4 Multi-range Counting Queries

In this section we first consider a single range query that covers a number of
adjacent nodes, and then we extend the results to multi-node range queries that
count the number of records in a multiple non-adjacent ranges. The major dis-
tinction of queries, which are answered by multiple nodes from single-node range
queries, is that the error of the query is the sum of errors of all participating
nodes. This decreases the utility of such queries and also makes the error depen-
dent on the number of participating nodes, which is not a desired characteristic.

For example, consider a range that covers k leaf node in the wavelet coefficient
tree. Performing a sum over their values will add noise of Lap(1/ε) · k to the
answer, considerably reducing the utility of the data release. For the sake of
simplicity, in the following we assume that queries relate to entire nodes or
pruned nodes sub-trees. Cases where the query relates to a part of the pruned
sub-trees are handled easily as the added error is the same for all nodes in the
sub-tree. However, they also make the equation less clear and thus, were not
included in this paper.

Range Queries. Consider a range query q and let V (q) = vk, vk+1 . . . vl be a
set of nodes that are summed to answer q. The error added to the answer of the
query q is

Privacy via Maintaining Small Similitude Data 115

E(q) =
l∑

i=k

E(vi) =
l∑

i=k

Lap(S(T (vi))/ε) +
∑

vj∈T (vi)

|V (vj) − V (p̃hij)|.

Denote the noise added to a node vi to preserve privacy as n(vi). Clearly, the
noise increases with the range of the query and more records participate in the
query. Ultimately, the amount of added noise should not be directly related to
the number of nodes that participate in a given query. To achieve that, the
noise added to individual records is increased. The increase is then traded off to
probabilistically decreased noise in multi-range queries.

Noise Added to a Range Query. Numbering leaf nodes from the beginning
of the data to the end (in Fig. 1 from left to right), define Ev and Ov to be sets of
nodes with even and odd indices accordingly, i.e. V (q) = Eq ∪ Oq. Node vi ∈ Ev

will be added noise according to the following simple rule:

n(vi) = Lap(1/ε) +
{

1/ε for vi ∈ Ev

−1/ε for vi ∈ Ov

In other words, the mean of the noise added to even nodes is 1/ε, and to odd
nodes is −1/ε. The basis of the idea is as multi-range counting query sums the
errors, the alternating noise signs will cancel one another with high enough prob-
ability. First, we show that the summation of added random noise for differential
privacy is small, and later we add the noise of data reduction.

The amount of added random noise for a query q then is
∑

i∈V (q)

n(vi) =
∑

i∈Eq

n(vi) +
∑

j∈Oq

n(vj). (5)

The right side of the equation is a sum of Laplace distributed, independent
random variables.

Since the added noise value is not bounded and independent for every node,
we utilize Chernoff’s inequality to bound the sum of the added random noise to
the nodes participating in a query. Lets assume that k = |V (q)| participate in
the query.

P (|Sk − E(Sk)| ≥ t) ≤ V ar(Sk)
t2

. (6)

Substituting the value of the variance of added noise, which is the same for
all nodes: V ar(Si) = 2(1/ε)2 into the equation.

P (|Sk − E(Sk)| ≥ t) ≤ V ar(Sk)
t2

=
2k(1/ε)2

t2
.

116 P. Derbeko et al.

The total added noise in Eq. 5 then becomes:

P (|
∑

i∈V (q)

n(vi) − E(n(vi))| ≥ 2t) = (7)

P (|
∑

i∈Eq

n(vi) +
∑

j∈Oq

n(vj) − (Evi∈Eq
(n(vi)) + Evj∈Oq

(n(vj)))| ≥ 2t)

≤ P (|
∑

i∈Eq

n(vi) − 1/ε| ≥ t) + P (|
∑

j∈Oq

n(vj) + 1/ε| ≥ t)

≤ 2|Eq|(1/ε)2

t2
+

2|Oq|(1/ε)2

t2
(8)

=
2

ε2t2
(|Eq| + |Oq|). (9)

Notice that

E(n(vi)) = Evi∈Eq
(n(vi)) + Evj∈Oq

(n(vj)) = 1/ε − 1/ε = 0.

Therefore, the above inequality becomes:

P (|
∑

i∈V (q)

n(vi)| ≥ 2t) =≤ 2
ε2t2

(|Eq| + |Oq|). (10)

Thus, as the number of nodes participating in a multi-range query increases, the
amount of added random noise converges to 0. The above calculations hold for
both cases where |Eq| = |Oq| and |Eq| �= |Oq|.

The added noise clearly preserves differential privacy, as the amount of noise
added to each node is according to the sensitivity of the function. Moreover, twice
the required amount of random noise is added to the pruned nodes. However,
this extra noise is later traded to reduce the amount of aggregated random noise
in the range queries.

To summarize, in pruned wavelet trees with privacy requirements, the error
of a query that is answered by k = |V (q)| nodes is:

E(V (q)) =
∑

Vi∈V (q)

Lap(S(T (vi))/ε) +
∑

vj∈T (vi)

|V (vj) − V (p̃hij)|

≤ 2
ε2t2

(|Eq| + |Oq|) +
∑

Vi∈V (q)

∑

vj∈T (vi)

|V (vj) − V (p̃hij)|. (11)

4.5 General Multi-range Queries

Now, we generalize the range query mechanism for multi-range counting queries
that consider non-adjacent records. We do not distinguish between explicit multi-
range queries: count a number of people who are 17–20 or 45–52 years old, or
implicit queries, when the query uses a different dimension of the data than that
used for wavelet transform. For instance: count a number of people with income

Privacy via Maintaining Small Similitude Data 117

over 50 K, which will result in multiple participating ranges when transform was
done on the age of the persons. The equation derived for single-range query is
extended to a general case by showing that the difference between the number
of even and odd nodes in a general case will not be large with a high probability.

Using the same mechanism for noise addition, as for range queries, see
Sect. 4.4, leads to the same result in Eq. 10. Assuming that the amount of odd
and even nodes is roughly equal, the noise cancellation effect will work. However,
while for range queries the following holds: abs(|Eq|−|Oq|) ≤ 1, in a general case,
this is not necessarily true, i.e. it is possible that only even nodes participate in
the given equation.

To limit the probability of such event, each query is modeled by a random
process of drawing a node without a replacement from the wavelet tree. Define
draw of an even node to be a “success”. Due to no replacement, the distribution
of a number of successes is hyper-geometric with a mean value of d = k |E|

|O| ,
where |E| and |O| are number of even and odd nodes in the tree respectively. As
the data is padded to contain even number of nodes before performing wavelet
transform, those numbers are equal. Thus, d = k |E|

|O| = k
2 . Using Chebyshev’s

inequality and substituting hyper-geometric distribution variance we get:

P (|D − E(d)| ≥ t) ≤ V ar(D)
t2

=
k(N − k)

4(N − 1)t2
, (12)

where D is a random variable of d and N is the total number of nodes. The
inequality shows that the larger the number of nodes participating in a query,
the closer the behavior of a general multi-range query to the behavior of a single-
range query.

5 Conclusion

An exploding amount of collected data has led to a variety of data handling
techniques. In parallel, a concern for individual privacy and security continues
to grow, especially considering frequent data breaches.

In this paper, we present a data reduction technique by building a simili-
tude model of the data and using it to answer queries. The technique strives
to capture the essence of a BigData, which is easier to manage and faster to
work with than with an entire dataset. We connect data reduction and privacy-
preserving data release by adapting a known method of data reduction, using
wavelet transform to satisfy differential privacy requirements. In addition, we
show a way to reduce the amount of added ransom noise for both single-range
and for multi-range queries. The techniques take into consideration the added
error of the data reduction in order to reduce the added noise.

A more comprehensive comparison of the technique with other methods, and
adaptation of the method for streaming data are the goals of our future research.

Acknowledgement. The research was partially supported by the Rita Altura Trust
Chair in Computer Sciences; the Lynne and William Frankel Center for Computer

118 P. Derbeko et al.

Science; the Ministry of Foreign Affairs, Italy; the grant from the Ministry of Science,
Technology and Space, Israel, and the National Science Council (NSC) of Taiwan; the
Ministry of Science, Technology and Space, Infrastructure Research in the Field of
Advanced Computing and Cyber Security; and the Israel National Cyber Bureau.

Authors are grateful to John Ullman for the fruitful discussions of the paper ideas
and differential privacy.

References

1. Pandas - python data analysis library. http://pandas.pydata.org
2. Pywavelets - wavelet transforms in python. https://github.com/PyWavelets/pywt
3. Ács, G., Castelluccia, C., Chen, R.: Differentially private histogram publishing

through lossy compression. In: 2012 IEEE 12th International Conference on Data
Mining, pp. 1–10 (2012)

4. AT&T and Contributers. Graphviz - graph visualization software. http://graphviz.
org

5. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy,
accuracy, and consistency too: a holistic solution to contingency table release. In:
Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2007, pp. 273–282. ACM, New York
(2007)

6. Blum, A., Dwork, C., Mcsherry, F., Nissim, K.: Practical privacy: the SulQ frame-
work. In: PODS, pp. 128–138. ACM (2005)

7. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive
database privacy. In: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, STOC 2008, pp. 609–618. ACM, New York (2008)

8. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query pro-
cessing using wavelets. VLDB J. 10(2–3), 199–223 (2001)

9. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 1

10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

11. Aggarwal, C.C. (ed.): Data Streams: Models and Algorithms. Springer, New York
(2007). https://doi.org/10.1007/978-0-387-47534-9

12. Gaboardi, M., Arias, E.J.G., Hsu, J., Roth, A., Wu, Z.S.: Dual query: practical
private query release for high dimensional data. In: Xing, E.P., Jebara, T. (eds.)
Proceedings of the 31st International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 32, pp. 1170–1178. PMLR, Bejing, 22–24
June 2014

13. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum-error
metrics. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2004, pp. 166–176. ACM,
New York (2004)

14. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Optimal and approx-
imate computation of summary statistics for range aggregates. In: Proceedings
of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2001, pp. 227–236. ACM, New York (2001)

http://pandas.pydata.org
https://github.com/PyWavelets/pywt
http://graphviz.org
http://graphviz.org
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-0-387-47534-9

Privacy via Maintaining Small Similitude Data 119

15. Hardt, M., Ligett, K., Mcsherry, F.: A simple and practical algorithm for dif-
ferentially private data release. In: Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25,
pp. 2339–2347. Curran Associates Inc. (2012)

16. Hardt, M., Rothblum, G.: A multiplicative weights mechanism for privacy-
preserving data analysis, pp. 61–70, May 2010

17. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially
private histograms through consistency. Proc. VLDB Endow. 3(1–2), 1021–1032
(2010)

18. Lichman, M.: UCI Machine Learning Repository (2013)
19. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity esti-

mation. SIGMOD Rec. 27(2), 448–459 (1998)
20. Qardaji, W.H., Yang, W., Li, N.: Understanding hierarchical methods for differen-

tially private histograms. PVLDB 6, 1954–1965 (2013)
21. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series

with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, pp. 735–746.
ACM, New York (2010)

22. Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: The-
ory and Applications. Morgan Kaufmann Publishers Inc., San Francisco (1996)

23. Ullman, J.: Answering n2+O(1) counting queries with differential privacy is hard.
In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Com-
puting, STOC 2013, pp. 361–370. ACM, New York (2013)

24. Ullman, J., Vadhan, S.: PCPs and the hardness of generating private synthetic
data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 24

25. Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates
of sparse data using wavelets. SIGMOD Rec. 28(2), 193–204 (1999)

26. Vitter, J.S., Wang, M., Iyer, B.: Data cube approximation and histograms via
wavelets. In: Proceedings of the Seventh International Conference on Information
and Knowledge Management, CIKM 1998, pp. 96–104. ACM, New York (1998)

27. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. In:
2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), pp.
225–236 (2010)

28. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes:
private data release via Bayesian networks. ACM Trans. Database Syst. 42(4),
25:1–25:41 (2017)

https://doi.org/10.1007/978-3-642-19571-6_24

Highway State Gating for Recurrent
Highway Networks: Improving

Information Flow Through Time

Ron Shoham(B) and Haim Permuter(B)

Ben-Gurion University, 8410501 Beer-Sheva, Israel
ronshoh@post.bgu.ac.il, haimp@bgu.ac.il

Abstract. Recurrent Neural Networks (RNNs) play a major role in the
field of sequential learning, and have outperformed traditional algorithms
on many benchmarks. Training deep RNNs still remains a challenge, and
most of the state-of-the-art models are structured with a transition depth
of 2–4 layers. Recurrent Highway Networks (RHNs) were introduced in
order to tackle this issue. These have achieved state-of-the-art perfor-
mance on a few benchmarks using a depth of 10 layers. However, the
performance of this architecture suffers from a bottleneck, and ceases to
improve when an attempt is made to add more layers. In this work, we
analyze the causes for this, and postulate that the main source is the way
that the information flows through time. We introduce a novel and simple
variation for the RHN cell, called Highway State Gating (HSG), which
allows adding more layers, while continuing to improve performance. By
using a gating mechanism for the state, we allow the net to “choose”
whether to pass information directly through time, or to gate it. This
mechanism also allows the gradient to back-propagate directly through
time and, therefore, results in a slightly faster convergence. We use the
Penn Treebank (PTB) dataset as a platform for empirical proof of con-
cept. Empirical results show that the improvement due to Highway State
Gating is for all depths, and as the depth increases, the improvement also
increases.

Keywords: Deep learning · Machine learning
Recurrent Highway Network · Recurrent Neural Networks
Sequential learning

1 Introduction

Training very deep neural networks has become very common in the last few
years. Both theoretical and empirical evidence points to the fact that deeper net-
works can represent more efficiently specific functions (Bengio et al. [1], Bianchini
and Scarselli [2]). Some commonly used architectures for deep feed-forward
networks are Resnet [6], Highway Networks [17] and Dense-Net [9]. These archi-
tectures can be structured with tens, and sometimes even hundreds of lay-
ers. Unfortunately, training a very deep Recurrent Neural Network (RNN) still
remains a challenge.
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 120–128, 2018.
https://doi.org/10.1007/978-3-319-94147-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_10&domain=pdf

Highway State Gating for RHN: Improving Information Flow Through Time 121

Zilly et al. [19] introduced the Recurrent Highway Network (RHN) in order
to address this issue. Its main difference from previous deep RNN architectures,
was incorporating Highway layers inside the recurrent transition. By using a
transition depth of 10 Highway layers, RHN managed to achieve state-of-the-
art results on several benchmarks of word and character prediction. However,
increasing the transition depth of a similar RHN, does not improve the results
significantly.

In this paper, we first analyze the reasons for this phenomena. Based on the
results of our analysis, we suggest a simple solution which adds a non-significant
number of parameters. This variant is called a Highway State Gating cell or a
HSG. By using the HSG mechanism, the new state is generated by a weighted
combination of the previous state and the output of the RHN cell. The main idea
behind the HSG cell is to provide a fast route for the information to flow through
time. That way, we also provide a shorter path for the back-propagation through
time (BPTT). This enables the use of a deeper transition depth, together with
significant performance improvement on a widely used benchmark.

2 Related Work

Gated-Recurrent-Units (GRUs) [3] were suggested in order to reduce the number
of parameters of the traditional and commonly used Long-Short-Term-Memory
(LSTM) cell (Hochreiter and Schmidhuber [8]). Similarly to HSG, in GRUs the
new state is a weighted sum of the previous state and a non-linear transition
of the current input and the previous state. The main difference is that the
transition is of a depth of a single layer and, therefore, less robust.

Kim et al. [11] introduced a different variant of the LSTM cell which is
inspired by Resnet [6]. They proposed adding to the LSTM cell a residual con-
nection from its input to the reset gate projection output. By that they allowed
another route for the information to flow directly through. They managed to
train a net of 10 residual LSTM layers which outperformed other architectures.
In their work, they focused on the way that the information passes through
layers in the feed-forward manner, and not on the way it passes through time.

Wang and Tian [18] used residual connections in time. In their work they
talked about the way information passes through time. They managed to improve
performance on some benchmarks, while reducing the number of parameters.
The difference is that they needed to work with a fixed residual length that is
a hyper-parameter. Also, their work focused on cells with a one layer transition
depth.

Another article, relating to Zoneout regularization (Krueger et al. [12]) also
relates to information flow through time. The authors introduced a new regu-
larization method for RNNs, where the idea is very similar to dropout [16]. The
difference is that the dropped neurons in the state vectors get their values in
the former time-step, instead of being zeroed. They mentioned that one of the
benefits of this method is that the BPTT skips a time-step on its path back
through time. In our work, there is a direct (weighted) connection between the

122 R. Shoham and H. Permuter

current state and the former one, which is used similarly both for training and
inference.

Another relevant issue is the slowness regularizers (Hinton [7], Földiák [4],
Luciw and Schmidhuber [13], Jonschkowski and Brock [10], Merity et al. [15])
which add a penalty for large changes in state through time. In our work we do
not add such a penalty, but we allow a direct route for the state to pass through
time-steps, and therefore we ‘encourage’ the state not to change when it is not
needed.

3 Revisiting Vanilla Recurrent Highway Networks

Let L be the transition depth of the RHN cell, and x[t] ∈ R
m be the cell’s input at

time t. Let WH,T,C ∈ R
n×m and RHl,Tl,Cl

∈ R
n×n represent the weight matrices

of H nonlinear transforms and the T and C gates at layer l ∈ {1, . . . , L}. The
biases are denoted by bHl,Tl,Cl

∈ R
n, and let s

[t]
l denote the intermediate output

at layer l at time t, with s
[t]
0 = s

[t−1]
L . The gates T and C utilize a sigmoid

(σ) non-linearity and “·” denotes element-wise multiplication. An RHN layer is
described by

s
[t]
l = h

[t]
l · t

[t]
l + s

[t]
l−1 · c

[t]
l , (1)

where

h
[t]
l = tanh(WHx[t]

I{l=1} + RHl
s
[t]
l−1 + bHl

), (2)

t
[t]
l = σ(WTx[t]

I{l=1} + RTl
s
[t]
l−1 + bTl

), (3)

c
[t]
l = σ(WCx[t]

I{l=1} + RCl
s
[t]
l−1 + bCl

), (4)

and I is the indicator function. A very common variant for this is coupling gate
C to gate T , i.e. C = 1 − T . Figure 1 illustrates the RHN cell.

Fig. 1. Schematic showing RHN cell computation. The Feed-Forward route goes
from bottom to top through L stacked Highway layers. On the right side there is the
memory unit, followed by the recurrent connection.

Highway State Gating for RHN: Improving Information Flow Through Time 123

According to Zilly et al. [19], one of the main advantages of using deep RHN
instead of stacked RNNs, is the path length. While the path length of L stacked
RNNs from time t to time t + T is L + T − 1 (Fig. 2), the path length of a RHN
of depth L is L × T (Fig. 3). The high recurrence depth can add significantly
higher modeling power.

layer 1

layer 2

layer L

t t+ 1 t+ T

xt xt+1 xt+T

Fig. 2. The figure illustrates an unfolded RNN with L stacked layers. Here the path
length from time t to time t + T is L + T − 1.

layer 1layer 1layer 1

layer Llayer Llayer L

t t+ 1 t+ T

s
[t−1]
L

s
[t]
L s

[t+1]
L s

[t+T]
L

xt xt+1 xt+T

Fig. 3. The figure illustrates an unfolded RHN with L layers. Here the path length
from time t to time t + T is L× T .

We believe that its power might, sometimes, also be its weakness. Let us
examine a case where information that is relevant for a large number of time
steps is given at time t; for example in stocks forecasting, where we expect a
sharp movement to occur in the next few time steps. We would like the state to
remain the same until the event happens (unless any dramatic event changes the
forecast). In this case, we probably prefer the net state to remain stable without
dramatic changes. However, when using a deep RHN, the information must pass
through many layers, and that might cause an unwanted change of the state.
For example, with a RHN of depth 30, the input state at time t has to pass 300
layers in order to propagate 10 time steps. To the best of our knowledge, there
is no use of a feed-forward Highway Network of this depth in any field. This fact

124 R. Shoham and H. Permuter

also affects the vanishing gradient issue using BPTT. The fact that the gradient
needs to back-propagate through hundreds of layers causes it to vanish and not
be effective. The empirical results support our assumption, and it seems like a
performance bottleneck occurs when we use deeper nets.

4 Highway State Gate in Time

We suggest a simple, yet efficient, solution for the depth-performance bottleneck
issue. Let WR,F ∈ R

n×n represent the weight matrices, and let bG ∈ R
n be a

bias vector. Let s
[t]
L represent the output of the RHN cell at time t. ŝ[t] is the

output of the HSG cell at time t. The HSG cell is described by

ŝ[t] = g · ŝ[t−1] + (1 − g) · s
[t]
L , (5)

where

g[t] = σ(WRŝ[t−1] + WF s
[t]
L + bG). (6)

A scheme of the HSG cell and an unfolded RHN with HSG is depicted in Figs. 4
and 5, respectively. The direct outcome of adding an HSG cell is giving the
information an alternative and fast route to flow through time.

Fig. 4. The figure illustrates a zoom into the HSG cell.

Since gate g utilizes a Sigmoid, its values are in the range [0, 1]. When g = 0,
i.e. HSG is closed, ŝ[t] = s

[t]
L . When G = 1, i.e. the gate is opened, ŝ[t] = ŝ[t−1].

In the first case, the net functions as a vanilla RHN. In this case the information
from the former state passes only through the functionality of the RHN. This

Highway State Gating for RHN: Improving Information Flow Through Time 125

layer 1layer 1layer 1

layer Llayer Llayer L

s
[t]
L

s
[t+1]
L s

[t+L]
L

t t+ 1 t+ T

HSGHSGHSG
ŝ[t−1]

ŝ[t−1]

ŝ[t] ŝ[t+1] ŝ[t+T]

xt xt+1 xt+T

Fig. 5. A macro scheme of an unfolded RHN with HSG cell. The state feeds both the
RHN and the next time-step HSG cell.

means that the functionality of a regular RHN can be achieved easily even after
stacking the HSG layer.

One of the strengths of this architecture is that each state neuron has its
own stand-alone gate. This means that some of the neurons can pass informa-
tion easily through many time-steps, whereas other neurons learn short time
dependencies.

Now let us examine the example we mentioned above, when using RHN with
the HSG cell. The net depth is 30, and a state needs to propagate 10 time-steps.
In this case, the state has multiple routes to propagate through. The propagation
lengths are now 10+30j, with j ∈ {0, 1 . . . 10}. This means that the information
has multiple routes, and even if we use a really deep net, it still has a short path
to flow through. For this reason, we expect our variant to enable training deeper
RHNs more efficiently. The results below support our claim.

5 Results

Our experiments study the benefit of adding depth to a RHN with and without
stacking HSG cells at its output. We conducted our experiments on the Penn
Treebank (PTB) benchmark.

PTB: The Penn Treebank1, presented by Marcus et al. [14], is a well known data
set for experiments in the field of language modeling. The goal is predicting the
next word at each time step, based on the past. Its vocabulary size is 10k unique
words. All words that are not in the vocabulary are labeled to a single token.
The database is structured of 929k training words, 73k validation words, and
82k test words.
1 http://www.fit.vutbr.cz/imikolov/rnnlm/simple-examples.tgz.

http://www.fit.vutbr.cz/imikolov/rnnlm/simple-examples.tgz

126 R. Shoham and H. Permuter

We used a hidden size of 830, similarly to that used by Zilly et al. [19]. For
regularization, we use variational dropout [5], and L2 weight decay. The learn-
ing rate exponentially decreased at each epoch. An initial bias of −2.5 was used
for both the RHN and the HSG gates. That way, the gates are closed at the
beginning of training. We tried RHN depths from {10, 20, 30, 40}. Results are
shown in Table 1. It can be well seen from the results that a performance bottle-
neck occurs when adding more layers to the vanilla RHN. However, adding more
layers to the RHN network with the HSG cell results in a steady improvement.
Figure 6 also illustrates the difference between both architectures during train-
ing. It can be seen that not only does the net with HSG achieve better results, it
also converges a bit faster than the vanilla one. Another interesting aspect is the
histogram of the gate values of the HSG cell in Fig. 7. It can be seen that most
of the gates are usually closed (small valued). However, in a significant number
of cases the gates open, which means that the model passes a very similar state
to the next time step.

Table 1. Single RHN model test and validation perplexity of the PTB dataset

RHN Validation set Test set

With HSG W/o HSG With HSG W/o HSG

Depth = 10 67.5 67.9 65.0 65.4

Depth = 20 65.6 66.4 62.9 63.2

Depth = 30 64.8 66.4 62.0 63.4

Depth = 40 64.7 66.7 61.7 63.6
aNote that the HSG is more significant as the depth of the
RHN increases.

Fig. 6. Comparison of the learning curve between RHN with (green) and without (red)
HSG cell. The upper and the lower graphs show the perplexity on the validation and
test sets respectively. (Color figure online)

Highway State Gating for RHN: Improving Information Flow Through Time 127

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

state gates values

0

200

400

600

800

1000

1200

1400

1600
Histogram of state gates values

Fig. 7. Histogram of HSG cell gates values. The values were drawn from a trained
RHN of depth 30, with a hidden size of 830. There are 66400 values from a 80 random
time steps. The gates utilize a Sigmoid function and, therefore, the values are in the
range of [0, 1]. We see that in most of the cases the gate values are relatively low, which
means that the state gates are closed, and the new state is generated in a feed-forward
manner. However, for a substantial number of times, the values are high, which means
that the information flows directly through time.

6 Conclusion

In this work, we revisit a widely used RNN model. We analyze its limits and
issues, and propose a variant for it called Highway State Gate (HSG). The main
idea behind HSG is to generate an alternative fast route for the information to
flow through time. The HSG uses a gating mechanism to assemble a new state
out of a weighted sum of the former state and the RHN output. We show that
when using our method, training deeper nets results in better performance. To
the best of our knowledge, this is the first time in the field of Recurrent Nets
that adding layers to this scale resulted in a steady improvement.

References

1. Bengio, Y., LeCun, Y., et al.: Scaling learning algorithms towards AI (2007)
2. Bianchini, M., Scarselli, F.: On the complexity of neural network classifiers: a

comparison between shallow and deep architectures. IEEE Trans. Neural Netw.
Learn. Syst. 25(8), 1553–1565 (2014)

3. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

http://arxiv.org/abs/1409.1259

128 R. Shoham and H. Permuter

4. Földiák, P.: Learning invariance from transformation sequences. Neural Comput.
3(2), 194–200 (1991)

5. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recur-
rent neural networks. In: D. Lee, D., Sugiyama, M., Luxburg, U.V., Guyon, I.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29,
pp. 1019–1027. Curran Associates Inc. (2016)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

7. Hinton, G.E.: Connectionist learning procedures. In: Machine Learning, vol. 3, pp.
555–610. Elsevier (1990)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

9. Huang, G., Liu, Z.: Densely connected convolutional networks (2016)
10. Jonschkowski, R., Brock, O.: Learning state representations with robotic priors.

Auton. Robots 39(3), 407–428 (2015)
11. Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent archi-

tecture for distant speech recognition. arXiv preprint arXiv:1701.03360 (2017)
12. Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas, N., Ke, N.R., Goyal,

A., Bengio, Y., Courville, A., Pal, C.: Zoneout: regularizing RNNs by randomly
preserving hidden activations. arXiv preprint arXiv:1606.01305 (2016)

13. Luciw, M., Schmidhuber, J.: Low complexity proto-value function learning from
sensory observations with incremental slow feature analysis. In: Villa, A.E.P., Duch,
W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7553, pp. 279–
287. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33266-1 35

14. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated cor-
pus of English: the Penn Treebank. Comput. Linguist. 19(2), 313–330 (1993). ISSN
0891–2017

15. Merity, S., McCann, B., Socher, R.: Revisiting activation regularization for lan-
guage RNNs. arXiv preprint arXiv:1708.01009 (2017)

16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

17. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint
arXiv:1505.00387 (2015)

18. Wang, Y., Tian, F.: Recurrent residual learning for sequence classification. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 938–943 (2016)

19. Zilly, J.G., Srivastava, R.K., Koutńık, J., Schmidhuber, J.: Recurrent highway net-
works. arXiv preprint arXiv:1607.03474 (2016)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1701.03360
http://arxiv.org/abs/1606.01305
https://doi.org/10.1007/978-3-642-33266-1_35
http://arxiv.org/abs/1708.01009
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1607.03474

Secured Data Gathering Protocol
for IoT Networks

Alejandro Cohen(B), Asaf Cohen(B), and Omer Gurewitz(B)

Department of Communication Systems Engineering,
Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel

{alejandr,coasaf,gurewitz}@bgu.ac.il

Abstract. Data collection in Wireless Sensor Networks (WSN) and
specifically in the Internet of Things (IoT) networks draws significant
attention both by the industrial and academic communities. Numerous
Medium Access Control (MAC) protocols for WSN have been suggested
over the years, designed to cope with a variety of setups and objec-
tives. However, most IoT devices are only required to exchange very
little information (typically one out of several predetermined messages),
and do so only sporadically. Furthermore, only a small subset (which is
not necessarily known a priori) intends to transmit at any given time.
Accordingly, a tailored protocol is much more suited than the existing
general purpose WSN protocols. In many IoT applications securing the
data transmitted and the identity of the transmitting devices is critical.
However, security in such IoT networks is highly challenging since the
devices are typically very simple, with highly constrained capabilities,
e.g., limited memory and computational power or no sophisticated algo-
rithmic capabilities, which make the utilization of complex cryptographic
primitives unfeasible. Furthermore, note that in many such applications,
securing the information transmitted is not sufficient, since knowing the
transmitters identity conveys a lot of information (e.g., the identity of a
hazard detector conveys the information that a threat was detected).

In this paper, we design and analyze an efficient secure data collection
protocol based on information theoretic principles, in which an eaves-
dropper observing only partial information sent on the channel cannot
gain significant information on the transmitted messages or even on the
identity of the devices that sent these messages. In the suggested pro-
tocol, the sink collects messages from up to K sensors simultaneously,
out of a large population of sensors, without knowing in advance which
sensors will transmit, and without requiring any synchronization, coor-
dination or management overhead. In other words, neither the sink nor
the other sensors need to know who are the actively transmitting sensors,
and this data is decoded directly from the channel output. We provide
a simple secure codebook construction with very efficient and simple
encoding and decoding procedures.

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 129–143, 2018.
https://doi.org/10.1007/978-3-319-94147-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_11&domain=pdf

130 A. Cohen et al.

1 Introduction

The Internet of Things (IoT) is an innovative communication paradigm that aims
at interconnecting a large number of devices (things) in order to enable the real-
ization of systems that improve every day life, ranging from smart cities, smart
homes, pervasive health care, assisted living, environmental monitoring, surveil-
lance, etc. A great percentage of the heterogeneous devices comprising the IoT
are expected to be small, with very constrained processing and storage resources
and with highly limited energy resources and network capabilities. Accordingly,
ensuring security and privacy while maintaining reliability and satisfactory per-
formance (e.g., latency) in such dense and highly constrained environment, is
very challenging [1–4].

Numerous Medium Access Control (MAC) protocols, and in particular ones
for Wireless Sensor Networks (WSN) have been suggested over the years (a
short representative overview is provided in Sect. 3). The challenge is the need
to support any kind of data needed to be conveyed in a transmission in a highly
diverse environment which includes a large variety of topologies, a wide range
of traffic patterns and high heterogeneity of the devices. To cope, most of these
MAC protocols have followed the traditional layering approach, in which there
is complete separation between the various mechanisms involved in each layer
of the stack, such that eventually the information sent is encapsulated within
the MAC frame, paying an overhead and trading performance (e.g., throughput
and delay) for generality. For example, a frame which conveys only few bits of
information needs to include control information such as source and destination
address, message type, etc., which involves a large overhead even when overlook-
ing the higher layers overhead (e.g., an 802.11 ACK frame which contains only
one bit of relevant information DATA was successfully received, is 14 bytes plus
physical layer encapsulation). However, in many IoT applications, the majority
of the traffic is one directional (upstream) to an arbitrary sink node (its par-
ticular identity is not relevant) which collects the information and processes it
or forwards it (e.g., to the cloud), and even more importantly each such device
needs to report only a limited amount of information, and only infrequently. For
example, a device may be required to send a keep-alive message periodically,
informing the sink node that its battery has not drained out. In addition, each
device can occasionally send one of several possible reports depending on the
device mission (e.g., a motion detector reports. Note that for all these applica-
tions, sending the device ID and an index, pointing to one of the limited number
of predetermined messages is sufficient to convey all the information it needs to
send. Accordingly, in order to cope with the challenge of a huge number of highly
constrained devices competing for very limited wireless resources, one can take
into account that they only need to transmit sporadically and only a limited
amount of information.

As previously mentioned securing the data transmitted and the identity of the
transmitting devices is a great challenge which is critical to many applications.
All the more so, since as previously mentioned, most of these IoT devices have
highly constrained capabilities, hence utilizing complex cryptographic primitives

Secured Data Gathering Protocol for IoT Networks 131

or hiding the transmission is unfeasible. Furthermore, note that the fact that a
device has very limited information to send, which can be an advantage for com-
munication, is a great burden on security, as knowing the transmitters identity
conveys a lot (and sometimes all) of the information sent.

In this paper, we design, analyze and evaluate a secure and highly efficient
MAC protocol specially designed to privately collect information from a large
number of devices such that an eavesdropper (or an unintended receiver) which
observes only some of the transmissions on the channel is not only unable to
decode any of the information sent but cannot even identify the identity of
the devices sending the information. The suggested protocol utilizes information
theoretic concepts and novel signaling and decoding techniques which allow us
to jointly optimize all layers together. We assume the devices are very simple,
with highly constrained capabilities. Thus, the key idea that our protocol relies
on is that instead of the typical frame mechanism using data encapsulation, each
sensor is assigned a unique transmission pattern for each of its messages, which
conveys both the information and the sensor’s ID. Whenever a sensor wishes to
transmit a report, it waits to receive a predefined periodic preamble sent by a
sink, and then transmits a sequence of impulses according to the transmission
pattern which corresponds to the report it wishes to send. The sink node receives
several simultaneous transmissions in a way that it can recognize both the senders
and the information sent from the aggregated channel output received. This is
done using a carefully designed codebook, and a matching decoding algorithm
that identifies both the sensors which transmitted and their codewords. It is
important to note that unlike Code-Division Multiple-Access Channels (CDMA),
the sink node can rely on a simple energy detection in order to decode, and not on
the exact received power or any power adaptation mechanism, thus dramatically
improving robustness. Besides the channel utilization efficiency of the suggested
protocol, the suggested protocol also ensures secrecy and privacy, in particular
an eavesdropper receiving only parts of the channel output, is kept ignorant both
of the content of the message and of the identity of the senders.

We illustrate the basic protocol and outline its basic concepts via the toy
example depicted in Fig. 1. In this simple example, we assume a network of N
devices transmitting to a single sink. Each device has a set of messages it can
transmit. We denote by Ci the number of messages of device i. Each one of the
messages is assigned a unique pattern, comprising high and low level elements
which are known to all nodes in the network, including potential eavesdroppers.
After receiving a predefined beacon from the sink, which initiates a conceptual
set of mini-timeslots, all the devices that are awake and waiting start trans-
mission according to the pattern assigned to the message to be transmitted.
Specifically, each transmitting device emits energy in the minislots which corre-
spond to a high level in the message pattern and stays idle in the other minislots.
In the above example sensors 2, k and N − 1 are awake and ready to transmit
messages 5, 1 and 7, respectively. The received signal at the sink is a combi-
nation of all the transmitted sequences. The sink performs an energy detection
procedure on the received signal according to a predefined threshold, identifying

132 A. Cohen et al.

Message 1
Message 2

Message

Sensor k

Message 1
Message 2

Message

Sensor 3

Message 1

Message 7
Message

Sensor N-1

Message 1
Message 2

Message

Sensor N

Message 1
Message 2

Message

Sensor 1

Message 1

Message 5
Message

Sensor 2

Fig. 1. A schematic illustration of an IoT network. Data is aggregated by a sink, when
K sensors, out of a large population of N sensors in the network have a message to
transmit over the wireless channel.

which minislots were busy (at least one of the devices has emitted energy) and
which were idle (below the energy threshold). Note that the sink considers only
the Boolean sum of the “bit” patterns used by the transmitting sensors i.e., all
the sink needs to identify is on which minislots the energy is above the noise
level (above the threshold). Accordingly, each minislot should be at a length
sufficient to identify whether there was transmission on that minislot or not
(decode one bit). Based on the filtered sequence (the exact sequence of busy and
idle minislots) the sink deduces which set of transmitted sequences (which corre-
sponds to a set of messages with their corresponding devices) have generated the
sequence received. Note that in order for the code to succeed, only a single set
of sequences should match any possible received pattern, and any other combi-
nation of sequences but the correct one, would result in a mismatch between the
expected and the actual minislot energy levels. An eavesdropper which observes
only parts of the channel output (can identify the channel output of only a subset
of the minislots), is kept ignorant both of the content of the messages and of the
identity of the senders. I.e., its received pattern corresponds to many possible
transmitted-sequence sets, and practically taking into account all the possible
transmitting-sequence sets, covers all the devices as potential transmitters and
all sequences as possible messages being transmitted. Note that it is not only
that the eavesdropper cannot uniquely identify the transmitting devices and
their transmitted messages, but it cannot even eliminate any of the devices as
a potential transmitter nor any of the messages as potential transmitted mes-
sage. Note that a simple Time Division Multiple Access (TDMA), which assigns
each device several minislots (based on the number of its possible messages), is
highly inefficient, i.e., requires many minislots (linear in the number of sensors)
regardless of the actual number of sensors waiting to transmit in each round.
Our suggested solution, relying on the moderate number of sensors expected to
transmit at each transmission opportunity, requires only a logarithmic number of

Secured Data Gathering Protocol for IoT Networks 133

minislots. More importantly such TDMA is not secured whatsoever, i.e., at least
the identity of the transmitting device is revealed based on the time allocated
to it.

In particular, the contribution of this work is threefold: (i) We present a
new secured MAC protocol, for data collection from dense wireless networks, in
which the devices are expected to transmit only sporadically, and only a prede-
fined amount of information (one out of a bank of possible messages per device).
In the suggested protocol, the sink can collect up to K reports simultaneously
without any management or scheduling. (ii) To support the protocols, we provide
a codebook construction with a very simple encoding and decoding procedure,
such that not only the code is efficient but also the transmitted codewords are
self-contained and do not require headers, trailers or sender identity. We further
suggest a corresponding effective decoding algorithm which is based on Col-
umn Matching [5]. The suggested protocol is secured, such that an eavesdropper
observing only part of the channel output cannot decode the messages or even
identify the senders.

2 System Model

We model the IoT network as a dense wireless sensor network that collects infor-
mation from the area covered by the network. Throughout the paper, we will
interchange “device” with “sensor”. The network can contain one or multiple
sinks (cluster heads) each collecting reports from a large set of sensors indepen-
dently. Throughout the paper, we will focus on a single such cluster consisting
of a large set of wireless sensors (devices), denoted by N , and a single sink.
We denote by N = |N | the total number of sensors in the network (cluster).
In addition, we assume that one or more non collaborating eavesdroppers are
present, each observing a noisy version of what is received by the sinks. Since
the eavesdroppers do not collaborate, throughout the paper we will concentrate
on a single arbitrary eavesdropper.

We assume that all sensors are connected to the sink node, but only in the
following limited sense: First, beacons by the sink should be heard by all sensors.
Then, it is sufficient for the sink to be able to detect only whether there were
transmissions (one or more) on the channel. For example, whether the received
SNR is above a predefined threshold which is above the noise floor. The sink
does not necessarily need to decode any information from a single transmission
from a single sensor, and the received SNR is not necessarily above a decodable
threshold. We assume the sink should have a sufficiently high SNR, yet only to
be able to decide whether there was energy on the channel in each mini-slot or
not. Decoding will be done only based on these binary values, and the exact
amount of energy detected is not important.

We assume that each sensor i can transmit out of a bank of Ci different
messages. There are no restrictions on message length or content. For simplicity
we will assume throughout the paper that Ci = C,∀i. Nonetheless, an extension
to different Ci’s is straightforward. We further assume that each sensor needs to

134 A. Cohen et al.

transmit a message sporadically. In particular, we will assume that the sensors
employ a duty cycle mechanism in which they randomly wake up and transmit a
message unless they have an urgent message they need to transmit, in which case
they wake up instantly waiting for transmission opportunity. We assume that
the wake-up times including the urgent report instances are arranged such that
the probability that more than K sensors are awake at the same time waiting
for transmission opportunity is very low. Note that while we set no restriction
on K (i.e., K ≤ N), the suggested protocol is more efficient the smaller K is,
compared to N .

The eavesdropper cannot receive all transmissions on the channel, and man-
ages to detect the correct amount of energy only on a fraction δ of the mini-slots.
That is, we assume that out of the T mini-slots, the eavesdropper has informa-
tion only on δT mini-slots on average. Note that this model is similar to the
common erasure channel.

3 Related Works

We divide the discussion on related works into two parts. In the first, we provide
a brief overview of several multipurpose WSN MAC protocols. Then, since our
protocol is inspired by the classical Group Testing (GT) approach, in the second
part we give a brief overview of related GT results.

WSN MAC Protocols. Since on the one hand, one of the foremost objectives
of WSN is energy conservation, and on the other sensor nodes are expected to
report only sporadically (and many of the reports can tolerate a short delay),
most of the MAC protocols which were designed for WSN over the past decade
and a half rely on a duty cycling technique in which each sensor node turns its
radio on only periodically, alternating between active and sleeping modes [6–8].
Such protocols took different approaches to address the rendezvous challenge in
which a sender and a receiver should be awake at the same time in order to
exchange information. In the synchronous approach, nodes’ active and sleeping
periods are aligned, i.e., all sensor nodes are active at the same time intervals
and are required to contend for transmission opportunities during these intervals,
e.g., [9–11]. The asynchronous approach allows sensor nodes to choose individual
wakeup times, maintaining unsynchronized duty-cycles, and employing various
strategies to detect transmissions in the network and enable rendezvous between
senders and receivers, e.g., [12–14]. However, all these protocols are designed
to support various types of traffic patterns, diverse topologies (e.g., single and
multi-hop topologies) and most importantly, to support any kind of information
exchange between the sensors. Accordingly, they have adopted the traditional
approach in which the proposed channel access mechanism is independent from
the message payload exchange between the sensor nodes, at the price of data
encapsulation and signaling overhead. In this work, since the topology is limited
to a single hop topology and, more importantly, since the information each sensor
needs to convey is limited to one out of a number of known messages, we take

Secured Data Gathering Protocol for IoT Networks 135

a cross-layer design in which the coding and the channel access algorithm are
intertwined.

Group Testing. Classical group testing was used during World War II in order
to identify syphilis infected draftees while dramatically reducing the number of
required tests, by examining pooled tests of mixed blood samples [15].

The concept was adopted later for multi access protocols. Specifically, MAC
protocols adopted the GT philosophy for Collision Resolution Protocols (CRP).
The basic idea behind these protocols is to resolve collisions whenever multiple
users are trying to access the channel simultaneously, e.g., the binary-tree CR,
the epoch mechanism or the Clipped Binary-Tree Protocol. An extensive survey
of such protocols is given in [16, Chap. 5]. However, all these protocols utilized
the GT concept only as a collision resolution mechanism, i.e., in case a collision
occurred, they used the concept in order to decide who should contend for the
channel next and when. Data was decoded successfully only when a single node
transmitted without collision.

The main contribution of this paper is in suggesting a protocol which decodes
all data, from all simultaneously transmitting sensors, using a novel extension
to this concept, namely, analysing the location of the colliding and non-colliding
minislots in order to identify both the senders and the data sent.

4 Secure WSN Data Collecting Protocol Design

In the suggested protocol, the sink periodically transmits a predefined beacon,
which starts a report transmission interval. We term this beacon RFR (Request
For Reports). The RFR is then followed by a sequence of T minislots. Figure 2
provides an illustration of the protocol operation. Note that there is no need for

Fig. 2. Basic protocol operation.

136 A. Cohen et al.

synchronization or for each sensor to keep track of the minislot boundaries at all
times, as the awake sensors waiting for transmission can synchronize based on
the received RFR. Denote by τ the maximum propagation delay between any
sensor and the sink, and by η the time required by the sink to identify that there
is a transmission going on. Note that η only corresponds to the duration required
by the sink to sample the channel and identify that there is a transmission going
on (there are no headers, preambles or data involved), hence can be very short.
We assume that the minislot duration is longer than 2τ + η, which is sufficient
for all sensors to receive the RFR, start a transmission of duration η and for
the sink to receive all the transmissions starting in this minislot. I.e., as far as
the sink is concerned, the time duration of a minislot is such that there is no
transmission that can start at the current slot and leak to the next slot. It is
reasonable to assume that η ≥ τ , hence the minislot duration is greater than
3τ . After transmitting the RFR, the sink node switches to receive mode and
identifies whether there was a transmission at each of the following T minislots.
Recall that the sink detection is binary, i.e., it can only recognize whether there
was a transmission in a minislot or not. It does not try to detect how many
sensors transmitted during an occupied minislot.

Each sensor is assigned a unique sequence of ones and zeroes of length T ,
for each of its messages. The construction of the sequences is given in Sect. 6.
A sensor intending to send a report wakes up and waits for the RFR. After
receiving the RFR, the sensor follows the sequence associated with the message
it intends to transmit, transmitting “energy” of duration η (in the form of a pre-
defined signal) at each minislot in which the corresponding bit in the sequence
is one.

After the T minislots interval, the sink has a sequence of ones and zeroes
of length T , indicating at which of the minislots it identified transmission. The
eavesdropper (Eve) has only a δ fraction of the sequence. We denote by Y (t)
and by Z(t) the sequence observed by the sink and the eavesdropper, at the t-th
interval. Based on the observed Y (t) and Z(t) the sink and the eavesdropper
try to decode the messages transmitted by the sensors, respectively (we provide
two decoding algorithms in Sect. 6 and [17]). Note that since the sequences are
unique, each sequence indicates the identity of the sender and the message sent.
If the sink is not able to decode the received sequence Y (t), which, as we prove in
Sect. 6, can only happen if the number of transmitting sensors in the interval was
greater than the expected number K for which the sequences were designed, it
transmits another beacon, termed Retransmission Request (RR). This starts the
exact same procedure as the RFR only this time sensors waiting for transmission
participate in the following interval only with some probability. The probability
for participating in the following interval is predefined and can prioritize different
messages (e.g., messages with high urgency will receive high probability and
messages that can tolerate delay will be assigned low probabilities and sensors
with non-urgent messages can go back to sleep waiting for their next wakeup
time). The discussion on the collision resolution probabilities is beyond the scope
of this paper, as our novelty lies in the transmission protocol and its ability to

Secured Data Gathering Protocol for IoT Networks 137

allow multiple transmission of messages without the various MAC and upper
layers overheads. The collision resolution procedure is rather standard and can
be repeated multiple times.

It is important to note that the suggested protocol can be interleaved within
traditional wireless sensor protocols, in which some or all sensors are required to
send occasionally a regular report. For example, the suggested protocol can be
incorporated within the operation of RI-MAC [13], such that occasionally the
sink transmits an ordinary RI-MAC beacon, which is different from the RFR
beacon, to initiate a RI-MAC operation interval, i.e., the RI-MAC beacon will
be followed by ordinary DATA transmissions according to the ordinary RI-MAC
protocol. In the same manner, the suggested protocol can be combined with
transmitter initiating protocol such as X-MAC [12], such that a sensor wishing
to report a typical DATA packet transmits a sequence of short preambles prior
to DATA transmission according to the X-MAC protocol.

5 Model Formulation and Transmission Process

In this section, we formalize the SWSN model that is used throughout the
paper. We denote the set of wireless sensors by N . We will concentrate on a
time instance right after an RFR has been sent by the sink and a subset of
unknown sensors comply with the RFR, and transmit their reports. We denote
this unknown subsets by K. We denote by N = |N | and K = |K| the total
number of sensors, and the number of active sensors at the same time slot,
respectively. In the analytical part of the paper we will assume that the number
K of active sensors is known a-priori. The algorithms and results presented
hereby can be easily adopted to the case where only an upper bound on K is
known, and the actual number is smaller. The case where more than K transmit
was briefly described at the end of Sect. 4. The sink objective is to determine
which subset of the sensors were active and what is the information (messages)
they transmitted. Throughout the paper, logarithms are in base 2. Figure 3a
gives a graphical representation of the secure model.

Each of the sensors has its own set of C independent messages. We denote
each such message by Mn,c, n ∈ N , c ∈ {1, . . . , C}, and sensor n ∈ N message
list by:

Mn = [Mn,1;Mn,2; . . . ;Mn,C]

We consider all the possible sets of K active sensors, and denote by W ∈
{1, . . . ,

(
N
K

)} the index of the subset S ⊂ {1, . . . , N} of sensors active and trans-
mitting at the same time. Thus, Sw denotes the w-th subset of size K out of
the N sensors. We assume that W is uniformly distributed, that is, there is no
a-priori bias to any specific subset of active sensors. We further denote by

MW = [Mw1,c1 ;Mw2,c2 ; . . . ;MwK ,cK]

the K messages transmitted by the active sensors (members of Sw) to the sink.
Note that each row in MW corresponds to a separate message, that is, Mwi,ci is
the cith message of the with sensor in the active set.

138 A. Cohen et al.

Fig. 3. (a) Secure wireless sensors network model. (b) Encoding, transmission and
detection in the suggested protocol.

As previously described, for each message a sensor has a unique sequence,
which in the sequel we refer to as codeword. That codeword is the one transmit-
ted whenever the sensor intends to send this message. In other words, if sensor
n is set to send Mn,c, it uses the codeword XT

n associated with this message.
Each message has a different codeword associated with it (we drop the message
index for clarity). Given the particular messages sensors intend to transmit, we
define a transmission matrix X = [XT

1 ;XT
2 ; . . . ;XT

N] ∈ {0, 1}N×T , where each
row corresponds to a codeword, describing the message a sensor may transmit
if it is active.

Assuming that sensors use Power Amplitude Modulation (PAM), we denote
by

x̃j(l) =
T∑

t=1

Xj(t)g(l − (t − 1)T0), 0 ≤ l ≤ T · T0,

the signal transmitted by the j-th sensor, where minislot t is defined by (t −
1)T0 ≤ l ≤ tT0 and g(l), 0 ≤ l ≤ T0 denotes the PAM pulse. The channel output
signal ỹ(l) is given by

ỹ(l) =
∑

j∈K
hj x̃j(l) + wn(l),

where hj is a channel fade for the jth active sensor and wn is an additive noise
at the sink. Note that the fade herein is fixed for the entire transmission only
for simplicity of exposition, and it may depend on t as well. Figure 3b depicts
an example.

We denote by Pth the power threshold of the sink’s hard decision mechanism.
Hence, the outcome vector YT = (Y (1), . . . , Y (T)) at the sink is binary, with 1
in a minislot t if ∫ tT0

(t−1)T0

ỹ(l)g(l − (t − 1)T0)dl ≥ Pth,

and 0 otherwise. In this paper, we assume that the noise in the channel cannot
produce errors at the sink. In the full version of this work [17], we extend the

Secured Data Gathering Protocol for IoT Networks 139

model, and consider the case in which noise can produce positive and negative
errors.

We assume eavesdropper can observe a noisy vector z̃(l), generated from the
output signal ỹ(l). In this paper we consider an erasure channel at the eavesdrop-
per, with erasure probability of 1 − δ, i.i.d. That is, on average, Tδ mini-slots
of the channel output are not erased and are available to the eavesdropper. We
assume the eavesdropper uses the same hard decision mechanism, hence observes
ZT ∈ {0, 1, ?}T . While those are an un-necessary restrictions on Eve, the hard
decision detection mechanism, and the erasure channel. Such that, Eve may use
any decision mechanism, and the noisy vector z̃(l), may be generated from a
channel with false positive or false negative possible errors using the mutual
information analysis given in [18, Sect. 6], or for both possible errors as given in
[19, Sect. 2]. It simplifies the technical aspects and allows us to focus on the key
methods.

We denote by Ŵ and M̂Ŵ (Y T) the set of sensors estimated by the sink to
be the transmitting set, and the estimated set of messages sent by them, respec-
tively, according to the received signal Y T . We refer to the possible transmission
matrix, together with the decoder as a SWSN algorithm. The following definition
and secrecy constrain lays out the goals of the SWSN algorithm.

Definition 1. A sequence of SWSN algorithms with parameters N,K,C and T
is asymptotically reliable and secure if,

(1) Reliable: At the sink, observing Y T , we have

lim
N→∞

P (M̂Ŵ (Y T) �= MW) = 0,

i.e., the error probability both in the active set and the message associated
with this set, goes to zero as the number of sensors goes to infinity.

(2) Secure: at the eavesdropper, observing ZT , we have

lim
T→∞

1
T

I(MW ;ZT) = 0.

That is, asymptotically guarantee zero mutual information, namely, Eve cannot
decode anything from the set of messages.

In the next section, we construct a code (for parameters N , K and C) which
associates a codeword of length T to each of the N ·C messages (C per sensor) and
a decoding algorithm M̂Ŵ (Y T), such that observing Y T , the sink will identify
the subset of active sensors and the messages transmitted by them with desired
high probability, yet, observing ZT in either of the setups, the eavesdropper will
not be able to identify the subset of active sensors and the messages transmitted.

6 Code Construction and Decoding at the Sink

In order that the sink will identify the subset of active sensors and the messages
transmitted and keep the eavesdropper ignorant, for each sensor n ∈ N , we create

140 A. Cohen et al.

a sub-bin with several codewords for each message. We then randomly map each
message that the sensor wants to transmit, c ∈ {1, . . . , C}, to a codeword in the
corresponding sub-bin, that is, the {n, c}-th sub-bin, which contains F codewords
of size T . Figure 3b depicts an example.

More precisely, we assume a source of randomness (R, pR), with known alpha-
bet R and known statistics pR is available to the encoder. It is important to note
that this source of randomness does not have to be shared with any other party.
A stochastic encoder [20], at each active sensor j ∈ K, selects uniformly at ran-
dom one codeword xT (cj , f) , 1 ≤ c ≤ C and 1 ≤ f ≤ F from his sub-bin, that
is, it maps a selected message and the source of randomness to a transmission
codeword XT

n . This mapping, using the randomness, is intended to confuse the
eavesdropper regarding the sensor transmitting and the message sent. Hence,
over the MAC channel, we still have a transmission matrix XT

Sw
, each of its

rows corresponding to a different active sensor in the index set Sw, and that
transmission matrix contains K codewords of size T , yet now there is no 1 : 1
mapping between messages and codewords, and each message corresponds to F
codewords.

6.1 Codebook Generation

For each sensor we generate a bin, containing several sub-bins. The number of
such sub-bins corresponds to the number C of messages that each sensor has.
The number F of codewords in each sub-bin corresponds to Tδ, the number of
un-erased mini-slots that the eavesdropper may obtain, yet normalized by the
number of active sensors. The codebook is depicted in the central side of Fig. 3b.
Let P (x) ∼ Bernoulli(ln(2)/K). Using a distribution P (XT) =

∏T
i=1 P (xi),

generate a bin of C ·F independent and identically distributed codewords. Then,
we split each bin to sub-bins of F codewords xT (c, f), 1 ≤ c ≤ C and 1 ≤ f ≤ F .
Hence, for each message, c ∈ {1, . . . , C}, there are F possible codewords corre-
spond in the {n, c}-th sub-bin. During the encoding process, only one codeword
from the {n, c}-th sub-bin will be randomly selected for transmission. Reveal the
codebooks to the sensors and the sink, we assume Eve may have this codebook
as well.

6.2 Decoding at the Sink

In this paper, the decoder we suggest is the optimal decoder, Maximum Likeli-
hood (ML). This decoder will declare the right set of K messages transmitted
(and the active sensors) with a high probability if T satisfies the bound Lemma 1
below. However, such a decoding algorithm is complex. Hence, in the full version
of this work [17], we consider a computationally efficient algorithm.

As described in Sect. 5, in the first decoding step, the sink uses a hard deci-
sion mechanism to achieve the binary channel output vector Y T . After Y T is
obtained, the ML decoder looks for a collection of K codewords X̂

T

Sŵ
, each one

taken from a separate sub-bin under different bins, for which Y T is most likely.
Namely, P (Y T |X̂T

Sŵ
) > P (Y T |XT

Sẁ
),∀ẁ �= ŵ.

Secured Data Gathering Protocol for IoT Networks 141

Due the randomness in the encoding procedure of the SWSN algorithm,
there is no 1 : 1 mapping between messages transmitted and codewords, and
each message corresponds to a few codewords. Hence, the sink looks for both
the set ŵ, and the codewords X̂

T

j ,∀j ∈ Sŵ, which are most likely. Then, the
sink declares Ŵ (Y T) as the set of active sensor, where ŵ is the set of bins in

which the codewords reside and maps the selected codewords X̂
T

Sŵ
back to the

messages ĉj according to the corresponding sub-bins.

6.3 Reliability

The following lemma is a key step in proving the reliability of the decoding
algorithm.

Lemma 1. If the size of the codewords satisfies

T ≥ max
1≤i≤K

1
1 − (1 + ε)δ

1 + ε

i/K
log

(
N − K

i

)
Ci,

then, under the codebook above, as N → ∞ the average error probability
approaches zero.

Note that using the upper bound log
(
N−K

i

) ≤ i log (N−K)e
i , the maximum in

Lemma 1 is easily solved, and we have

T ≥ 1+ε
1−δ K log(N − K)Ce.

That is, assuming a SWSN algorithm with the parameters N , K and C, for any
0 ≤ δ < 1, if size of the codewords T = Θ

(
K log NC

1−δ

)
, for some ε ≥ 0, then there

exists a sequence of SWSN algorithms which are reliable and secure (under the
conditions given in Definition 1).

The proof of Lemma 1 extends the results given in [18, Theorem 3.1] to
the codebook required for SWSN. Specifically, we may interpret the analysis in
[18, Sect. 2] as analogous to the non secure case where each sensor has only one
message in its bin. However, in the SWSN protocol suggested herein, each sensor
has C messages in its bin, and the decoder has

(
N
K

)
CKFK possible subsets of

codewords to choose from,
(
N
K

)
for the number of possible sensors, CK for the

number of possible messages in each bin and FK for the number of possible
codewords to take in each sub-bin. Thus, when fixing the error event, there are(
N−K

i

)
CKFK subsets to confuse the decoder. Specifically, to obtain the bound

on the size of the codewords given in Lemma 1, the error probability analysis
in the ML decoder extends the bound given in [17, Lemma 3], by considering
C · F codewords per sensor, and by considering multiple error events, as given
in [21], for the analysis of the secure GT error probability bound. E.g., events
where the decoder chooses the wrong codeword for some sub-bin, yet identified
the sensors and the messages transmitted correctly (since the sub-bins were
correctly identified), and events where the codeword selected was from a wrong
sensor sub-bin (hence resulted in an error).

142 A. Cohen et al.

To analyze the information leakage at the eavesdropper, we note that the
Eve’s channel can be viewed as (binary) Boolean multiple access channel, fol-
lowed by a BEC(1 − δ). The sum capacity to Eve cannot be larger than δ. In
fact, since the codebook is randomly i.i.d. distributed, Eve can obtain from each
active sensor a rate of at most δ/K. Consequently, from each codeword Eve sees
at most a capacity of δ/K. However, for each possible message in the codebook
suggested each sensor have sub-bin with F = 2Tδ/K codewords, from which
during the encoding process, only one codeword will be randomly selected for
transmission to confuse the eavesdropper. On average the eavesdropper with a
capacity of at most δ/K will have the same number of candidacies (possible
codewords) in each sub-bun, such that, will keep ignorant. The formal analysis
of the information leakage, to prove the security constraint is met, is a direct
consequence of the proof given in [21, Sect. 5.B], where we protect not only on
the information of which of the sensors was transmitting a message but also pro-
tect the messages as well. Hence, in the same way as given in [21], yet, instead
of showing that I(W ;ZT)/T → 0, we can show that I(MW ;ZT)/T → 0.

7 Conclusions

In this paper, we design a secured highly efficient WSN protocol for IoT net-
works, which collects information from a large number of devices, such that an
eavesdropper which has access to a noisy version of the sink output, will be kept
completely ignorant both regarding the messages sent and the subset of devices
that transmitted them. This secured protocol relies on the fact that only a small
unknown subset of devices out of the dense device population will attempt trans-
mission at each transmission opportunity, and on the fact that each device has
only a limited amount of information it needs to convey. We provide a sim-
ple secure codebook construction with very efficient and simple encoding and
decoding procedures.

Acknowledgment. This research was partially supported by the Israeli MOITAL
NEPTUN consortium and in part by the European Union Horizon 2020 Research and
Innovation Programme SUPERFLUIDITY under Grant 671566.

References

1. Shipley, A.: Security in the internet of things, lessons from the past for the con-
nected future. Security Solutions, Wind River, White Paper (2013)

2. Dı́az, M., Mart́ın, C., Rubio, B.: State-of-the-art, challenges, and open issues in
the integration of internet of things and cloud computing. J. Netw. Comput. Appl.
67, 99–117 (2016)

3. Zhou, J., Cao, Z., Dong, X., Vasilakos, A.V.: Security and privacy for cloud-based
iot: Challenges. IEEE Commun. Mag. 55(1), 26–33 (2017)

4. Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M., Guizani, S.:
Internet-of-things-based smart cities: recent advances and challenges. IEEE Com-
mun. Mag. 55(9), 16–24 (2017)

Secured Data Gathering Protocol for IoT Networks 143

5. Chan, C.L., Jaggi, S., Saligrama, V., Agnihotri, S.: Non-adaptive group testing:
explicit bounds and novel algorithms. IEEE Trans. Inf. Theory 60(5), 3019–3035
(2014)

6. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless
sensor networks. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys), pp. 95–107. ACM (2004)

7. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless
sensor networks. In: Proceedings of IEEE Twenty-First Annual Joint Conference
of the IEEE computer and communications societies, INFOCOM 2002, vol. 3, pp.
1567–1576. IEEE (2002)

8. Huang, P., Xiao, L., Soltani, S., Mutka, M.W., Xi, N.: The evolution of MAC
protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(1),
101–120 (2013)

9. Lin, J., Ingram, M.A.: SCT-MAC: a scheduling duty cycle MAC protocol for coop-
erative wireless sensor network. In: 2012 IEEE International Conference on Com-
munications (ICC), pp. 345–349. IEEE (2012)

10. Liu, C.-J., Huang, P., Xiao, L.: TAS-MAC: a traffic-adaptive synchronous MAC
protocol for wireless sensor networks. ACM Trans. Sens. Netw. (TOSN) 12(1), 1
(2016)

11. Kakria, A., Aseri, T.C.: Survey of synchronous MAC protocols for Wireless Sensor
Networks. In: 2014 Recent Advances in Engineering and Computational Sciences
(RAECS), pp. 1–4. IEEE (2014)

12. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems (SenSys), pp. 307–
320. ACM Press, New York (2006)

13. Sun, Y., Gurewitz, O., Johnson, D.B.: RI-MAC: a receiver-initiated asynchronous
duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In:
Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems
(SenSys), pp. 1–14. ACM (2008)

14. Tang, L., Sun, Y., Gurewitz, O., Johnson, D.B.: EM-MAC: a dynamic multichan-
nel energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of
the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), p. 23. ACM (2011)

15. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943)

16. Rom, R., Sidi, M.: Multiple Access Protocols: Performance and Analysis. Springer,
New York (1990). https://doi.org/10.1007/978-1-4612-3402-9

17. Cohen, A., Cohen, A., Gurewitz, O.: Data aggregation over multiple access wireless
sensors networks. arXiv preprint (2017)

18. Atia, G.K., Saligrama, V.: Boolean compressed sensing and noisy group testing.
IEEE Trans. Inf. Theory 58(3), 1880–1901 (2012). A minor corection appered in,
vol. 61, no. 3, p. 1507, 2015

19. Sejdinovic, D., Johnson, O.: Note on noisy group testing: asymptotic bounds and
belief propagation reconstruction. In: 2010 48th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 998–1003. IEEE (2010)

20. Bloch, M., Barros, J.: Physical-Layer Security: From Information Theory to Secu-
rity Engineering. Cambridge University Press, Cambridge (2011)

21. Cohen, A., Cohen, A., Jaggi, S., Gurewitz, O.: Secure group testing.
arXiv:1607.04849 (2016)

https://doi.org/10.1007/978-1-4612-3402-9
http://arxiv.org/abs/1607.04849

Towards Building Active Defense Systems
for Software Applications

Zara Perumal and Kalyan Veeramachaneni(B)

Data to AI Lab, MIT LIDS, Cambridge, MA 02139, USA
{zperumal,kalyanv}@mit.edu

Abstract. Over the last few years, cyber attacks have become increas-
ingly sophisticated. PDF malware – a continuously effective method of
attack due to the difficulty of classifying malicious files – is a popu-
lar target of study within the field of machine learning for cybersecu-
rity. The obstacles to using machine learning are many: attack patterns
change over time as attackers change their behavior (sometimes auto-
matically), and application security systems are deployed in a highly
resource-constrained environments, meaning that an accurate but time-
consuming machine learning cannot be deployed.

Motivated by these challenges, we propose an active defender system
to adapt to evasive PDF malware in a resource-constrained environment.
We observe this system to improve the f1 score from 0.17535 to 0.4562
over five stages of receiving unlabeled PDF files. Furthermore, average
classification time per file is low across all 5 stages, and is reduced from
an average of 1.16908 s per file to 1.09649 s per file. Beyond classifying
malware, we provide a general active defender framework that can be
used to deploy decision systems for a variety of applications operating
under resource-constrained environments with adversaries.

1 Introduction

In recent years, cyber attacks have increased dramatically in both scale and
sophistication. Last spring, the WannaCry ransomware attack crippled comput-
ers around the world [9]. Soon after, attacks on the Equifax credit reporting
agency compromised the personal information of millions of users [20]. In addi-
tion, banks and Bitcoin exchanges have been subject to an increasing number of
attacks. Despite the wide-ranging nature of these attacks, a few commonalities
exist. First, most of these attacks enter an enterprise network through an appli-
cation endpoint, generally when a user unknowingly lets a file with “malware”
inside the network - for example, by downloading a malicious “pdf ” (file) that
was delivered via an email (application). Second, the most recent attacks are
increasingly attributed to Nation-State actors, or Nation-State sponsored cyber-
gangs [7,19]. These powerful attackers often target individuals or small-scale
enterprises. Such large adversaries can devote many more resources to attacking
a system than their targets can devote to preventing such attacks– an asymmetry
that presents a challenging problem [17].
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 144–161, 2018.
https://doi.org/10.1007/978-3-319-94147-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_12&domain=pdf

Towards Building Active Defense Systems 145

The increasing complexity and scale of software applications makes it even
more difficult to monitor their use, find their vulnerabilities, and defend them
against attacks. Application developers have to constantly make trade-offs, bal-
ancing between the usability, effectiveness and security of the application. Simple
rule-based or signature-based defense systems, while quick to respond to attacks,
are not robust enough to provide true protection. Meanwhile, the fact that large
amounts of data are constantly being collected has led developers to seek machine
learning-based solutions [3].

However, many significant challenges stand in the way of using machine learn-
ing for cyber security. First of all, the evolving nature of cyber attacks breaks
the assumption that the historic attacks used to train a predictive model would
resemble what will actually arrive when the system is deployed. Instead of try-
ing the same type of attack over and over, attackers design automated evasive
algorithms specifically to evade these deployed models and create new variants
[23,30].

The second challenge stems from the complex dynamics of the security
ecosystem. The actors in a given security problem generally include sophisti-
cated attackers, overburdened security analysts, enterprises who want to defend
themselves but not forgo the efficacy of their function, and end-users with a lim-
ited knowledge of how to protect themselves (and, subsequently, the enterprise).
Complications might include certain detection strategies being public knowledge,
or the limited availability of real-time computational resources to run sophisti-
cated detection approaches. Existing solutions fall short in a number of ways.
For instance, a highly optimized and accurate attack detection solution could
be useless if it also delays people’s ability to access and use the application it is
defending.

To mitigate these problems, we present an active defender system aimed at
providing accurate detection in a resource-constrained, adversarial environment.

An Active Defender System: As shown in Fig. 1, our active defender uti-
lizes a “Synthesize-Model-Decide-Adapt” (SMDA) framework to maintain high
accuracy while reducing classification time and resource usage. In this paper, we
focus on a use case involving PDF malware and test how our approach performs
in presence of evasive adversaries.1.
Our Contributions Through This Paper are as Follows:

1. We present a general-purpose Synthesize-Model-Decide-Adapt framework to
enable the building, evaluating, deploying and subsequently adapting machine
learning-based application security systems.

2. We propose a multi detector based hierarchical decision making system. We
tune the system using Bayesian optimization methods to optimize the usage
of the detectors.

3. We present a simple Max-Diff approach, which we show evades even the most
sophisticated attack classification system.

1 Several recent studies suggest that PDF malware is evading classification using var-
ious automated methods [8,11,23,30].

146 Z. Perumal and K. Veeramachaneni

Fig. 1. Active Defender Sytem: The Active Defender system uses the “Synthesize-
Model-Decide-Adapt” framework. First the system is initialized by Synthesizing train-
ing data, then learning several machine learning-based detection models, and tuning
the decision system. After the system is deployed it is used to decide on new data,
including evasive data generated by the attacker. After a decision is made on newly
received data, the system adapts to update the models and decision system

The paper is organized as follows: Sect. 2 presents the use case we focus on
in this paper. Section 3 presents our method for synthesizing training examples,
Sect. 4 presents the classifiers we use, Sect. 5 presents a tunable decision system,
and Sect. 6 presents how we adapt our system. Section 7 presents the experi-
mental settings and our results. Section 8 presents the conclusions and discusses
future work. Rather than dedicate a separate section to related work, we have
included it in context across different sections.

2 Malware Through PDFs

Of all the different file types available, users trust portable document formats the
most. People use portable document formats – PDFs for short – to upload every-
thing from academic conference paper submissions to government tax forms.
They are also often passed through emails as attachments. Despite their pop-
ularity, these unassuming documents contain a powerful format that enables
attackers to embed and hide malicious code, spy on users, or encrypt an end
user’s computer in a ransomware attack [2]. In the next subsection we present
multiple ways to detect malware embedded in PDFs.

2.1 PDF Malware Detection

Network Detection: Network detection aims to prevent the delivery of mali-
cious content by intercepting it before a user has a chance to download it.
Through email analysis such as spam detection or network frequency methods,
enterprises can filter out anomalous behaviour and limit the phishing emails
and attached malware that make it to the end user. This is usually done in
combination with static or dynamic analysis.

Towards Building Active Defense Systems 147

Static Classifiers: These classifiers use static features of the PDF to quickly
detect anomalies before passing the document on to the users. These methods are
preferred for their low latency, but have higher error rates. Static classification
methods include signature-based detection methods, which can search a received
file for the unique bit strings of known malicious files. Other methods attempt
to utilize higher-level features, such as n-gram analysis or JavaScript pattern
recognition [16,18]. The most successful static feature-based classifiers have been
PDFRate and Hidost. The PDFRate classifier extracts 135 features based on
the structure and metadata of a PDF document [25] and uses them to train a
machine learning classifier (see [4,24]). Once the model is trained, it works fast,
taking less than a second to classify each new PDF. However, the classifier can
be evaded by adversarial algorithms using genetic programming methods [30].

Fig. 2. Kernel density estimation approximation of Probability Density for scores gen-
erated using the PDFRate classifier (left), Cuckoo (center) and VirusTotal (right). This
plot shows the classifiers’ scores for malicious PDFs in pink and benign PDFs in blue.
The KDE plot was generated with a Gaussian kernel of width 0.1. A higher overlap
indicates an inability to accurately detect the malicious PDF. Predictably, out of the
three methods, VirusTotal is the best (with the least overlap), and PDFRate is the
worst (with the most overlap). (Color figure online)

Dynamic Behavioural Analysis: The Cuckoo Sandbox runs each PDF
dynamic analysis sandbox on an isolated “sandboxed” environment. A Cuckoo
server runs on the host computer, receives files, and sends them to a virtual
machine for analysis. In the virtual machine, Cuckoo simulates opening PDFs
in a vulnerable version of Adobe Acrobat, collects information, and compares
this information to a set of known behavioural signatures. Cuckoo is fairly accu-
rate for known malicious signatures, and usually requires 30 s of simulation time
in a virtual machine. For our experiments we used virtual machines set up in
VMWare, running Windows XP and a vulnerable version of Adobe Acrobat
Reader 8.1.1. Using the results of the Cuckoo classification, we recorded the
list of known malicious behavioural signatures observed on the virtual machine
when the PDF was processed, and a Boolean indicating if any signatures were
observed.

Publicly Available APIs: VirusTotal is an API-based detection system. After
a user uploads a PDF, it is checked using up to 59 static, dynamic and anti-virus

148 Z. Perumal and K. Veeramachaneni

classifiers, and the results of this classification are returned. Some of the classi-
fiers used by VirusTotal include Endgame, Kaspersky Antivirus, Symantec, and
Sophos. Aggregating these results can result in a highly accurate classification
(see Fig. 2), but can also be time- and resource-intensive: a single classification
can take up to two minutes, or longer in times of high server load. Further-
more, corporations may be rate-limited by the API and may have to pay for
uploads. We collect the aggregate percentage of antivirus engines that classified
the uploaded PDF as malicious, and we also collect the following classification
attributes for each of the scanners used by VirusTotal: version of scanner used,
scan result, and malicious classification.

Human Expert Analysis: Using human analysts to inspect malware samples
is the most accurate form of detection. However, the sheer rate of incoming
PDFs requires faster methods. Analysts can compare samples through a variety
of methods, including comparing network calls and memory access, running the
sample on a hardware sandbox, or comparing activity on a device through a
firewall.

Our Dataset and Method Evaluation Strategy: To demonstrate the effi-
cacy of different detection techniques, we accumulated a repository of 207,119
PDFs. We created this dataset from a combination of existing, externally pro-
vided PDF files, and variations of these PDF files generated via a process called
mutation (we will describe this briefly in Sect. 3). We gathered these PDFs from
the following sources:

– Contagio: The Contagio dataset provided a corpus of 9,000 benign PDFs and
10,597 malicious files [1].

– EvadeML: EvadeML data provided by Weilin Xu contains 16440 malicious
PDF files developed using the “EvadeML” algorithm. These files are based
off of 500 malicious files in the Contagio data set and are designed to confuse
the PDFRate classifier [30].

– Self-generated: PDFs can be generated from existing PDFs according to the
“Random-Mutation”,“Evade-ML” [30] or “Max-Diff” algorithms. Both the
“Evade-ML” and “Max-Diff” algorithms are based on genetic programming.
These algorithms create pools of samples, score them, and mutate the best-
scoring samples to create more malicious files. In this data set, we generated
8232 malicious files using the “Max-Diff” algorithm and 35,680 benign files
using random mutation.

We thus have a total labeled set of 79,949 files: 35,269 malicious and 44,680
benign.

3 Synthesizing Training Data

To develop an adaptive machine learning solution, we need labeled training
examples from the past and an ability to generate evasive versions over time.

Towards Building Active Defense Systems 149

In recent years, machine learning has been used to automatically create malware
samples.

Machine Learning to Create Malicious Samples: Beyond the direct meth-
ods used to inject malicious code and create PDF files, attackers can mutate
existing PDF malware in order to create new ones. Many recent studies have
focused on methods for generating adversarial PDF files to evade machine learn-
ing classifiers.

The mimicus framework presents a method for manipulating PDF classifica-
tion, through modifying mutable features and through gradient descent meth-
ods using attributes of the model [4,15]. The EvadeML framework presents a
black box genetic programming approach to evade a classifier when the clas-
sification score is known [30]. The EvadeHC method evades machine learning
classifiers without knowledge of the model or classification score [11]. The Seed-
ExploreExploit framework presents another evasion method for deceiving black
box classifiers by allowing adversaries to prioritize level diversity and accuracy
to generate samples [23].

Other methods operate on the feature space and generate evasive features
that could confuse classifiers; however, it is not always clear how to convert eva-
sive features back into malicious files [13]. Many additional methods have been
presented to deceive machine learning classifiers based on stationarity assump-
tions that do not hold in an adversarial environment [5,6,10–12,14,21,22,27].
These attacks often focus on complex classifiers, such as deep learning systems,
which can be overfit to rely on features that are correlated with malware, rather
than those that are necessary for malware. In [29], Wang et al. show that complex
classifiers can be evaded if even one unnecessary feature is present.

EvadeML: EvadeML uses a genetic programming method to produce variants
of the malicious files using a method they call mutate.
fmutate() The malicious files are mutated using components from the pool of
benign files Sb. The mutation method is implemented using a modified version
of the PDFRW software package2 and works as follows:

Step 1: Load all PDF files into a tree structure.
Step 2: Mutate each malicious PDF by randomly doing one of the following:

– Insert randomly selected sub-tree from a benign file.
– Swap a randomly selected sub-element with a randomly selected sub-tree

from the benign file.
– Delete a randomly selected element in the malicious tree representation.

Step 3: Write the mutated tree back as a PDF file.

These variants are tested against the Cuckoo sandbox to ensure that their
malicious nature is preserved, then scored using static classification scores [30].
EvadeML found variants that received classification scores of <0, with PDFRate
classifier. For this classifier, scores for benign are supposed to be closer to −1.
A negative score for malicious files indicate that the method was able to evade
the classifier. In summary the algorithm works as follows:
2 https://github.com/mzweilin/pdfrwructure.

https://github.com/mzweilin/pdfrwructure

150 Z. Perumal and K. Veeramachaneni

Step 0: Start with an empty set Sevade = {}
Step 1: Create a set of mutant files using fm using the set of Sm. Call this set

Smutants.
Step 2: Check which among the mutants are malicious using the oracle function

o(). In our case this is the Cuckoo classifier. Call this set Sm
mutant

Step 3: Apply PDFRate classifier to the set Sm
mutant and generate classification

scores.
Step 4: Select the mutants that have classification scores less than the cutoff.

Add these to the set Sevade. These files are the ones that evade the PDFrate
classifier.

Step 5: Repeat steps 1–4 until |Sevade| ≥ nv, where nv is number of evasive
variants desired.

Max-Diff Approach: We propose the Max-Diff approach as an alternative
method for generating malicious files. It is similar to the EvadeML algorithm in
that it uses a malicious and benign pool of variants, scores the malicious variants,
mutates the best-scoring variants, adds them to the pool of malicious files, and
then continues. However, unlike the Evade-ML algorithm, it does not seek to find
files that receive a classification score less than the cutoff for a single classifier.
Instead, it selects for files that receive different classification scores from different
classifiers in the system. For the active defender system, Max-Diff targets files
that evade PDFRate or VirusTotal. The algorithm works are follows:
Step 0: Start with an empty set Sevade = {}
Step 1: Create a set of mutant files using fm and using the set of Sm. Call this

set Smutants.
Step 2: Check which among the mutants are malicious using the oracle function

o(). In our case this is the Cuckoo classifier. Call this set Sm
mutant

Step 3: Apply PDFRate classifier to set Sm
mutant and generate classification scores

as p1
Step 4: Upload the set to the VirusTotal website and generate VirusTotal clas-

sifier scores for Sm
mutant as well as classification scores. Collect these scores in

p3
Step 5: Select the mutants that have abs(p1 − p3) greater than a threshold

specified by cutoff. Add these to the set Sevade. These files represent files that
receive different scores from PDFRate vs. VirusTotal, and could confuse a
classification system.

Step 6: Repeat steps 1–4 until |Sevade| ≥ nv.

Evasive Performance: We analyze these approaches based on their capability
to evade PDFRate (the fastest classifier) and VirusTotal (the most accurate
classifier). As we see in Fig. 3, malicious files generated using the Evade-ML are
effective in evading PDFRate classification. Additionally, we observe that evasive
files generated using the Max-Diff approach are especially effective at evading
the VirusTotal classifier. In comparing these results we see that the more time-
consuming classifier, VirusTotal, does achieve higher accuracy against evasive
variants than the PDFRate classifier. However, even Virus Total is not foolproof,
which motivates the need for use of human analysts.

Towards Building Active Defense Systems 151

Fig. 3. KDE approximation of Probability Density for the PDFRate (top) and Virus-
Total (bottom) scores. This plot shows the classification scores for different types of
files. The benign files are shown as pink, the Contagio malware samples are shown in
purple, the EvadeML variants are shown in blue, and the Max-Diff variants are shown
in green. The KDE plot was generated with a Gaussian kernel of widths 0.15, 0.15,
0.17, and 0.17 for the Benign, Contagio, EvadeML, and Max-Diff files respectively. In
this case, the Evade-ML, Max-Diff, and Benign files had very similar probability den-
sities, and differing width kernels were used in order to distinguish them. (Color figur
online)

4 Learning Models from Training Data

In our active defender system, we use the training data provided to us in the
form of file sets Sm and Sb. We divide the classifiers into two types, primary
and secondary. Primary classifiers/models take the files as input and produce a
probabilistic score p. Secondary classifiers/models take the output of the primary
classifiers and deliver a probabilistic score. Although all secondary models are
machine learning models, not all primary models are.

Primary Classifiers: The active defender system uses the classifiers described
in Sect. 2. These are: PDFRate (denoted as C1), the Cuckoo classifier (denoted
as C2, which returns scores p2 indicating if known behavioural signatures of
malicious files were detected) and a VirusTotal (C3) classifier that outputs the
percentage of VirusTotal classifiers that classify the file as malicious (p3)

Fig. 4. Active Defender Classifiers: Primary classifiers (C1,C2,C3) receive samples and
produce probabilistic scores (p1,p2,p3). Secondary classifiers use these probabilistic
scores as inputs. Secondary classifier C4 uses inputs (p1,p2) to produce the probabilistic
score p4, and C5 uses inputs (p1,p2,p3) to output the probabilistic score p5.

152 Z. Perumal and K. Veeramachaneni

Secondary Classifiers: Secondary classifiers are designed to take in output
scores from the primary classifiers and learn a machine learning model. Two
secondary classifiers are developed in our active defender system. They are:

– C4 uses the outputs of PDFRate (C1) and Cuckoo (C2) as inputs and produces
a probabilistic score (p4).

– C5 uses the outputs of PDFRate (C1), Cuckoo (C2), and Virus Total (C3) as
inputs and produces a probabilistic score (p5) (Fig. 4).

5 A Tunable Decision System

In real time, in order to determine whether or not a new input file s is malicious,
we apply a hierarchical decision system that adaptively makes use of multiple
classifiers. In developing such a decision system, we considered the following
goals:

– Increase throughput: We would like to make decisions about PDFs as fast
as possible. Because PDFRate is the fastest in giving us the prediction (and
VirusTotal is the slowest), we would like to use PDFRate as much as possible.

– Maintain accuracy: While it is easiest to increase our throughput by choosing
to use the PDFRate classifier every time, this will lead to a lot of false positives
if we have to maintain a high recall of 90%, and we would have to augment
with Cuckoo or VirusTotal.

To achieve the goals above, we propose the following:

– a bi-level decision function for classifiers, described in Sect. 5.1,
– a hierarchical, tunable decision system, described in Sect. 5.2,
– A cost function that evaluates the efficacy of a given decision system,

described in Sect. 5.3,
– a tuning algorithm that produces a viable decision system, described in

Sect. 5.4.

5.1 Bi-level Decision Function

Given a classifier Ci and its output score pi, a bi-level decision function allows
us to make a decision Di based on two decision thresholds, t1i and t2i , as depicted
in Fig. 5 and more formally given by:

Di =

⎧
⎪⎨

⎪⎩

Benign if pi < t1i
Uncertain, output pi if pi ≥ t1i and pi < t2i
Malicious if pi ≥ t2i

(1)

This allows us to make a decision when we are absolutely confident, and enables
us to postpone the decision in regions where we are uncertain.

Towards Building Active Defense Systems 153

Fig. 5. Bi-level decision function. With input of pi, the bi-level decision returns a
result if it is certain of the classification. It classifies an input as benign if pi < t1i and
malicious if pi ≥ t2i . If t1i < pi < t2i , the function returns pi, as the result is uncertain.

5.2 Hierarchical Tunable Decision System

The hierarchical decision system is shown in Fig. 6. This system determines a
final classification result (y) and a probabilistic score (Pfinal) for each input
sample using layers of bi − level classifiers. The Pfinal score is calculated using
the output of the last classifier (plast), the threshold used in the last decision

Fig. 6. Active Defender Hierarchical Decision System: A PDF is first sent to the
PDFRate classifier (C1). Based on the output of PDFRate, p1, a decision is made
whether to return a result or send the file to the Cuckoo classifier (C2). If the file is
sent to the Cuckoo classifier, the results from PDFRate (p1), and Cuckoo (p2) are sent
to the secondary classifier C4 and a decision is made as to whether to return a result
or sent the file to VirusTotal (C3). If the file is sent to the VirusTotal classifier, clas-
sification scores from the PDFRate (p1), Cuckoo (p2), and VirusTotal (p3) classifiers
are sent to the C5 secondary classifier and a final decision is made.

154 Z. Perumal and K. Veeramachaneni

(tlast), the number of primary classifiers used (Npc used), and the total available
primary classifiers (Npc total) as shown below:

Pfinal =
Npc used

Npc total
∗ abs(plast − tlast) (2)

5.3 Cost Function

The cost function expresses the two objectives we specified above – the through-
put, and whether the desired accuracy is achieved. Given a fully specified decision
system, with classifiers C1...5, decision thresholds t11, t

2
1, t

1
4, t

2
4, t5, and a set of files

S, the cost c incurred by the system is evaluated as:

c = −γ ∗ g(Ŷ , Y) + (1 − γ) ∗ 1
|S|

∑

i

ri (3)

where Ŷ is the set of predicted labels, Y are the corresponding true labels, g(.)
measures the accuracy of the predicted labels, 1

|S|
∑

i ri is the average classifi-
cation time taken to make these decisions based on the subset of models used
for each file in the set per sample, and γ is a weight associated with each of the
factors.

g(.) function. The g(.) function describes the accuracy of a system. We provide
two methods of characterizing system accuracy. In g1(.), the f1 score is optimized
to improve precision and recall.

g1(.) = f1(predicted, true labels) (4)

In g2(.), the function requires a minimal threshold of precision and then optimizes
for recall. This function is especially applicable for malware detection, as allowing
an additional malicious file to enter the system can be very costly, but is required
to keep false rejection of benign files below a certain specified rate for user
happiness.

g2 =

{
recall(Ŷ , Y) if precision(Ŷ , Y) ≥ 0.9
0 otherwise

(5)

5.4 Tuning Algorithm

Since the active defender system utilizes a set of thresholds to determine the
decision for an input sample, tuner optimizes these thresholds based on their
effect on a cost function. The tuning algorithm uses additional training data to
optimize.

Tuner comprises two main steps. First, the tuner algorithm enumerates an
initial set of classifier thresholds using an enumeration function e() to generate
a set of thresholds T , and scores them with the cost function g. This is done in
two steps.

Towards Building Active Defense Systems 155

– First, we produce a 2 lists of possible “threshold pairs” for each pair of thresh-
olds: �t1 , �t4 , (t

1
1, t

2
1), (t

1
4, t

2
4) respectively.

– For the last threshold t5 we produce a list of possible thresholds �t5 .
– Finally, we create �T using all possible combinations of threshold pairs across

lists �t1 , �t4 and �t5 .

In our enumeration function e() we produce threshold pairs using the 0%,
20%, 40%, 60%, 80%, and 100% percentile values of previous classification scores
for that classifier. For example, if previous PDFRate classification scores p1 were
observed between 0.0 and 0.5, then:
�t1 ≡ {(0.0, 0.1), (0.1, 0.2), (0.3, 0.4), (0.4, 0.5)}. The last threshold list is (�t5) a
list of the 0% , 20%, 40%, 60%, 80%, and 100% percentiles for respective score
p5. More complex enumeration functions can be developed to capture a more
expressive range of thresholds.

Enumerating a large threshold set is important in systems with complex cost
functions such as g2(.) which are not monotonic. If too few initial thresholds are
enumerated, optimization can result in thresholds that find a local rather than
a global minimum cost function value.

Second, tuner uses a maximum of niterations of Bayesian hyperparameter
tuning3 to propose an additional candidate threshold sets, evaluate it using g,
add it to the threshold set T , and find the thresholds that minimize the cost func-
tion g. In iterative tuning, ε specifies the minimum distance between successive
minimum scores to stop optimization [26].

6 Adapting over Time

One of the most important aspects of the active defender system is the ability
of the entire system to adapt over time, enabling it to overcome attackers who
build evasive variants. Known as active learning, this adaptation can happen
over time, simply by adding verified labeled training examples.

In [28], Veeramachaneni and Arnaldo study the use of active learning in
cybersecurity. They use multiple outlier detection systems, send suspicious activ-
ity to analysts and seek their input in order to be able to provide more training
examples to the machine learning model over time. We build on this idea, gen-
erating more labeled training data using a variety of possible methods:

– higher accuracy classifiers: we can incorporate predictions from VirusTotal as
possible source of true labels.

– human analysts: we can send some examples to humans to get their analysis.
This is expensive, but still doable.

– synthetically generated evasive variants: From time to time, we can create
evasive confirmed malicious variants using the machine learning methods we
described in Sect. 3.

3 We make use of the open source library: https://github.com/HDI-Project/BTB.

https://github.com/HDI-Project/BTB

156 Z. Perumal and K. Veeramachaneni

Fig. 7. Data flow diagram of how new training examples are used to adapt the system.
(1) Input data Sreceived sent through the decision system to produce predicted labels
Yreceived and probabilities. (2) Samples are selected in using probabilities Preceived. (3)
The selected data Sselected is split into Strain and Stune. (4) The training data Strain is
split into Sprimary used to train the primary classifiers and Ssecondary used to update
the secondary classifiers. (5) The tuning data Stune is used to tune the decision system

Adapt in Active Defender: In an active learning scenario, we use additional
data to update the models and tune the decision system. For unlabeled data, the
system generates labels and final probabilities using the predictions from the
previous learned models and the decision system. The adapt algorithm uses the
following steps also shown in Fig. 7.

– SELECT: chooses the files that are above a set minimum probability threshold
(α) to be used as malicious training examples.

– UPDATE: uses a subset of the selected files specified by (λ) to learned model.
This subset is further divided into two parts: one used to train the primary
and the second used to train secondary classifiers, specified by parameter μ. In
the active defender system, the PDFRate classifier (C1) is the only primary
classifier that can be retrained.
The second part is used to update the secondary classifiers, C4, C5 using the
new predictions of PDFRate for the labeled data.

– TUNE: uses the remaining files to tune the decision function given the enumer-
ation function, e(), maximum number of tuning iterations (niterations), and
difference between successive minimum scores ε.

7 Experimental Setup

In order to understand the performance of the active defender system, we analyze
its accuracy and resource use as it adapts. In the experimental design, we first
split the data into two data sets, as shown in Fig. 8.

Training Data: D1 corresponds to data used to train the initial system. In our
experimental setup, D1 consists of the 10,597 Contagio malware files and 10,597
benign PDFs randomly selected from the 44,680 benign files discussed in Sect. 2.

Adaptation Data: D2 is data received by the system after it is deployed. The
adaptation data, D2, consists of the evasively generated malware and remaining

Towards Building Active Defense Systems 157

Fig. 8. Splitting Experimental Data. In the following experiment, the data is split into
data sets D1 and D2. D1 is used to initialize the decision system. D2 represents data
received by the system after it is deployed. D2 is split into subsets qi, representing the
files received in each successive stage.

Fig. 9. Updating the decision system. In the experiment, training data D1 is used to
initialize the decision system. After the system is deployed, it receives additional data.
After each additional received dataset qi, the decision system adapts.

benign PDF files. As shown in Fig. 8, this data is split into subsets q1 through
q5 and is sent to the decision system across 5 stages or time periods.

Settings: We perform 25 random trials. In each trial, the order of the files is
randomized giving D1 and D2 different files across trials. As a result the subsets
q1 ... q5 are also different.

In setting up the decision system, we set the following parameters for the
tuning algorithm described in Sects. 5 and 6. The cost function is g1(); a γ value
of 0.9 is used to prioritize accuracy over resource usage and an epsilon value of
ε ≡ 0.1 is set (Fig. 9).

7.1 Results

Overall, we see that the system is able to adapt to achieve high accuracy in the
presence of evasive adversaries, and to reduce resource usage over time.

Accuracy: As shown in Fig. 10 and Table 1, we observe the performance of the
decision system when classifying successive sets of received files. We characterize
accuracy by observing the f1 score, comparing truth versus labeled data. As
evasive variants are introduced in stage 1, we observe a low f1 score. However,
as the stages progress, we observe that the system is able to adapt to improve
accuracy over time.

Resource Usage: For the purposes of this experiment, we characterize resource
usage by studying the average time used to classify each file. As shown in Fig. 11
and Table 1, when the system is initialized, classification time is relatively low, at
around 1(s) per file. However, we observe that the classification time continues
to decrease over time, indicating that the PDFRate static classifier is improving

158 Z. Perumal and K. Veeramachaneni

Fig. 10. Accuracy over Adaptation: In this figure, we observe the f1 score vs. the
experimental stage over time. We plot the mean f1 score as points and show the
standard deviation in the surrounding band. We observe poor results in Stage 1, when
evasive samples are introduced. Over time, we observe that the f1 score increases as
the system adapts to evasive samples.

Fig. 11. Time taken to classify as the system runs for several stages: In this figure, we
observe the estimated classification time per file at each stage. We plot the mean time
as points and show the standard deviation in the surrounding band. Here we see that
the average classification time is pretty low, around 1.16 s, and decreases throughout
the course of the experiment. The deviation in time is small per stage, and is not
observable due to the estimation function.

Table 1. Experimental data: 25 trials of the Active Defender System performance over
5 stages. Column μF1 corresponds to the average f1 score across all trials. Column σf1

corresponds to the standard deviation in f1 score across all trials. Column μTimeperFile

corresponds to the average estimated classification time per file. Column σTimeperFile

corresponds to the standard deviation in approximated classification time per file.

Stage μf1 σf1 μTime per File σTime per File

1 0.17535 0.01003 1.16908 <0.0001

2 0.19852 0.01459 1.16908 <0.0001

3 0.44201 0.01804 1.10766 <0.0001

4 0.45301 0.01829 1.10208 <0.0001

5 0.4562 0.02082 1.09649 <0.0001

and being utilized. In calculating the estimated classification time, we model
the PDFRate as taking 1 s, Cuckoo as taking 25 s and VirusTotal as taking
90 s. These have come from our own experience running three classifiers for
several thousands of PDFs. Notably, the standard deviation in classification
time is too small to observe using four decimals of precision. This is likely due

Towards Building Active Defense Systems 159

to the majority of files being classified by the static classifier and our estimation
function limiting the variability in time.

8 Discussion and Future Work

We were able to make four contributions through this paper. First, we devel-
oped a method to use machine learning in application security in a resource-
constrained environment. Second, we developed algorithms that use active learn-
ing to improve fast classifiers in the presence of adversaries. Third, we provided
an extensible framework to facilitate building, evaluating and deploying deci-
sion systems in an adversarial and resource-constrained environment. Fourth,
we provided a simple evasive algorithm that was shown to confuse automated
classifiers.

While studying the adversarial and resource-constrained problem of detecting
evasive PDF malware and building these solutions, we identified a few takeaways
that motivate future work.

Evasive Approaches Motivate Adaptation Over Time: In studying the
available classifiers, we were surprised to see that the max-diff approach was
effective in evading the VirusTotal classifier. VirusTotal is a powerful classifi-
cation system that has been acquired by Google and was considered to be one
of the best products of 2007. If this genetic programming-based algorithm can
cause confusion in malicious and benign files, this suggests that adversaries are
more than capable of deploying their own evasive algorithms to evade automated
classifiers. This motivates the need for human-in-the-loop systems and systems
that adapt over time.

Active Defender: In studying the behaviour of the active defender decision
system, we identified aspects of the decision and adaptation methods that could
be improved upon in future work. Exploring different methods for tuning the
decision system could reduce the tuning time necessary to achieve high accuracy.
Studying different ways of using available primary classifiers could decrease clas-
sification time. Using randomization to select a small number of files to be sent
to the most accurate classifiers can make the system more robust to files that
can completely evade simple classifiers. Finally, studying more complex meth-
ods could improve adaptation – for example, automated synthesis to create new
samples to improve confidence in predictions after adaptation.

8.1 Conclusion

As motivated attackers use more and more computational resources and state-
of-the-art algorithms to persistently attack smaller corporations, it is necessary
to figure out how to allow detection methods to adapt in a resource-constrained
environment. As enterprises collect more and more data, machine learning can
be an asset to application security; however, each institution looking to defend
their system will have different limitations on the resources they can devote to

160 Z. Perumal and K. Veeramachaneni

analyzing this data. In this paper, we propose an active defense system that
utilizes the SMDA framwork. This system can be tailored for different resource
limitations and environments. Furthermore, we believe that this software frame-
work and algorithms can generalize beyond PDF malware detection, enabling
researchers and corporations to work together to secure systems against power-
ful and evolving adversaries.

References

1. Contagio dump. http://contagiodump.blogspot.com. Accessed 11 Nov 2016
2. The rise of document-based malware. https://www.sophos.com/en-us/security-

news-trends/security-trends/the-rise-of-document-based-malware.aspx
3. The rise of machine learning (ml) in cybersecurity. https://www.crowdstrike.com/

resources/white-papers/rise-machine-learning-ml-cybersecurity/
4. Mimicus framweork (2017). https://github.com/srndic/mimicus
5. Argyros, G., Stais, I., Jana, S., Keromytis, A.D., Kiayias, A.: Sfadiff: automated

evasion attacks and fingerprinting using black-box differential automata learning.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1690–1701. ACM (2016)

6. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in black: towards formal,
black box analysis of sanitizers and filters. In: 2016 IEEE Symposium on Security
and Privacy (SP), pp. 91–109. IEEE (2016)

7. Ashford, W.: Cyber criminals catching up with nation state attacks. https://
www.computerweekly.com/news/252435701/Cyber-criminals-catching-up-with-
nation-state-attacks

8. Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto,
G., Roli, F.: Evasion attacks against machine learning at test time. In: Blockeel,
H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI),
vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40994-3 25

9. Bossert, T.P.: It’s official: north korea is behind wannacry, December 2017. https://
www.wsj.com/articles/its-official-north-korea-is-behind-wannacry-1513642537

10. Chen, Y., Nadji, Y., Kountouras, A., Monrose, F., Perdisci, R., Antonakakis, M.,
Vasiloglou, N.: Practical attacks against graph-based clustering. arXiv preprint
arXiv:1708.09056 (2017)

11. Dang, H., Huang, Y., Chang, E.C.: Evading classifiers by morphing in the dark
(2017)

12. Hosseini, H., Xiao, B., Clark, A., Poovendran, R.: Attacking automatic video anal-
ysis algorithms: a case study of google cloud video intelligence API. arXiv preprint
arXiv:1708.04301 (2017)

13. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on gan. arXiv preprint arXiv:1702.05983 (2017)

14. Kantchelian, A., Tygar, J., Joseph, A.: Evasion and hardening of tree ensemble
classifiers. In: International Conference on Machine Learning, pp. 2387–2396 (2016)

15. Laskov, P., et al.: Practical evasion of a learning-based classifier: a case study. In:
2014 IEEE Symposium on Security and Privacy (SP), pp. 197–211. IEEE (2014)

16. Li, W.-J., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.D.: A study of
malcode-bearing documents. In: M. Hämmerli, B., Sommer, R. (eds.) DIMVA 2007.
LNCS, vol. 4579, pp. 231–250. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73614-1 14

http://contagiodump.blogspot.com
https://www.sophos.com/en-us/security-news-trends/security-trends/the-rise-of-document-based-malware.aspx
https://www.sophos.com/en-us/security-news-trends/security-trends/the-rise-of-document-based-malware.aspx
https://www.crowdstrike.com/resources/white-papers/rise-machine-learning-ml-cybersecurity/
https://www.crowdstrike.com/resources/white-papers/rise-machine-learning-ml-cybersecurity/
https://github.com/srndic/mimicus
https://www.computerweekly.com/news/252435701/Cyber-criminals-catching-up-with-nation-state-attacks
https://www.computerweekly.com/news/252435701/Cyber-criminals-catching-up-with-nation-state-attacks
https://www.computerweekly.com/news/252435701/Cyber-criminals-catching-up-with-nation-state-attacks
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://www.wsj.com/articles/its-official-north-korea-is-behind-wannacry-1513642537
https://www.wsj.com/articles/its-official-north-korea-is-behind-wannacry-1513642537
http://arxiv.org/abs/1708.09056
http://arxiv.org/abs/1708.04301
http://arxiv.org/abs/1702.05983
https://doi.org/10.1007/978-3-540-73614-1_14
https://doi.org/10.1007/978-3-540-73614-1_14

Towards Building Active Defense Systems 161

17. MacFarlane, D., Network, I.C.: Why even smaller enterprises should consider
nation-state quality cyber defenses, September 2017. https://www.csoonline.com/
article/3223866/cyberwarfare/nation-state-quality-cyber-defenses.html

18. Maiorca, D., Corona, I., Giacinto, G.: Looking at the bag is not enough to find
the bomb: an evasion of structural methods for malicious PDF files detection. In:
Proceedings of the 8th ACM SIGSAC symposium on Information, Computer and
Communications Security, pp. 119–130. ACM (2013)

19. Millman, R.: Nation state cyber-attacks on the rise - detect lateral move-
ment quickly, February 2018. https://www.scmagazineuk.com/nation-state-cyber-
attacks-on-the-rise-detect-lateral-movement-quickly/article/746561/

20. Riley, M., Robertson, J., Sharpe, A.: The equifax hack has the hallmarks of state-
sponsored pros, September 2017. https://www.bloomberg.com/news/features/
2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros

21. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end
attack against RNNs and other API calls based malware classifiers. arXiv preprint
arXiv:1707.05970 (2017)

22. Sethi, T.S., Kantardzic, M.: Data driven exploratory attacks on black box classifiers
in adversarial domains. arXiv preprint arXiv:1703.07909 (2017)

23. Sethi, T.S., Kantardzic, M., Ryu, J.W.: ‘Security theater’: on the vulnerability
of classifiers to exploratory attacks. In: Wang, G.A., Chau, M., Chen, H. (eds.)
PAISI 2017. LNCS, vol. 10241, pp. 49–63. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57463-9 4

24. Smutz, C., Stavrou, A.: Malicious PDF detection using metadata and structural
features. In: Proceedings of the 28th Annual Computer Security Applications Con-
ference, pp. 239–248. ACM (2012)

25. Smutz, C., Stavrou, A.: When a tree falls: using diversity in ensemble classifiers to
identify evasion in malware detectors. In: NDSS (2016)

26. Swearingen, T., Drevo, W., Cyphers, B., Cuesta-Infante, A., Ross, A., Veeramacha-
neni, K.: ATM: a distributed, collaborative, scalable system for automated machine
learning. In: IEEE International Conference on Big Data (2017)

27. Tong, L., Li, B., Hajaj, C., Vorobeychik, Y.: Feature conservation in adversarial
classifier evasion: a case study. arXiv preprint arXiv:1708.08327 (2017)

28. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., Li, K.: Ai2: training
a big data machine to defend. In: 2016 IEEE 2nd International Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International Conference
on Intelligent Data and Security (IDS), pp. 49–54. IEEE (2016)

29. Wang, B., Gao, J., Qi, Y.: A theoretical framework for robustness of (deep) clas-
sifiers under adversarial noise. arXiv preprint arXiv:1612.00334 (2016)

30. Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers. In: Proceedings of
the 2016 Network and Distributed Systems Symposium (2016)

https://www.csoonline.com/article/3223866/cyberwarfare/nation-state-quality-cyber-defenses.html
https://www.csoonline.com/article/3223866/cyberwarfare/nation-state-quality-cyber-defenses.html
https://www.scmagazineuk.com/nation-state-cyber-attacks-on-the-rise-detect-lateral-movement-quickly/article/746561/
https://www.scmagazineuk.com/nation-state-cyber-attacks-on-the-rise-detect-lateral-movement-quickly/article/746561/
https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros
https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros
http://arxiv.org/abs/1707.05970
http://arxiv.org/abs/1703.07909
https://doi.org/10.1007/978-3-319-57463-9_4
https://doi.org/10.1007/978-3-319-57463-9_4
http://arxiv.org/abs/1708.08327
http://arxiv.org/abs/1612.00334

Secure Non-interactive User
Re-enrollment in Biometrics-Based

Identification and Authentication Systems

Ivan De Oliveira Nunes1,2(B), Karim Eldefrawy1, and Tancrède Lepoint1

1 SRI International, Menlo Park, USA
ivanoliv@uci.edu

2 University of California Irvine, Irvine, USA
{karim.eldefrawy,tancrede.lepoint}@sri.com

Abstract. Recent years have witnessed an increase in demand for bio-
metrics based identification, authentication and access control (BIA) sys-
tems, which offer convenience, ease of use, and (in some cases) improved
security. In contrast to other methods, such as passwords or pins, BIA
systems face new unique challenges; chiefly among them is ensuring
long-term confidentiality of biometric data stored in backends, as such
data has to be secured for the lifetime of an individual. Cryptographic
approaches such as Fuzzy Extractors (FE) and Fuzzy Vaults (FV) have
been developed to address this challenge. FE/FV do not require storing
any biometric data in backends, and instead generate and store helper
data that enables BIA when a new biometric reading is supplied. Secu-
rity of FE/FV ensures that an adversary obtaining such helper data
cannot (efficiently) learn the biometric. Relying on such cryptographic
approaches raises the following question: what happens when helper data
is lost or destroyed (e.g., due to a failure, or malicious activity), or when
new helper data has to be generated (e.g., in response to a breach or
to update the system)? Requiring a large number of users to physically
re-enroll is impractical, and the literature falls short of addressing this
problem. In this paper we develop SNUSE, a secure computation based
approach for non-interactive re-enrollment of a large number of users in
BIA systems. We prototype SNUSE to illustrate its feasibility, and evaluate
its performance and accuracy on two biometric modalities, fingerprints
and iris scans. Our results show that thousands of users can be securely
re-enrolled in seconds without affecting the accuracy of the system.

1 Introduction

Current Biometrics-based Identification and Authentication (BIA) systems1 [1,
2] typically store in the backend a reference Biometric Templates (BTs) of a
users’ biometrics, such as fingerprint minutiae points and/or iris code. If the

1 We omit explicitly mentioning access control, we assume it implicitly when authen-
ticating an individual and then granting access based on the authenticated identity.

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 162–180, 2018.
https://doi.org/10.1007/978-3-319-94147-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_13&domain=pdf

Secure Non-interactive User Re-enrollment 163

backend is compromised or breached, sensitive biometric data of a large number
of users may be leaked and enable adversaries to impersonate users and circum-
vent BIA systems. For example, in 2015, the Office of Personnel Management
was compromised and led to the leakage of 5.6 million fingerprints of federal
workers that applied for security clearances in the United States of America [3].

In order to protect BTs, typical solutions use secure elements or encryption.
Secure elements are applicable when matching is performed against a few bio-
metrics (e.g., the Touch ID technology on iPhones) but do not scale to a large
number of biometrics. Encrypting BTs also brings challenges: (1) BTs have to
be decrypted to match against the newly supplied biometric readings, (2) the
decryption keys associated with the encrypted templates have to be stored some-
where close by (logically and maybe even physically) to perform matching, and
(3) when the backend is compromised or breached, the encrypted templates may
be leaked. As reference biometrics templates have to be protected for the life-
time of individuals, it is important to select algorithms and key sizes that remain
secure for several decades (say, 40–50 years), which remains a challenging task.

A third cryptographic approach to address the above shortcomings and to
construct secure BIA systems has been proposed in the form of Fuzzy Vaults
(FV) [4] and Fuzzy Extractors (FE) [5]. FE and FV alleviate the need to store
BTs in the system’s backend; they enable to perform matching during the nor-
mal operation of a system from some Helper Data (HD), extracted during the
user’s initial enrollment into the system. The HD securely encodes2 a secret, or
cryptographic key, that cannot be retrieved unless the same (noisy) biometric
used to generate the HD is provided as input. Thus, the system can determine if
a new reading of a biometric corresponds to the user being authenticated. The
security of the approach stems from the fact that HDs do not convey any infor-
mation about the underlying biometric; and this guarantee can be information-
theoretic/statistical or computational depending on the details of the FE/FV
scheme.

To deploy this third cryptographic approach at scale, one has to address
the challenge of re-enrollment: in the lifetime of a cryptographically secure BIA
system, it will be often necessary to re-generate HDs because of breaches or
to perform maintenance or updates. For example, the secret key may need to
be revoked and replaced by a fresh one when the HD is leaked, damaged, or
corrupted. A second example is when access control is enforced via encryption,
e.g., via attribute-based encryption [6]; in this case, changing a given user’s
permissions implies changing the user’s cryptographic keys. In both examples,
existing schemes require physical presence of the user to refresh cryptographic
material, which is laborious, slow, costly, and hence impractical. This problem
is currently not addressed in the literature.

Our Contributions. In this work we introduce SNUSE (Secure Non-interactive
User at Scale Enrollment), a new approach for secure user re-enrollment that
does not require user involvement, nor storing BTs, in the clear or in encrypted
2 We use the term “encode” very loosely here as helper data may not actually encode

the secret, it may only enable constructing it when the biometric is also present.

164 I. De Oliveira Nunes et al.

(a) Initial Enrollment (b) User Authentication

(c) User Re-Enrollment

Fig. 1. Initial user enrollment, user authentication, and user re-enrollment in SNUSE.
During regular authentication, the user interacts with the authentication server only,
which stores the HD of all the users and enables recovering the user’s secret/key when
the correct biometric is supplied. When re-enrollment is required, the authentication
server communicates with the re-enrollment servers and uses MPC to compute new
HD, which encodes a new secret/key, from the secret-shared BT. We emphasize that
regular authentication does not require involvement of the re-enrollment servers and,
conversely, the re-enrollment phase does not require user involvement.

form, in any single backend server. Instead, SNUSE uses secret sharing to dis-
tribute the original biometric templates (BTs) among several offline components,
and performs the re-enrollment in a secure distributed manner by computing the
required FE/FV HD generation algorithms using efficient secure multiparty com-
putation (MPC). This approach ensures that at no point during the system’s
operation (after the initial enrollment) are original reference BTs reconstructed
in the clear. The components storing shares of BTs can remain offline and inac-
cessible through the network during normal operation; when re-enrollment is
required, the components are brought online and connected to the system for
only a brief period (e.g., seconds). Figure 1 illustrates the initial enrollment,
subsequent authentication, and re-enrollment phases in SNUSE. To the best of
our knowledge, this is the first approach amending BIA systems to enable per-
forming non-interactive user re-enrollment without storing the user’s biometric
template in clear, or encrypted, in any single component or server. A detailed

Secure Non-interactive User Re-enrollment 165

comparison with related work can be found in Sect. 4. Due to space constraints,
we defer the details of the implementation, security analysis, and experimental
results of a SNUSE prototype using Fuzzy Vaults to the extended version of this
manuscript3. Our experimental results demonstrate a high detection accuracy
with over 90% Genuine Acceptance Rate (GAR) and less than 5% False Accep-
tance Rate (FAR). We also show that re-enrollment of thousands of users using
standard computing servers only takes a few seconds.

2 Background

We overview here the building blocks used in SNUSE, and introduce the notation
that will be used in the rest of the paper.

2.1 Biometrics-Based Authentication

During user enrollment into a BIA system, a reference Biometric Template (BT),
composed of features uniquely identifying an individual, is sampled and stored
at an Authentication Server (AS). Later, when a user tries to authenticate, a
biometric reading is collected and the same feature extraction process is applied
to generate a second BT. This new BT is compared to the stored one, and if
their similarity exceeds a given threshold, the user is successfully authenticated,
otherwise, user authentication fails. A feature extraction procedure, applied to
a biometric sample of a user U , results in a BT that can be represented as:

BTU = {p1, . . . , pM}, (1)

where each pi is a data point representing a unique detail of U ’s biometric. For
example, fingerprint BTs include location and orientation of minutiae, i.e., of
regions in the image where fingerprint lines merge and/or split. Such minutiae
points are encoded as:

pi = (xi, yi, θi), (2)

where, xi is the x coordinate, yi is y coordinate, and θi the orientation of the
minutiae i extracted from U ’s fingerprint. Analogous methods can be proposed
to encode other biometrics such as iris scans.

Traditional BIA systems store BTs of thousands (or even hundreds of thou-
sands) of users in clear form. The reason for this is that each time a biometric is
sampled by a sensor, it is slightly different due to noise. Standard mechanisms for
secure storage of passwords (e.g., salted-hashing) cannot match two noisy read-
ings of the same biometric because they are not exactly the same. Unfortunately,
the advantages of biometrics come with a high risk; if the leaked biometric’s
modality is stable, leakage of a user’s biometric at any point in time affects secu-
rity of all authentication systems using this biometric for years. Consequently,
protecting the confidentiality of biometric data is of utmost importance.

3 Available at: http://sprout.ics.uci.edu/people/ivan/pubs/2018 snuse.pdf.

http://sprout.ics.uci.edu/people/ivan/pubs/2018_snuse.pdf

166 I. De Oliveira Nunes et al.

As discussed in Sect. 1, Fuzzy Extractors (FE) and Fuzzy Vaults (FV) are
cryptographic solutions that use an input BT to (i) generate Helper Data (HD),
which encodes a secret/key k; and (ii) ensure that the HD does not reveal any-
thing about the BT or k, unless prompted with (a noisy version of) the same
biometric used to generate the HD. Note that k can be an arbitrary secret and
not necessarily a symmetric key. In current approaches, the secret k stored in the
HD cannot be refreshed without requiring the physical (or remote) presence of
user for the re-enrollment process in which a new biometric sample is collected
and new HD is computed for the new secret. This manual approach does not
scale as re-enrolling thousands (or more) users is impractical; this paper proposes
a MPC-based solution that enable large-scale automatic re-enrollments.

2.2 Secret Sharing

In K-out-of-N secret sharing [7] a dealer distributes a secret among N parties
such that subsets of K or more parties can recover it; knowing up to K − 1
shares leaks no information about it. In SNUSE, we will generate N shares of a
biometric template and store them on N re-enrollment servers. Given a secret
X, let [X]j denote the j-th share and denote the generation of N shares of X by:

{[X]1, . . . , [X]N} ← X. (3)

Denote the reconstruction of secret X from K shares by:

X ← {[X]1, . . . , [X]K}. (4)

In Shamir’s (K,N) secret sharing scheme [7] over a finite field F, one ran-
domly generates the coefficients of a polynomial P of degree d = K − 1. The
independent term a0 is then set to the secret X, and one can generate N secret
shares Φ = {(i, P (i))}N

i=1. Since P has degree K − 1, K points in Φ are enough
to interpolate P and reconstruct its coefficients, including the secret a0 = X. A
set of L < K shares does not reveal any information about X because there’s an
infinite number of polynomials of degree K that can be constructed from these
points.

Summary of Assumptions and Guarantees: Shamir’s secret sharing is
information theoretic secure. In a K-out-of-N scheme, it is guaranteed that less
than K shares of the secret leak no information about such secret. Conversely,
K or more shares can be used to reconstruct the secret.

2.3 Secure Multi-party Computation (MPC)

MPC protocols enable mutually distrusting parties to jointly compute a function
f of their private inputs while revealing no information (other than the output
of f) about their inputs to the other parties [8].

In standard algebraic MPC protocols, each party usually generates shares
of its input (using, for instance, Shamir’s secret sharing scheme) and distribute

Secure Non-interactive User Re-enrollment 167

one share to each party. A key observation is that if one is able to compute
both addition and multiplication on the shares, such that the resulting shares
can be combined into the correct result of the operations, one can implement
any function f from these two basic operations. Different schemes were proposed
to compute addition and multiplication over private inputs [9–13]. Nevertheless,
most of them share the following common characteristics in the computation of
these operations:

– Addition of secret shares can be computed locally. To that purpose each
party computes addition of its own secret shares. The N local results, once
combined, yield the result of an addition of the actual secret(s).

– Multiplication of secret shares requires communication. Even though differ-
ent schemes exist, most require parties to broadcast an intermediate (blinded)
result during the computation of multiplication, such that individual shares
of the multiplication result can be correctly computed.

We do not specify details of the multiplication sub-protocols and we refer the
reader to [11,12] for further details. The takeaway is that multiplication requires
communication between parties, and in practice the overhead to multiply is usu-
ally orders of magnitude higher than the overhead of addition. In our design we
take advantage of the unique characteristics of a biometric enrollment system to
reduce the number of multiplications to a minimum (sometimes even eliminating
it), allowing cost-effective scalable MPC-based user re-enrollment.

Summary of Assumptions and Guarantees: MPC assumptions and guar-
antees vary depending on the specific MPC scheme used. In this work we focus
on the honest-but-curious (HBC) threat model with honest majority, in which
corrupted parties might collaborate to learn private inputs of other parties, but
they do not deviate from the protocol specification. The scheme remains secure
if the number of colluding parties is smaller than half of the total number of
parties.

2.4 Fuzzy Vault Scheme

A Fuzzy Vault (FV) scheme [4] is designed to work with a BT represented as an
unordered set of points as shown in Eq. (1). FVs allow using a user’s biometric
template BTU to hide a secret k. The secret can be, for instance, some private
data or a cryptographic key.

A FV scheme consists of two algorithms, a generation part (FVGEN) and a
secret reconstruction part (FVOPEN), which can be informally defined as follows:

– FVGEN : receives as input the secret k and a biometric template BTU . It uses
BTU and k to generate a Helper Data HD. This HD encodes the secret k
without revealing information about k and BTU :

HD = FVGEN (BTU , k) (5)

168 I. De Oliveira Nunes et al.

– FVOPEN : receives as input the HD and BT ′
U . It retrieves k from HD if, and

only if, BT ′
U is a template extracted from the same biometric as extracted

in the input BTU to FVGEN when generating HD. In other words, given a
distance function D and a threshold w:

FVOPEN (BT ′
U ,HD) =

{
k if D(BTU , BT ′

U) ≤ w

⊥ otherwise
. (6)

The threshold w is a security parameter that allows control of the trade-off
between minimizing false acceptance (revealing k to the wrong user) and false
rejection (refusing to reveal k to the rightful user).

FVGEN algorithm starts by selecting a polynomial P of degree d defined over
a field GF (2τ) and encoding (or splitting) the secret k into the d+1 coefficients
a0, . . . , ad of P . The resulting polynomial is defined as:

Pk(x) =
d∑

i=0

aix
i (7)

where the coefficients {a0, . . . , ad} are generated from k and can be used by
anyone to reconstruct k. Since P is defined over GF (2τ), each coefficient can
encode τ bits; this implies that the maximum size of the secret k that can be
encoded is (d + 1) × τ . After encoding k as Pk(x), each of the M data points
in BTU is evaluated with the polynomial Pk(x) generating a set of points in a
two-dimensional space:

LP = {(p1, Pk(p1)), . . . , (pM , Pk(pM))}. (8)

Note that the field must be large enough to encode a data point from BTU

as a single field element. The resulting set LP contains only points in the plane
that belong to the polynomial Pk(x). In addition to LP , a set of chaff points LS

of size S � M is generated by randomly selecting pairs (rx, ry), where rx and
ry ∈ GF (2τ) resulting in:

LS = {(rx1, ry1), . . . , (rxS , ryS)} (9)

Finally, LP and LS are shuffled together using a random permutation π and
the result is included in the HD:

π(LP + LS) ∈ HD (10)

The HD also includes the set of public parameters Φ = {F, d,M,H(k)},
where F is the field in which Pk(x) is defined and d is its degree, M is the size
of BTU , i.e., the number of points in the HD that belong to Pk(x), and H(k) is
a cryptographic hash of the secret k allowing one to verify if the correct secret
was reconstructed using FVOPEN .

The key idea behind security of the FV scheme is that with d + 1 distinct
points (pi, Pk(pi)), one can interpolate Pk(x), retrieve its coefficients and thus

Secure Non-interactive User Re-enrollment 169

recover k. However, finding which d + 1 points to interpolate out of the M + S
in HD is hard if M + S is sufficiently larger than d.

When attempting to reconstruct k from the HD using a new biometric read-
ing BT ′

U , the FVOPEN algorithm will use a distance function (which must be
defined according to the biometric type) to select, out of the M +S points in the
HD, the M points that are the closest matches to the points in BT ′

U . If, out of
the M selected points, at least d+1 points are points that belong to the original
LP , then the algorithm will be able to interpolate the correct polynomial and
recover k. To verify that k was correctly recovered, the algorithm hashes the
result and compares it to H(k), which was published together with the HD.
If less than d + 1 correct points are among the M points selected via distance
matching, no interpolation with combinations of d+1 points out of M will yield
a match in the hash, because Pk(x) will not be interpolated correctly. Therefore,
FVOPEN will reject BT ′

U .
Note that the FV scheme does not rely on the order of the elements in BTU

and BT ′
U and does not require all points to be present in both templates. Instead,

d + 1 data points in BT ′
U must be close enough to points in BTU . In that sense,

the polynomial degree d acts as a security parameter that allows calibration
of the scheme to reduce false acceptance by increasing the required number of
matching data points.

Summary of Assumptions and Guarantees: The security of FV relies
on the infeasibility of the polynomial reconstruction problem [14]. The scheme’s
security relies on the inability to distinguish the statistical distribution of minu-
tiae from that of chaff points. The degree d of the polynomial used to encode
k determines the minimal number coincidental minutiae that are necessary to
reveal k.

3 The SNUSE Approach

Figure 1 illustrates the operations of SNUSE during (a) initial user enrollment,
(b) regular user authentication, and (c) non-interactive user re-enrollment. SNUSE
involves three types of parties: a User (U), an Authentication Server (AS), and
n Re-Enrollment Servers ({RES1, . . . , RESn}).

During the initial enrollment of U into the system, U ’s biometric template
BTU is secret shared into n shares ([BTU]1, . . . , [BTU]n); each share is distributed
to one of the n Re-Enrollment Servers ({RES1, . . . , RESn}). The RESs then
jointly generate U’s secret kU and use an MPC protocol to compute FV helper
data, HDkU

, from their shares ([BTU]1, . . . , [BTU]n), thus securely “locking” k
using the user’s BTU .

Regular user authentication happens between U and AS. Since AS only
stores HDkU

(which reveals nothing about BTU), the FVOPEN algorithm must
be used to retrieve k. Now, if HDkU

was correctly computed using a secure
FVGEN algorithm, the only way to retrieve k from HDkU

is by providing a
second biometric template BT ′

U which is close enough to the original BTU used
in computation of FVGEN . Therefore, FVOPEN (BT ′

U ,HDkU
) will successfully

170 I. De Oliveira Nunes et al.

retrieve k if and only if BT ′
U ≈ BTU , i.e., BT ′

U is a noisy version of the same
biometric used to generate the HD. After this stage, k can be used in standard
cryptographic primitives, e.g., decrypt a user’s files or messages, or grant them
access to resources based on the recovered secret.

Whenever k needs to be replaced with a fresh secret k′ (this process may
happen periodically within an organization to guarantee freshness of users’ cryp-
tographic keys), RESs are brought online and connected to the system, and AS
issues a request to the RESs to compute a new HD for U . The RESs will securely
generate a new k′ and (as in the enrollment protocol) use U ’s secret shares
[BTU]1, . . . , [BTU]n, stored during U ’s enrollment, to compute a new HDk′

U
.

This way, users’ cryptographic material can be refreshed and brand new HD
can be constructed without bringing the user in to re-sample her biometric and
without storing her biometric template in clear.

At a first sight, a simple approach for generating a fresh k′ would be to
multiply the y-coordinates in the FV by a random σ, which would result in a fresh
random key k′ = k ·σ encoded in the FV. However, this approach does not work
for several reasons. First, as discussed before, k might not be an independent
random byte-stream, such as a symmetric key; it could, for instance, include a set
of user permissions or an asymmetric private-key (sk′) associated with the user’s
public-key. In the latter case, the generation of fresh k′ = sk′ implies deriving
the corresponding new public-key (pk′). SNUSE can handle these cases while
simple multiplication by randomness can not. Second, while this approach using
randomization might work for a classic FV with symmetric keys, because the key
is encoded as coefficients of a polynomial, it does not necessarily apply to other
FV/FE constructions; SNUSE on the other hand is a generic approach (as any
computable function can be computed using MPC), that could be implemented
with other FV/FEs. Third, even in the case where the scheme uses a classic FV
to encode a random symmetric key, multiplying by randomness σ will update
the encoded secret but will prevent the reconstruction of the secret, i.e., k′ =
FVOPEN (BT ′

U ,HD) cannot be computed; this is because FVOPEN must verify
the hash of each candidate recovered key with the stored H(k) to decide if the
correct key was reconstructed. However, H(k′) cannot be updated in the same
way, because for any reasonable hash function, H(σ · k) �= σ × H(k).

Throughout the rest of this section we describe the steps of SNUSE in more
details. We have implemented SNUSE with fingerprints and iris scans, and evalu-
ated SNUSE performance in terms of computation and storage requirements. Our
evaluation shows that SNUSE can re-enroll thousands of users in seconds; the stor-
age requirements for thousands of users is a few MBytes. Though SNUSE does not
affect the accuracy of the underlying biometric feature extraction tool, we also
provide accuracy results for completeness. For implementation and evaluation
details, we defer the reader to the extended version of this paper.

Remark 1. All message exchanged in the following protocols are assumed to
be through secure authenticated channels, such as standard TLS. Establishing
such secure channels is omitted from the protocols for the sake of clarity.

Secure Non-interactive User Re-enrollment 171

B.T. Reader Re-Enrollment Server i Authentication Server

1 : BTU ← BTSample(U)

2 : {[BTU]1, . . . , [BTU]N} ← BTU

3 :
[BTU]i−−−−−−−−→

4 : storeEntry(UID, [BTU]i)

5 : k ← RESSecretGen()

6 : Pk(x) ← poly(k, d)

7 : [HD]i ← FV MPC
GEN (Pk(x), [BTU]i)

8 :
[HD]i−−−−−−−−→

9 : HD ← {[HD]1, . . . , [HD]N}
10 : storeEntry(U,HD)

11 :
ACK←−−−

Fig. 2. User enrollment protocol in SNUSE

3.1 Initial User Enrollment

The initial user enrollment, presented in Fig. 2, is the only protocol in SNUSE
that involves all parties, i.e., U , AS, and RESi ∀i ∈ [1, N]. This protocol is
executed only once for each user, all interactions after the initial enrollment are
performed either between U and AS (authentication), or between AS and RESs
(re-enrollment).

The protocol starts with U using a trusted enrollment device (e.g., fingerprint
sensor, iris reader), referred to as B.T. Reader, to measure and extract U ’s
biometric template BTU (Fig. 2, line 1). BTU is then split into N secret shares,
where N is the number of RESs. Each share [BTU]i transmitted to, and stored
by, the respective RESi (Fig. 2, lines 2–4). Note that in Fig. 2 we only depict
one RESi, however, in reality each of the N RESs receives and stores its share
[BTU]i.

Once each share [BTU]i is stored on the corresponding RESi, the RESs agree
on the new authentication material k for the user, by using RESSecretGen
(Fig. 2, line 5). RESSecretGen may be implemented by simply generating k at
one of the RESi and transmitting the value of k to the other RESs through
secure channels; alternatively, group key agreement protocols could be utilized
depending on the structure of k. Each RES then encodes k as a polynomial
of degree d, denoted as Pk(x). The polynomial Pk(x) is the same polynomial
described in the standard FV scheme (see Sect. 2). The difference is that, instead
of generating the HD with BTU , as in the standard FV scheme, the protocol
uses FV MPC

GEN (Pk(x), [BTU]i), which uses MPC to compute a share of the HD
([HD]i) from the secret shared [BTU]i. Each of the RESs computes the same
function with its own share. Finally, each share [HD]i is then sent to AS, which
reconstructs the actual HD from the received shares and acknowledges the com-
pletion of the enrollment protocol. This is depicted in Fig. 2, lines 9–11. Finally,
AS stores an entry for newly generated HD, associated with user U .

Note that, during user enrollment protocol, BTU is only visible in clear to the
trusted sensor device that reads and then secret shares the biometric. Each RESi

172 I. De Oliveira Nunes et al.

only sees its own share which leaks no information about BTU itself. AS only
sees HD, which can not be used to reconstruct BTU by the security of FV.
Therefore, confidentiality of the biometric is ensured during user enrollment. In
fact, there is no single server from which BTU can be retrieved in clear. BTU only
exists in clear ephemerally at the B.T. Reader and that must happen anyway
because B.T. Reader is the sensor device used to sample the user’s biometric.

3.2 User Authentication

A consequence of correct computation of HD using MPC in the enrollment phase
is that the user authentication protocol consists of simply using standard local
computation of FVOPEN with a new biometric reading BT ′

U and the stored HD.
The RESs do not participate in user authentication, but only in the enrollment
and re-enrollment protocols.

The authentication protocol, shown in Fig. 3, starts with a user supplying
its ID (UID) and biometric sample to the B.T. Reader. A biometric template
BT ′

U is generated from the new sample and kept locally. UID is sent to AS
which fetches U ’s HD from its database based on the supplied UID, and sends
the associated HD as a reply. BT ′

U is then used to extract k from HD using the
FVOPEN algorithm. Note that here, and similar to user enrollment, U ’s BT only
exists in clear in the B.T. Reader.

B.T. Reader Authentication Server

1 : BT ′
U ← BTSample(U)

2 :
UID−−−−−−−−→

3 : HD ← fetch(UID)

4 :
HD←−−−−−−−−

5 : k ← FVOPEN (BT ′
U , HD)

Fig. 3. User authentication protocol in SNUSE

After retrieving the secret k, the user can authenticate to the server using,
for example, standard challenge-response mechanisms based on the secret k.
Suppose, for instance, that k is actually part of an asymmetric encryption scheme
(sk, pk), where k = sk and pk is a public key, known to AS, associated to
the secret key sk. AS can then authenticate the user by sending a challenge
Encpk(nonce), where nonce ←$ {0, 1}n. If the user is able to retrieve k from
the FV, it can then use k = sk to compute nonce ← Decsk(Encpk(nonce)) and
send the result back to AS, proving its claimed identity.

3.3 Non-interactive User Re-enrollment

Non-interactive user re-enrollment works by having the RESs compute a new
HD based on a fresh secret k′. Since the shares of the biometric template are

Secure Non-interactive User Re-enrollment 173

stored during the initial enrollment, this step does not need user involvement,
even though the biometric template does not exist in clear neither at RESs
nor AS.

In this protocol, AS sends a request for re-enrollment for each RESi, con-
taining the ID of the user. The RESs will then jointly generate a new k′ for the
user and encode it as a polynomial of degree d. Each RESi then uses UID to
fetch the secret share [BTU]i associated with UID and uses FV MPC

GEN to compute
Pk′(x) on the secret share [BTU]i. The result is a secret share [HD]i for a brand
new HD which encodes the freshly generated k′ under the same biometric tem-
plate BTU . This process is depicted on Fig. 4. Finally, AS receives all N shares
[HD]i and compute the new HD, which can, from this point on, be used for
authenticating user U with the protocol in Fig. 3. Notice that, during the exe-
cution of the re-enrollment protocol, BTU is not reconstructed in clear at any
point. This is only possible because of the computation of HD using MPC over
the secret shares. Otherwise, this process would require either (i) user involve-
ment to collect another biometric reading or (ii) storing the biometric template
in clear in the backend servers.

Authentication Server Re-Enrollment Server i

1 :
UID−−−−−−−−→

2 : k′ ← RESSecretGen()

3 : Pk′(x) ← poly(k′, d)

4 : [BTU]i ← fetch(UID)

5 : [HD]i ← FV MPC
GEN (Pk′(x), [BTU]i)

6 :
[HD]i←−−−−−−−−

7 : HD ← {[HD]1, . . . , [HD]N}

Fig. 4. Re-enrollment protocol in SNUSE

3.4 Using MPC to Generate the HD

The fundamental part of SNUSE that allows non-interactive user re-enrollment
(without storing BTU in clear) is the ability to compute the HD from the secret
shares {[BTU]1, . . . , [BTU]N} of BTU . In the protocols of Figs. 2 and 4, this is
represented by the computation of the function FV MPC

GEN (Pk(x), [BTU]i), result-
ing in a secret share [HD]i that can be interpolated to reconstruct the actual
HD.

In this section, we discuss how FVGEN is computed from the secret shares.
We start by outlining the basic operations needed to compute FVGEN , and then
describe details of how each is performed using secret shared data. The standard
local computation of FVGEN algorithm, involves three basic types of operations:

174 I. De Oliveira Nunes et al.

1. Evaluation of the polynomial Pk(x), that encodes k, on each of the M data
points ({p1, . . . , pM}) that compose BTU to generate the list of points in the
polynomial Pk:

P = {(p1, Pk(p1)), . . . , (pi, Pk(pi)), . . . , (pM , Pk(pM))} (11)

2. Generation of a list S composed of s random chaff points (rx, ry), to be
shuffled together with the polynomial points:

S = {(rx,1, ry,1), . . . , (rx,i, ry,i), . . . , (rx,s, ry,s)} (12)

3. Random permutation π to shuffle the elements of lists R and P together
generating the HD:

HD = π(P ∪ R) (13)

Steps 2 and 3 are relatively easy to compute when compared step 1. For the
random chaff point generation (Step 2), each RESj computes a random share
[(rx,i, ry,i)]j . When the randomly generated shares are merged together they will
result in random chaff points.

For Step 3, all M RESs agree on a single random permutation π, and all of
them permute their secret shares according to this same randomly chosen per-
mutation. Note that the permutation π is kept secret from AS, because knowing
π would allow an adversary who takes control of AS to separate chaff points
from the points in the polynomial by computing π, allowing reconstruction of
BTU . Nevertheless, even though AS does not know which permutation was used,
because each RES use the same permutation to compute π(P∪R) on their shares,
each share will be matched to its correct set of shares during the reconstruction
of the HD at AS.

Since we are able to generate random chaff points and compute a permutation
on the secret shares (which results in a permutation on the reconstructed HD),
the remaining task for FVGEN is to compute the polynomial Pk using MPC
on each of the secret shares. We discuss the classic approach to compute Pk

using MPC and then we introduce our optimized version that takes advantage
of pre-computation of secret exponents before the secret sharing phase.

In the classical approach, assuming that BTU is composed of M data points,
each secret share [BTU]j corresponding to RESj would be a vector in the form:

[BTU]j = {[p1]j , . . . , [pM]j} (14)

The polynomial Pk can be generically defined as:

Pk(x) =
d∑

i=0

aix
i (15)

where:
{a0, . . . , ad} ← k (16)

Secure Non-interactive User Re-enrollment 175

denoting that the coefficients of the polynomial encode k. Therefore, computing
Pk(x) implies computing exponentiation up to degree d on the secret shared vari-
ables, multiplication of the resulting values by the respective constants a0, . . . , ad,
and addition on the resulting terms aix

i for all i ∈ [1, . . . , d].
As discussed in Sect. 2, the bulk of the overhead on MPC comes from mul-

tiplication of secret shares, because addition (and consequently multiplication
by a constant) can be computed locally by adding the secret shares. Multiplica-
tion, on the other hand, requires communication, since the parties must publish
(broadcast) intermediate results to all other parties that hold secret shares. Since
each multiplication involves network delays this is usually the major source of
overhead in the MPC evaluation.

The computation of xd, with no optimization, requires d multiplication oper-
ations, i.e., computing

∏d
x. In such approach, computing all terms in Eq. (15)

would take
∑d

i=0 i. Therefore, the number of communication rounds to compute
the HD shares would be:

T = M ∗
d∑

i=0

i (17)

In terms of asymptotic complexity this naive approach yields Θ(d × log(d))
multiplications, where d is the polynomial degree. Such number of multiplications
can be trivially reduced to d if we take into account that xn = x · xn−1. This
implies that the result of a lower order polynomial term can be used as an
intermediate result for the computation of the subsequent term, reducing the
number of communication rounds to compute the HD to:

T = M ∗ d (18)

resulting in linear asymptotic complexity of Θ(d) for the number of required
multiplications.

To make the process more efficient, we take a different approach. We bring
the number of necessary multiplications to zero by pre-computing the powers of
x before distributing the shares to the RESs. From the standard BTU , which
is a vector of M data points in the format {p1, . . . , pM}, we pre-compute the xi

exponents for all i ∈ [1, d] and secret share each of the pre-computed exponents
for each data point. Therefore, a secret share [BTU]j of a biometric template
with pre-computed exponents becomes a d × M matrix in the format:

[BTU]j =

⎛
⎜⎜⎜⎜⎜⎜⎝

[(p1)1]j · · · [(pM)1]j
...

...
[(p1)i]j [(pM)i]j

...
...

[(p1)d]j · · · [(pM)d]j

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

Each column in [BTU]j represents a data point pi and each line an exponen-
tiation of such data point. For example, line 3, column 4, would contain a secret
share of the fourth data point in BTU raised to the cubic power: [(p4)3]j .

176 I. De Oliveira Nunes et al.

In this approach, a secret share is included for each of the exponents of each
data point. Thus, the evaluation of the polynomial requires no multiplications of
secret shares because all exponents are now individual secret shares in the matrix
[BTU]j . Therefore, the computation of [HD]j to be done locally. Specifically, let
[BTU]j(x, y) denote the element in line x and column y of the matrix4. Then
[y]j = Pk([pi]j) can be computed locally for every i as:

Pk([pi]j) = a0 +
d∑

k=1

ak × [BTU]j(k, i) (20)

where {a0, . . . , ad} are the polynomial coefficients defined in Eq. (15).
This eliminates the need for network communication making the scheme

much faster. Such approach is feasible because in practice d ≈ 10 and because
one single entity (B.T. Reader) possesses all data points for enrollment. This is a
necessary condition for user enrollment in biometric authentication systems (the
BT must be read by a given sensor). We take advantage of that to improve effi-
ciency of SNUSE by pre-computing the exponents and including them in the secret
shares of the biometric templates. As detailed in the experiments available in
the extended version of this paper, by pre-computing the exponentiations, SNUSE
achieves high performance in terms of processing time with reasonable storage
requirements that are comfortably within the capacity of modern computers.

Algorithm 1. FV MPC
GEN computation on RESj

inputs : Secret share matrix [BTU]j (Eq. (19)); fresh secret k; random
permutation π; number of chaff points s; and polynomial degree d.

output: [HD]j
1 {a0, . . . , ad} ← EncodeAsPolynomialCoeffs(k, d);
2 Lp ← emptyList()
3 forall the i ∈ [1, 2, . . . , M] do
4 pix ← [BTU]j(1, i)

5 piy ← a0 +
∑d

k=1 ak × [BTU]j(k, i) /* MPC */
6 Lp.append([pix, piy])

7 end
8 Ls ← emptyList()
9 forall the i ∈ [1, 2, . . . , s] do

10 rx ← randGF (2τ)()
11 ry ← randGF (2τ)()
12 Ls.append([rx, ry])

13 end
14 L ← concat(Lp, Ls)
15 [HD]j ← permute(L, π)
16 return [HD]j ;

4 In our notation the first row/column of a matrix is indexed by 1 and not 0.

Secure Non-interactive User Re-enrollment 177

Algorithm 1 synthesizes what is discussed in this section with a formalization
of the method to compute a share of a HD using MPC on the matrix [BTU]j
of Eq. (19). AS receives all shares [HD]j ∀j ∈ [1, N] and use them to recon-
struct HD ← {[HD]1, . . . , [HD]N}. Note that the MPC evaluation in line 5 of
Algorithm 1 only involves additions and multiplication by constants. Therefore,
Algorithm 1 can be computed locally at RESj not requiring communication.

3.5 Secret (k) Confidentiality Discussion

SNUSE is designed to provide non-interactive re-enrollment, allowing one to
refresh the stored secret k without interaction and without compromising the
confidentiality of the BT. One may argue that the attack surface for an attacker
interested in stealing the user’s secret k, instead of the BT, will increase because
now all RESs need to ephemerally store K at some point in time to enable com-
putation of the new vault. This restriction can be addressed by generating k in
a single separate server and using MPC with k as a secret share as well. We
consider this optional in SNUSE design, as our focus is to protect the BT itself.
Having such feature would add one communication round to the re-enrollment
process, because the polynomial coefficients that encode k need to be multiplied
by BT shares. For more details on the security analysis and implementation of
SNUSE we refer the reader to the extended version of this paper.

4 Related Work

A study [15] of security and privacy challenges facing biometrics, especially iris
based ones, investigated suitability and viability of relying on them as the sole
method for identification and authentication. The results of the study in terms of
accuracy and entropy of extracted keys were both positive and encouraging. The
first Fuzzy Vault (FV) scheme was developed in [4]. It was later implemented and
tested with actual fingerprint biometrics in [16]. Subsequently, Fuzzy Extractors
(FE) were formalized in [17], and further applied to biometrics in [18]. Most FE
schemes provided statistical or information-theoretic security, until the scheme
of [5] was developed; this computational FE scheme relies on hardness of the
Learning with Errors (LWE) problem.

Secure two/multi-party computation (2PC/MPC) has been an active area
of research for the past three decades [9,19–21]. Recent models and practical
schemes [22] provide a trade off between security and privacy guarantees on one
hand, and required computation and communication on the other. For example,
the covert model [23] accounts for settings where the involved parties are less
likely to cheat if they get caught with a high probability (e.g., 0.5) and the
work in [24] proposes protocols in which a malicious adversary may learn a
single (arbitrary) bit of additional information about the honest party’s input.
Generic 2/MPC protocols can be utilized as is in cryptographically secured BIA
systems but may incur higher overhead. If performance of generic protocols is
unsatisfying, one can design function specific secure protocols for the generate

178 I. De Oliveira Nunes et al.

function of FE/FV; several function-specific two and multiparty protocols for
pattern matching were also developed in [25,26].

5 Conclusion and Future Work

We study secure re-enrollment in cryptographically secured biometrics-based
identification and authentication (BIA) systems. We argue that addressing this
issue is paramount for real-life deployments of such systems and ensuring long-
term confidentiality of biometrics. We develop a new approach for Secure Non-
interactive Users at Scale Enrollment (SNUSE) and prototype it. Our experimen-
tal results (available in extended version of this paper) show a high BIA detection
accuracy and efficient re-enrollment for thousands of users, e.g., in a few seconds,
using standard computing servers. As interesting future work we highlight (1)
the implementation of SNUSE with other FE/FV schemes, e.g., computational
and reusable ones; and (2) adding support to other biometrics in addition to
fingerprints and iris, and other types of devices, e.g., smart-phones.

Acknowledgement. This work was funded by the US Department of Homeland Secu-
rity (DHS) Science and Technology (S&T) Directorate under contract no. HSHQDC-
16-C-00034. The views and conclusions contained herein are the authors’ and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DHS or the US government.

References

1. Jain, A.K., Bolle, R.M., Pankanti, S.: Biometrics: Personal Identification in Net-
worked Society, vol. 479. Springer, New York (2006). https://doi.org/10.1007/978-
0-387-32659-7

2. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in
biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)

3. Wikipedia: Office of Personnel Management data breach. https://en.wikipedia.org/
wiki/Office of Personnel Management data breach. Accessed 5 Dec 2017

4. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptogr. 38(2), 237–257
(2006). https://doi.org/10.1007/s10623-005-6343-z

5. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 10

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

7. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
8. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on

Foundations of Computer Science, SFCS ’08, pp. 160–164. IEEE (1982)
9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-

ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM (1987)

https://doi.org/10.1007/978-0-387-32659-7
https://doi.org/10.1007/978-0-387-32659-7
https://en.wikipedia.org/wiki/Office_of_Personnel_Management_data_breach
https://en.wikipedia.org/wiki/Office_of_Personnel_Management_data_breach
https://doi.org/10.1007/s10623-005-6343-z
https://doi.org/10.1007/978-3-642-42033-7_10

Secure Non-interactive User Re-enrollment 179

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

11. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing, pp. 73–85. ACM (1989)

12. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

13. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

14. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of Reed-
Solomon codes. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R.,
Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 232–243.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 21

15. Itkis, G., Chandar, V., Fuller, B.W., Campbell, J.P., Cunningham, R.K.: Iris bio-
metric security challenges and possible solutions: for your eyes only? Using the iris
as a key. IEEE Sig. Process. Mag. 32(5), 42–53 (2015)

16. Nandakumar, K., Jain, A.K., Pankanti, S.: Fingerprint-based fuzzy vault: imple-
mentation and performance. IEEE Trans. Inf. Forensics Secur. 2(4), 744–757 (2007)

17. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

18. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

19. Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science. SFCS 1986, pp. 162–167.
IEEE Computer Society, Washington, DC (1986). https://doi.org/10.1109/SFCS.
1986.25

20. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988. ACM (1988)

21. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

22. Archer, D.W., Bogdanov, D., Pinkas, B., Pullonen, P.: Maturity and performance
of programmable secure computation. In: IEEE S & P (2016)

23. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptol. 23(2), 281–343 (2010). https://doi.org/10.1007/
s00145-009-9040-7

24. Huang, Y., Katz, J., Evans, D.: Quid-Pro-Quo-tocols: strengthening semi-honest
protocols with dual execution. In: IEEE S & P 2012. IEEE Computer Society
(2012)

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45465-9_21
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/s00145-009-9040-7
https://doi.org/10.1007/s00145-009-9040-7

180 I. De Oliveira Nunes et al.

25. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 10

26. Baron, J., El Defrawy, K., Minkovich, K., Ostrovsky, R., Tressler, E.: 5PM: secure
pattern matching. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 222–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32928-9 13

https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-642-32928-9_13
https://doi.org/10.1007/978-3-642-32928-9_13

Brief Announcement: Image Authentication
Using Hyperspectral Layers

Guy Leshem(✉) and Menachem Domb(✉)

Department of Computer Science, Ashkelon Academic College, Ashkelon, Israel
leshemg@cs.bgu.ac.il, menachem.domb@gmail.com

Abstract. Access control systems using face recognition, are widely imple‐
mented. This technic lacks the ability to bypass it. To avoid it, an authentication
process is required. In this paper we propose a new security image-signature,
which authenticates the given image. The proposed signature is generated from
the corresponding hyperspectral image layers. The process extracts unique
patterns from the hyperspectral layers, these are collected to build a unique
biometric signature for the related person. Experiments show the potential of
enhancing image authentication using the proposed signature.

Keywords: Face recognition · Hyperspectral image · Inner layer
Multiple identification algorithms

1 Introduction

Common face recognition algorithms use features extracted from an image to identify
a person. Other algorithms use several images to build a 3D model. However, all can be
bypassed. To resolve this issue, we propose an enhanced identification process, which
combines current face recognition along with an image signature. The signature is semi
arbitrary, and as such, it provides a significant addition to complement the image
authentication. This combination is reliable and difficult to break as it captures distinc‐
tive unique patterns, while preserving the ability to recover the signature.

2 Literature Review

The use of hyperspectral methods in face recognition have been used to improve tradi‐
tional face recognition. Pan et al. [1] explored hyperspectral face recognition in the near-
infrared spectral range. Denes et al. [2] used visible bands to test spectral asymmetry.
Chang et al. [3] fused hyperspectral images in the visible spectrum to validate the
improvement of image fusion to face recognition. Cho et al. [4] used an automatic
selection framework for the optimal alignment method, to improve the performance of
face recognition. Ghasemzadeh and Demirel [5] introduced a three-dimension discrete
wavelet transform based feature extraction for the classification hyperspectral.

© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 181–183, 2018.
https://doi.org/10.1007/978-3-319-94147-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_14&domain=pdf

3 The Proposed System

A spectral camera, generates multiple and separated layers of the same image. Each
layer is analyzed separately to generate a unique binary signature string, which then
contributes to the image signature. The image-signature generation process: (1) Obtains
a hyperspectral image; (2) Separates the image into layers, where each layer is a 2D
binary image; (3) Analyzes layer features, selects function and generates a unique binary
string and; (4) Concatenates the string to previous strings and composes the image-
signature. The image signature is relatively strong, because it is captured from different
locations of the layer, the extract function is one of a list per layer, the extracted string
represents a detected pattern, unknown to the public, and the person’s image itself has
already been confirmed.

4 Experiment of the Proposed Process

Below is an outline of the experiment we conducted.

1. Obtain the image layers: Run the converting function (MATLAB software) to sepa‐
rate the different five layers.

2. First layer analysis using the CascadeObjectDetector function, which is character‐
ized by its high recognition rate. The output bit string of this stage is:
101111001010001000011011001110011110110001101100001010111010

3. Second layer: use the Local Binary Patterns algorithm, which divides the image into
squares, count the pixels in it. Then it builds a binary string for each square. The
algorithm can identify features, such as the line of the lips, the eyes and its inner
components. The output of this stage is 10101110101111000100, and
10010011000001000000.

4. Third layer: used the Circular Hough Transform algorithm to find circles in an image.
It was directed to find pupils, provide the min/max size of a pupil and finde the
darkest circle in the eye. The output of this stage is: 10000111

5. Forth layer: a combination of the angles between the eyes, and the distance between
the two eyes. The eye detection is done using Viola Jones. The output is:
100110010101

6. Fifth layer performed by bwarea function. It measures the area of all the white pixels
in the image by a schema of their area. The output is: 110011001000100010110

7. Composition of image-signature is done by concatenating the above strings:
100101001010010101010011001101001010000110011001000100010110100010
10000001100010110010101110

We used 30 face hyperspectral images. For the signature composition we selected 5
layers. We ran the system with a mix of classified and unclassified images. In each test
we compared an un-classified image with a classified image. For simplicity, we skipped
the basic image comparison and focused on generating the image signatures and then
compared the signatures of the two images. Below are the results of three test cases:

182 G. Leshem and M. Domb

Case 1: First signature: 111111010011110001011100100100101110010111000
0110001101111000010010011000
Second signature: 1000111001110110110001101010101001110101001011011111
0000
Case 2: First signature: 11100000011010100100100111010010011000001000000
1101100111011100000111
Second signature: 10111100101000100001101100111001111011000110110000101
011101011011001100110001110001100010000100100
Case 3: First signature: 110001110011101101100011010101010011101010010110
111110000
Second signature: 11000111001110110110001101010101001110101001011011111
0000

5 Conclusions and Future Work

Person identification is required for access control and similar needs. In this work we
deal with the reliability of standard image processing used for person identification. To
enhance its authentication, we propose the use of image-signature in addition to the
existing standard image identification. To generate the image signature, we require a
hyperspectral image, which is a multi-layer image. The proposed process, accepts the
hyperspectral image, analyzes it and generates a unique signature. To verify a face
image, we require the signature together with face image. In future work we plan to
improve the image signature process and reliability, further test various cases and apply
this approach to other areas.

References

1. Zhihong, P., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images.
IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003). https://doi.org/10.1109/
tpami.2003.1251148

2. Denes, L., Metes, P., Liu, Y.: Hyperspectral face database. Technical report CMU-RI-
TR-02-25, Robot. Institute Carnegie Mellon University, Pittsburgh, PA (2002)

3. Chang, H., Harishwaran, H., Yi, M., Koschan, A., Abidi, B., Abidi, M.: An indoor and outdoor,
multimodal, multispectral and multi-illuminant database for face recognition. Paper presented
at the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW
2006), New York, 17–22 June 2006

4. Cho, W., Jang, J., Koschan, A., Abidi, M.A., Paik, J.: Hyperspectral face recognition using
improved inter-channel alignment based on qualitative prediction models. Opt. Expr. 24(24),
27637–27662 (2016)

5. Ghasemzadeh, A., Demirel, H.: Hyperspectral face recognition using 3D discrete wavelet
transform. Paper presented at the 2016 Sixth International Conference on Image Processing
Theory, Tools and Applications (IPTA), Finland, 12–15 December 2016

Brief Announcement: Image Authentication 183

http://dx.doi.org/10.1109/tpami.2003.1251148
http://dx.doi.org/10.1109/tpami.2003.1251148

Brief Announcement: Graph-Based
and Probabilistic Discrete Models

Used in Detection of Malicious Attacks

Sergey Frenkel(✉) and Victor Zakharov

Federal Research Center ‘‘Computer Science and Control’’
Russian Academy of Sciences, Moscow, Russia

fsergei51@gmail.com, VZakharov@ipiran.ru

Abstract. Design of program secure systems is connected with choice of
mathematical models of the systems. A widely-used approach to malware
detection (or classification as “benign-malicious”) is based on the system
calls traces similarity measurement. Presently both the set-theoretical metrics
(for example, Jaccard similarity, the Edit (Levenshtein) distance (ED) [1])
between the traces of system calls and the Markov chain based models of
attack effect are used. Jaccard similarity is used when the traces are consid‐
ered as a non-ordering set. The Edit Distance, namely, the minimal number
of edit operations (delete, insert and substitute of a single symbol) required to
convert one sequence to the other, is used as it reflects the traces ordering and
semantics. However, the time and space complexity of the edit distance
between two strings requires quadratic (in symbol numbers) complexity [1].
The traces can also be represented as a system calls graphs [2], the nodes of
which are the system calls (or the items of the q-grams [1]). That is, we can
consider the traces description by the ordered string as a partial case of the
graph representation, for which it is possible to use the same similarity metrics
with the same computational complexity.

This work demonstrates a framework for combining both graph-based and
probabilistic models enabling both the analysis of the system robustness to mali‐
cious attacks and malicious codes recognition and detection.

1 Introduction

Design of program secure systems is connected with choice of mathematical models of
the systems. A widely-used approach to malware detection (or classification as “benign-
malicious”) is based on the system calls traces similarity measurement. Presently both
the set-theoretical metrics (for example, Jaccard similarity, the Edit (Levenshtein)
distance (ED) [1]) between the traces of system calls and the Markov models of attack
effect are used. Jaccard similarity is used when the traces are considered as a non-
ordering set. The Edit Distance, namely, the minimal number of edit operations (delete,
insert and substitute of a single symbol) required to convert one sequence to the other,
is used as it reflects the traces ordering and semantics. However, the time and space
complexity of the edit distance between two strings requires quadratic (in symbol

© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 184–187, 2018.
https://doi.org/10.1007/978-3-319-94147-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_15&domain=pdf

numbers) complexity [1]. The traces can also be represented as a system calls graphs [2],
the nodes of which are the system calls (or the items of the q-grams [1]). That is, we can
consider the traces description by the ordered string as a partial case of the graph repre‐
sentation.

The Markov models of the malicious behavior detection [2] have more appropriate
complexity, but they do not reflect the semantics of the traces.

In this Announcement, we demonstrate a framework for combining both graph-based
and probabilistic models enabling both the analysis of the system robustness to malicious
attacks and malicious codes recognition and detection, which allow overcome partially
these drawbacks (more details there are in [3, 4]).

2 Automaton Based Malicious Attack Model

Known presently approaches to modeling the effect of malicious attacks based on the
use of metrics similarity traces, implicitly suggest the presence of some differences in
the traces of benign and malicious codes. We consider an application program model as
a Finite State Machine (FSM), corresponding to the program system call graph
mentioned above. This FSM can be built either from a program source or from system
calls sequences [2–4].
Malicious Behavior Model: {(ai, aj) → (ai, ak)}, where {(ai, aj), (ai, ak)} are the inter-
state transitions in the FSM, represented the program with normal behavior, which was
changed to the transition in the states ak due to an attack. No new states arise.

Let the system calls level (parametrized by the system calls parameters, e.g.
Windows API) trace of a program which may be subjected to an attack is represented
by an Mealy automaton (FSM) st+1 = δ(xt+1, st), where δ is the FSM transition function,
xt and st are input and state variables correspondingly. A way of the FSM building from
a system calls sequences see, e.g., in [3, 4]. Vector x (corresponding to the system calls
parameters) are independent random input variables. The malicious behavior is
described as the Markov chain (MC) Zt = {Mt, Ft, t ≥ 0}, where {Mt, t ≥ 0} is MC corre‐
sponding to the FSM with a set S of n states functioning without effect of any attack
(altering the flow graph, corresponding to the transition function δ) under independent
random inputs, and {Ft, t ≥ 0} is the MC based on the same FSM but exposed by some
altering transition. Then Zt is MC with state space S2 = S × S of pairs (ai, aj), ai, aj ∈ S.
The size of the MC is n(n–1) + 2 with two absorbing states (See details in [3]).

We characterize the security regarding a malicious attack as the probability of event
that the trajectories (states, transitions and outputs) of Mt and Ft will be coincided after
the termination the attack causing a flow graph deviation, before a clock t when outputs
of both FSMs (underlying these MCs) become mismatched.

3 Examples of Joint Use of the Markov Model and Similarity
Metric Based Models

Let us consider a segment of API system calls trace [2] represented as a system call
graph in the Fig. 1(a) or in more abstract, as Fig. 1(b), and an attack provokes execution

Brief Announcement: Graph-Based and Probabilistic Discrete Models 185

NtCreateSection(SectionHandle = C,…, FileHandle = B) instead of NtCreateFile(File‐
Handle = A,…, ObjectAttributes = “Sample.exe”). We assume in this example that in
the fragment the “Exit” state is formed normally if either “NtQueryInformationFile” is
executed (assuming that after receiving information about the file object we finish the
sub-task), or NtMapViewofSection. Using a methodology described in [3] we can receive
an FSM, representing the transitions of the system calls corresponding to the call graph.
Then, in accordance with definition of malicious behavior by an attack mentioned above,
this attack altering the program flow graph as in Fig. 1(b) (arrow to node SC2) is
described in terms of this automaton malicious transformation (see [3]). Then, we can
estimate the probability of this attack manifestation. Obviously, this probability depends
on the probability of whether it is produced in the normal functioning “FileHandle = B”
or “FileHandle = A”. That is the FSM input data play a role in the abstraction of the
program behavior by affecting the branching choice probability, namely, the probability
that input data provide the choice just a given branch. For example, let’s this probability
is equal to 0.4, which is the probability that result of node 2 Fig. 1(b) activates the exit
from the module. Then, using technique [3], the probabilities that the output values (say,
output of the node 4 (SC3) in Fig. 1(b)) of the program has already manifested itself to
the given clock as corrupted, what means the attack detection, can be obtained by the
solution of Kolmogorov-Chapman equation for above Markov chain Zt, and we get that
this probability is about 0.3, that is this attack has some chances to be manifested and
detected. In contrast to the Markov Chain based models [2] mentioned above, our model
can indicate explicitly the specific malicious transformation of the system calls
sequence, and, therefore, the probability computed can be connected with a similarity
metric (Jaccard, ED). Indeed, since the probability considered above determines the
frequency of possible appearances of traces corruption as a result of the attacks, in order
to fully characterize the security of the software and hardware being developed to mali‐
cious codes, we should relate these probabilities to the probabilities of correct traces
classification as malicious, which is determined by similarity/distance (in a given metric)
between the considered (suspicious) trace and corresponding clusters of malicious
program traces. Let us consider two API traces fragments:

X = LoadLibrary NtCreateFile NtQueryInformationFile
Y = LoadLibrary NtCreateSection NtmapViewOfSystem (the right branch).
(the left branch of the Fig. 1(a))

186 S. Frenkel and V. Zakharov

Fig. 1. System call graph of a trace fragment (a) and its abstraction (b).

The Jaccard similarity J(X, Y) of their 3-g representation (see [4]), which is the
probability that the string will be assigned to the same cluster [1], that is, that the mali‐
cious trace will be identified as a normal, is equal 17/50. Taking into account above
probability of the result of the malicious attack manifestation, and obvious independence
of these two events (the attack manifestation and classification), we may define the
probability of undetection of this attack as 0.3 × 17/50.

Thus, due to using the Markov Chain-based model which allows (in contrast to [2])
to specify possible malicious system calls traces transformation, we can use together
two classes of the malicious attacks detection models with quadratic of the MC states,
number of which less essentially than the trace length [4], while the Jaccard (or ED)
metric should be calculated only for the calls, affected by the attack.

Acknowledgements. Research partially supported by the Russian Foundation for Basic Research
under grants RFBR 18-07-00669 and 18-07-00576.

References

1. Leskovec, J., Rajaraman, A., Ullman, J.: Mining of Massive Datasets. Cambridge University
Press, Cambridge (2014)

2. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call sequence and
argument analysis. Trans. Dependable Secure Comput. 7(4), 381–396 (2010)

3. Frenkel, S., Zakharov, V., Basok, B.: Technical report of FRC “Computer Science and Control”
of RAS, Moscow, Russia (2017). http://www.ipiran.ru/publications/Tech_report.pdf

4. Frenkel, S., Zakharov, V.: Technical report of FRC “Computer Science and Control” of RAS,
Moscow, Russia (2018). http://www.ipiran.ru/publications/Report FR_Zakh.pdf

Brief Announcement: Graph-Based and Probabilistic Discrete Models 187

http://www.ipiran.ru/publications/Tech_report.pdf
http://www.ipiran.ru/publications/Report%20FR_Zakh.pdf

Intercepting a Stealthy Network

Mai Ben Adar Bessos1(B) and Amir Herzberg1,2

1 Bar-Ilan University, 5290002 Ramat Gan, Israel
mai.bessos@gmail.com, amir.herzberg@gmail.com

2 University of Connecticut, Storrs, CT 06269-2157, USA

Abstract. We investigate an understudied threat: networks of stealthy
routers (S-Routers), communicating across a restricted area. S-Routers
use short-range, low-energy communication, detectable only by nearby
devices.

We examine algorithms to intercept S-Routers, using one or more
mobile devices, called Interceptors. We focus on Destination-Search sce-
narios, in which the goal of the Interceptors is to find a (single) destina-
tion S-Router, by detecting transmissions along one or more paths from
a given (single) source S-Router. We evaluate the algorithms analytically
and experimentally (simulations), including against a parametric, opti-
mized S-Routers algorithm.

Our main result is an Interceptors algorithm which bounds the

expected time until the destination is found to O
(

N

B̂
log2(N)

)
, where

N is the number of S-Routers and B̂ is the average rate of transmission.

1 Introduction

Stealthy wireless communication channels have been widely deployed and stud-
ied, already since World War I, and mainly for (human) intelligence. Stealthy
channels involve a stealthy source, communicating to a remote destination.
Advanced stealthy transmission and encoding methods were developed to hide
the transmissions and location of the source, while ensuring reliable communica-
tion to the remote destination. Counter-intelligence efforts involved deployment
of intercepting-devices (Interceptors), deploying advanced techniques to detect
the communication and locate the stealthy source. See details in [5–7,10,15,20]
(additional related topics are surveyed in the draft of the full version of this
work [3]).

Recent advances in Wireless Sensor Networks (WSNs) introduce a new vari-
ant of stealthy communication: a stealthy network. In a stealthy network, com-
munication is relayed along a path consisting of stealthy devices, which we refer
to as S-Routers. The S-Routers are covert devices, ‘hidden’ within a restricted-
access area; the source and destination are simply (special) S-Routers. Since
adjacent S-Routers are physically near, they can use low-energy, short-range,
communication. Energy savings are important; however, it is even more benefi-
cial that such low-energy communication can be hard to detect and localize by
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 188–205, 2018.
https://doi.org/10.1007/978-3-319-94147-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_16&domain=pdf

Intercepting a Stealthy Network 189

remote Interceptors. On the other hand, S-Router may not be able to deploy
the most stealthy techniques, due to size, cost and energy considerations. As a
result, an Interceptor would often succeed in detecting and locating a nearby
transmitting S-Router.

Prevention of stealthy communication, and interception of S-Routers, is
important for many scenarios, including commercial (prevention of industrial
espionage) and personal/political, as well as the ‘classical’ military, counter-
intelligence and counter-terrorism. Stealthy networks have been studied and
deployed since roughly 2006 [17–19].

The proliferation of Wireless Sensor Networks (WSN), based on low-
cost, miniature networked devices [2,8,12,14], may facilitate extensive use of
stealthy networks, including commercial and private privacy-intrusive applica-
tions. Examples include outdoor or indoor eavesdropping [4,16], industrial espi-
onage, and a command-and-control channel for physical attacks e.g. against com-
munication or energy infrastructure.

In spite of the wide-ranging implications of stealthy networks, this is the first
work which presents defense mechanisms to efficiently intercept the stealthy
network, using a set of mobile Interceptors, which can detect an S-Router trans-
mitting nearby. We present, analyze and experimentally evaluate algorithms for
ensuring efficient search by a set of Interceptors, to intercept and locate the
destination of a stealthy communication network (e.g. a base station of a WSN).

Model. To study the problem analytically, we introduce a model for evaluating
stealthy routing algorithms, as well as stealthy network interception algorithms.

The model is a round-based process between two parties: S-Routers and
Interceptors, both operating on the plane (two-dimensions space). Our focus
is on a protocol for the Interceptors party, which defines the operation of all
Interceptors, and whose goal is to find the destination S-Router.

We focus on Destination-Search scenarios, where the S-Routers route all
information from one special S-Router, called the source, to another special S-
Router, called the destination, and denoted by D; the goal of the Interceptors is
to find D. A single round of the process is illustrated in Fig. 1.

We assume a single, known source of the stealthy communication, which,
WLOG, we fix at the center of coordinates, i.e., (0, 0). There are N S-Routers,
one of which is the destination D; the other S-Routers relay information from the
source (0, 0) to D. S-Routers may transmit up to one data unit at each round.
Out model assumes that an Interceptor exposes an S-Router if the S-Router
transmits within the interception range of the Interceptor.

S-Routers transmit data at a certain average rate, denoted B̂. Intuitively, it
seems easier to find D when the rate is high; indeed, we show that when the
rate B̂ is 1, the Interceptors can use a more optimized algorithm which improves
their performance. Note that B̂ = 1 means that the S-Routers have to transmit
data at every round.

Algorithms are measured by their impact on the lifetime, which is the number
of rounds that pass before the destination is exposed by Interceptors; S-Routers

190 M. Ben Adar Bessos and A. Herzberg

Fig. 1. Illustration of one round, with a single Interceptor searching for destination D,
located at (7, 5) (in 2D, i.e., R2). Two routes of S-Routers connect the source (0, 0) to
D (at (7, 5)); the first (via (0, 7)) transmits at this round (black diamonds), the other
not (white diamonds). Several other S-Routers (from (6, 4) to (11, 4) and to (9, 0))
transmit ‘dummy’ messages, to divert the Interceptor from the real routes, and lead it
to two ‘dead ends’: (11, 4) and (9, 0).

attempt to maximize the lifetime, while Interceptors attempt to minimize it.
The Interceptors may utilize up to M separate agents simultaneously.

In the particular scenario we study, Interceptors do not ‘disable’ non-
destination S-Routers, even if they ‘know’ their location. Our model may be
extended to consider scenarios/models where the Interceptors can disable an
S-Router, e.g. by installing a nearby jamming device or by physical elimination.
However, we prefer, in this work, to focus on the scenario where S-Routers are not
disabled, both for simplicity and since such scenarios may be important. In par-
ticular, in the expected case where there is a large network of multiple S-Router
paths, sources and destinations, the Interceptors may prefer not to disable an
S-Router, since this may alert the S-Routers network and foil detection of the
rest of the stealthy network. Disabling S-Routers before exposing end-points
may trigger defensive and evasive reactions by S-Routers e.g. temporarily shut-
ting down nearby communication, alternating communication routes and even
activating nearby disconnected S-Routers in order to mislead Interceptors.

Video illustration. A video illustration of the algorithms presented in this work
is available online in [1].

Contributions.

– We introduce the threat of stealthy networks, with a flexible model facilitating
analysis of algorithms.

– We study two approaches for Interceptors: network graph search and spatial
search, and explore advantages and disadvantages of each approach.

– We present a Divide and Conquer (D&C) Algorithm: a spatial search
algorithm for Interceptors which ensures that the expected lifetime is in
O(N

MB̂
· log2(N)).

– We introduce a parametric algorithm for S-Routers, and use it to exper-
imentally evaluate the Interceptors algorithms presented in this work, via
simulations.

Intercepting a Stealthy Network 191

2 The 2D Stealthy Network Model

In this section, we present a model for studying problems involving S-Routers,
whose goal is to route data without discovery of D, and Interceptors, whose goal
is to find D.

The model is round-based; i.e., it operates in consecutive, discrete rounds
t ∈ N of equal duration, starting from t = 1. At each round, the model invokes
two algorithms, ΠI for the Interceptors and ΠS for the S-Routers. We model both
as centralized algorithms; see [3] for discussion on this simplification. To end a
round, the model invokes a third algorithm, ΠE , which models the environment.

The environment algorithm ΠE determines the results of the actions of the
Interceptors and S-Routers, including the inputs for next round. We believe that
the modeling of the environment by an algorithm ΠE gives significant flexibility
to the model. For example, in the scope of this work we study two environ-
ments, one of which enforces that S-Routers transmit continuously throughout
the process, i.e., where B̂ = 1, and another which does not enforce B̂ = 1. Other
variants of the problem may be modeled by other environments. For example,
our model does not restrict the movement of Interceptors from one round to
the next; but only a minor change in the environment is required to limit the
movement of each Interceptor.

The initial input to all three algorithms are the number of Interceptors,
denoted M, and the number of S-Routers, denoted N .

We next define the Interceptors algorithm ΠI . The input for ΠI combines
the observations of all Interceptors into a list of points from which transmissions
were detected at the previous round (up to one point per Interceptor), and the
output is the joint list of locations at the following round. That is, the output
for each Interceptor is an encoding of the location, in R

2, for the corresponding
Interceptor. The algorithm also has a state as input and output, modeled as
binary string.

Next, we define the S-Routers algorithm ΠS . In this work, S-Routers do not
move; we denote the location of S-Router i ∈ {0, ...N} by SL(i) ∈ R, where 0
is the destination and 1 . . . N are the (other) S-Routers. Furthermore, in this
work, the model does not include any input to the S-Routers, in particular,
S-Routers do not have any way to detect Interceptors, and S-Routers are never
impacted in any way; hence, their entire behavior can be determined initially.
Their ‘behavior’ only consists of a transmission schedule, ST (t) ⊂ {0, ..., N},
identifying the S-Routers that transmit at round t ∈ N, and by the (fixed)
location of the destination D. The S-Routers algorithm ΠS implements ST ;
details omitted.

In most of the paper, we refer directly to SL, ST and D, instead of to ΠS . One
of the S-Routers serves as the source, which is always at (0, 0); i.e. (0, 0) ∈ ∪SL.
The set of S-Routers must ensure connectivity from source (0, 0) to destination;
see definition of connectivity below.

We next model the environment, ΠE . ΠE models the behavior of the envi-
ronment, as a (probabilistic) algorithm, allowing analysis of different stealthy-
network scenarios and goals. The inputs to ΠE are the outputs of ΠI , and

192 M. Ben Adar Bessos and A. Herzberg

the locations of the S-Routers that transmit at the current round. The outputs
are the interceptions to be provided, in the next step, to ΠI . In addition, the
environment has a state of its own as input and output. Upon termination,
the environment also outputs the average rate of transmission; B̂, as defined in
Definition 2.

The values returned at the end of the execution of the process are B̂, as
returned by ΠE , and the lifetime of the process, i.e., the number of rounds until
the process terminates. If the process never ends, then lifetime is ∞.

2.1 Destination-Search Environments

In this subsection define two environments ΠE used in this work. In the
destination-search scenario, the goal of the S-Routers is to maintain a connection
between (0, 0) and D using the available S-Routers. Therefore, we begin with
the notion of connectivity.

Definition 1 (Connectivity). Two points p1, p2 ∈ R
2 are connected iff their

Euclidean distance is at most one, i.e., ||p1−p2|| ≤ 1. Let Connected(p1, p2) = 1
if p1, p2 are connected, and 0 otherwise. A list of points is connected if every pair
of two consecutive points is connected. Two points p1, p2 ∈ R

2 are connected via
a list of points P if there is a list of points in P , say (l1, ...lk)|(∀i)(li ∈ P), s.t.
the list (p1, l1, . . . , lk, p2) is connected.

The value of lifetime represents the success/reward of the S-Routers. This
value is also the cost/penalty for the Interceptors, whose goal is to minimize the
time needed for intercepting D. However, measuring performance using lifetime
alone may be misleading, as S-Routers are often able to increase it simply by
decreasing the number of transmissions.

Therefore, we define an additional criteria, the transmission rate B̂, which
indicates how often S-Routers transmit. For denoting whether a data unit was
transmitted at a specific round t ∈ N, we use b(t).

Definition 2 (Transmission rate measurement b(), B̂). Let b(t) = 1 if data
is transmitted from (0, 0) to D at round t. That is, b(t) = 1 if exists is a list
of S-Routers S = (r1, r2 . . .) s.t. the source (0, 0) and D are connected via their
locations {SL(ri) : ri ∈ S}, and all S-Routers in the list transmit at round t i.e.
S ⊆ ST (t). Otherwise, let b(t) = 0.

The average transmission rate of S-Routers, denoted with B̂, is
∑

t
b(t) divided

by the lifetime.

Note that in this work, S-Routers can not buffer messages and deliver them
later. Future work may remove this restriction, to allow for delay-tolerant net-
working by S-Routers. One reason for this (simplifying) restriction, is that each
round represents a (potential) physical movement by the Interceptors, and move-
ments are normally much slower than communication.

Intercepting a Stealthy Network 193

Initialization. Upon initialization, ΠE is provided with an indication of whether
the continuous transmission constraint has to be enforced (the constraint is
defined in Definition 3).

Termination. The environment ΠE will terminate the execution if either party
acts in a way forbidden for that execution or if one of the Interceptors is directly
connected to the destination D.

The process terminates when Interceptors visit a point near D, due to the
assumption that D is a long-range transmitter, which is expected to be larger
cf. to S-Routers and therefore easier to localize.

For simplicity, we also assume that Interceptors are able to expose D even
while S-Routers do not transmit. Note that for the algorithms presented in this
work, this assumption does not affect their performance asymptotic complexity
(with an exception for the Naive Disc Search algorithm).

As previously mentioned, if the process never ends, the lifetime is ∞; however,
in this work, Interceptors may always avoid this, since D necessarily may be
reached after a finite number of rounds.

Transmission rate constraints. As presented so far, the model allows rounds
t in which there no transmission-path from source (0, 0) to D (i.e., b(t) = 0).
However, it seems that in many scenarios, Interceptors will transmit continuously
to D. We refer to this as the continuous transmission constraint/assumption.

Definition 3 (Continuous Transmission Constraint). We say that the
Continuous transmission constraint holds for an execution, if for every round
t in the execution, b(t) = 1 holds, i.e., (0, 0) and D are connected via some set
of S-Routers at that round. We say that ΠE Enforces Continuous Transmission if
ΠE terminates the execution, with B̂ = 0, upon a round in which the constraint
does not hold.

3 Introducing Interceptors Algorithms

We found that the design of efficient Interceptors algorithm is more challeng-
ing than appears initially, with resulting algorithm being somewhat counter-
intuitive. Obviously, we cannot repeat here all the variations we experimented
with; however, we present few basic algorithms, which we believe will help the
reader understand the problem better, preparing the ground for the more effi-
cient - but less intuitive - algorithms presented in the following sections.

In this section we present three Interceptors algorithms. We begin with an
observation that the Interceptors may limit their search to a bounded area,
specifically, a disc. We then present an algorithm which essentially searches this
disc. Afterwards, we present two naive attempts to find D by ‘following the path’
from the source (0, 0) to D, which are reminiscent of graph-search algorithms.

To our disappointment, we did not yet find an efficient graph-search algo-
rithm, that works in the general case. However, it is possible that future work
would find better ways to use the graph-search approach. For a more thorough

194 M. Ben Adar Bessos and A. Herzberg

discussion on this topic, and for proofs of the Propositions and Lemma presented
in this section, see the draft of the full version of this work [3].

Naive Disc Search Algorithm. We begin with a very simple algorithm that we
call Naive Disc Search. Basically, the Naive Disc Search algorithm exhaustively
searches for D in a bounded disc. We first show in Lemma 1 that it suffices to
search for D within a disc, specifically, the disc of radius N whose center is the
source (0, 0); this simple bound may also used by the more advanced algorithms.
The lemma uses the following notation.

Notation: Disc. Given a point c ∈ R
2 and a distance r ∈ R, let DiscDiscDisc(r, c) =

{p ∈ R
2| ||p − c|| ≤ r} denote the region of a disc whose center is c and whose

radius is r.

Lemma 1. If D is connected to the source (0, 0) via any list of S-Routers S ⊂
∪SL, then D ∈ Disc(N, (0, 0)).

Since it suffices to search for D within Disc(N, (0, 0)), a simple, naive app-
roach is to exhaustively search this disc. More precisely, such algorithm will visit
different points within the disc, where each point results in covering a disc of
radius 1 centered in that point, until the entire disc was covered - or D found.

The order of visitations may affect the performance of the algorithm. For
example, if all S-Routers are located ‘densely’ around (0, 0), as illustrated in
Fig. 2(a), Interceptors may sort all points by (increasing) distance from (0, 0)
then visit them in that order in order to find D efficiently in O(N) rounds.
However, if the search is deterministic and known in advance, D may be placed
so it is found only by the very last searched points. For example, if Interceptors
keep visiting points with increasing distance from (0, 0) but S-Routers are located
as illustrated in Fig. 2(b), roughly the entire disc Disc(N2 , (0, 0)) will be covered
before D is found. Hence, a random order is slightly preferable for Interceptors.

The Naive Disc Search Algorithm uses a predefined set of points to search,
i.e., the covering of a disc of radius N by discs of radius 1. Let DiscCoverage(N)DiscCoverage(N)DiscCoverage(N)
denote the set of points that cover Disc(N, (0, 0)). It is difficult to minimize
the size of DiscCoverage(N) [11], but its complexity is necessarily O(N2), and
efficient implementations for DiscCoverage(N) can achieve it [9].

In the The Naive Disc Search Algorithm, the Interceptors search for D by vis-
iting every point in DiscCoverage(N) in random order. At each invocation, the
algorithm keeps all previously visited points, and outputs a list of M previously
unvisited points to visit next.

Proposition 2. The expected lifetime of the Naive Disc Search algorithm is in
O(N2/M).

Naive Graph Search Algorithm. The Naive Disc Search Algorithm does
not use the interceptions (detections), which seems wasteful. Surely, we can use
interceptions to find D more efficiently. One natural idea is to exploit the fact
that D must receive transmissions from the source (0, 0); we can try to ‘follow’
these transmissions, by always searching in the vicinity of one of the points where

Intercepting a Stealthy Network 195

we intercepted a transmission, plus the source (0, 0). This Naive Graph Search
Algorithm keeps a set of locations from which a transmission was intercepted
(initialized to the source {(0, 0)}), then visits at each round at points that are
within distance ≤ 3 from one of the points in the vicinity of previously successful
search locations, chosen at random with uniform probability.

Proposition 3. The expected lifetime of the Naive Graph Search algorithm is
in O(N2

B̂·M).

Uniform Graph Search Algorithm. Since the Naive Graph Search algorithm
selects points with uniform probability at each step, points in the vicinity of
earlier interceptions have more opportunities for being selected. Intuitively, if
newly discovered interceptions will be visited more frequently, the performance of
the algorithm may be significantly improved. In order to examine this approach,
we have designed the Uniform Graph Search algorithm. The algorithm assumes
that only a single Interceptor is available, i.e., M = 1. The algorithm is defined
similarly to the Naive Graph Search Algorithm, with the following modifications:

1. For each point in DiscCoverage(N), initialize a counter to 0.
2. Each time a point is visited by the algorithm, increase its counter by 1.
3. When selecting a point to visit, select points with minimal counter value.

Namely, all points that the algorithm may visit will be roughly visited an
equal number of times, and for each interception, the new points and its vicinity
will be visited repeatedly, until their associated counter value is no longer mini-
mal. For example, if S-Routers use the network illustrated in Fig. 2(b), and the
continuous transmission constraint, as defined in Definition 3, holds, then the
Uniform Graph Search will frequently intercept new S-Routers (and eventually
D) at the ‘front’ of the few routes, since data is transmitted through at least one
of the routes at each step, and the algorithm will repeatedly visit points near
the ‘front’ after each interception. This scenario is handled far less efficiently by
the Naive Disc Search and the Naive Graph Search algorithms.

Unfortunately, in the worst case, the performance of this algorithm is not
significantly better (compared to the naive algorithm). Even if the continuous
transmission constraint holds, if the network graph includes many separate alter-
nate routes that connect (0, 0) and D, the transmission rate in each route may
be reduced proportionally (as illustrated in Fig. 2(c)), and interception of new
S-Routers will be infrequent.

Proposition 4. If the continuous transmission constraint holds, the expected
lifetime of the Uniform Graph Search is in Ω(N2/log(N)).

Note that in the above result, the term used for bounding on the lifetime
excludes B̂, since the continuous transmission constraint ensures that B̂ = 1.

In the following sections we present Interceptors algorithms and prove their
expected performance is significantly better (assymptocially) compared to the
Uniform Graph Search algorithm. However, for many cases, where S-Routers

196 M. Ben Adar Bessos and A. Herzberg

Fig. 2. Examples of different S-Router networks: (a) All S-Routers are located ‘densely’
around the source (0, 0). An exhaustive search around (0, 0) may reach D efficiently.
(b) Only few separate ‘long’ alternate routes connect (0, 0) and D. If Continuous Trans-
mission Assumption holds, the rate of transmission in at least one of these routes is
relatively high, which allows the Uniform Graph Search algorithm to expose S-Routers
efficiently. (c) A network which uses numerous separate alternate routes. The transmis-
sion rates in different points may vary significantly; in particular, this prevents Uniform
Graph Search algorithm from exposing new S-Routers efficiently even if the Continu-
ous Transmission Assumption holds. (d) A network with few paths but numerous ‘dead
ends’. Even if a graph-search algorithm can efficiently cope with routes which transmit
slowly, it is difficult to discern such routes from actual ‘dead ends’. Since most ‘walks’
in the network lead to a ‘dead end’ and S-Routers may make ‘dead end’ routes appear
exactly like other routes, it is also difficult to avoid them

is small enough, the Uniform Graph Search algorithm outperforms all other
algorithms, as illustrated in Fig. 6. A more detailed performance comparison is
given in Sect. 5.

4 Divide and Conquer Interceptors Algorithm

In this section we present an algorithm for the Interceptors, the Divide And
Conquer Algorithm, which bounds the expected lifetime to O(N

B̂·M log2(N)) for
M Interceptors. Counter-intuitively, and in contrast to the less efficient graph
search algorithms of the previous section, this algorithm does not try to ‘search’
the graph of S-Routers from (0, 0) to D. Instead, this algorithm takes a ‘divide
and conquer’ method, to find the destination D ‘directly’ - without exposing the
entire path to it.

We begin with few a preliminaries in Sect. 4.1, then describe the algorithm in
Sect. 4.2. For a thorough analysis of the algorithm, proofs, and additional topics,
see the draft of the full version of this work [3].

4.1 Preliminaries: Ranges and Walls

We begin this section with few additional topological concepts which are used
in this section.

Intercepting a Stealthy Network 197

First, given a location l ∈ R
2, let Range(l) denote its range, i.e., the set of

points whose communication would be intercepted by an Interceptor located at
location l. Formally, RangeRangeRange(l) = {x ∈ R

2|Connected(l, x)}. The range notation
extends to a set of points L, namely we denote Range(L) =

⋃
l∈L Range(l).

The Divide And Conquer Algorithm uses the fact that D must be within
Disc(N, (0, 0)), as shown in Lemma 1. The algorithm partitions Disc(N, (0, 0))
into smaller regions, then examines these regions by visiting points on their
boundaries. If the boundaries ‘separate’ between (0, 0) and D, and considering
the S-Routers transmit from (0, 0) to D, it follows that these transmissions must
‘cross’ one or more of the boundaries which are visited by the algorithm. If the
points of a boundary are sufficiently-close, then the algorithm may intercept
transmissions from at least one of these points.

We define two topological notions which are important in this algorithm: a√
3-spaced wall and closed wall.

Definition 4 (Wall, closed wall, and In/Out regions). An
√

3-spaced wall
is a list of points L = {l1, l2, . . . , lk} ∈ (

R
2
)k such that the distance between

every two consecutive points li, li+1 is at most
√

3. A
√

3-spaced closed wall L
(abbreviated to closed wall), is a wall where the distance between l1 and lk is
at most

√
3. We denote the outer region by OutOutOut(L), and the internal region,

excluding Range(L) itself, by InInIn(L).

In the definition above, to define the inner and outer region, we use basic topolog-
ical notions such as boundary and region, which are quite intuitive and standard;
precise definitions can be found, e.g., in [13].

We focus on
√

3-spaced walls and closed walls, since a
√

3-spaced closed
wall separates between (points in) its internal region, In(L), and (points in) its
outer region, Out(L). The formal statement is given in the next Lemma, and
illustrated in Fig. 3. Therefore, we write walls and closed walls, always referring
to

√
3-spaced walls and closed walls (an x-spaced closed wall with x >

√
3 may

fail to provide the separation property referred to in the Lemma).

Lemma 5. Given a (
√

3-spaced) closed wall L, no pair of points pIn ∈ In(L)
and pOut ∈ Out(L) are connected. Namely, for all pIn ∈ In(L) and pOut ∈
Out(L) holds ||pIn − pOut|| > 1.

The Divide And Conquer Algorithm generates closed walls, then instructs the
Interceptors to visit them in a random order. In order to calculate the probability
of interception when visiting a point in a closed wall that ‘separates’ (0, 0) and
D (such as the closed wall illustrated in Fig. 3).

Definition 5 (Separating closed walls). We use separating closed wall to
refer to a closed wall that contains D but excludes (0, 0), namely a closed wall
L for which D ∈ In(L) ∪ Range(L) and (0, 0) ∈ Out(L) ∪ Range(L) hold.

Proposition 6. Let L be a separating closed wall, and let t ∈ N be a round s.t.
b(t) = 1. There exist v ∈ L and x ∈ ST (t) s.t. Connected(SL(x), v).

198 M. Ben Adar Bessos and A. Herzberg

Fig. 3. The closed wall L = {v1, v2, . . .} ∪ {h1, h2, . . .} ∪ . . . separates the plane into
the the inner and outer regions In(L), Out(L) and its range Range(L). Note that all
points in L rest on the boundary of the same square. Any point from region In(L) is
not connected to any point in region Out(L). This property is used by our algorithms:
Interceptors inspect, randomly, the points in closed walls separating D (inside) from
the source (0, 0).

Finally, we define leading square walls, which are the ‘smallest’ separating square
walls; by dividing these walls, the algorithm ‘zooms in’ on D.

Definition 6 (Leading square walls). Let L = {L1, L2, . . .}, where Li is a
subset of the ‘watched’ points, be the set of all separating square walls in the
‘watched’ points. We refer to a separating square wall L ∈ L as a leading square
wall if no other separating square wall is contained in L i.e. ∀L′ ∈ L : L′
⊆
(In(L) ∪ Range(L)).

4.2 Divide And Conquer Algorithm

We now present the Divide And Conquer Algorithm. The algorithm visits at
each round M distinct points out of a set of ‘watched’ points. These ‘watched’
points are placed as a closed wall around squares containing D; we begin with
very large squares and repeatedly divide them into smaller squares, until we find
D. Let us first present our notation for a square.

Notation. (Square). Given a point (x, y) ∈ R
2, and a length w ∈ R, let

SquareSquareSquare(w, (x, y)) = [−w
2 + x, w

2 + x] × [−w
2 + y, w

2 + y] denote the region of a
square whose center is (x, y) and each of its edges are of length w. For example,
Fig. 3 gives a visualization of the closed wall L, where all points in L rest on the
boundary of the square Square(w, (x, y)).

The algorithm searches for D in Square(2N, (0, 0)) (which contains
Disc(N, (0, 0)) and D in particular). The algorithm partitions Square(2N, (0, 0))
into smaller squares and places Interceptors at several random points along walls
on their boundaries. That is, a closed wall is kept per square, s.t. one of these
‘watched’ closed walls contains the destination D; we refer to these square-shaped
closed walls as square wall.

Intercepting a Stealthy Network 199

When a square wall shows signs of possibly containing D, namely when a
transmission was intercepted from one of it’s points, the algorithm further divides
the corresponding square into four quarters, and repeats the process for these
smaller squares, until finding D. For efficiency, the total size of walls of ‘watched’
squares should be small; to find D, the regions must contain it. The algorithm
carefully ensures both properties.

It is crucial to randomize the location of the squares, to foil S-Router place-
ments that exploit predictable locations of square walls. S-Routers may lead the
algorithm into ‘watching’ many additional regions that do not contain D, due to
S-Routers that deliberately expose themselves at specific locations. Hence, we
first select a random point o from Square(2N, (0, 0)). From the beginning, we
‘watch’ the four 2N × 2N squares shown in Fig. 4(a), s.t. o is a shared corner.
From Lemma 1, we can assume that D is within one of these four squares.

At each round, we put the Interceptors at distinct random points in the walls
of ‘watched’ squares. We try to detect the transmissions by S-Routers crossing
these walls, from source (0, 0) to D; this identifies ‘suspect’ squares, worthy of
further decomposing into four sub-squares. From Lemma1, it suffices, however,
to put Interceptors at points which are within Disc(N, (0, 0)); see our ‘focus’ on
Disc(N, (0, 0)) in Fig. 4(b).

If we use only large squares, e.g., the four large, 2N × 2N squares shown in
Fig. 4(a), then it is quite possible that no path from (0, 0) to D will cross their
walls at all - since D will be within the same large square. Indeed, in Fig. 4(a),
we see that D and (0, 0) are both in the lower-right large square (shown more
closely in Fig. 4(b)). To ensure that each path of S-Routers from (0, 0) to D will
cross one of the ‘watched walls’, we divide, from the very beginning, each of
the ‘watched squares’ containing (0, 0) into its four sub-squares, until reaching
squares small enough to ensure localization of D. This is not that wasteful: the
additional length of all these initial sub-squares is less than the length of the
initial 2N × 2N squares.

Assuming D is in Disc(N, (0, 0)), at least one of the initial square walls
includes D and excludes (0, 0) i.e. the algorithm begins with at least one leading
square wall; this ensures Proposition 6 holds, and at least one point in one of the
initial square walls will allow the Interceptor to detect a transmission. Points to
search are selected at random with uniform probability from all square walls,
such that the probability of selecting a point from any certain square wall is
proportional to its size. For each successful search, on top of the square walls
associated with that search point, four smaller square walls that encircle the
same region are added, in an attempt to decrease the size of the leading square
wall. Sufficiently small squares are covered by a single visit.

Theorem 7. The expected lifetime of Divide And Conquer Algorithm is O(N
B̂·M ·

log2(N)).

Theorem 7 holds since the algorithm has to divide a leading square wall at most
�log2(N) − 1�, until D is found, and since the expected number of transmitted
data units until the algorithm divides a leading square wall is O(N

M log(N)).

200 M. Ben Adar Bessos and A. Herzberg

Fig. 4. Illustration of the operation Divide And Conquer Algorithm. The algorithm
begins by visiting points on square walls generated upon initialization, and with each
interception it generates additional square walls which potentially include D. (a) Illus-
trates the initialization of the algorithm, where four square walls of size 2N × 2N are
generated with random offset such that the entire searched region Disc(N, (0, 0)) is
contained by them. (b) Illustrates the next initialization step. The square wall that
includes (0, 0) is repeatedly divided for log(N) times. Note that one of the square
walls includes D, but excludes (0, 0) (c) Illustrates the first detection of a transmis-
sion while visiting a point in one of the square walls (the red circle). The two square
walls adjacent to the point of detection(s) are divided into four. After this division,
the smallest square wall which includes the destination and excludes (0, 0) (the leading
square wall) is smaller. (d) Illustrates the second and third transmission detection. The
second detection occurs at the same point, which leads to additional division. The third
transmission detection (the red circle) will lead to another division (excluded from this
illustration), and then to the detection of D. (Color figure online)

Intercepting a Stealthy Network 201

As previously mentioned, a more thorough discussion and analysis of the
algorithm is given in the draft of the full version of this work [3]. In particular,
we present a modified version of the Divide And Conquer Algorithm, referred to
as D&CCTA, which achieves better performance if the continuous assumption
holds (the difference in performance is illustrated in Fig. 6).

5 Evaluation and Results

There is always a challenge in evaluating the practical performance of a defensive
mechanism, whose results depend completely on the behaviour of the adversary
- in our case, the S-Routers. Our approach was to use a set of S-Routers algo-
rithms, each one ‘optimized’ for per each Interceptors algorithm. Of course, we
do not really know how to produce the ‘best’ S-Router algorithm (in general,
or for a particular Interceptors algorithm). Instead, we tried our best to develop
good S-Routers algorithms, in two steps.

In the first step, we developed a parametric heuristic S-Routers algorithm,
the Parametric Segmented Network algorithm, based on our analysis of different
Interceptors algorithms, and on ‘trial and error’, using a simulation and visual-
ization environment we developed for this purpose. We will make this tool freely
available in [1], to allow further research and reproducibility.

In the second step, we used genetic programming to optimize the parameters
of Parametric Segmented Network algorithm for each of the Interceptors algo-
rithms, and then compared the results of the different Interceptors algorithms
- each running against the ‘best’ parameters (of the parametrized S-Routers
algorithm). We begin with a description of the Parametric Segmented Network
algorithm, then present simulation results.

The Parametric Segmented Network Algorithm. The algorithm receives as input
parameters for selecting the number of segments, the number of S-Routers that
compose each segment, the number of parallel paths in each segment, and what
portion of these paths lead to a ‘dead end’.

Figure 5 illustrates a network composed of N = 128 S-Routers which are
separated into three segments. The segments are composed of 0.35N, 0.3N, 0.3N
S-Routers (from left to right), where N = 128. D is the leftmost S-Router, while
(0, 0) is the rightmost S-Router. Parallel paths of the same segment begin and
end with a joint path (perpendicular to the parallel paths), and adjacent seg-
ments share one S-Router that connects the joint paths. The remaining 0.05N
S-Routers that are disconnected transmit continuously, in order to mislead non-
graph search algorithms (such as the Divide And Conquer Algorithm). The left-
most segment transmits into one additional ‘dead end’ parallel route.

The Parametric Segmented Network algorithm satisfies the continuous-
transmission constraint. At each round, every segment transmits data through
one of its paths, and S-Routers of joint (perpendicular) paths transmit continu-
ously. In Fig. 5, the top path in each segment transmits.

More specific details on the implementation of the Parametric Segmented
Network algorithm are given in the full version of this paper in [3].

202 M. Ben Adar Bessos and A. Herzberg

Fig. 5. The Parametric Segmented Network algorithm as visualized by the simulation,
for 128 S-Routers that are separated to three segments, at a specific round. At each
step, one of the parallel paths in each segment transmits. The S-Routers connecting
adjacent segments transmit continuously. Hence, data may flow from the rightmost
S-Router in the network, (0, 0) to the leftmost S-Router, D.

Results. We now compare results obtained by simulations. In Fig. 6, S-Routers
use the Parametric Segmented Network algorithm. In order to limit the dimen-
sion of optimization, the number of segments was limited to four. The parameters
for the algorithm were optimized separately for each scenario i.e. for each Inter-
ceptor algorithm and each N pairing. After the selection of the best parameters
for each scenario, we ran the process enough times to ensure the evaluation of
the parameter set is accurate. The results are displayed in Fig. 6. A confidence
interval of 99% is used. All Interceptors algorithms utilize a single Interceptor.
Due to the high computational costs, we used the genetic algorithm only for
N ≤ 128. For larger N values, the parameter sets were selected according to the
conclusions found from smaller values.

Fig. 6. Performance comparison of different Interceptors algorithms. Performance is
estimated against Parametric Segmented Network S-Routers algorithm - optimized for
each Interceptor algorithm (using a single Interceptor) and each N value separately.
Confidence interval is displayed as vertical lines.

Intercepting a Stealthy Network 203

The genetic algorithm consistently keeps a population size of 500. At each
epoch, the algorithm applies standard roulette selection. Crossovers are done
until for 75% of the population is replaced, and then mutation is applied to 20%
of the population where on average two elements of each mutated parameter
set change. Changes are done by adding a Gaussian distributed random value.
Since the S-Routers algorithms are making extensive use of randomization, the
value of a given parameter set was the average lifetime when running the pro-
cess repeatedly for 15 times. We allocated 24 h of CPU time for each scenario.
Running a larger scenario takes significantly more time; therefore, the number
of generations varied from several hundreds (for N ≤ 64) to 48 (for N = 128).

Discussion. After examining the parameter sets that resulted from optimization,
we discovered that certain properties consistently maximize the outcome for S-
Routers. S-Routers that were disconnected from (0, 0) and ‘dead end’ paths were
not useful, and optimized solutions did not express them.

When S-Routers face the Uniform Graph Search algorithm, only two seg-
ments are needed. The segment adjacent to (0, 0) is composed of single route,
with 0.1N to 0.4N of the S-Routers, which is always intercepted in its entirety
by the algorithm. The segment adjacent to D uses the remaining S-Routers for
composing parallel paths. The number of parallel paths increases with N . Addi-
tionally, these routes are spread with distance of three from each other, in order
to minimize the number of distinct ‘watched’ points.

A result we did not expect was that when S-Routers face the Divide and
Conquer algorithm, the lifetime is maximized when only a single, long route
was used, i.e., all segments express a single transmission route. In hindsight,
we understood this; if using multiple routes than the Interceptors algorithms
will eventually generate square walls that are too small to intersect all parallel
paths of the same segment. As a consequence, these square walls have a lower
probability for being divided, the total number of points that are ‘watched’ by
the Interceptors algorithms decreases, and their performance improves (lower
outcome). This may motivate an S-Routers algorithm that combines the graph-
search approach with the divide-and-conquer approaches.

6 Conclusions and Extensions

Stealthy networks, comprised of hard-to-locate devices, are becoming a part of
reality; we use the term S-Routers for such devices, who can relay information,
to form large networks. Stealthy networks will be used for different applications;
many of the applications may represent threats to privacy of individuals and
organizations. Hence, it is important to develop efficient countermeasures. Due
to the small size of the devices and their use of short-range communication, we
envision the use of mobile devices, Interceptors, to localize the S-Routers.

In this work, we investigated algorithmic issues related the interception of
stealthy networks. Our focus was on developing efficient algorithms for Inter-
ceptors, to expose the destination of stealthy network; we believe that such

204 M. Ben Adar Bessos and A. Herzberg

algorithms may be deployed as part of the design of countermeasures to stealthy
networks.

There are many directions for improvements, extensions/variations, and fur-
ther research. For example, if Interceptors may predict the S-Routers’ transmis-
sion schedule, they may be able to accelerate their search significantly.

Improvements may also be possible for the analysis. The current results pro-
vide an upper bound for the expected lifetime in the studied environment, but
a lower bound is yet to be found. While it is relatively simple to prove that S-
Routers may ensure the expected lifetime is bounded from by O(N), developing
additional algorithms for S-Routers may be required in order to find the exact
bounds, or at least for narrowing the gap between O(N) and O(N

MB̂
log2(N)).

The presented model is general enough, to allow investigation of several
related problems, including (1) multiple sources and/or destinations, (2) allowing
S-Routers to buffer data, (3) introducing mobility, and much more.

Finally, note that the current model does not support decentralized algo-
rithms. We expect that in some practical scenarios, S-Routers may have to risk
exposure in order to coordinate. An extension to the model is necessary for
studying such scenarios.

Acknowledgments. This work is supported by the Israeli Ministry of Science and
Technology.

References

1. Herzberg, A., Ben Adar Bessos, M.: Intercepting a stealthy network - simulation
demonstration (2018). https://sites.google.com/view/stealthynetinterception/
home

2. Baisch, A.T., Ozcan, O., Goldberg, B., Wood, R.J.: High speed locomotion for a
quadrupedal microrobot. Int. J. Robot. Res. 33(8), 1063–1082 (2014)

3. Herzberg, A., Ben Adar Bessos, M.: Intercepting a stealthy network.
vixra.org/abs/1712.0510

4. Bobic, I.: Ted cruz wants police to ‘patrol and secure’ U.S. Muslim communities
after brussels, March 2016. www.huffingtonpost.com. Accessed 21 Nov 2017

5. Bash, B.A., Goeckel, D., Towsley, D.: Hiding information in noise: fundamental lim-
its of covert wireless communication. IEEE Commun. Mag. 53(12), 26–31 (2015)

6. Che, P.H., Bakshi, M., Jaggi, S.: Reliable deniable communication: hiding mes-
sages in noise. In: 2013 IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 2945–2949. IEEE (2013)

7. Chen, O., Meadows, C., Trivedi, G.: Stealthy protocols: metrics and open problems.
In: Gibson-Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and
Puzzles. LNCS, vol. 10160, pp. 1–17. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-51046-0 1

8. Chen, X., Purohit, A., Pan, S., Ruiz, C., Han, J., Sun, Z., Mokaya, F., Tague, P.,
Zhang, P.: Design experiences in minimalistic flying sensor node platform through
sensorfly. ACM Trans. Sensor Netw. (TOSN) 13(4), 33 (2017)

9. Das, G.K., Das, S., Nandy, S.C., Sinha, B.P.: Efficient algorithm for placing a given
number of base stations to cover a convex region. J. Parallel Distrib. Comput.
66(11), 1353–1358 (2006)

https://sites.google.com/view/stealthynetinterception/home
https://sites.google.com/view/stealthynetinterception/home
www.huffingtonpost.com
https://doi.org/10.1007/978-3-319-51046-0_1
https://doi.org/10.1007/978-3-319-51046-0_1

Intercepting a Stealthy Network 205

10. Hu, J., Yan, S., Zhou, X., Shu, F., Wang, J.: Covert communication in wireless
relay networks (2017). CoRR abs/1704.04946

11. Kershner, R.: The number of circles covering a set. Am. J. Math. 61(3), 665–671
(1939)

12. MacGregor, A.: Russian scientists create cockroach spy robot. thestack.com.
Accessed 2 May 2018

13. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)
14. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system

for collective behaviors. In: 2012 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3293–3298. IEEE (2012)

15. Shabsigh, G.: Covert Communications in the RF Band of Primary Wireless Net-
works. Ph.D. thesis, University of Kansas (2017)

16. Sidahmed, M.: NYPD’s muslim surveillance violated regulations as recently as
2015: report, August 2016. www.theguardian.com. Accessed 21 Nov 2017

17. Bokareva, T., Hu, W., Kanhere, S.S., Jha, S.: Wireless sensor networks for battle-
field surveillance. In: Proceedings of the Land Warfare Conference, pp. 1–8 (2006)

18. He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao,
Q., Vicaire, P., Stankovic, J.A., Abdelzaher, T.F., Hui, J., Krogh, B.: VigilNet:
an integrated sensor network system for energy-efficient surveillance. ACM Trans.
Sensor Netw. (TOSN) 2(1), 1–38 (2006)

19. He, T., Vicaire, P., Cao, Q., Yan, T., Zhou, G., Gu, L., Luo, L., Stoleru, R.,
Stankovic, J.A., Abdelzaher, T.F.: Achieving long-term surveillance in vigilnet.
Technical report. Department of Computer Science, Virginia Univ Charlottesville
(2006)

20. Wang, L., Wornell, G.W., Zheng, L.: Fundamental limits of communication with
low probability of detection. IEEE Trans. Inf. Theory 62(6), 3493–3503 (2016)

https://thestack.com
www.theguardian.com

Privacy in e-Shopping Transactions:
Exploring and Addressing the Trade-Offs

Jesus Diaz1(B), Seung Geol Choi2, David Arroyo3, Angelos D. Keromytis4,
Francisco B. Rodriguez3, and Moti Yung5

1 Blue Indico - BEEVA, Madrid, Spain
jesus.diaz@beeva.com, jesus.diaz.vico@gmail.com

2 United States Naval Academy, Annapolis, USA
choi@usna.edu

3 Universidad Autónoma de Madrid, Madrid, Spain
{david.arroyo,f.rodriguez}@uam.es

4 Georgia Institute of Technology, Atlanta, USA
angelos@gatech.edu

5 Columbia University, New York, USA
moti@cs.columbia.edu

Abstract. The huge growth of e-shopping has brought convenience to
customers, increased revenue to merchants and financial entities and
evolved to possess a rich set of functionalities and requirements (e.g.,
regulatory ones). However, enhancing customer privacy remains to be
a challenging problem; while it is easy to create a simple system with
privacy, this typically causes loss of functions.

In this work, we look into current e-shopping infrastructures and aim
at enhancing customer privacy while retaining important features and
requiring the system to maintain the topology and transaction flow of
established e-shopping systems that are currently operational. Thus, we
apply what we call the “utility, privacy, and then utility again” paradigm:
we start from the state of the art of e-shopping (utility); then we add pri-
vacy enhancing mechanisms, reducing its functionality in order to tighten
privacy to the fullest (privacy); and finally, we incorporate tools which
add back lost features, carefully relaxing privacy this time (utility again).

We also implemented and tested our design, verifying its reasonable
added costs.

1 Introduction

Privacy vs. Utility: The Case of Group Signatures. The evolution of
privacy primitives in various specific domains often centers around the notion of
balancing privacy needs and utility requirements. Consider the notion of “digital
signature” [22,39] whose initial realization as a public key infrastructure [37]
mandated that a key owner be certified with its identity and its public verification
key: a certification authority (CA) signs a record (called certificate) identifying
the user and its signature public verification key.
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 206–226, 2018.
https://doi.org/10.1007/978-3-319-94147-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_17&domain=pdf

Privacy in e-Shopping Transactions 207

Later on, it was suggested that CA’s sign anonymous certificates which only
identify the keys (for example, a bulk of keys from a group of users is sent to
the CA via a mix-net and the CA signs and publish the certificates on a bulletin
board: only the owner of a key can sign anonymously with its certified key.
Alternatively the CA blindly signs certificates). This brings digital signing to
the domain of anonymous yet certified action (i.e., the action/ message is known
to originate from the group that was certified).

However, it was noted quite early that under the mask of anonymity users
can abuse their power and sign undesired messages, where no one can find the
abuser. Therefore, primitives like group signature [14] or traceable signature [29]
were designed, assuring that the anonymity property of a signed message usually
stays, but there are authorities which can unmask abusers, or unmask certain
message signatures in order to keep balance between anonymity of well behaving
signers while protecting the community against unacceptable message signing
practices.

Privacy by Design for Systems in Production? While privacy by design
principles mandate that privacy enhancing mechanisms be taken into account
already at the design stage of any system, for well established processes and
infrastructures this is not possible. Moreover, trying to re-engineer an existing
system from scratch, now including privacy tools by design, must nevertheless
be constrained at every step by maintaining the same main processes and infor-
mation flows. Otherwise, there exists a too high risk of rejection due to the
unacceptable chain-effect changes its adoption would imply.

Utility, Privacy, and then Utility Again. The above development on group
signatures shows that even in one of the simplest case of anonymity vs. basic
message authenticity, there is already certain advantage in providing partial
anonymity to perform in a desirable environment which balances various needs.
Additionally, the described case of privacy by design for already deployed sys-
tems calls out for variants of this methodology. Extrapolating from the above
staged methodology that gave us the primitives of group signature and trace-
able signature, we follow a methodology that can be viewed as “utility, privacy,
and then utility again”: First translating a primitive to an idealized anonymous
primitive, but then identifying lost utility which complete anonymity prevents:
and, in turn, relaxing privacy for additional utility.

Application to e-Shopping. We put forward our approach for this method-
ology through to the involved case of the real world (compound) process of e-
shopping, where we find numerous trade-offs which we unveil and discuss (based
on utility needed in various steps of the system). We begin by modelling the
e-shopping ecosystem, identifying its entities, main processes and added-value
mechanisms; then, we implement a fully anonymous system that keeping the
entities and main processes, at the cost of losing the added-value parts; finally,
we recover them by giving end-users the option to act fully anonymously or
pseudonymously. Importantly, our methodology allows us to maintain the main

208 J. Diaz et al.

processes of current e-shopping systems, making it easier to come up with a
proposal compatible with the existing complex e-commerce ecosystem.

Note that we have not aimed solely at a theoretical exercise. We demonstrate
feasibility of our approach by an exemplifying implementation which demon-
strates that we keep a large portion of the utility of the original systems (with-
out anonymity) for a reasonable added performance cost (with anonymity). The
achieved practicality of a privacy-respectful system in a real-world context is of
relevance, specially considering the latest regulations towards privacy, such as
the European GDPR (General Data Protection Regulation1) and PSD2 (Pay-
ment Services Directive2.)

1.1 Related Work

The most prolific related area are anonymous payments, e-cash [13] being its
main representative, which has seen a huge boost since Bitcoin [34]. While Bit-
coin itself does not provide robust privacy, more advanced proposals address
this [5,12,24,32]3. Still, they address only the payment process, and are typi-
cally not concerned with additional functionality, except [24], which adds support
for regulatory concerns. Some traditional e-cash proposals also incorporate util-
ity to some extent, mainly through tracing (after the payment has been done)
[11,18,35] or some kind of spending limitation [35,41]. Privacy respectful pay-
ment systems out of the e-cash domain also exist, such as [28], built on mix
networks to prevent linking customers and merchants, and [43], which uses dis-
counts based on the (always pseudonymous) users’ history. Private purchase
systems have been constructed preventing merchants from learning what digital
goods customers buy [38], but are not suitable for physical goods; [42] works
by interleaving proxies that remove identifiable information about customers.
Some works focus specifically on privacy respectful user profiling [17,36,44],
mostly for affinity programs, although some approaches are also applicable to
fraud prevention [17]. Anonymous delivery systems of physical goods have also
been proposed [3,42], covering a crucial phase that has received much less atten-
tion. Finally, solutions related to the completion phase (feedback, complaints,
etc.) have been basically ignored, although this phase have been shown to allow
de-anonymization attacks [33]. Underlying most of these proposals are, often,
cryptographic primitives such as oblivious transfer [2] or anonymous credentials
[9,15], which are of natural interest in this domain as core building blocks.

The above proposals focus on the two steps of the methodology above (i.e.,
the “utility, privacy” stages), with a few limited exceptions [17,24,35,41], thus
restricting the extended utility recovered by our last stage of “utility again.”
Moreover, none covers all the e-shopping core processes, reducing the privacy of
the composed overall system to that of the weakest link [20]. Some proposals

1 https://www.eugdpr.org/.
2 https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366 en.
3 As well as many proposals in non-academic forums. See, for instance, https://z.cash/

(a modified implementation of Zerocash) and https://cryptonote.org/.

https://www.eugdpr.org/
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://z.cash/
https://cryptonote.org/

Privacy in e-Shopping Transactions 209

introduce extensive changes into the infrastructure and processes [28] or require
modifications that conflict with regulations or practical concerns, like requiring
the outsourcing of information that would probably be proprietary in many
scenarios [17,44]. Therefore, at present, the utility-privacy trade-off is leaning
towards utility in the industry and towards full privacy in the literature.

1.2 Organization

After some preliminaries in Sect. 2, we sketch in Sect. 3 how we apply privacy
to the traditional system. We analyze this system to show its shortcomings
and recover utility in Sect. 4. We conclude in Sect. 5. For lack of space, we omit
formal security definitions and proofs and a detailed analysis on the experiments
performed with our prototype. We refer to the full version of this paper for the
details [21].

2 Preliminaries

Notation. For an algorithm A, let A(x1, . . . , xn; r) denote the output of A on
inputs x1, . . . xn and random coins r; in addition, y ← A(x1, . . . , xn) means
choosing r uniformly at random and setting y ← A(x1, . . . xn; r). For a set S,
let x ← S denote choosing x uniformly at random from S. We let 〈OA, OB〉 ←
P (IC)[A(IA), B(IB)] denote a two-party process P between parties A and B,
where OA (resp. OB) is the output to party A (resp. B), IC is the common
input, and IA (resp. IB) is A’s (resp. B’s) private input; when party B does not
have output, we sometimes write OA ← P (IC)[A(IA), B(IB)]. When a single
party algorithm P uses a public key pk, we may write O ← Ppk(I) (although
we omit it if it is clear from the context). For readability, we assume that if any
internal step fails, the overall process fails and stops.

Basic Cryptographic Primitives. We assume readers are familiar with
public-key encryption [22,39], digital signature and commitment schemes [8], and
zero-knowledge proofs of knowledge (ZK-PoKs) [26]. Let (EGen, Enc, Dec) denote
a public-key encryption scheme, and (SGen, Sign, SVer) denote a digital signa-
ture scheme. For readability, we assume that it is possible to extract the signed
message from the corresponding signature. We let comm ← Com(m; rm) denote
a commitment to a message m, where the sender uses uniform random coins rm;
the sender can open the commitment by sending (m, rm) to the receiver. We use
π ← ProveZKL(x;w) and VerifyZKL(x, π) to refer to creating non-interactive
proof π showing that the statement x is in language L (which we sometimes omit
if obvious from the context) with the witness w, and to verifying the statement
x based on the proof π.

Group Signatures. Group signatures [10,14,29–31] provide anonymity. A pub-
lic key is set up with respect to a group consisting of multiple members. Any
member of the group can create a signature � revealing no more information
about the signer than the fact that a member of the group created �. Group

210 J. Diaz et al.

signatures also provide accountability: the group manager (GM) can open sig-
natures and identify the actual signer.

– (pkG, skG) ← GS.Setup(1k) sets up a key pair; GM holds skG.
– 〈mki, �

′〉 ← GS.Join(pkG)[M(si), GM(�, skG)] allows member M with secret
si to join group G, generating the private member key mki and updating the
Group Membership List � to �′.

– � ← GS.Signmki
(msg) issues a group signature �.

– GS.VerpkG
(�,msg) verifies whether � is a valid group signature.

– i ← GS.OpenpkG
(skG, �) returns the identity i having issued the signature �.

– π ← GS.Claimmki
(�) creates a claim π of the ownership of �.

– GS.ClaimVerpkG
(π, �) verifies if π is a valid claim over �.

Traceable Signatures. Traceable signatures [29] are essentially group signa-
tures with additional support of tracing (when we use the previous group sig-
nature operations, but with a traceable signature scheme, we use the prefix TS
instead of GS).

– ti ← TS.RevealskG
(i). The GM outputs the tracing trapdoor of identity i.

– b ← TS.Trace(ti, �). Given the tracing trapdoor ti, this algorithm checks if �
is issued by the identity i and outputs a boolean value b reflecting the check.

Partially Blind Signatures. A blind signature scheme [13] allows a user U to
have a signer S blindly sign the user’s message m. Partially blind signatures [1],
besides the blinded message m, also allow including a common public message
in the signature.

– (pkS , skS) ← PBS.KeyGen(1k) sets up a key pair.
– (m̃, π) ← PBS.BlindpkS

(m, r). Run by a user U , it blinds the message m using
a secret value r. It produces the blinded message m̃ and a correctness proof
π of m̃.

– �̃ ← PBS.SignskS
(cm, m̃, π). Signer S verifies proof π and issues a partially

blind signature �̃ on (cm, m̃), where cm is the common message.
– � ← PBS.UnblindpkS

(�̃, m̃, r). Run by the user U , who verifies �̃ and then
uses the secret value r to produce a final partially blind signature �.

– PBS.VerpkS
(�, cm,m) checks if � is valid.

3 System with a High Level of Privacy and Less
Functionalities

Following the approach of “utility, privacy, and then utility again”, we first
overview the existing e-shopping system (utility) and then add privacy enhancing
mechanisms, relaxing its functionality in order to achieve a high level of privacy
(privacy). In the next section, we add other important features, carefully relaxing
privacy (utility again).

Privacy in e-Shopping Transactions 211

The General e-Shopping Process. Assuming users have already registered
in the system, we may consider four phases: purchase, checkout, delivery and
completion (see Fig. 1). The involved parties are customers (C), merchants (M),
the payment system (PS), financial entities processing and executing transac-
tions (that we bundle in our abstraction as FN) and delivery companies (DC). PS
basically connects merchants and FN, providing advanced services. First, in the
purchase phase, C picks the products he wants to buy from M and any coupons
he may be eligible for (task in which PS may be involved). In the checkout phase,
the payment and delivery information specified by C are routed to PS, proba-
bly through M, and processed and executed by FN. During checkout, M, PS and
FN may apply fraud prevention mechanisms and update C’s purchase history.
Subsequently, in the delivery phase, and for physical goods, DC delivers them to
C. Finally, in the completion phase, C verifies that everything is correct, maybe
initiating a complaint and/or leaving feedback.

C M

PSFN

DC

1. Purchase

2. Purchase

3. Process payment

4. OK

5. OK

6. Ship7. Ship

Fig. 1. The overall process of a traditional e-shopping.

Many aspects in this process enter in conflict with privacy (e.g., coupons,
fraud prevention and physical delivery), but they are necessary to foster industry
acceptance.

3.1 Privacy Goal

We assume that merchants can act maliciously, but PS, FN and DC are semi-
honest. Informally, we aim at achieving customer privacy satisfying the following
properties:

– Hide the identity of a customer and reveal it only if necessary: The identity
of a customer is sometimes sensitive information, and we want to hide it
from other parties as much as possible. In the overall e-shopping process
merchants, PS, and DC don’t really need the identity of the customer in order
for the transaction to go through. However, FN must know the identity to
withdraw the actual amount of money from the customer’s account and to
comply with current regulations.

212 J. Diaz et al.

– Hide the payment information and reveal it only if necessary: The information
about the credit card number (or other auxiliary payment information) that
a customer uses during the transaction is quite sensitive and thereby needs to
be protected. In the overall e-shopping process, like the case of the customer
identity, observe that only FN must know this information to complete the
financial transaction.

– Hide the product information and reveal it only if necessary: The information
about which product a customer buys can also be sensitive. However, note
that PS and FN don’t really need to know what the customer is buying in order
for the transaction to go through, but the merchants and DC must handle the
actual product.

3.2 Approach for Privacy-Enhancements

In the full version of this paper, we describe in detail the privacy enhanced
system. Below, we highlight our approach towards privacy and sketch the system
in Fig. 2.

Fig. 2. The overall process of the system. Here, α and β are the product and purchase
information respectively. α has been obtained previously by Ci, browsing Mj ’s web
anonymously.

Controlling the Information of Customer Identity. We use the following
privacy-enhancing mechanisms to control the information of customer identity.

– Sender anonymous channel from customers: Customers use sender-
anonymous channels such as Tor [23] for their communications.

Privacy in e-Shopping Transactions 213

– Customer group signatures on transaction data: The transaction data on the
customer side is authenticated by the customer’s group signature. In our con-
text, FN takes the role of the group manager. Thus, if a merchant M verifies
the group signature included by a customer in a transaction, M is confident
that the customer has an account with FN. Moreover, due to the group signa-
tures, the customer’s identity is hidden from other parties based on. However,
since FN takes the role of the group manager, it can identify the customer by
opening the signature if required, but it is otherwise not requested to take
any active role with respect to managing the group or processing group signa-
tures. Note that the group manager must be a trusted entity concerning the
group management tasks, although this trust can be reduced with threshold
techniques like those in [6].

Controlling the Payment Information. Customers encrypt their payment
information with FN’s public key. Thus, only FN can check if the identity in
the payment information matches the one extracted from the customer’s group
signature.

Controlling the Product Information. The customer encrypts the infor-
mation about the product he wants to purchase using a key-private public key
encryption scheme (e.g., ElGamal encryption) [4]; he generates a key pair and
uses the public key to encrypt the product information. The key pair can be
used repeatedly since the scheme is key-private4, and the public encryption key
is never sent to other parties. The main purpose of doing this is for logging.
Once FN logs the transactions, the customer can check the product information
in each transaction by simply decrypting the related ciphertext.

Obviously, the encryption doesn’t reveal any product information to other
parties. Yet, merchants must obtain this data to proceed. To handle it, customers
send the product information both in plaintext and ciphertext, and then prove
consistency using a ZK proof. When this step is cleared, only the ciphertext part
is transferred to other entities.

Note that this system satisfies all our privacy goals. However, it reduces
utility, as is not compatible with many features required by the industry (or by
regulation), specifically, marketing and fraud prevention tools, or extensions like
customer support, subscriptions or taxation [20].

4 Privacy-Enhanced System with Richer Functionality

Next, we add important functionalities, in particular marketing and antifraud
mechanisms, to the system described in Sect. 3, carefully relaxing privacy (utility
again).

4 Key-privacy security requires that an eavesdropper in possession of a ciphertext not
be able to tell which specific key, out of a set of known public keys, is the one under
which the ciphertext was created, meaning the receiver is anonymous from the point
of view of the adversary.

214 J. Diaz et al.

Adding Marketing Tools: Utility vs Privacy. We would like the payment
system PS (or merchants) to use marketing tools (e.g., coupons) so as to incen-
tivize customers to purchase more products and thereby increase their revenue.
For clarity of exposition, we will consider adding a feature of coupons and dis-
cuss the consequential privacy loss; other marketing features essentially follow
the same framework.

When we try to add this feature to the system, PS must at least have access to
the amount of money each customer has spent so far; otherwise, it’s impossible
for the coupons to be issued for more loyal customers. Obviously, revealing this
information is a privacy loss. However, this trade-off between utility and privacy
seems to be unavoidable, if the system is to be practically efficient, ruling out the
use of fully-homomorphic encryptions [25] or functional encryptions [7], which
are potentially promising but, as of now, prohibitively expensive to address our
problem. The main question is as follows:

– Can we reveal nothing more than the purchase history of encrypted products?
– Can we provide the customers with an option to control the leakage of this
history? In other words, can we give the customers an option to exclude some
or all of their purchase activities from the history?

We address both of the above questions affirmatively. In order to do so, we
first allow each customer to use a pseudonym selectively. That is, the payment
system can aggregate the customer’s purchase history of encrypted products
only if the customer uses his pseudonym when buying a product. If the customer
wants to exclude some purchase activity from this history, he can proceed with
the transaction anonymously.

Still, there are a couple of issues to be addressed. First, we would like the
system to work in a single work flow whether a customer chooses to go pseudony-
mously or anonymously. More importantly, we want a customer to be able to
use coupons even if he buys a product anonymously. We will show below how we
address these issues, when we introduce the notion of a checkout-credential.

Adding Antifraud Mechanisms: Utility vs Privacy. Merchants need to
be protected against fraudulent or risky transactions, e.g. transactions that are
likely to end up in non-payments, or that are probably the result of stolen credit
cards and similar cases. This is typically done by having the PS send a risk
estimation value to merchants, who can also apply their own filters based on
the specifics of the transaction (number of items, price, etc.). At this point,
we have an utility-privacy trade-off. In particular, if the risk estimation is too
specific and identifying, it will hinder the system from supporting anonymous
transactions. We believe that this trade-off is inherent, and in this paper, we
treat the specificity of risk estimation to be given as an appropriately-chosen
system parameter, depending on the volume of the overall transactions and only

Privacy in e-Shopping Transactions 215

mildly degrading the quality of anonymity in anonymous transactions. The main
question we ask is:

Can we relax anonymity of transactions but only to reveal the risk estimation?

As with the marketing tools, we use the checkout-credential for implementing
this.

4.1 Our Approach

Checkout Credentials. We want to allow customers to perform unlinkable
(anonymous) purchases, and we also need to provide merchants with the fraud
estimation of a transaction based on each customer’s previous transactions. This
goal is achieved in a privacy-respectul manner through the checkout-credential
retrieval process.

The checkout-credential retrieval process is carried out before the actual
checkout, and it is executed between PS and the customer. The resulting
checkout-credential is the means used by PS to aggregate the available infor-
mation related to each pseudonym and provide the marketing and antifraud
information for merchants without violating each customer’s privacy. Figure 3
shows the augmented information flow of the purchase and checkout phases in
our system. Delivery and completion are not depicted in Fig. 3 since, as we show
in the following description, they are quite straightforward and do not suffer
further modifications (with respect to the system in Sect. 3) besides integrating
them with the new purchase and checkout processes. Specifically, note that while
we have partitioned the main processes in multiple sub-processes, the overall flow
is still the same. That is, purchase → checkout → delivery → completion. Finally,
note also that the parties involved in each process are maintained compared to
current systems.

Basically, a checkout-credential is a partially blind signature, requested by
a customer and issued by PS, where the common message includes aggregated

Fig. 3. System process flow. Here, τ is the checkout-credential and α is the product
information.

216 J. Diaz et al.

data related to fraud and marketing and the blinded message is a commitment
to the customer key. During checkout, a customer proves to merchants in ZK
that he knows the committed key embedded in the checkout credential. Since it
was blindly signed, PS and merchants cannot establish a link beyond what the
aggregated common information allows.

At this point, when the customer decides to perform a pseudonymous check-
out (in this case, the pseudonym is also shown during checkout), PS will be able
to link the current checkout to the previous ones and update the customer’s his-
tory (updating his eligibility to promotions and risk estimation). If he chooses
an anonymous checkout, PS will not be able to link this transaction with others.

Protection Against Fraudulent Anonymous Transactions. There is an
additional issue. An attacker may execute a large volume of pseudonymous
transactions honestly, making its pseudonym have a low risk-estimate value,
and then perform a fraudulent anonymous transaction. Note in this case, the
checkout-credential will contain low risk estimate and the transaction will likely
go through, but problematically, because of unlinkability of this fraudulent trans-
action, PS cannot reflect this fraud into the pseudonym’s transaction history.
Moreover, taking advantage of this, the attacker can repeatedly perform fraud-
ulent anonymous transactions with low risk estimate. However, in this variant
of our system, we use traceable signatures. Thus, if an anonymous transaction
proves to be fraudulent a posteriori, FN can open the signature and give PS the
tracing trapdoor associated with the token (i.e., the traceable signature). Given
this trapdoor, PS can update the risk estimation even for anonymous checkouts.

Note that customers are offered a trade-off. When customers always check-
out anonymously, they have no previous record and receive worse promotions
and fraud estimates. When they always checkout pseudonymously, they get bet-
ter offers and probably better fraud estimates, in exchange of low privacy. But
there are also intermediate options. In all cases, they can take advantage of
any coupons they are eligible for and receive fraud estimates based on previous
pseudonymous purchases.

However, we emphasize that our system is natively compatible with many
antifraud techniques in the industry without needing to resort to tracing and
which are also applicable with anonymous checkouts and do not reduce privacy
(see [21]).

4.2 System Description

In this section, we describe our system. The processes composing each phase are
defined next. The flow for purchase and checkout is depicted in Fig. 3.

Setup. FN, PS, and every merchant Mj and customer Ci run their corresponding
setup processes in order to get their keys, according to the processes in Fig. 4.
In particular, FN runs FNSetup to generate traceable signature and encryption
keys. PS runs PSSetup to generate a key pair for partially blind signatures. Mj

runs MSetup to generate signing keys. Ci and FN interact in order to generate key
pairs for Ci, running CSetup. Ci contacts FN, creates an account and joins a group

Privacy in e-Shopping Transactions 217

G, obtaining a membership key mki using a secret si. In this case, Ci also sets
up a pseudonym Pi, known to FN. The pseudonym Pi is a traceable signature on
a random message created using his membership key mki; we let Pi.r denote the
random message and Pi.� the traceable signature on Pi.r. During the process,
FN updates its membership database � into �′.

FNSetup(1k) :
(pkG, skG) ← TS.Setup(1k)
(pkFN, skFN) ← EGen(1k)
PKFN ← (pkFN, pkG)
SKFN ← (skFN, skG)

PSSetup(1k) :
(pkPS, skPS) ← SGen(1k)
(pkPBS, skPBS) ← PBS.KeyGen(1k)
PKPS ← (pkPS, pkPBS)
SKPS ← (skPS, skPBS)

MSetup(1k) :
(pkMj , skMj) ← SGen(1k)
PKMj ← pkMj ; SKMj ← skMj

CSetup(pkG)[Ci(si), FN(skG, �)] :
〈mki, �

′〉 ← TS.Join(pkG)[Ci(si), FN(�, skG)]
(pki, ski) ← EGen(1k)
Ci chooses r ← {0, 1}∗

Ci computes � ← TS.Signmki
(r; rPi)

Ci sends Pi = (r, �) to FN

SKCi ← (Pi, mki, rPi , pki, ski)

Fig. 4. Full system setup processes.

Checkout-Credential Retrieval and Purchase. The purchase phase
includes the Purchase and CheckoutCredRetrieval processes. The purpose of
this phase is for Ci to obtain a description of the products to buy from Mj and a
credential authorizing him to proceed to checkout, including information neces-
sary to apply marketing and antifraud tools.

During CheckoutCredRetrieval, Ci interacts pseudonymously with PS. The
protocol starts by having the customer Ci send his pseudonym Pi. Then, PS
retrieves the information of how loyal Pi is (i.e., rk), whether (and how) Pi is
eligible for promotion (i.e., pr), and the deadline of the checkout-credential to
be issued (i.e., dl), sending back (rk, pr, dl) to Ci. Ci chooses a subset pr′ from
the eligible promotions pr. Finally, Ci will have PS create a partially blind sig-
nature such that its common message is (rk, pr′, dl) and its blinded message is
a commitment , to his membership key mki. We stress that the private member
key mki of the customer Ci links the pseudonym (i.e., Pi.� ← TS.Signmki

(Pi.r))
and the blinded message (i.e., com ← Com(mki; rcom)). The customer is sup-
posed to create a ZK-PoK φ showing this link. Upon successful execution, the
checkout-credential is set to τ . We use τ.rk, τ, pr, τ.dl, τ.,, τ.� to denote the risk
factor, promotion, deadline, commitment to the member key, and the resulting
blind signature respectively. Refer to Fig. 5 for pictorial description. A checkout-
credential issued with the process in Fig. 5 would be verified during checkout
using the VerifyCheckoutCred process, defined as follows:

VerifyCheckoutCredPKPS
(τ) : return PBS.VerpkPBS(τ.�, (τ.pr, τ.rk, τ.dl), τ.com)

218 J. Diaz et al.

Fig. 5. The CheckoutCredRetrieval process.

Concurrently, Ci obtains through the Purchase process a product description
of the items he wants to buy. Note that this can be done just by having Ci browse
Mj ’s website using sender anonymous channels:

α ← Purchase[Ci, Mj] : return product description from Mj ’s website

Finally, with both the product description α and the checkout-credential τ ,
Ci can initiate the checkout phase.

Checkout. After receiving the checkout-credential τ and having obtained
a product description, Ci decides whether to perform an anonymous
(IssueAnonCheckout) or pseudonymous (IssueCheckout) checkout process. Let
α be the product information with the product name, merchant, etc.; also, let
$ be the price of the product and let β be the customer’s payment information
containing a random number uniquely identifying each transaction. The check-
out process is formed as follows (refer to Fig. 6 for a detailed description of the
algorithms). Note that the information flow is equivalent to that in Fig. 2, but
here we include additional cryptographic tokens.
Step 1: Client issues a checkout object. A customer Ci enters the checkout phase
by creating a checkout object co, executing Issue(Anon)Checkout using the

Privacy in e-Shopping Transactions 219

Fig. 6. Checkout algorithms.

checkout-credential τ obtained during checkout-credential retrieval. In either
procedure, Ci generates a traceable signature � on ($, encα, encβ), where encα

is an encryption of the product information α, and encβ is an encryption of the
payment information β, and $ is the price of the product. Then, Ci generates
a ZK proof ψ showing that the checkout-credential and the traceable signature
(and the pseudonym for IssueCheckout) use the same mki. In summary, we
have co = ([Pi,]τ, $, α, encα, encβ , �, ψ).
Step 2: Merchant processes checkout co. When Mj receives the checkout object
co (which includes the product information α in the clear, as well as encrypted),
verifies it with VerifyCheckout. If verification succeeds, Mj passes co to PS. Note
that τ needs to be checked for uniqueness to prevent replay attacks. However,

220 J. Diaz et al.

a used credential τ only needs to be stored up to τ.dl. It is also possible for Mj

to include additional antifraud information, like an Address Verification Service
value5 (see [21]).
Step 3: PS issues a payment order po. On receiving co from Mj , PS verifies co, runs
IssuePmtOrder and issues a payment order po with the minimum information
required by FN for processing the payment that is, po = ($, encα, encβ , �).
Step 4–5: Payment confirmations. Given the payment order po, FN verifies it
by running VerifyPmtOrder. If the verification succeeds, FN processes the order
and notifies PS of the completion; PS in turn sends the confirmation back to Mj .
Step 6: Mj issues a receipt. Mj receives the confirmation from PS and runs
IssueReceipt, issuing rc, a signature on co. Finally, Ci verifies rc with
VerifyReceipt.

Delivery. Once Ci receives rc, he can use it to prove in ZK that he actually
payed for some transaction co, and initiate additional processes, like having DC
deliver the goods through APOD [3]. This proof is obtained with the processes
in Fig. 7. In the showing process, if Ci received a receipt rc, he shows rc along
with the corresponding checkout object co; then, using his membership key mki,
he claims ownership of a traceable signature contained in co. Even if he did not
receive a receipt, he can prove ownership of � to FN (using ShowReceiptZK too).
Since FN is semi-honest, Ci may ask FN to cancel the associated payment (or force
PS and Mj to reissue the receipt).

π ← ShowReceiptZK(SKCi , rc, co):
Parse co = ([Pi,]τ, $, α, encα, encβ , �, ψ)
π ← TS.Claimmki(�)
return π

�/⊥ ← VerifyReceiptZK(rc, co, π):
Parse co = ([Pi,]τ, $, α, encα, encβ , �, ψ)
VerifyReceipt(rc, co)
TS.ClaimVerpkG(π, �)
If all the checks pass, return 1
Otherwise return 0

Fig. 7. Full system processes for claiming rc in Zero-Knowledge.

In order to interconnect with APOD, Ci proves Mj being the owner of rc
(through ShowReceiptZK). Then, Mj issues the credential cred required by
APOD as in [3]. Note however that the incorporation of APOD incurs in addi-
tional costs and the need for further cryptographic tokens for merchants (who
could delegate this task to PS). A less anonymous delivery method, but probably
good enough for many contexts, could be using Post Office boxes (or equivalent
delivery methods) [20].

Completion. When Ci receives the goods, the completion phase may take place.
In this phase, Ci may leave feedback or initiate a claim, for which he needs to
prove having purchased the associated items. For this purpose, Ci can again make
use of the ShowReceiptZK and VerifyReceiptZK processes, defined in Fig. 7.
5 https://en.wikipedia.org/wiki/Address Verification System.

https://en.wikipedia.org/wiki/Address_Verification_System

Privacy in e-Shopping Transactions 221

4.3 Security

We assume that customers and merchants can act maliciously. PS is assumed to
be semi-honest during checkout-credential retrieval, but malicious otherwise. FN
is semi-honest.

Here, for lack of space, we informally describe the security properties of our
system. We give formal security definitions and proofs in the full version [21].

Privacy. The system possesses the following privacy properties.

– Customer anonymity. If a customer executes the checkout process anony-
mously, no coalition of merchants, PS, and other customers should be able
to determine the identity or pseudonym of the customer from the checkout
process beyond what the common message in the checkout credential reveals.

– Transaction privacy against merchants and PS. No coalition of merchants, PS
and other customers should be able to determine the payment information
associated to the checkout process.

– Transaction privacy against FN. The financial network FN should not be able
to determine the detail of a customer’s transaction beyond what is necessary,
i.e., the customer identity and the amount of payment; in particular, Mj ’s
identity and the product information should be hidden from FN.

– Unlinkable checkout-credential retrieval and checkout. If a customer runs an
anonymous checkout, no coalition of merchants, PS, and other customers
should be able to link the customer or his pseudonym to the corresponding
checkout-credential retrieval procedure beyond what the common message in
the credential reveals.

FORMAL PRIVACY PROPERTIES

Customer anonymity

Transaction privacy
against FN

Transaction privacy
against merchants and PS

Unlinkable checkout-credential
retrieval and checkout

INFORMAL PRIVACY PROPERTIES

Hide customer
identity

Hide product
information

Hide payment
information

Fig. 8. Mapping between informal properties in Sect. 3.1 and formal properties in this
section.

Note that this properties map to the properties in Sect. 3.1, with some addi-
tional conditions (see Fig. 8 for a pictorial representation). It is also worth noting
that there are indirect connections between them. For instance, Transaction pri-
vacy against FN and Transaction privacy against merchants and PS undoubtedly
improves resistance against differential privacy attacks aimed at deanonymizing
customers (hence, affecting the Customer anonymity). However, as stated in the
conclusion, a detailed analysis of these aspects is out of the scope of this work
and is left for future work.

222 J. Diaz et al.

Robustness. The system also ensures the following robustness properties.

– Checkout-credential unforgeability. A customer should not be able to forge a
valid checkout-credential with a risk factor, promotions or deadline set by his
own choice.

– Checkout unforgeability. When Ci receives a checkout-credential from PS, it
cannot be used by Cj (i �= j) to create a valid co, even if they collude.

– Fraudulent transaction traceability. When Ci performs a fraudulent transac-
tion, FN and PS can trace the pseudonym used by Ci even if the transaction
is anonymous.

– Receipt unforgeability. No coalition of customers, merchants (other than the
target Mj), and PS should be able to forge a valid receipt that looks originating
from Mj .

– Receipt claimability. For any valid receipt issued to an uncorrupted customer,
no other customer should succeed in claiming ownership of the receipt.

4.4 Outline of the Methodology and Experiments Summary

We achieve a privacy-enhanced e-shopping system by applying the utility, privacy
and utility again methodology as follows:

– (Utility, privacy) Following [20], we first identify the core components of the
existing e-shopping system as follows:

• The participating parties: users, merchants, payment systems, financial
network, and delivery companies.

• The basic e-shopping processes: purchase, checkout, delivery, completion.
• Added-value tools: marketing and fraud prevention.

When applying the privacy-enhancing mechanisms, we minimize the mod-
ification of these core functionalities. In particular, we change neither the
participating parties nor the actual transaction flow. However, we add full
anonymity at the cost of marketing and fraud prevention tools.

– (Utility again) In this stage, we add the following important real-world fea-
tures:

• Marketing tools such as targeted coupons.
• Fraud preventions measures, allowing to include unpayment risk estima-

tions.
When providing these important utility features, we carefully relax privacy. In
particular, each customer is associated with a pseudonym, and fraud preven-
tion and marketing tools are applied by aggregating certain pieces of transac-
tion history based on the pseudonym. Yet, we allow customers to act anony-
mously in each transaction, ensuring privacy is not reduced beyond what this
aggregation implies.

Finally, we have implemented a prototype of our system. Here, for lack of
space, we do not include a full report on our results, which will be made available
in the full version [21]. As as a summary, we point out that in an unoptimized

Privacy in e-Shopping Transactions 223

version of our prototype, we achieve between 1–3 full-cycle purchases per second.
For comparison, other similar systems (e.g., Magento) report between 0.17 and
0.7 purchases per second6. It is important to note that we have simplified some
parts of the process, such as payments (simulated through a database modifi-
cation). This, however, is likely to be a relatively negligible operation within
the overall process: e.g. VISA processed 141 billion transactions in 20167, which
makes roughly 4500 transactions per second. Concerning the sizes of the groups
of customers in the group signature schemes, we note that this is a highly con-
figurable aspect. For instance, groups can be set based on geographies, based on
sign up time, or other heuristics. As for the impact on performance of the sizes of
the groups, we refer to [19], which we used to implement our prototype and offers
some statistics about the group sizes and throughput of the main operations.

5 Conclusion

We have put forth our proposal for reaching a balance between privacy and utility
in e-shopping. This is a complex scenario, where the diverse set of functionalities
required by the industry makes it hard to provide them in a privacy respectful
manner [20]. Moreover, the restriction of maintaining a similar system topology,
limits the application of traditional privacy by design principles. With respect
to the related work, our proposal integrates all core components of e-shopping
(purchase, checkout, delivery and completion) and the advanced functionality in
industry systems (marketing and fraud prevention). To the best of our knowledge
this is an unsolved problem [20,40].

Note that our system provides a basic infrastructure for building privacy
respectful systems requiring user profiling. Specifically, users pseudonymously
obtain customized credentials based on their history, and then anonymously
prove possession of those credentials unlinkably to the pseudonymous phase. We
have also implemented a prototype of our system, showing its practicability and
low added costs. We refer to the full paper for further details on experiments,
formal security proofs and possible extensions [21].

Nevertheless, further work is necessary. We include aggregated antifraud and
promotions information that is publicly accessible from the checkout-credential.
Hence, an open problem is reducing the impact of this leak for reidentification.

Finally, we used a “utility, privacy, and then utility again” methodology
for designing our system. This strategy is can be applied to transition from
policy to engineering in privacy protection in already deployed systems [16]. In
other words, our work contributes to build up the Business, Legal, and Technical
framework [27] demanded to reconcile economic interests, citizens’ rights, and
users’ needs in today’s scenario.

6 https://magento.com/sites/default/files/White%20Paper%20-%20Magento%202.0
%20Performance%20and%20Scalability%2003.31.16.pdf.

7 https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-facts-
figures-jan-2017.pdf.

https://magento.com/sites/default/files/White%20Paper%20-%20Magento%202.0%20Performance%20and%20Scalability%2003.31.16.pdf
https://magento.com/sites/default/files/White%20Paper%20-%20Magento%202.0%20Performance%20and%20Scalability%2003.31.16.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-facts-figures-jan-2017.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-facts-figures-jan-2017.pdf

224 J. Diaz et al.

Acknowledgements. The work of Jesus Diaz was done in part while visiting the Net-
work Security Lab at Columbia University. The work of Seung Geol Choi was supported
in part by the Office of Naval Research under Grant Number N0001415WX01232. The
work of David Arroyo was supported by projects S2013/ICE-3095-CM (CIBERDINE)
and MINECO DPI2015-65833-P of the Spanish Government. The work of Francisco
B. Rodriguez was supported by projects MINECO TIN2014-54580-R and TIN2017-
84452-R of the Spanish Government. The work of Moti Yung was done in part while
visiting the Simons Institute for Theory of Computing, UC Berkeley.

References

1. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0034851

2. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

3. Androulaki, E., Bellovin, S.M.: APOD: anonymous physical object delivery. In:
Privacy Enhancing Technologies, pp. 202–215 (2009)

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, pp. 459–474 (2014)

6. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group sig-
natures. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 231–246. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8 21

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

9. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: ACM CCS, CCS 2009, pp. 131–140. ACM (2009)

10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

11. Camenisch, J., Piveteau, J.-M., Stadler, M.: An efficient fair payment system. In:
ACM Conference on Computer and Communications Security, pp. 88–94 (1996)

12. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contin-
gent payments revisited: attacks and payments for services. In: Proceedings of the
2017 ACM SIGSAC CCS, pp. 229–243 (2017)

13. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

https://doi.org/10.1007/BFb0034851
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-540-85230-8_21
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22

Privacy in e-Shopping Transactions 225

15. Coull, S.E., Green, M., Hohenberger, S.: Access controls for oblivious and
anonymous systems. ACM Trans. Inf. Syst. Secur. 14, 10:1–10:28 (2011).
http://doi.acm.org/10.1145/1952982.1952992

16. Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.-H., Le Metayer, D.,
Tirtea, R., Schiffner, S.: Privacy and data protection by design-from policy to
engineering. Technical report, ENISA (2014)

17. Danezis, G., Kohlweiss, M., Livshits, B., Rial, A.: Private client-side profiling
with random forests and hidden Markov models. In: Fischer-Hübner, S., Wright,
M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 18–37. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31680-7 2

18. Davida, G., Frankel, Y., Tsiounis, Y., Yung, M.: Anonymity control in E-cash
systems. In: Hirschfeld, R. (ed.) FC 1997. LNCS, vol. 1318, pp. 1–16. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63594-7 63

19. Diaz, J., Arroyo, D., de Borja Rodŕıguez, F.: libgroupsig: an extensible C library
for group signatures. IACR Cryptology ePrint Archive, 2015:1146 (2015)

20. Diaz, J., Choi, S.G., Arroyo, D., Keromytis, A.D., Rodriguez, F.B., Yung, M.:
Privacy threats in e-Shopping (position paper). In: Garcia-Alfaro, J., Navarro-
Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS,
vol. 9481, pp. 217–225. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29883-2 14

21. Diaz, J., Choi, S.G., Arroyo, D., Keromytis, A.D., Rodriguez, F.B., Yung, M.: A
methodology for retrofitting privacy and its application to e-Shopping transactions
(2018, to appear)

22. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

23. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: USENIX Security Symposium, SSYM 2004, Berkeley, CA, USA, pp.
21–21. (2004)

24. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. IACR Cryptology ePrint Archive, 2016:61 (2016)

25. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

27. Greenwood, D., Stopczynski, A., Sweatt, B., Hardjono, T., Pentland, A.: The new
deal on data: a framework for institutional controls. In: Privacy, Big Data, and the
Public Good: Frameworks for Engagement, p. 192 (2014)

28. Jacobson, M., M’Räıhi, D.: Mix-based electronic payments. In: Tavares, S., Meijer,
H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 157–173. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48892-8 13

29. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

30. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 34

31. Libert, B., Yung, M.: Fully forward-secure group signatures. In: Naccache, D. (ed.)
Cryptography and Security: From Theory to Applications. LNCS, vol. 6805, pp.
156–184. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28368-
0 13

http://doi.acm.org/10.1145/1952982.1952992
https://doi.org/10.1007/978-3-642-31680-7_2
https://doi.org/10.1007/3-540-63594-7_63
https://doi.org/10.1007/978-3-319-29883-2_14
https://doi.org/10.1007/978-3-319-29883-2_14
https://doi.org/10.1007/3-540-48892-8_13
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-28368-0_13
https://doi.org/10.1007/978-3-642-28368-0_13

226 J. Diaz et al.

32. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy (2013)

33. Minkus, T., Ross, K.W.: I know what you’re buying: privacy breaches on eBay. In:
De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 164–183.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08506-7 9

34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

35. Nakanishi, T., Haruna, N., Sugiyama, Y.: Unlinkable electronic coupon protocol
with anonymity control. ISW 1999. LNCS, vol. 1729, pp. 37–46. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-47790-X 4

36. Partridge, K., Pathak, M.A., Uzun, E., Wang, C.: PiCoDa: privacy-preserving
smart coupon delivery architecture (2012)

37. ITU-T Recommendation. X.509. Information technology - open systems intercon-
nection - the directory: authentication framework, June 1997

38. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced obliv-
ious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp.
231–247. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-
1 15

39. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

40. Ruiz-Martinez, A.: Towards a web payment framework: State-of-the-art and chal-
lenges. Electron. Commer. Res. Appl. 14, 345–350 (2015)

41. Sander, T., Ta-Shma, A.: Flow control: a new approach for anonymity control
in electronic cash systems. In: Franklin, M. (ed.) FC 1999. LNCS, vol. 1648, pp.
46–61. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48390-X 4

42. Stolfo, S., Yemini, Y., Shaykin, L.: Electronic purchase of goods over a commu-
nications network including physical delivery while securing private and personal
information of the purchasing party. US Patent App. 11/476,304, 2 November 2006

43. Tan, C., Zhou, J.: An electronic payment scheme allowing special rates for anony-
mous regular customers. In: DEXA Workshops, pp. 428–434 (2002)

44. Toubiana, V., Narayanan, A., Boneh, D., Nissenbaum, H., Barocas, S.: Adnostic:
privacy preserving targeted advertising. In: NDSS (2010)

https://doi.org/10.1007/978-3-319-08506-7_9
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-47790-X_4
https://doi.org/10.1007/978-3-642-03298-1_15
https://doi.org/10.1007/978-3-642-03298-1_15
https://doi.org/10.1007/3-540-48390-X_4

Detection in the Dark – Exploiting XSS
Vulnerability in C&C Panels to Detect Malwares

Shay Nachum1(✉), Assaf Schuster1(✉), and Opher Etzion2(✉)

1 Technion – Israel Institute of Technology, 32000 Haifa, Israel
nachus@technion.ac.il, assaf@cs.technion.ac.il

2 Yezreel Valley College, 19300 Yezreel Valley, Israel
ophere@yvc.ac.il

Abstract. Numerous defense techniques exist for preventing and detecting
malware on end stations and servers (endpoints). Although these techniques are
widely deployed on enterprise networks, many types of malware manage to stay
under the radar, executing their malicious actions time and again. Therefore, a
more creative and effective solution is necessary, especially as classic threat
detection techniques do not utilize all stages of the attack kill chain in their attempt
to detect malicious behavior on endpoints.

In this paper, we propose a novel approach for detecting malware. Our
approach uses offensive and defensive techniques for detecting active malware
attacks by exploiting the vulnerabilities of their command and control panels and
manipulating significant values in the operating systems of endpoints – in order
to attack these panels and utilize trusted communications between them and the
infected machine.

Keywords: XSS · C&C · Detection

1 Introduction

Over the past decade, numerous cyber attacks have made headlines, each attack more
serious than the previous ones: larger in scope, greater in sophistication and more
advanced in data exfiltration. These attacks have been possible thanks to malware
programs (e.g., Bot, Trojan and POS) that are incorporated with new and advanced
stealth techniques that keep them undetected. Although a variety of threat-detection
techniques for combating such malware have been developed over the years, the
attackers continue to find new and creative methods for getting around these techniques.
In other words, classic prevention and detection defense techniques, such as firewall-
based software, signatures and rules, antivirus software, and intrusion detection systems
(IDS), do not suffice in the battle against cyber attacks. While they may be able to protect
against known attacks, classic defense systems are to no avail when protecting against
new ones that lack a fingerprint.

Moreover, malware technologies seems to always be one step ahead of IDS, security
information and event management (SIEM) technologies [1, 2], as the latter focus on
the technology used by the attacker, are based on predefined rules for detecting breaches,

© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 227–242, 2018.
https://doi.org/10.1007/978-3-319-94147-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_18&domain=pdf

have low flexibility to noise, and have restricted visibility due to limited access to data.
There is, therefore, a genuine demand for a more creative and adaptive method that will
provide a last line of defense against malware.

This paper proposes a novel counter-attack method for automatically detecting
malware infection at endpoints, using both offensive and defensive techniques. We
leveraged the idea that each piece of malicious code has vulnerable security holes that
can be utilized for detecting and preventing malicious infection of endpoints. Using
controlled experiments, we investigated and analyzed several types of malware
programs, leading to the development of a new methodology and detection technique
that provides an additional layer of defense in the fight against malware programs – even
against previously unknown ones.

We first focused on identifying common features and capabilities among malware
programs, such as the type of information that is requested by malware programs on
endpoints and the common data they require in order to continue their malicious activ‐
ities. To do so, predefined scripts were injected into endpoint information to constantly
look for malware vulnerabilities. We also focused on identifying the goals and objectives
of malware programs, so that we could provide a comprehensive solution that would
combat a wide range of malwares, including previously unknown ones. Malware goals
include the exfiltration of sensitive data such as people’s credentials, passwords, docu‐
ments and credit card details, and the carrying out of a denial of service (DOS) attack
on a specific target. Unlike other techniques, our new generation detection technique is
not based on the specific attributes or behaviors of the malwares, but rather on our taking
advantage of their malicious achievements at the endpoints.

We also examined in detail the various stages of the attack lifecycle [3], to fully
understand why classic solutions are often unable to detect new malware attacks, and
to develop a solution that would provide an additional layer of detection for existing
solutions [1, 2]. Moreover, analysis was conducted on the attacker’s superiority factors
over the defender. We found that numerous security holes exist, and the attacker only
has to find and exploit one of them to achieve malicious goals. We took this finding and
turned it around, using it against the attacker. Together along with C&C stage exami‐
nation, this was adopted to constantly attack C&C web panels (remote administration
panel of the bots) using an XSS cross site scripting attack technique (a type of injection
in which malicious scripts are injected into websites [4]). Hence, a new methodology
and detection technique was created.

In other words, our novel approach issues a counter-attack on malware based on the
information that the latter derives from endpoints, and utilizing the trusted communi‐
cations between the malware and its C&C. First, this technique detects malware infection
by modifying endpoint information to consist of an XSS string. Once this information
is queried by the malware and is presented on a web page, the technique then alerts an
isolated server regarding the infection. In this manner, our method – combined with
classis threat-detection techniques – provides an extra layer of detection to deal with
previously unknown malware.

The contributions of this technique are numerous. First, it expands on and enhances
existing threat detection techniques by exploiting malware vulnerabilities. Second, it
reduces the serious gap between cyber defenders and cyber attackers. Third, this novel

228 S. Nachum et al.

technique challenges malware developers in the defense aspect. Finally, it paves the way
for a variety of generic offensive detection techniques in the future.

2 Related Work

There has been an extensive amount of research on malware detection techniques in
general and on the vulnerabilities of malware C&C panels in particular. In the closest
work to ours, Sood et al. [5] used the properties and features of remote panels to detect
other C&C panels and in turn more infections. Sood collected the unique property values
of the malware programs’ C&C panels (Zeus, ICE IX and Citadel) using malware anal‐
ysis and network forensic techniques. These values were then used to detect new C&C
panels of the above-mentioned malware programs via Google dorks, C&C trackers, and
network traffic analysis. However, these unique values were only collected after
dynamic analysis of the malwares and a leak of their C&C panel. In contrast, our detec‐
tion technique, that exploits vulnerabilities in malware C&C panels, is generic and can
detect any insecure C&C panel, regardless of its unique properties or values. In addition,
a dynamic analysis of the malware isn’t a prerequisite in our detection technique.

Additional studies [6, 7] found vulnerabilities in the Phase bot and ICE IX C&C
panels, and showed that malware C&C panels can be taken advantage of in the war
against hackers. Sood, for example, discovered an XSS vulnerability in the main login
page of the ICE botnet C&C panel. In a different study [8], SQL injection (SQLI)
vulnerability was detected in Dexter C&C panels. Exploiting this vulnerability can grant
the attacker control of the remote administration panel of the bot. In another study,
researchers at Prolexic (Akamai) [9, 10] identified vulnerable code in the Dirt Jumper
Family’s (DJF) C&C that enables the configuration file to be take advantage of and
downloaded using the SQLI technique. This file consists of all the account credentials
needed to take over the attacker’s C&C panel. Moreover, even the notorious Zeus
malware was found vulnerable [11]. A security researcher found a vulnerability, and
developed a simple program to take advantage of it. His script allows users to directly
upload and execute the code of their choice on the server that is running the Zeus C&C.

In another work similar to ours, Grange [12] disclosed several exploits on the C&C
servers of Gh0st Remote Access Trojan (Rat), PlugX and XtremeRat malware. These
exploits enable the defender to take full control of malware C&C. Our work differs from
Grange’s in a number of aspects. First, although our work can also be used for counter-
hacking, its main purpose is to detect malware attack. Furthermore, our work uses
malware vulnerabilities in order to detect their C&C panel, whereas Grange’s work uses
them after malware C&C is already known. Second, these vulnerabilities are only
designed for the above malware, whereas our technique is not dependent on a specific
malware and can detect new, previously unknown malware.

Leder et al. [13] demonstrated that proactive counter-measures are effective and
necessary in the fight against real botnets. Focusing on Kraken, Storm worm and
Waledac malware, their research found specific vulnerabilities that can be used to take
control of malware. Dereszowski discovered a buffer overflow vulnerability and devel‐
oped an exploit against the C&C server of Poison Ivy RAT that provides remote code

Detection in the Dark – Exploiting XSS Vulnerability 229

execution [14]. Researchers at malware.lu developed a scanner tool for identifying new
C&C of Poison Ivy and Terminator RAT that were used to compromise their C2 servers
[15]. Shawn Denbow and Jesse Hertz found an SQL injection vulnerability and an arbi‐
trary file download vulnerability on Dark Comet RAT. Exploiting these vulnerabilities
enable defenders to counter-attack the RAT C&C server [16].

The following two works present a similar approach. Eisenbarth et al. [17] in 2013
comes up with a technique to detect C&C servers of botnets capable of distributed denial-
of-service (DDoS) through the arbitrarily sending out of valid bot requests and verifying
the proper response signature. Gundert et al. [18] developed a new approach to detect
RAT controllers. This method is primarily based on the fact that RATs return a unique
response when a proper request is presented on its controller’s listener port. This unique
response is a signature indicating that a RAT control panel is running on the responding
endpoint. This technique relies on large-scale Internet scanning combined with sending
predefined requests to detect live instances of RAT control panels. However, in order
to detect DDOS/RAT controllers with the above methods, samples and/or full packet
captures (PCAP) must be obtained. In other words, it can only detect DDOS/RAT
controllers for known and previously analyzed malware programs. Our detection tech‐
nique, on the other hand, does not demand Internet scanning or traffic capture of the
malicious file, but executes each file on the host and pops up an alert on a malicious
remote controller without prior knowledge of the executed file.

The first to be published work on exploiting vulnerabilities of remote administration
panels was conducted by a security guru named Eriksson [19]. The innovative idea was
malware authors are not too careful when it comes to security, rendering malware
programs and their remote panels are exposed to security holes. Eriksson discovered
how to crash the graphical user interface (GUI) software by sending it random
commands, in addition he found a heap overflow vulnerability that allowed him to take
control on the attacker’s machine. Eriksson later utilized the above techniques on
PCShare RAT. However, Eriksson didn’t use the vulnerabilities he found to detect these
malware programs, but rather to crash or control them. Moreover, the exploits in his
work are specific only for the above malware programs.

Watkins et al. [9, 20] proposed fighting back against known malware programs using
fuzzing techniques to find new vulnerabilities in their command and control servers. The
idea is to analyze a malware program’s behavior and communication to fuzz the malware
program’s traffic values sent to a remote administration panel and examine the impact
on the C&C server. These findings are partially related to our work, one of the main
differences in our innovative technique is that conducting malware analysis is not an
imperative part in our work. Moreover, we utilized vulnerabilities to detect infections
and not to retaliate or take control of the malware.

3 Methodology

This section defines the novel approach of our study and presents the offensive detection
technique in detail.

230 S. Nachum et al.

http://malware.lu

3.1 Main Concept

The Cyber Kill Chain, a computer network intrusion modeling method developed by
Lockheed Martin (2011), consists of seven steps: Reconnaissance, weaponization,
delivery, exploitation, installation, command and control, and actions on objectives [3].
While classic detection techniques focus on detecting the intrusion in the delivery,
exploitation and installation steps, our concept is to detect the intrusion in the command
and control step. It is during the installation step that the malware is installed on the
endpoint, providing it with constant access. Next, the malware communicates with the
C&C server, sending it information through the infected host (such as the computer
name, processor name and memory size). Table 1 presents a complete list of information
that is collected by malware programs. This information is saved in the database (DB)
of the C&C server and is displayed in the panel administration tool of the malware (web
or application).

Table 1. Information collected by malware.

Information type Details
System info OS version, install date, keyboard language, time-zone, hostname, …
Hardware info Connected storage devices, Bios/CPU/RAM/Motherboard/

Network adapter info, installed video/audio devices, connected printers/
monitors

Local users info Description, username, password expiry date
Running processes
info

Creation-date, (parent) process ID, path

Installed services info Description, path, status
Environment
variables
File associations File extension, associated program name, associated command
Network info Internal ip, configured DNS servers
Directory listing Root C drive, Desktop, Documents, Temp folder, …
Print screen

In our work, communications between the infected endpoint and the malicious C&C
panel is utilized to cause the latter to perform an involuntary action that will send an
endpoint infection report. To do so, an XSS attack technique is used, injecting a XSS
string into the queried information by the malware itself. A focus was placed on malware
programs with a web-panel administration tool as web pages are a fundamental factor
for exploiting XSS vulnerability. Editing was also only performed on information whose
collection from endpoints (without the user’s knowledge) and presentation on a web-
remote panel is considered malicious.

In general, two entities are involved in a malware attacked: the infected endpoint
host and the attacker’s C&C server. The malware carries out its malicious activities on
the endpoint by communicating with the C&C panel on a certain frequency. The panel
is able to receive information and send commands to the infected endpoint. To construct
our detection methodology, we added a new entity to the malware attack process – a

Detection in the Dark – Exploiting XSS Vulnerability 231

monitoring server that we called Server C, in order to force the attacker’s C&C panel
to execute a predefined XSS script. Server C cunique role as it is not supposed to
communicate with endpoints. Therefore, it must include a web remote administration
panel in order to do so. This concept is implemented in the proof-of-concept (POC) tool
that we developed, i.e., PhoeniXSS on endpoints, as described in detail in the following
section.

3.2 Detection Methodology

In order to develop an effective tool for detecting malware, and without harming
endpoints’ applications in the organization on the infected endpoint, we set up a new
environment that models both the organization gateway and the attackers’ malicious
C&C panel. As depicted in Fig. 1, this environment included the endpoint host with the
PhoeniXSS tool, the C&C Server with a leaked version of a malware program’s remote
administration tool, and a monitoring server.

Fig. 1. Detection methodology.

The endpoint host was used to execute incoming binary files. Each file had to be
executed by a PhoeniXSS tool for a 1-min period (maximum) before entering the organ‐
ization. During file execution, PhoeniXSS hooks all predefined API functions and adds
a predefined XSS string to their returned values. In this work, malware programs were
tested with a specific XSS string using the PhoeniXSS tool. During infection, the above
values are sent to the malware program’s remote administration panel. Many malware
web panels exhibit common values on the infected machines (e.g., computer name, user
name and processor name). However, once one of these values is not validated and/or
is treated incorrectly, the attacker’s web panel becomes vulnerable to an XSS attack.
We used this vulnerability to create an alert on our monitoring server. Finally, the

232 S. Nachum et al.

monitoring server is programmed to wait for the http/s request. Although any internet
device can access the server, no one should send a request to it. Therefore, a request is
equal to an intrusion into the organization.

Every monitoring server can publish several image objects that are compatible with
the injected XSS string to increase the intrusion detection rate. The PhoeniXSS envi‐
ronment is not limited in the number of hosts that run the PhoeniXSS tool and should
run in parallel on a number of hosts. Each instance of the PhoeniXSS tool has to include
a unique identifier to identify a compromised endpoint. Using the PhoeniXSS with an
XSS cheat sheet on a large number of hosts improves the efficiency of the counter-attack.

4 Implementation

In this section, implementation details for the PhoeniXSS tool are provided.

4.1 PhoeniXSS

We implemented our approach in a POC tool called PhoeniXSS that is composed of two
different projects: A. “The Application Verifier (AppVerif.exe) is a dynamic verification
tool for user-mode applications. This tool monitors application actions while the appli‐
cation runs, subjects the application to a variety of stresses and tests, and generates a
report about potential errors in application execution or design” [21]; B. MinHook –
“API hooking library that provides basic hooking functionality for x64 and x86 envi‐
ronments” [22]. It replaces the prologue of the target API function with jump instructions
to our hook function (i.e., our code). When the hooked function jumps to our code, we
can call the API code which follows our jump instruction. The PhoeniXSS consists of
a single DLL file (main DLL) that combines the above projects and is injected into the
executed binary file at the beginning of the execution, using the Microsoft Application
Verifier tool.

The PhoeniXSS tool executes binaries files with administrator credentials and hook
(i.e., inline hooking) predefined API functions. As many malware programs use COM
objects to query end-point hosts, our tool can also hook predefined COM queries. The
DLL file of our tool is loaded into the memory before loading the imported DLLs of the
execution file. However, hooking predefined API functions is executed after the
imported DLLs are loaded into the memory. (i.e., our DLL is executed in the memory
and hooks the API function “GetWindowTextA,” which belongs to the User32.dll, only
after the last one is loaded into the memory). After our main DLL is loaded into the
memory, it hooks the original API function, overwrites the prologue of the function, and
jumps to our new code segment. This segment calls the original API function, gets its
returned values, and modifies them. This modification adds a specific predefined XSS
string to the returned values by the original function.

The predefined XSS string consists of an image tag that loads the source of the image
from server C. This server hosts a web application that publishes a number of GIF
images. Each image is contained in a different XSS string. The length of the XSS string
should be minimal to avoid length limitations in the C&C panel DB. In addition, the

Detection in the Dark – Exploiting XSS Vulnerability 233

XSS string should consist of a different characters to evade character limitations in the
C2 panel code. The template of our XSS string is as follows:

<img/src=//j.en/X.gif>

when: - ‘X’ is a number and the name of the GIF image. The GIF image is a transparent
image so it can remain stealthy after XSS execution in the browser. Furthermore, the
image size is 1 × 1 pixel, in order to avoid significant overhead requests in the C&C
panel and remain stealthy. After the modifications of the PhoeniXSS, the returned values
of the API functions appear in the following format: Original Value + Image Tag. For
instance, if the original value of the API function “GetWindowTextA” was
“explorer.exe”, then after PhoeniXSS modifications, the new value will be
“explorer.exe<img/src=//j.en/1.gif>”.

“GetWindowTextA” function is an example of one function from the list of prede‐
fined functions in our tool. The predefined hooked API functions in the PhoeniXSS tool
are “GetComputerNameW”; “GetComputerNameA”; “GetWindowTextW”; and
“GetWindowTextA”. The GetComputerName function retrieves the NetBIOS name of
the local computer, while the GetWindowText function retrieves the text of the specified
window’s title bar.

As mentioned earlier, the PhoeniXSS tool also intercepts calls to COM interfaces.
It implements “vtable patching” hooking method for the function “ExecQuery” of
“IWbemServices” interface. After our main DLL is loaded into the memory, it waits for
the “wbemsvc.dll” file to be loaded, to create an object (i.e., an instance) of the above
interface and hook the above function. The PhoeniXSS modifies the object’s virtual
methods table that contains pointers to all public methods of a COM object, so they can
be replaced with the pointers to hook functions. This hook function calls the original
function, receives the returned values from it, and adds the above XSS string to them.

5 Experimental Evaluation

We assembled an isolated environment to host the C&C server, the victim’s machine,
and our monitoring server in order to evaluate our detection technique on malware
programs that exist in the wild. We obtained the complete toolkits for a number of
malware programs that were leaked. The toolkits consisted of bot builder software and
the C&C web application. The toolkits were for the following malware programs:
MegalodonHTTP version 1, Dexter POS version 1, and DiamondFox version 4.2.650.
We assumed that the leaked toolkits are essentially identical to the sources that were
found in the wild. We did not perform a test on “live” malwares because counter-attacks
(i.e., hacking back) is illegal in our country. We investigated the functionality of the
above-mentioned malware programs and their back-end C&C code to determine if our
detection technique can be applicable against them. To test if the PhoeniXSS is capable
of detecting the above malware programs, we set up malwares program C&C web panels
on our servers and configured our PhoeniXSS tool.

Our malware experiments were conducted as follows: The first tested malware
communicated with its remote administration panel in clear text and without input

234 S. Nachum et al.

validation on the victim machine. The second tested malware communicated with its
remote administration panel using encryption and without input validation. The last
tested malware communicated with its remote administration panel using an encryption
and with input validation, yet was still discovered as being vulnerable to our XSS detec‐
tion technique. The different phases of our experiment are described in the following
section.

5.1 Experimental Setup

Our test environment included three virtual machines (VM) that ran on Intel Core
i7-4720HQ CPU with 16 GB of RAM and 230 GB of disk space. The first machine is
the victim machine, running on a Windows 7 VM, 32-bit, Service Pack 1. This machine
was responsible for executing the payload file using the PhoeniXSS tool. We set up
another machine to host malware programs’ C&C panels. This host machine ran on a
Windows 7 VM, 32-bit, Service Pack 1. Three different browsers were installed on the
C&C server with default configuration. Using each of the following browsers – Firefox
browser version 53.0.3, Chrome 51.0.2704.103 and Microsoft Edge 38.14393.1066.0 –
our detection technique was tested on the collected malware program web panels. The
C&C panels of the collected malware programs were hosted on a Windows machine
with an Apache web server and MySQL DB. The last machine, our monitoring server,
ran on a Windows Server 2008 VM, 32bit, Service Pack 1.

5.2 Experimental Procedure

After assembling our test environment, we used our tool to execute the payload of the
above collected malware programs. The testing of each malware was performed in a
clean and separate image. Moreover, each panel was installed separately from other
panels.

Our first test was performed on a MegalodonHTTP botnet. MegalodonHTTP, is a
piece of malware designed to power distributed denial-of-service (DDoS) botnets. Such
botnets can launch seven types of DDoS attacks, open a remote shell on the infected
system, mine crypto currency, and kill antiviruses. In order to run, it requires a .NET
framework to be installed on the victim’s machine [23]. The MegalodonHTTP commu‐
nicates with its C&C panel over HTTP in clear text.

After building its DB and setting up the web panel of the botnet, we investigated the
server-side code of the malware to evaluate XSS vulnerabilities. In addition, we
inspected the bots’ information that MegalodonHTTP exposes on its panel, e.g., country
name, hardware ID, IP, computer name, operating system, CPU, GPU, RAM, AV type
and more. This information is sent to the C&C panel and saved in the DB, yet without
validating the input. Therefore, the MegalodonHTTP panel is probably vulnerable to a
stored XSS attack. We provided a visual of the MegalodonHTTP panel in Fig. 2.
Furthermore, another check is required to enable the XSS attack. The stolen information
from the bot is sent to the server and is saved in its DB tables. Each table has different
fields. These fields have a different length. If the length of these fields is too short for
our XSS string, the XSS attack isn’t feasible. There were several fields where their length

Detection in the Dark – Exploiting XSS Vulnerability 235

wasn’t restricted enough. For example, the maximum length of a Windows computer
machine is 15 characters and the length of this field in MegalodonHTTP DB is 255
characters. We chose to modify the CPU field value of the infected machine to exploit
XSS vulnerability. MegalodonHTTP receives the above value using the following WQL
query:

SELECT Name FROM Win32_Processor

The Win32_Processor WMI class retrieves the processor status and information for both
single and multiprocessor machines. The above query returns the processor name value
of the infected endpoint. The PhoeniXSS tool is programmed to modify the CPU field
value using its ability to hook COM interfaces.

Fig. 2. MegalodonHTTP web administration panel.

Using the MegalodonHTTP bot builder, we built the payload file with a default
configuration and executed it using the PhoeniXSS tool on our victim’s machine.
Following execution, information from the victim’s machine was presented on the botnet
panel. The injected XSS string of our tool was not displayed on the panel because the
browser treated the injected string as the html source of the page. Therefore, from the
attacker’s point-of-view, it seemed like the original information was being presented.
At the same time, however, the defender (i.e., the victim) detected that its machine had
been infected and that its monitoring server was providing information to the attacker’s
machine. A visual of MegalodonHTTP panel after our XSS attack is provided in Fig. 3.

Another test was conducted on Dexter malware. “Dexter is a computer virus or point
of sale (POS) malware which infects computers running Microsoft Windows. It infects
POS systems worldwide and steals sensitive information such as credit card and debit
card information and sends it to a C&C server” [24]. The harmful executable installed
on the POS endpoint is known as POSGrabber. It is programmed so that it can run as
an executable or be injected into another process. The RAM examining process is very
straightforward. It initially identifies every single running process, then opens a handle

236 S. Nachum et al.

to selected processes and reads chunks of RAM to search for strings of credit card track
information. The POSGrabber communicates with the C&C panel is over HTTP. This
communication is encoded, and much of it is “encrypted” [8].

One of the main differences between MegalodonHTTP and Dexter malware is the
traffic that is sent to their C&C panels. The former’s traffic is sent in clear text, while
the latter’s traffic is sent encrypted using Base64 encoding and XOR cipher. Using the
PhoeniXSS tool on Dexter malware, we substantiated that our detection technique works
on malware programs that use encryption to communicate with their C&C.

We followed the same installation steps as with the MegalodonHTTP setup. The
panel has three main pages: Dump Viewer, Bot Control, and File Uploader. The first
presents the credit card tracks, the second enables the sending of commands to the bots,
and shows stolen information from the infected endpoints, while the third page allows
the loading of additional files which can then be used by the POSGrabbers.

We inspected the server-side code and observed the bot information that was
displayed on the Dexter panel and found the following stolen information on bots: UID,
Version, IP, user name, computer name, user-agent, operating system (OS), OS archi‐
tecture, and more. Each field of stolen information in the DB and the methods that were
used to retrieve it from the infected machine were inspected, revealing that there was
no input sanitization on the sent information to the Dexter C&C panel. We chose to
modify the value of the Computer Name field that is sent to the Dexter panel. The payload
file with default configuration was built using the source code of the malware, and then
executed in our isolated environment.

After execution, the stolen information was presented on the Bot Control page on
the panel. The server-side code decrypted the information that was sent to the remote
administration panel of the malware, including the XSS string that was injected by the
PhoeniXSS tool. The attacker’s browser treated the injected string as the HTML source
of the page, thus an infection alert was raised on the defender’s monitoring server. A
visual of the Dexter panel after infection is provided in Fig. 4.

Fig. 3. MegalodonHTTP web administration panel after PhoeniXSS attack.

Detection in the Dark – Exploiting XSS Vulnerability 237

Fig. 4. Dexter web administration panel after PhoeniXSS attack.

The final test was conducted on DiamondFox malware, which is multiple purpose,
including theft of credit card information as well as credentials at POS systems. It is
highly accessible to even the most limited hackers, as it is distributed in many hacker
forums. DiamondFox communicates over encrypted HTTP with a key statically built
into the C&C and the bots [25].

DiamondFox’s web installation page was used to set up the remote administration
panel automatically and configure its bot builder to export a payload file with its key
logger module. To substantiate that the DiamondFox panel is vulnerable, we investi‐
gated the server-side code of the panel and the received information by the botnet from
the victim’s machine.

The following information was displayed on the “client’s” page on the DiamondFox
panel: ID (based on HID), country, IP, computer name, operating system, and additional
information about the victim’s machine (HDD size, RAM size and more). The
DiamondFox panel uses several functions to handle data input from its bots before
inserting it into its DB.

The two most important functions are: A. “mysql_real_escape_string” – “escapes
special characters in a string for use in an SQL statement” [26], B. “htmlentities” –
“convert all applicable characters to HTML entities” [27]. This input escaping check
prevented our tool from exploiting this part of the botnet panel. However, DiamondFox
is a multipurpose botnet with a variety of modules, with one of them being its key logging
capability. This module also includes an input escaping check on data input, however
not on the entire input. A visual of DiamondFox’s key logging module is provided in
Fig. 5.

238 S. Nachum et al.

Fig. 5. DiamondFox’s key logging module.

The payload used the API function, GetWindowTextA, to track user keyboard typing
between different windows. However, the botnet panel failed to validate the data input
in function GetWindowTextA, thereby rendering the botnet panel vulnerable to an XSS
attack and being detected by our technique. A visual of DiamondFox’s key logging
module after using the PhoeniXSS tool is provided in Fig. 6.

Fig. 6. DiamondFox’s key logging module after using PhoeniXSS tool.

Detection in the Dark – Exploiting XSS Vulnerability 239

6 Countermeasures and False-Positive

An XSS attack is one of the most prominent web application security flaw and is
currently ranked on the OWASP (Open Web Application Security Project) top 10 chart
[28]. However, there are some methods that can prevent such attacks, such as validating
and escaping user input. The most efficient method to prevent XSS attack is by escaping
user input. Escaping data means taking the data an application has received and rendering
it as text by the browser, ensuring it is secure before presenting it to the end user. By
escaping user input, key characters in the data received by a web page will be prevented
from being interpreted in any malicious way. Key characters such as ‘<’ and ‘>’ are
disallowed from being rendered. Validating user input means ensuring an application is
rendering the correct data and preventing malicious characters from doing harm to the
site and user. However, input validation is not a primary prevention method for vulner‐
abilities such as XSS and should not be used alone to battle XSS attacks. Although these
methods could be efficient in preventing XSS attacks, web applications today still
struggle to cover all XSS attack vectors. Furthermore, our use of the XSS attack tech‐
nique for detecting malware, as described in this paper, is just the first stage of possible
future developments for detecting malware.

Wide usage of our PhoeniXSS tool, on the other hand, could alert C&C administra‐
tors of suspicious scripts in their panels. This result is divided into two: displayed scripts
with detection in the C&C panel and displayed scripts without detection. In the first case,
we succeed in detecting the attack, with the probable result of the attackers quickly
ending their attack campaign, with a probability for mistakes. In the second case,
displayed scripts on C&C panels could affect the attackers, taking them out of their
comfort zone and leaving them to wonder whether their campaign is free of mistakes or
even has been revealed.

Finally, many legitimate systems and applications access and query information of
endpoints. All systems using, transmitting or displaying this information on a web
application are required to receive explicit authorization from the user. In this way, a
list of all the legitimate systems can be collected and identified in a defined “white-list”
in advance to avoid false-positives indications. Any other indication will be considered
malicious and should be treated with caution.

7 Conclusion and Future Work

Our work explores a new area of research that may have been overlooked by security
research experts. In order to detect malicious activity on endpoint hosts, we developed
an innovative detection methodology and a POC for conducting an XSS counter-attack
on the C&C web panels of malware programs. By taking advantage of malware vulner‐
abilities, we demonstrated how our technique is able to detect three different malwares
through manipulating endpoint information and utilizing trusted communications
between the malware and its C&C panel.

This research promotes an innovative solution that focuses on the offense, that will
enable malware victims to hack back (i.e., conduct a counter-attack) in a legitimate

240 S. Nachum et al.

manner. Furthermore, our methodology can be expanded in various directions in the
future, such as exploiting SQLI on application panels or using crafted documents to
trigger an alert when opened, and more. In future work, we hope to be able to detect
new families and variants of malware programs by using all of the above-mentioned
techniques in the wild. Such a notion has the potential to change cyber-war rules and
create a balanced power relationship between defense and attack forces within the cyber
dimension.

Adversaries will continue to develop new technologies in order to avoid detection
and achieve their purposes. We must not lag behind but must turn the tables on them,
using offensive techniques that incorporate new, high-fidelity detection methods.

References

1. Saeed, I., Selamat, A., Abuagoub, A., Abdulaziz, S.: A survey on malware and malware
detection systems. Int. J. Comput. Appl. 67, 25–32 (2013). https://doi.org/
10.5120/11480-7108

2. Feily, M., Shahrestani, A., Ramadass, S.: A survey of botnet and botnet detection. In:
Proceedings of 2009 3rd International Conference on Emerging Security Information,
Systems and Technologies, SECURWARE 2009, pp. 268–273 (2009). https://doi.org/
10.1109/securware.2009.48

3. Cyber Kill Chain®. https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-
chain.html

4. Cross-site Scripting (XSS) – OWASP. https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
5. Sood, A.K.: Exploiting fundamental weaknesses in botnet Command and Control (C & C)

panels. Presented at the 2014 (2014)
6. Sood, A.K.: Malware at Stake: For Fun - XSS in ICE IX C&C Panel. https://

secniche.blogspot.co.il/2012/06/for-fun-xss-in-ice-ix-bot-admin-panel.html
7. Phase Bot – Exploiting C&C Panel | MalwareTech. https://www.malwaretech.com/2014/12/

phase-bot-exploiting-c-pane.html
8. Wallace, B.: A Study in Bots: Dexter. https://blog.cylance.com/a-study-in-bots-dexter-pos-

botnet-malware
9. Watkins, L., Silberberg, K., Morales, J.A., Robinson, W.H.: Using inherent command and control

vulnerabilities to halt DDoS attacks. In: 2015 10th International Conference on Malicious Unwanted
Software, MALWARE 2015, pp. 3–10 (2016). https://doi.org/10.1109/malware.2015.7413679

10. Goodin, D.: White hats publish DDoS hijacking manual, turn tables on attackers | Ars
Technica. https://arstechnica.com/information-technology/2012/08/ddos-take-down-
manual/

11. Goodin, D.: Zeus botnets’ Achilles’ Heel makes infiltration easy • The Register. http://
www.theregister.co.uk/2010/09/27/zeus_botnet_hijacking

12. Grange, W.: Digital Vengeance: Exploiting the Most Notorious C & C Toolkits Ethics of
Hacking back (2017)

13. Geers, K., Czosseck, C.: The Virtual Battlefield: Perspectives on Cyber Warfare. Network
Security. IOS Press, Amsterdam (2009). 305 pages

14. Dereszowski, A.: Targeted attacks: from being a victim to counter attacking, pp. 1–28 (2010)
15. Rascagnères, P.: Public document APT1: technical backstage malware analysis. General

Information History, pp. 1–48 (2013)
16. Denbow, S., Hertz, J.: Pest control: taming the rats (2012)
17. Eisenbarth, M., Jones, J.: BladeRunner: adventures in tracking botnets. In: Botconf (2013)

Detection in the Dark – Exploiting XSS Vulnerability 241

http://dx.doi.org/10.5120/11480-7108
http://dx.doi.org/10.5120/11480-7108
http://dx.doi.org/10.1109/securware.2009.48
http://dx.doi.org/10.1109/securware.2009.48
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://secniche.blogspot.co.il/2012/06/for-fun-xss-in-ice-ix-bot-admin-panel.html
https://secniche.blogspot.co.il/2012/06/for-fun-xss-in-ice-ix-bot-admin-panel.html
https://www.malwaretech.com/2014/12/phase-bot-exploiting-c-pane.html
https://www.malwaretech.com/2014/12/phase-bot-exploiting-c-pane.html
https://blog.cylance.com/a-study-in-bots-dexter-pos-botnet-malware
https://blog.cylance.com/a-study-in-bots-dexter-pos-botnet-malware
http://dx.doi.org/10.1109/malware.2015.7413679
https://arstechnica.com/information-technology/2012/08/ddos-take-down-manual/
https://arstechnica.com/information-technology/2012/08/ddos-take-down-manual/
http://www.theregister.co.uk/2010/09/27/zeus_botnet_hijacking
http://www.theregister.co.uk/2010/09/27/zeus_botnet_hijacking

18. Gundert, L.: Proactive Threat Identification Neutralizes Remote Access Trojan Efficacy
(2015)

19. Singel, R.: Security Guru Gives Hackers a Taste of Their Own Medicine | WIRED. https://
www.wired.com/2008/04/researcher-demo/

20. Watkins, L., Kawka, C., Corbett, C., Robinson, W.H.: Fighting banking botnets by exploiting
inherent command and control vulnerabilities. In: Proceedings of the 9th IEEE International
Conference on Malicious Unwanted Software, MALCON 2014, pp. 93–100 (2014). https://
doi.org/10.1109/malware.2014.6999411

21. Application Verifier | Microsoft Docs. https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/application-verifier

22. Kageyu, T.: MinHook - The Minimalistic x86/x64 API Hooking Library. https://
www.codeproject.com/Articles/44326/MinHook-The-Minimalistic-x-x-API-Hooking-
Libra

23. Kovacs, E.: Alleged Author of MegalodonHTTP Malware Arrested | SecurityWeek.Com.
https://www.securityweek.com/alleged-author-megalodonhttp-malware-arrested

24. Dexter (malware). https://en.wikipedia.org/wiki/Dexter_(malware)
25. Wallace, B.: A Study in Bots: DiamondFox. https://www.cylance.com/a-study-in-bots-

diamondfox
26. PHP: mysql_real_escape_string – Manual. http://php.net/manual/en/function.mysql-real-

escape-string.php
27. PHP: htmlentities – Manual. http://php.net/manual/en/function.htmlentities.php
28. Top 10-2017 Top 10 – OWASP. https://www.owasp.org/index.php/Top_10-2017_Top_10
29. Agmon, O., Posener, B.E., Schuster, A., Mu, A.: Ginseng: Market-Driven Memory Allocation
30. Sharfman, I., Schuster, A., Keren, D.: Shape sensitive geometric monitoring categories and

subject descriptors. In: PODS (2008). https://doi.org/10.1145/1376916.1376958
31. Friedman, A., Keren, D.: Privacy-preserving distributed stream monitoring. In: NDSS, pp.

23–26 (2014)
32. Ben-Yehuda, O.A., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The Resource-as-a-Service

(RaaS) cloud. Commun. ACM 57, 76–84. https://doi.org/10.1145/2627422
33. Gilburd, B., Schuster, A., Wolff, R.: k-TTP: a new privacy model for large-scale distributed

environments. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 563–568 (2004). https://doi.org/
10.1145/1014052.1014120

34. Schuster, A., Wolff, R., Gilburd, B.: Privacy-preserving association rule mining in large-scale
distributed systems. In: Proceedings of Cluster Computing and Grid, pp. 1–8 (2004)

35. Verner, U., Schuster, A., Silberstein, M., Mendelson, A.: Scheduling processing of real-time
data streams on heterogeneous multi-GPU systems. In: Proceedings of the 5th Annual
International Systems and Storage Conference - SYSTOR 2012, pp. 1–12 (2012). https://
doi.org/10.1145/2367589.2367596

242 S. Nachum et al.

https://www.wired.com/2008/04/researcher-demo/
https://www.wired.com/2008/04/researcher-demo/
http://dx.doi.org/10.1109/malware.2014.6999411
http://dx.doi.org/10.1109/malware.2014.6999411
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/application-verifier
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/application-verifier
https://www.codeproject.com/Articles/44326/MinHook-The-Minimalistic-x-x-API-Hooking-Libra
https://www.codeproject.com/Articles/44326/MinHook-The-Minimalistic-x-x-API-Hooking-Libra
https://www.codeproject.com/Articles/44326/MinHook-The-Minimalistic-x-x-API-Hooking-Libra
https://www.securityweek.com/alleged-author-megalodonhttp-malware-arrested
https://en.wikipedia.org/wiki/Dexter_(malware)
https://www.cylance.com/a-study-in-bots-diamondfox
https://www.cylance.com/a-study-in-bots-diamondfox
http://php.net/manual/en/function.mysql-real-escape-string.php
http://php.net/manual/en/function.mysql-real-escape-string.php
http://php.net/manual/en/function.htmlentities.php
https://www.owasp.org/index.php/Top_10-2017_Top_10
http://dx.doi.org/10.1145/1376916.1376958
http://dx.doi.org/10.1145/2627422
http://dx.doi.org/10.1145/1014052.1014120
http://dx.doi.org/10.1145/1014052.1014120
http://dx.doi.org/10.1145/2367589.2367596
http://dx.doi.org/10.1145/2367589.2367596

A Planning Approach to Monitoring
Computer Programs’ Behavior

Alexandre Cukier1(B), Ronen I. Brafman1, Yotam Perkal2, and David Tolpin2

1 Computer Science Department, Ben Gurion University, Beersheba, Israel
alexandre.cukier@gmail.com, brafman@cs.bgu.ac.il

2 PayPal, Tel Aviv, Israel
yperkal@paypal.co, dvd@offtopia.net

Abstract. We describe a novel approach to monitoring high level behav-
iors using concepts from AI planning. Our goal is to understand what a
program is doing based on its system call trace. This ability is partic-
ularly important for detecting malware. We approach this problem by
building an abstract model of the operating system using the STRIPS
planning language, casting system calls as planning operators. Given a
system call trace, we simulate the corresponding operators on our model
and by observing the properties of the state reached, we learn about the
nature of the original program and its behavior. Thus, unlike most sta-
tistical detection methods that focus on syntactic features, our approach
is semantic in nature. Therefore, it is more robust against obfuscation
techniques used by malware that change the outward appearance of the
trace but not its effect. We demonstrate the efficacy of our approach by
evaluating it on actual system call traces.

1 Introduction

Malware is a serious threat for computer and Internet security for both individ-
uals and entities. 430 million new unique pieces of malware were detected by
Symantec in 2015, and 94.1 millions of malware variants during only the month
of February 2017. Not surprisingly, to counter this threat, many techniques for
malware detection have been proposed.

In this paper we are interested in the more general problem of understanding
the behaviors taking place in the system. Given this information, one can deter-
mine whether they are malicious or not, and if malicious, provide an informed
response.

The standard approach to this problem is to use pattern-recognition methods,
which are syntactic in nature. Roughly speaking, they view the input, whether
code or events, as a long string of symbols, and seek properties of these strings
that help classify them. To fool these methods, malware attempts to obfuscate its
behavior by changing the sequence’s properties [27]. Semantic methods, instead,
try to model the underlying system, seeking to understand the input’s meaning,

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 243–254, 2018.
https://doi.org/10.1007/978-3-319-94147-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_19&domain=pdf

244 A. Cukier et al.

where in this paper, the input used is the system-call trace.1 Therefore, they
have the potential to be more robust to obfuscation attempts.

The most extreme and most accurate semantic approach is a faithful simu-
lation of every trace followed by careful analysis of the resulting system state.

This is impractical: the analysis of the state of a computer following each trace
is a non-trivial time consuming task that requires deducing high-level insights
from the low level state and can only be conducted by experts.

Instead, we propose a methodology that uses an abstract system model based
on AI-planning languages and models. It requires a one-time, off-line effort by
an expert, and can be used automatically to analyze each trace: An expert that
understands the semantics of system calls generates a planning operator for
every system call. Each operator describes how the state of the system changes
in response to the application of some system call. Each operator is an abstrac-
tion that attempts to capture the system call’s relevant effects. The abstraction
process also involves the generation of a set of propositions describing the sys-
tem state. Now, given a system call trace, instead of simulating it on the real
system, we simulate the corresponding planning operators on the abstract state.
The propositions true in the resulting state give us the needed information about
what behaviors were carried out by this code. This approach is fast and difficult
to fool: obfuscation techniques that do not impact the actual behavior will not
impact relevant aspects of the state.

In what follows we describe this methodology using examples, and demon-
strate its advantages by comparing it to statistical methods on actual system
calls related to a mail application.

2 Related Work

[9] is considered the seminal work which pushed forward research on methods
and representations of operating system process monitoring based on system
calls.

[24] provides an early comparison of machine learning methods for model-
ing process behavior. [10] introduces the model of execution graph, and behav-
ior similarity-measure based on the execution graph. [17] combines multiple
models into an ensemble to improve anomaly detection. [26] applies continu-
ous time Bayesian network (CTBN) to system call processes to account for
time-dependent features and address high variability of system call streams over
time. [13] applies a deep LSTM-based architecture to sequences of individual
system calls, treating system calls as a language model.

Initially, only system call indices were used as features [9,24]. [14] compares
three different representations of system calls: n-grams of system call names,
histograms of system call names, and individual system calls with associated
parameters. [18] proposes the use of system call sequences of varying length
1 A system call is a mechanism used by a program to request from the operating

system services it cannot perform directly, such access to hardware, files, network or
memory.

A Planning Approach to Monitoring Computer Programs’ Behavior 245

as features. [14,22] investigate extracting features for machine learning from
arguments of system calls. [25] studies novel techniques of anomaly detection
and classification using n-grams of system calls. [4] conducts a case study of
n-gram based feature selection for system-call based monitoring, and analyses
the influence of the size of the n-gram set and the maximum n-gram length on
detection accuracy.

Other work attempted to detect behaviors in a semantic way, using abstract
representations of behaviors based on low level events and various techniques for
detection. They all carry the notion of state, keeping track of effects of previous
events. [5] is the first to introduce semantics to characterize malicious behav-
iors. It builds behavior templates from binaries using formal semantics, which is
used through a semantics-aware algorithm for detection. [16] builds multi-layered
behavior graphs from low level events used through a behavior matcher. [12] uses
attribute grammars for abstraction and specification, using parallel automata for
parsing and detection. [23] specifies behaviors through UML activity diagrams
from which one generates colored Petri Nets for detection. [2] uses first-order
linear temporal logic to specify behaviors and model checking techniques for
detection. [7] offers an advanced state-full approach where behaviors are spec-
ified as finite state machines. Our approach is more fine-grained and general.
We model the actual operators, not the target behaviors, although the model is
informed by the behaviors. We illustrate this using the reverse shell example in
the next section.

Behavior recognition is closely related to plan and goal recognition [21]. Given
a sequence of observed actions, the goal is to try to infer the actor’s intentions.
Typically, the output is a ranked list of hypothesized goals. Most work assumes
a library of possible behavior instances, i.e., plans, an approach limited in its
ability to go beyond known instances. Probabilistic techniques, such as [1] use
Bayesian methods to assess the probability of various goals based on the actions
involved. An influential recent approach is plan-recognition as planning [19],
where the authors do away with the assumption of an explicit plan library. The
plan library is replaced by a model of the domain (which implicitly defines the
set of possible plans), and the goal is to compute a good plan that is closest to
the observed behavior. This line of work is appropriate when the observations
are a subset of the actual actions taken, or when we attempt to recognize the
goal before plan completion. We attempt to recognize malicious behavior off-line
given a complete trace, although extensions for the online setting are natural.

3 Background

3.1 AI Planning

AI Planning is a decision making technique used to find sequences of actions
that can transform a system from some initial state into a goal state. Formally,
a classical planning problem is a tuple: π = 〈P,A, I,G〉, where: P is a set of
primitive propositions describing properties of interest of the system; A is the
action set. Each action transforms the state of the system in some way; I is the

246 A. Cukier et al.

start state; and G is the goal condition — usually a conjunction of primitive
propositions. A state of the world, s, assigns truth values to all p ∈ P . Recall
that a literal is simply a primitive proposition or its negation.

An action a ∈ A is a pair, {pre(a), effects(a)}, where pre(a) is a conjunction
of literals, and effects(a) is a set of pairs (c, e) denoting conditional effects. We
use a(s) to denote the state that is obtained when a is executed in state s. If
s does not satisfy all literals in pre(a), then a(s) is undefined. Otherwise, a(s)
assigns to each proposition p the same value as s, unless there exists a pair
(c, e) ∈ effects(a) such that s |= c and e assigns p a different value than s. We
assume that a is well defined, that is, if (c, e) ∈ effects(a) then c∧ pre(a) is
consistent, and that if both (c, e), (c′, e′) ∈ effects(a) and s |= c ∧ c′ for some
state s, then e ∧ e′ is consistent.

The classical planning problem is defined as follows: given a planning
problem π, find a sequence of actions {a1, . . . , ak} (a.k.a. a plan) such that
ak(· · · (a1(I)) · · ·) |= G.

To illustrate this model, consider a simplified domain with three action types:
socket, listen, and accept. These actions model the effect of system calls that
create a socket, listen for an incoming connection, and accept a connection. For
the sake of this example, we ignore various parameters of these system calls, and
assume that system calls do not fail.

The set P contains: {(opened socket-descriptor), (listening socket-descriptor),
(connected socket-descriptor)}, where socket-descriptor is a parameter that we
abbreviate as sd. The set of actions is:

– socket(returned-sd) with precondition: ¬(opened returned-sd), and the effect:
(opened returned-sd)2

– listen(sd) has no precondition and the conditional effect: (listening sd) when
(opened sd) ∧¬(listening sd)

– accept(sd, returned-sd) has the preconditions: (listening sd) and the effects:
(opened returned-sd) and (connected returned-sd)

The plan socket(sd1), listen(sd1), accept(sd1, sd2) is a legal plan. Initially, all
propositions are false. Because (opened sd1) is false, we can apply socket(sd1).
Once applied, (opened sd1), the precondition of listen, becomes true. This results
in (listening sd1) becoming true. Finally, accept needs a socket descriptor in the
state listening (sd1) and another having opened false (sd2).

It now sets sd2 to opened and connected. Given the resulting state, we recog-
nize that a host connected itself to our local server.

On the other hand, the plan: socket(sd1), accept(sd1, sd2) is invalid because
the preconditions of accept are not all satisfied: (listening sd2) is not set to true.

Typically, planning models are used for generating plans. Thus, in the above
example, a planning algorithm could find the (abstracted) sequence of system
calls required to achieve various goals. Our focus in this paper is on the planning

2 A more faithful model will use conditional effects instead, and will also consider their
return value.

A Planning Approach to Monitoring Computer Programs’ Behavior 247

model itself — the propositions and the operators, as an abstraction of the oper-
ating system. The acting agent is a running process, the OS is the environment
in which it is acting, and its system-call trace defines the plan, via our mapping.
To determine what the process is doing, we simply observe the abstract state of
the OS. For the purpose of this paper, we consider that the OS abstraction has
a unique running and single thread process.

4 Our Approach

We propose to build an abstract system model and simulate an abstraction of
the system call trace on it.

The manual part of our approach is the construction of the abstraction. We
associate an action with each system call, with preconditions (typically empty)
and effects (typically conditional). The set of propositions that we use to describe
the system is informed by the type of behaviors we want to capture. For example,
whether channels were opened, files accessed, information transmitted over a
channel, etc. An action describes what new facts will become true following the
execution of the system call it models, possibly conditional on other facts being
true prior to its execution.

We illustrate this using the example of a remote shell: a command line inter-
face controlled by a remote host often used by attackers to execute system com-
mands. We focus on the reverse shell, where a host connects itself to a remote
server. Starting a reverse shell requires a few steps: (1) Create a socket. (2) Inde-
pendently connect the socket to an endpoint and duplicate the socket descriptor
to the standard input and output (so that the input and output streams go
through the socket). (3) Execute a shell.

We use system calls socket, connect, dup, fcntl, close and execve that, respec-
tively, create a socket, connect a socket to a remote host, duplicate a socket, set
properties to a socket, close a socket, and execute a program.

Propositions. The propositions are: (opened fd), (is-socket fd), (equal-fds fd1
fd2), (close-on-exec fd), (connected sd), (is-shell path), (remote-shell-started)

Initial State. The initial state initiates the resources used by a process when
it starts, and taints the ones that have targeted properties:

– Propositions (opened fd0), (opened fd1), (opened fd2) are set to true, as
fd0/1/2 denote standard input/output/error, respectively, and these files are
open.

– Shell executable paths are tainted. We assume that we know all of those
presents on the operating system. We handle two of them in this example:
/bin/sh and /bin/bash that we name respectively sh and bash. Thus, (is-shell
sh) and (is-shell bash) are set to true.

Actions. Planning operators are a simplified abstraction of the system calls.
Since system calls called with wrong arguments do not make programs crash,
and have no effect, the corresponding actions use conditional effects only – i.e.,
they are always executable but change the state only if their conditions are met.

248 A. Cukier et al.

– socket(returned-sd, cloexec) has the effects:
The flag FD CLOEXEC is represented by the boolean cloexec.

• (opened returned-sd)∧(is-socket returned-sd) if ¬(opened returned-sd)
• (close-on-exec returned-sd) if ¬(opened returned-sd)∧(= cloexec True)

– connect(sd) has the effects:
• (connected sd) if (opened sd)∧(is-socket sd)∧¬(connected sd)
• ∀fd, (connected fd) if (equal-fds sd fd)∧(opened sd)∧(is-socket

sd)∧¬(connected sd)
– dup(sd, returned-sd) has the effects:

• (opened returned-sd)∧(equal-fds sd returned-sd)∧(equal-fds returned-sd
sd) if (opened sd)∧¬(opened returned-sd)

• (is-socket returned-sd) if (is-socket sd)∧(opened sd)∧¬(opened returned-
sd)

• (connected returned-sd) if (connected sd)∧(opened sd)∧¬(opened
returned-sd)

• ∀fd, (equal-fds fd returned-sd)∧(equal-fds returned-sd fd) if (equal-fds fd
sd)∧¬(opened returned-sd)

– fcntl(sd, command, returned-sd, cloexec) has the effects:
returned-sd is the argument of the command F DUPFD and cloexec is the
argument of the command F SETFD. F DUPFD CLOEXEC uses both.
The flag FD CLOEXEC is represented by the boolean cloexec.

• same effects as dup(sd, returned-sd) if (= command F DUPFD)∨(= com-
mand F DUPFD CLOEXEC)

• (close-on-exec sd) if [[(= command F SETFD)∧(= cloexec True)]∨(=
command F DUPFD CLOEXEC)]∧(opened sd)∧¬(opened returned-sd)

• ¬(close-on-exec sd) if (= command F SETFD)∧(= cloexec
False)∧(opened sd)∧¬(opened returned-sd)

– close(sd) has the effects:
• ¬(opened sd)∧¬(is-socket sd)∧ ¬(connected sd)∧¬(close-on-exec sd)
• ∀fd, ¬(equal-fds sd fd)∧¬(equal-fds fd sd)

– execve(path) has the effect:
• (remote-shell-started) if (is-shell path) ∧∃fd, (connected fd)∧¬(close-on-

exec fd)∧[(= fd fd0)∨(equal-fds fd fd0)]∧[(= fd fd1)∨(equal-fds fd fd1)]

Valid Plans The five different valid plans shown in Fig. 1 show how diverse the
plans are even for such a simple example.

Plan 1 is the standard sequence performed to establish a reverse shell, which
appears in most shellcode databases. Plan 2 uses the fact that we know that
system call socket allocates the lowest file descriptor available. Calling close(fd0)
before socket avoids the duplication of the socket on the file descriptor 0. Plan
3 replaces one system call by an equivalent one: dup is replaced by fcntl called
with the command F DUPFD. Plan 4 demonstrates that planning captures and
updates correctly properties set by flags and through different system calls. The
flag FD CLOEXEC is first set through system call socket, and reset later by fcntl
called on F SETFD. Plan 5 shows that planning is able to follow complex flow

A Planning Approach to Monitoring Computer Programs’ Behavior 249

Fig. 1. Valid plans for the reverse shell domain

of operation on file descriptors. The key point is that, despite major differences
in appearance, which are likely to fool syntactic methods (certainly, if some of
the plans were not available previously), our semantic approach recognizes the
behavior they implement.

The main effort required by our approach is building an appropriate model for
each system call. This model is informed by the basic set of low-level behaviors
one would like to model. Once completed, we can simulate any sequence of
system calls by applying them to an initial state of the abstract system using
any planning simulator/validator. By examining the final state of the system,
we can recognize which behaviors took place. Thus, the off-line modeling task is
done once, and the resulting model can be used repeatedly, automatically, and
very cheaply, to analyze programs.

The (manual) abstraction process is flexible. We can use it to identify sim-
ple behaviors, such as create a socket, connect to a remote host, read data
from socket, open file for writing, write into file, etc. And we can also recognize
complex behaviors by detecting combinations of simple behaviors. For example,
downloading a file requires reading data from a connected socket and writing it
to an opened file. Thus, once we have the low-level behaviors, it is easy to cap-
ture the higher level ones. We can do this by either modifying the action model
or by adding axioms, which are a method of adding a simple form of inference
to planning.

With such a layered approach, basic behaviors can be reused to identify
multiple high level behaviors.

As this model is an abstraction, some information is lost in this model, and
the method cannot be 100% correct and capture every nuance. Much can be
captured by building a more elaborate model, but some aspects, such as accurate
modeling of system resources, are not likely to be practical.

5 Empirical Evaluation

In the previous section we demonstrated the capabilities of our approach to
recognize behaviors on the reverse shell domain, where our planning model is

250 A. Cukier et al.

able to recognize the same behavior generated in different ways. We now want
to highlight our ability to recognize complex, higher level behaviors that are
built from lower level behaviors, compared to statistical methods that are quite
popular in this area. To do this, we consider the behavior of real processes
involved in a mail service. Given the system call trace logs of several processes,
we attempt to recognize which behavior is realized by each of the processes,
such as sending an email via SMTP, collecting an email from a remote server via
IMAP, and so on. The code and data set used for the empirical evaluation can
be obtained from a Git repository at https://github.com/alexEnsimag/planning-
for-syscall-monitoring.

5.1 Data Collection

We generate system call traces of processes running in a mail service (Fig. 2).
The setup consists of two hosts: the client and the server, and involves a number
of processes, denoted in what follows in italic. The hosts collect emails from
an external server. In order to provide sufficient volume and diversity of the
data processed, we opened a dedicated email account with a web-based email
service, and subscribed to multiple promotion and notification mailing lists. On
the client, fetchmail is used to retrieve emails from a web-based email provider
via the IMAP protocol. Then, procmail dispatches received emails, which are
then sent by postfix to the server via SMTP protocol. The server’s postfix process
receives the emails, passes them through the amavis antivirus and stores in the
local filesystem. The dovecot process serves emails via the IMAP protocol. The
emails are retrieved by the client’s fetchmail, and stored in the filesystem. We
use Docker [11] to run containers encapsulating the mail server and mail client
hosts, and sysdig [6] to record the system calls.

We analyze system call traces of the following processes: smtpd, fetchmail on
the client, fetchmail on the server, imap-login, all other processes.

Fig. 2. A mail service setup for evaluation of planning approach on mail delivery
activities

https://github.com/alexEnsimag/planning-for-syscall-monitoring
https://github.com/alexEnsimag/planning-for-syscall-monitoring

A Planning Approach to Monitoring Computer Programs’ Behavior 251

These processes realize the following behaviors:

– receiving an email over the SMTP protocol;
– receiving an email over IMAP protocol;
– forwarding an email from the client to the server;
– IMAP connection setup and authentication;
– other behaviours not tracked by the system.

We use 440 samples for each process (including other). Data is split into training
and test sets as 66%/33%.

Statistical Classification. We compare our goal-tracking approach to a base-
line, commonly used statistical classification of processes based on system call
sequences. We train a statistical classifier (random forest) on the collected system
call traces. This classification approach is similar to approaches used in system
call monitoring literature [3,8]. We use two types of n-gram vectorization of the
system call names: bi-grams and 1-skip-2-grams. In each case, the vocabulary
contains 100 most recurrent n-grams in the corpus. Thus, each sample is repre-
sented by a vector of 100 elements, where each element in the vector represents
one of the n-grams in the vocabulary and the values represent the number of
times a specific n-gram appeared in that sample. For example, if the first 4
elements in the vector correspond to bi-grams (open, read), (read, write),
(write, read), and (write, close), a system call trace

open, read, write, read, write, close

will produce a bi-gram vector: 1, 2, 1, 1, . . .
We proceed with the empirical evaluation as follows, for both bi-grams and

1-skip-2-grams:

1. We train a classifier that classifies each of the behaviors based on non-
obfuscated system call sequences. The classifier achieves 98% accuracy for
both models.

2. We create obfuscated samples in a way that ‘breaks’ the bi-grams by inserting
a system call that has no effect on the process behavior (for example, sleep
with a sufficiently small argument) in between each couple of system calls
in the sequence. This method is called adding semantic no-ops and is the
focus of [20]. When testing the statistical model on the obfuscated data we
get 0% accuracy with both models (all samples in the test set are classified
as ‘other’).

3. We retrain our model on both obfuscated and non-obfuscated data. It now
achieves ≈ 66% accuracy with bi-grams, and ≈ 98% with 1-skip-2-grams.

Planning-Based Classification Information contained in the system logs and
manual inspection of system call traces in the training set are used to specify
the planning domain and the goal for each of the behaviors. Then, the VAL
plan validation system [15] is used to classify system call traces in the test set.

252 A. Cukier et al.

The planning-based classifier based on the domain built for the original, non-
obfuscated system call logs is applied to both non-obfuscated and obfuscated
system call traces. In both cases, the planning based classifier reaches over
98% accuracy. Manual inspection of the misclassified samples suggests that
the samples correspond to failed communication between components of the
mail service.

Table 1. Classification accuracy on real system logs

Random forest bi-grams Random forest skip-grams Planning-based

Original 98% 98% 98%

Obfuscated 0% 0% 98%

Re-trained 66% 98% 98%

Table 1 summarizes the results. We chose a 1-skip-2-gram model because it
counters the noise inserted. The trace given previously, obfuscated as:

open, sleep, read, sleep, write, sleep, read, sleep, write, sleep,
close

and vectorized using a 1-skip-2-grams, will give the unique bi-grams (open,
read), (read, write), (write, read), (write, close), and (sleep,
sleep). The obfuscation technique used is clearly ineffective, as the model
reveals the original bi-grams.

Our planning approach obtains the same accuracy as the 1-skip-2-gram model
trained with obfuscated samples, that is, the same as a statistical model built to
handle a specific obfuscation technique. However, statistical methods might be
challenged by more complex obfuscations. One can overcome this to some extent
using feature extraction methods that cover a wide range of obfuscations. But in
an adversarial setting, which is often the case in system security, there is always a
new obfuscation technique which defeats feature extraction unless known to the
model builder. On the other hand, planning-based (or, more generally, semantic)
classification will stay robust to obfuscation, whether known or newly invented,
as long as the actual behavior of the program is preserved.

6 Discussion and Future Work

We presented an approach for monitoring computer programs using an abstract
model of the system state and the basic “actions” that operate on this state —
system calls, in our case. The method is semantic in nature, and hence not prone
to the weaknesses of syntactic methods that consider the command sequences
form rather than their meaning. Unlike statistical methods that, in principle, can
be fully automated, our approach has a non-trivial, one-time manual modeling
step. But once the model is constructed, it can be used automatically and with
little cost.

A Planning Approach to Monitoring Computer Programs’ Behavior 253

We demonstrated the effectiveness of our method by first showing how we
capture a simple low level behavior that has diverse implementations using a
simple model. Syntactically, each implementation is quite different, yet the com-
mon semantics can be captured by modeling just a few system calls. Then, we
showed how we detect more complex, higher level behavior with almost per-
fect accuracy, without being affected by obfuscation techniques that easily fool
state-of-the-art statistical methods.

The approach used here can be used for other applications beyond system-
call logs, such as analysis of transactions, HTTP logs, and more. Moreover,
we believe that it could complement statistical methods by allowing us to run
statistical analysis on the higher level features generated by our abstract state.

References

1. Baker, C.L., Tenenbaum, J.B., Saxe, R.R.: Bayesian models of human action under-
standing. In: Proceedings of the 18th International Conference on Neural Informa-
tion Processing Systems, NIPS 2005, pp. 99–106. MIT Press, Cambridge (2005).
http://dl.acm.org/citation.cfm?id=2976248.2976261

2. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Abstraction-based malware analy-
sis using rewriting and model checking. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 806–823. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 46

3. Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: A
quantitative study of accuracy in system call-based malware detection. In: ISSTA
2012, New York, NY, USA, pp. 122–132 (2012). https://doi.org/10.1145/2338965.
2336768, http://doi.acm.org/10.1145/2338965.2336768

4. Canzanese, R., Mancoridis, S., Kam, M.: System call-based detection of malicious
processes. In: International Conference on Software Quality, Reliability and Secu-
rity, QRS 2015, pp. 119–124 (2015)

5. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, SP 2005, pp. 32–46. IEEE Computer Society, Washington (2005). https://
doi.org/10.1109/SP.2005.20

6. Draios Inc: Sysdig (2012–2016). http://sysdig.com/
7. Ezzati-Jivan, N., Dagenais, M.R.: A stateful approach to generate synthetic events

from kernel traces. Adv. Soft. Eng. 2012, 6:6–6:6 (2012). https://doi.org/10.1155/
2012/140368

8. Firdausi, I., lim, C., Erwin, A., Nugroho, A.S.: Analysis of machine learning tech-
niques used in behavior-based malware detection. In: ACT 2010, pp. 201–203
(2010). https://doi.org/10.1109/ACT.2010.33

9. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: IEEE Symposium on Security and Privacy, pp. 120–128, May 1996.
https://doi.org/10.1109/SECPRI.1996.502675

10. Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for
anomaly detection. In: Proceedings of the 11th ACM Conference on Computer
and Communications Security, CCS 2004, pp. 318–329. ACM, New York (2004).
http://doi.acm.org/10.1145/1030083.1030126

11. Hykes, S.: Docker (2013–2017). http://docker.com/

http://dl.acm.org/citation.cfm?id=2976248.2976261
https://doi.org/10.1007/978-3-642-33167-1_46
https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1145/2338965.2336768
http://doi.acm.org/10.1145/2338965.2336768
https://doi.org/10.1109/SP.2005.20
https://doi.org/10.1109/SP.2005.20
http://sysdig.com/
https://doi.org/10.1155/2012/140368
https://doi.org/10.1155/2012/140368
https://doi.org/10.1109/ACT.2010.33
https://doi.org/10.1109/SECPRI.1996.502675
http://doi.acm.org/10.1145/1030083.1030126
http://docker.com/

254 A. Cukier et al.

12. Jacob, G., Debar, H., Filiol, E.: Malware behavioral detection by attribute-
automata using abstraction from platform and language. In: Kirda, E., Jha, S.,
Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 81–100. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-04342-0 5

13. Kim, G., Yi, H., Lee, J., Paek, Y., Yoon, S.: Lstm-based system-call language
modeling and robust ensemble method for designing host-based intrusion detection
systems. arXiv preprint arXiv:1611.01726 (2016)

14. Liu, A., Martin, C., Hetherington, T., Matzner, S.: A comparison of system call
feature representations for insider threat detection. In: Proceedings from the Sixth
Annual IEEE SMC Information Assurance Workshop, pp. 340–347, June 2005.
https://doi.org/10.1109/IAW.2005.1495972

15. Long, D.: VAL: The plan validation system (2014). https://github.com/KCL-
Planning/VAL

16. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A layered archi-
tecture for detecting malicious behaviors. In: Lippmann, R., Kirda, E., Tracht-
enberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 78–97. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87403-4 5

17. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection.
ACM Trans. Inf. Syst. Secur. 9(1), 61–93 (2006). https://doi.org/10.1145/1127345.
1127348

18. Poulose Jacob, K., Surekha, M.V.: Anomaly detection using system call sequence
sets. J. Software 2(6) (2007)

19. Ramı́rez, M., Geffner, H.: Plan recognition as planning. In: IJCAI 2009, pp. 1778–
1783 (2009). http://ijcai.org/Proceedings/09/Papers/296.pdf

20. Rosenberg, I., Gudes, E.: Bypassing system calls-based intrusion detection systems.
Concurrency Comput. Pract. Experience 29(16) (2017). https://doi.org/10.1002/
cpe.4023

21. Sukthankar, G., Geib, C., Bui, H., Pynadath, D., Goldman, R.P. (eds.): Plan,
Activity, and Intent Recognition. Elsevier (2014)

22. Tandon, G., Chan, P.K.: On the learning of system call attributes for host-based
anomaly detection. Int. J. AI Tools 15(06), 875–892 (2006). https://doi.org/10.
1142/S0218213006003028

23. Tokhtabayev, A., Skormin, V., Dolgikh, A.: Dynamic, resilient detection of complex
malicious functionalities in the system call domain. In: MILCOM 2010, pp. 1349–
1356, October 2010. https://doi.org/10.1109/MILCOM.2010.5680136

24. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
alternative data models. In: Proceedings of the 1999 IEEE Symposium on Security
and Privacy (Cat. No.99CB36344), pp. 133–145 (1999). https://doi.org/10.1109/
SECPRI.1999.766910

25. Wressnegger, C., Schwenk, G., Arp, D., Rieck, K.: A close look on n-grams
in intrusion detection: Anomaly detection vs. classification. In: Proceedings of
the 2013 ACM Workshop on Artificial Intelligence and Security, AISec 2013,
pp. 67–76. ACM, New York (2013). https://doi.org/10.1145/2517312.2517316,
http://doi.acm.org/10.1145/2517312.2517316

26. Xu, J., Shelton, C.R.: Intrusion detection using continuous time Bayesian networks.
JAIR 39, 745–774 (2010)

27. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: BWCCA 2010,
pp. 297–300 (2010). https://doi.org/10.1109/BWCCA.2010.85

https://doi.org/10.1007/978-3-642-04342-0_5
http://arxiv.org/abs/1611.01726
https://doi.org/10.1109/IAW.2005.1495972
https://github.com/KCL-Planning/VAL
https://github.com/KCL-Planning/VAL
https://doi.org/10.1007/978-3-540-87403-4_5
https://doi.org/10.1145/1127345.1127348
https://doi.org/10.1145/1127345.1127348
http://ijcai.org/Proceedings/09/Papers/296.pdf
https://doi.org/10.1002/cpe.4023
https://doi.org/10.1002/cpe.4023
https://doi.org/10.1142/S0218213006003028
https://doi.org/10.1142/S0218213006003028
https://doi.org/10.1109/MILCOM.2010.5680136
https://doi.org/10.1109/SECPRI.1999.766910
https://doi.org/10.1109/SECPRI.1999.766910
https://doi.org/10.1145/2517312.2517316
http://doi.acm.org/10.1145/2517312.2517316
https://doi.org/10.1109/BWCCA.2010.85

One-Round Secure Multiparty
Computation of Arithmetic Streams

and Functions
(Extended Abstract)

Dor Bitan1(B) and Shlomi Dolev2

1 Department of Mathematics, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

dorbi@post.bgu.ac.il
2 Department of Computer Science, Ben-Gurion University of the Negev,

Beer-Sheva, Israel
dolev@cs.bgu.ac.il

Abstract. Efficient secure multiparty computation (SMPC) schemes
over secret shares are presented. We consider scenarios in which the
secrets are elements of a finite field, Fp, and are held and shared by
a single participant, the user. Evaluation of any function f : Fn

p → Fp

is implemented in one round of communication by representing f as a
multivariate polynomial. Our schemes are based on partitioning secrets
to sums or products of random elements of the field. Secrets are shared
using either (multiplicative) shares whose product is the secret or (addi-
tive) shares that sum up to the secret. Sequences of additions of secrets
are implemented locally by addition of local shares, requiring no commu-
nication among participants, and so does sequences of multiplications of
secrets. The shift to handle a sequence of additions from the execution of
multiplications or vice versa is efficiently handled as well with no need to
decrypt the secrets in the course of the computation. On each shift from
multiplications to additions or vice versa, the current set of participants
is eliminated, and a new set of participants becomes active. Assuming
no coalitions among the active participants and the previously elimi-
nated participants are possible, our schemes are information-theoretically
secure with a threshold of all active participants. Our schemes can also
be used to support SMPC of boolean circuits.

1 Introduction

Cloud services have become very popular in recent years. Companies like Ama-
zon, Google, Microsoft, IBM, etc., are offering storage devices and computing
engines to both private users and organizations. The usage of clouds for stor-
age and computing has significant benefits in price, speed, and manageability.
Nonetheless, it requires users to send their information to an untrusted third
party. In some cases, the information held by a user is confidential, and hence

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 255–273, 2018.
https://doi.org/10.1007/978-3-319-94147-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_20&domain=pdf

256 D. Bitan and S. Dolev

the distribution of the information to untrusted parties cannot be considered.
One solution to this problem may be a cryptographic scheme that enables a user
to upload encrypted data to the cloud, perform computations in the cloud over
the encrypted data and retrieve an encrypted output of the desired result. Such
an encryption scheme enables the user to take advantage of the storage and com-
puting services provided by the cloud without compromising the confidentiality
of the data.

SMPC schemes over a distributed system suggest partial solutions to this
problem [BMR90,BOGW88,CCD88,DFK+06,DIK10,GIKR02]. These schemes,
which are best in their security level being information-theoretically secure, sup-
port such computations at the cost of communication between participants. At
each round of communication, each participant sends at most one message to
each of the other participants, performs arbitrary computations and/or receives
at most one message from each of the other participants (not necessarily in this
order) [KN06]. Typically, communication between participants is used for reduc-
ing the degree of the polynomial that encrypts the data after each multiplication
during the computation [BOGW88,CCD88,DGL15,DLY07,DL16].

Existing fully homomorphic encryption schemes suggest a centralized, rather
than distributed, computationally secure solutions to the above mentioned
problem [BP16,Gen09,GHS12,GHS16,SV10,VDGHV10,XWZ+18]. Unfortu-
nately, beyond being only computationally secure (rather than information-
theoretically secure), they are currently too slow to be used in practice.

Related Work. In their seminal work from 1988, Ben-Or, Goldwasser and
Wigderson [BOGW88] showed that every function of N inputs can be efficiently
computed by N participants with a threshold of N/2 in case of honest-bcut-
curious participants, or N/3 in case of malicious participants. Their methods
are based on Shamir’s secret sharing scheme [Sha79] and their protocols require
rounds of communication proportional to the depth of the arithmetic circuit.
Substantial efforts have been spent to achieve a better communication complex-
ity in such tasks. Bar-Ilan and Beaver [BIB89] were the first to suggest a way to
evaluate functions in a constant number of rounds of communication, followed
by further works that attempt to minimize communication complexity of SMPC
protocols. In 2002, Gennaro et al. [GIKR02] proved that, in the presence of mali-
cious participants, some functions do not admit SMPC protocols with less than
three rounds of communication. Specifically, they have shown that the functions
XORn

2 and ANDn
2 do not admit protocols of SMPC with only two rounds of

communication, assuming malicious participants are present. Nonetheless, they
have shown that functions that depend only on the inputs of a single participant
can be securely computed in two rounds of communication. When relaxing the
assumptions and considering honest-but-curious (rather than malicious) partici-
pants the round complexity of general SMPC protocols is reduced to two rounds
of communication [BOGW88,IK02].

Our Contribution. We suggest a different approach to tackle the prob-
lem described above concerning outsourcing of computation. The main nov-
elty of our schemes is allowing evaluation of arithmetic functions in one round

One-Round Secure Multiparty Computation 257

of communication. Our approach is based on representing each secret either
as a sum of secret shares or as a product of secret shares, shifting between
representations when necessary. The schemes we present use two sets of par-
ticipants. At each stage, only one of the sets holds shares of the secrets. The
participants in the first set handle multiplications and are called the multipli-
cation participants, or the M.parties, in short. The participants in the second
set handle additions and are called the addition participants, or the A.parties.
We detail the operations of the participants in a sequence of the same opera-
tion and the communication between them when there is a switch in operations
and the immediate elimination of the previous participants (virtual machines,
containers, etc.). Our schemes require communication among participants only
when switching between operations, and support communicationless sequences
of multiplications followed by communicationless sequences of additions and vice
versa. Our schemes are information-theoretically secure against attacks of coali-
tions consisting of all-but-one of the active participants.

Paper Organization. In Sect. 2 we suggest information-theoretically SMPC
schemes that support arithmetic streams. These schemes give rise to information-
theoretically SMPC schemes that enable evaluation of any arithmetic function
in one round of communication, presented in Sect. 3. The schemes presented
in Sects. 2 and 3 use two participants in each set of currently-active parties
and support arithmetic circuits. Several extensions of our schemes appear in
Sect. 4. Amongst them, working with a larger number of participants, supporting
boolean (rather than arithmetic) circuits and evaluating functions over inputs
held by more than one participant. Section 5 discusses security issues. It contains
ways to mask the circuit itself, ways to handle malicious participants, and an
analysis of the threshold of our schemes. Lastly, conclusions appear in Sect. 6.
Formal proofs and some of the details are omitted from this extended abstract.

2 Stream Computation

Consider the following scenario. A user receives a stream of values and arithmetic
operations produced by some source. The user wishes to perform an arithmetic
computation over the values received according to the operations received on
the fly. The stream begins with an initial value, denoted by m0. At this stage
the user sets a value, referred to as the computation state and denote by st
and initializes st as m0. Afterward, at each stage a pair of value and arithmetic
operation are produced by the source and received by the user, who in turn
updates the computation state st accordingly. Explicitly, at stage i (for i ≥ 1)
a pair, consisting of a value mi and arithmetic operation opi are produced,
where opi is either addition ‘+’ or multiplication ‘·’. The user updates the state
either by multiplying st by mi or by adding mi to st, according to opi. Namely,
st := st opi mi. We call this kind of scenario a stream computation.

We assume that the values received from the source are confidential, and so
is the computation state that they yield in each stage. The user cannot keep
(and update) st on her hardware, since it might be hacked by an adversary.

258 D. Bitan and S. Dolev

We seek for a cryptographic scheme that will allow the user to outsource the
aforementioned computation, while keeping the values mi and st information-
theoretically secure at all stages, without keeping st as plaintext at any stage.
The value mi should also be eliminated at the end of each stage. The user should
be able to retrieve st at any time she so wishes.

At this point we would like to make an observation concerning outsourcing
of computation in general. Usually, when talking about outsourcing of compu-
tation, we consider a user that wishes to use a remote strong computer to run a
computation over private data, where the main reason for outsourcing the com-
putation is computing power. One of the main interests in such scenarios is to
involve the user in the computation as less as possible and to shift most of the
computational tasks to the cloud. In our scenario, since the values are produced
by the source and received by the user on-the-fly, the user must be on-line during
the computation and take an active part in the computation. We assume that
the user does have enough computing power to run the computation herself, but
since the values and the computation state produced during computation are
confidential, she cannot save them as plaintext anywhere.

We now present schemes for outsourcing stream computations in two different
cases – the non-vanishing case and the p-bounded case.

Non-vanishing Stream. We suggest a scheme for performing secure outsourc-
ing of stream computation under the following assumptions. For the particular
example we detail in the sequel, we assume that the values mi are elements of the
field Fp of prime order p (the arithmetic operations are carried out in the field),
and that the values and operations produced never yield st = 0. Such a stream
is non-vanishing. We assume that the user has a secure connection channel with
(at least) four honest-but-curious servers denoted P(j) (for 1 ≤ j ≤ 4). The
basic four participants scheme can be generalized to one with a larger number of
participants as explained in Sect. 4. For ease of presentation, we first present the
scheme for the case of four participants. In the scheme we suggest, some of the
participants hold shares of the computation state st, denoted st(j). The shares
do not reveal any information about st and enable extrapolation of st by the
user at any stage.

The scheme we suggest has two modes: multiplication mode and addition
mode. P(1) and P(2) are the M.parties and the rest of the servers are the
A.parties. The scheme is composed of five procedures as follows:

– Init – Initializing.
– MinM – Multiplication in multiplication mode.
– M → A – Switching mode from multiplication to addition.
– AinA – Addition in addition mode.
– A → M – Switching mode from addition to multiplication.

The general idea behind the scheme is that multiplications are handled by
the M.parties and additions are handled by the A.parties. At stage i, some of
the procedures are invoked to update st according to opi and shift (if necessary)
the shares from one set of participants to another, eliminating the previous set of

One-Round Secure Multiparty Computation 259

participants. When the shares of st are being held by the M.parties (respectively,
A.parties), we say that the scheme is in multiplication (respectively, addition)
mode.

The scheme stages are as follows:

– Run Init – distributing (multiplicative) shares of m0 to P(1) and P(2).
– At stage i, upon receiving (mi, opi):

• If the received operation opi does not match the current mode (i.e., receiv-
ing opi = ‘·’ in addition mode or opi = ‘+’ in multiplication mode), then
run M → A or A → M to switch mode and eliminate the previous set of
participants.

• Run AinA or MinM to update the shares of st according to (mi, opi).

We now describe each procedure. All operations are carried out in Fp. We
begin with the initializing procedure.

Procedure 1: Init – Initializing. This procedure is invoked by the user and
the M.parties only at stage zero, when the initial value m0 is produced and
received by the user. First, the user picks a non-zero element x0 of Fp uniformly
at random and computes y0 such that x0 ·y0 = m0. We call this procedure mult.-
random-split of m0 into two multiplicative shares. Then, the user sends x0 to
P(1) and y0 to P(2), who in turn set st(1) to x0 and st(2) to y0, respectively. The
values st(1) and st(2), kept by the M.parties after the execution of this protocol,
are their shares of st. Since x0 is picked randomly, y0 is also random. Hence, no
information concerning m0 is revealed to the M.parties.

Procedure 2: MinM – Multiplication in multiplication mode. This procedure is
invoked by the user and the M.parties at stages i such that opi is multiplication
(after switching to multiplication mode if necessary, using A → M). Similarly to
Init, first the user mult.-random-splits mi to x ·y. Then the user sends x to P(1)

and y to P(2). The M.parties in turn update the shares of st they hold. P(1) sets
st(1) to st(1) · x and P(2) sets st(2) to st(2) · y. Now, the shares of the M.parties
are updated according to the current computation state. The fact that x and y
are random implies that no information is revealed to the participants neither
about mi nor about st.

Procedure 3: M → A – Switching mode from multiplication to addition. This
procedure is invoked by all the participants at stages i such that opi is addition
and the current mode is multiplication: First, P(1) picks an element a of Fp and
computes b such that a + b = st(1). We call this procedure add.-random-split
of st(1) into two additive shares, a and b. Then, P(1) sends a to P(3) and b to
P(4). P(2) sends st(2) to both P(3) and P(4). At this stage the M.parties are
eliminated. Then, the A.parties multiply the values they received and set st(j)

to the product (j = 3, 4). Observe that:

st = st(1) · st(2) = (a + b) · st(2) = a · st(2) + b · st(2) = st(3) + st(4).

Namely, from the two mult.-random-split shares of st that were held by the
M.parties, the A.parties receive add.-random-split shares of st. Since a and b

260 D. Bitan and S. Dolev

are random elements of the field, the A.parties gain no information about st
and the M.parties are eliminated.

Procedure 4: AinA – Adding in addition mode. This procedure is invoked by
the user and the A.parties at stages i such that opi is addition (after switching
to addition mode if necessary, using M → A). First, the user add.random-splits
mi to x+y and sends x to P(3) and y to P(4). Then, in order to update its share
of the computation state, each A.party adds the value it received from the user
to st(j), (j = 3, 4). Since x and y are random elements of the field, neither of the
A.parties gain any information about mi or about the current state.

Procedure 5: A → M – Switching mode from addition to multiplication. This
procedure is invoked by the user and all the participants at stages i such that opi
is multiplication and the current mode is addition. The user mult.-random-splits
1 ∈ Fp to r · r−1, and sends r−1 to P(1) and r to the A.parties. Then, P(1) sets
st(1) to r−1. Each of the A.parties, P(j), (j = 3, 4), multiplies r by st(j) and
sends the product to P(2). At this stage the A.parties are eliminated. Then P(2)

adds the values received and sets st(2) to the sum.
Observe that:

st = st(3)+st(4) = r−1 ·(r ·(st(3)+st(4))
)

= r−1 ·(r ·st(3)+r ·st(4)) = st(1) ·st(2).

Thus, from the two add.-random-split shares of st that were held by the
A.parties, the M.parties receive mult.-random-split shares of st. At this stage,
P(1) obviously has no information about st. Since st �= 0 and r is random, P(2)

also has no information about the current state.
Observe that at any stage of the scheme:

– The computation state is not saved as plaintext anywhere.
– The values mi received by the user are immediately random-split into shares,

the shares are distributed and mi is eliminated.
– None of the participants gains any information about the values mi or

about st.
– At each stage the user can retrieve the shares of st from the participants and

efficiently compute st.

Hence, this scheme enables a user to perform information-theoretically secure
outsourcing of any non-vanishing stream using four participants.

Bounded Stream. In the scheme suggested above, the depth and length of
the arithmetic circuit are practically unbounded. One can use it to outsource
arbitrarily long computation streams containing any number of multiplications
and additions in Fp. There is a limitation though, on the possible result of each
stage of the computation. Namely, none of them may be zero. In some cases,
one has a computation stream that does not meet this limitation. How can we
outsource stream computations that are not non-vanishing? We now suggest an
answer to this question assuming that the depth and length of the stream are

One-Round Secure Multiparty Computation 261

bounded. The scheme we suggest is based on that suggested above for the non-
vanishing case. Similarly to the assumptions of the non-vanishing scheme, we
assume that the values mi are elements of a finite field Fq (q is prime), and that
the arithmetic operations are multiplication and addition in Fq.

We begin with an observation. Assume M = (m0,m1, . . . ,mn) ∈ F
n+1
q is

a sequence of values produced by a source in some stream computation, and
that OP = (op1, . . . , opn) ∈ {+, ·}n is the sequence of operations produced by it
corresponding to M . At each stage of the computation, the computation state
st is the result of applying the operations in OP to the corresponding values
in M , where operations are carried out in Fq. One gets the exact same result
by performing the computation over the positive integers and taking the result
modulo q. Formally, for each entry mi of M , let ai ∈ {1, 2, . . . , q} ⊆ N denote the
minimal (strictly) positive integer such that ai ≡ mi (mod q). The ai’s are the
integer correspondents of the mi’s. Then, performing the stream computation
over the ai’s (while using the same operations over the integers), we obtain an
integer result stN such that stN ≡ st (mod q). Assume a computation stream
over elements in Fq is such that, when performing the corresponding stream
computation over the integers, we obtain an integer-computation state, stN, that
never exceeds a large prime p. We will call such a computation stream p-bounded.

We now suggest a scheme to perform information-theoretically secure out-
sourcing of a bounded computation stream. As in the non-vanishing scheme,
we assume that the user has a secure connection channel with four honest-but-
curious participants P(j) (1 ≤ j ≤ 4). The general idea behind the scheme is to
run at each stage the procedures described in Sect. 2 over the integer correspon-
dents of the mi’s, modulo p, where operations are carried in Fp.

The scheme stages are as follows:

– Upon receiving the initial value m0 ∈ Fq, run Init to distribute multiplicative
shares of a0 (mod p) to P(1) and P(2), where a0 is the integer correspondent
of m0.

– At stage i, upon receiving mi ∈ Fq and an operation opi
• If opi does not match the current mode then run M → A or A → M to

switch mode eliminating the M.parties or the A.parties.
• Run MinM or AinA to update the computation state shares according

to ai (mod p) and opi.

The user can extrapolate st ∈ Fq at any stage by retrieving the shares from
the participants, compute the computation state modulo p, and then take the
integer correspondent to the result modulo q. The correctness of the scheme is
derived from the fact that the stream is p-bounded. The security of this scheme
for p-bounded streams is derived from the security of the non-vanishing stream
scheme, since from the participants perspective, there is no difference between
the cases.

262 D. Bitan and S. Dolev

3 SMPC of Arithmetic Functions in One Round
of Communication

The ideas from the previous section, used to outsource stream computations,
give rise to SMPC schemes that allow evaluation of arithmetic functions in one
round of communication. In this section we suggest schemes that support this
task in two different cases: the non-vanishing case and the p-bounded case. In
the schemes we suggest, the set of variables over which the function is evaluated
may be dynamic, and so may be the function itself.

One-Round SMPC of Arithmetic Functions Over Non-Zero Elements.
We suggest a SMPC scheme that enables a user to securely outsource storage
and computations of data under the following assumptions.

– The user holds a sequence m = (m1, . . . ,mn) ∈ F
n
p .

– The user has a private connection channel with four participants P(k), (1 ≤
k ≤ 4). As in the arithmetic streams scenario, this scheme can be generalized
to one with a larger number of participants, as detailed in Sect. 4.

– The participants are honest-but-curious.

At each stage of the scheme, the participants hold shares of m. The scheme
we suggest now enables a user to secret share m = (m1, . . . ,mn) amongst honest-
but-curious servers in a way that allows the user to evaluate f(m) using com-
puting engines provided by the servers, where f : Fn

p → Fp.
We begin with an observation concerning functions from F

n
p to Fp. Since Fp

is a finite field, any function f : Fn
p → Fp can be represented as a multivariate

polynomial. Since xp ≡ x (mod p), this representation is not unique. Given a
function f , we would like to assign f with a minimal-multivariate-polynomial-
representation of it. To this end, we consider the representation of f as a mul-
tivariate polynomial such that the degree of each variable is at most p − 1. For
any given f there is exactly one such multivariate polynomial. We denote this
polynomial by Qf and assign f with Qf as its minimal-multivariate-polynomial-
representation. We occasionally abuse notation and write f instead of Qf . We
note that the total degree3 of Qf is at most n(p − 1) and write

f(m) =
∑

i=(i1,...,in)∈I
ai · mi1

1 . . . min
n

where I = {0, . . . , p−1}n and ai ∈ Fp. There are pp
n

such functions. For example,
if n = 6, p = 11, then one of them is: 3m3

1m
3
2m5 + 6m4

3m1 + 2m3m6. The fact
that each variable in each monomial can appear with any exponent between zero
and p − 1 implies that there are pn different monomials (for most functions f
used in practice, most of the monomials are irrelevant since they have leading
coefficient zero. Nevertheless, for some functions f , taking a representation of f

3 The total degree of a multivariate polynomial is the maximal sum of exponents in a
single monomial of it.

One-Round Secure Multiparty Computation 263

as a multivariate polynomial may imply exponential growth of the representation
of f). For i = (i1, . . . , in) ∈ I we denote mi1

1 . . . min
n by Ai. We refer to Ai as the

i’th monomial.
The scheme we suggest is composed of two protocols:

– The Distribution protocol – invoked by the user to secret share m amongst
the participants.

– The Evaluation protocol – invoked by the user to perform SMPC of a function
f over m using the participants.

The general idea behind the scheme is as follows. As in the arithmetic stream
schemes presented in Sect. 2, P(1) and P(2) are the M.parties and P(3) and
P(4) are the A.parties. In the Distribution protocol, the user secret shares m
amongst the M.parties. The Evaluation protocol is composed of four stages.
At the first stage, the user sends information regarding f to the participants,
and the M.parties perform operations over their shares of m that correspond
to SMPC of each of the (non-zero leading coefficient) monomials Ai of f . At
the second stage, the M.parties send to the A.parties information that allows
the A.parties to achieve additive shares of each of the monomials of f . At this
point the M.parties are eliminated. At the third stage, the A.parties use the
information they received from the M.parties to achieve shares of f(m). At the
fourth stage, the user can choose between either retrieve the shares of f(m) from
the A.parties and compute f(m), or shift the information from the A.parties
to a new set of M.parties (as in A → M) to allow further computations over(
m, f(m)

)
without decrypting f(m). We now describe each protocol. We begin

with the Distribution protocol.

The Distribution Protocol.
This protocol is invoked by the user to secret share m = (m1, . . . ,mn) ∈ F

n
p

amongst the M.parties. For each mj , 1 ≤ j ≤ n, the user mult.-random-splits
mj to two multiplicative shares xj and yj . Then, the user distributes (x1, . . . , xn)
to P(1) and (y1, . . . , yn) to P(2).

The Evaluation Protocol.
This protocol is invoked by the user to perform SMPC of a function f over m
using the participants. The protocol has four stages. We now describe each of
them.

– Stage 1 – MonEv – Monomial evaluation. At this stage the user sends infor-
mation about f to the participants. The M.parties compute multiplicative
shares of the monomials of f . As mentioned, above we write f in the form

f(m1, . . . ,mn) =
∑

i∈I
ai · Ai,

where Ai is the i’th monomial and is determined by i = (i1, . . . , in). At this
stage, for each monomial Ai with non-zero leading coefficient, the user sends
i ∈ I to the M.parties and ai ∈ Fp to the A.parties. Each of the M.parties

264 D. Bitan and S. Dolev

evaluates each monomial Ai over his shares. P(1) sets Axi
:= Πn

j=1x
ij
j and

P(2) sets Ayi
:= Πn

j=1y
ij
j . Observe that Axi

and Ayi
are multiplicative shares

of Ai evaluated at m:

Axi
· Ayi

= Πn
j=1x

ij
j · Πn

j=1y
ij
j = Πn

j=1(xjyj)ij = Πn
j=1m

ij
j = Ai.

– Stage 2 – SMA – Shift from M.parties to A.parties. At this stage, for each i
received from the user, the M.parties manipulate the multiplicative shares of
Axi

and Ayi
and send information to the A.parties that enables the A.parties

to achieve additive shares of Ai. For each i received, P(1) add.-random-splits
Axi

into two additive shares bi + ci in Fp. Then, P(1) sends bi to P(3) and ci
to P(4), while P(2) sends Ayi

to the A.parties. The M.parties are now elim-
inated and the A.parties multiply the values received. Denote the products
calculated by P(3) and P(4) by αi and βi, respectively.
Observe that from the multiplicative shares of Ai that were held by the
M.parties, the A.parties achieve additive shares of Ai:

Ai = Axi
· Ayi

= (bi + ci) · Ayi
= bi · Ayi

+ ci · Ayi
= αi + βi.

Since ai and bi are random, the A.parties gain no information about Ai.
– Stage 3 – fEv – Evaluation of f. At this stage the A.parties compute additive

shares of f(m) using the information received from the user at stage 1 and
the additive shares of Ai achieved at stage 2.

• P(3) computes u3 :=
∑

i∈I ai · αi.
• P(4) computes u4 :=

∑
i∈I ai · βi.

Observe that u3 and u4 are additive shares of f(m):

u3 + u4 =
∑

i∈I
ai · αi +

∑

i∈I
ai · βi =

∑

i∈I
ai · (αi + βi) =

∑

i∈I
ai · Ai = f(m).

– Stage 4 – RetCas – Retrieving/Cascading. At this stage the user has a choice
between two options: retrieving and cascading. In the retrieving option, the
user retrieves the additive shares of f(m) from the A.parties and adds them to
obtain f(m). In the cascading option, the user has the A.parties manipulate
the shares they hold and send information to a new set of M.parties (in
the same fashion as in procedure A → M described in Sect. 2). Then the
A.parties are eliminated and the user can begin a new computation over
(m1, . . . ,mn, f(m)). We now describe the cascading option. The user performs
mult.-random-split of 1 ∈ Fp to two multiplicative shares xm+1 and r, and
sends xm+1 to P(1) and r to the A.parties. Each of the A.parties multiplies
r by uk, k = 3, 4, and sends the product to P(2). At this stage the A.parties
are eliminated. Now P(2) adds the values received and sets ym+1 to the sum.
Observe that:

f(m) = u3 + u4 = xm+1 ·
(
r · (u3 + u4)

)
= xm+1 · ym+1.

Thus, from the additive shares of f(m) that were held by the A.parties, the
M.parties obtain multiplicative shares of f(m), and further functions can

One-Round Secure Multiparty Computation 265

be evaluated over (m1, . . . ,mn, f(m)) by the user and the participants using
stages 1–3 of this protocol. We note that this option is secure only if f(m) �= 0,
since if f(m) = 0 then so is ym+1.

Since each mj is secret shared independently, the set of secrets over which any
function can be evaluated is dynamic and further secrets can be shared on the fly.
The fact that each monomial is evaluated over the secret shares independently
implies that the function itself is dynamic in the sense that new monomials can
be evaluated and added on the fly.

One-Round SMPC of p-Bounded Arithmetic Functions. In the scenario
considered above, SMPC of arithmetic functions over non-zero elements, there
is a limitation on the possible values that the mj ’s may take. Namely, they
cannot be zero. Moreover, if the user wishes to perform further computations
over

(
m, f(m)

)
without first decrypting f(m), then f(m) too must be non-zero.

Can we avoid these limitations over the mj ’s and f(m)? We now consider a
scenario in which some of the mj ’s may be zero and f may vanish, and suggest
a scheme that overcomes the limitations of the previous scenario assuming f is
p-bounded for small enough p. The term p-bounded is defined below.

Similarly to the assumptions of the previous scenario, we assume that the val-
ues mj are elements of a finite field of prime order q, denoted Fq. We begin with
an observation. Assume the user holds m = (m1, . . . ,mn) ∈ F

n
q and wishes to

evaluate f(m) for some f . One can compute f(m) by performing operations in Fq

on m according to a representation of f as a multivariate polynomial. The same
result is obtained if one computes f(m) over the positive integers and then takes
the result modulo q. Formally, for each entry mj of m let aj ∈ {1, 2, . . . , q} ⊆ N

denote the minimal (strictly) positive integer such that aj ≡ mj (mod q). Then,
performing the computation over the aj ’s using integer operations we obtain
an integer result f(m)N, such that f(m)N ≡ f(m) (mod q). Assume a function
f : Fn

q → Fq is such that for every m ∈ F
n
q , computation of f(m) over the inte-

gers yields an integer-result, f(m)N, which is strictly smaller than a large prime
p. Such a function is p-bounded.4

The scheme we suggest now is based on that suggested in the previous case
for non-zero elements and enables SMPC of p-bounded functions over elements,
some of which may be zero. As in the non-zero scheme, we assume that the
user has a secure connection channel with four honest-but-curious servers, P(k),
1 ≤ k ≤ 4. The general idea behind the scheme is to run at each stage the same
procedures as in the scheme suggested in the previous case, over the integer
correspondents of the mj ’s, modulo p.

The scheme stages are as follows. For m = (m1, . . . ,mn) ∈ F
n
q , let m̃ =

(m̃1, . . . , m̃n) ∈ F
n
p denote the F

n
p element corresponding to m. That is, m̃j := aj

(mod q) for 1 ≤ j ≤ n. Similarly, for f : Fn
q → Fq let f̃ : Fn

p → Fp denote the

4 Actually, all functions f : F
n
q → Fq are p-bounded for p ≥ qnq+1 (considering

the minimal-multivariate-polynomial-representation of f). This fact is not useful for
large p.

266 D. Bitan and S. Dolev

function corresponding to f in the p-world. The Distribution and Evaluation
protocols are as follows.

Distribution.
For m ∈ F

n
q use the Distribution protocol of the non-zero scheme to secret share

m̃ ∈ F
n
p among the M.parties.

Evaluation.
For f : Fn

q → Fq use the Evaluation protocol of the non-zero scheme to evaluate
f̃ over m̃:

– The first three stages are the same as in the non-zero protocol.
– At the fourth stage, RetCas,:

• Decryption is done by retrieving f̃(m̃) by the dealer and taking the integer
corresponding to f̃(m̃) modulo q.

• Cascading (performing further computations over (m1, . . . ,mn, f(m))
without first decrypting f(m)) can be done under the following assump-
tions. Assume the user wishes to perform SMPC of g : Fn+1

q → Fq over(
m1, . . . ,mn, f(m)

)
. Use Qf to write g as a function from F

m
q to Fq. If g

is p-bounded considering its representation as a multivariate polynomial
obtained by using Qf to write g as a function from F

m
q to Fq, then SMPC

of g over (m1, . . . ,mn, f(m)) can be done with no need to first decrypt
f(m) by the user.

We note that this protocol has the same dynamic attributes as those suggested
in the previous scenario and it requires one round of communication.

4 Extensions

The Case of More Than Four Participants. The schemes described above
employ four participants. However, the ideas behind the procedures from which
the schemes are composed generalize to a larger number of participants. Assume
one wishes to run the schemes using n1 ≥ 2 M.parties and n2 ≥ 2 A.parties. We
now suggest ways to generalize the procedures described above to suit n1 + n2

participants.

Random-Split.
The procedure mult.-random-split described above can be generalized to n1

M.parties by taking n1−1 random non-zero elements of the field, x1, . . . , xn1−1,
and computing the xn1 that yields πn1

i=1xi = m. The generalization of add.-
random-split. to n2 participants is analogous.

Additive Shares from Multiplicative Shares.
Procedure M → A of the arithmetic streams scenario and procedure SMA of the
Evaluation protocol in the arithmetic functions scenario demonstrate shifting of
information from two M.parties, P(1) and P(2), to two A.parties, P(3) and P(4).
These procedures are used to create additive shares of the secret shared data

One-Round Secure Multiparty Computation 267

from multiplicative shares of it. These procedures generalize to procedures by
which information is shifted from n1 M.parties to n2 A.parties in the following
way. Assume n1 M.parties, P(i), 1 ≤ i ≤ n1, hold n1 multiplicative shares, xi,
of an element m. To achieve n2 additive shares of m held by n2 A.parties, P(1)

add.-random-splits x1 to n2 additive shares bj , 1 ≤ j ≤ n2, and sends each bj to
the j’th A.party. The rest of the M.parties, P(i), 2 ≤ i ≤ n1, send xi to each
of the A.parties. At this stage the M.parties are eliminated and the A.parties
multiply the values received to obtain additive shares of m. Observe:

m =
n1∏

i=1

xi = x1 ·
n1∏

i=2

xi =

(
n2∑

j=1

bj

)

·
n1∏

i=2

xi =
n2∑

j=1

(
bj ·

n1∏

i=2

xi

)
.

Multiplicative Shares from Additive Shares.
Procedure A → M of the arithmetic streams scenario and procedure RetCas
of the Evaluation protocol (the cascading options of it) in the arithmetic func-
tions scenario demonstrate shifting of information from two A.parties to two
M.parties. These procedures are used to create multiplicative shares of the
secret shared data from additive shares of it. These procedures generalize to
procedures by which information is shifted from n2 A.parties to n1 M.parties
in the following way. Assume n2 A.parties, P(i), 1 ≤ i ≤ n2, hold n2 additive
shares, xi, of an element m. To achieve n1 multiplicative shares of m held by n1

M.parties, the user performs mult.-random-split of 1 to n1 multiplicative shares.
The user sends to each of n1 − 1 M.parties one (distinct) multiplicative share
of 1, and sends the last share of 1 to all of the A.parties. Each of the A.parties
then multiplies the multiplicative share of 1 received by its additive share of
m and send the product to the last M.party. At this stage the A.parties are
eliminated and the last M.party adds the values received. Now the M.parties
hold multiplicative shares of m.

Evaluation of Boolean Circuits. The schemes suggested in Sects. 2 and 3
can be used to perform computations of boolean streams and SMPC of boolean
circuits by working in F2. A True boolean value is 1 ∈ F2 and a False boolean
value is 0 ∈ F2. Boolean operations may be identified with field operations in
the following way. The ∧ operation is identified with F2 multiplication, the ⊕
operation is identified with F2 addition, and the ¬ operation is identified with
adding 1 in F2. The ∨ operation of two literals is identified with x + y + x · y,
where x and y are the elements of F2 corresponding to the literals. Then, given
a boolean circuit C over boolean literals b = (b1, . . . , bn) ∈ {True, False}n,
one can use the schemes suggested above for p-bounded functions to perform
boolean streams computation and SMPC of boolean circuits by taking m =
(m1, . . . ,mn) ∈ F

n
2 , where the mi’s are the F2 correspondents of the bi’s. The

boolean circuit C : {True, False}n → {True, False} will be taken as a function
C̃ : Fn

2 → F2.

Evaluating Functions Over Inputs Held by More Than One Partici-
pant. The scheme suggested in Sect. 3 can be used to perform SMPC of arith-
metic functions over inputs held by several participants. Instead of having only

268 D. Bitan and S. Dolev

one participant holding inputs, assume D(1), . . . ,D(k) are k users, each of them
is holding a set of secret values in Fp, and that the users wish to privately evalu-
ate a function f over the entire set of variables. Let each of the users distribute
shares of her secrets independently to the M.parties using the distribution pro-
tocol described in Sect. 3. Let one of the users invoke the evaluation protocol
described above sending the relevant information about f to the M.parties and
the A.parties. In the final stage of the evaluation protocol, let the A.parties send
their outputs to all of the users. Adding these outputs, each of the users obtains
the result of evaluating f over the entire set of secrets. This way we extend
our scheme to one that supports SMPC of functions over inputs held by several
participants. We note that, in addition to their original role in the scheme, the
M.parties and A.parties can also take the role of being users, holding secret
values and following the scheme described above as users. This will not affect
the security nor the correctness of the schemes.

Handling Additions and Multiplications by the Same Participants.
The schemes described above use a different set of participant for additions and
for multiplications. We can use one set of participants for both operations by
using, on each shift from multiplications to additions or vice versa, (at least)
two temporary auxiliary participants. To switch from multiplication to addition
mode, the participants that are holding multiplicative shares of the secrets use
M → A to allow the auxiliary parties receive additive shares of the secrets. The
auxiliary parties use AinA to add zero to the secret shared message and shift the
information back to the permanent set of participants. Similarly, to switch from
additions to multiplications, the participants that are holding additive shares
of the secrets use A → M to allow the auxiliary parties receive multiplicative
shares of the secrets. The auxiliary parties use MinM to multiply the secret
shared message by 1 and shift the information back to the permanent set of
participants. This adjustment costs in communication complexity.

5 Security

Keeping the Circuits Secure. In the schemes suggested in Sects. 2 and 3,
some information about the circuit itself is revealed to the participants. In the
arithmetic streams schemes the M.parties (respectively, A.parties) know exactly
how many consecutive multiplications (respectively, additions) are computed in
a specific part of the circuit. In the SMPC schemes some information about f
itself is revealed to the participants, as according to the Evaluation protocol, the
user sends the relevant elements i ∈ I to the M.parties and the corresponding
ai’s to the A.parties. We now suggest ways to prevent that leakage of information
by adding noise to the procedure in cost of communication complexity.

Securing Arithmetic Streams.
We can adjust the arithmetic streams schemes to prevent leakage of information
about the computation circuit itself by performing, at each stage of the compu-
tation, both addition and multiplication operations that yield the same result

One-Round Secure Multiparty Computation 269

that would have been obtained normally. If at stage i one has opi = + (meaning
that the user needs to multiply st by mi), then

– use MinM to multiply st by mi,
– use M → A to switch from multiplication mode to addition mode and elimi-

nate the M.parties,
– use AinA to add zero to st,
– use A → M to switch back from addition mode to multiplication mode using

a new set of M.parties and eliminate the A.parties.

If at stage i the user needs to add mi to st, then

– use MinM to multiply st by 1,
– use M → A to switch from multiplication mode to addition mode and elimi-

nate the M.parties,
– use AinA to add mi to st,
– use A → M to switch back from addition mode to multiplication mode using

a new set of M.parties and eliminate the A.parties.

This adjustment costs in communication complexity, but it keeps the arith-
metic circuit secure in a way that neither of the participants can tell what are
the arithmetic operations that are actually being performed.

Securing Arithmetic Functions.
Recall that the information held by the user is m = (m1, . . . ,mn) ∈ F

n
p . We can

take redundant copies of each (or some) of the mi’s, take redundant variables
that equal 1 ∈ Fp, take redundant variables that equal 0 ∈ Fp and permute
them all to obtain m′ = (m′

1, . . . ,m
′
r) which contains the information we began

with along the added redundancy. This expansion of m costs in communication
complexity but now we can hide f in several ways.

Recall that
f(m) =

∑

i∈I
ai · Ai, ai ∈ Fp,

where Ai is the i’th monomial. In most applications, most of the ai’s are zero and
we will call their corresponding monomials the zero monomials. We will call the
other monomials the non-zero monomials. Now, one can mask f by the following
procedures. To evaluate f : Fn

p → Fp over m, take some suitable f ′ : Fr
p → Fp

and evaluate it over m′ in such a way that f(m) = f ′(m′). f ′ can mask f in the
following ways.

– The non-zero monomials of f can be represented in various forms. Since m′

contains redundant copies of the variables of m and redundant 1-variables,
one can compute monomials of f by various choices of monomials of f ′. For
example, if one of the monomials of f is x8

1, and m′ contains redundant copies
of m1, m′

2 = m′
3 = m′

4 = m1 and m′
5 = 1, then the corresponding monomial

of f ′ may be x2
2x

3
3x

3
4x

3
5.

270 D. Bitan and S. Dolev

– Since m′ contains redundant 0-variables, one can take f ′ which contains
redundant monomials that contain a redundant 0-variable. For example, if
f(m) = m2

1, then one can take f ′(m′) = m′
1
2 + 4m′

6
3
m′

8, where m′
1 = m1

and m′
6 or m′

8 equal zero. The user should keep in mind the indices of the
redundant variables.

These procedures add noise to the computation circuit and cost in an expan-
sion of m and communication complexity.

Malicious Participants and Threshold Analysis. The correction and secu-
rity of our schemes are based on the assumption that the participants are honest-
but-curious, and that they do not form coalitions. That is, we assume that each
of the participants follows the exact directions of each procedure of the scheme
and is not sending to any of the other participants information not supposed
to be sent. Nevertheless, we assume that the participants are trying to learn
information about the secret shared inputs and about the computation circuits
through the data received during the execution of the scheme. In case of devia-
tion of a participant from the directions of the scheme either the scheme might
yield an incorrect solution or the security of the secret shared data may be com-
promised. We now discuss ways to detect incorrect outputs caused by malicious
participants and analyze the threshold for ensuring the security of the schemes
against coalitions of participants.

Output Verification.
Detection of incorrect output caused by malicious participants is achieved either
by repeating the same computations while using different sets of participants, or
by computing different representations of the same function. Assume one runs
our scheme using a total of n participants. For a positive integer, s, one can
use s · n participants where each n participants run the same protocol indepen-
dently. As s is taken to be larger, the correction of the output can be verified
with higher certainty. Another approach to detect incorrect output is comput-
ing the same circuit several times using the same n participants with different
randomization in each computation and different representations of the same
circuit in each iteration. In this case, one may use schemes for masking the com-
putation as described above, thus ensuring that the participants cannot force
repeated incorrect output in successive computations of the same circuit. One
exception to this end is a repeated incorrect zero output that can be forced by
a malicious M.party by outputting zero regardless of the inputs received. These
two approaches can be combined to reveal malicious participants in the following
way. The user can use more than n participants and repeat the same computa-
tions (independently) using different n participants on each iteration. Assuming
the user receives different outcomes, she can eliminate both sets of participants
and repeat the process until identical results are obtained.

Security.
We now discuss the security of our schemes against attacks of coalitions of par-
ticipants. That is, participants that join their shares of m to learn information

One-Round Secure Multiparty Computation 271

about the secret shared inputs. Assume a user runs a scheme as suggested above
using n1 M.parties and n2 A.parties. In case of an attack of a coalition of
M.parties, if the size of the coalition is up to n1 − 1, no information about
the secret shared input can be gained by the coalition, since for each product
of n1 − 1 non-zero elements of a finite field, xi, 1 ≤ i ≤ n1 − 1, and for each
non-zero element m of the field, there exists exactly one element xn1 in the field
such that the product of all the n1 elements xi yields m. Similarly, in case of an
attack of a coalition of A.parties, if the size of the coalition is up to n2 − 1, no
information about the secret shared input can be gained by the coalition, since
for each sum of n2 − 1 elements of a finite field, xi, 1 ≤ i ≤ n2 − 1, and for each
element m of the field, there exists exactly one element xn2 in the field such that
the sum of all the n2 elements xi yields m. Hence, the threshold of the schemes
is the number of currently-active participants.

6 Conclusions

We have suggested schemes for information-theoretically SMPC of arithmetic
streams and evaluation of arithmetic functions in one round of communication.
The schemes presented above consider two sets of participants. The first set con-
sists of n1 M.parties that handle sequences of multiplications, and the second
set consists of n2 A.parties that handle sequences of additions. Such sequences
are handled locally and require no communication between parties. We switch
from sequences of multiplications to sequences of additions and vice versa with-
out decrypting the information. We have suggested ways to secure the arithmetic
circuit being computed in cost of communication complexity. We have suggested
ways to detect incorrect outputs caused by malicious parties. Our schemes are
secure against attacks of coalitions of participants that are smaller than the
number of currently active participants. Our schemes can be used to perform
computations of boolean circuits among many other scopes.

Acknowledgments. We thank Dani Berend for being involved during the entire
research providing original ideas throughout, in particular suggesting to use polynomial
representation instead of circuits.

The research was partially supported by the Rita Altura Trust Chair in Computer
Sciences; the Lynne and William Frankel Center for Computer Science; the Ministry of
Foreign Affairs, Italy; the grant from the Ministry of Science, Technology and Space,
Israel, and the National Science Council (NSC) of Taiwan; the Ministry of Science,
Technology and Space, Infrastructure Research in the Field of Advanced Computing
and Cyber Security; and the Israel National Cyber Bureau.

272 D. Bitan and S. Dolev

References

[BIB89] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In: Proceedings of the Eighth
Annual ACM Symposium on Principles of Distributed Computing, pp.
201–209. ACM (1989)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols. In: Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing, pp. 503–513. ACM (1990)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing,
pp. 1–10. ACM (1988)

[BP16] Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 8

[CCD88] Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 11–19. ACM (1988)

[DFK+06] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 15

[DGL15] Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equa-
tions automata for communicationless information theoretically secure
multi-party computation. In: Proceedings of the 3rd International Work-
shop on Security in Cloud Computing, pp. 21–29. ACM (2015)

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly Secure multiparty com-
putation and the computational overhead of cryptography. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 23

[DL16] Dolev, S., Li, Y.: Secret shared random access machine. In: Karydis, I.,
Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD 2015.
LNCS, vol. 9511, pp. 19–34. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29919-8 2

[DLY07] Dolev, S., Lahiani, L., Yung, M.: Secret Swarm Unit reactive k -secret
sharing. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT
2007. LNCS, vol. 4859, pp. 123–137. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-77026-8 10

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. Stanford University,
Stanford (2009)

[GHS12] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 28

[GHS16] Gentry, C.B., Halevi, S., Smart, N.P.: Homomorphic evaluation including
key switching, modulus switching, and dynamic noise management, 8
March 2016. US Patent 9,281,941

https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-319-29919-8_2
https://doi.org/10.1007/978-3-319-29919-8_2
https://doi.org/10.1007/978-3-540-77026-8_10
https://doi.org/10.1007/978-3-540-77026-8_10
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28

One-Round Secure Multiparty Computation 273

[GIKR02] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure
multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol.
2442, pp. 178–193. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45708-9 12

[IK02] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation
via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S.,
Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45465-9 22

[KN06] Kushilevitz, E., Nissan, N.: Communication Complexity. Cambridge Uni-
versity Press, United Kingdom (2006)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613
(1979)

[SV10] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13013-7 25

[VDGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 2

[XWZ+18] Jian, X., Wei, L., Zhang, Y., Wang, A., Zhou, F., Gao, C.: Dynamic
fully homomorphic encryption-based merkle tree for lightweight stream-
ing authenticated data structures. J. Netw. Comput. Appl. 107, 113–124
(2018)

https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

Brief Announcement: Gradual Learning
of Deep Recurrent Neural Network

Ziv Aharoni(B), Gal Rattner, and Haim Permuter

Ben-Gurion University, 8410501 Beer-Sheva, Israel
{zivah,rattner}@post.bgu.ac.il, haimp@bgu.ac.il

Abstract. Deep Recurrent Neural Networks (RNNs) achieve state-of-
the-art results in many sequence-to-sequence modeling tasks. However,
deep RNNs are difficult to train and tend to suffer from overfitting.
Motivated by the Data Processing Inequality (DPI) we formulate the
multi-layered network as a Markov chain, introducing a training method
that comprises training the network gradually and using layer-wise
gradient clipping. In total, we have found that applying our methods
combined with previously introduced regularization and optimization
methods resulted in improvement to the state-of-the-art architectures
operating in language modeling tasks.

Keywords: Data-processing-inequality · Machine-learning
Recurrent-neural-networks · Regularization · Training-methods

1 Introduction

Several forms of deep Recurrent Neural Network (RNN) architectures, such as
LSTM [7] and GRU [2], have achieved state-of-the-art results in many sequential
classification tasks [3,5,6,14,15,17] during the past few years. The number of
stacked RNN layers, i.e. the network depth, has key importance in extending
the ability of the architecture to express more complex dynamic systems [1,12].
However, training deeper networks poses problems that are yet to be solved.

In this paper, we suggest an approach that breaks the optimization process
into several learning phases. Each learning phase includes training an increas-
ingly deeper architecture than the previous ones. In this way, we gradually train
and extend the network depth, reducing the deleterious effects of degradation
and backpropagation problems. Additionally, by adjusting the appropriate train-
ing scheme (mainly the regularization) at every learning phase, we are able to
maximize the network performance even further.

2 Gradual Learning

2.1 Notation

Let us represent a network with l layers as a mapping from an input sequence
X ∈ X to an output sequence Ŷl ∈ Y by Ŷl = Sl ◦ fl ◦ fl−1 ◦ · · · ◦ f1(X;Θl),
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 274–277, 2018.
https://doi.org/10.1007/978-3-319-94147-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_21&domain=pdf

Brief Announcement: Gradual Learning of Deep Recurrent Neural Network 275

where the term Θl = {θ1, . . . , θl, θSl
} denotes the network parameters, such that

θk are the parameters of the kth layer. We also define the lth layer cost function
by J(Θl) = cost(Ŷl, Y), where θl = {θ1, . . . , θl}. Next, we define the gradient
vector with respect to J(Θ) by g = ∂

∂ΘJ(Θ), and the gradient vector of the
kth layer parameters with respect to J(Θ) by gk = ∂

∂θk
J(Θ).

2.2 Theoretical Motivation

The structure of a neural network comprises a sequential processing scheme of
its input. This structure constitutes the Markov chain Y −X −T1−T2−· · ·−TL.
The goal is to estimate PY |TL

(y|t) by QΘ
Y |TL

(y|t). Driven by the Markov relation
we state two theorems (without proofs due to space constraints).

Theorem 1 (Maximum Likelihood Estimator (MLE) and minimal
negative log-likelihood). Given a training set of N examples S =
{(xi, yi)}N

i=1 drawn i.i.d from an unknown distribution PX,Y = PXPY |X , the
MLE of QΘ

Y |TL
is given by PY |X and the optimal value of the criteria is H(Y |X).

Theorem 2. If QΘ
Y |TL

satisfies the optimality conditions of Theorem1, then
I(X;Y) = I(Tl;Y) ∀l = 1, . . . , L.

We show that by satisfying the optimality criteria of Theorem1 we necessarily
did not lose relevant information of Y by processing X to TL. In particular, we
show that a necessary condition to achieve the MLE is that the network states,
namely {Tl}L

l=1, will satisfy I(Y ;X) = I(Y ;Tl).

2.3 Implementation

Due to the fact that shallow networks are easier to train, we propose a greedy
training scheme, where we break the optimization process into L phases (as the
number of layers), optimizing J(Θl) sequentially as l increases from 1 to L. The
training scheme is depicted in Fig. 1.

3 Layer-Wise Gradient Clipping (LWGC)

Previous studies [4,8,13] have shown that covariate shift has a negative effect
on the training process among deep neural architectures. Covariate shift is the
change in a layer’s input distribution during training, also manifested as inter-
nal covariate shift. We suggest that treating each layer weights’ gradient vector
individually and clipping the gradients vector layer-wise can reduce internal
covariate shift significantly. LWGC for a network with L different layers is for-
mulated as

[
ĝT
1 , . . . , ĝT

L

]T
:=

[
μ1

max(μ1, ‖g1‖)
gT
1 , . . . ,

μN

max(μN , ‖gN‖)
gT

N

]T

. (1)

276 Z. Aharoni et al.

Fig. 1. Depiction of our training scheme for a 3 layered network. At phase 1
we optimize the parameters of layer 1 according to cost 1. At phase 2, we add layer 2
to the network, and then we optimize the parameters of layers 1, 2, when layer 1 is
copied from phase 1 and layer 2 is initialized randomly. At phase 3, we add layer 3 to
the network, and then we optimize all of the network’s parameters, when layers 1, 2
are copied from phase 2 and layer 3 is initialized randomly.

4 Experiments

We present results on a dataset from the field of natural language processing,
the PTB, conducted as a word-level dataset.

We conducted two models in our experiments, a reference model and a
GL-LWGC LSTM model that was used to check the performance of our meth-
ods. Our GL-LWGC LSTM model compared the state-of-the-art results with
only two layers and 19M parameters, and achieved state-of-the-art results with
the third layer phase. Results of the reference model and GL-LWGC LSTM
model are shown in Table 1.

Table 1. Single model validation and test perplexity of the PTB dataset

Model Size Valid Test

Zoph and Le [18] - NAS 25M - 64.0

Melis et al. [10] - 2-layer skip connection LSTM 24M 60.9 58.3

Merity et al. [11] - AWD-LSTM 24M 60.0 57.3

Yang et al. [16] - AWD-LSTM-MoS + finetune 22M 56.54 54.44

Ours - 2-layers GL-LWGC-AWD-MoS-LSTM + finetune 19M 55.18 53.54

Ours - GL-LWGC-AWD-MoS-LSTM + finetune 26M 54.24 52.57

Krause et al. [9] AWD-LSTM + dynamic evaluation 24M 51.6 51.1

Yang et al. [16] AWD-LSTM-MoS + dynamic evaluation 22M 48.33 47.69

Ours - GL-LWGC-AWD-MoS-LSTM + dynamic evaluation 26M 46.64 46.34

Brief Announcement: Gradual Learning of Deep Recurrent Neural Network 277

References

1. Bianchini, M., Scarselli, F.: On the complexity of neural network classifiers: a
comparison between shallow and deep architectures. IEEE Trans. Neural Netw.
Learn. Syst. (2014)

2. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches (2014). arXiv preprint
arXiv:1409.1259

3. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN Encoder-Decoder for
statistical machine translation (2014). arXiv preprint arXiv:1406.107

4. Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç., Courville, A.: Recurrent batch
normalization (2016). arXiv preprint arXiv:1603.09025

5. Ha, D., Dai, A., Le, Q.V.: Hypernetworks (2016). arXiv preprint arXiv:1609.09106
6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition

(2015). arXiv preprint arXiv:1512.03385
7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by

reducing internal covariate shift (2015). arXiv preprint arXiv:1502.03167
9. Krause, B., Kahembwe, E., Murray, I., Renals, S.: Dynamic evaluation of neural

sequence models (2017). arXiv preprint arXiv:1709.07432
10. Melis, G., Dyer, C., Blunsom, P.: On the State of the Art of Evaluation in Neural

Language Models. ArXiv e-prints, July 2017
11. Merity, S., Shirish Keskar, N., Socher, R.: Regularizing and Optimizing LSTM

Language Models. ArXiv e-prints, August 2017
12. Montufar, G., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions

of deep neural networks (2014). arXiv preprint arXiv:1402.1869
13. Shimodaira, H.: Improving predictive inference under covariate shift by weighting

the log-likelihood function. J. Stat. Plann. Infer. 90(2), 227–244 (2000)
14. Smith, L.N., Hand, E.M., Doster, T.: Gradual dropin of layers to train very deep

neural networks (2015). arXiv preprint arXiv:1511.06951
15. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-

tion and momentum in deep learning. In: Proceedings of the 30th International
Conference on International Conference on Machine Learning, ICML 2013, vol. 28,
pp. III-1139–III-1147 (2013). JMLR.org

16. Yang, Z., Dai, Z., Salakhutdinov, R., Cohen, W.W.: Breaking the softmax bottle-
neck: a high-rank RNN language model (2017). arXiv preprint arXiv:1711.03953

17. Zilly, J.G., Srivastava, R.K., Koutńık, J., Schmidhuber, J.: Recurrent highway net-
works (2016). arXiv preprint arXiv:1607.03474

18. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2016).
arXiv preprint arXiv:1611.01578

http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1406.107
http://arxiv.org/abs/1603.09025
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1709.07432
http://arxiv.org/abs/1402.1869
http://arxiv.org/abs/1511.06951
http://www.jmlr.org/
http://arxiv.org/abs/1711.03953
http://arxiv.org/abs/1607.03474
http://arxiv.org/abs/1611.01578

Brief Announcement: Adversarial Evasion
of an Adaptive Version of Western

Electric Rules

Oded Margalit1,2(B)

1 IBM Cybersecurity Center of Excellence, Beersheba, Israel
odedm@il.ibm.com

2 CS Department, BGU, Beersheba, Israel

https://researcher.watson.ibm.com/researcher/view.php?person=il-ODEDM

Abstract. Western-Electric are one of the earliest, and widely used,
anomaly detection rules. In this paper we describe an adaptive scenario
using these rules and show how a malicious player can optimally fabricate
data to deceive the algorithm to enlarge the standard deviation of the
data while avoiding being detected.

1 Introduction

Western Electric created rules to detect anomalies in time series. The rules were
first published on 1956 [1] and since then became a well accepted standard in
the industry. Examples of recent usage of these rules can be found, for example,
at [3,4]. These rules can be used, for example, for anomaly detection in Domain
Name System (DNS) requests; in HTTP traffic; for Data Leakage Prevention
(DLP); etc.

In Sect. 2 we define the rules; in Sect. 3 we define our own version (the adap-
tive version); in Sect. 4 we show how an adversary can attack the model; and in
Sect. 5 we summarize the work and give ideas for future work.

2 Western Electric Rules

Western Electric has four statistical process control rules that are aimed to detect
anomalies in normally distributed N(μ, σ) time series data:

(1) Any point outside of the [μ − 3σ, μ + 3σ] range.
(2) Two out of three consecutive points in the range [μ − 3σ, μ − 2σ) or two out

of three consecutive points in the range (μ + 2σ, μ + 3σ].
(3) Four out of five consecutive points in the range [μ − 2σ, μ − σ) or four out

of five consecutive points in the range (μ + σ, μ + 2σ].
(4) Nine consecutive points in the range (μ,∞) (above the average) or nine

consecutive points in the range (−∞,−μ) (below the average).

This work was not supported by any organization.

c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 278–282, 2018.
https://doi.org/10.1007/978-3-319-94147-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_22&domain=pdf

Brief Announcement: Adversarial Evasion of an Adaptive Version 279

These rules assume that the distribution of the measured values is normal
(otherwise, the Chebyshev’s inequality will give us weaker bounds on the proba-
bility of values far away from the mean) which might not be the case; but by the
central limit theory, when the data is aggregated, i.e. it is the average of many
independent random variables, it converges to a normal distribution.

3 Adaptive Model

Western Electric rules are designed to detect anomalies in data which has normal
distribution with known mean μ and standard deviation σ. So the usual use-case
is when you know the behavior of your data beforehand.

Sometimes the mean and the standard deviation is not known in advance.
A common practice in such cases, that we chose to investigate in this paper, is
a slightly modified model, where we estimate the average (μ) and the standard
deviation (σ) from the data itself. Let {xi}∞

i=1 be the values of the data series
and define expected average μ for t ≥ 1 to be

μt =
1
t

t∑

i=1

xi

and define the standard deviation σ for t > 1 to be

σt =

√∑t
i=1(xi − μt)2

t
.

For the (n + 1)th data-point we use μn and σn.

4 Adversarial Attack

Let’s assume that we are working in DLP domain (we can get similar results in
other domains). The attacker is trying to exfiltrate (leak) data out of a system
which is protected by Western-Electric rules which implement egress filtering by
monitoring the rate of data going out of the protected system. The attacker can
decide how much data (how many packets of information) she sends at any given
point in time. Her goal is to send as much data as possible, but without alerting
the defender by violating the Western-Electric rules. So her problem is to find xτ ,
the number of packets sent at time τ such that the sequence {xτ}t

τ=1 will pass
the rules while maximizing σt. The amount of data leaked is proportional to μt

but increasing σt is more important to the attacker since it will allow her more
degrees of freedom to manipulate data in the future.

Using the modified model of Sect. 3 we can fabricate data with extreme values
while avoiding detection. Before getting into the specific rules, we formulate and
prove a theorem:

280 O. Margalit

Theorem 1. If the sequence {xi}t
i=1 is defined as xn+1 = μn ± 3σn then σt is

the same regardless of the signs chosen in the process; where στ is the standard
deviation of the first τ values in the xi sequence.

Proof. If xn+1 = μn + ασn then

μn+1 =
1

n + 1

n+1∑

i=1

xi

=
1

n + 1

(
n∑

i=1

xi + xn+1

)

=
1

n + 1
(nμn + (μn + ασn))

= μn +
ασn

n + 1

So we can compute the new variance:

σ2
n+1 =

1
n + 1

n+1∑

i=1

(xi − μn+1)2

=
1

n + 1

(
n∑

i=1

(xi − (μn +
ασn

n + 1
))2

+ ((μn + ασn) − (μn +
ασn

n + 1
))2

)

=
1

n + 1

(
n∑

i=1

(
(xi − μn)2

−2(xi − μn)
ασn

n + 1
+

(
ασn

n + 1

)2
)

+
(

nασn

n + 1

)2
)

=
1

n + 1

(
nσ2

n − 2 · 0 · ασn

n + 1
+

nα2σ2
n

(n + 1)2

+
n2α2σ2

n

(n + 1)2

)

=
nσ2

n

n + 1

(
1 +

α2

(n + 1)2
+

nα2

(n + 1)2

)

=
nσ2

n

n + 1

(
1 +

α2

n + 1

)
.

If, as in our case, the αs are ±3, then the sign cancels out by the squaring
and the resulted sequence {σi}n

i=2 is the same regardless of the sign – so it

Brief Announcement: Adversarial Evasion of an Adaptive Version 281

does not matter if we make the data abnormal by letting rule number 1 almost
fire upwards (+3σ) or downwards (−3σ) – the drifted variance will be exactly
the same. �

Let’s start with the rules one by one.

(1) The simplest way to avoid the first rule is to keep the maximum possible
value all the time: each value xn+1 will be μn + 3σn. This way we can drift
the standard deviation as fast as possible without letting rule number 1 fire.

This will make both μt and σt as high as possible. As we saw earlier,
raising μt is nice but increasing σt is more important.

(2) The solution above will be caught by the second rule. To avoid this we must
have at least a one of every consecutive three be no more than 2σ away from
the average μ. Otherwise, using the pigeon-hole principle, at least two out
of the three will be on the same side. This one third bound is tight, as the
following sequence proves:

xn+1 =

⎧
⎨

⎩

μn − 3σn, n = 0 mod (3)
μn + 3σn, n = 1 mod (3)
μn − 2σn, n = 2 mod (3)

Note that there is a small difference between +3σ,−3σ,+2σ and
+2σ,+3σ,−3σ since careful examination of the proof of Theorem 1 shows
that when α is changing, the effect on σ changes.

(3) The sequence above passes the first two rules, but fails the third. This time
we can fix it without degrading the performance, by alternating the 2σ:

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

μn − 3σn, n = 0, 3 mod (6)
μn + 3σn, n = 1, 4 mod (6)
μn − 2σn, n = 2 mod (6)
μn + 2σn, n = 5 mod (6)

(4) The forth rule is ok — no need to change anything to bypass it.

5 Summary and Future Work

In this paper we’ve demonstrated a simple way to bypass an adaptive version of
half-a-century-old Western-Electric anomaly detection rules.

The original Western Electric rules were designed (and work great) under the
assumption that monitored data has normal distribution with known parame-
ters: expected value μ and standard deviation σ. Our revised model learns the
parameters and the lesson to learn from it is that adaptive algorithms are prune
to adversarial algorithms. New rules can be added, but it is a classic cat-and-
mouse game of changing the anomaly detection to catch the adversary and the
attacker changes his methods to avoid being caught.

As we saw, by the central limit theory, we can assume, in many realistic
scenarios, that the distribution is normal; but what can we say about non-normal
distribution?

282 O. Margalit

Western-Electric rules are not the only set of anomaly detection rules. One
can try to achieve similar results on other set of rules, like, for example, Nelson
Rules [2].

Another research direction – find an elegant proof for Theorem 1.

Acknowledgment. I’d like to thank the anonymous referees for their helpful remarks,
which helped me to improve this paper.

References

1. Western Electric Company: Statistical Quality Control Handbook. Western Electric
Co, Indianapolis (1956)

2. Nelson, L.S.: The Shewhart control chart tests for special causes. J. Qual. Technol.
16, 237–239 (1984)

3. Romano, M., Kapelan, Z., Savic, D.: Automated detection of pipe bursts and other
events in water distribution systems. American Society of Civil Engineers (2012)

4. Lovell, D.P., Fellows, M., Marchetti, F., Christiansen, J., Elhajouji, A., Hashimoto,
K., Kasamoto, S., Li, Y., Masayasu, O., Moore, M.M., Schuler, M., Smith, R.,
Stankowski, L.F., Tanaka, J., Tanir, J.Y., Thybaud, V., Van Goethem, F., Whitwell,
J.: Analysis of negative historical control group data from the in vitro micronucleus
assay using TK6 cells. Mutation Res./Genet. Toxicol. Environ. Mutagen. 825, 40–50
(2018)

Brief Announcement: Deriving Context
for Touch Events

Moran Azran, Niv Ben Shabat, Tal Shkolnik, and Yossi Oren(B)

Department of Software and Information Systems Engineering, Ben Gurion
University, Beer Sheva, Israel

{azranmo,nivb,talshko,yos}@post.bgu.ac.il

Abstract. To quantify the amount of high-level context information
which can be derived by observing only a user’s touchscreen interactions,
we performed a user study, in which we recorded 160 touch interaction
sessions from users running different applications, and then applied both
classical machine learning methods and deep learning methods to the
results. Our results show that it is possible to derive higher-level user
context information based on touch events alone, validating the efficacy
of touch injection attacks.

Keywords: Machine learning · Malicious hardware · Smart phone

1 Introduction

Smart phone touchscreens are often produced by third-party manufacturers and
not by the phone vendors themselves. According to a 2015 study, more than 50%
of global smartphone owners have damaged their phone screen at least once, and
21% of global smartphone owners are currently using a phone with a cracked or
shattered screen [1]. These shattered screens are often replaced with aftermarket
components of questionable origin. In [2,3], Shwartz et al. showed how malicious
touchscreen hardware can launch a touch injection attack that allows the
touchscreen to impersonate the user and exfiltrate data. One limitation of this
attack approach is that the attacker knows the position and timing of touches on
the victim’s screen, but does not have any higher-level contextual information
such as the user’s current activity or current running application.

The main objective of our research is to quantify the amount of high-level
context information the attacker can derive by observing only the user’s touch-
screen interactions. If an attacker can understand the context of certain events,
he can use this information to create a customized attack which will be more
effective. For example, the attacker can know when he should steal informa-
tion from the user or to insert malicious touches. To quantify the amount of
high-level context information which can be derived by observing only a user’s
touchscreen interactions, we performed a user study, in which we recorded 160
touch interaction sessions from users running different applications.

This research was supported by Israel Science Foundation grants 702/16 and 703/16.
c© Springer International Publishing AG, part of Springer Nature 2018
I. Dinur et al. (Eds.): CSCML 2018, LNCS 10879, pp. 283–286, 2018.
https://doi.org/10.1007/978-3-319-94147-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94147-9_23&domain=pdf

284 M. Azran et al.

2 Method and Results

2.1 Experiment Setup

The experiment was conducted on a group of third year university students. In
the first part of the experiment, the subjects were required to fill in a personal
survey which included questions such as: age, gender, which hand do you usually
hold the cell phone? Do you usually hold the cell phone with both hands? when
did you last play on your cell phone? When was the last time you drank coffee?
In addition, subjects were asked whether they knew certain games. In the second
stage of the experiment, each subject was asked to record four different touch
interaction sessions on the test phone. First, the subjects were asked to play the
game “Color Infinity”. The objective of this game is to pass the ball through
various obstacles. The game included fast and short touches around the screen.
Next, subjects were required to play a game called “Bricks”. The objective of this
game is to move the bricks to the appropriate color when at some point the color
of the brick changes. This game includes continuous screen touches. When the
subjects finished playing games, the subjects were asked to launch the phone’s
web browser and perform a web search by typing the word “Facebook” in the
browser search bar. Finally, the subjects were asked to enter an e-mail application
on the cell phone and send an e-mail containing a subject and content line.

2.2 Machine Learning Methods

Feature Selection: The features we selected for classical machine learning were
derived from the features described in [4], including median velocity of the five
last points of the trajectory, mean resultant length, largest absolute perpendicu-
lar distance between the end-to-end connection, stroke duration and inter stroke
time. We augmented the feature set of [4] with three additional features sug-
gested by Meng et al. in [5]: average touch movement speed per direction, aver-
age single-touch/multi-touch time and number of touch movements per stroke
(NTM).

Classifier Selection: We evaluated multiple ML models, including Logistic
Regression, Linear Discriminant Analysis, K Nearest Neighbors, Decision Tree,
Gaussian Naive Bayes, Random Forest and Quadratic Discriminant Analysis.
All models were instantiated using their default parameters. To compare the
performance of classical ML algorithms with deep learning algorithms, we also
analyzed the raw touch information using a deep learning convolutional neural
network (CNN). Our CNN had three Conv1D layers, three MaxPool1D layers
and a final softmax activation layer.

2.3 Data Collection and Initial Processing

Data collection was conducted on 01/03/2018 during a university hackathon
event. We collected 153 touch recordings from 40 different subjects. The exper-
iment took 4 h in total. To record the touches, we used a specially modified LG

Brief Announcement: Deriving Context for Touch Events 285

Table 1. Performance of classical
machine learning classifiers

Algorithm Prediction rate
Logistic Regression 0.8954
Linear Discriminant Analysis 0.9215
KNeighbors 0.8039
Decision Tree 0.8692
GaussianNB 0.9281
Random Forest 0.9019
Quadratic Discriminant Analysis 0.8954

Table 2. Predictor ranks for context recog-
nition (as output by the relieff algorithm)

Predictor
rank

Feature Predictor
importance weight

1 Stop_Y 0.1938
2 Y_Avg 0.1913
3 Stop_X 0.1790
4 Stroke_Duration 0.1275
5 Start_X 0.0978
6 Start_Y 0.0895
7 Pressure_Avg 0.0634
8 X_Avg 0.0575

Nexus 5X Android phone. The phone was modified at the root-kit level with a
touch recording functionality, which runs in the background and outputs a CSV
file with the touch screen locations, pressure and timestamp. Data from the
phone was downloaded to a workstation running Matlab and Python for further
analysis. For classical machine learning we used Matlab’s Classification Learner
tool any Python’s scikit-learn toolkit. For deep learning we used the TensorFlow
framework running on Python.

2.4 Machine Learning Results

The performance of the classical machine learning classifiers is summarized in
Table 1. The classical machine learning classifiers were highly effective in deter-
mining the activity context of the user from the supplied touch data, with the
best-performing classifier (Linear Discriminant Analysis) providing a prediction
rate of over 92% over the 4 activity contexts evaluated. The relative ranking
of the different features, as output by the relieff algorithm, is summarized in
Table 2, and shows that the most significant features are the final Y coordinate
and the average Y coordinate of each stroke.

We ran our deep learning classifier on the raw data with 30 epochs and a 90–
10 validation_split. The deep learning classifier was able to detect the correct
activity 87.5% of the time on the validation set, a level of performance similar
to that of the classical methods.

3 Conclusion

Our results show that it is possible to derive higher-level user context information
based on touch events alone, validating the efficacy of touch injection attacks.
Applying touch context analysis on the defensive side can also have a benefit,
since it can prevent attacks by identifying anomalous interaction and therefore
protect against abnormal use of the phone.

286 M. Azran et al.

References

1. Motorola Mobility. Cracked screens and broken hearts - the 2015 motorola global
shattered screen survey. https://community.motorola.com/blog/cracked-screens-
and-broken-hearts

2. Shwartz, O., Shitrit, G., Shabtai, A., Oren, Y.: From smashed screens to smashed
stacks: attacking mobile phones using malicious aftermarket parts. In: 2017 IEEE
European Symposium on Security and Privacy Workshops, EuroS&P Workshops
2017, Paris, France, 26–28 April 2017, pp. 94–98. IEEE (2017)

3. Shwartz, O., Cohen, A., Shabtai, A., Oren, Y.: Shattered trust: when replacement
smartphone components attack. In: Enck, W., Mulliner, C. (eds.) 11th USENIX
Workshop on Offensive Technologies, WOOT 2017, Vancouver, BC, Canada, 14–15
August 2017. USENIX Association (2017)

4. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the appli-
cability of touchscreen input as a behavioral biometric for continuous authentication.
IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)

5. Meng, Y., Wong, D.S., Schlegel, R., Kwok, L.: Touch gestures based biometric
authentication scheme for touchscreen mobile phones. In: Kutyłowski, M., Yung,
M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 331–350. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38519-3_21

https://community.motorola.com/blog/cracked-screens-and-broken-hearts
https://community.motorola.com/blog/cracked-screens-and-broken-hearts
https://doi.org/10.1007/978-3-642-38519-3_21

Author Index

Aharoni, Ziv 274
Arroyo, David 206
Azran, Moran 283

Ben Adar Bessos, Mai 188
Bitan, Dor 255
Bittner, Daniel M. 20
Brafman, Ronen I. 243

Chatzigiannakis, Ioannis 101
Choi, Seung Geol 206
Cohen, Alejandro 129
Cohen, Asaf 129
Cukier, Alexandre 243

De Oliveira Nunes, Ivan 162
Derbeko, Philip 105
Diaz, Jesus 206
Dolev, Shlomi 84, 105, 255
Domb, Menachem 181
Dunkelman, Orr 6

Eldefrawy, Karim 162
Etzion, Opher 227

Frenkel, Sergey 184

Georgiou, Chryssis 84
Gudes, Ehud 55, 105
Gurewitz, Omer 129

Hadar, Ofer 68
Herzberg, Amir 188

Keromytis, Angelos D. 206

Lepoint, Tancrède 162
Leshem, Guy 181
Liagkou, Vasiliki 101

Marcoullis, Ioannis 84
Margalit, Oded 278

Nachum, Shay 227

Oren, Yossi 283

Perkal, Yotam 243
Permuter, Haim 120, 274
Perumal, Zara 144

Rattner, Gal 274
Rodriguez, Francisco B. 206

Sadot, Dan 1
Sarwate, Anand D. 20
Schiller, Elad M. 84
Schuster, Assaf 227
Segal, Yoram 68
Shabat, Niv Ben 283
Shkolnik, Tal 283
Shoham, Ron 120
Spirakis, Paul G. 101
Starobinski, David 38

Tiwari, Trishita 38
Tolpin, David 243
Trachtenberg, Ari 38

Veeramachaneni, Kalyan 144
Vilenchik, Dan 68
Voloch, Nadav 55

Weizman, Ariel 6
Wohlgemuth, Eyal 1
Wright, Rebecca N. 20

Yeminy, Tomer 1
Yung, Moti 206

Zakharov, Victor 184
Zalevsky, Zeev 1

	Preface
	Organization
	Contents
	Optical Cryptography for Cyber Secured and Stealthy Fiber-Optic Communication Transmission
	Abstract
	1 Short Description
	2 Conclusions
	References

	Efficient Construction of the Kite Generator Revisited
	1 Introduction
	2 Notations and Definitions
	3 The Kite Generator
	3.1 The Attack's Steps
	3.2 The Attack Complexity

	4 A Problem in the Construction of the Kite Generator
	4.1 On the Inaccuracy of Andreeva et al.'s Analysis

	5 A New Method for Constructing Kite Generators
	6 Adapting Our New Method to Dithered Merkle-DamgåRd
	6.1 Dithered Merkle-DamgåRd
	6.2 Adapting the Kite Generator to Dithering Sequence
	6.3 Adapting Our Method
	6.4 Improvement II

	7 Summary
	References

	Using Noisy Binary Search for Differentially Private Anomaly Detection
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Data Model
	3.2 Differential Privacy

	4 Algorithms
	4.1 Warmup: Randomized Response
	4.2 Proposed Algorithm: Differentially Private Binary Search
	4.3 Finding the Output

	5 Analysis
	6 Experimental Results
	6.1 Dataset
	6.2 Procedure
	6.3 Results

	7 Discussion
	References

	Distributed Web Mining of Ethereum
	1 Introduction
	2 Background
	2.1 Cryptocurrencies: A General Overview
	2.2 Ethereum Proof of Work
	2.3 JavaScript and WebAssembly

	3 WebEth
	3.1 Lazy Evaluation
	3.2 Implementation
	3.3 Performance Analysis

	4 Results
	4.1 Experimental Set up
	4.2 Implementation Results

	5 Potential Applications
	6 Conclusion
	References

	An Information-Flow Control Model for Online Social Networks Based on User-Attribute Credibility and Connection-Strength Factors
	Abstract
	1 Introduction
	2 Background and Related Work
	3 OSN Information-Flow Control Model
	3.1 Description of the Flow-Control Problem
	3.2 OSN Graph Definitions for the Model
	3.3 The User-Credibility and Connection-Strength Attributes
	3.4 Values for the Variables
	3.5 Assigning the Values to the OSN Graph
	3.6 Algorithm for Determining an Acquaintance or an Adversary

	4 Discussion
	5 Conclusion and Future Work
	References

	Detecting and Coloring Anomalies in Real Cellular Network Using Principle Component Analysis
	Abstract
	1 Introduction
	2 Anomaly Detection Technics
	3 Creating an Anomaly Database
	4 Experiments and Results
	4.1 Time-Period Traffic Analysis
	4.2 Congestion Traffic Analysis
	4.3 Geographical Traffic Analysis

	5 Reliability and Validity
	6 Conclusions and Future Directions
	References

	Self-stabilizing Byzantine Tolerant Replicated State Machine Based on Failure Detectors
	1 Introduction
	2 System Settings
	3 Self-stabilizing BFT State Machine Replication
	3.1 View Establishment
	3.2 State Replication Algorithm
	3.3 Primary Monitoring

	4 Extensions
	4.1 Relaxing the Assumption of Mal-Free Execution in View Establishment
	4.2 Optimality

	5 Conclusion
	References

	Brief Announcement: Providing End-to-End Secure Communication in Low-Power Wide Area Networks
	1 Introduction to Security Issues and Vulnerabilities in LPWAN
	2 An End-to-End Secure Communication Scheme
	References

	Privacy via Maintaining Small Similitude Data for Big Data Statistical Representation
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Privacy Preserving Data Reduction
	4.1 Haar Wavelet Transform
	4.2 Single-Node Queries: Pruning with Differential Privacy in Mind
	4.3 Simulation Results
	4.4 Multi-range Counting Queries
	4.5 General Multi-range Queries

	5 Conclusion
	References

	Highway State Gating for Recurrent Highway Networks: Improving Information Flow Through Time
	1 Introduction
	2 Related Work
	3 Revisiting Vanilla Recurrent Highway Networks
	4 Highway State Gate in Time
	5 Results
	6 Conclusion
	References

	Secured Data Gathering Protocol for IoT Networks
	1 Introduction
	2 System Model
	3 Related Works
	4 Secure WSN Data Collecting Protocol Design
	5 Model Formulation and Transmission Process
	6 Code Construction and Decoding at the Sink
	6.1 Codebook Generation
	6.2 Decoding at the Sink
	6.3 Reliability

	7 Conclusions
	References

	Towards Building Active Defense Systems for Software Applications
	1 Introduction
	2 Malware Through PDFs
	2.1 PDF Malware Detection

	3 Synthesizing Training Data
	4 Learning Models from Training Data
	5 A Tunable Decision System
	5.1 Bi-level Decision Function
	5.2 Hierarchical Tunable Decision System
	5.3 Cost Function
	5.4 Tuning Algorithm

	6 Adapting over Time
	7 Experimental Setup
	7.1 Results

	8 Discussion and Future Work
	8.1 Conclusion

	References

	Secure Non-interactive User Re-enrollment in Biometrics-Based Identification and Authentication Systems
	1 Introduction
	2 Background
	2.1 Biometrics-Based Authentication
	2.2 Secret Sharing
	2.3 Secure Multi-party Computation (MPC)
	2.4 Fuzzy Vault Scheme

	3 The SNUSE Approach
	3.1 Initial User Enrollment
	3.2 User Authentication
	3.3 Non-interactive User Re-enrollment
	3.4 Using MPC to Generate the HD
	3.5 Secret (k) Confidentiality Discussion

	4 Related Work
	5 Conclusion and Future Work
	References

	Brief Announcement: Image Authentication Using Hyperspectral Layers
	Abstract
	1 Introduction
	2 Literature Review
	3 The Proposed System
	4 Experiment of the Proposed Process
	5 Conclusions and Future Work
	References

	Brief Announcement: Graph-Based and Probabilistic Discrete Models Used in Detection of Malicious Attacks
	Abstract
	1 Introduction
	2 Automaton Based Malicious Attack Model
	3 Examples of Joint Use of the Markov Model and Similarity Metric Based Models
	Acknowledgements
	References

	Intercepting a Stealthy Network
	1 Introduction
	2 The 2D Stealthy Network Model
	2.1 Destination-Search Environments

	3 Introducing Interceptors Algorithms
	4 Divide and Conquer Interceptors Algorithm
	4.1 Preliminaries: Ranges and Walls
	4.2 Divide And Conquer Algorithm

	5 Evaluation and Results
	6 Conclusions and Extensions
	References

	Privacy in e-Shopping Transactions: Exploring and Addressing the Trade-Offs
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	3 System with a High Level of Privacy and Less Functionalities
	3.1 Privacy Goal
	3.2 Approach for Privacy-Enhancements

	4 Privacy-Enhanced System with Richer Functionality
	4.1 Our Approach
	4.2 System Description
	4.3 Security
	4.4 Outline of the Methodology and Experiments Summary

	5 Conclusion
	References

	Detection in the Dark – Exploiting XSS Vulnerability in C&C Panels to Detect Malwares
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Main Concept
	3.2 Detection Methodology

	4 Implementation
	4.1 PhoeniXSS

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Procedure

	6 Countermeasures and False-Positive
	7 Conclusion and Future Work
	References

	A Planning Approach to Monitoring Computer Programs' Behavior
	1 Introduction
	2 Related Work
	3 Background
	3.1 AI Planning

	4 Our Approach
	5 Empirical Evaluation
	5.1 Data Collection

	6 Discussion and Future Work
	References

	One-Round Secure Multiparty Computation of Arithmetic Streams and Functions
	1 Introduction
	2 Stream Computation
	3 SMPC of Arithmetic Functions in One Round of Communication
	4 Extensions
	5 Security
	6 Conclusions
	References

	Brief Announcement: Gradual Learning of Deep Recurrent Neural Network
	1 Introduction
	2 Gradual Learning
	2.1 Notation
	2.2 Theoretical Motivation
	2.3 Implementation

	3 Layer-Wise Gradient Clipping (LWGC)
	4 Experiments
	References

	Brief Announcement: Adversarial Evasion of an Adaptive Version of Western Electric Rules
	1 Introduction
	2 Western Electric Rules
	3 Adaptive Model
	4 Adversarial Attack
	5 Summary and Future Work
	References

	Brief Announcement: Deriving Context for Touch Events
	1 Introduction
	2 Method and Results
	2.1 Experiment Setup
	2.2 Machine Learning Methods
	2.3 Data Collection and Initial Processing
	2.4 Machine Learning Results

	3 Conclusion
	References

	Author Index

