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Abstract. Incremental linearization is a conceptually simple, yet effec-
tive, technique that we have recently proposed for solving SMT prob-
lems over nonlinear real arithmetic constraints. In this paper, we show
how the same approach can be applied successfully also to the harder
case of nonlinear integer arithmetic problems. We describe in detail our
implementation of the basic ideas inside the MathSAT SMT solver, and
evaluate its effectiveness with an extensive experimental analysis over all
nonlinear integer benchmarks in SMT-LIB. Our results show that Math-
SAT is very competitive with (and often outperforms) state-of-the-art
SMT solvers based on alternative techniques.

1 Introduction

The field of Satisfiability Modulo Theories (SMT) has seen tremendous progress
in the last decade. Nowadays, powerful and effective SMT solvers are available
for a number of quantifier-free theories1 and their combinations, such as equal-
ity and uninterpreted functions (UF), bit-vectors (BV), arrays (AX), and linear
arithmetic over the reals (LRA) and the integers (LIA). A fundamental chal-
lenge is to go beyond the linear case, by introducing nonlinear polynomials –
theories of nonlinear arithmetic over the reals (NRA) and the integers (NIA).
Although the expressive power of nonlinear arithmetic is required by many appli-
cation domains, dealing with nonlinearity is a very hard challenge. Going from
SMT(LRA) to SMT(NRA) yields a complexity gap that results in a computa-
tional barrier in practice – most available complete solvers rely on Cylindrical
Algebraic Decomposition (CAD) techniques [8], which require double exponen-
tial time in worst case. Adding integrality constraints exacerbates the problem
even further, because reasoning on NIA has been shown to be undecidable [16].
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Recently, we have proposed a conceptually simple, yet effective approach for
dealing with the quantifier-free theory of nonlinear arithmetic over the reals,
called Incremental Linearization [4–6]. Its underlying idea is that of trading
the use of expensive, exact solvers for nonlinear arithmetic for an abstraction-
refinement loop on top of much less expensive solvers for linear arithmetic and
uninterpreted functions. The approach is based on an abstraction-refinement
loop that uses SMT(UFLRA) as abstract domain. The uninterpreted functions
are used to model nonlinear multiplications, which are incrementally axioma-
tized, by means of linear constraints, with a lemma-on-demand approach.

In this paper, we show how incremental linearization can be applied suc-
cessfully also to the harder case of nonlinear integer arithmetic problems. We
describe in detail our implementation of the basic ideas, performed within the
MathSAT [7] SMT solver, and evaluate its effectiveness with an extensive exper-
imental analysis over all NIA benchmarks in SMT-LIB. Our results show that
MathSAT is very competitive with (and often outperforms) state-of-the-art
SMT solvers based on alternative techniques.

Related Work. Several SMT solvers supporting nonlinear integer arithmetic
(e.g., Z3 [10], smt-rat [9]) rely on the bit-blasting approach [12], in which a
nonlinear integer satisfiability problem is iteratively reduced to a SAT problem
by first bounding the integer variables, and then encoding the resulting problem
into SAT. If the SAT problem is unsatisfiable then the bounds on the integer
variables are increased, and the process is repeated. This approach is geared
towards finding models, and it cannot prove unsatisfiability unless the problem
is bounded.

In [3], the SMT(NIA) problem is approached by reducing it to SMT(LIA)
via linearization. The linearization is performed by doing case analysis on the
variables appearing in nonlinear monomials. Like the bit-blasting approach, the
method aims at detecting satisfiable instances. If the domain of the problem is
bounded, the method generates an equisatisfiable linear SMT formula. Other-
wise, it solves a bounded problem and incrementally increases the bounds of some
(heuristically chosen) variables until it finds a solution to the linear problem. In
some cases, it may also detect (based on some heuristic) the unsatisfiability of
the original problem.

The CVC4 [1] SMT solver uses a hybrid approach, in which a variant of
incremental linearization (as presented in [5,17]) is combined with bit-blasting.

Recent works presented in [13] and [15] have considered a method that com-
bines solving techniques for SMT(NRA) with branch and bound. The main
idea is to relax the NIA problem by interpreting the variables over the reals,
and apply NRA techniques for solving it. Since the relaxed problem is an over-
approximation of the original problem, the unsatisfiability of the NIA problem
is implied by the unsatisfiability of the NRA problem. If the NRA-solver finds
a non-integral solution a to a variable x, then a lemma (x ≤ �a� ∨ x ≥ �a�)
is added to the NRA problem. Otherwise, an integral solution is found for the
NIA problem. In [13], the Cylindrical Algebraic Decomposition (CAD) procedure
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(as presented in [14]) is combined with branch and bound in the MCSAT frame-
work. This is the method used by the Yices [11] SMT solver. In [15], the authors
show how to combine CAD and virtual substitution with the branch-and-bound
method in the DPLL(T ) framework.

Contributions. Compared to our previous works on incremental lineariza-
tion [4–6], we make the following contributions. First, we give a significantly
more detailed description of our implementation (in the SMT solver Math-

SAT), showing pseudo-code for all its major components. Second, we evaluate
the approach over NIA problems, both by comparing it with the state of the
art, and by evaluating the contributions of various components/heuristics of our
procedure to its overall performance.

Structure of the Paper. This paper is organized as follows. In §2 we provide
some background on the ideas of incremental linearization. In §3 we describe our
implementation in detail. In §4 we present our experimental evaluation. Finally,
in §5 we draw some conclusions and outline directions for future work.

2 Background

We assume the standard first-order quantifier-free logical setting and standard
notions of theory, satisfiability, and logical consequence.

We denote with Z the set of integer numbers. A monomial in variables
v1, v2, . . . , vn is a product vα1

1 ∗ vα2
2 ∗ . . . ∗ vαn

n , where each αi is a non-negative
integer called exponent of the variable vi. When clear from context, we may omit
the multiplication symbol ∗ and simply write vα1

1 vα2
2 . . . vαn

n . A polynomial p is a
finite linear combination of monomials with coefficients in Z, i.e., p

def= Σn
i=0cimi

where each ci ∈ Z and each mi is a monomial. A polynomial constraint or simply
constraint P is of the form p �� 0 where p is a polynomial and �� ∈ {<,≤, >,≥}.2

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfi-
ability of a first-order formula with respect to some theory or combination of
theories. Most SMT solvers are based on the lazy/DPLL(T ) approach [2], where
a SAT solver is tightly integrated with a T -solver, that is demanded to decide the
satisfiability of a list of constraints (treated as a conjunction of constraints) in
the theory T . There exist several theories that the modern SMT solvers support.
In this work we are interested in the following theories: Equality and Uninter-
preted Functions (UF), Linear Arithmetic and Nonlinear Arithmetic over the
integers (LIA and NIA, resp.), and in their combinations thereof.

We denote formulas with ϕ, lists of constraints with φ, terms with t, variables
with v, constants with a, b, c, monomials with w, x, y, z, polynomials with p,
functions with f , each possibly with subscripts. If μ is a model and v is a variable,
2 In the rest of the paper, for simplifying the presentation we assume that an equal-

ity constraint is written as a conjunction of weak inequality constraints, and an
inequality constraint is written as a disjunction of strict inequality constraints.
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Basic: Sign: v1 ∗ v2 = (−v1 ∗ −v2)

v1 ∗ v2 = −(−v1 ∗ v2)

v1 ∗ v2 = −(v1 ∗ −v2)

Zero: (v1 = 0 ∨ v2 = 0) ↔ v1 ∗ v2 = 0

((v1 > 0 ∧ v2 > 0) ∨ (v1 < 0 ∧ v2 < 0)) ↔ v1 ∗ v2 > 0

((v1 < 0 ∧ v2 > 0) ∨ (v1 > 0 ∧ v2 < 0)) ↔ v1 ∗ v2 < 0

Neutral: (v1 = 1 ∨ v2 = 0) ↔ v1 ∗ v2 = v2

(v2 = 1 ∨ v1 = 0) ↔ v1 ∗ v2 = v1

Proportionality: |v1 ∗ v2| ≥ |v2| ↔ (|v1| ≥ 1 ∨ v2 = 0)

|v1 ∗ v2| ≤ |v2| ↔ (|v1| ≤ 1 ∨ v2 = 0)

|v1 ∗ v2| ≥ |v1| ↔ (|v2| ≥ 1 ∨ v1 = 0)

|v1 ∗ v2| ≤ |v1| ↔ (|v2| ≤ 1 ∨ v1 = 0)
Order: (v1 ∗ v2 �� v3 ∧ v4 > 0) → v1 ∗ v2 ∗ v4 �� v3 ∗ v4

(v1 ∗ v2 �� v3 ∧ v4 < 0) → v3 ∗ v4 �� v1 ∗ v2 ∗ v4
Monotonicity: (|v1| ≤ |v2| ∧ |v3| ≤ |v4|) → |v1 ∗ v3| ≤ |v2 ∗ v4|

(|v1| < |v2| ∧ |v3 ≤ |v4| ∧ v4 	= 0) → |v1 ∗ v3| < |v2 ∗ v4|
(|v1| ≤ |v2| ∧ |v3| < |v4| ∧ v2 	= 0) → |v1 ∗ v3| < |v2 ∗ v4|

Tangent plane: v1 = a → v1 ∗ v2 = a ∗ v2

v2 = b → v1 ∗ v2 = b ∗ v1

(v1 > a ∧ v2 < b) → v1 ∗ v2 < b ∗ v1 + a ∗ v2 − a ∗ b

(v1 < a ∧ v2 > b) → v1 ∗ v2 < b ∗ v1 + a ∗ v2 − a ∗ b

(v1 < a ∧ v2 < b) → v1 ∗ v2 > b ∗ v1 + a ∗ v2 − a ∗ b

(v1 > a ∧ v2 > b) → v1 ∗ v2 > b ∗ v1 + a ∗ v2 − a ∗ b

Fig. 1. Axioms of the multiplication function.

we write μ[v] to denote the value of v in μ, and we extend this notation to terms
and formulas in the usual way. If φ is a list of constraints, we write

∧
φ to denote

the formula obtained by taking the conjunction of all its elements.
We call a monomial m a toplevel monomial in a polynomial p

def= Σn
i=0cimi if

m = mj for 0 ≤ j ≤ n. Similarly, a monomial m is a toplevel monomial in ϕ if
there exists a polynomial p in ϕ such that m is a toplevel monomial in p. Given
ϕ, we denote with ϕ̂ the formula obtained by replacing every nonlinear multi-
plication between two monomials x ∗ y occurring in ϕ by a binary uninterpreted
function f∗(x, y).

We assume that the polynomials in ϕ are normalized by applying the dis-
tributivity property of multiplication over addition, and by sorting both the
monomials and the variables in each monomial using a total order (e.g. lex-
icographic). Moreover, we always rewrite negated polynomial constraints into
negation-free polynomial constraints by pushing the negation to the arithmetic
relation (e.g., we write ¬(p ≤ 0) as (p > 0)).
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result check-nia (φ : constraint list):
1. res = check-uflia(φ̂):
2. if res-is-false(res):
3. return res
4. μ = res-get-model (res)
5. to refine = ∅
6. φ′ = {c | c ∈ φ and eval-model(μ, c) = ⊥}
7. for each x ∗ y in φ′:
8. if eval-model(μ, x ∗ y) 	= μ[x̂ ∗ y]:
9. to refine = to refine ∪ {x ∗ y}
10. if to refine = ∅:
11. return 〈true, μ〉
12. res = check-sat(φ, μ)
13. if res-is-true(res):
14. return res
15. lemmas = ∅
16. for round in 〈1, 2, 3〉:
17. for each x ∗ y in to refine:
18. L = generate-lemmas(x ∗ y, μ, round, to refine, φ)
19. lemmas = lemmas ∪ L

20. if lemmas 	= ∅:
21. return 〈undef, lemmas〉
22. return 〈unknown〉

Fig. 2. The top-level NIA theory solver procedure.

Overview of Incremental Linearization. The main idea of incremental lin-
earization is to trade the use of expensive, exact solvers for nonlinear arithmetic
for an abstraction-refinement loop on top of much less expensive solvers for lin-
ear arithmetic and uninterpreted functions. First, the input SMT(NIA) formula
ϕ is abstracted to the SMT(UFLIA) formula ϕ̂ (called its UFLIA-abstraction).
Then the loop begins by checking the satisfiability of ϕ̂. If the SMT(UFLIA)
check returns false then the input formula is unsatisfiable. Otherwise, the model
μ for ϕ̂ is used to build an UFLIA underapproximation ϕ̂∗ of ϕ, with the aim
of finding a model for the original NIA formula ϕ. If the SMT check for ϕ̂∗ is
satisfiable, then ϕ is also satisfiable. Otherwise, a conjunction of linear lemmas
that is sufficient to rule out the spurious model μ is added to ϕ̂, thus improving
the precision of the abstraction, and another iteration of the loop is performed.
The lemmas added are instances of the axioms of Fig. 1 obtained by replacing
the free variables with terms occurring in ϕ, selected among those that evaluate
to false under the current spurious model μ.

3 Implementing Incremental Linearization in a Lazy
SMT Solver

We now describe in detail our implementation of the basic incremental lineariza-
tion ideas as a theory solver inside an SMT prover based on the lazy/DPLL(T )
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value eval-model (μ : model, t : term):
1. match t with
2. x �� y: return (eval-model(μ, x) �� eval-model(μ, y) ? � : ⊥)
3. x ∗ y: return eval-model(μ, x) ∗ eval-model(μ, y)
4. x + y: return eval-model(μ, x) + eval-model(μ, y)
5. c ∗ x: return c ∗ eval-model(μ, x)
6. v : return μ[v]
7. c : return c

Fig. 3. Recursive model evaluation.

result check-sat (φ : constraint list, μ : UFLIA-model):
1. ϕ =

∧
φ

2. for each x ∗ y in ϕ:
3. cx = eval-model(μ, x)
4. cy = eval-model(μ, y)
5. ϕ = ϕ ∧ ((x ∗ y = cx ∗ y ∧ x = cx) ∨ (x ∗ y = cy ∗ x ∧ y = cy))
6. return smt-uflia-solve (ϕ̂)

Fig. 4. Searching for a model via linearization.

approach. The pseudo-code for the toplevel algorithm is shown in Fig. 2. The
algorithm takes as input a list of constraints φ, corresponding to the NIA con-
straints in the partial assignment that is being explored by the SAT search, and
it returns a result consisting of a status flag plus some additional information
that needs to be sent back to the SAT solver. If the status is true, then φ is
satisfiable, and a model μ for it is also returned. If the status is false, then
φ is unsatisfiable, and a conflict set φ′ ⊆ φ (serving as an explanation for the
inconsistency of φ) is also returned. If the status is undef, the satisfiability of
φ cannot be determined yet. In this case, the returned result contains also a set
of lemmas to be used by the SAT solver to refine its search (i.e. those lemmas
are learnt by the SAT solver, and the search is resumed). Finally, a status of
unknown means that the theory solver can neither determine the satisfiability
of φ nor generate additional lemmas3; in this case, the search is aborted.

check-nia starts by invoking a theory solver for UFLIA on the abstract
version φ̂ of the input problem (lines 1–4), in which all nonlinear multiplications
are treated as uninterpreted functions. The unsatisfiability of φ̂ immediately
implies that φ is inconsistent. Otherwise, the UFLIA solver generates a model μ
for φ̂. μ is then used (lines 5–9) to determine the set of nonlinear multiplications
that need to be refined. This is done by collecting all nonlinear multiplication
terms x ∗ y which have a wrong value in μ; that is, for which the value of the
abstraction x̂ ∗ y is different from the value obtained by fully evaluating the
multiplication under μ (using the eval-model function shown in Fig. 3). It is

3 This can happen when the tangent lemmas (see Fig. 8) are not used.
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lemma set generate-lemmas (x ∗ y : term, μ : model, r : int, to refine : term set,
φ : constraint list):

1. if r = 1:
2. return generate-basic-lemmas (x ∗ y, μ)
3. else:
4. if r = 2:
5. L = generate-order-lemmas(x ∗ y, μ, φ)
6. if L 	= ∅:
7. return L
8. toplevel = true
9. else:
10. toplevel = false
11. L = generate-monotonicity-lemmas(x ∗ y, μ, to refine, toplevel)
12. if L 	= ∅:
13. return L
14. return generate-tangent-lemmas(x ∗ y, μ, toplevel)

Fig. 5. Main lemma generation procedure.

important to observe that here we can limit the search for multiplications to
refine only to those that appear in constraints that evaluate to false under μ
(line 6). In fact, if all the constraints evaluate to true, then by definition μ is a
model for them, and we can immediately conclude that φ is satisfiable (line 10).

Even when μ is spurious, it can still be the case that there exists a model
for φ that is “close” to μ. This is the idea behind the check-sat procedure of
Fig. 4, which uses μ as a guide in the search for a model of φ. check-sat works
by building an UFLIA-underapproximation of φ, in which all multiplications are
forced to be linear. The resulting formula ϕ̂ can then be solved with an SMT
solver for UFLIA. Although clearly incomplete, this procedure is cheap (since
the Boolean structure of ϕ̂ is very simple) and, as our experiments will show,
surprisingly effective.

When check-sat fails, we proceed to the generation of lemmas for refin-
ing the spurious model μ (lines 15–21). Our lemma generation strategy
works in three rounds: we invoke the generate-lemmas function (Fig. 5)
on the multiplication terms x ∗ y that need to be refined using increasing
levels of effort, stopping at the earliest successful round – i.e., a round in
which lemmas are generated. In the first round, only basic lemmas encod-
ing simple properties of multiplications (sign, zero, neutral, proportionality
in Fig. 1) are considered (generate-basic-lemmas). In the second round,
we consider also “order” lemmas (generate-order-lemmas, Fig. 6), i.e.
lemmas obtained via (a restricted, model-driven) application of the order
axioms of Z. If generate-order-lemmas fails, we proceed to generating
monotonicity (generate-monotonicity-lemmas, Fig. 7) and tangent plane
(generate-tangent-lemmas, Fig. 8) lemmas, restricting the instantiation
however to only toplevel monomials. Finally, in the last round, we repeat the
generation of monotonicity and tangent lemmas, considering this time also non-
toplevel monomials.
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lemma set generate-order-lemmas (x ∗ y : term, μ : model, φ : constraint list):
1. for each variable v in x ∗ y:
2. monomials = get-monomials (v, φ)
3. bounds = get-bounds (v, φ)
4. for each (w ∗ v �� p) in bounds:
5. for each t ∗ v in monomials:
6. if t ∗ w ∗ v in φ and t ∗ p in φ:
7. n = eval-model(t)
8. if n = 0:
9. continue
10. else if n > 0:
11. ψ = ((w ∗ v �� p) ∧ t > 0) → (t ∗ w ∗ v �� t ∗ p)
12. else:
13. ψ = ((w ∗ v �� p) ∧ t < 0) → (t ∗ p �� t ∗ w ∗ v)
14. if eval-model(μ, ψ) = ⊥:
15. return {ψ}
16. return ∅

Fig. 6. Generation of order lemmas.

Lemma Generation Procedures. We now describe our lemma generation
procedures in detail. The pseudo-code is reported in Figs. 5, 6, 7 and 8. All
procedures share the following two properties: (i) the lemmas generated do not
contain any nonlinear multiplication term that was not in the input constraints
φ; and (ii) all the generated lemmas evaluate to false (⊥) in the current model μ.

The function generate-basic-lemmas, whose pseudo-code is not reported,
simply instantiates all the basic axioms for the input term x ∗ y that satisfy
points (i) and (ii) above.

The function generate-order-lemmas (Fig. 6) uses the current model and
asserted constraints to produce lemmas that are instances of the order axiom for
multiplication. It is based on ideas that were first implemented in the CVC4 [1]
SMT solver.4 It works by combining, for each variable v in the input term x ∗ y,
the monomials t ∗ v in which v occurs (retrieved by get-monomials) with
the predicates of the form (w ∗ v �� p) (where �� ∈ {<,>,≤,≥} and p is a
polynomial) that are induced by constraints in φ (which are collected by the
get-bounds function). The (non-constant) coefficient t of v in the monomial
t ∗ v is used to generate the terms t ∗ w ∗ v and t ∗ p: if both occur5 in the input
constraints φ, then an instance of the order axiom is produced, using the current
model μ as a guide (lines 7–15).

The function generate-monotonicity-lemmas (Fig. 7) returns instances
of monotonicity axioms relating the current input term x ∗ y with other mono-
mials that occur in the set of terms to refine. In the second round of lemma
generation, only toplevel monomials are considered.

4 We are grateful to Andrew Reynolds for fruitful discussions about this.
5 It is important to stress here that we keep the monomials in a normal form by

reordering their variables, although this is not shown explicitly in the pseudo-code.



Experimenting on Solving Nonlinear Integer Arithmetic 391

lemma set generate-monotonicity-lemmas (x ∗ y : term, μ : model, to refine : term set,
toplevel : bool):

1. if toplevel 	= is-toplevel-monomial(x ∗ y):
2. return ∅
3. L = ∅
4. for each w ∗ z in to refine:
5. if not toplevel or is-toplevel-monomial (z ∗ w):
6. ψ1 = (|x| ≤ |w| ∧ |y| ≤ |z|) → |x ∗ y| ≤ |w ∗ z|
7. ψ2 = (|x| ≤ |z| ∧ |y| ≤ |w|) → |x ∗ y| ≤ |w ∗ z|
8. ψ3 = (|x| < |w| ∧ |y| ≤ |z| ∧ z 	= 0) → |x ∗ y| < |w ∗ z|
9. ψ4 = (|x| < |z| ∧ |y| ≤ |w| ∧ w 	= 0) → |x ∗ y| < |w ∗ z|
10. ψ5 = (|x| ≤ |w| ∧ |y| < |z| ∧ w 	= 0) → |x ∗ y| < |w ∗ z|
11. ψ6 = (|x| ≤ |z| ∧ |y| < |w| ∧ z 	= 0) → |x ∗ y| < |w ∗ z|
12. L = L ∪ {ψi | eval-model(μ, ψi) = ⊥}
13. return L

Fig. 7. Generation of monotonicity lemmas.

Finally, the function generate-tangent-lemmas (Fig. 8) produces
instances of the tangent plane axioms. In essence, the function instantiates all
the clauses of the tangent plane lemma using the two factors x and y of the input
multiplication term x ∗ y and their respective values a and b in μ, returning all
the instances that are falsified by μ. This is done in lines 15–21 of Fig. 8. In
our actual implementation, however, we do not use the model values a and b
directly to generate tangent lemmas, but we instead use a heuristic that tries to
reduce the number of tangent lemmas generated for each x ∗ y term to refine.
More specifically, we keep a 4-value tuple 〈lx, ly, ux, uy〉 associated with each x∗y
term in the input problem (which we call frontier) consisting of the smallest and
largest of the previous model values for x and y for which a tangent lemma has
been generated, and for each frontier we maintain an invariant that whenever
x is in the interval [lx, ux] or y is in the interval [ly, uy], then x ∗ y has both
an upper and a lower bound. This condition is achieved by adding tangent lem-
mas for the following four points of each frontier: (lx, ly), (lx, uy), (ux, ly), (ux, uy)
(the function update-tangent-frontier in Fig. 8 generates those lemmas). If
the current model values a and b for x and y are outside the intervals [lx, ux]
and [ly, uy] respectively, we try to adjust them with the goal of enlarging the
frontier as much as possible whenever we generate a tangent plane. Intuitively,
this can be seen as a form of lemma generalisation. The procedure is shown in
lines 6–14 of Fig. 8: the various push-tangent-point* functions try to move
the input points along the specified directions (either ‘U’p, by increasing a value,
or ‘D’own, by decreasing it) as long as the tangent plane passing through (a, b)
still separates the multiplication curve from the spurious value c.6

6 In our implementation we use a bounded (dichotomic) search for this. For example,
for the ‘UU’ direction we try increasing both a and b until either the tangent plane
passing through (a, b) cannot separate the multiplication curve from the bad point
c anymore, or we reach a maximum bound on the number of iterations.
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lemma set generate-tangent-lemmas (x ∗ y : term, μ : model, toplevel : bool):
1. if toplevel 	= is-toplevel-monomial(x ∗ y):
2. return ∅
3. a = eval-model(μ, x)
4. b = eval-model(μ, y)
5. c = μ[x̂ ∗ y]
6. lx, ly , ux, uy = get-tangent-frontier(x ∗ y)
7. if a < lx and b < ly : a, b = push-tangent-points-DD(x ∗ y, a, b, c)
8. else if a < lx and b > uy : a, b = push-tangent-points-DU(x ∗ y, a, b, c)
9. else if a > ux and b > uy : a, b = push-tangent-points-UU(x ∗ y, a, b, c)
10. else if a > ux and b < ly : a, b = push-tangent-points-UD(x ∗ y, a, b, c)
11. else if a < lx: a = push-tangent-point1-D(x ∗ y, a, b, c)
12. else if a > ux: a = push-tangent-point1-U(x ∗ y, a, b, c)
13. else if b < ly : b = push-tangent-point2-D(x ∗ y, a, b, c)
14. else if b > uy : b = push-tangent-point2-U(x ∗ y, a, b, c)
15. ψ1 = (x = a → x ∗ y = a ∗ y)
16. ψ2 = (y = b → x ∗ y = b ∗ x)
17. ψ3 = (x > a ∧ y < b) → (x ∗ y < b ∗ x + a ∗ y − a ∗ b)
18. ψ4 = (x < a ∧ y > b) → (x ∗ y < b ∗ x + a ∗ y − a ∗ b)
19. ψ5 = (x < a ∧ y < b) → (x ∗ y > b ∗ x + a ∗ y − a ∗ b)
20. ψ6 = (x > a ∧ y > b) → (x ∗ y > b ∗ x + a ∗ y − a ∗ b)
21. L = {ψi | eval-model(μ, ψi) = ⊥}
22. if L 	= ∅:
23. L = L ∪ update-tangent-frontier(x ∗ y, a, b)
24. return L

Fig. 8. Generation of tangent lemmas.

Example 1 (Tangent frontier enlargement – Fig. 9). Let 〈−3,−1, 5, 2〉 be the
current frontier of x ∗ y during the search. Suppose the abstract model gives:
μ[x] = a = 15, μ[y] = b = 5, and μ[x̂ ∗ y] = c = 48. This model is spurious
because 15 ∗ 5 �= 48. Notice that the point (15, 5) is outside of the frontier,
because 15 is not in [−3, 5] and 5 is not in [−1, 2]. So, during the tangent lem-
mas generation, the function push-tangent-points-UU can return a = 20 and
b = 10, as one of the constraints of the tangent lemma instantiated at that point
is violated by the current model, i.e., we can obtain the following clauses from
the tangent lemma:

x > 20 ∧ y < 10 → x ∗ y < 10 ∗ x + 20 ∗ y − 200
x < 20 ∧ y > 10 → x ∗ y < 10 ∗ x + 20 ∗ y − 200
x < 20 ∧ y < 10 → x ∗ y > 10 ∗ x + 20 ∗ y − 200
x > 20 ∧ y > 10 → x ∗ y > 10 ∗ x + 20 ∗ y − 200

by plugging in the values x = 15, y = 5, and x∗y = 48, then we obtain a conflict
in the third clause because 15 < 20 and 5 < 10, but 48 �> 10 ∗ 15 + 20 ∗ 5 − 200.
This means that the tangent lemma instantiated at point (20, 10) can be used
for refinement (Fig. 9(c)).
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(a) current frontier (b) original point (15,5)
for the tangent lemma

(c) successful pushed
point (20,10) for the
tangent lemma

(d) unsuccessful pushed
point (21,11) for the
tangent lemma

Fig. 9. Illustration of the strategy for adjusting the refinement point for the tangent
lemma.

However, if we use (21, 11) for the tangent lemma instantiation, we get the
following clauses:

x > 21 ∧ y < 11 → x ∗ y < 11 ∗ x + 21 ∗ y − 231
x < 21 ∧ y > 11 → x ∗ y < 11 ∗ x + 21 ∗ y − 231
x < 21 ∧ y < 11 → x ∗ y > 11 ∗ x + 21 ∗ y − 231
x > 21 ∧ y > 11 → x ∗ y > 11 ∗ x + 21 ∗ y − 231

Notice that, all these clauses are satisfied if we plug in the values x = 15, y = 5,
and x ∗ y = 48. Therefore, we cannot use them for refinement (Fig. 9(d)).

4 Experimental Analysis

We have implemented our incremental linearization procedure in our SMT solver
MathSAT [7]. In this section, we experimentally evaluate its performance. Our
implementation and experimental data are available at https://es.fbk.eu/people/
irfan/papers/sat18-data.tar.gz.

Setup and Benchmarks. We have run our experiments on a cluster equipped
with 2.6 GHz Intel Xeon X5650 machines, using a time limit of 1000 s and a
memory limit of 6 Gb.

For our evaluation, we have used all the benchmarks in the QF NIA category
of SMT-LIB [18], which at the present time consists of 23876 instances. All the
problems are available from the SMT-LIB website.

Our evaluation is composed of two parts. In the first, we evaluate the contri-
bution of different parts of our procedure to the overall performance of Math-

SAT, by comparing different configurations of the solver. In the second part, we
compare our best configuration against the state of the art in SMT solving for
nonlinear integer arithmetic.

https://es.fbk.eu/people/irfan/papers/sat18-data.tar.gz
https://es.fbk.eu/people/irfan/papers/sat18-data.tar.gz
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Fig. 10. Comparison among different configurations of MathSAT.

Comparison of Different Configurations. We evaluate the impact of the
main components of our procedure, by comparing five different configurations of
MathSAT:

– The standard configuration, using all the components described in the previ-
ous section (simply denoted MathSAT);

– a configuration with check-sat disabled (denoted MathSAT-no-check-
sat);

– a configuration with generate-order-lemmas disabled (denoted Math-

SAT-no-order);
– a configuration with generate-monotonicity-lemmas disabled (denoted

MathSAT-no-mono);
– a configuration with generate-tangent-lemmas disabled (denoted Math-

SAT-no-tangent); and finally
– a configuration with both check-sat and generate-tangent-lemmas dis-

abled (denoted MathSAT-no-check-sat-no-tangent).

The results are presented in Fig. 10. The plot on the left shows, for each con-
figuration, the number of instances that could be solved (on the y axis) within
the given time limit (on the x axis). The table on the right shows the ranking of
the configurations according to the number of instances solved. From Fig. 10, we
can see that all components of our procedure contribute to the performance of
MathSAT. As expected, tangent lemmas are crucial, but it is also interesting
to observe that the cheap satisfiability check by linearization is very effective,
leading to an overall performance boost and to the successful solution of 746
additional benchmarks that could not be solved by MathSAT-no-check-sat.
Finally, although the addition of order axioms (by generate-order-lemmas)
does not pay off for simpler problems, its impact is clearly visible for harder
instances, allowing MathSAT to solve 338 more benchmarks than MathSAT-
no-order.
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Fig. 11. Comparison with state-of-the-art SMT solvers for NIA.

Comparison with the State of the Art. In the second part of our experi-
ments, we compare MathSAT with the state-of-the-art SMT solvers for NIA.
We consider CVC4 [1], smt-rat [9], Yices [11] and Z3 [10]. Figures 11 and 12
show a summary of the results (with separate plots for satisfiable and unsatisfi-
able instances in addition to the overall plot), whereas Fig. 13 shows a more
detailed comparison between MathSAT and Yices. Additional information
about the solved instances for each benchmark family is given in Table 1. From
the results, we can see that the performance of MathSAT is very competitive:
not only it solves more instances than all the other tools, but it is also faster
than CVC4, smt-rat and Z3. On the other hand, Yices is much faster than
MathSAT in the majority of cases, especially on easy unsatisfiable instances
(solved in less than 10 s). However, the two tools are very complementary, as
shown by Fig. 13: MathSAT can solve 2436 instances for which Yices times
out, whereas Yices can successfully handle 1505 instances that MathSAT is
unable to solve. Moreover, MathSAT overall solves 931 more problems (915
satisfiable and 16 unsatisfiable) than Yices in the given resource limits.
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Fig. 12. Comparison with state-of-the-art SMT solvers for NIA – without the VeryMax
benchmarks.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Y
ic

es

MathSAT

Satisfiable instances

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Y
ic

es

MathSAT

Unsatisfiable instances

Solver # Unique
MathSAT 2436
Yices 1505

Fig. 13. Detailed comparison between MathSAT and Yices.



Experimenting on Solving Nonlinear Integer Arithmetic 397

Table 1. Summary of the comparison with the state of the art.

Total

(23876)

AProVE

(2409)

Calypto

(177)

Lasso

Ranker

(106)

LCTES

(2)

Leipzig

(167)

MCM

(186)

Ultimate

Automizer

(7)

Ultimate

Lasso-

Ranker

(32)

VeryMax

(20790)

MathSAT 11723/4993 1642/561 79/89 4/100 0/1 126/2 12/0 0/7 6/26 9854/4207

Yices 10808/4977 1595/708 79/97 4/84 0/0 92/1 8/0 0/7 6/26 9024/4054

CVC4 7653/3984 1306/608 77/89 4/94 0/1 84/2 6/0 0/6 6/26 6170/3158

Z3 6993/2837 1656/325 78/96 4/92 0/0 162/0 20/1 0/7 6/26 5067/2290

smt-rat 6161/414 1663/184 79/89 3/20 0/0 160/0 21/0 0/1 6/26 4229/94

VirtualBest 13169/5669 1663/724 79/97 4/101 0/1 162/2 23/1 0/7 6/26 11232/4710

Each column shows a family of benchmarks in the QF NIA division of SMT-LIB. For each solver, the table

shows the number of sat/unsat results in each family. The best performing tools (in terms of # of results)

are reported in boldface.

5 Conclusions

We have presented a solver for satisfiability modulo nonlinear integer arithmetic
based on the incremental linearization approach. Our empirical analysis of its
performance over all the nonlinear integer benchmarks in the SMT-LIB library
shows that the approach is very competitive with the state of the art: our solver
MathSAT can solve many problems that are out of reach for other tools, and
overall it solves the highest number of instances. Our evaluation has however also
shown that current approaches for SMT(NIA) are very complementary, with no
tool that always outperforms all the others. This suggests the investigation of
hybrid approaches that combine multiple methods as a very promising direction
for future work.
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14. Jovanović, D., De Moura, L.: Solving non-linear arithmetic. In: IJCAR. pp. 339–
354. Springer (2012)

15. Kremer, Gereon, Corzilius, Florian, Ábrahám, Erika: A Generalised Branch-and-
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