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Preface

This volume contains the papers presented at SAT 2018, the 21st International Confer-
ence on Theory and Applications of Satisfiability Testing, held during July 6–19, 2018 in
Oxford, UK. SAT2018was part of the Federated LogicConference (FLoC) 2018 andwas
hosted by the University of Oxford.

The International Conference on Theory and Applications of Satisfiability Testing
(SAT) is the premier annual meeting for researchers focusing on the theory and
applications of the propositional satisfiability problem, broadly construed. Aside from
plain propositional satisfiability, the scope of the meeting includes Boolean opti-
mization, including MaxSAT and pseudo-Boolean (PB) constraints, quantified Boolean
formulas (QBF), satisfiability modulo theories (SMT), and constraint programming
(CP) for problems with clear connections to Boolean reasoning.

Many hard combinatorial problems can be tackled using SAT-based techniques,
including problems that arise in formal verification, artificial intelligence, operations
research, computational biology, cryptology, data mining, machine learning, mathe-
matics, etc. Indeed, the theoretical and practical advances in SAT research over the past
25 years have contributed to making SAT technology an indispensable tool in a variety
of domains.

SAT 2018 welcomed scientific contributions addressing different aspects of SAT
interpreted in a broad sense, including (but not restricted to) theoretical advances (such
as exact algorithms, proof complexity, and other complexity issues), practical search
algorithms, knowledge compilation, implementation-level details of SAT solvers and
SAT-based systems, problem encodings and reformulations, applications (including
both novel application domains and improvements to existing approaches), as well as
case studies and reports on findings based on rigorous experimentation.

A total of 58 papers were submitted to SAT 2018, comprising 35 regular papers, 17
short papers, and six tool papers. Each submission was reviewed by four Program
Committee members and their selected external reviewers. The review process included
an author response period, during which the authors of submitted papers were given the
opportunity to respond to the initial reviews for their submissions. To reach a final
decision, a Program Committee discussion period followed the author response period.
External reviewers supporting the Program Committee were also invited to participate
directly in the discussions for the papers they reviewed. This year, most submissions
further received a meta-review, summarizing the discussion that occurred after the
author response and an explanation of the final recommendation. In the end, the
committee decided to accept a total of 26 papers; 20 regular, four short, and two tool
papers.

The Program Committee singled out the following two submissions for the Best
Paper Award and the Best Student Paper Award, respectively:

– Tobias Friedrich and Ralf Rothenberger: “Sharpness of the Satisfiability Threshold
for Non-Uniform Random k-SAT”



– Dimitris Achlioptas, Zayd Hammoudeh, and Panos Theodoropoulos: “Fast Sam-
pling of Perfectly Uniform Satisfying Assignments”

In addition to presentations on the accepted papers, the scientific program of SAT
included three invited talks:

– Marijn Heule (University of Texas at Austin, US): “Computable Short Proofs”
– Rahul Santhanam (University of Oxford, UK): “Modelling SAT”
– Christoph Scholl (Albert Ludwigs University Freiburg, Germany): “Dependency

Quantified Boolean Formulas: An Overview of Solution Methods and
Applications”

Two additional keynote and plenary talks, as well as a public lecture, were held
jointly with other conferences of FLoC:

– Shafi Goldwasser (MIT): “Pseudo-deterministic Algorithms and proofs”
– Peter O’Hearn (Facebook): “Continuous Reasoning for Big Code”
– A public lecture by Stuart Russell (University of California at Berkeley, USA) on

“Unifying Logic and Probability: The BLOG Language”

SAT, together with the other constituent conferences of FLoC, hosted various
associated events. In particular, the following four workshops were held July 7–8, (co-)
affiliated with SAT:

– Pragmatics of SAT
Organized by Matti Järvisalo and Daniel Le Berre

– Quantified Boolean Formulas and Beyond
Organized by Hubie Chen, Florian Lonsing, and Martina Seidl

– Proof Complexity
Organized by Olaf Beyersdorff, Leroy Chew, and Jan Johannse

– Cross-Fertilization Between CSP and SAT
Organized by Alexander Ivrii and Yehuda Naveh

As in previous years, the results of several competitive events were announced at
SAT:

– SAT Competition 2018
Organized by Marijn Heule, Matti Järvisalo, and Martin Suda

– MaxSAT Evaluation 2018
Organized by Fahiem Bacchus, Matti Järvisalo, and Ruben Martins

– Sparkle SAT Challenge 2018
Organized by Chuan Luo and Holger H. Hoos

– QBFEVAL 2018
Organized by Luca Pulina and Martina Seidl

We thank everyone who contributed to making SAT 2018 a success. We are
indebted to the Program Committee members and the external reviewers, who dedi-
cated their time to review and evaluate the submissions to the conference. We thank the
authors of all submitted papers for their contributions, the SAT association for their
guidance and support in organizing the conference, the EasyChair conference
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management system for facilitating the submission and selection of papers, as well as
the assembly of these proceedings. We wish to thank the workshop chair, Martina
Seidl, and all the organizers of the SAT affiliated workshops and competitions. Special
thanks go to the organizers of FLoC, in particular to Moshe Vardi, Daniel Kroening,
and Marta Kwiatkowska, for coordinating the various conferences and taking care
of the local arrangements.

We gratefully thank the sponsors of SAT 2018: the SAT Association, for providing
travel support for students attending the conference, Springer, for sponsoring the best
paper awards for SAT 2018, the Artificial Intelligence journal, and SATALIA for
financial and organizational support for SAT 2018. Thank you.

May 2018 Christoph M. Wintersteiger
Olaf Beyersdorff
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Computable Short Proofs

Marijn J. H. Heule

Department of Computer Science, The University of Texas at Austin

The success of satisfiability solving presents us with an interesting peculiarity: modern
solvers can frequently handle gigantic formulas while failing miserably on supposedly
easy problems. Their poor performance is typically caused by the weakness of their
underlying proof system—resolution. To overcome this obstacle, we need solvers that
are based on stronger proof systems. Unfortunately, existing strong proof systems—
such as extended resolution [1] or Frege systems [2]—do not seem to lend themselves
to mechanization.

We present a new proof system that not only generalizes strong existing proof
systems but that is also well-suited for mechanization. The proof system is surprisingly
strong, even without the introduction of new variables — a key feature of short proofs
presented in the proof-complexity literature. Moreover, we introduce a new decision
procedure that exploits the strengths of our new proof system and can therefore yield
exponential speed-ups compared to state-of-the-art solvers based on resolution.

Our new proof system, called PR (short for Propagation Redundancy), is a clausal
proof system and closely related to state-of-the-art SAT solving. Informally, a clausal
proof system allows the addition of redundant clauses to a formula in conjunctive
normal form. Here, a clause is considered redundant if its addition preserves satisfia-
bility. If the repeated addition of clauses allows us finally to add the empty clause—
which is, by definition, unsatisfiable—the unsatisfiability of the original formula has
been established.

Since the redundancy of clauses is not efficiently decidable in general, clausal proof
systems only allow the addition of a clause if it fulfills some efficiently decidable
criterion that ensures redundancy. For instance, the popular DRAT proof system [3],
which is the de-facto standard in practical SAT solving, only allows the addition of
so-called resolution asymmetric tautologies [4]. Given a formula and a clause, it can be
decided in polynomial time whether the clause is a resolution asymmetric tautology
with respect to the formula and therefore the soundness of DRAT proofs can be
checked efficiently. Several formally-verified checkers for DRAT proofs are available
[5, 6].

We present a new notion of redundancy by introducing a characterization of clause
redundancy based on a semantic implication relationship between formulas. By
replacing the implication relation in this characterization with a restricted notion of
implication that is computable in polynomial time, we then obtain powerful notion of
redundancy that is still efficiently decidable. The proof system, which based on this
notion of redundancy, turns out to be highly expressive, even without allowing the

Based on joint work with Benjamin Kiesl, Armin Biere, and Martina Seidl.



introduction of new variables. This is in contrast to resolution, which is considered
relatively weak as long as the introduction of new variables via definitions—as in the
stronger proof system of extended resolution—is not allowed. The introduction of new
variables, however, has a major drawback—the search space of variables and clauses
we could possibly add to a proof is clearly exponential. Finding useful clauses with
new variables is therefore hard in practice and resulted only in limited success in the
past [7, 8].

In order to capitalize on the strengths of the PR proof system in practice, we
enhance conflict-driven clause learning (CDCL) [9]. To do so, we introduce
satisfaction-driven clause learning (SDCL) [10], a SAT solving paradigm that extends
CDCL as follows: If the usual unit propagation does not lead to a conflict, we do not
immediately decide for a new variable assignment (as would be the case in CDCL).
Instead, we first try to prune the search space of possible truth assignments by learning
a so-called PR clause. We demonstrate the strength of SDCL by computing short PR
proofs for the famous pigeon hole formulas without new variables.

At this point there exists only an unverified checker to validate PR proofs, written
in C. In order to increase the trust in the correctness of PR proofs, we implemented a
tool to convert PR proofs into DRAT proofs [11], which in turn can be validated using
verified proof checkers. Thanks to various optimizations, the size increase during
conversion is rather modest on available PR proofs, thereby making this a useful
certification approach in practice.

References

1. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H.,
Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation (Artificial Intelli-
gence). Springer, Heidelberg (1983)

2. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb.
Log. 44(1), 36–50 (1979)

3. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using
expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561,
pp. 422–429. Springer, Cham (2014)

4. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D.,
Sattler, U. (eds) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)

5. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.: Efficient
certified RAT verification. In: de Moura, L. (eds.) CADE 2017. LNCS, vol. 10395,
pp. 220–236. Springer, Cham (2017)

6. Lammich, P. Efficient verified (UN)SAT certificate checking. In: de Moura, L.: (eds.) CADE
2017. LNCS, vol. 10395, pp. 237–254. Springer, Cham (2017)

7. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause
learning sat solvers. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI 2010). AAAI Press (2010)

8. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857. Springer, Heidelberg
(2013)

XIV M. J. H. Heule



9. Marques-Silva, J.P., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability. In:
Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design,
ICCAD 1996, Washington, DC, USA, pp. 220–227. IEEE Computer Society (1996)

10. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In: Strichman, O.,
Tzoref-Brill, R. (eds.) HVC 2017. LNCS, vol. 10629, pp. 179–194. Springer, Cham (2017)

11. Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Beyer, D., Huisman, M.
(eds.) TACAS 2018. LNCS, vol. 10806, pp. 75–92. Springer, Cham (2018)

Computable Short Proofs XV



Modelling SAT

Rahul Santhanam

Department of Computer Science, University of Oxford, UK
rahul.santhanam@cs.ox.ac.uk

Abstract. Satisfiability (SAT) is the canonical NP-complete problem [3, 5]. But
how hard is it exactly, and on which instances? There are several existing
approaches that aim to analyze and understand the complexity of SAT:

1. Proof complexity [2]: Here the main goal is to show good lower bounds on
the sizes of proofs for unsatisfiability of certain “hard” formulas in various
proof systems. The importance of this approach owes partly to the fact that
lower bounds on proof size can be translated into lower bounds on running
time for SAT solvers of interest.

2. Exact algorithms [4]: Here the goal is to get better upper bounds on
worst-case running time for SAT algorithms. Assuming NP 6¼ P, these
improved upper bounds will not be polynomial, but they could still improve
substantially over the naive brute force search algorithm.

3. Random SAT [1]: Here the goal is to understand the hardness of SAT on
random instances, where clauses are picked independently and uniformly at
random. The methods of statistical physics turn out to be helpful - physical
insights about phase transitions and the structure of solution spaces can be
used to quantify the performance of a large class of algorithms.

I broadly discuss these approaches and the relationships between them.
I suggest that their complementary perspectives could be useful in developing
new models and answering questions that do not seem to be answerable by any
individual approach. Indeed SAT serves partly as an excuse to investigate a larger
issue: what are good algorithmic models, and what questions should we be asking
about them?

Keywords: Satisfiability � Modelling � Proof complexity � Exact algorithms
Phase transitions
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Dependency Quantified Boolean
Formulas: An Overview of Solution

Methods and Applications
Extended Abstract

Christoph Scholl(B) and Ralf Wimmer

Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{scholl,wimmer}@informatik.uni-freiburg.de

Abstract. Dependency quantified Boolean formulas (DQBFs) as a gen-
eralization of quantified Boolean formulas (QBFs) have received con-
siderable attention in research during the last years. Here we give an
overview of the solution methods developed for DQBF so far. The expo-
sition is complemented with the discussion of various applications that
can be handled with DQBF solving.

1 Introduction

Dependency quantified Boolean formulas (DQBFs) [30] have received consider-
able attention in research during the last years. They are a generalization of ordi-
nary quantified Boolean formulas (QBFs). While the latter have the restriction
that every existential variable depends on all universal variables in whose scope
it is, DQBFs allow arbitrary dependencies, which are explicitly specified in the
formula. This makes DQBFs more expensive to solve than QBFs – for DQBF
the decision problem is NEXPTIME-complete [29], for QBF ‘only’ PSPACE-
complete [28]. However, there are practically relevant applications that require
the higher expressiveness of DQBF for a natural and tremendously more com-
pact modeling. Among them is the analysis of multi-player games with incom-
plete information [29], the synthesis of safe controllers [8] and of certain classes
of LTL properties [12], and the verification of incomplete combinational and
sequential circuits [17,33,39].

Driven by the needs of the applications mentioned above, research on DQBF
solving has not only led to fundamental theoretical results on DQBF analyzing
which proof calculi for QBF are still sound and/or complete for DQBF [3,5], but
also to first solvers like iDQ and HQS [15,16,18,36].

In this work, we give an overview of the solution methods for DQBF devel-
oped during the last years as well as of various applications that can be handled
with DQBF solving.

This work was partly supported by the German Research Council (DFG) as part of
the project “Solving Dependency Quantified Boolean Formulas”.

c© Springer International Publishing AG, part of Springer Nature 2018
O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-319-94144-8_1
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4 C. Scholl and R. Wimmer

2 Notions and Problem Definition

In this section, we provide preliminaries and, in particular, we define dependency
quantified Boolean formulas as a generalization of quantified Boolean formulas.

For a finite set V of Boolean variables, A(V ) denotes the set of variable
assignments of V , i.e., A(V ) = {ν : V → B} with B = {0, 1}. Given quantifier-
free Boolean formulas ϕ and κ over V and a Boolean variable v ∈ V , ϕ[κ/v]
denotes the Boolean formula which results from ϕ by replacing all occurrences
of v simultaneously by κ (simultaneous replacement is necessary when κ contains
the replaced variable v).

Quantified Boolean formulas are obtained by prefixing Boolean formulas with
a ‘linearly ordered’ quantifier prefix.

Definition 1 (Syntax of QBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a finite
set of Boolean variables. A quantified Boolean formula (QBF) ψ over V (in
prenex form) is given by ψ := ∀X1∃Y1 . . . ∀Xk∃Yk : ϕ, where k ≥ 1, X1, . . . , Xk

is a partition of the universal variables {x1, . . . , xn}, Y1, . . . , Yk is a partition of
the existential variables {y1, . . . , ym}, Xi �= ∅ for i = 2, . . . , k, and Yj �= ∅ for
j = 1, . . . , k − 1, and ϕ is a quantifier-free Boolean formula over V , called the
matrix of ψ.

Dependency quantified Boolean formulas are obtained by prefixing Boolean for-
mulas with so-called Henkin quantifiers [21].

Definition 2 (Syntax of DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a finite
set of Boolean variables. A dependency quantified Boolean formula (DQBF) ψ
over V (in prenex form) has the form ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) :
ϕ, where Dyi

⊆ {x1, . . . , xn} is the dependency set of yi for i = 1, . . . , m, and
ϕ is a quantifier-free Boolean formula over V , called the matrix of ψ.

A QBF can be seen as a DQBF where the dependency sets are linearly
ordered. A QBF ψ := ∀X1∃Y1 . . . ∀Xk∃Yk : ϕ is equivalent to the DQBF
ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : ϕ with Dyi
= ∪�

j=1Xj iff Y� is the
unique set with yi ∈ Y�, 1 ≤ � ≤ k, 1 ≤ i ≤ m.

We denote the existential variables of a DQBF ψ with V ∃
ψ = {y1, . . . , ym}

and its universal variables with V ∀
ψ = {x1, . . . , xn}. We often write ψ = Q : ϕ

with the quantifier prefix Q and the matrix ϕ. As the order of the variables
in a DQBF quantifier prefix Q does not matter, we can regard it as a set: For
instance, Q \ {v} with a variable v ∈ V is the prefix which results from Q by
removing the variable v together with its quantifier (as well as its dependency
set in case v is existential, and all its occurrences in dependency sets if it is
universal).

The semantics of a DQBF is typically defined in terms of so-called Skolem
functions.

Definition 3 (Semantics of DQBF). Let ψ be a DQBF as above. It is sat-
isfied if there are functions sy : A(Dy) → B for y ∈ V ∃

ψ such that replacing each
existential variable y by (a Boolean expression for) sy turns ϕ into a tautology.
The functions (sy)y∈V ∃

ψ
are called Skolem functions for ψ.



Dependency Quantified Boolean Formulas 5

Definition 4 (Equisatisfiability of DQBFs). Two DQBFs ψ and ψ′ are
equisatisfiable iff they are either both satisfied or both not satisfied.

Deciding whether a given DQBF is satisfied is NEXPTIME-complete [29],
whereas deciding whether a given QBF is satisfied is ‘only’ PSPACE-
complete [28].

3 Overview of Solution Methods

In this section, we give an overview of different solution methods to the DQBF
problem. After briefly discussing incomplete solution methods, we present var-
ious sound and complete methods. Whereas search-based solvers using the
conflict-driven clause learning (CDCL) paradigm [34] seem to outperform other
sound and complete solution paradigms for the SAT problem, the situation is
not that clear for QBF solving and neither is it for DQBF solving.

3.1 Incomplete Approximations

An obvious approximation approach is an approximation of a DQBF by a QBF
formulation whose (implicitly given) dependency sets are supersets of the original
dependency sets in the DQBF. If there is no solution to the relaxed problem,
then there is also no solution to the original problem (see [33], e.g.). The QBF
approximation can even be approximated further by replacing (some or all)
universal variables by existential variables which may assume values from the
ternary domain {0, 1,X} [22,33]. Here X represents an unknown value and is
propagated according to standard rules for unknowns [1].

The work of Finkbeiner and Tentrup [14] was the first one to increase the
exactness of the obvious QBF approximations by a series of more and more
complex QBF formulations.

Balabanov et al. [3] show that resolution together with universal reduction,
which is sound and complete for QBF, is no longer complete (but still sound)
for DQBF, leading to another incomplete method for DQBF.

3.2 Search-Based Solution

A natural idea for DQBF solving is to generalize successful search-based QBF
solvers like DepQBF [25,26]. The problem with QBF solvers applied to DQBF is
that the solver assignments to existential variables depend on all universal vari-
ables assigned before. That means that an unmodified search-based QBF solver
can only respect linearly ordered dependency sets. In [15], for a given DQBF lin-
early ordered dependency sets are computed that over-approximate the original
dependency sets. A search-based QBF solver respecting those linearly ordered
dependency sets now has to consider additional constraints: In different paths of
the search tree that lead to the same existential variable yi, but do not differ in the
assignments to the variables in Dyi

, yi has to be assigned the same value. In order
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to enforce those constraints, [15] extends the search-based QDPLL algorithm by
learning additional clauses, called Skolem clauses, after assignments to existential
variables yi. The Skolem clauses just record an implication between the current
assignments to the variables in Dyi

and the current assignment to yi for trans-
porting this information into other paths of the search tree. Backtracking in case
of a conflict has to take these Skolem clauses into account and removes them once
they become invalid (which is in contrast to conventional learned clauses that can
remain after a conflict, since they are implied).

3.3 Abstraction-Based Solution

In the QBF context there are rather strong solvers like RAReQS [23] and
Qesto [24] which work according to the CEGAR paradigm. Fröhlich et al. [16]
use a similar idea by solving a series of SAT instantiations. Their solver is based
on computing partial universal expansions, which yield over-approximations. If
a SAT solver determines that the over-approximation is unsatisfiable, they can
conclude the unsatisfiability of the DQBF. In case of satisfiability, they check if
the satisfying assignment is consistent with the dependencies of the DQBF; if
this is the case, the original DQBF is satisfied. Otherwise, the instantiation is
refined using the inconsistent assignment, and the check is repeated. It can be
shown that this process finally terminates.

3.4 Fork Resolution

In [32] information fork splitting is proposed as a basic concept for DQBF solving.
Information forks are clauses C which can be split into two parts C1 and C2 that
depend on incomparable dependency sets D1 and D2. After splitting C into C1

and C2, a fresh existential variable yj depending on D1 ∩ D2 is introduced, yj is
added to C1, ¬yj to C2. [32] proves that information fork splitting together with
resolution and universal reduction forms a sound and complete proof calculus.
The proof idea for the completeness is based on the observation that existential
variables with incomparable dependency sets occurring in a single clause impede
variable elimination by resolution. So information fork splitting is done before.
To the best of our knowledge no practical implementation of a DQBF solver is
available so far which uses the information fork splitting idea.

3.5 Basic Approach Using Universal Expansion

Universal Expansion for QBF. Already in the QBF context universal expan-
sion has been used as a basic operation to remove universal quantifiers [2,6].
Universal expansion for QBF is defined as follows:

Definition 5 (Universal Expansion for QBF). For a QBF ψ = ∀X1∃Y1 . . .
∀Xk∃Yk : ϕ, universal expansion of variable xi ∈ X� (1 ≤ � ≤ k) is defined by

∀X1∃Y1 . . . ∀X�−1∃Y�−1∀X� \ {xi}∃Y ′
� ∀X�+1∃Y ′

�+1 . . . ∀Xk∃Y ′
k :

ϕ[0/xi][y0
j /yj for all yj ∈ Yh, h ≥ �] ∧ ϕ[1/xi][y1

j /yj for all yj ∈ Yh, h≥�] .

with Y ′
h = {y0

j

∣
∣ yj ∈ Yh} ∪ {y1

j

∣
∣ yj ∈ Yh}.
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Existential variables to the right of xi (i.e., depending on xi) result in two copies,
all other existential variables are not copied.

Universal Expansion for DQBF. Universal expansion can be easily gener-
alized to DQBF which has been observed, e.g., in [3,9,10,17].

Definition 6 (Universal Expansion for DQBF). For a DQBF ψ = ∀x1 . . .
∀xn∃y1(Dy1) . . . ∃ym(Dym

) : ϕ with Zxi
=

{

yj ∈ V ∃
ψ

∣
∣ xi ∈ Dyj

}

, universal
expansion of variable xi ∈ V ∀

ψ is defined by

(

Q \
(

{xi} ∪
⋃

yj∈Zxi

{yj}
))

∪ {∃yb
j(Dyj

\ {xi})
∣
∣ yj ∈ Zxi

, b ∈ {0, 1}}

:

ϕ[0/xi][y0
j /yj for all yj ∈ Zxi

] ∧ ϕ[1/xi][y1
j /yj for all yj ∈ Zxi

].

As for QBFs universal expansion leads to an equisatisfiable formula.
By universally expanding all universal variables both QBFs and DQBFs can

be transformed into a SAT problem with a potential exponential increase in vari-
ables. Thus, complete universal expansion followed by SAT solving has a double
exponential upper bound for the run-time. The upper bound is suboptimal for
QBF which is just PSPACE-complete (and can be solved by a simple search-
based algorithm in exponential time), whereas for DQBF (which is NEXPTIME-
complete) it is unknown whether there is an algorithm with a better worst-case
complexity.

3.6 Transformation into QBF

Due to the high cost of complete universal expansion, the solver HQS [18] elim-
inates universal variables only until a QBF is obtained, which can be solved by
an arbitrary QBF solver then.

Transformation into QBF by Universal Expansion. The basic observation
underlying the transformation of a DQBF into a QBF is the fact that a DQBF
ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : ϕ can be written as a QBF if and only if
the dependency sets are all comparable, i.e., iff for all i, j ∈ {1, . . . m} Dyi

⊆ Dyj

or Dyj
⊆ Dyi

(�). If this condition (�) holds, a linear order of the dependency
sets w.r.t. ⊆ can be computed. Such a linear order immediately results in the
needed QBF prefix.

For each pair of existential variables yi and yj with incomparable dependency
sets, either the universal variables in Dyi

\ Dyj
or in Dyj

\ Dyi
have to be

eliminated. In [18] finding a minimum set U ⊆ V ∀ of elimination variables leading
to a QBF prefix is reduced to a MAXSAT problem. (For each universal variable
x a variable mx is created in the MAXSAT solver such that mx = 1 means
that x needs to be eliminated. Soft clauses are used to get an assignment with
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a minimum number of variables assigned to 1. Hard clauses enforce that for
all yi, yj ∈ V ∃, yi �= yj , either all variables in Dyi

\ Dyj
or in Dyj

\ Dyi
are

eliminated.)

Transformation into QBF by Dependency Elimination. In [37] the
method of universal expansions turning a DQBF into a QBF is refined by
so-called dependency elimination. Dependency elimination is able not only to
remove universal variables xi completely from the formula, but also to remove
universal variables xi from single dependency sets Dyj

, i.e., it works with a finer
granularity. Dependency elimination is used with the goal of producing fewer
copies of existential variables in the final QBF.

The basic transformation removing a universal variable xi from a single
dependency set Dyj

is based on the following theorem:

Theorem 1 (Dependency Elimination). Assume ψ is a DQBF as in Defi-
nition 2 and, w.l.o.g., x1 ∈ Dy1 . Then ψ is equisatisfiable to:

ψ′ := ∀x1 . . . ∀xn ∃y0
1

(

Dy1 \ {x1}
) ∃y1

1

(

Dy1 \ {x1}
) ∃y2

(

Dy2

)

. . . ∃ym

(

Dym

)

:

φ
[(

(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)
)

/y1

]

.

The following example shows that dependency elimination is able to trans-
form a DQBF into an equisatisfiable QBF with much fewer copies of existential
variables than needed for universal expansion:

Example 1. The DQBF ∀x1∀x2∃y1(x1)∃y2(x2)∃y3(x1, x2) . . . ∃yn(x1, x2) : ϕ
does not have an equivalent QBF prefix. Therefore the expansion of either x1 or
x2 is necessary. When universal expansion of x1 is performed, y1, y3, . . . , yn are
doubled, creating n− 1 additional existential variables. The universal expansion
of x2 creates copies of y2, y3, . . . , yn.

However, only the dependencies of y1 on x1 and of y2 on x2 are responsible
for the formula not being a QBF. If we eliminate the dependency of y1 on x1,
e.g., we obtain the formula

∀x1∀x2∃y0
1(∅)∃y1

1(∅)∃y2(x2)∃y3(x1, x2) . . . ∃yn(x1, x2) :ϕ[(¬x1∧y0
1)∨(x1∧y1

1)/y1].

This formula can be written as the QBF

∃y0
1∃y1

1∀x2∃y2∀x1∃y3 . . . ∃yn : ϕ[(¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1)/y1].

Instead of creating n− 1 additional existential variables, we only have to double
y1 in order to obtain an equisatisfiable QBF.

In order to facilitate the selection of dependencies to eliminate, [37] makes
use of the following dependency graph:

Definition 7 (Dependency Graph). Let ψ be a DQBF as above. The depen-
dency graph Gψ =

(

Vψ, Eψ

)

is a directed graph with the set Vψ = V of variables
as nodes and edges

Eψ =
{

(x, y) ∈ V ∀
ψ × V ∃

ψ

∣
∣ x ∈ Dy

} ∪̇ {

(y, x) ∈ V ∃
ψ × V ∀

ψ

∣
∣ x /∈ Dy

}

.
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Gψ is a so-called bipartite tournament graph [4,11,20]: The nodes can be par-
titioned into two disjoint sets according to their quantifier and there are only
edges that connect variables with different quantifiers – this is the bipartiteness
property. Additionally, for each pair (x, y) ∈ V ∀

ψ × V ∃
ψ there is either an edge

from x to y or vice-versa – this property is referred to by the term ‘tournament’.

Theorem 2 ([37]). Let ψ be a DQBF and Gψ its dependency graph. The graph
Gψ is acyclic iff ψ has an equivalent QBF prefix.

Eliminating a dependency essentially corresponds to flipping the direction of
an edge (x, y) ∈ Eψ ∩ (V ∀

ψ × V ∃
ψ ) from a universal to an existential variable. Our

goal is to find a cost-minimal set of edges such that flipping those edges makes
the dependency graph acyclic.

The cost of a flipping set R ⊆ Eψ ∩ (V ∀
ψ × V ∃

ψ ) corresponds to the num-
ber of existential variables in the formula after the dependencies in R have
been eliminated. It is given by cost(R) :=

∑

y∈V ∃
ψ

2|Ry|. where for y ∈ V ∃
ψ

Ry = {x ∈ V ∀
ψ | (x, y) ∈ R}. In spite of this non-linear cost function, the compu-

tation of a cost-minimal flipping set can be reduced to integer linear program-
ming with dynamically added constraints similar to the so-called cutting plane
approach [40]. The efficiency of the optimal elimination set computation is sig-
nificantly increased by integrating symmetry reduction. Symmetry reduction is
based on the observation that in typical applications the number of different
dependency sets is rather small.

Don’t-Care Dependencies. Moreover, based on research on dependency schemes
[38], we consider in our optimization also dependencies which can be removed
‘free of charge’ without dependency elimination, since their removal does not
change the truth value of the DQBF.

3.7 The Role of Preprocessing

Part of the success of SAT and QBF solving is due to efficient preprocessing
of the formula under consideration. The goal of preprocessing is to simplify the
formula by reducing/modifying the number of variables, clauses and quantifier
alternations, such that it can be solved more efficiently afterwards. For SAT and
QBF, efficient and effective preprocessing tools are available like SatELite [13],
Coprocessor [27] for SAT and squeezeBF [19], bloqqer [7] for QBF. In [36] we
demonstrated that preprocessing is an essential step for DQBF solving as well.
Standard preprocessing techniques were generalized and adapted to work with
a DQBF solver core. Those techniques include

– using backbones, monotonic variables, and equivalent literals;
– reducing dependency sets based on dependency schemes [38];
– universal reduction, variable elimination by resolution, universal expansion

as preprocessing steps;
– blocked clause elimination with hidden and covered literal addition; and
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– structure extraction that leads to circuit representations of the matrix instead
of a CNF representation.

An important observation made in [36] is that different preprocessing strate-
gies are advisable depending on the DQBF solver core used (e.g., CNF-based vs.
circuit-based solvers).

3.8 Computing Skolem Functions

Computing Skolem functions is important both for proof checking of satisfied
DQBFs and for various applications such as the ones mentioned in the next
section. In [35] we demonstrated how Skolem functions can be obtained from
our DQBF solver HQS. The approach computes Skolem functions for the orig-
inal formula, even taking all preprocessing steps from [36] into account. The
computation of Skolem functions can be done with very little overhead com-
pared to the mere solution of the formula.

4 Applications

Here we give three applications that can be formulated as DQBF problems in
a natural way. For the first and the third one we can even prove that they are
equivalent to DQBF which means that each DQBF problem can be translated
into the corresponding problem class in polynomial time. Moreover, this means
for those applications that they are NEXPTIME-complete as well [17,39].

In all applications mentioned below the translation into DQBF is based on
an observation that has been summarized by Rabe [32] as ‘DQBF can encode
existential quantification over functions’.

4.1 Partial Equivalence Checking for Combinational Circuits

As a first application we look into partial equivalence checking for combinational
circuits [33]. As a specification we consider a complete combinational circuit
Cspec. As an implementation we consider an incomplete combinational circuit
Cimpl containing missing parts, so-called ‘Black Boxes’. Missing parts may result
from abstraction or they are not yet implemented so far. For each Black Box only
the interface of the Black Boxes, i.e., their input and output signals, are known,
their functionality is completely unknown. The Partial Equivalence Checking
(PEC) problem answers the following question:

Definition 8 (Partial Equivalence Checking Problem (PEC)). Given an
incomplete circuit Cimpl and a (complete) specification Cspec, are there imple-
mentations of the Black Boxes in Cimpl such that Cimpl and Cspec become equiv-
alent (i.e., they implement the same Boolean function)?
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Assume that the specification Cspec implements a Boolean function f spec(x)
with primary input variables x. For each Black Box BBi the input signals are
denoted by Ii, its output signals by Oi. Let us further assume that the Black
Boxes can be sorted topologically (otherwise there are replacements leading to
cycles in the combinational circuit), w.l.o.g. in the order BB1, . . . ,BBn. Then
the input cone computing the input signals Ii of BBi represents a vector of
Boolean functions F i(x,O1, . . . ,Oi−1). The incomplete implementation Cimpl

implements a Boolean function f impl(x,O1, . . . ,On) depending on the primary
inputs and the Black Box outputs.

The following DQBF is satisfied iff there is an appropriate implementation
of the Black Boxes:

∀x∀I1 . . . ∀In∃O1(I1) . . . ∃Om(Im) :

(
n∧

i=1

Ii ≡ F i

)

⇒ (

f spec ≡ f impl

)

.

We have to ask that for all valuations of the primary inputs x and all input
signals of the Black Boxes I1, . . . , In of the Black Boxes there is a choice for
the output signals O1, . . . ,On of the Black Boxes such that specification and
implementation are equivalent, i.e., f spec(x) ≡ f impl(x,O1, . . . ,On). However,
this is only required for all valuations to the signals that are consistent with the
given circuit, i.e., only if

∧n
i=1 Ii ≡ F i(x,O1, . . . ,Oi−1) holds. The requirement

that the Black Box output signals are only allowed to depend on the Black Box
input signals is simply expressed by the dependency sets Ii of the corresponding
output signals Oi.

4.2 Controller Synthesis

In [8] SAT- and QBF-based techniques for controller synthesis of safety specifi-
cations are considered. A footnote in [8] gives a hint how a simple and elegant
DQBF formulation can be used for that purpose as well.

In the controller synthesis problem a sequential circuit with a vector of
present state bits s and a vector of next state bits s′ is considered. The next
state is computed by a transition function Λ(s,x, c). Here x are uncontrollable
primary inputs and c are controllable inputs which are computed by a controller
on the basis of the present state bits and the uncontrollable primary inputs. We
consider invariant properties inv(s,x) which are required to hold at any time.
The controller synthesis problem asks whether there is an implementation of
the controller such that the resulting sequential circuit satisfies the invariant
inv(s,x) in all states that are reachable from the circuit’s initial state(s), given
as a predicate init.

The DQBF formulation of controller synthesis is based on the notion of a
‘winning set’.

Definition 9. Let S be the state set of the sequential circuit. A subset W ⊆ S
is a winning set if all states in W satisfy the invariant and, for all values of the
primary inputs, the controller can ensure (by computing appropriate values for
the controlled inputs) that the successor state is again in W .
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An appropriate controller can be found iff there is a winning set that includes
the initial states of the sequential circuit. This can be formulated as a DQBF.
To encode the winning sets, we introduce two existential variables w and w′; w
depends on the current state and is supposed to be true for a state s if s is in
the winning set. The variable w′ depends on the next state variables s′ and has
the same Skolem function as w (but defined over s′ instead of s). To ensure that
w and w′ have the same semantics the condition

(

s ≡ s′ ⇒ w ≡ w′) is used.
Using those two encodings of the winning set the controller synthesis problem is
reduced to the following DQBF [8]:

∀s ∀s′∀x ∃w(s) ∃w′(s′)∃c(s,x) :
(

init(s) ⇒ w
) ∧ (

w ⇒ inv(s,x)
) ∧ (

s ≡ s′ ⇒ w ≡ w′) ∧
((

w ∧ (s′ ≡ Λ(s,x, c))
) ⇒ w′

)

. (1)

The controlled input variables c are allowed to depend on the current state
variables s and uncontrolled inputs x only. If the DQBF is satisfied, then the
Skolem functions for c provide a suitable controller implementation. (Note that
the solver HQS can compute Skolem functions with very little overhead compared
to the mere solution of the formula [35].)

4.3 Realizability Checking for Sequential Circuits

The controller synthesis problem can be seen as a special sequential problem
with the controller as a single Black Boxes having access to all state bits and
all primary circuit inputs. Here we look into a generalization where sequential
circuits may contain an arbitrary number of Black Boxes and the exact inter-
face of the Black Boxes, i.e., the signals entering and leaving the Black Boxes, is
strictly taken into account [39]. That means that Black Boxes are not necessarily
able to read all primary inputs and state bits. We confine ourselves to combi-
national Black Boxes or Black Boxes with bounded memory. The even more
general problem considering distributed architectures containing several Black
Boxes with unbounded memory is undecidable [31].

Black Boxes with bounded memory can be reduced to combinational Black
Boxes, simply by extracting the memory elements out of the Black Box into
the known part of the circuit, such that the incoming and outgoing signals of
these memory elements are written and read only by the Black Boxes. Thus, we
assume w.l.o.g. sequential circuits with arbitrary combinational Black Boxes in
the circuit implementing their transition function.

As in Sect. 4.1, we assume n Black Boxes BB1, . . . ,BBn with input signals Ii

and output signals Oi, respectively. Again, the input cone computing the input
signals Ii of BBi represents a vector of Boolean functions F i(x,O1, . . . ,Oi−1).
The transition function depending on the current state variables s, the primary
inputs x and the Black Box outputs O1, . . . ,On is given by Λ(s,x,O1, . . . ,On).
As before, the transition function computes new valuations to the next state
variables s′.
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We investigate the following problem:

Definition 10. The realizability problem for incomplete sequential circuits
(RISC) is defined as follows: Given an incomplete sequential circuit with multi-
ple combinational (or bounded-memory) Black Boxes and an invariant property,
are there implementations of the Black Boxes such that in the complete circuit
the invariant holds at all times?

In order to formulate the realizability problem as a DQBF problem, we slightly
modify Definition 9 into:

Definition 11. A subset W ⊆ S is a winning set if all states in W satisfy the
invariant and, for all values of the primary inputs, the Black Boxes can ensure
(by computing appropriate values) that the successor state is again in W .

Similarly to the controller synthesis problem, a given RISC is realizable iff there
is a winning set that includes the initial states of the circuit. This leads us to
the following theorem (using the same encoding of the winning set by existential
variables w and w′ depending on the current state variables s and next state
variables s′, respectively):

Theorem 3. Given a RISC as defined above, the following DQBF is satisfied if
and only if the RISC is realizable:

∀s ∀s′∀x ∀I1 . . . ∀In ∃w(s) ∃w′(s′) ∃O1(I1) . . . ∃On(In) :
(

init(s) ⇒ w
) ∧ (

w ⇒ inv(s,x)
) ∧ (

s ≡ s′ ⇒ w ≡ w′) ∧
(
(

w ∧
[

n∧

i=1

Ii ≡ F i(x,O1, . . . ,Oi−1)

]

∧ (s′ ≡ Λ(s,x,O1, . . . ,On))

)

⇒ w′
)

.

The main difference to (1) consists in the following fact: The requirement
that the successor state of a winning state is again a winning state obtains
an additional precondition (similar to the DQBF for PEC in Sect. 4.1). The
requirement is only needed for signal assignments that are completely consistent
with the circuit functionality, i.e., only if the Black Box inputs are assigned
consistently with the values computed by their input cones and, of course, the
next state variables s′ are assigned in accordance with the transition function Λ.

The Black Box outputs Oi of Black Box BBi are only allowed to depend on
the Black Box inputs Ii and, if the DQBF is satisfied, the Skolem functions for
Oi provide an appropriate implementation for BBi.

5 Conclusion and Future Challenges

Dependency quantified Boolean formulas are a powerful formalism for a natural
and compact description of various problems. In this paper, we provided an
overview of several solution methods for DQBFs.

In the future, the scalability of the solvers has to be further improved and
they might be tuned towards specific applications. Further optimizing the single
solution methods as well as combining advantages of different solution strategies
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seems to be an interesting and rewarding task. This should be combined with
more powerful preprocessing techniques as well. Moreover, it will be interesting
in the future to look into sound but incomplete approximations both disproving
and proving the satisfiability of DQBFs.

We hope that with the availability of solvers more applications of these tech-
niques will become feasible or will be newly discovered, thereby inspiring further
improvements of the solvers – just as it is/was the case for propositional SAT
solving and for QBF solving.

Acknowledgment. We are grateful to Bernd Becker, Ruben Becker, Andreas Kar-
renbauer, Jennifer Nist, Sven Reimer, Matthias Sauer, and Karina Wimmer for heavily
contributing to the contents summarized in this paper.
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Abstract. The effective use of satisfiability (SAT) solvers requires prob-
lem encodings that make good use of the reasoning techniques employed
in such solvers, such as unit propagation and clause learning. Propaga-
tion completeness has been proposed as a useful property for constraint
encodings as it maximizes the utility of unit propagation. Experimental
results on using encodings with this property in the context of satisfiabil-
ity modulo theory (SMT) solving have however remained inconclusive, as
such encodings are typically very large, which increases the bookkeeping
work of solvers.

In this paper, we introduce approximate propagation completeness
and approximate conflict propagation as novel SAT encoding property
notions. While approximate propagation completeness is a generaliza-
tion of classical propagation completeness, (approximate) conflict prop-
agation is a new concept for reasoning about how early conflicts can
be detected by a SAT solver. Both notions together span a hierarchy of
encoding quality choices, with classical propagation completeness as a
special case. We show how to compute approximately propagation com-
plete and conflict propagating constraint encodings with a minimal num-
ber of clauses using a reduction to MaxSAT. To evaluate the effect of
such encodings, we give results on applying them in a case study.

1 Introduction

Satisfiability (SAT) solvers have become an important tool for the solution of
NP-hard practical problems. In order to utilize them, the practical problem to
be solved needs to be encoded as a satisfiability problem instance, which is
then passed to an off-the-shelf SAT solver. The way in which this encoding is
performed has a huge influence on the solver computation times. Hence, the
effective use of SAT solvers requires encodings that keep the workload of the
solvers as small as possible. Capturing how an encoding needs to look like to
have this property is however not a simple task. While it is commonly agreed
on that problem-specific knowledge should be made use of, only few general
guidelines for efficient encodings are known [7].

A good encoding should keep the numbers of variables and the number of
clauses as small as possible, while allowing the solver to make most use of clause
c© Springer International Publishing AG, part of Springer Nature 2018
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learning and unit propagation, which are reasoning steps that are (part of) the
foundation of modern CDCL-style SAT solving [14]. While the effect of clause
learning depends on the variable selection scheme for branching employed by the
solver, and hence is hard to predict, how an encoding makes most use of unit
propagation is better studied. For instance, the class of cardinality constraints
has many known encodings [1,3], and it is frequently suggested that encod-
ings that are propagation complete should be preferred [7,13]. An encoding of
a constraint is propagation complete (also known under the name generalized
arc-consistent [13]) if every literal implied by some partial valuation and the
encoded constraint is detected by the unit propagation mechanism of the SAT
solver. A constraint encoding with this property reduces the number of times in
which costly backtracking is performed until a satisfying assignment is found or
the SAT instance is found to be unsatisfiable.

Propagation completeness is of interest for all types of constraints that appear
in practically relevant SAT problems, so having an automated way to make the
encoding of a constraint type that appears as a building block in real-world
problems propagation complete is likely to be useful. Brain et al. [9] presented
an approach to rewrite SAT encodings to make them propagation complete. They
apply their approach to multiple building blocks commonly found in problems
from the field of formal verification and modify the SAT-based satisfiability
modulo theory (SMT) solver CVC4 to use the computed encodings for bitvector
arithmetic operations. Their experiments show that the change increased solver
performance somewhat, but made limited overall difference.

This result is surprising. If propagation complete encodings enable a SAT
solver to make most use of unit propagation and reduce the number of conflicts
during the solution process, then SAT solving times should decrease when using
such encodings. A contributing factor to this lack of substantial improvement
is that propagation complete encodings are often much larger than minimally-
sized encodings. As an example, a three-bit multiplier (with five output bits)
can be encoded with 45 clauses, but a propagation complete encoding needs
at least 304 clauses. As a consequence, the bookkeeping effort of the solver is
higher for propagation complete encodings, which reduces solving efficiency [17].
This observation gives rise to the question if there is a way to balance encoding
size and the propagation quality of an encoding to get some of the benefits of
propagation complete encodings but still keep the burden to the solver by the
additional clauses low.

In this paper, we present such an approach to balance the propagation qual-
ity of a constraint encoding into conjunctive normal form (CNF) and its size. We
define the novel notions of approximate propagation completeness and approx-
imate conflict propagation. The former is a generalization of propagation com-
pleteness, and we say that a CNF formula ψ is approximately propagation com-
plete for a quality level of c ∈ IN if for every partial valuation to the variables in
ψ that can be completed to a satisfying assignment and that implies at least c
other variable values, one of them need to be derivable from ψ by unit propaga-
tion. Approximate conflict propagation is concerned with how early conflicts are
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detected. We say that a CNF constraint encoding ψ is approximately conflict
propagating with a quality level of c ∈ IN if every partial valuation that cannot
be completed to one that satisfies ψ and for which the values of at most c vari-
ables are not set in the partial valuation leads to unit propagation (or induces a
conflict) in ψ.

Approximate propagation completeness and approximate conflict propaga-
tion both target making the most use of the unit propagation capabilities of
solvers. While approximate propagation completeness deals with satisfiable par-
tial valuations, i.e., those that can be extended to satisfying assignments, approx-
imate conflict propagation deals with unsatisfiable partial valuations. Together
these concepts allow to reason about the propagation quality of CNF encodings
in a relatively fine-grained way.

To evaluate the two new concepts, we present an approach to compute
approximately propagation complete and approximately conflict propagating
encodings with a minimal number of clauses. The approach starts from a repre-
sentation of the constraint to be encoded as a binary decision diagram (BDD)
and enumerates all shortest clauses implied by the BDD. Every minimal CNF
encoding consists of a subset of these clauses. We then compute clause selection
requirements for the solution based on the desired propagation quality levels. The
resulting requirement set is then processed by a (partial) MaxSAT solver [20] to
find a smallest encoding. The approach supports finding minimal propagation
complete encodings and minimal arbitrary CNF encodings as special cases.

We apply the approach to a wide variety of constraints, including the ones
already used by Brain et al. [9]. We show that their approach can sometimes
produce encodings with a clause cardinality that is higher than necessary, and
that for a good number of constraints, the various propagation quality level
combinations for our new propagation quality notions give rise to many differ-
ent (minimal) encodings with vastly different sizes. Our approach is also very
competitive in terms of computation time when using the MaxSAT solver LMHS
[25] in combination with the integer linear programming (ILP) solver CPLEX as
backend. To gain some intuition on how efficient the SAT solving process with
the new encodings is, we compare them on some integer factoring benchmarks.

1.1 Related Work

Brain et al. [9] introduced abstract satisfaction as a theoretical foundation to
reason about propagation strength of encodings. They use a modified SAT
solver to generate propagation complete encodings and then minimize their sizes
by removing redundant clauses using a procedure proposed by Bordeaux and
Marques-Silva [8]. As we show in Sect. 5, this approach does not guarantee a
minimal number of clauses (but guarantees that no clause from the encoding
can be removed without making it propagation incomplete or incorrect), whereas
the new algorithm given in Sect. 4 does. Brain et al. also give a variant of their
approach in which auxiliary variables are added to the SAT instance, which can
substantially reduce the encoding size. This makes the encoding propagation
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incomplete, however, except when assuming that the SAT solver never branches
on the auxiliary variables.

Inala et al. [17] used syntax-guided program synthesis to automatically com-
pute propagation complete encodings that improve the efficiency of SMT-based
verification. In contrast to the work by Brain et al., their approach synthesizes
code to generate encodings rather than computing the encodings directly. The
code can then be used for multiple concretizations of the constraint type (e.g.,
for varying bit vector widths when encoding an addition operation).

Bordeaux and Marques-Silva [8] already solved the problem of generating
propagation complete encodings earlier than the aforementioned works. They
show that when starting from a CNF encoding that should be made propa-
gation complete, by restricting the search for clauses to be added to so-called
empowering clauses, the computation time can be substantially reduced. How-
ever, their approach requires the use of a quantified Boolean formula (QBF)
solver, whereas the later approach by Brain et al. [9] only requires a modified
SAT solver. Bordeaux and Marques-Silva also showed that there are constraint
classes that require exponentially-sized propagation complete encodings, which
further motivates the study of approximate versions of this notion in the present
work.

Gwynne and Kullmann [15,16] define two hierarchies for specifying how easy
a SAT solver can detect implied literals and conflicts, which we also do in this
paper. Their notions are however based on how often a solver has to branch in
the optimal case to detect implied literals or conflicts. In contrast, our notions
base on how many variable values are implied (for approximate propagation
completeness) and how many variables do not have values assigned in a partial
valuation (for approximate conflict propagation). Hence, our encoded constraints
do not rely on the solver to branch on the right variables. This also allows us
to automate the process of finding encodings with a minimal number of clauses
for a wide variety of constraints, while the experimental evaluation of their work
[15] focused on few cases for which encodings in the levels of their hierarchies
were available.

Minimal propagation complete CNF encodings typically have more clauses
than minimal arbitrary CNF encodings. Many of the additional clauses can also
be found automatically by SAT solvers that perform preprocessing or inprocess-
ing [18] through techniques such as variants of hyper resolution [5]. Due to the
high computational cost incurred by them, they are typically only used to a
limited extent. Some clauses that are important for approximate propagation
completeness and conflict propagation can therefore not be found or are found
very late by these techniques. Furthermore, our approach computes minimal
encodings from scratch, which be structured in completely different ways that
expert-made encodings.

Manthey et al. [22] proposed a technique which can be used for inprocessing
or preprocessing and that is based on introducing auxiliary variables that can
make the CNF encoding smaller (where they count the number of clauses plus
number of variables). They show that SAT solving performance improves on



Approx. Propagation Complete and Conflict Propagating Constraint Encodings 23

many benchmarks with their approach. While the introduction of additional
variables could in principle break the propagation completeness, their approach
does not suffer from this problem as they only undo clause distribution in a way
that one of the variable phases occurs in two-literal clauses only. Their positive
experimental results therefore do not give insight into the practical importance
of using propagation complete encodings.

Babka et al. [4] study the theoretical properties of the problem of making
a CNF encoding propagation complete. They identify the complexity classes of
the different variants of this problem.

Kučera et al. [19] give lower bounds on the minimal number of clauses needed
to encode so-called “at most one” or “exactly one” constraints. In contrast to
the work in this paper, their result generalizes to an arbitrary size, also holds
for the case that auxiliary variables are used, but is restricted to this particular
constraint type.

2 Preliminaries

Given a set of variables V and Boolean formula ψ over V, the satisfiability (SAT)
problem is to find a satisfying assignment to the formula if one exists, or to
deduce that no such assignment exists, in which case the formula is called unsat-
isfiable. Boolean formulas to be checked for satisfiability are also called SAT
instances and are assumed to be given in conjunctive normal form (CNF) in the
following. Such instances are conjunctions of clauses, which are in turn disjunc-
tions of literals, i.e., from L(V) = V ∪ {¬v | v ∈ V}.

A search-based SAT solver maintains and manipulates a partial valuation
to V. A partial valuation p : V ⇀ {false, true} is a partial function from the
variables to false and true. We say that p is consistent with some other partial
valuation p′ if p(v) = p′(v) holds for all variables v in the domain of p′. A
completion of p is a full assignment to V that is consistent with p. We say
that p satisfies some literal l over a variable v if p(v) is defined and p can be
completed to a full valuation that satisfies l. Likewise, p falsifies some literal l
if p(v) is defined and no completion of p satisfies l. We say that p′ implies a
literal l ∈ L(V) if every completion of p′ that satisfies ψ also satisfies l. With a
slight abuse of terminology, for some fixed set of clauses, we say that a partial
valuation is satisfiable if it can be extended to a satisfying assignment, and it is
unsatisfiable otherwise. We say that a clause c subsumes another clause c′ if the
literals of c are a subset of the literals of c′. If a CNF formula has two clauses
c and c′ such that c subsumes c′, then c′ can be removed without changing the
encoded constraint.

During the search process, partial valuations p : V ⇀ {false, true} are
extended by the solver (1) by performing decisions, where the domain of p is
extended by one variable, and (2) by unit propagation, where for some clause
l1 ∨ . . . ∨ ln in the formula, there exists an i ∈ {1, . . . , n} such that the variable
of li is not in the domain of p, but p falsifies all literals lj with i �= j.

Given some (sub-)set of variables V ′, a constraint over V ′ is a subset of
valuations to V ′ that models the satisfaction of the constraint. A CNF encoding
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ψ of such a constraint is a set of clauses over V ′ that are together satisfied
by exactly the valuations in the subset to be encoded. A CNF encoding of a
constraint over a variable set V ′ is propagation complete if for every partial
valuation p to V ′ and every literal l ∈ L(V ′), if p implies l, then there exists a
clause l1 ∨ . . . ∨ ln in the encoding for which all literals in the clause except for
at most one are falsified by p.

Example 1. As an example, we consider the following CNF encoding:

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ x3)

This constraint encoding is not propagation complete, as the partial valuation
p = {x4 �→ false} does not give rise to unit propagation, but in every satisfying
valuation, x1 needs to have a false value if x4 has a false value. Shortening
the last clause to (x2 ∨ x4) does not change the set of satisfying valuations and
makes it propagation complete. The new clause enables the SAT solver to extend
the partial valuation p to p′ = {x4 �→ false, x2 �→ true} by unit propagation,
from where unit propagation can then deduce that x1 must have a false value.
Adding the clause (¬v1 ∨x4) instead of changing the clause (v4 ∨x2 ∨x3) would
also make the encoding propagation complete.

Partial Maximum Satisfiability (MaxSAT) solvers take a CNF formula in which
some clauses are soft. The solver searches for a variable assignment that satisfies
all the remaining hard clauses and maximizes the number of soft clauses that
are satisfied by the assignment.

Binary decision diagrams (BDDs) [10] are compact representations of
Boolean formulas over some set of Boolean variables. They are internally rep-
resented as directed acyclic graphs and every path through the BDD to a des-
ignated true node represents one or multiple satisfying assignments of the for-
mula. We will not need their details in the following, and refer to [11] for a
well-accessible introduction. BDDs support the usual Boolean operators such as
disjuction, complementation, and universal or existential abstraction of a vari-
able. For instance, given a BDD F and a variable v, computing ∃v.F yields a
BDD that maps all valuations to the variables to true for which the value for v
can be set to either false or true such that the resulting valuation is a model
of F .

3 Approximate Propagation Completeness and Conflict
Propagation

Propagation complete encodings enable search-based SAT solvers to deduce
implied literals by unit propagation. By definition, every partial valuation that
implies a literal over a variable that does not have a defined value in the partial
valuation must give rise to unit propagation by the solver. We want to weaken
this requirement in a way that enables SAT practitioners to better balance prop-
agation quality and the encoding size of a constraint. This is done in two ways:
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– We separate the consideration of satisfiable and unsatisfiable partial valua-
tions, and

– we relax the requirement that every partial valuation that could give rise to
unit propagation should do so, but rather that only partial valuations that
enable the solver to make much progress need to so do.

These ideas are implemented in the following two propagation quality notions
for CNF encodings:

Definition 1 (Approximate Propagation Completeness). Given a CNF
encoding ψ over some set of variables V and some constant n ∈ IN, we say
that ψ is approximately propagation complete with a quality level of n if for all
satisfiable partial valuations p : V ⇀ {false, true} for which n different literals
are implied by p and ψ and for which the variables for these literals are not
in the domain of p, at least one of them can be derived from p and ψ by unit
propagation.

Definition 2 (Approximate Conflict Propagation). Given a CNF encod-
ing ψ over some set of variables V and some constant n ∈ IN, we say that ψ is
approximately conflict propagating with a quality level of n if for all unsatisfi-
able partial valuations p ∈ V ⇀ {false, true} for which p is defined on at least
|V| − n variables, there exists a clause in ψ all of whose literals except for at
most one are falsified by p.

In both definitions, we only care about situations in which at least one clause
should lead to unit propagation (or a conflict in case of approximate con-
flict propagation). The definition however induces stronger propagation qual-
ity requirements through repeated application. If, for instance, ψ is an approxi-
mately propagation complete encoding with a quality level of 2 and p is a partial
valuation that implies four new literals, then at least one clause needs to lead
to the derivation of an extended partial valuation p′ by unit propagation. As
p′ then still implies three literals, by the fact that ψ has an approximate prop-
agation completeness quality level of 2, another clause must give rise to unit
propagation. By this line of reasoning, an n-approximate propagation complete
encoding can never leave more than n − 1 implied literals of a partial valuation
undetected by unit propagation.

The quality level for approximate conflict propagation states how early con-
flicts induced by a constraint need to be detected by the unit propagation
capabilities of the solver. In contrast to approximate propagation completeness,
higher values are better as they mean that more variables can be unassigned in
a partial valuation that already violates the constraint and where unit propaga-
tion should lead to an extension of the partial valuation or the detection of the
conflict.

The requirement that p needs to be defined on at least |V| − n variables
for a partial valuation to be of interest in the approximate conflict propagation
definition could also be replaced by considering all partial valuations for which
at most |V| − n variables are undefined. This definition would also make sense
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and requires that unsatisfiable partial valuations in which few variables have
values assigned need to give rise to unit propagation until at most n variables
are left unassigned. However, this definition would not ensure that conflicts are
actually detected by the solver in such a case, while our definition does, which
we find more natural. To see that our definition indeed ensures this, note that
if a partial valuation p meets the requirements given in the definition, then
either a conflict is detected or unit propagation should be able to extend p to
a partial valuation p′ that is defined on more variables and that still cannot
be extended to a satisfying assignment. Hence, the definition can be applied
again (repeatedly), and eventually a conflict is found by the solver. Thus, the
“at least” in Definition 2 is reasonable, even though in this way, higher quality
levels for approximate conflict propagation are better, whereas for approximate
propagation completeness, lower numbers are better.

While these definitions consider satisfiable and unsatisfiable partial valua-
tions separately, there is still a connection between them:

Proposition 1. If a CNF encoding ψ over some set of variables V is approxi-
mately propagation complete with a quality level of 1, then it is (approximately)
conflict propagating with a quality level of |V|.
Proof. Let p be an unsatisfiable partial valuation. We can transform p to an
unsatisfiable partial valuation p′ to which p is consistent and for which removing
any variable of the domain of p′ would make it satisfiable. This transformation
only requires removing variables from the domain of p until no more variables
can be removed without making it satisfiable. Let us now remove an arbitrary
variable v′ from the domain of p′ and let the resulting valuation be called p′′.
We have that p′′ implies the literal l = ¬v′ if p(v′) = true or l = v′ if p(v′) =
false. Since ψ is approximately propagation complete with a quality level of 1,
l needs to be deduced by unit propagation from p′′. The last clause used in the
propagation has, by the definition of unit propagation, all literals instead of l
falsified for the partial valuation p′′. Since l is in conflict with p′ by construction,
we have p′′(v) = p′(v) for all variables v in the domain of p′′, and we have that
p is an extension of p′, we obtain that p falsifies a clause of ψ. 
�

A corollary of this proposition is that approximately propagation complete
encodings with a quality level of 1 are exactly the same as propagation com-
plete encodings. While the two definitions differ for unsatisfiable partial valua-
tions, they both imply that the unsatisfiability of a partial valuation needs to be
detectable by unit propagation. For the approximate notion, this follows from
the proposition above. For the older non-approximate propagation completeness
definition, this follows from the fact that such partial valuations imply all literals
in L(V), which in turn need to lead to at least one clause in the CNF encoding
to be falsified.

4 Computing Minimal Approximately Optimal Encodings

In this section, we present an approach to compute approximately propaga-
tion complete and conflict propagating encodings of minimal size. Both of these
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concepts are parameterized by quality levels, so our procedure will read a prop-
agation quality level tuple (qp, qc), where qp denotes the quality level for approx-
imate propagation completeness, and qc is the quality level for approximate
conflict propagation. Applying the approach with the quality level tuple (1, |V|)
thus yields the smallest propagation complete encoding, whereas applying the
approach with (|V|, 1) gives the overall smallest possible CNF encoding for a
constraint (as every encoding is automatically approximately conflict propagat-
ing with a quality level of 1 by the definition of this propagation quality notion).
To avoid the occurrence of the set of variables in propagation quality tuples in
the following, we use the ∞ symbol to denote all numbers ≥ |V|, as the propa-
gation quality level definitions do not lead to differences for values greater than
or equal to the number of variables in a constraint.

The main idea of our approach is that after enumerating all clauses that
could occur in a minimal CNF encoding with the specified quality level, we
can compute requirements on the selection of a subset of clauses that ensure
(1) the completeness of the encoding (i.e., that it accepts the correct set of full
variable valuations), (2) the desired quality level for approximate propagation
completeness, and (3) the desired quality level for approximate conflict propa-
gation. These requirements are then encoded into a (partial) MaxSAT instance
whose optimal solution represents a minimally-sized CNF encoding.

The following proposition gives rise to a procedure to efficiently enumerate
the set of clauses that can occur in a minimal CNF encoding.

Proposition 2. Let ψ be a CNF encoding of a constraint with propagation qual-
ity level tuple (qp, qc). If a literal can be removed from a clause in ψ without
changing the set of satisfying variable valuations, then removing the literal does
not degrade the propagation quality levels of ψ.

Proof. If a partial valuation p leads to unit propagation for ψ, then it still does
so after removing a literal from a clause except if the removed literal would be
propagated. This can only happen for unsatisfiable partial valuations. For both
propagation quality notions, such a case cannot reduce the quality level. 
�
It follows that without loss of generality, we can assume smallest encodings to
only use clauses that are as short as possible (in the sense that removing a literal
from the clause would lead to a clause that some allowed variable valuation of
the constraint to be encoded violates). Note that Bordeaux and Marques-Silva
[8] already proved that when enumerating clauses for a constraint ordered by
length, a longer clause can never make a shorter one redundant. Their result is
not applicable here, as we later only select a subset of the enumerated candidate
clauses to be contained in the computed encoding, while the application of their
result requires that a clause remains a part of the CNF encoding once it has
been found.

Enumerating all shortest clauses can be done in multiple ways. In our imple-
mentation for which we report experimental results in the next section, we start
with a binary decision diagram description of the constraint and encode the
search for a clause into a SAT instance by letting the SAT solver guess a partial
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valuation and which nodes in the BDD are reachable for the partial valuation.
The true node of the BDD must not be reachable so that the valuation rep-
resents a possible clause in an encoding. We use a cardinality constraint with
a ladder encoding [24] to count how many variables are set in the partial val-
uation, and iteratively search for partial valuations with the smallest possible
domain size. Whenever one is found, a clause is added to the SAT instance that
excludes all extensions of the partial valuation, and the search continues in an
incremental manner.

After a candidate set of clauses C = {c1, . . . , cm} for the constraint to be
encoded is computed, we employ a MaxSAT solver to find a minimal encoding
with the desired propagation quality level tuple (qp, qc). The MaxSAT instance
φM has the variables x1, . . . , xm, i.e., one variable per clause in C, and we com-
pute clauses for φM that ensure that the selected subset of C is (1) complete
enough to encode the correct constraint, (2) approximately propagation com-
plete with a quality level of qp, and (3) approximately conflict propagating with
a quality level of qc. In the remainder of this section, we describe how to compute
these clauses for φM .

4.1 Ensuring Encoding Correctness

All clauses in C can be part of a correct encoding of the constraint. The final
set of selected clauses needs to be large enough not to allow spurious satisfying
assignments, however. To achieve this, we recursively enumerate all (partial)
assignments p while keeping track of the set of clauses C ′ not (yet) satisfied by
the partial assignment. Whenever a complete assignment is reached and C ′ ⊆ C
is the set of clauses not satisfied by p, the (hard) MaxSAT clause

∨
ci∈C′ xi

is added to φM . As optimizations for this process, a recursion step is aborted
whenever C ′ becomes empty, and p is never extended by values for variables that
do not occur in C ′.

It is possible that a MaxSAT clause found late in this process subsumes a
clause found earlier. We use a simple clause database structure that sorts clauses
by length and removes subsumed clauses to avoid generating unnecessarily large
MaxSAT instances. Storing all clauses with ordered literals increases the effi-
ciency of the approach.

4.2 Encoding Approximate Propagation Completeness

By the definition of approximate propagation completeness, we need to ensure
that for every partial valuation that implies at least qp literals for variables
that do not have values in the partial valuation, the final encoded CNF formula
includes one clause that gives rise to unit propagation for the partial valuation.

We start by building a BDD that represents all partial valuations for which at
least qp new literals are implied. Algorithm 1 shows how this is done. In order to
encode partial valuations, we use the auxiliary variable set D = {dv | v ∈ V} to
encode which variables have defined values in a partial valuation. The algorithm
iterates over all variables v ∈ V (line 3) and finds the set of partial valuations
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Algorithm 1. Procedure to compute the satisfiable partial valuations that imply
at least qp many literals
1: F ← satisfying assignments of the constraint to be encoded over V
2: X[0] ← F
3: for v ∈ V do
4: I = ¬dv ∧ (∃v.F ) ∧ (¬∀v.F )
5: for v′ ∈ V \ {v} do
6: I = I ∧ ((∀v′.I) ∨ dv′)

7: Y ← X
8: X[0] ← Y [0] ∧ ¬I
9: for i ∈ {1, . . . , |Y |} do

10: X[i] ← (Y [i] ∧ ¬I) ∨ (Y [i − 1] ∧ I)

11: X[|Y |] ← Y [|Y | − 1] ∧ I

12: return
∨|V|

i=qp
X[i]

that imply v or ¬v (line 4). We only consider partial valuations that can be
extended to satisfying assignments, so only one of them can be implied. If some
other variable v′ does not have a defined value in a partial valuation, then the
valuation can only induce a literal over v if the value of v′ does not matter for
implying v (lines 5 to 6). The resulting partial valuation set is stored into the
variable I in the algorithm.

After I is computed, the algorithm updates a partitioning of the partial
valuations by how many literals over the variables already considered in the
outer loop are induced by the respective partial valuation (lines 7 to 11). Finally,
the algorithm returns the partial valuations that induce at least qp literals.

For every partial valuation in the resulting BDD, we compute the subset
C ′ ⊆ C of clauses in C that give rise to unit propagation over the valuation, as
for the final CNF encoding of the constraint to be approximately propagation
complete with a quality level of qp, one of them needs to be contained. We then
add

∨
ci∈C′ xi as a hard clause to the MaxSAT instance φM and update the BDD

with the remaining partial valuations to be considered by taking its conjunction
with ¬∧

ci∈C′
∨

l∈ci

∧
l′∈ci,l �=l′ m(l), where m(¬v) = dv ∧ v and m(v) = dv ∧ ¬v

for every variable v ∈ V. In this way, all partial valuations that are guaranteed to
lead to unit propagation whenever at least one of the clauses in C ′ is contained
in the CNF encoding are removed from the BDD. We do the same with all clause
subsets C ′ found in the procedure given in the previous subsection, as this further
reduces the number of partial valuations to be considered. As before, we use a
special clause database for φM to remove subsumed clauses.

4.3 Encoding Approximate Conflict Propagation

Next, we take care of partial valuations that cannot be completed to satisfying
assignments and for which at most qc variables in V do not have an assigned
value. Algorithm 2 describes how to compute this set of partial valuations. After
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Algorithm 2. Procedure to compute the unsatisfiable partial valuations for
which at least qc variables do not have a assigned values.
1: X[0] ← ¬(satisfying assignments of the constraint to be encoded over V)
2: for v ∈ V do
3: Y ← X
4: for i ∈ {1, . . . , |X|} do
5: T ← (∀v.Y [i]) ∧ ¬dv
6: if i > 1 then
7: T ← T ∨ (Y [i − 1] ∧ dv)

8: X[i] ← T

9: X[|Y | + 1] ← Y [|Y |] ∧ dv

10: return
∨|V |

i=|V|−qc
X[i]

it has been computed, the process is exactly the same as in the previous sub-
section: for every partial valuation that the BDD maps to true, the subset of
clauses C ′ that lead to a conflict or unit propagation for this partial valuation
is computed, and the (hard) MaxSAT clause

∨
ci∈C′ xi is added to the MaxSAT

instance. The BDD for the remaining partial valuations is also updated in the
same way and the clauses in the MaxSAT clause database generated by the
procedures in the preceding two subsections are used to reduce the number of
partial valuations to be considered before enumerating them.

4.4 MaxSAT Solving

All constraints in φM so far are hard constraints, i.e., need to be fulfilled by all
satisfying variable valuations of the MaxSAT instance. To request the solver to
minimize the number of clauses in the CNF encoding, we add the soft clauses
¬x1, . . . , ¬xm. Maximizing the number of satisfied soft clauses then exactly
corresponds to minimizing the number of clauses in the final constraint encoding.

5 Experiments

We implemented the approximate propagation complete and conflict propagating
CNF encoding procedure in C++ using the BDD library CuDD [26]. Unlike the
tool GenPCE for computing propagation complete encodings with the approach
by Brain et al. [9], our new optic tool1 does not start with a constraint encoding
in CNF, but supports arbitrary Boolean formulas as constraints, which makes
their specification easier. For the following experiments, we use lingeling bbc
9230380 [6] as SAT solver for enumerating the candidate clauses for the encoding,
and apply the MaxSAT solver LMHS [25] in the version from the end of March
2018, using minisat [12] as backend solver. LMHS performs calls to an integer
linear programming solver, for which we employ IBM CPLEX V12.8.0. We use
the following benchmark sets:
1 Available at https://github.com/progirep/optic.

https://github.com/progirep/optic
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1. Full adders with and without carry bit output
2. Multipliers of various input and output bit widths
3. Square and square root functions
4. Unsigned less-than-or-equal comparison functions
5. All-different constraints, including Cook’s encoding [23]
6. Bipartite matching problems, where for some set of nodes V1 = V2 =

{1, . . . , n} for n ∈ IN and (random) E ⊆ V1 × V2, we have one Boolean
variable ve for every e ∈ E and allow all edge subset choices encoded into
{ve}e∈E for which every node in V1 is predecessor node for exactly one chosen
edge and every node in V2 is the successor node of exactly one chosen edge

7. All other benchmarks from the work of Brain et al. [9] not contained in the
benchmark families above.

We apply our implementation with various propagation quality tuples and com-
pare the resulting encoding sizes and computation times with the propagation
complete encodings generated by the GenPCE tool and the time it took that tool
to compute them. As baseline, we also compare against a simple BDD-based
tool that enumerates some shortest possible clauses in a CNF encoding until the
encoding is complete, without guaranteeing any propagation quality. All bench-
marks were executed on a computer with AMD Opteron 2220 processors with
2.8 GHz clock rate, running an x64 version of Linux. The memory limit for every
execution was 8 GB, all executions where single-threaded, and we imposed a time
limit of 30 min.

Table 1 shows an excerpt of the results. We tested the propagation quality of
all generated encodings using an additional tester tool, and report the results in
the table as well. In many cases, optic generated encodings of higher propaga-
tion quality levels than requested when this was possible without increasing the
number of clauses in the encoding. A few other observations can be made:

1. The GenPCE tool did not always compute propagation complete encodings
with a minimal number of clauses (e.g., all-different constraints for 3 objects,
some bipartite matching problems), but did so quite often.

2. There are a many cases (e.g., addition with a large number of bits, multipli-
cation, all-different constraints) for which the encodings for different propa-
gation quality tuples have different sizes.

3. Encodings that are fully conflict propagating but for which approximate prop-
agation completeness was not requested are typically small.

4. The GenPCE tool is often slower than optic for computing propagation com-
plete encodings, but the scalability of optic and GenPCE are quite similar.
However, optic also times out in a few cases in which GenPCE does not. Com-
puting minimally-sized encodings (as optic does but not GenPCE) appears to
be much harder in these cases.
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We can see that using BDDs for enumerating candidate clauses and generating
MaxSAT clauses is not a major bottleneck, as optic frequently outperforms
GenPCE on propagation-complete encodings. We also tested how long computing
good encodings for the four-object all-different constraints takes. For the (1,∞)
and (2,∞) propagation quality levels, it was determined after 18.1 and 28.4 h
that 200 and 156 clauses are needed, respectively, of which 11.2 and 621.3 min
were spent solving the MaxSAT problems. In the (3,∞) case, the overall com-
putation took 141.7 h (120 clauses).

5.1 Case Study: Integer Factoring

To evaluate the effect of the encodings on propagation quality, we apply them
in an integer factoring case study. We generated 5 numbers that are products of
two primes each. For each number c and each 2 ≤ n1 ≤ �log2(

√
c + 1)�, we then

computed SAT instances for finding a factoring for which the first number has n1

bits with the most significant bit set. We compose the SAT instance of encodings
for full adders with 1, 2, 3, or 4 input bits, and multipliers with 1, 2, or 3 input
bits. We use the propagation quality tuples (3, 3), (∞,∞),(∞, 1), and (1,∞),
for which the latter three refer to best possible conflict propagation, minimal
encoding size, and classical propagation completeness. For the (3, 3) case, we
were unable to generate a minimal encoding for the four-bit full adder and had
to use a suboptimal (possibly too large) encoding that we obtained by using
the MaxSAT solver maxino-2015-k16 [2] that can output suboptimal solutions
found early. We aborted its computation after 400 min. We also compare the
solving performance against using the greedy encoding introduced as comparison
baseline in Table 1.

Figure 1 shows the cactus plot for the computation times of the SAT solvers
lingeling bbc 9230380 [6] and MapleSAT LRB [21] as representatives for mod-
ern solvers with and without advanced inprocessing, respectively. It can be seen
that for shorter time limits, minimally sized encodings without propagation qual-
ity guarantees are inferior in overall performance. Above 600 s of computation
time for every benchmark, MapleSAT however works quite well with minimally-
sized encodings, but the difference between the encodings is quite small for high
time limits anyway. Lingeling works best with encodings of higher propagation
quality. Encodings that only enforce conflict propagation seem to be particularly
well suited for easier benchmarks.
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Fig. 1. Cactus plot for the integer factoring case study. Time is given in seconds,
the overall number of files is 73. The legend describes the line styles for the studied
combinations of solvers and propagation quality tuples.

6 Conclusion

We presented two new propagation quality notions and described an approach
to compute minimally-sized CNF encodings from constraint descriptions. Our
approach reduces the problem to solving a single MaxSAT instance, and the
experiments show that many constraints found in practice give rise to differently
sized encodings for different propagation quality level combinations.

In contrast to the work by Brain et al. [9], we based our experimental case
study on problems encoded from scratch rather than modifying an existing SMT
solver, as the techniques used in SMT solvers are highly tuned to work in concert,
and hence replacing a single element has side-effects that cannot be tuned out
in an experimental evaluation.
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Studying the precise effect of inprocessing [18] on what constraint encodings
can be used most efficiently is left for future work. For instance, clauses that
solvers with inprocessing could automatically derive could be left out, which
may give rise to very different minimally-sized encodings.

Acknowledgements. This work was supported by DFG grant EH 481/1-1 and the
Institutional Strategy of the University of Bremen, funded by the German Excellence
Initiative. The authors want to thank Armin Biere for early feedback on the propagation
quality notions defined in this work and Erika Abraham for proposing MaxSAT solvers
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Abstract. In this paper we present a novel pseudo-Boolean (PB) con-
straint encoding for solving the weighted MaxSAT problem with iter-
ative SAT-based methods based on the Polynomial Watchdog (PW)
CNF encoding. The watchdog of the PW encoding indicates whether
the bound of the PB constraint holds. In our approach, we lift this static
watchdog concept to a dynamic one allowing an incremental convergence
to the optimal result. Consequently, we formulate and implement a SAT-
based algorithm for our new Dynamic Polynomial Watchdog (DPW)
encoding which can be applied for solving the MaxSAT problem. Further-
more, we introduce three fundamental optimizations of the PW encoding
also suited for the original version leading to significantly less encoding
size. Our experimental results show that our encoding and algorithm is
competitive with state-of-the-art encodings as utilized in QMaxSAT (2nd
place in last MaxSAT Evaluation 2017). Our encoding dominates two of
the QMaxSAT encodings, and at the same time is able to solve unique
instances. We integrated our new encoding into QMaxSAT and adapt the
heuristic to choose between the only remaining encoding of QMaxSAT
and our approach. This combined version solves 19 (4%) more instances
in overall 30% less run time on the benchmark set of the MaxSAT Eval-
uation 2017. Compared to each encoding of QMaxSAT used in the eval-
uation, our encoding leads to an algorithm that is on average at least
2X faster.

1 Introduction

MaxSAT and its variations are SAT-related optimization problems seeking for a
truth assignment to a Boolean formula in Conjunctive Normal Form (CNF) such
that the satisfiability of the formula is maximized. Maximizing the satisfiability
in a pure MaxSAT problem is to maximize the number of simultaneously satisfied
clauses in the CNF. In the weighted MaxSAT variation for each clause a positive
integer weight is appended and hence, the maximization of the formula is yielded
if the accumulated weights of the satisfied clauses are maximized.
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There exists a wide range of different solving techniques [1] such as branch
and bound algorithms [2], iterative SAT solving [3], unsat core based tech-
niques [4] and ILP solver [5], to name a few. A very successful approach is
iterative SAT-based solving. The core idea is to adjust the bounds for the max-
imized result by iterative (and incremental) SAT solver calls. One possibility
to do so is a direct encoding of Pseudo-Boolean (PB) constraints of the max-
imization objective into the SAT instance, such that the truth assignment of
the whole formula directly represents the result of the maximization. By forc-
ing the current optimization result to be larger than the last one found, this
approach runs iteratively towards the optimum. The recent MaxSAT Evalua-
tion [6] indicates that this technique can be successfully employed for unweighted
and weighted MaxSAT, as the iterative SAT-based solver QMaxSAT [7] demon-
strates. QMaxSAT adopts four different variations of the totalizer network [8–11]
and one adder network [12] as PB encoding. A simple heuristic selects between
these encodings.

In this paper we introduce a new encoding and algorithm based on the
Polynomial Watchdog (PW) encoding [13]. The PW is an efficient encoding
for PB constraints, though it is not designed to be employed in an iterative
MaxSAT approach. Hence, we modified the original encoding by replacing the
static watchdog of [13] by a dynamic one allowing to adjust the optimization
goal. Based on this encoding, we provide a complete algorithm for deciding the
weighted MaxSAT problem. Additionally, we introduce three fundamental opti-
mizations/heuristics leading to significantly smaller PW encodings.

To demonstrate the effectiveness we adjoin our new encoding to the
QMaxSAT solver. Experimental results on the benchmark set of the Evaluation
2017 [6] show that our encoding leads to an algorithm that is (1) competitive
in solved instances and (2) on average 2X faster than existing ones. In particu-
lar, our approach is clearly superior to [8,11], especially for weighted MaxSAT
instances with large clause weights. Moreover, our approach solves complemen-
tary instances with the employed adder network [12] and thus, we adjust the
heuristics for deciding the used network leading to 4% more solved instances on
the benchmark set of [6].

The remaining paper is structured as follows: We present related work on
totalizer networks and the weighted MaxSAT application in Sect. 2. In Sect. 3
we introduce the weighted MaxSAT problem as well as the totalizer and PW
encoding. In Sect. 4 we present our proposed dynamic PW encoding and algo-
rithm for iterative MaxSAT solving and propose further optimizations in Sect. 5.
Finally, we demonstrate the applicability of our new encoding and the optimiza-
tions in Sect. 6 and conclude the paper in Sect. 7.

2 Related Work

Since the original version of the totalizer network is published in 2003 [8], many
different variations have been investigated since then. Some of them are also
employed in context of (weighted) MaxSAT. In particular, the iterative MaxSAT
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solver QMaxSAT [7] uses many different variations of the totalizer network.
Namely, the original totalizer sorting network [8], weighted or generalized total-
izer networks [9], mixed radix weighted totalizer [10], and modulo totalizer [11].

The original totalizer is well suited for unweighted instances. However, for
weighted instances a näıve implementation does not scale in the encoding size.

The generalized totalizer [9] allows a more direct encoding of weighed inputs.
This encoding is integrated into the recursive rules constructing the totalizer.
The mixed radix weighted totalizer [10] is an extension of the generalized total-
izer combined with the concept of mixed radix base [14].

The modulo totalizer [11] was initially developed for unweighted MaxSAT
instances. It reduces the number of used clauses for the encoding by counting
fulfilled clauses with modulo operations. As our experimental results show, the
modulo totalizer still has scaling issues for a large sum of weights.

Our encoding is based on the Polynomial Watchdog (PW) encoding [13]
which also uses totalizer sorting networks. Essentially the PW encoding employs
multiple totalizer networks to perform an addition with carry on the sorted
outputs. The sorting network based encoding of minisat+ described in [15] has
similarities, the differences to the PW encoding are described in detail in [13].
In particular, minisat+ introduces additional logic to observe the exact bounds
of the current constraint. Whereas the PW encoding utilizes additional inputs
to control and observe the current bounds. Hence, we employ the PW encoding
as the additional inputs are easier to manipulate for our dynamic approach.

Apart from the totalizer, other encodings for PB constraints are successfully
employed for mapping the MaxSAT constraints. E.g., QMaxSAT uses an adder
network [12]. This type of network is better suited for a large sum of input
values than totalizer networks as adder have linear complexity in encoding size –
in contrast to at least O(n log n) for sorting networks.

Other encoding schemes are investigated in [15], where adder, sorting net-
work [16] and BDD [17] implementations are compared. A BDD preserves gen-
eralized arc consistency (GAC) for PB constraints, if it can be constructed [15] –
in contrast to sorting networks and adders in general. However, the enhanced
encoding scheme of the Local Polynomial Watchdog (LPW) in [13] preserves
GAC at the cost of encoding complexity. Another GAC preserving encoding is
presented in [18] which employs a different kind of sorting networks.

All mentioned totalizer modifications only adjust the recursive rules of the
totalizer. In contrast, our proposed encoding utilizes the standard totalizer and
modifies the cascading version of [13].

3 Preliminaries

In this section we introduce the foundations of MaxSAT and in particular iter-
ative PB encoding based approaches. Furthermore, we introduce the totalizer
network [8] and the Polynomial Watchdog (PW) encoding [13] which are the
fundamental encodings utilized in our approach.
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3.1 MaxSAT

First, we introduce some basic terminologies which will be used within this
paper. The input of MaxSAT problems is a Boolean formula in Conjunctive
Normal Form (CNF). A CNF is a conjunction of clauses, where a clause is a
disjunction of literals. A clause which contains one literal is called unit (clause).
In the following, we adopt the commonly used notation that clauses are sets of
literals and a CNF is a set of clauses. A SAT solver decides the satisfiability
problem, i.e. whether a Boolean formula ϕ in CNF is satisfiable. In this case,
the solver returns a satisfying assignment for all variables, which is also called
model of ϕ.

MaxSAT is a SAT-related optimization problem seeking for an assignment
maximizing the number of simultaneously satisfied clauses of a CNF formula ϕ.
The partial MaxSAT problem consists also of so-called hard clauses, which must
be satisfied. All other clauses are called soft clauses. Thus, a MaxSAT formula
can be formulated as follows: ϕ = S ∪H, where S denotes the set of soft clauses
and H the set of hard clauses. The weighted (partial) MaxSAT problem is a
generalization, where each soft clause is denoted with an integer weight wj . The
optimization goal is to maximize the accumulated weight of satisfied soft clauses.

A common approach for solving the MaxSAT problem is the iterative SAT-
based algorithm [3] which incrementally employs a SAT solver. To do so, a
pseudo-Boolean (PB) constraint C is directly encoded into CNF, where C is
defined as Σjaj · xj � M over Boolean variables xj and positive integers aj and
M . � is one of the relational operators � ∈ {=, >,≥, <,≤}. By using only con-
straints of the form Σjaj · xj ≥ M , the MaxSAT problem can be reduced to the
question of finding a maximum value M∗ still satisfying C. To do so, the soft
clauses are directly connected to the PB constraint network, where xj is true if
and only if the soft clause sj is true and the weight wj is connected to aj of C.

There are various methods and schemes for the encoding of PB constraints as
discussed in Sect. 2. State-of-the-art iterative MaxSAT solvers like QMaxSAT [7]
use various and customized CNF encodings. For instance, the QMaxSAT ver-
sion used in the MaxSAT evaluation effectively employs three different encod-
ings: totalizer network [8], modulo totalizer network [11] and Warners adder
network [12].

Regardless of the employed encoding, the iterative approach works as fol-
lows: A PB constraint network is encoded as described above and added as hard
clauses to the original CNF. For each soft clause sj ∈ S a so-called relaxation
literal rj is introduced: s′

j = sj ∨ rj (i.e. setting rj forces sj to be true) and con-
nected to the PB encoding. Let S′ be the set of all modified clauses s′

j , then a
SAT solver decides the ϕ′ = S′ ∪H. The returned model allows to determine the
current sum of satisfied weights M . The CNF is iteratively modified by adding
a constraint demanding a larger optimization result than M . The SAT solver is
called incrementally with this new constraint. The whole procedure is repeated
until the SAT solver returns “unsatisfiable”, i.e. the last added constraint rep-
resents a result which is just larger than the optimal result. Hence, the result of
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the last satisfiable SAT solver call corresponds to the optimization result M∗ of
the MaxSAT instance.

3.2 Totalizer Network

The totalizer network as introduced in [8] is a unary sorting network Φ :
{0, 1}n → {0, 1}n, arranging a binary input vector such that the output vector is
sorted in descending order. E.g., the input vector 〈1, 0, 1, 1, 0〉 will be processed
as follows: Φ(〈1, 0, 1, 1, 0〉) = 〈1, 1, 1, 0, 0〉. The output vector V represents a nat-
ural number v in unary representation: if the ith entry of the output vector V
is one, the unary representation matches v ≥ i.

The totalizer sorting network allows an efficient propagation of output values
on CNF. The network divides the input vector recursively into two parts until the
resulting vector consists only of one element which is sorted by definition. Two
unary sorted vectors are merged together by the formula Ψ . Let U = 〈u1, . . . , uk〉
and V = 〈v1, . . . , vl〉 be sorted vectors corresponding to unary representations
of natural numbers u and v, respectively. Ψ assures that the resulting vector
W = 〈w1, . . . , wk+l〉 is the unary representation of w with w = u + v.

The totalizer encoding consists of two mirrored parts D1(a, b) = (ua ∨ vb ∨
wa+b) and D2(a, b) = (ua+1 ∨ vb+1 ∨ wa+b+1), where 0 ≤ a ≤ k and 0 ≤ b ≤ l.
By definition u0 = v0 = w0 = 1 and uk+1 = vl+1 = wk+l+1 = 0 holds. As stated
in [8] the resulting formula Ψ(W = U ⊕ V ) represents the relation w = u + v:

Ψ(W = U ⊕ V ) =
k∧

a=0

l∧

b=0

D1(a, b) ∧ D2(a, b) (1)

Note, by using only the encoding D1 we guarantee w ≥ a + b, hence, we are
able to set an upper bound for w. Likewise D2 guarantees w ≤ a+ b, i.e. a lower
bound for w is represented. Note that in each case the other direction does not
hold. The input vector is split up recursively in two equally sized parts U and
V connected by Ψ until U or V has a size of one, which is sorted by definition.
The complete encoding of all Ψ parts is called Φ.

3.3 Polynomial Watchdog Encoding Scheme

In this section we briefly introduce the Polynomial Watchdog (PW) encoding
scheme for PB constraints C. For more details the interested reader is referred
to [13]. The PW encoding uses the functions Ψ and Φ of the totalizer in order to
represent one PB constraint as depicted in Fig. 1. A Global Polynomial Watchdog
(GPW) is introduced allowing to efficiently detect a violation of M in C, with
C: Σjaj · xj < M . To do so, a so-called watchdog ω is introduced. Essentially,
whenever C is falsified the literal ω will be assigned to true. I.e. a lower bound
is defined and only the D1 clauses of Ψ are needed. The GPW is defined as

GPW (C) = PW (C) ∧ ω (2)

which guarantees the previous mentioned property.
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The PW is a binary addition with carry of the weights. The coefficients of
the constraints are split into their binary representation, the bits with the same
weight 2i are added to one totalizer Φ called top bucket TBi with weight 2i.
The most significant bit position of all coefficients equals the number of top
buckets p. These top buckets are connected appropriately representing the carry
of the unary addition, where two buckets with weight 2i and 2i+1 are merged
applying Ψ . To do so, only every second output of the bucket of weight 2i and
every output of the 2i+1 bucket has to be connected into a so-called bottom
bucket BBi+1 with weight 2i+1. Generally, the first top buckets TB0 and TB1

are merged resulting in BB1 and for all other buckets TBi+1 and BBi are
merged into BBi+1. The bottom bucket with the largest index p is also called
last bucket. The naming of top, bottom and last bucket is motivated by the
graphical representation as seen in Fig. 1. Each output ωm of the last bucket
represents a weight which is a multiple m = �M

2p  of 2p. Since only every second
output of the low ordered buckets are used, the actual satisfied weight M is
represented by m ·2p minus a tare sum t of size 0 ≤ t < 2p. This tare is added to
the TBi’s using its binary representation as tare variables Ti with weight 2i for
0 ≤ i < p. I.e. t = ΣTi=12i = 2p−(M mod 2p). Hence M can be reformulated as:

M = m · 2p − ΣTi=12i (3)

In summary, GPW adds ωm to guarantee a solution smaller than m · 2p.
The exact target weight of the PB constraint C is achieved by calculating the
tare values Ti a priori1 according to Eq. 3. Consequently, the constraint ωm

guarantees that any solution with weight ≥ M instantly results in a conflict.

Example 1. Given the constraint C : 2x1+3x2+5x3+7x4 < 11, the aj values are
separated due to their binary representation. As �log2 7� = 2 holds, the largest
bucket size is 22 and hence p = 2. The position of the watchdog can be achieved
by: m = �M

2p  = � 11
22  = 3. The tare values can be calculated with: t = ΣTi=12i =

2p − (M mod 2p) = 22 − (11 mod 22) = 1, i.e. the binary representation of the
tare values is 110 leading to: T0 = 1, T1 = 0. We can check our result by applying
them into Eq. 3: M = m · 2p − ΣTi=12i = 3 · 22 − (1 · 20 + 0 · 21) = 11. This leads
to the following PW encoding in Fig. 1. Note, the blue dashed lines in this figure
are not present in the actual encoding, since T1 = 0.

In [13] it is stated that merging two totalizers of size n requires O(n2) clauses
and for the whole totalizer O(n2 log(n)) clauses are required. The complete PW
encoding complexity is given by O(n2 log(n) log(amax)) clauses, where amax is
the largest integer weight of all clauses of the MaxSAT problem.

However, as already stated in [8] the number of encoded clauses of the whole
totalizer can be bounded by O(n2) and not O(n2 log(n)). Since we have no
doubt about the remaining argumentation of [13], we conclude that the number
of clauses of the (G)PW encoding is actually in O(n2 log(amax)).

1 Note that tare values of zero do not have any influence. Hence, only the tare bits
Ti = 1 are added to TBi, and are also directly set to 1.
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Fig. 1. Polynomial watchdog encoding scheme (Color figure online)

Note, in [13] the concept of a Local Polynomial Watchdog (LPW) is intro-
duced which preserves GAC. The complexity is given by O(n3 log n log(amax)).
Likewise, we propose that also this complexity has to be corrected to
O(n3 log(amax)). Still, we do not apply the LPW since the encoding size is
not feasible for our application. (G)PW in contrast does not maintain GAC.

4 Dynamic PW Encoding and GPW Algorithm

In this section we introduce our new dynamic PW encoding scheme. We state
details of the encoding adjustments and the employment in an iterative MaxSAT
solver. The principle of our approach is to lift the static watchdog as described
in [13] to a dynamic version, which allows to set a lower bound M of the PB
constraint dynamically for optimizing this bound.

The remainder of this section is as follows: we introduce the adjustments of
the original PW encoding in Sect. 4.1 and present a complete algorithm to solve
the MaxSAT problem based on this encoding in Sect. 4.2.

4.1 Dynamic PW Encoding

In order to employ the PW encoding for representing MaxSAT constraints, we
need to allow different watchdog positions and consequently lift the concept of
statically a-priori set tare values and watchdog positions to a dynamic one. Thus,
we call our modification the Dynamic Polynomial Watchdog (DPW) encoding.

As mentioned in Sect. 3.1 the MaxSAT problem can be reduced to find the
optimal M∗ in a constraint C with Σjaj · xj ≥ M , where all xj ’s and aj ’s are
appropriately connected to all rj ’s and wj ’s of the MaxSAT problem leading to
Σjwj · rj ≥ M in our approach. Note, rj implies “sj is satisfiable” but not vice
versa. However, the rj ’s still represent a lower bound, we will revisit this issue
later. In order to increment M , we need to adjust the watchdog and tare values
appropriately. Section 4.2 state further details on this adjustment.

Analogously to [13] we define the Dynamic Global Polynomial Watchdog
(DGPW) as follows:

DGPWi(C) = DPW (C) ∧ ωi (4)
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Here, i corresponds to the ith output of the last bucket. Note, the GPW
watchdog as introduced in Eq. 2 represents an upper bound for the unary rep-
resentation, whereas the DGPW watchdog in Eq. 4 is a lower bound. From a
different perspective: the DGPW requires a minimum number of ones at the
output vector, whereas the GPW demands a minimum number of zeros. Thus,
our DPW encoding only employs the D2 part of the totalizer.

If DGPWm is satisfied, we can conclude the DPW encoding fulfills a total
sum of weights of at least m · 2p. According to Eq. 3 the actual bound M for the
constraint is achieved by subtracting the tare values which are set to 1. Note, the
DPW encoding adds all tare values Ti to the top buckets TBi. Further, the tare
variables are not set to a precomputed value. We rather allow the SAT solver to
alter the logic value of these variables. Hence, one crucial part of the algorithm
is to efficiently determine exact values for the tares.

Example 2. Reconsider Example 1: The DPW additionally adds the tares T0

and T1, i.e. the blue dashed lines are part of the DPW encoding. By using D2

we change the operator of the underlying constraint C from < to ≥. If we use
the same watchdog position 3 applying DGPW3 and fix the tare values as in
Example 1, the represented constraint is C : 2x1 + 3x2 + 5x3 + 7x4 ≥ 11.

Based on this encoding we formulate an algorithm leading to the optimization
result of the original MaxSAT formulation.

4.2 Dynamic GPW Algorithm

Our algorithm is separated in two phases. First, we apply a Coarse Convergence
(CC) and finalize with a Fine Convergence (FC) as follows:

CC: The watchdog position is increased until the formula is unsatisfiable.
FC: Refines the result of CC by adjusting the tare variables appropriately.

Coarse Convergence (CC). Algorithm 1 gives an overview of the CC phase.
It takes the complete CNF of the MaxSAT problem and DPW encoding as input
and returns the maximum position m∗ of the last bucket for which the constraint
is still satisfied.

First we perform an initial SAT solver call in line 2 without additional (watch-
dog) constraints returning an initial watchdog position. We increment the watch-
dog connected to the last bucket until the formula is not satisfiable anymore (cf.
lines 3–13): Therefore, we calculate the next watchdog position based on the cur-
rent model (cf. GetLastSatPos in line 4) seeking for the last position of the
last bucket for which the model is set to true. Since we know that this position
represents a lower bound of our solution, we increment it and add the resulting
watchdog as an assumption for the next SAT solver call (cf. GetWatchdog in
lines 5 and 6). If the result is satisfiable we add the last assumption as unit to the
CNF allowing the solver to simplify the CNF representation. This is repeated
until the solver returns “unsatisfiable”, i.e. we found the maximum position m∗.
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Algorithm 1. Coarse Convergence
1: procedure CoarseConvergence(CNF)
2: 〈result, model〉 ← Solve(CNF);
3: while true do
4: position ← GetLastSatPos(model);
5: assumption ← GetWatchdog(position+1));
6: 〈result, model〉 ← Solve(CNF + assumption);
7: if result = SAT then
8: CNF ← AddUnitClause(assumption);
9: else

10: CNF ← AddUnitClause(GetWatchdog(position));
11: return position; � Return last SAT position
12: end if
13: end while
14: end procedure

By doing so, we have determined the first part of Eq. 3 leading to M∗ =
m∗ ·2p −ΣTi=12i. Note, up to this point, no constraints are assumed for the tare
variables Ti. Hence, the current model of the tare values does not correspond
to the optimal solution. We have to adjust these values as stated in the next
subsection. However, the result of the CC phase states the possible solution
interval for our searched optimal bound M∗ as follows: (m∗ − 1) · 2p < M∗ ≤
m∗ · 2p.

We further optimize the GetLastSatPos function of line 4: As mentioned
in Sect. 3.1, s′

j is satisfied if rj is set to true. Nevertheless, rj might be false
and simultaneously sj is satisfied, too. This result cannot be seen by our GPW
encoding since only the rj values are connected. Thus, we check each and every
soft clause if sj is satisfied regardless of the value of rj . Finally, we add up the
weight of every actual satisfied soft clause resulting in an actual current optimal
weight M̂ for which holds: M̂ ≥ M . By m̂ = � M̂

2p  we obtain the watchdog
position m̂ of this optimum. Note, in this case we can immediately add another
unit clause to the CNF. As M̂ might be larger than M we also might skip output
positions of the last bucket and hence, we can add the unit corresponding to the
position m̂ before calling the SAT solver in line 6 of Algorithm1. Note that we
actually do not need this additional “by-chance” concept, if we would consider
appropriate constraints representing the relation rj → sj , where sj indicates that
every literal of the soft clause sj is falsified. By adding these constraints, rj would
be true iff the soft clause sj is falsified. However, by adding these constraints, we
would lose the potential of this by-chance mechanism as all literals of sj would
be immediately set to false whenever rj is set to true.

Fine Convergence (FC). Once, we found the coarse solution interval, we seek
for the exact result by adjusting the tare variables as part of the Fine Conver-
gence (FC) phase. The general idea is the same as in the CC phase: we force the
SAT solver to find a better solution than the current one. Algorithm2 summa-
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rizes our approach. In addition to the modified CNF resulting from Algorithm1,
the procedure also gets the last model from a satisfying SAT solver call from the
CC phase as an input.

Algorithm 2. Fine Convergence
1: procedure FineConvergence(CNF, model)
2: for (n = p − 1; n ≥ 0; n = n − 1) do
3: if model[Tn] = false then
4: CNF ← AddUnitClause(Negate(Tn));
5: else
6: assumption ← Negate(Tn);
7: 〈result, model〉 ← Solve(CNF + assumption);
8: if result = SAT then
9: CNF ← AddUnitClause(Negate(Tn));

10: else
11: CNF ← AddUnitClause(Tn));
12: end if
13: end if
14: end for
15: end procedure

First, consider the following observation: In Eq. 3 we have defined the upper
bound (m · 2p) as reference point. Instead, we can also define the value of M
using the lower bound (m − 1) · 2p + 1 as reference:

M = (m − 1) · 2p + 1 + ΣTi=02i (5)

As Eq. 5 indicates the tare weights for which the corresponding tare is not
satisfied is added to the lower bound. Hence, the tare is only a remainder of the
sum of all satisfied weights relating to the lower bound. Consequently, in order
to maximize the value of M , we have to maximize ΣTi=02i.

Algorithm 2 iterates over all tare variables, from the most significant Tp−1

to the least significant T0. If the current tare Tn is already 0, we can add the
corresponding unit to our CNF (cf. lines 3 and 4). Otherwise, we have to check
whether we can set Tn to zero (and thus maximize the sum of weights) by
adding the assumption Tn = false to the solver (cf. lines 6 and 7). If the SAT
solver returns satisfiable, we proceed as in line 4 by adding the corresponding
unit. Otherwise, it is ensured that the PB constraint is always violated with
Tn = false, and hence we can fix this tare to true. Note, the last property only
holds, if we iterate from the most to the least significant tare position. By doing
so, essentially a binary search of the maximum possible tare weight is performed.

As in the coarse convergence, we can explicitly calculate the actual current
weight M̂ . By doing so, we may skip tare positions: If M̂ implies that the most
significant open tare position Tn must be set to zero, we can directly add the
corresponding unit (cf. line 4) and proceed with the next tare position.
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Fig. 2. Caching of adder: Φ applied to TB0 and TB1 of Example 1. The sorted vector
V01 can be used for the encoding of TB0 and TB1.

5 PW Encoding Optimizations

In this section we state three fundamental optimizations on the PW encoding.
In Sect. 5.1, we describe a technique which allows reusing already encoded parts
of the network. Note, this optimization concept is already mentioned in [13]
as future work. In Sect. 5.2, we propose an approach for determining the cone-
of-influence of encoded outputs of the network. By doing so, we are able to
incrementally build the needed parts of the encoding, leading to a significant
reduction of the encoding size. In Sect. 5.3, we present a concept to set any
weight as lower or upper bound. Applying this to the original PW encoding
allows to use any operator for the PB constraint directly without converting the
formula. Note, all concepts can be utilized in the classical PW encoding and
moreover do not affect each other. I.e., utilizing one of the following techniques
does not (negatively) influence the efficiency of one of the others, in general.

5.1 Caching of Adder

The PW encoding consists of many shared sub-formulae Ψ among different buck-
ets which actually need be encoded only once [13] as shown in Example 3.

Example 3. Considering Example 1, both TB0 and TB1 contain an identical
subset of input variables Xsub = {x2, x4}. This subset can be encoded once as
Φ(Xsub) and reused for TB0 and TB1 as shown in Fig. 2. The dashed and dotted
boxes indicate involved buckets, and the dash-dotted box the shared part.

There is another subset Xsub2 = {x2, x3} of TB0 and TB2 in Example 1,
which could be proceeded likewise. Note, if we try to share both subsets Xsub and
Xsub2 at the same time, x4 of TB0 will be encoded twice. This additional encod-
ing will degrade the outcome of the method and should therefore be avoided.

The core idea of the Adder Caching (AC) is to reuse the encoding of this
shared parts whenever such a sub-formulae is identified. Unfortunately, merging
buckets/sub-formulae is quite sophisticated, since caching of one sub-formula



48 T. Paxian et al.

influences the upcoming operations, as Example 3 demonstrates. In general, the
problem of finding an optimal solution is at least NP-hard as it can be reduced to
a set cover problem. Hence, we implemented various heuristics in order to decide
which parts to share. Our heuristics rely on the different cost estimations of one
caching operation. As measurements, we tried several static parameters which
can be calculated a priori: number of encoded clauses, the bucket sizes, number
of possible follow up cache operations and number of cache operations, to name
a few. Although all heuristics were able to significantly reduce the encoding size,
none of them has a significant impact in terms of solved instances or run time.

Instead, we developed a heuristic which is not as effective in terms of encoding
size, but has a significant impact on run time as experimental results show. We
collocate the sorter inputs according to their corresponding soft clause weight,
such that for each weight w, there is a list of corresponding inputs with weight
w. Then, for one weight w exactly one totalizer Φ is encoded, i.e. if there are n
soft clauses with identical weight w, the totalizer for sorting these n soft clauses
is only built once. This sub-formula is shared over all buckets needed for the
binary representation of weight w. This is repeated for all weights, and finally
the top bucket are constructed by connecting the built sub-formulae using Ψ . In
contrast to all other heuristics, multiple cache steps are considered at once as all
involved adders are merged. We assume that this is one reason why the other
heuristics are not as effective and suggest future work on this topic.

5.2 Cone-of-Influence Encoding

As the methodology in the previous section reduces the cost of top buckets, we
develop a technique mainly reducing the encoding size of the bottom buckets.
Note, the encoding of bottom buckets usually dominates the whole PW encoding
as these buckets have more inputs than top buckets. We apply this technique
within the CC phase, where the watchdog position is incremented.

The cone-of-influence (COI) encoding converts only needed parts of the
(D)PW into CNF. Consider a standard GPW (C) = PW (C) ∧ ωi. We observed
that only the output ωi needs to be encoded for deciding GPW as the encoding
of Ψ guarantees at most i − 1 ones at the output. By encoding only ωi it is
ensured to create at most O(n) clauses for the last bucket with n inputs, instead
of O(n2). Depending on the position of ωi in the output vector W , even more
encoding size can be saved: positions close to the borders of W lead to smaller
encodings than in the middle as the upcoming Example 4 will motivate.

We introduce a binary tree, which represents the recursive construction of
the totalizer encoding including the information whether a variable is already
encoded. Hence, each node represents a snapshot of the current Ψ encoding for
all partially sorted outputs. Before encoding a specific (output) variable, the tree
nodes directly indicate which variables and clauses have to be added and which
are already encoded. We traverse the tree from the root to the leaves collecting
all clauses within the cone-of-influence of the demanded variable considering
also introduced helper variables. Note, the tree also represents and considers the
carry inputs of the bottom buckets where only every second output is encoded.
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Fig. 3. Binary tree representing the cone-of-influence of w4.

Example 4. Figure 3 illustrates our generated tree. Each node is represented by
a table indicating the clauses created by the corresponding Ψ . The ith row in the
table shows the needed clauses for the ith output entry according to Ψ . Consider
that only w4 (as seen at the very left) has to be encoded as it might be the current
watchdog. By applying our cone-of-influence technique, we only need to consider
the 12 highlighted clauses, whereas 11 clauses (in gray) could be saved for the
encoding. A ∗ in the vector indicates that the corresponding variable (row of
table) is not encoded. Moreover, assume that we may only consider w5: in this
case we just need to encode the very last row of each table.

5.3 Exact Bound Encoding

We explicitly enforce specific values as a lower or upper bound, where we need to
encode D2 for the lower and D1 for the upper bound. Note, for an exact upper
bound <M , we need constraints of the form rj ⇒ sj and set ωi to false as in
Sect. 3.3. In both cases, we have to adjust the tare values by utilizing Eq. 3.

We utilize the Exact Bound (EB) encoding for setting the next sum of weights
in our CC phase. Instead of incrementing the next watchdog position, we explic-
itly add sufficient assumptions to enforce the weight M̂ + 1 for the next solver
call. By doing so, instances are easier to solve for the SAT solver (since we add
more and specific assumptions leading to the solution), but the number of solver
calls is increased in the worst case. However, as experimental results show, we
actually often converge faster to the optimum, also due to weights satisfied by
soft clauses by chance (cf. computation of M̂ in Sect. 4.2).

We also employ a restricted version of the exact upper bound encoding by
setting the first unsatisfied watchdog of the CC phase to ωm∗+1. Note, we do not
restrict the tare values or add rj ⇒ sj constraints. By doing so, we implicitly
forbid assignments of the relaxation literals leading to a weight >m∗ · 2p and
thus guiding the SAT solver. We only employ the restricted upper bound in
combination with the COI encoding of Sect. 5.2 in order to avoid the additional
encoding of O(n2) D1 clauses for the last bucket.
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6 Experimental Results

We implemented the new encoding scheme and algorithm in C++ as extension
of the QMaxSAT solver [7] as used in the MaxSAT Evaluation 2017 [6].

All experiments were run on one Intel Xeon E5-2650v2 core at 2.60 GHz, with
64 GB of main memory and Ubuntu Linux 16.04 in 64-bit mode as operating sys-
tem. We aborted all experiments whose computation time exceeded 3, 600 CPU
seconds or which required more than 32 GB of memory as in the evaluation of
2017. We also used the benchmark set of [6] consisting of 767 weighted instances.

Table 1 shows the efficiency of our optimizations (Sect. 5) of the (D)GPW.
As results show, AC and COF have significant impact on either the number of
encoded variables or clauses leading to a encoding size of 50% compared to Plain.
Whereas, EB is not designed to decrease the encoding size, but still has a sig-
nificant impact on the run time. Compared to Plain, DGPW is about 2X faster
and has almost 3X less encoding size in number of clauses and variables wrt.
the commonly solved instances. Moreover, 28 more instances could be solved.

Table 2 compares the number of solver calls and run time for the two solv-
ing phases as well as SAT solver result for the DPGW2. In total only 21 SAT
solver calls are needed on average, most of them are satisfiable calls in the CC
phase. The comparison between the average and median time shows that for
easy instances the most time is spent in the CC phase and for hard instances it
is the FC phase. The same holds for satisfiable and unsatisfiable solver calls.

In a second experiment, we compare DGPW with QMaxSAT. Table 3 shows
the results on the QMaxSAT encodings. The AutoQD heuristic chooses between
adder and DGPW as (modulo) totalizer are inferior to our encoding (cf. Fig. 4a).
Our heuristic chooses DGPW if either the sum of weights is small (<400, 000)
or large (>2, 000, 000, 000). In all other cases the adder is chosen. The original
QMaxSAT AutoQ heuristic also chooses (modulo) totalizers for a small sum
of weights (<217) as they usually outperform adders in this case. In addition,
our empirical results show that DGPW dominates the adder for huge weights.
Table 3 is composed as Table 1 comparing two neighboring columns wrt. the
commonly solved instances. As expected, the adder needs two orders of magni-
tudes less clauses due to linear encoding complexity, and the totalizer needs two
orders of magnitudes more clauses due to the naive encoding of weights. Figure 4
underlines our results for the individual encodings in a scatter and cacti plot.

Notably, our results are comparable to the MaxSAT evaluation where AutoQ
also solved 503 instances with an average run time of 385.18 s [6]. DGPW is
competitive in the number of solved instances wrt. the other networks (470
vs. 228, 329, and 491). Remarkably, DGPW is at least 2X faster than every
other network for the commonly solved instances. The new VBS solves 31 more
instances in 60% of the run time, whereas our basic AutoQD solves 19 more
instances than the evaluation version of QMaxSAT in overall 70% of the run

2 The run time difference to Table 1 is caused by the time needed for the encoding
and the remaining part of our algorithm (e.g. analyzing the SAT solver model).
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Table 1. Comparison of DGPW without extensions (Plain) with adder caching (AC),
cone-of-influence (COI), exact bound (EB) and a combined (DGPW) version using all
optimizations. First, the average run time and the total number of solved instances
are given. Two neighboring columns compare an optimization with Plain opposing
the average run time, median run time and encoding size wrt. the commonly (com.)
solved instances. The encoding size is given by the average number of clauses “#cl”
(in millions) and variables “#var”.

Plain AC Plain COI Plain EB Plain DGPW

#instances 442 453 442 455 442 451 442 470

Avg. time 323.00 269.63 323.00 313.93 323.00 297.47 323.00 264.16

Med time 20.56 12.52 20.56 23.26 20.56 19.71 20.56 12.05

com. #instances 430 430 439 439 439 439 429 429

Avg. time 302.89 207.07 302.51 288.84 303.08 251.59 306.73 164.60

Med time 16.55 10.04 18.48 17.98 18.48 16.48 17.22 7.60

Avg. #cl 29.19 21.32 28.62 14.66 28.59 28.62 29.26 9.78

Avg. #var 96,803 53,639 95,324 80,295 95,298 95,512 97,000 38,336

Table 2. DGPW divided by Coarse Convergence (CC), Fine Convergence (FC), satisfi-
able (SAT) and unsatisfiable (UNSAT) solver calls. For each phase the average/median
number of the solver calls and solving time in seconds are given.

CC FC SAT UNSAT

Avg. Med Avg. Med Avg. Med Avg. Med

Solver calls 14.33 9.00 6.69 3.00 19.29 12.00 1.72 2.00

Solving time 120.30 4.93 139.20 1.62 117.73 6.17 141.77 0.87

Table 3. Comparing DGPW with totalizer (Tot), modulo totalizer (ModT) and
adder (Add). The virtual best solver (VBS) of the QMaxSAT with integrated DGPW
(VBSQD) and without (VBSQ) is depicted. Finally, results are shown for the original
heuristic of QMaxSAT (AutoQ) and our adopted one (AutoQD).

Tot DGPW ModT DGPW Add DGPW VBSQ VBSQD AutoQ AutoQD

#instances 228 470 329 470 491 470 504 535 503 522

Avg. time 326.29 264.16 372.49 264.16 430.39 264.16 381.04 301.44 408.30 334.44

Med time 33.12 12.05 21.60 12.05 29.59 12.05 26.96 19.01 28.68 23.34

com. #instances 225 225 313 313 428 428 504 504 497 497

Avg. time 303.45 142.78 330.64 141.23 388.37 163.16 381.04 228.60 380.95 268.35

Med time 32.12 5.01 18.48 3.69 17.39 7.53 26.96 13.55 27.62 19.80

Avg. #cl 28.57 0.60 11.61 2.88 0.17 16.45 1.92 12.37 0.33 6.70

Avg. #var 63,920 11,901 108,006 23,341 45,768 57,404 60,796 56,062 51,328 48,890
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Fig. 4. Comparing different QMaxSAT encodings (adder, totalizer and modulo total-
izer) with our newly introduced DGPW encoding

time, both wrt. the commonly solved instances. Thus, there is still some potential
for our heuristic, however we conserve most of the combined capacity.

7 Conclusions

In this paper, we presented a new encoding scheme for mapping the weighted
MaxSAT problem to the Polynomial Watchdog (PW) encoding. To do so, we
extended the original encoding by the support of dynamic watchdogs and tare
variables. Furthermore, we introduced three optimizations for the PW encoding.

As experimental results show, our optimizations lead to 3X smaller encod-
ing sizes and 2X faster run times on average compared with the original PW
encoding in [13]. Furthermore, we showed the applicability of our new encoding
scheme while achieving a speed-up of more than 2X compared to the competi-
tors. Finally, we integrated our encoding into a state-of-the-art MaxSAT solver
and implemented a prototypical heuristic for deciding the encoding used.

The presented encoding could also be used to handle PB constraints in other
solvers like Open-WBO [19]. As future work, we want to investigate the mini-
mization of bucket sizes, which is usually the bottleneck of the PW encoding, by
multiplying or dividing the weights with a common factor, and thus changing
the binary representation. Moreover, we plan to investigate further heuristics for
the adder caching as there is even more potential for the LPW presented in [13].
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Abstract. We explore the relationships between two closely related
optimization problems: MaxSAT and Optimization Modulo Bit-Vectors
(OBV). Given a bit-vector or a propositional formula F and a target
bit-vector T , Unweighted Partial MaxSAT maximizes the number of sat-
isfied bits in T , while OBV maximizes the value of T . We propose a
new OBV-based Unweighted Partial MaxSAT algorithm. Our resulting
solver–Mrs. Beaver–outscores the state-of-the-art solvers when run with
the settings of the Incomplete-60-Second-Timeout Track of MaxSAT
Evaluation 2017. Mrs. Beaver is the first MaxSAT algorithm designed
to be incremental in the following sense: it can be re-used across multi-
ple invocations with different hard assumptions and target bit-vectors.
We provide experimental evidence showing that enabling incrementality
in MaxSAT significantly improves the performance of a MaxSAT-based
Boolean Multilevel Optimization (BMO) algorithm when solving a new,
critical industrial BMO application: cleaning-up weak design rule viola-
tions during the Physical Design stage of Computer-Aided-Design.

1 Introduction

Modern SAT solvers [9,30,44] can be applied to solve various optimization prob-
lems in the domain of propositional and bit-vector logic. One such well-known
problem is Weighted MaxSAT [23,24]1. A Weighted MaxSAT instance comprises
a set of hard satisfiable propositional clauses H (H may also contain bit-vector
constraints, reducible to propositional clauses) and a set of weighted soft con-
straints T = {tn−1, tn−2, . . . , t0}, where each constraint ti is associated with
a strictly positive integer weight wi. To solve such an instance, the solver is
required to return an assignment which satisfies H and maximizes the func-
tion

∑n−1
i=0 ti ∗ wi, comprising the overall weight of the satisfied soft constraints.

For the rest of the paper, for convenience and without restricting generality, we
assume that every soft constraint is a unit clause.2 Thus, T can be thought of
as a bit-vector, where t0 is its Least Significant Bit (LSB) and tn−1 is its Most
1 For the rest of the paper, MaxSAT refers to Partial MaxSAT, where arbitrary hard

constraints are allowed.
2 An arbitrary soft constraint ti, reducible to a set of propositional clauses F , can be

transformed to a unit clause s′, where s′ is a fresh variable, by adding the clause
¬s′ ∨ c to H, for each clause c ∈ F .
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Significant Bit (MSB). We call T the target bit-vector, or, simply, the target and
every ti ∈ T a target bit.

Various optimization problems can be expressed as a sub-class of Weighted
MaxSAT. Unweighted MaxSAT comprises a restriction of Weighted MaxSAT
to problems where all the weights are equal to 1. Essentially, in Unweighted
MaxSAT, one has to maximize the number of satisfied target bits or, in another
words, minimize the number of unsatisfied target bits.

Optimization Modulo Bit-Vectors (OBV), also known as Lexicographic SAT
(LEXSAT), is another optimization problem, recently studied in [10,11,25,35,
40,41]. In OBV, the value of T has to be maximized (where T is interpreted
as an unsigned integer). To reduce OBV to Weighted MaxSAT, one can simply
assign every target bit ti the weight 2i, thus ensuring that the weight of any bit
ti�=0 is greater than the overall weight of the bits less significant than i. The first
OBV algorithm to be implemented, νZ [10,11], solved OBV by applying this
very reduction. However, it was shown in [35] that dedicated SAT-based OBV
algorithms are substantially more efficient.

Can one then take the opposite route, that is, reduce MaxSAT to OBV? Our
answer is affirmative.

We propose a new OBV-based Unweighted MaxSAT algorithm, called
Mrs. Beaver. Mrs. Beaver is composed of two stages: the incomplete stage, fol-
lowed by the complete stage. The basic version of the algorithm, applied at the
incomplete stage, invokes an OBV algorithm with the original target to approx-
imate an Unweighted MaxSAT solution. We propose several enhancements to
the basic algorithm in order to find a better approximation faster. The basic
version of the complete stage invokes an OBV algorithm whose target comprises
the sum of the bits of the original target starting with the approximate solution,
generated by the incomplete stage.

At its core, Mrs. Beaver is purely SAT-based. It re-uses a single incre-
mental SAT instance across all the SAT invocations. Performance-wise,
Mrs. Beaver is especially useful in the context of incomplete solving. It out-
performs the state-of-the-art Unweighted MaxSAT solvers when run with the
settings of the Incomplete-60-Second-Timeout Track of the MaxSAT Evaluation
2017.

Unlike the state-of-the-art Unweighted MaxSAT algorithms, Mrs. Beaver
was designed to be incremental in the following sense: it can always be reused
with different hard assumptions and targets. We demonstrate that incrementality
in MaxSAT is useful in the context of the Boolean Multilevel Optimization
problem (BMO) [26]. BMO can be thought of as the following generalization
of Unweighted MaxSAT: instead of a target bit-vector T , there are multiple
target bit-vectors Tm−1, Tm−2, . . . , T0. The goal is to maximize the number of
satisfied bits in each of the targets, where satisfying one bit of Ti is preferred
to satisfying all the bits in Ti−1, Ti−2, . . . , T0. Note that when m = 1, BMO is
essentially identical to Unweighted MaxSAT, while if every target has only one
bit, BMO is identical to OBV. BMO can be solved with iterative invocations
of an Unweighted MaxSAT solver [26]. We show that, on benchmarks generated
by a critical industrial problem we encountered at Intel and have described in
the following paragraph, an incremental Mrs. Beaver-based solution is 6 times
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faster than a non-incremental Mrs. Beaver-based one, and 10 times faster than
a non-incremental Unweighted MaxSAT-based algorithm which applies the best
state-of-the-art Unweighted MaxSAT solver. In addition, while our incremental
Mrs. Beaver-based algorithm is 1.2 times slower than the best dedicated BMO
solver, it uses 50 times less memory (2 Gb vs. 100 Gb on average).

As part of the Physical Design stage of Computer-Aided-Design (CAD), one
has to solve the problem of placing and routing all the devices, while making
sure that the resulting layout satisfies so-called hard design rules that originate
in the manufacturing requirements. This problem can be solved by reducing it
to bit-vector logic and applying some dedicated algorithms [32,33]. In practice,
however, there also exist soft design rules, whose satisfaction is not necessary
but desirable. A failure to satisfy a soft rule increases the manufacturing cost.
The soft design rules are divided into classes according to the actual cost of their
violation, such that satisfying a design rule of a certain class i is more important
that satisfying all the design rules of lower classes. The problem of satisfying the
soft design rules after completing the process of place & route under the hard
design rules is immediately reducible to BMO.

In the text that follows, Sect. 2 contains preliminaries. Section 3 discusses
two desirable properties of SAT-based optimization algorithms: responsiveness
and incrementality, while Sect. 4 reviews OBV algorithms in light of these
two properties. Section 5 introduces our new Unweighted MaxSAT algorithm–
Mrs. Beaver. Section 6 discusses how to apply Mrs. Beaver to solve BMO.
Section 7 analyzes the experimental results, and Sect. 8 sums up our work and
conclusions.

2 Preliminaries

2.1 SAT Solving

A SAT solver [9,30,44] receives a propositional formula F in Conjunctive Nor-
mal Form (CNF) and returns a satisfying assignment (also called a model) if one
exists. In incremental SAT solving under assumptions [19,34,37], the user may
invoke the SAT solver multiple times, each time with a different set of assump-
tions, where each assumption is a literal, and, possibly, additional clauses. The
solver then checks the satisfiability of all the clauses provided so far while enforc-
ing the values of the current set of assumptions only.

Modern SAT solvers apply phase saving [20,42,46] as their polarity selection
heuristic. In phase saving, once a variable is picked by the variable decision
heuristic, the literal is chosen according to its latest value, where the values are
normally initialized with 0.

2.2 State-of-the-Art Unweighted MaxSAT Solvers

Unweighted MaxSAT is an active area of research as can be seen from the ever-
improving results in the MaxSAT Evaluations held since 2006 [2]. We briefly
summarize the state-of-the-art in Unweighted MaxSAT solving, based on the
MaxSAT Evaluation 2017 results [1].
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Since 2011, the MaxSAT Evaluations have had two types of categories: com-
plete and incomplete. Complete solvers look for a solution that guarantees the
absolute optimum, given a relatively generous time-out. Incomplete solvers on
the other hand seek to find a good solution (that is, a solution in which there
are as few as possible unsatisfied target bits), given a small time-out. Incomplete
solving can be useful in applications where time resources are limited and good
enough solutions are sufficient.

The winner in the complete category of MaxSAT Evaluation 2017 [1] is
Open-WBO-RES [38], closely followed by MaxHS [14]. Open-WBO-RES is a strat-
egy implemented within the framework of the SAT-based Open-WBO solver.
Open-WBO-RES applies unsatisfiable core [5,17,36] analysis-based algorithms [21,
27–29] with resolution-based partitioning [38]. MaxHS combines SAT and Mixed
Integer Programming (MIP) [14–16].

There were two incomplete categories in MaxSAT Evaluation 2017, based on
time-outs of 60 and 300 seconds. An Open-WBO strategy–Open-WBO-LSU (based on
the linear search SAT-UNSAT algorithm (LSU) [6])–won the 60-second category,
followed by MaxHS and the MaxRoster [47] solver. MaxRoster won the 300-second
category, followed by Open-WBO-LSU and MaxHS. MaxRoster is a SAT-based solver
that switches dynamically between different MaxSAT strategies [47].

2.3 Totalizer Encoding

Given a target bit-vector T = {tn−1, tn−2, . . . , t0} and a model μ, let
unsBits(T, μ) =

∑n−1
i=0 ¬μ(ti) be the number of unsatisfied target bits in μ.

We drop μ and use simply unsBits(T ), when allowed by the context.
Our algorithms need a way to a) efficiently create a bit-vector represent-

ing the number of unsatisfied target bits, while at the same time b) imposing
an upper bound on the number of unsatisfied target bits, or, in other words,
asserting the cardinality constraint unsBits(T ) ≤ b for a given b.

To that end, we apply totalizer encoding [4]. The totalizer encodes the sum
of the bits in a bit-vector in unary representation, which is known to be much
more efficient than binary representation in terms of propagation power [3,4].

Given a bit-vector S = {sn−1, sn−2, . . . , s0}, the totalizer is a binary tree
whose top-most node–tot(S)–is a bit-vector of width n, representing the sum of
S’s bits in unary representation; that is, we have tot(S)i = 1 iff

∑n−1
j=0 sj ≥ i.

The totalizer encoding requires O(n ∗ log(n)) variables and O(n2) clauses.
The totalizer encoding is substantially more efficient if a (low) upper bound–

b–on the number of unsatisfied bits in S is known [13]. In that case, the order of
the number of clauses goes down to O(n∗b). This is because the width of all the
nodes longer than b (including the top node tot(S)) can be cut down to b. To
impose the cardinality constraint

∑n−1
i=0 si ≤ b, one has to add one additional

bit tot(S)b to every bit-vector longer than b (in the original totalizer encoding),
and set tot(S)b to 0.

We denote by tot(S,≤ b) the bit-vector of width b + 1, representing the
totalizer’s top node, which encodes the sum of all the bits in S in unary repre-
sentation, where the cardinality constraint

∑n−1
i=0 si ≤ b is asserted.
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3 Responsiveness and Incrementality

This section discusses two desirable properties of SAT-based optimization
algorithms: responsiveness and incrementality. We also briefly review existing
MaxSAT algorithms with respect to these properties.

3.1 Responsiveness

By responsiveness, we mean the ability of the solver to keep generating and
outputting better and better solutions during the solving process. Such a prop-
erty can be useful in various applications when the time resources are limited.
Responsiveness is essential for incomplete MaxSAT solving.

3.2 Incrementality

By incrementality, we mean the ability of the solver to stay alive and handle
many queries, as incremental SAT solving under assumptions does.

Incrementality in Current MaxSAT Algorithms. Unfortunately, we are
unaware of any state-of-the-art MaxSAT solver that does not become invalid
after a single invocation. The only attempt at incremental MaxSAT solving was
made in [43], where Open-WBO was modified so that one could re-use the solver
and add hard and soft clauses between invocations. Unfortunately, the proposed
algorithm has not been integrated into the main Open-WBO release. In any event,
however, the ability merely to add clauses is not sufficient for implementing a
BMO algorithm, based on incremental MaxSAT.

Incrementality Under Soft Assumptions. For our application, we need a
more generic incremental API, where each invocation has its own target bit-
vector. In other words, we want to be able to change the set of soft clauses com-
pletely between invocations. Our Unweighted MaxSAT solver–Mrs. Beaver–
meets that requirement.

Incrementality Under Hard and Soft Assumptions. We believe that, in
addition to the ability to change the target, MaxSAT users would benefit if
the solvers could handle hard assumptions, which hold only for one particular
invocation of the solver (like incremental SAT solving). Given such an API, one
could de-activate irrelevant clauses and alternate between MaxSAT and pure
SAT calls (where pure SAT calls would have an empty target). Our application
does not require hard assumptions, but hard assumptions could make it possible
to use MaxSAT across other applications. For example, one could then integrate
Unweighted MaxSAT into the IC3 [12] (aka PDR [18]) algorithm for incremental
SAT-based model checking for maximizing the number of state elements that are
assigned don’t care values in satisfiable queries (based on dual-rail encoding).
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Hard assumptions do not appear in the pseudo-code of the algorithms pro-
posed in this paper. However, adding hard assumptions β to our algorithms is
trivial, since, at their core, our algorithms are SAT-based. One simply has to add
the assumptions in β to the list of hard assumptions for every SAT invocation.

4 Optimization Modulo Bit-Vectors (OBV) Algorithms

This section reviews existing OBV algorithms in light of their performance,
responsiveness, and incrementality. We needed to analyze these properties in
order to choose the underlying OBV algorithm for Mrs. Beaver.

As we mentioned in Sect. 1, the first OBV solver was νZ [10,11]. νZ applied
a straightforward reduction to Weighted MaxSAT. However, this approach does
not scale [35]. Two dedicated OBV algorithms were proposed in [35]: OBV-WA
and OBV-BS.

OBV-WA can be thought of as a linear search for the maximal model, starting
with the highest possible value of the target and working towards 0. The algo-
rithm stops at the first satisfying assignment. OBV-WA is an incremental algorithm
implemented inside a SAT solver. OBV-WA can be quite efficient, but, unfortu-
nately, it is not responsive as it finds only one (best) model. Thus it cannot serve
as the underlying building block for Mrs. Beaver.

OBV-BS is depicted in Algorithm 1. Essentially, the algorithm implements a
binary search over the possible values of a target T . The algorithm receives a
CNF formula F and the target T .3 It maintains the current model μ, initialized
with an arbitrary model to F at line 3, and a partial assignment α, which is empty
at the beginning. The main loop of the algorithm (starting at line 6) goes over
all the bits of target T starting from the MSB tn−1 down to t0. Each iteration
extends α with either ti or ¬ti, where ti is preferred over ¬ti iff there exists a
model where ti is assigned 1 while bits higher than i have already been assigned in
previous iterations. Phase saving optimization, shown in lines 2 and 10, sets the
phase saving array for the target bits with 1’s before every SAT invocation, thus
encouraging the solver to prefer a higher value for T . Phase saving optimization
improves the performance of the algorithm. OBV-BS is incremental, since it is
based on incremental SAT solving. It is also quite responsive, since it keeps
finding better models throughout its execution.

Independently, OBV-BS, without phase saving optimization, was also sug-
gested in [25] in the context of solving the LEXSAT problem, which is, essen-
tially, identical to OBV.

BINARY [40,41] is another OBV algorithm. BINARY can be thought of as a
partial integration of OBV-WA into OBV-BS. BINARY applies OBV-BS, where, for
every SAT solver iteration inside the main loop, it adds the upper half of the
bits, that is,

{
ti, ti+1, . . . , t�i/2�

}
, as assumptions, rather than only the current bit

{ti}. If the invocation is satisfiable, the solver can update i to bit number �i/2�.
Otherwise, it halves the number of satisfied assumptions and stays at iteration i.
3 If the original formula F is a bit-vector formula; it is preprocessed and translated to

CNF first.
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Algorithm 1. OBV-BS
1: function Solve(CNF Formula F , Target T = {tn−1, tn−2, . . . , t0})
2: Set the phase saving values of {tn−1, tn−2, . . . , t0} to 1
3: μ := SAT
4: if SAT solver returned UNSAT then return UNSAT
5: α := {}
6: for i ← n − 1 downto 0 step 1 do
7: if ti ∈ μ then � ti ∈ μ ≡ ti = 1 in μ
8: α := α ∪ {ti}
9: else

10: Set the phase saving values of {tn−1, tn−2, . . . , t0} to 1
11: τ := SatUnderAssumptions(α ∪ {ti})
12: if SAT solver returned SAT then μ := τ else α := α ∪ {¬ti}
13: return μ

In addition, BINARY skips the first SAT invocation. BINARY was reported to be
faster than OBV-BS in [40,41]. However, BINARY is less responsive than OBV-BS,
since it apparently increases the number of unsatisfiable queries.

All things considered, we picked OBV-BS as the baseline algorithm for
Mrs. Beaver, since it combines good performance, responsiveness, and incre-
mentality. Note that OBV-BS can easily be updated to handle user-given hard
assumptions β by adding β’s literals to the assumption list for every SAT invo-
cation.

5 Mrs. Beaver: An Unweighted MaxSAT Algorithm

This section introduces our new Unweighted MaxSAT algorithm Mrs. Beaver.
The high-level algorithm is shown in Algorithm2. It receives a satisfiable CNF
formula F , the target bit-vector T , the incrementality mode incrMode and
the search mode searchMode. Algorithm 2 outputs a model μ which minimizes
unsBits(T, μ). incrMode lets the user decide whether the algorithm should be
incremental, and how it should operate in incremental mode. searchMode deter-
mines the behavior of the algorithm at the complete stage, as will be explained
later in Sect. 5.1.

Assume for now that incrMode = none, that is, that the algorithm is not
incremental, and that searchMode = SU . First, for the incomplete stage of the
algorithm, Mrs. Beaver invokes a preprocessor, Mrs. Beaver-Inc (described in
Sect. 5.2), designed to quickly find a model μ with as low unsBits(T, μ) as possi-
ble. Then, during the complete stage, the algorithm invokes OBV-BS to minimize
a new target T ′ := tot(¬T,≤ unsBits(T, μ) − 1), comprising the sum of unsatis-
fied target bits starting with the value unsBits(T, μ)− 1. If the latter invocation
is satisfiable with the model μ′, Mrs. Beaver returns μ′. Otherwise, there is no
better model than μ, hence μ is returned.

It is imperative for performance to count the number of unsatisfied tar-
get bits towards 0, rather than the number of satisfied target bits towards n.
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This is because creating a totalizer with an upper-bound on the sum is substan-
tially more efficient than creating one with a lower-bound on the sum.

Our algorithm reuses the same SAT solver instance across all the calls, hence
all learning is re-used. As we mentioned, when incrMode = none, the algo-
rithm is not incremental. This is because the totalizer encoding asserts a car-
dinality constraint which is, apparently, not inferred by F . Section 5.4 describes
Mrs. Beaver’s behavior in incremental modes.

5.1 Mrs. Beaver and Linear Search

Mrs. Beaver is closely related to the linear search SAT-UNSAT (LSU) and
UNSAT-SAT (LUS) algorithms [6].

LSU starts by finding a solution μ using a SAT solver. It then enters the
SAT-UNSAT loop, which adds a cardinality constraint ensuring that the next
solution will have strictly fewer unsatisfied target bits than unsBits(T, μ) after
which it invokes a SAT solver. The algorithm updates μ with any newly found
solution and terminates when the SAT solver returns UNSAT. It is guaranteed
that the latest solution is an optimal one.

LUS keeps a lower bound l (initialized to 0) for the number of unsatisfied
target bits for which no solution exists. LUS operates in an UNSAT-SAT loop
which runs a SAT solver assuming that unsBits(T ) = l. If the solver returns
UNSAT, LUS updates l to l + 1 and proceeds to the next iteration of the loop.
If the solver finds a solution μ, LUS terminates, in which case μ is guaranteed
to be an optimal solution.

Note that the complete stage of Mrs. Beaver can behave as either the
SAT-UNSAT loop (when searchMode = SU ) or the UNSAT-SAT loop (when
searchMode = US ). In the latter case, the solver reverses the bits of T , so as
to start falsifying T from the LSB towards the MSB. Thus it is the usage of
the incomplete preprocessor–Mrs. Beaver-Inc–that differentiates between the
linear search algorithms and Mrs. Beaver. Specifically, the difference between
LSU and Mrs. Beaver in SU mode is that LSU uses a single SAT invocation
for the incomplete stage, while Mrs. Beaver applies Mrs. Beaver-Inc. The dif-
ference between Mrs. Beaver in US mode and the LUS algorithm is that the
former finds an upper bound on the number of unsatisfied target bits using
Mrs. Beaver-Inc, while the latter may use a single SAT invocation to find an
upper bound (if incremental weakening [28] is applied).

5.2 Mrs. Beaver-Inc: The Incomplete Preprocessor

Mrs. Beaver-Inc is designed to quickly find improving models. Our basic idea
is to run OBV-BS over the target T to gradually reduce the number of unsatisfied
target bits for the current order of T ’s literals. We realized that, to find tighter
lower bounds faster, the following two optimizations would be useful:

1. Change OBV-BS so as to satisfy more target bits, even if the resulting algo-
rithm no longer solves the OBV problem. We present such an algorithm–
UMS-OBV-BS–next.
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Algorithm 2. Mrs. Beaver

1: function Solve(CNF Formula F , Target T = {tn−1, tn−2, . . . , t0}, incrMode ∈
{none, full ,maxPreserving}, searchMode ∈ {SU ,US})

Require: F is satisfiable
2: μ := Mrs. Beaver-Inc(F ,T )
3: if unsBits(T, μ) = 0 then return μ
4: if incrMode = none then
5: T ′ := tot(¬T, ≤ unsBits(T, μ) − 1)
6: else if incrMode = maxPreserving then
7: T ′ := tot(¬T, ≤ unsBits(T, μ))
8: else � incrMode = full
9: T ′ := tot(¬T, ≤ unsBits(T, μ) − 1) with a fresh selector; see text

10: ifsearchMode = US then T := reverse(T)
11: μ′ := OBV − BS(F, ¬T ′) � Maximizing ¬T ′ ≡ minimizing T ′

12: ifOBV-BS solver returned SAT then return μ′ else return μ

2. Run several iterations of UMS-OBV-BS and/or OBV-BS, where the target bits
are the same, but their order changes (by reversing or shuffling). Changing
the order of the target bits increases the chances of encountering a MaxSAT-
friendly order. Below we assume that any algorithm that changes the order
of the bits in the target T recreates the original T just before it finishes.

From OBV-BS to UMS-OBV-BS. We propose modifying OBV-BS to increase the
chances of satisfying more target bits as follows: after a new model μ is encoun-
tered, the algorithm pushes all the target bits assigned 1 towards the most
significant bit, so as to fix the value of such bits to 1 for the rest of the algo-
rithm. Algorithm 3 shows a function that transforms OBV-BS to UMS-OBV-BS. It
is designed to be invoked immediately after Algorithm1 finds a new model for
bit i at line 11. Note that UMS-OBV-BS no longer solves the OBV problem.

UMS-OBV-BS maintains an index k, initialized with the current index i minus
1. It visits every bit whose value has not been set and swaps any newly satisfied
bits with tk, where, when a satisfied bit is discovered, k is decreased by 1.

Algorithm 3. UMS-OBV-BS
1: function Modifying OBV-BS to UMS-OBV-BS

Require: Invoke this function immediately after line 11 of Alg. 1
2: k := i − 1
3: for j ← i − 1 downto 0 step 1 do
4: if μ(tj) = 1 then
5: Swap the bits tk and tj
6: k := k − 1

7: return μ
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The Preprocessor. The generic scheme of our preprocessor Mrs. Beaver-Inc
is shown in Algorithm 4. It allows some freedom, the concrete heuristics being
regulated by several user-given parameters discussed below. Mrs. Beaver-Inc
receives a CNF formula F and the target T . It operates in a loop which runs for
a user-given number of iterations. Each iteration invokes either UMS-OBV-BS or
OBV-BS. The returned model μ is stored after the initial iteration and updated
whenever a better model is found. After each iteration, T is either reversed or
shuffled. The algorithm is regulated by the following 3 user-given parameters:

1. ALG: the inner algorithm, applied at line 3. It can either be a) UMS-OBV-BS
or b) OBV-BS or c) Mixed-OBV, which is an alternation between UMS-OBV-BS
and OBV-BS. If ALG is either plain OBV-BS or plain UMS-OBV-BS, the target is
reversed at line 5 after each odd iteration and randomly shuffled after each
even iteration. If ALG is Mixed-OBV, then UMS-OBV-BS is applied at iterations
i : i%4 ∈ {0, 1}, while OBV-BS is applied at iterations i : i%4 ∈ {2, 3}. The
target is reversed after iterations i : i%4 ∈ {1, 2, 3} (note that reversing T
after iteration i : i%4 = 3 recreates the original order) and shuffled after
iteration i : i%4 = 3.

2. itNum: the number of iterations.
3. obvConfThr: a threshold on the number of conflicts for each invocation of

SAT-under-assumptions to find the satisfiability status of a single bit inside
UMS-OBV-BS and OBV-BS (line 11 in Algorithm 1). Since Mrs. Beaver-Inc is
incomplete, we found it useful to stop the solver when a threshold on the
number of conflicts is reached in order not to get stuck with difficult bits. An
unsolved target bit is assigned 0 by the algorithm.

Algorithm 4. Mrs. Beaver-Inc

1: function Mrs. Beaver-Inc(CNF Formula F , Target T = {tn−1, tn−2, . . . , t0})
2: for i ← 1 to itNum step 1 do � itNum is a user-given threshold
3: μ′ := UMS − OBV − BS(F, T ) or OBV − BS(F, T )
4: if μ doesn’t exist or unsBits(T,μ′) < unsBits(T,μ) then μ := μ′

5: T := reverse(T) or shuffle(T)

5.3 Responsiveness

Mrs. Beaver-Inc is quite responsive. Not only can each invocation of
OBV-BS/UMS-OBV-BS update the best model, the best model can also be updated
by the inner iterations of OBV-BS/UMS-OBV-BS. Hence, the main algorithm
Mrs. Beaver is responsive at the incomplete stage. At the complete stage
Mrs. Beaver is responsive only in the SU mode.

5.4 Incrementality

Recall that Mrs. Beaver can operate in non-incremental mode, fully incremental
mode, or maximization-preserving incremental mode (described below), depend-
ing on the user-given value incrMode ∈ {none, full ,maxPreserving}.
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Full Incrementality. An algorithm is fully incremental if all the learned clauses
are inferred by the input formula F . To make Mrs. Beaver fully incremental, we
need to eliminate any clauses created by the totalizer. To that end, we simply
add a fresh selector variable s to every clause generated by the totalizer and
add ¬s as a hard assumption to OBV-BS, applied at line 11 of Algorithm2. One
can also add the unit clause s after Mrs. Beaver is completed to remove all the
clauses, generated by the totalizer.

Maximization-Preserving Incrementality. An invocation of incremental
Unweighted MaxSAT is maximization-preserving if it asserts that the number
of unsatisfied bits in the current target T cannot be higher than the num-
ber unsBits(T, μ), found by the algorithm. As we shall see, a maximization-
preserving incremental Unweighted MaxSAT solution is useful in the context of
BMO solving.

Algorithm 2, in the mode incrMode = none, is almost maximization-
preserving, except than the totalizer, created at line 5, asserts that the
number of unsatisfied bits is strictly lower than unsBits(T, μ). This might
cause the formula to become unsatisfiable if the actual minimum happens to
be unsBits(T, μ). To fix this problem for the maximization-preserving mode
incrMode = maxPreserving , we simply provide the totalizer the number
unsBits(T, μ) as the upper bound. Note that this might result in a certain per-
formance degradation.

6 Applying Mrs. Beaver to Solve BMO

Recall that in BMO, instead of a target bit-vector T , there are multiple target
bit-vectors Tm−1, Tm−2, . . . , T0. The goal is to maximize the number of satisfied
bits in each of the targets, where satisfying one bit of Ti is preferred to satisfying
all the bits in Ti−1, Ti−2, . . . , T0.

One way to solve BMO, proposed in [26], is by reducing the problem to
Weighted MaxSAT by concatenating the bits of all the target bit-vectors into
one target bit-vector, and assigning each bit t0i ∈ t0 the weight w0 = 1, and each
bit tli ∈ Tl>0 the weight wl = 1 +

∑l−1
k=0 wk ∗ |Tk|. However, as we shall see, such

a solution does not scale.
Algorithm 5 shows our BMO algorithm–Oh Mrs. Beaver–which adapts the

iterative MaxSAT-based BMO algorithm from [26] to apply an incremental
Unweighted MaxSAT solver underneath. Oh Mrs. Beaver takes full advantage of
Mrs. Beaver’s functionality in maximization-preserving mode. Oh Mrs. Beaver
simply goes over all the targets from the most important one towards the least
important one, and applies Mrs. Beaver in maximization-preserving mode to
each target. In this way it guarantees that the optimal solution for each target
Ti is asserted after invocation i is completed.

Oh Mrs. Beaver invokes Mrs. Beaver as the underlying building block, but
it could, in principle, use any maximization-preserving incremental Unweighted
MaxSAT algorithm that allows the user to change the target. Unfortunately,
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no such algorithm exists in the literature. It is possible, however, to use a fresh
non-incremental Unweighted MaxSAT solver for every iteration i of Algorithm 5
for the current target Ti. For that to work, one has to assert the cardinality con-
straint

∑n−1
i=0 ¬Ti ≤ unsBits(Ti) after each iteration i. Unfortunately, cardinality

constraints are not part of the standard MaxSAT format. To evaluate the perfor-
mance of non-incremental instantiations of Oh Mrs. Beaver with the different
state-of-the-art Unweighted MaxSAT solvers, we encoded the cardinality con-
straints into clauses using the totalizer encoding.

Algorithm 5. Oh Mrs. Beaver

1: function Solve(CNF Formula F , Targets Tm−1, Tm−2, . . . , T0)
Require: F is satisfiable
2: for i ← n − 1 to 0 step 1 do
3: μ := Mrs. Beaver (F , Ti, maxPreserving)

7 Experimental Results

This section studies the performance of our algorithms. Section 7.1 analyzes the
performance of Unweighted MaxSAT solvers run with settings that mimic the
MaxSAT Evaluation 2017. Section 7.2 examines the performance of MaxSAT
and BMO solvers on benchmarks we generated from our industrial application.

The benchmarks we generated, as well as the detailed results, are available
in [31]. Unless specified differently, the experiments were executed on machines
with 32 Gb of memory running Intel� Xeon� processors with 3 GHz CPU fre-
quency. The time is always shown in seconds.

7.1 Unweighted MaxSAT: MaxSAT Evaluation 2017

In this section we compare the performance of Mrs. Beaver to that of the
winners of the MaxSAT Evaluation. In addition, we study the impact of
Mrs. Beaver’s search mode (SU vs. US) and Mrs. Beaver-Inc’s three param-
eters, introduced in Sect. 5.2, on the performance of Mrs. Beaver.

We denote by {ALG, itNum, obvConfThr , searchMode} a configuration of
Mrs. Beaver, where the search mode searchMode is either SU or US and the
incomplete preprocessor applies the algorithm ALG ∈ {OBV−BS, UMS−OBV−BS,
Mixed−OBV} using itNum iterations and the conflict threshold obvConfThr in
OBV-BS and/or UMS-OBV-BS. We denote by the configurations {−, 1, 0,SU } and
{−, 1, 0,US} the implementations of LSU and LUS, respectively, in the frame-
work of Mrs. Beaver (i.e., a conflict threshold of 0 per bit means that the
incomplete stage of Mrs. Beaver invokes SAT instead of Mrs. Beaver-Inc).

Recall that the MaxSAT Evaluation had two incomplete categories, with 60-
second and 300-second timeouts, respectively, and one complete category with
a 3600-second timeout.
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Incomplete Categories. We compared the performance of different con-
figurations of Mrs. Beaver to that of the leading incomplete solvers MaxHS,
Open-WBO-LSU, and MaxRoster. Based on preliminary experiments, we picked
the following configuration as the baseline for Mrs. Beaver when the timeout
is 60 second:

{
Mixed − OBV, 105, 104,SU

}
. To provide evidence that the baseline

configuration is indeed the best one and to study the impact of the parameters,
we also provide results for “neighbor” configurations, constructed by changing
one of the parameters of the baseline configuration, and that of our linear search
implementations ({−, 1, 0,SU } and {−, 1, 0,US}).

Mimicking the MaxSAT Evaluation, our primary ranking criteria was aver-
age score. score for instance i and solver S is the ratio between the number of
unsatisfied target bits in the best solution found by any of the solvers and the
number of unsatisfied target bits in the best solution found by solver S. score is
0 if no solution was found by S. It holds that score ∈ [0, 1].

Consider the upper part of Table 1 which displays the results for the 60-
second timeout. Each row compares the results of a single configuration of Mrs.
Beaver, shown in the first column, to those of the other solvers. Following the
presentation style used in the MaxSAT Evaluation, we provide score, the number
of solved instances (in columns titled #S) and the number of times each algo-
rithm found the best solution (in columns titled #B). The best score in each
row is highlighted. The table is sorted according to the score of the Mrs. Beaver
configuration.

The best result was achieved by the baseline configuration {Mixed − OBV,
105, 104,SU

}
. It outperforms all the other solvers, including our LSU implemen-

tation ({−, 1, 0,SU }) and the LSU implementation in the MaxSAT evaluation
winner Open-WBO-LSU. Mrs. Beaver’s performance is slightly better in the SU
(SAT-UNSAT) mode.

Concerning the parameters of Mrs. Beaver-Inc, changing the conflict
threshold or the number of iterations led to a mild deterioration of the score.
Alternating between OBV-BS and UMS-OBV-BS yielded the best results. Using
only UMS-OBV-BS (

{
UMS − OBV − BS,∞, 105

}
) was insufficient for outscoring the

other solvers.
The bottom part of Table 1 shows the results for the 300-second timeout.

We found in preliminary experiments that the best-performing Mrs. Beaver
configuration for the 300-second timeout is

{
Mixed − OBV, 104, 105,SU

}
; it is

slightly different from that used for the 60-second timeout. As in the MaxSAT
Evaluation, MaxRoster emerges as the best solver in this category. Mrs. Beaver
comes out as the second best.

Complete Category Based on preliminary experiments, we picked the fol-
lowing configuration as the baseline for Mrs. Beaver for complete solving:{
UMS − OBV − BS, 1, 103,US

}
. It applies one iteration of the preprocessor using

UMS-OBV-BS and a relatively low conflict threshold of 103 as well as the US mode
at the complete stage.
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Table 1. MaxSAT evaluation: incomplete categories

Mrs. Beaver Conf. Mrs. Beaver Open-WBO-LSU MaxHS MaxRoster
Score #S #B Score #S #B Score #S #B Score #S #B

60-Second Timeout{
Mixed-OBV, 105, 104,SU

}
0.81792 182 56 0.73498 178 54 0.73017 192 37 0.67423 145 89{

Mixed-OBV, 104, 104,SU
}

0.81787 182 55 0.73498 178 54 0.73017 192 37 0.67423 145 89{
Mixed-OBV, 105, 104,US

}
0.81756 182 56 0.73498 178 54 0.73017 192 37 0.67423 145 89{

Mixed-OBV, 106, 104,SU
}

0.81748 182 56 0.73498 178 54 0.73017 192 37 0.67423 145 89{
Mixed-OBV, 105, 105,SU

}
0.81378 182 64 0.73902 178 50 0.73122 192 37 0.67094 145 87{

Mixed-OBV, 105, 103,SU
}

0.79008 181 49 0.74207 178 59 0.73654 192 38 0.67593 145 89{
OBV-BS, 105, 104,SU

}
0.7855 182 55 0.74274 178 57 0.73764 192 38 0.67765 145 92

{−, 1, 0,SU} 0.74531 182 65 0.75043 178 53 0.74577 192 45 0.68675 145 91{
UMS-OBV-BS, 105, 104,SU

}
0.73236 181 39 0.74611 178 59 0.74121 192 44 0.67835 145 90

{−, 1, 0,US} 0.57173 182 8 0.77117 178 77 0.76302 192 47 0.69246 145 96
300-Second Timeout{

Mixed-OBV, 104, 105,SU
}

0.77807 183 39 0.71429 182 43 0.75285 194 55 0.87118 182 126{
Mixed-OBV, 104, 105,US

}
0.77806 183 39 0.71429 182 43 0.75285 194 55 0.87118 182 126{

Mixed-OBV, 105, 105,SU
}

0.77774 183 40 0.71424 182 43 0.75279 194 55 0.87112 182 126{
Mixed-OBV, 103, 105,SU

}
0.77563 183 39 0.71429 182 43 0.75285 194 55 0.87118 182 126{

Mixed-OBV, 104, 104,SU
}

0.77259 183 32 0.71354 182 44 0.75276 194 56 0.87191 182 128{
Mixed-OBV, 104, 106,SU

}
0.75761 183 40 0.71442 182 43 0.75277 194 55 0.8715 182 127{

OBV-BS, 105, 104,SU
}

0.72725 183 32 0.71503 182 44 0.75782 194 57 0.8768 182 129
{−, 1, 0,SU} 0.71329 184 36 0.7232 182 46 0.76508 194 62 0.88502 182 133{

UMS-OBV-BS, 105, 104,SU
}

0.70314 183 32 0.71608 182 43 0.75515 194 60 0.87329 182 128
{−, 1, 0,US} 0.50183 184 3 0.72414 182 48 0.76543 194 62 0.88605 182 135

Consider Table 2. It displays the number of solved instances and the overall
run-time of Open-WBO-RES, MaxHS, Open-WBO-LSU, our linear search implemen-
tations and several Mrs. Beaver configurations (MaxRoster cannot be applied
for complete solving). The algorithms are sorted according to their performance.

Unsurprisingly, unlike in the incomplete categories, Mrs. Beaver did not per-
form as well as the leading solvers, Open-WBO-RES and MaxHS. Apparently, the
reason is that Mrs. Beaver’s top-performing complete algorithm relies merely
on US linear search. Applying SU instead of US at the complete stage or
changing the underlying algorithm at the incomplete stage results in a per-
formance deterioration. Notably, the preprocessor allows Mrs. Beaver to solve
18 more instance as compared to the LUS implementation in our framework
(
{
UMS − OBV − BS, 1, 103,US

}
vs. {−, 1, 0,US}).

Table 2. MaxSAT evaluation: complete category

Results Results (Continued)
Solver #S Overall Time Solver #S Overall Time
MaxHS 655 927384.89

{
UMS-OBV-BS, 1, 103,SU

}
547 1251925.21

Open-WBO-RES 654 880493.49
{
OBV-BS, 1, 103,US

}
546 1281167{

UMS-OBV-BS, 1, 103,US
}

572 1176926.57
{
OBV-BS, 1, 103,SU

}
543 1292191.23

Open-WBO-LSU 554 1209114.62 {−, 1, 0,SU} 541 1258922.31
{−, 1, 0,US} 554 1214299.29
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7.2 Industrial Instances

For the experiments in this section, we generated 9 Weighted MaxSAT bench-
marks that encode the industrial task of cleaning up soft design rules in
Intel designs. We used the straightforward translation from BMO to Weighted
MaxSAT, described in Sect. 6, for generating the benchmarks. The number of
variables in the benchmarks ranges from 4,367,381 to 8,220,593, while the num-
ber of clauses ranges from 12,960,427 to 26,676,683. The number of target bit-
vectors (before applying the reduction from BMO to Weighted MaxSAT) is 44
in every benchmark.

The main goal of our experiments was to study the impact of enabling
incrementality in MaxSAT solving on the performance of the Unweighted
MaxSAT-based BMO algorithm in the context of our application. We compared
Oh Mrs. Beaver against the non-incremental Unweighted MaxSAT flow with
the following underlying solvers: Open-WBO-RES, Open-WBO-LSU, MaxHS, and
Mrs. Beaver. We used the best performing configuration in the complete cate-
gory for both Oh Mrs. Beaver and the non-incremental Mrs. Beaver. We used
a timeout of 1800 seconds for Oh Mrs. Beaver and a timeout of 600 seconds for
each invocation of a non-incremental solver.

The results are shown in Table 3. For each solver, the table shows the number
of completed invocations (out of 44 incremental invocations, one for each target
bit-vector) and the time. The last row shows the average number of completed
invocations and the average time for each solver. Oh Mrs. Beaver is clearly
the best solver. It solved all the benchmarks, being 6 times faster than the
Mrs. Beaver-based non-incremental flow and 10 times faster than the MaxHS-
based non-incremental flow. Neither Open-WBO-RES nor Open-WBO-LSU scaled to
our instances. All in all, it pays off to apply incremental Unweighted MaxSAT
solving to solve industrial instances of BMO.

In addition, for comparison, we ran the following Weighted MaxSAT solvers:
Open-WBO, MaxHS, MaxRoster, Clasp [22] and Sat4j [6]. It turned out that only
Sat4j was able to process our benchmarks successfully, since in our benchmarks
the weight can be as high as 10129, while the maximal weight in the MaxSAT
format is restricted to 263. Sat4j timed-out on all the instances.

Finally, we translated our benchmarks to the BMO format, used during the
Lion9 Challenge [7] (the only BMO competition ever held), and ran the following
three dedicated BMO solvers, comprising all the participants in the challenge:
Sat4j [6], Open-WBO-SU, and Open-WBO-MSU3 (the latter two solvers were imple-
mented in the Open-WBO framework). The results are shown in Table 4. Initially,
when we invoked the BMO solvers on our standard machines (with 32 Gb of
memory), all three solvers failed to solve a single instance: Sat4j timed-out
and both versions of Open-WBO came back with memory-outs. As a follow-up
experiment, we ran Oh Mrs. Beaver, Open-WBO-SU, and Open-WBO-MSU3 on a
machine having 512 Gb of memory. It turned out that both versions of Open-WBO
slightly outperformed Oh Mrs. Beaver (by 1.2 times on average), but they used
50 times more memory (2 Gb vs. 100 Gb on average). Both Open-WBO-SU and
Open-WBO-MSU3 reduce BMO to iterative MaxSAT invocations, similarly to Oh
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Mrs. Beaver (using different MaxSAT algorithms underneath: LSU in the case
of Open-WBO-SU and MSU3 [27] in the case of Open-WBO-MSU3). As for the huge
difference in memory usage, it is difficult to determine the reason for this, as the
source code of both Open-WBO-SU and Open-WBO-MSU3 is unavailable.

Table 3. Evaluation on industrial BMO instances

# Incr. Calls Oh Mrs. Beaver Open-WBO-RES Open-WBO-LSU MaxHS Mrs. Beaver
Solved Time Solved Time Solved Time Solved Time Solved Time

1 44 44 310 0 26400 0 26400 44 3060 44 1881
2 44 44 452 0 26400 0 26400 44 4343 44 2890
3 44 44 346 0 26400 0 26400 44 4141 44 2740
4 44 44 366 0 26400 0 26400 44 3404 44 2120
5 44 44 197 0 26400 0 26400 44 3635 44 2271
6 44 44 229 44 8883 44 8895 44 1998 44 1163
7 44 44 282 44 11483 44 11483 44 2336 44 1406
8 44 44 325 11 25828 8 25937 44 2737 44 1667
9 44 44 459 0 26400 0 26400 44 3159 44 1998
Avrg 44 44 330 11 22733 11 22746 44 3201 44 2015

Table 4. Evaluation of BMO solvers on industrial BMO instances

#
Standard Settings (32Gb) 512Gb and 1.2Ghz CPU frequency

Sat4j Open-WBO-SU Open-WBO-MSU3 Oh Mrs. Beaver Open-WBO-SU Open-WBO-MSU3
Res Res Res Time Mem (Mb) Time Mem (Mb) Time Mem (Mb)

1 Timeout Memout Memout 413 1917 316 96881 333 96917
2 Timeout Memout Memout 630 2710 469 133578 451 133577
3 Timeout Memout Memout 469 2594 451 127032 298 127121
4 Timeout Memout Memout 356 2164 371 108399 367 108449
5 Timeout Memout Memout 438 2287 360 114650 463 114673
6 Timeout Memout Memout 275 1289 183 67374 235 67274
7 Timeout Memout Memout 298 1514 219 76320 249 74618
8 Timeout Memout Memout 349 1737 319 89581 296 89605
9 Timeout Memout Memout 437 2019 366 102081 359 102104
Avrg 407 2026 339 101766 339 101593

8 Conclusion

We explored how Unweighted MaxSAT solving can benefit from the recently
introduced Optimization Modulo Bit-Vectors (OBV) algorithms. We proposed a
new OBV-based Unweighted MaxSAT algorithm–Mrs. Beaver. Mrs. Beaver
outscored the top solvers when run with the settings of the Incomplete-60-
Second-Timeout Track of MaxSAT Evaluation 2017. Unlike the existing state-
of-the-art algorithms, Mrs. Beaver was designed to be incremental in the sense
that it can be reapplied with a different set of hard assumptions and soft clauses.
We demonstrated that enabling incrementality in MaxSAT significantly improves
the performance a MaxSAT-based BMO algorithm applied for solving a new crit-
ical industrial BMO application: cleaning-up weak design rule violations during
the Physical Design stage of Computer-Aided-Design at Intel.
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Abstract. We study cdcl-cuttingplanes, Open-WBO, and Sat4j, three
successful solvers from the Pseudo-Boolean Competition 2016, and eval-
uate them by performing experiments on crafted benchmarks designed
to be trivial for the cutting planes (CP) proof system underlying
pseudo-Boolean (PB) proof search but yet potentially tricky for PB
solvers. Our experiments demonstrate severe shortcomings in state-of-
the-art PB solving techniques. Although our benchmarks have linear-size
tree-like CP proofs, and are thus extremely easy in theory, the solvers
often perform quite badly even for very small instances. We believe this
shows that solvers need to employ stronger rules of cutting planes reason-
ing. Even some instances that lack not only Boolean but also real-valued
solutions are very hard in practice, which indicates that PB solvers need
to get better not only at Boolean reasoning but also at linear program-
ming. Taken together, our results point to several crucial challenges to
be overcome in the quest for more efficient pseudo-Boolean solvers, and
we expect that a further study of our benchmarks could shed more light
on the potential and limitations of current state-of-the-art PB solving.

1 Introduction

In its most general form, a pseudo-Boolean function maps sets of Boolean values
to a real number. Such functions have been studied since the 1960s in the context
of operations research and 0-1 programming, yielding an extensive body of work
as surveyed, e.g., in [5]. In this paper we consider the special case of linear
pseudo-Boolean constraints

∑
i ai�i ≥ A encoded as integer linear combinations

of literals �i (i.e., Boolean variables or negations of such variables). In the decision
problem pseudo-Boolean solving (PBS) one asks whether a collection of such
constraints is feasible or not. In pseudo-Boolean optimization (PBO) the task is
to compute the best value of an objective function (written as a linear constraint)
subject to other linear constraints, a formalism that captures problems in many
different fields. Clearly, PBO can be reduced to PBS by iteratively computing
solutions and adding constraints forcing the value of the objective function to
improve. In the current work we focus on the decision problem PBS.
c© Springer International Publishing AG, part of Springer Nature 2018
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Pseudo-Boolean constraints are more expressive than conjunctive normal
form (CNF) formulas, but are close enough that techniques for CNF SAT solving
can be harnessed to attack pseudo-Boolean problems. The connection to integer
linear programming (ILP) and, in particular 0-1 programming, makes it natural
to also borrow insights from these areas.

Work on applying SAT-based methods in pseudo-Boolean solving seems to
have started in the mid-1990s inspired by Barth [1,2] and developed in different
directions. One line of research has focused on inference methods based on cutting
planes (CP) [7,9,14], including works by Chai and Kuehlman [6], Sheini and
Sakallah [33], and Dixon et al. [10]. In this context it was reported that focusing
on the restricted form of cardinality constraints

∑
i �i ≥ A can be more effective

than dealing with general linear constraints [6,33], and according to [11] a very
competitive approach can be to simply translate pseudo-Boolean constraints to
CNF and use a conflict-driven clause learning (CDCL) SAT solver [3,25,28].
A different path was pursued by Manquinho and Marques-Silva, who devised
ways of learning and backtracking non-chronologically using branch-and-bound
search [22,23]. Needless to say, this brief historical overview is very far from
complete—see, e.g., the excellent survey [31] for more details.

Current state-of-the-art pseudo-Boolean solvers building on the first line of
work discussed above include Open-WBO [26,29], which reduces the problem
to CNF [19] and applies CDCL search, and Sat4j [21,32], which uses cutting
planes inference rules. These two solvers performed very well in the decision
track in the Pseudo-Boolean Competition 2016 together with the relatively new
solver cdcl -cuttingplanes [12],1 which, as the name suggests, also implements
conflict-driven search in cutting planes.

1.1 Our Investigations and Conclusions

The survey [31] mentioned above ends on the optimistic note that “[t]rade-offs
between inference power and inference speed are often made in current algorithms
and the right balance is still sought” but that “we can expect that, once the right
balance is found, pseudo-Boolean solvers will become a major tool in problem
solving.” From a theoretical point of view, there are strong reasons to concur
with this—pseudo-Boolean (PB) solvers are based on an exponentially stronger
method than CDCL solvers and so should have the potential to vastly outperform
them. Intriguingly, in practice the opposite more often seems to be the case.

We approach this disconnect between theory and practice by studying the
performance of the three PB solvers cdcl -cuttingplanes, Open-WBO , and Sat4j
on the kind of PBS decision problems where they came out on top in the

1 An updated version of this solver with the new name RoundingSat is described
in [13].
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Pseudo-Boolean Competition 2016. We consider the benchmarks in [36]2 as well
as other crafted benchmarks that were specifically designed to be very easy for
the cutting planes proof system underlying pseudo-Boolean SAT solving but to
be potentially tricky to handle for PB solvers (not in the sense of being “obfus-
cated” in any way, but in the sense that the instances seem to require inherently
pseudo-Boolean reasoning to be efficiently solvable). Since our starting point is
proof complexity, our focus is on unsatisfiable benchmarks. We report results
from fairly extensive experiments intended to highlight strong and weak points
of these solvers when run on our benchmark set, and present some empirical
conclusions as well as hypotheses that we hope will stimulate follow-up research.

Before briefly discussing our findings, we want to stress that we do not claim
to provide the final word in this matter, but rather our purpose is to initiate
a new line of research. By necessity, our set of benchmarks is limited, and the
instances are quite particular in that they have been designed to have certain
combinatorial properties. Nevertheless, we believe that this work shows that an
in-depth study of pseudo-Boolean solver performance on such benchmarks can
provide interesting insights. In contrast to industrial benchmarks, here we can
have a detailed understanding of the properties of the instances, including, in
particular, the fact that they can be solved efficiently in principle. In addition,
the possibility to scale their size allows us to draw conclusions about asymptotic
behaviour rather than just observing isolated data points.

The Need for Stronger Boolean Reasoning. The most obvious conclusion from
our work is that the cutting planes-based reasoning in pseudo-Boolean solvers
needs to be strengthened significantly. As mentioned above, our benchmarks have
been designed to have short CP proofs, and most often these proofs are even tree-
like (meaning that they can be found without learning from conflicts). However,
in many cases the solvers struggle hopelessly even for very small instances. To
explain by an analogy to CDCL solving, this is as if state-of-the-art CDCL
solvers would fail completely for small formulas with linear-size DPLL proofs!

We consider the most plausible explanation for the poor performance to be
that the PB solvers do not exploit the full power of the division rule in cutting
planes, using only a limited form of division as in cdcl -cuttingplanes or substi-
tuting it altogether by the simpler saturation rule as in Sat4j . This hypothesis is
strengthened by the observation that cdcl -cuttingplanes is consistently perform-
ing better than Sat4j in cases when use of the division rule seems to be crucial
from a theoretical point of view.

Looking at the results from a different angle, it is well known that PB solvers
such as Sat4j performs well on pigeonhole principle (PHP) formulas, and the
results from the Pseudo-Boolean Competition 2016 show that this is also the
2 It should be noted that [36] is closely related to the current work in that both papers

are motivated by similar concerns, namely understanding the power and limitations
of pseudo-Boolean reasoning. A key difference, though, is that the instances studied
in [36] are designed to be potentially hard for the subsystems of cutting planes
implemented by PB solvers, whereas in this paper we choose parameter settings so
that almost all instances are theoretically very easy.
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case for so-called subset cardinality formulas [27,34,35]. However, the seemingly
equally simple even colouring formulas [24] appear very hard in practice. On
closer inspection, one difference here is that PHP formulas do not have even
rational solutions—there is no way to fit n + 1 pigeons into n holes even if
the pigeons can be sliced—and the same holds for subset cardinality formulas,
whereas even colouring formulas are satisfied by assigning every variable value 1

2 .
This raises the question whether hardness correlates with the existence of

rational solutions, which we will refer to in what follows as the rational hypothe-
sis. Clearly, rational solutions alone do not imply hardness—any 2-CNF formula
without unit clauses is satisfied by assigning all variables value 1

2 , yet this does
not make such a formula hard—but any formula without rational solutions has
short proofs that PB solvers can find in theory [36], so we can ask if they can
also find such proofs in practice.

Although there are families of formulas where the lack of rational solutions
seems to help, the answer from our experiments to whether solvers can always
efficiently decide rationally infeasible 0-1 integer linear programs is negative—
we find examples of instances without rational solutions that are very hard in
practice. But when we then go further and study for which instances we can
help the solvers to run fast by, e.g., dropping a heavy hint in the form of a good
fixed variable order (while keeping other settings at default values), an intriguing
pattern emerges—for most of our benchmarks it holds that the solvers can be
made efficient if the instances have small strong backdoors3 to pseudo-Boolean
formulas without rational solutions. There is of course a selection bias in the
benchmarks we study, but we nevertheless find this refined version of the rational
hypothesis quite intriguing and hope it can stimulate further study.

The Need for Stronger LP Reasoning. The refined rational hypothesis just dis-
cussed cannot explain all our findings, however, especially since solvers cannot
always count on getting helpful hints. For some of our benchmark families—in
particular, encodings of the dominating set problem on hexagonal grids—the
formulas are extremely challenging even when the corresponding linear program
has no rational solutions.4 For these instances it can be shown that the method
of reasoning used in Sat4j and cdcl -cuttingplanes can in principle derive extra
constraints by simple addition [36], i.e., without any Boolean reasoning, and with
these constraints added the formulas become trivial also in practice. The solvers
do not find these constraints on their own, though, and we have not been able to
coax them into doing so even by trying out different helpful variable orderings.
Instead, the solvers get stuck exploring parts of the search space where even the
LP is infeasible. This shows that PB solvers need to strengthen not only their
Boolean reasoning but also their linear programming capabilities.
3 A strong backdoor for an instance F to a family F of (easy) instances—in this

case, instances without rational solutions—is a set of variables in F such that any
assignment ρ to these variables yield a restricted instance F �ρ that is in F .

4 It might be worth pointing out that for an instance to lack rational solutions is the
same as saying that the linear programming relaxation is infeasible, and so such
instances can be shown unsatisfiable in polynomial time simply by solving the LP.
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The Need to Become more Competitive with CDCL and MIP Solvers. For for-
mulas that are provably exponentially hard for resolution but easy for cut-
ting planes we see, not surprisingly, that cdcl -cuttingplanes and Sat4j outper-
form Open-WBO . However, for instances that are inherently pseudo-Boolean
in nature, but where resolution can nevertheless efficiently simulate PB reason-
ing if given a natural CNF encoding, we see that most often cdcl -cuttingplanes
and Sat4j are orders of magnitude slower than Open-WBO . It is also often
the case, though, that the roles become reversed if the formula is randomly
shuffled before being fed to the solvers. And it is also often true that if we
force cdcl -cuttingplanes to use a good fixed decision order, then its performance
matches that of Open-WBO , but if left to its own devices cdcl -cuttingplanes will
deviate from this decision order. This raises the question of whether the way
Open-WBO encodes pseudo-Boolean constraints into CNF helps it to find and
stick to a good variable order when the formula is presented in such a way as to
suggest such a good order.

Since pseudo-Boolean solving is closely related to integer linear programming,
it is also natural to compare PB solvers to mixed integer linear (MIP) solvers.
We have run experiments with the MIP solver Gurobi [15] on our combinatorial
benchmarks and can observe that it is consistently better than all the PB solvers
studied. It should be emphasized that this is perhaps not so suprising—many of
our formulas have been constructed to be hard for CDCL but trivial for tree-like
cutting planes, and this means that they are by definition amenable to branch-
and-bound techniques. Furthermore, Gurobi solves an LP relaxation at every
node in its search tree, and so will immediately detect the rationally infeasible
instances that turn out to be hard for PB solvers. Thus, for the benchmarks
considered in this paper Gurobi is playing on home turf. Still, we can see no
good reason why PB solvers should be so bad for formulas that are dead-easy
for tree-like CP. And it certainly would seem well worth it to take a long, hard
look at MIP solving techniques and see what can be ported to PB solvers.

Our findings might seem depressing in that they are mostly bad news for
state-of-the-art pseudo-Boolean solving. However, we would rather view our work
as pointing forward to some crucial challenges that need to be overcome. We hope
that our combinatorial formulas can be valuable as challenge benchmarks in the
quest to develop more efficient PB solvers, which could then fulfil the vision
of [31] and assume their rightful place as “major tools in problem solving.”

1.2 Organization of this Paper

We describe our experimental set-up in Sect. 2 and discuss our benchmarks
in Sect. 3. Section 4 contains an analysis of our results, and some concluding
remarks are presented in Sect. 5.

2 Experimental Set-up

We have conducted an experimental evaluation using the pseudo-Boolean solvers
cdcl -cuttingplanes [12] Open-WBO [26,29], and Sat4j [21,32]. These were the
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top three solvers in the Pseudo-Boolean Competition 2016 [30] in the cate-
gory DEC-SMALLINT-LIN (“no optimization, small integers, linear constraints,
SAT+UNSAT answers”), and we ran the solvers on such benchmarks as
described in more detail in Sect. 3. Since our benchmarks are inspired by proof
complexity, where one studies the complexity of certifying unsatisfiability, we
focused almost exclusively on UNSAT instances. For our experiments on shuf-
fled instances we randomly shuffled the variable indices, literal polarities, and
the order of the constraints as well as variables within the constraints.

We used the versions of cdcl -cuttingplanes and Open-WBO submitted to the
PB Competition 2016 and a slightly later version of Sat4j from November 4,
2016. By default Sat4j runs two subsolvers in parallel (Resolution and Cutting-
Planes) and returns the answer of the first of them solving the problem. This
gives Sat4j an advantage, since it gets double the amount of CPU time compared
to the other solvers, but it only makes our point stronger when it performs poorly.
Since we are particularly interested in analysing cutting planes-based solvers we
included the standalone solver Sat4jCP in our experiments, but we only show
results when they differ from Sat4j (i.e., when the formula was decided by the
Resolution subsolver). For the cdcl -cuttingplanes experiments with fixed decision
orders we used a version from April 19, 2017, since the competition version had
no support for fixed orders. For our mixed integer programming experiments we
used the solver Gurobi [15] version 7.5.2 restricted to a single thread.

We ran our experiments on a cluster with a set-up of 6 AMD Opteron 6238
(2.6 GHz) cores and 16 GB of memory. The timeout for the experiments was
3000 s unless otherwise stated.

3 Description of Benchmarks

All our benchmarks were designed to be very easy for the cutting planes (CP)
proof system, so that the experiments would measure proof search quality for
instances where CP-based solvers should in principle be able to perform well.

The well-known pigeonhole principle (PHP) formula claims that n+1 pigeons
can be placed into n holes with only one pigeon per hole, encoded as pigeon
axioms

∑
j∈[n] xi,j ≥ 1 and hole axioms

∑
i∈[n+1] xi,j ≤ 1 for i ∈ [n+1], j ∈ [n].

We also consider more complicated versions by introducing emergency exits as
follows. We generate k disjoint PHP instances over variables x�

i,j , where for each
� ∈ [k] we allow some pigeon(s) i∗ to “take the emergency exit” by changing
the pigeon axiom to y� +

∑
j∈[n] x

�
i∗,j ≥ 1, where y�, � ∈ [k], are new variables.

However, a special constraint
∑k

�=1 y� ≤ k − 1 enforces that at most k − 1
emergency exits are taken in total. We study two variants where either (a) one
particular pigeon per PHP instance can take the emergency exit or (b) all pigeons
in an instance can do so. All these versions of PHP are rationally unsatisfiable.

A subset cardinality (SC) formula [27,34,35] is generated from a 0/1 n × n
matrix A = (ai,j) with 4 ones in every row and column, except that one row and
column contains 5 ones. Writing Ri = {j | ai,j = 1} and Cj = {i | ai,j = 1} to
denote the positions of 1s in row i and column j, respectively, the formula obtained
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from A consists of the constraints
∑

j∈Ri
xi,j ≥ |Ri|/2 and

∑
i∈Cj

xi,j ≤ |Ci|/2 for
i, j ∈ [n]. We use randomly generated matrices and “fixed bandwidth” matri-
ces with a fixed pattern of ones shifted down the diagonal. We also consider a
more restrictive version with equality constraints

∑
j∈Ri

xi,j = �|Ri|/2� and∑
i∈Cj

xi,j = �|Ci|/2�. Again, all of these instances are rationally unsatisfiable.
The even colouring (EC) formula [24] over a connected graph G = (V,E)

with all v ∈ V of even degree deg(v) consists of constraints
∑

e∈E(v) xe =
deg(v)/2, where E(v) denotes the set of edges incident to v. This formula claims
the existence of a black-white edge colouring such that every vertex has the same
number of black and white edges, and is unsatisfiable if and only if |E| is odd.
We study these formulas for two families of graphs: (a) long, narrow toroidal
grids, where every vertex has edges horizontally and vertically to its 4 neigh-
bours, and with one edge split into a degree-2 vertex to get an odd number of
edges; (b) random regular graphs of even degree 2d, splitting an edge if d is even.

The vertex cover (VC) formula with constraints xu + xv ≥ 1, (u, v) ∈ E,
and

∑
v∈V xv ≤ S encodes that a graph G = (V,E) has a size-S vertex cover

(i.e., a set such that every edge is incident to some vertex in it). As in [36], we
examine long, narrow rectangular toroidal grids with m rows and n columns for
m = O(1) even. The minimal vertex cover for such a graph has size m�n/2�.
We generate four versions by varying the value of S, where for the first three
n is odd: (a) S = m �n/2� − 1, the largest value such that the formula is
still unsatisfiable (version hard); (b) S = mn/2 (version easy), which is more
obviously unsatisfiable but still has a rational solution with value 1

2 for all
variables; (c) S = m�n/2� − 1 (version norat), without rational solutions;
(d) S = m�n/2� − 1 for n even (version norat-even), where S is the largest
value that makes the formula unsatisfiable both for Boolean and rational values.
To obtain slightly harder instances without superfluous edges we also consider
such grids with all vertical edges removed, yielding a collection of disjoint cycles,
and use the same values of S as above.

The dominating set (DS) formula for a graph G consists of constraints∑
u∈{v}∪N(v) xu ≥ 1 for all v ∈ V and

∑
v∈V xv ≤ S, saying that G has a

size-S dominating set (i.e., such that every vertex in G either belongs to or is a
neighbour of a vertex in the set). We study these formulas for hexagonal grids
as represented in [36] with m rows and n columns, with one dimension fixed
while the other scales. Since hexagonal grids are 3-regular any dominating set
must have size at least �|V |/4�, and so we choose S = �|V |/4�. When 4 � |V |
the resulting instance is rationally unsatisfiable, but otherwise there is always
a rational solution setting all variables to 1

4 , whereas the Boolean satisfiability
depends in nontrivial ways on the exact geometry of the grid [36] (in particu-
lar, in contrast to the other families some of our dominating set instances are
satisfiable).

The linearized pebbling (LinPeb) formula of arity d over a directed acyclic
graph with a unique sink has variables v1, . . . , vd for each vertex v and consists of
the following contradictory constraints (where we let d′ = 2�(d−1)/2�+1): (a) for
every source vertex v the constraint 2

∑d
i=1 vi ≥ d′; (b) for every non-source
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Table 1. Overview of benchmarks and results

Formula family Rational
solutions

Small
backdoor

Division
needed

Performance

cdcl-CP Sat4j O-WBO

PHP No – – Easy Easy Hard

SC No – – Easy Easy Hard

EC even grid Yes Yes No Easy Easy Hard

EC odd grid Yes No Helpful Harda Hard Hard

EC random Yes No(?) Crucial(?) Fairly hard Hard Hard

VC hard Yes No Helpful Hardb Hard Easyc

VC easy Yes Many No Hardb Hard Easyc

VC norat(-even) No – – Hardb Hard Easyc

DS Yes Many No Hardd Hardd Easyc

LinPeb Yes Yes No Hardb Harde Easy
a Easy if formula appropriately reordered. b Fairly easy for forced order.
c Hard if shuffled. d Easy if LP-derivable constraints added. e Easy for Sat4jRes.

vertex w with predecessors u and v the constraint 2
∑d

i=1 wi ≥ ∑d
i=1(ui + vi);

(c) for the unique sink vertex z the constraint 2
∑d

i=1 zi ≤ d′. We study instances
generated from so-called pyramid graphs.5

4 Experimental Evaluation

In this section we describe and analyse the results of our experiments (summa-
rized in Table 1).6 As already mentioned, our benchmarks can be scaled in size by
varying a parameter, allowing to study the asymptotic behaviour of the solvers
as the instance size increases. Our figures illustrate this by plotting performance
on the y-axis against the value of the scaling parameter on the x-axis (which, in
particular, seems to be a better way of visualizing our data than using so-called
cactus plots).

4.1 Pseudo-Boolean Solvers and Boolean Reasoning

Our first conclusion is that PB solvers need to strengthen their reasoning by
using stronger rules than saturation and implementing better proof search.

As an example, consider even colouring (EC) formulas, which can be refuted
(i.e., proven unsatisfiable) with tree-like cutting planes proofs in linear size using
just two applications of division. We could thus expect solvers based on cutting

5 We remark that some linearized pebbling formulas were submitted to the Pseudo-
Boolean Competition 2016 under the name sumineq (sum inequalities).

6 By necessity, our discussion is far from exhaustive, but readers can find all our
benchmarks and the data from our experiments at http://www.csc.kth.se/∼jakobn/
publications/CombinatorialBenchmarksPBsolvers.

http://www.csc.kth.se/~jakobn/publications/CombinatorialBenchmarksPBsolvers
http://www.csc.kth.se/~jakobn/publications/CombinatorialBenchmarksPBsolvers
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Fig. 1. Solver performance for even colouring formulas on random graphs (#con-
straints= #vertices |V |; #variables = deg · |V |/2 + O(1)).

planes (CP) to run blisteringly fast for EC formulas over any graph, but this
is not the case. We have generated formulas from m × n grids with m = O(1)
a small constant, which have short proofs in resolution when encoded in CNF,
and random regular graphs, which are exponentially hard for resolution.7

For grids with m even the formulas are trivial for both Sat4j and
cdcl -cuttingplanes, but for m odd they are hard. Interestingly, in the latter case
Sat4jRes performs better than Sat4jCP , suggesting that CP-based solvers do
not find better proofs than CDCL-based solvers. It is also notable that flipping
the vertex (and hence variable) order from column-major to row-major, even
though it does not change the formula, helps cdcl -cuttingplanes find an efficient
proof. This indicates that there is ample room to improve on search heuristics.

To explain the difference between even-row and odd-row grids, we observe
that EC formulas always have a rational solution with all variables assigned
value 1

2 , but grids with an even number of rows and columns have backdoors of
size 1 (namely, either of the edges incident to the degree-2 vertex on the split
edge), and as long as the number of rows m is even there are backdoors of size
at most m = O(1). If m is odd, however, the backdoor size jumps to n − O(1).

EC formulas on random graphs are very hard for Open-WBO and Sat4j .
They are not easy for cdcl -cuttingplanes either, but this solver performs markedly
better, and does not seem to be sensitive to the degree of the graph (see Fig. 1).
The only short proofs known for these formulas crucially use division [36], and we
believe that the superior performance of cdcl -cuttingplanes is explained by the
frequent (though still limited) use of division in this solver. It is worth noting,
though, that for the few instances solved by Sat4j the number of conflicts is not

7 Such a lower bound cannot be found in the literature, but is possible to obtain for
graphs with good enough expansion using a variation of the techniques in [4].
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too far from cdcl -cuttingplanes. The most likely explanation is that Sat4j does
divide the constraint in the rare case when all coefficients are equal, which is all
that is needed in [36]. To be sure whether the above explanations are correct
we would need to do proof logging, but for PB solvers there is unfortunately
nothing like the DRAT format [17,18,37] used for CDCL solvers.

Another formula family where cdcl -cuttingplanes performs better than Sat4j
are linearized pebbling formulas, which are easy for Sat4jRes but extremely
hard for Sat4jCP (see Fig. 2). Interestingly, for these instances Sat4j gener-
ates constraints with coefficients larger than 109 in a matter of seconds, whereas
cdcl -cuttingplanes keeps all coefficients small. Division is not critically needed for
efficient refutations here, but it might be that it is what helps cdcl -cuttingplanes
keep coefficient sizes down and achieve better performance. Sat4j has prob-
lems with large coefficients also for vertex cover (VC) and dominating set (DS)
instances, where cdcl -cuttingplanes performs better, but not for PHP and subset
cardinality (SC) formulas, where both solvers are fast.

Let us next review what our data say about the extended rational hypothesis,
i.e., that instances with small backdoors to rational unsatisfiability should be
easy. PHP and SC formulas do not have rational solutions, and the fact that
instances are trivial for both cdcl -cuttingplanes and Sat4j supports the rational
hypothesis. PHP formulas with emergency exits were designed to be potentially
harder instances that still do not have rational solutions, but they fail to fool
cdcl -cuttingplanes and hence can be interpreted as circumstantial evidence in
favour of the rational hypothesis for this solver (but less so for Sat4j ).

As mentioned above, cdcl -cuttingplanes and Sat4j run fast on EC formulas
for backdoor size 1 but not larger (random graphs very likely yield instances
without small backdoors, though we did not attempt a rigorous proof). This
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supports the hypothesis, but the fact that cdcl -cuttingplanes also runs fast when
slightly modifying instances for odd-row grids makes the connection less clear.

The VC instances norat and norat-even without rational solutions are eas-
ier than the easy version, which is in turn easier than the hard version. This is
consistent with the hypothesis since the backdoor size is 0 for norat(-even) and
1 for easy (rational solutions disappear after branching on any vertex), whereas
the smallest backdoor for version hard has size m − 1 (m − 1 vertices in the
same column form a backdoor, but any m − 2 vertices can be assigned to leave
a rational solution). This holds for both grids and collections of cycles.

Linearized pebbling formulas have a size-d backdoor (the d variables associ-
ated with the sink). Sat4jCP does not run fast on these formulas, but with some
tweaking cdcl -cuttingplanes can be convinced to perform well. It seems like a
stimulating challenge to develop natural heuristics for the CP-based solvers that
would make them competitive with Open-WBO and Sat4jRes for these instances.

Dominating set formulas on hexagonal grids have rational solutions when
the total number of vertices is divisible by 4, in which case there is strong
empirical evidence for backdoors of size 3 (obtained by considering any vertex
and two of its neighbours). Somewhat annoyingly, we have not been able to
always make cdcl -cuttingplanes run fast for such instances, however, so as of
now our experimental results for these formulas do not support the rational
hypothesis.

4.2 Pseudo-Boolean Solvers and Linear Programming

To support the claim that PB solvers also need better linear programming capa-
bilities, we again consider dominating set instances on hexagonal grids. These
are very challenging for both Sat4j and cdcl -cuttingplanes. They are manage-
able for Open-WBO when the fixed dimension is small but quickly become very
hard as this dimension grows. Also, Open-WBO is extremely sensitive to random
shuffling, a phenomenon that we discuss further in Sect. 4.3.

Quite intriguingly, all instances become trivial if modified as follows. Recall
that we have a greater-or-equal (GEQ) constraint

∑
u∈{v}∪N(v) xu ≥ 1 for each

vertex v encoding that it is dominated. Since hexagonal grids are 3-regular,
and since the required dominating set size is at most |V |/4, it follows that at
most one of the vertices in {v} ∪ N(v) is in the dominating set. These less-or-
equal (LEQ) constraints can easily be derived using only the addition rule in
cdcl -cuttingplanes and Sat4j [36], and with such constraints added the instances
become trivial as shown in Fig. 3. So far we have not been able to get the solvers
to realize that these LEQ constraints should be derived, though, although ele-
mentary linear programming would be sufficient to achieve this.

4.3 Pseudo-Boolean Solvers Versus CDCL and MIP

When comparing cutting planes-based solvers to CDCL solvers we get mixed
results. On PHP and subset cardinality formulas both CP-based solvers Sat4j
and cdcl -cuttingplanes perform very well, while Open-WBO does very poorly,
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which nicely matches that these formulas are easy for CP but exponentially
hard for resolution. For our other benchmarks we find Open-WBO to be sur-
prisingly competitive, but performance is often brittle. In contrast, although all
our benchmarks are very easy for CP, on many instances cdcl -cuttingplanes and
Sat4j are quite far from performing well (though cdcl -cuttingplanes can often be
made to match Open-WBO performance by manual intervention such as fixing
good variable decision orders).

An example family of benchmarks for which Open-WBO shines are vertex
cover (VC) formulas. Here the performance of cdcl -cuttingplanes and Sat4j is
quite poor in general, though the former solver is clearly better than the latter.
A closer look at the results reveals that the number of conflicts seems to be
similar, but since Sat4j solves so few instances within the timeout limit it is
hard to know for sure whether the differences in running time are due to proof
search quality or lower-level implementation details.

Open-WBO performs quite well for almost all our VC instances (except for
the hard version on collections of cycles), which indicates that the encoding to
CNF admits an efficient resolution proof. Since the covering constraints xu +
xv ≥ 1 for the edges (u, v) ∈ E are already disjunctive clauses, the performance
is likely to depend on how the vertex cover size constraint

∑
v∈V xv ≤ S is

encoded into CNF. A key aspect here is that the vertices are listed consecutively
when we generate the grid graphs (more precisely, in column-major order). This
means that as Open-WBO decides on consecutive variable indices, it will explore
neighbouring vertices constrained by common covering constraints, and it seems
plausible that propagation on the auxiliary variables in the encoding of the size
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constraint helps the solver count efficiently. This hypothesis8 is supported by the
fact that when instances are shuffled the performance degenerates dramatically
for Open-WBO , but much less so for cdcl -cuttingplanes. A further observation is
that though cdcl -cuttingplanes is rather bad for these instances, it can be made
much more efficient by fixing the decision order (namely, branching on vertices
in column-major order). This indicates that with a better decision heuristic
cdcl -cuttingplanes could potentially be competitive with Open-WBO here. See
Fig. 4 for plots of all the findings above.

As an example of benchmarks that Sat4j and cdcl -cuttingplanes can solve
easily we have pigeonhole principle (PHP) formulas with n + 1 pigeons and n
pigeonholes. These have CP proofs in size O

(
n2

)
that can be found with O(n)

conflicts. While both solvers only need O(n) conflicts, and seem to find the same
(essentially optimal) proof, we found that running times scale very differently.
A linear regression analysis using the logarithm of the number of constraints
indicates running time O

(
n3.2

)
for cdcl -cuttingplanes but O

(
n5.0

)
for Sat4j (see

Fig. 5). Interestingly, this turned out to be due to an implementation inefficiency
in Sat4j , which could be identified and fixed thanks to our experiments, after
which running times became more similar. It is not surprising that PHP formulas
are very hard for Open-WBO , since there is an exponential lower bound for
resolution [16] which can also be adapted (using techniques in [4]) to work for
other common ways of encoding the at-most-1 pigeonhole constraints into CNF.

8 It would be interesting to verify this by a more in-depth study of Open-WBO . How-
ever, the PB version of this solver was not open-source at the time of our experiments,
and also our main focus in this work is on solvers implementing CP-based reasoning.
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PHP formulas with emergency exits are always easy for cdcl -cuttingplanes
but remain hard for Open-WBO independently of the number of emergency
exits k. This latter finding is also as expected, since even if the solver chooses
k − 1 emergency exits in the right way to satisfy k − 1 subinstances of PHP,
the residual formula is a standard PHP instance which is exponentially hard.
Interestingly, Sat4j performs well on the version where all pigeons can take the
emergency exit, but much worse on the version with only one pigeon per exit
(which is more constrained, and could thus have been expected to be easier).
We remark that when both Sat4j and cdcl -cuttingplanes solve these formulas
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efficiently the number of conflicts seem to grow like O(kn), but when Sat4j does
not perform well the number of conflicts grows faster. Thus, in contrast to the
results for standard PHP, here the proof search quality seems worse in Sat4j .

Looking at subset cardinality formulas, they seem to be solved much faster
than PHP when plotting running time against the scaling parameter, but this is
since the instances are much smaller. Again, we observe that Sat4j takes signifi-
cantly longer than cdcl -cuttingplanes as the instance size increases. Open-WBO
is completely lost, as expected in view of the exponential lower bound for reso-
lution in [27] (see Fig. 6).

Let us finally make a brief comparison to MIP solving. Gurobi does remark-
ably well on all our benchmarks, solving all but the three largest EC instances in
under 10 s. On the one hand, this is not too surprising, since all of our instances
have tree-like proofs, and hence just branching and backtracking without learn-
ing is enough to solve them. Furthermore, the challenging instances that are
rationally unsatisfiable will be solved Gurobi very quickly, since it also considers
linear relaxations of the problem and this is enough to decide unsatisfiability.
However, it is hard to avoid the conclusion that one promising approach for
strengthening PB solvers would be to incorporate techniques from MIP solving.

5 Concluding Remarks

In this paper we evaluate the three pseudo-Boolean solvers cdcl -cuttingplanes,
Open-WBO , and Sat4j on decision problems encoded as linear constraints
with small integer coefficients, a kind of problems where these solvers were
among the best in the Pseudo-Boolean Competition 2016. The solvers dif-
fer in that Open-WBO re-encodes the problem into CNF and runs a CDCL
solver, thus performing proof search in resolution for the re-encoded instance,
whereas cdcl -cuttingplanes and Sat4j implement conflict-driven search natively
with pseudo-Boolean constraints, corresponding to cutting planes (CP) proof
search.

We have performed extensive experiments on carefully constructed combi-
natorial benchmarks to investigate how efficiently these solvers implement their
chosen methods of reasoning. Although all of our instances have been specifically
designed to be very easy for the cutting planes proof system, the performance of
cdcl -cuttingplanes and Sat4j varies greatly, and is often quite poor. Theoretical
as well as empirical evidence points to the conclusion that the reasoning in these
solvers needs to be strengthened, in particular, by exploiting the division rule.

For many of the benchmarks studied we can help Sat4j and cdcl -cuttingplanes
run fast by giving advice in the form of a good, fixed variable decision order,
or sometimes by reordering variables and constraints. An immediate question is
whether the solvers could achieve such good performance on their own by some
enhanced heuristic. It can be observed that this phenomenon occurs most often
for instances which either do not even have rational solutions—i.e., when the
real polytope defined by the linear constraints is in fact empty—or have small
backdoor sets such that any assignment to these backdoor variables eliminates
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all rational solutions. We find this to be a very intriguing connection, and believe
it would be interesting to investigate further whether it can be the case more
generally that strong solver performance correlates with the existence of small
backdoors to rationally unsatisfiable instances.

As expected, Open-WBO stands no chance against cdcl -cuttingplanes and
Sat4j when run on instances that are hard for resolution when encoded into
CNF. However, when there are efficient proofs in both resolution and cutting
planes we see that the CP-based solvers can be orders of magnitude slower.
Curiously, if cdcl -cuttingplanes is helped by being given a good variable order
on such instances, then the performance is competitive with Open-WBO , but
when left to its own devices cdcl -cuttingplanes does not choose this order. This
raises the question whether the encoding to CNF that is used helps Open-WBO
find a good variable order and stick with it. It should be noted, though, that
Open-WBO is very sensitive to permutations of the input, so the encoding to
CNF is only good when the constraints in the initial pseudo-Boolean instance
are presented in a helpful order. The CP-based solvers appear much more robust
in this regard.

Finally, we observe that for the instances considered in this paper all three
PB solvers that we study are clearly outperformed by the general-purpose mixed
integer programming solver Gurobi . At first sight this is slightly disappointing,
since PB solvers working on 0/1-valued problems should be able to exploit tech-
niques not available to MIP solvers, but a big part of the explanation is probably
that our benchmarks have been constructed to be easy for tree-like CP, and so
they are by design amenable to branch-and-bound techniques. But another rea-
son is likely to be that Gurobi solves linear programming relaxations of the
problem during the search, which makes it run fast on instances that lack ratio-
nal solutions but are apparently very challenging for PB solvers. We believe
that there would be great potential for improvement by incorporating such lin-
ear programming reasoning in PB solvers. It would also be interesting to find
benchmarks that are easy for conflict-driven pseudo-Boolean search, at least in
theory, but not for MIP or CDCL, i.e., instances that are hard for resolution
and tree-like cutting planes but easy for general, DAG-like cutting planes.

Taken together, our results can be viewed as a concrete set of challenges to be
overcome in order to construct more efficient pseudo-Boolean solvers. It is also
our belief that a further study of crafted benchmarks like the ones in this paper
has the potential to shed valuable light on the inner workings of PB solvers.
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Abstract. Restarts are a critically important heuristic in most mod-
ern conflict-driven clause-learning (CDCL) SAT solvers. The precise rea-
son as to why and how restarts enable CDCL solvers to scale efficiently
remains obscure. In this paper we address this question, and provide some
answers that enabled us to design a new effective machine learning-based
restart policy. Specifically, we provide evidence that restarts improve the
quality of learnt clauses as measured by one of best known clause quality
metrics, namely, literal block distance (LBD). More precisely, we show
that more frequent restarts decrease the LBD of learnt clauses, which in
turn improves solver performance. We also note that too many restarts
can be harmful because of the computational overhead of rebuilding the
search tree from scratch too frequently. With this trade-off in mind,
between that of learning better clauses vs. the computational overhead
of rebuilding the search tree, we introduce a new machine learning-based
restart policy that predicts the quality of the next learnt clause based
on the history of previously learnt clauses. The restart policy erases the
solver’s search tree during its run, if it predicts that the quality of the
next learnt clause is below some dynamic threshold that is determined
by the solver’s history on the given input. Our machine learning-based
restart policy is based on two observations gleaned from our study of
LBDs of learnt clauses. First, we discover that high LBD percentiles
can be approximated with z-scores of the normal distribution. Second,
we find that LBDs, viewed as a sequence, are correlated and hence the
LBDs of past learnt clauses can be used to predict the LBD of future
ones. With these observations in place, and techniques to exploit them,
our new restart policy is shown to be effective over a large benchmark
from the SAT Competition 2014 to 2017.

1 Introduction

The Boolean satisfiability problem is a fundamental problem in computer sci-
ence: given a Boolean formula in conjunctive normal form, does there exist an
assignment to the Boolean variables such that the formula evaluates to true?
Boolean satisfiability is the quintessential NP-complete [13] problem, and hence
c© Springer International Publishing AG, part of Springer Nature 2018
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one might prematurely conjecture that Boolean SAT solvers cannot scale. Yet
modern SAT solvers routinely solve instances with millions of Boolean variables.
In practice, many practitioners reduce a variety of NP problems to the Boolean
satisfiability problem, and simply call a modern SAT solver as a black box to
efficiently find a solution to their problem instance [11,12,19]. For precisely this
reason, SAT solving has become an important tool for many industrial applica-
tions. Through decades of research, the SAT community has built surprisingly
effective backtracking solvers called conflict-driven clause-learning (CDCL) [23]
SAT solvers that are based on just a handful of key principles [18]: conflict-driven
branching, efficient propagation, conflict analysis, preprocessing/inprocessing,
and restarts.

Like all backtracking search, the run of a CDCL SAT solver can be visual-
ized as a search tree where each distinct variable is a node with two outgoing
edges marked true and false (denoting value assignments to the variable) respec-
tively. The solver frequently restarts, that is, it discards the current search tree
and begins anew (but does not throw away the learnt clauses and the variable
activities). Although this may seem counterproductive, SAT solvers that restart
frequently are significantly faster empirically than solvers that opt not to restart.
The connection between restarts and performance is not entirely clear, although
researchers have proposed a variety of hypotheses such as exploiting variance
in the runtime distribution [14,22] (similar to certain kinds of randomized algo-
rithms). For various reasons however, we find these hypotheses do not explain
the power of restarts in the CDCL SAT solver setting. In this paper, we take
inspiration from Hamadi et al. who claim that the purpose of restarts is to com-
pact the assignment stack [16]. We then further show that a compact stack tends
to improve the quality of clauses learnt where we define quality in terms of the
well-known metric literal block distance (LBD). Despite the search tree being dis-
carded by a restart, learnt clauses are preserved so learning higher quality clauses
continues to reap benefits across restarts. By learning higher quality clauses, the
solver tends to find a solution quicker. However, restarting too often incurs a
high overhead of constantly rebuilding the search tree. So it is imperative to
balance the restart frequency to improve the LBD but avoid excessive overhead.

Based on the above-mentioned analysis, we designed a new restart policy
called machine learning-based restart (MLR) that triggers a restart when the
LBD of the next learnt clause is above a certain threshold. The motivation for
this policy is that rather than investing computation into learning a low quality
clause, the solver should invest that time in rebuilding the search tree instead
in the hopes of learning a better clause. This restart policy is based on two
key observations that we made by analyzing CDCL solvers over a large bench-
mark: First, we observed that recent LBDs are correlated with the next LBD.
We introduce a machine learning-based technique exploiting this observation to
predict the LBD of the next learnt clause. Second, we observed that the right
tail of the LBD distribution is similar to the right tail of the normal distribu-
tion. We exploit this observation to set a meaningful LBD threshold for MLR
based on percentiles. MLR is then shown to be competitive vis-a-vis the current
state-of-the-art restart policy implemented as part of the Glucose solver [4].
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Contributions: We make the following contributions in this paper:

1. We provide experimental support for the hypothesis that restarts “compact
the assignment stack” as stated by the authors of ManySAT [16] (see Sect. 4).
We then add to this hypothesis, and go on to show that a compact assignment
stack correlates with learning lower LBD clauses (see Sect. 4.2). Lastly, learn-
ing clauses with lower LBD is shown to correlate with better solving time
(see Sect. 4.3). Additionally we provide analytical explanations as to why we
discount some previously proposed hypotheses that attempt to explain the
power of restarts in practice (see Sect. 3).

2. We propose a method to set thresholds for the quality of a LBD of a clause.
We experimentally show that the right tail of the LBD distribution closely
matches a normal distribution, hence high percentiles can be accurately pre-
dicted by simply computing the mean and standard deviation. See Sect. 5.1
for details.

3. We show that LBDs viewed as a sequence are correlated. This is a crucial
observation that we back by experimental data. The fact that LBDs viewed
as a sequence are correlated enables us to take the LBDs of recent learnt
clauses and predict the LBD of the next clause. See Sect. 5.2 for details.

4. Building on all the above-mentioned experimentally-verified observations, we
introduce a new restart policy called machine learning-based restart (MLR)
that is competitive vis-a-vis the current state-of-the-art restart policy on a
comprehensive benchmark from the SAT Competition 2014 to 2017 instances.
See Sect. 6 for details.

2 Background

We assume the reader is familiar with the Boolean satisfiability problem and
SAT solver research literature [6].

LBD Clause Quality Metric: It has been shown, through the lens of proof
complexity, that clause-learning SAT solvers (under perfect non-deterministic
branching and restarts, and asserting clause learning schemes) are exponentially
more powerful than CDCL SAT solvers without clause learning [26]. However,
the memory requirement to store all the learnt clauses is too high for many
instances since the number of conflicts grows very rapidly. To overcome this issue,
all modern SAT solvers routinely delete some clauses to manage the memory
usage. The most popular metric to measure the quality of a clause is called literal
block distance (LBD) [3], defined as the number of distinct decision levels of the
variables in the clause. Intuitively, a clause with low LBD prunes more search
space than a clause with higher LBD. Hence clauses with high LBD typically
are the ones prioritized for deletion. Although LBD was originally proposed for
the purpose of clause deletion, it has since proven useful in other contexts where
there is need to measure the quality of learnt clauses such as sharing clauses
in parallel SAT solvers and restarts. Another measure of quality of a learnt
clause is its length. To the best of our knowledge, we are not aware of any other
universally accepted clause quality metrics at the time of writing of this paper.
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In this paper we will often look at LBDs as a sequence. At any time during
the search where i conflicts have occurred, we use the term “previous” LBD to
refer to the LBD of the clause learnt at the ith conflict and “next” LBD to refer
to the LBD of the clause learnt at the (i + 1)th conflict.

Overview of Restarts in CDCL SAT Solvers: Informally, a restart heuristic
in the context of CDCL SAT solver can be defined as a method that discards
parts of the solver state at certain points in time during its run. CDCL solvers
restart by discarding their “current” partial assignment and starting the search
over, but all other aspects of solver state (namely, the learnt clauses, variable
activities, and variable phases) are preserved. Although restarts may appear
unintuitive, the fact that learnt clauses are preserved means that solver continues
to make progress. Restarts are implemented in practically all modern CDCL
solvers because it is well known that frequent restarts greatly improve solver
performance in practice.

3 Prior Hypotheses on “The Power of Restarts”

In this section, we discuss prior hypotheses on the power of restarts in the DPLL
and local search setting and their connection to restarts in the CDCL setting.

Heavy-tailed Distribution and Las Vegas Algorithm Hypotheses: From
the perspective of Las Vegas algorithms, some researchers have proposed that
restarts in CDCL SAT solvers take advantage of the variance in solving
time [14,22]. For a given input, the running time of a Las Vegas algorithm
is characterized by a probability distribution, that is, depending on random
chance the algorithm can terminate quickly or slowly relatively speaking. A
solver can get unlucky and have an uncharacteristically long running time, in
which case, a restart gives the solver a second chance of getting a short run-
time [22]. More specifically, a heavy-tailed distribution was observed for vari-
ous satisfiable instances on randomized DPLL solvers [14]. However, this expla-
nation does not lift to restarts in modern CDCL solvers. First, most modern
CDCL solvers are not Las Vegas algorithms, that is, they are deterministic algo-
rithms, and hence restarts cannot take advantage of variance in the solving time
like in Las Vegas algorithms. Second, the optimal restart policy for Las Vegas
algorithms has a restart interval greater than the expected solving time of the
input [22], so hard instances should restart very infrequently. However in prac-
tice, even difficult instances with high solving time benefit from very frequent
restarts in CDCL solvers. Third, the definition of restarts in the context of Las
Vegas algorithms differs significantly from the restarts implemented in CDCL
solvers. In Las Vegas algorithms, the restarts are equivalent to starting a new
process, that is, the algorithm starts an independent run from scratch. Restarts
in CDCL are only partial, the assignment stack is erased but everything else
preserved (i.e., learnt clauses, saved phases, activity, etc.). Since the phases are
saved, the CDCL SAT solver reassigns variables to the same value across restart
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boundaries [27]. As the authors of ManySAT [16] note: “Contrary to the common
belief, restarts are not used to eliminate the heavy tailed phenomena since after
restarting SAT solvers dive in the part of the search space that they just left.”
Fourth, the heavy-tailed phenomena was found to be true only for satisfiable
instances, and yet empirically restarts are known to be even more relevant for
unsatisfiable instances.

Escaping Local Minima Hypothesis: Another explanation for restarts comes
from the context of optimization. Many optimization algorithms (in particular,
local search algorithms), get stuck in the local minima. Since local search only
makes small moves at a time, it is unlikely to move out of a deep local minimum.
The explanation is that restarts allow the optimization algorithm to escape the
local minimum by randomly moving to another spot in the solution space. Cer-
tain local-search based SAT solvers (that aim to minimize the number of unsat-
isfied clauses) do use restarts for this very purpose [17,28]. However, restarts
in CDCL do not behave in the same manner. Instead of setting the assignment
of variables to random values like in local search, rather CDCL solvers revisit
the same (or nearby) search space of assignments even after restarts since the
variable activities and phases are preserved across restart boundaries [27].

As we show in Sect. 4, our hypothesis for the power of restarts is indeed
consistent with the “escaping local minima” hypothesis. However, restarts enable
CDCL solvers to escape local minima in a way that works differently from local
search algorithms. Specifically, CDCL solvers with restarts enabled escape local
minima by jumping to a nearby space to learn “better clauses”, while local search
algorithms escape local minima by randomly jumping to a different part of the
search space.

4 “Restarts Enable Learning Better Clauses” Hypothesis

In this section, we propose that restarts enable a CDCL solver to learn better
clauses. To justify our hypothesis, we start by examining the claim by Hamadi et
al. [16] stating that “In SAT, restarts policies are used to compact the assignment
stack and improve the order of assumptions.” Recall that in CDCL SAT solvers,
the only thing that changes during a restart is the assignment stack, and hence
the benefits of restarts should be observable on the assignment stack. In this
paper, we show that this claim matches reality, that is, restarting frequently
correlates with a smaller assignment stack. We then go one step further, and
show that a compact assignment stack leads to better clause learning. That is,
the solver ends up learning clauses with lower LBD, thereby supporting our
hypothesis, and this in turn improves the solver performance.

Restarts do incur a cost though [27], for otherwise restart after every conflict
would be the optimal policy for all inputs. After a solver restarts, it needs to make
many decisions and propagations to rebuild the assignment stack from scratch.
We call this the rebuild time. More precisely, whenever a solver performs a restart,
we note the current time and the assignment stack size x right before the restart.
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Then the rebuild time is the time taken until either the solver encounters a new
conflict or the new assignment stack size exceeds x through a series of decisions
and propagations. Since we want to isolate the benefit of restart, we need to
discount the cost of rebuilding. We define effective time to be the solving time
minus the rebuild times of every restart.

4.1 Confirming the “Compacting the Assignment Stack” Claim

We ran the Glucose 4.1 SAT solver [5] 1 with various frequencies of restarting to
show that indeed restarts do compact the assignment stack. For all experiments
in this paper, Glucose was run with the argument “-no-adapt” to prevent it
from changing heuristics. For each instance in the SAT Competition 2017 main
track, we ran Glucose 4.1 with a timeout of 3 h of effective time on StarExec,
a platform purposefully designed for evaluating SAT solvers [29]. The StarExec
platform uses the Intel Xeon CPU E5-2609 at 2.40 GHz with 10240 KB cache and
24 GB of main memory, running on Red Hat Enterprise Linux Server release 7.2,
and Linux kernel 3.10.0-514.16.1.el7.x86 64.

At every conflict, the assignment stack size is logged before backtracking
occurs then the solver restarts after the conflict is analyzed (i.e., a uniform
restart policy that restarts after every 1 conflict). We then ran the solver again
on the same instance except the restart interval is doubled (i.e., a uniform restart
policy that restarts after every 2 conflicts). We continue running the solver again
and again, doubling the restart interval each time (i.e., a uniform restart policy
that restarts after every 2k conflicts) until the restart interval is so large that
the solver never restarts before termination. For each instance, we construct a
scatter plot, where the x-axis is the restart interval and the y-axis is the aver-
age assignment stack size for that restart policy on that instance, see Fig. 1a
for an example. We then compute the Spearman correlation between the two
axes, a positive correlation denotes that smaller restart intervals correlate with
smaller assignment stack size, that is evidence that frequent restarts compacts
the assignment stack. We plot the Spearman correlations of all 350 instances in
Fig. 1b. 91.7% of the instances have a positive correlation coefficient. In conclu-
sion, our experiments support the claim by Hamadi et al. [16] “restarts policies
are used to compact the assignment stack.”

It is important to note that this result is contingent on the branching heuristic
implemented by the solver. If the branching heuristic is a static ordering, then
the solver picks the decision variables in the same order after every restart and
rebuilds the same assignment stack, hence the assignment stack does not get
compacted. In our previous work [21], we showed that VSIDS-like branching
heuristics “focus” on a small subset of logically related variables at any point
in time. We believe a “focused” branching heuristic will see the compacting
of assignment stack since a restart erases the assignment stack so a “focused”
branching heuristic can reconstruct the assignment stack with only the subset
of variables it is focused on.
1 Glucose is a popular and competitive CDCL SAT solver often used in experiments

because of its efficacy and simplicity (http://www.labri.fr/perso/lsimon/glucose/).

http://www.labri.fr/perso/lsimon/glucose/
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Fig. 1. (a) Scatter plot for a given instance showing increasing assignment stack size as
the restarts become less frequent. (b) Histogram showing the distribution of Spearman
correlations between the restart interval and the average assignment stack size for all
350 instances. The median correlation is 0.839.

4.2 Learning Better Clauses

We hypothesize that compacting the assignment stack generally leads to better
learnt clauses, and that this is one of the benefits of restarts in SAT solvers in
practice. Note that the clause learning schemes construct the learnt clause from
a subset of variables on the assignment stack. Hence, a smaller assignment stack
should lead to a learnt clause with smaller LBD than otherwise. To show this
experimentally, we repeat the previous experiment where we ran Glucose 4.1 with
the uniform restart policy restarting every 2k conflicts for various parameters of
k. At each conflict, we log the assignment stack size before backtracking and the
LBD of the newly learnt clause. For each instance, we draw a scatter plot, where
the x-axis is the average assignment stack size and the y-axis is the average LBD
of learnt clauses, see Fig. 2a. We compute the Spearman correlation between the
two axes and plot these correlations in a histogram, see Fig. 2b. 73.1% of the
instances have a positive correlation coefficient.

4.3 Solving Instances Faster

Although lower LBD is widely believed to be a sign of good quality clause,
we empirically show that indeed lower LBD generally correlates with better
effective time. This experiment is a repeat of the last two experiments, with the
exception that the x-axis is the average learnt clause LBD and the y-axis is the
effective time, see Fig. 3a for an example. As usual, we compute the Spearman
correlation between the two axes, discarding instances that timeout, and plot
these correlations in a histogram, see Fig. 2b. 77.8% of the instances have a
positive correlation coefficient. As expected, learning lower LBD clauses tend to
improve solver performance.
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Fig. 2. (a) Scatter plot for a given instance showing increasing assignment stack size
correlates with increasing LBD of learnt clauses. (b) Histogram showing the distribution
of Spearman correlations between the average assignment stack size and the average
LBD of learnt clauses for all 350 instances. The median correlation is 0.607.

Fig. 3. (a) Scatter plot for a given instance showing increasing average learnt clause
LBD correlates with increasing effective time. (b) Histogram showing the distribution
of Spearman correlations between the average learnt clause LBD and effective time for
all 90 instances without timeouts. The median correlation is 0.366.

4.4 Clause Length

If the previous experiments replaced LBD with clause length, then the median
Spearman correlation between the average assignment stack size and average
learnt clause length is 0.822 and the median Spearman correlation between the
average learnt clause length and effective time is 0.08.

4.5 Low LBD in Core Proof

We hypothesize that lower LBD clauses are preferable for unsatisfiable instances
because they are more likely to be a core learnt clause, that is, a learnt clause
that is actually used in the derivation of the final empty clause. We performed
the following experiment to support our hypothesis. We ran Glucose with no
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clause deletion on all 350 instances of the SAT Competition 2017 main track
with 5000 seconds timeout. We turned off clause deletion because the deletion
policy in Glucose inherently biases towards low LBD clauses by deleting learnt
clauses with higher LBDs. We used DRAT-trim [30] to extract the core proof
from the output of Glucose, i.e., the subset of clauses used in the derivation of
the empty clause. We then computed the ratio between the mean LBD of the
core learnt clauses and the mean LBD of all the learnt clauses. Lastly we plotted
the ratios in a histogram, see Fig. 4. For the 57 instances for which core DRAT
proofs were generated successfully, all but one instance has a ratio below 1. In
other words, lower LBD clauses are more likely to be used in deriving the empty
clause than clauses with higher LBD.

Fig. 4. Histogram for the ratio between the mean LBD of the learnt clauses in the
core proof and the mean LBD of all the learnt clauses for the 57 unsatisfiable instances
DRAT-trim produced a core proof.

4.6 New Restart Policy

Based on the above observations, we designed a new machine learning-based
restart policy that is competitive with the state-of-the-art policies. As shown
earlier, empirically restarts reduce LBD, hence we design a restart policy that
tries to avoid high LBDs by restarting. Intuitively, our restart policy does the
following: restart if the next learnt clause has an LBD in the 99.9th percentile.
Implementing this policy requires new techniques to answer the two following
questions: is an LBD in the 99.9th percentile and what is the LBD of the next
learnt clause. We designed techniques to estimate answers to these two questions.
The answer for the first question is the normal distribution is a good approx-
imation for the right tail of the LBD distribution. The answer for the second
question is to use machine learning to predict the LBD of the next clause.

5 A Machine Learning-Based Restart Policy

In this section, we describe our machine learning-based restart policy. We first
start by answering the two questions posed in the last subsection regarding LBD
percentile and predicting LBD of the next clause.
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5.1 LBD Percentile

Given the LBD of a clause, it is unclear a priori how to label it as “good”
or “bad”. Some heuristics set a constant threshold and any LBDs above this
threshold are considered bad. For example, Plingeling [7] considers learnt clauses
with LBD greater 7 to be bad, and these clauses are not shared with the other
workers. COMiniSatPS considers learnt clauses with LBD greater than 8 to be
bad, and hence these clauses are readily deleted [25]. The state-of-the-art Glucose
restart policy [4] on the other hand uses the mean LBD multiplied by a fixed
constant as a threshold. The problem with using a fixed constant or the mean
times a constant for thresholds is that we do not have a priori estimate of how
many clauses exceed this threshold, and these thresholds seem arbitrary. Using
arbitrary thresholds makes it harder to reason about solver heuristics, and in
this context, the efficacy of restart policies.

We instead propose that for any given input it is more appropriate to use
dynamic threshold that is computed based on the history of the CDCL solver’s
run on that input. At any point in time during the run of the solver, the dynamic
threshold is computed as the 99.9th percentile of LBDs of the learnt clauses seen
during the run so far. Before we estimate whether an LBD is in the 99.9th per-
centile, the first step is to analyze the distribution of LBDs seen in practice. In
this experiment, the Glucose solver was run on all 350 instances in SAT Com-
petition 2017 main track for 30 min and the LBDs of all the learnt clauses were
recorded. Figure 5 shows the histogram of LBDs for 4 representative instances.
As can be seen from the distributions of these representative instances, either
their LBD distribution is close to normal or a right-skewed one.

Even though the right-skew distribution is not normal, the high percentiles
can still be approximated by the normal distribution since the right tail is close to
the normal curve. We conducted the following experiment to support this claim.
For each instance, we computed the mean and variance of the LBD distribution
to draw a normal distribution with the same mean and variance. We used the
normal distribution to predict the LBD x at the 99.9th percentile. We then
checked the recorded LBD distribution to see the actual percentile of x. Figure 6
is a histogram of all the actual percentiles. Even in the worst case, the predicted
99.9th percentile turned out to be the 97.1th percentile. Hence for this benchmark
the prediction of the 99.9th percentile using the normal distribution has an error
of less than 3 percentiles. Additionally, only 6 of the 350 instances predicted an
LBD that was in the 100th percentile and all 6 of these instances solved in less
than 130 conflicts hence the prediction was made with very little data.

These figures were created by analyzing the LBD distribution at the end of
a 30 min run of Glucose, and we note the results are similar before the 30 min
is up. Hence the 99.9th percentile of LBDs can be approximated as the 99.9th

percentile of norm(μ, σ2). The mean μ and variance σ2 are estimated by the sam-
ple mean and sample variance of all the LBDs seen thus far, which is computed
incrementally so the computational overhead is low. The 99.9th percentile of the
normal distribution maps to the z-score of 3.08, that is, an LBD is estimated to
be in the 99.9th percentile if it is greater than μ + 3.08 × σ.
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Fig. 5. Histogram of LBDs of 4 instances. A normal distribution with the same mean
and variance is overlaid on top for comparison.

5.2 LBD of Next Clause

Since at any point during the run of a solver, the LBD of the “next learnt”
clause is unknown, we propose the use of machine learning to predict that LBD
instead. This requires finding good features that correlate with the next LBD.
We hypothesize that LBDs of recent past learnt clauses correlate with the LBD
of the next learnt clause.

In this experiment, Glucose was run on all 350 instances of the 2017 Com-
petition main track and the LBDs of all the learnt clauses were recorded. Let
n be the number of LBDs recorded for an instance. A table with two columns
of length n − 1 are created. For each row i in this two column table, the first
column contains the LBD of the ith conflict and the second column contains the
LBD of the (i + 1)th conflict. Intuitively, after the solver finishes resolving the
ith conflict, the ith learnt clause is the “previous” learnt clause represented by
the first column. Correspondingly, the “next” learnt clause is the (i+1)th learnt
clause represented by the second column. For each instance that took more than
100 conflicts to solve, we computed the Pearson correlation between the first and
second column and plot all these correlations in a histogram, see Fig. 7.

Our results show that the “previous LBD” is correlated with the “next LBD”
which supports the idea that recent LBDs are good features to predict the next
LBD via machine learning. In addition, all the correlations are positive, meaning
that if the previous LBD is high (resp. low) then the next LBD is expected to
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Fig. 6. Histogram of the actual per-
centiles of the LBD predicted to be
the 99.9th percentile using a normal
distribution.

Fig. 7. Histogram of the Pearson correla-
tion between the “previous” and “next”
LBD for the instances in the SAT Com-
petition 2017 main track benchmark.

be high (resp. low). Perhaps this explains why the Glucose restart policy [4] is
effective. Additionally, we note that for the average instance, the LBD of the
learnt clause after a restart is smaller than the LBD of the learnt clause right
before that restart 74% of the time, showing the effect of restarts on LBD.

This paper proposes learning the function f(l−1, l−2, l−3, l−1 × l−2, l−1 ×
l−3, l−2 × l−3) = lnext where l−i is the LBD of the learnt clause from i conflicts
ago and l−i × l−j are products of previous LBDs to incorporate their feature
interaction, and lnext is the LBD of the next clause. This function is approx-
imated using linear regression where θi are coefficients to be trained by the
machine learning algorithm:

f̃(l−1, l−2, l−3, l−1 × l−2, l−1 × l−3, l−2 × l−3) = θ0 + θ1 × l−1 + θ2 × l−2 + θ3 ×
l−3 + θ4 × l−1 × l−2 + θ5 × l−1 × l−3 + θ6 × l−2 × l−3

Since LBDs are streamed in as conflicts occur, an online algorithm that can
incrementally adjust the θi coefficients cheaply is required. We use the state-of-
the-art Adam algorithm [20] from machine learning literature because it scales
well with the number of dimensions, is computationally efficient, and converges
quickly for many problems. The Adam algorithm is in the family of stochastic
gradient descent algorithms that adjusts the coefficients to minimize the squared
error, where the error is the difference between the linear function’s prediction
and the actual next LBD. The algorithm computes the gradient of the squared
error function and adjusts the coefficients in the opposite direction of the gradient
to minimize the squared error function. For the parameters of Adam, we use the
values recommended by the original authors [20].

The coefficients θi are all initialized to 0 at the start of the search. Whenever
a new clause is learnt, one iteration of Adam is applied with the LBDs of the
three previous learnt clauses and their pairwise products as features and the
LBD of the new clause as the target. The coefficients θi are adjusted in the
process. When BCP reaches a fixed point without a conflict, the function f̃ is
queried with the current set of coefficients θi to predict the LBD of the next
clause. If the prediction exceeds the sample mean plus 3.08 standard deviations
(i.e., approximately the 99.9th percentile), a restart is triggered.
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The new restart policy, called machine learning-based restart (MLR) policy,
is shown in Algorithm 1. Since the mean, variance, and coefficients are computed
incrementally, MLR has a very low computational overhead.

6 Experimental Evaluation

To test how MLR performs, we conducted an experimental evaluation to see
how Glucose performs with various restart policies. Two state-of-the-art restart
policies are used for comparison with MLR: Glucose (named after the solver
itself) [4] and Luby [22]. The benchmark consists of all instances in the appli-
cation and hard combinatorial tracks from the SAT Competition 2014 to 2017
totaling 1411 unique instances. The Glucose solver with various restart policies
were run over the benchmark on StarExec. For each instance, the solver was
given 5000 s of CPU time and 8 GB of RAM. The results of the experiment are
shown in Fig. 8. The source code of MLR and further analysis of the experimental
results are available on our website [1].

The results show that MLR is in between the two state-of-the-art policies
of Glucose restart and Luby restart. For this large benchmark, MLR solves 19
instances more than Luby and 20 instances fewer than Glucose. Additionally,
the learned coefficients in MLR σ1, σ2, σ3 corresponding to the coefficients of

Algorithm 1. Pseudocode for the new restart policy MLR.
1: function Initialize � Called once at the start of search.
2: α ← 0.001, ε ← 0.00000001, β1 ← 0.9, β2 ← 0.999 � Adam parameters.
3: conflicts ← 0, conflictsSinceLastRestart ← 0
4: t ← 0 � Number of training examples.
5: prevLbd3 ← 0, prevLbd2 ← 0, prevLbd1 ← 0 � LBD of clause learnt 3/2/1 conflicts ago.
6: μ ← 0, m2 ← 0 � For computing sample mean and variance of LBDs seen.
7: for v in 0..|FeatureV ector()| − 1 do � Initialize θ, m, v to be vectors of zeros.
8: θi ← 0, mi ← 0, vi ← 0 � Coefficients of linear function and Adam internals.

9: function FeatureVector
10: return [1, prevLbd1, prevLbd2, prevLbd3, prevLbd1 × prevLbd2, prevLbd1 ×

prevLbd3, prevLbd2 × prevLbd3]

11: function AfterConflict(LearntClause) � Update the coefficients θ using Adam.
12: conflicts ← conflicts + 1, conflictsSinceLastRestart ← conflictsSinceLastRestart + 1
13: nextLbd ← LBD(LearntClause)
14: δ ← nextLbd − μ, μ ← μ + δ/conflicts, Δ ← nextLbd − μ, m2 ← m2 + δ × Δ
15: if conflicts > 3 then � Apply one iteration of Adam.
16: t ← t + 1
17: features ← FeatureV ector()
18: predict ← θ · features
19: error ← predict − nextLbd
20: g ← error × features
21: m ← β1 × m + (1 − β1) × g, v ← β2 × v + (1 − β2) × g × g
22: m̂ ← m/(1 − βt

1), v̂ ← v/(1 − βt
2)

23: θ ← θ − α × m̂/(
√

v̂ + ε)

24: prevLbd3 ← prevLbd2, prevLbd2 ← prevLbd1, prevLbd1 ← nextLbd

25: function AfterBCP(IsConflict)
26: if ¬IsConflict ∧ conflicts > 3 ∧ conflictsSinceLastRestart > 0 then

27: σ ← √
m2/(conflicts − 1)

28: if θ · FeatureV ector() > μ + 3.08σ then � Estimate if next LBD in 99.9th percentile.
29: conflictsSinceLastRestart ← 0, Restart()
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Fig. 8. Cactus plot of two state-of-the-art restart policies and MLR. A point (x, y) is
interpreted as x instances have solving time less than y seconds for the given restart pol-
icy. Being further right means more instances are solved, further down means instances
are solved faster.

the features representing recent past LBDS are nonnegative 91% of the time at
the end of the run. This reinforces the notion that previous LBDs are positively
correlated with the next LBD.

7 Related Work

Restart policies come in two flavors: static and dynamic. Static restart policies
predetermine when to restart before the search begins. The state-of-the-art for
static is the Luby [22] restart heuristic which is theoretically proven to be an
optimal universal restart policy for Las Vegas algorithms. Dynamic restart poli-
cies determine when to restart on-the-fly during the run of the solver, typically
by analyzing solver statistics. The state-of-the-art for dynamic is the restart
policy proposed by Glucose [4] that keeps a short-term and a long-term average
of LBDs. The short-term is the average of the last 50 LBDs and the long-term
is the average of all the LBDs encountered since the start of the search. If the
short-term exceeds the long-term by a constant factor then a restart is triggered.
Hence the Glucose policy triggers a restart when the recent LBDs are high on
average whereas the restart policy proposed in this paper restarts when the pre-
dicted LBD of the next clause is high. Biere et al. [8] propose a variation of the
Glucose restart where an exponential moving average is used to compute the
short-term and long-term averages. Haim and Walsh [15] introduced a machine
learning-based technique to select a restart policy from a portfolio after 2100
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conflicts. The MABR policy [24] uses multi-armed bandits to minimize aver-
age LBD by dynamically switching between a portfolio of policies. Our use of
machine learning differs from these previous methods in that machine learning
is part of the restart policy itself, rather than using machine learning as a meta-
heuristic to select between a fixed set of restart policies.

Proof-complexity theoretic Considerations: Theorists have conjectured
that restarts give the solver more power in a proof-complexity sense than a
solver without restarts. A CDCL solver with asserting clause learning scheme
can polynomially simulate general resolution [26] with nondeterministic branch-
ing and restarts. It was independently shown that a CDCL solver with suffi-
ciently random branching and restarts can simulate bounded-width resolution
[2]. It remains an open question whether these results hold if the solvers does
not restart. This question has remained stubbornly open for over two decades
now. We refer the reader to the excellent articles by Buss et al. on attempts at
understanding the power of restarts via proof-complexity theory [9,10].

8 Conclusion

We showed that restarts positively impact the clause learning of CDCL solvers
by decreasing the LBD of learnt clauses (thus improving their quality) compared
to no restarts. However restarting too frequently is computationally expensive.
We propose a new restart policy called MLR that tries to find the right balance
in this trade-off. We use z-scores of the normal distribution to efficiently approx-
imate the high percentiles of the LBD distribution. Additionally, we use machine
learning to predict the LBD of the next clause, given the previous 3 LBDs and
their pairwise products. Experimentally, the new restart policy is competitive
with the current state-of-the-art.
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Abstract. Non-Chronological Backtracking (NCB) has been imple-
mented in every modern CDCL SAT solver since the original CDCL
solver GRASP. NCB’s importance has never been questioned. This paper
argues that NCB is not always helpful. We show how one can implement
the alternative to NCB–Chronological Backtracking (CB)–in a modern
SAT solver. We demonstrate that CB improves the performance of the
winner of the latest SAT Competition, Maple LCM Dist, and the winner
of the latest MaxSAT Evaluation Open-WBO.

1 Introduction

Conflict-Driven Clause Learning (CDCL) SAT solving has been extremely useful
ever since its the original implementation in the GRASP solver over 20 years
ago [13], as it enabled solving real-world instances of intractable problems [2].
The algorithmic components of the original GRASP algorithms have been metic-
ulously studied and modified over the years with the one notable exception of
Non-Chronological Backtracking (NCB). NCB has always been perceived as an
unquestionably beneficial technique whose impact is difficult to isolate, since it
is entangled with other CDCL algorithms. NCB’s contribution went unstudied
even in [6]–a paper which aimed at isolating and studying the performance of
fundamental CDCL algorithms. In this paper, we show how to implement the
alternative to NCB–Chronological Backtracking (CB)–in a modern SAT solver.

Recall the CDCL algorithm. Whenever Boolean Constraint Propagation
(BCP) discovers a falsified conflicting clause β, the solver learns a new con-
flict clause σ. Let the conflict decision level cl be the highest decision level in
the conflicting clause β.1 The new clause σ must contain one variable v assigned
at cl (the 1UIP variable). Let the second highest decision level s be the high-
est decision level of σ’s literals lower than cl (s = 0 for a unit clause). Let the
backtrack level bl be the level the solver backtracks to just after recording σ and
before flipping v.

Non-Chronological Backtracking (NCB) always backtracks to the second
highest decision level (that is, in NCB, bl = s). The idea behind NCB is to
improve the solver’s locality by removing variables irrelevant for conflict analysis

1 In the standard algorithm, cl is always equal to the current decision level, but, as
we shall see, that is not the case for CB.
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from the assignment trail. NCB’s predecessor is conflict-directed backjumping,
proposed in the context of the Constraint Satisfaction Problem (CSP) [11].

Let Chronological Backtracking (CB) be a backtracking algorithm which
always backtracks to the decision level immediately preceding the conflict deci-
sion level cl (that is, in CB, bl = cl − 1). In our proposed implementation, after
CB is carried out, v is flipped and propagated (exactly as in the NCB case), and
then the solver goes on to the next decision or continues the conflict analysis
loop.

Implementing CB is a non-trivial task as it changes some of the indisputable
invariants of modern SAT solving algorithms. In particular, the decision level
of the variables in the assignment trail is no longer monotonously increasing.
Moreover, the solver may learn a conflict clause whose highest decision level is
higher than the current decision level. Yet, as we shall see, implementing CB
requires only few short modifications to the solver.

To understand why CB can be useful consider the following example. Let
F = S ∧ T be a propositional formula in Conjunctive Normal Form (CNF),
where S is a long satisfiable CNF formula (for example, assume that S has 107

variables), T ≡ (c ∨ ¬b) ∧ (c ∨ b), and V (S) ∩ V (T ) = ∅, where V (H) comprises
the set of H’s variables. Consider Minisat’s [3] execution, given F . The solver is
likely to start by assigning the variables in V (S) (since S’s variables are likely
to have higher scores), satisfying S, and then getting to satisfying T . Assume
that the solver has satisfied S and is about to take the next decision. Minisat
will pick the literal ¬c as the next decision, since the variable c has a higher
index than b and 0 is always preferred as the first polarity. The solver will then
learn a new unit conflict clause (c) and backtrack to decision level 0 as part
of the NCB algorithm. After backtracking, the solver will satisfy S again from
the very beginning and then discover that the formula is satisfied. Note that
the solver is not expected to encounter any conflicts while satisfying S for the
second time because of the phase saving heuristic [4,10,14] which re-assigns the
same polarity to every assigned variable. Yet, it will have to re-assign all the 107

variables in V (S) and propagate after each assignment. In contrast, a CB-based
solver will satisfy F immediately after satisfying S without needing to backtrack
and satisfy S once again.

Our example may look artificial, yet in real-word cases applying NCB might
indeed result in useless backtracking (not necessarily to decision level 0) and
reassignment of almost the same literals. In addition, NCB is too aggressive: it
might remove good decisions from the trail only because they did not contribute
to the latest conflict resolution. Guided by these two insights, our backtracking
algorithm applies CB when the difference between the CB backtrack level and
the NCB backtrack level is higher than a user-given threshold T, but only after
a user-given number of conflicts C passed since the beginning of solving.

We have integrated CB into the SAT Competition 2017 [5] winner,
Maple LCM Dist [7], and MaxSAT Evaluation 2017 [1] winner Open-WBO [9] (code
available in [8]). As a result, Maple LCM Dist solves 3 more SAT Competition
benchmarks; the improvement on unsatisfiable instances is consistent. Open-WBO
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solves 5 more MaxSAT Evaluation benchmarks and becomes much faster on 10
families.

In the text that follows, Sect. 2 provides CB’s implementation details, Sect. 3
presents the experimental results, and Sect. 4 concludes our work.

2 Chronological Backtracking

We show how CB can be integrated into a modern CDCL solver [12] starting with
an example. Consider the input formula, comprising 9 clauses c1 . . . c9, shown
on the left-hand side in Fig. 1. We will walk through a potential execution of a
CDCL solver using CB, while highlighting the differences between CB and NCB.

Fig. 1. CB example

Assume the first decision at decision level d1 is v1, followed by the implication
v2 in clause c1 (at the same level d1). Then, a new decision v3 implying v7 in c5

is carried out at decision level d2. The next decision (at level d3) is v4. It implies
v5 in c2 and v6 in c3, followed by a conflict, as all literals of c4 are falsified under
the current partial assignment. The implication graph and the trail at the time
of conflict 1 are shown in Fig. 1. The conflict analysis will then learn a new 1UIP
clause c9 = (¬v2 ∨ ¬v4) (resolution between clauses c2, c3, c4).

At this point, a difference between NCB and CB is manifested. NCB would
backtrack to the end of level d1, skipping the irrelevant decision level d2. We
apply CB, which backtracks to the end of the previous decision level d2. Back-
tracking to the end of d2 undoes the assignments of v6, v5, v4. Then, the algo-
rithm asserts the unassigned 1UIP literal ¬v4 and pushes it to the trail.

Our CB implementation marks ¬v4’s decision level as d1, since d1 is the
second highest level in the newly learned clause; however, ¬v4 is placed into the
trail after literals assigned at a higher decision level d2. Hence, unlike in the NCB
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case, the decision levels of literals in the trail are not necessary monotonically
increasing. It still holds, though, that each literal l implied at clause α is placed
in the trail after all the other literals of α.

Let us proceed with our example. The assignment of ¬v4 implies v9 in c7. Our
algorithm marks the decision level of v9 as d1, since it is the highest level in the
clause c7 where v9 is implied. Then, BCP finds a falsified clause c8. Our algorithm
identifies the decision level of the conflict as d1, since all the literals in the
conflicting clause c8 were assigned at that level. At that point, CB will backtrack
to the end of d1 before proceeding with conflict analysis. Our backtrack algorithm
will unassign the variables assigned at d2, that is, v3 and v7, while keeping the
variables assigned at d1 (v4 and v9) in the same order. After the backtracking,
conflict analysis is invoked. Conflict analysis will learn a new clause c10 = (¬v1)
(resolution between clauses c1, c9, c7, c8). The algorithm will then backtrack to
the decision level d0 = d1 − 1 (to emphasize: in CB the backtrack level is the
previous decision level, determined independently of the newly learned conflict
clause).

2.1 Algorithm

Now we show the implementation of the high-level algorithms CDCL (Algo-
rithm 1), BCP (Algorithm 2) and Backtrack (Algorithm 3) with CB. In fact,
we show both the NCB and the CB versions of each function. For CDCL and BCP
most of the code is identical, except for the lines marked with either ncb or cb.

Consider the high-level CDCL algorithm in Algorithm 1. It operates in a
loop that finishes after either all the variables are assigned (SAT) or when an
empty clause is derived (UNSAT). Inside the loop, BCP is invoked. BCP returns
a falsified conflicting clause if there is a conflict. If there is no conflict, a new
decision is taken and pushed to the trail.

The first difference between CB and NCB shows up right after a conflict
detection. The code between lines 4 – 8 is applied only in the case of CB. If
the conflicting clause contains one literal l from the maximal decision level, we
let BCP propagating that literal at the second highest decision level in conflict-
ing cls. Otherwise, the solver backtracks to the maximal decision level in the
conflicting clause before applying conflict analysis. This is because, as we saw
in the example, the conflicting clause may be implied at a decision level earlier
than the current level. The conflict analysis function returns the 1UIP variable
to be assigned and the conflict clause σ. If σ is empty, the solver returns UNSAT.
Assume σ is not empty. The backtrack level bl is calculated differently for NCB
and CB. As one might expect, bl comprises the second highest decision level in
σ in the case of NCB case and the previous decision level in the case of CB (note
that for CB the solver has already backtracked to the maximal decision level in
the conflicting clause). Subsequently, the solver backtracks to bl and pushes the
1UIP variable to the trail before continuing to the next iteration of the loop.

Consider now the implementation of BCP in Algorithm 2. BCP operates in
a loop as long as there exists at least one unvisited literal in the trail ν. For
the first unvisited literal l, BCP goes over all the clauses watched by l. Assume
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Algorithm 1. CDCL
ν: the trail, stack of decisions and implications

ncb: marks the NCB code

cb: marks the CB code

Input: CNF formula
Output: SAT or UNSAT
1: while not all variables assigned do
2: conflicting cls := BCP();
3: if conflicting cls �= null then
4: if conflicting cls contains one literal from the maximal level then
5: cb Backtrack(second highest decision level in conflicting cls)
6: cb continue
7: else
8: cb Backtrack(maximal level in conflicting cls)

9: (1uip, σ) := ConflictAnalysis(conflicting cls)
10: if σ is empty then
11: return UNSAT
12: ncb bl := second highest decision level in σ (0 for a unit clause)
13: cb bl := current decision level - 1
14: Backtrack(bl)
15: Push 1uip to ν
16: else
17: Decide and push the decision to ν

18: return SAT

a clause β is visited. If β is a unit clause, that is, all β’s literals are falsified
except for one unassigned literal k, BCP pushes k to the trail. After storing k’s
implication reason in reason(k), BCP calculates and stores k’s implication level
level(k). The implication level calculation comprises the only difference between
CB and NCB versions of BCP. The current decision level always serves as the
implication level for NCB, while the maximal level in β is the implication level
for CB. Note that in CB a literal may be implied not at the current decision
level. As usual, BCP returns the falsified conflicting clause, if such is discovered.

Finally, consider the implementation of Backtrack in Algorithm 3. For the
NCB case, given the target decision level bl , Backtrack simply unassigns and
pops all the literals from the trail ν, whose decision level is greater than bl . The
CB case is different, since literals assigned at different decision levels are inter-
leaved on the trail. When backtracking to decision level bl , Backtrack removes
all the literals assigned after bl , but it puts aside all the literals assigned before
bl in a queue μ maintaining their relative order. Afterwards, μ’s literals are
returned to the trail in the same order.

2.2 Combining CB and NCB

Our algorithm can easily be modified to heuristically choose whether to use CB
or NCB for any given conflict. The decision can be made, for each conflict, in the
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Algorithm 2. BCP
dl : current decision level
ν: the trail, stack of decisions and implications

ncb: marks the NCB code

cb: marks the CB code
BCP()

1: while ν contains at least one unvisited literal do
2: l := first literal in ν, unvisited by BCP

3: wcls := clauses watched by l
4: for β ∈ wcls do
5: if β is unit then
6: k := the unassigned literal of β
7: Push k to the end of ν
8: reason(k) := β
9: ncb level(k) := dl

10: cb level(k) := max level in β
11: else
12: if β is falsified then
13: return β

return null

Algorithm 3. Backtrack
dl : current decision level
ν: the trail, stack of decisions and implications
level index(bl + 1): the index in ν of bl + 1’s decision literal
Backtrack(bl) : NCB version
Assume: bl < dl

1: while ν.size() ≥ level index(bl + 1) do
2: Unassign ν.back()
3: Pop from ν

Backtrack(bl) : CB Version
Assume: bl < dl

1: Create an empty queue μ
2: while ν.size() ≥ level index(bl + 1) do
3: if level(ν.back()) ≤ bl then
4: Enqueue ν.back() to μ
5: else
6: Unassign ν.back()

7: Pop from ν

8: while μ is not empty do
9: Push μ.first() to the end of ν

10: Dequeue from μ

main function in Algorithm 1 by setting the backtrack level to either the second
highest decision level in σ for NCB (line 12) or the previous decision level for
CB (line 13).
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In our implementation, NCB is always applied before C conflicts are recorded
since the beginning of the solving process, where C is a user-given threshold. After
C conflicts, we apply CB whenever the difference between the CB backtrack level
(that is, the previous decision level) and the NCB backtrack level (that is, the
second highest decision level in σ) is higher than a user-given threshold T.

We introduced the option of delaying CB for C first conflicts, since backtrack-
ing chronologically makes sense only after the solver had some time to aggregate
variable scores, which are quite random in the beginning. When the scores are
random or close to random, the solver is less likely to proceed with the same
decisions after NCB.

3 Experimental Results

We have implemented CB in Maple LCM Dist [7], which won the main track
of the SAT Competition 2017 [5], and in Open-WBO, which won the complete
unweighted track of the MaxSAT Evaluation 2017 [1]. The updated code of both
solvers is available in [8]. We study the impact of CB with different values of the
two parameters, T and C, in Maple LCM Dist and Open-WBO on SAT Competition
2017 and MaxSAT Evaluation 2017 instances, respectively. For all the tests we
used machines with 32 GB of memory running Intel� Xeon� processors with
3 GHz CPU frequency. The time-out was set to 1800 s. All the results refer only
to benchmarks solved by at least one of the participating solvers.

3.1 SAT Competition

In preliminary experiments, we found that {T = 100, C = 4000} is the best
configuration for Maple LCM Dist. Table 1 shows the summary of run time
and unsolved instances of the default Maple LCM Dist vs. the best con-
figuration in CB mode, {T = 100, C = 4000}, as well as “neighbor” con-
figurations {T = 100, C = 3000}, {T = 100, C = 5000}, {T = 90, C = 4000} and
{T = 110, C = 4000}. Figure 2 and Fig. 3 compare the default Maple LCM Dist vs.
the overall winner {T = 100, C = 4000} on satisfiable and unsatisfiable instances
respectively. Several observations are in place.

First, Table 1 shows that {T = 100, C = 4000} outperforms the default
Maple LCM Dist in terms of for both the number of solved instances and the
run-time. It solves 3 more benchmarks and is faster by 4536 s.

Second, CB is consistently more effective on unsatisfiable instances.
Table 1 demonstrates that the best configuration for unsatisfiable instances
{T = 100, C = 5000} solves 4 more instances than the default configuration and
is faster by 5783 s. The overall winner {T = 100, C = 4000} solves 3 more unsat-
isfiable benchmarks than the default and is faster by 5113 s. Figure 3 shows that
CB is beneficial on the vast majority of unsatisfiable instances. Interestingly,
we found that there is one family on which CB consistently yields significantly
better results: the 27 instances of the g2-T family. On that family, the run-time
in CB mode is never worse than that in NCB mode. In addition, CB helps to
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solve 4 more benchmarks than the default version and causes the solver to be
faster by 1.5 times on average.

Finally, although the overall winner is slightly outperformed by the
default configuration on satisfiable instances, CB can be tuned for satisfiable
instances too. {T = 100, C = 3000} solves 2 additional satisfiable instances, while
{T = 110, C = 4000} solves 1 additional instance faster than the default. We could
not pinpoint a family, where CB shows a significant advantage on satisfiable
instances.

Table 1. Results of Maple LCM Dist on SAT competition 2017 instances

Base T = 100 C = 4000
C = 3000 C = 4000 C = 5000 T = 90 T = 110

SAT Unsolved 13 11 13 16 20 12
Time 50003 53362 50580 59167 59482 47748

UNSAT Unsolved 6 5 3 2 4 6
Time 58414 54034 53301 52631 52481 53991

ALL Unsolved 19 16 16 18 24 18
Time 108417 107396 103881 111798 111963 101739

Fig. 2. Maple LCM Dist on SAT

3.2 MaxSAT Evaluation

In preliminary experiments, we found that {T = 75, C = 250} is the best config-
uration for Open-WBO with CB. Consider the five left-most columns of Table 2.
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Fig. 3. Maple LCM Dist on UNSAT

Table 2. Results of Open-WBO on MaxSAT evaluation 2017 instances

Family Default {75, 250} {75, 0} {75, 500} {50, 250} {100, 250}
#S Time #S Time #S Time #S Time #S Time #S Time

Grand Total 639 53048 644 50704 642 51370 640 52406 640 53582 643 51022
kbtree 0 3600 2 2756 1 3332 2 2921 2 2771 2 2733
atcoss-sugar 11 2179 12 1812 12 1328 11 2013 11 2004 12 1889
close-solutions 32 2692 33 4235 32 2711 32 2597 33 2589 32 4382
extension-enforcement 7 1963 8 828 7 1975 7 1942 8 1093 8 1306
gen-hyper-tw 5 4348 6 3871 6 3219 5 4057 5 3901 7 3383
treewidth-computation 24 3407 25 2306 24 3661 25 2169 23 4527 24 3778
atcoss-mesat 11 1660 11 605 11 703 11 610 11 674 11 534
min-fill 4 1105 4 413 4 384 4 910 4 244 4 349
packup 35 697 35 253 35 172 35 460 35 252 35 253
scheduling 1 206 1 92 1 153 1 164 1 141 1 130
bcp-syn 21 2535 20 2643 21 2247 21 2642 20 3145 20 2733
mbd 35 1327 34 1982 34 1972 34 2006 35 1275 35 1222
hs-timetabling 1 48 1 317 1 276 1 968 1 396 1 453

They present the number of solved instances and the run-time of the default
Open-WBO vs. {T = 75, C = 250} (abbreviated to {75, 250}) over the MaxSAT
Evaluation families (complete unweighted track). The second row shows the
overall results. CB helps Open-WBO to solve 5 more instances in less time. The
subsequent rows of Table 2 show the results for families, where either Open-WBO
or {T = 75, C = 250} was significantly faster than the other solver, that is, it
either solved more instances or was at least two times as fast. One can see that
CB significantly improved the performance of Open-WBO on 10 families, while the
performance was significantly deteriorated on 3 families only. The other columns
of Table 2 present the results of 4 configurations neighbor to {T = 75, C = 250}
for reference.
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4 Conclusion

We have shown how to implement Chronological Backtracking (CB) in a mod-
ern SAT solver as an alternative to Non-Chronological Backtracking (NCB),
which has been commonly used for over two decades. We have integrated CB
into the winner of the SAT Competition 2017, Maple LCM Dist, and the winner
of MaxSAT Evaluation 2017 Open-WBO. CB improves the overall performance of
both solvers. In addition, Maple LCM Dist becomes consistently faster on unsat-
isfiable instances, while Open-WBO solves 10 families significantly faster.
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Abstract. There are many reasons to think that SAT solvers should be
able to exploit formula structure, but no standard techniques in mod-
ern CDCL solvers make explicit use of structure. We describe modifi-
cations to modern decision and clause-deletion heuristics that exploit
formula structure by using variable centrality. We show that these
improve the performance of Maple LCM Dist, the winning solver from
Main Track of the 2017 SAT Solver competition. In particular, using
centrality in clause deletion results in solving 9 more formulas from the
2017 Main Track. We also look at a number of measures of solver per-
formance and learned clause quality, to see how the changes affect solver
execution.

1 Introduction

Structure seems important in SAT research. Notions of instance structure are
invoked in explaining solver performance, for example on large industrial formu-
las; many empirical papers relate aspects of solver performance to formula struc-
ture; and structure is key in theoretical results on both hardness and tractability.

Despite this, no standard method used in modern CDCL SAT solvers makes
direct use of formula structure. (We exclude local structure such as used in
resolving two clauses or assigning a unit literal.) The heuristics in CDCL solvers
focus on local properties of the computation — what the algorithm has recently
done — ignoring overall structure. The VSIDS and LRB decision heuristics give
strong preference to variables that have been used many times recently, while
clause deletion based on LBD and clause activity selects clauses based on recent
use and an indicator of likelihood of being used again soon.

We present modifications to state-of-the-art decision and clause deletion
heuristics that take structure into account by using variable betweenness cen-
trality. This measure reflects the number of shortest paths through a variable in
the primal graph of the formula. For decision heuristics, we give three different
centrality-based modifications that alter VSIDS or LRB variable activities. For
the clause deletion heuristic, we replace activity-based deletion with deletion
based on clause centrality, a clause quality measure we believe is new.

We demonstrate the effectiveness of the methods by implementing them in
Maple LCM Dist, the winning solver from Main Track of the 2017 SAT Solver
c© Springer International Publishing AG, part of Springer Nature 2018
O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 122–131, 2018.
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competition, and running them on the formulas from that track with a 5000 s
time-out. All the modifications increased the number of instances solved and
reduced the PAR-2 scores. While our methods are simple, to our knowledge
this is the first time that explicit structural information has been successfully
used to improve the current state-of-the-art CDCL solver on the main current
benchmark. We also report a number of other measures of solver performance
and learned clause quality, and make some observations about these.

Paper Organization. The remainder of the present section summarizes related
work. Section 2 defines betweenness centrality and describes centrality computa-
tion. Sections 3 describes our modified decision and deletion heuristics. Section 4
gives the main performance evaluation. Section 5 looks at some execution details,
and Sect. 6 makes concluding remarks and mentions work in progress.

Related Work. Several papers have studied the structure of industrial CNF
formulas, e.g., [6,13,29]. “Community structure” (CS) has been shown in indus-
trial formulas [11] and CS quality is correlated with solver run time [2,3,24,25].
CS was used in [4] to generate useful learned clauses. In [20,23] CS was used
to obtain small witnesses of unsatisfiability. [17] showed that VSIDS tends to
choose bridge variables (community connectors), and [14] showed that prefer-
ential bumping of bridge variables increased this preference and improved per-
formance of the Glucose SAT solver. [27] described a method that applies large
bump values to variables in particular communities. Eigenvalue centrality of vari-
ables was studied in [15], and it was shown that CDCL decisions are likely to be
central variables. Betweenness centrality was studied in [14], where it was shown
that a large fraction of decision variables have high betweenness centrality, and
that the performance of Glucose can be improved by preferential bumping of
variables with high betweenness centrality. Some features used in learning per-
formance prediction models, as used in SATzilla [30], are structural measures.
Lower bounds for CDCL run times on unsatisfiable formulas are implied by reso-
lution lower bounds, and formula structure is central to these [8]. Formulas with
bounded treewidth are fixed parameter tractable [1], and also can be efficiently
refuted by CDCL with suitable heuristics [5].

2 Centrality Computation

The primal graph of a propositional CNF formula φ (also called the variable
incidence graph or the variable interaction graph) is the graph G(φ) = 〈V,E〉,
with V being the set of all variables in φ and (p, q) ∈ E iff there is a clause C ∈ φ
containing both p and q (either negated or not). The betweenness centrality of
a vertex v is defined by g(v) =

∑
s �=v �=t(σs,t(v)/σs,t), where σs,t is the number

of shortest s-t paths and σs,t(v) is the number of those that pass through v,
normalized to range over [0, 1] [12]. The betweenness centrality of a variable v
in formula φ is the betweenness centrality of v in the primal graph G(φ).
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Exactly computing betweenness centrality involves an all-pairs-shortest-
paths computation, and is too expensive for large formulas. We computed
approximate centrality values using the NetworkX [22] betweenness centrality
function, with sample size parameter n/50, where n is the number of variables.
The parameter sets the number of vertices used to compute the approximation.

For some industrial formulas even this approximation takes too long to be
useful (under SAT competition conditions), but for many formulas the approxi-
mation is fast. With a 300 s time-out, we found approximations for 217 of the 350
formulas from the main track of the 2017 competition. Figure 1 is a histogram
of the centrality approximation times for these formulas, showing that a large
fraction required less than 70 s.
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Fig. 1. Histogram of centrality approximation times.

3 Modified Decision and Deletion Heuristics

Decision Heuristics. The VSIDS decision heuristic [21], in several variations,
has been dominant in CDCL solvers for well over a decade. Recently, the LRB
(Learning-Rate-Based) heuristic [16] was shown to be effective, and winners of
recent competitions use a combination of VSIDS and LRB. Both employ variable
“activity” values, which are updated frequently to reflect the recent variable
usage. The update involves increasing (or “bumping”) the activity value for a
variable each time it is assigned or appears during the derivation of a new learned
clause. A secondary update in MapleSAT [16] and its descendants involves, at
each conflict, reducing the LRB activity score of each variable that has not been
assigned a value since the last restart. Maple LCM Dist uses both VSIDS and
LRB, at different times during a run, and LRB activity reduction.

In [14] we reported that increasing the VSIDS bump value for high-centrality
variables during an initial period of a run improved the performance of the solver
Glucose. This did not help much in solvers using LRB, but motivated further
study. As in [14] we define “high-centrality” variables to be the 1/3 fraction of
variables with highest centrality values. The modifications reported here are:

HCbump-V: We scale the VSIDS additive bump values for high-centrality
variables by a factor greater than 1. In the experiments reported here, the
factor is 1.15.
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HCbump-L: We periodically scale the LRB activity values of high-centrality
variables by a factor greater than 1. In the experiments reported here, we
scaled by a factor of 1.2 every 20,000 conflicts.

HCnoReduce: We disable the reduction of LRB scores for “unused variables”
that are also high-centrality variables.

Clause Deletion. The Maple LCM Dist clause deletion (or reduction) scheme
was inherited from COMiniSatPS, and is as follows [7,19]. The learned clauses
are partitioned into three sets called CORE, TIER2 and LOCAL. Two LBD
threshold values, t1, t2, are used. Learned clauses with LBD less than t1 are put
in CORE. t1 is initially 3 but changed to 5 if CORE has fewer than 100 clauses
after 100,000 conflicts. Clauses with LBD between t1 and t2 = 6 are put in
TIER2. Clauses with LBD more than 6 are put in LOCAL. Clauses in TIER2
that are not used for a long time are moved to LOCAL. Clause deletion is done
as follows. Order the clauses in LOCAL by non-decreasing activity. If m is the
number of clauses in LOCAL, delete the first m/2 clauses that are not reasons
for the current assignment. We report on the following modification:

HCdel: Replace ordering of clauses in LOCAL by clause activity with ordering
by clause centrality. We define the centrality of a clause to be the mean
centrality of the variables occurring in it.

4 Performance Evaluation

We implemented each of our centrality-based heuristics in Maple LCM Dist
[19], the solver that took first place in the Main Track of the 2017 SAT Solver
Competition [26]. We compared the performance of the modified versions against
the default version of Maple LCM Dist by running them on the 350 formulas
from the Main Track of the 2017 solver competition, using a 5000 s time-out.
Computations were performed on the Cedar compute cluster [9] operated by
Compute Canada [10]. The cluster consists of 32-core, 128 GB nodes with Intel
“Broadwell” CPUs running at 2.1GHz.

We allocated 70 s to approximate the variable centralities, based on the cost-
benefit trade-off seen in Fig. 1: Additional time to obtain centralities for more
formulas grows quickly after this point. If the computation completed, we used
the resulting approximation in our modified solver. Otherwise we terminated the
computation and ran default Maple LCM Dist. The choice of 70 s is not crucial:
Any cut-off between 45 and 300 s gives essentially the same outcome. Centrality
values were obtained for 198 of the 350 formulas. Our 5000 s timeout includes
the time spent on centrality computation, whether or not the computation
succeeded.

Table 1 gives the number of instances solved and the PAR-2 score for each
method. All four centrality-based modifications improved the performance of
Maple LCM Dist by both measures.
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Table 1. Number of formulas solved (out of 350) and PAR-2 score, for default Maple
LCM Dist and our four modified versions.

Maple LCM Dist HCbump-L HCbump-V HCnoReduce HCdel

Number solved 215 219 218 221 224

PAR-2 score 4421 4382 4375 4381 4242
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Fig. 2. Cactus plot comparing performance of default Maple LCM Dist and our four
modified versions.

Figure 2 gives the “cactus plot” (inverse cumulative distribution function) for
the runs. All four modifications result in improved performance. HCdel, which
uses centrality-based clause deletion, is the best, and also out-performs default
Maple LCM Dist for almost all smaller cut-off time values. The other methods,
which modify the decision heuristic, improve on the default for all times longer
than 3300 s. The two methods that modify LRB under-perform the default on
easy formulas, but catch up at around 3200 s.

Families Affected. It is natural to wonder if these improvements are due to
only one or two formula families. They are not. Table 2 shows, for each of our
four modified solvers, how many formulas it solved that default Maple LCM Dist
did not, and how many families they came from.

5 Performance Details

Reliability. There is an element of happenstance when using a cut-off time.
For example, the “best” method would be different with a cut-off of 2800 s, and
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Table 2. Number of families involved in formulas solved by our modified solvers by
not by default Maple LCM Dist.

Solver HCdel HCnoReduce NCbump-L HCbumpt-V

Number of formulas 11 10 8 5

Number of families 5 6 5 3

the “worst” would be different with a cut-off of 2200 s. Run-time scatter plots
give us an alternate view. Figure 3 gives scatter plots comparing the individual
formula run-times for each of our four modified solvers with the default Maple
LCM Dist. We observe:
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Fig. 3. Comparison of run-times of default Maple LCM Dist with each of our modified
versions. Each plot shows all instances that were solved by at least one of the two solvers
represented. Satisfiable formulas are denoted with ◦, unsatisfiable formulas with x.

– In each plot many points are lined up just below the main diagonal. These
are the formulas without centralities, for which we pay a 70-s penalty.

– The most reliable method is HCdel. It solved the most, was faster on 70% of
formulas with centralities and had significant slow-down for only 4 formulas.

– HCbump-V caused the least variation: it solved more formulas, but gave
significant speedups on only a few others.
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– The two LRB modifications, HCbump-L and HCnoReduce, were very “noisy”,
speeding up many formulas but also slowing down quite a few.

– It is very interesting that very large differences in run-time were mostly for
satisfiable formulas.

Reasoning Rates. Here, we look at measures of the rate of solver reasoning
or search (as distinct from, for example, quality of reasoning or total time).
Table 3 shows, for each method, the mean decision rate, the mean conflict pro-
duction rate, the mean unit propagation rate, and the mean Global Learning
Rate (GLR). GLR, defined as the ratio of the number of conflicts to the number
of decisions, was introduced in [18], where it was observed that decision heuristics
producing a higher GLR had reduced solving times. We observe:

– Consistent with the observations in [18], decision heuristic changes that
improved performance increased GLR, though only slightly;

– The fastest of our methods, HCdel, did not have a higher GLR, suggesting
that it learned or kept “better” clauses, rather than more clauses.

Table 3. Measures of search or reasoning rate for the four solvers. Conflicts, Decisions
and Propagations are in thousands of events per second.

Solver Conflicts Decisions Propagations GLR

Maple LCM Dist 8.25 23.7 1,452 0.623

HCdel 8.43 25.2 1,493 0.623

HCbump-L 8.52 26.3 1,530 0.626

HCbump-V 8.15 23.5 1,432 0.625

HCnoReduce 8.02 21.0 1,420 0.629

Learned Clause Quality. Measures of “clause quality” that have been stud-
ied or used in solver heuristics include size, literal block distance (LBD) and
activity. Here we add clause centrality to these. Small clauses are good because
they eliminate many truth assignments and facilitate propagation. Literal Block
Distance is defined relative to a CDCL assignment stack, and is the number of
different decision levels for variables in the clause. Small LBD clauses are like
short clauses relative to assignments that are near the current one [6]. Clause
activity is an analog of VSIDS activity, bumped each time the clause is used in
a learned clause derivation [28]. Intuitively, clauses with low centrality connect
variables “on the edge of the formula”, and a long clause with low centrality
connects many such variables, so is likely hard to use.

To see the effect of centrality-based deletion on clause quality, we measured
the quality of learned clauses kept in LOCAL for three deletion schemes: Activ-
ity based deletion (default Maple LCM Dist); Centrality-based deletion (HCdel);
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and LBD-based deletion (implemented in Maple LCM Dist for this study).
Table 4 shows the results. Reported numbers are the mean of measurements
taken just after each clause deletion phase. We observe:

– Centrality-based deletion keeps better clauses than activity-based deletion,
as measured by both size and LBD, and also performs better.

– LBD-based deletion keeps the “best” clauses measured by LBD and size, has
the worst performance and keeps the worst clauses measured by centrality.

– Centrality is the only clause quality measure that perfectly predicts ordering
of the deletion methods by solving speed.

Table 4. Measures of quality for clauses in the LOCAL clause set, for three deletion
schemes. (Centralities are scaled by 10,000).

Deletion method Clause centrality Clause LBD Clause size Solving time

Activity-based deletion 106 24 56 401

Centrality-based deletion 182 15 36 347

LBD-based deletion 80 9 24 446

6 Discussion

We introduced four centrality-based modifications to standard CDCL decision
and deletion heuristics, and implemented these in Maple LCM Dist, first-place
solver from the Main Track of the 2017 SAT Solver Competition. All four changes
improved the performance on the formulas from this track.

The centrality-based deletion scheme, HCdel, solved the most formulas, pro-
duced the smallest PAR-2 scores, and also gave the most reliable speed-ups. This
deletion scheme is based on clause centrality, a new measure of clause quality
introduced here. We presented other evidence that clause centrality is an inter-
esting clause quality measure, and we believe that further study of this measure
will be productive.

The decision heuristic modifications performed less well than HCdel, but
confirm the importance of variable centrality, and are interesting because they
seem to work for different formulas. For example, among 26 formulas that at
least one method solved and at least one did not, there are 12 formulas that are
either solved by HCbump-L and no other method, or not solved by HCbump-L
but solved by all other methods.

Work in progress includes more in-depth study of the roles of variable and
clause centrality in solver execution, and development of a centrality-based
restart strategy.
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Abstract. We present an algorithm for perfectly uniform sampling of
satisfying assignments, based on the exact model counter sharpSAT and
reservoir sampling. In experiments across several hundred formulas, our
sampler is faster than the state of the art by 10 to over 100,000 times.

1 Introduction

The DPLL [4] procedure forms the foundation of most modern SAT solvers. Its
operation can be modeled as the preorder traversal of a rooted, binary tree where
the root corresponds to the empty assignment and each edge represents setting
some unset variable to 0 or 1, so that each node of the tree corresponds to a
distinct partial assignment.

If the residual formula under a node’s partial assignment is empty of clauses,
or contains the empty clause, the node is a leaf of the tree. Naturally, the leaves
corresponding to the former case form a partition of the formula’s satisfying
assignments (models), each part called a cylinder and having size equal to 2z,
where z ≥ 0 is the number of unassigned variables at the leaf.

Generally, improved SAT solver efficiency is derived by trimming the DPLL
search tree. For instance, conflict-driven clause learning (CDCL) amounts to
adding new clauses to the formula each time a conflicting assignment is encoun-
tered. These added (learned) clauses make it possible to identify partial assign-
ments with no satisfying extensions higher up in the tree.

1.1 Model Counting

Naturally, we can view model counting as the task where each internal node of
the aforementioned tree simply adds the number of models of its two children.
With this in mind, we see that the aforementioned CDCL optimization carries
over, helping identify subtrees devoid of models sooner.
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Despite the similarity with SAT solving, though, certain optimizations are
uniquely important to efficient model counting. Specifically, it is very common for
different partial assignments to have the same residual formula. While CDCL
prevents the repeated analysis of unsatisfiable residual formulas, it does not
prevent the reanalysis of previously encountered satisfiable residual formulas.
To prevent such reanalysis #SAT solvers, e.g., Cachet [9], try to memoize in a
cache the model counts of satisfiable residual formulas. Thus, whenever a node’s
residual formula is in the cache, the node becomes a leaf in the counting tree.
We will refer to the tree whose leaves correspond to the execution of a model
counter employing caching as a compact counting tree.

Another key optimization stems from the observation that as variables are
assigned values, the formula tends to break up into pieces. More precisely, given
a formula consider the graph having one vertex per clause and an edge for every
pair of clauses that share at least one variable. Routinely, multiple connected
components are present in the graph of the input formula. More importantly, as
variables are assigned, components split. Trivially, a formula is satisfiable iff all
its components are satisfiable. Determining the satisfiability of each component-
formula independently can confer dramatic computational benefits [1].

The DPLL-based model counter sharpSAT [11], originally released in 2006
by Thurley and iteratively improved since, is the state-of-the-art exact model
counter. It leverages all of the previously discussed optimizations and integrates
advanced branch-variable selection heuristics proposed in [10]. Its main advan-
tage over its predecessors stems from its ability to cache more components that
are also of greater relevance. It achieves this through a compact encoding of
cache entries as well as a cache replacement algorithm that takes into account
the current “context”, i.e., the recent partial assignments considered. Finally, it
includes a novel algorithm for finding failed literals in the course of Boolean Con-
straint Propagation (BCP), called implicit BCP, which makes a very significant
difference in the context of model counting.

Our work builds directly on top of sharpSAT and benefits from all the ideas
that make it a fast exact model counter. Our contribution is to leverage this
speed in the context of sampling. Generically, i.e., given a model counter as
a black box, one can sample a satisfying assignment with 2n model counter
invocations by repeating the following: pick an arbitrary unset variable v; count
the number of models Z0, Z1, of the two formulas that result by setting v to 0,1,
respectively; set v to 0 with probability Z0/(Z0 + Z1), otherwise set it to 1.

As we discuss in Sect. 4 it is not hard to improve upon the above by modifying
sharpSAT so that, with essentially no overhead, it produces a single perfectly
uniform sample in the course of its normal, model counting execution. Our main
contribution lies in introducing a significantly more sophisticated modification,
leveraging a technique known as reservoir sampling, so that with relatively little
overhead, it can produce many samples. Roughly speaking, the end result is a
sampler for which one can largely use the following rule of thumb:

Generating 1,000 perfectly uniform models takes
about 10 times as long as it takes to count the models.
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2 Related Work

In digital functional verification design defects are uncovered by exposing the
device to a set of test stimuli. These stimuli must satisfy several requirements to
ensure adequate verification coverage. One such requirement is that test inputs
be diverse, so as to increase the likelihood of finding bugs by testing different
corners of the design.

Constrained random verification (CRV) [8] has emerged in recent years as
an effective technique to achieve stimuli diversity by employing randomization.
In CRV, a verification engineer encodes a set of design constraints as a Boolean
formula with potentially hundreds of thousands of variables and clauses. A con-
straint solver then selects a random set of satisfying assignments from this
formula. Efficiently generating these random models, also known as witness,
remains a challenge [3].

Current state of the art witness generators, such as UniGen2 [2], use a hash
function to partition the set of all witnesses into roughly equal sized groups.
Selecting such a group uniformly at random and then a uniformly random ele-
ment from within the selected group, produces an approximately uniform wit-
ness. This approximation of uniformity depends on the variance in the size of
the groups in the initial hashing-based partition. In practical applications, this
non-uniformity is not a major issue.

Arguably the main drawback of hash-based witness generators is that their
total execution time grows linearly with the number of samples. Acceleration can
be had via parallelization, but at the expense of sacrificing witness independence.
Also, by their probabilistic nature, hash-based generators may fail to return the
requested number of models.

Our tool SPUR (Satisfying Perfectly Uniformly Random) addresses the prob-
lem of generating many samples by combining the efficiencies of sharpSAT with
reservoir sampling. This allows us to draw a very large number of samples per
traversal of the compact counting tree.

3 Caching and Component Decomposition

Most modern #SAT model counters are DPLL-based, and their execution can
be modeled recursively. For example, Algorithm 1 performs model counting with
component decomposition and caching similar to sharpSAT [11]. (We have sim-
plified this demonstrative implementation by stripping out efficiency enhance-
ments not directly relevant to this discussion including CDCL, unit clause prop-
agation, non-chronological backtracking, cache compaction, etc.)

The algorithm first looks for F and its count in the cache. If they are not
there, then if F is unsatisfiable or empty, model counting is trivial. If F has
multiple connected components, the algorithm is applied recursively to each one
and the product of the model counts is returned. If F is a non-empty, connected
formula not in the cache, then a branching variable is selected, the algorithm
is applied to each of the two restricted subformulas, and the sum of the model
counts is returned after it has been deposited in the cache along with F .
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Algorithm 1. Model counting with component decomposition and caching

1: function Counter(F )
2: if IsCached(F ) then
3: return CachedCount(F ) � Cache-hit leaf

4:
5: if Unsat(F ) then return 0

6: if Clauses(F ) = ∅ then return 2|Var(F )| � Cylinder leaf

7:
8: C1, . . . , Ck ← ComponentDecomposition(F ) � Component decomposition
9: if k > 1 then

10: for i from 1 to k do
11: Zi ← Counter(Ci)

12: Z ← ∏k
i=1 Zi

13: return Z
14:
15: v ← BranchVariable(F )
16: Z0 ← Counter(F ∧ v = 0)
17: Z1 ← Counter(F ∧ v = 1)
18: Z ← Z0 + Z1

19: AddToCache(F, Z) � The count of every satisfiable, connected
20: � subformula ever encountered is cached
21: return Z

4 How to Get One Uniform Sample

It is easy to modify Algorithm 1 so that it returns a single uniformly random
model of F . All we have to do is: (i) require the algorithm to return one model
along with the count (ii) select a uniformly random model whenever we reach a
cylinder, and (iii) at each branching node, when the two recursive calls return
with two counts and two models, select one of the two models with probability
proportional to its count, and store it along with the sum of the two counts
in the cache before returning it. In the following, F (σ) denotes the restriction
of formula F by partial assignment σ and Free(σ) denotes the variables not
assigned a value by σ.

An important observation is that the algorithm does not actually need to
select, cache, and return a random model every time it reaches a cylinder. It
can instead simply return the partial assignment corresponding to the cylinder.
After termination, we can trivially “fill out” the returned cylinder to a complete
satisfying assignment. This can be a significant saving as, typically, there are
many cylinders, but we only need to return one model. Algorithm 2 employs
this idea so that it returns a cylinder (instead of a model), each cylinder having
been selected with probability proportional to its size.

The correctness of Algorithm 2 would be entirely obvious in the absence of
model caching. With it, for any subformula, F ′, we only select a model at most
once. This is because after selecting a model τ of F ′ for the first time in line 20 we
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write τ along with F ′ in the cache, in line 21, and therefore, if we ever encounter
F ′ again, lines 2, 3 imply we will return τ as a model for F ′. Naturally, even
though we reuse the same model for a subformula encountered in completely
different parts of the tree, no issue of probabilistic dependence arises: since we
only return one sample overall, and thus for F ′, how could it?

It is crucial to note that this fortuitous non-interaction between caching and
sampling does not hold for multiple samples, since if a subformula appears at
several nodes of the counting tree, the sample models associated with these nodes
must be independent of one another.

Algorithm 2. Single model sampler

1: function OneModel(F, σ)
2: if IsCached(F (σ)) then
3: return CachedCount(F (σ)),CachedModel(F (σ))

4:
5: if Unsat(F (σ)) then return 0, −
6: if Clauses(F (σ)) = ∅ then return 2|Free(σ)|, σ

7:
8: C1, . . . , Ck ← ComponentDecomposition(F (σ))
9: if k > 1 then

10: for i from 1 to k do
11: Zi, σi ← OneModel(Ci, σ)

12: Z ← ∏k
i=1 Zi

13: τ ← σ1, . . . , σk

14: return Z, τ

15:
16: v ← BranchVariable(F (σ))
17: Z0, σ0 ← OneModel(F, σ ∧ v = 0)
18: Z1, σ1 ← OneModel(F, σ ∧ v = 1)
19: Z ← Z0 + Z1

20: τ ← σ0 with probability Z0/Z, otherwise τ ← σ1

21: AddToCache(F (σ), Z, τ)
22:
23: return Z, τ

5 How to Get Many Uniform Samples at Once

Consider the set C which for each leaf σj of the compact counting tree comprises
a pair (σj , cj), where cj is the number of satisfying extensions (models) of par-
tial assignment σj . The total number of models, Z, therefore equals

∑
j cj . Let

Bin (n, p) denote the Binomial random variable with n trials of probability p.
To sample s models uniformly, independently, and with replacement (u.i.r.),

we would like to proceed as follows:
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1. Enumerate C, while enjoying full model count caching, as in sharpSAT.
2. Without storing the (huge) set C, produce from it a random set R comprising

pairs {(σi, si)}t
i=1, for some 1 ≤ t ≤ s, such that:

(a) Each σi is a distinct leaf of the compact counting tree.
(b) s1 + · · · + st = s (we will eventually generate si extensions of σi u.i.r.).
(c) For every leaf σj of the compact counting tree and every 1 ≤ w ≤ s, the

probability that (σj , w) appears in R equals Pr[Bin (s, cj/Z) = w].

Given a set R as above, we can readily sample models corresponding to those
pairs (σi, si) in R for which either si = 1 (by invoking OneModel(F (σi))), or
for which Clauses(F (σi)) = ∅ (trivially). For each pair (σi, si) for which si > 1,
we simply run the algorithm again on F (σi), getting a set R′, etc.

Obviously, the non-trivial part of the above plan is achieving (2c) without
storing the (typically huge) set C. We will do this by using a very elegant idea
called reservoir sampling [12], which we describe next.

6 Reservoir Sampling

Let A be an arbitrary finite set and assume that we would like to select s elements
from A u.i.r. for an arbitrary integer s ≥ 1. Our task will be complicated by the
fact that the (unknown) set A will not be available to us at once. Instead, let
A1, A2, . . . , Am be an arbitrary, unknown partition of A. Without any knowledge
of the partition, or even of m, we will be presented with the parts in an arbitrary
order. When each part is presented we can select some of its elements to store,
but our storage capacity is precisely s, i.e., at any given moment we can only
hold up to s elements of A. Can we build a sample as desired?

Reservoir sampling is an elegant solution to this problem that proceeds as
follows. Imagine that (somehow) we have already selected s elements u.i.r. from
a set B, comprising a multiset S. Given a set C disjoint from B we can produce
a sample of s elements selected u.i.r. from B∪C, without access to B, as follows.
Note that in Step 3 of Algorithm 3, multiple instances of an element of B in S are
considered distinct, i.e., removing one instance leaves the rest unaffected. It is
not hard to see that after Step 4 the multiset S will comprise s elements selected
u.i.r. from B ∪ C. Thus, by induction, starting with B = ∅ and processing the
sets A1, A2, . . . one by one (each in the role of C) achieves our goal.

Algorithm 3. Turns a u.i.r. s-sample S ⊆ B to a u.i.r. s-sample of B ∪ C

1: Generate q ∼ Bin (s, |C|/|B ∪ C|).
2: Select q elements from C u.i.r.
3: Select q elements from S uniformly, independently, without replacement.
4: Swap the selected elements of S for the selected elements of C.
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6.1 Reservoir Sampling in the Context of Model Caching

In our setting, each set Ai amounts to a leaf of the compact counting tree. We
would like to build our sample set by (i) traversing this tree exactly as sharpSAT,
and (ii) ensuring that every time the traversal moves upwards from a leaf, we
hold s models selected u.i.r. from all satisfying extensions of leaves encountered
so far. More precisely, instead of actual samples, we would like to hold a random
set R of weighted partial assignments satisfying properties (2a)–(2c) in Sect. 5.

To that end, it will be helpful to introduce the following distribution. Given
r bins containing s1, . . . , sr distinct balls, respectively, and q ≥ 0 consider the
experiment of selecting q balls from the bins uniformly, independently, without
replacement. Let q = (q1, . . . , qr) be the (random) number of balls selected from
each bin. We will write q ∼ D((s1, . . . , sr), q). To generate a sample from this
distribution, let b0 = 0; for i ∈ [r], let bi = s1 + · · · + si, so that b1 = s1 and
br = s1+. . .+sr := s. Let γ1, γ2, . . . , γq be i.i.d. uniform elements of [s]. Initialize
qi to 0 for each i ∈ [r]. For each i ∈ [q]: if γi ∈ (bz−1, bz], then increment qr by 1.

With this in mind, imagine that we have already processed t leaves so that
Zt = Z = |A1| + · · · |At| and that the reservoir contains R = {(σi, si)}r

i=1,
such that

∑r
i=1 si = s. Let σ be the current leaf (partial assignment), let A

be the set of σ’s satisfying extensions, and let w = |A|. To update the reser-
voir, we first determine the random number, q ≥ 0, of elements from A to
place in our s-sample, as a function of w,Z. Having determined q we draw
from D((s1, . . . , sr), q) to determine how many elements to remove from each
set already in the reservoir, by decrementing its weight si (if si ← 0 we remove
(σi, 0) from the reservoir). Finally, we add (σ, q) to the reservoir to represent the
q elements of A.

Note that, in principle, we could have first selected s elements u.i.r. from A
and then 0 ≤ q ≤ s among them to merge into the reservoir (again represented
as (σ, q)). This viewpoint is useful since, in general, instead of merging into the
existing reservoir 0 ≤ q ≤ s elements from a single cylinder of size w, we will
need to merge q elements from a set of size w that is the union of � ≥ 1 disjoint
sets, each represented by a partial assignment σj , such that we have already
selected aj elements from each set, where

∑�
j=1 ai = s. Indeed, Algorithm 4

below is written with this level of generality in mind, so that our simple single
cylinder example above corresponds to merging 〈w, {(σ, s)}〉 into the reservoir.

Algorithm 4. Merges R = 〈Z, {(σi, si)}r
i=1〉 with 〈w, {(σj , aj)}�

j=1〉
1: function ReservoirUpdate(R, 〈w, {(σj , aj)}�

j=1〉)
2: Z ← Z + w
3: q ∼ Bin (s, w/Z)
4: Generate (β1, . . . , β�) ∼ D((a1, . . . , a�), q)
5: Generate (γ1, . . . , γr) ∼ D((s1, . . . , sr), q)
6: R′ ← 〈Z, {(σj , βj)}�

j=1 ∪ {(σi, si − γi)}r
i=1〉

7: Discard any partial assignment in R′ whose weight is 0
8: return R′
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7 A Complete Algorithm

To sample s models u.i.r. from a formula F , we create an empty reservoir R
of capacity s and invoke SPUR(F, ∅, R). The call returns the model count of
F and modifies R in place to contain pairs {(σi, si)}t

i=1, for some 1 ≤ t ≤ s,
such that

∑t
i=1 si = s. Thus, SPUR partitions the task of generating s samples

into t independent, smaller sampling tasks. Specifically, for each 1 ≤ i ≤ t, if
Clauses(F (σi)) = ∅, then sampling the si models is trivial, while if si = 1,
sampling can be readily achieved by invoking OneModel on F (σi). If none of
the two simple cases occurs, SPUR is called on F (σi) requesting si samples.

Algorithm 5. Counts models and fills up a reservoir with s samples

1: function SPUR(F, σ, R)
2: if IsCached(F (σ)) then
3: ReservoirUpdate(R, 〈CachedCount(F (σ)), (σ, s)〉)
4: return CachedCount(F (σ))

5:
6: if Unsat(F (σ)) then return 0

7: if Clauses(F (σ)) = ∅ then
8: ReservoirUpdate(R, 〈2|Free(σ)|, (σ, s)〉)
9: return 2|Free(σ)|

10:
11: C1, . . . , Ck ← ComponentDecomposition(F (σ))
12: if k > 1 then
13: for i from 1 to k do
14: Create a new reservoir Ri of capacity s
15: Zi ← SPUR(Ci, ∅, Ri)

16: w ← ∏k
i=1 Zi

17: A ← Stitch(σ, R1, R2, . . . , Rk)
18: ReservoirUpdate(R, 〈w, A〉)
19: return w
20:
21: v ← BranchVariable(F (σ))
22: Z0 ← SPUR(F, σ ∧ v = 0, R)
23: Z1 ← SPUR(F, σ ∧ v = 1, R)
24: AddToCache(F, Z0 + Z1)
25: return Z0 + Z1

If a formula has k > 1 components, SPUR is invoked recursively on each com-
ponent Ci with a new reservoir Ri (also passed by reference). When the recursive
calls return, each reservoir Ri comprises some number of partial assignments over
the variables in Ci, each with an associated weight (number of samples), so that
the sum of the weights equals s. It will be convenient to think of the content of
each reservoir Ri as a multiset containing exactly s strings from {0, 1, ∗}Var(Ci).
Under this view, to Stitch together two reservoirs R1, R2, we fix an arbitrary
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permutation of the s strings in, say, R1, pick a uniformly random permuta-
tion of the strings in R2, and concatenate the first string in R1 with the first
string in R2, the second string in R1 with the second string in R2, etc. To stitch
together multiple reservoirs we proceed associatively. The final result is a set
{(σj , aj)}�

j=1, for some 1 ≤ � ≤ s, such that
∑�

j=1 aj = s.

8 Evaluation and Experiments

We have developed a prototype C++ implementation [6] of SPUR on top of
sharpSAT (ver. 5/2/2014) [11]. This necessitated developing multiple new mod-
ules as well as extensively modifying several of the original ones.

8.1 Uniformity Verification

Since sharpSAT is an exact model counter, the samples derived from SPUR
are perfectly uniform. Since we use reservoir sampling, they are also perfectly
independent. As a test of our implementation we selected 55 formulas with model
counts ranging from 2 to 97,536 and generated 4 million models of each one.

For each formula F we (i) recorded the number of times each of its M(F )
models was selected by SPUR, and (ii) drew 4 million times from the multino-
mial distribution with M(F ) outcomes, corresponding to ideal u.i.r. sampling.
We measured the KL-divergence of these two empirical distributions from the
multinomial distribution with M(F ) outcomes, so that the divergence of the
latter provides a yardstick for the former. The ratio of the two distances was
close to 1 over all formulas, and the product of the 55 ratios was 0.357.

One of the formulas we considered was case110 with 16,384 models, which
was used in the verification of the approximate uniformity of UniGen2 in [2].
Figure 1 plots the output of UniGen2 and SPUR against a background of the
ideal multinomial distribution (with mean 244.14...). Each point (x, y) represents
the number of models, x, that were generated y times across all 4,000,000 trials.

Fig. 1. Uniformity comparison between an ideal uniform sampler, SPUR and UniGen2
on the “case110” benchmark on four million samples.
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8.2 Running Time

To demonstrate the empirical performance of SPUR we ran it on several hundred
formulas, along with UniGen2 (ver. 9/28/2017), an almost-uniform, almost-i.i.d.
SAT witness generator, representing the state of the art prior to our work.

Benchmarks: We considered 586 formulas, varying in size from 14 to over 375,000
variables. They are the union of the 369 formulas used to benchmark UniGen2
in [7] (except for approximately 20 proprietary formulas with suffix new that
are not publicly available) and the 217 formulas used to benchmark sharpSAT
in [11]. Of the latter we removed from consideration the 100 formulas in the
flat200 graph coloring dataset, since on all of them UniGen2 timed out, while
SPUR terminated successfully in a handful of seconds. This left 486 formulas.

An important distinction between the two sets of formulas is that all formulas
from [7] come with a sampling set, i.e., a relatively small subset, S, of variables.
When such a set is given as part of the input, UniGen2 samples (near-)uniformly
from the elements of {0, 1}S that have at least one satisfying extension (model).
For all but 17 of the 369 formulas, the provided set was in fact an independent
support set, i.e., each of element of {0, 1}S was guaranteed to have at most one
satisfying extension. Thus for these 352 formulas UniGen2 is, in fact, sampling
satisfying assignments, making them fair game for comparison (if anything such
formulas slightly favor UniGen2 as we do not include the time required to extend
the returned partial assignments to full assignments which, in principle, could be
substantial.) None of the 117 formulas used to benchmark sharpSAT come with
such a set (since sharpSAT does not support counting the size of projections of
the set of models). Of these 486 − 17 = 469 formulas, 2 are unsatisfiable, while
for another 22 UniGen2 crashed or exited with an error. (SPUR did not crash
or report an error on any formulas.) Of the remaining 445 formulas, 72 caused
both SPUR and UniGen2 to time out. We report on the remaining 373 formulas.

For each formula we generated between 1,000 and 10,000 samples, as origi-
nally performed by Chakraborty et al. [2] and report the results in detail. Our
main finding is that SPUR is on average more than 400× faster than UniGen2,
i.e., the geometric mean1 of the speedup exceeds 400×. We also compared the
two algorithms when they only generate 55 samples per formula. In that setting,
the geometric mean of the speedup exceeds 150×.

Experiment Setup: All experiments were performed on a high-performance clus-
ter, where each node consists of two Intel Xeon E5-2650v4 CPUs with up to
10 usable cores and 128 GB of DDR4 DRAM. All our results were generated
on the same hardware to ensure a fair comparison. UniGen2’s timeout was set
to 10 h; all other UniGen2 hyperparameters, e.g., κ, startIteration, etc., were
left at their default values. The timeout of SPUR was set to 7 h and its maximum
cache size was set to 8 GB. All instances of the two programs run on a single
core at a time.

1 The arithmetic mean [of the speedup] is even greater (always). For the aptness of
using the geometric mean to report speedup factors see [5].
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8.3 Comparison

Table 1 reports the time taken by SPUR and UniGen2 to generate 1,000 samples
for a representative subset of the benchmarks. Included in the table is also the
speedup factor of SPUR relative to UniGen2, i.e., the ratio of the two execution
times. Since sharpSAT represents the execution time floor for SPUR we also
provide the ratio between SPUR’s execution time and of a single execution of
sharpSAT. Numbers close to 1 substantiate the heuristic claim “if you can count
the models with sharpSAT, you can sample.”

Table 1. Time (sec) comparison of SPUR and UniGen2 to generate 1,000 samples.

Benchmark #Var #Clause SPUR
sharpSAT

UniGen2 (sec) SPUR (sec) Speedup

case5 176 518 19.1 633 0.84 753

registerlesSwap 372 1,493 7.0 28,778 0.26 110,684

s953a 3 2 515 1,297 13.4 1,139 1.03 1,105

s1238a 3 2 686 1,850 7.0 610 2.31 264

s1196a 3 2 690 1,805 10.0 516 2.10 245

s832a 15 7 693 2,017 13.5 56 0.81 69

case 1 b12 2 827 2,725 1.4 689 29 23

squaring30 1,031 3,693 3.7 1,079 4.58 235

27 1,509 2,707 1.0 99 0.017 5,823

squaring16 1,627 5,835 1.9 11,053 78 141

squaring7 1,628 5,837 1.4 2,185 38 57

111 2,348 5,479 1.0 163 0.029 5,620

51 3,708 14,594 1.5 714 0.11 6,490

32 3,834 13,594 1.0 181 0.051 3,549

70 4,670 15,864 1.0 196 0.056 3,500

7 6,683 24,816 1.0 173 0.077 2,246

Pollard 7,815 41,258 6.0 181 355 0.51

17 10,090 27,056 1.6 192 0.092 2,086

20 15,475 60,994 2.7 289 2.05 140

reverse 75,641 380,869 6.2 TIMEOUT 2.66 >13,533

Figure 2 compares the time required to generate 1,000 witnesses with SPUR
and UniGen2 for the full set of 373 benchmarks. The axes are logarithmic and
each mark represents a single formula. Formulas for which a timeout occurred
appear along the top or right border, depending on which tool timed out. (For
marks corresponding to timeouts, the axis of the tool for which there was a
timeout was co-opted to create a histogram of the number of timeouts that
occurred.) These complete results can be summarized as follows:

• SPUR was faster than UniGen2 on 371 of the 373 benchmarks.
• On 369 of the 373, SPUR was more than 10× faster.
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• On over 2/3 of the benchmarks, it was more than 100× faster.
• The geometric mean of the speedup exceeds 400×.
• On over 70% of the benchmarks, SPUR generated 1,000 samples within at

most 10× of a single execution of sharpSAT.
• SPUR was 3 times more likely than UniGen2 to successfully generate wit-

nesses for large formulas, (e.g., >10,000 variables).

Fig. 2. Comparison of the running time to generate 1,000 samples between UniGen2
and SPUR over 373 formulas.
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Abstract. We present a probabilistic model counter that can trade off
running time with approximation accuracy. As in several previous works,
the number of models of a formula is estimated by adding random parity
constraints (equations). One key difference with prior works is that the
systems of parity equations used correspond to the parity check matri-
ces of Low Density Parity Check (LDPC) error-correcting codes. As a
result, the equations tend to be much shorter, often containing fewer
than 10 variables each, making the search for models that also satisfy
the parity constraints far more tractable. The price paid for computa-
tional tractability is that the statistical properties of the basic estimator
are not as good as when longer constraints are used. We show how one
can deal with this issue and derive rigorous approximation guarantees
by performing more solver invocations.

1 Introduction

Given a CNF formula F with n variables, let S = S(F ) denote the set of its
satisfying assignments (models). One way to estimate |S| is to proceed as follows.
For a fixed integer 0 ≤ i ≤ n, let Ri ⊆ {0, 1}n be a random set such that
Pr[σ ∈ Ri] = 2−i for all σ ∈ {0, 1}n. Markov’s inequality implies that if |S| <
2i−1, then Pr[S ∩ Ri �= ∅] < 1/2. Therefore, if we select independent random
sets R1

i , R
2
i , . . . , R

t
i and find that the intersection with S is non-empty for the

majority of them, we can declare that |S| ≥ 2i−1 with confidence 1−exp(−Θ(t)).
What happens if in the majority of the trials we find the intersection to be

empty? Can we similarly draw the conclusion that |S| is unlikely to be much
more than 2i? Unfortunately, no. The informativeness of S ∩ Ri = ∅ depends
on significantly more refined statistical properties of the random set Ri than
the property that Pr[σ ∈ Ri] = 2−i, i.e., uniformity. For example, imagine
that |S| = 2i and that the distribution of Ri is uniform but such that either
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S ∩ Ri = ∅ or S ∩ Ri = S, always. Then, the number of trials needed to have a
reasonable chance of ever witnessing S ∩ Ri �= ∅ is Ω(2i). In other words, with
this distribution for Ri, we can not distinguish between an unsatisfiable formula
and one with 2i models.

In the above example, the distribution of the random set Ri is such that the
random variable X = |S ∩ Ri| exhibits extreme variance, a so-called “lottery
phenomenon”: it typically equals 0, but with very small probability it is huge.
(Nearly) at the other end of the spectrum are distributions for the set Ri that
exhibit pairwise independence, i.e.,

Pr[σ ∈ Ri ∧ τ ∈ Ri] = Pr[σ ∈ Ri] · Pr[τ ∈ Ri] for every σ �= τ ∈ {0, 1}n. (1)

To get a feel for (1), fix any σ ∈ {0, 1}n and sample Ri. Observe that conditional
on σ ∈ Ri, the probability that τ ∈ Ri must be the same whether τ is at
Hamming distance 1 from σ, or at distance, say, n/2 (throughout, distance will
mean Hamming distance). In other words, the characteristic function of the set
Ri must decorrelate in a single step!

It is possible to show that Eq. (1) implies that Pr[S ∩ Ri �= ∅] ≥ (EX)/(1 +
EX) and, thus, that if |S| > 2i, then Pr[S ∩ Ri �= ∅] > 1/2. Therefore, if, as
before, we repeat the experiment t times and find the intersection to be empty in
the majority of the trials, now we can declare that |S| ≤ 2i+1 with confidence 1−
exp(−Θ(t)). Combined with the lower bound argument for |S| outlined earlier,
we see that in order to efficiently approximate |S| within a factor of 4 it suffices to
have a distribution of sets Ri for which (1) holds and for which checking whether
S ∩ Ri = ∅ or not can be done efficiently. Indeed, given such a distribution one
can estimate |S| within a (1±ε) factor, for any ε > 0, and any desired confidence
1 − δ, in O(ε−2 log(1/δ)) trials.

In order to be able to check efficiently whether S ∩ Ri = ∅ we must, at a
minimum, be able to represent the random sets Ri compactly, in spite of their
exponential size. The key to this is to represent each set Ri implicitly as the set
of solutions to a system of i random parity (XOR) constraints (linear equations
modulo 2). More precisely, for any fixed matrix A ∈ {0, 1}i×n, consider the
partition (hashing) of {0, 1}n induced by the value of Aσ ∈ {0, 1}i. Let

Ri = {σ ∈ {0, 1}n : Aσ = b} where b ∈ {0, 1}i is uniformly random. (2)

Observe that even though the 2i parts may have dramatically different sizes,
the uniformity in the choice of b in (2) implies that Pr[σ ∈ Ri] = 2−i, for every
σ ∈ {0, 1}n, as desired. At the same time, checking whether S ∩ Ri = ∅ or not
can be done by converting the i parity constraints to clauses and using a SAT
solver, or, more recently, by using a SAT solver supporting parity constraints,
e.g., CryptoMiniSat [14].

From the above discussion we see that the only issue left is how the choice of
the matrix A affects the variance of the sizes of the different parts and, thus, the
variance of |S ∩ Ri|. To that end, it is not hard to prove that if A is a uniformly
random element of {0, 1}i×n (equivalently, if each element Aij is set to 0/1
independently with equal probability), then membership in Ri enjoys pairwise
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independence, i.e., (1) holds. As mentioned above, this is essentially perfect
from a statistical point of view. Unfortunately, though, under this distribution
for A each parity constraint contains n/2 variables, on average, and changing
any variable in a parity constraint immediately changes its truth value (whereas
in clauses that’s not the case, typically, motivating the two watched literals
heuristic [11]). As a result, the branching factor of the search for satisfying
assignments (models) that also satisfy the parity equations gets rapidly out of
hand as the number of variables in the formula increases.

All ideas presented so far, including in particular the choice of a uniformly
random matrix A ∈ {0, 1}i×n, first appeared in the pioneering theoretical works
by Sipser [13], Stockmeyer [15], and Valiant and Vazirani [17]. As we discuss in
Sect. 2, there has since been a long line of works aiming to make the approach
practical. Specifically, the limitations posed by long parity constraints, i.e., those
of (average) length n/2, was already recognized in the very first works in the
area [7,8]. Later works [6,18] tried to remedy the problem by considering parity
equations where each constraint includes each variable independently with prob-
ability p < 1/2. While such sparsity helps the solver in finding elements of S∩R,
the statistical properties of the resulting random sets deteriorate rapidly as p
decreases. Crucially, in all these works, different constraints (parity equations)
select their set of variables independently of one another.

In [1] we introduced the idea of using random matrices A ∈ {0, 1}i×n with
dependent entries, by selecting A uniformly from an ensemble of Low Density
Parity Check (LDPC) matrices. A simplest such ensemble comprises all matri-
ces where every row (equation) contains the same number l of ones and every
column contains the same number r ≥ 3 of ones. We gave a first mathematical
analysis of the statistical properties of the resulting sets Ri and some experimen-
tal evidence that their actual statistical properties are probably much better than
what is suggested by the mathematical analysis.

A key idea motivating our work here and in [1] is the realization that to prove
mathematically rigorous lower bounds, the random sets Ri do not need to come
with any statistical guarantees (besides the trivial requirement of uniformity).
The obligation to use distributions Di with statistical guarantees exists only for
upper bounds and, crucially, only concerns their behavior over sets of size 2i

or greater. When i/n is not tiny we will see that short parity constraints have
provably good statistical behavior.

In this paper we present1 an approximate model counter, called F2, with
rigorous guarantees based on these ideas. F2 has three modes of operation, trad-
ing accuracy for computation time. To discuss these modes, let us foreshadow
that the statistical demerit of a distribution on matrices A ∈ {0, 1}i×n in our
context will be captured by a scalar quantity B = B(i, n) ≥ 1 that increases as
the average constraint length decreases, with B = 1 corresponding to pairwise
independence (and average constraint length n/2).

Given any δ > 0, let q = ln(1/δ). Given any ε ∈ (0, 1/3], with probability at
least 1 − δ, all of the following will occur, in sequence:

1 F2 source code available at https://github.com/ptheod/F2.git.

https://github.com/ptheod/F2.git
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1. After O(q + log2 n) solver invocations, F2 will return a number � ≤ log2 |S|
and B.

2. After O(qB) solver invocations, F2 will return a number u ≥ log2 |S|.
3. After O(qB2/ε4) solver invocations, F2 will return a number Z ∈ (1 ± ε)|S|.
Observe that while the bounds � ≤ log2 |S| ≤ u are guaranteed (with probability
1 − δ), no a priori bound is given for u − �. In other words, in principle the
algorithm may offer very little information on log2 |S| at the end of Step 2. As
we will see, in practice, this is not the case and, in fact, we expect that in most
practical applications Step 3 will be unnecessary. We give a detailed experimen-
tal performance of F2 in Sect. 10. The main takeaway is that F2 dramatically
extends the range of formulas for which one can get a rigorous model count
approximation.

2 Previous Work

The first work on practical approximate model counting using systems of random
parity equations was by Gomes et al. [8]. Exactly along the lines outlined in the
introduction, they proved that when A ∈ {0, 1}i×n is uniformly random, i.e.,
when each entry of A is set to 1 independently with probability p = 1/2, one
can rigorously approximate log2 |S| within an additive constant by repeatedly
checking if S ∩ Ri = ∅, for various values of i. They further proved that if
each entry of A is set to 1 with probability p < 1/2 one get a rigorous lower
bound, but one which may be arbitrarily far from the truth. In [7], Gomes et al.
showed experimentally that it can be possible to achieve good accuracy (without
guarantees) using parity constraints of length k 
 n/2.

Interest in the subject was rekindled by works of Chakraborty et al. [3] and of
Ermon et al. [5]. Specifically, a complete, rigorous, approximate model counter,
called ApproxMC, was given in [3] which takes as input any δ, ε > 0, and with
probability at least 1 − δ returns a number in the range (1 ± ε)|S|. In [5] an
algorithm, called WISH, is given with a similar (δ, ε)-guarantee for the more
general problem of approximating sums of the form

∑
σ∈{0,1}n w(σ), where w

is a non-negative real-valued function over Ωn, where Ω is a finite domain.
Both ApproxMC and WISH also use uniformly random A ∈ {0, 1}i×n, so that
the resulting parity equations have average length n/2, limiting the range of
problems they can handle.

ApproxMC uses the satisfiability solver CryptoMiniSat (CMS) [14] which
has native support and sophisticated reasoning for parity constraints. CMS can,
moreover, take as input a cutoff value z ≥ 1, so that it will run until it either finds
z solutions or determines the number of solutions to be less than z. ApproxMC
makes use of this capability in order to target i such that |S ∩ Ri| = Θ(δ−2),
instead of i such that |S ∩ Ri| ≈ 1. Our algorithms make similar use of this
capability, using several different cutoffs.

The first effort to develop rigorous performance guarantees when p < 1/2
was made by Ermon et al. in [6], where an explicit expression was given for
the smallest allowed p as a function of |S|, n, δ, ε. The analysis in [6] was
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recently improved by Zhao et al. in [18] who, among other results, showed
that when log2 |S| = Ω(n), one can get rigorous approximation guarantees with
p = O((log n)/n), i.e., average constraint length O(log n). While, prima facie,
this seems a very promising result, we will see that the dependence on the con-
stants involved in the asymptotics is very important in practice. For example,
in our experiments we observe that already setting p = 1/8 yields results whose
accuracy is much worse than those achieved by LDPC constraints.

Finally, in [4] Chakraborty et al. introduced a very nice idea for reducing the
number of solver invocations without any compromise in approximation quality.
It amounts to using nested sequences of random sets R1 ⊇ R2 ⊇ R3 ⊇ · · · ⊇ Rn

in the search for i ≈ log2 |S|. The key insight is that using nested (instead
of independent) random sets Ri means that |S ∩ Ri| is deterministically non-
increasing in i, so that linear search for i can be replaced with binary search,
reducing the number of solver invocations from linear to logarithmic in n. We
use the same idea in our work.

2.1 Independent Support Sets

A powerful idea for mitigating the severe limitations arising from long parity
constraints was proposed by Chakraborty et al. in [2]. It is motivated by the
observation that formulas arising in practice often have a small set of variables
I ⊆ V such that every value-assignment to the variables in I has at most one
extension to a satisfying assignment. Such a set I is called an independent support
set. Clearly, if S′ ⊆ {0, 1}I comprises the value assignments to the variables in I
that can be extended to satisfying assignments, then |S| = |S′|. Thus, given I,
we can rethink of model counting as the task of estimating the size of a subset of
{0, 1}I , completely oblivious to the variables in V − I. In particular, we can add
random parity constraints only over the variables in I, so that even if we use long
constraints each constraint has |I|/2 instead of |V |/2 variables on average. Since
independent support sets of small size can often be found in practice [9], this
has allowed ApproxMC to scale to certain formulas with thousands of variables.

In our work, independent support sets are also very helpful, but per a rather
“dual” reasoning: for any fixed integers i, k, the statistical quality of random sets
defined by systems of i parity constraints with k variables each, decreases with
the number of variables over which the constraints are taken. Thus, by adding
our short constraints over only the variables in an independent support set, we
get meaningful results on formulas for which |I|/2 is too large (causing CMS
and thus ApproxMC to timeout), but for which |I|/|V | is sufficiently large for
our short parity constraints to have good statistical properties.

Variable Convention. In the rest of the paper we will think of the set of vari-
ables V of the formula F being considered as being some independent support
set of F (potentially the trivial one, corresponding to the set of all variables).
Correspondingly, n will refer to the number of variables in that set V .
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3 Our Results

In [1], the first and last authors showed that systems of parity equations based on
LDPC codes can be used both to derive a rigorous lower bound for |S| quickly,
and to derive a (δ, ε)-approximation of |S| with O(qB2/ε4) solver invocations, as
per Step 3 of F2. The new contributions in this work are the following.

– In Sect. 5 we show how to compute a rigorous upper bound for |S| with a
number of solver invocations that is linear in B. While the bound does not
come with any guarantee of being close to |S|, in practice it is remarkably
accurate. Key to our approach is a large deviations inequality bounding the
lower tail of a random variable as a function of the ratio between its second
moment and the square of its first moment. Notably, the analogue of this
inequality does not hold for the upper tail. Recognizing and leveraging this
asymmetry is our main intellectual contribution.

– In Sect. 6 we simplify and streamline the analysis of the (δ, ε)-approximation
algorithm of [1], showing also how to incorporate the idea of nested sampling
sets.

– In Sects. 7–9 we refine the analysis of [1] for B, resulting in significantly
better bounds for it. Getting such improved bounds is crucial for making
our aforementioned upper-bounding algorithm fast in practice (as it is linear
in B).

– Finally, we give a publicly available implementation, called F2.

4 First a Lower Bound

To simplify exposition we only discuss lower bounds of the form |S| ≥ 2i for
i ∈ N, deferring the discussion of more precise estimates to Sect. 6. For any
distribution D , let R ∼ D denote that random variable R has distribution D .

Definition 1. Let D be a distribution on subsets of a set U and let R ∼ D . We
say that D is i-uniform if Pr[σ ∈ R] = 2−i for every σ ∈ U .

Algorithm 1 below follows the scheme presented in the introduction for prov-
ing lower bounds, except that instead of asking whether typically S ∩ R �= ∅, it
asks whether typically |S ∩ R| ≥ 2. To do this, |S ∩ R| is trimmed to 4 in line 5
(by running CryptoMiniSat with a cutoff of 4), so that the event Z ≥ 2t in line 8
can only occur if the intersection had size at least 2 in at least t/2 trials.

Theorem 1 ([1]). Pr[The output of Algorithm 1 is incorrect] ≤ e−t/8.

To get a lower bound for |S| we can invoke Algorithm 1 with i = 1, 2, . . . , n
sequentially and keep the best lower bound returned (if any). To accelerate this
linear search we can invoke Algorithm 1 with i = 1, 2, 4, 8, . . . until the first
“Don’t know” occurs, say at i = 2u. At that point we can perform binary search
in {2u−1, . . . , 2u − 1}, treating every “Don’t know” answer as a (conservative)
imperative to reduce the interval’s upper bound to the midpoint and every “Yes”
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Algorithm 1. Given i, t decides if |S| ≥ 2i with error probability e−t/8

1: Z ← 0
2: j ← 0
3: while j < t and Z < 2t do � The condition Z < 2t is an optimization
4: Sample Rj ∼ Di � Di can be any i-uniform distribution
5: Yj ← min{4, |S ∩ Rj |} � Run CryptoMiniSat with cutoff 4
6: Z ← Z + Yj

7: j ← j + 1

8: if Z ≥ 2t then
9: return “Yes”

10: else
11: return “Don’t know”

answer as an allowance to increase the interval’s lower bound to the midpoint.
We call this scheme “doubling binary search.” In Step 1 of F2 this is further
accelerated by invoking Algorithm 1 with a very small number of trials, t, in
the course of the doubling-binary search. The result of the search is treated as a
“ballpark” estimate and a proper binary search is done in its vicinity, by using
for each candidate i the number of iterations suggested by Theorem 1.

5 Then an Upper Bound

As discussed in the introduction, lottery phenomena may cause Algorithm 1
and, thus, Step 1 of F2 to underestimate log2 |S| arbitrarily. To account for the
possibility of such phenomena we bound the “lumpiness” of the sets Ri ∼ Di by
the quantity defined in (3) below, measuring lumpiness at a scale of M .

Definition 2. Let D be any distribution on subsets of {0, 1}n and let R ∼ D .
For any fixed M ≥ 1, let

Boost(D ,M) = max
S⊆{0,1}n

|S|≥M

1
|S|(|S| − 1)

∑

σ,τ∈S
σ �=τ

Pr[σ, τ ∈ R]
Pr[σ ∈ R] Pr[τ ∈ R]

. (3)

To develop intuition for (3) observe that the ratio inside the sum is the
factor by which the a priori probability that a truth assignment belongs in R
is modified by conditioning on some other truth assignment belonging in R. So,
if membership in R is pairwise independent, then Boost(D , ·) = 1. Note also
that since |S| ≥ M instead of |S| = M in (3), the function Boost(D , ·) is non-
increasing in M . As we will see, the critical quantity for an i-uniform distribution
Di is Boost(Di, 2i), i.e., an i-uniform distribution can be useful even if Boost(Di)
is huge for sets of size less than 2i.

To analyze Algorithm 2 we will use the following inequality of Maurer [10].
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Algorithm 2. Given δ > 0 and L ≤ |S| returns Z ≥ |S| with probability 1 − δ

1: � ← �log2 L�
2: D� ← any �-uniform distribution
3: B ← any upper bound for Boost(D�, 2

�)
4: t ← �8(B + 1) ln(1/δ)	
5: Z ← 0
6: for j from 1 to t do
7: Sample Rj ∼ D�

8: Xj ← |S ∩ Rj | � Run CryptoMiniSat without cutoff
9: Z ← Z + Xj

10: return “|S| ≤ 2�+1(Z/t)”

Lemma 1. Let X1, . . . , Xt be non-negative i.i.d. random variables. Let Z =∑t
i=1 Xi. If EX2

1/(EX1)2 ≤ B, then for any α ≥ 0,

Pr[Z ≤ (1 − α)EZ] ≤ exp
(

−α2t

2B

)

.

Theorem 2. Pr[The output of Algorithm 2 is correct] ≥ 1 − δ.

Proof. Let Z be the random variable equal to the value of variable Z in line 9,
right before line 10 is executed. If Z = z, in order for the output to be wrong it
must be that |S| > 2�+1(z/t), implying EZ = t|S|2−� > 2z and, therefore, that
the event Z ≤ EZ/2 occurred. Since Z is the sum of i.i.d. non-negative random
variables X1, . . . , Xt, we can bound Pr[Z ≤ EZ/2] via Lemma 1.

To bound EX2
1/(EX1)2, we write X1 =

∑
σ∈S 1σ∈R1 and observe that

EX2
1 =

∑

σ,τ∈S

Pr[σ, τ ∈ R1]

=
∑

σ∈S

Pr[σ ∈ R1] +
∑

σ,τ∈S
σ �=τ

Pr[σ, τ ∈ R1]

≤
∑

σ∈S

Pr[σ ∈ R1] + 2−2i|S|(|S| − 1)Boost(D , |S|)

≤ EX1 + Boost(D , |S|)(EX1)2.

Since |S| ≥ L ≥ 2� and Boost(D�,M) is non-increasing in M , we see that

EX2
1

(EX1)2
≤ 1

EX
+ Boost(D , |S|) ≤ 1 + Boost(D�, 2�). (4)

Therefore, applying Lemma 1 with α = 1/2 and recalling the definitions of B
and t in lines 3 and 4 of Algorithm 2, we see that Pr[Z ≤ EZ/2] ≤ δ, as desired.
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F2. Given L ≤ |S| ≤ U , δ, θ > 0 returns Z ∈ (1 ± δ)|S| with probability 1 − θ

1: if L < 4/δ then
2: E ← number of solutions found by CryptoMiniSat ran with cutoff 4/δ
3: if E < 4/δ then return E � In this case |S| = E

4:
5: � ← �log2(δL/4)�
6: u ← �log2 U	
7: B ← Any upper bound for max

�≤i≤u−2
Boost(Di, 2

i)

8:
9: δ ← min{δ, 1/3}

10: ξ ← 8/δ
11: b ← �ξ + 2(ξ + ξ2(B − 1))	 � If B = 1, then b = �24/δ	
12: t ← �(2b2/9) ln(5/θ)	
13:
14: Z�, Z�+1, . . . , Zu ← 0
15:
16: for j from 1 to t do
17: M ← a uniformly random element of an LDPC ensemble over {0, 1}u×n

18: y ← a uniformly random element of {0, 1}u

19: for i from � to u do
20: Let Mi, yi comprise the first i rows of M and y, respectively
21: Ri,j ← {σ ∈ {0, 1}n : Miσ = yi} � Enforce the first i parity constraints
22: Yi,j ← min{b, |S ∩ Ri,j |} � Run CryptoMiniSat with cutoff b
23: Zi ← Zi + Yi,j

24:
25: j ← max{−1, max{� ≤ i ≤ u : Zi ≥ t(1 − δ)(4/δ)}}
26:
27: if j �= −1 then return 2j(Zj/t)
28: else return “Fail”

6 Finally a (1 ± δ)|S| Approximation

Given any bounds L ≤ |S| ≤ U , for example derived by using Algorithms 1
and 2, algorithm F2 below yields a rigorous approximation of |S| within 1 ± δ
with a number of solver invocations proportional to B2/δ4, where

B = max
�≤i≤u−2

Boost(Di, 2i),

where � ≈ log2(δL) and u ≈ log2 u. (If B = 1, the iterations drop to O(δ−2).)

Theorem 3. Pr[F2 returns Z ∈ (1 ± δ)|S|] ≥ 1 − θ.

To prove Theorem 3 we will need the following tools.

Lemma 2 (Hoeffding’s Inequality). If Z = Y1 + · · · + Yt, where 0 ≤ Yi ≤ b
are independent random variables, then for any w ≥ 0,

Pr[Z/t ≥ EZ/t+w] ≤ e−2t(w/b)2 and Pr[Z/t ≤ EZ/t−w] ≤ e−2t(w/b)2 . (5)
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Lemma 3 ([1]). Let X ≥ 0 be an arbitrary integer-valued random variable.
Write EX = μ and Var(X) = σ2. For some integer b ≥ 0, define the random
variable Y = min{X, b}. For any λ > 0, if b ≥ μ + λσ2, then EY ≥ EX − 1/λ.

Lemma 4 ([1]). Let D be any i-uniform distribution on subsets of {0, 1}n. For
any fixed set S ⊆ {0, 1}n, if R ∼ D and X = |S ∩ R|, then Var(X) ≤ EX +
(Boost(D , |S|) − 1)(EX)2.

Proof. If |S| < 4/δ, the algorithm returns exactly |S| and exits. Otherwise, the
value � defined in line 5 is non-negative and q := �log2(δ|S|/4)� ≥ � since L ≤ |S|.

Let Ai = Zi/t. We will establish the following propositions:

(a) Pr[Aq2q �∈ (1 ± δ)|S|] ≤ 2e−9t/(2b2).
(b) Pr[Aq+12q+1 �∈ (1 ± δ)|S|] ≤ 2e−9t/(2b2).
(c) If Aq2q ∈ (1 ± δ)|S|, then j ≥ q in line 25 (deterministically).
(d) Pr[j ≥ q + 2] ≤ e−8t/b2 .

Given propositions (a)–(d) the theorem follows readily. If Aq+k2q+k is in the
range (1 ± δ)|S| for k ∈ {0, 1} but for k ≥ 2 it is less than (1 − δ)(4/δ), then the
algorithm will report either Aq2q or Aq+12q+1, both of which are in (1 ± δ)|S|.
Thus, the probability that the algorithm does not report a number in (1 ± δ)|S|
is at most 2 · 2e−9t/(2b2) + e−8t/b2 which, by our choice of t, is less than θ.

To establish propositions (a)–(d) we start by noting the following facts:

(i) Ri,j is sampled from an i-uniform distribution for every i, j.
(ii) The sets Ri,1, . . . , Ri,t are independent for every i.
(iii) R�,j ⊇ R�+1,j ⊇ · · · ⊇ Ru−1,j ⊇ Ru,j for every j.

Now, fix any i = q+k, where k ≥ 0. Let Xi,j = |S∩Ri,j | and write EXi,j = μi,
Var(Xi,j) = σ2

i . By fact (ii), Zi is the sum of t independent random variables
0 ≤ Yi,j ≤ b. Since EZi/t ≤ μi, Hoeffding’s inequality implies that for all i ≥ q,

Pr[Zi/t ≥ (1 + δ)μi] ≤ exp

(

−2t

(
δμi

b

)2
)

. (6)

To bound Pr[Zi/t ≥ (1− δ)μi] for k ∈ {0, 1} we first observe that |S| ≥ 2q+1,
since δ ≤ 2. Since Boost(D ,M) is non-increasing in M and q ≤ u − 2 we see
that

max
k∈{0,1}

Boost(Dq+k, |S|) ≤ max{Boost(Dq, 2q+1),Boost(Dq+1, 2q+1)}

≤ max{Boost(Dq, 2q),Boost(Dq+1, 2q+1)}
≤ max

�≤i≤u−2
Boost(Di, 2i)

≤ B. (7)

Fact (i) implies that Xij satisfies the conditions of Lemma 4. Therefore, for
i ∈ {q, q + 1}, Lemma 4 combined with (7) implies σ2

i ≤ μi + (B − 1)μ2
i . Since
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μi < 8/δ for all i ≥ q while ξ = 8/δ, we see that b = �ξ + 2(ξ + ξ2(B − 1))� ≥
μi + 2σ2

i . Thus, for i ∈ {q, q + 1} the random variables Xi,j , Yi,j satisfy the
conditions of Lemma 3 with λ = 2, implying EYi,j ≥ EXi,j − 1/2. Therefore,
EZi/t ≥ μi − 1/2 for i ∈ {q, q + 1} so that Hoeffding’s inequality implies

Pr[Zi/t ≤ (1 − δ)μi] ≤ exp

(

−2t

(
δμi − 1/2

b

)2
)

. (8)

To establish propositions (a) and (d) observe that μq+k ≥ 22−k/δ by Fact (i).
Therefore, (6) and (8) imply that for k ∈ {0, 1}, the probability that Aq+k2q+k

is outside (1 ± δ)|S| is at most

2 exp

(

−2t

(
22−k − 1/2

b

)2
)

< 2 exp(−9t/(2b2)) .

To establish proposition (c) note that if Aq ≥ (1−δ)μq, then Aq ≥ (1−δ)(4/δ)
and, thus, j ≥ q. Finally, to establish proposition (d) observe that, by Fact (iii),
the random variables Zi are non-increasing in i, so that j ≥ q + 2 implies
Aq+22q+2 < (1 − δ)(4/δ). To bound the probability of this event we note that
μq+2 < 2/δ. Thus, μq+2 + w ≥ (1 − δ)(4/δ), implies w > 2(1 − 2δ)/δ, which,
since δ ≤ 1/3, implies w > 2. Therefore, (5) implies Pr[j ≥ q + 2] ≤ e−8t/b2 .

7 Homogeneous Distributions

Our goal in Sects. 7–9 is to derive an upper bound for B when the random
matrix A corresponds to the parity check matrix of an LDPC code. To that
end, in this section we derive an expression for B valid for any random set
distribution that satisfies certain symmetry properties. In Sect. 8 we relate the
sets Ri corresponding to codewords of LDPC codes to these properties. Finally,
in Sect. 9 we discuss how to deal with miscellaneous technical issues arising from
the need to be able to work with formulas with an arbitrary number of variables
and clauses, while retaining mathematical rigor in our bounding of B.

The analysis in this section is identical to the one in [1] except for requiring
that f(n) = 0 in the definition of tractability. This has the effect of changing
the lower index of summation in the definition of B in Theorem 4 from 0 to 1
which, in turn, makes a significant difference in practice.

Definition 3. An i-uniform distribution, Di is homogeneous if there exists a
function f , called the density of Di, such that for all σ, τ ∈ {0, 1}n, if R ∼ Di,
then Pr[τ ∈ R | σ ∈ R] = f(Hamming(σ, τ)).

Definition 4. A homogenous distribution is tractable if its density f satisfies:
f(j) ≥ f(j + 1) for j < n/2, f(j) ≤ f(n − j) for j ≥ n/2, and f(n) = 0.
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For any S ⊂ {0, 1}n and σ ∈ S, let HS
σ (d) denote the number of elements of

S at Hamming distance d from σ. In [1] it was shown that for any homogenous
distribution Di, and any M ≥ 1,

Boost(Di,M) ≤ max
S⊆{0,1}n

|S|≥M
σ∈S

2i

|S| − 1

n∑

d=1

HS
σ (d)f(d). (9)

To bound (9), we assume that |S| ≥ 2n + 1 so that there exists 2 ≤ z ≤ n/2
such that (|S|−1)/2 =

(
n
1

)
+

(
n
2

)
+· · ·+(

n
z−1

)
+α

(
n
z

)
, for some α ∈ [0, 1). (If |S| <

2n + 1, then we can estimate |S by using a handful of long parity constraints.)
Fact f(j) ≤ f(n − j) for j ≥ n/2 implies (10). Facts f(j) ≥ f(j + 1) for j < n/2
and f(n) = 0 imply (11). Finally, the fact f(z − 1) ≥ f(z) implies (13).

∑n
d=1 HS

σ (d)f(d)
|S| − 1

≤
∑n/2

d=1 HS
σ (d)f(d) +

∑
d>n/2 HS

σ (d)f(n − d)

|S| − 1
(10)

≤
2
(∑z−1

d=1

(
n
d

)
f(d) + α

(
n
z

)
f(z)

)

|S| − 1
(11)

=
∑z−1

d=1

(
n
d

)
f(d) + α

(
n
z

)
f(z)

∑z−1
d=1

(
n
d

)
+ α

(
n
z

) (12)

≤
∑z−1

d=1

(
n
d

)
f(d)

∑z−1
d=1

(
n
d

) (13)

:= B(z). (14)

To bound B(z) observe that since f(j) ≥ f(j + 1) for j < n/2 it follows
that B(j) ≥ B(j + 1) for j < n/2. Thus, to bound B(z) from above it suffices
to bound z from below. Let h : x �→ −x log2 x − (1 − x) log2 x be the binary
entropy function and let h−1 : [0, 1] �→ [0, 1] map y to the smallest number x
such that h(x) = y. It is well-known that

∑z
d=1

(
n
d

) ≤ 2nh(z/n), for every integer
1 ≤ z ≤ n/2. Therefore, z ≥ �nh−1(log2(|S|/2)/n)�, which combined with (9)
and (14) implies the following.

Theorem 4. If Di is a tractable distribution with density f , then

Boost(Di,M) ≤ 2iB

(⌈

nh−1

(
log2 M − 1

n

)⌉)

, (15)

where B(z) =
∑z−1

d=1

(
n
d

)
f(d)/

∑z−1
d=1

(
n
d

)
and h−1 : [0, 1] �→ [0, 1] maps y to the

smallest number x such that h(x) = y, where h is the binary entropy function.

8 Low Density Parity Check Codes

We will consider the set of all matrices {0, 1}i×n where:
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(i) Every column (variable) has exactly l ≥ 3 non-zero elements.
(ii) Every row (equation) has �r� or �r� non-zero elements, where r = ln/i.

Given n, i, and l, let i0 denote the number of equations with �r� variables
and let i1 = i − i0. Let A be selected uniformly at random2 among all matrices
satisfying (i)–(ii). Let R = {σ ∈ {0, 1}n : Aσ = b}, where b ∈ {0, 1}i is uniformly
random. Lemma 3.157 of [12] implies that for every σ ∈ {0, 1}n, if σ ∈ R, then the
expected number of codewords at distance d from σ, denoted by codewords(d),
is independent of σ (due to the row- and column-symmetry in the distribution
of A) and equals the coefficient of xdl in the polynomial

(
n

d

)
(∑

j

(
r
2j

)
x2j

)i0 (∑
j

(
r+1
2j

)
x2j

)i1

(
nl
dl

) .

If Di denotes the distribution of R, the uniformity in the choice of b implies
that Di is i-uniform. The fact that for every σ ∈ {0, 1}n, conditional on σ ∈ R,
the expected number of codewords at distance d from σ is independent of σ
implies that for any fixed τ �= σ, Pr[both σ, τ ∈ R] = 2−if(d), where f(d) =
codewords(d)/

(
n
d

)
, making Di homogeneous with density f .

Regarding tractability, we begin by noting that if any equation has an odd
number of variables, then the complement of a codeword can not be a codeword,
implying codewords(n) = 0. When r is an ever integer we achieve i1 > 0 by
adding a single dummy Boolean variable to the formula (and reducing all our
estimates of |S| by 2). To simplify exposition in the following we assume i1 > 0.

It is also well-known [12] that codewords(j) ≥ codewords(j + 1) for j < n/2,
so that we are left to establish f(j) ≥ f(j+1) for all 0 ≤ j < n/2. Unfortunately,
this is not strictly true for a trivial reason: in the vicinity of n/2 the function f
is non-monotone, exhibiting minuscule fluctuations (due to finite-scale-effects)
around its globally minimum value at n/2. While this prevents us from applying
Theorem 4 immediately, it is easy to overcome. Specifically, for the proof of
Theorem 4 to go through it is enough that f(j) ≥ f(j + 1) for all 1 ≤ j < z
(instead of all 1 ≤ j < n/2), something which for most sets of interest holds,
as z 
 n/2. Thus, to provide a rigorous upper bound on Boost, it is enough to
verify the monotonicity of f up to z while evaluating B(z).

9 Bounding B in Practice

In defining our systems of parity equations based on LDPC codes in the previ-
ous sections, we made sure that every variable participates in an even number
of equations, we used equations whose lengths are successive integers, and we
insisted on always having at least one equation of odd length. These seemingly
2 This can be done by selecting a uniformly random permutation of size [ln] and using

it to map each of the ln non-zeros to equations; when l, r ∈ O(1), the variables in
each equation will be distinct with probability Ω(1), so that a handful of trials suffice
to generate a matrix as desired.
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minor tricks make a very big difference in the bound of Boost in Theorem 4.
Unfortunately, the number of iterations, t, needed by our (δ, ε)-approximation
algorithm of Sect. 6 has a very large leading constant factor, in order to simplify
the mathematical analysis. (This is not the case for our upper-bounding algo-
rithm of Sect. 5.) For example, if the approximation factor δ = 1/3 and the error
probability θ = 1/5, even in the ideal case where B = 1, i.e., the case of pairwise
independence, t = 3, 709. In reality, when B = 1, a dozen repetitions are more
than enough to get an approximation with this δ, θ. Far worse, when B = 2,
the number of repetitions t explodes to over 1 million, making the derivation of
rigorous (δ, ε)-approximations via Theorem 4 unrealistic. That said, we believe
that further sharpening of Theorem 4 is within grasp.

Luckily, our algorithms for deriving rigorous upper and lower bounds have
much better constant-factor behavior. Moreover, as we will see experimentally,
the heuristic estimate for |S| that can be surmised from their (ultra-fast) execu-
tion appears to be excellent in practice. Below we describe a set of experiments
we performed showing that one can get rigorous results in realistic times using
our tools for formulas that are largely outside the reach of all known other model
counters.

10 Experiments

We compare Algorithms 1, 2, i.e., our lower and upper bounding algorithms,
with the deterministic, exact model counter sharpSAT [16] and the probabilistic,
approximate model counter ApproxMC2 (AMC2) [4]. We consider the same 387
formulas as [4] except for 2 unsatisfiable formulas and 10 formulas whose number
of solutions (and, thus, equations) is so small that our parity equations devolve
into long XOR equations. Of the remaining 375 formulas, sharpSAT solves 245 in
under 2 s, in every case significantly faster than all other methods. At the other
extreme, 40 formulas are not solved by any method within the given time limit of
8 h. We report on the remaining 90, most interesting, formulas. All experiments
were run on a modern cluster of 13 nodes, each with 16 cores and 128 GB RAM.

We use an improved implementation of CryptoMiniSat [14] tuned for hashing-
based algorithms by Mate Soos and Kuldeep Meel, which is pending publication.
This also allows to deal with the fact that 10 of the 90 formulas come with a
sampling set, i.e., a subset of variables V such that the goal is to count the size
of the projection of the set of all models on V . Since sharpSAT does not provide
such constrained counting functionality, we do not run it on these formulas.

To provide a sense of the tradeoff between the length of the parity constraints
and B, we note that when every variable appears in 6 parity constraints, then
B < 30 for all but 3 formulas, while for all but 1 formula all equations have
length at most 16. When every variable appears in 12 parity constraints, then
B < 3 for all but 3 formulas, while for all but 6 formulas all equations have
length at most 28.

Our Algorithms 1, 2 terminated within the allotted time for 87 of the 90
formulas, providing a rigorous lower bound and a rigorous upper bound. By
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Fig. 1. The sum of the running times of the lower and upper bounding algorithms in
F2 vs. the running time of sharpSAT.

Fig. 2. The sum of the running times of the lower and upper bounding algorithms in
F2 vs. the running time of ApproxMC2.

comparison, sharpSAT terminated on 45 formulas (out of 90− 10 = 80), while
ApproxMC2 on 25 of 90.

For most formulas the ratio between our two rigorous bounds is between 8
and 16 and for none more than 64. For the 48 formulas for which the model
count is known, either exactly via sharpSAT or approximately via ApproxMC2,
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the ratio between our upper bound and the known count was typically less than
2 and never more than 3. This is in spite of the fact that the time to derive
it is often just a handful of seconds for formulas for which ApproxMC2 and/or
sharpSAT time out given 8 h.

In Figs. 1 and 2, we plot the sum of the running time of our two algorithms,
against the running time of sharpSat and ApproxMC2, respectively. (Marks out-
side the 8hr × 8hr box, indicate a time-out and only one of their two coordinates
is meaningful.)

11 Conclusions

We have shown that by using systems off parity constraints corresponding to
LDPC matrices, one can get rigorous lower bounds and rigorous upper bounds.
While these bounds do not come with a priori guarantees about how close they
will be to one another, in practice they are typically within a small multiplicative
factor, e.g., 2–3. We believe that for many practical applications such bounds
will be quite useful, as they are both rigorous and fast to derive. In particular,
when (log2 |S|)/n is not too small, the constraint lengths can remain bounded,
for arbitrarily large n. As a result, our tool F2 can deliver rigorous results for
formulas that appear outside the reach of tools based on long parity equations,
such as ApproxMC2.
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Abstract. In this paper, we introduce a novel algorithm to solve pro-
jected model counting (PMC). PMC asks to count solutions of a Boolean
formula with respect to a given set of projected variables, where multi-
ple solutions that are identical when restricted to the projected variables
count as only one solution. Our algorithm exploits small treewidth of the

primal graph of the input instance. It runs in time O(22k+4
n2) where k is

the treewidth and n is the input size of the instance. In other words, we
obtain that the problem PMC is fixed-parameter tractable when param-
eterized by treewidth. Further, we take the exponential time hypoth-
esis (ETH) into consideration and establish lower bounds of bounded
treewidth algorithms for PMC, yielding asymptotically tight runtime
bounds of our algorithm.

Keywords: Parameterized algorithms · Tree decompositions
Multi-pass dynamic programming · Projected model counting
Propositional logic

1 Introduction

A problem that has been used to solve a large variety of real-world questions
is the model counting problem (#Sat) [2,11,14,16,33,37,40,42,45]. It asks to
compute the number of solutions of a Boolean formula [24] and is theoretically
of high worst-case complexity (#· P-complete [38,43]). Lately, both #Sat and
its approximate version have received renewed attention in theory and prac-
tice [9,16,31,39]. A concept that allows very natural abstractions of data and
query results is projection. Projection has wide applications in databases [1] and
declarative problem modeling. The problem projected model counting (PMC)
asks to count solutions of a Boolean formula with respect to a given set of pro-
jected variables, where multiple solutions that are identical when restricted to
the projected variables count as only one solution. If all variables of the formula

The work has been supported by the Austrian Science Fund (FWF), Grants Y698
and P26696, and the German Science Fund (DFG), Grant HO 1294/11-1. The first
two authors are also affiliated with the University of Potsdam, Germany.

c© Springer International Publishing AG, part of Springer Nature 2018
O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 165–184, 2018.
https://doi.org/10.1007/978-3-319-94144-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94144-8_11&domain=pdf


166 J. K. Fichte et al.

are projected variables, then PMC is the #Sat problem and if there are no pro-
jected variables then it is simply the Sat problem. Projected variables allow for
solving problems where one needs to introduce auxiliary variables, in particular,
if these variables are functionally independent of the variables of interest, in the
problem encoding, e.g., [21,23].

When we consider the computational complexity of PMC it turns out that
under standard assumptions the problem is even harder than #Sat, more pre-
cisely, complete for the class #·NP [17]. Even though there is a PMC solver [3]
and an ASP solver that implements projected enumeration [22], PMC has
received very little attention in parameterized algorithmics so far. Parameter-
ized algorithms [12,15,20,34] tackle computationally hard problems by directly
exploiting certain structural properties (parameter) of the input instance to solve
the problem faster, preferably in polynomial-time for a fixed parameter value. In
this paper, we consider the treewidth of graphs associated with the given input
formula as parameter, namely the primal graph [41]. Roughly speaking, small
treewidth of a graph measures its tree-likeness and sparsity. Treewidth is defined
in terms of tree decompositions (TDs), which are arrangements of graphs into
trees. When we take advantage of small treewidth, we usually take a TD and
evaluate the considered problem in parts, via dynamic programming (DP) on
the TD.

New Contributions.

1. We introduce a novel algorithm to solve projected model counting (PMC) in
time O(22k+4

n2) where k is the treewidth of the primal graph of the instance
and n is the size of the input instance. Similar to recent DP algorithms for
problems on the second level of the polynomial hierarchy [19], our algorithm
traverses the given tree decomposition multiple times (multi-pass). In the first
traversal, we run a dynamic programming algorithm on tree decompositions
to solve Sat [41]. In a second traversal, we construct equivalence classes on
top of the previous computation to obtain model counts with respect to the
projected variables by exploiting combinatorial properties of intersections.

2. We establish that our runtime bounds are asymptotically tight under the expo-
nential time hypothesis (ETH) [28] using a recent result by Lampis and Mit-
sou [32], who established lower bounds for the problem ∃∀-Sat assuming
ETH. Intuitively, ETH states a complexity theoretical lower bound on how
fast satisfiability problems can be solved. More precisely, one cannot solve
3-Sat in time 2s·n · nO(1) for some s > 0 and number n of variables.

2 Preliminaries

For a set X, let 2X be the power set of X consisting of all subsets Y with ∅ ⊆ Y ⊆
X. Recall the well-known combinatorial inclusion-exclusion principle [25], which
states that for two finite sets A and B it is true that |A∪B| = |A|+ |B|−|A∩B|.
Later, we need a generalized version for arbitrary many sets. Given for some
integer n a family of finite sets X1, X2, . . ., Xn, the number of elements in the
union over all sets is |

⋃n
j=1 Xj | =

∑
I⊆{1,...,n},I �=∅(−1)|I|−1|

⋂
i∈I Xi|.
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Satisfiability. A literal is a (Boolean) variable x or its negation ¬x. A clause is
a finite set of literals, interpreted as the disjunction of these literals. A (CNF)
formula is a finite set of clauses, interpreted as the conjunction of its clauses. A
3-CNF has clauses of length at most 3. Let F be a formula. A sub-formula S of F
is a subset S ⊆ F of F . For a clause c ∈ F , we let var(c) consist of all variables
that occur in c and var(F ) :=

⋃
c∈F var(c). A (partial) assignment is a mapping

α : var(F ) → {0, 1}. For x ∈ var(F ), we define α(¬x) := 1−α(x). The formula F
under the assignment α ∈ 2var(F ) is the formula F|α obtained from F by removing
all clauses c containing a literal set to 1 by α and removing from the remaining
clauses all literals set to 0 by α. An assignment α is satisfying if F|α = ∅ and F
is satisfiable if there is a satisfying assignment α. Let V be a set of variables. An
interpretation is a set J ⊆ V and its induced assignment αJ,V of J with respect
to V is defined as follows αJ,V := {v 
→ 1 | v ∈ J ∩V }∪{v 
→ 0 | v ∈ V \J}. We
simply write αJ for αJ,V if V = var(F ). An interpretation J is a model of F ,
denoted by J � F , if its induced assignment αJ is satisfying. Given a formula F ;
the problem Sat asks whether F is satisfiable and the problem #Sat asks to
output the number of models of F , i.e., |S| where S is the set of all models of F .

Projected Model Counting. An instance of the projected model counting problem
is a pair (F, P ) where F is a (CNF) formula and P is a set of Boolean variables
such that P ⊆ var(F ). We call the set P projection variables of the instance. The
projected model count of a formula F with respect to P is the number of total
assignments α to variables in P such that the formula F|α under α is satisfiable.
The projected model counting problem (PMC) [3] asks to output the projected
model count of F , i.e., |{M ∩ P | M ∈ S}| where S is the set of all models of F .

Example 1. Consider formula F :={
c1

︷ ︸︸ ︷
¬a ∨ b ∨ p1,

c2
︷ ︸︸ ︷
a ∨ ¬b ∨ ¬p1,

c3
︷ ︸︸ ︷
a ∨ p2,

c4
︷ ︸︸ ︷
a ∨ ¬p2}

and set P := {p1, p2} of projection variables. The models of formula F are {a, b},
{a, p1}, {a, b, p1}, {a, b, p2}, {a, p1, p2}, and {a, b, p1, p2}. However, projected to
the set P , we only have models ∅, {p1}, {p2}, and {p1, p2}. Hence, the model
count of F is 6 whereas the projected model count of instance (F, P ) is 4. �

Computational Complexity. We assume familiarity with standard notions in
computational complexity [35] and use counting complexity classes as defined
by Hemaspaandra and Vollmer [27]. For parameterized complexity, we refer
to standard texts [12,15,20,34]. Let Σ and Σ′ be some finite alphabets. We
call I ∈ Σ∗ an instance and ‖I‖ denotes the size of I. Let L ⊆ Σ∗ × N and
L′ ⊆ Σ′∗ × N be two parameterized problems. An fpt-reduction r from L to L′

is a many-to-one reduction from Σ∗ × N to Σ′∗ × N such that for all I ∈ Σ∗

we have (I, k) ∈ L if and only if r(I, k) = (I ′, k′) ∈ L′ such that k′ ≤ g(k) for
a fixed computable function g : N → N, and there is a computable function f
and a constant c such that r is computable in time O(f(k)‖I‖c) [20]. A witness
function is a function W : Σ∗ → 2Σ′∗

that maps an instance I ∈ Σ∗ to a finite
subset of Σ′∗. We call the set W(I) the witnesses. A parameterized counting prob-
lem L : Σ∗ × N0 → N0 is a function that maps a given instance I ∈ Σ∗ and an
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p2 a

b p1 {a, b, p1}
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{a, p2}
t2

{a}t3

Fig. 1. Primal graph PF of F from Example 2 (left) with a TD T of graph PF (right).

integer k ∈ N to the cardinality of its witnesses |W(I)|. We call k the parameter.
The exponential time hypothesis (ETH) states that the (decision) problem Sat
on 3-CNF formulas cannot be solved in time 2s·n · nO(1) for some s > 0 where n
is the number of variables [28].

Tree Decompositions and Treewidth. For basic terminology on graphs, we refer
to standard texts [8,13]. For a tree T = (N,A, n) with root n and a node t ∈ N ,
we let children(t, T ) be the sequence of all nodes t′ in arbitrarily but fixed order,
which have an edge (t, t′) ∈ A. Let G = (V,E) be a graph. A tree decomposition
(TD) of graph G is a pair T = (T, χ) where T = (N,A, n) is a rooted tree, n ∈ N
the root, and χ a mapping that assigns to each node t ∈ N a set χ(t) ⊆ V ,
called a bag, such that the following conditions hold: (i) V =

⋃
t∈N χ(t) and

E ⊆
⋃

t∈N{uv | u, v ∈ χ(t)}; (ii) for each r, s, t ∈ N such that s lies on the path
from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s). Then, width(T ) := maxt∈N |χ(t)| − 1.
The treewidth tw(G) of G is the minimum width(T ) over all tree decompositions
T of G. For arbitrary but fixed w ≥ 1, it is feasible in linear time to decide if
a graph has treewidth at most w and, if so, to compute a tree decomposition of
width w [5]. In order to simplify case distinctions in the algorithms, we always
use so-called nice tree decompositions, which can be computed in linear time
without increasing the width [7] and are defined as follows. For a node t ∈ N , we
say that type(t) is leaf if children(t, T ) = 〈〉; join if children(t, T ) = 〈t′, t′′〉 where
χ(t) = χ(t′) = χ(t′′) �= ∅; int (“introduce”) if children(t, T ) = 〈t′〉, χ(t′) ⊆ χ(t)
and |χ(t)| = |χ(t′)|+1; rem (“removal”) if children(t, T ) = 〈t′〉, χ(t′) ⊇ χ(t) and
|χ(t′)| = |χ(t)| + 1. If for every node t ∈ N , type(t) ∈ {leaf, join, int, rem} and
bags of leaf nodes and the root are empty, then the TD is called nice.

3 Dynamic Programming on TDs for SAT

Before we introduce our algorithm, we need some notations for dynamic program-
ming on tree decompositions and recall how to solve the decision problem Sat
by exploiting small treewidth.

Graph Representation of Sat Formulas. In order to use tree decompositions for
satisfiability problems, we need a dedicated graph representation of the given
formula F . The primal graph PF of F has as vertices the variables of F and
two variables are joined by an edge if they occur together in a clause of F .
Further, we define some auxiliary notation. For a given node t of a tree decom-
position (T, χ) of the primal graph, we let Ft := {c | c ∈ F, var(c) ⊆ χ(t)}, i.e.,
clauses entirely covered by χ(t). The set F≤t denotes the union over Fs for all
descendant nodes s ∈ N of t. In the following, we sometimes simply write tree
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decomposition of formula F or treewidth of F and omit the actual graph repre-
sentation of F .

Example 2. Consider formula F from Example 1. The primal graph PF of for-
mula F and a tree decomposition T of PF are depicted in Fig. 1. Intuitively,
T allows to evaluate formula F in parts. When evaluating F≤t3 , we split into
F≤t1 = {c1, c2} and F≤t2 = {c3, c4}, respectively. �

Dynamic Programming on TDs. Algorithms that solve Sat or #Sat [41] in
linear time for input formulas of bounded treewidth proceed by dynamic pro-
gramming along the tree decomposition (in post-order) where at each node t
of the tree information is gathered [6] in a table τt. A table τ is a set of rows,
where a row u ∈ τ is a sequence of fixed length. Tables are derived by an algo-
rithm, which we therefore call table algorithm A. The actual length, content, and
meaning of the rows depend on the algorithm A that derives tables. Therefore,
we often explicitly state A-row if rows of this type are syntactically used for
table algorithm A and similar A-table for tables. For sake of comprehension, we
specify the rows before presenting the actual table algorithm for manipulating
tables. The rows used by a table algorithm SAT have in common that the first
position of these rows manipulated by SAT consists of an interpretation. The
remaining positions of the row depend on the considered table algorithm. For
each sequence u ∈ τ, we write I(u) to address the interpretation (first) part of
the sequence u. Further, for a given positive integer i, we denote by u(i) the i-th
element of row u and define τ(i) as τ(i) := {u(i) | u ∈ τ}.

Then, the dynamic programming approach for propositional satisfiability per-
forms the following steps:

1. Construct the primal graph PF of F .
2. Compute a tree decomposition (T, χ) of PF , where T = (N, ·, n).
3. Run DPSAT (see Listing 1), which executes a table algorithm SAT for every

node t in post-order of the nodes in N , and returns SAT-Comp mapping every
node t to its table. SAT takes as input1 bag χ(t), sub-formula Ft, and tables
Child-Tabs previously computed at children of t and outputs a table τt.

4. Print the result by interpreting the table for root n of T .

Listing 2 presents table algorithm SAT that uses the primal graph representation.
We provide only brief intuition, for details we refer to the original source [41].
The main idea is to store in table τt only interpretations that are a model of
sub-formula F≤t when restricted to bag χ(t). Table algorithm SAT transforms
at node t certain row combinations of the tables (Child-Tabs) of child nodes of t
into rows of table τt. The transformation depends on a case where variable a is
added or not added to an interpretation (int), removed from an interpretation

1 Actually, SAT takes in addition as input PP-Tabs, which contains a mapping of
nodes of the tree decomposition to tables, i.e., tables of the previous pass. Later, we
use this for a second traversal to pass results (SAT-Comp) from the first traversal
to the table algorithm PROJ for projected model counting in the second traversal.
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Listing 1. Algorithm DPA((F, P ), T ,PP-Tabs) for DP on TD T [18].

In: Table algorithm A, TD T = (T, χ) of F s.t. T = (N, ·, n), tables PP-Tabs.
Out: Table A-Comp, which maps each TD node t ∈ N to some computed

table τt.
1 for iterate t in post-order(T,n) do
2 Child-Tabs := 〈A-Comp[t1], . . . , A-Comp[t�]〉 where children(t, T ) = 〈t1, . . . , t�〉
3 A-Comp[t] ← A(t, χ(t), Ft, P ∩ χ(t), Child-Tabs,PP-Tabs)
4 return A-Comp

Listing 2. Table algorithm SAT(t, χt, Ft, ·, Child-Tabs, ·) [41].

In: Node t, bag χt, clauses Ft, sequence Child-Tabs of tables. Out: Table τt.
1 if type(t) = leaf then τt ← {〈∅〉}
2 else if type(t) = int, a ∈ χt is introduced, and Child-Tabs = 〈τ ′〉 then
3 τt ← {〈K〉 | 〈J〉 ∈ τ ′, K ∈ {J, J ∪ {a}}, K � Ft}
4 else if type(t) = rem, a 	∈ χt is removed, and Child-Tabs = 〈τ ′〉 then
5 τt ← {〈J \ {a}〉 | 〈J〉 ∈ τ ′}
6 else if type(t) = join, and Child-Tabs = 〈τ ′, τ ′′〉 then
7 τt ← {〈J〉 | 〈J〉 ∈ τ ′, 〈J〉 ∈ τ ′′}
8 return τt

(rem), or where coinciding interpretations are required (join). In the end, an
interpretation I(u) from a row u of the table τn at the root n proves that there
is a supset J ⊇ I(u) that is a model of F = F≤n, and hence that the formula is
satisfiable. Example 3 lists selected tables when running algorithm DPSAT.

Example 3. Consider formula F from Example 2. Figure 2 illustrates a tree
decomposition T ′ = (·, χ) of the primal graph of F and tables τ1, . . ., τ12 that
are obtained during the execution of DPSAT((F, ·), T ′, ·). We assume that each row
in a table τt is identified by a number, i.e., row i corresponds to ut.i = 〈Jt.i〉.

Table τ1 = {〈∅〉} as type(t1) = leaf. Since type(t2) = int, we construct
table τ2 from τ1 by taking J1.i and J1.i ∪{a} for each 〈J1.i〉 ∈ τ1. Then, t3 intro-
duces p1 and t4 introduces b. Ft1 = Ft2 = Ft3 = ∅, but since χ(t4) ⊆ var(c1)
we have Ft4 = {c1, c2} for t4. In consequence, for each J4.i of table τ4, we
have {c1, c2} � J4.i since SAT enforces satisfiability of Ft in node t. Since
type(t5) = rem, we remove variable p1 from all elements in τ4 to construct
τ5. Note that we have already seen all rules where p1 occurs and hence p1 can no
longer affect interpretations during the remaining traversal. We similarly create
τ6 = {〈∅〉, 〈a〉} and τ10 = {〈a〉}. Since type(t11) = join, we build table τ11 by tak-
ing the intersection of τ6 and τ10. Intuitively, this combines interpretations agree-
ing on a. By definition (primal graph and TDs), for every c ∈ F , variables var(c)
occur together in at least one common bag. Hence, F = F≤t12 and since
τ12 = {〈∅〉}, we can reconstruct for example model {a, b, p2} = J11.1 ∪J5.4 ∪J9.2

of F using highlighted (yellow) rows in Fig. 2. On the other hand, if F was
unsatisfiable, τ12 would be empty (∅). �
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∅ t1

{a} t2

{a, p1} t3

{a, b, p1} t4

{a, b} t5

{a} t6

∅t7

{p2}t8

{a, p2}t9

{a}t10

{a} t11

∅ t12T ′:

〈J4.i〉
〈∅〉
〈{b}〉
〈{a, b}〉
〈{p1}〉
〈{a, p1}〉
〈{a, b, p1}〉

τ4

i

1
2
3
4
5
6

〈J5.i〉
〈∅〉
〈{a}〉
〈{b}〉
〈{a, b}〉

τ5

i

1
2
3
4

i

1
2

〈J9.i〉
〈{a}〉
〈{a, p2}〉

τ9

〈J11.i〉
〈{a}〉

τ11

i

1

〈J12.i〉
〈∅〉 τ12

i

1

i

1

〈M1.i〉
〈∅〉

τ1

Fig. 2. Selected tables obtained by algorithm DPPRIM on tree decomposition T ′.

The following definition simplifies the presentation. At a node t and for a
row u of the table SAT-Comp[t], it yields the rows in the tables of the children
of t that were involved in computing row u by algorithm SAT.

Definition 1 (c.f., [19]). Let F be a formula, T = (T, χ) be a tree decompo-
sition of F , t be a node of T that has � children, and τ1, . . . , τ� be the SAT-
tables computed by DPSAT((F, ·), T , ·) where children(t, T ) = 〈t1, . . . , t�〉. Given a
sequence s = 〈s1, . . . , s�〉, we let 〈{s}〉 := 〈{s1}, . . . , {s�}〉, for technical reasons.

For a given SAT-row u, we define the originating SAT-rows of u in node t by
SAT-origins(t,u) := {s | s ∈ τ1 × · · · × τ�, τ = SAT(t, χ(t), Ft, ·, 〈{s}〉, ·),u ∈ τ}.
We extend this to a SAT-table σ by SAT-origins(t, σ) :=

⋃
u∈σ SAT-origins(t,u).

Remark 1. An actual implementation would not compute origins, but store and
reuse them without side-effects to worst-case complexity during tree traversal.

Example 4. Consider formula F , tree decomposition T ′ = (T, χ), and tables
τ1, . . . , τ12 from Example 3. We focus on u1.1 = 〈J1.1〉 = 〈∅〉 of table τ1 of
the leaf t1. The row u1.1 has no preceding row, since type(t1) = leaf. Hence,
we have SAT-origins(t1,u1.1) = {〈〉}. The origins of row u5.1 of table τ5

are given by SAT-origins(t5,u5.1), which correspond to the preceding rows in
table t4 that lead to row u5.1 of table τ5 when running algorithm SAT, i.e.,
SAT-origins(t5,u5.1) = {〈u4.1〉, 〈u4.4〉}. Observe that SAT-origins(ti,u) = ∅
for any row u �∈ τi. For node t11 of type join and row u11.1, we obtain
SAT-origins(t11,u11.1) = {〈u6.2, u10.1〉} (see Example 3). More general,
when using algorithm SAT, at a node t of type join with table τ we have
SAT-origins(t,u) = {〈u,u〉} for row u ∈ τ . �

Definition 1 talked about a top-down direction for rows and their origins. In
addition, we need definitions to talk about a recursive version of these origins
from a node t down to the leafs, mainly to state properties for our algorithms.

Definition 2. Let F be a formula, T = (T, χ) be a tree decomposition with T =
(N, ·, n), t ∈ N , SAT-Comp[t′] be obtained by DPSAT((F, ·), T , ·) for each node t′

of the induced sub-tree T [t] rooted at t, and u be a row of SAT-Comp[t].
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An extension below t is a set of pairs where a pair consists of a node t′

of T [t] and a row v of SAT-Comp[t′] and the cardinality of the set equals the
number of nodes in the sub-tree T [t]. We define the family of extensions below t
recursively as follows. If t is of type leaf, then Ext≤t(u) := {{〈t,u〉}}; otherwise
Ext≤t(u) :=

⋃
v∈SAT-origins(t,u)

{
{〈t,u〉} ∪ X1 ∪ . . . ∪ X� | Xi ∈ Ext≤ti

(v(i))
}

for the � children t1, . . . , t� of t. We extend this notation for a SAT-table σ by
Ext≤t(σ) :=

⋃
u∈σ Ext≤t(u). Further, we let Exts := Ext≤n(SAT-Comp[n]).

If we would construct all extensions below the root n, it allows us to also
obtain all models of a formula F . To this end, we state the following definition.

Definition 3. Let F be a formula, T = (T, χ) be a tree decomposition of F ,
t be a node of T , and σ ⊆ SAT-Comp[t] be a set of SAT-rows that have been
computed by DPSAT((F, ·), T , ·) at t. We define the satisfiable extensions below t
for σ by SatExt≤t(σ) :=

⋃
u∈σ{X | X ∈ Ext≤t(u),X ⊆ Y, Y ∈ Exts}.

Observation 1. Let F be a formula, T be a tree decomposition with root n of F .
Then, SatExt≤n(SAT-Comp[t]) = Exts.

Next, we define an auxiliary notation that gives us a way to reconstruct
interpretations from families of extensions.

Definition 4. Let (F, P ) be an instance of PMC, T = (T, χ) be a tree decom-
position of F , t be a node of T . Further, let E be a family of extensions below t,
and P be a set of projection variables. We define the set I(E) of interpretations
of E by I(E) :=

{ ⋃
〈·,u〉∈X I(u) | X ∈ E

}
and the set IP (E) of projected

interpretations by IP (E) :=
{ ⋃

〈·,u〉∈X I(u) ∩ P | X ∈ E
}
.

Example 5. Consider again formula F and tree decomposition T ′ with
root n of F from Example 3. Let X = {〈t12, 〈∅〉〉, 〈t11, 〈{a}〉〉, 〈t6, 〈{a}〉〉, 〈t5,
〈{a, b}〉〉, 〈t4, 〈{a, b}〉〉, 〈t3, 〈{a}〉〉, 〈t2, 〈{a}〉〉, 〈t1, 〈∅〉〉, 〈t10, 〈{a}〉〉, 〈t9, 〈{a, p2}〉〉,
〈t8, 〈{p2}〉〉, 〈t7, 〈∅〉〉} be an extension below n. Observe that X ∈ Exts and
that Fig. 2 highlights those rows of tables for nodes t12, t11, t9, t5, t4 and t1 that
also occur in X (in yellow). Further, I({X}) = {a, b, p2} computes the corre-
sponding model of X, and IP ({X}) = {p2} derives the projected model of X.
I(Exts) refers to the set of models of F , whereas IP (Exts) is the set of projected
models of F . �

4 Counting Projected Models by Dynamic Programming

In this section, we introduce the dynamic programming algorithm PCNTSAT to
solve the projected model counting problem (PMC) for Boolean formulas. Our
algorithm traverses the tree decomposition twice following a multi-pass dynamic
programming paradigm [19]. Similar to the previous section, we construct a
graph representation and heuristically compute a tree decomposition of this
graph. Then, we run DPSAT (see Listing 1) in Step 3a as first traversal. Step 3a
can also be seen as a preprocessing step for projected model counting, from
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which we immediately know whether the problem has a solution. Afterwards we
remove all rows from the SAT-tables which cannot be extended to a solution for
the Sat problem (“Purge non-solutions”). In other words, we keep only rows u
in table SAT-Comp[t] at node t if its interpretation I(u) can be extended to a
model of F , more formally, (t,u) ∈ X for some X ∈ SatExt≤t(SAT-Comp[t]).
Thereby, we avoid redundancies and can simplify the description of our next
step, since we then only have to consider (parts of) models. In Step 3b (DPPROJ),
we traverse the tree decomposition a second time to count projections of inter-
pretations of rows in SAT-tables. In the following, we only describe the table
algorithm PROJ, since the traversal in DPPROJ is the same as before. For PROJ,
a row at a node t is a pair 〈σ, c〉 where σ is a SAT-table, in particular, a subset
of SAT-Comp[t] computed by DPSAT, and c is a non-negative integer. In fact, we
store in integer c a count that expresses the number of “all-overlapping” solu-
tions (ipmc), whereas in the end we aim for the projected model count (pmc),
clarified in the following.

Definition 5. Let F be a formula, T = (T, χ) be a tree decomposition of F , t be
a node of T , σ ⊆ SAT-Comp[t] be a set of SAT-rows that have been computed by
DPSAT((F, ·), T , ·) at node t in T . Then, the projected model count pmc≤t(σ) of
σ below t is the size of the union over projected interpretations of the satisfiable
extensions of σ below t, formally, pmc≤t(σ) := |

⋃
u∈σ IP (SatExt≤t({u}))|.

The intersection projected model count ipmc≤t(σ) of σ below t is the size of
the intersection over projected interpretations of the satisfiable extensions of σ
below t, i.e., ipmc≤t(σ) := |

⋂
u∈σ IP (SatExt≤t({u}))|.

The next definitions provide central notions for grouping rows of tables
according to the given projection of variables.

Definition 6. Let (F, P ) be an instance of PMC and σ be a SAT-table. We
define the relation =P ⊆ σ × σ to consider equivalent rows with respect to the
projection of its interpretations by =P := {(u, v) | u, v ∈ σ, I(u)∩P = I(v)∩P}.

Observation 2. The relation =P is an equivalence relation.

Definition 7. Let τ be a SAT-table and u be a row of τ . The relation =P induces
equivalence classes [u]P on the SAT-table τ in the usual way, i.e., [u]P = {v |
v=P u, v ∈ τ} [44]. We denote by bucketsP (τ) the set of equivalence classes
of τ , i.e., bucketsP (τ) := (τ/=P) = {[u]P | u ∈ τ}. Further, we define the set
sub-bucketsP (τ) of all sub-equivalence classes of τ by sub-bucketsP (τ) := {S |
∅ � S ⊆ B,B ∈ bucketsP (τ)}.

Example 6. Consider again formula F and set P of projection variables from
Example 1 and tree decomposition T ′ = (T, χ) and SAT-table τ4 from Fig. 2. We
have u4.1 =P u4.2 and u4.4 =P u4.5. We obtain the set τ4/=P of equivalence
classes of τ4 by bucketsP (σ) = {{u4.1,u4.2,u4.3}, {u4.4,u4.5,u4.6}}. �

Since PROJ stores a counter in PROJ-tables together with a SAT-table,
we need an auxiliary definition that given SAT-table allows us to select the
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respective counts from a PROJ-table. Later, we use the definition in the context
of looking up the already computed projected counts for tables of children of a
given node.

Definition 8. Given a PROJ-table ι and a SAT-table σ we define the stored
ipmc for all rows of σ in ι by s-ipmc(ι, σ) :=

∑
〈σ,c〉∈ι c. Later, we apply this to

rows from several origins. Therefore, for a sequence s of PROJ-tables of length
� and a set O of sequences of SAT-rows where each sequence is of length �, we
let s-ipmc(s,O) =

∏
i∈{1,...,�} s-ipmc(s(i), O(i)).

When computing s-ipmc in Definition 8, we select the i-th position of the
sequence together with sets of the i-th position from the set of sequences. We
need this somewhat technical construction, since later at node t we apply this
definition to PROJ-tables of children of t and origins of subsets of SAT-tables.
There, we may simply have several children if the node is of type join and hence
we need to select from the right children.

Now, we are in position to give a core definition for our algorithm that
solves PMC. Intuitively, when we are at a node t in the Algorithm DPPROJ we
already computed all tables SAT-Comp by DPSAT according to Step 3a, purged
non-solutions, and computed PROJ-Comp[t′] for all nodes t′ below t and in
particular the PROJ-tables Child-Tabs of the children of t. Then, we compute
the projected model count of a subset σ of the SAT-rows in SAT-Comp[t], which
we formalize in the following definition, by applying the generalized inclusion-
exclusion principle to the stored projected model count of origins.

Definition 9. Let (F, P ) be an instance of PMC, T = (T, χ) be a tree decom-
position of F , SAT-Comp[s] be the SAT-tables computed by DPSAT((F, ·), T , ·) for
every node s of T . Further, let t be a node of T with � children, Child-Tabs =
〈PROJ-Comp[t1], . . . , PROJ-Comp[t�]〉 be the sequence of PROJ-tables computed
by DPPROJ((F, P ), T , SAT-Comp) where children(t, T ) = 〈t1, . . . , t�〉, and σ ⊆
SAT-Comp[t] be a table. We define the (inductive) projected model count of σ:

pmc(t, σ,Child-Tabs) :=
∑

∅�O⊆SAT-origins(t,σ)

(−1)(|O|−1)· s-ipmc(Child-Tabs, O).

Vaguely speaking, pmc determines the SAT-origins of the set σ of rows, goes
over all subsets of these origins and looks up the stored counts (s-ipmc) in the
PROJ-tables of the children of t. Example 7 provides an idea on how to compute
the projected model count of tables of our running example using pmc.

Example 7. The function defined in Definition 9 allows us to compute the pro-
jected count for a given SAT-table. Therefore, consider again formula F and
tree decomposition T ′ from Example 2 and Fig. 2. Say we want to compute the
projected count pmc(t5, {u5.4},Child-Tabs) where Child-Tabs :=

{
〈{u4.3}, 1〉,

〈{u4.6}, 1〉
}

for row u5.4 of table τ5. Note that t5 has � = 1 child nodes 〈t4〉 and
therefore the product of Definition 8 consists of only one factor. Observe that
SAT-origins(t5,u5.4) = {〈u4.3〉, 〈u4.6〉}. Since the rows u4.3 and u4.6 do not
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Listing 3. Table algorithm PROJ(t, ·, ·, P, Child-Tabs, SAT-Comp).

In: Node t, set P of projection variables, Child-Tabs, and SAT-Comp.
Out: Table ιt consisting of pairs 〈σ, c〉, where σ ⊆ SAT-Comp[t] and c ∈ N.

1 ιt ←
{
〈σ, ipmc(t, σ, Child-Tabs)〉

∣∣ σ ∈ sub-bucketsP (SAT-Comp[t])
}

2 return ιt

occur in the same SAT-table of Child-Tabs, only the value of s-ipmc for the two
singleton origin sets {〈u4.3〉} and {〈u4.6〉} is non-zero; for the remaining set of
origins we have zero. Hence, we obtain pmc(t5, {u5.4},Child-Tabs) = 2. �

Before we present algorithm PROJ (Listing 3), we give a definition that allows
us at a certain node t to compute the intersection pmc for a given SAT-table σ
by computing the pmc (using stored ipmc values from PROJ-tables for children
of t), and subtracting and adding ipmc values for subsets ∅ � ρ � σ accordingly.

Definition 10. Let T = (T, ·) be a tree decomposition, t be a node of T , ρ be
SAT-table, and Child-Tabs be a sequence of tables. Then, we define the (recur-
sive) ipmc of σ as follows:

ipmc(t, σ,Child-Tabs) :=

⎧
⎪⎨

⎪⎩

1, if type(t) = leaf,
∣
∣ pmc(t, σ,Child-Tabs) +

∑
∅�ρ�σ(−1)|ρ| · ipmc(t, ρ,Child-Tabs)

∣
∣, otherwise.

In other words, if a node is of type leaf the ipmc is one, since by definition
of a tree decomposition the bags of nodes of type leaf contain only one pro-
jected interpretation (the empty set). Otherwise, using Definition 9, we are able
to compute the ipmc for a given SAT-table σ, which is by construction the same
as ipmc≤t(σ) (c.f. proof of Theorem3 later). In more detail, we want to com-
pute for a SAT-table σ its ipmc that represents “all-overlapping” counts of σ
with respect to set P of projection variables, that is, ipmc≤t(σ). Therefore, for
ipmc, we rearrange the inclusion-exclusion principle. To this end, we take pmc,
which computes the “non-overlapping” count of σ with respect to P , by once
more exploiting the inclusion-exclusion principle on SAT-origins of σ (as already
discussed) such that we count every projected model only once. Then we have to
alternately subtract and add ipmc values for strict subsets ρ of σ, accordingly.

Finally, Listing 3 presents table algorithm PROJ, which stores for given node t
a PROJ-table consisting of every sub-bucket of the given table SAT-Comp[t]
together with its ipmc (as presented above).

Example 8. Recall instance (F, P ), tree decomposition T ′, and tables τ1, . . .,
τ12 from Examples 1, 2, and Fig. 2. Figure 3 depicts selected tables of ι1, . . . ι12
obtained after running DPPROJ for counting projected interpretations. We assume
numbered rows, i.e., row i in table ιt corresponds to vt.i = 〈σt.i, ct.i〉. Note
that for some nodes t, there are rows among different SAT-tables that occur
in Ext≤t, but not in SatExt≤t. These rows are removed during purging. In fact,
rows u4.1,u4.2, and u4.4 do not occur in table ι4. Observe that purging is
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Fig. 3. Selected tables obtained by DPPROJ on TD T ′ using DPSAT (c.f., Fig. 2).

a crucial trick here that avoids to correct stored counters c by backtracking
whenever a certain row of a table has no succeeding row in the parent table.

Next, we discuss selected rows obtained by DPPROJ((F, P ), T ′, SAT-Comp).
Tables ι1, . . ., ι12 that are computed at the respective nodes of the tree decom-
position are shown in Fig. 3. Since type(t1) = leaf, we have ι1 = 〈{〈∅〉}, 1〉.
Intuitively, up to node t1 the SAT-row 〈∅〉 belongs to 1 bucket. Node t2 intro-
duces variable a, which results in table ι2 :=

{
〈{〈{a}〉}, 1〉

}
. Note that the

SAT-row 〈∅〉 is subject to purging. Node t3 introduces p1 and node t4 intro-
duces b. Node t5 removes projected variable p1. The row v5.2 of PROJ-table ι5
has already been discussed in Example 7 and row v5.1 works similar. For
row v5.3 we compute the count ipmc(t5, {u5.2,u5.4}, 〈ι4〉) by means of pmc.
Therefore, take for ρ the sets {u5.2}, {u5.4}, and {u5.2,u5.4}. For the sin-
gleton sets, we simply have pmc(t5, {u5.2}, 〈ι4〉) = ipmc(t5, {u5.2}, 〈ι4〉) =
c5.1 = 1 and pmc(t5, {u5.4}, 〈ι4〉) = ipmc(t5, {u5.4}, 〈ι4〉) = c5.2 = 2.
To compute pmc(t5, {u5.2,u5.4}, 〈ι4〉) following Definition 9, take for O
the sets {u4.5}, {u4.3}, and {u4.6} into account, since all other non-
empty subsets of origins of u5.2 and u5.4 in ι4 do not occur in ι4.
Then, we take the sum over the values s-ipmc(〈t4〉, {〈u4.5〉}) = 1,
s-ipmc(〈t4〉, {〈u4.3〉}) = 1, and s-ipmc(〈t4〉, {〈u4.6〉}) = 1; and sub-
tract s-ipmc(〈t4〉, {〈u4.5〉, 〈u4.6〉}) = 1. Hence, pmc(t5, {u5.2,u5.4}, 〈ι4〉) =
2. In order to compute ipmc(t5, {u5.2,u5.4}, 〈ι4〉) = |pmc(t5, {u5.2,u5.4},
〈ι4〉) − ipmc(t5, {u5.2}, 〈ι4〉) − ipmc(t5, {u5.4}, 〈ι4〉)| = |2 − 1 − 2| = | − 1| = 1.
Hence, c5.3 = 1 represents the number of projected models, both rows u5.2

and u5.4 have in common. We then use it for table t6.
For node t11 of type join one simply in addition multiplies stored s-ipmc

values for SAT-rows in the two children of t11 accordingly (see Definition 8). In
the end, the projected model count of F corresponds to s-ipmc(ι12, ·) = 4. �

5 Runtime (Upper and Lower Bounds)

In this section, we first present asymptotic upper bounds on the runtime of
our Algorithm DPPROJ. For the analysis, we assume γ(n) to be the costs for
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multiplying two n-bit integers, which can be achieved in time n · log n · log log n
[26,30].

Then, our main result is a lower bound that establishes that there cannot
be an algorithm that solves PMC in time that is only single exponential in the
treewidth and polynomial in the size of the formula unless the exponential time
hypothesis (ETH) fails. This result establishes that there cannot be an algorithm
exploiting treewidth that is asymptotically better than our presented algorithm,
although one can likely improve on the analysis and give a better algorithm.

Theorem 1. Given a PMC instance (F, P ) and a tree decomposition T =
(T, χ) of F of width k with g nodes. Algorithm DPPROJ runs in time O(22k+4 ·
γ(‖F‖) · g).

Proof. Let d = k + 1 be maximum bag size of T . For each node t of T , we
consider table τ = SAT-Comp[t] which has been computed by DPSAT [41]. The
table τ has at most 2d rows. In the worst case we store in ι = PROJ-Comp[t]
each subset σ ⊆ τ together with exactly one counter. Hence, we have 22d

many
rows in ι. In order to compute ipmc for σ, we consider every subset ρ ⊆ σ

and compute pmc. Since |σ| ≤ 2d, we have at most 22d

many subsets ρ of σ.
For computing pmc, there could be each subset of the origins of ρ for each child
table, which are less than 22d+1 ·22d+1

(join and remove case). In total, we obtain
a runtime bound of O(22d · 22d · 22d+1 · 22d+1 · γ(‖F‖)) ⊆ O(22d+3 · γ(‖F‖)) since
we also need multiplication of counters. Then, we apply this to every node t of
the tree decomposition, which results in running time O(22d+3 · γ(‖F‖) · g). ��

Corollary 1. Given an instance (F, P ) of PMC where F has treewidth k. Algo-
rithm PCNTSAT runs in time O(22k+4 · γ(‖F‖) · ‖F‖).

Proof. We compute in time 2O(k3) · |V | a tree decomposition T ′ of width at
most k [5] of primal graph PF . Then, we run a decision version of the algo-
rithm DPSAT by Samer and Szeider [41] in time O(2k · γ(‖F‖) · ‖F‖). Then, we
again traverse the decomposition, thereby keeping rows that have a satisfying
extension (“purging”), in time O(2k · ‖F‖). Finally, we run DPPROJ and obtain
the claim by Theorem 1 and since T ′ has linearly many nodes [5]. ��

The next results also establish the lower bounds for our worst-cases.

Theorem 2. Unless ETH fails, PMC cannot be solved in time 22o(k) · ‖F‖o(k)

for a given instance (F, P ) where k is the treewidth of the primal graph of F .

Proof. Assume for proof by contradiction that there is such an algorithm. We
show that this contradicts a recent result [32], which states that one cannot
decide the validity of a QBF [4,29] Q = ∃V1.∀V2.E in time 22o(k) · ‖E‖o(k)

under ETH. Given an instance (Q, k) of ∃∀-Sat when parameterized by the
treewidth k of E, we provide a reduction to an instance (∀V1.∃V2.E

′, k) of ∀∃-
Sat where E′ ≡ ¬E and E′ is in CNF. Observe that the primal graphs of E
and E′ are isomorphic and therefore have the same treewidth k [32]. Then, given
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an instance (∀V1.∃V2.E
′, k) of ∀∃-Sat when parameterized by the treewidth k,

we provide a reduction to an instance ((F, P, n), k) of decision version PMC-
exactly-n of PMC such that F = E, P = V1, and the number n of solutions is
exactly 2|V1|. The reduction gives a yes instance ((F, P, n), k) of PMC-exactly-n
if and only if (∀V1.∃V2.E

′, k) is a yes instance of ∀∃-Sat. The reduction is also
an fpt-reduction, since the treewidth of F is exactly k. ��

Corollary 2. Given an instance (F, P ) of PMC where F has treewidth k.
Then, Algorithm PCNTSAT runs in time 22Θ(k) · γ(‖F‖) · ‖F‖.

6 Correctness of the Algorithm

In the following, we state definitions required for the correctness proofs of our
algorithm PROJ. In the end, we only store rows that are restricted to the bag
content to maintain runtime bounds. Similar to related work [18,41], we proceed
in two steps. First, we define properties of so-called PROJ-solutions up to t, and
then restrict these to PROJ-row solutions at t.

For the following statements, we assume that we have given an arbitrary
instance (F, P ) of PMC and a tree decomposition T = (T, χ) of formula F ,
where T = (N,A, n), node n ∈ N is the root and T is of width k. Moreover,
for every t ∈ N of tree decomposition T , we let SAT-Comp[t] be the tables
that have been computed by running algorithm DPSAT for the dedicated input.
Analogously, let PROJ-Comp[t] be the tables computed by running DPPROJ for
the input.

Definition 11. Let ∅ � σ ⊆ SAT-Comp[t] be a table with σ ∈ sub-bucketsP

(SAT-Comp[t]). We define a PROJ-solution up to t to be the sequence 〈σ̂〉 =
〈SatExt≤t(σ)〉.

Next, we recall that we can reconstruct all models from the tables.

Proposition 1. I(SatExt≤n(SAT-Comp[n])) = I(Exts) = {J ∈2var(F )|J � F}.

Proof (Idea). We use a construction similar to Samer and Szeider [41] and Pichler
et al. [36, Fig. 1], where we simply collect preceding rows. ��

Before we present equivalence results between ipmc≤t(. . .) and the recursive
version ipmc(t, . . .) (Definition 10) used during the computation of DPPROJ, recall
that ipmc≤t and pmc≤t (Definition 5) are key to compute the projected model
count. The following corollary states that computing ipmc≤n at the root n actu-
ally suffices to compute the projected model count pmc≤n of the formula.

Corollary 3. ipmc≤n(SAT-Comp[n]) = pmc≤n(SAT-Comp[n]) = |IP (SatExt≤n

(SAT-Comp[n]))| = |IP (Exts)| = |{J ∩ P | J ∈ 2var(F ), J � F}|.
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Proof. The corollary immediately follows from Proposition 1 and the observation
that |SAT-Comp[n]| ≤ 1 by properties of algorithm SAT and since χ(n) = ∅. ��

The following lemma establishes that the PROJ-solutions up to root n of a
given tree decomposition solve the PMC problem.

Lemma 1. The value c =
∑

〈σ̂〉 is a PROJ-solution up to n |IP (σ̂)| if and only if c is
the projected model count of F with respect to the set P of projection variables.

Proof. Assume that c =
∑

〈σ̂〉 is a PROJ-solution up to n |IP (σ̂)|. Observe that there
can be at most one projected solution up to n, since χ(n) = ∅. If c = 0, then
SAT-Comp[n] contains no rows. Hence, F has no models, c.f., Proposition 1, and
obviously also no models projected to P . Consequently, c is the projected model
count of F . If c > 0 we have by Corollary 3 that c is equivalent to the projected
model count of F with respect to P . We proceed similar in the if direction. ��

In the following, we provide for a given node t and a given PROJ-solution
up to t, the definition of a PROJ-row solution at t.

Definition 12. Let t, t′ ∈ N be nodes of a given tree decomposition T , and
σ̂ be a PROJ-solution up to t. Then, we define the local table for t′ as
local(t′, σ̂) := {〈u〉| 〈t′,u〉 ∈ σ̂}, and if t = t′, the PROJ-row solution at t
by 〈local(t, σ̂), |IP (σ̂)|〉.

Observation 3. Let 〈σ̂〉 be a PROJ-solution up to a node t ∈ N . There is
exactly one corresponding PROJ-row solution 〈local(t, σ̂), |IP (σ̂)|〉 at t.

Vice versa, let 〈σ, c〉 be a PROJ-row solution at t for some integer c. Then,
there is exactly one corresponding PROJ-solution 〈SatExt≤t(σ)〉 up to t.

We need to ensure that storing PROJ-row solutions at a node suffices to solve
the PMC problem, which is necessary to obtain runtime bounds (c.f. Corol-
lary 1).

Lemma 2. Let t ∈ N be a node of the tree decomposition T . There is a PROJ-
row solution at root n if and only if the projected model count of F is larger
than 0.

Proof. (“=⇒”): Let 〈σ, c〉 be a PROJ-row solution at root n where σ is a SAT-
table and c is a positive integer. Then, by Definition 12, there also exists a corre-
sponding PROJ-solution 〈σ̂〉 up to n such that σ = local(n, σ̂) and c = |IP (σ̂)|.
Moreover, since χ(n) = ∅, we have |SAT-Comp[n]| = 1. Then, by Definition 11,
σ̂ = SAT-Comp[n]. By Corollary 3, we have c = |IP (SAT-Comp[n])|. Finally,
the claim follows. (“⇐=”): Similar to the only-if direction. ��

Observation 4. Let X1, . . ., Xn be finite sets. The number |
⋂

i∈X Xi| is given
by |

⋂
i∈X Xi| =

∣
∣|

⋃n
j=1 Xj | +

∑
∅�I�X(−1)|I||

⋂
i∈I Xi|

∣
∣.

Lemma 3. Let t ∈ N be a node of the tree decomposition T with children
(t, T ) = 〈t1, . . . , t�〉 and let 〈σ, ·〉 be a PROJ-row solution at t. Then,
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1. ipmc(t, σ, 〈PROJ-Comp[t1], ..., PROJ-Comp[t�]〉) = ipmc≤t(σ)

2. If type(t) �= leaf: pmc(t, σ, 〈PROJ-Comp[t1], ..., PROJ-Comp[t�]〉) =
pmc≤t(σ).

Proof (Sketch). We prove the statement by simultaneous induction. (“Induction
Hypothesis”): Lemma 3 holds for the nodes in children(t, T ) and also for node t,
but on strict subsets ρ � σ. (“Base Cases”): Let type(t) = leaf. By definition,
ipmc(t, ∅, 〈〉) = ipmc≤t(∅) = 1. Recall that for pmc the equivalence does not
hold for leaves, but we use a node t that has a node t′ ∈ N with type(t′) = leaf
as child for the base case. Observe that by definition t has exactly one child.
Then, we have pmc(t, σ, 〈PROJ-Comp[t′]〉) =

∑
∅�O⊆SAT-origins(t,σ)(−1)(|O|−1) ·

s-ipmc(〈SAT-Comp[t′]〉, O) = |
⋃

u∈σ IP (SatExt≤t({u}))| = pmc≤t(σ) = 1 for
PROJ-row solution 〈σ, ·〉 at t. (“Induction Step”): We proceed by case distinc-
tion. Assume that type(t) = int. Let a ∈ (χ(t) \ χ(t′)) be the introduced vari-
able. We have two cases. Assume Case (i): a also belongs to (var(F ) \ P ), i.e.,
a is not a projection variable. Let 〈σ, c〉 be a PROJ-row solution at t for
some integer c. By construction of algorithm SAT there are many rows in
the table SAT-Comp[t] for one row in the table SAT-Comp[t′], more precisely,
|bucketsP (σ)| = 1. As a result, pmc≤t(σ) = pmc≤t′(SAT-origins(t, σ)) by
applying Observation 3. We apply the inclusion-exclusion principle on every
subset ρ of the origins of σ in the definition of pmc and by induction
hypothesis we know that ipmc(t′, ρ, 〈PROJ-Comp[t′]〉) = ipmc≤t′(ρ), therefore,
s-ipmc(PROJ-Comp[t′], ρ) = ipmc≤t′(ρ). This concludes Case (i) for pmc. The
induction step for ipmc works similar by applying Observation 4 and comparing
corresponding PROJ-solutions up to t or t′, respectively. Further, for showing
the lemma for ipmc, one has to additionally apply the hypothesis for node t,
but on strict subsets ∅ � ρ � σ of σ. Assume that we have Case (ii): a also
belongs to P , i.e., a is a projection variable. This is a special case of Case (i)
since |bucketsP (σ)| = 1. Similarly, for join and remove nodes. ��

Lemma 4 (Soundness). Let t ∈ N be a node of the tree decomposition T with
children(t, T ) = 〈t1, . . . , t�〉. Then, each row 〈τ, c〉 at node t obtained by PROJ

is a PROJ-row solution for t.

Proof (Idea). Observe that Listing 3 computes a row for each sub-bucket σ ∈
sub-bucketsP (SAT-Comp[t]). The resulting row 〈σ, c〉 obtained by ipmc is indeed
a PROJ-row solution for t according to Lemma 3. ��

Lemma 5 (Completeness). Let t ∈ N be a node of tree decomposition T
where children(t, T ) = 〈t1, . . . , t�〉 and type(t) �= leaf. Given a PROJ-row solu-
tion 〈σ, c〉 at t. Then, there is 〈C1, . . . , C�〉 where each Ci is a set of PROJ-row
solutions at ti with σ = PROJ(t, ·, ·, P, 〈C1, . . . , C�〉, SAT-Comp).

Proof (Idea). Since 〈σ, c〉 is a PROJ-row solution for t, there is by Defini-
tion 12 a corresponding PROJ-solution 〈σ̂〉 up to t such that local(t, σ̂) = σ.
We proceed again by case distinction. Assume type(t) = int and t′ = t1.
Then we define σ̂′ := {(t′, ρ̂) | (t′, ρ̂) ∈ σ, t �= t′}. Then, for each sub-
set ∅ � ρ ⊆ local(t′, σ̂′), we define 〈ρ, |IP (SatExt≤t(ρ))|〉 in accordance with
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Definition 12. By Observation 3, we have that 〈ρ, |IP (SatExt≤t(ρ))|〉 is a SAT-
row solution at t′. Since we defined PROJ-row solutions for t′ for all respective
PROJ-solutions up to t′, we encountered every PROJ-row solution for t′ required
for deriving 〈σ, c〉 via PROJ (c.f. Definitions 9 and 10). Similarly, for remove and
join nodes. ��

Theorem 3. The algorithm DPPROJ is correct. More precisely, DPPROJ((F, P ), T ,
SAT-Comp) returns tables PROJ-Comp such that c = s-ipmc(SAT-Comp[n], ·)
is the projected model count of F with respect to the set P of projection variables.

Proof. By Lemma 4 we have soundness for every node t ∈ N and hence only valid
rows as output of table algorithm PROJ when traversing the tree decomposition
in post-order up to the root n. By Lemma 2 we know that the projected model
count c of F is larger than zero if and only if there exists a certain PROJ-row
solution for n. This PROJ-row solution at node n is of the form 〈{〈∅, . . .〉}, c〉.
If there is no PROJ-row solution at node n, then SAT-Comp[n] = ∅ since the
table algorithm SAT is correct (c.f. Proposition 1). Consequently, we have c = 0.
Therefore, c = s-ipmc(SAT-Comp[n], ·) is the pmc of F w.r.t. P in both cases.

Next, we establish completeness by induction starting from root n. Let there-
fore, 〈σ̂〉 be the PROJ-solution up to n, where for each row in u ∈ σ̂, I(u) corre-
sponds to a model of F . By Definition 12, we know that for n we can construct a
PROJ-row solution at n of the form 〈{〈∅, . . .〉}, c〉 for σ̂. We already established
the induction step in Lemma 5. Finally, we stop at the leaves. ��

Corollary 4. The algorithm PCNTSAT is correct, i.e., PCNTSAT solves PMC.

Proof. The result follows, since PCNTSAT consists of pass DPSAT, a purging step
and DPPROJ. For correctness of DPSAT we refer to other sources [18,41]. By Propo-
sition 1, “purging” neither destroys soundness nor completeness of DPSAT. ��

7 Conclusions

We introduced a dynamic programming algorithm to solve projected model
counting (PMC) by exploiting the structural parameter treewidth. Our algo-
rithm is asymptotically optimal under the exponential time hypothesis (ETH).
Its runtime is double exponential in the treewidth of the primal graph of the
instance and polynomial in the size of the input instance. We believe that our
results can also be extended to another graph representation, namely the inci-
dence graph. Our approach is very general and might be applicable to a wide
range of other hard combinatorial problems, such as projection for ASP [18] and
QBF [10].
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Abstract. This paper describes the algorithm implemented in the QBF
solver CQESTO, which has placed second in the non-CNF track of the
last year’s QBF competition. The algorithm is inspired by the CNF-
based solver QESTO. Just as QESTO, CQESTO invokes a SAT solver
in a black-box fashion. However, it directly operates on the circuit rep-
resentation of the formula. The paper analyzes the individual operations
that the solver performs.

1 Introduction

Since the indisputable success of SAT and SMT, research has been trying to
push the frontiers of automated logic-based solving. Reasoning with quantifiers
represents a nontrivial challenge. Indeed, even in the Boolean case adding quan-
tifiers bumps the complexity class from NP-complete to PSPACE-complete. Yet,
quantifiers enable modeling a number of interesting problems [3].

This paper aims at the advancement of solving with quantifiers in the Boolean
domain (QBF). Using CNF as input causes intrinsic issues in QBF solving [1,15,
28]. Consequently, there have been efforts towards solvers operating directly on
a non-clausal representation [2,8,12,18,25,28]. This line of research is supported
by the circuit-like QBF format QCIR [16].

This paper presents the solver CQESTO, which reads in a circuit-like repre-
sentation of the problem and keeps on solving directly on this representation. For
each quantification level, the solver creates a propositional formula that deter-
mines the possible assignments to the variables of that particular level. If one of
these formulas becomes unsatisfiable, a formula in one of the preceding levels is
to be strengthened. The main focus of this paper is the analysis of the operations
that take place during this strengthening.

CQESTO extends the family of solvers that repeatedly call a SAT solver
(exponentially many times in the worst case). The solver RAReQS [10,12,13]
delegates to the SAT solver partial expansions of the QBF. QESTO [14] and
CAQE [23] are CNF siblings of CQESTO. QuAbS [25] is similar to CQESTO
but it operates on a literal abstraction, while CQESTO operates directly on the
circuit. The workings of CQESTO is also similar to algorithms developed for
theories in SMT [4,7,24].

c© Springer International Publishing AG, part of Springer Nature 2018
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The principle contributions of the paper are: (1) Description of the algo-
rithm of the solver CQESTO. (2) Analysis of the operations used in the circuit.
(3) Linking these operations to related solvers.

The rest of the paper is organized as follows. Section 2 introduces concepts
and notation used throughout the paper; Sect. 3 describes the CQESTO algo-
rithm; Sect. 4 reports on experimental evaluation. Finally, Sect. 5 summarizes
the paper and outlines directions for future work.

2 Preliminaries

Standard concepts from propositional logic are assumed. Propositional formulas
are built from variables, negation (¬), and conjunction (∧). For convenience
we also consider the constants 0, 1 representing false and true, respectively. The
results immediately extend to other connectives, e.g., (φ ⇒ ψ) = ¬(φ∧¬ψ), (φ∨
ψ) = ¬(¬φ∧¬ψ). A literal is either a variable or its negation. An assignment is a
mapping from variables to {0, 1}. Assignments are represented as sets of literals,
i.e., {x,¬y} corresponds to {x �→ 1, y �→ 0}. For a formula φ and an assignment σ,
the expression φ|σ denotes substitution, i.e., the simultaneous replacement of
variables with their corresponding value. With some abuse of notation, we treat
a set of formulas I and

∧
φ∈I φ interchangeably. The paper makes use of the

well-established notion of subformula polarity. Intuitively, the polarity of a sub-
formula is determined by whether the number of negations above it is odd or
even. Formally, we defined priority as follows.

Definition 1 (polarity [19]). The following rules annotate each occurrence of
a subformula of a formula α with its polarity ∈ {+,−}.

α+ top rule, α is positive
(¬φ)π � ¬φ−π negation flips polarity
(φ ∧ ψ)π � (φπ ∧ ψπ) conjunction maintains polarity

Quantified Boolean Formulas (QBF). QBFs [17] extend propositional logic by
quantifiers over Boolean variables. Any propositional formula φ is also a QBF
with all variables free. If Φ is a QBF with a free variable x, the formulas ∃x.Φ
and ∀x.Φ are QBFs with x bound, i.e. not free. Note that we disallow expressions
such as ∃x.∃x. x. Whenever possible, we write ∃x1 . . . xk instead of ∃x1 . . . ∃xk;
analogously for ∀. For a QBF Φ = ∀x.Ψ we say that x is universal in Φ and is
existential in ∃x.Ψ . Analogously, a literal l is universal (resp. existential) if var(l)
is universal (resp. existential). Semantically a QBF corresponds to a compact
representation of a propositional formula. In particular, the formula ∀x.Ψ is
satisfied by the same truth assignments as Ψ |{¬x} ∧ Ψ |{x} and ∃x.Ψ by Ψ |{¬x} ∨
Ψ |{x}. Since ∀x∀y.Φ and ∀y∀x.Φ are semantically equivalent, we allow writing
∀X for a set of variables X; analogously for ∃. A QBF with no free variables is
false (resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

A QBF is closed if it does not contain any free variables. A QBF is in prenex
form if it is of the form Q1X1 . . . QkXk.φ, where Qi ∈ {∃,∀}, Qi 
= Qi+1, and
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Algorithm 1. QBF solving with circuit-based pruning
input : Q1X1 . . . . . . QnXnQn+1Xn+1.φ, where Xn+1 empty, Qi �= Qi+1

output : truth value

1 αi ← 1, for i ∈ 1..n − 1 // minimalistic initialization

2 αn ← (Qn = ∃) ?φ : ¬φ
3 αn+1 ← (Qn = ∃) ?¬φ : φ
4 i ← 1
5 while true do // invariant 1 ≤ i ≤ n + 1
6 I ← proj(αi,

⋃
j∈1..i−1 σj)

7 (σi, C) ← SAT(I, αi)
8 if σi = ⊥ then
9 if i ≤ 2 then return Qi = ∀ // nowhere to backtrack

10 ξf ← forget(Xi, ¬C) // eliminate Xi

11 ξs ← ξf |σi−1 // eliminate Xi−1 by substitution

12 αi−2 ← αi−2 ∧ ξs // strengthen

13 i ← i − 2 // backtrack

14 else
15 i ← i + 1 // move on

φ is propositional. The propositional part φ is called the matrix and the rest
the prefix. For a variable x ∈ Xi we say that x is at level i. Unless specified
otherwise, QBFs are assumed to be closed and in prenex form.

QBF as Games. A closed and prenex QBF Q1X1 . . . QkXk.φ, represents a two-
player game, c.f. [9,18]. The existential player tries to make the matrix true and
conversely the universal player tries to make it false. Each player assigns a value
only to a variable that belongs to the player and can only assign a variable once
all preceding variables have already been assigned. Hence the two players assign
values to variables following the order of the prefix alternating on a quantifier.
A play is a sequence of assignments σ1, . . . , σn where σi is an assignment to Xi.
Within a play, the ith assignment is referred to as the ith move. The ith move
belongs to player Qi. A QBF Φ is true iff there exists a winning strategy for ∃;
it is false iff there exists a winning strategy for ∀. The game semantics enables
treating ∃ and ∀ symmetrically, i.e. we are concerned with deciding which player
has a winning strategy.

3 CQESTO Algorithm

The algorithm decides a closed, prenex QBF of n quantification levels. For the
sake of uniformity we add a quantification level n+1 with no variables belonging
to the player Qn−1. So the formula being solved is Q1X1 . . . QnXnQn+1Xn+1.φ,
where Xn+1 is empty and Qn 
= Qn+1. Like so it is guaranteed that eventually
either of the player must lose as the play progresses, i.e. there’s no need for
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handling especially a play where all blocks up till Qn have value—if this happens,
Qn+1 loses.

The algorithm’s pseudocode is presented as Algorithm 1 and its overall intu-
ition is as follows. For each quantification level i there is a propositional for-
mula αi, which constrains the moves of player Qi. The algorithm builds assign-
ments σ1, . . . , σk so that each σi represents the ith move of player Qi. A SAT
solver is used to calculate a new σi from αi. Backtracking occurs when αi

becomes unsatisfiable under the current assignments σ1, . . . , σi−1. Upon back-
tracking, player Qi needs to change some moves that he had made earlier. Hence,
the algorithm strengthens αi−2 and continues from there.1 Note that if i = 1, the
union

⋃
j∈1..i−1 σj is empty and the SAT call is on α1 with empty assumptions.

The algorithm observes the following invariants regarding the constraints αi.

Invariant 1 (syntactic). Each αi only contains variables X1 ∪ · · · ∪ Xi.

Invariant 2 (semantic). If player Qi violates αi, the player is bound to lose.
More formally, if for a partial play σ = σ1, . . . , σi it holds that σ � ¬αi then
there is a winning strategy for the opponent from that position.

The invariants are established upon initialization by setting all αi to true
except for αn and αn+1. The constraint αn is set to the matrix or its negation
depending on whether Qi is existential or universal. The constraint αn+1 is set
analogously. Note that since αn+1 = ¬αn, once αn is satisfied by σ1∪· · ·∪σn, the
constraint αi+1 is immediately unsatisfiable since there are no further variables.

The algorithm uses several auxiliary functions. The function SAT models a
SAT call on propositional formulas. The function proj is used to propagate
information into the current αi while the solver is moving forward. The function
forget enables the solver to strengthen previous restrictions upon backtracking.
Let us look at these mechanisms in turn.

3.1 Projection (proj)

The function proj(αi, σ) produces a set of formulas I implied by the assignment
σ = σ1 ∪ . . . ∪ σi−1 in αi. The motivation for I is akin to the one for 1-UIP [20].
The set I may be envisioned as a cut in the circuit representing the formula αi.
In the context of the algorithm, proj enables generalizing the concrete variable
assignment to subformulas. Rather than finding the move σi by satisfying αi ∧∧

j∈1..i−1 σj , it must satisfy αi ∧ I. Upon backtracking, I is used to strengthen
αi−2. This gives a better strengthening than a particular assignment.

As a motivational example, consider the formula ∃xy∀u∃z.(x∨y) ⇒ (z ∧¬z)
and the assignment {x,¬y}. In this case, the function proj returns (x ∨ y)
because it is implied by the assignment and keeps forcing a contradiction. This
yields the SAT call on ((x∨y) ⇒ (z ∧¬z))∧ (x∨y). The formula is unsatisfiable

1 The implementation enables jumping across multiple levels by backtracking to the
maximum level of variables in the core belonging to Qi.
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and the reason is that (x∨y) is true. This lets us conclude that at the first level,
¬(x ∨ y) must be true—the concrete assignment to x and y is not important.

The function proj operates in two phases, first it propagates the assignment σ
in αi and then it collects the most general sub-formulas of αi propagated by σ.
To formalize the definition we introduce an auxiliary concept of propagation
σ �p φ meaning that φ follows from σ by propagation.

Definition 2 (�p). For an assignment σ and formula φ, the relation σ �p φ is
defined according to the following rules.

σ �p 1 σ �p ψ ∧ φ, if σ �p ψ and σ �p φ
σ �p l, if l ∈ σ σ �p ¬(ψ ∧ φ), if σ �p ¬ψ or σ �p ¬φ

The function proj operates recursively on subformulas. It first checks if a sub-
formula or its negation is inferred by propagation. If so, it immediately returns
the given subformula or its negation, respectively. Otherwise, it dives into the
subformula’s structure. Subformulas unaffected by the assignment are ignored.
The definition follows (see also Examples 1–3).

Definition 3 (proj). For a formula φ and assignment σ, proj(φ, σ) is defined
by the following equalities.

proj(φ, σ) = {φ} if σ �p φ
proj(φ, σ) = {¬φ} if σ �p ¬φ
proj(ψ ∧ φ, σ) = proj(ψ, σ) ∪ proj(φ, σ) if above does not apply
proj(¬ψ, σ) = proj(ψ, σ) if above does not apply
proj(l, σ) = ∅ if above does not apply

Note that proj is well defined also for an empty σ = ∅. Since we only have
∅ �p 1 the projection proj(φ, ∅) will give the empty set, except for the special
cases proj(1, ∅) = proj(0, ∅) = {1}.

3.2 SAT Calls

SAT calls are used to obtain a move σi at position i in a straightforward fashion
(line 7). If the SAT calls deem the query unsatisfiable, it provides a core that
is used to inform backtracking. In a call SAT(I, αi), I is a set of propositional
formulas modeling assumptions. The function returns a pair (σi, C), where σi is
a satisfying assignment to αi ∧ I if such exists and it is ⊥ otherwise. If there is
no satisfying assignment, C ⊆ I is a core, i.e. φ ∧ C is also unsatisfiable. Since
modern SAT solvers typically only accept formulas in CNF, standard translation
from formulas to CNF may be used via fresh variables [26].

3.3 Backtracking

The backtracking mechanism is triggered once the SAT call deems αi ∧I unsat-
isfiable. Only a core C ⊆ I is used, which gives a stronger constraint than using
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the whole of I. The SAT call guarantees that αi ∧ C is unsatisfiable—and there-
fore losing for player Qi. The objective is to derive a strengthening for αi−2. To
that end we remove the sets of variables Xi and Xi−1 from the core C.

Variables Xi−1 are removed by substituting the opponent’s move σi−1. The
intuition is that the opponent can always play that same move σi−1 in the future.
In another words, player Qi must account for any move of the opponent and in
this case Qi prepares for σi−1. This is best illustrated by an example that already
does not contain any of the variables Xi—so we only need to worry about Xi−1.

Example 1. Consider ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y) with σ1 = {x1,¬x2}, σ2 =
{¬y}. Propagation gives σ1∪σ2 �p x1 and σ1∪σ2 �p ¬(x2∨y). SAT gives the core
C = ¬(x2 ∨ y). Negating the core and substituting σ2 gives ξf = (x2 ∨ y)|{¬y} =
x2 leading to the strengthening α1 ← α1 ∧ x2.

The removal of the variables Xi relies on their polarity (see Definition 1).
Each positive occurrence of a variable is replaced by 1 and each negative occur-
rence by 0. This operation guarantees that the resulting formula is weaker than
the derived core (see Lemma 2 for justification).

Definition 4 (forget). For a set of variables X and a formula φ, the trans-
formation forget(X,φ) is defined as follows. The definition uses an auxiliary
function pol(ψ,X, c) where ψ is a formula and c ∈ {0, 1} a constant. The con-
stant c is determined by the polarity of ψ within φ (see Definition 1). If ψ is
annotated positively (ψ+), c is 1; if ψ is annotated negatively (ψ−), c is 0.

forget(X,φ) = pol(φ,X, 1)
pol(x,X, c) = c, if x ∈ X pol(φ ∧ ψ,X, c) = pol(φ,X, c) ∧ pol(ψ,X, c)
pol(x,X, c) = x, if x /∈ X pol(¬φ,X, c) = ¬pol(φ,X,¬c)

Example 2. Consider ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y) and σ1 = {¬x1, x2}, σ2 =
{¬y}. By propagation obtain σ1∪σ2 �p ¬(x1∧z) and σ1∪σ2 �p (x2∨y). Yielding
core C = ¬(x1 ∧ z). Negating the core gives (x1 ∧ z), applying forget({z}, (x1 ∧
z)) = x1. Hence we obtain the strengthening step α1 ← α1 ∧ x1.

We conclude by an example where both Xi, Xi−1 are removed at the same time.

Example 3. ∃x1x2x3∀y∃zw.
(
(x1 ∧ x2 ∨ w) ⇒ ¬z

) ∧ (
(x3 ∧ y ∨ ¬w) ⇒ z

)
for

σ1 = {x1, x2, x3}, σ2 = {y} obtain σ1 ∪ σ2 �p (x1 ∧ x2 ∨ w) and σ1 ∪ σ2 �p

(x3 ∧ y ∨ ¬w). SAT giving the core C = {(x1 ∧ x2 ∨ w), (x3 ∧ y ∨ ¬w)}. Negate:
¬(x1 ∧x2 ∨w)∨¬(x3 ∧y ∨¬w); apply forget: ¬(x1 ∧x2)∨¬(x3 ∧y); substitute
{y}: ¬(x1 ∧ x2) ∨ ¬x3.

3.4 Discussion

CQESTO hinges on two operations: projection and forgetting. Arguably, any
backtracking QBF solver must perform these operations in some form, while
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observing the properties outlined in the following section (Sect. 3.5). Here I
remark that the implementation of CQESTO enables deviations from the cur-
rent presentation. In particular, Invariant 1 may not be strictly observed: upon
initialization all αi are initialized with the original (negated) matrix. Like so,
downstream variables also appear in αi.

Several QBF solvers are characterized by repeated SAT calls. RAReQS [10,
12,13] performs a heavy-handed expansion of quantifiers requiring recursive calls:
this may turn unwieldy in formulas with many quantification levels. The opera-
tion forget in RAReQS corresponds to the creation of new copies of the vari-
ables in the refinement. QELL [27] can be seen as a variant of RAReQS where
variables are removed by greedy elimination.

Both QESTO [14] and CAQE [23] can be seen as specializations of CQESTO
for CNF input. A similar approach has also been used in SMT [4].

QuAbS [25] is similar to CQESTO but with some important differences.
Conceptually, CQESTO directly works on the given circuit. In contrast, QuAbS
encodes the circuit into clauses and then it operates on the literals representing
subformulas. The representing literals are effectively Tseitin variables (accom-
modating for semantics of quantification).2 In this sense, CQESTO is more flex-
ible because QuAbS loses the information about the circuit upon translation to
clauses. Observe that for instance that Examples 1 and 2 operate on the same
formula but proj gives different sub-formulas.

One important consequence of this flexibility is that CQESTO calls the SAT
solver with fewer assumptions. As an example consider a sub-circuit φ that is set
to 1 by propagation of values on previous quantification levels. Further, there
are some sub-circuits of φ, also set to 1 by previous levels, let’s say ψ1, . . . , ψk.
To communicate to the current level that these are already set to true, QuAbS
invokes the SAT solver with the assumptions tφ, tψ1 , . . . , tψk

, where tγ is the
representing literal. Consequently, in QuAbS, any of these assumptions may
appear in the core. However, tφ is the more desirable core because it “covers”
its sub-circuits. In CQESTO, it is guaranteed to obtain such core because only
φ will be using the assumptions (thanks to the function proj).

3.5 Correctness and Termination

This section shows correctness and termination by showing specific properties of
the used operations. We begin by a lemma that intuitively shows that (αi ∧ σ)
is roughly the same as (αi ∧ proj(αi, σ)). This is relevant to the SAT call on
line 7.

Lemma 1. For σ =
⋃

j∈1..i−1 σj and I = proj(αi, σ) it holds that

1. σ ⇒ I
2. Models restricted to Xi of αi ∧ σ and αi ∧ I are the same.

2 This was also done similarly in Z3 when implementing [4].
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Proof (sketch). (1) By induction on expression depth. If for a literal l, it holds
that σ �p l, then by Definition 2 also l ∈ σ and therefore σ ⇒ l. For composite
expressions, the implication holds by standard semantics of ∧ and ¬.

(2) The models restricted to Xi of αi ∧ σ are the same as of αi|σ. Hence,
instead of conjoining σ to αi we imagine we substitute it into αi and then apply
standard simplification, e.g. 0 ∧ φ = 0. This results into the same formula as if
we substituted directly 1 for φ ∈ I with and 0 for ¬φ ∈ I. E.g. for σ = {x, y}
and αi = (x ∨ z) ∧ (y ∨ q) ∧ o, we obtain σ �p (x ∨ z) and σ �p (y ∨ q), and αi|σ
gives o, which is equivalent replacing (x ∨ z) and (x ∨ z) with 1.

We continue by inspecting the operation forget(Xi, ψ), important in
abstraction strengthening. We show that the operation is a weakening of ψ, i.e. it
does not rule out permissible moves. At the same time, however, we need to show
that the result is not too weak. In particular, that the performed strengthening
on lines 10–12 does not allow repeating a play that was once already lost.

Lemma 2. Let ψ be a formula, σ =
⋃

j∈1..i−1 σj and C ⊆ proj(αi, σ) s.t. αi ∧C
is unsatisfiable.

1. ψ ⇒ forget(Xi, ψ)
2. σ ∧ forget(Xi,¬C) is unsatisfiable
3.

(
σ1 ∧ · · · ∧ σi−2 ∧ forget(Xi,¬C)

)|σi−1 is unsatisfiable

Proof (sketch). (1) A positive occurrence of a formula with a weaker one, or
replacing a negative occurrence of a formula with a stronger one leads to a weaker
formula [19, The Polarity Proposition]. The operation forget is a special case of
this because a positive occurrence of a variable is replaced by 1 (trivially weaker)
and a negative occurrence by 0 (trivially stronger).

(2) Since the elements of the core C must have been obtained by proj (see
ln. 7), we have σ �p φ for φ ∈ C where all variables Xi are unassigned in σ.
Hence, replacing the Xi variables with arbitrary expressions preserves the �p

relation, e.g. {x} �p (x ∨ z) but also {x} �p (x ∨ 0). Bullet (3) is a immediate
consequence of (2).

Lemma 3. Algorithm 1 preserves Invariants 1 and 2.

Proof (sketch). Invariant 1 is trivially satisfied upon initialization and is pre-
served by backtracking. Invariant 2 is trivially satisfied upon initialization.

Since C is a core, αi ∧ C is unsatisfiable and therefore αi ⇒ ¬C. This
means that player Qi must satisfy ¬C because he must satisfy αi. The oper-
ation forget is a weakening (Lemma 2(1)) and therefore the player also must
satisfy forget(¬C). Since the opponent can always decide to play σi−1, player Qi

must also satisfy
(
σ1 ∧ · · · ∧ σi−2 ∧ forget(Xi,¬C)

)|σi−1 at level i−2. Therefore
the backtracking operation preserves the invariant.

Theorem 1. The algorithm is correct, i.e. it returns the validity of the formula.
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Table 1. Result summary.

Solver Solved (320)

QFUN 118

CQESTO 112

QuAbS 103

GQ 87

Qute 83
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Fig. 1. Cactus plot. A point at (x, y) means that
the solver solved x instances each within y sec.

Proof (sketch). The algorithm terminates only if αi becomes unsatisfiable for
i ∈ 1..2. From Invariant 2, the opponent of Qi has a winning strategy for what-
ever move Qi plays. Since Qi has no previous moves to alter, there’s a winning
strategy for the opponent for the whole game. The algorithm returns true iff the
losing player is ∀, i.e. iff there is a winning strategy for ∃.

Theorem 2. The algorithm is terminating.

Proof (sketch). We show that if the solver backtracks upon an assignment σ =⋃
j∈1..i−1 σj , the same assignment will not appear again. For contradiction let us

assume that σ appears in a future run. This means that σi−2 was obtained from
SAT(I, αi−2) with I = proj(αi−2,

⋃
j∈1..i−3 σj). From Lemma 2(3) we have that⋃

j∈1..i−2 σj is not a model of αi−2. From Lemma 1(2) αi−2 ∧ I have the same
models as αi−2 ∧ ⋃

j∈1..i−3 σj , which gives a contradiction.

4 Experimental Evaluation

The prototype CQESTO was implemented in C++ where logical gates are hash-
consed as to avoid redundant sub-circuits. SAT calls are delegated to min-
isat 2.2 [6]. It differs from the Algorithm 1 by starting with stronger αi: An
αi is initialized by φ where opponent’s moves are fixed to a constant value.

CQESTO is compared to the solvers QFUN [11], QuAbS [25], Qute [21], and
GhostQ [18] on the QBF Eval ’17 instances [22] on Intel Xeon E5-2630 2.60 GHz
with 64 GB memory; the limits were set to 32 GB and 600 s.

The results are summarized in Table 1 and Fig. 1; detailed results can be
found online [5]. There’s a clear division between SAT-based solvers (QFUN,
CQESTO, QuAbS) and resolution-based solvers (GhostQ, Qute). QFUN is in the
lead closely followed by CQESTO. QuAbS is only 9 instances behind CQESTO
but the cactus plot shows a notable slow-down early on. I remark that detailed
inspection reveals that Qute fares much better on instances with high number
of quantification levels. It is a subject of future work to better understand if
the difference between QuAbS and CQESTO is due to implementation or the
different calculation of strengthening.
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5 Summary and Future Work

This paper contributes to the understanding of QBF solving by studying the
algorithm CQESTO, which is characterized by maintaining propositional restric-
tions, in a circuit form, on the possible moves of the corresponding player at each
quantification level. Projection is used to propagate the current assignment into
the circuit. Once the SAT solver provides a contradiction at the current level,
this needs to be transferred to the level to which we backtrack. Upon backtrack-
ing, CQESTO performs two operations: substitution of the opponent’s move,
forgetting of variables belonging to the player. Identifying these operations helps
us making a link to other solvers, such as RAReQS.

The presented operations open several avenues for future work. They may
enable connecting CNF-based learning [29] and the circuit-based approach
by extending propagation (Definition 2). The discussed connection between
CQESTO and RAReQS also opens the possibility of combining the two meth-
ods, which would in particularly be beneficial in formulas with high number of
quantifiers, where RAReQS may be too heavy-handed. The recently proposed
use of machine learning for RAReQS implemented in QFUN [11] could also be
used in CQESTO as a look-ahead for future moves of the opponent.

Acknowledgments. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013. The author
would like to thank Nikolaj Bjørner and João Marques-Silva for the helpful discussions
on the topic.
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Abstract. While symmetries are well understood for Boolean formulas
and successfully exploited in practical SAT solving, less is known about
symmetries in quantified Boolean formulas (QBF). There are some works
introducing adaptions of propositional symmetry breaking techniques,
with a theory covering only very specific parts of QBF symmetries. We
present a general framework that gives a concise characterization of sym-
metries of QBF. Our framework naturally incorporates the duality of
universal and existential symmetries resulting in a general basis for QBF
symmetry breaking.

1 Introduction

Mathematicians are generally advised [1] to exploit the symmetry in a given
problem for solving it. In automated reasoning, however, symmetries are often
exploited by destroying them. In this context, to destroy a symmetry means to
enrich the given problem by additional constraints which tell the solver that
certain parts of the search space are equivalent, so that it investigates only one
of them. Such symmetry breaking techniques have been studied for a long time.
They are particularly well developed in SAT [2] and CSP [3]. In CSP [4] it has
been observed that it is appropriate to distinguish two kinds of symmetries:
those of the problem itself and those of the solution set. In the present paper,
we apply this idea to Quantified Boolean Formulas (QBF) [5].

Symmetry breaking for QBF has already been studied more than ten years
ago [6–9], and it can have a dramatic effect on the performance of QBF solvers.
As an extreme example, the instances of the KBKF benchmark set [10] are
highly symmetric. For some problem sizes n, we applied the two configurations
QRes (standard Q-resolution) and LD (long-distance resolution) of the solver
DepQBF [11] to this benchmark set. For LD it is known that it performs expo-
nentially better than QRes on the KBKF formulas [12]. The table on the previous
page shows the runtimes of DepQBF without and with symmetry breaking (SB).
In particular, we enriched the formulas with symmetry breaking formulas over
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n Solving times (in sec)

W/o SB With SB

QRes LD QRes LD

10 0.3 0.5 0.4 0.4

20 160 0.5 0.4 0.4

40 >3600 0.5 0.4 0.4

80 >3600 0.7 0.4 0.4

160 >3600 2.2 0.5 0.4

320 >3600 12.3 0.6 0.5

640 >3600 36.8 1.0 0.8

1280 >3600 241.1 22.6 19.7

2560 >3600 >3600 215.7 155.2

5120 >3600 >3600 1873.2 1042.6

the existential variables. While QRes-
DepQBF only solves two formulas without
symmetry breaking, with symmetry break-
ing it even outperforms LD-DepQBF. Also
for the LD configuration, the symmetry
breaking formulas are beneficial. While this
is an extreme example, symmetries appear
not only in crafted formulas. In fact, we
found that about 60% of the benchmarks
used in the PCNF track of QBFEval [13]
have nontrivial symmetries that could be
exploited.

In this paper, we develop an explicit, uniform, and general theory for sym-
metries of QBFs. The theory is developed from scratch, and we include detailed
proofs of all theorems. The pioneering work on QBF symmetries [6–9] largely
consisted in translating symmetry breaking techniques well-known from SAT
to QBF. This is not trivial, as universal quantifiers require special treatment.
Since then, however, research on QBF symmetry breaking almost stagnated.
We believe that more work is necessary. For example, we have observed that
universal symmetry breakers as introduced in [8] fail to work correctly in mod-
ern clause-and-cube-learning QBF solvers when compactly provided as cubes.
Although the encoding of the symmetry breaker for universal variables is prov-
ably correct in theory, it turns out to be incompatible with pruning techniques
like pure literal elimination for which already the compatibility with learning is
not obvious [14]. The cubes obtained from symmetry breaking are conceptually
different than the learned cubes, because they do not encode a (partial) satisfying
assignment of the clauses. As the pruning techniques usually only consider the
clausal part of the formula, it can happen that they are wrongly applied in the
presence of cubes stemming from a symmetry breaking formula over universal
variables, affecting the correctness of the solving result.

We hope that the theory developed in this paper will help to resuscitate
the interest in symmetries for QBF, lead to a better understanding of the inter-
play between symmetry breaking and modern optimization techniques, provide a
starting point for translating recent progress made in SAT and CSP to the QBF
world, and produce special symmetry breaking formulas that better exploit the
unique features of QBF. Potential applications of our framework are the develop-
ment of novel symmetry breaking formulas based on different orderings then the
currently considered lexicographic ordering, the transfer of recent improvements
in static symmetry breaking for SAT to QBF, as well as the establishment of
dynamic symmetry breaking.

2 Quantified Boolean Formulas

Let X = {x1, . . . , xn} be a finite set of propositional variables and BF(X) be a
set of Boolean formulas over X. The elements of BF(X) are well-formed formulas
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built from the variables of X, truth constants � (true) and ⊥ (false), as well as
logical connectives according to a certain grammar. For most of the paper, we will
not need to be specific about the structure of the elements of BF(X). We assume
a well-defined semantics for the logical connectives, i.e., for every φ ∈ BF(X)
and every assignment σ : X → {�,⊥} there is a designated value [φ]σ ∈ {�,⊥}
associated to φ and σ. In particular, we use ∧ (conjunction), ∨ (disjunction), ↔
(equivalence), → (implication), ⊕ (xor), and ¬ (negation) with their standard
semantics for combining and negating formulas. Two formulas φ, ψ ∈ BF(X) are
equivalent if for every assignment σ : X → {�,⊥} we have [φ]σ = [ψ]σ. We use
lowercase Greek letters for Boolean formulas and assignments.

If f : BF(X) → BF(X) is a function and σ : X → {�,⊥} is an assignment,
the assignment f(σ) : X → {�,⊥} is defined through f(σ)(x) = [f(x)]σ (x ∈ X).
A partial assignment is a function σ : Y → {�,⊥} with Y ⊆ X. If σ is such
a partial assignment and φ ∈ BF(X), then [φ]σ shall refer to an element of
BF(X \ Y ) such that for every assignment τ : X → {�,⊥} with τ |Y = σ we
have [[φ]σ]τ = [φ]τ . For example, [φ]σ could be the formula obtained from φ by
replacing every variable y ∈ Y by the truth value σ(y) and then simplifying.

We use uppercase Greek letters to denote quantified Boolean formulas
(QBFs). A QBF has the form Φ = P.φ where φ ∈ BF(X) is a Boolean for-
mula and P is a quantifier prefix for X, i.e., P = Q1x1Q2x2 . . . Qnxn for
Q1, . . . , Qn ∈ {∀,∃}. We only consider closed formulas, i.e., each element of X
appears in the prefix. For a fixed prefix P = Q1x1Q2x2 . . . Qnxn, two variables
xi, xj are said to belong to the same quantifier block if Qmin(i,j) = · · · = Qmax(i,j).

Every QBF is either true or false. The truth value is defined recursively as
follows: ∀xP.φ is true iff both P.[φ]{x=�} and P.[φ]{x=⊥} are true, and ∃xP.φ
is true iff P.[φ]{x=�} or P.[φ]{x=⊥} is true. For example, ∀x1∃x2.(x1 ↔ x2) is
true and ∃x1∀x2.(x1 ↔ x2) is false. The semantics of a QBF P.φ can also be
described as a game for two players [15]: In the ith move, the truth value of xi is
chosen by the existential player if Qi = ∃ and by the universal player if Qi = ∀.
The existential player wins if the resulting formula is true and the universal
player wins if the resulting formula is false. In this interpretation, a QBF is true
if there is a winning strategy for the existential player and it is false if there is
a winning strategy for the universal player.

Strategies can be described as trees. Let P = Q1x1Q2x2 . . . Qnxn be a prefix.
An existential strategy for P is a tree of height n + 1 where every node at level
k ∈ {1, . . . , n} has one child if Qk = ∃ and two children if Qk = ∀. In the case
Qk = ∀, the two edges to the children are labeled by � and ⊥, respectively. In
the case Qk = ∃, the edge to the only child is labeled by either � or ⊥. Universal
strategies are defined analogously, the only difference being that the roles of the
quantifiers are exchanged, i.e., nodes at level k have two successors if Qk = ∃
(one labeled ⊥ and one labeled �) and one successor if Qk = ∀ (labeled either
⊥ or �). Here are the four existential strategies and the two universal strategies
for the prefix ∀x1∃x2:
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⊥ �

� �

⊥ �

⊥ �

⊥ �

� ⊥

⊥ �

⊥ ⊥

�

� ⊥

⊥

� ⊥

We write S∃(P ) for the set of all existential strategies and S∀(P ) for the set of
all universal strategies. As shown in the following lemma, the set of paths of a
given existential strategy for prefix P is never disjoint from the set of paths of a
given universal strategy. Unless otherwise stated, by a path, we mean a complete
path starting at the root and ending at a leaf, together with the corresponding
truth value labels.

Lemma 1. If P is a prefix and s ∈ S∃(P ), t ∈ S∀(P ), then s and t have a path
in common.

Proof. A common path can be constructed by induction on the length of the
prefix. There is nothing to show for prefixes of length 0. Suppose the claim holds
for all prefixes of length n and consider a prefix P ′ = P Qn+1xn+1 of length n+1.
Let s ∈ S∃(P ′), t ∈ S∀(P ′) be arbitrary. By chopping off the leafs of s and t,
we obtain elements of S∃(P ) and S∀(P ), respectively, and these share a common
path σ0 by induction hypothesis. If Qn+1 = ∃, then σ0 has a unique continuation
in s, with an edge labeled either � or ⊥, and σ0 has two continuations in t, one
labeled � and one labeled ⊥, so the continuation of σ0 in s must also appear
in t. If Qn+1 = ∀, the argumentation is analogous. �
Every path in a strategy for a prefix P corresponds to an assignment σ : X →
{�,⊥}. An existential strategy for QBF P.φ is a winning strategy (for the exis-
tential player) if all its paths are assignments for which φ is true. A universal
strategy is a winning strategy (for the universal player) if all its paths are assign-
ments for which φ is false. For a QBF P.φ and an existential strategy s ∈ S∃(P ),
we define [P.φ]s =

∧
σ[φ]σ, where σ ranges over all the assignments correspond-

ing to a path of s. (Recall that our assignments are total unless otherwise stated,
and our paths go from the root to a leaf unless otherwise stated.) Then we have
[P.φ]s = � if and only if s is an existential winning strategy. For a universal
strategy t ∈ S∀(P ), we define [P.φ]t =

∨
τ [φ]τ , where τ ranges over all the

assignments corresponding to a path of t. Then [P.φ]s = ⊥ if and only if t is a
universal winning strategy.

The definitions made in the previous paragraph are consistent with the inter-
pretation of QBFs introduced earlier: a QBF is true if and only if there is an
existential winning strategy, and it is false if and only if there is a universal win-
ning strategy. Lemma 1 ensures that a QBF is either true or false. As another
consequence of Lemma 1, observe that for every QBF P.φ we have

( ∃ s ∈ S∃(P ) : [P.φ]s = � ) ⇐⇒ ( ∀ t ∈ S∀(P ) : [P.φ]t = � )

and
( ∀ s ∈ S∃(P ) : [P.φ]s = ⊥ ) ⇐⇒ ( ∃ t ∈ S∀(P ) : [P.φ]t = ⊥ )

.

We will also need the following property, the proof of which is straightforward.

Lemma 2. Let P be a prefix for X, and let φ, ψ ∈ BF(X). Then for all s ∈
S∃(P ) we have [P.(φ ∧ ψ)]s = [P.φ]s ∧ [P.ψ]s, and for all t ∈ S∀(P ) we have
[P.(φ ∨ ψ)]t = [P.φ]t ∨ [P.ψ]t.
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3 Groups and Group Actions

Symmetries can be described using groups and group actions [16]. Recall that
a group is a set G together with an associative binary operation G × G → G,
(g, h) �→ gh. A group has a neutral element and every element has an inverse
in G. A typical example for a group is the set Z of integers together with addi-
tion. Another example is the group of permutations. For any fixed n ∈ N, a
permutation is a bijective function π : {1, . . . , n} → {1, . . . , n}. The set of all
such functions together with composition forms a group, called the symmetric
group and denoted by Sn.

A (nonempty) subset H of a group G is called a subgroup of G if it is closed
under the group operation and taking inverses. For example, the set 2Z of all
even integers is a subgroup of Z, and the set {id,

(
1 2 3
1 3 2

)} is a subgroup of S3.
In general, a subset E of G is not a subgroup. However, for every subset E
we can consider the intersection of all subgroups of G containing E. This is a
subgroup and it is denoted by 〈E〉. The elements of E are called generators of
the subgroup. For example, we have 2Z = 〈2〉, but also 2Z = 〈4, 6〉. A set of
generators for S3 is {(

1 2 3
2 3 1

)
,
(
1 2 3
2 1 3

)}.
If G is a group and S is a set then a group action is a map G × S → S,

(g, x) �→ g(x) which is compatible with the group operation, i.e., for all g, h ∈ G
and x ∈ S we have (gh)(x) = g(h(x)) and e(x) = x, where e is the neutral
element of G. Note that when we have a group action, every element g ∈ G can
be interpreted as a bijective function g : S → S.

For example, for G = Sn and S = {1, . . . , n} we have a group action by the
definition of the elements of Sn. Alternatively, we can let Sn act on a set of
tuples of length n, say on S = {�,©,�}n, via permutation of the indices, i.e.,
π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). For example, for g =

(
1 2 3
1 3 2

)
we would have

g(�,©,�) = (�,�,©), g(�,�,�) = g(�,�,�), g(©,�,�) = (©,�,�),
etc. As one more example, we can consider the group G = Sn × Sm consisting
of all pairs of permutations. The operation for this group is defined component-
wise, i.e., (π, σ)(π′, σ′) = (ππ′, σσ′). We can let G act on a set of two dimensional
arrays with shape n × m, say on S = {�,©,�}n×m, by letting the first com-
ponent of a group element permute the row index and the second component
permute the column index. For example, for g = (

(
1 2 3
1 3 2

)
,
(
1 2 3
2 3 1

)
) we then have

g(
� © �
� � �
© © �

) =
© � �
© � ©
� � �

.

If we have a group action G × S → S, we can define an equivalence relation on
S via x ∼ y ⇐⇒ ∃ g ∈ G : x = g(y). The axioms of groups and group actions
ensure that ∼ is indeed an equivalence relation. The equivalence classes are called
the orbits of the group action. For example, for the action of S3 on {�,©,�}3

discussed above, there are some orbits of size 1 (e.g., {(©,©,©)}), some orbits
of size 3 (e.g., {(�,�,�), (�,�,�), (�,�,�)}), and there is one orbit of size 6
({(�,©,�), (�,�,©), (©,�,�), (©,�,�), (�,©,�), (�,�,©)}).
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4 Syntactic Symmetries

In previous work [9], symmetries are characterized as permutations of literals
with certain properties like being closed under negation, taking into account the
order of the quantifiers, and, when extended to full formulas, always mapping
a QBF to itself. As we will argue in the following, this point of view on QBF
symmetries covers only a part of the full theory. We use group actions to describe
symmetries of QBFs. Two kinds of group actions are of interest. On the one
hand, we consider transformations that map formulas to formulas, i.e., a group
action G × BF(X) → BF(X). On the other hand, we consider transformations
that map strategies to strategies, i.e., a group action G × S∃(P ) → S∃(P ) or
G×S∀(P ) → S∀(P ). In both cases, we consider groups G which preserve the set
of winning strategies for a given QBF P.φ.

Let us first consider group actions G × BF(X) → BF(X). In this case, we
need to impose a technical restriction introduced in the following definition.

Definition 3. Let P be a prefix for X. A bijective function f : BF(X) → BF(X)
is called admissible (w.r.t. P ) if

1. for every assignment σ : X → {�,⊥} and every formula φ ∈ BF(X) we have
[φ]f(σ) = [f(φ)]σ;

2. for every variable x ∈ X the formula f(x) only contains variables that belong
to the same quantifier block of P as x.

The first condition ensures that an admissible function f preserves propositional
satisfiability. In particular, it implies that for any φ, ψ ∈ BF(X), the formulas
f(¬φ) and ¬f(φ) are equivalent, as are f(φ ◦ ψ) and f(φ) ◦ f(ψ) for every
binary connective ◦. It follows that the inverse of an admissible function is again
admissible. It also follows that an admissible function f is essentially determined
by its values for the variables. Note that according to Definition 3 variables can
be mapped to arbitrary formulas. The second condition may be replaced by a less
restricted version, but for simplicity we use the conservative version of above.

Example 4. Let X = {x, y, a, b} and P = ∀x∀y∃a∃b. There is an admissible
function f with f(x) = ¬x, f(y) = y, f(a) = b, f(b) = a. For such a function,
we may have f(x ∨ (a → y)) = ¬x ∨ (b → y). A function g with g(x) = b cannot
be admissible, because of the second condition. By the first condition, a function
h with h(x) = x and h(y) = ¬x cannot be admissible.

Next we show that admissible functions not only preserve satisfiability of Boolean
formulas, but also the truth of QBFs.

Theorem 5. Let P be a prefix for X and f : BF(X) → BF(X) be admissible
for P . For any φ ∈ BF(X) the formula P.φ is true if and only if P.f(φ) is true.

Proof. Since the inverse of an admissible function is admissible, it suffices to show
“⇒”. To do so, we proceed by induction on the number of quantifier blocks in P .

There is nothing to show when P is empty. Suppose the claim is true for all
prefixes with k quantifier blocks, and consider a prefix P = Qx1Qx2 · · · QxiP

′
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for some i ∈ {1, . . . , n}, Q ∈ {∀,∃}, and a prefix P ′ for xi+1, . . . , xn with at
most k quantifier blocks whose top quantifier is not Q. By the admissibility, we
may view f as a pair of functions f1 : BF({x1, . . . , xi}) → BF({x1, . . . , xi}) and
f2 : BF({xi+1, . . . , xn}) → BF({xi+1, . . . , xn}), where f2 is admissible for P ′.
Let s ∈ S∃(P ) be a winning strategy for P.φ. We construct a winning strategy
t ∈ S∃(P ) for P.f(φ).

Case 1: Q = ∃. In this case, the upper i levels of s and t consist of single paths.
Let σ : {x1, . . . , xi} → {�,⊥} be the assignment corresponding to the upper i
levels of s. The subtree sσ of s rooted at the end of σ (level i + 1) is a winning
strategy for P ′.[φ]σ. By induction hypothesis, P ′.f2([φ]σ) has a winning strategy.
Let t have an initial path corresponding to the assignment τ = f−1

1 (σ) followed
by a winning strategy of P ′.f2([φ]σ). (Since f1 is invertible and independent of
xi+1, . . . , xn, the assignment τ is well-defined.) Then t is a winning strategy of
P.f(φ). To see this, let ρ be an arbitrary path of t. We show that [f(φ)]ρ = �.
Indeed,

[f(φ)]ρ

t starts with τ

↓
= [[f(φ)]τ ]ρ

Def. of τ

↓
= [[f(φ)]f−1

1 (σ)]ρ

Def. of f1, f2

↓
= [[f1(f2(φ))]f−1

1 (σ)]ρ

=↑
f1 admissible

[[f−1
1 (f1(f2(φ)))]σ]ρ = [[f2(φ)]σ]ρ =↑

f2 admissible

[f2([φ]σ)]ρ =↑
choice of t

�.

Case 2: Q = ∀. In this case, the upper i levels of both s and t form complete
binary trees in which every path corresponds to an assignment for the variables
x1, . . . , xi. Let τ : {x1, . . . , xi} → {�,⊥} be such an assignment, and let σ =
f1(τ). Let sσ be the subtree of s rooted at σ. This is a winning strategy for
the formula P ′.[φ]σ obtained from P.φ by instantiating the variables x1, . . . , xi

according to σ and dropping the corresponding part of the prefix. By induction
hypothesis, P ′.f2([φ]σ) has a winning strategy. Pick one and use it as the subtree
of t rooted at τ . The same calculation as in Case 1 shows that t is a winning
strategy for P.f(φ). �
Example 6. Consider the true QBF Φ = P.φ = ∀x∀y∃a∃b.((x ↔ a)∧ (y ↔ b)).
If f is an admissible function with f(x) = y, f(y) = x, f(a) = b, f(b) = a, then
obviously, P.f(φ) is true as well. If g is a non-admissible function with g(x) = b,
g(b) = x, then P.g(φ) is false.

Next we introduce the concept of a syntactic symmetry group. The attribute
‘syntactic’ shall emphasize that this group acts on formulas, in contrast to the
‘semantic’ symmetry group introduced later, which acts on strategies. Our dis-
tinction between syntactic and semantic symmetries corresponds to the distinc-
tion between the problem and solution symmetries made in CSP [4].

Definition 7. Let P.φ be a QBF and let G×BF(X) → BF(X) be a group action
such that every g ∈ G is admissible w.r.t. P . We call G a syntactic symmetry
group for P.φ if φ and g(φ) are equivalent (i.e. φ ↔ g(φ) is a tautology) for all
g ∈ G.
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It should be noticed that being a ‘symmetry group’ is strictly speaking not a
property of the group itself but rather a property of the action of G on BF(X).
The elements of a symmetry group are called symmetries. In general, we call a
group action admissible if every g ∈ G is admissible. Definition 7 implies that
when G is a syntactic symmetry group for P.φ, then for every element g ∈ G
the QBF P.g(φ) has the same set of winning strategies as P.φ. Note that this is
not already a consequence of Theorem 5, which only said that P.g(φ) is true if
and only if P.φ is true, which does not imply that they have the same winning
strategies.

Example 8. Consider the QBF Φ = P.φ = ∀x∀y∃a∃b.((x ↔ a) ∧ (y ↔ b)). A
syntactic symmetry group for Φ is G = {id, f}, where f is an admissible function
with f(x) = y, f(y) = x, f(a) = b, f(b) = a.

Symmetries are often restricted to functions which map variables to liter-
als [9]. But this restriction is not necessary. Also the admissible function g
defined by g(x) = x, g(y) = x ⊕ y, g(a) = a, g(b) = a ⊕ b is a syntactic
symmetry for Φ.

5 Semantic Symmetries

In SAT, considering syntactic symmetries is enough, because the solutions of
Boolean formulas are variable assignments. As introduced in Sect. 2, the solu-
tions of QBFs are tree-shaped strategies. In order to be able to permute certain
subtrees of a strategy while keeping others untouched, we introduce semantic
symmetry groups. For the definition of semantic symmetry groups, no techni-
cal requirement like the admissibility is needed. Every permutation of strategies
that maps winning strategies to winning strategies is fine.

Definition 9. Let Φ = P.φ be a QBF and let G be a group acting on S∃(P ) (or
on S∀(P )). We call G a semantic symmetry group for Φ if for all g ∈ G and all
s ∈ S∃(P ) (or all s ∈ S∀(P )) we have [Φ]s = [Φ]g(s).

A single syntactic symmetry can give rise to several distinct semantic symme-
tries, as shown in the following example.

Example 10. Consider again Φ = P.φ = ∀x∀y∃a∃b.((x ↔ a) ∧ (y ↔ b)). The
function f of the previous example, which exchanges x with y and a with b in
the formula, can be translated to a semantic symmetry f̃ :

This symmetry exchanges the labels of level 3 and level 4 and swaps the existential
parts of the two paths in the middle. Regardless of the choice of α, . . . , η ∈
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{⊥,�}, the strategy on the left is winning if and only if the strategy on the right
is winning, so f̃ maps winning strategies to winning strategies.

Some further semantic symmetries can be constructed from f . For example,
in order to be a winning strategy, it is necessary that α = β = ⊥. So we can take
a function that just flips α and β but does not touch the rest of the tree. For the
same reason, also a function that just flips η and ϑ but does not affect the rest
of the tree is a semantic symmetry. The composition of these two functions and
the function f̃ described before (in an arbitrary order) yields a symmetry that
exchanges γ with ζ and δ with ε but keeps α, β, η, ϑ fixed. Also this function is a
semantic symmetry.

The construction described in the example above works in general. Recall that
for an assignment σ : X → {�,⊥} and a function f : BF(X) → BF(X), the
assignment f(σ) : X → {�,⊥} is defined by f(σ)(x) = [f(x)]σ for x ∈ X.

Lemma 11. Let P be a prefix for X and g be an element of a group acting
admissibly on BF(X). Then there is a function f : S∃(P ) → S∃(P ) such that for
all s ∈ S∃(P ) we have that σ is a path of f(s) if and only if g(σ) is a path of s.

Proof. Since g is an admissible function, it acts independently on variables
belonging to different quantifier blocks. Therefore it suffices to consider the case
where P consists of a single quantifier block. If all quantifiers are existential,
then s consists of a single path, so the claim is obvious. If there are only univer-
sal quantifiers, then s consists of a complete binary tree containing all possible
paths, so the claim is obvious as well. �
Starting from a syntactic symmetry group Gsyn, we can consider all the semantic
symmetries that can be obtained from it like in the example above. All these
semantic symmetries form a semantic symmetry group, which we call the seman-
tic symmetry group associated to Gsyn.

Definition 12. Let P be a prefix for X and let Gsyn × BF(X) → BF(X) be an
admissible group action. Let Gsem be the set of all bijective functions f : S∃(P ) →
S∃(P ) such that for all s ∈ S∃(P ) and every path σ of f(s) there exists a g ∈ Gsyn

such that g(σ) is a path of s. This Gsem is called the associated group of Gsyn.

Again, it would be formally more accurate but less convenient to say that the
action of Gsem on S∃(P ) is associated to the action of Gsyn on BF(X).

Theorem 13. If Gsyn is a syntactic symmetry group for a QBF Φ, then the
associated group Gsem of Gsyn is a semantic symmetry group for Φ.

Proof. Let Φ = P.φ. Obviously, Gsem is a group. To show that it is a symmetry
group, let s ∈ S∃(P ) be a winning strategy for Φ, and let gsem ∈ Gsem. We
show that gsem(s) is again a winning strategy. Let σ be a path of gsem(s). By
Definition 12, there exists a gsyn ∈ Gsyn such that gsyn(σ) is a path of s. Since
s is a winning strategy, [φ]gsyn(σ) = �, and since gsyn is admissible, [φ]gsyn(σ) =
[gsyn(φ)]σ. Since gsyn is a symmetry, [gsyn(φ)]σ = [φ]σ, so reading backwards we
have [φ]σ = [gsyn(φ)]σ = [gsyn(φ)]σ = [φ]gsyn(σ) = �. Hence every path of gsem(s)
is a satisfying assignment for φ, so gsem(s) is a winning strategy. �
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The distinction between a syntactic and a semantic symmetry group is imma-
terial when the prefix consists of a single quantifier block. In particular, SAT
problems can be viewed as QBFs in which all quantifiers are ∃. For such formu-
las, each tree in S∃(P ) consists of a single path, so in this case the requirement
∀ s ∈ S∃(P ) : [Φ]s = [Φ]g(s) from Definition 9 boils down to the requirement that
[φ]σ = [φ]f(σ) should hold for all assignments σ : X → {�,⊥}. This reflects the
condition of Definition 7 that φ and f(φ) are equivalent.

As we have seen in Example 10, there is more diversity for prefixes with
several quantifier blocks. In such cases, a single element of a syntactic symmetry
group can give rise to a lot of elements of the associated semantic symmetry
group. In fact, the associated semantic symmetry group is very versatile. For
example, when there are two strategies s, s′ ∈ S∃(P ) and some element f of
an associated semantic symmetry group Gsem such that f(s) = s′, then there
is also an element h ∈ Gsem with h(s) = s′, h(s′) = s and h(r) = r for all
r ∈ S∃(P )\{s, s′}. The next lemma is a generalization of this observation which
indicates that Gsem contains elements that exchange subtrees across strategies.

Lemma 14. Let P = Q1x1 . . . Qnxn be a prefix and Gsyn × BF(X) → BF(X)
be an admissible group action. Let Gsem be the associated group of Gsyn. Let
s ∈ S∃(P ) and let σ be a path of s. Let i ∈ {1, . . . , n} be such that [xj ]σ = [g(xj)]σ
for all g ∈ Gsyn and all j < i.

Further, let f ∈ Gsem and s′ = f(s). Let σ′ be a path of s′ such that the first
i − 1 edges of σ′ agree with the first i − 1 edges of σ. By the choice of i such
a σ′ exists. Let t, t′ ∈ S∃(Qixi . . . Qnxn) be the subtrees of s, s′ rooted at the ith
node of σ, σ′, respectively, and let s′′ ∈ S∃(P ) be the strategy obtained from s by
replacing t by t′, as illustrated in the picture below. Then there exists h ∈ Gsem

with h(s) = s′′.

s′

t′

σ′

s

t

σ

s′′

t′

σ′

f h

Proof. Define h : S∃(P ) → S∃(P ) by h(s) = s′′, h(s′′) = s, and h(r) = r for all
r ∈ S∃(P ) \ {s, s′′}. Obviously, h is a bijective function from S∃(P ) to S∃(P ).
To show that h belongs to Gsem, we must show that for every r ∈ S∃(P ) and
every path ρ of h(r) there exists g ∈ Gsyn such that g(ρ) is a path of r. For
r ∈ S∃(P ) \ {s, s′′} we have h(r) = r, so there is nothing to show.

Consider the case r = s. Let ρ be a path of h(r) = s′′. If ρ does not end in
the subtree t′, then the same path ρ also appears in r and we can take g = id.
Now suppose that ρ does end in the subtree t′. Then ρ is also a path of s′ = f(s),
because all paths of s and s′ ending in t or t′ agree above the ith node. Since
f ∈ Gsem, there exists g ∈ Gsyn such that g(ρ) is a path of s.
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Finally, consider the case r = s′′. Let ρ be a path of h(r) = s. If ρ does not
end in the subtree t, then the same path ρ also appears in r and we can take
g = id. Now suppose that ρ does end in the subtree t. Then the first i − 1 edges
of ρ agree with those of σ. Since s = f−1(s′), there exists g ∈ Gsyn such that
g(ρ) is a path of s′. By assumption on Gsyn, the element g fixes first i − 1 edges
of ρ, so g(ρ) ends in t′ and is therefore a path of s′′, as required. �

6 Existential Symmetry Breakers

The action of a syntactic symmetry group of a QBF P.φ splits BF(X) into
orbits. For all the formulas ψ in the orbit of φ, the QBF P.ψ has exactly the
same winning strategies as P.φ. For finding a winning strategy, we therefore have
the freedom of exchanging φ with any other formula in its orbit.

The action of a semantic symmetry group on S∃(P ) splits S∃(P ) into orbits.
In this case, every orbit either contains only winning strategies for P.φ or no
winning strategies for P.φ at all:

•an orbit containing only
winning strategies

•an orbit containing no
winning strategies

Instead of checking all elements of S∃(P ), it is sufficient to check one element
per orbit. If a winning strategy exists, then any such sample contains one.

To avoid inspecting strategies that belong to the same orbit symmetry break-
ing introduces a formula ψ ∈ BF(X) which is such that P.ψ has at least one
winning strategy in every orbit. Such a formula is called a symmetry breaker.
The key observation is that instead of solving P.φ, we can solve P.(φ∧ψ). Every
winning strategy for the latter will be a winning strategy for the former, and if
the former has at least one winning strategy, then so does the latter. By further-
more allowing transformations of φ via a syntactic symmetry group, we get the
following definition.

Definition 15. Let P be a prefix for X, let Gsyn be a group acting admissibly
on BF(X) and let Gsem be a group action on S∃(P ). A formula ψ ∈ BF(X)
is called an existential symmetry breaker for P (w.r.t. the actions of Gsyn and
Gsem) if for every s ∈ S∃(P ) there exist gsyn ∈ Gsyn and gsem ∈ Gsem such that
[P.gsyn(ψ)]gsem(s) = �.

Example 16. Consider the formula Φ = P.φ = ∀x∃y∃z.(y ↔
z). All the elements of S∃(P ) have the form depicted on the
right. As syntactic symmetries, we have the admissible functions
f, g : BF(X) → BF(X) defined by f(x) = x, f(y) = z, f(z) = y,
and g(x) = x, g(y) = ¬y, g(z) = ¬z, respectively, so we can take
Gsyn = 〈f, g〉 as a syntactic symmetry group.

⊥ �

α γ

β δ

According to [8,9] the formula ¬y is a symmetry breaker for P.φ. When
considering Gsyn together with Gsem = {id} (what would be sufficient for SAT),
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the complications for QBF become obvious. The orbit of ¬y is O = {y, z,¬y,¬z}.
Now consider the strategy with α = �, β = ⊥, γ = ⊥, δ = �. For any ψ ∈ O,
this strategy does not satisfy P.ψ, because ψ is true on one branch, but false on
the other. Using semantic symmetries can overcome this problem.

Semantic symmetries can act differently on different paths. Let f1 : S∃(P ) →
S∃(P ) be the function which exchanges α, β and leaves γ, δ fixed, let g1 : S∃(P ) →
S∃(P ) be the function which replaces α, β by ¬α,¬β and leaves γ, δ fixed, and
let f2, g2 : S∃(P ) → S∃(P ) be defined like f1, g1 but with the roles of α, β and
γ, δ exchanged. The group Gsem = 〈f1, g1, f2, g2〉 is a semantic symmetry group
for Φ. This group splits S∃(P ) into four orbits: one orbit consists of all strategies
with α = β, γ = δ, one consists of those with α = β, γ �= δ, one consists of those
with α �= β, γ = δ, and on consists of those with α �= β, γ �= δ.

Taking Gsyn = {id} together with this group Gsem, the formula ¬y is a sym-
metry breaker, because each orbit contains one element with α = γ = ⊥.

The following theorem is the main property of symmetry breakers.

Theorem 17. Let Φ = P.φ be a QBF. Let Gsyn be a syntactic symmetry group
and Gsem be a semantic symmetry group acting on S∃(P ). Let ψ be an existential
symmetry breaker for Gsyn and Gsem. Then P.φ is true iff P.(φ ∧ ψ) is true.

Proof. The direction “⇐” is obvious (by Lemma 2). We show “⇒”. Let s ∈ S∃(P )
be such that [Φ]s = �. Since Φ is true, such an s exists. Let gsyn ∈ Gsyn and
gsem ∈ Gsem be such that [P.gsyn(ψ)]gsem(s) = �. Since ψ is an existential sym-
metry breaker, such elements exist. Since Gsyn and Gsem are symmetry groups,
[P.gsyn(φ)]gsem(s) = [P.φ]s = �. Lemma 2 implies [P.(gsyn(φ) ∧ gsyn(ψ))]gsem(s) =
�. By the compatibility with logical operations (admissibility),

[P.gsyn(φ ∧ ψ)]gsem(s) = [P.(gsyn(φ) ∧ gsyn(ψ))]gsem(s) = �.

Now by Theorem 5 applied with g−1
syn to P.gsyn(φ∧ψ), it follows that there exists

s′ such that [P.(φ ∧ ψ)]s′ = �, as claimed. �
As a corollary, we may remark that for an existential symmetry breaker ψ for the
prefix P the formula P.ψ is always true. To see this, choose φ = � and observe
that any groups Gsyn and Gsem are symmetry groups for φ. By the theorem,
P.(φ ∧ ψ) is true, so P.ψ is true.

7 Universal Symmetry Breakers

An inherent property of reasoning about QBFs is the duality between “exis-
tential” and “universal” reasoning [17], i.e., the duality between proving and
refuting a QBF. For showing that a QBF is true, an existential strategy has to
be found that is an existential winning strategy. An existential symmetry breaker
tightens the pool of existential strategies among which the existential winning
strategy can be found (in case there is one).
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If the given QBF is false, then a universal strategy has to be found that is a
universal winning strategy. In this case, an existential symmetry breaker is not
useful. Recall that a universal winning strategy is a tree in which all paths are
falsifying assignments. Using an existential symmetry breaker as in Theorem17
tends to increase the number of such paths and thus increases the number of
potential candidates. To aid the search for a universal winning strategy, it would
be better to increase the number of paths corresponding to satisfying assign-
ments, because this reduces the search space for universal winning strategies.
For getting symmetry breakers serving this purpose, we can use a theory that is
analogous to the theory of the previous section.

Definition 18. Let P be a prefix for X, let Gsyn be a group acting admissibly
on BF(X) and let Gsem be a group action on S∀(P ). A formula ψ ∈ BF(X)
is called a universal symmetry breaker for P (w.r.t. the actions of Gsyn and
Gsem) if for every t ∈ S∀(P ) there exist gsyn ∈ Gsyn and gsem ∈ Gsem such that
[P.gsyn(ψ)]gsem(t) = ⊥.

No change is needed for the definition of syntactic symmetry groups. A semantic
symmetry group for Φ = P.φ is now a group acting on S∀(P ) in such a way that
[P.φ]t = [P.φ]g(t) for all g ∈ G and all t ∈ S∀(P ). With these adaptions, we have
the following analog of Theorem 17.

Theorem 19. Let Φ = P.φ be a QBF. Let Gsyn be a syntactic symmetry group
and Gsem be a semantic symmetry group acting on S∀(P ). Let ψ be a universal
symmetry breaker for Gsyn and Gsem. Then P.φ is false iff P.(φ ∨ ψ) is false.

The proof is obtained from the proof of Theorem17 by replacing S∃(P ) by S∀(P ),
every ∧ by ∨, every � by ⊥, and “existential” by “universal”.

We have seen before that for an existential symmetry breaker ψ∃ the QBF
P.ψ∃ is necessarily true. Likewise, for a universal symmetry breaker ψ∀, the QBF
P.ψ∀ is necessarily false. This has the important consequence that existential and
universal symmetry breakers can be used in combination, even if they are not
defined with respect to the same group actions.

Theorem 20. Let Φ = P.φ be a QBF. Let G∃
syn and G∀

syn be syntactic symme-
try groups of Φ, let G∃

sem be a semantic symmetry group of Φ acting on S∃(P )
and let G∀

sem be a semantic symmetry group of Φ acting on S∀(P ). Let ψ∃ be
an existential symmetry breaker for G∃

syn and G∃
sem, and let ψ∀ be a universal

symmetry breaker for G∀
syn and G∀

sem. Then P.φ is true iff P.((φ ∨ ψ∀) ∧ ψ∃) is
true iff P.((φ ∧ ψ∃) ∨ ψ∀) is true.
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Proof. For the first equivalence, we have

P.φ is true
Thm. 19⇐⇒ P.(φ ∨ ψ∀) is true

Def.⇐⇒ ∃ s ∈ S∃(P ) : [P.(φ ∨ ψ∀)]s = �
⇐⇒ ∃ s ∈ S∃(P ) : [P.(φ ∨ ψ∀)]s ∧ [P.ψ∃]s

︸ ︷︷ ︸
=�

= �

Lem. 2⇐⇒ ∃ s ∈ S∃(P ) : [P.((φ ∨ ψ∀) ∧ ψ∃)]s = �
Def.⇐⇒ P.((φ ∨ ψ∀) ∧ ψ∃) is true.

The proof of the second equivalence is analogous. �
Next we relate existential symmetry breakers to universal symmetry breakers.
Observe that when P is a prefix and P̃ is the prefix obtained from P by changing
all quantifiers, i.e., replacing each ∃ by ∀ and each ∀ by ∃, then S∃(P ) = S∀(P̃ ).
For any formula φ ∈ BF(X) and any s ∈ S∃(P ) = S∀(P̃ ) we have ¬[P.φ]s =
[P̃ .¬φ]s. Therefore, if Gsyn is a group acting admissibly on BF(X) and Gsem is
a group acting on S∃(P ) = S∀(P̃ ), we have

ψ is an existential symmetry breaker for Gsyn and Gsem

⇐⇒ ∀ s ∈ S∃(P ) ∃ gsyn ∈ Gsyn, gsem ∈ Gsem : [P.gsyn(ψ)]gsem(s) = �
⇐⇒ ∀ s ∈ S∀(P̃ ) ∃ gsyn ∈ Gsyn, gsem ∈ Gsem : [P̃ .¬gsyn(ψ)]gsem(s) = ⊥
⇐⇒ ∀ s ∈ S∀(P̃ ) ∃ gsyn ∈ Gsyn, gsem ∈ Gsem : [P̃ .gsyn(¬ψ)]gsem(s) = ⊥
⇐⇒ ¬ψ is a universal symmetry breaker for Gsyn and Gsem,

where admissibility of gsyn is used in the third step. We have thus proven the fol-
lowing theorem, which captures Property 2 of the symmetry breaker introduced
in [8] by relating existential and universal symmetry breakers.

Theorem 21. Let P be a prefix for X and let P̃ be the prefix obtained from P by
flipping all the quantifiers. Let Gsyn be a group acting admissibly on BF(X) and
let Gsem be a group acting on S∃(P ) = S∀(P̃ ). Then ψ ∈ BF(X) is an existential
symmetry breaker for Gsyn and Gsem if and only if ¬ψ is a universal symmetry
breaker for Gsyn and Gsem.

8 Construction of Symmetry Breakers

Because of Theorem 21, it suffices to discuss the construction of existential sym-
metry breakers. A universal symmetry breaker is obtained in a dual manner.
Given a symmetry group, the basic idea is similar as for SAT (see also the
French thesis of Jabbour [9] for a detailed discussion on lifting SAT symmetry
breaking techniques to QBF). First an order on S∃(P ) is imposed, so that every
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orbit contains an element which is minimal with respect to the order. Then we
construct a formula ψ∃ for which (at least) the minimal elements of the orbits
are winning strategies. Any such formula is an existential symmetry breaker.
One way of constructing an existential symmetry breaker is given in the follow-
ing theorem, which generalizes the symmetry breaking technique by Crawford
et al. [18]. We give a formal proof that we obtain indeed a QBF symmetry
breaker and conclude with lifting a CNF encoding used in recent SAT solving
technology [19] to QBF.

Theorem 22. Let P = Q1x1 . . . Qnxn be a prefix for X, let Gsyn be a group
acting admissibly on BF(X), and let Gsem be the associated group of Gsyn. Then

ψ =
n∧

i = 1

Qi = ∃

∧

g∈Gsyn

((∧

j<i

(xj ↔ g(xj))
)

→
(
xi → g(xi)

))

is an existential symmetry breaker for Gsyn and Gsem.

Proof. All elements of S∃(P ) are trees with the same shape. Fix a numbering
of the edge positions in these trees which is such that whenever two edges are
connected by a path, the edge closer to the root has the smaller index. (One
possibility is breadth first search order.) For any two distinct strategies s1, s2 ∈
S∃(P ), there is then a minimal k such that the labels of the kth edges of s1, s2

differ. Define s1 < s2 if the label is ⊥ for s1 and � for s2, and s1 > s2 otherwise.
Let s ∈ S∃(P ). We need to show that there are gsyn ∈ Gsyn and gsem ∈

Gsem such that [gsyn(ψ)]gsem(s) = �. Let gsyn = id and let gsem be such that
s̃ := gsem(s) is as small as possible in the order defined above. We show that
[ψ]s̃ = �. Assume otherwise. Then there exists i ∈ {1, . . . , n} with Qi = ∃ and
g ∈ Gsyn and a path σ in s̃ with [xj ]σ = [g(xj)]σ for all j < i and [xi]σ = �
and [g(xi)]σ = ⊥. By Lemma 11, the element g ∈ Gsyn can be translated into an
element f ∈ Gsem which maps s̃ to a strategy f(s̃) which contains a path that
agrees with σ on the upper i−1 edges but not on the ith. By Lemma 14, applied
to the subgroup H ⊆ Gsyn consisting of all h ∈ Gsyn with [xj ]σ = [h(xj)]σ for
all j < i, we may assume that f(s̃) and s̃ only differ in edges that belong to the
subtree rooted at the ith node of σ. As all these edges have higher indices, we
have s̃ < s, in contradiction to the minimality assumption on s. �
Note that we do not need to know the group Gsem explicitly. It is only used
implicitly in the proof.

In nontrivial applications, Gsyn will have a lot of elements. It is not necessary
(and not advisable) to use them all, although Theorem22 would allow us to do
so. In general, if a formula ψ1 ∧ ψ2 is an existential symmetry breaker, then
so are ψ1 and ψ2, so we are free to use only parts of the large conjunctions.
A reasonable choice is to pick a set E of generators for Gsyn and let the inner
conjunction run over (some of) the elements of E.

The formula ψ of Theorem 22 can be efficiently encoded as conjunctive normal
form (CNF), adopting the propositional encoding of [2,19]: let g ∈ Gsyn and let
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{yg
0 , . . . , yg

n−1} be a set of fresh variables. First, we define a set Ig of clauses that
represent all implications xi → g(xi) of ψ from Theorem 17,

Ig = {(¬yg
i−1 ∨ ¬xi ∨ g(xi)) | 1 ≤ i ≤ n,Qi = ∃}.

When xi is existentially quantified, by using Tseitin variables yg
i−1 we can recycle

the implications xi → g(xi) in the encoding of the equivalences xj ↔ g(xj) that
appear in the outer implication:

Eg = {(yg
j ∨ ¬yg

j−1 ∨ ¬xj) ∧ (yj ∨ ¬yj−1 ∨ g(xj)) | 1 ≤ j < n,Qj = ∃}.

If variable xj is universally quantified, the recycling is not possible, so we use

Ug = {(yg
j ∨¬yg

j−1∨¬xj ∨¬g(xj))∧(yg
j ∨¬yg

j−1∨xj ∨g(xj)) | 1 ≤ j < n,Qj = ∀}

instead. The CNF encoding of ψ is then the conjunction of yg
0 and all the clauses

in Ig, Eg, and Ug, for all desired g ∈ Gsyn. The prefix P has to be extended by
additional quantifiers which bind the Tseitin variables yg

i . As explained in [20],
the position of such a new variable in the prefix has to be behind the quantifiers
of the variables occurring in its definition. The encoding of universal symmetry
breakers works similarly and results in a formula in disjunctive normal form
(DNF), i.e., a disjunction of cubes (where a cube is a conjunction of literals). In
this case the auxiliary variables are universally quantified. The obtained cubes
could be used by solvers that simultaneously reason on the CNF and DNF rep-
resentation of a formula (e.g., [21,22]) or by solvers that operate on formulas of
arbitrary structure (e.g., [22–24]). The practical evaluation of this approach is a
separate topic which we leave to future work.

Besides the practical evaluation of the discussed symmetry breakers in con-
nection with recent QBF solving technologies there are many more promising
directions for future work. Also different orderings than the lexicographic order
applied in Theorem22 could be used [25] for the construction of novel symmetry
breakers. Recent improvements of static symmetry breaking [19] for SAT could
be lifted to QBF and applied in combination with recent preprocessing tech-
niques. Also dynamic symmetry breaking during the solving could be beneficial,
for example in the form of symmetric explanation learning [26].

An other interesting direction would be the relaxation of the quantifier order-
ing. Our symmetry framework assumes a fixed quantifier prefix with a strict
ordering. In recent works it has been shown that relaxing this order by the means
of dependency schemes is beneficial for QBF solving both in theory and in prac-
tice [27,28]. In a similar way as proof systems have been parameterized with
dependency schemes, our symmetry framework can also be parameterized with
dependency schemes. It can be expected that a more relaxed notion of quanti-
fier dependencies induces more symmetries resulting in more powerful symmetry
breakers.
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Abstract. We develop new semantics for resolution-based calculi for
Quantified Boolean Formulas, covering both the CDCL-derived calculi
and the expansion-derived ones. The semantics is centred around the
notion of a partial strategy for the universal player and allows us to show
in a local, inference-by-inference manner that these calculi are sound. It
also helps us understand some less intuitive concepts, such as the role
of tautologies in long-distance resolution or the meaning of the “star” in
the annotations of IRM-calc. Furthermore, we show that a clause of any
of these calculi can be, in the spirit of Curry-Howard correspondence,
interpreted as a specification of the corresponding partial strategy. The
strategy is total, i.e. winning, when specified by the empty clause.

1 Introduction

The ongoing interest in the problem of Quantified Boolean Formulas (QBF) has
resulted in numerous solving techniques, e.g. [10,11,19,22,23], as well as various
resolution-based, clausal calculi [2,5,20,21,28] which advance our understanding
of the techniques and formalise the involved reasoning.

While a substantial progress in terms of understanding these calculi has
already been made on the front of proof complexity [2,4–8,13,17,18,20,26], the
question of semantics of the involved intermediate clauses has until now received
comparatively less attention. In many cases, the semantics is left only implicit,
determined by the way in which the clauses are allowed to interact via inferences.
This is in stark contrast with propositional or first-order logic, in which a clause
can always be identified with the set of its models.

In this paper, we propose to use strategies, more specifically, the partial
strategies for the universal player, as the central objects manipulated within a
refutation. We show how strategies arise from the formula matrix and identify
operations for obtaining new strategies by combining old ones. We then provide
the missing meaning to the intermediate clauses of the existing calculi by seeing
them as abstractions of these strategies. This way, we obtain soundness of the
calculi in a purely local, modular way, in contrast to the global arguments known
from the literature, which need to manipulate the whole refutation, c.f. [5,15,16].
While the advantage of having a general model theory could be (as in other logics)
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Austrian research projects FWF S11403-N23 and S11409-N23.
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Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

strictly stronger (p-simulates,
but exponentially separated)

incomparable (mutual
exponential separations)

expansion solving

CDCL solving

Fig. 1. QBF resolution calculi [6] and their simulation order.

immense, modularity in itself is already a very useful property as it enables the
notion of a sound inference, an inference which can be added to a calculus
without the need to reprove soundness of the whole calculus.

Semantical arguments of soundness have already appeared in the literature,
but so far they only targeted simpler calculi (see “the lower part” of Fig. 1)
and each with a different method. Semantical soundness is straightforward for
Q-Res [24,27] and can be extended to LD-Q-Res via the notion of a shadow
clause [3] introduced for the purpose of strategy extraction [1]. On the front
of expansion-derived calculi, a translation from QBF to first-order logic [25]
suggests how to interpret derivations of (up to) IR-calc with the help of first-
order model theory [9,14]. Strategies introduced in this paper provide a single
semantic concept for proving soundness of all the calculi in Fig. 1, including the
expansion-derived calculus IRM-calc and the CDCL-derived calculus LQU+-Res,
covering the remaining weaker calculi via simulations.

We are able to view the above mentioned abstraction as providing a specifica-
tion for a strategy when understood as a program. This relates our approach to
the Curry-Howard correspondence: We can see the specification clause as a type
and the derivation which lead to it and for which a strategy is the semantical
denotation as the implementing program. The specification of the empty clause
can then be read as “my strategy is total and therefore winning.”

Contributions. The main contributions of this paper are as follows.

– We introduce winning strategies for the universal player as the central notion
of a new semantics for QBF calculi (Sect. 3). Subsequently, we identify opera-
tions to manipulate and combine strategies and prove them sound in a seman-
tical and local way (Sect. 4).

– We argue that the inference rules in both CDCL-derived calculi such as
LQU+-Res and the expansion-derived ones including IRM-calc can be seen
as abstractions of operations on strategies (Sects. 5 and 6).

– A strategy abstracting to the empty clause can be readily used to certify that
the input formula is false. We show that there are small IRM-calc refutations
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which only have exponential winning strategies for the universal player in our
formalism (Sect. 7). This opens the question whether there are more compact
representations of strategies that could be manipulated as easily.

2 Preliminaries

A Quantified Boolean Formula (QBF) in the prenex form Φ = Π.ϕ consists of a
quantifier prefix Π and a matrix ϕ. The prefix Π is a sequence of distinct quan-
tified variables Q1v1 . . . Qkvk, where each Qi is either the existential quantifier
∃, in which case vi is called an existential variable, or the universal quantifier
∀, in which case vi is called a universal variable. Each variable is assigned an
index ind(vi) = i. We denote the set of all the existential variables X and the
set of all the universal variables U . The matrix ϕ is a propositional formula. We
say that a QBF Φ is closed if the variables of the matrix var(ϕ) are amongst
V = {v1, . . . , vk} = X ∪̇ U . We will only consider closed QBFs here.

A literal l is either a variable v, in which case it has polarity pol(v) = 1, or
a negation v̄, which has polarity pol(v̄) = 0. We define the variable of a literal
var(l) = v in both cases. We also extend index to literals via ind(l) = ind(var(l)).
By l̄ we denote the complement of a literal l, i.e. l̄ = v if l = v̄ and l̄ = v̄ if l = v.
Accordingly, pol(l̄) = 1 − pol(l).

We will be dealing with QBFs with the matrix in Conjunctive Normal Form
(CNF). A clause is a disjunction of literals. A clause is called a tautology if it
contains a complementary pair of literals. A propositional formula ϕ is in CNF
if it is a conjunction of clauses. It is customary to treat a clause as the set of its
literals and to treat a formula in CNF as the set of its clauses.

An assignment α : S → {0, 1} is a mapping from a set of variables S to
the Boolean domain {0, 1}. Whenever S ⊇ var(ϕ), the assignment α can be
used to evaluate a propositional formula ϕ in the usual sense. We say that two
assignments are compatible, if they agree on the intersection of their respective
domains. We denote by σ ‖ τ that σ and τ are not compatible, i.e. that there is
v ∈ dom(σ) ∩ dom(τ) such that σ(v) 
= τ(v).

In the context of a fixed QBF Φ = Π.ϕ, we represent assignments as strings
of literals strictly ordered by the variable index. For example, given a QBF with
prefix Π = ∀x∃y∀u the assignment α = {0/x, 1/u} can be written simply as x̄u.
We introduce the prefix order relation on strings �, where σ � τ denotes that
there is a string ξ such that σξ = τ . An assignment α is called full if dom(α) = V.

3 Policies and Strategies

A QBF is often seen as specifying a game of the existential player against the
universal player who alternate at assigning values to their respective variables
trying to make the formula true (resp. false) under the obtained assignment. In
such a game it is natural to represent the individual moves by literals.

The central notion of our semantics is a strategy, which we obtain as a special
case of a policy. Policies are best understood as (non-complete) binary trees with
nodes labeled by variables (in an order respecting the index) and edges labeled
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by the Boolean values. However, to streamline the later exposition we adopt an
equivalent set-theoretical approach for representing trees in the form of prefix-
closed sets of strings. The correspondence will be demonstrated on examples.

A policy P is a set of assignments such that for every assignment σ and for
every literal l and k

(1) σl ∈ P implies σ ∈ P (P is prefix-closed),
(2) σl, σk ∈ P implies var(l) = var(k) (P is consistently branching).

The trivial policy Pε = {ε} where ε is the empty string (which stands for the
empty assignment ε : ∅ → {0, 1}), will be in figures denoted by ⊥.

An assignment σ is maximal in P , if σ ∈ P and for every τ � σ if τ ∈ P then
τ = σ. A full assignment α : V → {0, 1} is according to a policy P , also written

P |= α,

if it is compatible with some σ maximal in P . We say that a policy P suggests a
move l in the context σ if σl ∈ P , but σl̄ /∈ P . We say that a policy P branches
on a variable x in the context σ if both σx ∈ P and σx̄ ∈ P .

Example 1. Any full assignment α is according to Pε. On the other hand, there
is no full assignment α according to the empty policy P∅ = ∅.

For the given prefix ∃x∃y∀z consider the policy P = {ε, x, xz, x̄, x̄z̄}. It sug-
gests the move z in the context x and the move z̄ in the context x̄. It does not
suggest a move for the variable x, but it branches on x, and neither suggests a
move for nor branches on y.

Policy P is rendered as a tree in Fig. 2. Each node of the tree corresponds to
a string in P , the root to the empty string ε, and each Boolean value labelling
an edge marks the polarity of the “last” literal in a corresponding string.

x

z
1

z
0

⊥1

⊥
0

Fig. 2. A tree representation of the policy P from Example 1.

The following central definition captures the notion a strategy. A policy P
is a strategy for the universal player if, when both players play according to
P , the universal player wins by making the matrix false. Moreover, a strategy
is winning if the existential player cannot “escape her fate” by ignoring some
moves suggested to her and thus playing out the game in a way for which the
policy does not provide any guarantees to the universal player.
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Definition 1. Let us fix a QBF Φ = Π.ϕ. A policy P is a partial strategy for
the universal player, or simply a strategy, if for every full assignment α

P |= α ⇒ α 
|= ϕ.

A strategy P is total or winning, if it is non-empty and does not suggest any
move for the existential player, i.e. whenever it suggests a move l then var(l) ∈ U .

Example 2. Let us consider the false QBF Φ = ∃x∃y∀z.(x∨z)∧(x̄∨z̄). The policy
P from Example 1 is a strategy for the universal player, because xyz, xȳz, x̄yz̄
and x̄ȳz̄, i.e. all the maximal assignments according to P , each make the for-
mula’s matrix false. P is actually a winning strategy, as it is non-empty and does
not suggest a move for either x or y.

Lemma 1. A closed QBF Φ = Π.ϕ is false if and only if there is a policy P
which is a winning strategy for the universal player.

A winning strategy for the universal player is essentially the same object1 as a
Q-counter-model as defined, e.g., by Samulowitz and Bacchus [24]. Thus, since
every false QBF has a Q-counter-model, it also has a winning strategy in the
sense of Definition 1. Complementarily, if there is a winning strategy for the
universal player, the corresponding QBF must be false.

4 Operations on Strategies

Our aim is to give meaning to the clauses manipulated by the various resolution-
based calculi for QBF in terms of partial strategies. Before we can do that,
we equip ourselves with a set of operations which introduce partial strategies
and create new strategies from old ones. Notice that the property of preserving
strategies constitutes the core of a local soundness argument: if a sequence of
operations turns a set of policies that are partial strategies into a total strategy,
we have certified that an input formula must be false.

Axiom: To turn a non-tautologous clause C from the matrix ϕ into a partial
strategy PC , we just form the prefix closure of the assignment C̄ falsifying C:

PC =
{
σ | σ � C̄

}
.

PC is obviously a non-empty policy. To check that PC is indeed a partial strategy
we notice it suggests exactly the moves which make C false.

Specialisation: Specialisation is an operation which takes a policy P and adds an
extra obligation for one of the players by suggesting a move. At the same time
the sub-strategy that follows is specialised for the new, more specific context.

1 For technical reasons, we allow branching on universal variables.



222 M. Suda and B. Gleiss

x

z
1

z
0

⊥1

⊥
0

⇒ x

y
1

z
1

z
0

⊥1

⊥
0

Fig. 3. Specialising a policy at x with y.

Definition 2 (Specialisation). Let P be a policy, σ ∈ P an assignment and
k a literal. We can specialise P at σ with k, provided

(1) if σ = σ0l0 for some assignment σ0 and a literal l0 then ind(l0) < ind(k),
(2) if there is a literal l1 such that σl1 ∈ P then ind(k) < ind(l1).2

Under such conditions the specialisation of P at σ with k is defined as

P σ,k = {ξ | ξ ∈ P, ξ � σ} ∪ {ξ | ξ ∈ P, ξ ‖ σ} ∪ {σkτ | στ ∈ P} .

Conditions (1) and (2) ensure that P σ,k is a set of assignments. Checking that
P σ,k is a policy is a tedious exercise. Finally, to see that P σ,k is a partial strategy
whenever P is, let us consider a full assignment α such that Pσ,k |= α. This means
that α is compatible with some ξ maximal in P σ,k. Now it is easy to see that
ξ is either also maximal in P or it is of the form σkτ and στ is maximal in P .
In the latter case, since α is compatible with σkτ it is also compatible with στ .
Thus we learn that α 
|= ϕ as we assumed P to be a partial strategy.

Example 3. When viewing a strategy as a tree, specialisation becomes simply
an insertion of a node. In Fig. 3, we specialise the policy P from our running
example at the assignment x (i.e. the upper branch) with the move y. The
resulting strategy P x,y = {ε, x, xy, xyz, x̄, x̄z̄} is visualized in the right tree in
Fig. 3. Note that we are able to insert y at that position, since x < y < z.

Combining: Policies P and Q can be combined if they, at respective contexts
σ ∈ P and τ ∈ R, suggest a move over the same variable v but of opposite
polarity. The combined policy R extends both P and Q in a specific way and
creates a new branching on v at the point where the contexts σ and τ “meet”.
In full generality, there can be more than one such context σi ∈ P and τj ∈ R
and the combined policy caters for every pair (σi, τj) in the described way.

Before we formally define Combining, we need to introduce some auxiliary
notation: We make use of the fact that for any non-empty non-trivial policy
P , all non-empty assignments which are according to P start with the same
variable v (either positive or negated). We can therefore decompose P into the

2 Note that l1 may not be unique, but its index is (because of consistent branching).
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set containing the empty assignment, the set containing all the assignments of
P which start with v and all the assignments of P which start with v̄.3

Lemma 2 (Decomposition). For every non-empty, non-trivial policy P there
is a unique variable v such that P can be decomposed as

P = Pε ∪̇ v(P v) ∪̇ v̄(P v̄),

where Pε = {ε} is the trivial policy, and for any set of assignments R and a
literal l we define Rl = {σ | lσ ∈ R} and lR = {lσ | σ ∈ R}.

The sets P v and P v̄ are actually policies and at least one of them is non-
empty. We call the variable v the principal variable of P .

Proof. A non-empty, non-trivial policy P contains an assignment l of length one
(P is prefix-closed) and if it contains another assignment of length one k 
= l
then k = l̄ (P is consistently branching). The decomposition then follows. ��

We now formally introduce Combining. The definition is recursive and pro-
ceeds by case distinction.

Definition 3 (Combining). Let P suggest a move l at every context σ ∈ S ⊆
P and Q suggest a move l̄ at every context τ ∈ T ⊆ Q. The combined policy
P [S/T ] Q (the literal l being left implicit) is defined recursively as follows:

– The base case: P [{ε}/{ε}] Q = P ∪ Q.
– The corner cases: P [∅/T ] Q = P , P [S/∅] Q = Q, and P [∅/∅] Q = P .4

– For the recursive cases, let P = Pε ∪ vP v ∪ v̄P v̄ and Q = Pε ∪ wQw ∪ w̄Qw̄

be the decompositions of P and Q. We compare the indices of v and w:
• If ind(v) < ind(w), we set

P [S/T ] Q = Pε ∪ v (P v [Sv/T ] Q) ∪ v̄
(
P v̄

[
Sv̄/T

]
Q

)
,

• if ind(v) > ind(w), we set

P [S/T ] Q = Pε ∪ w (P [S/Tw] Qw) ∪ w̄
(
P

[
S/T w̄

]
Qw̄

)
,

• and, finally, if v = w, we set:

P [S/T ] Q = Pε ∪ v (P v [Sv/T v] Qv) ∪ v̄
(
P v̄

[
Sv̄/T v̄

]
Qv̄

)
.

Let us comment on the individual cases and how they relate to each other.
First, because a policy cannot suggest the same move at two distinct but com-
patible contexts, we observe that the contexts in S (and also in T ) must be
pairwise incompatible. Thus if ε ∈ S then, in fact, S = {ε}. This justifies why
the base case only focuses on the singletons. Second, the corner cases are spe-
cial in that we do not intend to combine policies for an empty set of contexts
3 In the tree perspective, decomposition basically just says that every non-empty tree

has a root node labeled by some variable v and a left and right sub-tree.
4 The last is an arbitrary choice.
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S or T , but they are useful as they make the recursive cases simpler. Finally, to
justify that for the recursive cases we can always assume that the argument poli-
cies are non-empty, non-trivial (and therefore have a decomposition), we notice
that neither the empty nor the trivial policy suggest any move at any context.
Therefore, their presence as arguments is covered by the corner cases.

Example 4. In Fig. 4, we combine a strategy P1 at position x and a strategy
P2 at position ȳ into strategy P3. Note that P1 and P2 are implicitly getting
specialised using ȳ resp. x so that they share a common prefix, i.e. xȳ.

P1 : x l
1 ⊥1

P2 : y l
0

⊥
0

⇒
P3 :

x y
1

l
0

⊥1

⊥0

Fig. 4. An example which combines strategies P1 and P2 into strategy P3.

It should be clear that combining two policies gives a policy. Furthermore,
one can check that whenever P and Q are non-empty, then so is P [S/T ] Q. This
observation will be used in the soundness proof below, but is also important in
its own right. We never want to end up with the empty strategy as the result of
performing an operation as the empty strategy can never be a winning one.

Soundness of the Combining operation can be proven under the condition
that a pair of involved contexts σ ∈ S and τ ∈ T never disagree on suggesting a
move “along the way” to l. We formalise this intuition by setting for any σ in P

σ/P = {k | τ � σ, τ 
= σ, P suggest k in τ} ,

and defining that P and Q are combinable along S and T if σ/P is compatible
with τ/Q for every σ ∈ S and τ ∈ T .

Lemma 3 (Soundness of Combining). Let P and Q be non-trivial strategies
with S ⊆ P and T ⊆ Q as in Definition 3. Furthermore, let S 
= ∅ 
= T and P
and Q be combinable along S and T . Then for every full assignment α

P [S/T ] Q |= α ⇒ P |= α or Q |= α.

In other words, the Combining operation is sound under the stated conditions.5

The statement of soundness in Lemma 3 may appear counter-intuitive at
first sight in that it, rather than providing an implication with a conjunction
on the left-hand side, shows an implication with a disjunction on the right-hand
side. This form, caused by our focus on the universal player, is, however, what
we need here. Intuitively, we ultimately obtain a winning strategy, which can for
each play provide a clause from the input matrix that has been made false.
5 The proof of Lemma 3 is omitted due to lack of space.
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(Axiom){
lτ

x
C | l ∈ C, x = var(l), x ∈ X

}

C ∈ ϕ is a non-tautological clause and τx
C =

{
k̄ | k ∈ C, var(k) ∈ U<

x

}
.

{xτ∪ξ} ∪ C1 {x̄τ∪σ} ∪ C2
(Resolution)

instσ(C1) ∪ instξ(C2)

dom(τ), dom(ξ), dom(σ) are mutually disjoint and rng(τ) ⊆ {0, 1}.

C ∪ {lμ} ∪ {lσ}
(Merging)

C ∪ {lξ}
dom(μ) = dom(σ) and ξ = {μ(u)/u | μ(u) = σ(u)} ∪ {∗/u | μ(u) �= σ(u)} .

C (Instantiation)
instτ (C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 5. The rules of the expansion-derived calculus IRM-calc.

5 Local Soundness of Expansion-Derived Calculi

Let us recall the expansion-derived (also called instantiation-based) calculi for
QBF [5]. These operate on annotated clauses, clauses consisting of literals with
annotations. An annotation can be described as a partial mapping from variables
to {0, 1, ∗}. We will treat them analogously to assignments.

An annotated literal lσ consists of a literal l over an existential variable
var(l) = x and, as an annotation, carries an assignment σ with rng(σ) ⊆ {0, 1},
resp. {0, 1, ∗} in the case of IRM-calc, and with dom(σ) ⊆ U<

x , where

U<
x = {u ∈ U | ind(u) < ind(x)}

denotes the set of the universal dependencies of x ∈ X . An annotated clause is a
set of annotated literals. An auxiliary instantiation function instτ (C) “applies”
an assignment τ to all the literals in C maintaining the above domain restriction:

instτ (C) =
{

l(στ)�U<
x | lσ ∈ C and var(l) = x

}
.

Figure 5 describes the rules of the most complex expansion-derived calculus IRM-
calc. One obtains IR-calc by dropping the Merging rule, which is the only rule
introducing the value ∗ into annotations.6 Moreover, ∀Exp+Res combines Axiom
6 There is also a simpler way of describing the Resolution rule for IR-calc, which does

not rely on inst. However, the presentation in Fig. 5 is equivalent to it.
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w

x
1

y
1

z
1 ⊥1

y0 z
0

⊥1

⊥0

Fig. 6. A strategy P for the prefix ∃w∀x∃y∃z.

with Instantiation to obtain “ground” annotated axioms in the first step. In
other words, for any conclusion C of the Axiom rule as stated in Fig. 5 and any
substitution τ with dom(τ) = U and rng(τ) ⊆ {0, 1}, instτ (C) is an Axiom in
∀Exp+Res. Standalone Instantiation is then not needed in ∀Exp+Res.

5.1 Local Soundness for IR-calc

We start by providing semantics to the clauses of IR-calc and proving local
soundness of this calculus. This, while not being the most general result, allows
us to explain the key concepts in the cleanest way.

Our plan is to equip ourselves with an abstraction mapping which turns a
partial strategy into an IR-calc clause and, in particular, any winning strategy
into the empty clause. We then show that IR-calc is sound by considering its
inferences one by one and observing that whenever there are strategies which
abstract to the premises of an inference, there is a sound operation on the strate-
gies (in the sense of Sect. 4) the result of which abstracts to its conclusion.

Definition 4 (IR-calc abstraction). The IR-calc abstraction of a policy P is

AIR(P ) =
{

l(σ�U) | P suggests a move l̄ in the context σ, var(l) ∈ X
}

.

We can see that AIR(P ) records the moves suggested for the existential player
as literals and the presence of universal variables in the corresponding contexts
as annotations. AIR(P ) is understood as a clause, i.e. as a formal disjunction.

Example 5. Consider the strategy P visualized in Fig. 6. We have AIR(P ) =
ȳ1/x ∨ z̄1/x ∨ y. Note that the first two literals of the clause correspond to the
upper branch of P , while the third literal corresponds to the lower branch. Also
notice how the branching on w is abstracted away in AIR(P ).

Axiom: It is easy to see that the IR-calc Axiom corresponding to C is actu-
ally AIR(PC), where PC is the axiom strategy corresponding to C as defined
in Sect. 4. Notice that PC does not forget the universal literals past the last
existential one, which cannot be restored from the corresponding IR-calc axiom.
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Example 6. Consider a formula ∃x∀u∃y∀v.ϕ, where ϕ contains a clause C =
x∨u∨ȳ∨v. The Axiom strategy corresponding to C is PC = {ε, x̄, x̄ū, x̄ūy, x̄ūyv̄}.
Furthermore, we have

AIR-calc(PC) = x ∨ ȳ0/u,

which is exactly the Axiom IR-calc introduces for C.

Instantiation: The Instantiation inference in IR-calc takes a clause C and τ , an
assignment to some universal variables with rng(τ) ⊆ {0, 1}, and derives

instτ (C) =
{

l(στ)�U<
x | lσ ∈ C and var(l) = x

}
.

We show that Instantiation of clauses corresponds to Specialisation of strategies.

Lemma 4. Let P be a partial strategy and τ an assignment with dom(τ) ⊆ U
and rng(τ) ⊆ {0, 1} as above. Then there is a partial strategy Pτ which can be
derived from P by a sequence of Specialisation operations such that

instτ (AIR(P )) = AIR(Pτ ).

Proof (Sketch). We start working with P and modify it in several steps, denoting
the intermediate strategy P ′ (as if it was a variable in an imperative program-
ming language). We take the bindings l from τ one by one and for each modify
P ′ by consecutively specialising it with l at every context σ ∈ P ′ for which it is
allowed (in the sense of Definition 2). This, in particular, means we skip those
contexts at which P ′ already suggests a move for var(l). ��

Resolution: The Resolution inference in IR-calc can be defined as:

C0 ∪ {lτ} D0 ∪ {l̄τ} .
C0 ∪ D0

Our aim is to simulate resolution of clauses as combining of strategies. We will
succeed provided IR-calc does not derive a tautology and, in some cases, our new
strategy will be actually stronger than what IR-calc is allowed to believe.

Lemma 5. Let C = C0 ∪ {lτ} and D = D0 ∪ {l̄τ} be IR-calc clauses. For every
partial strategy PC and PD such that C = AIR(PC) and D = AIR(PD) if C0 ∪D0

does not contain a complementary pair of literals then there exists a partial
strategy P obtained as a combination of PC and PD over the literal l such that

AIR(P ) ⊆ C0 ∪ D0.

Proof (Sketch). Let us define

S =
{
σC | PC suggests l̄ at σC and (σC � U) = τ

}
,

T = {σD | PD suggests l at σD and (σD � U) = τ} .
(1)

and set P = PC [S/T ] PD.



228 M. Suda and B. Gleiss

To see that P is indeed a partial strategy we appeal to Lemma 3. Since
lτ ∈ AIR(PC) we obtain S 
= ∅ and similarly for l̄τ ∈ AIR(PD) and T 
= ∅.
Furthermore, to see that PC and PD are combinable along S and T , let us, for
the sake of contradiction, assume that there is a σC ∈ S and σD ∈ T such that
σC/PC and σD/PD are not compatible. This means that PC suggests a move k
at some context τC ≺ σC and PD suggests a move k̄ at some context τD ≺ σD,
with var(k) ∈ X . However, this contradicts our assumption that C0∪D0 does not
contain a complementary pair of literals, because it implies that kτ0 ∈ AIR(PC) =
C0 and k̄τ0 ∈ AIR(PD) = D0 for the unique τ0 = (τC � U) = (τD � U). This
verifies the assumptions of Lemma 3.

The second part of our claim, i.e. AIR(P ) ⊆ C0 ∪ D0, is, similarly to the
proof of Lemma 3, shown by induction along the computation of PC [S/T ] PD.
Formally, we check there that

AIR(PC) ∪ AIR(PD) ⊇ AIR(PC [S/T ] PD),

and, moreover, that whenever S and T are defined by the comprehensions (1)
then AIR(PC [S/T ] PD) ∩ {lτ , l̄τ} = ∅, i.e. all the occurrences of the pivot get
eliminated from the abstraction of the combined strategy. ��

Lemma 5 reveals that it is not always the case that AIR(P ) = C0 ∪D0, as our
abstraction can sometimes become stronger than what the calculus realises. To
formally capture this discrepancy, we extend our exposition by one additional
“twist”, which we will bring to much greater use below when providing analo-
gous semantics for IRM-calc and LQU+-Res. Namely, we will use our abstraction
mapping to provide a simulation relation between the clauses of a calculus and
partial strategies. In the case of IR-calc here, we define

C ∼IR P ≡ C ⊇ AIR(P ).

Now we just need to reprove Lemma 5 under the assumptions C ∼IR PC

instead of C = AIR(PC) (and similarly for D and PD). This is straightforward
if we recall the corner cases of the combining operation on strategies. Here, we
can resolve over a pivot “which is not there” by simply reusing as P the strategy
corresponding to such vacuous premise and calling it the result. It can be seen
that this way we obtain an AIR(P ) that is a subset of C0 ∪ D0 as required.

5.2 What Needs to Be Done Differently for IRM-calc?

The IRM-calc extends IR-calc by allowing for the ∗ value in annotations that
is obtained by Merging together literals lμ and lσ which do not fully agree in
their respective annotations, i.e. μ ‖ σ.7 This is complemented by a more general
version of Resolution, which behaves as “unifying” the annotations of the pivots
while treating opposing ∗ as non-unifiable (recall Fig. 5).

While we do not show it here in full detail due to lack of space, we claim
that the ∗ of IRM-calc does not, per se, carry any logical meaning, but simply
7 We actually do not need the usually stated assumption dom(μ) = dom(σ).
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D ∪ {u}
(∀-Red)

D

Literal u is universal and ind(u) ≥ ind(l) for all l ∈ D.

C0 ∪ {v} D0 ∪ {v̄}
(Res)

C0 ∪ D0

Whenever l ∈ C0 and l̄ ∈ D0 for a literal l then var(l) ∈ U and ind(l) > ind(v).

Fig. 7. The rules of the most general CDCL-derived calculus LQU+-Res.

provides a commitment of the calculus to resolve away the involved literals in
a specific way. In other words, it is always sound to set a binding to ∗ in an
annotation (even for a previously “unbound” universal variable).

We say that an annotation σ∗ is a ∗-specialisation of an annotation σ if for
any u ∈ dom(σ∗) whenever σ∗(u) 
= ∗ then σ∗(u) = σ(u).

Definition 5 (IRM-calc Simulation Relation). We say that an IRM-calc
clause C is simulated by a strategy PC , written C ∼IRM PC , if

C ⊇
{

lσ
∗ | lσ ∈ AIR(PC), σ∗ is a ∗-specialisation of σ

}
.

Analogously to Lemma 5, we can simulate IRM-calc Resolution via the Com-
bining operation on strategies. The l moves of the pivot literals in the premise
strategies are not in general suggested at “universally identical contexts” (c.f. (1)
from the proof of Lemma 5), but at compatible contexts nevertheless, because
of unifiability of the corresponding IRM-calc pivots.

6 Local Soundness for CDCL-Derived Calculi

Figure 7 presents the rules of LQU+-Res, the strongest CDCL-derived calculus we
study in this paper. It combines the ∀-Red rule common to all CDCL-derived
calculi with a particular resolution rule Res, the pivot of which can be any
variable v ∈ V. Notice that LQU+-Res is allowed to create a tautology, provided
the new complementary pair is universal and has an index greater than the
pivot. We will learn that these tautologies are never logically vacuous – in the
corresponding strategy the complementary pair is “separated” by the pivot.

The ∀-Red rule is extra-logical from the perspective of our semantics. It does
not correspond to any operation on the side of the interpreting strategy, which
stays the same. We resolve this nuance by providing an abstraction which exposes
a strategy as a fully ∀-reduced clause, but we allow for non-reduced clauses in
derivations via our simulation relation. We start with an auxiliary definition.
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We say that a context σ is universally trailing in a policy P , if for every
τ � σ if P suggests a move l in τ then var(l) ∈ U .

Definition 6 (LQU+-ResAbstractionandSimulation). The LQU+-Res abs-
traction ALQU+ of a policy P and the simulation relation ∼LQU+ between a
LQU+-Res clause and a policy are defined, respectively, as follows:

ALQU+(P ) =
{
l | P suggests l̄ in σ and σ is not universally trailing in P

}
,

C ∼LQU+ P ≡ C ⊇ ALQU+(P ).

Let us now show that ∼LQU+ is indeed a simulation of LQU+-Res derivations
in terms of operations on partial strategies.

Axiom: Let PC be the axiom strategy corresponding to C ∈ ϕ as defined in
Sect. 4. One can check that ALQU+(PC) is the ∀-reduct of C and we thus have
C ∼LQU+ PC because a reduct only possibly removes literals.
∀−Red: As discussed above, the ∀-Red is simulated by the identity mapping on
the side of strategies. To see this is always possible we just realise the following.

Lemma 6. Let a policy P suggest a move l̄ in context σ which is not universally
trailing in P . Then there is a literal k ∈ ALQU+(P ) such that ind(k) > ind(l).

Example 7. Let us work in the context of Π = ∃x∀u∃y. LQU+-Res can derive the
clause C = u∨y by resolving the axioms x̄∨u and x∨y over the pivot x. Notice
that C cannot be ∀-reduced. At the same time, the corresponding strategy P =
{ε, x, xū, x̄, x̄ȳ} still records that x is universally trailing and ALQU+(P ) = {y}.

Resolution: Both the possibility of a universal pivot and the creation of tautolo-
gies can be uniformly handled on the side of strategies.

Lemma 7. Let C = C0 ∪{v} and D = D0 ∪{v̄} be the premises of a LQU+-Res
Resolution inference. Furthermore, let PC and PD be partial strategies such that
C ∼LQU+ PC and D ∼LQU+ PD. Then there exists a partial strategy P obtained
as a combination of PC and PD over the literal v̄ such that

(C0 ∪ D0) ∼LQU+ P.

Proof (Sketch). Analogously to the proof of Lemma 5 we define

S = {σ | PC suggests v̄ in σ and σ is not universally trailing in PC} ,

T = {τ | PD suggests v in τ and τ is not universally trailing in PD} .

and set P = PC [S/T ] PD. ��
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t1 . . . tn

e1t1
0/u1 e1t1

1/u1

t1
∗/u1

t
∗/u1
2 . . . t

∗/u1
n

e2t2
0/u2 e2t2

1/u2

t2
∗/u2

t
∗/u1,∗/u2
3 . . . t

∗/u1,∗/u2
n

. . .

tn
∗/u1,...,∗/un−1

entn
0/un entn

1/un

tn
∗/un

⊥

Fig. 8. A refutation of C(Fn) from Example 8.

7 Winning Strategies Are Worst-Case Exponential for
IRM-calc Proofs

There is a family of QBFs which do not have polynomial winning strategies
in the sense of Definition 1, but do have polynomial IRM-calc refutations. This
has two main consequences: (1) It is not possible to design an algorithm which
generates winning strategies from IRM-calc refutations such that the strategies
are polynomial in the size of the refutation. (2) We cannot use partial strategies
as a calculus for polynomially simulating IRM-calc.

Example 8. For every natural n consider the false formula

Fn := ∃e1 . . . en∀u1 . . . un.
∨

i

(ei � ui).

If P is a winning strategy for the universal player on Fn, it needs to assign ui

to 1 if and only if the existential player assigns ei to 1. In order words, P needs
to branch on every ei. Therefore, each ei doubles the number of branches of P
from which we conclude that the size of P is exponential in n.

We clausify Fn using Tseitin-variables t1, . . . , tn for the disjuncts and use De
Morgan’s laws for the negated equivalences. This gives the following formula:

C(Fn) := ∃e1 . . . en∀u1 . . . un∃t1 . . . tn. (t1 ∨ · · · ∨ tn)
∧ (e1 ∨ u1 ∨ t1) ∧ (e1 ∨ u1 ∨ t1)

...
∧ (en ∨ un ∨ tn) ∧ (en ∨ un ∨ tn)

Now consider the IRM-calc refutation of C(Fn) shown in Fig. 8. The proof starts
from the clause C := t1 ∨ · · · ∨ tn and contains n auxiliary sub-proofs where the
i-th sub-proof resolves the axiom clauses ei ∨ ti

0/ui and ei ∨ ti
1/ui over the pivot
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ei followed by a merge, which results in a unit Di = ti
∗/ui . The proof proceeds

by resolving C with the clauses D1, . . . , Dn using trivial resolution, i.e. the first
resolution step resolves C with D1 to get a clause C1, and any other of the
i resolution steps resolves Ci−1 with Di to get Ci. Each Ci contains exactly
the literals ti+1, . . . , tn annotated with (∗/u1, . . . , ∗/ui). In particular, the n-th
resolution step results in the empty clause.

The proof has 2n inferences and is therefore linear in the size of n.

8 Conclusion and Future Work

We showed how partial strategies can be used as the central semantic objects
in QBF. We identified operations which manipulate and combine strategies and
proved their soundness in a local, modular way. Furthermore, we described how
existing state-of-the-art calculi can be seen to operate on abstractions of these
strategies and clarified the local semantics behind their inferences.

While a general model theory does not need to be computationally effec-
tive to be useful, in the case of QBF the computational aspects pertaining to
strategies seem of great practical importance. Our paper opens several streams
of future work along these lines: (1) We intend to combine the operations on
strategies presented in this work with the solving-algorithm from [10], which uses
strategies directly in the solving process. (2) We would like to use the obtained
insights to derive a uniform calculus which polynomially simulates both IRM
and LQU+-Res. (3) Continuing the direction of Sect. 7, we would like to clarify
whether the exponential separation between strategies and refutations can be
extended from IRM-calc to IR-calc or even to ∀Exp+Res. (4) We want to gener-
alise our strategies by using more expressive data structures. In particular, we
would like to see whether the operations we identified can be extended to BDDs,
i.e. to a representation in which strategies are fully reduced and merged. We
envision that doing so could yield a polynomial strategy extraction algorithm
for IRM-calc which produces much simpler strategies than existing algorithms.
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Abstract. We propose reductions to quantified Boolean formulas
(QBF) as a new approach to showing fixed-parameter linear algorithms
for problems parameterized by treewidth. We demonstrate the feasibil-
ity of this approach by giving new algorithms for several well-known
problems from artificial intelligence that are in general complete for the
second level of the polynomial hierarchy. By reduction from QBF we
show that all resulting algorithms are essentially optimal in their depen-
dence on the treewidth. Most of the problems that we consider were
already known to be fixed-parameter linear by using Courcelle’s The-
orem or dynamic programming, but we argue that our approach has
clear advantages over these techniques: on the one hand, in contrast to
Courcelle’s Theorem, we get concrete and tight guarantees for the run-
time dependence on the treewidth. On the other hand, we avoid tedious
dynamic programming and, after showing some normalization results for
CNF-formulas, our upper bounds often boil down to a few lines.

1 Introduction

Courcelle’s seminal theorem [8] states that every graph property definable in
monadic second order logic can be decided in linear time on graphs of con-
stant treewidth. Here treewidth is the famous width measure used to measure
intuitively how similar a graph is to a tree. While the statement of Courcelle’s
Theorem might sound abstract to the unsuspecting reader, the consequences are
tremendous. Since a huge number of computational problems can be encoded
in monadic second order logic, this gives automatic linear time algorithms for
a wealth of problems in such diverse fields as combinatorial algorithms, artifi-
cial intelligence and databases; out of the plethora of such papers let us only
cite [11,21] that treat problems that will reappear in this paper. This makes
Courcelle’s Theorem one of the cornerstones of the field of parameterized algo-
rithms.

Unfortunately, its strength comes with a price: while the runtime dependence
on the size of the problem instance is linear, the dependence on the treewidth
is unclear when using this approach. Moreover, despite recent progress (see e.g.
c© Springer International Publishing AG, part of Springer Nature 2018
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the survey [29]) Courcelle’s Theorem is largely considered impractical due to the
gigantic constants involved in the construction. Since generally these constants
are unavoidable [20], showing linear time algorithms with Courcelle’s Theorem
can hardly be considered as a satisfying solution.

As a consequence, linear time algorithms conceived with the help of Cour-
celle’s Theorem are sometimes followed up with more concrete algorithms with
more explicit runtime guarantees often by dynamic programming or applica-
tions of a datalog approach [13,21,23]. Unfortunately, these hand-written algo-
rithms tend to be very technical, in particular for decision problems outside of
NP. Furthermore, even this meticulous analysis usually gives algorithms with a
dependance on treewidth that is a tower of exponentials.

The purpose of this paper is two-fold. On the one hand we propose reduc-
tions to QBF combined with the use of a known QBF-algorithm by Chen [7] as
a simple approach to constructing linear-time algorithms for problems beyond
NP parameterized by treewidth. In particular, we use the proposed method in
order to construct (alternative) algorithms for a variety of problems stemming
from artificial intelligence: abduction, circumscription, abstract argumentation
and the computation of minimal unsatisfiable sets in unsatisfiable formulas. The
advantage of this approach over Courcelle’s Theorem or tedious dynamic pro-
gramming is that the algorithms we provide are almost straightforward to pro-
duce, while giving bounds on the treewidth that asymptotically match those of
careful dynamic programming. On the other hand, we show that our algorithms
are asymptotically best possible, giving matching complexity lower bounds.

Our algorithmic approach might at first sight seem surprising: since QBF
with a fixed number of alternations is complete for the different levels of the
polynomial hierarchy, there are trivially reductions from all problems in that
hierarchy to the corresponding QBF problem. So what is new about this app-
roach? The crucial observation here is that in general reductions to QBF guaran-
teed by completeness do not maintain the treewidth of the problem. Moreover,
while Chen’s algorithm runs in linear time, there is no reason for the reduction
to QBF to run in linear time which would result in an algorithm with overall
non-linear runtime.

The runtime bounds that we give are mostly of the form 22O(k)
n where k is

the treewidth and n the size of the input. Furthermore, starting from recent lower
bounds for QBF [28], we also show that these runtime bounds are essentially tight
as there are no algorithms with runtime 22o(k)

2o(n) for the considered problems.
Our lower bounds are based on the Exponential Time Hypothesis (ETH) which
posits that there is no algorithm for 3SAT with runtime 2o(n) where n is the
number of variables in the input. ETH is by now widely accepted as a standard
assumption in the fields of exact and parameterized algorithms for showing tight
lower bounds, see e.g., the survey [32]. We remark that our bounds confirm the
observation already made in [33] that problems complete for the second level
of the polynomial hierarchy parameterized by treewidth tend to have runtime
double-exponential in the treewidth.
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As a consequence, the main contribution of this paper is to show that reduc-
tions to QBF can be used as a simple technique to show algorithms with essen-
tially optimal runtime for a wide range of problems.

Our Contributions. We show upper bounds of the form 22O(k)
n for instances of

treewidth k and size n for abstract argumentation, abduction, circumscription
and the computation of minimal unsatisfiable sets in unsatisfiable formulas. For
the former three problems it was already known that there are linear time algo-
rithms for bounded treewidth instances: for abstract argumentation, this was
shown in [11] with Courcelle’s theorem and a tighter upper bound of the form
22O(k)

n was given by dynamic programming in [13]. For abduction, there was
a linear time algorithm in [21] for all abduction problems we consider and a
22O(k)

n algorithm based on a datalog encoding for some of the problems. The
upper bound that we give for so-called necessity is new. For circumscription, a
linear time algorithm was known [21] but we are the first to give concrete runtime
bounds. Finally, we are the first to give upper bounds for minimal unsatisfiable
subsets for CNF-formulas of bounded treewidth.

We complement our upper bounds with ETH-based lower bounds for all prob-
lems mentioned above, all of which are the first such bounds for these problems.

Finally, we apply our approach to abduction with ⊆-preferences but giving
a linear time algorithm with triple exponential dependence on the treewidth,
refining upper bounds based on Courcelle’s theorem [21] by giving an explicit
treewidth dependence.

2 Preliminaries

In this section, we only introduce notation that we will use in all parts of the
paper. The background for the problems on which we demonstrate our approach
will be given in the individual sections in which these problems are treated.

2.1 Treewidth

Throughout this paper, all graphs will be undirected and simple unless explic-
itly stated otherwise. A tree decomposition (T, (Bt)t∈T ) of a graph G = (V,E)
consists of a tree T and a subset Bt ⊆ V for every node t of T with the following
properties:

– every vertex v ∈ V is contained in at least one set Bt,
– for every edge uv ∈ E, there is a set Bt that contains both u and v, and
– for every v ∈ V , the set {t | v ∈ Bt} induces a subtree of T .

The last condition is often called the connectivity condition. The sets Bt are
called bags. The width of a tree decomposition is maxt∈T (|Bt|)−1. The treewidth
of G is the minimum width of a tree decomposition of G. We will sometimes
tacitly use the fact that any tree decomposition can always be assumed to be
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of size linear in |V | by standard simplifications. Computing the treewidth of
a graph is NP-hard [2], but for every fixed k there is a linear time algorithm
that decides if a given graph has treewidth at most k and if so computes a tree
decomposition witnessing this [4].

A tree decomposition is called nice if every node t of T is of one of the
following types:

– leaf node: t is a leaf of T .
– introduce node: t has a single child node t′ and Bt = Bt′ ∪{v} for a vertex

v ∈ V \ Bt′ .
– forget node: t has a single child node t′ and Bt = Bt′ \ {v} for a vertex

v ∈ Bt′ .
– join node: t has exactly two children t1 and t2 with Bt = Bt1 = Bt2 .

Nice tree decompositions were introduced in [25] where it was also shown that
given a tree decomposition of a graph G, one can in linear time compute a nice
tree decomposition of G with the same width.

2.2 CNF Formulas

A literal is a propositional variable or the negation of a propositional variable.
A clause is a disjunction of literals and a CNF-formula is a conjunction of clauses.
For technical reasons we assume that there is an injective mapping from the
variables in a CNF formula φ to {0, . . . , cn} for an arbitrary but fixed constant c
where n is the number of variables in φ and that we can evaluate this mapping in
constant time. This assumption allows us to easily create lists, in linear time in n,
which store data assigned to the variables that we can then look up in constant
time. Note that formulas in the DIMACS format [9], the standard encoding for
CNF formulas, generally have this assumed property. Alternatively, we could use
perfect hashing to assign the variables to integers, but this would make some of
the algorithms randomized.

Let φ and φ′ be two CNF formulas. We say that φ is a projection of φ′ if and
only if var(φ) ⊆ var(φ′) and a : var(φ) → {0, 1} is a model of φ if and only if a
can be extended to a model of φ′.

(a) Primal graph (b) Incidence graph

Fig. 1. Primal and incidence graphs for φ = (¬x ∨ z) ∧ (x ∨ y ∨ ¬w) ∧ (¬z ∨ w).

To every CNF formula φ we assign a graph called primal graph whose vertex
set is the set of variables of φ. Two vertices are connected by an edge if and only
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if they appear together in a clause of φ (see Fig. 1a). The primal treewidth of
a CNF formula is the treewidth of its primal graph. We will also be concerned
with the following generalization of primal treewidth: the incidence graph of a
CNF formula has as vertices the variables and the clauses of the formula. Two
vertices are connected by an edge if and only if one vertex is a variable and the
other is a clause such that the variable appears in the clause (see Fig. 1b). The
incidence treewidth of a formula is then the treewidth of its incidence graph.

It is well-know that the primal treewidth of a CNF-formula can be arbitrarily
higher than the incidence treewidth (for example consider a single clause of size
n). The other way round, formulas of primal treewidth k can easily be seen to
be of incidence treewidth at most k + 1 [19].

2.3 From Primal to Incidence Treewidth

While in general primal and incidence treewidth are two different parameters,
in this section we argue that when dealing with CNF formulas we don’t need to
distinguish between the two: first, since incidence treewidth is more general, the
lower bounds for primal treewidth transfer automatically to it; second, while the
same cannot generally be said for algorithmic results, it is easy to see that the
primal treewidth is bounded by the product of the incidence treewidth the arity
(clause size), so it suffices to show that we can transform any CNF formula to
an equivalent one having bounded arity while roughly maintaining its incidence
treewidth. Proposition 1 suggests a linear time transformation achieving this.
In the following we can then interchangeably work with incidence treewidth or
primal treewidth, whichever is more convenient in the respective situation.

Proposition 1. There is an algorithm that, given a CNF formula φ of incidence
treewidth k, computes in time 2O(k)|φ| a 3CNF formula φ′ of incidence treewidth
O(k) with var(φ) ⊆ var(φ′) such that φ is a projection of φ′.

Proof (Sketch). We use the classic reduction from SAT to 3SAT that cuts big
clauses into smaller clauses by introducing new variables. During this reduction
we have to take care that the runtime is in fact linear and that we can bound
the treewidth appropriately. ��

It is well-known that if the clauses in a formula φ of incidence treewidth k
have at most size d, then the primal treewidth of φ is at most (k + 1)d, see
e.g. [19] so the following result follows directly.

Corollary 1. There is an algorithm that, given a CNF-formula φ of incidence
treewidth k, computes in time O(2k|φ|) a 3CNF-formula φ′ of primal treewidth
O(k) such that φ is a projection of φ′.

We will in several places in this paper consider Boolean combinations of func-
tions expressed by CNF formulas of bounded treewidth. The following technical
lemma states that we can under certain conditions construct CNF formulas of
bounded treewidth for the these Boolean combinations.
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Lemma 1.(a) There is an algorithm that, given a 3CNF-formula φ and a tree
decomposition (T, (Bt)t∈T ) of its incidence graph of width O(k), computes
in time poly(k)n a CNF-formula φ′ and a tree decomposition (T ′, (B′

t)t∈T )
of the incidence graph of φ′ such that ¬φ is a projection of φ′, for all t ∈ T
we have B′

t ∩ var(φ) = Bt and the width of (T ′, (B′
t)t∈T ) is O(k).

(b) There is an algorithm that, given two 3CNF-formulas φ1, φ2 and two tree
decompositions (T, (Bi

t)t∈T ) for i = 1, 2 of the incidence graphs of φi of
width O(k) such that for every bag either B1

t ∩ B2
t = ∅ or B1

t ∩ var(φ1) =
B2

t ∩ var(φ2), computes in time poly(k)n a tree decomposition (T ′, (B′
t)t∈T )

of the incidence graph of φ1 ∧ φ2 such that φ′ ≡ φ1 ∧ φ2, for all t ∈ T we
have B1

t ∪ B2
t = B′

t and the width of (T, (B′
t)t∈T ) is O(k).

Proof. (a) Because every clause has at most 3 literals, we assume w.l.o.g. that
every bag B that contains a clause C contains also all variables of C.

In a first step, we add for every clause C = �1 ∨ �2 ∨ �3 a variable xC and
substitute C by clauses with at most 3-variables encoding the constraint C =
xC ↔ l1 ∨ l2 ∨ l3 introducing some new variables. The result is a CNF-formula φ1

in which every assignment a to var(φ) can be extended uniquely to a satisfying
assignment a1 and in a1 the variable xC is true if and only if C is satisfied by
a. Note that, since every clause has at most 3 variables, the clauses for C can be
constructed in constant time. Moreover, we can construct a tree decomposition
of width O(k) for φ1 from that of φ by adding all new clauses for C and xC to
every bag containing C.

In a next step, we introduce a variable xt for every t ∈ T and a constraint T
defining xt ↔ (xt1 ∧ xt2 ∧

∧
C∈Bt

xC) where t1, t2 are the children of t and the
variables are omitted in case they do not appear. The resulting CNF formula φ2

is such that every assignment a to var(φ) can be uniquely extended to a satisfying
assignment a2 of φ2 and xt is true in a2 if and only if all clauses that appear
in the subtree of T rooted in t are satisfied by a. Since every constraint T has
at most k variables, we can construct the 3CNF-formula simulating it in time
O(k), e.g. by Tseitin transformation. We again bound the treewidth as before.

The only thing that remains is to add a clause ¬xr where r is the root of T .
This completes the proof of (a).

(b) We simply set B′
t = B1

t ∪ B2
t . It is readily checked that this satisfies all

conditions. ��

Lemma 2. There is an algorithm that, given a 3CNF formula φ with a tree
decomposition (T, (Bt)t∈T ) of width k of the incidence graph of φ and sequences
of variables X := (x1, . . . , x�), Y = (y1, . . . , y�) ⊆ var(φ)� such that for every
i ∈ [�] there is a bag Bt with {xi, yi} ∈ Bt, computes in time poly(k)|φ| a formula
ψ that is a projection of X ⊆ Y =

∧�
i=1(xi ≤ yi) and a tree decomposition

(T, (Bt)t∈T ) of ψ of width O(1). The same is true for ⊂ instead of ⊆.

Proof. For the case ⊆, ψ is simply
∧�

i=1(xi ≤ yi) =
∧�

i=1 ¬xi ∨ yi. ψ satisfies all
properties even without projection and with the same tree decomposition.

The case ⊂ is slightly more complex. We first construct
∧�

i=1(xi = yi) =
∧�

i=1(¬xi ∨ yi) ∧ (xi ∨ ¬yi). Then we apply Lemma 1 (a) to get a CNF formula
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that has X �= Y as a projection. Finally, we use Lemma 1 to get a formula for
X ⊂ Y = (X ⊆ Y )∧ (X �= Y ). It is easy to check that this formula has the right
properties for the tree decomposition. ��

3 2-QBF

Our main tool in this paper will be QBF, the quantified version of CNF. In partic-
ular, we will be concerned with the version of QBF which only has two quantifier
blocks which is often called 2-QBF. Let us recall some standard definitions. A
∀∃-QBF is a formula of the form ∀X∃Y φ(X,Y ) where X and Y are disjoint vec-
tors of variables and φ(X,Y ) is a CNF-formula called the matrix. We assume the
usual semantics for ∀∃-QBF. Moreover, we sometimes consider Boolean combi-
nations of QBF-formulas which we assume to be turned into prenex form again
with the help of the usual transformations.

It is well-known that deciding if a given ∀∃-QBF is true is complete for
the second level of the polynomial hierarchy, and thus generally considered
intractable. Treewidth has been used as an approach for finding tractable frag-
ments of ∀∃-QBF and more generally bounded alternation QBF. Let us define
the primal (resp. incidence) treewidth of a ∀∃-QBF to be the primal (resp. inci-
dence) treewidth of the underlying CNF formula. Chen [7] showed the following
result.

Theorem 1 [7]. There is an algorithm that given a ∀∃-QBF of primal treewidth
k decides in time 22O(k) |φ| if φ is true.

We note that the result of [7] is in fact more general than what we state here.
In particular, the paper gives a more general algorithm for i-QBF with running

time 22···O(k)

|φ|, where the height of the tower of exponentials is i.
In the later parts of this paper, we require a version of Theorem 1 for incidence

treewidth which fortunately follows directly from Theorem 1 and Corollary 1.

Corollary 2. There is an algorithm that given a ∀∃-QBF of incidence treewidth
k decides in time 22O(k) |φ| if φ is true.

We remark that general QBF of bounded treewidth without any restriction
on the quantifier prefix is PSPACE-complete [3], and finding tractable fragments
by taking into account the structure of the prefix and notions similar to treewidth
is quite an active area of research, see e.g. [15,16].

To show tightness of our upper bounds, we use the following theorem
from [28].

Theorem 2. There is no algorithm that, given a ∀∃-QBF φ with n variables
and primal treewidth k, decides if φ is true in time 22o(k)

2o(n), unless ETH is
false.
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4 Abstract Argumentation

Abstract argumentation is an area of artificial intelligence which tries to assess
the acceptability of arguments within a set of possible arguments based only
the relation between them, i.e., which arguments defeat which. Since its creation
in [10], abstract argumentation has developed into a major and very active sub-
field. In this section, we consider the most studied setting introduced in [10].

An argumentation framework is a pair F = (A,R) where A is a finite set
and R ⊆ A × A. The elements of A are called arguments. The elements of R are
called the attacks between the arguments and we say for a, b ∈ A that a attacks
b if and only if ab ∈ R. A set S ⊆ A is called conflict-free if and only if there
are no a, b ∈ S such that ab ∈ R. We say that a vertex a is defended by S if for
every b that attacks a, i.e. ba ∈ R, there is an argument c ∈ S that attacks b.
The set S is called admissible if and only if it is conflict-free and all elements of
S are defended by S. An admissible set S is called preferred if and only if it is
subset-maximal in the set of all admissible sets.

There are two main notions of acceptance: A set S of arguments is accepted
credulously if and only if there is a preferred admissible set such that S ⊆ S′.
The set S is accepted skeptically if and only if for all preferred admissible sets
S′ we have S ⊆ S′. Both notions of acceptance have been studied extensively
in particular with the following complexity results: it is NP hard to decide,
given an argumentation framework F = (A,R) and a set S ⊆ A, if S is cred-
ulously accepted. For skeptical acceptance, the analogous decision problem is
Πp

2 -complete [12]. Credulous acceptance is easier to decide, because when S is
contained in any admissible set S′ then it is also contained in a preferred admis-
sible set S′′: a simple greedy algorithm that adds arguments to S′ that are not
in any conflicts constructs such an S′′.

Concerning treewidth, after some results using Courcelle’s Theorem [11], it
was shown in [13] by dynamic programming that credulous acceptance can be
decided in time 2O(k)n while skeptical acceptance can be decided in time 22O(k)

n
for argument frameworks of size n and treewidth k. Here an argument framework
is seen as a directed graph and the treewidth is that of the underlying undirected
graph. We reprove these results in our setting. To this end, we first encode conflict
free sets in CNF. Given an argumentation framework F = (A,R), construct a
CNF formula φcf that has an indicator variable xa for every a ∈ A as

φcf :=
∧

ab∈R

¬xa ∨ ¬xb.

It is easy to see that the satisfying assignments of φcf encode the conflict-free
sets for F . To encode the admissible sets, we add an additional variable Pa for
every a ∈ A and define:

φd := φcf ∧
∧

a∈A

((¬Pa ∨
∨

b:ba∈R

xb) ∧
∧

b:ba∈R

(Pa ∨ ¬xb))
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The clauses for each Pa are equivalent to Pa ↔
∨

b:ba∈R xb, i.e., Pa is true in a
model if and only if a is attacked by the encoded set. Thus by setting

φadm := φd ∧
∧

ba∈R

(¬Pb ∨ ¬xa)

we get a CNF formula whose models restricted to the xa variables are exactly the
admissible sets. We remark that in [27] the authors give a similar SAT-encoding
for argumentation problems with slightly different semantics.

Claim 3. If F has treewidth k, then φadm has incidence treewidth O(k).

Proof. We start from a tree decomposition (T, (Bt)t∈T ) of width k of F and
construct a tree decomposition of φadm. First note that (T, (Bt)t∈T ) is also a
tree decomposition of the primal graph of φcf up to renaming each a to xa. For
every ba ∈ R there is thus a bag B that contains both b and a. We connect a
new leaf to B containing {Ca,b, a, b} where Ca,b is a clause node for the clause
¬xa ∨ ¬xb to construct a tree decomposition of the primal graph of φd.

Now we add Pa to all bags containing xa, so that for every clause Pa ∨
¬xb we have a bag containing both variables, and we add new leaves for the
corresponding clause nodes as before. Then we add for every clause Ca := ¬Pa ∨∨

b:ba∈R xb the node Ca to every bag containing a. This covers all edges incident
to Ca in the incidence graph of φd and since for every a we only have one such
edge, this only increases the width of the decomposition by a constant factor.
We obtain a tree decomposition of width O(k) for the incidence graph of φd.

The additional edges for φadm are treated similarly to above and we get a
tree decomposition of width O(k) of φadm of φ as desired. ��

Combining Claim 3 with the fact that satisfiability of CNF-formulas of inci-
dence treewidth k can be solved in time 2O(k), see e.g. [36], we directly get the
first result of [13].

Theorem 4. There is an algorithm that, given an argumentation framework
F = (A,R) of treewidth k and a set S ⊆ A, decides in time 2O(k)|A| if S is
credulously accepted.

We also give a short reproof of the second result of [13].

Theorem 5. There is an algorithm that, given an argumentation framework
F = (A,R) of treewidth k and a set S ⊆ A, decides in time 22O(k) |A| if S is
skeptically accepted.

Proof. Note that the preferred admissible sets of F = (A,R) are exactly the
subset maximal assignments to the xa that can be extended to a satisfying
assignment of φadm. Let X := {xa | a ∈ A}, then we can express the fact that
an assignment is a preferred admissible set by

φ′(X) = ∃P∀X ′∀P ′ (φadm(X,P ) ∧ (¬φadm(X ′, P ′) ∨ ¬(X ⊂ X ′)))
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where the sets P , X ′ and P ′ are defined analogously to X. Then S does not
appear in all preferred admissible sets if and only if

∃X(φ′(X) ∧
∨

a∈S

¬xa).

After negation we get

∀X∀P∃X ′∃P ′
(

¬φadm(X,P ) ∨ (φadm(X ′, P ′) ∧ (X ⊂ X ′)) ∨
∧

a∈S

xa

)

and using Lemma 1 afterwards yields a ∀∃-QBF of incidence treewidth O(k)
that is true if and only if S appears in all preferred admissible sets. This gives
the result with Corollary 2. ��

We remark that QBF encoding of problems in abstract argumentation have
been studied in [1,14].

We now show that Theorem 5 is essentially tight.

Theorem 6. There is no algorithm that, given an argumentation framework
F = (A,R) of size n and treewidth k and a set S ⊆ A, decides if S is in every
preferred admissible set of F in time 22o(k)

2o(n), unless ETH is false.

Proof. We use a construction from [12,13]: for a given ∀∃-QBF ∀Y ∃Zφ in vari-
ables Y ∪ Z = {x1, . . . , xn} and clauses C1, . . . , Cm, define Fφ = (A,R) with

A = {φ,C1, . . . , Cm} ∨ {xi, x̄i | 1 ≤ i ≤ n} ∪ {b1, b2, b3}
R = {(Cj , φ) | 1 ≤ j ≤ m} ∪ {(xi, x̄i), (x̄i, xi) | 1 ≤ i ≤ n}

∪{(xi, Cj) | xi in Cj , 1 ≤ j ≤ m} ∪ {(x̄i, Cj) | ¬xi in Cj , 1 ≤ j ≤ m}
∪{(φ, b1), (φ, b2), (φ, b3), (b1, b2), (b2, b3), (b3, b1)} ∪ {(b1, z), (b1, z̄) | z ∈ Z}

One can show that φ is in every preferred admissible set of Fφ if and only if
φ is true. Moreover, from a tree decomposition of the primal graph of φ we get
a tree decomposition of F as follows: we add every x̄i to every bag that contains
xi and we add b1, b2, b3 to all bags. This increases the treewidth from k to 2k+3
and thus we get the claim with Theorem 2. ��

5 Abduction

In this section, we consider (propositional) abduction, a form of non-monotone
reasoning that aims to find explanations for observations that are consistent with
an underlying theory. A propositional abduction problem (short PAP) consists
of a tuple P = (V,H,M, T ) where T is a propositional formula called the theory
in variables V , the set M ⊆ V is called the set of manifestations and H ⊆ V
the set of hypotheses. We assume that T is always in CNF. In abduction, one
identifies a set S ⊆ V with the formula

∧
x∈S x. Similarly, given a set S ⊆ H, we

define T ∪S := T ∧
∧

x∈S x. A set S ⊆ H is a solution of the PAP, if T ∪S |= M ,
i.e., all models of T ∪ S are models of M .
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There are three main problems on PAPs that have been previously studied:

– Solvability: Given a PAP P , does it have a solution?
– Relevance: Given a PAP P and h ∈ H, is h contained in at least one solution?
– Necessity: Given a PAP P and h ∈ H, is h contained in all solutions?

The first two problems are Σp
2 -complete while necessity is Πp

2 -complete [18].
In [21], it is shown with Courcelle’s Theorem that if the theory T of an instance
P is of bounded treewidth, then all three above problems can be solved in linear
time. Moreover, [21] gives an algorithm based on a Datalog-encoding that solves
the solvability and relevance problems in time 22O(k) |T | on instances of treewidth
k. Our first result gives a simple reproof of the latter results and gives a similar
runtime for necessity.

Theorem 7. There is a linear time algorithm that, given a PAP P =
(V,H,M, T ) such that the incidence treewidth of T is k and h ∈ H, decides
in time 22O(k) |T | the solvability, relevance and necessity problems.

Proof. We first consider solvability. We identify the subsets S ⊆ H with assign-
ments to H in the obvious way. Then, for a given choice S, we have that T ∪ S
is consistent if and only if

ψ1(S) := ∃XT (X) ∧
∧

si∈H

(si → xi),

is true where X has a variable xi for every variable vi ∈ V . Moreover, T ∪S |= M
if and only if

ψ2 := ∀X ′
(

∧

si∈H

(si → x′
i) →

(

T (X ′) →
∧

vi∈M

x′
i

))

,

where X ′ similarly to X has a variable xi for every variable vi ∈ V . To get a
∀∃-formula, we observe that the PAP has no solution if and only if

∀S¬(ψ1(S)∧ψ2(S))=∀S∀X∃X ′¬(T (X)∧S ⊆X|H)∨(S ⊆X ′|H∧T (X ′)∧¬
∧

vi∈M

x′
i)

is true, where X|H denotes the restriction of X to the variables of H. Now apply-
ing Lemmata 1 and 2 in combination with de Morgan laws to express ∨ yields a
∀∃-QBF of incidence treewidth O(k) and the result follows with Corollary 2.

For relevance, we simply add the hypothesis h to T and test for solvability.
For necessity, observe that h is in all solutions if and only if

∀S(ψ1(S) ∧ ψ2(S)) → h,

which can easily be brought into ∀∃-QBF slightly extending the construction for
the solvability case. ��
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Using the Σp
2 -hardness reduction from [18], it is not hard to show that the

above runtime bounds are tight.

Theorem 8. There is no algorithm that, given a PAP P whose theory has pri-
mal treewidth k, decides solvability of P in time 22o(k)

2o(n), unless ETH is false.
The same is true for relevance and necessity of a variable h.

Proof. Let φ′ = ∀X∃Y φ be a ∀∃-QBF with X = {x1, . . . , xm} and Y =
{y1, . . . , y�}. Define a PAP P = (V,H,M, T ) as follows

V = X ∪ Y ∪ X ′ ∪ {s}
H = X ∪ X ′

M = Y ∪ {s}

T =
m∧

i=1

(xi ↔ ¬x′
i) ∧ (φ → s ∧

�∧

j=1

yj)

︸ ︷︷ ︸
ψ

∧
�∧

j=1

(s → yj)

where X ′ = {x′
1, . . . , x

′
m} and s are fresh variables. It is shown in [18] that φ′

is true if and only if P has a solution. We show that T can be rewritten into
CNF-formula T ′ with the help of Lemma 1. The only non-obvious part is the
rewriting of ψ. We solve this part by first negating into (φ ∧ (¬s ∨

∨�
j=1 ¬yj)

and observing that the second conjunct is just a clause, adding it to φ only
increases the treewidth by 2. Finally, we negate the resulting formula to get a
CNF-formula for ψ with the desired properties. The rest of the construction of
T ′ is straightforward. The claim then follows with Theorem 2.

The result is a PAP with theory T ′ of treewidth O(k) and O(n) variables and
the result for solvability follows with Theorem 2. As to the result for relevance
and necessity, we point the reader to the proof of Theorem 4.3 in [18]. There for a
PAP P a new PAP P ′ with three additional variables and 5 additional clauses is
constructed such that solvability of P reduces to the necessity (resp. relevance)
of a variable in P ′. Since adding a fixed number of variables and clauses only
increases the primal treewidth at most by a constant, the claim follows. ��

5.1 Adding ⊆-Preferences

In abduction there are often preferences for the solution that one wants to con-
sider for a given PAP. One particular interesting case is ⊆-preference where
one tries to find (subset-)minimal solutions, i.e. solutions S such that no strict
subset S′ ⊆ S is a solution. This is a very natural concept as it corresponds
to finding minimal explanations for the observed manifestations. We consider
two variations of the problems considered above, ⊆-relevance and ⊆-necessity.
Surprisingly, complexity-wise, both remain in the second level of the polynomial
hierarchy [17]. Below we give a linear-time algorithm for these problems.
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Theorem 9. There is a linear time algorithm that, given a PAP P =
(V,H,M, T ) such that the incidence treewidth of T is k and h ∈ H, decides

in time 222O(k)

|T | the ⊆-relevance and ⊆-necessity problems.

Proof (sketch). We have seen how to express the property of a set S being a
solution as a formula ψ(S) in the proof of Theorem 5. Then expressing that S
is a minimal model can written by

ψ′(S) := ψ(S) ∧ (∀S′(S′ ⊆ S → ¬ψ(S′))).

This directly yields QBFs for encoding the ⊆-necessity and ⊆-relevance problems
as before which can again be turned into treewidth O(k). The only difference
is that we now have three quantifier alternations leading to a triple-exponential
dependence on k when applying the algorithm from [7]. ��

We remark that [21] already gives a linear time algorithm for ⊆-relevance and ⊆-
necessity based on Courcelle’s algorithm and thus without any guarantees for the
dependence on the runtime. Note that somewhat disturbingly the dependence
on the treewidth in Theorem 9 is triple-exponential. We remark that the lower
bounds we could get with the techniques from the other sections are only double-
exponential. Certainly, having a double-exponential dependency as in our other
upper bounds would be preferable and thus we leave this as an open question.

6 Circumscription

In this section, we consider the problem of circumscription. To this end, consider
a CNF-formula T encoding a propositional function called the theory. Let the
variable set X of T be partitioned into three variable sets P,Q,Z. Then a model
a of T is called (P,Q,Z)-minimal if and only if there is no model a′ such that
a′|P ⊂ a|P and a′|Q = a|Q. In words, a is minimal on P for the models that coin-
cide with it on Q. Note that a and a′ can take arbitrary values on Z. We denote
the (P,Q,Z)-minimal models of T by MM(T, P,Q,Z). Given a CNF-formula F ,
we say that MM(T, P,Q,Z) entails F , in symbols MM(T, P,Q,Z) |= F , if all
assignments in MM(T, P,Q,Z) are models of F . The problem of circumscription
is, given T, P,Q,Z and F as before, to decide if MM(T, P,Q,Z) |= F .

Circumscription has been studied extensively and is used in many fields, see
e.g. [31,34]. We remark that circumscription can also be seen as a form of closed
world reasoning which is equivalent to reasoning under the so-called extended
closed world assumption, see e.g. [6] for more context. On general instances cir-
cumscription is Πp

2 -complete [17] and for bounded treewidth instances, i.e. if the
treewidth of T ∧ F is bounded, there is a linear time algorithm shown by Cour-
celle’s Theorem [21]. There is also a linear time algorithm for the corresponding
counting problem based on datalog [23]. We here give a version of the result
from [21] more concrete runtime bounds.

Theorem 10. There is an algorithm that, given an instance T, P,Q,Z and F of
incidence treewidth k, decides if MM(T, P,Q,Z) |= F in time 22O(k)

(|T | + |F |).
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Proof. Note that we have MM(T, P,Q,Z) |= F if and only if for every assign-
ment (aP , aQ, aZ) to P,Q,Z, we have that (aP , aQ, aZ) is not a model of T , or
(aP , aQ, aZ) is a model of F or there is a model (a′

P , a′
Q, a′

Z) of T such that
a′

P ⊂ aP and a′
Q = aQ. This can be written as a ∀∃-formula as follows:

ψ := ∀P∀Q∀Z∃P ′∃Z ′(¬T (P,Q,Z) ∨ F (P,Q,Z) ∨ (T (P ′, Q, Z ′) ∧ P ′ ⊂ P )).

We first compute a tree decomposition of T ∧ F of width O(k) in time
2O(k)(|T |+|F |). We can use Lemma 1, Lemma 2 and Proposition 1 to compute in
time poly(k)(|T | + |F |) a CNF-formula φ such that the matrix of ψ is a projec-
tion of φ and φ has incidence treewidth O(k). Applying Corollary 2, yields the
result. ��

We now show that Theorem 10 is essentially optimal by analyzing the proof
in [17].

Theorem 11. There is no algorithm that, given an instance T, P,Q,Z and F

of size n and treewidth k, decides if MM(T, P,Q,Z) |= F in time 22o(k)
2o(n),

unless ETH is false.

Proof. Let ψ = ∀X∃Y φ be a QBF with X = {x1, . . . , xm} and Y = {y1, . . . , y�}.
We define the theory T as follows:

T =

(
m∧

i=1

(xi �= zi)

)

∧ ((u ∧ y1 ∧ . . . y�) ∨ φ) ,

where z1, . . . , zm and u are fresh variables. Set P = var(T ) and Q = ∅ and Z
the rest of the variables. In [17], it is shown that MM(T, P,Q,Z) |= ¬u if and
only if φ is true. Now using Lemma 1 we turn ψ into a 2-QBF ψ′ with the same
properties. Note that ψ′ has treewidth O(k) and O(m + �) variables and thus
the claim follows directly with Theorem 2. ��

7 Minimal Unsatisfiable Subsets

Faced with unsatisfiable CNF-formula, it is in many practical settings highly
interesting to find the sources of unsatisfiability. One standard way of describing
them is by so-called minimal unsatisfiable subsets. A minimal unsatisfiable set
(short MUS) is an unsatisfiable set C of clauses of a CNF-formula such that
every proper subset of C is satisfiable. The computation of MUS has attracted
a lot of attention, see e.g. [22,26,38] and the references therein.

In this section, we study the following question: given a CNF-formula φ and
a clause C, is C contained in a MUS of φ? Clauses for which this is the case can
in a certain sense be considered as not problematic for the satisfiability of φ. As
for the other problems studied in this paper, it turns out that the above problem
is complete for the second level of the polynomial hierarchy, more specifically for
Σp

2 [30]. Treewidth restrictions seem to not have been considered before, but we
show that our approach gives a linear time algorithm in a simple way.
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Theorem 12. There is an algorithm that, given a CNF-formula φ incidence
treewidth k and a clause C of φ, decides C is in a MUS of φ in time 22O(k) |φ|.

Proof. Note that C is in a MUS of φ if and only if there is an unsatisfiable clause
set C such that C ∈ C and C \ {C} is satisfiable. We will encode this in ∀∃-QBF.
In a first step, similarly to the proof of Lemma 1, we add a new variable xC for
every clause C of φ and substitute φ by clauses expressing C ↔ xc. Call the
resulting formula ψ. It is easy to see that the incidence treewidth of ψ is at most
double that of φ. Moreover, for every assignment a to var(φ), there is exactly one
extension to a satisfying assignment a′ of ψ. Moreover, in a′ a clause variable xC

is true if and only if a satisfies the clause C. Let C be a set of clauses, then C is
unsatisfiable if and only if for every assignment a to var(φ), C is not contained
in the set of satisfied clauses. Interpreting sets by assignments as before, we can
write this as a formula by

ψ′(C) := ∀X∀C′ : ψC(X, C′) → ¬(C ⊆ C′).

Let now C range over the sets of clauses not containing C. Then we have by the
considerations above that C appears in a MUS if and only if

ψ∗ = ∃Cψ′(C ∪ {C}) ∧ ¬ψ′(C)
= ∃C∃X ′∃C′∀X ′′∀C′′(φC(X ′, C′) → ¬(C ∪ {C} ⊆ C′)) ∧ φC(X ′, C′′) ∧ C ⊆ C′′

Negating and rewriting the matrix of the resulting QBF with Lemma 1, we get
in linear time a ∀∃-QBF of treewidth O(k) that is true if and only if C does not
appear in a MUS of φ. Using Theorem 2 completes the proof. ��

We remark that different QBF encodings for MUS membership have also
been studied in [24]. We now show that Theorem 12 is essentially tight.

Theorem 13. There is no algorithm that, given a CNF-formula φ with n vari-
ables and primal treewidth k and a clause C of φ, decides if C is in a MUS of φ

in time 22o(k)
2o(n), unless ETH is false.

Proof. Given a ∀∃-QBF ψ = ∀X∃Y φ of incidence treewidth k where C1, . . . , Cm

are the clauses of φ, we construct the CNF-formula

φ′ =
∧

x∈X

(x ∧ ¬x) ∧ w ∧
m∧

i=1

(¬w ∨ Ci).

In [30] it is shown that ψ is true if and only if the clause w appears in a MUS
of φ′. Note that φ′ has primal treewidth k + 1: in a tree decomposition of the
primal graph of φ, we can simply add the variable w into all bags to get a
tree decomposition of the primal graph of φ′. Since clearly |φ′| = O(|φ|), any
algorithm to check if w is in a MUS of φ′ in time 22o(k)

2o(n) contradicts ETH
with Theorem 2. ��
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8 Conclusion

In this paper, we took an alternate approach in the design of optimal algo-
rithms mainly for the second level of the polynomial hierarchy parameterized by
treewidth: we used reductions to 2-QBF. We stress that, apart from some tech-
nical transformations on CNF-formulas which we reused throughout the paper,
our algorithms are straightforward and all complexity proofs very simple. We
consider this as a strength of what we propose and not as a lack of depth, since
our initial goal was to provide a black-box technique for designing optimal linear-
time algorithms with an asymptotically optimal guarantee on the treewidth. We
further supplement the vast majority of our algorithms by tight lower-bounds,
using ETH reductions again from 2-QBF.

We concentrated on areas of artificial intelligence, investigating a collection
of well-studied and diverse problems that are complete for Σp

2 and Πp
2 . How-

ever we conjecture that we could apply our approach to several problems with
similar complexity status. Natural candidates are problems complete for classes
in the polynomial hierarchy, starting from the second level, see e.g. [37] for an
overview (mere NP-complete problems can often be tackled by other successful
techniques).

Of course, our approach is no silver bullet that magically makes all other
techniques obsolete. On the one hand, for problems whose formulation is more
complex than what we consider here, Courcelle’s Theorem might offer a richer
language to model problems than QBF. This is similar in spirit to some problems
being easier to model in declarative languages like ASP than in CNF. On the
other hand, handwritten algorithms probably offer better constants than what
we get by our approach. For example, the constants in [13] are more concrete
and smaller than what we give in Sect. 4. However, one could argue that for
double-exponential dependencies, the exact constants probably do not matter
too much simply because already for small parameter values the algorithms
become infeasible1. Despite these issues, in our opinion, QBF encodings offer a
great trade-off between expressivity and tightness for the runtime bounds and
we consider it as a valuable alternative.
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1 To give the reader an impression: 225 ≈ 4.2 × 109 and already 226 ≈ 1.8 × 1019.
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Abstract. Quantified Boolean Formulas (QBFs) offer compact encod-
ings of problems arising in areas such as verification and synthesis. These
applications require that QBF solvers not only decide whether an input
formula is true or false but also output a witnessing certificate, i.e. a rep-
resentation of the winning strategy. State-of-the-art QBF solvers based
on Quantified Conflict-Driven Constraint Learning (QCDCL) can emit
Q-resolution proofs, from which in turn such certificates can be extracted.
The correctness of a certificate generated in this way is validated by sub-
stituting it into the matrix of the input QBF and using a SAT solver
to check that the resulting propositional formula (the validation for-
mula) is unsatisfiable. This final check is often the most time-consuming
part of the entire certification workflow. We propose a new validation
method that does not require a SAT call and provably runs in polyno-
mial time. It uses the Q-resolution proof from which the given certificate
was extracted to directly generate a (propositional) proof of the valida-
tion formula in the RUP format, which can be verified by a proof checker
such as DRAT-trim. Experiments with a prototype implementation show
a robust, albeit modest, increase in the number of successfully validated
certificates compared to validation with a SAT solver.

1 Introduction

Quantified Boolean Formulas (QBFs) offer succinct encodings for problems from
domains such as formal verification, synthesis, and planning [3,5,7,15,21,22].
Even though SAT-based approaches to these problems are generally still supe-
rior, the evolution of QBF solvers in recent years is starting to tip the scales in
their favor [9]. In most of these applications, it is required that QBF solvers not
only output a simple true/false answer but also produce a strategy, or certifi-
cate, that shows how this answer can be realized. For example, a certificate might
encode a counterexample to the soundness of a software system, or a synthesized
program.

Most state-of-the-art QBF solvers have the ability to generate such certifi-
cates, and some recently developed solvers have been explicitly designed with
certification in mind [19,20,23]. Search-based solvers implementing Quantified
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Conflict-Driven Constraint Learning (QCDCL) [6,26] can output Q-resolution
proofs [4,17,18], from which in turn certificates can be extracted in linear
time [1,2].

QCDCL 
Solver Extraction

Substitution SAT Solver
Input 

Formula
Q-resolution 

Proof
Validation 
Formula

QRP2RUP
Proof 

Checker

RAT/RUP 
Proof

Substitution Validation 
Formula

QCDCL 
Solver

Input 
Formula

Q-resolution 
Proof

Fig. 1. Certificate extraction and validation for QCDCL solvers.

Since QBF solvers and (to a lesser degree) certificate extraction tools are
complex pieces of software that may contain bugs, certificates obtained in this
way ought to be independently validated. This can be achieved by substituting
the certificate back into the matrix of the input QBF and using a SAT solver to
check that the resulting propositional formula (which we call the validation for-
mula) is unsatisfiable [17]. This certification workflow is illustrated in the top half
of Fig. 1. Once a certificate is validated, we can essentially trust its correctness as
much as we trust in the correctness of the SAT solver used for validation1. How-
ever, since certificates tend to be large, the corresponding SAT call frequently
amounts to the most time-consuming step in the entire certification workflow
and even causes timeouts [17].

In this paper, we propose an alternative validation method for QCDCL that
avoids this SAT call. Instead, it uses the Q-resolution proof from which the
given certificate was extracted to generate a proof of the validation formula in
the RUP format [12], whose correctness can then be verified by a propositional
proof checker such as DRAT-trim [25]. This workflow is sketched in the lower
half of Fig. 1. Since this RUP proof can be computed from the Q-resolution proof
in linear time and checked in polynomial time, we obtain a validation procedure
that provably runs in polynomial time.

We implemented this new validation method in a tool named QRP2RUP
and tested it on benchmark instances from several recent QBF evaluations. Our
experiments show a robust, albeit modest, increase in the number of successfully
validated certificates compared to validation with a SAT solver.

1 We still have to make sure that the validation formula is constructed correctly so
that it is not trivially unsatisfiable. We discuss this issue in Sect. 8.
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2 Preliminaries

A literal is a negated or unnegated variable. If x is a variable, we write x = ¬x
and ¬x = x, and let var(x) = var(¬x) = x. If X is a set of literals, we write X
for the set {x : x ∈ X } and let var(X) = { var(�) : � ∈ X }. An assignment to
a set X of variables is a mapping τ : X → {true, false}. An assignment σ is an
extension of the assignment τ if σ assigns all variables that τ does, and to the
same polarity. We extend assignments τ : X → {true, false} to literals by letting
τ(¬x) = ¬τ(x) for x ∈ X.

We consider Boolean circuits over {¬, ∧, ∨, false, true} and write var(ϕ) for
the set of variables occurring in a circuit ϕ. If ϕ is a circuit and τ an assignment,
ϕ[τ ] denotes the circuit obtained by replacing each variable x ∈ X ∩ var(ϕ) by
τ(x) and propagating constants. A circuit ϕ is satisfiable if there is an assign-
ment τ such that ϕ[τ ] = true, otherwise it is unsatisfiable.

A clause (term) is a circuit consisting of a disjunction (conjunction) of liter-
als. We write ⊥ for the empty clause and � for the empty term. We call a clause
tautological (and a term contradictory) if it contains the same variable negated
as well as unnegated. A CNF formula (DNF formula) is a circuit consisting of a
conjunction (disjunction) of non-tautological clauses (non-contradictory terms).
Whenever convenient, we treat clauses and terms as sets of literals, and CNF
and DNF formulas as sets of sets of literals. Throughout the paper, we make
use of the fact that any circuit can be transformed into an equisatisfiable CNF
formula of size linear in the size of the circuit [24].

A unit clause is a clause containing a single literal. A CNF formula ψ is
derived from a CNF formula ϕ by the unit clause rule if (�) is a unit clause of ϕ
and ψ = ϕ[{� 	→ true}]. Unit propagation in a CNF formula consists in repeated
applictions of the unit clause rule. Unit propagation is said to derive the literal �
in a CNF formula ϕ if a CNF formula ψ with (�) ∈ ψ can be derived from ϕ by
unit propagation. We say that unit propagation causes a conflict if false can be
derived by unit propagation. If unit propagation does not cause a conflict the set
of literals that can be derived by unit propagation induces an assignment. The
closure of an assignment τ with respect to unit propagation (in ϕ) is τ combined
with the set of literals derivable by unit propagation in ϕ[τ ].

A clause C has the reverse unit propagation (RUP) property with respect to
a CNF formula ϕ if unit propagation in ϕ[{ � 	→ false : � ∈ C }] causes a conflict.
A RUP proof of unsatisfiability of a CNF formula ϕ is a sequence C1, . . . , Cm

of clauses such that Cm = ⊥ and each clause Ci has the RUP property with
respect to ϕ ∪ {C1, . . . , Ci−1}, for 1 ≤ i ≤ m.

A (prenex) Quantified Boolean Formula Φ = Q.ϕ consists of a quantifier
prefix Q and a circuit ϕ, called the matrix of Φ. A quantifier prefix is a sequence
Q = Q1x1 . . . Qnxn, where the xi are pairwise distinct variables and Qi ∈ {∀,∃}
for 1 ≤ i ≤ n. Relative to Φ, variable xi and its associated literals are called
existential (universal) if Qi = ∃ (Qi = ∀). We write E(Φ) and U(Φ) for the sets
of existential and universal variables of Φ, respectively. We assume that the set of
variables occurring in ϕ is precisely {x1, . . . , xn} (in particular, we only consider
closed QBFs) and let var(Φ) = {x1, . . . , xn}. We define a total order <Φ on the
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variables of Φ as xi <Φ xj ⇔ i < j and let DΦ(v) = {w ∈ var(Φ) : w <Φ v } for
v ∈ var(Φ). We drop the subscript from <Φ and DΦ whenever Φ is understood.

A model circuit of Φ for a variable v ∈ var(Φ) is a circuit fv with var(fv) ⊆
D(v). A model of Φ is an indexed family {fe}e∈E(Φ) of model circuits such that
ϕ[τ ] = true for every assignment τ : var(Φ) → {true, false} that satisfies fe[τ ] =
τ(e) for e ∈ E(Φ). A countermodel of Φ is an indexed family {fu}u∈U(Φ) of model
circuits such that ϕ[τ ] = false for every assignment τ : var(Φ) → {true, false}
that satisfies fu[τ ] = τ(u) for u ∈ U(Φ). A QBF is true if it has a model, and
false if it has a countermodel.

A QBF is a PCNF (PDNF) formula if its matrix is a CNF (DNF) formula.
Q-resolution [14] and long-distance Q-resolution [1,27] are proof systems for false
PCNF formulas. Let Φ = Q.ϕ be a PCNF formula. A Q-resolution refutation
of Φ is a sequence P = C1, . . . , Cm of non-tautological clauses where Cm = ⊥
and each clause Ci is obtained in one of the following ways:

– Ci ∈ ϕ is an input clause.
– Ci = (Cj \ {p}) ∪ (Ck \ {¬p}) is the resolvent of clauses Cj and Ck on pivot

variable p ∈ E(Φ), where 1 ≤ j, k < i and p ∈ Cj , ¬p ∈ Ck.
– Ci = Cj \ L is obtained from Cj with 1 ≤ j < i by universal reduction. This

requires that every literal � ∈ L is universal and that there is no existential
variable e ∈ var(Ci) such that var(�) < e.

The size of P is defined as |P| :=
∑m

i=1 |Ci|.
Long-distance Q-resolution [1] is a generalization of Q-resolution that permits

the derivation of tautological clauses by modifying the resolution rule in the
following way: if � ∈ Cj , � ∈ Ck, and var(�) �= p, then � must be universal and
p < var(�). In this case we say that the literals � and � are merged, and refer to
the pair �, � as a merged literal of Ci.

Dual proof systems for true PDNF formulas operating on terms are known
as Q-consensus and long-distance Q-consensus. The dual of universal reduction
in these proof systems is called existential reduction.

3 Validation of Certificates

In this section, we will describe the setting of the problem of QBF certificate
validation. Then, in Sects. 4 and 5, we present an algorithm that computes a RUP
proof that can be used to replace the final call to the SAT solver by a simple proof
check. For the sake of simplicity, we will only focus on false PCNF formulas. The
results generalize to true formulas by duality, which will be discussed in Sect. 6.

Let ϕ be a CNF formula, let C be a boolean circuit. The substitution of
C into ϕ, denoted by ϕ[C], is simply the CNF formula ϕ in conjunction with
a CNF encoding of C (which may contain additional auxiliary variables). Let
Φ = Q.ϕ be a false QBF in PCNF, let C be a boolean circuit whose inputs
are existential variables of Φ and whose outputs are universal variables of Φ.
The task of verifying that C is a countermodel of Φ is to verify that ϕ[C] is
unsatisfiable.
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Some QCDCL QBF solvers are capable of outputting a trace that contains
a (long-distance) Q-resolution refutation of the formula solved. From this refu-
tation, a countermodel circuit can be computed by the Balabanov-Jiang (BJ)
algorithm [1], or by the extended Balabanov-Jiang-Janota-Widl (BJJW) algo-
rithm [2] for long-distance Q-resolution. Let Φ = Q.ϕ be a QBF, let P be a
(long-distance) Q-resolution refutation of it, let CC(P) be the countermodel cir-
cuit computed by the appropriate version of BJ/BJJW. The CNF formula that
results from substitution of CC(P) into ϕ as described in the previous paragraph,
i.e., ϕ[CC(P)], is denoted by Φ[P], and is called the validation formula for the
QBF Φ and the proof P. This is the formula that must be checked for unsatis-
fiability in order to verify the correctness of the certificate CC(P). We will now
present a way how to directly compute a RUP proof for the validation formula
out of the proof P, thus obviating the need to use a SAT solver and making
validation checks solvable in polynomial time.

4 RUP Proofs from Ordinary Q-Resolution

We will begin by describing a countermodel, and in particular its CNF version
obtained by the Tseitin conversion, computed by BJ. For a full explanation of
the algorithm we refer to the original paper [1]. We illustrate the certificate
extraction process on this example formula

∃x1, x2 ∀y ∃z (x1 ∨ x2 ∨ y ∨ z) ∧ (x1 ∨ x2 ∨ z) ∧ (x1 ∨ x2)
∧ (x1 ∨ x2 ∨ y ∨ z) ∧ (x1 ∨ x2 ∨ z) ∧ (x1 ∨ x2)

along with its Q-resolution refutation:

(1) x1 ∨ x2 ∨ y ∨ z (input)
(2) x1 ∨ x2 ∨ y ∨ z (input)
(3) x1 ∨ x2 ∨ z (input)
(4) x1 ∨ x2 ∨ z (input)
(5) x1 ∨ x2 (input)
(6) x1 ∨ x2 (input)

(7) x1 ∨ x2 ∨ y (1, 3)
(8) x1 ∨ x2 (7)
(9) x1 ∨ x2 ∨ y (2, 4)

(10) x1 ∨ x2 (9)
(11) x1 (5, 8)
(12) x1 (6, 10)
(13) ⊥ (11, 12)

Let P be a Q-resolution refutation of a formula Φ = Q.ϕ. BJ processes the clauses
of P forward, and everytime a conclusion R of a reduction step R = R′ − L
(read the set of literals L is reduced from the clause R′ to obtain the clause R)
is encountered, for every literal � from L either the clause R (if � is positive) or
the term R (if � is negative) is pushed to what is called the countermodel array
of var(�) (cf. [1]). At the end, the arrays represent the countermodel functions
for their respective variables, in the following way:
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Let u be a universal variable, and let its countermodel array have the entries
X1, . . . , Xn. This array is interpreted by constructing a set of partial circuits.
Let fu

n = Xn. Then we define

fu
k =

{
Xk ∧ fu

k+1 if Xk is a clause,
Xk ∨ fu

k+1 if Xk is a term,

and finally fu = fu
1 . The circuit fu represents the countermodel function for the

variable u. Intuitively, these circuits find the first reduction step whose conclusion
is falsified, and set all of the reduced literals in the premise so that they are
falsified too, which ensures that the falsified clause is implied by the conjunction
of input clauses and hence at least one of those is falsified too (Fig. 2).

Fig. 2. Schematic depiction of a countermodel circuit extracted by BJ. Each fi is either
an “and” or an “or” gate, depending on the context.

Let us see what this means on the example formula and proof. There is only
one universal variable, so we will only build one countermodel array. Processing
the clauses forward, the first conclusion of a reduction step that we encounter
is (8), y is reduced in positive polarity, so we push the clause (x1 ∨ x2) to the
countermodel array. Next, we encounter the conclusion (10), here y is reduced in
negative polarity, so we push the negation of the conclusion (x1 ∨ x2), the term
(x1 ∧x2). There are no more reduction steps, so the final countermodel array for
y is [(x1 ∨ x2), (x1 ∧ x2)]. According to the interpretation above, this results in
the circuit y = ((x1 ∨ x2) ∧ (x1 ∧ x2)) = (x1 ∧ x2). It can be easily verified that
this is indeed a countermodel for the formula.

Let us now examine how the circuit fu can be translated into CNF for
substitution into Φ. We can observe that the circuit fu has a nested structure,
in which first the values of all of the Xk are evaluated, which are then further
processed by the circuit to obtain the value for u. Every Xk is either a clause or
a term corresponding to a conclusion of a reduction step in P. Let R1, . . . , RN

be all conclusions of reduction steps in P, in the same order as they appear in
the proof. Then for every Xk there is ik such that Xk = Rik or Xk = Rik . Let
us define variables gi = Ri for 1 ≤ i ≤ N using the set of clauses

G =
{{(gi ∨ Ri)} ∪ {(gi ∨ �) | � ∈ Ri} | 1 ≤ i ≤ N

}
.
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Rather than encoding each countermodel circuit using its Xk members, we
will leverage the fact that Xk is either equivalent to gik or to gik and replace it
by the suitable polarity. This way, the recursive definitions of fu

k boil down to

fu
n =

{
gin if Xn is a clause,
gin if Xn is a term,

and for 1 ≤ k < n

fu
k =

{
gik ∧ fu

k+1 if Xk is a clause,
gik ∨ fu

k+1 if Xk is a term.

At this point, since the countermodel arrays are populated in the order of the
proof, we can observe the following:

Observation 1. Whenever gik and gik′ appear in the same circuit and k < k′,
i.e., gik comes before gik′ in the corresponding countermodel array, then also
ik < ik′ , i.e., the reduction step corresponding to gik also comes before the one
corresponding to gik′ .

Using the simplified circuits with the variables gi, we can finally produce an
encoding into CNF. By using the Tseitin conversion, we get the clauses

Fu
n =

{
(fu

n ∨ gin) ∧ (fu
n ∨ gin) if Xn is a clause,

(fu
n ∨ gin)

︸ ︷︷ ︸
Fu

n,1

∧ (fu
n ∨ gin)

︸ ︷︷ ︸
Fu

n,2

if Xn is a term,

and for 1 ≤ k < n

Fu
k =

{
(fu

k ∨ gik ∨ fu
k+1) ∧ (fu

k ∨ gik) ∧ (fu
k ∨ fu

k+1) if Xk is a clause,
(fu

k ∨ gik ∨ fu
k+1)

︸ ︷︷ ︸
Fu

k,1

∧ (fu
k ∨ gik)

︸ ︷︷ ︸
Fu

k,2

∧ (fu
k ∨ fu

k+1)
︸ ︷︷ ︸

Fu
k,3

if Xk is a term.

In our running example, we have two reduction steps, there are therefore two
definitions of g-variables, namely g1 = (x1 ∨x2) and g2 = (x1 ∨x2). If we replace
the actual entries in the countermodel array by the g-variables, we get the array
[g1, g2] and the corresponding circuit y = g1 ∧ g2. Its CNF encoding is

(y ∨ g1 ∨ g2) ∧ (y ∨ g1) ∧ (y ∨ g2).

Starting from a formula Φ = Q.ϕ and its Q-resolution refutation P, G will
denote the set of clauses defining the gi and F will denote the set of clauses Fu

k

(for all universals u and appropriate k) defining the countermodel. The validation
formula Φ[P] is then ϕ ∧ G ∧ F and we will now present a RUP proof for it.

We will need the following notation. Let x, y be variables of a propositional
formula ϕ, let τ be an assignment to variables of ϕ. We write x ∼=ϕ

τ y if, for
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every extension σ of τ that defines x or y, either unit propagation in ϕ[σ] causes
a conflict or σ′(x) = σ′(y), where σ′ is the closure of σ with respect to unit
propagation. If ϕ is understood from the context, we may drop the superscript,
likewise, if τ is the empty assignment, we may drop the subscript.

Lemma 1. Let u be a universal variable of Φ whose countermodel array has n
entries and the corresponding g-variables are gi1 , . . . , gin . For 1 ≤ k ≤ n let τk

be a partial assignment (to variables of Φ[P]) which sets gi1 , . . . , gik−1 to true.
Then fu ∼=τk fu

k .

Proof. We can see that the clauses Fu
j,2[τk] are satisfied by gik and gik disappears

from Fu
j,1[τk] for 1 ≤ j < k. The clauses Fu

j,1[τk] and Fu
j,3[τk] we are left with

encode precisely fu
j

∼= fu
j+1. Together, we have that under the assignment τk,

fu = fu
1

∼= fu
k , or in other words fu ∼=τk fu

k . ��
The following lemma asserts that the intuition about how countermodel circuits
find the first falsified conclusion and set the variable accordingly is indeed true.

Lemma 2. For 1 ≤ i ≤ N let τi be a partial assignment (to variables of Φ[P])
which sets g1, . . . , gi−1 to true and gi to false. Let � be a universal literal that
is reduced in the reduction step leading to Ri. Under the assignment τi unit
propagation (in Φ[P]) causes a conflict or derives �.

Proof. Let us assume unit propagation does not cause a conflict. Let u = var(�),
gi occurs in the countermodel array of u as some gik . If � is positive, Fu

k,2 together
with gik propagate fu

k . If � is negative, Fu
k,2 together with gik propagate fu

k . We
can use Observation 1 to see that all gik′ with k′ < k are set to true and Lemma 1
applies, so that fu ∼= fu

k and the value for u propagated is false if � is negative
and true if � is positive. Either way, this means that � is propagated. ��
With Lemma 2, we can describe how to construct a RUP proof for Φ[P] from P.

Theorem 1. Let P be a Q-resolution refutation of the formula Φ = Q.ϕ. Then
there exists a RUP proof of unsatisfiability of the validation formula Φ[P] of size
O(|P|), and this proof can be computed in O(|P|) time.

Proof. Let P ′ be P with each conclusion Ri replaced by the unit clause (gi), and
with the input clauses omitted. We claim that P ′ is a RUP proof of unsatisfia-
bility of Φ[P]. Since resolvents are always RUP with respect to their premises we
only need to verify that all (gi) are RUP too. Let Ri = R′

i−L be a reduction step,
let � ∈ L be one of the universal literals reduced to obtain Ri, let u = var(l).
We need to prove that setting (gi) to false causes a conflict by unit propagation.
At the time when (gi) is inserted into the proof, all (gj) with j < i have already
been inserted and since they are unit clauses, all gj with j < i are set to true by
unit propagation. Adding to that the assignment gi, the conditions of Lemma 2
are satisfied and so either unit propagation causes a conflict (in which case we
are done), or � is propagated. Since � was chosen without loss of generality, all
literals in L are propagated to false, and since gi trivially propagates all literals



Polynomial-Time Validation of QCDCL Certificates 261

of Ri to false, R′
i is falsified and a conflict is reached as required. Clearly, the

size of P ′ is bounded by the size of P, and it can be computed in time O(|P|)
as the amount of work per each clause of P is proportional to its size. ��
For example, the RUP proof constructed according to Theorem 1 from the exam-
ple Q-resolution proof would consist in the following sequence of clauses:

(x1 ∨ x2 ∨ y), (g1), (x1 ∨ x2 ∨ y), (g2), (x1), (x1), ⊥

5 RUP Proofs from Long-Distance Q-Resolution

With long-distance Q-resolution, we cannot directly use the clauses of the refuta-
tion in the RUP proof as we did in the proof of Theorem 1, because these clauses
may be tautological. Instead, we adopt the approach that was used in the paper
of Balabanov et al. [2] in order to generalize BJ to long-distance Q-resolution
proofs. The following definition is taken from the paper of Balabanov et al. [2],
with a slight change of notation.

Definition 1. Let P be a long-distance Q-resolution refutation of the QBF Φ =
Q.ϕ. Let C ∈ P be a clause, � ∈ C a literal and u = var(�). The phase function
of the variable u in the clause C, denoted by uφ(C), is a boolean function defined
recursively as follows:

– if C is an input clause, then uφ(C) = 1 if � = u, otherwise uφ(C) = 0.
– if C is the result of application of universal reduction on the clause C ′,

uφ(C) = uφ(C ′).
– if C is the resolvent of C1 and C2 on the pivot literal p, p ∈ C1, p ∈ C2, then

if u �∈ var(C1), then uφ(C) = uφ(C2), if u �∈ var(C2) or uφ(C1) = uφ(C2),
then uφ(C) = uφ(C1), otherwise uφ(C) = (p ∧ uφ(C2)) ∨ (p ∧ uφ(C1)).

The effective literal of � in C, denoted by �ε(C), is a literal that satisfies �ε(C) ⇔
(u ⇔ uφ(C)). The shadow clause of C is the clause Cσ =

∨
�∈C �ε(C).

The phase function intuitively tells us, under a given assignment to previous
variables in the quantifier prefix, what is the phase in which a given universal
variable would have appeared in a given clause, had we restricted the proof using
that assignment. The effective literal is a literal which, based on an assignment to
previous existential variables, is equivalent to the polarity of its variable indicated
by the phase function. Note that in the case when the phase function is constant,
i.e. 0 or 1, the effective literal of any literal is simply the literal itself. In such
cases we say that the literal is unmerged. Literals that are not unmerged are
merged.

We will now present a description of the countermodel computed by BJJW
from a long-distance Q-resolution refutation. In order to do that, we adapt the
notation from Sect. 4. Let P be a long-distance Q-resolution refutation of a
formula Φ = Q.ϕ. The conclusions of reduction steps in P, in the same order
as they appear, are denoted by R1, . . . , RN . The variables gi, 1 ≤ i ≤ N , are
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now equivalent to the shadow clauses Ri
σ instead of Ri themselves. Since BJJW

keeps track of the phase function of every universal variable in every clause, we
will use a variable uφ(C) to denote the output of the phase function. We will also
have variables �ε(C) for the effective literals. In the case of unmerged literals,
this will simply be �. By H we will denote the conjunction of all clauses that
encode the circuits which define phase variables and effective literals.

The partial countermodel circuits fu
k from the previous section are slightly

more complicated now. Let Ri = R′
i − L be a reduction step, let � ∈ L be a

literal that is being reduced, let u = var(�). If � is unmerged, Ri
σ is pushed into

the countermodel array of u, similarly as in the case of ordinary Q-resolution.
However, if � is merged, we first require that both � and � be reduced at the same
time (merged literals arise from merges, so they are always in both polarities in
a clause), and as such two entries are pushed into the countermodel array of
u, namely Ri

σ ∨ uφ(R′
i) and right afterwards Ri

σ ∧ uφ(R′
i). The intuition for

why these entries are added is the following: if the phase uφ(R′
i) of � in R′

i is
positive, and the (shadow clause of the) conclusion is falsified, set u to false,
otherwise if the phase is negative and the conclusion is falsified, set u to true,
each time falsifying the effective literal �ε(R′

i). This is analogous to the ordinary
case, where when the conclusion is falsified, the reduced literal is set so that it
is falsified, only in this case we falsify the effective literal.

Now, for the sake of simplicity of presentation, we will treat unmerged literals
the same way as merged ones. This means that even for unmerged reduced literals
we push two entries into the countermodel array, Ri ∨ uφ(R′

i) and Ri ∧ uφ(R′
i).

It is easy to see that if uφ(R′
i) = 1, the term becomes falsified and the clause

reduces to just Ri, while if uφ(R′
i) = 0, the clause becomes satisfied and the

term reduces to just Ri. In each case, the circuit is equivalent to what we would
have produced by pushing just the one entry as previously.

Let X1, . . . , X2n be the entries in the countermodel array of a universal vari-
able u. Each X2k−1 is Rik

σ ∨uφ(R′
ik

) and X2k is Rik
σ ∧uφ(R′

ik
). We have already

defined gi = Ri
σ, but since each entry in the countermodel array still contains

two variables even after replacing Rik
σ with gik , we will define the auxiliary

variables f
′u
2k−1 = gik ∨ uφ(R′

ik
) and f

′u
2k = gik ∧ uφ(R′

ik
) using the following sets

of clauses (for 1 ≤ k ≤ n):

F
′u
2k−1 =

F
′u
2k−1,1

︷ ︸︸ ︷
(
f

′u
2k−1 ∨ gik ∨ uφ(R′

ik
)
) ∧

F
′u
2k−1,2

︷ ︸︸ ︷(
f

′u
2k−1 ∨ gik

) ∧
F

′u
2k−1,3

︷ ︸︸ ︷(
f

′u
2k−1 ∨ uφ(R′

ik
)
)

F
′u
2k =

(
f

′u
2k ∨ gik ∨ uφ(R′

ik
)
)

︸ ︷︷ ︸
F

′u
2k,1

∧ (
f

′u
2k ∨ gik

)

︸ ︷︷ ︸
F

′u
2k,2

∧ (
f

′u
2k ∨ uφ(R′

ik
)
)

︸ ︷︷ ︸
F

′u
2k,3

Let F ′ be the conjunction of all F
′u
k for all universal variables u and all appro-

priate k. The following is immediate from the clauses F ′.

Observation 2. Setting gik to true causes unit propagation to set f
′u
2k−1 and

f
′u
2k.
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Finally, we are ready to present the set F of clauses which encode the counter-
model circuit:

Fu
2n,1 = (fu

2n ∨ f
′u
2n), Fu

2n,2 = (fu
2n, f

′u
2n),

and for 1 ≤ k < 2n

Fu
k =

{
(fu

k ∨ f
′u
k ∨ fu

k+1) ∧ (fu
k , f

′u
k ) ∧ (fu

k , fu
k+1) if k is odd,

(fu
k ∨ f

′u
k ∨ fu

k+1)
︸ ︷︷ ︸

Fu
k,1

∧ (fu
k , f

′u
k )

︸ ︷︷ ︸
Fu

k,2

∧ (fu
k , fu

k+1)
︸ ︷︷ ︸

Fu
k,3

if k is even.

Similarly as before, let F be the conjunction of all Fu
k for all appropriate u and k,

and let G be the conjunction of the clauses defining the equivalences gi ⇔ Ri
σ.

Then, the validation formula for Φ and P is Φ[P] = ϕ ∧ F ∧ F ′ ∧ G ∧ H.
The following are analogues of Lemmas 1 and 2.

Lemma 3. Let u be a universal variable of Φ whose countermodel array has 2n
entries and the corresponding g-variables are gi1 , . . . , gi2n . For 1 ≤ k ≤ 2n let τk

be a partial assignment (to variables of Φ[P]) which sets gi1 , . . . , gik−1 to true.
Then fu ∼=τk fu

2k−1.

Proof. Let 1 ≤ j < k. Applying Observation 2, we see that f
′u
2j−1 and f

′u
2j are

propagated, in each case, inspecting the restricted clauses that remain, we see
that fu

2j−1
∼=τk fu

2j and fu
2j

∼=τk fu
2j+1. Altogether, we get fu ∼=τk fu

k . ��
Lemma 4. For 1 ≤ i ≤ N let τi be a partial assignment (to variables of Φ[P])
which sets g1, . . . , gi−1 to true and gi to false. Let u be a universal variable of Φ in
whose countermodel gi appears as some gik . Let Ri be the corresponding reduction
step, obtained from R′

i. Then, under either of the assignments τi ∪ uφ(R′
i) and

τi ∪ uφ(R′
i), unit propagation (in Φ[P]) causes a conflict or derives uε(R′

i).

Proof. Assume unit propagation not cause a conflict. Let us assume uφ(R′
i) first.

Since we have gik ∧ uφ(R′
i), the clause F

′u
2k−1,1 propagates f

′u
2k−1, which in turn

propagates fu
2k−1. Since g1, . . . , gi−1 are set to true, Lemma 3 applies and the

value of fu
2k−1 is propagated for the value of u, meaning u is propagated. Together

with the assumption uφ(R′
i), we have that the effective literal uε(R′

i) is set to
false by unit propagation.

If on the other hand we assume uφ(R′
i), f

′u
2k−1 is propagated from F

′u
2k−1,3,

which means that the restricted clauses Fu
2k−1 now encode fu

2k−1
∼= fu

2k. Also,
F

′u
2k,1 propagates f

′u
2k, which in turn propagates fu

2k. Since g1, . . . , gi−1 are set
to true, Lemma 3 applies and the value of fu

2k is propagated for the value of u,
meaning u is propagated. Together with the assumption uφ(R′

i), we have that
the effective literal uε(R′

i) is set to false by unit propagation. ��
While in the case of ordinary Q-resolution, the resolvent of two clauses is always
RUP with respect to those clauses, this is not true in the case of long-distance
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Q-resolution. This is due to the fact that if a merge occurs, a fresh effective
literal is introduced in the resolvent, and just falsifying this new fresh literal
without the knowledge of the value of the corresponding phase variable does
not cause the effective literals in the premises of the resolution step to become
falsified. Therefore, we first prove that a set of extra clauses can be derived from
the definitions of phase functions and effective literals. These clauses will then
empower unit propagation to deal with merged effective literals the same way
as with unmerged ones.

Let C be the resolvent of C1 and C2 on the pivot literal p ∈ C1 (and p ∈ C2).
Let � ∈ C1, � ∈ C2, u = var(�) be a universal literal such that uφ(C1) �= uφ(C2),
i.e. u is being merged in this resolution step. Then the clauses Eu

C,C1
and Eu

C,C2

are defined as follows:

Eu
C,C1

= (uε(C) ∨ p ∨ uε(C1)), Eu
C,C2

= (uε(C) ∨ p ∨ uε(C2)).

We will denote by E the set of all Eu
C,D for appropriate premise D, resolvent C,

and merged literal u. The clauses of E will provide us with a direct relationship
between successive effective literals of one variable. They express one direction
of the conditional dependence of an effective literal on the previous effective
literals—if an effective literal is false, then based on the value of the pivot vari-
able, the corresponding previous effective literal must be false too.

Lemma 5. All clauses of E are derivable by RUP from H. The combined size
of the RUP proofs is O(|P|) and they are computable in O(|P|) time.

Proof. Let Eu
C,D ∈ E, let p ∈ D be the pivot literal. It can be easily verified by

unit propagation on the definitions of phase functions and effective literals that
the following is the required RUP proof:

(uε(C) ∨ p ∨ uε(D) ∨ uφ(C)), (Eu
C,D)

Clearly, per each resolution step, these proofs only take up constant space and
are computable in constant time, resulting in an overall linear bound. ��
We now state the main result of this section (we omit the proof due to space
constraints).

Theorem 2. Let P be a long-distance Q-resolution refutation of the formula
Φ = Q.ϕ. Then there exists a RUP proof of unsatisfiability of the validation
formula Φ[P] of size O(|P|), and this proof can be computed in O(|P|) time.

Finally, let us point out that even though we presented concrete CNF encodings
for many of the circuits, other encodings can work as well. Namely, it is sufficient
if the encodings contain the g-variables (because these are present in the RUP
proof) and satisfy the unit-propagation properties of the lemmas.
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6 True Formulas

In this section we show how to derive analogues of Theorems 1 and 2 for true
formulas. Let us start with the case of a (long-distance) Q-consensus proof P
of a true PDNF formula Φ = Q.ϕ. In this case the validation formula Φ[P] for
the model CC(P) is the DNF ϕ in disjunction with DNF(CC(P)). The task of
validation of the model CC(P) is to check that Φ[P] is valid, and checking the
validity of Φ[P] is equivalent to checking that the CNF Φ[P] is unsatisfiable.

Theorem 3. Let P be a long-distance Q-consensus proof of the PDNF formula
Φ = Q.ϕ. Then there exists a RUP proof of unsatisfiability of the negated vali-
dation formula Φ[P] of size O(|P|), and it can be computed in O(|P|) time.

Proof. We observe that the countermodels extracted by BJ/BJJW from P and
from its negation P are in fact the same (we have not discussed the variants
of BJ/BJJW for true formulas here, but check the definitions in [1,2] to see
that this trivially holds), which means that their CNF and DNF encodings are
negations of one another. This means that

Φ[P] = ϕ ∨ DNF(CC(P)) = ϕ ∧ DNF(CC(P)) = ϕ ∧ CNF(CC(P)) = Φ[P],

and we can apply Theorem 2 on Φ and P. ��
For a Q-consensus proof P of a true PCNF formula Φ = Q.ϕ let us first clarify
what the validation formula looks like. We would need to check the validity of
ϕ ∨ DNF(CC(P)), but ϕ is a CNF and CC(P) must be encoded as a DNF for
validity checking. Therefore, we need to first transform ϕ to DNF using the
Tseitin transformation as follows. Suppose ϕ = C1 ∧ · · · ∧Cn. We will define the
clause variables ci = Ci and represent DNF(ϕ) as follows:

DNF(ϕ) =
n∨

i=1

[
(ci ∧ Ci) ∨

∨

�∈Ci

(ci ∧ �)
]

∨ (c1 ∧ · · · ∧ cn).

The validation formula Φ[P] is then DNF(ϕ) ∨ DNF(CC(P)). As before, instead of
checking the validity of Φ[P], we will check the unsatisfiability of Φ[P].

Theorem 4. Let P be a long-distance Q-consensus proof of the PCNF formula
Φ = Q.ϕ with the set of initial terms μ. If every clause from μ is RUP with
respect to DNF(ϕ), then there exists a RUP proof of unsatisfiability of the negated
validation formula Φ[P] of size O(|P|), and it can be computed in O(|P|) time.

Proof. Let M = Q.μ be the PDNF consisting of the initial terms. Using The-
orem 3, we obtain a RUP proof for the negated validation formula M [P] =
M [P] = μ∧ CNF(CC(P)). By prepending μ to this proof, we obtain a RUP proof
of DNF(ϕ) ∧ CNF(CC(P)) = Φ[P] of size O(|P| + |μ|) = O(|P|). ��
There are two common ways of obtaining initial terms. One is to transform the
CNF ϕ to DNF [13], in which case there is nothing to prove, because the negated
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initial terms are directly members of DNF(ϕ) and therefore RUP. The other way
is to produce hitting sets of the clauses of ϕ. In this case, since every initial term
is a hitting set of the clauses C1, . . . , Cn, we have that for every initial term I
and for every clause Ci, there is always a clause of CNF(ϕ) of the form (ci ∨ �),
such that � ∈ I. Therefore, by assuming the negation of a negated initial term,
i.e. the term itself, unit propagation will propagate ci for all i, which in turn
causes a conflict with the clause (c1 ∨ · · · ∨ cn). Therefore, every clause in ¬μ is
indeed RUP with respect to DNF(ϕ) and Theorem 4 applies.

Finally, in the paragraph above we mentioned that initial terms are hitting
sets of the clauses of ϕ (in one of the cases). In fact, this need not always be
true, since the hitting sets might have existential reduction applied to them first
according to the model generation rule [10]. Since it is no problem for the QBF
solver to output the original hitting set without applying existential reduction,
but very difficult (NP-hard in general) for the proof-checker to recover it, we
suggest to strengthen the conditions on the QRP proof format by requiring that
the initial terms be full hitting sets. If this condition is not met our algorithm
may fail to produce valid RUP proofs for true PCNF formulas. Fortunately
DepQBF always generated terms that happened to be full hitting sets in our
experiments.

7 Experiments

We implemented the algorithm of Theorem 2, which generalizes Theorem 1, in
a tool called qrp2rup (https://www.ac.tuwien.ac.at/research/certificates/) and
evaluated the performance compared to various other approaches to certificate
validation. In particular, since our tool is also capable of emitting deletion infor-
mation for DRAT-trim, we evaluated the following six configurations of certifi-
cate extractors and validators:

– qrp2rup with deletion information
and validation by DRAT-trim,

– qrp2rup without deletion infor-
mation (plain) and validation by
DRAT-trim,

– qrp2rup and validation by Lingeling
(ignoring the RUP proof),

– qrp2rup and validation by Glucose
(ignoring the RUP proof),

– QBFcert and validation by Lin-
geling,

– QBFcert and validation by Glucose.

We also experimented with configurations of DRAT-trim that used forward
checking (instead of the default backward checking), but excluded the results
due to systematically inferior performance. Note that since QBFcert cannot
handle long-distance Q-resolution, only the first four configurations were used
for the experiments with long-distance proofs. To produce both ordinary and
long-distance Q-resolution proofs, we used DepQBF 6.03 in a configuration that
allowed tracing (i.e., with most of the advanced techniques off) with a cut-off
time of 900 CPU seconds and a memory limit of 4 GB. The validation process

https://www.ac.tuwien.ac.at/research/certificates/
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Table 1. Ordinary Q-resolution proofs: number of true + false formulas validated.

QBFcert+SAT-solver qrp2rup+SAT-solver qrp2rup+DRAT-trim

Year Total Lingeling Glucose Lingeling Glucose Deletion Plain

2010 162+230 88+215 88+216 88+225 92+228 99+224 99+223

2016 157+206 124+196 123+197 116+202 128+203 136+202 136+200

2017 18+62 12+58 12+58 11+62 12+63 12+63 12+62

Table 2. Long-distance Q-resolution proofs: number of true + false formulas validated.

qrp2rup+ SAT-solver qrp2rup+ DRAT-trim

Year Total Lingeling Glucose Deletion Plain

2010 149+ 222 93 + 215 95 +217 100+ 215 100+ 215

2016 160+ 250 120 + 197 131 +200 137+ 196 137+ 196

2017 17+ 59 12 +59 13+59 13+59 13+59

was limited to 1800 CPU seconds and 7 GB of memory. The experiments were
run on a cluster of heterogeneous machines running 64-bit Ubuntu 16.04.3 LTS
(GNU/Linux 4.10.0-42). We evaluated the tools on the PCNF benchmark sets
from the QBF Evaluations 2017, 2016, and 2010. The numbers of true and false
validated instances for each configuration and benchmark set are reported in the
tables below. The column “total” reports the total number of proofs for true and
false formulas produced by DepQBF.

The results indicate that our approach is beneficial mainly on true formulas,
but performs well across the board. Interestingly, even though QBFcert tends
to produce smaller certificates than qrp2rup, Glucose performs worse on them.
QBFcert internally uses AIG-based optimizations to shrink the certificates, and
it is conceivable that these optimizations hurt Glucose’s performance (Tables 1
and 2).

8 Concluding Remarks

We have presented a way of using (long-distance) Q-resolution/Q-consensus
proofs in the process of validating QBF certificates. Our approach does not
require a SAT call and comes with a polynomial runtime guarantee. Since it
allows us to generate proofs in a format that is routinely used to verify the
answers produced by SAT solvers and that has prompted the development of
formally verified checkers [8,11,16], we can have a high degree of confidence in
the correctness of certificates validated in this manner.

However, one subtle challenge remains. When constructing the validation
formula Φ[P], we take the matrix of Φ and append a CNF encoding of the coun-
termodel. In principle, if we instead appended a small unsatisfiable CNF formula
such as (x) ∧ (x), we could be led to believe that it represents a countermodel
when in reality it is much more restrictive than a countermodel is allowed to
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be (a formula that does not encode a set of functions). It would be desirable to
have a way of checking that what we appended to the original matrix is indeed
a set of functions (with the correct dependencies) for universal variables. This
may require formal verification of parts of the certificate extraction algorithm.

A potential limitation of our approach is that it is sensitive to certain aspects
of the CNF encoding of the countermodel to be validated, and therefore does not
necessarily work with certificates extracted by other tools. However, our method
ought to be compatible with simple circuit-level simplifications of certificates.
Moreover, we hope to improve performance by generating GRAT [16] proofs of
validation formulas as part of future work.
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Abstract. We study non-uniform random k-SAT on n variables with
an arbitrary probability distribution p on the variable occurrences. The
number t = t(n) of randomly drawn clauses at which random formulas go
from asymptotically almost surely (a. a. s.) satisfiable to a. a. s. unsatisfi-
able is called the satisfiability threshold. Such a threshold is called sharp
if it approaches a step function as n increases. We show that a threshold
t(n) for random k-SAT with an ensemble (pn)n∈N of arbitrary probability

distributions on the variable occurrences is sharp if ‖pn‖2
2 = On

(
t− 2

k

)

and ‖pn‖∞ = on
(
t− k

2k−1 · log− k−1
2k−1 t

)
.

This result generalizes Friedgut’s sharpness result from uniform to
non-uniform random k-SAT and implies sharpness for thresholds of a
wide range of random k-SAT models with heterogeneous probability dis-
tributions, for example such models where the variable probabilities fol-
low a power-law distribution.

1 Introduction

One of the most thoroughly researched topics in theoretical computer science
is Satisfiability of Propositional Formulas (SAT). It was one of the first prob-
lems shown to be NP-complete by Cook [16] and, independently, by Levin [33].
Furthermore, SAT stands at the core of many results of modern complexity the-
ory, like NP-completeness proofs [32] or lower bounds on runtime assuming the
(Strong) Exponential Time Hypothesis [11,17,29,30].

Additional to its importance for theoretical research, Propositional Satisfi-
ability also has practical applications. Many practical problems can be trans-
formed into SAT formulas, for example hard- and software verification, auto-
mated planning, and circuit design. Such SAT formulas arising from practical
and industrial problems are commonly referred to as industrial SAT instances.
Surprisingly, even large industrial SAT instances with millions of variables can
often be solved efficiently by state-of-the-art SAT solvers. This suggests that
these instances have a structure which makes them easier to solve than the
theoretical worst-case.

Uniform Random SAT and the Satisfiability Threshold Conjecture:
In order to study the average-case complexity of Satisfiability, one can generate
c© Springer International Publishing AG, part of Springer Nature 2018
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a formula Φ at random in conjunctive normal form (CNF) with n variables and
m clauses. To this end, we assume to have a probability distribution over all
formulas with those properties. If the probability distribution is uniform, we will
also refer to the model as uniform random k-SAT.

One of the most prominent questions related to uniform random k-SAT is
trying to prove the satisfiability threshold conjecture. The satisfiability threshold
conjecture states that for a formula Φ drawn uniformly at random from the set
of all k-CNFs with n variables and m clauses, there is a real number rk such
that

lim
n→∞ Pr{Φ is satisfiable} =

{
1 m/n < rk;
0 m/n > rk.

For k = 2, Chvatal and Reed [12] and, independently, Goerdt [27] proved that
r2 = 1. For k � 3, explicit upper and lower bounds have been derived, e. g.,
3.52 � r3 � 4.4898 [18,28,31]. Additionally, the cavity method from statistical
mechanics [34] was used to suggest a numerical estimate of r3 ≈ 4.26. Coja-
Oghlan and Panagiotou [13,14] derived a bound (up to lower order terms) for
k � 3 with rk = 2k log 2 − 1

2 (1 + log 2) ± ok(1). Recently, Ding et al. [19] proved
the exact position of the threshold for sufficiently large values of k.

One goal of showing the conjecture is to rigorously connect or disconnect
threshold behavior to the average hardness of solving instances. For uniform
random k-SAT for example, the on average hardest instances are concentrated
around the threshold [35]. However, the conjecture and a lot of related work only
consider formulas that are drawn uniformly at random. But what happens if the
formulas are drawn according to a different probability distribution?

Non-uniform Random SAT: There is a substantial body of work which ana-
lyzes the satisfiability threshold in different SAT models, like regular random
k-SAT [8,9,15,42], random geometric k-SAT [10] and 2+p-SAT [1,36–38]. How-
ever, these models are not motivated by trying to model or understand the
properties of industrial instances.

One property of industrial instances is community structure [7], i. e. some
variables have a bias towards appearing together in clauses. It is clear by defini-
tion that such a bias does not exists in uniform random k-SAT. The Community
Attachment Model by Giráldez-Cru and Levy [25] creates random formulas with
clear community structure. Yet, the work of Mull et al. [39] shows that instances
generated by this model have exponentially long resolution proofs with high
probability, making them hard for CDCL on average.

Another important property of industrial instances is their degree distribu-
tion. The degree distribution of a formula Φ is a function f : N → N, where
f(x) denotes the number of different Boolean variables that appear x times in
Φ (negated or unnegated). In uniform random k-SAT this distribution is bino-
mial, but it has been found out that the degree distribution of many families of
industrial instances follows a power-law [5,9]. This means that f(x)/n ∼ x−β ,
where β is a constant intrinsic to the instance. To help close the gap between
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the degree distribution of uniform random and industrial instances, Ansótegui
et al. [5] proposed a power-law random SAT model. Empirical studies [3–6] found
that SAT solvers that are specialized in industrial instances also perform better
on power-law formulas than on uniform random formulas. However, it looks like
a power-law degree distribution alone makes instances a bit easier to solve, but
not actually “easy”: median runtimes around the threshold still look like they
scale exponentially for several state-of-the-art solvers [24].

Recently, Giráldez-Cru and Levy [26] also introduced the popularity-
similarity model, which incorporates both power-law degree distribution and
community structure. Like most other models inspired by industrial instances it
lacks theoretical work regarding the satisfiability threshold.

In this work we want to consider a generalization of the power-law random
SAT model by Ansótegui et al. [5]. Our model allows instances with any given
ensemble of variable distributions, instead of just power laws: The variables of
each clause are drawn with a probability proportional to the n-th distribution in
the ensemble, then they are negated independently with a probability of 1/2 each.
Let D (n, k, (pn)n∈N,m) be such a model with a variable distribution ensemble
(pn)n∈N, where m clauses of length k over n variables are drawn. We call this
the clause-drawing model. If we draw clauses in such a way, the variable proba-
bility distribution also defines a probability distribution over k-clauses. Instead
of drawing exactly m k-clauses over n variables, one can now imagine flipping a
coin for each possible k-clause and taking the clause into the formula with the
clause probability multiplied with a certain scaling factor s. By doing so, the
expected number of clauses in the formula will be exactly s. We will denote this
model by F (n, k, (pn)n∈N, s) and call it the clause-flipping model.

Although F (n, k, (pn)n∈N, s) and D (n, k, (pn)n∈N,m) cannot represent
industrial instances accurately, they might still give us some insights into which
properties of real-world instances make them easy to solve. The one property our
models provide is degree distribution. They allow us to look at the connection
between degree distribution and hardness in an average-case scenario. As one
of the steps in analyzing this connection, we would like to find out for which
ensembles of variable probability distributions an equivalent of the satisfiability
threshold conjecture holds in non-uniform random k-SAT. To see which ingre-
dients we need to prove the conjecture and which of these ingredients this work
provides, we first have to introduce the concept of threshold functions formally.

Threshold Functions: Formally, due to [22] a threshold for a monotone prop-
erty P is defined as follows in the classical context of uniform probability dis-
tributions: Let p ∈ [0, 1] and let V = {0, 1}N be endowed with the product
measure μp(·): for x ∈ V define μp(x) = p

∑
xi(1 − p)N−∑

xi , and, for W ⊆ V ,
μp(W ) =

∑
x∈W μp(x). Now let P = P (n) be the family of properties. p∗ = p∗(n)

is an asymptotic threshold function for P (n) if for every p = p(n)

lim
n→∞ μp(P ) =

{
0, if p � p∗

1, if p � p∗.
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Here � and � denote “asymptotically smaller” and “asymptotically bigger”
respectively.

Intuitively, a sharp threshold means that the change in probability around the
threshold becomes steeper and steeper as the problem size increases, converging
to a step function as n tends to infinity. Formally, we say that P (n) has a sharp
threshold if there exists a function p∗ = p∗(n) such that for every constant ε > 0
and for every p = p(n)

lim
n→∞ μp(P ) =

{
0, if p � (1 − ε)p∗

1, if p � (1 + ε)p∗.

Otherwise we call a threshold coarse. The region of p where the limit of μp(P )
is bounded away from zero and one is called the threshold interval.

Note, that this definition only holds for satisfiability in the uniform clause-
flipping model. In the case of the uniform clause-drawing model, the sharpness
of the threshold is defined the same way, but with respect to m (or r = m/n)
instead of p on the appropriate probability space.

Proving the Satisfiability Threshold Conjecture: In terms of threshold
functions, the conjecture states that there is a sharp threshold for satisfiability at
m = rk · n and the constant rk is the same for a fixed k and all sufficiently large
n. For k = 2, Chvatal and Reed [12] and Goerdt [27] proved the conjecture and
showed that r2 = 1. However, random 2-SAT is easier to analyze than random
k-SAT and their techniques do not work for bigger values of k. For uniform
random k-SAT the “recipe” for proving the conjecture is as follows:

1. Show the existence of an asymptotic threshold function, i. e. show constant
lower and upper bounds on rk.

2. Prove that the threshold is sharp. In 1999 Friedgut [21] showed that the satis-
fiability threshold for uniform random k-SAT is sharp, although its location is
not known exactly for all values of k. However, his result does not prove that
rk is the same for a fixed k and all sufficiently large values of n. Friedgut’s
proof relies on knowing the asymptotic threshold function.

3. Derive the actual constant rk and that the threshold is sharp around it. Ding
et al. [19] were the first to prove the exact value of rk for values of k bigger
than 2. Their proof relies on the result of Friedgut.

The goal of this paper will be to show the second ingredient for proving the
satisfiability threshold conjecture for non-uniform random k-SAT, sharpness of
the satisfiability threshold. In addition to being a stepping stone to proving the
conjecture, sharpness of the threshold is of some independent interest, since a
coarse threshold implies that there is a local property which approximates sat-
isfiability or unsatisfiability. For random SAT this means that with constant
probability instances have a constant-sized unsatisfiable subformula, making a
lot of instances very easy to solve even around the threshold. Moreover, some
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of the techniques we use could also be used to analyze more sophisticated mod-
els, e.g. the popularity-similarity model [26], which was used in the 2017 SAT
Competition.

Our Results: We study the sharpness of the satisfiability threshold for non-
uniform random k-SAT and identify sufficient conditions on the variable proba-
bility distribution which imply a sharp threshold. Therefore, this work provides
the second ingredient for proving a version of the satisfiability threshold con-
jecture for the non-uniform models D (n, k, (pn)n∈N,m) and F (n, k, (pn)n∈N, s)
introduced earlier. In the context of these models, the classical result of
Friedgut [21] reads as follows:

Theorem 1.1 (by [21]). For all n ∈ N let pn = (1/n, 1/n, . . . , 1/n) be a
variable probability distribution on n variables. If there is an asymptotic sat-
isfiability threshold mc = t(n) on D (n, k, (pn)n∈N,m), then satisfiability has a
sharp threshold on F (n, k, (pn)n∈N, s) with respect to s, and a sharp threshold
on D (n, k, (pn)n∈N,m) with respect to m.

Our main theorem extends this to non-uniform random k-SAT:

Theorem 3.2. Let k � 2, let (pn)n∈N be an ensemble of variable proba-
bility distributions on n variables each and let sc = t(n) be an asymptotic
satisfiability threshold for F (n, k, (pn)n∈N, s) with respect to s. If ‖pn‖∞ =
o
(
t−

k
2k−1 · log− k−1

2k−1 t
)

and ‖pn‖2
2 = O (

t−2/k
)
, then satisfiability has a sharp

threshold on F (n, k, (pn)n∈N, s) with respect to s.

Furthermore, we show that the same also holds for the clause-drawing model
of non-uniform random k-SAT if the asymptotic threshold is not constant.

Theorem 3.3. Let k � 2, let (pn)n∈N be an ensemble of variable probability
distributions on n variables each and let mc = t(n) = ω(1) be the asymptotic
satisfiability threshold for D (n, k, (pn)n∈N,m) with respect to m. If ‖pn‖∞ =
o
(
t−

k
2k−1 · log− k−1

2k−1 t
)

and ‖pn‖2
2 = O (

t−2/k
)
, then satisfiability has a sharp

threshold on D (n, k, (pn)n∈N,m) with respect to m.

Our results actually state that the threshold is sharp for a certain, fixed
value of n in the sense that the probability function for unsatisfiability is o(1)
if s = (1 − ε) · sc (or m = (1 − ε) · mc) and 1 − o(1) if s = (1 + ε) · sc (or
m = (1 + ε) · mc). It is still possible that the function behaves differently for
higher n due to the changing number of variables and probabilities. Nevertheless,
Friedgut’s original result also only asserts sharpness for a certain, fixed value of
n. This is also the reason why the sharp threshold result does not automati-
cally prove the satisfiability threshold conjecture: There could be different sharp
threshold functions (including leading constant factors) for different values of n.
For example, there could be some strange oscillations of the function.

Techniques: The proof of the main theorem uses Bourgain’s Sharp Threshold
Theorem in the version from O’Donnell’s book [41]. In general, it follows the lines
of Friedgut’s proof of sharpness for the threshold of uniform random k-SAT [21].
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However, we have to generalize Friedgut’s results, like showing that no short
unsatisfiable subformula can exist with sufficiently high probability. Further-
more, his lemma to bound the maximum slope of the probability for a monotone
property at the threshold cannot be applied anymore, even in a more general
form. Instead, we use the maximum slope that is implied by assuming a coarse
threshold. Also, we had to adapt Friedgut’s coverability lemma when considering
non-uniform random k-SAT. In his work, a quasi-unsatisfiable subformula can
spawn a constant number of clauses of length k − 1. Now a quasi-unsatisfiable
subformula can spawn clauses of any length l � k. Furthermore, there can now
be more than a constant number of spawned clauses.

Please note that due to space limitations, we only provide proof sketches for
our results. The full proofs can be found in the full version of the paper.

2 Preliminaries

We analyze random k-SAT on n variables and m clauses. We denote by
X1, . . . , Xn the Boolean variables. A clause is a disjunction of k literals �1 ∨
. . . ∨ �k, where each literal assumes a (possibly negated) variable. For a literal
�i let |�i| denote the variable of the literal. A formula Φ in conjunctive normal
form is a conjunction of clauses c1 ∧ . . . ∧ cm. We conveniently interpret a clause
c both as a Boolean formula and as a set of literals. We say that Φ is satisfi-
able if there exists an assignment of variables X1, . . . , Xn such that the formula
evaluates to 1. Now let (pn)n∈N be an ensemble of probability distributions,
where pn = (pn,1, pn,2, . . . , pn,n) is a probability distribution over n variables
with Pr (X = Xi) = pn,i =: pn(Xi).

Definition 2.1 (Clause-Drawing Random k-SAT). Let m,n, k be given,
and consider any ensemble of probability distributions (pn)n∈N, where
pn = (pn,1, pn,2, . . . , pn,n) is a probability distribution over n variables with∑n

i=1 pn,i = 1. The clause-drawing random k-SAT model D (n, k, (pn)n∈N,m)
constructs a random SAT formula Φ by sampling m clauses independently at
random. Each clause is sampled as follows:

1. Select k variables independently at random from the distribution pn. Repeat
until no variables coincide.

2. Negate each of the k variables independently at random with probability 1/2.

The clause-drawing random k-SAT model is equivalent to drawing each clause
independently at random from the set of all k-clauses which contain no variable
more than once. The probability to draw a clause c over n variables is then

qc :=
∏

�∈c pn(|�|)
2k

∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j

, (2.1)

where Pk(·) denotes the set of cardinality-k elements of the power set. The factor
2k in the denominator comes from the different possibilities to negate variables.
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Note that k!
∑

J∈Pk({1,2,...,n})

∏
j∈J pn,j is the probability of choosing a k-clause

that contains no variable more than once. To see that this probability is almost
1 for most distributions, we apply the generalized birthday paradox from [2].
Thereby, the probability that a k-clause sampled on n variables has collisions
is at most 1

2k2‖pn‖2
2; so for ‖pn‖2

2 = o(1) and constant k we obtain that the
probability to draw a specific clause over n variables consisting of variables X ∈ S
is

qc = C
k!
2k

∏
X∈S

pn(X), (2.2)

where we define C := 1/
(∑

J∈Pk({1,2,...,n})

∏
j∈J pn,j

)
=

(
1 + Θ

(‖pn‖2
2

))
. This

effectively hides the denominator of Eq. (2.1) in C and makes clause probabilities
easier to handle. We will later see that this is always the case in the variable
probability distributions we consider.

We can now define the coin-flipping equivalent of non-uniform random k-
SAT, which we will label clause-flipping random k-SAT.

Definition 2.2 (Clause-Flipping Random k-SAT). Let s, n, k be given, and
consider any ensemble of probability distributions (pn)n∈N, where pn is a prob-
ability distribution over n variables with

∑n
i=1 pi = 1. The clause-flipping ran-

dom k-SAT model F (n, k, (pn)n∈N, s) constructs a random SAT formula Φ over
n variables by independently flipping a coin for each of the

(
n
k

)
2k possible k-

clauses. The coin flip for a clause c is a success with probability

qn,c(s) := min (s · qn,c, 1) = min

(
s ·

∏
�∈c pn(|�|)

2k
∑

J∈Pk({1,2,...,n})

∏
j∈J pn,j

, 1

)
.

If successful, the clause is added to the random formula.

Lemma 2.1 relates the two models to each other and will be used throughout
the paper. Note that in the lemma the clause probabilities do not necessarily
have to be products of variable probabilities! Its proof is a simple exercise.

Lemma 2.1. Given a clause-flipping model F with clause probabilities q =
(qi)i∈[n] and a clause-drawing model D with clause probabilities q′ = (q′

i)i∈[n]

so that q′
i = qi/(1−qi)∑

j∈[n] qi/(1−qi)
, then for all l ∈ N and all events E it holds that

Pr
F

( E | {l clauses flipped} ) = Pr
D

( E | {l different clauses drawn} ) .

3 Sharpness of the Threshold

In Sect. 3.1 we establish a notion of asymptotic and sharp thresholds in the
context of non-uniform probability distributions. In Sect. 3.2 we relate this
notion of sharpness to Bourgain’s Sharp Threshold Theorem. In Sect. 3.3 we
prove the sharpness of the threshold in F(n, k, (pn)n∈N, s) with the help of the
Sharp Threshold Theorem. Finally, in Sect. 3.4 we relate D(n, k, (pn)n∈N,m) to
F(n, k, (pn)n∈N, s) in such a way that the sharpness of the satisfiability threshold
carries over.
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3.1 Non-uniform Sharpness

We want to generalize the definitions for uniform probability distributions to
non-uniform probability distributions.

For the clause-drawing random k-SAT model, we can use the same concepts
of asymptotic and sharp thresholds with respect to m as in the uniform case.

For the clause-flipping random k-SAT model, the first thing we notice is
that we cannot define the thresholds with respect to p anymore since the clause
probabilities are now non-uniform. Instead, we want to define the thresholds
with respect to s, the scaling factor of the probability space. This will allow us
to relate the two models in Subsect. 3.4.

Unless stated otherwise, we will concentrate on F (n, k, (pn)n∈N, s) to estab-
lish the result in this model first. We now encode formulas as vectors x ∈ {0, 1}N ,
where N :=

(
n
k

)
2k is the number of different k-clauses over n variables. If a

clause is chosen to be in the formula, we set its variable to −1, otherwise we
set it to 1. With this encoding of k-CNFs in mind, we can define a function
f : {−1, 1}N → {−1, 1}, which returns −1 if the encoded k-CNF is unsatisfiable
and 1 otherwise. It is easy to see that f is monotone in the sense that f(x) � f(y)
whenever x � y coordinate-wise. This is the case, since setting a coordinate from
−1 to 1 is equivalent to removing a clause from the encoded formula. By doing
so, a satisfiable formula cannot be made unsatisfiable, i. e. the value of f can
only change from −1 to 1, but not the other way around. This encoding is from
O’Donnell’s book [41] and makes the application of Bourgain’s Sharp Threshold
Theorem later in the paper easier.

We can now formally describe the product probability space of
F (n, k, (pn)n∈N, s) with the notation of O’Donnell. Given a variable proba-
bility distribution pn = (pn,i)i=1,...,n, the derived clause probability distribu-
tion qn = (qn,i)i=1,...,N , and the scaling factor s, we define our product space

to be (Ω, π) :=
(
{−1, 1}N

, π1 × π2 × . . . × πN

)
with πi(−1) = qn,i(s) and

πi(1) = 1−qn,i(s) for i = 1, 2, . . . , N . We let μpn,s denote the product probability
measure, i.e. for x ∈ Ω

μpn,s(x) =
N∏

i=1

πi(xi) =
∏

i∈[N ] : xi=−1

qn,i(s)
∏

i∈[N ] : xi=1

(1 − qn,i(s)).

For S ⊆ Ω we define μpn,s(S) =
∑

x∈S μpn,s(x). We will use the shorthand
notation μ instead of μpn,s if the probability measure is clear from context.
Furthermore, for an N -element vector x = (x1, x2, . . . , xN ) and a subset T ⊆ [N ]
let xT = (xi)i∈T denote the restriction of x to T .

The following statement shows the relation between coarseness of a property’s
threshold and the derivative of its probability function. The uniform equivalent
of the statement holds due to Friedgut [21], but we can show that it also holds
in the non-uniform case. The proof of the statement is a simple application of
the mean value theorem.
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Lemma 3.1. If a threshold is coarse, then there is a point s∗ in the threshold
interval, where s∗ · dμpn,s(f)

ds |s=s∗ � K for some constant K.

3.2 Influence and Bourgain’s Sharp Threshold Theorem

Bourgain’s Sharp Threshold Theorem will make use of the total influence of a
Boolean function f . Intuitively, the influence Inf i[f ] of a function f describes
the probability that the value of the i-th coordinate influences the function value.
The total influence I [ f ] of a function f is the sum of the influence values for
all coordinates. Both, Inf i[f ] and I [ f ] depend on the probability distribution
π, but we will omit this dependence if it is clear from context. The following
definition from [41] formalizes our intuitive one.

Definition 3.1 [Influence Function]. Let f ∈ L2 (Ω, π) be {−1, 1}-valued with
Ω = {−1, 1}N and π = π1 × . . . × πN . The influence of the i-th coordi-
nate is Inf i[f ] = E

x∼π
[ f(x)(Lif)(x) ]1, where Lif = f − Eif and Eif(y) =

E
yi ∼πi

[ f(y1, y2, . . . , yi−1,yi , yi+1 . . . , yN−1, yN ) ]. The total influence of f is

I [ f ] =
∑n

i=1 Inf i[f ].

The following corollary relates this notion of influence to the notion of coarse-
ness due to Friedgut, more precisely to dμpn,s(P )

ds s = dμpn,s({x∈Ω|f(x)=−1})
ds s. Its

proof is a relatively simple exercise.

Corollary 3.1. Let f ∈ L2
(
Ω = {−1, 1}N

, π = π1 × π2 × . . . × πN

)
be

{−1, 1}-valued, monotone, and non-constant. For s <
(
maxi∈[N ](qn,i)

)−1 it
holds that

I [ f ] � 4 · dμpn,s({x ∈ Ω | f(x) = −1})
ds

s. (3.1)

To prove our main theorem, we will use the Sharp Threshold Theorem by
Bourgain [21] in O’Donnell’s version [41]. The theorem states that, if a monotone
property P has a coarse threshold, and therefore small influence, then there
are local structures which approximate this property. The following is a formal
definition of these structures.

Definition 3.2 [τ -booster]. Let f : Ω → {−1, 1}. For T ⊆ [N ], y ∈ Ω, and τ >
0, we say that the restriction yT is a τ -booster if E

x∼π
[ f | xT = yT ] � E [ f ]+ τ .

If τ < 0, we say that yT is a τ -booster if E
x∼π

[ f | xT = yT ] � E [ f ] − |τ |.

The Sharp Threshold Theorem is stated as follows:

Theorem 3.1 [Bourgain’s Sharp Threshold Theorem]. Let f ∈ L2 (Ω, π)
be {−1, 1}-valued and non-constant with I [ f ] � K for a constant K.

1 In the paper we let x ∼ π denote that the random variable x is drawn from the
probability distribution with density π.
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Then there is some τ (either negative or positive) with |τ | � Var [ f ] ·
exp(−O(I [ f ]2 /Var [ f ]2)) such that

Pr
x∼π

(
∃ T ⊆ [n], |T | � O

(
I [ f ]

Var [ f ]

)
such that xT is a τ -booster

)
� |τ |.

This Theorem seems to be specific to probability spaces with uniform prob-
ability distributions. However, O’Donnell states that Theorem 3.1 in the version
with arbitrary product probability spaces also holds. We verify this claim in the
full version of the paper. Furthermore, by carefully checking the proof of the
theorem, one can see that the asymptotic values and the bases for the exponen-
tial terms can actually be substituted by appropriately chosen exact expressions.
Also, it has to be noted that Müller [40] already showed that a version of Bour-
gain’s original theorem also holds for arbitrary product probability spaces.

3.3 Proof of Sharpness for Non-uniform Random k-SAT

This subsection will be dedicated to proving our main theorem:

Theorem 3.2. Let k � 2, let (pn)n∈N be an ensemble of variable proba-
bility distributions on n variables each and let sc = t(n) be an asymptotic
satisfiability threshold for F (n, k, (pn)n∈N, s) with respect to s. If ‖pn‖∞ =
o
(
t−

k
2k−1 · log− k−1

2k−1 t
)

and ‖pn‖2
2 = O (

t−2/k
)
, then satisfiability has a sharp

threshold on F (n, k, (pn)n∈N, s) with respect to s.

The proof closely follows the one by Friedgut for uniform random k-SAT [21].
We assume toward a contradiction that the threshold is coarse. Then the Sharp
Threshold Theorem tells us that there have to be so-called “boosters” of constant
size that appear with constant probability in the random formula. These boosters
have the property that conditioning on their existence boosts the probability of
the random formula to be unsatisfiable by at least an additive constant.

One kind of booster are unsatisfiable subformulas of constant size. Condi-
tioning on these would boost the probability to be unsatisfiable to one. We rule
these out by showing that they do not appear with constant probability.

Then, we consider subformulas, which give the second highest boost: max-
imally quasi-unsatisfiable subformulas. These are subformulas which have only
one satisfying assignment for the variables appearing in them and adding any
new clause over those variables makes them unsatisfiable. We want to show that
these cannot boost the probability of a formula to be unsatisfiable by a constant.

Again toward a contradiction, we assume, that conditioning on a maximally
quasi-unsatisfiable subformula T is enough to boost the unsatisfiability probabil-
ity by a constant. First, we prove that conditioning on T is equivalent to adding a
number of clauses of size shorter than k to the random formula over variables not
appearing in T . Then, we use a version of Friedgut’s coverability lemma to show
that, if adding these clauses of size smaller than k makes the random formula
unsatisfiable with constant probability, then so does adding o(t) clauses of size k.
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We prove that this probability is dominated by the probability to make the orig-
inal random formula unsatisfiable for a slightly bigger scaling factor. However,
due to the assumption of a coarse threshold, the slope of the probability func-
tion for unsatisfiability has to be small at one point in the threshold interval.
If we consider this point, the probability to make the original random formula
unsatisfiable cannot be increased by a constant with our slightly increased scal-
ing factor. This contradicts our assumption that the probability is boosted by a
constant in the first place. Therefore, quasi-unsatisfiable subformulas cannot be
boosters.

After showing this, every less restrictive subformula cannot be a booster
either. That means, the only possible boosters are unsatisfiable subformulas,
which we ruled out already. Therefore, the implication of the Sharp Threshold
Theorem does not hold, which contradicts the assumption of a coarse threshold.

Now we are ready to prove our main theorem.

Application of the Sharp Threshold Theorem. We know that the asymp-
totic threshold is at a scaling factor s = Θ(t(n)). A threshold due to our def-
inition always has to be t = Ω(1). Otherwise the expected number of clauses
would be O(t) = o(1), leading to a probability of 1 − o(1) of having an empty,
and thereby satisfiable, formula due to Markov’s inequality. We can thus assume
that C =

(
1 + o

(
t−1/k

))
due to Eq. (2.2).

To prove Theorem 3.2 we assume that the threshold is coarse. Due to
Lemma 3.1 this implies that dμpn,s(f)

ds s � K for some constant K and some
s in the threshold interval. Let us call this scaling factor sc. Note that sc = Θ(t),
since sc is in the threshold interval and t is an asymptotic threshold function.
Due to Corollary 3.1 this means I [ f ] � 4 ·K. For the corollary to hold, we have
to assure sc <

(
maxi∈[N ](qn,i)

)−1. This follows due to our assumption

pn,max := ‖pn‖∞ = o
(
t−

k
2k−1 · log− k−1

2k−1 t
)

= o
(
t−1/k

)
,

which implies

qn,max(sc) := max
i∈[N ]

(qn,i(sc)) = sc · O (
pk

n,max

)
= o(1). (3.2)

Since f is {−1, 1}-valued it holds that E [ f ] = 1 − 2 · μpn,sc
(f) and Var [ f ] =

4 · μpn,sc
(f) (1 − μpn,sc

(f)). Since we are in the threshold interval, it holds that
μpn,sc

(f) is constant and so are E [ f ] and Var [ f ].
Now we can use Theorem 3.1 to see that, at least with constant probability τ ,

our formulas have a subformula (or lack thereof) consisting of at most O (K) =
O(1) clauses, so that conditioning on the existence (or non-existence) of these
clauses increases (or decreases) the probability that our random k-CNFs are
unsatisfiable by at least τ/2. The subformulas with these properties are the
boosters. The theorem actually allows us to choose appropriate specific constants
for τ and the upper bound on |T |.
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Since the property of being unsatisfiable is monotone, it is not beneficial to
forbid some clauses and demand others. We can therefore concentrate on the
cases of either only forbidding or only enforcing clauses in our boosters. The
following lemma shows that it suffices to concentrate on enforcing boosters. The
idea is that every constant-sized subset of clauses a. a. s. does not exist in the
formula, since clause probabilities are o(1). Therefore, conditioning on the non-
existence of such a subformula does not change the overall probability by too
much.

Lemma 3.2. Every booster which assumes the non-existence of clauses only
boosts the probability to be satisfiable or unsatisfiable by o(1).

We can now concentrate on conditioning on the existence of clauses. Our goal
is to show that no constant-sized boosters exist with constant probability.

Unsatisfiable Subformulas Are Too Improbable. A sure way to boost
the probability of being unsatisfiable to one is to condition on the existence of
an unsatisfiable subformula. To rule this case out, the next lemma shows that
the probability that our formulas have an unsatisfiable subformula of constant
size is smaller than any constant τ for sufficiently large n. The proof essentially
shows that any minimally unsatisfiable subformula of constant size cannot exist
with constant probability. This can be seen from the fact that such subformulas
contain each variable in them at least twice and the probability for this can be
bounded using ‖pn‖2

2 and ‖pn‖∞.

Lemma 3.3. Let a, k ∈ N be constants and let (pn)n∈N be an ensemble of vari-
able probability distributions. If ‖pn‖∞ = o

(
s−1/k

)
and ‖pn‖2

2 = O (
s−2/k

)
,

then a random formula from F (n, k, (pn)n∈N, s) has an unsatisfiable subformula
of length at most a with probability o(1).

Maximally Quasi-Unsatisfiable Subformulas Provide the Second-
Highest Boost. Since we ruled out unsatisfiable subformulas as the boosters
we are looking for, we now turn our attention to satisfiable subformulas. Let ΦT

be the formula encoded by xT = (−1)|T | and let V (T ) ⊆ {X1, . . . , Xn} be the
variables in ΦT . Note that |V (T )| is constant since |T | is constant and each clause
contains k many variables. We call ΦT maximally quasi-unsatisfiable (mqu) if it
is satisfiable by only one of the 2|V (T )| assignments over its variable set (quasi-
unsatisfiable) and if adding any new clause with variables only from V (T ) makes
it unsatisfiable (maximally satisfiable). The following lemma formalizes a state-
ment by Friedgut [21] that the biggest possible boost any satisfiable subformula
can give is achieved by mqu subformulas. The proof of the statement uses the
fact that every satisfiable subformula can be extended to a mqu subformula over
the same variables. It also uses positive correlation of increasing events [20] and
the fact that we have a product probability space.



Sharpness of the Satisfiability Threshold for Non-uniform Random k-SAT 285

Lemma 3.4. For every T ⊆ [N ] so that ΦT is satisfiable, there is a T ′ ⊇ T so
that ΦT ′ is maximally quasi-unsatisfiable and

Pr
x∼π

(
f(x) = −1 | xT ′ = (−1)|T ′|

)
� Pr

x∼π

(
f(x) = −1 | xT = (−1)|T |

)
.

The Part of the Formula Containing only Variables from the Booster
Is Still Satisfiable. We now turn to analyzing the boost maximally quasi-
unsatisfiable subformulas can give. In the end will will show that they can-
not boost the unsatisfiability probability by a constant. Lemma 3.4 implies
that the same holds for all satisfiable subformulas, thus giving us the desired
contradiction.

Let T ⊆ [N ] with ΦT mqu. In order to see how big the boost by such a T
can be, we split x into two parts, the part xS , so that each clause in ΦS only
contains variables from V (T ), and the part xS , in which each encoded clause
contains at least one variable from V (T ) = {X1, . . . , Xn} \ V (T ). Let f(xS) be
−1 if ΦS is unsatisfiable and 1 otherwise. The following lemma asserts that ΦS

can only be unsatisfiable with sub-constant probability. This is the case, because
it is very unlikely to flip one of the constant number of clauses that can make
the maximally satisfiable booster unsatisfiable.

Lemma 3.5. It holds that Pr
x∼π

(
f(xS) = −1 | xT = (−1)|T | ) = o(1).

The Booster Adds Shorter Clauses to the Other Part of the Formula.
We can now concentrate on the case that ΦS is satisfiable. Since ΦT is maximally
unsatisfiable, it holds that ΦS = ΦT , and since ΦT is quasi-unsatisfiable, ΦS also
only has one satisfying assignment.

We now want to create xS under these conditions. To this end, we assume
that the variables V (t) take the one assignment that makes ΦS satisfiable. For a
clause containing both variables from V (T ) and variables from V (T ) this means
the clause is either satisfied or the variables from V (T ) can be eliminated as
their literals are all set to false. Effectively, this means that we can have clauses
over V (T ) of length 0 < l < k. The following lemma makes this statement more
precise. Its proof is a simple application of the Markov bound.

Lemma 3.6. If pn,max = o
(
t−

k
2k−1 · log− k−1

2k−1 t
)
, then a mqu subformula of con-

stant length spawns at most Dl = o

((
t

log t

) l
k+l

)
clauses of length l = 1, . . . , k−1

with probability 1 − o(1).

We now want to create the resulting formula over variables from V (T ) in two
parts. First we create k-clauses over V (T ) with the usual clause-flipping model,
where the clause-probabilities are the same as in F (n, k, (pn)n∈N, sc). Then, for
each l ∈ [k − 1] we add Dl l-clauses over V (T ) with the clause-drawing model.
The probability qc to add a clause c = (�1 ∨ �2 ∨ . . . ∨ �l) of size l is equal to the
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probability of flipping any clause which contains c and k − l literals negated by
the assignment of V (T ):

qc = C
k! · sc

2k

l∏
i=1

pn(|�i|) ·
∑

J∈Pk−l(V (T ))

∏
X∈J

pn(X). (3.3)

We can now choose q′
c = qc/(1−qc)∑

j∈[n] qc/(1−qc)
as the probability to draw clause c. This

helps us apply Lemma 2.1 to relate the resulting random formula Φ̂ to our original
probability space. Furthermore, the following lemma also uses Lemma 3.6 and
the fact that no clauses are drawn twice with probability 1 − o(1).

Lemma 3.7. It holds that

Pr
x∼π

(
f(x) = −1 ∧ f(xS) = 1 | xT = (−1)|T |

)
� Pr

(
Φ̂ unsat

)
+ o(1).

Shorter Clauses Can Be Substituted with k-Clauses. We now want to
bound Pr(Φ̂ unsat). To this end, let Φ̃ be the part of Φ̂ only consisting of k-
clauses. Let us assume Pr(Φ̂ unsat) � μpn,sc

(f) + δ for some constant δ > 0.
We know that Φ̃ is unsatisfiable with probability at most μpn,sc

(f), since it
is drawn from F (n, k, (pn)n∈N, sc) with the difference that only clauses over
V (T ) are flipped. This implies Pr(Φ̂ unsat ∧ Φ̃ sat) � δ. We now define a more
general concept of coverability, analogously to Friedgut [21]. This will allow us
to substitute l-clauses with k-clauses while maintaining the probability to make
Φ̃ unsatisfiable.

Definition 3.3. Let D1, . . . , Da ∈ N and l1, . . . , la ∈ N and let q1, . . . , qa

be probability distributions. For A ⊆ {0, 1}n, we define A to be
((d1, l1, q1), (d2, l2, q2), . . . , (da, la, qa), ε)-coverable, if the union of di subcubes
of co-dimension li chosen according to probability distribution qi for 1 � i � a
has a probability of at least ε to cover A.

In contrast to Friedgut’s definition, we allow subcubes of arbitrary co-
dimension and with arbitrary probability distributions instead of only sub-
cubes of co-dimension 1 with a uniform distribution. In the context of
satisfiability we say that a specific formula (not a random formula) Φ is
((d1, l1, q1), . . . , (da, la, qa), ε)-coverable if the probability to make it unsatisfi-
able by adding di random clauses of size li chosen according to distribution qi

for i = 1, 2, . . . a is at least ε in total.
Now let ql = (q′

c)c for all clauses c of size l over V (T ), where q′
c is the clause

drawing probability we defined for Φ̂. It holds that with a sufficiently large con-
stant probability Φ̃ is ((D1, 1, q1), . . . , (Dk−1, k − 1, qk−1), δ)-coverable. The fol-
lowing lemma shows that formulas with this property are also ((g(n), k, qk), δ′)-
coverable for some function g(n) = o (t) and any constant δ′ < δ. Its proof is a
more precise and general version of Friedgut’s original proof.
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Lemma 3.8. Let qk be our original clause probability distribution and let all
other probability distributions be as described in Eq. (3.3) and let D1 . . . Dk−1

be as defined. If a concrete formula Φ is ((D1, 1, q1), . . . , (Dk−1, k − 1, qk−1), δ)-
coverable for some constant δ > 0, it is also ((g(t), k, qk), δ′)-coverable for some
function g(t) = o(t) for any constant 0 < δ′ < δ.

By substituting shorter clauses with k-clauses we lose at most an arbitrarily
small additive constant from the probability μpn,sc

(f)+δ that Φ̂ is unsatisfiable.
Thus, we still have a constant probability bigger than μpn,sc

(f).

Bounding the Boost by Bounding the Slope of the Probability Func-
tion. We can now show that instead of adding g(t) k-clauses, we can increase
the scaling factor sc of our original clause-flipping model to achieve the same
probability. The proof of the following lemma uses Lemma 2.1 together with a
Chernoff-Bound on the number of clauses added in the clause-flipping model.

Lemma 3.9. For g′(t) = g(t) + c · √
t · ln t = o(t) with c > 0 an appropriately

chosen constant it holds that

Pr
(
Φ̂ unsat

)
� μpn,sc+g′(t)(f) + o(1).

Under the assumption that Pr(Φ̂ unsat) � μpn,sc
(f) + δ, it follows that

μpn,sc+g′(t)(f) � μpn,sc
(f) + ε for some constant ε > 0. We show that this

cannot be the case under the assumption of a coarse threshold. The proof of
this lemma is a simple application of Taylor’s theorem and uses the fact that we
evaluate the probability function at the point sc, where dμp ,ns (f)

ds s
∣∣∣
s=sc

� K due
to Lemma 3.1.

Lemma 3.10. It holds that μpn,sc+g′(t)(f) � μpn,sc
(f) + o(1).

This contradicts our conclusion of μpn,sc+g′(t)(f) � μpn,sc
(f) + ε for some

constant ε > 0. Therefore, our assumption Pr(Φ̂ unsat) � μpn,sc
(f)+ δ for some

constant δ > 0 has to be wrong, i.e. Pr(Φ̂ unsat) � μpn,sc
(f)+o(1). Now we can

put all error probabilities together to see

Pr
x∼π

(f(x) = −1 | xT = (−1)|T |) � μpn,sc
(f) + o(1).

This is smaller than μpn,sc
(f) + τ for sufficiently large values of n. This means,

the maximally quasi-unsatisfiable subformula ΦT cannot be a τ -booster for any
constant τ > 0. Due to Lemma 3.4 the boost by every satisfiable subformula is
at most as big as the one by a mqu subformula. Thus, no T which encodes a
satisfiable subformula can be a τ -booster. Since we already ruled out unsatisfiable
subformulas, this means there are no τ -boosters which appear with probability
at least τ/2. This contradicts the implication of the Sharp Threshold Theorem
and therefore the assumption of a coarse threshold, thus proving Theorem 3.3.

��
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3.4 Relation to the Clause-Drawing Model

After proving the sharpness of the threshold for F (n, k, (pn)n∈N, s) in Theo-
rem 3.2, it now remains to relate F (n, k, (pn)n∈N, s) to D (n, k, (pn)n∈N,m).

Usually, the satisfiability threshold is only determined for the clause-drawing
model and not for the clause-flipping model. Nevertheless, the following lemma
shows that for certain probability distribution ensembles (pn)n∈N the asymptotic
thresholds of both models are the same. This allows us to determine the asymp-
totic threshold function of the clause-flipping model and to apply Theorem 3.2.
The proofs of Lemmas 3.11 and 3.12 use Lemma 2.1 and Chernoff Bounds.

Lemma 3.11. Let (pn)n∈N be an ensemble of variable probability distribu-
tions on n variables each and let t = ω(1) be an asymptotic threshold with
respect to m for a monotone property P on D(n, k, (pn)n∈N,m). If ‖pn‖2

2 =
o
(
t−1/k

)
, then sc = Θ(t) is an asymptotic threshold with respect to s for P on

F(n, k, (pn)n∈N, s).

With the help of the former lemma, we can now prove Lemma 3.12.

Lemma 3.12. Let (pn)n∈N be an ensemble of variable probability distributions
on n variables each and let t = ω(1) be an asymptotic threshold with respect to
s for any monotone property P on F(n, k, (pn)n∈N, s). If ‖pn‖2

2 = o
(
t−1/k

)
and

if the threshold for P with respect to s on F(n, k, (pn)n∈N, s) is sharp, then P
has a sharp threshold on D(n, k,p,m) at mc = Θ (t).

Theorem 3.3, now follows from the two lemmas above and from Theorem 3.2.

Theorem 3.3. Let k � 2, let (pn)n∈N be an ensemble of variable probability
distributions on n variables each and let mc = t(n) = ω(1) be the asymptotic
satisfiability threshold for D (n, k, (pn)n∈N,m) with respect to m. If ‖pn‖∞ =
o
(
t−

k
2k−1 · log− k−1

2k−1 t
)

and ‖pn‖2
2 = O (

t−2/k
)
, then satisfiability has a sharp

threshold on D (n, k, (pn)n∈N,m) with respect to m.

3.5 Example Application of the Theorem

We can now use Theorem 3.3 as a tool to show sharpness of the threshold for non-
uniform random k-SAT with different probability distributions on the variables.
As an example, we apply the theorem for an ensemble of power-law distributions.

Corollary 3.2. Let (pn)n∈N be an ensemble of general power-law distributions
with the same power-law exponent β � 2k−1

k−1 + 1 + ε, where ε > 0 is a con-
stant and pn is defined over n variables. For k � 2 both F (n, k, (pn)n∈N, s) and
D (n, k, (pn)n∈N,m) have a sharp threshold with respect to s and m, respectively.
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Proof. From [23] we know that the asymptotic threshold for D (n, k, (pn)n∈N,m)
is at m = Θ(n) for β � 2k−1

k−1 + ε. It is now an easy exercise to see that

‖pn‖2
2 =

n∑
i=1

p2
n,i =

⎧⎪⎨
⎪⎩

O (
n−2(β−2)/(β−1)

)
, β < 3

O (
ln n
n

)
, β = 3

O (
n−1

)
, β > 3

and that ‖pn‖∞ = maxi=1,2,...,n(pn,i) = O(n−(β−2)/(β−1)). One can now verify
‖pn‖2

2 = O(n−2/k) and ‖pn‖∞ = o(n− k
2k−1 · log− k−1

2k−1 (n)) for β > 2k−1
k−1 + 1 + ε

and k � 2. Lemma 3.11 now states that the asymptotic satisfiability threshold
for F (n, k, (pn)n∈N, s) is at s = Θ(n). Theorems 3.2 and 3.3 now imply a sharp
threshold for F (n, k, (pn)n∈N, s) and D (n, k, (pn)n∈N,m).

4 Discussion of the Results

In this work we have shown sufficient conditions on the variable probability
distribution of non-uniform random k-SAT for the satisfiability threshold to be
sharp. The main theorems can readily be used to prove sharpness for a wide
range of random k-SAT models with heterogeneous distributions on the variable
occurrences: If the threshold function is known asymptotically, one only has to
verify the two conditions on the variable distribution.

We suspect that it is possible to generalize the result to demanding only
‖p‖∞ = o

(
t−1/k

)
, since the additional factor is only needed in Lemma 3.8.

In any case it would be interesting to complement the result with matching
conditions on coarseness of the threshold.

We hope that our results make it possible to derive a proof in the style of
Ding et al. [19] for certain variable probability ensembles with a sharp threshold,
effectively proving the satisfiability threshold conjecture for these ensembles.
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Abstract. We initiate a proof complexity theoretic study of subsystems
of cutting planes (CP) modelling proof search in conflict-driven pseudo-
Boolean (PB) solvers. These algorithms combine restrictions such as that
addition of constraints should always cancel a variable and/or that so-
called saturation is used instead of division. It is known that on CNF
inputs cutting planes with cancelling addition and saturation is essen-
tially just resolution. We show that even if general addition is allowed,
this proof system is still polynomially simulated by resolution with
respect to proof size as long as coefficients are polynomially bounded.

As a further way of delineating the proof power of subsystems of CP,
we propose to study a number of easy (but tricky) instances of problems
in NP. Most of the formulas we consider have short and simple tree-like
proofs in general CP, but the restricted subsystems seem to reveal a much
more varied landscape. Although we are not able to formally establish
separations between different subsystems of CP—which would require
major technical breakthroughs in proof complexity—these formulas
appear to be good candidates for obtaining such separations. We believe
that a closer study of these benchmarks is a promising approach for
shedding more light on the reasoning power of pseudo-Boolean solvers.

1 Introduction

The efficiency of modern Boolean satisfiability (SAT) solvers is one of the most
fascinating success stories in computer science. The SAT problem lies at the
foundation of the theory of NP-completeness [13], and as such is believed to be
completely beyond reach from a computational complexity point of view. Yet
solvers based on conflict-driven clause learning (CDCL) [4,38,40] are nowadays
used routinely to solve instances with millions of variables.

From a theoretical point of view, it is an intriguing question how to explain
the performance of state-of-the-art SAT solvers, and unfortunately our under-
standing of this remains quite limited. Perhaps the only tool currently available
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for giving rigorous answers to such questions is provided by proof complexity [14],
where one essentially ignores the question of algorithmic proof search and instead
studies the power and limitations of the underlying method of reasoning.

Conflict-Driven Clause Learning and Resolution. It is well-known (see,
e.g., [5]) that CDCL solvers search for proofs in the proof system resolution [7].
Ever since resolution-based SAT solvers were introduced in [16,17,46], subsys-
tems of resolution corresponding to these algorithms, such as tree-like and regular
resolution, have been studied. Exponential lower bounds for general resolution
proofs were established in [11,29,51], and later it was proven that general reso-
lution is exponentially stronger than regular resolution, which in turn is expo-
nentially stronger than tree-like resolution (see [1,6,52] and references therein).
More recently, CDCL viewed as a proof system was shown to simulate general
resolution efficiently [3,43] (i.e., with at most a polynomial blow-up), though an
algorithmic version of this result seems unlikely in view of [2].

A problem that is arguably even more intriguing than the analysis of CDCL
solver performance is why attempts to build SAT solvers on stronger methods
of reasoning than resolution have had such limited success so far. Resolution lies
very close to the bottom in the hierarchy of proof systems studied in proof com-
plexity, and even quite a limited extension of this proof system with algebraic or
geometric reasoning holds out the prospect of exponential gains in performance.

Pseudo-Boolean Solving and Cutting Planes. In this paper we consider one
such natural extension to pseudo-Boolean (PB) solving using linear inequalities
over Boolean variables with integer coefficients, which is formalized in the proof
system cutting planes (CP) [10,15,28]. By way of a brief overview, Hooker [31,32]
considered generalizations of resolution to linear constraints and investigated the
completeness of such methods. More general algorithms were implemented by
Chai and Kuehlman [9], Sheini and Sakallah [49], and Dixon et al. [18–20]. The
focus in all of these papers is mostly on algorithmic questions, however, and not
on properties of the corresponding proof systems.

Papers on the proof complexity side have studied tree-like cutting planes [34]
and CP with bounded constant terms in the inequalities [27], and resolution has
been shown to simulate cutting planes when this upper bound is constant [30].
Exponential lower bounds for cutting planes with coefficients of polynomial mag-
nitude were obtained in [8], and for general cutting planes with coefficients
of arbitrary size strong lower bounds were proven in [45] and (very recently)
in [26,33]. These papers consider more general derivation rules than are used
algorithmically, however, and in contrast to the situation for resolution we are
not aware of any work analysing the proof complexity of subsystems of CP cor-
responding to the reasoning actually being used in pseudo-Boolean solvers.

Our Contributions. We initiate a study of proof systems intended to capture
the reasoning in pseudo-Boolean solvers searching for cutting planes proofs. In
this work we focus on cdcl-cuttingplanes [21] and Sat4j [36,48], which are the
two CP-based solvers that performed best in the relevant satisfiability problems
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category DEC-SMALLINT-LIN in the Pseudo-Boolean Competition 2016 [44].1

Our subsystems of CP combine algorithmically natural restrictions such as that
addition should always cancel a variable and/or that saturation is used instead
of the more expensive to implement division rule. We stress that these derivation
rules are nothing new—indeed, the point is that they are already used in practice,
and they are formally defined in, e.g., the excellent survey on pseudo-Boolean
solving [47]. Our contribution is to initiate a systematic study of concrete com-
binations of these rules, using tools from proof complexity to establish concrete
limitations on what solvers using these rules can achieve.

PB solvers typically perform poorly on inputs in conjunctive normal form
(CNF), and it has been known at least since [31,32] that in this case CP with
cancelling addition and saturation degenerates into resolution. We observe that
strengthening just one of these rules is not enough to solve this problem: CP with
cancelling addition and division is easily seen still to be resolution, and resolution
can also polynomially simulate the saturation rule plus unrestricted additions as
long as the coefficients are of polynomial magnitude. The issue here is that while
all versions of CP we consider are refutationally complete, meaning that they
can prove unsatisfiability of an inconsistent set of constraints, the subsystems of
CP are not implicationally complete, i.e., even though some linear constraint is
implied by a set of other constraints there might be no way of deriving it. This
makes reasoning in these subsystems very sensitive to exactly how the input is
encoded. Thus, a strong conceptual message of our paper is that in order to
function robustly over a wide range of input formats (including, in particular,
CNF), PB solvers will need to explore a stronger set of reasoning rules.

In a further attempt to understand the relative strength of these subsystems
of cutting planes, we present some (to the best of our knowledge) new combina-
torial formulas encoding NP-complete problems, but with the concrete instances
chosen to be “obviously” unsatisfiable. We then investigate these formulas, as
well as the even colouring formulas in [37], from the point of view of proof com-
plexity. Most of these formulas have very short and simple proofs in general cut-
ting planes, and these proofs are even tree-like. With some care the applications
of addition in these proofs can also be made cancelling, but having access to the
division rule rather than the saturation rule appears critical. Although we are not
able to establish any formal separations between the subsystems of cutting planes
that we study (other than for the special case of CNF inputs as noted above), we
propose a couple of formulas which we believe are promising candidates for sep-
arations. Obtaining such results would require fundamentally new techniques,
however, since the tools currently available for analysing CP cannot distinguish
between subsystems defined in terms of different sets of syntactic rules.2

1 There is now an updated version of cdcl-cuttingplanes called RoundingSat [24], but
any theoretical claims we make in this paper hold for this new version also.

2 Essentially all lower bound proofs for CP work for any semantically sound proof
system operating on pseudo-Boolean constraints, completely ignoring the syntactic
rules, and the one exception [25] that we are aware of uses a very specific trick to
separate fully semantic (and non-algorithmic) CP from the syntactic version.
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We also consider these formulas for other ranges of parameter values and
show that for such values the formulas are very easy even for the weakest sub-
systems of CP that we consider. This would seem to imply that solving such
instances should be well within reach for cdcl-cuttingplanes and Sat4j. However,
as reported in [22] many of these instances are instead very challenging in prac-
tice. This suggests that in order to make significant advances in pseudo-Boolean
solving one crucial aspect is to make full use of the division rule in cutting planes,
and we believe that further study of these benchmarks is a promising approach
for gaining a deeper understanding of the theoretical reasoning power of pseudo-
Boolean solvers implementing conflict-driven proof search.

Organization of This Paper. We discuss conflict-driven proof search in reso-
lution and cutting planes and give formal definitions of proof systems in Sect. 2.
In Sect. 3 we prove simulation results for different subsystems of CP, and in
Sect. 4 we present our new combinatorial formulas providing candidates for sep-
arations. We make some brief concluding remarks in Sect. 5. We refer the reader
to the upcoming full-length version of the paper for all missing proofs.

2 Proof Systems for Pseudo-Boolean SAT Solving

Let us start by giving a more formal exposition of the proof systems studied
in this paper. Our goal in this section is to explain to complexity theorists
without much prior exposure to applied SAT solving how these proof systems
arise naturally in the context of pseudo-Boolean (PB) solving, and to this end we
start by reviewing resolution and conflict-driven clause learning (CDCL) solvers.
By necessity, our treatment is very condensed, but an excellent reference for more
in-depth reading on PB solving is [47], and more details on proof complexity
material relevant to this paper can be found, e.g., in [41,42].

We use the standard notation N = {0, 1, 2, 3, . . .} and N
+ = N\{0} for natural

numbers and positive natural numbers, respectively, and write [n] = {1, 2, . . . , n}
and [n,m] = {n, n + 1, . . . ,m} for m,n ∈ N

+, m > n.

Resolution and Conflict-Driven Clause Learning. Throughout this paper
we identify 1 with true and 0 with false. A literal over a Boolean variable x
is either a positive literal x or a negative or negated literal x. It will also be
convenient to write xσ, σ ∈ {0, 1}, to denote x1 = x and x0 = x. A clause
C = �1 ∨ · · · ∨ �k is a disjunction of literals over pairwise disjoint variables. A
CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We write Vars(F )
to denote the set of variables appearing in a formula F . We think of clauses and
formulas as sets, so that order is irrelevant and there are no repetitions.

We can represent a partial truth value assignment ρ as the set of literals set to
true by ρ. We write ρ

(
xσ

)
= 1 if xσ ∈ ρ, ρ

(
xσ

)
= 0 if x1−σ ∈ ρ, and ρ

(
xσ

)
= ∗

otherwise (i.e., when ρ does not assign any truth value to x). A clause C is
satisfied by ρ if it contains some literal set to true by ρ; falsified if ρ sets all
literals in C to false; and undetermined otherwise. The restricted clause C�ρ is
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the trivial clause 1 if ρ satisfies C and otherwise C with all literals falsified by ρ
removed, i.e., C�ρ = C \{xσ | x1−σ ∈ ρ}. A unit clause is a clause with only one
literal. We say that C is unit under ρ if C�ρ = {xσ} is a unit clause, and if so C
is also said to propagate xσ under ρ.

A resolution refutation π of F is a sequence of clauses π = (D1,D2, . . . , DL)
such that DL = ⊥ is the empty clause without literals and each Di is either
an axiom clause Di ∈ F or a resolvent on the form Di = B ∨ C derived from
Dj = B ∨ x and Dk = C ∨ x for j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C

. (1)

It is sometimes convenient to add also a weakening rule

B
B ∨ C

, (2)

which allows to derive any strictly weaker clause from an already derived clause,
but it is not hard to show that any use of weakening in a resolution refutation
can be eliminated without loss of generality. It is a standard fact that resolution
is implicationally complete, meaning that a clause C can be derived from a for-
mula F if and only if F semantically implies C.3 In particular, F is unsatisfiable
if and only if there exists a resolution refutation of F .

The length L(π) of a refutation π is the number of clauses in it. Viewing the list
of clauses π as annotated with explanations how they were obtained, we define an
associated directed acyclic graph (DAG) Gπ with vertices {v1, v2, . . . , vL} labelled
by the clauses {D1,D2, . . . , DL} and with edges from resolved clauses to resol-
vents. We say that π is tree-like if Gπ is a tree, or, equivalently, if every clause Di

is used at most once as a premise in the resolution rule (repetitions of clauses in π
are allowed; i.e., different vertices can be labelled by the same clause). The (clause)
space at step i in π is the number of clauses Dj , j < i used to obtain resolvents Dj′ ,
j′ ≥ i, plus 1 for the clause Di itself, and the space Sp(π) of the refutation is the
maximal space at any step in π.

Turning next to CDCL solvers, we give a simplified description below that is
sufficient for our needs—a more complete (theoretical) treatment can be found
in [23]. In one sentence, a CDCL solver running on a CNF formula F repeatedly
decides on variable assignments and propagates values that follow from such
assignments until a clause is falsified, at which point a learned clause is added to
the clause database D (where we always have F ⊆ D) and the search backtracks.
In a bit more detail, the solver maintains a current partial assignment ρ, where
every assignment also has a decision level (the initial state is at decision level 0
with ρ = ∅ and D = F ). If there is a clause C ∈ D that is unit under ρ, the
solver adds the propagated literal xσ = C�ρ to ρ with reason clause C and
repeats the check for unit clauses until either (i) some clause D ∈ D is falsified

3 In case the definition of resolution without weakening is used, the notion of implica-
tional completeness is adapted in the natural way to mean that resolution can derive
either C or some clause C′ that subsumes C, i.e., such that C′

� C.
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by the current assignment (referred to as a conflict clause), or else (ii) there
are no propagating clauses. In the latter case the solver makes a decision y = ν
and adds yν to ρ with decision level increased by 1 (unless there are no more
variables left, in which case ρ is a satisfying assignment for F ). In the former
case, the solver instead performs a conflict analysis as described next.

Suppose for concreteness that the last propagated literal in ρ before reaching
the conflict clause D was xσ with reason clause C = C∗ ∨ xσ. Since this propa-
gation caused a conflict the variable x must appear with the opposite sign in D,
which can hence be written on the form D = D∗∨x1−σ. The solver can therefore
resolve C∗ ∨ xσ and D∗ ∨ x1−σ to get D′ = C∗ ∨ D∗, after which xσ is removed
from ρ. We refer to D′ as the new conflict-side clause. During conflict analysis
the conflict-side clause D′ is resolved in reverse chronological order with the rea-
son clauses propagating literals in D′ to false, and these literals are removed one
by one from ρ. An important invariant during this process is that the current
conflict-side clause is always falsified by the partial assignment ρ after removing
the literal just resolved over. Therefore, every derived clause on the conflict side
provides an “explanation” why the corresponding partial assignment fails.

The conflict analysis loop ends when the conflict-side clause contains only
one literal from the current decision level at which point the solver learns this
clause and adds it to the database D. By the invariant, this learned clause is
still falsified by ρ, and so the solver removes further literals from ρ in reverse
chronological order until the decision level decreases to that of the second largest
decision level of any literal in the learned clause. At this point the solver returns
from conflict analysis and resumes the main loop described above. By design it
now holds that the newly learned clause immediately causes unit propagation,
flipping some previously assigned literal to the opposite value. Learned clauses
having this property are called asserting , and a common feature of essentially all
clause learning schemes used in practice is that they learn such asserting clauses.

The CDCL solver terminates either when it finds a satisfying assignment or
when it detects unsatisfiability by learning the empty clause ⊥ (or, more pre-
cisely, when it reaches a conflict at decision level 0, in which case the conflict
analysis is guaranteed to derive the empty clause). There are, of course, lots of
details that we are omitting above. The important conclusions, as we prepare
to generalize the description of CDCL to a pseudo-Boolean context, is that the
CDCL solver decides on variables and propagates values based on the clauses
currently in the database, and that when a conflict is reached a new clause is
added to the database obtained by a resolution derivation from the conflict and
reason clauses. This means that from any run of CDCL on an unsatisfiable for-
mula F we can extract a resolution refutation of F .

Cutting Planes and Pseudo-Boolean Solving. Recall that throughout this
paper we are considering pseudo-Boolean constraints encoded as linear inequal-
ities over Boolean variables with integral coefficients (and all linear inequalities
discussed are assumed to be over {0, 1}-valued variables unless stated otherwise).
In order to give a description of cutting planes that is suitable when we want to
reason about pseudo-Boolean solvers, it is convenient to keep negated literals as
objects in their own right, and to insist that all inequalities consist of positive
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linear combinations of literals. Therefore, we will write all linear constraints in
normalized form

∑

i∈[n], σ∈{0,1}
aσ

i xσ
i ≥ A , (3)

where for all aσ
i ∈ N with i ∈ [n] and σ ∈ {0, 1} at least one of a0

i or a1
i equals 0.

(variables occur only with one sign in any given inequality), and where the right-
hand constant term A ∈ N is called the degree of falsity (or just degree). Note
that the normalization is only a convenient form of representation and does not
affect the strength of the proof system. If the input is a CNF formula F we just
view every clause C = xσ1

1 ∨ · · · ∨ xσw
w as a linear constraint xσ1

1 + · · · + xσw
w ≥ 1,

i.e., a constraint on the form (3) with aσ
i ∈ {0, 1} and A = 1.

When generalizing CDCL to a pseudo-Boolean setting we want to build a
solver that decides on variable values and propagates forced values until conflict,
at which point a new linear constraint is learned and the solver backtracks. The
main loop of a conflict-driven PB solver can be made identical to that of a CDCL
solver, except that we change the word “clause” to “constraint.” However, a
naive generalization of the conflict analysis does not work. For an example of
this, suppose we have ρ = {x1, x2, x3} under which x1 +2x2 +x3 +2x4 +2x6 ≥ 3
unit propagates x6 to true, causing a conflict with x3+2x5+2x6 ≥ 3. By analogy
with the CDCL conflict analysis, we “resolve” (i.e., add and normalize) these two
constraints to eliminate x6, yielding x1+2x2+2x3+2x4+2x5 ≥ 3+3−2 = 4 (since
2x6 + 2x6 = 2). But now the important invariant that the derived constraint is
falsified by the current partial assignment fails, because the new constraint is not
falsified by ρ = {x1, x2, x3}! There are different ways of modifying the pseudo-
Boolean conflict analysis to address this problem, and these different approaches
are partly reflected in the different proof systems studied in this paper.

Starting with the most general version of the cutting planes proof system
used in the proof complexity literature, using the normalized form (3) we can
define the derivation rules4 to be literal axioms

xσ
i ≥ 0

, (4a)

linear combination
∑

i aσ
i xσ

i ≥ A
∑

i bσ
i xσ

i ≥ B
∑

i (αaσ
i + βbσ

i )xσ
i ≥ αA + βB

α, β ∈ N
+ , (4b)

and division
∑

i aσ
i xσ

i ≥ A
∑

i

⌈
aσ/α

⌉
xσ

i ≥ 
A/α�
α ∈ N

+ , (4c)

4 Attentive readers might note that division looks slightly stronger in our definition
than the standard rule in the proof complexity literature, but the two versions are
easily verified to be equivalent up to a linear factor in length. It is important to note
that multiplication is only ever performed in combination with addition.
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where in the linear combination rule we tacitly assume that the cancellation rule
xσ +x1−σ = 1 is applied to bring the derived constraint into normalized form, as
in the example we just saw. Just as in this example, for any linear combination
that arises during conflict analysis it will be the case that there is a literal xσ

i

for which αaσ
i = βb1−σ

i > 0. We say that this is an instance of cancelling linear
combination since the variable xi vanishes, and we also require for such linear
combinations that α and β are chosen so that αaσ

i = βb1−σ
i is the least common

multiple of aσ
i and b1−σ

i . We remark that this is also referred to as generalized
resolution in the literature [31,32], since it is a natural generalization of (1) from
disjunctive clauses to general linear constraints, and we will sometimes refer to
the resulting constraint as a (generalized) resolvent .

We want to highlight that in the division rule (4c) we can divide and round
up to the closest integer, since we are only interested in {0, 1}-valued solutions.
This division rule is where the power of cutting planes lies. And indeed, this is
how it must be, since the other rules are sound also for real-valued variables, and
so without the division rule we would not be able to distinguish sets of linear
inequalities that have real-valued solutions but no {0, 1}-valued solutions.

Pseudo-Boolean solvers such as Sat4j [36,48] and cdcl-cuttingplanes [21] do
not implement the full set of cutting planes derivation rules as described above,
however. In proofs generated by these solvers the linear combinations will always
be cancelling. Division is used in cdcl-cuttingplanes only in a restricted setting
to ensure that the learned constraint is always conflicting, and Sat4j omits this
rule pretty much completely and instead applies the saturation rule

∑
(i,σ) aσ

i xσ
i ≥ A

∑
(i,σ) min

{
aσ

i , A
}·xσ

i ≥ A
, (5a)

saying that no coefficient on the left need be larger than the degree on the right.
(For instance, saturation applied to 3x1 +x2 +x3 ≥ 2 yields that 2x1 +x2 +x3 ≥
2 holds.) As the division rule, the saturation rule is sound only for integral
solutions. It is an interesting question how the division and saturation rules are
related. Saturation can be simulated by division, but it is not clear whether
this simulation can be made efficient in general. In the other direction, we give
examples in this paper of when division is exponentially stronger than saturation.

We remark that another rule that is important in practice is weakening

∑
(i,σ) aσ

i xσ
i ≥ A

∑
(i,σ) �=(i∗,σ∗) aσ

i xσ
i ≥ A − aσ∗

i∗
, (5b)

which—perhaps somewhat counter-intuitively—is used during conflict analysis
to maintain the invariant that the constraint being learned is conflicting with
respect to the current partial assignment. In contrast to the weakening rule in
resolution, the rule (5b) is crucial for pseudo-Boolean solvers, but since this rule
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can be implemented using (4a) and a cancelling linear combination we do not
need to include it in our formal proof system definitions.

In order to try to understand the reasoning power of pseudo-Boolean solvers
such as cdcl-cuttingplanes and Sat4j , in this paper we study the following four
subsystems of cutting planes, where for brevity we will write just cancellation
instead of cancelling linear combination:

General CP: Rules (4a), (4b), and (4c).
CP with saturation: Rules (4a), (4b), and (5a).
CP with saturation and cancellation: Rules (4a) and (5a) plus the can-
celling version of (4b); essentially corresponding to Sat4j .
CP with division and cancellation: Rules (4a) and (4c) plus the cancelling
version of (4b); strong enough to capture cdcl-cuttingplanes.

General cutting planes is refutationally complete in that it can disprove any
inconsistent set of linear inequalities [28]: One can show that there is no {0, 1}-
valued solution by using the cutting planes rules (4a)–(4c) to derive the contra-
diction 0 ≥ A for some A > 0, which is the pseudo-Boolean equivalent of the
empty clause, from the given linear inequalities. The length of such a cutting
planes refutation is the total number of inequalities in it, and the size also sums
the sizes of all coefficients (i.e., the bit size of representing them). We can also
define a line space measure analogous to the clause space measure counting the
number of inequalities in memory during a proof.

It is not hard to show—as we will argue shortly—that the three restricted
versions of CP defined above are also refutationally complete. However, while
general cutting planes is also implicationally complete [10], meaning that it can
derive any inequality that is implied by a set of linear equations, the subsystems
we consider are not even weakly implicationally complete.

Let us pause to explain what we mean by this terminology. For disjunctive
clauses C and D it is not hard to see that the only way C can imply D is if C ⊆ D.
In a pseudo-Boolean context, however, there are infinitely many ways to express
a linear threshold function over the Boolean hypercube as a linear inequality
(for instance, by multiplying the inequality by an arbitrary positive integer). We
say, therefore, that a PB proof system is weakly implicationally complete if when
some set of inequalities implies

∑
(i,σ) aσ

i xσ
i ≥ A it holds that the proof system

can derive some potentially syntactically different inequality
∑

(i,σ) bσ
i xσ

i ≥ B

implying
∑

(i,σ) aσ
i xσ

i ≥ A, and that it is (strongly) implicationally complete if
it can derive a constraint on the exact syntactic form

∑
(i,σ) aσ

i xσ
i ≥ A.

Returning to our previous discussion, given the constraint
∑k

i=1 xi ≥ d writ-
ten as a set of disjunctive clauses

{∑
i∈S xi ≥ 1

∣
∣S ⊆ [k], |S| = k − d + 1

}
(in

pseudo-Boolean notation), it is not hard to see that there is no way CP with
cancellation can derive any inequality implying the former encoding from the
constraints in the latter encoding [31].5 A slightly less obvious fact, which we
5 This is so since the only possibility to apply cancelling linear combinations is to use

literal axioms (4a) yielding (trivial) constraints on the form
∑

i∈S xi ≥ 0 for |S| ≥ 0,
and the set of such constraints is invariant under both division and saturation.
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Resolution
(on CNF)

CP saturation
cancellation

CP division
cancellation

CP saturation
general

CP division
general

†
†

(a) Over pseudo-Boolean inputs

Resolution

CP saturation
cancellation

CP division
cancellation

CP saturation
general

CP division
general

†

†

(b) Over CNF inputs

Fig. 1. Relations between proof systems. A B: A polynomially simulates B; A B:
B cannot simulate A (there is an exponential separation); A B: candidate for a
separation, †: known only for coefficients of polynomial magnitude.

shall prove in Sect. 3, is that even with general addition and saturation it is not
possible to recover a cardinality constraint from its CNF encoding.

We want to emphasize again that we make no claims of originality when it
comes to defining the derivation rules—they arise naturally in the context of
pseudo-Boolean solving, and indeed all of them are described in [47]. However,
we are not aware of any previous work defining and systematically studying the
subsystems of CP described above from a proof complexity point of view, i.e.,
proving upper and lower bounds on proof resources. This is the purpose of the
current paper, and we study the strength of these proof systems both for CNF
inputs and general (linear) pseudo-Boolean inputs.

As a final remark for completeness, we want to point out that one further
important rule, which is used, e.g., in [9], is rounding to cardinality constraints
We leave as future work a study of formal proof systems using this rule.

3 Relations Between Subsystems of Cutting Planes

We now proceed to examine how having saturation instead of division and/or
requiring linear combinations to be cancelling affects the reasoning power of
cutting planes. The conclusions of this section are pictorially summarized in
Fig. 1.

For starters, it is an easy observation that all the subsystems of cutting planes
that we consider can simulate resolution when the input is in CNF, and we show
that this is still the case when we start with a pseudo-Boolean input for cutting
planes and the straightforward encoding into CNF of that input for resolution.
This is immediate if we have the division rule, but in fact it is not hard to prove
that the simulation also works with saturation.
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Let us make these claims formal. We say that a set of clauses Î represents a
pseudo-Boolean constraint I if both expressions are over the same variables6 and
encode the same Boolean function, and a CNF formula F̂ is said to represent a
set of inequalities F if F̂ =

⋃
I∈F Î (where it is important to note that each CNF

subformula Î represents one linear constraint I). Then the next lemma says that
even if each linear constraint I ∈ F is rewritten to a semantically equivalent
but obfuscated constraint I ′ in some awkward way, but encoded into a CNF
representation F̂ in some nice way, it is still the case that even the weakest
version of CP applied to F ′ =

⋃
I ′ can efficiently simulate resolution on F̂ .

Lemma 1. Let F be a set of pseudo-Boolean constraints over n variables and
let F̂ be any CNF representation of F as described above. Then if there is a
resolution refutation π̂ of F̂ in length L and clause space s, there is also a CP
refutation π of F in length O(nL) and line space s+O(1) using only cancellation
and saturation. If π̂ is tree-like, then π is also tree-like.

It follows from Lemma 1 that CP with saturation is refutationally complete.

Corollary 2. Any unsatisfiable set of pseudo-Boolean constraints over n vari-
ables has a tree-like CP refutation in length O(n2n) and line space O(n) using
cancellation and saturation.

In the other direction, cutting planes with cancellation is equivalent to resolu-
tion when restricted to CNF inputs, and this is so regardless of whether division
or saturation is used. The reason for this is that cancelling linear combinations of
disjunctive clauses can only produce inequalities with degree of falsity 1, which
are equivalent to clauses. This is essentially just an observation from [31] rewrit-
ten in the language of proof complexity, but let us state it here for the record.

Lemma 3. If cutting planes with cancellation and either division or saturation
can refute a CNF formula F in length L and line space s, then there is a reso-
lution refutation of F in length L and clause space s.

We can use this observation to show that systems allowing general linear
combinations can be strictly stronger than systems with cancellation. To see
this, consider subset cardinality formulas [39,50,53] defined in terms of 0/1 n×n
matrices A = (ai,j), which have variables xi,j for all ai,j = 1 and constraints
claiming that in each row there is a majority of positive variables but in each
column there is a majority of negative variables, i.e.,

∑

j∈Ri

xi,j ≥ 
|Ri|/2� i ∈ [n] (6a)
∑

i∈Cj

xi,j ≤ |Ci|/2� j ∈ [n] (6b)

where Ri = {j | ai,j = 1} and Cj = {i | ai,j = 1}. In the case when all rows
and columns have 2k variables, except for one row and column that have 2k + 1
6 We do not allow encodings with extension variables, since then formulas are no longer

semantically equivalent and it becomes very hard to make meaningful comparisons.
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variables, these formulas are unsatisfiable and are easily refutable in general CP,
but if the matrix is expanding in a certain sense, then resolution proofs require
exponential length [39]. This yields the following corollary of Lemma 3.

Corollary 4. There are formulas on n variables that can be refuted in
length O(n) in general CP but require length exp(Ω(n)) in CP with cancella-
tion.

When it comes to comparing division versus saturation, it was observed in [9]
that saturation can be simulated by repeated division. Working out the details,
we obtain the following proposition.

Proposition 5. If a set of pseudo-Boolean constraints has a CP refutation with
saturation in length L and coefficients bounded by A, then there is a CP refuta-
tion with division in length AL.

We remark that a direct simulation may lead to an exponential blow-up if
the proof uses coefficients of exponential magnitude.

Our main contribution in this section is to show that when the input is in
CNF, then cutting planes proofs with saturation and unrestricted addition can
in fact be efficiently simulated by resolution assuming that all CP coefficients
are of polynomial magnitude. Observe that this last condition also implies that
the the degree of falsity has polynomial magnitude, which is the slightly more
precise assumption used in the next theorem.

Theorem 6. If a CNF formula F has a CP refutation π with saturation in
length L and every constraint in π has degree of falsity at most A, then there is
a resolution refutation of F in length O(AL).

We can then use subset cardinality formulas again to separate CP with divi-
sion from CP with saturation. The formal claim follows below, where the con-
stant hidden in the asymptotic notation depends on the size of the coefficients.

Corollary 7. There are formulas on n variables that can be refuted in length
O(n) in general CP but require length exp(Ω(n)) in CP with saturation if all
coefficients in the proofs have polynomial magnitude.

The idea behind the proof of Theorem 6 is to maintain for every inequality
with degree of falsity A a set of A clauses that implies the inequality. We simulate
linear combination steps by resolving the sets of clauses corresponding to the
two inequalities over the variables that cancel, and we do not do anything for
saturation steps.

Note that this approach does not work if the input is not in CNF. For
instance, if we start with the pseudo-Boolean constraint x + y + z ≥ 2 with
degree of falsity 2, which is equivalent to the clauses (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z),
then it is not possible to pick any 2 out of these 3 clauses that would imply the
inequality.

We remark that we do not know of any separation between CP with satura-
tion and division except those exhibited by CNF formulas. These separations are
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somewhat artificial in that they crucially use that the implicationally incomplete
subsystems of CP cannot recover the the cardinality constraints “hidden” in the
CNF encodings. In Sect. 4 we propose more natural candidates for separations
between CP with division and cancellation and CP with saturation, where the
difficulty would not be due to an “obfuscated” CNF encoding.

We conclude this section by the observation that any version of CP considered
in this paper can easily refute any set of linear constraints that define an empty
polytope over the reals, i.e., for which there is no real-valued solution. For general
addition this is an immediate consequence of Farkas’ lemma, and we can make the
additions cancelling using the Fourier–Motzkin variable elimination procedure.

Lemma 8. If a set of linear inequalities on n variables defines an empty polytope
over the reals, then there is a tree-like CP refutation using only addition in length
O(n) and space O(1), and a CP refutation using only cancelling addition in
length O(n2) and space O(n).

As a consequence of Corollary 7 and Lemma 8 we obtain the following theo-
rem.

Theorem 9. CP with saturation is not (even weakly) implicationally complete.

4 Tricky Formulas Based on Easy NP Instances

In this section we present candidates for achieving separations between the sub-
systems of cutting planes studied in this paper, and where these separations
would not be a consequence of presenting pseudo-Boolean constraints as “obfus-
cated” CNF formulas but would highlight fundamental differences in pseudo-
Boolean reasoning power between the proof systems.

All of our candidate formulas have short proofs for CP with division (and
all refutations have constant-size coefficients unless stated otherwise), but for
appropriately chosen parameter values it seems plausible that some of them are
not possible to refute efficiently using the saturation rule. We also show that it is
possible to chose other parameter values for these formulas to generate instances
that are very easy in theory even for the weakest subsystem of CP that we con-
sider. This is in striking contrast to what one can observe empirically when
running pseudo-Boolean solvers on these instances, as reported in [22]—in prac-
tice, many of these theoretically easy instances appear to be very challenging.

Even Colouring. The even colouring formula EC (G) [37] over a connected
graph G = (V,E) with all vertices of even degree consists of the constraints

∑

e∈E(v)
xe = deg(v)/2 v ∈ V (7)

(where E(v) denotes the set of edges incident to v), claiming that each vertex
has an equal number of incident 0- and 1-edges. The formula is unsatisfiable if
and only if |E| is odd, which we assume is always the case it what follows.
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Even colouring formulas have short CP proofs: just add all positive and
negative inequalities separately, divide by 2 and round up, and add the results.
We can make the additions cancelling by processing inequalities in breadth-first
order, alternating between positive and negative inequalities.

Proposition 10. Tree-like CP with division and cancellation can refute EC (G)
in length O(n) and space O(1).

If the graph is t-almost bipartite, by which we mean that removing t edges
yields a bipartite graph, then we can make the proof work with saturation instead
of division at the price of an exponential blow-up in t (which becomes a constant
factor if t is constant).

Proposition 11. If G is a t-almost bipartite graph then the formula EC (G)
can be refuted in length O(2t + n) and space O(t) by CP with saturation and
cancellation, and the refutation can be made tree-like in length O(2tn).

An example of such graphs are rectangular m × n grids (where edges wrap
around the borders to form a torus) and where we subdivide one edge into
a degree-2 vertex to get an odd number of edges. If both m and n are even,
then the graph is bipartite except for 1 edge, so we have cutting planes proofs
with saturation and cancellation of length O(mn), and if m is even and n is
odd, then the graph is bipartite except for m + 1 edges, so we have proofs of
length O(2m +mn). In all cases even colouring formulas on grids have resolution
refutations of length 2O(m)n and space 2O(m) which we can simulate.

We conjecture that these formulas are exponentially hard for CP with satu-
ration when the graph is a square grid of odd side length, i.e., m = n = 2� + 1
(so that the graph is far from bipartite), or is a 2d-regular random graph.

Vertex Cover. Recall that a vertex cover of a graph G = (V,E) is a subset of
vertices V ′ ⊆ V such that every edge (u, v) ∈ E is incident to some vertex in V ′.
A graph G has a vertex cover of size at most S ∈ N

+ if and only if the formula
VC (G,S) given by the constraints

xu + xv ≥ 1 (u, v) ∈ E; (8a)
∑

v∈V
xv ≤ S (8b)

has a {0, 1}-valued solution.
We consider vertex cover instances over grid graphs Rm,n Since a grid has

degree 4 any cover must have size at least mn/2. This bound is not achievable
when one dimension, say n, is odd, in which case the minimal cover size is
m
n/2�. We can choose the parameter S in (8b) in the interval

[
mn/2,m
n/2�−

1
]

to obtain unsatisfiable formulas with different levels of overconstrainedness.
Vertex cover formulas have short cutting planes proofs: add the horizontal

edge inequalities (8a) for every row, divide by 2 (which rounds up the degree of
falsity), and add all of these inequalities to find a contradiction with the upper
bound (8b), and these additions can be reordered to be made cancelling.
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Proposition 12. CP with division and cancellation can refute VC (Rm,n, S)
with n odd and S < m
n/2� in length O(mn) and space O(1).

A similar approach works with saturation instead of division, but since we
cannot round up every row we need a stronger cover size constraint (8b).

Proposition 13. Tree-like CP with saturation and cancellation is able to refute
VC (Rm,n, S) with n odd and S ≤ mn/2� in length O(mn) and space O(1).

Alternatively, using what we find to be a rather nifty approach it turns out
to be possible to derive all the 2m clauses over the m variables corresponding to
vertices in the first column, after which one can simulate a brute-force resolution
refutation of this formula.

Proposition 14. Tree-like CP with saturation and cancellation is able to refute
VC (Rm,n, S) with n odd and S < m
n/2� in length O(2mmn) and space O(m).

We conjecture that the exponential gap between Propositions 12 and 14 for
m = Θ(n) and S = m
n/2� − 1 is real and is due to the weakness of saturation.

Dominating Set. A dominating set of a graph G = (V,E) is a subset of
vertices V ′ ⊆ V such that every vertex in V \ V ′ has a neighbour in V ′. G has a
dominating set of size S ∈ N

+ if and only if there is a {0, 1}-valued solution to
the set of constraints DS (G,S) defined as

xv +
∑

u∈N(v)
xu ≥ 1 v ∈ V ; (9a)

∑

v∈V
xv ≤ S (9b)

We consider dominating set formulas over hexagonal grid graphs Hm,n, which
can be visualized as brick walls. As it turns out these formulas have short proofs
even in CP with saturation and cancellation, but the proofs are not obvious
and the formulas have a surprisingly rich structure and present particularly
challenging benchmarks in practice.

Since a hexagonal grid has degree 3, the minimum size of a dominating set is

|V |/4� = 
mn/4�, so we set S = mn/4�. Whether these formulas are satisfiable
depends on the largest power of 2 that divides m and n—also known as the 2-
adic valuation or v2. Formulas where v2(mn) = 1 are unsatisfiable and can be
refuted by adding all inequalities, and these additions can be made cancelling
with some care.

Proposition 15. Tree-like CP with cancellation can refute DS (Hm,n, mn/4�)
with v2(mn) = 1 in length O(mn) and space O(1).

Formulas where v2(mn) = 2 are unsatisfiable and the proof follows by divid-
ing the resulting inequalities in the previous proof by 2 and rounding up.

Proposition 16. Tree-like CP with division and cancellation is able to refute
DS (Hm,n,mn/4) with v2(mn) = 2 in length O(mn) and space O(1).
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When v2(n) ≥ 2 the dominating set must in fact define a tiling of the hexag-
onal grid. If furthermore v2(m) ≥ 1 then formulas are satisfiable. Among the
remaining formulas some are satisfiable and some are not, and the next lemma
sums up our knowledge in this matter.

Lemma 17. Dominating set formulas over hexagonal grids are unsatisfiable if

– v2(m) ≥ 2 and v2(n) = 1, or
– v2(m) = 0 and v2(n) ≥ 3 and v2(n) ≤ v2(4 m/4�), or
– v2(n) = 0 and v2(m) ≥ 3 and v2(m) ≤ v2(4 n/4�).

We conjecture that Lemma 17 in fact provides an exact characterization.
To find CP refutations of the unsatisfiable dominating set instances, we can

derive tiling constraints xv +
∑

u∈N(v) = 1 for all vertices using only cancelling
addition. CP with saturation and cancellation can then easily refute these for-
mulas with tiling constraints in polynomial length.

Proposition 18. If DS (Hm,n,mn/4) is as in Lemma 17, then it can be refuted
in length O((nm)2) in CP with saturation and cancellation.

5 Concluding Remarks

In this paper, we investigate subsystems of cutting planes motivated by pseudo-
Boolean proof search algorithms. Using tools from proof complexity, we differ-
entiate between the reasoning power of different methods and show that current
state-of-the-art pseudo-Boolean solvers are inherently unable to exploit the full
strength of cutting planes even in theory, in stark contrast to what is the case
for CDCL solvers with respect to resolution.

Some of these limitations are in some sense folklore, in that it is known that
pseudo-Boolean solvers perform badly on input in CNF, but we show that this
is true for all natural restrictions suggested by current solvers that fall short of
full-blown cutting planes reasoning. Also, we propose a number of new crafted
benchmarks as a way of going beyond CNF-based lower bounds to study the
inherent limitations of solvers even when given natural pseudo-Boolean encod-
ings. We show how the parameters for these benchmarks can be varied to yield
versions that appear to be hard or easy for different subsystems of cutting planes.

Although we cannot establish any formal separations between the subsystems
of cutting planes studied in this paper—this would seem to require the develop-
ment of entirely new proof complexity techniques—it is our hope that further
investigations of these benchmarks could yield more insights into the power and
limitations of state-of-the-art pseudo-Boolean solvers.
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Abstract. We characterize several complexity measures for the resolu-
tion of Tseitin formulas in terms of a two person cop-robber game. Our
game is a slight variation of the one Seymour and Thomas used in order
to characterize the tree-width parameter. For any undirected graph, by
counting the number of cops needed in our game in order to catch a rob-
ber in it, we are able to exactly characterize the width, variable space and
depth measures for the resolution of the Tseitin formula corresponding
to that graph. We also give an exact game characterization of resolution
variable space for any formula.

We show that our game can be played in a monotone way. This implies
that the corresponding resolution measures on Tseitin formulas corre-
spond exactly to those under the restriction of regular resolution.

Using our characterizations we improve the existing complexity
bounds for Tseitin formulas showing that resolution width, depth and
variable space coincide up to a logarithmic factor, and that variable
space is bounded by the clause space times a logarithmic factor.

1 Introduction

Tseitin propositional formulas for a graph G = (V,E) encode the combinatorial
statement that the sum of the degrees of the vertices of G is even. Such formulas
provide a great tool for transforming in a uniform way a graph into a proposi-
tional formula that inherits some of the properties of the graph. Tseitin formulas
have been extensively used to provide hard examples for resolution or as bench-
marks for testing SAT-solvers. To name just a few examples, they were used for
proving exponential lower bounds on the minimal size required in tree-like and
regular resolution [17], in general resolution [18] and for proving lower bounds on
resolution proof measures as the width [7] and the space [9], or more recently for
proving time-space trade-offs in resolution [5,6]. Due to the importance of these
formulas, it is of great interest to find ways to understand how different param-
eters on the underlying graphs are translated as some complexity measures of
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the corresponding Tseitin formula. This was the key of the mentioned resolution
results. For example the expansion of the graph translated into resolution lower
bounds for the corresponding formula in all mentioned lower bounds, while the
carving-width or the cut-width of the graph were used to provide upper bounds
for the resolution width and size in [2,5].

In this paper we obtain an exact characterization of the complexity measures
of resolution width, variable space and depth for any Tseitin formula in terms of
a cops-robber game played on its underlying graph. There exists a vast literature
on such graph searching games (see eg. [10]). Probably the best known game of
this kind is the one used by Seymour and Thomas [15] in order to characterize
exactly the graph tree-width parameter. In the original game, a team of cops
has to catch a robber that moves arbitrarily fast in a graph. Cops and robber
are placed on vertices, and have perfect information of the positions of the other
player. The robber can move any time from one vertex to any other reachable one
but cannot go through vertices occupied by a cop. Cops are placed or removed
from vertices and do not move. The robber is caught when a cop is placed on
the vertex where she is standing. The value of the game for a graph G is the
minimum number of cops needed to catch the robber on G. In [15] Seymour
and Thomas also showed that this game is monotone in the sense that there is
always an optimal strategy for the cops in which they never occupy the same
vertex again after a cop has been removed from it. In a previous version of the
game [13] the robber is invisible and the cops have to search the whole graph to
be sure to catch her. The minimum number of cops needed to catch the robber
in this game on G, characterizes exactly the path-width of G [8]. The invisible
cop game is also monotone [13].

Our game is just a slight variation from the original game from [15]. The only
differences are that the cops are placed on the graph edges instead of on vertices,
and that the robber is caught when she is completely surrounded by cops. We
show that the minimum number of cops needed to catch a robber on a graph
G in this game, exactly characterizes the resolution width of the corresponding
Tseitin formula. We also show that the number of times some cop is placed on an
edge of G exactly coincides with the resolution depth of the Tseitin formula on
G. Also, if we consider the version of the game with an invisible robber instead,
we exactly obtain the resolution variable space of the Tseitin formula on G.

We also show that the ideas behind the characterization of variable space in
terms of a game with an invisible robber, can in fact be extended to define a
new combinatorial game to exactly characterize the resolution variable space of
any formula (not necessarily a Tseitin formula). Our game is a non-interactive
version of the Atserias and Dalmau game for characterizing resolution width [4].

An interesting consequence of the cops-robber game characterizations is that
the property of the games being monotone can be used to show that for the
corresponding complexity measures, the resolution proof can be regular without
changing the bounds. As mentioned, the vertex-cops games are known to be
monotone. This did not need to be true for our game. In fact, the robber-marshals
game [11], another version of the game in which the cops are placed on the
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(hyper)edges, is know to be non-monotone [1]. We are able to show that the
edge-cops game (for both cases of visible and invisible robber) is also monotone.
This is done by reducing our edge game to the Seymour and Thomas vertex
game. This fact immediately implies that in the context of Tseitin formulas, the
width and variable space in regular resolution proofs is not worse that in general
resolution1. A long standing open question from Urquhart [18] asks whether
regular resolution can simulate general resolution on Tseitin formulas (in size).
Our results show that this is true for the measures of width and variable space.

Finally we use the game characterization to improve the known relationships
between different complexity measures on Tseitin formulas. In particular we show
that for any graph G with n vertices, the resolution depth of the corresponding
formula is at most its resolution width times log n. From this follows that all the
three measures width, depth and variable space are within a logarithmic factor in
Tseitin formulas. Our results provide a family of a uniform class of propositional
formulas where clause space is polynomially bounded in the variable space. No
such result was known before as recently pointed to by Razborov in [14].

The paper is organized as follows. In Sect. 2, we have all the necessary pre-
liminaries on resolution and its complexity measures. In Sect. 3 we present the
characterization of variable space in resolution. In Sect. 4 we introduce our vari-
ants of the Cops-Robber games on graphs and we show the characterizations of
width, variable space and depth of the Tseitin formula on G in terms of Cops-
Robber games played on G. In Sect. 5 we focus on the monotone version of the
games and we prove that all our characterizations can be made monotone. In
the last Sect. 6 we use all our previous results to prove the new relationships
between width, depth, variable space and clause space for Tseitin formulas. We
finish with some conclusions and open questions.

2 Preliminaries

Let [n] = {1, 2, ..., n}. A literal is either a Boolean variable x or its negation x̄.
A clause is a disjunction (possibly empty) of literals. The empty clause will be
denoted by �. The set of variables occurring in a clause C, will be denoted by
Vars(C). The width of a clause C is defined as W(C) := |Vars(C)|.

A CNF Fn over n variables x1, . . . , xn is a conjunction of clauses defined
over x1, . . . , xn. We often consider a CNF as a set of clauses and to simplify the
notation in this section we omit the index n expressing the dependencies of Fn

from the n variables. The width of a CNF F is W(F ) := maxc∈F W(C). A CNF
is a k-CNF if all clauses in it have width at most k.

The resolution proof system is a refutational propositional system for CNF
formulas handling with clauses, and consisting of the only resolution rule:

C ∨ x D ∨ x̄

C ∨ D

1 The resolution depth is well know to coincide with the regular resolution depth for
any formula.
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A proof π of a clause C from a CNF F (denoted by F �π C) is a sequence of
clauses π := C1, . . . , Cm, m ≥ 1 such that Cm = C and each Ci in π is either
a clause of F or obtained by the resolution rule applied to two previous clauses
(called premises) in the sequence. When C is the empty clause �, π is said to
be a refutation of F . Resolution is a sound a complete system for unsatisfiable
formulas in CNF.

Let π := C1, . . . , Cm be a resolution proof from a CNF F . The width of π is
defined as W(π) := maxi∈[m] W(Ci). The width needed to refute an unsatisfiable
CNF F in resolution is W(F �) := minF�π� W(π). The size of π is defined as
S(π) := m. The size needed to refute an unsatisfiable CNF F in resolution is
S(F �) := minF�π� S(π).

Resolution proofs F �π C, can be represented also in two other notations:
as directed acyclic graphs (DAG) or as sequences of set of clauses M, called
(memory) configurations. As a DAG, π is represented as follows: source nodes are
labeled by clauses of F , the (unique) target node is labeled by C and each non-
source node, labeled by a clause D, has two incoming edges from the (unique)
nodes labeled by the premises of D in π. Using this notation the size of a proof
π, is the number of nodes in the DAG representing π. The DAG notation allow
to define other proof measures for resolution proofs. The depth of a proof π,
D(π) is the length of the longest path in the DAG representing π. The depth for
refuting an unsatisfiable CNF F is D(F �) := minF�π� D(π).

The representation of resolution proofs as configurations was introduced in
[3,9] in order to define space complexity measures for resolution proofs. A proof
π, F �π C, is a sequence M1, . . . ,Ms such that: M1 = ∅, C ∈ Ms and for each
t ∈ [s − 1], Mt+1 is obtained from Mt, by one of the following rules:

[Axiom Download]: Mt+1 = Mt ∪ {D}, for D a clause in F ;
[Erasure]: Mt+1 ⊂ Mt ;
[Inference]: Mt+1 = Mt ∪ {D}, if A,B ∈ Mt and A B

D is a valid resolution
rule.

π is a refutation if C is �.
The clause space of a configuration M is Cs(M) := |M|. The clause space

of a refutation π := M1, . . . ,Ms is Cs(π) := maxi∈[s] Cs(Mi). Finally the clause
space to refute an unsatisfiable F is Cs(F �) := minF�π� Cs(π). Analogously, we
define the variable space and the total space of a configuration M as Vs(M) :=
|⋃C∈M

Vars(C)| and Ts(M) :=
∑

C∈M
W(C). Variable space and total space

needed to refute an unsatisfiable F , are respectively Vs(F �) := minF�π� Vs(π)
and Ts(F �) := minF�π� Ts(π).

An assignment for a set of variables X, specifies a truth-value ({0, 1} value)
for all variables in X. Variables, literals, clauses and CNFs are simplified under
partial assignments (i.e. assignment to a subset of their defining variables) in the
standard way.
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2.1 Tseitin Formulas

Let G = (V,E) be a connected undirected graph with n vertices, and let ϕ :
V → {0, 1} be an odd marking of the vertices of G, i.e. satisfying the property

∑

x∈V

ϕ(x) = 1(mod 2).

For such a graph we can define an unsatisfiable formula in conjunctive normal
form T(G,ϕ) in the following way: The formula has E as set of variables, and
is a conjunction of the CNF translation of the formulas Fx for x ∈ V , where
Fx expresses that e1(x) ⊕ · · · ⊕ ed(x) = ϕ(x) and e1(x) . . . ed(x) are the edges
(variables) incident with vertex x.

T(G,ϕ) encodes the combinatorial principle that for all graphs the sum of the
degrees of the vertices is even. T(G,ϕ) is unsatisfiable if and only if the marking
ϕ is odd. For an undirected graph G = (V,E), let Δ(G) denote its maximal
degree. It is easy to see that W(T(G,ϕ)) = Δ(G).

The following fact was proved several times (see for instance [9,18]).

Fact 1. For an odd marking ϕ, for every x ∈ V there exists an assignment αϕ

such that αϕ(Fx) = 0, and αϕ(Fy) = 1 for all y �= x. Moreover if ϕ is an even
marking, then T(G,ϕ) is satisfiable.

Consider a partial truth assignment α of some of the variables of T(G,ϕ).
We refer to the following process as applying α to (G,ϕ): Setting a variable
e = (x, y) in α to 0 corresponds to deleting the edge e in the graph G, and
setting it to 1 corresponds to deleting the edge from the graph and toggling the
values of ϕ(x) and ϕ(y) in G. Observe that the formula T(G′, ϕ′) resulting after
applying α to (G,m) is still unsatisfiable.

3 A Game Characterization of Resolution Variable Space

We start by giving a new characterization of resolution variable space. This
result holds for any CNF formula and is therefore quite independent of the rest
of the paper. We include it at the beginning since it will be used to show that
the invisible robber game characterizes variable space in Tseitin formulas.

The game is a non-interactive version of the Spoiler-Duplicator width game
from Atserias and Dalmau [4]:

Given an unsatisfiable formula F in CNF with variable set V , Player 1 con-
structs step by step a finite list L = L0, L1, . . . , Lk of sets of variables, Li ⊆ V.
Starting by the empty set, L0 = ∅, in each step he can either add variables to
the previous set, or delete variables from it. The cost of the game is the size of
the largest set in the list.

Once the Player 1 finishes his list, Player 2 has to construct dynamically a
partial assignment for the set of variables in the list. In each step i, the domain
of the assignment is the set of variables Li in the list at this step. She starts
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giving some value to the first set of variables in the list, L1, in a way that no
clause of F is falsified. If variables are added to the set at any step, she has to
extend the previous partial assignment to the new domain in any way, but again,
no initial clause can be falsified. If a variable is kept from one set to the next
one in the list, its value in the assignment remains. If variables are removed from
the set at any step, the new partial assignment is the restriction of the previous
one to the new domain.

If Player 2 manages to come to the end of the list without having falsified
any clause of F at any point, she wins. Otherwise Player 1 wins.

Define nisd(F ) to be the minimum cost of a winning game for Player 1 on F .
We prove that for any unsatisfiable formula F the variable space of F coincides
exactly with nisd(F ).

Theorem 1. Let F be an unsatisfiable formula, then nisd(F ) ≤ Vs(F �).

Proof. (sketch) Consider a resolution proof Π of F as a list of configurations.
The strategy of Player 1 consists in constructing a list L of sets of variables, that
in each step i contains the variables present in the i-th configuration. The cost
for this list is exactly Vs(Π).

We claim that any correct list of partial assignments of Player 2 that does not
falsify any clause in F , has to satisfy simultaneously all the clauses at the config-
urations in each step. The argument is completed by observing that there must
be a step in Π in which the clauses in the configuration are not simultaneously
satisfiable.

Theorem 2. Let F be an unsatisfiable formula, then Vs(F �) ≤ nisd(F ).

Proof. (sketch) Let L be the list of sets of variables constructed by Player 1,
containing at each step i a set Li of at most nisd(F ) variables. We consider
for each step i a set of clauses Ci containing only the variables in Li. Initially
L1 is some set of variables and C1 is the set of all clauses that can be derived
by resolution (in any number of steps) from the clauses in F containing only
variables in L1. At any step i, if Li is constructed by adding some new variables
to Li−1, Ci is defined to be the set of clauses that can be derived from the
clauses in Ci−1 and the clauses in F containing only variables in Li. If Li is
constructed by subtracting some new variables from Li−1, Ci is defined to be the
set of clauses in Ci−1 that only have variables in the set Li. By definition Ci can
be always be constructed from Ci−1 by using only resolution steps, deletion or
inclusion of clauses in F , and therefore this list of sets of clauses can be written
as a resolution proof. At every step in this proof at most nisd(F ) variables are
present.

We claim that if L is a winning strategy for Player 1, then at some point i,
Ci must contain the empty clause. This implies the result. To sketch a proof of
this claim let us define at each step i the set Ai of partial assignments for the
variables in Li that satisfy all the clauses in Ci, and the set Bi to be the set of
partial assignments for the variables in Li that do not falsify any initial clause
and can be constructed by Player 2 following the rules of the game. It can be
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seen by induction on i that at each step, Ai = Bi. Since at some point i, Player
2 does not have any correct assignment that does not falsify a clause in F , it
follows that Ai = Bi = ∅, which means that Ci in unsatisfiable and must contain
the empty clause by the definition of Ci and the completeness of resolution.

4 Cops and Robber Games

We consider a slight variation of the Cops and Robber game from Seymour and
Thomas [15] which they used to characterize exactly the tree-width of a graph.
We call our version the Edge (Cops and Robber) Game.

Initially a robber is placed on a vertex of a connected graph G. She can move
arbitrarily fast to any other vertex along the edges. The team of cops, directed
by one person, want to capture her, and can always see where she is. They are
placed on edges and do not move.

Definition 3. (Edge Cops-Robber Game) Player 1 takes the role of the cops. At
any stage he can place a cop on any unoccupied edge or remove a cop from and
edge. The robber (Player 2) can then move to any vertex that is reachable from
his actual position over a path without cops. Both teams have at any moment
perfect information of the position of the other team. Initially no cop is on the
graph. The game finishes when the robber is captured. This happens when the
vertex she occupies is completely surrounded by cops.

The value of the game is the maximum number of edge-cops present on the
edges at any point in the game. We define ec(G) as the minimum value in a
finishing Edge Game on G.

The only difference between our Edge Cops-Robber Game and the Cops-
Robber game from Seymour and Thomas in that here the cops are placed on the
edges, while in [15] they were placed on the vertices and that our game ends with
the robber surrounded while in the Seymour-Thomas game a cop must occupy
the same vertex as the robber.

4.1 The Cops-Robber Game Characterizes Width on Tseitin
Formulas

The edge-cops game played on a connected graph G characterizes exactly the
minimum width of a resolution refutation of T(G,ϕ) for any odd marking ϕ. In
order to show this, we use the Atserias-Dalmau game [4] introduced to charac-
terize resolution width. We prove that ec(G) = sd(T(G,ϕ)) where sd(T(G,ϕ))
denotes the value of the Atserias-Dalmau game played on T(G,ϕ). We use the
simplified explanation of the game from [16].

Spoiler and Duplicator play on a CNF formula F. Spoiler wants to falsify
a clause of the formula, while Duplicator tries to prevent this from happening.
During the game they construct a partial assignment α of the variables in F and
the game ends when α falsifies a clause from F. Initially α is empty. At each step,
Spoiler can select an unassigned variable x or forget (unassign) a variable from
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α. In the first case the Duplicator assigns a value to x, in the second case she
does not do anything. The value of a game is the maximum number of variables
that are assigned in α at some point during the game. sd(F ) is the minimum
value of a finishing game on F .

Atserias and Dalmau [4] proved that this measure characterizes the width of a
resolution refutation of any unsatisfiable F , W(F �) = max{W(F ), sd(F ) − 1}2.
Let us observe how the game goes when played on the formula T(G,ϕ). In a
finishing game on T(G,ϕ) Spoiler and Duplicator construct a partial assignment
α of the edges. Applying α to the variables of T(G,ϕ) a new graph G′ and
marking ϕ′ are produced. Consider a partial truth assignment α of some of
the variables. Assigning a variable e = {x, y} in α to 0 corresponds to deleting
the edge e in the graph, and setting it to 1 corresponds to deleting the edge
from the graph and toggling the values of ϕ(x) and ϕ(y). The formula T(G′, ϕ′)
resulting after applying α to (G,ϕ) is still unsatisfiable. We will call a connected
component of G′ for which the sum of the markings of its vertices is odd, an odd
component. Initially G is an odd component under ϕ. By assigning an edge, an
odd component can be divided in at most two smaller components, an odd one
and an even one. The only way for Spoiler to end the game is to construct an
assignment α that assigns values to all the edges of a vertex, contradicting its
marking under α. This falsifies one of the clauses corresponding to the vertex.

Theorem 4. For any connected graph G and any odd marking ϕ, ec(G) =
sd(T(G,ϕ)).

Proof. In order to compare both games, the team of cops will be identified
with the Spoiler and the robber will be identified with the Duplicator. Since the
variables in T(G,ϕ) are the edges of G, the action of Spoiler selecting (forgetting)
a variable in the Atserias-Dalmau game will be identified with placing (removing)
a cop on that edge.

We show first that ec(G) ≤ sd(T(G,ϕ)). No matter what the strategy of
Duplicator is, Spoiler has a way to play in which he spends at most sd(T(G,ϕ))
points at the Spoiler-Duplicator game on T(G,ϕ). In order to obtain a value
smaller or equal than sd(T(G,ϕ)) in the Edge Game, the cops just have to imitate
Spoiler’s strategy on T(G,ϕ). At the same time, they compute a strategy for
Duplicator that simulates the position of the robber. This is done by considering
a Duplicator assigning values in such a way that there is always a unique odd
component which corresponds to the subgraph of G isolated by cops where the
robber is. At any step in the Edge Game, we the following invariant is kept:

The partial assignment produced in the Spoiler-Duplicator game on T(G,ϕ)
defines a unique odd component corresponding to the component of the robber.

If in a step of the Spoiler-Duplicator game the edge selected by Spoiler does
not cut the component where the robber is, Player 1 can simulate Duplicator’s
assignment for this variable in a way in which a unique odd component is kept

2 In the original paper [4] it is stated that W(F �) = sd(F ) − 1, by inspecting the
proof it can be seen that the formulation involving the width of F is the correct one.
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and continue with the next decision of Spoiler. At a step right after the compo-
nent of the robber is cut by the cops, Player 1 can compute an assignment of
Duplicator for the last occupied edge, which would create a labeling that identi-
fies the component where the robber as the unique odd component of the graph.
This is always possible. Then Player 1 just needs to continue the imitation of
Spoiler’s strategy for the assignment produced by Duplicator.

At the end of the game Spoiler falsifies an initial clause, and the vertex
corresponding to this clause is the unique odd component under the partial
assignment. Therefore the cops will be on the edges of a falsified clause, thus
catching the robber on the corresponding vertex.

The proof of ec(G) ≥ sd(T(G,ϕ)) is very similar. Now we consider that there
is a strategy for Player 1 in the Edge Game using at most ec(G) cops, and we
want to extract from it a strategy for the Spoiler. He just needs to select (remove)
variables is the same way as the cops are being placed (removed). This time, all
through the game we have the following invariant:

The component isolated by cops in which the robber is, is an odd component
in the Spoiler-Duplicator game.

When the variable (edge) selected does not cut the component where the
robber is, he does not need to do anything. When the last selected variable cuts
the component of the robber, by choosing a value for this variable Duplicator
decides which one of the two new components is the odd one. Spoiler figures
that the robber has gone to the new odd component and asks the cops what
to do next in this situation. When the robber is caught, this will be in an odd
component of size 1 which all its edges assigned. This partial assignment falsifies
the corresponding clause in T(G,ϕ).

Corollary 5. For any connected graph G and any odd marking ϕ,

W(T(G,ϕ) �) = max{Δ(G), ec(G) − 1}.

4.2 An Invisible Robber Characterizes Variable Space
on Tseitin Formulas

Consider now the cops game in which the robber is invisible. That means that
the cops strategy cannot depend on the robber and the cops have to explore the
whole graph to catch her. As in the visible version of the game, the robber is
caught if all the edges around the vertex in which she is, are occupied by cops.
For a graph G let iec(G) be the minimum number of edge-cops needed to catch
an invisible robber in G. Let T(G,ϕ) be the Tseitin formula corresponding to
G. We show that iec(G) corresponds exactly with Vs(T(G,ϕ)).

Theorem 6. Vs(T(G,ϕ)) = iec(G).

Proof. (sketch)

(i) Vs(T(G,ϕ) �) ≤ iec(G). We use the game characterization of variable space.
Consider the strategy of the cops. At each step the set of variables con-
structed by Spoiler corresponds to the set of edges (variables) where the
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cops are. Now consider any list of partial assignments that Player 2 might
construct. Any such assignment can be interpreted as deleting some edges
and moving the robber to an odd component in the graph. But the invisible
robber is caught at some point, no matter what she does, and this corre-
sponds to a falsified initial clause.

(ii) iec(G) ≤ Vs(T(G,ϕ) �). Now we have a strategy for Spoiler, and the cops
just need to be placed on the edges corresponding to the variables selected
by Player 1. If the robber could escape, by constructing a list of partial
assignments mimicking the robber moves (that is, each time the cops produce
a new cut in the component where the robber is, she sets the value of the
last assigned variable to make odd the new component where the robber has
moved to), Player 2 never falsifies a clause in T(G,ϕ).

4.3 A Game Characterization of Depth on Tseitin Formulas

We consider now a version of the game in which the cops have to remain on their
edges until the end of the game and cannot be reused.

Definition 7. For a graph G let iec(G) be the minimum number of edge-cops
needed in order to catch a visible robber on G, in the cops-robber game, with the
additional condition that the cops once placed, cannot be removed from the edges
until the end of the game.

Theorem 8. For any connected undirected graph G and any odd marking ϕ of
G, D(T(G,ϕ) �) = iec(G).

Proof. (sketch)

(i) D(T(G,ϕ) �) ≤ iec(G). Based on the strategy of the cops, we construct a
regular resolution proof tree of T(G,ϕ) in which the variables are resolved
in the order (from the empty clause) as the cops are being placed on the
edges. Starting at the node in the tree corresponding to the empty clause, in
each step when a cop is placed on edge e we construct two parent edges, one
labeled by e and the other one by e. A node in the tree is identified by the
partial assignment defined by the path going from the empty clause to this
node. Each time the cops produce a cut in G, such an assignment defines two
different connected components in G, one with odd marking and one with
even marking. We consider at this point the resolution of the component
with the odd marking, following the cop strategy for the case in which the
robber did go to this component.

(ii) iec(G) ≤ D(T(G,ϕ) �). Consider a resolution proof Π of T(G,ϕ). Starting
by the empty clause, the cops are placed on the edges corresponding to the
variables being resolved. At the same time a partial assignment is being
constructed (by the robber) that defines a path in the resolution that goes
through the clauses that are negated by the partial assignment. If removing
these edges where the cops are produces a cut in G, the cops continue from
a node in the resolution proof corresponding to an assignment for the last
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chosen variable that gives odd value to the component where the robber
has moved. At the end a clause in T(G,ϕ) is falsified, which corresponds to
the cops being placed in the edges around the robber. The number of cops
needed is at most the resolution depth.

5 Regular Resolution and Monotone Games

We show in this section that the fact that the games can be played in a monotone
way, implies that width and variable space in regular resolution are as good as
in general resolution in the context for Tseitin formulas.

We need some further notation. For a set S and k > 0, we denote the set of
subsets of S of size at most k by Sk.

5.1 The Visible Robber

We recall the game of [15]. Let G = (V,E) be a simple graph and let Y ⊆ V .
A Y -flap is the vertex set of a connected component in G \ Y . A position in
this game is a pair (Y,Q) where Y ⊆ V and Q is an Y -flap. The game starts
in position (∅, V ). Assume that position (Yi, Qi) is reached. The cops-player
chooses Yi+1 such that either Yi ⊆ Yi+1 or Yi+1 ⊆ Yi. Then the robber-player
chooses a Yi+1-flap Qi+1 such that Qi ⊆ Qi+1 or Qi+1 ⊆ Qi. The cops-player
wins when Qi ⊆ Yi+1. We say that a sequence of positions (Y0, Q0), . . . , (Yt, Qt)
is monotone if for all 0 ≤ i ≤ j ≤ k ≤ t, Yi ∩ Yk ⊆ Yj . The main result of
Seymour and Thomas is that if k cops can win the game, they can also win
monotonically. We will use this result to prove an analogous statement about
our games where we put the cops on edges.

We extend the framework of Seymour and Thomas to talk about edges. Now
we have X ⊆ E. An X-flap is the edge set of a connected component in G\X. A
position is a pair (X,R) with X ⊆ E and R an X-flap. Assume that a position
(Xi, Ri) is reached. The cops-player chooses Xi+1 such that either Xi ⊆ Xi+1 or
Xi+1 ⊆ Xi. Then the robber-player chooses an Xi+1-flap Ri+1 such that either
Ri ⊆ Ri+1 or Ri+1 ⊆ Ri. The cops win when Ri ⊆ Xi+1. Note that under this
definition if some X isolates more than one vertex, then we will have multiple
empty sets as X-flaps. However if the robber moves to such an X-flap she will
immediately lose as in the next round the cops remain where they are and ∅ ⊆ X.

Similarly a sequence of positions (X0, R0), . . . , (Xt, Rt) is monotone if for all
0 ≤ i ≤ j ≤ k ≤ t, Xi ∩ Xk ⊆ Xj .

Given a graph G = (V,E) the line graph of G is L(G) = (V ′, E′) defined as
follows: for every edge e ∈ E we put a vertex we ∈ V ′. We then set

E′ = {{we1 , we2} : e1, e2 ∈ E, e1 ∩ e2 �= ∅}.
For X ⊆ E define L(X) := {we : e ∈ X} and for Y ⊆ V ′ define L−1(Y ) = {e :
we ∈ Y }.

Proposition 9. Let G = (V,E) be a graph and let X ⊆ E. It follows that R ⊆ E
is an X-flap if and only L(R) is an L(X)-flap.
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Proof. It is enough to show that any e1, e2 ∈ E \ X are reachable from each
other in G \ X if and only if we1 and we2 are reachable from each other in
L(G) \ L(X). Let P = e1, f1, . . . , ft, e2 be a path in G \ X connecting e1 and e2.
By construction we have a path we1 , wf1 , . . . , wft

, we2 in L(G) \ L(X).
Conversely let we1 , wf1 , . . . , wft

, we2 be a path of minimum length between
we1 and we2 in L(G) \ L(X). It is easy to see that e1, f1, . . . , ft, e2 is a path
between e1 and e2 in G \ X.

Theorem 10. Assume that there is a strategy for the edge-cops game on G with
k cops. Then there exists a strategy for the vertex-cops game in L(G) with k cops.

Proof. Fix a strategy σ for the edge-cops on G, i.e., for every X ∈ Ek and every
X-flap R, σ(X,R) ∈ Ek which guarantees that the robber will eventually be
captured. We will inductively construct a sequence {(Yi, Qi)} of positions in the
vertex game on L(G), where Qis are the responses of the robber, while keeping
a corresponding sequence {(Xi, Ri)} for the edge game on G. The vertex game
starts in position (Y0, Q0) = (∅, V ′) and the edge game starts in (X0, R0) =
(∅, E). We have X1 = σ(X0, R0). In general we set Yi = L(Xi) and after the
robber has responded with Qi we define Ri = L−1(Qi), from which we construct
Xi+1 = σ(Xi, Ri) and so on. That Ri is an Xi-flap follows immediately from
Proposition 9. To see that this is indeed a winning strategy, note that at some
point we reach a position with Ri ⊆ Xi+1. This happens only when Qi ⊆ Yi+1.

Theorem 11. Assume that there is a monotone strategy for the vertex-cops
game in L(G) with k cops. Then there exists a monotone strategy with k cops
for the edge-cops game in G.

Proof. We will construct a sequence {(Xi, Ri)} of positions in the edge game on
G while keeping a corresponding sequence {(Yi, Qi)} of positions in the vertex
game on L(G). Note that Ri will be the response of the robber on G. Let σ be
a monotone strategy with k vertex-cops on L(G). We will inductively construct
Xi = {e : we ∈ Yi} and after the robber has responded with Ri we define
Qi = L(Ri). Proposition 9 implies that Qi is a Yi-flap. Since σ is a winning
strategy at some point we reach a position with Qi ⊆ Yi+1. This happens only
when Ri ⊆ Xi+1. The monotonicity of the strategy follows immediately.

5.2 The Invisible Robber

In a similar way as we did with the visible robber game, we can reduce the edge-
game with an invisible robber to the invisible robber vertex-game of Kirousis
and Papadimitriou [12] (we will call this game KP). In their game cops are
placed on vertices. An edge is cleared if both its endpoints have cops. An edge
can be recontaminated if it is connected to an uncleared edge passing through no
cops. It is shown in [12] that the cops can optimally clear all the edges without
occupying any vertex twice.

Theorem 12. Assume that k cops can win the edge-game capturing an invisible
robber on G. Then k cops can capture the robber in KP game on L(G).
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Theorem 13. Assume that k cops can monotonically capture the robber in KP
game on L(G). Then k cops can monotonically capture the invisible robber in
the edge-game on G.

Corollary 14. Let G = (V,E) be a simple connected graph and let ϕ be any
odd marking of G. Assume that there exist a resolution refutation of T(G,ϕ)
of variable space at most k. Then there exists a regular resolution refutation of
T(G,ϕ) of variable space at most k.

6 New Relations Between Complexity Measures for
Tseitin Formulas

For any unsatisfiable formula F the following inequalities hold:

W(F �) ≤ Vs(F �) (1)
Vs(F �) ≤ D(F �) (2)

Cs(F �) ≤ D(F �) + 1 (3)
Cs(F �) ≥ W(F �) − W(F ) + 1 (4)

Here Eq. 1 follows by definition, Eq. 2 is proved in [19], Eq. 4 is the Atserias-
Dalmau [4] width-space inequality and Eq. 3 follows from the following two obser-
vations:

1. Any resolution refutation π can be transformed, doubling subproofs, in a
tree-like refutation with the same depth of the original proof π.

2. The clause space of a treelike refutation is at most as large as its depth+1 [9].

In general the relationship between variable space and clause space is not clear.
It is also an open problem to know whether variable space and depth are poly-
nomially related (see [14,19]) and if clause space is polynomially bounded in
variable space (see Razborov in [14], Open problems). In this section we answer
this questions in the context of Tseitin formulas. We show in Corollary 17 below
that for any Tseitin formula T(G,ϕ) corresponding to a graph G with n vertices,

D(T(G,ϕ) �) ≤ W(T(G,ϕ) �) log n (5)

From this and the inequalities above it follow the following new relations:

D(T(G,ϕ) �) ≤ Vs(T(G,ϕ) �) log n (6)
Cs(T(G,ϕ) �) ≤ Vs(T(G,ϕ) �) log n + 1 (7)

Vs(T(G,ϕ) �) ≤ (Cs(T(G,ϕ) �) + Δ(G) − 1) log n. (8)

Where the last equation follow since W(T(G,ϕ)) = Δ(G).
That is, in the context of Tseitin formulas T(G,ϕ):

1. If G is a graph of bounded degree, the width, depth, variable space and clause
space for refuting T(G,ϕ) differ by at most a log n factor.
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2. For any graph G the clause space of refuting T(G,ϕ) is bounded above by
the a log n factor of the variable space of refuting T(G,ϕ).

To prove our results, we need two preliminary lemmas.

Lemma 15. Let T(G,ϕ) be a Tseitin formula and Π be a width k resolution
refutation of T(G,ϕ). From Π it is possible to find in linear time in |Π| a set
W of at most k + 1 variables such that any assignment of these variables when
applied to G in the usual way, defines a graph G′ and a labeling ϕ′ in which there
is some odd connected component with at most � |V |

2 � vertices.

Proof. We use again the Spoiler and Duplicator game from [4]. A way for Spoiler
to pay at most k + 1 points on the game on T(G,ϕ) is to use the structure of
Π starting at the empty clause and query each time the variable that is being
resolved at the parent clauses. When Duplicator assigns a value to this variable,
Spoiler moves to the parent clause falsified by the partial assignment and deletes
from this assignment any variables that do not appear in the parent clause. In
this way he always reaches at some point an initial clause, falsifying it and thus
winning the game. At any point at most k + 1 variables have to be assigned.
To this strategy of Spoiler, Duplicator can oppose the following strategy: She
applies the partial assignment being constructed to the initial graph G producing
a subgraph G′ and a new labeling ϕ′. Every time a variable e has to be assigned,
if e does not produce a new cut in G′ she gives to e an arbitrary value. If
e cuts an odd component in G′ she assigns e with the value that makes the
largest of the two new components an odd component. In case e cuts an even
component in two, Duplicator gives to e the value which keeps both components
even. Observe that with this strategy there is always a unique odd component.
Even when Spoiler releases the value of some assigned variable he cannot create
more components, he either keeps the same number of components or connects
two of them.

While playing the game on T(G,ϕ) with these two strategies, both players
define a path from the empty clause to an initial one. There must be a first clause
K along this path in which the constructed partial assignment constructed in
the game at the point t in which K is reached, when applied to G, defines a
unique odd component of size at most � |V |

2 �. This is so because the unique odd
component initially has size |V | while at the end has size 1. This partial assign-
ment has size at most k + 1. Not only the odd component, but any component
produced by the partial assignment has size at most � |V |

2 �. This is because at the
point before t the odd component was larger than � |V |

2 � and therefore any other
component had to be smaller than this. At time t Spoiler chooses a variable that
when assigned cuts the odd component in two pieces. Duplicator assigns it in
such a way that the largest of these two components is odd and has size at most
� |V |

2 �. Therefore the other new component must have at most this size.
Any other assignment of these variables also produces an odd component of

size at most � |V |
2 �. They correspond to other strategies and they all produce the

same cuts and components in the graph, just different labellings of the compo-
nents. Since the initial formula was unsatisfiable there must always be at least
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one odd component. In order to find the set W of variables, one just has to move
on refutation Π simulating Spoiler and Duplicator strategies. This can be done
in linear time in the size of Π.

Theorem 16. There is an algorithm that on input a connected graph G = (V,E)
with an odd labeling ϕ and a resolution refutation Π of T(G,ϕ) with width k,
produces a tree-like resolution refutation Π ′ of T(G,ϕ) of depth k log(|V |).
Proof. Let W = {e1, . . . e|W |} be a set of variables producing an odd connected
component of size at most � |V |

2 �, as guaranteed by Lemma 15. We can construct
a tree-like resolution of depth |W | of the complete formula FW with 2|W | clauses,
each containing all variables in W but with a different sign combination.

By the Lemma, each assignment of the variables, when applied to G produces
a subgraph Gi and a labeling ϕi with an odd component with at most � |V |

2 � ver-
tices. The problem of finding a tree-like refutation for T(G,ϕ) has been reduced
to finding a tree-like resolution refutation for each of the formulas T(Gi, ϕi).
But each of the graphs Gi have an odd component with at most � |V |

2 � vertices
and the problem is to refute the Tseitin formulas corresponding to these compo-
nents. After at most log(|V |) iterations we reach Tseitin formulas with just two
vertices that can be refuted by trees of depth one. Since W has width at most
k+1 literals, in each iteration the refutation trees have depth at most k. Putting
everything together we get a tree-like refutation of depth at most k log(|V |).
Corollary 17. For any graph G = (V,E) and any odd labeling ϕ,
D(T(G,ϕ) �) ≤ W(T(G,ϕ) �) log(|V |).
Corollary 18. For any graph G = (V,E) and any odd labeling ϕ
Cs(T(G,ϕ) �) ≤ Vs(T(G,ϕ) �) log(|V |).

7 Conclusions and Open Problems

We have shown that the measures of width, depth and variable space in the
resolution of Tseitin formulas can be exactly characterized in terms of a graph
searching game played on the underlying graph. Our game is a slight modifi-
cation of the well known cops-robber game from Seymour and Thomas. The
main motivation for this characterization is the fact that some results in graph
searching can be used to solve questions in proof complexity. Using the mono-
tonicity properties of the Seymour and Thomas game, we have proven that the
measures of width and variable space in regular resolution coincide exactly with
those of general resolution in the context of Tseitin formulas. Previously it was
only known that for Tseitin formulas, regular width was within a constant factor
of the width in general resolution [2]. The game characterization also inspired
new relations between the three resolution measures on Tseitin formulas and we
proved that they are all within a logarithmic factor.

We have also obtained a game characterization of variable space for the
resolution of general CNF formulas, as a non-interactive version of the Atserias
and Dalmau game [4] for resolution width.
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Still open is whether for Tseitin formulas, regular resolution can also simulate
general resolution in terms of size, as asked by Urquhart [18]. Also game char-
acterizations for other resolution measures like size or space, either for Tseitin
or general formulas, would be a very useful tool in proof complexity.
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Abstract. Minimally unsatisfiable clause-sets (MUs) are the hardest
unsatisfiable clause-sets. There are two important but isolated charac-
terisations for nonsingular MUs (every literal occurs at least twice), both
with ingenious but complicated proofs: Characterising 2-CNF MUs, and
characterising MUs with deficiency 2 (two more clauses than variables).
Via a novel connection to Minimal Strong Digraphs (MSDs), we give
short and intuitive new proofs of these characterisations, revealing an
underlying common structure.

1 Introduction

This paper is about understanding basic classes of minimally unsatisfiable CNFs,
short MUs. The most basic MUs are those with only one more clause than vari-
ables, i.e., with deficiency δ = 1. This whole class is explained by the expansion
rule, which replaces a single clause C by two clauses C ′ ∪ {v}, C ′′ ∪ {v} for
C ′ ∪ C ′′ = C and a new variable v, starting with the empty clause. So in a
sense only trivial reasoning takes place here. Somewhat surprisingly, this covers
all Horn cases in MU ([5]). At the next level, there are two classes, namely two
more clauses than variables (δ = 2), and 2-CNF. Characterisations have been
provided in the seminal paper [12] for the former class, and in the technical
report [15] for the latter. Both proofs are a tour de force. We introduce in this
paper a new unifying reasoning scheme, based on graph theory.

This reasoning scheme considers MUs with two parts. The clauses of the
“core” represent AllEqual, that is, all variables are equal. The two “full monotone
clauses”, a disjunction over all positive literals and a disjunction over all negative
literals, represent the negation of AllEqual. This is the new class FM (“full
monotone”) of MUs, which still, though diluted, is as complex as all of MU. So
we demand that the reasoning for AllEqual is graph theoretical, arriving at the
new class DFM (“D” for digraph).

Establishing AllEqual on the variables happens via SDs, “strong digraphs”,
where between any two vertices there is a path. For minimal reasoning we use
MSDs, minimal SDs, where every arc is necessary. Indeed, just demanding to
have an MU with two full monotone clauses, while the rest are binary clauses, is
enough to establish precisely MSDs. The two most fundamental classes of MSDs
are the (directed) cycles Cn and the dipaths, the directed versions D(Pn) of the
c© Springer International Publishing AG, part of Springer Nature 2018
O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 329–345, 2018.
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undirected paths Pn, where every undirected edge is replaced by two directed
arcs, for both directions. The cycles are at the heart of MUs with δ = 2, while
the dipaths are at the heart of MUs in 2-CNF.

To connect MSDs (that is, DFMs) with more general MUs, two transforma-
tions are used. First, singular variables, occurring in one sign only once, are elim-
inated by singular DP-reduction, yielding nonsingular MUs. This main (poly-
time) reduction removes “trivialities”, and indeed deficiency 1 consists purely
of these trivialities (as the above generation process shows). Second we need
to add “missing” literal occurrences, non-deterministically, to clauses, as long
as one stays still in MU. This process is called saturation, yielding saturated
MUs. As it turns out, the nonsingular MUs of deficiency 2 are already saturated
and are already of the form DFM, while the nonsingular 2-CNFs have to be
(partially) saturated to reach the form DFM.

Before continuing with the overview, we introduce a few basic notations. The
class of MUs as clause-sets is formally denoted by MU , while the nonsingular
elements are denoted by MU ′ ⊂ MU (every variable occurs at least twice
positively and twice negatively). The number of clauses of a clause-set F is
c(F ), the number of (occurring) variables is n(F ), and the deficiency is δ(F ) :=
c(F )−n(F ). The basic fact is δ(F ) ≥ 1 for F ∈ MU ([1]), and that deficiency is
a good complexity parameter ([6]). We use indices for subclassing in the obvious
way, e.g., MUδ=1 = {F ∈ MU : δ(F ) = 1}. Furthermore, like in the DIMACS
file format for clause-sets, we use natural numbers in N = {1, 2, . . .} for variables,
and the non-zero integers for literals. So the clause {−1, 2} stands for the usual
clause {v1, v2}, where we just got rid off the superfluous variable-symbol “v”. In
propositional calculus, this would mean ¬v1 ∨ v2, or, equivalently, v1 → v2.

The Two Fundamental Examples. After this general overview, we now state the
central two families of MUs for this paper, for deficiency 2 and 2-CNF. The
MUs Fn := {{1, . . . , n}, {−1, . . . ,−n}, {−1, 2}, . . . , {−(n − 1), n}, {−n, 1}} of
deficiency 2 have been introduced in [12]. It is known, and we give a proof in
Lemma 7, that the Fn are saturated. As shown in [12], the elements of MU ′

δ=2

are exactly (up to isomorphism, of course) the formulas Fn. The elimination
of singular variables by singular DP-reduction is not confluent in general for
MUs. However in [18] it is shown, that we have confluence up to isomorphism
for deficiency 2. These two facts reveal that the elements of MUδ=2 contain a
unique “unadorned reason” for unsatisfiability, namely the presence of a com-
plete cycle over some variables (of unique length) together with the requirement
that these variables do not have the same value. In the report [15], as in [20]
(called “F (2)”), the 2-CNF MUs Bn := {{−1, 2}, {1,−2}, . . . , {−(n−1), n}, {n−
1,−n}, {−1,−n}, {1, n}} have been introduced, which are 2-uniform (all clauses
have length 2). In [15] it is shown that the nonsingular MUs in 2-CNF are exactly
the Bn. By [18] it follows again that we have confluence modulo isomorphism
of singular DP-reduction on 2-CNF-MUs. Thus a 2-CNF-MU contains, up to
renaming, a complete path of equivalences of variables, where the length of the
path is unique; this path establishes the equivalence of all these variables, and
then there is the equivalence of the starting point and the negated end point,
which yields the contradiction.
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Background We have referred above to the fundamental result about singular
DP-reduction (sDP) in [18], that for F ∈ MU and any F ′, F ′′ ∈ MU ′ obtained
from F by sDP we have n(F ′) = n(F ′′). So we can define nst(F ) := n(F ′) ∈ N0

(generalising [18, Definition 75]). We have 0 ≤ nst(F ) ≤ n(F ), with nst(F ) = 0
iff δ(F ) = 1, and nst(F ) = n(F ) iff F is nonsingular. The “nonsingularity type”
nst(F ) provides basic information about the isomorphism type of MUs, after
(completed) sDP-reduction, and suffices for deficiency 2 and 2-CNF.

We understand a class C ⊆ MU “fully” if we have a full grasp on its ele-
ments, which should include a complete understanding of the isomorphism types
involved, that is, an easily accessible catalogue of the essentially different ele-
ments of C. The main conjecture is that the nonsingular cases of fixed deficiency
have polytime isomorphism decision, and this should be extended to “all basic
classes”. Singular DP-reduction is essential here, since already Horn-MU, which
has deficiency one, is GI-complete (graph-isomorphism complete; [14]).

Before giving an overview on the main proof ideas, we survey the relevant
literature on 2-CNF. Irredundant 2-CNF is studied in [21], mostly concentrat-
ing on satisfiable cases, while we are considering only unsatisfiable cases. As
mentioned, the technical report [15] contains the proof of the characterisation
of 2-CNF-MU, while [20] has some bounds, and some technical details are in
[2]. MUSs (MU-sub-clause-sets) of 2-CNF are considered in [3], showing how to
compute shortest MUSs in polytime, while in [4] MUSs with shortest resolution
proofs are determined in polytime. It seems that enumeration of all MUSs of a
2-CNF has not been studied in the literature. However, in the light of the strong
connection to MSDs established in this paper, for the future [11] should become
important, which enumerates all MSDs of an SD in incremental polynomial time.

Two Full Clauses. The basic new class is FM ⊂ MU , which consists of all
F ∈ MU containing the full positive clause (all variables) and the full negative
clause (all complemented variables). Using “monotone clauses” for positive and
negative clauses, “FM” reminds of “full monotone”. Let An be the basic MUs
with n variables and 2n full clauses; so we have An ∈ FM for all n ≥ 0. The
trivial cases of FM are A0 and A1, while a basic insight is that FM′ :=
FM ∩ MU ′ besides {⊥} contains precisely all the nontrivial elements of FM.
In this sense it can be said that FM studies only nonsingular MUs. We expect
the class FMδ=k at least for δ = 3 to be a stepping stone towards understanding
MUδ=3 (the current main frontier). The most important new class for this paper
is DFM ⊂ FM, which consists of all F ∈ FM such that besides the monotone
clauses all other clauses are binary. Indeed graph isomorphisms for MSDs is still
GI-complete ([23]), and thus so is isomorphism for DFM.

After having now DFM at our disposal, we gain a deeper understanding how
the seminal characterisations of the basic nonsingular F , that is, F ∈ MU ′,
n(F ) > 0, work: [I] From δ(F ) = 2 follows F ∼= Fn(F ) ([12]; see Corollary 1). [II]
From F ∈ 2–CLS follows F ∼= Bn(F ) ([15]; see Corollary 2). The main step is to
make the connection to the class DFM: [I] In case of δ(F ) = 2, up to renaming
it actually already holds that F ∈ DFM. The main step here to show is the
existence of the two full monotone clauses — that the rest then is in 2-CNF
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follows by the minimality of the deficiency. [II] In case of F ∈ 2–CLS there must
exist exactly one positive and one negative clause and these can be saturated
to full positive resp. full negative clauses, and so we obtain F ′ ∈ DFM. Once
the connection to DFM is established, graph-theoretical reasoning does the
remaining job: [I] The MSDs of minimal deficiency 0 are the cycles. [II] The
only MSDs G such that the corresponding DFMs can be obtained as partial
saturations of nonsingular 2-CNF are the dipaths, since we can only have two
linear vertices in G, vertices of in- and out-degree one.

An overview on the main results of this paper is given in Fig. 1.

Fig. 1. Directed cycles at the heart of MUδ=2, and dipaths at the heart of 2–MU .

2 Preliminaries

We use clause-sets F , finite sets of clauses, where a clause is a finite set of literals,
and a literal is either a variable or a negated/complemented variable. The set of
all variables is denoted by VA (we use variables also as vertices in graphs), and we
assume N = {1, 2, . . .} ⊆ VA. This makes creating certain examples easier, since
we can use integers different from zero as literals (as in the DIMACS format). The
set of clause-sets is denoted by CLS, the empty clause-set by  := ∅ ∈ CLS and
the empty clause by ⊥ := ∅. Clause-sets are interpreted as CNFs, conjunctions
of disjunction of literals. A clause-set F is uniform resp. k-uniform, if all clauses
of F have the same length resp. length k. This paper is self-contained, if however
more background is required, then the Handbook chapter [13] can be consulted.

Clauses C do not contain clashes (conflicts), i.e., they are “non-tautological”,
which formally is denoted by C ∩ C = ∅, where for a set L of literals by L
we denoted elementwise complementation. With var(F ) we denote the set of
variables occurring in F , while by lit(F ) := var(F ) ∪ var(F ) we denote the
possible literals of F (one of the two polarities of a literal in lit(F ) must occur
in F ). Since the union

⋃
F is the set of occurring literals, we have lit(F ) =

(
⋃

F )∪
⋃

F , while var(F ) = lit(F )∩VA. A clause C is positive if C ⊂ VA, while
C is negative if C ⊂ VA, and C is mixed otherwise; a non-mixed clause is called
monotone. A full clause of a clause-set F is some C ∈ F with var(C) = var(F ).
A full clause-set is an F ∈ CLS where all C ∈ F are full. By An we denote the
full clause-set consisting of the 2n full clauses over variables 1, . . . , n for n ∈ N0.
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So A0 = {⊥}, A1 = {{−1}, {1}}, and A2 = {{−1,−2}, {1, 2}, {−1, 2}, {1,−2}}.
For F ∈ CLS we use n(F ) := |var(F )| ∈ N0 for the number of (occurring)
variables, c(F ) := |F | ∈ N0 for the number of clauses, and δ(F ) := c(F ) −
n(F ) ∈ Z for the deficiency. p–CLS is the set of F ∈ CLS such that for all C ∈
F holds |C| ≤ p. The application of partial assignments ϕ to F ∈ CLS, denoted
by ϕ ∗ F , yields the clause-set obtained from F by removing clauses satisfied by
ϕ, and removing falsified literals from the remaining clauses. Contractions can
occur, since we are dealing with clause-sets, i.e., previously unequal clauses may
become equal, and so more clauses might disappear than expected. Also more
variables than just those in ϕ might disappear, since we consider only occurring
variables. SAT is the set of satisfiable clause-sets, those F ∈ CLS where there
is a partial assignment ϕ with ϕ ∗ F = . CLS is partitioned into SAT and the
set of unsatisfiable clause-sets. A clause-set F is irredundant iff for every C ∈ F
there exists a total assignment ϕ which satisfies F \{C} (i.e., ϕ∗ (F \{C}) = )
while falsifying C (i.e., ϕ ∗ {C} = {⊥}). Every full clause-set is irredundant.

Isomorphism of clause-sets F,G ∈ CLS is denoted by F ∼= G, that is, there
exists a complement-preserving bijection from lit(F ) to lit(G) which induces a
bijection from the clauses of F to the clauses of G. For example for an unsatis-
fiable full clause-set F we have F ∼= An(F ). RHO is the set of renamable Horn
clause-sets, i.e., F ∈ CLS with F ∼= G for some Horn clause-set G (where every
clause contains at most one positive literal, i.e., ∀C ∈ G : |C ∩ VA| ≤ 1).

The DP-operation (sometimes also called “variable elimination”) for F ∈
CLS and a variable v results in DPv (F ) ∈ CLS, which replaces all clauses
in F containing variable v (positively or negatively) by their resolvents on v.
Here for clauses C,D with C ∩ D = {x} the resolvent of C,D on var(x) is
(C \ {x}) ∪ (D \ {x}) (note that clauses can only be resolved if they contain
exactly one clashing literal, since clauses are non-tautological).

We conclude by recalling some notions from graph theory: A graph/digraph
G is a pair (V,E), with V (G) := V a finite set of “vertices”, while E(G) := E
is the set of “edges” resp. “arcs”, which are two-element subsets {a, b} ⊆ V
resp. pairs (a, b) ∈ V 2 with a �= b. An isomorphism between two (di)graphs is a
bijection between the vertex sets, which induces a bijection on the edges/arcs.
Isomorphism of clause-sets can be naturally reduced in polytime to graph isomor-
phism, and GI-completeness of such isomorphism problems means additionally
that also the graph isomorphism problem can be reduced to it.

3 Review on Minimal Unsatisfiability (MU)

MU is the set of unsatisfiable clause-sets such that every strict sub-clause-set is
satisfiable. For F ∈ CLS holds F ∈ MU iff F is unsatisfiable and irredundant.
We note here that “MU” is the class of MUs, while “MU” is used in text in a
substantival role. MU ′ ⊂ MU is the set of nonsingular MUs, that is, F ∈ MU
such that every literal occurs at least twice. We use 2–MU := MU ∩2–CLS and
2–MU ′ := MU ′ ∩ 2–CLS. Saturated MUs are those unsatisfiable F ∈ CLS,
such that for every C ∈ F and every clause D ⊃ C we have (F \ {C}) ∪ {D} ∈
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SAT . For F ∈ MU a saturation is some saturated F ′ ∈ MU where there
exists a bijection α : F → F ′ with ∀C ∈ F : C ⊆ α(C); by definition, every MU
can be saturated. If we just add a few literal occurrences (possibly zero), staying
with each step within MU , then we speak of a partial saturation (this includes
saturations); we note that the additions of a partial saturation can be arbitrarily
permuted. Dually there is the notion of marginal MUs, those F ∈ MU where
removing any literal from any clause creates a redundancy, that is, some clause
following from the others. For F ∈ MU a marginalisation is some marginal
F ′ ∈ MU such that there is a bijection α : F ′ → F with ∀C ∈ F ′ : C ⊆ α(C);
again, every MU can be marginalised, and more generally we speak of a partial
marginalisation. As an example all An ∈ MU , n ∈ N0, are saturated and
marginal, while An is nonsingular iff n �= 1.

For F ∈ MU and a variable v ∈ var(F ), we define local saturation as the
process of adding literals v, v to some clauses in F (not already containing v, v),
until adding any additional v or v yields a satisfiable clause-set. Then the result
is locally saturated on v. For a saturated F ∈ MU , as shown in [17, Lemma
C.1], assigning any (single) variable in F (called “splitting”) yields MUs (for
more information see [19, Subsect. 3.4]). The same proof yields in fact, that for
a locally saturated F ∈ MU on a variable v, splitting on v maintains minimal
unsatisfiability:

Lemma 1. Consider F ∈ MU and a variable v ∈ var(F ). If F is locally satu-
rated for variable v, then we have 〈v → ε〉 ∗ F ∈ MU for both ε ∈ {0, 1}.

In general, application of the DP-operation to some MU may or may not yield
another MU. A positive example for n ∈ N and v ∈ {1, . . . , n} is DPv(An) ∼=
An−1. A special case of DP-reduction, guaranteed to stay inside MU, is singular
DP-reduction, where v is a singular variable in F . In this case, as shown in
[18, Lemma 9], no tautological resolvents can occur and no contractions can take
place (recall that we are using clause-sets, where as a result of some operations
previously different clause can become equal – a “contraction”). So even each
MUδ=k is stable under singular DP-reduction. We use sDP(F ) ⊂ MU ′

δ=δ(F ),
F ∈ MU , for the set of all clause-sets obtained from F by singular DP-reduction.
By [18, Corollary 64] for any F ′, F ′′ ∈ sDP(F ) holds n(F ′) = n(F ′′). So we can
define for F ∈ MU the nonsingularity type nst(F ) := n(F ′) ∈ N0 via any
F ′ ∈ sDP(F ). Thus nst(F ) = n(F ) iff F is nonsingular.

MU(1) A basic fact is that F ∈ MU \ {{⊥}} contains a variable occurring
positively and negatively each at most δ(F ) times ([17, Lemma C.2]). So the
minimum variable degree (the number of occurrences) is 2δ(F ) (sharper bounds
are given in [19]). This implies that F ∈ MUδ=1 has a 1-singular variable (i.e.,
degree 2). It is well-known that for F ∈ RHO there exists an input-resolution
tree T yielding {⊥} ([10]); in the general framework of [9], these are those T with
the Horton-Strahler number hs(T ) at most 1. W.l.o.g. we can assume all these
trees to be regular, that is, along any path no resolution variable is repeated.
This implies that for F ∈ MU ∩ RHO holds δ(F ) = 1, and all variables in F
are singular. By [17] all of MUδ=1 is described by a binary tree T , which just
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describes the expansion process as mentioned in the Introduction, and which is
basically the same as a resolution tree refuting F (T is not unique). Since the
variables in the tree are all unique (the creation process does not reuse variables),
any two clauses clash in at most one variable. For F ∈ MUδ=1 with exactly one
1-singular variable holds hs(T ) = 1 (and so F ∈ RHO), since hs(T ) ≥ 2 implies
that there would be two nodes whose both children are leaves, and so F would
have two 1-singular variables. Furthermore if F ∈ MU ∩ RHO has a full clause
C, then C is on top of T and so the complement of its literals occur only once:

Lemma 2. Consider F ∈ MU . If δ(F ) = 1, and F has only one 1-singular
variable, then F ∈ RHO. If F ∈ RHO, then all variables are singular, and if F
has a full clause C, then for every x ∈ C the literal x occurs only once in F .

The Splitting Ansatz. The main method for analysing F ∈ MU is “splitting”:
choose an appropriate variable v in F ∈ MU , apply the partial assignments
〈v → 0〉 and 〈v → 1〉 to F , obtain F0, F1, analyse them, and lift the information
obtained back to F . An essential point here is to have F0, F1 ∈ MU . In general
this does not hold. The approach of Kleine Büning and Zhao, as outlined in
[16, Sect. 3], is to remove clauses appropriately in F0, F1, and study various
conditions. Our method is based on the observation, that if a clause say in F0

became redundant, then v can be added to this clause in F , while still remaining
MU, and so the assignment v → 0 then takes care of the removal. This is the
essence of saturation, with the advantage that we are dealing again with MUs.
A saturated MU is characterised by the property, that for any variable, splitting
yields two MUs. For classes like 2–CLS, which are not stable under saturation,
we introduced local saturation, which only saturates the variable we want to split
on. In our application, the local saturation uses all clauses, and this is equivalent
to a “disjunctive splitting” as surveyed [2, Definition 8]. On the other hand, for
deficiency 2 the method of saturation is more powerful, since we have stability
under saturation, and the existence of a variable occurring twice positively and
twice negatively holds after saturation. Splitting needs to be done on nonsingular
variables, so that the deficiency becomes strictly smaller in F0, F1 — we want
these instances “to be easy”, to know them well. In both our cases we obtain
indeed renamable Horn clause-sets. For deficiency 2 we exploit, that the splitting
involves the minimal number of clauses, while for 2-CNF we exploit that the
splitting involves the maximal number of clauses after local saturation. In order
to get say F0 “easy”, while F is “not easy”, the part which gets removed, which
is related to F1, must have special properties.

4 MU with Full Monotone Clauses (FM)

We now introduce formally the main classes of this paper, FM ⊂ MU (Defini-
tion 1) and DFM ⊂ FM (Definition 4). Examples for these classes showed up
in the literature, but these natural classes haven’t been studied yet.
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Definition 1. Let FM be the set of F ∈ MU such that there is a full positive
clause P ∈ F and a full negative clause N ∈ F (that is, var(P ) = var(N) =
var(F ), P ⊂ VA, N ⊂ VA). More generally, let FC be the set of F ∈ MU such
that there are full clauses C,D ∈ F with D = C.

The closure of FM under isomorphism is FC. In the other direction, for any
F ∈ FC and any pair C,D ∈ F of full clauses with D = C (note that in
general such a pair is not unique), flip the signs so that C becomes a positive
clause (and thus D becomes a negative clause), and we obtain an element of
FM. As usual we call the subsets of nonsingular elements FM′ resp. FC′.
The trivial elements of FM and FC are the MUs with at most one variable:
FMn≤1 = FMδ=1 = FCn≤1 = FCδ=1 = {{⊥}} ∪ {{v}, {v} : v ∈ VA}. The
singular cases in FM and FC are just these cases with only one variable:

Lemma 3. FM′ = FMδ≥2 ∪ {{⊥}}, FC′ = FCδ≥2 ∪ {{⊥}}.

Proof. Assume that there is a singular F ∈ FC with n(F ) ≥ 2. Let C,D be
full complementary clauses in F . W.l.o.g. we can assume that there is x ∈ C (so
x ∈ D) such that literal x only occurs in C. Consider now some y ∈ D\{x} (exists
due to n(F ) ≥ 2). There exists a satisfying assignment ϕ for F ′ := F \ {D}, and
it must hold ϕ(x) = 1 and ϕ(y) = 0 (otherwise F would be satisfiable). Obtain
ϕ′ by flipping the value of x. Now ϕ′ still satisfies F ′, since the only occurrence
of literal x is C, and this clause contains y — but now ϕ′ satisfies F . ��

So the study of FM is about special nonsingular MUs. In general we prefer
to study FM over FC, since here we can define the “core” as a sub-clause-set:

Definition 2. For F ∈ FM there is exactly one positive clause P ∈ F , and
exactly one negative clause N ∈ F (otherwise there would be subsumptions in
F ), and we call F \ {P,N} the core of F .

We note that cores consist only of mixed clauses, and in general any mixed
clause-set (consisting only of mixed clauses) has always at least two satisfying
assignments, the all-0 and the all-1 assignments. The decision complexity of
FM is the same as that of MU (which is the same as MU ′), which has been
determined in [22, Theorem 1] as complete for the class DP , whose elements are
differences of NP-classes (for example “MU = Irredundant minus SAT”):

Theorem 1. For F ∈ CLS, the decision whether “F ∈ FM ?” is DP -complete.

Proof. The decision problem is in DP , since F ∈ FM iff F is irredundant with
full monotone clauses and F /∈ SAT . For the reduction of MU to FM, we
consider F ∈ CLS with n := n(F ) ≥ 2, and first extend F to F ′, forcing a
full positive clause, by taking a new variable v, adding literal v to all clauses
of Fn and adding literal v to all clauses of F . Then we force additionally a full
negative clause, extending F ′ to F ′′ in the same way, now using new variable w,
and adding w to all clauses of F ′ and adding w to all clauses of Fn+1. We have
F ∈ MU iff F ′′ ∈ MU . ��
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We now turn to the semantics of the core:

Definition 3. For V ⊂ VA the AllEqual function on V is the boolean function
which is true for a total assignment of V if all variables are assigned the same
value, and false otherwise. A CNF-realisation of AllEqual on V is a clause-set
F with var(F ) ⊆ V , which is as a boolean function the AllEqual function on V .

The core of every FM F realises AllEqual on var(F ) irredundantly, and this
characterises FM, yielding the AllEqual Theorem:

Theorem 2. Consider F ∈ CLS with a full positive clause P ∈ F and a full
negative clause N ∈ F , and let F ′ := F \ {P,N}. Then F ∈ FM if and only if
F ′ realises AllEqual on var(F ), and F ′ is irredundant.

5 FM with Binary Clauses (DFM)

Definition 4. DFM is the subset of FM where the core is in 2–CLS, while
DFC is the set of F ∈ FC, such that there are full complementary clauses
C,D ∈ F with F \ {C,D} ∈ 2–CLS.

The core of DFMs consists of clauses of length exactly 2. DFC is the closure of
DFM under isomorphism.

Definition 5. For F ∈ DFM the positive implication digraph pdg(F ) has
vertex set var(F ), i.e., V (pdg(F )) := var(F ), while the arcs are the implications
on the variables as given by the core F ′ of F , i.e., E(pdg(F )) := {(a, b) : {a, b} ∈
F ′, a, b ∈ var(F )}. This can also be applied to any mixed binary clause-set F
(note that the core F ′ is such a mixed binary clause-set).

The essential feature of mixed clause-sets F ∈ 2–CLS is that for a clause
{v, w} ∈ F we only need to consider the “positive interpretation” v → w, not
the “negative interpretation” w → v, since the positive literals and the negative
literals do not interact. So we do not need the (full) implication digraph. Via the
positive implication digraphs we can understand when a mixed clause-set realises
AllEqual. We recall that digraph G is a strong digraph (SD), if G is strongly
connected, i.e., for every two vertices a, b there is a path from a to b. A minimal
strong digraph (MSD) is an SD G, such that for every arc e ∈ E(G) holds that
(V (G), E(G) \ {e}) is not strongly connected. Every digraph G with |V (G)| ≤ 1
is an MSD. We are ready to formulate the Correspondence Lemma:

Lemma 4. A mixed binary clause-set F is a CNF-realisation of AllEqual iff
pdg(F ) is an SD, where F is irredundant iff pdg(F ) is an MSD.

Proof. The main point here is that the resolution operation for mixed binary
clauses {a, b}, {b, c}, resulting in {a, c}, corresponds exactly to the formation of
transitive arcs, i.e., from (a, b), (b, c) we obtain (a, c). So the two statements of the
lemma are just easier variations on the standard treatment of logical reasoning
for 2-CNFs via “path reasoning”. ��
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As explained before, F �→ pdg(F ) converts mixed binary clause-sets with full
monotone clauses to a digraph. Also the reverse direction is easy:

Definition 6. For a finite digraph G with V (G) ⊂ VA, the clause-set mcs(G) ∈
CLS (“m” like “monotone”) is obtained by interpreting the arcs (a, b) ∈ E(G)
as binary clauses {a, b} ∈ mcs(G), and adding the two full monotone clauses
{V (G), V (G)} ⊆ mcs(G).

For the map G �→ mcs(G), we use the vertices of G as the variables of mcs(G).
An arc (a, b) naturally becomes a mixed binary clause {a, b}, and we obtain the
set F ′ of mixed binary clauses, where by definition we have pdg(F ′) = G. This
yields a bijection between the set of finite digraphs G with V (G) ⊂ VA and
the set of mixed binary clause-sets. By the Correspondence Lemma 4, minimal
strong connectivity of G is equivalent to F ′ being an irredundant AllEqual-
representation. So there is a bijection between MSDs and the set of mixed binary
clause-sets which are irredundant AllEqual-representation. We “complete” the
AllEqual-representations to MUs, by adding the full monotone clauses, and we
get the DFM mcs(G). We see, that DFMs and MSDs are basically the “same
thing”, only using different languages, which is now formulated as the Corre-
spondence Theorem (with obvious proofs left out):

Theorem 3. The two formations F �→ pdg(F ) and G �→ mcs(G) are inverse to
each other, i.e., mcs(pdg(F )) = F and pdg(mcs(G)) = G, and they yield inverse
bijections between DFMs and MSDs: For every F ∈ DFM the digraph pdg(F )
is an MSD, and for every MSD G with V (G) ⊂ VA we have mcs(G) ∈ DFM.

The Correspondence Theorem 3 can be considerably strengthened, by includ-
ing other close relations, but here we formulated only what we need. For a
DFM F �= {⊥} and an MSD G �= (∅, ∅) we obtain δ(pdg(F )) = δ(F ) − 2
and δ(mcs(G)) = δ(G) + 2, where we define the deficiency of a digraph G as
δ(G) := |E(G)| − |V (G)|. Concerning isomorphisms there is a small difference
between the two domains, since the notion of clause-set isomorphism includes
flipping of variables, which for DFMs can be done all at once (flipping “positive”
and “negative”) — this corresponds in pdg(F ) to the reversal of the direction of
all arcs. For our two main examples, cycles and dipaths, this yields an isomorphic
digraph, but this is not the case in general.

Marginalisation of DFMs concerns only the full monotone clauses and not
the binary clauses, formulated as the Marginalisation Lemma:

Lemma 5. Consider a clause-set F obtained by partial marginalisation of a
non-trivial DFM F ′. Then F has no unit-clause and its formation did not touch
binary clauses but only shortened its monotone clauses.

Proof. By definition, partial marginalisation can be arbitrarily reordered. If some
binary clause would be shortened, then, put first, this would yield unit-clauses,
subsuming some full monotone clauses. ��

Deciding F ∈ DFM can be done in polynomial time: Check whether we
have the two full monotone clauses, while the rest are binary clauses, if yes,
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translate the binary clauses to a digraph and decide whether this digraph is an
MSD (which can be done in quadratic time; recall that deciding the SD property
can be done in linear time) — if yes, then F ∈ DFM, otherwise F /∈ DFM.
We now come to the two simplest example classes, cycles and “di-paths”. Let
Cn := ({1, . . . , n}, {(1, 2), . . . , (n − 1, n), (n, 1)}) for n ≥ 2 be the directed cycle
of length n. The directed cycles Cn have the minimum deficiency zero among
MSDs. We obtain the basic class Fn, as already explained in the Introduction:

Definition 7. Let Fn := mcs(Cn) ∈ DFM for n ≥ 2 (Definition 6).

Lemma 6. For F ∈ DFMδ=2 holds F ∼= Fn(F ).

Proof. By the Correspondence Theorem 3, pdg(F ) is an MSD with the deficiency
δ(F ) − 2 = 0, and thus is a directed cycle of length n(F ). ��

Lemma 7. For every n ≥ 2, Fn is saturated.

Proof. We show that adding a literal x to any C ∈ Fn introduces a satisfying
assignment, i.e., Fn is saturated. The monotone clauses are full, and saturation
can only touch the mixed clauses. Recall var(Fn) = {1, . . . , n}. Due to symmetry
assume C = {−n, 1}, and we add x ∈ {2, . . . , n − 1} to C. Let ϕ be the total
assignment setting all variables 2, . . . , n to true and 1 to false. Then ϕ satisfies
the monotone clauses and the new clause {−n, 1, x}. Recall that every literal
occurs only once in the core of Fn. So literal 1 occurs only in C. Thus ϕ satisfies
also every mixed clause in F \ {C} (which has a positive literal other than 1). ��

For a tree G (a finite connected acyclic graph with at least one vertex) we
denote by D(G) := (V (G), {(a, b), (b, a) : {a, b} ∈ E(G)}) the directed version
of G, converting every edge {a, b} into two arcs (a, b), (b, a); in [7] these are called
“directed trees”, and we use ditree here. For every tree G the ditree D(G) is an
MSD. Let Pn := ({1, . . . , n}, {{1, 2}, . . . , {n− 1, n}}, n ∈ N0, be the pathgraph.

Definition 8. Let DBn := mcs(D(Pn)) ∈ DFM (n ∈ N0) (Definition 6).

So DBn = An for n ≤ 2, while in general n(DBn) = n, and for n ≥ 1 holds
c(DBn) = 2 + 2(n − 1) = 2n, and δ(DBn) = n. DBn for n �= 1 is nonsingular,
and every variable in var(DBn)\{1, n} is of degree 6 for n ≥ 2, while the variables
1, n (the endpoints of the dipath) have degree 4. Among ditrees, only dipaths
can be marginalised to nonsingular 2-uniform MUs, since dipaths are the only
ditrees with exactly two linear vertices (i.e., vertices with indegree and outdegree
equal to 1). The unique marginal MUs obtained from dipaths are as follows:

Definition 9. For n ≥ 1 obtain the uniform Bn ∈ 2–MU from DBn by replac-
ing the full positive/negative clause with {1, n} resp. {−1,−n}, i.e., Bn =
{{−1,−n}, {1, n}, {−1, 2}, {1,−2}, . . . , {−(n − 1), n}, {n − 1,−n}}; B0 := DB0.
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6 Deficiency 2 Revisited

We now come to the first main application of the new class DFM, and we
give a new and relatively short proof, that the Fn are precisely the nonsingu-
lar MUs of deficiency 2. The core combinatorial-logical argument is to show
MU ′

δ=2 ⊆ FCδ=2, i.e., every F ∈ MU ′
δ=2 must have two full complementary

clauses C,D ∈ F . The connection to the “geometry” then is established by
showing FMδ=2 ⊆ DFMδ=2, i.e., if an FM F has deficiency 2, then it must be
a DFM, i.e., all clauses besides the full monotone clauses are binary. The pure
geometrical argument is the characterisation of DFMδ=2, which has already
been done in Lemma 6.

The proof of the existence of full clauses D = C in F is based on the Splitting
Ansatz, as explained in Sect. 3. Since MUδ=2 is stable under saturation, we
can start with a saturated F , and can split on any variable (though later an
argument is needed to undo saturation). There must be a variable v occurring at
most twice positively as well as negatively (otherwise the basic lemma δ(F ) ≥ 1
for any MU F would be violated), and due to nonsingularity v occurs exactly
twice positively and negatively. The splitting instances F0, F1 have deficiency
1. So they have at least one 1-singular variable. There is very little “space” to
reduce a nonsingular variable in F to a 1-singular variable in F0 resp. F1, and
indeed those two clauses whose vanishing in F0 do this, are included in F1, and
vice versa. Since clauses in MUδ=1 have at most one clash, F0, F1 have exactly
one 1-singular variable. And so by the geometry of the structure trees (resp.
their Horton-Strahler numbers), both F0, F1 are in fact renamable Horn! Thus
every variable in F0, F1 is singular, and F0, F1 must contain a unit-clause. Again
considering both sides, it follows that the (two) positive occurrences of v must
be a binary clause (yielding the unit-clause) and a full clause C (whose vanishing
yields the capping of all variables to singular variables), and the same for the
(two) negative occurrences, yielding D. So F0, F1 ∈ RHO both contain a full
clause and we know that the complements of the literals in the full clause occur
exactly once in F0 resp. F1. Thus in fact C resp. D have the “duty” of removing
each others complement, and we get D = C.

Now consider F ∈ FMδ=2 with monotone full clauses C,D ∈ F . Transform
the core F ′ within F into an equivalent F ′′, by replacing each clause in F ′ by a
contained prime implicate of F ′, which, since the core means that all variables
are equal (semantically), is binary. So we arrive in principle in DFM, but we
could have created redundancy — and this can not happen, since an MSD has
minimum deficiency 0. The details are as follows:

Theorem 4. DFCδ=2 = FCδ=2 = MU ′
δ=2.

Proof. By definition and Lemma 3 we have DFCδ=2 ⊆ FCδ=2 ⊆ MU ′
δ=2. First

we show MU ′
δ=2 ⊆ FCδ=2, i.e., every F ∈ MU ′

δ=2 has two full complementary
clauses. Recall that F has a variable v ∈ var(F ) of degree 4, which by nonsin-
gularity is the minimum variable degree. So v has two positive occurrences in
clauses C1, C2 ∈ F and two negative occurrences in clauses D1,D2 ∈ F . We
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assume that F is saturated (note that saturation maintains minimal unsatisfi-
ability and deficiency). By the Splitting Ansatz, F0 := 〈v → 0〉 ∗ F ∈ MUδ=1

and F1 := 〈v → 1〉 ∗ F ∈ MUδ=1. So F0 removes D1,D2 and shortens C1, C2,
while F1 removes C1, C2 and shortens D1,D2. Both F0, F1 contain a 1-singular
variable (i.e., of degree 2), called a resp. b. We obtain {a, a} ⊆ D1 ∪ D2, since F
has no singular variable and only by removing D1,D2 the degree of a decreased
to 2. Similarly {b, b} ⊆ C1 ∪ C2. In MUδ=1 any two clauses have at most one
clash, and thus indeed F0, F1 have each exactly one 1-singular variable. Now
F0, F1 ∈ MUδ=1 with exactly one 1-singular variable are renamable Horn clause-
sets (Lemma 2). Since F0, F1 ∈ RHO ∩ MU contain unit-clauses, created by
clause-shortening, one of C1, C2 and one of D1,D2 are binary. W.l.o.g. assume
C1,D1 are binary. Furthermore by Lemma 2 all variables in F0, F1 are singu-
lar, while F has no singular variable. So in F0 all singularity is created by the
removal of D1,D2, and in F1 all singularity is created by the removal of C1, C2.
Thus C2,D2 are full clauses. For a full clause in F0, F1, the complement of its
literals occur only once (recall Lemma 2). Thus C2 and D2 have the duty of
eliminating each others complements, and so we obtain C2 = D2. To finish the
first part, we note that the literals in clauses C,D each occurs exactly twice by
the previous argumentation, and thus, since F was nonsingular to start with,
indeed the initial saturation did nothing.

We turn to the second part of the proof, showing FMδ=2 ⊆ DFMδ=2,
i.e., the core F ′ of every F ∈ FMδ=2 contains only binary clauses. By the
characterisation of FMs, the AllEqual Theorem 2, F ′ realises AllEqual over the
variables of F . The deficiency of F ′ is δ(F ′) = δ(F ) − 2 = 0. Obtain F ′′ by
replacing each C ∈ F ′ by a prime implicate C ′′ ⊆ C of F ′, where every prime
implicate is binary. Now F ′′ is logically equivalent to F ′, and we can apply
the Correspondence Lemma 4 to F ′′, obtaining an MSD G := pdg(F ′′) with
δ(G) = δ(F ′′). Due to the functional characterisation of F ′ we have var(F ′′) =
var(F ′) = var(F ). Using that MSDs have minimal deficiency 0, thus δ(G) = 0,
and so G is the cycle of length n(F ), and thus F ′′ is isomorphic to Fn(F ). Now
Fn(F ) is saturated (Lemma 7), and thus indeed F ′′ = F ′. ��

Corollary 1 ([12]). For F ∈ MU ′
δ=2 holds F ∼= Fn(F ).

7 MU for 2-CNF

Lemma 8. F ∈ 2–MU with a unit-clause is in RHO, and has at most two
unit-clauses ([2]). In every F ∈ 2–MU each literal occurs at most twice ([15]).

Lemma 9. In F ∈ 2–MU with exactly two unit-clauses, every literal occurs
exactly once. Both unit-clauses can be partially saturated to a full clause (yielding
two saturations), and these two full clauses are complementary.

Proof. By Lemma 8, F ∈ RHO with δ(F ) = 1. Since F is uniform except of
two unit-clauses, the number of literal occurrences is 2c(F ) − 2 = 2n(F ), and
so every literal in F occurs only once (F is marginal). Consider an underlying
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tree T according to Sect. 3, in the form of an input-resolution tree T . The key
is that any of the two unit-clauses can be placed at the top, and thus can be
saturated (alone) to a full clause. Since in an input-resolution tree, at least one
unit-clause is needed at the bottom, to derive the empty clause, we see that the
two possible saturations yield complementary clauses. ��

We now come to the main results of this section, characterising the nonsin-
gular MUs in 2-CNF. First the combinatorial part of the characterisation: the
goal is to show that F ∈ 2–MU ′ can be saturated to a DFM, up to renaming,
i.e., there exist a positive clause and a negative clause which can be partially
saturated to full positive and negative clauses. The proof is based on the Split-
ting Ansatz. Unlike MU ′

δ=2, 2-CNF MUs are not stable under saturation. So we
use local saturation on a variable v ∈ var(F ), where we get splitting instances
F0, F1 ∈ 2–MU . Then we show F0, F1 are indeed in RHO with exactly 2 unit-
clauses, and we apply that any of these unit-clauses can be saturated to a full
clause. W.l.o.g. we saturate any of the two unit-clauses in F0 to a full positive
clause. Now one of the two unit-clauses in F1 can be saturated to a full negative
clause, and the two full monotone clauses can be lifted to F . This yields a DFM
which is a partial saturation of F . The details are as follows:

Theorem 5. Every 2–MU ′ can be partially saturated to some DFC.

Proof. We show F ∈ 2–MU ′ contains, up to flipping of signs, exactly one positive
and one negative clause, and these can be saturated to full monotone clauses. F
has no unit-clause and is 2-uniform. By Lemma 8 every literal in F has degree 2.
Let F ′ ∈ MU be a clause-set obtained from F by locally saturating v ∈ var(F ).
So F0 := 〈v → 0〉 ∗ F ′ and F1 := 〈v → 1〉 ∗ F ′ are in 2–MU (Lemma 1) and each
has exactly two unit-clauses (obtained precisely from the clauses in F containing
v, v). By Lemma 8 holds F0, F1 ∈ RHO∩MUδ=1. And by Lemma 9 all variables
are 1-singular and in each of F0, F1, both unit-clauses can be partially saturated
to a full clause. These full clauses can be lifted to the original F (by adding v
resp. v) while maintaining minimal unsatisfiability (if both splitting results are
MU, so is the original clause-set; see [19, Lemma 3.15, Part 1]). Now we show
that for a full clause in F0, F1 adding v or v yields a full clause in F , i.e., only
v vanished by splitting. All variables in F0, F1 are 1-singular, while F has no
singular variable. If there would be a variable w in F0 but not in F1, then the
variable degree of w would be 2 in F , a contradiction. Thus var(F0) ⊆ var(F1).
Similarly we obtain var(F1) ⊆ var(F0). So var(F0) = var(F1) = var(F ) \ {v}.

It remains to show that we can lift w.l.o.g. a full positive clause from F0 and
a full negative clause from F1. Let C1, C2 ∈ F be the clauses containing v and
D1,D2 ∈ F be the clauses containing v. Assume the unit-clause C1 \ {v} ∈ F0

can be saturated to a full positive clause. This implies that every C ∈ F \ {C1}
has a negative literal (since F \{C1} is satisfied by setting all variables to false).
Then by Lemma 9 the unit-clause C2 \ {v} can be saturated to a full negative
clause in F0. Similarly we obtain that every clause in F \ {C2,D1,D2} has a
positive literal. So F has exactly one positive clause C1 and all binary clauses in
F0, F1 are mixed. Since c(F1) = n(F1)+1 = (n(F )−1)+1 = n(F ) and there are
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n(F ) − 1 occurrences of each literal in F1, w.l.o.g. D1 is a negative clause and
D2 is mixed. Recall that in MUδ=1 every two clauses have at most one clash,
and so D1 \ {v} ∈ F1 can be saturated to a full negative clause (otherwise there
would be a clause with more than one clash with the full clause). So we obtain
a DFM which is a partial saturation of F . ��

By [7, Theorem 4], every MSD with at least two vertices has at least two
linear vertices. We need to characterise a special case of MSDs with exactly two
linear vertices. This could be derived from the general characterisation by [8,
Theorem 7], but proving it directly is useful and not harder than to derive it:

Lemma 10. An MSD G with exactly two linear vertices, where every other
vertex has indegree and outdegree both at least 2, is a dipath.

Proof. We show that G is a dipath by induction on n := |V (G)|. For n = 2
clearly G is MSD iff G is a dipath. So assume n ≥ 3. Consider a linear vertex
v ∈ V (G) with arcs (w, v) and (v, w′), where w,w′ ∈ V (G). If w �= w′ would
be the case, then the MSD obtained by removing v and adding the arc (w,w′)
had only one linear vertex (since the indegree/outdegree of other vertices are
unchanged). So we have w = w′. Let G′ be the MSD obtained by removing v.
Now w is a linear vertex in G′ (since every MSD has at least two linear vertices).
By induction hypothesis G′ is a dipath, and the assertion follows. ��

By definition, for a mixed binary clause-set F a 1-singular variable is a linear
vertex in pdg(F ). So by the Correspondence Theorem, a variable v in a DFM F
has degree 4 (i.e., degree 2 in the core) iff v is a linear vertex in pdg(F ).

Theorem 6. F ∈ DFC can be partially marginalised to some nonsingular ele-
ment of 2–CLS if and only if F ∼= DBn(F ).

Proof. Since Bn is a marginalisation of DBn (obviously then the unique nonsin-
gular one), it remains to show that a DFM F , which can be partially marginalised
as in the assertion, is isomorphic to DBn(F ). We show that pdg(F ) has exactly
two linear vertices, while all other vertices have indegree and outdegree at
least two, which proves the statement by Lemma 10. Consider a nonsingular
G ∈ 2–MU obtained by marginalisation of F . Recall that by the Marginalisa-
tion Lemma 5 the mixed clauses are untouched. pdg(F ) has at least two linear
vertices, so the mixed clauses in G have at least two 1-singular variables. Indeed
the core of F has exactly two 1-singular variables, since these variables must
occur in the positive and negative clauses of G, which are of length two. The
other vertices have indegree/outdegree at least two due to nonsingularity. ��

By Theorems 5, 6 we obtain a new proof for the characterisation of nonsin-
gular MUs with clauses of length at most two:

Corollary 2 ([15]). For F ∈ 2–MU ′ holds F ∼= Bn(F ).
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8 Conclusion

We introduced the novel classes FM and DFM, which offer new conceptual
insights into MUs. Fundamental for FM is the observation, that the easy syn-
tactical criterion of having both full monotone clauses immediately yields the
complete understanding of the semantics of the core. Namely that the satisfying
assignments of the core are precisely the negations of the full monotone clauses,
and so all variables are either all true or all false, i.e., all variables are equivalent.
DFM is the class of FMs where the core is a 2-CNF. This is equivalent to the
clauses of the core, which must be mixed binary clauses {v, w}, constituting an
MSD via the arcs v → w. Due to the strong correspondence between DFMs and
MSDs, once we connect a class of MUs to DFM, we can use the strength of
graph-theoretical reasoning. As a first application of this approach, we provided
the known characterisations of MU ′

δ=2 and 2–MU ′ in an accessible manner,
unified by revealing the underlying graph-theoretical reasoning.
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12. Büning, H.K.: On subclasses of minimal unsatisfiable formulas. Discrete Appl.
Math. 107(1–3), 83–98 (2000). https://doi.org/10.1016/S0166-218X(00)00245-6
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16. Büning, H.K., Zhao, X.: On the structure of some classes of minimal unsatisfiable
formulas. Discrete Appl. Math. 130(2), 185–207 (2003). https://doi.org/10.1016/
S0166-218X(02)00405-5

17. Kullmann, O.: An application of matroid theory to the SAT problem. In: Pro-
ceedings of the 15th Annual IEEE Conference on Computational Complexity, pp.
116–124, July 2000. See also TR00-018, Electronic Colloquium on Computational
Complexity (ECCC), March 2000. https://doi.org/10.1109/CCC.2000.856741

18. Kullmann, O., Zhao, X.: On Davis-Putnam reductions for minimally unsatisfiable
clause-sets. Theor. Comput. Sci. 492, 70–87 (2013). https://doi.org/10.1016/j.tcs.
2013.04.020

19. Kullmann, O., Zhao, X.: Bounds for variables with few occurrences in conjunc-
tive normal forms. Technical report arXiv:1408.0629v5 [math.CO], arXiv, January
2017. http://arxiv.org/abs/1408.0629

20. Lee, C.: On the size of minimal unsatisfiable formulas. Electron. J. Combinatorics
16(1) (2009). Note #N3. http://www.combinatorics.org/Volume 16/Abstracts/
v16i1n3.html

21. Liberatore, P.: Redundancy in logic II: 2CNF and Horn propositional formulae.
Artif. Intell. 172(2–3), 265–299 (2008). https://doi.org/10.1016/j.artint.2007.06.
003

22. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput.
Syst. Sci. 37(1), 2–13 (1988). https://doi.org/10.1016/0022-0000(88)90042-6

23. Brendan McKay (https://mathoverflow.net/users/9025/brendan-mckay). Answer:
Graph isomorphism problem for minimally strongly connected digraphs. Math-
Overflow, August 2017. https://mathoverflow.net/q/279299 (version: 2017-08-
23); question asked by Hoda Abbasizanjani (Swansea University).https://
mathoverflow.net/a/279386

https://doi.org/10.1007/s00453-007-9074-x
https://doi.org/10.1016/S0166-218X(00)00245-6
https://doi.org/10.3233/978-1-58603-929-5-339
https://doi.org/10.1007/s10472-005-0422-8
http://wwwcs.uni-paderborn.de/cs/ag-klbue/de/research/MinUnsat/index.html
https://doi.org/10.1016/S0166-218X(02)00405-5
https://doi.org/10.1016/S0166-218X(02)00405-5
https://doi.org/10.1109/CCC.2000.856741
https://doi.org/10.1016/j.tcs.2013.04.020
https://doi.org/10.1016/j.tcs.2013.04.020
http://arxiv.org/abs/1408.0629v5
http://arxiv.org/abs/1408.0629
http://www.combinatorics.org/Volume_16/Abstracts/v16i1n3.html
http://www.combinatorics.org/Volume_16/Abstracts/v16i1n3.html
https://doi.org/10.1016/j.artint.2007.06.003
https://doi.org/10.1016/j.artint.2007.06.003
https://doi.org/10.1016/0022-0000(88)90042-6
https://mathoverflow.net/users/9025/brendan-mckay
https://mathoverflow.net/q/279299
https://mathoverflow.net/a/279386
https://mathoverflow.net/a/279386


Finding All Minimal Safe Inductive Sets

Ryan Berryhill1(B), Alexander Ivrii3, and Andreas Veneris1,2

1 Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Canada

{ryan,veneris}@eecg.utoronto.ca
2 Department of Computer Science, University of Toronto, Toronto, Canada

3 IBM Research Haifa, Haifa, Israel
ALEXI@il.ibm.com

Abstract. Computing minimal (or even just small) certificates is a cen-
tral problem in automated reasoning and, in particular, in automated
formal verification. For unsatisfiable formulas in CNF such certificates
take the form of Minimal Unsatisfiable Subsets (MUSes) and have a wide
range of applications. As a formula can have multiple MUSes that each
provide different insights on unsatisfiability, commonly studied problems
include computing a smallest MUS (SMUS) or computing all MUSes
(AllMUS) of a given unsatisfiable formula. In this paper, we consider
certificates to safety properties in the form of Minimal Safe Inductive
Sets (MSISes), and we develop algorithms for exploring such certificates
by computing a smallest MSIS (SMSIS) or computing all MSISes (AllM-
SIS) of a given safe inductive invariant. More precisely, we show how the
well-known MUS enumeration algorithms CAMUS and MARCO can be
adapted to MSIS enumeration.

1 Introduction

Computing minimal (or even just small) certificates is a central problem in
automated reasoning, and, in particular, in Model Checking. Given an unsat-
isfiable Boolean formula in conjunctive normal form (CNF), a minimal unsatis-
fiable subset (MUS) is a subset of the formula’s clauses that is itself unsatisfi-
able. MUSes have a wide range of applicability, including Proof-Based Abstrac-
tion [18], improved comprehension of verification results through vacuity [22],
and much more. It is not surprising that a large body of research is dedi-
cated to efficiently computing MUSes. As a formula can have multiple MUSes,
each of which may provide different insights on unsatisfiability, several algo-
rithms have been developed to extract all MUSes from an unsatisfiable formula
(AllMUS) [2,14,15,19,21], and in particular a smallest MUS of an unsatisfiable
formula (SMUS) [11]. For a recent application of AllMUS and SMUS to Model
Checking, see [8].
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For safety properties, certificates come in the form of safe inductive invari-
ants. A recent trend, borrowing from the breakthroughs in Incremental Inductive
Verification (such as IMC [17], IC3 [6], and PDR [7]), is to represent such invariants
as a conjunction of simple lemmas. Lemmas come in the form of clauses encod-
ing facts about reachable states, and hence the invariant is represented in CNF.
The problem of efficiently minimizing the set of such lemmas, and especially
constructing a minimal safe inductive subset (MSIS) of a given safe inductive
invariant has applications to SAT-based model checking [5,10], and has been
further studied in [12].

By analogy to MUS extraction, in this paper we consider the problem of com-
puting all MSISes of a given safe inductive invariant (AllMSIS), and in particular
finding the smallest MSIS (SMSIS). The problem of minimizing safe inductive
invariants appears on its surface to share many commonalities with minimizing
unsatisfiable subsets. However, a key aspect of MUS extraction is monotonic-
ity : adding clauses to an unsatisfiable formula always yields an unsatisfiable
formula. On the other hand, MSIS extraction seems to lack this monotonicity:
adding clauses to a safe inductive formula always yields a safe formula, but it
may not yield an inductive one. In spite of non-monotonicity, this paper lifts
existing MUS enumeration algorithms to the problem of MSIS enumeration.

The CAMUS [15] algorithm solves the AllMUS problem using a well-known
hitting set duality between MUSes and minimal correction subsets (MCSes).
This work defines analogous concepts for safe inductive sets called support sets
and collapse sets, and, using a hitting set duality between them, lifts CAMUS to
MSIS extraction. When considering MSIS (resp., MUS) extraction, the algorithm
works by enumerating the collapse sets (resp. MCSes) and then exploiting the
duality to enumerate MSISes (resp. MUSes) in ascending order of size (i.e., from
smallest to largest). When considering the AllMSIS problem, the collapse set
enumeration step fundamentally limits the algorithm’s anytime performance, as
MSIS discovery can only begin after that step. However, when considering SMSIS,
the ability to discover the smallest MSIS first is a significant advantage.

MARCO [14], another significant AllMUS algorithm, addresses this limitation
by directly exploring the power set of a given unsatisfiable CNF formula. In this
work, we translate MSIS extraction to a monotone problem and demonstrate how
to solve it with MARCO. This improves anytime performance when considering
the AllMSIS problem. However, when considering SMSIS, MARCO may have to
compute every MSIS before concluding that it has found the smallest one.

Towards the goal of better understanding the complexity of MSIS prob-
lems, we also lift some well-studied MUS-based decision problems to their MSIS
analogs and demonstrate complexity results for those problems. Specifically, we
prove that the MSIS identification problem “is this subset of a CNF formula an
MSIS?” is DP -complete (i.e., it can be expressed as the intersection of an NP-
complete language and a co-NP-complete language). Further, the MSIS existence
problem “does this inductive invariant contain an MSIS with k or fewer clauses?”
is found to be ΣP

2 -complete. Both of these results match the corresponding MUS
problems’ complexities.
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Experiments are presented on hardware model checking competition bench-
marks. On 200 benchmarks, it is found that the CAMUS-based algorithm can find
all MSISes within 15 min for 114 benchmarks. The most successful MARCO-based
algorithm is almost as successful, finding all MSISes on 110 benchmarks within
the time limit. Further, the CAMUS-based algorithm solves the SMSIS problem
within 15 min on 156 benchmarks.

The rest of this paper is organized as follows. Section 2 introduces necessary
background material. Section 3 formulates the AllMSIS and SMSIS problems.
Section 4 presents the CAMUS-inspired MSIS algorithm while Sect. 5 presents the
MARCO-based one. Section 6 introduces complexity results for MSIS problems.
Section 7 presents experimental results. Finally, Sect. 8 concludes the paper.

2 Preliminaries

2.1 Basic Definitions

The following terminology and notation is used throughout this paper. A literal is
either a variable or its negation. A clause is a disjunction of literals. A Boolean
formula in Conjunctive Normal Form (CNF) is a conjunction of clauses. It is
often convenient to treat a CNF formula as a set of clauses. For a CNF formula
ϕ, c ∈ ϕ means that clause c appears in ϕ. A Boolean formula ϕ is satisfiable
(SAT) if there exists an assignment to the variables of ϕ such that ϕ evaluates
to 1. Otherwise it is unsatisfiable (UNSAT).

2.2 MUSes, MCSes and Hitting Set Duality

If ϕ is UNSAT, an UNSAT subformula ϕ1 ⊆ ϕ is called an UNSAT core of ϕ. If
the UNSAT core is minimal or irreducible (i.e., every proper subset of the core
is SAT) it is called a Minimal Unsatisfiable Subset (MUS). A subset C ⊆ ϕ is a
Minimal Correction Subset (MCS) if ϕ \ C is SAT, but for every proper subset
D � C, ϕ \D is UNSAT. In other words, an MCS is a minimal subset such that
its removal would render the formula satisfiable.

The hitting set duality between MUSes and MCSes states that a subset C
of ϕ is a MUS if and only if C is a minimal hitting set of MCSes(ϕ), and vice
versa. For example, if C is a hitting set of MCSes(ϕ), then C contains at least
one element from every MCS and therefore corresponds to an UNSAT subset of
ϕ. Moreover, if C is minimal, then removing any element of C would result in at
least one MCS not being represented. Therefore, the resulting formula would be
SAT implying that C is in fact a MUS. For more details, see Theorem 1 in [15].

2.3 Safe Inductive Invariants and MSIS

Consider a finite transition system with a set of state variables V. The primed
versions V ′ = {v′|v ∈ V} represent the next-state functions. For each v ∈ V, v′ is
a Boolean function of the current state and input defining the next state for v.
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For any formula F over V, the primed version F ′ represents the same formula
with each v ∈ V replaced by v′.

A model checking problem is a tuple P = (Init, T r,Bad) where Init(V)
and Bad(V) are CNF formulas over V that represent the initial states and the
unsafe states, respectively. States that are not unsafe are called safe states. The
transition relation Tr(V,V ′) is a formula over V ∪V ′. It is encoded in CNF such
that Tr(v,v ′) is satisfiable iff state v can transition to state v ′.

A model checking instance is Unsafe iff there exists a natural number N
such that the following formula is satisfiable:

Init(v0) ∧
(N−1∧

i=0

Tr(vi ,vi+1)
)

∧ Bad(vN ) (1)

The instance is Safe iff there exists a formula Inv(V) that meets the follow-
ing conditions:

Init(v) ⇒ Inv(v ) (2)

Inv(v) ∧ Tr(v,v′) ⇒ Inv(v′) (3)

Inv(v) ⇒ ¬Bad(v) (4)

A formula satisfying (2) satisfies initiation, meaning that it contains all ini-
tial states. A formula satisfying (3) is called inductive. An inductive formula
that satisfies initiation contains all reachable states and is called an inductive
invariant. A formula satisfying (4) is safe, meaning that it contains only safe
states. A safe inductive invariant contains all reachable states and contains no
unsafe states, so it is a certificate showing that P is Safe.

For a model checking problem P with a safe inductive invariant Inv0 in CNF,
a subset Inv1 ⊆ Inv0 is called a Safe Inductive Subset (SIS) of Inv0 relative to
P if Inv1 is also a safe inductive invariant. Furthermore, if no proper subset of
Inv1 is a SIS, then Inv1 is called a Minimal Safe Inductive Subset (MSIS).

2.4 Monotonicity and MSMP

Let R denote a reference set, and let p : 2R �→ {0, 1} be a predicate defined over
elements of the power set of R. The predicate p is monotone if p(R) holds and
for every R0 ⊆ R1 ⊆ R, p(R0) ⇒ p(R1). In other words, adding elements to a
set that satisfies the predicate yields another set that satisfies the predicate.

Many computational problems involve finding a minimal subset that satisfies
a monotone predicate. Examples include computing prime implicants, minimal
models, minimal unsatisfiable subsets, minimum equivalent subsets, and minimal
corrections sets [16]. For example, for MUS extraction the reference set is the
original formula ϕ, and for a subset C ⊆ ϕ, the monotone predicate is p(C) = 1
iff C is UNSAT. The Minimal Set over a Monotone Predicate problem (MSMP) [16]
generalizes all of these notions to the problem of finding a subset M ⊆ R such
that p(M) holds, and for any M1 � M , p(M1) does not hold. State-of-the-art
MSMP algorithms heavily rely on monotonicity.
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On the other hand, MSIS extraction does not appear to be an instance of
MSMP. The natural choice of predicate is “p(Inv) = 1 iff Inv is a SIS.” This
predicate is not monotone, as adding clauses to a safe inductive invariant can
yield a non-inductive formula.

3 Problem Formulation: AllMSIS and SMSIS

Modern safety checking algorithms (such as IC3 [6] and PDR [7]) return safe
inductive invariants represented as a conjunction of clauses, and hence in CNF.
In general there is no guarantee that these invariants are simple or minimal.
On the other hand, some recent SAT-based model-checking algorithms [5,10]
benefit from simplifying and minimizing these invariants. Given a safe inductive
invariant Inv0 in CNF, some common techniques include removing literals from
clauses of Inv0 [5] and removing clauses of Inv0 [5,12].

In this paper, we address the problem of minimizing the set of clauses in a
given safe inductive invariant. We are interested in computing a smallest safe
inductive subset or computing all minimal safe inductive subsets, as stated below.

Enumeration of All Minimal Safe Inductive Subsets (AllMSIS): Given a
model checking problem P = (Init, T r,Bad) and safe inductive invariant Inv0,
enumerate all MSISes of Inv0.

Finding a Smallest-Sized Safe Inductive Subset (SMSIS): Given a model
checking problem P = (Init, T r,Bad) and safe inductive invariant Inv0, find a
minimum-sized MSIS of Inv0.

On the surface, computing minimal safe inductive subsets of an inductive
invariant appears closely related to computing minimal unsatisfiable subsets of
an unsatisfiable formula. However, we are not aware of a direct simple translation
from SMSIS and AllMSIS to the analogous MUS problems. This may be due to
the lack of monotonicity noted in the previous subsection.

4 MSIS Enumeration Using Hitting Set Duality

In this section we examine precise relationships between different clauses in a
safe inductive invariant. We define the notions of a support set and a collapse set
of an individual clause in the invariant, which are somewhat analogous to MUSes
and MCSes, respectively. A hitting set duality is identified between support and
collapse sets and used to develop an MSIS enumeration algorithm. The algorithm
is based on CAMUS [15], a well-known algorithm for MUS enumeration. We present
a detailed example to illustrate the concepts and algorithm.

4.1 Inductive Support and Collapse Sets

For a clause c in an inductive invariant Inv, c is inductive relative to Inv by
definition. However, it may be the case that c is inductive relative to a small
subset of Inv. The notions of support sets, borrowed from [4], and minimal
support sets formalize this concept:
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Definition 1. Given a model checking problem P = (Init, T r,Bad), a safe
inductive invariant Inv, and a clause c ∈ Inv, a support set Γ of c is a subset of
clauses of Inv relative to which c is inductive (i.e., the formula Γ ∧c∧Tr∧¬c′ is
UNSAT). A minimal support set Γ of c is a support set of c such that no proper
subset of Γ is a support set of c.

Intuitively, minimal support sets of c ∈ Inv correspond to MUSes of Inv∧c∧
Tr ∧ ¬c′ (where the minimization is done over Inv). Thus support sets provide
a more refined knowledge of why a given clause is inductive. Note that as c
appears unprimed in the formula, it never appears in any of its minimal support
sets. Support sets have various applications, including MSIS computations [12]
and a recent optimization to IC3 [3]. The set of all minimal support sets of c is
denoted MinSups(c), and MinSup(c) denotes a specific minimal support set of c.

Inspired by the duality between MUSes and MCSes, we also consider sets of
clauses that cannot be simultaneously removed from a support set. Collapse sets
and minimal collapse sets, defined below, formalize this concept.

Definition 2. Given a model checking problem P = (Init, T r,Bad), a safe
inductive invariant Inv, and a clause c ∈ Inv, a collapse set Ψ of c is a subset
of clauses of Inv such that Inv \ Ψ is not a support set of c. A minimal collapse
set Ψ of c is a collapse set such that no proper subset of Ψ is a collapse set of c.

We denote by MinCols(c) the set of all collapse sets of c. Somewhat abusing the
notation, we define the support sets and collapse sets of ¬Bad as related to safety
of P . Formally, Γ ⊆ Inv0 is a support set of ¬Bad iff Γ ∧ Bad is UNSAT. The
set Ψ ⊆ Inv0 is a collapse set of ¬Bad if Inv0 \ Ψ is not a support set of ¬Bad.
Minimal support sets and minimal collapse sets of ¬Bad are defined accordingly.
The following lemma summarizes the relations between various definitions.

Lemma 1. Let Inv1 be a SIS of Inv0.

1. There exists Γ ∈ MinSups(¬Bad) such that Γ ⊆ Inv1;
2. For each c ∈ Inv1, there exists Γ ∈ MinSups(c) such that Γ ⊆ Inv1;
3. For each Ψ ∈ MinCols(¬Bad) we have that Ψ ∩ Inv1 
= ∅;
4. For each c ∈ Inv1 and for each Ψ ∈ MinCols(c) we have that Ψ ∩ Inv1 
= ∅.

The following example illustrates the concept of support sets, which are some-
what analogous to MUSes. The example is extended throughout the paper to
illustrate additional concepts and algorithms.

Running Example: Let us suppose that Inv = {c1, c2, c3, c4, c5, c6} is a safe
inductive invariant for P . Omitting the details on the actual model check-
ing problem, let us suppose that the minimal support sets are given as fol-
lows: MinSups(¬Bad) = {{c1, c2}, {c1, c3}}, MinSups(c1) = {∅}, MinSups(c2) =
{{c4}, {c6}}, MinSups(c3) = {{c5}}, MinSups(c4) = {{c2, c5}}, MinSups(c5) =
{{c3}}, MinSups(c6) = {∅}. In particular, all the following formulas are unsatisfi-
able: c1∧c2∧¬Bad, c1∧c3∧¬Bad, c1∧Tr∧¬c′

1, c4∧c2∧Tr∧¬c′
2, c6∧c2∧Tr∧¬c′

2,
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c5 ∧ c3 ∧ Tr ∧ ¬c′
3, c2 ∧ c5 ∧ c4 ∧ Tr ∧ ¬c′

4, c3 ∧ c5 ∧ Tr ∧ ¬c′
5, c6 ∧ Tr ∧ ¬c′

6. Con-
versely, the following formulas are satisfiable: c1 ∧ ¬Bad, c2 ∧ ¬Bad, c3 ∧ ¬Bad,
c2 ∧Tr ∧¬c′

2, c3 ∧Tr ∧¬c′
3, c2 ∧ c4 ∧Tr ∧¬c′

4, c5 ∧ c4 ∧Tr ∧¬c′
4, c5 ∧Tr ∧¬c′

5.

Further, the following example illustrates the “dual” concept of collapse sets,
which are somewhat analogous to MCSes.

Running Example (cont.): The minimal collapse sets are given as fol-
lows: MinCols(¬Bad) = {{c1}, {c2, c3}}, MinCols(c1) = {∅}, MinCols(c2) =
{{c4, c6}}, MinCols(c3) = {{c5}}, MinCols(c4) = {{c2}, {c5}}, MinCols(c5) =
{{c3}}, MinCols(c6) = {∅}.

One way to construct a (not necessarily minimal) SIS of Inv is to choose
a minimal support for each clause in the invariant, and then, starting from the
support of ¬Bad, recursively add all the clauses participating in the supports. In
the running example, we only need to make the choices for MinSup(¬Bad) and
for MinSup(c2), as all other minimal supports are unique. The following example
illustrates three different possible executions of such an algorithm, demonstrating
that such an approach does not necessarily lead to an MSIS.

Running Example (cont.): Fixing MinSup(¬Bad) = {c1, c2} and MinSup
(c2) = {c4} leads to Inv1 = {c1, c2, c3, c4, c5}. The clauses c1 and c2 are chosen
to support ¬Bad, c4 is chosen to support c2, c5 is needed to support c4, and
c3 is needed to support c5. A second possibility fixes MinSup(¬Bad) = {c1, c2}
and MinSup(c2) = {c6}, which leads to Inv2 = {c1, c2, c6}. A third possibility
chooses MinSup(¬Bad) = {c1, c3} and leads to the Inv3 = {c1, c3, c5}, regardless
of the choice for MinSup(c2).

We can readily see that certain choices for minimal supports to do not pro-
duce a minimal safe inductive invariant. Indeed, Inv3 is minimal but Inv1 is
not. The problem has exactly two MSISes represented by Inv2 and Inv3, and
both also happen to be smallest minimal inductive invariants.

4.2 CAMUS for MSIS Extraction

Our MSIS enumeration algorithm is strongly motivated by CAMUS [15], which
enumerates all MUSes of an unsatisfiable formula in CNF. Given an unsatisfiable
formula ϕ, CAMUS operates in two phases. The first enumerates all MCSes of ϕ
using a MaxSAT-based algorithm. The second phase enumerates all MUSes of
ϕ based on the hitting set duality between MCSes and MUSes. Our algorithm
performs similar operations involving the analogous concepts of support and
collapse sets.

4.3 The CAMSIS Algorithm

Given a model checking problem P = (Init, T r,Bad) and safe inductive invariant
Inv0 for P , the algorithm also operates in two phases. The first phase iterates
over all c ∈ Inv0 ∪ {¬Bad} and computes the set MinCols(c) of all minimal
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collapse sets of c. This is analogous to the first phase of CAMUS and is done very
similarly. Indeed, collapse sets of c are enumerated by computing an UNSAT
core of Inv0 ∧ c∧Tr ∧¬c′, while minimizing with respect to the clauses of Inv0.

Now, one possibility is to enumerate all minimal support sets of each
c ∈ Inv0 ∪ {¬Bad}, based on the duality between MinCols(c) and MinSups(c),
and then to enumerate all MSISes of Inv0 using a dedicated algorithm that
chooses support sets in a way to produce minimal invariants. Instead, we sug-
gest Algorithm 1 to enumerate MSISes of Inv0 directly, only based on MinCols
(and without computing MinSups first). One can think of this as a SAT-based
algorithm for hitting-set duality “with a twist.” It uses the last two statements
in Lemma 1 to construct a formula in which satisfying assignments correspond
to SISes, and then finding all satisfying assignments that correspond to MSISes.

Algorithm 1. CAMSIS
Input: Inv0 = {c1, . . . , cn}, MinCols(¬Bad), MinCols(c) for every c ∈ Inv0
Output: MSISes(Inv0) relative to P

1: introduce new variable sc for each c ∈ Inv0
2: ϑ1 =

∧
{d1,...,dk}∈MinCols(¬Bad) (sd1 ∨ · · · ∨ sdk)

3: ϑ2 =
∧

c∈Inv0

∧
{d1,...,dk}∈MinCols(c) (¬sc ∨ sd1 ∨ · · · ∨ sdk)

4: ϑ = ϑ1 ∧ ϑ2

5: j ← 1
6: loop
7: while (ϑ ∧ AtMost({sc1 , . . . , scn}, j)) is SAT (with model M) do
8: Let Inv = {ci | M |= (sci = 1)}
9: ϑ ← ϑ ∧ (

∨
ci∈Inv ¬sci)

10: MSISes ← MSISes ∪ {Inv}
11: end while
12: break if ϑ is UNSAT
13: j ← j + 1
14: end loop
15: return MSISes

The algorithm accepts the initial safe inductive invariant Inv0 = {c1, . . . , cn},
the set of minimal collapse sets of ¬Bad, and the set of minimal collapse sets
for each clause in the invariant. All SAT queries use an incremental SAT solver.
On line 1, an auxiliary variable sc is introduced for each clause c. The intended
meaning is that sc = 1 iff c is selected as part of the MSIS. On lines 2–4,
the algorithm constructs a formula ϑ that summarizes Lemma 1. First, for each
minimal collapse set Ψ of ¬Bad, at least one clause of Ψ must be in the invariant.
This ensures that the invariant is safe. Further, for each selected clause c (i.e.,
where sc = 1) and for each minimal collapse set Ψ of c, at least one clause of
Ψ must be in the invariant. This ensures that each selected clause is inductive
relative to the invariant, thereby ensuring that the resulting formula is inductive.
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The algorithm uses the AtMost cardinality constraint to enumerate solutions
from smallest to largest. The loop on line 6 searches for MSISes using ϑ. It
starts by seeking MSISes of cardinality 1 and increases the cardinality on each
iteration. Each time an MSIS is found, all of its supersets are blocked by adding
a clause on line 9. Line 12 checks if all MSISes have been found using ϑ without
any AtMost constraint. This check determines if any MSISes of any size remain,
and if not the algorithm exits the loop. The following example illustrates an
execution of the algorithm.

Running Example (cont.): Initially, ϑ = (s1) ∧ (s2 ∨ s3) ∧ (¬s2 ∨ s4 ∨ s6) ∧
(¬s3 ∨s5)∧ (¬s4 ∨s2)∧ (¬s4 ∨s5)∧ (¬s5 ∨s3). Let S = {s1, . . . , s6}. It is easy to
see that both ϑ ∧ AtMost(S, 1) and ϑ ∧ AtMost(S, 2) are UNSAT. Suppose that
the first solution returned for ϑ ∧ AtMost(S, 3) is s1 = 1, s2 = 0, s3 = 1, s4 =
0, s5 = 1, s6 = 0. It corresponds to a (minimum-sized) safe inductive invariant
{c1, c3, c5}. It is recorded and ϑ is modified by adding the clause (¬s1∨¬s3∨¬s5).
Rerunning on ϑ ∧ AtMost(S, 3) produces another solution s1 = 1, s2 = 1, s3 =
0, s4 = 0, s5 = 0, s6 = 1, corresponding to the MSIS {c1, c2, c6}. It is recorded
and ϑ is modified by adding (¬s1 ∨¬s2 ∨¬s6). Now ϑ∧AtMost(S, 3) is UNSAT.
In addition, ϑ is UNSAT and the algorithm terminates.

We now prove the algorithm’s completeness and soundness. The proof relies
on the fact that satisfying assignments of the formula ϑ constructed on line 4
are safe inductive subsets of the given inductive invariant. The theorem below
demonstrates this fact.

Theorem 1. Each satisfying assignment M |= ϑ corresponds to a SIS of Inv0.

Proof. ϑ is the conjunction of ϑ1 and ϑ2. Each clause of ϑ2 relates to a clause
c ∈ Inv0 and collapse set Ψ of c. It requires that either c is not selected or an
element of Ψ is selected. ϑ2 contains all such constraints, so it requires that for
each clause c ∈ Inv0, either c is not selected or a member of every minimal
collapse set of c is selected. By duality, this is equivalent to requiring a support
set of c is selected. Therefore ϑ2 requires that an inductive formula is selected.

ϑ1 encodes the additional constraint that a support set of ¬Bad is selected. In
other words, it requires that a safe formula is selected. Since each clause of Inv0

must satisfy initiation by definition, a satisfying assignment of ϑ corresponds to
a safe inductive invariant contained within Inv0. �
Corollary 1. Algorithm1 returns the set of all MSISes of Inv0.

Proof. The algorithm finds only minimal models of ϑ and finds all such models.

Several simple optimizations are possible. The technique in [12] describes an
algorithm to identify certain clauses that appear in every inductive invariant. If
such a set N is known in advance, it is sound to add constraints (sc) to ϑ for
each c ∈ N and start the search from cardinality |N |. Further, it is possible to
start by finding collapse sets only for the clauses in N , and then find collapse
sets for the clauses in those collapse sets, and so on until a fixpoint is reached.
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5 MARCO and MSIS Extraction

In this section we show how the MARCO algorithm for MUS enumeration [14]
can be adapted for MSIS enumeration. In Sect. 5.1 we present the MARCO algo-
rithm from [14] trivially extended to a more general class of monotone predicate
problems [16]. In Sect. 5.2 we describe a monotone reformulation of the MSIS
extraction problem and fill in the missing details on the special functions used
by the MARCO algorithm.

5.1 MARCO Algorithm for MSMP

Algorithm 2 displays the basic MARCO algorithm from [14] trivially extended to
the more general class of monotone predicates [16]. The algorithm accepts a
monotone predicate p and a set F satisfying p(F ) = 1. It returns the set of all
minimal subsets of F satisfying p. Recall that the monotonicity of p means that
p(F0) ⇒ p(F1) whenever F0 ⊆ F1.

Algorithm 2. MARCO for MSMP
Input: monotone predicate p, formula F in CNF s.t. p(F ) = 1
Output: set M of all minimal subsets of F that satisfy p

1: map ← �
2: while map is SAT do
3: seed ← getUnexplored(map)
4: if p(seed) = 0 then
5: mss ← grow(seed)
6: map ← map ∧ blockDown(mss)
7: else
8: mus ← shrink(seed)
9: M ← M ∪ {mus}

10: map ← map ∧ blockUp(mus)
11: end if
12: end while
13: return M

MARCO directly explores the power set lattice of the input set F . In greater
detail, it operates as follows. Seeds are selected using a Boolean formula called
the map, where each satisfying assignment corresponds to an unexplored element
of the power set. This is handled by the getUnexplored procedure on line 3.
The map has a variable for each element of F , such that the element is selected
as part of the seed iff the variable is assigned to 1. Initially, the map is empty
and the first seed is chosen arbitrarily.

If p(seed) = 0, the grow procedure attempts to expand it to a larger set
mss that also does not satisfy p (line 5). This can be accomplished by adding
elements of F \ seed and checking if the result satisfies p. If so, the addition
of the element is backed out, otherwise it is kept. Once every such element has
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been tried, the result it a maximal set that does not satisfy p. Since any subset
of such a set does not satisfy p, the algorithm blocks mss and all of its subsets
from consideration as future seeds by adding a new clause to the map (line 6).

Conversely, if p(seed) = 1, it is shrunk to a minimal such set (an MSMP)
by removing clauses in a similar fashion using the shrink procedure (line 8).
Subsequently, the minimal set and all of its supersets are blocked by adding a
clause to the map (line 10). This is because a strict superset of such a set is not
minimal, and therefore not an MSMP.

MUS enumeration is a concrete instantiation of this algorithm. The natural
choice of predicate is p(F ) = 1 iff F is unsatisfiable. The shrink subroutine
returns a MUS of seed. The grow subroutine returns a maximal satisfiable subset
of F containing seed.

5.2 A Monotone Version of MSIS Enumeration

Suppose that we are given a safe inductive invariant Inv0. In order to extract
MSISes of Inv0 with MARCO, it is necessary to construct a monotone predicate
such that the minimal subsets satisfying this monotone predicate are MSISes.
As we saw before, the predicate p(F ) = “is F a SIS of Inv0?” is not monotone.
However, let us define the predicate p0(F ) = “does F contain a SIS of Inv0?”

Lemma 2. The predicate p0 defined above is monotone. Furthermore, minimal
subsets of Inv0 satisfying p0 are MSISes of Inv0.

Proof. To show monotonicity of p0, suppose that F0 ⊆ F1 ⊆ Inv0 and suppose
that G ⊆ F0 is a SIS of F0. Then G is also a SIS of F1. For the second property,
note that a minimal set that contains a SIS must be a SIS itself. �

In order to apply p0 for computing MSISes, we need to specify the missing
subroutines of the MARCO algorithm, or equivalently we need to show how to
compute p0(seed), and how to implement shrink and grow.

In order to compute p0(seed), we need check whether seed contains a SIS.
We accomplish this using the algorithm MaxIndSubset that computes a maximal
inductive subset of a potentially non-inductive set of clauses. Following [12], we
compute MaxIndSubset(R) of a set of clauses R by repeatedly removing those
clauses of R that are not inductive with respect to R, and we check whether the
fixpoint R0 of this procedure is safe using a SAT solver. In particular we can
replace the condition p0(F ) = “does F contain a SIS” by an equivalent condition
“is MaxIndSubset(F ) safe?”

The shrink procedure involves finding an MSIS of MaxIndSubset(seed).
A basic algorithm that finds a single MSIS is presented in [5]. Given a safe
inductive invariant R, this algorithm repeatedly selects a clause c in R and
checks whether MaxIndSubset(R \ {c}) is safe. If so, then R is replaced by
MaxIndSubset(R \ {c}). For more details and optimizations, refer to [12].

The grow procedure expands a seed that does not contain a SIS to a maximal
subset of Inv0 that does not contain a SIS. A basic algorithm repeatedly selects
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a clause c ∈ Inv0 \ seed and checks whether p0(seed ∪ {c}) = 0. If so, then seed
is replaced by seed ∪ {c}. The following continuation of the running example
demonstrates several iterations of MARCO.

Running Example (cont.): Assume that grow and shrink are implemented
as described above, and the clauses are always processed in the order of their
index. On the first iteration, suppose getUnexplored(map) returns seed = ∅.
The grow procedure initially sets mss = seed = ∅ and makes the following
queries and updates:

– MaxIndSubset({c1}) = {c1} is not safe; mss ← mss ∪ {c1};
– MaxIndSubset({c1, c2}) = {c1} is not safe; mss ← mss ∪ {c2};
– MaxIndSubset({c1, c2, c3}) = {c1} is not safe; mss ← mss ∪ {c3};
– MaxIndSubset({c1, c2, c3, c4}) = {c1} is not safe; mss ← mss ∪ {c4};
– MaxIndSubset({c1, c2, c3, c4, c5}) = {c1, c2, c3, c4, c5} is safe;
– MaxIndSubset({c1, c2, c3, c4, c6}) = {c1, c2, c6} is safe.

Thus at the end we obtain mss = {c1, c2, c3, c4}. Next, map is updated
to map ∧ blockDown({c1, c2, c3, c4}), forcing seed to include either c5 or c6

from thereon. On the second iteration, let’s suppose that getUnexplored(map)
returns seed = {c1, c2, c3, c4, c5, c6}. The shrink procedure initially sets mus =
MaxIndSubset(seed) = {c1, c2, c3, c4, c5, c6} and makes the following queries and
updates:

– MaxIndSubset(mus \ {c1}) = {c2, c3, c4, c5, c6} is not safe;
– MaxIndSubset(mus \ {c2}) = {c1, c3, c5, c6} is safe; mus ← {c1, c3, c5, c6};
– MaxIndSubset(mus \ {c3}) = {c1, c6} is not safe;
– MaxIndSubset(mus \ {c5}) = {c1, c6} is not safe;
– MaxIndSubset(mus \ {c6}) = {c1, c3, c5} is safe; mus ← {c1, c3, c5}.

Hence at the end we obtain mus = {c1, c3, c5}. This allows to update map to
map ∧ blockUp{c1, c3, c5}, forcing seed to exclude either c1, c3 or c5 thereafter.

It is important to note that in practice grow and shrink are implemented
using additional optimizations. The example uses the simple versions for ease-
of-understanding.

6 Complexity of MSIS and MUS

This section briefly summarizes complexity results for the MUS and MSIS iden-
tification and existence problems. The results for MUS are well-known while,
as far as we know, the results for MSIS are novel. Note that the algorithms
presented in Sects. 4 and 5 solve the function problems of AllMSIS and SMSIS.
The complexity of related MUS problems has been studied in works such as [13].
In this section, we study closely-related decision problems, which are also solved
implicitly by the presented algorithms. We present the problems and their known
complexity classes below.
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Lemma 3. The MUS existence problem “does F0 have a MUS of size k or less?”
is ΣP

2 -complete.

Lemma 4. The MUS identification problem “is F1 a MUS of F0?” is DP -
complete.

Proofs of the above lemmas are presented in [9,20], respectively. The novel
result for the MSIS existence problem relies on a reduction from the MUS exis-
tence problem. The problem is similarly stated as “does Inv0 have an MSIS
of size k or less?” To see that it is in ΣP

2 , notice that it can be solved by a
non-deterministic Turing machine that guesses a subset of Inv0 and checks if
it is a SIS, which requires only a constant number of satisfiability queries. We
demonstrate that it is ΣP

2 -Hard by reduction from the MUS existence problem.

Theorem 2. MUS existence problem ≤P
m MSIS existence problem.

Proof. Let (C, k) be an instance of the MUS existence problem. Construct an
MSIS existence instance as follows:

InvC = {(ci ∨ ¬Bad) : ci ∈ C}
Init = ¬Bad

Tr = {(v′
i = vi) : vi ∈ V ars(C)}

where Bad is a new variable that does not appear in C. InvC is a safe inductive
invariant because:

1. Init ⇒ InvC since ¬Bad satisfies every clause
2. InvC is inductive because every formula is inductive for Tr
3. InvC ⇒ ¬Bad since InvC ∧ Bad is equi-satisfiable with C, which is UNSAT.

Next, we show that every MSIS of InvC corresponds to a MUS of C. For any
D ⊆ C, let InvD = {(ci ∨ ¬Bad) : ci ∈ D}. Note that:

1. Every InvD satisfies initiation
2. Every InvD is inductive
3. InvD ∧ Bad is equi-satisfiable with D. It is UNSAT iff D is UNSAT.

The three points above imply InvD is a SIS iff D is an UNSAT core, so InvD is
an MSIS iff D is a MUS. This implies that InvC contains an MSIS of size k or
less iff C contains a MUS of size k or less. �
Corollary 2. MUS identification problem ≤P

m MSIS identification problem.

Proof. Follows from the same reduction used to prove Theorem 2.

We now present the proof that the MSIS identification problem is DP -
complete. It is DP -Hard due to Corollary 2. The proof that it is in DP is
presented in Theorem 3 below.
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Theorem 3. The MSIS identification problem “is Inv1 an MSIS of Inv0?” is
in DP .

Proof. Let Inv0 be an safe inductive invariant for P = (Init, T r,Bad). Let L1

be the language “subsets of Inv0 that do not (strictly) contain a SIS.” L1 is
in NP. Given a C0 ⊆ Inv0, MaxIndSubset(C0) [12] would execute at most |C0|
satisfiability queries to determine that C0 does not contain a SIS. All of the
queries return SAT in this case. Given a C ∈ L1, executing MaxIndSubset on
the |C| strict subsets of cardinality |C|−1 yields O(|C|2) satisfying assignments.
They form a certificate for a positive instance with size polynomial in |C|.

Let L2 be the language “subsets of Inv0 that are SISes.” L2 is in co-NP.
This follows from the fact that C ⊆ Inv is a SIS if C ∧ Tr ∧ ¬C ′ and C ∧ Bad
are both UNSAT. The satisfying assignment for the disjunction of those two
formulas forms a certificate for a negative instance (where C is not a SIS).

The language “MSISes of Inv0” is L1 ∩ L2, so it is in DP . �

7 Experimental Results

This section presents empirical results for the presented algorithms and the MSIS
algorithm of [12] on safe single-property benchmarks from the 2011 Hardware
Model Checking Competition [1]. This particular benchmark set was chosen
because it has a large number of problems solved during the competition. Experi-
ments are executed on a 2.00 GHz Linux-based machine with an Intel Xeon E7540
processor and 96 GB of RAM. In order to generate inductive invariants for min-
imization, our implementation of IC3 is run with a 15 min time limit, which
produces invariants in 280 cases. In 77 cases, IC3 generates a minimal invariant
(including cases where the given property is itself inductive). These benchmarks
are removed from further consideration, as are 3 additional benchmarks for which
none of the minimization algorithms terminated within the time limit. For each
of the 200 remaining testcases, CAMSIS (Sect. 4.3), MSIS [12], and MARCO (Sect. 5)
are used to minimize the inductive invariant. Motivated by [14], we consider 3
slightly different versions of MARCO, by forcing getUnexplored to return either
any seed satisfying the map (MARCO-ARB), the seed of smallest possible cardinal-
ity (MARCO-UP), or the seed of largest possible cardinality (MARCO-DOWN). In this
way, MARCO-UP favors earlier detection of msses, while MARCO-DOWN favors earlier
detection of muses (using the terminology of Algorithm2). Each of the above
techniques is run with a time limit of 15 min, not including the time required to
run IC3.

Table 1 summarizes the results. For each technique and for several different
values of k, the first line reports the number of testcases on which the technique
is able to find k MSISes (or all MSISes if this number does not exceed k).
The second line reports the total time, in seconds. In addition, for the CAMSIS
algorithm, the column “preparation” reports the number of testcases in which
it was able to enumerate all collapse sets, and the total time for doing so.

First we note that while CAMSIS spends a significant amount of time to com-
pute the collapse sets, it is the winning algorithm when computing all or a large
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Table 1. Summary of results

Preparation k = 1 k = 5 k = 10 k = 100 k = ALL

MSIS 200

5,944

CAMSIS 165 156 155 155 155 114

34,212 42,907 43,842 43,853 44,047 79,908

MARCO-UP 146 145 145 142 110

58,904 60,461 60,725 62,021 83,934

MARCO-ARB 143 139 138 127 101

56,175 60,297 61,687 71,747 93,251

MARCO-DOWN 199 184 176 145 100

7,917 21,007 29,305 57,217 92,970

number of MSISes. It is also the winning algorithm for computing the guaran-
teed smallest MSIS, succeeding in 156 cases. In contrast, the best MARCO-based
approach for computing all or the smallest MSIS only succeeds in 110 cases. It is
interesting to note that this is the approach favoring earlier detection of msses
rather than muses. On the other hand, the MARCO-DOWN approach, which is tai-
lored towards finding muses, shows much better anytime behavior, prevailing
over the other algorithms when computing a small number of MSISes (such as 1,
5 or 10). We note that the result for MARCO-DOWN for k = 1 is not surprising, as
in this case the first assignment returned by getUnexplored returns the original
invariant as the seed, so MARCO-DOWN simply reduces to finding any arbitrary
MSIS of the original invariant. Finally, we note that the MARCO-ARB algorithm is
in general worse than either MARCO-DOWN or MARCO-UP.

To give some intuition on the nature of the problems considered, Table 2
shows the number of MSISes for the 115 testcases solved by at least one AllMSIS
algorithm. The largest number of MSISes was 149280. Incidentally, this the only
of the 115 benchmarks for which CAMSIS could not find every MSIS.

Table 2. Total number of MSISes (115 benchmarks)

MSISes 1 2–10 11–100 101–1000 > 1000

Frequency 55 20 17 11 12

A more in-depth analysis shows that while on average the MSIS technique
from [12] is significantly better for finding a single MSIS than CAMSIS for finding
a smallest-size MSIS, there are several cases where CAMSIS significantly outper-
forms MSIS. In other words, in some cases first finding all the collapse sets and
then finding a minimum inductive invariant using hitting set duality is faster
than looking for a minimal inductive invariant directly.
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8 Conclusion and Future Work

This work lifts the MUS extraction algorithms of CAMUS and MARCO to the non-
monotone problem of MSIS extraction. The former is accomplished by identifying
a hitting set duality between support sets and collapse sets, which is analogous
to the MCS/MUS duality exploited by CAMUS. The latter is accomplished by
converting MSIS extraction to a monotone problem and applying MARCO directly.
Further, complexity results are proven demonstrating that MSIS identification
is DP -complete and the MSIS existence problem is ΣP

2 -complete, both of which
match the corresponding MUS problems.

The work of [14] suggests many optimizations to MARCO algorithm, it would
be interesting to explore these in our context. It would also be of interest to
determine if the predicates used to convert the non-monotone MSIS problems
into a monotone one suitable for use with MARCO can be applied in CAMSIS.
Further, we intend to lift other MUS extraction algorithms such as dualize-and-
advance (DAA) [2] to MSIS problems. Finally, further study of the application
of MARCO to non-monotone problems and the complexity of doing so is a natural
extension of this work.
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Abstract. Program equivalence checking is a fundamental problem in
computer science with applications to translation validation and auto-
matic synthesis of compiler optimizations. Contemporary equivalence
checkers employ SMT solvers to discharge proof obligations generated by
their equivalence checking algorithm. Equivalence checkers also involve
algorithms to infer invariants that relate the intermediate states of
the two programs being compared for equivalence. We present a new
algorithm, called invariant-sketching, that allows the inference of the
required invariants through the generation of counter-examples using
SMT solvers. We also present an algorithm, called query-decomposition,
that allows a more capable use of SMT solvers for application to equiv-
alence checking. Both invariant-sketching and query-decomposition help
us prove equivalence across program transformations that could not be
handled by previous equivalence checking algorithms.

1 Introduction

The general problem of program equivalence checking is undecidable. Several
previous works have tackled the problem for applications in (a) translation vali-
dation, where the equivalence checker attempts to automatically generate a proof
of equivalence across the transformations (translations) performed by a compiler
[2,3]; and (b) program synthesis, where the equivalence checker is tasked with
determining if the optimized program proposed by the synthesis algorithm is
equivalent to the original program specification [4,5]. For both these applications,
soundness is critical, i.e., if the equivalence checker determines the programs
to be equivalent, then the programs are guaranteed to have equivalent runtime
behaviour. On the other hand, completeness may not always be achievable (as the
general problem is undecidable), i.e., it is possible that the equivalence checker
is unable to prove the programs equivalent, even if they are actually equiva-
lent. For example, recent work on black-box equivalence checking [6] involves
comparing the unoptimized (O0) and optimized (O2/O3) implementations of
the same C programs in x86 assembly. While their algorithm guarantees sound-
ness, it does not guarantee completeness; their work reported that they could
c© Springer International Publishing AG, part of Springer Nature 2018
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C0 int g[144];
C1 int example0 () {
C2 int sum = 0;
C3 for (int i = 0; i < 144; i++)
C4 {
C5 sum = sum + g[i];
C6 }
C7 retval = sum /144; // return
C8 }

A0 example0_compiled:
A1 r1 := 0; //sum’
A2 r2 := 144; //loop index(i’)
A3 r3 := 0; //array index(a ’)
A4 loop:
A5 r1 := r1 + [ base_g + 4*r3];
A6 r2 := r2 - 1;
A7 r3 := r3 + 1;
A8 if (r2 != 0) goto loop
A9 rax := mul -shift -add(r1 ,144)

Fig. 1. C-function example0() and abstracted version of its compiled assembly (as
produced by gcc -O2). We use a special keyword retval to indicate the location that
holds the return value of the function. In assembly, sum and i variables are register
allocated to r1 and r2 respectively and r3 is an iterator for indexing the array g.
Division operation in C program is optimized to mul-shift-add instructions in assembly.
base g represents the base address of array g in memory. [x] is short-hand for 4 bytes
in memory at address x.

prove equivalence only across 72–76% of the functions in real-world programs,
across transformations produced by modern compilers like GCC, LLVM, ICC,
and CompCert. Our work aims to reason about equivalence in scenarios where
these previous algorithms would fail.

To understand the problem of equivalence checking and the general solution,
we discuss the proof of equivalence across the example pair of programs in Fig. 1.
The most common approach to proving that this pair of programs is equivalent
involves the construction of a simulation relation between them. If ProgA rep-
resents the C language specification and ProgB represents the optimized x86
implementation, a simulation relation is represented as a table, where each row
is a tuple ((LA, LB), P ) such that LA and LB are program locations in ProgA
and ProgB respectively, and P is a set of invariants on the live program vari-
ables1 at locations LA and LB . Program locations represent the next instruction
(PC values) to be executed in a program and the live program variables are
identified by performing liveness analysis at every program location. A tuple
((LA, LB), P ) represents that the invariants P hold whenever the two programs
are at LA and LB respectively. A simulation relation is valid if the invariants at
each location pair are inductively provable from the invariants at all its predeces-
sor location pairs. Invariants at the entry location (the pair of entry locations of
the two programs) represent the equivalence of program inputs (Init) and form
the base case of this inductive proof. If we can thus inductively prove equivalence
of return values at the exit location (the pair of exits of the two programs), we
establish the equivalence of the two programs. For C functions, the return values
include return registers (e.g., rax and rdx) and the state of the heap and global
variables. Formally, a simulation relation is valid if:

Init ⇔ invariants(EntryA,EntryB) (1)
∀

(L
′
A,L

′
B)→(LA,LB)

invariants
(L

′
A,L

′
B)

⇒
(L

′
A,L

′
B)→(LA,LB)

invariants(LA,LB) (2)

1 For assembly code, variables represent registers, stack and memory regions.
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Table 1. Simplified simulation relation for the programs in Fig. 1. MA and MB are
memory states in ProgA and ProgB respectively. =Δ represents equivalent arrays except
for Δ, where Δ represents the stack region.

Location Invariants (P )

(C0, A0) g �→ base g

(C3, A4) 144-i = i’, sum = sum’, i = a’, g �→ base g

(C7, A9) (retvalC = raxA), g �→ base g

Init: g �→ base g, MA =Δ MB

Here, invariants(LA,LB) is the same as P and represents the conjunction of
invariants in the simulation relation for the location pair (LA, LB), L

′
A and L

′
B

are predecessors of LA and LB in programs ProgA and ProgB respectively, and
⇒

(L
′
A,L

′
B)→(LA,LB)

represents implication over the paths L
′
A → LA and L

′
B → LB

in programs ProgA and ProgB respectively.
Almost all compiler optimizations are similarity preserving, i.e. the optimized

program simulates the original program, and hence approaches that rely on the
construction of a simulation relation usually suffice for computing equivalence
across compiler optimizations. There have been proposals in previous work [7]
to handle transformations that do not preserve similarity (but preserve equiv-
alence), but we do not consider them in this paper. In our experience, modern
compilers rarely (if ever) produce transformations that do not preserve simi-
larity. Table 1 shows a simulation relation that proves the equivalence between
the two programs in Fig. 1. Given a valid simulation relation, proving equiva-
lence is straight-forward; however the construction of a simulation relation is
undecidable in general.

Static approaches to equivalence checking attempt to construct a simula-
tion relation purely through static analysis. On the other hand, data-driven
approaches [8,9] extract information from the program execution traces to infer
a simulation relation. In either case, the construction of a simulation relation
involves the inference of the correlation between program locations (i.e., the first
column of the simulation relation table) and the invariants at each correlated
pair of locations (i.e., the second column of the simulation relation table).

A data-driven approach to inferring a correlation involves identifying pro-
gram locations in the two programs where the control-flow is correlated across
multiple execution runs, and where the number and values of the live variables
in the two programs are most similar. Also, the inference of invariants in these
data-driven approaches is aided by the availability of actual runtime values of
the live program variables.

On the other hand, static approaches usually employ an algorithm based on
the guess-and-check strategy. We discuss a static algorithm for automatic con-
struction of a simulation relation in Sect. 2. Essentially it involves an incremental
construction of a simulation relation, where at each incremental step, the invari-
ants at the currently correlated program locations are inferred (using a guess-
and-check strategy) and future correlations are guided through the invariants
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inferred thus far. These guess-and-check based approaches are able to infer only
simple forms of invariants and run into scalability bottlenecks while trying to
infer more complex invariants. This is why data-driven approaches are more
powerful because they can sidestep these scalability limitations by being able to
infer more expressive invariants using real execution data.

However, data-driven approaches cannot work in the absence of a sufficient
number of execution traces. Further, these approaches fail if certain portions
(or states) of the program remain unexercised (uncovered) through the execu-
tion runs. We provide a counter-example guided strategy for invariant infer-
ence that allows us to scale our guess-and-check procedure much beyond exist-
ing approaches to guess-and-check. Our strategy resembles previous data-driven
approaches; however, we are able to do this without access to execution traces,
and only through counter-examples provided by modern SMT solvers. In partic-
ular, our algorithm involves sketch generation through syntax-guided synthesis,
where a sketch is a template for an invariant. We use counter-examples to try
and fill the sketch to arrive at a final invariant. To our knowledge, this is the
first sketching-based approach to invariant inference and is the first contribution
of our work. We call our algorithm invariant-sketching.

Several steps during the construction of a simulation relation involve proof-
obligations (or checks) that can be represented as SMT satisfiability queries and
discharged to an SMT solver. We find that modern SMT solvers face tractability
limitations while computing equivalence across several compiler transformations.
This is primarily due to two reasons:

1. Often, equivalence across these types of transformations are not captured in
higher-order decision procedures in SMT solvers, and it appears that mod-
ern SMT solvers resort to expensive exponential-time algorithms to decide
equivalence in these cases;

2. Even if these transformations are captured in SMT solvers, the composition
of multiple such transformations across relatively large program fragments
makes it intractable for the SMT solver to reason about them.

For the transformations that are not readily supported by modern SMT solvers,
we employ simplification passes that can be applied over SMT expression DAGs2,
before submitting them to the SMT solver. Simplification passes involve rewrit-
ing expression DAGs using pattern-matching rules. We find several cases where
the discharge of certain proof obligations during equivalence computation is
tractable only after our simplification passes have been applied. We believe that
our observations could inform SMT solvers and guide their optimization strategy.

The latter scalability limitation is due to the composition of multiple compiler
transformations in a single program fragment. To tackle this, we propose a novel
algorithm called Query-decomposition. Query decomposition involves breaking
down a larger query into multiple sub-queries: we find that while an SMT solver
may find it hard to reason about one large query, it may be able to discharge

2 A DAG is a more compact representation of an expression tree where identical
subtrees in the same tree are merged into one canonical node.
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tens of smaller queries in much less total time. Further, we find that counter-
examples obtained from previous SMT solver queries can be used to signifi-
cantly prune the number of required smaller queries. Using query-decomposition
with counter-example based pruning allows us to decide more proof-obligations
than were previously possible, in turn allowing us to compute equivalence across
a larger class of transformations/programs. The simplification passes and our
query-decomposition algorithm with counter-example based pruning are the sec-
ond contribution of this paper.

In both these contributions, we make use of the get-model feature [10] avail-
able in modern SMT solvers to obtain counter-examples. Previous approaches
to equivalence checking have restricted their interaction with SMT solvers to a
one-bit SAT/UNSAT answer; we demonstrate algorithms that can scale equiva-
lence checking procedures beyond what was previously possible through the use
of solver-generated counter-examples.

Paper Organization: Section 2 provides background on automatic construc-
tion of a simulation relation - our work builds upon this previous work to improve
its scalability and robustness. Section 3 presents a motivating example for our
work. Section 4 describes our novel sketching-based invariant inference proce-
dure. Section 5 focusses on some important limitations of SMT solvers while
reasoning about compiler optimizations, and discusses our simplification passes
and the query-decomposition algorithm in this context. Section 6 discusses the
experiments and results. Section 7 summarizes previous work and concludes.

2 Background: Automatic Generation of Simulation
Proof

Automatic construction of a provable simulation relation between a program
and its compiled output has been the subject of much research with several
motivating applications. Our algorithm resembles previous work on black-box
equivalence checking [6], in that it attempts to construct a simulation relation
incrementally as a joint transfer function graph (JTFG). The JTFG is a graph
with nodes and edges, and represents the partial simulation relation computed
so far. A JTFG node (LA, LB) represents a pair of program nodes LA and LB

and indicates that ProgA is at LA and ProgB is at LB . Similarly, a JTFG edge
(L

′
A, L

′
B) → (LA, LB) represents a pair of transitions L

′
A → LA and L

′
B → LB in

ProgA and ProgB respectively. Each JTFG node (LA, LB) contains invariants
relating the live variables at locations LA and LB in the two programs respec-
tively. Further, for each JTFG edge, the edge conditions (edgecond) of its two
individual constituent edges (L

′
A → LA and L

′
B → LB) should be equivalent.

An edge condition represents the condition under which that edge is taken, as a
function of the live variables at the source location of that edge.

The algorithm for constructing a JTFG is succinctly presented in Algo-
rithm 1. Section 3 describes the running of this algorithm on an example pair of
programs. The JTFG is initialized with a single node, representing the pair of
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Algorithm 1. Algorithm to construct the JTFG (simulation relation). edgesB is a
list of edges in ProgB in depth-first search order. The AddEdge() function returns a
new JTFG jtfg’, formed by adding the edge to the old JTFG jtfg.

Function CorrelateEdges(jtfg, edgesB)
if edgesB is empty then

return LiveValuesAtExitAreEq(jtfg)
end
edgeB ← RemoveFirst(edgesB)
fromPCB ← GetFromPC(edgeB)
fromPCA ← FindCorrelatedPC(jtfg, fromPCB)
edgesA ← GetEdgesTillUnroll(ProgA, fromPCA, μ)
foreach edgeA in edgesA do

jtfg’ = AddEdge(jtfg, edgeA, edgeB)
PredicatesGuessAndCheck(jtfg’)
if IsEqualEdgeConditions(jtfg’) ∧ CorrelateEdges(jtfg’, edgesB) then

return true
end

end
return false

entry locations of the two programs. It also has the associated invariants encod-
ing equivalence of program values at entry (base case). The loop heads, function
calls and exit locations in ProgB are then chosen as the program points that need
to be correlated with a location in ProgA. All other program points in ProgB are
collapsed by composing their incoming and outgoing edges into composite edges.
The CorrelateEdges() function picks one (composite) ProgB edge, say edgeB ,
at a time and tries to identify paths in the source program (ProgA) that have
an equivalent path condition to edgeB ’s edge condition. Several candidate paths
are attempted up to an unroll factor µ (GetEdgesTillUnroll()). All candidate
paths must originate from a ProgA location (fromPCA) that has already been cor-
related with the source location of edgeB (fromPCB). The unroll factor µ allows
equivalence computation across transformations involving loop unrolling. The
path condition of a path is formed by appropriately composing the edge condi-
tions of the edges belonging to that path. The edge edgeB is chosen in depth-first
search order from ProgB, and also dictates the order of incremental construc-
tion of the JTFG. The equivalence of the edge condition of ProgB with the path
condition of ProgA is computed based on the invariants inferred so far at the
already correlated JTFG nodes (IsEqualEdgeConditions()). These invariants,
inferred at each step of the algorithm, are computed through a Houdini-style
[11] guess-and-check procedure. The guesses are synthesized from a grammar,
through the syntax-guided synthesis of invariants (PredicatesGuessAndCheck).
These correlations for each edge (edgeB) are determined recursively to allow
backtracking (the recursive call to CorrelateEdges()). If at any stage, an edge
(edgeB) cannot be correlated with any path in ProgA, the function returns with
a failure, prompting the caller frame in this recursion stack, to try another cor-
relation for a previously correlated edge.
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PredicatesGuessAndCheck() synthesizes invariants through the following
grammar of guessing: G = { �A ⊗ �B }, where operator ⊗ ∈ {<,>,=,≤,≥}
and �A and �B represent the live program values (represented as symbolic
expressions) appearing in ProgA and ProgB respectively. The guesses are formed
through a cartesian product of values in ProgA and ProgB using the patterns in
G. Our checking procedure is a sound fixed-point computation which keeps elim-
inating the unprovable predicates until only provable predicates remain (similar
to Houdini). At each step of the fixed point computation, for each guessed predi-
cate at each node, we try to prove it from current invariants at every predecessor
node (as also done in the final simulation relation validity check in Eq. 2).

It is worth noting that we need to keep our guessing procedure simple to keep
this procedure tractable; it currently involves only conjunctions of equality and
inequality relations between the variables of the two programs. We find that this
often suffices for the types of transformations produced by production compilers.
In general, determining the right guesses for completing the proof is undecidable:
a simple guessing grammar keeps the algorithm tractable, increasing grammar
complexity significantly increases the runtime of the equivalence procedure. In
our work, we augment the guessing procedure to generate invariant-sketches and
use counter-examples to fill the sketches to arrive at the final invariants.

3 Running Example

Figure 2 shows the abstracted versions (aka transfer function graphs or TFGs)
of the original C specification and its optimized assembly implementation for
the program in Fig. 1. TFG nodes represent program locations and TFG edges
indicate control flow. Each TFG edge is associated with its edge-condition and its
transfer function (labelled as Cond and TF respectively in the figure). Notably,
TFG and JTFG representations are almost identical. Across the two TFGs,

(a) Specification (b) Optimized binary

Fig. 2. TFGs of C program and its optimized implementation for the program in Fig. 1.
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the program has undergone multiple compiler transformations, namely (a) loop
reversal (i counts from [0..144) in the original program but counts backwards
from [144..0) in the optimized program), (b) strength-reduction of the expen-
sive division operation to a cheaper combination of multiply-shift-add (repre-
sented by ⊕), and (c) register allocation of variables sum and i. All these are com-
mon optimizations produced by modern compilers, and failing to prove equiva-
lence across any of these (or their composition) directly impacts the robustness
of an equivalence checker. (As an aside, while the general loop-reversal transfor-
mation does not preserve similarity, it preserves similarity in this example. In
general, we find that modern compilers perform loop-reversal only if similarity
is preserved).

Applying Algorithm 1 to this pair of TFGs, we begin with a JTFG with
one node representing the start node (N0,N0’). Our first correlation involves
correlating the loop heads of the two programs by adding the node (N1,N1’) to
the JTFG. At this point, we need to infer the invariants at (N1,N1’). While all
other invariants can be inferred using the grammar presented in the procedure
PredicatesGuessAndCheck in Sect. 2, the invariant i’ = 144-i is not generated
by our grammar. This is so because the grammar only relates the variable values
computed in the two programs, but the value 144 - i is never computed in the
body of the source program.

One approach to solving this problem is to generalize our guessing grammar
such that it also generates invariants of the shape {CA�A + CB�B + C1 = 0},
where �A and �B represent program values (represented as symbolic expres-
sions) appearing in ProgA and ProgB respectively, and CA, CB , and C1 are
the coefficients of �A, �B , and 1 respectively in this linear equality relation.
CA, CB , and C1 could be arbitrary constants. We call this extended grammar
G

′, the grammar of linear-equality relations. The problem, however, is that this
grammar explodes the potential number of guessed invariants, as the number of
potential constant coefficients is huge. In contrast, a data-driven approach may
identify the exact linear-relation through the availability of run-time values. We
present an algorithm to tractably tackle this in a static setting through the gen-
eration of invariant-sketches in our grammar. An invariant-sketch is similar to
an invariant, except that certain parts of the sketch are left unspecified. e.g., in
our case, the constant coefficients CA, CB , and C1 are left unspecified in the
generated sketch. These unspecified constants are also called holes in the sketch.

We restrict CA to be 1 and CB ∈ {−1, 0, 1} and find that this suffices for the
types of transformations we have encountered in modern compilers. Generalizing
to arbitrary CA and CB requires careful reasoning about bitvector arithmetic
and associated overflows, and we leave that for future work. However, notice that
we place no restrictions on C1—e.g., for 64-bit arithmetic, C1 ∈ [−263..263 − 1],
making it prohibitively expensive to enumerate all the possibilities.

4 Invariant Sketches and the Use of Counter-Examples

We now discuss a syntax-guided invariant-sketching algorithm that uses counter-
examples generated by SMT solvers to fill the sketches. The guessing grammar
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G
′ generates invariant-sketches, in addition to the invariants generated by G.

For example, one of the guesses generated using G
′ for our running example

will be (i + CBi
′ + C1 = 0). Recall that i represents a variable in ProgA and

i’ represents a variable in ProgB and CB , C1 represent holes in the generated
sketch. Notice that we omit CA as it is restricted to be = 1 in G

′.

Algorithm 2. InvSketch algorithm to infer invariant between vary of ProgA and varx

of ProgB at Node N.

Function InvSketch(N, e, varx, vary)
N1A = QuerySatAssignment(e, true)
if N1A is empty then

return (Inv �→ {False})
end
N2A = QuerySatAssignment(e, (varx, vary) != N1A)
if N2A is empty then

return (Inv �→ {(varx, vary) = N1A})
end
CoeffCB ,C1 = InferLinearRelation(N1A, N2A)
Inv = FillSketch(CoeffCB ,C1)
return Inv

For each invariant-sketch, we try to infer the potential values of the holes
by querying the SMT solver for a satisfying assignment for the variables at the
current node. A satisfying assignment NA at a node N represents a mapping
from program variables to some constants; this mapping should be satisfiable,
assuming that the invariants at a predecessor node P and the edge condition
for the edge P → N are true. For example, if a predecessor node P has an
inferred invariant x=y and the edge condition and transfer function across the
edge P → N are {true} and {x=x+1, y=y+2} respectively, then the assignment
x=3,y=3 is not satisfiable at N . On the other hand, the assignment x=3,y=4
is satisfiable at N . To obtain satisfying assignments for variables at a node N ,
we first obtain a satisfying assignment PA for the invariants at P and the edge
condition for the edge P → N through an SMT query. We then apply the transfer
function of the edge P → N on PA to obtain NA.

We define a procedure called QuerySatAssignment(e = P → N , condextra).
This procedure generates a satisfying assignment (if it exists) for N , given the
current invariants at P and the edge-condition of edge e = P → N . Further, the
satisfying assignment must satisfy the extra conditions encoded by the second
argument condextra. Algorithm 2 presents our algorithm to infer the invariant,
given an invariant-sketch, using satisfying assignments generated through calls
to QuerySatAssignment(). The algorithm infers the values of the holes CB and
C1 (if they exist) in a given invariant-sketch. At a high level, the algorithm first
obtains two satisfying assignments, ensuring that the second satisfying assign-
ment is distinct from the first one. Given two assignments, we can substitute
these assignments in the invariant-sketch to obtain two linear equations in two
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unknowns, namely CB and C1. Based on these two linear equations, we can infer
the potential values of CB and C1 using standard linear-algebra methods. If no
satisfying assignment exists through any of the predecessors of N , we simply emit
the invariant false indicating that this node is unreachable given the current
invariants at the predecessors (this should happen only if the programs con-
tain dead-code). Similarly, if we are able to generate only one satisfying assign-
ment (i.e., the second SMT query fails to generate another distinct satisfying
assignment), we simply generate the invariant encoding that the variables have
constant values (equal to the ones generated by the satisfying assignment). If a
node N has multiple predecessors, we can try generating satisfying assignments
through either of the predecessors.

Thus, for each invariant-sketch generated at each step of our algorithm, we
check to see if the satisfying assignments for program variables at that node
result in a valid invariant. If so, we add the invariant to the pool of invariants
generated by our guessing procedure. Notice that we need at most two SMT
queries per invariant-sketch; in practice, the same satisfying assignment may
be re-usable over multiple invariant-sketches drastically reducing the number of
SMT queries required. For our running example, we will first obtain a satisfying
assignment at node (N1,N1’) using invariants at node (N0,N0’): i=0,i’=144.
However we will be unable to obtain a second satisfying assignment at this stage,
and so we will generate invariants i=0,i’=144 at (N1,N1’). In the next step
of the algorithm, the edge N1’→N1’ will be correlated with the corresponding
ProgA edge N1→N1. At this stage, we will again try the same invariant-sketch,
and this time we can obtain two distinct satisfying assignments at (N1,N1’):
{i=0,i’=144} (due to the edge (N0,N0’)→(N1,N1’)) and {i=1,i’=143} (due
to the edge (N1,N1’)→(N1,N1’)). Using these two satisfying assignments, and
using standard linear-algebra techniques (to solve for two unknowns through two
linear equations), we can infer that CB = 1 and C1 = −144, which is our required
invariant guess. Notice that the output of our invariant-sketching algorithm is an
invariant guess, which may subsequently be eliminated by our sound fixed-point
procedure for checking the inductive validity of the simulation relation. The
latter check ensures that our equivalence checking algorithm remains sound.

5 Efficient Discharge of Proof Obligations

In our running example, after the edges (N1→N1) and (N1’→N1’) have been cor-
related, the algorithm will infer the required invariants correlating the program
values at Node (N1,N1’). After that, the edge (N1’→N2’) will get correlated
with the edge (N1→N2) and we would be interested in proving that the final
return values are identical. This will involve discharging the proof obligation
of the form: (sum=sum’)⇒((sum/144)=(sum’⊕144)). It turns out that SMT
solvers find it hard to reason about equivalence under such transformations; as
we discuss in Sect. 6, modern SMT solvers do not answer this query even after
several hours. We find that this holds for some common types of compiler trans-
formations such as: (a) transformations involving mixing of multi-byte arith-
metic operations with select/store operations on arrays, (b) transformation of
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the division operator to a multiply-shift-add sequence of operations, (c) complex
bitvector shift/extract operations mixed with arithmetic operations, etc.

We implement simplification passes to enable easier reasoning for such pat-
terns by the SMT solvers. A simplification pass converts a pattern in the expres-
sion to its simpler canonical form. We discuss the “simplification” of the division
operator into a sequence of multiply-shift-add operators to illustrate this. Given
a dividend n and a constant divisor d, we convert it to:

n ÷ d ≡ (n + (n × Cmul) � 32) � Cshift,

where 0 < d < 232 and 0 ≤ n < 232 and Cmul, Cshift represent two constants
dependent on d and are calculated using a method given in Hacker’s Delight [12].
This simplification ensures that if the compiler performs a transformation that
resembles this pattern, then both the original program and the transformed
program will be simplified to the same canonical expression structure, which
will enable the SMT solvers to reason about them more easily. We find that
there exist more patterns that exhibit SMT solver time-outs by default, but their
simplified versions (through our custom simplification passes) become tractable
for solving through modern SMT solvers.

Even after applying the simplification passes, we find that several SMT
queries still time-out because SMT solvers find it difficult to reason about equiv-
alence in the face of several composed transformations performed by the com-
piler. We observe that while SMT solvers can easily compute equivalence across
a smaller set of transformations, they often time out if the number of composed
transformations is too many or too intertwined. Taking a cue from this observa-
tion, we propose the query-decomposition algorithm.

The general form of proof queries in an equivalence checker is: Precond ⇒
(LHS = RHS), where Precond represents a set of pre-conditions (e.g., x=y)
and LHS and RHS expressions (e.g., x+1 and y+2) are obtained through
symbolic execution of the C specification (ProgA) and the optimized pro-
gram (ProgB) respectively. The RHS expression may contain several composed
transformations for the computation performed in the LHS expression. Query-
decomposition involves breaking this one large proof query into multiple smaller
queries by using the following steps:

1. We walk the expression DAGs of LHS and RHS and collect all unique sub-
expressions in LHS and RHS into two different sets, say {lhsSubExprs} and
{rhsSubExprs}.

2. We check the equivalence of each lhsSubExpr ∈ {lhsSubExprs} with each
rhsSubExpr ∈ {rhsSubExprs} (assuming Precond), in increasing order of
size of LHS sub expressions. i.e., Precond ⇒ (lhsSubExpr = rhsSubExpr).
The size of an expression is obtained by counting the number of operators in
its expression DAG. If there are m unique sub-expressions in {lhsSubExprs}
and n unique sub-expressions in {rhsSubExprs}, we may need to perform
m ∗ n equivalence checks.

3. For any check that is successful in step 2, we learn a substitution map from
the bigger expression to the smaller expression. For example, if lhsSubExpr
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was smaller in size than rhsSubExpr, we learn a substitution mapping
rhsSubExpr �→ lhsSubExpr. We maintain a set of substitution mappings
thus learned.

4. For any check that is unsuccessful in step 2, we learn a counter-example
that satisfies Precond but represents a variable-assignment that shows that
lhsSubExpr = rhsSubExpr is not provable. We add all such counter-
examples to a set {counterExamples}.

5. In all future equivalence checks (of the total m∗n checks) of type Precond ⇒
(lhsSubExpr = rhsSubExpr), we first check the set {counterExamples} to
see if any counterExample ∈ {counterExamples} disproves the query. If so,
we have already decided the equivalence check as false. If not, we rewrite
both expressions lhsSubExpr and rhsSubExpr using the substitution-map
learned in step 3. For a substitution mapping e1 → e2, we replace every
occurrence of e1 in an expression with e2 during this rewriting. After the
rewriting procedure reaches a fixed-point, we use an off-the-shelf SMT solver
to decide the rewritten query.

This decomposition of a larger expression into sub-expressions, and the
substitution of equivalent sub-expressions while deciding equivalence of larger
expressions ensures that the queries submitted to SMT solvers are simpler than
the original query. In other words, through this strategy, the LHS′ and RHS′

expressions that are submitted to an SMT solver are more similar to each other,
as multiple composed transformations have likely been decomposed into fewer
transformations in each individual query. Because we only replace provably-
equivalent sub-expressions during decomposition, the overall equivalence check-
ing algorithm remains sound.

This bottom-up strategy of decomposing a larger query into several smaller
queries would be effective only if (a) we expect equivalent sub-expressions to
appear across LHS and RHS, and (b) the total time to decide equivalence for
multiple sub-expression pairs is smaller than the time to decide equivalence for
a single larger expression-pair. We find that both these criteria often hold while
comparing distinct expressions that differ in the transformations performed by
a compiler. Figure 3 illustrates this with an example. In this example, the proof
query involves deciding equivalence between the top-level expressions E1 and
E5. Also, it turns out that the sub-expressions E3 and E4 (on the left) are
equivalent to the sub-expressions E7 and E8 (on the right) respectively. This
query gets generated when comparing the unoptimized and optimized imple-
mentations generated by GCC for a fragment of a real-world program. Notably,
modern SMT solvers like Z3/Yices/Boolector time-out even after several hours
for such a query. On the other hand, they are able to decide the equivalence
of individual sub-expressions (E3 = E7 and E4 = E8) within a few seconds.
Experimentally, we have observed that if we substitute E7 and E8 with E3 and
E4 respectively (in the expression DAG of E5), the resulting equivalence check
between E1 and the rewritten E5 (as shown in Fig. 3(b)) also completes within
a fraction of a second. In Sect. 6, we discuss more real-world functions and our
results with transformations produced by multiple compilers, to demonstrate the
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(a) Before Decomposition (b) After Decomposition

Fig. 3. Original and result of query-decomposition for a fragment of expression DAGs
for two SMT-expressions.

effectiveness of our query-decomposition procedure. We also evaluate the frac-
tion of intermediate sub-expression queries that can be pruned through the use
of the counter-example set.

6 Experiments

We evaluate invariant-sketching and query-decomposition algorithms by study-
ing their effectiveness in a black-box equivalence checker across LLVM IR and
x86 assembly code. We compile a C program using LLVM’s clang-3.6 to generate
unoptimized (O0) LLVM IR bitcode and using GCC, LLVM, ICC (Intel C Com-
piler), and CComp (CompCert [13]) with O2 optimization to generate the x86
binary executable code. We have written symbolic executors for LLVM bitcode
and x86 instructions to convert the programs to their logical QF AUFBV SMT-
like representation. In this representation, program states including the state of
LLVM variables, x86 registers and memory are modelled using bit-vectors and
byte-addressable arrays respectively. Function calls are modelled through unin-
terpreted functions. The black-box equivalence checking tool employs the algo-
rithm discussed in Sect. 2 with µ = 1. The tool also models undefined-behaviour
semantics of the C language [14] for improved precision in equivalence checking
results. Proof obligations are discharged using Yices [15] (v2.5.4) and Z3 [16]
(commit 0b6a836eb2) SMT solvers running in parallel: each proof obligation is
submitted to both solvers, and the result is taken from the solver that finishes
first. We use a time-out value of five hours for each proof obligation.

Benchmarks and Results: For evaluation, we use C functions from the SPEC
CPU Integer benchmarking suite [17] that contain loops and cannot be han-
dled by previous equivalence checking algorithms. Previous work on black box
equivalence checking [6] fails to compute equivalence on all these functions. We
also include the benchmarks used by previous work on data-driven equivalence
checking [8] in our evaluation; we are able to statically compute equivalence for
these benchmarks, where previous work relied on execution data for the same.
The selected functions along with their characteristics and results obtained for
each function-compiler pair are listed in Table 2.

The results in bold-red typeface depict the function-compiler pairs for which
previous work fails to prove equivalence statically. Computing equivalence for
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Table 2. Benchmarks characteristics. SLOC is source lines of code and determined
through the sloc count tool. ALOC is assembly lines of code and is based on gcc-O0
compilation. TX represents equivalence checking time taken for executable generated
by “X” compiler in seconds. ✗ represents that the function could not be compiled with
that particular compiler.

S.No. Benchmark Function SLOC ALOC Checking time (sec)

Tgcc Tclang Ticc Tccomp

B1 knucleotide ht hashcode 5 28 17 18 215 10

B2 nsieve main 11 39 1343 1687 2265 868

B3 sha1 do bench 11 49 338 320 385 383

B4 DDEC lerner1a 12 22 37 13 36 12

B5 twolf controlf 8 16 73 79 75 ✗
B6 gzip display ratio 21 78 738 121 677 570

B7 vpr is cbox 8 48 24 25 24 24

B8 vpr get closest seg start 14 57 27 27 27 27

B9 vpr get seg end 16 63 28 29 29 30

B10 vpr is sbox 16 79 34 33 32 Fail

B11 vpr toggle rr 7 25 131 121 99 ✗
B12 bzip2 makeMaps 11 39 217 240 214 221

these programs requires either sophisticated guessing procedures (which we
address through our invariant-sketching algorithm) or/and involves complex
proof queries that would time-out on modern SMT solvers (addressed by our
simplification and query-decomposition procedures). The results in non-bold
face depict the function-compiler pairs for which equivalence can be established
even without our algorithms—in these cases, the transformations performed by
the compiler require neither sophisticated guessing nor do their proof obliga-
tions time-out. For most cases, by employing our algorithms, the execution time
for establishing equivalence is reasonably small. In general, we observe that
the equivalence checking time depends on the size of the C program and the
number and complexity of transformations performed by the compiler. For one
of the benchmarks (is sbox compiled through CComp), equivalence could not
be established even after employing our invariant-sketching, simplification and
query-decomposition algorithms. We next evaluate the improvements obtained
by using counter-examples to prune the number of queries discharged to SMT
solver. Recall that additional queries are generated by both invariant-sketching
and query-decomposition algorithms. Also, the query-decomposition algorithm
maintains a set of counter-examples and a substitution-map learned so far, to
reduce the time required to discharge a query. For each query, we first check to
see if the query can be answered through the set of currently-available counter-
examples. If not, the second step involves rewriting the query through simplifi-
cation passes and the currently-available substitution-map to see if the result-
ing query can be answered syntactically. Finally, if equivalence is not decidable
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Fig. 4. Proof queries statistics. The bar represents the percentage of queries solved by
each strategy for each benchmark-compiler pair in the same order as in Table 2.

even after simplification and substitution, we submit the simplified query to the
SMT solver. Figure 4 provides a break-down of the fraction of queries answered
by counter-examples, by syntactic simplification and substitution, and by the
SMT solver. The counter-example set is able to answer more than 85% of the
total proof queries, including the ones generated by our invariant-sketching and
query-decomposition algorithms. Similarly, syntactic simplification and substitu-
tion are able to answer 3% of the queries, while the remaining 12% of the queries
are answered by the SMT solver. Recall that the simplification and substitution
passes help ensure that the 12% queries can be answered by the SMT solver
efficiently; the SMT solver would often time-out without these simplifications
and substitutions.

7 Related Work and Conclusions

Combinational equivalence checking through SAT-based algorithms has been
studied extensively both in hardware verification [18] and in software verification
[19]. Equivalence checking for sequential programs (e.g., programs with loops)
has also been studied extensively in the context of translation validation [3,20],
design and verification of compiler optimizations [1,21], and program synthesis
and superoptimization [4,5,22–25]. Modern SMT solvers have further facilitated
these applications (over traditional SAT solvers) by raising the level of abstrac-
tion at the interface of the SMT solver and the equivalence checker. Improv-
ing the capabilities of SMT solvers for various practical applications remains an
important field of research [26,27]. For example, Limaye and Seshia [27] describe
word-level simplification of queries before submitting them to SMT solvers; our
simplification passes are similar to such previous work.

Our work studies the effective utilization of SMT solvers for the problem
of equivalence checking for sequential programs containing loops. We demon-
strate techniques that allow an equivalence checker to decide equivalence across
a wider variety of programs and transformations; our invariant-sketching and
query-decomposition algorithms are novel contributions in this context.

Data-driven equivalence checking and data-driven invariant inference are
recent approaches [8,9,28,29] that utilize the information obtained through run-
ning the programs on real inputs (execution traces), for inferring the required
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correlations and invariants across the programs being compared for equiva-
lence. It is evident that data-driven approaches are more powerful than static
approaches in general; however they limit the scope of applications by demand-
ing access to high-coverage execution traces. Our invariant-sketching algorithm
allows us to obtain the advantages of data-driven approaches in a static setting,
with no access to execution traces. Our experiments include the test programs
used in these previous papers on data-driven equivalence checking, and demon-
strate that a counter-example guided invariant-sketching scheme can achieve the
same effect without access to execution traces. Further, some of the data-driven
techniques, such as CEGIR [29] and Daikon [30], are unsound, i.e., they may
return invariants that are not inductively provable but are only good enough
for a given set of execution traces or the capabilities of a given verification tool.
Unsound strategies are not useful for several applications of equivalence checking,
such as translation validation and program synthesis. Both invariant-sketching
and query-decomposition algorithms preserve soundness.

Recent work on synthesizing models for quantified SMT formulas [31]
involves a similar computational structure to our invariant-sketching tech-
nique; the primary differences are in our use of a linear interpolation proce-
dure (InferLinearRelation), and consequently the small number of invariant-
synthesis attempts (at most two) for each invariant-sketch. These techniques
make our procedure tractable, in contrast to the approach of synthesizing mod-
els for general quantified SMT formulas outlined in [31]. Invariant-sketching also
has a parallel with previous approaches on counter-example guided abstraction
refinement, such as recent work on worst-case execution time analysis [32]. From
this perspective of abstraction refinement, our invariant-sketching algorithm
refines an invariant from (Inv �→ {False}) to (Inv �→ {(varx, vary) = N1A})
to the final linearly-interpolated invariant based on the invariant-sketch. This
counter-example guided refinement is aided by invariant-sketches involving lin-
ear relations, that are designed to capture the underlying structure of the equiv-
alence checking problem.

The query-decomposition algorithm for effective utilization of SMT solvers is
based on our experiences with multiple SMT solvers. It is indeed interesting to
note that SMT solvers can decide many smaller queries in much less time than
one equivalent bigger query. This observation has motivated our decomposition
algorithm, and our experiments show its efficacy in deciding equivalence across
programs, where previous approaches would fail.
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Abstract. Incremental linearization is a conceptually simple, yet effec-
tive, technique that we have recently proposed for solving SMT prob-
lems over nonlinear real arithmetic constraints. In this paper, we show
how the same approach can be applied successfully also to the harder
case of nonlinear integer arithmetic problems. We describe in detail our
implementation of the basic ideas inside the MathSAT SMT solver, and
evaluate its effectiveness with an extensive experimental analysis over all
nonlinear integer benchmarks in SMT-LIB. Our results show that Math-
SAT is very competitive with (and often outperforms) state-of-the-art
SMT solvers based on alternative techniques.

1 Introduction

The field of Satisfiability Modulo Theories (SMT) has seen tremendous progress
in the last decade. Nowadays, powerful and effective SMT solvers are available
for a number of quantifier-free theories1 and their combinations, such as equal-
ity and uninterpreted functions (UF), bit-vectors (BV), arrays (AX), and linear
arithmetic over the reals (LRA) and the integers (LIA). A fundamental chal-
lenge is to go beyond the linear case, by introducing nonlinear polynomials –
theories of nonlinear arithmetic over the reals (NRA) and the integers (NIA).
Although the expressive power of nonlinear arithmetic is required by many appli-
cation domains, dealing with nonlinearity is a very hard challenge. Going from
SMT(LRA) to SMT(NRA) yields a complexity gap that results in a computa-
tional barrier in practice – most available complete solvers rely on Cylindrical
Algebraic Decomposition (CAD) techniques [8], which require double exponen-
tial time in worst case. Adding integrality constraints exacerbates the problem
even further, because reasoning on NIA has been shown to be undecidable [16].

This work was funded in part by the H2020-FETOPEN-2016-2017-CSA project SC2

(712689).
1 In the following, we only consider quantifier-free theories, and we abuse the accepted

notation by omitting the “QF ” prefix in the names of the theories.
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Recently, we have proposed a conceptually simple, yet effective approach for
dealing with the quantifier-free theory of nonlinear arithmetic over the reals,
called Incremental Linearization [4–6]. Its underlying idea is that of trading
the use of expensive, exact solvers for nonlinear arithmetic for an abstraction-
refinement loop on top of much less expensive solvers for linear arithmetic and
uninterpreted functions. The approach is based on an abstraction-refinement
loop that uses SMT(UFLRA) as abstract domain. The uninterpreted functions
are used to model nonlinear multiplications, which are incrementally axioma-
tized, by means of linear constraints, with a lemma-on-demand approach.

In this paper, we show how incremental linearization can be applied suc-
cessfully also to the harder case of nonlinear integer arithmetic problems. We
describe in detail our implementation of the basic ideas, performed within the
MathSAT [7] SMT solver, and evaluate its effectiveness with an extensive exper-
imental analysis over all NIA benchmarks in SMT-LIB. Our results show that
MathSAT is very competitive with (and often outperforms) state-of-the-art
SMT solvers based on alternative techniques.

Related Work. Several SMT solvers supporting nonlinear integer arithmetic
(e.g., Z3 [10], smt-rat [9]) rely on the bit-blasting approach [12], in which a
nonlinear integer satisfiability problem is iteratively reduced to a SAT problem
by first bounding the integer variables, and then encoding the resulting problem
into SAT. If the SAT problem is unsatisfiable then the bounds on the integer
variables are increased, and the process is repeated. This approach is geared
towards finding models, and it cannot prove unsatisfiability unless the problem
is bounded.

In [3], the SMT(NIA) problem is approached by reducing it to SMT(LIA)
via linearization. The linearization is performed by doing case analysis on the
variables appearing in nonlinear monomials. Like the bit-blasting approach, the
method aims at detecting satisfiable instances. If the domain of the problem is
bounded, the method generates an equisatisfiable linear SMT formula. Other-
wise, it solves a bounded problem and incrementally increases the bounds of some
(heuristically chosen) variables until it finds a solution to the linear problem. In
some cases, it may also detect (based on some heuristic) the unsatisfiability of
the original problem.

The CVC4 [1] SMT solver uses a hybrid approach, in which a variant of
incremental linearization (as presented in [5,17]) is combined with bit-blasting.

Recent works presented in [13] and [15] have considered a method that com-
bines solving techniques for SMT(NRA) with branch and bound. The main
idea is to relax the NIA problem by interpreting the variables over the reals,
and apply NRA techniques for solving it. Since the relaxed problem is an over-
approximation of the original problem, the unsatisfiability of the NIA problem
is implied by the unsatisfiability of the NRA problem. If the NRA-solver finds
a non-integral solution a to a variable x, then a lemma (x ≤ �a� ∨ x ≥ �a�)
is added to the NRA problem. Otherwise, an integral solution is found for the
NIA problem. In [13], the Cylindrical Algebraic Decomposition (CAD) procedure
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(as presented in [14]) is combined with branch and bound in the MCSAT frame-
work. This is the method used by the Yices [11] SMT solver. In [15], the authors
show how to combine CAD and virtual substitution with the branch-and-bound
method in the DPLL(T ) framework.

Contributions. Compared to our previous works on incremental lineariza-
tion [4–6], we make the following contributions. First, we give a significantly
more detailed description of our implementation (in the SMT solver Math-
SAT), showing pseudo-code for all its major components. Second, we evaluate
the approach over NIA problems, both by comparing it with the state of the
art, and by evaluating the contributions of various components/heuristics of our
procedure to its overall performance.

Structure of the Paper. This paper is organized as follows. In §2 we provide
some background on the ideas of incremental linearization. In §3 we describe our
implementation in detail. In §4 we present our experimental evaluation. Finally,
in §5 we draw some conclusions and outline directions for future work.

2 Background

We assume the standard first-order quantifier-free logical setting and standard
notions of theory, satisfiability, and logical consequence.

We denote with Z the set of integer numbers. A monomial in variables
v1, v2, . . . , vn is a product vα1

1 ∗ vα2
2 ∗ . . . ∗ vαn

n , where each αi is a non-negative
integer called exponent of the variable vi. When clear from context, we may omit
the multiplication symbol ∗ and simply write vα1

1 vα2
2 . . . vαn

n . A polynomial p is a
finite linear combination of monomials with coefficients in Z, i.e., p

def= Σn
i=0cimi

where each ci ∈ Z and each mi is a monomial. A polynomial constraint or simply
constraint P is of the form p �� 0 where p is a polynomial and �� ∈ {<,≤, >,≥}.2

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfi-
ability of a first-order formula with respect to some theory or combination of
theories. Most SMT solvers are based on the lazy/DPLL(T ) approach [2], where
a SAT solver is tightly integrated with a T -solver, that is demanded to decide the
satisfiability of a list of constraints (treated as a conjunction of constraints) in
the theory T . There exist several theories that the modern SMT solvers support.
In this work we are interested in the following theories: Equality and Uninter-
preted Functions (UF), Linear Arithmetic and Nonlinear Arithmetic over the
integers (LIA and NIA, resp.), and in their combinations thereof.

We denote formulas with ϕ, lists of constraints with φ, terms with t, variables
with v, constants with a, b, c, monomials with w, x, y, z, polynomials with p,
functions with f , each possibly with subscripts. If μ is a model and v is a variable,
2 In the rest of the paper, for simplifying the presentation we assume that an equal-

ity constraint is written as a conjunction of weak inequality constraints, and an
inequality constraint is written as a disjunction of strict inequality constraints.
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Basic: Sign: v1 ∗ v2 = (−v1 ∗ −v2)

v1 ∗ v2 = −(−v1 ∗ v2)

v1 ∗ v2 = −(v1 ∗ −v2)

Zero: (v1 = 0 ∨ v2 = 0) ↔ v1 ∗ v2 = 0

((v1 > 0 ∧ v2 > 0) ∨ (v1 < 0 ∧ v2 < 0)) ↔ v1 ∗ v2 > 0

((v1 < 0 ∧ v2 > 0) ∨ (v1 > 0 ∧ v2 < 0)) ↔ v1 ∗ v2 < 0

Neutral: (v1 = 1 ∨ v2 = 0) ↔ v1 ∗ v2 = v2

(v2 = 1 ∨ v1 = 0) ↔ v1 ∗ v2 = v1

Proportionality: |v1 ∗ v2| ≥ |v2| ↔ (|v1| ≥ 1 ∨ v2 = 0)

|v1 ∗ v2| ≤ |v2| ↔ (|v1| ≤ 1 ∨ v2 = 0)

|v1 ∗ v2| ≥ |v1| ↔ (|v2| ≥ 1 ∨ v1 = 0)

|v1 ∗ v2| ≤ |v1| ↔ (|v2| ≤ 1 ∨ v1 = 0)
Order: (v1 ∗ v2 �� v3 ∧ v4 > 0) → v1 ∗ v2 ∗ v4 �� v3 ∗ v4

(v1 ∗ v2 �� v3 ∧ v4 < 0) → v3 ∗ v4 �� v1 ∗ v2 ∗ v4
Monotonicity: (|v1| ≤ |v2| ∧ |v3| ≤ |v4|) → |v1 ∗ v3| ≤ |v2 ∗ v4|

(|v1| < |v2| ∧ |v3 ≤ |v4| ∧ v4 	= 0) → |v1 ∗ v3| < |v2 ∗ v4|
(|v1| ≤ |v2| ∧ |v3| < |v4| ∧ v2 	= 0) → |v1 ∗ v3| < |v2 ∗ v4|

Tangent plane: v1 = a → v1 ∗ v2 = a ∗ v2

v2 = b → v1 ∗ v2 = b ∗ v1

(v1 > a ∧ v2 < b) → v1 ∗ v2 < b ∗ v1 + a ∗ v2 − a ∗ b

(v1 < a ∧ v2 > b) → v1 ∗ v2 < b ∗ v1 + a ∗ v2 − a ∗ b

(v1 < a ∧ v2 < b) → v1 ∗ v2 > b ∗ v1 + a ∗ v2 − a ∗ b

(v1 > a ∧ v2 > b) → v1 ∗ v2 > b ∗ v1 + a ∗ v2 − a ∗ b

Fig. 1. Axioms of the multiplication function.

we write μ[v] to denote the value of v in μ, and we extend this notation to terms
and formulas in the usual way. If φ is a list of constraints, we write

∧
φ to denote

the formula obtained by taking the conjunction of all its elements.
We call a monomial m a toplevel monomial in a polynomial p

def= Σn
i=0cimi if

m = mj for 0 ≤ j ≤ n. Similarly, a monomial m is a toplevel monomial in ϕ if
there exists a polynomial p in ϕ such that m is a toplevel monomial in p. Given
ϕ, we denote with ϕ̂ the formula obtained by replacing every nonlinear multi-
plication between two monomials x ∗ y occurring in ϕ by a binary uninterpreted
function f∗(x, y).

We assume that the polynomials in ϕ are normalized by applying the dis-
tributivity property of multiplication over addition, and by sorting both the
monomials and the variables in each monomial using a total order (e.g. lex-
icographic). Moreover, we always rewrite negated polynomial constraints into
negation-free polynomial constraints by pushing the negation to the arithmetic
relation (e.g., we write ¬(p ≤ 0) as (p > 0)).
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result check-nia (φ : constraint list):
1. res = check-uflia(φ̂):
2. if res-is-false(res):
3. return res
4. μ = res-get-model (res)
5. to refine = ∅
6. φ′ = {c | c ∈ φ and eval-model(μ, c) = ⊥}
7. for each x ∗ y in φ′:
8. if eval-model(μ, x ∗ y) 	= μ[x̂ ∗ y]:
9. to refine = to refine ∪ {x ∗ y}
10. if to refine = ∅:
11. return 〈true, μ〉
12. res = check-sat(φ, μ)
13. if res-is-true(res):
14. return res
15. lemmas = ∅
16. for round in 〈1, 2, 3〉:
17. for each x ∗ y in to refine:
18. L = generate-lemmas(x ∗ y, μ, round, to refine, φ)
19. lemmas = lemmas ∪ L

20. if lemmas 	= ∅:
21. return 〈undef, lemmas〉
22. return 〈unknown〉

Fig. 2. The top-level NIA theory solver procedure.

Overview of Incremental Linearization. The main idea of incremental lin-
earization is to trade the use of expensive, exact solvers for nonlinear arithmetic
for an abstraction-refinement loop on top of much less expensive solvers for lin-
ear arithmetic and uninterpreted functions. First, the input SMT(NIA) formula
ϕ is abstracted to the SMT(UFLIA) formula ϕ̂ (called its UFLIA-abstraction).
Then the loop begins by checking the satisfiability of ϕ̂. If the SMT(UFLIA)
check returns false then the input formula is unsatisfiable. Otherwise, the model
μ for ϕ̂ is used to build an UFLIA underapproximation ϕ̂∗ of ϕ, with the aim
of finding a model for the original NIA formula ϕ. If the SMT check for ϕ̂∗ is
satisfiable, then ϕ is also satisfiable. Otherwise, a conjunction of linear lemmas
that is sufficient to rule out the spurious model μ is added to ϕ̂, thus improving
the precision of the abstraction, and another iteration of the loop is performed.
The lemmas added are instances of the axioms of Fig. 1 obtained by replacing
the free variables with terms occurring in ϕ, selected among those that evaluate
to false under the current spurious model μ.

3 Implementing Incremental Linearization in a Lazy
SMT Solver

We now describe in detail our implementation of the basic incremental lineariza-
tion ideas as a theory solver inside an SMT prover based on the lazy/DPLL(T )
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value eval-model (μ : model, t : term):
1. match t with
2. x �� y: return (eval-model(μ, x) �� eval-model(μ, y) ? � : ⊥)
3. x ∗ y: return eval-model(μ, x) ∗ eval-model(μ, y)
4. x + y: return eval-model(μ, x) + eval-model(μ, y)
5. c ∗ x: return c ∗ eval-model(μ, x)
6. v : return μ[v]
7. c : return c

Fig. 3. Recursive model evaluation.

result check-sat (φ : constraint list, μ : UFLIA-model):
1. ϕ =

∧
φ

2. for each x ∗ y in ϕ:
3. cx = eval-model(μ, x)
4. cy = eval-model(μ, y)
5. ϕ = ϕ ∧ ((x ∗ y = cx ∗ y ∧ x = cx) ∨ (x ∗ y = cy ∗ x ∧ y = cy))
6. return smt-uflia-solve (ϕ̂)

Fig. 4. Searching for a model via linearization.

approach. The pseudo-code for the toplevel algorithm is shown in Fig. 2. The
algorithm takes as input a list of constraints φ, corresponding to the NIA con-
straints in the partial assignment that is being explored by the SAT search, and
it returns a result consisting of a status flag plus some additional information
that needs to be sent back to the SAT solver. If the status is true, then φ is
satisfiable, and a model μ for it is also returned. If the status is false, then
φ is unsatisfiable, and a conflict set φ′ ⊆ φ (serving as an explanation for the
inconsistency of φ) is also returned. If the status is undef, the satisfiability of
φ cannot be determined yet. In this case, the returned result contains also a set
of lemmas to be used by the SAT solver to refine its search (i.e. those lemmas
are learnt by the SAT solver, and the search is resumed). Finally, a status of
unknown means that the theory solver can neither determine the satisfiability
of φ nor generate additional lemmas3; in this case, the search is aborted.

check-nia starts by invoking a theory solver for UFLIA on the abstract
version φ̂ of the input problem (lines 1–4), in which all nonlinear multiplications
are treated as uninterpreted functions. The unsatisfiability of φ̂ immediately
implies that φ is inconsistent. Otherwise, the UFLIA solver generates a model μ
for φ̂. μ is then used (lines 5–9) to determine the set of nonlinear multiplications
that need to be refined. This is done by collecting all nonlinear multiplication
terms x ∗ y which have a wrong value in μ; that is, for which the value of the
abstraction x̂ ∗ y is different from the value obtained by fully evaluating the
multiplication under μ (using the eval-model function shown in Fig. 3). It is

3 This can happen when the tangent lemmas (see Fig. 8) are not used.
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lemma set generate-lemmas (x ∗ y : term, μ : model, r : int, to refine : term set,
φ : constraint list):

1. if r = 1:
2. return generate-basic-lemmas (x ∗ y, μ)
3. else:
4. if r = 2:
5. L = generate-order-lemmas(x ∗ y, μ, φ)
6. if L 	= ∅:
7. return L
8. toplevel = true
9. else:
10. toplevel = false
11. L = generate-monotonicity-lemmas(x ∗ y, μ, to refine, toplevel)
12. if L 	= ∅:
13. return L
14. return generate-tangent-lemmas(x ∗ y, μ, toplevel)

Fig. 5. Main lemma generation procedure.

important to observe that here we can limit the search for multiplications to
refine only to those that appear in constraints that evaluate to false under μ
(line 6). In fact, if all the constraints evaluate to true, then by definition μ is a
model for them, and we can immediately conclude that φ is satisfiable (line 10).

Even when μ is spurious, it can still be the case that there exists a model
for φ that is “close” to μ. This is the idea behind the check-sat procedure of
Fig. 4, which uses μ as a guide in the search for a model of φ. check-sat works
by building an UFLIA-underapproximation of φ, in which all multiplications are
forced to be linear. The resulting formula ϕ̂ can then be solved with an SMT
solver for UFLIA. Although clearly incomplete, this procedure is cheap (since
the Boolean structure of ϕ̂ is very simple) and, as our experiments will show,
surprisingly effective.

When check-sat fails, we proceed to the generation of lemmas for refin-
ing the spurious model μ (lines 15–21). Our lemma generation strategy
works in three rounds: we invoke the generate-lemmas function (Fig. 5)
on the multiplication terms x ∗ y that need to be refined using increasing
levels of effort, stopping at the earliest successful round – i.e., a round in
which lemmas are generated. In the first round, only basic lemmas encod-
ing simple properties of multiplications (sign, zero, neutral, proportionality
in Fig. 1) are considered (generate-basic-lemmas). In the second round,
we consider also “order” lemmas (generate-order-lemmas, Fig. 6), i.e.
lemmas obtained via (a restricted, model-driven) application of the order
axioms of Z. If generate-order-lemmas fails, we proceed to generating
monotonicity (generate-monotonicity-lemmas, Fig. 7) and tangent plane
(generate-tangent-lemmas, Fig. 8) lemmas, restricting the instantiation
however to only toplevel monomials. Finally, in the last round, we repeat the
generation of monotonicity and tangent lemmas, considering this time also non-
toplevel monomials.
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lemma set generate-order-lemmas (x ∗ y : term, μ : model, φ : constraint list):
1. for each variable v in x ∗ y:
2. monomials = get-monomials (v, φ)
3. bounds = get-bounds (v, φ)
4. for each (w ∗ v �� p) in bounds:
5. for each t ∗ v in monomials:
6. if t ∗ w ∗ v in φ and t ∗ p in φ:
7. n = eval-model(t)
8. if n = 0:
9. continue
10. else if n > 0:
11. ψ = ((w ∗ v �� p) ∧ t > 0) → (t ∗ w ∗ v �� t ∗ p)
12. else:
13. ψ = ((w ∗ v �� p) ∧ t < 0) → (t ∗ p �� t ∗ w ∗ v)
14. if eval-model(μ, ψ) = ⊥:
15. return {ψ}
16. return ∅

Fig. 6. Generation of order lemmas.

Lemma Generation Procedures. We now describe our lemma generation
procedures in detail. The pseudo-code is reported in Figs. 5, 6, 7 and 8. All
procedures share the following two properties: (i) the lemmas generated do not
contain any nonlinear multiplication term that was not in the input constraints
φ; and (ii) all the generated lemmas evaluate to false (⊥) in the current model μ.

The function generate-basic-lemmas, whose pseudo-code is not reported,
simply instantiates all the basic axioms for the input term x ∗ y that satisfy
points (i) and (ii) above.

The function generate-order-lemmas (Fig. 6) uses the current model and
asserted constraints to produce lemmas that are instances of the order axiom for
multiplication. It is based on ideas that were first implemented in the CVC4 [1]
SMT solver.4 It works by combining, for each variable v in the input term x ∗ y,
the monomials t ∗ v in which v occurs (retrieved by get-monomials) with
the predicates of the form (w ∗ v �� p) (where �� ∈ {<,>,≤,≥} and p is a
polynomial) that are induced by constraints in φ (which are collected by the
get-bounds function). The (non-constant) coefficient t of v in the monomial
t ∗ v is used to generate the terms t ∗ w ∗ v and t ∗ p: if both occur5 in the input
constraints φ, then an instance of the order axiom is produced, using the current
model μ as a guide (lines 7–15).

The function generate-monotonicity-lemmas (Fig. 7) returns instances
of monotonicity axioms relating the current input term x ∗ y with other mono-
mials that occur in the set of terms to refine. In the second round of lemma
generation, only toplevel monomials are considered.

4 We are grateful to Andrew Reynolds for fruitful discussions about this.
5 It is important to stress here that we keep the monomials in a normal form by

reordering their variables, although this is not shown explicitly in the pseudo-code.
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lemma set generate-monotonicity-lemmas (x ∗ y : term, μ : model, to refine : term set,
toplevel : bool):

1. if toplevel 	= is-toplevel-monomial(x ∗ y):
2. return ∅
3. L = ∅
4. for each w ∗ z in to refine:
5. if not toplevel or is-toplevel-monomial (z ∗ w):
6. ψ1 = (|x| ≤ |w| ∧ |y| ≤ |z|) → |x ∗ y| ≤ |w ∗ z|
7. ψ2 = (|x| ≤ |z| ∧ |y| ≤ |w|) → |x ∗ y| ≤ |w ∗ z|
8. ψ3 = (|x| < |w| ∧ |y| ≤ |z| ∧ z 	= 0) → |x ∗ y| < |w ∗ z|
9. ψ4 = (|x| < |z| ∧ |y| ≤ |w| ∧ w 	= 0) → |x ∗ y| < |w ∗ z|
10. ψ5 = (|x| ≤ |w| ∧ |y| < |z| ∧ w 	= 0) → |x ∗ y| < |w ∗ z|
11. ψ6 = (|x| ≤ |z| ∧ |y| < |w| ∧ z 	= 0) → |x ∗ y| < |w ∗ z|
12. L = L ∪ {ψi | eval-model(μ, ψi) = ⊥}
13. return L

Fig. 7. Generation of monotonicity lemmas.

Finally, the function generate-tangent-lemmas (Fig. 8) produces
instances of the tangent plane axioms. In essence, the function instantiates all
the clauses of the tangent plane lemma using the two factors x and y of the input
multiplication term x ∗ y and their respective values a and b in μ, returning all
the instances that are falsified by μ. This is done in lines 15–21 of Fig. 8. In
our actual implementation, however, we do not use the model values a and b
directly to generate tangent lemmas, but we instead use a heuristic that tries to
reduce the number of tangent lemmas generated for each x ∗ y term to refine.
More specifically, we keep a 4-value tuple 〈lx, ly, ux, uy〉 associated with each x∗y
term in the input problem (which we call frontier) consisting of the smallest and
largest of the previous model values for x and y for which a tangent lemma has
been generated, and for each frontier we maintain an invariant that whenever
x is in the interval [lx, ux] or y is in the interval [ly, uy], then x ∗ y has both
an upper and a lower bound. This condition is achieved by adding tangent lem-
mas for the following four points of each frontier: (lx, ly), (lx, uy), (ux, ly), (ux, uy)
(the function update-tangent-frontier in Fig. 8 generates those lemmas). If
the current model values a and b for x and y are outside the intervals [lx, ux]
and [ly, uy] respectively, we try to adjust them with the goal of enlarging the
frontier as much as possible whenever we generate a tangent plane. Intuitively,
this can be seen as a form of lemma generalisation. The procedure is shown in
lines 6–14 of Fig. 8: the various push-tangent-point* functions try to move
the input points along the specified directions (either ‘U’p, by increasing a value,
or ‘D’own, by decreasing it) as long as the tangent plane passing through (a, b)
still separates the multiplication curve from the spurious value c.6

6 In our implementation we use a bounded (dichotomic) search for this. For example,
for the ‘UU’ direction we try increasing both a and b until either the tangent plane
passing through (a, b) cannot separate the multiplication curve from the bad point
c anymore, or we reach a maximum bound on the number of iterations.
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lemma set generate-tangent-lemmas (x ∗ y : term, μ : model, toplevel : bool):
1. if toplevel 	= is-toplevel-monomial(x ∗ y):
2. return ∅
3. a = eval-model(μ, x)
4. b = eval-model(μ, y)
5. c = μ[x̂ ∗ y]
6. lx, ly , ux, uy = get-tangent-frontier(x ∗ y)
7. if a < lx and b < ly : a, b = push-tangent-points-DD(x ∗ y, a, b, c)
8. else if a < lx and b > uy : a, b = push-tangent-points-DU(x ∗ y, a, b, c)
9. else if a > ux and b > uy : a, b = push-tangent-points-UU(x ∗ y, a, b, c)
10. else if a > ux and b < ly : a, b = push-tangent-points-UD(x ∗ y, a, b, c)
11. else if a < lx: a = push-tangent-point1-D(x ∗ y, a, b, c)
12. else if a > ux: a = push-tangent-point1-U(x ∗ y, a, b, c)
13. else if b < ly : b = push-tangent-point2-D(x ∗ y, a, b, c)
14. else if b > uy : b = push-tangent-point2-U(x ∗ y, a, b, c)
15. ψ1 = (x = a → x ∗ y = a ∗ y)
16. ψ2 = (y = b → x ∗ y = b ∗ x)
17. ψ3 = (x > a ∧ y < b) → (x ∗ y < b ∗ x + a ∗ y − a ∗ b)
18. ψ4 = (x < a ∧ y > b) → (x ∗ y < b ∗ x + a ∗ y − a ∗ b)
19. ψ5 = (x < a ∧ y < b) → (x ∗ y > b ∗ x + a ∗ y − a ∗ b)
20. ψ6 = (x > a ∧ y > b) → (x ∗ y > b ∗ x + a ∗ y − a ∗ b)
21. L = {ψi | eval-model(μ, ψi) = ⊥}
22. if L 	= ∅:
23. L = L ∪ update-tangent-frontier(x ∗ y, a, b)
24. return L

Fig. 8. Generation of tangent lemmas.

Example 1 (Tangent frontier enlargement – Fig. 9). Let 〈−3,−1, 5, 2〉 be the
current frontier of x ∗ y during the search. Suppose the abstract model gives:
μ[x] = a = 15, μ[y] = b = 5, and μ[x̂ ∗ y] = c = 48. This model is spurious
because 15 ∗ 5 �= 48. Notice that the point (15, 5) is outside of the frontier,
because 15 is not in [−3, 5] and 5 is not in [−1, 2]. So, during the tangent lem-
mas generation, the function push-tangent-points-UU can return a = 20 and
b = 10, as one of the constraints of the tangent lemma instantiated at that point
is violated by the current model, i.e., we can obtain the following clauses from
the tangent lemma:

x > 20 ∧ y < 10 → x ∗ y < 10 ∗ x + 20 ∗ y − 200
x < 20 ∧ y > 10 → x ∗ y < 10 ∗ x + 20 ∗ y − 200
x < 20 ∧ y < 10 → x ∗ y > 10 ∗ x + 20 ∗ y − 200
x > 20 ∧ y > 10 → x ∗ y > 10 ∗ x + 20 ∗ y − 200

by plugging in the values x = 15, y = 5, and x∗y = 48, then we obtain a conflict
in the third clause because 15 < 20 and 5 < 10, but 48 �> 10 ∗ 15 + 20 ∗ 5 − 200.
This means that the tangent lemma instantiated at point (20, 10) can be used
for refinement (Fig. 9(c)).
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(a) current frontier (b) original point (15,5)
for the tangent lemma

(c) successful pushed
point (20,10) for the
tangent lemma

(d) unsuccessful pushed
point (21,11) for the
tangent lemma

Fig. 9. Illustration of the strategy for adjusting the refinement point for the tangent
lemma.

However, if we use (21, 11) for the tangent lemma instantiation, we get the
following clauses:

x > 21 ∧ y < 11 → x ∗ y < 11 ∗ x + 21 ∗ y − 231
x < 21 ∧ y > 11 → x ∗ y < 11 ∗ x + 21 ∗ y − 231
x < 21 ∧ y < 11 → x ∗ y > 11 ∗ x + 21 ∗ y − 231
x > 21 ∧ y > 11 → x ∗ y > 11 ∗ x + 21 ∗ y − 231

Notice that, all these clauses are satisfied if we plug in the values x = 15, y = 5,
and x ∗ y = 48. Therefore, we cannot use them for refinement (Fig. 9(d)).

4 Experimental Analysis

We have implemented our incremental linearization procedure in our SMT solver
MathSAT [7]. In this section, we experimentally evaluate its performance. Our
implementation and experimental data are available at https://es.fbk.eu/people/
irfan/papers/sat18-data.tar.gz.

Setup and Benchmarks. We have run our experiments on a cluster equipped
with 2.6 GHz Intel Xeon X5650 machines, using a time limit of 1000 s and a
memory limit of 6 Gb.

For our evaluation, we have used all the benchmarks in the QF NIA category
of SMT-LIB [18], which at the present time consists of 23876 instances. All the
problems are available from the SMT-LIB website.

Our evaluation is composed of two parts. In the first, we evaluate the contri-
bution of different parts of our procedure to the overall performance of Math-
SAT, by comparing different configurations of the solver. In the second part, we
compare our best configuration against the state of the art in SMT solving for
nonlinear integer arithmetic.

https://es.fbk.eu/people/irfan/papers/sat18-data.tar.gz
https://es.fbk.eu/people/irfan/papers/sat18-data.tar.gz
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Fig. 10. Comparison among different configurations of MathSAT.

Comparison of Different Configurations. We evaluate the impact of the
main components of our procedure, by comparing five different configurations of
MathSAT:

– The standard configuration, using all the components described in the previ-
ous section (simply denoted MathSAT);

– a configuration with check-sat disabled (denoted MathSAT-no-check-
sat);

– a configuration with generate-order-lemmas disabled (denoted Math-
SAT-no-order);

– a configuration with generate-monotonicity-lemmas disabled (denoted
MathSAT-no-mono);

– a configuration with generate-tangent-lemmas disabled (denoted Math-
SAT-no-tangent); and finally

– a configuration with both check-sat and generate-tangent-lemmas dis-
abled (denoted MathSAT-no-check-sat-no-tangent).

The results are presented in Fig. 10. The plot on the left shows, for each con-
figuration, the number of instances that could be solved (on the y axis) within
the given time limit (on the x axis). The table on the right shows the ranking of
the configurations according to the number of instances solved. From Fig. 10, we
can see that all components of our procedure contribute to the performance of
MathSAT. As expected, tangent lemmas are crucial, but it is also interesting
to observe that the cheap satisfiability check by linearization is very effective,
leading to an overall performance boost and to the successful solution of 746
additional benchmarks that could not be solved by MathSAT-no-check-sat.
Finally, although the addition of order axioms (by generate-order-lemmas)
does not pay off for simpler problems, its impact is clearly visible for harder
instances, allowing MathSAT to solve 338 more benchmarks than MathSAT-
no-order.
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Overall results
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Fig. 11. Comparison with state-of-the-art SMT solvers for NIA.

Comparison with the State of the Art. In the second part of our experi-
ments, we compare MathSAT with the state-of-the-art SMT solvers for NIA.
We consider CVC4 [1], smt-rat [9], Yices [11] and Z3 [10]. Figures 11 and 12
show a summary of the results (with separate plots for satisfiable and unsatisfi-
able instances in addition to the overall plot), whereas Fig. 13 shows a more
detailed comparison between MathSAT and Yices. Additional information
about the solved instances for each benchmark family is given in Table 1. From
the results, we can see that the performance of MathSAT is very competitive:
not only it solves more instances than all the other tools, but it is also faster
than CVC4, smt-rat and Z3. On the other hand, Yices is much faster than
MathSAT in the majority of cases, especially on easy unsatisfiable instances
(solved in less than 10 s). However, the two tools are very complementary, as
shown by Fig. 13: MathSAT can solve 2436 instances for which Yices times
out, whereas Yices can successfully handle 1505 instances that MathSAT is
unable to solve. Moreover, MathSAT overall solves 931 more problems (915
satisfiable and 16 unsatisfiable) than Yices in the given resource limits.
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Overall results
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Fig. 12. Comparison with state-of-the-art SMT solvers for NIA – without the VeryMax
benchmarks.
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Table 1. Summary of the comparison with the state of the art.

Total

(23876)

AProVE

(2409)

Calypto

(177)

Lasso

Ranker

(106)

LCTES

(2)

Leipzig

(167)

MCM

(186)

Ultimate

Automizer

(7)

Ultimate

Lasso-

Ranker

(32)

VeryMax

(20790)

MathSAT 11723/4993 1642/561 79/89 4/100 0/1 126/2 12/0 0/7 6/26 9854/4207

Yices 10808/4977 1595/708 79/97 4/84 0/0 92/1 8/0 0/7 6/26 9024/4054

CVC4 7653/3984 1306/608 77/89 4/94 0/1 84/2 6/0 0/6 6/26 6170/3158

Z3 6993/2837 1656/325 78/96 4/92 0/0 162/0 20/1 0/7 6/26 5067/2290

smt-rat 6161/414 1663/184 79/89 3/20 0/0 160/0 21/0 0/1 6/26 4229/94

VirtualBest 13169/5669 1663/724 79/97 4/101 0/1 162/2 23/1 0/7 6/26 11232/4710

Each column shows a family of benchmarks in the QF NIA division of SMT-LIB. For each solver, the table

shows the number of sat/unsat results in each family. The best performing tools (in terms of # of results)

are reported in boldface.

5 Conclusions

We have presented a solver for satisfiability modulo nonlinear integer arithmetic
based on the incremental linearization approach. Our empirical analysis of its
performance over all the nonlinear integer benchmarks in the SMT-LIB library
shows that the approach is very competitive with the state of the art: our solver
MathSAT can solve many problems that are out of reach for other tools, and
overall it solves the highest number of instances. Our evaluation has however also
shown that current approaches for SMT(NIA) are very complementary, with no
tool that always outperforms all the others. This suggests the investigation of
hybrid approaches that combine multiple methods as a very promising direction
for future work.
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Abstract. Set membership filters are used as a primary test for whether
large sets contain given elements. The most common such filter is
the Bloom filter [6]. Most pertinent to this article is the recently
introduced Satisfiability (SAT) filter [31]. This article proposes the
XOR-Satisfiability filter, a variant of the SAT filter based on random
k-XORSAT. Experimental results show that this new filter can be more
than 99% efficient (i.e., achieve the information-theoretic limit) while also
having a query speed comparable to the standard Bloom filter, making
it practical for use with very large data sets.

1 Introduction

To support timely computation on large sets, and in cases where being certain is
not necessary, a quick, probabilistic test of a set membership filter is often used.
A set membership filter is constructed from a set and queried with elements from
the corresponding domain. Being probabilistic, the filter will return either Maybe
or No. That is, the filter can return false positives, but never false negatives. The
most well-known set membership filter is the Bloom filter [6]. Though many other
set membership filters have been proposed, the most important to this work is
the SAT filter [31].

A SAT filter is a set membership filter constructed using techniques based
on SAT [5]. In [31], the authors describe the process of building a SAT filter
as follows. First, each element in a set of interest is translated into a CNF
clause (disjunction of literals). Next, every clause is logically conjoined into a
CNF formula. Finally, solutions to the resulting formula are found using a SAT
solver. These solutions constitute a SAT filter. To query a SAT filter, an element
is translated into a clause (using the same method as during filter building) and
if the clause is satisfied by all of the stored solutions, the element may be in
the original set, otherwise it is definitely not in the original set. Parameters for
tailoring certain aspects of the SAT filter such as false positive rate, query speed,
and amount of long term storage are described in [31].

c© Springer International Publishing AG, part of Springer Nature 2018
O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 401–418, 2018.
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This article describes a new, practical variant of the generic SAT filter where
clauses are considered to be the XORs of Boolean variables, rather than the
traditional inclusive OR (disjunction) of literals. This approach (mentioned as
possible future research in [31]) offers many advantages over a disjunction-based
SAT filter such as practically near perfect filter efficiency [30], faster build and
query times, and support for metadata storage and retrieval.

In terms of related work, there are other filter constructions that attempt to
achieve high efficiency (e.g. via compression) (e.x., see [7–9,16,24]). Most simi-
lar to the XORSAT filter construction introduced here are Matrix filters [13,26].
Insofar as XORSAT equations are equivalent to linear equations over GF (2),
there are two obvious (and independent) ways to generalize such a linear system:
either by considering equations over larger fields like GF (2s) (Matrix filters), or
remaining over GF (2) and working with s right-hand sides (XORSAT filters).
In both constructions, the solutions can be used to store probabilistic member-
ship in sets, as well as values corresponding to keys, but the XORSAT filter
construction is motivated by some clear computational advantages.

First, Matrix filters require a hash function that yields elements over
GF (2s)n, whereas hash functions for XORSAT filters yield elements over GF (2)n

— an s-fold improvement in the data required. Also, Matrix filters require arith-
metic over GF (2s), whereas XORSAT filters work entirely over GF (2) and as
such are more naturally suited to highly-optimized implementations; all compu-
tations devolve to simple and fast word operations (like AND and XOR) and
bit-parity computations which are typically supported on modern computers.
This article also proposes some simple and more practical methods for buck-
eting and handling sparse variants, which likewise correspond to efficiency and
performance improvements.

2 XORSAT Filters

This section briefly describes XORSAT and the XORSAT filter.

2.1 XORSAT

Construction and query of an XORSAT filter rely heavily on properties of ran-
dom k-XORSAT, a variant of SAT where formulas are expressed as conjunctions
of random XOR clauses, i.e. the exclusive OR of Boolean variables.

Definition 1. An XOR clause is an expression of the form

vi1 ⊕ . . . ⊕ viki
≡ bi,

where the symbol ⊕ represents XOR, the symbol ≡ represents logical equivalence,
each vi is a Boolean variable and each bi (right-hand side) is a constant, either
0 (for False) or 1 (for True).
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Definition 2. A width k XOR clause has exactly k distinct variables.

Definition 3. A random k-XORSAT instance is a set of XOR clauses drawn
uniformly, independently, and with replacement from the set of all width k XOR
clauses [20].

As with random k-SAT [1], a random k-XORSAT instance is likely to be
satisfiable if its clauses-to-variables ratio is less than a certain threshold αk,
and likely to be unsatisfiable if greater than αk [25]. Experimental results have
established approximate values of αk for small values of k, though it asymp-
totically approaches 1. Experimental values are given next and are reproduced
from [11,12].

Table 1. Various αk values for random k-XORSAT

k 2 3 4 5 6 7

αk 0.5 0.917935 0.976770 0.992438 0.997379 0.999063

Polynomial time algorithms exist for reducing random k-XORSAT instances
into reduced row echelon form. For example, Gaussian elimination can solve
such instances in O(n3) steps and the ‘Method of Four Russians’ [4,29] in
O( n3

log2 n ). Once in this reduced form, collecting random solutions (kernel vec-
tors) is trivial—assign random values to all of the free variables (those in the
identity submatrix), and backsolve for the dependent ones.

2.2 XORSAT Filter Construction

This section presents the basic XORSAT filter construction. Later sections pro-
vide enhancements which enable such filters to be used in practice. The XORSAT
filter is built and queried in a manner very similar to the SAT filter. Provided
below are updated algorithms for construction and query, analogous to those
in [31], where deeper discussion on how to construct and query SAT filters can
be found.

Building an XORSAT Filter. Being a variant of the the SAT filter, the
XORSAT filter has similar properties. Building an XORSAT filter for a data set
Y ⊆ D (where D is a domain) is one-time work. The XORSAT filter is an offline
filter, so, once built, it is not able to be updated. To build an XORSAT filter,
all elements y ∈ Y are transformed into width k XOR clauses that, when con-
joined, constitute a random k-XORSAT instance. If the instance is unsatisfiable,
a filter cannot be constructed for the given data set and parameters. Otherwise,
a solution for that instance and acts as a filter for Y .

Algorithm 1 shows how to transform an element e ∈ D into a width k XOR
clause using a set of hash functions. Algorithm 2 shows how to build an XORSAT
filter from a given set Y ⊆ D.
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Algorithm 1. ElementToXorClause(e ∈ D,n, k, h0, . . . , hk−1, hb)
e is the element used to generate an XOR clause
n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to [0, 1]
1: nonce := 0
2: repeat
3: V := {}
4: for i := 0 to k − 1 do
5: v := hi(e, nonce), hash e to generate variable v
6: V := V ∪ {v}, add v to the XOR clause
7: end for
8: nonce := nonce + 1
9: until all variables of V are distinct

10: b := hb(e), hash e to generate the right-hand side
11: return (V, b)

Algorithm 2. BuildXorSatFilter(Y ⊆ D,n, k, h0, . . . , hk−1, hb)
Y is the set used to build an XORSAT filter
n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to [0, 1]
1: XY := {}, the empty formula
2: for each element y ∈ Y do
3: (Vy, by) := ElementToXorClause(y, n, k, h0, . . . , hk−1, hb)
4: XY := XY ∪ {(Vy, by)}
5: end for
6: if the random k-XORSAT instance XY is unsatisfiable then
7: return failure
8: else
9: Let FY be a single solution to XY

10: return FY

11: end if

Querying a SAT Filter. Querying an XORSAT filter with an element x ∈ D is
very similar to querying a SAT filter. First, x is transformed into a k width XOR
clause. Then, if the clause is satisfied by the solution generated by Algorithm 2
for a set Y , x is maybe in Y , otherwise x is definitely not in Y . Algorithm 3
shows how to query an XORSAT filter.
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Algorithm 3. QueryXorSatFilter(FY , x ∈ D,n, k, h0, . . . , hk−1, hb)
x is the element used to query the XORSAT filter FY

n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to [0, 1]
1: (Vx, bx) := ElementToXorClause(x, n, k, h0, . . . , hk−1, hb)
2: for each variable v ∈ Vx do
3: bx := bx ⊕ FY (v)
4: end for
5: if bx = 0 then
6: return Maybe
7: end if
8: return No

2.3 False Positive Rate, Query Time, and Storing Multiple
Solutions

The false positive rate of an XORSAT filter is the probability that the XOR
clause generated by the query is satisfied by the stored solution. This is equal
to the probability that a random width k XOR clause is satisfied by a random
solution, i.e., 1

2 . As with the SAT filter, the false positive rate can be improved
by either storing multiple solutions to multiple XORSAT instances or storing
multiple uncorrelated solutions to a single XORSAT instance. For SAT filters,
this second method is preferred because querying is much faster (only one clause
needs to be built, so the hash functions are called fewer times), but the challenge
of finding uncorrelated solutions to a single instance has yet to be overcome,
though recent work seems promising [3,14,17,21].

Fortunately, moving from SAT to XORSAT also moves past this difficulty.
Since the XORSAT solving method used here, reduction to echelon form, is
agnostic to the type of the elements in the matrix being reduced, s XORSAT
instances can be encoded by treating the variables and right-hand side of each
XOR clause as vectors of Booleans1. Then, the transformation to reduced row
echelon form uses bitwise XOR on vectors (during row reduction) rather than
Boolean XOR on single bits. Hence, s XORSAT instances can be solved in par-
allel, and just as fast as solving a single instance2. Also, since the XORSAT
instances have random right-hand sides, the s solutions, one for each instance,
will be uncorrelated.

The solutions are stored in the same manner as the SAT filter, that is, all s
solution bits corresponding to a variable are stored together (the transpose of the

1 The intuition for this idea came from Bryan Jacobs’ work on isomorphic k-SAT
filters and work by Heule and van Maaren on parallelizing SAT solvers using bitwise
operators [19].

2 As long as s is not greater than the native register size of the machine on which the
solver is running.
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array of solutions). If the solutions are stored this way, querying the s-wide filter
is just as efficient as querying a filter created from a single instance. Moreover,
the false positive rate is improved to 1

2s because, during XORSAT filter query,
s different right-hand side bits are generated from each element and each have
to be satisfied by the corresponding solution.

2.4 Dictionaries

A small modification to the XORSAT filter construction can enable it to produce
filters that also store and retrieve metadata d associated with each element y.
To insert the tuple (y, d), a key-value pair, into the filter, append a bitwise
representation of d, say r bits wide, to the right-hand side of the clause for y.
Now every variable is treated as an s+r wide vector of Booleans and the resulting
instance is solved using word-level operations3. When querying, the first s bits of
the right-hand side act as a check (to determine if the element passes the filter)
and, if so (and not a false positive) the last r bits will take on the values of the
bitwise representation of d.

On a purely practical note, the instances generated during build need not
be entirely random k-XORSAT instances. By removing the check for duplicate
variables, XOR clauses with less than k variables can be generated because dupli-
cate variables in an XOR clause simply cancel out. In practice, this only slightly
decreases efficiency (increases the size of the filter), but moderately decreases
query time.

Algorithm 4 shows how to create a bit-packed sequence of XOR clauses,
including support for dictionaries. Algorithm5 shows how to query using the
new Algorithm 4. To use these new algorithms to do purely filtering, set r to 0.
For a pure dictionary, set s to 0. If both r > 0 and s > 0, the stored metadata
will only be returned when an element passes the filter. If the element is a false
positive, the returned metadata will be random.

2.5 Blocked XORSAT Filters

XORSAT filters suffer from the same size problem as SAT filters, namely, it is not
practical to build filters for large sets. The reason being that the time it takes a
modern solver to find a solution to an instance (with say millions of variables) is
often too long for common applications. The natural way to overcome this with
SAT filters is to increase the number of variables in the random k-SAT problem,
decreasing efficiency, but also making the SAT problem easier by backing off of
the k-SAT threshold [23]. This technique is not applicable to random k-XORSAT
instances, that is, increasing the number of variables does not make significantly
easier instances.

XORSAT (and SAT) filter build time can be decreased by first hashing ele-
ments into blocks (or buckets) and then building one filter for each block of ele-
ments, a process that is trivially parallelizable. This is a tailoring of a Blocked

3 Adding an extra r bits of metadata means that the filter now has r more solutions.
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Algorithm 4. ElementToXorClauses(e ∈ D, d, k, h0, . . . , hk−1, hb)
e is the element used to generate s XOR clauses
n is the number of variables per XORSAT instance
d is data to be stored, a bit-vector in [0, 2r)
k is the number of variables per XOR clause
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to bit-vectors in [0, 2s)
1: V := {}
2: for i := 0 to k − 1 do
3: v := hi(e), hash e to generate variable v
4: V := V ∪ {v}, add v to the XOR clause
5: end for
6: b := hb(e), hash e to generate the right-hand side
7: return (V, b||d), append d to the right-hand side

Algorithm 5. QueryXorSatDictionary(FY , x∈D,n, k, s, r, h0, ..., hk−1, hb)
x is the element used to query the XORSAT filter FY

n is the number of variables per XORSAT instance
k is the number of variables per XOR clause
s is the number of solutions to be found
r is the number of bits of metadata stored with each element
h0, . . . , hk−1 are functions that map elements of D to [0, n)
hb is a function that maps elements of D to bit-vectors in [0, 2s)
1: (Vx, bx = [b0, . . . , bs+r−1]) := ElementToXorClauses(x, 0, k, h0, . . . , hk−1, hb)
2: for each variable v ∈ Vx do
3: bx := bx ⊕ FY (v)
4: end for
5: if [b0, . . . , bs−1] = 0 then
6: return (Maybe, [bs, . . . , bs+r−1])
7: end if
8: return No

Bloom filter [22,28] to SAT filters of any constraint variation. The number of
blocks can be determined by the desired runtime of the build process; the more
blocks the faster the build process. The issue here is that, given a decent ran-
dom hash function, elements are distributed into blocks according to a Poisson
distribution [15], that is, some blocks will likely have a few more elements than
others. Hence, to store the solutions for each block, one also needs to store some
information about the number of variables in each block so that they can be
accessed during query. Depending on the technique used, this is roughly a small
number of extra bits per block. Otherwise, the blocks can be forced to a uniform
size by setting the number variables for each block to be the maximum number
of variables needed to make the largest block satisfiable. Either way, the long-
term storage of the filter has slightly increased, slightly decreasing efficiency at
the benefit of a (potentially much) shorter build-time. So, here is one trade-off
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between build time and efficiency that can make SAT filters practical for large
datasets. Also, blocking can increase query speed since, depending on block size,
the k lookups will be relatively near each other in a computer’s memory, giving
the processor an opportunity to optimize the lookups. In fact, this is the original
motivation of Blocked Bloom Filters; it’s simply advantageous that the idea can
also be used to drastically decrease the build time of SAT filters.

The next section provides the mathematics needed to choose appropriate
parameters for the XORSAT filter construction.

3 Filter Efficiency

As introduced in [30], given a filter with false positive rate p, n bits of memory,
and m = |Y |, the efficiency of the filter is

E =
− log2 p

n/m
.

Efficiency is a measure of how well a filter uses the memory available to
it. The higher the efficiency, the more information packed into a filter. A filter
with a fixed size can only store so much information. Hence, efficiency has an
upper-bound, i.e., the information-theoretic limit, namely

E = 1.

Since “m/n = 1 remains a sharp threshold for satisfiability of constrained4

k-XORSAT for every k ≥ 3” [25], the XORSAT filter construction, like the SAT

Fig. 1. Theoretically achievable XORSAT filter efficiency for various k.

4 A constrained model is one where every variable appears in at least two equations.
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filter construction, theoretically achieves E = 1. In other words, it is possible to
build an XORSAT filter for a given data set and false positive rate that uses as
little long-term storage as possible. XORSAT filter efficiency tends to 1 faster
than that of SAT filters, and the corresponding satisfiability threshold is much
sharper. This means that, since there are diminishing returns as k grows, a small
k (five or six) can give near optimal efficiency (see Fig. 1), and, unlike the SAT
filter, these high efficiencies are able to be achieved in practice.

4 XORSAT Filter Parameters

This section discusses the selection of parameters for XORSAT filters (see
Table 2).

Table 2. XORSAT filter parameters

p The false positive rate of an XORSAT filter

s The number of XORSAT instances

r The number of bits of metadata stored with each element

n The number of variables per XORSAT instance

m The number of XOR clauses per XORSAT instance

k The number of variables per XOR clause

As with the SAT filter, a value for k should be selected first. A small k
(five or six) is sufficient to achieve near perfect efficiency (see Fig. 1). Larger
k are undesirable as efficiency will not notably increase and query speed will
significantly decrease.

The value of m is the number of elements being stored in the filter. Since the
satisfiability threshold αk = m

n is sharp for random k-XORSAT and tends quickly
to 1, n should be set equal to, or slightly larger than m. For example, if k = 3,
m should be roughly 91% of n (see Table 1 for precise calculations). Setting n
much larger than m will cause a drop in efficiency without any advantage. This
is not true for the SAT filter because random k-SAT problems become harder
the closer they are to the satisfiability threshold [23], so, increasing n decreases
build time. This is not the case with XORSAT filters and is the main reason
they can practically achieve near perfect efficiency. Finally, a value for either s or
p should be selected. These parameters determine the false positive rate p = 1

2s

and the amount of long-term storage (sn) of the filter.
To give an example set of parameters, an XORSAT filter for m = 216 elements

with a false positive rate of p ≈ 1
27 needs s = 7 solutions to be stored and

n = 216 + ε. Such an XORSAT filter, with k = 6, can be built and will use
sn ≈ 460000 bits of long-term storage, a 30% reduction over an optimal Bloom
filter’s long-term storage ≈660000 bits. See Sect. 6 for metrics on different size
data sets, efficiencies, and query times.
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5 Detailed Example

This section presents a detailed example of how to build and query an XORSAT
filter, including details on how to use the filter to store and retrieve metadata.
For the sole purpose of this example, let the set of interest be Y = [(“cat”, 0),
(“fish”, 1), (“dog”, 2)]. Here, Y is a list of three tuples where each tuple contains
a word and an integer representing the tuple’s index in the list.

5.1 Building the Filter

The first step in building an XORSAT filter for Y is to decide on parameters
(see Sect. 4). For this example, let k, the number of variables per XOR clause,
be three. Since there are three elements, m will be three. Let the number of
variables per XORSAT instance be a number slightly larger than m to ensure
the instances are satisfiable, say n = 4. Let p, the desired false positive rate,
be 1

23 . This fixes s, the number of XORSAT instances, to three. Since there are
three indices, only two bits of metadata, r, are needed to represent an index.

The next step is to create a list of hashes corresponding to each of the three
words. This example will make use of the 32-bit xxHash algorithm [10]. Let the
list of hashes be

H = [xxHash(“cat”), xxHash(“fish”), xxHash(“dog”)]
= [0xb85c341a, 0x87024bb7, 0x3fa6d2df].

Next, the hashes are used to generate XOR clauses, one per hash. For the
purpose of this example a scheme needs to be devised that will transform a hash
into an XOR clause. One simple method is to first treat the hash as a bit-vector,
then split the vector into parts and let each part represent a new variable in the
XOR clause. Here, let the hashes be split into 4-bit parts, as 24 > n and it will
be easy to see the split (represented in hexadecimal). The list of split hashes is

SH = [[0xb, 0x8, 0x5, 0xc, 0x3, 0x4, 0x1, 0xa],
[0x8, 0x7, 0x0, 0x2, 0x4, 0xb, 0xb, 0x7],
[0x3, 0xf, 0xa, 0x6, 0xd, 0x2, 0xd, 0xf]].

The next step is to use the split hashes to create XOR clauses. This is done
here by treating the groupings of 4 bits (under proper modulus) as variable
indices and right-hand side of each clause. The variable indices and right-hand
side for each clause would be
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IY.0 = [[SH00(mod n), SH01(mod n), SH02(mod n), SH03(mod 2s)],
[SH10(mod n), SH11(mod n), SH12(mod n), SH13(mod 2s)],
[SH20(mod n), SH21(mod n), SH22(mod n), SH23(mod 2s)]]

= [[0xb(mod 4), 0x8(mod 4), 0x5(mod 4), 0xc(mod 8)],
[0x8(mod 4), 0x7(mod 4), 0x0(mod 4), 0x2(mod 8)],
[0x3(mod 4), 0xf(mod 4), 0xa(mod 4), 0x6(mod 8)]]

= [[3, 0, 1, 4],
[0, 3, 0, 2],
[3, 3, 2, 6]].

In practice, these first few steps are the bottleneck in terms of query speed
and need to be heavily optimized. The simple scheme presented here is purely
for demonstration purposes. A more practical but complex scheme is given in
Sect. 6. As well, this scheme does not guarantee width k XOR clauses are gener-
ated because duplicates may arise. However, duplicate variables in XOR clauses
simply cancel each other out, so, for the purpose of this example, this simplified
scheme is enough to demonstrate the main concepts. Also, for specific applica-
tions, duplicate detection and removal may be too computationally expensive to
outweigh any benefit gained in efficiency.

The three XORSAT instances are encoded as follows:

XY.0 = [x3 ⊕ x0 ⊕ x1 ≡ [1, 0, 0],
x0 ⊕ x3 ⊕ x0 ≡ [0, 1, 0],
x3 ⊕ x3 ⊕ x2 ≡ [1, 1, 0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0],
x3 ≡ [0, 1, 0],
x2 ≡ [1, 1, 0]].

Next, append each element’s two bits of metadata to the right-hand side of
each corresponding XOR clause, creating s + r = 5 instances.

XY = [x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0] || [0, 0],
x3 ≡ [0, 1, 0] || [0, 1],
x2 ≡ [1, 1, 0] || [1, 0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0, 0, 0],
x3 ≡ [0, 1, 0, 0, 1],
x2 ≡ [1, 1, 0, 1, 0]].

The final steps are to solve and store s + r = 5 solutions, one for each of the
XORSAT instances encoded by XY . Though there are many different solutions
to these instances, five such solutions are
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SY = [[x0 = 1, x1 = 0, x2 = 1, x3 = 0],
[x0 = 0, x1 = 1, x2 = 1, x3 = 1],
[x0 = 0, x1 = 0, x2 = 0, x3 = 0],
[x0 = 1, x1 = 1, x2 = 1, x3 = 0],
[x0 = 1, x1 = 0, x2 = 0, x3 = 1]].

The filter FY is the transpose of the solutions SY , along with those parameters
necessary for proper querying, namely

FY = ([[1, 0, 0, 1, 1],
[0, 1, 0, 1, 0],
[1, 1, 0, 1, 0],
[0, 1, 0, 0, 1]],
n = 3, k = 3, s = 3, r = 2).

The filter FY is now complete and the next part of the example will demon-
strate how to query it.

5.2 Querying the Filter

The process to query FY with an example element x = “horse” follows many of
the same steps as building the filter. First, the same hash scheme from above is
used to generate an XOR clause for “horse”.

H = xxHash(“horse”)
= 0x3f37a1a7.

Next, the hash is split into groups of 4 bits.

SH = [0x3, 0xf, 0x3, 0x7, 0xa, 0x1, 0xa, 0x7].

Then, three clause indices and a right-hand side are generated from the hash.

I = [SH0(mod n), SH1(mod n), SH2(mod n), SH3(mod 2s)]
= [0x3(mod 4), 0xf(mod 4), 0x3(mod 4), 0x7(mod 8)]
= [3, 3, 3, 7].

Finally the clause is created from the indices and right-hand side and two bits
(all True) are appended to support metadata retrieval.

C = x3 ⊕ x3 ⊕ x3 ≡ [1, 1, 1] || [1, 1]
= x3 ≡ [1, 1, 1, 1, 1].

In Algorithm 5, the right-hand side metadata bits are all set to False and the
terminal equivalence (≡) is treated as an XOR (⊕). That choice was made purely
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for presentation of the algorithm. This example demonstrates that either way is
acceptable.

Now that the clause C has been built, it can be tested against the filter FY .
To do so, assign the variables in C their values in the stored solutions of FY and
evaluate the resulting equation.

CFY
= FY (3) ≡ [1, 1, 1, 1, 1]
= [0, 1, 0, 0, 1] ≡ [1, 1, 1, 1, 1]
= [0, 1, 0, 0, 1].

Since the first three bits of CFY
are not all True, the element does not pass the

filter. Hence, the string “horse” is definitively not in Y .
The final part of this example demonstrates a query that passes and returns

stored metadata. Specifically, FY will be queried with x = “cat”. Again, the
same hash scheme from above is used to generate an XOR clause for “cat”.
Since this was already demonstrated in the previous section, the details will not
be repeated. Instead, the clause C is simply stated next, including the two True
bits appended to support metadata retrieval.

C = x0 ⊕ x1 ⊕ x3 ≡ [1, 0, 0, 1, 1].

Evaluating C against FY produces

CFY
= FY (0) ⊕ FY (1) ⊕ FY (3) ≡ [1, 0, 0, 1, 1]
= [1, 0, 0, 1, 1] ⊕ [0, 1, 0, 1, 0] ⊕ [0, 1, 0, 0, 1] ≡ [1, 0, 0, 1, 1]
= [1, 0, 0, 0, 0] ≡ [1, 0, 0, 1, 1]
= [1, 1, 1, 0, 0].

Since the first three bits of CFY
are all True, the element passes the filter. Hence,

“cat” is in Y with a 1
23 chance of being a false positive. The last two bits of CFY

,
[0, 0], represent the stored metadata, namely, the index 0.

6 Experimental Results

This section serves to demonstrate that it is practical to build efficient XORSAT
filters for very large data sets. To do so, a research-grade XORSAT solver and
XORSAT filter construction were implemented in the C language. The solver
performs the ‘Method of the Four Russians’ [29].

As a proof of concept, seventeen dictionaries were built consisting of 210, . . . ,
and 226 random 16-byte strings. To ensure that random k-XORSAT instances
were generated, the strings were transformed into XOR clauses using the 64-bit
xxHash hash algorithm [10]. Each string was fed into a single call of xxHash and
the output was used to seed a linear feedback shift register (LFSR) with 16-bit
elements and primitive polynomial 1 + x2 + x3 + x4 + x8. XOR clauses were
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produced by stepping the LFSR k times. Duplicate removal was not consid-
ered as searching for duplicates drastically increases query performance yet only
marginally increases efficiency. All of the following results were collected using
a late 2013 MacBook Pro with a 2.6-GHz Intel Core i7 and 16 GB of RAM. All
times are reported in seconds.

Table 3. Achieved efficiency and seconds taken to build non-blocked XORSAT filters
with p = 1

210
. m is the number of elements in the data set being stored and k is the

number of variables per XOR clause.

m k = 3 k = 4 k = 5 k = 6

210 (88%, <1) (93%, <1) (93%, <1) (93%, <1)

211 (89%, <1) (97%, <1) (97%, <1) (97%, <1)

212 (90%, <1) (97%, <1) (98%, <1) (98%, <1)

213 (91%, 1) (97%, 1) (98%, 1) (99%, 1)

214 (91%, 2) (97%, 3) (99%, 4) (99%, 5)

215 (89%, 17) (97%, 21) (98%, 28) (98%, 36)

Table 3 presents the achieved efficiency and time taken to build non-blocked
XORSAT filters, that is, for each filter, s = 10 XORSAT instances were gener-
ated and one solution was found for each. The instances were solved in parallel
using a single call to the XORSAT solver.

Unlike SAT filters, the number of solutions found does not affect either effi-
ciency or runtime so long as s is less than the word-size of the computer (typically
64 bits, a very reasonable assumption in practice given that s > 64 would mean
building a filter with a false positive rate less than 1

264 ). Efficiency is not affected
because the s right-hand sides are all uncorrelated. Runtime is not affected
because all s instances are solved in parallel using bit-packing and word-level
operations.

The XORSAT filters in Tables 3 and 4 achieve the desired false positive
rate. This was verified experimentally by querying each XORSAT filter with 223

4-byte elements and using the results to calculate the achieved false positive rate
and, for Table 4, query speed as well.

In terms of efficiency, the experimental results match the theoretical results
from Table 1. And, if the number of XOR clauses per instance is above 214, filters
can be practically built that are very close to the optimal efficiency possible for
each given k.

The results also hint correctly that it is not practical to build non-blocked
XORSAT filters for very large data sets as runtime will grow and become pro-
hibitive in practice. It is likely that filter build time can be reduced by using a
more powerful solver (such as M4RI [2]), but this has not been explored here.
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Table 4. Achieved efficiency, size (in KB), and seconds taken to build blocked XORSAT
and SAT filters with an expected 3072 elements per block, variables per clause k = 5,
and desired false positive rate p = 1

210
. Desired SAT filter efficiency was set to 75%

and desired XORSAT filter efficiency was set to 98%. The SAT filter hamming weight
metric [31] was set to 48%. Timeout (‘-’) was set at one hour. Query speed (in millions
of queries per second) is also given for XORSAT, SAT, and Bloom filters.

m XORSAT filter SAT filter

Build time Build time Query speed

1 Core 8 Cores E Size 1 Core 8 Cores E Size XORSAT SAT Bloom

215 <1 <1 98% 41 336 105 43% 56 18 4 23

216 1 <1 98% 81 883 183 43% 111 18 4 23

217 2 <1 98% 163 1768 394 43% 222 18 4 23

218 5 1 98% 326 3441 723 44% 444 18 4 23

219 8 1 97% 659 - 1724 44% 887 18 4 23

220 17 2 97% 1321 - - - - 18 - 22

221 33 4 97% 2646 - - - - 17 - 22

222 92 12 97% 5298 - - - - 13 - 20

223 186 26 97% 10601 - - - - 9 - 20

224 372 52 97% 21204 - - - - 11 - 20

225 751 104 96% 42416 - - - - 10 - 17

226 1515 208 96% 84958 - - - - 7 - 12

However, build time can be significantly reduced by building blocked XOR-
SAT filters. As discussed in Sect. 2.3, first hashing elements into small blocks
and then, in parallel, building one filter for each block can drastically reduce the
build time of a large data set without increasing query time and only marginally
reducing efficiency. Since build time is one-time work, discovering techniques for
reducing build time any further is likely unnecessary.

Results in Table 3 can be used to tune blocked XORSAT filter schemes. For
example, setting the block size between 211 and 212 and k = 5 will enable fast
building of blocked XORSAT filters with E ≈ 98%. Table 4 presents the build
time, achieved efficiency, filter size, and query speed for blocked XORSAT and
SAT filters using these sample parameters. The table also presents query speed
for Bloom filters built and queried using the same data sets, false positive rate,
bucketing, and element hashing scheme. Though, Bloom filters can only achieve
a maximum efficiency of ln 2 = 69%, meaning that they use approximately 44%
more long-term storage than an XORSAT filter for the same data at the same
false positive rate.

Table 4 demonstrates that it is practical to build XORSAT filters very near
the information theoretic limit while maintaining a high query speed. Since each
block can be build in parallel, linear speedup is achieved and demonstrated in
the results. As with SAT filters, XORSAT filter query speed can be increased
by decreasing k which may in turn decrease efficiency.
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The query speed of the above filter implementations begin to drop after data
sets grow above 220. This is due to size of the filter overwhelming the caching
mechanisms of the computer running the experiments. It may be possible to
create a cache-aware implementation of XORSAT filters that increases query
speed overall and removes some of the query speed variance seen in Table 4,
though this has not been explored.

Efficiency also slowly drops as filters increase in size. As discussed in Sect. 2.3,
since blocks may not all hold the same number of elements, it is necessary to
store additional information so that the blocks can be accessed during query.
This additional information must be stored as part of the filter and, hence,
increases the size of the filter, decreasing efficiency.

7 Conclusions and Future Work

The XORSAT filter is the first practical SAT filter construction, overcoming
many of the previous hurdles presented in [31]. It is a simple offline filter con-
struction for very large data sets that can consistently achieve the efficiency
bound in practice while maintaining fast queries. This new filter construction
is also parameterized so that it can be easily tailored to support an application
needing, for example, fast build time, fast queries, a small memory footprint,
and metadata storage and retrieval.

Potential future work includes considering XORSAT filters as part of a secure
search scheme [18]. This would involve tailoring the filter construction to make
it secure or resistant to various attacks such as inversion and intersection, as
well as many others [27,32].

Moving from disjunctive clauses to XOR clauses provides for a SAT filter
with different features (ex. near perfect efficiency, fast build time, metadata
support, hints of security). Hence, it is possible that SAT filters built from other
constraint types could provide other common sought after filter features such as
streaming (online filters), element deletion, or element counting.
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3. Azinović, M., Herr, D., Heim, B., Brown, E., Troyer, M.: Assessment of quantum

annealing for the construction of satisfiability filters. SciPost Phys. 2, 013 (2017).
https://doi.org/10.21468/SciPostPhys.2.2.013

4. Bard, G.V.: The method of four Russians. In: Algebraic Cryptanalysis. Springer,
Boston (2009). https://doi.org/10.1007/978-0-387-88757-9 9

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

https://m4ri.sagemath.org/
https://doi.org/10.21468/SciPostPhys.2.2.013
https://doi.org/10.1007/978-0-387-88757-9_9


XOR-Satisfiability Set Membership Filters 417

7. Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum space.
SIAM J. Comput. 28(5), 1627–1640 (1999)

8. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient
data structure for static support lookup tables. In: Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 30–39. Society for
Industrial and Applied Mathematics (2004)

9. Cohen, S., Matias, Y.: Spectral Bloom filters. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pp. 241–252. ACM
(2003)

10. Collet, Y.: xxHash: extremely fast hash algorithm (2017)
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Abstract. We present ALIAS, a modular tool aimed at finding back-
doors for hard SAT instances. Here by a backdoor for a specific SAT solver
and SAT formula we mean a set of its variables, all possible instantiations
of which lead to construction of a family of subformulas with the total
solving time less than that for an original formula. For a particular back-
door, the tool uses the Monte-Carlo algorithm to estimate the runtime of
a solver when partitioning an original problem via said backdoor. Thus,
the problem of finding a backdoor is viewed as a black-box optimization
problem. The tool’s modular structure allows to employ state-of-the-
art SAT solvers and black-box optimization heuristics. In practice, for a
number of hard SAT instances, the tool made it possible to solve them
much faster than using state-of-the-art multithreaded SAT-solvers.

1 Introduction

Informally, a backdoor is some hidden flaw in a design of a system that allows
one to do something within that system that should not be possible otherwise.
In the context of Constraint Satisfaction Problems (CSP) a backdoor is usually
a small subset of problem variables which has a peculiar property: instantiating
backdoor variables results in a subproblem that is significantly easier to solve.
For the first time the concept of backdoors arose in the context of CSP in [26],
where strong backdoors were introduced and analyzed. Their main disadvantage
is that they rely on polynomial algorithms to solve simplified subproblems, and
thus strong backdoors that can be used in practice are very hard to find [15,23].

In the present paper, we consider more general backdoors to SAT, that do
not rely on polynomial algorithms to solve simplified subproblems. In particular,
we search for such sets of variables of a considered SAT instance that all possible
instantiations of backdoor variables results in a family of subproblems, for which
a total solving time is less than that for an original SAT instance. It is clear that
such subproblems can be solved in parallel. For a given SAT instance C, solver
S and backdoor B one can effectively compute the estimation of runtime of S
on a family of subproblems produced by assigning values to variables from B
in C using a Monte-Carlo method. Thus there is defined a black-box pseudo-
Boolean function with aforementioned inputs. Then, it is possible to use arbitrary
black-box pseudo-Boolean optimization methods to traverse the search space of
possible general backdoors to find one with a good estimation.
c© Springer International Publishing AG, part of Springer Nature 2018
O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 419–427, 2018.
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We implemented this approach in the form of modulAr tooL for fInding bAck-
doors for Sat (ALIAS) – a convenient customizable scalable tool that can employ
arbitrary incremental state-of-the-art SAT solvers and black-box optimization
heuristics to search for backdoors to hard SAT instances. The found backdoor
is then used to solve the corresponding instance by the same incremental solver.
Thereby, ALIAS can be viewed as a tool for constructing backdoor-based divide-
and-conquer parallel SAT solvers. The ALIAS tool and our benchmarks are
available at https://github.com/Nauchnik/alias.

2 On Backdoors to SAT

Suppose C is a SAT instance, X is a set of its variables, and A is a polynomial
algorithm. If we assign values α = (α1, . . . , αk) to variables from set B,|B| = k,
B ⊆ X, then the simplified SAT instance is denoted as C[α/B].

Definition 1 (Backdoor [26]). A nonempty subset B of variables from C is
called a backdoor in C for A if for some instantiation β of variables from B an
algorithm A returns a satisfying assignment of C[β/B].

Note that the definition of backdoor implies only satisfiable instances and can
not be easily extended to unsatisfiable ones. Also, even if backdoor is known, it
is necessary to find such β that A would be able to solve a considered instance.

Definition 2 (Strong Backdoor [26]). A nonempty subset B of variables from
C is a strong backdoor in C for A if for any instantiation γ of variables from
B an algorithm A returns a satisfying assignment or concludes unsatisfiability
of C[γ/B].

For SAT instances the natural choice of polynomial algorithm A is the Unit
Propagation rule (UP) [8]. A Strong Backdoor w.r.t UP is called Strong Unit
Propagation Backdoor Set (SUPBS). For any SAT instance the whole set of its
variables is a SUPBS (further it is called trivial SUPBS ). If a SAT instance
encodes a Boolean circuit, a set of variables encoding its input can usually serve
as a SUPBS.

Compared to a backdoor a strong backdoor is much more powerful: given a
strong backdoor B, one can traverse through possible instantiations of variables
from B thus solving C in time ≈ 2|B| ×|C| (here |C| is the size of a SAT instance
C in computer memory). However, it is unclear what to do if, for example,
|B| > 100. Also, the problem of finding strong backdoors for SAT is particularly
hard, see e.g. [15].

The main disadvantage of the notion of strong backdoor lies in polynomial
complexity requirement for an algorithm used to solve constructed subprob-
lems. The following definition in a way extends the notion of backdoors to non-
polynomial algorithms. Assume that G is an arbitrary complete SAT solving
algorithm.

https://github.com/Nauchnik/alias
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Definition 3 (Non-deterministic Oracle Backdoor Set (NOBS) [21]). A
non-empty set B of variables from C is a Non-deterministic Oracle Backdoor Set
(NOBS) w.r.t. algorithm G if the total running time of G given formulas C[β/B],
β ∈ {0, 1}|B|, is less than the running time of G on the original formula C.

Without formally defining NOBS, the corresponding idea was used in a number
of papers on application of SAT to cryptanalysis instances, such as [7,9,22,27].
Compared to strong backdoors, NOBS do not give a straightforward way to esti-
mate the runtime of G for solving C using backdoor B. However, it can be done
via the Monte-Carlo method [17] as follows. We treat the average runtime of G on
an arbitrary subproblem C[γ/B], γ ∈ {0, 1}|B| as a random variable. The inter-
mediate goal is to estimate its expected value. For this purpose, first, construct
a random sample of size N of instantiations of variables from B:{β1, . . . , βN},
βi ∈ {0, 1}|B|, i ∈ {1, . . . , N}. Second, measure the runtime of G on C[βi/B],
i ∈ {1, . . . , N}, denote it by TG(βi). Then the runtime estimation can be com-
puted using the formula:

Runtime Estimation(C,B,G,N) = 2|B| × 1
N

×
N∑

i=1

TG(βi) (1)

Since G is a complete algorithm, theoretically, the value of Runtime
Estimation function can be computed for any B. Essentially, it is a blackbox
function. One possible way to find a good backdoor B is for fixed C, G and N
to minimize the value of Runtime Estimation(C,B,G,N) by varying B. Since
any backdoor B can be uniquely represented by a Boolean vector from {0, 1}|X|,
where X is the set of variables from C, it means that the corresponding search
space is {0, 1}|X|.

3 The ALIAS tool

Essentially, the ALIAS tool implements the blackbox optimization in the space
of possible NOBS. The blackbox function in ALIAS is computed according to
(1). The flowchart of the tool is presented in Fig. 1.

Fig. 1. ALIAS flowchart
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alias consists of four interconnected modules: alias ls, alias.py, sampler
and genipainterval program. The latter three implement the aforementioned
blackbox function which for a given incremental SAT solver, SAT instance and
NOBS computes a runtime estimation for this instance. Detailed comments are
presented below.

ALIAS LS module. Note that due to the fact that the search space of possible
NOBS in the general case is extremely large, any possible way to restrict it is
welcomed. Because of this, in ALIAS the search space of possible NOBS always
consists of possible subsets of a SUPBS, either trivial or nontrivial.

Now, assume that a SUPBS for a considered SAT instance contains N vari-
ables. Then the search space has 2N points, each point corresponding to some
NOBS. For each NOBS we can compute the runtime estimation using (1) (for
a fixed SAT solver). So the goal of alias ls is to traverse the search space
towards NOBSs with minimal runtime estimations. Currently, for this purpose
alias ls uses a simple optimization algorithm based on the Greedy Best First
Search (GBFS) [19]. GBFS uses SUPBS as a starting point to construct a base-
line runtime estimation. Then it checks all points from the neighborhood of the
starting point (a set of points at Hamming distance of 1). If it finds a better
point, then it starts checking its neighborhood. If all points from a neighborhood
are worse than the current best known value, then it means that a local minimum
is reached. Since the computation of (1) for an arbitrary point is quite costly,
all passed points are stored in order to avoid recomputing (1) for corresponding
backdoors.

The GBFS implementation in ALIAS uses two additional heuristics. First,
at the beginning of the search the algorithm tries to quickly traverse the search
space by removing large amount of randomly chosen variables (10 in our experi-
ments) from the current record point at each step as long as it leads to updating
the record. It often allows to quickly move from NOBS with hundreds of vari-
ables to that with dozens. The second heuristic is that when a local minimum
is reached, the algorithm tries to jump from it by constructing a new starting
point by permuting the current record point. The algorithm stops either if the
time limit is exceeded, if the limit of jumps is reached or if the current runtime
estimation is lower than the (scaled) remaining time.

On the current stage the ALIAS components are configured in a way to
support optimization tools, which were used in Configurable SAT Solver Com-
petition (CSSC) 2013 and 2014 [14], such as ParamILS [13], SMAC [12], and
GGA [1]. Similar to our implementation, all these tools make use of the .pcs file
that contains Boolean variables corresponding to the starting point (SUPBS).

ALIAS.PY module. The alias.py is an auxiliary Python 3.6 script that ties
together other ALIAS components. It launches and controls all computations,
processes the data from sampler and genipainterval, constructs the runtime
estimation for a given SAT instance, solver and NOBS, thus implementing a
blackbox function. It can also be used to solve a SAT instance using the provided
NOBS. In all modes alias.py can employ multiple CPU cores.
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When constructing a runtime estimation, alias.py implements the Monte-
Carlo method: it uses sampler to construct a random sample of subproblems
(in the form of assumptions for a SAT solver), then gives them in blocks of fixed
size to genipainterval solver (by a block we mean a set of instantiations of
backdoor variables, in form of assumptions), computes the average solving time
for an arbitrary subproblem from random sample, uses it to compute runtime
estimation and returns it to alias ls.

In the solving mode alias.py splits all possible instantiations of a provided
NOBS variables into small blocks and feeds them to genipainterval until either
all blocks are processed or a satisfying assignment is found.

SAMPLER module. sampler is a program for generating random samples
that is implemented on the basis of COMiniSatPS solver [18]. Generally speak-
ing, a random sample can be constructed in many different ways. In the most
simple case for a NOBS B we can simply take N randomly generated vectors from
{0, 1}|B| and view them as a random sample by assigning corresponding values
to variables from B. This approach was used in [9,20,22]. However, the described
straightforward sampling procedure might not benefit fully from the incremen-
tal solving ability of state-of-the-art SAT solvers because the assignments of
variables are too distant from each other (for example Hamming distance-wise).
Thus, by default sampler uses the sampling strategy proposed in [27]. Infor-
mally, it attempts to construct sequences of backdoor instantiations which are
close to each other as nodes of the search tree. At the same time sampler when
possible puts into a random sample only subproblems that can not be solved
using UP.

GENIPAINTERVAL module. The genipainterval program, given a CNF
formula and a set of assumptions processes the latter sequentially in incremen-
tal way. To build it one needs the IPASIR API [4] and sources of some generic
IPASIR-compatible incremental SAT solver. It is natural to consider only incre-
mental solvers since the subproblems produced by instantiating NOBS variables
are very similar to each other. Currently, different genipainterval instances
running in parallel are not configured to share any information.

4 Experimental Results

In all experiments described below we employed one node of the HPC-cluster
“Academician V.M. Matrosov”1 (2 × 18-core Intel Xeon E5-2695 CPUs and 128
Gb of RAM). Each considered solver was launched on 1 node with 36 threads.

We benchmarked ALIAS against the Top 3 solvers from the SAT Com-
petition 2017 Parallel track: Syrup [3], Plingeling [5] and painless-
maplecomsps [10]. All these solvers are portfolio. As IPASIR-based solvers
for ALIAS we used the Top 3 solvers from the SAT Competition 2017 Incre-
mental track: AbcdSAT [6], Glucose [2] and Riss [16]. The resulting parallel
solvers are denoted as ALIAS-AbcdSAT, ALIAS-Glucose and ALIAS-Riss.
1 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru.

http://hpc.icc.ru


424 S. Kochemazov and O. Zaikin

In preliminary experiments we compared the effectiveness of GBFS imple-
mentation in alias ls with that of SMAC tool [12] as blackbox heuristics for
finding NOBS. For all considered instances GBFS found backdoors with better
runtime estimation, thus it was used in all experiments below.

Each ALIAS solver works as follows: first alias ls is launched with a speci-
fied time limit. Once it found a good NOBS or exceeded the time limit, the best
found NOBS is then used to solve the instance for the remaining time (if any)
by instantiating backdoor variables and solving corresponding subproblems in
parallel.

Two benchmark sets of hard SAT instances were considered. The first set
consists of instances, in which a relatively small SUPBS is known. It is formed
by SAT encodings of cryptanalysis instances for the alternating step generator
(ASG) [11] and two its modifications, MASG and MASG0 [25]. SAT instances for
these problems were taken from [27]: 10 for each of ASG-72, ASG-96, MASG-72
and MASG0-72 (40 in total). Naturally, for ASG-72, MASG-72 and MASG0-72
there is a SUPBS of 72 variables and for ASG-96 a SUPBS of 96 variables (cor-
responding to secret keys). Thus, ALIAS-based solvers were provided with this
information. Each instance from this set has exactly one satisfying assignment.

The second benchmark set contains hard small crafted SAT instances. To
construct it we first took all crafted instances with less than 500 variables
from SAT Competitions 2007, 2009, 2011, 2014, 2016, 2017 and also challenge-
105.cnf described in [24]. Then we launched Syrup, Plingeling and painless-
maplecomsps on each of them with the time limit of 5000 s. It turned out that
33 instances were not solved in time by any solver: 7 from SAT Competition
2007, 10 from SAT Competition 2009, 9 from SAT Competition 2011, 6 from
SAT Competition 2014 and also challenge-105.cnf. Thus, these 33 instances form
the second benchmark set. For the instances from the second benchmark set the
ALIAS-based solvers were given only a trivial SUPBS – the whole set of vari-
ables of a corresponding formula.

The 6 considered solvers were launched on two described sets (73 instances
in total) with the time limit of 1 day. The obtained results are presented in
Figs. 2a and b. Note, that 26 out of 33 instances from the second benchmark
set were not solved within the time limit by any considered solver. Table 1 lists
the instances from the second set, which were solved within the time limit by at
least one solver. This table also contains data on found backdoors. For ASG-72,
ASG-96, MASG-72 and MASG0-72 the information is presented for 1 instance
out of 10, the results for other instances from the series are similar. Here |B| is a
size of a found backdoor, BT – time spent to find it, RE – its runtime estimation
(1), ST – the solving time using the found backdoor.

On the first benchmark set the ALIAS-based solvers greatly outperform the
competitors. We also tested ALIAS on ASG tests with trivial SUPBS provided
(instead of much smaller nontrivial one) and it yielded much worse results. Hence,
the knowledge of a nontrivial SUPBS is a big advantage. On the second set the
situation is more complex: there are instances which are solved by ALIAS-based
solvers but not by the competitors and vice versa. Among crafted instances only
sgen3-n240-s78945233-sat and sgen1-sat-250-100 are satisfiable.
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Table 1. Data on found backdoors. RE, BT, ST – time in seconds.

Instance ALIAS-GLUCOSE ALIAS-ABCD ALIAS-RISS

|B| RE BT ST |B| RE BT ST |B| RE BT ST

ASG-72-0 23 365 412 432 15 390 1713 210 20 308 330 103

MASG-72-0 19 347 348 7 19 330 443 44 19 380 585 38

MASG0-72-0 22 417 503 361 18 1167 2195 397 22 723 882 548

ASG-96-0 26 34548 13270 9177 26 36704 22605 42300 27 37661 12872 42583

mod4-2-9-u2 29 1.4e+6 86400 - 28 1.3e+5 19059 - 31 1.8e+5 24510 -

sgen1-sat-250 31 1.7e+5 15740 63220 33 3.2e+5 9379 - 29 1.8e+6 86400 -

sgen6-1200-5 26 1045 1503 14990 26 3684 3685 8092 24 2045 2050 5431

sgen6-1320-5 28 13974 4299 40934 28 16068 4623 45897 29 23388 3281 42833

sgen6-1440-5 29 39239 11896 70725 30 62516 18079 56168 31 144779 13092 -

sgen3-n240 31 1.0e+5 5505 37590 27 17504 7120 51026 30 73406 10341 31451

challenge-105 24 6121 6234 12780 25 3414 3422 22069 26 4840 4218 22033
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Fig. 2. Comparison of 3 ALIAS-based solvers with the Top 3 solvers from the SAT
competition 2017 parallel track

It should be noted, that strictly speaking, the blackbox optimization proce-
dure employed in ALIAS does not guarantee that the found backdoors are really
NOBS (see Sect. 2). It turned out, that for ASG-72, MASG-72 and MASG0-72
only few found backdoors are NOBS. A possible reason for this is that these
instances are quite simple even for sequential solvers. Nevertheless, ALIAS-
based solvers and their parallel competitors showed comparable results on them.
Meanwhile, for all ASG-96 instances the found backdoors are NOBS, and here
ALIAS-based solvers are clear winners. Note, that in Fig. 2a values from 31 to 40
on the x-axis correspond to the ASG-96 instances. In the second benchmark set,
for sgen6-1200-5-1 and challenge-105 the found backdoors are indeed NOBS.
For the remaining instances it was impractical to check it, because it would take
up to several weeks per instance.
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5 Conclusion

The experiments show that the approach to solving hard SAT instances based
on sampling, while not a silver bullet, clearly has its applications. We believe
that the presented ALIAS tool may be useful in the study of hard SAT instances
and sometimes can shed the light on some aspects of their inner structure unde-
tectable by state-of-the-art SAT solvers.
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1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7 14

2. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

3. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers. In:
Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09284-3 15

4. Balyo, T., Biere, A., Iser, M., Sinz, C.: SAT race 2015. Artif. Intell. 241, 45–65
(2016)

5. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2017. In: Proceedings of SAT Competition 2017, vol. B-2017-1, pp.
14–15 (2017)

6. Chen, J.: Improving abcdSAT by At-Least-One recently used clause management
strategy. CoRR abs/1605.01622 (2016). http://arxiv.org/abs/1605.01622

7. Courtois, N.: Low-complexity key recovery attacks on GOST block cipher. Cryp-
tologia 37(1), 1–10 (2013)

8. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program. 1(3), 267–284 (1984)

9. Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 63–76. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7 7

10. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: a framework for parallel
SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
233–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 15

11. Günther, C.G.: Alternating step generators controlled by de Bruijn sequences. In:
Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 5–14.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 2

12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Proceedings of LION-5, pp. 507–523 (2011)

https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-319-09284-3_15
http://arxiv.org/abs/1605.01622
https://doi.org/10.1007/978-3-540-79719-7_7
https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.1007/3-540-39118-5_2


ALIAS: A Modular Tool for Finding Backdoors for SAT 427

13. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
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Abstract. Boolean satisfiability (SAT) solvers are at the core of efficient
approaches for solving a vast multitude of practical problems. Moreover,
albeit targeting an NP-complete problem, SAT solvers are increasingly
used for tackling problems beyond NP. Despite the success of SAT in
practice, modeling with SAT and more importantly implementing SAT-
based problem solving solutions is often a difficult and error-prone task.
This paper proposes the PySAT toolkit, which enables fast Python-based
prototyping using SAT oracles and SAT-related technology. PySAT pro-
vides a simple API for working with a few state-of-the-art SAT ora-
cles and also integrates a number of cardinality constraint encodings,
all aiming at simplifying the prototyping process. Experimental results
presented in the paper show that PySAT-based implementations can be
as efficient as those written in a low-level language.

1 Introduction

When compared with Satisfiability Modulo Theories (SMT), Answer Set Pro-
gramming (ASP) or Constraint Programming (CP), a well-known drawback of
Propositional Logic (concretely, its satisfiability (SAT) problem) is the low level
at which the problem constraints are represented and the low-level program-
matic interface that must be used. These limitations hinder a wider adoption of
SAT solvers, but in part they are also one reason for the observed performance
gains that SAT-based solutions often enable. Moreover, it is generally perceived
that SAT-based modeling is difficult and also error-prone. Clearly, the aforemen-
tioned alternatives, SMT, ASP and CP, also enable some sort of direct encoding
to SAT, and then invoking a SAT solver, but often key aspects of the problem
formulation are lost. Other approaches that directly encode problems into SAT
have been considered, including NP-Spec [10].

This paper describes PySAT, a toolkit that simplifies prototyping problem
solvers with SAT solvers as oracles. Similarly to existing solutions for SMT, the
prototyping language is Python, with a simple interface to an abstract SAT
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solver that abstracts most details away, but also aims at compromising little
in terms of performance. The paper illustrates the ease of modeling reasonably
challenging problems, concretely MUS extraction, but also provides empirical
evidence that the toolkit can achieve reasonably efficient implementations when
compared with existing state-of-the-art tools. PySAT is open source, and it is
publicly available on GitHub. Furthermore, PySAT is also readily installable as
a Python package.

This paper is organized as follows. Basic definitions and notation are intro-
duced in the next section. Section 3 describes the toolkit, its design and inter-
face. Section 4 outlines the implementation of a deletion-based MUS extractor.
Section 5 presents experimental results comparing a PySAT-based prototype of
a MaxSAT algorithm compared to the state-of-the-art implementation. Section 6
overviews prior work related with PySAT. Finally, the paper concludes in Sect. 7.

2 Preliminaries

This section introduces the notation and definitions used throughout the paper.
Standard propositional logic definitions apply (e.g. [9]). CNF formulas are
defined over a set of propositional variables. A CNF formula F is a proposi-
tional formula represented as a conjunction of clauses, also interpreted as a set
of clauses. A clause is a disjunction of literals, also interpreted as a set of literals.
A literal is a variable or its complement. Throughout the paper, SAT solvers are
viewed as oracles. Given a CNF formula F , a SAT oracle decides whether F is
satisfiable, in which case it returns a satisfying assignment. A SAT oracle can
also return an unsatisfiable core U ⊆ F , if F is unsatisfiable. Conflict-driven
clause learning (CDCL) SAT solvers are summarized in [9].

CNF formulas are often used to model overconstrained problems, for example,
the maximum satisfiability (MaxSAT) problem and the minimal unsatisfiable
subset (MUS) extraction problem. In general, clauses in a CNF formula are
characterized as hard, meaning that these must be satisfied, or soft, meaning that
these are to be satisfied, if at all possible. A weight can be associated with each
soft clause, and the goal of MaxSAT is to find an assignment to the propositional
variables such that the hard clauses are satisfied, and the sum of the satisfied soft
clauses is maximized. Algorithms for MaxSAT have been overviewed in [1,9,30].
Recent algorithms based on implicit hitting sets have been described in [4]. In
the analysis of unsatisfiable CNF formulas, consider a given unsatisfiable CNF
formula F . An MUS of F is a set of clauses M ⊆ F which is both unsatisfiable
and irreducible. The goal of the MUS extraction problem is to determine an
MUS of a given unsatisfiable CNF formula.

3 PySAT Toolkit Description

This section describes the design and implementation of the PySAT toolkit as
well as its capabilities. The toolkit aims at simplifying the work with SAT oracles.
It is to be used for fast prototyping solvers and tools that target tackling practical
problems and exploit the power of the state-of-the-art SAT technology.
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Fig. 1. PySAT toolkit and its modules.

The choice of the Python programming language was done having the follow-
ing in mind. First, the language is easy-to-use and proved itself a great language
for fast prototyping. This enables users to focus on implementing and improv-
ing an algorithm rather than struggling with its low-level details. Also, Python
programs are typically easy to debug. Second, Python is required for installa-
tion and, thus, ready for use on almost any operating system of the POSIX
family including plenty of Linux distributions, BSD and MacOS among a mul-
titude of others. Third, the use of Python enables a user to tightly and easily
integrate his/her tools with the existing technology that provides Python API,
e.g. such renowned packages for scientific computing as NumPy [32], SciPy [45]
and matplotlib [23], ILP solvers (ILOG CPLEX [19], Gurobi [18]), graph and
network related libraries (e.g. networkX [31] and graphviz [17]), state-of-the-art
machine learning, data analysis and mining toolkits including scikit-learn [44],
PyTorch [42] and pandas [34], among a number of other libraries and toolkits,
which find myriads of practical use cases.

3.1 PySAT Design

As the PySAT toolkit targets fast prototyping with SAT oracles, it provides
interface to a number of state-of-the-art CDCL SAT solvers including Min-
iSat 2.2 [12,28] and its GitHub version [29], and also Glucose 3 and Glu-
cose 4.1 [3,16]. Additionally, it also includes a couple of SAT solvers augmented
with extra reasoning capabilities, namely Lingeling [7,8,21] strengthened with
Gaussian elimination and cardinality-based reasoning and MiniCard 1.2 [27],
which besides clauses can natively work with a special kind of constraints
called cardinality constraints [9], i.e. constraints of the form

∑n
i=1 li ◦ k where

i, n, k ∈ N, each li is either a positive or a negative literal of a Boolean variable
and ◦ ∈ {<,≤,=, �=,≥, >}. The module of the PySAT toolkit responsible for
providing an API to the SAT solvers is called solvers.

In many cases, SAT-based problem solving requires to efficiently deal with
cardinality constraints. MiniCard can handle them natively but other solvers
need them to be encoded into a CNF formula. There are multiple ways to
encode cardinality constraints into a set of clauses and most state-of-the-art
cardinality encodings are supported by PySAT including pairwise and bitwise



PySAT: A Python Toolkit for Prototyping with SAT Oracles 431

encodings [37], sequential counters [47], sorting networks [6], cardinality net-
works [2], ladder [15], totalizer [5], modulo totalizer [33], and iterative total-
izer [22]. This functionality is provided by the second module of the toolkit,
namely by the cardenc module.

Additionally, PySAT provides a user with an input/output interface for sim-
plified reading and writing formulas in the DIMACS format including plain CNF,
partial CNF and weighted partial CNF formulas (WCNF). This is covered by
the third module of the toolkit, which is referred to as formula.

As a result, the toolkit has three modules, two of which are implemented as
C/C++ extensions (i.e. solvers and cardenc) and one module (formula) is a
pure Python module. The structure of the PySAT toolkit can be seen as shown
in Fig. 1.

3.2 Provided Interface

Boolean variables in PySAT are represented as natural identifiers, e.g. numbers
from N. A positive (negative, resp.) literal in PySAT is assumed to be a positive
(negative, resp.) integer, e.g. -1 represents a literal ¬x1 while 5 represents a
literal x5. A clause is a list of literals, e.g. [-3, -2] is a clause (¬x3 ∨ ¬x2).

The pysat.solvers module provides an interface to SAT solvers directly
as well as the abstract Solver class. Each SAT solver can be used in the
MiniSat-like incremental fashion [13], i.e. with the use of assumption literals,
and exhibits methods add clause(), solve(), get model(), and get core().1

Using a solver incrementally can be helpful when multiple calls to the solver are
needed in order to solve a problem, e.g. in MaxSAT solving or in MUS/MCS
extraction and enumeration. In this case, a user needs to create a solver and feed
it with a CNF formula only once while calling it multiple times with different
sets of assumption literals. Observe that instead of using a solver incrementally,
one can opt to create a new solver from scratch at every invocation.

>>> from pysat.solvers import Glucose3

>>> g = Glucose3()

>>> g.add_clause([-1, 2])

>>> g.add_clause([-2, 3])

>>>

>>> print g.solve()

True

>>> print g.get_model()

[-1, -2, 3]

>>> g.delete()

The pysat.formula module can be used for performing input/output oper-
ations when working with DIMACS formulas. This can be done using classes

1 The method get model() (get core(), resp.) can be used if a prior SAT call
was made and returned True (False, resp.). The get core() method additionally
assumes the SAT call was provided with a list of assumptions.
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Fig. 2. An example of a PySAT-based algorithm implementation.

CNF and WCNF of this module. CNF and WCNF objects have a list of clauses, which
can be added to a SAT oracle directly. The cardenc module operates through
the pysat.card interface and provides access to the atmost(), atleast(), and
equals() methods (they return an object of class CNF) of the abstract class
CardEnc, e.g. in the following way:

>>> from pysat.card import *

>>> am1 = CardEnc.atmost(lits=[1, -2, 3], encoding=EncType.pairwise)

>>> print am1.clauses

[[-1, 2], [-1, -3], [2, -3]]

>>>

>>> from pysat.solvers import Solver

>>> with Solver(name=’m22’, bootstrap_with=am1.clauses) as s:

... if s.solve(assumptions=[1, 2, 3]) == False:

... print s.get_core()

[3, 1]

3.3 Installation

The PySAT library can be installed from the PyPI repository [40] simply by
executing the following command:

$ pip install python-sat

Alternatively, one can manually clone the library’s GitHub repository [41] and
compile all of its modules following the instructions of the README file.

4 Usage Example

Let us show how one can implement prototypes with the use of PySAT. Here
we consider a simple deletion-based algorithm for MUS extraction [46]. Its main
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procedure is shown in Fig. 2a. The idea is to try to remove clauses of the for-
mula one by one while checking the formula for unsatisfiability. Clauses that
are necessary for preserving unsatisfiability comprise an MUS of the input for-
mula and are reported as a result of the procedure. Figure 2b shows a possible
PySAT-based implementation. The implementation assumes that a SAT oracle
denoted by variable oracle is already initialized, and contains all clauses of the
input formula F . Another assumption is that each clause ci ∈ F is augmented
with a selector literal ¬si, i.e. considering clause ci ∨ ¬si. This facilitates sim-
ple activation/deactivation of clause ci depending on the value of variable si.
Finally, a list of assumptions as is assumed to contain all clause selectors, i.e.
as = {si | ci ∈ F}. Observe that the implementation of the MUS extraction
algorithm is as simple as its pseudo-code. This simplicity is intrinsic to Python
programs, and enables users to think on algorithms rather than implementation
details.

5 Experimenting with MaxSAT

One of the benefits provided by the PySAT toolkit is that it enables users to
prototype quickly and sacrifice just a little in terms of performance. In order to
confirm this claim in practice, we developed a simple (non-optimized) PySAT-
based implementation of the Fu&Malik algorithm [14] for MaxSAT. The imple-
mentation is referred to as fm.py. The idea is to compare this implementation
to the state-of-the-art MaxSAT solver MiFuMaX [20], which can be seen as a
well thought and efficient implementation of the Fu&Malik algorithm written in
C++ and available online [26]. MiFuMaX has proven its efficiency by winning
the unweighted category in the MAX-SAT evaluation 2013 [24].

For the comparison, we chose all (i.e. unweighted and weighted) bench-
marks from MaxSAT Evaluation 2017 [25]. The benchmarks suite contains 880
unweighted and 767 weighted MaxSAT instances. The experiments were per-
formed in Ubuntu Linux on an Intel Xeon E5-2630 2.60 GHz processor with
64 GByte of memory. The time limit was set to 1800 s and the memory limit to
10 GByte for each individual process to run.

The cactus plot depicting the performance of MiFuMaX and fm.py is shown in
Fig. 3. As to be expected, our simple implementation of the Fu&Malik algorithm
is outperformed by MiFuMaX. However, one could expect a larger performance
gap between the two implementations given the optimizations used in MiFu-
MaX. Observe that MiFuMaX solves 384 unweighted and 226 weighted instances
while fm.py can solve 376 and 219 unweighted and weighted formulas, respec-
tively. The performance of the two implemetations is detailed in Fig. 4. In both
cases (unweighted and weighted benchmarks) MiFuMaX tends to be at most a
few times faster than fm.py. Also note that even though surprising, there are
instances, which are solved by fm.py more efficiently than by MiFuMaX. Over-
all, the performance of fm.py demonstrates that a PySAT-based implementation
of a problem solving algorithm can compete with a low-level implementation of
the same algorithm, provided that most of the computing work is done by the
underlying SAT solver, which is often the case in practice.
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Fig. 4. Detailed comparison of fm.py and MiFuMaX.

6 Related Work

A number of Python APIs for specific SAT solvers have been developed in the
recent past. These include PyMiniSolvers [39] providing an interface to MiniSat
and MiniCard, satispy [43] providing an API for MiniSat and lingeling, pylgl [38]
for working with lingeling, and the Python API for CryptoMiniSat [11,48,49].
Compared to these solutions, PySAT offers a wider range of SAT solvers accessed
through a unified interface, more functionality provided (e.g. unsatisfiable core
and proof extraction), as well as a number of encodings of cardinality constraints.
Cardinality constraints (as well as pseudo-Boolean constraints) can be alterna-
tively manipulated using encodings provided by some other libraries. One such
example is the PBLib library [35,36]. However, PBLib currently does not expose
a Python API.
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7 Conclusions

Despite the remarkable progress observed in SAT solvers for over two decades,
in many settings the option of choice is often not a SAT solver, even when this
might actually be the ideal solution. One reason for overlooking SAT solvers
is the apparent difficulty of modeling with SAT, and of implementing basic
prototypes. This paper describes PySAT, a Python toolkit that enables fast
prototyping with SAT solvers. The Python interface offers (incremental) access
to a blackbox exposing the basic interface of a SAT solver, but which compro-
mises little in terms of performance. The toolkit also offers access to a number
of often-used implementations of cardinality constraints. A simple implementa-
tion of a MaxSAT solver shows performance comparable with a state-of-the-art
C++ implementation. The PySAT tookit is publicly available as open source
from GitHub, and also as a Python package on most POSIX-compliant OSes.
It is expected that the community will contribute to improving the toolkit fur-
ther, with additional features, but also with proposals for improvements. Several
extensions are planned. These include the integration of more SAT solvers (e.g.
CryptoMiniSat and other MiniSat- and Glucose-based solvers), lower level access
to the SAT solver’s parameters and policies when necessary (e.g. setting preferred
“polarities” of the variables), high-level support for arbitrary Boolean formulas
(e.g. by Tseitin-encoding them [50] internally), and encodings of pseudo-Boolean
constraints.
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Abstract. We consider the problem of binary image generation with
given properties. This problem arises in a number of practical applica-
tions, including generation of artificial porous medium for an electrode
of lithium-ion batteries, for composed materials, etc. A generated image
represents a porous medium and, as such, it is subject to two sets of con-
straints: topological constraints on the structure and process constraints
on the physical process over this structure. To perform image genera-
tion we need to define a mapping from a porous medium to its physi-
cal process parameters. For a given geometry of a porous medium, this
mapping can be done by solving a partial differential equation (PDE).
However, embedding a PDE solver into the search procedure is compu-
tationally expensive. We use a binarized neural network to approximate
a PDE solver. This allows us to encode the entire problem as a logical
formula. Our main contribution is that, for the first time, we show that
this problem can be tackled using decision procedures. Our experiments
show that our model is able to produce random constrained images that
satisfy both topological and process constraints.

1 Introduction

We consider the problem of constrained image generation of a porous medium
with given properties. Porus media occur, e.g., in lithium-ion batteries and com-
posed materials [1,2]; the problem of generating porus media with a given set
of properties is relevant in practical applications of material design [3–5]. Arti-
ficial porous media are useful during the manufacturing process as they allow
c© Springer International Publishing AG, part of Springer Nature 2018
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the designer to synthesize new materials with predefined properties. For exam-
ple, generated images can be used in designing a new porous medium for an
electrode of lithium-ion batteries. It is well-known that ions macro-scale trans-
port and reactions rates are sensitive to the topological properties of the porous
medium of the electrode. Therefore, manufacturing the porous electrode with
given properties allows improving the battery performance [1].

Images of porous media1 are black and white images that represent an
abstraction of the physical structure. Solid parts (or so called grains) are encoded
as a set of connected black pixels; a void area is encoded a set of connected white
pixels. There are two important groups of restrictions that images of a porous
medium have to satisfy. The first group constitutes a set of “geometric” con-
straints that come from the problem domain and control the total surface area
of grains. For example, an image contains two isolated solid parts. Figure 1(a)
shows examples of 16 × 16 images from our datasets with two (the top row) and
three (the bottom row) grains. The second set of restrictions comes from the
physical process that is defined for the corresponding porous medium. In this
paper, we consider the macro-scale transportation process that can be described
by a set of dispersion coefficients depending on the transportation direction.
For example, we might want to generate images that have two grains such that
the dispersion coefficient along the x-axis is between 0.5 and 0.6. The disper-
sion coefficient is defined for the given geometry of a porous medium. It can be
obtained as a numerical solution of the diffusion Partial Differential Equation
(PDE). We refer to these restrictions on the parameters of the physical process
as process constraints.

Fig. 1. (a) Examples of images from train sets with two and three grains; (b) Examples
of images generated by a GAN on the dataset with two grains. Examples of generated
images with (c) d ∈ [40, 50), (d) d ∈ [60, 70), and (e) d ∈ [90, 100].

The state of the art approach to generating synthetic images is to use gen-
erative adversarial networks (GANs) [6]. However, GANs are not able learn
geometric, three-dimensional perspective, and counting constraints which is a
known issue with this approach [7,8]. Our experiments with GAN-generated
images also reveal this problem. There are no methods that allow embedding of
declarative constraints in the image generation procedure at the moment.

In this work we show that the image generation problem can be solved using
decision procedures for porous media. We show that both geometric and pro-
cess constraints can be encoded as a logical formula. Geometric constraints are
1 Specifically, we are looking at a transitionally periodic “unit cell” of porous medium

assuming that porous medium has a periodic structure [5].
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encoded as a set of linear constraints. To encode process constraints, we first
approximate the diffusion PDE solver with a Neural Network (NN) [9,10]. We
use a special class of NN, called Bnn, as these networks can be encoded as log-
ical formulas. Process constraints are encoded as restrictions on outputs of the
network. This provides us with an encoding of the image generation problem
as a single logical formula. The contributions of this paper can be summarized
as follows: (i) We show that constrained image generation can be encoded as
a logical formula and tackled using decision procedures. (ii) We experimentally
investigate a GAN-based approach to constrained image generation and analyse
their advantages and disadvantages compared to the constraint-based approach.
(iii) We demonstrate that our constraint-based approach is capable of generating
random images that have given properties, i.e., satisfy process constraints.

2 Problem Description

We describe a constrained image generation problem. We denote I ∈ {0, 1}t×t

an image that encodes a porous medium and d ∈ Z
m a vector of parameters of

the physical process defined for this porous material. We use an image and a
porous medium interchangeably to refer to I. We assume that there is a mapping
function M that maps an image I to the corresponding parameters vector d,
M : I → Z

m. We denote as Cg(I) the geometric constraints on the structure of
the image I and as Cp(d) the process constraints on the vector of parameters d.
Given a set of geometric and process constraints and a mapping function M, we
need to generate a random image I that satisfies Cg and Cp. Next we overview
geometric and process constraints and discuss the mapping function.

The geometric constraints Cg define a topological structure of the image.
For example, they can ensure that a given number of grains is present on an
image and these grains do not overlap. Another type of constraints focuses on
a single grain. They can restrict the shape of a grain, e.g., a convex grain,
its size or position on the image. The third type of constraints are boundary
constraints that ensure that the boundary of the image must be in a void area.
Process constraints define restrictions on the vector of parameters. For example,
we might want to generate images with dji ∈ [aj , bj ], j = 1, . . . ,m.

Next we consider a mapping function M. A standard way to define M is by
solving a system of partial differential equations. However, solving these PDEs
is a computationally demanding task and, more importantly, it is not clear how
to ‘reverse’ them to generate images with given properties. Hence, we take an
alternative approach of approximating a PDE solver using a neural network [9,
10]. To train such an approximation, we build a training set of pairs (Ii, di),
i = 1, . . . , n, where Ii is an input image of a porous medium and di, obtained
by solving the PDE given I, is its label. In this work, we use a special class of
deep neural networks—Binarized Neural Networks (Bnn) that admit an exact
encoding into a logical formula. We assume that M is represented as a Bnn and
is given as part of input. We will elaborate on the training procedure in Sect. 5.
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3 The Generative Neural Network Approach

One approach to tackle the constrained image generation problem is to use gen-
erative adversarial networks (GANs) [6,11]. GANs are successfully used to pro-
duce samples of realistic images for commonly used datasets, e.g. interior design,
clothes, animals, etc. A GAN can be described as a game between the image gener-
ator that produces synthetic (fake) images and a discriminator that distinguishes
between fake and real images. The cost function is defined in such a way that the
generator and the discriminator aim to maximize and minimize this cost function,
respectively, turning the learning process into a minimax game between these two
players. Each payer is usually represented as a neural network. To apply GANs
to our problem, we take a set of images {I1, . . . , In} and pass them to the GAN.
These images are samples of real images for the GAN. After the training proce-
dure is completed, the generator network produces artificial images that look like
real images. The main advantage of GANs is that it is a generic approach that can
be applied to any type of images and can handle complex concepts, like animals,
scenes, etc.2 However, the main issue with this approach is that there is no way
to explicitly pass declarative constraints into the training procedure. One might
expect that GANs are able to learn these constraints from the set of examples.
However, this is not the case at the moment, e.g., GANs cannot capture counting
constraints, like four legs, two eyes, etc. [7]. Figure 1 shows examples of images that
GAN produces on a dataset with two grains per image. As can be seen from these
examples, GAN produces images with an arbitrary number of grains between 1
and 5 per image. In some simple cases, it is easy to filter wrong images. If we
have more sophisticated constraints like convexity or size of grains, then most
images will be invalid. On top of this, to take into account process constraints,
we need additional restrictions on the training procedure. Overall, it is an inter-
esting research question how to extend the GAN training procedure with physical
constraints, which is beyond the scope of this paper [13]. Next we consider our
approach to the image generation problem.

4 The Constraint-Based Approach

The main idea behind our approach is to encode the image generation problem
as a logical formula. To do so, we need to encode all problem constraints and the
mapping between an image and its label as a set of constraints. We start with
constraints that encode an approximate PDE solver. We denote [N ] a range of
numbers from 1 to N .

4.1 Approximation of a PDE Solver

One way to approximate a diffusion PDE solver is to use a neural network [9,10].
A neural network is trained on a set of binary images Ii and their labels di,
i = 1, . . . , n. During the training procedure, the networks takes an image Ii as
2 GANs exhibit well-known issues with poor convergence that we did not observe as

our dataset is quite simple [12].
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an input and outputs its estimate of the parameter vector d̂i. As we have ground
truth parameters di for each image, we can use the mean square error or abso-
lute value error as a cost function to perform optimization [14]. In this work, we
take the same approach. However, we use a special type of networks: Binarized
Neural Networks (Bnn). Bnn is a feedforward network where weights and acti-
vations are binary [15]. It was shown in [14,16] that Bnns allow exact encoding
as logical formulas, namely, they can be encoded a set of reified linear constraints
over binary variables. We use Bnns as they have a relatively simple structure and
decision procedures scale to reason about small and medium size networks of this
type. In theory, we can use any exact encoding to represent a more general net-
work, e.g., MILP encodings that are used to check robustness properties of neural
networks [17,18]. However, the scalability of decision procedures is the main limi-
tation in the use of more general networks. We use the ILP encoding as in [14] with
a minor modification of the last layer as we have numeric outputs instead of cat-
egorical outputs. We denote EncBNN(I, d) a logical formula that encodes Bnn
using reified linear constraints over Boolean variables (Sect. 4, ILP encoding [14]).

EncBNN(I, d) =

(
q−1∧
k=1

EncBlkk(xk,xk+1)

)
∧ EncO(xq, d), (1)

where x1 = I is an input of the network, q is the number of layers in the
network and d is the output of the network. EncBlkk denotes encoding of the
intermediate layer and EncO denotes encoding of the last layer that maps the
output of the qth layer (xq) to the dispersion value d.

4.2 Geometric and Process Constraints

Geometric constraints can be roughly divided into three types. The first type of
constraints defines the high-level structure of the image. The high-level structure
of our images is defined by the number of grains present in the image. Let w be
the number of grains per image. We define a grid of size t× t. Figure 2(a) shows
an example of a grid of size 4 × 4. We refer to a cell (i, j) on the grid as a pixel
as this grid encodes an image of size t × t. Next we define the neighbor relation
on the grid. We say that a cell (h, g) is a neighbour of (i, j) if these cells share
a side. For example, (2, 3) is a neighbour of (2, 4) as the right side of (2, 3) is
shared with (2, 4). Let Nb(i, j) be the set of neighbors of (i, j) on the gird. For
example, Nb(2, 3) = {(1, 3), (2, 2), (2, 4), (3, 3)}.

Fig. 2. Illustrative examples of additional structures used by constraint-based model.
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Variables. For each cell we introduce a Boolean variable ci,j,r, i, j ∈ [t], r ∈
[w+1]. ci,j,r = 1 iff the cell (i, j) belongs to the rth grain, r = 1, . . . , w. Similarly,
ci,j,w+1 = 1 iff the cell (i, j) represents a void area.

Each Cell Is Either a Black or White Pixel. We enforce that each cell contains
either a grain or a void area.∑w+1

r=1 ci,j,r = 1 j, i ∈ [t] (2)

Grains Do Not Overlap. Two cells that belong to different grains cannot be
neighbours.

ci,j,r → ¬ch,g,r′ (h, g) ∈ Nb(i, j), r′ ∈ [w] \ {r} (3)

Grains Are Connected Areas. We enforce connectivity constraints for each grain.
By connectivity we mean that there is a path between two cells of the same grain
using only cells that belong to this grain. Unfortunately, enforcing connectivity
constraints is very expensive. Encoding the path constraint results in a pro-
hibitively large encoding. To deal with this explosion, we restrict the space of
possible grain shapes. First, we assume that we know the position of one pixel of
this grain that we pick randomly. Let sr = (i, j) be a random cell, r ∈ [w]. Then
we implicitly build a directed acyclic graph (DAG) G starting from this cell sr
that covers the entire grid. Each cell of a grid is a node in this graph. The node
that corresponds to the cell sr does not have incoming arcs. There are multiple
ways to build a G from sr. Figures 2(a) and (d) show two possible ways to build
a G that covers a grid starting from cell (3, 3). We enforce that cell i, j belongs
to the rth grain if its center sr is equal to (i, j).

(ci,j,r), sr = (i, j), r ∈ [w + 1]. (4)

Next we define a parent relation in G. Let PrG(i, j) be the set of parents
of cell (i, j) in G. For example, PrG(2, 2) = {(2, 3), (3, 2)} in our example on
Fig. 2(a). Given a DAG G, we can easily enforce connectivity relation w.r.t. G.
The following constraint ensures that a cell (i, j) cannot belong to the rth grain
if none of its parents in G belongs to the same grain.(∧(h,g)∈PrG(i,j)¬ch,g,r

) → ¬ci,j,r, j, i ∈ [t], r ∈ [w + 1]. (5)

Note that by enforcing connectivity constraints on the void area, we make
sure that grains do not contain isolated void areas inside them.

Given a DAG G, we can generate grains of multiple shapes. For example,
Fig. 2(b) shows one possible grain. However, we also lose some valid shapes that
are ruled out by the choice of graph G. For example, Fig. 2(c) gives an example
of a shape that is not possible to build using G in Fig. 2(a). Note that there is
no path from the center (3, 3) of G to the cell (3, 1) that does not visit (3, 2).
However, if we select a different random DAG G′, e.g., Fig. 2(d), then this shape
is one of the possible shapes for G′. In general, we can pick sr and DAG randomly,
so we generate a variety of shapes.
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Compactness of a Grain. The second set of constraints is about restrictions on
a single grain. The compactness constraint is a form of convexity constraint. We
want to ensure that any two boundary points of a grain are close to each other.
The reason for this constraint is that grains are unlikely to have a long snake-
like appearance as solid particles tend to group together. Sometimes, we need to
enforce the convexity constraint, which is an extreme case of compactness. To
enforce this constraint, we again trade-off the variety of shapes and the size of
the encoding. Now we assume that sr is the center of the grain. Then we build
virtual circles around this center that cover the grid. Figure 2(e) shows examples
of such circles. Let Cr(i, j) = {C1

r , . . . , C
q
r} be a set of circles that are built with

the cell sr as a center. The following constraint enforces that a cell that belongs
to the circle Cv

r can be in the rth grain only if all cells from the inner circle Cv−s
r

belong to the rth grain, where s is a parameter.

∨ch,g,r∈Cv−s
r

¬ch,g,r → ¬ci,j,r ci,j,r ∈ Cv
r , v ∈ [q], r ∈ [w] (6)

Note that if s = 1 then we generate convex grains. In this case, every pixel
from Cv

r has to belong to the rth grain before we can add a pixel from the circle
Cv+1

r to this grain.

Boundary Constraints. We also have a technical constraint that all cells on the
boundary of the grid must be void pixels. They are required to define boundary
conditions for PDEs on generated images.

(ci,j,w+1) j = t ∨ i = t (7)

Connecting with Bnn. We need to connect variables ci,j,r with the inputs of the
network. We recall that an input image is a black and white image, where black
pixels correspond to solid parts. Hence, if a cell belongs to a grain, i.e. ci,j,r is
true and r �= w+1, then it maps to a black pixel. Otherwise, it maps to a white
pixel.

ci,j,r → Ii,j = 1 j, i ∈ [t], r ∈ [w],
ci,j,w+1 → Ii,j = 0 j, i ∈ [t]. (8)

Process Constraints. Process constraints are enforced on the output of the net-
work. Given ranges [ai, bi], i ∈ [m] we have:

ai ≤ di ≤ bi i ∈ [m] (9)

Summary. To solve the constrained random image generation problem, we solve
the conjunctions of constraint (1)–(9). Randomness comes from the random seed
that is passed to the solver, a random choice of sr and G.

5 Experiments

We conduct a set of experiments with our constraint based approach. We ran
our experiments on Intel(R) Xeon(R) 3.30 GHz. We use the timeout of 600 s in
all runs.
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Training Procedure. For the training sets, we consider the synthetic random
images of the unit cell of a periodic porous medium. For each generated image,
we solve the partial differential equation to define the rate of the transport
process, d. We use synthetic images because high-quality images of the natural
porous medium are not available. The usage of synthetic images is a standard
practice when data supply is strictly limited. We generated two datasets, D2 with
10 K images and D3 with 5 K images. Each image in D2 contains two grains and
each image in D3 contains three grains. All images are black and white images
of size 16 by 16. These images were labeled with dispersion coefficients along the
x-axis which is a number between 0.4 and 1. We performed quantization on the
dispersion coefficient value to map d into an interval of integers between 40 and
100. Intuitively, the larger the volume of the solid grains in the domain the lower
the dispersion value, since the grain creates an obstacle for the transport. In the
datasets, we don’t use images with large enough grains to have the dispersion
rate lower than 0.4 (or re-scaled to 40 for BNN), since the shape diversity of large
grains is low. We use mean absolute error (MAE) to train Bnn. Bnn consists of
three blocks with 100 neurons per inner layers and one output. The MAE is 4.2
for D2 and 5.1 for D3. We lose accuracy compared to non-binarized networks,
e.g., MAE for the same non-binarized network is 2.5 for D2. However, Bnns are
much easier to reason about, so we work with this subclass of networks.

Image Generation. We use CPLEX and the SMT solver Z3 to solve instances
produced by constraints (1)–(9). In principle, other solvers could be evaluated on
these instances. The best mode for Z3 was to use an SMT core based on CDCL
and a theory solver for nested Pseudo-Boolean and cardinality constraints. We
noted that bit-blasting into sorting circuits did not scale, and Z3’s theory of linear
integer arithmetic was also inadequate. We considered six process constraints for
d, namely, d ∈ [a, b], [a, b] ∈ {[40, 50), . . . , [90, 100]}. For each interval [a, b], we
generate 100 random constrained problems. The randomization comes from a
random seed that is passed to the solver, the position of centers of each grain
and the parameter s in the constraint (6). We used the same DAG G construction
as in Fig. 2(a) in all problems.

Table 1. The number of solved instances in each interval [a, b].

Solver D2 D3

[40,50) [50,60) [60,70) [70,80) [80,90) [90,100] [40,50) [50,60) [60,70) [70,80) [80,90) [90,100]

CPLEX 100 99 99 98 100 41 100 100 96 99 100 84

Z3 98 89 81 74 56 12 100 97 97 97 96 54

Table 1 shows summary of our results for CPLEX and Z3 solvers. As can
be seen from this table, these instances are relatively easy for the CPLEX
solver. It can solve most of them within the given timeout. The average time
for D2 is 25 s and for D3 is 12 s with CPLEX. Z3 handles most benchmarks,
but we observed it gets stuck on examples that are very easy for CPLEX, e.g.
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the interval [80, 90) for D2. We hypothesize that this is due to how watch
literals are tracked in a very general way on nested cardinality constraints
(Z3 maintains a predicate for each nested PB constraint and refreshes the
watch list whenever the predicate changes assignment), when one could instead
exploit the limited way that CPLEX allows conditional constraints. The aver-
age time for the dataset D2 is 94 s and for the dataset D3 is 64 s with Z3.

Fig. 3. The absolute error between d and
its true value.

Figures 1(c)–(e) show examples of gen-
erated images for ranges [40, 50),
[60, 70) and [90, 100] for D2 (the top
row) and D3 (the bottom row). For the
process we consider, as the value of the
dispersion coefficient grows, the black
area should decrease as there should be
fewer grain obstacles for a flow to go
through the porous medium. Indeed,
images in Figs. 1(c)–(e) follow this pat-
tern, i.e. the black area on images with
d ∈ [40, 50) is significantly larger than
on images with d ∈ [90, 100]. More-
over, by construction, they satisfy geo-
metric constraints that GANs cannot
handle. For each image we generated, we run a PDE solver to compute the true
value of the dispersion coefficient on this image. Then we compute the absolute
error between the value of d that our model computes and the true value of the
coefficient. Figure 3 shows absolute errors for all benchmarks that were solved by
CPLEX. We ordered solved benchmarks by dispersion coefficient values, break-
ing ties arbitrarily. First, this figure shows that our model generates images with
given properties. The mean absolute error is about 10 on these instances. Taking
into account that Bnn has MAE of 4.2 on D2, MAE of 10 on new generated
instances is a reasonable result. Ideally, we would like MAE to be zero. However,
this error depends purely on the Bnn we used. To reduce this error, we need to
improve the accuracy of Bnn as it serves as an approximator of a PDE solver.
For example, we can use more binarized layers or use additional non-binarized
layers. Of course, increasing the power of the network leads to computational
challenges solving the corresponding logical formulas.

Limitation of the Approach. The main limitation of the presented approach is
its scalability. In our experiments, we used small images that represent a unit
cell of a periodic porous medium. Conceptually, our approach can handle larger
images, but scalability of the underlying decision procedures becomes the main
bottleneck. Unfortunately, scalability is the main limiting factor in all decision
based approaches to analysis of NNs at the moment [14,17,19]. In the future,
we are hoping to develop efficient domain specific decision procedures for NN
analysis. The second limitation is the set of topological constraints that we can
handle. Many real applications require sophisticated restrictions on the topology
of solid and void areas and do not exhibit periodic structure. It is an interesting
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research direction to formalize these constraints and use decision procedures to
generate rich topologies.

6 Related Work

There are two lines of work related. The first line of work uses constraint to
enhance machine learning techniques with declarative constraints, e.g. in solv-
ing constrained clustering problems and in data mining techniques that handle
domain specific constraints [20–22]. One recent example is the work of Ganji
et al. [21] who proposed a logical model for constrained community detection.
The second line of research explores embedding of domain-specific constraints in
the GAN training procedure [8,13,23–25]. Work in this area is targeting various
applications in physics and medicine that impose constraints, like sparsity con-
straints, high dynamic range requirements (e.g. when pixel intensity in an image
varies by orders of magnitude), location specificity constraints (e.g. shifting pixel
locations can change important image properties), etc. However, this research
area is emerging and the results are still preliminary.

7 Conclusion

In this paper we considered the constrained image generation problem for a phys-
ical process. We showed that this problem can be encoded as a logical formula
over Boolean variables. For small porous media, we show that the generation
process is computationally feasible for modern decision procedures. There are a
lot of interesting future research directions. First, the main limitation of our app-
roach is scalability, as we cannot use large networks with a number of weights
in the order of hundreds of thousands, as it is required by industrial appli-
cations. However, constraints that are used to encode, for example, binarized
neural networks are mostly pseudo-Boolean constraints with unary coefficients.
Hence, it would be interesting to design specialized procedures to deal with this
fragment of constraints. Second, we need to investigate different types of neu-
ral networks that admit encoding into SMT or ILP. For instance, there is a lot
of work on quantized networks that use a small number of bits to encode each
weight, e.g. [26]. Finally, can we use similar techniques to reveal vulnerabilities in
neural networks? For example, we might be able to generate constrained adver-
sarial examples or other special types of images that expose undesired network
behaviour.
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