
Chapter 9

Atomic Read/Write Registers

in the Presence of Byzantine Processes

Theorem 18 (stated and proved in Section 5.4) has shown that t < n/2 is an upper bound on the

resilience parameter t to build atomic read/write registers in the asynchronous crash process model

CAMPn,t[∅]. Section 6.3 and Section 6.4 then presented an incremental construction of Single-Writer

Multi-Reader (SWMR) and Multi-Writer Multi-Reader (MW-MR) atomic registers.

This chapter addresses the construction of SWMR atomic read/write registers (one per process)

in the failure context where up to t processes may exhibit a Byzantine behavior. It first shows that

t < n/3 is a necessary condition for such a construction. Then, it presents an algorithm building

an array REG [1..n] of SWMR atomic registers (only pi can write REG [i]) in the system model

BAMPn,t[t < n/3]. This algorithm is consequently t-resilient optimal.

Keywords Asynchronous system, Atomicity, Byzantine process, Byzantine reliable broadcast, Im-

possibility, Linearization point, Upper bound, Read/write register.

9.1 Atomic Read/Write Registers in the Presence of Byzantine Processes

9.1.1 Why SWMR (and Not MWMR) Atomic Registers?

The fault-tolerant shared memory supplied to the upper abstraction layer is an array denoted REG [1..n].
For each i, REG [i] is a single-writer/multi-reader (SWMR) register. This means that REG [i] can be

written only by pi. To this end, pi invokes the operation REG [i].write(v) where v is the value it

wants to write into REG [i]. However, any process pj can read REG [i] by invoking the operation

REG [i].read().

Let us notice that the “single-writer” requirement is natural in the presence of Byzantine processes.

If registers could be written by any process, it would be possible for the Byzantine processes to flood

the whole memory with fake values, so that no non-trivial computation could be possible.

9.1.2 Reminder on Possible Behaviors of a Byzantine Process

Reminder on Byzantine behavior A Byzantine process is a process that behaves arbitrarily. As seen

in Section 4.1, this means that, when looking at the implementation level of the array REG [1..n], it

may crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary state, perform

arbitrary state transitions, etc. Hence, a Byzantine process, which is assumed to send a message m to

all the processes, can send a message m1 to some processes, a different message m2 to another subset

of processes, and no message at all to the other processes. Moreover, while they cannot modify the
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content of the messages sent by non-Byzantine processes, they can read their content and reorder their

deliveries. More generally, Byzantine processes can collude to “pollute” the computation.

Notation As already indicated, the asynchronous message-passing system made up of n processes,

among which up to t may be Byzantine, is denoted BAMPn,t[∅].

On the modifications of REG [k] by a Byzantine process pk Let pk be a Byzantine process. Like

a correct process, pk may invoke the write operation REG [k].write(v) to assign a value v to REG [k]
(where v can be a correct or a fake value).

Such a process pk can also try to modify REG [k] without using this operation, e.g., by send-

ing “protocol messages” which, from the point of view of correct processes, simulate an invocation of

REG [k].write(v). Such an attempt to modify REG [k], without invoking the operation REG [k].write(),
may or not succeed. “Succeed” means that, from the point of view of all the correct processes, v was

assigned to REG [k], namely, this modification of REG [k] appears as if it had been produced by an

invocation of REG [k].write() by pk.

The problem in the implementation of REG [k] is then to ensure that REG [k] does not appear as

having been modified to some correct processes, and not modified to other correct processes. More-

over, the implementation of REG [k] must also ensure that none of the modifications by the Byzantine

process pk are seen by some correct processes as if a was written, and seen by other correct processes

as if b �= a was written. Hence, REG [k] must appear as having been modified to the same value to all

correct processes or none of them.

9.1.3 SWMR Atomic Registers Despite Byzantine Processes: Definition

Notations Let pi and pj be two correct processes.

• Let read[i, j, x] denote the execution of the operation REG [j].read() issued by pi which returns

the xth value written by pj .

• Let write[i, y] denote the yth execution of the operation REG [i].write() by pi.

• H being a sequence of values, let H[x] denote the value at position x in H .

As seen in Section 5.2, it would be possible to associate a start event and an end event with each

read[i, j, x] and each write[i, y] issued by a correct process pi, so that all the events produced by the

correct processes define a total order from which the notion of “terminates before” (used below) can

be formally defined. To not overload the presentation, we do not use this formalization here.

Atomic SWMR registers in the presence of Byzantine processes The atomicity of a set of n
SWMR registers REG [1], ..., REG [n] (some of them possibly associated with Byzantine processes)

is defined by the following set of properties:

• R-termination (liveness). Let pi be a correct process.

– Each invocation of REG [i].write() terminates.

– For any j, any invocation of REG [j].read() by pi terminates.

• R-consistency (safety). Let pi and pj be two correct processes, and pk a faulty or correct process.

– Single history per process. There is exactly one sequence of values Hk associated with

each process pk. More, if pk is correct, Hk[x] contains the value written by write[k, x].

– Read followed by write. (read[j, i, x] terminates before write[i, y] starts) ⇒ (x < y).

– Write followed by read. (write[j, x] terminates before read[i, j, y] starts) ⇒ (x ≤ y).

– No new/old read inversion. (read[i, k, x] terminates before read[j, k, y] starts) ⇒ (x ≤ y).
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As the behavior of a Byzantine process escapes the control of a correct algorithm, both the termi-

nation property and the constraint on the values returned by read invocations can only be on correct

processes.

The “single history per process” property states that the write operations on any register are totally

ordered. Hence, if pk is correct, Hk is the sequence of values it wrote in REG [k].
The three other safety properties concern only the values read by correct processes. The “read

followed by write” property states that there is no read from the future, while the “write followed by

read”’ property states that no read can obtain an overwritten value. Due to the possibiliry of concurrent

access to the same register, these two properties actually defines a regular register. Hence the “no

new/old read inversion” property, which allows us to obtain an atomic register from a regular register.

9.2 An Impossibility Result

This section shows that t < n/3 is a necessary condition to implement an SWMR atomic register

BAMPn,t[∅]. This theorem is due to D. Imbs, S. Rajsbaum, M. Raynal, and J. Stainer (2017).

Theorem 37. It is impossible to implement an atomic SWMR register in BAMPn,t[t ≥ n/3].

Proof The proof is by contradiction. It is based on classic partitioning and indistinguishability ar-

guments. Let us assume that there is an algorithm A that builds an atomic read/write register in

BAMPn,t[t ≥ n/3], which means that it satisfies the R-consistency and R-termination properties

stated in the previous section. Let us notice that to guarantee the R-termination property, a correct

process cannot wait for messages from more than n− t = 2t processes.

Let us partition the processes into three sets Q1, Q2 and Q3, each of size �n3 � or �n3 �. As

�n3 � ≤ �n3 � ≤ t, it follows that, in any execution, all processes of Q1 (or Q2, or Q3) can be Byzantine.

In the following p1 is a process of Q1, while p2 is a process of Q2. Let us assume that all SWMR

atomic registers are initialized to ⊥.

p1 ∈ Q1

τw

Atomicity line

processes of Q1 are Byzantine and send no messages

REG [2].write(v)
p2 ∈ Q2

process ∈ Q3

Figure 9.1: Execution E1 (impossibility of an SWMR register in BAMPn,t[t ≥ n/3])

Let us consider a first execution E1, depicted in Fig. 9.1 and defined as follows. (In this figure and the

two following figures, a single process of each set is represented.)

• The set of Byzantine processes is Q1. They do not send messages and appear as crashed to the

processes of Q2 and Q3.

• The process p2 ∈ Q2 writes a value v in REG [2]. Due to the R-termination property of the

algorithm A, the invocation of REG [2].write(v) by p2 terminates. Let τw be the time instant at

which this write terminates.

Let E2 (Fig. 9.2) be a second execution defined as follows.

• All processes are correct, but the processes of Q2 execute no step before τr (defined below).
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p1 ∈ Q1

Atomicity line

p2 ∈ Q2

the processes of Q2 execute no step before τr

τw τr

REG [2].read() → ⊥

process ∈ Q3

Figure 9.2: Execution E2 (impossibility of an SWMR register in BAMPn,t[t ≥ n/3])

• After τw, the process p1 ∈ Q1 reads the register REG [2]. Due to the R-termination property of

the algorithm A it follows that the invocation of REG [2].read() by p1 terminates (let us notice

that, as |Q2| ≤ t, and n − 2t ≤ t, the processes of Q2 appear as crashed to the invocation of

REG [2].read(), and they cannot prevent it from terminating). Let τr be the time instant at which

this read terminates. According to the R-consistency property read followed by write, REG [2]
still has its initial value ⊥. It follows that the read operation by p1 returns this value.

p1 ∈ Q1

Atomicity line

p2 ∈ Q2

τw τr

REG [2].read() → ⊥

REG [2].write(v)

the processes of Q3 are Byz. and behave as in E1 wrt Q1 and as in E2 wrt Q2

messages between Q1 and Q2 delayed until after τr

process ∈ Q3

Figure 9.3: Execution E3 (impossibility of an SWMR register in BAMPn,t[t ≥ n/3])

Let us finally consider E3, a third execution depicted in Fig. 9.3 and defined as follows.

• The set of Byzantine processes is Q3, and the processes of Q3 behave exactly as in E1 with

respect to the processes of Q2, and exactly as in E2 with respect to those of Q1.

• The messages sent by the processes of Q1 to the processes of Q2 and by the processes of Q2 to

the processes of Q1 are delayed until after τr.

• The messages exchanged between themselves by the processes of Q2∪Q3 are received at exactly

the same time instants as in E1. Similarly, the messages exchanged between themselves by the

processes of Q1 ∪Q3 are received at exactly the same time instants as in E2.

• At the very same time instant as in E1, process p2 ∈ Q2 writes value v in REG [2]. Since, from

the point of view of the processes of Q2, the executions E1 and E3 are indistinguishable, the

invocation of REG [2].write(v) by p2 terminates at τw.

• As in execution E2, after τw the process p1 ∈ Q1 reads the register REG [2]. Since, from

the point of view of the processes of Q1, the executions E2 and E3 are indistinguishable, the

invocation of REG [2].read() by p1 terminates at τr and returns ⊥. But this violates the R-

consistency property write followed by read, which contradicts the existence of Algorithm A.

�Theorem 37
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9.3 Reminder on Byzantine Reliable Broadcast

This section is a reminder of Section 4.4 where a reliable broadcast algorithm suited to the system

model BAMPn,t[t < n/3] was presented. This algorithm is extended here to include sequence num-

bers, which allows a process to send a sequence of messages instead of a single message. This exten-

sion constitutes a basic building block on which the algorithm implementing SWMR atomic registers

in BAMP |n, t[t < n/3] presented in Section 9.4 relies.

9.3.1 Specification of Multi-shot Reliable Broadcast

Including sequence numbers The multi-shot BRB-broadcast communication abstraction provides

the processes with the operations BRB broadcast() and BRB deliver(). BRB broadcast() has now

two input parameters: a broadcast value v and an integer sn, which is a local sequence number used

to identify the successive brb-broadcasts issued by the sender process. The sequence of numbers used

by each (correct) process is the increasing sequence of consecutive integers. This BRB-broadcast

communication abstraction is defined by the following properties:

• BRB-validity. If a non-faulty process BRB-delivers a pair (v, sn) from a correct process pi, then

pi invoked BRB broadcast(v, sn).

• BRB-integrity. No correct process BRB-delivers a pair (v, sn) more than once.

• BRB-no-duplicity. If a non-faulty process brb-delivers a pair (v, sn) from a process pi, no

non-faulty process brb-delivers a pair (v′, sn, ) such that v �= v′ from pi.

• BRB-termination-1. If a non-faulty process pi invokes BRB broadcast(v, sn), all the non-faulty

processes eventually brb-deliver the pair (v, sn).

• BRB-termination-2. If a non-faulty process brb-delivers a pair (v, sn) from pi (possibly faulty)

then all the non-faulty processes eventually brb-deliver a pair from pi.

Let us notice that it follows from the BRB-no-duplicity property and the BRB-termination-2 prop-

erties that, if a correct process brb-delivers a pair (v, sn) from a process pi (possibly faulty), then

all the correct processes eventually brb-deliver the same pair (v, sn) from pi (this property is called

BRB-uniformity).

BRB-validity is on correct processes and relates their outputs to their inputs, namely no correct

process brb-delivers spurious messages from correct processes. BRB-integrity states that there is

no brb-broadcast duplication. BRB-uniformity is an “all or none” property (it is not possible for a

pair to be delivered by a correct process and to never be delivered by the other correct processes).

BRB-termination-1 is a liveness property: at least all the pairs brb-broadcast by correct processes are

brb-delivered by them.

Adding FIFO delivery As a process pi may execute several write operation on REG [i], it is possible

to associate a sequence number with each of them. So, we require that these messages be processed in

their sequence number order.

9.3.2 An Algorithm for Multi-shot Byzantine Reliable Broadcast

The BRB-broadcast algorithm presented in Fig. 9.4 is the one of Section 4.4 enriched with sequence

numbers. The lines with the same meaning in both algorithms have the same line numbers. Line (2)

is split into two lines denoted (2)-1 and (2)-2. There are also two new lines related to the management

of sequence numbers, denoted (N1) and (N2). Instead of INIT, the tag of an application message

is denoted APPL, and each message carries the sequence number of the application message it is

associated with.
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operation BRB broadcast APPL(v, sn) is

(1) broadcast APPL(v, sn).

when a message APPL(v, sn) is received from pj do

(2)-1 discard the message if it is not the first message from pj with sequence number sn;

(N1) wait (nexti[j] = sn);
(2)-2 broadcast ECHO(j, v, sn).

when a message ECHO(j, v, sn) is received do

(3) if (ECHO(j, v, sn) received from strictly more than n+t
2

different processes)

∧(READY(j, v, sn) never broadcast)

(4) then broadcast READY(j, v, sn)
(5) end if.

when a message READY(j, v, sn) is received do

(6) if (READY(j, v, sn) received from at least (t+ 1) different processes)

∧(READY(j, v, sn) never sent)

(7) then broadcast READY(j, v, sn)
(8) end if;

(9) if (READY(j, v, sn) received from at least (2t+ 1) different processes)

∧ (〈j, v, sn〉 brb-delivered from pj)

(10) then BRB deliver 〈j, v, sn〉;
(N2) nexti[j] ← nexti[j] + 1
(11) end if.

Figure 9.4: Reliable broadcast with sequence numbers in BAMPn,t[t < n/3] (code for pi)

Each process pi manages a local array nexti[1..n], where nexti[j] is the sequence number sn of

the next application message (namely, APPL(−, sn)) from pj , which pi will process (line N1). Initially,

for all i, j, nexti[j] = 1. Then, nexti[j] increases at line (N2).

Let us remember that broadcast TAG(m) is a simple macro-operation standing for “for all j ∈
{1, ...n} do send TAG(m) to pj end for”.

When, on its “client” side, a process pi invokes BRB broadcast APPL(v, sn), it broadcasts the

message APPL(v, sn), where sn is the value of its next sequence number (line 1).

On its “server” side, the behavior of a process pi is as follows:

• When it receives a message APPL(v, sn) from a process pj , pi discards it if it has already re-

ceived a message APPL(−, sn′) from pj such that sn′ = sn (line (2)-1). This is because in this

case pj is Byzantine (a correct process issues a single BRB-broadcast per sequence number).

Otherwise, pi waits until it can process this message according to its sequence number (line N1).

When this occurs, pi broadcasts the message ECHO(j, v, sn) to inform the other processes it has

received the application message APPL(v, sn) (line (2)-2).

• Then, when pi has received the same message ECHO(j, v, sn) from “enough” processes (where

“enough” means here “more than (n + t)/2 different processes”), and has not yet broadcast a

message READY(j, v, sn), it does so (lines 3-5).

The aim of (a) the messages ECHO(j, v, sn), and (b) the cardinality “greater than (n + t)/2
processes”, is to ensure that no two correct processes brb-deliver distinct messages from pj (even

if pj is Byzantine). The aim of the messages READY(j, v, sn) is related to the liveness of the

algorithm. More precisely, their aim is to allow the brb-delivery, by the correct processes, of the

very same triple 〈j, v, sn〉 from pj , and this must always occur if pj is correct. It is nevertheless

possible that a message brb-broadcast by a Byzantine process pj is never brb-delivered by the

correct processes.
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• Finally, when pi has received the message READY(j, v, sn) from (t + 1) different processes, it

broadcasts the same message READY(j, v, sn), if not yet done. This is required to ensure the

BRB-termination properties. If pi has received “enough” messages READY(j, v, sn) (“enough”

means here “from at least (2t + 1) different processes”), it brb-delivers the triple 〈j, v, sn〉
generated by the message APPL(v, sn) brb-broadcast by pj .

9.4 Construction of SWMR Atomic Registers in BAMPn,t[t < n/3]

An algorithm constructing an array REG [1..n] of SWMR atomic registers, where each pi can write

only REG [i], in the presence of up to t Byzantine processes is described in Fig. 9.5. As it assumes

t < n/3, this algorithm is t-resilience optimal.

This algorithm is due to A. Mostéfaoui, M. Petrolia, M. Raynal, and Cl. Jard (2017). Its design

strives to be as close as possible to the ABD algorithms presented in Section 6.3.2 (SWMR atomic reg-

ister) and Section 6.4.2 (MWMR atomic register). In addition to the necessary and sufficient condition

t < n/3, this presentation allows the reader to better see, and understand, the additional statements

needed to go from crash failures to Byzantine process failures.

The algorithm uses a wait(condition) statement. The corresponding process is blocked until the

predicate condition is satisfied. While a process is blocked, it can process the messages it receives.

9.4.1 Description of the Algorithm

Local variables Each process pi manages the following local variables whose scope is the full com-

putation:

• regi[1..n] is the local representation of the array REG [1..n] of SWMR registers. Each local

register regi[j] contains two fields, a sequence number regi[j].sn, and the corresponding value

regi[j].val. It is initialized to the pair 〈⊥j , 0〉, where ⊥j is the initial value of REG [j].

• wsni is an integer, initialized to 0, used by pi to associate sequence numbers with its successive

write invocations.

• rsni[1..n] is an array of sequence numbers (initialized to [0, · · · , 0]) such that sni[j] is used by

pi to identify its successive read invocations of REG [j]. (If we assume that no correct process

pi reads its own register REG [i], rsni[i] can be used to store wsni.)

The operation REG [i].write(v) This operation is implemented by the client lines 1-4 and the server

lines 12-14.

When a process pi invokes REG [i].write(v), it first increases wsni and brb-broadcasts the mes-

sage WRITE(v, wsni). Let us notice that this is the only use of the reliable broadcast abstraction

by the algorithm. The process pi then waits for acknowledgments (message WRITE DONE(v, wsni))
from (n− t) distinct processes, and finally terminates the write operation.

When pi brb-delivers a message WRITE(v, wsn) from a process pj , it waits until wsn = regi[j]+1
(line 12). Hence, whatever the sender pj , its messages WRITE() are processed in their sending order.

When this predicate becomes true, pi updates accordingly its local representation of REG [j] (line 13),

and sends back to pj an acknowledgment to inform it that its new write has locally been taken into

account (line 14).

Modification of REG [j] by a Byzantine process pj Let us observe that the only way for a process

pi to modify regi[j] is to brb-deliver a message WRITE(v, wsn) from a (correct or faulty) process

pj . Due to the BRB-uniformity of the brb-broadcast abstraction it follows that, if a correct process

pi brb-delivers such a message, all correct processes will brb-deliver the same message, be its sender

correct or faulty. Consequently each of them will eventually execute the statements of lines 12-14.
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local variables initialization:

regi[1..n] ← [〈init0, 0〉, . . . , 〈initn, 0〉]; wsni ← 0; rsni[1..n] ← [0, · · · , 0].
%————————————————————————————————-

operation REG[i].write(v) is

(1) wsni ← wsni + 1;

(2) BRB broadcast WRITE(v,wsni);

(3) wait WRITE DONE(wsni) received from (n− t) different processes;

(4) return()
end operation.

operation REG[j].read() is

(5) rsni[j] ← rsni[j] + 1;

(6) broadcast READ(j, rsni[j]);
(7) wait

(
regi[j].sn ≥ max(wsn1, ..., wsnn−t) where wsn1, ..., wsnn−t are from

messages STATE(rsni[j],−) received from n− t different processes
)
;

(8) let 〈w,wsn〉 the value of regi[j] which allows the previous wait to terminate;

(9) broadcast CATCH UP(j, wsn);

(10) wait
(

CATCH UP DONE(j, wsn) received from (n− t) different processes
)
;

(11) return(w)
end operation.

%————————————————————————————————-

when a message WRITE(v,wsn) is BRB delivered from pj do

(12) wait(wsn = regi[j].sn+ 1);
(13) regi[j] ← 〈v, wsn〉;
(14) send WRITE DONE(wsn) to pj .

when a message READ(j, rsn) is received from pk do

(15) send STATE(rsn, regi[j].sn) to pk.

when a message CATCH UP(j, wsn) is received from pk do

(16) wait (regi[j].sn ≥ wsn);
(17) send CATCH UP DONE(j, wsn) to pk.

Figure 9.5: Atomic SWMR Registers in BAMPn,t[t < n/3] (code for pi)

Hence, if a correct process brb-delivers a message WRITE(v, wsn) from a Byzantine process pj ,
be this message due to an invocation of BRB broadcast WRITE() by pj or a spurious message it sent,

its faulty behavior is restricted to the broadcast of fake values for v and wsn.

The operation REG [j].read() This operation is implemented by the client lines 5-11 and the server

line 15. The corresponding algorithm is the core of the implementation of an SWMR atomic register

in the presence of Byzantine processes.

When pi wants to read REG [j], it first broadcasts a read request (message READ(j, rsni[j])),
and waits for corresponding acknowledgments (message STATE(rsni[j],−)). Each of these acknowl-

edgment carries the sequence number associated with the current value of REG [j], as known by the

sender pj of the message (line 15). For pi to progress, the wait predicate (line 7) states that its local

representation of REG [j], namely regi[j], must be fresh enough (let us remember that the only line

where regi[j] can be modified is line 13, i.e., when pi brb-delivers a message WRITE(−,−) from pj).
This freshness predicate states that pi’s current value of regi[j] is as fresh as the current value of at

least (n − t) processes (i.e., at least (n − 2t) correct processes). If the freshness predicate is false,

it will become true when pi brb-delivers the WRITE(−,−) messages already brb-delivered by other

correct processes, but not yet by it.

When this waiting period terminates, pi considers the current value 〈w,wsn〉 of regi[j] (line 8).

It then broadcasts the message CATCH UP(j, wsn), and returns the value w as soon as its message
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CATCH UP() is acknowledged by (n− t) processes (lines 9-10).

The aim of the CATCH UP(j, wsn) message is to allow each destination process pk to have a value

in its local representation of REG [j] (namely regk[j].val) at least as recent as the one whose sequence

number is wsn (line 15). The aim of this value resynchronization is to prevent read inversions. When

pi has received the (n− t) acknowledgments it was waiting for (line 10), it knows that no other correct

process can obtain a value older than the value w it is about to return.

Message cost of the algorithm In addition to a reliable broadcast (whose message cost is O(n2)),
a write operation generates n messages WRITE DONE. Hence, the cost of a write is O(n2) messages.

A read operation costs 4n messages, i.e. n messages for each of the four kinds of messages READ,

STATE, CATCH UP and CATCH UP DONE.

9.4.2 Comparison with the Crash Failure Model

As we have seen in Chapter 6 and Chapter 8, the algorithms implementing an atomic register on top of

an asynchronous message-passing system prone to process crashes, require that “reads have to write”.

More precisely, before returning a value, in one way or another, a reader must write this value to

ensure atomicity (otherwise, we obtain only a “regular” register). In doing so, it is not possible that

two sequential read invocations, concurrent with one or more write invocations, are such that the first

read obtains one value while the second read obtains an older value (this prevents read inversion).

As Byzantine failures are more severe than crash failures, the algorithm of Figure 9.5 needs to use

a mechanism analogous to the “reads have to write” to prevent read inversions from occurring. As

previously indicated, this is done by the messages CATCH UP() broadcast at line 9 and the associated

acknowledgments messages CATCH UP DONE() received at line 10. These messages realize a synchro-

nization during which (n− t) processes (i.e., at least (n− 2t) correct processes) have resynchronized

their value, if needed (line 15).

A comparison of two instances of the ABD algorithm and the algorithm of Fig. 9.5 is presented in

Table 9.1. The first instance is the version of the ABD algorithm presented in Fig. 6.4, which builds an

array of n SWMR (single-writer/multi-reader) atomic registers (one register per process). The second

instance is the version of the ABD algorithm, presented in Fig. 6.5, which builds a single MWMR

(multi-writer/multi-reader) atomic register.

As they depend on the application and not on the algorithm that implements registers, the size of

the values which are written is considered to be constant. The parameter m denotes an upper bound

on the number of read and write operations on each register. The value log n is due to the fact that

a message carries a constant number of process identities. Similarly, logm is due to the fact that

(a) a message carries a constant number of sequence numbers, and (b) there is a constant number of

message tags (including the tags used by the underlying reliable broadcast).

Algorithm Fig. 6.4: n SWMR Fig. 6.5: 1 MWMR Fig. 9.5: n SWMR

Failure type crash crash Byzantine

Requirement t < n/2 t < n/2 t < n/3
Msgs/write O(n) O(n) O(n2)
Msgs/read O(n) O(n) O(n)
Msg size O(log n+ logm) O(log n+ logm) O(log n+ logm)
Local mem./proc. O(n logm) O(n logm) O(n logm)

Table 9.1: Crash vs Byzantine failures: cost comparisons
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9.5 Proof of the Algorithm

9.5.1 Preliminary Lemmas

Lemma 30. If a correct process pi brb-delivers a message WRITE(w, sn) (from a correct or faulty

process), any correct process brb-delivers it.

Proof This is an immediate consequence of the BRB-uniformity property of the BRB-broadcast ab-

straction. �Lemma 30

Lemma 31. Any two sets of (n− t) processes have at least one correct process in their intersection.

Proof Let Q1 and Q2 be two sets of processes such that |Q1| = |Q2| = n− t. In the worst case, the

t processes that are not in Q1 belong to Q2, and the t processes that are not in Q2 belong to Q1. It

follows that |Q1 ∩ Q2| ≥ n − 2t. As n > 3t, it follows that |Q1 ∩ Q2| ≥ n − 2t ≥ t + 1, which

concludes the proof of the lemma. �Lemma 31

9.5.2 Proof of the Termination Properties

Lemma 32. Let pi be a correct process. Any invocation of REG [i].write() terminates.

Proof Let us consider the first invocation of REG [i].write() by a correct process pi. This write op-

eration generates the brb-broadcast of the message WRITE(−, 1) (lines 1-2). Due to Lemma 30, all

correct processes brb-deliver this message, and the waiting predicate of line 13 is eventually satis-

fied. Consequently, each correct process pk eventually sets regk[i].sn to 1, and sends back to pi an

acknowledgment message WRITE DONE(1). As there are least (n − t) correct processes, pi receives

such acknowledgments from at least (n − t) different processes, and terminates its first invocation

(lines 3-4).

As, for any given process pj , all correct processes will process the messages WRITE() from pj
in their sequence order, the lemma follows from a simple induction (whose previous paragraph is the

proof of the base case). �Lemma 32

Lemma 33. Let pi be a correct process. For any j, any invocation of REG [j].read() terminates.

Proof When a correct process pi invokes REG [j].read(), it broadcasts a message READ(j, rsn)
where rsn is a new sequence number (lines 5-6). Then, it waits until the freshness predicate of line 7

is satisfied. As pi is correct, each correct process pk receives READ(j, rsn), and sends back to pi a

message STATE(rsn,wsn), where wsn is the sequence number of the last value of REG [j] it knows

(line 15). It follows that pi receives a message STATE(j,−) from at least (n − t) correct processes.

Let STATE(j, wsn1), · · · , STATE(j, wsnn−t) be these messages.

To show that the wait of line 7 terminates we have to show that the freshness predicate regi[j].sn ≥
max(wsn1, · · · , wsnn−t) is eventually satisfied. Let wsn be one of the previous sequence numbers,

and pk the correct process that send it. This means that regk[j].sn = wsn (line 15), from which

we conclude (as pk is correct) that pk has previously brb-delivered a message WRITE(−, wsn) and

updated accordingly regk[j] at line 13 (let us remember that this is the only line at which the local

register regk[j] is updated). It follows from Lemma 30 that eventually pi brb-delivers the message

WRITE(−, sn). It follows then from line 13 that eventually we have regi[j].sn ≥ sn. As this is true

for any sequence number in {wsn1, ..., wsnn−t}, it follows that the freshness predicate is eventually

satisfied, and consequently the wait statement of line 7 is satisfied.

Let us now consider the wait statement of line 10, which appears after pi has broadcast the mes-

sage CATCH UP(j, wsn), where wsn = regi[j].sn (the sequence number in regi[j] just after pi
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stopped waiting at line 7). We show that any correct process sends an acknowledgment message

CATCH UP DONE(j, wsn) back to pi at line 17. Process pi updated regi[j].sn to wsn at line 13,

and this occurred when it brb-delivered a message WRITE(−, wsn). The reasoning is the same as in

the previous paragraph, namely, it follows from Lemma 30 that all correct processes brb-deliver this

message and consequently we have regk[j].sn ≥ wsn at every correct process pk. Hence, the value

resynchronization predicate of line 16 is eventually satisfied at all correct processes, which conse-

quently send back a message CATCH UP DONE(j, wsn) at line 17, which concludes the proof of the

lemma. �Lemma 33

9.5.3 Proof of the Consistency (Atomicity) Properties

Lemma 34. It is possible to associate a single sequence of values Hi with each register REG [i].
Moreover, if pi is correct, Hi is the sequence of values written by pi in REG [i].

Proof To define Hi let us consider all the messages WRITE(−, sn) brb-delivered from a (correct or

faulty) process pi by the correct processes (due to Lemma 30, these messages are brb-delivered to all

correct processes). Let us order these messages according to their processing order as defined by the

predicate of line 12. Hi is the corresponding sequence of values. (Let us notice that, if pi is Byzantine,

it is possible that some of its messages WRITE() are brb-delivered but never processed at lines 12-14;

such messages if any are never added to Hi).

Let us now consider the case where pi is correct. It follows from the BRB-validity property of

the brb-broadcast abstraction that any message brb-delivered from pi, was brb-broadcast by pi. It then

follows from lines 1-2 that Hi is the sequence of values written by pi. �Lemma 34

Lemma 35. Let pi and pj be two correct processes. If read[i, j, x] terminates before write[j, y] starts,

we have x < y.

Proof Let pi be a correct process that returns value v from the invocation of REG [j].read(). Let

regi[j] = 〈v, x〉 be the pair obtained by pi at line 8, i.e., v = Hj [x] and regi[j].sn ≥ x when

read[i, j, x] terminates.

As write[j, y] defines Hj [y], it follows that a message WRITE(−, y) is brb-delivered from pj at

each correct process pk which executes regk[j] ← 〈−, y〉 at line 13. As this occurs after read[i, j, x]
has terminated, we necessarily have x < y. �Lemma 35

Lemma 36. Let pi and pj be two correct processes. If write[i, x] terminates before read[j, i, y] starts,

we have x ≤ y.

Proof Let pi be a correct process that returns from its xth invocation of REG [i].write(). It fol-

lows from line 1 that the sequence number x is associated with the written value. It follows from

the brb-broadcast of the message WRITE(v, x) issued by pi (line 2), and its brb-delivery (line 12) at

each correct process (the BRB-uniformity of the BRB-broadcast), that pi receives (n − t) messages

WRITE DONE(x) (line 3). Let Q1 be this set of (n − t) processes that sent these messages (line 14).

Let us notice that there are at least (n − 2t) correct processes in Q1 and, due to line 13, any of them,

say pk, is such that regk[i].sn ≥ x.

Let pj be a correct process that invokes REG [i].read(). The freshness predicate of line 7 blocks

pj until regj [i].sn ≥ max(wsn1, ..., wsnn−t). Let Q2 be the set of the (n− t) processes that sent the

messages STATE() (line 15) which allowed pj to exit the wait statement of line 7.

It follows from Lemma 31 that at least one correct process pk belongs to Q1 ∩ Q2. Hence, when

pi returns from REG [i].write() it received the message WRITE DONE(x) from pk, and we then have

regk[i].sn ≥ x. As REG [i].read() by pj started after REG [i].write() by pi terminated, when pk sends
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the message STATE(−, regk[i].sn) to pj , we have regk[i].sn ≥ x. It follows that, when pj exits the

wait statement at line 8 we have regj [i].sn ≥ x, which concludes the proof of the lemma. �Lemma 36

Lemma 37. Let pi and pj be two correct processes. If read[i, k, x] terminates before read[j, k, y]
starts, we have x ≤ y.

Proof Let us consider process pi. When it terminates read[i, k, x], it follows from the messages

CATCH UP() and CATCH UP DONE() (lines 9-10 and lines 16-17) that pi received the acknowledgment

message CATCH UP DONE(k, x) from (n − t) different processes. Let Q1 be this set of (n − t)
processes. Let us notice that there are at least (n − 2t) correct processes in Q1, and for any of them,

say p�, we have reg�[k].sn ≥ x.

When pj invokes REG [k].read() it broadcasts the message READ() and waits until the freshness

predicate is satisfied (line 7). The messages STATE(−,−) it receives are from (n − t) different pro-

cesses. Let Q2 be this set of (n− t) processes.

It follows from Lemma 31 that at least one correct process p� belongs to Q1∩Q2. According to the

fact that read[i, k, x] terminates before read[j, k, y] starts, it follows that p� sent CATCH UP DONE(k, x)
to pi before sending the message STATE(−, s) to pj . As reg�[k].sn never decreases, it follows that

x ≤ s. It finally follows that, when the freshness predicate is satisfied at pj , we have regj [k].sn ≥ s.

As y = regj [k].sn (lines 8-11), it follows that x ≤ y, which concludes the proof. �Lemma 37

9.5.4 Piecing Together the Lemmas

Theorem 38. The algorithm described in Fig. 9.5 implements an array of n SWMR atomic registers

(one per process) in the system model BAMPn,t[t < n/3].

Proof The proof follows from Lemmas 32-37. �Theorem 38

9.6 Building Objects on Top of SWMR Byzantine Registers

This section presents two objects illustrating the use of an SWMR shared memory build on top of

BAMPn,t[t < n/3]. Both these objects assume that, not only can each register REG [i] be written by

pi, but pi can write it only once. Hence, the underlying shared memory REG [1..n] is made up of n
write-once SWMR atomic registers. It is easy to modify (simplify) the algorithm presented in Fig. 9.5

to obtain write-once registers. This is left to the reader, and constitutes Exercise 1 of Section 9.9.

9.6.1 One-shot Write-snapshot Object

Definition A one-shot write-snapshot object provides the processes with a single operation denoted

write snapshot(). This operation has a single parameter, namely the value that the invoking process

wants to write in the object. A process pi can invoke write snapshot() at most once (whereas, there

is no control on the number of times a Byzantine process invokes write snapshot()). This operation

returns to the invoking process pi a set outputi made up of pairs 〈j, w〉, where w is the value written

by the process pj . A one-shot write-snapshot object is defined by the following properties:

• Termination. The invocation of write snapshot(v) by a correct process pi terminates.

• Self-inclusion. If pi is correct and invokes write snapshot(v), then 〈i, v〉 ∈ outputi.

• Containment. If both pi and pj are correct and invoke write snapshot(), then outputi ⊆
outputj or outputj ⊆ outputi.

• Validity. If both pi and pj are correct and 〈j, w〉 ∈ outputi, then pj invoked write snapshot(w).
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The algorithm The internal representation of the write-snapshot object is an array (REG [1..n]) of

write-once SWMR atomic registers. It is assumed that REG [1..n] is initialized to [⊥, . . . ,⊥], and all

correct processes invoke write snapshot(). Each process manages two auxiliary variables aux1 and

aux2.

operation write snapshot(vi) is

(1) REG [i].write(vi);
(2) for x ∈ {1, ..., n} do aux1[x] ← REG[x].read() end for;

(3) for x ∈ {1, ..., n} do aux2[x] ← REG[x].read() end for;

(4) while (aux1 �= aux2) do

(5) aux1[1..n] ← aux2[1..n];
(6) for x ∈ {1, ..., n} do aux2[x] ← REG[x].read() end for

(7) end while;

(8) outputi ← { 〈j, aux1[j]〉 | aux1[j] �= ⊥ };

(9) return(outputi).

Figure 9.6: One-shot write-snapshot in BAMPn,t[t < n/3] (code for pi)

The algorithm implementing the operation write snapshot() is very simple (Fig. 9.6). The in-

voking process pi first deposits its value in REG [i] (line 1), and issues an asynchronous “sequential

double scan” (lines 2-3). If the sequential double scan is not successful (line 4), it executes other

double scans (lines 2-3) until a pair of them is successful, i.e., aux1[1..n] = aux2[1..n]. After the

successful double scan, pi computes its output outputi, namely, a set containing the pairs 〈j, w〉 such

that w is the value written by pj (as known by the last successful double scan).

Proof of the algorithm The termination of the algorithm follows directly from the bounded number

of processes, and the fact that each register REG [i] is a one-write register. The validity and self-

inclusion are trivial. The containment property follows from the fact that the number of non-⊥ entries

can only increase.

9.6.2 Correct-only Agreement Object

Definition and assumptions A correct-only agreement object is a one-shot object that provides

processes with a single operation denoted correct only agreement(). This operation is used by each

process to propose a value and decide (return) a set of values. A decided set contains only values

proposed by correct processes and the decided sets satisfy the containment property. It is assumed that

n > (w + 1)t, where w > 1 is the maximal number of distinct values that can be proposed by the

correct processes in an execution.

A correct-only agreement object is defined by the following properties. As in the previous section,

outputi denotes the set of values output by a correct process pi.

• Termination. The invocation of correct only agreement() by a correct process pi terminates.

• Containment. If both pi and pj are correct and invoke correct only agreement(), then outputi ⊆
outputj or outputj ⊆ outputi.

• Validity. The set outputi returned by a correct process pi is not empty and does not contain

values proposed only by Byzantine processes.

The algorithm The algorithm implementing the operation correct only agreement(), is described

in Fig. 9.7. This algorithm is almost the same as the algorithm implementing the previous operation

write snapshot(). The modified lines are prefixed by “M”, and concern the predicate used at line M4,

and the computation of the output at line M8.
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More precisely, a successful double scan is still necessary to exit the while loop, but is no longer

sufficient. In addition, a process pi must observe there is at least one value that has been proposed by

(t + 1) processes (i.e., by at least one correct process). Finally, the output outputi contains all the

values that, from pi’s point of view, have been proposed by at least (t+ 1) processes.

operation correct only agreement(vi) is

(1) REG[i].write(vi);
(2) for x ∈ {1, ..., n} do aux1[x] ← REG[x] end for;

(3) for x ∈ {1, ..., n} do aux2[x] ← REG[x] end for;

(M4) while [(aux1 �= aux2) ∨ (�v : |{j : aux1[j] = v}| > t)] do

(5) aux1 ← aux2;

(6) for x ∈ {1, ..., n} do aux2[x] ← REG[x] end for

(7) end while;

(M8) outputi ← { v : |{j : aux1[j] = v}| > t};

(9) return(outputi).

Figure 9.7: Correct-only agreement in BAMPn,t[t < n/(w + 1)]

Proof of the algorithm As previously, the containment property is a consequence of the fact that

the writes in the array REG [1..n] are atomic, and the number of non-⊥ entries can only increase. The

termination property is a consequence of the following observations: (a) there is a bounded number of

processes, (b) the registers are write-once atomic registers, and (c) the condition n > (w + 1)t. The

validity follows from the condition n > (w+1)t (hence there is at least one value that appears (t+1)
times), and the predicate of line M4.

Remark Both the previous objects share the same termination and containment properties. They

can be seen as dual in the following sense. One-shot write-snapshot satisfies self-inclusion and a

weak validity property, while correct-only agreement is not required to satisfy self-inclusion, but is

constrained by a stronger validity property. As we have seen, both objects can be implemented by the

same generic algorithm whose instances differ essentially in the predicate used to exit the while loop

(line 4).

9.7 Summary

This chapter addressed the implementation of single-writer/multi-reader registers in asynchronous

message-passing systems where processes may commit Byzantine failures. It has first shown that

(t < n/3) is a necessary condition for such a construction. It has then presented an t-resilient algo-

rithm which builds an array of n SWMR atomic registers (one per process) in such a context (system

model BAMPn,t[t < n/3]). This algorithm relies on an underlying reliable broadcast, an appropri-

ate freshness predicate and a value resynchronization mechanism which ensure that a correct process

always reads up-to-date values. A read operation costs O(n) protocol messages, while a write opera-

tion costs O(n2) messages. It is important to notice that SWMR atomic registers can be implemented

without using cryptography notions.

The fact that SWMR registers are considered is due to the following observation: as a Byzantine

process can corrupt any register it can write, the design of multi-writer/multi-reader registers with

non-trivial correctness guarantees is impossible in the presence of Byzantine processes. Whereas the

values written in the SWMR register associated with a non-Byzantine process cannot be corrupted by

a Byzantine process.
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• Byzantine process failures were introduced in [263, 342] in the context of synchronous dis-

tributed systems.

• The impossibility proof stated in Theorem 37 is from [230]. The algorithm presented in Sec-

tion 9.4 is due to A. Mostéfaoui, M. Petrolia, M. Raynal, and Cl. Jard [311].

• As far as we know, the first algorithm building SWMR atomic read/write registers in the system

model BAMPn,t[t < n/3] is the one presented in [230]. In this algorithm, each register REG [j]
is locally represented at each process pi by the sequence of all the values written by pj in

REG [j]. This article also presents implementations of high level objects on top of SWMR

atomic registers that cope with Byzantine processes.

• Byzantine-tolerant broadcast was investigated in [81, 235, 325] (see also Chapter 4 and [88, 89]).

• The construction of Byzantine-tolerant objects was investigated in [241, 275].

• The topological structure of executions with Byzantine processes was investigated in [214, 286,

287].

• The ABD algorithms were introduced in [36] (see Chapter 6).

• The one-shot write-snapshot object and the correct-only agreement objects, and the associ-

ated algorithms, presented in Section 9.6 are due to D. Imbs, S. Rajsbaum, M. Raynal, and

J. Stainer [230]. The one-shot write-snapshot object is a variant of an object called immediate

snapshot object, defined by E. Borowsky and E. Gafni in [76].

• This chapter has considered the peer-to-peer model in which each process has both the role

of a client (when it invokes an operation) and the role of a server (where it manages a local

representation of the state of the implemented registers).

In the clients/servers distributed model, some processes are clients while other are servers. Sev-

eral articles have addressed the design of servers implementing a shared memory accessible by

clients. The servers are usually managing a set of disks (e.g., [111, 1, 280]). Moreover, while

they consider that some servers can be Byzantine, some articles restrict the failure type allowed

to clients. As an example, [131, 203] explore efficiency issues (relation between resilience and

fast reads) in the context where only servers can be Byzantine, while clients (the single writer

and the readers) can fail by crashing.

As other examples, [1] considers that clients can only commit crash failures, while [38] consid-

ers that clients can only be “semi-Byzantine” (i.e., they can issue a bounded number of faulty

writes, but otherwise respect their code). The algorithm presented in [278] allows clients and

some number of servers to be Byzantine, but requires clients to sign their messages. As far as

we know, [25] was the first paper considering Byzantine readers while still offering maximal

resilience (with respect to the number of Byzantine servers) without using cryptography. How-

ever, the writer can fail only by crashing, and the fact that a – possibly Byzantine – reader does

not write a fake value in a register (to ensure the “reads have to write” rule required to implement

atomicity) is ensured only with some probability.

9.9 Exercises and Problems

1. A one-write SWMR atomic register is a register that can written only once. Modify the al-

gorithm described in Fig. 9.5 so that it implements an array REG [1..n] of one-write SWMR

atomic registers.

2. Is the one-shot write-snapshot object presented in Section 9.6 an atomic object?

If it is atomic, you have to associate a linearization point with each operation invocation, such

that no two invocations have the same linerarization point, and, for any two operations op1 and
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op2, if op1 terminates before op2 starts, the linearization point of op1 appears before the one of

op2. If it is not atomic, you have to show that there are executions of the one-shot write-snapshot

object for which it is impossible to build a linearization (atomicity line) as just described.

Solution in [230].

3. Same question with the correct-only agreement object.

Solution in [230].
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