
Chapter 7

Circumventing the t < n/2
Read/Write Register Impossibility:

the Failure Detector Approach

This chapter presents the failure detector class (denoted Σ) that allows us to circumvent the impossi-

bility of building an atomic read/write register in an asynchronous message-passing system in which

half or more processes may commit crash failures (system model CAMPn,t[t ≥ n/2]). (The reader is

referred to Section 3.3 for formal definitions related to failure detectors.) This chapter first introduces

the class Σ, and shows how it allows us to implement an atomic register for any value of t. Then,

it shows that Σ is the failure detector class that provides us with the weakest information on failures

that allows an atomic read/write register to be built despite asynchrony and any number of process

crashes. Finally, the chapter compares the failure detectors classes Σ and Θ on the one side, and Σ
and the URB-broadcast communication abstraction on another side (Θ, introduced in Section 3.4, is

the weakest failure detector class that allows URB-broadcast to be built on top of fair channels in the

presence of any number of process crashes).

Keywords Asynchronous system, Atomic register, Extraction algorithm, Impossibility, Process crash

failure, Quorum failure detector Σ, Uniform reliable broadcast, Weakest failure detector.

7.1 The Class Σ of Quorum Failure Detectors

7.1.1 Definition of the Class of Quorum Failure Detectors

A quorum is a non-empty set of processes. (The majority sets of processes used in the algorithms of

the previous chapter are sometimes called majority quorums.)

The class of quorum failure detectors, denoted Σ, was introduced by C. Delporte, H. Fauconnier,

and R. Guerraoui (2004 and 2010). It contains all the failure detectors that provide each process pi
with a quorum local variable, denoted sigmai, which pi can only read, and such that the set of local

variables {sigmai}1≤n collectively satisfy the intersection and liveness properties stated below. Let

us remember that F denotes the failure pattern associated with a given execution, and Correct(F ) is

the set of processes that do not crash in this failure pattern.

Let us denote sigmaτi the output of Σ at process pi at time τ (using the formalism introduced in

the previous section we have sigmaτi = H(pi, τ)).

• Intersection. ∀i, j ∈ {1, . . . , n}: ∀τ, τ ′ ∈ IN: sigmaτi ∩ sigmaτ
′

j �= ∅.

• Liveness. ∃τ ∈ IN: ∀τ ′ ≥ τ : ∀i ∈ Correct(F ): sigmaτ
′

i ⊆ Correct(F ).
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The intersection property states that any two quorum values intersect, whatever the times at which

they are output. As it has to always be satisfied, this property in called a perpetual property: it is

an invariant provided by Σ. A Σ-based algorithm that aims to build an atomic register will rely on

this invariant to prevent partitioning (and consequently prevent the bad scenario described in the proof

of Theorem 18 from occurring), thereby guaranteeing the required atomicity (safety) property of a

register.

The second property states that, after some finite time, the quorum values output at any non-faulty

process contain only non-faulty processes. These processes are not required to be the same forever.

They can change as long as the intersection property remains satisfied. This property is called an

eventual property: it states that, after some finite time, “something” has to be forever satisfied. Its aim

is to allow a Σ-based algorithm to guarantee that the read and write operations issued by the non-faulty

processes always terminate.

7.1.2 Implementing a Failure Detector Σ When t < n/2

There is a very simple algorithm that builds a failure detector of the class Σ in CAMPn,t[t < n/2]
(Fig. 7.1). Each process pi manages a queue (denoted queuei) that contains the n process identities.

The initial value is any permutation of these identities. Each process broadcasts forever (i.e., until

it crashes, if it ever crashes) ALIVE () messages to indicate it has not crashed. When a process pi
receives such a message from a process pj , it moves j in queuei from its current position to the head

of queuei. Finally, it defines the current value of sigmai as the majority of the processes that are at

the head of queuei.

background task: repeat forever broadcast ALIVE () end repeat.

when ALIVE () is received from pj (j ∈ {1, . . . , n}:

suppress j from queuei; add j at the head of queuei;
sigmai ← the �n+1

2
 processes at the head of queuei.

Figure 7.1: Building a failure detector of the class Σ in CAMPn,t[t < n/2]

The intersection property trivially follows from the fact that any two majorities intersect. As far

as the liveness property is concerned, let c be the number of correct processes. We have c > n/2, i.e.,

c ≥ �n+1
2 �. Let us observe that, after some time, only the c non-faulty processes send messages, and

consequently, only these processes will appear in the first c positions of the queue of any non-faulty

process. The liveness follows immediately from c ≥ �n+1
2 �.

Remark As we have seen, it is possible to build an atomic register in CAMPn,t[t < n/2], and as

we are about to see, it is also possible to build an atomic register in CAMPn,t[Σ]. Hence, it is not

counter-intuitive that a failure detector of the class Σ can be built in CAMPn,t[t < n/2]. Let us also

observe that this algorithm is the same as the one presented in Fig. 3.2, which builds a failure detector

of the class Θ in CAMPn,t[- FC; t < n/2] (a weaker system model than CAMPn,t[t < n/2]).

However, thanks to Theorem 18, and the fact that Σ allows the construction of an atomic register

for any value of t, we can conclude that it is not possible to build a failure detector of the class Σ in

CAMPn,t[∅]. Such a construction requires additional assumptions that the underlying system has to

satisfy. Hence, Σ is more powerful than the assumption “t < n/2”.

The fundamental added value supplied by a failure detector, is that it provides us with the weakest

information on failures the processes have to be provided with in order to build an atomic register. The

model assumption “t < n/2” does not characterize the weakest information on failures that allows the

construction of an atomic register.
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7.1.3 A Σ-based Construction of an SWSR Atomic Register

This section presents a Σ-based algorithm that builds an SWSR atomic register REG (i.e., it builds a

register in the system model CAMPn,t[Σ]). The algorithm appears in Fig. 7.2. Extending this algo-

rithm to build an MWMR atomic register is straightforward. It can be easily done using an incremental

construction similar to the one described in the previous chapter.

One writer, one reader, but all the processes must participate The writer is denoted pw, while the

reader is denoted pr. It is important to notice that all the processes have to participate in the algorithm.

This is because the output domain of Σ is the set of the identities of all the processes, p1, ..., pn, and

both sigmaw and sigmar can a priori contain the identities of any subset of p1, ..., pn. The progress

of pw depends on the values returned by sigmaw, and, similarly, the progress of pr depends on the

values returned by sigmar, which are not known in advance. Hence, to cope with any subset of faulty

processes, each process must participate in the construction of the atomic register REG . Each process

pi has consequently to manage a local copy reg i of REG , and a local variable wsni, as in the register

algorithms of the previous chapter.

operation REG .write (v) is % This code is for the single writer pw %

(1) wsnw ← wsnw + 1;

(2) broadcast WRITE (v,wsnw);
(3) wait (sigmai is such that ∀pj ∈ sigmai : ACK WRITE (wsnw) received from pj);

(4) return().

operation REG .read () is % This code is for the single reader pr %

(5) reqsni ← reqsni + 1;

(6) broadcast READ REQ (reqsni);
(7) wait (sigmai is such that ∀pj ∈ sigmai : ACK READ REQ (wsnw,−,−) received from pj);

(8) let msn be greatest sequence number received in an ACK READ REQ (reqsni,−,−) message;

(9) if (msn > wsni) then reg i ← v; wsni ← msn end if;

(10) return (reg i).

% The code snippets that follow are for every process pi, i ∈ {1, . . . , n}.

when WRITE (val,wsn) is received from pw do

(11) if (wsn ≥ wsni) then reg i ← val; wsni ← wsn end if;

(12) send ACK WRITE (wsn) to pw.

when READ REQ (rsn) is received from pr do

(13) send ACK READ REQ (rsn,wsni, regi) to pr .

Figure 7.2: An algorithm for an atomic SWSR register in CAMPn,t[Σ]

The algorithm The code of the algorithm is very close to that of the algorithms in the previous

chapter. The local variables have the same meaning, and the basic structure is also the same. There

are only two differences:

• The first is the use of a quorum failure detector of the class Σ instead of the majority of non-

faulty processes assumption. Let us observe that the value of the quorum failure detector module

sigmai can change forever (lines 3 and 7). A process pi waits until there is a set output by the

local failure detector module such that it has received an appropriate message (ACK WRITE or

ACK READ REQ) from each process of this set.

• The second difference is not related to the use of Σ, but to the fact that there is a single reader.

As pr is the only reader, when it invokes REG .read(), it is not necessary for it to execute the

second phase of the REG .read() operation (the write phase), whose aim was to ensure that the
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value kept in the local memories of the other processes is at least as recent as the value it is about

to return. As no other process is allowed to read, it is sufficient that pr keeps a local copy of the

value it is about to return, in order to prevent new/old inversions. So, the second phase of a read

operation required to guarantee atomicity is now simply a local write (that actually depends on

the sequence number of the returned value).

The proof is a simplified version of the proof of the algorithm described in Fig. 6.5 of the previous

chapter, where the majority of correct processes assumption is replaced by the properties of Σ. It is

left to the reader as an exercise.

7.2 Σ Is the Weakest Failure Detector to Build an Atomic Register

7.2.1 What Does “Weakest Failure Detector Class” Mean

Notion of extraction algorithm The previous section has shown that it is possible to build an atomic

register in CAMPn,t[Σ], i.e. Σ is sufficient to implement an atomic register in an asynchronous system

prone to any number of process crashes. This section shows that, as soon as we rely on information

on failures when we want to build a register, Σ is also necessary.

Let D be a failure detector class such that it is possible to build a register in CAMPn,t[D]. In-

tuitively, “necessary” means that the information on failures provided by D “includes” information

on failures provided by Σ. More precisely, let D be any failure detector class such that it is pos-

sible to build an atomic register in CAMPn,t[D], and A be any algorithm that builds a register in

CAMPn,t[D]. Proving the necessity of Σ to build an atomic register consists in designing an algo-

rithm that, given the previous D-based algorithm A as an input, builds a failure detector of the class

Σ. We say that this algorithm extracts Σ from the D-based algorithm A (see Fig. 7.3).

ΣExtraction algorithm
D-based algorithm A

that builds a register R

Figure 7.3: Extracting Σ from a register D-based algorithm A

Remark It is important to understand that the notion of weakest used here is related to information

on failures only. Nothing prevents us from designing an oracle that does not provide processes with

hints on failures but with another type of information (e.g., about the synchrony of the system) that

would allow the construction of an atomic register despite any number of process crashes. “Weakest”

means that any oracle that (1) provides processes only with information on failures (i.e., any failure

detector class), and (2) allows processes to build an atomic register, allows the construction of a failure

detector of class Σ.

7.2.2 The Extraction Algorithm

Aim As previously indicated, the aim is to design an algorithm that emulates the output of Σ at each

process pi. This algorithm uses as a subroutine any algorithm A and failure detector D such that A
is an n-process D-based algorithm that implements an atomic register in an n-process asynchronous

message-passing system prone to any number of crashes.

The following extraction algorithm is due to F. Bonnet and M. Raynal (2010). It has the property

to be a bounded construction (every local variable or message content is bounded).
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An array of atomic registers Let Q be a non-empty set of processes, and REGQ[1..n] an array of

n atomic registers (initialized to [⊥, . . . ,⊥]) such that each atomic register REGQ[x] is implemented

by the n-process algorithm A executed only by |Q| threads, each associated with a process of Q.

A simple register-based algorithm (task) Let WRQ be the register-based algorithm (called a task)

where each process pi, such that i ∈ Q, executes the following statements (where regi[1..n] is an array

local to pi):

REGQ[i].write(!); for each x ∈ {1, ..., n} do regi[x] ← REGQ[x].read() end for.

The process pi first writes the value ! in its entry of the array REGQ, and then reads asyn-

chronously all its entries. The REGQ[i].write(!) and REGQ[x].read() operations are provided to the

processes by the previous algorithm A. (Let us note that the value obtained by a read is irrelevant. As

we will see, what is important is the fact that REGQ[x] has been written or not.) A corresponding

run (history) of WRQ is denoted EQ. In that run, no process outside Q sends or receives messages

related to the task WRQ. When we consider the underlying failure detector-based algorithm A that

implements the registers REGQ[1..n], as the processes that are not in Q do not participate in WRQ,

the messages sent by the processes of Q to these processes are never received, or are delayed for an

arbitrarily long period. (Alternatively, we could say that, in WRQ, the processes of Q “omit” sending

messages to the processes that are not in Q.)

Let C denote the set of non-faulty processes in the run we consider. Let us observe that, as the

underlying failure detector-based algorithm A that builds a register is correct, if the set Q contains all

the correct processes (i.e., C ⊆ Q), EQ is such that every correct process terminates the task WRQ.

In the other cases, i.e., for the tasks WRQ such that ¬(C ⊆ Q), EQ is such that a process of Q
terminates WRQ, or blocks forever, or crashes (this depends on the actual failure pattern, the outputs

of the underlying failure detector D used by algorithm A, and the code of A).

Running concurrently 2n − 1 tasks The extraction algorithm considers the 2n − 1 distinct tasks

WRQ where Q is a non-empty set such that Q ∈ 2Π. To this end, each process pi manages 2n−1

threads, one for each subset Q such that i ∈ Q. Let us note that the crash of a process pi entails the

crash of all its threads.

An extraction algorithm The algorithm that extracts Σ is described in Figure 7.4. Let us recall

that its aim is to provide each process pi with a local variable sigmai such that the (sigmax)1≤x≤n

variables satisfy the intersection and liveness properties defined in Section 7.1.

To that end, each process pi manages two local variables: a set of sets of process identities, de-

noted quorum setsi, and a queue denoted queuei. The aim of quorum setsi is to contain all the sets

Q such that pi has terminated WRQ (task T1), while queuei is managed in such a way that eventually

any correct process appears in it before any faulty process (tasks T2 and T3).

The idea is to select an element of quorum setsi as the current output of sigmai. As we will see

in the proof, given any pair of processes pi and pj , any quorum in quorum setsi has a non-empty

intersection with any quorum in quorum setsj , thereby supplying the required intersection property.

The main issue is to ensure the liveness property of sigmai (eventually sigmai has to contain

only correct processes) while preserving the intersection property. This is realized with the help of the

local variable queuei as follows: the current output of sigmai is the set (quorum) of quorum setsi
that appears “first” in queuei. The formal definition of “first element of quorum setsi with respect to

queuei” is stated in the task T4. To make it easy to understand, let us consider the following example.

Let quorum setsi = {{3, 4, 9}, {2, 3, 8}, {1, 2, 4, 7}}, and queuei =< 4, 8, 3, 2, 7, 5, 9, 1, · · · >.

The set S = {2, 3, 8} is the first set of quorum setsi with respect to queuei because each of the other
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sets {3, 4, 9} and {1, 2, 4, 7} includes an element (e.g., 9 and 7, respectively) that appears in queuei
after the elements of S. (If several sets are “first”, any of them can be selected). The notion of “first

quorum in queuei” is used to ensure that Σi eventually includes only correct processes.

Init: quorum setsi ← {{1, . . . , n}}; queuei ← 〈1, . . . , n〉;
for each Q ∈

(
2Π \ {∅, {1, . . . , n}}

)
do

if (i ∈ Q) then launch a thread associated with the task WRQ end if end for.

% Each process pi participates concurrently in all the tasks WRQ such that i ∈ Q %

Task T1: when pi terminates task WRQ: quorum setsi ← quorum setsi ∪ {Q}.

Task T2: repeat periodically broadcast ALIVE(i) end repeat.

Task T3: when ALIVE (j) is received: suppress j from queuei; enqueue j at the head of queuei.

Task T4: when pi reads sigmai:

let m = minQ∈quorum setsi(maxx∈Q(rank[x])) where rank[x] denotes the rank of x in queuei;
return (a set Q such that maxx∈Q(rank[x]) = m).

Figure 7.4: Extracting Σ from a failure detector-based register algorithm A (code for pi)

Remark Initially quorum setsi contains the set {1, . . . , n}. As no set of processes is ever with-

drawn from quorum setsi (task T1), quorum setsi is never empty. Moreover, it is not necessary

to launch the task WR{1,...,n} in which all processes participate. This is because, as the underlying

failure detector-based algorithm A (which implements a register) is correct, it follows that each cor-

rect process decides in task WR{1,...,n}. This case is directly taken into account in the initialization of

quorum setsi (thereby saving the execution of the task WR{1,...,n}).

7.2.3 Correctness of the Extraction Algorithm

Let us recall that a bounded construction is an algorithm in which all variables and all messages have

a bounded size.

Theorem 28. Let A be any failure detector-based algorithm that implements an atomic register in the

system model CAMPn,t[∅]. Given A, the algorithm described in Fig. 7.4 is a bounded construction of

a failure detector of the class Σ.

Proof Proof of the intersection property. The proof is by contradiction. Let us first observe that the

set sigmai returned to a process pi is a set of quorum seti (which contains the set {1, . . . , n} – its

initial value – plus all the sets Q such that pi has terminated WRQ). Let us assume that there are two

sets Q1 and Q2 such that (1) Q1, Q2 ∈
⋃

1≤j≤n(quorum setj), and (2) Q1 ∩Q2 = ∅. The first item

means that Q1 and Q2 can be returned to some processes as their local value for Σ.

Let pi be a process that terminates WRQ1
and pj a process that terminates WRQ2

(due to the

“contradiction” assumption, such processes do exist). Using the fact that the message-passing system

is asynchronous, let us construct the runs EQ1
and EQ2

associated with WRQ1
and WRQ2

as follows.

If any, messages sent by processes in Q1 to processes in Q2 (when they execute A to implement

each register of the array REGQ1
) are delayed for an arbitrarily long period, until pi has added Q1 to

quorum seti and pj has added Q2 to quorum setj . Let us similarly delay messages sent by processes

in Q2 to processes in Q1 when they execute A for each register of the array REGQ2
.

Let us observe that, in concurrent runs EQ1
and EQ2

, algorithm A, which is executed only by

(1) processes of Q1 in EQ1
to build registers REGQ1

[1..n], and (2) processes of Q2 in EQ2
to build

registers REGQ2
[1..n], is fed with the same outputs of the underlying failure detector D. Due to the
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fact that (if any) messages from Q1 to Q2 and from Q2 to Q1 are delayed, pi reads ⊥ from REGQ1
[j]

in EQ1
, and pj reads ⊥ from REGQ2

[i] in EQ2
.

Let us construct a run EQ12
, where Q12 = Q1 ∪ Q2, which is a simple merge of EQ1

and EQ2

defined as follows. In this run, algorithm A (which involves only the processes in Q12 and implements

the array of registers REGQ12
[1..n]) is fed with the same failure detector outputs as the ones supplied

to the concurrent runs EQ1
and EQ2

. Moreover, messages from Q1 to Q2 and from Q2 to Q1 are

delayed as in EQ1
and EQ2

. So, pi (resp., pj) receives the same messages and the same outputs from

the underlying failure detector in EQ12
and EQ1

(resp., EQ2
).

• On the one hand, we have the following. As process pi receives the same messages and the

same failure detector outputs in EQ12
as in EQ1

, arrays REGQ1
[1..n] and REGQ12

[1..n] con-

tain the same values. Consequently, pi reads ⊥ from REGQ12
[j]. Similarly, pj reads ⊥ from

REGQ12
[i].

• On the other hand, we have the following. In EQ12
, process pi writes ! into REGQ12

[i] and the

process pj writes ! into REGQ12
[j]. Moreover, one of these operations terminates before the

other. Without loss of generality, let us assume that the write by pi terminates before the write

by pj . Consequently, pj reads REGQ12
[i] after it has been written. Due to the atomicity of that

register, it follows that pj obtains the value ! when it reads REGQ12
[i].

The second item contradicts the first one. It follows that the initial assumption (namely, the exis-

tence of a failure detector-based algorithm A that builds a register, Q1, Q2 ∈
⋃

1≤j≤n(quorum setj)
and Q1 ∩ Q2 = ∅) is false, from which we conclude that at least one of the assertions Q1, Q2 ∈⋃

1≤j≤n(quorum setj) and Q1∩Q2 = ∅ is false, which completes the proof of the intersection prop-

erty (the corollary 2 stated below is an immediate consequence of that property).

Proof of the liveness property. As far as the liveness property is concerned, let us consider the task

WRC (recall that C is the set of correct processes). As the underlying failure detector-based algorithm

A that implements the registers REGC [1..n] is correct by assumption, each correct process pi termi-

nates its REGC [i].write(!) and REGC [x].read() operations in EC . Consequently, in the extraction

algorithm, the variable quorum seti of each correct process pi eventually contains the set C.

Moreover, after some finite time, each correct process pi receives ALIVE(j) messages only from

correct processes. This means that, at each correct process pi, every correct process eventually pre-

cedes every faulty process in queuei. Due to the definition of “first set of quorum seti with respect

to queuei” stated in task T4, it follows that, from the time at which C has been added to quorum seti,
the quorum Q selected by the task T4 is always such that Q ⊆ C, which proves the liveness property

of sigmai.

The construction is bounded. A simple examination of the extraction algorithm shows that (1) both

the variables queuei and quorum setsi are bounded, and (2) messages carry bounded values, from

which it follows that the construction is bounded. �Theorem 28

An additional property The proof of intersection property shows that it is not possible to have two

sets Q1 and Q2 such that Q1 ∩ Q2 = ∅ and at least one process of Q1 terminates WRQ1
; hence, the

following corollary.

Corollary 2. Let two sets Q1 and Q2 be such that Q1 ∩ Q2 = ∅. Then, no process of Q1 terminates

WRQ1
or no process of Q2 terminates WRQ2

(or both).

7.3 Comparing the Failure Detectors Classes Θ and Σ

The failure detector class Θ provides us with the weakest information on failures needed to implement

the URB-broadcast abstraction in CAMPn,t[- FC, t ≥ n/2] (see Section 3.4.1). Let us remember that
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the output of such a failure detector at a process pi is a set of processes, denoted trustedi, that always

contains a non-faulty process, though not necessarily always the same non-faulty process (accuracy),

and eventually contains only correct processes (liveness).

We have also seen in Section 7.1.2 that both Θ and Σ can be implemented in CAMPn,t[t < n/2].
Which raises the question: Do Θ and Σ have the same computational power, is one stronger than the

other, or are they incomparable? The theorem that follows answers this question.

Theorem 29. In any system where t ≥ n/2, Σ is strictly stronger than Θ (i.e., Θ can be built in

CAMPn,t[Σ], while Σ cannot be built in CAMPn,t[Θ]).

Proof Let us first observe that it follows from their definitions that Σ is at least as strong as Θ. This

comes from the following two observations. First, their liveness properties are the same. Second, the

combination of the intersection and liveness properties of Σ implies that any set sigmai contains a

correct process, which is the accuracy property of Θ (let us observe that this is independent of the

value of t).

The rest of the proof shows that, when t ≥ n/2, the converse is not true, from which it follows

that Σ is strictly stronger than Θ in systems where t ≥ n/2.

The proof is by contradiction. Let us assume that there is an algorithm A that, accessing any failure

detector of the class Θ, builds a failure detector of the class Σ. Let us partition the processes into two

subsets P1 and P2 (i.e., P1 ∩ P2 = ∅ and P1 ∪ P2 = {p1, . . . , pn}) such that |P1| = �n/2� and

|P2| = �n/2�.

Let FD be a failure detector such that, in any failure pattern in which at least one process px ∈ P1
(resp., py ∈ P2) is non-faulty, outputs px (resp. py) at all the processes of P1 (resp., P2). Moreover,

in the failure patterns in which all the processes of P1 (resp., P2) are faulty, FD outputs the same

non-faulty process ∈ P2 (resp., P1) at all the processes.

It is easy to see that FD belongs to the class Θ: no faulty process is ever output (hence we have

the liveness property), and at least one non-faulty process is always output at any non-faulty process

(hence we have the accuracy property).

Let us consider a failure pattern F where some process px ∈ P1 is non-faulty, and FD outputs

trustedx = {x}, and some process py ∈ P2 is non-faulty, and FD outputs trustedy = {y}. The

process px cannot distinguish the failure pattern F from the failure pattern in which all the processes of

P2 are faulty. Similarly, py cannot distinguish the failure pattern F from the failure pattern in which

all the processes of P1 are faulty. It follows from these observations and the fact that trustedx ∩
trustedy = ∅, that the intersection of Σ cannot be ensured, which concludes the proof of the theorem.

�Theorem 29

The previous theorem actually shows that Σ is Θ enriched with the property that any two sets

output by Θ have a non-empty intersection.

7.4 Atomic Register Abstraction vs URB-broadcast Abstraction

7.4.1 From Atomic Registers to URB-broadcast

The URB-broadcast communication abstraction has been defined in Section 2.1.2. This section presents

a direct construction of this communication abstraction in any system where the atomic register ab-

straction can be built. (This construction corresponds to the bottom left-to-right arrow in Fig. 7.6.)

The construction uses an array of SWMR atomic registers REG [1..n] such that REG [i] can be

read by any process but written only by pi. Moreover, each process pi manages a local variable

denoted senti and a local array reg i[1..n]. Each atomic register REG [x], and each local variable
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operation URB broadcast (m) is

(1) senti ← senti ⊕m; REG[i].write(senti).

background task T is

(2) repeat forever

(3) for each j ∈ {1, . . . , n} do

(4) regi[j] ← REG [j].read();
(5) for each m ∈ regi[j] not yet urb-delivered do URB deliver (m) end for

(6) end repeat.

Figure 7.5: From atomic registers to URB-broadcast (code for pi)

sentx or regi[x] contains a sequence of messages. Each is initialized to the empty sequence; ⊕
denotes message concatenation.

To urb-broadcast a message m a process pi appends m to the local sequence senti and writes its

new value into REG [i] (line 1). The urb-deliveries occur in a background task T . This task is an

infinite loop that reads all the atomic registers REG [j] (line 4), and urb-delivers all the messages they

contain exactly once (line 5).

Theorem 30. The algorithm described in Fig. 7.5 constructs an URB-broadcast communication ab-

straction in any system in which atomic registers can be built.

Proof As the algorithm does not forge new messages, the validity property of URB-broadcast is

trivial. Similarly, it follows directly from the text of the algorithm that a message is urb-delivered at

most once; hence, the integrity property of URB-broadcast.

For the termination property of URB-broadcast, let us observe that a non-faulty process pi that

urb-broadcasts a message m adds this message to the sequence of messages contained in REG [i].
Then, when pi executes the background task T , it reads REG [i], and consequently regi[i] contains m.

According to the text of the algorithm, pi eventually urb-delivers m.

The previous observation has shown that, if a non-faulty process urb-broadcasts a message m,

it eventually urb-delivers it. It remains to show that, if any process urb-delivers a message m, then

every non-faulty process urb-delivers m. So, let us assume that a (faulty or non-faulty) process px
urb-delivers a message m. It follows that px has read m from an atomic register REG [j]. Due to the

atomicity property of REG [j], (1) the process pj has executed a REG [j].write(sentj) operation such

that sentj contains m, and (2) each REG [j].read() operation issued after this write operation obtains

a sequence that contains m. As any non-faulty process py reads the atomic registers infinitely often, it

will obtain infinitely often m from REG [j].read(), and will urb-deliver it, which concludes the proof

of the theorem. �Theorem 30

7.4.2 Atomic Registers Are Strictly Stronger than URB-broadcast

An immediate consequence of Theorem 29 is that, whatever the value of t ≥ n/2, Θ can be built in

CAMPn,t[Σ] and CAMPn,t[- FC; Σ], while a failure detector Σ can be built neither in CAMPn,t[Θ]
nor in CAMPn,t[- FC; Θ].

On the one hand, as we have seen, Σ is the weakest failure detector class that needs to be added

to CAMPn,t[∅] in order to build an atomic register whatever the value of t ∈ {1, ...n − 1}. On

another hand, Θ is the weakest failure detector class that allows the construction of the URB-broadcast

communication abstraction in this type of system.

This means that, when looking from a failure detector class point of view, as the atomic register

abstraction requires a stronger failure detector class than the one required by URB-broadcast, it is a

problem strictly stronger than the URB-broadcast abstraction. This is depicted in Fig. 7.6 where an

arrow from X to Y means that Y can be built on top of X .
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Construction of Fig. 7.5

Σ

Atomic register URB abstraction

Θ

Theorem 29

Figure 7.6: From the failure detector class Σ to the URB abstraction (1 ≤ t < n)

7.5 Summary

This chapter introduced the failure detector class Σ, and showed that Σ allows an atomic register to

be implemented in an asynchronous message-passing system prone to any number of process crashes.

It also proved that, when one wants to build a register this context enriched with the computability

power provided by an oracle giving information on failures, Σ is the weakest such oracle required.

The chapter has also shown that, from an information on failures point of view, the construction of

an atomic read/write register is a stronger problem than the implementation of the URB-broadcast

communication abstraction.
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7.7 Exercise and Problem

1. Prove that the algorithm described in Fig. 7.2 is correct.

2. Construction of an atomic register in a hybrid communication model.

7.7. Exercise and Problem
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Hybrid communication model Let us consider the following hybrid distributed computing

model CAMPn,t[∅], where the n processes are partitioned into m, 1 ≤ m ≤ n, non-empty

subsets P [1], . . . , P [m] called clusters (i.e., ∪1≤x≤mP [x] = Π and ∀x, y : (x �= y) ⇒ (P [x] ∩
P [y] = ∅)).
Inside each cluster x, 1 ≤ x ≤ m, the processes in P [x] share a common read/write memory

denoted MEMx . MEMx is composed of a set of at least one atomic SWMR (single-writer/multi-

reader) register per process pi belonging to P [x]. For notational convenience, we use an array

notation for every register of MEMx : if i ∈ P [x], MEM x[i] can only be written by pi and read

by all processes in P [x] (if i /∈ P [x], MEM x[i] is meaningless and pi cannot access MEM x).

Initially, each process knows the indexes of the processes that are in its partition. They do not

know the composition of the other clusters.

Two examples of partially shared memory are depicted in Fig. 7.7 where the communication

channels are not depicted. In both cases we have n = 7 and m = 3 but the partitions are

different.

p2 p3 p4 p5 p6 p7p1 p1 p2 p3 p4 p5 p6 p7

︸︷︷︸ ︸︷︷︸ P [3]P [2]P [1] ︸︷︷︸ P [2] P [3] ︸︷︷︸P [1]︸︷︷︸ ︸︷︷︸

MEM 1 MEM 3MEM 2 MEM 3MEM 2MEM 1

Figure 7.7: Two examples of the hybrid communication model

The Failure Detector Class MΣ This class of failure detectors consists of all the failure

detectors that satisfy the following properties where the quorum msigmai is the local output at

process pi and msigmaτi its value at time τ :

• Intersection. ∀ i, j ∈ Π, ∀ τ, τ ′ :
∃x, k, 	 : (x ∈ [1..m]) ∧ (k ∈ msigmaτi ) ∧ (	 ∈ msigmaτ

′

j ) ∧ (k, 	 ∈ P [x]).

• Liveness. ∃ τ : ∀ τ ′ ≥ τ : ∀ i ∈ Correct(F ) : msigmaτi ⊆ Correct(F ).

The liveness property is the same as the one of Σ. The intersection property is more general.

It states that any pair of quorums (whose values are taken at any times) is such that each one

contains a process and these two processes share the same common memory. This can be seen

as an “indirect” intersection: msigmai and msigmaj are not required to intersect “directly”

but must include processes that share the same memory.

What has to be done

• Implement an atomic SWMR read/write register in the previous hybrid communication

model, enriched with a failure detector of the class MΣ.

• Show that MΣ is the weakest failure detector class to build an atomic SWMR read/write

register in the previous hybrid communication model.

Solution in [234].
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