
Chapter 3

Reliable Broadcast in the Presence of

Process Crashes and Unreliable Channels

The previous chapter presented several constructions for the uniform reliable broadcast (URB) abstrac-

tion. These constructions considered the asynchronous underlying system model CAMP [∅] in which

processes may crash and channels are reliable. These constructions differ in the quality of service they

provide to the application processes, this quality being defined with respect to the order in which the

messages are delivered (namely, FIFO or CO order). This order restricts message asynchrony.

This chapter introduces constructions of URB-broadcast suited to asynchronous systems prone to

process crashes and unreliable channels, i.e., asynchronous system models weaker than CAMPn,t[∅].
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3.1 A System Model with Unreliable Channels

3.1.1 Fairness Notions for Channels

Restrict the type of failures Trivially, if a channel can lose all the messages it has to transmit from

a sender to a receiver, no communication abstraction with provable guarantees can be defined and

implemented. So, in order to be able to compute on top of unreliable channels, we need to restrict the

type of failures a channel is allowed to exhibit. This is exactly what is addressed by the concept of

channel fairness.

All the messages transmitted over a channel are protocol messages (remember that the transmission

of an application message gives rise to protocol messages that are sent at the underlying abstraction

layer). Several types of protocol messages can co-exist at this underlying layer, e.g., protocol messages

that carry application messages, and protocol messages that carry acknowledgments. In the following,

we consider that each protocol message has a type denoted μ. Moreover, when there is no ambiguity,

the word “message” is used as a shortcut for “protocol message”, and “μ-message” is used as a shortcut

for “protocol message of type μ”.

Fairness with respect to μ-messages Considering a uni-directional channel that allows a process pi
to send messages to a process pj , let us observe that, at the network level, process pi can send the same

message several times to pj (for example, message re-transmission is needed to overcome message

losses). This channel is fair with respect to the message type μ if it satisfies the three following

© Springer Nature Switzerland AG 2018
M. Raynal, Fault-Tolerant Message-Passing Distributed Systems, 
https://doi.org/10.1007/978-3-319-94141-7_3 

41

https://doi.org/10.1007/978-3-319-94141-7_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94141-7_3&domain=pdf


42 3.1. A System Model with Unreliable Channels

properties (all the messages that appear in these properties are messages carried by the channel from

pi to pj):

• μ-validity. If the process pj receives a μ-message (on this channel), then this message has been

previously sent by pi to pj .

• μ-integrity. If pj receives an infinite number of μ-messages from pi, then pi has sent an infinite

number of μ-messages to pj .

• μ-termination. If pi sends an infinite number of μ-messages to pj , and pj infinitely often exe-

cutes “receive () from pi”, it receives an infinite number of μ-messages from pi.

As they capture similar meanings, these properties have been given the same names as for URB-

broadcast introduced in the previous chapter. The validity property means that there is neither message

creation, nor message alteration. The integrity property states that, if a finite number of messages of

type μ are sent, the channel is not allowed to duplicate them an infinite number of times (it can

nevertheless duplicate them an unknown but finite number of times). Intuitively, this means that the

network performs only the re-transmissions issued by the sender.

Finally, the termination property states the condition under which the channel from pi to pj has to

eventually transmit messages of type μ, i.e., the condition under which a μ-message msg cannot be

lost. This is the liveness property associated with the channel. From an intuitive point of view, this

property states that if the sender sends “enough” μ-messages, some of these messages will be received.

In order to be as unrestrictive as possible, “enough” is formally stated as “an infinite number”. This is

much weaker than a specification such as “for every 10 consecutive sendings of μ-messages, at least

one message is received”, as this kind of specification would restrict unnecessarily the bad behavior

that a channel is allowed to exhibit.

3.1.2 Fair Channel (FC) and Fair Lossy Channel

Fair channel The notion of a “fair channel” encountered in the literature corresponds to the case

where (1) each protocol message msg defines a specific message type μ, and (2) the channel is fair

with respect to all the message types. Hence, the specification of a fair channel is defined by the

following properties:

• FC-validity. If pj receives a message msg from pi, then msg has been previously sent by pi to

pj .

• FC-integrity. For any message msg , if pj receives msg from pi an infinite number of times, then

pi has sent msg to pj an infinite number of times.

• FC-termination. For any message msg , if pi sends msg an infinite number of times to pj , and

pj executes “receive () from pi” infinitely often, it receives msg from pi an infinite number of

times.

As described by the FC-termination property, the only reception guarantee is that each message

msg that is sent infinitely often cannot be lost. This means that if a message msg is sent an arbitrary

but finite number of times, there is no guarantee on its reception. Let us observe that the requirement

“msg sent an infinite number of times” for a message to be received, does not prevent any number

of consecutive copies of msg from being lost, even an infinite number of copies from being lost (for

example, this is the case when all the even sendings of msg are lost, while all the odd sendings are

received).

Fair lossy channel The notion of a “fair lossy channel” encountered in the literature corresponds to

the case where all the protocol messages have the same message type. Hence, the specification of a

fair lossy channel is defined by the following properties.
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• FLL-validity. If pj receives a message from pi, this message has been previously sent by pi to

pj .

• FLL-integrity. If pj receives an infinite number of messages from pi, then pi has sent an infinite

number of messages to pj .

• FLL-termination. If pi sends an infinite number of messages to pj , and pj is non-faulty and

executes “receive () from pi” infinitely often, it receives an infinite number of messages from

pi.

While the FLL-termination property states that the channel transmits messages, it gives no information

on which messages are received.

Comparing fair channel and fair lossy channel As we are about to see, given an infinite sequence

of protocol messages, the notions of a fair channel and a fair lossy channel are different, none of them

includes the other one.

To this end, let us consider that the given infinite sequence of protocol messages is the infinite

sequence of the consecutive positive integers 1, 2, etc. Hence, no two messages sent by pi are the

same. If the channel from pi to pj is fair lossy, the termination property guarantees that pj will receive

an infinite sequence of integers (but it is possible that an infinite number of different integers will

never be received). Whereas if the channel is fair, it is possible that no integer is ever received (this is

because no integer is sent an infinite number of times).

Let us now consider that the sequence of protocol messages that is sent by pi is the alternating

sequence of 1, 2, 1, 2, 1, etc. If the channel from pi to pj is fair, both 1 and 2 are received infinitely

often (this is because both integers are sent an infinite number of times). Differently, if the channel is

fair lossy, it is possible that pj receives the integer 1 an infinite number of times and never receives the

integer 2 (or receives 2 and never receives 1).

This means that when one has to prove a construction based on unreliable channels, one has to be

very careful regarding the type of unreliable channels, namely, fair or fair lossy.

From fair lossy channel to a fair channel Given an infinite sequence of protocol messages msg1,

msg2, msg3, etc., which pi wants to send to pj , it is possible to construct new protocol messages (the

ones that are really sent over the channel) such that each message msgx is eventually received by pj
(if it is non-faulty) under the assumption that the channel is fair lossy.

Let msg1 be the first protocol message that pi wants to send to pj . It actually sends instead the

“real” protocol message 〈msg1〉. When it wants to sends the second protocol message msg2, it actu-

ally sends the “real” protocol message made up of the sequence 〈msg1,msg2〉. Similarly, pi sends the

sequence 〈msg1,msg2,msg3〉 when it wants to send its third protocol message msg3, etc. Hence, the

sequence of protocol messages successively sent by pi to pj is the sequence 〈msg1〉, 〈msg1,msg2〉,
〈msg1,msg2,msg3〉, etc. It follows that, in the infinite sequence of “real” protocol messages sent by

pi, all “real” protocol messages sent by pi are different (each being a sequence whose prefix is the

sequence that constitutes the previous message). If pj is non-faulty and the channel is fair lossy, this

simple construction ensures that every msgx is received infinitely often by pj . Hence, considering the

infinite sequence of protocol messages msg1, msg2, etc., which pi wants to send to pj , this construc-

tion simulates a fair channel on top of a fair lossy channel. The price of this construction is the size of

the “fair lossy” protocol messages that increases without bound.

3.1.3 Reliable Channel in the Presence of Process Crashes

An abstraction for the application layer A reliable channel is a communication abstraction that

neither creates, nor duplicates, nor loses messages. Its definition is at the same abstraction level as
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the definition of URB-broadcast. It is an abstraction offered to the application layer, and consequently

considers application messages, each of them being unique.

The formal definition of a reliable channel from pi to pj is given by the following three properties:

• RC-validity. If pj receives a message m from pi, then m was previously sent by pi to pj .

• RC-integrity. Process pj receives a message m at most once.

• RC-termination. If pi completes the sending of k messages to pj , then, if pj is non-faulty and

executes k times “receive () from pi”, pj receives k messages from pi.

This definition captures the fact that each message m sent by pi to pj is received exactly once by

pj . The words “pi completes the sending of m” mean that, if pi does not crash before returning from

the invocation of the send operation, the “underlying network” (i.e., the implementation of the reliable

channel abstraction) guarantees that m will arrive at pj . Whereas if pi crashes during the sending of

its kth message to pj , pj eventually receives the previous (k − 1) messages sent by pi, while there is

no guarantee on the reception of the kth message sent by pi to pj (this message may or not be received

by pj).

Remark Let us notice that the termination property considers that pj is non-faulty. This is because,

if pj crashes, due to process and message asynchrony, it is not possible to state a property on which

messages must be received by pj .

Let us also notice that it is not possible to conclude from the previous specification that a reliable

channel ensures that the messages are received in their sending order (FIFO reception order). This is

because, once messages have been given to the “underlying network”, nothing prevents the network

from reordering messages sent by pi.

Reliable channel vs uniform reliable broadcast As we have seen in the previous chapter, URB-

broadcast is a one-shot problem defined with respect to the broadcast of a single application message.

This means that the URB-broadcast of a message m1 and the URB-broadcast of a message m2 consti-

tute two distinct instances of the URB problem.

Whereas the reliable channel abstraction is not a one-shot problem. Its specification involves

all the messages sent by a process pi to a process pj . The difference in the specification of both

communication abstractions appears clearly in their termination properties.

3.1.4 System Model

In the rest of this chapter we consider an asynchronous system made up of n processes prone to process

crashes and where each pair of processes is connected by two unreliable but fair channels (one in each

direction). This system model is denoted CAMPn,t[- FC], namely it is CAMPn,t[∅], weakened by

- FC (the fair channel assumption).

3.2 URB-broadcast in CAMPn,t[- FC]

This section first presents an URB-broadcast construction suited to the system model CAMPn,t[- FC]
constrained by the condition t < n/2, i.e., any execution of an algorithm in this model assumes

that there is a majority of processes – not known in advance – which never crash. This constrained

model is consequently denoted CAMPn,t[- FC, t < n/2]. It is then shown that this additional model

assumption is a necessary requirement for the construction when processes are not provided with

information on the actual failure pattern.
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3.2.1 URB-broadcast in CAMPn,t[- FC, t < n/2]

Principle Designing an algorithm that implements URB-broadcast in CAMPn,t[- FC, t < n/2] is

pretty simple. The construction relies on two simple basic techniques:

• First, use the classical re-transmission technique in order to build a reliable channel on top of a

fair channel.

• Second, locally urb-deliver an application message m to the upper application layer only when

this message has been received by at least one non-faulty process. As there are at least (n −
t) non-faulty processes and n − t > t (model assumption), this means that, without risking

remaining blocked forever, a process pi may urb-deliver m as soon as it knows that at least

(t+ 1) processes have received a copy of m.

As a message that is urb-delivered by a process is in the hands of at least one correct process, that

correct process can transmit it safely to the other processes (by repeated sendings) thanks to the fair

channels that connect it to the other processes.

The construction The construction is described in Figure 3.1. When a process pi wants to urb-

broadcast a message m, it sends the protocol message MSG (m) to itself (to simplify and without loss

of generality we assume there is reliable channel from a process to itself).

The central data structure used in the construction is an array of sets, denoted rec byi, where the

set rec byi[m] is associated with the application message m. This set contains the identities of all the

processes that, to pi’s knowledge, received a copy of MSG (m).

operation URB broadcast (m) is send MSG (m) to pi.

when MSG (m) is received from pk do

(1) if (first reception of m)

(2) then allocate rec byi[m]; rec byi[m] ← {i, k};

(3) activate task Diffusei(m)
(4) else rec byi[m] ← rec byi[m] ∪ {k}
(5) end if.

when (|rec byi[m]| ≥ t+ 1) ∧ (pi has not yet urb-delivered m) do

(6) URB deliver (m).

task Diffusei(m) is

(7) repeat forever

(8) for each j ∈ {1, . . . , n} do send MSG (m) to pj end for

(9) end repeat.

Figure 3.1: Uniform reliable broadcast in CAMPn,t[- FC, t < n/2] (code for pi)

When it receives MSG (m) for the first time (line 1), pi creates the set rec byi[m] and updates

it to {i, k} where pk is the process that sent MSG (m) (line 2). Then pi activates a task, denoted

Diffusei(m) (line 3). If it is not the first time that MSG (m) has been received, pi only adds k to

rec byi[m] (line 4). Diffusei(m) is the local task that is in charge of re-transmitting the protocol

message MSG (m) to the other processes in order to ensure the eventual URB-delivery of m, namely

pi repeatedly forwards the protocol message MSG (m) to each other process pj .

Finally, when it has received MSG (m) from at least one non-faulty process (this is operationally

controlled by the predicate |rec byi[m]| ≥ t+ 1), pi urb-delivers m, if not yet done (line 6).

Let us remember that, as in the previous chapter, the processing associated with the reception of

a protocol message is atomic, which means here that the processing of any two messages MSG (m1)
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and MSG (m2) are never interleaved, they are executed one after the other. This atomicity assumption,

which is on any protocol message reception (i.e., whatever its MSG or ACK type) is valid through-

out this chapter (ACK protocol messages will be used in Section 3.5). However, several local tasks

Diffusei(m1), Diffusei(m2), etc., are allowed to run concurrently.

Remark acknowledgment messages It is important to note that the task Diffusei(m) forever sends

protocol messages (and consequently never terminates). The use of acknowledgments (which would

be used to fill in the set rec byi[m] to prevent useless re-transmissions) cannot prevent this infinite

sending of protocol messages, as shown by the following scenario. Let pj be a process that has crashed

before a process pi issues URB broadcast (m). In this case pj will never acknowledge MSG (m),
and consequently pi will forever execute MSG (m) to pj . To prevent these infinite re-transmissions,

processes must be provided with appropriate information on failures. This is the topic addressed in

Section 3.5 of this chapter.

Theorem 8. The algorithm described in Fig. 3.1 implements the URB-broadcast abstraction in the

system model CAMPn,t[- FC, t < n/2].

Proof (The proof of this construction is a simplified version of the proof of the more general con-

struction given in Section 3.5.) The validity property (neither creation nor alteration of application

messages) and the integrity property (an application message is received at most once) of the URB

abstraction follow directly from the text of the construction. So, we focus here on the proof of the

termination property of the URB-broadcast abstraction. There are two cases:

• Let us first consider a non-faulty process pi that urb-broadcasts a message m. We have to show

that each non-faulty process urb-delivers m. As pi is non-faulty, it activates the task Diffusei(m)
and forever sends MSG (m) to every other process pj . As the channels are fair, it follows that

each non-faulty process px eventually receives MSG (m). The first time this occurs, px activates

the task Diffusex(m). Hence, each non-faulty process infinitely often sends MSG (m) to every

process. Due to termination property of the fair channels, and the assumption that there is a

majority of non-faulty processes, it follows that the set rec byi[m] eventually contains (t + 1)
process identities (lines 2 and 4). Hence, the URB-delivery condition of m eventually becomes

true at every non-faulty process, which proves the theorem for the case of a non-faulty process

that urb-broadcasts an application message.

• We have now to prove the second case of the URB-broadcast termination property, namely, if a

(non-faulty or faulty) process px urb-delivers a message m, then every non-faulty process urb-

delivers m. If px urb-delivers a message m, we have |rec byx[m]| ≥ t+ 1, which means that at

least one non-faulty process pi received the protocol message MSG (m). When this non-faulty

process pi received MSG (m) for the first time, it activated the task Diffusei(m). The rest of the

proof is then the same as the previous case.
�Theorem 8

3.2.2 An Impossibility Result

This section shows that the assumption t < n/2 is a necessary requirement on the maximal number

of process crashes when one wants to construct URB-broadcast in the system model CAMPn,t[- FC].
The proof of this impossibility is based on an “indistinguishability” argument.

Theorem 9. There is no algorithm implementing URB-broadcast in CAMPn,t[- FC, t ≥ n/2].

Proof The proof is by contradiction. Let us assume that there is an algorithm A that constructs the

URB-broadcast abstraction in CAMPn,t[- FC, t ≥ n/2]. Given t ≥ n/2, let us partition the processes

into two subsets P1 and P2 (i.e., P1∩P2 = ∅ and P1∪P2 = {p1, . . . , pn}) such that |P1| = �n/2�
and |P2| = �n/2�. Let us consider the following executions E1 and E2:
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• Execution E1. In this execution, the processes of P2 crash initially, and the processes in P1 are

non-faulty. Moreover, a process px ∈ P1 issues URB broadcast (m). Due to the very existence

of the algorithm A, every process of P1 urb-delivers m.

• Execution E2. In this execution, the processes of P2 are non-faulty, and no process of P2 ever

issues URB broadcast (). The processes of P1 behave as in E1: px issues URB broadcast (m),
and they all urb-deliver m. Moreover, after they urb-deliver m, each process of P1 crashes, and

all the protocol messages ever sent by a process of P1 are lost (and consequently are never

received by the processes of P2). It is easy to see that this is possible as no process of P1 can

distinguish this run from E1.

Let us observe that the fact that no message sent by a process of P1 is ever received by any

process of P2 is possible because the termination property associated with the fair channels

that connect the processes of P1 to the processes of P2 requires that the sender of a protocol

message must be non-faulty in order to have the certainty that this message is ever received.

(There is no reception guarantee for a message that is sent an arbitrary, but finite, number of

times.)

As, in the execution E2, no process of P2 ever receives a message from a process of P1, none

of these processes can urb-deliver m, which completes the proof of the theorem.
�Theorem 9

Impossibility vs uniformity requirement Let us observe that the previous impossibility result is

due to the uniformity requirement stated in the Termination property of the URB abstraction. More

precisely, this property states that, if a process pi urb-delivers a message m, then every non-faulty

process has to urb-deliver m. The fact that the process pi can be a faulty or a non-faulty process

defines the uniformity requirement.

If this property is weakened to “if a non-faulty process pi urb-delivers a message m, then all the

non-faulty processes urb-deliver m”, then we have the simple (non-uniform) reliable broadcast, and

the impossibility result no longer holds. When we look at the construction in Fig. 3.1, the predicate

|rec byi[m]| ≥ t+ 1 is used to ensure the uniformity requirement. It ensures that, when a message is

urb-delivered, at least one non-faulty process has a copy of it.

3.3 Failure Detectors: an Approach to Circumvent Impossibilities

3.3.1 The Concept of a Failure Detector

The concept of a failure detector is one of the main approaches that have been proposed to circumvent

impossibility results in fault-tolerant asynchronous distributed computing models. It is due to T. Chan-

dra and S. Toueg (1996). From an operational point of view, a failure detector can be seen as an oracle

made up of several modules, each associated with a process. The module attached to process pi pro-

vides it with hints concerning which processes have failed. Failure detectors are divided into classes

based on the particular type of information they provide on failures. Different problems may require

different classes of failure detectors in order to be solved in an otherwise fault-prone asynchronous

distributed system model.

There are two main characteristics of the failure detector approach, one associated with its software

engineering feature, and the other associated with its computability dimension.

The software engineering dimension of failure detectors A failure detector class is defined by a

set of abstract properties. This way, a failure detector-based distributed algorithm relies only on the

properties that define the failure detector class, regardless of the way they are implemented in a given
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system (in the following we sometimes say “failure detector FD” for “any failure detector of the class

FD”). This software engineering dimension of the failure detector approach favors algorithm design,

algorithm proof, modularity, and portability.

Similarly to a stack and a queue that are defined by their specification, and can have many different

implementations, a failure detector of a given class can have many different implementations each

taking into account appropriate features of a particular underlying system (such as its topology, local

clocks, distribution of message delays, timers, etc.). Due to the fact that a failure detector is defined

by abstract properties and not in terms of a particular implementation, an algorithm that uses it does

not need to be rewritten when the underlying system is modified.

It is important to notice that, in order for a failure detector to be implementable, the underlying

system has to satisfy additional behavioral properties (which in some sense restrict its asynchrony).

(If not, the impossibility result – that the considered failure detector allows us to circumvent – would

no longer hold.)

Let A be an abstraction (object, problem) that can be solved in a system model enriched with a

failure detector FD. The failure detector concept favors separation of concerns as follows:

• Design and prove correct a distributed algorithm that implements (solves) A in a system model

enriched with FD.

• Independently from the previous item, investigate the system behavioral properties that have to

be satisfied for FD to be implementable, and provide an implementation of FD for these systems.

The computability dimension of failure detectors Given a problem Pb that cannot be solved in an

asynchronous system prone to failures (e.g., build URB-broadcast in CAMPn,t[- FC, t ≥ n/2]), the

failure detector approach allows us to investigate and state the minimal assumptions on failures the

processes have to be provided with, in order for the problem Pb to be solved. This is the computability

dimension of the failure detector approach.

An interesting side of this computability dimension lies in the ranking of problems according to

the weakest failure detectors that these problems require to be solved. (The notion of “weakest” failure

detector for the register problem will be discussed later in the book, e.g., in Chap. 7 and Chap. 17.) This

provides us with a failure detector-based method to establish a hierarchy among distributed computing

problems.

3.3.2 Formal Definitions

Failure pattern A failure pattern defines a possible set of failures, along with their occurrence times,

that can occur during an execution. Formally, a failure pattern is a function F : IN → 2Π, where

IN is the set of natural numbers (time domain), and 2Π is the power-set of Π (the set of all sets of

process identities). The time domain has to be understood as the time of an external observer, which

is inaccessible to the processes.

Considering the models with process crash failures (e.g., CAMPn,t[∅]), F (τ) denotes the set of

processes that have crashed up to time τ . As a crashed process does not recover, we have F (τ) ⊆
F (τ + 1). Let Faulty(F ) be a set of processes that crash in an execution with failure pattern F .

Let τmax denote the end of that execution. We then have Faulty(F ) = F (τmax). As τmax is not

known and depends on the execution, and we want to be as general as possible (and not tied to a

time-specific class of executions), we (conceptually) consider that an execution never ends, i.e., we

consider that τmax = +∞. We have accordingly Faulty(F ) = ∪1≤τ<+∞F (τ) = limτ→+∞ F (τ).
Let Non-faulty(F ) = Π − Faulty(F ) (the set of processes that do not crash in F ). Correct(F ) is

used as a synonym of Non-faulty(F ).
It is important to notice that the notions of faulty process and correct process are defined with

respect to a failure pattern, i.e., to the failure pattern that occurs in a given execution. Different

executions might have different failure patterns.
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Failure detector history with range R A failure detector history with range R describes the behav-

ior of a failure detector during an execution. R defines the type of information on failures provided to

the processes. Here we consider failure detectors whose range is the set of process identities, or arrays

of natural integers, whose dimension n is the number of processes.

A failure detector history is a function H : Π×IN → R, where H(pi, τ) is the value of the failure

detector module of process pi at time τ . This means that each process pi is provided with a read-only

local variable that contains the current value of H(pi, τ).

Failure detector class FD with range R A failure detector class FD with range R is a function that

maps each failure pattern F to a set of failure detector histories with range R. This means that FD(F )
represents the whole set of possible behaviors that the failure detector FD can exhibit when the actual

failure pattern is F .

Environment It is important to notice that the output of a failure detector does not depend on the

computation produced by an algorithm; it depends only on the actual failure pattern, and is a feature

of what is called the environment. More generally, the notion of an environment captures everything

that is not under the control of the algorithm (failures, speed of processes, message transit times,

non-determinism, etc.).

Moreover, a given failure detector might associate several histories with each failure pattern. Each

history represents a possible sequence of outputs for the same failure pattern; this feature captures the

inherent non-determinism of a failure detector.

Remark The failure detector classes presented in this book do not appear in their historical order (the

order in which they have been chronologically introduced in research articles). They are introduced

according to the order in which this book presents the problems that they allow us to solve.

3.4 URB-broadcast in CAMPn,t[- FC] Enriched with a Failure Detector

The previous impossibility result (Theorem 9) states that there is no algorithm implementing the URB-

broadcast abstraction in CAMPn,t[- FC, t ≥ n/2]. Whereas if we know in advance that there is a

predefined process px that never crashes, URB-broadcast can be solved (the other processes can use

it as centralized server). Hence the following natural question: Which information on failures do the

processes have to be provided with in order for the URB abstraction to be built whatever the value

of t?
This section first presents the failure detector class, denoted Θ (the weakest failure detector class

that answers the previous question), and then an algorithm building URB-broadcast in the system

model CAMPn,t[- FC, Θ].

3.4.1 Definition of the Failure Detector Class Θ

The failure detector class Θ was introduced by M. Aguilera, S. Toueg, and B. Deianov (1999). A

failure detector of this class provides each process pi with a read-only local variable, a set denoted

trustedi. Let trustedτi denote the value of trustedi at time τ . Remember that this notion of time is

with respect to an external observer: no process has access to it. Let us also remember that Correct(F )
denotes the set of processes that are non-faulty in that run. Given a run with the failure pattern F , Θ
is defined by the following properties (using the formal notation introduced in Section 3.3.2, we have

trustedτi = H(i, τ)):

• Accuracy. ∀i ∈ Π : ∀τ ∈IN:
(
trustedτi ∩ Correct(F )

)
�= ∅.

• Liveness. ∃τ ∈IN: ∀τ ′ ≥ τ : ∀i ∈ Correct(F ) : trustedτ
′

i ⊆ Correct(F ).
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The accuracy property is a perpetual property stating that, at any time, any set trustedi contains

at least one non-faulty process. Let us notice that this process is not required to always be the same,

it can change with time. The liveness property states that, after some time, the set trustedi of any

non-faulty process pi contains only non-faulty processes.

3.4.2 Solving URB-broadcast in CAMPn,t[- FC, Θ]

Constructing an URB abstraction in the system model CAMPn,t[- FC] enriched with a failure detec-

tor of the class Θ is particularly easy. The only modification of the construction described in Fig. 3.1

consists in replacing the urb-delivery predicate (just before line 6), namely, replacing

(|rec byi[m]| ≥ t+ 1) ∧ (pi has not yet urb-delivered m),

with

(trustedi ⊆ rec byi[m]) ∧ (pi has not yet urb-delivered m).

The accuracy property of Θ guarantees that, when pi urb-delivers an application message m, at

least one non-faulty process has a copy of m. As we have seen in the construction of Fig. 3.1, this

guarantees that the application message m that is urb-delivered can no longer be lost. The liveness

property of Θ guarantees that eventually m can be locally urb-delivered (let us observe that, if a faulty

process could remain forever in trustedi, it could prevent the predicate trustedi ⊆ rec byi[m]) from

becoming true).

3.4.3 Building a Failure Detector Θ in CAMPn,t[- FC, t < n/2]

As urb-broadcast can be implemented in CAMPn,t[- FC, t < n/2], and in the more general system

model CAMPn,t[- FC, Θ] (i.e., whatever the value of t), it follows that Θ can be implemented in

CAMPn,t[- FC, t < n/2].
The corresponding construction is described in Fig. 3.2. Each process pi manages a queue queuei,

which initially contains all the processes in any order. Process pi repeatedly broadcasts the message

ALIVE(), and, when it receives a message ALIVE() from pk, it moves pk at the head of the queue, and

sets trustedi to the �n+1
2 � processes at the head of the queue.

initialization: trustedi ← any set of �n+1

2

 processes.

background task: repeat forever broadcast ALIVE() end repeat.

when ALIVE () is received from pk do

(1) suppress pk from queuei; add pk at the head of queuei;
(2) trustedi ← the �n+1

2

 processes at the head of queuei.

Figure 3.2: Building Θ in CAMPn,t[- FC, t < n/2] (code for pi)

Theorem 10. The algorithm described in Fig. 3.2 implements a failure detector Θ in the system model

CAMPn,t[- FC, t < n/2].

Proof The accuracy property follows from the fact that trustedi always contains a majority of pro-

cesses, and, as t < n/2, there is always a correct process in the first �n+1
2 � processes at the head of

any queue queuei.
The liveness property follows from the following observation. After some time the faulty processes

no longer send messages ALIVE(), while, as the channels are fair, each correct process receives an

infinite number of messages from each correct process. It follows that, after some finite time, each

correct process repeatedly appears at the head of any queue, and faulty processes are shifted to the
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end of the queue. As there is a majority of correct processes, there is a finite time after which the

first �n+1
2 � processes at the head of the queue queuei of any correct process pi are correct processes.

�Theorem 10

3.4.4 The Fundamental Added Value Supplied by a Failure Detector

When considering a failure detector, here Θ, the fundamental added value with respect to the assump-

tion t < n/2 lies in the fact that a failure detector allows us to know which is the weakest information

on failures the processes have to be provided with for a problem to be solved. The condition t < n/2 is

a model assumption, it is not the weakest information on failures that allows the construction of URB-

broadcast in an asynchronous system whose communication channels are fair. Even when t ≥ n/2,

the “oracle” Θ allows URB-broadcast to be built.

3.5 Quiescent Uniform Reliable Broadcast

After introducing the quiescence property, this section introduces three failure detector classes that

can be used to obtain quiescent URB-broadcast algorithms. The first one is the class of perfect failure

detectors (denoted P ), the second one the class of eventually perfect failure detectors (denoted �P ),

and the third one the class of heartbeat failure detectors (denoted HB ).

It is shown that P ensures more than the quiescence property (namely, it also ensures termina-

tion which means that there is a time after which a process knows it will never have to send more

messages). The class �P is the weakest class of failure detectors (with bounded outputs) that allows

for the construction of quiescent uniform reliable broadcast. Unfortunately, no failure detector of the

classes P and �P can be implemented in a pure asynchronous system. Finally, the class HB allows

quiescent uniform reliable broadcast to be implemented. The failure detectors of this class have un-

bounded outputs, but can be implemented in pure asynchronous systems (their implementations are

not quiescent).

3.5.1 The Quiescence Property

Prevent an infinity of protocol messages In the previous URB-broadcast constructions, a correct

process is required to send protocol messages forever. This is highly undesirable. The use of acknowl-

edgment messages can easily solve this problem in asynchronous systems where every channel is fair

and no process ever crashes. Each time a process pk receives a protocol message MSG (m) from a

process pi, it sends back ACK (m) to pi, and when pi receives this acknowledgment message it adds

k to rec byi[m]. Moreover, a process pi keeps on sending MSG (m) only to the processes that are

not in rec byi[m]. Due to the fairness of the channels and the fact that no process crashes, eventually

rec byi[m] contains all the process identities, and consequently pi will stop sending MSG (m).

Unfortunately (as indicated in Section 3.2.1), this classic “re-transmission + acknowledgment”

technique does not work when processes may crash. This is due to the trivial observation that a crashed

process cannot send acknowledgments, and (due to asynchrony) a process pi cannot distinguish a

crashed process from a very slow process or a process with which the communication is very slow.

The previous problem is known as quiescence problem, and solving it requires appropriate failure

detectors.

Quiescence property: definition An algorithm that implements a communication abstraction is

quiescent (or “satisfies the quiescence property”) if each application message it has to transfer to its

destination processes gives rise to a finite number of protocol messages.
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It is important to see that the quiescence property is not a property of a communication abstraction

(it does not belong to its definition); it is a property of its construction (the algorithm that implements

it). Hence, among all the constructions that correctly implement a communication abstraction, some

are quiescent while others are not.

3.5.2 Quiescent URB-broadcast Based on a Perfect Failure Detector

This section introduces the class of perfect failure detectors, denoted P , and shows how it can be used

to design a quiescent URB construction.

The class P of perfect failure detectors This failure detector class, introduced by T. Chandra and

S. Toueg (1996), provides each process pi with a local variable suspectedi, which is a set that pi can

only read. The range of this failure detector class is the set of process identities. Intuitively, at any

time, suspectedi contains the identities of the processes that pi considers to have crashed.

More formally (as defined in Section 3.3.2), a failure detector of the class P satisfies the following

properties. Let us remember that, given a failure pattern F , F (τ) denotes the set of processes that

have crashed at time τ , Correct(F ) the set of processes that are non-faulty in the failure pattern F and

Faulty(F ) the set of processes that are faulty in F . Observe that Correct(F ) and Faulty(F ) define a

partition of Π = {1, . . . , n}. Moreover, let Alive(τ) = Π \ F (τ) (the set of processes not crashed at

time τ ). Finally, suspectedτi denotes the value of suspectedi at time τ .

• Completeness. ∃τ ∈ IN: ∀ τ ′ ≥ τ : ∀ i ∈ Correct(F ), ∀ j ∈ Faulty(F ): j ∈ suspectedτ
′

i .

• Strong accuracy. ∀ τ ∈ IN: ∀ i, j ∈ Alive(τ): j /∈ suspectedτi .

The completeness property is an eventual property that states that there is a finite but unknown

time (τ ) after which any faulty process is definitely suspected by any non-faulty process. The strong

accuracy property is a perpetual property that states that no process is suspected before it crashes.

It is trivial to implement a failure detector satisfying either the completeness or the strong accu-

racy property. Defining permanently suspectedi = {1, . . . , n} satisfies completeness, while always

defining suspectedi = ∅ satisfies strong accuracy. The fact that, due to the asynchrony of processes

and messages, a process cannot distinguish if another process has crashed or is very slow, makes it

impossible to implement a failure detector of the class P without enriching the underlying unreliable

asynchronous system with synchrony-related assumptions (this issue will be addressed in Chap. 18).

P with respect to Θ A failure detector of the class Θ can easily be built in CAMPn,t[P ] (system

model CAMPn,t[∅] enriched with a perfect failure detector P ). This can be done by defining trustedi
as being always equal to the current value of {1, . . . , n} \ suspectedi.

Whereas a failure detector of the class P cannot be built in CAMPn,t[Θ], from which it follows

that P is a failure detector class strictly stronger than Θ. This means that CAMPn,t[Θ, P ] is not

computationally stronger than CAMPn,t[P ]. Nevertheless, even if Θ can be built in CAMPn,t[P ]
we still use the model notation CAMPn,t[Θ, P ] which provides us with Θ for free. This favors an

incremental design (on top of the algorithm described in Fig. 3.1), whose modularity (separation of

concerns) facilitates the understanding and the proof.

A quiescent URB construction in CAMPn,t[Θ, P ] In this model, each process pi has read-only

access to both the failure detector-provided local variables: trustedi and suspectedi.

• As we have already seen, Θ is used to ensure the second part of the termination property,

namely, if a process urb-delivers an application message m, any non-faulty process urb-delivers

it. Hence, the “uniformity” of the reliable broadcast is obtained thanks to Θ.

• P is used to obtain the quiescence property. In later sections, P will be replaced by a weaker

failure detector class.
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operation URB broadcast (m) is send MSG (m) to pi.

when MSG (m) is received from pk do

(1) if (first reception of m)

(2) then allocate rec byi[m]; rec byi[m] ← {i, k};

(3) activate task Diffusei(m)
(4) else rec byi[m] ← rec byi[m] ∪ {k}
(5) end if;

(6) send ACK (m) to pk.

when ACK (m) is received from pk do

(7) rec byi[m] ← rec byi[m] ∪ {k}.

when (trustedi ⊆ rec byi[m]) ∧ (pi has not yet urb-delivered m) do

(8) URB deliver (m).

task Diffusei(m) is

(9) repeat

(10) for each j ∈ {1, . . . , n} \ rec byi[m] do

(11) if (j /∈ suspectedi) then send MSG (m) to pj end if

(12) end for

(13) until (rec byi[m] ∪ suspectedi) = {1, . . . , n} end repeat.

Figure 3.3: Quiescent uniform reliable broadcast in CAMPn,t[- FC, Θ, P ] (code for pi)

The quiescent URB construction for CAMPn,t[Θ, P ] is described in Fig. 3.3. It is the same as

the one described in Fig. 3.1 (where the predicate |rec byi[m]| ≥ t + 1 is replaced by trustedi ⊆
rec byi[m] to benefit from Θ) enriched with the following additional statements:

• Each time a process pi receives a protocol message MSG (m), it systematically sends back to its

sender an acknowledgment message denoted ACK (m) (line 6). Moreover, when a process pi
receives ACK (m) from a process pk, it knows that pk has a copy of the application message m
and it consequently adds k to rec byi[m] (line 7). (Let us observe that this would be sufficient

to obtain a quiescent URB construction if no process ever crashes.)

• In order to prevent a process pi from forever sending protocol messages to a crashed process pj ,
the task Diffusei(m) is appropriately modified. A process pi repeatedly sends the protocol mes-

sage MSG (m) to a process pj only if j /∈ (rec byi[m] ∪ suspectedi) (lines 10-11). Due to the

completeness property of the failure detector class P , pj will eventually appear in suspectedi if

it crashes. Moreover, due to the strong accuracy property of the failure detector class P , pj will

not appear in suspectedi before pj crashes (if it ever crashes).

The proof that this algorithm is a quiescent construction of the URB abstraction is similar to the

proof (given below) of the construction shown in Fig. 3.4 for the system model CAMPn,t[- FC, Θ,HB ].
It is consequently left to the reader.

Terminating construction Let us observe that the construction in Fig. 3.3 is not only quiescent but

also terminating. Termination is a stronger property than quiescence.

More precisely, for each application message m, the task Diffusei(m) not only stops sending

messages, but eventually terminates. This means that there is a finite time after which the predicate

(rec byi[m]∪suspectedi) = {1, . . . , n}, which controls the exit of the repeat loop, becomes satisfied.

When this occurs, the task Diffusei(m) no longer has to send protocol messages and can consequently

terminate.

This is due to the properties of the failure detector class P , from which we can conclude that

(1) the predicate rec byi[m] ∪ suspectedi = {1, . . . , n} eventually becomes true, and (2) when the
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set suspectedi becomes true it contains only crashed processes (no non-faulty process is mistakenly

considered as crashed by the failure detector).

As we are about to see below, the termination property can no longer be guaranteed when a failure

detector of the class �P or HB (defined below) is used instead of a failure detector of the class P .

The class �P of eventually perfect failure detectors Like the class P , the class of eventually

perfect failure detectors, denoted �P , was introduced by T. Chandra and S. Toueg (1996). It provides

each process pi with a set suspectedi that satisfies the following property: the sets suspectedi can

arbitrarily output values during a finite but unknown period of time, after which their outputs are the

same as the ones of a perfect failure detector. More formally, �P includes all the failure detectors that

satisfy the following properties:

• Completeness. ∃ τ ∈ IN: ∀ τ ′ ≥ τ : ∀ i ∈ Correct(F ), ∀ j ∈ Faulty(F ): j ∈ suspectedτ
′

i .

• Eventual strong accuracy. ∃ τ ∈ IN: ∀ τ ′ ≥ τ : ∀ i, j ∈ Alive(τ ′): j /∈ suspectedτ
′

i .

The completeness property is the same as for P : every process that crashes is eventually suspected

by every non-faulty process. The accuracy property is weaker than the accuracy property of P . It

requires only that there is a time after which no correct process is suspected. Hence, the set suspectedi
of a non-faulty process eventually contains all the crashed processes (completeness), and only them

(eventual strong accuracy).

As we can see, both properties are eventual properties. There is a finite anarchy period during

which the values read from the sets {suspectedi}1≤i≤n can be arbitrary (e.g., a non-faulty process

can be mistakenly suspected, in a permanent or intermittent manner, during that arbitrarily long period

of time). The class P is strictly stronger than the class �P . It is easy to see that the classes �P and

Θ cannot be compared (see Exercise 3 in Section 3.8).

�P -based quiescent (but not terminating) URB A quiescent URB construction that works in the

model CAMPn,t[- FC, Θ,�P ] is obtained by replacing the predicate that controls the termination of

the task Diffusei(m) (line 13 in Fig. 3.3), by the following weaker predicate rec byi[m] = {1, . . . , n}.

This modification is due to the fact that a set suspectedi no longer permanently guarantees that all the

processes it contains have crashed. As previously mentioned, during a finite but unknown anarchy

period, these sets can contain arbitrary values. But, interestingly, despite the possible bad behavior

of the sets suspectedi, the test j /∈ suspectedi (that controls the sending of a protocol message to

pj in the task Diffuse(m)) is still meaningful. This is due to the fact that we know that, after some

finite time, suspectedi will contain only crashed processes and will eventually contain all the crashed

processes. It follows from the previous observation that the construction for CAMPn,t[- FC, Θ,�P ]
is quiescent but not necessarily terminating (according to the failure pattern, it is possible that the

termination predicate rec byi[m] = {1, . . . , n} is never satisfied).

3.5.3 The Class HB of Heartbeat Failure Detectors

The weakest class of failure detectors for quiescent communication The range of the failure

detector classes P and �P is 2Π (the value of suspectedi is a set of process identities); so, their

outputs are bounded. It has been shown that �P is the weakest class of failure detectors with bounded

outputs that can be used to implement quiescent reliable communication in asynchronous systems

prone to process crashes and where the channels are unreliable but fair. Unfortunately, it is impossible

to implement a failure detector of the class �P in CAMPn,t[∅] and consequently it is also impossible

in CAMPn,t[- FC] (such an implementation would need additional synchrony assumptions).
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How can uniformity and quiescence be obtained These properties can be obtained in CAMPn,t[∅]
as soon as this system is enriched with:

1. Uniformity. This part of the termination property states that if a message is urb-delivered by a

(correct or faulty) process, it will be urb-delivered by any correct process. This can be obtained

thanks to assumption t < n/2 or a failure detector of the class Θ.

2. Quiescence. This property can be obtained by the use of a failure detector of the class denoted

HB (defined below), which has a simple implementation with unbounded outputs.

The class HB of heartbeat failure detectors This class of failure detectors was introduced by M.

Aguilera, W. Chen, and S. Toueg (1999). Formally, a failure detector of the class HB provides each

process with a read-only array HB i[1..n] (heartbeat), whose entries contain natural integers, defined

by the following two properties (where HBτ
i [j] is the value of HB i[j] at time τ ):

• Completeness. ∀ i ∈ Correct(F ), ∀l j ∈ Faulty(F ): ∃K: ∀ τ ∈ IN: HB τ
i [j] < K.

• Liveness.

1. ∀ i, j ∈ Π: ∀ τ ∈ IN: HB τ
i [j] ≤ HB τ+1

i [j], and

2. ∀ i, j ∈ Correct(F ): ∀K: ∃ τ ∈ IN: HB τ
i [j] > K.

The range of each entry of the array HB is the set of positive integers. Unlike from �P , this range

is not bounded. The Completeness property states that the heartbeat counter at pi of a crashed process

pj (i.e., HB i[j]) stops increasing, while the liveness property states that the heartbeat counter HB i[j]
(1) never decreases and (2) increases without bound if both pi and pj are non-faulty.

Let us observe that the counter of a faulty process increases during a finite but unknown period,

while the speed at which the counter of a non-faulty process increases is arbitrary (this speed is “asyn-

chronous”). Moreover, the values of two local counters HB i[j] and HBk[j] are not related.

Implementing HB There is a trivial implementation of a failure detector of the class HB in the

system CAMPn,t[- FC]. Each process pi manages its array HB i[1..n] (initialized to [0, . . . , 0]) as

follows. On the one side, pi repeatedly sends the message HEARTBEAT (i) to each other process. On

the other side, when it receives HEARTBEAT (j), pi increases HB i[j]. This very simple implementation

is not quiescent; it requires correct processes to sends messages forever.

This means that HB has to be considered as a “black box” (i.e., we do not look at the way it is im-

plemented) when we say that quiescent communication can be realized in CAMPn,t[- FC, Θ,HB ]. In

fact, a failure detector of a class such as P , �P , or Θ provides a system with additional computational

power. Whereas a failure detector of a class HB constitutes an abstraction that “hides” implementa-

tion details (all of the non-quiescent part is pieced together in a separate module, namely, the heartbeat

failure detector).

A remark on oracles The notion of an oracle was first introduced as a language whose words could

be recognized in one step from a particular state of a Turing machine. The main feature of such oracles

is to hide a sequence of computation steps in a single step, or to guess the result of a non-computable

function. They have been used to define (a) equivalence classes of problems, and (b) hierarchies of

problems, when these problems are considered with respect to the assumptions they require to be

solved.

In our case, failure detectors are oracles that provide the processes with information that depends

only on the failure pattern that affects the execution in which they are used. It is important to remember

that the outputs of a failure detector never depend on the computation produced by the algorithm. They

depend on the environment. According to the previous terminology, we can say that classes such as P ,

�P , or Θ, are classes of “guessing” failure detectors, while HB is a class of “hiding” failure detectors.
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3.5.4 Quiescent URB-broadcast in CAMPn,t[- FC, Θ,HB ]

A URB Construction in CAMPn,t[- FC, Θ,HB ] A quiescent algorithm implementing the URB-

broadcast communication abstraction in CAMPn,t[- FC, Θ,HB ] is described in Fig. 3.4. Designed by

M. Aguilera, W. Chen and S. Toueg (2000), it is similar to the one for CAMPn,t[- FC, Θ, P ] described

in Fig. 3.3. It differs in the addition of two local variables per application message (prev hbi[m] and

cur hbi[m] which contain previous and current heartbeat arrays, line 2), and in the task Diffusei(m).
Basically, a process pi sends the protocol message MSG (m) to a process pj only if j /∈ rec byi[m]
(from pi’s point of view, pj has not yet received the application message m), and HB i[j] has increased

since the last test (from pi’s point of view, pj is alive, predicate of line 14). The local variables

prev hbi[m][j] and cur hbi[m][j] are used to keep the two last values read from HB i[j].

operation URB broadcast (m) is send MSG (m) to pi.

when MSG (m) is received from pk do

(1) if (first reception of m)

(2) then allocate rec byi[m], prev hbi[m], cur hbi[m];
(3) rec byi[m] ← {i, k};

(4) activate task Diffuse(m)
(5) else rec byi[m] ← rec byi[m] ∪ {k}
(6) end if;

(7) send ACK (m) to pk.

when ACK (m) is received from pk do

(8) rec byi[m] ← rec byi[m] ∪ {k}.

when (trustedi ⊆ rec byi[m]) ∧ (pi has not yet urb-delivered m) do

(9) URB deliver (m).

task Diffusei(m) is

(10) prev hbi[m] ← [−1, . . . ,−1];
(11) repeat

(12) cur hbi[m] ← HB i;

(13) for each j ∈ {1, . . . , n} \ rec byi[m] do

(14) if (prev hbi[m][j] < cur hbi[m][j]) then send MSG (m) to pj end if

(15) end for;

(16) prev hbi[m] ← cur hbi[m]
(17) until rec byi[m] = {1, . . . , n} end repeat.

Figure 3.4: Quiescent uniform reliable broadcast in CAMPn,t[- FC, Θ,HB ] (code for pi)

Theorem 11. The algorithm described in Fig. 3.4 is a quiescent construction of the URB-broadcast

communication abstraction in CAMPn,t[- FC, Θ,HB ].

Proof The proof of the URB-validity property (no creation of application messages) and the URB-

integrity property (an application message is delivered at most once) follow directly from the text of

the construction. Hence, the rest of the proof addresses the URB-termination property and the quies-

cence property. It is based on two preliminary claims. Let us first observe that, once added, an identity

j is never withdrawn from rec byi[m].

Claim C1. If a non-faulty process pi activates Diffusei(m), all the non-faulty processes pj activate

Diffusej(m).
Proof of claim C1. Let us consider a non-faulty process pi that activates Diffusei(m). It does it when

it receives MSG (m) for the first time. Let pj be a non-faulty process. There are two cases:

• There is a time after which j ∈ rec byi[m]. The process pi has added j to rec byi[m] because

it has received MSG (m) or ACK (m) from pj . It follows that pj received MSG (m). The first
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time it received this protocol message, it activated Diffusej(m), which proves the claim for this

case.

• The identity j is never added to rec byi[m]. As pj is non-faulty, it follows from the liveness of

HB that HBi [j ] increases forever, from which it follows that the predicate (prev hbi[m][j] <
cur hbi[m][j]) is true infinitely often. It then follows that pi sends infinitely often MSG (m) to

pj . Due to the termination property of the fair channel connecting pi to pj , pj receives MSG (m)
infinitely often from pi. The first time it was received, pj activated the task Diffuse(m)j , which

concludes the proof of claim C1.

Claim C2. If all the non-faulty processes activate Diffuse(m), they all eventually execute the operation

URB deliver (m).
Proof of claim C2. Let pi and pj be any pair of non-faulty processes. As pi executes Diffusei(m)
and pj is non-faulty, pi sends MSG (m) to pj until j ∈ rec byi[m]. Let us observe that, due to the

systematic sending of acknowledgments and the termination property of the channels, we eventually

have j ∈ rec byi[m]. It follows that rec byi[m] eventually contains all the non-faulty processes.

Moreover, it follows from the liveness property of Θ that there is a finite time from which trustedi
contains only non-faulty processes.

It follows from the two previous observations that, for any non-faulty process pi, there is a finite

time after which the predicate (trustedi ⊆ rec byi[m]) becomes and remains true forever, and conse-

quently pi eventually urb-delivers m. End of the proof of claim C2.

Proof of the termination property. Let us first show that, if a non-faulty process pi invokes the operation

URB broadcast (m), all the non-faulty processes urb-deliver the application message m. As pi is

non-faulty, it sends the protocol message MSG (m) to itself and (by assumption) receives it. It then

activates the task Diffusei(m). It follows from claim C1 that every non-faulty process pj activates

Diffusej(m). We conclude then from claim C2 that each correct process urb-delivers m.

Let us now show that if a (faulty or non-faulty) process pi urb-delivers the application m, then all

the non-faulty processes urb-deliver m. As pi urb-delivers m, we have trustedi ⊆ rec byi[m]. Due

to the Accuracy property of the underlying failure detector of the class Θ, trustedi always contains a

non-faulty process. Let pj be a non-faulty process such that j ∈ trustedi when the delivery predicate

trustedi ⊆ rec byi[m] becomes true. As j ∈ rec byi[m], it follows that pj has received MSG (m)
(see the first item of the proof of Claim C1). The first time it received such a message, pj activated

Diffusej(m). It then follows from claim C1 that every non-faulty px process activates Diffusex(m),
and from claim C2 that all the non-faulty processes urb-deliver m.

Proof of the quiescence property. We have to prove here that any application message m gives rise to a

finite number of protocol messages. The proof relies only on the underlying heartbeat failure detector

and the termination property of the underlying fair channels.

Let us first observe that (a) the reception of a protocol message ACK () never entails the sending

of protocol messages, and (b) a protocol message ACK (m) is only sent when a protocol message

MSG (m) is received. So, the proof amounts to showing that the number of protocol messages of the

type MSG (m) is finite. Moreover, a faulty process sends a finite number of protocol messages MSG

(m), so we have only to show that the number of messages MSG (m) sent by each non-faulty process

pi is finite. Such messages are sent only inside the task Diffusei(m). Let pj be a process to which the

non-faulty process pi sends MSG (m). If there is a time after which j ∈ rec byi[m] holds, pi stops

sending MSG (m) to pj . So, let us consider that j ∈ rec byi[m] remains false forever. There are two

cases:

• Case pj is faulty. In this case there is a finite time after which, due to the Completeness property

of HB , HB i[j] no longer increases. It follows that there is a finite time after which the predicate
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(prev hbi[m][j] < cur hbi[m][j]) remains false forever. When this occurs, pi stops sending

MSG (m) to pj , which proves the case.

• Case pj is non-faulty. We show a contradiction. In this case, the predicate prev hbi[m][j] >
cur hbi[m][j] is true infinitely often. It follows that pi sends MSG (m) to pj infinitely often.

Due to the termination property of the fair channel from pi to pj , the process pj receives MSG

(m) from pi an infinite number of times. Consequently it sends back ACK (m) to pi an infinite

number of times, and, due to the termination property of the channel from pj to pi, pi receives

this protocol message an infinite number of times. At the first reception of ACK (m), pi adds

j to rec byi[m]. As no process identity is ever withdrawn from rec byi[m], the predicate j ∈
rec byi[m] remains true forever, contradicting the initial assumption, which concludes the proof

of the quiescence property.
�Theorem 11

Quiescence vs termination Unlike the quiescent URB construction for CAMPn,t[- FC, Θ, P ] (de-

scribed in Fig. 3.3), but similar to the quiescent construction for CAMPn,t[- FC, Θ,�P ], the con-

struction described in Fig. 3.4 for CAMPn,t[- FC, Θ,HB ] is not terminating. It is easy to see that it is

possible that the task Diffusei(m) of a process pi never terminates. In fact, while quiescence concerns

only the activity of the underlying network (due to message transfers), termination is a more general

property that concerns the activity of both message transfers and processes.

This is due to the fact that the properties of both �P and HB are eventual. When HB i[j] does not

change, we do not know if it is because pj crashed or because its next increase is arbitrarily delayed.

This uncertainty is due to the net effect of asynchrony and failures. When the failure detector is perfect

(class P ), the “due to failures” part of this uncertainty disappears (because when a process is suspected

we know for sure that it has crashed), and consequently a P -based construction has to cope only with

asynchrony.

3.6 Summary

This chapter addressed uniform reliable broadcast in the context of asynchronous systems where pro-

cesses may crash, and communication channels are unreliable but fair, which intuitively means that,

if a process repeatedly re-transmits the same message, the channel cannot lose all of the copies due to

these re-transmissions.

It has been shown that, in the presence of asynchrony and fair channels, URB-broadcast can be

implemented only if a majority of processes do not crash. This assumption has been captured at a

more abstract level, namely with the concept of a failure detector. The chapter also introduced the

notion of a quiescent implementation, where “quiescent” means that, at the implementation level, an

application message cannot give rise to an infinite number of protocol messages. It has been shown

that URB-broadcast quiescent algorithms require appropriate failure detectors.

3.7 Bibliographic Notes

• The concept of a failure detector was introduced by T. Chandra and S. Toueg in [102] where

they defined, among other failure detector classes, the classes P and �P . The class P has

been shown to be the weakest class of failure detectors to solve some distributed computing

problems [121, 211].

• The oracle notion in sequential computing is presented in numerous textbooks. Among other

books, the reader can consult [182, 222].
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• The weakest failure detector class Θ that allows the construction of the URB-broadcast abstrac-

tion despite asynchrony, any number of process crashes, and fair channels, was proposed by

M.K. Aguilera, S. Toueg, and B. Deianov [22].

• The notion of quiescent communication and the heartbeat failure detector class were introduced

by M.K. Aguilera, W. Chen and S. Toueg in [10, 12]. These notions were investigated in [11] in

the context of partitionable networks.

The very weak communication model and the corresponding quiescent URB-broadcast con-

struction presented in Exercise 4 (Section 3.8) was introduced in [12].

• When we consider a system as simple as the one made up of two processes connected by a

bidirectional channel, there are impossibility results related to the effects of process crashes,

channel unreliability, or the constraint to use only bounded sequence numbers. Chapter 22 of N.

Lynch’s book [271] presents an in-depth study of the power and limits of unreliable channels.

• The effects of fair lossy channels on problems in general, and in asynchronous systems that are

not enriched with failure detectors, is addressed in [54].

• Given two processes that (a) can crash and recover, (b) have access to volatile memory only,

and (c) are connected by a (physical) reliable channel, let us consider the problem that consists

in building a (virtual) reliable channel connecting these two (possibly faulty) processes. Maybe

surprisingly, this problem is impossible to solve [154]. This is mainly due to the absence of

stable storage.

It is also impossible to build a reliable channel when the processes are reliable (they never

crash) and the underlying channel can duplicate and reorder messages (but cannot create or lose

messages), and only bounded sequence numbers can be used [412].

However, if processes do not crash and the underlying channel can lose and reorder messages,

but cannot create or duplicate messages, it is possible to build a reliable channel, but this con-

struction is highly inefficient [5].

3.8 Exercises and Problems

1. Considering the algorithm in Fig. 3.1, let us replace line 8

for each j ∈ {1, . . . , n} do send MSG (m) to pj end for,

with

for each j ∈ {1, . . . , n} \ rec byi[m] do send MSG (m) to pj end for.

Show that this modification can prevent a correct process pi, which issues URB broadcast (m),
from urb-delivering the message m.

2. Show that no failure detector of the class P can be built in CAMPn,t[Θ].

3. Show that failure detector classes �P and Θ cannot be compared (hint: a set trustedi is never

required to contain the identity of all correct processes).

4. A more difficult problem.

The processes are asynchronous and may crash (as before). On the network side each directed

pair of processes is connected by a channel that is either fair or unreliable. An unreliable channel

is similar to a fair channel as far as the validity and integrity properties are concerned but has no

termination property. Whatever the number of times a message is sent (even an infinite number

of times), the channel can lose all its messages. So, if an unreliable channel connects pi to pj ,
it is possible that no message sent by pi is ever received by pj on this channel, exactly as if this

channel was missing.
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An example of such a network is represented in Fig. 3.5. A black or white big dot represents a

process. A simple arrow from a process to another process represents a fair unidirectional chan-

nel. A double arrow indicates that both unidirectional channels connecting the two processes

are fair. All the other channels are unreliable (in order not to overload the figure they are not

represented).

Figure 3.5: An example of a network with fair paths

Notion of fair path In order to be able to construct a communication abstraction that, in

any run, allows any pair of non-faulty processes to communicate, basic assumptions on the

connectivity of the non-faulty processes are required. These assumptions are based on the notion

of a fair path. Hence, given an execution, it is assumed that every directed pair of non-faulty

processes is connected by a directed path made up of non-faulty processes and fair channels,

which is known as a fair path.

When considering Fig. 3.5, let the black dots denote the non-faulty processes and the white

dots denote the faulty ones. One can check that every directed pair of non-faulty processes is

connected by a fair path.

What has to be done Considering the previous system mode with very weak connectivity,

design:

• an algorithm implementing a Heartbeat failure detector, and

• an algorithm building URB-broadcast with the help of a Heartbeat failure detector, and a

failure detector of the class Θ.

Solution in [12] (original paper) and in Chapter 4 of the monograph [366].
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