
Chapter 11

Expediting Decision

in Synchronous Systems

Prone to Process Crash Failures

The last section of the previous chapter showed that there is no synchronous round-based consensus

(or interactive consistency) algorithm that can cope with t process crashes and allows the processes to

always decide in less than (t+ 1) rounds (i.e., whatever the failure pattern).

This chapter focuses first on the case where less than t processes crash in an execution. It shows

that the number of rounds can then be lowered to min(f + 2, t + 1) where f is the actual number

of crashes (0 ≤ f ≤ t). The corresponding algorithm is based on a differential decision predicate

involving the number of processes seen as crashed in the two last rounds.

The chapter presents also an unbeatable binary consensus algorithm, denoted CGM , where un-

beatability means that its decision predicate cannot strictly be improved. More precisely, if there is an

early deciding algorithm A based on a different decision predicate that improves the decision round

with respect to CGM in a given execution, there is at least one execution of A in which a process

strictly decides later than in CGM .

The chapter then presents the condition-based approach, which allows us to circumvent the min(f+
2, t+ 1) lower bound. It consists in restricting the allowable sets of input vectors. Finally, it is shown

that enriching the round-based synchronous model CSMPn,t[∅] with access to physical time and an

appropriate fast failure detector allows decision to be to expedited.

Keywords Consensus, Early decision, Early stopping, Interactive consistency, Process crash, Round-

based algorithm, Synchronous system.

11.1 Early Deciding and Stopping Interactive Consistency

Without loss of generality this section considers the interactive consistency agreement abstraction.

The results trivially apply to consensus.

In the following, given an execution E, f denotes the number of processes that crash in E. Hence

0 ≤ f ≤ t. While t is a parameter of the system model, and is known by the processes which can use

its value in their local algorithms, no process knows the value of f when it starts executing.

11.1.1 Early Deciding vs Early Stopping

While (t+ 1) rounds are necessary (and sufficient) in worst case scenarios (Theorem 42), it might be

supposed that, in executions where the number f of process crashes is small compared to the model

© Springer Nature Switzerland AG 2018
M. Raynal, Fault-Tolerant Message-Passing Distributed Systems, 
https://doi.org/10.1007/978-3-319-94141-7_

189

11

https://doi.org/10.1007/978-3-319-94141-7_
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94141-7_11&domain=pdf


190 11.1. Early Deciding and Stopping Interactive Consistency

upper bound t, the number of rounds could be correspondingly small. This section shows that this is

indeed the case. It presents a round-based algorithm which works in the model CSMPn,t[∅] and where

the processes decide in at most min(f + 2, t + 1) rounds. This is called early decision. Moreover,

when a process decides, it stops its execution, which means that a process does not send messages

after it has decided. This is called early decision/stopping.

A simple intuition for the (f+2) (and not (f+1)) lower bound is the following. As there are only

f failures in the considered execution, after (f + 1) rounds there is at least one process that executed

a round in which it saw no failures. Thereby, this process knows which value can be decided, but, as

f �= t, it does not know if the other processes are aware of it. Hence, it needs an additional round to

inform the other processes of this knowledge before deciding.

11.1.2 An Early Decision Predicate

From late decision to early decision Let us consider the non-early deciding interactive consistency

algorithm described in Fig. 10.4. The aim is to modify it in order to obtain an early-deciding algorithm.

This non-early deciding algorithm allows a process pi not to send a message in a round r when pi has

not received new pairs 〈k, v〉 during the previous round (r−1). As we have seen (Lemma 38), this does

not prevent the processes that terminate round (t + 1) from having the very same vector of proposed

values at the end of this round.

These “missing” messages can create a problem when we want a process pi to decide “as early as

possible”. This is because, if pi does not receive a message from process pj during a round r, it cannot

differentiate the case where pj crashed from the case where pj had nothing new to forward. To solve

this problem, a process is required to follow these behavioral rules:

• A process broadcasts a message at every round until it decides or crashes.

• Any message indicates if its sender was about to decide after broadcasting it (during the same

round).

These simple rules reduce the uncertainty on the state of pj as perceived by pi. Let r be the first

round during which pi does not receive a message from pj . It follows from the previous rules that this

message is missing either because pj decided during round r−1, or because pj crashed during (r−1)
(after it sent a message to pi) or during round r (before it sent a message to pi). Let us observe that, if

pj decided, it sent to pi all the pairs 〈k, v〉 it previously received during the rounds r′, 1 ≤ r′ ≤ r− 1.

A predicate for early decision All that remains is to state a predicate that allows a process pi to

early decide by itself (i.e., before knowing that another process decided). Hence, assuming that no

process decided up to round (r − 1), let us consider the following definitions:

• UPr: the set of processes that start round r.

• Rr
i : the set of processes from which pi received messages during round r ≥ 1.

• R0
i : the set of the n processes.

Let us notice that, while no process pi knows the value of UPr, it can compute the values of Rr
i and

Rr−1
i . The following relation is an immediate consequence of (a) the previous definitions, (b) the

previous sending rules, and (c) the fact that crashes are stable (no process recovers):

∀ r ≥ 1 : Rr
i ⊆ UP r ⊆ Rr−1

i .

Let us consider the particular case where, for pi, two consecutive rounds (r − 1) and r are such

that Rr
i = Rr−1

i . It follows from the previous relation that Rr
i = UPr = Rr−1

i , which means that

pi received during round r a message from every process that was alive at the beginning of round r.

This is illustrated in Fig. 11.1, where p1 crashes during round (r − 1) and p2 crashes during round r



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 191

round rround r − 1

p1

p2

p3

p4

Rr−1
4 = UP r = Rr

4 = {2, 3, 4}

Figure 11.1: Early decision predicate

(this is indicated with crosses on p1 and p2 process axes). As far as messages are concerned, only the

messages that are received by non crashed processes are indicated.

It follows that Rr
i = Rr−1

i is the predicate we are looking for. It means that pi received (during the

rounds 1 to r) all the pairs 〈k, v〉 known by the processes that are alive at the beginning of r. To put it

another way, all the other pairs 〈	, w〉 are lost forever and consequently no process can learn them in a

future round. Process pi can consequently decide the current value of its local vector viewi.

Inform the other processes before deciding It is not because the predicate Rr
i = Rr−1

i is satisfied

at process pi, that Rr
j = Rr−1

j is necessarily satisfied at another process pj . As an example, when we

consider the end of round r in Fig. 11.1, p4 can be the only process that knows some pair 〈k, v〉 that has

been forwarded only to p1, which – before crashing – forwarded it only to p2, which in turn – before

crashing – forwarded it only to p4. In this case, if p4 decided during round r and stops executing just

after deciding, it would decide a different vector from the vector decided by other processes.

This issue can be easily solved by directing pi to execute an additional (r + 1) round during

which it forwards the new pairs 〈k, v〉 it learned during round r. It also indicates in the corresponding

message that its local early decision predicate was satisfied during round r. In this way, a process pj
that receives this message learns that the vector was decided by pi. Hence, pj learns that it can decide

in the next round (r + 2), i.e., after having forwarded all the pairs 〈k, v〉 it learned from pi during

round r(r + 1).

11.1.3 An Early Deciding and Stopping Algorithm

The early deciding algorithm based on the previous design principles is described in Fig. 11.2. As

indicated, this algorithm is obtained from the non-early deciding interactive consistency algorithm

described in Fig. 10.4. In order to make it easier to understand, the lines with exactly the same

statements are numbered the same way. The new lines are numbered N1 to N4, and the numbers of

the two lines that are modified are prefixed by M.

Local data structures In addition to the vector viewi[1..n] and the set variable newi, a process

manages three additional local variables: two Boolean variables and an array of integers.

• nbri[0..n] is an array of integers comprised between 1 and n, such that nbri[r] is the number of

processes from which pi received a message during round r, i.e., nbri[r] = |Rr
i |. By definition

nbri[0] = n.

As crashes are stable, the early decision predicate Rr−1
i = Rr

i can be re-stated nbri[r − 1] =
nbri[r]. (As only nbrr−1

i and nbrri are needed, the array nbri[0..n] can be trivially replaced by

two local variables. This is not done here for clarity of the exposition.)

• earlyi is a Boolean initialized to false. It is set to true when the local early decision predicate

is satisfied, or when pi learns that another process is about to decide.



192 11.1. Early Deciding and Stopping Interactive Consistency

• decidei is a Boolean set to true when pi receives a message from a process pj indicating that

earlyj is satisfied.

Let us remember that the macro-operation broadcast() is unreliable. If a process crashes during

its invocation, an arbitrary subset of processes receive the message that has been broadcast.

Process behavior The lines that are modified with respect to the non-early deciding algorithm are

line M1 and M4. The first concerns the initialization. The second concerns the addition of the current

value of the Boolean earlyi to the message pi broadcasts at every round.

As far as the new lines are concerned, we have the following. Line N2 gives its value to nbri[r].
At line N3, pi sets decidei to true if, and only if, it has received a round r message from a process pj
indicating that pj is about to decide (i.e., earlyj is equal to true).

For the lines N1 and N4 let us first consider line N4. At that line, pi sets earlyi to true if, during

the current round, its local early decision predicate has become true or pi has received a round r
message with earlyj = true. To put it another way, earlyi is set to true as soon as pi learns (directly

from its local predicate, or indirectly from another process) that it can early decide.

Let r be the first round at which earlyi becomes true. During round (r + 1) pi broadcasts

EST(newi, true) thereby indicating that it is about to early decide during that round. It then early

decides (and stops) at line N1.

operation propose (vi) is

(M1) viewi ← [⊥, . . . ,⊥]; viewi[i] ← vi; newi ← {〈i, vi〉}; nbri[0] ← n; earlyi ← false;

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(M4) broadcast EST(newi, earlyi) end if;

(5) for each j ∈ {1, . . . , n} \ {i} do

(6) if (newj received from pj) then recfromi [j] ← newj else recfromi [j] ← ∅ end if;

(7) end for;

(N1) if (earlyi) then return(viewi) if;

(N2) nbri[r] ← number of processes from which round r messages have been received;

(N3) decidei ←
∨
(earlyj received during round r);

(8) newi ← ∅;

(9) for each j such that (j �= i) ∧ (recfromi [j] �= ∅) do

(10) foreach 〈k, v〉 ∈ recfromi [j] do

(11) if (viewi[k] = ⊥) then viewi[k] ← v; newi ← newi ∪ {〈k, v〉} end if

(12) end for

(13) end for;

(N4) if
(
(nbri[r − 1] = nbri[r]) ∨ decidei

)
then earlyi ← true end if;

(14) if (r = t+ 1) then return(viewi) end if

(15) end synchronous round.

Figure 11.2: An early deciding t-resilient interactive consistency algorithm (code for pi)

11.1.4 Correctness Proof

Let varri denote the value of the local variable vari at the end of round r. The sentence “pi knows the

pair 〈k, v〉” is a shortcut to say “viewi[k] = v”. Process pi “learned” this pair at round 0 if i = k, or

at round r > 0 during which it receives for the first time a set newj such that 〈k, v〉 ∈ newj .

Lemma 42. If a process pi decides at line N1 of round r, it knows all the pairs 〈k, v〉 known by the

processes that had not crashed at the beginning of round (r − 1). Moreover, no more pairs can be

learned by a process in a round r′ ≥ r.

Proof If pi decides at round r, it previously set earlyi to the value true at line N4 of round (r − 1).
There are two cases.



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 193

• Case 1. nbri[r − 2] = nbri[r − 1] at line N4 of round (r − 1). In this case, at every round

r′, 1 ≤ r′ ≤ r − 1, pi received a message from each process in Rr−1
i . Consequently, it knows

all the pairs known by the processes in Rr−1
i . Moreover, as nbri[r − 2] = nbri[r − 1], the set

Rr−1
i is equal to UP r−1 (the set of processes alive at the beginning of round (r − 1)). Hence,

pi knows all the pairs 〈k, v〉 known by the processes that had not crashed at the beginning of

round (r − 1). Consequently no other pair can ever be known by a process in the future, which

completes the proof of the lemma for this case.

• Case 2. decidei = true at line N4 of round (r − 1). In this case, there is a round r′ < r and

a chain of distinct processes pj1, . . . , pjx ending at pi such that (a) nbrj1[r
′ − 1] = nbrj1[r

′],
and (b) pj1 sent EST(−, true) to pj2 during round r′ + 1, which in turn sent EST(−, true) to

pj3 during round r′ + 2, etc., until pjx that sent EST(−, true) to pi during round r − 1, and pi
consequently set decidei to true when it received that message.

It follows from Case 1 that, at the end of round r′, pj1 knew all the pairs known by the processes

that had not crashed at the beginning of round r′. Hence, pi knows all these pairs (at least from

the chain of EST(−, true) messages starting at pj1 and ending at pjx). Consequently, pi knows

all the pairs 〈k, v〉 known by the processes that had not crashed at the beginning of round r′. As

no pair can be learned by a process in a later round, pi knows all the pairs 〈k, v〉 known by the

processes that had not crashed at the beginning of round (r − 1), which completes the proof of

the lemma.
�Lemma 42

Lemma 43. No two processes decide different vectors.

Proof We consider three cases. Let pi and pj be two processes that decide.

• Case 1: no process decides at line N1. The proof is then exactly the same as the proof of the

base non-early deciding algorithm (Lemma 38).

• Case 2: no process decides at line 14. The fact that viewr
i = viewr′

j follows from Lemma 42.

• Case 3: some processes (e.g., pi) decide at line N1 of a round r, while other processes (e.g., pj)
decide at line 14 of round (r + 1).

Let us first observe that, in this case, r = t or r = t+1. If pi decided at line N1 of round r < t,
the message EST(−, true) it broadcast at line 4M before deciding at line N1 was received

during round r by pj , which set decidej to true at line N3, entailing its decision at line 14 of

round (t+ 1) (case assumption). This is possible only if r = t or r = t+ 1.

It follows from Lemma 42 that pi knows all the pairs that can be known at the beginning of

round (r− 1). Moreover, from round 1 to round r, it transmitted all these pairs to pj . It follows

that viewr
i = viewt+1

j .
�Lemma 43

Theorem 43. Let 1 ≤ t < n. The algorithm described in Fig. 11.2 implements the interactive

consistency agreement abstraction in CSMPn,t[∅].

Proof The ICC-Termination property is a direct consequence of the synchrony assumption of the

model: no process executes more than (t + 1) rounds. The ICC-agreement property follows from

Lemma 43. The proof of the ICC-validity property is the same as for the non-early deciding algorithm.

�Theorem 43

Theorem 44. Let f denote the number of crashes in a given execution (0 ≤ f ≤ t). No process

executes more than min(f + 2, t+ 1) rounds.



194 11.1. Early Deciding and Stopping Interactive Consistency

Proof As previously mentioned, the fact that a process executes at most (t+ 1) rounds follows from

the text of the algorithm and the synchrony assumption. For the (f + 2) rounds lower bound, let us

consider two cases.

• Case 1. There is a process pi that decides at line N1 of a round d ≤ f+1. In this case, just before

deciding at line N1 during round (f + 1), pi broadcast EST(−, true) at line 4M. It follows that

each process pj that terminates the round (f + 1) receives the message EST(−, true) sent by

pi, and consequently updates earlyj to true during the round (f + 1) (lines N3 and N4). It

follows that, if pj does not crash by the end of the round (f + 2), it decides at line N1 of this

round, which proves the theorem for this case.

• Case 2. No process decided by round d = f + 1. Let pi be any process that terminates this

round. As pi did not decide by the end of round (f + 1), we have nbri[r
′ − 1] �= nbri[r

′] for

any round r′, 1 ≤ r′ ≤ f . As there are exactly f crashes, it follows that we have:

– nbri[0] = n, nbri[1] = n − 1, nbri[2] = n − 2, etc., nbri[f − 1] = n − (f − 1) and

nbri[f ] = n− f (there is one crash per round, and the process that crashes does not send

a message to pi), and

– nbri[f + 1] = n− f .

Consequently nbri[f ]− nbri[f + 1] = 0. Hence, pi sets earlyi to true at line N4 of the round

(f +1), and if it does not crash during the round (f +2), it decides at line N1 of this round. Let

us finally observe that, as pi is any process that terminates round (f + 1), the reasoning applies

to all processes that execute round (f + 2), which completes the proof of the theorem.
�Theorem 44

11.1.5 On Early Decision Predicates

Let DIFF(i, r) denote the previous early decision predicate (namely, nbri[r]− nbri[i, 1] = 0).

Another early detection predicate Let faultyi[r] = n − nbri[r], i.e., the number of processes

that pi perceives as crashed. The predicate COUNT(i, r) ≡ (faultyi[r] < r) is another correct early

decision predicate that can be used instead of DIFF(i, r). This is because COUNT(i, r) is satisfied at

the first round r such that this round number is higher than the number of processes currently perceived

as crashed by pi. Put differently, from pi’s point of view, there are currently less crashed processes

than the number of rounds it has executed, i.e., for pi there is a round r′, 1 ≤ r′ ≤ r, without crashes.

Hence, at the end of this round, the vector viewi contains the values v of all the pairs 〈k, v〉 that were

known at the beginning of r′, which means that no more pairs can be known by any process in the

future.

The reader can check that the early-decision algorithm described in Fig. 11.2 works when, at

line N4, the decision predicate DIFF(i, r) ≡ (nbri[r] − nbri[i, 1] = 0) is replaced by the predicate

COUNT(i, r) ≡ (faultyi[r] < r).

Comparing the predicates COUNT() and DIFF(i, r) Hence the question: While both DIFF(i, r)
and COUNT(i, r) ensure that the processes decide in at most min(f + 2, t + 1) rounds in the worst

cases, is one predicate better than the other? We show here that DIFF(i, r) is better than COUNT(i, r).
To this end we prove the following theorem.

Theorem 45. (a) Given an execution, let r ≥ 2 be the first round at which COUNT(i, r) is satisfied.

We have COUNT(i, r) ⇒ DIFF(i, r).
(b) Given an execution, let r ≥ 2 be the first round at which DIFF(i, r) is satisfied. There are failure

patterns for which DIFF(i, r) ∧ ¬COUNT(i, r).



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 195

operation propose (vi) is

(1) esti ← vi; nbri[0] ← n; earlyi ← false;

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) broadcast EST(esti, earlyi);
(5) if (earlyi) then return (esti) end if;

(6) let nbri[r] = number of messages received by pi during r;

(7) let decidei ←
∨
(earlyj values received during current round r);

(8) esti ← min({estj values received during current round r});
(9) if

(
(nbri[r − 1] = nbri[r]) ∨ decidei

)
then earlyi ← true end if

(10) if (r = t+ 1) then return(esti) end if

(11) end synchronous round.

Figure 11.3: Early stopping synchronous consensus (code for pi, t < n)

Proof Let us first prove item (a). As r is the first round during which COUNT(i, r) ≡ (faultyi[r] <
r) is satisfied, COUNT(i, r−1) is false, i.e., faultyi[r−1] ≥ r−1. It follows from faultyi[r] < r and

faultyi[r−1] ≥ r−1 that faultyi[r]−faultyi[r−1] < 1., i.e., (n−nbri[r])−(n−nbri[r−1]) < 1.

Combined with the fact that nbri[r − 1] ≥ nbri[r], we obtain nbri[r] − nbri[r − 1] = 0, which con-

cludes the proof of item (a).

Let us now prove item (b). To this end we exhibit a counter-example. Let us consider a run in

which 2 ≤ x ≤ t processes crashed before taking any step, and then no other process crashes.

The predicate COUNT(i, r) ≡ (faultyi[r] < r) becomes true for the first time at round x+1. Let

us now look at the predicate DIFF(i, r) ≡ (nbri[r]− nbri[r − 1] = 0). We have nbri[1] = nbri[2] =
n − x. Consequently, DIFF(i, 2) is satisfied. As x ≥ 2, it follows that ¬COUNT(i, 2) ∧ DIFF(i, 2),
which concludes the proof of item (b). �Theorem 45

Discussion The previous theorem shows that, while both the early decision predicates DIFF(i, r)
and COUNT(i, r) allow the processes to decide and stop by round r = min(f+2, t+1), the predicate

DIFF(i, r) ≡ (nbri[r] − nbri[r − 1] = 0) is better than the predicate COUNT(i, r) ≡ (faultyi[r] =
n − nbri[r]), in the sense that there are failure patterns for which DIFF(i, r) allows the processes to

terminate before round r = min(f + 2, t+ 1).

This is due to the fact that DIFF(i, r) is a differential predicate: it takes into consideration the

actual failure pattern, namely, a process computes the number of process crashes it perceives during a

round (the value of this number is nbri[r]−nbri[r−1]). Whereas the predicate COUNT(i, r) is based

only on the number of processes perceived as crashed by pi since the beginning of the execution. This

means that, whatever the actual failure pattern, COUNT(i, r) always considers the worst case scenario

in which there is one crash per round. However, when using DIFF(i, r), the fact that crashes occur in

the very same round is taken into account and allows for a faster decision.

As an example, let us consider the case where no process crashes. The algorithm with the predicate

DIFF(i, r) ≡ (nbri[r] − nbri[r − 1] = 0) allows each process to decide and stop in two rounds,

whatever the value of t. If any number of processes crash initially (i.e., before the algorithm starts),

and later no more process crashes, it allows the correct processes to decide in three rounds.

11.1.6 Early Deciding and Stopping Consensus

The algorithm described in Fig. 11.3 describes an early deciding and stopping consensus algorithm.

This algorithm, where a process decides the smallest value it has ever seen is directly obtained from the

interactive consistency early-deciding algorithm described in Fig. 11.2. Its proof is left to the reader.



196 11.2. An Unbeatable Binary Consensus Algorithm

11.2 An Unbeatable Binary Consensus Algorithm

The notion of an unbeatable predicate for early deciding/stopping consensus algorithms in the model

CSMPn,t[∅] is due A. Castañeda, Y. Gonczarowski, and Y. Moses (2014). This notion is based on

knowledge theory. The associated binary consensus algorithm CGM , which is presented in this sec-

tion, is also due to the same authors.

11.2.1 A Knowledge-Based Unbeatable Predicate

Underlying intuition The idea is to allow processes to decide as soon as possible on a preferred

value (let us consider 0). The other value (1) can be decided by a process only when it is sure that no

process can decide on the preferred value 0. More operationally, we have the following:

• A process pi can safely decide on 0 as soon as it knows that every correct process knows that the

value 0 was proposed. This occurs when pi knows that each correct process received a message

indicating some process proposed 0.

• A process pi can safely decide on 1 as soon as it knows that no active process received a message

indicating a process proposed 0. In this case, if it was initially present, 0 disappeared from the

system.

The knowledge-based predicate PREF0 Given an execution, we use the following terminology:

• “A process pj is revealed to process pi in a round r” if either pi knows all the values known by

pj at the beginning of r, or pi knows that pj crashed before round r. Hence, if, in round r, pj is

revealed to pi, it cannot broadcast values not yet know by pi.

• “A round r is revealed to process pi” if every process pj is revealed to pi in round r. When this

occurs, pi knows all the values that are in the system at the beginning of round r.

The knowledge-based predicate PREF0, used to decide 0 as soon as possible, is defined as follows:

PREF0
def
= correct0(i, r) ∨ revealed0(i, r)

where

• correct0(i, r) denotes the predicate “pi knows that at least one correct process knows in round

r that 0 was proposed”, and

• revealed0(i, r) denotes the predicate “a round r′ ≤ r has been revealed to pi”.

Let us notice that, if correct0(i, r) holds, all correct processes will know 0 was proposed by the end

of round (r + 1).

An example illustrating the predicate correct0(i, r) Let us consider a process pi, whose proposed

value is 0, which, during the first round, broadcasts it and receives messages from the other processes.

Hence, at the end of the first round, it knows that every alive process knows the value 0 was proposed.

Therefore, the predicate correct0(i, 1) is satisfied, and (if it does not crash) pi can decide on 0 at the

of the first round. Moreover, this is independent of the possible crash of the other processes.

Let pj be a process pj which proposes value 1. According to the failure pattern, it can be the only

process that received the value 0 from pi; hence, correct0(j, 1) does not hold, and it cannot decide 0
in this round. Moreover, pj is prevented from deciding 1 because it knows 0 was proposed.

The reader can check that this scenario is not restricted to the first round, and, according to the

failure pattern, can occur at any round r.



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 197

p1

p2

p3

p4

r = 1 r = 2

Figure 11.4: The early decision predicate revealed0(i, r) in action

An example illustrating the predicate revealed0(i, r) Let us consider an execution involving four

processes which all propose value 1, and where the failure and message pattern is as depicted in

Fig. 11.4.

During the first round, p4 receives a message from p2 and p4 but not from p1. Hence, it knows that

p1 crashed, but it does not know the value proposed by p1 nor whether it sent its value to p2 and p3
before crashing. Actually, before crashing, p1 sent its value to p3 only. During the second round, p4
receives a message from p3 (hence it learns that p1 proposed 1), but does not receive a message from

p2, which crashed after sending a message to p3.

Despite the fact that it sees a crash at every round, p4 knows, during the second round, that only

the value 1 has been proposed. Hence, revealed0(4, 2) is satisfied. Consequently, p4 can safely decide

1. It is easy to see that the local predicate revealed0(3, 1) is also satisfied.

11.2.2 PREF0() with Respect to DIFF()

Theorem 45 showed that the predicate DIFF(i, r) is strictly stronger than COUNT(i, r). The next the-

orem shows that (assuming an algorithm in which, at every round, each process broadcasts everything

it knows) PREF0() is strictly stronger than DIFF().

Theorem 46. (a) Given an execution, let r be the first round at which PREF0(i, r) is satisfied. We

have DIFF(i, r) ⇒ PREF0(i, r).
(b) Given an execution, let r be the first round at which DIFF(i, r) is satisfied. There are failure

patterns for which PREF0(i, r) ∧ ¬DIFF(i, r).

Proof Let us first prove item (a). Since DIFF(i, r) is satisfied, we have nbri[r − 1] = nbri[r]. There-

fore, in round r, pi receives a message from any process pj that sends a message to pi in round r − 1.

Moreover, pi knows that all other processes crash before round r simply because it does not get any

message from them in round (r − 1). We conclude that round r is revealed to pi, and the predicate

revealed(i, r) holds. Consequently, PREF0(i, r) is satisfied.

To prove item (b), let us consider any execution in which (1) all processes propose 0, (2) pn crashes

without communicating its input to any process, and (3) all other processes are correct. Then, for every

process pi, 1 ≤ i ≤ n− 1, revealed(i, 1) is true, as pi proposes 0 and sends it to every other process.

Thus, PREF0(i, 1) is satisfied. In contrast, DIFF(i, r) is not satisfied because, as pi does not receive a

message from pn, we have nbri[0] = n ∧ nbri[1] = n− 1. �Theorem 46

11.2.3 An Algorithm Based on the Predicate PREF0(): CGM

As already indicated this binary consensus algorithm, which works in the model CSMPn,t[∅], is due

A. Castañeda, Y. Gonczarowski, and Y. Moses (2014).



198 11.2. An Unbeatable Binary Consensus Algorithm

Local variables Each process pi manages the following local variables:

• valsi: the set of proposed values known by pi. It initially contains the value vi proposed by pi.

• knew0i: a Boolean indicating that 0 ∈ valsi at the end of the previous round.

• correct0i: a Boolean indicating the predicate correct0(i, r) is satisfied in the current round r.

• revealedi: a Boolean indicating the predicate revealed(i, r) is satisfied in the current round r.

• lgi: a local directed graph whose vertices are pairs 〈process id, round number〉. The function

vertices(lgi) (resp., edges(lgi)) returns its current set of vertices (resp., edges).

Initially this graph contains only the pair 〈i, 0〉. It is then enriched at every round r according to

the messages received by pi during round r.

Management of the local graphs lgi The algorithm is a full-information algorithm. This means

each process pi sends its local state to all other processes at every round. It then follows that the local

graph lgi includes all the causal message paths that pi can know until the current round.

There is a directed edge from the vertex 〈j, r〉 to the vertex 〈k, r + 1〉 if pi knows that pk received

a message from pj in round (r+1). As just mentioned, this message carries the local state of pj at the

end of round r. The relevant part of the local state of a process pj (i.e., the part that is transmitted) is

composed of its local variables valsi and lgi.
Considering the execution depicted in Fig. 11.4, the next figures presents the values of the local

graphs at the end of the rounds r = 1 (Fig. 11.5) and r = 2 (Fig. 11.6). (So not to overload the figure,

the tips of the arrows are not depicted on the graphs.)

p1

p2

p3

p4

r = 1 r = 2

〈3, 0〉

〈4, 0〉

〈3, 0〉 〈3, 1〉

〈4, 0〉

〈3, 0〉

〈4, 1〉

〈2, 0〉〈2, 0〉 〈2, 1〉

〈4, 0〉

〈2, 0〉

lg2(1) lg4(1)〈1, 0〉 lg3(1)

Figure 11.5: Local graphs of p2, p3, and p4 at the end of round r = 1

p1

p2

p3

p4

r = 1 r = 2

〈3, 0〉

〈4, 0〉

〈2, 0〉

〈1, 0〉

〈2, 1〉

〈3, 1〉

〈4, 1〉

〈3, 2〉

〈1, 0〉

〈2, 0〉

〈3, 0〉

〈4, 0〉 〈4, 1〉

〈3, 1〉

〈4, 2〉

lg3(2) lg4(2)

Figure 11.6: Local graphs of p3 and p4 at the end of round r = 2

Part 1 of the algorithm: communication and local state update This part is composed of the

lines 5 and 7-11. When it starts a new round r, a process pi sends its current local state to all

processes, namely, the pair composed of valsi and its local knowledge (saved in its local graph lgi) of

the message exchanges that occurred up to the previous round (line 5). If its local flag earlyi is true,

pi early decides the value 0 (line 6). If early is false and the value 0 was in the set valsi at the end

of the previous round, pi sets knew0i to true. This is because, as pi just broadcast valsi (line 5),



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 199

operation propose(vi) is

(1) valsi ← {vi}; lgi ← ({〈i, 0〉}, ∅);
(2) earlyi, knew0i, correct0i, revealedi ← false;

(3) when r = 1, 2, . . . , (t+ 1) do

(4) begin synchronous round

(5) broadcast MY STATE(valsi, lgi);
(6) if (earlyi) then return(0) end if;

(7) if (0 ∈ valsi) then knew0i ← true end if;

(8) valsi ←
⋃
(valsj values received during round r);

(9) let n0i = number of messages received in round r with 0 ∈ valsj ;

(10) let nf i = number of processes from which no message was received in round r;

(11) lgi ←
⋃(

lgj graphs received during round r and directed edges (〈j, r − 1〉, 〈i, r〉)
)
;

% Testing correct0(i, r)
(12) if

(
0 ∈ valsi ∧ (knew0i ∨ (t− nf i ≤ n0i))

)
then correct0i ← true end if;

% Testing revealed(i, r)
(13) if

(
∃ r′ ≤ r : ∀pj :

(
〈j, r′〉 ∈ vertices(lgi)

)

∨
(
∃〈�, r′〉 ∈ vertices(lgi) : (〈j, r

′ − 1〉, 〈�, r′〉) /∈ edges(lgi)
))

(14) then revealedi ← true

(15) end if;

% Testing PREF0(i, r)
(16) if (correct0i) then return(0) end if;

(17) if (revealedi ∧ 0 /∈ valsi) then return(1) end if;

(18) if (revealedi ∧ 0 ∈ valsi) then earlyi ← true end if

(19) end synchronous round.

Figure 11.7: CGM : Early deciding synchronous consensus based on PREF0() (code for pi, t < n)

and this set contains 0, it knows that all non-crashed processes receive its set valsi during the current

round, and consequently knows 0 was proposed.

Process pi then updates its local state (valsi, n0i, nf i, lgi) according to the values it has received

and the number of processes from which it received them during the current round (lines 8-11).

Let us observe that, at line-11, the local graph lgi is enriched as depicted in Fig. 11.5 and 11.6.

In addition to the union of the graph lgj , pi adds the edge 〈j, r − 1〉, 〈i, r〉 for each pj from which it

received a message during round r. Hence, once updated at line 11 of round r, lgi implicitly contains

all causal message chains ending at the vertex 〈i, r〉.

Part 2 of the algorithm: trying to progress to a decision This part is composed of lines 12-18 in

which pi computes correct0(i, r) and revealed(i, r) to expedite the decision (lines 16-18). This part is

made up of three sets of statements.

• Process pi first computes correct0(i, r) (line 12). There are two cases.

– Case 1: 0 ∈ valsi and knew0i = true. In this case, pi knows that all non-crashed

processes know the value 0 was proposed. This is because pi sent it to them in its last mes-

sage MY STATE(valsi, lgi). The predicate correct0(i, r) is then satisfied, and accordingly

pi sets correct0i to true.

– Case 2: 0 ∈ valsi and knew0i = false. In this case, pi learned 0 was proposed in

the current round. If t − nf i ≤ n0i, during the current round r, at least (n − nf i + 1)
processes know 0 was proposed. (The “+1” comes from the process pi itself, which during

the current round learned 0 is a proposed value.) As at most (n − nf i) processes may

crash, it follows that at least one correct process knows 0 was proposed. Consequently, the

predicate correct0(i, r) is satisfied, and pi sets correct0i to true.

• Then, process pi computes revealed(i, r) (lines 13-14).

This predicate is true if a round r′ ≤ r has been revealed to pi, where “a round r′ is revealed to



200 11.3. The Synchronous Condition-based Approach

pi” if pi knows what was known by pj at the beginning of round r′, or pj crashed before round

r′. This is captured by the predicate of line 13:

∃ r′ ≤ r : ∀ pj :(
〈j, r′〉 ∈ vertices(lgi)

)
∨
(
∃ 〈	, r′〉 ∈ vertices(lgi) : (〈j, r′ − 1〉, 〈	, r′〉) /∈ edges(lgi)

)
.

Process pi verifies on lgi if a round is revealed to it, namely, if there is a round r′ ≤ r such that,

for each process pj , we have:

– a causal chain of messages from the vertex 〈j, r′〉 (pj at the beginning of r′ + 1) to 〈i, r〉
(pi at the end of r), which amounts to check 〈j, r′〉 ∈ vertices(lgi), or

– a vertex 〈	, r′〉 ∈ vertices(lgi), such that (〈j, r′ − 1〉, 〈	, r′〉) /∈ edges(lgi) (p� did not

receive a message from pj in round r′, hence pj crashed).

• Finally, pi strives to entail an early decision (lines 16-18).

– If correct0(i, r) is satisfied, it decides 0 (line 16).

– If correct0(i, r) is not satisfied, 0 /∈ valsi, but revealed(i, r) is satisfied (line 17), it safely

decides 1 (round r is revealed and no non-crashed process saw 0).

– Finally, if correct0(i, r) is not satisfied, revealed(i, r) is satisfied, and 0 ∈ valsi, pi sets

early to true (line 18), and proceeds to the next round. During the round (r + 1), it

broadcasts valsi # 0 (to inform all other processes on the 0 proposal), and decides (line 6).

Theorem 47. Let 1 ≤ t < n. The algorithm described in Fig. 11.7 implements the binary consensus

agreement abstraction in CSMPn,t[∅]. Moreover, a process executes at most min(f+2, t+1) rounds.

Proof (Sketch) The CC-termination property follows from the synchrony property of the model (the

progress of rounds is due to the model). The CC-validity property follows from the updates of valsi,
line 12, and lines 16-18.

CC-agreement property follows from the observation that the only way for a process to decide 1 is

to be sure that no process will ever know the value 0 was proposed. The formalization of this argument

is the topic of Exercise 2 of Section 11.7.

The lower bound on the number of rounds is an immediate consequence of Theorem 46 and The-

orem 44. �Theorem 47

11.2.4 On the Unbeatability of the Predicate PREF0()

As already indicated, PREF0() is unbeatable in the sense that it cannot strictly be improved. It is

possible that there are early deciding predicates that improve the deciding round of a process in a given

execution, but the deciding round of the same or another process in the same or another execution is

then strictly worse.

An example is the predicate PREF1(), which is the same as PREF0() except the roles of 0 and 1
are exchanged. Its aim is to decide 1 as soon as possible. In the executions where all processes propose

0, PREF0() is fast, whatever the failure pattern, while PREF1() might need up to (t+1) rounds. And

vice versa, in the executions where all processes propose 1, PREF1() is fast, while PREF0() might

need up to (t+ 1) rounds.

11.3 The Synchronous Condition-based Approach

11.3.1 The Condition-based Approach in Synchronous Systems

An input vector I[1..n] is a vector with one entry per process, such that I[i] contains the value vi
proposed by process pi. Let us remember that, in a synchronous system prone to process crash failures



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 201

(CSMPn,t[∅]), both consensus and interactive consistency can be solved whatever the actual input

vector and the value of the model parameter t, i.e., 0 ≤ t < n.

The underlying idea The condition-based approach is due to A. Mostéfaoui, S. Rajsbaum, and M.

Raynal (2003). Its underlying idea is motivated by the following question: Is it possible to characterize

sets of input vectors for which the processes always decide in less than (t + 1) rounds whatever the

failure pattern? This section shows that the answer to this question is “yes”. To this end, it first defines

the notion of legal conditions and then presents a corresponding condition-based algorithm.

Definition of a condition A condition is a set of input vectors. Let C[x], 0 ≤ x ≤ t, be the set

(also called class) of conditions that allows consensus to be solved in at most ft(x) rounds, where

ft(x) ≤ t+1 and ft(x+1) < ft(x). The parameter x is called the degree of the class, and (by a slight

abuse of language) we also say that it is the degree of the conditions C that are in C[x], i.e., C ∈ C[x]
and C /∈ C[y] where y > x. Section 11.3.2 shows that the classes {C[x]}0≤x≤t define the following

hierarchy (Fig. 11.8), where C[0] contains the condition including all possible input vectors.

C[t] ⊂ C[t− 1] ⊂ · · · ⊂ C[x] ⊂ · · · ⊂ C[1] ⊂ C[0].

C[t]C[x]C[0]

Figure 11.8: Hierarchy of classes of conditions

Section 11.3.5 will present a consensus algorithm that, when instantiated with a condition C ∈
C[x], allows the processes to decide in at most ft(x) = t+ 1− x rounds whatever (a) the actual input

vector I ∈ C, and (b) the failure pattern.

This means that, if the condition C the algorithm is instantiated with belongs to C[t], the processes

decide in one round (which is clearly optimal, when the decided value is not fixed a priori). At the other

extreme, if the condition C the algorithm is instantiated with is the condition including all possible

input vectors, the processes decide in at most (t + 1) rounds. Hence, there is a tradeoff between the

number of input vectors of a condition C (as measured by its degree x) and the maximal number of

rounds needed to decide.

11.3.2 Legality and Maximality of a Condition

Not any set C of input vectors allows the processes to decide in less than (t+ 1) rounds whatever the

pattern of up to t process crashes and the input vector I ∈ C. The notion of legality is introduced to

capture the conditions that allow consensus to be solved in (t+ 1− x) rounds.

Notations

• V denotes the set of values that can be proposed.

• equal(a, I) denotes the number of occurrences of the value a in the input vector I .



202 11.3. The Synchronous Condition-based Approach

• dist(I1, I2) denotes the Hamming distance between the vectors I1 and I2 (the number of entries

in which they differ).

Legality A condition C is x-legal if there is a function h : C "→ V with the following properties:

• ∀ I ∈ C : #h(I)(I) > x,

• ∀ I1, I2 ∈ C :
(
h(I1) �= h(I2)

)
⇒

(
dist(I1, I2) > x

)
.

The intuition that underlies this definition is the following. Given a condition C, each of its input

vectors I allows a proposed value to be selected in order to be the value decided by the processes.

That value is extracted from an input vector by the function h(), namely h(I) is the value decided

from input vector I .

To this end, h() and all vectors I of C have to satisfy some constraints. The first constraint states

that the value that the processes have to decide from I (this value is h(I)) has to be present enough

in vector I . “Enough” means “more than x times”. This is captured by the first constraint defining

x-legality: ∀ I ∈ C : #h(I)(I) > x.

The second constraint states that, if different values are decided from different vectors I1, I2 ∈ C,

then I1 and I2 must be “far apart enough” from one another. This is to prevent processes that would

obtain different views of the input vector from deciding differently. This is captured by the second

constraint defining x-legality: ∀ I1, I2 ∈ C :
(
h(I1) �= h(I2)

)
⇒

(
dist(I1, I2) > x

)
.

The set of all x-legal conditions defines the class C[x]. Hence, a set C of input vectors for which

there is no function h() as defined previously does not define a legal condition, and consequently

C /∈ C[x]. Section 11.3.5 will describe a consensus algorithm that, when instantiated with the function

h() of a condition C ∈ C[x], allows the processes to decide in at most (t+1−x) rounds whatever the

input vector I ∈ C.

A relation with error-correcting codes The notion of a legal condition shows that there is a strong

connection relating the consensus agreement abstraction and error-correcting codes: each input vector

I encodes a value, namely the value that has to be decided from I . In this sense an input vector can

be seen as a codeword. Given an upper bound d on the number of rounds we want to execute, the

condition-based approach allows us to characterize which are the sets of input vectors (codewords)

that allow consensus to be implemented in at most d rounds (where d = t + 1 − x). It is the set

of conditions belonging to C[x]. The condition-based approach thereby establishes a strong relation

between agreement problems encountered in distributed computing and error-correcting codes.

The legal conditions Cx
max and Cx

min Assuming that the values that can be proposed can be totally

ordered, a natural example of an x-legal condition is the one that favors the largest value present in an

input vector. Let us call Cx
max this condition for a given degree x. Moreover, let max[I] denote the

greatest value in the input vector I . Cx
max is defined as follows:

Cx
max

def
= {I | equal(a, I) > x where a = max(I)}.

Theorem 48. The condition Cx
max is x-legal.

Proof Let max(I) be the associated decision function h(). Due to the definition of Cx
max, the function

max() trivially satisfies the first item of the definition of x-legality. Hence, we have only to show that

(max(I1) �= max(I2)) ⇒ (dist(I1, I2) > x) for any pair of vectors I1, I2 ∈ Cx
max.

Let a = max(I1) and b = max(I2). As a and b are different, one is greater than the other. Without

loss of generality, let us assume a > b. As b = max(I2), we conclude that a does not appear in I2.

As a appears more than x times in I1, it immediately follows that dist(I1, I2) > x, which concludes

the proof of the theorem. �Theorem 48



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 203

Another natural example of an x-legal condition is the condition denoted Cx
min that favors the

smallest value present in an input vector.

The legal condition Cx
first Another example is the condition that favors the most frequent value

in an input vector. Let first(I) and second(I) be the values that appear the most frequently and

the second most frequently in the input vector I , respectively. (If two values are equally frequent,

we have first(I) = second(I); a vector I made up of a single value is such that first(I) = n and

second(I) = 0.) The condition Cx
first defined as follows:

Cx
first

def
= {I | equal(a, I)−#b(I) > x where a = first(I) and b = second(I)}

is x-legal. The associated function h() is the function first().

Maximal legal conditions An x-legal condition C is maximal if adding a vector to C makes it not

x-legal. More formally, C is maximal if C ∪ {I} is not x-legal when I /∈ C. The conditions Cx
max

and Cx
min are maximal x-legal conditions, while Cx

first is x-legal but not maximal.

Illustrating the previous legal conditions Cx
max and Cx

first Let us consider a system of n = 4
processes, where up to t = 3 can crash. Table 11.1 presents the conditions Cx

max and Cx
first for

0 ≤ x ≤ t = 3. The symbol “∈” means that the vector on the same line belongs to the condition

defined by the corresponding column.

Input vector C0
max C1

max C2
max C3

max C0
first C1

first C2
first C3

first

[0, 0, 0, 0] ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
[0, 0, 0, 1] ∈ ∈ ∈
[0, 0, 1, 0] ∈ ∈ ∈
[0, 0, 1, 1] ∈ ∈
[0, 1, 0, 0] ∈ ∈ ∈
[0, 1, 0, 1] ∈ ∈
[0, 1, 1, 0] ∈ ∈
[0, 1, 1, 1] ∈ ∈ ∈ ∈ ∈
[1, 0, 0, 0] ∈ ∈ ∈
[1, 0, 0, 1] ∈ ∈
[1, 0, 1, 0] ∈ ∈
[1, 0, 1, 1] ∈ ∈ ∈ ∈ ∈
[1, 1, 0, 0] ∈ ∈
[1, 1, 0, 1] ∈ ∈ ∈ ∈ ∈
[1, 1, 1, 0] ∈ ∈ ∈ ∈ ∈
[1, 1, 1, 1] ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

Table 11.1: Examples of (maximal and non-maximal) legal conditions

11.3.3 Hierarchy of Legal Conditions

It is easy to see that Cx+1
max contains Cx

max while Cx
max does not contain Cx+1

max. Hence, Ct
max ⊂

Ct−1
max · · · ⊂ Cx

max · · · ⊂ C0
max. As ∀ x, 0 ≤ x ≤ t, Cx

max ∈ C[x], it follows (as previously mentioned)

that the classes {C[x]}0≤x≤t define a strict hierarchy, depicted in Fig. 11.8.



204 11.3. The Synchronous Condition-based Approach

11.3.4 Local View of an Input Vector

Let I be an input vector of an x-legal condition C. A view J of I (denoted J ≤ I) is a vector that is

identical to I except that at most x entries can be equal to ⊥.

From an operational perspective, a view captures the non-⊥ entries of an input vector that a process

obtains by receiving messages.

Lemma 44. Let C be an x-legal condition and I1 and I2 two input vectors of C. If there is a view J
such that J ≤ I1 and J ≤ I2, we have h(I1) = h(I2).

Proof Let us assume by contradiction that there is an x-legal condition C that has two vectors I1 and

I2 such that (a) there is a view J ≤ I1 and J ≤ I2, and (b) h(I1) �= h(I2).

As J ≤ I1 and J ≤ I2, we have dist(J, I1) ≤ x and dist(J, I2) ≤ x. From these inequalities, the

fact that J has at most x entries equal to ⊥, and the fact that the entries of J that differ in I1 or I2 are

its only entries equal to ⊥, it follows that dist(I1, I2) ≤ x.

However, as h(I1) �= h(I2), it follows from the second item of the definition of x-legality

of C, that dist(I1, I2) > x, which contradicts the previous observation, and concludes the proof.

�Lemma 44

The previous lemma allows the definition of the selection function h() associated with an x-legal

condition C to be extended to views as follows.

Extending to views the definition of the function h() If I is an input vector of an x-legal condition

C, and J is a view of I , then the function h() is extended as follows h(J) = h(I).

11.3.5 A Synchronous Condition-based Consensus Algorithm

A condition-based consensus algorithm is presented in Figure 11.9. The parameter x is the degree of

the condition C the algorithm is instantiated with. The function h() is the selection function associated

with this x-legal condition.

Local variables In addition to the local variable viewi (whose meaning is similar to the one of

the same variable used in the previous algorithm), a process pi manages two local variables, both

initialized to the default value ⊥. This default value is assumed to be smaller than any value that can

be proposed by a process.

• The aim of v condi is to keep (once known) the value h(I) decided from the input vector I .

• The aim of v tmfi is to contain the value that will be decided when (as we will see below) it is

not possible to use the function h() to decide a value from the input vector. (v tmf stands for

too many failures.)

Process behavior The behavior of pi depends on the round.

• During the first round, a process pi broadcasts the value it proposes (message EST1(vi) sent at

line 4), and builds its local view of the input vector during the receive phase (line 5). Then, pi
counts the number of entries of its view that are equal to ⊥. There are two cases.

– If equal(⊥, viewi) ≤ x (line 6), pi knows enough entries of the input vector in order

to use the selection function h() associated with the x-legal condition the algorithm is

instantiated with. In that case, pi computes h(viewi) and saves it in v condi.



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 205

– If equal(⊥, viewi) > x (line 7), there are too many failures for h() to be used. This is

because, in order to be known before being decided, a value must be present at least once

in a local view of the input vector. Hence, when more than x entries of the local view of

pi are equal to ⊥, h() is meaningless. In this case, pi behaves as in a classic consensus

algorithm. It computes the greatest proposed value it knows and saves it in v tmfi .

The case of an x-legal condition such that x = t is particular. This is because, if x = t, we

necessarily have equal(⊥, viewj) ≤ x at any process that does not crash by the end of the first

round. Consequently, no process pj needs more rounds to know the value decided from the

condition. It follows that any pj can safely decide h(viewj) during the very first round (line 9).

• From round 2 until round (t + 1 − x), pi first broadcasts its current state (with the message

EST2(v condi, v tmfi), line 13), then it early decides the value of v condi, if it is not equal to

⊥ (line 14). Let us observe that, in this case, v condi was different from ⊥ at the end of the

previous round, and consequently, its value is carried by the message EST2() that pi has just

broadcast.

If v condi = ⊥, pi updates it to the value decided from the condition if it has received such a

value from another process (line 15). It also updates the value of v tmfi in case no value can be

computed from the condition (line 16).

Finally, if r = t + 1 − x, pi decides (line 18). The decided value is the non-⊥ value kept in

v condi if there is one. Otherwise, it is the value kept in v tmfi .

operation proposex (vi) is

(1) viewi ← [⊥, . . . ,⊥]; viewi[i] ← vi; v cond ← ⊥; v tmfi ← ⊥;

(2) when r = 1 do

(3) begin synchronous round

(4) broadcast EST1(vi);
(5) for each vj received do viewi[j] ← vj end for;

(6) case (equal(⊥, viewi) ≤ x) then v condi ← h(viewi)
(7) (equal(⊥, viewi) > x) then v tmfi ← max(all values vj received)

(8) end case;

(9) if (x = t) then return(v condi) end if

(10) end synchronous round;

(11) when r = 2, ..., t+ 1− x do

(12) begin synchronous round

(13) broadcast EST2(v condi, v tmfi);
(14) if (v condi �= ⊥) then return(v condi) end if;

(15) if (v condj �= ⊥ received during round r) then v condi ← v condj end if;

(16) v tmfi ← max(all v tmfj values received during r);

(17) if (r = t+ 1− x) then

(18) if (v condi �= ⊥) then return(v condi) else return(v tmfi) end if

(19) end if

(20) end synchronous round.

Figure 11.9: A condition-based consensus algorithm (code for pi)

11.3.6 Proof of the Algorithm

Theorem 49. let C be the x-legal condition used in the algorithm described in Fig. 11.9. Let us

assume the input vector I ∈ C. This algorithm implements the consensus agreement abstraction in

the system model CSMPn,t[∅]. Moreover, no process executes more than (t+ 1− x) rounds.

Proof CC-termination. The fact that no process executes more than (t + 1 − x) rounds follows di-

rectly from the synchrony assumption and the text of the algorithm (line 9 for x = t, and line 17-19



206 11.3. The Synchronous Condition-based Approach

for x ≤ t).

For the CC-Validity and CC-agreement properties of consensus, let us first consider the case x = t.
As x = t, the non-crashed processes execute line 9. They have consequently executed the assignment

v condi ← h(viewi) at line 6. It then follows from the extension of the definition of h() to views

that, for any process pi, we have v condi = h(viewi) = h(I), which is a value that appears more than

x times in I , i.e., at least once in any of the views obtained by the processes. Hence, the algorithm

satisfies both the CC-validity and CC-agreement properties for x = t.

Let us now consider the CC-validity property for the x-legal conditions such that x < t. Any

process pi that terminates the first round is such that (v condi �= ⊥) ∨ (v tmfi �= ⊥). Moreover, (for

the same reasons as in the case t = x) if v condi �= ⊥, it is a value of I . Similarly, if v tmfi �= ⊥, it

is a value of I .

It follows from the text of the algorithm that, if v condi is assigned at line 15, it takes the value of

another non-⊥ v condj variable, from which we conclude that any non-⊥ v condi variable contains a

value selected by h() which (due to the definition of h()) is a value of the input vector. It follows that

if a process pi decides the value v condi, it decides a value of the input vector I .

If a process pi decides the value of v tmfi , it does it at line 18. In this case we have v condi = ⊥,

from which we conclude that pi executed line 7 where v tmfi is assigned a proposed value. It then

follows from line 16, and the fact that ⊥ is smaller than any proposed value, that v tmfi always con-

tains a proposed value. Hence, if pi decides, it decides a proposed value.

Let us now address the CC-agreement property when t < x. We consider two cases.

• A process decides at line 14. Let r be the first round at which a process (say pi) decides at

line 14 of this round. Hence, pi decides v condi = v �= ⊥.

– Let us first consider the case of another process pj that decides at line 14 of round r.

Hence, pj decides v condi = v′ �= ⊥.

It follows from the text of the algorithm that there are processes pk and p� that have com-

puted v condk = h(viewk) = v and v cond� = h(view�) = v′ during the first round, and

then these values have been propagated to pi and pj directly or via other processes (line 13

and line 15). (Let us observe that pk and p� can be the same process, or can even be pi or

pj .)

It follows from Lemma 44, and the extension of the definition of h() to views, that

h(viewx) = h(viewy) for any pair of processes px and py that execute line 6. Hence,

we have v = v′ from which we conclude that no two processes that decide at line 14

during r decide differently.

– Let us now consider the case of a process pk that decides during a round r′ > r. Let us

observe that, at the beginning of round r, we necessarily have v condk = ⊥ (otherwise

pk would have decided at line 14 of round r). Let us also observe that any process pi that

decides at line 14 of round r broadcast EST2(v,−) before deciding. It follows that any

process pk that proceeds to round r + 1 is such that v condk = v at the end of r (line 15).

It follows from the text of the algorithm that pk will decide v condk = v during round

r + 1 (if it does not crash). Consequently no value different from v can be decided.

• No process decides at line 14. In this case, the processes that crash terminate at line 18 of round

r = t+1− x. We show that all the processes pi that execute line 18 of round r = t+1− x (a)

have the same value in v condi, and (b) have the same non-⊥ value in v tmfi , which proves the

CC-agreement property for this case.

P being the set of processes that execute line 18 of the round r = t+ 1− x, let us first observe

that as no process pi ∈ P decides at line 14 during a round r, each of them has necessarily



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 207

executed line 7 during the first round (otherwise we would have v condi �= ⊥ at the end of the

first round and pi would have decided at line 14 of the second round).

We conclude from the previous observation that, at the end of the first round, equal(⊥, viewi) >
x and v tmfi �= ⊥ for each process pi ∈ P . It then follows from line 16 that these variables

remain forever different from ⊥. It also follows from equal⊥(viewi) > x that at least (x + 1)
processes have crashed during the first round. This means that at most t− (x+1) processes can

crash from round 2 until round t+ 1− x, i.e., during (t− x) rounds.

As t − (x + 1) processes can crash during (t − x) rounds, there is necessarily a round r′,
2 ≤ r′ ≤ t + 1 − x, with no crash. Moreover all the processes that execute round r′ exchange

their values v condi and v tmfi (line 13). Moreover, the values v tmfi sent by the processes of

P are not equal to ⊥. It follows that all the processes that execute round r′ have the same value

in v condi (this value can be ⊥), and in v tmfi (this value cannot be ⊥), which concludes the

proof of the agreement property.

�Theorem 49

The next corollary follows from the proof of the previous theorem.

Corollary 5. If at most f ≤ x processes crash, no process decides after the second round.

11.4 Using a Global Clock and a Fast Failure Detector

11.4.1 Fast Perfect Failure Detectors

What is a failure detector The notion of a failure detector was introduced in Section 3.3. A failure

detector is a device that provides each process with information on failures. According to the quality

of this information, several classes of failure detectors can be defined.

Duration of a round To simplify the presentation, let us assume that the synchronous model is such

that local computation takes no time while message transfer delays are upper bounded by duration D
(a message sent at time τ is received by time τ + D). The assumption that local computation takes

no time is without loss of generality as processing times can be included in D. This means that the

duration of a round is D time units.

The class of fast perfect failure detectors A fast perfect failure detector (FFD) is a distributed

object that provides each process pi with a set denoted suspectedi. This set contains process identities,

and pi can only read it. If j ∈ suspectedi we say “pi suspects pj” or “pj is suspected by pi”.

This object satisfies the following properties that involve a duration d, called maximal detection

time, and is such that d << D (hence the attribute fast of the failure detector class).

• Strong accuracy. No process pj is suspected by another process pi before pj crashes.

• Detection timeliness. If a process pj crashes at time τ , then from time τ + d, every non-crashed

process suspects it forever.

The first property is related to safety: no process is suspected before it crashes. The second

property is related to real-time liveness. It states that a process pi is informed of the crash of a process

pj at most d time units after the crash occurred. Let us nevertheless observe that, if a process pj crashes

at some time τ , it is possible that some processes are informed at time τ + d′, while other processes

are informed at time τ + d′′, etc., with 0 ≤ d′ < d′′ < d. The failure detector is perfect because it

never makes mistakes: any crashed process is suspected, and only crashed processes are suspected. (A

fast failure detector can be implemented with specialized hardware.)



208 11.4. Using a Global Clock and a Fast Failure Detector

11.4.2 Enriching the Synchronous Model to Benefit from a Fast Failure Detector

Instead of round numbers, the behavior of a process is described with respect to date occurrences.

To this end, the synchronous system CSMPn,t[∅] is enriched with a global clock variable denoted

CLOCK , which a process can only read. It is assumed that CLOCK = 0 when the algorithm starts.

Hence, the system model is CSMPn,t[CLOCK , FFD].

The dates are defined from the durations d (as defined by the failure detector) and D (as defined

by the synchrony assumption). Hence, they are meaningful both from the application point of view

(D) and the failure detector point of view (d). A particular algorithm defines which are the dates that

are relevant for it.

11.4.3 A Simple Consensus Algorithm Based on a Fast Failure Detector

Considering the model CSMPn,t[CLOCK , FFD], the algorithm described in Fig. 11.10 allows the

processes to decide at time t× d+D. This is better than its counterpart in a pure synchronous system

which requires (t+ 1) rounds, i.e., (t+ 1)D times units.

Relevant dates The algorithm considers two types of rounds, rounds of duration D time units as

defined by the synchronous system, and rounds (called FFD-rounds) of duration d (maximal detection

time) related to the underlying failure detector. According to these rounds, the dates that are relevant

for a process pi are (i− 1)d for sending a message (line 2) and t× d+D for deciding (line 5).

Description of the algorithm The principle the algorithm relies on is the following. Each FFD-

round is coordinated by a process that is the only process allowed to send a message during this FFD-

round (lines 2-3). Process p1 is the coordinator of the first FFD-round, process p2 the coordinator of

the second FFD-round, etc. More precisely, at the beginning of the FFD-round (i− 1)d, process pi is

required to broadcast the pair (esti, i) (where esti is its current estimate of the decision value) if, and

only if, it suspects all the processes that were assumed to broadcast during the previous FFD-rounds

(i.e., if it suspects the processes p1 to pi−1). Let us observe that, if p1 does not crash, its broadcast

predicate is trivially satisfied when the algorithm starts (i.e., when CLOCK = 0).

If any, the message broadcast by a process pi is sent at time (i − 1)d and received by time (i −
1)d +D. If pi crashes during the broadcast, an arbitrary subset of processes receive its message, and

if pi crashes at time τ , a process pj starts suspecting pi forever at any time between τ and τ + d.

When a process pi receives a message, it stores the pair contained in the message into a set denoted

viewi (line 4). If a message is received by a process pi when a relevant date occurs for it (i.e., when

CLOCK = (i−1)d or CLOCK = t×d+D), this process first processes the message received (which

by assumption takes no time), and only then executes the statement associated with the corresponding

date.

Finally, at time t× d+D (line 5), any alive process pi decides and stops. The value it decides is

the value it has received that has been sent by the process with the highest identity.

Remark As at most t processes crash, the processes pt+2, ..., pn can never be round coordinators,

and consequently their values can never be decided (except when one of their values is also proposed

by a process px with 1 ≤ x ≤ t + 1). The algorithm is consequently unfair in the sense given in

Section 10.1.2.

Theorem 50. The algorithm described in Fig. 11.10 implements the consensus agreement abstraction

in the system model CSMPn,t[CLOCK , FFD]. Moreover, the decision is obtained in t× d+D time

units.



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 209

operation propose(vi) is

(1) init esti ← vi; viewi ← ∅.

(2) when CLOCK = (i− 1)d do

(3) if ({1, 2, . . . , i− 1} ⊆ suspectedi) then broadcast EST(esti, i) end if.

(4) when EST(est, j) is received do viewi ← viewi ∪ {〈est, j〉}.

(5) when CLOCK = t× d+D do

(6) let 〈v, k〉 be the pair in viewi with the greatest process identity;

(7) return(v).

Figure 11.10: Synchronous consensus with a fast failure detector (code for pi)

Proof The CC-termination property follows from the synchrony assumptions of the synchronous sys-

tem and the underlying failure detector: when the clock is equal to t × d + D, all alive processes

decide. Moreover, when a process pi decides, viewi is not empty (because there is at least one correct

process among the (t + 1) coordinators), and contains only proposed values. Hence, the CC-validity

property is also met.

To prove the CC-agreement property we first introduce a definition and then prove a claim from

which CC-agreement is derived.

Definition. An FFD-round k is eligible if, at time (k − 1)d, the processes p1, ..., pk−1 have crashed

and pk either crashed or suspects them.

Let us observe that, if the FFD-round (t + 1) is eligible, then process pt+1 must be alive at time

td +D. This is because at most t processes can crash, and, as the FFD-round (t + 1) is eligible, the

processes p1 to pt have crashed. Let us also observe that no FFD-round k > t + 1 can be eligible.

Finally, let us notice that, due to the definition of eligibility, a process pi can broadcast a message in

the FFD-round i only if this FFD-round is eligible.

Claim. For 1 ≤ k ≤ t+1, if the FFD-round k is eligible, then either pk broadcasts EST(esti, v) or the

round (k + 1) is eligible.

Proof of the claim. If the FFD-round k is eligible and pk does not broadcast EST(esti, v), then pk
crashes by time (k − 1)d. In this case, due to the detection timeliness of the failure detector, it will be

suspected by all alive processes by time (k − 1)d + d = k × d, and then the FFD-round (k + 1) is

eligible. End of the proof of the claim.

Let us now prove the CC-agreement property. Let r be the largest eligible FFD-round. It follows

from the previous discussion that r ≤ t + 1. It then follows from the claim that process pr sends

EST(estr, v) to all other processes without crashing (otherwise r would not be the largest eligible

FFD-round). Moreover, no process with a larger identity ever broadcasts a message (this is because

for pj to broadcast a message, the FFD-round j has to be eligible, and r is the largest eligible round).

It follows that all processes that decide at time t × d + D, decide the value estr they have received,

which concludes the proof of the theorem. �Theorem 50

11.4.4 An Early Deciding and Stopping Algorithm

Decide in f × d + D time units Let us remember that f , 0 ≤ f ≤ t, denotes the actual number

of process crashes in an execution. This section presents a consensus algorithm suited to the model

CSMPn,t[CLOCK , FFD], in which any process (that does not crash) decides by D + fd time units.

This is better than min(f + 2, t + 1)D time units which is the bound attained by the early deciding



210 11.4. Using a Global Clock and a Fast Failure Detector

algorithm presented in Section 11.1. To simplify the presentation, it is assumed that D is an integral

multiple of d.

Local variables at process pi Each process pi manages two local variables:

• esti is pi’s estimate of the decision value. Its initial value is vi, the value proposed by pi,.

• max idi contains a process identity. Its initial value is 0 (any value smaller than a process

identity).

Relevant dates The algorithm is described in Fig. 11.12. It is an extension of the previous fast

failure detector-based algorithm. It has consequently the same coordinator-based sequential structure.

More precisely, it also considers periods of length d, each coordinated by a process: process pi is

the only process that can send a message at the beginning of the time period defined by the clock

interval [(i− 1)d..i× d) (lines 2-3 are the same as in Fig. 11.10). Hence, as before, the first period is

coordinated by p1, the second by p2, etc. Therefore, the dates that are relevant for this algorithm are:

D, d+D, 2d+D, ..., t× d+D for all processes (line 6), plus the date (i− 1)d for each process pi
(line 2). These dates are represented on Fig. 11.11.

D

(j − 1)d +D

(i− 1)d

CLOCK

d +D

xd +D

Figure 11.11: Relevant dates for process pi

Early deciding fast failure detector-based algorithm As already mentioned, the statements exe-

cuted by pi when CLOCK = (i− 1)d (lines 2-3) are the same as in Fig. 11.10: if pi suspects all the

processes with a smaller identity, it sends the pair (esti, i) to all processes.

The statements executed by a process pi when it receives a message or when CLOCK = (j −
1)d+D are different from the ones in the previous algorithm. When process pi receives a pair (est, j)
it updates its own estimate esti (line 5) only if the identity j of the sender process is larger than

max idi (which has been initialized to a value smaller than any process identity). Hence, except for

its initial value, the successive values of esti come from processes with increasing identities.

Finally, at every date (j − 1)d +D, 1 ≤ j ≤ t + 1 (line 6), pi checks a predicate to see if it can

decide. This predicate is on the current output of the failure detector. More precisely, pi decides if it

does not suspect the process pj currently defined from the value of the clock. If the predicate is false,

pi received the message (if any) sent by pj . (This is because the difference between its sending time

and the current time is D. Moreover, if pj has not sent a message, it is because it did not suspect at

least one of its predecessors p1 to pj−1.) Hence, if j /∈ suspectedi, pi decides the current value of

esti and consequently executes return(esti) (line 7).

It is easy to see that the processes decide by D time units when the process p1 does not crash (in

that case they decide the value v1 proposed by p1). If p1 crashes while p2 does not, they decide by

time d+D. According to the failure pattern, the decided value is then the value v1 proposed by p1 or

the value v2 proposed by p2 (it is v1 if p2 has received v1 by d time units), etc.

Theorem 51. The algorithm described in Fig. 11.12 implements the consensus agreement abstraction

in the system model CSMPn,t[CLOCK , FFD]. Moreover, the decision is obtained in at most f×d+D
time units, where f is the actual number of process crashes.



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 211

operation propose(vi) is

(1) init esti ← vi; max idi ← 0.

(2) when CLOCK = (i− 1)d do

(3) if ({1, 2, . . . , i− 1} ⊆ suspectedi) then broadcast EST(esti, i) end if.

(4) when EST(est, j) is received do

(5) if (j > max idi) then esti ← est; maxi ← j end if.

(6) when CLOCK = (j − 1)d+D for every 1 ≤ j ≤ t+ 1 do

(7) if (j /∈ suspectedi) then return(esti) end if.

Figure 11.12: Early deciding synchronous consensus with a fast failure detector (code for pi)

Proof Let us first observe that no process pi decides after d × f +D times units. Indeed, as f pro-

cesses crash and f ≤ t, there is at least one process pj such that 1 ≤ j ≤ t + 1 and the predicate

j /∈ suspectedi is consequently satisfied at the latest when when CLOCK = (j − 1)d + D. The

CC-termination property follows from this observation. Moreover, the CC-validity property is trivial

(for any pi, esti is initialized to vi, and then possibly updated only with another estimate value).

The proof of the CC-agreement property is based on the following definition.

Definition. An FFD-round k is active if, at time (k− 1)d, pk is not crashed and suspects the processes

p1, ..., pk−1. Let us observe that an active FFD-round is eligible, while an eligible FFD-round is not

necessarily active.

T = (j − 1)d +D

dd

pi decides

p� broadcasts EST(w, �)

∀x: j /∈ suspectedx

FFD-round � FFD-round k − 1

FFD-round k starts

Figure 11.13: The pattern used in the proof of the CC-agreement property

The timing pattern used in the proof is described in Fig. 11.13.

• Let us consider the first process (say pi) that decides. Let v be the value it decides. Process pi
has decided v at some time T = (j − 1)d+D for some j. It follows from the failure detector-

based decision predicate that, at time T , process pi was not suspecting pj . It follows from the

detection timeliness property of the failure detector that no process suspected pj at least up to

time T − d (Observation O1).

• Due to the simplifying assumption that D is an integral multiple of d, it follows that there is

an FFD-round k that starts at time T . Moreover, (due to O1) no process suspected pj at the

beginning of every FFD-round x < k (Observation O2).

• Due to the definition of “active FFD-round” and O2, it follows that none of the rounds from

(j + 1) until (k − 1) are active (Observation O3).

• On the other hand, as pj is alive at time T−d (see O1), and T−d = (j−1)d+D−d > (j−1)d,

process pj is alive at time (j − 1)d (Observation O4).

• It follows that there is at least one active FFD-round among the FFD-rounds 1 to j. The only

way for none of these FFD-rounds be active is that for any x in {1, . . . , j} process px crashes at



212

time (x − 1)d, and we know from O4 that this is false at least for pj . Hence, there is a largest

active FFD-round – say 	 – in the FFD-rounds from 1 to j (Observation O5).

• It follows from the text of the algorithm and the definition of an active FFD-round that p� (which

exists due to O5) broadcast EST(w, 	) at the beginning of the FFD-round 	, and this message is

received by all the processes by time (	− 1)d+D < T (Observation O6).

• It follows from the choice of 	 and O3 that there are no active FFD-rounds among the FFD-

rounds from (	 + 1) to (k − 1). Consequently, none of the processes from p�+1 to pk−1 sends

messages (Observation O7).

• It follows from O6 that, at time T , all processes have received EST(w, 	) and changed their esti
variable to w. Moreover, due to O7, esti is not overwritten. Hence, at time T , no estimate value

of an alive process is different from w. It follows that, whatever the messages sent after T , all

estimates remain equal to w. Hence, v = w, and no decided value can be different from w.

�Theorem 51

On the failure detector behavior Let us observe that when a process pi decides, it stops its exe-

cution as far as consensus is concerned but it continues executing the program it is involved in. If

process pi crashes later (i.e., outside the consensus algorithm), the failure detector detects its crash,

and this detection does not alter the correction of the consensus algorithm. Whereas, if pi terminates,

the failure detector must not consider its normal termination as a crash (such a false detection could

make the consensus algorithm incorrect). The failure detector detects crash failures and only crash

failures. A normal termination is not a failure.

11.5 Summary

This chapter was devoted to efficient consensus algorithms, where efficiency concerns the number

of rounds executed by an algorithm. Two algorithms ensuring that no process executes more than

min(f + 2, t + 1) have been presented. One is based on the counting of crashed processes, the other

one is based on a differential predicate, which provides a finer view of the execution and can be

exploited to favor early decision.

Then, the chapter presented an unbeatable predicate, and the associated consensus algorithm

CGM . Unbeatability means that, if there is an early deciding algorithm A based on a different deci-

sion predicate that, in some execution, improves the decision round with respect to CGM , there is at

least one execution of A in which a process strictly decides later than in CGM .

Finally, the chapter has presented the condition-based approach which allow us to bypass the lower

bound min(f+2, t+1) when the set of possible input vectors satisfies some predefined pattern, and the

enrichment of a synchronous system with a fast failure detector, which allows us to expedite decision.

11.6 Bibliographic Notes

• Early deciding agreement was first investigated by D. Dolev, R. Reischuk, and H.R. Strong

in [135].

• The predicate for early interactive consistency used in Section 11.1.2 and the corresponding

early deciding and stopping algorithm are from [362].

• The early decision lower bound on the number of rounds for consensus is f +2 when f < t− 1
and f + 1 when f ≥ t− 1 (e.g., [106, 246, 411]). By an abuse of notation, this lower bound is

usually denoted min(f + 2, t+ 1) (the special case is when f = t− 1).

Bibliographic Notes11.6.



Chapter 11. Expediting Decision

in Synchronous Systems with Process Crash Failures 213

• The notion of unbeatability is from [209] (where it is called optimality). Knowledge theory is

developed in [152]. The unbeatable binary consensus predicate and the associated algorithm

are due to A. Castañeda, Y. Gonczarowski, and Y. Moses [92]. The presentation adopted in

Section 11.2 is from [99].

It is shown in [302] that there is no “all cases” optimal predicate for early deciding consensus.

A similar unbeatability result presented in [141] holds for the non-blocking atomic commit

problem [192, 193]. This problem will be the topic addressed in Chap. 13)

• The condition-based approach was introduced by A. Mostéfaoui, S. Rajsbaum and M. Raynal

in [313], where it is shown that x-legality is a necessary and sufficient property to solve consen-

sus in an asynchronous system prone to up to x process crashes.

• The condition-based approach was extended to synchronous system by the same authors in [314]

where is presented the hierarchy of conditions for synchronous systems.

This paper also presents an early deciding condition-based consensus algorithm that does not

require that the input vector always belongs to the x-legal condition C it is instantiated with.

This algorithm directs the processes to decide in at most min(f +2, t+1− x) rounds in all the

executions whose input vector I belongs to C, and in at most min(f +2, t+1) rounds if I /∈ C.

• The condition-based approach was extended to the interactive consistency problem in [315].

• The relation between agreement problems and error-correcting codes is due to R. Friedman, A.

Mostéfaoui, S. Rajsbaum, and M. Raynal [167]. More developments on the condition-based

approach to solve agreement problems can be found in [238, 239, 316, 318, 420].

• Failure detectors were introduced by T. Chandra, V. Hadzilacos, and S. Toueg in [101, 102],

where they are used to circumvent the impossibility to solve consensus in asynchronous systems

prone to process crash failures [162]. Introductory surveys to failure detectors can be found in

[195, 365].

• Fast failure detectors were introduced by M. Aguilera, G. Le Lann, and S. Toueg in [19] along

with the algorithms presented in this chapter.

11.7 Exercises and Problems

1. Prove the early deciding consensus algorithm described in Fig. 11.3.

2. Let us consider the unbeatable binary consensus algorithm described in Fig. 11.7.

• Let lgri be the value of the graph lgi at the end of round r. Prove (by induction) that lgri
captures the causal past of pi at the end of round r (round invariant of the algorithm in

Fig. 11.7).

• With the help of the previous round invariant, prove the CC-agreement property of the

unbeatable algorithm described in Fig. 11.7.

3. Prove that the condition Cx
first defined in Section 11.3.2 is x-legal. Show it is not maximal.

Solution in [313].


	Chapter 11: Expediting Decision in Synchronous Systems Prone to Process Crash Failures
	11.1 Early Deciding and Stopping Interactive Consistency
	11.1.1 Early Deciding vs Early Stopping
	11.1.2 An Early Decision Predicate
	11.1.3 An Early Deciding and Stopping Algorithm
	11.1.4 Correctness Proof
	11.1.5 On Early Decision Predicates
	11.1.6 Early Deciding and Stopping Consensus

	11.2 An Unbeatable Binary Consensus Algorithm
	11.2.1 A Knowledge-Based Unbeatable Predicate
	11.2.2 PREF0() with Respect to DIFF()
	11.2.3 An Algorithm Based on the Predicate PREF0(): CGM
	11.2.4 On the Unbeatability of the Predicate PREF0()

	11.3 The Synchronous Condition-based Approach
	11.3.1 The Condition-based Approach in Synchronous Systems
	11.3.2 Legality and Maximality of a Condition
	11.3.3 Hierarchy of Legal Conditions
	11.3.4 Local View of an Input Vector
	11.3.5 A Synchronous Condition-based Consensus Algorithm
	11.3.6 Proof of the Algorithm

	11.4 Using a Global Clock and a Fast Failure Detector
	11.4.1 Fast Perfect Failure Detectors
	11.4.2 Enriching the Synchronous Model to Benefit from a Fast Failure Detector
	11.4.3 A Simple Consensus Algorithm Based on a Fast Failure Detector
	11.4.4 An Early Deciding and Stopping Algorithm

	11.5 Summary
	11.6 Bibliographic Notes
	11.7 Exercises and Problems




