
Chapter 10

Consensus and Interactive Consistency

in Synchronous Systems

Prone to Process Crash Failures

This first chapter on agreement in synchronous systems focuses on the consensus and interactive con-

sistency (also called vector consensus) agreement abstractions. It first defines these abstractions, and

presents algorithms that build them in the presence of any number of process crashes in the system

model CSMPn,t[∅]. All these algorithms are round-based (as defined in the system model). The chap-

ter also shows that (t+ 1) is a lower bound on the number of rounds for any algorithm implementing

these abstractions in the system model CSMPn,t[∅].

Keywords Agreement, Binary vs multivalued, Atomic crash, Atomic round, Consensus, Conver-

gence, Hamming distance, Interactive consistency, Lower bound, Process crash failure, Round-based

algorithm, Uniformity, Valence, Vector consensus, Synchronous system.

10.1 Consensus in the Crash Failure Model

10.1.1 Definition

Consensus in the process crash failure model The consensus problem is one of the most celebrated

problems of fault-tolerant distributed computing. It abstracts a lot of problems where – in one way

or another – processes have to agree. This problem can be captured by a distributed object, i.e., a

distributed agreement abstraction defined as follows.

The consensus abstraction provides the processes with a single operation denoted propose() which

takes a value as an input parameter, and returns a value. If a process pi invokes propose(vi) and obtains

the value w, we say “pi proposes vi”, and “pi decides w”. This agreement abstraction is defined by

the following properties, where CC stands for consensus in the crash failure model. The definition is

the same for both the synchronous model CSMPn,t[∅] and the asynchronous model CAMPn,t[∅]. It

is assumed that all processes invoke the operation propose() (hence, this is a one-shot operation).

• CC-validity. A decided value is a proposed value.

• CC-agreement. No two processes decide different values.

• CC-termination. Each correct process decides a value.

The CC-validity and CC-agreement properties define the safety property of consensus. CC-validity

relates the outputs to the inputs (the output is not a predefined value, which would make the problem

trivial and not application-relevant), and CC-agreement defines the quality of the output (there is a

© Springer Nature Switzerland AG 2018
M. Raynal, Fault-Tolerant Message-Passing Distributed Systems,
https://doi.org/10.1007/978-3-319-94141-7_

173

10

https://doi.org/10.1007/978-3-319-94141-7_
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94141-7_10&domain=pdf

174 10.1. Consensus in the Crash Failure Model

single decided value). CC-termination is a liveness property stating that the invocation of propose()
by a correct process always terminates.

Consensus objects are one-shot objects. This means that, if CONS is a consensus object, a process

invokes CONS .propose() once (if it does not crash before the invocation).

Consensus as an input vector/output vector relation Fig. 1.5 (Section 1.3) has shown that some

distributed computing problems can be captured as an input/output relation on vectors of size n, where

the input vector I is such that I[i] represents the input of pi, and the output vector O is such that O[i]
represents the output of pi.

The consensus abstraction can be expressed in terms of such a relation. An input vector I is the

vector containing the values proposed by the processes. Given an input vector I , several output vectors

O are possible. Those are the vectors containing the same value v in all their entries, where v is any

value present in the input vector I .

Uniform vs non-uniform consensus The previous definition is sometimes called uniform consen-

sus, in the sense that it does prevent a process that decides and then crashes from deciding differently

from the correct processes. A weaker version of the problem, called non-uniform consensus, allows

a process that crashes to decide differently from the other processes. It is defined by the same CC-

validity and CC-termination properties plus the following weaker agreement property.

• Non-uniform CC-agreement. No two correct processes decide different values.

More generally, when considering the process crash failure model, a uniform property directs any

process that crashes to behave as a correct process (before crashing). In the case of consensus, it is not

because a process crashes after having decided that it is allowed to decide a value different from the

one decided by the correct processes.

In the following, except when explicitly indicated, we always consider uniform properties.

Lower bound As we will see, consensus can be solved in the synchronous crash failure model for

any value t < n, i.e., in the unconstrained system model CSMPn,t[∅].

Binary vs multivalued consensus Let V be the set of values that can be proposed to a consensus

object. If |V| = 2, the consensus is binary. In this case, it is usually considered that V = {0, 1}. If

|V| > 2, the consensus is multivalued. In this case, the set V can be finite or infinite.

10.1.2 A Simple (Unfair) Consensus Algorithm

A simple consensus algorithm A process pi invokes the operation propose (vi) where vi is the value

it proposes. It terminates when it executes the statement return(v) and v is then the value it decides.

The principle of the algorithm is pretty simple. As at most t processes may crash (model assump-

tion), any set of (t+1) processes contains at least one correct process. (If more than t processes crash,

we are outside the model. In that case there is no guarantee. More generally, if an algorithm is used

in a more severe failure model than the one it is intended for, it is allowed to behave arbitrarily.) It

follows that taking any set of (t + 1) processes we can always rely on one of them to ensure that a

single value is decided.

The corresponding algorithm is described in Fig. 10.1. Each process manages a local variable esti
that contains its estimate of the decision value; esti is consequently initialized to vi (line 1). Then, the

processes execute synchronously (t + 1) rounds (line 2), each round being coordinated by a process,

namely, round r is coordinated by process pr. The coordinator of round r broadcasts its current

estimate (message EST(), line 4). Let us notice that, as a round is coordinated by a single process,

there is at most one value broadcast per round. During a round, a process pi updates its estimates esti

Chapter 10. Consensus and Interactive Consistency

in Synchronous Systems Prone to Process Crash Failures 175

if it receives the current estimate of the current round coordinator (line 5). Finally, at the end of the

last round, pi decides (returns) the current value of its estimate esti.

operation propose (vi) is

(1) esti ← vi;
(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) if (i = r) then broadcast EST(esti) end if;

(5) if (EST(v) received during round r) then esti ← v end if;

(6) if (r = t+ 1) then return(esti) end if

(7) end synchronous round.

Figure 10.1: A simple (unfair) t-resilient consensus algorithm in CSMPn,t[∅] (code for pi)

Theorem 39. Let 1 ≤ t < n. The algorithm described in Fig. 10.1 solves the consensus problem in

the system model CSMPn,t[∅].

Proof The CC-validity property (a decided value is a proposed value) is trivial. The CC-termination

property (every correct process decides) is an immediate consequence of the synchrony assumption:

the system automatically progresses from one round to the next one (with the guarantee that the mes-

sages sent in a round are received in the very same round).

The CC-agreement property (no two processes decide differently) is an immediate consequence

of the following observation. Due to the assumption on the maximum number t of processes that may

crash, there is at least one round that is coordinated by a correct process. Let pc be such a process.

When r = c, pc sends its current estimate estc = v to all the processes, and any process pj that has not

crashed updates estj to v. It follows that all the processes that have not crashed by the end of round r
have their estimates equal to v, and consequently no other value can be decided. �Theorem 39

Time and message complexities The algorithm requires (t + 1) rounds. Moreover, at most one

message is broadcast at each round, i.e., (n−1) messages. Let b be the bit size of the proposed values.

The bit complexity is consequently (n− 1)(t+ 1)b.

Unfairness with respect to proposed values While correct, the previous algorithm has the follow-

ing “drawback”: for any j ∈ {(t + 1), . . . , n}, there is no run in which the value vj proposed by pj
can be decided (if vj is not a value proposed by a coordinator process). In that sense, the algorithm is

unfair.

This unfairness can be eliminated by adding a preliminary shuffle round (r = 0) during which

the processes exchange their values. This is done by inserting the statements “broadcast EST(esti);
esti ← any estimate value received” between line 1 and line 2. This makes the algorithm fair, but is

obtained at the additional cost of one round.

10.1.3 A Simple (Fair) Consensus Algorithm

Let us remember that the input vector of a given a run is the size n vector such that, for any j, its j-th

entry contains the value proposed by pj . No process pi initially knows this vector, it only knows the

value it proposes to that consensus instance.

Principle of the algorithm The idea is for a process to decide, during the last round, a value accord-

ing to a deterministic rule among all the values it has seen. An example of a deterministic rule is to

select the smallest value. This is the rule we consider here. This value is kept in the local variable esti
(initialized to vi, the value proposed by pi).

176 10.1. Consensus in the Crash Failure Model

Let us observe that, if a process pi does not crash and proposes the smallest input value, that value

will be decided whatever the values proposed by the other processes. Hence, for any process pi, there

are (a) input vectors in which no two processes propose the same value, and (b) failure patterns, such

that the value proposed by pi is decided in the current run. The algorithm is fair in that sense.

The algorithm is described in Fig. 10.2. The processes execute (t+1) synchronous rounds (line 2).

The idea is for a process pi to broadcast the smallest estimate value it has ever received during each

round. But a simple observation shows that this is required only if its estimate became smaller during

the previous round (line 4). To this end, pi manages a local variable denoted prev esti that contains

the smallest value it has previously sent (line 6). This variable is initialized to the default value ⊥ (a

value that cannot be proposed to the consensus by the processes).

During a round r, the set recvali contains the estimate values received by pi during the current

round r (line 5). Due to the synchrony assumption, it contains all estimate values sent to pi during this

round. Before proceeding to the next round, pi updates esti (line 7). If r is the last round (r = t+ 1),

pi decides by invoking return(esti) (line 8).

operation propose (vi) is

(1) esti ← vi; prev esti ← ⊥;

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) if (esti �= prev esti) then broadcast EST(esti) end if;

(5) let recvali = {values received during round r};

(6) prev esti ← esti;
(7) esti ← min(recvali ∪ {esti});
(8) if (r = t+ 1) then return(esti) end if

(9) end synchronous round.

Figure 10.2: A simple (fair) t-resilient consensus algorithm in CSMPn,t[∅] (code for pi)

Theorem 40. Let 1 ≤ t < n. The algorithm described in Fig. 10.2 solves the consensus agreement

abstraction in the system model CSMPn,t[∅].

Proof As in the previous algorithm, the CC-validity and CC-termination properties are trivial. Hence,

we consider only the CC-agreement property.

If a single process decides (we have then t = n− 1 and t processes crash), the agreement property

is trivially satisfied. Hence, let us suppose that at least two processes pi and pj decide. Moreover, let

us assume that pi decides v, and pj decides v′. We show that v = v′. Assuming process px has not

crashed by the end of round r, let estrx denote the value of estx at the the end of round r.

As both pi and pj decide, both execute t + 1 rounds. Let us consider pi. It “learns” (receives for

the first time) the value v at some round r (with r = 0 if v = vi the value proposed by pi itself). As pi
decides v = estri and esti cannot increase, we have estri = · · · = estt+1

i . There are two cases.

• Case 1: r < t + 1 (r is not the last round, and consequently r + 1 does exist). In this case, pi
broadcast EST(v) during round r+ 1 ≤ t+ 1. As pj executes the round r+ 1, it receives v and

we have estr+1
j ≤ v. As estj never increases, we have estt+1

j ≤ v.

• Case 2: r = t+1. In this case, pi learns v at round t+1 and there are no more rounds to forward

v to the other processes. As (a) a process broadcasts a value v at most once, and (b) pi receives v
for the first time at round (t+1), it follows that v has been forwarded (broadcast) along a chain

of (t+1) distinct processes. Due to the model assumption, at least one of these (t+1) processes

(say px) is correct. As it is correct, px broadcast EST(v) during a round r, 1 ≤ r ≤ t + 1. (Let

us also observe that we necessarily have r = t + 1, otherwise pi would have received EST(v)
before the last round.) This is depicted on Fig. 10.3 where t = 3, each arrow is associated with

a message EST(v), and a cross indicates the crash of the corresponding process. It follows that

all processes that execute round r are such that estrj ≤ v, and consequently estt+1
j ≤ v.

Chapter 10. Consensus and Interactive Consistency

in Synchronous Systems Prone to Process Crash Failures 177

pj

round 1 round t round t + 1

px

pi

Figure 10.3: The second case of the agreement property (with t = 3 crashes)

As v = estt+1
i , it follows that we have estt+1

j ≤ estt+1
i . A symmetry argument where pi and pj are

exchanged allows us to conclude that estt+1
j ≤ estt+1

i . Hence, estt+1
j = estt+1

i , which concludes the

proof of the theorem. �Theorem 40

Time and message complexities As with the previous algorithm, this algorithm requires (t + 1)
rounds.

During a round, a process send at most (n − 1) messages (we do not count the message it sends

to itself), and each message is made up of b bits. Moreover, due to the fact that a process sends an

estimate value only if it is smaller than the previous one, a process issues at most min(t + 1, |V|)
broadcasts, where V is the set of values that are proposed. It follows that the bit complexity of the

algorithm is upper bounded by n(n− 1)b×min(t+ 1, |V|).
Interestingly, in the case of binary consensus we have b = 1 and |V| = 2. The bit complexity is

then 2n(n− 1).

10.2 Interactive Consistency (Vector Consensus)

While consensus is an agreement abstraction on a value proposed by the processes, interactive consis-

tency is agreement abstraction where the processes agree on the input vector of the proposed values.

This is why it is sometimes named vector consensus.

10.2.1 Definition

Similar to consensus each process proposes a value. As just indicated, the processes now have to agree

on the vector of proposed values. A process can crash before or while it is executing the algorithm. In

this case, its entry in the decided vector can be ⊥. More precisely, interactive consistency in the crash

failure model (ICC) is defined by the following properties.

• ICC-validity. Let Di[1..n] be the vector decided by a process pi. ∀ j ∈ [1..n] : Di[j] ∈ {vj ,⊥}
where vj is the value proposed by pj . Moreover, Di[j] = vj if pj is correct.

• ICC-agreement. No two processes decide different vectors.

• ICC-termination. Every correct process decides on a vector.

Let us notice that, if Di[j] = ⊥ and pi is correct, it knows that pj crashed. Whereas, if Di[j] �= ⊥, pi
cannot conclude that pj is correct.

It is easy to see solve consensus from interactive consistency. As all the processes that decide

obtain the same vector, they can use the same deterministic rule to select one of its non-⊥ values.

However, interactive consistency cannot be solved from consensus. This is because, the value decided

by a consensus instance is the value proposed by any process. It follows that, in the system model

178 10.2. Interactive Consistency (Vector Consensus)

CSMPn,t[∅], interactive consistency is a stronger (from a commputability point of view) abstraction

than consensus.

10.2.2 A Simple Example of Use: Build Atomic Rounds

Atomic round: definition The crash of a process pi during a round r is atomic if the message that

pi is assumed to broadcast during this round is received by none or all its (non-crashed) destination

processes. If during a round, all crashes are atomic, the round is an atomic round.

Let the synchronous atomic round-based model be the basic model CSMPn,t[∅], in which:

• each process broadcasts a message at every round, and

• all crashes are atomic (i.e., all rounds are atomic).

Such a synchronous model simplifies drastically the design of distributed synchronous algorithms.

This is because it follows from the previous behavioral properties that all the processes that terminate

a round r received exactly the same messages during every round r′, 1 ≤ r′ ≤ r.

From interactive consistency to the atomic round-based model It is consequently worth design-

ing an algorithm that simulates the atomic round-based model on top of the base synchronous model

CSMPn,t[∅]. Among its many applications, this is exactly what is done by interactive consistency.

The simulation is as follows. Assuming that each process pi broadcasts a message during each

round, let us call ρ the rounds in the atomic round-based model. Considering any round ρ, let mρ
i

be the message broadcast by pi during this round of the atomic round-based model. The send and

receive phases of such a round ρ are implemented by an interactive consistency instance where mρ
i is

the value proposed by process pi to this instance. It follows from its specification that all the processes

that terminate the interactive consistency instance associated with round ρ of the atomic round-based

model, obtain the very same vector D[1..n], such that D[j] ∈ {mρ
j ,⊥} and is mρ

j if pj has not crashed

by the end of this interactive consistency instance. Hence, as we are about to see, each round ρ of the

atomic round-based model can be implemented with (t + 1) rounds of the underlying synchronous

round-based model CSMPn,t[∅].

10.2.3 An Interactive Consistency Algorithm

Principle of the algorithm The interactive consistency algorithm presented in Fig. 10.4 is based on

the same principle as the consensus algorithm described in Fig. 10.2, namely, at every round, each

process broadcasts what it learned during the previous round, which is now a set of pairs 〈 process id,

proposed value〉.
Given a process pi, the local variable viewi represents its current knowledge of the values proposed

by the other processes, more precisely, viewi[k] = v means that pi knows that pk proposed value v,

while viewi[k] = ⊥ means that pi does not know the value proposed by pk. Initially, viewi contains

only ⊥s, but its ith entry contains vi (line 1).

In order to forward the value of a process only once, the algorithm uses pairs 〈k, v〉 to denote that

“pk proposed value v”. The local variable newi is a (possibly empty) set of such pairs 〈k, v〉. At the

end of a round r, newi contains the new pairs that pi learned during this round (lines 9-13). Hence,

initially newi = {〈i, vi〉} (line 1).

• Send phase (line 4). The behavior of a process pi is simple. When it starts a new round r, pi
broadcasts EST(newi), if newi �= ∅, to inform the other processes of the pairs it has learned

during the previous round.

• Receive phase (lines 5-7). Then, pi receives round r messages and saves their values in the local

array recfromi [1..n]. Let us observe that it is possible that a process receives no message at

some rounds.)

Chapter 10. Consensus and Interactive Consistency

in Synchronous Systems Prone to Process Crash Failures 179

• Local computation phase (lines 8-14). After having reset newi, pi updates its array viewi ac-

cording to the pairs it has received. Moreover, if pi learns (i.e., receives for the first time) a pair

〈k, v〉 during the current round, it adds it to the set newi. Finally, if r is the last round, pi returns

viewi as the vector it decides on.

operation propose (vi) is

(1) viewi ← [⊥, . . . ,⊥]; viewi[i] ← vi; newi ← {〈i, vi〉};

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) if (newi �= ∅) then broadcast EST(newi) end if;

(5) for each j ∈ {1, . . . , n} \ {i} do

(6) if (newj received from pj) then recfromi [j] ← newj else recfromi [j] ← ∅ end if;

(7) end for;

(8) newi ← ∅;

(9) for each j such that (j �= i) ∧ (recfromi [j] �= ∅) do

(10) for each 〈k, v〉 ∈ recfromi [j] do

(11) if (viewi[k] = ⊥) then viewi[k] ← v; newi ← newi ∪ {〈k, v〉} end if

(12) end for

(13) end for;

(14) if (r = t+ 1) then return(viewi) end if

(15) end synchronous round.

Figure 10.4: A t-resilient interactive consistency algorithm in CSMPn,t[∅] (code for pi)

10.2.4 Proof of the Algorithm

It would be possible to prove that the previous algorithm satisfies the ICC-agreement property using

the same reasoning as in the proof of Theorem 40, i.e., considering the case where a process learns a

pair 〈k, v〉 for the first time during the last round or a previous round. A different proof is given here.

This proof is an immediate consequence of Lemma 38 that follows.

The interest of this lemma lies in the fact that it captures a fundamental property associated with

the round-based synchronous model where, during each round r, each process (that has not crashed)

forwards the values that it has learned during round r−1 (if any). The lemma captures the intuition that

the “distance” separating the local views of the input vector (as perceived by each process) decreases

as rounds progress. To this end, given two vectors viewi and viewj , let dist(viewi, viewj) denote the

Hamming distance separating these vectors, namely, dist(viewi, viewj) = |{x such that viewi[x] �=
viewj [x]}| (number of entries where the vectors differ).

Lemma 38. Let 1 ≤ t < n, 1 ≤ r < t + 1, pi and pj be two processes not crashed at the end

of round r, and viewr
i and viewr

j the value of viewi and viewj at the end of round r. We have

dist(viewr
i , view

r
j) ≤ t− (r − 1).

Proof Let δ(r) be the maximal Hamming distance between the vectors of any two processes not

crashed by the end of round r. We have to show that δ(r) ≤ t− (r − 1).

Claim C. Let r be a failure-free round, and pi and pj any two processes that have not crashed by the

end of round r. We have δ(r′) = 0 for r ≤ r′ ≤ t+ 1.

Proof of the claim. Let us first observe that, at each round r′′ such that 1 ≤ r′′ ≤ r, both pi and pj send

to the other every new value it has learned during the round r′′ − 1 (Observation O1). Moreover, as

no process crashes during round r, pi and pj have received the same set of messages during that round

(Observation O2). It follows from O1 and O2 that viewi and viewj are equal at the end of round r.

As pi and pj are any pair of processes that terminate round r, it follows that δ(r) = 0. Moreover, as

from round r no process can learn new values, we trivially have δ(r′) = 0 for r ≤ r′ ≤ t+ 1. End of

180 10.2. Interactive Consistency (Vector Consensus)

proof of the claim.

The proof of the lemma considers the failure pattern in the worst case scenario in which t processes

crash. Let c ≥ 1 be the number of processes that have crashed by the end of the first round. The worst

situation is when, at the end of the first round, a process pi has received all the proposed values (i.e.,

viewi contains only non-⊥ values), while another process pj has received only n− c proposed values

(i.e., viewj has c entries equal to ⊥). It follows that δ(1) ≤ c. From then on, no two vectors can differ

in more than c entries, and consequently we have δ(r) ≤ c for 1 ≤ r ≤ t+ 1. The rest of the proof is

a case analysis, according to the value of r.

• The first case considers the rounds 1 ≤ r ≤ t+ 1− c.
As r ≤ t + 1 − c ≡ c ≤ t − (r − 1), it follows from δ(r) ≤ c for 1 ≤ r ≤ t + 1, that

δ(r) ≤ c ≤ t − (r − 1) for the rounds 1 ≤ r ≤ t + 1 − c, which proves the lemma for these

rounds.

• The second case considers the remaining rounds t+ 1− c < r ≤ t+ 1.

By the end of the first round, c processes have crashed. The worst case scenario for the next

rounds r, 1 ≤ r ≤ t+ 1− c, is when there is a crash per round. Otherwise, due to Claim C, we

would have δ(r′) = 0 from the first round r′, 1 ≤ r′ ≤ t+1− c, during which there is no crash.

Round number r 1 2 . . . r′ . . . t+ 1− c

Number of crashes during r c 1 . . . 1 . . . 1
Total number of crashes c c+ 1 . . . c+ (r′ − 1) . . . t

Table 10.1: Crash pattern

In this worst case, we can conclude that there are no more crashes after the round t + 1 − c.
This is because there are at most t crashes, c before the end of the first round and then one crash

per round from round r = 2 until round r = t + 1 − c. This is depicted in Table 10.1. It then

follows from Claim C that δ(r′) = 0 for t + 1 − c < r′ ≤ t + 1, which concludes the proof of

the lemma.

�Lemma 38

Theorem 41. Let 1 ≤ t < n. The algorithm described in Fig. 10.4 implements the interactive

consistency agreement abstraction in the system model CSMPn,t[∅].
Proof The ICC-termination property follows directly from the message synchrony assumption of the

synchronous model: if a process does not crash, it necessarily progresses until round t+ 1. The ICC-

agreement property follows from Lemma 38: at round t = t+1 we have dist(viewt+1
i , viewt+1

j) = 0.

The ICC-validity property states that the vector viewi[1..n] decided by a process pi is such that (a)

viewi[k] ∈ {vk,⊥} where vk is the value proposed by pi, and (b) viewi[k] = vk if pk is correct. Let

us assume that pk is correct. It follows from the algorithm that pk broadcasts EST({〈k, vk〉}) during

the first round. Due to the synchrony assumption and the reliability of the communication channels,

process pi receives this message (line 6). Then pi updates accordingly viewi[k] to vk (line 11). Finally,

let us observe that, due to the test of line 11, any entry viewi[x] is set at most once. Consequently

viewi[k] remains forever equal to vk, which concludes the proof of the validity property. �Theorem 41

Time and message complexities As for the previous algorithms, this algorithm requires (t + 1)
rounds. A pair 〈k, v〉 requires b + log2 n bits (where b is the number of bits needed to encode a

proposed value). As a process broadcasts a given pair 〈k, v〉 at most once, the bit complexity of the

algorithm is upper bounded by n2(n − 1)(b + log2 n) bits (assuming a process does not physically

send messages to itself).

Chapter 10. Consensus and Interactive Consistency

in Synchronous Systems Prone to Process Crash Failures 181

From interactive consistency to consensus Consensus can easily be solved as soon as one has an

algorithm solving interactive consistency. As the processes that decide in the interactive consistency

agreement abstraction decide the very same vector, they can use the same deterministic rule to extract a

non-⊥ value from this vector (e.g., the first non-⊥ value or the greatest value, etc.). The only important

point is that they all use the same deterministic rule.

10.2.5 A Convergence Point of View

This section gives another view on the way the algorithm works. Let VIEW r[1..n] be the vector of

proposed values collectively known by the set of processes that terminate round r. More explicitly,

VIEW r[i] = vi (the value proposed by pi) if ∃ k such that viewr
k[i] = vi, otherwise VIEW r[i] = ⊥.

This means that VIEW r[1..n] is the “union” of the local vectors viewk[1..n] of the processes pk that

terminate round r. This vector represents the knowledge on “which processes have proposed which

values” that an external omniscient observer could have, which would see inside all processes that

terminate round r.

Definition (V 1 ≤ V 2)
def
= ∀x ∈ [1..n] : (V 1[x] �= ⊥) ⇒ (V 1[x] = V 2[x]).

The algorithm satisfies the following properties.

Property 1. ∀r ∈ [0..t] : VIEW r+1 ≤ VIEW r.

This property follows from the fact that crashes are stable (once crashed, a process never recovers).

It states that global knowledge cannot increase.

Property 2. ∀i ∈ [1..n] : ∀r ∈ [1..t+ 1] : viewr
i ≤ viewr+1

i .

This property follows from the fact that no value is ever withdrawn by a process pi from its local

array viewi. It states that local knowledge of a process can never decrease.

Property 3. ∀i ∈ [1..n] : ∀r ∈ [1..t+ 1] : viewr
i ≤ VIEW r.

This property states that, at the end of any round r, a process cannot know more than what is

known by the whole set of processes still alive at the end of the round.

The interactive consistency algorithm, based on the fact that global knowledge cannot increase and

local knowledge cannot decrease, is a distributed algorithm that directs the processes to converge to

the same vector VIEW t+1.

10.3 Lower Bound on the Number of Rounds

This section shows that, when considering the synchronous crash-prone model CSMPn,t[∅], any

round-based consensus algorithm that copes with t process crashes requires at least (t + 1) rounds.

This means that there is no algorithm that always solves consensus in at most t rounds (“always”

means “whatever the failure pattern, defined as the subset of processes that crash and the time instants

at which they crash”).

As any algorithm that implements the interactive consistency agreement abstraction can be used to

solve consensus, it follows that (t + 1) is also a lower bound on the number of rounds for interactive

consistency. Moreover, as both consensus and interactive consistency algorithms presented in this

chapter do not direct the processes to execute more than (t+1) rounds, it follows that they are optimal

with respect to the number of rounds.

This lower bound was first proved by M. Fischer and N. Lynch (1982). The following section

presents a proof of it, which is due to M. Aguilera and S. Toueg (1999). The notion of valence used in

the proof is due to M. Fischer, N.A. Lynch, and M.S. Paterson (1985).

182 10.3. Lower Bound on the Number of Rounds

10.3.1 Preliminary Assumptions and Definitions

Assumptions

• It is assumed that, in every round, each process broadcasts a message to all processes.

It is easy to see this assumption does not limit the generality of the result. This is because, it is

always possible to modify a round-based algorithm in order to obtain an equivalent algorithm

using such a sending pattern. If during a round, a process sends a message m to a subset of the

processes only, that message can carry the set of its destination processes and, when a process

pj receives m, it discards it if is is not a destination process.

• The lower bound proof considers the following assumptions. It is easy to see that, like the

previous one, none of them limits the generality of the result.

– The proof considers binary consensus.

– The proof assumes that at least two processes do not crash (i.e., t < n− 1).

– The proof assumes that there is one crash per round.

– The proof considers the non-uniform version of consensus that is weaker than consensus

(it requires only that no two correct processes decide different values).

Global state, valence, and k-round execution

• Considering an execution of a synchronous round-based algorithm A (a run), the global state

at the end round r is made up of the state of each process at the end of this round (if a process

crashed, its local state indicates the round at which it crashed).

Let us notice that the global state at the end of a round is the same as the global state at the

beginning of the next round. Only these global states need to be considered in the proof that

follows. (A global state is sometimes called a configuration.)

Given an initial global state and a failure pattern, the execution of an algorithm A gives rise to a

sequence of global states.

• Let S be a global state obtained during the execution of a binary consensus algorithm A.

– S is 0-valent (resp., 1-valent), if whatever the global states produced by A after S, the

value 0 (resp., 1) only can be decided.

– S is univalent if it is 0-valent or 1-valent.

– S is bivalent if it not univalent.

• A k-round execution Ek of an algorithm A is an execution of A up to the end of round k.

Let Sk be the corresponding global state. Ek is 0-valent, 1-valent, univalent or bivalent if Sk is

0-valent, 1-valent, univalent or bivalent, respectively.

10.3.2 The (t+ 1) Lower Bound

Theorem 42. Let t < n− 1. Let us assume that at most one process crashes in each round. There is

no round-based algorithm that solves binary consensus in t rounds in the system model CSMPn,t[∅].
Proof The proof is by contradiction. It supposes that there is an algorithm A that solves binary

consensus in t rounds, in the presence of t process crashes (one per round). The proof follows from

the two following lemmas that are proved in the next section.

• Lemma 39 shows that any (t− 1)-round execution Et−1 of A is univalent.

• Lemma 41 shows that A has a (t− 1)-round execution Et−1 that is bivalent.

These two lemmas contradict each other, thereby proving the impossibility for A to terminate in t
rounds. Hence the (t+ 1) lower bound. �Theorem 42

Chapter 10. Consensus and Interactive Consistency

in Synchronous Systems Prone to Process Crash Failures 183

10.3.3 Proof of the Lemmas

Lemma 39. Any (t− 1)-round execution Et−1 of A is univalent.

Proof The proof is by contradiction. Let us assume that A has a bivalent (t − 1)-round execution

Et−1. Let us consider the following three one-round extensions of Et−1 (Fig. 10.5).

E1
t : 1-valent

E01
t

E0
t : 0-valent

no crash

Et−1: bivalent

(St−1)

pi crashes and pj does not receive from pi

pi crashes and pj receives from pi

Figure 10.5: Three possible one-round extensions from Et−1

• Let E0
t be the t-round execution obtained by extending Et−1 by one round in which no process

crashes. As (by assumption) A terminates in t rounds, the correct processes decide by the end

of round t of E0
t . Let us suppose that they decide the value 0.

• As Et−1 is bivalent (contradiction assumption), it follows that it has a one-round extension E1
t

in which the correct processes decide 1.

Let us observe that in round t of E1
t exactly one process (say pi) crashes. (At least one process

crashes because otherwise E0
t and E1

t would be identical, and at most one process crashes

because there is at most one crash per round.)

Moreover, pi must crash before sending its round t message to at least one correct process pj ,
otherwise pj would be unable to distinguish E0

t from E1
t and would consequently decide the

same value in both executions.

• Let us now consider the one-round extension E01
t that is identical to E1

t except that pi sends its

round t message to pj . (This means the only difference between E01
t and E1

t lies in the round t
message from pi to pj that pj receives in E01

t and does not in E1
t .)

Let pk be a correct process different from pj (such a process exists because t < n− 1). We then have

the following:

1. The correct process pj cannot distinguish between E0
t and E01

t . This is because, from its local

state in St−1 (its local state at the end of execution Et−1), process pj has received the same

messages during the last round in both E0
t and E01

t . Hence, it has to decide the same value in

both executions. As it decides 0 in E0
t , it has to decide 0 in E01

t .

2. The correct process pk cannot distinguish between E1
t and E01

t . This is because (as previously

for pj) from its local state in St−1, it has received the same messages during the last round in

both E1
t and E01

t . Hence, it has to decide the same value in both executions. As it decides 1 in

E1
t , it has to decide 1 in E01

t .

It follows that, while both pj and pk are correct in E01
t , they decide differently, which contradicts

the consensus agreement property and concludes the proof of the lemma. �Lemma 39

Lemma 40. The algorithm A has a bivalent initial global state (or equivalently a bivalent 0-round

execution).

184 10.3. Lower Bound on the Number of Rounds

Proof The proof is by contradiction. Assuming that there is no bivalent initial global state, let S0 be

the set of all 0-valent initial global states and S1 be the set of all 1-valent initial global states. As only

0 (resp., 1) can be decided when all processes propose 0 (resp., 1) the set S0 (resp., S1) is not empty.

As these sets are not empty there must be two global states S[0] ∈ S0 and S[1] ∈ S1 that differ only

in the value proposed by one process (say pi).

Let us consider an execution E of A from S[0] in which pi crashes before taking any step. As S[0]
is 0-valent, it follows that the processes decide 0. But, as pi does not participate in E, exactly the same

execution can be produced from S[1], and in this case the processes have to decide 1. In the execution

E, no process can determine whether if the initial global state is S[0] or S[1]. Consequently they have

to decide the same value if E is executed from S[0] or S[1], contradicting the fact that S[0] is 0-valent

while S[1] is 1-valent. �Lemma 40

Lemma 41. The algorithm A has a bivalent (t− 1)-round execution.

Proof The proof shows that for each k, 0 ≤ k ≤ t − 1, there is a bivalent k-round execution Ek. It

is based on an induction on k. The base case k = 0 is exactly what is proved by Lemma 40, namely,

there is a bivalent initial global state S0. The corresponding 0-round execution (in which no process

has yet executed a step) is denoted E0. So, let us consider the following induction assumption: for

each k, 0 ≤ k < t− 1, there is a bivalent k-round execution Ek.

To show that Ek can be extended by one round into a bivalent (k + 1)-round execution Ek+1, the

reasoning is by contradiction. Let us assume that every one-round extension of Ek is univalent. Let

E1
k+1 be the one-round extension of Ek in which no process crashes during this round. Without loss

of generality, let us assume that E1
k+1 is 1-valent. As Ek is bivalent, and all its one-round extensions

are univalent, it has a one-round extension E0
k+1 that is 0-valent (Fig. 10.6).

Ek: bivalent

E1
k+1: 1-valent

E0
k+1: 0-valent

pi crashes during round k + 1

no crash during round k + 1

Figure 10.6: Extending the k-round execution Ek

As (a) E1
k+1 and E0

k+1 are one-round extensions of the same k-round execution Ek, (b) they have

the different valence, and (c) no process crashes during the round k + 1 of E1
k+1, it follows that E0

k+1

is such that there is exactly one process (say pi) that crashes during round k + 1 (“exactly one” is

because at most one process crashes per round), and fails to send its round k + 1 message to some

processes, say the processes q1, . . . , qm with 0 ≤ m ≤ n (m = 0 corresponds to the case where pi
crashes before it sent its round k + 1 message to any process).

Starting from E0
k+1, let us define a sequence of one-round extensions of Ek such that (see Ta-

ble 10.2):

• Ek+1[0] is E0
k+1 (hence, Ek+1[0] is 0-valent), and

• ∀ j, 0 < j ≤ m, Ek+1[j] is identical to Ek+1[j − 1] except that pi crashes after it has sent its

round k + 1 message to qj . It is follows from this definition that pi has sent its round k + 1
message to the processes q1, . . . , qj .

As by assumption all one-round extensions of Ek are univalent, Ek+1[0], etc., until Ek+1[m] are

univalent.

Claim C. ∀ j, 0 ≤ j ≤ m, Ek+1[j] is 0-valent.

Proof of the claim. The proof is by induction. As Ek+1[0] is 0-valent, the claim follows for j = 0.

Chapter 10. Consensus and Interactive Consistency

in Synchronous Systems Prone to Process Crash Failures 185

(k + 1)-round execution round k + 1 message from pi
not sent to the processes

Ek+1[0]
def
= E0

k+1 q1, q2, . . . , qj , qj+1, . . . , qm
Ek+1[1] q2, . . . , qj , qj+1, . . . , qm
Ek+1[j − 1] qj , qj+1, . . . , qm
Ek+1[j] qj+1, . . . , qm
Ek+1[m− 1] qm
Ek+1[m] ∅

Table 10.2: Missing messages due to the crash of pi

Hence, let us assume that all (k+1)-round executions Ek+1[], 0 ≤ 	 < j are 0-valent, while Ek+1[j]
is 1-valent. We show that it is not possible.

Let us extend (see Fig. 10.7) the 0-valent execution Ek+1[j − 1] into the execution E0
k+2 and the

1-valent execution Ek+1[j] into the execution E1
k+2 by crashing, in both executions, process qj at the

very beginning of round k + 2 (if it has not crashed before). It follows there is no round after round

k + 1 in which qj sends a message. Let us notice that, as k < t− 1, round k + 2 exists.

Ek+1[j − 1]: 0-valent E0
k+2: 0-valent

E1
k+2: 1-valentEk+1[j]: 1-valent

qj no longer alive during round k + 2

Figure 10.7: Extending two (k + 1)-round executions

Let us observe that no process that has not crashed by the end of round k+2 can distinguish E0
k+2

from E1
k+2 (any such process has the same local state in both executions). Hence, E0

k+2 and E1
k+2

are identical for the processes that terminate round k + 2. Hence, these processes have to decide both

0 (because E0
k+2 is 0-valent), and 1 (because E1

k+2 is 1-valent), which is clearly impossible. End of

proof of the claim.

It follows from the claim that Ek+1[m] is 0-valent. Let us now consider E1
k+1 that is 1-valent. The

only difference between these two (k + 1)-round executions is that pi crashes at the end of the round

(k + 1) in Ek+1[m], and does not crash during the round (k + 1) in E1
k+1. Let us construct the two

following (k + 2)-round executions (Fig. 10.8).

no more crashes

F 0
k+2: 0-valent

F 1
k+2: 1-valent

pi crashes when round k + 2 starts

E1
k+1: 1-valent

Ek+1[m]: 0-valent

and no other process crashes

Figure 10.8: Extending again two (k + 1)-round executions

• Let F 1
k+2 be the one-round extension of E1

k+1 where pi crashes when round k+2 starts and then

no other process crashes. Let us notice that F 1
k+2 is 1-valent.

• Let F 0
k+2 be the one-round extension of Ek+1[m], where no more process crashes. Let us notice

that F 0
k+2 is 0-valent.

Let us observe on the one hand that a correct process has to decide 1 from the (k+2)-round execution

F 1
k+2, and 0 from the (k + 2)-round execution F 0

k+2. On the other hand, no process executing round

186

k + 2 can distinguish if the execution is F 1
k+2 or F 0

k+2; hence, it has to decide both 0 and 1 which is

impossible. A contradiction which concludes the proof of the lemma. �Lemma 41

10.4 Summary

This chapter introduced two basic agreement abstractions, namely consensus and interactive consis-

tency (also called vector consensus). In each of them, each process proposes a value. While consensus

allows processes to agree on one of the values they propose, interactive consistency allows them to

agree on a vector, with one entry per process, such that entry i contains the value vi proposed by pi if

this process is correct, and vi or ⊥ if it is faulty. These definitions are suited to both synchronous and

asynchronous systems.

The chapter then presented round-based algorithms, that implement these agreement abstractions

in the system model CSMPn,t[∅], i.e., synchronous message-passing systems in which any number

t < n of processes may crash. It was also shown that (t+1) is a lower bound on the number of rounds

to implement these agreement abstractions in CSMPn,t[∅].

10.5 Bibliographic Notes

• The message-passing synchronous model with process crash failures was introduced in Chap. 1.

It is also presented in textbooks such as [43, 185, 271, 367]). Lots of synchronous algorithms

for failure-free systems are presented in [368].

• The consensus agreement abstraction originated in the work of L. Lamport, R. Shostask, and

M. Pease [258, 263, 342], who also defined the Byzantine failure model, the Byzantine generals

problem, and the interactive consistency agreement abstraction. These papers established lower

bounds on the number of rounds to solve this problem in the context of synchronous systems

prone to Byzantine failures and presented corresponding algorithms.

• All the algorithms presented in this chapter are based on variants of the extinction/propagation

strategy, namely, during every round, each process propagates the new values it learned during

the previous round. Similar distributed algorithms are described in many textbooks such as [43,

185, 250, 271, 362, 366, 367, 368].

• The notion of an atomic process failure is due C. Delporte, H. Fauconnier, R. Guerraoui and B.

Pochon [124].

• The (t+1) lower bound for consensus and interactive consistency was first been proved for the

Byzantine failure model in the early eighties [136, 161, 262]. Proofs customized for the process

crash failure model appeared later (e.g., in [21, 135, 143, 271, 299]). The proof presented in this

chapter is due Aguilera and Toueg [21].

• The notion of valence is due to M. Fischer, N. A. Lynch, and M. S. Paterson [162]. This notion

was introduced to prove the impossibility of consensus in the asynchronous model CAMPn,t[∅].

10.6 Exercises and Problems

1. Let us assume an algorithm A that implements interactive consistency in the asynchronous sys-

tem model CAMPn,t[∅]. Design an algorithm that builds a perfect failure detector in the system

model CAMPn,t[A] (CAMPn,t[∅] enriched with A).

Solution in [211].

2. Let CSMPn,t[SO] be the system model CSMPn,t[∅] weakened as follows: a faulty process is

a process that crashes, or a process that forgets to send messages. Hence, a faulty process can

. . Exercises and Problems10 6

Chapter 10. Consensus and Interactive Consistency

in Synchronous Systems Prone to Process Crash Failures 187

never crash, but the message it is assumed to broadcast during a round can be received by an

arbitrary subset of process. This failure model is called the send omission failure model.

Design and proof a consensus algorithm suited to the model CSMPn,t[SO].

Solution in Chapter 7 of [367].

3. Let CSMPn,t[GO] be the system model CSMPn,t[∅] weakened as follows: a faulty process is

a process that crashes, or a process that forgets to send or receive messages. This is the general

omission failure model.

• Show that the model constraint t < n/2 is a necessary condition to solve consensus in the

system model CSMPn,t[GO]. (Hint: partition the set of processes in two subsets Q1 and

Q2 of size �n2 �, and �n2 �, and consider the case where, while no process crashes, all the

processes of Q2 commit send and receive omission failures with respect to the processes

of Q1.)

Remark. The proof is based on an indistinguishability argument as already used in the

proofs of some theorems (e.g., Theorem 9 and Theorem 18).

Solution in Chapter 7 of [367].

• Design and proof a consensus algorithm for the system model CSMPn,t[GO]. As a faulty

process may not crash, and may remain isolated from the correct processes, it cannot

decide the value decided by the correct processes. In this case, it is allowed to decide a

special default value denoted ⊥. Hence, if a process, that does not crash, decides ⊥, it

knows that it is faulty.

Let us remark that the existence of such an algorithm, shows that the model constraint

t < n/2 is sufficient to solve consensus in CSMPn,t[GO].

Solution in Chapter 7 of [356].

	Chapter 10: Consensus and Interactive Consistency in Synchronous Systems Prone to Process Crash Failures
	10.1 Consensus in the Crash Failure Model
	10.1.1 Definition
	10.1.2 A Simple (Unfair) Consensus Algorithm
	10.1.3 A Simple (Fair) Consensus Algorithm

	10.2 Interactive Consistency (Vector Consensus)
	10.2.1 Definition
	10.2.2 A Simple Example of Use: Build Atomic Rounds
	10.2.3 An Interactive Consistency Algorithm
	10.2.4 Proof of the Algorithm
	10.2.5 A Convergence Point of View

	10.3 Lower Bound on the Number of Rounds
	10.3.1 Preliminary Assumptions and Definitions
	10.3.2 The (t + 1) Lower Bound
	10.3.3 Proof of the Lemmas

	10.4 Summary
	10.5 Bibliographic Notes
	10.6 Exercises and Problems

