
Chapter 1

A Few Definitions

and Two Introductory Examples

This chapter introduces basic definitions and basic computing models associated with fault-tolerant

message-passing distributed systems. It also presents two simple distributed computing problems,

whose aim is to give a first intuition of what can be done and what cannot be done in message-passing

systems prone to failures. Consequently, this chapter must be considered as an introductory warm-up

chapter.

Keywords Algorithm, Automaton, Asynchronous system, Byzantine process, Communication graph,

Distributed algorithm, Distributed computing model, Distributed computing problem, Fair communi-

cation channel, Liveness property, Message adversary, Message loss, Non-determinism, Process crash

failure, Process mobility, Safety property, Spanning tree, Synchronous system.

1.1 A Few Definitions Related to Distributed Computing

Distributed computing “Distributed computing was born in the late 1970s when researchers and

practitioners started taking into account the intrinsic characteristic of physically distributed systems.

The field then emerged as a specialized research area distinct from networking, operating systems, and

parallel computing.

Distributed computing arises when one has to solve a problem in terms of distributed entities

(usually called processors, nodes, processes, actors, agents, sensors, peers, etc.) such that each entity

has only a partial knowledge of the many parameters involved in the problem that has to be solved.”

The fact the computing entities and their individual inputs are distributed is not under the control

of the programmers but is imposed on them. From an architectural point of view, this is expressed

in Fig. 1.1, where a pair 〈pi, ini〉 denotes a computing entity pi and its associated input ini (this is

formalized with the notion of a distributed task introduced in Section 1.3, page 12).

The concept of a sequential process A sequential algorithm is a formal description of the behavior

of a sequential state machine: the text of the algorithm states the transitions that have to be sequentially

executed. When written in a specific programming language, an algorithm is called a program.

The concept of a process was introduced to highlight the difference between an algorithm as a text

and its execution on a processor. While an algorithm is a text that describes statements that have to

be executed (such a text can also be analyzed, translated, etc.), a process is a “text in action”, namely

the dynamic entity generated by the execution of an algorithm (program) on a processor (computing

device). At any time, a process is characterized by its state (which comprises, among other things, the

current value of its program counter). A sequential process is a process defined by a single control

© Springer Nature Switzerland AG 2018
M. Raynal, Fault-Tolerant Message-Passing Distributed Systems, 
https://doi.org/10.1007/978-3-319-94141-7_1 

3

https://doi.org/10.1007/978-3-319-94141-7_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94141-7_1&domain=pdf


4 1.1. A Few Definitions Related to Distributed Computing

inn

Communication medium

p1in1 piini

pnpjinj

Figure 1.1: Basic structure of distributed computing

flow: its behavior is managed by a single program counter, which means it executes a single step at a

time.

Distributed system As depicted in Fig. 1.1, a distributed system is made up of a collection of dis-

tributed computing units, each one abstracted through the notion of a process, interconnected by a

communication medium. As already said, the distribution of the processes (computing units) is not

under the control of the programmers, it is imposed on them.

In this book we assume that the set of processes is static. Composed of n processes, it is denoted

Π = {p1, ..., pn}, where each pi, 1 ≤ i ≤ n, represents a distinct process. The integer i denotes the

index of process pi, i.e., the way an external observer can distinguish processes. It is nearly always

assumed that each process pi has its own identity, which is denoted idi. In a lot of cases idi = i.

The processes are assumed to cooperate on a common goal, which means that they exchange

information in one way or another. This book considers that the processes communicate by exchanging

messages on top of a communication network (see for example Fig. 1.2). Hence, the automaton

associated with each process provides it with basic point-to-point send and receive operations.

Communication medium The processes communicate by sending and receiving messages through

channels. A channel can be reliable (neither message loss, creation, modification, nor duplication), or

unreliable. Moreover, a channel can be synchronous or asynchronous. Synchronous means that there

is an upper bound on message transfer delays, while asynchronous means there is no such bound.

In any case, an algorithm must specify the properties it assumes for channels. As an example, an

asynchronous reliable channel guarantees that each message takes a finite time to travel from its sender

to its receiver. Let us notice that this does not guarantee that messages are received in their sending

order. A channel satisfying this last property is called a first in first out (FIFO) channel.

Each channel is assumed (a) to be bidirectional (it can carry messages in both directions) and (b)

to have an infinite capacity (it can contain any number of messages, each of any size).

Each process pi has a set of neighbors, denoted neighborsi . According to the context, this set con-

tains either the local identities of the channels connecting pi to its neighbor processes or the identities

of these processes.

Structural view It follows from the previous definitions that, from a structural point of view, a

distributed system can be represented by a connected undirected graph G = (Π, C) (where C denotes

the set of channels). Three types of graphs are of particular interest (Fig. 1.2):

• A ring is a graph in which each process has exactly two neighbors with which it can communi-

cate directly, a left neighbor and a right neighbor.



Chapter 1. A Few Definitions and Two Introductory Examples 5

• A tree is a graph that has two noteworthy properties: it is acyclic and connected (which means

that adding a new channel would create a cycle, while suppressing a channel would disconnect

it).

• A fully connected graph is a graph in which each process is directly connected to every other

process. (In graph terminology, such a graph is called a clique.)

CliqueRing Tree

Figure 1.2: Three graph types of particular interest

Distributed algorithm A distributed algorithm is a collection of n automata, one per process. An

automaton describes the sequence of steps executed by the corresponding process.

In addition to the power of a Turing machine, an automaton is enriched with two communication

operations which allows it to send a message on a channel or receive a message on any channel. The

operations are denoted “send()” and “receive()”.

Synchronous algorithm A distributed synchronous algorithm is an algorithm designed to be exe-

cuted on a synchronous distributed system. The progress of such a system is governed by an external

global clock, denoted R, whose domain is the sequence of increasing integers. The processes collec-

tively execute a sequence of rounds, each round corresponding to a value of the global clock.

During a round, a process sends a message to a subset of its neighbors. The fundamental property

of a synchronous system is that a message sent by a process during a round r is received by its desti-

nation process during the very same round r. Hence, when a process proceeds to the round (r + 1),
it has received (and processed) all the messages that have been sent to it during round r, and it knows

the same holds for any process.

Space/time diagram A distributed execution can be graphically represented by a space/time di-

agram. Each sequential progress is represented by an arrow from left to right, and a message is

represented by an arrow from the sending process to the destination process.

The space/time diagram on the left of Fig. 1.3 represents a synchronous execution. The vertical

lines are used to separate the successive rounds. During the first round, p1 sends a message to p3, and

p2 sends a message to p1, etc.

p3

p1

p2

p3

r = 2 r = 3r = 1
p1

p2

Figure 1.3: Synchronous execution (left) vs. asynchronous execution (right)



6 1.1. A Few Definitions Related to Distributed Computing

Asynchronous algorithm A distributed asynchronous algorithm is an algorithm designed to be ex-

ecuted on an asynchronous distributed system. In such a system, there is no notion of an external time,

which is why asynchronous systems are sometimes called time-free systems.

In an asynchronous algorithm, the progress of a process is ensured by its own computation and the

messages it receives. When a process receives a message, it processes the message and, according to

its local algorithm, possibly sends messages to its neighbors.

A process processes one message at a time. This means that the processing of a message cannot be

interrupted by the arrival of another message. When a message arrives, it is added to the input buffer

of the destination process pj , and remains in it until an invocation of receive() by pj returns it.

The space/time diagram of a simple asynchronous execution is depicted on the right of Fig. 1.3.

One can see that, in this example, the messages from p1 to p2 are not received in their sending order.

Hence, the channel from p1 to p2 is not a FIFO (first in first out) channel. It is easy to see from

the figure that a synchronous execution is more structured (i.e., synchronized) than an asynchronous

execution.

Synchronous round vs asynchronous round In the synchronous model, the rounds, and their

progress, belong to the model. In the asynchronous model, rounds are not given for free, but can

be built by the processes. Nevertheless, when a process terminates a round r, it cannot conclude

that the other processes are simultaneously doing the same. When there are failures, it cannot even

conclude that all other processes will attain the round r it is executing.

Event and execution An event models the execution of a step issued by a process, where a step

is either a local step (communication-free local computation), or a communication step (the sending

of a message, or the reception of a message). An execution E is a partial order on the set of events

produced by the processes.

• In the context of a synchronous system, E is the partial order on the set of events produced by

the processes, such that all the events occurring in a round r precede all the events of the round

(r + 1), and, inside every round, all sending events, precede all reception events, which in turn

precede all local events executed in this round.

• In the context of an asynchronous system, E is the partial order on the events produced by

the processes such that, for each process, E respects the total order on its events, and, for

any message m sent by a process pi to a process pj , the sending of m event occurs before its

reception event by pj .

Process failure models Two main process failures models are considered in this book:

• Crash failures. A process commits a crash failure when it prematurely stops its execution. Until

it crashes (if it ever crashes), a process correctly executes its local algorithm.

• Byzantine failures. A process commits a Byzantine failure when it does not follow the behav-

ior assigned to it by its local algorithm. This kind of failure is also called arbitrary failure

(sometimes known as malicious when the failure is intentional). Let us notice that crash failures

(which are an unexpected definitive halt) are a proper subset of Byzantine failures.

A simple example of a Byzantine failure is the the following: while it is assumed to send the

same value to all processes, a process sends different values to different subsets of processes,

and no value at all to other processes. This is a typical Byzantine behavior. Moreover, Byzantine

processes can collude to foil the processes that are not Byzantine.

From a terminology point of view, let us consider an execution E (an execution is also called a

run). The processes that commit failures are said to be faulty in E. The other processes are said to



Chapter 1. A Few Definitions and Two Introductory Examples 7

be correct or non-faulty in E. It is not known in advance if a given process is correct or faulty, this is

specific to each execution.

Given a process failure model, the model parameter t is used to denote the maximal number of

processes that can be faulty in an execution.

Channel failure model Thanks to error-detecting/correcting codes, corrupted messages can be cor-

rected, and received correctly. If a corrupted message cannot be corrected, it can be discarded, and

then appears as a lost message. This means that, in practice, the important channel failure is the pos-

sibility to lose messages. These notions will be investigated in depth in Chapter 3, under the name

fair channel assumption. Intuitively, fair channels experiences uncontrolled transient periods during

which messages are lost.

Solving a problem A problem is defined by a set of properties (see examples in the two next sec-

tions). One of these properties (usually called liveness or termination) states that “something happens”,

i.e., a result is computed. The other properties are safety properties (according to what they state, they

are called validity, agreement, integrity, etc.). The safety properties state that “nothing bad happens”,

consequently they describe properties that must never be violated (invariants). The decomposition of

the definition of a problem into several properties facilitates both its understanding (as a problem) and

the correctness proof of the algorithms that claim to solve it.

An algorithm solves a problem in a given computing model M if, assuming the inputs are correct,

there is a proof showing that any run of the algorithm in M satisfies all the properties defining the

problem. (Observe that an algorithm designed for a model M is not required to work when executed

in a model M ′ which does not satisfy the requirements of M .)

1.2 Example 1: Common Decision Despite Message Losses

This section and the next one present two simple distributed computing problems in systems where no

process is faulty, but messages can be lost. Their aim is to make the readers familiar with basic issues

of fault-tolerant distributed computing, and, given a distributed computing model, help them to have

a first intuition of what can be done in this model, and what cannot be done. Let us remember that a

model defines an abstraction level. It has to be accurate enough to capture the important phenomena

that do really occur, and abstract enough to allow reasoning on the runs of the algorithms executed on

top of it.

1.2.1 The Problem

This problem concerns an irrevocable decision-making by two processes. It seems to have its origin

in the design of communication protocols, as presented by E.A. Akkoyunlu, E. Ekanadham, and R.V.

Huber (1975). It then appeared in databases, where it was formalized by J. Gray (1978) under the

name The two generals problem (there are variants of this problem, e.g., in synchronous systems).

A metaphor The name of the problem comes from the following analogy. Let us consider two

hilltops T1 and T2 separated by a valley V . There are two armies A and B. The army A is composed

of two divisions A1 and A2, each with a general, the general-in-chief being located in division A1.

Moreover, A1 is camping on T1, while A2 is camping on T2. Army B is in between, camping in the

valley V . The only way A1 and A2 can communicate is by sending messengers who need to traverse

the valley V . But messengers can be captured by army B, and never arrive. It is nevertheless assumed

that not all messengers sent by A1 and A2 can be captured.



8 1.2. Example 1: Common Decision Despite Message Losses

The generals of army A previously agreed on two possible battle plans bp1 and bp2, but, according

to his analysis of the situation, it is up to the general-in-chief to decide which plan must be adopted.

To this end, the general-in-chief must communicate his decision to the general of A2 so that they both

adopt the same battle plan (and win).

The problem consists in designing a distributed algorithm (a sequence of message exchanges ini-

tiated by the general-in-chief in A1), at the end of which (a) A2 knows the battle plan selected by A1,

and (b) both A1 and A2 know they no longer have to send or receive messages.

System model Let p1 and p2 be two processes representing A1 and A2, respectively, connected by

a bi-directional asynchronous channel controlled by the army B. The processes are assumed to never

fail. While no message can be modified (corrupted), the channel is asynchronous and unreliable in the

sense that messages can be lost (a message loss represents a messenger captured by army B). It is

nevertheless assumed that not all messages sent by p1 to p2 (and by p2 to p1) can be lost (otherwise,

there is a possible run in which the processes could not communicate, making the problem impossible

to solve). As mentioned previously, a channel can experience unexpected transient periods during

which messages are lost.

Formalizing the problem As the general-in-chief of army A is in A1, process p1 activates the

sequence of message exchanges by sending the message DECIDE(bp) to p2, where bp is the number of

the chosen battle plan.

For i ∈ {1, 2}, let donei be a local variable of pi initialized to no (for the corresponding process,

no decision has been made). Hence, representing a global state by the pair 〈done1, done2〉, the initial

global state is the pair 〈no, no〉. At the end of its execution, the distributed algorithm must stop in

the global state 〈yes, yes〉. When donei = yes, process pi knows (a) that each process knows the

selected battle plan, and (b) there is no need for messages to be exchanged, namely each process

terminates its local algorithm (see Fig. 1.4). This is captured by the following properties:

• Validity. A final global state cannot contain both yes and no.

• Liveness. If p1 activates the algorithm, it eventually and permanently enters the local state

done1 = yes.

The validity property states which are the correct outputs of the algorithm: in no case p1 and p2 are

allowed to disagree. The liveness property states that, if p1 starts the algorithm, it must eventually

progress. (Let us notice that, it then follows from the validity property that both processes must

progress.)

First message sent

done1 = no

done2 = no

Initially:

done1 ← yes

has terminated

the algorithm

p1

p2

messages exchange between p1 and p2

done2 ← yes

Figure 1.4: Algorithm structure of a common decision-making process



Chapter 1. A Few Definitions and Two Introductory Examples 9

A practical instance of the problem Let us consider two processes p1 and p2 communicating

through an unreliable fair channel. Let us assume that, after some time, they want to close their

working session; this disconnection being initiated by p1. Hence, in the previous parlance, they are

both in the local state donei = no, and they have to progress to the global state 〈yes, yes〉.
As the reader can see, the closing session problem is nothing other than an instance of the previous

“common decision-making in the presence of message losses” problem.

1.2.2 Trying to Solve the Problem: Attempt 1

Starting with p1 Let us try to design an algorithm for p1. As messages (but not all) sent by p1 to p2
can be lost, a simple idea is to require p1 to repeatedly send a message denoted DECIDE(bp) to p2 until

it has received an acknowledgment (bp is the – dynamically defined by p1 – number of the selected

battle plan):

done1 ← no;

bp ← selected battle plan ∈ {1, 2};

repeat send DECIDE(bp) to p2 until ACK(DECIDE) received from p2 end repeat;

done1 ← yes.

Continuing with p2 While in the state done2 = no, p2 receives the message DECIDE(bp), it sends

back to p1 the acknowledgment message ACK(DECIDE), but this acknowledgment message can be lost.

Hence p2 must resend ACK(DECIDE) until it knows a copy of it has been received by p1. Consequently,

the local algorithm of p1 must be enriched with a statement sending an acknowledgment message back

to p2 that we denote ACK
2(DECIDE). We then obtain the following local algorithms for p2:

done2 ← no;

wait(message DECIDE(bp) from p1);

repeat send ACK(DECIDE) to p1 until ACK2(DECIDE) received from p1 end repeat;

done2 ← yes.

Returning to p1 As p1 is required to send the message ACK
2(DECIDE) to p2, and this message must

be received by p2, p1 needs to resend it until it knows that a copy of it has been received by p2. As we

have seen, the only way for p1 to know if p2 received ACK
2(DECIDE) is to receive an acknowledgment

message ACK
3(DECIDE) from p2. We then have the following enriched algorithm for p1:

done1 ← no;

bp ← selected battle plan number ∈ {1, 2};

repeat send DECIDE(bp) to p2 until ACK(DECIDE) received from p2 end repeat;

repeat send ACK
2(DECIDE) to p2 until ACK

3(DECIDE) received from p2 end repeat;

done1 ← yes.

And so on forever As the reader can see, this approach does not work. An infinity of distinct

acknowledgment messages is needed, each acknowledging the previous one.

1.2.3 Trying to Solve the Problem: Attempt 2

Trying to modify both local algorithms In order to prevent the sending of an infinite sequence of

different acknowledgment messages, let us consider the same algorithm as before for p1, namely, p1
sends DECIDE(bp) until it knows that p2 has received it. When this occurs, p1 knows that “p2 knows

the number of the decided battle plan”, and p1 terminates this local algorithm:



10 1.2. Example 1: Common Decision Despite Message Losses

done1 ← no;

bp ← selected battle plan ∈ {1, 2};

repeat send DECIDE(bp) to p2 until ACK(DECIDE) received from p2 end repeat;

done1 ← yes.

Let us now modify the algorithm of p2 according to the previous modification of p1:

done2 ← no;

wait(message DECIDE(bp) from p1);

repeat send ACK(DECIDE) to p1 each time DECIDE(bp) received from p1 end repeat;

done2 ← yes.

When it receives a copy of the message DECIDE(bp), p2 knows that “both p1 and p2 know the number

of the battle plan”, but it cannot be allowed to proceed to the local state done2 = yes. This is because,

as p1 needs to know that “both p1 and p2 know the number of the battle plan”, p2 needs to send an

acknowledgment ACK(DECIDE) each time it receives a copy of the message DECIDE(bp). As not all

messages are lost, this ensures that p1 will know that “both p1 and p2 know the battle plan” despite

message losses. Even if p1 sends a finite number of copies of DECIDE(bp), and none of them are lost,

the “repeat” statement inside p2 cannot be bounded. This is because p2 can never know how many

copies of the message DECIDE(bp) it will receive. Due to the fact that not all messages are lost, it

knows only that this number is finite, but never knows its value. This depends on the channel, and the

behavior of the channel is not under the control of the processes. Hence, this tentative version does

not ensure that both processes terminate their algorithm.

Which raises the fundamental question: is there another approach that can successfully solve the

problem, or is the problem unsolvable?

A sequence of messages instead of a common decision Before answering the question, let us

consider a similar problem, in which p1 wants to send to p2 an infinite sequence of messages m1,

m2, ..., mx, ... (each message mx carrying its sequence number x). In this case, starting from x = 1,

process p1 repeatedly sends mx to p2, until it receives an acknowledgment message ACK(x) from p2.

When it receives such a message, p1 proceeds to the message mx+1.

This algorithm is well-known in communication protocols, where, in addition, the acknowledg-

ments from p2 to p1 are actually replaced by a sequence of messages m′
1, m′

2, ..., m′
x, ... that p2 wants

to send to p1. As we can see, in addition to carrying its own data value, the message m′
x acts as an

acknowledgment message ACK(x) (and mx+1 acts as an acknowledgment message for m′
x).

1.2.4 An Impossibility Result

While it is possible to design a simple algorithm transmitting an infinite sequence of messages on top

of a channel which can experience transient message losses (an unreliable fair channel), it appears that

it is impossible to design an algorithm ensuring common decision-making on top of such an unreliable

channel.

Theorem 1. There is no algorithm solving the common decision-making problem between two pro-

cesses, if the underlying communication channel is prone to arbitrary message losses.

Proof Let us first observe that any algorithm solving the problem is equivalent to an algorithm A in

which p1 and p2 execute successive phases of message exchanges, where, in each phase, a process

sends a message to the other process.

The proof is by contradiction. Let us assume that there are phase-based algorithms that solve the

problem, and, among them, let us consider the algorithm A that uses the fewest communication phases.

As A terminates, there is a last phase during which a message is sent. Without loss of generality, let

us assume this message m is sent by p1. Moreover, assume m is not lost.



Chapter 1. A Few Definitions and Two Introductory Examples 11

• The last statement executed by p1 cannot depend on whether or not m is received by p2. This is

because, as m is the last message sent, the fact that it has been lost or received by p2 cannot be

known by p1. Hence, the last statement executed by p1 cannot depend on m.

• Similarly, the last statement executed by p2 cannot depend on m. This is because, as m could

be lost and this is not known by p1, the last statement of p1 must be as if m was lost, and cannot

consequently depend on m.

As the last statements of both p1 and p2 cannot depend on m, this message is useless. Hence, we

obtain a terminating execution in which one less message is sent. This execution can be produced by

an algorithm A′ which is the same as A without the sending of the message m. Hence, A′ contradicts

the fact that A solves the problem with the fewest number of communication phases. �Theorem 1

The notion of indistinguishability Considering the tentative algorithm outlined in Section 1.2.2, let

us assume that no messages are lost (but remember that neither p1 nor p2 can know this). Even in such

a run, the tentative algorithm never terminates.

As the reader can check, the difficulty for a process is its inability to distinguish what actually

happened (in this case no message loss) from what could have happened (message losses). Designing

distributed algorithms able to cope with this type of uncertainty is one of the main difficulties of

distributed computing in the presence communication failures.

1.2.5 A Coordination Problem

Let us consider the following coordination problem. Two processes are connected by a bidirectional

communication channel. As previously, the processes are assumed not to fail, but the channel is prone

to transient failures during which messages are lost. Each process can execute two actions, AC1 and

AC2, which both processes know in advance.

The problem consists in designing a distributed algorithm satisfying the following properties:

• Integrity. Each process executes at most one action.

• Agreement. The processes do not execute different actions.

• Liveness. Each process executes at least one action.

Integrity prevents a process from executing both actions. Combined with liveness, it follows that each

process executes exactly one action.

Integrity and agreement are safety properties: they state what must never be violated by an al-

gorithm solving the problem. Let us observe that the safety properties are trivially satisfied by an

algorithm doing nothing. Hence, the necessity of the liveness property which states that the algorithm

must force the processes to progress.

Despite the fact that both processes never fail, this problem is impossible to solve. Its impossibility

proof is Exercise 2 (see Section 1.8).

1.3 Example 2:

Computing a Global Function Despite a Message Adversary

1.3.1 The Problem

Let us assume that each process pi has an input ini, initially known only by the process. Moreover, it

is assumed that each process knows n, the total number of processes. Each process pi must compute

its own output outi such that outi = fi(in1, . . . , inn). According to what must be computed, the



12

1.3. Example 2:

Computing a Global Function Despite a Message Adversary

pi

T ()

outiini

Output vectorInput vector

OUT = [out1, ..., outn]IN = [in1, ..., inn]

Figure 1.5: A simple distributed computing framework

functions fi() can be the same function or different functions. A structural view is illustrated in

Fig. 1.5.

The important point here is that we consider a distributed system context. The fact that there

are n processes is not a design choice but a fact imposed on the designer of the algorithm: there

are n computing entities, geographically distributed. (As a simple example, suppose that each pi
is a temperature sensor, and some sensors must compute the highest temperature, other sensors the

lowest temperature, and the rest of the sensors the average temperature.) The case n = 1 is a very

particular case for which the problem boils down to the writing of a sequential algorithm computing

out1 = f1(in1).

In the distributed parlance, such a problem is sometimes called a distributed task, defined by a

relation T () associating a set of possible output vectors T (IN ) with each possible input vector IN ,

namely, OUT ∈ T (IN ).

Defining the problem with properties Given a set of functions fi(), let ini be the input of pi. Any

algorithm solving the problem must satisfy the following properties:

• Validity. If process pi returns outi, then outi = fi(in1, . . . , inn).

• Liveness. Each process pi returns a result outi.

As previously explained, the validity property states that, if a process returns a result, this result is

correct, while the liveness property states that the computation terminates.

1.3.2 The Notion of a Message Adversary

Reliable synchronous model Let SMPn[∅] be the synchronous message-passing system model in

which no process is faulty, each process pi has a set of neighbors (neighbori), and the communication

graph is connected (there is a path from any process to any other process). In this model the processes

execute a sequence of rounds, and each round r comprises three phases that follow the pattern “send;

receive; compute”:

• First each process sends a message to its neighbors.

• Then, each process waits for the messages that have been sent to it during the current round.

• Finally, according to its current local state and the messages it received during the current round,

each process computes its new local state.



Chapter 1. A Few Definitions and Two Introductory Examples 13

As already indicated, the fundamental property of this model is its synchrony: each message is

received in the round in which it was sent. Moreover, the progress from a round r to the next round

r + 1 is automatic, i.e., it is not under the control of the processes, but provided to them for free by

the model. From an operational point of view, there is a global round variable R that any process can

read, and whose progress is managed by the system (see left part of Fig. 1.3).

The notion of a message adversary A message adversary is a daemon that, at every round, is

allowed to suppress a subset of channels (i.e., it withdraws and discards the messages sent on these

channels).

To put it differently, the message adversary defines the actual communication graph associated

with every round. Let G(r) be the undirected communication graph associated with round r by the

adversary. This means that, at any round r, the message adversary is allowed to drop the messages

sent on any channel that does not belong to G(r). Hence, from the point of view of the processes

these messages are lost. Given any pair of distinct rounds r and r′, G(r) and G(r′) are not necessarily

related one to the other. Moreover, the adversary is not prevented from being “omniscient”, namely

it can define dynamically the graphs G(1), ..., G(r), G(r + 1), etc. For example, nothing prevents it

from knowing the local states of the processes at the end of a round r, and using this information to

define G(r+1). Finally, ∀r, no process ever knows G(r). Given an unconstrained message adversary

AD, and a system involving four processes, an example of three possible consecutive communication

graphs is depicted in Fig. 1.6.

G(1) G(2) G(3)

Figure 1.6: Examples of graphs produced by a message adversary

If the message adversary can suppress all messages at every round, no non-trivial problem can

be solved, whatever the individual computational power of each process. At the other extreme if,

at any round, the message adversary cannot suppress messages, it has no power (we have then the

reliable synchronous model SMPn[∅]). Hence, the question: How can we restrict the power of a

message adversary, so that, while it can suppress plenty of messages, it cannot prevent each process

from learning the inputs of the other processes? As we are about to see, the answer to this question is

a matter of graph connectivity, every round being taken individually.

The reliable synchronous model SMPn[∅], weakened by an adversary AD, is denoted SMPn[AD].

1.3.3 The TREE-AD Message Adversary

The TREE-AD message adversary At every round, this message adversary can suppress the mes-

sages on all the channels, except on the channels defining a spanning tree involving all the processes.

As an example, when considering Fig. 1.6, which involves four processes, G(1) and G(3) define span-

ning trees including all the processes, while G(2) does not (it includes two disconnected spanning

trees, one involving three processes, the other one being a singleton tree).

A TREE-AD-tolerant algorithm Fig. 1.7 describes an algorithm that works in the weakened syn-

chronous model SMPn[TREE-AD]. Each process pi has an input ini known only by itself, and man-

ages an array knowni[1..n], initialized to [⊥, ...,⊥], such that knowni[j] will contain the input value

of pj .



14

1.3. Example 2:

Computing a Global Function Despite a Message Adversary

Let us assume that ⊥ < inj for any j ∈ {1, n} (this is only to simplify the writing of the algo-

rithm). The operation “broadcast MSG-TYPE(val)” issued by pi, where MSG-TYPE is a message type

and val the data carried by the message, is a simple macro-operation for “for each k ∈ neighborsi do

send MSG-TYPE(val) to pk end for”. Let us remember that R is the model-provided round generator,

which automatically ensures the progress of the computation.

(1) knowni ← [⊥, ...,⊥]; knowni[i] ← ini;

(2) when R = 1, 2, ..., (n− 1) do

(3) begin synchronous round

(4) broadcast KNOWN(knowni);
(5) for each j ∈ 1..n such that KNOWN(knownj) received from pj do

(6) for each k ∈ {1, ..., n} do knowni[k] ← max(knowni[k], knownj [k]) end for

(7) end for

(8) end synchronous round;

(9) outi ← fi(knowni); return(outi).

Figure 1.7: Distributed computation in SMPn[TREE-AD] (code for pi)

A process pi first initializes knowni[1..n] (line 1). Then, simultaneously with all processes, it

enters a sequence of synchronous rounds (lines 2-8), at the end of which it will know the input values

of all the processes, and consequently will be able to return its local result (line 9).

As already stated, the global variable R is provided by the synchronous model, and each message

is either suppressed by the message adversary or received in the round in which it was sent. During

a round, a process pi first sends its current knowledge on the process inputs to its neighbors, which is

currently saved in its local array knowni (line 4). Then it updates its local array knowni according

to what it learns from the messages it receives during the current round (lines 5-7). The sequence of

rounds is made up of (n− 1) rounds.

Theorem 2. Each process pi returns a result outi (liveness), and this result is equal to fi(in1, ..., inn)
(validity).

Proof Let us first prove the liveness property. This is a direct consequence of the synchrony as-

sumption. The fact that the current round number R progresses from 1 to n is ensured by the model

(together with the property that a message that is not suppressed by the message adversary is received

in the same round by its destination process).

As far as the validity property is concerned, let us consider the input value ini of a process pi.
At the beginning of any round r, let us partition the processes into two sets: the set they knowi

which contains all the processes that know ini, and the set they do not knowi which contains the

processes that do not know ini. Initially (beginning of round R = 1), we have they knowi = {i},

and they do not knowi = {1, ..., n} \ they knowi.

they do not knowithey knowi

Figure 1.8: The property limiting the power of a TREE-AD message adversary



Chapter 1. A Few Definitions and Two Introductory Examples 15

Due to the fact that, at every round r, there is a spanning tree on which the message adversary does

not suppress the messages, this tree includes a channel connecting a process belonging to they knowi

to a process belonging to they do not knowi (Fig. 1.8). It follows that, if |they knowi| < n, there

is at least one process pk that moves from the set they do not knowi to the set they knowi during

round r. (“px knows ini” means knownx[i] = ini.) As there are (n − 1) rounds, it follows that, by

the end of the last round, we have |they knowi| = n. As this is true for any process pi, it follows

that any process pj is such that inj is known by all processes by the end of the round (n − 1), which

concludes the proof of the theorem. �Theorem 2

Cost of the algorithm For the time complexity, assuming each round costs one time unit, the algo-

rithm requires (n− 1) time units.

Let d the number of bits needed to represent any process input or ⊥. (Note that d does not depend

on the algorithm, but on the application that uses it.) Each message requires nd bits. Moreover, as

there are (n − 1) rounds, and (assuming a process does not send a message to itself) the number

of messages per round is upper bounded by (n − 1)n, which means that the bit complexity of the

algorithm is upper bounded by n3d bits.

On the meaning of the TREE-AD message adversary It is easy to see that, if, at any round,

the adversary can partition the set of n processes into two sets that can never communicate, as outi
depends on all the inputs, no process pi can compute its output. In this sense, TREE-AD states that the

system is never partitioned by messages losses that would prevent a process from learning the inputs

of the other processes.

It is possible to define a “stronger” adversary than TREE-AD, denoted TREE-ADc, which allows

the problem to be solved. “Stronger” means a message adversary that, at some rounds, can disconnect

the processes, and hence discard more messages than TREE-AD. Let c ≥ n− 1 be a constant known

by each process, and let us modify line 2 of the algorithm in Fig. 1.7 so that now each process executes

c rounds. TREE-ADc is defined by the following constraint:

|{r : 1 ≤ r ≤ c : G(r) contains a spanning tree }| ≥ n− 1.

TREE-ADc allows c − (n − 1) rounds where the subsets of processes are disconnected. It is easy to

see that the previous proof is still valid: eliminating a set of c − (n − 1) rounds r including all the

rounds in which G(r) does not contain a spanning tree, we obtain an execution that could have been

produced by the algorithm in Fig. 1.7. As this is obtained by the same algorithm at the price of more

rounds, this exhibits a compromise between “the power of the message adversary” and “the number

of rounds that have to be executed”.

1.3.4 From Message Adversary to Process Mobility

In a very interesting way, the notion of a message adversary allows the capture of the mobility of pro-

cesses in the reliable round-based synchronous system model SMPn[∅]. The movement of a process

from a location L1 to a location L2 translates as the suppression of some channels and the creation of

new channels when the system progresses from one round to the next.

As an example, let us consider Fig. 1.9. There are six processes, and the first three rounds are

represented. For r = 1, 2, 3, G(r) describes the communication graph during round r. The move of a

process is indicated by a dashed red arrow.

After it has processed the message it received during round r = 1, the movement of p3 entails

the suppression of the channel linking p3 to p2, and the creation of a new channel linking p3 to p4.

We then obtain the communication graph G(2). Then, the simultaneous motion of p5 and p6 connects

them to p3, without disconnecting them, which produces G(3).



16 1.4. Main Distributed Computing Models Used in This Book

G(1) G(2) G(3)

p1p1

p2 p4

p3

p5

p6

p4
p2

p6p5

p3p3
p5

p4p2

p1

p6

Figure 1.9: Process mobility can be captured by a message adversary in synchronous systems

1.4 Main Distributed Computing Models Used in This Book

Let us remember that n denotes the total number of processes, and t is an upper bound on the number

of processes that can be faulty. In all cases it will be assumed that processing times are negligible

with respect to message transfer delays; they are consequently considered as having a zero duration.

Moreover, in the models defined in this section, the underlying communication network is assumed to

be fully connected (the associated communication graph is a clique).

According to the process failure model and the synchrony/asynchrony model, we have four main

distributed computing models, denoted as depicted in Table 1.1 (C stands for crash, B stands for

Byzantine, and MP stands for full graph message-passing). [∅] means there are neither additional

assumptions enriching the model, nor restrictions weakening it. Given a specific model, additional

assumptions allow for the definition of stronger models, while restrictions allow for the definition of

weaker models.

Crash failure model Byzantine failure model

Asynchronous model CAMPn,t[∅] BAMPn,t[∅]
Synchronous model CSMPn,t[∅] BSMPn,t[∅]

Table 1.1: Four classic fault-prone distributed computing models

Let us observe that, in these four basic models, the underlying network is reliable; hence, the main

difficulty in solving a problem in any of them will come from the net effect of the synchrony/asyn-

chrony of the network and the process failure model.

To summarize the reading of a model definition:

• The first letter states the process failure model (crash vs Byzantine).

• The second letter states the timing model (synchronous or asynchronous).

• The processes send and receive messages on a reliable complete communication graph.

• [∅] means that this is the basic model considered. There are no other assumptions, and hence t
can be any value in [1..(n− 1)]) (it is always assumed that at least one process does not crash).

Variants of the four previous basic models will be introduced in some chapters to address specific

issues related to fault-tolerance. These variants concern two dimensions:

• Enriched model. As an example, the model CAMPn,t[t < n/2] is the model CAMPn,t[∅]
enriched with the assumption t < n/2, which means that there is always a majority of correct

processes. Hence, CAMPn,t[t < n/2] is a stronger model than CAMPn,t[∅], where “stronger”

means “more constrained in the sense it provides us with more assumptions”.



Chapter 1. A Few Definitions and Two Introductory Examples 17

• Weakened Model. As an example, the model CAMPn,t[- FC] is the model CAMPn,t[∅] weak-

ened by the assumption FC (with states that the communication channels are no longer reliable

but are only fair, see Chap. 3). A weakening assumption is prefixed by the sign “-” (to stress the

fact the fact it weakens the model to which it is applied).

• Model with both enrichment and weakening. As an example, the model CAMPn,t[- FC, t <
n/2] is the model CAMPn,t[∅] weakened by fair channels, and enriched by the assumption there

is always a majority of correct processes.

Failure detectors (such as the one introduced in Chap. 3) are a classic way to enrich a system.

A failure detector is an oracle that provides each process with additional computability power.

As an example, CAMPn,t[- FC, FD1, FD2] denotes the model CAMPn,t[∅] weakened by fair

channels, and enriched with the computability power provided by the failure detectors of the

classes FD1 and FD2.

All these notions will be explicited in Chap. 3, where they will be used for the first time.

1.5 Distributed Computing Versus Parallel Computing

x y = f (x)f ()

Figure 1.10: Sequential or parallel computing

Parallel computing When considering Fig. 1.10, a function f(), and an input parameter x, parallel

computing addresses concepts, methods, and strategies which allow us to benefit from parallelism (si-

multaneous execution of distinct threads or processes) when one has to implement f(x). The essence

of parallel computing lies in the decomposition of the computation of f(x) in independent computa-

tion units and exploit their independence to execute as many of them as possible in parallel (simulta-

neously) so that the resulting execution is time-efficient. Hence, the aim of parallelism is to produce

efficient computations. This is a non-trivial activity which (among other issues) involves special-

ized programming languages, specific compilation-time program analysis, and appropriate run-time

scheduling techniques.

Distributed computing As we have seen, the essence of distributed computing is different. It is

on the coordination in the presence of “adversaries” (globally called environment) such as asyn-

chrony, failures, locality, mobility, heterogeneity, limited bandwidth, restricted energy, etc. From the

local point of view of each computing entity, these adversaries create uncertainty generating non-

determinism, which (when possible) has to be solved by an appropriate algorithm.

A synoptic view In a few words, parallel computing focuses on the decomposition of a problem

in independent parts (to benefit from the existence of many processors), while distributed computing

focuses on the cooperation of pre-existing imposed entities (in a given environment). Parallel comput-

ing is an extension of sequential computing in the sense any problem that can be solved by a parallel

algorithm can be solved – generally very inefficiently – by a sequential algorithm. Differently, as we

will see in the rest of this book, there are many distributed computing problems (distributed tasks) that

have neither a counterpart, nor a meaning, in parallel (or sequential) computing.



18

1.6 Summary

A first aim of this chapter was to introduce basic definitions related to distributed computing, and

associated notions such as timing models (synchrony/asynchrony) and failure models. A second aim

was to introduce a few important notions associated with fault-tolerant distributed computing, such

as an impossibility result, and a non-trivial problem (computation of a distributed function) in the

presence of channels experiencing transient message losses.

An important point of distributed computing lies in the fact that the computing entities and their

inputs are distributed. This attribute, which is imposed on the algorithm designer, directs the processes

to coordinate in one way or another, according to the problem they have to solve. It is fundamental to

note that this feature makes distributed computing and parallel computing different. In parallel com-

puting, the inputs are initially centralized, and it is up to the algorithm designer to make the inputs

as independent as possible so that they can be processed “in parallel” to obtain efficient executions.

Whereas in many distributed computing problems, the inputs are inherently distributed (see Fig. 1.5).

It follows that the heart of distributed computing consists in mastering of the uncertainty created by

the environment, which is defined by the distribution of the computing entities, asynchrony, process

failures, communication failures, mobility, non-determinism, etc. (everything that can affect the com-

putation and is not under its control).

1.7 Bibliographic Notes

• There are many books on message-passing distributed computing in the presence of failures

(e.g., [43, 88, 250, 271, 366, 367]). Whereas [368] is an introductory book addressing basic

distributed computing problems encountered in failure-free synchronous and asynchronous dis-

tributed systems (e.g., mutual exclusion, global state computation, termination and deadlock

detection, logical clocks, scalar and vector time, distributed checkpointing and distributed prop-

erties detection, graph algorithms, etc.).

• Both the notion of a sequential process and the notion of concurrent computing were introduced

by E.W. Dijkstra in his seminal papers [129, 130].

• A recent (practical) introduction to distributed systems can be found in [402]. An introduction

to the notion of a system model, and its relevance, appeared in [389].

• The representation of a distributed execution as a partial order on a set of events is due to L.

Lamport [255].

• The notion of a Byzantine failure was introduced in the early 1980s, in the context of syn-

chronous systems [263, 342].

• The common decision-making problem seems to have been first introduced by E. A. Akkoyunlu,

E. Ekanadham K., and R.V. Huber in [26]. It was addressed in the late 1970s by J. Gray in

the context of databases [192]. The effect of message losses on the termination of distributed

algorithms is addressed in [248].

• A choice coordination problem, where the processes are anonymous and must collectively select

one among k ≥ 2 possible alternatives, was introduced by M. Rabin in [353]. As they are

anonymous, all processes have the same code. Moreover, a given alternative A (possible choice)

can have the name alti at pi and the name altj �= alti at another process pj . To break symmetry

and cope with non-determinism, the proposed solution is a randomized algorithm. A simple and

pleasant presentation of this algorithm can be found in [405].

• The readers interested in impossibility results in distributed computing should consult the mono-

graph [39].

• The notions of safety and liveness were made explicit and formalized by L. Lamport in [254].

Liveness is also discussed in [28].

1.7. Bibliographic Notes



Chapter 1. A Few Definitions and Two Introductory Examples 19

• The impossibility proof of the common decision-making problem is from [389], where the coor-

dination problem introduced in Section 1.2.5 is also presented. The most famous impossibility

result of distributed computing concerns the consensus problem in the context of asynchronous

systems prone to (even) a single process crash [162]. This impossibility will be studied in Part

IV of the book.

• The computation of a global function whose inputs are distributed is a basic problem of dis-

tributed computing. Its formalization (under the name distributed task) and its investigation in

the presence of one process crash was addressed for the first time in [65, 296]. Since then, this

problem has received a lot of attention (see e.g., [217]).

• The notion of a message adversary was introduced in the context of synchronous systems by N.

Santoro and P. Widmayer (in the late eighties) under the name “mobile fault” [385]. It has since

received a lot of attention (see e.g., [376, 386, 387]).

• The TREE-AD message adversary is from [251]. This paper considers the problem in a more

involved context where n is not known by the processes.

• The connection between message adversaries and dynamic synchronous systems (where “dy-

namic” refers to the motion of processes) is from [251]. An introduction of graphs (called time-

varying graphs) able to capture dynamic networks is presented in [100]. This graph formalism

is particularly well-suited to these types of network. A survey on dynamic network models is

presented in [252]. Theoretical foundations of dynamic networks are represented in [44].

• In several places in this chapter (and also in the book) we used the terms “process pi learns” or

“process pi knows that ...”. These notions have been formalized since the late eighties, as shown

in [103, 208, 298]. The corresponding knowledge theory is pretty powerful for explaining and

understanding distributed computing [152, 297].

• This book does not address robot-oriented distributed computing. Interested readers should

consult [163, 164, 349].

• The interested reader will find a synoptic view of distributed computing versus parallel comput-

ing in [371].

1.8 Exercises and Problems

1. Show that the common decision-making problem cannot be solved even if the system is syn-

chronous (there is a bound on message transfer delays, and this bound is known by the processes:

the system model is SMPn[∅] weakened by message losses).

2. Prove that the two-process coordination problem stated in Section 1.2.5 is impossible to solve.

3. Let us consider the following message adversary TREE-AD(x), where x ≥ 1 is an integer con-

stant initially known by the processes. TREE-AD(x) is TREE-AD with an additional constraint

limiting its power. Let us remember that G(r) denotes the communication graph on which the

message adversary does not suppress messages during round r.

TREE-AD(x) is such that, for any r, G(r) ∩ G(r + 1) · · · ∩ G(r + x − 1) contains the same

spanning tree. This means that any sequence of x consecutive communication graphs defined by

the adversary contains the same spanning tree. It is easy to see that TREE-AD(1) is TREE-AD.

Moreover, TREE-AD(n − 1) states that the same communication spanning tree (not known by

the processes) exists during the whole computation (made up of (n− 1) rounds).

Does the replacement of the message adversary TREE-AD by the message adversary TREE-

AD(x) allow the design of a more efficient algorithm?

Solution in [251].



20 1.8. Exercises and Problems

4. Is it possible to modify the algorithm in Fig. 1.7 so that no process needs to know n?

Solution in [251].


	Chapter 1: A Few Definitions and Two Introductory Examples
	1.1 A Few Definitions Related to Distributed Computing
	1.2 Example 1: Common Decision Despite Message Losses
	1.2.1 The Problem
	1.2.2 Trying to Solve the Problem: Attempt 1
	1.2.3 Trying to Solve the Problem: Attempt 2
	1.2.4 An Impossibility Result
	1.2.5 A Coordination Problem

	1.3 Example 2: Computing a Global Function Despite a Message Adversary
	1.3.1 The Problem
	1.3.2 The Notion of a Message Adversary
	1.3.3 The TREE-AD Message Adversary
	1.3.4 From Message Adversary to Process Mobility

	1.4 Main Distributed Computing Models Used in This Book
	1.5 Distributed Computing Versus Parallel Computing
	1.6 Summary
	1.7 Bibliographic Notes
	1.8 Exercises and Problems




